Course Name	Course Code	Semester	Credit
Complex Analysis	MT(N)-302	VI	4

COURSE NAME: COMPLEX ANALYSIS COURSE CODE: MT(N)-302CREDIT: 04

SYLLABUS

Complex Plane and functions

Complex numbers and their representation, algebra of complex numbers; Complex plane, Open set, Domain and region in complex plane; Stereographic projection and Riemann sphere; Complex functions and their limits including limit at infinity; Continuity, Linear fractional transformations and their geometrical properties, Differentiability of a complex valued function.

Analytic Functions and complex integration

Cauchy–Riemann equations, Harmonic functions, necessary and sufficient conditions for differentiability, Analytic functions; Analyticity and zeros of exponential, trigonometric and logarithmic functions; branch point, Branch cut and branch of multi-valued functions, Line integral, Path independence, Complex integration, Green's theorem, Anti-derivative theorem, Cauchy–Goursat theorem, Cauchy integral formula, Cauchy's inequality, Derivative of analytic function, Liouville's theorem, Fundamental theorem of algebra, Maximum modulus theorem and its consequences.

Power Series

Sequences, series and their convergence, Taylor series and Laurent series of analytic functions, Power series, Radius of convergence, Integration and differentiation of power series, Absolute and uniform convergence of power series.

Singularities and analytic continuation

Meromorphic functions, Zeros and poles of meromorphic functions, Nature of singularities, Picard's theorem, Residues, Cauchy's residue theorem, Argument principle, Rouche's theor-em, Jordan's lemma, Evaluation of proper and improper integrals.

REFRENCES

- Ruel V.Churchill, (1960), Complex Variables and Applications, McGraw-Hill, New York.
- S. Ponnusamy, (2011), Foundations of Complex Analysis (2nd edition), Narosa Publishing House.
- Murray R. Spiegel, (2009), Schaum's Outline of Complex Variables (2nd edition).
- https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdf

SUGGESTED READINGS

- L. V. Ahlfors, (1966), Complex Analysis, Second edition, McGraw-Hill, New York.
- J.B. Conway, (2000), Functions of One Complex Variable, Narosa Publishing House,
- E.T. Copson, (1970), Introduction to Theory of Functions of Complex Variable, Oxford University Press.
- Theodore W. Gamelin, (2001) Complex Analysis, Springer-Verlag, 2001.