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1.1    INTRODUCTION 

At the outset it is imperative to know about the course title- The Thermodynamics. 

Thermodynamics is a branch of physics which deals with the energy and work of a system. It 

was originated in 19th century as scientists were first discovering how to build and operate 

steam engines. Thermodynamics does not take into account the atomic constitution of matter 

i.e. its structure etc., but it deals only with the large scale response of a system which we can 

observe and measure in experiments. Small scale molecular interactions are described by 

the kinetic theory of gases. The methods complement each other; some principles are more 

easily understood in terms of thermodynamics and some principles are more easily explained 

by kinetic theory. Thermodynamics is a perfect mathematical science describing the inter-

relationship between heat and any other form of energy viz., electrical, mechanical, chemical, 

magnetic etc. The basic concept is the transformation of heat into mechanical work through 

any bulk material. Thermodynamics has innumerable applications in physics, chemistry & 

engineering sciences. While studying thermodynamics, you will learn about some basic terms 

like temperature, thermodynamical system, internal energy, thermal equilibrium and about 

certain thermodynamical processes such as isothermal and adiabatic processes etc. You will 

also know here about the concept of a system and its surroundings. In our day to day life we 

often come across the examples of isothermal and adiabatic processes. The melting of ice at 

zero degree centigrade temperature and that of sudden burst of a tyre are the practical examples 

of isothermal and adiabatic processes respectively. The understanding of the different 

thermodynamic process will help you to know the physics behind many such practical 

examples. There are three principal laws of thermodynamics besides the one called the zeroth 

law. Each law leads to the definition of thermodynamic properties which help us to understand 

and predict the operation of a physical system.  In the present unit you will become familiar 

with the zeroth law which introduces the concept of temperature and relates it to the thermal 

equilibrium. 

 

1.2 OBJECTIVES  

By the end of this unit, you should be able to- 

 Get a clear picture of the system and its surrounding in thermodynamics  

 Know about the macroscopic and microscopic properties of the system   

 Explain the change of state of the system 

 Explain the concept of heat and temperature 

 Know the condition of thermal equilibrium 

 Enunciate zeroth law of thermodynamics  

 Interpret quasistatic, isothermal and adiabatic processes 

 Solve simple numerical problems based on the above concepts 
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1.3 SYSTEM & SURROUNDINGS 

A system may be defined as a definite quantity of matter (solid, liquid or gas) bounded by some 

closed surface. The simplest example of a system is a gas contained in a cylinder with a 

movable piston that can be heated by a burner. Here the system is the gas and the surroundings 

are piston and burner. When a system is completely uniform throughout such as a gas, mixture 

of gases, pure solid, a liquid or a solution you will say it is 

homogeneous system, but when it consists of two or more phases 

which are separated from one another by definite boundary surface 

it is said to be heterogeneous system e.g., a liquid and its vapor, two 

immiscible or partially miscible liquids. 

Anything which is outside this system and can exchange energy with 

it and has a direct bearing on its behaviors called its surrounding. 

The complete system and its surrounding together is called universe. 

Further you can distinguish the system in three classes as discussed 

in the next article.  

Boundary or wall is the surface that separates the system from the surroundings. This wall or 

boundary may or may not allow interaction between the system and surroundings. 

 

1.3.1 THERMODYNAMIC SYSTEM 

 

The thermodynamic state of a system is determined by four observable properties. These 

properties are its composition, pressure (P), volume (V) and temperature (T). 

On the basis of the type of their boundaries, the systems can be categorized as follows: 

 

i. Open system: A system which can exchange both energy and matter with its 

surrounding is called an open system e.g., air compressor: air at low pressure 

enters and air at high pressure leaves the system i.e., there is an exchange of 

matter & energy with the surrounding. 

ii. Close system: A system which can exchange only energy (not matter) with the 

surrounding is called a closed system e.g., gas enclosed in a cylinder expands 

when heated and drives the piston outwards. The boundary of the system moves 

but the matter (gas) in the system remains constant. 

iii. Isolated system: A system which is thermally isolated and has no exchange of 

heat or works with the surrounding is called isolated system e.g., a beverages or 

any other liquid contained in a thermos flask . 

 

 

 

Fig.1.1
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1.3.2 MACROSCOPIC AND MICROSCOPIC SYSTEMS 

The behavior of the system can be described in two different ways namely macroscopic and 

microscopic. Macroscopic properties can usually be directly experienced by our senses. These 

properties describe the gross characteristics of the system and can directly be measured in the 

laboratory. Macroscopic properties are not concerned with the structure of the system 

(chemical composition). Pressure, temperature, volume, internal energy, entropy etc. are few 

examples of these properties. A macroscopic system is one whose state can completely be 

described in terms of its macroscopic properties or coordinates. 

Microscopic properties cannot be directly experienced by our sense of perception. These 

properties describe the internal structure (atoms & molecules) of the system and cannot be 

measured directly in the laboratory. 

In fact the macroscopic & microscopic properties are simply the different ways of describing 

the same system so they are related to each other e.g., the pressure of a gas is related to the 

average rate of change of momentum due to all the molecular collisions taking place on a unit 

area. Higher is the rate of change of momentum, higher will be the pressure. Here the pressure 

is a macroscopic property, whereas the rate of change of momentum due to molecular collisions 

is a microscopic property. Similarly the temperature of a gas (macroscopic property) is related 

to the average kinetic energy of translational motion of its molecules which is microscopic. 

1.3.3 TEMPERATURE AND HEAT  

The temperature of a body is a measure of its hotness or coldness . In fact we distinguish hot 

bodies or cold bodies by our sense of touch. That is by touching we can roughly distinguish 

between a hot and a cold body. 

 Let us consider two bodies A and B kept in contact such that A is at higher temperature. After 

some time they both acquire the same temperature which is approximately in between the two 

temperatures. It means there is something which has been transferred from A to B. This 

something is called Heat. Thus heat is that physical entity which is transferred from one body 

to other because of a temperature difference between them. In fact, heat is a form of energy 

which is transferred from one body to other because of a temperature difference between them. 

We can explain it with a simple example of water level. If two vessels are filled with water up 

to the levels of different height and are inter connected, the water will always flow from the 

higher level to the lower level side. Similarly, heat will flow from a body at higher temperature 

to a body at lower temperature when they are brought in contact with one another. 

There is a distinction between temperature of a body and the heat that it contains. In fact the 

heat that a body contains depends upon its mass as well as upon its temperature. For example 

the sparks from a blacksmith’s hammer are white hot (at very high temperature) but they do 

not burn the hand since their mass is very small, therefore contain little heat. On the other hand 

a jug of hot water (at a much lower temperature than the spark) causes a severe burn because 

it contains more heat. 
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Hence, the flow of heat depends only on the temperature difference but the quantity of heat 

flown does not depend only on temperature difference but also depends on mass and specific 

heat of the body. For example, if a hot body and a cold body are put in mutual contact, heat 

flows from hot to a cold body until they attain a common temperature. It means the temperature 

of a hot body falls and that of cold body rises. But these temperature- changes are not 

necessarily equal because the masses (and also the specific heats) of the two bodies may be 

different. 

1.3.4 INTERNAL ENERGY 

The energy content of a system is called its internal energy. The internal energy of a system is 

the energy contained within the system, excluding the kinetic energy of motion of the system 

as a whole and the potential energy of the system as a whole due to external force fields. It 

keeps account of the gains and losses of energy of the system that are due to changes in its 

internal state.  It is the sum of following forms of energy of the system- 

(i) Kinetic energy due to translational, rotational and vibrational motion of molecules, 

all of which depend only on the temperature 

(ii) Potential energy due to intermolecular forces, which depends on the nature and 

separation between the molecules and 

(iii) The energy of electrons & nuclei 

In practice, it is not possible to measure the total internal energy of a system in any 

given state rather only change in its value can be measured. 

 

Let us formulate the expression for internal energy. Consider a thermodynamic system interact 

with its surrounding and passes from an initial equilibrium state i to a final equilibrium state f 

through a certain process (path) Let Q be the heat absorbed by the system and W the work done 

by the system. W is taken positive when work is done by the system during this process. Q is 

considered positive when heat is taken by the system. The Quantity (Q-W) can be calculated 

here. It is experimentally found that if the system be carried from the state i to f through 

different paths, the quantity (Q-W) is found to be the same although Q and W individually are 

different for different paths. Thus when a “thermodynamic system passes from state i to f the 

Quantity (Q-W) depends only upon the initial and final (equilibrium) states and not on the path 

taken by the system between these states”. The quantity (Q-W) is defined as the “change in the 

internal energy” of the system. 

 

Uf –Ui =  ∆𝑈  = Q -W                                       

 (1.1) 

 

Here U (internal energy) is a function of thermodynamical co-ordinates i.e.  

   

U = f (p, v, t)                                     

 (1.2) 

 

https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Energy
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Eq. 1.1 can be used to measure the change in internal energy of the system, if some arbitrary 

value is assumed as the value of the initial state, its value in any other state can be computed 

from the above equation. However in practice the change in internal energy is only important. 

Experimentally it has been observed that the internal energy of a system is a function of states 

only and does not depend upon the path by which the state has been achieved. 

 

Self Assessment Questions (SAQ) 1  

 

Explain the followings: 

1. Thermodynamics 

2. Thermodynamic system 

3. Microscopic properties 

4. Macroscopic properties 

5. Temperature 

6. Internal Energy 

1.4. THERMAL EQUILIBRIUM 

If a system 1 with temperature T1 and system 2 with temperature T2 are in thermal contact, 

there will be exchange of heat between the two systems if there is a temperature gradient (i.e. 

when T1 is not equal to T2). The process of heat exchange will continue until both the 

temperature become equal. i.e. T1 = T2. Then the two systems are said to be in thermal 

equilibrium.           Hence two systems in thermal contact or a system in thermal contact with 

the surrounding attain thermal equilibrium by attaining the same temperature  

(Fig. 1.2) 

 

 

 

 

 

 

 

 

 

1.5 EQUATION OF STATE 
 

An equation of state is a thermodynamic equation relating state variables which describes the 

state of matter under a given set of physical conditions. In other words the equation of state is 

the known relationship between the thermodynamic variables or properties. It is an equation 

which provides a mathematical relationship between two or more state functions associated 

with matter such as its temperature, pressure, volume and internal energy. 

Fig.1.2
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With the above description of equation of state the Boyle’s laws, Charles’ law, Dalton’s law of 

partial pressures are all regarded as examples of equation of state. Some other examples of 

equation of state are given below. 

 

1.5.1 THE IDEAL GAS EQUATION OF STATE 

 

The equation of state for an ideal gas is    PV = nRT                                               

 (1.3) 

where P is the pressure, V is the volume, R is the universal gas constant (R=8.314 JK-1mol-1), 

T is temperature in Kelvin, and n is the number of moles of the gas. 

 

1.5.2 VAN DER WAALS EQUATION OF STATE 

 

The equation of state for real gases, can be expressed by van der Waals Equation which is  

 

(P + 
a

V
 ) (V − b)  = RT                                                      

 (1.4) 

 

where quantities a and b are constants for a particular gas but differ for different gases. There 

are many more equations of state that you may come across besides these two given above. 

 

1.6 ZEROTH LAW OF THERMODYNAMICS: CONCEPT OF 

TEMPERATURE 

 

Let us analyse a situation in which two systems are separated by a diathermic (good conductor 

of heat) and adiabatic (bad conductor of heat) walls. Now Let us consider the systems A, B, C 

in which A and B are isolated from each other through an adiabatic wall and both are in contact 

with C through diathermic wall as is shown in fig.1.3. As time passes A and B will separately 

attain equilibrium with C. Now if the diathermic and adiabatic walls are interchanged, no 

further                                                                                                    change in states of any of 

the three systems will occur. This indicates that system A and B themselves are in thermal 

equilibrium before the walls are interchanged. This experimental observation was first 

developed by R.H Fowler in 1931 and was named as Zeroth law of thermodynamics which can 

be stated as follows: 

“If two systems are separately in thermal equilibrium with a third one, then they themselves 

are in thermal equilibrium with each other.” 
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Fig. 1.3 

This law in a more general form, can be expressed as: 

“If a system A is in thermal equilibrium with each of the several other systems B,C,D,E etc., 

separately then any pair among B,C,D,E etc., will be in mutual thermal equilibrium i.e., D and 

C or B and D or B and C are always in equilibrium.” 

Zeroth law permits us to assert that all systems in thermal equilibrium with each other have a 

common property. We call this common property as temperature. The temperature is a property 

of a system that determines whether or not a system is in thermal equilibrium with other 

systems. Equal temperatures imply thermal equilibrium; unequal temperatures imply its 

absence. Thus the zeroth law gives the concept of temperature. 

Let us analyse the concept of temperature in mathematical terms. Let two systems A and B 

with coordinates (xA, yA) and (xB, yB) respectively, be in equilibrium as shown in Fig.1.3 (b). 

Now if we remove A from contact of B and change its state so that the new variables become 

(xA’, yA’) and again make contact with B to find that A is still in equilibrium with B, zeroth 

law tells us that the two states of A viz., (xA, yA) and (xA’, 

yA’) are in equilibrium. In this way we can find a number 

of states of A as (xA, yA), (xA’, yA’), (xA”, yA”) etc., all of 

which are in thermal equilibrium with the same state (xB, 

yB) of B so that all these states of A are in thermal 

equilibrium with each other and thus, have the same 

temperature. Now if all these states of A are plotted on a x 

– y graph they will form a curve as shown in Fig. 1.4, the 

locus of all those points which represent states at same 

temperature is called an isotherm. All the points on an 

isotherm represent states in equilibrium with each other. A 

similar isotherm of B, all points of which are in thermal equilibrium with any of the states of 

isotherm A will be called a corresponding isotherm. A process in which all thermodynamic 

coordinates but the temperature are changed is called an isothermal process i.e., in an 

isothermal process the pressure or volume of the system may change but the temperature of the 

system does not change. 

 

Let us now give the mathematical presentation of the concept of temperature.  Suppose two 

systems A and B are in thermal equilibrium. At equilibrium both the systems assume fixed 

Fig.1.3
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coordinates. Any change in the state of one system will change the state of the second in a 

restricted way. Hence equations of constraint for the two systems A and B in thermal 

equilibrium is based on the fact that coordinates of the one depend upon those of the other and 

thus is written in a combined way as: 

fAB (xA, yA, xB,yB) = 0                                                           

 (1.5) 

Similarly, when A is in thermal equilibrium with B and C separately, we may write 

 

fAB (xA, yA, xB, yB) = 0  and                                   

 (1.6)    

fAC (xA, yA, xC, yC) = 0 

                           

 (1.7)  

Functions fAB and fAC may be quite different from each other. However, from both these 

equations the common value of xA can be obtained as. 

 

xA = f'’AB (yA, xB, yB)   and 

xA = f'’AC (yA, xC, yC) 

 

which give    

f'’AB (yA, xA, yA) – f'AC (yA, xC, yC) = 0                                 

 (1.8) 

 But, from zeroth law, B and C should be in equilibrium. Thus we must have  

fBC (xB, yB, xC,yC) = 0                                   

 (1.9)  

 Eqs. (1.8) and (1.9) represent the same equilibrium conditions and thus they must agree 

with each other. Comparing with eq. (1.9) we must therefore, drop the variable yA from eq. 

(1.8). (In a physical example the co-ordinate yA will cancel out from two sides of equation). 

Thus eq. (1.8) takes the form 

 

f'’AB (xB, yB) – f’AC (xC, yC) = 0  or 

f'’B (xB, yB) = f'’C (xC, yC) = T (say)                                             

 (1.10) 

subscripts A are also dropped as f'’ are functions of B and C only. Eqs. (1.9) and (1.10) show 

that if B and C are in equilibrium, there exists a function f’' of the variables x and y for each 

one, having a common value T and we may write that for any system A in equilibrium with a 

reference system 

f' (x, y) = T            

(1.11) 

This common value T of all these functions is the empirical temperature. The next step is to 

define the difference of temperatures. Let a contact between two systems A and B result in a 

net transfer of energy from A to B. Then A will be said to be at a higher temperature than B at 

their initial states. Thus, the order of temperature may be given by this definition. However, it 

does not give a scale of temperature which may enable us to define some unit for temperature 
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by which different temperatures may be measured. Developing a proper scale of the 

temperature measurements is out of scope of the present unit. For further description on 

temperature measurements you may consult the book mentioned at serial number three in the 

list of suggested reading given in the last section of the unit.  

 

 Self Assessment Questions (SAQ) 2 

(i) What do you mean by thermal equilibrium? Explain. 

(ii) What is equation of state? Give some examples. 

                   

1.7 THERMODYNAMIC PROCESSES 

A system is said to be undergone a thermodynamic process when there is some sort of energy 

change within the system, generally associated with changes in pressure, volume, internal 

energy, temperature, or any sort of heat transfer. 

There are several specific types of thermodynamic processes that often take place (and in 

practical situations) in thermodynamics. Each has a unique trait that identifies it, and which is 

useful in analyzing the energy and work change related to the process. Some important 

thermodynamic processes are explained below. 

 

Adiabatic process: This is a thermodynamic process in which there is no heat transfer into or 

out of the system. For this process, change in quantity of heat is zero. 

 

                                         i.e., during this process ΔQ = 0  

 

Isochoric process: This is a thermodynamic process that occurs at constant volume This 

implies that during this process no work is done on or by the system. 

 

                                          i.e., during this process ΔV =0  

 

Isobaric process: This is a thermodynamic process that occurs at constant pressure. 

                                        i.e., during this process ΔP=0  

 

Isothermal process: This is a thermodynamic process that takes place at constant temperature. 

It is possible to have multiple processes within a single process. A good example would be a 

case where volume and pressure change during a process, resulting in no change in temperature 

and no heat transfer.  

                                          i.e., during this process ΔT =0                     

Cyclic processes: These are series of processes in which after certain interchanges of heat and 

work, the system is restored to its initial state.  

For a cyclic process change in internal energy ΔU=0,  

and if this is put into the first law of thermodynamics which states ΔU =ΔQ - ΔW, 

                                         then for cyclic process Q =W 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 11 
 

This implies that the net work done during this process must be exactly equal to the net amount 

of energy transferred as heat; the stored internal energy of the system remains unchanged. 

 

Reversible process: A reversible process can be defined as one in which direction can be 

reversed by an infinitesimal change in some properties of the system. 

 

Irreversible process: An irreversible process can be defined as one in which direction cannot 

be reversed by an infinitesimal change in some properties of the system. 

 

Quasi-static process: This is a process that is carried out in such a way that at every instant, 

the system departs only infinitesimal from an equilibrium state (i.e. almost static). Thus a quasi-

static process closely approximates a succession of equilibrium states. A process taking place 

at an extremely slow rate can be treated as a Quasi-static process. 

 

Non-quasi-static process: This is a process that is carried out in such a way that at every 

instant, there is finite departure of the system from an equilibrium state. Usually a fast process 

is a non-quasi static in nature.  

 

Let us learn about the adiabatic, isothermal and quasistatic processes in detail: 

 

1.7.1 QUASISTATIC PROCESS 

A finite unbalanced force may cause the system to pass through non- equilibrium states. A 

quasistatic process is defined as the process in which the deviation from thermodynamic 

equilibrium is infinitesimal and all the states through which the system passes can be 

considered as equilibrium states. 

A quasistatic process is an ideal concept which can never be satisfied rigorously in practice. 

However in actual practice many processes closely approach a quasistatic process with no 

significant error. 

1.7.2 ISOTHERMAL PROCESS 

 

When a thermodynamic system undergoes a process under the condition that its temperature 

remains constant then the process is said to be isothermal. 

 

The essential condition for an isothermal process is that the system must be placed in a perfectly 

conduction chamber so that the heat produced or absorbed during the process at once goes out 

or comes in from outside. In this way the temperature will remain constant. But in practice we 

do not find a perfect conductor. Therefore, a perfect isothermal process cannot be obtained. 

  

We can, however, obtain approximate isothermal process if the process is extremely slow. For 

example if a gas filled in a brass cylinder(good conductor of heat) is compressed very slowly 

with the help of a piston. The heat produced by compression gets enough time to go outside 
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the cylinder through its walls. Hence temperature of the gas remains constant i.e., change in 

temperature is zero during the process(∆T = 0). Similarly if the gas is slowly expanded it loses 

energy in doing work against the piston but an equal amount of heat comes in from outside. 

Again the temperature remains constant. 

Graphically Isothermal Process can be represented by the 

curve as shown in Fig.1.5  

If a system is perfectly conducting to the surrounding and 

the temperature remains constant throughout the process, it 

is called an isothermal process. Consider a working 

substance at a certain pressure and temperature and having 

volume represented by the point A, fig.1.5. Now the gas 

expands and its volume attains point B on the curve. 

 

Pressure is decreased and work is done by the working 

substance at the cost of its internal energy and suffers a fall 

in temperature. But the system is perfectly conducing to the 

surrounding, it absorbs heat from the surrounding and 

maintains a constant temperature. 

Thus from i to f the temperature remains constant. The curve i.f is called the isothermal curve 

or isotherm. In going from f to i and the system gives out extra heat to the surrounding and 

maintains the temperature constant. 

Thus during isothermal process the temperature of the working substance remains constant as 

it can absorb heat or give heat to the surroundings. The equation of isothermal process is  

 

PV = constant                             (1.12) 

For an ideal gas undergoing isothermal process the change in internal is zero, i.e., 

 

 (U2 – U1) = 0                                                           (1.13)   

                               

1.7.3  ADIABATIC PROCESS 

 

When a thermodynamic system undergoes a process under the condition that no transfer of heat 

takes place in or out of the system then the process is said to be adiabatic. 

  

Such a process can occur only when the system is perfectly insulated. But such a system is not 

possible and hence a perfect adiabatic change is impossible. We can however obtain  

 

A

B
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approximate adiabatic process in a way that if the process is extremely rapid so that there is 

very little time for the heat to escape as it is suddenly compressed. The heat produced due to 

compression is added to its internal energy and its temperature rises. That is why the bicycle 

pump is heated when the air in it is suddenly compressed. Conversely if a gas is suddenly 

expanded the external work done by it is drawn from its internal energy and its temperature 

falls. When a motor-car tyre bursts the sudden expansion of its air into the atmosphere is 

adiabatic and the tyre is cooled. 

  

Other examples of adiabatic process are the expansion of steam in the cylinder of a steam 

engine and the compression of air in a diesel engine. The compression is so rapid that the 

behavior of the air is adiabatic. 

Graphically adiabatic process can be represented as shown in Fig.1.6. 

 As you know that in adiabatic process when a system undergoes from an initial state i to final 

state f in such a way that no heat leaves or enters the system hence you can write 

∆Q = 0 

 Thus when a system expands adiabatically then W (work done) is positive and   its internal 

energy decreases eq.(1.14), if the system is compressed adiabatically then W is negative. Thus 

in case of compression, internal energy increases eq.(1.15).  

U2− U1 = -W                                            (1.14) 

U2− U1 = - (-W) = W                                           (1.15) 

                                                                         

The equation of adiabatic process is 

P 𝑉𝛾 = constant                                              (1.16) 

                                                                        

where 𝛾 is the ratio of the specific heats of the gas at constant pressure (Cp) to that at constant 

volume (Cv).You will revisit these processes in more detail when you will learn about the first 

law of thermodynamics in next unit. 
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Self Assessment Questions (SAQ) 3  

Explain the following: 

i. Open and closed systems 

ii. Isolated system 

iii. Isochoric process 

iv. Isobaric process 

                      v.   Quasi-static process 

 

1.8   SUMMARY 

In this unit you have learnt some basics for understanding thermodynamics. The initial part of 

the unit is devoted to the understanding of the thermodynamic system and its surroundings. 

Important features of the unit can be summarized in the following points.  

 A thermodynamic system can be represented by the four properties which are its 

composition, temperature, pressure and volume. Further the systems can be 

categorized into three types that is open system, closed system and isolated system 

on the basis of the type of their boundaries. 

  Depending upon the parameters used to describe the state of the system completely 

the system may be macroscopic or microscopic. 

 The temperature of a body is a measure of its  hotness or coldness. Heat is a form 

of energy whose flow from one body to another solely depends upon the 

temperatures difference of the bodies. 

 The internal energy of a system is the energy contained within the system, 

excluding the kinetic energy of motion of the system as a whole and the potential 

energy of the system as a whole due to external force fields. It keeps account of the 

gains and losses of energy of the system that are due to changes in its internal state.  

 Two systems in contact are in thermal equilibrium when there is no exchange of 

heat between them or they maintain the same temperature between them. 

 The equation of state of a system is the known relationship between the 

thermodynamic variables or properties. It is an equation which provides a 

mathematical relationship between two or more state functions associated with 

matter such as its temperature, pressure, volume and internal energy. 

 Zeroth law states that if two systems are separately in thermal equilibrium with a 

third one, then they themselves are in thermal equilibrium with each other. The 

concept of temperature is derived from it. 

 Any change in any one of thermodynamical coordinates (i.e., pressure, volume, 

internal energy / temperature, or any sort of heat transfer) of a system while others 

remaining invariable with time leads to different types of thermodynamical 

processes to happen viz., Isobaric process, Isochoric process, Isothermal process 

and Adiabatic process. 

https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Energy
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 A quasistatic process is defined as the process in which the deviation from 

thermodynamic equilibrium is infinitesimally, small and all the states through 

which the system passes can be considered as equilibrium states. 

These concepts will further help you in understanding the succeeding topics. 

1.9 GLOSSARY 

1 Miscible liquids- A distinct layer between two liquids will not form when you have 

a solution that is labeled miscible. When a distinct layer does form in a 

mixed solution this is called immiscibility. For example, a type of immiscible liquid 

is oil and water.  

2 Conservation-the principal by which the total value of a physical quantity remains 

constant in a system 

3 Impose - force on someone  

4 Compressed - pressed into a smaller space  

5 Expansion - the action of becoming larger or more extensive 

6 Limitation - a restriction 

7 Surrounding - environment area around a thing or person 

 

8 Microscopic - as small as to be visible only with a microscope or sometime even smaller 

like molecules. 

 

9 Macroscopic - visible to naked eye or relating to large scale 

 

10 Undergo – suffer 

 

11 System - a set of things working together as part of a mechanism 

 

12 Equilibrium - the conditions of system in which all competing influences are balanced 
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1.12 TERMINAL QUESTIONS  
 

1.12.1 SHORT ANSWER TYPE 

 1. Explain the term ‘heat and temperature’. 

 2. Distinguish between isothermal and adiabatic process. 

 3. Draw P-V diagram representing isothermal and adiabatic processes. 

 4. Show that change in the internal energy of a non-isolated system is zero. 

1.12.2 LONG ANSWER TYPE 

1. Explain thermodynamic system and thermodynamic variables. 

2. Explain the terms: 

i. Open system 

ii. Closed system 

iii. Isolated system 

3. State and explain zeroth law of thermodynamics. What is its importance? On the 

basis of this deduce the concept of temperature? 

4. What do you mean by quasi-static process? Can it be achieved in practice? State its 

importance.  

5. What is internal energy of a system? “Internal energy is state function and not a 

path function”, discuss.  
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2.1 INTRODUCTION 
 

In previous unit we learnt about the basics of thermodynamics and the Zeroth law of 

thermodynamics.In this unit we will study the first law of thermodynamics which places work 

and heat as the only way, the internal energy of a system of a body can be altered. It is a version 

of the law of conservation of energy which states that the total energy of an isolated system 

remains constant. However, a perfectly isolated system does not exist in practice. All systems 

exchange energy with their surroundings through one or other process no matter how well 

insulated they are. For example, hot tea or water in a thermos flask will only stay hot for a few 

hours and will reach to room temperature with the passage of time. 

 

2.2 OBJECTIVES 
 

After studying this unit, you will be able to 

● Define first law of thermodynamics 

● Explain different types of specific heat capacity and relationship between them 

● Relate heat, work done and internal energy for different types of processes 

● Explain heat transfer into or out of the system. 

● Know the insufficiency of first law of thermodynamics 

 

2.3 FIRST LAW OF THERMODYNAMICS 
 

The first law of thermodynamics is simply the principle of conservation of energy applied to a 

thermodynamic system. This law can be explained as follows:- 

If a quantity of heat dQ is supplied to a body, then in general it is used in three ways. 

(i) Partially, it is used in raising the temperature of the body i.e., increasing its internal 

kinetic energy dUK. 

(ii) Partially, it is used in doing internal work against molecular attraction, i.e., 

increasing the internal potential energy dUp. 

(iii) And rest is used in expanding the body against the external pressure i.e., in doing 

external work dW.  

So, above statement can be written as, 

dQ = dUK + dUP + dW       (2.1) 

This is the differential form of the first law of thermodynamics. 
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But,  

dUK + dUP = dU (where dU is the increase in total internal energy of the body)  

∴  dQ = dU + dW or        (2.2) 

 ∆ Q =  ∆𝑈 + ∆𝑊            (2.3)  

 

Therefore, in all transformations, the energy due to heat units supplied must be balanced by the 

sum of external work done and increase in its internal energy.  

In equation (2.3) we should note that, 

Equation (2.2) represents the differential form whereas eq. (2.3) stands for change in respective 

quantities.  

(i) ∆𝑄, ∆U and ∆W are to be measured in the same unit i.e., all the three either in joules 

or in calories.  

(ii) If the heat is taken by the body then ∆𝑄 is positive and if it is given by the body ∆𝑄 

is negative.  

(iii) Similarly, if the work is done by the system then ∆𝑊  is positive and if the work is 

done on the system then ∆𝑊 is negative. 

 

Important features of first law of thermodynamics 

The mathematical form of the first law contains three important features: 

(i) Heat is a form of energy. 

(ii) Energy is conserved in a thermodynamic system process. 

(iii) Every thermodynamic system in equilibrium state possesses internal energy and 

this internal energy is a function of its state i.e. temperature only. 

(iv) It is applicable to any process by which a system undergoes a physical or chemical 

change. 

 

2.4 SPECIFIC HEAT CAPACITY OF A SUBSTANCE 
 

The specific heat capacity of a substance is defined as the amount of heat supplied per unit 

mass of the substance for per unit rise in its temperature. If an amount ∆Q of heat is given to a 

mass m of the substance and its temperature rises by ∆T, the specific heat capacity C is given 

by the equation 

 C = 
∆𝑄

𝑚∆𝑇
          (2.4) 
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The same is true when temperature is lowered by taking heat from the substance. 

This definition applies to any form of the substance, solid, liquid or gas. Mathematically the 

specific heat capacity of a material is defined as the quantity of heat required to raise the 

temperature of unit mass of the material through 1 degree. For pure water 1 calorie heat is 

required to raie its temperature by 1C  

Thus, Sp. heat capacity of water   = 1 cal/gmC 

            = 1 kilo cal/kgC 

            =   4.18 × 103 joule / kgC   ( 1 cal  = 4.18 J) 

     

This definition is sufficient for solids and liquids. Since the gases are compressible the specific 

heat of a gas may vary from zero to infinity. For example, if a gas is compressed, its temperature 

rises without supplying any heat to it (i.e., Q = 0). Hence specific heat 

 C = 
𝑄

𝑚 ∆ 𝑇
= 0         (2.5) 

On the contrary, if the gas is allowed to expand freely, without any rise in temperature 

(i. e. , when ∆T = 0) then 

 C = 
𝑄

𝑚×𝑂
=  ∞        (2.6) 

Hence the specific heat of a gas is defined by considering any of the two (pressure or volume) 

as constant. Thus, a gas has two specific heats 

(i) Cp , the specific heat at constant pressure which is defined as the amount of heat 

required to raise the temperature a unit mass of a gas through 1C when to pressure 

is kept constant. It is expressed as p
p

Q
C

T

 
  
  

  (2.7) 

(ii) Cv, the specific heat at constant volume which is defined as the amount of heat 

required to raise the temperature of unit mass of a gas through 1C, when its volume 

is kept constant. It is represented as: 

Cv = (
∆𝑄

∆𝑇
)
𝑣
         (2.7a) 

Cp is always greater than Cv. Let us see how?. 

Heat capacity of a gas is different under these two conditions. Suppose the heat is supplied to 

a gas and is allowed to expand at constant pressure. Then the supplied heat is used up in doing 

two things: 

(i) It raises the temperature of the gas (i.e., increase in its internal energy) and 
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(ii) It does work in expanding the gas against the external pressure . 

                                         ∆𝑄 =  ∆𝑈 + ∆𝑊      

             or                   ∆ Q   = ∆𝑈 + 𝑝𝑑𝑉                                  (2.8) 

       

On the other hand, when gas is heated at constant volume, no work is done (∆𝑊 = 𝑃𝑑𝑉 = 0) 

and the entire amount of heat supplied is used to raise its temperature. Thus, more heat is 

required for raising the temperature of the gas through 1C at constant pressure than at constant 

volume. Hence specific heat of a gas at constant pressure (Cp) is greater than the specific heat 

at constant volume (Cv) i.e., Cp > Cv. 

 

2.4.1. THERMODYNAMIC PROOF OF MAYER’S RELATION  

 

Let us consider one gram-molecule (mole) of an ideal gas at pressure p, Kelvin temperature T 

and volume V. Let CV and Cp be the molecular specific heats at constant volume and at constant 

pressure respectively. 

Let the gas be heated at constant volume so that its temperature is raised by an infinitesimal 

amount dT. The heat supplied will be Cv dT. As the volume remains constant, the external work 

done is zero. The differential form of the first law of thermodynamics is written as equation 

(2.2) 

dQ = dU + dW, 

where dQ is the heat supplied, dU the increase in internal energy and dW the work done (all 

expressed in same units). Here dQ = Cv dT and dW = 0, so that  

 CV dT = dU              (2.9) 

Let the same gas be now heated at constant pressure p until the temperature is raised by the 

same amount of dT. The heat supplied will be CP dT. Now, the gas would expand and external 

work against the pressure p would be done. If dV be the change in volume of the gas, the 

external work would be p dV. Thus, for this process, dQ = Cp dT and dW = p dV. Hence, from 

the first law of thermodynamics, we have  

 CP dT = dU + p dV.             (2.10) 

The temperature change is the same in both the cases. Since internal energy U depends only on 

the temperature for an ideal gas (Joule’s law), the internal energy-change dU is same in both 

processes. Then, eliminating dU from eq. (2.9) and (2.10) we get 
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 (CP – CV) dT = p dV.        (2.11) 

Now, the equation of state for one mole of an ideal gas is 

 pV = RT, 

where R is the universal gas constant. 

Differentiating it, keeping p constant, we get 

 p dV = R dT 

Putting this value of p dV in eq. (2.11), we obtain  

 (CP – CV) dT = R dT    

or, CP – CV = R          (2.12) 

This relation was first obtained by Mayer in 1842 and is therefore called “Mayer’s relation”. It 

is perfectly true for an ideal gas and very nearly true for real gases at moderate pressures. 

In Mayer’s relation, R must be expressed in the same unit as CP and CV. Usually CP and CV are 

expressed in cal/(mole-K). Hence R must also be in calorie/(mole-K). 

Since R = 8.31 joule/(mole-K) and 4.18 joule = 1 calorie, we have 

 R = 
8.31

4.18
= 1.99 calorie / (mole - K). 

∴  CP – CV = 1.99 calorie/(mole-K) ~ 2 calorie/(mole-K).  

2.5 THERMODYNAMICAL EQUILIBRIUM 

Generally a system is said to be in equilibrium when its properties or state variable do not 

change appreciably with time over the interval of interest that is observation time or we can 

say that: 

Any state of homogeneous system in which any two of the three variables P, V, T remain 

constant with time as long as the external conditions remain unchanged is said to be in 

thermodynamic equilibrium. 

A system is said to be in thermodynamical equilibrium when it satisfies the following 

requirements : 

2.5.1 MECHANICAL EQUILIBRIUM  

For a system to be in mechanical equilibrium there should be no macroscopic movement within 

the interior of the system (no unbalance forces acting) and also none between the system and 

surrounding or with another system.  

2.5.2 CHEMICAL EQUILIBRIUM  

For a system to be in chemical equilibrium there should be no chemical reaction within the 

system and also no movement of any chemical constituents from one part of the system to the 
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other i.e. the internal structure and the chemical composition of the system should remain 

unchanged. 

2.5.3 THERMAL EQUILIBRIUM 

This occurs when two systems in thermal contact or a system that is in thermal contact with 

the surrounding do not exchange any heat. This is attained when the two systems or one system 

and its surrounding area are at the same temperature.  

2.6 APPLICATION OF FIRST LAW OF THERMODYNAMICS  
 

In this section we will apply first law of thermodynamics to certain basic processes to get 

simple relations involving the internal energy, work done and heat. 

 

2.6.1. ISOCHORIC PROCESS 
 

The process in which the volume of the system remains constant is called isochoric process. If 

volume remains constant then the work done ( ) W pdV  by the system  will be zero (dV  = 

0). But by the first law of thermodynamics we have,  

 ∆𝑈 = ∆𝑄 − ∆𝑊 

Putting ∆𝑊𝑊=0, we get, 

 ∆𝑈 = ∆𝑄 

Hence, in an isochoric process, the heat taken or lost by the system is entirely used in increasing 

or decreasing the internal energy of the system. 

 

2.6.2. ISOBARIC PROCESS 
 

The process, in which pressure of the system remains constant, is known as isobaric process. 

The boiling of water to steam or the freezing of water to ice are the examples of isobaric 

process.  

Let m gm of water is converted into steam at constant pressure and temperature also. If Vl is 

the volume of the water in liquid state and Vv is the volume of water in vapour state, then work 

done by the system (in expanding from V1 to VV against the constant pressure p) will be, 

W = ∫ 𝑝𝑑𝑉 = 
𝑉𝑣

𝑉𝑙
 p∫ 𝑑𝑉

𝑉𝑣

𝑉𝑙
 

            = p (VV – V1) 
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and heat absorbed by the mass m during the change of state is, 

 Q = m Lv 

where Lv is latent heat of vaporization. 

If ∆U be the change in its internal energy, then from the first law of thermodynamics, 

 ∆𝑈 = 𝑄 − 𝑊 

∴   ∆𝑈 = 𝑚𝐿 − 𝑝(Vv – Vl) 

It is the expression for change in internal energy of the system during vaporization (isobaric 

process). 

Similarly, we can determine the expression for the change in the internal energy of the system 

during freezing (isobaric process), 

 ∆𝑈 = 𝑚𝐿 − p(Vice – Vl) 

Here Li is the latent heat of fusion of ice. 

 

2.6.3. ISOTHERMAL PROCESS 
 

The process in which temperature of the system remains constant is known as isothermal 

process. The temperature remains constant only in the change of state i.e., liquid to vapour or 

liquid to ice as in the case of isobaric process. So we may write  

 ∆𝑈 = m Lv – p(VV – Vl) 

and  ∆𝑈 = m Li – p(Vice – Vl 

2.6.4. ADIABATIC PROCESS 

 

The process in which the total heat of the system remains constant i.e. no heat flows into or out 

f the system, is called an adiabatic process. The system is thermally insulated from the 

surroundings and heat can neither enter into the system nor can leave it. So for such a process 

heat Q = 0, and from the first law of thermodynamics, we have 

 ∆𝑈 = 𝑄 − 𝑊 

 ∆𝑈 = −𝑊 

Thus, in an adiabatic process the change in internal energy of a system, is equal to the amount 

of work done. If work is done by the system i.e., work done is positive, the internal energy is 

decreased. On the other hand if work is done on the system i.e., work done is negative, the 
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internal energy is increased. When a gas is suddenly compressed (adiabatic process), the work 

done on the gas is added to its internal energy so that its temperature rises. That is why a bicycle 

pump becomes hot when air in it is compressed to fill in cycle tube. Similarly, when a gas is 

suddenly expanded, the work against the surroundings is done by drawing heat from its internal 

energy. A decrease in its internal energy decreases the temperature of the gas. That is why 

when a motor car tyre bursts, the tyre gets cooled because of sudden expansion of air 

adiabatically. 

2.6.5. FREE EXPANSION  
 

If a system expands in such a way that no heat enters or leaves the system (adiabatic process) 

and also no work is done by the system or on the system, then this expansion is known as free 

expansion. 

Let us consider a well insulated vessel (adiabatic) with rigid walls and divided into two parts, 

one containing a gas and the other evacuated. When the partition is suddenly removed, the gas 

rushes into the vacuum and expands freely. If Ui and Uf be the initial and final internal energies 

of the gas, then by the first law of thermodynamics,  

 ∆𝑈 = 𝑄 − 𝑊  

But,  Q = 0, W = 0   

So, ∆𝑊𝑈 = 0 

i.e.,  Ui – Uf = 0 

or Ui = Uf 

Thus, in the free expansion, the initial and final internal energies remain the same. 

 

2.6.6. CYCLIC PROCESS 

In a cyclic process, the system after passing from initial state to final state comes back 

to its initial state. So, in this process the net change in the internal energy of the system is zero 

(∆𝑈 = 0). Hence, by the first law of thermodynamics, ∆𝑈 = 𝑄 − 𝑊, we have  

 ∆𝑈 = 0  so, Q – W = 0  or  Q = W 

It means, in the cyclic process the heat taken by the system is equal to the work done by the 

system. In differential form, we may write 

    ∮𝑑𝑄 = ∮𝑑𝑊  
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Thus, for a closed system undergoing a cycle of processes, the cyclic integral of heat is equal 

to the cyclic integral of work. 

2.6.7. ADIABATIC EQUATION OF A PERFECT GAS 

Let us consider one mole of an ideal gas having a volume V at a pressure p and Kelvin 

temperature T. Suppose it undergoes a small adiabatic expansion. In doing so, it does the 

necessary external work at the cost of its own internal energy which therefore decreases and 

hence its temperature falls. 

Let dV be the infinitesimally small change in the volume of the gas at pressure p. Then the 

external work done by the gas in its expansion will be 

 dW = p dV         

 (2.13) 

If dT be the fall in temperature of the gas, the heat lost by it will be CVdT where Cv is the gram-

molecular specific heat at constant volume. Now, in an ideal gas the molecules do not attract 

each other, so that its internal energy is entirely the kinetic energy of the molecules which 

depends only on the temperature of the gas. Therefore, the decrease in the internal energy of 

the gas by dU is equal to the heat lost by it. Thus,  

 dU = CV dT         

 (2.14) 

Now, the first law of thermodynamics for an adiabatic process (dQ = 0) becomes  

 dU + dW = 0  

Substituting the values of dU and dW from eq. (2.14) and eq. (2.13) we get  

 CvdT + pdV = 0        

 (2.15) 

Now, the equation of state for one mole of an ideal gas is 

 pV = RT 

where, R is the universal gas constant. This on differentiation gives 

 p dV + V dp = R dT 
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or dT = 
𝑝 𝑑𝑉+𝑉 𝑑𝑝

𝑅
 

Substituting for dT in eq. (2.15), we get 

 CV (
𝑝 𝑑𝑉+𝑉 𝑑𝑝

𝑅
) + p dV = 0 

or CV (p dV + V dp) + R p dV = 0. 

But R = CP – CV (Mayer’s relation). 

∴   CV (p dV + V dp) + (CP – CV) p dV = 0  

or  CV V dp + Cp p dV = 0  

Dividing by  CV p V, we obtain 

 
dp

p
+ 

Cp

Cv
 
dV

V
= 0 

or 
dp

p
+ γ 

dV

V
 = 0 

where 𝛾 is the ratio of the gram-molecular specific heats of the gas (𝛾 = Cp/CV). Integrating the 

last expression, we have 

 log p + 𝛾 log V = a constant  

or p 𝑉𝛾 = constant.             

 (2.16) 

This relation is known as Poisson’s law. 

If pi , Vi be the initial and pf  , Vf  the final pressures and volumes of the gas respectively, then 

 pi 𝑉𝑖
𝛾

= pf 𝑉𝑓
𝛾
 

Relation between Temperature and Volume : Let us put p = RT/V in eq. (2.16) which gives 

 
𝑅𝑇

𝑉
 𝑉𝛾 = constant  
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or  T 𝑉𝛾−1 = constant        

 (2.17) 

or        𝑇𝑖𝑉𝑖
𝑟−1  =  𝑇𝑓 𝑉𝑓

𝑟−1  

Relation between Temperature and Pressure: Let us put V = RT/p in eq. (2.16). This gives  

    p (
𝑅𝑇

𝑝
)
𝛾

= constant  

or    
𝑇𝛾

𝑝𝛾−1 = constant 

or     T 𝑝(1− 𝛾)/𝛾 = constant.     

 (2.18) 

Example 1: Calculate the change in internal energy when 0.004 kg of air is heated from 0C 

to 2C, the specific heat of air at constant volume being 0.172 kilo cal/kg C. 

Solution: From first law of thermodynamics 

    dQ = dU + dW 

Since air is heated at constant volume 

    dW = PdV = 0 

The heat taken by the air is 

          dQ  = mCVdT 

Therefore,        dU  = dQ – dW 

     = mCVdT  – 0  

     = 0.004 × 0.172 × 2 

     = 1.376 × 10-3 kcal. 

Example 2: What is the change in energy per gm of air if 15gm of air is heated from 0C to 

5C at constant volume by adding 150 cals of heat.  

Solution: We know that 
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    dU = dQ – dW 

 Since the air is heated at constant volume 

    dW = PdV = 0 

 Therefore,   dU = dQ – dW 

       = 150 – 0 

       = 150 cals 

 The change in internal energy per gm of air is 
150 cal

10 cal/gm
15 gm

  

Self Assessment Question (SAQ) 1 

 Can heat be given to a substance without rise in temperature? 

Self Assessment Question (SAQ) 2 

 A thermos bottle containing coffee is vigorously shaken and thereby the temperature of 

coffee rises. Consider coffee as the system. (i) Has heat been transferred to coffee? (ii) Has 

work been done on coffee? (iii) What is the sign of ∆𝑈? 

 

Example 3: Calculate the value of J from the following data : specific heat of oxygen at 

constant volume CV = 5.03 cal/(mole-K), 𝛾 = 1.4, R = 8.31J/(mol-K). Why the value of J so 

obtained differ from the standard value of 4.18 joule/calorie? 

Solution: CV = 5.03 calorie / (mole - K) 𝛾 = 
𝐶𝑝

𝐶𝑉
 = 1.4 

  ∴   Cp = 𝛾CV = 1.4 × 5.03 = 7.04 calorie /(mole - K) 

From Mayer’s relation: 

   Cp – CV = R (all in same units) 

  ∴   R = 7.04 – 5.03 = 2.01 calorie/(mole-K) 

     = (2.01 calorie) J/(mole-K) 
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where, J is the number of joule/calorie. But we are given that R = 8.31 joule/(mole-K). 

  ∴   (2.01 calorie) J / (mole-K) = 8.31 joule / (mole-K) 

or    J = 
8.31 joule

2.01 calorie
 = 4.31 joule / calorie  

This value differs from the standard value because the formula used above holds only 

approximately for a real gas. 

Example 4: The height of the Niagara falls is 50 meter. Calculate the difference between the 

temperature of water at the top and at the bottom of the fall; if J = 4.2 joule/calorie. 

Solution: Suppose m kg of water falls in one second. The potential energy lost in one second 

is 

  W = m g h = (m × 9.8 × 50) joule. 

This lost energy is converted into heat. If Q be the heat produced, then 

   Q = 
𝑊

𝐽
= 

(m×9.8×50)joule

4.2 joule/calorie 
 

This heat causes a temp-rise, ∆𝑇 =  
(0.117𝑚)𝑘𝑐𝑎𝑙

𝑚  𝑘𝑔 × 1.0 𝑘𝑐𝑎𝑙/(𝑘𝑔− 𝐶)
= 0.117C. 

Example 5: A 2.0 gm bullet moving with a velocity of 200 meter/second is brought to a sudden 

stoppage by an obstacle. Assuming the total heat produced is acquired by the bullet, calculate 

the rise in temperature of the bullet. Sp. heat of bullet material is 0.03 kcal/(kg - C). Given : J 

= 4.2 joule / calorie. 

Solution: The kinetic energy of the moving bullet is 

  W = 
1

2
 m v2 = 

1

2
 × 0.002kg × (200 m/s)2 = 40 joule 

By sudden stoppage of the bullet, the whole of the energy is converted into heat. The heat 

equivalent of this energy is 

  Q = 
W

J
=  

40 joule

4.2 joule/cal
 = 9.52 cal = 9.52 × 10-3 kcal. 

If ∆𝑇 be the rise in temperature of the bullet due to this heat, then 

   Q = mc ∆𝑇.     (c being sp. heat) 
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 ∴  9.52 × 10-3 kcal = 0.002kg × 0.03kcal/(kg-C) × ∆𝑇 

or     ∆𝑇 = 
9.52 × 10−3

0.002 ×(0.03/℃) 
 = 159C 

Example 6: Two samples of air having same composition and initially at the same temperature 

and pressure are compressed from a volume V to a volume V/2, one isothermally, the other 

adiabatically. In which sample is the final pressure greater? What will be the result in case of 

expansion, instead of compression? 

Solution: For the isothermal compression, we have  

     p V = constant. 

If V is changed to V/2, the pressure p is changed to 2 p. 

 For the adiabatic compression, we have 

    p 𝑉𝛾 = constant.  

If V is changed to V/2, the pressure p is changed to (2)𝛾 𝑝. 

 Thus, the final pressure in isothermal compression is 2 p, and in adiabatic compression 

is (2)𝛾 𝑝. Since 𝛾 is greater than 1, we have  

   (2)𝛾 𝑝 > 2p 

that is, the final pressure is greater in case of adiabatic compression. 

 The result will be otherwise i.e., the final pressure would be greater in case of isothermal 

expansion. 

Example 7: A motor car tyre has a pressure of 2 atm at the room temperature of 27C. If the 

tyre suddenly bursts, find the resulting temperature.  

Solution:   Given,  P1 = 2 atm 

     T1 = 273 + 27 = 300 K 

     P2 = 1 atm.,   T2 =?,   𝛾 = 1.4 

 
𝑃1

𝛾−1

𝑇1
𝛾 = 

𝑃2
𝛾−1

𝑇2
𝛾    or,   (

𝑃2

𝑃1
)
𝛾−1

= (
𝑇2

𝑇1
)
𝛾
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   (
1

2
)
0.4

= (
𝑇2

300
)
1.4

 

or,  2.304 × 0.4 log10 (0.5) = 1.4 [log10 T2 – log10 300] × 2.304 

or  -0.1204   = 1.4 log10 T2 – 3.4608 

or  1.4 log10 T2 = 3.4680 – 0.1204 = 3.3476 

or      log10 T2 = 
3.3476

1.4
= 2.3911 

       T2 = Antilog (2.3911) = 246.1K 

  or T2 = – 26.9C 

Example 8: A certain quantity of air at 27C and 1 atm pressure is suddenly compressed to 

half its original volume. Find the final (i) pressure and (ii) temperature of the air. (Given 𝛾 = 

1.4, 21.4 = 2.64) 

Solution:  

(i) P1 = 1 atm; P2 =?, 𝛾 = 1.4 

  V1 = V   V2 = 
𝑉

2
 

During sudden compression, the process is adiabatic. 

  P1𝑉1
𝛾

= P2𝑉2
𝛾
 

or,  P2 = P1 [
𝑉1

𝑉2
]
𝛾

 

      = 1 [2]1.4 = Antilog [1.4 log 2] = Antilog [1.4 × 0.30] 

  P2 = 2.636 atm  

(ii) V1 = V, V2 = 
𝑉

2
, T1 = 300K ; T2 = ?, 𝛾 = 1.4 

  T1(V1)𝛾−1 = T2 (V2)𝛾−1   

       T2 = T1 [ 2 ]1.4 – 1  

   = 300 [ 2 ]0.4 
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   = 395.9 K 

  T = 395.9 K 

2.7 INSUFFICIENCY AND LIMITATIONS OF THE FIRST    

LAW OF THERMODYNAMICS 
 

Limitations of the first law of thermodynamics are discussed below: 

1. No restriction on the direction of the flow of the heat: the first law establishes definite 

relationship between the heat absorbed and the work performed by a system. However, it 

does not indicate whether heat can flow from a cold end to a hot end or not. For example: 

we cannot extract heat from the ice by cooling it to a low temperature. Some external work 

need to be done. 

2. Does not specify the feasibility of the reaction: first law does not specify that process is 

feasible or not. For example, when a rod is heated at one end then equilibrium has to be 

obtained which is possible only by some expenditure of energy. 

3. Practically it is not possible to convert the entire heat energy into an equivalent amount of 

work. 

To overcome these limitations, another law is needed which is known as second law of 

thermodynamics. 

The second law of thermodynamics helps us to predict whether the reaction is feasible or not 

and determines direction of the flow of heat. The second law also tells that certain amount of 

heat energy cannot be completely converted into equivalent amount of work. 

 

2.8 SUMMARY 
 

This unit introduces the first law of thermodynamics and some other important terms associated 

with it. These are summarized below - 

● The first law of thermodynamics is a form of law of conservation of energy which 

relates change in internal energy, heat and work done as : ∆ 𝑄 =  ∆U + ∆W     

● The specific heat capacity of a substance is defined as the heat supplied per unit mass 

of the substance per unit rise in the temperature and is given by the relation  

C = 
∆𝑄

𝑚∆𝑇
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● The relation between specific heat at constant pressure(CP) and specific heat at constant 

volume(CV) is given by the Mayer’s relation, CP – CV = R 

● The modified form of the first law can be obtained for each of the known 

thermodynamic processes. 

● The first law of thermodynamics neither puts any restrictions on the direction of flow 

of heat nor specifies the feasibility of the reaction, hence is insufficient. 

 

2.9 GLOSSARY 

 
1. Conservation-the principal by which the total value of a physical quantity remains  

constant in a system 

2. Impose - force on someone  

3. Compressed - pressed into a smaller space  

4. Expansion - the action of becoming larger or more extensive 

5. Limitations - a restriction 

6. Surrounding - environment area around a thing or system 

7. Microscopic - as small as to visible only with a microscope 

8. Macroscopic - visible to naked eye or relating to large scale 

9. Undergo - suffer 

10. System - a set of things working together as part of a mechanism 

11. Equilibrium - the conditions of system in which all competing influences are balanced 
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2.12 TERMINAL QUESTIONS 
 

2.12.1 SHORT ANSWER TYPE 

  

            1. Explain how the first law of thermodynamics leads to the concept of Internal energy. 

 2. What are the limitations of first law? 

 3. Give applications of first law to-   a) isobaric  b) isothermal process 

 4. Show that first law is a particular form of general law of conservation of energy. 

 

2.12.2 LONG ANSWER TYPE 

 

 1. Distinguish between Isothermal and Adiabatic changes. Show that for an adiabatic 

change in a perfect gas rPV  = constant  

2.  Explain why the specific heat at constant pressure CP is greater than that the specific 

heat at constant volume Cv. Prove CP – CV = R.  

2.12.3 NUMERICAL ANSWER TYPE 

1. The temperature of 5gm of air is raised from 100C to 120C at constant volume. 

Compute the increase in its internal energy. Specific heat of air at constant volume is 

0.172 cal/gm C and J = 4.18 joule / cal. 

2.  Calculate the change in internal energy when 5gm of air is heated from 0C to 2C, 

the specific heat of air at constant volume being 0.172 cal/gm C-1. (J = 4.18 × 107 

erg/cal.)  

3. A system absorbs 250 cal. of heat and at the same time does 83.6 joule of external 

work. (i) Find the change in the internal energy of the system (ii) Find the change in the 

internal energy or the system when it absorbs 250 cal. of heat and at the same time 83.6 

joule of work is done on it. (iii) What will be the change in the internal energy of the gas 

from which 40 calorie of heat is removed at constant volume? 

 

2.12.4 OBJECTIVE ANSWER TYPE 
 

1. Work done in a free expansion process is: 
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 (a) + ve 

 (b) – ve  

 (c) Zero  

 (d) Maximum 

 (e) Minimum 

2. Energy can neither be created nor destroyed but can be converted from  

    one form to other is inferred from 

 (a) Zeroth law of thermodynamics 

 (b) First law of thermodynamics 

 (c) Second law to thermodynamics 

 (d) Basic law of thermodynamics 

 (e) Claussius statement. 

3. In an isothermal process, the internal energy 

 (a) Increases 

 (b) Decreases 

 (c) Remains constant 

            (d) First increases and then decreases 

 (e) First decreases and then increases 

 

2.13 ANSWERS 

 

2.13.1. SELF ASSESSMENT QUESTIONS (SAQS) 

1.  When a condensed system like ice is put in contact with flame then heat from the 

flame will flow into the ice due to the temperature difference. But the 

temperature of ice does not rise, instead of it, the ice changes from condensed 

state to liquid state at constant temperature. Thus, the addition of heat without 

rise in temperature is possible. 

2.  (i) No, heat will not be transferred to coffee which is thermally insulated. 

 (ii) Yes, by shaking, work has been done on coffee against the viscous forces in 

it. 

 (iii) From first law of thermodynamic 

   ∆𝑊𝑈 = 𝑄 − 𝑊𝑊 

Here Q = 0 and W is negative, so 
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   ∆𝑈 = 0 − (−𝑊) = 𝑊 

This mean that ∆𝑈 is positive. Hence the internal energy of coffee increases. 

2.13.2. TERMINAL QUESTIONS: NUMERICAL ANSWER TYPE 

 1. We know that 

     dU = dQ – dW 

  Since the air is heated at constant volume, therefore 

     dW = PdV = 0 

 and    dQ = mCVdT 

      = 5 × 0.172 × (12 – 10) 

     = 1.72 cal 

 ∴     dU = dQ – 0 

     = 1.72 cal. 

 2. From first law of thermodynamics 

    dQ = dU + dW 

 Since air is heated at constant volume, hence no external work is done i.e., 

    dW = 0 

 The heat supplied is 

    dQ = mCVdT cal 

          = mCVdT × J erg 

  Therefore, dU = dQ – dW 

         = mCVdT × J – 0 

         = 5 × 0.172 × 2 × 4.18 × 107 

          = 7.19 × 107 erg. 
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 3. We know that 

   dU = dQ – dW 

 (i) Here, dQ = 250 cal., dW = -83.6 joule. 

  ∴      dW = − 
83.6

4.18
 cal 

       = – 20 cal.     [∵ J = 4.18 joule] 

  ∴     dU = 250 – (– 20) 

       = 270 cal. 

 (ii) Here dQ = 250 cal. dW = 83.6 joule = 20 cal. 

  ∴     dU = 250 – 20 = 230 cal. 

 (iii) Since the volume of the gas is constant, so dW = 0 

  ∴      dU = dQ = – 40 cal.  

 Negatives sign shows that heat is extracted from the gas. 

2.13.3. OBJECTIVE QUESTION ANSWERS 

 1. (c)   2. (b)  3. (c)  
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3.1 INTRODUCTION 

The first law of thermodynamics is based on the law of conservation of energy. Though it helps 

us in determining the change in different entities such as heat, internal energy, work done etc., 

it however fails to give the practical feasibility of a reaction to proceed spontaneously. There 

are many examples of processes which are perfectly allowed by the first law but are not possible 

in practice. For example, water kept in bucket cannot freeze by itself. If we follow first law of 

thermodynamics it is possible as a part of water may absorb heat energy from the rest of water 

and evaporate. The rest of water will freeze due to loss of some heat energy. However, this is 

not possible practically. This leads us to the conclusion that some more rules are need to be 

laid to completely understand the spontaneity of the process. The second law of 

thermodynamics puts some restrictions to the efficiency of processes and thus helps us in 

determining the feasibility of the process. This law is very important while understanding the 

working of heat engines and refrigerators. After going through the present unit you will find 

that the second law of thermodynamics implies to the fact that the efficiency of heat engine 

cannot be unity and the coefficient of performance of a refrigerator cannot be infinite. The 

contribution of the French Engineer-Carnot in developing the theoretical reversible engine and 

his theorem forms the last part of this chapter.  

 

3.2 OBJECTIVES 

By the end of this unit, you will be able to - 

● Explain work and heat as path function  

● Differentiate between reversible and irreversible processes 

● Write expression for work done for different types of processes 

● Enunciate different statements of the second law of thermodynamics and their 

equivalence 

● Explain heat engine and its various parts 

● Learn about Carnot cycle and Carnot engine 

● State and prove Carnot theorem    

● Solve simple numerical problems based on these concepts 

 

3.3 HEAT 

Heat is a form of energy which is transferred from one part of the body to another or from one 

body to another by virtue of difference of temperature. This transfer of heat can only be by one 

or more of the three processes namely: conduction, convection and radiation, also the amount 

of heat (thermal energy) produced is always proportional to the amount of work done. Both are 

the transient phenomena and have same unit. The heat Q is taken as positive, when it is 

transferred from the surroundings to the system and Q is negative when heat is transferred from 

system to the surroundings.  
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3.3.1 HEAT - A PATH FUNCTION 

Heat is a path function. This implies that when a system changes from state 1 to 2, the quantity 

of heat (Q) transferred will depend upon the intermediate stages through which the system 

passes i.e. its path. 

Hence heat is an inexact differential and is written as Q 

On integrating, we get 

2 2

11

A A

AA
Q Q            (3.1) 

Here, 𝑄1
2  represents the heat transferred during the given process between the states 1 and 2 

along a particular path A. 

3.4 WORK 

The work can be done by system or it can be done on the system. When the work is done by 

the system it is taken positive but if work is done on the system then it is taken negative. 

3.4.1 WORK - A PATH FUNCTION 

Suppose a system is taken from an initial 

equilibrium state 1 to a final equilibrium state 2 by 

two different paths A and B shown in Fig. (3.1). The 

processes are quasi-static. 

The area under P-V plot gives the work done in that 

process. In the above plot we can see that the areas 

under these curves are different and hence the 

quantities of work done are also different. 

For path A 

𝑊𝐴 = ∫ 𝛿𝑊 = ∫ 𝑃𝑑𝑉
2𝐴

1𝐴

2𝐴

1𝐴
                                     

     (3.2) 

For path B 

𝑊𝐵 = ∫ 𝛿𝑄
2𝐵

1𝐵
= ∫ 𝑃𝑑𝑉

2𝐵

1𝐵                                                                  

 (3.3) 

The values of WA and WB are not equal. Therefore work cannot be expressed as a difference 

between the values of some property of the system in the two states. Therefore, it is not correct 

to represent 

p
 

 

p
 

Fig. (3.1) 

v  
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𝑊 = ∫ 𝛿𝑊 = 𝑊2 − 𝑊1
𝑊2

𝑊1
                     

 (3.4) 

 

It may be pointed out that it is meaningless to say "Work in a system or work of a system". 

Work cannot be interpreted similar to temperature or pressure of a system.  

It terms of calculus δW is an inexact differential. It means that W is not a property of the system 

and δW cannot be expressed as the difference between two quantities that depend entirely on 

the initial and the final states. 

Hence, heat and work are path functions and they depend only on the process. They are not 

point functions such as pressure or temperature. Work done in taking the system from state 1 

to state 2 will be different for different paths. 

3.4.2 COMPARISON OF HEAT AND WORK 

There are many similarities between heat and work. These are: 

1. Heat and work are both transient phenomena. Systems do not possess heat or work. 

Unit of work is same as the unit of heat. 

2. When a system undergoes a change, heat transfer or work done may occur. 

3. Heat and work are boundary phenomena. They are observed at the boundary of the 

system. 

4. Heat and work represent the energy crossing the boundary of the system. 

5. Heat and work are path functions and hence they are inexact differentials. They are 

written as δQ and δW repsectively. 

6. (a) Heat is defined as the form of energy that is transferred across a boundary, by virtue     

      of difference of temperature or temperature gradient. 

7. (b) Work is said to be done by a system if the sole effect on things external to the system    

      could be the raising of a weight. 

8. From thermodynamic sign convention heat transferred to a system is positive and heat 

transferred from a system is negative, while work transferred to a system is negative 

and work transferred out of a system is positive with respect to that system. 

 

3.5 QUASISTATIC PROCESS 

A quasistatic process is defined as the process in which the deviation from thermodynamic 

equilibrium is infinitesimal and all the states through  
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which the system passes during the process can be considered as equilibrium states. 

The given diagram(Fig. 3.2)shows the P-V plot when pressure is not constant and changes in 

infinite steps (quasistatic conditions) duringcompression from initial volume, Vi to final 

volume, Vf. Work done on the gas is represented by the shaded area. In actual practice, many 

processes closely approach to a quasistatic process and may be treated as such with no 

significant error. 

 

Consider the expansion of a gas in a closed cylinder fitted with a frictionless piston. Initially 

weights are on the piston and the pressure of the gas inside the cylinder is higher than the 

atmospheric pressure. If the weights are small and are taken off slowly one by one, the gas 

inside the cylinder will very slowly expand and the process can be considered quasistatic. If, 

however, all the weights are removed at once, expansion takes place suddenly and it will be a 

non- equilibrium process. The system will not be in equilibrium at any time during this process. 

 

A quasistatic process is an ideal concept that is applicable to all thermodynamic systems 

including electric and magnetic systems. It should be noted that conditions for such a process 

require extremely slow rate and can never be satisfied rigorously in practice. 

 

3.6 INDICATOR DIAGRAMS 

The work done in a quasi-static thermodynamic process (e.g., a slow change in volume of a 

gaseous system) can be easily obtained with the help of pressure P and volume V graph. Such 

plots are called Indicator diagrams. These diagrams can be drawn with the help of a device 

called the indicator which directly records the changes in the volume and pressure. 

3.6.1 THERMODYNAMIC PROCESSES 

A change in the thermodynamic coordinates (pressure, volume, temperature etc.) of a 

thermodynamic system brings about a change in the state of the system and is called a 

thermodynamic process or simply a process. 

 

3.6.2 WORK DONE DURING AN ISOTHERMAL PROCESS 

P
re

ss
u

re
 

Fig (3.2) 
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If the change in pressure and volume of a gas (system) takes place in such a manner that its 

temperature remains the same throughout, it is called an isothermal process. 

 

Let a gas be filled in a cylinder with a piston at room 

temperature under atmospheric pressure. If the 

piston be pushed down a little to compress the gas 

(i.e., the work is done on the gas) its internal energy 

will increase and its temperature will rise a little. If 

the temperature is to be maintained constant, the 

extra heat must at once be conducted to the 

surroundings. Similarly, if the gas is allowed to 

expand (push the piston up a little) i.e., work is done 

by the gas, its internal energy decreases and its 

temperature falls a little. Again to maintain its 

temperature constant, heat must at once be 

conducted to it from the surroundings. 

     

Let 1 gm mole of a perfect gas is allowed to expand 

under isothermal conditions. Let its initial volume V1 and 

pressure P1 be represented by point A and its final volume V2 

and pressure P2 by the point B on P-V indicator diagram (Fig. 3.3) keeping its temperature 

constant. 

 

Let us consider a small increase dV in the volume of the gas at pressure P. Then, the work done 

by the gas,  

 

 dW= p dV       (shaded strip in the figure)       (3.4) 

Therefore, the total work done by the gas during the whole expansion from volume V1 at A to 

volume V2 at B will be  

𝑊 = ∑𝑑𝑊 = ∫ 𝑝𝑑𝑉
𝑉2

𝑉1
= Area under the curve AB     (3.5) 

 

 

Since, for a perfect gas pV = RT, where R is the gas constant for 1gm mole of the gas, then  

p = R
𝑇

 𝑉
           (3.6) 

 

Putting the value of P in equation (3.5), we get 

W = RT ∫
𝑑𝑉

𝑉
=

𝑉2

𝑉1
  RT loge  { 

𝑉2

𝑉1
}       (3.7) 

W = 2.3026 RT log 10 { 
𝑉2

𝑉1
}        (3.8) 

Since, the temperature remains constant and Boyle's law is obeyed, therefore 

P1V1 = P2V2   or    
𝑉2

𝑉1
=

𝑃1

𝑃2
        (3.9) 

Fig (3.3) 
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Hence, equation (3.8) become 

W = 2.3026 RT log10 
𝑃1

𝑃2
          (3.10)  

If we take 1 gm of the gas in place of 1 gm mole then the gas constant will be r and equation 

(3.8) and (3.10) then become, 

 

W = 2.306rT log10 (V2/V1)   and       (3.11) 

W = 2.306rT log10 (p1 /p2)         (3.12) 

 

3.6.3 WORK DONE DURING AN ADIABATIC PROCESS 

Adiabatic means heat does not go out or come in the system. So adiabatic process implies a 

process in which heat is neither allowed to enter nor leave the system. Thus, it is a process 

which takes place in complete thermal isolation from the surroundings.  

 

Let, a gas be filled in a cylinder with a piston at the room 

temperature and atmospheric pressure. Also the cylinder and 

piston are perfectly insulated. If the piston be pushed a little to 

compress the gas i.e., the work is done on the gas, its internal 

energy will increase and its temperature will rise a little  as the 

heat developed cannot possibly escape out to the surroundings. 

Similarly, if the gas be allowed to expand i.e., work is done by 

the gas, its internal energy decreases and its temperature falls a 

little. Again no heat can possibly enter the cylinder from outside. 

Let 1 gm mole of a perfect gas be allowed to expand 

adiabatically from an initial volume V1 to a final volume V2, the 

pressure changing from P1 to P2 (P-V diagram shown in Fig. 3.4). 

Then, work done by the gas,  

W = ∫ 𝑝𝑑𝑉
𝑉2    
𝑉1

            (3.13) 

 

Since, for a  perfect gas, in an adiabatic process, 

 

𝑝vγ  = K (constant)  or        (3.14) 

𝑝 =
𝐾

Vγ 
           (3.15) 

Putting the value of p in equation (3.13), we get 

 

W =   ∫
𝐾

𝑉𝛾 𝑑𝑉
𝑉2

𝑉1
         (3.16) 

     = 𝐾 ∫
𝑑𝑉

𝑉𝛾

𝑉2

𝑉1

 

Fig (3.4) 
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     = [
𝑉1−𝛾

1−𝛾
]
𝑉1

𝑉2

  

     = 
𝐾

1−𝑟
  [𝑉2

1−𝛾 − 𝑉1
1−𝛾] 

 

W = 
𝐾

𝛾−1
[

𝐾

𝑉1
1−𝛾 −

𝐾

𝑉2
1−𝛾]         (3.17) 

 

Also in adiabatic expansion, we have 

𝑃1𝑉1
𝛾
 = K = 𝑃2𝑉2

𝛾
 

Putting the value of K in equation (3.17), we have  

 

W = 
1

(𝛾−1)
 [

𝑃1𝑉1
𝛾

𝑉1
1−𝛾 −

𝑃2𝑉2
𝛾

𝑉2
1−𝛾]  

or,  W = 
1

(𝛾−1)
 [p1V1- p2V2 ]       (3.18) 

 

It can be shown that the work done by the gas during adiabatic expansion from volume V1 at 

pressure p1 to volume V2 at pressure p2 given by the area under the p-V curve for the gas i.e.,  

 

W = ∫ 𝑝𝑑𝑉
𝑉2    
𝑉1

  = 
1

(𝛾−1)
  (p1V1 – p2V2) 

= area under the curve AB 

 

Again, we have   

p1𝑉1
𝛾
 = p2𝑉2

𝛾
 = K, so,  

V1 = (K/p1)
1

𝛾⁄ and   V2 =(K/p2)
1

𝛾⁄        (3.19) 

 

Thus,   

W =  
1

(ϒ𝛾−1)
 [𝑝1 (

𝐾

𝑝1
)
1

𝛾⁄
− 𝑝2 (

𝐾

𝑝2
)
1

𝛾⁄
]    

 or W =  
(𝐾)

1
𝛾⁄

(𝛾−1)
  [(p1)

𝛾−1 𝛾⁄  −   (p2)
𝛾−1 𝛾⁄ ]     (3.20) 

 

As the temperature of the gas changes from T1 to T2 and also we have p1V1=RT1 and p2V2=RT2 

(where R is gas constant for 1 gm mole gas), substitution of these values in equation (3.18) 

results  

W = 
𝑅

(𝛾−1)
(T1 – T2)        (3.21) 
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If we take 1gm of the gas in place of 1 gm mole then the gas constant will be r and eq.(3.21) 

becomes,  

W = 
𝑟

(𝑟−1)
(T1 – T2)        (3.22) 

Since, in an adiabatic process, heat is not allowed to enter or leave the system, the external 

work W is done by the gas at the expense of its own internal energy and the work done becomes 

equal to decrease in internal energy of the gas. 

 

Self Assessment Question (SAQ) 1 

What is an indicator diagram? What information does it give? Draw p-V diagram for an 

isothermal and an adiabatic process. 

  

Example 1: Calculate the work done when one gram molecule of a gas expands isothermally 

at 27C to double its original volume. (Given that, R =8.3 joule/℃  mol). 

Solution: The work done during an isothermal process,  

     W= R T loge 
𝑉2

𝑉1
 = 2.3026 R T log10 

𝑉2

𝑉1
 

     Here, T=27 ℃ =273+27=300𝐾 

     V1=V, V2=2V and R=8.3 J/C mole.    

     Putting the values, we have  

     W=2.3026×8.3×300 log10 
2𝑉

𝑉
 

                  =2.3026×8.3×300 log10 2  

        =5733.47×0.3010=1725 joule 

 

Example 2: Air is compressed adiabatically to half its volume. Calculate the change in its 

temperature. 

Solution: Since process is adiabatic, so 

  𝑇1𝑉1
𝛾−1

 = 𝑇2𝑉2
𝛾−1

  or   (
V1 

V2 
)
𝛾−1

 = (
T2 

T1 
) 

Here, V1 = V and V2 = V/2     and for air 𝛾  = 1.4 

   (
V 

V/2 
)1.4-1  = (

T2 

T1 
) 

or  T2 = T1(2)0.4 

                          = 1.319T1 

 

Change in temperature, T2 – T1 = 1.319T1 – T1 = 0.319 T1𝐾    

Example 3: 1 gram of molecule of a monoatomic perfect gas at 27 0C is adiabatically 

compressed in a reversible process from an initial pressure of 1 atmospheric unit (atm) to a 

final pressure of 50 atm. Calculate the change in temperature. 

Solution: For an adiabatic process, 
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1

1 2 1 2( / ) ( / )P P T T    

    Here, p1 = 1 atm,  p2 = 50 atm  

  T1 = 27°C = 300 𝐾  and for monoatomic gas 𝛾  = 5/3 

 

    Putting the values, we get  

   

(
1 

50 
)5/3-1 = (

300 

T2
)5/3    

or  (50)2/3  = (
T2 

300 
)5/3 

or  (2/3) log50 = (5/3) log T2 – log300] = (5/3)[logT2 – 2.4771] 

or  (2/3) 1.6990 = (5/3) log T2 – (5/3) 2.4771 

  (2/3) logT2 = 1.1327+ 4.1285 

  logT2 = 3.1567 

T2  = 1434K 

or   T2 – T1 = 1434-300 = 1134°C 

 

3.7 REVERSIBLE PROCESS  

 
A reversible process is one which can be reversed in such a way that all changes taking place 

in the direct process are exactly repeated in the inverse order and opposite sense, and no 

changes are left in any of the bodies taking part in the process or in the surroundings.  For 

example, if an amount of heat is supplied to a system and an amount of work is obtained from 

it in the direct process; the same amount of heat should be obtainable by doing the same amount 

of work on the system in the reverse process. 

 

Conditions of Reversibility 

 A process can be reversible only when it satisfies two conditions: 

(i) Dissipative forces such as friction, viscosity, inelasticity, electrical resistance, magnetic 

hysteresis etc. must be completely absent.  Suppose a gas is contained in a cylinder 

fitted with a piston and placed in contact with a constant-temperature source. The piston 

is loaded so that the pressure exerted by the piston on the gas exactly balances the 

pressure of the gas on the piston. If the load on the piston is now decreased, the gas will 

expand, doing external work in pushing up the piston and also in overcoming the 

friction between the piston and the walls of the cylinder. The heat necessary for this 

work is taken from the source. If now the load on the piston is increased, the gas will 

be compressed. The work used in pushing up the piston during the expansion is now 

recovered. On the contrary, more work has to be done against the friction. The 

expansion is therefore irreversible. Similarly, other dissipative effects like inelasticity, 

electrical resistance, etc. make the process irreversible.  
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(ii) The process must be quasi-static. When the gas expands, an amount of work is done by 

the gas to give kinetic energy to the piston. This work cannot be recovered during the 

reverse process, but on the contrary, more work is to be done to give kinetic energy to 

the piston. Hence in order to make the expansion of the gas reversible, the pressure of 

the gas on the piston should be only infinitesimally different from the pressure exerted 

by the piston on the gas. Under the condition the expansion or compression will take 

place infinitely slowly so that no kinetic energy will be produced. These conditions are 

never realized in practice. Hence a reversible process is only an ideal conception.   

3.8 IRREVERSIBLE PROCESSES 

Any process which is not exactly reversible is an irreversible process. All practical processes 

such as free expansion, Joule-Thomson expansion, electrical heating of a wire, diffusion of 

liquids and gases etc., are irreversible processes. All natural processes such as conduction, 

radiation, radioactive decay etc., are also examples of irreversible process. 

Self Assessment Question (SAQ) 2 

Classify the reversible and irreversible processes from the following and give reasons: 

(i) Isothermal expansion of a gas 

(ii) Adiabatic compression of a gas  

(iii) Diffusion of gases 

(iv) Transfer of heat from a hot body to a cold body 

(v) Joule expansion of a perfect gas 

(vi) Joule-Thomson effect 

(vii) Transfer of heat by radiation 

(viii) Electrical heating of a wire 

(ix) A very slow extension or contraction of a spring 

(x) Production of heat by friction  

 

Self Assessment Question (SAQ) 3 

Can a given amount of mechanical energy (work) be converted into heat completely? If so, 

give an example. Is the reverse possible? 

 

3.9 HEAT ENGINE 
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Any cyclic device that continuously converts into mechanical work is called a heat engine. 

There are three main parts in a heat engine: a hot body called hot reservoir or source, working 

substance, and a cold reservoir or 'sink'. The working substance takes certain amount of heat 

from the source, converts a part of it into useful work and gives out the 

rest to the sink. This series of processes is called a 'cycle' because the 

working substance returns to its original state. This is shown 

schematically in Fig.3.5. By repeating the same cycle over and over 

again, work can be continuously obtained at the expense of heat energy.  

Suppose the working substance takes in an amount of heat Q1 from the 

source and gives out an amount Q2 to the sink. Suppose W is the amount 

of work obtained. The net amount of heat absorbed by the substance is 

Q1-Q2, which has been actually converted into work because there is no 

change in its internal energy as the system returns back to its original 

state. Applying the first law of thermodynamics to one complete cycle we get,   

 Q1 - Q2 = W         (3.23) 

 

Thermal Efficiency: The 'thermal efficiency  of an engine is defined as the ratio of the  

work obtained to the heat taken from the source, that is 

     

 = 
𝑊

𝑄1
  =  

𝑄1−𝑄2

𝑄1
   or           

 (3.24) 

 

 = 1 – 
𝑄2

𝑄1
            

Often the efficiency is expressed in percentage and then  

2
%

1

1 100
Q

Q


 
   
 

        (3.25) 

This equation indicates that the efficiency of the heat engine will be unity when Q2 = 0 (no heat 

is given out to the sink). This is however not possible in practice. This means that the engine 

cannot convert all the heat taken in from the source into work. 

  

We cannot define the efficiency as W/Q2, because in that case we shall have 

 

 = 
𝑊

𝑄2
  =  

𝑄1−𝑄2

𝑄2
  = 

𝑄1

𝑄2
 – 1         (3.26) 

 

so that the condition for the ideal value of efficiency (i.e.,  =1) would be Q1=2Q2   which is 

absurd. 

 

3.9.1   REVERSIBLE ENGINE 

 

Fig 3.5 
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In an engine the working substance undergoes a cyclic process. It takes in heat from a hot body, 

converts a part of it into work and gives out the rest to a cold body, returning to its initial state. 

During this cycle the conditions of the hot and cold bodies and of the surrounding change. If 

this cycle can be traversed in the reverse order such that all the parts of the engine completely 

recover their original conditions and no changes left in the surroundings, the cycle is a 

'reversible cycle', and the engine is a 'reversible engine'. Such an engine can be realized (i) the 

working parts of the engine are free from friction, (ii) the pressure and temperature of the 

working substance never differ appreciably from its surroundings at any stage of the cycle, so 

that all the processes involved in the cycle are quasi-static. 

These conditions can never be realized in practice. Hence a reversible engine is an ideal 

conception (Carnot had presented an imaginary picture of such an engine). 

Self Assessment Question (SAQ) 4 

What do you understand by a heat engine and its efficiency? What is meant by a reversible 

engine? 

3.10 SECOND LAW OF THERMODYNAMICS 

The first law of thermodynamics states the equivalence of mechanical work and heat, when 

one is completely converted into other (W=Q). Thus, it is the principle of conservation of 

energy applied to a thermodynamic system. 

If, however, we propose to extract a certain quantity of heat from a body and convert it 

completely into work, the first law would not be violated. But, in actual practice this is found 

to be impossible. If this were possible, we could drive ships across an ocean by extracting heat 

from the water of the ocean. Thus the first law simply tells that if a process takes place, energy 

will remain conserved. It does not tell us whether the process is possible or not. Similarly, of a 

hot body and a cold body are brought in contact, the first law is not violated whether the heat 

flows from the hot to the cold body or vice-versa. By experience we know that heat never flows 

from cold to hot body. The purpose of the second law is to incorporate such experimental facts 

into thermodynamics.  

There are statements of the second law of thermodynamics proposed by different scientists- 

(i) Kelvin-Planck statement 

(ii) Claussius statement 

 

3.10.1 KELVIN-PLANCK’S STATEMENT 

In a heat engine, a working substance takes in heat from a hot body, converts a part of it into 

mechanical work, and gives out the rest to a cold body, No engine has ever been designed 

which can operate in a cycle by taking heat from a body and converting all of it into work; 
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some heat must always be given to a colder body. This experience led Kelvin and Planck to 

state the following: 

It is impossible to construct a device which operating in a cycle, will take heat from a body and 

convert it completely into work, without leaving any change anywhere: 

3.10.2 CLAUSSIUS STATEMENT 

In a refrigerator, a working substance takes in heat from a cold body, has a net amount of work 

done on it by an external agent (electric supply), and gives out a larger amount of heat to a hot 

body. It thus transfers heat from a cold body to a hot body with the aid of external work or 

energy. No refrigerator has ever been designed which can run without supply of external 

energy. This experience led Clausius to state that: 

"It is impossible to construct a device which operating in a cycle, will take heat from a cold 

body and reject it  to a hot body without expenditure of work by an external energy source". 

In other words-heat cannot flow spontaneously from a colder body to a hotter body. 

 

3.10.3 EQUIVALENCE OF KELVIN-PLANCK AND CLAUSSIUS 

            STATEMENTS  

 

We can show that these two statements of the second law 

are equivalent 

 

Let us suppose that there is a refrigerator R (Fig.3.6) which 

transfers an amount of heat Q2 from a cold body to a hot 

body without having any supply of external energy. 

It is thus against the Clausius statement. Now, suppose an 

engine E working between the same hot and cold bodies 

takes in heat Q1 from the hot body, converts a part (W = Q1-

Q2) into work, and gives up the remaining heat Q2 to the cold body. The engine E alone does 

not violate the law. But if the refrigerator R and the engine E are combined together, they form 

a device that takes in heat Q1-Q2 from the hot body and converts all into work without giving 

up any amount to the cold body. This is clearly against the Kelvin-Planck statement. 

 

Similarly, let us suppose that there is an engine E (Fig.3.7) which takes in an amount of heat 

Q1 from a hot body and converts it completely into work W(=Q1), without giving any  

 

 

Fig  (3.6) 
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Fig:3.7 

heat to the cold body. It is against the Kelvin-Planck statement. Now, suppose a refrigerator R 

working between the same hot and cold bodies takes in heat Q2 from the cold body, has work 

W(=Q1) done upon it by an external agent, and gives out heat Q1+Q2 to the hot body. The 

refrigerator R alone does not violate the law. But both E and R together form a device which 

transfers an amount of heat Q2 from a cold body to a hot body with no external energy source. 

This is clearly against the Clausius statement. 

The second law of thermodynamics supplements the first law. The first law simply tells us that 

any device cannot deliver more energy than it receives. It does not speak regarding any 

limitation, or any condition necessary for the delivery of energy. The second law, however, 

does it. For example, heat taken in by a substance cannot be all delivered as work, or heat 

cannot flow spontaneously from a colder to a hotter body. These phenomena are not disallowed 

by the first law, but they are disallowed by the second law. 

 

3.11 CARNOT CYCLE AND CARNOT ENGINE 

Sadi Carnot, a French engineer, developed a theoretical reversible engine such that it operates 

between two reservoirs and operates with maximum possible efficiency . The cycle of 

processes adopted by this engine is called Carnot cycle. The Carnot cycle is a reversible cycle, 

this means that all the processes involved in it are reversible. 

The Carnot cycle consists of two isothermal processes and two adiabatic processes. Fig.3.8  

 

 

 

 

 

 

 

                                                                Figure 3.8 
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shows the Carnot cycle for a heat engine with ideal gas as its working substance.  

The Carnot cycle has the following sequence of 

operations: 

 

 Step 12 : Reversible isothermal expansion of gas (P1,V1,T1P2,V2,T1) 

In this step, the gas absorbs heat (Q1) from the reservoir at temperature T1. Since the 

process is isothermal, there is no change in internal energy and so the temperature of 

the system. 

From the first law of thermodynamics,   

𝛿𝑄 = 𝛿𝑈 + 𝛿𝑊 

Putting 𝛿𝑈 = 0,we get, 

𝛿𝑄= 𝛿𝑊 + 0 or 

𝛿𝑊 =  𝛿𝑄 

𝑊1→2 = Q1 = 𝜇RT1 ln (
𝑉2

𝑉1
)        (3.27) 

 

 Step 23 : Reversible adiabatic expansion of gas (P2,V2,T1P3,V3,T2) 

In this step, the work is done by the gas adiabatically at the expense of internal energy 

which causes drop in temperature of system. From the first law of thermodynamics,  

𝛿𝑄 = 𝛿𝑈 + 𝛿𝑊 

Putting 𝛿𝑄 = 0,we get, 

 𝛿𝑈+ 𝛿𝑊 = 0 or 

 𝛿𝑊 =  −𝛿𝑈 

𝑊2→3 = 
𝜇𝑅(𝑇1−𝑇2) 

𝛾−1
        (3.28)  

 

 Step 34 : Reversible isothermal compression of gas (P3,V3,T2P4,V4,T2) 

In this step, the gas releases heat (Q2) to the reservoir at temperature T2. There is no 

change in internal energy and temperature of system as the process is isothermal. From 

the first law of thermodynamics.  

𝛿𝑄 = 𝛿𝑈 + 𝛿𝑊 

Putting 𝛿𝑈 = 0,we get, 

𝛿𝑄= 𝛿𝑊 + 0 or 

𝛿𝑊 =  𝛿𝑄 

𝑊3→4 = Q2 = 𝜇RT2 ln  (
𝑉4

𝑉3
)         

 = −𝜇𝑅𝑇2 ln (
𝑉3

𝑣4
)       (3.29) 

 Step 41 : Reversible adiabatic compression of gas (P4,V4,T2P1,V1,T1) 

In this step, the work is done on the gas adiabatically. This leads to increase in internal 

energy of the system causing increase in temperature of system. From the first law of 

thermodynamics,  

𝛿𝑄 = 𝛿𝑈 + 𝛿𝑊 
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Putting 𝛿𝑄 = 0,we get, 

𝛿𝑈+ 𝛿𝑊 = 0 or 

𝛿𝑊 =  −𝛿𝑈 

𝑊4→1  =  𝜇R (
𝑇1 − 𝑇2

𝛾−1
)                                                                                             (3.30) 

 

3.11.1 EFFICIENCY OF CARNOT ENGINE 

 
The efficiency of heat engine is defined as ratio of net work done to the heat absorbed in one 

complete cycle. If the heat engine receives heat Q1 and rejects heat Q2 then efficiency is given 

by- 

 

𝜂 =
𝑊𝑛𝑒𝑡

𝑄1
=

𝑄1−𝑄2

𝑄1
=  1 −

𝑄2

𝑄1
         (3.31) 

Now, the total work done 

W  = 𝑊1→2 + 𝑊2→3 – 𝑊3→4 – 𝑊4→1  

 = 𝑊1→2 + 𝑊3→4  (∵  𝑊23 and 𝑊41 are equal and opposite and hence they cancel each 

other). 

 =   𝜇RT1 ln (
𝑉2

𝑉1
)  – 𝜇RT2   ln (

𝑉3

𝑉4
)          (3.32) 

Therefore, 

𝜂 = 1 – (
𝑇2

𝑇1
)  

In (
𝑉3
𝑉4

) 

In (
𝑉2
𝑉1

) 
            (3.33) 

   

Now Since 2→3 is an adiabatic process,  

T1 𝑉2
𝛾−1

 = T2𝑉3
𝛾−1

         

 (3.34) 

i.e.,  
𝑉2

𝑉3
= [

𝑇2

𝑇1
]
1/(𝛾−1)

        (3.35) 

    

Similarly, since step 4→ 1 is an adiabatic process 

T2 𝑉4
𝛾−1  = T1𝑉1

𝛾−1
 

i.e.,  
𝑉1

𝑉4
= [

𝑇2

𝑇1
]
1/(𝛾−1)

        

 (3.36)      

From eqs. (3.35) and (3.36) 

 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 56 
 

𝑉3

𝑉4
= 

𝑉2

𝑉1
          (3.37) 

Using Eq. (3.33) in Eq. (3.37), we get  

𝜂 = 1 – 
𝑇2

𝑇1
          (3.38) 

From relations (3.31) and (3.38), we have 

 2 2

1 1

Q T

Q T
 

i.e. in a Carnot cycle, the ratio of the amount of heat rejected to the sink to the heat received 

from the source is equal to the ratio of their respective temperatures. 

 

 In other words the efficiency of Carnot engine depends only upon the temperature of 

the source and te sink and is independent of the nature of the working substance. 

 Graphically the efficiency of a Carnot engine is measured by the area covered by the 

Carnot cycle in the indicator diagram (p  V diagram). 

 

3.11.2 CARNOT THEOREM 

The second law of thermodynamics gives two important conclusions which can be taken 

together in the form of a theorem called Carnot's theorem. According to this theorem "The 

efficiency of a Carnot reversible engine is maximum and is independent of the nature of the 

working substance". 

or 

 "The efficiency of all reversible heat engines 

operating between the same two temperatures is the same 

and no irreversible heat engine working between the same 

two temperatures can have greater efficiency than Carnot's 

reversible heat engine". 

To prove it, let us consider two heat engines EA and 

ER operating between a source at temperature T1 and sink 

at temperature T2 (Fig. 3.9). Let EA be any heat engine and 

ER be a reversible heat engine. Let us assume efficiency ηA 

of EA is greater than efficiency ηR of ER. In order to prove 

the Carnot theorem we have to contradict our assumption.  

Let the rates of working of the engine EA be Q1A and that 

of ER be Q1R such that-  

Q1A=Q1R=Q1 

As assumed, ηA > ηR 

Fig. (3.9) 
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As we know that,  𝜂 =
𝑊𝑛𝑒𝑡

𝑄1
 

So we can write,  
𝑊𝐴

𝑄1𝐴
>  

𝑊𝑅

𝑄1𝑅
 

Therefore, WA > WR    ( QA = QR)A 

Let us reverse ER. Since ER is a reversible heat engine, therefore, the magnitude of heat 

transferred and work done will remain the same but their directions will reverse (Fig. 3.10). 

Since WA > WR some part of WA which is equal to WR in magnitude can be fed to drive the 

reversed heat engine ER. Since, Q1A=Q1R=Q1, the heat discharged by ER may be supplied to EA 

thus the source may be eliminated. The net result is that EA and ER together constitute a heat 

engine which operating in a cycle produces a net work done WA-WR (Fig. 3.11) while 

exchanging heat with a single reservoir at temperature T2, thus violating the Kelvin-Planck 

statement. Hence our assumption is wrong. 

Therefore, ηA < ηR and this proves the Carnot theorem. 

3.11.3 CARNOT ENGINE AS A REFRIGERATOR 

 

When a Carnot engine works in the reverse direction i.e., when it absorbs Q2 amount of heat 

from the sink and work W is done on the working substance and finally Q1 amount of heat is 

rejected to the source at higher temperature, the arrangement acts like a refrigerator. 

 The efficiency of a refrigerator is measured in terms of coefficient of performance. 

ER 
ER 

Fig. (3.10) 

Fig. (3.11) 
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 The coefficient of performance k is defined as the ratio of the heat absorbed from the 

sink to the work done on the working substance by the external agent. i.e., 

    
 

2 2 2

1 2 1 2

Q Q T
k

W Q Q T T
 

Hence, the value of k may be greater than unity. 

Self Assessment Question (SAQ) 5 

(i) Can the efficiency of any heat engine be unity? 

(ii) Do all reversible heat engines have the same efficiency? 

3.12 SUMMARY 

In this unit, you have studied about the concept of heat and work. The unit also explains the 

insufficiency of the first law of thermodynamics and hence the necessity of the formulation of 

second law of thermodynamics. The unit also explains other important aspects which are 

summarized below: 

 

 Work and heat are path functions as they depend on the type of process and not just on 

initial and final states. 

 If heat is added to the system, Q > 0 

If heat is removed from the system, Q < 0 

If work is done by the system, W > 0 

If work is done on the system, W < 0 

 A quasistatic process is the process in which the deviation from thermodynamic 

equilibrium is infinitesimal and all the states through which the system passes during 

the process can be considered as equilibrium states. Practically, quasistatic process 

cannot be realized but an extremely slow process can be considered as close to 

quasistatic process. 

 Indicator diagrams are the p-V plots of various processes. They indicate the change in 

pressure with volume at any stage of the process. The area under these diagrams gives 

the work done during the process. 

 Work done is given by- 

for adiabatic process, W = 
𝑅

(𝛾−1)
(T1 – T2) 

for isothermal process, W = 2.3026 RT log10
1

2

P

P
   

 

 A reversible process is one which can be reversed in such a way that all changes taking 

place in the direct process are exactly repeated in an inverse order and opposite sense, 

and no changes are left in any of the bodies taking part in the process or in the 

surroundings. 

 Any process other than reversible process is called irreversible process. 
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 Any cyclic device by which heat is converted into mechanical work is called a heat 

engine. It has parts: source, working substance and sink. 

 A reversible engine is one which the parts of engine namely working substance, source 

and sink acquire their original state completely if the cycle is traversed in reverse order. 

The reversible engine is an ideal engine and cannot be realized in practice. 

 The second law of thermodynamics disallows some processes consistent with the first 

law of thermodynamics. It states  

o Kelvin-Planck statement: No process is possible whose sole result is the 

absorption of heat from a reservoir and its complete conversion into work.  

o Claussius statement: No process is possible whose sole result is the transfer of 

heat from a colder object to a hotter object.  

o Putting simple, the Second law implies that no heat engine can have efficiency 

η equal to 1 or no refrigerator can have co-efficient of performance k equal to 

infinity. 

 The Carnot cycle consists of following processes-reversible isothermal expansion, 

reversible adiabatic expansion, reversible isothermal compression and reversible 

adiabatic compression of working substance. The heat engine that operates on Carnot 

cycle is called Carnot Engine.  

 The efficiency of Carnot Engine is given by η = 1 – 
T2

T1
 , where T2 is temperature of 

sink and T1 is the temperature of source.  

 The Carnot Theorem states - “All heat engines operating between a given constant 

temperature source and a given constant temperature sink, none has a higher efficiency 

than a reversible engine.” 

 

3.13 GLOSSARY 
 

1. Conservation- the principle by which the total value of a physical quantity remains 

constant in a system 

2. Impose - force on someone  

3. Compressed - pressed into a smaller space  

4. Transient – lasting for a short period of time 

5. Expansion - the action of becoming larger or more extensive 

6. Surrounding - environment area around a thing or system or person. 

7. Undergo - suffer 

8. System - a set of things working together as part of a mechanism 

9. Equilibrium - the conditions of system in which all competing influences are balanced 
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3.15 SUGGESTED READINGS 
 

● Fundamentals of thermodynamics, Richard Sonntag Clans Borgnakke. 

● Thermodynamic Kinetic theory and statistical thermodynamics, F.W.Sears and 

G.L.Salinger. 

● Heat and Thermodynamics, Zemansky and Dittnon.  

 

3.16 TERMINAL QUESTIONS 

 

3.16.1 SHORT ANSWER TYPE 

1.  (a) The temperature of the surface of the sun is approximately 6000 K. If we take a big 

lens and focus the sun-rays, can we produce a temperature of 8000 K? 

(b) Ocean contains enormous amount of heat energy. Can we drive a ship across the 

ocean by utilizing this energy? 

(c) Show that the heat transfer through a finite temperature difference is irreversible.  

2.   An ideal gas expands to double its volume isobarically, isothermally or adiabatically. 

For   which expansion are - 

(i) largest and smallest changes in temperature 

(ii) largest and smallest amount of work done 

  (iii) largest and smallest heat absorption by the gas 

3.  A gas is filled in a box whose opposite walls are maintained at different temperatures. 

Explain heat conduction through the gas. 

4.    If the door of a refrigerator remains open, then why a room cannot be cooled? Explain 

your answer. 

5. Explain why the islands and coastal areas of continents have a moderate temperature 

variation. 
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3.16.2 LONG ANSWER TYPE 

1.  Give Kelvin-Planck and Clausius statements of the second law and show their 

equivalence. 

2.  What do you understand by a heat engine and its efficiency? 

3.  What is the purpose of the second law of thermodynamics?  

3.17 ANSWERS 

3.17.1 SELF ASSESSMENT QUESTIONS (SAQS) 

2. 

a) Isothermal expansion of a gas: Let us imagine a gas contained in a cylinder having 

perfectly insulating walls but a perfectly conducting base, and fitted with a 

frictionless piston. The cylinder is placed on a heat-reservoir maintained at a 

constant temperature, which is the same as the temperature of the gas. The piston is 

loaded, so that the pressure exerted by the piston on the gas exactly balances the 

pressure of the gas on the piston. Suppose the load on the piston is decreased by an 

infinitesimally small amount. The gas will expand, doing external work in pushing 

up the piston and its temperature will tend to fall. It will thus very slightly deviate 

from equilibrium, but an amount of heat equivalent to the work done will 

immediately flow from the heat-reservoir to the gas which will again be at the 

temperature of the reservoir and attain equilibrium. Thus the infinitely slow 

isothermal expansion of a gas in the absence of any friction is an example of a 

reversible process. The conditions described above are however ideal. In practice, 

a very slow isothermal expansion is approximately reversible. 

b) Adiabatic compression of a gas: Again, if the cylinder containing the gas is a perfect 

insulator (including its base) and the gas is compressed infinitesimally slowly, the 

compression is reversible. In practice, it can be made only approximately reversible. 

c) Diffusion of gases: When two or more gases diffuse into one another, there is a 

change in chemical composition and the process is irreversible. 

d) Transfer of heat from hot to cold body: This process is irreversible, because heat 

cannot be transferred back from the cold to the hot body without leaving any change 

elsewhere. 

e) Joule expansion (or free expansion) of a Perfect gas: In this process, the (perfect) 

gas changes from a volume Vi to a larger volume Vf without any change in 

temperature. To revert the gas to its initial state, it would have to be compressed to 

Vi by some external device. The external work so done would be converted into 

heat. To ensure that the gas retains its initial temperature and no changes are left in 

the surroundings, the heat produced would have to be extracted from the gas and 
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converted completely into work. Since this last step is impossible, the process is 

irreversible. 

f) Joule-Thomson effect: The Joule-Thomson expansion of a gas is an irreversible 

process. The reason is same as for free expansion. (any heat cannot be completely 

converted into work) 

g) Transfer of heat by radiation: Heat coming from a hot body by radiation cannot be 

radiated back to the hot body without leaving any change elsewhere. Hence the 

process is irreversible. 

h) Electrical heating of a wire: The electrical energy dissipated as heat in the wire 

cannot be fully converted into electrical energy and so the process is irreversible. 

i) Very slow extension or contraction of a spring: In this process, if carried out 

extremely slowly, the spring passes through states of thermodynamic equilibrium, 

which may be traversed just as well in one direction as in the opposite direction. 

The process is therefore approximately reversible.  

j) Dissipation of mechanical energy to heat through friction: Suppose a body moves 

on a surface from an initial position, spends its mechanical energy to overcome 

friction between itself and the surface, and again returns to its initial position. The 

energy spent is dissipated as heat. Now, if the body be allowed to go round its path 

in the reverse direction, its energy spent previously cannot be recovered. On the 

contrary, the body will have to further spend its energy against the friction in the 

reverse path. Hence the process is irreversible. 

 

3.  

Complete conversion of work into heat: We can convert a given quantity of work 'completely' 

into heat. For example, when we rub two stones together under water, the work done against 

friction is converted into heat which is communicated to the surrounding water. Since the state 

of the stone is the same at the end of the process as at the beginning, the net result of the process 

is merely the conversion of mechanical work into heat with 100 percent efficiency (W=Q). 

This conversion can be continued indefinitely.  

The reverse process is, however, not possible. We cannot make a device by which a given 

amount of heat can be 'completely' converted into work. At first thought, the isothermal 

expansion of an ideal gas can be considered as a process in which heat is converted completely 

into work. In this case ΔU=0 (since the temperature remains constant) and so the heat absorbed 

by the gas is equal to the work done by the gas during the expansion (Q=W). But here the state 

of the gas changes. Its volume increases and pressure decreases until atmospheric pressure is 

reached at which the process stops. Thus the conversion of heat into work cannot be continued 

indefinitely. 

 

5. 

(i) No 

(ii) No. This is because efficiency of reversible engine depends upon temperature of sink 

and source. Therefore, the temperature of sink and source needs to be same otherwise 

they will have different efficiencies. 
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3.17.2 TERMINAL QUESTIONS: SHORT ANSWER TYPE 

1. 

(a) Production of 8000K temperature by sun-rays:  It is not possible to produce a temperature 

of 8000K by focusing sun-rays. The reason that the creation of a temperature of 8000K by 

transferring heat from a colder body (sun at 6000K) by means of lens is a violation of the 

second law of thermodynamics. 

(b) Driving a ship by extracting heat form ocean:  It is an attractive idea to drive ship on the 

energy drawn from the internal energy of water. At the start of its cycle the engine of the ship 

will draw some heat Q1 from the water, convert a part of it into work, but where it would reject 

the rest? By the second law, it must reject some heat into a colder reservoir but none is available 

at hand. Theoretically, it is possible if we can arrange some conveyance to the cold upper 

atmosphere but practical difficulties would make it almost impossible. 

From Carnot's cycle also, we see that the efficiency is  

 = 1 – 
𝑇2

𝑇1
 

Thus,  = 0, if, T2 = T1, that is, without a temperature-difference the conversion of thermal 

energy into mechanical work is impossible. 

(c) Heat Conduction is irreversible:  Suppose there are two bodies 1 and 2 at temperatures T1 

and T2 where T1>T2. When they are brought into contact, heat flows by conduction from 1 to 2 

till they reach a common temperature. Heat cannot flow in the reverse direction, from 2 to 1, 

because heat-flow by itself from cold to hot body is not allowed by the second law of 

thermodynamics. Thus heat- conduction is an irreversible phenomenon.  

3. 

Fig. (3.8) shows isobaric, isothermal and 

adiabatic expansions. 

(i) In isobaric process pressure is constant, 

then temperature will rise, in isothermal 

expansion temperature will remain 

unchanged and in adiabatic expansion the 

temperature falls. So, rise in temperature is 

larger in isobaric expansion than the 

temperature drop in adiabatic expansion. 

(ii) The work done by the gas is largest in 

isobaric expansion and smallest in adiabatic expansion.  

(iii)  According to the first law of thermodynamics, 

Fig (3.12) 
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Q = W+ ΔU  

For isobaric expansion temperature rises, it means internal energy ΔU increases. Also work 

done is large, so heat absorption is largest. For isothermal expansion,  

        ∆U = 0     

         Q = W 

For adiabatic expansion, Q=0, i.e. heat absorbed by the gas is smallest. 

4. 

The gas molecules rebounding from the hotter wall have a greater energy than those rebounding 

from the colder walls. On account of random kinetic motion, there is a transfer of higher energy 

molecules towards the colder wall, and of lower energy molecules towards the hotter wall. 

Consequently heat conduction takes place from hotter to colder wall through the gas.  

5. 

The refrigerator removes heat from its interior and gives it out into the surrounding air, thus 

warming the air. For doing this, additional energy is supplied to the refrigerator by an electric 

motor. The heat given out into the air is the sum of the energy from the motor and that removed 

from the interior of the refrigerator. So, we can say that the refrigerator adds more heat into the 

room than it removes from its interior. On opening its door it will run continuously and hence 

add even more heat to the room than when its door is closed. 

6.  

The specific heat of water is about five times higher than that of clay or sand. Therefore, if 

same quantity of heat be given to (or taken from) the same mass of water and earth, the water 

will have a much smaller rise (or fall) in temperature than the earth. This gives a very important 

effect on the climate of islands and coastal areas. During a hot day the temperature of the sea 

rises more slowly than that of the land, and during night the temperature of sea falls more 

slowly than the heat radiated by that of the land, and during night temperature of sea falls more 

slowly than the heat radiated by the land. Therefore, during the day the cooler sea keeps the 

land (near it) cool, while during the night it tends to keep the land warm. This transfer of heat 

takes place through the movement of air. Thus, the land near the sea undergoes a smaller day 

and night temperature variation than the land elsewhere. Similarly, the land near the sea 

remains cooler during the summer and warmer during the winter than the land far from the sea. 

 

 

UNIT 4                          ENTROPY 
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4.1 INTRODUCTION 
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In the previous unit, you have studied about reversible and irreversible processes, heat engines, 

Carnot cycle, Carnot theorem, second law of thermodynamics etc.. In this unit, we shall study 

an important physical quantity in thermodynamics called entropy. We shall also study the 

entropy change in reversible and irreversible processes. In the present unit, we shall learn about 

Clausius theorem, temperature entropy diagram, Kelvin scale of temperature, absolute zero 

temperature and Nernst heat theorem. 

4.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Understand entropy, Clausius theorem and third law of thermodynamics. 

 Solve problems based on entropy 

 Apply Clausius theorem, Nernst theorem 

 Understand absolute zero temperature 

 Understand zero point energy  

4.3 ENTROPY 

Initially the thermodynamic state of a system was represented by only three variables named 

pressure, volume and temperature. In 1854, Rudolf Clausius while studying the thermodynamic 

systems realized that to represent the thermodynamic state of a system, in addition to these 

three variables we must have at least one more thermodynamical variable. This added quantity 

was named “Entropy”. It was proved successfully that like pressure, volume and temperature 

the entropy is also a function of the state of the system. 

 The concept of entropy was introduced for many reasons. The changes in the state of a system 

can be represented in different ways e.g. the isothermal change (in which the temperature 

remains unchanged), the isobaric change (in which the pressure remains constant) and the 

isochoric change (in which the volume of the system remains constant). Now the real question 

arises that which quantity remains constant during an adiabatic change. It was established that 

the entropy remains constant in an adiabatic change in the system. The systems have a tendency 

to change from a more ordered state to a more disordered state. The perception of entropy 

expresses this in a better physical and mathematical form. The entropy of a substance is a real 

quantity, just like pressure, volume and temperature. Despite being an very important quantity, 

it can’t be represented in some physical form. It, therefore, becomes very difficult to visualize 

it and to understand its exact nature. Entropy can be conveniently understood by studying its 

effect, properties and other aspects. 

4.3.1 GENERAL CONCEPT OF ENTROPY 

Let us consider a number of isothermals I1, I, I3,.... at temperatures T1, T2, T3... respectively as 

represented in the P-V diagram (Fig. 4.1). let A1 and A2 are two adiabatic curves which cut the 

isothermal at points (a, b), (c, d), (e, f), .... respectively. We can now imagine abdca to be a 

Carnot cycle, so that it works between temperatures T1 and T2, extracting heat Q1 from the 
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source and rejecting Q2 to the sink, so that the efficiency of a Carnot engine completing the 

cycle abdca can be given by 

 
  1 2 1 2

1 1

Q Q T T

Q T
 

or   2 2

1 1

1 1
Q T

Q T
 

or 2 2

1 1

Q T

Q T
 

or 1 2

1 2

Q Q

T T
         (4.1) 

 Similarly, for Carnot cycle cdfe, extracting heat Q2 from the source at temperature T2 and 

rejecting Q3 to sink at T3, then we have 

  32

2 3

QQ

T T
                         (4.2) 

 A1                 A2 

 I1 

                           a      Q1  

 P I2          b 

       Q2 T1 

 I3 c d 

      Q3 T2 

 e                f               
T3

  

  

 O V 

Fig. (4.1) 

Similar relations can be obtained for other mini Carnot cycles bound by adiabatics A1 and A2. 

Obviously, for all these Carnot cycles 

                                                                      
Q1

T1
=

Q2

T2
  = 

Q3

T3
 =...........= constant               .....(4.3)       

In going from one adiabatic to the other the system either absorbs heat or rejects it. If the 

exchange of heat is Q at temperature T, then generalizing relation (4.3), we can write- 

                                                                     
Q

T
 = constant                                                 .....(4.4) 
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This ratio is determined by two adiabatics, it can be regarded as some measure of the process. 

This constant ratio 
Q

T
 is given the name entropy of the system. 

If S1 and S2 are the entropies corresponding to the adiabatic curves A1 and A2 respectively, then 

we can write 

                                                               S2 - S1 = 
Q

T
 = constant                                        .....(4.5) 

If the adiabatics lie very close to each other and dQ is the quantity of heat absorbed or rejected 

at a temperature T in going from one adiabatic to the other, then change in entropy can be 

written as 

                                                                dS = 
dQ

T
                                                            .....(4.6) 

In the above discussion, the changes from adiabatic A1 to A2 were considered isothermal but 

this is not necessary. The only necessary condition is that the change should be reversible. 

In general, the change in entropy in passing from one adiabatic to another can be expressed as 

                                                 ∫ dS = 
S2

S1
∆S =  S2 − S1 = ∫

dQ

T

B

A
                                 .....(4.7) 

The expression ∫
dQ

T

B

A
 = ∫ dS 

S2

S1
 is a function of the thermodynamic coordinates of a system and 

refers to the value of the function at the final state minus the value at the initial state. This 

function is represented by the symbol S and is called entropy. Hence entropy of a system is a 

function of the thermo-dynamical coordinates defining the state of the system viz., the pressure, 

temperature, volume or internal energy and its change between the two states is equal to the 

integral of the quantity 
dQ

T
 between the states along any reversible path joining them. dS is an 

exact differential as it is differential of an actual function. 

Since in an adiabatic change, no heat energy is given to or removed from the system i.e. there 

is no exchange of heat, dQ = 0, therefore, the change in entropy is 

                                                          dS = 
dQ

T
 = 

0

T
 = 0 

Thus, in an adiabatic process, the change in entropy of a system is zero or in other words, in 

the adiabatic processes, the entropy of a system remains constant. Due to this reason the 

adiabatic curves on the P-V diagram are called isentropics or constant entropy curves also. 

It is, however, difficult to form physical conception of entropy as there is nothing physical to 

represent it and it cannot be felt like temperature or pressure. Now since 

change in entropy =
Heat given or taken by the system

Absolute temperature of the system
 

We conclude that dimensions of entropy are the same as the ratio of heat (or energy) and 

temperature. Its unit is joule/Kelvin (J/K). 
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4.3.2 PHYSICAL SIGNIFICANCE OF ENTROPY 

The change in the entropy of a substance defined by the relation dS=  
dQ

T
 shows that the heat 

energy has the same dimensions as the product of entropy and absolute temperature. In earth’s 

gravitational field the potential energy of a body is proportional to the product of its mass and 

the height above some zero level. A comparison indicates that if we regard height as 

corresponding to temperature, then mass corresponds to entropy. Thus, entropy of a system is 

a quantity which bears to heat motion a similar relation as mass bears to linear motion. 

4.4 ENTROPY CHANGE IN REVERSIBLE PROCESS: 

      CLAUSIUS THEOREM     

Let us consider a complete reversible process- a Carnot’s cycle ABCD as shown in figure 2. In 

the isothermal expansion from A to B, the working substance absorbs an amount of heat Q1 at 

a constant temperature T1 of the source. When the heat is absorbed by the system, Q1 is positive 

and hence entropy change is positive because T1 is positive. 

 

  

           

              A       Q1 

   P                B 

         

    

          D      Q2  

                       C                

  

 O V 

                                                                    Fig. (4.2) 

Hence gain in entropy of working substance from A to B = 
Q1

T1
 

(Source loses this heat Q1 at temperature T1; therefore, its entropy decreases by 
Q1

T1
 ) 

During the adiabatic expansion from B to C, there is no change in entropy (since heat is neither 

taken in nor given out). During the isothermal compression from C to D, the working substance 

gives out a quantity of heat Q2 to the sink at a constant temperature T2 and therefore the loss in 
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its entropy from C to D =  
Q2

T2
. (The sink gains this heat Q2 at temperature T2, therefore its 

entropy increases by 
Q2

T2
). 

Again during the adiabatic compression from D to B, there is no change in entropy. Thus the 

net gain in the entropy of working substance in the whole cycle ABCDA =     
Q1

T1
  -  

Q2

T2
 

But since in a complete reversible Carnot’s cycle 

Q1

T1
=

Q2

T2
 

Therefore,                                                     
Q1

T1
−

Q2

T2
 = 0 

It means that the total change in entropy of the working substance in a complete cycle of 

reversible process is zero. Similarly, the change in entropy of the combined system of source 

and sink is also zero. Thus in a cycle of reversible process, the entropy of the system remains 

constant or the change in entropy of the system is zero i.e. 

                                                        ∮dS = 
Q1

T1
−

Q2

T2
 = ∑

Q

T
 = 0 

where the integral sign with a circle refers to a complete cycle. 

Hence we conclude that in a reversible cyclic process, the entropy change is zero. This is 

Clausius theorem. 

 

4.5 ENTROPY CHANGE IN IRREVERSIBLE PROCESS 

Let us suppose that the working substance in an engine performs an irreversible cycle of 

changes, absorbing an amount of heat Q1 at a temperature T1 from the source and rejecting the 

quantity of heat Q2 at a temperature T2 of the sink. Then the efficiency of this cycle is given by 

                                                             
Q1−Q2

Q1
 = 1- 

Q2

Q1
 

According to Carnot’s theorem, this efficiency is less than that of a reversible engine working 

between the same two temperatures T1 and T2 for which 

                                                          η= 1- 
T2

T1
 

Thus,                                                1- 
Q2

Q1
 < 1- 

T2

T1
 

or                                                        
Q2

Q1
 >

T2

T1
 

or                                                       
Q2

T2
 > 

Q1

T1
 

or                                                       
Q2

T2
 - 

Q1

T1
 > 0 

Considering the whole system, the source losses the entropy by an amount 
Q1

T1
 and the sink gains 

an entropy 
Q2

T2
. Therefore, the net change in entropy for the whole system is 

                                                               
Q2

T2
 - 

Q1

T1
 

which is clearly greater than zero or positive. Thus there is an increase in entropy of the system 

during an irreversible process. 
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As an example of irreversible process, consider the case of conduction or radiation. Suppose 

in a system, there are two objects A and B at temperatures T1 and T2 (T1 > T2) respectively. In 

conduction (or radiation) heat flows from the object of higher temperature to that of lower 

temperature. If an amount Q of heat is transferred then 

Decrease in the entropy of object A = 
Q

T1
 

Increase in the entropy of object B = 
Q

T2
 

Therefore, the net increase in entropy = 
Q

T2
 - 

Q

T1
 = Q(

1

T2
 - 

1

T1
)                                          .....(4.8) 

Since T1 > T2, therefore the net increase in entropy is positive.  

Now we may generalize the result and say that the entropy of a system increases in all 

irreversible processes. This is known as the 'Principle of increase of entropy'. In the process of 

equalization of temperature, entropy always increases. 

 

 

4.6 PRINCIPLE OF INCREASE OF ENTROPY DEGRADATION 

      OF ENERGY  

In the previous article, we have seen that in a reversible processes, the entropy remains 

unchanged while in an irreversible processes, it increases. Since, in general, most of the 

processes are not perfectly reversible, therefore, there is always an increase in the entropy 

always. If the processes occur in succession the entropy goes on increasing and tends to a 

maximum value. This is known as the principle of increase of entropy. It may be stated that the 

entropy of an isolated or self-contained system either increases or remains constant accordingly 

as the processes it undergoes are irreversible or reversible. 

According to Clausius, the entropy of an isolated or self-contained system tends to a maximum 

value. Thus, the entropy of a system either increases or remains constant i.e. 

                                                    dS ≥ 0 

where, = sign stands for reversible processes and > sign for irreversible processes. Obviously, 

for the stability of a system its entropy must be maximum. 

Now, since all physical operations in the universe are irreversible, for every such operation 

performed, a certain quantity of energy of the universe becomes unavailable for useful work 

and is added to the universe in the form of heat through friction, conduction or radiation. In 

this way, in a distant future, on account of irreversibility, all energies existing in different forms 

will be transformed into heat energy and will not be available for alteration into mechanical 

work, i.e. the available energy of the universe will tend towards zero. It will correspond to a 

state of maximum entropy and all temperature difference between various bodies of the 

universe will be equalized due to convection etc. No heat engine will then be able to work in 

this state because no heat flow would be possible due to the uniformity of temperature 

throughout the universe. This is known as the principle of degradation of energy and implies 
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that although the total amount of energy is conserved, it is converted into a form which is 

unavailable for work.  

With an increase in entropy, the thermal agitation and hence disorder of the molecules of 

substance increases i.e. growth of entropy implies a transition from order to disorder. Thus the 

principle of increase of entropy is intimately connected with the less ordered state of affairs. 

As the temperature of a system is a measure of its degree of hotness, in a similar way, the 

entropy of a system is a measure of disorder in it. At absolute zero of temperature, the motion 

of the molecules of a substance ceases, the molecules become well arranged and the entropy 

becomes zero. 

4.7 TEMPERATURE ENTROPY (T  S) DIAGRAM 

The thermodynamic state of a substance can be determined by plotting the temperature as 

ordinate and entropy as abscissa. The resulting graph is known as temperature-entropy diagram 

and is used in the checking of efficient working of actual engines. The idea of T-S graph was 

first introduced by Gibbs. 

If a thermodynamical system is given an infinitesimal amount of heat dQ , at temperature T 

then 

                                                             dQ = T dS                                                           .....(4.9) 

where dS  is the increase in the entropy of the system. 

Therefore, in a process, total amount of heat given to the system is 

                                                                 Q = ∫TdS                                                      .....(4.10) 

 

 

 T 

 T  

                                                                     dS 

 

 O   S 

                                                                   Fig. (4.3) 

Obviously, the integral represents the area enclosed by the T-S diagram. Thus by finding the 

area of T-S diagram, we can find the amount of heat given to the system. The shape of the T-S 

graph depends upon the process. An isothermal change is represented by a horizontal line 

parallel to the entropy axis while an adiabatic change is represented by a vertical line parallel 

to T-axis because in such a change S remains constant. 
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Let us study Carnot cycle represented by a temperature-entropy (T-S) diagram in figure (4.4).  

As we know that Carnot’s cycle consists of two isothermals and two adiabatics. The 

isothermals are represented by horizontal straight lines (parallel to entropy axis) and adiabatics 

by vertical straight lines (parallel to temperature axis) on a T-S diagram. In this way, in the 

figure, PQ represents the isothermal expansion at a constant temperature T1 of the source, the 

vertical line QR is the adiabatic expansion during which there is no change in entropy but a fall 

of temperature from T1 to T2, the temperature of the sink. RS is the second  

 

                                     

 

T1                                  P        Isothermal             Q 

                                             

 T Adiabatic                                           Adiabatic 

 

                                        T2 S          Isothermal R 

 

 O      M                                        N 

 S1 S                        S2 

                                                                                   Fig. (4.4) 

isothermal representing compression at constant temperature T2 and SP is the final adiabatic 

compression involving a rise of temperature from T2 to T1, entropy remaining the same. 

The amount of heat energy absorbed in isothermal expansion PQ is given by the area under 

PQ, i.e. PQNM. In a similar way, the heat rejected in isothermal compression RS is given by 

the area SRNM. 

Total heat absorbed = Area PQNM = T1 (S2 - S1) 

Heat energy converted into work = heat absorbed – heat rejected 

                                                     = area PQNM – area SRNM = shaded area PQRS 

                                                     = PS × SR = (T1 – T2) (S2 –S1) 

Therefore, efficiency of the engine η = 
Heat energy converted into work

Total heat absorbed
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                                                                 = 
(T1−T2)(S2−S1)

T1(S2−S1)
 = 

T1−T2

T1
 = 1-

T2

T1
 

Thus, the T-S diagram gives an expression for efficiency of a Carnot's engine which only 

depends on the two working temperatures and not on the nature of the working substance.  

4.8 ENTROPY OF A PERFECT GAS 

Let us calculate the entropy of a perfect gas. Let us consider 1 gm. of a perfect gas occupying 

a volume V at a pressure P and temperature T. Let a quantity of heat dQ be given to the gas, 

then by the first law of thermodynamics, we have 

                                              dQ  = dU + dW                                                                .....(4.11) 

If Cv is the specific heat of the gas at constant volume, dT the rise in temperature, dV the change 

in volume then we can write  

                                               dU= Cv dT   and dW = P dV  

Using these values in equation (4.11) we get- 

                                               dQ  = Cv dT   + P dV 

If S is the entropy per unit mass of the gas, then  

                                          S = ∫
dQ

T
 = ∫

1

T
(CvdT + P dV) 

                                               = ∫ Cv
dT

T
+ ∫

P

T
dV                                                         .....(4.12) 

Now let us calculate the value of S in terms of temperature and volume.  

We know,   

 PV = rT  or P/T = r/V, where r is the ordinary gas constant for unit mass of the gas. 

From equation (4.12), we get 

                                                      S = ∫ Cv
dT

T
+ ∫

rdV

V
 

                                                         = Cv loge T + r loge V + constant 

or,                                        S = Cv loge T +(Cp – Cv ) loge V + constant                      .....(4.13) 

Where,  r = Cp – Cv , Mayer’s relation. Cp is the specific heat at constant pressure. 

Now let us calculate S in terms of temperature and pressure. 

Again,                                           PV = rT    

Differentiating, we get 
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                                                       P dV + V dP = r dT  

or                                                  P dV = r dT- V dP  

From equation (4.12), we get 

                                                  S = ∫ Cv
dT

T
+ ∫

P

T
dV 

                                                     = ∫ Cv
dT

T
+ ∫

(r dT−V dP)

T
 

            = ∫Cv
dT

T
+ ∫ r (

dT

T
−

VdP

rT
)= ∫Cv

dT

T
+ ∫ r (

dT

T
−

dP

P
)                 (since  V/rT = 1/P) 

                                         = ∫ Cv
dT

T
+ ∫(Cp − Cv )  (

dT

T
−

dP

P
)                 (using r = Cp – Cv)             

                                        =    ∫ Cv
dT

T
+ ∫(Cp − Cv )

dT

T
+ ∫(Cp − Cv)

dP

P
 

                                        = ∫Cv
dT

T
+ ∫ Cp

dT

T
− ∫ Cv

dT

T
+ ∫(Cp − Cv)

dP

P
 

or                                     S = ∫ {Cp
dT

T
+ (Cp_Cv)

dP

P
} 

or                            S = Cp loge T + (Cp- Cv) loge P + constant                                   .....(4.14) 

Now let us calculate S in terms of pressure and volume. 

We know,                PV = rT   or  T = 
PV

r
 

Differentiating above, we get 

                                                     dT = 
P.dV+V.dP

r
 

Putting the value of dT in relation (4.12), we get 

                                                    S = ∫ [Cv
PdV+VdP

rT
+

P dV

T
] 

                                                    = ∫ [Cv
PdV+VdP

PV
+

P dV.r

PV
]         (putting the value of T) 

                                              = ∫ [Cv (
dV

V
+

dP

P
) + (Cp − Cv)

dV

V
] 

or                                        S = ∫ [Cv
dP

P
+ Cp

dV

V
] 

or                                        S  = Cv loge P +Cp loge V + constant                             .....(4.15) 

In the above calculations, we have assumed the entropy of the gas to be zero at zero 

temperature. In actual practice, however, we are concerned with a change in entropy of the gas, 

when the gas changes from a state of pressure P1, volume V1 and temperature T1 to another of 
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P2, V2 and T2 respectively. This can be obtained by integrating relation (4.12) between the 

limits T1 and T2. If we denote the change in entropy by (S2-S1), then equation (4.13), (4.14) 

and (4.15) assumes the form, respectively, as  

                           S2-S1 = Cv loge
T2

T1
 +(Cp – Cv ) loge

V2

V1
                                                 .....(4.16) 

                         S2-S1 = Cp loge
T2

T1
+ (Cp- Cv) loge

P2

P1
                                                    .....(4.17) 

                         S2-S1  = Cv loge
P2

P1
+Cp loge

V2

V1
                                                            .....(4.18) 

All the above relations from (4.13) to (4.18) stand for unit mass of the gas. If the entropy S and 

the change in entropy (S2-S1) for m gms. of the gas is required, it can be obtained by multiplying 

these relations from (4.12) to (4.18) by the given mass m. 

4.9 THERMODYNAMIC OR KELVIN SCALE OF 

TEMPERATURE 

We know that the efficiency of a reversible Carnot’s engine depends only upon the two 

temperatures between which it works and is independent of the properties of the working 

substance. Thus there is a property which absolutely depends on temperature and on nothing 

else. Hence, if we define a temperature scale using this property of working of Carnot’s engine, 

it is an absolute scale of temperature because it does not depend upon the particular property 

of any substance as in the case of other thermometric scales. Lord Kelvin worked out the theory 

of such an absolute scale called the Kelvin’s work or thermodynamical scale and showed that 

it agrees with the ideal gas scale. 

Let us suppose that a reversible engine takes in a quantity of heat Q1 at temperature θ1 and 

rejects a quantity of heat Q2 at temperature θ2, then since the efficiency of the engine is a 

function of these two temperatures 

                                                       η = 1- 
Q2

Q1
 = f (θ1, θ2) 

                                                      
𝑄1

𝑄2
 = 

1

1−f(θ1,θ2)
 = F(θ1, θ2)                                         .....(4.19) 

where F is some other function of θ1 and θ2. 

Similarly, if the reversible engine works between a pair of temperature θ2 and θ3 ( θ2>θ3) 

absorbing a heat Q2 and rejecting Q3, we have 

                                                  
𝑄2

𝑄3
 = 

1

1−f(θ2,θ3)
 = F(θ2, θ3)                                            .....(4.20) 

Also, if it works between   temperatures θ1 and θ3 ( θ1>θ3), then 

                                                 
𝑄1

𝑄3
 = F(θ1, θ3)                                                              .....(4.21) 
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Multiplying equations (4.19) and (4.20) 

                                               
𝑄1

𝑄2
×

𝑄2

𝑄3
 = 

𝑄1

𝑄3
 = F(θ1, θ2)x F(θ2, θ3) 

Comparing it with equation (4.21), we have 

                                               F(θ1, θ3) = F(θ1, θ2)x F(θ2, θ3)                                         .....(4.22) 

Equation of type (4.22) is called the functional equation. It does not contain θ2 on the left hand 

side, therefore, function F should be so chosen that θ2 disappears from the right hand side too. 

This is possible if 

                                               F(θ1, θ2)  = 
∅(𝜃1)

∅(𝜃2)
 and F(θ2, θ3) = 

∅(𝜃2)

∅(𝜃3)
 

where ϕ is another unknown function of temperature.  

Equation (4.22) then gives 

                                                   F(θ1, θ3) = 
∅(𝜃1)

∅(𝜃2)
 x 

∅(𝜃2)

∅(𝜃3)
 = 

∅(𝜃1)

∅(𝜃3)
 

Equation (4.19) gives 

                                                 
𝑄1

𝑄2
 =  F(θ1, θ2) = 

∅(𝜃1)

∅(𝜃2)
 

Since θ1>θ2 and Q1> Q2, the function ϕ(θ1) > ϕ(θ2). In this way, function ϕ(θ) is a linear function 

of θ and can be used to measure temperature. If we suppose that ϕ(θ) represents a temperature 

τ (some multiple of θ) on a new scale, then 

                                                              
𝑄1

𝑄2
 = 

𝜏1

𝜏2
                                                              .....(4.23) 

Equation (4.23) defines the Kelvin’s absolute thermodynamic scale of temperature. The ratio 

of any two temperatures on this scale is equal to the ratio of the heats absorbed and rejected by 

a Carnot reversible engine working between these two temperatures. 

 Now equation (4.23) can also be written as 

                                                               
Q1−Q2

Q1
 = 

τ1−τ2

τ1
                                                  .....(4.24) 

Since (Q1 – Q2) represents the work done W per cycle by the reversible engine operating 

between the two temperature τ1 and τ2, temperatures are measured in terms of work and hence 

this scale is also known as work scale of temperature. 

4.10 ABSOLUTE ZERO TEMPERATURE 

We know that  
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                                                      η = 1- 
Q2

Q1
 = 1- 

𝜏2

𝜏1
                                                       .....(4.25) 

If τ2 =0, then efficiency η = 1- 
0

𝜏1
 = 0 

Thus, for the efficiency to be unit i.e., η = 1, τ2 =0 

This temperature of the sink at which the efficiency of the reversible engine becomes unity is 

called the absolute zero of temperature. This is the thermodynamic definition of absolute zero 

temperature. 

 From equation (4.25), it is clear that at the absolute zero of temperature (τ2 =0), Q2 =0, 

therefore, W = Q1. Therefore, the entire amount of heat absorbed by the reversible engine is 

converted into work and thus, the efficiency of the engine becomes unity. The temperature on 

this scale can never be negative i.e. τ < 0 is not possible. This is because if the temperature of 

the sink is a negative quantity ( say –m) on this scale, then from equation (4.25),  

                                                       η = 1 + 
m

τ
 

The efficiency will be more than unity (η>1) which is impossible. Because in this situation, the 

engine will be producing more work than the amount of heat received. This can never be true 

as it will be a violation of the second law of thermodynamics. Thus, negative temperatures are 

not possible on the absolute scale of temperature. That is why τ = 0 is the lowest possible 

temperature and is called the absolute zero temperature. 

4.11 UNATTAINABILITY OF ABSOLUTE ZERO 

 It can be easily understood why the efficiency of an engine cannot be unity i.e. 100%. For this 

to happen we must have a sink at absolute zero temperature. But nature does not provide us 

with a sink at absolute zero. This temperature is neither available nor easily attainable. 

Therefore, 100% efficiency of an engine is not possible and thus absolute zero is also 

unattainable.  

4.12 NERNST THEOREM (THIRD LAW OF 

THERMODYNAMICS) 

For the study of chemical equilibrium in chemical reactions, it is necessary to determine the 

change in the entropy of the system when the reaction takes place at 0 K temperature. Nernst 

assumed that this change in entropy is zero. Nernst’s this assumption is termed as Nernst Heat 

Theorem. Nernst and Simon presented this concept in the form of law which is given as- 

“The entropy change associated  with any isothermal reversible process of condensed system ( 

solid or liquid) approaches zero as the temperature is reduced to absolute zero.” This is called 

Third law of thermodynamics. 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 79 
 

An important consequence of this law is that, it is impossible to attain the absolute zero 

temperature; it can be attained only asymptotically. Some scientists treated it as a more 

fundamental law and stated the third law of thermodynamics as follows 

“It is impossible by any process, no matter how idealized, to reduce any system to absolute 

zero of temperature in a finite number of steps.” 

The third law of thermodynamics is also known as the law of unattainability of absolute zero 

of temperature. This law has many applications in physics and chemistry. 

4.13 ZERO POINT ENERGY 

We know that absolute zero is the lowest temperature which can be achieved. At absolute zero 

of temperature, the gas molecules will be devoid of all motions. So kinetic theory predicts that 

at absolute zero, all molecules will behave as if they were frozen in space and have no energy. 

This is classical picture of the situation. However, due to quantum effects (as will be taught in 

Fermi-Dirac statistics in later stage), there is some finite energy even at absolute zero for some 

typical systems. This energy is known as zero-point energy. 

 Because of the non-zero value of energy even at absolute zero temperature, we cannot 

assign zero value to the entropy even at this temperature. Therefore, we generally deal with 

changes in entropy, as do we talk about changes in gravitational potential energy, rather than 

its absolute value.  

 The concept of zero-point energy was developed by Max Planck in Germany in 1911 

as a corrective term added to a zero-grounded formula developed in his original quantum theory 

in 1900. 

Example 1:  A Carnot engine is working between 500 K and 400 K. Calculate its efficiency 

Solution:  Given T1 = 500 K, T2 = 400 K 

                Efficiency of the engine η = 1
T2

T1
= 1 −

400

500
=

100

500
 =  0.2 = 20% 

Self Assessment Question (SAQ) 1 Choose the correct option 

The change in entropy of the universe in a reversible process is 

(i) infinite    (ii) zero     (iii) 1       (iv) 100 

Self Assessment Question (SAQ) 2 Choose the correct option 

The change in entropy of the working substance in a cyclic process is 

(i) 1    (ii) infinite        (iii)      zero       (iv) none of these 

Self Assessment Question (SAQ) 3 Choose the correct option 

In an irreversible process, the entropy of the universe 
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(i) remains constant    (ii) decreases     (iii) increases   (iv) none of these 

Self Assessment Question (SAQ) 4 Choose the correct option 

In a complete Carnot cycle, the change in the entropy of the universe is 

(i) infinite   (ii) negative   (iii) positive   (iv)  zero 

Self Assessment Question (SAQ) 5 Choose the correct option 

Entropy remains constant in 

(i) isothermal process   (ii) adiabatic process    (iii) cyclic process    (iv) isobaric process 

Self Assessment Question (SAQ) 6 Choose the correct option 

The area of the Carnot cycle on a T-S diagram represents 

(i) heat rejected to the sink     (ii) work done in a cycle   (iii) heat absorbed from the source  (iv) 

efficiency of the engine 

4.14 SUMMARY  

In this unit, you have learnt about entropy, its general concept and significance.  Entropy is a 

measure of disorderness of a system. More entropy, more disorderness and low entropy, low 

disorderness. You have learnt that in an adiabatic process, the change in entropy of a system is 

zero or in other words, in adiabatic processes the entropy of a system remains constant. Due to 

this reason the adiabatic curves on the P-V diagram are also called 'isentropics' or constant 

entropy curves. You have studied about Clausius theorem that in a reversible cyclic process, 

the entropy change is zero. Also if an irreversible process occurs in a closed system, the entropy 

S of the system always increases and it never decreases. You have analyzed the entropy change 

in irreversible process and concluded that the entropy of a system increases in all irreversible 

processes. This is known as the law or principle of increase of entropy. In the process of 

equalization of temperature entropy always increases. Other than this, you have studied 

principle of increase of entropy or degradation of energy, temperature, entropy diagram, Kelvin 

scale of temperature, absolute zero temperature, Nernst theorem, zero point energy etc. In the 

unit, you have calculated entropy of a perfect gas. We have included examples and self 

assessment questions (SAQs) to check your understanding. 

4.15 GLOSSARY 

Entropy- In thermodynamics, quantity that is a measure of a system’s disorder or the   

unavailability of its energy to do work. It is a measure of randomness. 

Degradation- The irreversible loss of energy available to do work with a consequent increase 

in entropy 

Absolute zero- Theoretically lowest possible temperature at which a substance has no heat 

energy. The pressure and volume of any gas becomes zero at this temperature. 
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4.16 TERMINAL QUESTIONS 

1. Explain entropy. Give its general concept and physical significance. Prove that the entropy 

of a system increases in an irreversible process. 

2. Give the definition of entropy. Prove that the entropy of a system remains constant in a 

reversible process. 

3. “The entropy of a substance is a unique function of its state,” explain 

4. Prove that the dimensions of entropy are the same as the ratio of heat and temperature. 

5. Show that in a reversible cyclic process, the entropy change is zero. 

6. Explain the principle of increase of entropy. 

7. Discuss T-S diagram and hence establish the expression for efficiency of an engine. 

8.  Derive entropy of a perfect gas in terms of pressure and temperature. 

9. Explain Kelvin scale of temperature. 

10.  What is absolute zero temperature? Explain. 

11. Explain unattainability of absolute zero. 

12. State and prove Clausius theorem of entropy. 

13.  Discuss Nernst theorem. 

14. Explain zero point energy. Give its significance. 

15. Show that the negative temperatures are not possible on absolute scale of temperature. 

16. Give short notes on 

      (i) Absolute scale of temperature 

      (ii) Law of increase of entropy 

17. Why Kelvin’s scale of temperature is called the absolute scale? 

18. For the following processes in an ideal gas state whether the change in entropy is positive, 

negative or zero? 

     (i) Reversible adiabatic expansion 

     (ii) Reversible isothermal compression 

     (iii) Reversible isobaric expansion 

     (iv) Joule’s free expansion 
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19.  Fill in the blanks 

       (i) The absolute scale of temperature is also called................... 

       (ii) The absolute scale of temperature was proposed by.............. 

       (iii) ..........temperatures are not possible on the absolute scale of temperature. 

       (iv) The entropy of a system is a .................function. 

       (v) The entropy of a system remains constant in an ...............process. 

       (vi) The concept of entropy was first introduced by.............. 

       (vii) Entropy is closely related to ................. 

4.17 ANSWERS 

Self assessment questions (SAQs) 

1.  (ii) zero 

2.  (iii) zero 

3. (iii) increases 

4. (iv) zero 

5. (ii) adiabatic process 

6. (ii) work done in a cycle    

Terminal questions 

17. Because the Kelvin’s scale does not depend upon the properties of any working substance. 

18.  (i) zero    (ii) negative   (iii) positive   (iv) zero 

19. (i) thermodynamic scale of temperature 

     (ii) Lord Kelvin 

     (iii) negative 

     (iv) point 

     (v) adiabatic 

     (vi) Clausius 

    (vii) disorder in the system 
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5.1 INTRODUCTION 
 

Out of several properties of a thermodynamic system some of these like internal energy and 

entropy cannot be measured directly. So, thermodynamic relations can relate these properties 

with those that can be measured like pressure, temperature, compressibility etc. In 

thermodynamic relations un-measurable properties can be written as partial derivatives 

involving both intensive and extensive variables. A thermodynamic relations is a rule which is 

obtained by a simple thermodynamic reasoning and applies to most of the systems.  

The usefulness of the above relations lies in the fact that they relate quantities which seem 

unrelated. They help us to link data obtained in various ways or replace a difficult measurement 

by another one. They can also be used to obtain values of one variable from the calculations of 

another variable.  

These relations are very general and immensely useful as they simplify analysis of 

thermodynamic systems. The most convenient way to derive these relations is to use partial 

differentiation. 

5.2 OBJECTIVES 

After studying of this unit, the learner will be able to understand 

 The perfect differentials and partial derivatives. 

 The extensive and intensive thermodynamic variables learner 

 Maxwell thermodynamic relations amongst different thermodynamic variables. 

 Various thermnodynamical effects using Maxwell's relations 

 To find the value of one variable calculated by the value of another variable. 

 To understand the specific heat and its relations, Clausius Clapeyron latent heat equation; 

Joule’s Law; Joule-Thomson law, Temperature inversion and Ratio of adiabatic and isothermal 

elasticites using Maxwell's relations. 

5.3 PERFECT DIFFERENTIALS 
 

A line integral over a perfect differential is path independent. The integral depends only on the end 

points. Let us suppose that we have a certain quantity z depending upon two other quantities x and y so 

that z is some single valued function of x and y. Mathematically we express it as z = f (x,y). Let us take 

mutually perpendicular axes of coordinates (Fig.5.1). Then for any particular point A of coordinates x, 

y, the quantity z has a particular and definite value. That is, when x and y are given, the quantity z is 

completely determined. The differential dz is then called “perfect differential”. In this case, when we 

go from a point A to a point C, the value of z at C will be independent of the actual path adopted. There 

are a number of paths from A to C but the value of z changes in going from A and C by the same 

amount, whichever path is chosen. From this it follows that if we take the quantity z through a cycle 

such as ABCD, then 

  ∮𝑑𝑧 = 0 
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Fig. (5.1) 

Mathematical Condition of Partial Differentials 

Let us now find the mathematical condition for dz to be a perfect differential. Let, the variable 

x and y changes by infinitesimal amount dx and dy respectively. To represents this, let us draw an 

elementary rectangle ABCD (Fig. 5.2), the coordinates of A being (x,y) and the sides AD and AB of 

the rectangle being dx and dy respectively. Clearly, the coordinates of D will be (x+dx, y); the 

coordinates of B will be (x, y+dy), and the coordinates of C will be (x+dx, y+dy).  

 

Fig. (5.2) 

Suppose, we chose the path ABC to go from A to C. then if the value of the quantity is z at A, 

its value at B will be  z +
∂z

∂y
dy. The value of z at C will be 

  (z +
∂z

∂y
 dy) +

∂

∂x
(z +

∂z

∂y
dy) ×  dx 

Secondly, let us choose the path ADC from A to C. The value of z at D will be 𝑧 +
𝜕𝑧

𝜕𝑥
𝑑𝑥. The 

value of z at C will be  
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  (z +
∂z

∂x
dx) +

∂

∂y
(z +

∂z

∂x
dx) ×  dy 

Now, if dz is a perfect differential, the value of z must be the same at C, whichever path is 

chosen. That is  

  (z +
∂z

∂y
 dy) +

∂

∂x
(z +

∂z

∂y
dy) dx = (z +

∂z

∂x
dx) +

∂

∂y
(z +

∂z

∂x
dx) dy 

or,   (z +
∂z

∂y
 dy) +

∂z

∂x
dx +

∂2z

∂x∂y
 dy dx = z +

∂z

∂x
dx +

∂z

∂y
dy +

∂2z

∂y∂x
dxdy 

  
∂2z

∂x∂y
=

∂2z

∂y∂x
 

This is the mathematical condition for dz to be perfect differential. If dz is a perfect differential 

of a function (x, y); it may be shown that 

  dz =  (
∂z

∂x
)
y
dx + (

∂z

∂y
)
x
dy 

All the five state variables P, V, T, U and S are perfect differential. 

5.4 EXTENSIVE AND INTENSIVE THERMODYNAMIC 

VARIABLES 
 

An intensive property is a bulk property, meaning that it is a physical property of a system that does not 

depends on the size or the amount of the material in the system. Examples of intensive properties include 

temperature, pressure, density, viscosity, hardness, refractive index, specific volume, emf, etc. 

An extensive property is a physical quantity whose magnitude is additive for the system. The 

value of such an additive property is proportional to the size of the system or to the quantity of matter 

in the system. Examples of the extensive property is length, area, volume,mass, internal energy, entropy, 

electric charge, heat capacity, magnetisation etc. 

The ratio of two extensive properties of the same object or system may be an intensive property. 

For example, the ratio of an object’s mass and volume, which are two extensive properties, is density 

(M/V), or specific volume (V/M), which is an intensive property. 

5.5 MAXWELL’S THERMODYNAMIC RELATIONS 
 

The state of a homogenous system is completely determined if we know its mass and any two of the 

thermodynamic variables P, V, T, U and S. Thus, the internal energy U of a system is completely 

determined if V and T are given i.e., U is a function of the two variables V and T. Among the five 

thermodynamic variables certain relations exist, of which four are important and known as ‘Maxwell's 

thermodynamic relations’. Let us deduce these relations. 
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From the first law of thermodynamics 

  dQ = dU + dW 

  dQ = dU + PdV      (Since dW = PdV) 

or  dU = dQ − PdV 

and from the second law of thermodynamics 

  dQ = TdS 

Substituting the value of dQ in first equation 

  dU = TdS − PdV       … (5.1) 

Let U, S and V be the functions of two independent variables x and y. [Here x and y may be any two 

variables out of S, T, P and V], then 

  dU = (
∂U

∂x
)
y
 dx + (

∂U

∂y
)
x
 dy 

  dS = (
∂S

∂x
)
y
 dx + (

∂S

∂y
)
x
 dy 

  dV = (
∂V

∂x
)
y
 dx + (

∂V

∂y
)
x
 dy 

Substituting these values of dU, dS and dV in equation (5.1), we get 

  (
∂U

∂x
)
y
 dx + (

∂U

∂y
)
x
 dy = T [(

∂S

∂x
)
y
 dx + (

∂S

∂y
)
x
 dy]  − P [(

∂V

∂x
)
y
 dx + (

∂V

∂y
)
x
 dy] 

or  (
∂U

∂x
)
y
 dx + (

∂U

∂y
)
x
 dy = [T(

∂S

∂x
)
y
 − P (

∂V

∂x
)
y
 ] dx + [T (

∂S

∂y
)
x
 − P(

∂V

∂y
)
x
 ] dy 

Equating the coefficients of dx and dy on both sides, we have 

  (
∂U

∂x
)
y
 =  T (

∂S

∂x
)
y
 − P (

∂V

∂x
)
y
      … (5.2) 

  (
∂U

∂y
)
x
 = T (

∂S

∂y
)
x
 − P (

∂V

∂y
)
x
      … (5.3) 

Differentiating equation (5.2) with respect to y and equation (5.3) with respect to x, we get 

  
∂2U

∂y∙∂x
 = (

∂T

∂y
)
x
(
∂S

∂x
)
y
 + T

∂2S

∂y∙∂x
 − (

∂P

∂y
)
x
(
∂V

∂x
)
y
− P

∂2V

∂y∙∂x
   

  
∂2U

∂x∙∂y
 = (

∂T

∂x
)
y
(
∂S

∂y
)
x
 + T

∂2S

∂x∙∂y
 − (

∂P

∂x
)
y
(
∂V

∂y
)
x
− P

∂2V

∂x∙∂y
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As dU is a perfect differential, therefore, 

  
∂2U

∂y∙∂x
 =  

∂2U

∂x∙∂y
 

  (
∂T

∂y
)
x
(
∂S

∂x
)
y
 + T

∂2S

∂y∙∂x
 – (

∂P

∂y
)
x
(
∂V

∂x
)
y
− P

∂2V

∂y∙∂x
   

   =  (
∂T

∂x
)
y
(
∂S

∂y
)
x
 + T

∂2S

∂x∙∂y
 − (

∂P

∂x
)
y
(
∂V

∂y
)
x
− P

∂2V

∂x∙∂y
 

 …(5.4) 

Since dS and dV are also perfect differentials, we have 

  
∂2S

∂y∙∂x
 =  

∂2S

∂x∙∂y
 and 

∂2V

∂y∙∂x
 =  

∂2V

∂x∙∂y
  

Therefore, equation (5.4) becomes: 

  (
∂T

∂y
)
x
(
∂S

∂x
)
y
  – (

∂P

∂y
)
x
(
∂V

∂x
)
y
   =  (

∂T

∂x
)
y
(
∂S

∂y
)
x
 − (

∂P

∂x
)
y
(
∂V

∂y
)
x
 … 

(5.5) 

 This is the general expression for Maxwell’s thermodynamic relations. In place of the 

independent variables x and y, any two of the four variables S, T, P and V can be substituted so that 

there may be one mechanical variable (P or V) and one thermal variable (S or T). Thus there may be 

four sets of possible substitutions (S, V), (T, V), (S, P) and (T, P), providing the four Maxwell’s 

thermodynamic relations. 

Maxwell’s First Relation: Substitute x = S and y = V in equation (5.5), so that 

  
∂S

∂x
 = 1,

∂S

∂y
 = 0 

  
∂V

∂x
 = 0,

∂V

∂y
 = 1 

Putting these values in equation (5.5), we get 

  (
∂T

∂y
)
x
 =  − (

∂P

∂x
)
y
 

But ∂y =  ∂V (as y = V) and ∂x =  ∂S (as x =S). Hence 

  (
∂T

∂V
)
S
 =  − (

∂P

∂S
)
V

        … 

(i) 

This is Maxwell’s first thermodynamic relation. 

Maxwell’s Second Relation: Substitute x = T and y = V in equation (5.5), so that 
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∂T

∂x
 = 1,

∂T

∂y
 = 0 

  
∂V

∂x
 = 0,

∂V

∂y
 = 1 

Putting these values in equation (5.5), we get 

  0 = (
∂S

∂y
)
x
 − (

∂P

∂x
)
y
 

or  (
∂S

∂y
)
x
 =  (

∂P

∂x
)
y
 

But ∂y =  ∂V (as y = V) and ∂x =  ∂T (as x =T). Hence 

  (
∂S

∂V
)
T
 =  (

∂P

∂T
)
V

        … 

(ii) 

This is Maxwell’s second thermodynamic relation. 

Maxwell’s Third Relation: Substitute x = S and y = P in equation (5.5), so that 

  
∂S

∂x
 = 1,

∂S

∂y
 = 0 

  
∂P

∂x
 = 0,

∂P

∂y
 = 1 

Putting these values in equation (5.5), we get 

  (
∂T

∂y
)
x
 − (

∂V

∂x
)
y
  = 0 

  (
∂T

∂y
)
x
 = (

∂V

∂x
)
y
  

But ∂y =  ∂P (as y = P) and ∂x =  ∂S (as x = S). Hence 

  (
∂T

∂P
)
S
 = (

∂V

∂S
)
P

        … 

(iii) 

This is Maxwell’s third thermodynamic relation. 

Maxwell’s Fourth Relation: Substitute x = T and y = P in equation (5.5), so that 

  
∂T

∂x
 = 1,

∂T

∂y
 = 0 
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∂P

∂x
 = 0,

∂P

∂y
 = 1 

Putting these values in equation (5.5), we get 

   − (
∂V

∂x
)
y
  = (

∂S

∂y
)
x
 

But ∂y =  ∂P (as y = P) and ∂x =  ∂T (as x = T). Hence 

  (
∂S

∂P
)
T
 = − (

∂V

∂T
)
P
        … 

(iv) 

This is Maxwell’s fourth thermodynamic relation. 

 Relations (i), (ii), (iii) and (iv) are the four important thermodynamic relations and any  of these 

relation depending on its suitability, can be used while solving a particular problem. 

5.6 APPLICATIONS OF MAXWELL’S THERMODYNAMIC 

RELATIONS 
 

5.6.1 SPECIFIC HEAT OF A SUBSTANCE  

 Heat capacity per unit mass is known as specific heat and is represented by the letter C. Thus 

   C =
Heat Capacity

Mass
=  

Q
∆T

⁄

m
=

Q

∆T.m
         … (5.6)

  

 Thus specific heat of a material is the quantity of heat required so as to raise the temperature of 

unit mass of the materials through 1 degree. The unit of specific heat in M.K.S system is joule per kg 

per C’ (J/kgC).  

 The above definition of specific heat is sufficient for solids and liquids but not for gases because 

from equation (5.6), specific heat of gas may vary from zero to infinity.  

 For example, if a gas is compressed there is rise in temperature without supplying any heat to 

the gas. Thus   

  C =
Q

∆T.m
= 0     (  Q=0)     … (5.7) 

 On the other hand if heat is supplied to the gas and the gas is allowed to expand such that there 

is no rise in temperature, then 

  C =
Q

∆T.m
= ∞     (  ∆T =0)     … (5.8) 
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 Hence, in order to find the value of the specific heat of a gas, either the pressure or the volume 

has to be kept constant. Consequently we have two specific heats. 

 The Specific heat at constant volume which is defined as the amount of heat required to raise 

the temperature of unit mass of a gas through 1 C when its volume is kept constant. It is denoted by Cv 

and given as 

  CV  =  (
∂Q

∂T
)
V
                     (5.9) 

 The Specific heat at constant pressure which is defined as the amount of heat required to raise 

the temperature of unit mass of a gas through 1 C when its pressure is kept constant. It is denoted by 

CP and given as 

  CP  =  (
∂Q

∂T
)
P
                     (5.10) 

5.6.2 RELATION BETWEEN CP AND CV  

(i) The specific heats at constant pressure and at constant volume are given as 

  CP  =  (
∂Q

∂T
)
P
 = T (

∂S

∂T
)
P

   (  ∂Q = 𝑇 ∂S)        (5.11) 

  CV  =  (
∂Q

∂T
)
V
 = T (

∂S

∂T
)
V

            (5.12) 

Now, if the entropy S is regarded as a function of T and V and since dS is a perfect differential 

or,  dS = (
∂S

∂T
)
V
 dT + (

∂S

∂V
)
T
 dV 

Differentiating with respect to T at constant P, we get 

  (
∂S

∂T
)
P

= (
∂S

∂T
)
V
 + (

∂S

∂V
)
T
 (

∂V

∂T
)
P
 

Multiplying both sides by T, we have 

  T (
∂S

∂T
)
P

= T(
∂S

∂T
)
V
 + T (

∂S

∂V
)
T
 (

∂V

∂T
)
P
 

From Maxwell’s second relation (
∂S

∂V
)
T
 =  (

∂P

∂T
)
V

, so that 

  T (
∂S

∂T
)
P

= T(
∂S

∂T
)
V
 + T (

∂P

∂T
)
V
 (

∂V

∂T
)
P
 

or  T (
∂S

∂T
)
P
− T (

∂S

∂T
)
V
 = T (

∂P

∂T
)
V
 (

∂V

∂T
)
P
 

Using equations (5.11) and (5.12), we get 
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  CP − CV  = T (
∂P

∂T
)
V
 (

∂V

∂T
)
P
          (5.13) 

(ii)  But pressure P is a function of T and V, and dP is perfect differential, hence 

  dP =  (
∂P

∂T
)
V
dT + (

∂P

∂V
)
T
dV 

If the change takes place at constant pressure, dP = O. Then 

  (
∂P

∂T
)
V
dT  = − (

∂P

∂V
)
T
dV 

Differentiating with respect to T at constant P, we get 

  (
∂P

∂T
)
V
  = − (

∂P

∂V
)
T
(
∂V

∂T
)
P

 

Substituting this value in equation (5.13), we get 

  CP − CV  = T [− (
∂P

∂V
)
T
(
∂V

∂T
)
P
] (

∂V

∂T
)
P
 

or  CP − CV  = −T (
∂P

∂V
)
T
(
∂V

∂T
)
P

2
            (5.14) 

But the coefficient of volume elasticity  E =  − (
∂P

∂V V⁄
)
T
 =  −V (

∂P

∂V
)
T
 and coefficient of 

volume expansion α =  (
∂V V⁄

∂T
)
P
 =

1

V
(
∂V

∂T
)
P
, then equation (5.14) becomes 

  CP − CV  = 𝑇𝐸𝛼2𝑉             (5.15) 

(iii)  For a perfect gas, the equation of state is 

  PV = RT 

Differentiating it with respect to T at constant V, and at constant P, we have 

  (
∂P

∂T
)
V
 =  

R

V
  and   (

∂V

∂T
)
P
 =  

R

P
 

Hence equation (5.13) becomes 

  CP  −  CV = T(
R

V
) (

R

P
)  =  

R2T

PV
= 

R2T

RT
 

or  CP − CV = R              (5.16) 

(iv)  For a van der Waal’s gas, the equation of state is 
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  (P +
a

V2
) (V − b)  = RT 

Where a and b are constants 

or  (P + 
a

V2
)  =

RT

(V −b) 
               

or,  𝑃 =
RT

(V −b) 
−

a

v2
                   (5.17) 

Differentiating equation (5.17) with respect to T at constant V, we obtain 

  (
𝜕𝑃

𝜕𝑇
)
𝑉
 =  

R

(V −b) 
            (5.18) 

Differentiating equation (5.18) with respect to T at constant P, we obtain 

  0 − 
2𝑎

𝑉3
(
𝜕𝑉

𝜕𝑇
)
𝑃
 =   

R

(V −b) 
 −  

RT

(V −b )2
(
∂V

∂T
)
P
 

or  (
∂V

∂T
)
P
[

RT

(V −b )2
− 

2a

V3
]  =  

R

(V −b) 
   

or  (
∂V

∂T
)
P
 =  

(
R

(V −b) 
)

[
RT

(V −b )2
− 

2a

V3]
            … (5.19) 

Substituting the value of (
𝜕𝑃

𝜕𝑇
)
𝑉

 from equation (5.18) and the value of (
∂V

∂T
)
P
 from equation (5.19) in 

equation (5.13), we get 

  CP  −  CV =  
T(

R

(V −b) 
)(

R

(V −b) 
)

[
RT

(V −b )2
− 

2a

V3]
 

Dividing by 
RT

(V −b)2
 in numerator and denominator in RHS of the above equation 

  CP − CV =  
R

[1 – 
2a

V3 ∙ 
(V −b)2

RT
]
  

Neglecting b in comparison to V 

  CP − CV =  
R

1 − 
2a

V3 ∙ 
V2

RT
 
 =  

R

1 – 
2a

VRT

 = R (1 – 
2a

VRT
)
−1

 

Expanding binomially and neglecting the higher power terms, we obtain 

  CP − CV =  R (1 + 
2a

VRT
)                    …(5.20) 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 95 
 

 

5.6.3  CLAUSIUS-CLAPEYRON LATENT HEAT EQUATION 

Maxwell's second thermodynamic relation is written as: 

  (
∂S

∂V
)
T

= (
∂P

∂T
)
V

 

Multiplying both sides by T, we have  

  T (
∂S

∂V
)
T

= T (
∂P

∂T
)
V

 

But,  𝑇𝜕𝑠 =  𝜕𝑄 (from second law of thermodynamics). Hence 

  (
∂Q

∂V
)
T

= T (
∂P

∂T
)
V

 

Here (
𝜕𝑄

𝜕𝑉
)
𝑇

 represents the quantity of heat absorbed or liberated per unit change in volume at 

constant temperature. This mean that at constant temperature the heat absorbed or liberated bring out 

simply a change in the volume of the substance. Therefore, this quantity of heat absorbed or liberated 

at constant temperature must be the latent heat and the change in volume must be due to a change of 

state. Considering a unit mass of substance, let L be the latent heat when the substance changes its 

volume from V1 to V2 at constant temperature, then 

  ∂Q = L and ∂V = V2 − V1 

Substituting these values in the above expression 

  (
L

V2−V1
)
T

= T (
∂P

∂T
)
V

 

or  
L

V2−V1
= T

dP

dT
 

or  
dP

dT
=

L

T (V2−V1)
       …(5.21) 

This is the Clausius-Clapeyron latent heat equation. 

5.6.4  ENERGY EQUATION 

Let, a thermodynamic system undergoes an infinitesimal reversible process between two 

equilibrium states. Its general behavior may be expressed by the first and second laws of 

thermodynamics, which are  

  dQ = dU + PdV  

and  dQ = TdS 
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These give  dU + PdV = TdS 

or  dS =
dU+PdV

T
 

Making this substitution in Maxwell’s 2nd relation (
∂S

∂V
)
T

= (
∂P

∂T
)
V

, we get 

  
1

T
(
∂U+P∂V

∂V
)
T

= (
∂P

∂T
)
V

 

or  (
∂U

∂V
)
T
+ P = T(

∂P

∂T
)
V

     

or  (
∂U

∂V
)
T

= T (
∂P

∂T
)
V

− P      … (5.22) 

This is called the first energy equation which infact shows the variation of internal energy with volume. 

Again taking equation   

  dU TdS PdV   

and dividing by dP , we get 

  
dU dS dV

T P
dP dP dP

   

where U, S and V are regarded as function of T and P. If T is kept constant then the derivatives becomes 

partial derivatives, and then 

  
T T T

dU dS dV
T P

dP dP dP

     
      

     
 

From Maxwell's fourth relation 

  
T P

dS dV

dP dT

   
    

   
 

Therefore, 

  
T P T

dU dV dV
T P

dP dT dP

     
       

     
     (5.23) 

This is the second energy equation which shows the variation of internal energy with pressure. 

5.6.4.1  FOR IDEAL GAS 

 For 1 mole of an ideal gas, we have 

  P =
RT

V
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or  (
𝜕𝑃

𝜕𝑇
)
𝑉

=
𝑅

𝑉
 

   T (
∂P

∂T
)
V

=
RT

V
= P 

Putting this in eq. (5.22), we get    

  (
∂U

∂V
)
T

= 0        … (5.24) 

Thus, the internal energy of an ideal gas is independent of its volume at constant temperature, which 

is Joule’s Law. 

5.6.4.2  FOR VAN DER WAALS’ GAS 

 For 1 mole of a real gas, we have 

  (P +
a

V2
) (V − b) = RT   

  P =
RT

V−b
−

a

V2
   

  (
∂P

∂T
)
V

=
R

V−b
 

Putting this value in eq. (5.22), we get 

  (
∂U

∂V
)
T

=
RT

V−b
− P 

Putting the value of  
𝑅𝑇

𝑉−𝑏
− 𝑃 from van der Waal’s equation, we have  

  (
∂U

∂V
)
T

=
a

V2
        …(5.25) 

which is positive. This means that the internal energy of an actual gas does depend on its volume at 

constant temperature. 

5.6.5  JOULE-THOMSON EFFECT 

When a gas under a constant pressure is made to pass through an insulated porous-plug to a 

region of lower constant pressure, it suffers a change in temperature. This is called the 'Joule -Thomson 

or Joule-Kelvin effect'. The process is called the 'throttling process'. The change in temperature is 

proportional to the pressure-difference between the two sides of the plug. At ordinary temperature, all 

gases, expect hydrogen and helium, show a cooling effect while hydrogen and helium show a heating 

effect. 

 Let us consider 1 mole of gas. Let P1and V1 be its pressure and volume before passing and P2 

and V2 the pressure and volume after passing through the porous plug. The net external work done by 

the gas in passing through the plug is then P2V2 - P1V1. Since there is no heat-exchange between the gas 
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and its surroundings, this work must come from the internal energy of the gas. Thus, if U1 and U2 be 

the internal energies of the gas before and after passing through the plug, we have from the first law of 

thermodynamics 

  U1 − U2 = P2V2 − P1V1 

or  U1 + P1V1 = U2 + P2V2    

  U + PV = constant 

The quantity (𝑈 + 𝑃𝑉) which remains constant during a throttling process, is called the enthalpy (H) 

of the gas. Thus, we may write 

  dH = d(U + PV) = 0   

  dU + PdV + VdP = 0 

But dU + PdV = dQ and dQ = TdS (first and second law respectively). Therefore, 

  TdS + VdP = 0       …(5.26) 

Let as assume that the entropy S is the function of variables P and T. Since dS is a perfect differential, 

we have  

  dS = (
∂S

∂T
)
P
dT + (

∂S

∂P
)
T
dP 

Substituting this value of dS in equation (5.26), we get 

  T (
∂S

∂T
)
P
dT + T(

∂S

∂P
)
T
dP + VdP = 0    …(5.27) 

But dQ = TdS. Therefore, T(
∂S

∂T
)
P

= (
∂Q

∂T
)
P

= CP where 𝐶𝑃  is the specific heat at constant pressure.  

Maxwell’s fourth relation is (
∂S

∂P
)
T

= −(
∂V

∂T
)
P
 

Therefore equation (5.27) becomes  

  CPdT − T (
∂V

∂T
)
P
dP + VdP = 0 

or   CPdT = [T (
∂V

∂T
)
P
− V]dP   

  
dT

dP
=

1

CP
[T (

∂V

∂T
)
P
− V]      … (5.28) 

Since, the enthalpy H remains constant during throttling process, we write 
dT

dP
 as (

∂T

∂P
)
H

 which is called 

the Joule-Thomson coefficient µ. Thus,  

  µ = (
𝜕𝑇

𝜕𝑃
)
𝐻

=
1

𝐶𝑃
[𝑇 (

𝜕𝑉

𝜕𝑇
)
𝑃

− 𝑉]     … (5.29) 

Integrating it, we get the temperature-change for finite drop in pressure from P1 to P2 as 
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  ∆𝑇 =
1

𝐶𝑃
∫ [𝑇 (

𝜕𝑉

𝜕𝑇
)
𝑃
− 𝑉]𝑑𝑃

𝑃2

𝑃1
     …(5.30) 

5.6.5.1 FOR IDEAL GAS 

For 1 mole of a perfect gas, the equation of state is PV=RT. 

Differentiating it with respect to T, taking P constant, we have 

  (
∂V

∂T
)
P

=
R

P
   

  T (
∂V

∂T
)
P

=
R

P
T = V      (since PV=RT) 

  T (
∂V

∂T
)
P
− V = 0 

Substituting this value for Joule-Thomson coefficient, we get 

  µ = 0          …(5.31) 

Thus, the Joule-Thomson effect for a perfect gas is zero. 

5.6.5.2 FOR VAN DER WAALS' GAS 

For a van der Waals' gas, we have  

  (P +
a

V2
) (V − b) = RT 

Differentiating it with respect to T, taking P constant, we have 

  (P +
a

V2
) (

∂V

∂T
)
P
− 

2a

V3
(
∂V

∂T
)
P
(V − b) = R   

or,  (
∂V

∂T
)
P

=
R

(P+
a

V2)−
2a

V3(V−b)
   

   =
R

RT

V−b
−

2a

V3(V−b)
=

R(V−b)

RT−
2a

V3(V−b)2
   

or,  T (
∂V

∂T
)
P
− V =

RT(V−b)

RT−
2a

V3(V−b)2
− V   

    =
−RTb+

2a

V2(V−b)2

RT−
2a

V3(V−b)2
   

    =
2aV(V−b)2−RTV3b

RTV3−2a(V−b)2
       …(5.32) 

Since, a and b are very small quantities, we replace 2aV(V − b)2 by 2aV3 in the numerator and ignore 

2a(V − b)2 in comparison with RTV3 in the denominator. Then, we get  

  T (
∂V

∂T
)
P
− V =

2aV3−RTV3b

RTV3    
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      =
2a

RT
− b 

Substituting this result in equations (5.28) and (5.29), we get 

  µ = (
𝜕𝑇

𝜕𝑃
)
𝐻

=
1

𝐶𝑃
[
2𝑎

𝑅𝑇
− 𝑏]      …(5.33) 

and   ∆T =
1

CP
∫ [

2a

RT
− b]dP

P2

P1
=

2a

RT
−b

CP
(P2 − P1).      

The pressure is lower on the emergent side of the porous plug (𝑃2 < 𝑃1). Hence, we may write as 

  ∆T = −
2a

RT
−b

CP
(P2 − P1)                   …(5.34) 

This expression shows the Joule-Thomson effect for real gas. 

Joule-Thomson Effect as due to deviation from Joule’s law and Boyle’s law 

The Joule-Thomson effect, as deduced in the last equation, is expressed as 

  (
∂T

∂P
)
H

=
1

CP
[T (

∂V

∂T
)
P
− V] 

By Maxwell’s fourth relation (
∂V

∂T
)
P

= −(
∂S

∂P
)
T

.  

On substitution,  

  (
∂T

∂P
)
H

= −
1

CP
[T (

∂S

∂P
)
T
+ V] 

Now dU + PdV = dQ and dQ = TdS. Therefore  

  (
∂T

∂P
)
H

= −
1

CP
[(

∂U

∂P
)
T
+ (

P∂V

∂P
)
T
+ V]   

  CP (
∂T

∂P
)
H

= − [(
∂U

∂P
)
T
+ (

∂(PV)

∂P
)
T
]    …(5.35) 

According to Joule’s law, UT is constant, while according to Boyle’s law (PV)T is constant. Thus, the 

first term on the right-hand side represents deviation from the Joule’s law while the second term 

represents deviation from the Boyle’s law. The Joule-Thomson effect is thus the resultant of these two 

deviations. 

5.6.6 TEMPERATURE OF INVERSION 

The expression (5.34) shows that if  
2a

RT
> 𝑏 𝑜𝑟 𝑇 <

2a

Rb
  then  ∆𝑇 will be negative i.e., the 

gas will be cooled on passing through the porous plug. If  T >
2a

Rb
, then ∆𝑇 will be positive and the 

gas will be warmed. At T =
2a

Rb
, we have ∆T = 0 i.e., there is no change in the temperature of the 
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gas on passing through the porous plug. This temperature is called the temperature of inversion Ti. At 

this temperature, the Joule-Thomson coefficient 𝜇 = 0. 

The temperature of inversion Ti , the Boyle temperature TB and the critical temperature Tc are 

related by the relation  

  Ti =
2a

Rb
=

27

4
Tc = 2TB      …(5.36) 

which gives expressions for these quantities in terms of the van der Waals' constants as  

  
8 2

and
27

B c i

a a a
T T T

Rb Rb Rb
      ... (5.37) 

For most gases, the temperature of inversion is greater than the ordinary temperature. Hence, a cooling 

effect is obtained. However, for hydrogen and helium, the Ti is much lower than the ordinary 

temperature and hence they show heating effect in porous plug experiment. If they are pre-cooled below 

their temperature of inversion, they will also show a cooling effect. 

 An accurate expression for inversion temperature may be obtained by equating the exact 

value of  T (
∂V

∂T
)
P
− V, given by eq. (5.32), to zero. That is  

  2aV(V − b)2 − RTiV
3b = 0  

or,  Ti =
2a(V−b)2

RV2b
        …(5.38) 

5.6.7  RATIO OF ADIABATIC AND ISOTHERMAL ELASTICITIES 

The coefficient of volume elasticity is defined by 

  E =
Stress

Volume strain
= −

dP

dV V⁄
= −V

dP

dV
    ... (5.39) 

Therefore, the adiabatic elasticity Es(entropy constant) and isothermal elasticity 

ET(temperature constant) are given by 

  Es = −V(
∂P

∂V
)
S
   

  ET = −V(
∂P

∂V
)
T

 

Hence,  
ES

ET
=

(
∂P

∂V
)
S

(
∂P

∂V
)
T

=
(
∂P

∂T
.
∂T

∂V
)
S

(
∂P

∂S
.
∂S

∂V
)
T

=
(
∂P

∂T
)
S

(
∂P

∂S
)
T


(
∂T

∂V
)
S

(
∂S

∂V
)
T

 

But  (
∂P

∂T
)
S
= (

∂S

∂V
)
P
From Maxwell′s third relation   

  (
∂T

∂V
)
S
= −(

∂P

∂S
)
V
From Maxwell′s first relation   

  (
∂P

∂S
)
T

= −(
∂T

∂V
)
P
From Maxwell′s fourth relation   
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  (
∂S

∂V
)
T

= (
∂P

∂T
)
V
From Maxwell′second relation 

Making use of these relations, we have 

  
ES

ET
=

(
∂S

∂V
)
P
(
∂P

∂S
)
V

(
∂T

∂V
)
P
(
∂P

∂T
)
V

= (
∂S

∂V
∂T

∂V

)
P

(
∂P

∂S
∂P

∂T

)
V

   

or  
ES

ET
= (

∂S

∂T
)
P
(
∂T

∂S
)
V

=
(
∂S

∂T
)
P

(
∂S

∂T
)
V

   

  
ES

ET
=

T(
∂S

∂T
)
P

T(
∂S

∂T
)
V

=
(
∂Q

∂T
)
P

(
∂Q

∂T
)
V

          (T ∂S = ∂Q) 

But  (
∂Q

∂T
)
P

= Cp and (
∂Q

∂T
)
V

= Cv 

Hence  
ES

ET
=

Cp

Cv
 =  γ       … (5.40) 

Thus, the ratio of adiabatic and isothermal elasticities for any substance is equal to the ratio of the 

specific heats of the substance at constant pressure and at constant volume. 

Self Assessment Questions (SAQ) 

1 Show that Joule-Thomson effect for a perfect gas is zero.  

2 If the process is isobaric, prove that (
𝜕𝑃

𝜕𝑆
)
𝑇
(
𝜕𝑆

𝜕𝑇
)
𝑃

= −(
𝜕𝑃

𝜕𝑇
)
𝑆
 

3 If the process is isobaric, prove that (
𝜕𝑃

𝜕𝑉
)

𝑇
(
𝜕𝑉

𝜕𝑇
)
𝑃

= −(
𝜕𝑃

𝜕𝑇
)
𝑉

 

5.7  EXAMPLES 

 
Example 1. For a metallic copper disc at 300 K, the following values are known: Isothermal 

compressibility, K = 7.78 × 10-12 N/m2; Specific heat at constant pressure, CP = 24.5 J/mol K; Volume, 

V = 7.06 cm3/mol and coefficient of volume expansion, α = 50.4 × 10-6 K-1. 

Determine Specific heat at constant volume, CV. 

Solution: We know that 

  CP  −  CV = TEα2V 

and  E =  
1

K
 

so that  CP  −  CV =
Tα2V

K
  

Here V = 7.06 cm3/mol = 7.06 × 10-6 m3/mol 
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Hence  CP  −  CV =
300×7.06×10−6×(50.4×10−6)

2

7.78×10−12   

  CP  −  CV = 0.6915 J/mol-K 

  CV = CP  − 0.6915 J/mol-K 

  CV = (24.5 - 0.6915) J/mol-K 

  CV = 23.8085 J/mol-K 

Example 2. Calculate under what pressure water would boil at 1500C if the change in specific volume 

when 1 gram of water is converted into steam is 1676 c.c. Given latent heat of vaporization of steam = 

540 cal per gram;  J = 4.2 × 107 erg/cal, and one atmosphere pressure = 106 dynes/cm2. 

Solution: From Maxwell’s second relation 

  (
∂S

∂V
)
T
 =  (

∂P

∂T
)
V

 

or,  T (
∂S

∂V
)
T
 =  T (

∂P

∂T
)
V

 

or,  (
∂Q

∂V
)
T
 =  T (

∂P

∂T
)
V

      (𝑇𝜕𝑆 =  𝜕𝑄) 

Here   ∂Q = 540 cals. = 540×4.2×107 ergs. 

 ∂V = 1676 c.c. T = 100 0C = 373 K.  and 150 0C = 423 K. 

 Hence ∂T = 423 – 373 = 50 K,  ∂P = ? 

Substituting these values in above equation 

  
540×4.2×107

1676
 = 373 (

∂P

50
)  

  ∂P = 
50×540×4.2×107

373×1676
 

  ∂P = 1.815 × 106 dynes/cm2 

        = 1.815 atmosphere. 

Hence the required pressure at which water would boil at 150 0C  = 1.815 + 1 

             = 2.815 atm. 

 

5.8 SUMMARY 
 

A thermodynamic relations is a rule which is obtained by a simple thermodynamic reasoning and applies 

to most of the systems. The usefulness of the above relations lies in the fact that they relate quantities 

which seem unrelated. They help us to link data obtained in various ways or replace a difficult 
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measurement by another one. They can also be used to obtain values of one variable from the 

calculations of another variable. These relations are very general and immensely useful as they simplify 

analysis of thermodynamic systems. The most convenient way to derive these relations is to use partial 

differentiation. They can also be derived from other methods. 

5.9 GLOSSARY  

 
Perfect Differential A quantity whose line integral over it is path independent. 

Homogeneous System A system whose chemical composition and physical properties are the 

same in all parts of the system, or change continuously from one point to 

another. 

State Variable Temperature, pressure, volume, internal energy, enthalpy and entropy are 

state variables. 

Internal Energy Energy contained within the system. 

Enthalpy Total heat content of the system. 

Entropy Lack of order or predictability; gradual decline into disorder. 

Isothermal Process A change of a system in which the temperature remains constant. 

Adiabatic Process One that occurs without transfer of heat or matter between a 

thermodynamic system and its surrounding. 

Specific Heat Amount of heat per unit mass required raising the temperature by 10 C. 

Heat Capacity Amount of heat needed to raise the system’s temperature by 10 C. 

Latent Heat Energy released or absorbed by a thermodynamic system during a 

isothermal process. 

Cyclic Process A process consists of a series of changes which returned the system back 

to its initial state. 

Throttling Process In this process enthalpy remains constant, work done is zero. 

Young’s Modulus It is a measure of the stiffness of a solid material. 

Volume Expansion 

Coefficient 

It is increase in volume per unit original volume per Kelvin rise in 

temperature. 

5.10 ANSWERS TO SELF ASSESSMENT QUESTIONS 
 

1. For 1 mole of a perfect gas, the equation of state is PV=RT. 

Differentiating it with respect to T, keeping P constant, we have 

  (
∂V

∂T
)
P

=
R

P
   

  T (
∂V

∂T
)
P

=
R

P
T = V      (since PV=RT) 
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or,  T (
∂V

∂T
)
P
− V = 0 

Substituting this valve in Joule-Thomson coefficient, we get 

  µ = 0           

Thus, the Joule-Thomson effect for a perfect gas is zero. 

2. The pressure P as a function of two independent variables S and T i.e., 

  P = P(S, T)     

so that  dP = (
∂P

∂S
)
T
dS + (

∂P

∂T
)
S
dT 

If the process is isobaric i.e., dP = 0, then 

  (
∂P

∂S
)
T
dS + (

∂P

∂T
)
S
dT = 0 

  (
∂P

∂S
)
T
dS = −(

∂P

∂T
)
S
dT 

  (
∂P

∂S
)
T
(

∂S

∂T
)
P

= −(
∂P

∂T
)
S

 

5.3 The pressure P as a function of two independent variables T and V i.e., 

  P = P(T, V)     

so that  dP = (
∂P

∂T
)
V
dT + (

∂P

∂V
)
T
dV 

If the process is isobaric i.e., dP = 0, then 

  (
∂P

∂T
)
V
dT + (

∂P

∂V
)
T
dV = 0 

  (
∂P

∂T
)
V
dT = −(

∂P

∂V
)
T
dV 

  (
∂P

∂T
)
V

= − (
∂P

∂V
)
T
(
∂V

∂T
)
P
 

  (
∂P

∂V
)
T
(
∂V

∂T
)
P

= −(
∂P

∂T
)
V
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5.12 TERMINAL QUESTIONS 
 

s1. Using Maxwell’s thermodynamic relations, prove that for any substance, the ratio of the adiabatic 

and isothermal elasticities is equal to the ratio of its two specific heats. 

2.  Derive Maxwell’s thermodynamic equations connecting the thermodynamic quantities. 

3. What is Joule-Thomson effect? Derived Joule Thomson effect with the help of Maxwell’s 

thermodynamic relations. 

4. Write shorts notes on  

(i)  Clausius Clapeyron Latent Heat equation  

(ii) Temperature Inversion 

(iii) Joule-Thomson Effect 

5.  Prove that enthalpy remains constant in a throttling process. 

6.  Define Joule Effect. Derive the Joule effect of an Ideal gas with the help of Maxwell’s 

thermodynamic relations 

7.  By the use of relevant Maxwell equation, show that an adiabatic expansion always produces 

cooling effect. 

8.  There is no Joule-Thomson effect for a perfect gas. Explain. 

9.  What is the most important application of Joule-Kelvin effect. 

10.  Show that for a perfect gas 

(
∂U

∂V
)
T

= 0 
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11.  What do you mean by energy equation? Show the internal energy 

(i) of an ideal gas is independent of pressure and volume and 

(ii) of a van der Waals' gas depends on volume as (
∂U

∂V
)
T

=
a

V2 

12.  Show that (
∂U

∂V
)
T

= T(
∂P

∂T
)
V

− P = TEβ − P 

13.  Using Maxwell’s thermodynamical relations, prove that the ratio of the adiabatic to the 

isochoric pressure coefficient of expansion is equal to 
𝛾

𝛾−1
 

14.  Establish the Clausius-Clapeyron’s equation 

𝑑𝑃

𝑑𝑇
=

𝐿

𝑇 (𝑉2 − 𝑉1)
 

From Maxwell’s thermodynamical relation, explain the effect of pressure on  (i) boiling point of liquid 

and (ii) melting point of a solid. 

15.  0.5 kg of water is subjected to reversible compression from 1 to 5×108 Pa at 00C. Calculate the  (i) 

heat transferred (ii) work done (iii) change in internal energy (iv) rise in temperature if the compression 

were adiabatic. 

16. The pressure of 100g of water is increased reversibly and adiabatically from 0 to 10-8 Pa. Calculate 

the rise in temperature when the initial temperature is 0oC 

Specific volume v = 1×10-3 m3/kg, expansitivity = - 68×10-6 K-1, 𝐶𝑝= 4.2 kJ/(kg.K) 

17.  At a constant temperature 300K, one mole of mercury is subjected to compression from 0 to 1000 

atm. Calculate (i) the quantity of heat rejected (ii) the work done (iii) the change in internal energy. 

Given Compressibility of mercury K= 3.84×10-11 N-1m2, coefficient of volume expansion β = 18×10-5 

K-1, volume per mole = 14.7×10-6 m3 

18. Calculate the drop in temperature produced by adiabatic throttling process in the case of oxygen 

when the pressure is reduced by 50 atm. Initial temperature of the gas is 270C. Given that the gas obeys 

van der Waals' equation and  

a = 1.32×1012 cm4 dynes/ mole2 

b = 31.2 cm3/mole 

𝐶𝑝= 7.0 cal/mole-K 

19. Find the change in boiling point of water for 100 cm change in mercury pressure if the specific 

volume of steam is 1601 cm3/gram at 1000 C and 76 cm mercury pressure. Take latent heat as 5366 

cal/gram. 

20. Show that for a homogenous fluid CP − CV  = T (
∂P

∂T
)
V
(
∂V

∂T
)
P
 

where CP and CV are the specific heats at constant pressure and constant volume respectively, and other 

symbols have their usual meanings. 
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(i) Also show that CP − CV  = TEα2V 

where E is the bulk modulus of isothermal elasticity, and α the coefficient of volume expansion. 

(ii) Hence prove that for a perfect gas CP − CV  = R 

(iii) Hence prove that for a real (van der Waal’s) gas CP − CV  = R (1 + 
2a

VRT
) 

21. Objective Questions 

(i)  From  Maxwell’s thermodynamic relations 
ES

ET
 = ? 

      (a) 1                      (b)     
1

γ
                       (c)    γ                    (d)       0 

(ii)  The value of  CP − CV for an ideal gas is 

      (a) TEαV2
           (b)  𝑇2EαV                (c)    TEα2V           (d)       TE2αV2

 

(iii)  Hydrogen and helium at normal temperature is porous plug experiment show 

      (a) Heating effect                                                     (b) Cooling effect                 

      (c) Sometimes cooling and sometimes heating          (d) None of these 

(iv) Which of the following is not a Maxwell thermodynamical relation 

(a) (
∂T

∂V
)
S
= −(

∂P

∂S
)
V

    (b) (
∂S

∂V
)
T

= (
∂P

∂T
)
V

 

(c) (
∂T

∂P
)
S
= (

∂V

∂S
)
P
     (d) (

∂S

∂P
)
T

= −(
∂T

∂V
)
P
 

(v) The temperature of inversion of a gas is 

 (a) 
a

Rb
   (b) 

2a

Rb
   (c) 

b

Ra
   (d) 

2b

Ra
 

 

 

UNIT 6 THERMODYNAMIC POTENTIALS AND 

THEIR APPLICATIONS  
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6.1 INTRODUCTION 
 

We know that the internal energy (U) of a thermodynamic system is a state function which 

means that a system undergoes the same change in U when moved from one equilibrium state 

to another, irrespective of the path followed. This path independence of internal energy makes 

it very useful, however, not a uniquely useful quantity. There could be some other combinations 

of the state variables (i.e. pressure p, volume V, temperature T, and entropy S) which when 
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added with the internal energy function may result quantities having dimensions of energy and 

preserve the nature of path independence. These new state functions are very useful and termed 

as thermodynamic potentials. However, all such combinations may not be helpful in the study 

of a thermodynamic system but the combinations like U + PV, U – TS and U + PV – TS are 

found to have significant role and are named as enthalpy (H), Helmholtz function (F), and 

Gibbs function (G) respectively. All the thermodynamic properties of a system can be 

calculated by differentiating these functions. In this unit, we explored the importance and 

usefulness of these potentials. 

For a paramagnetic specimen, the tiny dipoles may be aligned uniformly in the applied 

field direction at lower temperatures. However, at higher temperatures, the dipoles point in 

random directions because the thermal energy is much larger than the magnetic energy 

irrespective of applied magnetic field. Interestingly, the temperature dependence of alignment 

of paramagnetic dipole moments could be utilized to cool the specimen to ultra-low 

temperatures and method of the same is discussed in this unit. Detailed idea about latent heat 

equations, triple point and phase transitions are also discussed in this unit. 

6.2 OBJECTIVES 
 

By reading this unit, the learner will be able to understand. 

 How thermodynamic variables can be combined to have state functions with units of 

energy? 

 The definitions of thermodynamic potentials. 

 The significance and applications of thermodynamic potentials. 

 How Maxwell’s equations can be obtained using thermodynamic potentials? 

 How adiabatic demagnetisation leads to cooling effect? 

 What is Clausius Clapeyron equation? 

 The significance of studying phase transition in thermodynamics. 

 The triple point and its properties; TdS equations and stretching of wire. 

6.3 THERMODYNAMIC VARIABLES 
 

The thermodynamic state of a system can be determined by quantities like temperature (T), 

Volume (V), pressure (P), internal energy (U), entropy (S) etc. These quantities are known as 

thermodynamic variables, or parameters of the system. Any change in one of the variables 

results in a change in the thermodynamic state of the system. 

Thermodynamic variables are the quantities like pressure, volume and temperature, 

which help us to study the behaviour of a thermodynamic system. There are some other 

thermodynamic variables such as entropy, internal energy etc. but these thermodynamic 

variables can be expressed in terms of pressure, volume and temperature. These properties 
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undergo change when the system passes from one state to another i.e., thermodynamic 

variables are path dependent. These variables are also known as macroscopic co-ordinates. 

6.4 THERMODYNAMIC POTENTIALS 
 

A thermodynamic potential is a scalar quantity used to represent the thermodynamic state of a 

system. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. 

Four common thermodynamic potentials are: 

Internal energy (U) is the capacity to do work plus the capacity to release heat. 

Gibbs energy (G) is the capacity to do non-mechanical work. 

Enthalpy (H) is the capacity to do non-mechanical work plus the capacity to release heat. 

Helmholtz free energy (F) is the capacity to do mechanical plus non-mechanical work. 

Thermodynamic potentials are of practical importance in studying the equilibrium 

conditions of a thermodynamic system. The thermodynamic state of a homogeneous system 

may be represented by means of certain selected variables, such as pressure P, volume V, 

temperature T and entropy S. Out of these four variables, any two may vary independently and 

when known, enable the others to be determined. Thus, there are only two independent 

variables and the others may be considered as their functions. Taking two of the four state 

variables P,V,T and S at a time, there are six variable pairs, i.e., (P,V), (P,T), (P,S), (V,T), 

(V,S), (T,S) corresponding to each pair, we can write a thermodynamic relation. 

There exists certain relation between these thermodynamic variables. The first and 

second law of thermodynamics provide two relations given as 

 dQ = dU + PdV 

and  dQ = TdS 

Therefore, TdS = dU + PdV 

or,  dU = TdS − PdV 

This expresses the change in internal energy of the system in terms of four 

thermodynamic variables. However, for a complete knowledge of the system, certain other 

relations are required and for this purpose we introduce some functions of the variables P, V, 

T and S which are known as thermodynamic potentials or the thermodynamic functions. There 

are four principal thermodynamic potentials and we shall discuss them one by one.  

 

6.4.1  INTERNAL ENERGY (U) 
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The internal energy U of the system is a thermodynamic variable which characterises 

the system. This is also called the intrinsic energy or internal energy. When the system passes 

from one state to another, the change in the internal energy is independent of the path followed 

in between the two states. The internal energy of a system is defined as the equation 

 dU = dQ − dW 

where dW = PdV is the external work done while dQ = TdS 

  dU = TdS − PdV        ... (6.1) 

(a) For an adiabatic process 

  dQ = 0 

  dU = −PdV 

i.e., the work done by the system in an adiabatic process is at the expense of its internal energy. 

(b) For an isochoric adiabatic process 

  dV = 0 and dQ = 0 

  dU = 0 or U= constant 

i.e., the internal energy of system remains constant in an isochoric adiabatic process. 

6.4.2  HELMHOLTZ FREE ENERGY (F) 

The Helmholtz free energy is also called as ‘Helmholtz function’ or ‘Thermodynamic 

Potential at constant volume’ and It is defined by the equation 

 F = U − TS. 

Since U, T and S are perfect differentials, F is also a perfect differential. When a system 

undergoes an infinitesimal reversible change from an initial equilibrium state to a final 

equilibrium state, the Helmholtz free energy changes by an amount given by differentiating the 

above relation as  

  dF = dU − TdS − SdT 

But dU = TdS − PdV, as shown in the earlier case. 

  dF = (TdS − PdV) − TdS − SdT 

  dF = −SdT − PdV       ... (6.2) 

This equation gives the change in Helmholtz free energy during an infinitesimal reversible 

process. 

(a) For Reversible isothermal process 
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  dT = 0 

  dF = −PdV or PdV = −dF 

Thus the work done in a reversible isothermal process is equal to the decrease in Helmholtz 

free energy. 

(b) For isothermal isochoric process 

  dT = 0 and dV = 0 

  dF = 0 or F = Constant 

i.e., the Helmholtz free energy remains constant during isothermal isochoric process. 

6.4.3  ENTHALPY (H) 

Enthalpy is an extensive thermodynamical property and is of particular significance. It 

is defined as 

  H = U + PV 

For an infinitesimal reversible change, we get 

  dH = dU + PdV + VdP 

  dH = TdS − PdV + PdV + VdP   (Equation 6.1) 

  dH = TdS + VdP      ... (6.3) 

 

(a) For reversible isobaric process 

  dP = 0 

  dH = TdS = dQ 

i.e., for an isobaric process, the change in enthalpy is equal to the heat absorbed. 

(a) For an isobaric adiabatic process 

  dP = 0 and dQ = 0 

  dH = 0 or H = Constant 

i.e., enthalpy remains constant in a reversible isobaric adiabatic process. 

6.4.4  GIBBS' FREE ENERGY (G) 
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This is also known as ‘Gibb’s Function’ or ‘Thermodynamic Potential at constant pressure’. It 

is defined as 

  G = H − TS 

For an infinitesimal reversible process 

  dG = dH − TdS − SdT 

But dH = TdS + VdP 

  dG = VdP − SdT       ... (6.4) 

(a) For an isothermal isobaric process 

  dT = 0 and dP = 0 

  dG = 0 or G = Constant 

Thus, Gibbs free energy remains constant in an isothermal isobaric process. 

6.5 RELATIONS OF THERMODYNAMIC POTENTIALS AND 

VARIABLES 
 

The four quantities U(S,V), F(T,V), H(S, P), and G (P, T) are called thermodynamic potentials 

because the thermodynamic variables S, T, P and V can be derived from them by their 

differentiations with respect to the independent variables associated with them. Let us derive 

them. 

6.5.1 THERMODYNAMIC POTENTIAL U (S, V) 

Taking partial derivatives of the intrinsic energy equation (6.1) with respect to variable 

S, and V, we get 

 (
∂U

∂S
)
V

= T and (
∂U

∂V
)
S
= −P      ... (6.5) 

These are the relation connecting the internal energy U with the thermodynamic 

variable S, V, T and P. 

Now since 𝑑𝑈 is perfect differential, we must have 

  
∂

∂V
(
∂U

∂S
)
V

=
∂

∂S
(
∂U

∂V
)
S
 

  (
∂T

∂V
)
S
= −(

∂P

∂S
)
V

   (using equation 6.5)  ...(6.6) 

This is the first thermodynamic relation of Maxwell. 
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6.5.2 THERMODYNAMIC POTENTIAL F (T, V) 

Taking the partial derivatives of F from equation (6.2), we have 

  (
∂F

∂T
)
V

= −S and (
∂F

∂V
)
T

= −P      ... (6.7) 

Since 𝑑𝐹 is a perfect differential, we have  

  
∂

∂V
(

∂F

∂T
)
V

=
∂

∂T
(

∂F

∂V
)
T
 

or,  (
∂S

∂V
)
T

= (
∂P

∂T
)
V

   (using equation 6.7)  ... (6.8) 

This is the second thermodynamic relation of Maxwell. 

6.5.3 THERMODYNAMIC POTENTIAL H (S, P) 

  The partial derivatives of H from equation (6.3) are 

  (
∂H

∂S
)
P

= T and (
∂H

∂P
)
S
= V      ...(6.9) 

Since 𝑑𝐻 is a perfect differential, we have 

  
∂

∂P
(
∂H

∂S
)
P

=
∂

∂S
(
∂H

∂P
)
S
 

or,  (
∂T

∂P
)
S
= (

∂V

∂S
)
P
  (using equation 6.9)   ... (6.10) 

This is the third thermodynamic relation of Maxwell. 

6.5.4 THERMODYNAMIC POTENTIAL G (P, T) 

The partial derivatives of G from equation (6.4) are 

  (
∂G

∂P
)
T

= V and (
∂G

∂T
)
P

= −S      ... (6.11) 

Since 𝑑𝐺 is a perfect differential, we have 

  
∂

∂T
(
∂G

∂P
)
T

=
∂

∂P
(
∂G

∂T
)
P
 

or,  (
∂V

∂T
)
P

= −(
∂S

∂P
)
T
   (using equation 6.11)  ... (6.12) 

This is fourth thermodynamic relation of Maxwell. 

Thus, the thermodynamical variables S, T, P and V can be written by using equation 

(6.5), (6.7), (6.9) and (6.11) as  
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  S = −(
∂G

∂T
)
P

= −(
∂F

∂T
)
V

 

  T = (
∂U

∂S
)
V

= (
∂H

∂S
)
P
 

  P = −(
∂U

∂V
)
S
= −(

∂F

∂V
)
T
 

and  V = (
∂H

∂P
)
S
= (

∂G

∂P
)
T
       ... (6.13) 

These equations (6.13) give the value of thermodynamic variables in terms of thermodynamic 

potentials. 

 

6.6 TDS EQUATIONS 
 

6.6.1 FIRST 𝐓𝐝𝐒 EQUATION  

The entropy S of a pure substance can be taken as a function of temperature and volume. 

Then we can write  

 dS = (
∂S

∂T
)
V
dT + (

∂S

∂V
)
T
dV 

Multiplying both side by T 

  TdS = T (
∂S

∂T
)
V
dT + T(

∂S

∂V
)
T
dV     

But T (
∂S

∂T
)
V

=  (
∂Q

∂T
)
V

= Cv  and from Maxwell’s relations (
∂S

∂V
)
T

= (
∂P

∂T
)
V

. Substituting these 

values in the above equation, we get 

  TdS = CvdT + T(
∂P

∂T
)
V
d𝑉      ... (6.14) 

Equation (6.14) is called the First 𝑇𝑑𝑆 equation 

 

 

6.6.2 SECOND 𝐓𝐝𝐒 EQUATION  

The entropy S of a pure substance can also be regarded as a function of temperature 

and pressure. Therefore 

 dS = (
∂S

∂T
)
P
dT + (

∂S

∂P
)
T
dP 
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Multiplying both side by T 

  TdS = T (
∂S

∂T
)
P
dT + T(

∂S

∂P
)
T
dP  

But T (
∂S

∂T
)
P

=  (
∂Q

∂T
)
P

= CP and from Maxwell’s relation (
∂S

∂P
)
T

= −(
∂V

∂T
)
P
. Substituting these 

values in the above equation, we get 

  TdS = CPdT − T (
∂V

∂T
)
P

dP      ... (6.15) 

Equation (6.15) is called the second 𝑇𝑑𝑆 equation. 

6.7 ADIABATIC STRETCHING OF A WIRE 

 

Stretching a wire by applying tension is equivalent to the application of a negative pressure. 

Therefore, as in the case of adiabatic compression of a gas, there is a heating effect, an 

adiabatic stretching should result into a cooling effect. If F be the tension on a uniform wire 

causing an increase in its length dl, then the amount of work done is 

dW Fdl  . 

The negative sign indicates that in this case the work is being done on the system i.e., 

the wire. Comparing this expression with the work done in a gas,  

 dW PdV  

The two situations are identical. We can obtain an expression by simply replacing V 

by l and P by  F in the above equation. And then the combined first and second law of 

thermodynamics assumes the form   

as  TdS = dU− Fdl   

or  dU = TdS+ Fdl 

Now writing -F and l in place of P and V respesctively, in Maxwell’s first thermodynamic 

relation 

  (
∂T

∂V
)
S

= −(
∂P

∂S
)
V

   

  (
∂T

∂l
)
S
= (

∂F

∂S
)
𝑙
= T(

∂F

T∂S
)
𝑙
= T(

∂F

∂Q
)
𝑙
  

  (
∂T

∂l
)
S
=  T (

∂F

∂T
)
𝑙
(

∂T

∂Q
)
𝑙
       ... (6.16) 

Now considering length l as a function of F and T, we put dl as sum of partial differentials with 

respect to F and T and thus  
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  dl = (
∂l

∂F
)
T
dF + (

∂l

∂T
)
F
𝑑𝑇 

Under condition dl = 0,we get  

  0 = (
∂l

∂F
)
T
(

∂F

∂T
)
𝑙
+ (

∂l

∂T
)
F
  

or,  (
∂F

∂T
)
𝑙
=

−(
∂l

∂T
)
F

(
∂l

∂F
)
T

 

Putting the value of (
∂F

∂T
)
𝑙
 in eq. (6.16) we get 

  (
∂T

∂l
)
S
= −

T(
∂l

∂T
)
F

(
∂l

∂F
)
T

 (
∂T

∂Q
)
𝑙
      …(6.17) 

But the coefficient of linear expansion β =
1

𝑙
(

∂l

∂T
)
T
 and the isothermal Young’s modulus YT =

𝑙

A
(
∂F

∂l
)
T
; so that (

∂F

∂l
)
T

=
𝑙

YTA
  where A is area of cross section of the wire. Also (

∂Q

∂T
)
𝑙
= C𝑙, 

the specific heat at constant length in erg.deg-1cm-1 .Putting these value in eq. (6.17), we have

  

  (
∂T

∂l
)
S
= −

Tβ𝑙YTA

𝑙

1

C𝑙
=

TβYTA

C𝑙
= −

TβYTA

mC
    … (6.18) 

Where m is the mass per unit length and C is usual specific heat in ergs deg-1 gm-1 

Relation (6.18) may also be put in the form (
∂T

∂F
)
S
. Thus  

  (
∂T

∂F
)
S
= (

∂T

∂l
)
S
(
∂L

∂F
)
S
   

   = −
TβYTA

mC

1

YSA
.         [YS =

l

A
(
∂F

∂l
)
S

]  

   = −
Tβ

mC
 

where we have put 𝑌_𝑆 = 𝑌_𝑇, which is closely true for all solids. 

Thus   dT = −
Tβ

mC
dF        … (6.19) 

It is clear from this equation that if 𝛽 is positive, an increase in tension would cool the wire. 

Thus, the wires of substances which expand on heating, should show a cooling when stretched 

adiabatically. 

6.8 COOLING DUE TO ADIABATIC DEMAGNETISATION 
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In 1926, Debye and Giauque showed theoretically that the temperatures considerably below 1 

K could be obtained by the process known as adiabatic demagnetisation of a paramagnetic salt 

(i.e., those substances for which the magnetic susceptibility χ is small, but positive). 

Experimental Method 

The apparatus used is shown in Figure 6.1. The paramagnetic specimen (salt) is 

suspended in a vessel A, which is surrounded by liquid helium. Liquid helium taken in Dewar 

flask D, is boiled under reduced pressure. It is surrounded by Dewar flask D2 containing liquid 

hydrogen. The salt is in contact with the helium gas. A magnetic field of the order of 30,000 

Gauss is applied. 

 When the magnetic field is switched on, the specimen (salt) is magnetised. The heat 

due to magnetisation is removed by first introducing hydrogen gas into A and then pumping it 

off with high vacuum pump, so that the specimen is thermally isolated. In the mean time, the 

specimen picks up the temperature. Now the magnetic field is switched off. Adiabatic 

demagnetisation of the specimen takes place and its temperature falls. The temperature of the 

specimen is determined by fitting a coaxial solenoid coil around the tube A and measuring the 

self-inductance and hence susceptibility of the substance at the beginning and the end of 

experiment. Then temperature T is called by Curie law χ = C/T. 

The entire phenomena is also called Magneto-Caloric effect. 

 

Fig. 6.1 

Haas, in 1994, was able to produce temperature upto 0.002 K using a double sulphate 

of potassium and aluminium. Klerk, Stenland and Gorter used powder mixed crystal of 

chromium alum and aluminium alum and went down to a temperature of 0.0014 K. 

Theory 

When a paramagnetic material is placed in a magnetising field H, its elementary 

magnetic dipoles align parallel to the direction of the field. The magnetic moment thus 

produced per unit volume is called the intensity of magnetisation (I). According to Curie’s law, 

To Vacuum pump

Electromagnet pole

Solenoid coils
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this intensity of magnetisation is directly proportional to the magnetising field H and inversely 

proportional to temperature T of the paramagnetic substance. Thus 

  I α 
H

T
 

  I = C (
H

T
)      ... (6.20) 

where C is a constant, known as Curie constant. 

 If V is the volume of I mole of the substance then intensity of magnetisation of I mole 

of paramagnetic substance 

  M = IV 

Substituting for I from equation (6.20), we get 

  M = CV (
H

T
)        ... (6.21) 

In the experiment, let 1 mole of paramagnetic substance is placed in magnetising field 

H. Then its thermodynamic behaviour can be expressed in terms of thermodynamic variables 

P, V, T and S. In thermodynamic system, an increase in pressure P results in decrease in volume 

V, analogously in our case any increase in H results in an increase in M. Hence replacing P by 

–H and V by M in Maxwell’s third thermodynamic relation (
∂T

∂P
)
S
 = (

∂V

∂S
)
P
 

We have (
∂T

∂H
)
S
 = − (

∂M

∂S
)
H
 

or,  (
∂T

∂H
)
S
 =

−(
∂M

∂T
)
H

(
∂S

∂T
)
H

 

Multiplying numerator and denominator by T, we get 

  (
∂T

∂H
)
S
 =

−T(
∂M

∂T
)
H

T(
∂S

∂T
)
H

 

  (
∂T

∂H
)
S
 =

−T(
∂M

∂T
)
H

(
∂Q

∂T
)
H

   (𝑇𝜕𝑆 = 𝜕𝑄) 

  (
∂T

∂H
)
S
= −

T

CH
(
∂M

∂T
)
H
       ... (6.22) 

where (
∂Q

∂T
)
H

= CH, the specific heat of the substance at constant magnetic field H. 

Since the process is carried out adiabatically (S = constant), we may write for infinitesimal 

change, 
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  dT = −
T

CH
(
∂M

∂T
)
H
dH   

Therefore, when a field changes from H1 to H2, the change in temperature 

  ∆T = −
T

CH
∫ (

∂M

∂T
)
H
dH

H2

H1
      ... (6.23) 

Differentiating equation (6.21) with respect to T at constant H, we get 

  (
∂M

∂T
)
H
= −

CVH

T2
       ... (6.24) 

Substituting this value in equation (6.23), we have 

  ∆T = −
T

CH
∫ (−

CVH

T2
)dH

H2

H1
 

  ∆T =
CV

CHT
∫ HdH
H2

H1
  

  ∆T =
CV

2CHT
(H2

2 − H1
2)       ... (6.25) 

If the magnetic field is reduced from H1 = H to H2 = 0, then the change in temperature will be 

  ∆T =
CV

2CHT
H2        ... (6.26) 

The following conclusions can be drawn from the equation (6.26) 

(i) The temperature of paramagnetic solid decreases as the magnetising field is reduced 

(indicated by negative sign of ∆T) 

(ii) Greater is the initial field H and lower is the initial temperature T, greater is the 

temperature fall ∆T. 

 It is to be noted that here CV is the Curie constant per mole. If 1 gm of paramagnetic 

substance is taken, then CV would stand for Curie constant per gm. 

 

6.9 CLAUSIUS CLAPEYRON LATENT HEAT EQUATION 

USING CARNOT’S CYCLE 

 

6.9.1 THE FIRST LATENT HEAT EQUATION  

Clapeyron in 1834, and Clausius in 1850, deduced an important equation which 

describes conditions governing changes of state, such as melting of solids and boiling of 

liquids. This is known as the ‘Clausius-Clapeyron equation’ or the ‘first latent heat equation’ 
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Let ABCD and EFGH represent the two isothermals at infinitely close temperatures T 

and (T+dT) respectively. Referring to Figure 6.2, the parts AB and EF correspond to the liquid 

state of the substance. At B and F, substance is purely in the liquid state. Along BC and FG, 

the change of state is in progress and the liquid and vapour states coexist in equilibrium. At C 

and G the substance is purely in vapour state. From C to D and G to H the substance is in the 

vapour state. Let P and (P+dP) be the saturated vapour pressures of the liquid at temperatures 

T and (T+dT) respectively and let V1 and V2 be the volumes of the substance at F and G 

respectively. 

Let us draw two adiabatics from F and G meeting the lower isothermal at M and N 

respectively. Let us suppose that 1 gm of the substance is taken round a reversible Carnot cycle 

FGNMF, allowing it to expand isothermally along FG, adiabatically along GN, compressing it 

isothermally along NM and adiabatically along MF. 

The amount of heat Q1 absorbed along FG is equal to the latent heat of vaporisation 

(L+dL) at temperature (T+dT), as substance changes completely from liquid state at F to the 

vapour state at G. Also the quantity of heat Q2 rejected along the isothermal compression NM, 

is L, the latent heat at temperature T. Here latent heat is supposed to vary with temperature. 

 

Fig. (6.2) 

Applying the principle of Carnot’s reversible cycle 

  
Q1

T1
=

Q2

T2
 or  

Q1

Q2
=

T1

T2
 

or,  
Q1−Q2

Q2
=

T1−T2

T2
 

We have Q1 = L+ dL,Q2 = L, T1 = T+ dT and T2 = T 

  Q1 − Q2 = L+ dL− L = dL and T1 − T2 = T+ dT− T = dT 

  
dL

L
=

dT

T
 

M N



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 123 
 

  dL =
L

T
dT        ... (6.27) 

The amount of heat converted into work during the cycle FGMNF is 

  Q1 − Q2 = L+ dL− L = dL 

But the work done during the Carnot cycle is given by the area FGMNF, which may be treated 

as a parallelogram. 

Hence, 

dL (in work unit) = Area FGMNF = FG × perpendicular distance between FG and NM 

= (𝑉2 − 𝑉1) × 𝑑𝑃 

where V2 and V1 are the specific volumes in vapour and liquid state respectively, dP expresses 

the difference of pressure between FG and NM. 

Substituting this value of dL in equation (6.27) 

  dP(V2 − V1) =
L

T
dT 

or,  
dP

dT
=

L

T(V2−V1)
        ... (6.28) 

Eq. (6.28) is called the Clapeyron’s latent heat equation and holds for both the changes 

of state, i.e., from liquid to vapour and solid to liquid. 

Applications 

1. Effect of change of pressure on the melting point 

When a solid is converted into a liquid, there is change in volume 

(i) If 𝑉2 is greater than 𝑉1, then 
dP

dT
 is a positive quantity. It means that the rate of change of 

pressure with respect to temperature is positive. In such cases, the melting point of the 

substance will increase with increase in pressure and vice versa 

(ii) If 𝑉2 is less than V1, then 
dP

dT
 is a negative quantity. It means that the rate of change of 

pressure with respect to temperature is negative. In such cases, the melting point of the 

substance will decrease with increase in pressure and vice versa. In the case of melting of ice, 

the volume of water formed is less than the volume of ice taken. Hence 𝑉_2 is less than 𝑉_1. 

Therefore, the melting point of ice decreases with increases in pressure. Hence ice will 

melt at a temperature lower than zero degree centigrade at a pressure higher than the normal 

pressure. 

2. Effect of change of pressure on the boiling point 
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When a liquid is converted into a gaseous state, the volume 𝑉2 of the gas is always 

greater than the corresponding volume 𝑉1 of the liquid i.e 𝑉2 > 𝑉1. Therefore, 
dP

dT
 is a positive 

quantity. With increase in pressure, the boiling point of a substance increases and vice versa. 

The liquid will boil at a lower temperature under reduced pressure. In the case of water, the 

boiling point increases with increase in pressure and vice versa. Water bolis at 100 0C only at 

76 cm of Hg pressure. In the laboratories, while preparing steam, the boiling point is less than 

100 c because the atmospheric pressure is less than 76 cm of Hg. In pressure cookers, the liquid 

boils at higher temperature because the pressure inside is more than the atmospheric pressure.  

6.9.2 THE SECOND LATENT HEAT EQUATION  

The second latent heat equation, or the equation of Clausius, gives the variation of latent 

heat of a substance with temperature and connects it with the specific heat of the substance in 

the two states. 

Let C1 denote the specific heat of liquid in contact with its vapours and C2 the specific 

heat of saturated vapours in contact with its liquid. Let us consider that 1 gm of the substance 

is taken round the cycle BFGCB. The quantity of heat absorbed by the substance in passing 

from B to F, when its temperature rises by dT is C1dT. In passing along FG, when the substance 

changes from liquid to vapour at constant temperature T+dT, it absorbs a quantity of heat L+dL. 

 In passing from G to C, the temperature of the substance (vapours) falls by dT and 

hence it gives out a quantity of heat C2dT, while in passing along CB, when it condenses from 

vapour to liquid at constant temperature T, gives out a quantity of heat L. 

Hence the net amount of heat absorbed during the cycle is 

  C1dT+ L+ dL− C2dT − L = (C1 − C2)dT+ dL. 

This must be equal to the work done which is equal to the area of the cycle or the area 

FGNMF in the limiting case and hence from equation (6.28) 

 dP (V2 − V1) =
L

T
dT 

 (C1 − C2)dT+ dL =
L

T
dT 

 (C1 − C2)dT =
L

T
dT − dL 

 C2 − C1 =
dL

dT
−

L

T
        ... (6.29) 

This is a second latent heat equation of Clausius. 

6.10 TRIPLE POINT 

The triple point is the temperature and pressure at which the three phases of that substance 

coexist in thermodynamic equilibrium.  
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(i) The boiling point of water increases with increase in pressure and vice versa. The curve 

AB represents the relation between pressure and temperature and is called the steam line or 

vaporization line (Figure 6.3). The liquid and vapour are in stable equilibrium together only 

along the line AB. At all points above AB the substance is all liquid and below it there exists 

vapour only. If at a point M, pressure is raised keeping temperature constant, boiling point will 

consequently increase and all vapour will condense into liquid. Similarly, if at M, pressure is 

decreased, all the liquid will vaporize and only vapour will remain. 

(ii) The melting point of ice decreases with increase in pressure i.e. ice melt below 00C at 

a pressure higher than the atmospheric pressure. The pressure temperature relationship can be 

represented by a curve CD or CʹDʹ which is called the ice line or fusion line. The curve CD, 

which slopes to the left, is for ice type substances whose melting point is lowered with increase 

in pressure while CʹDʹ, which slopes to the right, is for wax type substances whose melting 

point is raised with increase in pressure. The substance is entirely solid on the left of the curve 

while entirely liquid on the right. The curve represents the equilibrium between the solid and 

liquid states. 

 

Fig. (6.3) 

(iii) When the pressure on ice is raised, evaporation from its surface slow down. The 

equilibrium between the solid and the vapour state of a substance can be represented by a curve 

EF called the Hoar Frost line or sublimation line. Above the curve EF, the substance is all solid 

and below it all vapour. 

These three curves, when plotted on the same diagram, are found to meet in a single 

point O as shown in Figure (6.3). This point is called the Triple point. At the triple point, the 

pressure and temperature are such that the solid, liquid and vapour states of the substance can 

exit simultaneously in equilibrium 

To show that there is only one triple point 

Suppose that three curves do not meet at a point but interest enclosing an area ACF 

shown in shaded region in Figure 6.4 then according to ice line CD, the substance must be 

entirely solid in the shade area as it is to the left of CD. According to the steam line AB the 

substance must be entirely liquid as it is above AB and according to hoar frost line EF the 

substance in the shaded portion must be entirely vapour as it is below EF. But these three 
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conclusions contradict one another and hence the shaded triangle ACF cannot exist. Thus, the 

three curves should meet in a single point O called the triple point. 

 

Fig. (6.4) 

It should be noted that the triple point of water is not fixed but is different for different 

allotropic forms of ice. For pure water, the triple point corresponds to T = 0.0075C and P = 

4.58 mm of Hg. 

6.11 PHASE TRANSITIONS 

A phase of the matter may be defined as a thermodynamic system of which all the 

physical properties (such as density, refractive index, magnetization and chemical composition 

etc.) are essentially uniform. In simple words, a region of matter that is chemically uniform, 

physically distinct, and mechanically separable may be thought of a phase. We are familiar 

with different forms of water i.e., ice (solid), water (liquid), and vapor/steam (gas). These three 

forms are three different phases of the water. In general, the distinct phases may be described 

as different states of such as gas, liquid and solid. Apart from these three, some other states or 

phases of mater are also known namely plasma or Bose–Einstein condensate. The uniformity 

in the physical properties of certain phase is due to the uniform interactions such as attractive 

forces between the constituents forming the phase under some fixed external thermodynamic 

conditions i.e., temperature, pressure etc. However, the change in the external conditions may 

result into the change in the kind and/or strength of the interactions, which in turn, gives some 

different phase. The ice (solid phase) when heated up to its melting point, changes into water 

(liquid phase) and water when further heated up to its boiling point changes into the gaseous 

phase. This phenomenon of transition of the matter from one to another phase is termed as 

phase transition. During a phase transition of a given medium, certain properties of the medium 

change and these are common occurrences observed in nature. The studies about the phase 

transitions of the materials are very important as they provide proper understanding of the 

material's behaviour and their applications in thermodynamics. Here, we will discuss different 

aspects of phase transitions and their significance. 

6.11.1  CLASSIFICATION OF PHASE TRANSITIONS 
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Most of the natural phase transitions occur at constant temperature and latent heat is 

required for such transitions to take place. On the other hand, some phase changes such as 

transition of material from ferromagnetic to paramagnetic phase at its Curie temperature, 

transition of a compound from super-conducting state to non-superconducting state, transition 

from liquid He I to liquid He II etc., do not require latent heat. Depending upon whether latent 

heat is involved or not during a phase transition, P. Ehrenfest proposed a classification of phase 

transitions and categorized them as first and second order phase transitions.  

6.11.1.1   FIRST ORDER PHASE TRANSITION  

First order phase transition can be defined as that one in which the Gibbs function with 

respect to pressure and temperature change discontinuously at the transition point. In other 

words the first derivatives of Gibb's function are discontinuous. However, the value of the 

Gibbs function is the same in both the phases at equilibrium. In these processes, there is 

transference of heat and hence there is change in entropy and volume. These changes are 

represented graphically in Figure 6.5. 

 

Fig (6.5) 

6.11.1.2  SECOND ORDER PHASE TRANSITION 

According to the definition proposed by Ehrenfest, the phase transitions in which the 

second derivatives of Gibbs function are discontinuous whereas the Gibbs function and its first 

derivatives are continuous at phase transition are termed as second order phase transitions. 

Second order phase transitions can be defined as the phenomenon that takes place with no 

change in entropy and volume at constant temperature and pressure. It has been found in case 

of transition from liquid helium I to liquid helium II, that there is no transfer of heat and no 

change in volume. Such transitions are called second order phase transitions. These changes 

are represented graphically in Figure 6.5. 

The details of the phenomena are out of scope at this level and will be taught at later 

stage. 
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6.12 APPROACHES TO ABSOLUTE ZERO 

The third law of thermodynamics refers to a state known as "absolute zero." This is the 

bottom point on the Kelvin temperature scale. The Kelvin scale is absolute, meaning 0° Kelvin 

is mathematically the lowest possible temperature in the universe. This corresponds to 

273.15° Celsius, or -459.7 Fahrenheit.  

In actuality, no object or system can have a temperature of zero kelvin, because of the 

constraint of the second law of thermodynamics. The second law, in part, implies that heat can 

never spontaneously move from a colder body to a hotter body. So, as a system approaches 

absolute zero, it will eventually have to draw energy from whatever systems are nearby. If it 

draws energy, it can never obtain absolute zero. So, this state is not physically possible, but is 

a mathematical limit of the universe. 

From the Nernst heat theorem, we have 

  
0

lim 0
T

S

   

The above equation says that "The entropy of a pure perfect crystal is zero (0) at zero kelvin (0 

K)" Entropy is a property of matter related with molecular random its and energy. The Third 

Law of Thermodynamics means that as the temperature of a system approaches absolute zero, 

its entropy also approaches zero. A pure perfect crystal is one in which molecules have zero 

energy. For non-pure crystals, or those with less-than perfect structure, there will be some 

energy associated with the imperfections, so the entropy cannot become zero. Since a pure 

perfect crystal is impossible hence absolute zero also cannot be attained. 

The third law of thermodynamics can be visualized by thinking about water. Water in 

gas form has molecules that can move around very freely. Water vapor has very high entropy 

(randomness). As the gas cools, it becomes liquid. The liquid water molecules can still move 

around, but not as freely. They have lost some entropy. When the water cools further, it 

becomes solid ice. The solid water molecules can no longer move freely, but can only vibrate 

within the ice crystals. The entropy is now very low. As the water is cooled more, closer and 

closer to absolute zero, the vibration of the molecules diminishes. If the solid water reached 

absolute zero, all molecular motion would stop completely. At this point, the water would have 

no entropy (randomness) at all. Since it is not possible so the absolute zero is unattainable. 

6.13 SELF ASSESSMENT QUESTIONS 

1 Prove that CP =  −T (
∂2G

∂T2
)
P
 

2 Prove that CP =  (
∂H

∂T
)
P
 

3 Discuss the effect of change of pressure on the boiling point of a liquid. 
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6.14  EXAMPLES 
 

Example 1. The vapour pressure P (in mm. of mercury) of solid ammonia is given by 

  log𝑒 𝑃 = 23.03 −
3754

𝑇
 while that of liquid ammonia is given by  

  log𝑒 𝑃 = 19.49 −
3063

𝑇
 where T is in K. Calculate the triple point of ammonia. 

Solution: At triple point, the vapour pressure of the substances in each of the three states is 

identical. Hence equating the vapour pressure of solid ammonia with that of liquid ammonia. 

we have 23.03−
3754

T
= 19.49−

3063

T
 

or  
1

T
(3754− 3063) = 23.03− 19.49 

or  
691

T
= 3.54 

or,  T= 195.2 K 

Example 2. Prove that in isothermal process for an ideal gas 

 (1) G2 − G1 = ∫RT
dP

P
 

 (2) 𝐺2 − G1 = RTln
V1

V2
 

Solution: Gibbs function for an ideal gas is defined as 

  G = H− TS 

For an infinitesimal reversible process 

  dG = dH− TdS− SdT 

But  dH = TdS+ VdP 

 dG = VdP− SdT 

For isothermal process, dT = 0, so dG = VdP      ... (i) 

(1) For ideal gas, PV = RT, then equation (i) becomes dG =
RT

P
dP 

Integrating it, we get ∫ 𝑑𝐺
𝐺2

𝐺1
= ∫

RT

P
dP 

  𝐺2 − G1 = ∫
RT

P
dP       

(2) For ideal gas, PV = RT or P = RT/V, differentiating it isothermally with respect to V, 
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dP

dV
= −

RT

V2
 

Substituting this value in equation (i), we get 

  dG = V (−
RT

v2
dV) 

  dG = −
RT

V
dV 

Integrating it, we get 

  ∫ 𝑑𝐺
𝐺2

𝐺1
= −RT∫ (

dV

V
)

V2

V1
 

  𝐺2 − G1 = −RTln(
V2

V1
) 

  𝐺2 − G1 = RTln (
V1

V2
)          

Example 3. Calculate the cooling produced by adiabatic demagnetisation of a paramagnetic 

salt as the field is reduced from 10000 oersted to zero at initial temperature of 2 K.  (Given: 

Curie constant per gm.mol per c.c. = 0.042 erg degree/gm oersted-2 and CH = 0.42 joule gm-

1deg-1) 

SOLUTION: The cooling produced is given by 

  ∆T =
CV

2CHT
.H2 

Here T = 2K, CH = 0.42 joule gm-1deg-1 = 0.42 x 107 erg gm-1deg-1, H = 10000 oersted 

Curie constant CV = 0.042 erg degree/gm oersted-2 

So that  ∆T = −
0.042×(10000)2

2×(0.42×107)×2
 

  ∆T = −0.25 K 

Example 4. Calculate the specific heat of saturated steam. Given that the specific heat of water 

at 100 0C = 1.01 and latent heat of vaporisation decreases with rise in temperature at the rate 

of 0.64 cal/K. Latent heat of vaporisation of steam is 540 cal/gm. 

Solution: Here C1 = 1.01, C2 = ?, T = 273 + 100 = 373 K, 
dL

dT
= −0.64 cal/K 

   L = 540 cal/gm. 

  C2 − C1 =
dL

dT
−

L

T
 

  C2 = C1 +
dL

dT
−

L

T
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  C2 = 1.01− 0.64−
540

373
 

  C_2 = −1.077 cal/gmK 

Example 5. Calculate under what pressure ice freezes at 272 K if the change in specific volume 

when 1 kg of water freezes is 91 x 10-6 m3. Given latent heat of ice = 3.36 x 105 Jkg-1. 

Solution: L = 3.36 X 105 Jkg-1,  

Freezing point of ice under normal pressure T = 273 K 

Change in freezing point dT = 273 – 272 = 1 K 

Change in specific volume V2 – V1 = 91 x 10-6 m3 

According to Clapeyron’s latent heat equation 

 
dP

dT
=

L

T(V2−V1)
  

  dP =
dT×L

T(V2−V1)
=

1×3.36×105

273×91×10−6 = 1.352 × 107N/m2  

Taking 1 atm = 105 N/m2, we have 

 dP =
1.352×107

105
= 135.2 atm. 

Hence, pressure under which ice would freeze at 272 K 

  = 1 +135.2 

  = 136.2 atm. 

6.15  SUMMARY 
 

 The combinations of state variables and internal energy such as U, U + PV = H, U – 

TS = F, and H – TS = G are called thermodynamic potentials. 

 Like internal energy U, enthalpy H, Helmholtz function F, and Gibbs function G are 

state functions and hence are exact differentials also. 

 The differentials of the thermodynamic potentials are expressed as dU = TdS− PdV, 

𝑑𝐻 = TdS + VdP,  dF = −SdT − PdV, and dG = VdP− SdT 

 Maxwell’s relation can directly be deduced using thermodynamic potentials. The 

relations are (
∂T

∂V
)
S
 =  −(

∂P

∂S
)
V
, (

∂S

∂V
)
T
 =  (

∂P

∂T
)
V
, (

∂T

∂P
)
S
 = (

∂V

∂S
)
P
, and (

∂S

∂P
)
T
 =

− (
∂V

∂T
)
P
. 

 Phase transition is a process in which a thermodynamic system changes from one 

state to another with different physical properties. 

 Latent heat is related to the change in entropy at a first order phase transition. 
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 The phase transition, in which the second derivatives of Gibbs free energy are 

discontinuous at phase transition, are second order phase transitions. 

 The Clausius Clapeyron first latent heat equation is used to determine the shape of the 

phase boundry 

 The phenomenon of the alignment of magnetic dipoles in external magnetic field is 

termed as magnetization. However, the magnetic dipoles restore their original state 

when field is switched off. This is called demagnetization. 

 If the demagnetization of a paramagnetic substance occurs adiabatically, the atomic 

dipoles attain their original distribution in expense of their internal energy which results 

the drop in the temperature of the substance. The process of heating/cooling of a 

paramagnetic substance due to magnetization/demagnetization is known as magneto-

caloric effect. 

 The process of adiabatic demagnetization of paramagnetic substances may result ultra 

low temperatures. 

6.16 GLOSSARY 

Thermodynamic 

variables 

The physical quantities which help us to study the behavior of 

thermodynamic system. 

Thermodynamic 

potential 

A scalar quantity used to represent the thermodynamic state of a system. 

Gibbs free energy The energy associated with a chemical reaction that can be used to do 

work. 

Internal energy Energy contained within in the system. 

Enthalpy Total heat content of the system. 

Helmholtz free energy A thermodynamic potential that measures the useful work obtainable from 

a closed thermodynamic system at a constant temperature and volume 

Entropy Lack of order or predictability; measure of degree of disorder 

proportionally  

Isothermal process A change of a system in which the temperature remains constant. 

Adiabatic process One that occurs without transfer of heat or matter between a 

thermodynamic system and its surrounding. 

Isobaric process A thermodynamic process in which the pressure remains constant. 

Isochoric process A thermodynamic process in which the volume remains constant. 

Specific heat Amount of heat per unit mass required in raising the temperature by 10 C. 

Heat capacity Amount of heat needed to raise the system’s temperature by 10 C. 

Latent heat Energy released or absorbed by a thermodynamic system during an 

isothermal process. 

Cyclic process A process consisting of a series of changes which returns the system back 

to its initial state. 

Adiabatic 

demagnetisation 

Process by which the removal of a magnetic field from certain materials 

serves to lower their temperature. 
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Inversion temperature It is the critical temperature below which a real gas that is expanding at 

constant enthalpy will experience a temperature decrease, and above 

which will experiences a temperature increases. 

Phase transition A process in which a substance changes from its one state to the other. 

Most commonly used to describe transitions between solid, liquid and 

gaseous state of matter. 

Triple point The temperature and pressure at which the three phases of that substance 

coexist in thermodynamic equilibrium. 

6.17 ANSWERS TO SELF ASSESSMENT QUESTIONS 

 

1 We know that 

 CP  =  (
∂Q

∂T
)
P

 ,     TdS = dQ,  S =  − (
∂G

∂T
)
P

  

 CP  =  T (
∂S

∂T
)
P
 =  −T

∂

∂T
(
∂G

∂T
)
P
 =  −T (

∂2G

∂T2
)
P
 

2 We know that 

 CP  =  (
∂Q

∂T
)
P

=  T (
∂S

∂T
)
P
 

 and H = U+ PV  

 Differentiating it at constant pressure, we get 

 dH = dU+ PdV =  (TdS− PdV) + PdV = TdS 

 or (
∂H

∂T
)
P
= T (

∂S

∂T
)
P
= CP 

3 From Clausius-Clapeyron latent heat equation 

 
dP

dT
=

L

T (V
2
−V1)

 

When a liquid is converted into a gaseous state, the volume V2 of the gas is always greater 

than the corresponding volume V1 of the liquid i.e., V2>V1. 

Therefore, 
dP

dT
 is a positive quantity. 

With increase in pressure, the boiling point of a substance increases and vice versa. The 

liquid will boil at a lower temperature under reduced pressure. In case of water, the boiling 

point increases with increase in pressure and vice versa. 
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6.19 TERMINAL QUESTIONS 
 

1.  What are thermodynamic potentials? Why are they called potentials? 

2.  Write down the physical significance of thermodynamic potentials. 

3.  Deduce Maxwell’s relations using thermodynamic potentials. 

4.   Prove that change in enthalpy in an isobaric process is equal to the heat transferred. 

5.  Prove that change (decrease) in the Helmholtz function in an isothermal process is equal 

to the work done by the system. 

6.  Prove that for a reversible isothermal and isobaric process, Gibbs function remain 

constant. 

7.  Show that one has to minimize Helmholtz function to find the equilibrium of a system 

at constant temperature and volume. 

8.  Show that Helmholtz free energy never increases in natural processes. 

9.  What is adiabatic demagnetization? Explain how it could be utilized to achieve ultralow 

temperatures? 

10.  Discuss the process of adiabatic cooling with the help of entropy-temperature behaviour 

of paramagnetic specimen. 

11.  What is magneto-caloric effect? 

12.  What is phase transition? Discuss the classification of phase transition with examples.  

13.  Represent the behavior of specific Gibbs function, entropy, volume and heat capacity 

with temperature by drawing plots for first and second order phase transitions.  

14.  Write down the significance of Clausius-Clapeyron heat equation.  

15.  Give two examples of first and second order phase transition.  

16.  Prove the thermodynamic relation  
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 (a) T.ds = CVdT+ T (
∂P

∂T
)
V
dV 

 (b) T.ds = CPdT− T (
∂V

∂T
)
P
dP 

17.  Establish the following relation between enthalpy H, Helmholtz free energy F, and 

Gibbs free energy G, 

𝐺 = 𝐻 + 𝑇 (
𝑑𝐺

𝑑𝑇
)
𝑃
 

18.  Define the Helmholtz function and for an isochoric process establish the relation 

𝑈 = 𝐹 − 𝑇 (
𝑑𝐹

𝑑𝑇
)
𝑉
 

19.  Discuss the third law of thermodynamics 

20.  Derive the relation of stretching of wire using Maxwell’s relations. 

21.   What is triple point and show that there is only one triple point. 

22.  Establish the Clausius-Clapeyron’s equation from Carnot’s cycle 

𝑑𝑃

𝑑𝑇
=

𝐿

〖𝑇 (𝑉〗2 − 𝑉1)
 

 and explain the effect of pressure on  (i) boiling point of liquid and (ii) melting point of 

a solid. 

24.  Calculate the depression of melting point of ice produced by one atmosphere increase 

of pressure. Given that latent heat of ice = 80 cal/gm and specific volume of ice and 

water at 00C are 1.091 cm3 and 1.0 cm3 respectively. 

25.  Show that for a homogenous fluid CP − CV  = T (
∂P

∂T
)
V
(
∂V

∂T
)
P
 

 where CP and CV are the specific hats at constant pressure and volume respectively, and 

other symbols have their usual meaning. 

 (i) Also show that CP − CV  = TEα2V 

 where E is the bulk modulus of isothermal elasticity, and α the coefficient of volume 

expansion. 

 (ii) Hence prove that for a perfect gas CP − CV  = R 

 (iii) Hence prove that for a real (van der Waals') gas CP − CV  = R (1 +  
2a

VRT
) 

26. Calculate the change in temperature of boiling water when the pressure is increased by 

27.12 mm of Hg. The normal boiling point of water at atmospheric pressure is 1000C. 

Given: Latent heat of steam = 537 cal/gm and, specific volume of steam = 1674 cm3. 

27.  Calculate the pressure and temperature of the triple point water. Given that the lowering 

of melting point of ice per atmosphere increase of pressure is 0.00720C and the saturated 

vapour pressure at 0 0C = 4.60 m.m. while at 10C= 4.94 m.m. 

28. Calculate the specific heat of saturated steam at 1000C from the following data: 

   L at 900  = 545.24 cal 

   L at 1000C  = 539.30 cal 

   L at 1100C  = 533.17 cal 

 Specific heat of water at 1000C = 1.013 cal/gm 

29.  Objective Questions 

 (i) Four thermodynamic potentials are: 
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(a) Pressure, Volume, Temperature and Internal energy function 

(b) Pressure, Volume, Internal Energy and Helmholtz function 

(c) Internal energy function, Helmholtz function, Enthalpy and Gibbs function 

(d) None of these. 

 (ii) Specific heat of saturated vapour pressure is: 

(a) zero    (b) positive 

(c) negative   (d) sometimes positive sometimes negative. 

 (iii) The Clausius-Clapeyron equation is: 

(a) 
dP

dT
=

L

T(V2−V1)
   (b) 

dP

dT
=

T

L(V2−V1)
 

(c) 
dP

dT
= TL(V2 − V1)  (d) None of these. 

 (iv) Paraffin wax contracts on solidification. The melting point of wax will 

 (a) increase with pressure  (b) decrease with pressure 

 (c) no change with pressure (d) decrease linearly with pressure. 

 (v) The number of thermodynamic function are: 

 (a) 1    (b) 2 

 (c) 3    (d) 4. 

 (vi) The change in each thermodynamic function: 

(a) depends on path between initial and final states  

(b) is independent of path between initial and final states 

(c) is always zero 

(d) none of above. 

 (vii) The internal energy of system is: 

 (a) a thermodynamic variable (b) a thermodynamic function 

 (c) a universal constant  (d) always zero 

 (viii) In the presence of external magnetic field, the magnetic entropy of paramagnetic 

sample; 

(a) increases    (b) decreases 

(c) remains constant   (d) is always zero 
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UNIT-7  THEORY OF RADIATION - I 
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7.5.2 Spectral energy density 

7.5.3 Total emissive power or emissivity. 

7.5.4 Spectral emissive power 

7.5.5 Absorptive power or absorptiovity 

7.5.6 Relative emittance. 
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7.11  Black body  

7.11.1 Properties of a black body 

7.12 Practical examples of a black body. 

SAQ 3 & 4  

7.12.1 Radiation within a cavity enclosure  

7.12.2  Ferry’s black body 

7.12.3 Wein’s black body 

7.13  Summary 

7.14  Terminal questions 

7.15 Answers 

7.16  References 
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7.1  INTRODUCTION 

The subjects for consideration in this unit are black-body model (which is of primary 

importance in thermal radiation theory) and the fundamental laws of radiation. Natural and 

artificial objects which have close characteristics of black body are also discussed here. The 

notion of emissivity and absorptivity are also introduced. The Kirchhoff’s law and its various 

corollaries are analyzed in detail. 

Radiative transfer is the most common energy transport phenomenon that we feel around us 

every day. The Sun’s energy travels to the earth in the form of electromagnetic waves, is 

selectively absorbed, and scattered as it goes through atmospheric layers. 

 

Radiation allows us to see and sense everything in our surroundings as light or heat. 
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Heat may be propagated in a stationary medium by different ways, namely: conduction, 

convection and radiation. Conduction and convection of heat depends on the temperature 

gradient or temperature difference of the medium in which it takes place. Radiation of heat, 

however, is in itself entirely independent of the temperature of the medium through which it 

passes. Supported by a large number of experimental facts, the physical properties of heat rays 

are turned out to be identical with light or electromagnetic rays.  

Have you ever thought what makes us see the objects? We see objects because of the reflections 

from the material. If we see green object, it is because of green wavelength that is reflected and 

all other wavelengths are absorbed by the material. So, if an object appears black then no 

wavelength will be reflected and every wavelength is absorbed. In turn, if we heat a black body, 

it emits radiations, called black body radiations. For example: Consider a black piece of iron, 

if we further heat it up or provide energy to it, it will start glowing with a red color. If we add 

more energy, the piece will become orange, yellow, white and finally bluish white.The color 

of light radiated can be correlated to the temperature of the object. This is called color 

temperature scale. The ideal scale uses the colors of an abstract object called Black Body 

Radiator, which absorbs and them radiates all the energy that reaches it.  

But, why to use black body radiator as standard? 

This is because black body radiation provides us a set of very precise working equation that 

relates temperature of an object to the light it emits. Planck’s law gives the energy distribution 

across the spectrum for a given temperature, Stefan-Boltzmann law calculates total emitted 

power, the wavelength of peak emission or the color that dominates at particular temperature 

is provided by Wein’s displacement law. Knowing the ideal case, the color scale can be applied 

to any source of light, using correction factors. 

By knowing the wavelength of light coming from the star, scientists could know the exact 

temperature of the star.  

 

7.2  OBJECTIVES 

After studying this unit, you should be able to understand the following- 

 Absorptivity and emissivity 

 Properties of a black body  

 Natural and artificial black body models 

 Characteristics of black body radiation 

 Black body radiation intensity versus wavelength curves: their shape and temperature 

dependence 

 Energy distribution in black body radiation 

 Kirchhoff’s law 

 

 

7.3 WHAT IS RADIATION? 
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The radiation is the energy travelling through space. It is there all around us; in fact you are 

currently being bombarded by radiation. It might be coming from the sun, various electronic 

devices you own etc. Weather a radiation can harm you or not, it depend on the type of 

radiation, the dosage and duration of exposure. Before proceeding to different types of 

radiations, you need to know what exactly radiation is in general. 

Radiation can be defined as the emission or transmission of energy from a body in the form of 

waves or particles through space or through material medium. This can include anything from 

dangerous radiation created by a nuclear power plant to the harmless light created by a 

flashlight. 

Sunshine is the most familiar kind of radiation. Microwaves are used for cooking foods. Radio 

waves transmit voices across the world into and out of our radios. The radiation used for cell 

phones falls somewhere in between radio and microwave spectrum and is used in similar 

fashion to radio waves. You might at some point have seen on television a police chase where 

a helicopter uses infrared radiation in a camera to see heat sources and spot a suspect in a dark. 

But, did you know your television remote is using the same infrared to communicate with the 

TV when you press buttons on it. The low energy ultraviolet radiations are used in tanning 

beds.  

The ionizing radiation is far less commonly used, but it still has its place. One such use is for 

carbon dating. In every living thing, there are carbon-14 atoms, an unstable atom that 

experiences beta decay. While we live, the supply of this atomis replenished in our bodies, but 

when someone dies, the supply stops. Knowing how fast carbon-14 decays, archaeologists can 

check how much remains in a person, animal or plant to get an estimate how old it is. 

 

7.3.1 TYPES AND ORIGIN / CAUSE OF RADIATION 

Radiations are often categorized as either ionizing or non-ionizing depending on the energy. 

The radiations mainly include:  

1. Electromagnetic radiations: radio waves, microwaves, visible, X-rays and gamma radiation 

2. Particle radiation; alpha radiation, beta radiation and neutron radiation 

3. Acoustic radiation: ultrasound, sound and seismic waves 

4. Gravitational radiation 

The word radiation has arisen from the phenomenon of radiating (i.e., travelling outward in all 

directions) from a source. 

The electromagnetic radiations (EM) including gamma rays, x-rays, visible light and radio 

waves have energy 'packaged' in small units called 'photons' or 'quanta'. EM radiations have no 

mass, and is unaffected by either electrical or magnetic fields, and has a constant speed in a 

given medium. They travel in straight lines; however their trajectory can be altered when they 
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interact with matter. The EM radiations are characterized by wavelength (λ), frequency (ν) and 

energy per photon (E). The EM radiation is transport of energy through space as combination 

of electric and magnetic fields. EM radiations are produced by a charge (charged particle) being 

accelerated. According to the classical theory EM radiations can be considered as the wave 

motion, however according to quantum theory EM radiation can also be considered as particles 

called photons.(The details about classical and quantum concepts will be discussed in Unit 13) 

The particulate radiation consists of small particles of matter moving through space at very 

high velocity. The particle radiation differs from electromagnetic radiation in the sense that the 

particles consist of matter and have mass as in electron and alpha particles. The particle 

radiations re emitted by an unstable nucleus via radioactive decay or can be the product of 

some kind of nuclear reactions. 

The acoustic radiations are a mode of coherent mechanical energy transfer, from a sound source 

to surrounding medium. The flared horn of a trumpet or a loudspeaker can be called acoustic 

source radiators. Unlike EM radiations the acoustic radiations travel at a much lower speed and 

mechanical motion of material medium is involved, and are also called pressure waves. 

Gravitational radiations are produced by massive accelerating bodied, but they have a very 

feeble strength, it is entirely undetectable unless produced by intense astrophysical sources 

such as supernovae, collision of black holes etc. 

7.3.2 THERMAL RADIATION  

The thermal radiations or radiant heat are electromagnetic (EM) radiations that lie in the 

infrared region of the electromagnetic spectrum and are radiated by a hot body. 

The word thermal means related to heat. The transference of heat from one point to another can 

take place by three modes namely conduction, convection and radiation. Conduction in 

propagation of heat through a material, from a region of higher temperature to a region of lower 

temperature while the intermediate medium itself remains stationary. In convection, the heated 

material of the medium itself moves and carries the heat. The radiation is that mode of heat 

transfer where no material medium is required. Also, through radiation the heat transfer takes 

place without heating the intervening medium or space. 

Supported by a large number of experimental facts, the physical properties of heat rays are 

turned out to be identical with light or electromagnetic rays i.e., they travel in straight line, 

obey laws of reflection and refraction and exhibit phenomena of interference, diffraction and 

polarization also.  

William Herschel first noticed that thermal radiation fall in the infra-red region of the e.m. 

spectrum. The heat radiations have wavelengths ranging from 8107 m to 4104 m. They 

cannot be detected by the eye or photographic plates but they can be detected by the bolometer 

or by thermopile etc. 
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Thermal radiations are generated by the thermal motion of charged particle in matter. All matter 

at a temperature higher than absolute zero emits thermal radiation. When the temperature of 

any matter is above absolute zero, the atoms and molecules have random movement in the 

matter, and hence they interact/collide with each other, interatomic collisions cause the kinetic 

energy of atoms/molecules to change. These atoms and molecules are composed of charged 

particles, i.e. protons and electrons, and kinetic interaction among matter particles result in 

acceleration of charge and dipole oscillation. It leads to production of thermal 

(electromagnetic) radiation.  

The characteristics of thermal radiation depend on various properties of the material it is 

emanating from, including its temperature, its absorptivity and emissive power. 

Now we will briefly know about these terms. 

7.4 ABSOPTIVITY, REFLECTIVITY AND TRANSMISSIVITY 

Whenever a body is irradiated with radiation of any wavelength a fraction of the total incident 

radiation is absorbed, a part is reflected and the remaining is transmitted. If the amount of 

energy absorbed, reflected and transmitted when radiation strikes the surface are measured in 

percentage of the total energy in the incident electromagnetic waves then the total energy will 

be divided into three groups. They are called absorptivity (), reflectivity () and transmissivity 

(t)  is  

  1t            (7.1) 

Thus, Absorptivity is the fraction of radiation absorbed by a surface  Reflectivity is the fraction 

reflected by the surface. Transmitivissivity is the fraction transmitted by the surface.  

The sum of all the three is always unity. The values of ,  and t vary depending on the nature 

of the surface or body. 

A body for which  = 1 for all wavelengths is a black-body. A body for which  has the same 

value for all wavelengths, but less than the unity is a grey body. 

Self Assessment Questions (SAQ) 

1. How thermal radiation is different from black body radiation? 

2. Why does SASA point spacecraft white? 

7.5 SOME DEFINITIONS 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 143 
 

7.5.1 Total energy density (u): Total energy density of radiations at any point is the total 

radiant energy per unit volume around that point for all the wavelengths taken together. 

It is generally expressed by u. Its SI unit is J/m3 and in CGS erg/cm3. 

7.5.2 Spectral energy density (u):   Spectral energy density for a particular wavelength is 

the energy per unit volume per unit range of wavelength. This is denoted by u. 

7.5.3 Total emissive power or Emissivity (E): The total emissive power of a body is the 

radiant energy emitted per unit time per unit surface area of the body for all wavelengths 

taken together. It is denoted by E. 

7.5.4 Spectral emissive power (e): The spectral emissive power of a body at a particular 

wavelength is the radiant energy emitted per unit time per unit surface area of the body 

within a unit wavelength range. It is denoted by e. For a perfectly black-body, e is 

maximum and is denoted by E. 

7.5.5 Absorptive power or Absorptivity (a):   The absorptive power of a body at a 

particular temperature and for a particular wavelength is defined as the ratio of the 

radiant energy absorbed per unit surface area per unit time to the total energy incident 

on the same area of the body in unit time within a unit wavelength range. It is denoted 

by a.  

From the above definitions, we may write 

0
u u d 



         

 (7.2) 

0
E E d 



         

 (7.3) 

 7.5.6 Relative emittance (e): The ratio of emittance of a surface to the emittance of a black-

body is called relative emittance. 

If E' is the emittance of a surface and E the emittance of a black-body, then relative 

emittance of the surface 

  
E

e
E


         

 (7.4) 

7.6 PREVOST'S THEORY OF HEAT EXCHANGE 

Earlier the idea about radiant energy was quite confusing/People used to talk of hot radiations 

emitted by hot bodies and cold radiations emitted by cold bodies. Prevost for the first time 

pointed out that this notion was wrong and proved that thermal radiation was essentially an 

exchange process. The rise and fall of temperature observed in a body is due to an exchange of 

radiant energy between the body and its surroundings. 
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According to Prevost, everybody emits radiations continuously to its surroundings at a rate 

which depends only on the nature of its surface and temperature and at the same time it receives 

radiation from its surroundings at a rate depending on the surface and the temperature of 

surrounding. 

If a body is at higher temperature than the surroundings, it radiates more quantity of heat per 

unit time to the surrounding than it receives from the surroundings. As a result, the temperature 

of the body will fall. When a body is at a temperature lower than that of surroundings it will 

radiate less heat and absorb more heat. Consequently the temperature of the body rises. When 

the body receives and radiates heat at the same rate, the temperature of the body remains 

constant and equal to the temperature of the surroundings. In this condition, we say that the 

body is in thermal equilibrium with the surroundings. 

Thus all bodies at all temperatures are in a state of dynamical thermal-equilibrium when they 

are at the same temperature. The quantity of heat radiated by a body decreases with decrease 

in its temperature and at absolute zero temperature, itwill not radiate energy at all. 

7.7 RADIATION PRESSURE 

The thermal radiation possesses the properties of light. Like light it also exerts a small, but 

definite pressure on the surface on which it is incident. On the basis of electromagnetic theory 

Maxwell proved that the pressure is equal to the energy densities (i.e., the amount of 

radiationper unit volume) for the normal incidence on a surface. 

 Thus p = u for normal ncidence or beam radiation. 

For isotropic or diffuse radiation, it is  

  
1

3
p u . 

Both the relations can be obtained on the basis of Quantum Theory. 

7.8 BLACK BODY AND BLACK BODY RADIATION 

A perfectly black-body is one which absorbs all the heat radiations of any wavelength incident 

on it. It neither reflects nor transmits any of the incident radiations and, therefore, appears black 

whatever be the colour (wavelength) "of incident radiation. 

If a black-body is placed in an isothermal enclosure, the body will emit the full radiation of the 

enclosure after it is in thermal equilibrium with the enclosure. These radiations are independent 

of the nature of the substance. Clearly, the radiation from an isothermal enclosure is identical 

with that from a black-body at the same temperature. Therefore, the heat radiations in an 

isothermal enclosure are known as black-body radiation. 

In practice, no substance possesses strictly the properties of a black-body. Lamp-black and 

platinum black are very close to a black-body. However, the bodies showing close 
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approximation to a perfectly black-body can be constructed. Ferry's black-body and Wien's 

black-body are two such examples. We will discuss about it in detail later on. 

 

7.9 KIRCHHOFF'S LAW 

 

Related to thermal radiation, it was already experimentally proven that a good absorber is a 

good emitter, and a poor absorber is a poor emitter. 

Gustov Robert Kirchhoff recognised this fact and proposed a law named after him. According 

to this law For an arbitrary body emitting and absorbing thermal radiation in thermodynamic 

equilibrium the emissivity is equal to the absorptivity." It is also important that the 

thermodynamical equilibrium is an essential condition for it.  

Statement:  states that the ratio of the emissive power (e) to the absorptive power (a) for a 

given wavelength at a given temperature is the same for all bodies and equal to the emissive 

power of a perfectly black-body (E) at that temperature. 

Proof: Let us consider a body placed in an isothermal enclosure. Let dQ be the amount of 

radiant energy of wavelength lying between  and  + d, incident on unit surace area per-

second. If an is the absorptive power of the body for the wavelength  and at the temperature 

of the enclosure, then the amount of radiant energy absorbed by unit surface area of the body 

per second will be  

a dQ. The remaining energy i.e. (1  a) dQ will be reflected or transmitted. 

If e is the emissive power of the body for wavelength  at the temperature of the enclosure, 

then the total radiations lying between wavelength  and  + J emitted by unit surface area of 

the body per second is e d As the body is in temperature equilibrium with the enclosure, 

energy radiated by the body must be equal to that received by it, i.e., 

  (1  a)dQ + ed = dQ 

or   ed = adQ  

or   
e dQ

a d



 
        (7.5) 

As 
dQ

d
  depends only on temperature, therefore 

e

a





 is the same for all substances at a given 

temperature. In other words, the ratio of emissive power to the absorptive power for radiation 

of given wavelength is same for all bodies at a given temperature.  

If the body be perfectly black, the absorptive power a = 1 for all wavelengths and e 

has maximum value which we denote by E Thus, for such a body, we have 

Ed = dQ 
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or  
dQ

E
d




         (7.6) 

Comparing eqn. (7.5) and (7.6), we have for any body 

  
e

E
a






         (7.7) 

i.e., the ratio of the emissive power to absorptive power of a body is equal to the emissive 

power of a perfectly black-body at a given temperature. This is Kirchhoff's law.  

7.9.1 IMPORTANCE AND APPLICATIONS OF KIRCHHOFF'S LAW 

(i) If emissive power e of a body is greater, according to Kirchhoff's law the corresponding 

absorptive power a must be greater, i.e., from Kirchhoff's law it follows that good absorbers 

of radiation are also good emitters of radiation. 

(ii) This law established that the atoms of every element give a characteristic spectcum. Thus 

the presence of characteristic spectral lines in a spectrum indicates the presence of that element 

in the substance of which spectrum is taken. 

(iii) When a polished metal ball having a black spot on its surface is heated to a high 

temperature, the black spot shines more brightly than the polished surface. This is due to the 

fact that the black spot is a better absorber of radiations and hence accordingly it will be a better 

emitter. 

(iv) A piece of red glass glows with a green light when heated. Actually red glass appears red 

because it reflects red light and absorbs rest colours from the white light. The effect of visible 

spectrum minus red is green. Hence red glass emits green on heating which it has absorbed 

when it was cold. Similarly   green glass appears red on heating strongly. 

(v) When sodium is heated, its vapour emits two yellow lines (D1, and D2) of wavelengths 5890 

Å and 5896 Å. When white light is passed through a cooler sodium vapour, the continuous 

spectrum of white light shows two dark lines in exactly the positions of D1 and D2 lines of 

emission spectrum. It shows that sodium vapour which emits two yellow lines strongly at 

higher temperature, is also a good absorber of light of these two wavelengths at lower 

temperature. 

(vi) The origin of Fraunhofer 's dark lines found in the continuous spectrum of the sun is the 

best example of Kirchhoff's law. The sun consists of a central glowing mass called photosphere 

which emits the continuous spectrum. When these radiations pass through the cooler 

surrounding atmosphere called the chromosphere, which contains various elements like 

hydrogen, nitrogen, sodium, copper etc. in the gaseous state, absorb those wavelengths which 

they emit at a higher temperature. As a result, these wavelengths are absent in the solar 

spectrum and we see dark lines in their places, which are known as Fraunhofer's lines. 

7.10 ENERGY DISTRIBUTION IN BLACK BODY RADIATION 
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Black body radiation was a puzzle for several years. This section explains how this puzzle was 

solved and so that new laws of physics were discovered which are foundation of the quantum 

mechanics. 

The first attempt  was made by Lummer and Pringsheim in 1899. They plotted some curves 

between Eλ (spectral emissive power) and  λ (wavelength)  for various temperature as shown 

in Figure 7.1. These plots are known as spectral energy distribution curve of Black Body 

radiation. it is clear from the curves that the energy of black body radiation is not shared evenly 

by all wavelengths of light. The figure shows that some wavelengths get more energy than 

others.  

 

Fig. (7.1): spectral energy distribution of black-body radiation versus wavelength 

7.10.1 EXPERIMENTAL OBSERVATIONS AND CHARACTERISTICS 

OF BLACK-BODY RADIATION 

1. It is clear from the figure that the graph is continuous, which means that at every 

temperature radiation for all wavelengths are emitted but the spectral emissive power 

is different for different wavelengths. In other words the distribution of energy is not 

uniform in the radiation spectrum of a black-body. 

2. The spectral energy density Eλ for each  λ increases with temperature or as the 

temperature of the object increases, it emits more energy at all wavelengths. 

3. For a particular temperature, firstly Eλ increases with λ but after reaching a certain 

maximum value it decrease. The highest value is denoted by Eλmand the wavelength at 

which Eλis maximum is denoted by λm. 
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4. As seen from the graph, the wavelength (λm) corresponding to maximum emission, 

shifts towards lower wavelength with increase in temperature. It was Wein who first 

discovered mathematically that  

   𝜆𝑚 ∝  
1

𝑇
 

or  𝜆𝑚 =  
𝑏

𝑇
 

or  mT = b  (constant)      (7.8) 

 Where b is a constant called Wein’s constant and has a value of 2.968 × 10-3 meter 

kelvin. 

The relation given by eq. (7.8) is known as wein’s displacement law. This is an 

important law as it helps us to find the temperature of hot bodies at distance like stars. 

Wein’s displacement law can be expressed in terms of frequency as well which is  

𝜈𝑚 =
𝑐𝑇

𝑏
 

5. It can also be seen from the graph that the value corresponding to peak of the curve 

increases rapidly with temperature. It was found that 

𝐸𝜆𝑚 ∝ 𝑇5 

6. The total energy emitted by the body at a particular temperature is represented by the 

area under the curve and mathematically the area under the curve at a particular 

temperature is given by 

     ∫ 𝐸𝜆𝑑𝜆
∞

0
    (7.9) 

This is the total emissive power of a Black Body. It was found that area under the curve 

is directly proportional to the fourth power of absolute temperature, hence 

𝐸 ∝ 𝑇4 

or,     𝐸 = 𝜎𝑇4    (7.10) 

Where σ is Stephan’s constant and has the value  

𝜎 = 5.67 × 10−8 watt/m2/K4 

This law is known as Stephan-Boltzmann’s law. 

7. The black-body spectrum always become small at the left hand side (i.e., on shorter 

wavelength, or higher frequency side) 
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8. The black-body spectrum depends only on temperature of the body but not on its nature. 

An iron bar , a ceramic pot and a piece of charcoal all will emit the same black-body 

spectrum, if their temperatures are the same 

 

7.10.2 LIMITATIONS OF CLASSICAL PHYSICS 

Many attempts were made to explain the experimental curves of black body radiation. But they 

were not able to explain it completely (using classical physics). We will see in the next unit 

how these laws are unable to explain it completely. Further quantum physics was introduced 

and using it the curves were successfully explained. 

7.11 BLACK BODY 

When a smooth surface completely reflects all the incident rays, as is approximately the case 

with many metallic surfaces, it is termed 'reflecting'. When a rough surface reflects all incident 

rays completely and uniformly in all directions, it is called 'white'. A rough surface having the 

property of completely absorbing the incident radiation is described as 'black'.  

 

In other words Kirchhoff defined black-body as a body having absorptivity and emissivity 

equal to one (a=e=1 where a and e are coefficients of absorption and emissivity respectively). 

Clearly for a black body  = t = 0, i.e. there is no reflection and transmission. 

As observed from the black body radiation spectrum, blackbodies have three important 

characteristics: 

  

     1.  A black-body with a temperature higher than absolute zero emits some energy of all 

wavelengths extending to infinity (curves never meet x-axis) 

     2. A black-body at higher temperature emits more energy at all wavelengths than does a 

             cooler one.  

     3. The higher the temperature, the shorter the wavelength at which the maximum energy 

             is emitted. 

 

 

7.11.1 PROPERTIES OF A BLACK BODY 

A perfectly black-body is an idealized physical body which absorbs all the radiations that fall 

on it, irrespective of the wavelength or angle of incidence.  

A black body in thermal equilibrium has two notable properties: It is an ideal emitter: at every 

frequency, it emits as much energy as or more energy than any other body at the same 

temperature. It is a diffuse emitter, the energy is radiated isotropically, independent of 

direction. 

Let’s discuss these properties in detail: 
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 Perfect emitter: Consider a black-body at a uniform temperature placed in vacuum 

within a perfectly insulated enclosure of arbitrary shape and whose walls are black-

body. The black body and the enclosure attains a common uniform equilibrium 

temperature. In equilibrium condition, the black body must radiate exactly as much 

energy as it absorbs. 

 Radiation isotropy (in a black enclosure): consider a black-body inside an isothermal 

enclosure with black walls and arbitrary shape. Move the black-body to another position 

or rotate it. Since enclosure remains isothermal the black-body must be at the same 

temperature. Thus, radiation received by the black-body is independent of the body's 

position or orientation throughout the enclosure. 

 Perfect emitter in each direction: To maintain the thermal equilibrium and radiation 

isotropy throughout the enclosure the radiation emitted back in any incident direction 

must be equal to that received. Since the body is absorbing the maximum radiation from 

any direction, it must be emitting the maximum in any direction. 

 Perfect emitter at every wavelength: Consider that the walls of the enclosure are so 

designed that they emit or absorb radiation in a very small intervals of dλ and λ. The 

black-body absorbs all the incident radiation in this wavelength interval. To maintain 

the thermal equilibrium of the enclosure, the black-body must reemit radiation in the 

same wavelength interval. Hence at every wavelength a black-body is a perfect emitter. 

 Radiation into vacuum is a function of temperature alone: If the enclosure 

temperature is altered, the enclosed black-body temperature must adjust and become 

equal to the new enclose temperature so that the system is again isothermal. The 

absorbed energy and the emitted energy of the black-body will again be equal to each 

other. Hence the total radiant energy emitted by a black-body in vacuum is a function 

of its temperature only. 

7.12 PRACTICAL EXAMPLES OF A BLACK BODY 

A black body is a theoretical concept. It is defined as the body that absorbs 100% of the 

radiation that falls on it, irrespective of frequency or angle of incidence. Hence it reflects no 

radiation and appears perfectly black. 

As you have already studied that according to G. Kirchhoff a perfect black-body is one which 

has the property to absorb all the incident radiations that fall on it. The statements is  true for 

all incident wavelengths and all incident directions. There is no surface reflection and 

transmission. Therefore, for a given wavelength and in a given incident direction, no other 

body can absorbs more radiation than a black body. 

In practice no material has been found to absorb all incoming radiations; however carbon in its 

graphite form absorbs 97% of incoming radiation. Platinum black and lamp black are the 

nearest example of a black body. Platinum black absorbs 98% of the visible light while lamp 

black absorbs 96%.An improvement on lamp-black is found in manufactured carbon 
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nanotubes. Nano-porous materials can achieve average reflectance of 0.045% means 

absorbance of 99.955%. 

SAQ 3. Give two examples of natural black body sources surrounding us.  

SAQ 4 : Is the black body was to be necessarily black in colour? 

However a body can be constructed which shows close approximations of a black body. 

7.12.1 RADIATION WITHIN A CAVITY ENCLOSURE. 

An approximate realization of a black body is a hole in the wall of a large enclosure. Any light 

entering the hole is reflected indefinitely or absorbed inside and is unlikely to re-emerge, 

making the hole a nearly perfect absorber. 

The walls of the enclosure should be perfectly opaque to radiation. The incident radiations on 

the hole will pass into the cavity. If the cavity is large then entered ray is unlikely to be re-

emitted (radiation gets absorbed by the inner walls of cavity after multiple reflections) Thus 

the hole acts act like a black-body. In a particular case if the wavelength of the incident 

radiation is longer than diameter of the hole, then incident radiation is partly reflected. Thus 

the box with a cavity is an approximation of the black-body.  

 

 

 

 

 

Fig. (7.2.) (a)  A box with a hole simulating a black body. The walls are opaque to radiation 

(b) A ray entering the box get repeated reflections inside the box  

The black body approximation is independent of the nature of walls of the enclosure. To prove 

this, consider two cavities at the same temperature. We'll suppose that the two cavities can be 

connected by a "door" that can be opened or closed to allow or to deny the passage of radiation 

between the cavities. We assume that the walls of one cavity are bright and shiny with an 

absorptance close to zero, and the walls of the other cavity are dull and black with an 

absorptance close to unity. Also suppose that, because of the difference in nature of the walls 

of the two cavities, the radiation density in one is greater than in the other. Let us open the door 

for a moment. Radiation will flow in both the directions, but there will be a net flow of radiation 

from the high-radiation-density cavity to the low-radiation-density cavity. As a consequence, 

the temperature of one cavity will rise and the temperature of the other will fall. Now the hotter 

cavity can be used as a source and the colder cavity can be used as a sink in order to operate a 

heat engine which will do an external work, such work, for example, to be used for repeatedly 

opening and closing the door separating the two cavities. We have thus constructed a perpetual 
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motion machine that can continue to do work without the expenditure of additional energy. 

From this absurdity, we can conclude that despite the difference in nature of the walls of the 

two cavities (which were initially at the same temperature), the radiation densities within the 

two cavities must be equal. We thus deduce an important principle that the radiation density 

inside an enclosure is determined solely by the temperature and is independent of the nature of 

the walls of the enclosure. 

7.12.2 FERRY’S BLACK BODY 

Ferry designed a close approximation of a black body. The schematic diagrams of a black-body 

(Ferry's black-body), as an absorber and emitter, have been shown in the figure 7.3 

 

Fig. 7.3 : (a) Black-body absorber     (b) Black-body emitter 

The Ferry's black-body consists of a hollow copper sphere blackened inside with a small fine 

hole 0 in the surface. When the radiations enter through the hole, they suffer a number of 

reflections at the inner walls of the sphere and finally they get trapped inside. To avoid direct 

reflection of the radiation from the inner surface, a pointed projection is made in front of the 

hole as shown in the figure. Thus the small hole acts as a black-body absorber. When this 

sphere is heated upto certain temperature, the heat radiations come out of the hole (Fig. 7.3b). 

It is to be noted that only the hole and not the walls of the sphere, acts as a black-body radiator. 

7.12.3 Wein’s Black Body 

                                

                                Fig. (7.4): Wein's Blackbody arrangement 

Wein constructed a cylindrical black body. It consist of a hollow cylindrical chamber made of 

brass with heating coils of thin platinum wire wounded over it. The inner surface of the cylinder 
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is painted black. On passing a suitable current through the wire the cylinder can be heated to a 

desired temperature and it can attain the equilibrium position in small time. The cylinder is 

isolated from the surroundings by a coaxial porcelain tube. The radiation from the cylinder 

emerges out of a hole and is limited by use of a blackened concave diaphragm. To measure 

temperature of the body a thermocouple is used. The hole acts as a black body radiator.  

7.13  SUMMARY 

The concept of an ideal black-body is important in studying thermal and electromagnetic 

radiation energy transfer in all wavelength bands. At a particular temperature a black body 

emits maximum amount of radiation as compared to any other body. Hence black body is used 

as a standard for comparison with radiation of real physical bodies. A black body is an ideal 

body which allows the whole of the incident radiation to be absorbed within itself as well as it 

is also an ideal emitter. A closed cavity with a hole is an approximation of black body. In an 

isothermal enclosure the radiation is constant both in quantity and spectral characteristics so 

that any energy absorbed is reradiated. The emission properties are independent of the nature 

of the walls of the enclosure. The energy of radiation emitted by a black body increases with 

rise in temperature and are isotropic in nature. Kirchhoff’s law establishes the relation between 

the abilities of absorbing and emitting electromagnetic energy by any physical body. However, 

this law is not applicable in cases where thermodynamic equilibrium conditions are violated. 

The energy distribution in black body radiation is not uniform for all wavelengths but the 

intensity of emitted radiation becomes maximum for a particular wavelength. This wavelength 

varies with temperature and are correlated to each other by Wein’s displacement law. The total 

energy emitted is given by Stefan-Boltzmann law. The study of black body radiation has 

enormous applications including estimating the temperature of far distant stars.  

7.14  TERMINAL QUESTIONS 

Objective type questions 

1. Leaves are green because 

a. they only emit frequencies corresponding to green 

b. they only reflect frequencies corresponding to green  

c. they only transmit frequencies corresponding to green  

d. they only absorb frequencies corresponding to green 

2.    We can see any object when the electromagnetic waves in optical range  

a. is transmitted from the object 

b. is absorbed by the object 

c. is reflected from the object 

d. is scattered by the object 

3. The thermal radiation is transmission of heat energy  through space it, 
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a. propagates only when a medium is present 

b. can propagate in vacuum 

c. does not require any medium to propagate 

d. is same as conduction 

 

4. Heat rays are identical to 

a. Particle radiation 

b. Acoustic  radiation 

c. Electromagnetic radiation 

d. Gavitational radiation 

 

5. A black body radiation  

a. depends on the temperature of the medium 

b. is function of the temperature of the object 

c. is radiation emmitted by a black body at uniform temperature 

d.  all of the above 

Long Answer type questions: 

1. State Korchoff’s law of Black-body radiation. 

2. Define a black-body and write its properties. 

3. What is absorption, reflection and transmission? 

4. Discuss the intensity or energy distribution of black-body radiation. 

5. Discuss variation of spectral intensity or spectral energy  of the backbody 

radiation with temperature. 

6. Give a practicel example of a black-body and dicuss it. 

 

7.15  ANSWERS 

SAQ answer 1. black-body radiation is defined as the radiations emitted by a black body held 

at a uniform temperature. These are electromagnetic radiation within or surrounding a body 

in thermodynamic equilibrium with its environment. 

All matters emit electromagnetic radiation at all temperatures above absolute zero. The 

radiation represents a conversion of a body's thermal energy into electromagnetic energy, and 

is therefore called thermal radiation. 

Conversely all normal matter absorbs electromagnetic radiation to some degree and reflects 

some wavelengths. An object that absorbs all radiations of all wavelengths falling on it, is 

called a black body. When a black body is at a uniform temperature, its emission has a 

characteristic spectrum for wavelength and intensity that depends only on the temperature of 

the enclosure and are independent of the nature of the substance, the walls of enclosure and the 

https://en.wikipedia.org/wiki/Thermal_radiation
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presence of any other body. These emitting radiations are called black-body radiation. A black 

body emission is diffuse in nature, i.e. it is independent of direction.  

SAQ answer 2: white paint is for thermal protection of the space craft, it reflects all the 

incident radiations and prevent the heat transfer to the underlying structures. 

SAQ answer 3.  The biggest natural black body approximations are 

(i) Cosmic Microwave Background (CMB) of the universe: the electromagnetic radiation 

that fills the part of the universe, are nearly isotropic and are characterized by 

radiobrightness temperature of 2.73 K. 

(ii) The second source of black body radiation is the star nearest to the earth-the SUN. The 

direct radar experiments performed in 1950 and 1960 indicated complete absence of 

radio-echo. Detailed spectral studies of solar radiation in the optical and IR bands have 

indicated the presence of thermal black-body radiation with brightness temperature of 

5800 K at the sun. 

(iii) The third space object is our home planet-  The Earth which possesses radiation close 

to black-body radiation with thermodynamic temperature of 287 K. 

 

SAQ answer 4. In physics, we refer to an object which radiates perfectly is a black body. 

Its colour not necessarily need to be black. Even a heated canon ball, or the surface of 

stars like sun are examples of black-body.  

 

 

 

Answers to objective question:  

 1. (b)     

2. (c)   

3.(b,c)   

4.(c)   

5.(b,c) 
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7.18  GLOSSARY 

Black body : A body that absorbs all the radiations falling on it. 

Radiation : Form of heat transference that does not require any material medium. 

Radiation: Enery travelling through space. An electromagentic wave. 

Thermal radiation : Electromagnetic radiations that lie in the IR region of the EM spectrum and 

are emitted by a hot body. 

Absorptivity : Fraction of the radiation falling on the body that is absorbed. 

Reflectivity : Fraction of radiation falling on the body that is reflected. 

Transmissivity : Fraction of the radiation falling on the body that gets transmitted. 

Radiant heat : Thermal radiation.  
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8.1 INTRODUCTION 

At the end of nineteenth century scientist felt that all the laws of physics (which were known 

at that time) are sufficient to explain all the phenomena that occur in nature. It was believed 

that there exists only two kinds of entities in nature, that is the one that are made up of particles 

and the others are radiations. All particles obey Newton’s law of motion and radiations obey 

Maxwell’s equations of electromagnetism. Now a days we call these laws as classical physics. 

Fortunately at the same time some experiments were performed whose results could not be 

explained by the classical laws of physics. Some of them were blackbody radiation, 

photoelectric effect, Compton effect etc. In order to explain these effects, the classical physics 

was insufficient and some new laws of physics were developed which are known as quantum 

physics. Hence black body radiation is one of the great effects which led to the birth of Modern 

physics.  

In this article we will see how classical physics failed to explain the black body radiation 

characteristics and how quantum principles could explain it.  
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8.2 OBJECTIVE 

After studying this unit you will be able to understand the following: 

 Limitation of Classical Physics and application of Quantum Physics. 

 Wien’s distribution law 

 Rayleigh Jeans Law 

 Stefan-Boltzmann law 

 Wien’s displacement law 

 Ultraviolet catastrophe 

8.3 EXPERIMENTAL FACTS ABOUT BLACK BODY 

RADIATION  CURVE  

 

Fig (8.1): Theoretical curve for a black body at 5000K 

The characteristics of black body radiation are exhibited by two graphs. The first graph 

(Fig.8.1) shows that  

1. The black body does radiate energy at every wavelength. The curve gets infinitely 

close to the x-axis but never touches it, i.e., the curve touches the axis at infinite 

wavelength. 

2. It also shows that there is a peak wavelength, at which most of the radiant energy is 

emitted. At 5000K the peak wavelength is about 5x10-7m (500nm) which falls in the 

yellow-green section of the visible range of light. 

3. At each temperature the black body emits certain amount of energy. This is 

represented by the area under the curve.  
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Fig (8.2): Black body radiation curves showing peak wavelengths at different temperatures.  

 

The other graph (Fig.8.2) shows that  

4. This graph shows how the black body radiation curves change at various 

temperatures. These all have their peak wavelengths in the infra-red part of the 

spectrum as they are at a lower temperature than the previous graph.  

5. As the temperature increases, the peak wavelength emitted by the black body shifts 

towards lower value. It therefore begins to move from the infra-red to the visible part 

of the spectrum. 

6. Again, none of the graphs touch the x-axis so they emit at all wavelengths. This 

means that some visible radiation is emitted even at these lower temperatures rather at 

any temperature above absolute zero, a black body will emit some visible light. 

7. As temperature increases, the total energy emitted also increases, because the total 

area under the curve increases.  

8. It also shows that the relationship is not linear as the area does not increase in even 

steps. The rate of increase of area, and therefore energy increases as the temperature 

increases. 

8.3.1THE EXPLANATION BY CLASSICAL PHYSICS 

Light is an electromagnetic wave which is produced when an electric charge vibrates. (in true 

sense when it is accelerated. We know that heat is just the kinetic energy of random motion 

of molecules. In a hot object, electrons vibrate in random directions and produce light as a 

result. A hotter object means more energetic vibrations and so more light is emitted by a 
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hotter object as a result it glows brighter, so far, so good. But classical physics could not 

explain the shape of the blackbody spectrum. 

The electrons in a hot object can vibrate with a large range of frequencies, from a few to a 

very big number. In fact, there is no limit to how large the frequency value can be. Classical 

physics says that each frequency of vibration should have the same energy. Since there is no 

limit to how large the frequency can be, there is no limit to the energy of the vibrating 

electrons at high frequencies. Thus according to classical physics, there should be no limit to 

the energy of the light produced by the electrons vibrating at high 

frequencies. Experimentally, the blackbody spectrum always becomes small at the left-hand 

side (short wavelength and high frequency). 

8.3.2 EXPLANATION BY QUANTUM PHYSICS 

In 1900, Max Planck came up with his Quantum theory as a solution to the radiation problem. 

He proposed that the classical idea that each frequency of vibration should have the same 

energy must be wrong. Instead, he said that energy is not shared equally by electrons that 

vibrate with different frequencies. Planck said that energy is not continuous but comes in 

clumps. He called a clump of energy a quantum. The size of a clump of energy  - a quantum 

depends on the frequency of vibration. Here is Planck's rule for the a quantum of energy for a 

vibrating electron: 

energy of a quantum = (a calibration constant) x (frequency of vibration) 

or   E = h        (8.1) 

where  is the frequency and h, the calibration constant, is called Planck's constant. Its value 

is 6.626   10-34Js, too small. 

So how does this explain the spectrum of blackbody radiation? Planck said that an electron 

vibrating with a frequency  could only have an energy of 1 h, 2 h, 3 h, 4 h, ... ; that is, 

the energy of vibrating electron is an integral multiple of h 

But an electron has to have at least one quantum of energy if it is going to vibrate. If it doesn't 

have at least an energy of 1h, it will not vibrate at all and can't produce any light. At high 

frequencies the amount of energy in a quantum, h, is so large that the high-frequency 

vibrations can never occur. This is why the blackbody spectrum always becomes small at the 

left-hand side. 

We will study these facts of quantum physics in unit 13 in detail.  

Let’s now study step by step, the attempts made by scientists to explain the blackbody 

radiation curves. 

 

8.4 ATTEMPTS TO DESCRIBE THE BLACK BODY SPECTRUM 

Several theoretical attempts were made to explain the observed spectrum using the thermo 

dynamical laws. The Stefan-Boltzmann law derived a relationship between total energy emitted 
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in the whole wavelength range and the temperature of the blackbody, but it failed to explain 

actual distribution of energy in different parts of the spectrum. There were still many questions 

not answered like- how the spectral intensity (𝐼𝜆) or spectral energy (𝐸𝜆) vary with wavelength 

? For a given wavelength how does spectral intensity vary with temperature ? In the early 

twentieth century, before Planck, several works were proposed within classical framework to 

describe wavelength dependency of spectral energy or intensity. These are Wien’s distribution 

and Rayleigh-Jeans distribution, collectively called blackbody distribution function. 

8.4.1 WIEN’S DISTRIBUTION LAW  

The first noticeable success was achieved by Wilhelm Wien in 1896. 

 

 

 

By 1896 Wien had come up with a theory to explain the shape of the spectrum (even though 

the shape in the infrared was not fully known at that time). In what we now call ‘Wien’s 

distribution law’ or ‘Wien’s approximation’, he tried to explain the blackbody spectrum using 

thermodynamic arguments, and assuming that the gas molecules obeyed the Maxwell-

Boltzmann speed distribution for molecules (or atoms) in a gas. 

He treated Blackbody radiation as a collection of molecules with Maxwellian distribution of 

speeds and assumed that these speeds are determined by the frequency of light emitted. Wien 

suggested  that the energy of a black body in the wavelength interval  could be given by 

 

Wien found, using the Maxwell-Boltzmann distribution law for the speed of atoms (or 

molecules) in a gas, that the form of the function  was 

Wilhelm Wiens, who in 1893 came 

up with Wiens displacement law 

Wilhelm Wiens was a German physicist who, in 
1893,used theories about heat and 
electromagnetism to deduce Wien's displacement 
law, which calculates the emissionof a blackbody at 
any temperature from the emission at any one 
reference temperature. 

In 1896 Wien empirically determined a distribution 

law of blackbody radiation. Wien received the 1911 

Nobel Prize for his work on heat radiation. 

 

https://en.wikipedia.org/wiki/Wilhelm_Wien
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Wien%27s_displacement_law
https://en.wikipedia.org/wiki/Wien%27s_displacement_law
https://en.wikipedia.org/wiki/Emission_(electromagnetic_radiation)
https://en.wikipedia.org/wiki/Blackbody
https://en.wikipedia.org/wiki/Blackbody_radiation
https://en.wikipedia.org/wiki/Heat_radiation
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or,        (8.2) 

where,  were constants having values as  A = 8hc and a = hc/K, K is another 

constant. 

If we wish to express this in terms of frequency  instead of wavelength then from the wave 

equation,  and so . But, we also need to rewrite  in terms of  and 

to do this we write 

    (8.3) 

We can ignore the minus sign as it just indicates us that as the frequency increases the 

wavelength decreases, and so substituting for  we can write that the energy in 

the frequency interval  is given by 

 

   (8.4) 

where  are also constants to be determined. 

Thus Wien derived a formula, providing a relation between the intensity of radiation between 

λ and λ+dλ, as a function of the temperature T of the source and the wavelength λ.   

The expression given by eq. (8.4) is Wien’s law of energy distribution 

 

 

8.4.2 WIEN’S LAW BREAKS DOWN 

Wiens formula fits the experimental data collected prior to 1900 very well and was hence gave 

good agreement with the blackbody curve on the short-wavelength side of the peak (what we 

now call the ‘Wien-side’ of the peak). But, the experimental results on the longer-wavelength 

side did not match well with the theoretical result as predicted by this law. 

Thus, Wien’s law holds good only in the region of shorter wavelengths at lower temperatures, 

but not found in accordance with the experimental curves at longer wavelengths and at higher 

temperatures.  

8.4.3 RAYLEIGH-JEANS LAW  

This law was derived by Lord Rayleigh in 1900 and then more rigorously by Rayleigh and 

Sir James Jeans working together, in 1905. 
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Rayleigh found some shortcomings in Wien’s law. Lord Rayleigh and Sir J. Jeans 

alternatively applied the thermodynamic principle of equipartition of energy. According to 

them the radiation spectrum could be explained by considering the set of modes of the 

oscillating electromagnetic field within the blackbody. By the law of equipartition of energy, 

no mode is preferred over other, so energy is evenly distributed among all modes.  

They found that the energy density (energy per unit volume) of the radiation coming from a 

black body varies as the square of the frequency of the radiation. This is the Rayleigh-Jeans 

law, and mathematically we can write this as 

𝑢(𝜈) ∝ 𝜈2        (8.5) 

 

Figure (8.3): Spectrum of radiations as a function of frequency. 

This law led to what is known as the ultraviolet catastrophe, as it predicted that blackbodies 

would get brighter and brighter at higher frequencies of radiation, and that the total power 

radiated per unit area of the blackbody would be infinite. It was in trying to resolve this 

absurdity in 1900 that Max Planck came up with the idea of the quantisation of energy, which 

was the first step in what would later become quantum mechanics, an entirely new description 

of the sub-atomic world. But how was the Rayleigh-Jeans law derived? In order to understand 

what Planck did in 1900, we first of all need to properly understand what Rayleigh and Jeans 

derived using classical physics. 

Rayleigh and Jeans considered the radiation in a box with perfectly reflective walls in thermal 

equilibrium as an idealized cavity to derive their eponymous law. For simplicity consider the 

cube of side length L 
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Fig. (8.4): Radiations in a cubical box of length L in thermal equilibrium 

The 3-dimensional wave equation for an electromagnetic (EM) wave can be written (ignoring 

the magnetic component as it is much smaller than the electric component  ) as 

 

    (8.6) 

 

For EM waves in a cubic cavity with sides of length  L, the only modes which can exist have 

to satisfy the equation that electric field needs to be zero at the walls. If 𝐸⃗  needs to be zero 

this means Ex, Ey and Ezalso needs to be zero at the walls. After solving equation (8.6) we get 

 

    (8.7) 

Where nx, ny and nz are related to number of waves between the wall in x, y and 

z direct ion, in other words number of modes allowed in the cavity in x,y and z 

direct ions.  

This is the so-called “standing wave solution to the wave equation for a cubical cavity with 

sides of length L”. 

 

The total number of modes in cubic cavity  

In order to calculate the total number of allowed modes N in cubic cavity, we need to sum over 

all possible values of nx, ny and nz. To do this we use a mathematical tool of working in “n-

space”, that is to say we determine the volume of a sphere where the x-axis is given by nx, the 

y-axis by ny and the z-axis by nz. The value of 𝑛 = √𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2.  

We can determine the value of N by considering the volume of a sphere with radius n, which 

is of course just 

𝑁 =
4п

3
𝑛3    (8.6) 

But, as we can see in the diagram below, if we sum over  for an entire sphere we will be 

including negative values of 𝑛𝑥 , 𝑛𝑦 𝑎𝑛𝑑 𝑛𝑧 whereas we only have positive values of each. 
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Figure 8.5. Allowed normal modes in the cavity 

In order to correct this, we consider the positive values of 𝑛𝑥 , 𝑛𝑦 𝑎𝑛𝑑 𝑛𝑧 only and thus we just 

need to divide the volume by 8, as the part of a sphere in the positive part of the diagram is one 

eighth of the total volume. There is one more correction: Light can exist independently in two 

different polarisations at right angles to each other, so we need to double the number of 

solutions to our standing wave equation to account for this .We, therefore, can write 

𝑁 =
4п

3
𝑛3 (

1

8
) (2)      (8.9) 

      =
п

3
𝑛3 

       =
п

3
(𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2)
3

2⁄  

        =
п

3
(
4𝐿2

𝜆3
)

3
2⁄

 

Which gives the number of modes in the cavity as 

𝑁 =
8п𝐿3

3𝜆3                                 (8.10) 

  

The number of modes per unit wavelength 

The expression (8.10) gives is the total number of modes in the cavity summed over all 

wavelengths. The number of modes per unit wavelength can be found out by differentiating 

this expression with respect to λ, i.e., we find 
𝑑𝑁

𝑑𝜆
. 

 
𝑑𝑁

𝑑𝜆
=

𝑑

𝑑𝑥
(
8п𝐿3

3𝜆3 ) = −
8п𝐿3

𝜆4         (8.11) 

https://thecuriousastronomer.files.wordpress.com/2013/11/20131108-140657.jpg
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The minus sign implies that the number of modes decreases with increasing wavelength. 

The number of modes per unit wavelength per unit volume in the cavity  

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

𝑐𝑎𝑣𝑖𝑡𝑦 𝑣𝑜𝑙𝑢𝑚𝑒
=

1

𝐿3

𝑑𝑁

𝑑𝜆
 

= −
1

𝐿3 (
8п𝐿3

𝜆4 ) = −
8п

𝜆4       (8.12) 

The energy per unit volume per unit wavelength and per unit frequency  

Because the matter and radiation are in thermal equilibrium with each other, we can say that 

the energy of each mode of the EM radiation is E=kT, where k is Boltzmann’s constant 

and T is the temperature of radiation in kelvin. This comes from the principle of 

the Equipartition of Energy. We write the energy per unit volume (also called the energy 

density) with the symbol u so that we have the energy per unit volume per unit wavelength 

given by 

𝑑𝑢

𝑑𝜆
=

1

𝐿3

𝑑𝐸

𝑑𝜆
=  

1

𝐿3 (
𝑑𝑁

𝑑𝜆
) 𝑘𝑇 =

8п𝑘𝑇

𝜆4       (8.13) 

In terms of frequency it can be written as 

𝑑𝑢

𝑑𝜈
= (

8п𝑘𝑇

𝑐3 ) 𝜈2        (8.14) 

This is the Rayleigh-Jeans law. 

8.5.4 Rayleigh Jeans law fails for shorter frequencies 

So, using Classical Physics, we find that the energy density is proportional to the square of the 

frequency, which means the energy density plotted as a function of frequency should look like 

that shown in the figure (8.3).  

It has already been shown that the energy density of blackbodies follows the continuous curve 

(Fig. 8.3). If it were to follow the dashed curve (the Rayleigh-Jeans law) the blackbody would 

get brighter and brighter at shorter and shorter wavelengths, resulting the so-called ultraviolet 

catastrophe.  
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Fig. 8.6.Rayleigh Jeans Law curve (dashed ) and experimentally observed curve (continuous) 

Like Wiens law, Rayleigh law also found not to be in accordance with the experimental curves 

of blackbody radiation.  The Rayleigh-Jeans law was found to be in agreement with 

experimental curves at longer wavelengths (shorter frequencies) and at higher temperature but 

fails for shorter wavelengths. 

Thus, both Rayleigh-Jeans law and Wien’s law do not agree precisely with experimental 

curves throughout. 

8.5 THE STEFAN-BOLTZMANN LAW 

The black body radiation emitted in any direction is measured in terms of radiation intensity. 

Based on the thermodynamic properties and considering the simplicity of the system, we can 

easily find the total emissive power (𝐸𝑏(𝑇)), Radiation Pressure (𝑃) and radiation energy 

density (𝑢) of the blackbody in terms of total radiation intensity (Ib, that includes intensity of 

all the wavelengths) as  

Emissive Power:   𝑬𝒃(𝑻) = 𝝅 𝑰𝒃(𝑻)   …………(i) 

Radiation Pressure:   𝑷(𝑻)  =  
𝟒𝝅 𝑰𝒃(𝑻) 

𝟑𝒄
   …………(ii) 

Energy Density:   𝒖(𝑻)  =  
𝟒𝝅 𝑰𝒃(𝑻)

𝒄
   …………(iii) 

From equation (ii) and (iii) we get  

     𝑷 =  
𝒖

𝟑
     ………….(iv) 

The total internal energy 𝑈 is equal to the product of the specific internal energy and the 

volume. The specific internal energy is defined as energy per unit volume. From 𝑇𝑑𝑆 relation 

in thermodynamics we have, 
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                 𝑻𝒅𝑺 =  𝒅𝑼 +  𝑷𝒅𝑽 

= 𝒅(𝒖𝑽) + 𝑷𝒅𝑽                   

= 𝒖𝒅𝑽 +  𝑽𝒅𝒖 + 𝑷𝒅𝑽       

= 𝒖𝒅𝑽 +  𝑽𝒅𝒖 + (
𝒖

𝟑
)𝒅𝑽  

= 𝑽𝒅𝒖 + (
𝟒𝒖

𝟑
)𝒅𝑽                

  𝒅𝑺 = (
𝑽

𝑻
)𝒅𝒖 + (

𝟒𝒖

𝟑𝑻
)𝒅𝑽 

=
𝑽

𝑻

𝝏𝒖

𝝏𝑻
 𝒅𝑻 +

𝟒𝒖

𝟑𝑻
𝒅𝑽 

 

For any function    𝑍 = 𝑓(𝑥, 𝑦) 

and differential   𝑑𝑍 =  𝑀𝑑𝑥 + 𝑁𝑑𝑦  

for𝑑𝑍 to be an exact differential     

      

𝜕𝑀

𝜕𝑦
= 

𝜕𝑁

𝜕𝑥
 

For 𝑑𝑆 to be exact differential, we have  

     
𝜕

𝜕𝑉
{
𝑉

𝑇

𝜕𝑢

𝜕𝑇
} =  

𝜕

𝜕𝑇
(
4𝑢

3𝑇
) 

or  
1

𝑇

𝑑𝑢

𝑑𝑇
 =

4

3𝑇

𝑑𝑢

𝑑𝑇
 −

4𝑢

3𝑇2 

or  
4

3

𝑢

𝑇2  =  
1

3𝑇

𝑑𝑢

𝑑𝑇
 

     

or 
𝑑𝑢

𝑢
 = 4 

𝑑𝑇

𝑇
 

Integrating  this equation we get 

     

𝒖 = 𝒂 𝑻𝟒         (8.15) 

Substituting above expression in equation (iii) we get 

    44 ( )bI T
aT

c


  

    𝑰𝒃(𝑻) =
𝒂𝒄

𝟒𝝅
𝑻𝟒 

or 
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For a black body the emissive power is  

 

𝑬𝒃 = 𝝅𝑰𝒃 =
𝒂𝒄

𝟒
𝑻𝟒     (8.16) 

where 𝒄 is the speed of light in vacuum. Determining the value of 𝑎 from experiment, we get  

𝑎𝑐

4
= 5.67 × 10−8 𝑊

𝑚2𝐾4 = 𝝈      (8.17) 

or 𝑬𝒃 = 𝝈 𝑻𝟒        (8.18) 

Here,  is known as Stefan-Boltzmann  constant and eq. (8.18) as Stefan-Boltzman Law or T4-law. 

Josef Stefan (1835 - 1896) and Ludwig Boltzmann (1844 - 1906) were the two physicists 

behind this equation. Stefan was an Austrian Professor and Boltzmann's research supervisor. 

It is worth noting that Boltzmann got his PhD at the age of 22 and at the age of 25, he was 

appointed full professor in mathematical physics at the University of Graz! 

     

The Stefan-Boltzmann law relates the heat flow rate emitted or absorbed from an object to its 

temperature  

The Stefan-Boltzmann law is also known as Stefan’s law. It states that the rate of emission of 

radiant energy by unit area of a perfectly blackbody is directly proportional to the fourth power 

of its absolute temperature.  

In other words it states that the total energy radiated per unit surface area of a black-body in 

unit time (known as the blackbody irradiance, energy flux density, radiant flux or emissive 

power), E is directly proportional to the fourth power of the blackbody's thermodynamic 

temperature T (also called absolute temperature) 

Hence            E=σT4  

The constant of proportionality σ is called the Stefan-Boltzmann constant or Stefan’s constant. 

It is not a fundamental constant, in the sense that it can be derived from other known constants 

of nature. The value of the constant is 5.6704 × 10-8 Js-1m-2K-4. 

Above law refers only to emission of heat radiation and not to the net loss of heat radiations by 

the body after exchange with the surroundings.  

Self Assessent Questons (SAQ) 

SAQ 1. Is the black body has to be necessarily black in colour? 

SAQ 2. A black surface is radiating with a total emissive power of 20 𝑘𝑊/𝑚2. What is its 

surface temperature? At what wavelength is its maximum spectral emissive power? 

SAQ 3. An electric flat-plate heater is squre with a 0.1 𝑚 edge length is radiating 102𝑊 from 

each side. If the heater can be considered black what is its temperature? 
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When an iron piece (rod) is heated it starts changing its colour. With rise in temperature it first 

appears dark red, then yellowish white, white and then bluish white. Hence, the emitted colour 

from a hot body has relation with its temperature.  

8.6 WIEN’S DISPLACEMENT LAW 

Wien's displacement law relates the wavelength corresponding to maximum energy of the 

thermal radiation emitted by an object to its absolute temperature. First derived by the German 

physicist Wilhelm Wien in 1893 using thermodynamic principles. 

 

In section 8.4.1 we have studied a relation for the spectral energy of radiation between λ and 

λ+dλ, as a function of temperature T of the source and the wavelength λ as   

𝐸𝜆𝑑𝜆 = 𝑘𝜆−5𝑒
−𝑎

𝜆𝑇⁄ 𝑑𝜆 
So that 

    𝐸𝜆 = 𝑘𝜆−5𝑒
−𝑎

𝜆𝑇⁄      (8.19) 

Differentiating above expression w.r.t. 𝜆 

   
𝑑𝐸𝜆

𝑑𝜆
= −5 𝑘 𝜆−6𝑒

−𝑎
𝜆𝑇⁄ +  𝑘  𝜆−5𝑒

−𝑎
𝜆𝑇⁄ (−

𝑎

𝑇
) (−

1

𝜆2) 

For maximum energy radiation, the corresponding wavelength 𝜆 →  𝜆𝑚𝑎𝑥 and   
𝑑𝐸𝜆

𝑑𝜆
= 0 

     

   

or,  −5 𝜆𝑚𝑎𝑥
−6 + 𝜆𝑚𝑎𝑥

−7 𝑎

𝑇
 = 0 

or,   −5 +  𝜆𝑚𝑎𝑥
−1 𝑎

𝑇
 = 0 

   𝝀𝒎𝒂𝒙   𝑻 = 𝒃       (8.20) 

Where b is the constant of proportionality called Wien’s displacement constant and equals 

2.8978 × 10−3 𝑚𝐾. 

In other words Wien’s displacement law states that the hotter the object is, the shorter the 

wavelength at which it will emit most of its radiation. Thus, there is an inverse relationship 

between the wavelength of the peak of maximum emission 𝜆𝑚𝑎𝑥 of a blackbody and its 

absolute temperature T, i.e.,  

𝜆𝑚𝑎𝑥 ∝
1

𝑇
 

or,  𝜆𝑚𝑎𝑥𝑇 = 𝑏 

where 𝜆𝑚𝑎𝑥 is the wavelength in m and T is the temperature of the black body in K  

Due to this reason most of the radiation coming form the sun (at about 6000 K) are of shorter 

wavelengths, whereas radiations emitted by warm earth surface or other bodies are in infrared 

region (longer wavelength). The Green House effect is an illustration of Wien's displacement 

law.  

Example: Find the peak wavelength of the blackbody radiation emited by (A) a body at 2000 

K 

https://en.wikipedia.org/wiki/Wilhelm_Wien
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(B) the tungsten filament of a lightbulb at 3000 K 

Solution:  

(A) the sun (2000 K) 

By Wien’s displacement law,   
3

max 2.898 10    m.K/2000K  

        = 1.4  

(1.4 μm corresponds to infrared range) 

(B)  the tungsten filament of a light bulb at 3000 K 

    
3

max 2.898 10    m.K/5800 K 

 = 0.5 µm 

(visible light range, yellow-green) 

SAQ 4: The sun’s surface temperature is at 6000 K. What is the wavelength at which 

maximum solar energy is emitted? 

8.7 ULTRAVIOLET CATASTROPHE 

The ultraviolet catastrophe is also known as Rayleigh Jeans catastrophe. The Rayleigh-Jeans 

law was in significant disagreement with the experimental results near the maximum of the 

curve   and at higher frequencies.  The word “ultraviolet” signifies that the law is in 

disagreement in the short wavelength (high frequency) region of the spectrum. The glaring 

errors in the law were as follows: 

Rayleigh formula was derived from a model of a blackbody cavity with a hole, having 

electromagnetic waves bouncing around in it. The electromagnetic radiations are compared to 

standing waves, hence solution of wave equation also applies to EM waves. The standing 

waves have vibration zero at two fixed ends. If distance between two ends is L then the possible 

wavelengths which could be produced in the cavity are such that 

𝐿 =
𝑛𝜆

2
                                    (1) where n = 1,2,3,4 …..etc. 

In other words the EM wave will have complete number of half cycles within the box. These 

allowed vibrations are called modes. 

Considering the physical situation, it is clear that 'nodes' will be formed at the two extreme 

ends of the cavity i.e., opposite walls. As a result, the first possible mode inside will have half 

wave only. Subsequently, thereafter one, one and half, two .... waves thereby giving increasing 

number of frequencies.  

The number of modes for a frequency range ω and ω+dω was found to be 
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2( ) ( )N d d            (ii) 

Above result was obtained with an assumption of considering vibrations of EM field like of 

an harmonic oscillator 

According to equipartition theorem, each allowed mode will have energy 

𝐸 =
1

2
𝑘𝑇                                          (iii) 

where k is Boltzmann constant. There was an attempt to apply equipartition law to EM 

radiation as they were thought of like waves. 

Thus energy density for an interval  and +d will be 

2( ) kTd           (iv) 

This is Rayleigh Jeans law. According to classical physics all the modes have equal chance to 

be produced, and the number of modes goes up proportional to square of the frequency. Hence 

according to this law there should be continous increase in radiated energy with increase in 

frequency and approaches infinity when frequency approaches infinity. But it was not observed 

experimentally. The situation has been shown by the Rayleight-Jeans curve in Fig. 8.3  

The classical theory (the Rayleigh-Jeans law) predicts that there will be an infinite number of 

modes allowed in the cavity as we go to higher and higher frequency, so more and more energy 

exists in each frequency interval as we go to higher and higher frequencies (shorter and shorter 

wavelengths). The total area under the curve, the power per unit area, of the blackbody would 

be infinite and it would be infinitely bright at ultraviolet wavelengths (high frequencies) which 

clearly doesn’t happen, the theory had completely failed. This disagreement of the observed 

behaviour with the prediction of the Rayleigh-Jeans law came to be known as the ultraviolet 

catastrophe. 

Thus, the error in Rayleigh –Jeans law at shorter wavelengths that an ideal black body at 

thermal equilibrium will emit radiation with infinite power is called ultraviolet catastrophe. 

This catastrophe was a fatal failure of classical physics  

 

8.8 SUMMARY 

A black body is an idealized object which absorbs and emits radiations of all frequencies. The 

total radiant energy emitted from a surface was found to be proportional to the fourth power of 

its absolute temperature called Stefan –Boltzmann law. A relationship between wavelength 

λmax (at which energy of emitted radiation is maximum) to the temperature of the body was 

given by Wien’s displacement law. As temperature of blackbody increases the overall radiant 

energy increases (Stefan law) and the peak of radiation curve shifts towards shorter 

wavelengths that is λmax is inversely proportional to temperature (Wien’s displacement law). It 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 174 
 

is useful in determining the temperature of hot radiant objects such as stars. Further Wien 

derived a distribution law of radiation. However this law was valid at high frequencies and 

broke down completely at low frequencies resulting a situation called infrared catastrophe. 

Classical Physics was used to derive equation which describes intensity of black body radiation 

as a function of frequency for a fixed temperature. The result was known as Rayleigh-Jeans 

law. Although it works for low frequencies, and diverges as 2; this divergence for high 

frequency will result into a situation which is called ultraviolet catastrophe. 

8.9 TERMINAL QUESTIONS 

Objective Question 

1. The blackbody radiation is  

a. longitudinal wave  

b. electromagnetic wave 

c. sound wave 

d. transverse wave 

2. The energy emitted by an object held at constant temperature and having capacity to 

absorb all the light falling on it is known as 

a. blackbody radiation 

b. conduction 

c. convection 

d. thermal radiation 

3. The energy radiated by a blackbody comprises  

a. all wavelength range. 

b. only radio waves. 

c. only visible wavelength range. 

d. ultravoilet, Infra-red and x-rays 

4. As the temperature of blackbody increases the wavelength at which it emits maximum 

energy  

a. increases 

b. decreases 

c. same for all temperature 

d. zero 

5. The area under the intensity curve of blackbody radiation 

a. increases with decrease in blackbody temperature. 

b. increases with increase in blackbody temperature. 

c. represents total energy density emitted by the blackbody. 

d. proportional to fourth power of the blackbody temperature. 

6. The mathematical description of blackbody intensity curve is given by 

a. Wien’s law 

b. Planck’s law 

c. Rayleigh-Jeans law 

d. Stefan-Boltzmann law 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 175 
 

7. Any differential 𝑑𝑍 =  𝑀𝑑𝑥 + 𝑁𝑑𝑦 is said to be exact when 

a. 
𝜕𝑀

𝜕𝑥
= 

𝜕𝑁

𝜕𝑦
 

b. 
𝜕𝑀

𝜕𝑦
= 

𝜕𝑁

𝜕𝑥
 

c. 
𝜕𝑍

𝜕𝑦
= 

𝜕𝑍

𝜕𝑥
 

d. 
𝜕𝑦

𝜕𝑀
= 

𝜕𝑥

𝜕𝑁
 

 

Numerical Questions 

1. Consider a blackbody at a temperature of 6000K. Find the total emissive power. 

2. Assuming the Earth is a black body and has a temperature of 300 K, how much 

energy is it emitting? 

3. Assuming that a beaker of water is boiling and has a emissivity of 0.95. How much 

energy is it emitting? What is the peak energy emission wavelength? What part of the 

electromagnetic spectrum is this in? 

Short Questions 

1. What is Stefan-Boltzmann law? 

2. What is the wavelength region in which Wien’s distribution formula is valid? 

3. What is the limitation of Rayleigh-Jeans Law? 

4. What is spectral energy density? 

5. State Kirchoff’s radiation law? 

Long Answer Questions 

1. Discuss the experimental curve of blackbody radiation. 

2. Derive the expression of Stefan-Boltzmann law using first law of thermodynamics. 

3. Explain what is ultraviolet catastrophe. 

4. Derive the expression of Wien’s displacement law 

 

8.10 ANSWERS 

Answer to Self assessment questions 

Answer SAQ: 1.In Physics, we refer to an object which radiates perfectly as a blackbody. The 

name is a little misleading, as there is nothing about a black body which is black in colour. 

An example of a blackbody is a heated canon ball, or the surface of stars like the Sun. It has 

been known since time that if you heat a metal object, such as a canon ball, it will start to 

glow; it actually starts giving off its own visible light rather than just reflecting light. 
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Answer SAQ 2. From Stefan-Boltzmann law, the temperature of the blackbody is 𝑇 = (
𝐸𝑏

𝜎
)

1

4
 

 𝑇 = (20000
5.67051 × 10−8⁄ )

1

4
 =    770.6  𝐾  

From Wien’s displacement law    𝜆𝑚𝑎𝑥 =
𝑏

𝑇
 

𝜆𝑚𝑎𝑥 =  
2898

770.6
 =  3.76 𝜇𝑚 

Answer SAQ 3. Using Stefan-Boltzmann law 

 𝑇 = (
𝑄

𝐴𝜎⁄ )

1

4
 =   [

102𝑊

(0.1 𝑚)2  5.67051 ×10−8𝑊 (𝑚2𝐾4)⁄
]

1

4
 =   648 𝐾 

Answer SAQ 4. From Wien’s displacement law 𝜆𝑚𝑎𝑥  𝑇 = 2898 𝜇𝑚𝐾 

 𝜆𝑚𝑎𝑥 = 
2898

6000
 =  0.483 𝜇𝑚. 

 This lies in the visible portion of the spectrum, which is 0.4 − 0.7 𝜇𝑚 and that is why 

we have daylight and  Earth is so habitable. 

Answers to Objective type questions 

 1. (b),(d)  

2. (a)  

3. (a)  

4.(d)  

5.(b),(c),(d)  

6.(b)  

7.(b) 

Answers to Numerical questions 

Answer 1. The total emissive power is given by Stefan-Boltzmann law: 𝐸𝑏 = 𝜎 𝑇4 . 

  

𝑬𝒃 = 5.67 × 10−8
𝑊

𝑚2𝐾4
× (6000𝐾)4 =  7.35 × 107𝑊/𝑚2 

 

Answer 2.  𝑬𝒃 = 5.67 × 10−8 𝑊

𝑚2𝐾4 × (300𝐾)4 =  459 𝑊/𝑚2 
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Answer 3. Emissivity (𝜖)is a measure of how efficiently a surface emits thermal energy (i.e. 

material’s radiating efficiency), can have a value from 0 (shiny mirror) to 1.0 

(blackbody). 

 Energy emitted by boiling water is = 𝜖 𝜎 𝑇4 

= 0.95 ×  5.67 × 10−8
𝑊

𝑚2𝐾4
× (100𝐾 + 273𝐾)4 

     = 1042 𝑊/𝑚2 

 𝜆𝑚𝑎𝑥 = 
2898

373
 =  7.77 𝜇𝑚.This is in infra-red part of the spectrum. 

 

Answers to Short question 

Answer 1. The Stefan–Boltzmann law states that the total energy radiated per unit surface 

area of a black body across all wavelengths per unit time (also known as the black-body 

radiant emittance) is directly proportional to the fourth power of the black body's 

thermodynamic temperature T i.e.  

𝑬𝒃 = 𝝈 𝑻𝟒 

Answer 2. Wien’s distribution law gave good (but not perfect) agreement with the blackbody 

curve in region of shorter wavelengths at lower temperatures, but not found in accordance with 

experimental curves at longer wavelengths. According to wien’spostulates 𝐸𝜆 = 𝑘𝜆−5𝑒
−𝑎

𝜆𝑇⁄ . 

At large wavelengths the spectral energy decreases much rapidly than the observed curve. 

 

Answer 3. The Rayleigh-Jeans prediction suggested that the energy density (energy per unit 

volume) of the radiation coming from an ideal blackbody varies as the square of the frequency 

of the radiation, 𝑢(𝜈) ∝ 𝜈2. So the amount of energy radiated simply gets greater and greater 

at higher and higher frequencies. The total energy would become infinite which violets the law 

of conservation of energy. The name Ultraviolet Catastrophe was used to describe this failure 

of theory because UV light has a higher frequency than visible light. 

Answer 4. Spectral energy density is defined for a particular wavelength. It is the energy per 

unit volume per unit range of wavelength. The spectral energy density describes how 

electromagnetic energy is distributed with wavelength or frequency. 

Answer 5. Kirchhoff ’s radiation law states that the ratio of emissive power to absorptive 

power eλ/aλ = f(λ, T), a universal function of wavelength and temperature, independent of the 

nature or shape of the cavity. This law accounts for the fact that good absorbers are also good 

emitters. 
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9.1 INTRODUCTION 

The key points understood from previous units are 

 A black body in thermal equilibrium emits electromagnetic radiation called Black body 

radiations. 

 The black body radiations have specific spectrum and intensity that depends only on 

temperature of the body 

 Predictions based on classical theories failed to explain the black body spectra observed 

experimentally. 

 Based on the application of Wein and Rayleigh's explanations, the energy spectrum of 

blackbody radiation can be explained partly. By considering the utility of the above 

two laws, Paschen concluded that the classical theory, that is the continuous emission 

of radiation, failed to explain the above phenomenon. 

Classical physics cannot explain the experimentally observed spectra of radiation. Classical 

physics assumed that radiation is emitted continuously by the matter with smooth continuous 

spectrum of all possible energy levels. The classical theory of radiation was based on 

Maxwell’s equations. According to this theory oscillating charges are responsible for 

emission/absorption of electromagnetic radiation. The frequency of radiation is equal to 

frequency of charge oscillation. The emission/absorption of radiation takes place continuously 

at a rate determined by the parameters of the oscillating system. However new phenomenon 

like Compton effect, Photoelectric effect, Zeemann effect, emission of light, absorption of light 

etc. cannot be explained on the basis of classical theory. The failure of these theories to explain 

new phenomenon led to the discovery of a new concept namely the quantum theory of 

radiation. In 1900 Max Planck postulated that the electromagnetic energy is emitted not 

continuously (like by vibrating oscillators), but in discrete packets of energy called quanta. 

This was the birth of Quantum Physics. 

According to Quantum theory the energy of electromagnetic waves is quantized rather than 

continuous. Thus energy could be gained or lost only in integral multiples of some smallest 

unit of energy, a quantum (the smallest possible unit of energy). This quantum of radiation is 

called photon.  

The quantum theory gave a simple and straightforward explanation of these phenomena. On 

the basis of quantum theory, the satisfactory explanation of black body radiation was given by 

Planck which is popularly known as Planck's radiation law. We will find that this law can 

satisfactorily explain several physical phenomena and laws of radiation.  

9.2 OBJECTIVES 

After reading this unit you will be able to understand the following: 
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 Assumptions made by Max Planck to describe electromagnetic radiation emitted by a 

black body. 

 Quantization of energy and Planck's hypothesis. 

 Derivation of Planck’s law. 

 Deduction of  Weins law, Rayleigh-Jeans law and Wein's displacement law from 

Planck's law. 

9.3 QUANTUM THEORY OF RADIATION 

Max Planck in 1901 proposed quantum theory of radiation. His theory says: 

1. The radiation energy is always in the form of tiny bundles of energy called quanta, i.e., 

energy is absorbed or emitted discontinuously. 

2. Each quantum has some definite energy, which depends upon the frequency of the 

radiation, given by the relation 

  E=hν (9.1) 

Here E is the energy of each quantum in joules, and the frequency of radiation in s-1 

and h is Planck constant, h=6.626×10-34J-s 

also   E=hcω (9.2) 

where ω is known as wave number (ω=1/λ m-1) 

from above two equations it is evident that 

  ν=c/ λ=cω (9.3) 

3. The energy emitted or absorbed by a body is always a whole multiple of a quantum 

that is a body cannot absorb or emit energy in fractions of quantum. This concept is 

known as quantization of energy. 
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9.4 PLANCK’S HYPOTHESIS 

In order to develop a theory/ law which can satisfactorily explain the distribution of energy in 

a black body radiation, Planck proposed the following hypothesis:  

1. A blackbody radiation chamber is made up of a number of oscillating particles (of 

molecular dimensions) called harmonic oscillators or resonators (energy emitters), known 

as Planck’s oscillators or Planck’s resonators.  

 

2. An oscillator emits radiation of frequency ν when it drops from one energy state to the next 

lower one, and it jumps to the next higher state when it absorbs radiation of frequency ν. 

Each discrete bundle has energy hν or multiples of hν. It is given by 

  εn = nh (9.4) 

where, n = 0,1,2,3, ….  

and   h (Planck’s constant) = 6.6 x 1034 J-s 

Hence the energy of radiation is not continuous, but discrete in nature. The values of the 

energy of oscillators are therefore like 0, hν, 2hν, 3hν, 4hν………., nhν 

 

3. The oscillating particles cannot radiate or emit energy continuously. They will radiate 

energy only in the form of a discrete packet of energy that is a small unit called quanta or 

photon.  

 

In other words, the exchange of energy between radiation and matter is quantized that is 

exchange of energy takes place in multiples of the fundamental energy unit (hν) of the 

resonator called quantum. 

 

Example 1The Planck’s constant h has the dimensions equal to 

a) M L 2 T -1 

b) M L T -1 

c) M L T -2 

The Nobel Prize in Physics 1918 was 

awarded to Max Planck "in recognition 

of the services he rendered to the 

advancement of Physics by his discovery 

of energy quanta".The importance of the 

discovery, with its far-reaching effect on 

classical physics, was not appreciated at 

first. However the evidence for its validity 

gradually became overwhelming as its 

application accounted for many 

discrepancies between observed 

phenomena and classical theory. 
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d) M L T 

Answer: a 

Explanation: It has unit J s and its value is 6.62610 34. 

Example 2 Calculate the energy of one mole of photons of radiation whose frequency is 

5.00 ×1014 Hz. 

Solution: Formula used is E=nhν where:   

 E is the energy, n is the number of photons of light and h is [Planck's constant] 

By inserting the values in the formula. 

1 mol of photons = 6.022 × 10²³ photons. 

E=nhν = 6.022 × 10²³ × 6.626 × 10⁻³⁴ J·s × 5.00 × 10¹⁴ s⁻¹ = 2.00 × 10⁵ J = 2.00 × 10² kJ 

The energy is 2.00 × 10² kJ. 

Self-assessment question 1 

Ques1. The energy of vibrating molecules involved in blackbody radiation existed only in 

 Multiples of certain fixed amount of energy  

 Constant energy 

 Continuous energy 

 Amount of energy which is never consistent 

9.5 DERIVATION OF PLANCK’S RADIATION LAW 

Assume that the number of vibrating particles (Planck's resonator) in the body as N0, N1, N2, 

N3, ……..Nn. According to planck’s hypothesis, the energy of the above particles can be written 

as 0, ε, 2ε, 3ε, 4ε,……..nε 

Thus total number of vibrating particles are 

  N=N0+N1+N2+N3+…..Nn (9.5) 

Similarly total energy of the body 

  E=0+ε+2ε+ 3ε+4ε+……..nε (9.6) 

Therefore, average energy of a particle is given by 

𝜀̅ =
𝐸

𝑁
  (9.7) 

According to Maxwell’s distribution law, the number of particles in the nth oscillating system 

can be written as  
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𝑁𝑛 = 𝑁0𝑒
−

𝑛𝜀

𝑘𝑇 (9.8) 

where ε is the average energy per oscillator k the Boltzmann constant and the absolute 

temperature.  

Extending Maxwell distribution formula to the present system, the total number of particles 

can be written as 

𝑁 = 𝑁0 + 𝑁0𝑒
−

𝜀
𝑘𝑇 + 𝑁0𝑒

−
2𝜀
𝑘𝑇 + 𝑁0𝑒

−
3𝜀
𝑘𝑇 + ⋯…… .. 

or 𝑁 = 𝑁0 [1 + 𝑒−
𝜀

𝑘𝑇 + 𝑒−
2𝜀

𝑘𝑇 + 𝑒−
3𝜀

𝑘𝑇 + ⋯……]. (9.9) 

Using the mathematical expression  

1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯…… .=
1

1 − 𝑥
 

and putting  𝑥 = 𝑒−
𝜀

𝑘𝑇 , we can rewrite the above equation (9.9) as 

𝑁 =
𝑁0

1−𝑒
−

𝜀
𝑘𝑇

 (9.10) 

Similarly total energy of the body can be written as  

𝐸 =  0 + 𝜀. 𝑁0𝑒
−

𝜀
𝑘𝑇 + 2𝜀.𝑁0𝑒

−
2𝜀
𝑘𝑇 + 3𝜀.𝑁0𝑒

−
3𝜀
𝑘𝑇 + ⋯ 

𝐸 = 𝑁0𝜀𝑒
−

𝜀

𝑘𝑇 [1 + 2𝑒−
𝜀

𝑘𝑇 + 3𝑒−
2𝜀

𝑘𝑇 + 4𝑒−
3𝜀

𝑘𝑇 + ⋯……]. (9.11) 

Using the mathematical expression 

1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯…+ 𝑛. 𝑥𝑛−1 =
1

(1 − 𝑥)2
 

Above equation (9.11) can be written as  

𝐸 =
𝑁0𝜀𝑒

−
𝜀

𝑘𝑇

(1−𝑒
−

𝜀
𝑘𝑇)

2 (9.12) 

Thus we have got expressions for total energy (eq. 9.12) and total number of particles (eq. 

9.10). Substituting these in the expression of average energy(eq. 9.7) we get 

𝜀̅  =

𝑁0𝜀𝑒
−

𝜀
𝑘𝑇

(1−𝑒
−

𝜀
𝑘𝑇)

2

𝑁0

(1−𝑒
−

𝜀
𝑘𝑇)

 (9.13) 
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or,  𝜀̅  =
𝜀𝑒

−
𝜀

𝑘𝑇

(1−𝑒
−

𝜀
𝑘𝑇)

 

=
𝜀

(𝑒
𝜀

𝑘𝑇−1)
 (9.13) 

=
ℎ𝜈

(𝑒
ℎ𝜈
𝑘𝑇−1)

 (9.14) 

Eq. (9.14) gives the average energy of oscillator. 

Note: the average energy obtained from quantum physics is different from that obtained from 

the classical physics where average energy per mode is kT 

In the frequency range ν and ν+dν the energy density (total energy per unit volume for a 

particular frequency range) can be obtained by multiplying the number of Planck’s oscillators 

lying in that particular range multiplied with the average energy of the Planck’s oscillator. So 

we need to calculate the number of oscillators per unit volume lying in the frequency range  ν 

and ν+dν. 

Here we can clearly see that the average energy per mode is kT as suggested by Rayleigh 

Jeans law.  

whereas the Planck's quantum radiation law suggests its value equal to //( 1)h kTh e   .  

9.5.1 NUMBER OF OSCILLATORS PER UNIT VOLUME LYING IN 

THE FREQUENCY RANGE Ν AND Ν+DΝ. 

Consider a Blackbody in the form of a hollow cubical box. The radiations inside the box  consist 

of a number of waves travelling in all possible diractions. The waves suffer multiple reflection 

from the walls of the encloser. As a result of interference between incident and reflected waves 

a stationary or standing wave pattern is formed. This is also called resonant mode of the cavity. 

The radiated energy from the blackbody can be considered to be produced by the resonant 

modes of the cavity. 

A mode for an electromagnetic wave in a cavity  must satisfy the condition of zero electric 

field at the walls as shown in the figure 9.1 
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Figure 9.1  Number of modes in the cavity be such that Electric field becomes zero at the walls 

of cavity 

Through  analysis by Rayleigh and Jeans it was shown that number of modes was 

proportional to the square of frequency as shown in figure 9.2.  

Figure 9.2.Number of modes in a cavity are proportional to square of frequency 

If l be the length of the box then allowed wavelengths or frequencies are given by 

𝜆 =
2𝑙

𝑛
                where,   𝑛 = 1,2,3,4…… . , ∞  (Fig. 9.3) (9.15) 

𝜈 =  
𝑐

𝜆
= 

𝑛𝑐

2𝑙
     where 𝑛 = 1,2,3,4…… . ∞   (9.16) 

The allowed frequency is called mode of vibration 
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Figure 9.3: If l is length of the box then allowed wavelength must follow l =nλ/2 

The allowed mode of vibrations in the cavity can be calculated as follows: 

Let each side of the cubical cavity is of length l and three intersecting edges of the cavity are 

the X, Y and Z directions of the Cartesian co-ordinate system. Let the wave is propagating in 

any random direction then l cos α, l cos β and l cos γ will be the projections of the edges of the 

cube on the direction of propogation of the wave ( where cos α,  cos β and  cos γ are the 

direction cosines of the direction of propagation of a particular wave). According to 

electromagnetic theory the allowed waves are those which have nodal points at the faces of 

cube. Thus the allowed wavelength must satisfy the following conditions 

𝜆 =  
2𝑙 cos𝛼

𝑛1
 ,

2𝑙 cos𝛽

𝑛2
and

2𝑙𝑐𝑜𝑠𝛾

𝑛3
 (9.17) 

where n1, n2 and n3 are positive integer. 

By trignnometric condition of direction cosines, we know that 

𝑐𝑜𝑠2𝛼 + 𝑐𝑜𝑠2𝛽 + 𝑐𝑜𝑠2𝛾 = 1 

From equation (9.17), put the values of cos α, cos β and cos γ in above equation we get 

𝑛1
2𝜆2

4𝑙2
+ 

𝑛2
2𝜆2

4𝑙2
+ 

𝑛3
2𝜆2

4𝑙2
= 1 

Rearranging the above relation we get 

𝑛1
2 + 𝑛2 

2 + 𝑛3
2 =   

4𝑙2

𝜆2  =  (
2𝑙

𝜆
)
2

=  (
2𝑙𝜈

𝑐
)
2

 (9.18) 

The above equation gives the allowed modes of vibration (allowed frequencies) inside the 

cavity and the total number of possible sets (n1,n2,n3) gives the total number of modes of 

vibrations.  
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Within the frequency interval ν and ν + dν the number of modes of vibration can be found out 

with the help of equation (9.18) 

Two – Dimensional Resonators 

In order to simplify the problem of counting the number of modes in a particular frequency 

interval, let us consider a similar two dimensional problem. An equivalent two dimensional 

equation will be 

𝑛1
2 + 𝑛2 

2 = (
2𝑙𝜈

𝑐
)
2

 (9.19) 

If we plot a graph with n1 along x-axis and n2 along y-axis then equation (9.19) represents a 

circle of radius (
2𝑙𝜈

𝑐
) as shown in the figure (9.4). 

 

Figure 9.4. Number of modes in a 2-dimensional cavity 

Figure 9.4 shows  

 All possible values of n1 and n2 upto 10 

 The points lying on the circle corresponds to frequency ν, while inside the circle 

corresponds to frequency less than ν, and outside the circle corresponds to frequency 

greater than ν. 

 The area under the first positive quadrant is divided into number of unit squares by 

the lines drawn through n1 and n2 axes. 

 The point of intersection of two lines through n1 and n2 axes represents a possible 

mode of vibration. Each point can be associated by a unit square. 

n2 

n1 
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 Since area of each square is unity thus number of squares will be equal to the area 

under the quadrant. 

Hence number of modes of vibration within frequency interval ν and ν+dν will be equal to 

the area under the positive quadrant lying between two circles of radii   
2𝑙𝜈

𝑐
  and  

2𝑙(𝜈+𝑑𝜈)

𝑐
 

Thus the area is =
1

4
𝜋 [(

2𝑙(𝜈+𝑑𝜈)

𝑐
)
2

− (
2𝑙𝜈

𝑐
)
2

] 

=
𝜋

4
×

8𝑙2𝜈𝑑𝜈

𝑐2
 

=
2𝜋𝑙2𝜈

𝑐2 𝑑𝜈 (9.20) 

The above calculations can be extended to three dimensions also. 

In 3-dimensions, the number of modes of vibration in the frequency interval ν and ν+dν is 

given by the (
1

8
)
𝑡ℎ

of the volume of the spherical shell within radii 
2𝑙𝜈

𝑐
  and  

2𝑙(𝜈+𝑑𝜈)

𝑐
 

This volume of spherical shell is given by =
1

8
{
4

3
𝜋 (

2𝑙𝜈

𝑐
)
3

−
4

3
𝜋 (

2𝑙(𝜈+𝑑𝜈

𝑐
)
3

} 

=
1

8
×

4

3
𝜋 ×

8𝑙3

𝑐3
× 3𝜈2𝑑𝜈 

Putting l3 = V, where V is the volume of the cube (blackbody endoser), the number of modes 

of vibration inside the blackbody enclosure within the frequency range ν and ν+dν  is given 

by  

=
4𝜋𝑉𝜈2

𝑐3 𝑑𝜈 (9.21) 

The number of modes per unit volume within the frequency range ν and ν+dν will be 

=
4𝜋𝜈2

𝑐3 𝑑𝜈 (9.22) 
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Three-Dimensional Resonator: 

 

Fig. 9.5 : Number of modes in 3-dimensional cavity resonator 

The blackbody radiations (electromagnetic wave) travel with velocity of light and are 

transverse in nature, hence the number of modes of vibration will be double as that for 

longitudinal waves. 

Thus number of modes per unit volume within the frequency range ν and ν+dν for the 

blackbody radiation will be 

=
8𝜋𝜈2

𝑐3 𝑑𝜈 (9.22a) 

Hence, energy density in the interval ν and ν+dν can now be calculated by multiplying the 

average energy of the Planck's oscillator by the number of oscillators per unit volume in the 

frequency range  ν and ν+dν. Thus, 

  𝐸𝜈𝑑𝜈 =  (
8𝜋𝜈2

𝑐3 𝑑𝜈) (
ℎ𝜈

𝑒
ℎ𝜈

𝑘𝑇⁄ −1
) 

=
8𝜋ℎ𝜈3

𝑐3  .
1

𝑒
ℎ𝜈

𝑘𝑇⁄ −1
 . 𝑑𝜈   (9.23) 

Equation (9.23) is famous Planck’s radiation law. It gives the energy density that is energy 

per unit volume in the frequency range  and  + d 

Planck’s radiation law in terms of wavelength can be obtained by applying the relation 𝜈 =
𝑐

𝜆
 

and |𝑑𝜈| =  |−
𝑐

𝜆2 𝑑𝜆| 
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Self-assessment Question 2 : Calculate the number of modes in a chamber of volume 100 

cm3in the frequency range 4 x 1014 Hz to 4.01 x 1014 Hz 

9.6 DEDUCTION OF WEIN’S LAW FROM PLANCK’S LAW 

Planck’s radiation law is 

5 /

8

1he kT

hc d
E d

e
 

 






 

For small temperature, T is small and for shorter wavelength 𝑒
ℎ𝑐

𝜆𝑘𝑇⁄ becomes large 

compared to unity and hence Planck’s law reduces to  

5 /

8
he kT

hc d
E d

e
 

 



  

or it can be written as  

𝐸𝜆 𝑑𝜆 =
8𝜋ℎ𝑐

𝜆5  . 𝑒
−ℎ𝑐

𝜆𝑘𝑇⁄ .  𝑑𝜆 (9.24) 

This is the required Wein’s law, hence Planck’s law reduces to Wein’s law for shorter 

wavelengths. 

9.7 DEDUCTION OF RAYLEIGH-JEANS LAW FROM 

PLANCK’S LAW 

Planck’s radiation law is 

𝐸
𝜆  =

8𝜋ℎ𝑐  

𝜆5 .
𝑑𝜆

𝑒
ℎ𝑐

𝜆𝑘𝑇⁄
−1

 

For large temperature, T is large and also for longer wavelengths  𝑒
ℎ𝑐

𝜆𝑘𝑇⁄  can be 

approximated as(1 +
ℎ𝑐

𝜆𝑘𝑇
) (the first two terms of Taylor series expansion 𝑒𝑥 = 1 +

𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ ,−∞ < 𝑥 < ∞) 

i.e. 

2

/ 1
1 ... 1

2!

he kT he hc hc
e

kT kT kT



  

 
      

 
 

Hence Planck’s law reduces to 

𝐸𝜆𝑑 =
8𝜋ℎ𝑐  

𝜆5
.

𝑑𝜆

(1 +
ℎ𝑐
𝜆𝑘𝑇 − 1)

 

=
8𝜋ℎ𝑐  

𝜆5

𝜆𝑘𝑇

ℎ𝑐
𝑑𝜆 
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=
8𝜋𝑘𝑇  

𝜆4 𝑑𝜆 (9.25) 

This is required Rayleigh-Jeans law. Hence for longer wavelengths the Planck’s law reduces 

to Rayleigh-Jeans law. 

Hence it can be concluded that both Wein’s law and Rayleigh Jeans law are incorporated in 

Planck’s law. 

9.8 DEDUCTION OF WEIN’S DISPLACEMENT LAW FROM 

PLANCK’S LAW 

Planck’s radiation law is 

𝐸𝜆𝑑𝜆= 
8𝜋ℎ𝑐  

𝜆5
𝑑𝜆

𝑒ℎ𝑐 𝜆𝑘𝑇⁄ −1

 

When the above relation (Planck's law) is differentiated w.r.t.  and equated to zero, the Wien's 

displacement law (T = constant) is obtained for wavelength which corresponds to maximum 

energy emission for a given value of T. That is  

𝑑𝐸𝜆

𝑑𝜆
=

1

𝑒ℎ𝑐 𝜆𝑘𝑇⁄ − 1
×

−5(8𝜋ℎ𝑐)

𝜆6
+

(8𝜋ℎ𝑐)

𝜆5
×

ℎ𝑐
𝜆2𝑘𝑇

𝑒ℎ𝑐 𝜆𝑘𝑇⁄

( 𝑒
ℎ𝑐

𝜆𝑘𝑇⁄ − 1)
2 

=
1

𝑒ℎ𝑐 𝜆𝑘𝑇⁄ −1
×

−40𝜋ℎ𝑐

𝜆6 +
(8𝜋ℎ𝑐)

𝜆5 ×
ℎ𝑐

𝜆2𝑘𝑇
×

𝑒ℎ𝑐 𝜆𝑘𝑇⁄

( 𝑒
ℎ𝑐

𝜆𝑘𝑇⁄
−1)

2 

For E to be maximum the value of its first derivative should be zero. Hence, 

1

𝑒ℎ𝑐 𝜆𝑘𝑇⁄ − 1
×

−40𝜋ℎ𝑐

𝜆6
+

(8𝜋ℎ𝑐)

𝜆5
×

ℎ𝑐

𝜆2𝑘𝑇
×

𝑒ℎ𝑐 𝜆𝑘𝑇⁄

( 𝑒
ℎ𝑐

𝜆𝑘𝑇⁄ − 1)
2 = 0 

or,   
8ℎ𝑐

(𝑒ℎ𝑐 𝜆𝑘𝑇⁄ −1)𝜆6
[−5 +

ℎ𝑐

𝜆𝑘𝑇
.

𝑒ℎ𝑐 𝜆𝑘𝑇⁄

(𝑒ℎ𝑐 𝜆𝑘𝑇⁄ −1)
] = 0 

or    [−5 +
ℎ𝑐

𝜆𝑘𝑇

𝑒ℎ𝑐 𝜆𝑘𝑇⁄

(𝑒ℎ𝑐 𝜆𝑘𝑇⁄ −1)
] = 0 

{  terms out side the large bracket cannot be equal to zero} 

Substitute 
ℎ𝑐

𝜆𝑘𝑇
 = y in above equation, we get 

[−5 + 𝑦
𝑒𝑦

( 𝑒𝑦 − 1)
] = 0 

Solving above equation for y we get y=4.965 
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⇒ 𝑦 =
ℎ𝑐

𝜆𝑘𝑇
= 4.965 

 in the above equation represents the wavelength at which the energy emission is maximum. 

So let this value be represented by λm 

Rewriting above equation we get 

ℎ𝑐

𝜆𝑚𝑘𝑇
= 4.965 

or    𝜆𝑚𝑇 =
ℎ𝑐

4.965𝑘
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (9.26) 

This is Wein’s displacement law. 

9.9 DEDUCTION OF STEFAN’S LAW FROM PLANCK’S LAW 

Planck’s radiation law in terms of frequency is given by 

𝐸𝜈𝑑𝜈= 
8𝜋ℎ𝜈3

𝑐3 .
𝑑𝜈

𝑒ℎ𝜈 𝑘𝑇⁄ −1

 

This is energy radiated in the frequency range ν and ν+dν. To calculate total radiant energy 

over the entire frequency range that is from 0 to , integration needs to be performed in the 

frequency range from 0 to   i.e., 

𝐸 = ∫ 𝐸𝜈
∞

0
𝑑𝜈 =

8𝜋ℎ

𝑐3 ∫
𝜈3𝑑𝜈

𝑒ℎ𝜈 𝑘𝑇⁄ −1
  

∞

0
 (9.27) 

 

Substitute 
ℎ𝜈

𝑘𝑇
= 𝑥 hence 𝑑𝜈 =

𝑘𝑇

ℎ
𝑑𝑥 

Substituting in equation (9.27), we get 

𝐸 =
8𝜋𝑘4𝑇4

𝑐3ℎ3 ∫
𝑥3𝑑𝑥

𝑒𝑥−1
  

∞

0
 (9.28) 

The value of the integral ∫
𝑥3𝑑𝑥

𝑒𝑥−1
=

𝜋4

15

∞

0
 

Hence,   𝐸 =
8𝜋5𝑘4𝑇4

15 𝑐3ℎ3  (9.29) 

or                        𝐸 = 𝑇4 (9.30) 

where 

 = 
8𝜋5𝑘4

15 𝑐3ℎ3
 

This is Stefan’s law or T4 law. 
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The above relation completely agrees with the experimental curves. 

Self-assessment question 3 The sun emits maximum radiation of 0.52 micron meter. 

Assuming the sun to be a black body, calculate the emissive ability of the sun’s surface at that 

temperature 

a) 3.4710 7 W/m2 

b) 4.47 10 7 W/m2 

c) 5.4710 7 W/m2 

d) 6.4710 7 W/m2 

 

9.10 SUMMARY  

Planck’s radiation law, a Quantum theory based mathematical relationship was formulated in 

1900 by German physicist Max Planck to explain the spectral-energy distribution 

of radiation emitted by a blackbody (a hypothetical body that completely absorbs all radiant 

energy falling upon it, reaches some equilibrium temperature, and then reemits that energy as 

quickly as it absorbs it). Planck assumed that the sources of radiation are atoms in a state of 

oscillation and that the vibrational energy of each oscillator may have any of a series of discrete 

values but never any value between. Planck further assumed that when an oscillator changes 

from a state of energy E1 to a state of lower energy E2, the discrete amount of energy E1 − E2, 

or quantum of radiation, is equal to the product of the frequency of the radiation, symbolized 

by the Greek letter ν and a constant h, now called Planck’s constant, that he determined from 

blackbody radiation data; i.e., E1 − E2 = hν. Planck's law accurately describes the complete 

spectrum of thermal radiation. The Wien approximation may be derived from Planck's law by 

assuming (ℎ𝜈 ≫ 𝑘𝑇)so Planck's law approximately equals the Wien approximation at high 

frequencies. Unlike Rayleigh law the Planck's law does not suffer from an ultraviolet 

catastrophe, and agrees well with the experimental data. In the limit of high temperatures or 

long wavelengths the exponential is well approximated with the Taylor polynomial's first-order 

term. Hence it results in Planck's blackbody formula reducing to the formula which was 

identical to the classically derived Rayleigh–Jeans expression. Thus, in the limit of small 

frequencies, that is(ℎ𝜈 ≪ 𝑘𝑇) Planck’s law reduces to Rayleigh-Jeans law. 

9.11 TERMINAL QUESTIONS 

Objective Question 

8. In Planck’s resonators particles can vibrate with  

a. only one frequency. 

b. frequency of red light. 

c. frequencies lies in sound wave range. 

d. all frequencies of electromagnetic wave spectrum following quantization of 

energy. 

9. The vibrating particles radiates   

a. energy continuously. 

https://www.britannica.com/biography/Max-Planck
https://www.britannica.com/science/thermal-radiation
https://www.britannica.com/science/blackbody
https://www.merriam-webster.com/dictionary/hypothetical
https://www.britannica.com/science/radiant-energy
https://www.britannica.com/science/radiant-energy
https://www.merriam-webster.com/dictionary/equilibrium
https://www.britannica.com/science/temperature
https://www.britannica.com/science/vibration
https://www.britannica.com/science/energy-state
https://www.britannica.com/science/quantum
https://www.britannica.com/science/frequency-physics
https://www.britannica.com/science/Plancks-constant
https://en.wikipedia.org/wiki/Taylor_series
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b. no energy 

c. discrete packet of energy. 

d. same energy. 

10. In Maxwell’s distribution law, the number of particles in the nth oscillating system is 

given by 

a. 𝑁 = 𝑁𝑜𝑒
−

𝑛𝜀

𝐾𝑇 

b. 𝑁 = 𝑁𝑜𝑒
−

1

𝐾𝑇 

c. 𝑁 = 𝑁𝑜𝑒
−

ℎ𝜐

𝐾𝑇 

d. 𝑁 = 𝑁𝑜(𝑒
−

ℎ𝜐

𝑘𝑇 −  1) 

11. The quanta of energy in quantum mechanics   

a. is ℎ𝜐 

b. does not depend on frequency 

c. is ℎ𝜔 

d. is ℎ𝑘 

12. Which of the following is (are) explained by quantum mechanics 

a. Photoelectric effect 

b. Compton effect. 

c. Zeemann effect. 

d. Phenomena of absorption of light.  

13. According to Planck’s assumption, the energy radiated from a black body can be 

considered to be produced by 

a. stationary wave condition inside the cavity. 

b. resonant modes of cavity. 

c. multiple reflections from walls of cavity. 

d. transmission through the wall of cavity. 

14. The value of Planck’s constant is 

a. 1.6 × 10−27𝑘𝑔 

b. 1.38 × 10−23𝑚2𝑘𝑔 𝑠−2𝐾−1 

c. 6.626 × 10−34𝐽𝑠 

d. 9.1 × 10−31𝑘𝑔 

15. The average energy of a Planck’s oscillator is 

a. −ℎ𝜐/(1 − 𝑒
ℎ𝜐

𝑘𝑇)  

b. ℎ𝑘/(𝑒
ℎ𝜐

𝑘𝑇 − 1)  

c. ℎ𝜐/(𝑒
1

𝑘𝑇 − 1)  

d. ℎ𝜐/(1 − 𝑒
ℎ𝜐

𝑘𝑇)  

16.  The difference in light emitted from the candle, an incandescent light bulb, and the 

sun are basically differences in (emissivity less than 1)  

a. Energy sources 

b. Materials 

c. Temperatures  
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d.  Phases of matter 

Short Questions 

6. What is quantum theory? 

7. What is meant by the term quantum? 

8. How does particle radiates energy? 

9. What are Planck resonators? 

10. How resonant mode is achieved inside a blackbody cavity? 

11. What is the condition on the resonent mode for an electromagnetic wave in a cavity? 

 

Long Answer Questions 

1. What are the hypothesis of Planck’s law? 

2. Derive Planck’s radiation law. 

3. Derive Stefan-Boltzmann law from Planck’s law. 

4. Derive Wien’s distribution law from Planck’s law. 

5. Derive Rayleigh-Jeans law from Planck’s law. 

6. Derive the expression of Wien’s displacement law from Planck’s law. 

 

9.12 ANSWERS 

Self assessment questions 

Answer 1 Multiples of certain fixed amounts 

Answer 2 Solution 

(a) The total number of modes in the frequency range ν and ν+dν isgiven by 

 

𝑁𝜈𝑑𝜈 =
8𝜋𝜈2𝑉

𝑐3
𝑑𝜈 

Here V= 100 cm3 = 10-4 m3 

v = 4x1014 Hz, c= 3x 108 m/s. 

𝑁𝜈𝑑𝜈  = 8 x 3.14x (4x 1014)2x (10-4) x (0.01 x 1014)/(3 x108)3 

= 1.49 x 1013 

Answer 3: c 

Explanation: E = σT4 = 5.47 * 10 7 W/m2. 
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Terminal questions Answers 

Objective type 

 1. (d), 2. (c) 3. (a)      4.(a)      5.(a), (b), (c), (d)       6.(a), (b)   7. (c)   8.(a)    9.(c) 

Short question 

1. Quantum theory is the theoretical basis of modern physics that explains the nature and 

behavior of matter and energy on the atomic and subatomic level. The nature and behavior 

of matter and energy at that level is sometimes referred to as quantum physics and 

quantum mechanics. 

2. Quantum is the Latin word for amount and, in modern understanding, means the 

smallest possible discrete unit of any physical property, such as energy or matter. 

Quantum came into the latter usage in 1900, when the physicist Max Planck used it in a 

presentation to the German Physical Society. 

3. The vibrating particles can radiate energy when the oscillators move from one state to 

another state. The radiation of energy is not continuous, but discrete in nature. 

4. Planck assumed that the Blackbody radiation chamber is made up of a number of 

oscillating particles (of molecular dimensions) called harmonic oscillators/resonators 

(energy emitters), known as Planck’s oscillators or Planck’s resonators.  

5. Consider a Blackbody in the form of a hollow cubical box . The radiations inside the box  

consist of a number of waves travelling in all possible directions. The waves suffer 

multiple reflections from the walls of the encloser. As a result of interference between 

incident and reflected waves a stationary wave pattern is formed also called standing 

wave or resonant mode of the cavity.  

6. A resonant mode for an electromagnetic wave in a cavity must satisfy the condition of 

zero electric field at the walls. If the mode is of shorter wavelength there are more 

number of ways by which they can be fitted in the cavity to meet the condition of zero 

electric field at the walls. 
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10.1 INTRODUCTION 

Statistical physics gives a clear understanding of Thermodynamics in terms of microscopic 

particles and their interactions. It allows calculation of macroscopic properties of the systems 

from microscopic considerations.  The tools and methods developed in statistical physics are 

widely used in latest research areas to understand the characteristics of large systems. Statistical 

mechanics is the way of relating the microscopic laws of physics to a description of nature on 

a macroscopic scale. Statistical systems are complex systems due to containing large no of 

particles. We do not know all the information that is needed to characterize the systems 

completely. For example, 1 liter of gas may contain 1023 atoms at NTP. To completely describe 

such a dynamic system we need to know the three components of the velocity for each atom 

and the three components of the position for each atoms i.e.6 components when solved one 

equation of motion. It is impossible to obtain 6 × 1023  real numbers to completely characterize 

the gas. However, it is not necessary to know all the information to develop a theory of the gas 

by calculating theoretically some average properties like the pressure, volume, temperature 

(macroscopic parameters). Those properties do not depend on every little detail of each atom. 

Not knowing everything about the atoms does not prevent us from calculating those properties. 

In statistical physics we try to understand the properties of a complex system without knowing 

all the information of the systems. This is possible since the properties we are interested in do 

not depend on the details of the system.                                                                                                                            

For describing the macroscopic state of a gas, characterized by pressure, volume, temperature 

(macro-parameter), we do not need information on every microscopic detail. A large number 

of microstates may correspond to the same, single macrostate. Suppose we are interested in 

knowing the pressure of the gas, we should not bother about what a particular atom of the gas 

is doing at every instance. In other words, we only need some average macroscopic quantities 

and not every microscopic detail. So as thermodynamics  is concerned   about  heat  and   the  

direction  of heat  flow, statistical mechanics    gives a  microscopic   perspective of heat  in 

terms   of the  structure of matter  and  provides  a way  of evaluating  the  thermal  properties 

of matter,  for e.g., energy, pressure, heat capacity, entropy, free energies or thermodynamic 

potentials, etc. Before the development of quantum theory, laws of classical(Newtonian) 

mechanics were applied in association with the statistics to study the behavior of large number 

particle systems. It applies to systems which are sufficiently large that microscopic fluctuations 

can be ignored, and it does not assume that there is an underlying atomic structure to matter. 

These methods are called classical statistics or Maxwell-Boltzmann statistics, due to the great 

contribution of Maxwell and Boltzmann in development of the kinetic theory of gases. Later 

on this work extended and improved by some physicist like Gibbs etc. The kinetic theory of 

gases tries to determine the properties of gases by considering probability distributions 

associated with the motions of individual molecules. The recognition that atoms and molecules 

exist led to the development of statistical mechanics. this approach begins with trying to 

describe the individual microscopic states of a system and then uses statistical methods to 

derive the macroscopic properties from them instead of starting with descriptions of 

macroscopic properties (as in thermodynamics).                  .This approach gets an additional 

motivation with the development of quantum theory which showed clearly how to describe 
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the microscopic quantum states of different systems. The thermodynamic behavior of a system 

is then asymptotically approximated by the results of statistical mechanics in the 

thermodynamic limit, i.e. as the number of particles tends to infinity (with intensive quantities 

such as pressure and density remaining finite).The classical statistics is very successful theory 

to explain the phenomenon like energy, temperature, entropy etc., but fails to explain some 

other physical phenomena like black body radiation, variations of specific heat and electrical 

conductivity with temperature, behavior of gases under high pressure and low temperature, 

electrical properties of metals and semiconductors etc.  By using the Planck's hypothesis of 

discrete exchange of energy between systems, Bose,  Einstein , Fermi and Dirac introduced a 

new statistics called quantum statistics, that can explain those phenomena’s very well which 

cannot be explained by classical statistics. Quantum statistics is further subdivided into two 

branches: Bose- Einstein statistics and Fermi- Dirac statistics. You will study quantum statistics 

in unit 13.  

10.2  OBJECTIVES  

After going through this unit, you will be able to: 

 Understand the need of statistical mechanics and its classification   

 Know the theory of probability.  

 Understand continuous and discrete distributions.  

 Derive Binomial, Poisson and Gaussian distribution functions.  

 Understand the concept of phase space.  

 Know division of phase space into cells. 

 Understand the density of states  

 Understand thermodynamical probability.  

 Differentiate thermodynamical probability for classical and quantum systems.  
 

10.3 PROBABILITY 

Statistical mechanics applies on large and complex systems, where we cannot predict an exact 

behavior of the individual constituent of the system. We predict only average behavior of the 

system theoretically which can be verified by experimental observations. To develop the 

mathematical theory of statistical mechanics we exploit probabilistic approach of mathematics. 

Since the basis of Statistical mechanics is theory of probability. So it is necessary to grasp some 

fundamental concepts of the theory of probability before the study of Statistical mechanics. It 

is important to keep in mind that whenever it is desired to describe a situation from a statistical 

point of view (i.e., in terms of probabilities), it is always necessary to consider an assembly ( 

ensemble) consisting of a very large number of similar prepared systems. Ensembles are 

statistical model to study any physical system. The probability of occurrence of an event is 

defined as follows: The probability of occurrence of a particular event is the ratio of number 

of cases in which that event occurs to the total number of possible events. 

The probability of an event =
numberof cases in which the event occours

total number of possible events
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If an experiment is repeated N time in which a certain event A occurs nA times then the 

probability of occurrence of an event A is 

PA =  nA / N      ……… (10.1) 

This formula is applicable when N is very large i.e. N→ ∞.So more correctly  

PA = lim /A
N

n N


     …….  (10.2) 

In other words if an event can happen in nA ways and fails to happen in nB ways ,then the  

probability of occurrence of that event is   PA = nA/   nA+nB and probability of non-occurrence 

of an event is PB = nB/ nA+nB. Here N = nA+nB is the total number of equally likely possible 

events. The value of  PA  lies between 0 to 1 i.e. 0<  P < 1.  P=1 implies 100% chance of 

occurrence of that event i.e. event is definite and P = 0 expresses the impossibility of occurrence 

of that event i.e. the event will never take place. The total probability is always 1 ( PA + PA =1) 

since the event may either occur or fail. 

10.3.1 ADDITIVE LAW OF PROBABILITY  

Consider two separate possible events, X and Y, of an observation made on the system S, with 

probabilities of occurrence P(X) and P(Y), respectively. Let us determine the probability of 

obtaining the outcome X or Y, which we shall denote, P(X or Y). From the basic definition of 

probability 

P(X or Y) = n( X or Y)/N      ……….  (10.3) 

where n (X or Y) is the number of events in the system which exhibit either the event X or the 

event Y. It is clear that 

       n(X or Y) = n(X) + n(Y) (2.3)    ………  (10.4) 

If the events X and Y are mutually exclusive (if they are two distinct outcomes). Thus, 

P(X or Y) = P(X) + P(Y). (2.4)   ……………..  (10.5) 

So, the probability of the occurrence of event X or the event Y is just the sum of the individual 

probabilities of these events X and Y. For instance, with a six sided die the probability of 

throwing any particular number (one to six) is 1/6, because all of the possible outcomes are 

considered to be equally likely or equally probable. It follows from what has just been said that 

the probability of throwing either a one  

or a two is simply 1/6 + 1/6 which equals 1/3.                                                                         

Let us denote all possible events of an observation made on the system S by Xi, where i run 

from 1 to m. Let us determine the probability of obtaining any of these events. 

P = n(x1)/N + n(x2)/N+………+n(xm)/N        (10.6) 

So 
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P(x1) + P(x2) +…………..+ P (xm) 

=∑ P(xi)
𝑚

𝑖=0
 =1          (10.7) 

This number is clearly unity, from the basic definition of probability, because every one of the 

systems in the collection must exhibit one of the possible events. But, this quantity is also equal 

to the sum of the probabilities of all the individual events, by eq. (10.5), so we conclude that 

this sum is equal to unity. Thus, it is called the normalization condition. it is a necessary 

condition that must be satisfied by any complete set of probabilities. This condition is 

equivalent to the self-evident statement that an observation of a system must definitely result 

in one of its possible outcomes. 

10.3.2 MULTIPLICATION RULE OF PROBABILITY 

There is another way in which we can combine probabilities. Suppose that we make an 

observation on a state picked at random from the collection and then pick a second state 

completely independently and make another observation. We are assuming here that the first 

observation does not influence the second observation in any way. So two observations are 

statistically independent events. Let us determine the probability of obtaining the event X in 

the first state and the event Y in the second state, which is denoted by P(X and Y). In order to 

determine this probability, we have to form a collection of all of the possible pairs of states 

which we could choose from the collection N (X and Y). Let us denote this n(X and Y). It is 

obvious that the number of pairs of states in this new collection is just the square of the number 

of states in the original collection, so 

N(X and Y) =N (X).N(Y)     (10.8) 

It is also obvious that the number of pairs of states in the collection which exhibit the event X 

in the first state and Y in the second state is just the product of the number of states which 

exhibit the event X and the number of states which exhibit the event Y in the original collection, 

so 

n(X and Y) =n (X).n(Y). (2.7)     (10.9) 

It follows from the basic definition of probability that                                                                                         

P(X and Y) = n(X and Y)/ N(X and Y)= P(X) P(Y)    (10.10) 

Thus, the probability of obtaining the events X and Y in two statistically independent 

observations is just the product of the individual probabilities of X and Y. 

For example, the probability of throwing a one and then a two on a six sided die is 1/6 × 1/6, 

which equals 1/36. 

10.3.3 CONDITIONAL PROBABILITY                                                                             

The probability for an event X to occur the condition that event Y has already occurred is called 

conditional probability. Written as P(X/Y), means the probability of X given Y. If events X 
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and Y are independent ( where event Y has no effect on the probability of event X) ,the 

conditional probability of event X given event Y is simply the probability of event X, that is 

P(X). If events X and Y are not independent, then the probability that both event occur is 

defined as P(X and Y) = P(Y).P(X/Y). Let us understand it by an example. Suppose a box 

contains 7 white and 4 black balls. We want to know the probability of getting 2 white balls, if 

balls are drawn successively .Since we have 7 white balls out of total 11 balls. In first draw the 

probability of outcome white ball, event Y will be P(Y) = 
7

11
  . Now the condition is that second 

ball also must be white. Since 6 white balls remained out of total 10 balls. So in second draw , 

the probability of outcome white ball, event X, when event Y has already occurred  is P(X/Y) 

= 
6

10
 . Since events are not independent, the probability of getting both balls is black  

P(X and Y) = P(Y).P(X/Y) =
7

11
  x

6

10
=  

21

55
 

Example 01                                                                                                            

Two dices are thrown randomly, the outcome (upward face) of first dice be ‘A’ and the outcome 

of second dice be ‘B’ .calculate :(a)  The probability of outcome A = 3(b) What is the probability 

to obtain a total of score 6 or less?(c) What is the probability that A = 3 and A+B ≤6.  

Solution                                                                                                                              

(a)The outcome A may come in six ways 1, 2, 3, 4, 5, or6. Similarly six possibilities of outcome 

B. Total possible outcomes are 6x6 = 36, all 36 outcomes shown in sample space, table (10.1). 

Now A = 3 , comes in exactly  six ways ( bold- shaded numbers ) (A, B) = (3,1) ,(3,2), (3,3) ,(3,4) 

(3,5), (3,6) . 

  

+ 

B 

1 2 3 4 5 6 

 
 
 

A 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 
4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

Table (10.1)  

Hence, the probability of outcome A = 3 

P (A=3) = 
6

36
   =   

1

6
 

(b) The outcome (upward face) of first dice is A and the outcome of second dice is B. condition 

is A+B ≤ 6. 

  

+ 

B 

1 2 3 4 5 6 

 
 
 

A 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 
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5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

Table (10.2) 

Table(10.2) shows all possible outcomes (bold shaded numbers)subject to condition A+B ≤ 

6,are exactly15. 

Hence P (A+B ≤ 6) = 
15

36
 = 

5

12
 

(c) Now the probability that A = 3 and A+B ≤ 6. Both conditions are fulfilled in 3 ways    (dark 

shaded numbers) out of 15( light shaded numbers). 

 

  
+ 

B 

1 2 3 4 5 6 

 
 
 

A 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

Table (10.3)  

Thus conditional probability P (A=3|A+B ≤ 6) = 
3

15
 = 

1

5
 

10.4  THE TWO STATE SYSTEMS  

The simplest system which we can study using probability theory is one for which there are 

only two possible outcomes (events). Let us suppose that there are two possible outcomes to 

an observation made on some system. Let us denote these outcomes 1 and 2, and let their 

probabilities of occurrence be 

P (1) = p 

P (2) = q 

It follows immediately from the normalization condition that 

p + q = 1 

So   q = 1 − p.  

The best known example of a two-state system is a tossed coin. The two outcomes are “heads” 

and “tails,” each with equal probabilities 1/2. So, 

p = q = 1/2 for this system. 

Suppose that we make N statistically independent observations of a system. Let us determine 

the probability of n occurrences of the outcome 1 and N − n occurrences of the outcome 2, 

without taking care of the order of these occurrences. Denoting the probability by PN(n), let us 

consider a case in which there are only three observations. Suppose we have three coins.  Let 

us try to calculate the probability of two occurrences of the outcome heads(H) and one 
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occurrence of the outcome tail (T). There are three different ways of getting this result. We 

could get the outcome heads (H)   on the first two observations and the outcome tail (T) on the 

third (H,H, and T). Or, we could get the outcome tail (T) on the first observation and the 

outcome head (H) on the latter two observations, (T,H, and H). Or, we could get the outcome 

head (H) on the first and last observations and the outcome tail (T) on the middle observation 

(H,T, and H).                                                                                                                                  

Let the probability of outcome head(H) is denoted by p=½ and the probability of 

outcome tail(T) is denoted by q=½ by applying (multiplicative rule of probability) 

P(X and Y) = P(X) P(Y)         (10.11) 

the probability of getting (H,H,T) =p.p.q, similarly for (T,H,H) = q.p.p  and  for (H,T,H) = 

p.q.p . 

Now applying (additive rule of probability) 

 

P(X or Y) = P(X) + P(Y)       (10.12) 

The probability of two occurrences of the outcome heads(H) and one occurrence of the  

outcome tail (T) will be 

P (2H,1T) = p p q + q p p + p q p = 3 p2 q 

It is3rd term of the binomial expansion of (p + q)3 = q3 + 3pq2 +3p2 q + p3 

By generalizing it, the probability of obtaining n occurrences of a particular outcome in N 

observations is given by 

PN(n) = 𝐶𝑛
𝑁pn qN-n=  

𝑁!

𝑛!(𝑁−𝑛)
 pn qN-n      (10.13) 

This probability function is called the binomial distribution function. The reason for this is 

clear if we tabulate the probabilities for the first few possible values of N; see Table (10.4), 

shows binomial probability distribution.  

                                                           n 

 

        N 

 0 1 2 3 4 

1 q p    

2 q2 2pq p2   

3 q3 3pq2 3p2q p3  

4 q4 4pq3 6p2q2 4p3q p4 

Table (10.4) 

Of course, we immediately identify these expressions, they appear in the standard algebraic 

expansions of (p + q), (p + q)2, (p + q)3, and (p+q)4, respectively. In algebra, the expansion of 

(p+q)N is called the binomial expansion. In eq. (10.13) 𝐶𝑛
𝑁pn qN-n  is the (n+1) th term of the 

Binomial expansion of (p + q)N,  represents the number of ways of arranging two distinct sets 

of n andN – ndistinguishable objects. Thus the probability of getting two occurrencesof the 

outcome heads(H) and one occurrence of the outcome tail(T) was obtained by writingout all of 

the possible arrangements of two p’ s (the probability of outcome H) and  one q (the probability 

of outcome T), and then added them all together. 
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So now ∑ P(n,N − n)
𝑁

𝑛=0
 = ∑ .𝑁

𝑛=0
𝑁!

𝑛!(𝑁−𝑛)!
 pn qN-n        (10.14) 

=∑ (p + q)
𝑁

𝑛=0
N= 1       since      p+q=1 

or simply ∑P(n)=1 

Example 02 

Explain two state paramagnet systems . 

Solution                                                                                                                      

Consider a system having N number of non-interacting magnetic dipoles.  These dipoles may 

point in one of only two ways: up or down.  If an external uniform magnetic field is applied, 

say in the up direction, each dipole will experience a torque tending to rotate it to the up 

direction also. The energy of the system depends on the number of dipoles aligned with the 

external field, say q.  But, we don’t care which q dipoles out of the N total are in the up state.  

Having q dipoles up specifies the energy macrostate, which may be realized by the selection 

of any q dipoles out of N to be up.  The number of microstates for each macrostate is just the 

number of combinations, the number of ways of choosing q objects from a collection of N 

objects. 

 
 

!
,

!  !
q

N N
q N q C

q N q

 
    

       (10.15) 

Assuming every microstate is equally likely, the probability of occurrence of this macrostate  

( , )
( )

(all)

q N q
P q

 



.          (10.16) 

Notice that the total multiplicity is (all) 2N   because each dipole has only two possible 

states. 

*The terms macrostate and microstate are discussed in detail, in the next unit. 

10.4.1 MEAN VALUE IN BINOMIAL DISTRIBUTION 

The mean value of the variable n is  

<n> =∑ 𝑛.𝑃(𝑛)
𝑁

𝑛=0
      (10.17) 

Substituting the value of P (n) from eq. (10.13)  

<n> =  ∑ .𝑁
𝑛=0

𝑛.𝑁!

𝑛!(𝑁−𝑛)!
 pn qN-n 

which can be written as 
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=  ∑ .𝑁
𝑛=0

𝑛.𝑁!

𝑛!(𝑁−𝑛)!
𝑝( dpn /dp).qN-n      

                             =   𝑝
𝜕

𝜕𝑝
(∑ .𝑁

𝑛=0
𝑁!

𝑛!(𝑁−𝑛)!
 pn qN-n  )    

 

                                 = 𝑝
𝜕

𝜕𝑝
∑  𝑃(𝑛)

𝑁

𝑛=0
    

 

    =   𝑝
𝜕

𝜕𝑝
∑  (𝑝 + 𝑞)

.

.
N   

 

So             <n>  = p.N(p+q)N    = pN         (10.18) 

Thus, the mean value of the variable in Binomial distribution is probability of occurrence of 

event p multiplied by the total number of trials N. 

Binomial distribution is again sub divided into two category viz. Poisson distribution and 

Gaussian distribution, depending on the condition of applicability.  

10.4.2 POISSION DISTRIBUTION  

The binomial distribution is good for any finite number of repeated trials.  In statistical 

thermodynamics, systems containing large numbers of particles, i.e. N is very large imply 

N→∞. For such conditions, the binomial distribution can be simplified to two more familiar 

distributions, one is discrete and the other is continuous. When p is very small and N is very 

large the process with these conditions, the distribution is named Poisson distribution. This 

distribution is particularly applicable to photon-counting processes, in which the total numbers 

of photons counted, N→∞, while the possibility of observing any single photon, p→ 0. Thus 

the conditions of applicability of Poisson distribution is  

(i)  N is very large, N→∞ 

(ii) p is very small, p→ 0 

(iii) n is very small n<<N 

 Under these conditions the approximate value of the factor  
𝑁!

(𝑁−𝑛)!
 , which appears in 

Binomial distribution  
𝑁!

(𝑁−𝑛)!
 = N (N-1) (N-2)….. (N-n+1) 

                              ≈    Nn      [Applying conditions (i) and (iii) both] 

Since q = 1-p  

ln q = ln (1 p) 

Expanding ln(1 p) by Taylor’s theorem and taking only first term due to condition (ii) 

 ln q=  p gives q = ep 

so   qN-n = e-p( N-n)  ≈ e-p N 
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Applying these approximations in Binomial distribution function 

P(n) =    
1

𝑛!
Nnpne-pN 

=    
1

𝑛!
(pN)ne-pN       (10.19) 

This is Poisson distribution. Hence, for N→∞ and p→ 0, the binomial distribution becomes 

the discrete Poisson distribution. This can be written in standard form as 

P (n) = 
1

𝑛!
(<n>)ne-<n       (10.20) 

Again ∑P (n) = ∑
1

𝑛!
(<n>)ne-<n> =  e<n> ne-<n> = 1, fulfills the condition of normalization. 

Now the mean value of variable in this distribution is 

<n>  =  ∑ 𝑛. 𝑃(𝑛)
𝑁

𝑛=0
         

Substituting the value of P (n) from eq. (10.20) 

<n> =  ∑ .𝑁
𝑛=0  n

1

𝑛!
(<n>)ne-<n>        

=<n> e-<n>∑ .𝑁
𝑛=0

1

𝑛−1!
(<n>)n-1        

                            =  <n> e<n> ne-<n> = <n>  = pN      (10.21) 

This is same as Binomial distribution. 

10.4.3 GAUSSIAN DISTRIBUTION 

When the number N is large i.e.N→∞, but p is not small, the binomial distribution becomes 

the continuous Gaussian distribution.Gaussian distribution is applicable when N and n both are 

large but n is not too close to N. The Gaussian distribution is particularly applicable to various 

diffusive processes for which the total number of molecules N→∞.Now the binomial 

distribution function 

P (n)   =  
𝑁!

𝑛!(𝑁−𝑛)!
 pn qN-n       

Taking logarithm of both side, we have 

lnPN(n) = ln 
𝑁!

𝑛!(𝑁−𝑛)
 pn qN-n       

= lnN! –ln n!-ln(N-n)! + nlnp + (N-n) ln q     (10.22) 

Using Stirling’s approximation ( lnN! ≈ N lnN – N for large value of N). Macroscopic systems 

contain multiples of Avogadro’s number, 231002.6   perhaps many, many multiples.  The 

factorials of such large numbers are even larger numbers. We’ll use Stirling’s approximation 

to evaluate the factorials: 
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NeNN NN  2!  . 

Ultimately, we want to find the logarithm of N!: NNNN  ln!ln . 

lnP(n) = N lnN – N - n ln n + n – (N-n)ln(N-n) + N-n + n ln p + (N-n)ln q    

= N lnN – n ln n – (N-n) ln(N-n) + n ln p + (N-n) ln q    (10.23) 

To find the condition for which this function gives maximum value, differentiating eq. 

(10.23) with respect to n 

𝑑

𝑑𝑛
lnP(n) =   – ln n – 1+ ln(N-n) + 1+ ln p + ln q      

=ln
(𝑁−𝑛)𝑝

𝑛𝑞
       (10.24) 

Imposing the condition of maxima i.e.,
𝑑

𝑑𝑛
 ln P(n) = 0 

so     ln
(𝑁−𝑛)𝑝

𝑛𝑞
   = 0, implies  

(𝑁−𝑛)𝑝

𝑛𝑞
   = 1, putting q = 1-p 

we get    n = pN           (10.25) 

This shows that the function P(n ) will be maximum at   <n> = n = pN and have large value in 

the neighborhood of n = <n> but becomes negligible far from <n>. So the region for which 

<n> - n is small, is the region of prime interest. For this region we have to calculate distribution 

function. Assuming    <n> - n is very small, expending lnP(n) about <n> by applying Taylor’s 

theorem 

  lnP(n) = lnP{ <n> +( n -<n>)  } 

 = lnP<n> + {  
𝑑

𝑑𝑛
 ln P<n>} ( n - <n>) +

1

2!
[d2/dn2(lnP<n>)]( n - <n>)2 + (10.26) 

From equation (10.26)  at  n = <n>,        
𝑑

𝑑𝑛
 ln P(n) = 0 

Differentiating eq. (10.24) again, d2/dn2(lnP(n)) = -
1

𝑁𝑝𝑞
 , putting these in eq.  (10.26) we have 

lnP(n) =  lnP <n>(- ( n - <n>)2/2Npq)     (10.27) 

So                                                                                                                                                                                                                                   

P(n) = lnP <n>.  𝑒  − ( n − <𝑛>)2/2Npq      

To calculating ln P <n>, applying the condition of normalization 

∑P(n) = ∑P<n>.𝑒  − ( n − <𝑛>)2/2Npq  = 1   

Taking x = n -<n>) and replacing summation by integration 
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2( )

2( ) ( . )

x

NpqP n P n e

 



   
      (10.28) 

 Let y = x/√2Npq            

Therefore,   ∑P(n) =  P < 𝑛 > ∫ 𝑒  − y2−∞

−∞
.√2Npq =1  

P < 𝑛 >.√2Npq. √𝜋 =1  so P < 𝑛 > = 1 /√2 𝜋 Npq  

and,  P(n) = (1 /√2 𝜋 Npq)
2( ) / 2n Np Npqe         (10.29) 

10.4.4 VARIANCE 

We now know how to calculate the average of a set of values, but what about the spread in the 

values? The first idea one might have to quantify the spread of values in a distribution is to 

consider the deviation from the mean for a particular value of x. This is defined by 

    x −<x>       (10.30) 

This quantity tells you by how much a particular value is above or below the mean value. So 

the average of the deviation (averaging over all values of x) follows: 

    < x − <x>>= 0      (10.31) 

Thus the average deviation is not going to be a very useable term. The problem with it is that 

the deviation is sometimes positive and sometimes negative, and the positive and negative 

deviations cancel out. Another approach is to use another quantity which is always positive, 

the square of the deviation, (x – <x>)2. This quantity is what we need: always positive and easy 

to apply. Hence, its average is called the variance. Consequently, the variance of x, written as 

σ2
x or σ2, is defined as the mean squared deviation:  

σ2
x= <(x −<x>)2>      (10.32) 

And σx as the square root of the variance: σx=    √ <(x − <x>)2> defined as the standard 

deviation. The standard deviation represents the ‘root mean square’ (known as the ‘r.m.s.’) 

spread in the data.                                                        .                                                                                                                                                                              

The following identity is very useful: 

Mean squared deviation,σ2
x  =<(x − <x>)2> 

= <x2− 2x<x>+ <x>2> 

= <x2> −<x>2        (10.33) 

10.5 PHASE SPACE  
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To determine the state of a many particle system like a gas having N particles enclosed in a 

container, let us consider the system consists of a single spin less particles moving classically 

in one dimension. Assuming that we know the particle’s equation of motion, the state of the 

system is fully specified once we simultaneously measure the particle’s position q and 

momentum p.  If we know q and p then we can calculate the state of the system at any time 

using the equation of motion. The coordinates pi and qi(conjugate coordinates) are governed 

by the canonical Hamilton’s equation of motion  

 

𝑞̇i =
𝜕𝐻

𝜕𝑝𝑖
   ,      𝑝̇i =−

𝜕𝐻

𝜕𝑞𝑖
        (10.34) 

 

In practice, it is impossible to specify q and p exactly, because there is always a natural 

uncertainty (Heisenberg uncertainty dq.dp ≥ ħ) in any experimental measurement. 

The time evolution of q and p can be visualized by plotting the point (q, p) in the q-p plane. 

This plane is generally known as phase-space. In general, the point (q, p) will trace out some 

very complicated pattern in phase space and is called phase trajectory. Suppose that we divide 

phase-space into rectangular cells of uniform dimensions dq and dp. Here, dq is the uncertainty 

in the position measurement, and dp the uncertainty in the momentum measurement. The 

“area” of each cell is dqdp. 

 

And from Uncertainty principle, dq. dp = ħ 

Where h is a small constant having the dimensions of angular momentum. The coordinates q 

and p can now be conveniently specified by indicating the cell in phase-space into which they 

plot at any given time. In other words, the uncertainty principle sets a lower limit on how finely 

we can split up classical phase-space. 

Let us now consider a single spin less particle moving in three dimensions. In order to specify 

the state of the system we need to know three q-p pairs: i.e., qx – px , qy - py, and qz - pz. 

Obviously the number of q-p pairs needed to specify the state of the system is usually called 

the number of degrees of freedom of the system. Thus, a single particle moving in one 

dimension constitutes a one degree of freedom system, whereas a single particle moving in 

three dimensions constitutes a three degree of freedom system. 

 

Consider the time evolution of q and p, where q = (q x  , qy,  qz ), etc. This can be visualized by 

plotting the point (q, p) in the six dimensional q-p phase-space. This space is called 𝜇 

space.Suppose that we divide the q x –px plane into rectangular cells of uniform dimensions dq 

and dp, and do likewise for the   qy-py, and  qz-pz planes. This is equivalent to dividing phase-

space up into regular six dimensional cells each having volume h3 . The coordinates q and p 

can now be conveniently specified by indicating the cell in phase-space into which they plot at 

any given time.                                             .                                                                                                                                      

Now, let us consider a system consisting of N classical particles moving in three dimensions. 

In order to specify the state of the system, we need to specify a large number of q-p pairs. The 

required number is simply the number of degrees of freedom, f. For N particle system f = 3N. 

Thus, phase-space (i.e., the space of all the q-p pairs) will be 2 f = 6N dimensional, called Γ 

space. Consider a particular pair of conjugate coordinates, qi and pi. As before, we divide the 

qi-pi plane into rectangular cells of uniform dimensions dq and dp. This is equivalent to 

dividing phase-space into regular 2f dimensional cells of volume hf . The state of the system is 

specified by indicating which cell it occupies in phase-space at any given time. As we know 

that classical particles are distinguishable. If the position and momentum of two particles are 

exchanged, the new state will be represented by a different point (phase cell) in phase space.  

This single point will represent a microstate. In principle, we can specify the state of the system 
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to arbitrary accuracy by taking the limit h → 0. In reality, we know from quantum mechanics 

that it is impossible to simultaneously measure a coordinate qi and its conjugate momentum pi 

to greater accuracy than dqi .dpi = ħ = h/2𝜋, here h is Planck’s constant.  This implies that, 

classical h≥ ħ . 

 

10.5.1 DIVISION OF PHASE SPACE INTO CELLS 

For a single particle having 2f dimensional space be represented by q1,q2,q3…..qf position 

coordinates and p1,p2,p3…….pf  momentum coordinates. the volume of an element in phase 

space will be dq1dq2dq3…..dqf.dp1.dp2.dp3….dpf. 

Or    𝑑𝜏 = dq1.dp1…..dqi.dpi…dpfdpf 

  =∏ 𝑑𝑞
𝑓
𝑖=1 i.dpi        (10.35) 

The dimension of this volume element will be (length x momentum)fand the unit will be (joule 

x second)f .We divide this volume element into cells of finite size. Let the volume of each cell 

be hf .where h is some arbitrary quantity having the dimension of action (length x momentum) 

or (energy x time).  i.e. h = dq.dp 

So the number of cells in the volume element 𝑑𝜏 will be 

dΩ = 
𝑑𝜏

(ℎ)
f          (10.36) 

Thus for a single point particle or monoatomic molecule the volume of one cell will be h3 

because a single point particle has f = 3, translational degrees of freedom only. 

The same expression can be generalized for many particle systems. Suppose a system consists 

of N particles each having f degrees of freedom .to represent the present state of the system we 

need Nf coordinate of the position and Nf coordinates for the momentum, i.e., the phase space 

will be 2fN dimensional.The volume of one cell will be hNf 

So the volume element in Γ space is 

  

        dΓ  =dq1.dq2….dqfN.dp1.dp2…dpfN        

 

=   ∏ 𝑑𝑞
𝑓𝑁
𝑖=1 i.dpi       (10.37) 

 

And,        dΩ = 
𝑑Γ

(ℎ)
fN 

 

=    ∏ 𝑑𝑞
𝑓𝑁
𝑖=1 i.dpi/ h

fN       (10.38) 

 

 

10.5.2 HARMONIC OSCILLATOR IN PHASE SPACE 

Let us consider a one dimensional harmonic oscillator of mass m and force constant k 

oscillating along x axis with frequency 𝜈.  At any instant the total energy of the oscillator is 

sum of the kinetic energy to potential energy. 

E = P.E + K.E 

 E= 

2
21

2 2

xp
kx

m
       (10.39) 

Dividing both sides by E and rearranging, we get  

   

22

1
2 / 2

xpx

E k mE
   
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or,   

   

2 2

2 2
1

2 / 2

xx p

E k mE
   

We can compare it with equation of ellipse
   

2 2

2 2
1

x y

a b
  , so it is an ellipse in x-pxplane 

with semi-major axis a = 2 /E k  and semi minor axis b = 2mE  , fig.(10.5). 

 

 
 

Fig (10.5): Harmonic oscilator in Phase space (x  px) 

So a one dimensional  harmonic oscillator which executes  to and fro motion along x axis in 

static  space , will have elliptical trajectory in phase space . The total energy of oscillator along 

the ellipse will remain constant. The area of this ellipse gives the phase area available from 

energy range 0 to E. So number of phase cells available in energy range 0 to E will be 

 

( )E =
 Total phase area

Phase cell area
      

 

Since the total phase area of ellipse =  𝜋ab =𝜋 2 /E k . 2mE   

and the area of one phase cell is dx.dpx = h. 

 

So the number of phase cells, 
1/ 2

2
( )

E m
E

h k




 
  

 
       (10.40) 

Since frequency 𝜈 = 
1

2

m

k
 

Therefore, ( )
E

E
h




  or   E =h . ( )E        (10.41) 

If ( )E  is discrete or quantize, i.e. ( )E  = 0, 1, 2…., n, then E = n h .the energy of a 

harmonic oscillator will be in multiples of h .  

10.5.3 THE DENSITY OF STATES  
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A macroscopic system is one which has many degrees of freedom denoting the energy of the 

system by E. Let    E  represents   the number of states whose energy lies between Eand E+dE 

in a system. Let  E is the total number of possible discrete states(accessible or allowed states) 

of the system which are characterized by energies less than E. Clearly  E  increases when E 

increases. The number of states  E  in the range between E and E+ dE is then  

      ( )E E E E E E E
E


     


     


   

The term (E) gives number of energy states in unit energy interval; hence it is called density of 

states. Let us calculate the number of phase cells available in energy range 0 to E for a single 

particle of mass m in volume V. 

The phase space volume is  

          
. . . . .ph x y z x y zV dq dq dq dp dp dp  

 

   
. .x y zV dp dp dp 

      
(10.42)

 

In momentum space p2 = px
2 + py

2 + pz
2 = 2mE, so volume of that space is 

3 3/ 24 4
. . (2 )

3 3
x y zdp dp dp p mE

 
 

    

3/ 24
(2 )

3
phV V mE


 

     
  (10.43) 

And hence, the number of phase cells available in energy range 0 to E will be 

 

( )E =  
  phase  space volume

Phase cell volume
      

 

The number of accessible or allowed states 

  3/ 2

3 3

4
(2 )

3

phV
E V mE

h h


            (10.44) 

So the accessible states in the energy range E to E + dE is  

  ( )E E E E
E


  


  


 ,  

Differentiating eq. (10.44) and rearranging, we get 

  3/ 2 1/ 2

3

2
(2 )E V m E dE

h


        (10.45) 

and the density of states   3/ 2 1/ 2

3

2
(2 )E V m E

h


   .      (10.46) 

This term has great importance in many statistical calculations; it is also called degeneracy of 

states gi. 

 

10.6 THERMODYNAMICAL PROBABILITY  
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Suppose we want to determine the number of ways that N objects (molecules) can be placed in 

M containers (energy states) on a single compartment (energy level). Before making such 

combinatorial calculations, we must know whether the objects (molecules ) are distinguishable 

or indistinguishable and the restrictions on the population of objects within each energy state. 

You must know that some atomic or molecular particles having half integral spin (Fermions) 

are occupy   one particle per energy state. Other particles having integral spin (Bosons) have 

no limit on their occupancy in single state. For proper statistical calculations, we must account 

for both of these cases, as well as for objects that can be either distinguishable or 

indistinguishable. 

 

10.6.1 DISTINGUSHABLE OBJECT 

Combinatorial analysis for distinguishable objects is divided in three cases, depending on to 

different constraints.  These are as follows: 

CASE1. In how many ways may N identical, distinguishable objects be placed in M different 

containers with a limit of one object per container? 

The limitation of one object per container requiresN ≤ M. The first object may be placed in any 

of M available containers, the second in (M− 1) available containers, and so on. Hence the 

number of ways for this case becomes 

   Ω = M(M− 1)(M− 2) · · · (M− N + 1) 

or 

      Ω =  
𝑀!

(𝑀−𝑁)!
         (10.47) 

CASE 2. In how many ways may N identical, distinguishable objects be placed in M different 

containers such that the ith container holds exactly Ni objects? 

The total number of permutations for N objects is N! However, within each container, 

permutations are irrelevant as we are concerned only with their number rather than their 

identity. Hence, the number of permutations, N! over counts the number of ways by the number 

of permutations, Ni !, for each container. Therefore, the number of ways is 

 

Ω =   
𝑁!

𝑁1!𝑁2!…𝑁𝑚!
 

or     

Ωi (N1,N2…,NM)   =   
(𝑁)!

∏ 𝑁𝑖!𝑀
𝑖=1

                      10.48) 

 

Here Ω gives the number of microstates in a particular macrostate for distinguishable particles 

system (classical system). The total number of microstates,Ω, corresponding to particular 

macrostate is called the thermodynamic probability. 

 

CASE 3. In how many ways may N identical, distinguishable objects be placed in M different 

containers with no limitation on the number per container? 

Because no limit exists, each object can be placed in any of the containers. Therefore, 

Ω =MN        (10.49) 

It gives total number of microstates in a distinguishable particles system (classical system).  

Hence the probability of occurrence of a particular distribution (N1,N2..,NM ) will be  

Pi(N1,N2…,NM)  = 
  Ωi (N1,N2…,NM)  

Ω
      (10.50) 

 

i.e.,  Pi =   
Thermodynamical Probability of ith distribution

total number of possible microstates 
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10.6.2 INDISTINGUISHABLE OBJECT 

Combinatorial analysis for indistinguishable objects divided into two cases following 

 

CASE 4. In how many ways may N identical, indistinguishable objects be placed in M 

different containers? 

 

A similar restriction for distinguishable objects gives Eq. (10.47). For indistinguishable 

objects, however, any rearrangement among the No objects is unrecognizable. Hence, Ω given 

by eq. (10.47) over counts the number of ways for indistinguishable objects by a factor of N! 

Therefore, 

 

 Ω = 
𝑀!

𝑁!(𝑀−𝑁)!
        (10.51) 

 

CASE 5. In how many ways may N identical, indistinguishable objects be placed in M different 

containers with no limitation on the number per container? 

 

This is fully unconstrained case (indistinguishable objects, no limitation). We begin by initially 

assuming distinguishable objects labeled 1, 2, 3,N. Let us now arrange these N objects in a row, 

with the M containers identified and separated by partitions. As an example, 

                                1, 2, 3 | 4, 5 | 6 |. . .| N − 1, N 

Specifies that objects 1, 2, and 3 are in the first container, objects 4 and 5 are in the second 

container, and object 6 is in the third container, and so on. Now, regardless of their actual 

arrangement, the maximum number of rearrangements among the N objects andM− 1 partitions 

is (N + M− 1)! However, interchanging the partitions produces no new arrangements; thus, we 

have over counted by a factor of (M− 1)! Similarly, because the N objects are actually 

indistinguishable, we have again over counted by a factor of N!, as in case 4. Therefore, the 

number of ways for this case becomes 

 

Ω = 
(𝑁+𝑀−1)!

𝑁!(𝑀−1)!
        (10.52) 

 

Cases 3–5 are important to us in view of statistical mechanics. As we will see in the later course, 

Eq. (10.49) is related to M-B statistics(See unit III), Eq. (10.51) is related to Fermi–Dirac 

statistics, and Eq. (10.52) is related to Bose–Einstein statistics(See unit 17). 

 

10.7 CONCLUSIONS 

This unit of the course has devoted to a brief and simple introduction to a branch of 

mathematics the probability theory, then phase space and thermodynamical probability. The 

essential element of statistical mechanics is the probability distribution, so Binomial, Poisson 

and Gaussian distribution are explained in detail. The probabilistic 'calculation' which we apply 

to develop this subject is very simple. You do not need deep understanding of probability 

theory in order to understand statistical thermodynamics. This material is sufficient to 

understand the fundamental concept of thermodynamical probability, the concept of classical 

phase space and density of states.  

 

10.8 SUMMARY 
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1.The probability of an event =
numberof cases in which the event occours

total number of possible events
 

or  PA = lim /A
N

n N


 

2. The probability of obtaining n occurrences of a particular outcome in N observations is  

     given by    PN(n) = 𝐶𝑛
𝑁pn qN-n  =  

𝑁!

𝑛!(𝑁−𝑛)
 pn qN-n 

This probability function is called the Binomial distribution function. 

3.The mean value of the variable in Binomial distribution is probability of occurrence of 

event p multiplied by total the number of trials N.  <n>  =  ∑ 𝑛. 𝑃(𝑛)
𝑁

𝑛=0
 =pN 

4.Binomial distribution Becomes Poisson distribution when N is very large, N→∞, p is very  

small, p→ 0 and n is very small i.e., n<<N 

5. Poisson distribution function is P(n)  =    
1

𝑛!
(<n>)ne-<n>, here  <n>=  pN 

6. When the number N is large i.e.N→∞, but p is not small, the Binomial distribution  

becomes the continuous Gaussian distribution .Gaussian distribution is applicable  when N  

and n both are large but n is not too close to N . 

7. Gaussian distribution is, P(n) = (1 /√2 𝜋 Npq).𝑒  − (n − Np)2/2Npq . 

8.A single particle having 2f dimensional space, occupies the phase space volume, 

𝑑𝜏  = ∏ 𝑑𝑞
𝑓
𝑖=1 i.dpi. The volume of each cell is hf, the number of cells in the volume     

element 𝑑𝜏 will bedΩ = 
𝑑𝜏

(ℎ)
f 

9.Density of states in phase space ( )E =  
  phase  space volume

Phase cell volume
 

10.For a free single particle of mass m having energy E, enclosed in volume V, the density 

of states is,   3/ 2 1/ 2

3

2
(2 )E V m E

h


   

11.The probability of occurrence of a particular distribution (N1,N2..,NM ) will be  

Pi(N1,N2…,NM)  = 
  Ωi (N1,N2…,NM)  

Ω
 

 

      or Pi =   
Thermodynamical probability of ith distribution

total number of possible microstates 
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10.9 TERMINAL QUESTIONS 

 
1. What is classical statistics?  Discuss its importance and limitations. 

2. Define probability and discuss its importance in statistical mechanics. 

3. Discuss additive and multiplicative laws of probability.  

4. What is conditional probability, explain with an example? 

5. Explain two state systems with an example 

6. Calculate the  probability of drawing two aces in succession from a well shuffled pack 

of 52 cards(   Ans. 1/121) 

7. What is the probability of throwing 3 dice to obtain a total of score of 6 or less? 

(Ans.0.093) 

8. Calculate the probability of getting 3 'heads' and only 2 'tails' in an experiment where 

a coin is tossed 5 times, or where 5 coins are tossed simultaneously. 

(Ans.5/6) 

9. What is the  Binomial distribution ? Explain with suitable example 

10. Explain the difference between discrete and continuous distributions.  

11. Prove that, the mean value of the variable in Binomial distribution is probability of 

occurrence of event multiplied by the total   number of trials. 
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12. Prove that for a system N→∞ and p→ 0, the Binomial distribution becomes the 

discrete Poisson distribution. 

13. What is the Gaussian distribution? Prove its distribution function. 

14. Explain the terms variance and standard deviation. 

15. Define phase space .What is the volume of one phase cell for a system of N 

monoatomic particles? 

16. What is the minimum size of phase cell in classical and quantum mechanics? 

17. Differentiate 𝜇 space to Γspace. 

18. Discuss one dimensional harmonic oscillator. Prove that the trajectory of oscillator is 

and ellipse. 

19. What is density of states? 

20. A free particle of mass m is enclosed in volume V .Calculate the number of accessible 

states in the energy range E and E+dE. 

21. What is Thermodynamical probability? How does it differ from mathematical 

probability? 

22. A fairly-weighted coin is tossed 20 times.                                                                                                                   

a. Prove that the probability for a specific number of heads is given by the binomial      
distribution.                                                                                                                                               

b. Calculate the probabilities for each of the possible numbers of heads.                                               

c. Recalculate the probabilities in part (b) by invoking a Gaussian distribution.                                  

d. Display your results from parts (b) and (c) on a single plot. Discuss the implications of  

your comparison 

23. Determine the number of ways of placing three balls in three numbered boxes for each 

of the following cases. 

a. The balls are distinguishable with a limit of one ball per box. 

b. The balls are distinguishable with no limit on the number per box. 

c. The balls are indistinguishable with a limit of one ball per box. 

d. The balls are indistinguishable with no limit on the number per box.                                        

Construct four tables showing all possible distributions for each case.    
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11.1 OBJECTIVES 
 

After going through this unit, you will be able to:  

 Define the fundamental postulates of statistical mechanics.  

 Make the distinction between microstates and macrostates. 

 Tabulate the distributions and microstates of a system.  

 Understand the most probable macrostate and its importance. 

 Equilibrium between two macroscopic systems in thermal contact. 

 Derive the relation between entropy and probability. 

 Understand second and third law of thermodynamics in terms of entropy. 

 Know the condition for equilibrium. 

 Know thermal equilibrium, mechanical equilibrium and particle equilibrium.  

 Derive the connections between statistical and thermodynamical quantities.  

 Apply statistical mechanics in analysis of an ideal gas. 

 Derive the relation for the statistical entropy of ideal gas.  

 

11.2 POSTULATES OF STATISTICAL MECHANICS 

The fundamental postulates of statistical mechanics are as follows:  

1. Any system may be considered to be composed of very small point like particles in motion  

     and interact elastically. 

2. Total number of particle and total energy of the system is constant. 

3. All the cells in the phase space are of equal size. 

4. All accessible microstates corresponding to possible macrostate are equally probable. 

5. The equilibrium state of a system corresponds to the macrostate of maximum probability.  

Now let us understand these postulates in detail.  

An ideal classical system to apply M–B statistics is an isolated system of independent (non-

interacting) particles. For an isolated system, the total number of particles and energy of the 

system must remain constant. Hence, we have two system constraints that can be expressed as 

 

i

i

i i

i

n N

n E








 

Where niis the number of independent particles occupying the ith energy level with energy εi. 

Expressing the total number of particles N, and the total energy E, in terms of summations over 

all possible energy levels .We also note that the total system energy E, must, of course, be 

equivalent to the macroscopic internal energy, U ≡ E. The description of the number of 

particles Ni, within each energy level with its respective energy εi, is called the particle 

distribution. The ratio, Ni/N, indicates either (1) the fraction of total particles in the ith energy 

level or (2) the probability that a single particle will be in the ith energy level.  Many 

distributions are possible, and these distributions vary continuously with time because of 

particle interactions. For such large number of possible distributions, averaging over all of them 

would be a vast task. Fortunately, we know from classical thermodynamics that properties such 

as the internal energy have a well-defined value for an isolated system, thus suggesting that a 

most probable distribution might define the equilibrium state for a system containing a large 

number of atoms or molecules. So our prime object is to search the most probable distribution. 
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11.2.1 MACROSTATE AND MICROSTATE  

Consider a system of three distinguishable coins. Let us make all possibilities of heads facing 

up when these coins are thrown. There are four such possibilities, named 0 (outcome with no 

head), 1(outcome with one head), 2(outcome with two heads), & 3 (outcome with all heads). 

This arrangement is called the macrostate of this system. We might even call these energy 

levels 0, 1, 2, & 3. The orientation of each individual coin will be a microstate.  We can list the 

microstates, using H for heads and T for tails:  TTT, HTT, THT, TTH, HHT, HTH, THH, and 

HHH.  Now, we write the microstates into different macrostateor energy levels. 

energy level microstates multiplicity,   

0 TTT 1 

1 HTT, THT, TTH 3 

2 HHT, HTH, THH 3 

3 HHH 1 
Table (11.1) 

The multiplicity is the number of distinct microstates in a specified macrostate.  From table 

(11.1) it is clear that, the number of microstates in a macrostate with one head and two tails are 

three. So the multiplicity of this macrostate (one H, two T) is  1,2 3  .   The total multiplicity 

of the system is the total of all the possible microstates. For these three coins, that is   8all 

. 

A macrostate specifies a system in terms of quantities that “average” over the microscopic 

constituents of the system. Examples of such quantities include the pressure, volume and 

temperature of a gas. Such quantities only make sense when considered in a system composed 

of very large numbers of particles: it makes no sense to talk of the pressure or temperature of 

a single molecule. 

A microstate specifies a system in terms of the properties of each of the constituent particles; 

for example, the position and momentum of each of the molecules in a sample of gas. 

We have seen that a particle distribution is ordinarily specified by the number of particles in 

each energy level, Ni(εi). This energy level wise particle distribution is called a macrostate. We 

can, consider more directly the influence of degeneracy and specify instead the number of 

distinct particles in each energy state, Ni(εi). This more deep distribution is called a microstate. 

A microstate is a single state of a system, including the exact states of all the system’s 

constituent particles. A classical microstate includes each particle’s position and momentum.  

A microstate cannot be observed or determined in a laboratory. However, the knowledge of 

microstates from physical theories is essential to applying Statistical Mechanics to predict 

observable phenomena. Clearly, for each separate macrostate, there are many possible 

microstates having high values of the degeneracy, gi. Hence, the most probable distribution of 

particles over energy levels should correspond to that macrostate associated with the greatest 

number of microstates. Based on the above concepts of microstate and macrostate, we may 

state the two basic postulates of statistical thermodynamics, suitable for application to the M– 

B statistics. Therefore, for an isolated system of independent particles, we have two basic 

postulates of statistical thermodynamics that can be stated as follows:  

1. The time average for a thermodynamic variable is equivalent to its average over all possible 

microstates. 
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2. All microstates are equally probable; hence, the relative probability of each macrostate is 

given by its number of microstates.  The second statement is called the postulate of equal a 

priori probability.       

 

11.2.1.1 ERGODIC HYPOTHISIS: 

 

In statistical physics , the Ergodic hypothesis says that, over long periods of time, the time 

spent by a system in some region of the phase space of microstates with the same energy is 

proportional to the volume of this region, i.e., all accessible microstates are equiprobable over 

a long period of time.Similarly, if each system quantum state is equally likely, then every 

microstate must also be equally likely. As a result, the most probable macrostate must be that 

having the largest number of microstates. 

 

Example 1  

Problem : Consider an isolated system of independent particles with the following allowed 

energy levels and associated degeneracies: ε0= 0, g0= 1; ε1= 1, g1= 2; ε2= 2, g2 = 3. If the system 

consist of two particles and the total energy should be two units, determine:              . 

(a) The number of macrostates (b) The number of microstates for distinguishable particles (c) 

The number of microstates for indistinguishable particles. Assuming, no limit on the number 

of particles per energy state. 

Solution : (a) We have two distinguishable particles⊛,⊚. They must be distributed among 

the three allowed energy levels either with one particle at ε0= 0 and the other at ε2= 2 or with 

both at ε2= 1, so that the total energy be two units. Therefore, this system contains only two 

macrostates.(b) The following table shows the possible microstates for each macrostate when 

the particles are distinguishable. Macrostate #1 has six microstates (columns) and macrostate 

#2 has four microstates Table (11.2). Hence, the total number of microstates is 10. In this 

case, macrostate #1 is the most probable macrostate. 

 macrostate #1 macrostate #2 

∈2= 2 g2 = 3 ⊚   ⊛       

 ⊚   ⊛      

  ⊚   ⊛     

∈1=1 g1 = 2       ⊚ ⊛ ⊛⊚  

      ⊛ ⊚  ⊛⊚ 

∈0=0 g0 = 1 ⊛ ⊛ ⊛ ⊚ ⊚ ⊚     

Table (11.2) 

(c) For indistinguishable particles, the distinguishable open and closed circles are irrelevant. 

Hence, the number of microstates in both macrostate #1 and macrostate #2 is three, for a total 

of six microstates. 

 

11.2.2 THE MOST PROBABLE MACROSTATE 

 

The thermodynamic properties of a system can be estimated by considering only the most 

probable macrostate, i.e., the most probable distribution of particles over energy levels.  We 

can easily   show that a large majority of all possible microstates is associated with the most 

probable macrostate.  

To show the significance of the most probable macrostate, we shall study two cases, by 

identifying each possible macrostate and then determining the associated number of 
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microstates per macrostate. We assume particles are distinguishable with no limit on the 

number of particles per energy state. In case 1 we choose N = 6 particles distributed into M = 

2 non degenerate energy levels.  In case 2, to investigate the influence of large numbers, we 

will consider N = 1023 particles system. 

We begin by determining the number of possible particle distributions or macrostates Ωm, 

which is equivalent to the number of ways that N indistinguishable objects can be placed in M 

different containers with no limitation on the number of objects per container. 

Indistinguishability is temporarily presumed here because we are only concerned with the 

number of objects in each container and not their order of placement. We thus have, from Eq. 

(10.52) of unit (10),   

Ω = 
(𝑁+𝑀−1)!

𝑁!(𝑀−1)!
   

   

    (11.1) 

so that, for M = 2, Ωm = N + 1 

Hence, for given N = 6, we find that Ωm= 7; these seven macrostates of six particles distributed 

between two energy levels are as follows: {0, 6},{1, 5}, {2, 4}, {3, 3}, {4, 2}, {5, 1}, and {6, 

0}. 

 Next, we determine the number of possible arrangements for a given particle distribution, or 

the number of microstates per macrostate, Ωi, which is equivalent to the number of ways that 

N distinguishable objects can be placed in M different containers such that Ni objects occupy 

the ith container. Employing Eq. (10.48) of section 10.6.1, we have 

    Ωi    =   
(𝑁)!

∏ 𝑁𝑖!𝑀
𝑖=1

   (11.2)            

So that, for each of the above macrostates, we obtain Ωi {0, 6} = Ωi {6, 0} = 1, Ωi {1, 5} = Ωi 

{5, 1} = 6,Ωi {2, 4} =Ωi {4, 2} = 15, and Ωi {3, 3} = 20.Hence, we find that the number of 

microstates associated with the most probable macrostate Ωmp, is 20. Similarly, the total 

number of microstates, Ω, is given by 2(1 + 6 + 15) + 20 = 64. 

We can independently determine the total number of possible arrangements or microstates 

because this tally is equivalent to the number of ways N distinguishable objects can be placed 

in M different containers with no limitation on the number per container. 

Hence, from Eq. (10.49), the total number of microstates is 

  Ω= MN                  

so that Ω= 26= 64, is in agreement with our previous calculation. In summary, we find 

that for Ω= 64, Ωmp= 20, and thus that mean number of microstates Ω̅= Ω/Ωm =9. 

Consequently, comparing these three statistics, we may write the expected result for any N >M; 

i.e. 

  Ω>Ωmp >Ω̅.                 (11.3) 

Let us now consider a very large number of particles, say N = 1023. For M = 2, the 

total number of microstates and the mean number of microstates can be expressed as  

  Ω= MN   and   Ω̅= Ω/Ωm = 
2

1

N

N 
 

 

Where we have employed Eqs. (11.1) and (11.2). Therefore, 

 

                        lnΩ = Nln 2 ≈ 7.0 × 1022 

 lnΩ̅= Nln 2 − ln(N + 1)  ≈7.0 × 1022− 53. 
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 It is clear from this analysis, when N is large, almost no difference arises between lnΩ and 

lnΩ̅. Consequently, using Eq. (10.49), we have for a very large number of particles 

 

  lnΩ ≈ lnΩmp≈ lnΩ̅,  (11.4) 

 

So that   

  lim 1
mp

N





     (11.5) 

Equation (11.5) indicates that for large macroscopic systems almost all microstates are 

associated with the most probable macrostate. Hence, the knowledge of most probable 

macrostate is sufficient to study large systems. The significant conclusion  is that utilizing the 

most probable distribution of particles over energy levels is essentially equivalent to averaging 

over all microstates because those microstates associated with the most probable macrostate 

invariably account for nearly all possible microstates. Therefore, from the viewpoint of 

classical thermodynamics, the most probable particle distribution must represent the 

equilibrium particle distribution.  

11.2.3 LIFE TIME OF MICROSTATE 

In order to estimate the time taken in observing all the possible microstates, let us consider a 

case, say a paramagnetic system (where   the atomic   spins   interact with the external magnetic 

field- Zeeman Effect).     The   particles inside   this system (N ~  1023)   are assumed    to be 

non-interacting,     and   each electron   has a spin of 1

2
  . We also fix E and T for a fixed 

macrostate i.e. ni. Note that it is a Quantum Mechanical system,   so the energy of the system 

will be quantized. The total energy of the paramagnetic system having k quantized energy states 

is given by 

 

E = ∑ 𝜇𝑘 k.B 

 

How    many   microstates    does the system   transit   during the time of observation? The   

change    in microstates    will mean    that the spin energy   of the electron   is exchanged 

between   neighboring   atoms   so the atoms   interchange    energy   levels.  The   typical time 

for spin flip (spin change from one state to another) is 10-12s. So for a system of    10 23   

electrons: So the number of microstates transited or covered by the system in one second, or  

the transition speed   1012x1023 = 1035 per-sec 

Now,   the number of microstates    Ω = exp (N ln N) >
3510e >>> 1035 

 Since the time of any observation or experiment is too small, so it is impossible to observe 

each microstate. 

 

 

11.3 MACROSCOPIC SYSTEMS IN THERMAL CONTACT 

Let us consider   two macroscopic systems, A and A, having energy E and E’ respectively, are 

in thermal contact with each other by a conducting interface fig. (11.3). suppose the interaction 

is purely thermal i.e., all other external parameters are constant. Whole system is thermally 

isolated from their surroundings. 
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A  

 

   E, N 

 

A 

 

           E ,N 

 

Fig. ( 11.3) 

Since the external parameters are constant, so that A and A cannot do work on one another 

and the systems are thermally in contact so they will exchange heat. Considering the energy 

range from E to E+ E, let us see the temperature at equilibrium and the entropy of the system    

at equilibrium.  

 

Let the number of microstates of A, related  with a macrostate in which the energy lies in the 

range E to E + E is denoted  (E). Likewise, the number of microstates of A, related with 

a macrostate in which the energy lies between E and E + E is denoted (E). 

The combined system A (0) = A + A is assumed to be isolated (i.e., it neither does work on nor 

exchanges heat with its surroundings). Let the number of accessible microstates to the entire 

system A0is denoted by 
0 (E) when A0 has energy between E and E+dE.  When systems A 

and A’ are in equilibrium, the whole system can be in any one of   Ω (E).Ω (E) microstates, 

the probability   of the system A and A possessing energies E and E respectively, will be 

maximum. Then the probability that A has energy equal to E, by using the postulate of 

statistical mechanics. 

   P (E) = C (E)  (11.6)  

Similarly the probability that A’ has energy equal to E will be 

                                      P (E) = C (E) (11.7) 

Since entire system is isolated so the total energy of the system must remain constant, i.e.  ,   

E0 = E + E. 

The probability of system A having the energy E and system B having energy near E is given 

by 

  P(E,E’)=CC    EEE  0'
   (11.8) 

For applying the condition for maximum probability,𝜕 P(E)/ 𝜕𝐸 =0 

Taking the logarithm on both sides 

  lnP(E, E) =  lnC + lnC +  lnC (E) + lnC (E)  (11.9) 

To locate the maximum position of P(E) at E 

 

  E

P

PE

EP








 1)(ln =0  (11.10) 

   

or
  

   
E

E

E

E

E

EP













 ''lnln)(ln  =0   (11.11) 

 

where E0=E+E which is dE=- dE then  

 

  

   
'

''lnln

E

E

E

E








 =0   (11.12) 

Let  𝛽(𝐸) =
 𝜕𝑙𝑛Ω

𝜕𝐸
  =  

𝑑Ω

Ω𝑑𝐸
  and  𝛽(𝐸′) =

 𝜕𝑙𝑛Ω′

𝜕𝐸
  = 

𝑑Ω′

Ω′𝑑𝐸
   (11.13) 

 Hence    ' 'E E   

Where E and E denote the corresponding energies of A and A at the maximum. 



 

 





 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 228 
 

It is the required condition of equilibrium when two systems are in thermal contact. 

So two systems are in equilibrium when their functions (𝛽 parameter) are equal and it 

has the following properties: 

1. If two systems separately in equilibrium have the same value of 𝛽 then the systems will  

remain in equilibrium when brought into thermal contact with one another. 

2. If two systems separately in equilibrium have different values of 𝛽 then the systems will  

not remain in equilibrium when brought into thermal contact with one another. 

Instead, the system with the higher value of 𝛽will absorb heat from the other system until the 

two 𝛽 values are the same.  

 

Thermodynamic temperature:   

 

In terms of temperature, thermal equilibrium is specified by T= T’. Thus at thermal 

equilibrium, temperature of the system attains maximum constant value. 

Hence    ' 'E E   implies that  

 
E

E





ln
 , 

1

𝛽
= 𝑘𝑇 𝑎𝑛𝑑 

1

𝛽′
= 𝑘𝑇′.  where k is some positive constant having the 

dimension of energy and whose magnitude in some convenient arbitrary way.  The dimension 

of k is erg.deg-1 , identified as Boltzmann’s constant kB= R/N. The parameter T is termed the 

thermodynamic temperature, and controls heat flow in much the same manner as a 

conventional temperature. Thus, if two isolated systems in equilibrium possess the same 

thermodynamic temperature then they will remain in equilibrium when brought into thermal 

contact. However, if the two systems have different thermodynamic temperatures then heat 

will flow from the system with the higher temperature (i.e., the “hotter” system) to the system 

with the lower temperature until the temperatures of the two systems are the same. The 

thermodynamic temperature of a macroscopic body depends only on the rate of change of the 

number of accessible microstates with the total energy.  

 

11.4 RELATION BETWEEN ENTROPY AND PROBABILITY 
 

According to Second law of thermodynamics entropy S of a system is related with 

temperature T by the relation dQ =T.dS can be written for a system having energy E as. 

  
 1

𝑇
=   

𝜕𝑆

𝜕𝐸
      (11.14) 

And statistically 

  
 1

𝑇
= 𝑘𝛽 = k

𝜕𝑙𝑛Ω

𝜕𝐸
    (11.15) 

 

    So,    
𝜕𝑆

𝜕𝐸
 = k

𝜕𝑙𝑛Ω

𝜕𝐸
 , The integration gives   

   S = k.ln Ω  (11.16) 

This is the famous relation between entropy and probability called Boltzmann’s entropy 

relation.  Shows the entropy S of an equilibrium macrostate is related to the number of 

accessible microstates  Ω , it states that the entropy of a system is proportional to logarithm of 

the thermodynamical probability of that system. We are assuming that the system is in a 

particular macrostate which has fixed energy. Hence we have a microscopic meaning of 

entropy. The system is perfectly ordered when Ω = 1 and S = k ln Ω = 0. When more microstates 

are availiable  Ω> 1 so S > 0.Since equilibrium state has maximumΩ, hence has maximum 

entropy.The lesser the knowledge about a system, the more disordered it gets. From the formula 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 229 
 

with which we obtained the relation of entropy with probability, we are unable to deduce the 

value of k. The value of k comes out from the ideal gas equation. 

 

11.4.1 IDENTIFICATION OF K IN BOLTZMANN EQUATION  

We can determine the value of k by applying the same conditions, as above considered, to a 

thermodynamical system. Let one mole ( N  = 1023) of an ideal gas is contained in a chamber 

of volume V1 and pressure p1.Let this  chamber  is connected to an empty chamber of volume 

V2 . So the final volume is V1+V2, let the final pressure is p2. Assuming the process is 

isothermal i.e. temperature remains constant during the process. 

After connecting two chambers, the probability of finding of one particle of gas in first 

chamber of volume V1 is  

1

1

2

V

V V

 
 
  

 

Since one mole of gas has N particles (atom or molecules), so the probability of finding of 

one mole of the gas in first chamber of volume V1 is 

  Ω1 = 

1

1

2

N

V

V V

 
 
    

It is initial probability of the system. 

The probability of finding of one mole of the gas in final volume V1 + V2 is  

  Ω2 =  

1

1 2

2

1

N

V V

V V

 
 

    
It is the final probability. 

Now, since Ω1 and Ω2 are initial and final probability of the system. 

So the change in entropy during the process IS 

∆S = S2 –S1 =  klnΩ2 - klnΩ1  =    
2

1

lnk
 
 
 

 

Substituting the values of Ω1 and Ω2, 

We get  

                 = 
1

1 2

1
ln

N

k
V

V V

 
 
 
  

 

  ∆S =
1 2

1

ln

Nk

V V

V

 
 
 

 (11.17) 

Using thermodynamics principles for an isothermal process where the system changes its 

initial state (p1v1) to final state (p2, v1 + V2), the change in the entropy is   

  ∆S = 1 2

1

ln
V V

R
V

 
 
 

  

or    

 

1 2

1

ln

R

V V
S

V

 
   

 
 (11.18) 

Comparing eq.  (11.17) and (11.18) we have 
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1 2

1

ln

Nk

V V

V

 
 
 

= 
1 2

1

ln

R

V V

V

 
 
 

 

Hence Nk = R or k = R

N
, also since R is gas constant and N is Avogadro’s number, the k is 

certainly 

Boltzmann’s constant having value (k = 1.38x 10-23 J / K) 

 

Example 2 

Problem: For a system at constant temperature and fixed number of particles, by using the 

statistical  

definition of entropy, calculate the entropy change between a state of final volume Vf and initial 

volume Vi . 

Solution   

Let a movable partition divides a closed chamber of volume Vf into two parts, one part  

having volume Vi and second part having volume Vf - Vi Fig. (11.4). 

 

 

 

Vi 

 

 

 

 

Vf -Vi 

 

Fig. (11.4) 

Suppose only one particle present in the chamber .the probability of finding that particle in 

volume Vi will be i

f

V

V
 .Similarly, if the chamber contains n particles, then the probability of 

finding all the particles in volume Vi will be  

n

i

f

V

V

  
 
  

 

Let the chamber contains n gram moles of an ideal gas,then the probability of finding entire 

gas in volume Vi will be  

nN

i

f

V

V

  
 
  

 

where N is Avogadro’s number. 

So the initial probability will be  Ωi = 

nN

i

f

V

V

  
 
  

   (11.19) 

Now if we remove the partition, then the probability of finding all the particles in volume Vf 

will be  1

nN

f

f

V

V

  
 

  
 .  

So final probability Ωf = 1.   (11.20) 

Dividing eq. (11.19) by eq. (11.20) 

we get  

  

nN

i i

f f

V

V

   
  

   
    (11.21) 

Taking logarithm both sides of eq. (11.21) 
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we have          ln lni i

f f

V
nN

V

   
  

   
    

Multiplying both sides by Boltzmann constant k, we have 

  

ln lni i

f f

V
k nkN

V

   
  

   
    

Since, R = kN  

so                    ln lni i

f f

V
k nR

V

   
  

   
  (11.22) 

If S and S are initial and final entropies respectively the change in entropy is  

  
ln lnf iS k k      

This can be written as       ln
f

i

S k


 


   (11.23) 

Comparing eq. (11.22) with eq. (11.23), the change in entropy in terms of initial and final 

volume, when T and N are fixed is 

  ln
f

i

V
S nR

V
   .  (11.24) 

Example 3 

Problem: How much heat (in eV) must be given to a system at room temperature ~ 270C for 

the number of accessible states to increase by a factor of 108 ? 

 

Solution   

By Boltzmann's entropy relation 

  ΔS = k ln(Δ Ω) 

But ΔS = ΔQ/T 

or          ΔQ = TΔS = kT lnΔ Ω 

   = (1.38 × 10-23)(300) ln108 

   = 7.626 × 10-20 joule 

Since 1 eV = 1.6x10-16 J 

So required amount of heat to increase number of microstates by a factor of 108 is, 

ΔQ =0.477 eV 

 

11.4.2 ENTROPY AND SECOND LAW OF THERMODYNAMICS 

Entropy is a key concept in thermodynamics and statistical mechanics. An equilibrium 

macrostate of a system can be characterized by a quantity S (called entropy) which has the 

property  

1.  In any process in which a thermally isolated system goes from one macrostate to another,  

the entropy tends to increase  0S   

2. If the system is not isolated and undergoes a quasi-static infinitesimal process 

     in which it absorbs heat ,dQ then dQ
dS

T
 , dS is an exact differential.  

It is an additive quantity. The entropy of a combined system is equals to the sum of entropies 

of 

 individual systems. 
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Thermodynamical description of entropy depicts, it is a state function which depends on the 

present state of the system and no information we can draw about past state of the system. The 

exact physical picture of entropy in terms of physical condition of the system or 

thermodynamic properties cannot be established. 

In classical statistical physics, if a system is in equilibrium, the statistical entropy of the system 

is defined as 

  𝜎 = log∆Γ 

To make it additive it must be divided by h3N and N! , (see earlier unit) i.e. 

  
3

ln
. !Nh N




  

 

where ∆Γ are the phase space volume occupied by the system in the accessible range of energy 

E to E+ dE, h is Planck’s constant and N is the number of particles. 

 

11.4.3 ENTROPY AND THE THIRD LAW  

The Third Law of Thermodynamics states that as the temperature T →  0, the entropy S → 0, it 

is approaching ground state as U(T) also approaches 0, so the disorder number tends to 1. When 

all the particles take the ground state, Ω (E0) =1. From Boltzmann entropy relation 

  S0 = k logΩ (E0) = 0 

 

From the third law, T=0 is a theoretically correct statement, but it is practically impossible. 

Why is this so? Because there exists very small interactions in the nucleus due to many type 

magnetic moments. In order to make T = 0, the magnetic moments are required to point in the 

same direction. Experimentally, this condition is not attainable. Some small interactions (e.g. 

nuclear paramagnetism) still remain in the ground state, i.e.  S0 ≠ 0. Hence we can only say S 

→  S0 as T → 0 where S0 is the entropy associated with the remaining small interactions. 

 

11.5 CONDITION FOR EQUILIBRIUM 
 

As we have discussed that the state of equilibrium is directly related with most probable state 

of the system. Therefore, we may state that equilibrium state of an isolated system has 

maximum entropy. At equilibrium the statistical entropy 𝜎 is a function of the energy of the 

system U≡ 𝐸, the number of constituent particles ni of particular group and some external 

parameter xi that can affect the system like pressure, volume or some external field (electric or 

magnetic field). 

 

11.5.1 THERMAL EQUILIBRIUM 

If 𝜎1 and𝜎 2 are respective statistical entropies of two sub systems, by using the additive 

property of entropy, the entropy of entire system is  
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 Subsystem 

1 

U1,𝜎1 

Subsystem 

       2 

U2 ,𝜎1 

 

 

thermal insulation 

Fig (11.5) 

  𝜎(U1, U2) = 𝜎1+ 𝜎2  (11.25) 

And     U= U1+ U2   (11.26) 

If small heat transfer from one system to other takes place, then  

    d 𝜎 = 𝑑𝜎1+ 𝑑𝜎2  

 

        = ( 
𝜕𝜎1

𝜕U1
 )dU1 +  (

𝜕𝜎 2

𝜕 U2
)dU2 (11.27) 

With the condition   dU = dU1 + dU2=0 at thermal equilibrium 

So  dU1 = -dU2 

           d = ( 
𝜕𝜎1

𝜕U1
 )dU1 +  (

𝜕𝜎 2

𝜕 U2
)dU2 (11.28) 

 

or  d 𝜎 = ( 
𝜕𝜎1

𝜕U1
 )dU1+  (

𝜕𝜎 2

𝜕 U2
)dU2 =0 

So the substitution of relation dU1 = dU2 gives 

 d = ( 
𝜕𝜎1

𝜕U1
  - 

𝜕𝜎 2

𝜕 U2
)dU1 = 0     (11.29) 

Since   dU1 ≠ 0 

Therefore, 
𝜕𝜎1

𝜕U1
  =  

𝜕𝜎 2

𝜕 U2
     (11.30) 

Defining a quantity 𝜏 as    
1

𝜏
 =  

𝜕𝜎

𝜕U
  (11.31) 

Where 𝜏 is called statistical temperature. Eq.  (11.30) and (11.31) show that two subsystems of 

a system will be at thermal equilibrium if their temperature is equal. Therefore, two sub systems 

are said to be in thermal equilibrium, when the energy content and the temperatures of the 

sub systems will no longer be changing with time. Statistical temperature 𝜏 is related to 

absolute temperature by the relation 

  𝜏 = kT, 

Where k is Boltzmann constant having value 1.38x 10-23 joule/K 

 

11.5.2 MECHANICAL EQUILIBRIUM  

Suppose that interface is movable, let it divides the two sub-systems into volume V1 and V2 so 

that total entropy gets maximum value. Then   

 

  𝜎(U1, U2,V1 ,V2) = 𝜎1 (U1 ,V1 )+ 𝜎2 ( U2 ,V2)   (11.32) 

At Mechanical equilibrium d 𝜎=0  

 

i.e.,    d 𝜎 =   ( 
𝜕𝜎1

𝜕U1
 )dU1  +  ( 

𝜕𝜎1

𝜕V1
 )dV1 +  (

𝜕𝜎 2

𝜕 U2
)dU2 +  (

𝜕𝜎 2

𝜕 V2
)dV2  = 0  (11.33) 

As we have seen, at thermal equilibrium 

       ( 
𝜕𝜎1

𝜕U1
 )dU1 +  (

𝜕𝜎 2

𝜕 U2
)dU2 = 0   (11.34) 
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so        ( 
𝜕𝜎1

𝜕V1
 )dV1  +  (

𝜕𝜎 2

𝜕 V2
)dV2   = 0   (11.35) 

And V = V1 +V2   = constant, thus 

 

  dV = dV1 +dV2 = 0 , hence dV1 = -dV2 

Applying it in eq. (11.35) 

 

       [( 
𝜕𝜎1

𝜕V1
 )  -  (

𝜕𝜎 2

𝜕 V2
)]dV1   = 0     (11.36) 

The above relation says that at mechanical equilibrium  

  
𝜕𝜎1

𝜕V1
 =   

𝜕𝜎 2

𝜕 V2
   (11.37) 

Introducing a new quantity p such that 

  
𝑝

𝜏
 =  ( 

𝜕𝜎 

𝜕 V
)U,N     (11.38) 

If the microscopic expression for the entropy is known, this equation allows one to calculate 

the equation of state connecting p, 𝜏and V. 

Eq. (11.38) shows that for a system in thermal equilibrium, the condition for Mechanical 

equilibrium will be 

  p1  = p2 

Suppose sub-systems are not initially in mechanical equilibrium but only in thermal 

equilibrium, and let initially p1> p2. The system will evolve so that d 𝜎 >0 

From eq. (11.33) we have  

  d 𝜎 =    
1

𝜏
( p1  - p2 )dV1> 0    (11.39) 

We have assumed initially p1> p2 ,so dV1 is positive. It shows p has characteristics of ordinary 

pressure. 

From thermodynamics 

  TdS= dU + PdV    

Substituting S= k and P = p  

  Td(k𝜎) = dU + pdV, 

  d𝜎 =  
d𝑈 

𝑘𝑇
 +  

𝑅𝑑𝑉𝜎 

𝑘 V
  (11.40) 

 

  ( 
𝜕𝜎 

𝜕 V
)E,N= 

𝑅 

𝑘 V
 =

𝑁 

 V
 =  

𝑝

𝜏
    (11.41) 

The above relation gives  N𝜏 = pV 

Comparing it with perfect gas equation PV = NkT, 

This gives p = P which is named as statistical pressure. 

 

11.5.3 DIFFUSIVE EQUILIBRIUM  

 

Suppose diffusion of molecules of the gas is allowed through interface i.e. exchange of particles 

is allowed. Let at the equilibrium ni1 and ni2, is number of molecule or particle of particular ith 

species of chemical system.   

𝜎(U1, U2, V1 ,V2,ni1, ni2)  = 𝜎1( U1,  V1 , ni1)+ 𝜎2 (  U2, V2, ni2)  (11.42) 

At equilibrium d 𝜎 = 0 

Applying differentiation law 

d𝜎 = ( 
𝜕𝜎1

𝜕U1
 )dU1 + ( 

𝜕𝜎1

𝜕V1
 )dV1+ (

𝜕𝜎 2

𝜕 U2
)dU2+ (

𝜕𝜎 2

𝜕 V2
)dV2+ ( 

𝜕𝜎1

𝜕ni1
 )dni1+ ( 

𝜕𝜎1

𝜕ni2
 )dn i2= 0 (11.43) 

When system has thermal equilibrium and mechanical equilibrium, from above, we have  

   ( 
𝜕𝜎1

𝜕U1
 )dU1 +  (

𝜕𝜎 2

𝜕 U2
)dU2=0   (11.44) 

And so 
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        ( 
𝜕𝜎1

𝜕V1
 )dV1  +  (

𝜕𝜎 2

𝜕 V2
)dV2   = 0   (11.45) 

Thus we have, at particle equilibrium 

d 𝜎 =    ( 
𝜕𝜎1

𝜕ni1
 )dni1  +  ( 

𝜕𝜎1

𝜕ni2
 )dni2= 0   (11.46) 

ni = ni1  +  ni2, i.e., total number of molecules or particles of particular ith species of chemical 

system will remains constant. 

Hence dni = dni1  +  dni2= 0, so  dni1  = -  dni2 

Thus, we have  

(
𝜕𝜎1

𝜕ni1
 -  

𝜕𝜎1

𝜕ni2
 )dni1= 0    

 

This implies       
𝜕𝜎1

𝜕ni1
 =    

𝜕𝜎1

𝜕ni2
   (11.47) 

By defining a new quantity 𝜇i,called chemical potential  

 

-
𝜇i

𝜏
 = (

𝜕𝜎 

𝜕 ni
)U,V    (11.48) 

Obviously when a system is in thermal equilibrium and mechanical equilibrium, the required 

condition for particle or diffusive equilibrium will be 

𝜇1 = 𝜇2 

i.e.  Chemical potential of two sub systems should be equal. 

 

11.6 RELATION BETWEEN STATISTICAL AND 

THERMODYNAMICAL QUANTITIES 
 

Let there be a very small change in the system, so that under reversible process system remains 

in equilibrium, i.e. process should be slow and with slight deviation. 

We have  𝜎  = 𝜎 (U,ni, xj) 

d 𝜎 =   ( 
𝜕𝜎

𝜕U
 )dU  +  ∑i( 

𝜕𝜎

𝜕ni
 )dni  + ∑j(

𝜕𝜎 

𝜕 xj
)dxj    (11.49) 

From the relations 
1

𝜏
 =  

𝜕𝜎

𝜕U
     and         -

𝜇i

𝜏
 =   

𝜕𝜎 

𝜕 ni
 

and introducing   -
𝑋j

𝜏
 =  

𝜕𝜎 

𝜕 xj
 , where Xjis some generalizing force related to coordinate xj 

This equation can be written as 

 

d 𝜎 =    
1

𝜏
dU -∑i

𝜇i

𝜏
 dni + 

1

𝜏
 ∑j X jdxj  (11.50) 

By arranging, we get 

 

dU = 𝜏. d 𝜎  + ∑i 𝜇i dni  - ∑j X jdxj  (11.51) 

 

Suppose a simple system having only volume as an external parameter and number of particles 

is constant. So dni = 0, xj = V and generalizing force Xj = p (statistical pressure)  

Applying these conditions in above equation  

 

dU =  𝜏. d 𝜎    -   pdV   (11.52) 

It is obvious from equation (11.52) that the change in internal energy of the system takes place 

in two ways  

When dV=0, external parameter remains constant, 𝜏.d𝜎  represents the change in internal 

energy U. It is a quantity of heat energy absorbed by the system in reversible process. 
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In case when d 𝜎 =0, the term -pdVwill represent the change in internal energy due to change 

in external parameter V, i.e. this term represents mechanical work. Thermodynamically the 

work done must be –PdV, comparing both we have p = P 

Comparing eq. (11.52) with dU = TdS – PdV we have 

 

TdS = 𝜏. d𝜎  (11.53) 

 

So calculations show that S and 𝜎, T and 𝜏 are equivalent quantities, related by a proportionality 

term known as Boltzmann constant k, as S =  𝑘𝜎 ,   𝜏 = kT.    

Now   U= U(𝜎, 𝑉) 

dU = ( 
𝜕𝑈

𝜕𝜎
 )d𝜎 +  (

𝜕𝑈

𝜕 V
)dV    (11.54) 

 

Comparing Eq. (11.52) with Eq. (11.54), we get  

 

𝜏 = ( 
𝜕𝑈

𝜕𝜎
 )V       

and       p = −(
𝜕𝑈

𝜕 V
) 𝜎  (11.55) 

 

In practice, to study any physical process calculations in terms of the independent variables  𝜎 

and V, are quite inconvenient. So more easily applicable relations can be established by using 

the auxiliary functions like Helmholtz free energy F which is a function of V an𝑑  𝜏  , enthalpy 

H a function of  𝜎 and p, and Gibb’s free energy G a function of 𝜏  and p. 

 

11.6.1 HELMHOLTZ FREE ENERGY, F 

 

By using the thermodynamic potential function, Helmholtz free energy F defined as  

F = U - TS     

   = U – 𝜏𝜎       

Differentiating above eq. both sides 

dF =  dU -  𝜏𝑑𝜎 - 𝜎𝑑𝜏       

 By using eq. (11.52) 

dF = - pdV - 𝜎𝑑𝜏   (11.53) 

As F = F (V, 𝜏) 

dF =  ( 
𝜕𝐹

𝜕𝑉
 )d𝑉 +  (

𝜕𝐹

𝜕𝜏
)d𝜏   

Comparing above eq. with (11.53), we have 

p = (
𝜕𝐹

𝜕𝑉
 ) 𝜏   

and     𝜎=   −(
𝜕𝐹

𝜕𝜏
)V   (11.54) 

 

11.6.2 THE ENTHALPY H 

The enthalpy H is defined as 

H = U + pV  

Differentiating it, dH = dU + pdV + Vdp, using dU = 𝜏. d 𝜎  - pdV 

dH = 𝜏d𝜎 + Vdp   (11.55) 

 Again H = H(𝜎, 𝑝), so  

dH = ( 
𝜕𝐻

𝜕𝜎
 )d𝜎 + (

𝜕𝐻

𝜕𝑝
)d𝑝   (11.56) 

On comparing Eq. (11.55) with Eq. (11.56), gives 
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𝜏 =  ( 
𝜕𝐻

𝜕𝜎
 )p      

and     (11.57) 

V = (
𝜕𝐻

𝜕𝑝
) 𝜎   

 

 

 

11.6.3 GIBBS FREE ENERGY G  

 

The Gibb’s function G is defined as 

G = U- TS + PV  

    = U – 𝜏𝜎 - pV   

On differentiating, 

dG = dU – 𝜏𝑑𝜎 - 𝜎 𝑑𝜏 + p dV + Vdp 

     =   - 𝜎𝑑𝜏  + Vdp   (11.58) 

As G = G(𝜏, 𝑝) 

dG  = ( 
𝜕𝐺

𝜕𝜏
 )d𝜏 + (

𝜕𝐺

𝜕 p
)dp   (11.59) 

Comparing Eq. (11.58) with Eq. (11.59), we gt 

 

𝜎 = -( 
𝜕𝐺

𝜕𝜏
 )p      

and    V= (
𝜕𝐺

𝜕 p
) 𝜏     (11.60) 

Thus Gibbs free energy G is introduced if 𝜏 and p are independent variables.  

 

11.7 STATISTICAL ANALYSIS OF A PERFECT GAS 
 

Let us consider an isolated perfect monoatomic gas has constant energy E or U, constant 

numbers of particles N, having mass of each particle m and fixed volume V. The volume 

occupied by gas in phase space  

∆Γ =  
1 1...... ........f

f
dq dq dp dp    (11.61) 

Here f = 3N for monoatomic gas 

In an ideal gas, since all particles are non- interacting hence the energy of the system will be 

independent of position of the particles. So volume available for N particles is 

1...... fdq dq  = VN   (11.62) 

So equation (11.61) becomes 

∆Γ = VN
1........... fdp dp   (11.63)

 

The integration of the above equation will be evaluated in 3N dimensional momentum space 

in the energy range E – dE to E. So the radius of the hyper sphere of constant E in 3N 

dimensional momentum space will be  2p mE  and similarly for hyper sphere of constant  

E – dE is 2 ( )m E dE , the thickness of spherical hyper shell is  
2

m
dE

E
 

 Since the volume of 3-dimensonal sphere of radius R is  
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V3 34

3
R  =  

3/ 2
3

3 2
( )

2

R





    (11.64) 

It can be generalized for the volume of f dimensional sphere, by replacing all 3 by f  

Hence Vf(R) =  

/ 2

2
( )

2

f
fR

f






   (11.65) 

Since f = 3N  

The volume of 3N dimensional hypersphere of radius  2p mE  is 

                                  V3N =   

3 / 2
3 / 2(2 )

3 2
( )

2

N
NmE

N






      (11.66) 

 Since              3 2

2

N  
 
 

= 3
!

2

N     

we have   
3 / 2

3 / 2

3 (2 )
3

!
2

N
N

NV mE
N



 
 
 

  (11.67) 

The volume of spherical hyper shell is 

 

     

3 / 2
3 / 2 3 / 2

1..... [(2 ) {2 ( ) }]
3

( )!
2

N
N N

fdp dp mE m E dE
N


      

3 / 2
3 / 2 3 / 2(2 ) [1 (1 ) ]

3
( )!

2

N
N NdE

mE
N E


  

3 / 2
3 / 2 3

(2 ) [1 exp( )]
3 2

( )!
2

N
N N dE

mE
N E


    (11.68) 

 

For a gaseous system 3N ∼ 1023 (very large) 

Hence 3

2

N dE >> E, so the exponential term will be negligibly small, hence we drop it. Hence 

Eq. (11.68) becomes  

1........... fdp dp  =  

3 / 2
3 / 2(2 )

3
( )!

2

N
NmE

N


    (11.69) 

Substituting it in equation for   

∆Γ = 

3 / 2
3 / 2(2 )

3
( )!

2

N
N NV mE

N



  

(11.70) 

Now the statistical entropy 𝜎 
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𝜎= ln∆Γ = ln[

3 / 2
3 / 2(2 )

3
( )!

2

N
N NV mE

N


]    

can be written as 

 =
3/ 2 3/ 2 3

ln[ (2 ) ] ln !
2

N
N V mE

 
  

 
   (11.71) 

To simplify factorial term we have to use Stirlings’s approximation lnn! = nlnn – n 

 

3/ 2 3/ 2 3 3 3
ln[ (2 ) ] ln

2 2 2

N N N
N V mE 

   
     

   
    (11.72) 

Rearranging eq. (11.72)  

𝜎
3/2 3/2

3/2

(2 ) 3
ln[ ]

23

2

V mE N
N

N


 

 
 
 

    

3/ 2 3/ 2
4 3

ln[ ]
3 2

m E N
N V

N

   
    

   
   (11.73)                                         

Since the entropy must be independent of the unit of   hypervolume, to make the term inside ln 

dimensionless we divide it by h3N, so the corrected relation between entropy and phase space 

hypervolume is 

3
ln

Nh





 (11.74) 
 

or  

3/ 2 3/ 2

3

4

33
ln

2

m E
V

NN
N

h





    
    

     
 
 
 

  (11.75) 

Quantity such as E, V,N and 𝜎 etc. follows the additive rule and called extensive variables. On 

the other hand, the variables which arise from differentiating the entropy, such as 

temperature1/T = ∂𝜎/∂E and pressure p = T∂𝜎/∂V and chemical potential μ = T∂S𝜎/∂N 

involves the ratio of two extensive quantities and so do not change as we divide or add the 

system: they are called intensive quantities. The eq. (11.75) do not follows additive law of 

entropy.  To make it additive we have to divide it again by the factor N!. 

Hence,     

3
ln

. !Nh N



    (11.76) 

By Stirling’s approximation lnN! = NlnN – N = ln(N/e)N, where e is the base natural logarithm 

(logee = 1). So our equation modifies as 

 

            

3/ 2 3/ 2

3

4

33
ln

2

V m E
e

NN N
N

h

    
    

     
 
 
 
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or  𝜎

3/ 2 3/ 2

3

4

53
ln

2

V m E

NN N
N

h

    
    

     
 
 
   

(11.77) 

 

In eq. (11.77) V and E both are divided by N, due to which these terms becomes volume per 

particle and energy per particle respectively .Thus, this relation will exactly follow the additive 

rule. By using this equation we can make the relation of statistical quantities with their 

corresponding thermodynamical quantities for an ideal gas. Let us make some relations. 

 

11.7.1 INTERNAL ENERGY 

In section 15.5.1 Eq. (7) we have established a relation for statistical temperature 𝜏 

1

U





 
  

 
    (11.76) 

Here we have used total energy term E in place of U. so for an ideal gas  

1

E





 
  

 
   (11.77) 

Using equation (11.77) 

 

  

3/ 2 3/ 2

3

4

1 53
[ ln ]

2

V m E

NN N
N

E h





    
    

      
 
 
 

     

Applying log rule 

 
3/ 2

31 4 3 3 5
[ ln ln ln ln ln ln ]

3 2 2 2

m N N N
N V N N N N E N h

E





  
       
  

 (11.78) 

We get 
1 3

[ ln ]
2

N
E

E





 = 3 1

2

N

E
   (11.79) 

This gives  

E = 3

2

N
  , (since    =kT) 

Thus, E  3

2

NkT
      (11.80) 

This is the internal energy of an ideal monoatomic gas. 

 

11.7.2 THERMODYNAMIC ENTROPY S OF IDEAL GAS  

 

We have established a relation between statistical entropy  𝜎 with thermodynamic entropy S as  

S = k𝜎 using equation (11.77)  

   
3/ 2 3/ 2

3

4
53

ln
2

V m E
NN N

S kN k
h

 
 

  
  

   (11.81) 
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Since E 3

2

NkT
  , Hence we have 

3/ 2

2

2 5
ln

2

V mkT
S Nk Nk

N h

   
    

   
  (11.82) 

(We will use this relation to resolve Gibbs paradox in forthcoming Unit) 

S = 
3/2

5/2

3

(2 )
ln ln

V mkT
Nk Nk e

Nh

 
 

 

   

or   S =  
3/2

5/2

3

(2 )
ln

V mkT
Nk e

Nh

 
 
 

   (11.83) 

This relation is known as Sacur -Tetrode formula for entropy of a perfect monoatomic gas. 

Since the thermal de-Broglie wavelength associated with a molecule at temperature T is  

2
T

h

mkT



     (11.84) 

Hence S =  3

5
ln

2

V
Nk Nk

N

 
 

 
  (11.85) 

 

11.8 SUMMERY 
 

1.A macrostate specifies a system in terms of quantities that “average” over the microscopic 

    constituents of the system. 

2.A microstate specifies a system in terms of the properties of each of the constituent  

    particles. Many different microstates can correspond to a single macrostate 

3.The postulate of equal a priori probability is: all accessible microstates corresponding to 

     possible macrostate are equally probable. 

4.The equilibrium state of a system corresponds to the macrostate of maximum thermo- 

dynamical probability. 

5.Ergodic hypothesis is:the time average for a thermodynamic variable which is equivalent to 

its 

average over all possible microstates. 

6.For a very large particles system lnΩ ≈lnΩmp≈ lnΩ̅, that means in macroscopic systems 

    almost all microstates are associated with the most probable macrostate. The knowledge of 

    the most probable macrostate is sufficient for the systems at equilibrium.  

7. The required condition of equilibrium when two systems are in thermal contact is
    

'

ln ln ' 'E E

E E

   


   
, or   .where 𝛽(𝐸) =

 𝜕𝑙𝑛Ω

𝜕𝐸
  =  

𝑑Ω

Ω𝑑𝐸
 

 

8.Boltzmann's entropy relation is the statistical entropy of a system is defined as S =k.lnΩ 

10. The statistical entropy of a system is, 
3

ln
. !Nh N





 

11.Two subsystems of a system will be at thermal equilibrium if their temperature are equal. 

12.Statistical temperature 𝜏 is related to absolute temperature by the relation𝜏 = kT, 

13.The condition for Mechanical equilibrium is p1 = p2 and T1 =T2, gives 
𝑝

𝜏
 = ( 

𝜕𝜎 

𝜕 V
)U,N    

14.When a system is in thermal equilibrium and mechanical equilibrium, the required  

condition for particle or diffusive equilibrium will be 𝜇1 = 𝜇2, and -
𝜇i

𝜏
 =  (

𝜕𝜎 

𝜕 ni
)U,V  

15. The relation between statistical entropy  𝜎 with thermodynamic entropy S is, S = k 𝜎 

   ' 'E E 
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16. Entropy of ideal gas is  

3/ 2

2

2 5
ln

2

V mkT
S Nk Nk

N h

   
    

     

 

11.9 REFERENCES AND RELEVANT READINGS  
 

1.  Reif, F. Fundamentals of Statistical and Thermal Physics. New York, NY: McGraw-

Hill,  June 1, 1965. ISBN: 0070518009. 

2.  Hemne, P.S,Subrahmanyam N.,Brijlal .Heat and Thermodynamics. S Chand pub. New  

Delhi, 2014. ISBN 81-219-2813-3. 

3.  Huang, Kerson, Statistical Mechanics, 2nd ed., John Wiley & Sons, Inc., 1987,  ISBN 

0-471-81518-7. 

4. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd Edition, Part I (Butterworth- 

Heinemann, Oxford, 1980) ISBN 0-7506-3372-7. 

5.  Wannier, Gregory H., Statistical Physics, Dover Publications, 1987, ISBN 

048665401X. 

6.  Satya Prakash, Statistical Mechanics. edition 2014 (Kedar Nath Ram Nath pub, Delhi). 

7.  Beiser, A., Mahajan S., S.RaiChoudhary. Concepts of Modern Physics. 6th edition 2009  

(Tata McGraw Hill, NewDelhi)ISBN: 978-0-07-015155-0.  

8.  Laud, B.B. Fundamentals of Statistical Mechanics. 2nd edition 2012. ISBN 978-81-224-

3278-7 

9.  Pathria, R. K., Statistical Mechanics, 2nd ed., Butterworth-Heinemann, Burlington, 

MA, 1996, ISBN 0 -7506-2469-8. 

10.  Zemansky, M., and R. Dittman. Heat and thermodynamics: an intermediate textbook. 

7th  Ed. New York, NY: McGraw-Hill Companies, 1997. ISBN: 0070170592  

 

 

11.10 TERMINAL QUESTIONS 
 

1. What are the fundamental postulates of statistical mechanics? 

2. What is the theorem of a priori probability, explain with example. 

3. What is Ergodic hypothesis? State and explain its significance. 

4. Define the terms macrostate and microstate. What is accessible macrostate? 

5. 4 particles are distributed in 2 cells; tabulate all possible macrostate and their  

corresponding microstate. 

6. What is thermodynamical probability? When its value becomes maximum? 

7. What is the most probable state? Give its connection with thermodynamical probability. 

8. 9 classical particles are distributed in 3 cells of equal size. Calculate the thermodynamical  

probability for 

a. n1 =0, n2 = 0, n3 = 9 

b. n1 =3, n2 = 3, n3 = 3 

c. n1 =4, n2 = 2,  n3 = 3 

Which distribution is most probable, least probable? Calculate the number of microstate in  

the macrostate (n1 =4, n2 = 2,  n3 = 3) and its probability.  

(Ans. b, a, microstates: 1260, probability: 0.064) 

9. Explain the significance of most probable state.  

10. Define entropy; discuss second and third law of thermodynamics in terms of entropy. 

11. Drive Boltzmann’s entropy relation S = klnΩ and its importance. 

12. State and prove the Boltzmann’s relation between entropy and probability. 
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13. Prove that, when two systems are in thermal equilibrium  𝛽(𝐸) =
 𝜕𝑙𝑛Ω

𝜕𝐸
  =  

𝑑Ω

Ω𝑑𝐸
 =

1

kT
 

14. Prove that when two subsystems of a system are at thermal equilibrium if their  

temperatures are equal. 

15. How is Statistical temperature 𝜏 related to Thermodynamical temperature T? 

16. What is Suckur-Tetrode equation? Explain its importance. 

17. Discuss the condition for Mechanical equilibrium. Prove  
𝑝

𝜏
 = ( 

𝜕𝜎 

𝜕 V
)U,N    

18. What is diffusive equilibrium .Prove that at diffusive equilibrium    -
𝜇i

𝜏
 = ( 

𝜕𝜎 

𝜕 ni
)U,V  

19. Prove relation between statistical entropy  𝜎 with thermodynamic entropy S,  S = k 𝜎  . 

20. Prove the following relations: 

a.    𝜏 = ( 
𝜕𝑈

𝜕𝜎
 )V      and     p = −(

𝜕𝑈

𝜕 V
) 𝜎 , where U is total internal energy. 

b.    p = (
𝜕𝐹

𝜕𝑉
 ) 𝜏  and    𝜎=   −(

𝜕𝐹

𝜕𝜏
)V, where F is Helmholtz free energy. 

 

c.     𝜏 = (
𝜕𝐻

𝜕𝜎
)p     and   V = (

𝜕𝐻

𝜕𝑝
) 𝜎  , where H isEnthalpy. 

 

d.         𝜎 = - (
𝜕𝐺

𝜕𝜏
)p     and   V=(

𝜕𝐺

𝜕 p
) 𝜏 , where G is Gibbs free energy. 

21.What are statistical temperature, statistical pressure and statistical entropy? 
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 12.1 OBJECTIVES 

After going through this unit, you will be able to: 

 Understand  the behaviour of  a system  in thermal contact with  heat bath  

 Derive Boltzmann canonical distribution law and partition function 

 Know  the law of equipartition of energy 

 Establish statistical definition of thermodynamic variables 

 Understand  Maxwell - Boltzmann statistics 

 MB  energy distribution  function  for ideal gas 

 Define chemical potential 

 Derive the relations of partition function with thermodynamic functions 

 Give the relationships between energy and partition function.  

 Understand  Gibbs paradox and  its resolution 

 

12.2 SYSTEM IN THERMAL EQUILIBRIUM WITH A HEAT 

BATH  

Let us consider a small sub system A in thermal contact with a large reservoir (heat bath) fig. 

(12.1) so that entire system is thermal equilibrium, i.e. temperature remains constant during the 

small exchange of energy between A and A. Now our aim is to find general expression for the 

probability Pi of finding the system A in any one particular energy state i (microstate) of energy 

∈i. Let Ω ( ∈ ) be the number of accessible energy states when system lies between  and  

∈ + d∈, in a large reservoir A having energy ∈ .  

 

                Reservoir  A 

 

 sub-

system 

      A 

∈,T 

∈t = ∈ + ∈i 

Fig (12.1) 

When sub-system A is in its ith energy state by the law of energy conservation, the total energy 

of the whole system At = A + A’ will be ∈t = ∈ +∈i 

So         ∈  =  ∈t - ∈i (12.1) 

So the probability Pi of finding the system A’ in any one particular energy state i of energy ∈i  

will be proportional to number of states accessible to energy range ∈ to ∈ +𝑑 ∈ , d∈ is much less 

then  

  Pi∝ Ω ( ∈t - ∈i  )  (12.2) 

Since A is much smaller than A, obviously ∈t>>∈i.So  

  ∈≈ ∈t     (12.3) 
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Expending lnΩ ( ∈ ) = lnΩ(  ∈t - ∈i ) by Taylor’s expansion 

  lnΩ(  ∈t - ∈i ) =  lnΩ(∈t) - 
ln

T

i

 


 

  
 

 
 

Since 
ln




  
  

 
, so the above equation becomes  

 lnΩ(∈t - ∈i) = lnΩ(∈t) - 
i   (12.4) 

where 1

kT
   is called  - parameter, hence 

     lnΩ(∈t - ∈i) = lnΩ(∈t) - 
i  

  = Ω(∈t) ie


  

From above equations, we get Pi∝ Ω(∈t) ie
 .  

Since Ω(∈t) is independent of ln∈i, this equation can be written as 

 Pi = C ie


  (12.5) 

This is Boltzmann canonical formula in which ie


is known as Boltzmann factor.  Its plot at 

different temperature (T2> T1) is shown in Fig (12.2).The proportionality   constant C can be 

evaluated by using the condition of normalization for probability distribution function Pi  

as 

  
1i

i

P 
  

 

            =  1i

i

C e


       (12.6)            

This gives , C = 
1

i

i

e



 

Substituting the value of C in equation (12.5) 

Finally,   Pi =  
i

i

i

e

e










  (12.7) 

The Boltzmann distribution gives the relative probability of a system in thermal equilibrium 

with a heat bath to be in a single microstate of given energy; it is independent of the internal 

structure of the system whether  it is big, small, classical, quantum, fermion, boson, etc. 
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The quantity ∑ [𝑖 𝑒− 𝛽.𝜀𝑖] is the sum over all the states of the system or equivalently, the sum of 

the relative probabilities of each energy value, and known as partition function of the system, 

denoted by Z. By the knowledge of   the partition function Z (β) for all values of β, we can 

compute every thermodynamic parameter required to know about the system. That is, a system 

is fully characterized by its partition function. Since a system is also fully characterized by its 

energy density of states, therefore, knowledge of the partition function with that of the density 

of states are equivalent. 

 

 
 

Fig (12.2) 

Since Pi gives the probability of being a particle in ith energy state of energy 𝜀i, so the mean 

energy will be  

 

        

_

i i

i

E P    

=   

i

i

i

i

i

e

e





 






     (i) 

  Taking the numerator of eq. (i)  

       

i

i

i

e
 

  =   i

i

e








  

                                   =     i

i

e







    (ii) 

 

We have   
_

i i

i

E P  =    

i

i

i

i

e

e

















    (iii) 

Since Z = i

i

e


  then  the above equation becomes 
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_ Z
E

Z 





     (iv) 

 Or  

_ ln Z
E







    (v) 

 

It is clear from Eq. (v) that to calculate average energy we should have knowledge of 

partition  Function Z. 

Since Pi =  in

N
. where ni is the number of particles in  

i
  energy state and N is the total number 

of particles in the system. 

Hence from eq. (12.7) 

 in  =  i
N

e
Z

       (12.8) 

12.3 LAW OF EQUIPARTITION OF ENERGY 

The mean energy of the system related to each degree of freedom is also known as law of 

equipartition of energy.  A degree of freedom is essentially a variable whose value may change.  

In the case of a physical system, the positions of the particles that comprise the system are 

degrees of freedom.  For a single particle in 3-dimensional space, there are three degrees of 

freedom because three coordinates are required to specify its location.  Our main interest is in 

those variables that are related to the energy of the system, like the velocities gives the kinetic 

energy, the positions gives the potential energy, etc.  In other words, we are supposed to 

associate some kinetic energy and some potential energy with each degree of freedom. So we 

treat the kinetic and potential energies as degrees of freedom.  An isolated single point particle, 

which is free to move in three-dimensional space, has three mutually perpendicular components 

of its velocity, hence has three degrees of freedom which may have energy associated with 

them. We do not count particle's position coordinates as degrees of freedom because we 

assumed   it is not interacting with any other particle,  On the other hand, a three-dimensional 

harmonic oscillator has potential energy as well as kinetic energy, so it has 6 degrees of 

freedom. The idea is that each degree of freedom, as it were, contains some energy.  The total 

internal energy of a system is the sum of all the energies of all the degrees of freedom.  

Conversely, the amount of energy that may be transferred into a system is affected by how 

many degrees of freedom the system has.   

Let us consider a monoatomic system having N particles. The total energy of the system will 

be function of f position coordinates q1,q2,…..qf and f momentum coordinates p1, p1, …….pf.  

Since,          1 2 1 2( , ,.... , , ,... )f fq q q p p p    (12.9) 

 Where number of degrees of freedom, f = 3N 
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          The total energy of the system is   

23

1 2

N
i

i

p

m




     (12.10) 

Equation (12.9) can be written as the sum of terms ( )i i ip   and 

, ,

1 2 1 2 1 1( , ,.... , , ,.. , . )f i i fq q q p p p p p     where ( )i i ip   depends only on pi so independent 

of rest of the system, and 
, ,

1 2 1 2 1 1( , ,.... , , ,.. , . )f i i fq q q p p p p p     is not a function of pi, hence 

represents rest of the system. 

The mean energy ( )i i ip   

 

_ _

( ) i
ii ip    = 

i

i

i

e

e





 






  (12.11) 

Since,
,

1 2 1 2 1 1( ) ( , ,.... , , ,.. , . )i i f i i fp q q q p p p p p       , we have  

 

 

'

1

'

1

,...

,...

i

i

i f

i

f

e dp dp

e dp dp

  

  




 

 




 (vi) 

This can be rearranged as 

'

1

'

1

,...

,...

i

i

i i f

i

i f

e dp e dp dp

e dp e dp dp

 

 




 

 

 

 
 

i

i

i i

i

i

e dp

e dp















   

or, 

2

2ln
i

i

p

m
i ie dp







 

   (12.12) 

Let  

2
2

2

i
i i

p
bp

m
  

   
(vii)

 

2

ln ibp

i ie dp





 

      (12.13) 

We are integrating eq. (12.13) in the limit -  to . Again let x= ip   so dx =  . idp  , then  

eq. (12.13) becomes  
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1
ln(i

 


 



2

)bxe dx







    (viii) 

21
( ln l  n )   

2

bx

i e dx 









   

     (ix) 

By using standard definite integral 
2 1

2

xe dx 



   when limits are taken from 0 to .   

Since the second term of eq. (ix) does not contain     , hence its differentiation with respect 

to  will be zero. 

Thus, we have     

1
(  ln ) 

2
i 




  


  (12.14) 

We  get    
1

2
  i


     (12.15)                                                                                                           

As, 1
 

kT
   we have then   

mean energy    

  
2

 i

kT
 

  
(12.16) 

This is the law of equipartition of energy which state that “The average energy per degree of 

freedom, of a system at an equilibrium temperature T is  
2

 i

kT
  , where k is Boltzmann 

constant”. The modified statement of this theorem is “At thermal equilibrium T, the average 

energy per independent quadric term appearing in energy expression of a system is  
2

 i

kT
  ”. 

So, each quadratic degree of freedom, at equilibrium, will have the same amount of energy. If 

all terms in the energy are quadratic then the mean energy is distributed equally over all degrees 

of freedom (hence the name “equipartition”).  But, this equipartition of energy theorem is valid 

only in the classical limit and high temperature limits.  That is, when the energy level spacing 

is small compared to kTi.e. ∆E < kT.   

12.4 STATISTICAL DEFINITION OF THERMODYNAMIC 

VARIABLES 

In this section we will establish the relation between some thermodynamic variables like 

entropy, pressure, temperature etc. by the application of Boltzmann’s canonical probability 

distribution function. We will see that statistical approach gives the same results as 

thermodynamical approach.  


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12.4.1 PRESSURE   

If the system depends on the external parameter x, then Er=Er(x) and from the definition of the 

generalized force Xr ,we have  

x

E
X r

r



   (12.17) 

So the average value of external parameter X is 























r

E

r

rE

r

r

e

x

E
e

X




 

………………..    (12.18) 

Then  

x

Z
X






ln1

  

 (12.19) 

The average work done =average force x displacement, i.e., 

dxXdW   

Where the external parameter is V, i.e. x = V 

dV
V

Z
dW






ln1

  

 (12.20)

 

Therefore, the average pressure is 

V

Z
p






ln1

    (12.21) 

12.4.2 ENTROPY  

We can write thermodynamics functions in terms of partition function also. The partition function 

is given by  rE x
Z e


 so it can be represented in terms of , x since Er = Er(x) 

and  Z = Z (  , x), considering a small change 

 

ln ln
ln

z Z
d z dx d

dx




 
 


  

or lnd Z dW Ed     (12.22) 

The last term can be written in terms of the change in E rather than the change in  . Thus  
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 lnd Z dW d E d E      (12.23) 

   lnd Z E dW d E dQ        (12.24) 

Using mathematical form of second law of thermodynamics i.e. , 

dQ
dS

T
  

we get,  

It is a relation between entropy S to partition function Z and the average energy  E  

 Now   EZkTTS  ln  

From Helmholtz free energy relation F= TSE  , ln Z  is very simply related to Helmholtz free 

energy F as F= TSE  =  -kT lnZ 

Thus, thermodynamic relations can also be obtained easily from the principles of statistical 

mechanics 

 

12.5 MAXWELL-BOLTZMANN STATISTICS 

 
Consider a closed system having N independent, identical and distinguishable particles, in 

other words a classical system. For an isolated system, the total numbers of particles and energy 

of the system must remain constant. Hence, we have two system constraints that can be 

expressed as 

 

∑ 𝑛𝑘
𝑖=1 i = N     (12.25) 

 

∑ ∈𝑘
𝑖=1 i𝑛i  = E     (12.26) 

 

Where k represents number of energy states from ε1,  ε2… εi …to  εk.And niis the number of 

particles occupying the ith energy level with energy, εi . Expressing the total number of 

particles N, and the total energy E, in terms of summations over all possible energy levels 

inherently implies independent particles. We also note that the total system energy E, must, of 

course, be equivalent to the macroscopic internal energy U. Let the energy levels are again sub-

divided into cells of equal volume. Let the ith energy level is divided into gi cells. So gi is the 

degeneracy of ith energy state. For classical particles there in no restriction on the number of 

particles in a cell.  

Suppose in a particular distribution n1 particles are distributed in 1st energy level, so the 

number of ways n1 particles can be distributed in 1st energy level is
 1 1

!

! !

N

n N n
,since this 

energy level is further divided in g1 cells, so number of ways ni particles can be distributed in 

 EZkS  ln
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gi cells is  g1 xg2 xg3 …..n1 (times) = (g1)
n1 .Hence the total number of ways n1 particles can be 

distributed,from N particles, in 1st energy level is 

𝐶𝑛1
𝑁 . (g1)

n1 =
 1 1

!

! !

N

n N n
  (g1)

n1 (12.27) 

 

Let n2 particles are distributed in 2nd energy state. The total number of ways n2 particles can be 

distributed in 2nd energy level from the remaining N-n1 particles 

=  𝐶𝑛2
𝑁−𝑛1. (g2)

n2 =  
1

2 1 2

( )!

!( )!

N n

n N n n



 
.(g2)

n2 (12.28) 

and so on. 

 

 

 

 

Fig. (12.3) 

 

It is a composite event .So the total ways of possible distributions, i.e. the number of microstates 

corresponding to macrostate (n1 ,n2…nk) 

 

Ω(n1 ,n2…nk)=  𝐶𝑛1
𝑁 . (g1)

n1.𝐶𝑛2
𝑁−𝑛1. (g2)

n2……𝐶𝑛𝑘
𝑁−𝑛1−𝑛2−⋯−𝑛𝑘(gk)

nk  (12.29) 

 

 

=

   
 1 1

!

! !

N

n N n
  (g1)

n1. 
1

2 1 2

!

! !

N n

n N n n



 
.(g2)

n2……
1 2 1

1 2

... !

! ... !

k

k k

N n n n

n N n n n

 

  
(gk)

nk 

 

=
1 2

!

! ! !... !k k

N

n n n n
(g1)

n1(g2)
n2 …..(gk)

nk   

 

or, Ω(n1 ,n2…nk) =  N!.
1

( )

( )

ink
i

i i

g

n

    (12.30) 

 

Most probable macrostate:  taking logarithm of eq. (12.30) and simplifying it  

 

 lnΩ(n1 ,n2…nk) =  lnN! -∑ [ln𝑖 (gi)
ni  - ln ni! ] 

 

      =   ln N!  -  ∑ [𝑛𝑖 i.ln(gi)  - ln ni!  (12.31)  

 

By applying Stirling’s approximation, when N is a very large number   

 

 

nk,   ∈1 

 

gk =2 

 

 

   

 

 

ni, ∈i 

 

gi =3 

 

 

 

   

 

 

n1, ∈1 

 

g1=3  

 

 

   cell 1 
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lnN! ≈ N ln N- N   

we have 

lnΩ(ni) =  N lnN - N -  ∑ [𝑛𝑖 i.ln gi  - ni.ln ni + ni ]    

Differentiating it with respect to ni ,we have 

       d(lnΩ(ni)) = ∑ [𝑖 ln gi  - ln ni]dni  

 =  ∑ [𝑖 ln i

i

g

n

 
 
 

]dni  

Since the condition for most probable macrostate is d(lnΩ(ni)) = 0 

Therefore, 

∑ [𝑖 ln i

i

g

n

 
 
 

]dni = 0  (12.32) 

Since the system is closed (N and E is constant), using the constraints as stated earlier  

 

∑ 𝑑𝑛𝑘
𝑖=1 i = dN =0     (12.33) 

 

∑ ∈𝑘
𝑖=1 i𝑑𝑛i  = dE = 0   (12.34) 

 

To evaluate Eq. (12.32), applying Lagrange’s method of undetermined multipliers, let Eq. 

(12.33) be multiplied by –𝛼 and Eq. (12.34) by   - 𝛽  , adding to Eq. (12.32). 

We have 

∑ [𝑖 ln i

i

g

n

 
 
 

   – 𝛼 - 𝛽.ε i]dni = 0  (12.35) 

From the above equation  

ln i

i

g

n

 
 
 

  – 𝛼 - 𝛽. εi= 0 

which gives, 

    ni = gi. 𝑒– 𝛼 − 𝛽.𝜀𝑖   (12.36) 

This is Maxwell-Boltzmann distribution law, gives the count of particles in ith energy state 

when system is in equilibrium state (most probable). Assuming A = 𝑒– 𝛼  , Eq. (12.36) becomes 

 

ni = giA𝑒− 𝛽.𝜀𝑖  (12.37) 

 

In this equation A and  𝛽 are dependent parameters of thermodynamical state of the system. 

Eq. (12.37) shows that the number of particles in a cell decreases exponentially with the 

increase in energy εi corresponding to that cell. From the graph, fig (12.2), we conclude that 

low energy cells will contain more particles in comparison to high energy cells; the number of 

particles being maximum in zero-energy cell.it does not mean that the number of particles 

having zero energy is greater than any other energy because there are more cells corresponding 

to high energy.  The quantity 𝑒− 𝛽.𝜀𝑖 in this expression is called Boltzmann factor and gi is 

priori probability for the energy zone εi. 

 

12.5.1 EVALUATION OF THE CONSTANT A 

 

By putting Eq. (12.37) into Eq.(12.25) 

 

∑ (𝑖  ni)  = ∑ [𝑖  gi.A. 𝑒− 𝛽.𝜀𝑖] = N   
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or  N = A. ∑ [𝑖  gi. 𝑒− 𝛽.𝜀𝑖]  (13.38) 

 

The quantity ∑ [𝑖  gi. 𝑒− 𝛽.𝜀𝑖] is the sum over all the states of the system or sum of relative 

probabilities of all the microstates, or equivalently, the sum of the relative probabilities of each 

energy value, and known as partition function of the system, denoted by Z. By the knowledge 

of   the partition function Z (β) for all values of β, we can compute every thermodynamic 

parameter there as to know about the system. Thus, a system is fully characterized by its 

partition function. Since a system is also fully characterized by its energy density of states, 

therefore,  

 

 Z = 
𝑁

𝐴
 = ∑ [𝑖  gi. 𝑒− 𝛽.𝜀𝑖]  , 

From this we get, 

 

A = 
𝑁

𝑍
  = 

i

i

i

N

g e



  

Now 

 ni = 
 N.𝑒− 𝛽.𝜀𝑖

∑ [𝑖 𝑒− 𝛽.𝜀𝑖]
    

 

The probability of finding a particle in energy state εi is, therefore 

 

P(εi) =  
𝑛𝑖

𝑁
 =  

𝑒− 𝛽.𝜀𝑖

∑ [𝑖 𝑒− 𝛽.𝜀𝑖]
    (12.39) 

Hence P(εi) is also known as probability distribution function. 

 

12.5.2 EVALUATION OF THE CONSTANT  𝜷 

 
Second law of thermodynamics states that the increase in internal energy of an isolated system 

at constant volume is related with entropy by 

 dE = dQ = TdS     

Let a small amount of heat dQ is given to the system due to which some particles of the system 

jump from lower to higher energy states. During this process, due to particle fluctuation let 

dn1,dn2,…dnk be the change in the number of particles in energy cell1,cell2,……cellk, 

respectively. 

So the change in the energy of the system 

       dE = ε1.dn1 + ε2.dn2 +…….. εk.dnk 

 = ∑ 𝜀𝑖 i.dni    (12.40) 

 

By Boltzmann’s entropy relation 

  S = k lnΩ 

or   dS  =  kd(lnΩ)   

 

Using the relation for expansion of ln (ni) as given earlier and assuming all energy states are 

of equal size, i.e. gi=1, 

 dS = -k∑ 𝑙𝑛 𝑖 nidni  (12.41) 

From eq. (12.37) 

        dS = -k∑ 𝑙𝑛 A. 𝑒− 𝛽.𝜀𝑖
𝑖 dni 
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  = -k∑ [𝑙𝑛 𝑖 A – 𝛽𝜀i]dni 

 

   = -k 𝑙𝑛𝐴∑ dn𝑖 I   +  k𝛽 ∑ 𝜀𝑖 idni  (12.41) 

Applying eq. (12.40) and constraint (12.33) 

 

  dS =    k𝛽 ∑ 𝜀𝑖 idni = k𝛽dE 

 

So   dE = 
𝑑𝑆

k𝛽
    (12.42) 

 

Comparing eq. (12.42) with relation dE = TdS, we have 

 

  T = 
1

k𝛽
     or,   𝛽= 

1

k𝑇
  (12.43) 

 

Substituting these values in expression for ni, we get 

  ni = 
 N.𝑒

−
1
k𝑇

.𝜀𝑖

∑ [𝑖 𝑒
−

1
k𝑇

.𝜀𝑖
]

    (12.44) 

It is another form of M-B distribution law. 

 

12.5.3 M-B ENERGY DISTRIBUTION FUNCTION FOR IDEAL GAS  

 

First we have to evaluate the term 𝛼 for which let us take the relations  

A e    and 
N

A
Z

   

We have 

   𝑒– 𝛼 = A = 
𝑁

𝑍
  =   /i kT

i

i

N

g e



   (12.45) 

=  
/

0

( ) kT

N

g e d 






  (12.46) 

Since the variation of energy states can be assumed continuous, we can replace summation by 

integration,  i by  and gi by g( )d .  
3/ 2

1/ 2

2

2
( ) 2

m
g d V d

h
    

 
  

 
  (12.47) 

and                     𝑒– 𝛼 = 
3/ 2

1/ 2 /

2

0

2
2 kT

N

m
V e d

h

  


 
 
 



  

or        𝑒– 𝛼  =
3/ 2

1/ 2 /

2

0

2
2 kT

N

m
V e d

h

  


 
 
 



  (12.48) 

Since                  1/2 /

0

kTe d 




  =  
3/ 2

2
kT


   (12.49) 
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Therefore,                               𝑒– 𝛼 = 

3/ 2
2

2

N h

V mkT

 
 
 

  (12.50) 

Taking logarithm both sides 

 
3/2

2

2
ln

V mkT

N h




   
   

   
  (12.51) 

Since, the partition function Z = N

e 
 , so 

Z =   
3/ 2

3
2

V
mkT

h
   (12.52) 

It is the expression of the partition function of an ideal monoatomic system. 

 

The function which gives the number of particles per degenerate state is called energy 

distribution function 

f( i) = 
i

i

n

g
 = 𝑒– 𝛼 − 𝛽.𝜀𝑖 =

3/ 2
2

2

N h

V mkT

 
 
 

𝑒−
1

k𝑇
.𝜀𝑖

   (12.53) 

 

In an ideal monoatomic system the number of particles having energy range between   to  

 +d  is  n( )d   = f( )g( )d  . 

Substituting the value of f(  ) and g( ), we get 

 

n(  )d  =  

3/ 2
2

/ 1/ 2

2

2
2

2

kTN h m
e V d

V mkT h

   


   
   

  
  

Rearranging it we get  

n(  )d  =  

3/ 2

1/ 2 /2 1
. .kTN
e d

kT

 


 
 
 

  (12.54) 

It is clear from the relation that n( ) depends on
1/ 2 /. kTe  

 , so at  =0, n( ) =0. In low energy 

region the term 1/ 2  dominant over exponential term / kTe   and in high energy region / kTe   
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Fig (12.4) 

dominates 1/ 2 . So if we plot n( )  Vs.   at   different temperatures T1 and T2  Fig( 12.4) , the 

energy distribution curve  increases in low energy region ,then reaches maximum at particular 

value of    ,then falls exponentially. From the graph we conclude that higher the temperature, 

peak of curve shifts toward high energy i.e. higher are the energy possessed by the most number 

of gas particles .but the area under all these curves should remain same.  

 

12.6 CHEMICAL POTENTIAL 
 

The chemical potential plays a role analogous to that of temperature and pressure. 

Understanding the nature of the chemical potential is more difficult. We know that if two 

systems are at different temperatures and are then placed in thermal contact, there will be a net 

transfer of energy from one system to the other until the temperatures of the two systems 

become equal. 

If there is a movable wall between two systems at different pressures, then the wall will move 

so as to change the volume of each system to make the pressures equal. Similarly, if two 

systems are initially at different chemical potentials and are then allowed to exchange particles, 

there will be a net transfer of particles from the system at the higher chemical potential to the 

one at the lower chemical potential until the chemical potentials become equal. 

The chemical potential μ of a particle in a system is the amount of change in the internal energy 

of that system due to adding one particle. In other words, the chemical potential of a particle in 

a system is the free energy cost of adding the particle.  Thus the combined equation of the first 

and second laws of thermodynamics expressed by dU = TdS – PdV, must be modified in the 

case of changing numbers of particles, and the modified equation should contain an extra term 

μdN, so  

dU = TdS –PdV + μdN    (12.55) 

where N is the number of particles in the system. 

It is clear from equation (12.55) that we can write an expression for μ as a partial differential 

of U with respect to N, keeping S and V constant, i.e.,  
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,S V

U

N


 
  

 
  (12.56) 

 

But keeping S and V constant is practically difficult. So equation (12.55) combined with the 

thermodynamic potentialsF = U − TS andG = U + pV − TS can be written as 

dF PdV SdT dN      (12.57) 

dG VdP SdT dN     (12.58) 

Differentiating eq. (12.57) and eq. (12.58) with respect to N, keeping V, T and P, T constant 

respectively, we get  

 

,T V

F

N


 
  

 
  (12.59) 

,T P

G

N


 
  

 
  (12.60) 

 

It is easy to keep p and T constant for a chemical systems.   So Eq. (12.60) is practically useful. 

 

What drives a system to form a particular equilibrium state? As we know that it is the second 

law of thermodynamics which states that entropy always increases, the entropy of a system can 

be considered to be a function of U, V and N, so that S = S(U, V, N). 

Therefore, we can write  

S S S
dS dU dV dN

U V N

       
       

       
  (12.61) 

From Eq. (12.55) 

dU PdV dN
dS

T T T

     
       
     

  (12.62) 

Comparing both equations, we get  

,

1

N V

S

U T

 
 

 
 , 

,N U

S P

V T

 
 

 
 , 

,U V

S

N T

 
  

 
   (12.63) 

 

Since S = klnΩ(U,N), therefore 

                           dS = 
ln ln

k dU dN
U N

    
 

  
   (12.64) 

,

ln 1

V N

S
k k

U U T


   
    

  
  (12.65) 

And  

,

ln

V U

S
k k

U N T




   
    

  
   (12.66) 

       kT


       (12.67) 

Now consider two systems which are able to exchange heat or particles between them. If we 

write an expression for dS, then we can use the second law of thermodynamics in the form dS≥ 

0 to determine the equilibrium state. We repeat this analysis for two cases as follows: 
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• The case of heat flow: 

Consider two systems which are able to exchange heat with each other while remaining 

thermally isolated from their surroundings Fig. (12.5). If system 1 loses internal energy dU, 

system 2 must gain internal energy dU. Thus the change in entropy is 

 

1 2
1 2

1 2, ,N V N V

S S
dS dU dU

U U

    
    

    
 

1 2

1 2, ,

( )

N V N V

S S
dS dU dU

U U

    
     

    
 

      1 2

1 1
0dU

T T

 
    
 

 

 

 

 

 

 

 

T1 ,U1 

 

 

 

 

     dU→ 

 

 

T2, U2 

 

 

Fig (12.5) 

 

So dU >0, i.e. energy flows from 1 to 2, when T1> T2. As expected, equilibrium is found when 

T1= T2, i.e. when the temperatures of the two systems are equal. 

 

• The case of particle exchange 

 

Now consider two systems which are able to exchange particles with each other, but remain 

isolated from their surroundings (see Fig. 12.6). If system 1 loses dN particles, system 2 must 

gain dN particles. Thus the change in entropy is 

 

 

 

 

 

 

 

 

 

 

Fig (12.6 ) 

 

1 2
1 2

1 2, ,

( )

U V U V

S S
dS dN dN

N N

    
     

    
 

 

 

T1 ,N1 , μ1 

 

 

      dN→ 

 

 

T2 , N2 , μ2  
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1 2

1 2, ,

( )

U V U V

S S
dS dN dN

N N

    
     

    
 

1 2

1 2

0dS dN
T T

  
   
 

 

Assuming that T1= T2, we find that dN>0 (so that particles flow from 1 to 2) when 

μ1>μ2. Similarly, if μ1< μ2, then dN <0. Hence equilibrium is found when μ1= μ2, i.e. when the 

chemical potentials are the same for each system. This demonstrates that chemical potential 

plays a similar role in particle exchange as temperature does in heat exchange. 

 

12.7 RELATIONS OF PARTITION FUNCTION WITH 

THERMODYNAMIC FUNCTIONS  
 

All of the macroscopic thermodynamic quantities are obtainable from the microscopic statistics 

of the single particle energy states.  For instance,  

 

12.7.1 ENTROPY  
The entropy of an isolated system related to thermodynamical probability is given by the 

relation  

 

lnS k    (i) 

where  

Ω(ni) =  N!.
1

( )

( )

ink
i

i i

g

n


  

 (ii) 

and  lnΩ(ni) =  N.lnN - N - ∑ [𝑛𝑖 i.lngi - ni.lnni + ni ]       (iii) 

Substituting  

 

ni = giA. 𝑒− 𝛽.𝜀𝑖      in Eq. (iii) 

 

lnΩ(ni) =  N lnN - N -  ∑ [𝑛𝑖 i.ln gi  - ni.lngi.A. 𝑒− 𝛽.𝜀𝑖 + ni ]     (iv)  

Applying the constraints ∑ 𝑛𝑘
𝑖=1 i = N    and ∑ ∈𝑘

𝑖=1 i𝑛i= E on Eq. (iv), and after rearranging we 

get 

 

lnΩ(ni) =  N.lnN – N.lnA +  E     

or  lnΩ(ni) =  N.ln N

A
 +   E     (12.68) 

Applying eq. (12.68) in eq. (i) 

lnS k =  kN.ln N

A
 +  E    , on putting  1

 
kT

   , and Z= N

A
 

    = kN.ln Z +  E

T
    (12.69) 

Since the total energy of an ideal gas 

E =  3

2
NkT     (v) 

So   S =  kN ln Z +  3

2
Nk    (12.70) 
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 It is entropy S in terms of partition function Z for an ideal gas. 

 

12.7.2 HELMHOLTZ FREE ENERGY F 

 
Since F = E –TS  

Using eq. (12.70)  

F =  - NkTlnZ  (12.71)  

It is Helmholtz free energy F in terms of partition function Z. 

 

12.7.3 PRESSURE  
From the laws of thermodynamics 

 

or, 
 

T T

TdS dU PdV

dU dS
P T E TS F

dV dV V V

 

    
          

    

 

 

Using eq. (12.71)  

P = 
ln

T

Z
NkT

V

 
  

  (12.72) 

12.7.4 INTERNAL ENERGY E 

The mean energy  E


  of entire system is  

E


= E

N
 =   

i i

i

i

i

n

n




  Substituting the value of ni from eq. (iii)   

  = 

. .

 
. .

i

i

i

i

i

gi A e

gi A e












   

E


  =    

i

i i

i

e

Z

g
 


  (12.73) 

Where Z =  
i

i

i

kTg e




   , Differentiating it with respect to T at constant volume V 

2
 

i
i kT

V i

i

Z
g e

T kT

  
 

 
  

or    2

1
 

i
kT

V

i

i i

Z
g e

T kT




 

 
 

  
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Rearranging it, we get 

2  
i

kT
V i i

i

Z
kT g e

T




 

 
 

   (12.74) 

Now from Eq. (12.73) 

2  V
Z

kT Z E
T

 
 

 
  

Therefore, E


 =  

2

 V
kT Z

Z T

 
 
 

 

Since total energy  

E = N E


 = N

2

 V
kT Z

Z T

 
 
 

   

or   E =  
2 ln

 V
Z

NkT
T

 
 

 
  (12.75) 

12.8 PARTITION FUNCTION OF IDEAL MONOATOMIC 

GAS  

Taking a gas consisting of N identical monoatomic molecules of mass m enclosed in a contain- 

ner of volume V. The position vector of the ith molecule denoted by ri , its momentum by pi the 

total energy given by 

 
2

1 2

1

, ,...
2

N
i

N

i

P
E U r r r

m

   (i) 

We have to establish the partition function in phase space and calculate (i) the value for the 

mean pressure (ii) the mean energy (ii) the heat capacity and (iv) the entropy. 

Let us divide phase-space occupied by gas into cells of equal volume hf.Here,f = 3N is the 

number of degrees of freedom and h is a small constant with dimensions of angular momentum 

which limits the precision to which the positions and momenta of molecules are determined. 

Each cell in phase-space corresponds to a different state. The partition function is the sum of 

the Boltzmann factor 𝑒− 𝛽.𝜀𝑖 over all possiblestates, where Er is the energy of state r. Thus, 

since for non-interacting monoatomic ideal gas U=0 therefore, the partition function in phase 

space can be given as follows  

 
3 3 3 3

2 2 1 1
1 3

1 ... ...
.. exp ...

2
N N

N N

d r d r dp dp
Z p p

m h


  
      

  
 

 (ii)

 

  

 2 2 3 3

1 13

1 1
.. exp ... ...

2
N NN

Z p p dp dp
h m


  

     
  

 
3 3

1. ... ... Nd d   (iii) 

Since 
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3 3

1.. ... Nd d  = NV    (iv) 

Substituting eq. (iv) in eq. (iii), we get 

2 2
3 31

13
.. exp .....exp

2 2

N

N
NN

V p p
Z dp dp

h m m

          
        

         
   (12.76)  

Where 
2 2 2 2

1 1 1 1x y zp p p p      , 
3

1 1 1 1x y zdp dp dp dp  so for the ith particle .Note that the integral 

over the coordinates of a given molecule simply gives the volume of the container, V. Since 

the energy E is independent of the locations of the molecules in an ideal gas. There are N such 

integrals, so we obtain the factor VN in the above expression. Note, also, that each of the 

integrals over the molecular momenta in Eq. (12.76) is identical. It follows that the partition 

function Z of the gas is made up of the product of such N identical factors: i.e. 

NZ z  

Where z is given by 

2

3
exp

2

V p
z dp

h m


   
   

   


 (12.77) 

Since 

2
1

2
1

2xp

m
x

m
e dp






 



 ,using standard definite integral  
2

0

1

2

xe dx 





   

Hence  

2 3
2

2
2

p

m
m

e dp






 



 
  
 

  

Eq. (12.77) becomes 

  

3 3
2 2

3 2

2 2V m m
z V

h h

 

 

   
    

   
  (12.78) 

  
NZ z =

3
2

2

2
N

m
V

h





  
  
     (12.79)

 

It is the  required partition function expression for perfect monoatomic gas.  

Taking the logarithm of Eq. (12.79)  
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2

3 2 3
ln [ln ln ln ]

2 2

m
Z N V

h




 
   

 
 

12.8.1 THE MEAN PRESSURE  

1 ln Z NkT
p

V V


 


 (i) 

or  pV NkT  (ii) 

12.8.2 THE TOTAL MEAN ENERGY 

ln Z
E




 

  

3 3

2 2

N
E NkT


   (i) 

Now, as  

3

2
kT 

 
(ii) 

So,  E N  (iii) 

12.8.3 ENTROPY  

The entropy is given by the relation  

, where    3

2
E N   

Since     2

3 2 3
ln [ln ln ln ]

2 2

m
Z N V

h




 
   

 
   (i) 

Applying it in expression for S, we have  

2

3 2 3 3
[ln ln ln ]

2 2 2

m
S Nk V

h




 
    

 
           (ii)     

Since  𝛽 =
1

𝑘𝑇
, therefore, 

2

3 3 2
[ln ln {ln 1}]

2 2

m k
S Nk V T

h

 
    

 
  (12.80) 

whence, 
2

3 2
ln 1

2

m k

h




  
   

     (iii)

 

 EZkS  ln
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3
ln ln

2
S Nk V T 

 
   

    (12.81) 

But it is an incorrect relation for entropy, why? Let’s read next article 12.9. 

12.9 ENTROPY OF AN IDEAL GAS: GIBBS PARADOX  

The Gibbs paradoxis a thought (imaginary) experiment, related to what happens when the two 

similar gases having identical particles with same particle density, are initially on the two sides 

of the partition are allowed to mix by removing the partition wall. Since removing or inserting 

the partition does not change the state of the system, there should be no entropy of mixing; i.e., 

the change in entropy of the system after removing or reinserting the partition should be zero. 

While, if we calculate the change in entropy, by using Eq. (12.81) of Section 12.8.3, we get 

such a change. Let’s see the reason of the paradoxical condition and its resolution. 

 

 

V1, N1 ,m , 𝝆 

        S1 

 

 

 

V2, N2 , m , 𝝆 

        S2 

 

 

Fig (12.7) 

Consider an ideal gas consists of N particles in a container with volume V, assuming that the 

density of gas is the same throughout the system. A partition separates the container into two 

sections with volumes V1 and V2   respectively, and let there are N1 particles in the 

volumeV1 and N2 particles in the volume V2 Fig. (12.7). Since we have assumed the density 

remains constant, hence 

V1 + V2= V  (i) 

N1 + N2 =N  (ii) 

 And density 
1 2

1 2

N N N

V V V
       (iii) 

What should be the total entropy, if we remove the partition? The total entropy should not 

increase, because all the particles of the gas are identical, as the partition is removed, the two 

states cannot be differentiated due to the indistinguishability of the particles. Let use the 

expression for entropy we have derived above in section 12.7.1. That is  

S =  kN.ln Z +  3

2
Nk

 
 (iv)

 

By substituting the partition function Z of a perfect monoatomic gas   in Eq. (iv), we get same 

expression as (section 12.8.3) 
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3
ln ln

2
S Nk V T 

 
   

    (v) 

So the entropies S1 and S2, before the partition is removed, are 

  
1 1 1 1

3
ln ln

2
S N k V N k T     (vi) 

and  
2 2 2 2

3
ln ln

2
S N k V N k T     (vii) 

 For a given system δ and T are constants, So S1 can be written approximately 

1 1 1 1

3
ln

2
S N k V N k    (viii)                                                                                               

Similarly 

2 2 2 2

3
ln

2
S N k V N k    (ix)                                                                                        

And the total entropy before the partition removed is Si  = S1 + S2 

    Si
1 1 1

3
ln

2
N k V N k   + 

2 2 2

3
ln

2
N k V N k   (12.82) 

Now we removed the partition, the total entropy will be, 

1 2 1 2 1 2

3
( ) ln( ) ( )

2
fS N N k V V N N k       (12.83) 

Thus, the difference of entropies   is ∆S = Sf -Si 

  ∆S  1 2 1 2 1 1 2 2( ) ln( ) ln lnN N k V V N k V N k V        (12.84) 

Rearranging it  

 ∆S  
1 2 1 2

1 2

1 2

( ) ( )
ln ln

V V V V
N k N k

V V

 
     (x) 

Since V = V1+ V2 

∆S 1 2

1 2

( ) ( )
ln ln 0

V V
N k N k

V V
       (12.85) 

This contradicts our predicted result that dS = 0. Therefore, the expression for entropy given 

by equation (12.81) is not quite correct. 
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12.9.1 RESOLUTION OF THE PARADOX 
 

For the resolution of this paradox, note that while after removing and reinserting the partition, 

the macroscopic system does return to its initial configuration, the actual particles that occupy 

the two partitions are not the same. But as the particles are by assumption identical, these 

configurations cannot be distinguished. For example, in a two distinguishable particles system 

exchange of particles leads to two distinct (2! = 2) configurations Fig (12.8): 

 

X Y  

 

                           and                                                    

X Y 

○ ● ● ○ 

 

Fig. (12.8) 

But a similar exchange has no effect on indistinguishable and identical particles, as in Fig. 

(12.9) 

 

X Y  

 

                           and                                                    

X Y 

● ● ● ● 

 
Fig (12.9) 

 

Therefore, we have over-counted the phase space associated with N identical particles by the 

number of possible permutations. As there are N! permutations leading to indistinguishable 

microstates. 

The correct expression for thermodynamical entropy S is, since statistical entropy  𝜎 = 𝑆𝑘 .                                                                                                

  

3/ 2

2

2 5
ln

2

V mkT
S Nk Nk

N h

   
    

     

 (12.86) 

This is known as the Sackur-Tetrode equation.  This expression is obtained by introducing a 

correction term 1/N! , to make entropy S additive. Using this expression for the entropy, the 

difference now becomes 

1 2 1 2
1 2 1 2

1 2 1 2

( )
( ) ln ln ln

( )

V V V V
S N N k N k N k

N N N N


    


   (xi) 

Using relations (i) and (ii), we get 

1 2 1 2

1 2 1 2

ln ln ln ln
V V N N

S N k N k N k N k
V V N N

        (12.87) 

     

1 2
1 2

1 2

ln ln
V N V N

N k N k
N V N V

   
    

   

 = 0    (12.88) 
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by applying the relation (iii), and since loge(1) = 0                                                                                          

Hence, the change in entropy, ∆S = 0, as expected. Thus, the 1/N! term is necessary to resolve 

the paradox. This means that only a correct quantum mechanical treatment of the ideal gas 

gives the consistent entropy. 

 

12.10 SUMMRY                                                                                                            
 

1. Boltzmann canonical formula is Pi = C ie
 , in which ie

 is known as Boltzmann  

factor. 

2. Probability distribution function, Pi =  
i

i

i

e

e










 , the quantity Z = ∑ [𝑖 𝑒− 𝛽.𝜀𝑖] is the  

sum over all the states of the system and is known as partition function of the system, 

3. Law of equipartition of energy says that at thermal equilibrium T, the average energy per 

independent quadratic term appearing in energy expression of a system is   
2

 i

kT
 

 

4. Average pressure is   
V

Z
p






ln1

  

5. Helmholtz free energy F = -kTlnZ  

6. The number of microstates corresponding to macrostate (n1 ,n2…nk)  is 

  Ω(n1 ,n2…nk) =  N!.
1

( )

( )

ink
i

i i

g

n

  

7. The probability of finding a particle in energy state εi is P(εi) =  
𝑛𝑖

𝑁
 =  

𝑒− 𝛽.𝜀𝑖

∑ [𝑖 𝑒− 𝛽.𝜀𝑖]
, P(εi) is also 

known as probability distribution function. 

8. The partition function of an ideal monoatomic system Z =   
3/ 2

3
2

V
mkT

h


 

9. The energy distribution function of ideal gas is n(  ) =  

3/ 2

1/ 2 /2 1
. kTN
e

kT




 
 
   

10 .The chemical potential μ of a particle in a system is the amount of change in the internal 

energy of that system due to adding one particle 

11. The chemical potential μ in terms of U, F, and G is: 

,S V

U

N


 
  

 
  , ,T V

F

N


 
  

 
 , ,T P

G

N


 
  

 
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12. Entropy S in terms of partition function Z for an ideal gas, S =  kN.lnZ +  3

2
Nk  

13. Pressure in terms of partition function Z,    P = 
ln

T

Z
NkT

V

 
    

14. Total energy terms of partition function Z,    E =  
2 ln

V

Z
NkT

T

 
 

 
 

15. Partition function of monoatomic ideal gas, Z= 

3
2

2

2
N

m
V

h





  
  
     
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12.12 TERMINAL QUESTIONS 
 

1. Derive Boltzmann canonical distribution law and partition function for a system in thermal  

    contact with a large heat bath. 

 

2. What is partition function? Explain its significance in statistical mechanics. 

3. Using the relation Pi =  
i

i

i

e

e










 and Z = i

i

e


 , prove that the mean energy   
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_ ln
.

Z
E







 

4. What are the degrees of freedom? Explain with example. 

 

5. State and prove law of the equipartition of energy. 

 

6. What is Maxwell - Boltzmann statistics? Derive Maxwell-Boltzmann distribution law and  

its partition function. 

7. Prove that, the partition function of an ideal monoatomic system is Z =   
3/ 2

3
2

V
mkT

h
  

8. The energy distribution function of ideal gas is n (  ) =  

3/ 2

1/ 2 /2 1
. kTN
e

kT




 
 
   

    Plot n( ) Vs.   at different temperature.    

 

9. What is chemical potential? Explain its importance in large particle system. Establish the   

     following relations  : 

  ,S V

U

N


 
  

    , ,T V

F

N


 
  

   ,    

and    
,T P

G

N


 
  

   

Which relation is most applicable and why? 

 

10. Show that the pressure of an ideal gas in terms of partition function Z is                               

  P = 
ln

T

Z
NkT

V

 
    

11. Prove that, the total energy is terms of partition function Z,    E =  
2 ln

 V
Z

NkT
T

 
 

 
 

12. Prove that, the partition function of monoatomic ideal gas, Z = 

3
2

2

2
N

m
V

h





  
  
   

 

13. What is Gibbs paradox and how it was resolved? 

14. Classical Maxwell–Boltzmann statistics considers particles to be distinguishable with no  

limit on the number of particles in each energy state. A physical example is a solid  composed 

of localized atoms at distinguishable lattice sites. The thermodynamic  probability in this case 

is given by 

Ω(ni) =  N!
1

( )

( )

ink
i

i i

g

n

  

Where ni is the number of particles and gi is the degeneracy of the ith energy level. 

(a) Using the methods of statistical thermodynamics, show that the equilibrium particle 

 distribution is     

    ni = gi. 𝑒– 𝛼 − 𝛽.𝜀𝑖 

 

(b) Defining the molecular partition function Z = ∑ [𝑖  gi. 𝑒− 𝛽.𝜀𝑖] , 

show that , where    3

2
E N   

(c) Using classical thermodynamics, verify that β = 1/kT. Hence, show that the Helmholtz free 

 EZkS  ln
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energy for classical Maxwell–Boltzmann statistics becomes   F = −NkT ln Z. 

(d) Beginning with the equation for Helmholtz free energy derived in part (c), show that the 

 chemical potential and pressure for a classical gas can be expressed as 

   μ = −kT lnZ       and              P = 
ln

T

Z
NkT

V

 
  

 

(e) Show that the probability of a particle being in the ith energy state is given by 

P(εi) =  
𝑛𝑖

𝑁
 =  

𝑒− 𝛽.𝜀𝑖

𝑍
.Where the partition function Z =∑ [𝑖 𝑒− 𝛽.𝜀𝑖/𝑘𝑇] 

(f) Demonstrate that the entropy can be directly related to the probabilities Pi of the various  

energy states accessible to the system, i.e., S = −kN∑ [𝑖  Pi ln Pi ] .Discuss the significance  

of this result. 
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13.1 OBJECTIVES 
 

After going through this unit, you will be able to: 

 Explain the principles of quantum statistical mechanics. 

 Understand identical particles and indistinguishability. 

 Understand the symmetry requirements in quantum statistics.  

 Construction of symmetric and anti-symmetric wave functions. 

 Differentiate pure and mixed states. 

 Know density operator and its properties.  

 Derive F - D and B - E distribution functions.   

 Compare all the three statistical distribution laws. 
 

13.2 INTRODUCTION TO QUANTUM STATISTICS   

 
Classically, the complete description of a physical system is given by the phase space Γ(q, p): 

and the Hamilton’s equations of motion. 

 

𝑞̇i  = 
𝜕𝐻

𝜕𝑝𝑖
   ,      𝑝̇i  =   −

𝜕𝐻

𝜕𝑞𝑖
 

 

The solution of these equations of motion defines a trajectory in the phase space. One has to 

employ statistical methods in order to describe the macroscopic state out of the incomplete 

microscopic information. By saying “incomplete”, we mean that we don’t necessarily know 

the initial conditions for the trajectory of each particle of the system. That’s why we treat the 

system statistically. In quantum mechanics the state of the system can be specified by 

calculating its wavefunction Ѱ (q1, · · · , qf, s1, · · · , sg, t) at time t, where f is the number of 

translational degrees of freedom, and g the number of internal (e.g., spin) degrees of freedom. 

For instance, if the system consists of N spin-one-half particles then there will be 3N 

translational degrees of freedom, and N spin degrees of freedom (i.e., the spin of each particle 

can either point up or down along the z-axis). In another way, if the system is in a stationary 

state (i.e., an eigen state of the Hamiltonian) then we can just specify (f+g) quantum numbers. 

Either way, the future time evolution of the wave-function is fully determined by Schrodinger 

equation. 

𝐻.̂Ѱ(r, t)= iħ
𝜕Ѱ(r,t)

𝜕𝑡
 

In practice, this approach does not work because the Hamiltonian of the real physical systems 

is not exactly known, so taken approximately. Typically, we are dealing with a system 

consisting of many weakly interacting particles. We usually know the Hamiltonian for 

completely non-interacting particles, but the component of the Hamiltonian associated with 

particle interactions is not very well known. We can define approximate stationary eigenstates 

using the Hamiltonian for non-interacting particles. The state of the system is then specified by 

the quantum numbers identifying these eigenstates. In the absence of particle interactions, if 

the system starts off in a stationary state then it stays in that state forever, so its quantum 

numbers never change. The interactions allow the system to make transitions between different 
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“stationary” states, causing its quantum numbers to change in time. We apply classical 

mechanics to deal with the translational degrees of freedom of the constituent particles, and 

quantum mechanics to deal with the non-translational degrees of freedom.  

13.3 QUANTUM MECHANICAL SYSTEMS 
 
Suppose we have a N particle quantum mechanical system. The quantum statistics is the 

statistical method of quantum mechanical study of an N-particle system. Suppose the 

corresponding N-particle classical system has Cartesian coordinates q1 , q2 , ….. ,qf  , and 

momenta p1 , p2 …… , pf , where f = 3N for a monoatomic system and Hamiltonian H = T + 

V, T is kinetic and V is potential energy term. 
2

1 2

1

( , .. )
2

f

i
f

i

p
H V q q q

m

          (13.1) 

As we have discussed earlier for every quantum mechanical system, the state vectorѰ(r, t) ≡

|Ѱ(t) > is a solution of   𝐻.̂ |Ѱ(t) >= iħ
𝜕|Ѱ(t)>

𝜕𝑡
      (13.2) 

Where r ≡ 1 2, .. fq q q . 

And the operators 1 2, ... fQ Q Q , 1 2, ... fP P P  corresponding to the dynamical variables q1 , q2 , ….. 

,qf  , and  p1 , p2 …… , pf  follow these commutation relations  

,i j ijQ P i               (13.3) 

ij = 1 for i = j, and ij =0 for i j and 

, , 0i j i jQ Q P P                (13.4) 

The state function of 1 2| ... fq q q   of  N particle system can be written as a tensor product of 

the individual eigenstate 1 2| ,| ,..., | fq q and q    

So 1 2| ... fq q q  = 1 2| . | ... | fq q q            (13.5) 

The Schrodinger eq. (2) by multiplying the eigen bra of state vector 1 2| ... fq q q   , which is is 

denoted as  1 2, ,... |fq q q  

gives  
1 2 1 2, ,... | | ( ) , ,... | ( )f fq q q H t i q q q t

t
 


   


     (13.6) 

or 
2

2

1 2

1

( , .. )
2

f

f

i

V q q q
m

 
   
 
 Ѱ(r, t) = iħ

𝜕Ѱ(r,t)

𝜕𝑡
      (13.7) 

where  Ѱ(r, t) = 1 2, ,... | ( )fq q q t   
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The expectation value of an operator A = A ( 1 2, ... fQ Q Q , 1 2, ... fP P P ) associated with one of the 

observables of the system can be calculated by the knowledge of state vector. 

13.3.1 IDENTICAL PARTICLES AND INDISTINGUISHABILITY 

Identical particles in a system are regarded as those particles which when interchanged in the 

system will not make any change in it. These particles can be distinguished from one another 

by their some intrinsic (inbuilt)   properties like spin.   The component of spin in the direction 

of some reference axis, of subatomic particles remains unchanged during elastic collisions. So 

we can easily identify same kind of particles by their different spin values in particular 

direction. If we consider a gas of atoms or molecules at temperature T, the thermal de-Broglie 

wavelength of a 'wave packet' associated with each gas particle (atom or molecule) of mass m 

is given by  

                                               λT = 
2 B

h

mk T
 

Which is inversely dependent on temperature. 

13.3.2 CLASSICAL DOMAIN 

At high temperatures, λT is very small i.e. the size of 'wave packet' associated with each gas 

particle is much smaller than the inter-particle distance. So the constituents of the system are 

distinguishable, M-B statistics is well applicable on such systems.  As the temperature is 

lowered, the particles associated thermal wavelength increases. When the wave packets of the 

particles begin to overlap with each other, it is impossible to identify individual particles in 

overlapping wavepacket. So the constituents of the system are called indistinguishable, M-B 

statistics not hold valid on such systems. So quantum effects must be taken into account.                                                 

.For a system to be in the classical regime, λT should be much smaller than the average inter - 

particle distance r0, if n being the density of the particles, i.e., 

r0 ~ {
1

𝑛
}1/3 

 So condition for applicability of classical statistics is 

   ro >> λT    or        (
1

𝑛
)1/3 >>λT 

Hence   n
3

T << 1, this condition is fulfilled when particle density n is low and temperature T 

is high. Systems at low density have a tendency to act as ideal classical gases two distinct 

reasons: (i) Low density implies the particles are far apart, and so their Coulomb potential is 

low and so it behaves like a non-interacting or ideal gas. 

(ii) Low density implies low fractional occupancy of quantum states, so the fermion or boson  

quantum interactions are negligible. 
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13.3.3  QUANTUM DOMAIN 

The quantum effects become important when 

n
3

T   ≈ 1 

 

When this condition is fulfilled, the wave functions of different particles begin to overlap, so 

becomes indistinguishable and the system has to be treated according to quantum statistics. 

The condition  

 

n
3

T   = 1 

 

or  n

3/2
2

2 B

h

mk T

 
 
 

= 1 gives 

 

n ∝ T3/2 

 

that defines a line in the T − n plane Fig. (13.1) and that sets the division between the classical 

and the quantum regions. 

 

 

 
 

Fig (13.1) 

 

We define the critical or quantum degeneracy temperature T0, below this temperature systems 

become degenerate or of quantum nature. 

 

                                         T0 =  
2

2/3

2 B

h
n

mk

 
 
 
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T0 can have very different values, depending on the physical system under study. 

Examples of quantum degeneracy temperatures are: 

 

System Density n (per c.m.3) Critical Temperature T0 (K) 

H2 gas 2x 1019 0.05 

Liquid He 2x 1022 2.0 

Electrons in metal 1022 10000 

 

Table (13.1) 

From above table it is clear that, a gas can be treated classically at room temperature, whereas 

free electrons in a metal are in the extreme quantum region. Liquid helium has a degeneracy 

temperature 2.17 K; it makes a transition from He I to He II below this temperature He II 

exhibits the properties of superfluid. 

 

13.4  SYMMETRY REQUIRMENTS IN QUANTUM STATISTICS  
 

Consider a gas consisting of N identical, non-interacting, structureless particles enclosed within 

a container of volume V. Let Qi denote collectively all the coordinates of the ith particle: i.e., 

the three Cartesian coordinates which determine its space position, as well as the spin 

coordinate which determines its internal state. Let si be the possible quantum states of the ith 

particle: i.e., each possible value of si corresponds to a specification of the three momentum 

components of the particle, as well as the direction of its spin orientation.  

According to quantum mechanics, the entire or complete state of the system when the ith 

particle is in state si can be  determined by the wave-function 

                 Ѱ s1,···,sN(Q1,Q2, · · · ,QN)     (13.8) 

In particular, the probability of an observation of the system finding the ith particle with 

coordinates in the range Qi to Qi + dQi, etc., is simply 

               | Ѱ s1,···,sN (Q1,Q2, · · · ,QN)|2 dQ1 dQ2 · · · dQN.   (13.9) 

One of the fundamental postulates of quantum mechanics is the essential indistinguishability 

of particles of the same kinds. i.e., a proton is just a proton we cannot label, it is proton number 

1 and it is proton number 2, etc.  No such restriction arises in classical mechanics. Therefore, 

in classical mechanics particles of the same species are regarded as being distinguishable, and 

can, therefore, be labeled.  

Suppose that we interchange the ith and jth particles: i.e. 

Qi ↔  Qj        (i) 

si↔  sj         (ii) 

If the particles are truly indistinguishable then nothing has changed: i.e., we have a particle in 

quantum state si and a particle in quantum state sj both before and after the particles are 

exchanged. Thus, the probability of observing the system in a given state also cannot have 

changed: i.e. 

             |ѱ(Q1 · ·Qi · · ·Qj · · QN)|2 = |ѱ (Q1 · ·Qj · · ·Qi · ·  QN)|2      (13.10) 

Note that it does not mean the wave-function is unaffected when the particles are exchanged, 

because it cannot be observed experimentally. Only the probability density |ѱ|2 is observable. 

Equation (5) implies that 

 ѱ(Q1 · ·Qi · · ·Qj · · · QN) =  Aѱ (Q1· · ·Qj · · ·Qi · · · QN)      (13.11) 

Where A is a complex constant of modulus unity: i.e., |A|2 = 1. 

Suppose that we interchange the ith and jth particles a second time.   Exchanging the ith and 

jth particles twice leaves the system completely unchanged: i.e., it is equivalent to doing 
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nothing to the system. Thus,the wave-functions before and after this process must be identical. 

It follows from Eq. (13.11) that 

       A2 = 1            (13.12) 

Thus possible solutions to the above equation are A = ±1. 

The conclusion from the above discussionis that the wave-function is either completely 

symmetric under the interchange of particles, or it is completely anti-symmetric. 

In other words, either 

 Ѱ (Q1· · ·Qi · · ·Qj · · QN) = +ѱ (Q1· · ·Qj · · ·Qi · · QN)   (13.13) 

 

or Ѱ (Q1· · ·Qi · · ·Qj · · QN) =  −ѱ (Q1· · ·Qj · · ·Qi · · QN).    (13.14) 

 

In 1940 physicist W Pauli, by using the idea of relativistic invariance, established that the wave-

function associated with a collection of identical integer-spin (i.e., spin 0, 1, 2, etc.) particles 

satisfies eq. (13.13), whereas the wave-function associated with a collection of identical half-

integer-spin (i.e., spin ½, 3/2, 5/2, etc.) particles satisfies Eq. (13.14). The former type of 

particles is known as Bosons [after the Indian physicist S.N. Bose, who first put forward eq. 

(13.13) on empirical grounds]. The latter type of particles is called Fermions (after the Italian 

physicists E Fermi, who first studied the properties of Fermion gases). Common examples of 

bosons are photons, α particle and He4 atoms. Common examples of Fermions are protons, 

neutrons, and electrons. 

Consider a gas made up of identical bosons. Equation (13.13) implies that the interchange of 

any two particles does not give a new state of the system. Bosons must, therefore, be considered 

as indistinguishable when counting the different possible states of the gas. Note that eq. (13.13) 

imposes no restriction on how many particles can occupy a given single-particle quantum 

states. Consider a gas made up of identical fermions. Equation (13.14) implies that the 

interchange of any two particles does not lead to a new physical state of the system (since | ѱ|2 

is invariant). Hence, Fermions must also be considered indistinguishable when counting the 

different possible states of the gas. Consider the special case where particles i and j lie in the 

same quantum state. In this case, the act of exchanging the two particles is equivalent to leaving 

the system unchanged, so 

 Ѱ (Q1· · ·Qi · · ·Qj · · · QN) = ѱ (Q1· · ·Qj · · ·Qi · · · QN).    (13.15) 

However, eq. (13.14) is also applicable, since the two particles are fermions. The only way in 

which eqs.(13.14) and (13.15) can be reconciled is if 

                                           ѱ = 0          (13.16) 

wherever particles i and j lie in the same quantum state. This is another way of saying that it is 

impossible for any two particles in a gas of Fermions to lie in the same single-particle quantum 

state. This concept is known as the Pauli exclusion principle.  

How to differentiate it with classical system, a gas made up of identical classical particles. In 

this case, the particles must be considered distinguishable when counting the different possible 

states of the gas. Furthermore, there are no constraints on how many particles can occupy a 

given quantum state. 

According to the above discussion, there are three different sets of rules which can be used to 

compute the states of a gas made up of identical particles. For a boson gas, the particles must 

be treated as being indistinguishable, and there is no limit to how many particles can occupy a 

given quantum state. This set of rules is called Bose-Einstein statistics. For a Fermion gas, the 

particles must be treated as being indistinguishable, and there can never be more than one 

particle in any given quantum state. This set of rules is called Fermi-Dirac statistics. Finally, 

for a classical gas, the particles must be treated as being distinguishable, and there is no limit 

to how many particles can occupy a given quantum state. This set of rules is called Maxwell-

Boltzmann statistics. 
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13.4.1 SYMMERIC AND ANTISYMMERRIC WAVE FUNCTIONS  

Let us consider a system of two particles, 1 and 2. One of them is in state a and the other in    

state b. If the particles are distinguishable, then the pair in states a and b and the pair in state b 

and a are also distinguishable. The two possibilities are: 

ψI  = ψa(1). ψb(2)         (13.17) 

And    ψII = ψa (2). ψb (1)           (13.18) 

Both of these state functions are equally possible for distinguishable particles. Therefore, the 

linear combination of ψI andψII is also a valid wave function for the system. We can 

construct two kinds of linear combination.A symmetric wave function that remains 

unaffected by the exchange of two particles between the two states can be written as follows: 

ψB  = (1/√2)[ ψa(1). ψb(2) + ψa(2). ψb(1)]     (13.19) 

The factor (1/√2) has been used for normalization so that the total probability of finding the 

particle over the entire volume is Unity.As we know that a symmetric wave function 

represents the Bosons having integral angular momentum = nћ where n=0,1,2,3…. . So it is a 

wave function for the Bosons. The other one an anti-symmetric wave function that changes 

sign on interchange of state. can be written as follows: 

ψF = (1/√2)[ ψa (1). ψb (2)  - ψa (2). ψb (1)  ]   

 (13.20) 

This is the wave function describing Fermions having spin angular momentum = (1/2 + n) ћ 

where n=0, 1, 2, 3…which obeys Pauli Exclusion Principle. 

Now what is the possibility that both particles are in the same quantum state (a).For 

distinguishable particles,this new state of overlap of wave function is 

ψM  = ψa(2). ψa(1)       (13.21) 

For bosons the wave function is 

           ψB  = (1/√2)[ψa (1). ψa(2) + ψa (2). ψa(1)]    (13.22) 

=(1/√2)[2ψa (1). ψa(2)] = √2 ψa (1). ψa(2)     (13.23) 

Probability density of Bosons in same state: 

ψB. ψB* = √2 ψa (1). ψa(2). √2 ψa*(1).ψa*(2)    (13.24) 

ψB. ψB*= 2. ψM. ψM*       (13.25) 

Thus the probability that two bosons are in the same state is twice the probability that two 

distinguishable particles will be in the same state. 
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For Fermions, the wave function, when both particles are in the same quantum state (a), will 

be 

ψF = (1/√2)[ψa (1). ψa(2) - ψa (2). ψa(1)] = 0    (13.26) 

Therefore fermions can never be in the same quantum state because fermions always follow 

Pauli’s Exclusion Principle. We can generalize these results for many particle systems.                

1. In a bosonic system, the presence of a particle in a particular energy state increases the 

probability of presence of other particles in the same state.                                                             

2. In a system of fermions, the presence of a particle in a particular energy state prevents the 

probability of presence of any other particles in that state. 

13.5 DENSITY OPERATOR  

In quantum systems due to the incomplete information of the microscopic data of the system it 

is almost impossible to predict exact characteristics of the system. In some special cases when 

we have complete knowledge of the microscopic data about the system, we can establish exact 

state vector of that system. Such state is called pure state. But we still cannot calculate the result 

of an experimental measurement since any measurement will also disturbs the system. This 

lack of information manifests itself in the statistical interpretation of the wave function and in 

the uncertainty relation between qi and pi, which cannot be accurately measured at the same 

time. It is similar condition to that which occurs in classical statistics, where without the 

knowledge of initial conditions of all particles of a system we cannot calculate an exact 

mechanical description of its behavior, the analogy is also inadequate.  

To describe the state of a macroscopic body by quantum mechanical wave function is 

impractical, because the available data related to the state of such a body are not sufficient to 

establish its complete wave function and the concepts of phase space and phase trajectory have 

no meaning for quantum systems. 

For quantum mechanical systems,the states of a system are classified as pure state and mixed 

states. 

 

13.5.1 PURE STATE 
 

If we have a complete set of commuting observables of a system. We can make a state vector 

|Ѱ(t) >through measuring these observables .It is a pure state vector in the Hilbert space. 

Now, if A is an operator associated with one of the observables in this complete set, with 

state vector | ѱ>in Hilbert space. We will write it in terms of the eigenstates of the Hamiltonian 

of the system H, the so-called energy eigenstates, given by H| ѱn> =  En| ѱn>. By introducing 

an orthonormal set of vectors | n > such that< n | n = 𝛿nm n n and expanding the state 

vector, the state of the system can now be written as 

 

 | |n n

n

c    , where   |n nc   
     

(13.27)
 

 𝐴̂| n   = |n na           (13.28) 

With the condition < n | n = 𝛿nm       (13.29) 

The expectation value of𝐴̂, <𝐴̂>, can be as the averaged result of 

1 – Repeated measurements of A done on the same system or 
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2 - Measurements of A done simultaneously on similar copies of the system. 

 

<𝐴̂> = <Ѱ|𝐴̂| Ѱ> = ∑ < Ѱ|𝐵̂| n >𝑛 < n |Ѱ >    (13.30) 

<𝐴̂>= 2
| |n n

n

a c         (13.31) 

 

13.5.2 MIXED STATE 

The quantum-mechanical description based on an incomplete set of data concerning the system 

can be reformulated in term of density matrix or density operator, instead of quantum states. 

By the knowledge of density matrix we are capable to calculate the mean value or the 

probabilities of various values of such quantities describing the system. The incompleteness of 

the description lies in the fact that the results of various kinds of measurement which can be 

predicted with a certain probability from knowledge of the density matrix might be predictable 

with greater or even complete certainty from a complete set of data for the system, from which 

its wave function could be derived. 

A quantum system in a state    | ѱ>   can be described by a density operator given by 

 

𝜌̂   =   | ѱ><| ѱ|       (13.32) 

 

provided that vector    | ѱ>is normalized. The expectation value of an observable can then be 

written as 

 

<A>= Tr [_𝜌̂𝐴̂  ]         (13.33)  
 

If one uses the energy eigenstates of the system to take the trace over states of the system, one 

gets 

<A>  =  ∑ < n |𝜌̂| m >,
𝑛,𝑚 < m |𝐴̂| n >     

                                  =  ∑𝜌nm< n |𝐴̂| m >      (13.34) 

Where 𝜌nm is the called the density matrix. For a pure state, described by a single wave function, 

this density matrix is always non-diagonal; it can be diagonal only when the system is in one 

of its energy eigenstates.  

The density matrix may be non-diagonal if another set of states, different from the energy 

eigenstates, are used to take the trace (trace is invariant under change of representation). 

The average value of an observable can now be written as 

 

<A>     =      ∑𝜌nn< n |𝐴̂| n >    (13.35) 

The above relation represents an average of the observable A over an ensemble which consists 

of similar copies of the system, in different quantum states |∅1>, |∅2> |∅3> etc. The microstate 

(quantum state) |∅k>occurs with a probability 𝜌kk. Here 𝜌nm is an example of a mixed-state 

density matrix. Such a density matrix cannot represent a single system in a particular quantum 

state. It represents a mixture, or an ensemble of systems in different microstates, occurring with 

different probability. 

 

13.5.3 PROPERTIES OF DENSITY MATRIX  

1.The density matrix must be Hermitian i.e., 
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  𝜌nm  =  𝜌nm 
*         (i) 

so that its eigenvectors form a complete orthonormal set of vectors that span the Hilbert 

space. 

2. If we have a unit operator I having expectation value 1it required that 

Tr(𝜌I) = Tr{𝜌. 1} =∑𝜌nn  =1       (ii) 

3. Since every operator has non-negative mean value, so 𝜌 must be always positive. 

𝜌nm ≥ 0          (iii) 

4. Under the unitary transformation 𝜌nm can be reduced to diagonal 

𝜌j𝛿jj’ =∑ 𝑈.
𝑛,𝑚 jn𝜌nm U

-1
mj’       (iv) 

By conditions  

∑ 𝜌,
𝑗

2
j   ≤   (∑𝜌j)

2 = (Tr𝜌)2 =1       (v) 

So we have  Tr(𝜌2) ≤ 1         (vi) 

13.6 Quantum Statistical Distribution Functions  

When the system is at low density and temperature is high, a system has a large number of 

accessible energy states such as translational, rotational, electronic etc. The number of available 

states is much more than the number of particles. At high temperatures, a large number of states 

become accessible, especially the translational states. In such a case, the possibility of multiple 

occupancy of a state will be greatly reduced. Thus the occupied energy levels are mostly non-

degenerate. Thus, the occupation due to quantum statistics is not important and classical 

Boltzmann statistics works well. We have already discussed that Maxwell-Boltzmann statistics 

holds good in the thermodynamic limit, 
3 1Tn  (where n is the number density, T  is the 

thermal de-Broglie wavelength,

1

2 2

2
T

h

mk T




 
  
 B

) because m>> 1, T >> 1 and n<< 1. This is 

the classical regime where indistinguishability can be exactly accounted for. But as we go on 

to low temperatures and high densities multiple occupancy (degeneracy) of states increases. 

Under the conditions, when
3 1Tn  ,the indistinguishability of particles becomes much more 

significant. This is where the quantum nature of system dominates over classical nature. It is 

the quantum regime studies under quantum statistics. In the previous parts of this course, we 

derived the Boltzmann distribution, which described how the number of distinguishable 

particles in different energy states varied with the energy of those states, at different 

temperatures: 

ni = gi. 𝑒– 𝛼 − 𝜀𝑖/𝑘𝑇         (i) 

 

However, in systems consisting of collections of identical fermions or identical bosons, the 

wave function of the system has to be either anti-symmetric (for fermions) or symmetric (for 
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bosons) under interchange of any two particles. With the allowed wave functions, it is no longer 

possible to identify a particular particle with a particular energy state. Instead, all the particles 

are shared between the occupied states. The particles are said to be indistinguishable. 

Consider a closed system having N independent, identical and indistinguishable particles. For 

an isolated system, the total number of particles and energy of the system must remain constant. 

Hence, we have two system constraints that can be expressed as 

 

           (ii)  

          (iii)  

These constraints become very important when there is degenerate/multiple occupancy of 

energy levels.                                .                                                                                                                                              

To understand the effects of these statistics on the distribution of energy levels, we first group 

the energy levels with energy within a small interval together and assign a degeneracy factor 

to each group according to the number of energy levels in each group. Let us denote the energy 

and degeneracy of ith group by εi and gi, respectively Fig. (13.2). 

 

nk,   ∈k 

 

gk =2 

 

 

   

 

 

 

ni, ∈i 

 

gi =3 

 

 

 

   

 

 

n1, ∈1 

 

g1= 4 

quantized cell 

of phase volume 

        ~ ℎ3 

 

Fig (13.2) 

13.6.1 FERMI - DIRAC DISTRIBUTION LAW  

The particles must be treated as being indistinguishable, and there can never be more than one 

particle in any given quantum state.Fermions obey this condition on the occupation of a state,a 

state can have 1 particle or 0 particle in it, but never two or more. So, ni is always less than or 

equal to gi. This is because they obey the Pauli exclusion principle.  

  ni = 1 or 0 

Nn
i

i 

En i

i

i  
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Let in  be the number of particles occupying an energy level i  in a particular configuration. 

If  ig  is the degeneracy of i  , (such that the degeneracy of that energy is gi≥  ni the number 

of particles occupying that energy level), then the number of possible arrangements amongst 

the degenerate levels of i  is  

!

!( )!

i

i

i i i

g

n g n
 


         (i)

 

The total number of arrangements possible for a particular configuration for F-D distribution. 

This is over all the energy levels of a particular configuration given as 

 1 2 3, , ,.. k i
i

n n n n    

or  1 2 3

1

ln , , ,.. ln
k

k

i

n n n n i


  
  

= ln i
i

       (ii) 

So                           
1ln ln

i

d d   
  

 Now since        
!

!( )!

i

i

i i i

g

n g n
 

  

ln ln ! ln ! ln( )i i i i ig n g n     ! 

Applying Stirling’s approximation 

                
ln ln ln ( ) ln( )i i i i i i i i i i i i ig g g n n n g n g n g n           

)ln()(lnln iiiiiiii ngngnngg   
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
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
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
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


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i
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i
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g
g ln  






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

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









 
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n
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                     = ln 1 ln 1i i

i i

i i

n g
g n

g n

   
      

   
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ln ln 1 ln 1i i

i i i

i i

g n
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n g

   
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1 1

ln 1
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ln ln 1i

i i

i

g
d dn

n

  
    

            (iii) 

Since 

i
i

n N   and 
i i

i

n E          (iv)   

Hence,    0i
i

dn   and  0i i
i

dn 
         

(v) 

To solve it completely we shall apply the Lagrange’s method of undetermined multipliers and 

applying the condition for maximum probability 
1ln ln

i

d d     = 0.
 

ln 0i i i
i i

d dn dn        
           (13.36)

 

Thus, 

ln 1 0i

i i
i

i

g
dn

n
 

  
      
   
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This is the equation for most probable distribution of particles among different quantized 

energy levels for fermions . in 1926 Enrico Fermi and Paul Dirac idependently showed that all 

half spin particles like electrons , protons and neutrons etc.  follow new statistical distrbution 

function , equation, hence  named  as Fermi-Dirac distribution law .           

 

 

As we know that α = -
𝜇

𝑘𝑇
 where 𝜇  is the chemical potential. Two systems at thermodynamic 

equilibrium have the same temperature T. The systems at chemical (particle number) 

equilibrium have the same 𝜇. 

Note that: 

1) The positive sign in Fermi-Dirac distribution implies that ni ≤ 1 which is Pauli 

Exclusion principle (which states that no two fermions can share the same quantum state). 

2) For open systems, ∑ 𝑛𝑘
𝑖=1 i = N is not a constraint, 𝜇 is zero, but isolated systems have fixed 

number of particles, N, so  𝜇 has a value. 

 

13.6.2 F-D ENERGY DISTRIBUTION FUNCTION                                                                 

The energy distribution function f (εi )is the average number of  fermions per quantum state in 

the energy level εi . Since the degenracy of ith state is gi and number of particles in that state is 

ni , hence by the definition , energy distribution function will be 

 
1

( )
1i

i
i

i

n
f

g e
 




 


  

1
since,

kT
 

 

 
1.

1
( )

1
i

i
i

kTi

n
f

g e
 




 
         (13.38) 

The variation of energy distribution function at different temperatures ( T3>T2> T1 ) shown in 

fig.(13.3) gives the probability of occupation of a single state so also called occupational 

probability. In the  case when energy levels are very  close ,then the descrete distribution of 

energy levels may be considerd as continous, and then the number of particles having energy 

range from ε to  (ε+ dε) is given by 
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Fig (13.3) 

n(ε)dε  =  f(ε)g(ε)dε 

where g(ε) is density of states. Thus  g(ε)dε is number of accesseible states in energy range 

from ε to  (ε+ dε) . 

Therfore, eq. (13.38) modified as 

 
 

1.

( )
 

1kT

d
g d

n
e
 

 
 





       

(13.39)

 

for fermions like electrons  g(ε)dε is given by 

 
 2

2 2 )
( )  

(2V m
g d d

h


  




      

 (13.40)

 

In the expression the term 2 comes due to spin degenracy of electrons . So the F-D energy 

distrbution function for continuous system is given by 
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(13.41)
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13.6.3 BOSE-EINSTEIN DISTRIBUTION LAW 
 

Consider a system of N identical and indistinguishable bosons. There is no constraint on the 

occupation of a particular state in an energy level because these particles do not obey the Pauli’s 

principle.  Any number of particles can occupy a state in an energy level.  

in 0, 1, 2, 3,…… max

in . Let in  be the number of particles occupying an energy level i  

in a particular configuration. If  ig  is the degeneracy of energy state i ,then the number of 

possible arrangements amongst the degenerate levels of i  are  

( 1)!

!( 1)!

i i

i

i i

n g

n g

 
 


      

   (i)

 

Therefore, the total number of distinct ways of arranging N bosons into all possible energy 

states 

 1 2 3, , ,.. k i
i

n n n n  
        

(ii)
 

 Taking logarithm of both side of eq. (i)
 

ln ln( 1)! ln ! ln( 1)!i i i i in g n g        

1)1ln()1(ln1)1ln()1(  iiiiiiiiiiii gggnnngngngn  

)1ln()1(ln)1ln()1(  iiiiiiii ggnngngn  

= 
( 1) ( 1)

ln ln ( 1) ln
( 1)

i i i i

i i i

i i

n g n g
n g

n g

   
   


     

(iii)

 

As ni and gi both are much greater in comparison to 1. So we can drop all 1 in eq. (3), 

then we have 

lnΩi = ln 1 ln 1i i

i i

i i

g n
n g

n g

   
     

           (iv)

 

Differentiating eq. (iv) with respect to ni we have 

2 1

ln ln 1

11

i

ii i

i i i i

ii i

ii

g

ng g
d n g dn

nn g

gn

   
                      

      
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By rearranging it  

1 1
ln 1

1 1

i i

i

i ii i

i i

g g
dn

g nn n

n g

    
     
        
           

      

Again rearranging the last two terms, we get 

                        =
1 1

ln 1

1 1

i

i

i ii

i i

g
dn

n nn

g g

    
     
       
           

      

So we have

 

ln ln 1i

i i

i

g
d dn

n

  
    

           

(v) 

Since 

 1 2 3

1

ln , , ,.. ln
k

k

i

n n n n i


    

                                   = ln i
i

   

1ln ln
i

d d   
 

   
ln ln 1i

i i

i i i

g
d dn

n

  
     

  
 

 

To solve it completely we shall apply the Lagrange’s method of undetermined multipliers.
 

ln 0i i i
i i

d dn dn        
  

 

 Thus, 
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ln 1 0i

i i
i

i

g
dn

n
 

  
      
   

 

=   ln 1 0i

i

i

g

n
 

 
    

 

 

or 
 1i

i

i

g
n

e
 




       

(13.42) 

This is the equation for most probable distributinon of particles among different quantized 

energy levels for bosons. It gives the population of an energy level that has energy ε and 

degenracy g. the constant α and β are determined from the constraints  related to the total 

number of particles and the total energy .S.N Bose in 1924 derived Planck’s radiation formula 

on the basis of Planck’s hypothisis of quntization of energy in light photons whose number is 

not conserved . Later on Einstein extended the same idea for subatomic particles having integral 

spin, whose number is conserved  .  Hence the particle distribution function , eq. (13.42) was 

named as Bose – Einstein distribution law .

 

13.6.4 B-E ENERGY DISTRIBUTION FUNCTION                                                                                                                   
 

The energy distribution function f (εi) is the average number of bosons per quantum state in the 

energy level εi. Since the degeneracy of ith state is gi and number of particles in that state is ni, 

hence by the definition, energy distribution function will be 

 
1

( ) ,
1i

i
i

i

n
f

g e
 




 


  

1
since,

kT
 

 

 
1.

1
( )

1
i

i
i

kTi

n
f

g e
 




 


        (13.43)                                                                                                                       

The variation of energy distribution function at different temperatures ( T2> T1 ) shown in 

fig.(13.4) 
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Fig.( 13.4) 

In the  case when energy levels are very  close ,then the descrete distribution of energy levels 

may be considerd as continous and then the number of particles having energy range from ε to 

(ε+ dε) is given by 

n(ε)dε  =  f(ε)g(ε)dε 

where  g(ε)dε is number of accessible states in energy range from ε to (ε+ dε) . 

Hence the equation is modified as 

 
 

1.

( )
 

1kT

d
g d

n
e
 

 
 





   

   (13.44)

 

for bosons like  He gas  g(ε)dε is given by 

  
 2

2 2 )
( )  

(2V m
g d d

h


  




 

     (13.45)

 

the term 2 comes due to spin degenracy of bosons . So the F-D energy distrbution function for 

continuous system is given by 

   
1/ 2

12 .

2 2 (2 )
( )

1
 

kT

V m d
n d

h e
 

  
 







     

(13.46)
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13.7 COMPARISION OF THREE DISTRIBUTION LAWS 

The energy  distrbution functions  f (εi)   for all three statistics combindly can be written as 

 
1.

1
( )

i

i
i

kTi

n
f

g e
 





 


      (13.47) 

f (εi) is also known as occupation index. The term δ = 0 for M-B statistics, δ = +1 for F-D 

statistics and δ = -1 for B-E statistics . other term eα  called degenracy parameter, which is a 

function of temperature , mass and density of  the system . Since δ = 0 for M-B distribution , 

so distribution function is purely exponential . In case of photon gas α = 0, since rest mass of 

photons are zero . The δ = -1 comes in B-E distribution because of any number of particles can 

occupy a single energy state .   The + 1 term comes in F-D distribution due to Pauli ‘s exclusion 

principle . whetver be the value of T ,εor α,  f (ε) for fermions  can never be greater than 1. 

Fig (13.5 ) 

Hence if we plot all distrbution function under the same condition i.e., taking α  same for all 

fig. (13.5) , the B-E function is always higher then M-B function ,and F-D function is always 

lower . When ε >> kT  the exponential term 
1.i kTe

 

>> 1 so the effect of  + 1or -1 is negligible 
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in F-D and B-E distributions. In such conditions F-D and B-E distribution laws reduce to M-B 

distibution .    

Example 1 
In Maxwell-Boltzmann statistics valid for hydrogen gas at standard temperature and pressure    

(STP), 273 K, and 1 atmosphere? 

 

Solution 
 

Under STP 1 mol H2 gas = 6.02 x1023 molecules occupies 22.4 liter  

Mass of H2 molecule m = 3.34 x 10-27 kg,  

n = 

2

3

3

22.4

6.02 10

10


 = 0.269x1026 

 

h = 6.626 x 10-34 Js 

 

k = 1.381x10-23 J/K     , substituting these values in equation 
3/ 2

2

1
2 B

h
n

mk T

 
 

   

 
2

34

3

2

2

27 23

6

2 3.14 3.34 10 1.381

6.626.10
0.2

10 27
69 10

3




 

 
 
      
 

 

 

= 8.83x 10-8<< 1 so H2 behaves like a classical gas at STP, for it M.B. statistics is applicable.  
 

 

Example 2 
Is the Maxwell-Boltzmann statistics valid for electrons in Silver?  

 

Solution 
Silver has a density of 10.5 g/cm-3 and molar weight 197.9 g. assuming one free electron per 

silver atom, density n of free electrons is 

 

23 3 28 310.5
6.02 10 / 5.86 10 /

197.9
electrons m electrons m    

 

Mass of electron is 9.109 10-31 kg             

 

Assuming 'room temperature' T = 300 K, substituting in equation  

 
3/2

2

2 B

h
n

mk T

 
 
 

gives 4.46. As it is greater than 1, the Maxwell-Boltzmann statistic is not 

applicable for silver. 
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This is because of the two reasons, small mass of electron, density of electrons in silver about 

2000 times higher than density of H2 at STP. Since electrons are fermions, so Fermi-Dirac 

statistics is applicable here. 

 

Example 3 
Eight particles are distributed in ten energy cells of equal size .Calculate all possible ways of 

this distribution when particles are (i) Classical particles (ii) Bosons (iii) Fermions 

 

Solution 
(i) Since classical particles are distinguishable. They obey M-B statistics. 

Given N = 8 and number of cells k = 10 

Total possible distribution or total number of microstates MB = (k)N = (10)8 = 108 

(ii) Number of possible distribution for bosons, 
( 1)!

!( 1)!

i i

i

i i

n g

n g

 
 


 

 ni = 8 and gi = 10 

So the number of possible ways of this distribution when the particles are bosons  

 

(8 10 1)!

8!(10 1)!
BE

 
 


 =  17!

8!9!
 = 17 16 15 14 13 12 11 10

8 7 6 5 4 3 2 1

      

      
 = 24310 

 

(iii) Number of possible distribution for fermions, 
!

!( )!

i

i

i i i

g

n g n
 


 

     ni = 8 and gi = 10, 

So the number of possible ways of this distribution when particles are fermions   

10!

8!(10 8)!
FD 


= 10!

8!2!
 = 45 

It is clear from the above calculations that MB > BE > FD  

 

13.8 SUMMARY 

1. The thermal de –Broglie wavelength of a "wave packet” associated with each gas particle 

of mass m is given by, λT = 
2 B

h

mk T
 

2. In quantum mechanics the state of the system can be specified by calculating its wave-   

function Ѱ (q1, · · · , qf, s1, · · · , sg, t), the future time evolution of the wave-function is    

fully determined by Schrodinger equation.  𝐻.̂Ѱ(r, t)= iħ
𝜕Ѱ(r,t)

𝜕𝑡
 

3. Identical particles in a system are those particles which when interchanged in the system 

    will not make any change in it.                                                                                                           
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4. The condition for applicability of classical statistics is ro >> λT or (
1

𝑛
)1/3 >>λT or  

    n
3

T << 1, this condition is fulfilled when particle density ‘n’ is low and temperature T is 

high.  

 The M-B distribution is given by /i kT

i in g e
 

  

5. The quantum statistics is applicable when the condition  n
3

T   ≈ 1 is fulfilled.  Then wave  

functions of different particles begin to overlap, so becomes indistinguishable and the  

system has to be treated according to quantum statistics.                                                                                     

6. Symmetric wave function represents the Bosons having integral angular momentum = nћ  

where n = 0, 1, 2, 3…. . So it is a wave function for the Bosons.                                                  

 7. Anti-symmetric wave functions describing Fermions having spin angular momentum 

 = (1/2 + n) ћ where n=0, 1, 2, 3… which obeys Pauli Exclusion Principle. 

8.The probability that two bosons are in the same state is twice the probability that two  

     distinguishable particles will be in the same state. 

9.  Fermions can never be in the same quantum state. Because, fermions always follow 

Pauli’s Exclusion Principle. 

10.Fermi-Dirac distributions are 
1i

i

i

g
n

e
 


  

 and Bose-Einstein distribution function is     

 1i

i

i

g
n

e
 




respectively. 

11. When ε >> kT  the exponential term 
1.i kTe

 

>> 1 so the effect of  + 1or -1 is negligible 

 

in   F-D and B-E distributions  , in such conditions F-D and B-E distribution laws reduce  

to M-B distibution .    

13.9 TERMINAL QUESTIONS 

1. Explain the principles of quantum statistical mechanics and discuss the significance of 

wave function in quantum statistics. 

2. Explain the need of quantum statistics. 

3. What do you understand by the terms identical particles and indistinguishability. 

4. What is de-Broglie thermal wavelength?  

5. What are the classical and quantum domains of statistical mechanics?  

6. What are the symmetry requirements in quantum statistics?  

7. Construct symmetric and anti-symmetric wave functions for 3 particle system having 

two states.  

8. Differentiate pure and mixed states. 

9. What is density operator? Write its properties.  

10. Explain Pauli’s exclusion principle. What type of particles follow this principle?  

11. Derive Fermi – Dirac distribution law. 

12. What is energy distribution function?   

13. Using Fermi – Dirac distribution law, establish F-D energy distribution function. 



Thermal and Statistical Physics and Lab Work  PHY (N) 202 

UTTARAKHAND OPEN UNIVERSITY Page 297 
 

14. What will be the number of arrangements of distributing 2 indistinguishable particles 

in 4 cells when only one particle can occupy one cell?            (  Ans. 6) 

15. What are bosons ?Which statistics is used to study bosonic system 

16. Derive Bose – Einstein distribution functions.  

17. Using Bose– Einstein distribution law , establish Bose– Einstein energy distribution  

Function. 

      18. In how many ways can 2 particles be distributed in 5 states, if particles are:                         

(i) distinguishable (ii) indistinguishable and follows Bose-Einstein statistics.                    

( Ans.  (i) 25 (ii) 15 )  

       19. Compare all the three statistical distribution laws.  

       20. Classify the particles as Bosons and Fermions:  α, β , 𝑎𝑛𝑑 𝛾 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 , H2 molecule,   

             H atom,He atom, He+ ion, O2. 
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1.1 OBJECTIVES 

After performing this experiment, you should be able to 

 What is meant by a black body  

 Describe Stefan’s law 

 Understand the power P radiated by the body at absolute temperature T  

 Understand the resistance of conductor depends on temperature ‘t’  

 Verify Stefan’s law experimentally 

 

1.2 INTRODUCTION 

The Stefan–Boltzmann law describes the power radiated from a black body in terms of its 

temperature. Specifically, the Stefan–Boltzmann law states that the total energy radiated per unit 

surface area of a black body across all wavelengths per unit time, is directly proportional to the fourth 

power of the black body's absolute temperature T.  The constant of proportionality σ, called the 

Stefan–Boltzmann constant. 

A body that does not absorb all incident radiation (sometimes known as a grey body) emits less total 

energy than a black body and is characterized by an emissivity. To find the total power radiated from 

an object, multiply by its surface area.   

 

1.3 APPARATUS USED 
 

Electric bulb (having tungsten filament) of 6V & 6W, 6V battery, DC Voltmeter (0-10V), DC 

ammeter (0-1 A) and Rheostat (100Ω). 

 

1.4 THEORY AND FORMULA USED  

A black body is a substance which emits all radiation falls on it, of whatever wavelength they may 

be it. The emitted radiation by black body is independent of nature of substance and it purely depends 

on the temperature of the body. 

 According to Stefan’s law the rate of emission of radiant energy by unit area of perfectly 

black body is directly proportional to the fourth power of its absolute temperature. 

 So   4TE      (1)     

where E is net amount of radiant energy per second per unit area by the body at absolute temperature 

T.    is Stefan’s constant 

 If the black body at absolute temperature T is surrounded by another black body at absolute 

temperature T0.  The body will radiate at absolute temperature T and absorbed radiation at absolute 

temperature T0. So the Stefan’s law is 

     4

0

4 TTE      (2)     

https://en.wikipedia.org/wiki/Constant_of_proportionality
https://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constant
https://en.wikipedia.org/wiki/Emissivity
https://en.wikipedia.org/wiki/Power_%28physics%29
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A similar relation in equation (2) can also hold for the bodies which are not black bodies. In 

such case we can write 

 
0TTCP     (3)     

Where P is power radiated by the body at absolute temperature T is surrounded by another 

black body at absolute temperature T0.  

 If T >> T0, the relation is  CTP   

Or     CTP 101010 logloglog 
   

(4) 

Thus the graph between log10P and log10T should be straight line whose slope is α, which 

should close to 4.  

For the verification of Stefan’s law, we take tungsten bulb as radiating body, so we have to 

measure following two parameters. 

(1) Power radiated by the tungsten bulb in steady state the electric power VI neglecting power 

loss through the gas inside the bulb. 

(2) In experiment we need temperature of tungsten filament. We measure the resistance of 

tungsten filament to find its temperature 

As we know that resistance of conductor depends on temperature‘t’ as 

 2

0 1 ttRRt    

The temperature coefficients α & β are known for tungsten filament and we also know that 

the tungsten filament glows at temperature at 8000K. So the resistance of tungsten filament at 00C 

can be found and which is 

9.3
00

g

c

R
R   gR  is resistant at 8000K (at just glow) 

So by calculating
0R

Rt , the temperature of tungsten filament can be found. 

 

 

1.5 ABOUT APPARATUS 

The apparatus in the experiment is a simple electric circuit as shown in figure 1. The 6V battery is 

connected to the electric bulb with rheostat. For the measurement of current and voltage the DC 

Voltmeter (0-10V) & DC ammeter (0-1 A) are connected. 
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Figure 1 

 

1.6 PROCEDURE 

Let us perform the experiment in following steps. 

1. Make connection as shown in figure 1. 

2. Find the ‘gust glows’ condition of tungsten filament of bulb by adjusting the current with 

rheostat. Repeat the same by increasing and decreasing the current. Then the every value of 

V (voltage) and I (current) ,the ratio will gives Rg. 

3. Find R0 by the relation
9.3

00

g

c

R
R  .                                  

4. The current is increased from a value below glow stage to high enough to get dazzling white 

light. Take all values of V (voltage) and I(current). 

5. From V and I values, we deduce power P as P = VI. 

6. By calculating
0R

Rt , we deduce the temperature ‘T’ of tungsten filament. 

7. Draw the graph between log10P and log10T, which is straight line. 

8. Find the slope of graph between log10P and log10T. 

 

 

1.7 OBSERVATION 

Table1. Determination of Rg (Temperature of filament 8000K) 

S.N. Voltage V  

(In volt) 

Current I (amp.) Rg=V/I (In ohm) Average Rg 

1     

2    

3    

4    

5    

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwigi_zV-uHYAhXDto8KHfTiA-0QjRwIBw&url=http://vtuphysicslab.blogspot.com/2008/08/experiment-no11.html&psig=AOvVaw3iR_zclxoObsVHwXOD2QYi&ust=1516380220480206
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Table2. Determination of power dissipated P for different temperature T of filament. 

S.N

. 

Voltage 

V (In 

volt) 

Current I 

(amp.) 

Resistanc

e 

Rt =V/I 

(In ohm) 

 

Rt 

/R0 

Temperature 

T  from 

graph in K 

given in 

table3 and 

fig 3 

 

log10T 

Power 

P=VI 

 

log10P 

1         

2         

3         

4         

5         

6         

7         

8         

9         

10         

 

 

1.8 CALCULATION AND DISCUSSION 
 

The relation between power and temperature of tungsten filament is given by 

                           
CTP 101010 logloglog 

  
 

 So the graph between log10P and log10T as shown in figure 2 is straight line and slope of the straight 

line should be close 4. 

 

 

lo
g 

P

log T

A

BC

A

BC
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1.9 RESULT  

The slope of line of the graph between log10P and log10T is straight line and slope of the straight line 

comes out ………... Hence Stefan’s law is verified. 

 

1.10 PRECAUTION AND SOURCE OF ERROR 
 

1. Sensitive voltmeter and sensitive ammeter sould be used. 

2. Value of Rg shuld be determined at just glow position of the filament, so that the correct value 

of R0 can be calculated. 

3. There should not be any fluctuation on the power. 

4. Temperature corresponding to the value of Rg/R0 from the graph should be taken carefully.  

 

 

1.11 REQUIRED TABLE AND GRAPH 
 

Table 3 

Temperature 

In oC 

Rt/R0 Temperature In oC Rt/R0 

0 1.00 100 7.60 

100 1.53 200 8.26 

200 2.07 1300 8.90 

300 2.13 1400 9.70 

400 3.22 1500 10.43 

500 3.80 1600 1.17 

600 4.40 1700 1.42 

700 5.00 1800 2.67 

800 5.64 1900 13.50 

900 6.37 2000 14.30 

1000 6.94   
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                   Figure 2: Graph between temperature and Rt / R0 of table 3. 

 

1.2 SUMMARY:  
 

1. A black body is a substance which emits all radiation falls on it, of whatever wavelength 

they may be it. The emitted radiation by black body is independent of nature of substance 

and it purely depends on the temperature of the body. 

2.  According to Stefan’s law, 4TE  . 

3. If P is power radiated by the body at absolute temperature T is surrounded by another black 

body at absolute temperature T0 then  

         
CTP 101010 logloglog   

4. The resistance R of a conductor depends on temperature‘t’ as 

 2

0 1 ttRRt    

where temperature coefficients α & β are known for tungsten filament and the resistance of 

tungsten filament at 00C can be found and which is 

9.3
00

g

c

R
R   gR  is resistant at 8000K (at just glow) 

0
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4
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R
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So by calculating
0R

Rt , the temperature of tungsten filament can be found. 

 

5. After getting temperature and power P we can make a graph and if this graph comes straight 

line, the Stefan’s law is verified.  

 

 

 1.13 GLOSSARY  

` Black body: a substance which emits all radiation falls on it 

Radiant energy: Energy of electromagnetic radiation emitted by a body  

Resistance:  the difficulty to pass an electric current through that conductor 

Absolute temperature: 0 K  or -2730 C 

Filament: a conducting wire or thread with a high melting point, forming part of an electric 

bulb 

 

1.14 REFERENCES 
 

1. C. L. Arora,  B.Sc. Practical Physics,   S. Chand publication, Delhi 

2. C.L. Arora and P.S. Hemne, Physics for Degree students (BSc Second year), S. Chand 

publication, Delhi 

3. Indu Prakash, Ram Krishna, A K Jha, A text Book of Practical Physics,  Kitab Mahal 

Publication Delhi. 

5. S.L.Gupta, V.Kumar, Practical Physics, Pragati prakashan, Meerut. 

4. https://en.wikipedia.org.  

 

 

1.15 VIVA-VOCE QUESTIONS 

Question1.What is a black body? 

Answer: A body which absorbs all incident radiations, irrespective of frequency, is called a 

black body. 

Question2. State Stefan’s law? 

Answer: According to Stefan’s law the rate of emission of radiant energy by unit area of 

perfectly black body is directly proportional to the fourth power of its absolute temperature. 

  i.e.   4TE   

Question3.What is a Rg ? 

Answer. Rg is resistance of tungsten filament in just glow stage i.e. at 8000K. 

Question4. In the experiment how temperature of tungsten filament is found at 0
0C ? 
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Answer: After finding Rg,  R0  is found by the relation
9.3

00

g

c

R
R   
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2.1              OBJECTIVES 

After performing this experiment, you should be able to understand 

 Meaning of mechanical equivalent of heat  

 How work is converted into heat 

 Working of Searle’s fiction cone apparatus  

 Methods of minimizing heat loss.  

 Cause of production of heat in the experiment 

 

2.2 INTRODUCTION 
 

Mechanical equivalent of heat relates two energies i.e. work energy and heat energy. In practice we 

can produce heat by rubbing our hands, vice versa the heat can do work as in case of heat engine. 

Mechanical equivalent is defined as the amount of work done to produce a unit quantity of heat. In 

other words whenever a mechanical work is completely transformed into heat, the amount of heat 

produced is directly proportional to the amount of work done. 

There are many procedures to find Mechanical equivalent of heat. In this experiment we convert 

work produced by friction into work.   

 

2.3           APPARATUS USED 
 

Electric bulb (having tungsten filament of 6V & 6W), 6V battery, DC Voltmeter (0-10V), DC 

ammeter (0-1 A) and Rheostat (100Ω). 

 

2.4          THEORY AND FORMULA USED 

Mechanical equivalent of heat can be defined as the amount of work done to produce a unit quantity 

of heat. In other words whenever a mechanical work is completely transformed into heat, the amount 

of heat produced is directly proportional to the amount of work done. 

W ∝ Q   Where W is Amount of Work, Q is units of heat. 

W = J Q 

In the above equation constant J is known as Mechanical equivalent of heat or Joule’s equivalent. 

In Searle’s friction cone method the following formula is used 

 

 

   
  12211

2








msm

nMgR
J

 
Where  n -   number of revolution suffered by the outer cone 

  Mg - applied force 
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  R - Radius of disc 

  m1 - mass of two cones and stirrer 

  s1 - specific heat of material of cones 

  m2 - mass of water in the cone 

  θ1 - initial temperature of water in cone 

  θ2 - final temperature of water in cone 

 

2.5       ABOUT APPARATUS 
 

Searle’s fiction cone apparatus as shown in figure 1 & figure 2, consists of two metal cones which 

fit closely one into the other. Two cones are fitted in metal box linked with cork for preventing loss 

of heat. The outer cone is fixed at bottom to a spindle for rotating by means with wheel. A counter 

attached with apparatus counts the revolution.  The load Mg applied by means of a wooden disc 

fitted to upper end of inner cone, so revolution of inner cone is prevented. The disc has a hole in its 

centre through which a thermometer in inserted to record the temperature of liquid (water) filled in 

inner cone of the apparatus.  
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2.6          PROCEDURE 
 

Let us perform the experiment in following steps. 

1. Note the mass of the two cones i.e. inner and outer cones. 

2. Using pipette fill the inner cone by water about 2/3 of cone. 

3. Measuring the volume of water, Find the mass of water in inner cone. 

4. Place outer cone over Cone by putting drop of oil between them. 

5. Insert thermometer in inner cone. 

6. Adjust the load and speed of wheel such that the inner cone remains stationary i.e. the weight 

neither goes up nor comes down. 

7. Note the load Mg applied. 

8. Note the initial temperature (θ1) of water in inner cone and initial reading of counter and start 

the stop watch. 

9. Rotate the wheel with constant speed and raise the temperature of water by 50C to 80C 

10. Now note the final reading of temperature (θ2) of water in inner cone and stop the stop watch   

11. Noting final reading of counter, find number of revolution of wheel. 

12. To make radiation corrections, the apparatus is allowed to cool for the same time (Time for 

which revolution is made).  Then note the fall in temperature (δθ). δθ/2 is added in final 

temperature to give corrected temperature θ2+ δθ/2. 

 

2.7      OBSERVATION 
 

 

S.N. Quantity measured Observes values 

1 Mass of cones (m1)  

2 Mass of water in inner cone (m2)  

3 Initial temperature of water in cone (θ1)   

4 Initial reading of counter (n1)  

5 Applied load on hanger (M)  

6 Final temperature of water in cone( θ2)  

7 Time taken in raising the temperature of water in 

inner cone (t) 

 

8 Final reading of counter( n2)  

9 Fall of temperature of water in time t (δθ).  

10 Specific heat of material of cone (s1)  

11 Radius of groove of the disc (R)  

 

 

2.8       CALCULATION AND DISCUSSION 

1. Fall of temperature 









2
12


 =………0C 

2. Number of revolutions made by the cones n=n2-n1 = ……. 
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3. 
  12211

2








msm

nMgR
J =……..erg/cal. 

 

 

2.9       RESULT 
 

The mechanical equivalent of heat=……………erg/cal. 

 

2.10       STANDARD  VALUE OF ‘J’: 
 

The standard value mechanical equivalent of heat is 4.18 x 107 erg/cal. 

 

2.11          PERCENTAGE ERROR 

 

2.12          PRECAUTION AND SOURCE OF ERROR: 
 

1. The cones should be properly lubricated before starting the experiment. 

2. The cord in which load is attach must always tangential to disc. 

3. Pulleys should be frictionless. 

4. Sensitive thermometer should be used. 

 

2.13         SUMMARY 

 
1. Mechanical equivalent of heat can be defined as the amount of work done to produce a unit   

quantity of heat. 

2. By friction, the work can be converted into heat. 

3. The working of Searle’s fiction cone apparatus is to convert frictional energy to heat energy. 

 

2.14        GLOSSARY 
 

Black body: a substance which emits all radiation falls on it. 

Radiant energy: The energy of electromagnetic radiation emitted by a body. 

Resistance:  the difficulty to pass an electric current through that conductor 

Absolute temperature: 00 K or -2730 C.  

Filament: A conducting wire or thread with a high melting point, forming part of an electric 

bulb. 
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2.15  REFERENCES 
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2. C.L. Arora and P.S. Hemne, Physics for Degree students (BSc Second year), S. Chand 

publication, Delhi 
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2.16  VIVA-VOCE QUESTIONS 
 

Question1.What is meant by mechanical equivalent of heat ‘J’ and what is its unit? 

Answer: The ratio of amount of work done (W) to heat produce (H) is called mechanical 

equivalent of heat. Inn MKS its unit is joule/calorie. 

Question2.How much work is required to produce 1 calorie of heat? 

Answer: 4.2 joule. 

Question3.What is the cause of production of heat in this experiment? 

Answer: Friction. When the outer cone rotates over inner cone, it develops heat. 

Question4.Why ‘J’ is called mechanical equivalent of heat? 

Answer: The ‘J’ relates mechanical work to heat energy. 

Question5.How we can be minimize heat loss in this experiment? 

Answer: The heat loss is minimized by surrounding the cones by some insulating material and 

corrected by adding fall of temperature (δθ/2) to the final temperature. 
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3.1 OBJECTIVES 

After performing this experiment, you should be able to 

 Thermal Conductivity and coefficient of thermal conductivity  

 Difference between good conductor and bad conductor of heat 

 Method of transferring heat from one point to other  

 Method of minimizing heat loss. 

 

3.2 INTRODUCTION  

Thermal conductivity refers to the intrinsic ability of a material to transfer heat. It is one of the three 

methods of heat transfer, the other two being convection and radiation. Thermal conductivity occurs 

through molecular agitation and contact, and does not result in the bulk movement of the solid itself. 

Heat moves along a temperature gradient, from an area of high temperature and high molecular 

energy to an area with a lower temperature and lower molecular energy. This transfer will continue 

until thermal equilibrium is reached.  

 

3.3 APPRATUS USED 
 

Searle’s conductivity apparatus, Stop watch, constant water flow arrangement, steam generator and 

four sensitive thermometers T1, T2, T3 & T4. 

 

3.4 THEORY AND FORMULA USED  
 

Thermal conductivity refers to the intrinsic ability of a material to transfer heat. It is one of the three 

methods of heat transfer, the other two being convection and radiation. Thermal conductivity occurs 

through molecular agitation and contact, and does not result in the bulk movement of the solid itself. 

Heat moves along a temperature gradient, from an area of high temperature and high molecular 

energy to an area with a lower temperature and lower molecular energy. This transfer will continue 

until thermal equilibrium is reached.  

If heat ‘Q’ is entering the metallic tube in time ‘t’ , A is cross sectional area, ‘d’ is distance 

between two points on tube to which heat transferred and  21    is temperature gradient then  

t
d

KAQ 21  
 , where ‘K’ is coefficient of thermal conductivity.   (1) 

If this heat ‘Q’ warms up a ‘m’ mass of water from temperature  4  to  3 that enter in the tube. 

Then 

 43   msQ , where ’ s‘ is specific heat of water.    (2) 
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 Equating equation (1), (2) and putting value of s we get formula for the coefficient of thermal 

conductivity K for good conductor (a metal)  

 
 21

43










A

md
K  

Where  A - Area of cross section of cylindrical tube. 

  d - Distance between two fixed points of tube (conductor). 

  
21,  - Steady temperature of two fixed points on tube (conductor). 

  m - Mass of water collected per second. 

  43 ,  - Steady temperature of water at exit and at entrance respectively. 

 

3.5 ABOUT APPARATUS 

 
Searle’s apparatus is as shown in figure 1 is a cylindrical tube of metal. One end of the cylindrical 

tube is heated by steam from boiler and other end of the tube is cooled by circulating cold water from 

constant water flow arrangement. Water from constant water flow arrangement is adjusted to come 

out in drop from exit side. For the measurement of temperature of water at entrance and exit, 

arrangement for thermometers has been made in the apparatus. The temperature of fixed points of 

tube is measured by inserting thermometers on holes of tube. The apparatus is kept in a wooden box 

for minimizing heat losses. 

 

             
Figure 1 
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3.6 PROCEDURE  

 
Let us perform the experiment in following steps. 

 

1. Measure distance between two fixed points of tube. 

2. Determine the diameter of tube. 

3. Pass the steam from boiler to steam chamber to heat the one end of tube. 

4. Allow the water flow in the tube from other end from constant pressure arrangement and 

adjust the water so that it comes in drops at exit point of the apparatus. 

5. Insert the thermometers at respective position on tube. 

6. Attain the steady state respective position on tube i.e. temperature become constant. 

7. Collect the water in clean Beaker for 5 minutes and calculate mass of water per second. 

Mass is calculated by knowing volume of water coming out. 

8. Determining above calculate the coefficient of thermal conductivity K of tube (good 

conductor). 

 

3.7 OBSERVATION  
 

1. The distance between two fixed points on tube = …………. cm. 

 

2. Table for determination of diameter (D) of tube 

 

Least count of vernier callipers = ………….. cm. 

 

Zero error of the vernier callipers=  ………….. cm. 

 

 

S.

N. 

Reading along any 

direction 

Reading along a 

perpendicular  direction 

M
ea

n
 d

ia
m

et
er

 

(U
n

co
rr

ec
te

d
) 

(X
+

Y
)/

2
 

M
ea

n
 d

ia
m

et
er

 

(c
o
rr

ec
te

d
) 

 M
ea

n
 d

ia
m

et
er

 

(c
o
rr

ec
te

d
) 

 

M.S. 

Readin

g 

V.S. 

Readi

ng 

Total 

Read

ing 

(X) 

M.S. 

Reading 

V.S. 

Readi

ng 

Tot

al 

Rea

ding 

(Y) 

1 
         

2 
        

3 
        

4 
        

5 
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3. Table for determine steady state of  respective place of tube: 

 

S.N. Time in 

minutes 

Thermometer Reading 

Steady 

temperature of 

one fixed point 

attach the steam 

boiler on tube 
1  

 

Steady 

temperature of 

other fixed 

point on tube 

2  

 

Steady 

temperature 

at exit point 

of cooled 

water  3  

 

Steady 

temperature 

at entrance 

point of  

water  
4  

 

1 
1     

2 
2     

3 
3     

4 
4     

5 
5     

6 
6     

7 
7     

8 
8     

9 
….     

10 
….     

11 
….     

2 
….     

13 
….     

14 
….     

 

 

Steady state temperatures from above table 

1 =………..0C 

2 =………..0C 

3 =………..0C 
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4 =………..0C 

 

4. Mass of collected water: 

 

Mass of collected water in 5 minute=…………..gm 

 

Mass of collected water in 1 second=…………..gm 

 

3.8 CALCULATION AND DISCUSSION 

The coefficient of thermal conductivity K for good conductor (a metal) is given by the formula 

                                     

 
 21

43










A

md
K

 
After putting the observed values from observation table 1, 2, 3 & 4, the coefficient of thermal 

conductivity K is calculated and from its value the material is listed in category of good conductor 

or bad conductor. 

 

3.9 RESULT 
 

 The coefficient of thermal conductivity of given metal (good conductor) is ………..cal/cm/0C/sec. 

 

3.10 STANDARD RESULT  
 

The value of coefficient of thermal conductivity of given metal (good conductor) is 

………..cal/cm/0C/sec. 

 

 

 

 

 

3.11 PERCENTAGE ERROR  

 

3.12 PRECAUTION AND SOURCE OF ERROR 
 

1. Water from constant water flow arrangement should come out in drop from exit side. 

2. Steady state of respective place of tube is taken carefully. 

3. Water should be collected after attaining the steady state of thermometer. 

4. The diameter of should be determine accurately. 
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3.13 REQUIRED TABLE 

 
The Standard values of thermal conductivity of different material  

Substance Thermal 

conductivity in 

C.G.S. units 

Substance Thermal 

conductivity in 

C.G.S. units 

Aluminium 0.504 Iron (wrough) 0.144 

Bismuth 0.0194 Lead 0.083 

Copper 0.918 Platinum 0.166 

Gold 0.7 Silver 0.974 

Tungsten 0.35 Steel 0.115 

 

 

3.14 SUMMARY  

1. Thermal conductivity refers to the intrinsic ability of a material to transfer heat. It is one of 

the three methods of heat transfer, the other two being convection and radiation. Thermal 

conductivity occurs through molecular agitation and contact, and does not result in the bulk 

movement of the solid itself. 

2. If heat ‘Q’ is entering the metallic tube in time ‘t’ , A is cross sectional area, ‘d’ is distance 

between two points on tube to which heat transferred and  21    is temperature gradient then  

t
d

KAQ 21  
 , where ‘K’ is coefficient of thermal conductivity 

3. One end of metallic tube is heated by passing steam from steam chamber. This heat flows 

through metallic tube which transfers to cold water coming from chamber having constant 

pressure arrangement. This heat raises the temperature of water. By observing change in 

temperature of water, we can calculate thermal conductivity of water. 

  

4. In present experiment, the method of transferring heat along the metallic tube is conduction 

and for minimizing heat loss the apparatus is kept in wooden box.  

 

 

3.15 GLOSSARY  
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Thermal Conductivity:  Measure of how a material conducts the transfer of heat from it. 

Good conductor of heat: Materials in which heat can flow.  

Steam chamber: Enclosed space containing steam. 

Specific heat: Heat required to increase the temperature of unit mass substance by 10 C. 

 

3.16 REFERENCES 
 

1. C. L. Arora,  B.Sc. Practical Physics,   S. Chand publication, Delhi 

2. C.L. Arora and P.S. Hemne, Physics for Degree students (BSc Second year), S. Chand 

publication, Delhi 

3. Indu Prakash, Ram Krishna, A K Jha, A text Book of Practical Physics,  Kitab Mahal 

Publication Delhi. 

5. S.L.Gupta, V.Kumar, Practical Physics, Pragati prakashan, Meerut. 

4. https://en.wikipedia.org.  

 

3.17 VIVA-VOCE QUESTIONS 

Question1: What do you understand by thermal conductivity? 

Answer: It is measure of how a material conducts the transfer of heat from it. Thermal 

conductivity is defined as quantity of heat flowing per second through unit area of cross section 

of a material, of unit thickness, when the difference of temperature is unity. 

Question2: What is unit thermal conductivity? 

Answer: cal/cm/0C/sec. 

Question3: What is steady state? 

Answer: In the steady state the temperature of each point of rod becomes constant, i.e. it does 

not rise further. The heat transmitted from one point to another does not raise their temperature 

but part of it is radiated and rest transmitted to next section. 

Question4: How the heat is transmitted in this experiment? 

Answer: By conduction. 

Question5: Can this method be used for determining thermal conductivity of bad conductor? 

Answer: No, because in bad conductors, heat conduction is very small and temperature 

difference will not be worth recording. 

Question6: What should be conductivity of perfect conductor of heat? 

Answer: Infinite. 
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4.1 OBJECTIVES 

 
After performing this experiment, you should be able to 

 what is the principle of Carey Foster’s bridge 

 to know Wheatstone bridge 

 relate how the resistance vary with temperature  

 determine the temperature coefficient of platinum 

 describe the application of platinum resistance thermometer 

 

4.2 INTRODUCTION 
 

Platinum resistance thermometer is a device which is used to determine the variation in electrical 

resistance of platinum with variation in temperature. The resistance of platinum wire free from 

impurities has a linear resistance-temperature relationship. Platinum resistance thermometers are 

used in industrial application at temperature below 6000C. When the temperature becomes higher 

than 6000C it becomes difficult to prevent the platinum from being contaminated by impurities from 

the metal covering of the thermometer. 

Carey Foster bridge is a bridge circuit used to measure medium resistances or to measure small 

difference between two large resistances. It is a modified form of Wheatstone bridge. This bridge 

can be used to calibrate a resistance temperature device. Platinum resistance thermometer requires a 

small current to pass through it to determine its resistance at different temperatures. 

 

4.3 APPARATUS USED 
 

Carey Foster’s Bridge, Two equal resistances of about 2 ohms each, two thick copper strip, a 

fractional resistance box, a cell/ battery, galvanometer, Platinum resistance thermometer, water bath, 

thermometer, one way key, connecting wires, jockey. 

 

4.4 THEORY AND FORMULA USED: 
The resistance of pure platinum wire increases with temperature according to the relation 

                                      RT = R0 (1+αT) 

Where R0 = resistance of wire at 00C, RT = resistance of wire at temperature T 0C and ‘α’ is 

a constant, called the temperature coefficient of resistance for platinum. 

 can be calculated by measuring the resistance of the Platinum resistance thermometer at 

any two temperatures as described below. 

Let R1 and R2 be the resistance of the Platinum resistance thermometer at temperature T1 and 

T1, then                                                         

 R1= R0 (1+αT1) 

and    R2= R0 (1+αT2) 

On solving above two equations we get     



LAB WORK                                                                                                               PHY (N) 202 L 

UTTARAKHAND OPEN UNIVERSITY Page 26 
 

α = (R2 –R1) / (T2R1 – T1R2) 

4.5 ABOUT APPARATUS 

The electrical resistance of metal wire increases linearly with temperature. So, electric resistance 

may be used as a thermometric property to define a temperature scale.  A platinum wire is often used 

in this thermometer because platinum has high melting point and its temperature coefficient of 

resistance (α) is constant and large.  

 Platinum resistance thermometer consists of a fine platinum wire wound in a non-inductive 

way on a mica frame M (as shown in figure 1).The ends of this wire are soldered to points A and C 

from which two thick leads run along the length of the glass tube and are connected to two terminals 

(P,P) fixed on the cap of the tube. These are the platinum wire leads. By the side of these leads, 

another set of leads run parallel and are connected to the terminals (C,C) fixed on the cap of the tube. 

These are called compensating leads and are platinum wire are separated from each other mica 

separators (D, D). The electrical resistance of the (P, P) leads is same as that of the (C, C) leads. 

Platinum resistance thermometer requires a small current to pass through it to determine its 

resistance at different temperature. Platinum resistance thermometer can be used in the temperature 

range -1700C to 2000C.  

  

 

Figure 1: PlatinumResistance Thermometer 
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4.6 PROCEDURE 

 Let us perform the experiment in following steps. 

1. Connect the circuit as shown in figure . 

2. Put the PTR in water bath and connect the PP leads in gap 1 and the compensating leads (C, 

C) in gap 4 in series with a fractional resistance box X. The wires used to connect the (P, P) 

and (C, C) leads should be cut from the same bunch and should be of equal length. 

3. Connect the two standard resistances P and Q in the inner gap 2 and 3 and also, the 

galvanometer with a jockey. 

4. Put some ice in water bath and note the temperature T1. Ensure that the PRT is surrounded by 

ice with a little water so as to fill all air space between the ice pieces.  

5. Introduce a suitable resistance from the fractional resistance box X and note down the 

balancing length from one end as l1 . The balancing point should be determined only after the 

PRT has acquired a steady temperature failing which, the position of balance point on the 

bridge wire will not be stable. Also record the same for reverse current by interchanging the 

terminals of the battery 

6. Interchange the resistances in the outer arms (gap 1 and 4) and note l2 from the same end for 

direct as well as reverse current. 

7. Calculate R1 =  X + ρ (l2 –l1); that is resistance of the PRT at temperature T1. 

8. Now, remove the ice and put the PRT in water at room temperature, say T2. Note down and 

record T2 in the observation table. 

9. Determine the resistance of PRT at T2 (that is R2) by repeating the steps 5 to 7 as above. 

10. Now, heat the water for some time till the PRT acquires a constant temperature T3 . Note 

down T3 and repeat the steps 5 to 7 to determine the resistance at T3. 

11.  Repeat step 10 for at least five more temperatures. 

 

 
                  Figure 2: Circuit for determination of resistance of PRT at different temperatures. 
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4.7 OBSERVATION 

Resistance per unit length of the Carey Foster’s bridge wire (ρ) = ……………Ω/cm 

Fractional resistance = 0.5 or 1.0 Ω 

Table1. Determination of resistance of PRT at different temperature. 

S.N. Temp. 

of water 

(0C) 

         Position of balance point with PP leads in the (l2 – l1)     

(cm) 

RT  =  X + ρ (l2 –

l1 )Ω 
Right gap (l1 in cm)      Left gap (l2 in cm) 

Dire

ct 

curre

nt 

Revers

e 

current 

Mea

n 

Direct 

current 

Revers

e 

current 

Mean 

1          

2          

3          

4          

5          

6          
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4.8 CALCULATION AND DISCUSSION 

 Plot a graph (Figure 3) between the temperature (in 0C) and the resistance of PRT (in Ω) that is the 

calibration curve of PRT. The variation in resistance of PRT as a function of temperature has been 

studied and calibration curve for the given resistance temperature device has been drawn, which is a 

straight line. 

 

 

Figure 3 Graph showing change in resistance with temperature 

 

From the graph, α can be calculated as following 

α1 = (R2 – R1)/(T2 R1 – T1 R2) 

α2= (R3 – R2)/(T3 R2 – T2 R3) 

α3= (R1 – R3)/(T3 R1 – T1 R3) 

A number of values of ‘α’ can be calculated by choosing any two points on the temperature 

scale and the corresponding resistances. 

Mean value of ‘α’ can be taken as the mean of all the calculated values. 

 

 

4.9 RESULT 

The temperature coefficient of resistance for platinum using PRT is found to be …………0C-1. 

Standard value of ‘α’ for platinum is 37 x 10-4     0C-1. 
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4.10 PRECAUTION AND SOURCE OF ERROR 
 

1. The ends of connecting wires, thick copper strips and leads should be well cleaned. 

Connection should be made tight. 

2.  Jockey should be pressed gently on bridge wire. 

3.  The bridge wire may get heated up due to continuous passage of current for a long time, 

which will change its resistance. 

4. The balance point for the measurement of resistance should be determined only when the 

temperature acquired by PRT is steady. 

 

 

4.11  SUMMARY 
 

1. Platinum resistance thermometer is that device, by which one can determine the unknown 

temperature because resistance of platinum varies linearly. 

2. For various values of resistance of platinum wire at different temperature, the graph between 

temperature and resistance is a straight line. 

3. The straight line of the graph shows linear dependence of resistance on temperature. 

4. For different values of resistance at different temperature, which are obtained from graph, on 

substituting the corresponding values in the relation 

α = (R2 – R1)/(T2 R1 – T1 R2) 

one can calculate the temperature coefficient of of resistance of platinum. 

 

 

4.2  GLOSSARY 

 

Balance point: a point on the bridge wire that produces zero deflection in the galvanometer when the 

jockey knife edge is in contact. Also known as a null point 

Jockey: a metal knife edge that can move along the bridge wire of a Carey Foster’s bridge and is 

used to locate the null point.  

Low resistance:  a resistance in the range of 1-5 ohm. 

Resistance: the opposition offered to the flow of current by an object. The SI unit of resistance of is 

ohm. 

Specific resistance: the resistance per unit length of the wire. The SI unit of specific resistance of is 

ohm per meter. 
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4.14 VIVA-VOCE QUESTIONS 

Question1. What is the temperature coefficient of resistance? 

 

Answer: Temperature coefficient of resistance is increase in resistance per unit resistance per unit 

rise in temperature. 

 

Question2. What is the relation between resistance and temperature for platinum wire? 

Answer: Resistance is linearly depends on temperature. 

 

Question3. Why the temperature above 200 0C cannot be measured accurately by a PRT. 

 

Answer: This is because platinum begins to evaporate above 200 0C. 

 

Question4. On which principle Carey Foster’s Bridge based? 

 

Answer: It is based on the principle of Wheat stone’s bridge. 

 

Question5.What is balanced point of a Carey Foster’s Bridge? 

 

Answer: A point on the bridge wire that produces zero deflection in the galvanometer when the 

jockey edge is in contact with it. It is also known as ‘null point’. 

 

Question6.What is the use of determining of α ? 

 

Answer: We can determine any temperature by recording the change in resistance of the material. 

 

Question7.Why platinum wire is chosen for this experiment? 

 

Answer: Because for platinum, variation in resistance with temperature is large and uniform. 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Indu+Prakash&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Ram+Krishna&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=A.+K.+Jha&search-alias=stripbooks
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5.1 OBJECTIVES 

After performing this experiment, you should be able to 

 describe Newton’s law of cooling 

 Know that each body radiates heat and absorbs heat radiated by the other 

 understand that radiation by surface occurs at all temperatures 

 understand the Principle of calorimeter  

 

5.2 INTRODUCTION 

Each body radiates heat and absorbs heat radiated by others. The hotter body radiates more and 

receives less. Radiation by surface occurs at all temperatures. Higher the temperature difference with 

surroundings, higher is the rate of heat radiation. Newton’s law of cooling states that the rate of 

cooling decreases with the passes of time  and is proportional to difference of temperature between 

body and surrounding.    

5.3 APPARATUS USED 
 

A copper calorimeter, two Celsius thermometers, a stirrer, a stop watch, hot plate. 

 

5.4 THEORY AND FORMULA USED  

The rate at which a body loses  by radition depends on (i) the temperature of body, (ii) the 

temperature of surounding medium and (iii) the nature and extent of the exposed surface. 

According Newton’s law of cooling, the rate of loss of heat is proportional to temperature 

difference between the body and its surroundings. 

For a body of mass ‘m’ and specific heat  ‘s’ at its initial temperature ‘θ’ higher than its 

surronding’s temperature θ0. If dQ is amount of heat lost by the hot body to its surrounding in small 

interval of time dt, then rate of loss of heat is dQ/dt. 

Following Newton’s law of cooling we have 

    dQ/dt = -K (θ-θ0)          (1) 

   Also  dQ/dt = ms (dθ/dt)     (2) 

 From equations (1) and  (2)the rate of fall of temperature is given by 

    dθ/dt  =- K(θ-θ0) /ms      (3) 

let K/ms ,which is constant is replaced by another constant k , than 

dθ=-k (θ-θ0) dt 

On integrating, we get 

    loge (θ-θ0) = -kt + c 

    2.303log10 (θ-θ0) = -kt + c    (4) 

Here ‘c’ is integration constant. 

Equation (4) shows that the graph between log10 (θ-θ0) and ‘t’ is a straight line, so plotting 

the graph will be used to verify Newton’s law of cooling. 

    2.303log10 (θ-θ0) = -kt + c 

Where              θ = temperature of body 
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                             θ0 = temperature of surrounding 

k is constant and  c is constant of integration . 

 

 

 

 

5.5 ABOUT APPARATUS  

Newton’s low of cooling can be verified with the help of experimental setup shown in figure. The 

setup consist of double walled vessel (V) containing water in between the two walls. A copper 

calorimeter (C) containing hot water is placed inside the doubled walled vessel. Temperature of 

water in calorimeter and that of water between double walls of container is recorded by two 

thermoters. 

 

 
Figure1: Calorimeter 

5.6 PROCEDURE: 

 Let us perform the experiment in following steps. 

1. Find the least count of both thermometers. Measure room temperature( θ0)with the help 

of one (say T1) of the thermometers. 

2. Pour water into the double – walled container at room temperature. Insert  the other 

thermometer(T2) in water contained in it. 

3. Heat some water separately to a temperature of about 500C above the room temperature. 

Pour hot water in calorimeter.  

4. Put the calorimeter back in the enclosure and cover it with the lid having holes. Insert the 

thermometer T1and the stirrer in the calorimeter through the holes provided in the lid. 

5. Note the initial temperature of water between enclosure of double wall with the 

thermometerT2, when the difference of readings of two thermometers T1 and T2 is about 

400C. Note the initial reading of the thermometer T1. 
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6. Keep on stirring the water constantly. Note the reading the temperature T1 , first after 

about every 30 seconds , then after about one minute and finally after two minutes 

duration. 

7. Record observations in tabular form. Find the excess of temperature (θ-θ0) and also log10 

(θ-θ0) for each reading by using logarithmic tables. 

8. Plot the graph between time‘t’, taken along x-axis and log10(θ-θ0) taken along y-axis. 

Interpret the graph. 

 

 

5.7 OBSERVATION 

Least count of stop watch = ……. Second 

 Least count of both the thermometers = ……. 0C 

 Initial temperature of water in the enclosure θ1 = ….. 0C 

 Final temperature of water in the enclosure θ2 = ….. 0C 

 Mean temperature of water in the enclosure θ0= (θ1+θ2)/2 = …… 0C 

 

Table1: For measuring the change in temperature of water with time 

S.N. Time (t) in seconds Temperature of hot 

water          θ2 
0C  

Excess Temperature 

of hot water (θ- θ0)
 

0C 

log10(θ- θ0) 

1     

2     

3     

4     

5     

6     

  

5.8 PLOTTING GRAPH 
 

1. Plot a graph between (θ-θ0) and‘t’ as shown in figure 2 taking ‘t’ along x-axis and          (θ-

θ0) along y-axis . This is called cooling curve. 

2. Plot a second graph between log10 (θ-θ0) and time‘t’ as shown in figure 3, taken ‘t’ along 

x-axis and log10(θ-θ0) along y-axis. 
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Figure 2 

 
Figure 3 

 

5.9 RESULT  

The cooling curve is an exponential decay curve. It is observed from the graph that the logarithm 

of the excess of temperature of hot body over that of its surroundings varies linearly with time 

as the body cools, which verify Newton’s law of cooling. 

 

 

5.10 PRECAUTION AND SOURCE OF ERROR 

 
1. Water in the calorimeter should be gently stirred continuously. 

2. Make sure that the openings for inserting thermometer are air tight and no heat is lost to     

the surroundings through these. 

3. The accuracy of result depends mainly on the simultaneous measurement of temperature 

of hot water and the time.  

4. The temperature of the water in enclosure is not constant. 

5. If the opening for the thermometer is not airtight, some loss of heat can occur. 
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5.11 SUMMARY  

1. When a hot body placed in surrounding which is at lower temperature, it losses heat to the 

surrounding. 

2. According to Newton’s law of cooling  dQ/dt = -K (θ-θ0) 

3. Graph between difference of temperature (θ-θ0) and time (t) is exponential.  

4. A graph drawn between log10(θ-θ0) and time (t) is a straight line having negative slope. 

5. With points 3 and 4, we conclude that  Newton’s law of cooling  hold good. 

 

 

5.12 GLOSSARY  
 

1. Calorimeter: a device used to study loss and gain of heat 

2. Radiant energy: energy of electromagnetic radiation emitted by a body  

3. Specific heat:  the property of substance which determines the change in temperature of 

the substance when a given quantity of heat is absorbed by it. 

4. Thermometer: instrument use to measure temperature 
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5.14 VIVA-VOCE QUESTIONS 
 

Question1.What is Newton’s law of cooling? 

 

Answer: The rate of cooling of a body is directly proportional to the temperature difference  

between the body and its surroundings , provided that the temperature difference is small . 

 

Question2. Calorimeters are made of metals not glass. Why? 

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Indu+Prakash&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Ram+Krishna&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Ram+Krishna&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=A.+K.+Jha&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=A.+K.+Jha&search-alias=stripbooks
https://en.wikipedia.org/
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Answer: This is because metals are good conductors of heat and have low specific heat 

capacity. 

 

Question3.Which object will cool faster when kept in open air, the one at 2000C or the one 

at 1000C? Why? 

 

Answer: The object at 2000C will cool faster than the object at 1000C. This is in accordance 

with  

Newton’s law of cooling. 

 

Question 4 .What is the significance of Newton’s law of cooling curve? 

 

Answer: The rate of cooling decreases as the difference of temperature between the body and 

surrounding decreases. 

 

Question5.What is meant by the rate of cooling? 

 

Answer: It is fall in temperature of a body per second. 
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