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1.1 INTRODUCTION

Light is a form of energy that enables us to see and perceive objects with our eyes.
Scientifically, light is an electromagnetic wave of wavelength belonging to visible part
(wavelength of 400 nm to 750 nm) of electromagnetic spectrum. We see objects either by the
light they produce or by the light they reflect from other objects. Objects that produce their
own light are said to be luminous. Examples are the sun, electric bulbs, candle light etc.,
whereas, non-luminous objects do not produce their own light. We can see these objects only
when light fall on them from other sources and it is thrown back or reflected into our eyes.
An important example is that of the moon, which shines in the night because it reflects light
coming from the sun and not because it is luminous.

Optics is the science or more specifically a branch of physics in which we study the
behavior and properties of light. The study also includes the interaction of light with matter
and construction of instruments that use or detect it. For the sake of convenience the subject
of optics can be divided into two parts: (i) physical or wave optics, which deals with the wave
nature of light. It accounts for optical effects such as diffraction and interference etc., and (ii)
geometrical or ray optics, which deals with the formation of images by lenses and mirrors and
their combinations on the basis of certain geometrical laws obeyed by light.

The present block of the course ‘optics’ is dedicated to the geometrical optics only
hence, in the following sections, we will concentrate on its learning in detail.

Geometrical optics describes light propagation in terms of rays. The rays are the
approximate paths along which light propagates under certain circumstances. The basic
assumptions of geometrical optics include, that light rays:

e Propagate in straight line paths in a homogeneous medium, called as rectilinear
propagation.

e Bend, and in particular circumstances may split into two, at the interface between two
dissimilar media

e Follow curved paths (iterative bending) in a medium in which refractive index changes

e May be absorbed or reflected at glossy surfaces

There are certain laws which explain the above assumptions. These laws form the basis
of geometrical optics and are called fundamental laws. The fundamental laws are

1. The laws of rectilinear propagation of light
2. The laws of reflection of light
3. The laws of refraction of light

A general principle which covers all these laws is known as Fermat’s principle of least time.
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1.2 OBJECTIVES

After studying this unit, you will be able to:

e know Fermat’s principle of least time

e familiarize with incident ray, reflected ray and refracted ray

e familiarize with angle of incidence, reflection and refraction
e state laws of reflection

e state laws of refraction- Snell’s law

o define refractive index

o explain total internal reflection as a special case of refraction
e understand Gauss general theory of image formation

Before we discuss the Fermat’s principle of least action, let us know about the terms —
optical path and optical path time interval.

1.3 OPTICAL PATH

Optical path is the path taken by light ray through an optical system. It is also known as
the product of refractive index (see section 1.5.3) of the medium, i.e. 4 and the distance
travelled S by the light ray in medium, i.e.,

u S = Optical path

It is the path travelled by the light ray in air, in the same time, it takes to traverse the distance
S of medium or we can say it to be the equivalent air path.

If v is the velocity of light and t is the time taken for covering the distance S, then,
S=vt (1.2)

But we know that the refractive index (section 1.5.3)

¢ __ Velocity of light in vacuum

= v Velocity of light in medium 7 (1.2)
Thus
c
== 1.3
v="< (13)
Substituting equation (1.3) in equation (1.1), we get,
s=<t L 1.4
: (14)
or uS =ct= A=optical path ... (1.5)

1.3.1 Optical Path Time Interval

When a ray travels Si, S, S3, Ss etc. distances in media of refractive indices
U1, Ua, U3, Ug €TC., then the optical path is given by

A= p;S1+ pu,So+ usSa+ pySa + ...
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=YiwS: (1.6)

If dS is the small distance covered by light between two points P and Q in a medium and v is
its velocity in that particular medium, then the mathematical form of Fermat’s principle of
extreme path is defined as

ds . - :
fPQ — = Mmaximum or minimum or stationary

Q uds . .. .
or f el = maximum or minimum or Statlonary Here H = <
P v

Since velocity of light in vacuum (c) is constant, the Fermat’s principle of extreme path takes
the form

fPQu dS = maximum or minimum or stationary ~ ....... (1.7)

Where udsS is the optical path in a medium of refractive index pu.

1.4. FERMAT’S PRINCIPLE OF LEAST TIME

In 1658 Pierre De Fermat, a French mathematician enunciated the principle of least
time in the following way:

A ray of light in passing from one point to another through a set of media by any
number of reflections or refractions chooses a path along which the time taken is
minimum or the least.

Based on this principle, the laws of rectilinear propagation, the laws of reflection and
refraction can be derived (see section 1.5). However in some cases, it has been found that the
time taken by light is not minimum but maximum or else it is neither maximum nor minimum
but it is stationary. This is found in case of image formation by lenses, in which all rays
starting from an object point, reaching to the image point; choose the path of maximum or
minimum time. Therefore, the modified form of Fermat’s principle of least time is known as
Fermat’s principle of stationary time or Fermat’s principle of extreme path, which may be
stated as follows:

A ray of light in passing from one point to another through a set of media by any
number of reflections or refractions chooses a path for which the time taken is either
minimum or maximum or stationary. The mathematical verification of this law is provided
in the later sections.
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1.5 APPLICATION OF FERMAT’S PRINCIPAL

On the basis of Fermat’s principle you can derive laws of reflection and refraction.
1.5.1. Laws of Reflection

When light ray falls on a smooth polished surface separating two media, it comes back
in the same medium, the phenomenon is called reflection and the boundary is called
reflecting surface. The light obeys following two laws of reflection.

First law:

The incident ray, reflected ray and the normal to the surface at the point of
incidence all lie in one plane. You can prove this law in the following way.

Let the plane ABCD be normal to the plane mirror shown in figure 1.1. P is point object
imaged by mirror as P'. Consider a point M" on the plane mirror; but not on plane ABCD. Let
a ray PM' be reflected as M'P'. Draw a normal M'M on plane ABCD. Point M is the foot of
the normal on ABCD.

Plane perpendicular

to mirror P
P . 5
- v
\" ~.M,”
B L C
'/ Plane of

M the mirror

Fig. 1.1

Now, PMM' and P'MM' are right angle triangles. PM" and P'M' are respective hypotenuse.
Therefore, we have

PM'>PM and P'M'>P'M

But Fermat’s principle demands that the path followed must be the shortest, i.e., the light
would not travel along PM'P'. As we shift M' towards M the path of light ray becomes
shorter. It is seen that the shortest possible path is PM P’, where the point of incidence M lies
on plane ABCD. PM and MP' are the incident and reflected rays. This proves the first law of
reflection.

Second law:

For a smooth surface, the angle of incidence is equal to the angle of reflection. You
can prove the second law as follows.

Assuming DD’ is a reflecting plane shown in figure 1.2. Object P is imaged as P' and M is the
point of incident. The normal to the plane at this point is MN and is shown by dotted line.
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.S

)
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'
1
)
!
1

Fig. 1.2

PM and MP' are the incidence and reflected rays. Let | and r are the angles of incidence and
reflection respectively. Let us suppose distances
PD=a,P'D'=b,DM=x,DD'=c.
The ray of light travels in air from P to P'. Let the path PMP" be s, then the total distance
covered by light ray be
s=P MP'=PM + MP'

= (PD? + DM?) + (D'M? + D'P?)

=@ +x)+{(c-x?+b%} ... (1.8)
It is evident that the path from P to P' remains the same even if the point of incidence M
shifts. Shifting of M changes x only. According to Fermat’s principle the path PMP' must be

either minimum or maximum. It means that the differential coefficient of s with respect to x
must be zero, i.e.

ds 1 2x 1 2 (c—x) -0
dx 2 J(@?+x%) 2 J{(c—x)%+ b2 -
x (c—x)

of J@@x?)  Jie-n+ b

From figure 1.2, we have,

—W=Sini. (c-x)/[{(c-x2 + b2} =sinr

sini=sinr .. (1.9)
or i=r
Hence you can see that the second law of reflection is derived from Fermat’s principle.
2

Further the second differential co-efficient of s, i.e., ZTszcomes out to be positive, which
proves that the path is minimum (or path of least time).

1.5.2. Laws of Refraction

When a ray of light passes from one homogenous medium to another, the phenomenon
of bending of light ray towards or away from the normal is called refraction. Again there are
following two laws of refraction.
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First Law:

The incident ray, refracted ray and the normal at the point of incidence all lie in
one plane.

Let us assume XY be a plane surface dividing two media shown in figure 1.3. A ray
starting from point P is incident on M. It is refracted as MP" in the other medium, 4i and 4r
are the angles of incidence and refraction. Let us assume that the ray follows path PM'P’
instead of PMP". 1t is evident that

PM' + M'P' > PM + MP'

Therefore, path PM'P" is not possible. If you shift M' towards M, the path from P to P’
through M shortens. It is shortest when M’ is coincident with M which is in accordance with
Fermat’s principle and proves the first law.

Second Law:

The ratio of the sine of angle of incidence to the sine of angle of refraction is a
constant for a given pair of media.

You can further prove that the ratio of the sin i to sin r is equal to the refractive index of
second medium with respect to the first medium which is also known as Snell’s law.

Fig. 1.4

In figure 1.4, XY is a plane surface dividing two media of refractive indices u1 and po.
Consider a point object P in the first medium, PM and MP" are the incident and refracted
rays, i and r are the angle of incidence and refraction.
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PD=a,DM=x,DD'=c¢,D'P'=b

If a ray of light travels a distance S in a medium of refractive index u, than product uS is
called the optical path in the medium. The optical path from P to P' is given by

S =PMP' = 13PM + o MP'

= u1/(PD2 + DM?) + u, /(D'M% + D'P2)

=p1/(a? + x2) + p2/{(c — x)2 + b%}

Now, for S to be minimum dS/dx must be zero and d?S/dx? positive. Differentiating S with
respect to x, we get

as _ U 2x pz(c—x)

ax 2 “J(@?+ x?) B J{(c— %)%+ b2} -

Hix — Uz (c—x)
V(@ +x?) {c- )7+ b7

Using triangles PMD and P'MD', you can write the above relation as

or

pisini=pzsinr

sinti — & = (1-10)

sinr Ui

or

Where 1u2 is the refractive index of the second medium with respect to the first medium. This
is the Snell’s law of refraction.

2
You can show that the second differential coefficient of S, i.e., (%) for the plane

surface comes out to be positive. It proves that the second law of refraction is in accordance
with Fermat’s principle, i.e., the actual path is minimum or path of least time. But you will
see that, this condition is satisfied in the case of plane surfaces only and not in the case of
curved surfaces. For curved surfaces, the path may be a maximum or minimum.

Case I:

When the reflecting surface is more curved than the ellipse passing through the point of
reflection O and having points A and B as foci (figure 1.5)

Let us consider two fixed points A and B and a curved mirror MON (figure 1.5). Let AOB be
the actual path of a ray of light traveling from A to B.
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Let us draw an ellipse having A and B as foci and passing through O. By the property of
ellipse, (AO + OB) is a constant for all positions of O on the ellipse. For example,

AO+0OB=A0'+0B
An alternative neighboring path for the ray of light by reflection at the mirror is ANB. The
difference between the actual path AOB and the neighboring path ANB is,

A =AOB - ANB = (AO + OB) — (AN + NB)

= (AO + OB) — (AO'— NO' + NB)

= (AO'+ O'B) - (AO'— NO' + NB)

=0'B+NO'-NB

This is positive because O'B and NO' are the two sides of a triangle of which NB is the

third side. Thus, in this case, any neighboring path ANB is smaller than the actual path AOB.

Thus from above discussion, we can conclude that the actual path is maximum compared
with all neighboring paths. Hence Fermat’s law is a law of extremum path.

Case Il:

When the reflecting surface is less curved than the ellipse passing through the point of
reflection O and having points A and B as foci (figure 1.6).Let us consider a reflecting
surface MON (figure 1.6),which is less curved than the ellipse passing through O and having
points A, B as foci. In this case, the difference between the actual path AOB and aneighboring
path ANB is given by,

Fig. 1.6
A = AOB — ANB = (AO + OB) — (AN + NB)
= (AO + OB) — (AC' + O'N + NB)
= (AO' + O'B) — (AO' + O'N + NB) (by property of ellipse)
= (O'N +NB-O'B).

This is negative because O'N and NB are the two sides of a triangle of which O'B is the third
side. Thus, in this case, any neighboring path ANB is longer than the actual path AOB. You
can say that, the actual path is minimum among all neighboring paths.
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Hence the curvature of the reflecting surface relative to that of the ellipse through the
point of reflection decides whether the path of light from the focus of the ellipse to the other
focus through reflection at the surface will be a maximum or a minimum.

1.5.3. Refractive Index

The refractive index is a relative property of two media. The refractive index of any
medium with respect to free space (or air) is called the absolute refractive index. The absolute
refractive index of any medium depends on its nature, wavelength of incident light and the
temperature. The frequency of refracted ray remains the same as that of incident light, but its
velocity and wavelength change. Let us now consider the following cases.

Case I:

If u1 and p2 are the absolute refractive indices of first and second media respectively
and light ray enters from rarer medium to the denser medium then, we have, p2 > u1

sini
—_—= 251
sinr U1

or sin i >sinr

or i>r

This simply shows that refracted ray is deviated towards the normal.

Case Il:

If light ray enters from denser medium to rarer medium, then u < p1

sini
2B
sinr 751
or sini < sinr
or i<r

Thus the refracted ray is deviated away from the normal

Case Ill:

10
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If i =0, then r = 0, i.e., the incident light ray is along normal then the refracted ray
passes undeviated, but its velocity gets changed.

The absolute refractive index can be defined in other ways also. The absolute refractive
index of a medium is defined as the ratio of speed of light in the free space to the speed of
light in medium. Accordingly, if c is speed of light in free space and v the speed of the light
in the medium, then the refractive index

c

w=< (1.11)

v

In refraction the frequency of wave (v) remains unchanged, therefore, c = vA and v =
vAm. Where, Am is wavelength of light in medium. Thus refractive index of a medium may
also be given by the expression,

p== (1.12)

m

1.5.4. Total Internal Reflection

When a ray of light moves from denser to rarer medium, then the refracted ray is
deviated away from normal (figure 1.8 (a)). With increase in angle of incidence, the angle of
refraction increases. For a certain angle of incidence in denser medium, the corresponding
angle of refraction in rarer medium is 90° (figure 1.8(b)).

) =
Denser \ i Densa? C Donsc s /5C /
X Y X Y X

Rarer 17 Rarer = goe Rarer v
(c)
(a) (b)
Fig. 1.8

This particular angle of incidence for which the corresponding angle of refraction is 90°
is called the critical angle and is denoted by C. The value of the critical angle depends on the
nature of the two media.

If angle of incidence is increased beyond its critical value, the incident ray is not
refracted but returns back to denser medium [figure 1.8(c)]. This phenomenon is called total
internal reflection.

Conditions of Total Internal Reflection

(1) The ray must pass from denser medium to rarer medium.
(i1) The angle of incidence in the denser medium must be greater than the critical angle for
the given pair of media.

Relation between Refractive Indices of Media and Critical Angle

11
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If ug and ur are the refractive indices of denser and rarer media respectively then from
Snell’s law, we have,

sini Hr
pree R (1.13)
For critical angle of incidence, i = C and r = 90°
ME_ B Gne=— L (1.14)
sin 90 Ha rld

Where ruq = refractive index of denser medium with respect to rarer medium. In most of the
problems the rarer medium is chosen to be air with refractive index 1.

Example 1: The absolute refractive indices of glass and water are 4/3 and 3/2 respectively. If
the speed of light in glass is 2 x 108 m/s, calculate the speed of light in (i) vacuum and (ii)
water.

Solution: Refractive index of glass, pu, = g

__ Speed of light invaccum
U Speed of light in glass

or 4 _ Speed of light in vaccum
3 2x108

. . 4x2x108
Thus, speed of light in vacuum = % = 2.67 x 108 m/s

Refractive index of water (given), pu,, = %

__ Speed of light in vaccum

But we know that Hw Speed of light in water

3 2.6x108

2 Speed of light in water

Therefore, speed of light in water = 1.73 x 10® m/s

Example 2: Refractive index of water with respect to air is 4/3 and glass is 3/2. What is the
refractive index of glass with respect to water?

Solution: For three media air, water and glass, we have

a:uW X W,ug X g:ua =1

wy = 1 _ %ug _3/2 _9
9 pyx Ip, U 4/3 8

Thus, refractive index of glass with respect to water is 9/8.

Example 3: If the angle of incidence (i) for a light ray in air be 45° and the angle of
refraction (r) in glass be 30°. Find refractive index of glass.

12
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in 459 1
Sin _—XZZ\/E

sin300 2

Solution: Refractive index of glass, n =

Self Assessment Question (SAQ)

1. What is total internal reflection?

2. What is critical angle for a medium of refractive index v/2?
3. Using Fermat principle, establish condition of total internal reflection.

1.6. GAUSS’S GENERAL THEORY OF IMAGE FORMATION

In a coaxial symmetric system, Gauss’s theory deals with ideal image formation. This
includes the cases where there is a point-for-point, line-for-line and plane-for-plane
relationship between the object and its image. With the various reflecting or refracting
coaxial surfaces, the common axis is taken as X-axis. Due to symmetry about this axis, it is
enough to deal with any one plane through the X-axis, and the transverse distances is given
along Y — axis.

With arbitrary choice of origins for the object and image space, let (x, y) be the co-
ordinates of an object point and (x', y') those for its image. Then the most general linear
relationships of x', y* and x, y would be

" a1x+b1y+d1 " a2x+b2y+d2

and
ax+by+d ax+by+d

We state this without a rigorous mathematical proof. We can see that out of the nine
constants involved, five are redundant.

Firstly, if y changes sign, x' should remain unaffected. This condition makes

b=b1=0
Again if y changes sign, y* should only change in sign, not in magnitude. This makes a;=d>=
0. Finally dividing all coefficients by a, and expressing the new values by the corresponding
capital letters, we get

x =20 and y =22
x+D x+D
Thus, we reach a very important conclusion that in any co-axial symmetrical system forming
ideal images the co-ordinates x', y* of an image point corresponding to the object point x, y are
uniquely determined by four and only four independent constants.

In actual practice, two of these constants are used to specify the origins for object space
and image space on the x-axis for measurement of distances. Then only two other constants
specify the object to image conjugate relations uniquely. There are several alternative ways of
choosing the origins.

13
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1.7. SUMMARY

In this unit you have studied the following

1. Fermat’s principle.

2. Before explaining Fermat’s principle it is necessary to know about optical path. It has
been defined as, when a ray of light travels a distance d in a medium of refractive index v,
the product ud is called the optical path.

3. In 1960 Fermat’s principle was stated as “Fermat’s principle of least time, later it was
stated in a more general form, based on the number of cases observed practically. This is
known as “Fermat’s principle of Stationary time” or Fermat’s principle of extreme path (a
maximum or a minimum or stationary).

4. The laws of reflection and refraction have been deduced with the help of Fermat’s
Principle.

5. Condition of total internal reflection is also discussed. You have seen, this condition
occurs when a ray of light moves from denser medium to rarer medium. One of the
examples of total internal reflection is the formation of rainbow, which we see usually in
our day to day life.

6. Many solved examples are given in this unit to make concepts clear. In the last “Gauss
General theory of image formation” is explained. You will use this theory in the next unit.

7. To check your progress Self Assessment Questions (SAQs) are also given.

1.8 GLOSSARY

Beam — group of rays

Extreme — maximum or minimum

Angle of Incidence — angle between a beam striking a surface and the normal to surface
Angle of Reflection — angle formed between the normal to a surface and reflected ray
Angle of Refraction — angle formed between a refracted ray and the normal to the surface
Homogeneous — of the same kind, alike

Iterative — Frequentative
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1.11. TERMINAL QUESTIONS
1.11.1. Short Answer Type

1. Write a short note on optical path.
2. Write a note on Fermat’s principle.
3. Using Fermat’s principle, establish the condition of total internal reflection.

4. Define critical angle. State the relation between refractive index of medium and critical
angle.

1.11.2. Long Answer Type

1. Discuss Fermat’s principle in brief and prove laws of reflection and refraction with its
help.

2. Give examples to show that the path of reflected ray is
i. Maximum in some case and
ii. Minimum in other

3. What is Fermat’s principle? Prove that Snell’s law follows the Fermat’s principle.

1.11.3. Numerical Questions

1. A man walks on the hard ground with a speed of 5 ft/s, but he has speed of 3 ft/s on the
sand ground. Suppose he is standing at the border of sandy and hard ground and wishes to
reach a tree situated on the sandy ground. The man can reach the tree by walking 100ft. along
the border and 120 ft. on the sandy ground normal to the border. Find out the value of path
which requires minimum time to reach the tree.

2. In fig. 1.9, two stations A and B in different territories are separated by a border line CD. A
messenger can travel in the upper territory with a speed V. and in the lower territory with
speed Vp. Several messengers start from A and follow different paths like APB having
different position of P specified by a distance x from M. It is found that the messenger who
chooses x as 4.0 km reaches B in the minimum time.
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Answer the following
(a) What is the relation between Va and Vp?

(b) If the speeds Va and Vy are interchanged, what will be the new value of x to give the
fastest path?

(c) Explain the formation of a ray of light on the basis of Fermat’s Principle of extremum
path.

3. In fig. 1.10, light starts from point A and after reflection from the inner surface of the
sphere reaches the diametrically opposite point B. Calculate the length of the hypothetical

P

Fig.1.10

path APB and using Fermat’s Principle find the actual path of light. Is the path minimum?
4. In fig. 1.14, P is a point source of light. If the distance of P from the centre O of the
spherical reflecting surface is 0.8r and if the light ray starting from P and after being reflected

Fig.1.11
at A reaches at a point Q. Using Fermat’s principle show That cos g =3

3

5. A man walks with a speed of 1.8 m/s when he walks

on the hard ground, but has a speed of only 1 m/s when

he walks on sandy area. Suppose he is standing at the border of sandy and hard
ground and he wishes to reach a tree deep

inside the sandy area. He can reach the tree by walking 30m along the border and followed by
36m walk on the sandy area normal to the border. Find the suitable path which requires
minimum time to reach.
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1.11.4. Objective Answer Type

1. The product of u of the medium and the distance travelled by the light in medium is known
as

a. Ray path b. Fermat’s path
c. Optical path d. Actual path

2. A ray of light traveling from one point to another by any number of reflections and
refractions follows that particular path for which time taken is

a. highest b. least
C. maximum d. depends upon path

3. The incident, reflected and normal ray at the point of incidence are in same plane, is the
statement for

a. First law of reflection b. Second law of reflection
c. First law of refraction d. All above

4. The optical path of monochromatic light is same as it goes through 200cm of glass or
2.25cm of water. If the refractive index of water is 1.33, the refractive index of glass is

a. 1.00 b.1.23
c.1.33 d. 1.50
5. Fermat Principle is the principle of:-
a. Maximum path only b. Extreme path only
c. Minimum path only d. None above

6. Refractive indices of water, sulphuric acid, glass and carbon disulphide are 1.33, 1.43, 1.53
and 1.63respectively. The light travels slowest in:

a. Sulphuric acid b. Glass
c. Water d. Carbon Disulphide

7. The refractive index of glass with respect to air is % and the refractive index of water with

respect to air is 3. The refractive index of glass with respect to water will be:

a. 1.525 b. 1.225
c. 1.425 d. 1.125

1.12 ANSWERS

1.12.1 Self Assessment Questions (SAQSs):
1. Refer Article 1.5.4
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. _ 1 . _ 1 _ 0
2.S5InC=— or SinC=—==2C =45
1H2 V2

3. In the last question, we have proved, using Fermat’s principle that

sini

= 12.

sinr
If medium 2 is rarer (1u2 < 1), then,
sini<sinr or i<r
For r =90° sinr =1, and we have
sini= 142

At angles of incidence larger than this limiting angle, the light is reflected back into the
denser medium.

1.12.2 Terminal Questions

Numerical Questions

If the man follows the path followed by a light ray he will take minimum time to reach the
tree. This is in accordance with Fermat’s principle. Let M be the starting position of the man
on the border line AB (Fig. 1.12). Distance MM" = 100 ft. on the border. T is the tree on the
sandy ground so that the distance M"T = 120 ft. Let the man follow the path from M to M’
and M' to T in order to reach the tree in minimum time. If distance MM' = x then M'M" =
(100 — x) ft. From fig. 1, we have

L MT=[(MMYZ+ (M'T)F = V{(100 - x)° + (120)%}

T
N
SANDY GROUND R
4 A A’ M o
e OO FE. e
[P R A e

Fig. 1.12: Hard Ground
Total time taken by the man to reach from M to M' and M' to T is given by,

distance MM’ distance M'T

- velocity on border velocity on sandy ground

MM' L MT _ x| J1000-0+ (120)7]
5 3 5 3

Since the value of t depends upon the distance x, hence for t to be minimum, we have

a _g=1411 — )2 21-1/2 ) (-
2= 0= <422 [(100 —x)2 + (120)%]7Y/2.2(100 - x) (-)
or 1 (100—x) _1
3 " J[(100—-x)2+ (12002 5
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N 1 (100-x)2 _ 1
Squaring it, we get, 5 " (100-m)%+ (1202 25
or (100 — x)? . 25 = 9 [(100 — x)? + (120)7]
or (100 — x)? [25 — 9] = 9. (120)?

360

x =100 + === 100 + 90 = 190 or 10
As per data, the value 190 is out of question; hence the man should walk 10 ft. along the
border and then make a head-way towards the tree from M'.
. (a). See fig. 2 The path AP transverse with a speed V. and the path PB with a speed V.
The path PA is given by :
AP = V{(AM)? + (MP)? = V{(6)? + x*}
The time taken to traverse this path

t _ AP _ J{(6)%+x?}
g — =

Va Va
Similarly path PB and time taken to traverse it are given by
PB = V{(BN)* + (PN)?} =V{(3 + (12- %)’}
t = PB _ @7+ G2-07

Vp Vb

Hence total time taken to travel down the path APB is given by:

2 2 7 —
{2+, = YO | VBT G227
Va Vb

For t to be minimum, we have,

S =0=— [62+ X2 2x + —— . [(12-X)? + 3V x 2 (12~ X) (-1)
b

dx v, 2

X 12—x
or =

Va  (6%+ x2) Vpy (12—x2+ 32)

But we are given that x = 4 km, for t to be minimum, hence

4 12-4
VaJ(36+16) Vg /[(12—4)2+9]
4 8

or = ,
Vg V52 Ve V73

, = @=1E)= 6

(b) If the speeds are interchanged, then we have

p=Ap PB _JE+xh) [(32+(12-0)7%)
Vb Va Vb Va

For the path to be the fastest, t' should be minimum, hence

dt'
dx -

0
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L1 62 4 x2)75 ox+ L1 [32 4 (12— 02" Y2 (12— %) (-1)= 0
o (07 x9) 2. 2+ o [3° 4 (12 —x)°7V2 (12-x) (1) =
or x _ 12-x
VpJ(62+x2) Vg J(32+ (12—-%)2}
or Va _ (12-x)/(36+x2)

Ve Vot (12-0%
Squaring and solving, we get

x =10.2km.
(c) See figure 2 for the solution of this part.

3. See figure 3. Let r be the radius of the sphere. If L be the hypothetical length of the path
followed by light, that is,

L=AP+PB
If angle PAB be 6, then the length L is given by :
L =ABcos § + ABsin4, [~ 2APB =907]
or L =2r (cos 6 + sin 8), [ AB=2r]

Following Fermat’s principle, the path length L should be maximum or minimum. But in
both cases, we have

dL

= =0=2r(—sinf+cos8) ... (1)
or sin 6 = cos 6,
g="=

4

Substituting the value of 8, the actual path length which light shall follow :

L = 2r (cos 45° + sin 45°) = 2r (\% + %)

= 2r x V2 =2 x diameter of the sphere.

Differentiating equation (1) again to see whether the path is a maximum, or
minimum, we get

2

% = 2r(—cosf — sinf) = —2r (cos 6 + sin 6)
= LI R
=-or(5+ ) =—V2xor

Which is negative quantity; hence the actual path is maximum in this case.
4. LetPQ =ar, we have
(PA)? = (PO)? + (OA)? — 2 (PO) (OA) cos 6
=(ar)>+r>—2(ar)rcos 6

=r?[a®+1-2acosf];
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PA =r (1 +a® - 2acos6]"?
Draw a perpendicular OM on AQ from point O. In AA0Q,

OA=00Q=r

L0AQ = 2004 =2

>
] ] ]
AQ =AM + MQ =r cos 5+rcos;:2rcos;.

If the length of the total path is I, then

L=PA+AQ=r[1+a’~2acos ] +2rcosZ. ... (1)
But according to Fermat’s Principle, % =0
Differentiating equation (1) w.r.t. 8 and equating to zero, we get

aa _ 1 2 _ -1/2 i _orcin? (1) =
=r-[l+a 2a cosB] ' (2a sin 6) 2rS|n2.(2)—0

a6
ar sin @ . 0
or — rsin-=20
[1+ a2- 2a cos 6]1/2 2
.6 [
ar .2 sinz cos; .0
or T — rsin=-=20
[1+ a?—2acos0]2 2
[
.0 2a cosy 1 0 )
or rsin— — =
2 |[1+a2- 2a cos 6]1/2 &
[
A .0 2a cosy
~ Either sin==0 or - 1=0 ....(3)
2 {1+a2- 2a cos §}1/2

Equation (3) represents that the light ray PQ' starting from P, after being reflected at Q'
reaches at Q. But we are given that the light ray is PA which after reflection at A reaches
at Q. Therefore, equation (3) does not give satisfactory solution or equation (2). Equation
(4) gives

2a cosg
2 - 1
{1+a2- 2a cos §}1/2
0 0
or 4a2c052521+a2—2ac039:1+a2-2a(2c0525— 1)
0
or 4a? cos? ~(1+a)=(1+a)?
2 6 1+a
CoOs"—= —
2 4a

In this example, a = 0.8, therefore, cosg = %

5. Let the positions of the man and tree be A and T respectively. Given AC =30 m and CT
= 36m. Let us suppose that the man walks on the hard ground along the border from A to
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B and then from B to T on the sandy area to reach the tree T in minimum time.

T
36 m
Sandy ground
A B c
x {30 — x) —
30 m - -
Fig. 1.13

Let AB = x m, then
BC = (100 — x) m.

BT =/[(BC)? + (CT)2] =/[(30 —x)2 + (36)?]

The man traverse the distance AB with speed of 1.8 m/s and the distance BT with a speed
of 1m/s. Therefore, time taken by the man to reach the tree
BT x J(30-x)2+ (36)2

t==4 2 =Z4
1.8 1 1.8 1

(1)
If t is minimum, then % = 0, so differentiating equation (1) w.r.t. time t, we get,

E—L i _ 2 2—1 _ _ _
—=—+3[30-x)°+ (36T x 20— )(-D) = 0
30-x

1.8

[(30-x)2+ (36)2]§
Solving we get
X = 30 + 24 =54m or 6m
From figure it is obvious that for minimum time x cannot be 54m;
Therefore, X =6m

Thus, to reach the tree in minimum time the man should walk 6m along the border on the
hard ground and then he should walk on the sandy area along the line BT.

1.12.3 Obijective Type Questions
1. (b), 2. (b), 3.(@), 4. (d), 5. (b) 6.(d) 7.(d)
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2.1 INTRODUCTION

In the previous unit you have studied about the Gauss’s theory of image formation for a
coaxial system. In the present unit we will apply this theory to understand the image
formation by a lens or combination of lenses. Gauss has shown that if in an optical system the
positions of certain specific points are known, the system may be treated as a single unit. The
position and size of the image of an object may then directly be obtained by same relations as
used for thin lenses or single surface, however, complicated the system may be. These points
are called Cardinal points or Gauss points of an optical system.

This simplifies the understanding and processing of image formation to a great deal.
The cardinal points and their use in the image formation have formed the basis of the present
unit. Before dealing with the cardinal points, it is imperative to know the sign convention
used in the optical system. Hence you are made accustomed to it, as well, in the initial part of
this unit. An important aspect of image magnification in terms of lateral, axial and angular
magnifications is discussed and a relation between different types of magnifications is
established in the later part of the unit. Finally an important relation in the form of Newton’s
formula is derived, which will enhance your learning about the optical system of thin lenses.

2.2 OBJECTIVES

After studying this unit you will be able to

e Draw the ray diagrams for the image formation in a coaxial lens system

e Locate the six cardinal points in a lens system

e Apply the sign convention to solve various problems

e Determine the different types of magnifications produced in an optical system
e Derive Newton’s formula

2.3 SIGN CONVENTION: OBJECT AND IMAGE SPACES

Before studying the different cases of image formation in an optical system, you must
know the sign convention. In figure 2.1, XX' represents the optical axis and the dotted line
represents the normal to it. The region on the left of optical system in which the object is
placed is known as object Space and the region on the right of the optical system where the
image is formed is called as image space. You can divide the sign convention into following
three parts.

2.3.1 Axial or Longitudinal Distances

The distances measured along optical axis XX' or parallel to it are taken positive (+ve)
or negative (-ve) with respect to the direction of incident ray. Conventionally, all distances
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measured in the direction of incidence are taken as positive while distances opposite in
direction to the direction of incidence are taken as negative.

Object space Image space

'
|
o} :
T }k ; /é I Optical axis
X 0 :

C l X'
'[l
distance +ve

distance -ve

Fig. 2.1

This is clearly depicted in the figure 2.1. All distances are measured from the point C
i.e. the centre of the reflecting or refracting surface known as optical centre. Thus distance
OC is —ve while distance Cl is +ve.

2.3.2 Lateral or Transverse Distance

The distances at right angle to the optical axis XX' are known as lateral or transverse
distances. In figure 2.1, OO and II' are the lateral distances of object and image respectively.
Conventionally, lateral distance above XX' is taken as +ve while below it is taken as —ve.
Hence OO’ is +ve and II' is —ve.

2.3.3 Angles

Conventionally, anticlockwise angles with respect to XX' axis are taken as +ve and
clockwise angles with respect to XX' axis are taken as —ve. In figure 2.1, the light ray in
object space forms an angle 6 in clockwise direction (-ve) while light ray in the image space
forms an angle 6, in anticlockwise direction (+ve) with respect to XX' axis respectively.

2.4 COAXIAL OPTICAL SYSTEM

A lens system having common optical axis is known as co-axial lens system. Generally,
it consists of a number of lenses placed apart with a common optical axis known as Principal
axis. We can determine the position and size of the image of an object formed by such a
system by considering refraction at each lens separately. This process is however very
tedious. Gauss showed that, if in an optical system the positions of certain specific points be
known, the system may be treated as a single unit. The position and size of the image of an
object may then directly be obtained by same relations as used for thin lenses or single
surfaces.

2.5. CARDINAL POINTS

An optical system consists of six cardinal points which are as follows

0] Two focal point
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(i) Two principal point
(iii)  Two nodal point

2.5.1 Focal points and Focal Planes

These points lie on the principal axis of the optical system. Figure 2.2 (a) shows a
convergent coaxial optical system having its axis XX'. An incident ray parallel to the axis,
after refraction through the system, passes through a point F2 on the axis, whatever is the path
inside the system.

Fig. 2.2

This would be true for all the incident rays parallel to the axis (For divergent system,
the emergent rays would appear to diverge from a point on the axis of the system). The point
F2 is called the second focal point of the system. You can define it as the image-point on the
axis for which the object-point lies at infinity.

Similarly, an incident ray b passing through a point F1 on the axis, after refraction
through the system, becomes parallel to the axis (figure 2.2 (b)). The point F; is called the
first focal point of the system. You can define it as the object-point on the axis for which the
image-point lies at infinity.

The planes through F1 and F2 and perpendicular to the axis are called first focal plane
and second focal plane of the system respectively. The first focal plane of an optical system
is also called principal focal plane of the object space and second focal plane is called as
principal focal plane of the image space.

2.5.2 Principal Points and Principal Planes

The Principal points are a pair of conjugate points on the principal axis of the optical
system having unit positive linear magnification.

In figure 2.3, an incident ray A parallel to the principal axis, after refraction through the
optical system, passes through the second focal point F.. Produce the incident ray A onwards
and emergent ray A backwards such that they intersect at A>. The plane through A, and
perpendicular to the axis XX' is called the second principal plane, and its point of
intersection H, with the axis is called the second principal point.

Similarly, the incident ray B passing through the first focal point Fi, after refraction
through optical system, emerges parallel to the axis. Produce the emergent ray B backward
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and incident ray B forward such that they intersect at Ai. The plane through A: and
perpendicular to the XX" axis is called the first principal plane, and its point of intersection
H1 with the axis is called the first principal point.

>
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- = -
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t\?j
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1
1
1
r
L]
1
]

— f1

Fig. 2.3

The incident ray B has been so chosen that the corresponding emergent ray lies at the
same distance above the axis as the incident ray A. It is thus seen that the incident rays A and
B are converging towards the point Az and the corresponding emergent rays appear to diverge
from the point A2. Hence A: is the image of A1, where H1A1 = H2A2. Thus, A1 and A are
conjugate points. This is true for all such pairs on the principal planes. Hence if an object be
placed in the first principal plane, an erect image of the same size would be formed in the
second principal plane, that is, the linear magnification is +1.

Finally, it follows that if an incident ray passes through the first principal plane at a
certain height from the principal axis, the corresponding emergent ray will pass through the
second principal plane at the same height and on the same side of the axis.

Focal Lengths

The distance HiF1 is called the first focal length fi and the distance HzF2 the second
focal length f. of the system. f; and f> are also known as focal lengths in object space and
image space respectively. If the medium be same on the two sides of the system then f; = f»
(numerically).

2.5.3 Nodal Points and Nodal Planes

The nodal points are a pair of conjugate points on the principal axis of the system,
having unit positive angular magnification. They are such that an incident ray directed
towards the one nodal point emerges parallel to its original direction through the other nodal
point. In figure 2.4, N1 and N are the nodal points, and the emergent ray N2B is parallel to
the incident ray AN:. The nodal points therefore do for angles what the principal planes do
for transverse distance.
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Fig. 2.4
The planes through N1 and N2 and perpendicular to the axis are called nodal planes.
The distances of these nodal points are measured from the focal points. Also the distance
between two nodal points is equal to the distance between Principal Points.

2.6 RULES OF IMAGE FORMATION

When the positions of cardinal points are known, you can draw the image of an object
formed by a lens system using the following rules which obeys the properties of the cardinal
points:

() Anincident ray parallel to the principal axis, after refraction, passes or appears to pass
through the second focal point F.

(i) An incident ray passing through the first focal point F1 or directed towards F1 becomes
parallel to the axis after refraction.

(iii) An incident ray passing through the first principal plane at a certain height from the
principal axis, emerges through the second principal plane at the same height and on the
same side of the axis.

(iv) Anincident ray directed towards the first nodal point N1, emerges parallel to its original
direction through the second nodal point N>.

Usually, the principal points Hi, Hz and the focal points F1, F2 are enough to trace the
image formed by a system. Hence, we can replace an actual optical system by a skeleton
consisting simply of the axis and these four points.

u v
o Al A2

¥

Y2

Byf--""""""-"- Bs I
(— Xlﬁe fbl > e r2 E exz -
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Figure 2.5 shows the construction of the image of an object OO' by a convergent
system. O'A1 is ray parallel to the axis meeting the first principal plane in Az. It must emerge
from the system through A2 on the second principal plane such that HiA1 = HoA», and must
also pass through Fo. O'F1 is another ray through the first focal point F1 and meeting the first
principal plane in Bi. It must emerge parallel to the axis through B2 such that H1B1 = H2Bo.
The two emergent rays meet at I', which is the image of O'. A third ray through N1 and its
conjugate parallel ray through N> may also be drawn, but it is not necessary. The
perpendicular II', drawn from I' on the axis, is the image of the object OO".

2.7 MAGNIFICATION OF A LENS SYSTEM

All optical systems are used to form a magnified image of an object. The magnification
produced by an optical system is defined as its ability to enlarge the size of image with
respect to the size of the object. It is denoted by m and expressed as:

__size of image
" size of object

There are three types of magnifications associated with coaxial lens systems:

(i) Lateral or Transverse Magnification: The lateral magnification of a lens-system is
defined as the ratio of the length of the image to the length of the object, both being
measured perpendicular to the axis of the system. As the distances above the axis are
taken as positive and those below the axis negative, the lateral magnification is positive
for an erect image and negative for an inverted image.

__ height of image
height of object
(i) Axial or Longitudinal Magnification: If the object and the image have small
extensions dxi and dx: respectively along the axis of the system, the ratio of dx> and dxi
is called the longitudinal magnification of the system. It is given by

_ de
X dxq

(iii) Angular Magnification: If 6: and 62 are the angles which the incident and the
corresponding emergent rays make with the principal axis of the system, then the ratio
of tan 6> to tan 61 is called the angular magnification of the system

tan 6,

m =
™ tan 0,

2.7.1 Relation among Three Magnifications

Consider a convergent coaxial lens-system as shown in figure 2.6, where XX' represents
the principal axis. Hi, Hz be the principal points, and F1, F> the focal points of the system.
Then H1F1 = f1 and HaoF2 = f2, where f1 and f2 are the focal lengths of the system.
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Fig. 2.6

Let OO’ be a small object of size y:1 placed perpendicular to the axis. An incident ray
O'Ay, parallel to the axis, emerges through A2 (where H1A;1 = H2A2) and passes through Fo.
Another ray O'B1 passing through F1 emerges through B2 (where H1B1 = H2B>) and becomes
parallel to the axis. The two emergent rays meet at I', which is the image of O'. The
perpendicular II' is the complete image of OO'.

Let x1 and x2 be the distances of the object OO' and the image II' respectively from F;
and F,. According to the sign convention, (Section 2.3) yi, f2 and x. are positive while y», f1
and x1 are negative. In similar triangles OO' F1 and H1B1F1, we have,

HiB, _ HiF;

00’ F,0
Y2 -f1 f1
or -== == = “HiB1=1I'=-
Y1 —X1 X1 [ it YZ]
Hence, the lateral magnification, my is,
Y2 fi
m=== — = e (22
= o (2.1)

Also, in similar triangles A2HzF2 and II' F2, we have,

I Rl

HzA; HyF,

Y2 X1
Or _——= — .'.HA:OOl:
Y1 f2 [+ Hae yil

Hence, the lateral magnification, my, is given by

Y2 X2
m=—=--= ... 2.2
Y V1 f2 (2.2)

Comparing equations (2.1) and (2.2), we have,

ho x
X1 f2
or xixe=Ht (2.3)

This is known as Newton’s formula. Differentiating above equation, we have,
X1 (dx2) + x2 (dx1) = 0.

Hence the longitudinal magnification my is given by
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me= 22=_ 22 s (24)

dxl X1

Let us now consider an incident ray OA; and its corresponding emergent ray A:l. Let 61 and
0> be the angles which these rays make with the principal axis. According to sign convention,
01 is positive and 62 negative. Now, from the figure 2.7, we can write

A1H —
tan 1= 171 V1 — Y1
H,0 —fi—x1  fitxq
A-H
and tan (-67) = 22 = 21
Hal fa+x
or tan 9, = —2*
fa+ %2

Hence the angular magnification mg can be written as

N tan 6, - =1/ (fa+ x2) — fitx1
o tanf;  -y1/(fitx1) ot x

Using Newton’s formula xi1x2 = fif2

mg = htx _ fitx  _ ox

f2+ (%) %(xl‘i'fl) f2
_u_h 2.5
my fz X e ( )

We can write various magnifications by using the expressions given by equations 2.1, 2.2,
2.3,2.4and 2.5 as

Transverse magnification (Lateral Magnification) my= — £—1 = - ’;—2
1 2
Longitudinal magnification My = — z—z
1
Angular magnification my = 2= f
fz X2
From these, we get the following relations:
Relation I:
X2 X1 X2
MXMpgp=——X—= — — =M
" o X1 f2 f2 Y

That is, longitudinal magnification x angular magnification = lateral magnification.

Relation I1:

mmeB:_f_lxﬂ= fl
X1 f2 f2

That is, the product of lateral and angular magnifications is a constant and equal to the ratio
of the focal lengths of the system.

Relation I11:
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Substituting values of x» and x; from equation 2.1 and 2.2, we get,

—fi/my f1

But f,/f1 is a constant
My mf,,

That is, the longitudinal magnification is proportional to the square of the lateral
magnification.

2.8 HELMHOLTZ - LAGRANGE’S MAGNIFICATION
FORMULA

This is also known as Helmholtz’s magnification formula. This formula gives the inter
relationship between angular magnification, lateral magnification and axial magnification.
Let SPS' (figure 2.7) be the convex spherical refracting surface separating media of refractive
indices p1 and u2 respectively, uo being denser. Let P be the pole and C the centre of
curvature of the surface.

ol N\'\: S H2

Fig. 2.7

Let OO’ be an object placed on the axis perpendicular to it. An incident ray OA, after
refraction at A, bends towards the normal CN (drawn on spherical surface) and goes in the
direction Al. Another ray OP meets the surface normally and passes undeviated. The two
refracted rays meet at I, which is the image of O. To find the image of O', let us take a ray
O'C. As it passes through the centre of curvature C, it strikes the surface normally and goes
undeviated. The image of O' lies somewhere on this line. Also it lies on the perpendicular to
the axis at 1. Hence I', the point of intersection of the two, is the image of O' and II' is the
complete image of OO'.

Now if y1 and y. be the sizes of the object and the image respectively then by sign
convention y; is positive and y. is negative. Let 81 and 6> be the angles made by the
conjugate rays OA and IA respectively with the axis. By sign convention, 81 is positive and
0 is negative. Let i and r be the angles of incidence and refraction respectively at A.

Since triangle COQ' is similar to CII', therefore,
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mwo_a
001~ co
- Cl (CA
or Tz = (—) ....... (2.6)
V1 cA \co
Now, in ACIA, we have
Cl _ £CAI _ sinr _ sinr
CA  «CIA  sin (=6,)  sin6,
and in ACOA, we have
CA  £COA sin 6, _ sinf

€O~ £CAO ~ sin (180° —i)  sini
Substituting these values in equation (2.6), we get,

yp _ sinr (sin@l)

y1 sinf; \ sini
. 5 sini u
According to Snell’s law, — = =%
sinr U1

Y2 _ M sin 64

y1 Uz sin 6
or U1y1Sin 0y = u,y, sinf, .

For paraxial rays, (the rays which make small angles with the principal axis) 8, and 6, are
small, so that we may put,

sin@, =0, =tan 9,
and sin 8, =6, =tan 6,.
Then, Uy tan 6; = u,y, tang, L (2.7)
This relation can also be written as

Py, 6 =y, 6, (2.8)

This formula, which was first given by Lagrange, relates the linear transverse magnification
(y2/y1) and the angular magnification (tan 8, / tan 81 or 62/61) conjugate planes OO and II'.

Let us now consider a coaxial system having (n—1) refracting surfaces separating n
media of refractive indices ui, uo, s,........ un respectively. Let a small object of linear size y1
perpendicular to the axis be placed in the first medium and a ray from it make an angle 61
with the axis. After refraction at the first surface this ray makes an angle 8> with the axis and
appears to form an image of linear size y.. After refraction at the second surface, it makes an
angle 83 with the axis and appears to form an image of linear size ys, and so on. Hence
applying equation 2.7 to each surface in turn, we obtain,

pryirtan 01 = poyotan 2= pusystan s =......... = Un Yntan Oy

This is the Helmholtz Lagrange’s equation of magnification for refraction at a system of
coaxial surfaces. If the angles 61, 62, 03 6nare small, then it can also be written as

UrY1O1=p2y2 Oo= ..ol = Un Yn On
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Example 1: A convex lens of focal length 25cm and made of glass ( 4uy = 1.5) is immersed
in water ( ,u,, = 4/3). Calculate the change in the focal length of the lens.
Solution: Refractive index of glass with respect to water is

_ alg _ 15 _ 9

whe = =, T w®

~ Focal length of glass lens in water is

(attg— 1) _ (1.5-1)
wfg = —4—-x afg

- = x 25 = 100cm.
(witg— 1) 9/8 -1) cm

2.9 SOME IMPORTANT RELATIONS

Consider a convergent coaxial lens-system (figure 2.8), having principal axis XX,
separating two media of refractive indices p1 and p2. Let Hi, Hz be the principal points and
F1, F2 the focal points of the system.

Suppose OO’ is a small object placed perpendicular to the axis. An incident ray O'A; parallel
to the principal axis meets the first principal plane at Ax. It emerges through Az in the second
principal plane such that HiA: = H2A> and passes through F2. Another incident ray O'By,
passing through F1, meets the first principal plane at Bs. It emerges through B: in the second
principal plane such that HiB: = H2B> and becomes parallel to the axis. The two emergent
rays meet at I' which is the image of O'. II', which is the perpendicular from I' on the axis, is
the complete image of OO".

g H P2
o Al Ao

y >
Y1
1 ) 1
X X'
o Fy Hy Ho Fy
Ya

Lt

By Bg I

e r; —> Je— 1y ——]
e u — e v —
Fig. 2.8

Let y1 and y> be the sizes of the object and the image and u and v their distances from the first
and the second principal points respectively. Let f1 and f» be the focal lengths of the lens-
system. Thus, according to the sign convention, we have

00' =y, II'=—y3 H10O = —u, Hal = +v, HiF1 = —f1 and HoF> = +f>
Now proceeding in four steps:

Step-1: In similar triangles F1H1B1 and O'A1B1, we have

HiF; _ HiBy _ HyB,

A10'  A4B;  HiA;+ HqB;
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HyF; '
or = r 7
H.0 00'+11

Putting the values according to the sign convention we get
-f1 —V2
—= = 2.9
-u Yi— Y2 ( )
Again, in similar triangles A2H2F2 and A2B2l', we have

HyF; — HpAz HyA;

ByI' ByA,  HpAx+ HyB,

HyFp oo
Hpl — 00'+11I'

or

Putting the values according to sign convention, we get

2 Y1
S= = 2.10
v Y1i— Y2 ( )
On adding equations (2.9) and (2.10), we get,
—_f1+ o Y2ty
-u v Y1~ Y2
or hyl—qg (2.11)
u v
Step-2: Dividing equation (2.10) by (2.11), we obtain,
Llu_
falv Y1

= The linear transverse magnification is

m = % = -2 (;—:) ....... (2.12)

Step-3: Let us now consider a ray OA:1. The corresponding emergent ray meet the second
principal plane at Az, where HiA1 = H2A.. It also passes through 1. Since I is the image of O,
Al is the emergent ray. If 81 and 6> be the angles which the rays OA1 and Azl make with the
principal axis then by sign convention, 81 is positive and 6 is negative. Now, from figure
2.8, we have,

A1H
tan gy =22 = 2L
H10 -u
A, H
and tan (- §y) =22 =2
Hzl v
tan6; v
tan 6, T

But, by Helmholtz’s law of magnification (u1y: tan 81 = 2y tan 6,), we have

tan6; _ poy»

tan 6, H1Y1

U2y2 U

H1Y1 u
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Hence the linear transverse magnification is
Y2 _ #1 (z)
Y1 H2 U
Comparing this with equation 2.12, we get
_ 2 (f_l) =M (z)
u \f2 Mz \U
f1\ _ 750
or (—) =-= . (2.13)

f2 Uz

Step-4: If the medium on the two sides of the system is the same, that is, u1 = uo, then
equation 2.13 can be written

fo=—-fH .. (2.14)
Now, putting f> = — f1 = f (say) in equation (2.10), we get,

1 1 1

e (2.15)
Similarly, putting f, = — fy in equation (2.11), we get,

m=2=2 (2.16)

Y1 u

These formulae are similar to those for a thin lens.

Thus, when the medium on both sides of lens-system is the same and, u and v are
measured from the first and the second principal planes respectively then the formula for
conjugate distances is exactly similar to that for a thin lens.

Self Assessment Questions

1. Define Cardinal points of a lens system.

2. Show that the distance between Principal points is the same as distance between nodal
points.

3. Show that principal points coincide with nodal points if the medium is same on both side
of the system.

4. Define lateral, axial and angular magnifications of a lens system. Establish relations
between them.

2.10 NEWTON’S FORMULA

If the distances of two conjugate points (object and image) on the principal axis from
the respective focal points be x1 and x. then from Newton’s formula (equation 2.3), we have,

X1X2 = fifo

This Newton’s formula can be easily derived by making use of cardinal points of the lens
system. Figure 2.10 shows a convergent coaxial lens-system in which XX is the principal
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axis, Hi and H> are the principal points, and F1, F> are the focal points of the system. Then
H:F: = f1 and Hz2F2 = f2, where f1 and f2 are the focal lengths of the system.

Let OO be a small object placed perpendicular to the principal axis. An incident ray
O'A; parallel to the axis meets the first principal plane at A;. It emerges through a point Az in
the second principal plane such that HiA1 = H2A2, and passes through F2. Another ray O'B:
passing through F1 meets the first principal plane at B:. It emerges through B> in the second
principal plane such that HiB:1 = H2B2 and becomes parallel to the axis. The two emergent
rays meet at I' which is the image of O'. The perpendicular 11, drawn from I' on the axis, is
the complete image of OO'.

o P As Ao P2

_. —_—
Y; F‘\ \\(_
X 2 —>q

(0] F, H, Hs 2 1 X'
G ﬁ\ - | Y2
B B B2 v I
be— f; —> <— fo—>
Fig. 2.9

Let OO' = yy, II' = yo, F10 = x1 and F2l = x2. According to the sign convention yi, X2 and f2
are positive while y2, x1 and f1 are negative.
Using similar triangles HiB1F1 and OO' F1, we have

HiBy _ HiF
001 F,0

Putting the values with proper signs, we get,

_Y_-h_ 1N (2.17)

Y1 —X1 X1

Again from similar triangles triangles A2H2F2 and II' F2, we have,

i Rl
HyAy  HapA,
- X

or 222 (2.18)
Y1 f2

Comparing equations (2.17) and (2.18), we obtain,

h_m
X1 f2
Xeo=Ht L. (2.19)

This is Newton’s formula. If the medium on both sides of the system is the same, then we
have, f, = —f; = f. Hence the Newton’s formula (equation 2.19) becomes

X1 X2 = —fz2 L (2.20)
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2.11 SUMMARY

1.

10.

The distances are measured from optical center of the lens. The distances measured along
the optical axis in the direction of incident ray are positive while those in opposite
direction are negative.

The distances measured above optical axis are positive while those below are negative.

The angles measured anticlockwise with respect to optical axis are positive while those

measured clockwise are negative.

A lens has six cardinal points: a pair of focal points, a pair of principal points and a pair

of nodal points. The planes passing through these points and normal to optical axis are

known as focal-, principal- and nodal- planes respectively.

The ray diagram for the image formation in lens follows the rules given below-

a. An incident ray parallel to optical axis passes or appears to pass through second focal
point after refraction.

b. An incident ray through first focal point or directed towards it emerges parallel to
optical axis after refraction.

c. An incident ray passing through the first principal plane at a certain height from the
principal axis emerges through the second principal plane at the same height and on
the same side of the axis.

d. An incident ray directed towards the first nodal point emerges parallel to its original
direction through the second nodal point.

Magnification is the ability to enlarge the size of image relative to the size of the object.

It is expressed as the ratio of size of image to that of object. It is of three kinds:

a) Lateral Magnification: It is the ratio of the length of the image to the length of object,
both being measured perpendicular to the axis of the system

b) Axial Magnification: It is the ratio of dx. and dxi, where dxi and dx. are small
extensions of the object and the image respectively along the axis of the system.

c) Angular Magnification: It is the ratio of tan 62 and tan 61, where 61 and 6> are the
angles made by incident ray and the corresponding emergent ray with the optical axis.

The three types of magnification can be related as-

a) mxxmg=my (b) myxmy=— ﬁ’ (€) mx=—m; (f_z)
f2 fi
Where, my = axial magnification, mg = angular magnification, my = lateral

magnification, fi= first focal length and f. = second focal length
Helmholtz Lagrange’s magnification equation gives the interrelationship between angular
magnification, lateral magnification and axial magnification as

piyitan 81 =poyotan 2=z ystan 8z =......... = Un Yn tan 6y
Some important relations in coaxial lens system are as follows-
f1 U1 v (fq f1 f2
) (8)= - 2o (B0 b e
) f2 W2 (b) u \f, © u v

Newton’s Formula states that, if the distances of two conjugate points (object and image)
on the principal axis from the respective focal points be x; and x2 then xix2 = fif2, where,
f1 and f, are the first and second principal focal lengths of the system respectively.
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2.12 GLOSSARY

Pole: The midpoint of a spherical mirror.

Radius of curvature: The linear distance between the pole and the centre of curvature.
Centre of curvature: The centre of the sphere of which the spherical mirror is a part.

Optical Centre: The point on the optical axis of a lens where all rays passing through it
remain unrefracted.

Principal axis: The imaginary line passing through the pole and the centre of curvature of a
spherical mirror.

Paraxial rays: The rays that makes small angle (0) to the optical axis of the system, and lies
close to the axis throughout the system.

Geometrical Centre: Physical centre of a lens as determined by measurement
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2.15 TERMINAL QUESTIONS

2.15.1 Short Answer Type

1. What are cardinal points of a coaxial optical system?

2. What are paraxial rays?

3. What are object space and image space?

4. Write down the rules of formation of image in a coaxial lens system.

2.15.2 Long Answer Type

1. Define cardinal points of a coaxial optical system and give their characteristics. Draw a
ray diagram to clarify each.

2. Define Axial, Lateral and Angular magnifications. How they are interrelated with each
other?

3. Deduce Helmholtz Lagrange equation for image formation for paraxial rays.
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4. Deduce Newton’s formula x1x2 = fif; for a coaxial optical system of two thin lenses.
Where x1 and x» are the distances of the object and the image from the first and second
focal points respectively.

5. Show that the distance between two principal points is same as the distance between two
nodal points. Also, show that the principal points coincide with nodal points if the
medium is same on both sides of the system.

6. Prove the following relations for a coaxial lens-system separating two media of refractive
indices u1 and po2 :

OL+LZ=1, @m=-2(2) and @) Z=-4

where u and v are the distances of the object and the image from the first and the
second principal points respectively, f1 and f, the focal lengths of the system and m is
linear transverse magnification.

7. What form do the three expressions, given in question number 6, take when the medium
on the two sides of the system is the same?

2.15.3 Numerical Questions

1. Calculate the axial and angular magnification for a coaxial optical system in which the
initial media is air and final media is water. The lateral magnification of the object is -3.0.
(Take refractive index of water = 4/3)

2.15.4 Objective Type Questions

1. The points lying on the principal axis of the optical system and conjugate to points at

infinity are
(@) Principal points (b) Focal points
(c) Nodal points (d) Cardinal points

2. Conjugate points on the principal axis of the optical system having unit positive linear
magnification are called

(@) Principal Points (b) Focal points
(c) Nodal points (d) Cardinal point
3. Two Principal planes on a thin lens coincide and pass through
(@) First Principal Point (b) First focal point
(c) First Nodal Point (d) The optical centre of the lens

4. If h be the transverse distance of the point from the axis at which the ray meets the lens and
f the focal length of the lens, then the angular deviation of the ray will be

(@h/f (b)f/h
(c) h?/ 2 (d) f2 / h?

5. L1 and L2 be two thin convergent lenses of focal lengths f; and f placed coaxially at a
distance d apart. If H1, H2 be two principal points, then
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(8) LiHi = + 22 (b) LeHz =- =2
f1 fi
(€) LiHy = - 22 (d) LoHz = £2
fi fi

6. If a thin lens is placed such that refractive indices on the two sides are n1 and nz. The ratio
of focal length f1 / f2 is

@ —ni/ny (b) — n2/ny
(©)ni/ny (d)n2/ng
7. An incident ray directed towards the first nodal point emerges
(a) Perpendicular to its original direction through first principal point
(b) Parallel to its original direction through second nodal point
(c) Opposite to its original direction through first focal point
(d) None of these

2.16 ANSWERS

Numerical Questions

Given, u; =1, u, =§ and my=3.0

Axial magnification, m¢ =—m3 (%)
1

Also, (f—l) =&
f2 U2

— 2 H2) _
X — — i - 12
me=-m? (-%)
Angular magnification, mg = my/my =-0.25
Objective Type Questions

1. (b), 2. (a), 3. (d), 4. (a), 5. (b), 6. (2), 7.(c)
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3.7.5  Advantages of Reflecting Type Telescope over Refracting Type Telescope
3.8 Summary
3.9 Glossary
3.10 References
3.11 Suggested Reading
3.12 Terminal Questions

3.13 Answers

42



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

3.1 INTRODUCTION

So far we have discussed the image formation of an optical system consisting of thin
lenses. However, most practical applications require the use of thick lenses. In order to
produce sufficient illumination of the image for virtual observation the optical instruments
such as telescopes and photographic objectives require wide apertures. Practically, the lenses
thus produced are thick in nature.

In this unit, we will discuss the image formation by thick lens. The thickness of a lens is
defined as the separation between the poles of its spherical refracting surfaces. When this
thickness is comparable to its focal length then the lens is said to be thick. The distances in
case of thick lens cannot be measured from a single optical centre as in the case of thin lens;
however the distances can be referred to from the poles on the two surfaces. It was shown by
C.F. Gauss that the formulae of thin lenses are applicable to thick lenses too if the position of
certain specific points for a lens called cardinal points are known. In this way, a thick lens is
treated as a combination of thin lenses. We have already studied that there are six cardinal
points of a lens namely two principal points, two focal points and two nodal points. We will
also discuss the variation of focal length of different types of lenses with its thickness by
considering different examples.

3.2 OBJECTIVES

After studying this unit, you will be able to,

e Know the difference between thin and thick lenses

e Locate the cardinal points of a thick lens

e Classify the lens on the basis of their shape

e Calculate power of a lens

e Know about the optical devices like different types of telescopes

e Understand the advantages of reflecting telescope over refracting telescope

3.3 CARDINAL POINTS OF A THICK LENS

There are six cardinal points of a thick lens; two focal points Fi, F2; two principal
points Hi, Hz and two nodal points N1, N2. You can see the cardinal points and the
corresponding cardinal planes for a thick convex lens in figure 3.1. When the lens is placed in
air, the nodal points N1, N2 coincide with the principal points Hi, H> respectively. The
formation of the image II' of an object OO' is also shown in this figure. Although, the cardinal
points are explained in the previous unit but we are again discussing them briefly, in this unit,
with reference to thick lenses.
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3.3.1 Focal Points

The focal points F1, F> are a pair of points lying on the principal axis and conjugate to
points at infinity. An incident ray O'A; parallel to the principal axis, after refraction through
the lens, passes through the second focal point F2, while an incident ray O'B1 through the first
point F1, after refraction, emerges parallel to the principal axis XX'.

Figure 3.1
3.3.2 Principal Points

The principal points Hy, Ho are a pair of conjugate points on the principal axis having
unit positive linear transverse magnification. An incident ray meeting the first principal plane
at a certain height from the principal axis emerges through the second principal plane at the
same height and on the same side of the axis.

You can see O'A; is a ray parallel to the axis meeting the first principal plane at Az. It
will emerge from the lens through Az on the second principal plane such that H1A1 = H2A»,
and also pass through F2. O'F; is another ray through the first focal point F1 and meeting the
first principal plane in Bi. It will emerge parallel to the axis through B2 such that H1B; =
H2B:>.

3.3.3 Nodal Points

The nodal points N1, N2 are a pair of conjugate points on the principal axis having unit
positive angular magnification. They are such that an incident ray directed towards Ni
emerges through N parallel to itself. An incident ray O'N: and its conjugate parallel
emergent ray NlI' are shown in figure 3.1.

3.4 FOCAL LENGTH OF A THICK LENS

Let us consider a convex lens of thickness t and refractive index u placed in air. Let Rs
and Rz be the radii of curvature of the faces of the lens. The lens is a combination of two
refracting surfaces with poles P1 and P> (Figure 3.2). Draw a ray PQ parallel to the principal
axis, incident on the first surface at a height h; above the axis. After refraction at the first
surface, it follows the path QR in the lens and meets the second surface of the lens at a height
h, above the axis. This ray, if produced forward, will meet the axis at point S, which acts as
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virtual object for the second surface. After refraction at the second surface, the emergent ray
intersects the principal axis at F> which is the second focal point of the lens.

Let us produce the incident ray PQ forward and the emergent ray RF, backward such
that they meet at A>. The plane through A and perpendicular to the axis is the second
principal plane, and its point of intersection with the principal axis, Hz is the second principal
point. H2F is the focal length f of the lens.

f

o o e e o e iy
I
N

Figure 3.2
The refraction formula for a single surface is

u 1 u-1

v u R

For refraction at the first surface (from air to lens) we can write
U= oo,v=P,SandR=R;

u 1 u—1

PyS oo Rq

1 -1
or —=£
PlS ‘LlRl

For refraction at the second surface (from lens to air), we can write
u="P,S,v=PF,and R = R>.

Also in this case, from lens to air (i.e., from denser to rarer), u will be replaced by 1/u. Hence

1
Gt
PyFp PyS R,
1 1-
or —==4y = . (3.2)
PyFp PyS Ry

Now, from similar triangles A2F2H2, RF2P2 and from similar triangles QSP: and RSPz, we
have,

Py Fy h, PyS

or Lo LA IR (3.3)

PyF,  HyF, P,S  f P,S

Substituting the value of % in equation (3.2), we get,
202
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1S _ # , 170
f P,S  P,S Ry
1 P,S 1-
or 1_#  RSi-u
f PSS ' PiS Ry

You can see from figure 3.2 that, P,S = P1S — P1P> =P1 S - t.

l _ P1S—t 1—pu

f  PiS PiS R,
_ b t 1-u
4 (1- )
PiS PiS) R,

Putting the value of % from equation 3.1 in this expression, we obtain,
1

O (-~ Er
f Ry URq Ry
St S ot R Ui Vi

Ry Ry UR1R;
o fi_ 1, @
or T=-1) {Rl o mRz} ....... (3.4)

This is the expression for compute focal length of a thick lens.

3.4.1 Position of Cardinal Points
Let us now compute the positions of cardinal points.

Second Focal Point (B,): The distance of the second focal point F> from the second
surface of the lens is P2F2. Using equation 3.3, we can write,

P,S Py S—t

Pk, = Ps ) Ths =f(1_?ts)

Substituting the value of % from equation 3.1 we get
1

PoF2 = +f [1 - (Mlt_le t]
or B, = +f [1 - %] ....... (3.5)

Second Principal Point (cc;): The distance of the second principal point Hz from the
second surface P is

P>H> = FoHo — FoPo

=—HaF2 + P2F2
Substituting the value of P2F2 from equation 3.5 we get
_ (-1t
PoHy = f+f [1 T ]
- (u-1)t
pR1
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or x, =—f @ e (3.6)

URq

First Focal Point (84): If we consider the incident ray PQ as shown in figure 3.2, coming
from right, then R; and R2 will interchange and the signs of f, Ry and Rz will become
opposite. Now, the distance of the first focal point F1 from the first surface P1 is (from
equation 3.5)

(=Dt
PiFy = —f[1 — £E
t | u(-Rry)]
= f [1 4 &=
B UR, |

g=—f |1+ &2 (3.7)
L UR,

First Principal Point (ocq): The distance of the first principal point Hi from the first
surface Py is (from equation 3.6)

PiH, = +f £
H(_Rz)
-_f (-1t
UR;
(u-1)t
< =—f - . 3.8
p=-t (3.8)

Nodal Points: Since the medium on both sides of the lens is same (air), the nodal points N1
and N are the same as the principal points Hy and Hz respectively.

3.5 VARIATION OF FOCAL LENGTH OF A THICK BI-
CONVEX LENS

We have calculated the focal length of a thick lens in a previous section as

Lo (L1 b
T=w-1 {R1 o ”Rle} ....... (3.9)

Let us consider a biconvex lens having R1 = +r1 and R2 = —r2where ry, r2> 0, we have,

Lo(u-1) {i l_ﬂ} ....... (3.10)

f 151 ) UT1T2
For a thin lens i.e. t = 0 the focal length f, can be obtained as
1 1 1
= (-1 {ZJ’E} ....... (3.12)

Substituting equation 3.11 in equation 3.10, we get,

_1\2
i_r_ W (3.12)
f fo UTirs
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From this equation we can infer that if the value of t increases from zero to upwards, the
value of ]lc decreases which means the focal length of a lens increases with the increase in
thickness. We know that the power of a lens is inversely proportional to the focal length;

therefore the power of a thick lens is less than the power of a thin lens for the same refracting
surfaces. When we increase the thickness of a biconvex lens continuously a situation arises

1 . . .
when ; becomes zero and on further increasing thickness, the lens becomes a concave lens

(diverging). This is the critical value of thickness, denoted by t. and can be obtained by
equation 3.10. Therefore, we can write

1 1 1 (u—-Dt,

f (# ) ry T2 urir;
or Lyt b g

&1 T2 urirs
or (u—1tc - 1 + 1

urirs 1 T2

_ Uk

or tc = = n+r L (3.13)

If the radii of curvature of both the surfaces of biconvex lens is same then we can write r1 = r»
=T, so

3.6 POWER OF A THICK LENS

The focal length of a thick lens is given by

LA S S Clatd N
f_(u 1) [Rl R2+ R1R2 .[l:|

_po1_pm1 weD? ot

Ry R; RiR, "n
If P is the power of the lens then we have,

p— 1_pu-1 pu-1 (u-1? t
f R Ry RiRz "

The power of the first refracting surface is given by

-1
P, = [
Ry

Similarly, the power of second refracting surface is given by

P2=1_# =-£=
R, R,
P=P,+P,—P; Pz.ﬁ ....... (3.15)
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Self Assessment Questions

1. What is a thick lens?

How many cardinal points a thick lens has? Name them.

Obtain an expression to show the variation of focal length of thick lens with thickness.
What is critical thickness of a lens?

Mo

Example 3.1: A convergent thick lens has radii of curvature 10.0cm and — 6.0cm, p = 1.60
and thickness t = 5.0cm. Deduce its focal length. At what value of t will the lens become
divergent?

Solution: The focal length of a lens of thickness t is given by

1_ [ty vt
o (M 1) [R1 Ry + .HR1R2].
Here, u = 1.60,R; = +10.0cm,R, = —6.0 cmand t = 5.0 cm.

Z= (1.60 — 1) [L + 1 + (1.60—-1)x5.0 ]
4 10.0 6.0 1.60%x10.0%(—6.0)
o f:ﬂ = 47.08cm.
67.8

At critical value of thickness tc the lens will become convergent. Using equation 3.13 we can
write

_ u(ri+ry)
fe=——=
u—-1

Putting 4 = 1.60, r1 = 10.0 cm and r2 = 6.0 cm, we get

_ 1.60 (10.0+6.0)
(1.60-1)

tc =42.7 cm

Beyond a thickness of 42.7cm, the lens will become divergent.
Example 3.2: Show that for a thin lens the two principal planes coincide.

Solution: The positions of first and second principal planes of a thick lens are

-f (n-1)t
a, = PH, = n—RZ
—f (n—-1t
a, = P,H, = n—121

For a thin lens t = 0 and P1 and P2 coincide, so P1H1 = P,H2 =0, i.e., H1 and H» coincide and
lie at the optical centre of the lens.
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3.7 TELESCOPES

A telescope is an optical device which enables us to see the distant objects clearly. It
provides angular magnification of the distant objects. There are two types of telescopes.

1. Refracting Telescopes: These types of telescopes work on refraction phenomenon of
light and therefore make use of lenses to view distant objects. As its name suggests this
device works on refraction phenomenon that is why lenses are used here. These are of
two types :

(@) Astronomical Telescope: It is used to see heavenly objects like sun, stars, planets,
etc. The final image formed by this telescope is inverted but it does not make any
difference in the case of heavenly bodies because of their round shape.

(b) Terrestrial Telescope: It is used to see distant objects on the surface of the earth.
The final image formed by this telescope is erect. This is an essential condition of
viewing the objects on earth’s surface correctly.

2. Reflecting Telescopes: These make use of converging mirrors to view the distant
objects. For example, Newtonian and Cassegrain telescopes.

3.7.1 Astronomical Telescope

Astronomical telescope uses refraction phenomenon of light to see heavenly bodies like
sun, stars, planets, satellites etc. It consists of two converging lenses mounted coaxially at the
outer ends of two sliding tubes. One of which is used as an eyepiece while the other is used as
objective.

1. Objective: It is a convex lens of large focal length and a much larger aperture. It faces
the distant object. In order to form bright image of the distant object, the aperture of the
objective is taken large so that it can gather sufficient light from the distant objects.

2. Eyepiece: It is also a convex lens but of short focal length. It faces the eye. The aperture
of the eyepiece used is also taken small so that whole light of the telescope may enter the
eye for distinct vision. It is mounted in a small tube which can slide inside the bigger tube
carrying the objective.

Working

1. When the Final Image is Formed at the Least Distance of the Distinct Vision:

The parallel beam of light coming from the distant objects falls on the objective at some
angle a as shown in figure 3.3. The objective focuses the beam in its focal plane and forms a
real, inverted and diminished image A'B'. This image A'B' acts as an object for the eyepiece.
The distance of the eyepiece is so adjusted that the image A'B' lies within its focal length.
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Fig. 3.3
The eyepiece magnifies this image so that final image A"B" is magnified and inverted with

respect to the object. The final image is seen distinctly by the eye at the least distance of the
distinct vision.

Magnifying Power: The magnifying power of a telescope is defined as the ratio of the
angle subtended at the eye by the final image formed at the least distance of the distinct
vision to the angle subtended at the eye by the object at infinity, when seen directly.

Since the distance of the object from the telescope is very large therefore the angle
subtended by it at the eye is practically equal to the angle a subtended by it at the objective.
Hence,

£AOB'=«a
Suppose £LA"EB"=p
Magnifying power, m = % = g (+ aand B are small angles)

According to the sign convention
OB' = +f, = focal length of the objective

B'E = -ue = distance of A'B' from the eyepiece acting as an object for it

Again, for the eyepiece, u = -ue and v = — D. Thus from equation i — i = % , We have,

or 141 _(1+E)
D
Substituting this in above expression of m, we get,

m=—L (145 (3.16)

Ue
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As we can see, for large magnifying power, f, >> f.. The negative sign of the magnifying
power indicates that the final image is real and inverted.

2. When the Final Image is Formed at Infinity: Normal Adjustment:

When a parallel beam of light is incident on the objective as shown in figure 3.4, it
forms a real, inverted and diminished image A'B' in its focal plane. The eyepiece is so
adjusted that the image A'B' exactly lies at its focus. Therefore, the final image is formed at
infinity and is highly magnified and inverted with respect to the object.

Magnifying Power: It is defined as the ratio of the angle subtended at the eye by the final
image as seen through the telescope at the eye to the angle subtended by the object seen
directly when both the image and object lie at infinity at the eye. As the distance of the object
from the telescope is very large, the angle subtended by it at the objective is

¢tAOB'=«a
Also, let LAEB =p
. e - _tanf _ E ..
=~ Magnifying power, m=—— == (+ a and B are small angles)

_A'B'"/B'E _ 0B/
A'B' /OB’ BIE

Objective Eyepiece
A
I E\$ i & / “—J’
# oi & BMOIE -
At mfinily o - 7
_)i g Ar
T T
i o R
T
e -
?‘w.{;"
e f »e— [ —|
Fig. 3.4

Applying the cartesian sign convention.
OB' = +f, = Distance of A'B' from the objective along the incident light
and B'E = -fe = Distance of A'B from the eyepiece against the incident light

fo
m=-—= ... 3.17
- (3.17)

As we can see, for large magnifying power, fo >> fe. The negative sign of m indicates that the
image is real and inverted.

3.7.2 Terrestrial Telescope

It is a refracting telescope which is used to see erect images of distant earthy objects. It
uses an additional convex lens between objective and eyepiece for obtaining an erect image.

52



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

f—to—afe— 2 —rfe— 2t —p—te— ‘
Fig. 3.5

In this telescope the objective forms a real, inverted and diminished image A'B' of the
distant object in its focal length from the focal plane of the objective as shown in figure 3.5.
This lens forms a real, inverted and equal size image A"B" of A'B'". This image is now erect
with respect to the distant object. The eyepiece is so adjusted that the image A"B" lies at its
principal focus. Hence the final image is formed at infinity and is highly magnified and erect
with respect to the distance object. As the erecting lens does not cause any magnification, the
angular magnification of the terrestrial telescope is the same as that of the astronomical
telescope.

If the image is formed at infinity the

m= Lo
fe
and if image is formed at the least distance of distinct vision then
=Ll Je
m= L (1+y L (3.18)

Drawbacks

1. The length of the terrestrial telescope is much larger than the astronomical telescope. In
normal adjustment, the length of a terrestrial telescope = f, + 4f + f.- where f is the focal

length of the erecting lens.
2. Due to extra reflection at the surfaces of the erecting lens, the intensity of the final image

decreases.

3.7.3 Newtonian Reflecting Telescope

The first reflecting telescope was set up by Newton in 1668. It consists of a large
concave mirror of large focal length as the objective, made of an alloy of copper and tin as
shown in figure 3.6.
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Plane mirror

2 i > \

Parallel rays F-:::""-
from distant object
L Ll t
Objective
< Eycpiece {concave mirror)
k 4
Fig. 3.6

A beam of light from the distant star is incident on the objective. Before the rays are
focused at F, a plane mirror inclined at 45° intercepts them and turns them towards an
eyepiece adjusted perpendicular to the axis of the instrument. The eyepiece forms a highly
magnified, virtual and erect image of the distant object.

3.7.4 Cassegrain Reflecting Telescope

It consists of a large concave parabolic (primary) mirror having a hole of its centre. It is
a small convex (secondary) mirror near the focus of the primary mirror. The eyepiece is place
on the axis of the telescope near the hole of the primary mirror (figure 3.7).

The parallel rays from the distant object are reflected by the large concave mirror.
Before these rays come to focus at F, these are reflected by a small convex mirror and are
converged to a point I, just outside the hole. The final image formed at | is viewed through
the eyepiece. As the first image at F is inverted with respect to the distant object and the
second image | is erect with respect to the first image F, hence the final image is inverted
with respect to the object.

L | Paraboloidal
- objective mirror
Sccun:hry mirror
Parallel rays F<_ =
arallel rays from e »

distant object

v

Fig. 3.7

Let fo be the focal length of the objective and fe that of the eyepiece then for the final image
formed at the least distance of distinct vision, we have,

_fo( fe)
m==({1+=
fe b

For the final image formed at infinity
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_fo _RI2
m=="2 L (3.19)

3.7.5 Advantages of a Reflecting Telescope over Refracting Telescope

A reflecting-type telescope has the following advantages over a refracting—type
telescope.

e A concave mirror of large aperture has high gathering capacity and absorbs very less
amount of light than the lenses of large apertures. The final image formed in reflecting
telescope is very bright. So even very distant or faint stars can be easily viewed.

e Due to the large aperture of the mirror used, the reflecting telescopes have high resolving
power.

e As the objective is a mirror and not a lens, it is free from chromatic aberration (formation
of coloured image of a white object).

e The use of parabolic mirror reduces the spherical aberration (formation of non-point
blurred image of a point object).

e A mirror requires grinding and polishing of one surface only. So it costs much less to
construct a reflecting telescope than a refracting telescope of equivalent optical quality.

e A lens of large aperture tends to be very heavy, and therefore, difficult to make and
support by its edges. On the other hand, a mirror of equivalent optical quality weighs less
and can be supported over its entire back surface.

Currently, reflecting and refracting telescopes have their own roles to play. Reflecting
telescopes are used more and more in astronomy due to their ability to see much farther and
much clearer. On the other hand, refracting telescopes are used more in everyday items like
binoculars and camera lens system due to their straightforward designs and lower
construction costs.

Example 3.3: A refracting astronomical telescope uses objective lens and eyepiece of focal
lengths 60 cm and 3 cm. Find the magnifying power of telescope and also distance between
the objective and eye piece, if the final image formed at infinity.

Solution: Given fo=60cm and fe=3 cm

The magnifying power of telescope when the final image formed at infinity is

Also the distance between objective and eye piece is given by L =
fo+tf,=60+3=63cm

Thus magnifying power of telescope is 20 and distance between objective and eye piece is 63
cm.

Example 3.4: The magnifying power of a telescope in normal adjustment position is 30 and
its length is 93 cm. Find the focal length of the objective and the eye piece.

Solution: The magnifying power of telescope when the final image formed at infinity is
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i
fe

M=

Also the length of telescope is given by L= f; + 1.
Given M =30and L =93

fi
Thus, f—n= 30
e

and fyf+f, =93 0r f,=93— f,

Hence f_|:|= 93 or (93-7) =30 or f; =3 cm.
fe fe

A.goas%zm or 2=30 f,=90cm.
e

Thus the focal lengths of objective lens and eye lens are 90 cm and 3 cm respectively.

3.8 SUMMARY

1. Thickness of a lens is a separation between the poles of its spherical refracting surfaces.

2. When the thickness of a lens is comparable to its focal length, the lens is said to be thick.

3. Athick lens is considered as a combination of thin lenses.

4. A thick lens has six cardinal points: two focal points F1, F2; two principal points Hy, Ha

and two nodal points N1, N>.

The focal length increases with the increase in a thickness of a lens.

A telescope is an optical device which enables us to see the distant objects clearly. It

provides angular magnification of the distant objects.

7. Reflecting telescopes use converging mirrors to show distant objects. Examples are:
Newtonian and Cassegrain telescope.

8. Refracting telescopes use lenses to see heavenly objects like Sun, Stars, Planets etc. from
the surface of the earth. Example: Astronomical and Terrestrial telescopes.

9. Generally all telescopes consist of two converging lenses mounted coaxially at the outer
ends of two sliding tubes. One lens is called objective, facing the distant object and
another lens is eyepiece, facing the eye. Both lenses are convex in nature.

o o

3.9 GLOSSARY

Aperture — Opening which allows light to reach the lens.
Erect — upright or strait
Inverted — opposite position

Distance of distinct vision —a minimum comfortable distance between the naked human eye
and a visible object

Infinity — endless, limitlessness

Terrestrial — something relating to the earth
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Intercept — obstruct

Parabolic mirror — it is a reflective surface used to collect or project light rays (energy)

Principal axis — the straight line joining the centres of curvature of two bounding surfaces is
called the principal axis of the lens.
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3.12 TERMINAL QUESTIONS

SHORT ANSWER TYPE QUESTIONS

1. Write formula for the focal length of a thick lens.

2. What is meant by chromatic aberration of a lens?

3. What is achromatism?

4. What is the condition of achromatism of two thin lenses of same material placed at
distance d apart?

5. What is the condition for minimum spherical aberration for two lens placed at a distance
d apart?

OBJECTIVE-TYPE QUESTIONS

1. When the medium on the two sides of a lens-system is same, the principal points coincide
with:

(a) Focal points  (b) nodal points (c) centres of curvature (d) none of these

2. If my, my and my be the longitudinal, lateral and angular magnifications respectively, then
choose the correct relation (s):

(@) myxmy=mg (b) mx x mg =my
(c) my o< my (d) my o< mp

3. A convex lens of focal length f1 and a concave lens of focal length f, are placed at a
distance d apart. The focal length of the combination is:

fife file
a) ———— b) ————
()f1+f2—d ( )f1+f2+d
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il fife
c) ——— d) ———
( ) d+ fi— f2 ( )d—f1+f2

4. When an extended white object is placed before a convex lens, coloured images are
formed. The image of the least size will be of the colour:

(@) red (b) yellow (c) green (d) violet

5. For a parallel incident white beam, the longitudinal chromatic aberration of a lens of unit
focal length is numerically equal to:

(a) its focal length (b) its dispersive power
©1 (d) oo

6. Two lenses of focal lengths f; and f, made of glasses of dispersive powers w and 2 w
respectively, form an achromatic combination when placed in contact. Then:

() f2 = fu/2 (b) f2= — fu/2
(c) fo=—2f; (d) f2=2f,

7. The condition of achromatism % + % = 0 holds for:
1 2

(@) longitudinal and lateral chromatic aberrations

(b) longitudinal chromatic aberration only

(c) lateral chromatic aberration only

(d) neither longitudinal nor lateral chromatic aberration

8. Two lenses in contact form an achromatic doublet. Their focal lengths are in the ratio 2:
3. The dispersive powers of their material must be in the ratio:

@2:3 (b)1:3 (©3:1 (d)3:2

9. A convex crown-glass lens of focal length 20cm and dispersive power 0.018 forms an
achromatic doublet when placed in contact with a flint-glass lens of dispersive power
0.036. The focal length of the combination is:

(@) —20cm (b) — 40 cm (c) +20cm (d) +40cm

10. Two lenses of same material and focal lengths f; and f, show achromatism when the
distance between them is:

(a) zero (b) f1 ~ f2 (c) L2 (d) f1 + 2

2

11. Parallel paraxial rays incident on a convex lens are converged by the lens at an axial
points F. The marginal rays incident on the same lens will be converged at :

(a) a points further away than F (b) a point nearer the lens than F
(c) Fonly

(d) a point further or nearer than F depending on the focal length of the lens.

58



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

12. The variation in focal length of a lens when we pass from the central portion to the
periphery is called:

(a) spherical aberration (b) astigmatism
(c) comma (d) chromatic aberration

13. Spherical aberration of a lens may be reduced by designing the lens so that the deviation
of aray is:

(a) maximum at the first surface (b) minimum at the first surface
(c) equally shared by the two surfaces (d) reduced to a minimum
NUMERICAL QUESTIONS

1. The focal length of objective lens and eyepiece of a telescope is 72 cm and 1.2 cm. Find
its angular magnification and length for relaxed eye. (Ans. angular magnification = 60,
length for relaxed eye = 73.2 cm.)

2. The magnifying power of a telescope for relaxed eye is 24 and its length is 75 cm. Find
the focal length of the objective and the eye piece. (Ans. focal length of the objective = 72
cm and the focal length of eye piece = 3 cm)

3.13 ANSWERS

SHORT ANSWER TYPE QUESTIONS

1_ o[ _ 1 bt
1. Ans. F = (‘Ll 1) {Rl R, T ILR1R2}

2. The image of a white object formed by a lens is usually coloured and blurred due to
different refractive indices of the lens material for different wavelengths of light. This
defect of image is called ‘chromatic aberration’.

3. The process of elimination of chromatic aberration by combining two or more lenses is

called achromatism.
4. d= % where f1 and f, are the focal lengths of the two lenses.

5. d=fi—fo.

OBJECTIVE TYPE QUESTIONS:

1 (b) 5 (b) 9 (d) 13 ©
2 (b)and(c) 6 (©) 10 (€
3 (d) 7 @ 11 (b)
4 (d) 8 @) 12 (@)
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UNIT 4: INTERFERENCE OF LIGHT WAVES
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4.1 INTRODUCTION

In 1680 Huygens proposed the wave theory of light. But at that time, it was not clear
about the nature of light wave, its speed and way of propagation. In 1801 Thomas Young
performed an experiment called Young’s double slit experiment and noticed that bright and
dork fringes are formed which is called inference pattern. At that time it was a surprising
phenomenon and is to be explained.

After the Maxwell’s electromagnetic theory it was cleared that light is an
electromagnetic wave. In physics, interference is a phenomenon in which two waves
superimpose on each other to form a resultant wave of greater or lower or of equal amplitude.
When such two waves travel in space under certain conditions the intensity or energy of
waves are redistributed at certain points which is called interference of light and we observe
bright and dark fringes.

4.2 OBJECTIVES

After reading this unit you will able to understand

e The wave nature of light

e Phase and phase changes in light wave

e Coherence and coherent source of light

e Principle of superposition

e Young’s double slit experiment and explanation

e Interference

e Interference phenomena in biprism and thin sheets

4.3 WAVE NATURE OF LIGHT

Light wave is basically an electromagnetic wave. Electromagnetic wave consists of
electric and magnetic field vectors. The directions of electric and magnetic vectors are
perpendicular to direction of propagation as shown in the figure 4.1. The electric and
magnetic vectors are denoted by E and H and vary with time.

Propagation

Electric Direction /-
Field (E)

Magnetic
Field (B)

- N
avelength ( £)
o~
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Figure 4.1

In light, electric vectors (or magnetic vectors) vary in sinusoidal manner as shown in
figure 4.1. Therefore the electric vectors can be given as

E=Eosin (kz - wt)

Where E = Electric field vector, Eo = maximum amplitude of field vector, k = wave number
(= 2n/4), z = displacement along the direction of propagation (say z axis), o = angular
velocity and t = time.

Before understanding the interference we should understand some terms and properties of
light which are related to interference.

4.3.1 Monochromatic Light

The visible light is a continuous spectrum which consist a large number of wavelengths
(approximately 3500A to 7800A). Every single wavelength (or frequency) of this continuous
spectrum is called monochromatic light. However, the individual wavelengths are sufficiently
close and indistinguishable. Some time we consider very narrow band of wave lengths as
monochromatic light.

Ordinary light or white light, coming from sun, electric bulb, CFL, LED etc. consists a
large number of wave lengths and hence non-monochromatic. But some specific sources like
sodium lamp and helium neon laser emit monochromatic lights with wave lengths 589.3 nm
and 632.8 nm respectively. It should be noted that sodium lamp, actually emits two spectral
lines of wavelengths 589.0 nm and 589.6 nm which are very close together, and source is to
be consider monochromatic.

4.3.2 Plane Wave

A plane wave is a wave whose wave front remains in a plane during the propagation of
wave. In light wave, the maximum amplitude of electric vector Eo remains constant and
confined in a plane perpendicular to direction of propagation. Such type of wave called plane
wave.

4.3.3 Polarized and Unpolarized Light

Light coming from many sources like sun, flame, incandescent lamp produce
unpolarized light in which electric vector are oriented in all possible directions perpendicular
to direction of propagation. But in polarized light electric vector are confined to only a single
direction. The detail about polarized light will be discussed in the next block.

4.3.4 Phase Difference and Coherence

Wave is basically transportation of energy by mean of propagation of disturbance or
vibrations. In wave motion through a medium, the particles of medium vibrate but in case of
electromagnetic wave the electric or magnetic vectors vibrate form its equilibrium position.
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The term phase describes the position and motion of vibration at any time. For example if
y=a sin (ot +0) represents a wave, then the term (wt +0) represents the phase of wave. The
unit of phase is degree or radium. After completion of 360° or 2, the cycle of wave or phase
repeats.

Phase difference

If there are two waves have some frequency then the phase difference is the angle (or
time) after which the one wave achieves the same position and phase as of first wave. In the
figure 4.2, two waves with phase different 6 are shown.

Figure 4.2

Coherence
If two or more waves of same frequencies are in same phase or have constant phase

difference, those waves are called coherent wave. Figure 4.3 shows coherent wave with same
phase (zero phase difference) and with constant phase difference.

\

g
SRR
Figure 4.3
4.3.5 Optical path and Geometric Path

¢

\

Optical path length (OPL) denoted by A is the equivalents path length in the vacuum
corresponding to a path length in a medium. Path length in a medium can be considered as
geometric path length (L). Suppose a light wave travels a path length L in a medium of
refractive index p and velocity of light is v in this medium, then for a time period t the
geometric path length L is given by

L=vt

In the same time interval t, the light wave travel a distance A in vacuum which is optical path
length corresponding to length L. Then
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A= ct = c
Where, c is the velocity of light in vacuum.
or A= pL
or The Optical path length = u x (Geometrical path length in a medium).

In case of interference we always calculate optical path for simplification of understanding
and mathematical calculations.

4.4 PRINCIPLE OF SUPERPOSITION

According to Young’s principle of superposition, if two or more waves are travelling
and overlap on each other at any point then the resultant displacement of wave is the sum of
the displacement of individual waves (figure 4.4). If two waves are represented by y1 = ai sin
wt and Y2 = az sin (wt+d). Then according to principle of superposition, the resultant wave is
represented by y = y1+ y2

ANVANA
VARV, =V\/\/\
A NEAVARY,
v VU

Figure 4.4

4.5 INTERFERENCE

When two light waves of some frequency, nearly same amplitude and having constant
phase difference travel and overlap on each other, there is a modification in the intensity of
light in the region of overlapping. This phenomenon is called interference.

The resultant wave depends on the phases or phase difference of waves. The
modification in intensity or change in amplitude occurs due to principle of superposition. In
certain points the two waves may be in same phase and at such point the amplitude of
resultant wave will be sum of amplitude of individual waves. Thus, if the amplitudes of
individual waves are a; and az then the resultant amplitude will be a = a;+ a.. In this case,
the intensity of resultant wave increases (I « a?) and this phenomena is called constructive
interference. Corresponding to constructive interference we observe bright fringes.
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On the other hand, at certain points the two waves may be in opposite phase as shown
in figure 4.4. In these points the resultant amplitude of waves will be sum of amplitude of
individual waves with opposite directions. If the amplitudes of individual waves are a1 and az
then the resultant amplitude will be a = ai- a2 and the intensity of resultant wave will be
minimum. This case is called destructive interference. Corresponding to such points we
observe dark fringes. Figure 4.5 depicts two waves of opposite phase and their resultant.

4.5.1 Theory of Superposition

Let us consider two waves represented by y1 = a1 sin wt and y>= az sin (wt + 9).
According to Young’s principle of superposition the resultant wave can be represented by

y=Yy1+y2
= a1 sin ot + az sin(wt+0o)

= a1 sin wt + az (sin wt cos 6 + cos wt sin o)

= (a1+ az cos 9) Sin wt + (az sin §) cos ot ... 4.1)
Let astaxcoso=Acos® L. 4.2)
and asino=Asim® L. 4.3)

Where A and @ are new constants, then above equation becomes
y= A oS @ sin wt + A sin @ cos wt
or y=Asin(0t+@) L. (4.4)

This is the equation of the resultant wave. In this equation y represents displacement, A
represents resultant amplitude, @ is the phase difference.

From equation (4.2) and (4.3) we can determine the constant A and @. Squaring and adding
the two equations, we get,

A? = a2 + a2 cos? § + 2 araz cos 5+ az?sin?
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or A?=a? +a? +2aacosd (4.5)
On dividing equation (4.3) by eq (4.2), we obtain,

a, sin é§

cos@ aqi+ap cos 8§
4.5.2 Condition for Maxima or Bright Fringes

If cos 0 = +1thend = 2nrwheren=0, 1, 2, 3...... (positive integer numbers).

Then, A? = ar? + a?+ 2aiaz = (a1+ap)?
Intensity, I=A%=(a+a2> . 4.7)
Therefore, for 6 = 2nz = 0, 2z, 4x...... , We observe bright fringes.

In term of path difference A

yl : yl
A = — X phase difference = — 2nn
21N 2mn

or A=nA=%2\3\..etc. ... (4.8)
4.5.3 Condition for Minima or Dark Fringes

Ifcosd=—1ord =(2n—1)r=m, 3m,5m......

Then A% = a® + a2 — 2 apa = (a1—a)?

Intensity, |=A’=(a-a2* (4.9)

Therefore if phase difference between two waves is 0 = (2n — 1)mr =0, 3w, 5m... etc. is the
condition of minima or dark fringes.

Now path difference, A= % X Phase dif ference

or A:ix(Zn—l)n=m/1:
27T 2

Example 4.1. Two coherent resources whose intensity ratio is 81:1 produce interference
fringes. Calculate the ratio of maximum intensity and minimum intensity.

Solution: If 11 and I> are intensities and a; and az are the amplitudes of two waves then

I, 81 a? 81 a;
_=_Or_1=_ _—— -

I 1 a? 1 az
Maximum intensity = ai1+a>= 9 a,+ a2 = 10 a.

Minimum intensity =a;—a> =9 a,— a2 =8 a,
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The ratio of maximum intensity to minimum intensity

Imax/ Imin= (a1+az2)? / (a1-az2)? = 10%/ 82 = 100/64=25/16

4.5.4 Intensity Distribution

The intensity (/) of a wave can be given as I = (¥2) €, a? where a is the amplitude of
wave, and €y is the permittivity of free space. If we consider two waves of amplitudes a; and
az then at the point of maxima

Imax = (a1+a2)? = ar’+az?+2a1az

If a1 = a2 = a then | = 4a2. Therefore, at maxima points the resultant intensity is more than
the sum of intensities of individual waves.

Similarly the intensity at points of minima
Imin= a1%+a,% - 2a182 = (a1~ap)?

If a1= ax=a then Inin=0. Thus the intensity at minima points is less than the intensity of any
wave.

The average intensity lay is given as

_ fOZ”IdS B fozn (af+a5+2a; a; Cos §)ds _ (a}+a3)2mn
av— 27T - 2T -
fo ds fo das 27N

=a?+ a3

If a1 = a» = a then loy = 2a%2 =2l

Therefore, in interference pattern energy (intensity) 2aia. is simply transferred from minima
to maxima points. The net intensity (or average intensity) remains constant or conserved.

4.6 CLASSIFICATION OF INTERFERENCE

The interference can be divided into two categories.

4.6.1 Division of Wavefront

In this class of interference, the wave front originating from a common source is
divided into two parts by employing mirror, prisms or lenses on the path. The two wave front
thus separated traverse unequal paths and are finally brought together to produce interference
pattern. Examples are biprism, Lloyd’s mirror, Laser etc.
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4.6.2 Division of Amplitude

In this class of interference the amplitude or intensity of incoming beam divided into
two or more parts by partial reflection and refraction. Examples are thin films, Newton’s
rings, Michelson interferometer etc.

4.7 YOUNG’S DOUBLE SLIT EXPERIMENT

In 1801, Thomas Young performed double slit experiment in which a light first entered
through a pin holes, then again divided into two pinholes and finally brought to superimpose
on each other and obtained interferences. Young’s performed experiment with sum light.
Now the experiments are modified with monochromatic light and efficient slits.

Fig. 4.6

Figure 4.6 shows the experimental setup of double slit experiment. S; and S; are two
narrow slits illuminated by a monochromatic light source. The distance between two slits S1
and Sz is 2d. The two waves superimposed on each other and fringes are formed on the screen
placed at a distance D from the centre of slits M. Let us consider a point P on the screen
which is y distant from O. The two rays S1P and S;P meet at point P and produce interference
pattern on screen.

Mathematically, path difference between rays S1: P and S2P is given as
A=SP-SP (4.11)
SoP? = D? + (y+d)? = D[1+ (y+d)? / D?]
SoP = D[1+ (y+d)? / D?]Y2
=Dﬂ+ameDﬂ [CA+x)"=14+nx+..]
or S;P=D+(y+d)?2/2D L (4.12)
Similarly

S1P2 = D2 + (y-d)’
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SiP = D [1+ (y-d)? / D}J¥2
=D [1+ X(y-d)?/ D]
=D+ (y-d?/2D L. (4.13)

Using equation (4.12) and (4.13), the path difference becomes

—4)2
A=p + 2 p oDt _wd (4.14)
2D 2D D

For the position of bright fringes path difference

A=na (wheren=1,2,3........ )
or zd _ nA
D
_nDA
or y= 5

Since the expression consists of integer n, i.e., y is a function of n. Thus it is better to use y in
place of y and we can write,

nDA
e — (4.15)

Wheren=1, 2 ... etc. represents the order of fringe

On putting the value of n=1, n=2 etc. we get the bright fringes at positions y1— Y= 2DA

etc. Similarly for the position of dark fringes, the path difference should be

A= (2n-1)1
2
or @ _ (2n—-1A
D 2
_ (2n-1) D_?\
or WESooo (4.16)
A
If we place the value of n = 1, 2, 3 ... we get the positions of dark fringes at y; = EZD—D
yz—ZZD,y3—22D ...... .

Fringe Width: Distance between two consecutive bright or dark fringes is called fringe
width denoted by o (sometimes ). In case of bright fringes, fringe width

_ _ DA _ DA_ DA
O=Yn+t1—Yn= (n+1)5—n5-5

Similarly, in case of dark fringes
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2(n+1)-1DA  (2n—-1)-1DA _ DA

Q): p— =
Yne1 = Yn 2 2D 2 2D 2D

4.8 COHERENCE LENGTH AND COHERENCE TIME

In case of ordinary light source, light emission takes place when an atom leaves it
excited state and come to ground state or lower energy state. The time period for the process
of transition from an upper state to lower state is about 10 s only. Therefore an excited atom
emits light wave for only 10® s and wave remains continuously harmonic for this period.
After this period, the phase changes abruptly. But in a light source, there are innumerous
numbers of atoms which participate in the emission of light. The emission of light by a single
atom is shown in figure 4.7. After the contribution of a large number of atoms emitting light
photon, a succession of wave trains emits from the light source.

Figure 4.7
4.8.1 Coherence Length

Coherence length is propagation distance over which a coherent wave maintains
coherence. If the path of the interfering waves or path different is smaller than coherent
length, the interference is sustainable and we observe distinct interference pattern.

4.8.2 Coherence Time

Coherent time 7. is defined as the average time period during which the wave remains
sinusoidal and after which the phase change abruptly.

4.8.3 Spatial Coherence

Spatial coherence describes the correlation between waves at different points on a plane
perpendicular to the direction of propagation. More precisely, the spatial coherence is the
cross-correlation between two points in a wave for all times. If a wave has only 1 value of
amplitude over an infinite length, it is perfectly spatially coherent.

4.8.4 Temporal Coherence

Temporal coherent describes the correlation between two points in the direction of
propagation. In other words, it characterizes how well a wave can interfere with itself at a
different time as direction of propagation indicates time line. The delay over which the phase
or amplitude wanders by a significant amount (and hence the correlation decreases by
significant amount) is nothing but coherence time zc
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4.9 CONDITIONS FOR SUSTAINABLE INTERFERENCE

As we studied the different aspects of interference it is clear that under which

conditions interference can take place. But for strong interference or sustained interference
some more condition may be summarized. The conditions are:

1.

The interfering waves must have same frequencies. For this purpose we can select a single
source.

. The interfering waves must be coherent. To maintain the coherence, the path difference of

two interfering waves must be less than coherence length.

. As fringe width is given by o = Lz)—d. Thus to obtain reasonable fringe width the distance

between source and screen D should be large and distance 2d between two sources should
be small.
For good contrast we can prefer the interfering wave of same amplitude. If amplitude of
two waves, a1 and a» are same or nearly same than we observe distinct maxima and
minima.

. The back ground of screen should be dark.

4.10 INTERFERENCE DUE TO THIN SHEET

When a thin transparent sheet of mica of thickness t and refractive index p is introduced

in the path of one of the interfering beam of light, then entire fringe system is displaced.
Suppose a thin sheet of mica of thickness t is place in the path of a light beam as shown in
figure 4.8 then suppose the fringe system is displaced by a distance x.

If t is the time taken by light to travel distance S:P, then

S;P-t ¢t
= + -
Cc v

t

where v is velocity of light in the thin sheet and c is the velocity of light in air.

+ .o _C
c M HEY

t — Slp—t‘l'l,l t
Cc

For light ray reaching to P from slit Sy, the path travelled in air is S1P-t while in thin sheet is
t, the optical path can be written as

=SiP-t+ut=SP+ (u-1)t

Now path difference between two interfering says SiP and SpP at P is given as

A = $3P-S1P = SyP- [S1P+ (u-1)t]
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= SoP - S1P-(p-1)t
2yd . .
==- (-t (Using equation 4.14)

P

s1

|<— S
o

52
< D p
Figure 4.8

For nth maxima (bright fringe) path difference should be of the order of n}, i.e.,

24 (1) t=nh
A
Taking y as yn We get, Yn= % [oA+ Q-1 (4.17)

In the absence of thin sheet (t =0)

_nDA

Yn ="

Therefore, net displacement in the presence and absence of sheet is given by equations 4.18
and 4.19 respectively

nDA

X= % e (-2 (4.18)
X = % Wt (4.19)

Therefore, on introducing a thin transparent sheet in the path of any interfering ray, the entire
fringe system will disposed by distance of x. By measuring the value of x we can calculate
the thickness of sheet.

_ x.2d
D(u-1)

73



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

4.11 FRESNEL’S BIPRISM

Fresnel biprism consists of two acute angle prisms with their bases in contact. Generally
the angles are 179° 30" and 30" as shown in figure 4.9. The light coming from a source is
allowed to fall symmetrically on a biprism as shown in figure 4.9. As we know, when a light
beam is incident on a prism, the light is deviated from its original path through an angle
called angle of deviations. Similarly in case of biprism, the light beam coming from source S,
is appeared to be coming from Sy and S; as shown in figure 4.10. Thus we can say for prism
S1 and Sz behave as virtual sources for the biprism.

3

=1

1790 3 g (

=2

i
Fig. 4.9

In case of biprism, it can be considered that two cones of lights AS1Q and BS2P are
coming from S: and S, and superimposed on each other and produce interference fringes in
the region of superposition (between AB). The formation of interference fringes due to
Fresnel’s biprism is the same as due to Young’s double slit experiment.

P
A
o
8
) Q
D >
Fig. 4.10

In this experiment point O is equidistance from both slits S; and S. If we consider
distance between source and screen is D and separation between two slits S; and S is 2d the
fringe width can be given as

DA
2d
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The position of n™ bright fringe is given by y, =n %

2n—-1 DA
2 2d

Similarly the position of n'" dark fringe is given by yn =

The wave length of the light source used in biprism experiment can be obtained by using
above relation as

2d
A= (UF ....... (4.21)

4.11.1 Experimental Arrangement of Biprism Apparatus

The experiment is performed on an optical bench as shown in figure 4.11. In this
experiment we have an optical bench, which is an arrangement of two parallel metallic rods
which are horizontal at same label. The rods or optical bench carry upright on which optical
instruments are mounted. These upright are movable on the rods. In the first uprights, we
have a slit illuminated by a monochromatic light source S. The slit provides a linear
monochromatic light to the biprism which is mounted on the second upright. The biprism is
placed in such a way that its refracting edges parallel to the slit so that light falls
symmetrically on the biprism. In third upright there is a concave lens for conversing the light
coming from biprism. Finally on forth upright a micrometer eyepiece is mounted in which
interference fringes are observed.

For obtaining fringes, following adjustments are to be made.

(i)  The optical bench is leveled with the help of spirit level.

(i)  Axis of slit is made parallel to edge of biprism.

(iii) The heights of all four uprights should be same so that line joining slit, biprism and
micrometer should be parallel to optical bench.

Eyepiece
Source P Bipsism -

Optical Bench

Figure 4.11

4.11.2 Lateral Shift

If the eyepiece of micrometer is moved away from the biprism, and fringes shift either
left or right of bench then it is called lateral shift. Simply, we can say the shift of fringes

75



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

across the bench is called lateral shift. It indicates that the line joining the slit biprism and
eyepiece is not parallel to the optical bench.

To remove the lateral shift we put the eyepiece near the birprism and fix the vertical
crosswire on any fringe. Now micrometer eyepiece is moved some distance away from
biprism and direction of fringe shift is observed. Now biprism is moved in the direction
opposite to the fringe shift so that vertical crosswise again reached on same fringe. We repeat
this process again and again so that lateral shift removes compatibly.

4.11.3 Measurement of Wavelength of Light (A) by Fresnel Biprism

By using the Fresnel biprism we can determine the wavelength of given source of light.
For this purpose we use the given light source in experimental arrangement. We adjust the
apparatus for fringes are to be observed on the eyepiece. We measure the fringe width on
apparatus and apply the formula for fringe width as

= % or A= w. %

Fringe width w can be measured with the help of micrometer on eyepiece. D is the
distance between eyepiece and slit, and can be measured with the help of optical bend. The
2d is the distance between two virtual sources (S1 and Sz) and cannot be measured directly
with the help of any scale. We apply two methods for the measurement of distance 2d.

Magnification Method

To determine the distance 2d, we placed a convex lens of short focal length between biprism
and screen. We find out a position L1, of lens very near to biprism so that two sharp real
images are obtained in the field of view of eyepiece. In figure 4.12 the position of Lens L1 is
denoted by bold lines. In this position, we measure distance between two images di, with the
help of micrometer of eyepiece.

For this position the magnification is given by
v_d
u  2d
Now we move the lens some distance away from the biprism and obtain another position L>

so that two sharp images are seen again in the field of view. We again measure the distance
between two images, say d> with the help of micrometer of eyepiece.

In this case of position L, the magnification is given as

By using above two equations (10) and (11) we get:

_dy d,
" 2d2d
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or Zd = 4/ d1d2 ....... (422)

By putting the value of d; and d> we can determine the value of 2d.

A
e

> € V —_—
Figure 4.12
Refractive Index Method

In this method, we use the formula of angle of deviation for a prism. As shown in figure
4.13 the angle of deviation can be given as

s=@w-Da (4.23)

Where [ is refractive index and o is angle of prism as shown in figure 4.13. Again the angle
of deviation can be given as.

§=%ord=as ... (4.24)

Using equations (4.23) and (4.24), we obtain, 2d = 2a §

Figure 4.13
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or 2d=2a (u-)o L (4.25)

By using any of the above mentioned methods, we can determine the value of 2d and then
putting this value is equation 4.21, we can determine the wavelength of given light source.

4.12 INTERFERENCE WITH WHITE LIGHT

Now let us discuss what happen when the monochromatic light source in a Young’s
double slit experiment is replaced by a white light. Since the white light consists innumerable
wavelengths from red to violet, when white light is used, all wavelengths have their own
fringe pattern and finally superimposed on each other. Since the path different for all colours
at center point is same then the waves of all colours reach at mid point without any path
difference and we observed a white fringe at Center point. This central fringe is called zero
order fringes. After central fringe, we observed few coloured fringes with poor contrast.
These fringes are due to superposition of different fringes of different colours. Thus the
interference pattern is not clear but the superposition of many colours.

Self Assessment Questions

What is difference between coherence and non coherence light?
Why non-coherent sources do not produce interference pattern?
What are the conditions for sustainable interference?

Young’s double slit experiment, why the central fringe is bright?
How can we arrange coherence sources in practical?

What is meant by interference of light?

Explain the principle of superposition of light wave?

How is the shape of fringes formed by biprism?

N GaRWDPE

4.13 SOLVED EXAMPLES

Example 4.2: A monochromatic light of wave length 5100 A from a slit is incident on a
double slit. If the overall separation of 30 fringes on a screen 200 cm always is 3cm, find the
distance between slits.

Solution:  The fringe width w = >
Where w = fringe width, D = distance between slit and screen, 2d= distance between slits,

It is given that D =200 cm, @ = — = 0.1cm
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-8
Therefore, 20= DA /w = 22222 = 0,025 cm

Example 4.3: In Young’s double slit experiment the two slits are 0.05 mm apart and screen is
located 2m away from the slit. The third bright fringe from the slit is displaced 8.3 cm apart
from the central fringe. Determine the wavelength of incident light.

Solution: For the third bright fringe n=3

nDA xp.2d  8.3x1072x0.05x1073
Xn=— or A= =

=6.91 x 10" m=6910 A
2d nD 3xX2

Example 4.4: In Fresnel’s biprism experiment, a light of wavelength 6000 A falls on biprism.
The distance between source and screen is 1m and distance between source and birprism is
10 cm. The angle of biprism is 1°. If the fringe width is 0.03cm, find out the refractive index
of the material of biprism.

DA

Solution: The fringe width w = 2d

If the refractive index of material is i and angle of prism is a then

- __ DA
2d=2a(p-1) a. Then w = reou-Da

Here, D = 1m = a+b and a= 10 cm, b= 90cm, A= 6000x 108 cm, a = 1° = % radian and w
=0.03cm

DA 100x6000x10~8
Thus, p-1= = — =0.57
2a wa 2><10><0.03><ﬁ

W = 140.57 =1.57

Example 4.5: A light of wavelength 6900 A is incident on a biprism of refracting angle 1°

and refractive index 1.5. Interference fringes are observed on a screen 80 cm away from the

biprism. If the distance between source and the biprism is 20 cm, calculated the fringe width.
DA

Solution : The fringe width is given by W= and 2d =2( p-l)aax

Here A=6900 A =6900 x108 cm, a =1°= 1% redius, p = 1.5, D = a+b = (20+80) cm =100cm

DA _ 100X6900x1078

o= =
2a(p—1)a 2x20x(1.5—1)x%

=0.02 cm.

Example 4.6: A thin sheet of a transparent material of refractive index p =1.60 is placed in
the path of one of the interfering beam in a biprism experiment. The wave length of the light
used is 5890A. After placing the sheet, the central fringe shifted to a position originally
occupied by 12" bright fringe. Calculate the thickness of the sheet.
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Solution: On introducing a thin transparent sheet in the path of one interfering say, the
interfering system is shifted by a distance x and

Dd (L= 1t

X=—
2

In this case the fringe shifted by 12" bright fringe.

— s =19 2 vy = n 24
X=y12 =12 — [<yn=n_"]
-8
Therefore, 12 ba_ E(u — 1)t or t= 124 - 12X5890X107 _ 4 18 % 103cm
2d 2d (u—1) (1.6-1)
4.14 SUMMARY

1. When two light waves of same frequency and nearly some amplitude and having constant
phase difference traverse in a medium and cross each other, there is redistribution in the
intensity of light which is called interference of light.

2. If y1 = a1 sin ot and y»>= az sin (ot+3) are two waves, then resultant wave is given by
a,siné ]
ai+a,cosd

y = A sin (ot+@). Where A=\/a? + a3 + 2a,a,Cos§ and @ = tan™? [
3. For constructive interference or bright fringes, path difference A = nA where n=1, 2, 3...
4. For destructive interference or dark fringes, path difference A = (znz—_l) niA

For sustainable interference the two waves should be coherent. If two or more waves of
same frequency are in the same phase or have constant phase difference then there waves
are called coherent.

6. In interference pattern, the component of energy (intensity) 2a: a. is simply transfer from
minima to maxima point. The net intensity or average intensity remains constant or
conserved.

7. Interference is of two types, known as division of wave front and division of amplitude.

8. Division of wave front is a class of interference in which the light from original common
source is divided into two parts by employing mirror, prism, lens, biprism etc.

9. In case of division of amplitude, the incoming beam is divided into two or more parts by
partial reflection or refraction. Interference due to thin film, Newton’s rings, Michelson
interferometer are the examples of division of amplitude.

10. In Young’s double slit experiment fringe width is given by o = s—d. Sometimes symbol 3

is to be used for fringe width. Position of n™ bright fringe is given by yn=n 12)—2 . Similarly

. . -1DA : .
position of nth dark fringe y,, = an—lg—d , Where D distance between slit and screen and

2d is the separation between slits S; and S».
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11. On introducing a thin transparent sheet of thickness t in the path any interfering ray, the
entire fringe system will be displaced by a distance x given as x = %(u-l) t.
Where p is refractive index of material of sheet, 2d is distance between two slits.

12. In Fresnel’s biprism the fringe width is given by o = 2—2 and 2d = 2a (u-1)a where a is

distance between source and biprism and a is the angle of biprism and p is refractive
index of material of biprism.

4.15 GLOSSARY

Interference: Redistribution of energy due to superposition of waves.
Interference fringes: Pattern of dark and bright bands due to interference.

Superposition: Combining the displacements of two or more waves to produce a resultant
displacement.

Coherence: Property of two or more waves with equal frequency and constant phase
difference.

Coherent light: Light in which all wave trains have same frequency and its crests and
troughs aligned in same directions which have constant phase difference.

Biprism: Combination of two prisms with their bases in contact.

Slit: A narrow opening for light.
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4.18 TERMINAL QUESTION

4.18.1 Short Answer Type Questions

1
2
3
4.
5.
6
7
4,

1.

. What is interference of light? Give some example of interference of light.
. What are the necessary conditions for interference of light?
. What are coherent sources of light?

Discuss why two independent sources of some frequency are not coherent?
State the principle of superposition of waves.
Explain the optical path of light in a medium.

. What is the difference between ordinary prism and biprism? How can we distinguish?

18.2 Long Answer Type Questions

What is interference of light? Obtain the condition for constructive and distractive
interference.

What is Young’s double slit experiment? Find out the position of bright fringes, dark
fringes and fringe width.

Derive an expression for the resultant intensity of two coherent beam of light which are
superimposed.

Explain the construction and working of biprism.

Calculate the displacement of fringe system when a transparent thin film is introduced in
the path of an interfering beam in the double slit experiment.

4.18.3 Numerical Questions

1.

2.

A biprism is placed 5 cm from the slit and 75cm from the screen. The biprism is
illuminated by sodium light of wavelength 5890A. The fringe width is observed 424 x
1072 cm. Calculate the distance between two coherent sources. [Ans. 0.5mm]

A biprism form interference fringes with monochromatic light of wave length 5450A. On
introducing a thin glass plate of refractive index 1.5 in the path of one of the interfering
beam, the central fringe shifts to the position previously occupied by 6" bright fringe.
Find out the thickness of the plate.

The inclined faces of a biprism of refractive index 1.5 make angle 2° with base. A slit
illuminated by a monochromatic light is placed at a distance of 10cm from the biprism. If
the distance between two dark fringes observed at a distance of 1cm from the biprism is
0.18 mm, find out the wavelength of light used.
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4. The inclined faces of a glass biprism of refractive index 1.5 makes angle of 1° width base
of the prism. The distance between slit and biprism is 0.1m. The biprism is illuminated by
a light of wavelength 5900A and fringes are observed at a distance 1m from the biprism.
find out the fringe width.

4.18.4 Objective Type Questions
1. Phase difference @ and path difference 6 are related by ®=

(@ Zs (b) =5
(© =& d) Zs

2 . The condition for constructive interference is path difference should be equal to

(@) odd integral multiple of wavelength

(b) integral multiple of wavelength

(c) odd integral multiple of half wavelength
(d) Integral multiple of half wavelength

3. The ratio of intensities of two waves that produce interference pattern is 16:1 then the ratio
of maximum and minimum intensities in the pattern is

(a) 25:9 (b) 9:25 ©) 14 () 4:1

4. Correlation between the a point in the field and the same point in the field at later time is
known as

(a) Temporal coherence (b) coherence
(c) Spatial coherence (d) none of these
5. The overlapping of waves into the regions of the geometrical shadow is
(a) Dispersion (b) polarization
(c) diffraction (d) interference
6. Interference occurs due to
(a) Wave nature of light (b) particle nature of light
(c) bothaandb (d) none of these

7. Two interfering beams have their amplitudes ratio 2:1 then the intensity ratio of bright and
dark fringes is

(@21 (b) 1:2 (c)9:1 (d) 4:1
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8. If a1 and az are the amplitudes of light coming from two slits in Young’s double slit

experiment then the minimum intensity of interference fringe is
(@) a1+ ap (b) a1 - a2 (c) (a1 + az)?
9. Young’s double slit experiment is an example of division of

(a) amplitude (b) Wavelength (c) wave front

10. In Young’s double slit experiment, the fringe width w is given by

(2) 2 (b) 2 () %

4.18.5 Answers of Objective Type Questions
1. (@), 2 (b), 3(), 4(), 5(d), 6(), 7(c), 8(c), 9(c),
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(d) (a1 - a2)?
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5.1. INTRODUCTION

In optics any transparent material in a shape of thin sheet of order 1um to 10 pum is
simply called thin film. The material may be glass, water, air, mica and any other material of
different refractive index. When a thin film is illuminated by a light, some part of incident
light get refracted from the upper surface of film and some part of get transmitted into the
film. Some part of transmitted light gets reflected again from the lower surface of thin film.
Now the light reflected from upper and lower surface of thin may course interference.

In case of thin film, the maximum portion of incident light is transmitted and a very few
part of light reflected form the thin film. Therefore the intensity of reflected light is
significantly small. For example if we consider a light beam is reflected from a glass plate of
refractive index 1.5 then the reflection coefficient is given by

2 2
_ (Hai-p2\" _ (15-1\" _ (0.5} _
r= (pl_pz) o (1.5+1) o (2.5) = 0.04
Thus only 4% of incident light is reflected by the upper surface of glass film and 96%
of light is transmitted into the glass plate. Similarly nearly 4% of light is again reflected
through the lower surface of glass plate. If we consider the interference due to the light

reflected from upper and lower surface of glass plate, the intensity of light will be
significantly small.

When white light is incident of thin film, interference pattern is appeared as colourful
bands since white light consists different wavelengths, different wavelengths produce
interference bands of different colours and thicknesses. Interference in thin films also occurs
in nature. Thin wings of many insects and butterflies are layer of thin films. There thin films
are responsible for structural colourization which produce different colours by
microscopically structured surface, and suitable enough for interference of light.

5.2. OBJECTIVE

After reading this unit you will be able to understand
e Thin film
e Interference in thin film
e Interference in wedge shaped film
o Classification of fringes and its shapes
e Newton’s rings experiments and its applications

5.3. INTERFERENCE DUE TO PLANE PARALLEL THIN FILM

A plane parallel thin film is transparent film of uniform thickness with two parallel
reflecting surfaces. The example is a thin glass film. Light wave generally suffers multiple
reflections and refractions at the two surfaces. There are two cases of interference as given
below
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5.3.1 Interference in Case of Reflected Light

Let us consider a thin film of thickness t as shown in figure 5.1. A monochromatic light
ray SA is incident on a thin film with an angle of incident i as shown in figure. The film is
made of a transparent material (say glass) of refractive index p. Some part of light ray
reflected at point A along the direction AB and some part of light transmitted into the film
along AC direction. The ray AC makes an angle of refraction r at point A, and the angle r
becomes angle of incident ACN at point C. Some part of light of ray AC again reflected in
the direction CD which comes out from the film along the direction DE. The light rays AB
and DE come together and they can produced interference pattern on superposition.

B
1 E
S
: L 2 air
aK | = s =
Fig 5.1
The path difference A between rays AB and DE is given as
A = (AC+DC) in film- AL in air.
Since optical path in air = u x optical path in a medium
Therefore, path difference A can be given as
A= (AC+DC) - AL
From figure 5.1, we have, cos r = ﬁ or AC :COZ - and DC= Cotsr
Again, AL =AD sini=(AN+ND)sini
=(ttanr+ttanr)sini=2ttanrSini
A= % — 2t.tanr sini = % — 2ut (sin?r)

— t — cin2s) =
= ZH—COH (1— sin®r) = 2utcos r

According to Stock’s treatment, if a wave is reflected form a denser medium it involves a
path difference of A/2 or phase difference or «. Therefore, net path difference

A=2utCosr — % ....... (5.1)

Condition of Maxima: For maxima or bright fringes the path difference should be ni
where n is integer number givenasn=0,1,2,3 ........

A= 2utCosr—§:n/1
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2n+1

or 2ut Cos r = (. .

m»e (5.2)
. . . . 2n+1
Thus maxima occur when optical path difference is (T )A.

Condition for minima: Minima occur when the path difference is order of (? )A. Then

A= 2utCosr—%:(%)/1

or 2utCosr=ndA L (5.3)

5.3.2 Interference in Case of Refracted Light

A light ray SA is incident at point A on a film of refractive index p as shown in figure
5.2. Some part of light ray reflected at point A and some part of light transmitted into the film
along AB. In case of interference due to refracted light we are not interested in the reflected
light. At point B some part of light is again reflected along direction BC, then again reflected
at point C and finally refracted at point D and comes out form the medium along DF
direction. Now the light rays coming along BE and DF are coherent and can produce
interference pattern in the region of superposition.

S

Figure 5.2
In this case path difference A is given as
A =(BC+ CD) in film — BN in air
As Calculated in case of reflection, the path difference comes out
A=2ut Cos r

In this case there is no correction according to Stoke’s treatment as no wave from rarer
medium is reflected back to denser medium. Therefore this is net path difference.

For maxima or bright fringes, A= 2ut Cos r = n\

2n—1
2

For minima or dark fringes, A=2ut Cosr = ( )A
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5.4 INTERFERENCE IN A WEDGE SHAPED FILM

In a wedge shape film, the thickness of the film at one end is zero and it increases
consistently towards another end. A glass wedge shaped film is shown in figure 5.3. Similarly
a wedge shaped air film can be formed by using two glass films touch at one end and
separated by a thin wire at another end.

-+ Air
<

Figure 5.3

e |

.

The angle made by two surfaced at touching end of wedge is called angle of wedge as
shown © in figure 5.3. The angle is very small in order of less than 1°. Path difference
between two reflected rays BE and DF is given by

A = (BC+CD) in film — BE in air
=u (BC+CD) - BE

=u (BC+CI) — BE -+ CD=_ClI
=p(BN+ND-BE . (5.4)
In right triangle A BED, sini = %
Similarly in A BND, sinr = %

Refractive index p can be given as

_ Sini _ BE

" Sinr BN or BE:'UBN
Putting this value in equation (5.4) we get
A= (BN+NI)-uBN=pNI ... (5.5)
Now in A DNI, cos(r+6) = %
or cos(r+6):1:—2 = NI=2¢Cos (r + O)

Putting this value in equation (5.5)
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Path difference, A=u 2tCos(r+0) .. (5.6)

Since the light is reflecting from a denser medium therefore according to stokes treatment a
path change of A/2 occurs. Now net path difference

A=2tCos(r+O)-N2 (5.7)

For bright fringes the path difference should be in order of A = nA where n is an integer (n= 0,
1,2......).

2ut Cos (r + ©) —L/2=nl

2n+1
2

or 2ut Cos (r + 6) =( ) A where n=0,1,2.....

2n—1

or 2ut Cos (r + 6) = ( .

YA (5.8)

Where,n=1, 2, 3.....

2n—-1

For dark fringes path difference should be in order of A = ( . ) A
2ut Cos (r + 6) = 1/2= (*=)2
or 2utCos (r+60) =nA L. (5.9)

Since the focus of points of constant thickness is straight line, therefore the fringes are
straight lined in shape.

According to equation (5.8), for bright fringes
(en-DA 2 31

- 4 pcos(r+0) o 4 pcos(r+0) - 4 pcos(r+0) T e e (5'10)
If xn is the distance of fringes from the edge (position of n™" fringe) then,
tanf = —
Xn
_ (2n-1)A
or Xn = eesci®ane e (5.11)
_ 2 _ 31
Thus, X1 = 4pcos(r+0)tan® ' X2 = 4pcos(r+@)tan0 T
Fringe width @ = Xn+1 — Xn
24 Yy (5.12)

(D =
4 nCos(r+0)tan 6

If © is very small then tan ©=~ ©, and cos (r + ©) = r. Further if we consider normal
incidence then r= 0°then cos 0 = 1 and equation (5.12) becomes

A

o= m ....... (5.13)

5.4.1 Properties of Fringes Due to Wedge Shaped Film

1. As the locus of the points of constant thickness is a straight line therefore the fringes are
straight lime and parallel.
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2. The fringe width o is constant for a particular wave length or colour, therefore the fringes
are of equal thickness and equidistant.

3. Fringes are localized

5.4.2. Applications of Wedge Shaped Film

By observing the interference pattern, the thickness of a spacer or wire which is placed
between two films at one end can be determined. Suppose t is the thickness of a wire or
spaces and | is length of wedge shaped film as shown in figure 5.4 then we can calculate the
thickness of spacer as

= t
e
L
Figure 5.4
tan© = 0 = Tt
. . . . A A
If we know the fringe width o then by using relation ® = 0 =we get,
HT
__A
- 2pw

Example 5.1: A white light is normally incident on a soap bobble film of thickness 0.40 um
and refractive index 1.4. Which are the wavelengths may cause bright fringes.

Solution: For bright fringes, due to thin films, the condition is

2ut Cos r = (2n+1) % , where n=0,1,2,3.....

__4utcosr
(2n+1)

Herer=0,u=1.4and t=0.40 um.

or

_ 4X1.4x0.40x1076 _ 2.24 x107°
(2n+1) (2n+1)

For n=0; 1=224x10"°m
n=1, 1=074x10"°m
n=2. 21=044x10"°m

Example 5.2: White light is incident on an oil film of thickness 0.01mm and reflected at an
angle 45° to vertical. The refractive index of oil is 1.4 and refracted light falls on the slit of a
spectrometer, calculate the number of dark bands seen between wavelengths 4000A and
5000A.

Solution: For the dark band, formed by interference, due to thin film
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2ut Cos r=nA
In case of wave length A1 =4000A and p=1.4 , t= 0.01 mm
_2utCosr
ni= —11
Now W= S.ini:Sl_nr:SmL
Sinr u

Cosr=vI—SinZr= /1 _smiro_ i1 _-086
N 2X(1.4)2

_ 2X1.4X0.001X.86 _

Thus n=——m—m—=60
4000x 10~8

Thus corresponding to A1=4000A wavelength light we observe 60" order band

Similarly corresponding to A2 wavelength

2ut Cos v 2x1.4X.001X0.86
na = = =48
Ay 5000x10~8

Thus corresponding to wavelength A2 =5000A light we observe 48" order band.
Thus the number of dark bands between A2 and A1 = Ny — n2 =60-48 =12.

Example 5.3: A parallel beam of light A = 5890 A is incident on a thin glass film and the
angle of refraction into the film is 60°. Calculate the smallest thickness of the film which
appear dark on reflection.

Solution: The film appears dark if the destructive interference takes place in reflection.
Path difference in dark bands

A =2ut Cos r=n\
For smallest thickness n=01 then

_ A _5890x10710

= = =3927 x 1071%n = 3927 A
2uCosr 2x1.5%0.5

Example 5.4: A monochromatic light of wavelength 5890 A is incident normally on glass
plates enclosing a wedge shaped air film. The two plates touch at one end and are separated at
15cm apart from that end by a wire of 0.05 mm diameter. Calculate the fringe width of bright
fringes.

Solution: In case of wedge shaped film the fringe width is given by

15¢m
Figure 5.5
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_ A
216
Given % = 5890 A, =1, ©= tan © = %;0_1 =33x 107
5890 x10~10

T X 10x33x10-% 892.4 x 10~%m =0.89 mm

Example 5.5: Sodium light of wavelength A = 5890A is incident on a wedge shaped air film.
When viewed normally 10 fringes are observed in a distance of 1cm. Calculate the angle of
the wedge.

Solution: The fringe width w for wedge shaped film is given us
2

Y28
In this case, 10 fringes are observed in a distance of 1 cm. Therefore, fringe width
W= L- 0.1cm
10

A 5890 x10~8
Now O=—=——
2pw 2x2x0.1

=294 x 10~* radians

180X60 .
minute

=294 x 10~* x % degree =3.94 x 106 x

=1.01 minute

Example 5.6: A Wedge shaped film is form by using two glass plates of length 10cm touch
at one end and separate at another end by introducing a thin foil of thickness 0.02mm. If the
sodium light of wavelength 5890A is indent normally on it. Find the separation between two
consecutive fringes.

Solution: The separation between two consecutive fringes is the same as the fringe width.

t _ 002

w=—"— whereO=tanO=-=— =2x10"*
210 x 100
Given A =5890A, p = 1 then
-8
= 589();10_4 cm=0.14 cm
2x1x2X10

5.5 NECESSITY OF EXTENDED SOURCE FOR
INTERFERENCE DUE TO THIN FILMS

If we use narrow source of light in case of interference due to thin film the light rays are
diverged as shown in figure 5.6 (a) and we can view a limited portion of interference pattern.
On the other hand, if we use an extended or broad source of light a large number of rays are
available for the production of interference pattern as shown in figure 5.6 (b). A large number
of rays are incident on film at different angles, and a large area of film can be viewed by our

93



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

eye at the field of view. Therefore, extended source of light is beneficial to observe the good
interference pattern in thin film.

(a)

(b)
Figure 5.6

5.6 COLOURS OF THIN FILMS

When light coming from extended source is reflected by thin film of oil, mica, soap or
coating etc., different colours are shown due to interference of light. For interference, the
optical path difference is A = 2ut Cos r = (2n+1) 1/2 for bright fringes. If thickness t is
constant then for different wavelengths, angle of refraction r should be different. Therefore
different colours are observed at different angle of incident. Sometime different colours are
over lopped on each other’s and a mixed colour may be observed.

5.7 CLASSIFICATION OF FRINGES

As we know, in case of thin films, the path difference A is given as

2n+1
2

2utCosr = (—)4

For a monochromatic light, p and 4 remain constant. Now the path difference for constructive
interference arises due to variation in thickness t and angle of incident (inclination) r. On the
basis of t and r the fringes are two types.
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5.7.1 Fringes of Equal Thickness

If the thickness of film is varying and the light is coming at same angle of incident then
the fringes are formed due to variation in thickness. For example in case of wedge shaped
film where thickness is varying, the locus of points of constant thickness is a straight line
corresponding to which fringes are formed. Such fringes are called fringes of equal thickness.
Newton’s rings are example of such type of fringes.

5.7.2 Fringes of Equal Inclination

If the thickness of film is constant then path difference for constrictive interference is
only due to variation in angle of inclination r. In this case we consider a locus of points on
film at which the angle of inclination of light is equal. Corresponding to such points of equal
inclination we observed fringes which are called fringes of equal inclination. Since the light
rays of equal inclinations pass through the plate is a parallel beam of light, and hence meet at
infinity but by using telescope focused on such rays the fringes can be observed. In such case
fringes are called the fringes localized at infinity. Such fringes are also called Haidinger’s
fringes. The fringes formed in Michelson interferometer is an example of fringes of equal
inclination.

5.8 NEWTON’S RINGS

Newton’s rings in a special case of wedge shaped film in which an air film is formed
between a glass plate and a convex surface of lens. The thickness of air film is zero at the
center and increases gradually towards the outside.

When a plano-convex lens of large focal length is placed on a plane glass plate, a thin
air film is formed between the lower surface of plano-convex lens and upper surface of glass
plate. When a monochromatic light falls on this film the light reflected from upper and lower
surfaces of air film, and after interference of these rays, we get an inner dark spot surrounded
by alternate bright and dark rings called Newton’s rings. These rings are first observed by
Newton and hence called Newton’s rings.

5.8.1 Experimental Arrangement for Reflected Light

The experimental arrangement for Newton’s rings experiment is shown in Figure 5.7. A
beam of light from a monochromatic source S is made parallel by using a convex lens L. The
parallel beam of light falls on a partially polished glass plate inclined at an angle of 45°. The
light falls on glass plate is partially reflected and partially transmitted. The reflected light
normally falls on the plano-convex lens placed on plane glass plate.
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This light reflected from upper and lower surface of the air film form between plane

glass plate and plno-convex lens. These rays interfere and rings are observed in the field of

view. The figure 5.8 shows the reflection of light form upper and lower surfaces of air film
which are responsible for interference.

5.8.2 Formation of Bright and Dark Rings

OF-t-------cmmmmmmme oo

As we know the interference occurs due to light reflected from upper and lower surface
of air film form between glass plate and plano-convex lens. The air film can be considered as
a special case of wedge shaped film. In this case, angle wedge is the angle made between the
plan glass plate and tangent from line of contact to curved surface of plano convex lens as
shown in figure. 5.8.

The path difference between two interfering rays reflected by air film
A=2utCos@+€) =3 ... (5.14)

where  is the refractive index of the air film, t is the thickness of air film at the point of
reflection (say point P) r is angle of refraction and © is angle of wedge.

In this case the light normally falls on the plane convex lens for the angle of refraction r = 0.

Further, as we use a lens of large focal length the angle of wedge © is very small. So
Cos (r+0) = Cos © = Cos 0° =1 and thus the path difference

asope-2 L (5.15)
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At point of contact t = 0, therefore, A = >

Which is the condition of minima. Hence at centre or at point of contact there is a dark spot.
Condition of Bright Rings or Maxima

The condition for bright rings is path difference A = n A therefore

A=2ut- Z=nAwheren=0,1,2,3........
or 2ut = (Zn;l) A

or out = (2"2—’1) A (5.16)

Wheren=1,2,3.........

Condition of Dark Ring or Minima

In case of dark rings, the path difference, A = (an_l) A

Wheren=1,2,3.........
Therefore A=2nt- % = (an_l) A
or 2ut=nr2 (5.17)

Thus corresponding to n = 1, 2, 3..... we observe first, second third.....etc. bright or dark
rings. In Newton’s rings experiment the locus of points of constant thickness is a circle
therefore the fringes are circular rings.

5.8.3 Diameter of Bright and Dark Rings

In figure 5.9 the plano-convex lens BOPF is place on glass plate G and O is the point of
contact. Suppose, C is the centre of the sphere OBFP from which the plano-convex lens is
constructed. P is point on the air film at which the thickness of air film is t. At point P, the
light is incident and reflected form the upper and lower surface of air film, and rings are
formed. AP is the radius of ring passes through point P. According to property of circle

F
G
Rt
B A p/
~_ [ =7
[ @ G
Figure 5.9
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AP xAB = AOx AL
r2=t x (2R—t) -~ AL=OL-OA
Where R is the radius of curvature of lens.
= 2Rt — t?
Since R is very large and t is very small, we can write

2
— 2Rt or =
2R

Substituting this value of t in equation (5.16), we get,
2n-1
g ()

or r? = ( )AR
2 H

This expression contains n, i.e., r is a function of n. Thus it is better to use ry in place of r. If
Dn is the diameter of nth bright ring then we have r = r, = Dn/ 2 and can write

Dnz 3 (Zn 1)AR
a4
or D,? = w ....... (5.18)

Wheren=1,2,3....... Similarly for dark rings

2
2ut = niA  or Zur— nl  or r2=%.
If D,, is diameter of nth dark ring then
Dn® _ 1R
4
2 _ 4niAR
or D, =—— L. (5.19)

1l
Wheren=1,2,3......

Figure 5.10
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The alternate bright and dark rings are formed as shown in figure 5.10. The spacing between
two consecutive rings can be given as

Tee1— Tt =(¥n+1 — vn)AR  (in case of air film p =1)

Spacing between 1% and 2" rings = (v2 — V1) AR = 0.4142 AR

Spacing between 2" and 3" rings = (v3 —+v2) AR =0.3178 AR

Spacing between 4" and 3" rings = (V4 —+/3) AR =0.21 AR

Thus it is clear that the spacing between successive rings decreases with increase in order.

5.8.4 Determination of Wave Length of a Monochromatic Light Source

In Newton’s experiment if we use a light source of unknown wave length (say sodium
lamp) then we can determine the wavelength of light source by measuring the diameters of
Newton’s ring.

If D is diameter of nth dark ring formed due to air film then
D2 = 4nAR
Where n is any integer number.
Similarly if D+p) is the diameter of (n+p)™ ring
D721+p = pu(n+p)AR
Using this equation, we can write
DZ,, - DZ =4 (n+p) AR- 4nAR=4 P AR

2 _ 2
or p=2me—lao (5.20)
4pR

Where p is any integer number and R is radius of curvature of plano-convex lens.

5.8.5. Determination of Refractive Index of a Liquid by Newton’s Rings
Experiment

In Newton’s rings experiment the diameter of n'" dark ring in case air film is
D2 = 4nAR (- pu=1)
The diameter of (n+p)™" ring
D2y+p = 4(n+p)AR
If a liquid of refractive index L is filled between the plane glass plate and convex lens then

_ 4nAR

D%, =

4(n+p)AR
" and D2n+p = %

Thus we can write

[0y DRlair _ apar _

iid | ADAR T
[DZ+p— DA)liquid pT
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[D}+p— DR]air

- [D}4p— DAliquid

or

Example 5.7: In Newton’s rings experiment if the radius of curvature of plano-convex lens
in 200 cm and wavelength of the light used is 5890 A, calculate the diameter of 10" bright
ring.

Solution: The diameter of n™ bright ring is given as (u=1 for air film) is given by
Dn?=2(2n-1) AR

or D;o% =2 x (20-1) x 5890 x 108 x 200 cm? = 6.69mm

The diameter of 10" bright ring is 6.69 mm.

Example 5.8: In a Newton’s ring experiment the diameter of 15" dark ring and 5" dark ring
are 0.59 cm and 0.33cm respectively. If the radius of curvature of the convex lens is 100cm
calculate the wave length of light used.

Solution: The wave length of unknown light source is Newton’s rings experiment is given as

_ [D121+p_ Drzl]
- 4pR
Here Dn+p = D15 =0.59 cm, Dn = Ds = 0.33cm, p = 10, R = 100cm

_(0.59)2-(0.33)2
4X10%x100

A

=5980 A

Example 5.9: Newton’s rings are formed by using a monochromatic light of 6000A. When a
liquid is introduced between the convex lens and plane glass plate the diameter of 6" bright
ring becomes 3.1mm. If the radius of curvature of lens is 1mt, calculate the refractive index
of liquid.

Solution: Given that, n=6, Dy = 3.1mm = 3.1 x10°m, A= 6000A =6x107"m, R =1m

_2(2n-1)AR _ 2x11x6x1077x1

D2 (3.1x1073)2 =1.37

Example 5.10: In Newton’s ring experiment two light sources of wavelength 6000A and
4500A are used to form rings. It is observed that n" dark ring due to 6000A light coinside
with (n+1)"" dark ring due to 4500A. If the radius of curvature of the plano convex lens is
100cm, calculate the diameter of n'" dark ring due to A1 and A».

Solution: For n'" dark ring due to A1, D% =4n MR
Similarly for (n+1)" dark ring due to A2, D%w1 =4 (n+1) A2R

Since n'" dark ring due to A1 co-inside with (n+1)" dark ring due to A therefore.

Az

4nMR=4(n+t1) 2R or n\u=(n+tl)A2 or n-n2=2%X Oor n= T2
1—42

Here 1= 6000A, A2 =4500A

_ 4500
6000—4500
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Now the diameter of n=3" dark ring due to A1
Ds? = 4nMR = 4x3x6000x10%%1 m
Or D3 =2.68 mm.
Similarly diameter of n=3" dark ring due to A2
Ds’= 4n\2R = 4x3x4500 x101%%1 m
or D3 =2.32 mm.

Same relation can also be obtained for bright rings.

5.8.6 Newton’s Rings in Case of Transmitted Light

The Newton’s rings can also be formed in case of interference due to transmitted light
as shown in figure 5.11. In this case the transmitted rays 1 and 2 interfere, and we can
observe the rings in the field of view. In this case the net path difference between the rays is
A= 2nt. since we will not consider the path difference arises due to reflection from denser
medium. Therefore this is net path difference.

s R

M

>.:‘3

S~

T T,
Figure 5.11
The condition for maxima (bright rings) is given by
2ut=nk
2
And we know that in case of reflected light, t = ;—R
r2_
2 R ni

n

Now if Dy, is the diameter of nth bright ring then, D? = r and thus

u

In case of air film, Dn? = 4niR
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Figure 5.12
Similarly in case of minima (dark ring) the diameter nth dark ring is given by
Dn?=2(2n-1) AR

We can see that, this is an opposite case of reflected light. In case at point of contact the path
difference is zero which is condition corresponding to bright fringe thus the centre point is
bright. The rings system in this case is shown in figure 5.12.

5.9 SUMMARY

1. A thin film is any transparent material in a shape of thin sheet of order 1um to10 pum.
When a beam of light is incident on this sheet the interference may take place after
reflection or transmission of light. In case of interference due to reflected light, the path
difference

A=2ut Cos r—%
The condition of bright fringes (maxima)

2ut Cosr = (2n2+1)l (where n=10,1,2,3.....)
Similarly condition of dark fringes (minima) is
2ut Cos r =nA (where n=0,1,2,3....)

2. In case of interference due to transmitted light, the path difference become A=2ut Cosr
The condition of bright fringe (maxima)
2ut Cos r =nk
Similarly the condition of dark fringes (minima)

2ut Cosr = (2n2+1)/1
3. In case of wedge shaped film the net path difference is given as
A=2pt Cos (r+6) - 2
where O is angle of wedge and other symbols have their usual meaning. For bright fringes

2ut Cos (r +©) = (*29)4  (wheren=1,2,3.....)

For dark fringes
2ut Cos (r + ©) =nk (where n=1, 2, 3.....)
If Xn is the distance of n™ fringe from the edge then

t
tan © = —

Xn
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X0 = (2n-1)2
n- 4u Cos (r+6)tan©
A 31
X1 , e, .

= 4y Cos (r+6)tan 6 2= 4pCos (r+6)tano '’
Fringe width O= Xn+1 = Xn
For normal incident r = 0° and for small value of © (tan © =~ © )

A

_Zue

4. In case of interference due to thin film the extended source of light is more beneficial. In
extended source of light, a large number of rays are available for production of
interference pattern and larger area of the film can be seen by our eye in the field of view.

5. On the basis of variation in two parameters t and r, the fringes are two types ray fringes of
equal thickness and fringes of equal inclination.

In case of fringes of equal thickness, the thickness of film is varying and light coming at
same angle of incident then fringes are formed due to variation is thickness. The fringes
are formed on the locus of points of equal thickness. Examples are thin films and
Newton’s rings.

On the other hand, in case of inclination, the thickness becomes constant. Now the fringes
are formed at the locus of points of constant. Such fringes are called fringes of equal
inclinations. Examples are fringes formed in Michelson interferometer.

6. When a plano-convex lens of large focal length is place on a plane glass plate, an air film
is formed between the lens and glass plate. When a beam of light normally incident on
this film the interference takes place between the reflected rays and we observe alternate
dark and bright rings and called Newton’s rings.

7. In Newton’s rings the condition for bright rings is given by
2n-1

2ut = (T)X (where n=1, 2, 3....)
Similarly condition for dark rings

2ut =nh (where n=1, 2, 3....)
The diameter of n™" bright ring is given by

D2, = (2(2n—u1)/1 R)
Similarly if Dy is diameter of n dark ring then

_4n AR

vl
8. By using Newton’s rings experiment, the wave length of a unknown light source can be

determined as

Dn?

_ D121+p_ DrZL
4pR
Where Dn+p is diameter of (n+p)™ bright or dark ring and Dy, is the diameter of nth bright
or dark ring.
9. Newton’s rings may also be observed in case of transmitted light. In this case if Dn is the

diameter of n' dark ring then it can be given as

D2 == (2(2n;1)/1 R)
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Similarly if Dy is diameter of n" bright ring then
D.2 = 4n AR
! i

5.10 GLOSSARY

Thin film: A thin sheet of thickness of the order of 1-10 um.

Wedge shaped film: A film of unequal thickness which gradually changes.
Newton’s rings: Circular bright and dark fringes formed in Newton’s experiment.
Narrow source: Point source

Extended source: A broader source
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5.13. TERMINAL QUESTION

Short Answer Type Questions

1. Explain why different colours are exhibited by a thin film when illuminated in white
light.

2. With the help of diagram explain why an extended source of light is needed to observe
the interference in thin film.

3. Discuss the phase change in reflection of light from a denser medium.

4. Explain the interference in a thin film of uniform thickness.

5. Calculate the path difference between the light ray reflected from the upper and lower
surface of a thin film.

6. Find out the condition of maxima and minima in reflected light in case of thin film.

7. Why a thick film does not show colours when white light is incident on it.

8. What are Newton’s rings?

9. Obtain the path difference between the reflected rays in Newton’s rings experiment.

10. Find out the condition for bright and dark rings in Newton’s ring experiment.
11. Explain why Newton’s rings are circular?
12. Explain the difference in Newton’s rings formed in case of reflected and refracted light.

104


https://en.wikipidia.org/

PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

Long Answer Type Question

1. Discuss the formation of bright and dark fringes formed by a thin film. Explain why
different colours are exhibited by thin film in white light.

2. Explain the formation of interference fringes in wedge shaped film. Obtain the condition
for bright and dark fringes, and fringe width.

3. What are Newton’s rings? Draw a ray diagram for Newton’s rings experiment. Find out
the diameter of bright and dark rings.

4. What are Newton’s rings? Derive the expression for diameter of bright and dark rings.

5. Give the theory of Newton’s rings and describe how the wave length of a unknown light
source can be determine with the help of these rings.

6. Describe the interference fringes observed when a thin wedge shaped film is observed by
reflected light. Calculate the separation between two consecutive bright and dark fringes.

7. Show that in Newton’s rings experiment, the diameter of dark rings are proportioned to
root of natural numbers.

8. Explain the formation of Newton’s ring. How the refractive index of a given liquid can be
determined with the help of Newton’s rings.

9. Describe the fringes of equal thickness and fringes of equal inclination.

10. What are Haidiger’s and Newton’s fringes?

Numerical Type Questions

1. A beam of monochromatic light of wavelength 5890A is incident on a thin glass plate of
refractive index 1.50 with the angle of refraction in the glass plate is 60°. Calculate the
smallest thickness of the plate which will make it appears dark by reflection.

2. Light of wave length 50004 is incident on a soap film of refractive index 1.33 at an angle
60°. When the reflected light is observed, a dark band is seen. If the thickness of the film is
1um, calculate the order of the fringe dark band.

3. Calculate the thickness of a wedge shaped film at a point where the 4" bright fringe is
observed. The experiment is performed with a light source of wavelength 5890A.

4, A wedge shaped film of angle 6x10° degree is illuminated normally with a
monochromatic light source. If the reparation between two consecutive fringes is 3.00mm,
find out the wave length of light source used.

5. In a Newton’s rings experiment the diameter of 5™ and 12" dark rings are 0.42 cm and
0.726cm. The radius of curvature of plano convex lens is 2.00m. Calculate the wavelength of
light source.

6. In Newton’s ring experiment a light source of wavelength 5890A is used. If the radius of
plano-convex lens is 2m and water is filled between the glass plate and plano convex lens,
calculate the diameter of 5" dark ring.

7. A wedge shaped film is formed with air between two glass plates, which touch each other
at one point and separated by a wire of diameter 0.05 mm at a distance of 15cm. If a light of
wave length 6000A is used, calculate the fringe width.
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8. In Newton’s rings experiment the diameter of 4" bright ring is 2.52cm. If a liquid of
unknown refractive index is filled in place of air between lens and plane glass plate, the
diameter becomes 2.21cm. Find out the refractive index of liquid.

9. Show that in Newton’s rings experiment, the difference of square of diameters of two
consecutive rings remains constant.

10. Newton’s rings are formed with the help of a light source of wavelength 5890A. If the
diameter of 10" dark ring is 0.5cm, calculate the radius of curvature of plano convex lens.

11. A thin equiconvex lens of focal length 4m and refractive index of 1.5 is place on a plane
glass plate. A light of wave length 5890A falls normally on it. What will the diameter of 10™
dark ring?

Objective Type Question

1. If the thickness of the parallel film increases, the path difference
(@) increases (b) decreases
(c) remains same (d) none of these

2. When a light wave is reflected from a surface of an optically denser medium, then the
phase difference involved is

(a) /4 (bym/2 ) n (d) 2n

3. When a light wave is reflected from a surface of an optically denser medium, then the path
difference involved is

(a) M4 (b)A/2 (c) A ()22

4. In case of the thin film, the condition for constructive interference in reflected light, the
path difference should be equal to

(@) 2utCosr — % (b) % (c) 2ut Cos r + % (d) A

5. In Newton’s rings experiment the diameter of nth bright ring is given by
() D, = 22T () D, = E=2E
© Dy’ = =2 (@) D = 22

6. The lens used in Newton’s rings experiment, which is placed on a plane glass plate to trap
air film is

(a) concave (b) plano convex

(c) plano concave (d) none of these
7. In Newton’s rings experiment, the diameter of bright rings is proportional to

(a) odd natural numbers (b) natural numbers

(c) even natural numbers (d) square root of odd natural numbers
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Answer of Numerical Type Question
1.0.39um, 2. 4" 3. 1.02 um, 4. 6.28x 10°cm, 5. 4.87x105cm 7. 0.9 mm, 8. 1.3, 10. 1.06 m.

11. Hint: The focal length is given as
1 1 1
F=W-DGE - )

Here,u=15,Ri =Rand R, = —R= R =4m

D%,7 4n\R
Therefore, D1o = V4 X 10 X 5890 x 10-10 X 4 = 9.70 mm

Answer of objective Type Question
1.(@), 2.(), 3.(), 4.() 5@, 6.(h), 7.(@)
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6.1 INTRODUCTION

In first unit of interference, we understood the basic principle of interference, condition
required for interference and experiment like Young double slit experiment and biprism
experiment which show interference. In second unit of interference, we understood different
types of thin films like wedge shaped or air films which cause interference under certain
conditions. Further, we understood the fringes of equal thickness and fringes of equal
inclinations.

Now in this unit of interference we are going to understand different types of
interferometers, especially Michelson’s interferometer. In interferometer we observe the
fringes occur due to equal inclination which are called Haidinger fringes. In an
interferometer, we study the different techniques of fringes formation and calculate the fringe
width with great accuracy. The interferometers like Michelson interferometer have a lot of
significant applications in the field of optics and other branches of physics.

6.2. OBJECTIVES

After reading this unit you will be able to understand

e Interferometry

e Haidinger fringes observed in interferometers

e Michelson interferometer

e Application and significance of Michelson’s interferometer

6.3. INTERFEROMETRY

Interferometry is a branch of science in which optical waves or any other
electromagnetic waves are superimposed on each other and interference phenomenon occurs.
Interferometry plays important role to study in the field of optics, astronomy, fiber optics,
spectroscopy, cosmology, remote sensing, particle physics plasma physics, velocity
measurements and bio-molecular interactions. In present unit we only discuss the optical
interferometry. Interferometers are devices use for different measurement of path difference,
fringe widths, refractive index and many other parameters with the help of interference
phenomenon.

6.4. FRINGES OF EQUAL INCLINATION (HAIDINGER
FRINGES)

Before going ahead, we should understand the fringe formation in a interferometer. As
we know the interference fringes are formed due to a path difference A = 2ut Cos r between
the overlapping rays. Now for a particular wavelength, the path difference may occur due to
variation of thickness t and angle of inclinationr.
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6A= 2uAtcosr + 2ut 6 (Cosr)y ... (6.1)
In case of a film with constant thickness then variation in path difference occurs as
6A=2ut 6 (Cosry L. (6.2)

Thus the path difference occurs with the variation in the angle of inclination r. If we use an
extended source of light, we have a large numbers of rays comes with equal angle of
inclination r, which produces a particular path difference and fringes are observed
corresponding to this path difference. Such fringes are called fringes of equal inclination. In
case of Michelson interferometer, the thickness of film remains constant then the fringes are
formed due to equal inclination and hence called fringes of equal inclination or Haidinger
fringes.

6.5 MICHELSON INTERFEROMETER

Michelson interferometer is a device used for the formation and study of interference
fringes by a monochromatic light. In this apparatus, a beam of light coming from an extended
source of light is divided into two parts, one is reflected part and another is refracted part
after passing through a partially polished glass plate. These two beams are brought together
after reflected from plane mirrors, and finally interference fringes are produced in the field of
view.

6.5.1 Construction

The apparatus is shown in Figure 6.1. The main part of the apparatus is a half silvered
glass plate P, on which a beam of monochromatic light is incident. The plate P inclined at an
angle 45° with incident light as shown in figur6.1, the incident light then divided into two
parts, one is reflected part and another is transmitted part. The transmitted light is then passes
through another glass plate Q which is of equal thickness as of P, and parallel to plate P, this
pate Q is called compensating plate. The transmitted and reflected parts of light are normally
incident on two mirrors M2 and My respectively. The mirror M1 and M are perpendicular to
each other as shown in figure. The mirror My is fixed in a carriage and can be moved to and
fro with help of a screw and micro scale. Therefore mirror My is movable and the mirror My
is fixed. A telescope is also fixed as shown in figure. The light reflected from mirror M1 and
M are superimposed and interference fringes are formed in the field of view.
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6.5.2. Working

S is a source of monochromatic light; the light coming from this source is rendered
parallel by mean of a convex lens L, and after passing through Less L the light falls on plate
P. Since plate P is partially polished, some part of light reflected back from P and going
toward direction AC and incident on mirror Mj.

Similarly the light transmitted from plate P passing through compensating plate Q and
then incident on mirror M.. The compensating plate is used to compensate the optical path
travelled by transmitted light. The beam of light reflected by P, crosses plate P two times, for
transmitted light this optical path is compensated by using plate Q in which the transmitted
light crosses Q two time. Thus by using compensating plate Q, the reflected and transmitted
light travel equal optical path lengths.

Now the reflected light is incident on mirror M1 and reflected back towards the
telescope T. Similarly the transmitted light incident normally on mirror M2 and reflected back
towards plate P, and at P some part of this light again reflected toward the telescope. Now in
the direction of telescope we have two coherent beams of light reflected from mirror M1 and
Mo, and interference takes place and we observed interference pattern/beam in the field of
view.

6.5.3 Formation of Fringes

Since the fringes are form by the light reflected from mirror M1 (movable) and M2
(fixed) and we can consider a virtual image of M. called M>' in the field of view as shown in
figure 6.1. Further we can consider the interference fringes are now formed due to light
reflected from the surface of air film formed between mirror M1 and My'. Now it is clear that
the shapes of fringes are depend upon the inclination of mirror M1 and Ma. Since M fixed
therefore the shape are depends upon the inclination of M1. Since OA = OB, therefore the
path difference between two rays is simply the path traveled in air film before reaching to
telescope. If t is the thickness of air film then path difference between light reflected from M1
and M is 2t.

Condition for maxma A=2t=nl

2t=n\
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If the movable mirror M1 moved by a distance x and we observed fringes shift of N fringes
then

2t+x)=(n+N) A

or 2x = NA
2Xx
or A= ~ e (6.3)

It is clear that if M1 and M are exactly perpendicular to each other, then M1 and M>' are
parallel to each other and air film between M1 and M2' is of equal thickness in this case we
observed fringes of equal inclination or Haidinger’s fringes of circular shape. If however, the
two mirror My and M are not exactly perpendicular to each other then the shape of the air
film formed between mirror My and M>' is of wedge shaped and the fringes are now of
straight line parallel to the edge of wedge. This straight line fringes are because of the focus
of constant thickness in a wedge shape film is a straight line.

Thus the shapes of fringes are depends on the inclination. The fringes are in general
curved and convex toward the edge of wedge as shown in figure 6.2. These fringes are called
localized fringes.
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6.5.4 Determination of Difference of Wavelengths between Two
Neighboring Wavelengths

Let us consider a source of light which emits two very close wavelengths. Sodium light
is an example of such case. In sodium light, there are two wavelength D; and D, lines with
wavelength A1 = 5890A and A2 = 5896A. By using Michelson interferometer we can
determine the difference between these two wavelengths. In this case first we adjust the
aperture for circular fringes. We know that each wavelength produce its own ring spectrum.
Now the mirror Mz is moved in such a way that when the position of very bright fringes are
obtained. In this position the bright fringes due to A1 coincident with the bright fringes due to
A2 and we observe distinct fringes of order n.

Now the mirror My is further moved to a very small displacement, and the fringes are
disappeared. This case occurs when the maxima due to A1 coincident on minima due to A».
This is the position of minimum intensity or uniform illumination with no clear fringes. In
this case we observed indistinct fringes of order (n+1). If we moved a distance x between
such two points of most bright and most indistinct fringes then

2Xx=ni1=(n+l) X2

A2
1=

or n=
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or 2x = —=
A -2
_ My
or M—A = s (6.4)

If A1 and A2 are very close to each other then

MA2 =22
Where A is the mean value of A1 and A2
2
AZ
Then AL=21-N2= = e (6.5)

6.5.5 Determination of Refractive Index of a Material

In Michelson interferometer, the two interfering beam of light travel in different
directions, one is toward mirror M1 and second one is toward mirror My. It is very easy to
introduce a thin transparent sheet of a material of refractive index is and thickness t, in the
path of one of the interfering beams of light. After introducing a sheet, the optical path of that
beam increases by pt. Now the net increase in the path is (ut — t). Since the beam crosses the
sheet twice, the net path difference becomes 2(ut-t).

If n is the number of fringes be which the fringe system is displaced, then
2ut—t)=n4
or 2M-Ht=n21r L (6.6)

In experiment we first locate the central dark fringe by using while light. The cross wire
of telescope is adjusted in such a way that the cross wire of telescope is adjusted on central
dark fringes. Now the light is replaced by a monochromatic light of wavelength 1. Now a thin
sheet is introduced into the path of one beam. The position of movable mirror My is adjusted
in such a way that the dark fringe is again coincide with the cross wire of telescope. We note
the distance d through which the mirror is moved and count number of fringes displaced. By
using the relation given below we can determine the thickness of sheet.

t=niA/2u-1) .. (6.7)
Similarly if we know the thickness, we can determine the refractive index of material.

2(U-Dt=n2

u=mi/2y+1 L. (6.8)

6.5.6 Michelson Morley Experiment and Its Result

In classical mechanics it was assumed that the preferred medium for light propagation is
ether which filled in all space uniformly. The ether is perfectly transparent medium of light
and material bodies may pass in this medium without any resistance. Ether remains fixed in
space and consider as absolute frame of reference. In the 19" century this ether drag
hypothesis of light was widely discuss.
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Michelson interferometer was originally designed to verify the existence of hypothetical
medium ether. The experiment performed to verify this hypothesis is called Michelson
Morley experiment. In this experiment, it was assumed that the Michelson interferometer is
moving along the earth direction of motion. Due to motion of apparatus with transmitted light
are not same. Mathematically the path difference between two ray (transmitted and reflected)
is Iv2/c? where | is distance between plate P and mirror M1 and v is velocity of ether
corresponding to this path difference there should be a fringe shift of n = 0.37. Thus if the
apparatus is at rest and starts motion, there should be a fringe shift of n = 0.37. But it is not
possible to make earth at rest. In this experiment we consider if the whole apparatus was
turned by 90°, the fringe shift should be observed.

The experiment was performed by many scientists, many times at different location on
earth but fringe shift was not observed. This is called negative result of Michelson Morley
experiment. The result shows the non existence of hypothetical medium of ether. After this
experiment, a foundation of modern though way lay down which led to Einstein theory of
relativity.

Self Assessment Questions

What is an interferometer?
What is the role of compensating plate in Michelson interferometer?
How the air film is formed in Michelson's interferometer?
How the path difference is calculated in Michelson's interferometer?
Why fringes are circular in Michelson's interferometer?
What is the meaning of localized fringes?
What happens when white light is used in Michelson's interferometer?
Determine the thickness of a thin transparent film with the help of Michelson's interferometer.
Determine the refractive index of a material with the help of Michelson's interferometer.
. If the mirrors M1 and M2 of Michelson's interferometer are exactly perpendicular to each other,
how will be the shape of fringes?
11. How you will find the wavelength of a monochromatic light with Michelson's interferometer.
12. Give the application of Michelson's interferometer.
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6.6 SOLVED EXAMPLES

6.1. In Michelson interferometer, when movable mirror My is shifted by a distance 0.030mm,
a fringe shift of 100 fringes is observed. Calculate the wavelength of light used.

Solution: In Michelson interferometer if the mirror is displaced by a distance X, the
corresponding fringe shift N is

2x = NA or  A=2x/N =2(0.030)/100 = 6000A

6.2. The difference between two wavelengths of sodium light lines D, and D, is determined
with the help of Michelson intereferometer. If the distance travelled by movable mirror for
two successive position of most distinct and most indistinct position is 0.2945 mm calculate
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the difference between two wavelengths D; and D,, the mean wavelength of two lines is
5893A

Solution: If the displacement between two position of mirror for two successive position of
most distinct and most indistinct position is x then

2
M -12 =2 = (5893 x 5893)/(2 x 0.2945 x 107) = 6A

6.3. Reflective index of a glass plate is to be determined by the help of Michelson
interferometer. If is observed that when the glass plate is introduced, a fringe shift of 140 is
observed. If the length of glass plate is 20cm and the wavelength of light is 5460A, calculate
the refractive index of material.

Solution: when a glass plate is introduce in one of the interfering ray of Michelson’s
interferometer then a fringe shift is observed as

2U-1)t=nA or p=(nki/2t) +1=[(140x5460x1071% + (2x20x10®)] + 1 = 1.0029

6.4. In Michelson interferometer 790 fringes cross the field of view when the movable mirror
is displaced through a distance 0.233mm. Calculate the wavelength of light used.

Solution: In Michelson interferometer if movable mirror is displaced through a distance X,
the corresponding fringe shift n is given as

2x =nk or A =2x/n=2x 0.233/790 mm = 5896A

6.7 SUMMARY

1. Interferometer is a device used for measurement of path difference, fringe width,
refractive index, wavelength of a monochromatic light source and many other parameters
with the help of interference phenomenon.

2. In Michelson’s interferometer, an air film is formed with the help of two perpendicular
mirrors. The light reflected from two mirrors M1 and Mz is equivalent to light reflected
from the upper and lower surface of air film formed between mirror M1 and Mz'.

3. The condition for bright fringes is given as 2x = NA
Where, x = displacement of mirror M1, N = number of fringe shifts on displacement of x,
/. = wavelength of light used.

4. In Michelson interferometer if M1 and M2 mirror are exactly perpendicular to each other,
the shape of fringes are circular which are called fringes of equal inclination or Haidinger
fringes. If however, two mirrors are not perpendicular to each other, the shape of film
formed between M: and My' is of wedge shape and the fringes are straight line or

localised.
5. The difference between two neighboring wavelength of a source is given as
2
A =dy-dp=2
2X

6. The refractive p index of a medium can be determine by
2(u-1)t=ni or u=mi2t) +1
7. The thickness t can be determine by, t = n 1/2 (u- 1)
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6.8 GLOSSARY

Interferometer: A device used for measurement of path difference, fringe width, wavelength
of light, refractive index etc. with the help of interference phenomenon.

Inclination: Degree of sloping, slope
Haidinger fringes: The fringes of equal of inclination.

Compensating plate: A plate used in Michelson interferometer for compensating the path
difference in transmitted light raised due to glass plate.
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6.11 TERMINAL QUESTIONS

Short Answer Type Questions

Describe the construction of Michelson interferometer.

Describe the working of Michelson interferometer.

How Michelson's interferometer may be used to obtain circular and streight line fringes.

Explain why circular fringes shift in the field of view when we move the mirror M.

Outline the theory of Michelson's interferometer.

With the help of Michelson interferometer how the D1 and D> lines of sodium light can be

distinguished. Find out the difference between D1 and D lines of sodium light.

7. How the refractive index of a medium can be determined with the help of Michelson
interferometer.

8. Explain the method of determine the thickness of sheet/fill with the help of Michelson
interferometer.

9. Explain the role of compensation plate in Michelson's interferometer.

10. What are localised fringes in Michelson's interferometer?

11.

ok wnpE
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Long Answer Type Questions

1.

1 With the help of neat diagrams, describe the construction and working of Michelson's
interferometer.

Explain the working of Michelson's interferometer. How the interferometer produces
straight line and circular fringes.

Give the applications of Michelson’s interferometer in detail.

Explain how circular fringes are produced in Michelson's interferometer. Show that the
radii of circular fringes obtained by the Michelson's interferometer are proportional to the
square root of natural number.

Numerical Type Questions

1.

1. Calculate the displacement between two successive positions of movable mirror giving

the best fringes in case of sodium light. [Answer: 0.029cm]

2. In Michelson's interferometer when movable mirror is displaced through a distance

0.589mm, a fringe shift of 200 is observed across the cross wire in the field of view.

Calculate the wavelength of light used. [Answer: 5890A]

Determine the difference between the wavelengths of two D1 and D: lines in sodium

light. The wavelengths of D1 and D; lines are 5896 A and 5890 A respectively. The scale

reading of two successive distinct and indistinct points are 0.6939mm and 0.9884mm.
[Answer: 6A]

In Michelson's Interferometer when movable mirror is displaced through a distance

0.844mm a fringe shift of 300 is observed. Calculated the wave length of light used.
[Answer: 562A]

3. Determine the difference between the wavelengths of two D1 and D- lines in sodium

light. The wave length of D1 and D are 5896 A and 5890 A respectively. The scale

readings of two successive distinct and indistinct points are 0.6939mm and 0.9884mm.
[Answer: 6 A]

In Michelson's Interferometer when movable mirror is displaced through a distance

0.844mm a ping shift of 300 is observed. Calculated the wave length of light used.

[Answer: 562 A]

Objective Type Questions

1.

In Michelson interferometer, when mirror My and M. are perpendicular to each other,
then the shape of the fringes are
(a) Straight line (b) Circular

(c) elliptical (d) inclined

2. The use of compensating plate in the Michelson Interferometer is

(a) To make path difference equal between light beams reflected from mirror M1 and M2

(b) To make frequency equal between light beams reflected from mirror M1 and M»

(c) To make path difference 2 between light beams reflected from mirror M1 and M>
2
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(d) To make path difference A between light beams reflected from mirror M1 and M2

[ Answers 1(b), 2(a)]
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7.1 INTRODUCTION

In the preceding units we have read, that the interference phenomenon arises when two
or more coherent light beams, obtained either by division of wavefront or by division of
amplitude, meet each other. In this unit we shall discuss the interference effect of secondary
wavelets originating from the same wavefront or from single aperture. This is called
diffraction. The wave nature of light was further confirmed by the phenomenon of
diffraction.

Diffraction refers to various phenomena which occur when a wave encounters an
obstacle or a slit (or aperture). Since at the atomic level, physical objects have wave-like
properties, they can also exhibit diffraction effects. The diffraction of light was first observed
and characterized by an italian mathematician Francesco Maria Grimaldi. The word
diffraction originated from Latin word ‘diffractus’ which means ‘to break into pieces’. Thus
he referred this phenomenon as breaking up of light into different directions. Isaac Newton
attributed them to inflexion of light rays. James Gregory used a bird feather and observed the
diffraction patterns. This was effectively the first diffraction grating to be discovered.
Augustin-Jean Fresnel did more studies and calculations of diffraction and thereby gave great
support to the wave theory of light that had been advanced by Christiaan Huygens.

The effects of diffraction are often seen in everyday life. For example, the closely
spaced tracks on a CD or DVD act as a diffraction grating for incident light and form a
rainbow like pattern when seen at it. The hologram on a credit card is another example.
Almost the same colourful pattern is formed due to the diffraction of light. A bright ring
around a bright light source like the sun or the moon is because of the diffraction in the
atmosphere by small particles.

7.2 OBJECTIVES

Upon completion of this unit you will be able to

e State the diffraction of light and the necessary conditions for producing this effect

o Differentiate the phenomena interference and diffraction

e Describe the Fresnel and Fraunhofer classes of diffraction

o Define the construction of half period zones and compute their radii and area

¢ Find the resultant amplitude at a point on the screen due to a number of zones

e Prove that the light propagate along a rectilinear path

e Describe a zone plate, its construction, its action and theory.

o List the similarities and dissimilarities between a zone plate and a lens

e To understand ‘what kind of diffraction effect is produced by a sharp straight edge at
various points on the screen’

e Find the expressions for the positions of maxima and minima, and the intensity
distribution due to diffraction effect produced by a sharp edge
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7.3 DIFFRACTION OF LIGHT

As per the rules of geometric optics, the light should caste a well defined and distinct
shadow of an object placed in its path. If the direction of incidence of light is perpendicular to
the length of obstacle then due to its rectilinear propagation, the size of the image should be
equal to the size of the object (fig. 7.1). No light should reach into the regions of shadow. The
same thing happens with aperture. Light enters from the open region of aperture and reaches
to the screen (fig.7.2). When the direction of incidence is not normal to length of obstacle (or
aperture), the size of image (or shadow) will be different from that of obstacle or aperture
(fig.7.3 and 7.4).

BRIGHT IMAGE

INCIDENTLIGHT
|
IMAGE

INCIDENT LIGHT
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Figure 7.1 Figure 7.2
c = |
— : — —
= 2 = =
a = a] T | =
Figure 7.3 Figure 7.4

A very close and careful observation of light distribution reveals that there are dark and
bright fringes near the edges. As the size of the aperture is decreased the fringes become
more and more distinct. When the size of aperture becomes comparable to the wavelength of
incident light the fringes become broad and practically cover the entire shadow region, so
instead of a sharp shadow we obtain bright and dark fringes on the screen.

—
—— rfﬁ

Figure 7.5
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In simple language we can say that ‘when the size of the opaque obstacle (or aperture)
is small enough and is comparable to the wavelength of incident light, the light bends round
the corners’. If the opening is much larger than the light's wavelength, the bending will be
almost unnoticeable. The phenomenon of bending of light round the corner or edge and
spreading into the geometrical shadow region of the obstacle (or aperture), placed in its path,
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is known as diffraction. The bending of light for a small slit is shown in figure 7.5. The
formation of alternate bright and dark fringes, by the redistribution of light intensity, is called
the diffraction pattern. The amount of bending depends on the relative size of the wavelength
of light to the size of the opening.

Dominique Arago placed a small circular disc in between a point light source and
screen and obtained almost a regular pattern of alternate dark and bright rings. There was a
bright circular spot at the centre of this pattern. The formation of this kind of diffraction
pattern could not be explained on the basis of rectilinear propagation of light. Thus wave
theory of light was used to explain the bending of light into the regions of geometrical
shadow. One such pattern is depicted in figure 7.6.

Self Assessment Question (SAQ) 1: What do you understand by the term diffraction? What
is the condition of obtaining observable diffraction pattern?

7.4 DIFFERENCE BETWEEN INTERFERENCE AND
DIFFRACTION

(i) The interference occurs between two separate wavefronts originating from two coherent
sources while in the phenomenon of diffraction the interference occurs between the
secondary wavelets originating from different points of the exposed part of same wavefront.

(ii) In the interference pattern all the maxima are of the same intensity but in diffraction
pattern the intensity of central maximum is maximum and goes on decreasing as we move
away.

(iii) The interference fringes are usually equally spaced while the diffraction fringes are never
equally spaced.

(iv) In interference the minima are perfectly dark but it is not so in diffraction pattern.
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7.5 FRESNEL AND FRAUNHOFER CLASSES OF
DIFFRACTION

The diffraction phenomenon is usually divided into two classes; the Fresnel diffraction
and Fraunhofer diffraction. Following are the main differences between these two types of
diffractions.

(1) In Fresnel diffraction either the source of light or the screen or both are in general at
finite distance from the diffracting element (obstacle or aperture) whereas in Fraunhofer
diffraction both the source of light and the screen are at infinite distance from diffracting
element.

(i) In Fresnel diffraction no lenses are used for rendering the rays parallel or convergent
therefore the incident wavefront is divergent either spherical or cylindrical. In Fraunhofer
class of diffraction generally two convergent lenses are used; one to make the incoming light
parallel and other to focus the parallel diffracted rays on the screen. The incident wavefront
is, therefore, plane.

(iii) In Fresnel diffraction the phase of secondary wavelets is not the same at all points in the
plane of aperture while converse is true for Fraunhofer diffraction.

(iv) Depending on the number of Fresnel’s zones formed, the centre of the diffraction pattern
may be either dark or bright in Fresnel diffraction but in Fraunhofer diffraction it is always
bright for all paths parallel to the axis of lens.

(v) In Fresnel class of diffraction the lateral distances are important while in Fraunhofer
diffraction the angular inclination plays important role in the formation of diffraction pattern.
(vi) In Fresnel diffraction the diffraction pattern formed is a projection of diffracting element
modified by the diffracting effects and the geometry of the source and in Fraunhofer
diffraction the diffraction pattern is the image of the source modified by the diffraction at
diffracting element.

SAQ 2: How will you differentiate the interference and diffraction phenomenon?
SAQ 3: Write any four differences between Fresnel and Fraunhofer class of diffraction.

7.6 FRESNEL’S HALF PERIOD ZONES

According to Huygens principle each point on a wavefront acts as a source of secondary
disturbance. When a wavefront is made to incident on a slit, most of it is obstructed by the
slit. The small portion of the wavefront passed through the slit is, thus, equivalent to a string
of coherent point sources. The intensity at any point on the screen may be obtained by
suitably summing the intensities of wavelets originating from those point sources at the slit
and superposing at that point of screen. Thus diffraction pattern is formed at screen due to the
interference of secondary wavelets.

Since the coherent sources are located at different distances from any point on the
screen, the waves reach that point with differing phases. Their superposition produces
interference pattern with maxima and minima formation. Therefore, the diffraction of light is
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due to the superposition of waves from coherent sources of the same wavefront after the
wavefront is obstructed by obstacle or aperture.

7.6.1. Construction of Zones

For the qualitative understanding of the diffraction pattern, Fresnel introduced the idea
of half period zones. The wave-front originated from the source and striking the obstacle or
aperture is divided into a number of the circular and the concentric zones. Zone is the small
area on the plane wave-front with reference to the point of the observation such that all the
waves from the area reach the point without any path difference. The paths of light rays from
the successive zones differ by A/2. Since path difference of 1/2 corresponds to half time
period, these zones are known as half period zones.

A b+h/2
b+2(A/2)

b+3(A/2)
S b+n{A/2)

-

Figure 7.7

In order to understand the construction of half period zones taking a plane wavefront
AA' and droping a perpendicular PO on the wavefront from an external point P. If the distance
PO is b then taking P as a centre draw spheres of radii b+1/2, b+2(4/2), b+3(1/2) etc. The
spheres will cut the wavefront 44" in circles of radii OM1, OM., OM3 etc as shown in figure
7.7. The annular regions between two consecutive circles are called half period zones, e.g.,
the annular region between (n-1)" circle and n'" circle is called the n' half period zone.

7.6.2. Radii and Area of Zones

From simple geometry the radius of n" such circle, OMn, can be written as

OM, =1, = l(b + n%)z - (bz)r/2

1/2
= nib [1 + % =vadb (7.1)

Here we have assumed b>> A, which is true in most of the experiments using visible light.
We have also assumed here that n is not a very large number. From expression given by
equation (7.1), it is clear that the radii of half period zones are proportional to the square roots

of natural numbers. Therefore, the radii of first, second, third etc. half period zones are Vb,

V22Ab, V31D etc
With the help of equation (7.1), the area of n' half period zone is given by
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A, =nr? —mr, =n[nAb— (n—1Abl=mlb .. (7.2)

Thus for b>> 1 and n not very large, the areas of half period zones are independent of n and
are approximately equal for fixed value of 1 and b. The area of the zone may be varied by
varying the wavelength of light used and the distance of the point from the wavefront.

Example 7.1. A screen is placed at a distance of 100 cm from a circular hole illuminated by a
parallel beam of light of wavelength 6400 A. Compute the radius of fourth half period zone.

Solution: If b is the distance of the point of consideration from the pole on the wavefront
then the radii of the spheres whose sections cut by by the wavefront from the half period

zones are b + % b + 22—/1 b+ % etc. Hence the radius of fourth half period zone is given by

2
T, = \/ (b + %) — b% = /(442 + 4b1) = V4DA. Because 4b1 > 12

It is given that, b = 100 cm and 1 = 6400 A = 6400 x 1078 cm

7, = V4 x 100 X 6400 x 1078 = 0.16 cm

Example 7.2: A plane wavefront of light of wavelength 1000 A is allowed to pass through an
aperture and a diffraction pattern is obtained on the screen placed at a distance of 1m from
aperture find the radius and area of 1000™" half period zone.

Solution: Given that 2 = 1000x10°m = 107" m, b = 1m and n =1000
We know that the radius of n" zone is given by, r, = vVnbA

Ti000 = V1000 X 1 X 107 =102 m = 1.0 cm
The area of zone = b4 = 3.14x1x107" = 3.14x10°" m?

Example 7.3: A light of wavelength 5x107 m is made to incident on a hole. Calculate the
number of half period zones lying within the hole with respect to a point at a distance of 1.0
m from the hole if the radius of hole is (i) 10° m and (ii) 102 m.

Solution: It is given that L = 5x107 m, b = 1 m. If A, is the area of hole of radius ry
containing n-half period zones each of area nb) then, we have, An= 7trh? = n. Tb

(i) Forr=10°m,
Substituting in the above equation, we get,
X (10%2=nxnx1x5x10"

10

TEx10~7 2

n

(ii) Forr, =102 m

X (10%)2=nxnx1x5x10’
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107*

"=5x107 2%

SAQ 4: The radius and area of n'" zone are 1.0 cm and 3.14x107 m?. Find the value of n.

SAQ 5: Light of 5000 A is passed through a hole and two half period zones are formed with
respect to a point at a distance of 1.0 m from the hole. Calculate the diameter of the hole.

7.6.3. Resultant Amplitude at Point P

According to Fresnel the resultant amplitude at any point due to whole of the wavefront
will be the combined effect of all the zones, while the amplitude produced by a particular
zone is proportional to the area of the zone and inversely proportional to the distance of the
zone from the point of consideration, P. This amplitude also varies with obliquity factor

%(1 + cos@). Where 6 is the angle between the normal PO to the wavefront and the line QP.

Thus if un represents the amplitude produced by the secondary wavelets emanating from the
n' zone then we can write

u, = (Constant) x % X O“chﬂ ....... (7.3)

S| breenos2)
N :’ g .“:.%Q—n{lf‘l}

Figure 7.8

Where 6,, is the value of 6 for n" zone. If we take infinitesimal areas around point Qn in
the n™ half period zone and around a corresponding similar point Qn-1 in (n-1)" half period
zone as shown in the figure 7.8 such that

QP-QuP=12 .. (7.4)

This path difference of A4/2 corresponds to a phase difference of . Although the areas of the
zones are almost the same but the distance of the zone from point P and the value of 6
increases as we move from lower to higher n. The amplitudes us, Uz, us etc. of 1%, 2", 3™ etc.
zones at point P will be, therefore, in gradually decreasing order as shown in figure 7.9. The
opposite directions of alternate amplitudes correspond to the phase change of m between
consecutive zones.

Thus the resultant amplitude at P can be written as

127



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

Up=Ui-Uz+Us-Us+ ..o + D)™ (7.5)

The positive and negative signs on the right hand side between alternate terms of this
equation may be ascribed to the fact that the disturbances produced by two consecutive zones
at P will be out of phase by m radians.

As the disturbances at P due to various zones are of gradually decreasing magnitudes, the
amplitude due to any zone may be taken approximately equal to the average of the
amplitudes due to the preceding zone and the succeeding zone. That is, we can take

U +u uz+u
up =y, =—ete. (7.6)
Uy
- u
."'\_'_-ﬁ,_ _U5 U~
l"l\. - |'_ HUB u11
S-p b1 ug
lTi l-_-_-'T‘-h
M.
- Un g2
- i.J U:|.4 11(
X U, UYig 12
-::""_“r:'::__.____E..___E _______________________ .
U2 U4
Figure 7.9

In equation (7.5), the last term on right hand side will be positive if n is odd and negative if it
is even. We can rewrite equation (7.5) as

e I - Us Us _ Us
wy =2t (Lo + ) 4 (Lo, +B) L L (7.7)
. . Uuq Uuq usz Un-2 Un Un
Thus if n is odd we have, up=7+(7—u2+7)+ ...... +( > —un_1+7)+7
Using equation (7.6), we get, up ==+ (7.8)

And if n is even then,

_ W U Us Un-3 Un—1 Un-1
up—2+(2 u2+2>+ ...... +(2 Up_y + 2)+—2 Uy,
Using equation (7.6), we have, up =t -, (7.9)

If the number of half period zones formed is large enough then due to gradually decreasing
amplitudes of zones, the values of u, and un-1 may be neglected as compared to u1, and
therefore we can write

~ W1
=2 (7.10)

And the intensity at point P, therefore, may be given by
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Thus the resultant amplitude produced by whole of the wavefront is equal to one half of that
produced by the first zone and the intensity due to the entire wavefront is the one fourth of
that by the first zone.

Example 7.4: A plane wavefront of light of wavelength 5x10°° c¢m falls on a circular hole and
is received at a point 200 cm away from that hole. Calculate the radius of the hole so that the
amplitude of light on the screen is two times the amplitude in the absence of hole.

Solution: It is given that 2 = 5x10°cm = 5x10" m and b =200 cm = 2.0 m

We know that the amplitude due to the whole wavefront is only half to that due to first half
period zone, therefore

Radius of hole = Radius of first half period zone = VbA = /(2.0 X 5 x 10~7) = 1073m =
1.0 mm

SAQ 6: The radius of an opening is 4.47x10 cm. The light of wavelength A is passed
through that opening and collected at a distance of 40 cm from opening. Calculate the
wavelength of light so that the intensity of light on the screen is four times the intensity in the
absence of the opening.

7.7. RECTILINEAR PROPAGATION OF LIGHT

With the help of the theory discussed so far we can explain the rectilinear propagation
of light. Suppose a plane wavefront of monochromatic light is made to incident on a screen
with square aperture ABCD and whole of the wavefront except ABCD portion is blocked by
the screen as shown in the figure 7.10. Let P be a point at which the intensity of the light is
required and its pole O with respect to the aperture ABCD is well inside from the edges.
Taking O as centre if we draw the half period zones in the incident wavefront then the
number of the wavefronts will be quite large before they intersect the edges AB, BC, CD, and
DA. Thus practically all the effective zones are exposed and the resultant amplitude at P due
to aperture ABCD is given by equation (7.10). This amplitude is equal to the one half that due
to the first zone and since the areas of these zones are extremely small, we can consider the
light to be travelling along a straight line along OP. This condition is the same as if the screen
with square aperture ABCD was removed.
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Figure 7.10

The poles Oz and O of the points like P1 and P2 on the screen lie very close to edges of
the aperture ABCD. If we draw the half period zones around these poles then some of the
zones are obstructed and some are exposed. Thus there will be neither uniform illumination
nor complete darkness at points P1 and P2. For the points near the edges the light, therefore,
enters into the geometrical shadow region. The point Ps is well inside the geometrical shadow
region and its pole is Os. Since the amplitude at a point due to a zone decreases on increasing
its order, almost all the effective zones around Oz are cut off. The amplitude reaching at Pz is
nearly zero and there is a complete darkness. This is possible only when light travels along a
straight line.

From the above mentioned facts this may be concluded that there is almost uniform
illumination at the points whose poles lie well inside the edges of the aperture and complete
darkness at the points whose poles lie well outside the edges. This strongly supports the
rectilinear propagation of light. There is a slight deviation from the rectilinear path for the
points whose poles lie very close to the edges. However due to very small value of the
wavelength of light this region is very small as compared to whole of the aperture. Thus as a
whole the propagation of the light may be considered along a rectilinear path.

7.8. ZONE PLATE

A zone plate is a device used to focus light; however zone plates use diffraction instead
of refraction or reflection as in case of lenses and curved mirrors. It is a specially designed
diffraction screen consisting of a large number of half period zones. In the honor of Augustin-
Jean Fresnel they are sometimes called Fresnel zone plates. It is constructed in such a way
that every alternate zone blocks the light incident on it. In other words we can say that it
consists of alternate opaque and transparent set of radially symmetric rings (zones).
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Figure 7.11 Figure 7.12

The zones can be spaced so that the diffracted light constructively interferes at the
desired focus. The light may be cut off either by even numbered zones or by odd numbered
zones. When the light is obstructed by even numbered zones the plate is known as positive
zone plate and when obstructed by odd numbered zones it is called negative zone plate. These
two kinds of zone plates are shown in figures 7.11 and 7.12.

7.8.1. Construction and Theory of Zone Plate

From equation (7.1) of section 7.6.2, it is evident that the radii of half period zones are
proportional to square roots of natural numbers. Thus to construct a zone plate, we draw the
concentric circles of the radii proportional to square roots of natural numbers on a white
paper. The alternate regions between the circles are painted black. If the odd numbered zones
are painted black then drawings appears like figure 7.12 and if even numbered zones are
covered with black ink then the drawing looks like figure 7.11. Suppose the drawing
resembles with figure 7.11. If we take a reduced photograph of it then the developed negative
resembles with figure 7.12. This negative is then used as a zone plate.

b+A/2
b+2()/2)

Figure 7.13

If a beam of light is made to incident on such a zone plate normally and a screen is
placed on the other side of this plate to get an image then the maximum brightness is obtained
at a particular point of the screen. Suppose this point is P at a distance of b units from the
zone plate as shown in figure 7.13. Only upper half portion of the zone plate is shown in this
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figure. If 1 is the wavelength of light used then radius of the first zone (OM1=r1), second zone
(OM2=r>) etc are given by r, = vVbAand r, = V2b2 etc.

The general expression for radius may be written as

2
r, = VnbAorb = % ....... (7.12)

Since the wavelength of light has a small value, the sizes of the zones are usually very
small as compared to the distance of the light source from the zone plate. Hence OM1, OMy,
OM:; etc are extremely small as compared to distance a (source S to zone plate AB
separation). But to make the points M1, M2, M3 etc distinct and to show the complete figure
the distances are not taken in this ratio in figure 7.14. Because of this reason the incident
wavefront may be taken as a plane wavefront.

Figure 7.14

Now suppose even numbered zones are opaque to incident light then from equation
(7.5), the resultant amplitude reaching at P may be written as (n is odd)

Up=Uir+ U3+ Us +......... +un (7.13)

In this case if all the zones are transparent to light then from equation (7.5), the resultant
amplitude at P is given by

Up=Ur-Uz+Us-Us + ......... +un (7.14)
For large value of n, from equation (7.10), we have,

p==2 (7.15)

If we compare the values of the resultant amplitudes from equations (7.13) and (7.15),
we find that, when the even numbered zones are opaque the intensity at point P is much
greater than that when all the zones are transparent to incident light. Again from the above
discussion we can state that a zone plate behaves like a converging lens. The focal length of
the zone plate may be given by
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Therefore, the focal length of a zone plate varies with the wavelength of incident light
that is why it is called a multi foci zone plate. For this reason if white light is made to
incident on a zone plate different colours come to focus on screen at different points and it
shows chromatic aberration.

7.8.2. Action of a Zone Plate

Refer to figure 7.14; AB is the section of zone plate perpendicular to the plane of paper,
S is the point light source at a distance a from zone plate and point P is on the screen placed
at a distance b from the zone plate. As compared to the radii of zones, the distance of source
from the zone plate is extremely large and therefore we can take approximation as SO =
SM1 = SMa... ... = a. The position of the screen is chosen such that the light rays reaching at
P from successive zones have a path difference of 1/2. We can write

SO+OP=a+b ... (7.17)
SM1+M;P~SO+(OP+4/2)=a+b+4/2 ... (7.18)
Similarly, SMo+MP=a+b+21/2 ... (7.19)

Now from right angle triangle ASOM;, we have,
2
(SM1)? = (SO)2 + (MiO)? or  SMi = (a2 + 1?2 = a(1+- )"
Since a>>ry, expanding above and neglecting higher order terms, we get,
le T12
SM; = a(1+ﬁ ):(a+z) ....... (7.20)
Proceeding in a similar way we can obtain,
T12
M:P = (b+; ....... (7.21)

Substituting values of SM1 and M1P from equations (7.20) and (7.21) in the left hand side of
equation (7.18), we get,

@+ )+ b+ ) =a+b + 1/2
2a 2b -

or e (i+%) =1

From equation (7.19), we have, 17 G + %) =21

Proceeding similarly for higher order zones, we obtain

72 (2 + %) =nd . (7.22)
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Now comparing the zone plate with converging device like convex lens and using
similar sign convention for the distances of the object and image from the lens, the equation
(7.22) may be modified as

1 1

(_ _ _) == (7.23)

b a

This equation is similar to the lens equation (% — %) = % Thus a zone plate behaves like a

2
converging lens of focal length, f, = % Thus the focal length of zone plate depends on the
number of zones and the wavelength of light used.

7.8.3. Multiple Foci of Zone Plate

A zone plate has a multiple foci. In order to prove this, taking an object at infinity, i.e.
at a = oo in equation (7.23), we get, r,;>2 = bnA and therefore, the area of n' zone is given by

A, =mr? —nmr2, =n[nib— (n—1)Ab]l =miAb ... (7.24)

Since the object is at infinity, the light rays will be parallel to principal axis and the image

2
will be formed at the principal focus at a distance b = 7%1 from the zone plate.

If we take a point Ps at a distance b/3 from the zone plate somewhere in between O and
P then the area of each half period zone with respect to Pz will now becomes nA(b/3), that is,
one third to the previous case. Thus each zone, in this case, can be assumed to contain three
half period elements corresponding to Ps. If the amplitude due to these elements are
represented by mi, my, mz etc. then the first zone (amplitude uy) will consist of the first three
elements (amplitudes m1, mz and ms), second zone (amplitude uz) will consist of the next
three elements (amplitudes m4, ms and mg) etc. Again similar to half period zones there will
be a phase difference of m between the successive elements. Thus while adding the
amplitudes; the mz will be taken positive, m as negative etc. Substituting the values of uz, uz,
uz etc. with mz1, mo, ms etc., equation (7.13) changes to

up3 = (ml - mz + 7Tl3) + (m7 - m8 + mg) + (m13 - m14 + m15) +

= (m1 — Dy m3) + (m7 L AL mg) + (m13 — Mastus m15) Fo
= %(ml + ms + my + my + mq3 + mqs + .. ) ....... (725)

Here it should be noted that each of the amplitudes my, mz, mz etc is one third of uz, u2, us etc.

If we compare the equations (7.13) and (7.25), we find that the intensity reaching at Ps is
sufficiently large but is less than that reaching at P. Thus the image of S is also formed at P3
and therefore, it may be taken as the second focal point. The second focal length is given by

_ Tk
fs= poe (7.26)
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Similarly the images of S can be formed on points Ps, P7, Py etc. but with decreasing

rz rZ 2
- etc. Thus a zone

intensity. The distance of these points from the zone plate are =1’ 71 ol

late has multiple foci given b f:ﬁ f:i=ﬁf:i=ﬁetc
P p 9 yh n/1’3 3ni 3’5 5ni 5 )

7.8.4. Comparison of Zone Plate and Lens

Some of the features of zone plate are similar to a lens and in some it has dissimilarity.
The following are the resemblance and differences between the two.

(i) Similar to a lens, a zone plate forms an image of an object placed on its axis. The same
sign convention is used while representing the distance of the object and image in both
the cases.

(if) The focal length formula in terms of distance of object and image for zone plate is

1 1 1 1

(— - —) — L and for the convex lens is (— - —) = 3, which are identical.
b a f v o u f

(iii) The image due to a convex lens is more intense as compared to that due to a zone plate.
(iv)The convex lens has a focal length given by %z (u—1) (RL—RL) which depends on
1 2

wavelength (refractive index varies with wavelength) and the focal length of zone plate f,
2

:% also varies with wavelength. Hence both exhibit chromatic aberration.The focal
length of a zone plate is inversely proportional to the wavelength hence red rays come to
focus at a smaller distance from the zone plate than violet rays. The reverse is true for
convex lens. Thus f, > f; in zone plate while f, > f, in lens. The order of colours in
chromatic aberration is therefore opposite in the two cases.

(v) A convex lens has one focal length for a fixed wavelength while a zone plate has a
number of foci at which the images of diminishing intensities are formed.

Example 7.5: Calculate the focal length of the zone plate and the radius of the first zone
when a point source of light of wavelength 6x10” m is placed at a distance of 100 cm from a
zone plate. Its image is formed at a distance of 200 cm on the other side.

Solution: For a zone plate we have. (2 + %) = ’:—f = % .Giventhat,a=1m,b=2mand A=
n
6x107 m. Thus= =~ +-=2 or f =2 m.
f 1 2 2 3

T12
1xA'

For first zone, = thusr2 = f x A = 2 X 6x10~7 or r; = 6.32x10* m.

Example 7.6: A plane wavefront of light of wavelength 5x10° cm fall on a zone plate. The
radius of the first half period zone is 0.5 mm. Where should a screen be placed so that the
light is focused at the brightest spot?

Solution: We know that the brightest spot is formed at the first focus of the plate, i.e. at fi.
Given that r; = 0.5 mm =5x102cmand 1 =5 x 1075 cm
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2
2 2 (5x107%
fo = =, Therefore, f; = === (2xa07)

A 5x10°° 50 cm

Example 7.7: Calculate the radius of 10" zone in a zone plate of focal length 0.2 m for light
of wavelength 5x107" m.

2
T10

Toxsxio—7 OF Mo = 0.01m=1.0cm

2
Solution: From f, = % we have, 0.2 =

Example 7.8: Calculate the radii of first three clear elements of a zone plate which is
designed to bring a parallel light of wavelength 6000 A to its first focus at a distance of two
meters.

Solution: It is Given that, f =b =2.0 m, 2 = 60004 = 6 x 10”7 m.

If odd number half period zones are clear (transparent) then taking n=1, 3, 5 in the expression

1, =Vnbd,wegetr; = /fA=vV6x10"7 x 2 = 10.95 x 10~* m.

r3=4/3fA=vV3x6Xx1077 x2=19x%x10"3m.

15 =/5fA=V5x6x1077 x 2 =2.45x 1073 m.

SAQ 7: What is the radius of first zone in a zone plate of primary focal length 20 cm for a
light of wavelength 5000 A.

SAQ 8: If the focal length of zone plate is 1 m for light of wavelength 6.0x10"" m. What will
be its focal length for the wavelength 5x10-'m.

7.9. DIFFRACTION AT A STRAIGHT EDGE

To show the diffraction effect of a straight edge, the light from a monochromatic light
source S is passed through a narrow slit AB and a sharp edge of an opaque obstacle like blade
is placed in its path as shown in figure 7.15. The slit, opaque obstacle and screen PP are
parallel to each other and perpendicular to the plane of the paper. The sharp edge is placed in
such a way that the line joining the slit to edge O when reproduced meet the screen at P and
OP is normal to screen.

In the absence of diffraction of light due to sharp straight edge there should be a
uniform illumination above point P and complete darkness below it. As we move towards P,
unequally spaced bright and dark bands are obtained near P. On further moving towards P’,
i.e. with increasing value of x the intensity reaches a steady value I, resulting a uniform
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illumination. Because of the diffraction effect, the light enters to a certain distance below P
(towards P ) in the geometrical shadow region.

1P
S e =— a__ o b pY
Obstacle of Sharp
S Straight Edge
8 o
Y
{p~
Figure 7.15

In this region the intensity of light decreases to zero very rapidly without forming
maxima and minima in a small but finite distance as shown in intensity distribution curve of
figure 7.16. If the average intensity is I, then at point P on the screen (corresponding to the
edge) it reduces to lo/4. This all is due to the diffraction of light produced by sharp straight
edge.

Intensity —

S

N
&~

P” P P’
Figure 7.16
7.9.1. Theoretical Analysis

Refer to figure 7.15. Suppose we want to find the resultant at any point, say P’, on the
screen. The pole of the wavefront Y'Y’ with respect to point P’ will be O’. With P’ as centre if
we draw the circles of radii O’P’+1/2, O'P’+21/2, O’P’+31/2 etc, the wavefront is divided
into half period strips. Thus for point P’, the wavefront is divided in two similar parts; one
above point O’ another below it. The light from entire upper half portion of the wavefront
reaches to P’. The resultant due to this will be equivalent to one half to that due to first half
period strip, i.e. m1/2. Now the number of half period strips within the lower half portion of
the wavefront, i.e. O'O will depend on the position of the point P’ on the screen. Suppose the
lower half portion contains only one half period strip then the amplitude due to it at P’ will be
only my and therefore, the total amplitude at P’ by whole of the exposed wavefront is given

mq

by — +m;. This is the position of first maximum.
2

If O’O contains two, three, four etc half period strips then the resultant amplitude at p’

is given by %+m1—m2, %+m1—m2+m3, %+ml—mz+mg—m4 etc. and the
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position of P’ gives the position of first minimum, position of second maximum and the
position of second minimum respectively. Thus at point P’, a maximum or a minimum is
formed according as OO contains odd or even number of half period strips.

As we move away from P towards P’ alternate maxima and minima are obtained. From
the previous discussion we see that the amplitude or intensity of these maxima and minima
are comparable, hence the bands have a poor contrast. If the point of consideration is at a
sufficiently large distance from P then entire upper half and a large number of half period
strips of the lower half are exposed. The diffraction bands merge together to produce uniform
illumination. The resultant amplitude at the point of consideration, in this case, is therefore,

% + % = m, and the intensity is m,2.
7.9.2. Positions of Maximum and Minimum Intensities

In figure 7.15, the path difference between the rays O P and OP is given by
A= OP- O'P’= (OP* + PP'*)*? — (SP' — S0")=(0P? + PP'*)!/2 — [{SP? + PP'?}}/2 —
S0'|
= (b% + x2)Y? = [{(a + b)?* + x?}V/2 — a]

YY" is the spherical wavefront of the point light source S with S as a centre, thus SO’ = SO
= a, is the radius of the sphere.

In actual experimental set up we have, x<<b. Thus taking b out (common) from the first
term and (a+b) out from the second term on the right hand side of the above equation,
expanding the series and neglecting higher order terms, we obtain

x? x? x? a
A—b{1+§}—(a+b){1+m}+a—7.m ....... (7.27)
Now if O’O contains an odd number of half period strips then a maximum will be formed at

point P’ and the path difference A, in this case, will be an odd number of half-wavelengths,
and vice-versa. Thus for maxima we have,

A=Cn-DI L (7.28)

NS

For minima we have, A= 2n.

On comparing equations (7.27) and (7.28), we get the position of n" maximum as

Xp = /w =KV2n—-1 ... (7.30)

Where, = , IS a constant.

(a+b)bA
a

Similarly the comparison of equations (7.27) and (7.29) gives the position of n' minimum as
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X, = /M =KvZn (7.31)
a

From equation (7.30), we have, x; = K, x, = K+/3,x3 = K+/5 etc. Thus the separations
between successive maxima are x, — x; = 0.732K,x; — x, = 0.504K,x, — x5 = 0.409 etc.
We see that with increasing order of maxima the separation between consecutive maxima
decreases and the fringes come closer. The same is true for minima.

7.9.3. Intensities at VVarious Positions

The intensity variation curve is shown in figure 7.16. Now we will find out the value of
intensity at some specific points.

(i) Intensity at the Edge of Geometrical Shadow

In figure 7.16 the edge of geometrical shadow is represented by P. The pole of this edge
at wavefront is point O, which is nothing but the edge of sharp obstacle. Thus with respect to
the edge of geometrical shadow region (point P), the incident wavefront can be divided in
two parts; one above point O (OY) and other below point O (OY). The light from the entire
upper half portion of the wavefront reaches to point P while the light from the lower half
portion of the wavefront is completely cut off by sharp edge obstacle. The resultant amplitude
at P, in this case, IS mp = mi- ma+ M3+ M- ......... , which is mi/2. Thus the resultant
intensity at P is m1%/4=Io/4. Where I, is the value of intensity at P in the absence of obstacle.

(i) Intensity at a Point Inside the Geometrical Shadow

If the point of consideration is inside the geometrical shadow region then the pole of the
point will be below point O, i.e. in the wavefront region OY’. Suppose we take a point P’
then its pole will be O . In this case the complete lower half portion and most of the upper
half portion of the wavefront is obstructed by the obstacle. Only a small part of the upper half
portion of the wavefront (OY) is exposed. As we move down gradually from point P inside
geometrical shadow, the first, the first two, the first three etc. half period strips of the upper
half of the wavefront are obstructed and the amplitudes are thus m2/2, ms/2, ma/2 etc.
respectively. The intensities, therefore, will be (m2/2)?, (ma/2)?, (ma/2)? etc. respectively.

Since the amplitudes m1, mz, mz etc. are in decreasing order of magnitude, the intensity
of light decreases rapidly as we move inside the geometrical shadow. This is because of the
fact that most of the effective half period strips of the upper half portion of wavefront are cut
off.

Example 7.9: A narrow slit illuminated by light of wavelength 4900 A is placed at a distance
of 3m from a straight edge. If the distance between the straight edge and screen is 6 m,
calculate the distance between the first and fourth band.

Solution: For minima we have, x,, = /—Zn(a:bm = Kv2n, where K = ,/—(a?bl
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It is given thatb =6m, a=3m, 1 =4.9x107 m.

=2.97x1073

-7
Therefore, K = J(3+6)X6X4-9X10

For first minimum, X1 = Kv2 = 2.97 x 1073 x /2 = 4.20 x 10 3m
For fourth minimum, x4 = K+/8 = 2.97 x 1073 x V/8 = 8.40 x 1073

Separation between the two, X4 — X1 = (8.40 — 4.20) x 10°3=4.20 x 10~3m

SAQ 9: In an experiment with straight edge diffraction, the slit to edge distance is 1.0 meter
and the edge to screen distance is 2.0 m. If A = 6000 A, calculate the position of the first
three maxima and their separation.

7.10. SUMMARY

In this unit you have studied that Huygens’s principal is the basic principle to explain
the diffraction phenomenon. Diffraction is mainly due to interference of the secondary
wavelets. Diffraction pattern is formed whenever a wave encounters an object or aperture, the
size of which is comparable to wavelength of light. To make the concept more clear the
difference between interference and diffraction, construction and theory of half period zones
and zone plate are explained. It is stated that for »>>1 the radii of half period zones are
proportional to square root of natural numbers and the zones have the same areas. The
expressions for radius and area are given by vnib and Ab. If the incident wavefront contains
a large number of half period zones and all zones are exposed then the resultant amplitude at
a point on the screen will be equal to half of that due to first zone, i.e. ui/2. With the help of
zone theory it is proved that the light propagates along a rectilinear path. The zone plate may

be used as a focusing device and the focal length of it is given by the expression fi:

n
1 1 ni ., . . . . . rE T3 rf
(— — —) = —. It is a multiple foci device having focal lengths =, —/ , — etc. In some of
b a £ nA 3niA° 5nid

the features, the zone plate, resembles with a lens and has some dissimilarity.

The formation of diffraction pattern is explained by taking the obstacle in the form of a
sharp and straight edge. If almost all the wavefront is exposed, the amplitude produced at a
point on the screen is m; and the intensity is mi2. The maxima and minima formed are not

equally spaced. Their position of maxima is given by x, = /M = K+/2n and that of

minima is given by x,, = /w = Kv2n — 1. If I, is the value of intensity at a point on

the screen in the absence of obstacle then I./4 will be the intensity at the edge of geometrical
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shadow. If we move inside the geometrical shadow region the intensity decreases and
diminishes to zero rapidly.

7.11 GLOSSARY

Annular — ring-shaped, forming a ring.

Aperture — an opening, a gap or a space through which light passes in an optical or
photographic instrument.

Ascribe — attribute or impute, regard as belonging.
Attribute — ascribe to or regard as the effect of (a stated cause).

Convention — general agreement, esp. on social behaviour etc. by implicit consent of the
majority, a custom or customary practice esp. an artificial or formal one.

Converse — opposite, contrary, reverse.

Depict — to describe.

Distinct — not identical, separate, individual, different in kind or quality, unlike.

Emanate — issue, originate (from a source), proceed.

Evident — plain or obvious (visually or intellectually), manifest.

Illumination — an act to light up or to make bright.

Inflexion — the act or condition of inflecting or being inflected, an instance of this.

Lateral — of, at, towards, or from the side or sides, in direct line.

Monochromatic — light or other radiation of single wavelength, containing only one colour.
Obstruct — block up, make hard or impossible to pass along or through.

Opague — not transmitting light, impenetrable to light.
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Rectilinear — bounded or characterized by straight lines, in or forming a straight line.
Render — cause to be or become, make.

Respectively — in the order mentioned, for each separately or in turn.

Reveal — display or show, allow to appear, disclose, divulge, betray.

Vary — undergo change (become or be different).

7.12 TERMINAL QUESTIONS

1. Calculate the radii and areas of the first two half period zones for a plane wavefront. The
point of observation is at a distance of 1.0 m from theb wavefront and wavelength of light is
4900 A.

2. The diameter of the first ring of a zone plate is 1.1 mm. If plane waves (6000 A) fall on the
plate, where should the screen be placed so that light is focused to a brightest spot?

3. A light of wavelength 5000 A is allowed to fall on a zone plate for which the radius of the
first zone is 3x1072 cm. Find the first three focal lengths for this zone plate.

4. Light of wavelength 5896 A is made to incident on a zone plate placed at a distance of 150
cm from it. The image of the point source is obtained at a distance of 3 m on the other side.
What will be the power of equivalent lens which may replace the zone plate withought
disturbing the set up? Also calculate the radius of the first zone of the plate.

5. For axial point source for a zone plate, a series of images is obtained. If the sharpest image
is obtained at 30 cm and the next sharpest at 6 cm on the other side of the source, calculate
the distance of the source from the zone plate.

6. For a light of wavelength 40004, the brightest image is formed by a zone plate at a
distance of 20 cm for an object placed at a distance of 20 cm from it. Calculate the number of
Fresnel’s zones in a radius of 1 cm of that plate.

7. A point source of A = 5.5 x 10~7m is placed 2 meters away along the axis of a circular
aperture of radius 2 mm. On the other side a screen is moved along the axis from infinity to
closer distances. Calculate the first three positions where minima are observed.

8. A parallel beam of wavelength 6x10" m falls normally on a narrow circular aperture of
radius 0.9 mm. At what distance along the axis will the first maximum intensity be observed?

9. A straight edge is placed at a distance of 50 cm from a slit illuminated by monochromatic
light of wavelength 5000 A. If the distance of the screen from the edge is 1.50 m, calculate
the positions of first, second, third and tenth bright fringe from the edge of the geometrical
shadow. Also find the separation between first-second and second-third bright fringes.
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7.13 OBJECTIVE TYPE QUESTIONS

Q1. The bending of light rays round the corners of an obstacle is called

(@) interference (b) polarization

(c) dispersion (d) diffraction

Q2. For obtaining the diffraction pattern the size of the obstacle should be
(@) 10 mm (b) 10 mm

(c) 10 mm (d)0.1cm

Q3. The phenomenon of diffraction was discovered by

(@) Francesco Maria Grimaldi (b) Isaac Newton

(c) Fraunhofer (d) Huygen

Q4. The tip of a needle does not give a sharp image on the screen because of the following
(a) reflection (b) diffraction

(c) polarization (d) refraction

Q5. Fresnel half period zones differ from each other by a phase difference of
(@) 2n (b) =

(c) m/2 (d) /4

Q6. For a light of wavelength 5x10”'m, a zone plate of focal length 0.5 m is to be constructed.
The radius of first zone will be

(a) 0.25cm (b) 2.5x102 cm

(c) 0.5cm (d) 5x102 cm

Q7. The constant area of half period zone is given by

(@) mbA (b) b /A

(c) A/mb (d) 2A/mb

Q8. The first (principal) focal length of a zone plate has least value for the following colour
(a) red colour (b) green colour

(c) violet colour (d) yellow colour

Q9. The focal length of a zone plate is given by the expression
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r# 2
©2 (@) Zn

Q10. A zone plate behaves like
(a) concave lens (b) convex lens

(c) plane mirror (d) glass plate

7.14 ANSWERS/HINTS

7.14.1 Self Assessment Questions
1. Refer article 7.3, 2. Refer article 7.4, 3. Refer article 7.5,

4. It is given that the radius of n™ zone is given by r, = vnbA = 1.0 cm = 10~?m and the
area of zone, An = bl = 3.14x107" m?

2 _mbA _n T (1072)°
Thus, = =—=-o0orn=n -+ =314 X ——— = 1000
Ap mbh =& Ap 3.14x10~7

5: It is given that A = 5x107" m, b = 1 m and n = 2. If A, is the area of hole of radius rn
containing n-half period zones each of area bk then, we have, An= ntra? = n. b

Substituting the given values in the above equation, we get,
mr?=2xXmX1x5x107 orr, =102 m, thus diameter, d, = 2x103 m.

6: The intensity due to whole wavefront is only one fourth to that due to first half period

zone, therefore, Radius of opening = Radius of first half period zone = Vb1 =
4.47x1072 cm, b = 40 cm (given).

(4.47x1072)* _ (4.47x1072)?
N 40

Thus, A = =5x%x10">cm

ToHint f, = 2 oo = [f2=316x 107 m.

n

8: Hint: If f and /” are the focal lengths for the wavelengths A and A’ then we have

i

_ P Y
f= — and ' = - Dividing we get, f _fa' =1x

6x10~7
—=12m
5%x10~7

9: For maxima we have, x,, = /w = Kv2n — 1, where K = (atb)bl

a

Itis giventhatb=2m,a=1m, 2 = 6000 A = 6x10" m.
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Therefore, K = /le.%?xlﬁm

For first maximum, x1 = Kv1 = 1.897 x 1073 x V1 = 1.897 x 10°m

For second maximum, X2 = Kv/3 = 1.897 x 1073 x /3 = 3.286 x 103m

For third maximum, X3 = Kv/5 = 1.897 x 1073 x /5 = 4.243 x 10™3m

Separation between the two, X4 — X1 = (8.40 — 4.20) X 10°3= 4.20 x 10™*m
7.14.2 Terminal Questions

1. Radii are 7x10“m and 9.9x10"*m respectively, and area of each is 1.54x10°m?, 2. 50 cm,
3.18 cm, 6 cm, 3.6 cm, 4. 1.0 dioptre, 0.0768 cm, (Hint: Power, P = ]lc dioptre where

1 1 - 1 1 A 1 1 A
~=-+-andn, =./fnl,5.a=30 cm (Hint: (Z+Z) = :—%,Thus (;-i‘g) = :—rzland
1 1

(l + l) = 3M), 6. 2500 (Hint: n = ;—iwheref can be calculated by (i + —) =-),7.19.98 m,

a6 12 b)
2
3.076 m, 1.664 m (Hint: n = % G + %) ~n=3.636+ % , For first three positions of

minima, n=4, 6, 8), 8. 1.35 m (Hint: For parallel beam, a=o0, and for first maximum n=1), 9.
X1 =0.173 cm, x2 = 0.300 cm, x3 = 0.66 cm, X10 = 0.533 cm, X2-X1 = B1,= 0.127 cm, B,3=
0.066 cm,

7.14.3 Objective Type Questions
1. (b), 2. (c), 3. (3), 4. (b), 5. (b), 6. (d), 7. (a), 8. (a), 9. (c), 10. (b)
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8.1 INTRODUCTION

If an opaque obstacle is placed between a source of light and a screen then light bends
around the corner of the obstacle into the geometrical shadow. This bending of light is called
diffraction. The phenomenon of diffraction depends on the size of the obstacle and the
wavelength of the light beam.

Diffraction is one particular type of wave interference, caused by the partial obstruction
or lateral restriction of a wave. Not all interferences are diffraction; for example, sound waves
emitted by two stereo speakers will interfere with each other if they are of the same frequency
and have a definite phase relationship, but this is not diffraction. Diffraction will not occur if
the wave is not coherent, and diffraction effects become weaker (and ultimately undetectable)
as the size of obstruction is made larger and larger compared to the wavelength. In well-
defined cases, a diffraction pattern may be observed. It is necessary to mention here that
diffraction is not the same as refraction, although both are phenomena in which a wave does
not propagate in a single direction.

8.2 OBJECTIVES

After studying this unit, you will be able to

e have the basic idea of diffraction and its various classes.

e know the diffraction output at various structure like single, double and multiple slit.
e introduce the plane diffraction grating.

e determine the missing orders for diffraction spectra.

8.3 CLASSES OF DIFFRACTION

Based on the distance between source, aperture and screen, and also on the shape of
wavefront, diffraction pattern is classified into two classes

1. Fresnel Diffraction-If the source of light and the screen are at finite distances from the
diffracting aperture, then the wavefront falling on the aperture will not be plane (spherical
or cylindrical). The diffraction obtained under this type of arrangement is called Fresnel
Diffraction. This type of diffraction is also called near-field diffraction. No lenses are
used to make the rays parallel or convergent.

Fresnel Diffraction is obtained when light suffers diffraction at a straight edge, a thin
wire, a narrow slit etc. Both the size and shape of the pattern depends on the distance
between the diffracting aperture and the screen.

2. Fraunhofer Diffraction-If both the source of light and the screen are effectively far
enough from the aperture so that the wavefronts reaching the aperture and the screen can
be considered plane. Then the source and the screen are said to be at infinite distances
from the aperture. This kind of diffraction is called Fraunhofer Diffraction. This is also
called far-field diffraction.
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Fraunhofer Diffraction is encountered in the case of gratings that contain number of
slits. When the screen is moved, the size of the diffraction pattern changes uniformly
while the shape of the pattern does not change.

8.4 FRAUNHOFER DIFFRACTION DUE TO A SINGLE SLIT

Let AB is a slit of width b, the diffracted beam through the slit is tilted at an angle 0
with respect to straight direction.

Figure 8.1

Path difference between two rays diffracted from two extreme points of slit
= BK = AB sind = b sind

Phase difference = 27” X path difference = 2T”(bsinél)

Let the width AB of the slit be divide into n equal parts. The amplitude of vibration at P due
to the waves from each part will be same, say a. The phase difference between the waves
from any two consecutive parts is

l(2—7zbs,in¢5?j =23, Say
ni A4

Then the resultant amplitude at P is given by

. (ﬂbsine)
asin
A

_asin(nd/2)
~ sin(d/2) Sin(ﬂbsiné’j
ni
L T .
et us put (stmejza
Then asing _ asing _nasine (8.1)

“sin(e/n)  a/n a
Whenn — «, a—0, but the product na remains finite.

Let na=A

The resultant intensity at P, being proportional to the square of the amplitude, is
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- 2
| —R2 = A{ﬂj ....... (8.2)
a
Condition for Maxima
R— ASinO! —é a_a_3+a_5_a_7+
a a 3t 51 71 T
H 2 4 6
R_AsINa o o o (8.3)
o 31 51 71
For a=0.R=A

This is the intensity of central maximum
T . H
o :[st.ngj:oorsmezo

Condition for Minima

sina
o

—oorsina=0, but ¢ #0

a =xtmzx, Where m has an integral value 1, 2, 3 except zero
So (%bsingjzimﬂ:bsinazimi ....... (8.4)

This equation gives the position of first, second, third etc. minima form =1, 2, 3 etc

Secondary Maxima

dar _,
do
. 2
or i /_\Z(Smaj =0
da a
2sin —sin
or AZ( S ajacowzs a_,
a a
aCOSa—Sina:c)

a2

acosa—sina =0

a=tana =y (say)

y=candy=tana
The maxima will occur when

37 57 Trn

&=——,—(—,—(—
2 2 2
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or a:(2n+1)% n=123.. . (8.5)

These are points of secondary maxima

. 2
SINx
| = |0( j ....... (8.6)
(24
Put a:3—”,5—”,7—” etc.
2 2 2
4 4
I, 970 1, 5,2 0 1s= 79 > 1, etc
Vs
1 \ y S
7. 7, \ f, /.
e R P e AW AL e [/
R 2T T T 2 ST
()
(h)
Figure 8.2

8.5 FRAUNHOFER DIFFRACTION DUE TO DOUBLE SLIT

Let a parallel beam of monochromatic light of wavelength A be incident normally upon
two parallel slits AB and CD, each of width b and their separation as d. The distance between
the corresponding points of two slits will be (b+d).

! Sf g - P
b+d e o
l c K o

Dig,

Figure 8.3

Suppose each slit diffracts the beam in a direction making an angle 6 with the direction of
incident beam. From the theory of diffraction at single slit, the resultant amplitude will be

A Sina

o
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Where a= 7Sing
A
Now consider the two slits equivalent to two coherent sources, placed at the middle points Sy
and Sqof the slits and each sending a wavelet of amplitude ASina
[24

Therefore, the resultant amplitude at point P on the screen will be the result of the

interference between two waves of same amplitude A S and having a phase difference §.
(24

=~ Path difference between the wavelets coming from S; and Szin direction 6 is given by

S2K = (b+d) sinf
Phase difference = 277[ x path difference = 2Tﬁ(b +d)sing)=2p

Resultant amplitude R at point P can be obtained by vector addition method as

=2 2
I :R2:4A2w ....... (8.7)
(94

Sin‘a
a2

Here gives the diffraction pattern due to each individual slit and COSZﬂ gives the
Sin‘a

6KZ

having alternate minima and secondary maxima of decreasing intensity on either side.

interference pattern due to double slit. gives a central maximum in the direction = 0,

The minima are obtained in the directions given by

Sina =0 or o=+ mn
b Sind
a =
A
bSin=tmo ... (8.8)

Where m =1, 2, 3.... (except zero).

The term Cos® 3 in the intensity pattern gives a set of equidistant dark and bright fringes.
Coszﬂ =1

p=xnr
%(b+d)sin<9:in7r

(b+d)sind=tnt . (8.9

Where n = 0, 1, 2, 3...., correspond to zero-, first-, second- etc. order Maxima.
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8.5.1 Missing Orders

In the output intensity pattern of a double slit, for certain values of d, few interference
maxima become absent.

As, the directions of interference maxima are given by

(b+d)sin0=ntr L. (8.10)
The directions of diffraction minima are given by
bsin@=mi L. (8.11)

If the values of b and d are such that both the equations are satisfied for the same value of a,
then a certain interference maximum will overlap the diffraction minimum and hence the
spectrum order will be missing (absent).

Dividing equation (8.10) by equation (8.11), we get,

b+d __n (8.12)

b m

If b=d

1:2 orn=2m. If m=1,2,3....... etc., thenn=2,4,6....... etc
m

This means that the 2, 4, 6 etc. orders of interference maxima will be missing in the
diffraction pattern. Thus the central diffraction maxima will have three interference maxima
(the zero order and two first-orders).

If d=2b

bZZb:% orn=3m.If m=123...... etc, n=3,6,9... etc

This means that 3rd, 6th, 9th etc, orders of interference maxima will be missing in the
diffraction pattern. On both sides of the central maximum, the number of interference
maximum is 2 and hence there will be five interference maxima in the central diffraction
maximum.

8.6 FRAUNHOFER DIFFRACTION AT CIRCULAR
APERTURE

The problem of diffraction at a circular aperture was first solved by Airy in 1835. The
amplitude distribution for diffraction due to a circular aperture forms an intensity pattern with
a bright central band surrounded by concentric circular bands of rapidly decreasing intensity
(Airy pattern). The 1st maximum is roughly 1.75% of the central intensity. 84% of the light
arrives within the central peak called the airy disk

153



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

Let us consider a circular aperture of diameter d is shown as AB in figure below. A
plane wave front WW’ is incident normally on this aperture. Every point on the plane wave
front in the aperture acts as a source of secondary wavelets. The secondary wavelets spread
out in all directions as diffracted rays in the aperture. These diffracted secondary wavelets are
converged on the screen SS’ by keeping a convex lens (L) between the aperture and the
screen. The screen is at the focal plane of the convex lens. Those diffracted rays traveling
normal to the plane of aperture [i.e., along CPo] are get converged at Po.

Figure 8.4
.
w’ .

_ A 18 CIIe|y Py
—_— WI , R ="
_— [ y — X
—_— \ P o —
—.-—'. d III == I’ g - - --\-.\-- + PU
B E— cl - o
—_— . - ‘El' I\.Il i___?‘__.

W B \L.f
L
. S
Figure 8.5

All these waves travel some distance to reach Po and there is no path difference between these
rays. Hence a bright spot is formed at Po known as Airy’s disc. Pg corresponds to the central
maximum.

Next consider the secondary waves traveling at an angle 0 with respect to the direction
of CPo. All these secondary waves travel in the form of a cone and hence, they form a
diffracted ring on the screen. The radius of that ring is x and its center is at Po. Now consider
a point P1 on the ring, the intensity of light at P1 depends on the path difference between the
waves at A and B to reach P1. The path difference is BD = AB sin 0 = d sin 6. The diffraction
due to a circular aperture is similar to the diffraction due to a single slit. Hence, the intensity
at P1 depends on the path difference d sin 0. If the path difference is an integral multiple of A
then intensity at P1 is minimum. On the other hand, if the path difference is in odd multiples
of images, then the intensity is maximum.

ie., d sin @ = nJ, for minima ... (8.13)

and dsin 0= (Zn—l)% , formaxima ... (8.14)

154



PHY (N)-220 Optics &
& PHY (N) - 220L LABORATORY COURSE

Wheren =1, 2, 3... etc. n = 0 corresponds to central maximum.

The Airy disc is surrounded by alternate bright and dark concentric rings, called the
Airy’s rings. The intensity of the dark ring is zero and the intensity of the bright ring
decreases as we go radially from P on the screen. If the collecting lens (L) is very near to the
circular aperture or the screen is at a large distance from the lens, then

Sinezez% ....... (8.15)

Where, f is the focal length of the lens.

Also from the condition for first secondary minimum [using equation (8.13)]
Sinezezg ....... (8.16)

Equations (8.15) and (8.16) are equal

X_Aopx A (8.17)
fd d

But according to Airy, the exact value of x is

1.22f2
X =
d

Using equation (8.18) the radius of Airy’s disc can be obtained. Also from this equation we
know that the radius of Airy’s disc is inversely proportional to the diameter of the aperture.
Hence by decreasing the diameter of aperture, the size of Airy’s disc increases.

8.7 DIFFRACTION DUE TO A PLANE DIFFRACTION
GRATING OF N PARALLEL SLITS

Figure 8.6

Here, S1, Sa, Ss..... Snare N narrow slits, in between points A and B. Let b= width of slit, d=
width of opaque part between two slits.

The amplitude from each slit in the direction 0 is
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_Asina
a

Ry

Where o = %sine (As derived, in case of Single slit Fraunhofer diffraction)

The path difference between the wavelets from S; and S; in the direction 0 is
S,K, =(b+d)siné

Hence the phase difference between them
277z(b+d )sind =2/, say

If N be the total number of slits in the grating, the resultant amplitude in the direction of 6
will be

3 sinNﬁ_[AsinaJsinNﬁ _______ (8.19)
- % sing U o« sing
Thus, the resultant intensity at point P is
| =R2 = Az(sinan sinng) (8.20)
a sing

- 2 . 2
The factor Az(mj gives the intensity distribution due to single slit, while (s”_”\'ﬂﬂj
o sin

gives the distribution of intensity in the diffraction pattern due to the interference in the
waves due to N slits.

Principal Maxima

|—R?_ Az(sinajz(sin Nﬁ]2
a sing
The intensity will be maximum when
sinf=0= p==xnr
Where, n=0,1,2,3.....
This result in

sinNB _ 0 (ndeterminate)
sing 0

Applying L’ Hospital rule

d .
. ——(sinN
m sinNg _ Lim dﬂ(sm F)

B—oinz sinIB p—otnz i(sin,ﬁ)

dg
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Lim N cosNg —+N
B>tz COS L[

This result in

| - Az(sinaTNz
a

The condition for principal maxima is
sinf =0 orf=+nx
Z(b+d)Sing = +nx
A
(b+d)Sind=tn2 L. (8.21)

For n =0, we get 6 = 0 and this gives the direction of zero order principal maxima. The value
of n =1, 2, 3 etc. gives the direction of first, second, third etc. order principal maxima.

Minima

R Az(sinajz(sin Nﬁj2
a sing
The intensity will be minimum when
sinNg =0butsing =0
Therefore, NG=+tm©7Z (8.22)
8.7.1 Missing Orders

As the resultant intensity due to N-parallel slits (plane diffraction grating) is given by
|—R?_ Az(sinaj2 sinNg )
a sing

Where, a= %sine

And ﬂ:%(b+d)sin9
Now the direction of principal maxima in grating spectrum is given as

(b+d)Sing=n2 . (8.23)

Further the direction of minima of a single slit pattern is

bSing=ma .. (8.24)

Wherem=1, 2, 3......
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If both the conditions are simultaneously satisfied, a particular maximum of order n will be
absent in the grating spectrum, these are known as absent spectra (or missing order
spectrum).

Dividing equation (8.23) by equation (8.24), we get

b+d _n . (8.25)
b m

If b = d, then 2", 4", 6" etc. orders maxima will be missing in the grating diffraction pattern.
If d = 2b, then 3", 6™, 9" etc. orders maxima will be missing in the grating diffraction pattern.
8.7.2 Maximum Number of Order Available in a Grating

The grating equation is (b+d)Sind=n4

h= w ....... (8.26)

or

Maximum possible value of 0 is 90°.
Therefore, Maximum possible order will be

_(b+d)Sin90 (b+d)
max ﬂ, /1

8.8 SOLVED EXAMPLES

Example 8.1: A single slit is illuminated by two wavelengths A1 and X2. One observes that
due to Fraunhofer diffraction the first minimum for A1 coincides with the second diffraction
minimum for A2. What is the relation between A1 and Ao.

Solution: In a single slit diffraction pattern, the direction of minimum intensities are given as

asind=x=mA, ,wherem=1,2,3 .....

Hence for m = 1, we have, asind=+/4,
and for m = 2, we have, asingd ==£24,
Equating above two equations, we get, M= A2

Example 8.2: In a double slit Fraunhofer diffraction pattern, the screen is placed 170 cm
away from the slits. The width of the slit is 0.08 mm and slits are 0.4 mm apart. Calculate of
the wavelength of light, if the fringe width is 0.25 cm. Also find the missing order.

Solution: In a double slit Fraunhofer diffraction pattern, the fringe width is given by-

DA
W=——
2d

Here D=170 cm=1.7 m, W= 0.25 cm= 2.5 x 10°m, a=0.08 mm =8 x 10° m and b = 0.4 mm=
4x10%m,2d=b=4x10*m
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A= ZdTW =0.5882 x 10%=5882 A

The condition for missing order is-

a+b n a+b 8x10° +4x10™*
=—— Or Nn= m = — m= 6m
a m a 8x10

n=6m

Hence the missing orders are 6, 12, 18, 24, 30.....

8.9 SUMMARY

The basics of the diffraction phenomena along with various classes of diffraction have
been discussed. The Fraunhofer diffraction for single slit, double slit, circular aperture and N
slits (grating) have been discussed in the details. The calculation for the intensity of the
principal maxima, secondary maxima and minima has been derived. Their relative
comparison in terms of their intensities has also been made. Determination of missing orders
in case of double slit and N slits (grating) diffraction pattern has also been made.

8.10 GLOSSARY

Fraunhofer Diffraction- Far field diffraction
Grating- Fine and equidistant slits in large number

Missing Order- Absent maxima
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8.13 TERMINAL QUESTIONS

Objective Type

1. Grating element is equal to
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A. nA/sinf B. n\A C. sinf D. cosf

2. In Fraunhofer’s diffraction, incident light waves have type of wavefront.

A. Circular B. Spherical C. Cylindrical D. Plane

3. In single-slit experiment, if the red color is replaced by blue then

A. The diffraction pattern becomes narrower and crowded together

B. The diffraction bands become wider

C. The diffraction pattern does not change

D. The diffraction pattern disappears.

4. On increasing the width of a single slit, the width of the central maximum
A. increases B. remains constant C. decreases D. becomes zero
5. Maximum number of orders possible with a grating is

A. Independent of grating element

B. Inversely proportional to grating element

C. Directly proportional to grating element

D. Directly proportional to wavelength.

6. When white light is incident on a diffraction grating, the light diffracted more will be

A. Blue B. Yellow C. Violet D. Red
7. Diffraction phenomena are usually divided into classes.
A. One B. Two C. Three D. Four.

8. Light of Wavelength 5000 A is incident on a single slit of width 0.1 mm. The screen is at a
distance of 2 m from the slit. The width of the central bright fringe on the screen will be

A. 18 mm B. 36 mm C.20 mm D. 6 mm

9. Light of Wavelength 6000 A is incident normally on a single slit of width 24 x 10 cm.
The angular position of the second minimum from the central minimum from the central
maximum will be -

A. 30° B. 60° C. 90° D. 45°
10. In a diffraction grating, the condition for principal maxima is

A.bsin 8 =nA B.(b+d)sinf=na
C.dsinf=na D.sin 8 =nA.

Long Answer Type

1. Define diffraction phenomena. What do you mean by the Fresnel class and Fraunhofer
class of diffraction?
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Describe Fraunhofer diffraction due to single slit for central maxima and prove that the
relative intensities of the successive maximum are nearly 1:1/22:1/61...

What are missing orders in double slit Faunhofer diffraction? Further in a grating, if the
widths of transparencies and opacities are equal.

Give an account of the diffraction effects produced by a slit. Explain what happens when
the slit width is gradually increased and also when the screen is gradually moved away
from the slit.

Discuss Fraunhofer diffraction at a circular slit; describe the formation of Airy’s disc.
Give the theory of a plain transmission grating. What particular spectra would be absent if
the widths of transparencies and opacities of the grating are equal.

Numerical Questions

1.

A circular aperture of 1.2 mm diameter is illuminated by a plane wave of monochromatic
light. The diffracted light is received on a distant screen which is gradually moved
towards the aperture. The center of the circular path of the light first becomes dark when
the screen is 30 cm from the aperture. Calculate he wavelength of light.

Light of wavelength 5500 A falls normally on a slit of width 22 x 10-5 cm. Calculate the
angular position of the first two minima on either side of the central maximum.

Plane wave of wavelength 6 x 10~ c¢m fall normally on a slit of width 0.2 mm. Calculate
(i) the total angular width of the central maximum (ii) the linear width of the central
maximum on a screen placed 2 m away.

Calculate the angle at which the first dark band and the next bright band are formed in the
Fraunhofer diffraction pattern of a slit 0.3 mm wide (A = 5890 A).

In a single slit diffraction pattern the distance between the first minimum on the right and
first minimum on the left is 5.2 mm. The screen on which the pattern is displayed is 80
cm from the slit and the wavelength is 5460 A. Calculate the slit width.

Calculate the wavelength of light whose first diffraction maximum in the diffraction
pattern due to a single slit falls at 8 = 30° and coincides with the first minimum for the red
light of wavelength 6500 A.

Light of wavelength 600 nm is incident normally on a diffraction grating. Two adjacent
maxima occur at angles given by sin 6= 0.2 and sin 6 = 0.3. The fourth-order maxima are
missing. (a) What is the separation between adjacent slits? (b) What is the smallest slit
width this grating can have? For that slit width, what are the (c) largest, (d) second
largest, and (e) third largest values of the order number m of the maxima produced by the
grating?

A diffraction grating is made up of slits of width 300 nm with separation 900 nm. The
grating is illuminated by monochromatic plane waves of wavelength A= 600 nm at normal
incidence. How many maxima are there in the full diffraction pattern?

8.14 ANSWERS

Objective Type
1(A), 2(D), 3(A), 4(C), 5(C), 6(C), T7(C), 8(C), 9(A), 10(B)
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UNIT 9: RESOLUTION AND RESOLVING POWER
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9.1 INTRODUCTION

When the two objects are very near to each other or they are at very large distance
from our eye, the eye may not be able to see them as separate. If we want to see them
separate, optical instruments such as telescope, microscope etc. (for close objects) and prism
and grating etc. (for spectral lines) are employed. Even if we assume that the instruments
employed are completely free from all optical defects, the image of a point object or line is
not simply a point or line but it is a diffraction pattern with a bright central maximum and
other secondary maxima, having minima in between of rapidly decreasing intensity. Thus an
optical instrument is said to be able to resolve two point objects if the corresponding
diffraction patterns are distinguishable from each other.

The ability of an optical instrument to resolve (i.e. view separately) the images of two close
point source is known as resolving power.

Limit of Resolution: The minimum separation between two objects that can be resolved
by an optical instrument is called the limit of resolution (or just resolution).

9.2 OBJECTIVE

After studying this unit, you will be able to —

e have the basic idea of resolution.

e  know the Rayleigh criterion of resolution.

e calculate the resolving power of various instruments/ accessories like grating, prism,
telescope and microscope.

9.3 RAYLEIGH CRITERION OF RESOLUTION

According to Rayleigh, two close point objects are said to be just resolved if the
principal maxima of one coincides with the first minima of the other and vice-versa.

) ()
RESOLVED RAYLEIGH UNRESOLVED
CRITERION

Figure 9.1
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9.4 RESOLVING POWER OF TRANSMISSION GRATING

Let A andA+dA are two closely spaced spectral lines (wavelengths).The resolving power of the
grating is defined as the ratio of wavelength (1) to the difference di of the wavelengths to be

resolved
A

Tda
The direction of n™ principal maxima for wavelength A is given by

(b+d)sind=nA

R.P.

The direction of n'" principal maxima for wavelength A+d is given by

(b+d)sin(@+dd)=n(A+dd) ... (9.1)
4 M
Atdl ——— — P
F: P,
—do N
o o
B \Grating Screen| N
Figure 9.2

The minima in the direction 0 is given by (due to wavelength A+d\)
N(b+d)sin(@+d&)=m(A+dA)

Here m can have all integral values except 0, N, 2N, 3N......

(Because for these values of m the condition of maxima is satisfied)

The first minimum adjacent to n™ principal maxima in the direction (6+d6) can be obtained
by putting m as (nN+1) (due to wavelength 1)

N (b +d)sin(8+d@) = ("N +1)(A)

) (N +1)2

(b+d)sin(6+dé .

Comparing equation (1) and (2)

n(i+dﬂ)zw
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A
or n/1+nd/1:nﬁ,+ﬁ
nd;tzi :>i=nN ....... (9.9
N dA

Since resolving power is directly proportional to N, it means that larger will be the number of
lines per cm of a grating greater will be the resolving power.

9.5 RESOLVING POWER OF PRISM

An example of the use of Rayleigh criterion for the resolving power of a rectangular
aperture is found in the prism spectroscope, if we assume that the face of the prism limits the
refracted beam to a rectangular section. The resolving power of a prism is defined as its
capacity to form separate spectral lines of two wavelengths which are very near to each other.
It is measured by A/dA, where A is the wavelength of either of them or mean wavelength and
dA is the difference in their wavelengths.

Expression for Resolving Power

Let ABC be the section of prism as shown in Fig. 3. A parallel beam of light consisting
of wavelengths A and A + dA is incident on the prism placed in the minimum position for
these two wavelengths (this is possible because the wavelength difference dA is very small).
BD represents the incident plane wavefront. As the two wavelengths are refracted by
different amounts in passing through the prism, therefore CE and CF represent the
corresponding emergent wavefronts. Let dObe thedifference in deviation for the light rays of
wavelengths A and (A + dA) respectively. The telescope objective of thespectrometer focuses
the wavefront CE at I1 and CF at l2. Thus I1 corresponds to the principal maximum for
wavelength A and A + dA.

IS S I

Figure 9.3

The face AC ofthe prism acts like a rectangular aperture. Hence the Rayleigh criterion can be
applied here. According to Rayleigh's criterion, the two wavelengths can be resolved by the
prism if the principal maximum of one falls on the first minimum of the other in the same
direction.

Let p and (n — dp) be the values of refractive indices of the prism, for wavelengths A and
At+dA respectively.
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Equating the path covered by ray 1 and 2

DA+ AE = u(BC)=ut (forr) ... (9.4)

DA+ AF = (u-du) BC= (u-dwt  (fori+dA) ... (9.5)

Equations (9.4) and (9.5) are obtained by applying the Fermat’s principle which states that for
any wavelength all the actual optical paths between the incident and the emergent wavefronts
must be equal. Subtracting equation (9.5) from equation (9.4), we get,

AE — AF=du.(AC) = dy.t
From the geometry of the figure

AE - AF=AE - AG = du.t (Since AF = AG, approximately)
or GE =du.t

If GE = A, then according to the theory of Fraunhofer diffraction, Rayleigh criterion of
resolution is satisfied and spectral lines of wavelengths A and A + dA, will be just resolved.

Thus A= tdu

Dividing both sides by dA, we obtain the expression for the resolving power of prism will be

A _[(du
iam L o9

From equation (3), it is evident that the resolving power of a prism varies directly as

(i) t, the width of the base of the prism, and
(i) dp/dA, rate of change of refractive index with wavelength.

9.6 RESOLVING POWER OF TELESCOPE

A telescope is used to see the distinct objects. The details which it gives depend on the
angle subtended at its objective by two point objects and not on the linear separation between
them. The resolv