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1.1 INTRODUCTION 

Any motion which repeats itself after regular interval is called periodic or harmonic motion and 

the time interval after which the motion is repeated (i.e. the position and the velocity of the moving 

body is the same) is called its time period. Some examples of periodic motion include (see Fig. 1) 

 motion of planets around the sun,  

 motion of a piston inside a cylinder, used in automobile engines, or 

 motion of a ball in a bowl.  

 

 

If in case of periodic motion, the body moves back and forth repeatedly about a fixed position 

(called equilibrium or mean position), the motion is said to be oscillatory or vibratory. For 

instance, the motion of the earth around the sun or the motion of the hands of the clock, are 

examples of periodic motion, but they are not oscillatory in nature. The motion of piston in an 

automobile engine, motion of a ball in a bowl, motion of needle of sewing machine or the bob of 

a pendulum clock are all examples of oscillatory motion.  

An oscillating body is said to execute simple harmonic motion (SHM) if the magnitude of the 

forces acting on it is directly proportional to the magnitude of its displacement from the mean 

position and the force (called restoring force) is always directed towards the mean position. Thus, 

we can see that simple harmonic motion or SHM is actually a special case of oscillatory or 

vibratory motion. We will study SHM in detail in this unit. Some examples of simple harmonic 

motion include (see Fig. 2) 

 motion of a simple pendulum, 

 a vibrating tuning fork, or 

(a) (c) (b) 

Figure 1: Some examples of periodic motion: (a) motion of the earth around the sun, or moon 

around the earth; (b) motion of a piston in a cylinder which is used in automobile engines; (c) 

motion of a ball in a bowl. 
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 a spring-mass system. 

  

 

 

1.2 OBJECTIVES 

After studying this unit, you should be able to 

 describe examples of oscillating systems 

 explain what is meant by simple harmonic motion 

 explain what is meant by the amplitude and the time period of an oscillating system 

 write down the general equation of simple harmonic motion and solve it 

 describe how the acceleration, velocity and displacement of an oscillating system change 

with time 

 define angular frequency 

 differentiate between vertical and horizontal spring-mass systems 

 calculate the time period for composite spring-mass systems 

1.3 OSCILLATORY MOTION 

Any oscillating system moves to and fro (back and forth) repeatedly. Oscillations may be very 

complex such as those of a piano string or those of the earth during an earthquake or beating of 

the heart. There are also oscillations which are not very evident to our senses like the oscillations 

of the air molecules that transmit the sensation of sound, the oscillations of the atoms in a solid 

that convey the sensation of temperature or the oscillations of the electrons in the antennas of radio 

and TV transmitters. It would not be an exaggeration to say that we are indeed surrounded by 

oscillations all the time because oscillations are not just confined to material objects such as 

musical instruments but visible light, micro waves, radio waves and X-rays are also the outcome 

of oscillatory   phenomena. Thus, the study of oscillations is essential for the understanding of 

various systems, be it mechanical, acoustical, electrical or atomic 

Figure 2: Some examples of SHM: (a) A simple pendulum; (b) a vibrating tuning fork; (c) an 

oscillating spring-mass system. 

(a) (b) (c) 
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.   

The oscillatory motion in a physical system results from two properties – the property of inertia, 

and the property of elasticity. We will begin with two illustrative physical systems which are 

described in the following sections. Studying such simple systems will help us in understanding 

the motion of more complicated oscillating systems. 

1.3.1 Simple Pendulum 

Do you remember that in your senior secondary class, you performed an experiment with a simple 

pendulum in your physics laboratory, where you measured the change in time period with the 

length of the string?  

A simple pendulum consists of a heavy point mass, suspended from a fixed support through a 

weightless inextensible string. Here, we must understand that a simple pendulum is an idealized 

model. In practice, a simple pendulum is realized by suspending a small metallic sphere by a thread 

hanging from a fixed support like a stand. Fig. 3 shows a simple pendulum in which a bob of mass 

m is suspended from the fixed support P through a light string of length l. Left to itself, the bob 

occupies the position PO, with the angle 𝜃 = 0, which is known as the mean or equilibrium 

position. From this mean position, the pendulum is drawn towards one extreme A such that the 

angle 𝜃 remains small. In doing so, the bob gains some finite potential energy. When the bob is 

released from A, it begins to move downward towards the mean position O. As a result, its potential 

energy begins to decrease  as the bob approaches O. As the potential energy decreases, the bob 

gains kinetic energy. At the mean position, the bob’s  kinetic energy is maximum and its potential 

energy is minimum. Further. Due to having gained kinetic energy, the bob does not stop at the 

mean position; it overshoots the mean position and reaches the other extreme B. At position B, 

bob’s potential energy becomes maximum and the kinetic energy is zero because its velocity 

becomes zero momentarily. After a momentary rest, the bob once again retraces its path from B to 

O to A. Thus, we see that the bob oscillates in a circular arc with the center at the point of 

suspension P. 
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Under ideal conditions, if there is no air resistance, losses due to friction do not affect the 

oscillatory motion. In such a situation, the pendulum should, in principle, oscillate forever! Each 

complete cycle of its oscillating motion takes it from one side of equilibrium to the other side and 

then back again. 

1.3.2 Spring-Mass System  

Just like simple pendulum, you must also be familiar with the spring pendulum.  

Spring mass-system or spring pendulum consists of a weightless spring of constant k, one end of 

which is fixed rigidly to a wall and the other end is attached to a body of mass m, which is free to 

move horizontally or vertically depending on the system. If it is a loaded spring, it can move to 

and fro vertically. In the case of horizontal spring-mass system, the body is free to move on a 

frictionless horizontal surface, as shown in Fig. 4. When the spring is stretched, the elasticity of 

the spring tries to bring back the mass to its mean position. As the mass reaches the mean position, 

it has attained some velocity. As a result, the mass continues to move in the same direction and 

eventually compresses the spring until it reaches the other extreme position. The compressed 

spring pushes the mass back towards its mean position and the mass retraces its path. Thus, each 

cycle of oscillation takes the mass m from one extreme position to the extreme position on the 

other side of the mean position. 

𝜃 

B 

O 

A 

P 

Figure 3: A simple pendulum. 
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Under ideal conditions, that is, if there is no air resistance and if the horizontal surface on which 

the mass is moving is frictionless, the spring – mass system should oscillate forever!  

We will use spring-mass system, described above, to discuss the characteristics of SHM in the next 

section. You will also learn to calculate the force F shown in Fig. 4. But, before you proceed 

further, you should try to answer some questions based on what you have studied until now. 

Self Assessment Question (SAQ) 1: In practice, the oscillations in a simple harmonic motion or 

a spring-mass system die away gradually and the mass m stops moving. What do you think is the 

reason for that? 

Self Assessment Question (SAQ) 2: What are the two properties that are responsible for the 

oscillations? 

Self Assessment Question (SAQ) 3: Do you think that the minute hand of the clock moves 

periodically? If so, can we also infer that its motion is oscillatory? Explain. 

Self Assessment Question (SAQ) 4: Choose the correct option: 

The motion of Halley’s Comet around the sun is 

(a) Periodic (b) Oscillatory (c) Simple harmonic (d) Translatory. 

1.4 SIMPLE HARMONIC MOTION 

m 

m 

m 

-x x 

(a) 

(b) 

(c) 

F 

F 

F = 0 

Figure 4: (a) Normal, (b) stretched, (c) compressed configurations of a horizontal spring-mass 

system. 
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In the previous Section, we discussed two examples of oscillatory motion. Let us now use the 

spring-mass system to understand simple harmonic motion (SHM). What is SHM? Let us first 

answer this question. 

1.4.1 Definition of SHM  

SHM can be defined in a number of ways: 

1. If the force acting on the oscillating body is always in the direction opposite to the 

displacement of the body from the equilibrium or the mean position and its magnitude is 

proportional to the magnitude of displacement, the body is said to be executing SHM. 

2. If the displacement vs. time curve of the oscillating body is sinusoidal in nature, the body 

is said to be executing SHM. This is another definition of SHM. 

3. If the potential energy of the oscillating body is proportional to the square of its 

displacement with reference to the mean position, the body is said to be executing SHM. 

This is yet another definition of SHM. 

Let us consider the first definition for now. The spring-mass system shown in Fig. 4 (a) is in the 

position of static equilibrium: the spring is relaxed (neither stretched nor compressed) and there is 

no force acting on the body. When the body is pulled to the right through a small distance x, the 

spring starts behaving like an elastic system under stress. You may recall the Young’s modulus 

experiment that you did in your school. We know that if a wire of length L is stretched through a 

distance x by a force of magnitude F, the Young’s modulus Y of the material of the wire is given 

by 

𝑌 =
𝐹/𝛼

𝑥/𝐿
 (1.1) 

Here 𝛼 is the cross-sectional area of the wire. By rearranging the terms in equation (1.1), we can 

easily get the following form 

𝐹 = (
𝑌𝛼

𝐿
) 𝑥 (1.2) 

We already know that elasticity is the property by virtue of which a body offers resistance to any 

change in its size or shape or both and makes the body regain its original condition when the 

deforming force, applied within a certain maximum limit, is removed. In other words, one can say 

that in the deformed condition, the body develops a restoring force and according to the Newton’s 

third law of motion, this force is equal in magnitude but opposite in direction to the deforming 

force. Equation (1.2) implies that the restoring force is proportional to the elongation and is 

directed towards the equilibrium position (relaxed position when there is no restoring force acting).  

Similarly, for the spring-mass system, Hooke’s Law states that the restoring force is proportional 

to the displacement of the spring in case of stretched as well as compressed configurations. In our 
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case, the restoring force exerted by the spring on the body is directed to the left [see Fig. 4 (b)] and 

is given by the following relation: 

𝐹 = −𝑘𝑥 (1.3) 

Since, the restoring force, F is proportional to the displacement1 and is opposite in sign to the 

displacement, the resulting motion is simple harmonic. Here k is called the spring constant or 

stiffness constant. The SI unit of k is 𝑁𝑚−1. 

Example 1:  If, in a spring-mass system as shown in Fig. 4, the spring constant is 50 𝑁𝑚−1 and 

the block of mass 1 kg is displaced by 0.01 m to the right before being released, calculate the  

(a) restoring force at t = 0, 

(b) restoring force when the block travels to the other extreme, and 

(c) The restoring force in the static equilibrium position. 

Solution: 

(a) If x is taken as positive to the right of the mean position, then the restoring force is given 

by 

𝐹 = −𝑘𝑥 = −(50 𝑁𝑚−1)(0.01 m) = −0.5 𝑁 

(b) Similarly, the restoring force is given by 

𝐹 = −𝑘𝑥 = −(50 𝑁𝑚−1)(−0.01 m) = +0.5 𝑁 

(c) At the mean position, x = 0 

𝐹 = −(50 𝑁𝑚−1)(0) = 0 

 

Self Assessment Question (SAQ) 5: If the displacement x in the above example is halved, how 

will be the restoring force change in all the three cases.  

Self Assessment Question (SAQ) 6: What will happen if instead the initial displacement is 

doubled? 

Self Assessment Question (SAQ) 7: Will the answer change if the mass of the block in the above 

example is changed to 5 kg? 

Self Assessment Question (SAQ) 8: Challenge Question: 

In the  spring-mass system shown in Fig. 5, the spring constants ( k ) of both the springs is 50 

𝑁𝑚−1 and the block of mass 1 kg is displaced by 0.01 m to the right from its mean position 

before being released. In the equilibrium position of the system, the springs are stretched by 0.02 

m each. Calculate the  

                                                             
1 The relationship (Eq. (1.3)) is linear only for small values of displacement, x and the elastic force produced in the 
linear spring is given by 𝐹 = −𝑘𝑥, where x is the change in the length of the spring. 
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(a) restoring force at t = 0, 

(b) restoring force when the block travels to the other extreme, and 

(c) the restoring force in the static equilibrium position. 

 

 

[Hint: The total restoring force on the block will be given by the elastic force exerted by each of 

two springs. We also know that the elastic force for a spring is proportional to the total elongation 

or compression.] 

1.4.2 Basic Characteristics of SHM  

Since we now know what SHM is, let us define some of the basic characteristics of SHM. What 

comes to your mind? The first important characteristic in SHM is the initial displacement that 

actually results in oscillations in the first place. The magnitude of the initial displacement, which 

is also the maximum displacement, is called the amplitude (A) of oscillations. As we mentioned 

before, the energy of the system executing SHM alternates between kinetic and potential forms. 

At the extremities of the oscillations, the kinetic energy is zero as the velocity is zero and the 

potential energy is the maximum. 

Another characteristic of SHM is the time period (T) which is the time taken for one complete 

cycle of oscillation. This is the least time taken by an oscillating object to move from a certain 

position and velocity back to the same position and velocity. Generally, for convenience, we 

measure the time period from either the mean position or the extreme ends.   

Instead of time period, many a times we talk in terms of the frequency (ν) to characterize SHM. 

Frequency is the number of complete oscillations executed per second and is the inverse of the 

time period, i.e. 

𝜈 =
1

𝑇
 (1.4) 

It is expressed in cycles per second or simply 𝑠−1 or hertz (Hz). We also define a term called 

angular frequency, denoted by ω, which is given by 

𝜔 = 2𝜋𝜈 (1.5) 

x 

m 

k

k 

 

Figure 5: A spring-mass system where a body of mass m is connected by two identical weightless 

springs which are attached to rigid walls. 
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It is expressed in radian per second or simply𝑟𝑎𝑑 𝑠−1, since 2𝜋 is the angle around a circle in 

radians and T is in seconds. 

Example 2:  A mass on a spring oscillates along a vertical line, taking 12 s to complete 10 

oscillations. Calculate the  

(a) time period, and 

(b) the angular frequency.  

Solution: 

(a) Time period is the time taken for one complete cycle of oscillation; therefore, to complete 

one oscillation, time needed will be 

𝑇 =
(12 𝑠)

(10 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠)
= 1.2 𝑠 

(b) The frequency is given by 

𝜈 =
1

𝑇
=

1

1.2
 𝐻𝑧 

Therefore, the angular frequency is  

𝜔 = 2𝜋𝜈 =
2𝜋

1.2
= 5.23 𝑟𝑎𝑑 𝑠−1 

 

Example 3:  The motion of a vibrating blade is frozen (when the frequency of the vibrating blade 

becomes equal to the stroboscope frequency) by illuminating it with a stroboscope (a flashing 

light). The least stroboscope frequency at which this occurs is 40 Hz. Calculate the 

(a) time period, and 

(b) the angular frequency of the vibrations. 

Solution: 

(a) Time period is the inverse of frequency 

𝑇 =
1

𝜈
=

1

40
= 0.025 𝑠 

(b) The angular frequency is given by 

𝜔 = 2𝜋𝜈 = 2𝜋(40) = 251.2 𝑟𝑎𝑑 𝑠−1 

 

Self Assessment Question (SAQ) 9: An object executes simple harmonic motion with an angular 

frequency of 1.26𝑟𝑎𝑑 𝑠−1. Calculate its time period.   

Self Assessment Question (SAQ) 10: If the angular frequency 𝜔 is one revolution per minute. 

Calculate its time period. [Hint: One revolution = (2𝜋) radians] 
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1.5 DIFFERENTIAL EQUATION OF SHM 

Let us now express equation (1.3) in the differential form by using Newton’s second law of motion. 

From Newton’s second law of motion, we know that force experienced by a body of mass m can 

be expressed as a function of acceleration, 

𝐹 = 𝑚𝑎 = 𝑚𝑥̈ 

Therefore, in a spring-mass system, the force can be written as 

𝐹 = 𝑚𝑥̈ = −𝑘𝑥 

Or we can say that  

𝑚𝑥̈ + 𝑘𝑥 = 0 

𝑜𝑟, 𝑥̈ +
𝑘

𝑚
𝑥 = 0 (1.6) 

(Comment: Either follow the double dot notation or d2x/dt2 notation for double differentiation. In 

later Units, d2x/dt2 notation has been used. For students, it will be better if we follow d2x/dt2 

notation.) 

The above equation is the differential equation of SHM. k is the force constant (for our case of 

spring-mass system, it is called the spring constant) and has dimensions (𝑀𝐿𝑇−2/𝐿) = 𝑀𝑇−2. 

Therefore, the dimension of 𝑘/𝑚 is 𝑇−2, i.e. square of reciprocal of time. We can replace 𝑘/𝑚 by 

𝜔2. Thus, the equation (1.6) takes the form 

𝑥̈ + 𝜔2𝑥 = 0 (1.7) 

We will find the physical meaning of ω, that it is actually the angular frequency that we already 

defined earlier, when we solve the differential equation (1.7).  

1.5.1 Solution of the Differential Equation of SHM 

The second time derivative of displacement (𝑥̈) can be written as 

𝑥̈ =
𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑡
(
𝑑𝑥

𝑑𝑡
) 

Multiplying and dividing by 𝑑𝑥 in the numerator and the denominator, we get 

𝑥̈ =
𝑑𝑥

𝑑𝑡

𝑑

𝑑𝑥
(
𝑑𝑥

𝑑𝑡
) 
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We already know that 𝑥̇ or 𝑑𝑥/𝑑𝑡 actually define the velocity𝑣. Therefore, the above expression 

can take the following form 

𝑥̈ = 𝑣
𝑑

𝑑𝑥
(𝑣) 

Since, 

𝑑

𝑑𝑥
(
𝑣2

2
) = 𝑣

𝑑𝑣

𝑑𝑥
 

We get 

𝑥̈ =
𝑑

𝑑𝑥
(
𝑣2

2
) 

 

(1.8) 

From (1.7) and (1.8), we get 

𝑑

𝑑𝑥
(
𝑣2

2
) + 𝜔2𝑥 = 0 

𝑜𝑟  
𝑑

𝑑𝑥
(
𝑣2

2
+ 𝜔2

𝑥2

2
) = 0 

∴ 𝑑(𝑣2 + 𝜔2𝑥2) = 0 (1.9) 

On integrating both the sides, we get 

𝑣2 + 𝜔2𝑥2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝐶1) 

 
(1.10) 

We already know that on the two extremes, when the magnitude of the displacement is equal to 

the amplitude (𝑥 = ±𝐴), the kinetic energy or the velocity is zero (𝑣 = 0). Using this boundary 

condition in equation (1.10), we can calculate the constant (𝐶1). Thus, 𝐶1 is given by 

(0)2 + 𝜔2(±𝐴)2 = 𝐶1 

𝑜𝑟  𝐶1 = 𝜔2𝐴2 

Using this value in equation (1.10) and rearranging the terms, we get 

𝑣2 = 𝜔2(𝐴2 − 𝑥2) 

𝑜𝑟   𝑣 = ±𝜔√(𝐴2 − 𝑥2) 

 
(1.11) 

The above relation is the expression for velocity of a particle executing SHM. We can see how the 

velocity has a maximum magnitude at 𝑥 = 0 or in other words, the mean position. From (1.11), 

the maximum velocity is given by 
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|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 
 

(1.12) 

Example 4:  A 50 g mass vibrates in SHM at the end of a spring. The amplitude of the motion is 

12 cm and the period is 0.1 minutes. Find the maximum speed of the mass. What will be the speed 

at𝑥 = 𝐴/2? 

Solution: 

𝜔 = 2𝜋𝜈 = 2𝜋 (
1

0.1 × 60 𝑠
) = 1.047 𝑟𝑎𝑑 𝑠−1 

∴ |𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (1.047 𝑟𝑎𝑑 𝑠−1)(12 × 10−2 𝑚) 

= 0.1256 𝑚/𝑠 

From equation (1.11), we get 

|𝑣| = 𝜔√𝐴2 − (
𝐴

2
)
2

=
3

4
𝜔𝐴 

=
3

4
(1.047 𝑟𝑎𝑑 𝑠−1)(12 × 10−2 𝑚) = 0.0942 𝑚/𝑠 

Self Assessment Question (SAQ) 11: In the above question, calculate the speed at 𝑥 = 1 𝑐𝑚.    

Self Assessment Question (SAQ) 12: In the above question, at what location will the speed of the 

vibrating mass be 5 cm/s?    

Now, we will determine the expression for the displacement of a particle executing SHM. From 

(1.11), we get 

𝑑𝑥

𝑑𝑡
= ±𝜔√(𝐴2 − 𝑥2) 

Rearranging the terms, we get  

±
𝑑𝑥

√(𝐴2 − 𝑥2)
= 𝜔𝑑𝑡 

On integrating both the sides, we get corresponding to the (+) sign 

sin−1
𝑥

𝐴
= 𝜔𝑡 + 𝛿1 

And, corresponding to the (−) sign 

cos−1
𝑥

𝐴
= 𝜔𝑡 + 𝛿2 

where 𝛿1 and 𝛿2 are dimensionless constants. 
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Therefore, we can see that the SHM is defined by a sinusoidal curve 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) (1.13) 

Depending on the value of constant 𝛿 and 𝜔𝑡 the displacement from the equilibrium position and 

velocity of the SHM at any instant can be determined. 

1.5.2 Angular Frequency of SHM 

We know that the displacement 𝑥(𝑡) should return to its initial value after one time period 𝑇 of the 

motion. Or 

𝑥(𝑡) = 𝑥(𝑡 + 𝑇) 

We also know from trigonometry that the sine or cosine function repeats itself when its argument 

has increased by 2𝜋 𝑟𝑎𝑑. Thus, 

𝜔(𝑡 + 𝑇) = 𝜔𝑡 + 2𝜋 

Or, we get 

𝜔 =
2𝜋

𝑇
= 2𝜋𝜈 (1.14) 

The quantity 𝜔 is therefore, the angular frequency that we defined earlier. Its SI unit is 𝑟𝑎𝑑 𝑠−1. 

From equation (1.6), we know that 

𝜔2 =
𝑘

𝑚
 

∴  𝜔 = √
𝑘

𝑚
 

 

(1.15) 

Example 5: A particle of mass 0.2 kg undergoes SHM according to the equation: 𝑥(𝑡) =

3 sin(𝜋𝑡 + 𝜋/4). [t is in s and x in m] 

(a) What is the amplitude of oscillation? 

(b) What is the time period of oscillation? 

(c) What is the initial value of x? 

(d) What is the initial velocity when the SHM starts? 

(e) At what instants is the particle’s energy purely kinetic? 

Solution:  

(a) Comparing the given equation with 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿), we get the amplitude, 𝐴 = 3 𝑚. 

 

(b) On comparing, we get 𝜔 = 𝜋 𝑟𝑎𝑑 𝑠−1. Therefore, from (1.14), we get the time period as 
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𝑇 =
2𝜋

𝜔
=

2𝜋

𝜋
= 2 𝑠 

(c) Initial conditions are at 𝑡 = 0 

𝑥(0) = 3 sin(𝜋/4) = 1.5√2 𝑚 

(d)  

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 3𝜋 sin(𝜋𝑡 + 𝜋/4) 

𝑣(0) = 3𝜋 sin(𝜋/4) =
3𝜋

√2
 𝑚/𝑠 

 

(e) The energy is purely kinetic when the particle is at the mean position, i.e. when 𝑥(𝑡) = 0. 

Or 

0 = 3 sin (𝜋𝑡 +
𝜋

4
) 

∴ 𝜋𝑡 +
𝜋

4
= 0, 𝜋, 2𝜋, 3𝜋,… 

𝑖. 𝑒.   𝑡 = −
1

4
,
3

4
,
7

4
,
11

4
, … 

 

Rejecting the negative value of t, we get t = 3/4, 7/4, 11/4… At these instants, the particle 

crosses origin and hence its energy is purely kinetic. 

Self Assessment Question (SAQ) 13: How are the following characteristics of SHM affected by 

doubling the amplitude? Explain. 

(a) Time period, and (b) maximum velocity. 

Self Assessment Question (SAQ) 14: Choose the correct option: 

Which of the following functions represent SHM? 

(a) sin(2𝜔𝑡)  (b) sin−1 𝜔𝑡  (c) sin(𝜔𝑡) + 2 cos(𝜔𝑡)  (d) sin(𝜔𝑡) + cos(2𝜔𝑡)   

1.6 DIFFERENT KINDS OF SPRING-MASS SYSTEM 

We have already talked about spring-mass system in the previous sections. Now, we are going to 

discuss the different spring-mass systems. 

1.6.1 Horizontal Oscillations 

We have already talked about the horizontal oscillations in section 1.3.2. Here a weightless spring 

is fixed rigidly to a wall on one end and the other end is attached to a body which is free to move 

on a frictionless horizontal surface. When the body is pulled in one direction through a small 
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distance, the spring is stretched from its earlier relaxed configuration. As a result a restoring force 

proportional to the magnitude of displacement is exerted on the body and it starts executing SHM.  

We have also determined that the angular frequency of SHM is given by 

𝜔 = √
𝑘

𝑚
 

And the time period is given by 

𝑇 = 2𝜋√
𝑚

𝑘
 

The displacement x as a function of time is of the form 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

1.6.2 Vertical Oscillations 

Let us now consider the oscillations of a vertical spring-mass system. Consider a weightless spring 

having spring constant, k suspended vertically from a fixed point, supporting an object of mass m, 

at its lower end, as shown in Fig. 6. 

 

 

m 

m x 

m 

-x 

(a) (b) (c) 

F 

F 
mg 

𝑇0 

Figure 6: The oscillations of a loaded spring; (a) compressed, (b) equilibrium, (c) stretched 

configurations. 
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When the object is at rest initially at its equilibrium position (Fig. 6b), the tension in the spring at 

equilibrium, 𝑇0, is equal and opposite to the weight, 𝐹 = 𝑚𝑔, of the object, where g is the acceleration 

due to gravity (= 9.8 𝑚𝑠−2). Hence, no net force is acting on the object and by force balance, we can write 

𝑇0 = 𝑚𝑔 (1.16) 

When the object is oscillating, the tension in the spring changes as the length of the spring changes. When 

the object is at small displacement x from the equilibrium position, the restoring force is provided by the 

change of tension from equilibrium, ∆𝑇. Applying Hooke’s law to this change of tension gives 

∆𝑇 = −𝑘𝑥 (1.17) 

where the (−) sign signifies that the change of tension is in the opposite direction to the displacement and 

hence, a loaded spring is also said to oscillate with simple harmonic motion. 

The angular frequency is given by 

𝜔 = √
𝑘

𝑚
 

And the time period by  

𝑇 = 2𝜋√
𝑚

𝑘
 

which is the same as that for horizontal oscillations? 

 

 

m 

mg 

𝑇0 

St
at
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  E

q
u
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b
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u
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R
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  L
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gt
h

 

d 

Figure 7: Relaxed spring hanging from the ceiling and a loaded spring. 
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The spring constant k in the vertical oscillations is determined with the help of equation (1.16)    

𝑇0 = 𝑚𝑔 

Here, the tension 𝑇0 stretches the spring and is given by 

𝑇0 = −kd 

where d is the difference of the relaxed length and the equilibrium length of the spring as shown in Fig. 7. 

Therefore, we get 

𝑘 =
𝐹

𝑑
 

 
(1.18) 

where 𝐹 is the weight of the object, which in equal to 𝑚𝑔, 

Example 6: A copper spring suspended from a fixed point supports a scale pan of mass 0.05 kg at 

equilibrium. The scale pan descends 40 mm to a new equilibrium position when a 1 N weight is 

placed on it. Calculate the 

(a) spring constant, 

(b) the total mass of the scale pan and the 1 N weight. [ 𝑔 can be taken as 10 𝑚𝑠−2] 

(c) The scale pan, with 1 N weight on it, is pulled a distance of 15 mm downwards from 

equilibrium and then released. Calculate the time period of the oscillations, and 

(d) the maximum speed of the scale pan. 

Solution:  

(a) From equation (1.18), 

𝑘 =
𝐹

𝑑
=

1

0.04
= 25 𝑁/𝑚 

 

(b) Mass of 1 N weight = weight/g = 0.1 kg. Therefore, the total mass = 0.1 + 0.05 = 0.15 kg. 

(c) The time period is given as 

𝑇 = 2𝜋√
0.15

25
= 0.49 𝑠 

 

(d) The amplitude of the oscillations = 15 mm = 0.015 m. Therefore,  

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (
2𝜋

0.49 𝑠
) (0.015 𝑚) = 0.195 𝑚/𝑠 

Example 7: A block of mass 0.2 kg which slides without friction on a 𝜃 = 300 incline is connected 

to the top of the incline by a mass-less spring of relaxed length of 23.75 cm and spring constant 

80 N/m as shown in the following figure. 
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(a) How far from the top of the incline does the block stop? 

(b) If the block is pulled slightly down the incline and released, what is the period of the 

ensuing oscillations? [ 𝑔 can be taken as 10 𝑚𝑠−2] 

Solution:  

(a) At static equilibrium, using force balance along the incline, where d is the difference of the 

relaxed length and the equilibrium length of the spring 

 

𝑚𝑔sin 𝜃 = −kd 

∴ 𝑑 = −
𝑚𝑔 sin 𝜃

𝑘
= −

2(
1
2
)

80
× 100 𝑐𝑚 = −1.25 𝑐𝑚 

The negative sign is just an indicative of the direction. Now, the position of the mass from the top 

is the sum of the relaxed length of the spring and 𝑑, which is equal to 

 

= 23.75 + 1.25 = 25 𝑐𝑚 

 

(b) The time period for a spring pendulum is given by 

𝑇 = 2𝜋√
𝑚

𝑘
= 2𝜋√

0.2 𝑘𝑔

80 𝑁/𝑚
=

𝜋

10
 𝑠 

Self Assessment Question (SAQ) 15: A steel spring, suspended from a fixed point, supports a 0.2 

kg stone hung from its lower end. The stone is displaced downwards from its equilibrium position 

by a distance of 25 mm and then released. The time for 20 oscillations is measured as 22 s. 

Calculate (a) its time period, (b) its angular frequency, (c) its maximum speed, (d) the maximum 

tension in the spring. 

 

m 

k 

𝜃 

𝑚𝑔sin𝜃 

F 

Figure 8: Spring pendulum on an incline. 
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1.6.3 Composite Spring-Mass System 

Now we shall study some important composite spring-mass system. The first one we consider is 

the one that was given to you as a challenge question (SAQ 8). Let’s try to determine the general 

solution to the problem. Here, as shown in Fig. 9, there are two springs with spring constants 𝑘1 

and 𝑘2, which are attached to the rigid wall on one end and to the block of mass m on the other 

 

 

 

 

. 

 

 

 

 

If the value of the spring constant of one of the springs is not known, it can be determined by 

balancing the forces. Let 𝑑1 and 𝑑2 be the lengths by which the two springs are stretched out when 

the composite spring-mass system is in static equilibrium (Fig.9).  In this condition, the tensions 

in the two springs will balance each other. Thus, we can write 

𝑇10 = 𝑇20 

m 

Relaxed Length 

m 

(a) 

(b) 

(c) 

𝑘2 
𝑇10 𝑇20 

𝑘1 

x 

F 

Figure 9: (a) Relaxed springs attached to the rigid wall on one side, (b) the spring-mass system at 

static equilibrium, (c) oscillating spring-mass system. 
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𝑜𝑟  𝑘1𝑑1 = 𝑘2𝑑2  
 

(1.19) 

When the block is pulled in the right direction by a small distance x and then released, the system executes 

SHM. The restoring force F, that the block experiences is given by the sum of the change in tension in the 

two springs, because the spring on the left is stretched and so it tries to pull the block in the left direction, 

and the spring on the right is compressed so it also tries to push the block toward left. Hence, we see that 

both the springs try to force the block in the same direction (see Fig. 10). 

Thus, we can write, using Newton’s second law, 

𝐹 = ∆𝑇1 + ∆𝑇2 

 

∴ 𝐹 = −𝑘1𝑥 + −𝑘2𝑥 

= −(𝑘1 + 𝑘2)𝑥 

Thus, we can say that this composite spring-mass system too behaves like the simple horizontal spring-

mass system. The net spring constant of the composite system is given by the sum of the two individual 

spring constants: 

𝑘 = 𝑘1 + 𝑘2 (1.20) 

Now, you can again try to solve SAQ 8, if you could not solve it earlier. 

Example 8:  The spring constants (  k1 and 𝑘2) of both the springs is 50 𝑁𝑚−1 and the block of 

mass 1 kg is displaced by 0.01 m to the right from its mean position before being released. In the 

equilibrium position of the system, the springs are stretched by 0.02 m each. Calculate the  

(a) restoring force at t = 0, 

(b) restoring force when the block travels to the other extreme, and 

(c) the restoring force in the static equilibrium position. 

Solution: 

(a) The restoring force 𝐹 = −(𝑘1 + 𝑘2)𝑥 

= −(50 + 50 𝑁𝑚−1)(0.01 𝑚) = −1 𝑁 

(b) When the block travels to the left extreme, 𝑥 = −0.01 𝑚.  

Therefore, 𝐹 = −(50 + 50 𝑁𝑚−1)(−0.01 𝑚) = 1 𝑁  

(c) In the static equilibrium position, there is no restoring force! 

m 
∆𝑇2 = −𝑘2𝑥 ∆𝑇1 = −𝑘1𝑥 
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Now let us look at another composite system shown in Fig. 10 which is similar to the one discussed 

above. You may like to know how will the treatment change if the two springs are attached to the 

rigid wall on the same side. 

 

 

Let us see what happens if we displace the mass m by a small distance x towards the right. This 

will cause both the springs to get stretched from their equilibrium lengths and hence try to pull the 

mass back toward left. Therefore, the total restoring force experienced by the block is given by 

𝐹 = (−𝑘1𝑥) + (−𝑘2𝑥) 

∴ 𝐹 = −(𝑘1 + 𝑘2)𝑥 

Hence, just like the previous case, the net spring constant of the composite system is given by the sum of 

the two individual spring constants. i.e.  

𝑘 = 𝑘1 + 𝑘2 
 

(1.21) 

Example 9:  A weightless spring whose spring constant is 100 𝑁𝑚−1 is cut into two halves. 

(a) What is the spring constant of each half? 

(b) The two halves suspended separately support a block of mass m. If the system vibrates at 

a frequency of (10/𝜋) Hz, find the value of mass m. 

 

 

 

Figure 10: Composite spring – mass system with the two springs attached to the same wall. 

Figure 11: A mass m suspended by two springs which are attached to the ceiling. 

m 

𝑘1 

𝑘2 

m 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

23 
 

Solution: 

(a) From equation (1.2), we know that  

𝐹 = (
𝑌𝛼

𝐿
)𝑥 

Therefore, we get that the spring constant is inversely proportional to the length of the 

spring. 

𝑘 (𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) ∝
1

𝐿
 

Thus, when the length is reduced to half, the value of the spring constant must double. 

Hence, the spring constant of each of the half spring is2 × 100 𝑁𝑚−1 = 200 𝑁𝑚−1. 

 

(b) The net spring constant of the composite spring-mass system shown above will be 𝑘 =

𝑘1 + 𝑘2 = 200 + 200 = 400 𝑁𝑚−1. The frequency is given by 

𝜈 =
𝜔

2𝜋
=

1

2𝜋
√

𝑘

𝑚
 

Therefore,  

10

𝜋
=

1

2𝜋
√

400

𝑚
 

Or,  

𝑚 = 1 𝑘𝑔 

 

Self Assessment Question (SAQ) 16: In the above example, what will be the net spring constant 

if, instead of cutting the spring into two half, it is cut into three pieces? Also calculate the mass m 

if the system vibrates with the same frequency. 

There is yet another case of composite spring-mass system, where the springs are joined in series 

as shown in Fig.12 below. 

 

 

 

 

If the block is displaced to the right by x, the two springs will be stretched differently depending 

upon their respective spring constants. However, the force exerted by the two springs on each other will 

be same. Thus, if the two springs are stretched by x1 and x2, we can write  

m 
𝑘1 𝑘2 
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𝑘2𝑥2 = 𝑘1𝑥1 

Or, 

𝑥1 =
𝑘2

𝑘1
𝑥2 

Since the sum of the stretch in each of the two springs should be equal to the distance, x by which the block 

has been displaced, we have 

𝑥 = 𝑥1 + 𝑥2 = 𝑥2 (1 +
𝑘2

𝑘1
) 

or, 

𝑥2 =
𝑥

(1 +
𝑘2
𝑘1

)
 

Now, the restoring force experienced by the block will be equal to the tension in spring 2,  

𝐹 = −𝑘2𝑥2 = −𝑘2

𝑥

(1 +
𝑘2

𝑘1
)

 

= −
1

(
1
𝑘1

+
1
𝑘2

)
𝑥 

Therefore, the net spring constant when the springs are in series is 

𝑘 =
1

(
1
𝑘1

+
1
𝑘2

)
 

Or, 

1

𝑘
=

1

𝑘1
+

1

𝑘2
 

 

(1.22) 

Self Assessment Question (SAQ) 17: Calculate the time period of composite spring-mass system 

when the springs are joined in series? 

1.7 SUMMARY 

In this unit, we have studied about what is meant by the periodic motion, the oscillatory motion 

and what are the conditions and basic characteristics of SHM. We studied about the restoring force 

that comes in to play due to the displacement from the mean or the equilibrium position and how 

the restoring force is proportional to the magnitude of the displacement in case of SHM. We 

studied the two simple systems, simple pendulum and spring-mass system, which are both 
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examples of SHM. We are also aware now that the two properties of inertia and elasticity are 

responsible for oscillation of a physical system.  

Using the knowledge of Newton’s second law of motion, we wrote the equation of motion for 

SHM and derived the solution of the differential equation used to describe SHM. We also 

calculated the time period and angular frequency of spring-mass system, including for some 

composite spring-mass systems. 

1.8 GLOSSARY 

Displacement – net change in location of a moving body; in case of SHM, it is measured from the 

equilibrium position. 

Elasticity – ability of a material to regain its shape after being distorted. 

Elastic Limit – the maximum limit up to which a solid material can be stretched without a 

permanently altering its length, shape and size. 

Force – anything that can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a vibrating object. 

Hooke’s Law – the extension of a spring is proportional to the tension in the spring. 

Inertia – the tendency of a physical object to remain still or to continue moving, unless a force is 

applied to it. 

Microwaves – electromagnetic waves of wavelength between about 0.1 mm and 10 mm. 

Radio waves – electromagnetic waves of wavelength longer than about a millimeter. 

Sound – vibrations in a substance that travel through the substance. 

Stiffness – a measure of the force needed to change the shape of an object. 

Tension – the force in an object that has been stretched. 

Velocity – speed in a given direction. 

Wavelength – the distance between two adjacent wave-crests. 

Weight – the force of gravity on an object. For a mass, m, its weight = mg. 

X-rays – electromagnetic waves of wavelength less than about 1 nm. 

Young’s Modulus of elasticity – Stress divided by strain. 
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1.9 TERMINAL QUESTIONS 

1. A horizontal spring-mass system of spring constant k and mass M executes SHM with frequency 

ν. When the block is passing through its equilibrium position, an object of mass m is put on it 

and the two move together. Find the new frequency of vibration. 

2. A particle executes SHM with amplitude of 0.5 cm and frequency of 100 𝑠−1. What is the 

maximum speed of the particle? 

3. A weight suspended from a spring oscillates up and down. The restoring force in the weight is 

zero at (a) highest point, (b) lowest point, (c) middle point, (d) none of these.  

4. A person goes to bed at sharp 10:00 pm every day. Is it an example of periodic motion? If yes, 

what is the time period? If no, why? 

5. In the above question, is it an example of SHM? If yes, why? 

6. A particle moves on the x-axis according to the equation 𝑥 = 𝐴 + 𝐵 sin𝜔𝑡. Is the motion SHM? 

If yes, what is the amplitude? 

7. The displacement of a particle in SHM in one time period is 

(a) A, (b) 2A, (c) 4A, (d) zero.   

8. The distance moved by a particle in SHM in one time period is 

(a) A, (b) 2A, (c) 4A, (d) zero.   

9. The distance moved by a particle in SHM in half time period is 

(a) A, (b) 2A, (c) 4A, (d) zero.   

10. Mention the differences among periodic motion, oscillatory motion and SHM. 

11. Select the correct statement(s). More than one choice may be correct. 

(a) A simple harmonic motion is necessarily periodic. 

(b) A simple harmonic motion is necessarily oscillatory. 

(c) An oscillatory motion is necessarily periodic. 

(d) A periodic motion is necessarily oscillatory. 

12. Write notes on: 

      (i) SHM       (ii) Spring-Mass System   (iii) Time period   (iv) Angular Frequency  

1.10 ANSWERS 
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Selected Self Assessment Questions (SAQs): 

4. (a) 

7. No. 

10. 𝜔 = 2𝜋/60  𝑟𝑎𝑑/𝑠  and 𝑇 = 1/30 𝑠 

13. Period remains unchanged. Maximum velocity is doubled. 

14. (a) 

15. Hint: The maximum tension in the spring will be when it is stretched to the extreme, which is 

equal to the sum of the difference of the relaxed length and the equilibrium length of the spring, and the 

amplitude of the oscillations; i.e. 𝑑 + 𝐴 = (𝑇0 + ∆𝑇)/𝑘. 

16. 𝑘 = 300 𝑁𝑚−1 

17. The time period for such a system is given by  

𝑇 = 2𝜋√
𝑚

𝑘
= 2𝜋√𝑚(

1

𝑘1

+
1

𝑘2

)  

Selected Terminal Questions: 

1.  Original frequency of SHM,  

𝜈 =
1

2𝜋
√

𝑘

𝑀
 

The new frequency of SHM,  

𝜈𝑛𝑒𝑤 =
1

2𝜋
√

𝑘

𝑚 + 𝑀
 

Therefore,  

𝜈𝑛𝑒𝑤 = 𝜈√
𝑀

𝑚 + 𝑀
 

2.  |𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (2𝜋 × 100)(0.5 × 10−2) = 𝜋 𝑚/𝑠 

3.  (c) because at the equilibrium or mean position the restoring force is zero. 

4. Yes. Time period = 24 hours. 
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5. No. SHM is a special case of oscillatory motion, where a body moves back and forth 

repeatedly about a fixed position. Here nothing like that happens! 

6. Yes. Amplitude = A + B. 

7. (d) 

8. (c) 

9. (b) 

11. (a), (b) 
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2.1 INTRODUCTION 

Let us start with revising what we learned in Unit 1. We defined SHM as oscillatory motion of an 

object in which the restoring force is proportional to the magnitude of the displacement and is 

always in a  direction opposite to the displacement from the equilibrium or the mean position. We 

also know that the net force at the mean position is zero.  

We then learned how to calculate the time period for spring-mass system executing simple 

harmonic motion. The time interval after which the periodic motion is repeated (i.e. the position 

and the velocity of the moving body is the same) is called its time period. It is worth noting here 

that the time period, T, is independent of the amplitude of SHM. 

We also solved the differential equation for SHM and obtained its solution. The displacement of 

an object executing SHM is given by the expression: 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿). We shall explore the 

implications of this in detail, in this unit. We shall also obtain the expression for the energy of the 

system executing SHM. 

2.2 OBJECTIVES 

After studying this unit, you should be able to 

 understand that the oscillatory motion described by a sinusoidal curve is called SHM 

 explain what is meant by phase of an oscillator 

 explain what is the phase constant or the phase angle 

 write down the expressions for velocity and acceleration for SHM 

 describe how the acceleration, velocity and displacement of an oscillating system change 

with time and how they are related to each other 

 calculate the potential energy and kinetic energy of an oscillator executing SHM 

2.3 PHASE OF AN OSCILLATOR EXECUTING SHM 

The word phase is synonymous to what we call “state;”. For example, in thermodynamics, phase 

of a substance refers to the solid or liquid or vapor or plasma state of the substance. You may recall 

from Unit 1 that the equation of motion of a system executing SHM is a second order differential 

equation. To obtain the expression for the displacement of the oscillator, we integrate the 

differential equation twice and obtain the value of the integration constant by making use of the 

initial and the boundary conditions. The first integration gives us the expression for velocity and 

the second integration gives us the expression for displacement:  

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

31 
 

In the above expression, as the argument of the sine function - time-varying quantity (𝜔𝑡 + 𝛿)  - 

changes, the position also changes. In other words, this quantity actually specify the ‘state’ of the 

oscillator  at that instant. This quantity is called the phase of the SHM. 

If the phase 𝜑 = (𝜔𝑡 + 𝛿) is zero at a certain instant, we have 

𝑥(𝑡) = 𝐴 sin(0) = 0 

And  

𝑣(𝑡) =
𝑑𝑥

𝑑𝑡
= 𝐴𝜔 cos(0) = 𝐴𝜔 

This means that the oscillating body is crossing the mean position and is going towards the positive 

direction. If the phase is 𝜋/2, we get 𝑥(𝑡) = 𝐴 and v(𝑡) = 0 so that the oscillating body is at the 

positive extreme position. The following figure shows the state of the oscillating body at different 

phases. 

  

 

We can see that as the time increases, the phase increases. An increase of 2𝜋 brings the body to 

the same state of motion. Thus, a phase of (𝜔𝑡 + 𝛿) is equivalent to (𝜔𝑡 + 𝛿 + 2𝜋). Similarly, a 

phase change of 4𝜋, 6𝜋, 8𝜋… are equivalent to no phase change. 

2.3.1 Phase Constant 

The constant of integration 𝛿 appearing in the expression for displacement 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

is called the phase constant or the phase angle. The value of 𝛿 depends on the initial condition, i.e. 

the displacement and the velocity of the oscillating body at 𝑡 = 0.  

In order to describe SHM quantitatively, a particular instant has to be assigned 𝑡 = 0 and 

measurement of time should begin from this instant. This instant can be chosen according to the 

convenience. Suppose we choose 𝑡 = 0 at an instant when the oscillating body is passing through 

its mean position and is going towards the positive direction. So, at this instant, the displacement 

𝜑 = 0 

𝜑 = 𝜋/2 

𝜑 = 𝜋 

𝜑 = 3𝜋/2 

𝜑 = 2𝜋 
𝑥 = 0 

Figure 12: State of an oscillating body at different phases. 
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is zero and hence the phase 𝜑 = (𝜔𝑡 + 𝛿) should be zero if we represent the SHM by the sine 

function. As 𝑡 = 0, this means the phase constant 𝛿 is zero. The equation for displacement can 

then be written as 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡) 

If we choose 𝑡 = 0 at an instant when the oscillating body is at its positive extreme position, the 

phase angle is 𝜋/2 at this instant. Thus, the phase 𝜑 = (𝜔𝑡 + 𝛿) is 𝜋/2 and hence, 𝛿 = 𝜋/2. The 

equation for the displacement is therefore given by  

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜋/2 ) = 𝐴 cos(𝜔𝑡) 

As any instant can be chosen as 𝑡 = 0, the phase constant 𝛿 can be chosen arbitrarily. Sometimes, 

we may have to consider two or more simple harmonic motions together. The phase constant 𝛿 of 

any one of them can be chosen as zero. The phase constants of the rest of them will be determined 

by the actual situation. 

Example 1: Show that the sine and the cosine functions describing the displacement of the 

oscillating body executing SHM are equivalent.  

Solution: The general expression for displacement is given by 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

Defining another arbitrary constant 𝛿1 such that (𝜋/2 + 𝛿1) = 𝛿, the above expression may be 

written as 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜋/2 + 𝛿1) = 𝐴 cos(𝜔𝑡 + 𝛿1) 

Therefore, we can say that the sine and the cosine forms are equivalent. The value of phase 

constant, however, depends on the form chosen. 

Example 2: A particle starts at 𝑡 = 0 from the mean position with a velocity 𝑣 = 3𝜋 𝑚/𝑠 in the 

positive direction. If the time period of the oscillation is 2 sec., write the expression for the 

displacement of the particle. 

(a) What minimum time does the particle take to go from mean position to a point P, which 

lies midway between the mean position and the right extreme position? 

(b) What minimum time does the particle take to reach the right extreme position from the 

mean position? 

Solution: From equation (1.14), we know that 

𝜔 =
2𝜋

𝑇
=

2𝜋

2 𝑠
= 𝜋 𝑟𝑎𝑑 𝑠−1 
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Let 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) be the expression for the displacement of the particle executing SHMon. 

Therefore, the velocity is given by 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝛿) 

Applying the initial conditions, at 𝑡 = 0 

𝑥(0) = 0 𝑚;   𝑣(0) = 3𝜋 𝑚/𝑠 

On the above expressions for displacement and velocity, we get 

0 = 𝐴 sin(𝛿) 

∴ 𝛿 = 0, 𝜋 

And 

3𝜋 = 𝐴𝜔 cos(𝛿) 

Hence, 𝛿 = 0 is possible but 𝛿 = 𝜋 is not possible. Therefore, 𝛿 = 0 is a possible solution. 

Substituting it in the above equation, we get 

3𝜋 = 𝐴𝜔 cos(0) = 𝐴𝜔 

𝐴 =
3𝜋

(𝜋 𝑟𝑎𝑑 𝑠−1)
= 3 𝑚 

Therefore, the equation of motion is 𝑥(𝑡) = 3 sin(𝜋𝑡) 

(a) The particle is at the mean position at 𝑡 = 0. Let us assume that the particle  reaches the 

point P (midway between the mean position and the right extreme) from its mean position 

in time t. Thus, we have,  𝑥(𝑡) = 𝐴/2 = 1.5 𝑚.  

Thus, 1.5 = 3 sin(𝜋𝑡) or t  = 1/6 s. 

(b) 𝑥(𝑡) = 𝐴 = 3 𝑚. Thus, sin(𝜋𝑡) = 1 or t = 0.5 s. 

 

Self Assessment Question (SAQ) 1: If a particle executing SHM starts at 𝑡 = 0 from the right 

extreme, what is its equation? 

Self Assessment Question (SAQ) 2: If a particle executing SHM starts at 𝑡 = 0 from the left 

extreme, what is its equation? 

Self Assessment Question (SAQ) 3: If a particle executing SHM starts at 𝑡 = 0 from the mean 

position and the initial velocity is positive, what is its equation? 

Self Assessment Question (SAQ) 4: If a particle executing SHM starts at 𝑡 = 0 from the mean 

position and the initial velocity is negative, what is its equation? 
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2.3.2 SHM as Projection of Circular Motion 

Consider a particle P moving on a circular path of radius r as shown in Fig. 2. We can write the 

coordinates of point P as 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, where 𝑟 is the radius of the circle and 𝜃 is 

the angle between the line OP and the x-axis. 

 

 

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃 𝑟𝜃. From Fig. 2, you may note that, as the particle P moves along the 

circular path,, its  y-coordinate (= 𝑟 sin 𝜃) changes because  𝜃 changes from 0 to 2𝜋. Thus, we 

can see that the y-coordinate of the particle P executes SHM. Similarly, you should convince 

yourself that the x-coordinate (= 𝑟 cos𝜃) of the particle P will also execute SHM. However, the 

phases of the two harmonic motions differ by 𝜋/2 as cos𝜃 = sin(𝜃 + 𝜋/2). 

Therefore, the projection of a uniform circular motion on a diameter of the circle is a simple 

harmonic motion. This representation of SHM is known as the rotating vector representation or 

phasor model. 

2.4 VELOCITY AND ACCELERATION IN SHM 

From your school mathematics, you may recall that, if we know the expression for the 

displacement of a particle, we can obtain expressions for its velocity and acceleration using 

differential calculus. In the previous Section, we obtained the expression for the velocity of the 

particle executing SHM by differentiating the expression for dixplacement, x(t): 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝛿) 

r 

𝜃 

x-axis 

y-axis 

O 

P 
+r 

-r 

𝜃 𝜋/2 

3𝜋/2 

𝜋 

2𝜋 

𝑦 = 𝑟 sin 𝜃 

Figure 13: A particle P moving on a circular path. Its projection on the diameter generates a 

sinusoidal curve. 
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From the above expression, you may note  that the amplitude of velocity or maximum velocity is 

given by 

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 

In Unit 1, we obtained an expression for the velocity in terms of displacement and other parameters 

of SHM:  

𝑣(𝑥) = ±𝜔√(𝐴2 − 𝑥2) 

To show that the above two expressions for the velocity are equivqlent, we write 𝑥(𝑡) =

𝐴 sin(𝜔𝑡 + 𝛿):  

𝑣 = ±𝜔√𝐴2{1 − sin2(𝜔𝑡 + 𝛿)} 

From basic trigonometry, we know that 1 − sin2 𝜃 = cos2 𝜃 is an identity. Therefore, we get 𝑣 =

±𝐴𝜔 cos(𝜔𝑡 + 𝛿). 

Further, to obtain the expression for the acceleration of the particle executing SHM, we shall 

differentiate the expression for displacement twice,  i.e. 

𝑑2𝑥(𝑡)

𝑑𝑡2
= 𝑎(𝑡) 

𝑜𝑟  
𝑑2{𝐴 sin(𝜔𝑡 + 𝛿)}

𝑑𝑡2
= 𝑎(𝑡) 

∴ 𝑎(𝑡) = −𝐴𝜔2 sin(𝜔𝑡 + 𝛿) (2.1) 

The acceleration can also be expressed in terms of the displacement of the particle,  i.e.  

𝑎(𝑡) = −𝐴𝜔2𝑥(𝑡) (2.2) 

From equation (2.2), you may note  that the acceleration in SHM is always directed towards the 

mean position. The magnitude of acceleration is minimum at the mean position and maximum at 

the extremes. 

|𝑎|𝑚𝑖𝑛 = 0     𝑎𝑡 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
|𝑎|𝑚𝑎𝑥 = 𝜔2𝐴     𝑎𝑡 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠 

(2.3) 

Using the expression for  acceleration, we can  determine the restoring force acting on the 

oscillating object: 

𝐹(𝑡) = 𝑚𝑎(𝑡) = −𝑚𝐴𝜔2 sin(𝜔𝑡 + 𝛿) (2.4) 
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At any position x, it is given by 

𝐹(𝑥) = −𝑚𝜔2𝑥 (2.5) 

We also know that 𝐹 = −𝑘𝑥 in case of spring-mass system. Comparing it with equation (2.5) gives 

us the familiar expression for angular velocity 

𝜔 = √
𝑘

𝑚
 

 

Example 3:  A horizontal platform executes SHM in a vertical line with time period of 𝜋 𝑠 and an 

amplitude of 0.5 m. A book of mass 2 kg is placed on the platform and oscillates with it. Calculate 

the greatest and least values of the force exerted by the book on the platform. 

Solution: The angular frequency of oscillation of the horizontal platform is given by 

𝜔 =
2𝜋

𝑇
= 2 𝑟𝑎𝑑/𝑠 

For any particle executing SHM, the net force acting at a distance x from the mean position must 

be  

𝐹(𝑥) = −𝑚𝜔2𝑥 

There are only two forces acting on the book: its weight and normal reaction. The net effect of 

these two forces must be towards the mean position. 

At the mean position, there is no net force and hence, the normal reaction equals the weight (mg). 

Above the mean position, the normal reaction is less than the weight (mg) and below the mean 

position, the normal reaction is greater than the weight (mg). See figure below. 
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At the top extreme: N is minimum at the top extreme.  

The net force towards mean position is  

𝐹(𝑥) = −𝑚𝜔2𝐴 

By balancing the forces, we get 

𝑁𝑡𝑜𝑝 = 𝑁𝑚𝑖𝑛 = 𝑚𝑔 − 𝑚𝜔2𝐴 

= 2 × 9.8 − 2(2)2(0.5) = 15.6 𝑁 

At the bottom extreme: N is maximum at the bottom.  

The net force towards mean position is  

𝐹(𝑥) = −𝑚𝜔2(−𝐴) = 𝑚𝜔2𝐴 

By balancing the forces, we get 

𝑁𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑁𝑚𝑎𝑥 = 𝑚𝑔 + 𝑚𝜔2𝐴 

𝑚𝑔 

𝑁𝑡𝑜𝑝 

top extreme 

𝑁0 

mean position 

𝑁𝑏𝑜𝑡𝑡𝑜𝑚  

bottom extreme 

𝑚𝑔 

𝑚𝑔 

F 

F 

Figure 14: Force acting on the book placed on an oscillating platform. 
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= 2 × 9.8 + 2(2)2(0.5) = 23.6 𝑁 

 

Self Assessment Question (SAQ) 5: In the above example, what do you think is the condition for 

the book to maintain contact with the platform?  

2.5 TRANSFORMATION OF ENERGIES IN SHM  

While discussing the motion of simple oscillatory systems, we discovered that the energy of the 

oscillation alternates between potential and kinetic forms; the potential energy being minimum at 

the mean position and maximum at the extremities. On the other hand, the kinetic energy is 

maximum at the mean position and minimum at the extremities. While the sum of potential energy 

(U) and kinetic energy (K), which is the total mechanical energy (E) of the oscillator, remains 

constant.  

Let us now derive an expressions for the potential, kinetic and total mechanical energy in SHM.  

2.5.1 Potential Energy 

We shall derive the elastic potential energy of the simple spring – mass system  that we studied in 

Unit 1. The value of the elastic potential energy of the spring-mass system  depends entirely on 

how much the spring is stretched or compressed, i.e. the displacement 𝑥(𝑡) of the mass from its 

equilibrium position𝑥(𝑡)Further, the elastic  potential energy dU gained by the system is equal to 

the work done against the force in  moving it through a distance dx. In other words, 

𝑑𝑈 = −𝐹(𝑥)𝑑𝑥 (2.6) 

Replacing 𝐹(𝑥) = −𝑚𝜔2𝑥 in the above equation, we get 

𝑑𝑈 = 𝑚𝜔2𝑥 𝑑𝑥 

Thus, the total elastic potential energy at a point 𝑥 will be equal to the total work done in moving 

the oscillator from the mean position (𝑥 = 0). Therefore, integrating the above expression from 0 

to x, we get 

𝑈 = 𝑚𝜔2 ∫𝑥 𝑑𝑥

𝑥

0

 

𝑜𝑟   𝑈 =
1

2
𝑚𝜔2𝑥2 
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∴ 𝑈 =
1

2
𝑘𝑥2 =

1

2
𝑘𝐴2 sin2(𝜔𝑡 + 𝛿) (2.7) 

Let us also calculate the average potential energy of the spring-mass system over one complete 

cycle. This can be determined by integrating it over time from 0 to T, i.e. one time period. Thus, 

〈𝑈〉 =
1

2
𝑘𝐴2 [

∫ sin2(𝜔𝑡 + 𝛿)𝑑𝑡
𝑇

0

∫ 𝑑𝑡
𝑇

0

 ] 

=
1

2
𝑘𝐴2 [

1

2
 ] 

∴ 〈𝑈〉 =
1

4
𝑘𝐴2 

 

(2.8) 

2.5.2 Kinetic Energy 

The kinetic energy of the spring-mass system is entirely associated with the moving object. Its 

value depends on how fast the object is moving, that is, on 𝑣(𝑡). Hence, 

𝐾 =
1

2
𝑚𝑣2 

∴ 𝐾 =
1

2
𝑚𝜔2𝐴2 cos2(𝜔𝑡 + 𝛿) =

1

2
𝑘𝐴2 cos2(𝜔𝑡 + 𝛿) (2.9) 

Therefore, the average kinetic energy, which can be calculated by integrating it over time from 0 

to T, i.e. one time period,  will be 

〈𝐾〉 =
1

2
𝑘𝐴2 [

∫ cos2(𝜔𝑡 + 𝛿) 𝑑𝑡
𝑇

0

∫ 𝑑𝑡
𝑇

0

 ] 

=
1

2
𝑘𝐴2 [

1

2
 ] 

∴ 〈𝐾〉 =
1

4
𝑘𝐴2 

 

(2.10) 

Thus, we find that the average potential energy of the spring-mass system is equal to its average 

kinetic energy. 

2.5.3 Total Mechanical Energy 

Using equations  (2.7) and (2.9), we can determine the  total mechanical energy at a particular 

instant, by summing the potential and the kinetic energies, 

𝐸 = 𝑈 + 𝐾 
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=
1

2
𝑘𝐴2 sin2(𝜔𝑡 + 𝛿) +

1

2
𝑘𝐴2 cos2(𝜔𝑡 + 𝛿) 

=
1

2
𝑘𝐴2[sin2(𝜔𝑡 + 𝛿) + cos2(𝜔𝑡 + 𝛿)] 

From trigonometry, we know that sin2 𝜃 + cos2 𝜃 = 1 is an identity. Thus, 

𝐸 =
1

2
𝑘𝐴2 (2.11) 

The  total mechanical energy of the oscillator (spring-mass system) is indeed a constant and is 

independent of time or position.  

The potential energy and kinetic energy of a linear oscillator are shown as the function of time in 

the figure below. Note that all the energies are positive and that the potential energy and the kinetic 

energy peak twice during every period. 

 

 

Next, in Fig. 5, we show the variation of potential energy and kinetic energy of a linear oscillator 

as the function of displacement. Note that, at 𝑥 = 0, that is, at the mean position, the energy is all 

kinetic while at the extremities, i.e.at  𝑥 = ±𝐴, it is all potential. 

 

En
er

gy
 

displacement 0 −𝐴   

𝐸 = 𝑈 + 𝐾 

𝑈(𝑥) 

𝐾(𝑥) 

𝐸 = 𝑈 + 𝐾 

time 

𝐾(𝑡) 

𝑈(𝑡) 

En
er

gy
 

T/2 

Figure 15: Potential energy, kinetic energy and total energy as functions of time, for SHM. 

Figure 16: Potential energy, kinetic energy and total energy as functions of position, for SHM. 
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Example 4:  A block, whose mass is 680 g, is fastened to a spring whose spring constant k is 65 

N/m. The block is pulled a distance x = 11 cm from its equilibrium position at x = 0 on a frictionless 

horizontal surface and released from rest at t = 0. 

(a) What force does the spring exert on the block just before the block is released? 

(b) What are the angular frequency, the frequency, and the period of the resulting oscillation? 

(c) What is the amplitude of the oscillation? 

(d) What is the maximum speed of the oscillating block? 

(e) What is the magnitude of the maximum acceleration of the block? 

(f) What is the phase angle for the motion? 

(g) What is the total mechanical energy of the  oscillator? 

(h) What is the potential energy of this oscillator when the block is halfway to its end-point? 

(i) What is the kinetic energy of the oscillator when the block is halfway to its end-point? 

Solution:  

(a) From Hooke’s law 

𝐹 = −𝑘𝑥 = −(65)(0.11) = −7.2 𝑁 

(b) For the givem spring-mass system, the angular frequency is  

𝜔 = √
𝑘

𝑚
= √

65

0.68
= 9.78 𝑟𝑎𝑑/𝑠 

Thus, the frequency is  

𝜈 =
𝜔

2𝜋
=

9.78

2𝜋
= 1.56 𝐻𝑧 

And the time period is 

𝑇 =
1

𝜈
=

1

1.56
= 0.64 𝑠 

(c) Since the block is released from rest at 11 cm distance from its equilibrium point, the 

kinetic energy it possesses at this point is zero. We already know that at the position of 

maximum displacement, the energy is all potential and the kinetic energy is zero. Hence, 

the amplitude A should be equal to 11 cm or 0.11 m. 

 

(d) The maximum speed is given by 

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = (9.78)(0.11) = 1.1 𝑚/𝑠 

(e) The maximum acceleration is when the block is at the ends of its path. At those points the 

force acting on the block has its maximum magnitude. 

|𝑎|𝑚𝑎𝑥 = 𝜔2𝐴 = (9.78)2(0.11) = 11 𝑚𝑠−2 
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(f) At 𝑡 = 0, when the block is released, the displacement of the block has maximum value 

equal to the amplitude and the velocity of the block is zero. Using these initial conditions, 

we get 

1 = sin 𝛿 

And 

0 = cos𝛿 

The smallest angle that satisfies both these conditions is 𝛿 = 𝜋/2. 

Note: Any angle (2𝑛𝜋 + 𝜋/2) rad, where n is an integer, will also satisfy these conditions. 

 

(g) We already know that the total energy will be constant. 

𝐸 =
1

2
𝑘𝐴2 =

1

2
(65)(0.11) = 0.393 𝐽 

(Comment: correct the above equation: it should be (0.11)2 ) 

(h) The potential energy is given by 

𝐸 =
1

2
𝑘𝑥2 =

1

2
𝑘 (

𝐴

2
)
2

 

=
1

8
𝑘𝐴2 =

1

4
𝐸 = 0.098 𝐽 

(Comment: check the arithmetic  above; it will change in view of correction in (g) above) 

(i) The kinetic energy can be determined by subtracting the potential energy component from 

the total energy 

𝐾 = 𝐸 − 𝑈 

= 0.393 − 0.098 = 0.295 𝐽  

Thus, we see at this position during the oscillation, about 25% of the energy is in the 

potential form and the rest 75% is in kinetic form. 

 

Self Assessment Question (SAQ) 6: Two simple harmonic motions are represented by the 

equations 𝑥1 = 10 sin(3𝑡 + 𝜋/4) and 𝑥2 = 5 cos(9𝑡 + 𝜋/3). Their amplitudes are of the ratio 

_____________. 

Self Assessment Question (SAQ) 7: Choose the correct option: 

A body is in SHM. The motion is represented graphically. The valid representation of the position 

will be 

(a) A square wave 

(b) A straight line 

(c) A sinusoidal curve 

(d) A (𝑦 = 𝑥2) curve 

(e) A curve of the form 𝑦 = 5|sin𝜑| 
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Self Assessment Question (SAQ) 8: In the previous question, what will be the valid representation 

of the velocity? 

Self Assessment Question (SAQ) 9: In the previous question, what will be the valid representation 

of the acceleration? 

Self Assessment Question (SAQ) 10: Choose the correct option: 

For a particle executing SHM, which of the following statements does not hold good? 

(b) The total energy of the particle always remains the same. 

(c) The restoring force is always directed towards a fixed poin.t 

(d) The restoring force is maximum at the extreme positions. 

(e) The acceleration of the particle is minimum at the mean position. 

(f) The velocity of the particle is minimum at the mean position. 

2.6 SUMMARY 

In this unit, we studied the concept of phase of the oscillatory motion and what is meant by the 

phase angle or phase constant. We also learned that the the phase and phase constant for an 

oscillatory motion, which represents the state of the SHM, can be determined by using the 

boundary and the initial conditions. We also learned how SHM can be represented as  a projection 

of circular motion on diameter and that the sine and the cosine forms are interchangeable.  

Thereafter, we learned how to calculate the velocity and acceleration of a particle executing SHM. 

We saw that the acceleration in SHM is always opposite to the direction of displacement and that 

it always points towards the mean position. We then calculated the potential energy, kinetic energy 

and the total energy of the system. We discussed the variation of these energies with time as well 

as position and learned that the total energy remains constant throughout and only the kinetic 

energy and the potential energy of the system varies. At the mean position, the total energy is 

composed fully of the kinetic energy and at the extremities it is fully formed by the potential energy 

and the kinetic energy at these two ends is zero, because the oscillating body is at rest in that 

instant. Until now, we have considered the  spring-mass system as our model oscillator. Now, after 

having  understood the different characteristics of SHM, we are in a position to  move forward and 

discuss some  other physical systems executing SHM.   

2.7 GLOSSARY 

Acceleration – the change of velocity of an object per second. The unit of acceleration is m/s. 

Amplitude – the maximum displacement of an oscillating system from its mean position. 

Displacement – net change in location of a moving body. 
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Force – anything that can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a vibrating object. 

Kinetic energy – energy of a moving object. 

Total mechanical energy – it is the sum of the kinetic energy and the potential energy. 

Phase difference – the fraction of a cycle between the motion of two objects vibrating at the same 

frequency. 

Potential energy – energy due to position. 

Tension – the force in an object that has been stretched. 

Velocity – speed in a given direction. 

Weight – the force of gravity on an object. For a mass, m, its weight = mg. 

Work – energy transferred by a force. 

2.8 TERMINAL QUESTIONS 

1. For a particle executing SHM along x-axis, the restoring force is given by 

 (a) –𝐴𝑘𝑥 (b) 𝐴 cos 𝑘𝑥 (c) 𝐴 exp(−𝑘𝑥) (d) 𝐴𝑘𝑥 

2. The potential energy of a particle executing SHM is given by 

 (a) 𝑈 = 𝑘/2(𝑥 − 𝑎)2 (b) 𝑈 = 𝑘𝑥 + 𝑘𝑥2 + 𝑘𝑥3 (c) 𝑈 = 𝐴 exp(−𝑏𝑥) (d) 𝑈 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

3. A particle executes simple harmonic motion of amplitude A along the x-axis. At 𝑡 = 0, the 

position of the particle is 𝑥 = 𝐴/2 and it moves along the positive x-direction. Find the phase 

constant if the equation is written as 𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿). 

4. A body of mass 2 kg, suspended through a vertical spring, executes SHM of period 4 s. If the 

oscillations are stopped and the body hangs in equilibrium, find the potential energy stored in 

the spring. [𝑔 = 10 𝑚𝑠−2] 

5. In the previous question, if the system, instead of being on the earth’s surface, is transported to 

the moon,  how will your answer change? The acceleration due to gravity on the moon’s 

surface is 1/6th of that on the earth. 

6. If the system described in question 4 above is kept  in an elevator which is moving downward 

with an acceleration of 5 𝑚𝑠−2, how will your answer change? How about the condition when  

the elevator is accelerating upwards with the same acceleration? And, what will happen if the 

elevator is experiencing a free fall? 
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7. A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end 

fixed. A block fastened to its other end is made to undergo small oscillations. If the block 

makes 5 oscillations each second, what is the mass of the block? 

8. A mass M, attached to a spring, oscillates with a period of 2 s. If the mass is increased by 2 kg, 

the period increases by 1 s. Assuming Hooke’s law is obeyed, the initial mass M was 

__________. 

9. The work done by the spring-mass system  during one complete oscillation is equal to 

(a) The total energy of the system 

(b) Kinetic energy of the system 

(c) Potential energy of the system 

(d) Zero 

10. A particle of mass m is hanging vertically by an ideal spring of force constant k. If the mass is 

made to oscillate vertically, its total energy is 

(a) maximum at the extreme position 

(b) maximum at the mean position 

(c) minimum at the mean position 

(d) none of the above 

 

11. Write short notes on: 

      (i) Acceleration in SHM       (ii) Energy Variation in SHM    

     (iii) Phasor model of SHM 

12. Four mass-less springs, whose force constants are 2k, 2k, k and 2k respectively, are attached 

to a mass M kept on a frictionless plane as shown in the following figure. If the mass M is 

displaced in the horizontal direction, what will be the frequency of the oscillation? 

𝑘 
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13. A particle is executing SHM. Its velocity has values of 3 m/s and 2 m/s when its distance from 

the mean position is 1 m and 2 m, respectively. calculate the length of its path and period of its 

motion. 

 

2.9 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. 𝑥(𝑡) = 𝐴 cos𝜔𝑡  

2. 𝑥(𝑡) = −𝐴 cos𝜔𝑡  

3. 𝑥(𝑡) = 𝐴 sin 𝜔𝑡  

4. 𝑥(𝑡) = −𝐴 sin𝜔𝑡  

5. To maintain contact between the book and the platform, 𝑁𝑚𝑖𝑛 must be positive. If 𝑁𝑚𝑖𝑛 becomes 

less than zero, the book will leave contact with the platform.  

Hence to maintain contact, 

𝑚𝑔 − 𝑚𝜔2𝐴 ≥ 0 

𝑜𝑟   𝜔2𝐴 ≤ 𝑔 

6. Ratio of amplitudes = 10:5 or 2:1 

7. (c)  

8. (c)  

9. (c) 

10. (e) 

Selected Terminal Questions: 

1.  (a) 

m 
2𝑘 2𝑘 

2𝑘 

Figure 17: Composite spring-mass system. 
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2.  (a) 

3.  At 𝑡 = 0, 𝑥 = 𝐴/2. Therefore, 𝐴/2 = 𝐴 sin 𝛿 or 𝛿 = 𝜋/6 or 5𝜋/6. The velocity is given by 

𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝛿) 

At 𝑡 = 0, 𝑣 = 𝐴𝜔 cos𝛿. Now, cos 𝜋/6 = √3/2 and cos5𝜋/6 = −√3/2. We are given that the 

velocity is positive at 𝑡 = 0, therefore the phase constant cannot be 5𝜋/6. 

∴ 𝛿 = 𝜋/6 

4. The body hangs in equilibrium at the end of a spring as shown below. 

 

Now the potential energy stored in the equilibrium position in the spring will be because of the 

elongation in the spring, i.e.  

𝑈 =
1

2
𝑚𝜔2𝑑2 

So, now our task is to calculate d. We know the frequency of the oscillation and the mass m of the 

block. By applying force balance, we have 

𝑇0 = 𝑚𝑔 

Also, we know that the tension provides the restoring force,  

𝑇0 = −𝑘𝑑 

From the two equations, we get 
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𝑑 =
𝑚𝑔

𝑘
=

𝑚𝑔

𝑚𝜔2
=

𝑔

𝜔2
 

Therefore, the potential energy will be 

𝑈 =
1

2
𝑚𝜔2 (

𝑔

𝜔2
)
2

=
1

2
𝑚

𝑔2

𝜔2
 

=
1

2
𝑚

𝑔2

(
2𝜋
𝑇 )

2 =
1

2
(2)

(10)2

(
2𝜋
4 )

2 

∴ 𝑈 = 40.5 𝐽 

5. The only thing that will change in this question is the value of g. We will have to use the g on 

the moon. Therefore,  

𝑈 =
1

2
𝑚

𝑔2

(
2𝜋
𝑇 )

2 =
1

2
(2)

(
10
6 )

2

(
2𝜋
4 )

2 = 1.12 𝐽 

6. Again, what will change is the value of the acceleration due to gravity experienced by the 

system.  

 

The elevator is accelerating down, hence the net acceleration experienced by the spring-mass 

system will be equal to the difference between the two accelerations. i.e. 

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 𝑔 − 𝑎𝑒𝑙𝑒𝑣𝑎𝑡𝑜𝑟  

∴ 𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 10 − 5 = 5 𝑚𝑠−2 

Therefore, the potential energy stored in the spring will be 

𝑈 =
1

2
𝑚

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑
2

(
2𝜋
𝑇 )

2 =
1

2
(2)

(5)2

(
2𝜋
4 )

2 = 10.1 𝐽 

If instead the elevator is accelerating up, the acceleration experienced by the system will increase 

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 𝑔 − 𝑎𝑒𝑙𝑒𝑣𝑎𝑡𝑜𝑟  

∴ 𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 10 − (−5) = 15 𝑚𝑠−2 

Therefore, the potential energy stored in the spring will be 
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𝑈 =
1

2
𝑚

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑
2

(
2𝜋
𝑇 )

2 =
1

2
(2)

(15)2

(
2𝜋
4 )

2 = 91 𝐽 

Now, in case of free fall, the system will experience weightlessness, i.e. the acceleration 

experienced by the system will be zero. 

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 𝑔 − 𝑎𝑒𝑙𝑒𝑣𝑎𝑡𝑜𝑟  

∴ 𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 10 − 10 = 0 

Therefore, the potential energy stored in the spring in the equilibrium position will be 

𝑈 =
1

2
𝑚

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑
2

(
2𝜋
𝑇 )

2 =
1

2
(2)

(0)2

(
2𝜋
4 )

2 = 0 

In other words, the spring will be relaxed. 

7. The potential energy is given by 

𝑈 =
1

2
𝑚𝜔2𝑥2 

=
1

2
𝑚(2𝜋𝜈)2𝑥2 

Therefore,  

𝑚 =
2𝑈

(2𝜋𝜈)2𝑥2
=

2(5)

(2𝜋 × 5)2(0.25)2
= 0.16 𝑘𝑔 

8. We know that the time period is given by 

𝑇 = 2𝜋√
𝑚

𝑘
 

The spring constant remains constant. Therefore, we can say that 

𝑇

√𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Or,  

2

√𝑀
=

3

√𝑀 + 2
 

Squaring both the sides, we get 

4(𝑀 + 2) = 9𝑀 
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∴ 𝑀 =
8

5
= 1.6 𝑘𝑔 

9. (d)  

10. (d) The total energy remains constant.  

12. In the composite spring-mass system, the two springs on the left are in series. Hence, we find 

the resultant spring constant for the left side springs. 

1

𝑘𝑙𝑒𝑓𝑡
=

1

2𝑘
+

1

2𝑘
=

1

𝑘
 

Now all other springs are in parallel and hence they all contribute to the restoring force equally (recall 

what we did in Unit 1). Therefore, the resultant spring constant is given by 

𝑘𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝑘 + 𝑘 + 2𝑘 = 4𝑘 

Thus, the time period is given by 

𝑇 = 2𝜋√
𝑀

4𝑘
 

And the frequency is inverse of time period, 

𝜈 =
1

2𝜋
√

4𝑘

𝑀
 

13. Using the relation for velocity as a function of position and squaring it on both the sides, 

𝑣2 = 𝜔2(𝐴2 − 𝑥2) 

Plugging in the known values of speed and time, we get 

32 = 𝜔2(𝐴2 − 12) 

𝑜𝑟  9 = 𝜔2𝐴2 − 𝜔2 

And 

22 = 𝜔2(𝐴2 − 22) 

𝑜𝑟  4 = 𝜔2𝐴2 − 4𝜔2 

Subtracting the first equation from the second, we get 

5 = 3𝜔2 
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𝜔 = √
5

3
= 1.29 𝑟𝑎𝑑/𝑠 

Putting its value in one of the equations, we can get the value of the amplitude, 

𝐴 = 2.53 𝑚 

Hence, the length of the path = 2A = 5.06 m. 

The time period is given by 

𝑇 =
2𝜋

𝜔
= 4.87 𝑠 
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3.1 INTRODUCTION 

After studying the previous two units, you now have a fairly good understanding of SHM and its 

basic characteristics like amplitude, time period and frequency. You also know that the phase of 

oscillator gives us information about the state of motion of the oscillator and the phase angle or 

the phase constant can be determined on the basis of  the initial conditions of the oscillator. You 

also leared how to calculate the  potential energy, kinetic energy and total energy for an oscillator. 

All these aspects of SHM have been discussed by considering  the spring-mass system as our 

model oscillator. 

The spring-mass system  is the simplest physical system  executing SHM. There are several other 

physical systems, such as simple pendulum and compound pendulum, which are of practical 

interest and are good examples of SHM. In this unit you  will study about some of them. While 

doing so, you will also learn  to calculate the  characteristics parameters and energy associated 

with the oscillatory motion of  such systems. 

3.2 OBJECTIVES 

After studying this unit, you should be able to 

 give examples of physical systems exhibiting SHM, 

 explain the origin of the restoring force  in case of simple pendulum, 

 explain why the angular displacement is taken small in case of simple pendulum, 

 explain what is angular simple harmonic motion, 

 write down the equations for angular velocity and angular acceleration for SHM, 

 calculate the tension in the string in case of simple pendulum, 

 calculate the angular frequency and the time period for compound pendulum, and 

 calculate the angular frequency and the time period for torsional pendulum. 

3.3 EXAMPLES OF PHYSICAL SYSTEMS EXECUTING SHM 

You may recall from the previous unit that in the spring-mass system, the potential energy was 

stored in the stretched/compressed spring and the kinetic energy was stored the moving mass. . 

There are many oscillatory systems such as the simple pendulum,  in which  the potential energy 

is associated with the gravitational force rather than with the elastic properties of a compressed or 
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stretched spring. Similarly, in the torsional pendulum, the potential energy of the system is 

associated with the elastic properties of a twisted wire. In the following,  we will discuss the 

oscillatory motion of  three such physical systems (pendulums(: 

 Simple Pendulum 

 Compound or Physical Pendulum 

 Torsional Pendulum 

In the first two pendulums, the gravitational force is associated with the springiness. And, in the 

torsional pendulum, springiness is associated with the elastic properties of a twisted wire. Yet 

another important feature of these oscillatory systems  is that all three of them are examples of 

angular simple harmonic motion, That is,  as the name suggests, these oscillatory systems are the  

angular version of the linear simple harmonic motion (that we studied by considering the spring-

mass system). However, the motion of the simple pendulum and compound pendulum can also be 

analysed  as linear simple harmonic oscillators.  

Before we study each of these individual pemdulum, you may like to know some general features 

of the   angular simple harmonic motion. 

3.4 ANGULAR SIMPLE HARMONIC MOTION   

A body free to rotate about a given axis can execute  angular oscillations. For example, oscillations 

of a simple pendulum (Fig. 1) swinging about the point where one end of the string is attached, or 

the oscillations of a torsional pendulum (Fig. 3), where a body suspended by a thread is rotated 

through an angle are angular oscillations.  

You may recall from Unit 1 that the linear simple harmonic motion is characterised by  a restoring 

force generated in the  system which is always directed towards the mean position and which is  

proportional to the displacement. Similarly, angular oscillations are considered angular simple 

harmonic motion if 

 The restoring torque, τ is proportional to the angular displacement, θ and is always directed 

towards the mean or equilibrium angular position, i.e. 

𝜏 = −𝐾𝜃 (3.1) 

where K is a constant. The position of the system when the restoring torque is zero is called its 

mean or equilibrium position. At the mean position, the angular displacement is zero. 

Analogous to the linear SHM, the moment of inertia,  𝐼 takes the place of mass, m and the angular 

acceleration, α takes the place of linear acceleration, a. The angular acceleration is given as 

𝛼 =
𝜏

𝐼
= −

𝐾

𝐼
𝜃 
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We can write the above expression as  

𝑑2𝜃

𝑑𝑡2
= −𝜔2𝜃 

Therefore, the angular frequency is given by 

𝜔 = √
𝐾

𝐼
 (3.2) 

Further, in case of angular simple harmonic motion, we talk in terms of angular displacement and 

integrating the above differential equation, we get 

𝜃 = 𝜃0 sin(𝜔𝑡 + 𝛿) (3.3) 

where 𝜃0 is the maximum angular displacement on either side or the amplitude.  

Analogous to the linear SHM, the angular velocity at time t is given by 

𝛺 =
𝑑𝜃

𝑑𝑡
= 𝜃0𝜔 cos(𝜔𝑡 + 𝛿) 

And at an angle 𝜃 

𝛺 = ±𝜔√𝜃0
2 − 𝜃2 

With this background, let’s now study each of the physical systems listed earlier. 

3.5 SIMPLE PENDULUM   

Fig. 1 shows a simple pendulum in which a bob of mass m is suspended from the fixed support P 

through a string of length l. Left to itself, the bob hangs along the line PO, and this alignment of 

the simple pendulum is called its mean or equilibrium position with the angle = 0 . If the bob is 

drawn towards one extreme A from this mean position, such that the angle 𝜃 remains small, and 

then released, it oscillates in a circular arc with the center at the point of suspension P. 
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Let us now examine whether or not the motion of the bob is simple harmonic  and determine  its 

oscillation time period.  

When the bob is at point A, the forces acting on it are 

 The tension in the string (T) 

 The weight of the bob (mg) 

 The centrifugal force because of the speed of the bob as it moves along the circular arc. 

However, at the end points such as A and B, its contribution is zero as the velocity at these  

points is zero. 

The weight (mg) of the bob is resolved into a radial component 𝑚𝑔cos 𝜃 and a tangential component 

𝑚𝑔sin 𝜃. The tangential component,  which is the component along the tangent to the path traced by the 

bob,  provides the  the restoring force, because it always acts opposite to the displacement of the bob so as 

to bring it back toward the mean or equilibrium position (𝜃 = 0). Therefore, for the simple pendulum, 

the  restoring force is written as 

𝐹 = −𝑚𝑔sin 𝜃 (3.4) 

Here, as usual, the negative sign indicates that the restoring force acts opposite to the displacement. 

The radial forces balance each other, such that  

𝑇 = 𝑚𝑔 cos 𝜃 +
𝑚𝑣2

𝑙
 

Therefore, there is no motion in the radial direction.  

𝜃 

B 
O 

A 

Tension (T) 

𝑚𝑔cos 𝜃 +
𝑚𝑣2

𝑙
 

𝑚𝑔 sin 𝜃 

P 

Figure 1: A simple pendulum. 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

57 
 

Now, as we mentioned before, the angle 𝜃 has to be small. Why do you think this is so? Refer to  

equation (3.4) which gives the restoring force for the oscillatory motion of the pendulum. If this 

motion is to be  SHM, then the restoring force must be directed toward the mean position and it 

should also be  proportional to the (angular) displacement, 𝜃. The later condition can be met only 

if we assume that the angle 𝜃 is small because, in that condition, sin 𝜃 ≈ 𝜃 where 𝜃 is in radians.  

Thus, if 𝜃 is small, equation (3.4) can be written as 

𝐹 = −𝑚𝑔𝜃 
(3.5) 

 

Equation (3.5) is the equation of motion of the simple pendulum executing SHM. 

3.5.1 Simple Pendulum as a Linear Simple Harmonic Oscillator 

The simple pendulum can be treated as a linear simple harmonic oscillator. It is so because, for  

small angular displacement, the path traced by the bob is approximately a straight line and is equal 

to the length of the arc. That is, the path traced by the bob in moving from the mean position to 

point A can be written as  

𝑥 = 𝑙𝜃 

Thus, from equation (3.5), we get 

𝐹 = −(
𝑚𝑔

𝑙
) 𝑥 

Comparing the above expression  with the equation of motion for a spring-mass system, 𝐹 = −𝑘𝑥, we get 

𝑘 =
𝑚𝑔

𝑙
 

And, therefore, the time period of the simple pendulum is given by 

𝑇 = 2𝜋√
𝑚

𝑘
= 2𝜋√

𝑙

𝑔
 

 

(3.6) 

3.5.2 Simple Pendulum as an Angular Simple Harmonic Oscillator 

For considering the simple pendulum as angular harmonic oscillator, we need to write the expression for 

the  restoring torque. The restoring torque is given as  

𝜏 = 𝑙. 𝐹 

𝜏 = −(𝑚𝑔𝑙)𝜃 = −𝐾𝜃 (3.7) 

Thus, based on the equation (3.7) we can say, if the amplitude of oscillation is small, the motion 

of the pendulum is approximately angular simple harmonic. 
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Further, from equation (3.2), we note that the angular frequency of oscillation depends on the 

moment of inertia of the osciilating body. The moment of inertia of the bob (assuming it is a point 

mass) about the axis of rotation passing through point of suspension, P is 

𝐼 = 𝑚𝑙2 

Therefore, from equation (3.2), we can write the angular frequency of SHM for simple pendulum 

as 

𝜔 = √
𝐾

𝐼
= √

𝑚𝑔𝑙

𝑚𝑙2
 

∴ 𝜔 = √
𝑔

𝑙
 (3.8) 

And the time period is given by 

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝑙

𝑔
 

 

(3.9) 

So, from equations (3.6) and (3.9), it is clear that treatment of simple pendulum as linear or angular 

harmonic oscillator is equivalent as both the treatments lead to same results.  

Example 1: A simple pendulum provides an easy method to measure the value of ‘g’ in a 

laboratory. An experiment with simple pendulum was carried out on the surface of moon, where 

it was found that it took 38 s to complete 10 oscillations when the effective length of the pendulum 

was kept at 60 cm. Calculate the acceleration due to gravity on the moon’s surface. How does it 

compare with the earth’s gravity? [For earth’s surface 𝑔 = 9.8 𝑚𝑠−2] 

Solution: We are given that the time period is  

𝑇 =
36

20
= 3.8 𝑠            (Comment: T=(38/10)) 

 

From the expression for the time period of simple pendulum, equation (3.9), we have 

𝑔 =
4𝜋2𝑙

𝑇2
 

=
4𝜋2(0.6)

3.82
= 1.64 𝑚𝑠−2 

Comparing it with earth’s gravity, we see that the moon’s gravity is (9.8/1.64) or about 6 times 

less than that of earth.  
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Self Assessment Question (SAQ) 1: Calculate the time period of a simple pendulum of length 

one meter. The acceleration due to gravity at that place is 𝜋2 𝑚𝑠−2. 

Self Assessment Question (SAQ) 2: What will happen to the motion of a simple pendulum if the 

amplitude is large? Is it still SHM? Explain.  

Self Assessment Question (SAQ) 3: An astronaut on the surface of the moon finds that the period 

of a simple pendulum there is much larger than that on the earth and that the pendulum continues 

to oscillate for much longer time than on the earth. What information regarding the moon could be 

obtained from these observations? 

Self Assessment Question (SAQ) 4: Choose the correct answer -  

When a mass undergoes angular simple harmonic motion, there is always a constant ratio between 

its angular displacement and  

(a) time period, (b) angular acceleration, (c) angular velocity, (d) mass 

Self Assessment Question (SAQ) 5: Choose the correct answer -  

For a particle executing SHM, the kinetic energy is given by 𝐾 = 𝐾0 cos2 𝜔𝑡. The maximum value 

of potential energy is 

(a) 𝐾0, (b) zero, (c) 𝐾0/2, (d) not obtainable 

3.6 COMPOUND PENDULUM 

Any rigid body suspended from a fixed support constitutes a compound pendulum, which is also 

known as physical pendulum. As a matter of fact, all real pendulums are compound in nature. The 

figure below shows a compound pendulum. A rigid body is suspended through a hole at point O. 

When the center of mass C is vertically below O, the body may remain at rest. This position, when 

the angle 𝜃 = 0, is the equilibrium or the mean position for such oscillating system.  
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Let the distance between the center of mass C and the point of suspension O be d. If we displace 

the body to the right (anticlockwise) through a small angle 𝜃, the weight of the body creates a 

clockwise restoring torque about the axis passing through O. 

Similar to what we did before in case of simple pendulum, when treating it as an angular simple 

harmonic oscillator, we can determine the magnitude of the restoring torque in the case of 

compound pendulum as well. For the compound pendulum, for small 𝜃, we can write the torque 

𝜏 = −(𝑚𝑔𝑑)𝜃 = −𝐾𝜃 (3.10) 

Therefore,  

𝐾 = 𝑚𝑔𝑑 

If 𝐼 is the moment of inertia of the rigid body about the axis passing through O, then the time period for 

small oscillations when the motion is nearly angular SHM, is given by 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑑
 

 

(3.11) 

Example 2: A uniform rod of length 1 m is suspended through an end and is set into oscillations 

with small amplitude under gravity. Calculate the time period of the oscillations. [𝑔 = 9.8 𝑚𝑠−2] 

Solution: The moment of inertia for a uniform rod of length L about the center is  

𝐼 =
𝑚𝐿2

12
 

By linear transformation, the moment of inertia about one end is given by 

𝜃 

O 

C 

𝑚𝑔 

d 

Figure 2: A compound or physical pendulum. 
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𝐼 =
𝑚𝐿2

12
+ 𝑚(

𝐿

2
)
2

=
𝑚𝐿2

3
 

Now, for small amplitude, the angular motion is nearly SHM and the time period is given by 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑑
= 2𝜋√

𝑚𝐿2

3

𝑚𝑔(
𝐿
2)

 

where 𝑑 = 𝐿/2, because the rod is uniform and therefore, the center of mass lies in the center of 

the rod. Thus,  

𝑇 = 2𝜋√
2𝐿

3𝑔
= 2𝜋√

2(1)

3(9.8)
= 1.67 𝑠 

Example 3: A hollow metal sphere is filled with water and a small hole is made at its bottom. It is 

hanging by a long thread and is made to oscillate. Explain qualitatively how will the period of 

oscillation change if the water is allowed to flow through the hole till the sphere is empty? 

Solution: Initially and finally, the center of mass will be at the center of the sphere. However, as 

the water drains out off the sphere, the center of mass of the oscillating system will first move 

down and then will come up. Due to this, the effective length (d) between the point of suspension 

O and the center of mass C, first increase, reaches a maximum and then decreases till it becomes 

equal to its initial value. 

We also know that the time period 

𝑇 ∝ √𝐿 

Therefore, the time period also increases first, reaches a maximum and then will decrease until it 

becomes equal to its initial value! 

Self Assessment Question (SAQ) 6: A girl is swinging in a sitting position. How will the period 

of swing be affected if 

(a) The girl stands up while swinging. 

(b) Another girl of the same mass comes and sits next to her.  

Self Assessment Question (SAQ) 7: Can a pendulum clock be used in space? Explain. 

Self Assessment Question (SAQ) 8: Choose the correct option. 

A pendulum clock that keeps correct time on the earth is taken to the moon. It will run 

(a) At correct rate 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

62 
 

(b) 6 times faster 

(c) 6 times slower 

(d) √6 times faster 

(e) √6 times slower 

 

3.7 TORSIONAL PENDULUM 

In a torsional pendulum, an extended body is suspended by a light thread or a wire as shown in the 

figure below. To initiate angular oscillations of the hanging extended body, it (the body) is rotated 

through an angle about the wire as the axis of rotation and then released.  

   

The wire remains vertical throughout the motion, but a twist is produced in the wire and the body 

executed angular oscillations. The lower end of the wire is rotated through an angle 𝜃 with the body 

but the upper end of the wire, attached to the fixed point P, remains fixed. The twisted wire exerts a restoring 

torque on the body to bring it back to its original position, which is the equilibrium or the mean position 

(𝜃 = 0). This torque has a magnitude proportional to the angle of twist 𝜃, which is equal to the angle rotated 

by the body. The proportionality constant is called the torsional constant (K) of the wire. Thus, 

𝜏 = −𝐾𝜃 

If 𝐼 is the moment of inertia of the body about the vertical axis, then the angular acceleration is given by 

𝛼 =
𝜏

𝐼
= −

𝐾

𝐼
𝜃 

Therefore, comparing it with the familiar expression for the acceleration fir rotational motion, 𝛼 = −𝜔2𝜃, 

we get 

𝜔 = √
𝐾

𝐼
  

Thus, the time period for torsional pendulum can be written as 

𝜃 

P 

Figure 3: A torsional pendulum. 
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𝑇 =
2𝜋

𝜔
= 2𝜋√

𝐼

𝐾
 

 

(3.12) 

Example 4: A uniform disk of radius 5 cm and mass 200 g is fixed at its center to a metal wire. 

The other end of the wire is fixed with a clamp. The hanging disc is rotated about the wire through 

an angle and is released. If the disc makes torsional oscillations with time period 0.2 s, find the 

torsional constant of the wire. 

Solution: The moment of inertia of a uniform disk of radius r about a line (wire) passing through 

its centre is given by  

𝐼 =
𝑚𝑟2

2
=

(0.2)(0.05)2

2
 

2.5 × 104 𝑘𝑔 𝑚2 

The time period is given by 

𝑇 = 2𝜋√
𝐼

𝐾
 

Or,  

𝐾 =
4𝜋2𝐼

𝑇2
=

4𝜋2(2.5 × 104)

(0.2)2
 

= 0.25 𝑘𝑔 𝑚2 𝑠−2 

Example 5: A uniform rod of mass M and length L is suspended through a light wire of length L 

and torsional constant K as shown in Fig. 4. Calculate the time period if the system makes 

(a) small oscillations in the vertical plane about the point of suspension P 

(b) angular oscillations in the horizontal plane about the center of the rod 

   

𝐾 

P 

Figure 4: A uniform rod suspended by a wire. 
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Solution: (a) The oscillations take place about the horizontal line through the point of suspension 

and perpendicular to the plane of the figure. The moment of inertia of the rod about this line is 

𝐼 =
𝑚𝐿2

12
+ 𝑚𝐿2 =

13

12
𝑚𝐿2 

The time period is given by 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑑
= 2𝜋√

13
12𝑚𝐿2

𝑚𝑔𝐿
 

= 2𝜋√
13𝐿

12𝑔
 

(b) The angular oscillations take place about the suspension wire. The moment of inertia about this 

line is  

𝐼 =
𝑚𝐿2

12
 

The time period is given by 

𝑇 = 2𝜋√
𝐼

𝐾
= 2𝜋√

𝑚𝐿2

12𝐾
 

Self Assessment Question (SAQ) 9: Choose the correct option(s). (More than one choice may be 

correct.) 

Which of the following will change the time period as they are taken to moon? 

(a) A simple pendulum 

(b) A compound pendulum 

(c) A torsional pendulum 

(d) A spring-mass system 

Self Assessment Question (SAQ) 10: Choose the correct option(s). (More than one choice may 

be correct.) 

The motion of a torsional pendulum is 

(f) Periodic, (b) oscillatory, (c) linear simple harmonic, (d) angular simple harmonic 
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3.8 LC CIRCUIT 

In this unit, we first studied about the LC circuit having a combination of a pure inductor, which 

has zero resistance and a pure capacitor, which has infinite resistance, as an example of an 

electromagnetic system exhibiting SHM. In an ideal system, the energy stored in the magnetic 

field and the energy stored in the electric field exhibits SHM. Earlier, we knew of only mechanical 

systems that exhibited simple harmonic motion.  

In the earlier units, we have so far restricted ourselves only to mechanical systems. But oscillations 

are not restricted to mechanical systems only. In electromagnetic systems, we can observe such 

oscillations as well. The most instructive example of an electromagnetic system is a circuit having 

a combination of a pure inductor, which has zero resistance and a pure capacitor, which has infinite 

resistance. 

 

 

We shall now study harmonic oscillations of an electrical circuit consisting of a pure capacitor C 

and a pure inductor L (Fig. 1). The equilibrium state of the system is when the capacitor C is 

uncharged and no current is flowing in the circuit. This state is disturbed when the capacitor is 

charged by pressing the key.  

Let  q be the charge on the capacitor at some instant. Then, the voltage across the capacitor plates 

is given by 

𝑉 =
𝑞

𝐶
 

Where, C is the capacitance of the capacitor. When the key is released, the capacitor starts 

discharging through the inductor and a current begins to flow through the inductor. The current 

through the inductor is given by 

Cell 

Key 

C 
L 

+ 

- 

i 

Figure 18: An oscillatory circuit consisting of a capacitor C and an inductor L. 
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𝑖 =
𝑑𝑞

𝑑𝑡
 

In this circuit, the restoring force is due to the force of repulsion between the electrons. This force 

tends to distribute electrons equally on the capacitor plates so that there is no net charge. 

Inductance, on the other hand, tends to oppose this redistribution, i.e. it opposes the increase in 

current. At any instant, the voltage across the inductor is given by 

𝑉 = −𝐿
𝑑𝑖

𝑑𝑡
= −𝐿

𝑑2𝑞

𝑑𝑡2
 

The minus sign is indicative of the fact that the voltage developed across the inductor opposes the 

increase of current. From Kirchhoff’s law, the voltage across the inductor should be equal to the 

voltage across the capacitor plates, i.e. 

−𝐿
𝑑2𝑞

𝑑𝑡2
=

𝑞

𝐶
 

𝑜𝑟  
𝑑2𝑞

𝑑𝑡2
= −𝜔2𝑞 

Where, the angular frequency 𝜔 = 1/√𝐿𝐶. Thus, the time period in an electrical circuit consisting 

of a pure inductor L and a pure capacitor C is given by 

𝑇 =
2𝜋

𝜔
= 2𝜋√𝐿𝐶 (4.1) 

At any instant, the charge q is given by a sine or a cosine function. If the charge q is taken as 

𝑞 = 𝑞0 cos(𝜔𝑡 + 𝛿) (4.2) 

where 𝑞0 is the maximum value of the charge, the current in the circuit will therefore be given by 

𝑖 =
𝑑𝑞

𝑑𝑡
= −𝜔𝑞0 sin(𝜔𝑡 + 𝛿) 

3.8.1 Energy Considerations 

The differential equation for the LC oscillator can also be obtained by considering the energy in 

the system. At any instant, the electrostatic energy stored in the capacitor is given by 

𝐸𝑒 =
1

2

𝑞2

𝐶
 

And, the corresponding magnetic energy of the inductor is given by  
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𝐸𝑚 =
1

2
𝐿𝑖2 

So in an ideal situation, the total energy in the circuit can be expressed as 

𝐸 =
1

2
𝐿𝑖2 +

1

2

𝑞2

𝐶
=

1

2
𝐿 (

𝑑𝑞

𝑑𝑡
)
2

+
1

2

𝑞2

𝐶
 (4.3) 

Initially, when the capacitor is fully charged and connected with an inductor, the capacitor starts 

discharging through the inductor; the charge stored in it will reduce gradually and a current starts 

flowing in the inductor. Due to the growth of current in the inductor, an EMF will be induced. In 

due time, the current will reach a maximum value. After attaining the maximum value, the current 

through the inductor starts decreasing, and in due course of time, its energy becomes zero. At that 

instant, the charge on the capacitor again reaches a maximum value. This cycle is repeated and the 

energy of the circuit fluctuates alternatively between electric and the magnetic energies.  

Thus, the total energy of the circuit remains constant, therefore 

𝑑𝐸

𝑑𝑡
= 0 

∴
1

2
𝐿(2𝑞̇𝑞̈) +

1

2

(2𝑞𝑞̇)

𝐶
= 0  where 𝑞̇ =

𝑑𝑞

𝑑𝑡
 𝑎𝑛𝑑 𝑞̈ =

𝑑2𝑞

𝑑𝑡2  

𝑜𝑟   𝑞̇ (𝐿𝑞̈ +
𝑞

𝐶
) = 0 

Since the current 𝑞̇ is finite, therefore, 

𝐿𝑞̈ +
𝑞

𝐶
= 0 

𝑜𝑟  
𝑑2𝑞

𝑑𝑡2
= −𝜔2𝑞 

where the angular frequency 𝜔 = 1/√𝐿𝐶. So, we can see that from the energy consideration too, 

we arrive at the same result (4.1) as before. 

A comparison of the LC circuit with the mechanical oscillatory systems indicates that mass in 

mechanical systems and magnetic field inertia in electrical systems play analogous role. The mass 

controls the velocity change for a given force and the magnetic field controls the rate of change of 

current for a given voltage. 

Example 1: (a) In an oscillating LC circuit, calculate the value of the charge q, in terms of the 

maximum charge Q, present on the capacitor when the energy is shared equally between the 

electric and magnetic fields? Assume that L = 12 mH and C = 1.7 μF. 
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(b) If at time t = 0, calculate the time when this condition will occur. 

Solution: (a) According to the given condition, we have 

(
1

2

𝑞2

𝐶
) =

(
1
2
𝑄2

𝐶 )

2
 

Or, 

𝑞 =
𝑄

√2
= 0.707𝑄 

(b) At t = 0, q = Q. Therefore from equation (4.2), we have 

𝑄 = 𝑄 cos 𝛿 

∴ 𝛿 = 0 

Therefore, 

𝑞 =
𝑄

√2
= 𝑄 cos(𝜔𝑡) 

∴ 𝜔𝑡 =
𝜋

4
 𝑟𝑎𝑑 

Hence,  

𝑡 =
𝜋

4𝜔
=

𝜋

4
√𝐿𝐶 

=
𝜋

4
√(12 ∗ 10−5 𝐻)(1.7 ∗ 10−6 𝐹) = 1.12 ∗ 10−4 𝑠 

Self Assessment Question (SAQ) 11: A charged capacitor and an inductor are connected in series 

at time t = 0. In terms of the period T of the resulting oscillations, determine how much later the 

following reach their maximum values: 

(a) the charge on the capacitor 

(b) the energy stored in the electric field 

(c) the current 

Self Assessment Question (SAQ) 12: In an LC oscillator, the maximum energy stored in the 

capacitor is 160 μJ. What is the maximum energy stored in the inductor?  

Self Assessment Question (SAQ) 13: In the previous question, if at any time, the energy stored 

in the capacitor is 100 μJ, what is the energy stored in the magnetic field? 
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Self Assessment Question (SAQ) 14: In the previous question, if at any time, the energy stored 

in the capacitor is 100 μJ, what is the energy stored in the electric field? 

3.9 SUMMARY 

In this unit, we studied about the angular simple harmonic motion and how simple pendulum, 

compound pendulum and torsional pendulum can be treated as angular simple harmonic 

oscillators. We also learned how to calculate the time period of these pendulums. For simple 

pendulum and compound pendulum gravitational pull is responsible for the potential energy and 

for torsional pendulum it is the elasticity of the wire where potential energy is stored. In the earlier 

units, we learned that in spring-mass system, it is the spring that stores the potential energy. The 

kinetic energy is because of the motion of a body with finite mass. 

We learned how angular SHM is similar to linear SHM and in angular simple harmonic motion, it 

is the torque in place of force that is proportional to the magnitude of angular displacement in place 

of displacement in linear simple harmonic motion. Here too, the torque is always directed towards 

the mean or the equilibrium position, which is the position where the system rests when it is not 

oscillating. 

3.10 GLOSSARY 

Angular acceleration – it is the rate of change of angular velocity. In SI units, it is measured in 

(𝑟𝑎𝑑/𝑠2), and is usually denoted by the Greek letter alpha (α). 

Angular amplitude – it is the maximum angle (disregarding the direction) that a rotating body goes 

through from the equilibrium position 

Angular displacement – it is the angle that a rotating body goes through.  

Angular velocity – it is defined as the rate of change of angular displacement and is a vector 

quantity which specifies the angular speed (rotational speed) of an object and the axis about which 

the object is rotating. In SI units, it is measured in (𝑟𝑎𝑑/𝑠), and is usually denoted by the Greek 

letter omega (Ω). 

Center of mass – it is the point where all of the mass of the object is concentrated. When an object 

is supported at its center of mass, there is no net torque acting on the body and it will remain in 

static equilibrium. 

Centrifugal force – it is the apparent force that draws a rotating body away from the center of 

rotation. It is caused by the inertia of the body. 

Force – anything that can change the state of motion of an object. 

Frequency – the number of complete cycles per second . 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

70 
 

Kinetic energy – energy of an  object due to motion. 

Mechanical energy – it is the sum of the kinetic energy and the potential energy. 

Moment of inertia – it is the mass property of a rigid body that determines the torque needed for a 

desired angular acceleration about an axis of rotation. Moment of inertia depends on the shape of 

the body and, for the same body, it may have different values for different axes of rotation. 

Potential energy – energy due to position. 

Tension – the force in an object that has been stretched. 

Torque – it is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Just as a 

force is a push or a pull, a torque can be thought of as a twist to an object. 

Weight – the force of gravity on an object. For a mass, m, its weight = mg. 

3.11 TERMINAL QUESTIONS 

1. A simple pendulum of length 40 cm oscillates with an angular amplitude of 0.04 rad. Determine 

[Take 𝑔 = 10 𝑚𝑠−2] 

 (a) the time period, 

 (b) the linear amplitude of the bob, 

 (c) the speed of the bob when the string makes angle 0.02 rad with the vertical, and 

 (d) the angular acceleration when the bob is in momentary rest. 

 

2. What is the period of a pendulum formed by pivoting a meter stick so that it is free to rotate 

about a horizontal axis passing through the 75 cm mark? 

3. The moment of inertia of the disc used in a torsional pendulum about the suspension wire is 0.2 

𝑘𝑔 𝑚2. It oscillates with a period of 2 s. Another disc is placed over the first one and the time 

period of the system becomes 2.5 s. Calculate the moment of inertia of the second disc about 

the wire. 

4. A solid cylinder is attached to a massless spring so that it can roll without slipping along a 

horizontal surface. Calculate the period of oscillation made by the cylinder if M is the mass of 

the cylinder and k is the spring constant. 

5. A particle of mass M is located in a one dimensional potential field where the potential energy 

of the particle depends on the coordinate x as 𝑈(𝑥) = 𝑈0 sin2(𝑎𝑥/2) . If the particle performs 

small oscillations about the equilibrium position, calculate the period. 𝑈0 and 𝑎 are constants. 

6. The  pendulum of a clock is replaced by a spring-mass system with the spring having spring 

constant 0.1 N/m. What mass should be attached to the spring? 
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7. A disk, whose radius R is 12.5 cm, is suspended as a compound pendulum, from a hole O at a 

distance d from its center C as shown in the figure below. When d = R/2, the period T is 0.871 

s. Calculate the freefall acceleration ‘g’ at the location of the pendulum. 

 

8. The time period of simple pendulum in a freely falling elevator is __________. 

8. What will be the period of a simple pendulum hanging by the ceiling of an elevator if the elevator 

is in a free fall? 

9. Choose the correct option. 

The period of oscillation of a simple pendulum at a place inside the mine is 

(a) more than it is on the surface of the earth. 

(b) less than it is on the surface of the earth. 

(c) the same as it is on the surface of the earth. 

(d) the same as it is on the surface of the moon. 

10. A simple pendulum is suspended from the ceiling of a truck. When the truck is at rest, the time 

period T of the pendulum is measured. Thereafter, the truck starts accelerating uniformly on 

the horizontal road. If the acceleration of the truck is ‘a’, what will be the new time period with 

respect to T?  

11. Choose the correct option. 

Suppose that it takes 1.2 seconds for a simple pendulum to swing from its extream left position to 

its extream right position. What is the period of the pendulum? 

(a) 0.6 s  (b) 1.2 s  (c) 2.4 s  (d) 3.6 s 

12. Choose the correct option. 

A pendulum with a string of length 2 m has a period of 2.8 s. What would be the period of the 

pendulum if the length of the string were increased to 8 m? 

d 
R 

C 

O 

Figure 5: A compound pendulum in the form of a disk. 
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(a) 1.4 s  (b) 2.8 s  (c) 5.6 s  (d) 11.2 s 

13. Write short notes on: 

      (i) Angular SHM       (ii) Simple Pendulum as linear SHM    

     (iii) Simple Pendulum as angular SHM   (iv) Physical Pendulum (v) Torsional Pendulum 

14.  A 1.5 μF capacitor is charged to 57 V. The charging battery is then disconnected and a 12 mH 

coil is connected in series with the capacitor so that LC oscillations occur. What is the 

maximum current in the coil? Assume that the circuit contains no resistance. 

3.12 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. 2 s  

2. No. 

3. From the expression for the time period for a simple pendulum, it is clear that the increase in 

the time period implies that on the moon, the value of ‘g’ is much smaller than on the earth. 

Further, longer duration of oscillation on the moon implies that the friction effects are less as 

compared to earth, i.e. the moon has no atmosphere or if there is any, then it is very thin as 

compared to the earth’s atmosphere. 

4. (b) 

5. (a) 

6. (a) Decreases, because the center of mass goes up and thus reducing the effective length of the 

swing. 

(b) It remains unchanged, because the time period is independent of the mass of the oscillating 

object. It just depends on the acceleration due to gravity and the effective length. 

7. We know that the time period of a simple pendulum is given by 

𝑇 = 2𝜋√
𝑙

𝑔
 

In space, there is no acceleration due to gravity, i.e. ‘g’ is zero. Hence, from the above relation for 

time period, we can see that it will approach to infinity. In other words, there will be no 

oscillatory motion in space. Hence, a pendulum clock cannot be used in space. 

8. (e)  
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9. (a), (b)  

Time period for a simple pendulum and a compound pendulum depends on the acceleration due 

to gravity ‘g.’ Hence, when taken to moon, where the value of ‘g’ is different than that on the 

earth, their time period will change. On the other hand, for torsional pendulum and spring-

mass system, the time period is independent of ‘g.’   

10. (a), (b), (d) 

12. Using energy conservation, maximum energy is the inductor is equal to the maximum energy 

in the capacitor = 160 μF. 

13. Using energy conservation, the energy is the inductor (magnetic field) is equal to the total 

energy (160 μF) minus the energy in the capacitor (100 μF), equal to 60 μF. 

14. The energy is the capacitor is the same as the energy stored in the electric field = 100 μF. 

Selected Terminal Questions: 

1.  (a) The angular frequency is given by 

𝜔 = √
𝑔

𝑙
= √

10

0.4
= 5 𝑠−1 

The time period is  

𝑇 =
2𝜋

𝜔
=

2𝜋

5
= 1.26 𝑠 

(b) Linear amplitude = (40)(0.04) = 1.6 cm 

(c) Angular speed at displacement 0.02 rad is 

𝛺 = 5√0.042 − 0.022 = 0.17 𝑟𝑎𝑑/𝑠 

Linear speed of the bob at this instant = (40)(0.17) = 6.8 cm/s 

(d) At momentary rest, the bob is in extreme position. Thus, the angular acceleration is 

𝛼 = (0.04)(25) = 1 𝑟𝑎𝑑 𝑠−2 

2. We are given that the length of the rod L = 1 m and the distance between O and C is 25 cm or 

0.25 m. 
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By linear transformation, the moment of inertia about point O is given by 

𝐼 =
𝑚𝐿2

12
+ 𝑚𝑑2 

Now, for small amplitude, the angular motion is nearly SHM and the time period is given by 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑑
= 2𝜋√

𝑚𝐿2

12 + 𝑚𝑑2

𝑚𝑔𝑑
 

𝑇 = 2𝜋√
1 + 12(0.25)2

12(9.8)(0.25)
= 1.53 𝑠 

3. Let the torsional constant of the wire be K. The moment of inertia of the first disc about the 

wire is given. Hence, the time period is 

2 = 2𝜋√
0.2

𝐾
 

When the second disc of moment of inertia I is added, the new time period is 

2.5 = 2𝜋√
0.2 + 𝐼

𝐾
 

From the two equations, we get 𝐼 ≅ 0.11 𝑘𝑔 𝑚2. 

4. In the mean position of the cylinder, the spring will be in its original length. Let us rotate the 

cylinder clockwise through an angle 𝜃. If R is the radius of the cylinder, the center of mass of the 

cylinder will undergo a linear displacement of 𝑅𝜃 towards right as shown in the figure below. 

Hence, the spring is elongated by 𝑅𝜃. 

d 
1 m 

C 

O 

Figure 6 
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The pull of the spring towards left creates a static friction f at the point of contact towards right. 

The net force on the cylinder is  

𝑘𝑅𝜃 − 𝑓 

which is towards the mean or equilibrium position. Hence, by Newton’s law we get 

(1)     𝑀𝑎 = 𝑘𝑅𝜃 − 𝑓 

Where “a” is the linear acceleration of the center of mass. 

Similarly, the total torque generates an angular acceleration in the cylinder. The equation for torque is 

given by 

𝜏 = 𝑓𝑅 

Therefore, we get 

(2)    𝑓𝑅 = 𝐼𝛼 

Here 𝛼 is the angular acceleration of the cylinder and I is its moment of inertia about the center of mass, 

which is given by 

𝐼 =
1

2
𝑀𝑅2 

Applying the condition of no slip, we have 

𝑎 = 𝑅𝛼 

From (1) and (2), eliminating 𝑓 and 𝑎 we have 

𝑀𝑅𝛼 = 𝑘𝑅𝜃 −
𝐼𝛼

𝑅
 

𝑅𝜃 

𝑘𝑅𝜃 

f 

(a) 

(b) 

Figure 7: (a) Normal, (b) stretched configurations of a horizontal spring-mass system, where the 

mass is a solid cylinder of radius R. 
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Or,  

𝛼 =
𝑘𝑅2

𝐼 + 𝑀𝑅2
𝜃 

the magnitude of the angular acceleration is proportional to 𝜃. Hence, the cylinder performs angular 

SHM, with angular frequency 

𝜔 = √
𝑘𝑅2

𝐼 + 𝑀𝑅2
 

= √
𝑘𝑅2

3
2
𝑀𝑅2

= √
2𝑘

3𝑀
 

Therefore, the time period is given by 

𝑇 =
2𝜋

𝜔
= 2𝜋√

3𝑀

2𝑘
 

5. For small oscillations, 

sin (
𝑎𝑥

2
) ≈

𝑎𝑥

2
 

Therefore, the potential energy reduces to 

𝑈(𝑥) ≈
𝑈0𝑎

2𝑥2

2
 

Comparing it with the familiar form of potential energy for SHM 

𝑈 =
1

2
𝑘𝑥2 

We get 

𝑘 = 𝑈0𝑎
2 

Therefore, the time period is given by 

𝑇 = 2𝜋√
𝑀

𝑘
= 2𝜋√

𝑀

𝑈0𝑎2
 

6. The time period of a pendulum clock is exactly 2 sec. It is also known by the name seconds 

pendulum. 
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Now when the pendulum is replaced by a spring-mass system the time period should remain the 

same for clock to function properly. Therefore, if M is the mass, then 

2 = 2𝜋√
𝑀

0.1
 

Therefore, M = 0.01 kg or 10 g. 

7. The moment of inertia of a disk about its central axis is given by 

𝐼 =
1

2
𝑀𝑅2 

By linear transformation, the moment of inertia is given by 

𝐼 =
1

2
𝑀𝑅2 + 𝑚(

𝑅

2
)
2

=
3

4
𝑀𝑅2 

Now, for small amplitude, the angular motion is nearly SHM and the time period is given by 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑑
= 2𝜋√

3
4

𝑀𝑅2

𝑚𝑔(
𝑅
2)

 

∴ 𝑇 = 2𝜋√
3𝑅

2𝑔
 

8. Infinite.  

The time period for a simple pendulum is  

𝑇 = 2𝜋√
𝑙

𝑔
 

In a freefall, the ‘g’ experienced by the spring pendulum is zero. Therefore, the time period 

becomes infinite. 

9. (a) 

The time period for a simple pendulum is  

𝑇 = 2𝜋√
𝑙

𝑔
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The ‘g’ inside the earth’s surface is less than on the surface. Therefore, the time period increases 

in comparison to the earth’s surface. 

10. The initial time period is T, which is given by 

𝑇 = 2𝜋√
𝑙

𝑔
 

Now, the truck starts accelerating forward, so the bob will experience a pseudo force in the 

backward direction 

 

 

 

 

 

 

The time period depends on the net acceleration that the system experiences. The effective ‘g’ 

experienced by the system changes here because of an added acceleration of the truck. Remember 

we have already solved problem involving elevator going up and down with certain acceleration 

and we changed the value of effective ‘g.’ The only difference here is the direction of acceleration.   

 

As the two accelerations are at right angle, the effective ‘g’ is given by 

𝑔𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = √𝑔2 + 𝑎2 

The new time period will be 

𝑇𝑛𝑒𝑤 = 2𝜋√
𝑙

√𝑔2 + 𝑎2
= 𝑇√

𝑔

(𝑔2 + 𝑎2)1/2
 

Note: Here we must understand that the equilibrium position for the SHM will not be vertical 

anymore and would change depending on the value of a. Thereafter, the oscillations will take 

place from the new equilibrium position.  

11. (c) 

𝑚𝑔 

𝑚𝑎 

Figure 8: A simple pendulum hanging from the ceiling of an accelerating truck. 
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The period of a pendulum is the amount of time required for the pendulum to complete one full 

back-and-forth motion – from its rightmost point back to its rightmost point again, for example. 

The time required to swing from its rightmost point to its leftmost point is half of a period. It will 

require the same amount of time to swing back, so the period is 2.4 s. 

12. (c) 

The period of a pendulum is proportional to the square root of the length of the string. 

𝑇 ∝ √𝑙 

𝑜𝑟   
𝑇1

𝑇2
= √

𝑙1
𝑙2

 

𝑇2 =
2.8

√2
8

= 2(2.8) = 5.6 𝑠 

14. From the principle of conservation of energy, the maximum stored energy in the capacitor must 

be equal to the maximum stored energy in the inductor. This leads to 

𝑄2

2𝐶
=

𝐿𝐼2

2
 

where I is the maximum current and Q is the maximum charge. Therefore, 

𝐼 =
𝑄

√𝐿𝐶
 

Also, we know that 

𝑉 =
𝑄

𝐶
 

Therefore, 

𝐼 =
𝐶𝑉

√𝐿𝐶
= 𝑉√

𝐶

𝐿
 

= (57)√
1.5 ∗ 10−6

12 ∗ 10−3
= 0.637 𝐴 
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4.1 INTRODUCTION 

In the previous unit, you learnt that, under small oscillation approximation, motion of a variety of 

mechanical oscillators is simple harmonic. However, this is an ideal situation and more often than 

not, in most of the situations of practical interest, we have to deal with a combination of two or 

more harmonic oscillations. When two or more harmonic oscillations act on a body 

simultaneously, the resultant motion of the body can be analysed on the basis of the principle of 

superposition. We shall study the principle of superposition of harmonic oscillations in this unit.   

4.2 OBJECTIVES 

After studying this unit, you should be able to 

 give example of electromagnetic system exhibiting SHM 

 state the principle of superposition 

 use the principle of superposition to obtain the resultant of the two collinear harmonic 

oscillations of same as well as different frequencies 

 apply the principle of superposition to obtain the resultant of a number of collinear 

harmonic oscillations of same frequency 

4.3 PRINCIPLE OF SUPERPOSITION 

Until now, we studied the oscillatory behavior of isolated physical systems such as spring-mass 

system and simple pendulum. This is an ideal scenario and quite often, for many practical 

applications, we have to deal with a combination of two or more harmonic oscillations; e.g. our 

ear drums receive a complex combination of harmonic oscillations. In order to obtain the resultant 

effect of two or more harmonic oscillations acting on a body simultaneously, we have to make use 

of the superposition principle. 

The superposition principle states that “The resultant of two or more harmonic displacements is 

simply the vector sum of the individual displacements.” 

Example 2: Show that if a particle is acted upon by two separate forces each of which can 

separately produce a simple harmonic motion, the resultant motion of the particle is a combination 

of two simple harmonic motions. 

Solution: Let 𝑟1⃗⃗⃗   denote the position of the particle of mass m at time t if the force 𝐹1
⃗⃗  ⃗ alone acts on 

it. Similarly, let 𝑟2⃗⃗  ⃗ denote the position at time t if the force 𝐹2
⃗⃗  ⃗ alone acts on it. Newton’s second 

law gives 

𝑚
𝑑2𝑟1⃗⃗⃗  

𝑑𝑡2
= 𝐹1

⃗⃗  ⃗ 
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And, 

𝑚
𝑑2𝑟2⃗⃗  ⃗

𝑑𝑡2
= 𝐹2

⃗⃗  ⃗ 

Adding them, we get 

𝑚
𝑑2(𝑟1⃗⃗⃗  + 𝑟2⃗⃗  ⃗)

𝑑𝑡2
= 𝐹1

⃗⃗  ⃗ + 𝐹2
⃗⃗  ⃗ 

But 𝐹1
⃗⃗  ⃗ + 𝐹2

⃗⃗  ⃗ is the resultant force acting on the particle and so the resultant position 𝑟  of the particle 

when the resultant force acts, is given by 

𝑟 = 𝑟1⃗⃗⃗  + 𝑟2⃗⃗  ⃗ (4.4) 

Thus, the actual displacement or position is the vector sum of 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗.  

Self Assessment Question (SAQ) 5: Show that the resultant velocity of the particle is the vector 

sum of the individual velocities of the particle when it is acted upon by the two forces separately, 

each of which can produce a simple harmonic motion? 

4.4 SUPERPOSITION OF TWO COLLINEAR HARMONIC 

OSCILLATIONS 

4.4.1 Oscillations Having Equal Frequencies 

Suppose we have two SHMs of equal frequencies but having different amplitudes and phase 

constants acting on a system in the x-direction. The displacements 𝑥1 and 𝑥2 of the two harmonic 

motions, of the same angular frequency ω, differing by phase δ are given by 

𝑥1 = 𝐴1 sin ωt 

𝑥2 = 𝐴2 sin(ωt + δ) 

There are two methods which can be used to obtain an expression for the resultant displacement 

due to superposition of the above two harmonic oscillations. Let us discuss them now. 

(a) Analytical Method 

We use the superposition principle which states that the resultant displacement is equal to the 

vector sum (algebraic sum in this case, because the direction of the two individual oscillation is in 

the x-direction) of the individual displacements. Therefore, we can write 

𝑥 = 𝑥1 + 𝑥2 
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= 𝐴1 sinωt + 𝐴2 sin(ωt + δ) 

= 𝐴1 sin ωt + 𝐴2 sinωt cos δ + +𝐴2 cosωt sin δ 

= (𝐴1 + 𝐴2 cos δ) sin ωt + (𝐴2 sin δ) cosωt 

= 𝐶 sin ωt + 𝐷 cosωt 

= √𝐶2 + 𝐷2 [
𝐶

√𝐶2 + 𝐷2
sinωt +

𝐷

√𝐶2 + 𝐷2
cosωt] 

where 𝐶 = 𝐴1 + 𝐴2 cos δ and 𝐷 = 𝐴2 sin δ. 

Now we know that the magnitude of 
𝐶

√𝐶2+𝐷2
 and 

𝐷

√𝐶2+𝐷2
 is less than 1. Thus, for an angle 𝜀 between 

0 to 2𝜋, we can have 

sin 𝜀 =
𝐷

√𝐶2 + 𝐷2
  𝑎𝑛𝑑  cos 𝜀 =

𝐶

√𝐶2 + 𝐷2
 

Therefore, we get 

𝑥 = √𝐶2 + 𝐷2[cos𝜀 sin ωt + sin 𝜀 cosωt] 

Or,  

𝑥 = 𝐴 sin(ωt + 𝜀) (4.5) 

where  

𝐴 = √𝐶2 + 𝐷2 

= √(𝐴1 + 𝐴2 cos δ)2 + (𝐴2 sin δ)2 

∴ 𝐴 = √𝐴1
2 + 2𝐴1𝐴2 cos δ + 𝐴2

2 (4.6) 

and 

tan 𝜀 =
𝐷

𝐶
=

𝐴2 sin δ

𝐴1 + 𝐴2 cos 𝛿
 

 

(4.7) 

Equation (4.5) shows that the resultant of two collinear simple harmonic motions having the same 

frequency is itself a simple harmonic motion. The amplitude and phase of the resultant SHM 

depends on the amplitudes of the two individual SHMs as well as the phase difference between 

them. 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

85 
 

Self Assessment Question (SAQ) 6: What is the maximum possible amplitude of the two simple 

harmonic motions and when does it occur? 

Self Assessment Question (SAQ) 7: What is the minimum possible amplitude of two simple 

harmonic motions and when does it occur? 

 

(b) Vector Method 

We can arrive at the same results for the superposition of two collinear harmonic oscillations by 

using vector method too. In Unit 2, you learnt how SHM can be represented as rotating vector.  

We will make use of this representation to obtain the resultant of the superposition of two harmonic 

oscillations here. Let us represent the first SHM by a vector of magnitude 𝐴1 and the second SHM 

by the vector of magnitude 𝐴2. These two vectors are shown in the figure below. We assume here 

that the phase angle of the first vector is zero and for the second vector it is equal to the phase 

difference of 𝛿.  

 

 

From the basic vector algebra we know that the resultant of these two vectors will be represented by the 

vector 𝐴 . This vector represents the resultant SHM. Further, the magnitude of the resultant vector A is 

given by 

𝐴 = √𝐴1
2 + 2𝐴1𝐴2 cos δ + 𝐴2

2 

which is the same as equation (4.6).  

The resultant 𝐴  makes an angle 𝜀 with the x-axis and can be expressed as  

tan 𝜀 =
𝐻𝑒𝑖𝑔ℎ𝑡

𝐵𝑎𝑠𝑒
=

𝐴2 sin δ

𝐴1 + 𝐴2 cos 𝛿
 

which is the same as equation (4.7). 

𝛿 𝜀 

𝐴1
⃗⃗ ⃗⃗  

𝐴2
⃗⃗ ⃗⃗  

𝐴  

Figure 19: Two vectors A1 and A2 representing SHMs along with the resultant vector A. 
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The advantage with the vector method is that it can easily be extended to more than two vectors. 

For example, if we have 3 vectors,   

𝑥1 = 𝐴1 sin ωt 

𝑥2 = 𝐴2 sin(ωt + δ1) 

𝑥3 = 𝐴3 sin(ωt + δ2) 

they can be represented as shown in the figure below.  

 

 

 

 

 

 

 

 The resultant vector is given by 

𝑥 = 𝐴 sin(ωt + 𝜀) 

Using trigonometry, we can see that   

𝐴 = √(𝐴1 + 𝐴2 cos δ1 + 𝐴3 cos δ2)2 + (𝐴2 sin δ1 + 𝐴3 sin δ2)2 

And 

tan 𝜀 =
𝐻𝑒𝑖𝑔ℎ𝑡

𝐵𝑎𝑠𝑒
=

𝐴2 sin δ1 + 𝐴3 sin δ2

𝐴1 + 𝐴2 cos δ1 + 𝐴3 cos δ2
 

 

Example 3: A particle is subjected to two simple harmonic oscillations 

𝑥1 = 𝐴1 sin ωt 

𝑥2 = 𝐴2 sin(ωt +
π

3
) 

δ1 𝜀 

𝐴1
⃗⃗ ⃗⃗  

𝐴2
⃗⃗ ⃗⃗  

𝐴  

δ2 

𝐴3
⃗⃗ ⃗⃗  

Figure 20: Three vectors representing SHMs along with the resultant vector. 
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Determine (a) the displacement at t = 0, (b) the maximum speed of the particle and (c) the 

maximum acceleration of the particle. 

Solution: (a) At t = 0,  

𝑥1 = 𝐴1 sin 0 = 0 

and  

𝑥2 = 𝐴2 sin (
π

3
) =

𝐴2√3

2
 

Thus, the resultant displacement at t = 0 is 

𝑥 = 𝑥1 + 𝑥2 =
𝐴2√3

2
 

(b) From (4.6), we can write the amplitude of the resultant of the two harmonic oscillations as  

𝐴 = √𝐴1
2 + 2𝐴1𝐴2 cos (

π

3
) + 𝐴2

2 

= √𝐴1
2 + 𝐴1𝐴2 + 𝐴2

2 

Therefore, the maximum speed is 

|𝑣|𝑚𝑎𝑥 = 𝜔𝐴 = 𝜔√𝐴1
2 + 𝐴1𝐴2 + 𝐴2

2 

(c) The maximum acceleration is 

𝑎𝑚𝑎𝑥 = 𝜔2𝐴 = 𝜔2√
𝐴
.

1

2

+ 𝐴1𝐴2 + 𝐴2
2 

Self Assessment Question (SAQ) 8: Calculate the amplitude and initial phase of the harmonic 

oscillations obtained by the superposition of two collinear oscillations represented by the following 

equations: 

𝑥1 = (0.02 𝑚) sin(5πt +
π

2
) 

𝑥2 = (0.03 𝑚) sin(5πt +
π

4
) 

4.4.2 Oscillations Having Different Frequencies: Beats 

Suppose that we have two collinear harmonic oscillations of different frequencies and amplitudes. 

For simplicity, we assume that the two oscillations have the same phase constant which we take 
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as zero. The two SHMs with displacements 𝑥1 and 𝑥2 and angular frequencies  𝜔1 and 𝜔2 ( < 𝜔1 
) respectively can be written as, 

𝑥1 = 𝐴1 sin ω1t 

𝑥2 = 𝐴2 sinω2t 

From the superposition principle, the resultant of these two oscillation is given by 

𝑥 = 𝑥1 + 𝑥2 

= 𝐴1 sin ω1t + 𝐴2 sinω2t 

Now, to simplify the above equation, we define two terms: average frequency, 𝜔𝑎 and  modulation 

frequency, 𝜔𝑚 as 

𝜔𝑎 =
ω1 + ω2

2
    𝑎𝑛𝑑    𝜔𝑚 =

ω2 − ω1

2
 

Thus, we have  

ω1 = 𝜔𝑎 − 𝜔𝑚 

ω2 = 𝜔𝑎 + 𝜔𝑚 

Substituting ω1 and ω2, we get  

𝑥 = 𝐴1 sin(𝜔𝑎 − 𝜔𝑚)t + 𝐴2 sin(𝜔𝑎 + 𝜔𝑚)t 

= 𝐴1{sin𝜔𝑎t cos𝜔𝑚𝑡 − cos𝜔𝑎𝑡 sin 𝜔𝑚𝑡} + 𝐴2{sin 𝜔𝑎t cos𝜔𝑚𝑡 + cos𝜔𝑎𝑡 sin𝜔𝑚𝑡} 

∴ 𝑥 = (𝐴1 + 𝐴2) sin 𝜔𝑎t cos𝜔𝑚𝑡 − (𝐴1 − 𝐴2) cos𝜔𝑎𝑡 sin 𝜔𝑚𝑡 (4.8) 

Now, let us define an amplitude 𝐴(𝑡) and a phase constant 𝜀(𝑡), which are both functions of time, 

such that 

(𝐴1 + 𝐴2) cos𝜔𝑚𝑡 = 𝐴 cos 𝜀 (4.9) 

and 

−(𝐴1 − 𝐴2) sin𝜔𝑚𝑡 = 𝐴 sin 𝜀 (4.10) 

Using the above substitutions in equation (4.8), we get 

𝑥 = 𝐴 cos 𝜀 sin 𝜔𝑎t + 𝐴 sin 𝜀 cos𝜔𝑎𝑡 
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∴ 𝑥 = 𝐴 sin(𝜔𝑎t + 𝜀) 
(4.11) 

Thus, we find that the amplitude 𝐴 and the phase constant 𝜀, that we defined earlier, is actually the 

resultant amplitude and the resultant phase constant. The above equation can be misleading. 

Although the above equation resembles the equation for SHM, it will be wrong to conclude that 

the resultant motion is SHM. It is so because the amplitude, A and the phase constant 𝜀 are not 

constant as such; rather, they are dependent on time. This oscillation can, at best, be described as 

periodic with an angular frequency of 𝜔𝑎, the average of the two component frequencies. 

The resultant amplitude can be calculated squaring equations (4.9) and (4.10) and adding them 

together 

𝐴2(sin2 𝜀 + cos2 𝜀) = (𝐴1
2 + 𝐴2

2)(sin2 𝜔𝑚𝑡 + cos2 𝜔𝑚𝑡) + 2𝐴1𝐴2(cos𝜔𝑚𝑡 − sin𝜔𝑚𝑡) 

𝐴2 = (𝐴1
2 + 𝐴2

2) + 2𝐴1𝐴2(cos
2 𝜔𝑚𝑡 − sin2 𝜔𝑚𝑡) 

𝐴2 = (𝐴1
2 + 𝐴2

2) + 2𝐴1𝐴2 cos(2𝜔𝑚𝑡) 

∴ 𝐴(𝑡) = √𝐴1
2 + 2𝐴1𝐴2 cos(2𝜔𝑚𝑡) + 𝐴2

2 (4.12) 

And the resultant phase constant can be calculated dividing equation (4.10) by (4.9) 

tan 𝜀 =
−(𝐴1 − 𝐴2) sin 𝜔𝑚𝑡

(𝐴1 + 𝐴2) cos𝜔𝑚𝑡
 

 

(4.13) 

Beats 

When the component frequencies are nearly equal, i.e. ω1 ≈ ω2, the modulated frequency will 

be very small in comparison with the average frequency,  

𝜔𝑚 ≪ 𝜔𝑎 

In such a scenario, the slowly varying modulated amplitude (resultant amplitude) A and the 

modulated phase constant (resultant phase constant) vary only slightly with time and may be 

treated as almost constant during the time scale of interest, which, in our case, is the time period 

given by 

𝑇 =
2𝜋

𝜔𝑎
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In such a condition, equation (4.11) will represent an approximate harmonic oscillations having 

angular frequency 𝜔𝑎. The resulting oscillations, in the case when the two frequencies of the SHMs 

are nearly equal, exhibit what are called beats.  

Example 4: When is the modulated amplitude maximum? 

Solution: From equation (4.12), the maximum amplitude = (𝐴1 + 𝐴2), when  

cos(2𝜔𝑚𝑡) = 1 

or   2𝜔𝑚𝑡 = 0, 2𝜋, … 

(ω2 − ω1)𝑡 = 0, 2𝜋, … 

𝑡 = 0,
2𝜋

(ω2 − ω1)
, … 

∴ 𝑡 = 0,
1

(ν2 − ν1)
, … 

Hence the time interval between two consecutive maxima is 
1

(ν2−ν1)
. The frequency of the maxima 

is (ν2 − ν1). 

Example 5: When is the modulated amplitude minimum? 

Solution: From equation (4.12), the minimum amplitude = |𝐴1 − 𝐴2|, when  

cos(2𝜔𝑚𝑡) = −1 

or   2𝜔𝑚𝑡 = 𝜋, 3𝜋,… 

𝑡 =  
𝜋

(ω2 − ω1)
,

3𝜋

(ω2 − ω1)
, … 

∴ 𝑡 =  
1

2(ν2 − ν1)
,

3

2(ν2 − ν1)
, … 

Hence, the time interval between two consecutive minima is 
1

(ν2−ν1)
. The frequency of the minima 

is (ν2 − ν1). 

The periodic variation of the amplitude of the motion, resulting from the superposition of SHMs 

of slightly different frequencies, is known as the phenomenon of beats. A maxima followed by a 

minima is technically called a beat. The time period 𝑡𝑏 between the successive beats is called the 

beat period given by 
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𝑡𝑏 =
1

|ν2 − ν1|
 (4.14) 

And the beat frequency νb is given by 

𝜈𝑏 = |ν2 − ν1| (4.15) 

Hence, the beat frequency is equal to the difference between the frequencies of the component 

oscillations. 

The figure below displays graphically the result of superimposing two harmonic oscillations of 

different frequencies. You may note that superposition of two SHMs of different frequencies 

results in oscillations that are periodic but not harmonic. 

 

 

Figure 21: Superposition of two collinear SHMs having same amplitude but differing in angular 

frequency. 

Application of Beats 

The phenomenon of beats is of great importance. Beats can be used to determine the small 

difference between frequencies of two sources of sound. Musicians often make use of beats in 

tuning their instruments. If the instrument is out of tune, one will hear beats. Sometimes beats are 

deliberately produced in a particular section of an orchestra to give a pleasing tone to the resulting 

sound. There are many physical phenomena which involve beats. 

 

Example 6: Two radio stations broadcast their programmes at the same amplitude A, and at 

slightly different frequencies, where their difference is equal to 103 Hz. A detector receives the 

signals from the two stations simultaneously. Find the time interval between successive maxima 

of the intensity of the signal received by the detector. 

Solution: The time interval between successive maxima of the intensity is equal to the beat period, 

given by 
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𝑡𝑏 =
1

|ν2 − ν1|
=

1

103
= 10−3 s 

When two tuning forks of same frequency are sounded, a continuous sound is heard. When one of 

the tuning forks is waxed a little, so as to reduce its frequency, beats are heard because now the 

frequencies of the two tuning forks are slightly different. By counting the number of beats heard 

in a given interval of time, one can calculate the beat frequency. 

Example 7: A tuning fork A produces 4 beats with tuning fork B of frequency 256 Hz. When A 

is waxed, the beats are found to occur at shorter intervals. What was its original frequency? 

Solution: As the tuning fork A produces 4 beats with B of frequency 256 Hz, from equation (4.15), 

the frequency of A should be  

𝜈1 = (ν2 ± νb) = 256 ± 4 𝐻𝑧 

Now when tuning fork A is waxed, we are given that the beat period 

𝑡𝑏 =
1

|ν2 − ν1|
 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 

Or, in other words, νb = |ν2 − ν1| increases.  

Let the frequency of the tuning fork A is 𝜈1 = 256 + 4 = 260 𝐻𝑧. When tuning fork A is waxed, 

its frequency 𝜈1 will decrease, and hence the beat frequency should also decrease. But it is not 

what we have found above. So, frequency of A can not be 260 Hz. 

Let 𝜈1 = 256 − 4 = 252 𝐻𝑧, then its frequency 𝜈1 decreases due to waxing, the beat frequency 

increases. Hence, 𝜈1 = 252 𝐻𝑧 is the correct answer. 

Self Assessment Question (SAQ) 9: Choose the correct option. 

If a tuning fork of frequency 512 Hz is sounded with a string of frequency 500 Hz, the beats 

produced per second will be 

(a) 10 (b) 12 (c) 6 (d) 0 (e) 1012 

 

4.5 SUMMARY 

In this unit, we studied how to obtain the resultant oscillation when two or more collinear 

oscillations are superposed. We discovered that, the resultant oscillation is not SHM, even if the 

component oscillations are SHM. However, under certain conditions, the resultant oscillation can 

be considered to be simple harmonic. Further, when the superposing oscillations hace slightly 
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different frequencies, then a phenomenon known as beats is observed. The beats have important 

practical applications.  

4.6 GLOSSARY 

Beats – the subjective difference in tone when two sound waves of nearly equal frequencies are 

simultaneously applied to one ear. It appears as a periodic increase and decrease of the intensity. 

Frequency – the number of complete cycles per second made by a vibrating object. 

Modulation – the change of amplitude or frequency of a carrier signal of given frequency. 

Tuning fork – A fork with two prongs and heavy cross-section, generally made of steel. Specially 

designed to retain a constant frequency of oscillation when struck. Widely used for tuning musical 

instruments because its frequency is independent of the changes in temperature, atmospheric 

pressure and humidity. 

Waxing – application of a thin layer of wax. 

4.7 TERMINAL QUESTIONS 

1. Find the amplitude and the phase angle of the simple harmonic motion obtained by combining 

the motions 𝑥1 = (2 𝑐𝑚) sin 𝜔𝑡 and 𝑥2 = (2 𝑐𝑚) sin(𝜔𝑡 + 𝜋/3). 

2. A particle is subjected to two simple harmonic motions in the same direction having equal 

amplitudes and equal frequency. If the resultant amplitude is equal to the amplitude of the 

individual motions, find the phase difference between the individual motions. 

3. Two particles are oscillating along the same line with the same frequency and the same 

amplitude. They meet each other at a point midway between the mean position and the extreme 

position while going in opposite direction. Find the phase difference between their motions. 

4. Two simple harmonic motions are represented by the equations  

𝑦1 = 10 sin(3𝑡 + 𝜋/4) 

𝑦2 = 5(sin 3𝑡 + cos3𝑡) 

What is the ratio of their amplitudes? 

5. Two vibrations along the same line are described by the equations 

𝑥1 = 0.03 cos(10𝜋𝑡) 

𝑥2 = 0.03 cos(12𝜋𝑡) 
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where 𝑥1, 𝑥2 are measured in meters and t is in seconds. Obtain the equation describing the 

resultant motion and hence find the beat frequency. 

6. Choose the correct option. 

A tuning fork produces 6 beats per sec. with another fork of frequency 384 Hz. If the prongs of 

the first fork are slightly filed (it is the opposite of waxing and leads to an increase in the 

individual frequency), 4 beats per sec. are produced. The frequency of the first fork after the 

filing is 

(a) 390 𝐻𝑧 (b) 378 𝐻𝑧 (c) 380 𝐻𝑧 (d) 388 𝐻𝑧 

 

7. Choose the correct option. 

Two adjacent piano keys are struck simultaneously. The notes emitted by them have frequencies 

𝜈1 and 𝜈2. The number of beats heard per second is 

(a) 
1

2
(𝜈1 − 𝜈1) (b) 

1

2
(𝜈1 + 𝜈1) (c) (𝜈1 − 𝜈2) (d) 

1

2
(𝜈1 − 𝜈1) 

 

8. Choose the correct option. 

Beats are the result of  

(a) Diffraction  

(b) Destructive interference 

(c) Constructive and destructive interference 

(d) Superposition of two waves of nearly equal frequencies 

9. Two vibrations along the same line are described by the equations 

𝑥1 = 0.03 cos(320𝜋𝑡) 

𝑥2 = 0.03 cos(326𝜋𝑡) 

Calculate the number of beats produced per sec? 

10. Write short notes on: 

 (i) Superposition principle  (ii) Beats   
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4.8 ANSWERS 

Selected Self Assessment Questions (SAQs): 

5. Differentiate equation (4.4), to get 𝑣 = 𝑣1⃗⃗⃗⃗ + 𝑣2⃗⃗⃗⃗ . 

6. If the phase difference, 𝛿 = 0, the two SHMs are in phase and from equation (4.6), we have 

𝐴 = √𝐴1
2 + 2𝐴1𝐴2 + 𝐴2

2 = 𝐴1 + 𝐴2 

7. If the phase difference, 𝛿 = 𝜋, the two SHMs are out of phase. From equation (4.6), we have 

𝐴 = √𝐴1
2 − 2𝐴1𝐴2 + 𝐴2

2 

Since the amplitude cannot be negative, we get 

𝐴 = |𝐴1 − 𝐴2| 

If 𝐴1 = 𝐴2, the resultant amplitude is zero and the particle does not oscillate at all. 

8. The phase difference 𝛿 between the two vectors is given by 

𝜋

2
−

𝜋

4
=

𝜋

4
 𝑟𝑎𝑑 

The resultant amplitude is given by equation (4.6), 

𝐴 = √(0.02)2 + 2(0.02)(0.03) cos
𝜋

4
+ (0.03)2 = 0.046 𝑚 

The resultant angle is given by equation (4.7), 

𝜀 = tan−1
(0.03) sin

𝜋
4

(0.02) + (0.03) cos
𝜋
4

 

= tan−1
3

2√2 + 3
 

9. (b) 
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Selected Terminal Questions: 

1. The two given equations represent simple harmonic oscillations along the x-axis, both having 

amplitudes of 2 cm. The phase difference between the two SHMs is, 𝛿 = 𝜋/3. Thus, their resultant 

will have an amplitude A given as  

𝐴 = √𝐴1
2 + 2𝐴1𝐴2 cos 𝛿 + 𝐴2

2 

= √(2)2 + 2(2)(2) cos
𝜋

3
+ (2)2 = 3.5 𝑐𝑚 

From equation (4.7), the phase constant 𝜀 is given by 

𝜀 = tan−1
𝐴2 sin δ

𝐴1 + 𝐴2 cos 𝛿
= tan−1

2 sin
𝜋
3

2 + 2 cos
𝜋
3

 

= tan−1

2(
√3
2 )

2 + 2 (
1
2)

= tan−1
1

√3
 

∴ 𝜀 =
𝜋

6
 

2. Let the amplitudes of the individual motions be A each. The resultant amplitude is also A. From 

equation (4.6), we have 

𝐴 = √𝐴2 + 2𝐴2 cos 𝛿 + 𝐴2 

Or, 

cos 𝛿 = −
1

2
 

∴ 𝛿 =
2𝜋

3
 

3. Let t = 0 be the instant when the particles cross each other at x = A/2 with equal and opposite 

velocities. Let the equation of motion be given by 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡 + 𝛿) 

At t = 0, 

𝐴

2
= 𝐴 sin 𝛿 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

97 
 

∴ 𝛿 =
𝜋

6
,
5𝜋

6
 

𝛿 =
𝜋

6
 correspond to a positive initial velocity and 𝛿 =

5𝜋

6
 corresponds to a negative initial velocity. 

The equation for the two particles is thus, 

𝑥1(𝑡) = 𝐴 sin (𝜔𝑡 +
𝜋

6
)    𝑎𝑛𝑑   𝑥2(𝑡) = 𝐴 sin (𝜔𝑡 +

5𝜋

6
) 

The phase difference is therefore, 

= (𝜔𝑡 +
𝜋

6
) − (𝜔𝑡 +

5𝜋

6
) =

2𝜋

3
 

4. The amplitude of the first oscillation 𝑦1 = 10 sin(3𝑡 + 𝜋/4) is 10.  

The second oscillation 𝑦2 = 5(sin 3𝑡 + cos3𝑡) is a combination of two oscillations,  

𝑦 = 5 sin 3𝑡    𝑎𝑛𝑑   𝑦 = 5 cos 3𝑡 = 5 sin (3𝑡 +
𝜋

2
) 

Hence, the phase difference 𝛿 =
𝜋

2
. From equation (4.6), we get the resultant amplitude as 

𝐴 = √52 + 2(5)(5) cos (
𝜋

2
) + 52 = 5√2 

Therefore, the required ratio of the amplitudes is 

=
10

5√2
= √2 

5. Using the superposition principle, the resultant motion is given by 

𝑥 = 𝑥1 + 𝑥2 

= 0.03{cos(10𝜋𝑡) + cos(12𝜋𝑡)} 

Using the trigonometric identity, 

cos𝛼 + cos 𝛽 = 2 cos (
𝛼 + 𝛽

2
) cos (

𝛼 − 𝛽

2
) 

We get, 

𝑥 = 0.06 cos(𝜋𝑡) cos(11𝜋𝑡) 

which is of the form 𝑥 = 𝐴 sin(𝜔𝑎t + 𝜀) [equation (4.16)], where 𝐴 = 0.06 cos(𝜋𝑡) , 𝜔𝑚 = 𝜋 and 

𝜔𝑎 = 11𝜋.  
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We know 

𝜔𝑚 =
ω2 − ω1

2
 

Or,  

ω2 − ω1 = 2𝜋 

Hence the beat frequency is  

𝜈𝑏 = |ν2 − ν1| 

=
2𝜋

|ω2 − ω1|
=

2𝜋

2𝜋
= 1 𝐻𝑧 

6. (c) 

7. (c) 

8. (d) 

9. ω1 = 320π and ω2 = 326π. The beat frequency is given by 

𝜈𝑏 = |ν2 − ν1| =
2𝜋

|ω2 − ω1|
 

=
2𝜋

6𝜋
= 3 𝐻𝑧 
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UNIT 5:  SUPERPOSITION OF TWO MUTUALLY 

               PERPENDICULAR HARMONIC OSCILLATION 
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5.1 Introduction 

5.2 Objectives 

5.3 Two Mutually Perpendicular Harmonic Oscillations 

      5.3.1 Oscillations Having Same Frequencies 

      5.3.2 Oscillations Having Different Frequencies (Lissajous Figures) 

5.4 Summary 
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5.1 INTRODUCTION 

Our discussion in the earlier units has been confined to collinear harmonic oscillations. However, 

oscillations can also take place in two, or three dimensions. For example, the simple pendulum 

that we studied in the earlier units can be actually visualized as a three-dimensional oscillator, 

because it can swing from north to south or east to west – and it can also moves up and down like 

a spring pendulum. It can execute all these motions simultaneously, so that the general motion of 

the bob is a complex path in space. In addition to these swinging motions there could also be the 

twisting motion around the string; the torsional motion. Taken together, the pendulum may be 

subjected to four independent oscillations simultaneously, which makes our job of analyzing the 

motion of the bob quite challenging!  

In this unit, we will study the superposition of two mutually perpendicular harmonic oscillations 

and learn how Lissajous figures can be used to describe the path of the resultant motion when two 

mutually perpendicular oscillations are superposed. 

5.2 OBJECTIVES 

After studying this unit, you should be able to 

 differentiate between independent and coupled oscillations 

 explain what is two-dimensional SHM, with an example 

 apply the principle of superposition to obtain the resultant of two mutually perpendicular 

harmonic oscillations having different amplitudes but same frequencies 

 show the equivalence of two mutually perpendicular harmonic oscillations with uniform 

circular motion 

 apply the principle of superposition to obtain the resultant of two mutually perpendicular 

harmonic oscillations having different amplitudes and different frequencies 

 describe how Lissajous figures are drawn 

5.3 TWO MUTUALLY PERPENDICULAR HARMONIC 

OSCILLATIONS 

As mentioned before, a pendulum (Fig. 1) may be subjected to four independent oscillations 

simultaneously.  

 It can swing from north to south (i.e. about the y-axis) 

 It can swing from east to west (i.e. about the x-axis) 

 It can also swing up and down like a spring pendulum (to some extent depending on the 

elasticity of the string) 

 And lastly, it can also exhibit a twisting motion around the string (torsional motion) 
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These independent motions of an oscillator are called the modes of vibration of the oscillator and 

their number is called the number of degrees of freedom of the oscillator. In this case, there are 

four modes of vibration, including three swinging modes and one torsional mode, and there are, 

therefore, four degrees of freedom. You will appreciate that when all these modes are in action 

together, the task of predicting the motion of the bob is quite challenging! Fortunately, the task is 

made much simpler if we know that the various motions are truly independent. 

The condition for independent oscillators is that the oscillators are unaware of each other – either 

because they are far away from each other or because the displacement of one does not affect the  

motions of the others. In the case of simple pendulum described above, each of its degrees of 

freedom represents an independent oscillator. We can be confident of this with our pendulum since 

the restoring forces in the swinging modes depend on the weight of the bob and this is independent 

of where the bob is placed. The torsional mode is controlled by the physical properties of the string, 

(i.e. its elasticity) independent of gravity, and so this mode is independent of the others. On the 

other hand, if the two oscillators or two modes of a single oscillator are not independent, they are 

said to be coupled. 

In general, it is important to develop a means of combining the effect of two independent 

oscillations acting on a body simultaneously. In the following, you will learn to do this for the case 

of two independent, perpendicular SHMs. 

5.3.1 Oscillations Having Same Frequencies 

Let’s now study a simpler case, where we assume that two independent forces are acting on a 

particle in such a manner that the first alone produces a simple harmonic motion in the x-direction 

given by 

𝑥 = 𝐴1 sin 𝜔𝑡 (5.1) 

and the second would produce a simple harmonic motion in the y-direction given by 

T 

mg 

Figure 22: A pendulum, consisting of a bob hanging with a string. 
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𝑦 = 𝐴2 sin(𝜔𝑡 + 𝛿) (5.2) 

Thus, we are actually considering the superposition of two mutually perpendicular SHMs which 

have equal frequencies. The amplitudes may be different and their phases differ by 𝛿. The resultant 

motion of the particle is a combination of the two SHMs. 

The position of the particle at any time t is given by (x, y) where x and y are given by the above 

equations. The resultant motion is, thus, two-dimensional and the path of the particle is, in general, 

an ellipse. The equation of the path traced by the particle is obtained by eliminating t from 

equations (5.1) and (5.2). 

From equation (5.1), we get 

sin 𝜔𝑡 =
𝑥

𝐴1
  ; which gives   cos𝜔𝑡 = √1 − (

𝑥

𝐴1
)
2

 

Putting these values in equation (5.2), we get 

𝑦 = 𝐴2 sin(𝜔𝑡 + 𝛿) = 𝐴2[sin 𝜔𝑡 cos 𝛿 + cos𝜔𝑡 sin 𝛿] 

= 𝐴2 [(
𝑥

𝐴1
) cos 𝛿 + (√1 − (

𝑥

𝐴1
)
2

)sin 𝛿] 

Or, 

(
𝑦

𝐴2
−

𝑥

𝐴1
cos 𝛿)

2

= (1 − (
𝑥

𝐴1
)
2

) sin2 𝛿 

∴
𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 −

2𝑥𝑦 cos 𝛿

𝐴1𝐴2
= sin2 𝛿 (5.3) 

 

As we can see, equation (5.3) is an equation of ellipse. Thus, we may conclude that the resultant 

motion of the particle is along an elliptical path.  

Equation (5.3) shows that x remains between −𝐴1 and 𝐴1 and that of y remains between −𝐴2 and 

𝐴2. Thus, the particle always remains inside the rectangle defined by 

𝑥 = ±𝐴1   𝑎𝑛𝑑   𝑦 = ±𝐴2 

The ellipse given by equation (5.3) is shown in the figure below: 
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Special Cases 

 The two component SHMs are in phase, 𝛿 = 0 

 The two component SHMs are out of phase, 𝛿 = 𝜋 

 The phase difference between the two component SHMs, 𝛿 = 𝜋/2 

Let us now obtain the resultant motion of the particle under thes special cases. 

(a) When the two superposing SHMs are in phase, 𝛿 = 0 and equation (5.3) reduces to 

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 −

2𝑥𝑦

𝐴1𝐴2
= 0 

Or, 

(
𝑦

𝐴2
−

𝑥

𝐴1
)
2

= 0 

∴ 𝑦 =
𝐴2

𝐴1
𝑥 (5.4) 

Equation (5.4) is an equation of a straight line passing through the origin and having a slope of  

tan−1 (
𝐴2

𝐴1
). The figure below shows the path followed by the particle in this case. The particle 

moves on the diagonal (shown by the dotted line) of the rectangle. 

2𝐴1 

2𝐴2 
0 

y-axis 

x-axis 

Figure 23: Elliptical path followed by a particle on which two independent SHMs, which are 

perpendicular to each other, act simultaneously. 
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Equation (5.4) can also be obtained directly from equations (5.1) and (5.2) putting 𝛿 = 0. The 

displacement of the particle on this straight line at any time t is  

𝑟 = √𝑥2 + 𝑦2 

= √(𝐴1 sin 𝜔𝑡)2 + (𝐴2 sin 𝜔𝑡)2 = √𝐴1
2 + 𝐴2

2 sin𝜔𝑡 

Thus, we can see that the resultant motion is also SHM with the same frequency and phase as the 

component motions. However, the amplitude of the resultant SHM is √𝐴1
2 + 𝐴2

2. 

 

(b) When the two superposing SHMs are out of phase, the phase difference between them is 𝛿 =

𝜋. Thus, from equation (5.3), we get 

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 +

2𝑥𝑦

𝐴1𝐴2
= 0 

Or, 

(
𝑦

𝐴2
+

𝑥

𝐴1
)
2

= 0 

∴ 𝑦 = −
𝐴2

𝐴1
𝑥 (5.5) 

2𝐴1 

2𝐴2 
0 

y-axis 

x-axis 

Figure 24: The straight line path traced by the resultant motion of the particle when the phase 

difference, 𝜹 = 𝟎. 
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Equation (5.5) is an equation of a straight line passing through the origin and having a slope  

tan−1 (−
𝐴2

𝐴1
). The figure below shows the path followed by the particle. The particle moves on 

one of the diagonals (shown by dotted line) of the rectangle. 

 

 

Equation (5.5) can also be obtained directly on the basis of equations (5.1) and (5.2) and putting 

𝛿 = 𝜋. Further, the displacement of the particle on this straight line path at a given time t is  

𝑟 = √𝑥2 + 𝑦2 = √(𝐴1 sin𝜔𝑡)2 + (𝐴2 sin(𝜔𝑡 + 𝜋))2 

= √(𝐴1 sin 𝜔𝑡)2 + (−𝐴2 sin𝜔𝑡)2 = √𝐴1
2 + 𝐴2

2 sin 𝜔𝑡 

Thus, we can see that the resultant motion is also SHM with the same frequency as the component 

motions. The amplitude of the resultant SHM is √𝐴1
2 + 𝐴2

2. 

(c) When the phase difference between the two component SHMs is 𝛿 = 𝜋/2.  

 

 

 

 

 

 

 

 

 

2𝐴1 

2𝐴2 
0 

y-axis 

x-axis 

Figure 4: The straight line path traced by the resultant motion of the particle when the phase 

difference, 𝜹 = 𝝅. 

2𝐴1 

0 

y-axis 

x-axis 

Figure 5: The elliptical path traced by the resultant motion of the particle when the phase 

difference, 𝜹 = 𝝅/𝟐.  

2𝐴2 
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From equation (5.3), we get 

𝑥2

𝐴1
2 +

𝑦2

𝐴2
2 = 1 (5.6) 

The above equation is a standard equation of an ellipse with its axes along the x-axis and the y-

axis and with its center at the origin. The lengths of the major and the minor axes are 2𝐴1 and 2𝐴2, 

respectively. The path traced by the particle (shown by the dotted line) is depicted in Fig. 5. 

In case the amplitudes of the two individual SHMs are equal, 𝐴1 = 𝐴2 = 𝐴, i.e. the major and the 

minor axes are equal, then the ellipse reduces to a circle.  

𝑥2 + 𝑦2 = 𝐴2 (5.7) 

Thus, the resultant motion of a particle due to superposition of two mutually perpendicular SHMs 

of equal amplitude and having a phase difference of 𝜋/2 is a circular motion. The circular motion 

may be clockwise or anticlockwise depending on which component leads the other. 

Example 1: Show that the superposition of oscillations represented by 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑦 = −𝐴 cos𝜔𝑡 

results in to circular motion traced in the anticlockwise sense. 

Solution: Using equations (5.1) and (5.2), taking 𝐴1 = 𝐴2 = 𝐴 and putting the phase difference 

between the two perpendicular components, 𝛿 = −𝜋/2 , we get, 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑦 = 𝐴 sin (𝜔𝑡 −
𝜋

2
) = −𝐴 cos𝜔𝑡 

Hence, we can see these are the same coordinates that are given to us. Therefore, 𝛿 = −𝜋/2. 

Putting 𝛿 = −𝜋/2 in equation (5.3), we get 

𝑥2 + 𝑦2 = 𝐴2 

which is same as equation (5.7) and represents a circle. 

For the direction, let us see what are the coordinates of the particle at t = 0 and t = T/4. 

𝐴𝑡 𝑡 = 0, (𝑥, 𝑦) = (0,−𝐴) 
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𝐴𝑡 𝑡 =
𝑇

4
=

𝜋

2𝜔
, (𝑥, 𝑦) = (𝐴, 0) 

 

 

 

 

 

 

Clearly, one can see that the motion of the particle is anticlockwise. 

Example 2: A particle is subjected to two simple harmonic oscillations, one along the x-axis and 

the other on a line making an angle of 𝜋/4 with the x-axis. The two motions are given by 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑆 = 𝐵 sin 𝜔𝑡 

Calculate the amplitude of the resultant motion. 

Solution: The two individual SHMs, with equal frequencies are in phase because the phase 

difference 𝛿 = 0.  

Now, let’s break the second SHM (shown in the figure below), into its x-component and the y-

component. 

 

So  

𝑆 

𝜋/4 

𝑆 sin 𝜋/4  

y-axis 

x-axis 

0 

y-axis 

x-axis 

Figure 6 

𝑆 cos 𝜋/4  

Figure 7 
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So, the x-component of the second SHM is given by 

𝑆 cos 𝜋/4 = 𝐵 sin 𝜔𝑡 cos 𝜋/4  

=
𝐵

√2
sin𝜔𝑡 

And, the y-component of the second SHM is given by 

𝑆 sin 𝜋/4 = 𝐵 sin 𝜔𝑡 sin 𝜋/4  

=
𝐵

√2
sin𝜔𝑡 

Therefore, if we want to see motion in the x-direction and the y-direction only, then we have three 

separate SHMs, two along the x-axis and one along the y-axis. They are 

𝑥1 = 𝐴sin 𝜔𝑡 

𝑥2 =
𝐵

√2
sin 𝜔𝑡 

𝑦 =
𝐵

√2
sin 𝜔𝑡 

The amplitude of the resultant oscillation for mutually perpendicular oscillations with zero phase 

difference is given by 

𝐴𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = √𝐴1
2 + 𝐴2

2 

= √(𝐴 +
𝐵

√2
)
2

+ (
𝐵

√2
)
2

 

= √𝐴2 + 𝐵2 + √2𝐴𝐵 

 

Self Assessment Question (SAQ) 1: Show that the superposition of oscillations represented by 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑦 = 𝐴 cos𝜔𝑡 

results in to circular motion traced in the clockwise sense. 
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Self Assessment Question (SAQ) 2: A particle is subjected to two simple harmonic motions in 

the perpendicular directions having equal amplitudes (0.01 m) and equal frequencies. If the two  

SHMs are out of phase, what is the nature of the path followed by the particle? 

Self Assessment Question (SAQ) 3: A particle is subjected to two simple harmonic motions in 

the perpendicular direction having equal amplitudes (0.01 m) and equal frequencies. If the two 

component SHMs are in phase, what is the nature of path followed by the particle? 

Self Assessment Question (SAQ) 4: A particle is subjected to two SHMs 

𝑦 = sin𝜔𝑡 

𝑧 = sin𝜔𝑡 

What is the path that the particle follows? 

Self Assessment Question (SAQ) 5: A particle is subjected to two simple harmonic oscillations, 

one along the x-axis and the other on a line making an angle of 3𝜋/4 with the x-axis. The two 

motions are given by 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑆 = 𝐵 sin 𝜔𝑡 

Calculate the amplitude of the resultant motion. 

5.3.2 Oscillations Having Different Frequencies (Lissajous Figures) 

When the frequencies of the two perpendicular SHMs are not equal, the resulting motion becomes 

more complicated. Let us suppose that the displacements of the two mutually perpendicular 

(orthogonal) oscillations are given by 

𝑥 = 𝐴1 sin 𝜔1𝑡 

𝑦 = 𝐴2 sin(𝜔2𝑡 + 𝛿) 

The phase difference between them at any instant t, is given by 

∆𝜑 = (𝜔2𝑡 + 𝛿) − 𝜔1𝑡 

= (𝜔2 − 𝜔1)𝑡 + 𝛿 

Since the superimposed orthogonal oscillations are of different frequencies, one of them changes 

faster than the other and will gain in phase over the other. As a result, the pattern of the resultant 

motion passes through different phases. It changes with time due to the change in the phase 

difference, which is also a function of time. However, the general shape traced out by the resultant 
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oscillation is similar to that obtained for the case of equal frequencies, i.e. the motion is confined 

within a rectangle of sides 2𝐴1 and 2𝐴2.  

When two independent perpendicular oscillations are superposed, the pattern of the resultant 

motion is described by a Lissajous figure, named after French mathematician, J. A. Lissajous 

(1822-1880) who made an extensive study of these motions. Lissajous figures can be seen by using 

a cathode ray oscilloscope (CRO) shown in the figure below.  

 

Figure 8: Basic structure of cathode ray oscilloscope. 

Here, two rectangular oscillations are simultaneously imposed upon a beam of cathode rays by 

connecting two sources of electrical oscillations to horizontal plates XX and vertical plates YY of 

the oscilloscope. We then see the trace of the resultant effect in the form of an electron beam on 

the fluorescent screen. By adjusting the phases, amplitudes and the ratio of the frequencies of the 

applied voltage, we obtain various curves as shown in Fig. 9. Lissajous figures may be used to 

compare two nearly equal frequencies. If the frequencies of the two component oscillations are not 

exactly equal, the Lissajous figure will change gradually. 

Let us now look at few examples to illustrate the shape of the Lissajous figure for some special 

cases. 

Example 3: A particle is subjected to two mutually perpendicular simple harmonic oscillations, 

𝑥 = 𝐴1 cos𝜔𝑡 

𝑦 = 𝐴2 cos(2𝜔𝑡 + 𝛿) 

Trace the trajectory of the motion of the particle using analytical method. 
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Figure 9: Lissajous figures formed due to superposition of  two mutually perpendicular  oscillations 

having  different frequency  ratios. The amplitudes of the superposing oscillations  is equal to each 

other in this example. The phase difference varies from column to column. 

--------------------------------------------------------------------------------------------------------------------- 

Solution: From the given expressions for the two orthogonal oscillations being superposed, we 

note that  their frequencies are  in the ratio 1:2. 

Analytical method 

If we eliminate t from these two equations, we can determine the equation of the trajectory  of the 

particle , i.e. we are looking for an expression for y in terms of x.  

𝛿 
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From the first SHM equation, we can write 

cos𝜔𝑡 =
𝑥

𝐴1
 

And, expanding the second SHM equation, we get 

𝑦 = 𝐴2 cos(2𝜔𝑡 + 𝛿) 

= 𝐴2[(2 cos2 𝜔𝑡 − 1) cos 𝛿 − 2 sin𝜔𝑡 cos𝜔𝑡 sin 𝛿] 

Substituting y (𝑥/𝐴1) for cos𝜔𝑡 in the above expression, we get 

𝑦

𝐴2
= {2 (

𝑥

𝐴1
)
2

− 1} cos 𝛿 − 2 (
𝑥

𝐴1
)√1 − (

𝑥

𝐴1
)
2

sin 𝛿 

Rearranging the terms, we have 

(
𝑦

𝐴2
+ cos𝛿) − 2 (

𝑥

𝐴1
)
2

cos 𝛿 = −2(
𝑥

𝐴1
)√1 − (

𝑥

𝐴1
)
2

sin 𝛿 

On squaring the above expression on both sides and upon simplification, we get 

(
𝑦

𝐴2
+ cos𝛿)

2

+
4𝑥2

𝐴1
2 (

𝑥2

𝐴1
2 − 1 −

𝑦

𝐴2
cos 𝛿) = 0 

The above equation is of fourth degree, which, in general, represents a closed curve having two 

loops. For a given value of 𝛿, the curve corresponding to the above expression can be traced using 

the knowledge of coordinate geometry. 

Let us take the case when 𝛿 = 0. Thus, cos 𝛿 = 1. The above expression reduces to 

(
𝑦

𝐴2
+ 1)

2

+
4𝑥2

𝐴1
2 (

𝑥2

𝐴1
2 − 1 −

𝑦

𝐴2
) = 0 

∴ (
𝑦

𝐴2
+ 1 −

2𝑥2

𝐴1
2 )

2

= 0 

This represents two coincident parabolas with their vertices at (0,−𝐴2) as shown in Fig. 10 (using 

dotted lines). The equation of each parabola is 

𝑦

𝐴2
+ 1 −

2𝑥2

𝐴1
2 = 0 
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𝑜𝑟   (𝑦 + 𝐴2) =
2𝐴2

𝐴1
2 𝑥2 

 

 

 

Example 4: A particle is subjected to two mutually perpendicular simple harmonic oscillations, 

𝑥 = 2 cos 𝑡 

𝑦 = cos(𝑡 + 4) 

Trace the trajectory of the particle using graphical method. 

Solution: The analytical solution becomes very cumbersome if the phase difference 𝛿 is non-zero. 

In such cases, the resultant motion can be constructed quite conveniently by using graphical 

method. 

Graphical method 

Here, we set up a table of values to see what is happening. We give each point a "point number" 

so that it is easier to understand when we graph the curve. 

t 0 𝜋/4 𝜋/2 3𝜋/4 𝜋 5𝜋/4 3𝜋/2 7𝜋/4 2𝜋 

x 2 1.4 0 -1.4 -2 -1.4 0 1.4 2 

y -0.6 0.1 0.7 1 0.7 -0.1 -0.8 -1 -0.7 

Pt.no. 1 2 3 4 5 6 7 8 9 

 

2𝐴2 
0 x-axis 

y-axis 

2𝐴1 

Figure 10: Superposition of two mutually perpendicular SHMs with frequencies in the ratio 1:2 and 

phase difference equal to zero. 
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From the above table, the resulting curve, with the numbered points included, is shown in the 

following figure. Point 1 is actually equivalent to Point 9. 

 

Figure 11 

 

Self Assessment Question (SAQ) 6: Construct the Lissajous figures for the following component 

oscillations. If you are using graphical method, you may have to take more than 9 points to get the 

complete graph in some cases. 

(a) 𝑥 = 2 sin 𝑡 , 𝑦 = cos2𝑡 

(b) 𝑥 = sin 𝑡 , 𝑦 = cos(𝑡 + 𝜋/4) 

(c) 𝑥 = sin 𝜋𝑡 , 𝑦 = 2 sin(𝜋𝑡 + 𝜋/2) 

Self Assessment Question (SAQ) 7: Any periodic motion, regardless of its complexity, can be 

reduced to the sum of a number of simple harmonic motions by the application of the superposition 

principle. Is the above statement true or false? 

Self Assessment Question (SAQ) 8: A body is executing simple harmonic motion, and its 

displacement at time t is given by 

𝑥 = 5 sin 3𝜋𝑡 

 Plot the displacement, velocity, and acceleration for two complete periods. 

Self Assessment Question (SAQ) 9: A particle is simultaneously subjected to two simple 

harmonic motions in the same direction in accordance with the following equations: 

𝑦1 = 8 sin 2𝜋𝑡    𝑎𝑛𝑑    𝑦2 = 4 sin 6𝜋𝑡    
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Show graphically the resultant path of the particle. 

5.4 SUMMARY 

In this unit, we continued the  study of superposition of waves. We learnt the superposition of two 

mutually perpendicular simple harmonic oscillations. By the application of superposition 

principle, one can combine any number of individual harmonic oscillations if we know that the 

different motions are not coupled but independent of each other. The condition for independent 

oscillators is that the oscillators are unaware of each other – either because they are far away from 

each other or because the motion of one does not affect the motions of the others. 

We also learnt that, when the frequencies of the two mutually perpendicular SHMs are not equal, 

the resulting motion becomes more complicated. The pattern of the resultant motion is described 

by a Lissajous figure. We can use both analytical and graphical method to trace the resultant 

motion. If the phase difference 𝛿  between the superposing oscillations is non-zero, the analytical 

solution becomes very cumbersome.. In such cases, it is more convenient to use the graphical 

method. 

 5.5 GLOSSARY 

Anticlockwise – if something is moving anticlockwise, it is moving in the opposite direction to the 

direction in which the hands of a clock move. 

Clockwise – when something is moving clockwise, it is moving in a circle in the same direction 

as the hands on a clock. 

Coupled – joined together or connected by a link. 

Degree of freedom –number of ways in which a body may move or in which a dynamic system 

may change. 

Frequency – the number of complete cycles per second made by a vibrating object. 

Independent – if a thing is independent of another, they are separate and not connected, so the first 

one is not affected or influenced by the second. 

Orthogonal – having perpendicular slopes or tangents at the point of intersection. 

Oscilloscope – it is an instrument in which the variations in a fluctuating electrical quantity appear 

temporarily as a visible wave form on the fluorescent screen of a cathode-ray tube. 
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5.6 TERMINAL QUESTIONS 

1. A particle is subjected to three simple harmonic oscillations, one along the x-axis, second along 

the y-axis and the third along the z-axis. The three motions are given by 

𝑥 = 𝐴 sin 𝜔𝑡 

𝑦 = 𝐵 sin𝜔𝑡 

𝑧 = 𝐶 sin𝜔𝑡 

Calculate the amplitude of the resultant motion. 

2. Choose the correct option. 

A particle moves on the x-axis according to the equation  

𝑥 = 𝐴 + 𝐵 sin 𝜔𝑡 

The motion is a SHM with amplitude 

(a) 𝐴 (b) 𝐵 (c) 𝐴 + 𝐵 (d) √𝐴2 + 𝐵2 

 

3. Choose the correct option(s). More than one choice can be correct. 

Which of the following will change the time period as they are taken to Mars? 

(a) A simple pendulum  (b) A compound pendulum   (c)LC circuit   

(d) A torsional pendulum  (e) A spring-mass system 

 

4. A particle is under the influence of two simultaneous SHMs in mutually perpendicular directions 

given by 

𝑥 = cos 𝜋𝑡 

𝑦 = cos
𝜋𝑡

2
 

determine the trajectory of the resulting motion of the particle. 

5. Write short note on Lissajous’ figures. How are they demonstrated experimentally?  

6. Describe and obtain formulae for the superposition of two mutually perpendicular SHMs with 

equal frequencies. 
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7. Determine the  the shape of the Lissajous figure for the resultant motion, if a particle is subjected 

to the following SHMs:  

𝑥 = 2 sin 2𝜋𝑡 

𝑦 = 3 sin 𝜋𝑡 

8. A body executes simple harmonic motion. Which one of the following graphs best shows the 

relationship between the kinetic energy (on y-axis) of the body and its distance (on x-axis) 

from the centre of oscillation? 

 

9. Two pendulums, P and Q, are set up alongside each other. The period of P is 1.90 s and the 

period of Q is 1.95 s. How many oscillations are made by pendulum Q between two 

consecutive instants when P and Q move in phase with each other? 

10. A student performed the simple pendulum experiment in the laboratory by measuring the time 

periods for different lengths of the pendulum. If for two readings, he found that the period 

changes by 50%, what should have been the percentage change in the length of the pendulum?  

5.7 ANSWERS 

Selected Self Assessment Questions (SAQs): 

Solution (SAQ) 1: Using (5.1) and (5.2), taking 𝐴1 = 𝐴2 = 𝐴 and putting the phase difference 

between the two perpendicular components, 𝛿 = 𝜋/2 , we get, 

𝑥 = 𝐴 sin 𝜔𝑡 
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𝑦 = 𝐴 sin (𝜔𝑡 +
𝜋

2
) = 𝐴 cos𝜔𝑡 

Hence, we can see these are the same coordinates that are given to us. Therefore, 𝛿 = 𝜋/2. 

Putting 𝛿 = 𝜋/2 in equation (5.3), we get 

𝑥2 + 𝑦2 = 𝐴2 

which is the equation of a circle. 

For the direction, let us see what are the coordinates of the particle at t = 0 and t = T/4. 

𝐴𝑡 𝑡 = 0, (𝑥, 𝑦) = (0, 𝐴) 

𝐴𝑡 𝑡 =
𝑇

4
=

𝜋

2𝜔
, (𝑥, 𝑦) = (𝐴, 0) 

 

 

 

 

 

 

Clearly, one can see that the motion of the particle is clockwise. 

2. Solution (SAQ) 𝛿 = 𝜋. The particle follows the path 𝑦 = −𝑥. The amplitude of the resultant 

oscillation is 

√𝐴2 + 𝐴2 = √2(0.01) = 0.014 𝑚 

3. Solution (SAQ) 𝛿 = 0. The particle follows the path 𝑦 = 𝑥. The amplitude of the resultant 

oscillation is 

√𝐴2 + 𝐴2 = √2(0.01) = 0.014 𝑚 

4. Solution (SAQ) As per the problem,  the two individual SHMs are in the y and the z 

directions, which we know are perpendicular to each other. Hence, the resultant oscillation 

will be superposition of these two mutually perpendicular SHMs. Since, 𝛿 = 0, they are in 

0 

y-axis 

x-axis 
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phase. Therefore, from equation (5.4), we can say that the path followed by the resultant 

oscillation is 

𝑦 = 𝑥 

The amplitude of the resultant oscillation is  

√12 + 12 = √2 

Therefore, the particle oscillates on 𝑦 = 𝑥 line between ±√2. 

5. Solution (SAQ): This problem is similar to Example 2 in this unit. We resolve the second 

SHM,  S into x and y components. 

The x-component of S  is given by 

𝑆 cos 3𝜋/4 = 𝐵 sin 𝜔𝑡 cos 3𝜋/4  

= −𝐵 sin 𝜔𝑡 sin 𝜋/4 = −
𝐵

√2
sin 𝜔𝑡 

And, the y-component of S is given by 

𝑆 sin 3𝜋/4 = 𝐵 sin 𝜔𝑡 sin 3𝜋/4  

= 𝐵 sin 𝜔𝑡 cos 𝜋/4 =
𝐵

√2
sin𝜔𝑡 

Therefore, if we want to see motion in the x-direction and the y-direction only, then we have three 

separate SHMs, two along the x-axis and one along the y-axis. They are 

𝑥1 = 𝐴sin 𝜔𝑡 

𝑥2 = −
𝐵

√2
sin𝜔𝑡 

𝑦 =
𝐵

√2
sin 𝜔𝑡 

Solution(SAQ) 6: 

(a) If we eliminate t between these two equations we can find the equation of the trajectory – 

i.e. an expression for y in terms of x. this will be termed as analytical method. 

 

We can write the y-component oscillation as  

𝑦 = cos2𝑡 = 1 − 2 sin2 𝑡 
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𝑜𝑟       𝑦 = 1 −
𝑥2

2
 

 

This represents a parabola, as shown in the figure below: 

 
 

(b) We can write the y-component oscillation as  

𝑦 = cos(𝑡 + 𝜋/4) = cos 𝑡 cos𝜋/4 − sin 𝑡 sin 𝜋/4 

𝑜𝑟       𝑦 =
1

√2
(cos 𝑡 − sin 𝑡) 

𝑜𝑟       𝑦 =
1

√2
(√1 − sin2 𝑡 − sin 𝑡) =

1

√2
(√1 − 𝑥2 − 𝑥) 

This represents the curve as shown in the following figure: 
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(c) We can write the y-component oscillation as  

𝑦 = 2 sin(𝜋𝑡 + 𝜋/2) = 2 (sin 𝜋𝑡 cos
𝜋

2
+ cos 𝜋𝑡 sin

𝜋

2
) 

𝑜𝑟       𝑦 = 2 cos𝜋𝑡 

𝑜𝑟       𝑦 = 2 (√1 − sin2 𝜋𝑡) = 2 (√1 − 𝑥2) 

 

This represents the curve as shown in the following figure: 
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Solution(SAQ 7. True. 

Solution(SAQ) 8:  

The displacement is given by 𝑥 = 5 sin 3𝜋𝑡. The velocity can be found out by its first derivative, 

i.e. 

𝑑𝑥

𝑑𝑡
= 𝑣 = 15𝜋 cos3𝜋𝑡 

The acceleration is the second derivative of the displacement function or the first derivative of the 

velocity function, i.e. 

𝑑2𝑥

𝑑𝑡2
=

𝑑𝑣

𝑑𝑡
= 𝑎 = −45𝜋2 sin 3𝜋𝑡 

The following plot shows all three of them (displacement, velocity and acceleration) together. 
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Solution(SAQ) 9:   

We first plot the two functions separately and note down the values of 𝑦1 and 𝑦2 for different 

values of 𝑡. 

 

Now, we add the two functions together, and plot the resultant 𝑦1 + 𝑦2 to get the following path. 
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The amplitude of the resultant oscillation for mutually perpendicular oscillations with zero phase 

difference is given by 

𝐴𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = √𝐴1
2 + 𝐴2

2 

= √(𝐴 −
𝐵

√2
)
2

+ (
𝐵

√2
)
2

 

= √𝐴2 + 𝐵2 − √2𝐴𝐵 

Selected Terminal Questions: 

1. Let us first consider the first two oscillations. They are mutually perpendicular with equal 

frequencies and phase difference of zero. Hence the resultant oscillation from the combination of 

these two is going to be  a SHM and will oscillate on the path [from equation (5.4)], 

𝑦 = 𝑥 

And the amplitude of the resultant  of these  two SHMs is given by 

𝐴12 = √𝐴2 + 𝐵2 
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The 3rd SHM is in the z-direction and hence is always going to be perpendicular to resultant SHM 

of first two SHMs, which is in the x-y plane along the 𝑦 = 𝑥 direction (let’s denote it as S-axis). 

Since the SHMs along the z- and S - axis  are in phase, we can write their equations as 

𝑆 = 𝐴12 sin𝜔𝑡 

𝑧 = 𝐶 sin𝜔𝑡 

Thus, the resultant amplitude will be 

𝐴𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = √(𝐴12)2 + 𝐶2 

= √𝐴2 + 𝐵2 + 𝐶2 

2. (b)   

The given equation of motion, 𝑥 = 𝐴 + 𝐵 sin𝜔𝑡, can be written as 

(𝑥 − 𝐴) = 𝐵 sin 𝜔𝑡 

If (𝑥 − 𝐴) = 𝑋, using a simple time independent linear translation, we get 

𝑋 = 𝐵 sin 𝜔𝑡 

which is the familiar equation of motion for SHM. 

3. (a) and (b) 

The time periods of simple pendulum and compound pendulum depend on the acceleration due to 

gravity and hence, their periods will change as the acceleration due to gravity on Mars is different 

from that on the Earth. 

4. Let us substitute  
𝜋𝑡

2
= 𝜃. We get, 

𝑥 = cos2𝜃 

𝑦 = cos𝜃 

From trigonometry, we know that  

cos2𝜃 = 2 cos2 𝜃 − 1 

∴ 𝑥 = 2𝑦2 − 1 

which is the equation of a parabola. Hence, the point traces a parabolic path. 

7. The Lissajous figure resembles the number 8 (eight). 
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8. The kinetic energy is related to velocity by 

𝐾 =
1

2
𝑚𝑣2 

And for SHM, the velocity as a function of x is given as 

𝑣 = ±𝜔√(𝐴2 − 𝑥2) 

Therefore, 

𝐾 =
1

2
𝑚𝜔(𝐴2 − 𝑥2) 

Hence, the correct choice is (b). 

9. The difference in time period is 0.05 s - therefore to make up a complete extra swing P will 

move one more period than Q does in the same time. 

Let number of swings of Q = n. Then,  

1.95𝑛 = 1.90(𝑛 + 1) 

∴ 𝑛 =
1.90

0.05
= 38 

 

10. We know that the period of a simple pendulum is given by 

𝑇 = 2𝜋√
𝑙

𝑔
 

Therefore, 

𝑇2 =
4𝜋2

𝑔
𝑙 

Or, 

(
𝑇2

𝑇1
)
2

=
𝑙2
𝑙1

 

Now, we are given that  

𝑇2 = 150%(𝑇1) = 1.5𝑇1 

Therefore,  

𝑙2 = 𝑙1(1.5)2 = 2.25𝑙1 
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Percentage increase in length is 

=
(𝑙2 − 𝑙1)

𝑙1
× 100 = (2.25 − 1) × 100 = 125% 
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UNIT 6   DAMPED HARMONIC OSCILLATOR 
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6.1 INTRODUCTION 

When we consider an oscillator executing simple harmonic motion, it is assumed that the 

oscillations will continue for infinite time. In other words, we treat the whole system as an idealized 

frictionless system. But, in reality, this does not happen, and the oscillating object gradually loses 

its energy due to several factors. One such major factor is the frictional forces which diminish the 

amplitude of oscillation and the system ultimately comes to rest. 

The decrease in amplitude caused by the dissipative forces is called damping and these oscillations 

with decreasing amplitude are called damped oscillations. In the present unit, we shall discuss the 

effects of damping on the oscillatory systems. 

6.2 OBJECTIVES 

After studying this unit, you should be able to 

 understand the various types of damping effects;  

 write the differential equation of a damped harmonic oscillator;  

 analyze the weakly damped, critically damped and over damped motions;  

 explain various parameters characterizing weak damping; and 

 understand the damping in LCR circuit. 

 

6.3 FRICTIONAL EFFECTS (DAMPING) 

The oscillatory motion we considered so far, have been for ideal systems. It means that such 

oscillatory systems will oscillate indefinitely under the action of only one force – a linear restoring 

force. In the basic analysis of harmonic oscillators, we completely ignore the effect of frictional 

forces in it. But, in real situations, the oscillator is in a resistive medium like air, oil etc. In such 

conditions, part of the energy of the oscillator is spent in opposing frictional or viscous forces. At 

ordinary velocities, the opposing, resistive or damping force is to a first approximation, 

proportional to velocity and may be represented by 

vF  = 
dt

dx
  

Where γ is a positive constant, called damping coefficient of the medium and may be termed as 

resistive force per unit velocity. 

So, if there is no other force other than this resistive or damping force acting on the oscillating 

body of mass m, then Newton’s second law of motion gives 
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2

2

dt

xd
mF   

dt

dv
m  v  

Or          0 v
mdt

dv 
       - - - - - - - - - - - - - - - - - - - - - - - - - - - (1) 

Here, 


m
is usually denoted by a constant, having dimensions of time and is called as relaxation 

time (τ). 

Therefore, 

0
1

 v
dt

dv


      -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (2) 

The constant
m






1
, or the resistive force per unit mass per unit velocity, is often denoted by 2b, 

where b is called damping constant of the medium. 

Now rewriting and integrating equation (2), we get 

  dt
v

dv



1
 

which gives 

C
t

v 


ln  

Where C is a constant of integration to be determined from the initial conditions. 

Puting t=0, v=v0 we get 

ln v0=C 

therefore- 

 

t

evv


 0             - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - (3) 

Above equation clearly shows that the velocity decreases exponentially with time, as shown by 

the curve in Fig 1 below. 
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Figure 1  

 

We can express this by saying that velocity is damped by a time constant τ. From the above 

expression for v, you may note that, at t , 000

1

0 368.0718.2// vvevevv  
 

Therefore, the time constant, τ (also called relaxation time ) may be defined as the time in which 

the velocity of the oscillating particle falls to 1/e times (i.e., 0.368 times) of its initial value. 

6.4 TYPES OF DAMPING FORCES 

Every physical system experiences damping, which depends upon the system under 

consideration. A familiar example is a spring – mass system executing longitudinal oscillations 

in a horizontal surface. The mass which has to move on the horizontal surface experiences 

frictional force from the surface and this frictional force opposes its motion. So, the friction due 

to the surface acts like damping force for the oscillating spring-mass system. 

Another example is Millikan’s oil drop experiment. In this experiment, a charged oil drop  falling 

freely in an electric field experiences a viscous drag. According to Stoke’s Law, the viscous (or 

the damping) force is directly proportional to the velocity of the body. The direction of viscous 

(resistive or damping) force is opposite to velocity. This resistive force become quite relevant 

when a spacecraft comes back in to the earth atmosphere during its return journey or an aircraft 

begins it’s descend. In both cases, the magnitude of the upwards thrust, which acts as a resistive 

force, can be very large. Usually the spacecraft or the aircraft experiences large stress, which 

ultimately raises its outside body temperature. The unfortunate accident of the US spacecraft  

Columbia, in which all astronauts were killed including Indian astronaut Kalpana Chawla, was 

mainly due to the viscous drag only.  
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Note that the damping is not restricted to mechanical systems only. It is encountered in an LCR – 

Circuit, ballistic galvanometer, fluxmeter etc. In these cases, the damping is electromagnetic in 

nature. You will learn about it later in the unit. 

In general, inclusion of damping force makes mathematical analysis somewhat difficult. But for 

simplicity, it is customary to model it by an equivalent viscous damping. In our discussion, we 

make the simplifying assumption that velocity of the moving part of the system is small so that the 

damping force can be taken to be linear in velocity.  

6.5 DIFFERENTIAL EQUATION OF A DAMPED OSCILLATOR 

For studying the effect of damping on a one dimensional oscillator, we can consider the 

representative case of a spring-mass system, as shown in figure below. 

 

Fig. 2 A damped spring-mass system; the oscillating mass is immersed in a viscous medium 

 

The spring-mass system in which the oscillating mass is executing oscillations in a viscous 

medium which causes its amplitude progressively decreasing to zero is called a damped harmonic 

oscillator. Obviously, in case of such an oscillator, in addition to the restoring force –kx, a resistive 

or damping force also acts upon it. This damping force is proportional to the velocity, v (= dtdx /

). We, therefore, can write the equation of the damped spring-mass system as 

kx
dt

dx

dt

xd
m  

2

2

 

or   0
2

2

 x
m

k

dt

dx

mdt

xd 
             - - - - - - - - - - - - - - - - - - - - - - - - - (5) 

This can further be written as 

02
2

02

2

 x
dt

dx
b

dt

xd
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (6) 
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where 2

0
m

k
 is the natural frequency of oscillating particle (i.e. its frequency in the 

absence of damping), b
m

2


 (k is the damping constant of the resistive medium) 

Above equation is called the differential equation of a damped harmonic oscillator. 

6.6 SOLUTION OF THE DIFFERENTIAL EQUATION OF 

DAMPED HARMONIC OSCILLATOR         

The above differential equation is a second order linear homogeneous differential equation. 

Therefore, it will have at least one solution of type tAex   

Here α and t both are arbitrary constants. 

Therefore, 

αtαAe
dt

dx
      and 

αtAeα
dt

xd 2
2

2
                   

Substituting these values in the differential equation (6) above we get 

02
2

0

2  ttt AeAebAe                               

Or            

02
2

0

2   b           - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

This is a quadratic equation in α having its solution of the form 

2

0

2   bb  

Thus the original differential equation is satisfied by following two values of x 

tbb
Aex

)( 2
0

2 
  

    and 
tbb

Aex
)( 2

0
2 

  

Since the equation being a linear one, the linear sum of two linearly independent solutions will 

also be a general solution. 

Therefore,  
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tbbtbb
eAeAx

)(

2

)(

1

2
0

22
0

2  
            - - - - - - - - - - - - - - - - - - - - - (8) 

Here A1 and A2 are arbitrary constants. 

Or  
t

t
t

t

eAeAx








 2
2

2
1            - - - - - - - - - - - - - - - - - - - - - - - - (9) 

where  b = 
2

1
 and 2

0

2   b  

The values of the constants A1 and A2 can be determined as given below: 

Differentiating Eq. (9) with respect to t, we get   

t
t

t
t

eAeA
dt

dx 



 








 2
2

2
1 )

2

1
()

2

1
(            - - - - - - - - - - - - - - - - (10) 

Now at t=0, displacement must be maximum, i. e. xmax=a0=A1+A2 and 0
dt

dx
 

 

Putting t=0 in Eq. (10) 

0)
2

1
()

2

1
( 21  AA 





 

0)()(
2

1
2121  AAAA 


 

 0)()(
2

1
210  AAa 


 

    



2

)( 0
21

a
AA   

Or 
2

)( 0
21

a
AA                            - - -  - - - - - - - - - - - - - - - (11) 

As we know 021 aAA   

Adding it with (11), we get  











2

1
1

2

0

1

a
A  
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And 1211 )( AAAA   











2

1
1

2

0
0

a
a  











2

1
1

2

0a
 

Putting these values in equation (9), we get- 


























 



tt

t

ee
ea

x 


 2

1
1

2

1
1

2

2
0        - - --  - - - - - - - - - - - (12) 

For analysis purpose, above equation may be written as 
































tbtb

t

ee
ea

x
)()(

2
0

2
0

22
0

2

2

1
1

2

1
1

2





        - - - - - - - - - (13) 

Now Eq. (13) can be discussed according to following three cases. 

    6.6.1 CASE I: WHEN b (OR 
2

1 )>ω0, CASE OF OVERDAMPING 

In such case √( b2 – ω0
2 ) is a real quantity, with a positive value. This means that each term in 

the R. H. S. of Eq. (13), has an exponential term with a negative power.Therefore, the 

displacement of the oscillator, after attaining a maximum, dies off exponentially with time. 

Thus, after some time, there will be no oscillations. Such kind of oscillatory motion is called 

overdamped or aperiodic motion. Such kind of motion we see in case of dead beat 

galvanometer. 

6.6.2 CASE II: WHEN b (OR 
2

1 )= ω0, CASE OF CRITICAL DAMPING 

In such case √( b2 – ω0
2 )= 0 .Therefore, each term on R. H. S. of Eq. (13) becomes infinite.  

Still we can assume that, √( b2 – ω0
2 ) = h ( where h is a very small quantity but not zero 

obviously). 

Therefore Equation (8) gives-  

x = A1 e
(-b+h)t + A2 e

(-b-h)t 

    = e-bt (A1 e
ht + A2 e

-ht) 
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       = e-bt [A1(1 + ht + 
!2

22th
+

!3

33th
+ . . . . . . . . . . . ) + A2(1 - ht + 

!2

22th
-

!3

33th
+ . . . . . . . . .)] 

Neglecting the terms containing higher powers of h, we obtain-  

   x =  e-bt [A1(1 + ht) + A2(1 - ht)] 

          =  e-bt [(A1 + A2 )+ (A1 - A2 )ht] 

               =  e-bt [M+ Nt]                          - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - 14) 

Here (A1 + A2 ) = M and (A1 -  A2 )h = N 

Further at t = 0, x = xmax = a0 

And 0
dt

dx
 

Therefore, the above equation becomes   

 a0 = M 

Differentiating Eq. (14), we get  

dt

dx
=

dt

d
( M e-bt) + 

dt

d
( Nte-bt) 

    0 = - b M e-kt +  Ne-bt  - Nte-bt 

    = -bM + N 

Or N = ba0   

Putting these values of M and N in equation (14) above 

 x  =  e-bt (a0+ ba0t) 

    = a0e
-bt (1+ bt) 

   = a0 2

t

e


(1+ 
2

t
) 

   = a0 2

t

e


 +  a0 2

t

e


(
2

t
) 

An important feature of the above expression is that its second term decays less rapidly as 

compared to its first term. In such cases, the displacement of the oscilator first increases, then 
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quickly return back to its equlibrium position. This kind of oscillatory motion is known as just 

aperiodic (it just ceases to oscillate), or non oscillatory. This case is known as the critical 

damping. 

Critical damping finds many applications in many pointer type instruments like, galvenometers, 

where the pointer moves to and stays at, the correct position, without any further oscillations. 

6.6.3 CASE III: WHEN b  (OR 
2

1 ) < ω0 ,CASE OF WEAK (UNDER) 

DAMPING 

In such cases, the quantity √( b2 – ω0
2 ) will be imaginary one. 

Let √(b2 – ω2 ) = iω, where i = √(-1) and ω= √( ω0
2– b2) is a real quantity 

Putting the values –  

x = A1e
(-b+iw)t + A2e

(-b-iw)t    

   =e-bt[A1(cos ωt + i sinωt) + A2(cos ωt - isinωt)]  

 =e-bt[cos ωt (A1+ A2)+ sin ωt{i (A1- A2)}] 

= e-bt[A cos ωt + B sin ωt] 

 where  (A1 +  A2) = A and  i(A1 -  A2) = B 

= e-kt[ a0 cos ωt . 
0a

A
 + a0 sin ω t . 

0a

B
] 

Considering a right angle triangle as below in Fig. 3.                              

 

Figure 3 
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Therefore, we can write 

  sin φ= 
0a

A
, cos φ=

0a

B
 

so the above expression can be rewritten as- 

 x = e-bt[ a0 {cos ωt . sin φ + sin ω t .cos φ}] 

    = a0e
-bt sin (ωt + φ) 

or  𝑥 = 𝑎0𝑒
−𝑏

𝑡

2𝑥 sin(𝜔𝑡 + 𝜑)  

This is the equation of a damped harmonic oscillator with amplitude a0e
-bt or 𝑥 = 𝑎0𝑒

−𝑏
𝑡

2𝑥 . 

The sine term in the equation suggests that the motion is oscillatory whereas, the exponential term 

implies that the amplitude is decreasing gradually.   

Therefore, we may conclude that the damping produces two effects: 

(i) The frequency of damped harmonic oscillator, 




2
 is smaller than its natural frequency





2

0 , or damping somewhat decreases the frequency or increases the time period of 

oscillator. 

(ii) The amplitude of the oscillator does not remain constant at a0, which represents 

amplitude in the absence of damping, but decays exponentially with time, according to 

the value of term e-bt. 
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Figure 4 Decay of amplitude of a damped oscillatory motion with time 

6.7 CHARACTERIZING WEAK DAMPING 

The following three parameters characterize the weak damping:  

1- Relaxation time, τ 

2- Logarithmic Decrement, λ 

3- Quality factor, Q 

Each of these parameter is defined in terms of ω0 and k. Depending upon the nature of the system 

under consideration, one or more of these parameters may suitably be used to quantify damping. 

6.7.1 RELAXATION TIME, τ  

It refers to the time in which the amplitude of a weakly damped system reduces to 1/e times of the 

original value. In other words, it is the time in which the mechanical energy of an oscillator decays 

to 1/e times its initial value. 

The energy of a damped harmonic oscillator is given by 



t

eEE


 0  

Here E0= the initial value of energy 

      E= Energy at time t 

At 
e

E
Et 0,    

6.7.2 LOGRATHMIC DECREMENT 

Due to damping, the amplitude of a damped harmonic oscillator decreases exponentially with time. 

Suppose that an and an+1 be the two successive amplitudes of the oscillations of the particles on 

two sides of the equilibrium position respectively. The time interval between these two successive 

amplitudes clearly would be T/2 - half the time period (T) of oscillations. We can further write-  

an = a0e-bkt 

and an+1=a0e
-b(t+

2

T
) 
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     Therefore,   
𝑎𝑛

𝑎𝑛+1
= 𝑒

𝑏𝑡

2 = 𝑑             (16) 

Here d is a constant, and it refers to decrease in successive amplitudes. It is known as the decrement 

for that motion. 

Further, on taking the natural log of Eq.(16), we obtain 

  ln d= 
2

kT
 

or, d=eλ 

The constant λ, which is the natural logarithm of decrement or the ratio between two successive 

amplitudes of the oscillations is referred to as logarithmic decrement for that oscillatory motion. 

6.7.3 QUALITY FACTOR  

As the name suggests, quality factor is a measures the quality of a harmonic oscillator, as far as 

damping is concerned.“Lesser the damping, better will be the quality of harmonic oscillator as an 

oscillator”. Therefore, an harmonic oscillator with low damping will have high value of its quality 

factor, Q. It is also referred to as the figure of merit of a harmonic oscillator and is defined as the 

2π times the ratio between the energy stored and the energy lost per period. Being a ratio, it is a 

dimensionless quantity.  

Thus Q = 2π
periodperlostEnergy

storedEnergy
 

       =
PT

E2
 (Here P= Average loss of energy per cycle= 



E
) 

And since, 



T

2
, we have  







/E

E

P

E
Q  

In case of low damping, ω=ω0 and we can rewrite the above equation as 

0Q  

But, as we know 

m

k
0  and 




m
 , so that, 



kmm

m

k
Q  .  
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Clearly, if γ is small (i.e. if the damping is low), the value of Q will be large. 

Further, the energy of a damped harmonic oscillator is  



t

eEE


 0  

Hence, at t , we have 

e

E
eEE 01

0      

6.8 EXAMPLE OF WEAKLY DAMPED SYSTEM: LCR CIRCUIT 

 A circuit consisting of an inductor (L), a capacitor (C) and a resistor (R) connected in series (Fig. 

1) is called an LCR circuit. The resistance of the resistor R represents all of the resistance in the 

circuit. With the resistance R present, the total electromagnetic energy U of the circuit (the sum of 

the electrical energy and magnetic energy) decreases with time because some portion of this energy 

is transformed in to thermal energy due to the resistor. Because of this loss of energy, the amplitude 

of oscillations of charge, current and potential difference continuously decreases, and the 

oscillations are said to be damped. 

 

Figure 5: A series LCR Circuit 

 

The capacitor C in circuit is charged using an external battery. Thereafter the battery connection 

is removed and the charged capacitor is connected in series with an inductor L and resistor R as 

shown in Fig 5. The capacitor begins to discharge through the inductor and resistor. Let us assume 

that, at any instant of time t, current flows in the circuit and charge q(t) resides on the capacitor. 

The induced EMF across the inductance would be 

2

2 )(

dt

tqd
L

dt

dI
L 
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And the potential difference across the resistance would be 

dt

tdq
RRI

)(


 

Therefore, using Kirchoff’s rule, the equation of motion of charge can be written as 

dt

tdq
R

dt

tqd
L

c

tq )()()(
2

2


 

or 

0
)()()(

2

2


C

tq

dt

tdq
R

dt

tqd
L

     - - - - - - - - - - - - - - - - - - - - - - - - - (17) 

On comparing Eq. (17) with the differential equation of damped harmonic oscillator, we discover 

that L, R and 1/C are respectively analogous to m, 𝛾 and k. This means that the effect of a resistor 

in an electric circuit is exactly analogous to that of the viscous force in a mechanical oscillatory 

system. 

0)(
1)()(

2

2

 tq
LCdt

tdq

L

R

dt

tqd

  - - - - - - - - - - - - - - - - - - - - - - - - (18) 

This equation is analogous to (17), if we identify- 

LC

12

0 
                           - - - - -  - - - - - - - - - - - -- - - - - - - - - - - - (19) 

And 
L

R
b

2
           - - - - - - - - - - -- - - - - - - - - - - - - - - - - -  (20) 

Equation (4) suggests that damping in a series LCR circuit is determined by the resistance and 

inductance. We know that the b has dimension of time inverse. It means that R/L also has the unit 

of s-1, which is same as that of ω0. It implies that ω0L will be measured in ohms. 

With these analogies, all the results of weak damping apply to equation (18). Therefore for a 

weakly damped LCR circuit, the instantaneous value of charge on the capacitor plates can be 

expressed as 

)(cos)
2

exp()( 0   tt
L

R
qtq d

            - - - - - - - - - - - - - - - - - - - (21) 

Where ωd of the damped circuit is given by 
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𝜔𝑑 = √𝜔0
2 − 𝑏2  

     
2

2

4

1

L

R

LC


                                                     - - -  - - - - - - - - - - - - - - - - - - - - - (22) 

Equation (21) shows that the rate of decay of charge amplitude 
)

2
(exp0 t

L

R
q 

depends on the 

resistance and inductance. However, only resistance acts as the dissipative element in a series LCR 

Circuit; an increase in R increases the rate of decay of charge and decreases the frequency of 

oscillation. 

When 
2

2

4

1

L

R

LC


, Eqn (22) gives 

LC
d

12

0

2  
 

 

Or 
C

L
0

0

1


 

 

Sinceω0L is measured in ohms, 1/ ω0C will also be measured in ohms. They are respectively known 

as inductive reactance and capacitive reactance       

           

Self Assessment Question (SAQ) 1: A Harmonic oscillator is represented by the equation  

Ckx
dt

dx

dt

xd
m  

2

2

 

With m = 0.25 kg,  =0.070 kg/s and k =85 N/m, calculate the period of oscillation. 

Self Assessment Question (SAQ) 2: For the harmonic oscillator given in problem 1, calculate 

(i) the number of oscillations in which its mechanical energy will drop to one-half of its 

initial value. Also calculate its quality factor. 

Self Assessment Question (SAQ) 3: The amplitude of a damped harmonic oscillator reduces 

from 25 cm to 2.5 after 100 complete oscillations, each of period 2.3 seconds. Calculate 

logarithmic decrement of the system.  
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6.9 SUMMARY 

This chapter presents the various effects of damping and gives, and presents a procedure to 

incorporate in the differential equation of a damped harmonic oscillator. This differential equation 

has been solved to get the cases of underdamped, critically damped and overdamped motion. The 

characterization process of weakly damped motion, in terms of relaxation time, logarithmic 

decrement and quality factor also have been discussed.  

 

6.10 GLOSSARY 

Damped – Slowed down, being stopped 

Dissipative- continuously loosing energy / amplitude 

Overdamped – Having high value of damping effects 

Underdamped- Having small value of damping 

Friction- resistance 

Conservation- protection, preservation or restoration  
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 6.13 TERMINAL QUESTIONS 

6.13.1 OBJECTIVE TYPE 
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Q1. Which one of the following statements is not true for a body executing simple harmonic 

motion when damping is present? 

 

A. The damping force is always in the opposite direction to the velocity. 

B. The damping force is always in the opposite direction to the acceleration. 

C. The presence of damping gradually reduces the maximum potential energy of the system. 

D. The presence of damping gradually reduces the maximum kinetic energy of the system. 

 Q2. Oscillations become damped due to 

A. normal force 

B. friction 

C. tangential force 

D. parallel force 

 Q3. The amplitude of damped oscillator becomes half in one minute. The amplitude after 3 

minutes will be 1/x times the original value, where x is  

A. 2 x 3 

B. 22 

C. 23 

D. 3 x22 

 Q4. In a damped harmonic oscillator, the damping force is proportional to 

A. displacement 

B. Acceleration 

C. velocity 

D. none of these 

 Q5. In cars springs are damped by 

A. shock absorbers 

B. engine 

C. tyres 

D. brake pedals 

 

Q6. In which of the following oscillations, the amplitude varies with time- 

A. Damped oscillator 
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B. Forced oscillator 

C. Undamped oscillators 

D. None of these 

Q.7 The periodic motion which is not oscillatory is 

A. Simple pendulum 

B. Compound pendulum 

C. Acoustic Harmonic Oscillator 

D. Motion of the earth around sun 

6.13.2 LONG ANSWER TYPE 

1.Why does the amplitude of oscillations go on decreasing in case of damped harmonic oscillator? 

Assuming damping to be proportional to the velocity, find an expression for the frequency of 

oscillations. 

2. A system executing damped harmonic motion is subjected to an external periodic force. 

Investigate the forced vibration and obtain the condition of resonance. 

  

3. Show that the ratio of two successive maxima in the displacement of a damped harmonic 

oscillator is constant. 

 

6.13.3 NUMERICAL QUESTIONS 

1. If the amplitude of a damped harmonic oscillator decreases to 1/e of its initial value after n( ≫ 

1) periods, show that the ratio of the period of oscillation to the period of the oscillation with no 

damping is 

22

2

1

22 8

1
1

4

1
1

nn 









  

2. A spring-mass system is subjected to restoring and frictional forces of magnitude kx and 
dt

dx
  

respectively. It oscillates with a frequency of 0.5 Hz. Its amplitude reduces to half in 2 seconds. 

Calculate the damping coefficient   and spring constant k, in terms of mass, m. Also write the 

differential equation of motion. 

 

3. The period of a simple pendulum is 2 seconds and its amplitude is 50. After 20 complete 

oscillations, its amplitude is reduced to 30. Calculate the damping constant and relaxation time. 

 

4. The quality factor of a tuning fork of frequency 512 Hz is 6 x 104. Calculate the time in which 

its energy drops to E0e
-1. How many oscillations will the tuning fork make in this time.  
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5. A vertically hanging spring is extended by 9.8 cm when an object is suspended from it. The 

object is then pulled down and released to make it oscillate. For what value of damping coefficient 

will (i) the amplitude of oscillation become 1% of its initial value in 10 seconds? (ii) the weight 

return to equilibrium aperiodically ? 

 

6. Express amplitude, energy, logarithmic decrement and relaxation time in terms of the quality 

factor, Q 

 

6.14 ANSWERS 

6.14.1 Self Assessment Question (SAQ)  

Solution (SAQ) 1: The period of oscillation of a damped oscillator is given as 
2

2

2













mm

k

T




 

2

25.02

07.0

25.0

85

2
















=0.34 seconds 

 

Solution (SAQ) 2- The average energy associated with a damped harmonic oscillator is given 

by 

m

t

m

t

bt

e
E

E

eEeEE















0

0

2

0

 

2

1

0




E

E
for havewe,  

2

1



m

t

e



 

Taking natural algorithm on both sides and rearranging the terms, we can rewrite it as 

s
m

t 48.2
070.0

693.025.02ln






 

No of oscillation in this time interval= nsoscillatio7
34.0

48.2
  
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(ii) The quality factor Q is given as 



 m
Q d 0

2
  

Since 



m

b
andd

21
0   

66
07.0

25.043.18



Q  

Solution (SAQ) 3:  Here, the amplitude ration of oscillation separated by 100 oscillations is 

  10
5.2

25


cm

cm
 

Therefore, logarithmic decrement =
1

100
ln 10 =

2.3

100
= 0.023 

 

6.14.2 OBJECTIVE TYPE 

1 (B), 2 (B), 3 (C), 4 (C), 5 (A), 6 (A), 7 (D) 

6.14.3 NUMERICAL QUESTIONS 

2.  = 0.693, k= 9.98, 098.9693.0
2

2

 x
dt

dx

dt

xd
,  

3. b = 5.57 x 10-3 s-1,τ = 179.5 seconds,  

4. t= 18.7 s, n = 9570,  

5.  (i) 0.46 s-1 (ii) 10 s-1, 6. 






Q

t
Q

eEEeAA r

Q

t
t

Q 2
,,, 0

2

0 


] 
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UNIT 7   FORCED HARMONIC OSCILLATIONS AND  

                RESONANCE                 

Structure 

  
7.1 Introduction 

7.2 Objectives 

7.3 Forced Damped Harmonic Oscillator 

7.3.1 Differential Equation for Forced Damped Harmonic Oscillator  

7.3.2 Solution of the Differential Equation 

      7.3.3 General Solution 

      7.3.4 Steady State Solution 

7.4 Example of Forced Oscillations – LCR Circuit  

7.5 Resonance 

7.5.1 Examples of Resonance 

7.6 Power Absorbed by a Forced Oscillator 

8.7 Quality Factor  

      7.7.1 Expression for Quality Factor 

       7.7.2 Some Applications of Quality Factor 

7.8 Summary 

7.9 Glossary  

7.10 Suggested Readings 

7.11 Terminal Questions 

8.12 Answers 
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7.1 INTRODUCTION 

As you have studied earlier in this course, a harmonic oscillator is a system which keeps oscillating 

about its mean or equilibrium position. It is an ideal system for studying periodic motions. But, in 

real oscillating systems, other factors such as damping forces need to be considered which results 

in what is called a damped harmonic oscillator. You have also studied the differential equation for 

weakly damped harmonic oscillator and its solution. In addition, in real system there are other 

factors also which add up to modify the differential equation of the oscillator and hence its solution. 

These may be the systems in which, beside the dissipating force, there an externally applied 

periodic force acts on the oscillator. Such an oscillator is called damped forced harmonic oscillator 

ad you will study about such oscillators in this unit.  

7.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Define forced harmonic oscillations; 

 Write the differential equation for weakly damped forced harmonic oscillator;  

 solve the differential equation for weakly damped forced harmonic oscillator; 

 describe the phenomenon of resonance; 

 apply the solution of weakly damped forced harmonic oscillator to explain resonance; 

 obtain an expression for the power absorbed by a forced oscillator; 

 define the quality factor of a forced oscillator; and 

 apply the concept of quality factor in real applications. 

 

7.3 FORCED DAMPED HARMONIC OSCILLATOR 

A damped harmonic oscillator on which an external periodic force is applied is called a forced 

damped harmonic oscillator. Such an oscillator is also called  a driven harmonic oscillator. In such 

an oscillator, the frequency of the  externally applied periodic force is  not necessarily the same as 

the natural frequency of the oscillator. In such a case, there is a sort of tussle between the damping 

forces tending to retard the motion of the oscillator and the externally applied periodic force which 

tend to continue the oscillatory motion. As a result,  after some initial erratic movements, the 

oscillator  ultimately succumbs to the applied or the driving force and settles down to oscillating 

with the driving frequency and a constant amplitude and phase so long as the applied force remains 

operative. 
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7.3.1 DIFFERENTIAL EQUATION FOR FORCED DAMPED HARMONIC 

OSCILLATOR 

When an external periodic force F(t) is applied to a damped harmonic oscillator,  the differential 

equation for the oscillator will have one additional term for the applied time dependent periodic 

force and we can write  

𝑚
𝑑2𝑥

𝑑𝑡2 
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 + 𝐹(𝑡) = 0                          (1) 

If the applied external force is represented as 𝐹(𝑡) = 𝑓𝑐𝑜𝑠(𝑛𝑡), where f and n are constants, then 

Eq. (1)  becomes 

𝑚
𝑑2𝑥

𝑑𝑡2 
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 𝑓 cos(𝑛𝑡)                     (2) 

We can further simplify the equation as  

𝑑2𝑥

𝑑𝑡2 
+ 2𝑏

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = acos(𝑛𝑡)                        (3) 

where a = f/m, 2b = γ and ω0
2 = k/m is the natural frequency of the oscillator 

Eq. (3) represents the differential equation for damped forced harmonic oscillator. 

7.3.2 SOLUTION OF DIFFERENTIAL EQUATION  

You may note that the differential equation (Eq. (3)) for the damped forced harmonic oscillator is 

a linear inhomogeneous second order ordinary differential equation; the inhomogeneous term is 

represented by the externally applied time dependent periodic force. 

The solution to this equation comprises two parts: the general solution and the particular solution. 

Let us learn about them now.  

7.3.3 GENERAL SOLUTION 

The general solution of the differential equation for damped forced harmonic oscillator comprises 

of two terms - one representing the homogeneous ordinary differential equation part and the other 

representing the particular integral part.  

If Xi is a particular solution of an inhomogeneous differential equation, and Xn is a solution of a 

complementary homogeneous equation then X(t) = Xi(t) + Xn(t) is a general solution. 
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Thus, the general solution of this linear inhomogeneous ODE can be expressed as 

𝑥(𝑡) =  𝑥𝐻(𝑡) + 𝑥𝑝(𝑡)                                (4) 

𝑥𝐻(𝑡) is the solution of the corresponding homogeneous part of the equation. The homogeneous 

part is same as the differential equation for the solution of damped harmonic oscillator and its 

solution is given as  

𝑥𝐻(𝑡) =  
1

2
𝑎0𝑒

−𝜆𝑡 ⌈(1 +
𝜆

√𝜆2 − 𝜔0
2  

) 𝑒
√(𝜆2− 𝜔0

2  )𝑡
+ (1 − 

𝜆

√𝜆2 − 𝜔0
2   

) 𝑒
−√(𝜆2− 𝜔0

2  )𝑡
⌉ (5) 

 

To obtain the particular solution, 𝑥𝑝(𝑡), let us assume the solution of the form 

𝑥𝑝(𝑡) = 𝐴𝑐𝑜𝑠(𝑛𝑡 −  ∅)                              (6) 

Ø is the possible phase difference between the applied force and the displacement of the oscillator 

and n is the frequency of the applied force. 

Now we have to obtain dx/dt and d2x/dt2 and substitute in Eq. (3). We have 

𝑑𝑥

𝑑𝑡
=  −𝐴𝑛𝑠𝑖𝑛(𝑛𝑡 −  ∅) 

𝑑2𝑥

𝑑𝑡2
= −𝐴𝑛2𝑐𝑜𝑠(𝑛𝑡 −  ∅) 

Substitution in Eq. (3) gives 

−𝐴𝑛2cos(𝑛𝑡 −  ∅) − 2𝜆𝐴𝑛sin(𝑛𝑡 −  ∅) + 𝐴𝜔0
2cos(𝑛𝑡 − ∅)

= acos[(𝑛𝑡 −  ∅) +  ∅]                (7) 

Expanding the R.H.S gives 

−𝐴𝑛2cos(𝑛𝑡 −  ∅) − 2𝑏𝐴𝑛sin(𝑛𝑡 −  ∅) + 𝐴𝜔0
2cos(𝑛𝑡 − ∅)

= 𝑎[cos(𝑛𝑡 −  ∅)cos∅ − sin(𝑛𝑡 −  ∅)sin∅                    (8) 

Rearranging we get 

𝐴(𝜔0
2 −  𝑛2)cos(𝑛𝑡 −  ∅) − 2𝑏𝐴𝑛sin(𝑛𝑡 −  ∅) = 𝑎[cos(𝑛𝑡 −  ∅)cos∅ − sin(𝑛𝑡 −  ∅)sin∅ 

If this equation is to hold true, then the coefficient of cos(nt – Ø) and sin(nt – Ø) on either sides 

must be equal 

i.e.  𝐴(𝜔0
2 −  𝑛2) = 𝑎cos∅  𝑎𝑛𝑑  2𝑏𝑛 = 𝑎sin∅ 
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Squaring and adding these two we get 

𝐴2(𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2 = 𝑎2                      (9) 

Hence   

𝐴2 =
𝑎2

(𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2

                      (10) 

The amplitude of driven or forced oscillator is given as  

𝐴 = 
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

            (11) 

We have taken only the positive value of the square root. The negative value will mean opposite 

phase but then Ø will also change by π and there would, therefore be no effect on the value of A. 

Further, the phase is given by 

 tan∅ =
2𝑏𝑛

(𝜔0
2−  𝑛2)

                                                                    (12) 

 

The particular solution of Eq. (3) is thus given by 

𝑥𝑝(𝑡) =
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

cos(𝑛𝑡 −  ∅)                 (14)      

Thus, we can write the general solution as  

𝑥(𝑡) =  
1

2
𝑎0𝑒

−𝑏𝑡 ⌈(1 +
𝑏

√𝑏2 − 𝜔0
2  

) 𝑒
√(𝑏2− 𝜔0

2  )𝑡
+ (1 − 

𝑏

√𝑏2 − 𝜔0
2   

) 𝑒
−√(𝑏2− 𝜔0

2  )𝑡
⌉

+
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

cos(𝑛𝑡 −  ∅)                      (15) 

Where  
𝑎0

2
  and Ø need to be determined by initial conditions. 

7.3.4 STEADY STATE SOLUTION 

When the tussle between the damping and the externally applied forces ends and  the oscillator has 

settled down to oscillate with the frequency of the applied periodic force, it is said to be in the 

steady state. In the steady state, the homogeneous term vanishes as t → ∞ whereas the particular 

solution does not. Thus we have a distinction between the transient state , which is a function of 

the initial conditions, and a steady state , which depends on the external force. Thus, we can write 

the steady state solution as  
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𝑥(𝑡) =  
𝑎

√  (𝜔0
2 −  𝑛2)2 + 4𝑏2𝑛2     

cos(𝑛𝑡 −  ∅)                    (16)  

𝑥(𝑡) =  𝐴cos(𝑛𝑡 −  ∅)                                                                 (17) 

where 𝐴 = 
𝑎

√  (𝜔0
2− 𝑛2)2+4𝑏2𝑛2     

           =  
𝑓

𝑚√  (𝜔0
2− 𝑛2)2+4𝑏2𝑛2     

                      (18) 

 

 

 

Fig.1: The variation of amplitude of oscillation of a forced oscillator with the frequency of the externally applied 

periodic force 

7.4. EXAMPLE OF FORCED OSCILLATIONS - A DRIVEN LCR 

CIRCUIT 

Consider an LCR circuit consisting of an inductor, L, a capacitor, C, and a resistor R, connected in 

series with a sinusoidal voltage source, V(t), as shown in Fig 2 below. 
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Fig. 2: A driven LCR circuit 

Let I(t) be the instantaneous current flowing through this circuit, Now, as per  Kirchoff’s second 

circuital law, the sum of the potential drops across the various components of a closed circuit 

loop is equal to zero. Thus, since the potential drop across an emf is minus the associated 

voltage, we obtain 

𝐿
𝑑2𝑄

𝑑𝑡2
+ 𝑅

𝑑𝑄

𝑑𝑡
+ 

𝑄

𝐶
= 𝑉                                             (19) 

Where 
𝑑𝑄

𝑑𝑡
= 𝐼 and 

𝑑2𝑄

𝑑𝑡2 = 𝐼̇. Suppose that the emf is such that its voltage oscillates sinusoidally at 

the angular frequency ω ( > 0) with a peak value V0 (> 0) so that 

V(t) = V0 sin (ωt)                                        (20) 

Substituting (20) in (19), we get  

𝐿𝐼̇ + 𝑅𝐼 + 
𝑄

𝐶
= 𝑉0sin (𝜔𝑡)                                                (21) 

Dividing equation (21) by L and differentiating with respect to time, we get 

𝐼̈ + 𝛾𝐼̇ + 𝜔0
2𝐼 =

𝜔𝑉0

𝐿
cos (𝜔𝑡)                                   (22) 

Where 𝜔0 =  
1

√𝐿𝐶
 and  𝛾 =  

𝑅

𝐿
 

Equation (22) is similar to the differential equation representing a driven damped harmonic 

oscillator. The current driven in the circuit by the oscillating emf is given as  

I(t) = I0 cos (ωt - Ø) (23) 
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where      𝐼0 =  
𝜔𝑉0

𝐿√  (𝜔0
2− 𝜔2)

2
   + 𝛾2𝜔2    

     (24)  

                                                   ∅ = 𝑡𝑎𝑛−1 (
𝛾𝜔

𝜔0
2− 𝜔2)           (25) 

In the expression for I0,  the denominator √  (𝜔0
2 − 𝜔2)2    +  𝛾2𝜔2      functions as the effective 

resistance in the circuit. It is called the impedance of the circuit. 

7.5 RESONANCE 

In general, resonance may be defined as a tendency of a vibrating / oscillating system to respond 

most strongly to a driving force whose frequency is close to its own natural frequency of vibration 

/ oscillation. 

For a weakly damped forced (driven) oscillator, after a transitory period, the object will oscillate 

with the same frequency as that of the driving force. The plot of amplitude x(ω) versus angular 

frequency is shown in Fig. 3 below. If the angular frequency is increased from zero, the amplitude, 

x(ω) will increase until it reaches a maximum when the angular frequency of the driving force is 

the same as the natural frequency of the undamped oscillator. This phenomenon is called 

resonance. 

 

Fig. 3: Plot of amplitude x(ω) with driving angular frequency ω of a weekly damped 

harmonic oscillator 

From Eq.(18), it is clear that, for a damped forced harmonic oscillator, the amplitude of the 

oscillator in the steady state depends not only on the amplitude of the driving force, but also on 

the  relation between the frequency, n of the driving force and the natural frequency, ω of the 

oscillator, as well as on the damping parameter  b. 

For n → 0 we have A → a/ω. For n → ∞ we obtain A → 0. In between these two extremes, the 

amplitude may reach a maximum which we refer to as the resonance frequency. 
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To obtain an expression for resonance frequency, we differentiate the denominator of Eq. (18) with 

respect to n and then equate it to zero. 

𝑑

𝑑𝑛
[𝜔0

2 −  𝑛2)2 + 4𝑏2𝑛2] =  −4𝑛[𝜔2 − 𝑛2] + 8𝑏2𝑛 = 0 

The non - trivial solution is: 

 n = nr =  √𝜔0
2 − 2𝑏2                    (26)  

This is the resonance frequency. 

As we have already studied that resonance is defined mathematically using the differential    Eq.(2 

6) for a forced driven harmonic oscillator where the resonance is defined as the existence of a 

solution that is unbounded as t → ∞. This corresponds to what we call as pure resonance. It occurs 

exactly when the natural internal frequency matches the natural external frequency, in which case 

all solutions of the differential equation are unbounded. 

The notion of pure resonance is easy to understand both mathematically and physically, because 

frequency matching characterizes the event. This ideal situation never happens in the physical 

world, because damping is always present. In the presence of damping only bounded solutions 

exist for Eq. (26). 

7.5.1 EXAMPLES OF RESONANCE 

The Helmholtz Resonator  

Helmholtz resonator is an instrument which works on the principle of resonance and it is used to 

determine the frequency of a vibrating bodye. The resonator consists of either a spherical or a 

cylindrical air cavity with a small neck as shown in Fig. 4 below. The dimension of the cavity is 

small in comparison with the wavelength of sound to be detected. In case of spherical cavity, the 

volume of the cavity is fixed whereas the volume is variable in case of cylindrical cavity. 

 

Fig. 4: Helmholtz resonator 

The air contained at the neck of the resonator acts like a piston alternately compressing and 

rarefying the air within the cavity of the resonator. The natural frequency of vibration of 

Helmholtz resonator is given as: 
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𝜗 =  
𝑣

2𝜋
 √

𝑆

𝑙𝑉
 

v is the velocity of propagation of sound in air, ‘l’ is the length of the neck of the resonator S is 

the area of cross-section of the neck and V is the volume of the resonator. The natural frequency 

of the resonator can be changed by changing the volume V of the resonator. 

When the sound wave of frequency resonant with the natural frequency of the resonator is 

incident on it, the resonator will produce sharp response. The frequency of the vibrating body is 

then equal to the natural frequency of the resonator. 

Desirable Resonance 

 LCR circuits:  The differential equation describing a driven LCR circuit, as discussed earlier in 

the unit, is exactly analogous to the damped driven oscillator. It is due to resonance in this circuit 

which allows us to pick out a certain frequency and ignore all the others. This is how radios, cell 

phones, etc. work. 

If you have a radio on your desk, it is being bombarded by radio waves with all sorts of frequencies. 

If you want to pick out a certain frequency, then you can tune your radio to that frequency by 

changing the radio's natural frequency (normally done by changing the capacitance C in the 

internal circuit). Assuming that the damping in the circuit is small (this is determined by R), then 

there will be a large oscillation in the circuit at the radio station's frequency, but a negligible 

oscillation at all the other frequencies that are bombarding the radio. 

 Musical instruments: The pipe of a flute has various natural frequencies (depending on which 

keys are pressed), and these are the ones that survive when you blow air across the opening.  

The ear: The hair-like nerves in the cochlea have a range of resonant frequencies which depend 

on the position in the cochlea. Depending on which ones vibrate, a signal is (somehow) sent to the 

brain telling it what the pitch is. It is quite remarkable how this works. 

Undesirable Resonance 

Vehicle vibrations: This is particularly relevant in aircraft. Even the slightest driving force (in 

particular from the engine) can create havoc if its frequency matches up with any of the resonant 

frequencies of the plane. There is no way to theoretically predict every single one of the resonant 

frequencies, so the car/plane/whatever has to be tested at all frequencies by sweeping through them 

and looking for large amplitudes. 

Millennium Bridge in London: This pedestrian bridge happened to have a lateral resonant 

frequency on the order of 1 Hz. So when it started to sway (for whatever reason), people began to 
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walk in phase with it (which is the natural thing to do). This had the effect of driving it more and 

further increasing the amplitude. Dampers where added to protect the bridge from damage. 

Tall buildings: A tall building has a resonant frequency of swaying (or actually a couple, 

depending on the direction; and there can be twisting, too). If the effects from the wind or 

earthquakes happen to drive the building at this frequency, then the sway can become noticeable. 

 Space station: In early 2009, a booster engine on the space station changed its direction at a 

frequency that happened to match one of the station's resonant frequencies (about 0.5 Hz). The 

station began to sway back and forth, made noticeable by the fact that free objects in the air were 

moving back and forth. Left unchecked, larger and larger amplitude would of course be very bad 

for the structure. It was fortunately stopped in time. 

7.6 POWER ABSORBED BY A FORCED OSCILLATOR 

Whenever an oscillator is driven by an external force, energy is absorbed by the oscillator. The 

energy absorbed by the oscillator is equal to the energy dissipated due to damping. The rate of 

energy absorption or power absorbed is a function of driving frequency. It is maximum at 

resonance i.e., when the frequency of the periodic force is equal to that of the natural frequency of 

the oscillator. The power absorbed by the oscillator is given by: 

Power absorbed = (Damping Force) × (Velocity) 

Since the damping force is proportional to the velocity, we can write 

Power absorbed =  𝛾 (
𝑑𝑥

𝑑𝑡
)
2

 

We have   

    x = (f0/m) cos (nt)  

Let f0/m = A,  then 

dx/dt = - An sin (nt)  

Substituting this in above equation, we get 

Power absorbed = γ A2n2 sin2nt 

Average Power absorbed by oscillator in one complete cycle is given by 

𝑃𝑎𝑣 = ∫ γ (𝐴 𝑛 sin 𝑛𝑡)2

2𝜋
𝑛

0

𝑑𝑡 
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𝑃𝑎𝑣 = 𝑛2𝛾𝐴2 ∫ sin2𝑛𝑡 

2𝜋
𝑛

0

𝑑𝑡 

𝑃𝑎𝑣 =  𝑛2𝛾𝐴2 ∫ (
1 − cos2𝑛𝑡

2
)

2𝜋
𝑛

0

𝑑𝑡 

𝑃𝑎𝑣 =  𝑛2𝛾𝐴2 [∫
1

2

2𝜋
𝑛

0

𝑑𝑡 − ∫
cos2𝑛𝑡

2

2𝜋
𝑛

0

𝑑𝑡] 

𝑃𝑎𝑣 =   𝑛2𝛾𝐴2 [
𝜋

𝑛
+ 0] 

𝑃𝑎𝑣 =  𝑛𝜋𝛾𝐴2  

Total power absorbed by the oscillator = (No. of cycles per second) × (Average power per cycle) 

𝑃𝑡 =  
𝑛

2𝜋
×  𝑛𝜋𝛾𝐴2 

 

𝑃𝑡 = 
𝑛2𝛾𝐴2

2
  

The energy absorbed by the oscillator is equal to the energy dissipated due to damping. 

7.7 QUALITY FACTOR 

The energy loss rate of a weakly damped harmonic oscillator is characterized in terms of a 

parameter which is known as quality factor. This quantity is defined as 2π times the energy stored 

in the oscillator, divided by the energy lost in a single oscillation period. If the oscillator is weakly 

damped, then the energy lost per period is relatively small, and quality factor is therefore much 

larger than unity. Roughly speaking, it is the number of oscillations that the oscillator typically 

completes, after being set in motion, before its amplitude decays to a negligible value. 

7.7.1 EXPRESSION FOR QUALITY FACTOR  

For a weakly damped oscillator, the quality factor, Q is defined as  

𝑄 =  2𝜋
Energy stored

Energy lost per radian of oscillation
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While the Q of an oscillator relates to the energy loss due to damping, this links directly to the 

bandwidth of the resonator with respect to its central frequency. The lesser the damping, the better 

is the quality of the harmonic oscillator as an oscillator.  

For a driven harmonic oscillator, the energy, E(t) of the oscillator is time dependent (oscillating 

with decaying amplitude ~ e-T/τ ), So, its quality factor, Q  would be  

 

𝑄 = 2𝜋 
𝐸(𝑡)

𝐸(𝑡) − 𝐸(𝑡 + 𝑇)
 =  𝜔𝑑

𝐸(𝑡)

〈𝑃〉 (𝑡)
 

Here, T = 2π/ωd  is the period, 𝜔𝑑 =  √𝜔0
2  −  (

1

2𝜏
)
2

     is the frequency of damped oscillations and 

〈𝑃〉 (𝑡)is the average power loss due to damping, 

 Now since E(t + T) = E(t)e-2π/ω
d τ, we have  

𝑄 =  
2𝜋

1 − 𝑒
−

2𝜋
𝜔𝑑𝜏

     ≈  𝜔𝑑𝜏 

This expression for Q is under the assumption of weak damping. The quality factor, Q is a 

measure of sharpness of resonance in the case of a driven harmonic oscillator as shown in Fig. 5 

below. 

 

Fig. 5: Variation of Q with frequency 
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7.7.2 SOME APPLICATIONS OF QUALITY FACTOR 

As already mentioned, the quality factor of an oscillator indicates how damped a resonator or an 

oscillator is, and characterizes a a resonator’s bandwidth relative to its center frequency. 

Higher Q value indicates a lower rate of energy loss relative to the stored energy of the 

resonator; the oscillations die out more slowly. 

For an electrically resonant system, the Q factor represents the effect of electrical resistance and, 

for electromechanical resonators such as quartz crystals it represents the mechanical friction. 

7.8. SUMMARY  

The unit describes damped forced harmonic oscillator. We studied that the  differential equation 

for damped forced harmonic oscillator is a second order non homogeneous linear ordinary 

differential equation. We obtained the differential equation and discussed the solution which has 

two components: one is the general solution and the other being the steady state solution. The 

general solution has two parts. Further, the steady state solution is obtained in the time domain t 

→ ∞. For the forced oscillator in steady state, we studied the concept of resonance. Further, in this 

unit, we studied the examples of forced vibrations and resonance in our day to day life. Aspects of 

forced damping related to electrical circuits were also discussed in detail. We also studies examples 

of resonance which are advantageous as well as which are undesirable. We further studied the 

power absorbed by a forced oscillator and obtained the expression for it. The quality factor of 

forced damped harmonic oscillator was also discussed and the expression for it was obtained. We 

concluded the unit with some real life applications of the quality factor. 

7.9 GLOSSARY 

Damping: reduction in the amplitude of oscillation as a result of energy being drained from the 

system to overcome frictional or other resistive foeces 

Driven Oscillator: An oscillator to which an external periodic force is applied  

Transient state: The state of the driven harmonic oscillator prior to achieving the steady state.  

Steady state: The state of the harmonic oscillator which is independent of the initial state and 

depends only upon the driving frequency and the damping ratio. 

Resonance: The condition when the oscillator under the influence of external driving force 

oscillates with greater amplitude at a specific preferential frequency.  
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7.10 SUGGESTED READINGS 

1. SCHAUM’S OUTLINE SERIES “THEORY AND PROBLEMS OF THEORETICAL 

MECHNICS”  Murray R Spiegel Mc Graw Hill Education Publications. 

2. MECHANICS by D  S Mathur S Chand and Company Ltd. 

3. “WAVES AND OSCILLATIONS” R N Chaudhuri, New Age International Limited 

Publishers.  

 7.11 TERMINAL QUESTIONS 

Q.1. A particle of mass m moves under the influence of external periodic force F sin pt along x 

axis in addition to the restoring force –kx (also along x - axis)  and damping force – βxi along 

x axis . Set up the differential equation of motion and find the steady-state solution. 

Q.2. Show that in case of a system undergoing a forced oscillation, the response is independent of 

its mass if n << ω0 and is independent of spring constant if n >> ω0 

Q.3. A damped harmonic oscillator consists of a block (m = 2 kg), a spring (k = 30 N/m), and a 

damping force (F = -bv). Initially, it oscillates with amplitude of 25 cm; because of the 

damping, the amplitude falls to three-fourths of this initial value at the completion of four 

oscillations.  

         (a) What is the value of b?  

         (b) How much energy has been “lost” during these four oscillations?  

 

MCQ 

1. Which among the following is an example of forced harmonic oscillator: 

     a) sound produced by a flute. 

b) sound produced by an organ pipe. 

c) vibrations produced in violin string. 

d) vibrations produced in telephone transmitter during conversation.  

2. As the amplitude of resonant vibrations decreases, degree of damping 

a) increases      b) decreases       c) remains same       d) varies 

3. In the case of forced simple harmonic vibrations, the body generally vibrates with 

a) its natural frequency of vibration and its amplitude is small 
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b) its natural frequency of vibration but its amplitude is large 

c) the frequency of external force with a small amplitude 

d) the frequency of external force with a large amplitude 

4. Consider the following statement: 

A body vibrating due to forced oscillations is acted upon by 

1) A restoring force which is directly proportional to its displacement 

2) A retarding force which is directly proportional to its velocity 

3) An external periodic force of constant amplitude and frequency 

Choose correct statement 

a) 1 and 2 are correct 

b) 2 and 3 are correct 

c) 1 and 3 are correct 

d) 1,2 and 3 are correct 

5. The quality factor for an LCR circuit is  

a) ωR/L        b) ωL/R       c)  ω/LR      d) R/ωL 

6. For a resonating system, it should oscillate 

     a) bound     b) only for some time        c) freely       d) for infinite time 

7. For a weekly damped harmonic oscillator with damping frequency ω and time period τ, the 

quality factor equals  

     a) ω/τ       b) ωτ       c) 1/ωτ         d) τ/ω 

8. The power absorbed by a forced oscillator is proportional to 

     a) square of the amplitude      b) cube of amplitude  c) amplitude   d) inverse of amplitude  

9. For a series LCR circuit driven by a sinusoidal voltage, the damping constant is 

     a) R/L     b) RL       c) 1/RL     d) L/R 

10.  The amount of power supplied to a system is equal to the rate of dissipation of energy in 
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a) forced vibration          

b)  damped vibration     

c)  simple harmonic motion    

d) oscillatory motion        

7.12 ANSWERS 

Solution 3: (a) We assume that b is small compared to √km and we take T = 2п/√(m/k) ≈ 1.62 s. 

It is given that at t = 4T, the amplitude falls to 3A/4, i.e. 

e-bt/2m = 3/4 
-2bT/m = ln(3/4) 

or b = 0.18 kg/s. 

(b) Energy lost during these four oscillations = ½ k(A2 – (3A/4)2) = 7kA2/32 = 0.410 J 

 

MCQ Answers 

1. d 2. a     3.  d       4. d      5. b  6. c        7. b   8. a     9. a          10. A 
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UNIT 8  WAVE MOTION                                                                 

Structure  

8.1 Introduction 

8.2 Objectives 

8.3 Wave Formation and Propagation 

      8.3.1 Transverse Waves 

      8.3.2 Longitudinal Waves 

8.4 Wave Properties 

      8.4.1 Wave Speed 

      8.4.2 Wave Frequency 

      8.4.3 Time Period 

      8.4.4 Amplitude 

      8.4.5 Wavelength 

8.5 Mathematical Description of Wave Motion 

8.6 Summary 

8.7 Glossary  

8.8 Terminal Questions 

8.9 Answers 

8.10 References 

8.11 Suggested Readings 
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8.1 INTRODUCTION 

Generally speaking, there are two ways in which the energy can be transported from one place to 

other. The first of these methods involves the actual transportation of matter. For example, a bullet 

fired from a firearm carries its kinetic energy as it travels to the other location. The second method 

by which one can transport energy is much more important and useful. It involves what are known 

as waves. The waves transfer energy but there may not be any transportation of matter in the 

process. For example, when a violinist plays violin, its sound is heard at distant locations. The 

sound waves carry with them energy, with which they are able to move the diaphragm of the ear. 

When a stone is dropped in the still water in a lake, ripples are formed on the surface of the water 

body and the water waves move steadily in the outward direction. Electromagnetic waves are 

vibrating electric and magnetic fields that travel through space without the need for a medium. The 

electromagnetic waves include the visible light that, for example, comes from a bulb in our houses 

and the radio waves that come from a radio station. The other types of electromagnetic waves are 

microwaves, infrared light, ultraviolet light, X-rays and gamma rays. Seismic waves are vibrations 

of the earth, which become quite significant in the events such as earthquakes.  

Although, these various processes of transport of energy are different yet they have a common 

feature, which we shall from now on refer to as the wave motion. In simple terms, we can say that 

the wave motion involves the transfer of disturbance (energy) from one point to the other with 

particles of the medium oscillating about their mean positions. The particles themselves oscillate 

only over a short distance about their initial positions, and as a result a wave moves through the 

medium. The medium as a whole does not go in the direction of the motion of the wave.   

In the present unit, you will learn about wave motion including the formation and propagation of 

waves, characteristic features of a wave and the distinction between longitudinal and transverse 

waves. 

8.2 OBJECTIVES 

After studying this unit, you should be able to 

 explain the formation and propagation of waves, 

 describe different types of waves and their uses, 

 represent a wave graphically at a fixed position and at a fixed time, 

 explain what is meant by the amplitude, wavelength, frequency and speed of a wave, 

 relate the speed to the frequency and the wavelength of a wave, 

 describe what is meant by a transverse wave and give examples, 

 describe what is meant by a longitudinal wave and give examples, and  

 mathematically describe the wave motion. 
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8.3 WAVE FORMATION AND PROPAGATION 

Let us first consider the example of water wave, which is the most familiar kind of wave that we 

can generate and observe easily. When we drop a stone in a lake or a water tub, we observe circular 

ripples that spread out from the point where the stone strikes the water surface, as shown in Fig. 

1. 

 

Figure 1: Waves generated on the water surface. 

Looking at these ripples, you may wrongly get an impression that water moves with them. But, if 

you  observe carefully, you will notice that water actually does not move along with the ripples 

that are generated. You can easily verify this fact by placing a paper boat or a dry leaf on the water 

surface and observing how it moves. You will notice that the paper boat or the dry leaf just bounces 

up and down at the same place on the surface of water and does not move with the ripples. This 

means that  water particles do not have  any translational motion. However, water particles do 

undergo oscillatory motion caused due to dropping of the stone in the still water. The  disturbance 

caused at the point of contact of the stone with water surface is progressively  transferred to 

adjacent water particles due to the oscillatory motion. The term “disturbance” refers to the 

deformation in the shape of the water surface (or any other medium such as air, string etc.) with 

respect to its undisturbed surface. 

You can produce a mechanical wave using a thin and long elastic string with its one end fixed to 

a wall. By holding the other end of the string with your hand so that the string is stretched and taut 

and quickly moving your hand up and down once, you may observe  a disturbance travelling along 

the length of the string (Figure 2). If you keep your hand moving up and down, you  will observe 

a series of disturbances moving along the string giving rise to a wave.    



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

169 
 

 

Figure 2: A mechanical wave. 

 

From the above descriptions of waves, one may conclude that: 

1- A wave is generated due to two simultaneous, at the same time, distinct motions. The first 

one is the oscillatory motion of the particles of the medium and the second is the linear 

motion of the disturbance. 

2- In wave motion, the propagation of a disturbance does not take place due to the physical 

movement of the particles in the medium. The disturbance actually propagates because of 

the transfer of energy from one particle to the other progressively. Thus, we may conclude 

that the waves transport energy and not the matter.    

 

The oscillations of the particle of a medium and the propagation of wave in the medium are 

intimately connected. To appreciate the nature of this relationship, refer to Figure 3, which shows 

a thin elastic string tied to a spring-mass system executing vertical oscillations. The other end of 

the string is tied to a rigid support. We assume that the motion of the spring-mass system is without 

any friction and that the vertical oscillations by the mass are without any lateral movement. Figure 

4, further breaks down the waveform shown in Figure 3b and shows the snapshots of the waveform 

on the string taken at intervals of T/8, i.e. at time t = 0, T/8, T/4, 3T/8, T/2, 5T/8, 3T/4, 7T/8 and 

T. The arrows attached to each of the nine particles indicate the directions along which these 

particles are about to move at a given instant. At t = 0, all the particles are at their mean position 

as shown in Figure 4a.  
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Figure 3: (a) A vertically oscillating spring-mass system fastened to a string, and (b) waveform of the 

motion of the string. 
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Figure 4: Snapshots of the motion of the particles 1 to 9 in the string beginning at the instant t = 0 

and up to the instant t = T at intervals of T/8. 

The particles in the string begins to oscillate due to the transfer of mechanical energy and 

momentum from the spring-mass system and their motion is sustained due to the elasticity of the 

medium, in this case string. One particle transfers its energy and momentum to another particle 

and then it transfers its energy and momentum to the third particle and so on. This process 

continues as long as the spring-mass system keeps oscillating. When the energy that initially 

activated particle 1 reaches particle 9 at time T, we say that a wave has been generated in the string. 

We notice that all the particles in the string oscillate up and down about their respective mean 

positions with time period T and the wave moves along the string with the same time period. 

In our discussion until now, we have considered the propagation of mechanical waves on strings 

and springs for introducing the wave motion. Mechanical waves require material medium such as 
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water, air, etc. to transfer mechanical energy and momentum from one point to another. Therefore, 

seismic waves, water waves, sound are all examples of mechanical waves. One should note here 

that sound waves travelling in air columns and on a string, both are examples of mechanical waves, 

but there is an important difference between the two. While the former is an example of 

longitudinal waves, the latter are transverse waves. We will briefly study about these waves in the 

next section.   

8.3.1 Transverse Waves 

In transverse waves, the particles of the medium oscillate perpendicular to the direction in which 

the wave travels. Travelling waves on a taut string, which we discussed in the previous section, 

are transverse waves. When the one end of the string is rigidly fixed and the other end is given 

periodic up and down jerks, the disturbance propagates along the length of the rope but the particles 

oscillate up and down. The disturbance travels along the rope in the form of crests (upward peak) 

and troughs (valley) as shown in Figure 3. 

Secondary seismic waves are an example of transverse waves. They travel more slowly than the 

primary seismic waves. Secondary seismic waves shake the material they travel through from side 

to side. Transverse waves require that there should be a shearing force in the medium. Hence, they 

can be propagated only in the medium which will support a shearing stress, i.e. mainly solids. For 

this reason, mechanical transverse waves cannot pass though a liquid because liquid molecules 

slide past each other. 

Electromagnetic waves, which do not require any medium to propagate, are also an example of 

transverse waves. The electric and the magnetic field of an electromagnetic wave vibrate at right 

angles to the direction of propagation and also at right angles to each other. 

8.3.2 Longitudinal Waves  

In longitudinal waves, the oscillation of the particles is parallel to the direction in which the wave 

travels. Disturbance travelling in a spring parallel to its length, a pressure variation propagating in 

a liquid are examples of longitudinal waves. Longitudinal waves do not require shearing stress and 

hence can travel in any elastic medium – solid, liquid and gas. 

Consider a stretched spring. If one end of the spring is suddenly given an in and out oscillation 

parallel to the length of the spring, the coils of the spring start exerting forces on each other and 

the compression and the expansion points travel along the length of the spring. The coils oscillate 

right and left parallel to the spring as shown in Figure 5. Compressions, which is the crowding 

together of the molecules, and rarefactions, which is the spreading out of the molecules away from 

each other, travel along the spring. The pressure at the compression point is higher and the pressure 

at a rarefaction point is lower.  
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Figure 5: Longitudinal wave generated in a stretched spring. 

The spring in the above example can be replaced by a long tube of air with a piston at the left end. 

The piston is set into oscillation along the length of the tube. The molecules of air oscillate right 

and left, i.e. parallel to the wave propagation as shown in Figure 6a.  

Sound waves are also longitudinal waves as shown in Figure 6b. A loudspeaker supplied with 

alternating current creates sound waves because the diaphragm of the loudspeaker is forced to 

move to and fro. The diaphragm compresses the surrounding air in front of it as it moves forward 

and then it moves back before creating another compression. Effectively, the air which is the 

medium of propagation in this case, moves to and fro as the sound waves pass through it. Primary 

seismic waves are another example of longitudinal waves. They travel faster than the secondary 

waves, and can travel through solids and liquids as they push and pull on the medium they travel 

though. 
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Figure 6: (a) Longitudinal waves generated in a tube of air with a piston at one end. (b) Sound waves 

in air. 

Water waves are a combination of longitudinal and transverse waves. Each particle near the surface 

moves in a circular orbit, so that a succession of crests and troughs occur. At a crest, the water at 

the surface moves in the direction of the wave and at trough, it moves in the opposite direction.  

Self Assessment Question (SAQ) 1: What type of mechanical waves do you expect to exist in (a) 

vacuum, (b) air, (c) water, (d) rock? 

Self Assessment Question (SAQ) 2: Choose the correct option: 

Elastic waves in solid are 

(a) Transverse (b) Longitudinal  

(c) Either transverse or longitudinal (d) Neither transverse and longitudinal. 
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Self Assessment Question (SAQ) 3: Give evidence in support of the fact that sound is a 

mechanical wave. 

Self Assessment Question (SAQ) 4: Choose the correct option: 

Mechanical waves on the surface of a liquid are 

(a) Transverse (b) Longitudinal (c) Torsional (d) Both transverse and longitudinal.  

8.4 WAVE PROPERTIES 

In the preceding sections, we saw that when a wave moves, the displacements of the particles 

change with time as well as with the position. In one complete cycle of oscillation, the particles in 

the medium are displaced in one direction from their mean position to a position of maximum 

displacement, come back to the mean position and move in the opposite direction to the other 

extreme, and again come back to their mean position. In the following sections, we will be 

discussing some of the terms that are useful in characterizing the waves.    

8.4.1 Wave Speed  

The speed of a wave is the distance it covers in one second. It should be carefully noted that the 

wave speed is completely different from the particle speed. Particle speed is the speed of the 

vibrating particles in the medium. On the other hand, wave speed is the speed with which the 

disturbance (or wave) propagates in the medium.  

8.4.2 Wave Frequency 

The frequency with which the particles of the medium (through which the wave is passing) 

oscillate is known as wave frequency. In transverse waves, frequency is the number of crests (or 

troughs) that pass through a point in one second. In longitudinal waves, frequency is the number 

of compressions (or rarefactions) that pass through a point in one second. It is denoted by the 

symbol 𝑓. The SI unit of frequency is hertz (Hz), which is equal to 1 cycle per second.  

We already know that the wave motion requires a source which moves or vibrates with a particular 

frequency. So an important point to keep in mind is that the frequency of a wave is a property of 

the source, not of the medium through which it propagates.  

 

8.4.3 Time Period 

The time period of the oscillation of the particles in the medium is the time period of the wave and 

is depicted in Figure 7. It is denoted by the symbol T. The frequency of a wave is the reciprocal of 

the time period, i.e. 
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𝑓 =
1

𝑇
 

    

(10.1) 

 
Figure 7: The vibration graph of a wave. 

8.4.4 Amplitude 

The amplitude of the wave is equal to the maximum positive displacement of the particles from 

their mean position. Thus, the amplitude of the wave is the same as the amplitude of the oscillating 

particles. It is depicted in Figures 7 and 8 and is denoted by the symbol A. 

 

 
Figure 8: The waveform graph of a wave. 

 

8.4.5 Wavelength 

The distance between any two points in the same state of motion defines the wavelength of a wave. 

Physically, this means that the wavelength is equal to the distance between two consecutive crests 

(or troughs) and is depicted in Figure 8. Wavelength is denoted by the symbol . The wave speed 

is given by 
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𝜈 =


𝑇
 

    

(10.2) 

Since, the frequency f of a wave is the reciprocal of its period T, the above equation can also be 

written as 

𝜈 = 𝑓 (10.3) 

The above equation predicts that in a given medium, the wave speed of a wave of given frequency 

is constant. Note that equation (10.3) holds for a transverse as well as a longitudinal wave.  

Thus, we can see that the wavelength and the time period represent the spatial and the temporal 

properties of a wave, respectively. When a wave propagates in a medium, it travels with the same 

amplitude, time period (or frequency) as those of the particles oscillating in the medium. Hence, 

we can infer that in a wave, the variation with the position and the time follows the same pattern 

as that of the oscillating particles. This means that we can represent wave motion both graphically 

as wells as mathematically. In the graphical representation, the information can be displayed in the 

following two ways: 

1- Keeping the position x fixed and varying the time t. 

2- Keeping the time t fixed and varying the position x. 

The first type of graph is referred to as the vibration graph of a wave. The vibration graph shows 

the wave behavior at one position in the path of a wave with time. One can obtain it by fixing a 

slit at one spot and observing the motion of the wave at different times. Figure 7 shows the 

vibration graph of a wave. The vibration graph of a wave can be represented as 

𝑦(𝑡) = 𝐴 sin (
2𝜋𝑡

𝑇
) (10.4) 

On the other hand, when the time is kept fixed and the position can vary, the graph obtained is 

called a waveform graph. It is analogous to a snapshot at any instant of time, such as t = T. A 

waveform graph displays the wave behavior simultaneously at different locations as shown in 

Figure 8. We can represent the waveform graph of a wave as 

𝑦(𝑥) = 𝐴 sin (
2𝜋𝑥


) (10.5) 

Although, there are similarities in the shapes of vibration and waveform graphs, they should not 

be confused. While the vibration graph tells us about the shape of the wave, its amplitude and time 
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period, the waveform graph gives us information about the shape of the wave, its amplitude and 

wavelength.  

 

Example 1:  An observer standing at sea coast observes 54 waves reaching the coast per minute. 

If the wavelength of the waves is 10 m, find the velocity. What type of waves did he observe? 

Solution: 

Since, 54 waves reach the shore per minute, 

𝑓 =
54

60
= 0.9 𝐻𝑧 

And as the wavelength of waves is 10 m, therefore, 

𝜈 = 𝑓 = 0.9 × 10 = 9 𝑚/𝑠 

The waves on the surface of water are combined transverse and longitudinal waves called ripples. 

In case of surface waves, the particles of the medium move in elliptical paths in a vertical so that 

the vibrations are simultaneously back and forth and up and down as shown in Figure 9. 

 

Figure 9: Ripples at different times. At a crest, the surface water moves in the direction of the wave 

and at trough, it moves in the opposite direction. 

Example 2:  A light pointer fixed to one prong of a tuning fork touches a vertical plate. The fork 

is set vibrating and the plate is allowed to fall freely. 8 complete oscillations are counted when the 

plate falls through 0.1 m. What is the frequency of the tuning fork? Take g = 9.8 m/s2. 

Solution: 

Time taken by the plate to fall 0.1 m freely under gravity is given by 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

179 
 

𝑡 = √
2ℎ

𝑔
= √

2(0.1)

9.8
=

1

7
𝑠 

And in this time, 8 oscillations are recorded on the plate. Therefore, the number of oscillations per 

second, or in other words, the frequency of the tuning fork will be  

𝑓 = 7 × 8 = 56 𝐻𝑧 

 

Example 3:  Certain radar emits 9400-MHz radio waves in groups 0.08 μs in duration. The time 

needed for these groups to reach a target, be reflected and return back to the radar is indicative of 

the distance of the target. The velocity of these waves, like other electromagnetic waves is 𝑐 =

3 × 108 𝑚/𝑠. Find    

(c) the wavelength of these waves, 

(d) the length of each wave group, which governs how precisely the radar can measure 

distances of the target, and 

(e) the number of waves in each group. 

Solution: 

(c) Since, 1 MHz = 106 Hz, 

9400 𝑀𝐻𝑧 = 9.4 × 109 𝐻𝑧 

Therefore, the wavelength 

 =
𝑐

𝑓
=

3 × 108 𝑚/𝑠

9.4 × 109 𝐻𝑧
= 3.19 × 10−2 𝑚 

(d) The length 𝑠 of each wave group is  

𝑠 = 𝑐𝑡 = (3 × 108 𝑚/𝑠)(8 × 10−8 𝑠) = 24 𝑚 

(e) There are two ways to find the number of waves 𝑛 in each group: 

𝑛 = 𝑓𝑡 = (9.4 × 109 𝐻𝑧)(8 × 10−8 𝑠) = 752 𝑤𝑎𝑣𝑒𝑠 

       Or 

𝑛 =
𝑠


=

24 𝑚

3.19 × 10−2 𝑚
= 752 𝑤𝑎𝑣𝑒𝑠 

 

Self Assessment Question (SAQ) 5: Choose the correct option: 

Which of the following cannot travel through vacuum? 
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(a) Light waves, (b) heat waves, (c) X-rays, or (d) sound waves.  

Self Assessment Question (SAQ) 6: A body vibrating with a certain frequency sends waves of 

wavelength 15 cm in medium A and 20 cm in medium B. If the velocity of wave in A is 120 m/s, 

that in B will be ____________ m/s. 

Self Assessment Question (SAQ) 7: Challenge Question: 

An anchored boat is observed to rise and fall through a total range of 2 m once every 4 s as 

waves whose crests are 30 m apart pass it. Find 

(d) the frequency of the waves, 

(e) their velocity, 

(f) their amplitude, and 

(g) the velocity of an individual water particle at the surface. 

Self Assessment Question (SAQ) 8: An object oscillates in a simple harmonic motion with a 

frequency of 100 Hz. Calculate its time period.   

Self Assessment Question (SAQ) 9: Sound travels in air with a speed of 332 m/s. The upper limit 

of audible range is 20,000 Hz. Calculate the corresponding wavelength in cm. 

8.5 MATHEMATICAL DESCRIPTION OF WAVE MOTION 

If a mathematical equation describes a wave, it must be able to give the position of any particle of 

the medium at any given instant of time. Consider a transverse wave travelling toward right in a 

tight string lying on the x-axis. Figure 10 shows the snapshots of a wave travelling along the 

positive x-axis at the instant t = 0 and at time t. If the wave velocity is v, then as the wave travels 

the y-coordinate of point C (at x’) at t = 0 is the same as the y-coordinate of point D (at x = x’ + 

vt) at time t, i.e. 

𝑦(𝑥, 𝑡) = 𝑦(𝑥 ′, 0) (10.6) 

From equation (10.5), we have  

𝑦(𝑥 ′, 0) = 𝐴 sin (
2𝜋𝑥 ′


) = 𝐴 sin (

2𝜋(𝑥 − 𝑣𝑡)


) (10.7) 
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Figure 250 

Therefore, from equations (10.6) and (10.7), we have 

𝑦(𝑥, 𝑡) = 𝐴 sin (
2𝜋(𝑥 − 𝑣𝑡)


) 

Replacing 𝑣 by /𝑇 in the above equation, the displacement y(x, t) of any particle located at some 

x-coordinate at any instant of time t is given by 

𝑦(𝑥, 𝑡) = 𝐴 sin (
2𝜋𝑥


−

2𝜋𝑡

𝑇
) (10.8) 

Equation (10.8) is known as the wave equation. It can also be written in the following equivalent 

form: 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝑡) (10.9) 

where 𝑘 = 2𝜋/ is known as the wave number, which signifies how quickly the wave oscillates 

is space, and  = 2𝜋/𝑇 is known as the angular frequency, which tells us how quickly the wave 

oscillates in time. 

Also, since the wave velocity is given as /𝑇, from equations (10.8) and (10.9), we can write 

𝑣 =


𝑘
 (10.10) 

Equation (10.9) or its other equivalent forms describes a monochromatic wave, since it has a single 

constant frequency. Note that these equations describe 1-dimensional transverse as well as 
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longitudinal sinusoidal waves travelling in the positive x-direction. This leads to one important 

difference between the displacement of the particles of the medium and the displacement y(x, t) of 

any point on the waveform: while the former changes periodically, the latter remains constant. As 

the wave travels, the entire waveform shifts. Hence, the displacement of a point on the waveform 

remains the same and this holds for all points on the waveform.  

The following equation can easily be derived by replacing 𝑣 with −𝑣, if we want to describe a 

wave travelling in the negative x-direction. 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝑡) (10.11) 

 

Example 4:  A wave is represented by 

𝑦(𝑥, 𝑡) = [8 𝑐𝑚] sin[(10 𝑟𝑎𝑑/𝑐𝑚)𝑥 − (10 𝑟𝑎𝑑/𝑠)𝑡] 

Determine the amplitude, wavelength, angular frequency, wave number and the velocity of the 

wave. 

Solution: 

Comparing the given wave equation with equation (10.9), we find that the wave is travelling in the 

positive x-direction, with amplitude A = 8 cm, angular frequency  = 10 𝑟𝑎𝑑/𝑠 and the wave 

number k = 10 rad/cm.  

From the definition of the wave number, we have 

𝑘 =
2𝜋


 

⇒  =
2𝜋

𝑘
=

2𝜋

10
= 0.63 𝑐𝑚 

Further, using equation (10.10), we have   

𝑣 =
𝜔

𝑘
=

10 𝑟𝑎𝑑/𝑠

10 𝑟𝑎𝑑/𝑐𝑚
= 1 𝑐𝑚/𝑠 

 

Example 5:  A transverse wave is travelling along a string from left to right. The figure below 

represents the shape of the string at a given instant. At this instant 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

183 
 

 

Figure 261 

(a) Which points have an upward velocity? 

(b) Which points have a downward velocity? 

(c) Which points have zero velocity? 

(d) Which points have maximum magnitude of velocity? 

Solution: 

For a wave travelling in positive x-direction, the particle velocity 𝑣𝑝 at any instant is given by 

𝑣𝑝 = (
𝑑𝑦

𝑑𝑡
)
𝑥
 

⇒ 𝑣𝑝 = −𝐴 cos(𝑘𝑥 − 𝑡) 

 

(10.12) 

Further, the slope of the wave is given as 

𝑑𝑦

𝑑𝑥
= 𝐴𝑘 cos(𝑘𝑥 − 𝑡) 

(10.13) 

 

From equations (10.12) and (10.13), we get that the particle velocity 𝑣𝑝 is equal to the negative of 

the product of the wave velocity with the slope of wave at that point, 

𝑣𝑝 = −


𝑘
× (𝑠𝑙𝑜𝑝𝑒) = −𝑣 × (𝑠𝑙𝑜𝑝𝑒) 

(10.14) 

 

(a) For upward velocity, 𝑣𝑝 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, so the slope must be negative which is at points D, E 

and F. 
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(b) For downward velocity, 𝑣𝑝 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, so the slope must be positive which is at points 

A, B and H. 

(c) For zero velocity, the slope must be zero which is at C and G. 

(d) For maximum magnitude of velocity, |𝑠𝑙𝑜𝑝𝑒| = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 which is at A and E. 

Self Assessment Question (SAQ) 10: A simple harmonic wave having an amplitude A and time 

period T is represented by the equation 𝑦 = 5 sin 𝜋(𝑡 + 4) 𝑚. What are the values of A (in m) 

and T (in s)? 

Self Assessment Question (SAQ) 11: Choose the correct option: 

Waves whose crests are 30 m apart reach an anchored boat once every 3 s. The wave velocity (in 

m/s) is 

(g) 0.1  (b) 5  (c) 10  (d) 900   

8.6 SUMMARY 

In this unit, we have studied about the different waves that are familiar to us and are part of our 

everyday life. Then we studied what is meant by the wave motion, the formation and propagation 

of waves in a medium. We learned about the difference between transverse and longitudinal waves, 

and how to represent a wave at a fixed position and at a fixed time graphically. We wrote the 

mathematical expression of a progressive wave corresponding to a given set of wave parameters 

and travelling along +x /–x directions.  

We defined the terms that are needed to describe a wave such as amplitude, time period, 

wavelength, frequency, wave number, angular frequency, wave velocity etc and understood how 

they are related to each other. Finally, we derived the relationship between the velocity of a particle 

in the medium and the velocity of the wave at any instant.  

8.7 GLOSSARY 

Amplitude – the maximum displacement of a wave from equilibrium (e.g. height of a transverse 

wave from the middle). 

Displacement – net change in location of a moving body. It is measured from the equilibrium 

position. 

Elasticity – ability of a material to regain its shape after being distorted. 

Force – any interaction that, when unopposed, can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a wave. The SI unit of frequency 

is the hertz (Hz), which is equal to 1 cycle per second. 
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Longitudinal waves – waves in which the vibrations are parallel to the direction of travel of the 

wave. 

Microwaves – electromagnetic waves of wavelength between about 0.1 mm and 10 mm. 

Molecule – the smallest amount of a compound or element that can exist independently.  

Momentum – mass multiplied by velocity. 

Pressure – force per unit area applied at right angles to a surface. The SI unit of pressure is the 

pascal (Pa), which is equal to 1 N/m2. 

Radio waves – electromagnetic waves of wavelength longer than about a millimeter. 

Sound – vibrations in a substance that travel through the substance. 

Speed – the ratio of distance traveled and time. The SI unit of speed is m/s. 

Transverse waves – waves in which the vibrations are at right angles to the direction of propagation 

of wave. 

Ultraviolet radiation – electromagnetic waves between the violet end of the visible spectrum 

(wavelength ~400 nm) and X-rays (wavelength less than ~1 nm). 

Velocity – speed in a given direction. 

Wavelength – the distance between two adjacent wave-crests. 

X-rays – electromagnetic waves of wavelength less than about 1 nm. 

8.8 TERMINAL QUESTIONS 

1. A tuning fork vibrating at 300 Hz is placed in a tank of water. (a) Find the frequency and 

wavelength of the sound waves in the water. (b) Find the frequency and wavelength of the 

sound waves produced in the air above the tank by the vibrations of the water surface. The 

velocity of the sound is 4913 ft/s in water and 1125 ft/s in air. 

2. The visible region of the electromagnetic spectrum begins from 400 nm. Calculate the 

corresponding frequency.    

3. The equation for the displacement of a stretched string is given by 

𝑦 = 4 sin 2𝜋 [
𝑡

0.02
−

𝑥

100
] 

where y and x are in cm and t is in seconds. Determine the  
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(a) direction in which the wave is propagating 

(b) amplitude 

(c) time period 

(d) frequency 

(e) angular frequency 

(f) wavelength 

(g) velocity of wave 

(h) wave number 

4. What quantity is carried off by all types of waves from their source to the place where they are 

eventually absorbed? 

5. A wave of frequency f1 and wavelength 1 goes from a medium in which its velocity is v to 

another medium in which its velocity is 2v. Find the frequency and wavelength of the wave in 

the second medium. 

6. A violin string is vibrating at a frequency of 440 Hz. How many vibrations does the string make 

while its sound travels 200 m in air? 

7. Lower the frequency of a wave 

(a) higher is its velocity. 

(b) longer is its wavelength 

(c) smaller is its amplitude  

(d) shorter is its period 

     8. Which of the following is an entirely longitudinal wave? 

(a) Water wave 

(b) Sound wave 

(c) Electromagnetic wave 

(d) A wave in a stretched string 

    9. Sound cannot travel through 

(a) vacuum  

(b) liquid  

(c) gas 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

187 
 

(d) solid  

10. Of the following properties of a wave, the one that is independent of the others is 

(a) velocity 

(b) frequency 

(c) wavelength 

(d) amplitude 

11. Write notes on: 

      (i) Wave Formation and Propagation       (ii) Transverse and Longitudinal Waves    

 (iii) Wave Properties  

12. What is meant by wave equation? Derive the wave equation when a wave is travelling in the 

negative x-direction. 

8.9 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. (a) no wave, (b) longitudinal, (c) longitudinal, (d) either transverse or longitudinal 

2. (c) 

3. Sound requires medium for propagation. 

4. (d) 

5. (d) 

6. 160 m/s 

7. (a) 𝑓 =
1

𝑇
=

1

4
= 0.25 𝐻𝑧 

(b) 𝑣 = 𝑓 = (0.25 𝐻𝑧)(30 𝑚) = 7.5 𝑚/𝑠 

(c) The amplitude is half the total range, so A = 1 m. 

(d) As each wave passes, the water particles at the surface move in circular orbits of radius r = A 

= 1 m (see Figure 9). The circumference of such an orbit is 𝑠 = 2𝜋𝑟 = 2𝜋(1 𝑚) = 6.28 𝑚. 

The waves have time period of 4 s, which means that each surface water particle must move 

through its 6.28 m orbit in 4 s. The velocity of such a water particle is, therefore, 
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𝑣𝑝 =
𝑠

𝑇
=

6.28 𝑚

4 𝑠
= 1.57 𝑚/𝑠 

Note that the wave velocity here is nearly five times greater than the water particle velocity. This 

signifies that the motion of a wave can be much faster than the motions of the individual 

particles of the medium in which the wave travels. 

8. 0.01 s 

9. 1.66 cm 

10. The wave is travelling in the negative x-direction and the wave equation is given as 

𝑦(𝑥, 𝑡) = 𝐴 sin (
2𝜋𝑥


+

2𝜋𝑡

𝑇
) 

Comparing with the above wave equation, the amplitude A = 5. Comparing the second term inside 

the sine term in the above equation, we get  

2𝜋

𝑇
= 𝜋 ⇒ 𝑇 = 2 

11. (c) 

 

Selected Terminal Questions: 

1.  (a) In the water, the frequency of the sound waves is the same as the frequency of their source, 

and their wavelength is  

1 =
𝑣1

𝑓
=

4931 𝑓𝑡/𝑠

300 𝐻𝑧
= 16.4 𝑓𝑡 

(b) In the air, the frequency of the sound waves is the same as the frequency of their source, but 

the wavelength differs from that in the water 

2 =
𝑣2

𝑓
=

1125 𝑓𝑡/𝑠

300 𝐻𝑧
= 3.75 𝑓𝑡 

2.  𝑓 = 𝑐/ = (3 × 108 𝑚/𝑠)/(400 × 10−9 𝑚) 

= 7.5 × 1014 𝐻𝑧 

3.  (a) As there is a negative sign between t and x terms, the wave is propagating along the 

positive x-axis. 

(b) A = 4 cm 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

189 
 

(c) T = 0.02 s 

(d) f = 1/T = 50 Hz 

(e)  = 2πf = 100π rad/s 

(f)  = 100 cm 

(g) v = f = 50 m/s 

(h) k = 2π/ = π/50 cm-1 

4. Energy 

5. The frequency of the wave remains constant, therefore, f2 = f1. The wavelength meanwhile 

will change according to the relation 

𝑣1

1
=

𝑣2

2
 

⇒ 2 =
𝑣2

𝑣1
1 = 21 

6. The speed of sound wave (v) in air about 330 m/s. Therefore, the wavelength of the sound 

wave produced by the violin string will be given as 

 =
𝑣

𝑓
=

330 𝑚/𝑠

440 𝐻𝑧
= 0.75 𝑚 

Hence, to travel 200 m, the number of vibrations will be 

=
200

0.75
= 266 

7. (b) 

8. (b) 

9. (a) 

10. (d) 
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9.1 INTRODUCTION 

In the previous unit (Unit 8), you learnt about mechanical waves which transport energy from one 

place where it is produced to the other place where it is desired to be utilized. We studied how 

waves are formed and how they propagate. The different types of waves can be categorized into 

two types - longitudinal wave and transverse wave.  

We then learned about the different characteristics of waves, such as amplitude, wave speed, 

frequency, wavelength, time period, which are essential to describe waves. Later we delved into 

the mathematical description of a wave propagating in the + x and – x directions. We also came to 

understand that in a wave, the particles of the medium do not actually physically travel in the 

direction of the propagation of wave, but just oscillate and only the energy is transferred in the 

form of a wave. We then derived a relationship between the particle velocity and the velocity of 

the wave. 

In this unit, we will be looking into more properties of the wave such as phase and phase difference, 

and phase velocity. We will also study how the energy is transported by the progressive waves. 

Lastly, we will see how the intensity of wave is defined and how it varies with the distance from 

the source. 

9.2 OBJECTIVES 

After studying this unit, you should be able to 

 explain the concept of phase and phase difference in relation to waves, 

 explain what is meant by the phase velocity, 

 derive the expression for the energy carried by a wave, 

 describe the concept of intensity of a wave, 

 derive the expression for the wave intensity at a point in space, 

 understand the idea of intensity levels and decibels, and 

 explain what is meant by power gain of a system. 

9.3 PHASE OF A WAVE 

In the preceding unit, we studied about the wave parameters such as amplitude, time period, 

frequency, wavelength and wave speed that are used to characterize a wave. To complete the 

mathematical description of a wave, we also need to know about the phase of a wave and the 

concept of phase difference. This is what we will be discussing in this section. 

The word phase is synonymous to what we call “state;” e.g. in thermodynamics, it refers to the 

solid, liquid, vapor and plasma states of a substance. You may recall how phase was defined for a 

system exhibiting simple harmonic motion. Similarly, for a wave, which arises due to periodic 
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motion of particles around their mean position, we can extend the concept of phase of SHM, to 

define the phase of a wave.  

The argument of the periodic function representing a periodic wave is called the phase of the wave. 

We denote it by the symbol 𝜑(𝑥, 𝑡). It describes the state of motion of a particle on the wave. Thus, 

the phase of a sinusoidal wave, at point x and at instant t, represented by 𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝑡), 

is the argument of the sine function and is given by 

𝜑(𝑥, 𝑡) = 𝑘𝑥 − 𝑡 (11.1) 

Since, the phase of a wave is an angle; it is measured in degrees or radians with 3600 or 2π radian 

being equivalent to a phase difference of one wavelength. Also note, that phase is a function of 

position as well as time and varies with both x and t. 

From the definition of phase, it follows that all the points on the wave separated by one wavelength 

or its integral multiples are in the same phase. To appreciate this statement, we recall that for a 

sinusoidal function at a given instant of time t, 

sin(𝑘𝑥 − 𝑡 + 2𝜋) = sin(𝑘𝑥 − 𝑡) 

And for x’ = x + , using the relation k = 2π/, we can write 

sin(𝑘𝑥′ − 𝑡) = sin[𝑘(𝑥 + ) − 𝑡] 

                           = sin[𝑘𝑥 − 𝑡 + 2𝜋] 

                  = sin(𝑘𝑥 − 𝑡) 

This result shows that at any given instant of time t, the phase of particles on the wave at a point x 

=  is the same as the phase at a point x = 0. In fact, we can demonstrate that all other particles on 

the wave separated by integral multiples of the wavelength ought to have the same phase. To prove 

this, all one has to do is substitute 𝑥′ = 𝑥 ± 𝑛 and use the result sin(𝑘𝑥 − 𝑡 ± 2𝑛𝜋) =

sin(𝑘𝑥 − 𝑡) for n = 0, 1, 2 … We can generalize this result as follows: 

Particles on a wave separated by one wavelength  or its integral multiples are in-phase. However 

particles at a point x has a finite phase difference with all other particles at points 𝑥′ ≠ 𝑥, for which 

𝑥′ ≠ 𝑥 ± 𝑛 where n = 0, 1, 2 … In terms of the angle, the in-phase points are separated by nπ 

radians, where n = 0, 1, 2 …, while out-of-phase points can be any number of degrees other than 

nπ radians. Physically, the phase of a wave is indicative of the instantaneous position of the wave 

relative to a reference position.  

We can also extend this concept to a situation when more than one wave is travelling in space and 

time. Two waves are said to be in-phase when the corresponding points on each wave reach their 

respective maximum and minimum displacements simultaneously. Thus, if the crests and troughs 
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of the two waves coincide, they are said to be in-phase. If the crest of one wave coincides with the 

trough of the other wave, their phases differ by π radians and the waves are said to be of opposite 

phase. The phase difference between two waves can vary from 0 to 2π radians. 

For waves travelling in the positive or negative x-directions, the arguments of the most general 

equation contain an additional factor to factor in the initial phase. If we take it as 𝜑0, then we can 

write 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝑡 + 𝜑0) (11.2a) 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 + 𝑡 + 𝜑0) (11.2b) 

for waves travelling in the positive or negative x-directions, respectively, where the waves 

represented by (11.2a) and (11.2b) are shifted by an angle 𝜑0. Figure 1 depicts the phase shifts of 

π/2 and π for a wave from the case, when there is no phase shift. 

 

Figure 27: Phase shifts of π/2 and π of a wave from the case, when there is no phase shift. 
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9.3.1 Phase Velocity 

We now know that for a travelling wave, the entire waveform shifts with time. If the medium is 

isotropic2 and its characteristics remain constant with time, the wave propagation takes place at 

constant velocity. For harmonic travelling waves, this velocity is called the phase velocity, for 

example, the ripples on the surface of water will travel with a constant velocity if the depth of 

water remains the same.   

Let us now derive the expression for the phase velocity of a wave. Consider a sinusoidal wave 

travelling in the positive x-direction. In the simple case of a pure sinusoidal wave we can imagine 

a rigid profile being physically moved in the positive x-direction with speed v as illustrated below.  

 

Figure 28: Wave profile of a sinusoidal wave travelling along positive x-direction. 

The phase velocity of the wave defines the speed with which the wave pattern travels in space. In 

other words, the phase velocity of a wave is defined as the velocity with which a point of constant 

phase on the wave travels. For a point of constant phase, we can write 

𝜑(𝑥, 𝑡) = 𝑘𝑥 − 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (11.3) 

To obtain the expression for the phase velocity, we first express the infinitesimal change in 𝜑(𝑥, 𝑡) 

in terms of changes in x and t as 

𝑑𝜑 = (
∂φ

∂t
)
𝑥
𝑑𝑡 + (

∂φ

∂x
)
𝑡
𝑑𝑥 

Substituting (
∂φ

∂t
)
𝑥

= − and (
∂φ

∂x
)
𝑡
= 𝑘, from equation (11.3), we get 

𝑑𝜑 = −𝑑𝑡 + 𝑘𝑑𝑥 

Since, the phase velocity is the velocity of a point of constant phase,  

                                                             
2 An object or a substance having a physical property which has the same value when measured in different directions. 
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𝑑𝜑 = 0 

This gives, 

𝑑𝑡 = 𝑘𝑑𝑥 

⇒ 𝑣𝑝 = (
𝑑𝑥

𝑑𝑡
)
𝜑

=


𝑘
 

 

(11.4) 

Equation (11.4) gives the phase velocity 𝑣𝑝. Recall the wave velocity that we defined in Unit 8, 

which is also given by the same expression as the phase velocity of a wave.  

In terms of other wave parameters, the phase velocity of a wave is given as  

𝑣𝑝 =


𝑘
 

       = 𝑓 

          =


𝑇
 

 

(11.5) 

 

Example 1: A 1-D plane progressive wave of amplitude 1 cm is generated at one end (x = 0) of a 

long string by a tuning fork. At some instant of time, the displacements of the particles at x = 10 

cm and at x = 20 cm are -0.5 cm and 0.5 cm, respectively. The speed of the wave is 100 m/s.  

(a) Calculate the frequency of the tuning fork.  

(b) If the wave is travelling along the positive x-direction and the end x = 0 is at equilibrium 

position at t = 0, write the displacement of wave in terms of amplitude, frequency and the 

wavelength.    

Solution:  

(a) The equation of a plane progressive wave in 1-D is given as 

𝑦(𝑥, 𝑡) = 𝐴 sin [
2𝜋


(𝑣𝑡 − 𝑥)] 

We are given A = 1 cm. From the first condition, we know that at x = 10 cm, y = −0.5 cm. 

Therefore, we have 
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−0.5 = sin [
2𝜋


(𝑣𝑡 − 10)] 

⇒
2𝜋


(𝑣𝑡 − 10) = sin−1 (−

1

2
) 

⇒
2𝜋


(𝑣𝑡 − 10) =

7𝜋

6
 

⇒ 𝑣𝑡 − 10 =
7

12
    − − − − − − − − − −(𝐼) 

From the second condition, we know that at x = 20 cm, y = +0.5 cm. Therefore, we have 

0.5 = sin [
2𝜋


(𝑣𝑡 − 20)] 

⇒
2𝜋


(𝑣𝑡 − 20) = sin−1 (

1

2
) 

⇒
2𝜋


(𝑣𝑡 − 20) =

𝜋

6
 

⇒ 𝑣𝑡 − 20 =


12
    − − − − − − − − − −(𝐼𝐼) 

Subtracting (II) from (I), we get 

10 =
7

12
−



12
 

⇒


2
= 10       𝑜𝑟       = 20 𝑐𝑚 

Since, the wave velocity 𝑣 = 𝑓, the frequency of the tuning fork is given as 

𝑓 =
𝑣


=

100 𝑚/𝑠

0.2 𝑚
= 500 𝐻𝑧 

(b) The wave equation in the desired form is given as 

𝑦(𝑥, 𝑡) = (0.01 𝑚) sin [
2𝜋

0.2
(100𝑡 − 𝑥)] 

             = (0.01 𝑚) sin[10𝜋(100𝑡 − 𝑥)] 

Self Assessment Question (SAQ) 1: A progressive wave of frequency 500 Hz is travelling with 

a velocity of 360 m/s. How far apart are two points 600 out of phase? 
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Self Assessment Question (SAQ) 2: Choose the correct option: 

Three progressive waves A, B and C are shown in the figure below. With respect to wave A, 

 

Figure 29 

(a) The wave C lags behind in phase by π/2 and B leads by π/2. 

(b) The wave C leads in phase by π and B lags behind by π. 

(c) The wave C leads in phase by π/2 and b lags behind by π/2. 

(d) The wave C lags behind in phase by π and B leads by π. 

Self Assessment Question (SAQ) 3: Choose the correct option: 

Two waves are respectively 𝑦(𝑥, 𝑡) = 𝐴 sin[𝜔𝑡 − 𝑘𝑥)] and 𝑦(𝑥, 𝑡) = 𝐵 cos[𝜔𝑡 − 𝑘𝑥)]. The phase 

difference between the two waves is 

(a) π/2      (b) π/4      (c) π       (d) 3π/4 

Self Assessment Question (SAQ) 4: Consider the two transverse waves travelling along a tight 

string in opposite directions 

𝑦1 = 𝐴sin(𝑘𝑥 − 𝜔𝑡)       𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 + 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑦2 = 𝐴sin(𝑘𝑥 + 𝜔𝑡)       𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 − 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

What is the phase difference between the two waves? 

9.4 ENERGY TRANSPORTED BY PROGRESSIVE WAVES 

Consider a 1-D mechanical wave travelling along the +x direction in air or on a string. Such a 

wave is described by the equation 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) 
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We already know that when a sinusoidal wave moves in a medium, it transports energy which is 

characterized by the wave velocity. For the sake of simplicity, consider a thin segment of the 

medium and calculate the rate at which total energy is transferred. For mechanical waves, the 

mechanical energy transported by these can be expressed as the sum of the kinetic energy and the 

potential energy of the segment under consideration. 

Suppose that the thin segment under consideration has thickness dx, cross-section area A and is 

situated at a distance x from the source generating the progressive waves. If the density of the 

medium is ρ, the mass, dm of the layer will be equal to ρA(dx). Thus, the kinetic energy (KE) 

imparted by the wave propagating with velocity v to the thin layer of mass dm of the medium is 

given by 

          𝑑(𝐾𝐸) =
1

2
(𝑑𝑚)𝑣2 

 

(11.6) 

The velocity 𝑣 is calculated by differentiating 𝑦(𝑥, 𝑡) with respect to t. But 𝑦(𝑥, 𝑡) is a function of 

two variables: position x and time t. Therefore, we determine v by partially differentiating 𝑦(𝑥, 𝑡) 

with respect to t, while treating x as constant, i.e. 

𝑣 = (
∂y

∂t
)

x

 

Thus, we can write 

          𝑣(𝑥, 𝑡) = 𝐴𝜔 cos(𝑘𝑥 − 𝜔𝑡) 

 
(11.7) 

Substituting the expression for 𝑣(𝑥, 𝑡) in equation (11.6), we get the expression for KE transferred 

to the segment of mass dm of the medium, 

          𝑑(𝐾𝐸) =
1

2
(𝑑𝑚)𝐴2𝜔2 cos2(𝑘𝑥 − 𝜔𝑡) 

 

(11.8) 

To calculate the average KE transported by the wave in one time period or one wavelength, we 

integrate equation (11.8) over an interval and divide the resultant expression by the length of that 

interval. By definition, the average KE transported over one wavelength is given by 

          〈𝐾𝐸〉 =
1

2
𝑑𝑚𝐴2𝜔2 [

∫ cos2(𝑘𝑥)𝑑𝑥


0

∫ 𝑑𝑥


0

] (11.9) 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

200 
 

 

For convenience, we set t = 0 in the above expression. To solve the above integral, we introduce a 

change of variable by substituting 𝑘𝑥 = 𝜑, so that 𝑘𝑑𝑥 = 𝑑𝜑. The limits of integration change 

accordingly to 0 and k = 2π. From the knowledge of elementary calculus, we know that the 

average value of the square of a cosine function over one full cycle is equal to 1/2. Therefore, the 

expression (11.9) becomes 

          〈𝐾𝐸〉 =
1

4
𝑑𝑚𝐴2𝜔2 

 

(11.10) 

The potential energy (PE) stored in mass dm displaced from the equilibrium position by a distance 

of y is given by 

𝑃𝐸 = −∫𝐹𝑑𝑦

𝑦

0

 

where F is the force acting on the layer of mass dm and is given as 

𝐹 = 𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑚
∂𝑣(𝑥, 𝑡)

∂𝑡
 

Differentiating equation (11.7) with respect to t while keeping x fixed and inserting the expression 

in the above equation, we get  

𝐹 = −𝑑𝑚(𝜔2𝐴) sin(𝑘𝑥 − 𝜔𝑡) 

= −𝑑𝑚𝜔2𝑦(𝑥, 𝑡) 

Substituting the above expression for force, the expression for PE becomes 

𝑃𝐸 = 𝑑𝑚𝜔2 ∫𝑦𝑑𝑦

𝑦

0

 

⇒ 𝑃𝐸 =
1

2
𝑑𝑚𝜔2𝑦2 =

1

2
𝑑𝑚𝜔2𝐴2 sin2(𝑘𝑥 − 𝜔𝑡) 

 

(11.11) 

Just like we calculated the average KE, the average PE over one wavelength can be calculated to 

get 

          〈𝑃𝐸〉 =
1

2
𝑑𝑚𝐴2𝜔2 [

∫ sin2(𝑘𝑥)𝑑𝑥


0

∫ 𝑑𝑥


0

] 
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          ⇒ 〈𝑃𝐸〉 =
1

4
𝑑𝑚𝐴2𝜔2 

 

(11.12) 

Comparing equations (11.12) and (11.10), we notice that the average PE of mass dm of a layer in 

the medium is equal to its average KE.  The total average energy of the segment of the medium 

under consideration at any instant of time is the sum of its average KE and PE, i.e. 

          𝐸 = 〈𝐾𝐸〉 + 〈𝑃𝐸〉 =
1

2
𝑑𝑚𝐴2𝜔2 

 

(11.13) 

The above equation demonstrates the fact that half of the average energy transported by a 

progressive wave per cycle through a thin layer of mass dm is kinetic and the other half is potential. 

The energy is transferred to successive layers of the medium and in this process, energy is 

transported in the medium by a progressive wave. 

We may also calculate the average rate of energy flow in the medium per cycle, or in other words, 

the power transmitted by the wave. Since, 𝑑𝑚 = 𝜌𝐴𝛥𝑥, we can write the expression for power P 

of the wave as 

𝑃 =
𝐸

𝛥𝑡
=

2𝜋2𝐴2𝑓2𝜌𝐴𝛥𝑥

(
𝛥𝑥
𝑣 )

 

⇒ 𝑃 = 2𝜋2𝐴2𝑓2𝜌𝐴𝑣 

 
(11.14) 

where we have used the expression 𝜔 = 2𝜋𝑓 for the frequency and 𝛥𝑡 = 𝛥𝑥/𝑣 for the time taken 

by the wave to cross the layer of thickness 𝛥𝑥 by the wave travelling with velocity v. This result 

shows that the rate at which the energy is transported by a wave varies linearly with wave velocity 

and as the square of its amplitude and frequency.  

 

Example 2:  A plane progressive wave of amplitude 0.02 cm is generated when a musical 

instrument is played. If a note of frequency 300 Hz is produced, calculate the rate at which the 

energy is generated per unit volume, if the density of air is 1.29 kg/m3. 

Solution: From equation (11.13), we know that the energy per unit volume, or in other words, the 

energy density is given by 

𝐸

𝐴𝛥𝑥
= 2𝜋2𝐴2𝑓2𝜌 
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                                                                      = 2𝜋2(2 × 10−4 𝑚)2(300 𝐻𝑧)2(1.29 𝑘𝑔/𝑚3) 

                   = 9.2 × 10−2 𝐽/𝑚3 

 

Self Assessment Question (SAQ) 5: Half of the energy transported by a sinusoidal wave is kinetic 

and the other half is potential. Is this statement true or false? Give reason. 

9.5 INTENSITY OF A WAVE  

While energy and power are useful parameters, these do not account for observations related to 

the variations in the strength of a progressive wave with distance from the source. Consider 

progressive waves generated by a stationary source and spreading out in the surrounding medium. 

If there were no loss of energy of the wave, its strength should remain the same everywhere away 

from the source. This is, however, not true in practice. From our common experience, we know 

that the chirping of the birds, the noise of the traffic, the sound of firecrackers or the light from a 

bulb fade out beyond a certain distance.  

 

Figure 30: Sound waves spreading out from a loudspeaker. 

Therefore, it makes more sense to describe the strength of a wave at a given point in space by 

specifying its intensity, which is defined as the rate of energy transfer by the wave per unit area A 

normal to the direction of propagation. So by definition, we can write the intensity I of the wave 

as 
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𝐼 =
𝑃

𝐴
 

 

(11.15) 

where P is the power (energy transfer rate per unit time) and A is the area of the surface intercepting 

the wave.  

In the context of the sound waves, the intensity refers to the loudness (strength of sound). The 

loudness of sound decreases as we move away from its source, as shown in Figure 4. Although, in 

the figure we have depicted the spreading of sound waves in 2-D, the sound waves will actually 

spread out in 3-D space over a spherical surface. Note that as we move away from the source of 

the sound, the sound energy or acoustic energy transported by the sound waves will be distributed 

over a greater area. This spreading of the waves means that the energy supplied by the speaker to 

a given compression or rarefaction is spread over an increasingly large area as that compression 

or rarefaction moves away from the source of the sound. 

Let us now derive an expression for the intensity of wave as a function of the distance r from the 

source.  

9.5.1 Inverse Square Law 

At a distance 𝑟1, the energy is distributed over a  spherical surface of area 4𝜋𝑟1
2, whereas at a 

distance 𝑟2(> 𝑟1), the same amount of energy will be distributed over a larger spherical surface 

having surface area 4𝜋𝑟2
2. This is depicted in Figure 5 with the help of three different distances.  
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Figure 31: Sound waves spreading uniformly from a point source. 

So if we assume that there is no energy loss due to any dissipative mechanism, the energy available 

per unit cross-sectional area will be more at 𝑟1 as compared to 𝑟2. That is, the energy per unit cross-

sectional area will decrease as we move away from the source. In other words, the intensity of 

sound decreases as the distance from the source increases. Thus, from equation (11.15), we can 

write the intensity of sound at a distance r from the source as 

𝐼 =
𝑃

4𝜋𝑟2
 

 

(11.16) 

In other words, we can say that for the case of sound emitted uniformly in all directions from a 

point source, without any loss of acoustic energy due to heating, absorption or any other effect, 

the intensity, I, is inversely proportional to the square of distance, r, from the source, 

𝐼 ∝
1

𝑟2
 

 

(11.17) 

This result is known as the inverse square law. 

From equation (11.14), we note that 

𝑃 ∝ 𝐴2 
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where 𝐴 is the amplitude of the wave. So we can say that  

𝐼 ∝ 𝐴2 

 
(11.18) 

From equations (11.18) and (11.17), we get 

𝐴 ∝
1

𝑟
 

 

(11.19) 

Thus, the amplitude of the wave is inversely proportional to the distance from the source. One 

should bear in mind that this is only true if the wave is not obstructed, or absorbed, and if the 

source is small enough compared with the distances from the source to enable it to be considered 

as a point source emitting sound uniformly in all directions. Equation (11.19) explains why we can 

be heard only up to a certain distance. 

9.5.2 Intensity Levels and Decibels 

The perceived loudness of sound is partly determined by its intensity, but also depends on its 

frequency, and on other factors such as the age of the listener. However, for healthy young adults, 

the faintest sounds that can be heard at a frequency of 1000 Hz have an intensity of about 

10−12 W m−2 known as the threshold of hearing (ToH) for human beings. The normal conversations 

involve intensities of 10−6 W m−2 or so, and sounds become painful at an intensity of around 

1 W m−2. 

In view of this wide range of intensities, it is often convenient to describe a sound of intensity I in 

terms of a quantity called the intensity level, β, which is measured in unit called decibel (dB), and 

defined by the following relation 

β = (10 𝑑𝐵) log10 (
𝐼

𝐼0
) 

 

(11.20) 

where 𝐼0 is the intensity corresponding to ToH (1 × 10−12 W m−2). The advantage of this scale is 

that the faintest audible sound has an intensity level of 

β = (10 𝑑𝐵) log10 (
10−12

1 × 10−12
) = 0 𝑑𝐵 

normal speech has an intensity level of about 
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β = (10 𝑑𝐵) log10 (
10−6

1 × 10−12
) = 60 𝑑𝐵 

and the threshold of pain is at 

β = (10 𝑑𝐵) log10 (
1

1 × 10−12
) = 120 𝑑𝐵 

There are clear advantages to using a scale that ranges from 0 to 120 units rather than one that goes 

from 10−12 to 1. However, there is also the disadvantage of having to use a logarithmic scale, since 

an increase in intensity by a factor of ten only leads to an addition of ten dB to the intensity level.  

 

Example 3:  A loud shout has an intensity of 8 × 10−5 W m−2 at a distance of 1 m from the source.  

(a) Given that the threshold of human hearing is about 10−12 W m−2 at voice frequencies, and 

that the sound spreads out evenly in all directions, how far away could such a shout be 

heard in open space?  

(b) What is the ratio of the amplitude of the sound wave at this distance to the amplitude 1 m 

from the source? 

Solution:  

(a) The intensity, I ∝ 1/r2, where r is the distance from the source. 

We are given that I1 = 8 × 10−5 W m−2, I2 = 10−12 W m−2 and r1 = 1 m. so we can find out r2 from 

the following relation, 

𝐼1
𝐼2

=
𝑟2

2

𝑟1
2  

Therefore,  

8 × 10−5𝑊𝑚−2

10−12𝑊𝑚−2
=

𝑟2
2

(1 𝑚)2
 

⇒ 𝑟2 = √
8 × 10−5

10−12
 𝑚 = 9 × 103 𝑚 

Hence, the sound could be heard about 9 km away. 

(b) The amplitude of the sound wave is inversely proportional to the distance from the source of 

the sound. Hence 
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𝐴(𝑎𝑡 1)

𝐴(𝑎𝑡 2)
=

𝑟2
𝑟1

 

So the ratio of the amplitude of the sound wave at a distance of 9 km to the amplitude at a distance 

of 1 m is  

1

9 × 103
= 1.1 × 10−4 

 

Self Assessment Question (SAQ) 6: The intensity level of heavy traffic heard from street level is 

very roughly 70 dB. What is the intensity of the traffic noise? 

Self Assessment Question (SAQ) 7: Choose the correct option: 

An 80-dB sound relative to a 30-dB sound is more intense by a factor of 

(g) 5      (b) 50      (c) 500      (d) 105 

Self Assessment Question (SAQ) 8: The sound intensity 0.25 m away from the speakers at an 

open-air disco is 10−3 W m−2. How far away from the speakers should you stand in order that the 

music you hear has the same intensity as ordinary conversation with an intensity of approximately 

3 × 10−6 W m−2, assuming that no energy is absorbed? 

 

9.5.3 Power Gain 

If the power input to an amplifier or other signal processing device is 𝑃𝑖𝑛 and the power output of 

the device is 𝑃𝑜𝑢𝑡, the power gain G of the system in decibels is defined as 

G = (10 𝑑𝐵) log10 (
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
) 

 

(11.21) 

A change in audio power output of 1 dB is about the minimum that can be detected by a person 

with good hearing; usually the change must be 2 or 3 dB to be apparent.   

 

Self Assessment Question (SAQ) 9: What is the intensity in watts per square meter of the 70-dB 

noise of a truck passing by? 
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Self Assessment Question (SAQ) 10: An audio system is made up components with the following 

power gains: preamplifier, +35 dB; attenuator, -10 dB; amplifier, +70 dB. What is the overall gain 

of the system? 

9.6 SUMMARY 

In this unit, we studied about what is meant by the phase of a wave and what is meant by the phase 

difference and phase velocity. We derived the relationship for the energy transported by 

progressive waves and also calculated the average rate of energy flow in the medium per cycle, or 

in other words, the power transmitted by the wave. 

Thereafter, we learned that although energy and power are useful parameters, these do not account 

for observations related to the variations in the strength of a progressive wave with distance from 

the source. Therefore, there was a need to describe the strength of a wave at a given point in space 

by specifying its intensity, which is defined as the rate of energy transfer by the wave per unit area. 

In view of the wide range of intensities need was felt to describe a sound of intensity I in terms of 

a quantity called the intensity level, β, which is measured in unit called decibel (dB). Finally, we 

learnt the concept of power gain of a system. 

9.7 GLOSSARY 

Amplitude – the maximum displacement of a wave from equilibrium (e.g. height of a transverse 

wave from the middle). 

Displacement – net change in location of a moving body. It is measured from the equilibrium 

position. 

Force – any interaction that, when unopposed, can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a wave. The SI unit of frequency 

is the hertz (Hz), which is equal to 1 cycle per second. 

Intensity – power transferred per unit area, where the area is an imagined surface that is 

perpendicular to the direction of propagation of the energy. In the SI system, it has units of watts 

per square meter (W/m2). 

Kinetic energy – energy of a moving object. 

Mechanical energy – it is the sum of the kinetic energy and the potential energy. 

Phase difference – the fraction of a cycle between the motion of two waves propagating at the 

same frequency. 
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Potential energy – energy possessed by a body by virtue of its position relative to others, stresses 

within itself, and other factors. 

Power – the rate of doing work. It is the amount of energy consumed per unit time. Having no 

direction, it is a scalar quantity. In the SI system, the unit of power is the joule per second (J/s), 

known as the watt (W). 

Velocity – speed in a given direction. 

Wavelength – the distance between two adjacent wave-crests. 

9.8 TERMINAL QUESTIONS 

1. A sound wave in air is represented as 

𝑦 = 0.05 sin(100𝑡 − 50𝑥)  𝑚 

      where t is expressed in seconds and x in m, and y represents the displacement. Determine the 

phase velocity of the wave. 

2. Choose the correct option: 

The relation between phase difference and the path difference is 

(a) ∆𝜑 =
𝜋


∆𝑥 

(b) ∆𝜑 = 2𝜋∆𝑥 

(c) ∆𝜑 =
2𝜋

∆𝑥
 

(d) ∆𝜑 =
2𝜋


∆𝑥 

 

3. When a plane wave traverses a medium, the displacement of the particles is given by 

𝑦(𝑥, 𝑡) = 0.01 sin(4𝜋𝑡 − 0.02𝜋𝑥) 

where y and x are expressed in meters and t is in seconds. Calculate the  

(a) amplitude, wavelength, velocity and the frequency of the wave. 

(b) The phase difference between two positions of the same particle at time interval of 0.25 s. 

(c) The phase difference, at a given instant of time, between two particles 50 m apart. 

4. A transverse harmonic wave travelling in positive x-direction is represented as 

𝑦(𝑥, 𝑡) = 5 sin(4𝑡 − 0.02𝑥) 

Calculate the velocity of the wave, maximum particle velocity, acceleration and intensity. Note 

that y is measured in cm, t in seconds and density of the media is 1.25 g/cm3. 
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5. In normal conversation, the intensity of sound is 5 × 10−6 𝑊𝑚−2. The amplitude and velocity 

of the sine wave are respectively 2.4 × 10−8 𝑚 and 332 𝑚/𝑠. If the density of air at STP is 

1.29 kg/m3, calculate the frequency of normal human voice. 

6. Sunlight strikes the earth with an intensity of 2 cal/cm2 per minute. How many watts of power 

must an electrical lamp radiate in order to produce, at 1 m, the brightness of sunlight? 

7. Show that the average kinetic energy transported by a progressive wave per cycle through a thin 

layer of mass dm is equal to the average potential energy of the mass dm of a layer in the 

medium. 

8. Choose the correct option: 

The loudness of sound depends upon 

(a) Amplitude 

(b) Pitch 

(c) Velocity 

(d) Wavelength 

 

9. Choose the correct option: 

An amplifier has power input of 0.2 W and power output of 80 W. It’s power gain is 

(a) 400 dB 

(b) 26 dB 

(c) about 100 dB 

(d) None of the above 

 

10. Choose the correct option: 

A sound intensity level of 55 dB is produced by 10 flutes. The number of flutes needed to produce 

a level of 65 dB under the same circumstances is 

(a) 20      (b) 60      (c) 100       (d) 200 

11. Write short notes on: 

      (i) Intensity of a wave      (ii) Intensity Levels and Decibels 

      (iii) Energy transported by progressive waves 

 

12. Define the terms phase, phase difference and phase velocity. How are they related? 

13. Deduce the expression for the power transmitted by a sinusoidal wave travelling with velocity 

v. 
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9.9 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. We know that for a wave 

𝑣 = 𝑓 

⇒  =
𝑣

𝑓
=

360

500
= 0.72 𝑚 

Now in a wave, the path difference is related to the phase difference by the relation, 

𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∆𝜑 =
2𝜋


(𝑝𝑎𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∆𝑥) 

We are given that the phase difference is 600, which is equal to π/3 rad. Therefore, 

∆𝑥 =


2𝜋
(∆𝜑) =



2𝜋
(
𝜋

3
) = 0.12 𝑚 

2. (a) 

3. (a) 

    𝑦 = 𝐵 cos[𝜔𝑡 − 𝑘𝑥)] can be written as 𝑦 = 𝐵 sin[𝜔𝑡 − 𝑘𝑥 + 𝜋/2]. Since, the amplitude does 

not come into play for the determination of the phase difference between two waves, therefore, 

the phase difference between the given waves is equal to 

(𝜔𝑡 − 𝑘𝑥 +
𝜋

2
) − (𝜔𝑡 − 𝑘𝑥) =

𝜋

2
 

4. The two waves are out-of-phase and therefore, the phase difference between them is π rad. 

5. The statement is false, since, the ratio of KE and PE varies as the wave moves. It is only the 

average KE and average PE over a cycle that is equal.   

6. Since, traffic noise has an intensity level about 10 dB greater than conversation it follows from 

the above discussion that its intensity must be about ten times that of normal speech, i.e. about 

10−5 W m−2. A more general technique for finding this answer is to use the antilog10 function 

(the inverse of the log10 function), since it follows from the definition of β (Equation 11.20), 

that 

𝐼 = 𝐼0 × 10β/(10 dB) = 𝐼0 × antilog10 (
β

10 dB
) 
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7. (d)  

8.  

𝐼1
𝐼2

=
𝑟2

2

𝑟1
2  

Therefore,  

10−3𝑊𝑚−2

3 × 10−6𝑊𝑚−2
=

𝑟2
2

(0.25 𝑚)2
 

⇒ 𝑟2 = 21 𝑚 

9. An intensity of 0 dB is equivalent to 1 × 10−12𝑊𝑚−2. Since, a sound of 70 dB is 107 times 

more intense, it is equivalent to a rate of energy flow of 

𝐼 = (107)(1 × 10−12𝑊𝑚−2) = 1 × 10−5𝑊𝑚−2 

10. Since power gains in dB are logarithmic quantities, the overall gain in dB of a system of several 

devices is equal to the sum of the separate gains in dB of the devices: 

𝐺 (𝑜𝑣𝑒𝑟𝑎𝑙𝑙) = 𝐺1 + 𝐺2 + 𝐺3 + ⋯ 

⇒ 𝐺 (𝑜𝑣𝑒𝑟𝑎𝑙𝑙) = +35 − 10 + +70 𝑑𝐵 = +95 𝑑𝐵 

 

Selected Terminal Questions: 

1.  The phase velocity of a wave is given by 

𝑣𝑝 =


𝑘
 

From the given wave equation, we can deduct that  = 100 and 𝑘 = 50. Therefore,  

𝑣𝑝 =
100

50
= 2 𝑚/𝑠 

 

2.  (d) 

3.  (a) The given equation can be rewritten in the form 

𝑦(𝑥, 𝑡) = 0.01 sin [
2𝜋

100
(200𝑡 − 𝑥)] 
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Comparing this with the wave equation, 

𝑦(𝑥, 𝑡) = 𝐴 sin [
2𝜋


(𝑣𝑡 − 𝑥)] 

We have amplitude A = 0.01 m, wavelength  = 100 m, and the wave velocity v = 200 m/s. The 

frequency can be calculated as 

𝑓 =
𝑣


=

200

100
= 2 𝐻𝑧 

(b) Phase change in a time interval of ∆𝑡 is 

2𝜋

𝑇
. ∆𝑡 = 2𝜋𝑓. ∆𝑡 

Therefore, the phase difference is 

2𝜋 × 2 × 0.25 = 𝜋 

In other words, the particle phase is reversed in a time 0.25 s.  

(c) Phase difference for the path difference of ∆𝑥 is 

−
2𝜋


. ∆𝑥 = −

2𝜋

100
× 50 = −𝜋 

In other words, the particle located 50 m (which is half the wavelength) ahead of another 

particle lags in phase by 𝜋 rad. 

 

4. The equation of transverse wave travelling in +x direction is given as 

𝑦(𝑥, 𝑡) = 5 sin(4𝑡 − 0.02𝑥) 

Comparing it with the standard wave equation, 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝜔𝑡 − 𝑘𝑥) 

We get, 𝜔 = 4 𝑟𝑎𝑑/𝑠, k = 0.02 rad/cm and A = 5 cm. Hence, the velocity of the wave is given by 

𝑣 =
𝜔

𝑘
=

4

0.02
= 200 𝑐𝑚/𝑠 

Instantaneous velocity of the particle is given as 

𝑑𝑦(𝑥, 𝑡)

𝑑𝑡
= 5 × 4 cos(4𝑡 − 0.02𝑥) = 20cos(4𝑡 − 0.02𝑥) 

Therefore, the maximum velocity of the particle = 20 cm/s. The particle acceleration is given as 
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𝑑2𝑦(𝑥, 𝑡)

𝑑𝑡2
= −20 × 4 sin(4𝑡 − 0.02𝑥) = −80 sin(4𝑡 − 0.02𝑥) 

Therefore, the maximum acceleration of the particle = 80 cm/s2. 

The intensity of the wave is given by 

𝐼 = 2𝜋2𝐴2𝑓0
2𝜌𝑣 

=
1

2
𝐴2𝜔2𝜌𝑣 

=
1

2
(0.05 𝑚)2(4 𝑟𝑎𝑑/𝑠)2(1250 𝑘𝑔/𝑐𝑚3)(2 𝑚/𝑠) 

= 50 𝑊/𝑚2 

5. The expression for intensity is  

𝐼 = 2𝜋2𝐴2𝑓0
2𝜌𝑣 

Therefore,  

𝑓0 =
1

𝜋𝐴
√

𝐼

2𝜌𝑣
 

=
1

𝜋(2.4 × 10−8 𝑚 )
√

5 × 10−6 𝑊𝑚−2

2(1.29 𝑘𝑔 𝑚−3)(332 𝑚/𝑠)
 

= 1000 𝐻𝑧 

. The amplitude and velocity of the sine wave are respectively and 332 𝑚/𝑠. If the density of air 

at STP is 1.29 kg/m3 

6. The intensity I of sunlight on earth is 

2 𝑐𝑎𝑙. 𝑐𝑚−2 =
2 × 4.2

10−4 × 60
= 1.4 × 103 𝑊𝑚−2 

The power P of a lamp producing an intensity of 1.4 × 103 𝑊𝑚−2 at r = 1 m is given by 

𝑃 = 𝐼 × 4𝜋𝑟2 

= 1.4 × 103 × 4𝜋 × (1)2 = 17.6 𝑘𝑊 

8. (a) 

9. (b)  
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10. (c)  
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10.1 INTRODUCTION 

Till now, you studied about harmonic waves and its basic characteristics like amplitude, time 

period and frequency. You also learnt about the concept of phase, phase difference and phase 

velocity. We have also discussed how the energy is transported by sinusoidal waves and how the 

rate at which energy is transported by a wave varies linearly with wave velocity and as square of 

its amplitude and frequency. Since, energy and power do not account for observations related to 

the variations in the strength of a progressive wave with distance from the source, intensity of 

wave was specified. We also discussed the idea of intensity levels and power gain of a system.   

In this unit, we will study the different kinds of waves that can propagate in various media. Do you 

know what determines whether or not waves can propagate in a medium and when the waves do 

travel, how fast it can go in that medium? Experimental investigations have shown that the speed 

of a wave does not depend on its wavelength or period. This means that answers to such questions 

must lie in the physical properties of the medium in which a wave propagates. To discover this, 

we consider propagation of waves in some typical medium such as a stretched string, solid rod, 

and a gaseous medium. 

10.2 OBJECTIVES 

After studying this unit, you should be able to 

 derive the expression for one dimensional wave equation for waves travelling on a 

stretched string, 

 derive the expression for one dimensional wave equation for longitudinal waves travelling 

in a uniform rod, 

 derive the expression for one dimensional wave equation for longitudinal waves in a gas, 

 write down the one dimensional wave equation for waves travelling in an absorbing 

medium, and 

 write down the equations for two and three dimensional waves. 

10.3 ONE DIMENSIONAL WAVE EQUATION 

10.3.1 Waves on a Stretched String 

Consider a uniform stretched string, having mass per unit length m. Under equilibrium conditions, 

it can be considered to be straight. The x-axis is chosen along the length of the stretched string in 

its equilibrium state. Let the string be displaced perpendicular to its length by a small amount so 

that a small section of length Δx is displaced through a distance y from its mean position, as shown 

in Figure 1. When the string is released, it results in wave motion. Let’s see how. 
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Figure 32: Forces acting on a small element of a string displaced perpendicular to its length. 

We have studied that the wave disturbance travels from one particle to another due to their masses 

(or inertia) and the factor responsible for the periodic motion of the particle is the elasticity of the 

medium. For a stretched string, the elasticity is measured by the tension F in it and the inertia is 

measured by mass per unit length or linear mass density, m.  

Suppose that the tangential force on each end of a small element AB, as shown in Figure 1, is F; 

the force on the end B is produced by the pull of the string to the right and the one at A is due to 

the pull of the string to the left. Due to the curvature of the element AB, the forces are not directly 

opposite to each other. Instead, they make angles 𝜃1 and 𝜃2 with the x-axis. This means that the 

forces pulling the element AB at opposite ends, though of equal magnitude, do not exactly cancel 

each other. In order to calculate the net force along the x- and y-axes, the forces are resolved into 

rectangular components. The net force in the x and the y directions are respectively given by 

𝐹𝑥 = 𝐹 cos 𝜃2 − 𝐹 cos 𝜃1 

𝑎𝑛𝑑     𝐹𝑦 = 𝐹 sin 𝜃2 − 𝐹 sin 𝜃1 

For small angle approximation, cos 𝜃 ≈ 1 and sin 𝜃 ≈ 𝜃 ≈ tan𝜃. This implies that if the 

displacement of the string perpendicular to its length is relatively small, the angles 𝜃1 and 𝜃2 will 

be small and there is no net force in the x-direction, and the element AB is only subjected to a net 

upward force 𝐹𝑦. Under the action of this force, the string element will move up and down. 

Therefore, the y-component of the force on element AB can be written as 

𝐹𝑦 = 𝐹 tan𝜃2 − 𝐹 tan𝜃1 

We know that the tangent of an angle actually defines the slope at that point. In other words, the 

tangent define the derivative dy/dx. Using this result, the y-component of force on the element can 

be approximated as 
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𝐹𝑦 = 𝐹 (
𝑑𝑦

𝑑𝑥
|
𝑥+𝛥𝑥

−
𝑑𝑦

𝑑𝑥
|
𝑥
) 

 

(10.1) 

Note that the perpendicular displacement y(x, t) of the string is both a function of the position x 

and time t. However, equation (10.1) is valid at a particular instant of time. Therefore, the 

derivative in this expression should be taken by keeping the time fixed. Therefore, equation (10.1) 

can be rewritten as 

𝐹𝑦 = 𝐹 (
𝜕𝑦

𝜕𝑥
|
𝑥+𝛥𝑥

−
𝜕𝑦

𝜕𝑥
|
𝑥
) 

 

(10.2) 

For the sake of convenience, let us put 

𝑓(𝑥) =
𝜕𝑦

𝜕𝑥
|
𝑥
        𝑎𝑛𝑑         𝑓(𝑥 + 𝛥𝑥) =

𝜕𝑦

𝜕𝑥
|
𝑥+𝛥𝑥

 

in equation (10.2). Thus, equation (10.2) becomes 

𝐹𝑦 = 𝐹[𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)] 

 

(10.3) 

To simplify the above expression, we make use of Taylor series expansion of the function 

𝑓(𝑥 + 𝛥𝑥) about the point x: 

𝑓(𝑥 + 𝛥𝑥) = 𝑓(𝑥) +
𝜕𝑓

𝜕𝑥
|
𝑥
𝛥𝑥 +

1

2

𝜕2𝑓

𝜕𝑥2
|
𝑥

𝛥𝑥2 + ⋯ 

Since, 𝛥𝑥 is small , we can ignore the second and the higher order terms in 𝛥𝑥 to obtain, 

𝑓(𝑥 + 𝛥𝑥) = 𝑓(𝑥) +
𝜕𝑓

𝜕𝑥
|
𝑥
𝛥𝑥 

                           = 𝑓(𝑥) +
𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
)𝛥𝑥 

⇒ 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥) =
𝜕2𝑦

𝜕𝑥2
𝛥𝑥 

Inserting the above result in equation (10.3), we get 

𝐹𝑦 = 𝐹
𝜕2𝑦

𝜕𝑥2
𝛥𝑥 
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This equation gives the net force on the element AB. We use Newton’s second law of motion to 

obtain the equation of motion of this element, by equating this force to the product of mass and 

acceleration of the element AB. The mass of the element AB is 𝑚 𝛥𝑥. Therefore, we can write 

𝑚 𝛥𝑥
𝜕2𝑦

𝜕𝑡2
= 𝐹

𝜕2𝑦

𝜕𝑥2
𝛥𝑥 

⇒
𝜕2𝑦

𝜕𝑥2
=

𝑚

𝐹

𝜕2𝑦

𝜕𝑡2
 (10.4) 

Note that even though equation (10.4) has been obtained for a small element AB, it can be applied 

to the entire string, since there is nothing special about this particular element of the string. In other 

words, equation (10.4) can be applied to all the elements of the string.  

Now, let us go back to the sinusoidal wave propagating on the string described by the equation 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑡 − 𝑘𝑥) 

If this mathematical form is consistent with equation (10.4), then we can be sure that such a wave 

can indeed move on the string. To check this, we calculate the spatial and the temporal partial 

derivatives of particle displacement y(x, t): 

𝜕2𝑦

𝜕𝑥2
= −𝑘2𝐴 sin(𝑡 − 𝑘𝑥) 

𝑎𝑛𝑑      
𝜕2𝑦

𝜕𝑡2
= −2𝐴 sin(𝑡 − 𝑘𝑥) 

Substituting these partial derivatives in equation (10.4), we get 

−𝑘2𝐴 sin(𝑡 − 𝑘𝑥) =
𝑚

𝐹
[−2𝐴 sin(𝑡 − 𝑘𝑥)] 

⇒
𝐹

𝑚
= (



𝑘
)
2

 

 

(10.5) 

But, we know that /𝑘 is the wave speed v, therefore, from the above relation, we get 

𝑣 =


𝑘
= √

𝐹

𝑚
 (10.6) 
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The above relation tells us that velocity of a transverse wave on a stretched string depends on 

tension and mass per unit length of the string. Using equation (10.6), we can write equation (10.4) 

as 

⇒
𝜕2𝑦

𝜕𝑥2
=

1

𝑣2

𝜕2𝑦

𝜕𝑡2
 (10.7) 

This result expresses one-dimensional wave equation. It holds as long as we deal with small 

amplitude waves. Elasticity provides the restoring force and the inertia determines the response of 

the medium.  

10.3.2 Longitudinal Waves in a Uniform Rod 

Consider a cylindrical metal rod of uniform cross-sectional area. When the rod is struck with a hammer at 

one end, the disturbance will propagate along it with a speed determined by its physical properties. For 

simplicity, we assume that the rod is fixed at the left end as shown in Figure 2. 

 
Figure 33: Uniform cylindrical rod fixed at left end. 

  

 

Figure 34: Longitudinal wave propagating in a uniform cylindrical rod. Element PQ in (a) 

equilibrium state, and (b) deformed state. 
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We choose x-axis along the length of the rod with origin O at the left end. We divide the rod in a 

large number of small elements, each of length Δx. Let us consider one such element PQ, as shown 

in Figure 3a. Since, the rod has been struck at end O lengthwise, the section at P, which is at a 

distance 𝑥1 from O, will be displaced along x-axis. Since, the force experienced by different 

sections of the rod is a function of distance, the displacements of particles in different sections will 

also be function of position. Let us denote is by ξ(x).  

Figure 3b shows the deformed state of the rod and displaced position of the element under 

consideration. Let us denote the x-coordinate of the element in the displaced position by 𝑥1 +

ξ(𝑥1) so that ξ(𝑥1) represents the displacement of the particles in the section P. Similarly, the new 

x-coordinate of the particles initially located in the section at Q (x = 𝑥2) be denoted by 𝑥2 + ξ(𝑥2), 

so that ξ(𝑥2) signifies the displacement of the particles in section at Q. Hence, the change in length 

of the element is ξ(𝑥2) − ξ(𝑥1). Using Taylor series expansion of ξ(𝑥2) around 𝑥1 and retaining 

the first order terms, just like we did in the case of the string, we can write 

ξ(𝑥2) − ξ(𝑥1) = (
𝜕ξ

𝜕𝑥
)
𝑥=𝑥1

∆𝑥 

The linear strain produced in the element PQ can be expressed as 

𝜀(𝑥2) =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
=

(
𝜕ξ
𝜕𝑥)

𝑥=𝑥1

∆𝑥

∆𝑥
 

⇒ 𝜀(𝑥2) = (
𝜕ξ

𝜕𝑥
)
𝑥=𝑥1

 (10.8) 

The net force 𝐹′ − 𝐹 on the element P’Q’ at points  P’ and Q’, as shown in Figure 3b, is toward 

right. Due to this force, the element under consideration will experience stress, which is the 

restoring force per unit area. You may recall that the ratio of stress to longitudinal strain defines 

the Young’s modulus Y, 

𝑌 =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
 

⇒ 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑌 × 𝑆𝑡𝑟𝑎𝑖𝑛 

In view of the spatial variation of force, we can say that the sections P and Q of the element under 

consideration will develop different stresses. Therefore, we can write 

𝜎(𝑥1) = 𝑌 (
𝜕ξ

𝜕𝑥
)
𝑥=𝑥1
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𝑎𝑛𝑑         𝜎(𝑥2) = 𝑌 (
𝜕ξ

𝜕𝑥
)
𝑥=𝑥2

 

The net stress on the element PQ is 

𝜎(𝑥2) − 𝜎(𝑥1) = 𝑌 [(
𝜕ξ

𝜕𝑥
)
𝑥=𝑥2

− (
𝜕ξ

𝜕𝑥
)
𝑥=𝑥1

] 

              = 𝑌[𝑓(𝑥2) − 𝑓(𝑥1)] 

where we have put 𝑓(𝑥) = 𝜕ξ/𝜕x.. As before, using Taylor series expansion for 𝑓(𝑥2) about 𝑥1, 

we can easily see  

𝜎(𝑥2) − 𝜎(𝑥1) = 𝑌 (
𝜕f

𝜕𝑥
)∆𝑥 

= 𝑌
𝜕

𝜕𝑥
(
𝜕ξ

𝜕𝑥
)∆𝑥 

⇒ 𝜎(𝑥2) − 𝜎(𝑥1) = 𝑌 (
𝜕2ξ

𝜕𝑥2
)∆𝑥 (10.9) 

If the cross-sectional area of the rod is A, the net force on the elements in the x-direction is given 

by 

𝐹(𝑥2) − 𝐹(𝑥1) = 𝐴[𝜎(𝑥2) − 𝜎(𝑥1)] 

⇒ 𝐹(𝑥2) − 𝐹(𝑥1) = 𝑌 (
𝜕2ξ

𝜕𝑥2
)∆𝑥 (10.10) 

Under dynamic equilibrium condition, the equation of motion of the element PQ, using Newton’s 

second law of motion, can be written as 

𝑌 (
𝜕2ξ

𝜕𝑥2
)∆𝑥 = 𝜌𝐴∆𝑥 (

𝜕2ξ

𝜕𝑡2
) (10.11) 

where 𝜌 is the density of the material of the rod and 𝜌𝐴∆𝑥 signifies the mass of the element PQ. 

On simplification, we find that the displacement ξ(x, t) satisfies the equation 

𝜕2ξ

𝜕𝑡2
=

𝑌

𝜌

𝜕2ξ

𝜕𝑥2
 (10.12) 
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which is of the form of wave equation (10.7) with 

𝑣 = √
𝑌

𝜌
 (10.13) 

Equations (10.12) and (10.13) show that the deformation propagates along the rod as a wave and 

the velocity of the longitudinal waves is independent of the cross-sectional area of the rod.   

10.3.3 Longitudinal Waves in a Gas 

Since a gaseous medium lacks rigidity, transverse waves cannot propagate in it; only solids can 

sustain transverse waves. However, longitudinal waves can propagate in all media such as gas, 

solid and liquid in the form of compressions and rarefactions. We now discuss longitudinal waves 

in a gaseous medium. 

Sound waves in air columns perhaps are the most familiar one-dimensional waves in a gas. These 

can be easily excited by placing a vibrating tuning fork at the open end of an air column. What is 

the basic difference between longitudinal waves in a solid rod that we studied in the last section 

and a gas column? We know that gases being compressible, the pressure variations in a gas are 

accompanied by fluctuations in the density, while the density of a solid rod remains essentially 

constant.  

In order to understand the propagation of one-dimensional longitudinal waves in a gas, consider a 

gas column in a long pipe or cylindrical tube of uniform cross-sectional area A. As before, we 

conveniently choose x-axis along the length of the tube and divide the column of the gas into small 

elements or slices, each of small length Δx. Figure 4 shows one such volume element PQRS. Thus, 

the volume of this element is V = AΔx. 
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Figure 35: (a) Equilibrium state of the column PQRS of a gas contained in a long tube of cross-

sectional area A, and (b) displaced position of column under pressure difference. 

Under equilibrium condition, pressure and density of the gas remains the same throughout the 

volume of the gas, independent of the x-coordinate. Let the equilibrium pressure be denoted by 

𝑝0. If the pressure of the gas in the tube is changed, the volume element PQRS will be set in motion 

giving rise to a net force. Let us choose the origin of the coordinate system so that the particles in 

plane PQ are at a distance 𝑥1 and those in plane SR are at a distance 𝑥2 from it. Figure 4b shows 

the displaced position of the volume element when PQ is shifted to P'Q' and SR is shifted to S'R̓' 

Let the new coordinates be denoted by 𝑥1 + 𝜓(𝑥1) and 𝑥2 + 𝜓(𝑥2), respectively. It means that 

𝜓(𝑥1) and 𝜓(𝑥2) respectively, denote the displacements of the particles originally at 𝑥1 and 𝑥2. 

Therefore, the change in thickness 𝛥𝑙 is given by 

𝛥𝑙 = 𝜓(𝑥2) − 𝜓(𝑥1) 

If 𝛥𝑙 is positive, there is increase in length, and hence the volume of the element also increases 

and vice versa. Using Taylor series expansion for 𝜓(𝑥2) about 𝜓(𝑥1), we can write 

𝛥𝑙 = 𝜓(𝑥2) − 𝜓(𝑥1) = (
𝜕𝜓

𝜕𝑥
)𝛥𝑥 

This means that the change in volume 𝛥𝑉 is 

𝛥𝑉 = 𝐴𝛥𝑙 = 𝐴𝛥𝑥 (
𝜕𝜓

𝜕𝑥
) 

The volume strain, which is defined as the change in volume per unit volume, is given by 

𝛥𝑉

𝑉
=

𝐴𝛥𝑥

𝐴𝛥𝑥
(
𝜕𝜓

𝜕𝑥
) =

𝜕𝜓

𝜕𝑥
 (10.14) 
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This increase in volume of the element is due to the decrease in pressure and vice versa. 

It should be noted that until now all the steps that have been followed are identical to the case of 

the solid rod. However, as mentioned earlier, due to comparatively large compressibility of the 

gas, change in volume is accompanied by changes in density. This implies that the pressure in the 

compressed/rarefied gas varies with distance. To proceed further, let us suppose that the pressure 

at P’Q’ is 𝑝0 + 𝑝(𝑥1
′). Hence, the pressure difference across the ends of the element P’Q’R’S’ can 

be expressed in terms of the pressure gradient, 

𝑝(𝑥2
′ ) − 𝑝(𝑥1

′) = (
𝜕𝑝(𝑥)

𝜕𝑥
)
𝑥=𝑥1

′
∆𝑥 

                            =
𝜕(𝑝0 − ∆𝑝)

𝜕𝑥
∆𝑥 

Since, 𝑝0 is a constant 

⇒ 𝑝(𝑥2
′ ) − 𝑝(𝑥1

′) = −
𝜕(∆𝑝)

𝜕𝑥
∆𝑥 (10.15) 

To express the above result in a familiar form, we note that ∆𝑝 is connected to the bulk modulus 

of elasticity by the relation 

𝐸 =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑎𝑖𝑛
= −

∆𝑝

∆𝑉/𝑉
 

The negative sign is included to account for the fact that when the pressure increases, the volume 

decreases. This ensures that E is positive. We can write the above relation as 

∆𝑝 = −𝐸 (
∆𝑉

𝑉
) 

On substituting for ∆𝑉/𝑉 from equation (10.14), we get 

∆𝑝 = −𝐸 (
𝜕𝜓

𝜕𝑥
) 

Using equation (10.15), we find that the pressure difference at the ends of the displaced column is 

given by 

𝑝(𝑥2
′ ) − 𝑝(𝑥1

′) = −
𝜕

𝜕𝑥
(−𝐸

𝜕𝜓

𝜕𝑥
)∆𝑥 = 𝐸 (

𝜕2𝜓

𝜕𝑥2
)∆𝑥 

The net force acting on the volume element is obtained by multiplying this expression for pressure 

difference by the cross-sectional are of the column, 
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𝐹 = [𝑝(𝑥2
′ ) − 𝑝(𝑥1

′)]𝐴 

= 𝐸𝐴∆𝑥 (
𝜕2𝜓

𝜕𝑥2
) 

Under the action of this force, the volume element under consideration shall be set in motion. 

Using Newton’s second law of motion, we find that the equation of motion of the element under 

consideration can be expressed as 

𝜌∆𝑥𝐴
𝜕2𝜓

𝜕𝑡2
= 𝐸𝐴∆𝑥 (

𝜕2𝜓

𝜕𝑥2
) 

⇒
𝜕2𝜓

𝜕𝑡2
=

𝐸

𝜌

𝜕2𝜓

𝜕𝑥2
 (10.16) 

If we identify the speed of the longitudinal wave as 

  

𝑣 = √
𝐸

𝜌
 (10.17) 

equation (10.16) becomes identical to equation (10.7). One must note that the wave speed is 

determined only by the bulk modulus of elasticity and density – two properties of the medium 

through which the wave is propagating. 

When a longitudinal wave propagates through a gaseous medium such as air, the volume elasticity 

is influenced by the thermodynamic changes that take place in it. These changes can be isothermal 

or adiabatic. Newton gave the first theoretical expression of the velocity of sound wave in a gas. 

He assumed that when sound wave travels through a gaseous medium, the temperature variations 

in the regions of compression and rarefaction are negligible. For sound waves propagating in air, 

Newton assumed that isothermal changes take place in the medium. For an isothermal change, the 

volume elasticity equals atmospheric pressure, 

𝐸 = 𝐸𝑇 = 𝑝 

Then we can write, 

𝑣 = √
𝑝

𝜌
 (10.18) 
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This is known as the Newton’s formula for velocity of sound. For air at STP, ρ = 1.29 kgm−3 and 

p = 1.01 × 105 Nm−2. Hence, velocity of sound in air at STP, using the Newton’s formula comes 

out to be 

𝑣 = √
1.01 × 105 𝑁𝑚−2

1.29 𝑘𝑔𝑚−3
= 280 𝑚/𝑠 

But experimental results paint a different picture and show that the speed of sound in air at STP is 

actually around 332 m/s, which is about 15% higher than the value predicted by Newton’s formula. 

This implies that something was wrong with the assumption of isothermal change.  

The discrepancy was resolved when Laplace pointed out that sound waves produced adiabatic 

changes; the regions of compression are hotter while the regions of rarefaction are cooler, i.e. local 

changes in temperature occur when sound propagates in air. Since, the thermal conductivity of a 

gas is small and these thermal change occur so rapidly that the heat developed in compression and 

cooling produced in rarefaction is not transferred out during the short time-scale.  The time-scale 

is the time required by sound to travel from compression to rarefaction. However, the total energy 

of the system is conserved. This means that the adiabatic changes occur in air when sound 

propagates. 

For an adiabatic change, 𝐸𝑠 is γ times the pressure, where γ is the ratio of specific heat capacities 

of a gas at constant pressure and at constant volume, i.e.  

𝐸𝑠 = γp 

Then, equation (10.18) becomes 

𝑣 = √
𝛾𝑝

𝜌
 (10.19) 

This is known as the Laplace’s formula. For air, γ = 1.4 and the velocity of sound in air at STP 

based on equation (10.19) comes out to be 331 m/s, which is in close agreement with the 

experimentally measured value, thereby establishing the correctness of Laplace’s explanation.  

At a given temperature, p/ρ is constant for a gas. So, equation (10.19) shows that the velocity of 

a longitudinal wave is independent of pressure.  

The question arises that why is the thermal energy unable to flow from a compression to a 

rarefaction and equalize the temperature creating isothermal conditions? To answer this question, 

we notice that to attain this condition, thermal energy must flow through a distance of one-half 

wavelength in a time much shorter than one-half of the period of oscillation of the particles. 

Thermodynamically, this means that we would need, 
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𝑣𝑠𝑜𝑢𝑛𝑑 ≪ 𝑣𝑡ℎ𝑒𝑟𝑚𝑎𝑙 

One may recall from kinetic theory of gases that the root mean square speed of air molecules is 

given by 

𝑣𝑟𝑚𝑠 = √
2𝑘𝐵𝑇

𝑚
 (10.20) 

where m is the mass of air molecules and T is the absolute temperature in K. We can similarly 

write the expression for the speed of sound 

𝑣𝑠𝑜𝑢𝑛𝑑 = √
𝛾𝑘𝐵𝑇

𝑚
 (10.21) 

As liquids, in general, are incompressible, the speed of sound in liquids must be significantly 

higher than in gases. For example, in water whose 𝐸 = 2.22 × 109 𝑁𝑚−2, using equation (10.17) 

the wave speed comes out to be about 1500 m/s. Even though water is about 1000 times denser 

than air, sound propagates faster in water than air.    

 

Example 1: Transverse waves are generated in two uniform steel wires A and B of diameters 0.001 

m and 0.0005 m, respectively, by attaching their free end to a vibrating source of frequency 500 

Hz. Find the ratio of the wavelengths if they are stretched with the same tension.  

Solution: The density ρ of a wire of mass M, length L and diameter d is given by 

𝜌 =
𝑀

𝐿 (
𝜋𝑑2

4 )
=

𝑚

(
𝜋𝑑2

4 )
 

where 𝑚 is the linear mass density (mass per unit length). Now, we know that the velocity of a 

transverse wave in a stretched wire is given by 

𝑣 = √
𝐹

𝑚
 

Since, the tension is the same for both the steel wires A and B, therefore, we have 

𝑣𝐴

𝑣𝐵
= √

𝑚𝐵

𝑚𝐴
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⇒
𝑣𝐴

𝑣𝐵
=

𝑑𝐵

𝑑𝐴
  

Since, both the wires are made of steel, and have the same densities. Also, we know that the wave 

velocity v = f , where f is the frequency of the source, therefore the above relation can be written 

as 

𝐴

𝐵
=

𝑑𝐵

𝑑𝐴
=

0.0005

0.001
=

1

2
 

 

Self Assessment Question (SAQ) 1: Using dimensional analysis, show that the wave speed v is 

given by 

𝑣 = 𝐾√
𝐹

𝑚
 

where K is a dimensionless constant, F is the tension in the string and m is the linear mass density 

of the string. 

Self Assessment Question (SAQ) 2: A one meter long string weighing one gram is stretched with 

a force of 10 N. Calculate the speed of transverse wave.  

Self Assessment Question (SAQ) 3: For a steel rod, 𝑌 = 2 × 1011 𝑁𝑚−2 and ρ = 7800 kg/m3. 

Calculate the speed of the longitudinal waves. 

Self Assessment Question (SAQ) 4: In a laboratory experiment (room temperature being 150C) 

the wavelength of a note of sound of frequency 500 Hz is found to be 0.68 m. If the density of air 

at STP is 1.29 kg/m3, calculate the ratio of the specific heats of air. 

Self Assessment Question (SAQ) 5: Write the expressions for speed of mechanical waves in 

(a) a string, (b) rod, (c) liquid, (d) gas 

 

10.4 WAVES IN TWO AND THREE DIMENSIONS 

So far we have restricted our discussion to the waves propagating along one-dimension, for 

example, waves in a stretched string. But, waves on a stretched membrane will make the 

disturbance spread over the surface and such waves are two-dimensional waves. When the 

membrane is suddenly disturbed in a direction normal to the plane of the membrane, the particles 

of the membrane vibrate along the direction of the applied force. But tension in the membrane 
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makes the disturbance to spread over the surface. That is to say, the waves on the membrane are 

two-dimensional. Similarly, surface waves caused by dropping a stone into a quiet lake are two-

dimensional.  

In such cases, the displacement is a function of x, y and t and we write the displacement as 𝜓 =

𝜓(𝑥, 𝑦, 𝑡). We obtain the two-dimensional wave equation for a stretched membrane by using 

arguments similar to those used for a stretched string. Suppose σ is the mass per unit area of the 

membrane and F is the uniform tension per unit length. This means that, if a line of unit length is 

drawn in the surface of the membrane, then the material on one side of this line exerts a force F on 

the material on the other side in a direction normal to that of the line. This F is the surface tension 

of the membrane. Figure 7 shows a small rectangular element ABCD of a stretched membrane of 

sides Δx and Δy in the xy plane, vibrating in the z-direction. The forces Fδx and Fδy are acting on 

the sides of the element during vibrations. The components of these forces in direction normal to 

xy plane constitute the restoring force tending to bring the element back to its equilibrium position. 

 

Figure 36: Forces acting on a small element ABCD of a stretched membrane vibrating in the z-

direction. 

Without going into the mathematical details, which are very similar to the case of 1-D waves on a 

stretched string, we will directly write the wave equation for the case of a stretched membrane. 

Since the forces along x- and y-axes can be taken to act independently; each one will contribute 

analogous term to the wave equation. So, we can write 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
=

σ

𝐹

𝜕2𝜓

𝜕𝑡2
 (10.22) 

where the wave speed is given by  

v = √
F

σ
 

The solution of this equation has the form, 
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𝜓(𝑥, 𝑦, 𝑡) = 𝐴 sin(0𝑡 − 𝑘⃗ . 𝑟 ) (10.23) 

where the position vector 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂. 

Extending the preceding arguments for three-dimensional waves such as seismic waves, we can 

write  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝜓(𝑟 , 𝑡) =

1

𝑣2

𝜕2𝜓(𝑟 , 𝑡)

𝜕𝑡2
 (10.24) 

 where the position vector 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂. For an isotropic medium (a medium in which the 

wave velocity is the same in every direction) the quantity 𝜓 is a scalar. For non-isotropic media, 

𝜓 becomes a vector. 

  

Example 2: A uniform rope of length 12 m and mass 6 kg hangs vertically from a rigid support. 

A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 

m is produced at the lower end of the rope. What is the wavelength of the pulse when it reaches 

the top of the rope? [𝑔 = 9.8 𝑚𝑠−2] 

Solution: As the rope has mass and a mass is also suspended from the lower end, the tension in 

the rope will be different at different points. We know that the speed of a transverse wave is given 

by  

v = √
F

m
 

Therefore, the ratio of speeds of transverse wave at the top and at the bottom of the rope is 

vT

vB
= √

FT

FB
= √

(6 + 2) × 9.8 N

2 × 9.8 N
 

⇒
vT

vB
= 2 

Since, the frequency is the characteristic of the source producing the waves, we have frequency of 

the wave at the top is the same as the frequency at the bottom of the rope. Since, wave speed 𝑣 =

𝑓, we have  

T = 2B = 2 × 0.06 = 0.12 m 

 

Self Assessment Question (SAQ) 6: Explain why the velocity of sound is generally greater in 

liquids than in gases. 
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Self Assessment Question (SAQ) 7: Choose the correct option. 

The speed of sound in air is 

(f) ∝ √𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

(g) ∝ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

(h) ∝ 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

(i) 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟 

 

Self Assessment Question (SAQ) 8: Choose the correct option: 

Velocity of sound is measured in hydrogen and oxygen gases at a given temperature. The ratio of 

the two velocities will be: 

(h) 1:4, (b) 4:1, (c) 1:1, (d) 32:1 

10.5 SUMMARY 

In this unit, we studied one-dimensional transverse and longitudinal waves propagating in different 

media such as stretched string, in a uniform solid rod, in a gas and in an absorbing media. We 

gained an understanding of how the speed of a wave is determined by the interplay of elasticity 

and inertia. Elasticity gives rise to restoring force and inertia determines the response of the 

medium. We also learned that since, a gas lacks rigidity, transverse waves cannot propagate in a 

gaseous medium; only solids can sustain transverse waves. However, longitudinal waves can 

propagate in all media – gaseous, liquid and solid. Then we also briefly studied two and three 

dimensional waves.  

While studying speed of sound in air, we came across Newton’s formula for determining the 

velocity of sound and its limitation, which was later resolved by Laplace who pointed out that 

sound waves produced adiabatic changes and that local changes in temperature occur when sound 

propagates in air. In the last part of the text, we also discussed briefly waves in two and three 

dimensions. 

10.6 GLOSSARY 

Amplitude – the maximum displacement or distance moved by a point on a vibrating body or wave 

measured from its equilibrium position. 

Displacement – net change in location of a moving body. It is measured from the equilibrium 

position. 

Elasticity – ability of a material to regain its shape after being distorted. 
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Force – any interaction that, when unopposed, can change the state of motion of an object. 

Frequency – the number of complete cycles per second made by a vibrating object. 

Inertia – a property of matter that causes it to resist changes in its state of rest or motion. 

Longitudinal waves – waves in which the vibrations are parallel to the direction of travel of the 

wave. 

Pressure – force per unit area applied at right angles to a surface. The SI unit of pressure is the 

pascal (Pa), which is equal to 1 N/m2. 

Sound – a vibration that propagates as a typically audible mechanical wave of pressure and 

displacement, through a medium such as air or water. 

Speed – the ratio of distance traveled and time. The SI unit of speed is m/s. 

Tension – the force in an object that has been stretched. 

Transverse waves – waves in which the vibrations are at right angles to the direction of propagation 

of wave. 

Velocity – speed in a given direction. 

Wave – an oscillation accompanied by a transfer of energy that travels through medium (space or 

mass). 

10.7 TERMINAL QUESTIONS 

1. Deduce the expression for the velocity of transverse waves on a stretched string. 

2. (a) Deduce the expression for the velocity of longitudinal waves in a column of a gas and hence 

obtain Newton’s formula.  

(b) What is the Laplace’s correction to Newton’s formula? 

3. How will you describe displacements in a two-dimensional wave? Write down the wave 

equation in the case of two-dimensional waves on a stretched membrane.  

4. Calculate the speed of sound in (a) water, and (b) steel. Given: Density of steel = 7800 kg/m3, 

Young’s modulus of steel = 20 × 1010 𝑁𝑚−2 and bulk modulus of water = 0.2 × 1010 𝑁𝑚−2. 

5. Compare the velocities of sound in hydrogen and carbon dioxide. The ratio of specific heats of 

hydrogen and carbon dioxide are respectively, 1.4 and 1.3. 

6. Use the formula 𝑣 = √𝛾𝑝/𝜌 to explain why the speed of sound in air is independent of pressure. 
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7. Choose the correct option:  

The velocity of sound in air is not affected by changes in: 

(a) moisture of  the air 

(b) temperature of the air 

(c) atmospheric pressure 

(d) composition of air 

8. Choose the correct option. 

The velocity of sound in a gas is: 

(b) Independent of the temperature on absolute scale 

(c) Proportional to the square root of temperature 

(d) Inversely proportional to the square root of temperature 

(e) Proportional to the square of temperature 

9. Choose the correct option. 

The Laplace’s correction in the expression for the velocity of sound given by Newton is needed 

because sound waves: 

(a) Are longitudinal 

(b) Propagate isothermally 

(c) Propagate adiabatically 

(d) Are of long wavelengths 

10.8 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. We have to check if the following dimensional formula for wave speed is correct or not, i.e. it 

has units of velocity or not.  

𝑣 = 𝐾√
𝐹

𝑚
 

- K is the dimensionless constant. 

- F has units of N or kg m/s2. Therefore, 

[𝐹] =
[𝑀][𝐿]

[𝑇]2
 

- m has units of kg/m. Therefore,  
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[𝑚] =
[𝑀]

[𝐿]
 

Hence, it can be shown that the formula for the wave speed is dimensionally correct. 

[𝑣] = √

[𝑀][𝐿]
[𝑇]2

[𝑀]
[𝐿]

=
[𝐿]

[𝑇]
 

2. We know that the velocity of a transverse wave on a stretched string is related to tension and 

mass per unit length of the string by the following relation 

𝑣 = √
𝐹

𝑚
= √

10 𝑁

0.001 𝑘𝑔/𝑚
 

⇒ 𝑣 = 100 𝑚/𝑠 

3. We know that the velocity of a longitudinal wave in a uniform solid rod is related to the Young’s 

modulus of the material of the rod and its density by the following relation 

𝑣 = √
𝑌

𝜌
= √

2 × 1011 𝑁𝑚−2

7800 𝑘𝑔/𝑚3
 

⇒ 𝑣 = 5060 𝑚/𝑠 

4. Velocity of sound at 150C = f = 500 X 0.68 = 340 m/s. 

Velocity of sound at 00C is given as 

= (340 𝑚/𝑠)√
273 𝐾

(273 + 15) 𝐾
= 331 𝑚/𝑠 

Since, the velocity of sound in air in a gas is given by 

𝑣 = √
𝛾𝑝

𝜌
 

⇒ 𝛾 = 𝑣2 (
𝜌

𝑝
) 

= (331
𝑚

𝑠
)
2

(
1.29 𝑘𝑔/𝑚3

1.01 × 105 𝑃𝑎
) = 1.39 
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5. (a) √
𝐹

𝑚
    (b) √

𝑌

𝜌
     (c) √

𝐸

𝜌
, (d) √

𝛾𝑝

𝜌
 

6. Refer to the text 

7. (d) 

8. (b) 

 

Selected Terminal Questions: 

1. Refer to the text 

2. Refer to the text 

3. Refer to the text 

4. (a) The speed of sound is water is given by 

𝑣𝑤 = √
𝐸𝑤

𝜌𝑤
= √

0.2 × 1010 𝑁/𝑚2

1000 𝑘𝑔/𝑚3
 

⇒ 𝑣𝑤 = 1414 𝑚/𝑠 

(e) The speed of sound in the steel bar is given by 

𝑣𝑠 = √
𝑌𝑠

𝜌𝑠
= √

20 × 1010 𝑁/𝑚2

7800 𝑘𝑔/𝑚3
 

⇒ 𝑣𝑠 = 5060 𝑚/𝑠 

5. Since, the density of a gas is proportional to its molecular weight, therefore, 

𝜌𝐶𝑂2

𝜌𝐻2

≅
44

2
= 22 

Also, we know that velocity of sound in air in a gas is given by 

𝑣 = √
𝛾𝑝

𝜌
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Therefore,  

𝑣𝐻2

𝑣𝐶𝑂2

= √
𝛾𝐻2

𝛾𝐶𝑂2

𝜌𝐶𝑂2

𝜌𝐻2

= √
1.4

1.3
× 22 

⇒
𝑣𝐻2

𝑣𝐶𝑂2

≅ 4.85 

6. Refer to the text 

7. (c) 

8. (b) 

9. (c) 

 

10.9 REFERENCES 

31. Concepts of Physics, H C Verma – Bharati Bhawan, Patna 

32. The Physics of Waves and Oscillations, N K Bajaj –  Tata McGraw-Hill, New Delhi 

33. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker –  John Wiley & 

Sons 

34. Physics, Jim Breithaupt –  Palgrave 

35. Applied Physics, Arthur Beiser – McGraw-Hill Company 

 

10.10 SUGGESTED READINGS 

22. Concepts of Physics, H C Verma – Bharati Bhawan, Patna 

23. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker –  John Wiley & 

Sons 

24. Berkeley Physics Course Vol 3, Waves, C Kittel et al, McGraw- Hill Company 

 

 

 

 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

239 
 

UNIT 11               THE DOPPLER EFFECT 

Structure  

11.1 Introduction 

11.2 Objectives 

11.3 The Doppler Effect 

      11.3.1 Source Stationary and Observer in Motion  

      11.3.2 Source in Motion and Observer Stationary 

      11.3.3 Source and Observer both in Motion 

11.4 Summary 

11.5 Glossary  

11.6 Terminal Questions 

11.7 Answers 

11.8 References 

11.9 Suggested Readings 

 

 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

240 
 

11.1 INTRODUCTION 

In the earlier units, we studied the formation and propagation of waves in a medium. We studied 

the different wave parameters such as amplitude, frequency, wavelength, phase, period etc. and 

derived the mathematical expression of a progressive wave. We also derived expressions for the 

energy carried by a wave and its intensity at a point in space. After deriving one-dimensional wave 

equations in different media, we also wrote wave equations for two and three dimensional systems. 

However, until now, we have only discussed wave motion in a homogenous medium travelling in 

different directions. In all such cases, the wave speed and frequency were taken to be constant. 

Now the question arises, are there any situations where the frequency of a wave either changes or 

appears to change? This is the topic we will address in this unit.   

11.2 OBJECTIVES 

After studying this unit, you should be able to 

 explain Doppler effect 

 give examples of usage of Doppler effect 

 obtain expressions for apparent frequency of sound when the source or the listener or both 

are in motion 

 describe shock waves 

11.3 THE DOPPLER EFFECT 

You must have heard the whistle of a train steaming in and steaming out as the train passes by. 

The pitch (frequency) of the whistle seems to rise when the train comes closer and falls when it 

goes away. While standing near a highway, you may have listened to the sound of vehicles. While 

approaching you, they make a relatively high-pitched sound but as they recede, the pitch drops 

abruptly and stays low. This apparent change of frequency due to the relative motion between the 

source and the observer is known as Doppler effect. 

Usually, when the source approaches the observer or the listener approaches the source or both 

approach each other, the apparent frequency is higher than the actual frequency of sound produced 

by the source. On the other hand, when the source moves away from the listener or when the 

listener moves away from the source, or when both move away from each other, the apparent 

frequency is lower than the actual frequency of the sound produced by the source. 

There are many applications of the phenomenon of Doppler effect. Do you know that Doppler 

shift in ultrasound waves reflected from moving body tissues is commonly used by physician to 

detect heartbeat of the baby inside the womb. As the heart muscle pulsates, the frequency of 

reflected ultrasound waves is different from the frequency of incident waves. Similarly, sonar, 
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which is an equipment on a ship, calculates the depth of the sea or the position of an underwater 

object such as submarine using sound waves making use of Doppler effect.  

Electromagnetic waves also exhibit Doppler effect. In aircraft navigation, the radar works by 

measuring the Doppler shift of high frequency radio waves reflected from moving airplanes. The 

Doppler shift of star-light allows us to study the motion of the stars. When the stellar light is 

examined in a spectrograph, we observe several spectral lines. These lines are slightly shifted as 

compared to the corresponding lines from the same elements on the earth. This shift is generally 

towards the red end of the electromagnetic spectrum, which implies the apparent frequency of light 

radiated by the star increases. This observation is interpreted as if the star is receding, and the 

universe is expanding. 

In order to study the Doppler effect, we usually consider the following situations: 

1- The source or the observer or both are in motion. 

2- The motion is along the line joining the source 

and the observer. 

3- The direction of motion of the medium is along 

or opposite to the direction of propagation of 

sound. 

4- The speed of source is greater or smaller than 

the speed of sound produced by it. 

Let us consider some of these possibilities in the 

subsequent sections to study Doppler effect in detail.      

11.3.1 Source Stationary and Observer in 

Motion  

The waves emitted by a point source spread out as 

spherical wave fronts of sound as shown in Figure 1. 

Wave front is defined as the locus of all the particles 

of a medium vibrating in the same phase at a given 

instant. The phase difference between any two points 

situated on the same wave front is zero the shape of a 

wave front depends upon the shape of the source of 

disturbance. If the source disturbance is a point source, 

then the wave front is spherical. 

Let us suppose that a stationary source S is producing 

sound of frequency f and wavelength  = v/f. This 

means that the length of the block of waves passing a 

Figure 37: Spherical waves emitted by a 

point source. The circular arcs represent 

the spherical wave fronts that are 

concentric with the source. The sound 

waves move outward, perpendicular to the 

wave fronts. 
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stationary observer per second is v and contains f waves as shown in Figure 2. But when the 

observer moves away from the source at a velocity v0, he will be at O’ after one second and find 

that the length of the block of waves passing him in one second is not v but 𝑣 − 𝑣0. In other words, 

the sound waves will appear to the moving observer to have a speed 𝑣′ = 𝑣 − 𝑣0. However, the 

distance between two successive wave maxima in the observer’s moving reference frame remains 

the same as for the stationary reference frame of the source, equal to .  

 

Figure 38: Representation of waves received by the observer in motion at interval of one second. 

The frequency heard by the observer is given by 

𝑓′ =
𝑣′


 

where 𝑣′ = 𝑣 − 𝑣0 and  = 𝑣/𝑓. Therefore, we find that for an observer moving away from a 

source, the apparent frequency is given by 

𝑓′ = 𝑓 (
𝑣 − 𝑣0

𝑣
) 

 

(11.1) 

On the other hand, if the observer approaches the source, 𝑣0 is to be regarded as negative. Then 

the apparent frequency is given by 

𝑓′ = 𝑓 (
𝑣 + 𝑣0

𝑣
) 

 

(11.2) 

From equations (11.1) and (11.2), it can be seen that the frequency heard by the observer is lower 

than the source frequency when the observer is moving away from the stationary source. But the 

perceived frequency is greater than the emitted frequency when the observer approaches a 

stationary source. Note the difference in perceived and emitted frequencies lasts only as long as 

there is relative motion between the source and the observer.   
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11.3.2 Source in Motion and Observer Stationary 

Let us now consider the case when a source S producing sound of frequency f and wavelength  

moves with a speed of 𝑣𝑠 (which is less than the wave speed v) towards an observer, who is 

standing at rest in a stationary medium. The wave fronts emitted by the moving source when the 

observer is at rest on either side are shown in Figure 3. It must be noted that the concentric circles 

when the source is stationary (see Figure 1), are not concentric anymore. The wave fronts are more 

closely spaced in the direction of motion of the source and widely separated on the opposite side. 

To the observer standing on either side, this corresponds, respectively to a shorter and longer 

effective wavelength.  

 

Figure 39: (a) Wave fronts emitted by the moving source as it approaches the stationary observer. 

The apparent wavelength shortens or in other words, the apparent frequency heard by the listener 

increases. (b) Wave fronts emitted by the moving source as it leaves the stationary observer. The 

apparent wavelength lengthens or in other words, the apparent frequency heard by the listener 

decreases. 

We recall that for a stationary source, 𝑓 waves occupied a length v in one second. When the source 

moves a distance 𝑣𝑠 towards the stationary observer in one second, these 𝑓 waves are crowded 

together in the direction of motion in a length 𝑣 − 𝑣𝑠 as shown in Figure 4. This means that the 

distance between successive crests decreases from  = 𝑣/𝑓 to 
′ = (𝑣 − 𝑣𝑠)/𝑓. In other words, 

the wavelength of waves perceived by the observer shortens and manifests as apparent change in 

the frequency of sound. 

The apparent frequency 𝑓′ is given by  
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Figure 40: Representation of crowding of waves when a source moves towards a stationary 

observer. 

𝑓′ = (
𝑣

′
) = 𝑓 (

𝑣

𝑣 − 𝑣𝑠
) 

 

(11.3) 

On the other hand, if the source moves away from the observer, 𝑣𝑠 is to be regarded as negative. 

Then the equation (11.3) takes the form 

𝑓′ = 𝑓 (
𝑣

𝑣 + 𝑣𝑠
) 

 

(11.4) 

From equations (11.3) and (11.4), it can be seen that the frequency heard by the observer is lower 

than the source frequency when the source is moving away from the stationary observer. But the 

perceived frequency is greater than the emitted frequency when the source approaches a stationary 

observer. Again, the difference in perceived and emitted frequencies lasts only as long as there is 

relative motion between the source and the observer.   

11.3.3 Source and Observer both in Motion 

When both the source and the observer move in the same direction, we have to combine the results 

of the earlier sections. When the source is in motion, it causes a change in the wavelength. And, 

when the observer is in motion, it causes change in the number of waves received. In such a case, 

the apparent frequency 𝑓′ is given by 

𝑓′ =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑤𝑎𝑣𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ
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𝑓′ = 𝑓 (
𝑣 − 𝑣0

𝑣 − 𝑣𝑠
) (11.5) 

From equation (11.5), we note that the magnitude of apparent frequency with respect to the emitted 

frequency will be determined by both the velocities of the observer 𝑣0 and the source 𝑣𝑠. If the 

observer recedes faster, 𝑓′ will be less than 𝑓, but if the source approaches faster, 𝑓′ will be greater 

than 𝑓. Equation (11.5) also tells us that the apparent frequencies will be different in the cases 

when the source approaches stationary observer or the observer approaches the stationary source 

with the same velocity.  

The Doppler effect holds not only for sound (mechanical waves) but also for the electromagnetic 

waves including microwaves, radio waves and visible light. However, as electromagnetic waves 

do not require medium for their propagation and motion of source relative to detector or of detector 

relative to source represents same physical situation (as speed of light is independent of relative 

motion between the source and the observer), the formulae are different from that of sound. Here 

when either source or the detector or both are in motion, only two cases are possible, i.e. of 

approach and recession and for these apparent frequencies, respectively, are given by 

𝑓𝐴 = 𝑓√
𝑐 + 𝑣

𝑐 − 𝑣
            𝑎𝑛𝑑          𝑓𝑅 = 𝑓√

𝑐 − 𝑣

𝑐 + 𝑣
 (11.6) 

where 𝑐 is the speed of light and 𝑣 is the relative speed of approach or recession between the source 

and the observer. In case of approach, the frequency increases while the wavelength decreases, i.e. 

there is shift towards blue end of the electromagnetic spectrum while in case of recession the 

frequency decreases and the wavelength increases, i.e. the shift is towards the red end of the 

electromagnetic spectrum. 

This effect has allowed astronomers to determine the speeds of stars and galaxies relative to the 

earth by studying the wavelength (frequency) of the light coming from them. Police use the effect 

in ‘radar guns’ that send out pulses of short-wavelength radio waves that are reflected from a 

moving vehicle. When the reflected pulses return to the radar gun, the Doppler shift in their 

frequencies is measured and reveals the speed of the vehicle. 

 

Example 1: The siren of fire engine has a frequency of 500 Hz.  

(a) The fire engine approaches a stationary car at 20 m/s. What frequency does a person in the car 

hear? 

(b) The fire engine stops and the car drives away from it at 20 m/s. What frequency does the person 

in the car hear now? 
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Solution: (a) Here 𝑓 = 500 𝐻𝑧, Speed of sound in air, 𝑣 = 343 𝑚/𝑠, 𝑣𝑠 = 20 𝑚/𝑠 and 𝑣0 = 0. 

Hence, the perceived frequency is given as  

𝑓′ = 𝑓 (
𝑣

𝑣 − 𝑣𝑠
) 

= (500 𝐻𝑧) (
343

343 − 20
) = 531 𝐻𝑧 

 (b) In this case, 𝑣𝑠 = 0 and 𝑣0 = 20 𝑚/𝑠. Therefore, the perceived frequency of the siren is 

𝑓′ = 𝑓 (
𝑣 − 𝑣0

𝑣
) 

= (500 𝐻𝑧) (
343 − 20

343
) = 471 𝐻𝑧 

 

Example 2: A locomotive approaching a crossing at a speed of 80 miles/hr, sounds a whistle of 

frequency 400 Hz when 1 mile from the crossing. There is no wind, and the speed of sound in air 

is 0.2 miles/s. What frequency is heard by an observer 0.6 miles from the crossing on the straight 

road which crosses the rail road at right angles? 

Solution: The situation is shown in the figure below: 

 

Figure 41 

Until now, all the Doppler effect equations that have been derived, have assumed that the motion 

is along the line joining the source and the detector (observer). If the motion is along some other 

direction, the component of velocities along the line joining the source and the observer are 

considered for 𝑣0 and 𝑣𝑠, i.e. if at any instant the line joining the moving source and the stationary 

observer makes an angle 𝜃 with the direction of motion of source, then 𝑣𝑠 is replaced by 𝑣𝑠 cos𝜃.  

And so, the apparent frequency heard by the stationary observer is given by 
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𝑓′ = 𝑓 (
𝑣

𝑣 − 𝑣𝑠 cos 𝜃
) (11.7) 

Note that in such situations, the apparent frequency 𝑓′ is not constant and depends on the angle 𝜃 

and may be greater, equal or less than 𝑓 depending on the value of 𝜃. 

From Figure 5, we can see that  

𝑆𝐷 = √12 + 0.62 = 1.166 𝑚𝑖𝑙𝑒𝑠 

And 

cos𝜃 =
𝑆𝐶

𝑆𝐷
=

1

1.166
= 0.857 

So, the speed of source along the line of sight (line joining the source and the observer) is 

𝑣𝑠 → 𝑣𝑠 cos 𝜃 

= 80 × 0.857 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟 

=
80 × 0.857

60 × 60
 𝑚𝑖𝑙𝑒𝑠/𝑠 = 0.019 𝑚𝑖𝑙𝑒𝑠/𝑠 

Therefore, from equation (13.7), 

𝑓′ = 𝑓 (
𝑣

𝑣 − 𝑣𝑠 cos 𝜃
) = (400 𝐻𝑧) (

0.2

0.2 − 0.019
) 

= 442 𝐻𝑧 

 

Self Assessment Question (SAQ) 1: Choose the correct option: 

A spacecraft is approaching the earth. Relative to the radio signal it sends out, the signals received 

on the earth have 

(a) A lower frequency 

(b) A shorter wavelength 

(c) A higher velocity 

(d) All of the above  

Self Assessment Question (SAQ) 2: A railway engine moving with a speed of 60 m/s approaches 

a platform on which there is a stationary listener. The real frequency of the whistle of the engine 

is 400 Hz. Calculate the apparent frequency of the whistle heard by the listener, when  
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(a) The engine is approaching the listener. 

(b) The engine is moving away from the listener.  

[Given: Speed of sound in air = 340 m/s] 

Self Assessment Question (SAQ) 3: Choose the correct option(s). More than one option may be 

correct: 

If the shift in a star light is towards the red end of the electromagnetic spectrum,  

(a) The star is approaching the earth 

(b) The star is receding from the earth 

(c) The apparent frequency is smaller than the actual frequency 

(d) The apparent wavelength is shorter than the actual 

Self Assessment Question (SAQ) 4: Choose the correct option(s). More than one option may be 

correct: 

In case of the Doppler effect for sound, 

(a) Change in frequency is independent of the distance between the source and the observer. 

(b) Change in frequency depends on the fact that the source is moved towards the observer or 

the observer is moved towards the source. 

(c) The frequency heard will change if wind starts blowing between stationary source and 

stationary observer. 

(d) Passenger sitting in a moving train will hear different pitch than produced by the engines 

of the same train. 

Self Assessment Question (SAQ) 5: Choose the correct option: 

The change in frequency due to Doppler effect, 

(a) Depends on the distance between the source and the observer. 

(b) Depends on the fact that source is moving towards the listener or listener is moving towards 

the source. 

11.4 SUMMARY 

In this unit we studied the Doppler effect, which is a phenomenon observed whenever the source 

of waves is moving with respect to an observer. The Doppler effect can be described as the effect 

produced by a moving source of waves in which there is an apparent upward shift in frequency for 

the observer and the source are approaching and an apparent downward shift in frequency when 

the observer and the source is receding. The Doppler effect can be observed to occur with all types 
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of waves - most notably sound waves and light waves. A common experience is the shift in 

apparent frequency of the sound of a train horn. As the train approaches, the sound of its horn is 

heard at a high pitch and as the train moved away, the sound of its horn is heard at a low pitch. 

11.5 GLOSSARY 

Doppler effect for sound – the change in pitch or frequency that you hear when the source of sound 

is moving with respect to you. When the source of sound is moving toward you, the frequency is 

higher and the sound has a higher pitch. When the source is moving away from you, the sound has 

a lower frequency. 

Electromagnetic waves – waves that are propagated by simultaneous periodic variations of electric 

and magnetic field intensity and that include radio waves, infrared, visible light, ultraviolet, X rays, 

and gamma rays. 

Frequency – the number of complete cycles per second made by a wave. The SI unit of frequency 

is the hertz (Hz), which is equal to 1 cycle per second. 

Sound – vibrations in a substance that travel through the substance. 

Speed – the ratio of distance traveled and time. The SI unit of speed is m/s. 

Tuning fork – A fork with two prongs and heavy cross-section, generally made of steel. Specially 

designed to retain a constant frequency of oscillation when struck. Widely used for tuning musical 

instruments because its frequency is very insensitive to changes in temperature, atmospheric 

pressure and humidity. 

Velocity – speed in a given direction. 

Wave front – the locus of points characterized by propagation of position of the same phase: a 

propagation of a line in 1-D, a curve in 2-D or a surface for a wave in 3-D. 

Wavelength – the distance between two adjacent wave-crests. 

11.6 TERMINAL QUESTIONS 

1. A person arriving late at a concert hurries toward her seat so fast that the middle note (262 Hz) 

appears 1 Hz higher in frequency to her. How fast is she moving?  

2. A distant galaxy of stars in the constellation Hydra is moving away from the earth at 6.1 ×

107 𝑚/𝑠. One of the characteristic wavelengths in the light the galaxy emits is 5.5 × 10−7 𝑚. 

What is the corresponding wavelength measured by astronomers on the earth? 
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3. A train approaching a hill at a speed of 40 km/hr sounds a whistle of frequency 580 Hz when it 

is at a distance of 1 km from the hill. A wind with speed 40 km/hr is blowing in the direction of 

motion of the train. Find 

(a) The frequency of the whistle as heard by an observer on the hill. 

(b) The distance from the hill at which the echo from the hill is heard by the driver and its 

frequency. [Given: Velocity of sound in air = 1200 km/hr] 

4. Sound waves of frequency 𝑓 send at speed 𝑣 from a stationary transmitter are received back at 

the site of the transmitter from a distant object moving towards the transmitter with a speed 𝑢. 

Show that the frequency of the reflected waves received by the transmitter will be given by 

𝑓′ = 𝑓 (
𝑣 + 𝑢

𝑣 − 𝑢
) 

5. If the source and the observer both move in the same direction with the same speed, i.e. 𝑣𝑠 =

𝑣0, will there be any Doppler effect, i.e. will there be any apparent change in frequency? 

6. If both the source and the observer are at rest and a wind blows at speed w, will there be any 

Doppler effect, i.e. will there be any apparent change in frequency? 

7. Choose the correct option. 

The shrillness (pitch) of a sound note depends upon: 

(a) Amplitude        (b) Frequency         (c) Wavelength         (d) Velocity 

 

8. Choose the correct option. 

A vibrating tuning fork of frequency 150 Hz is moving in the direction of a person with a velocity 

of 110 m/s. The frequency heard by the person will be: [Given: velocity of sound = 330 m/s] 

(a) 100       (b) 90        (c) 80       (d) 900 

 

9. Write short notes on: 

      (i) Doppler effect for sound   (ii) Doppler effect for light 

 

11.7 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. (b) 
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2. (a) When the engine is approaching the listener, the apparent frequency heard by the listener is 

𝑓′ = 𝑓 (
𝑣

𝑣 − 𝑣𝑠
) 

= (400 𝐻𝑧) (
340

340 − 60
) = 485.7 𝐻𝑧 

(b) When the engine is moving away from the stationary listener, the apparent frequency heard by 

the listener is given as 

𝑓′ = 𝑓 (
𝑣

𝑣 + 𝑣𝑠
) 

= (400 𝐻𝑧) (
340

340 + 60
) = 340 𝐻𝑧 

3. (b) and (c) 

4. (a) and (b) 

5. (a) No. 

(b) In case of sound, yes. While, in case of light, no. 

6. Shock waves are produced. No, the Doppler formula will not hold as it is valid only if 𝑣𝑠 < 𝑣. 

7. True. 

8. (a) 

 

Selected Terminal Questions: 

1. We need to solve for 𝑣0. Since 𝑣𝑠 = 0, and the middle note appears of higher frequency to the 

observer, we have 

𝑓′ = 𝑓 (
𝑣 + 𝑣0

𝑣
) 

⇒ 263 𝐻𝑧 = (262 𝐻𝑧) (
343 𝑚/𝑠 + 𝑣0

343 𝑚/𝑠
) 

⇒ 𝑣0 = (343 𝑚/𝑠) (
263

262
− 1) = 1.3 𝑚/𝑠 

2. The apparent frequency in case of recession is given as 
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𝑓𝑅 = 𝑓√
𝑐 − 𝑣

𝑐 + 𝑣
 

Since, 𝑓 = 𝑐/, the above equation may be written in terms of the wavelength as follows: 

𝑐

𝑅
=

𝑐


√

𝑐 − 𝑣

𝑐 + 𝑣
 

⇒ 𝑅 = √
𝑐 + 𝑣

𝑐 − 𝑣
 

= (5.5 × 10−7 𝑚)√
3 × 108 𝑚

𝑠 + 6.1 × 107 𝑚
𝑠

3 × 108 𝑚
𝑠 − 6.1 × 107 𝑚

𝑠

 

= 8.3 × 10−7 𝑚 

 

3. (a) For an observer at rest (on the hill) and source (engine) moving towards the observer, the 

apparent frequency is given by 

𝑓′ = 𝑓 (
𝑣

𝑣 − 𝑣𝑠
) 

 
Figure 42 

Now as the wind is blowing from towards the observer, the apparent speed of sound is not 𝑣 but 

𝑣 + 𝑤, where 𝑤 is the wind speed. Therefore, the apparent frequency heard by the observer on the 

hill is given as (taking into the wind effect) 

𝑓′ = 𝑓 [
(𝑣 + 𝑤)

(𝑣 + 𝑤) − 𝑣𝑠

] 

Substituting the given values in the above formula, we get 
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𝑓′ = (580 𝐻𝑧) [
(1200 + 40) 𝑘𝑚/ℎ𝑟

(1200 + 40) − 40 𝑘𝑚/ℎ𝑟
 ] = 599.33 𝐻𝑧 

(b) If ‘x’ is the required distance from the hill, the distance moved by the train will be (1 – x) and 

hence the time taken by the train to travel this distance will be equal to 

𝑡 =
1 − 𝑥

40
 

In this time, sound travels a distance of 1 km at a speed of (1200 + 40) km/hr and comes back a 

distance x at a speed of (1200 – 40) km/hr. Therefore, 

1 − 𝑥

40
=

1

1240
+

𝑥

1160
 

⇒ 𝑥 =
29

31
 𝑘𝑚 = 933.3 𝑚 

Now the engine will act as the observer and the hill as source, so the frequency heard by the moving 

observer towards the stationary source will be  

𝑓′ = 𝑓 (
𝑣 + 𝑣0

𝑣
) 

But in this situation, as the wind is blowing opposite to the direction of motion of sound, the wind 

speed will have to subtracted from the speed of sound, i.e. 𝑣 → 𝑣 − 𝑤. Thus, the apparent 

frequency heard by the driver will be 

𝑓′ = 𝑓 [
(𝑣 − 𝑤) + 𝑣0

(𝑣 − 𝑤)
] 

Substituting the given values in the above formula, we get 

𝑓′ = (599.33 𝐻𝑧) [
(1200 − 40) + 40

(1200 − 40)
 ] 

= 599.33 ×
1200

1160
= 620 𝐻𝑧 

 

4. The apparent frequency heard by the distant object from the stationary transmitter will be given 

by equation (11.2), 

𝑓𝑅 = 𝑓 (
𝑣 + 𝑢

𝑣
)     − − − − − − − − − −(1) 
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Now, this frequency will be reflected back by the distant moving object towards the transmitter, 

therefore, the apparent frequency of the reflected waves heard at the site of the transmitter will be 

given by equation (13.3), 

𝑓′ = 𝑓𝑅 (
𝑣

𝑣 − 𝑢
)   − − − − − − − − − (2) 

From (1) and (2), we get 

𝑓′ = 𝑓 (
𝑣 + 𝑢

𝑣
) (

𝑣

𝑣 − 𝑢
) 

=  𝑓 (
𝑣 + 𝑢

𝑣 − 𝑢
) 

 

5. If both the source and the observer move with the same speed 𝑣𝑠 = 𝑣0 = 𝑢 and in the same 

direction, from equation (13.5), we get 

𝑓′ = 𝑓 (
𝑣 − 𝑢

𝑣 − 𝑢
) 

⇒ 𝑓′ = 𝑓 

So, there will be no Doppler effect. 

6. Depending on the direction of the wind, it will be added or subtracted from the speed of sound 

𝑣. The apparent frequency in this situation will be given by 

𝑓′ = 𝑓 [
(𝑣 ± 𝑤) ± 0

(𝑣 ± 𝑤) ± 0
] 

⇒ 𝑓′ = 𝑓 

So, there will be no Doppler effect. 

7. (b) 

8. (a) 
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UNIT 12 THE PRINCIPLE OF SUPERPOSITION AND 

STATIONARY WAVES 
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12.1 INTRODUCTION 

The principle of superposition was first observed experimentally by Thomas Young in 1801. When 

two or more wave passes through the same medium, the resultant disturbance at any point at any 

instant is the vector (algebraic) sum of the instantaneous values of the disturbances produced by 

the individual waves at that point. It is an experimental fact that each component moves 

independently as if the others were not present at all i.e. their individual shapes and other 

characteristics are not changed due to the presence of one another. An applied example is the 

simultaneous transmission radio waves of different frequencies by different radio stations pass 

through radio antennas. These waves are superimposed and currents set up in the antenna which 

is very complex in terms of electromagnetic waves. But, when we adjust (tune) the radio to a 

particular station, we receive its frequency as if all other stations stopped broadcasting. Another 

example is when we listen to an orchestra; we receive a complex sound due to superposition of 

many sound waves, even though we can recognize the separate sounds produced by individual 

instruments and voices.  

When two wave trains of nearly the same frequency are travelling along the same line in the  same 

direction, superposition takes place and the resultant amplitude does not remain constant but varies 

with time. Since intensity depends on amplitude, so intensity also fluctuations with time. This 

phenomenon of periodic rise and fall of amplitude is called beats.  

In the present unit, you will study the principle of superposition of waves and how this principle 

can be used to analyse the formation of stationary waves and related phenomena. 

12.2 OBJECTIVES 

After studying this unit, you should be able to 

 understand Principle of superposition of waves 

 explain  Stationary Waves 

 Properties of Stationary Waves 

 Calculate the velocity of a Particle at any Point in a Stationary Wave 

 understand Harmonics in Stationary Waves 

 understand Beats 

 

12.3 THE PRINCIPLE OF SUPERPOSITION OF WAVES 

According to the superposition principle, the net response at a given place and time caused by two 

or more stimuli is the sum of the responses which would have been caused by each stimulus 

individually. In other words, if input A produces response X and input B produces response Y then 

input (A + B) produces response (X + Y). 
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For waves, the above general statement of the superposition principle can be stated as follows: When 

two or more waves of the same type cross at some point, the resultant displacement at that point is equal 

to the sum of the displacements due to each individual wave.Let two waves of same frequency and a 

constant phase difference, 𝛿  are travelling along the same direction. These waves can be expressed 

as  

𝑦1 = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)          (12.1) 

𝑦2 = 𝐴sin(𝑘𝑥 − 𝜔𝑡 + 𝛿)      (12.2) 

Then, according to the principle of superposition, the resultant displacement de to superposition 

of these two waves is given as 

𝑦 =  𝑦1 + 𝑦2 

𝑦 =  𝐴 sin(𝑘𝑥 − 𝜔𝑡) +  𝐴 sin(𝑘𝑥 − 𝜔𝑡 + 𝛿) 

𝑦 = 2𝐴 cos (
𝛿

2
) . sin (𝑘𝑥 − 𝜔𝑡 +

𝛿

2
)     (12.3) 

where, we have used the trigonometric identity 

sin 𝜃1 + sin 𝜃2 = 2 cos(
1

2
( 𝜃1 − 𝜃2)). sin(

1

2
(𝜃1 + 𝜃2)) 

Eq. (12.3) indicates important consequences of superposition of waves. It shows that the resultant 

wave has amplitude 2𝐴 cos (
𝛿

2
) . It also indicates that the resultant wave is sinusoidal. Further, if 

the two superposing waves are in phase, that is, if 𝛿 = 0, then the resultant wave has amplitude 2A; 

twice the value of the amplitude of the individual superposing wave. On the other hand, if the two 

waves are out of phase, that is, when 𝛿 = π, the amplitude of the resultant wave becomes zero as 

cos (π/2) = 0. These features of the superposition of waves are shown in Fig. 1 below.  
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Wave 1

Wave 2

Resultant wave

Fig. 1: Superposition of two waves of same amplitude and frequency. 

The phenomena of superposition of waves travelling in opposite directions gives rise to what is 

called stationary or standing waves. You will study about it now. 

12.4 STATIONARY WAVES 

When two waves with the same frequency, wavelength and amplitude traveling in opposite 

directions superpose, a stationary wave or stationary wave is generated. To appreciate the 

phenomenon, refer to Fig 2 in which depicts a wave traveling to the right along a taut string. When 

this wave meets the end of the string, it will be reflected back in the opposite direction along the 

string. So, we have two waves on the string travelling in opposite directions. And the two waves 

will superpose to produce a standing wave. The reflected wave has the same amplitude and 

frequency as the incident wave. 

If the string is held at both ends, forcing zero movement at the ends, the ends become positions of 

zero displacement and such points on the stationary waves are called nodes of the wave. On the 

other hand, between two nodes, there will be positions where the displacement is maximum and 

such points on the stationary waves are called antinodes. The positions of nodes and antinodes are 

shown in Fig. 2 below.  

 

http://en.wikipedia.org/wiki/Node_(physics)
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Fig. 2: Formation of stationary waves on a string due to the superposition of two waves 

travelling in opposite directions. 

Two harmonic waves travelling in opposite directions can be represented by : 

𝑦1 = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)              (12.4) 

 

and 

𝑦2 = 𝐴sin(𝑘𝑥 + 𝜔𝑡)          (12.5) 

 

Where A is the amplitude of the wave, ω is the angular frequency, k is the wave number.  

According to the superposition principle, the resultant wave will be given as  

𝑦 =  𝑦1 + 𝑦2  

 

𝑦 = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) +  𝐴 sin(𝑘𝑥 + 𝜔𝑡)         (12.6) 

Using the trigonometric identity, we can write: 

𝑦 = 2𝐴 cos(𝜔𝑡) sin(𝑘𝑥)          (12.7) 

Eq. (12.7) describes a wave that oscillates in time, but has a spatial dependence that is stationary: 

sin(kx). At locations x = 0, λ/2,λ, 3λ/2, ... called the nodes the amplitude is always zero, whereas 

at locations x = λ/4, 3λ/4, 5λ/4, ... called the anti-nodes, the amplitude is maximum. The distance 

http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Angular_frequency
http://en.wikipedia.org/wiki/Wave_number
http://en.wikipedia.org/wiki/Trigonometric_identity#Product-to-sum_and_sum-to-product_identities
http://en.wikipedia.org/wiki/Node_(physics)
http://en.wikipedia.org/wiki/Anti-node
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between two conjugative nodes or anti-nodes is λ/2. These features of the stationary waves are 

shown in Fig. 3 below. 

 

   Resultant 

                   AN           AN              AN              AN  

                            λ/2 

     2A 

                                      λ/2                  

  x 

                            N                N       λ/2     N                 N        

 

 

                          

Fig. 3: Stationary waves and positions of nodes (N) and antinodes (AN) on it. 

From Fig. 3, you may note that  

  separation of adjacent nodes is half a wavelength (λ/2) 

 separation of adjacent antinodes is also λ/2 

 hence separation of adjacent nodes and antinodes is λ/4 

  the maximum amplitude is 2a (twice that of a single wave) 

 a standing wave does not transfer energy (its two components, however, do transfer energy 

in their respective directions.)  

 

12.4.1 Properties of   Stationary Waves 

The following are the characteristic properties of stationary waves: 

 In stationary waves, there are certain points called nodes where the particles are 

permanently at rest and certain other points called antinodes where the particles vibrate 

with maximum amplitude. The nodes and antinodes are formed alternately. 
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 All the particles of the medium, except those at the nodes, vibrate simple harmonically 

with a time period equal to that of the component waves. 

 The amplitude of vibration increases gradually from zero to maximum from a node to an 

antinode. 

 The medium is split up into segments. The particles in a segment vibrate in phase. The 

particles in one segment are out of phase with the particles in the neighbouring segment 

by 180o. 

 In a given segment, the particles attain their maximum or minimum velocity and 

acceleration at the same instant. 

 There is no net transport of energy in the medium. 

During each vibration, all the particles pass simultaneously through their mean positions twice, 

with maximum velocity which is different for different particles. 

 

12.4.2 Velocity of a Particle at any Point in a Stationary Wave 

When two identical waves, either transverse or longitudinal, travel through a medium along the 

same line in opposite direction, they superpose to produce a new type of waves which appear 

stationary in space. From Eq. (12.7), we know that the resultant disturbance of particles in 

stationary wave is given by 

                𝑦 = 2𝐴 cos(𝜔𝑡) sin(𝑘𝑥)          (12.7) 

Therefore the resultant particle velocity is 

𝑑𝑦

𝑑𝑡
=  −2𝜔𝐴 sin(𝜔𝑡) sin(𝑘𝑥)                 (12.8) 

 

Self Assessment question (SAQ) 1: 

Write the equations of the waves which would form stationary wave after being superimposed 

with the following waves 

(i) 𝑦 = 5 𝑠𝑖𝑛(5𝑡 − 0.01𝑥) 

(ii) 𝑦 = 10sin 𝜋 (4𝑡 − 0.01𝑥) 

(ii) 𝑦 = 15sin 𝜋 (0.20𝑥 − 0.8𝑡) 

Self Assessment question (SAQ) 2: 
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The constituent waves of a stationary wave have amplitude, frequency and velocity as 8cm, 30Hz 

and 180cm/s respectively. Find out the equation of stationary wave. 

12.4.3 Harmonics in Stationary Waves 

A harmonic or an overtone of a stationary wave is any frequency higher than the fundamental 

frequency. One of the characteristics of stationary waves is that it can have only certain fixed 

frequencies called resonance frequencies. The lowest resonance frequency is called fundamental 

frequency or the first harmonic. The higher harmonics have frequencies fn which are equal to   

harmonic number, n times the fundamental frequency f1, that is, fn = n f1.   

The relation between the length, L of the string on which stationary waves are set up and the 

frequency and wavelength that can be excited depends on the fact whether the string is fixed at 

both ends or fixed at one end and free at the other. 

When the string is fixed at both the ends, the frequency and wavelength of the harmonics are given 

as 

𝐿 = 𝑛 (
𝜆𝑛

2
) 

which gives 

𝜆𝑛 = (
2𝐿

𝑛
)          (12.9) 

And, frequency of the harmonics is given by 

𝑓𝑛 =
𝑣

𝜆𝑛
=  

𝑛𝑣

2𝐿
= 𝑛𝑓1         (12.10) 

The stationary waves corresponding to different harmonics for a string fixed at both ends 

are depicted in Fig. 4 below. 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Overtone
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            N                         N 

                                                                                       𝑛 = 1      𝜆1 = (
2𝐿

1
)        𝑓1 =

1𝑣

2𝐿
     

 

 

         𝑛 = 2         𝜆2 = (
2𝐿

2
)     𝑓2 =

2𝑣

2𝐿
  

 

 

 

         𝑛 = 3        𝜆3 = (
2𝐿

3
)       𝑓3 =

3𝑣

2𝐿
 

 

 

 

         𝑛 = 4         𝜆4 = (
2𝐿

4
)       𝑓4 =

4𝑣

2𝐿
 

 

 

   L 

Fig. 4: Harmonics for stationary waves on a string fixed at both ends. 

When the string is fixed at one end and free at the other, the the frequency and wavelength of the 

harmonics are given as 

𝐿 = 𝑛 (
𝜆𝑛

4
) ;       𝑛 = 1, 3, 5, 7, …. 

which gives 

𝜆𝑛 = (
4𝐿

𝑛
)         (12.11) 
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And, frequency of the harmonics is given by 

𝑓𝑛 =
𝑣

𝜆𝑛
=  

𝑛𝑣

4𝐿
= 𝑛𝑓1;      (12.12)  

where, 𝑓1 =  
𝑣

4𝐿
    

The harmonics and the corresponding stationary waves on a string fixed at one end and free at the 

other are depicted in Fig. 5 below. 

 

 

 

N A 𝑛 = 1          𝜆1 = (
4𝐿

1
)        𝑓1 =

𝑣

4𝐿
   

                         Fundamental or First Harmonic 

 

 

                                                                                 

        𝑛 = 3         𝜆3 = (
4𝐿

3
)          𝑓3 =

3𝑣

4𝐿
 

Third Harmonic 

 

       𝑛 = 5            𝜆5 = (
4𝐿

5
)          𝑓5 =

5𝑣

4𝐿
 

                Fifth Harmony 

 

                                                 𝑛 = 7           𝜆7 = (
4𝐿

7
)               𝑓3 =

7𝑣

4𝐿
 

        Seventh Harmony 

                                             L 

Fig. 5: Harmonics of stationary waves formed on a string fixed at one end and free at the other. 

 

12.5 BEATS 

When two sound waves of slightly different frequencies are superposed (that is, they are sounded 

simultaneously), the intensity of the resultant sound rises and falls alternatively with time. This 
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phenomena is called ‘beats’. It arises due to the superposition of the sound waves emitted from the 

two sources. 

To understand the phenomenon qualitatively, suppose that, at a certain instant, the two waves 

having same phase but slightly different frequencies are meeting each other at a particular point in 

space. Due to superposition, their superposition will produce maximum sound intensity at that 

point. However, since the two waves are of slightly different frequencies, they will get further and 

further out of step as time passes until one wave, having higher frequency, gains half an oscillation 

on the other. Then, at the same point in space, the two waves will superpose in opposite phase and 

produce minimum sound intensity. Again, after some time, one wave will gain one full oscillation 

on the other. Then, they will once meet in phase and produce maximum sound, and so on. This 

periodic increase and decrese in the sound intensity is what is called beats. 

If the difference in frequencies of the two waves is n, then in 1 second, one wave will gain n 

oscillations over the other. Hence the intensity of sound will rise and fall ‘n’ times per second, 

giving n beats per second. Thus the number of beats per second is equal to the differences in 

frequencies of the two superposing waves. 

Let two waves having same amplitude A, but slightly different frequencies f1 and f2 are superposed. 

Let us represent the displacement at a point produced by one waves as 

𝑦1 = 𝐴 sin2𝜋𝑓1𝑡 

and the displacement produced by the other wave as 

𝑦2 = 𝐴 sin2𝜋𝑓2𝑡 

According to the superposition principle, the resultant displacement at the point is given by 

𝑦 = 𝑦1 + 𝑦2 = 𝐴 (𝑠𝑖𝑛2𝜋𝑓1𝑡 +  𝑠𝑖𝑛2𝜋𝑓2𝑡)      (12.13) 

Applying the trigonometric identity 

 sin 𝐴 + sin𝐵 = 2 sin
1

2
(𝐴 + 𝐵) cos

1

2
(𝐴 − 𝐵) 

On the above expression, we get, 

y = 2𝐴 sin{2𝜋(
𝑓1+𝑓2

2
)𝑡} cos{(

𝑓1−𝑓2

2
)𝑡} 

    = 𝑎 cos{(
𝑓1−𝑓2

2
)𝑡}sin{2𝜋(

𝑓1+𝑓2

2
)𝑡}        (12.14) 

where 

 𝑎 =  2𝑎 cos{2π(
𝑓1+𝑓2

2
)𝑡}        (12.15) 
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Thus, the resultant vibration of the point has a frequency 
𝑓1+𝑓2

2
 and amplitude a, which is given 

by 

 𝑎 =  2acos{(
𝑓1−𝑓2

2
)𝑡} 

This shows that a, is not constant but periodically varies with time between a maximum value 2A 

and a minimum value 0. Hence the intensity of the resultant sound, being proportional to the 

square of the amplitude, rises and falls alternately.  

Now, the amplitude a is maximum when 

cos{2π(
𝑓1−𝑓2

2
)𝑡} = ±1 

2π (
𝑓1 − 𝑓2

2
) 𝑡 = 𝑘𝜋 

where k = 0,1,2,3…… 

𝑡 =
𝑘

𝑓1−𝑓2
= 0,

1

𝑓1−𝑓2
, 

2

𝑓1−𝑓2
,

3

𝑓1−𝑓2
, etc 

Amplitude maxima occur at intervals of 
1

𝑓1−𝑓2
 second, or (𝑓1 − 𝑓2) times per second. 

Similarly, the amplitude is minimum when 

cos{2𝜋(𝑓1 − 𝑓2)𝑡} = 0 

or                                                                       2𝜋(
1

𝑓1−𝑓2
) t = (2k+1)

𝜋

2
, where k = 0,1,2,3….etc. 

𝑡 =  
(2𝑘+1)

2( 𝑓1−𝑓2)
=

1

2(𝑓1−𝑓2)
,

3

2(𝑓1−𝑓2)
,

5

2(𝑓1−𝑓2)
, etc 

Amplitude minimum occur between the maxima, at intervals of 
1

𝑓1−𝑓2
 second or (𝑓1 − 𝑓2) times 

per second. Thus beat frequency =𝑓1 − 𝑓2. 

Self Assessment question (SAQ) 3: 

On sounding two tuning forks A and B together 5 beats per seconds are produced. The frequency 

of B is 512 Hz. If the prong of A is slightly scraped, the beat frequency increases. Find the 

frequency of A. 

Self Assessment question (SAQ) 4: 
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A sound wave of unknown frequency gives 10 beats per second with a wave frequency 300Hz 

and 15 beats per second with a wave of frequency 325 Hz. What is the frequency of unknown 

wave? 

12.6  SUMMARY 

In this unit, we studied about the principle of superposition of waves, stationary waves, and their 

mathematical description. We also discussed the velocity of a particle at any point in a stationary 

wave 

12.7 GLOSSARY 

Frequency - number of repetition in a second  

Amplitude - maximum displacement from the mean position  

Superposition - waves adding/subtracting 

Wavelength - distance between two consecutive crest or trough - represented by λ 

Stationary waves - no net transport of energy in the medium 

 

12.8 TERMINAL QUESTIONS 

12.8.1 Multiple choice questions 

1. What type of wave is produced when the particles of the medium are vibrating to and fro in 

the same direction of wave propagation? 

a. longitudinal wave. b. sound wave. c. standing wave. d. transverse wave. 

Answer: A 

This is the definition of a longitudinal wave. A longitudinal wave is a wave in which particles of 

the medium vibrate to and fro in a direction parallel to the direction of energy transport. 

2. When the particles of a medium are vibrating at right angles to the direction of energy 

transport, the type of wave is described as a _____ wave. 

a. longitudinal b. sound c. standing d. transverse 

Answer: D 
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This is the definition of a transverse wave. A transverse wave is a wave in which particles of the 

medium vibrate to and fro in a direction perpendicular to the direction of energy transport 

3. A transverse wave is traveling through a medium. See diagram below. The particles of the 

medium are moving. 

 

a. parallel to the line joining AD. b. along the line joining CI. 

c. perpendicular to the line joining AD. d. at various angles to the line CI. 

e. along the curve CAEJGBI.  

 

  

 

Answer: A 

In transverse waves, particles of the medium vibrate to and fro in a direction perpendicular to 

the direction of energy transport. In this case, that would be parallel to the line AD. 

4. If the energy in a longitudinal wave travels from south to north, the particles of the medium 

____. 

a. move from north to south, only. b. vibrate both north and south. 

c. move from east to west, only. d. vibrate both east and west. 

 

Answer: B 

In longitudinal waves, particles of the medium vibrate to and from in a direction parallel to the 

direction of energy transport. If the particles only moved north and not back south, then the 

particles would be permanently displaced from their rest position; this is not wavelike. 

5. The main factor which effects the speed of a sound wave is the ____. 

a. amplitude of the sound wave b. intensity of the sound wave 

c. loudness of the sound wave d. properties of the medium 
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e. pitch of the sound wave   

 

Answer: D 

The speed of a wave is dependent upon the properties of the medium and not the properties of 

the wave. 

6.  As a wave travels into a medium in which its speed increases, its wavelength ____. 

a. decreases b. increases c. remains the same 

 

Answer: B 

As a wave crosses a boundary into a new medium, its speed and wavelength change while its 

frequency remains the same. If the speed increases, then the wavelength must increase as well in 

order to maintain the same frequency. 

12.8.2 Short answer type question:  

1) Discuss the characteristics of stationary waves. 

2) Describe the concept of beats as a consequence of the superposition principle. 

3) What do you mean by beats? What are their applications? 

4) What is sound? Give a brief scientific description. 

12.8.3 Long answer type question 

1. What are beats? Explain graphically and mathematically their production and derive expression 

for the frequency of beats. 

2.  Differentiate between progressive waves and stationary waves. 

 

Answer of Self Assessment question: 

Solution (SAQ) 1: 

For the formation of stationary waves, the two waves of sane frequency and same amplitude 

traverse in the opposite directions, therefore for given waves the required another wave should be 

same but with x should be replaced by –x for opposite direction. Further, we ± sign is placed 

before amplitude for representing the reflection from free boundary or from closed boundary.  



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                       & LABORATORY COURSE - 1 
 

271 
 

Therefore the required equation of waves are 

(i) 𝑦 = ±5 𝑠𝑖𝑛(5𝑡 + 0.01𝑥) 

(ii) 𝑦 = ±10 sin 𝜋 (4𝑡 + 0.01𝑥) 

(ii) 𝑦 = ±15 sin 𝜋 (−0.20𝑥 − 0.8𝑡) 

Solution (SAQ) 2: 

For the formation of standing wave the constituent wave can be considered as 

𝑦1 = 𝑎 sin 2𝜋 (
𝑡

𝑇
+

𝑥

𝜆
) and   𝑦2 = 𝑎 sin 2𝜋 (

𝑡

𝑇
−

𝑥

𝜆
) 

The equation of stationary wave formed by above waves 

𝑦 = 𝑦1 + 𝑦2 = 𝑎 sin 2𝜋 (
𝑡

𝑇
−

𝑥

𝜆
) + 𝑎 sin 2𝜋 (

𝑡

𝑇
+

𝑥

𝜆
) 

  

𝑦 = 2𝑎 sin
2𝜋 (

𝑡
𝑇 −

𝑥
𝜆 +

𝑡
𝑇 +

𝑥
𝜆)

2
cos

2𝜋 (
𝑡
𝑇 −

𝑥
𝜆 +

𝑡
𝑇 +

𝑥
𝜆)

2
 

𝑦 = 2𝑎 sin
2𝜋𝑡

𝑇
cos (−

2𝜋𝑥

𝜆
)   

𝑦 = 2𝑎 cos
2𝜋𝑥

𝜆
sin (

2𝜋𝑡

𝑇
)   

Given a=8 cm, n=30Hz, v=180cm/s 

T=1/n= 1/30s , λ=v/n=180/30=6cm therefore eq. becomes 

𝑦 = 16cos
𝜋𝑥

3
sin(60πt)   

 

Solution (SAQ) 3: 

The frequency of B 𝑛𝑩 = 512 𝐻𝑧, number of beats x=5 

The frequency of A,  𝑛𝑨 = 512 ± 5 = 517 𝑜𝑟 507 𝐻𝑧,  

When prong of A is scraped its frequency increases and sounding with B the beat frequency also 

increases. In this case the frequency of A should be 517Hz. 
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Solution (SAQ) 4: 

 The number of beat per second is equal to the difference in the frequencies two waves. Therefore 

the frequencies of the unknown sound wave are 

𝑛 = 300 ± 10 = 310, 290 𝐻𝑧 

𝑛 = 325 ± 15 = 340, 310 𝐻𝑧 

Thus the frequency of unknown sound wave is 310Hz. 
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Experiment No. 1 

 
Object: To determine the restoring force per unit extension of a spiral spring by statistical and 

dynamical methods and also to determine the mass of the spring. 

Apparatus Used: A spiral spring, 10 gm. weights- 5 No., a scale pan, a pointer and a stop    

watch 

Formula Used:  

(1) Statistical Method: 

The restoring force per unit extension (K) of the spring is given by- 

K =
Mg

l
 

            where,   M = mass kept in the pan at the lower end of the spring 

                         g = acceleration due to gravity 

                         l = extension created in the spring 

 

(2) Dynamical Method: 

 

(a) The restoring force per unit extension (K) of the spring is given by- 

K =
4π2(M1 − M2)

(T1
2 − T2

2)
 

where M1 and M2 = masses kept in the pan at the lower end of the spring successively 

T1 and T2 = time periods of the spring corresponding to masses M1 and 

M2 respectively 

(b) The mass ‘m’ of the spring is given by- 

m = 3 [
M1T2

2 − M2T1
2

T1
2 − T2

2 ] 

where the symbols have their usual meanings. 

About apparatus:  

Let us know about the apparatus. The given figure 1 shows a mass spring system. A 

spiral spring whose restoring force per unit extension is to be determined is suspended from a 

rigid support as shown in the figure. At the lower end of the spring, a small scale-pan is 

fastened. A small horizontal pointer is also attached to the scale pan. A scale is also set in front 

of the spring in such a way that when spring vibrates up and down, the pointer freely moves 

over the scale. 
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 Figure 1: Mass spring system 

Procedure: 

           Let us perform the experiment to determine the restoring force per unit extension of a 

spiral spring and mass of the spring. We shall perform the two methods in the following way- 

(1) Statistical Method:  

(i) Without no load in the scale-pan, note down the zero reading of the pointer on 

the scale. 

(ii) Now place gently 10 gm. load (weight) in the pan. Stretch the spring slightly 

and the pointer moves down on the scale. In this steady position, note down the 

reading of the pointer. The difference of the two readings is the extension of the 

spring for the load in the pan. 

(iii) Let us increase the load in the pan in equal steps until maximum permissible 

load is reached and note down the corresponding pointer readings on the scale. 

(iv) The experiment is repeated with decreasing weights (loads). 

 

(2) Dynamical Method:  

(i) Put gently a load M1 (say 10gm.) in the pan. Now let us displace the pan 

vertically downward through a small distance and release it. You will see that 

the spring starts to perform simple harmonic oscillations. 

(ii) With the help of stop watch, note down the time of a number of oscillations (say 

10). Now get the time period or the time for one oscillation T1 by dividing the 

total time by the total  number of oscillations. 

(iii) Increase the load in the pan to M2 (say 20 gm.). As described above, find out 

the time period T2 for this load. 

(iv) Now repeat the experiment with different values of load. 

Observations: 
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Statistical Experiment:  

Table 1:  The measurement of extension of the spring 

S.No. Load(weight) 

in the pan 

(gm.) 

Reading of pointer on the scale 

(meter) 

Extension for 

30 gm. 

(meter) 

Mean extension 

(meter) 

Load 

increasing 

Load 

decreasing 

Mean 

1 10 

 

   (3)-(1)= ..... 

 

 

 

2 20 

 

   

 

(4)-(2)=...... 

 

 

3 30 

 

   

4 40    

 

(5)-(3)=....... 5 50 

 

   

 

Dynamical Experiment: 

Table 2: The measurement of periods T1 and T2 for loads M1 and M2 

Least count of stop-watch = ..............sec. 

S.No. Load in pan 

(gm.) 

No. of 

oscillations 

Time taken 

with load 

M1           M2 

Time period 

(sec) 

M1 

 

M2 

 sec sec T1 T2 

1 10 20      

2 30 40      

3 50 60      

4 70 80      

5 90 100      

 

Calculations: 

Statistical Experiment: 

       The restoring force per unit extension of the spring is given by- 

K =
Mg

l
 = ...................... Newton/meter 

Let us draw a graph between the load and scale readings by taking the load as abscissa 

and the corresponding scale readings as ordinates. You will see that the graph comes out to be 

a straight line as shown in figure 2. 
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    Y 

 

                         P 

                                                                                     

        Scale reading 

  

                                      R              Q 

 X 

                              O                                       Load 

                                                                 Figure 2 

From the graph, we measure PQ and QR. Now the restoring force per unit extension is 

given by- 

K =
RQ

PQ
× g = ..........................  Newton/meter 

Dynamical Experiment: 

Restoring force per unit extension of the spring-  

K =
4π2(M1−M2)

(T1
2−T2

2)
 =  ................. Newton/meter 

Similarly, you should calculate K for other sets and then obtain the mean value. 

Mass of the spring-  

m = 3 [
M1T2

2−M2T1
2

T1
2−T2

2 ] =   .................    Kg. 

Similarly, you can calculate m for other sets and then obtain the mean value. 

 

Result:  

The restoring force per unit extension of the spring =  ........... Newton/meter 

The mass of the spring =................  Kg. 

 

Precautions and Sources of Errors: 

(i) Statistical Method: 

(1) The axis of the spring must be vertical. 

(2) The spring should not be stretched beyond elastic limits. 

(3) The pointer should move freely on the scale. 

(4) Load (weight) should be placed gently in the scale pan. 
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(5) The scale should be set vertical. It should be arranged in such a way that it should give 

almost the maximum extension allowable. 

(6) Readings should be taken very carefully from the front side. 

(ii) Dynamical Method: 

(1) The spring should oscillate vertically. 

(2) The amplitude of oscillations should be small. 

(3) Time periods T1 and T2 should be measured very accurately. 

----------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 Understand mass-spring system 

 Understand statistical and dynamical methods 

 Understand and calculate restoring force per unit extension of a spiral spring 

VIVA-VOCE: 

Question 1.  What is a spiral spring? 

Answer.  A long metallic wire in the shape of a regular helix of given radius is called a spiral   

spring. 

Question 2.  What is effective mass of a spring? 

Answer. In calculations, we have a quantity (M + m/3) where M is the mass suspended and m, 

the mass of the spring. The factor m/3 is called the effective mass of the spring. 

Question 3. What do you mean by restoring force per unit extension of a spring? 

Answer. The restoring force per unit extension of a spring is defined as the elastic reaction 

produced in the spring per unit extension which tends to restore it back to its initial 

conditions. 

Question 4. What is the unit of restoring force per unit extension of a spring? 

Answer.  The unit of restoring force per unit extension of a spring is Newton/meter. 

Question 5. How does the restoring force change with length and radius of spiral spring? 

Answer. This is inversely proportional to the total length of wire and inversely proportional to 

the square of radius of coil. 

Question 6. How the knowledge of restoring force per unit extension is of practical value? 

Answer. By the knowledge of restoring force per unit extension, we can calculate the correct 

mass and size of the spring when it is subjected to a particular force. 
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Experiment No. 2 

Object: To study the oscillations of a spring 

Apparatus Used: Mounting arrangement, a pan, springs, a stop watch, weights of 10 gm- 5 

Nos. 

Formula Used: 

(1) For experimental verification of formula for a spring 

T1

T2
=  √

m1g

m2g
× √

Kx0
′

Kx0

 

      where  T1 = Time period of a spring when subjected to a load m1g 

                       T2
 = Time period of the same spring when subjected to load m2g 

                      Kx0 = Force constant of spring corresponding to equilibrium extension x0 

                      Kx’0 = Force constant of spring corresponding to equilibrium extension x’0 

where x0 and x’0 are the equilibrium extensions corresponding to loads m1g and m2g. 

(2) The total potential energy U (Joule) of the system is given by- 

                                                         U = Ub – mg.x 

where Ub = Potential energy of the spring 

            x = Displacement from the equilibrium position due to a load mg 

            -mg.x = Gravitional energy of mass m which is commonly taken as negative  

Procedure:  

(i) Let us set up the experimental arrangement as shown in figure 1 in such a way that 

when a load is subjected to the spring, the pointer moves freely on meter scale. Now 

remove the load and note down the pointer’s reading on meter scale when spring is 

stationary. 

(ii) Put a weight of 10 gm. On the spring pan. Now the spring is stretched. Note down the 

pointer reading on the meter scale. 

(iii)Continue the above process of loading the spring in steps of 10 gm. And note the 

extension with the elastic limit. 

(iv) Record the reading of the pointer by removing the weights in steps. Observe that if the 

previous readings are almost repeated then the elastic limit has not exceeded. For a 

particular weight, the mean of two corresponding readings gives the extension for that 

weight (load). 

(v) Again put 10 gm. in the pan and wait till the pointer is at a stop. Now pull down the pan 

slightly and release it. The pan starts oscillating vertically with amplitude decreasing 

quickly. Record the time of few oscillations with the help of sensitive stop watch. Now 
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calculate the time for one oscillation i.e. time period. Similarly, repeat the experiment 

for other weights (loads) to obtain the corresponding time periods. 

 

          Rigid Support  

 

 Spring                                            Scale 

 

 

 

 

                                              Pan 

 Weight 

Figure 1 

(vi) Let us draw a graph between load and corresponding extension as shown in figure 2. 

Consider different points on the curve and draw tangents at these points. Obtain the 

values of ∆m and ∆x for different tangents. Now calculate the force constant using the 

following formula- 

 

𝐾𝑥0
= 𝑔 (

∆𝑚

∆𝑥
)
𝑥0

 

 

Record the extensions from graph and corresponding force constants in the table. 

(vii) Now calculate the time periods by using the formulae- 

𝑇1 = 2𝜋√
𝑚1

𝐾𝑥0

     and  𝑇2 = 2𝜋√
𝑚2

𝐾𝑥0′

      

           Compare the experimental time periods with calculated time periods. 

(viii) From load extension graph [Figure 2], let us consider the area enclosed between 

the curve and the extension axis for different loads (weights) increasing in regular steps. 

The area enclosed are shown in figure 3. The area gives Ub corresponding to a particular 

extension. 

(ix) Now calculate Um for mass = 20 gm. and get the value of  U by the following formula- 

U = Ub + Um  
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(x) Draw a graph in extension and the corresponding energies i.e, Ub, Um and U . The graph 

is shown in the figure 4. 

 

 

 

 

  14 

  12 

  10 

  8 

Extension (cm.)6 

                       4 ∆x 

   2  ∆m 

   

                           0     10      20       30     40       50 

                                          Load (gm.) 

 

 

 

Figure 2 

 

 

 

 

                                                                                                                                     Ub 

10 

8 

6 

Extension (cm.)                           Energy (erg) 

          4                                                                                                                        U= Ub+Um               

2                                                                                 0 

  Extension (cm.) 

0      10     20    30   40   50 

 

                      Load(gm.) 

                                                                                                                         Um 

                 Figure 3 

                                                                                                         Figure 4 
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Observations and Calculations: 

Table 1: For load extension graph 

S.No. Mass suspended 

(gm.) 

Reading of pointer with load 

 

Mean (a+b)/2 

(Meter) 

Extension of 

spring meter 

Increasing a 

(meter) 

Decreasing b 

(meter) 

1 0     

2 10     

3 20     

4 30     

5 40     

6 50     

 

Original length of the spring = …………cm 

Table 2: For oscillations of the spring 

S.No

. 

Mass 

suspende

d (gm.) 

No. of 

oscillation

s 

Tim

e 

(sec) 

Time 

period 

(sec) 

(Observed

) 

Equilibriu

m 

extension 

from 

graphs 

K from a 

graph 

(N/Meter

) 

Period 

(Calculated

) 

1 10       

2 30       

3 50       

 

Table 3: Computation of Ub, Um  vs extension ; m = 20 gm. 

S.No. Ub (Joule) Um for   

    

    

    

    

    

    

    

 

Results:  

(1) The force constant of rubber band is a function of extension a in the limit of elasticity. 

It is observed that the force constant is independent of extension a within the limit of 

elasticity. 
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(2) From Table 2, it is observed that the calculated time periods are the same as 

experimentally observed time periods. 

(3) Ub, Um and U versus extension are drawn in the graphs of Figure 4. 

Precautions and Sources of Errors: 

(1) The spring should not be loaded beyond of the load required for exceeding the limit of 

elasticity. 

(2) The time period should be recorded with sensitive stop watch. 

(3) The experiment should also be performed by decreasing loads. 

(4) The experiment should be performed with a number of springs. 

(5) Amplitude of oscillations should be small. 

(6) For graphs, smooth curves should be drawn. 

Objectives: After performing this experiment, you should be able to- 

 Understand oscillations 

 Understand force constant of spring 

 Understand potential energy 

VIVA-VOCE: 

Question 1.  What is a spiral spring? 

Answer.  A long metallic wire in the shape of a regular helix of given radius is called a spiral   

spring. 

Question 3. What do you mean by restoring force per unit extension of a spring? 

Answer. The restoring force per unit extension of a spring is defined as the elastic reaction 

produced in the spring per unit extension which tends to restore it back to its initial 

conditions. 

Question 4. What is the unit of restoring force per unit extension of a spring? 

Answer.  The unit of restoring force per unit extension of a spring is Newton/meter. 

Question 5. How does the restoring force change with length and radius of spiral spring? 

Answer. This is inversely proportional to the total length of wire and inversely proportional to 

the square of radius of coil. 

Question 6. How the knowledge of restoring force per unit extension is of practical value? 

Answer. By the knowledge of restoring force per unit extension, we can calculate the correct 

mass and size of the spring when it is subjected to a particular force. 

Question 7: What is the unit of potential energy? 
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Answer: The unit of potential energy is erg or joule. 

 

 

 

Experiment No. 3 

 
Object: To determine the coefficient of damping, relaxation time and quality factor of a 

damped simple harmonic motion using a simple pendulum. 

Apparatus Used: A long simple pendulum with brass bob and two extra bobs one of 

aluminium and the other of wood of the same mass or of the same diameter as that of brass, 

one meter scale and a stop watch. 

 

Formula Used:  

The coefficient of damping K is given by- 

                                                   K = 
2.3036∆ log10 An

∆t
                                                        ..... (1)  

where An is the amplitude of nth damped simple harmonic motion at any time t. 

The relaxation time τ is the time in which the energy of oscillation reduces to 1/e of the original 

value and is given by- 

                                                    τ = 
1

2K
                                                                          ..... (2) 

The quality factor of simple harmonic motion is 2π times the ration of energy stored to the 

energy lost per cycle and is given by- 

                                                    Q = 
2π

T
 τ                                                                       ..... (3) 

 

 

About apparatus:  

Let us know about the apparatus. An ideal simple pendulum consists of a heavy point 

mass suspended from a rigid support by means of a weightless, flexible and inextensible string. 

In actual practice a bob is used which is suspended by a long thread from a rigid support near 

the wall as shown in figure 1. To note the amplitude of the oscillations, a marked scale is 

attached on the wall just opposite to the bob. When the bob is allowed to oscillate, its amplitude 

slowly decreases and after sometime it comes to rest. Such type of the motion is called damped 

simple harmonic motion and slow decay of the amplitude is called damping. 
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  Rigid Support 

  

 

                                                                                                          Thread 

 

 

 

                                                  Bob 

 

    

  Scale 

Figure 1           

 

Procedure: 

(i) Let us set up the arrangement as shown in figure 1 with length of the thread about 

3 meter long. 

(ii) Now give the pendulum a displacement of about 60-70 cm. and leave it. Allow the 

first 6-8 oscillations to pass and ensure that the thread and bob would not touch the 

wall. 

(iii) When the amplitude of oscillation is approximately 40-50 cm. note down this 

amplitude A0 and start counting the number of oscillations. Then note down the 

amplitude An at equal intervals of say 5 oscillations. Here you have to remember 

that a stop watch is not required. The counting of the oscillations should continue 

till the amplitude becomes about 10 cm. 

(iv) Again allow the pendulum to oscillate simple harmonically i.e. with small 

amplitude and note the time taken of about 10-15 oscillations with a stopwatch. 

Divide the whole time by the number of oscillations to calculate the time period T. 

You should take atleast three sets and calculate the mean period of the pendulum. 

(v) Now repeat the whole experiment with bobs of aluminium and wood which are 

either of the same mass or of the same diameter as brass bob. 
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Observations: 

Table 1: The observation of An against n 

 

S.No. No. of 

oscillations (n) 

Amplitude An for 

 

Log10An for 

Brass 

bob 

 

Aluminium 

bob 

 

Wooden 

bob 

 

Brass 

bob 

 

Aluminium 

bob 

 

Wooden 

bob 

 

1 0       

2 5       

3 10       

4 15       

5 20       

        

        

        

 90       

 95       

 100       

 

 

Table 2: The observations of time period of the bobs 

Least count of the stop watch = ....... sec. 

S.No

. 

Number of 

oscillations 

(n) 

Time taken 

Brass bob 

 

Aluminium bob 

 

Wooden bob 

 

Total 

time 

(sec) 

Time 

period 

T1 

(sec) 

Mean 

T1(sec) 

Total 

time 

(sec) 

Time 

period 

T2 

(sec) 

Mean 

T2(sec) 

Total 

time 

(sec) 

Time 

period 

T3 (sec) 

Mean 

T3(sec) 

1 10          

2 15          

3 20          

4 25          

5 30          

 

 

Calculations: 
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Let us plot a graph between number of oscillations ‘n’ on the X-axis and corresponding 

values of log10An on the Y-axis for brass bob. 

 

 

    Y 

 

 

 

                   Log10An A 

 C B Brass Bob 

 Aluminium Bob 

  Wooden 

 O                        Number of oscillations (n) X 

 

Figure 2 

 You will see that the  graph plotted comes out nearly a straight line as shown in figure 

2. From the graph, find the slope  
∆ log10 𝐴𝑛

∆𝑛
. Now divide this slope by time period T1 of the 

pendulum to calculate 
∆ log10 𝐴𝑛

∆𝑡1
 because ∆t1 = T1×∆n. In the same way, plot graphs for 

aluminium and wooden bobs and calculate the corresponding values of 
∆ log10 𝐴𝑛

∆𝑡2
 and 

∆ log10 𝐴𝑛

∆3
. 

Now, follow the following procedure to calculate the coefficient of damping(K), relaxation 

time(τ) and quality factor(Q)- 

For the simple pendulum with brass bob- 

Slope of the curve 
∆ log10 𝐴𝑛

∆𝑛
 = 

AC

CB
 = -  ........  per oscillation 

Therefore, 
∆ log10 𝐴𝑛

∆𝑡1
 = 

∆ log10 𝐴𝑛

T1×∆n
 = 

AC

T1×CB
 = - ........ per sec 

The damping coefficient, K = - 2.3026×
AC

T1×CB
 = + .......... per sec 

The relaxation time, τ = 
1

2K
 = ........ sec 

The quality factor, Q = 
2π

T
τ = ........... 
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Do similar calculations for aluminium and wooden bobs. 

Results: The values of different constants are given below- 

S.No. Simple pendulum with Constants 

Coefficient 

of damping 

(K) 

 

Relaxation time 

(τ) 

Quality 

factor(Q) 

 

1. Brass Bob    

2. Aluminium Bob    

3. Wooden Bob    

 

Precautions and Sources of Errors: 

(1) The length of the pendulum should be sufficiently large. 

(2) The pendulum should not touch the scale. 

(3) The readings should be taken carefully. 

---------------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 understand simple pendulum 

 understand damping, relaxation time and quality factor 

 calculate coefficient of damping, relaxation time and quality factor 

VIVA-VOCE: 

Question 1.  What is a simple pendulum? 

Answer. If a heavy point-mass is suspended by a weightless, inextensible and perfectly flexible 

string from a rigid support, then this arrangement is called a simple pendulum. 

Question 2.  What do you mean by periodic and oscillatory motion? 

Answer. When a body repeats its motion continuously on a definite path in a definite interval 

of time then its motion is called periodic motion and the interval of time is known as 

time period. If a body in periodic motion moves along the same path to and fro about 

a definite point (equilibrium position), then the motion of the body is called vibratory 

motion or oscillatory motion. 

Question 3. What do you understand by free, damped and forced oscillations? 

Answer. When an object oscillates with its natural frequency, its oscillations are said to be 

free. If there is no external frictional forces, then the amplitude of free oscillations 

remains constant. In the presence of frictional forces (like air), the amplitude of 

oscillations goes on decreasing. Such oscillations are called damped oscillations. If 
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a constant external periodic force is applied in such a way that the amplitude of 

vibrations remains constant, then such oscillations are called as forced oscillations. 

Question 4. What is meant by relaxation time? 

Answer.  The relaxation time is defined as the time in which the energy of oscillation reduced 

to 1/e of the original value. 

Question 5. What do you mean by quality factor? 

Answer. Quality factor is defined as 2π times the ratio of the energy stored to the average 

energy lost per cycle. 

Question 6. On what factor or factors, the relaxation time depend? 

Answer. The relaxation time depends upon the coefficient of damping. 
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Experiment No. 4 

 
Object: To study the variation T (time period) and l (distances of the knife-edges form the 

centre of gravity) for a compound pendulum, plot a graph then determine   acceleration due to 

gravity g, radius of gyration  K and the moment of inertia I of the bar in the laboratory.  

Apparatus Used: 

 Compound pendulum, a wedge, a spirit level, a telescope, a stop-watch, a meter rod, a 

spring balance and a graph paper.  

Formula Used: Acceleration due to gravity is given by 

𝑔 =
4𝜋2𝐿

𝑇2
 

Radius of gyration K=√𝑙1𝑙2 

Where L is equivalent length of compound pendulum and calculated with the help of graph 

and T is corresponding time period. 

Theory: 

Simple pendulum: Before understanding a compound pendulum, we should review about a 

Simple pendulum. It consists of a heavy particle suspended by a weightless, inextensible and 

perfectly flexible string fixed from a point. The pendulum oscillates without friction about 

fixed point. In practice, it is not possible to have such an ideal pendulum because neither we 

can get a single material particle nor a weightless and inextensible string.  But we can 

consider a simple pendulum consists of a small heavy sphere, suspended from a fixed support 

by a very fin e flexible cotton thread as ideal pendulum. By using such a device, we can study 

the behavior of a pendulum and   easily determine acceleration due to gravity of a simple 

pendulum. If the amplitude is small, the time period t of a simple pendulum of length l is 

given by  

𝑡 = 2𝜋√
𝑙

𝑔
  

A simple pendulum whose time period in two seconds is called a second’s pendulum.  

  Compound pendulum and bar pendulum: A compound pendulum or a bar pendulum is 

slightly different than a simple pendulum. Since an ideal simple pendulum cannot be realized 

in actual practice. Therefore, we use compound pendulum so that we can find better result 

and most of the defects are removed by using a compound pendulum. A compound pendulum 
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consists of a rigid body or a rigid bar which can oscillate freely about a horizontal axis 

passing through it.  

Bar pendulum is a special type of a compound pendulum as shown in figure 15. 1. It consists 

of uniform metal bar having holes drilled along its length symmetrically on either side of the 

centre of gravity. Two knife edges are placed symmetrically with respect to the center of 

gravity C.G. as at A and B. The time period is determined about each hole by placing the two 

knife edges symmetrically. The distance of each of the knife edges (i.e. the point of 

suspension) form the center of gravity is measured in each case.  

 

 

Time period of a compound pendulum: 

 Consider a rigid body i.e. a bar pendulum of mass m capable of oscillating freely about a 

horizontal axis passing through it perpendicular to its plane.  

Let O be the center of suspension of the body and G its center of gravity in the position of 

rest. When the body is slightly displace through a small angle 𝜃, the centre of gravity is 

shifted to the position G and its weight mg acts vertically downward at G.  

If the pendulum is now released a restoring couple acts on it and brings it back to the initial 

position. But due to inertia it starts oscillating about the mean positions.  

The moment of the restoring couple of torque 

𝜏 = −𝑚𝑔 × 𝐺𝐴 = −𝑚𝑔 𝑙 𝑠𝑖𝑛𝜃 = −𝑚𝑔𝑙𝜃 

Since the angle 𝜃 through which the pendulum is displace is small so that sin 𝜃 = 𝜃  
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This restoring couple provides an angular acceleration 𝛼 in the pendulum. If I is the moment 

of inertia of the rigid body (bar pendulum) about an axis through its center of suspension 

restoring couple (torque) is given by  

𝜏 = 𝐼𝛼 = 𝐼
𝑑2𝜃

𝑑𝑡2
 

Comparing equation (i) and (ii), we have  

𝐼
𝑑2𝜃

𝑑𝑡2
= −𝑚𝑔𝑙𝜃 

𝑑2𝜃

𝑑𝑡2
= −

𝑚𝑔𝑙𝜃

𝐼
 

 

𝑑2𝜃

𝑑𝑡2
 ∝ 𝜃  

This is the condition for simple harmonic motion. As the angular acceleration is proportional 

to angular displacement, the motion of the pendulum is simple harmonic and its time period T 

is given by  

𝑇 = 2𝜋√
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
=  2𝜋√

𝜃

𝑚𝑔𝑙𝜃
𝐼

= 2𝜋√
𝐼

𝑚𝑔𝑙
 

If 𝐼𝑐𝑔 is the moment of inertia of the body (or compound pendulum) about an axis passing 

through center of gravity (C.G.) and I is the moment of inertia of the body about a new axis 

Z’ parallel to the given axis then according to the theorem of parallel axis, we have  

𝐼 = 𝐼𝑐𝑔 + 𝑚𝑙2 

Where l is the parallel distance about two axis as shown in figure. 
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                                    Z’                                     Z 

                                  𝐼               𝑙                             𝐼𝑐𝑔                                                  

 

 

 

  

 

 

 

 

Figure 1 

 

Now, moment of inertia center of gravity 𝐼𝑐𝑔 = 𝑚𝑘2 , 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑔𝑦𝑟𝑎𝑡𝑖𝑜𝑛. 

𝐼 = 𝑚𝑘2 + 𝑚𝑙2 = 𝑚(𝑘2 + 𝑙2) 

Substituting the value of  I in relation of time period, we get 

𝑇 = 2𝜋√
𝑚𝐾2 + 𝑚𝑙2

𝑚𝑔𝑙
= 2𝜋√

𝑘2 + 𝑙2

𝑙𝑔
 

In case of simple pendulum time period T is given as 

𝑇 = 2𝜋√
𝐿

𝑔
 

On comparing above two relations, length  𝐿 =
𝑘2

𝑙
+ 𝑙 which is called equivalent length.  

Thus relation shows that the time period of a compound pendulum is the same as that of a 

simple pendulum of length 𝐿 =
𝑘2

𝑙
+ 𝑙.  Since 𝑘2 is always a positive quantity, the length of 

an equivalent simple pendulum is always greater than l.  

Centre of suspension: As stated above, the point O through which the horizontal axis about 

which the pendulum vibrates, passes is called the center of suspension. If 𝑙𝑙 is the distance of 

O from the center of gravity G, then  
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Time period 𝑇 = 2𝜋√
𝑘2+𝑙1

2

𝑙1𝑔
 

Centre of Oscillation: A point C on the other side of center of gravity G and at a distance 

𝑙2 =
𝑘2

𝑙1𝑔
 from it is called the centre of oscillation. 

 𝑂𝐶 = 𝑂𝐺 + 𝐺𝐶 = 𝑙1 +
𝑘2

𝑙1𝑔
= 𝑙1 + 𝑙2 = 𝐿 

If pendulum is suspended at center of oscillation then time period 

Time period 𝑇 = 2𝜋√
𝑘2+𝑙2

2

𝑙2𝑔
 = 2𝜋√

𝑘2+ (
𝑘2

𝑙1𝑔
 )

2

  

(
𝑘2

𝑙1𝑔
)

 = 2𝜋√
𝑘2+𝑙1

2

𝑙1𝑔
 

Thus the time period of the compound pendulum about a horizontal axis through C is the 

same as about O. Thus the point C at a distance equal to the length of an equivalent simple 

pendulum from the point of suspension O on the straight line passing through the center of 

gravity G is called the center of oscillation. Mathematically, the time period is same for both 

center of suspension and the center of oscillation therefore the center of suspension and the 

center of oscillation are interchangeable. The time period of a compound pendulum is 

minimum when the distance of the point of suspension from C.G. is equal to the radius of 

gyration.  

Procedure:  

1.  A graph is plotted between the distance of the knife-edges from the center of gravity 

taken along the x-axis and the corresponding time period t taken along the Y-axis for a 

bar pendulum, then the shape of the graph is as shown in figure 15.4.  

2. If a horizontal line ABCDE is drawn, it cuts the graph in points A. B and D, E about 

which the time period is the same. The points A and D or B and E lie on opposite sides 

of the center of gravity at unequal distances such that the time period about these points 

is the same. Hence one of these corresponds to the center of suspension and the other to 

the centre of oscillation. The distance AD or BE gives the length of the equivalent 

simple pendulum L. If t is the corresponding time period, and 𝑙1𝑎𝑛𝑑 𝑙2 are the distances 

of the point of suspension and the point of oscillation from the centre of gravity, M is 

the mass of the bar pendulum then  
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                                                                t 

 

 

 

 

                  A                                 B              C                 D                       E 

 

                                                               O                                 distance  

Observation: 

1. The reading for distance and time period is to be taken as shown in table. 

No. of 

Hole 

Side A Side B 

 Total time 

for 20 

oscillations 

Time 

period 

T=t/20 

Distance 

from CG 

in cm 

Total time 

for 20 

oscillations 

Time 

period 

T=t/20 

Distance 

from CG 

in cm 

1       

2       

3       

4       

5       

6       

 

 

2. Plot the graph Take the Y-axis in the middle of the graph paper. Represent the 

distance from the C.G. along the x-axis and the time period along the y-axis.  

3. Plot the distance on the side A to the right and the distance on the side B to the left of 

the origin.  

4. Draw a smooth curves on either side of the Y-axis passing through the plotted points 

taking care that the two curves are exactly symmetrical as shown in fig. 14.5.  

Calculation: 

From graph  

For line ABCDE 

T= 

L1= 
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L2= 

         𝐿 = 𝐿1+𝐿2 

Radius of gyration K=√𝑙1𝑙2 

And Moment of inertia I=M𝑘2  

 

Precaution: 

 

1. Mark one end of the Bar pendulum as A and the other as B.  

2. Suspend the pendulum from the knife-edge on the side A so that the knie-edge is 

perpendicular to the edge of the slot and the pendulum is hanging parallel to the wall.  

3. Measure the distance between the C.G. and the inner edge of the knife-edge.  

4. Now suspend it on the knife-edge on the side B and repeat the observations.  

5. Repeat the observations with the knife-edges in the 2nd, 3rd 4th etc. holes on either side of 

the center of gravity.  

6. See that the knife edges are always placed symmetrically with respect to C.G.  

7.  The knife-edges should be horizontal and the bar pendulum parallel to the wall.  

8. Amplitude should be small.  

9. The two knife-edges should always lie symmetrically with respect to the C.G.  

10. The distance should be measure from the knife-edges.  

11. The graph drawn should be a free hand curve.  

Sources of error: 

 1. Slight error is introduced due to (i) resistance of air, (ii) curvature of knife-edges. (iii) 

yielding of support and (iv) finite amplitude.  

2. The stop watch may not be very accurate.  

3. The time period should be noted after the pendulum has made a few vibration and the 

vibrations have become regular.  

4. The two knife-edges should always lie symmetrically with respect to the c.g.  

5. The distance should be measured from the knife –edges.  

6. The graph drawn should be a free-hand curve.  
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Experiment No. 5 
 

Object:  

To determine the value of acceleration due to gravity with the help of a Keter’s pendulum.  

 

Apparatus Used: 

 Kater’s pendulum, a wedge, a stop-watch, a meter rod and a graph paper.  

Formula Used: Acceleration due to gravity is given by 

𝑔 =
8𝜋2

𝑇1
2 + 𝑇2

2

𝑙1 + 𝑙2
+

𝑇1
2 − 𝑇2

2

𝑙1 − 𝑙2

 

Where 𝑇1 = Time period with knife edge 𝐾1 

𝑇2  = Time period with knife edge 𝐾2 

𝑙1= distance of knife edge 𝐾1 from C.G. 

𝑙2 = distance of knife edge 𝐾2 from C.G. 

Theory:  

Kater’s pendulum is a physical pendulum consists of a steel rod of nearly 1.2m capable to 

oscillate about two adjustable knife edges at two sides. The two knife edges 𝐾1 and 𝐾2 faced 

toward each other in such a way that pendulum can be suspended and set swinging by resting 

either knife edge on a flat, level surface.   The rod can be made to oscillate by using 𝐾1 and 𝐾2 

points as centre of suspension. One metal weight W and another wooden weight W' are kept 

symmetrically at two ends of the steel rod as shown in figure. The wooden weight W' is the 

same size and shape as the metal weight W so that it provides nearly equal air resistance to 

swinging as possible in either suspension. Another smaller metal weight w is also kept between 

the two knife edges which can be slide along the length of rod and clamped at any position. 

The position of smaller weight w is to be adjusted such a way that the time period of the 

pendulum about both the knife edges 𝐾1 and 𝐾2 is same or nearly same. As we know center of 

suspensions and center of oscillation are interchangeable therefore the time period about edges 

𝐾1 and 𝐾2 will be same if 𝐾1 and 𝐾2 are center of suspensions and center of oscillation. In this 

condition the equivalent length L of the Keter pendulum will be distance between 𝐾1 and 𝐾2. 

The time period of Keter pendulum  

𝑇 = 2𝜋√
𝐿

𝑔
           (1) 
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In the experiment the time periods about the both edges 𝐾1 and 𝐾2 are to be adjusted by moving 

the weights W and W' or small weight w along the rod and we find out the position at which 

time period about edges 𝐾1 and 𝐾2 are same. However, it is very difficult to find out the position 

of weight w when the time period is to be same, therefore we find the position of weight when 

the time periods are nearly same and apply the formula for time g. 

                                                                                      

 

 

 

 

                                                           W  

 

                                                            𝐾1 

 

 

                                                          w 

 

 

                                                            𝐾2 

  

                                                          W'  

 

 

 

 

 

                                   Figure 16.1 Keter’s Pendulum 
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If  𝑇1  and 𝑇2  are time periods about knife edge 𝐾1 and 𝐾2 respectively, and 𝑙1 is distances of 

knife edge 𝐾1 from C.G. and 𝑙2 is distance of knife edge 𝐾2 from C.G. then the time periods 

can be given as 

          𝑇1 = 2𝜋√
𝑘2+𝑙1

2

𝑙1𝑔
         (2) 

  and  𝑇2 = 2𝜋√
𝑘2+𝑙2

2

𝑙2𝑔
          (3) 

using above relations 

𝑇1
2𝑙1 =  

4𝜋2

𝑔
(𝐾2 + 𝑙1

2)         (4) 

𝑇2
2𝑙2 = 

4𝜋2

𝑔
(𝐾2 + 𝑙2

2)         (5) 

Subtracting equation (5) from (4)   

𝑔 =
8𝜋2

𝑇1
2+𝑇2

2

𝑙1+𝑙2
+

𝑇1
2−𝑇2

2

𝑙1−𝑙2

          (6) 

If If  𝑇1  and 𝑇2  are same (If  𝑇1 = 𝑇2 = 𝑇) the above equation (6) becomes  

𝑔 =
4𝜋2 (𝑙1 + 𝑙2)

𝑇2
 

 

Procedure:  

3. Hang the pendulum from knife edge 𝐾1and find out the time period for 20 oscillations 

(𝑡1). Hang the pendulum from knife edge 𝐾2 and find out the time period for 20 

oscillations (𝑡2). 

4. Find |𝑡1 − 𝑡2| 

5. Now move W to 12 cm from A and  𝐾1 is again at 2cm from W. Also move W' 12 cm 

from B and 𝐾2 is again at 2cm from W'. 

6. Repeat step 3 and 4. 

7. Note that |𝑡1 − 𝑡2| for 12 cm position is less than |𝑡1 − 𝑡2| for 10 cm position. 

8. Now keeping moving (W, 𝐾1) and (W' , 𝐾2 ) inwards by 2 cm till |𝑡1 − 𝑡2| becomes more 

than previous position. 

9. Go back to previous. And find out he position for which  |𝑡1 − 𝑡2| is minimum.  Find for 

the 𝑡1 and 𝑡2 for 50 oscillations. Then find out  𝑇1  and 𝑇2 . 

10.  Find C.G. by balancing the keter pendulum on wedge. Mark the C.G. by using pencil. 

11. Find out 𝑙1 and 𝑙2. 
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Observation Table: 

Distance 

from the 

Edge 

𝐾1  𝐾2  

|𝑡1 − 𝑡2| 

Time period for 20 

Oscillations (𝑡1) 

Time period for 20 

Oscillations (𝑡2) 

10      

12      

14      

16      

18      

--      

--      

 

Calculation: 
For minimum  |𝑡1 − 𝑡2|  

Time period for 50 oscillations from 𝐾1 side 𝑡1 =    sec 

Time period for 50 oscillations from 𝐾2 side 𝑡2 =     sec. 

𝑇1 =  
𝑡1

50⁄ =          sec.    and  𝑇2 = 
𝑡2

50⁄ =          sec. 

𝑙1 =       cm      and         𝑙2 =           cm 

𝑔 =
8𝜋2

𝑇1
2 + 𝑇2

2

𝑙1 + 𝑙2
+

𝑇1
2 − 𝑇2

2

𝑙1 − 𝑙2

 

 

Result:   
The values of acceleration due to gravity g is……………….. cm/sec2 

 

Precaution: 
 

6. Mark one end of the Keter’s pendulum as A and the other as B.  

7. Suspend the pendulum from the knife-edge on the side A so that the edge is perpendicular 

to the support and the pendulum is hanging parallel to the wall.  

8. Measure the distance from the knife-edge.  

6. See that the knife edges are always placed symmetrically with respect to C.G.  

7. Amplitude should be small.  

 



PHY (N) – 201                                                                                                             OSCILLATION & WAVE  
& PHY (N) – 201L                                                                                                     & LABORATORY COURSE - 1 
 

28 
 

Sources of error: 

 1. Slight error is introduced due to (i) resistance of air, (ii) curvature of knife-edges. (iii) 

yielding of support and (iv) finite amplitude.  

2. The stop watch may not be very accurate.  

3. The two knife-edges should always lie symmetrically with respect to the c.g.  

5. The distance should be measured from the knife –edges.  
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