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COURSE INFORMATION

The self-learning material titled Complex Analysis has been carefully designed for B.Sc.
(Six Semester) learners at Uttarakhand Open University, Haldwani, to provide convenient
access to high-quality academic content. The course is divided into fourteen systematic
units that cover the essential areas of complex analysis. Units 1 and 2 introduce the basic
concepts of the complex plane and stereographic projection, forming the foundation for
understanding the subject. Units 3 and 4 explore complex functions, their properties, and
the important ideas of limit, continuity, and differentiability. This foundation is further
strengthened through Units 5 and 6, which focus on analytic functions, followed by
Units 7 and 8, which present the theory and applications of complex integration. Units 9
and 10 extend learning to power series and the expansion of analytic functions, while
Unit 11 explains singularities and the behavior of functions near points of discontinuity.
The advanced topics in Units 12, 13, and 14 cover the residue theorem, its applications,

analytic continuation, and the principle of uniqueness.

The material is structured not only to support the academic curriculum but also to help
learners prepare for various competitive examinations. It explains fundamental concepts
and theorems in a clear and accessible manner, making it suitable for both self-study and
revision. Numerous examples, solved problems, and practice exercises have been
carefully included to strengthen conceptual understanding and enhance problem-solving
skills. Overall, this self-learning material enables students to develop a strong foundation
in complex analysis and encourages independent learning through a well-organized and

student-friendly approach.
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BLOCK |
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UNIT 1: - Basics of Complex plane
CONTENTS:

1.1  Introduction

1.2  Objectives

1.3 Complex Numbers

1.4 Equality of Complex Numbers

1.5 Addition of Complex Numbers

1.6 Multiplication of Complex Numbers

1.7  Difference of Complex Numbers

1.8  Division of Complex Numbers

1.9  Modulus of Complex Numbers

1.10 Conjugate of Complex Numbers

1.11  Absolute Value

1.12  Modulus and Argument Polar Form of Complex Numbers

1.13  Geometrical Representation of Complex Numbers

1.14 Complex Plane or Argand Plane

1.15 Properties of Properties of Modulus Arguments of Complex
Numbers

1.16 Summary

1.17 Glossary

1.18 References

1.19 Suggested Reading

1.20 Terminal questions

1.21  Answers

1.1 INTRODUCTION: -

Complex numbers extend the real number system to include solutions to
equations that have no real solutions, such as x> + 1 =0. A complex
number is of the form 2z = a + ib where a the real part, b is the
imaginary part, and i is the imaginary unit with i = —1. They can be
represented on the complex plane, with the real part on the horizontal axis
and the imaginary part on the vertical axis. The term “Complex Number”
was coined by C.F. Gauss, and later mathematicians like A.L. Cauchy, B.
Riemann, and K. Weierstrass made significant contributions, enriching the
subject with their original work. Basic operations with complex numbers,
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such as addition, subtraction, multiplication, and division, follow specific
rules. The modulus and argument provide a polar form, offering an
alternative way to express complex numbers, which is particularly useful
in advanced mathematics and engineering.

1.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to

e To find the solutions to equations that lack real solutions.

e To represent complex numbers as points or vectors on the complex
plane.

e To solved the form of complex numbers.

e To solved the equation of straight line and circle.

1.3 COMPLEX NUMBERS: -

Complex numbers were introduced to provide solutions to equations like
x?+1 = 0, where there are no real solutions. These numbers include
both real and imaginary parts and are denoted as a + ib, where a,b are
the real numbers, is called Complex Number. and i represents the
imaginary unit, which is defined as the square root of —1, also called i as
imaginary unit.

If we represent a number in the form z = x + iy, then z is called a
complex Variable . Here, x and y are called the real and imaginary parts of
z respectively. Sometimes we write z as

z=(xy)
we also write
R(z)=x1(z)=y
Ifx =0,i.e., z=1iy,then zis known as pure imaginary number.

The complex conjugate of a complex number z = x + iy is denoted as
x + iy and is equal to x — iy. In other words, it involves changing the sign
of the imaginary part while leaving the real part unchanged.

z=x+1iy or z=x+1iy

Example: the conjugate of —3 — 5i is 3 + 5i.
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It is easy to verify that

zZ+ 2z zZ—Z
RZ)=x=——, I@)=y= >

2
1.4 EQUALITY OF COMPLEX NUMBERS: -

The equality of complex numbers follows the same principles as equality
of real numbers. Two complex numbers x; +iy, and x, + iy, are
considered equal if and only if both their real parts and imaginary parts are
equal, i.e., x; = x,and y; = y,.

Formally
zy =x; +iy; or (x1,¥1), Zz =X+ iy, 0r (x3,¥,)
Z1 = Zy |f and Only if X1 = X, Vi =Y.

Remark: The phrases “greater than” or “less than” have no meaning in
the set of complex numbers.

1.5 ADDITION OF COMPLEX NUMBERS: -

If zz =x,+iy; or (x,y) and z, = x, + iy, or (x,y) are any two
complex numbers, then the sum of z,, and z,written as z, + z,, is defined
by

zZy+ 2, = (g +iyy) + Oy +iy,)
z1+ 7z, = (xy +x) +i(y; +v,)
= (x1,y1) + (x2,¥2) = (x1 + x2,¥1 + ¥2)
Thus 24+4)+(7-91)=2+7)+i(4—9)=9-5i
Properties of the Addition of complex numbers:

The addition of complex numbers is commutative, associative, admits of
identity element and every complex number possesses additive inverse.

Commutativity of Addition in C: To Show that z; + z, = z, + 7,
where z, and z, are any complex numbers.

Proof: Let z; = (x4,y1),2, = (x5,v¥,) , where x,,y;,%,,y, are real
numbers.
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71 + 25 = (x1,y1) + (x2,¥2)
= (X1 +x2, 51 +¥2)
= (X2 +x,¥2 +y1)
= (x2,¥2) + (x1,¥1) = (7, + 71)
Hence
z, + z, = z, + z,, for all complex numbers z, and z,.

Associativity of Addition in C: To Show that (z; +z;) + 23 =z, +
(z, + z3), where z; and z, are any complex numbers.

Proof: Let
7y = (x1,¥1), 22 = (x2,¥2), 23 = (x3,¥3),
where x4, Y1, X2, Y2, X3, 5 are real numbers.
(21 + 25) + 73 = {(x1,¥1) + (x2,¥2)} + (x3,¥3)
= (%1 +x2, 71 +¥2) + (x3,¥3)
= ({ey + x23 + x5, {y1 + 2} + ¥3)
= + {2 + x3hy1 +{y2 + ¥3D)
= (1) + (2 +x3,7, +y3)
= (1, y1) + {(x2, ¥2) + (x3,3)}
=2z, + (2, + 23)
Hence (z, + z,) + z3 = z; + (2, + z3), V complex numbers z;, z, and z.

Additive Identity: The complex number (0,0) or 0+ i0 is additive
identity, since for every complex number (x, y), we obtain

(x,y) +(0,0) = (x + 0,y + 0) = (0,0) + (x,y)

The zero complex number, or complex number (0,0), is represented
simply by the symbol 0. A complex number x + iy is considered non-
zero if at least one of the variables, x and y, is not zero.
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Additive Inverse: The complex number (—x, —y) is the additive inverse
of the complex number (x, y) since and also

(x,y) + (—x,—y) = (x —x,y — y) = (0,0) = additive identity
and (=x,—y) + (x,y) = (0,0)

The complex number (—x,—y) is called the negative of the complex
number (x,y) and we denote (—x, —y) by —(x, y).

Thus if z = (x,y),then —z = —(x,y) = (—x,—y).

Cancellation law for addition in C. If z;,z, and z;. are any complex
numbers, then

ZytY2z23=2,+23 = 2z, =2,

1.6 MULTIPLICATION OF COMPLEX NUMBERS:

Ifz, =x; +iy; or (xi,y;) and z, = x, + iy, 0r (x,,y,) are any two
complex numbers, then the product of z;, and z, denoted by

717, = (%1 + iy;) (xy + iy,)
= (x1X2 — y1¥2) +i(x1y, + Y1)
= (x1,¥1) + (x2,¥2)

= (1% — Y1Y2, X1Y2 + Y1%2)

Ex-(3+3i)(6+4i))=3B3%x6—-3x4)+i(3x4+3x%X6)
=6+ 30
Or using the notation of order pairs, we obtain
(3,3)(64) =(3x6—-3%x43%x4+3x6)=1(6,30)

Properties of the Multiplication of complex numbers:

The multiplication of complex numbers is commutative, associative,
admits of identity element and every non-zero complex number possesses
multiplicatively inverse.

Commutativity of Multiplication in C: To Show that z,z, = z,z, ,
where z; and z, are any complex numbers.
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Proof: Let z; = (xq,y1),2, = (x3,v,) , where xq,y;,x,,y, are real
numbers, then we get

212, = (%1, y1) (%2, ¥2)
= (1% — y1Y2,%1Y2 + Y1%2 )
= (x2,¥2) (1, 1) = (2224)
Hence
Z,2Z, = Z,Z,, for all complex numbers z, and z,.

Associativity of Multiplication in C: To Show that (z,z,)z; = z,(2,23),
where z, and z, are any complex numbers.

Proof: Let
7y = (X1, y1), 22 = (x2,¥2), 23 = (x3,¥3),
where xq,¥1, X3, Y2, X3, V5 are real numbers.
(2123)23 = {(x1, 1) (x2, ¥2)}(x3,¥3)
= (x1X2 — Y12, X1¥2 + Y1%2 ) (%3, ¥3)

= ({x1x2 — y1ya}xs — {1y, + y1x2 Y3, (X1, — y1¥23y3
+ {x1y, + y1x5 }x3)

= (X1X2X3 — Y1Y2X3 — X1Y2¥3 — Y1X2 ¥3,X1X2Y3 — Y1Y2YV3 + X1Y2X3 +
y1X,x3) By distributive law

Also
21(2,23) = (g, y){(x2, ¥2) (x3,¥3)}
= (x1, Y1) (X2X3 — ¥2¥3, X33 + Y2 X3 )

= (X1 {x2x3 — ¥oy3} — yalxoys + yox3 Lx {xoy3 + yox3}
+ y1 {x2x3 — ¥2¥3 1)

= (X1X2X3 — Y1Y2X3 — X1Y2¥3 — Y1X2 ¥3,X1X2Y3 — Y1Y2YV3 + X1Y2X3 +
v, X,%3) By distributive law

Finally, (z,2,)z; = z1(2,23), VY complex numbers z;, z, and z5
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Multiplicative ldentity: The complex number (1,0) or 1+i0 is
multiplicative identity, since for every complex number (x, y), we obtain

(,y)(1,0) =(x.1-y.0,x.0+ y.1) = (x,y) = (1,0)(x, y)

Multiplicative Inverse: The complex number (x, y) is the multiplicative
inverse of the complex number (a, b),then we have

(x,¥)(a,b) = (1,0)simply 1
= (xa — yb,xb + ya) = (1,0)
xa—yb=1and xb+ya=20

. a _—b
T +p2? T a4 b2
= a? + b? # 0, which implies that a and b are not both zero i.e., (a,

is a non-zero complex number)

Thus every non-zero complex number possesses multiplicative inverse and
the multiplicative inverse of the complex number (a,b) # (0,0) is the
complex number

(o5 7 r5)
a? + b2’ a? + b?

If z is a non-zero complex number, the multiplicative inverse of 2 is
denoted by 1/z or z~1.

Cancellation law for multiplication in C. If z;,z, and z;. are any
complex numbers, then

Z1Z3 = Z2Z3 = Zl = ZZ

1.7 DIFFERENCE OF COMPLEX NUMBERS: -

If z, and z, are two complex number then
Z2y— 2, =21+ (—22)
Thus z; = (x4, y1),2, = (x5,v,), then we get
zy— 2z = 21 + (=23) = (x, y1) + (=x2,—¥3)

= (X1 — %2 Y1—Y2)
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1.8 DIVISION OF COMPLEX NUMBERS: -

If a complex number (x, y) exists such that a complex number (a, b) is
divisible by a complex number (c, d), then (x,y)(c,d) = (a, b).
We get
(xc —yd,xd + yc) = (a, b)

xc—yd=a andxd+yc=>b

The above equations gives
ac + bd bc — ad

Y= 2y az Y= et a2

For all ¢2 + d? # 0, which implies that ¢ and d are not both zero.
Or

To divide two complex numbers, multiply the numerator and the
denominator by the conjugate of the denominator.

If z, =a+ib, z, =c+id,the conjugate of z, is z, = ¢ — id then

zyz _a+ib c—id _(a+ib)(c—id)

z, c+id c—id c? + d?
3 (ac — bd)(bc — ad)
B c? + d?
—bd . (bc—ad) -
- ((clg+d2) +1 (c§+22) ifc?+d* %0

Therefore, in the set of complex numbers, division is always allowed, with
the exception of by (0,0). If z; and z, are two complex numbers such

that z; # 0, then the relation defines the quotient of z; and z,.
Lty = )
Z) = Z1.Z2 = z:.(2,

1.9 MODULUS OF COMPLEX NUMBERS: -

A complex number's modulus is a measurement of its absolute value or
magnitude. Denoted by | z |, the modulus of a complex number z = x +
iy, where an is the real part and b is the imaginary part, is the square root
of the sum of the squares of its real and imaginary components, or z =
V(x2 +y2).
Clearly, | z|=0ifandonly if x = 0and y = 0 That is, if and only if z =
0. Additionally, it is easily understood that for any complex number
z,|z| =2 R(2) and |z| = I(2).
Recall that we have for every real value of 8, we get

|cos@ + isinf| = \/00520 + sin%0 =1
Therefore, the complex number cos6@ + isiné is referred to as a uni-
modular complex number since its modulus is always equal to 1.
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If z, and z, are any two complex numbers, then

) |z, 2, | = |z1 |12, | )
If z,is any complex number and z, is a complex number that is not zero,
then

ﬂ _ |Z1|

- |Zz|

Zy

1.10 CONJUGATE OF COMPLEX NUMBERS: -

The complex number x — iy is known as the conjugate of the complex
number of z and is represented by the symbol z. If z = x + iy is any
complex number. Therefore, if

z=2+3iandz =2-3i
i.e., |z| = |Z]

The following results are given below:

I. Z, =12, ifandonly if z; = 7,
ii. (2) =z

- [ — — — — J— Z
iii. Z1 Y2, =21+ 23,Z] — 2, = Z] — 25,2125 = Z;.Z and (Z—l) =
2

i—l Vz, #0.
Z2
iv. If z=x+ iy, then
z+7Z=(x+iy)+ (x —iy) = 2x = 2R(2)
V. A complex number purely imaginary if and only if z + z = 0.
Vi. If z=x+ iy, then
z—7Z=(x+iy)— (x —iy) = 2iy = 2il(2)
vii. A complex number purely real ifand only if z — Z = 0.
viii. Ifz=x+iythenzz=(x+iy)(x—iy) =x?+y? =

[ [x2 _|_yz]2 = |z|?

Therefore, the product of two conjugate complex numbers is always > 0,
or a totally real number that is never negative.

1.11 ABSOLUTE VALUE: -

For a complex number z = a + ib, where a the real part is and b is the
imaginary part, the absolute value is defined as:

|z| = |a + ib| = v/ a? + b?

|z|? = a? + b? = (a+ ib)(a—ib) = zZ
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|z|? = zZ
AISO ZI'ZZ = Z_1 Z_Z
Properties of the Absolute Value:

e Non-negativity: | z [=> 0
The absolute value is always non-negative.
Zero: lz|=0

if and only if z=0 (i.e., both the real and imaginary parts are zero).

(] MU|tip|iC8.tiV€|y: |Z1.Z2 | = |Z1||Z2|
The absolute value of the product of two complex numbers is the
product of their absolute values.

e Triangle Inequality: |zy + 25 | < |z + |2,]
The absolute value of the sum of two complex numbers is less than
or equal to the sum of their absolute values.

e Conjugate: |z =1z |
The absolute value of a complex number is equal to the absolute
value of its conjugate.

1.12 MODULUS AND ARGUMENT POLAR FORM
OF COMPLEX NUMBERS: -

Every non-zero complex numbers x + iy can always be put in the form
r(cosO + isin@), where r and 0 are both real numbers.

Let x + iy = r(cos6 + isin®) = rcosf + irsinf. Then equating real and
imaginary parts on both sides, we obtain

x =rcosf,y = rsinf

Then r=.x%2+y%=|x+iy|=|z|
0 = tan‘lX

It follows
z=x+ iy = r(cosf + isinf) = re'?
where r is known and is equal to the modulus of complex numbers z and

that r, 6 are called polar coordinates of z.
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The argument of a complex number z = x + iy , denoted by as 6 =
amp(z) or 8 = arg(z), is the angle formed by the line joining the point

P(x, y) to the origin with the positive real axis, calculated as 8 = tan™?! %

and together with the modulus, fully describes the number’s position and
direction in the complex plane.

e The argument of a complex number z is not unique because it can
differ by any integer multiple of 2.

e The principal value of the argument of a complex number z,
denoted as Arg(z), is the value of 0 that lies within the interval
—-n1<0<mor0<6 <2m.

e If z=0, then arg(z) = arg(0) is not defined and arg(z) is
defined only if only z # 0.

e If Arg(z)denoted general value and argument arg(z) denoted
principal value, then

Arg(z) = arg(z) + 2nnvn el
where I = set of integers.

o If z=x+1iy,then

ftan‘lg,ifx>0,y>00rys 0
n+tan‘1%ifx<0andy20
arg(z)=<—7T+tan‘1i—’ifx<0andy20
%ifx=0,y> 0

L —gifxzo,y<0

1.13 GEOMETRICAL REPRESENTATION OF
COMPLEX NUMBERS: -

A complex number z = x + iy is defined as an ordered pair of real
numbers (x,y), where x the real part is and y is the imaginary part.

Department of Mathematics
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vA

P (x.¥)

ol LT ———

Fig.1

A complex number z = x + iy can be represented by a point P with
Cartesian coordinates (x, y) on a rectangular coordinate system, where the
X —axis is the real axis and the Y — axis is the imaginary axis.

Each complex number corresponds to a unique point in the plane, and
conversely, each point in the plane corresponds to one and only one
complex number.

1.14 COMPLEX PLANE OR ARGAND PLANE: -

The complex plane, also known as the Argand plane or the z-plane, is a
two-dimensional coordinate system used to represent complex numbers
geometrically. Gauss was the first to produce in 1799 that complex
numbers are represented by points in a plane, then this concept that was
developed by Argand in 1806. In this plane, each complex number z =
x + iy can identify with a point P = (x, y), where x the real part is and y
is the imaginary part. The horizontal axis, known as the real axis, contains
all points of the form (x, 0), representing real numbers, while the vertical
axis, called the imaginary axis, includes points of the form (0,y),
representing purely imaginary numbers. Points not on the real axis
represent general complex numbers with both real and imaginary parts.
The origin (0,0), represents the complex number0 + i0. This graphical
representation helps in visualizing complex number operations and
understanding their properties.

The nonnegative number | z |, called the modulus or absolute value of a
complex number z = x + iy, represents the distance of the complex
number z from the origin in the complex plane. It is calculated using the
formula:
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|z| = /x? + y?
This is derived from the Pythagorean theorem, considering z = (x,y) as a
point in the xy —plane.(see Fig.2.)

¥

zZ

(x,y)

1zI Y

Fig.2.

The distance between two points z; = x; +iy;, 2z, = x, +1iy,in the
complex plane is given by the distance formula:

|2y — z,| = \/(xz - %)%+ (v, — y1)?

This formula measures the straight-line distance between the points
(x1,v1) and (x,,y,) in the complex plane.

1.15 PROPERTIES OF PROPERTIES OF
MODULUS ARGUMENTS OF COMPLEX
NUMBERS: -

Theoreml: Modulus and argument of the conjugate of two complex
numbers, If z is any non-zero complex numbers, then

|Z] = |z| and argz = —argz
Proof: Let |z| =r and argz = 6
Then from modulus argument form a complex number, we get
z = 1(cosl + isinf)
Z =r1r(cosO — isin@) = r[cos(—8) + isin(—0)]

Hence |z| =r = |z| and argZz = —argz = —6
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Theorem2: Modulus and argument of the product of two complex
numbers, If z; and z, are any two non-zero complex numbers, then

|z1. 25| = |z1]. |2;] and arg(z,z,) = arg(z,) + arg(z,)
PrOOf |Zl'22|2 == (ZI'ZZ)(ZI'ZZ) - Zl'ZZ'Z_l'Z_Z

= (Z1-Z_1)(Zz-z_2) = |Z1|2- |Zz|2

|Z1-Zz|2 = |Z1|2- |Zz|2

|Z1-Zz| = |Z1|- |Zz|

Let, the complex numbers, we get
z; = 1r;1(cosB, + isin6;)
z, = 1,(cos6, + isin0,)
Now, consider the product z,z,:

2,2z, = [r,(cosB; + isinB,)][r,(cosO, + isinb,)]
= r,1,[(cosB,cosb, — sinb,sinb,) + i(cosB,sinb, + sinb,cos6,)]
= ryry[cos(6, + 6,) + sin(6; + 6,)]
212y = 1y1y[cos(0; + 6,) + sin(6, + 6,)]
This shows that z, z, modulus -argument form, we obtain
|zy. 25| = 11y = |21 |2,

arg(z,z,) = arg(z,) + arg(z,)

Remark: |z;| = Z—l.zz| = 2].]z,],
Zy Zy
Z A
Zy a Zy

Theorem3 : Modulus and argument of the product of two complex
numbers, If z; and z, are any two non-zero complex numbers, then
_ |z1]

—and arg (2—:) = arg(z,) —arg(z,)

|z2]

Z1
Z2

Proof: Let z; and z, be two complex numbers with arguments 6,and 6,
and moduli r; and r,. In polar form, these complex numbers can be
expressed as:

z, = r,(cosO, + isinb,)
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z, = 1,(cos6, + isinb,)
Now, consider the quotient z; /z,:

z; _ 1i(cosf + isind;)
z, 1,(cosB, + isinb,)

z; 1 (cosB; +isind;)
z, 1, (cosB,+ isinb,)

To simplify the fraction, we multiply the numerator and the denominator
by the complex conjugate of the denominator:
z; 1, (cosB;cosB, + sinb;sinb,) + i(sinb,cosf, — cosb,sinb,)
Z, T (cosB, + isinb,)(cosO, + isinb,)

_ 1y (cosB;cos0, + sind;sind,) + i(sind,cosd, — cosd; sinb;)
Ty (cos?6, + isin?6,)

T
= r_l [cos(6; — 0,) + isin(6; — 6,)]

2

Z1

Z2

From this represent is standard polar form, we get

Iz = |2 2] = [2]. 12,
1 7, 22 |- 172
z_n_lal
zl 1 |z
and arg (z—;) = 6, — 0, =arg(z,) —arg(z,)

Theorem4: Triangle Inequality

The modulus of the sum of two complex numbers is less than or equal to
sum of their moduli.

|1 + 25| < 23] + |2,]
Proof: Suppose, z; = r,e'%1,z, = r,e'%, then
z, + z, = r;(cosb, + isinb,) + r,(cosb, + isinh,)

= (r,c0s0, + ryc050,) + i(rysinb; + r,sinb,)

|21 + 2] =/ (r1c080; + 15,c056,)% + (rysinb; + 1,5inH,)?
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= \[rf + 17 + 21ry1yc05(6; — 6,)

< \[rf + 17 + 211y for cos(68, —6,) <1

=1 +1, =|z1| +|2,]
|Z1 + Zzl < |Z1| + |Zz|

Theorem5: The modulus of the difference of two complex numbers is less
than or equal to difference of their moduli.

|2y — 23| = |z1] = |z,]
Proof: Let, z; = r,e'f1,z, = r,ei®2 then
|z1| = 74, |zy| =7,
z; — 7z, = 11(cosB, + isinf,;) — r,(cosb, + isin0h,)

= (ry,cos0, — r,c056,) + i(r;sinf; — r,sinb,)

71 — 7,| =/ (ricos6; — r,c0560,)% + (r;5in0; — 1,5inH,)?

= \/rlz + 1 — 2ryrycos(6, — 0,)

< \/rlz + 17 =211, for cos(6, — 0,) = —1

=1 —1 = |z¢| = |2,|
|2y — 25| = |z, = |z,

Remark: To prove
|2y — z,| < |2y | + |z,

|zy — 23| = |2y + (—2,)
<|z;| + |—2z,| by theorem2
= |z1| + |2z,]
|2y — 25| < |z1] + |2,]

Hence |zi| — |z;| < |2y — 25| < |z + |z,
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Theorem6: To prove |z, + z,| = |z;| — |z,].
Proof: : Let, z, = rye%1, z, = r,e'%2, then
|z, | =1y, |z, =1,
z; + z, = r;(cosB, + isinb,) + r,(cosb, + isinh,)

= (r,c0s0, + ryc050,) + i(rysinb; + r,sinb,)

|z1 + 2, = /(r1c080; + 1,€0560,)% + (rysinb; + 1,5in0H,)?

= \[rf + 12 + 21ry1yc05(6; — 6,)

= \[rf + 1 =211, for cos(6; —6,) = —1
=1 —1=|z;| = |z| if 7>,
r =1 = |z1| = |z,

|21 + 25| = |zy| = |z2] i |z1] > |z,]
Theorem?7: Parallelogram Law

The sum of squares of the length of diagonals of a parallelogram is equal
to the sum of squares of length of its sides, i.e., prove that

|21 + 2,1 + |21 — 2,]* = 2[|z;1* + |2,]?]
OR
To prove that |z, + z,|2 + |2y — 21?2 = 2[|z,|? + |2,1?]
Proof: Let z, = rye'®1,z, = r,e%2, then
|z1| = 74, |zy| =7,
z, + z, = r;(cosb, + isinb;) + r,(cosb, + isinh,)
= (r,c080, + ryc050,) + i(rysinb; + r,sinb,)
z, — z, = (r,cos6, — rycos0,) + i(r;sinb, — r,sinb,)

Now |z; + z,|% + |z, — 2,|% = [(1ycos8, + 1,c050,)? + i(r;sinf; +
1,5in0,)?] + [(r,c0s0; — 1,c050,)% + (r;sinB; — 1,5in,)?]
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= [rf + 1§ + 2riryc0s(0, — 0,)] + [rf + 17 — 2ryryc0s(0; — 6,)]
= [T12 + 7’22]
= 2[lz; % + |2,]?] - (1)

Geometrical interpretation: Let P and Q be the points in the Argand
diagram representing the complex numbers zland z2 respectively. On
completing the parallelogram OPRQ, then we get

\[‘

/ C,\r"-_‘ R Czptra)
:"""I T k’l.
Z( 2z
f PCzy)
=]
@) ﬁ‘y
Fig.1

z, = 0P, z, = 0Q.
7, +2,=0P+0Q =0P + PR =OR,
Z1—Z, = 0P —0Q = QP,
|z,l = 0P, |zl =0Q
|z, + z,| = OR, |z, — z,| = QP
From (1), we obtain
OR? + QP? = 2(0OP* + 0Q?)

Theorem8: (Equation of Straight line)To find the equation of straight
line joining two pointsz, and z, in the complex plane.

Proof: Let the equation of line AB joining the points A (z;) and B(z,),
suppose point P(z) on it. So
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B(2)

. AC'Z[) Pz

Fig.2.

zZ—Zq

arg( )=00r7r

Z1—22

Z1

Consequently ( ) is purely real so that

.
Z1—Z2
1 — Zy 1 — 2y 71— Z;

(z—2)(Z —23) = (2, —2,)(Z— 73)

2(Z1 — 23) — 221 — 23) — 2171 + 2125 + 2171 — 2,2 = 0
z(Z1 — Z3) — 2(Z; — Z3) + (2123 — z,7;) = 0 is required equation of line.

Theorem9: (Equation of a Circle) To show that the equation of circle in
the Argand plane can be put in the form

zZ+zb+bz+c=0
where c is real and b is complex constant.

Proof: Suppose a be a complex coordinate of the centre C and r be the
radius of circle. Consider any point P(z) on the circle.
Then the length of line CP = radius of circle or

|z—al =71

PCz)

Fig.3.
Squaring both sides, we have
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|z —al? = r?
(z-a)(zZ—-a) =r?
(zZ —az + aa — az) = r?
zz—az—az+ (Jal>—=-1r?) =0
Taking -a = b and (|a|? — r?) = ¢ = real number
zZ+zZb+bz+c=0
where c is real and b is complex constant.

3-21
7+41

EXAMPLEZ!: Find real numbers Aand B, if A + iB =

SOLUTION: Let we have

3—2i 3-—-2i 7-—4i
T4 T AT — 4

21—12i—14i +8i? (21-8)—26i

- 49 — 162 T 49+16

13—-260i 13 26 1

65 65 65 5
Equating real and imaginary parts, we obtain

A—1 B = 2
5’7 5

A+iB =

EXAMPLE2: Prove that |a + VaZ — bZ| + |a — VaZ — b2| =

[la — b| + la — bl]%

MT(N)-302

SOLUTION: Suppose |z; + z,|? + |z, — 2,12 = 2[|z,]? + |2,1?]

|z12;| = |z4]. | 2]

Now we shall prove the given problem

o+ =]+ - Va5

= |a+\/a2 —b2|2 + |a—\/a2 —b2|2

+2|a+\/m||a—\/m|

= 2[la + [V = 12| | + 2 |[a + Va2 = b2] [a - Vo= =

= 2[|al* + |a® — b?|] + 2|a® — (a® — b?)|

= 2[lal? + la® — b?|] + 2|b?|
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= 2[lal® + |b?[] + 2]a® — b?|
= [la + b|?> + |a — b|?] + 2|a + b|.|a — b]
= [la+b|* + |a — b|*]?
Hence

|a + Vaz — bZ| + |a — Va? — bZ| = [la — b| + |a — b|]? is required the

solution.
EXAMPLES: Determine the regions of Argand diagram given by
|z? — z| < 1.
SOLUTION: Let z = re®®
Then 22?2 —z =1r?%e?9 —rel?
= (r%c0s260 — rcosB) + i(r?sin20 — rsinf)
7% — z|? = (r?cos20 — rcos0)? + (r?sin26 — rsinf)?
=1r*+ 71?2 —2r3cos(20 — 0)

But |z?2 —z|? < 1

Hence
r*+1r?2 —-2r3cosf <1

or r*+712—-2r3c0s6—-1<0
Hence
r*+7r2—-2r3cos—-1=0
EXAMPLE4: Determine the region of z —plane for which
lz-1|+|z+ 1| < 3.
SOLUTION: Let z=x+ iy

lz—1|+|z+ 1| =|x+iy—1| + |x + iy + 1]

=Jx—-1D2+y2+/(x+1)2+y2

But lz—1|+|z+ 1| <3
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JE—1D24+y2+/(x+1)2+y2 <3
VG <3 -G E 4y
x—1)2+y2<9+(x+1)2+y?—6/(x + D2 +y?
0<4x+9-6/(x+1)2+y?
6/(x+1)2+y2< (4x+9)
36[(x + 1)% + y2] < 16x2% + 81 + 72x
36x2 + 36 + 36y2 + 72x < 16x2 + 81 + 72x
36x2 + 36 + 36y < 16x2 + 81
20x?% + 36y2 < 45

xZ y2

+ =
9/4)  (5/4)
EXAMPLES: Show that the locus of z such that

1

|z—al.lz+a|l =a%a>0

is a lemniscate.

SOLUTION: Let z2—a?|=a? or z?—a?=a%"*
Put z = re'®. Then r?et?? — g2 = g2eit
This = r2c0s26 — a? = a?cosA

r2sin260 = a’sind
Both above equations are squaring and adding
(r?cos26 — a?)? + (r?sin26)? = a*
r2(r? — 2a%c0s260) = 0
Butr #0asz # 0
r? — 2a%cos20 =0 or r? = 2a%cos26

which is lemniscates.
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SELF CHECK QUESTIONS

1. What is a complex number? Write its general form.

2. Define the real and imaginary parts of a complex number z = x +
iy.

3. What is the imaginary unit i? What is the value of i2?

4. How can every complex number be represented on a complex
plane (Argand plane)?

5. What is the origin in the complex plane and what does it represent?

6. How is the modulus geometrically represented in the Argand
plane?

7. Define the argument (amplitude) of a complex number.

8. What is the principal value of the argument?

1.16 SUMMARY: -

In this unit, we explored the fundamental ideas related to complex
numbers and their graphical representation on the complex or Argand
plane. A complex number, expressed as z = x + iy, combines a real and
an imaginary part. We examined the equality of complex numbers and
performed the basic operations of addition, subtraction, multiplication, and
division. The concepts of modulus or absolute value, conjugate, and
argument were introduced to describe the magnitude and direction of a
complex number. Further, we expressed complex numbers in polar and
exponential forms, which simplify many mathematical operations. The
geometrical interpretation on the Argand plane provides a clear visual
understanding of these operations. Important properties of modulus and
argument were also discussed, followed by the idea of stereographic
projection, which maps every point of the complex plane onto a sphere,
thus extending the representation of complex numbers to include infinity.

1.17 GLOSSARY:: -

e Complex Number: A number of the form a + bi, where a and b
are real numbers, and i is the imaginary unit with i?2 = —1.

e Real Part: The component a in a complex number a + bi,
representing a real number.

e Imaginary Part: The component b in a complex number a + bi,
representing a real number multiplied by the imaginary unit i.

e Imaginary Unit (i): A mathematical constant satisfying i? = —1.
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Equality of Complex Numbers: Two complex numbers a + bi
and c + di are equal ifand only if a = cand b = d.
Argand Plane (or Complex Plane): A plane in which the x-axis
represents the real part and the y-axis represents the imaginary part
of a complex number.
Absolute Value(Modulus): The distance from the origin to the
point (a, b) in the complex plane, calculated as | z |= Va? + b?
for a complex number z = a + bi.
Argument (Amplitude): The angle 6 formed with the positive real
axis, calculated using 6 = tan‘ls, (b/a) for a complex number
z =a+ bi.
Polar Form: A way to expressed as z = r(cosf + isinf) or z =
ret.
Conjugate of complex number: The conjugate of a complex
number a + bi is a — bi.
Addition of Complex Numbers: Combining two complex
numbers by adding their real parts and their imaginary parts
separately: (a + bi) + (c+di) = (a+c) + (b + d)i.
Multiplication of Complex Numbers: Multiplying two complex
numbers using distributive property and the fact that i2 = —1:
(a + bi)(c + di) = (ac — bd) + (ad + bo)i.
Division of Complex Numbers: Dividing by multiplying the
numerator and denominator by the conjugate of the denominator
a+bi _ (a+bi)(c—di)
c+di c2+d?
Properties of Modulus:
I |z12,| = |z1]]2,]
_ lzl

|z2]
iii. |z| = |Z]
Properties of Argument:
i. arg(z,z,) = arg(z,) + arg(z,)

ii. arg (z—:) = arg(z,) — arg(z,)

and simplifying:

Z1
Z2

1.18 REFERENCES: -

James Ward Brown and Ruel V. Churchill 2009 (Eighth Edition),
Complex Variables and Applications.
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e Elias M. Stein and Rami Shakarchi (2003), Complex Analysis..
e Theodore W. Gamelin(2001),Complex Analysis.

1.19 SUGGESTED READING: -

o file:///C:/Users/user/Downloads/Paper-111-Complex-Analysis.pdf

e Goyal and Gupta (Twenty first edition 2010), Function of complex
Variable.

o file:///C:/Users/user/Desktop/1456304480EtextofChapterlModulel
%20(1).pdf

1.20 TERMINAL QUESTIONS: -

(TQ-1) Define the modulus of a complex number.

(TQ-2) If the complex numbers sinx + icos2x and cosx — isin2x are

complex conjugate to each other, then the value of x.

(TQ-3) A relation R on the set of complex numbers is defined by
Z1—2Zo

z1Rz, © — real. Show that R is an equivalence relation.

(TQ-4) Show that the origin and the point representing the roots of the
equation z2 + pz + q = 0 form an equilateral if p? = 3q.

(TQ-5) Represent the complex number z = 3 + 4i on the complex plane.
(TQ-6) Find the modulus and argument of z = 1 + i.

(TQ-7) Show that | z,z, |= |z ||z,I.

(TQ-8) Find the conjugate of z = 4 — 5i and plot it on the Argand plane.
(TQ-9) Determine the locus of points representing complex numbers
satisfying | z |= 2.

(TQ-10) Show that |z, — z,| = (|z,] — |z,])

(TQ-11) Find the locus of z such that Re(z) = 3.

(TQ-12) Find the locus of z satisfying | z—2 |=| z + 2 |.
(TQ-13)Prove that |z, — z,|? + |z + 2z,]? = 2|z|% + 2|z,]*> and
deduce that |a ++/a? — 82| + |a — /a2 — B2| = |a + ] + |a — B] all
the numbers concerned being complex.

(TQ-14) Find the principal value of arg "i".

(TQ-15) If z = —1 + 34, find its polar form.

(TQ-16) If z;, =2+ 3iand z, = 1 — 4i, find z; + z, and z,z,.
(TQ-17) Find the principal value of arg (1 + i).
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(TQ-18) Explain how addition and multiplication of complex numbers
are represented geometrically in the complex plane.

(TQ-19) what is the effect of multiplying a complex number by i in
the complex plane?

(TQ-20) Show that multiplication by e'® corresponds to a rotation
through an angle 6.

1.21 ANSWERS: -

TERMINAL ANSWERS (TQ’S)

m 5m 91
(TQ-Z) X = g,?,?,
(TQ-5)(x,¥) = (3.4)
(TQ-6) z = VZe'
(TQ-8) Origional point = (4,—5), conjugate point = (4,5)
(TQ-9) Radius = 2
(TQ-11) x = 3
(TQ-12)x = 0
(TQ_ls)mei(n—tan‘ls)
(TQ-16)z; +z, =3 —i,.z;2, = 14 — 5i
(TQ-14)~

(TQ-17);
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UNIT2: Stereographic Projection
CONTENTS:

2.1  Introduction

2.2  Objectives

2.3 Euler’s formula

2.4  nth Root of Unity

2.5  Point at infinity

2.6 Extended Complex Plane
2.7  Stereographic Projection of Complex Numbers
2.8  Summary

2.9  Glossary

2.10 References

2.11  Suggested Reading

2.12  Terminal questions

2.1 INTRODUCTION: -

Stereographic projection is a method of mapping points from the surface of
a sphere onto a plane. It is achieved by projecting points from the North
Pole of the sphere onto the equatorial plane, creating a one-to-one
correspondence between the sphere (excluding the North Pole) and the
plane. This projection preserves angles (is conformal) but distorts areas,
making it particularly useful in geometry, complex analysis, cartography,
and crystallography. In complex analysis, it provides a geometric
representation of the extended complex plane or the Riemann sphere,
linking complex numbers with points on the sphere.

2.2 OBJECTIVES: -

After studying this unit, the learner’s will be able to

e To understand the concept and definition of stereographic
projection as a method of mapping points from a sphere onto a plane.

e To recognize the Riemann sphere as a geometric model for the
extended complex plane C U {co}.
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e Toidentify the correspondence between the point at infinity on the
complex plane and the projection point on the sphere.

2.3 EULER’S FORMULA: -

The Taylor (Maclaurin) series expansions of e*, cosx, and sinx can be

used to obtain Euler's formula;
x? x3

X

e = 1+I+E+§+ .........
x? x* x®

cosSx = 1_54—5_5
) x3 x> x7

Slnx=x—§+§—ﬁ.........

Now putting x = if in e*
0 (i6)* (i6)® (@9)*

0 — 1 4 4277 T T e
A TR TR TRy
simplify power of i:
, 2 ()" )3 (6)°
0 — 1 S T
el_<1_2!+4!_ L A TR
el = cosf + isinf
when 0 ==«
e'™ = cosm + isinmt =—1+0i = —1
Hence

e™+1=0
This is called Euler's Identity, and because it connects five essential
constants, it is frequently hailed as the most exquisite mathematical
equation:

e, i,m,1and 0

2.4 nth ROOT OF UNITY: -

The nth Root of Unity The nth roots of unity are the complex numbers
that satisfy the equation

where n is a positive integer.
Def: An nth root of unity is any complex number z such that when
raised to the power n the result is 1.
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In other words, if z = e'?, then z* = 1 when 6 = ZRT" where k =

Thus, the nth roots of unity are given by:

j2km 2km . (2km
Zy=e n = oS (—) + isin (—),
n n
k=0123...... ,n—1

2.5POINT AT INFINITY: -

The linear transformation z - w = f(2) is a one-to-one mapping of the
finite complex plane onto itself, where (z) = Az + p, 4 # 0. The
inversion mapz —» w = 1/z does not exhibit this. z=re® and w =
pe'?, where p = 1/r, are expressed in polar forms. As a result, points in
the z-plane near the origin, r = 0, are mapped onto points in the w-plane
distance from the origin. Every point in the z-plane that is inside a disk with
a small radius of € is projected onto every point outside a disk with a big
radius of 1/¢ in the w-plane. There is no picture of z = 0 in the w-plane
and the disk in the z-plane shrinks to the origin as € — 0. There is no point
in the z-plane that can be given w = 0 as the image under inversion.
Similarly, when the point z moves farther and farther from the origin, its
image in the w-plane moves closer and closer to the origin in the w-plane.

2.6 EXTENDED COMPLEX PLANE: -

The complex plane C and a symbol o that satisfies the following properties
are referred to as the extended complex number system.

@Ifz € C,thenz+ © = z— © = o0,z/0 = 0.

(@) ifz € Chutz # 0z.00 = ooandgz o0,

(c)oo+ 00 = 00,00 = ©0

(d)o/z = o (z # 0).

The extended complex plane, represented by C., is the set C U {oo}.
The use of Riemann's spherical representation of complex numbers, which
relies on stereographic projection, greatly clarifies the structure of the
Argand plane at the point at infinity.

2.7 STEREGOGRAPHIC PROJECTION OF
COMPLEX NUMBERS: -
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Complex numbers can also be represented by points on a sphere. To do this,
one must establish a one-one correspondence between points on the surface
of a sphere.

Fig.4

Let S’ be a sphere of unit radius with its center at 0, and let NS be a diameter
of the sphere. Let mwbe a complex plane passing through O and
perpendicular to NS. The points N and S are called the north and south
poles, respectively. A complex number z = x + iy can be represented by a
point P(x,y) on the plane m. The line joining point N to P intersects the
sphere S’ at another unique point P’, distinct from N. From Figure 1.16, it
is also clear that if the point P lies on the plane outside the sphere, then P’
lies on the upper hemisphere of the sphere, and if P lies within the circle
(inside the sphere), then P’ lies on the lower hemisphere. Thus, for every
point on the plane, there exists a unique corresponding point on the sphere
S’, and conversely, for every point on the sphere S’ (except N), there exists
a unique corresponding point (complex number) on the complex plane 7.

Hence, a one-to-one correspondence is established between all points on the
sphere S’ (except N) and all points on the plane 7. This mapping of the
complex plane onto the sphere is called the stereographic projection of
complex numbers.

In order to incorporate the sphere's point N into the one-to-one
correspondence, we add an extra complex number z’, often known as the
point at infinity, to the extended complex  plane.
The renowned mathematician Riemann was the first to present this idea.
Consequently, the Riemann Sphere is another name for the sphere S'.

This mapping can be represented analytically as follows:
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Let the origin be the center of the sphere. Let two perpendicular lines lie in
the plane. The axis is the y-axis. On is the z-axis. Then the equation of the
sphere is

X2+v2+7%2=1 . (1)
and equation of the projection plane is
Z=0 . (2)

It is clear that the coordinates of N are (0,0,1).

Let P(x,y,0) be a point on the plane m, and let P'(X,Y,Z)be the
corresponding point on the sphere. Since N(0,0,1),P'(X,Y,Z), and
P(x,y,0) lie on the same straight line, therefore,

X0 _Y-0_z-1_,_X_Y_1-Z . (3)
x-=0 y—0 0-1 X y 1
X=xk,Y=Yk,Z=1—-k ..(4)

where k is a real number. Since the point (X, Y, Z) lies on the unit sphere
S’, whose equation is
x?k?+yik?2+(1-k)?=1

=——F— (k#0

x2+y?+1 ( )
therefore, from equation (2), the coordinates of P are obtained as
2x 2y _xP+yr-1

X=——5—Y= Z =
x2+y?+1’ x2+y?+1’ x2+y?+1
Thus, the point on the sphere S’ corresponding to the complex number z =
x + iy on the plane is
) 2x 2y x2+y2—1
x2+y2+1'x2+y2+1'x2+y2+1
or
A 2x 2y  x*+y?-1
|z2| + 17122+ 1" |z?|+1
Also, from equation (3), we have
X Y
Y1777 1-2Z
X +1iy
1-Z7
Hence, the complex number in the complex plane 7 corresponding to a point
(X,Y, Z) on the sphere S’ is

z=x+1iy=

_X+iy

1-Z
Only the top point of the sphere, N(0,0,1), has no corresponding point in
the complex plane. The point corresponding to (0,0,1) on the complex
plane is defined as the point at infinity..

Theorem1: A stereographic projection, every circle on the Riemann sphere
is mapped to either a circles or straight line in the complex plane.

Proof: Let a circle on the Riemann sphere S’ be formed by the intersection
of the Riemann sphere S" with a plane
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X2+v2+7%2=1 ..(5)

and
aX+bY+cZ+d=0 ..(6)

Let the coordinates of a point P'(X,Y,Z) on the Riemann sphere be
(X,Y,Z),and let the corresponding point P(x,y,0) on the plane under
stereographic projection have coordinates (x, y, 0). The projection vertex N
has coordinates (0,0,1).
Since the points N(0,0,1),P'(X,Y, Z) and P(x, y, 0) lie on the same straight

line, therefore,
X-0

~
o

- Z—1 X Y
= =—=k=—=—=— (7)
x—0 y— 0-1 X y
where k is a real number.

Since the point (X, Y, Z) lies on both equations (5) and (6), therefore,

o

k2 +y%k?+(1-k)? =1 ..(8)
and
k(ax+by)+c(1—k)+d=0 ..(09)
On eliminating k from equations (8) and (9), we obtain

(c+d)(x?+y?)+2ax+2by+d—c=0 ..(10)

which is the relation satisfied by the projection points of the points of the
circle lying on the plane (6).

If ¢ + d # 0, then equation (10) represents a circle, whereas if c + d = 0,
it represents a straight line.

However, ¢ +d = 0 when the plane (6) passes through the north pole
N(0,0,1). Hence, if the circle defined by (5) and (6) on the Riemann sphere
passes through the north pole N, its projection on the plane 7 will be a
straight line; otherwise, it will be a circle.

In the special case when the plane (6), corresponding to projection (10), is
parallel to the projection plane, then a = 0,b = 0; therefore, from
projection (10), we get

(c+d)(x®*+y?)=c—d

which clearly represents a circle whose center is at the origin.

On the other hand, if the plane (6) passes through both poles N and S, then
¢ = d = 0. In that case, the corresponding projection (10) gives

ax+by =0
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which represents a straight line passing through the origin.

SOLVED EXAMPLE

EXAMPLEL: Find all nth roots of unit.
SOLUTION: The number 1 can be written in polar form as:
1 = cos0 + isin0

Since the complex exponential repeats every 2w, we can also
1 =cos2knm + isin2kn, wherek=01,2,....n—1
Let
z = (cosO + isinf)

Then

z™ = (cosnB + isinnf)
From the equation z™ = 1, we obtain two conditions:

r* =1and nf = 2km

Thus

r=1andg =2~
n

Therefore, the nth roots of unity are:
2km 2km
Z, = c0Ss— + isin—, k=012,...n—1
n n

or, in exponential (Euler) form:

2km
Zk =en

EXAMPLE2: For any two nonzero complex numbers z; and z, prove that

Zy
|z, + 25| | =+ —= | < 2(Iz4| + |z,])
! 2 |Z1| |Zz| ! 2
SOLUTION: Now we get,
Z Z
|Z1 +Zz| —1+—2
|Z1| |Zz|

|2122|| + 22|21||

=|z; +2z
| 1 2| |lezl

_ |Z1 +Zz|

Z1Z + z,|z
|lezl ( 1 2” 2| 1|)
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|zy + z,|

=2—|z,z
|lezl | 1 2|

= 2|z, + z,|

< 2(|Z1+Zz|)

EXAMPLES: Prove that the relation

n—-1

n - (km
e[ e

k=1

SOLUTION: Suppose 1, p1, P2, - - Pn—1be the n roots of unity, where
2kmi

pp=en k=12, ..........(n—1),then
"—1=0Z-1Dz-p)z-py).... (z = pn)
Dividing both sides by z — 1 and letting z — 1, we obtain
n=00-p)A—=pz) . (1= pp_1)
Taking conjugate of both sides, we have

n=>0-p)A-p2).....(1=pp—y)

Therefore
n—-1
M _ani
n? = (1—en>(1—e n)
k=1
n-—1
2km
= 2 (1 — coS —)
n
k=1
km
= 4sin? (—)
n

We get the desired outcome by taking the nonnegative square root of each
side.

EXAMPLE4: Evaluate e™/* and write it in the form a + ib.
SOLUTION: The Euler’s Formula is

e'® = cosf + isind .. (1)
T
Foro = - we have
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i%_ TL’+..T[
e —COS4 lSlTl4
1+,1 ﬁ+,ﬁ
= — | —=— 11—
V2 V2 22

EXAMPLES: Let f(z) = z2. Find the real and imaginary parts of f(z).
SOLUTION: Suppose f(z) = x + iy, then

f(2) = (x+iy)? =x% —y? + 2xyi
So, the real and imaginary parts of f(z) are

ul,y) =x*-y?% v(xy) = 2xy

EXAMPLESG: Let P = Gg 0) be a point on the unit sphere X2 + Y2 +

Z? =1 stereographic projection onto the complex plane using projection
from the north pole N = (0,0,1).

SOLUTION: Let the given points are:
X = > Y = * Z=0
=pY=c7Z=

Using stereographic projection formula,

X +iy
T1-Z
Putting the values are
3. .4
_§+l.§_3+_
Z71-0 5 "%

So, the image of the point P on the complex is z = g + .

SEES

SELF CHECK QUESTIONS

=

What is stereographic projection? Define it in your own words.

2. From which point on the sphere is the stereographic projection
usually taken?

3. What is the projection plane in a stereographic projection of a
sphere?

4. How is a point on the sphere (except the projection point)

represented on the plane under stereographic projection?
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5. Derive the formula for stereographic projection from a sphere of
radius 1 onto the plane.

2.8 SUMMARY: -

Stereographic projection is a method for projecting points from the surface
of a sphere to a plane. In this projection, each point P on the sphere (except
the North Pole) is connected to the North Pole by a straight line. The
intersection of this line with the equatorial plane represents the image of P
on the plane. It establishes a one-to-one connection between the points on
the sphere (excluding the projection point) and the entire complex plane,
with the North Pole representing the point at infinity.This projection
preserves angles (is conformal) and transforms circles on the sphere into
circles or straight lines on the plane. It is widely used in complex analysis
to relate the extended complex plane to the geometry of the sphere, known
as the Riemann sphere.

2.9 GLOSSARY:: -

e Stereographic Projection: A mapping in which points from a
sphere's surface are projected onto a plane using lines drawn from a
fixed point (typically the North Pole).

e Projection Point (North Pole): A fixed point on the sphere from
which lines can be formed to project other places onto the plane.

e Projection Plane (Equatorial Plane): The plane onto which the
sphere's points are projected, commonly denoted as z = 0.

e Unit Sphere: A sphere with radius 1 and center at the origin,
commonly used to define stereographic projection.

e Complex Plane: The plane that represents complex numbers, with
each point corresponding to the complex number z = x + iy.

e Riemann Sphere: A sphere used in stereographic projection to
represent the extended complex plane, including the point of
infinity.

e Point at Infinity: The picture of the projection point (North Pole)
after stereographic projection; it depicts the "infinite” point on the
complex plane.

e Inverse Stereographic Projection: The process of projecting a
point from the complex plane back onto the surface of the sphere.

e Conformal Mapping: A sort of mapping that keeps the angles
between curves. Stereographic projections are conformal.

e Circle Preservation Property: In stereographic projection, circles
on the sphere transfer to circles or straight lines on the plane.
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Equator: The circle on the sphere that is in the projection plane; it
maps onto the unit circle in the complex plane when the sphere has
radius one.

Latitude & Longitude Circles: Circles on the sphere that are
parallel or perpendicular to the equator and project into circles or
plane lines.

Extended Complex Plane: The complex plane plus the point at
infinity, represented by C U {co}.

2.10 REFERENCES: -

Elias M. Stein and Rami Shakarchi (2003), Complex Analysis,
Princeton University Press.

Ruel V. Churchill and James Ward Brown, Complex Variables and
Applications (2013), McGraw-Hill Education, 9th Edition.

Erwin Kreyszig, Advanced Engineering Mathematics (2011),
Wiley, 10th Edition.

2.11 SUGGESTED READING: -
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Murray R. Spiegel (2009) — Schaum’s Outline of Complex
Variables, 2nd Edition.

R. Narayanaswamy (2005) — Theory of Functions of a Complex
Variable, S. Chand & Company Ltd.

Goyal and Gupta (Twenty first edition 2010), Function of complex
Variable.

2.12 TERMINAL QUESTIONS: -

(TQ-1) Define stereographic projection. Describe the process of
projecting a point from the sphere onto the plane.

(TQ-2) Derive the mathematical formula for stereographic projection
from the unit sphere onto the complex plane.

(TQ-3) Discuss how the point at infinity in the extended complex plane
corresponds to the North Pole of the sphere.
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(TQ-4) Explain the relationship between the modulus of the complex
number z = x + iy and the height Z of the corresponding point on the
sphere.
(TQ-5) Discuss how stereographic projection helps visualize functions of
complex variables geometrically.
(TQ-6) Show that under stereographic projection, the unit circle in the
complex plane corresponds to the equatorial circle of the sphere.
(TQ-7) Prove that for any point z on the complex plane, the coordinates
(X, Y, Z) on the unit sphere are given
2x 2y lz|? — 1
X = |z|2 + 1’Y BRTIEE 1’Z Tz + v
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UNIT3: Complex Function and their

properties
CONTENTS:

3.1 Introduction

3.2 Objectives

3.3 Function of Complex Variable

3.4  Complex Function as Real-Valued Pairs
3.5  Domain and Range

3.4 Single valued and multivalued function
3.5  Elementary Complex function

3.6 Complex Function as Real-Valued Pairs
3.7 Properties of Complex Numbers

3.8  Functions of a Complex Variable as Mappings
3.9  Summary

3.10 Glossary

3.11 References

3.12  Suggested Reading

3.13 Terminal questions

3.14  Answers

3.1 INTRODUCTION: -

A complex function is a mathematical rule that associates each complex
number z = x + iy with another complex value f(z) = u(x,y) + iv(x, y).
Unlike real functions, complex functions operate on a two-dimensional
plane, making their behavior richer and more geometric. The study of these
functions forms the core of complex analysis, an important branch of
mathematics with deep theoretical results and wide applications in physics,
engineering, fluid dynamics, electromagnetism, and number theory.
Understanding complex functions requires examining how they behave
with respect to limits, continuity, and differentiability. A unique feature of
complex functions is that differentiability is governed by the Cauchy-
Riemann equations, which impose strict conditions and lead to the powerful
concept of analytic (holomorphic) functions. Such functions possess
remarkable properties: they are infinitely differentiable, equal to their
Taylor series, and preserve angles through conformal mappings. The study
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of zeros, singularities, poles, and mapping behavior further enhances the
understanding of how complex functions transform regions of the complex
plane. Thus, complex functions and their properties provide a deep
framework to explore both algebraic and geometric behavior within the
complex plane.

3.2 OBJECTIVES: -

After studying this unit, the learner’s will be able to

e To understand the basic concept of a complex function and express
it in terms of real and imaginary parts.

e To analyze standard complex functions such as exponential,
trigonometric, logarithmic, and Mobius transformations and their
properties.

3.3 FUNCTION OF COMPLEX VARIABLE: -

A complex variable, represented by z, is any element of a set S contained
on the complex plane C. A function f: S — C is a rule that assigns a unique
complex value f(z) to each z € S, indicated as w = f(z), where z is the
independent variable and w the dependent variable. This function f
translates elements from the domain S to the complex plane C, which is
commonly represented by another complex plane known as the w plane. If
S is a subset of the real line, f is considered a complicated function of a real
variable. The set S is designated as the domain of f, and the collection of
all f(z) for z in S is recognized as the range of f.

Or

A function f: A — B assigns a unique complex number w, = u, + ivy € B
to each non-empty subset of the complex numbers z, = x, + iy, € A.
The integer w, represents the value of f at z,, indicated by f(z,) = w,. As
z varies, so does f(z) = w in B. This function is a complex-valued function
of a complex variable, with the dependent variable w and the independent
variable z. If S is a subset of A, the image of S under fis f(S) = {f(2) |
,Zz € S}, while the range of f ISR = {f(2) | z € A}.

For each non-zero complex number z € C — {0}, the polar form is given by
z =re'¥ wherer =| z | is the modulus and € [—m, rr] is the argument of
z. This can be written as z = z(r,8) = re'. If we increase the argument 6
by 2m, we get:
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z(r,0 + 2m) = rel0+2m) = el @27 = 1ol = z(1 @)

Thus, z(r,0 + 2m) returns to its original value, demonstrating the
periodicity of the complex exponential function with period 2.

Definition. A function f is said to be single-valued if it satisfies f(z) =
f(z(r,0)) = z(r,6 + 2m), meaning the function's value remains
unchanged when the argument 0 is increased by 2.

Otherwise, f is said to be a multiple valued function.

Example: f(z) = z™,n € Z is said to a single valued function.
Solution: f(z) = f(z(r, 0)) = (reie)n
f(2(r, 0 + 2m)) = [rei@+2m]" = yngind g2mmi
_ npind p2mni
(v e?™i=1nez}
= (re®)" = f(z(r,6))
Note: Ifn ¢ Zthen f(z) = z" is multiplied valued function.

v e2mi g 1 whenn ¢ Z.

3.4 SINGLE VALUED AND MULTIVALUED
FUNCTION: -

If each value of z corresponds to exactly one value of w, then w is referred
to as a uniform or one-valued function of z. A multi-valued function of z is
one in which two or more values of w correspond to some or all values of
z. A multi-valued function can be viewed as a collection of numerous one-
valued functions. Each one-valued function in the collection is referred to
as a branch function of the multi-valued function, with a specific member
of the collection serving as the major branch function of the multi-valued
function. The value of the function at this branch function is known as the
primary value.

Example 1. If w = z? then each value of z corresponds to a specific value
of w. Therefore, w is a one-valued complex function of z.
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Example 2. If w = z/2, then each value of z corresponds to two values
of w. Therefore, w is a multi-valued function of z.

3.5 ELEMENTARY COMPLEX FUNCTION: -

1. Polynomial : A function of the formw = ayz™ + a;z" 1 + -+ -+ +
a,-1Z + a, where neN and a’' # 0, a,, a,, a are complex constants
is called a polynomial in the complex plane. It is called
n exponential polynomial.

The particular case w = az + b is known as linear transformation.

2. Rational algebraic function: A function of the form w = %
where P(z) and Q(z) is a multiple term is called a rational algebraic

function.
The special case where ad bc # 0 is called bilinear (one one)

transformation or w =
3. Exponential function: The functions defined as follows are called
complex exponential functions.
w = e? = ¥tV = e¥(cosx + isiny)
aeR if a* = e?°9% where e = 2.71828
4. Trigonometrical functions: Trigonometrical functions are defined

as follows.
] elx — e—lx elx + e—lx
Sinx =———,008x = ———
20 20
1 20
cosecx = —— = — .
sinx e¥ —e ¥
1 20
secx = = — .
cosx e¥—e ¥
sinx e¥ —e ™
tanx =

cosx i(e™* + e~ix)
cosx i(e™ +e ™)
sinx e —e-ix
Some Standard Trigonometrical Results:

a cos’x + sin®x =1

b cos(—x) = cosx

C. cos2x = cos?x — sin’x

d

e

f

cotz =

sin3x = 3sinx — 4sin3x

cos3x = 4cos3x — 3cosx

sinx + siny = 2 sin% (x+ y)cos% (x—v)
cosx — cosy = 2 sin% (x+y) sin% (y —x)
sin(x + y) = sinx cosy + cosx siny
cos(x + y) = cosx cosy F cosx siny

ol
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j. sec’x = 1+ tan®x

SOLVED EXAMPLES

EXAMPLEL: Prove that e? is a periodic function, where z is a complex
quantity.
SOLUTION: If z = x + iy, then

e? = ex+iy — ex_eiy

= e*(cosy + isiny)

= e*[cos(2nm + y) + isin(2nm + y)]
where n is any integer.
Hence e” is a parodic function of period 2.
EXAMPLE2: Prove that sinz, cosz, tanz etc. Are periodic functions,
where z is a complex quantity.
SOLUTION: Let we get
cos(z + 2nm) = cosz cos2nm — sinz sin2nmw = cosz,n being integer
sin(z + 2nm) = sinz cos2nm — cosz sin2nm = sinz, n being integer
sin(z+nm) sinz cosnm+cosz sinnm . .
= = tanz,n being integer

tan(z + nm) = = ——
cos(z+nm) C0SZ cOSNT—Sinz sinnm

From this, we conclude that cosz and sinz are periodic functions with
period 27, and tan z is a periodic function with period 7.
EXAMPLE 3: Show that exp(+i 7/2) = +i.
SOLUTION: Let exp(£if) = cosO + isinf, we get
cosm isinm
exp(tin/2) =2 &

EXAMPLE4: Prove that {sin(a — 6) + e~*sin6}" = sin"a{sin(a —
n6) + e “sinnb}.
SOLUTION: L.H.S = {sin(a — ) + e~*sinf}"

= {sina cos@ — cosa sinf + (cosa — isina)sinf}"

= {sina cosO — cosa sin@ + cosasinf — isinasinf}"

= {sina cosf — isinasinf}"* = sin"a{cosf — isinf}"

= sin"a{cosn@ — isinn0} by De-Moiver’s theorem

=0xi1=4=i

and R.H.S.= sin™ afsin(a — n8) + e *sinnb}
= sin" laf{sina cosnd — cosa sinnf + (cosa — isina)sinnf}
= sin" la{sina cosnf — cosa sinnf + cosa sinnb — isina sinnd}
= sin™ a. sina.{ cosn@ — isinn6}
= sin"a{cosnf — isinnb}

L.HS.=RH.S.
5. Hyperbolic function: Hyperbolic function is defined as follows.
ik _ef—e™™ L _ef+e™
sinnx = > ,cosnx = >
e L2 oo L2
COSECRX = Sinhx ~— e — eS¢ = coshx ~ e* + e-*
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sinhx e*—e™*

“ " coshx  e*+e*’
Properties of Hyperbolic Functions:

coshx e*+e™™*

tanz = cothx =

sinhx eX—e™*

a. cosh?’x —sinh?x =1
b. sinh2x = 2sinhxcoshx
C. cosh2x = cosh?x + sinh?x = 1 + 2sinh?x = 2cosh?x — 1
d. sech?x =1 — tanh®x
e. tan2hx = —enx
(1+tanh?x)
f. sinh(x + y) = sinhx coshy + coshx sinhy
g. cosh(x +y) = coshx coshy + sinhx sinhy
h. e* = coshx + sinhx and e ™* = coshx — sinhx
i. sinh3x = 3sinhx + 4sinh3x
j. cosh3x = 4cosh3x — 3coshx
3tanhx+tanh3x
k. tanh3x = T it3tanhic

SOLVED EXAMPLES
EXAMPLEDS: Show that

sin h(x + y) cosh(x — y) = %(sinth + sinh2y).
SOLUTION: Let L.H.S.= sin h(x + y) cosh(x — y)

1 1
= _|p@+y) _ o=+ | Z]px-y) _ p—(x-¥)
. [exy exy]z[exy exy]

— %[e(zx) —_ e(Zy) —_ e(_Zy) —_ e_(_zx)]
111 1

—_|= 2xX _ p,—2xY _ 2y _ -2y
2 [2 (e —em) -5 (™ —e )]

1
=3 [sinh2x + sinh2y] = R.H.S.

EXAMPLESG: Show that
cos(a +if) + isin(a + if) = e B (cosa + isina)
SOLUTION: Let L.H.S.= cos(a + iB) + isin(a + iB)
= cosa cosif — sina sinif + isina cosiff + icosa sinifs
= cosa(cosip + isinif) + isina(cosif + isinif)
= (cosip + isinif)(cosa + isina)
= (coshf — sinhB)(cosa + isina) cosiff = coshp,siniff =
isinhf
= e B(cosa + isina) = R.H.S.
EXAMPLET: If cosha = secf, that tanh? > = tan?- .

SOLUTION: Let we get cosha = secf
cosha 1

1 cos6
Applying componendo and dividendo, we have

cosha — 1 _ 1 — cos@
cosha+1 1+ cosf
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2sinh? % a  2sin? % 2

ZCoshZ%a 26052%9

1
tanh?=a = tan®>—=6

2 2
Note: The componendo and dividendo, is that if
a c a—-b c—d
- =- then — = —.
b d a+b c+d
EXAMPLES: If tanf = tanhx coty and tan¢ = tanhx tany,

show that
sin20  cosh2x + cos2y

sin2¢p  cosh2x — cos2y

. __ sin20 _ 2tanf/(1+tan?6)
SOLUTION: L.H.S.= sin2  2tand/(1+tan’e)

_ tand « 1+tan’¢ tand 1 +tan’e
1+ tan?6 tang  tang "1+ tan26
_ tanhx coty 8 1 + tanh®xtan?y
~ tanhx tany =~ 1+ tanh?xcot?y
Substituting the given values of tanf and tang
_cos?y cosh®xcos?y + sinh®xsin’y cosh?xsin?y

sin?y’ cosh?xcos?y "cosh?xsin?y + sinh?xcos?y
cosh?xcos?y + sinh?xsin?y

~ cosh?xsin?y + sinh2xcos?y
_ (2cosh?x)(2cos?y) + (2sinh?x)(2sin?y)
(2cosh?x)(2sin?y) + (2sinh?x)(2cos?y)

B (1 + cosh2x)(1 + cos2y) + (cosh2x — 1)(1 — cos2y)
"~ (14 cosh2x)(1 — cos2y) + (cosh2x — 1)(1 + cos2y)
[+ 2cosh?x = 1 + cosh2x; 2sinh?x = cosh2x — 1]

_ 2(cosh2x + cos2y)  cosh2x + cosZy RHS
~ 2(cosh2x — cos2y)  cosh2x —cos2y

6. Logarithmic function: If z = e, w = Inz or log, zis written.

Which is known as the natural factor of z. Hence,
w = logz = logr + i(2nmt + 6);n
=0,1,2: e [r = |z|,6 = amp(2)]

represents a multivalued function. Its primary branch function . The
value for n = 0 is obtained.
Similarly, the logarithmic function is defined based on any real
number a.
If z=a",thenw =log,z(a > 0,a #0,1)

Inz

Clearly, w =log,z = —

SOLVED EXAMPLES
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EXAMPLEDQ: Find the principal of general value of log(—1 + i)
SOLUTION: Let —1 + i = r(cos6 + isinf)
rcsd = —1,rsinf =1
Squaring and adding, we get
r2=2,i.e.,r =42
Now cos@ = —1/~+/2 and sinf = 1/v/2

o= 3
3 _47T 3
3m\.
—1+i=+2 (coszn + isinzn) = \/Ze(T)l

The general value is
3. .
log(—1+1i) = log {\/Ee(T)leZ””‘}

3 . 1 3\ .
log\/i+zm + 2nm = ElogZ + (2n+Z) A

Substituting n = 0, the principal value is given by
1 3
log(—1+1i) = ElogZ + Zni
EXAMPLEL10: Find the principal of general value of log(—3).
SOLUTION: Let =3 = =3 +i0 = r(cos0O + isinf)
So rcosf = —3,rsinf =0
These giver2 =9i.e.,r = 3.
Substituting = 3, we obtain
cosd = —1and sinf = 0,qiving 8 =
—3 = 3(cosm + isinm) = 3.e"
Log(=3) = log{3.e'™. g2}
= log3 + log e?nm+mi
=log3+ (2n+ 1)mi
Hence the principal value of log(—3) i.e., log(—3) is obtained by
putting n = 0, then
Log(—3) =log3 +in
EXAMPLEL1: Find the principal of general value of log(—i).
SOLUTION: Let —i = (cosZ — isinZ) = e~/
So that
log(—i) = loge~™/? = —irr /2, giving the principal value.
Log(—i) = log(—i) + 2nmi = — (%T) + 2nmi = %(471 — Dmi.
EXAMPLE12: Express log(1 + i)*in the form A + iB.
SOLUTION: Let
log(1—i)9 = (1 -i)log(1+i)

1
=(1-1) [Elog(l2 +12) + itan‘ll]

=(1 '[1l 2+'n]
= ( l)zog g
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7. Inverse Function: If z = sinw, then w = sin'zis called the
inverse of z. Similarly, other trigonometric inverse functions cos z,
tan z, cosec z and cot'z are defined. All these functions are multi-
valued functions and can be expressed in terms of logarithms as
follows.

sinlz = %log {iz +1-— zz}

1
_1 — 2_
cos™ 'z ilog{z+ z 1}
—1l (1+iz>
2=21°9\1 12
. 1 <1+\/Z2—1>

cosec™ z =—log
i z

1 <1+\/1—zz>

1

tan™

-1
sectz=-lo
i J z

-1 _1l (z+i)
ot EE50I\ =

8. Inverse Hyperbolic function: If z = sinhw then The sinh
inverse of w = sinh is called the inverse. Similarly, the other
hyperbolic inverse functions coshz, tanhz, sechz, cosechz, and
cot hz are defined. All of these functions are also multivalued
functions. They can be expressed in terms of logarithms as follows.

sinh™! z = log {Z +1- ZZ}
cosh™ z = log {Z ++z?% — 1}

tanh-1 —1l (1+z>
anh™ z = s log (T—
1+vVz2-1
cosec™lz = log —Y
1+V1—22
seclz=log|———
z
th-1 —1l (z+1>
om0

SOLVED EXAMPLE
EXMPLE13: Express cos™!(x + iy) in the form of A + iB.
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SOLUTION: Let us consider cos™1(x + iy) = A+ iB
cos(A+iB) =x+iy
cosAcos(iB) — sinAsin(iB) = x + iy
cosAcoshB — sinAsinhB = x + iy
Equating real and imaginary parts on both sides, we obtain

cosAcoshB = x (1)
SinAsinhB = —y ..(2)
From (1) and (2), we get
coshB = —
COSA
SinhB = — =<
SinA
2 2

x .
= cosh?B — sinh?B = 1

cos?A  sin?A
x2sin?A — y2cos?A = cos?A sin?A
x2sin?A — y2(1 — sin?A) = (1 — sin?A) sin?A
x2sin?A — y? + y?sin?A = (sin?A — sin*A)
sin*A+ (x2 +y2 —1)sin?A—y%2 =0
So that

—(x?2+y?2—1)+/(x2 +y2 —1)2 + 4y

2
Since sin?A must be positive, therefore neglecting the —ive sign, we
obtain

Sin?A =

&2y -2+ 4y2 - (k2 +yE - 1)

sin?A 5
sind = + VO +y2 =12 +4y2 — (x* +y° - 1)]1/2
- 2
ey = e - ety -]
A= tsin™! [ 5 ] ..(3)

From (1) and (2), we have
X

coshB

Sind = —

x? y? .
osh?B T Sinh?B = cos?A + sin?A =1
x2sinh?B + y?cosh?B = cosh?Bsinh*B

x2sinh?B + y2(1 + sinh?B) = (1 + sinh?B)sinh*B

x2sinh?B + y? + y?sinh?B = (sinh®B + sinh*B)

sinh*B + (1 — x? —y?)sinh?B —y? =0

COSA =

sinhB

So that

~(1 -2 —y) £ JA= 2=y + 2y

inh’B =
sin 5
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But sin?Asinh?B must be positive, therefore neglecting the
—ive sign, we obtain

JA —x2—y2)2 + 4y2 — (1 — x% — y?)

sinh?B =
2 1/2
JE2+y2—1)2+4y2 — (1 —x2—y?)
b B — +
sinhB = + 5
1/2
x2+y2—-1)2+4y?2 — (1 —x% —y?
B = 4simp-t YOIV D2 H 47— ( ) (8

2

Note : The general value of cos™!(x + iy) i.e.,cos™1(x + iy) is given
By
cos Y(x +iy) = 2nm + cos Y (x + iy) = 2nw + (A + iB)
where A and B are found in equation (3) and (4).
EXMPLE14: Express sin1(x + iy) in the form of A + iB.
SOLUTION: Proceed exactly as in Ex.1.
If we already found cos~*(x + iy), then sin™*(x + iy) can also be
deduced from it shown that

Now, we get
s
sinT (x +iy) = 5 cos 1 (x + iy)
1/2
T JE2+y2—1)2+4y2 — (x2+y2 - 1)
=3 + sin™?! 5

1/2

)

+sinh™ [J(l —x?—y?)? +4y? - (1-x*—y?)
2
EXMPLEL15: Express cosh™(x + iy) in the form of a + if.
SOLUTION: Now we have
cosh™ ' (x+iy)=a+ip
x + iy = cos h(a + if) = cos{i(a + iB)} = cos(ia — B)
cosia cos(B) + sinia sinf = cosha cosp + isinha sinf
Equating real and imaginary parts on both sides, we have
cosha cosf = x (1)
sinha sinff =y - (2)
From (1) and (2), we get

cosf = x/cosha and sinf8 = y/sinha
xZ 2
= cos?pB + sin?B =1

+—
cosh?a = sinh?a
x2sinh?a + y%cosh?*a = cosh?a sinh*a
Proceed exactly as in Ex.1, we obtain

VA —x2—y2)2+4y2 - (1 x> —y?)
2

N[ =

a = +sinh™!
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Again find S, we get

cosha = x/cosp
sinha = y/sinf
2

x2

cos?f  sin?p
x2sinh?a + y%cosh?a = cosh?a sinh*a
Proceed exactly as in Ex.1, we obtain

= cosh?a — sinh?a = 1

1
L VEE Y- D2+ 4y2 - (P +y2 - D
2
EXMPLE 16: Express tan™1(x + iy) in the form of A + iB.

SOLUTION: Let tan™1(x + iy) = A + iB, then
tan(A+iB) = x + iy

a = tsin

and
tan(A —iB) = x — iy
Now equating complex conjugates, we get
tan2A = tan[(A + iB) + (A — iB)]
B tan[(A+ iB) + (A —iB)]
1 —tan(A + iB) tan(4 — iB)
G+ +(x—iy)
1= (x4 iy)(x—iy)

_ 2x _ 2x
T 1-(x%+y?2) 1-—x2—y2
1 2x
2A = tan Tz—yz
1 1 2x
A=gtan T ye

Again
tan(2iB) = tan[(A + iB) — (A — iB)]
B tan[(A+ iB) — (A —iB)] B (x +iy) — (x —iy)
1+ tan(A+iB)tan(A —iB) 1+ (x +iy)(x — iy)

_ 21y _ 21y
14+ x2+y2 1+x24y2
. 2iy
tanh2b = ey
[+ tan(if) = itanhf]
2y
tanh2B = ————
o 1+ x2+y?
2y
2B = tanh™! ———
Ty y?
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1 2y
B =_tanh™ ————
Ztanh 1+ x2+y?
Hence
tan~ 1(x+ly)—A+lB
—1t -1 2x + ~tanh™! 2y
T2 12—y zan 1+x2+y?

Note : The general value of tan™t(x + iy) i.e.,tan™*(x + iy) is given
By
tan Y(x + iy) = nm + tan‘l(x + iy)

L S S
ST T oy 2“" 1+x2+y2

EXMPLE 17: Prove that sinh~*(cotx) = log(cotx + cosecx)
SOLUTION: Let sinh~*(cotx) = v, then
sinhy = cotx
- coshy = /1 + sinh?y =1 + cot2x = cosecx
Adding above equations, we get
sinhy + coshy = cotx + cosecx

Or
eY = cotx + cosecx
Or
= log(cotx + cosecx)
sinh~(cotx) = log(cotx + cosecx)

3.6 COMPLEX FUNCTION AS REAL-VALUED
PAIRS: -

A complex function f(z) takes a complex number as input and gives
another complex number as output. Since every complex number can be
expressed in terms of its real part and imaginary part, it becomes easier to
analyze and understand complex functions by separating them into these
two components

Consider the complex function denoted by f(z) = z2 and replace z by x +
iy and can be expressed as

f(@) = (x*—y?) +i(2xy)
Now if we substitute u(x, y) = x? — y2 and v(x,y) = 2xy, then
f(@) =ulx,y) + iv(x,y)

Where u: R? - R and v: R?> — R are real-valued functions between real
variables x and y. Simply put, Re f(z) and Im f(z) are real-valued
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functions of two variables. The advantage of working with a complex

function represented in the form (13) is that we are familiar with real valued

functions with several variables.

Additionally, a complex number (z) can have a polar representation (r 6).

A complicated function, f(z), can be represented as
f(ré)=u(ro)+iv(ro)

For Example, let f(z) = z3, in polar coordinates can be expressed as
f(r8) =[r(cosb + isinh)]3
= r3(cosO + isinf)?3

= 13(cos30 + isin30) [using De Moivre’s
theorem]

Where u(r 8) = r3cos36 and v(r 8) = r3sin36.

SOLVED EXAMPLES
EXAMPLELS8: Separate e“into real and imaginary parts.
SOLUTION: Now we have e? = e**¥
= e*.e” = e*(cosy + isiny)
= e*cosy + ie*siny
Which is the form of a + ib, where a and b are real.
EXAMPLEL9: Separate tanz into real and imaginary parts.

SOLUTION: Now, tanz = j""z — Sin(x+iy)

0sz cos(x+iy)

3 sin(x + iy)

~ cos(x + iy)
_sin(x +iy) _ 2cos(x — iy)

~ cos(x +iy)” 2cos(x — iy)
_sinf[(x +iy) + (x —iy)] + sin[(x + iy) + (x — iy)]

~ cos[(x +iy) + (x — iy)] + cos[(x + iy) + (x — iy)]
_ sin2x + sin(2iy)

 cos2x + cos(2iy)
_sin2x + isinh(2y)

~ cos2x + cosh(2y)

_ ( sin2x ) N ( sinh2y )
~ \cos2x + cosh(2y) cos2x + cosh(2y)

EXAMPLEZ20: Separate tanhz into real and imaginary parts.
SOLUTION: Now, tanhz = S282 — SinGctiy)
coshz cos(x+iy)
1 [sini(x + iy)
[

cosi(x +iy)
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_ 1sin(ix—y)
~icos(ix—y)
_ Isin(y —ix)

Ycos(y —ix)

_ 1 2sin(y — ix)cos(y + ix)

~ i22cos(y — ix)cos(y + ix)
. sin[(y —ix) + (y + ix) + sin[(y — ix) — (y + ix)]
B lcos[(y —ix) + (y +ix) + cos[(y — ix) — (y + ix)]

[+ 2sind cosA = sin(A + B) + sin(A — B),
2cosA cosB = cos(A + B) + cos(A — B)]

_Sin 2y + sin(—2ix)

Yeos 2y + cos(—2ix)
Sin2y —isinh2x

Y eos 2y + cosh2x
_isin2y — i’sinh2x

cos 2y + cosh2x
_isinh 2x + i sin2y

cos 2y + cosh2x
sinh 2x ) sin2y

~ cos 2y + cosh2x + teos 2y + cosh2x
EXAMPLEZ21: Separate sechz into real and imaginary parts.
SOLUTION: Now,
1

coshz

sechz =

- cosh(x + iy) - cosi(x + iy)

_ 1 _ 1

~ cosi(ix—y) cos(y — ix)
2cos(y + ix)

- 2cos(y + ix)cos(y — ix)
) cosycos(ix) — sinysin(ix)
cos[(y + ix) + (y — ix)] + cos[(y + ix) — (y — ix)]
_ cosy coshx — isiny sinhx

=2
cos[(y + ix) + (y — ix)] + cos[(y + ix) — (y — ix)]
cosy coshx — isiny sinhx

2 cos[(y + ix) + (y — ix)] + cos[(y + ix) — (y — ix)]
cosy coshx

cos2y + cos(2ix)
cosy coshx . 2cosy coshx

cosh2x + cos2y ~ 'cosh2x + cos2y

3.7 PROPERTIES OF COMPLEX NUMBERS: -
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1. Domain and Range: The domain of f(z) is the set of all complex
numbers z for which f(z) is defined. The range of f(z) is the set
of all values that f(z) can take.

Example: If f(z) = z;, thenthe domainisall z # 0, and the range
is all complex numbers except 0.

2. Limit of a Complex Function: A limit exists when the value
approaches the same number from all directions in the complex
plane. Complex numbers have infinitely many approach paths, so
limits are more restrictive.

3. Continuity: A function f(z) is continuous at z if

lim £(2) = f(2)
This is similar to real analysis, but applies to all plane directions.
4. Differentiability: A complex function is differentiable at z; if the limit
(@) = 1im LA @)
z-2Zg Z— Z
exists (and is the same from all directions). Complex
differentiability is very strong.

5. Cauchy’s Riemannian Equations: For a differentiability of
f@)=u+iv:

Ju dv Odu  Ov
ax ady dy  ox

6. Algebra of Complex Functions: If f and g are complex function,
then
a. f+g
b. f—g
c fg
d L
g

are complex Functions.

7. Analyticity (Holomorphic Functions): A function is analytic at a
point if it is differentiable in a neighborhood of that point.
Analytic functions have powerful properties:
¢ infinitely differentiable
e represented by power series harmonic
e real and imaginary parts
8. Harmonic Property: If f(z) = u + iv is analytic, then both u and
v satisfy:

Department of Mathematics
Uttarakhand Open University Page 55



Complex Analysis MT(N)-302

Uyxy T Uy, =0, Vg + 1, =0
Therefore, both parts are harmonic functions.
9. Zeros, Poles, and Singularities:
e Zeros: points where f(z) = 0.
e Poles: points where the function blows up to infinity.
e Isolated singularities classify into removable, pole, or
essential.
10. Mapping Property: A complex function transforms one region of
the plane into another.
e Lines can become circles.
e Circles can become other curves.
e Analytic functions preserve angles (conformal mapping).

The above properties will be explained in the next unit, where you will
study the behavior of complex functions including limits, continuity,
differentiability, analyticity, Cauchy-Riemann equations, singularities,
and mappings to gain a deeper understanding of their structure and
behavior.

3.8 FUNCTIONS OF A COMPLEX VARIABLE AS
MAPPINGS: -

Consider the function f: C - C, defined as f(z) = z2, where z is a
complex variable or a point in the complex plane. This is a mapping
between a complex valued function and a complex variable.

Sometimes it is also represented as w = z2, where z is member of z-plane
(domain of definition) and w its value, a complex number, member of w -
plane (see Fig.1).

Fig.1
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Thus, point z in the z-plane is mapped to point w in the w-plane. The image
of a point z in the domain of definition is the point w = f(z). The image of
the complete domain of definition is known as the range of f. To see a
graphical representation of a mapping) w = f(2), letussetz = x + iy,w =
u+ iv.

u+iv=(x+iy)? =x%—y?+ 2xyi

The equation

u=x?%-—y? v = 2xyi
is a transformation from the y -plane to the uv —plane.

SELF CHECK QUESTIONS

What is a complex function? Write an example.

If f(z) = u(x,y) + iv(x, y), identify the real and imaginary parts.
Define the domain and range of a complex function.

Write the real and imaginary parts of e?.

State the principal value of logz.

Find sin(z) in terms of x and y.

o0k wbdE

3.9 SUMMARY: -

A complex function is a rule that assigns each complex number z = x + iy
a unique complex value f(z) = u(x,y) + iv(x,y) where u and are real-
valued functions of two variables. The study of complex functions focuses
on their limits, continuity, differentiability, and analytic behavior. A
function is continuous if its value approaches f(z,) from every direction in
the complex plane, and it is differentiable only when it satisfies the Cauchy—
Riemann equations, which makes complex differentiability much stronger
than real differentiability. Functions that are differentiable on a region are
called analytic and possess powerful properties such as infinite
differentiability, representation by power series, and conformal (angle-
preserving) mappings. Complex functions also include important families
like exponential, trigonometric, logarithmic, and Mdébius transformations,
each having special geometric and algebraic properties that make complex
analysis rich and widely applicable.

3.10 GLOSSARY: -

e Complex Function: A rule that assigns each complex number z a
complex value f(z).

e Real Part & Imaginary Part: For f(z) = u + iv, u is the real
part and v is the imaginary part.
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e Domain: Set of complex numbers where the function is defined.

e Range: Set of output complex values of the function.

e Limit: The value a function approaches as z approaches a point
from any direction.

e Continuity: f(z) is continuous at z , if f(z) = f(z,).

o Differentiability: A function has a derivative at z , if the limit

f (@) = f(z)
Z— Z
exists.
e Cauchy-Riemann Equations: Conditions u, = v, and u,, =
—Vy.

e Analytic Function: A function differentiable on a region; behaves
smoothly and equals its power series.

e Modulus: Magnitude of a complex number, |f(z)| = Vu? + v2.

e Argument: Angle a complex number makes with the positive real
axis.

e Singularity: A point where the function is not analytic.

e Zero: A point where f(z) = 0.

e Pole: A point where f(z) becomes infinite.

e Mo0bius Transformation: A mapping 42 that sends

cz+
az+b
lines/circles to lines/circles.
e Conformal Mapping: Angle-preserving mapping; analytic
functions with non-zero derivatives.

3.11 REFERENCES: -

e Brown, J. W., & Churchill, R. V. (2022), Complex Variables and
Applications (10th Edition). McGraw-Hill.

e S.Ponnusamy & H. Silverman (2021), Complex Variables with
Applications. Birkhauser/Springer.

3.12 SUGGESTED READING: -

e Goyal and Gupta (Twenty first edition 2010), Function of complex
Variable.

e Murray R. Spiegel (2009) — Schaum’s Outline of Complex
Variables, 2nd Edition.

e R. Narayanaswamy (2005) — Theory of Functions of a Complex
Variable, S. Chand & Company Ltd

3.13 TERMINAL QUESTIONS: -
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(TQ-1) Prove that for all values of x, y, real or complex, the following
are true

cos’x + sin®x =1

cos(—x) = cosx
. €0S2x = cos*x — sin’x

sin3x = 3sinx — 4sin3x

cos3x = 4cos3x — 3cosx

sinx + siny = 2 sin% (x + y)cos% (x—1y)

3 - 5

cosx — cosy = 2 sin% (x+y) sin% (y—x)

sin(x + y) = sinx cosy + cosx siny

cos(x + y) = cosx cosy F cosx siny

sec’x = 1 + tan’x

. cosec’x =1+ cot’x

-2) Prove that for all values of x, y, real or complex.

cosh?x — sinh?x = 1

sinh2x = 2sinhxcoshx

cosh2x = cosh?x + sinh?x = 1 + 2sinh?x = 2cosh?x — 1
sech?x = 1 — tanh®x

2tanhx
tan2hx = PR Y
(1+tanh?x)

sinh(x + y) = sinhx coshy + coshx sinhy
cosh(x + y) = coshx coshy + sinhx sinhy

e* = coshx + sinhx and e ™ = coshx — sinhx
sinh3x = 3sinhx + 4sinh3x

cosh3x = 4cosh3x — 3coshx
3tanhx+tanh3x
1+3tanh?x

(TQ-3) Show that itizzhx = cosh2x + sinh2x

hx
i6

(T

~Tormse™ o oooepDc oS o B oS

tanh3x =

e
(1—kel®)
(TQ-5) Resolve eSn+into real and imaginary parts.
(TQ-6) IfE ("“”‘y ) = P +iQ, find P and Q.

x+a+iy

(TQ-7) Show that tanh(x + y) = —2hxttanhy

1+tanhx tanhy
(TQ-8) If sin(8 + i) = cosa + isina, then prove that
cos?0 = sinh?@ = +sina
(TQ-9) Separate &T’f into real and imaginary parts.

(TQ-4) Split into real and imaginary parts

(x+iy)
(TQ-10) If sin(8 + i¢p) = p(cosa + isina), prove that

p? = % [cosh2¢ — cos26] and tana = tanhg coth
(TQ-11) If tan(6 + i¢p) = (tana + iseca), prove that
e?? = icot%a and 20 = nm +g+ a
(TQ-12) Prove that
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l ( 1 )-l (1 a)_l_,(n a)
0g 1 —oia) = 0og 2cosec2 [ >3

(TQ-13) Prove that
T
log tan (Z + if) = itan~(sinha)
(TQ-14) Prove that

x
sinh™lx = tanh™!
V1 + x2
(TQ-15) Prove that
x
tanh™'x = sinh™!
V1 —x2
(TQ-16) Prove that
coth™1(2/x) = sinh™?! _r
V4 — x?

(TQ-17) If coshx = sec8, then prove that x = log(sec + tan®)
(TQ-18) If cosh™*(x + iy) + cosh™*(x — iy) = cosh™'a, show that

2(a—1)x%?+2(a+ 1)y? =a? - 1.
(TQ-19) Show that sin~'(ix) = nm + i(—1)" log{x + V1 + x2}.

. x— 1,
(TQ-20) Prove that tan™* [l %] = —~ilog (g)
(TQ-21) Prove that it = e~(n+1)/2
(TQ-22) If i**# = e*(cosy + isiny),then prove that
X = —%(471 +Drpandy = %(4n + Dra.

(TQ-23) = m**¥, then prove that

y Ztan‘lg

x log(a? + b?)
where only principal values considered.
(TQ-24) Prove that (1 + itana)**®™Bcan have real values, one of them
is (seca)se’B,
Prove that the following
a. sinh™'z = log{z + V1 — 72}
b. cosh 'z = log{z +Vz% — 1}

-1, 1 1+z
C. tanh™ z = > log (E)
1. _ 1+Vz2-1
d. cosec™ z =log -
1. _ 1+V1—2z2
e. sec  z=log|\——
Z
f coth™z=—1lo (E)
' 2009
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3.14 ANSWERS: -

TERMINAL ANSWERS (TQ’S)

(TQ'4) (cose—kcos(e—d))) n i(sinO—ksin(ﬂ—d’))

1-2kcose +k? 1-2kcos¢p+k?
- sin xcoshy ,icosx sinhy
TQ-5)e e

. x24+y2—-a?
(TQ-6) P = ePcosq and Q = ePsing, where p = Ty and q =
2ay
(x+a)?2+y?
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4.1 INTRODUCTION: -

Limit, continuity, and differentiability are key notions in complex analysis
that help us understand the behavior of complicated functions. The limit of
a complex function is the value that the function approaches as the input
variable approaches a specific point in the complex plane. A function is
considered to be continuous at a point if its limit exists and equals the
function's value, ensuring that there are no abrupt leaps or breaks.
Differentiability of a complex function at a point necessitates not just
continuity but also the presence of a unique complex derivative, which is a
much greater requirement than in real analysis. This leads to analyticity and
the solution of the Cauchy-Riemann equations. These principles, when
combined, serve as the foundation for more advanced conclusions in
complex analysis, such as analytic continuation, contour integration, and
conformal mapping.

4.2 OBJECTIVES: -
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After studying this unit, the learner’s will be able to
e Understand the concept of limits.
e Understand the definition of continuity.
e Classify different types of discontinuities.
e Understand differentiability.
e Apply the concepts of limit, continuity, and differentiability.
e Develop problem-solving skills related to evaluating limits,
checking continuity, and finding derivatives in various contexts.

4.3 POINT SET: -

A point set in the complex plane refers to a gathering of points, each
representing a distinct element within the set. These points, commonly
referred to as numbers or elements of the set, collectively constitute the
spatial arrangement of the set within the two-dimensional complex plane.

4.4 NEIGHBORHOOQOD: -

In the Argand plane (also known as the complex plane), the neighborhood
of a point z, is defined as the set of points z such that the distance

between z, and z (denoted as |z — z,| < ¢ is less than some positive real
number €. Mathematically, it can be expressed as {z € C: |z — z,| < € },
where C represents the complex numbers. This neighborhood represents
an open set around the point z, where all points within a certain distance &
from z are included.

The neighborhood of the point at infinity in the complex plane is the set
of points z s.t. |z| < k where k is any positive real number.

4.5 LIMIT POINT: -

The limit of a function f(z), defined in a deleted (punctured) neighborhood
of a point z,, is said to tend to [ if for every arbitrary number & >
0 (however small), there exists a & > 0 such that

0<lz—2zyl<dimplies| f(z) — L I< e.
Symbolically, the limit is written as
lim f(z) =L
Z—>Zg
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In the limit of a real function, when x > q, then x > a moves along the
x axis, whether to the left or to the right of a. However, in the limit of a
complex function, when x > a, then a can move along any curved path in
the planar domain. The limit exists only if the limit of the function is the
same in each case.

SOLVED EXAMPLES

EXAMPLEL: If f(z) = z?2, then prove thatlim zZ.

Z—Zg

SOLUTION: Here we have to show that for any given § € > 0, it can be
obtained (depending on €) such that

|z — 75| <€
While
0<lz—12zyI1<6
If § < 1,then
O0<lz—zgl<b6=2lz—2zyl=lz—2zyll z+ 2y |
<6lz—2zy+ 2z |
<6{l z—2zy | +12z41}
< 6{1 + 2|z}
Let 6 = min (1,1+26|ZO|)

|z2 —z2| < ewhile | z— 2z, I< §

Limf(z) = lim z2
Z—oZy Z—oZy

EXAMPLEZ2: Prove that

. 3z%*—2234+822-2z+5 ,
Lim =4+ 4i

zZ-Z zZ—1

SOLUTION: Here we have to show that € > 0 can be obtained for any
arbitrary § > 0, so that

3z —2234+822—-2z+5

P —(4—-4i)| <ewhen0<|z—i|l<§

z # 1, so that
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3z* —22z34+82z2—-2z+5
zZ—1i
[3z3 — (2 —-30)z2+ (5 —2i)z+ 5i](z—i)
zZ—1i

=3z3—-(2-30)z>+(5—-2i)z+ 5i
If§ <1, then
=132z3 — (2 - 3i)z% + (5 — 2i)z + 5i|
= |z—i||3z% — (6i — 2)z — 1 — 4i]
=|lz—il3(z—i+i)?—(6i—2)(z—i+i)—1—4i
= |z —ill3(z = )? — (12i — 2)(z — i) — 10 — 6i]
=< 8§(3lz—i|*+ |12i = 2||z—i] + |-10 — 6i[}
=< 83+ 13 +12) =286

So if § = min [1%] then we get desired Result.

EXAMPLES: (Theorems of limits): If Lim f(z) = Aand Lim g(z) = B,
Z—Zg Z—oZ
then prove that
i. Lim[f(z) +g(2)] = Limf(z)+ Limg(z) =A+ B
Z-Z Z—2Z Z=Zg
ii. Lim[f(z) —g(2)] =Limf(z) — Limg(z) =A—B
Z-Zg Z—2Z Z=Zg
iii. Lim[f(2)g(2)] = [Limf(z)] [Limg(z)] = AB
Z-Zg Z—oZ Z=Zg

Lim f(z)
Lim 12 =2n A

9(z) zLi’Z}J g(z) B

iv.

SOLUTION:

I. Suppose Lim f(z) = A and Lim g(z) = B, we get, for given
Z-2Z Z-Zg
€ >0,36,(>0)and §,(> 0) such that
If (z) — A| <§ whenever 0 < |z — z,| < &,
If (z) — B| <§ whenever 0 < |z — z,| < 6,

then v z with 0 < |z — z,| < § = min{6,, §, }, we obtain
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If(2) +g9(2) —(A+ B)| < |f(2) — Al + |g(2) - B

<e+e_
2727¢€
= g,irzn[f(z) +9(2)]=A+B
—Zo

ii. Suppose Lim f(z) = A and Lim g(z) = B, we get, for given
Z-2Z Z-2Zg

€ >0,35,(>0)and §,(> 0) such that

€

|f(z) — Al <3 whenever 0 < |z — zy| < 6;

€

|f(z) — B| < 5 whenever 0 < |z — z,| < 6,
then vV z with 0 < |z — z,| < § = min{6,, §, }, we obtain

If(2) + g(2) — (A - B)| < |f(2) — Al + |g(2) — B

Since for every € > 0 such that § exists, the definition of limit
gives:

= Limlf(2) — ()] =4~ B

iii. Suppose Lim f(z) = A and Lim g(z) = B, we get, for given
Z—DZg VARIA)

€ >0,35,(>0)and §,(> 0) such that

€

|f(z) — Al <3 whenever 0 < |z — z,| < 6;
If (z) — B| <§ whenever 0 < |z — z,| < 6,
then V z with 0 < |z — z,| < § = min{&,, §, }, we obtain

If(2)9(2) — (AB)| < |B(f(2) — A) + A(g(2) — B) +
(f(2) — A)(g(2) - B)|

< |Bllf(2) — Al + |Allf (2) — Bl + |f (2) — Allg(2) — B|
< e(|Al +|B)Ve + €
Since e(> 0) is arbitrary, we get

f(2)g(2) = (AB)
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Iv. Suppose Limg(z) =B but B # 0 we get, for given € > 0,
Z-Zg

3 §(> 0) such that
lg(z) — B| < e whenever
0<|z—2 <6

Let us consider € = % the above inequality reduces to
% <lg@)| < % whenever

0<|z—2 <6
Now for 0 < |z — 75| < &, we get

1 1 g(z2)—B
oRt: iwren
_lg@ -8l _2lg@) Bl _ 2
IBllg()| =  IBI? |B|?
Since e(> 0) is arbitrary, we obtain
11
glirzrég(z) ~B
Now using(iii) we get
Lim {5 = Limf @)Lim o =5

EXAMPLE4: Find the following limits using the above limit rules:

a. lim(x3+ 4x%2 —3)

X—C
b, lim &1
' x—cC x2+5

c. lim(2x +5)

X—C
d. ltirg 8(t—5({t—-7)

(x+2)

e. lim—
x—-2 X“+5x+6
SOLUTION:
a. lim(x3 + 4x% — 3) = lim x3 + lim4x? — lim3 = ¢3 + 4¢? — 3.
X—C X—>C X—>C X—C
: 4 2_ : 4 : 2_1;
b lim (x*+x2-1) _ }CI_I:ﬂC(x +x2-1) _ ch_r;ncx +gcl_r)ncx }}1}}1) _ ctic21
" xoc X245 lim (x2+5) (limx2+lim5) c2+5
X—C X—C xX=C
c. lim(2x +5) = lim2x + lim5 = 2¢ + 5.
X—C X—C X—C

d. lim8(t—5)(t—7) =8 (tim¢ — 1im5) (lim¢ — lim7) = 8 x

X—C X—C X—C X—C

(6-5)(6—-7)=8x(1)x(-1)=-8.
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e. lim (x+2) _ Lim (x+2) __ 242 _ 4 _4_1_g,
T x52x%2+5x+6 Jlcirg(x2+5x+6) 2245%x2+6  4+10+6 20 5 -
-

EXAMPLES: If limf(z) exists, prove that it is unique.
Z—Zp
SOLUTION: Let limf(z) =1, and limf(z) = l,, where [, # L,.
Z—Zy

zZ—Zy
Now
limf(z) =1, > for every 6; > 0,e >0
Z—2Zg
So that
€
If(z) — 1] < 3 while 0 < |z — z,| < &,
Similarly
limf(z) =1, > forevery §, > 0,e >0
A4
So that

If(2) = L] <§ while 0 < |z — 7| < 6,

Let § = min(8,, 6, ), then for every § > 0,6 > 0
so that
If(z) — L] < gand lIf(z) — 1, < gwhile 0<|z—2z)< 6
Now
Il = Ll = l; = f(2) — L]
<L = fDIf(2) - L]
<-+-while 0 <|z—2z]| < &
- Il — LI <e
Since this is true for every €> 0 and is arbitrary. Hence
L -LI=0=>L =1
Therefore, lim f (z) if it exists, will be unique.

Z—2Zp

EXAMPLESG: Show that the i‘l% (S) does not exist.
SOLUTION: Ifthe limit exists, it must depend on the path z of approaching
0.
But when along the x —axis z —» 0 theny = 0.
z=x+iy=x and Z=x-—-iy=x
Now
Z X
lim-=Ilim-=1 ..(1)
z-0 Z y-0 X
But when along the y —axis z — 0 then x = 0.
z=x+iy=iy and zZ=x+iy=—iy
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Now
.z . —ly
lim-=Ilim—— = -1 . (2)
z—0 Z y—-0 ly

Since (1) and (2) are unequal. Hence lirrolf does not exist.
VA
EXAMPLET: If f(z) = z2, prove that lirr(l)f(z) = z2.
zZ—
SOLUTION: Let e > 0 given, to find § > 0 s.t. |z2 — z,%| <€ whenever
0<|z—12z) <6
Consider |22 — zo?| = |(z — 29) (2 + 2) |
|z + zollz — zo| < 6|z + 2|
= |z —zy+ 2zy| < 6|z — 25| + 26|z < 86 + 26]|z,| =€

2 now & > 0s.t. min{ = 1}

14+2|z0]’
= |z2 — z,?%| <€
= limf(z) = zy°
4.6 CONTINUITY: -

A function f: C — C is said to be continuous at a point z, € C if, for every
€ > 0, there existsa § > 0 such that whenever | z — z, I1< 6, it follows that
| f(z) — f(zy) I< €. In other words, small changes in the input z near z,
result in small changes in the output f(z). The function f is continuous on
aset S € Cif it is continuous at every point in S.

OR

A function f: D — Cis said to be continuous at a point z, € D iffv €>
0,36>0st]f(2)—f(zy) I< ewhenever z € D and | z — z, I<E.

Continuity from left and continuity from right: Let f be a function

defined on an open interval | and let ael. We say that f is continuous from

the left at a if limof(x) exists and is equal to f (a). Similarly according
X—->a—

to be continuous from the right at a if lim if linlof(x) exists and is equal
x—a
to f (a).

Continuous function: A function f is said to be continuous if, for every
point in its domain, the limit of the function equals its value.
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Continuity in an Open interval: A function f is said to be a continuous in
the open interval ]a, b[ if it is continuous at each point of the interval.

Or

A function f is continuous on an open interval (a, b) if f is continuous at
every point ¢ € (a, b).

Since (a, b) is open, every point c in it has points on both sides, so that

limf(x) =f(c) Vc € (ab)

Continuity in a Closed interval:

Let f be a function defined on the closed interval [a, b]. We say that f is
continuous a* a if it is continuous from the right at a and also the f is
continuous at b if it is continuous from the left at b. Further, f is said to be
continuous on the closed interval [a, b], if (i) it is continuous from the right
at a, (i) continuous from the left at b and (iii) continuous on the open
interval Ja, b[.

Or
A function f is continuous on a closed interval [a, b] then,

e f is continuous at every interior point ¢ of [a,b] i.e., at cela, b[ if
fc=0)=f(c)=f(c+0)i.e,if
lim f(x)=f(c)= lim f(x).
x—c—0 x—>c+0
e fis continuous at right-hand limit at the left end point b, if
f®)=fb-0)ie, lim f)
e fiscontinuous at left-hand limit at the left end point b, if

f(a) =f(a+0)i.e, xgmof(x).

4.7 DISCONTINUITY: -

If a function is not continuous at a point, then it is said to be discontinuous
at that point and the point is called a point of discontinuity of the function.

Type of Discontinuity:

1. Removable Discontinuity: A function is known as Removable
discontinuity at a point a if lim f(x) = f(a)., but notequal to f(a).
xX—a
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2. Finite Discontinuity: The left-hand and right-hand limits exist but
are not equal:
lim f(x)# lim f(x)
x—-at x-a~
3. Infinite Discontinuity:
e The function approaches oo as x approaches the point.
e There is a vertical asymptote at the point.
4. Oscillatory Discontinuity:
e The function oscillates infinitely as x — a.
e So the limit does not exist.

SOLVED EXAMPLES

EXAMPLEL: A function f(x) defined as follow:

( (%
|\ =) @ whenx < a

a
f(x)={0, whenx =a

I x?
ka— > whenx > a

Prove that the function f(x) is continuous at x = a.

SOLUTION: Let f(a + 0) = lim f(a + h) = lim f [a - (a+h)]

[ flx) = a—(%z) forx>a]
G
= a—@lza—azo

f(a— )—llmf(a— )—llmf[( a—hy al

2

l-.-f(x) = (%)—aforx <a

a2
= (—)—aza—azo
a

Then also have f(a) = 0.

Hence f(a+ 0) = f(a — 0) = f(a), therefore f(x) is continuous at x =
0
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EXAMPLE2: Examine the function defined below for continuity at x = a:
1

1
cosec( ),xia
—a

fx) =

x
fx)=0,x=a
SOLUTION: Let
fla+0)=lmf(a+h)

1 1 1

= lim———cosec—— = lim————
h-oa+h—a at+h—a hﬁohsin(%)
. . 1
= o0, since hsin (Z) - 0ash - 0.

fla=0)=lmf(a~—h)

. 1 1 .
- }g%a—h—acoseca—h—a = A hsin _1)
h
li 1
= lim
=0 hsin (%)
= 4o, since hsin (%) —>0ash-0.
Also fla)=0

Since f(a+0) = f(a—0) # f(a) the function f(x) is discontinuous at
X =a.

EXAMPLES3: Examine the function defined below for continuity at x = a:

sin®ax

fG) =

22 forx#0,f(x)=1forx=0.

SOLUTION: Let f(0) =1

040) = lim (0 + ) = Lim F(h) = 1im >T-2h
FOO+0) = Lim (0 +h) = lim f() = lim "
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sin’ah
— 2 2 — A2
hl_)0 (ah)? a l.a“ =a
. iy . sin®(—ah)
e sinah o,
IO

Now f(x) is continuous at x = 0 iff
fO+0)=f(0-0)=/(0)
Hence f(x) is discontinuous at x = 0 unless a = 1.
EXAMPLE4: A function f(x) is defined as follows:
f)=1+xif x <2fand f(x)=5—xif x = 2.
Is the function continuous at x = 2?
SOLUTION: Here f(2)=1+20r5—-2=3

f@2+0)=limf(2+h) =lim[5—(2+h)]

=£ll_r)r$[3—h]=3

and
f(2-0)= %iir&f(z — h), where h is + ive and very small
=£i_r)rg[1—(2—h)], [v2—h<2and f(x) =1+xifx <2]
= %%[3 —h]=3
Thus
f@2+0)=f(2-0)=f(2).

Hence the f(x) is continuous at x = 2.

4.8 DIFFERENTIBILITY: -

Department of Mathematics
Uttarakhand Open University Page 73



Complex Analysis MT(N)-302

Let | denote the open interval ]a, b[ in R and let xyel. Then a function
f:1 = R is said to be differential (or derivable) at x,, iff

li fxo +h) = f(x0)
im

h—0 h

Or

I f () = f(xo)
m—-

h—-0 X — Xo

exists finitely and this limit, if it exists finitely, is called the differential
coefficient or derivative of f with respect to x at x = x,,.

Progressive and regressive derivatives:

The progressive derivative of f at x = x, is obtained by

limf(xo +h) —f(xO),h >0
h—-0 h

It is also called the right hand differential coefficient of f at x = x, and
denoted by R f'(x,) or by f'(xo + 0).

The progressive derivative of f at x = x, is obtained by

limf(xo +h) —f(xo),h >0
h—-0 —h

It is also known as the left hand differential coefficient of f at x = x, and
denoted by L f'(xq) or by f'(xq + 0).

Open interval]a, b[: A function f:]a,b[ - R is called differentiable in
la, b[ iff it is differentiable at every point of ]a, b[.

Closed interval[a, b]: A function f:[a, b] = R is called differentiable in
[a, b] iff Rf'(a) exist Lf'(b) exists and f is differentiable at every point of
la, bl.

Alternative definition of differentiability: Let f be a function defined on
an interval I and let a be an interior point of I. then by the definition of
f'(a), assuming it to exist, we get

v . J) = f(a)
f(a)—llmT

xX—-a X
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i.e., f'(a) exists if for a given € > 0,36 > 0, such that

f&) - f(@)

po— —f'(a)| < e, whenever 0 < |[x —a| <§

Or

xe]a—S,a+6[=>f’(a)—e<w<f’(a)+e

THEOREML: If a function f is differentiable at a point x,and c is any
real number, then the function cf is also differentiable at x, and

(cf)' (xo) = cf '),
PROOF: By the definition of f’(x), we get

ii’lﬂf(x—; Iﬁf—x") = f'(xo)
Now
- i ) = (o) _ . cf (x) = cf (xo)
= [im = lim
X—-Xg X — Xp X—=Xg X — Xo
_ yim [ L&) = ¢f (o)
= ium |c
X—Xo X — xO
= C,fi’,’fof(xzc__z,(%) = cf'(xo)

Hence cf is differentiable at x, and (cf)'(xq) = cf’ (x,).

THEOREM2: Let f and g be defined on an interval I. If f and g are
differentiable at xe€l, then so also is f + g and

(f +9)' (x0) = ' (x0) + g'(x0)
PROOF: Let f and g are differentiable at (x,), then

o G = F o)
m —-

X—>Xo X — xO

= f"(xo)

’ gx) —g(xo)
m-———=

X—>Xo X — xO

g'(xo)

Now
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o T HI) = G+ 9)(x0) _ f(¥) = fx0) 9O = 9(x0)

li lim
X—=Xg X — xO X—Xo X — XO X — xO
o )= f(xe) . g(x) = g(xo)
= lim————+ lim ————=
X=X X — Xo X=X X — Xy

As the limit of a sum is equal to the sum of the limits.

= f'(x0) + g'(x0)

Hence f + g is differentiable at x, and

(f +9)' (x0) = f'(x0) + g'(x0).

THEOREMS: : Let f and g be defined on an interval 1. If f and g are
differentiable at x,€l, then so also is f + g and

(f9)'(x0) = f" (x0)g(xo) + f(x0)g"(x0)
PROOF: Let f and g are differentiable at (x,), then

i L) = (X0)
m—--

X=X X — Xp

= f'(xo)

i gx) —g(xo)
m-————=

X—Xo X — xo

(fg)(x) — (fg)(x0) f(x)g(x) = f(x0)g(%o)

g'(xo)

= lim = lim
X—Xg X — Xy X—Xq X — Xy
_ i TG = FOx0)g () + f(x0)g (x) — £ (0) g (x0)
— X — X
= tim [T g 4 ey L0000
i SOV TG ey tim S0 9G)
X=Xo X — Xy X=Xg X=X X — Xo
= f"(x0)g(x0) + f(x0) 9 (x0)
Now that fact

lim g(x) = g(x)
X—>Xo
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Hence fg is differentiable at x

(fg) (xo) = f' (x0)g(xo) + f (x0)g'(x0)
SOLVED EXAMPLES

EXAMPLEL: Prove that f(x) =|x| is continuous at x=0, but not
differentiable at x = 0 where |x|means the numerical value or the absolute
value of x.

SOLUTION: we get f(0) = |0]

lim lim | n| - lim

. . lim
SO+ 0)y= T S0+ )=, of=,__, h—pt=0
; % : Jim
and _m. lim lim Al | 1 AL h=0,
fO- 0= M- m= "1 mn=, 01 = n—0

FOY = 0+ 0)= £(0- 0).
Hence f(x) is continuous af x = 0.
im [0+ h)= f(0)  tim f(h) = f(0)
1 =0 h = =0 h
lim | I:J_— 0 lim h
h=0 . h T h=0
lim

Also. we have Rf (0) =

/

, (I being positive)

S h=splads
and Lf@y= "™ fO=M)~10) lim f(= k)= f(0)
' h =0 - h Y
lim | - /1_]7_—_()_ lim & 5
h—0Q - I = =20t (h being positive)
_ lim
h _)0_ = - 1.

Since R ' (0) = L ' (0), the functio i i
J 2 n f(x) is not differentiabl =
To draw the graph of the function f)=|x|. it
r =

s x=0
We have f(x) - |- & xs 0.

Let y= f(x). Then the graph of the function consists of the following straight
lines:
Y= X, x= 0

yw - x, xs 0
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Let v= f(x). Then the graph of the function consists of the following straight
lines:

y= x=z 0
y= -y, xs 0.
The graph is as shown in the figure.
From the graph we observe that the function B
is continuous at the point O i.c., at the point
x= 0butitisnot differentiable at this point
The tangent to the curve at the point O from 23 Y
the right is the straight line OA and from the
left is the straight line OB. Thus the tangent

to the curve at O does not exist and so the 0
function is not differentiable at O.

1

EXAMPLE2: Show that the function f(x) = |x|+ |x—1| is not
differentiable at x = 0 and x = 1.

SOLUTION: If x < 0, then

. |x|=-—xandlx—l =\1:-;‘."=1_,\-;

if0= x=< I, then | x| = x and | x- 1| = |1- x| = 1= &;

and ifx> 1,then | x| = xand | x- 1| = x— . ;
the function f(x) is piven by

= 2x, ifx< 0

f(x) = J‘l.
12\'— 1

if0 = Xs |
’ ifx) l.

Atx= 0. Wehave Rf’(0)= h“"‘gﬁﬂ%fio_)
- 1

_ lim f() - f(0)  lim 1-

h—0 h =h—>()7 ,as f(x) = ]ifOs‘xs 1
lim
T ulissa G
. li )
Lf' )=, '_TOL(L%)h (0) '
lim f(=h) = £(0) _ lim [1-2(-M]-1
h==0 - I = h—0 —
[“f(x)=1- 2xifx< 0]
lim 2h lim

=l s P

Rf'(0)= L f'(0), so the given function is not differentiable at x= 0
Atx= 1. We have

h—0

; = L [20% A= 1]21
Rf' (1) = lim f_(l_*'l_'lg__L(_]l: lim [2(1+ h) ]

h—0 h
lim 2+ 2/1—1--],= lim %u lim 2.2
“h—0  h h—0T7  h—0 b
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; lim fQ-h)-f(1)  lim 1-1_ lim .,
and L= 40 =0 N L

Rf'(1)= Lf'(1), so the given function f(x) is not differentiable at x= 1.

EXAMPLES: Let f(x) be an even function. If f’(0) exists, find its

value.

SOLUTION: Let f(x) be an even function, so f(—x) = f(x) Vx.
£ (0) exists =R f" (0)= L[’ (0)= f'(0).

Nowf’ (0)= Rf’ (0)= thOU'_)Tf(_O h> 0

lim  f(= k)~ £(0) [ f(=x) = f(@)]
“ h—0 h
2 ,llmo f(= ’l)'l' 0 _ _ Lf' (0)= - f'(0).

1 —> -1
2f'(0)=0=f'(0)=0
el/%_g=1/%
el/xie-1/x’

EXAMPLE4: Let f(x) =x
is continuous but derivable at x = 0.

x # 0; £(0) = 0. Show that f(x)

SOLUTION: We have f(0) = 0;

Mh_ = VI

f(0+ 0)= |lm )f(() il |Illl()f(,) lim

) YV
lim , 1= ¢ 2/h
= —»()’ .l_.+_!; 37n dividing the Nr. and Dr. by ¢!/
e 2
1-0
= % ——m = 0;
X 170 Ox 1= 0;
hm Ilm
fo- 0= v e
~ lim ; el/- h__ e 1/- h lim _ e 17h _ el/h
T h—0 lcl/— hy o~ 1/-h =li—=0 e~ V/h 4 ol/h
: - 2/h _ -
B R i WA W R )
h—=0 e 2/h 41 O+ 1

Since f(0+ 0) = f(6— 0) = f(0), the function is continuous at x = 0.
lim f(O+ h)- f(O)'_ lim f(h) - £(0)

Now Rf'(0)= g - s =
lim el.—'.fl ~ 15 lim 1- e _.H'r ]__g" "
= a0 | "G, © [n= 075 28" 1+ 0
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i ZuhY=‘£(0 li (=) - f(0)
Lf' (0) = th:Of(O _l)l; f(0) _ . i“of___':z_.__

; - 1/h _ 1k
lim € ocle 0] /(—»h)

P L) e VVhy oV/h™

lim e 2/"-1_0

-1
o = = = 1,
h—=>0¢-2/h41 0+ 1

Since Rf' (0) = L f'(0), the function is not derivable at x= 0.

4.9 ROLLE’S THEOREM: -

If a function f (x) is such that

I. f(x) is continuous in the closed interval [a, b],

ii. f (x) exists for every point in the open interval ]a, b[,

iii. f(a) f(b), then there exists at least one value of x, say c, where
a < ¢ < hsuchthat f'(¢) = 0.

Proof: Since f is continuous on [a, b], it is bounded on [a, b]. Let M and m
be the supremum and infimum off respectively in the closed interval [a, b].
Now either M = m or M # m.

If M = m, then f is a constant function over [a, b] and consequently f (x)
= 0 for all x in [a, b]. Hence the theorem is proved in this case.

If M + m, then at least one of the numbers M and m must be different from
the equal values f (a) and f(b).For the sake of definiteness, let M =

f(a@).

Since every continuous function on a closed interval attains its supremum,
therefore, there exists a real number c in [a, b] such that f(c) = M. Also,
since f(a) = M = f(b), therefore, c is different from both a and b. This
implies that cela, b|.

Now f (c) is the supremum off on [a, b], therefore,
f(x) < f(c)vxin[a,b] (D

In particular, for all positive real numbers h such that ¢ — h lies in [a, b].

fle=h) = f(c)
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fle- h)h— f(c) > 0.

(2

Since f'(x) exists at each point of ]Ja, b[ and hence, in particular f'(c)
exists,so taking limit as h — 0,abovw equation gives Lf'(c) = 0.

Similarly, from (1)

fle+h) < f(o)
By the same argument as above, we get

Rf'(c)<0
Since f'(c) exists, hence
Lf'(c) =f'(c) = Rf'(c)
Now the above equations we conclude that f'(c) = 0.
Similarly
M=f(a)#m

Note 1: There may be more than one point like cat which f (x) vanishes.
Note 2: Rolle's theorem will not hold good
i. if f(x) is discontinuous at some point in the interval a < x < b.
ii. if £(x) does not exist at some point in the interval a < x < b.

iii. f(@) # £(b).

Note3: It can be seen that the conditions of Rolle's theorem are not
necessary for f'(x) to vanish at some point in ]a, b[. For example, f(x) =
cos (1/x) is discontinuous at x = O in the interval [—1,2] but f'(x)
vanishes at an infinite number of points in the interval.

SOLVED EXAMPLES

EXAMPLEL: Discuss the applicability of Rolle’s theorem in the interval
[—1,1] to the function f(x) = [x|.

SOLUTION: Given f(x) = |x|, here
fCD=|-1=1fD=1]=1
So that
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fED=7FD)

EXAMPLE2: Discuss the applicability of Rolle’s theorem to f(x) =
I [x2+ab
(a+b)x

], in the interval [a, b],0 < a, b.

SOLUTION: Here

£ty logl(a‘+ ab

71—1,)7;J=’°g1=°’

bz + ab
F(b) = log[(('_,' ;-ISZ’ o

Thus  f(a)= f(b) = 0. ’
Also R (= M JE+ ) ()

h—0 I

_ dim 1 [ (et )2+ ab x>+ ab |
h—0 7| °8 (a+ b)(x+ h)| ‘

_ dim 1 (Z+ 2xh+ W%+ ab) (a + b) x
= fa 0 ; 2.
1 (@a+ b)(x+ h) (22 + ab)

h=0 h 2+ ab x+ h

_ lim l[log{(x2+ 2xh + h2+ ab) X }

_lim 1] 2xh + h? ;
W0 5|1 Forers SLC IR

_ lim 1[2xh+ 02
h—=0 h| 24 ap ~ R T e

[ log(1+ y)=y- % 4 J
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Again Lf' (x)= h“—TO[f(x— f)_;l: f(x)]

_dim 1 [-2hxe W2 (=h) ] _ .
h=0(-h)| 2+.ab =~ + J replacing r by - lin (1)
A
2+ ab x

Since Rf" (x) = L f' (x), f(x) is differentiable for all values of x in [a, b]. This
implies that f(x) is also continuous for all values of x in [a, b]. Thus all the three
conditions of Rolle’s theorem are satisfied. Hence f' (x) = 0 for at least one value of x
in the open interval Ja, b[.

2
Now f'(0)=0=———- L aih or2:2= (2% ab)y= 0
X+ ab X
or x2= aborx= V(ab),
which being the geometric mean of @ and b lies in the open interval | «, b[. Hence the

Rolle’s theorem is verified.

4.10 LAGRANGE’S MEAN VALUE THEOREM: -

If a function f (x) is

i. continuous in a closed interval [a, b], and

ii. differentiable in the open interval Ja, b [i.e.,a < x < b, then
there exists at least one value ‘c’ of x lying in the open interval
]a, b[ such that

O 1@ _
Proof: Let the function @(x)explained by
B(x) = f(x) + Ax (1)
Where A is a constant to be chosen such that ¢ (a) = ¢(b)
f(a) + Aa = f(b) + Ab

f) - f@

A= b—a
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(i) Now the function [ is given to be continuous on |a, b] and the mapping
v =Axis continuous on |a, b], therelore b is continuous on [a, b). '

(1) Also. since fis given to be differentiable on Ja, bl and the mapping x —Axis
ditferentiable on |a, lv[I. therelore, § is differentiable on Ja, b|. '

(i) Byour choice of A, we have | (@) = ¢ (h).

From (i). (1) and (iii), we find that ¢ satisfics all the conditionsol Rolle’s theorem
on a. b]. Henee there exists at least one point, sayx= ¢, of the open interval Ja, b, such
that ¢ (¢) = 0,

But ¢ (V= () + A drom (1),

Q)= O=nf"()+ A= 10
f(b) = [(a) 3

Ot f' ()= =A= . rom (2).

b= a
This proves the theorem. 1t is usually known as the ‘First Mean Value Theorem
of Differential Calculus ',

SOLVED EXAMPLES

EXAMPLEL: If f(x) = (x —1)(x—2)(x —3)and a = 0,b = 4, find ¢
using Lagrange’s mean value theorem.

SOLUTION: we get

f(0) = (x- 1) (x- 2)(x- 3)= - 67+ 1lx- 6.
f(a)= f(0)= - 6and f(b) = f(4) = 6.

f)- fla) 6-(-6)_12_ 5
b- a 4-0 4

Also f' (x) = 322 = 12x+ 1lgivesf' (¢c)= 3¢~ 12c+ 11.
Putting these values in Lagrange’s mean value thcorem

f(b) - f(a) = f'(c), (a < c< b), we get

b- a
3= 32— 12c+ 11 or 3F- 12+ 8=10
12+ V (144- 96) _ 5, 2V3
c= = —
6 3

EXAMPLE2: Let f:[0,1] = R be defined by
flx)=(x—-1)>+2 Vxe[0,1]

Find the equation of the tangent to graph of this curve which is parallel to
the chord joining the points (0,3) and (1,2) of the curve.
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SOLUTION: Because f(x) is a polynomial function, it is continuous on
[0,1] and differentiable in]0,1[. According to Lagrange's mean value
theorem, there exists some ce]0,1[ such that
f(1) —£(0) , 2-3 , ,
—1—o -~ f@or ——=f(c)or—1=f"(c)
Now
f'(x) = 2(x — 1)obtains f'(c) = 2(c — 1)

Thus 2(c—1)=—1li.e.,c =§

~ fle) = z so that the point of contact of the tangent is Gz) and

slope is f'(c) = —1. Hence
9

1
y=z=- (x—z) ordx +4y =11

SELF CHECK QUESTIONS

State the formal (e- &) definition of limit.

What is the condition for a function to be continuous at a point?
Write the relationship between continuity and differentiability.
Give one example of a function that is continuous but not
differentiable.

5. Explain why a function with a “corner” cannot be differentiable.

el NS>

4.11 SUMMARY: -

In this Unit, we learned that limits, continuity, and differentiability are basic
calculus notions that characterize the behavior and smoothness of functions.
The limit of a function describes how it behaves when the input approaches
a specific value, laying the groundwork for defining continuity and
derivatives. A function is said to be continuous at a point when its limit
exists and equals the function's value at that point, showing that the graph
has no breaks or jumps. Differentiability, on the other hand, refers to the
presence of a single derivative at a given location, indicating that the
function changes smoothly with no corners, cusps, or discontinuities. While
every differentiable function is continuous, the opposite is not always true:
a function might be continuous but not differentiable. Overall, these
principles aid in understanding how functions vary, behave locally, and
promote the study of instantaneous rates of change in mathematics and
applied sciences.

4.12 GLOSSARY: -
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Limit: The value a function approaches as the input gets closer to a
particular point.

Left-Hand Limit (LHL): The limit of a function as the input
approaches a point from the left side.

Right-Hand Limit (RHL): The limit of a function as the input
approaches a point from the right side.

Existence of Limit: A limit exists if LHL and RHL are equal.
Continuity: A function is continuous at a point if the limit exists
and equals the function’s value at that point, meaning no break or
jump in the graph.

Discontinuity: A point where a function is not continuous; can be a
jump, removable, or infinite discontinuity.

Differentiability: A function is differentiable at a point if its
derivative exists there, meaning the graph is smooth without corners
or cusps.

Derivative: The instantaneous rate of change of a function or the
slope of the tangent line at a point.

Non-Differentiable Point: A point where the derivative does not
exist, often due to a corner, cusp, discontinuity, or vertical tangent.
Smooth Function: A function that is continuous and has a
derivative at every point in its domain.

First Principle of Derivative: Definition of derivative using the
limit

fx+h) - fx)
h

f'x) = Lim
Relationship Between Concepts: Every differentiable function is
continuous, but a continuous function may not be differentiable.

4.13 REFERENCES: -
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4.15 TERMINAL QUESTIONS: -

(TQ-1) Discuss the continuity and Discontinuity of the following
functions:

i f(x)=x%-3x
i. f)=x+x71
ii. f(x)=e />

iv. f(x) = sinx
V. f(x)—cos()whenx;tOf(O)—O.
Vi. f(x)—sm()whenx;tOf(O)—O.

sinx

Vii. f(x)——whenx;tOf(O)— 1.
viii. f(x) =2 1/x - Whenx;tO,f(O):l.
ix. f(x)= 1/x Whenx;tOf(O)—O

X. f(x)= el/x+1 ~ o+ sin(1/x) when x # 0, f(0) = 0.
Xi. f(x) = sinx cos(1/x) whenx # 0, f(0) = 0.
(TQ-2) A function f defined on [0,1] is given by
_( x if xisrational
f) = {—1 if x is irrational
Show that f takes every value between 0 and 1, but it is continuous only

at the point x = %
(TQ-3) Prove that the function f defined by

1
5 if x is rational
fO0) =4
3 if x isirrational
is discontinuous everywhere.
/x
(TQ-4) Show that the function f defined by f(x)= fe—ll/x X #

0, £(0) = 1is not continuous at x = 0 and also show how the discontinuity
can be removed.
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(TQ-5) Show that the function f(x) = 3x2 4 2x — 1 is continuous for
x = 2.

(TQ-6) Show that the function f(x)= (1+2x)Y* x#0,f(x) =
e?,x = 0 is continuous at x = 0.

(TQ-7) Show that the function f defined by f(x) = W —»x # 0 and
f(0) = 0 is discontinuous at x = 0.

(TQ-8) Show that the following function is continuous at x = 0.

fx) =

(TQ-9) Prove that the functlon fx) = % for x #0,£(0) =0 is
continuous at all points except x = 0.

(TQ-10) Discuss the continuity of f(x) = (1/x)cos(1/x)

(TQ-11) Discuss the continuity of f(x) =
£(0) = 0 for all values of x.

(TQ-12) If function f is continuous on [a, b], differentiable on ]a, b[ and
if f'(x) =0 for all x in ]a, b[, then prove that f(x) has a constant value
throughout [a, b].

(TQ-13) If f(x) and ¢(x) are functions continuous on [a,b] and
differentiable on ]a, b[ and if f'(x) = ¢’ throughout the interval ]a, b[, then
prove that f(x) and ¢ (x) differ only by a constant.

(TQ-14) If f'(x) = k for each point x of [a, b], k being a constant, the
prove that

sin~ X

,x#0,f(0) =1.

when x =0 and

1/x ’

f(x) = kx + C V xe[a, b]
where C is a constant.
(TQ-15) If £ is continuous on [a, b] and f'(x) = 0 in ]a, b[, then prove
that f is increasing in [a, b]
(TQ-16) State and prove Rolle’s theorem.
(TQ-17) State and prove Lagrange’s mean value theorem.
(TQ-18) Show that% <log(1+x) < x forx > 0.

(TQ-19) Show that between any two roots of e*cosx = 1 3 at least one
root of e*sinx — 1 = 0.

(TQ-20) If a + b + ¢ = 0, then show that the quadratic equation 3ax? +
2bx + ¢ = 0 has at least one root in ]a, b|.

(TQ-21) Let f(x) = x 2=~ v %+ 0; £(0) = 0. Show that f(x) is

el/xype-1/x "’

continuous but not derivable at x = 0.
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(TQ-22) Let f(x) = e~**sin(1/x) when x # 0 and f(0) = 0. Show
that at every point f has a differential coefficient and this is continuous at
x = 0.

4.16 ANSWERS: -

TERMINAL ANSWERS (TQ’S)

(TQ-1)

i. Continuous at x = 0.

ii. Discontinuous at x = 0.
iii. Discontinuous at x = 0.
iv. Continuous for all x.

v. Discontinuous at x = 0.
vi. Discontinuous at 0.

vii. Continuous for all x.
viii. Discontinuous at 0.

ix. Discontinuous at 0.

X. Discontinuous at 0.

xi. Continuous for all x.
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BLOCK II
ANALYTIC FUNCTIONS AND COMPLEX
INTEGRATION
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UNIT5: Analytic Function-I

CONTENTS:
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5.2 Obijectives

5.3 Analytic Functions
5.3.1 Theorems
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55 Glossary

5.6 References

5.7 Suggested Readings

5.8 Terminal Questions

5.9 Answer

5.1 INTRODUCTION: -

Dear learners, in the previous units, we studied the basics of the complex
plane, stereographic projection, complex functions and their properties, as
well as limits, continuity, and differentiability. In this unit, we will discuss
the basic concept and basic properties of analytic functions. In the study of
complex analysis, the idea of an analytic function is very important.

An analytic function is a function of a complex variable that is
differentiable at every point within a region of the complex plane. This
requirement is far stronger than differentiability for real-valued functions,
because differentiability in the complex sense implies smooth and
consistent behaviour in all directions in the plane.

Analytic functions - also known as holomorphic or regular functions -
possess remarkable mathematical properties. Analytic functions have
wide-ranging applications beyond pure mathematics. In physics and
engineering, they arise naturally in problems involving fluid flow,
electromagnetic fields, and heat conduction, where the potential functions
satisfy the same conditions as those of analytic functions. Their ability to
model smooth, continuous, and interdependent quantities makes them
essential tools for describing real-world phenomena.

5.2 OBJECTIVES: -

e Describe the meaning and characteristics of an analytic
(holomorphic) function in complex analysis.
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e Explain and derive, the Cauchy—Riemann equations for given
complex functions to determine analyticity
e Apply analytic function properties to solve simple problems.

5.3 ANALYTIC FUNCTIOS: -

A function f(z) of a complex variable z = x + iy is said to be analytic at a
point zo if:

i. It is differentiable at zo.
Ii. It remains differentiable in some neighborhood of zo (that is,
within some open region around that point).

In symbols:

f (2o + Az) — f(20)

f,(Zo) = Alimo 2
zZ—
must exist and the limit must be independent of the direction from which
Az — 0 inthe complex plane.

Cauchy-Riemann Equations:
If f(z) = u(x,y) + iv(x,y), where u and v are real-valued functions of

two real variables, then f is analytic if and only if the partial derivatives of
u and v exist, are continuous, and satisfy:

I.  Ou/0x = 0v/oy
ii.  Ou/dy=-0v/ox
Examples:

e f(z) =z (for integer n)

o f(z2)=e

e f(z)=sinz, cosz

e f(z) = 1/z (analytic except at z = 0)

e f(z) = log z (analytic except along its branch cut)

5.3.1 THEOREM: -

Theorem 1. If f(z) = u + iv is analytic in a domain D, then u, v satisfy
the equations:

Ju Ov du  0v

dx dy’'dy = 0x
Provided the four partial derivatives u,, u,, vy, v, exist.
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Proof: Let f(z) = u + iv is analytic in a domain D, then Z—';’ exists so

that Z—VZV has the same value along every path,

I. Along x — axis: 6z = 6x.
dw I ow Y ow  dw 1
dz 625067  sxs0ox  ox - ()

ii. Along y — axis: 5z = idy.

dw ow ~ ow 0w
=1 —=— .. (2)

E: 5?305_ 6}1@0@: dy

Equating (1) to (2),

wow

ox Lay
6u+,6v__ ,6u+6v
dx lax__ lay ady

This implies that

du OJv ou  0Jv

ox dy’'dy = ox
These equations are known as Cauchy Riemann equations.
This is necessary condition for f(z) to be analytic.

Note: It is mandatory, that if f(z) = u + iv is analytic in a domain
D, then u, v satisfy the Cauchy Riemann equations. But converse is not
true.

Theorem 2. If f(z) = u + iv is analytic in a domain D, if

I.  u,vare differentiable in D and u, = v, u, = v,
il.  The partial derivatives u,, v, u,, v, all are continuous in domain
D.
Proof: Let f(z) = u + iv is analytic in a domain D. Where u =
u(x,y),v=v(xy).
Therefore f(z) =u+iv = ulx,y) +iv(x,y) = f(x,y).
Then
ou B dv du B av

ax dy'dy  ox
It means

Uy = Vy Uy = —Vy, (1)
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Also let these derivatives be continuous.

Let the increments 6z, du, 6z, Sw of z,u, v, w correspond to the
increments 6x, 6y of x
and y. Continuity of

Uy = 6u = u,6x +u, 8y + adx + pdy.

Similarly
vy = 6V = v, 0x + 1,6y + a,6x + B, 6y.
Where a, 8, a4, B; all tend to zero as 6x — 0,6y — 0,
Sw  bu+idv )
5z  6x +idy - (2)

du+ i6v = 6x(uy, +iv,) + 6y(uy + ivy) + (a+ia)éx+ (B +if1)0y
=0x(uy +iv,) +1i 6y(—iuy + vy)+a’ ox + B'dy,
wherea' = a+iay, B’ = [ +if;.
Using (1), du + idv = (u, + iv,)(0x + idy)+a’ dx + B'Sy.
Dividing by dx + iy and then using (2),
Sw a'dx B'6x

E=u’C+WX+6x+i6y+6x+i6y
or
ow ] a'éx B’y ox oy
- — < ! = 4 =
8z (tx +i1) 8z * 6z |~ o'l |62| TIF] 5z

<|a'| +|B'| as |6x| < |6x + iSy]|

or

oW _ M < al + Jasl + 18] + 18,]
57 " oxl S lal+ lal 1B+ 15

asa = a+ia.
But when 6z — 0, the R.H.S. —» 0.

Hence,

1m6—w—a—w—00rd—w—a—w—u + iv.
§7—0 6z  9x dz ~ ax X x:
. d . . ..
But u,, v, exist. Hence d—vz" exists so that w is analytic in D.

Remark 1: If f(x) is continuous in a < x < b and differentiable in a <
x < b, then
fx+h)=fx)+hf'(x+6h),0<0<1.

Remark 2:6u = 6x.u,(x + 06x,y + 8y) + 8y.u, (x,y + 8'5y) where
0<6<1,0<06' <1.
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Theorem 3. If f(z) = u + iv is an analytic function in a domain D and
z = re'® where u, v, 7, 6 are all real, show that the Cauchy Riemann
equations are:

du 10v av 10u

ar rad’  or  rad
Or

To derive the necessary and sufficient condition for f(z) to be analytic in
polar coordinates.

Proof: Let f(z) = u + iv is an analytic functions in a domain D. So that
Cauchy Riemann equations

du OJv
—_— = ..(1)
dx Ody

u v

PP PR C))

are satisfied.
To prove that polar form of (1) and (2) are:

0u_16v av_ 10u

or roe  or  rao
We have x = rsinf,y = rcosé.

Thenr? = x%2 + y2,tan § = % 6 = tan~(y/x).
or x 961‘_ — sing
9= 7 = oS '6y_r_sm'
0 1 (—y) _ —sinf
ax ., (v \x2/ "

1+(§—2)

x?
au_au 6r+6u 06
dx Or dx 00 ox
u Ju sinfdu

a= COS@.E—Tﬁ.... (3)

av_av 6r+6v a0
dy or'dy 086 0y

00 1 (1) cos@
Y Nl Il B
dy 1+ (y ) X r

v ,Hav_l_coseav 4
ay—sm 3 " 00()
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By virtue of (1), (3) and (4) give,
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p Ju sinfou p dv N cosf dv
YT e oar v oo
........................................................................ (5)
Ju du 6r+6u 00
dy or'dy 06 dy
. 96v+c0596v
- s ar r 00
dv _ dv 6r+0v a0
dx Or dx 00 ox
_ g dv sinf dv
_ IR T T
By virtue of (2), the last two equations give,
] 66u+c0500u_ 00v+sin96v 6
sin pm Y- cos p " 69""'()
(5) X cos 8 + (6) X sinf gives
du 10v
or raf
..................................... (7)
) 96v+00506u_ 06v+sin96v
o0 T T a0 “Yor” T+ o6
dv  10u
or  roe
.............................................. (8)
From (7) and (8), the require result follows.
Theorem 4. Derivative of w in polar form.
To prove that,
dw 2 OW i .,0w
- e—LB_ — __6—19_
dz ar r a0
Proof. Cauchy Riemann equations in polar form are:
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au_lav av_ 10u

or ro8’  or  rab
We have x = rcos6,y = rsiné,
r? =x%+y?
0 = tan"1(y/x)

00 1 (—y) —siné
J— —2 . —2 =
0x 14 (3:_2) X r
a0 1 (1) cosf
- = —2 A=) =
dy 14 (y_z X r
X

dw_odw _ dw dr  ow 06

dz 0x  or dx ' 90 ox

_ow P sinf dw
~ar YT T B
or
aw ou . 0v sinf (ou . 0v
& = cos0 (5 +al;)'— ra(£+1£)
_ . . w\ _  _jg 0w
= (cos6-isin0) (;) =et -
or
dw _ig W
—=e Y —
) dz or
Again from (1),
aw p (1 v i (')u) sinf <6W)
dz = “®"\rae raa) " T+ \og
= —%(cos@-isin@),
ow —i _.,0w
—_—=—0 —_—
a0 r a0
or
aw__ Zl,-ig 3w
dz  r € a0

Theorem 5. Continuity is necessary but not sufficient condition for the
existence of a finite derivative.

Proof. 1. A function which is differentiable is necessary continuous.
Suppose f(z) is differentiable at z = z,.
To prove that f(z) is continuous at z = z,,.

h —
f,(zo) — }llir(l)f(zo + i)" f(ZO)
_ 1 f(zo —h) — f(20)

= lIm

h—0 h
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By assumption, this limit exists and is unique.
From (1), we have,

f(Zo+h)_f(Zo)+£

f'(z) = }ll_r}(l)

h
and
fI(ZO) — }ll_r)r(l)f(zo - }i)h_ f(ZO) + ¢

where g, > 0as h — 0.
Consequently hf'(zy) = f(zg + h) — f(z9) + he
and

—hf'(z0) = f(zo —h) — f(20) — he’
Making h — 0, we obtain,

0= }Lingf(zo +h) —f(z))and 0 = }lirr(l)f(zo —h) — f(zo).
This implies }Lin%f(zo +h) = f(z) = }lln(l) f(zy — h).
This implies f(z) is continuous at z = z,.

I1. If a function is continuous, then it is not necessarily differentiable.
We shall prove this by solved examples.

Theorem 6. an analytic function in a region R, with constant modulus is
constant.
Proof. Let f(z) = u + iv be an analytic function with constant modulus.

Then,

|f(2)| = |u+ iv| = constant
This implies vu? + v2=constant= c .
Squaring both sides, we get u? + v2 =c¢?  ..(1)

Differentiating equation (1) partially with respect to x, we get,

2 6u+2 v 0
o “ox T Vox
This implies,
Ju v
wTv: =0 (2)

Again, differentiating equation (1) partially with respect to y, we get,

2+ 202 =0
uay Uay—

This implies,
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du N v —0
uay vay =
Since,
ou B ov
dx dy
u B ov
dy  ox
ov N u _ 0
Yox " Vox T

Squaring and adding (2) and (3), we get,
ou\> ov\*
2 AN N s - —
@+ ){(6x) +(0x) } 0
ou\ 2 v 2_

>(Z) +(2)=0 ... 4)
Sinceu?+v2i=c?2#0andf'(z) = Z—z+ ig—:.
Therefore |f'(2)|? = 0.

This implies |f'(z)| = 0.
This implies f(z) is constant.

SOLVED EXAMPLES

EXAMPLE 1: Explain that w = f(z) = |z|? is analytic function or not.
SOLUTION: Consider the function f(z) = |z|.

To prove that f(z) is continuous everywhere but not differentiable
everywhere except at z=0,

For a function f(z) is continuous at a point z,,.
I. It must be defined at z,.
il It's limit must exist at z,.

L f@) = lim £(2).

Given f(z) = |z|* = |x + iy|? = (Vx% + y2)? = x? + y2 +i0.
It implies that u = x? + y%,v = 0.

Let z = a be any point in the domain of f(z) where a € C.
Then

lim f(z) =lim|z|? = f(a) = |a|?.
Z—a zZ—-a
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muTL
c:j{’ £12)

lim f(2) = f(a).
VARd )
Hence function f(z) is continuous at this domain C since a is arbitrary

Differentiability of f(z) = |z|?.
) = Jim L2+ /@)

|zo + 62| — |22

= lim
85z-0 -

o (zo+ 62)(2_0 + 62) —ZyZ
= lim
820 L h L

Zo0Z + 62(2_0 + 62)
= lim
85z-0 0z

, , 5§z
f'(zy) _521351 (zo E-I_ Zo + 62) (D)

If this limit will exist, then it will be independent of the path along which
6z - 0.

Case I: Let 6z — 0 along real axis so that §z = 6z = 6x,6y =0 and
0x—>0asdz—-0
Now (1) becomes

f'(20) :&11_)%1 (zo +7Zo + 6x)
f'(z0) =20 + 72 - (2)

Case Il: Let 6z — 0 along imaginary axis so that 6z = 6z =i §y, and
6y—>0as 6z-0.
Now (1) becomes:
) : —isy\ .
Fe 5l (20 () + % 10)
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f'(20) = 2o — 2o - (3)

From (2) and (3), we see that f'(z,) along the two paths are different
exceptat z = 0.

Hence f'(z,) does not exist everywhere except at z = 0. Consequently
f(z)isnot  differentiable except at z = 0.

Since the definition of analytic function: A function f(z) of a complex
variable z = x + iy issaid to be analytic at a point zo if:

I.  Itis differentiable at zo.
ii. It remains differentiable in some neighborhood of zo (that is, within
some open region around that point).

In symbols:

f(Zo +Az) — f(20)

f (Zo) =
must exist and the limit must be mdependent of the direction from which
Az — 0 inthe complex plane.

The function f(z) = |z|? is differentiable at z = 0. But f'(z,) does not
exist everywhere exceptat z = 0. So the function is no where analytic.
The function f(z) = |z|? is not differentiable at neighbourhood of z =
0. Whether the function f(z) = |z|? is satisfied the C-R equations at z =

0.
du dv ou
The C-R equatlons 5% 5y are

Given f(z) = |z|?> = |x + lyI2 = (Jx2 +y2)2 =x2 +y% +i0.
It implies that u(x,y) = x% + y2,v(x,y) = 0.

Atz =0,

ou  u(x,0)—u(0,00 = x*2-0

— = lim = lim =0.
ax x—0 X x—0 X

ou  u(0,y)—u(00) = y*-0
— = lim = lim =0.
ay x—0 y y—0

v - v(x,0) —v(0,0) . 0-0

— = lim = lim =0.
ax x—0 X x>0 X

ov . v(0,y)—v(00) . 0-0

— = lim = lim—— =0.
dy x-0 y y=0 y

Hence Cauchy -Riemann equations are satisfied at z = 0.

EXAMPLE 2: Prove that the function f(z) = u + iv, where
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3+ -y3(1-10)
x?% + y?

f(z) = ,z#0,f(0)=0

is continuous and that Cauchy-Riemann equations are satisfied at the
origin yet f'(z) does not exist.
SOLUTION: u+iv = f(z2)

XA+ -y -0
- x% + y?

_ G -yH i +y?)

X2+ ,z # 0.

SN et 0 SN C i )
- x2+y2 "’ - x2+y2 "’

This implies that u where x # 0,y # 0.

l. To prove that f(z) is continuous everywhere.
When z # 0,u and v both are rational functions of x and y
with non - zero denominators.
It follows that u, v and therefore and f(z) are continuous
functions everywhere except z = 0.
To test the continuity of u,, v at z =0, we change u,, v to
polar co-ordinates:
u =r(cos30 — sin30),v = r(cos30 + sin30).
Asz—-0,r—0.

Evidently, lirréu =0= lirré V.
r— r—

This implies lirréf(z) =0 = f(0).
zZ—
This implies f(z) is continuous everywhere.

1. To show that Cauchy-Riemann equations are satisfied at z = 0.
f(0) =0 = u(0,0) + iv(0,0)
=0
= u(0,0) = 0 = v(0,0).
Recall that, Atz = 0
ou o u(0 + h,0) —u(0,0)

— = lim
dx h—0 X

Jdu o u(x,0) —u(0,0) o x—0
— = lim = lim
6X x—0 X x—0 X
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ou  u(0,y)—u(00) =~ —-y-0
— = lim = lim =—1.
dy y-0 y y-0
v . v(x,0) —v(0,0) X
— =1 =lim—=1.
ox x-0 X x—0 X
ov _ v(0,y)—v00) =~ y-—0
— = lim = lim——=1.
dy y-0 y y=0 Yy
ou _ v
dx dy
w_ _ow
ay - dx

Hence Cauchy -Riemann equations are satisfied at z = 0.

I11.  To prove that f'(0) does not exist:
f@=ygwgﬂm
i f@ 0
= lim———
i 3Z) +i(x3+y?)
BN C
f1(0) = Ll—r}(l) (x%2 +y2)(x + iy)

Let z — 0 along the path y = x,

then,
3 _ 23 4 i(x3 + 3 :
f’(0)=lim(x x°) +i(x .x)= l.
-0 (x% 4+ x?)(x + ix) 141

Let z — 0 along the path x — axis, then
C @xB-0)+i(x®+0)
! — l
f1e) x50 (x2 +0)(x +i0)
Since y = 0.

Flo)=1+i

£1(0) = {i/(l + i) along the path y = x
| 1+ialongthepathy =0

Since the values of f'(0) are not unique along different paths. Hence
f'(0) does not exist. As a result of which f(z) is not analytic at z = 0.
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EXAMPLE 3: Show that the function:

f(z)=e2",z%0 and f(0) =0, is not analytic at z =0,
although Cauchy Riemann  equations are satisfied at the point. How
would you explain this?
SOLUTION: To show that Cauchy Riemann equation are satisfied at z =
0.

w = f1(2) = ulx,y) + iv(x,y)
It is given that
0 = £(0) = u(0,0) + iv(0,0)
This implies
u(0,0) = 0 = v(0,0)

Ifz#0, f(z) =exp(—z ) =u+iv

or
exp[—(x + iy) ™ = u(x,y) + iv(x,y)

this implies

u(x,0) + iv(x,0) = exp(—(x)™%),
and

u(0,y) +iv(0,y) = exp(—=(»)™*),

u(x,0) = exp(—(x)™%),,v(x,0) = 0.
and

u(x,0) = exp(—(x) ™)) ,v(x,0) = 0.
and  u(0,y) = exp(—(»)™"),v(0,y) = 0.

and
u(0,y) +iv(0,y) = exp(—=(y)™*),
Recall that,
ou . u(x+h0) —u(xy)
— = lim
dx h—0 X

Atz =0,

ou _ u(h,0) —u(0,0)
= lim

a N h—0 X
_exp(=(x)™) -0
= lim

x—0 X
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_ 1
Xm0 % | Tttt
li 1 1 0
= 11m = — =
x-0 1 1 [0e]
1+ Pz + L] + -
Atz =0,

ou  u(0,y) —u(0,0)

— = lim

dy y-0 y

. exp(=(»)™) -0
= lim
x—0 y
1
exp\—— -0
:lim[ () ]—0
y—0 y
i 1 1
_}/l_mx [1+ T l
li 1 1 0
= 11im = — =
y—-0 1 1 (00}
L4z +oap -
Atz =0,

ov _ v(x,0-v00) = 0-0
— = lim = lim
dx x-0 X x>0 X

ov . v(0,y)—v(0,0) . 0-0
— = lim = lim

—=0.
ay y-0 y y=0 'y
ou B ov
dx dy
ou _ v
dy  ox

Hence Cauchy -Riemann equations are satisfied at z = 0.

I. To show that f(z) is not analytic atz = 0,
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lirré f(z)=0= lirr&[exp(—z‘”‘)].
zZ— zZ—
Let z — 0, along the path z = rei™* - 0.
So that,
r—>0asz— 0.

lim f(2) = lim[exp(—z~*)] = limexp[-r~*e "]

z—0 z—-0 r=0

= limexp[—r~*]
r—0

1
= lim [exp (r_4)] = 0% = oo,

r—0

It shows that ling f(z) does exist. Consequently f(z) is not continuous at
VA

z = 0. Hence f(z) is not necessarily differentiable at z = 0. Therefore

f(z) is not analytic at z = 0. So the function:f(z) = e~2",z# 0 and
f(0) =0, is not analytic at z = 0, although Cauchy Riemann equations
are satisfied at the point.

EXAMPLE 4: Show that the function:

f(z) = |xy|*? is not analytic (regular) at z =0, although Cauchy
Riemann Equations are satisfied at the point. How would you explain
this?

SOLUTION: u + iv = f(z) = |xy|Y?,

Hence u(x,y) = |xy|/2,v(x,y) = 0.

ou . u(x,0)—u(0,0 . 0-0
Atz=0 —= llm# = lim—
dx x—0 x x—>0 X

=0.

ou . u(0,y)—u(00) . 0-0
= lim = lim

— =1 — =0.
dy y-0 y y->0 Yy
v - v(x,0) —v(0,0) - 0-0
— = lim = lim =
0x x—0 X x-0 X
v . v(0,y)—v(0,0) . 0-0
— = lim =lim——=0.
dy y-0 y y-0 y
du 0Jv
dx dy
u_ o
dy T oax

Hence Cauchy -Riemann equations are satisfied at z = 0.
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To prove that f'(0) does not exist:

L f@—f0)

f1(0) = lim=——"-—-=—=

_xylV2 -0

= llm—_
z-0 X + 1y

xVm—-0

= lim —
x—-0 x+imx

_ Vm

C1+1im
Since the values of f’(0) are not unique along different paths. Limit
dependson m and so on it is not unique. Hence f'(0) does not exist.
As a result of which f(z) is not analytic (regular) at z = 0.

along y = mx.

5.4 SUMMARY: -

The concept of an analytic function is central to the study of Complex
Analysis. A complex function f(z), where z = x + iy, is said to be
analytic (or holomorphic) at a point if it is differentiable in a neighborhood
of that point in the complex plane. Analytic functions play a role in
complex analysis similar to that of differentiable functions in real analysis,
but they possess much stronger and more elegant properties due to the
nature of complex differentiation.

For a function f(z) = u(x,y) + iv(x,y), where u and v are real-valued
functions representing the real and imaginary parts respectively, the
Cauchy—Riemann (C-R) equations provide the necessary and sufficient
conditions for analyticity. These equations are: u, = v, and u, = —vy.
If these partial derivatives exist and are continuous in a region, then f(z)
is analytic in that region. These equations link the behavior of the real and
imaginary parts of the function, ensuring that the derivative of f(z) is
independent of the direction of approach in the complex plane.

In summary, the Analytic Function Unit introduces learners to the core
ideas of complex differentiability, the Cauchy—Riemann equations. These
concepts form the foundation for deeper topics such as complex
integration, conformal mapping, and the residue theorem. Analytic
functions are not only central to pure mathematics but also find significant
applications in physics and engineering, particularly in potential theory,
fluid flow, and electromagnetic field analysis.

5.5 GLOSSARY: -

Department of Mathematics
Uttarakhand Open University Page 107



Complex Analysis MT(N)-302

Complex Numbers: In mathematics, a complex numberis an
element of a number system that extends the real numbers with a
specific element denoted i, called the imaginary unit and satisfying
the equation i? = —1; every complex number can be expressed in
the form a + ib where a and b are real numbers. Because no real
number satisfies the above equation, i was called animaginary
number by René Descartes. For the complex number a + ib, ais
called the real part, and b is called the imaginary part. The set of
complex numbers is denoted by either of the symbols C or C.

Limit: A function f(z) tends to the limit [ as z tends to z, along
any path, if to each positive arbitrary number &, however small,
there corresponds a positive number §, such that |f(z) — 1| < ¢
whenever 0 < |z — zy| < § and we write lim f(z) = [, where L is

Z-Z
finite.
Continuity: For a function f(z) is continuous at a point z,. It must
be defined at z,. It's limit must exist at z,. f(z,) = Zlir? f(2).

—Zg

iii. Differentiability: In symbols:
f(zo + Az) — f(20)

f () = fim, 2

must exist and the limit must be independent of the
direction from which Az — 0 in the complex plane.
A function that is differentiable at every point in some region of
the complex plane.
Has a complex derivative that exists and is continuous.
Can be expressed as a power series (Taylor series) around any
point in its domain.
Also called holomorphic function.

CHECK YOUR PROGRESS

CYP 1. Atz = 0. the function f(z) = Z is not differentiable. True\False
CYP2.f(z) =1/(z—1)3,z # 1is analytic. True\False.

CYP3. Continuity is the necessary nut not the sufficient condition for the
existence of a finite derivative. True\False.

CYP4. If f(z) = u + ivis analytic in a domain D, then u, v satisfy the
Cauchy Riemann equations. True\False.

CYP5. Cauchy Riemann equations are sufficient for a function to be
analytic True\False.

CYP6. The function f(z) = xy + iy:

Everywhere continuous
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ii.  Analytic

iii.  Everywhere Continuous but not analytic

iv.  None of these
CYPT7. The analytic function whose real part is e*cosy is:

. e*+ci

i. e%

ii.  xe?

iv.  None of these
CYPS8. If f(z) is an analytic function whose real part is constant, the
f(2isa ......
CYP9. If f(z)and f(z) are both analytic, that f(z)isa ..................
CYP10. An analytic function in a region R, with constant modulus is
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5.8 TERMINAL QUESTIONS: -

TQL1: State the basic difference between the limit of a function of a real
variable and that of a complex variable.
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TQ3: If f(z) is an analytic function whose real part is constant, prove
that f f(z)is a constant function.

TQ4: Show that for the function
_((2)?/z, z # 0.
f@={"
the C-R equations are satisfied at origin. Does f'(0) exist?

5.9 ANSWERS: -

CHECK YOUR PROGRESS:
CYP1: True.
CYP2: False.

CYP3: True.
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CYP4: True.
CYP5: False.
CYP6: (iii)
CYPT: (i)

CYP8: constant function
CYP9: constant function.
CYP10: constant function

TERMINAL QUESTIONS:
TQ4: No.
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UNITG6: Analytic Function-11
CONTENTS:

6.1  Introduction
6.2  Objectives
6.3 Definitions
I Conjugate function
ii. Harmonic function
iii. Orthogonal system
6.4  Construction of an analytic function
6.5 Theorems
6.6  Analyticity and zeros different functions
6.7 Branch point
6.8 Branch cut and branch of multi-valued functions
6.9 Summary
6.10 Glossary
6.11 References
6.12 Suggested Readings
6.13 Terminal Questions
6.14 Answers

6.1 INTRODUCTION: -

Complex analysis is a fundamental branch of mathematics that studies
functions of complex variables. It provides powerful tools and concepts
that are widely applied in physics, engineering, and applied sciences.

Dear learner's in previous unit we have studied the basics of analytic
function and it's properties. The topics covered in this unit ranging from
definitions to advanced concepts like branch points and multi-valued
functions—form the backbone of understanding analytic functions and
their properties.

The concept traces back to studies of harmonic functions by Euler and
d’Alembert, arising from physics problems in heat flow, fluid flow, and
mechanics. However, the idea of a harmonic conjugate was not yet
formalized. Augustin-Louis Cauchy established the foundation of complex
analysis and introduced the Cauchy—Riemann equations. He proved that if
f(z) = u(x, y)+iv(x, y) is analytic, then u and v must satisfy the Cauchy—
Riemann equations. This formalized the concept of a harmonic conjugate:
a function v paired with u to form a holomorphic function.
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Bernhard Riemann expanded the geometric interpretation of complex
functions. He studied how harmonic functions and their conjugates
correspond to orthogonal families of curves and showed that analytic
functions preserve angles (conformal maps). His work solidified the
importance of harmonic conjugates in complex function theory. Harmonic
conjugates became widely used in potential theory, electrostatics,
hydrodynamics, and conformal mapping methods such as the Schwarz—
Christoffel transformation. These applications linked mathematical theory
to physical problems. Today, the harmonic conjugate is a key concept in:
analytic function theory, PDEs and potential theory, conformal geometry,
Fourier analysis.

f
ps://darwinthenandnow.com/wpcontent/uploads/
16/05/Riemann-Bernhard.jpg

Georg Friedrich Bernhard Riemann Bornin
Germany, 1826-1866 Mathematician Established
the  mathematics  for general  relativity and
pioneered contributions to differential geometry;
s formulated the Riemann integral, Fourier
SEseries, prime-counting function, contributed
to complex analysis including Riemann
surfaces, Riemann hypothesis, and the analytic
number theory.

Fig 1.1.

6.2 OBJECTIVES: -

e Describe the meaning and characteristics of an Conjugate function,
Harmonic function and Orthogonal system.
e Explain the Construction of an analytic function.

e Discuss Branch point, Branch cut and branch of multi-valued
functions.

6.3 DEFINITION: -

The given definitions are useful for the study of analytic functions.

6.3.1 CONJUGATE FUNCTION: -
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If f(z) =u+iv is analytic in a domain D,and u and v satisfy the
Laplace's equations
ViV =0,

then u and v are called conjugate harmonic functions or conjugate
functions simply.

vy =0,

R 0% 0%
means (ﬁi‘a—yz-Fg)V =0.

6.3.2 HARMONIC FUNCTION: -

A function u(x,y) is called harmonic function if first and second order
partial derivatives of u are continuous and u satisfy Laplace's equation,

ViV =0

A complex function is harmonic iff its real and imaginary parts are
harmonic. Thus, it suffices to treat only the real valued functions, in the
study of harmonic functions. From the linearity of the differential
operator, V2 it follows that the set of all harmonic maps on a domain forms
a vector space. In particular all linear functions (ax + by) are harmonic.
However, it is not true that product of two harmonic functions is
harmonic. For example, xy is harmonic but x?y? is not harmonic.

EXAMPLE:

Prove that i = e *(xsiny — vcos y) is harmonic.

i
('j_ = (e )isiny) +(—e" JHrsiny — yoosy)
i
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=gl siny—xe siny 4+ veT cosy

Fud . —
— =—(¢ "Sny—x& "SIy -+ ¥e  Ccosy)
ik dx
_— i Pt . e . e T
=—d¢ "sNYV+xe SNy —¥e  COSY (1)
Fud . —
— =—(xe T COsSy +ye T SInyY— & T C0sY)
- dy

= —xe~tsiny + 2e™ siny 4+ ve ™" cosy (2)

Adding (1) and (2) yields (#u/i") + (Fu/i") = 0 and u is harmonic.

6.3.3 ORTHOGONAL SYSTEM: -

Two families of curves u(x,y) = c;, v(x,y) = c,, are said to form an
Orthogonal system if they intersect at right angles at each of their points of
intersection.

6.4 CONSTRUCTION OF ANALYTIC FUNCTION:

Method I. Milne's Thomson's Method:

We have,z=x+iysothatx=%,y=—,.

w=[f(z)=u+iv=ulxy)+iv(x,y)

or

(2) = (z+z_z—z_> _(Z+Z_Z—Z_>
f@)=u{—5— W2 2 )

In fact, this relation is formal identity in two independent variables z and

Z.

By setting x = z,y = 0 so that z = Z, we obtain:

f(2)=u(z,0)+iv(z,0) .cccooeriiii (1)
gy =@ W _ou v
We know that f'(z) = — o~ i
_Ou  Ou
~ ox lay
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(by Cauchy Riemann equations)

Taking
Jdu
a = Q)l(x':V) = Q)1(Z, 0)
Jdu
@ = Q)Z(x':V) = Q)Z(Z; 0)
We get f'(z) =0,(2,0) —i@,(z0)

Integration yields the result,
£ = [10,6,0) - 10,5, 0ldz +,

where ¢ is a constant.
We can calculate f(z) directly if u is known.

Similarly if v(x, y) is given, then it can be proved that:

f@) = f [$1(2,0) + ity (z, 0)]dz + ¢,

Where
ov
@ - lpl (x, Y)
F}
£ = l/)2 (x, Y)
EXAMPLE:

u=x> —3xy* +3x* - 3y* + 1
Step I:

. Derivatives:
u, = 3x% — 3;}3 + 6x

iy, = —bxy — Oy
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Step I11:
Substitute:

Setx=2z,y=0.
_ 1.2 _ a2
u, (z,0)=3z"-0+6z=3z"+6z
u,(z,0)=0-0=0
Step I1:
Formula: f(z) = /ux(z,ﬂjdz—i /u},[z,ﬂ)dz-i—ﬂ'

sincev, =u, andv, = —u

y ¥

Step IV:

Integrate:

f(z) = /'(32’E +E-z)a‘z—:‘/ 0dz +C

f()=(2+329)-0+C
foy=2+32+C

Method Il. Suppose f(z) = u + iv is analytic and u is known. To
determine f(z).

Firstly we shall determine v.

By Cauchy-Riemann equations.
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Taking M = —Z—;,N = g—;, we get,
dv=Mdx+ Ndy ....c.cocovviiiiiinnn. (1)
aa—l;l - g—: = —ZZTZ - ZZTZ = —V2u = 0 (For u satisfies Laplace's equation )
or
oM _ON
dy  ox’

Consequently (1) is exact differential equation.

So equation (1) can be integrated and v can be determined from the
equation f(z) = u + iv.

EXAMPLE:

Givenu = x° — 3xy2.

U, = 3x% — 3:.}2, U, = —bxy.
Ux = Uy = —6xy, Uy = —ly = —[3;5:2 — 3}?3) = 3}?2 —3x%
dv = (—6xy)dx + 3y — 3x7)dy.

(using integration with respect to x as y constant)

f(2) = =30+ i(=3x2y + ¥ + ).

6.5 THEOREMS: -

THEOREM 1: Suppose f(z) = u + iv is analytic on domain D in C,
then h = Re f(z) is harmonic on D

PROOF: A function u(x,y) is called harmonic function if first and
second order partial derivatives of u are continuous and u satisfy
Laplace's equation,
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ViV =0,

02 02 0?
Getnztam)V =0
Since f(z) =u+iv is analytic in a domain D,then wu,v satisfy the
equations:

Ju Jdv
—=—,..(D
dx Jdy

Jdu B v

v o (2)

y X

Since differentiating equation (1) with respect to y and differentiating
equation (2) with respect to x and adding (1) and (2),

0°u 0J0*u 9%*v 0%v

0x? + dy? - dydx 9xdy =0

Thus, the real part of any analytic function is a harmonic function. The
imaginary part is also harmonic for the same reason.

THEOREM 2: If f(z) = u + iv is analytic on domain D in C, prove
that the curves u = constant, v = constant, form two orthogonal
families.

PROOF:Since f(z) = u + iv is analytic in a domain D, then u, v satisfy
the equations:

ou dv
—=—,...(D
dx dy

ou B ov

3y~ ax (2)
To prove that the curves u(x,y) = constant = ¢;, v(x,y) =
constant = c,, form two orthogonal families..
Let m,; = slop of the tangent to the curve u = c;.
m, = slop of the tangent to the curve v = c,.
If we show that mym, = —1.
Taking differential of the curve u = ¢; and the curve v = c,.

du=0,dv=0.
e+ Py = 0
0x x dy y=
P ax+ Ly =0
ox T oy T
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du
_ W _ox _ W
™= T o’ uy
dy
p v
_YY _ox _ ™
=TT
dy
()22
172 u, vy, uyv, () (Uy)

So the curves u(x,y) = constant = ¢;, v(x,y) = constant = c¢,, form
two orthogonal families.

THEOREM 3: To prove that
02 N 02 B 49?
0x?  0y? 020z
PROOF: Let z = x + iy.

Then z = x — iy.
_Z+Z _Z—Z
YT YT |
y =—>(z-2).
This implies
ox 1 ox
0z 2 0z
dy i 0y
0z 2 0z
Let f = f(x,y).

Then f = f(x,y) = f(z, 2), also,

O _ 0%, 979y 1(3f _ ;91
dz 9xdz 9y dz 2 \dx dy
ad dfdx L dfdy_1(d .9

_{:_f__+_f_3j:_(_f+l_f)
0z 0x 0z dy 0z 2 \0x ady

azf_aaf_1(a a)(aaeri%)f

9207  0z0z 4\ox 'dy

0*f 1(0* 02
- = + f
0z0z 4\0x? 0y?

Or

Or
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92 92 92
o2 Ty~ Yazaz

THEOREM 4: If f(z) = u + iv is analytic on domain D in C, prove
that,

9 2 ) Rl = 28 @)
dx2  dy? B '
PROOF: f(z) =u+iv,Rf(2) = u.

o _, ou
dx? 0x
................................... (D
After differentiation equation (1).
Pl a2
dx? 0x 0x?
....................................... (2)

0%u? _, <6u)2 N 0°u
dy? dy Y oxz

Adding equation (2) and (3),

ou?  ou? (6u)2 0%u (au)z (azu azu)
6x2+6y2 =2 [ dx T uaxz T oy Tu dx2 T dy?

But u satisfies Laplace's equation,

. ou v
So, by using = = —
9%u?  9%u? ou)? a2
— +6y2 =2 [(5) + (5) ] ................ (4)
Butf'(z2) =7 =5 =5, Ti5;

From equation (4),
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9%u? 9%u? , 2
9x2 ayz - Zlf (Z)l .

Or

02 92
R _ 2 _ ’ 2
(axz + ayz) IRi(2)[? = 2If' (2)|
THEOREM 5: If w = f(z) = u + iv is a analytic on domain D in C,
f'(z) # 0, prove that,
02 92
<ﬁ + a—yz> loglf(z)l = 0.
If |f(z)] is the product of a function of x and a function of y, show that
f(z) = eazz+Bz+y,

where a is real and 3,y are complex constants.

PROOF: Recall that,
92 92 0°
ax24_ay2::46262
62 62 62
(w . W) loglf(z)] = 4= loglf(z)]

2

— ! 2

_ 9 0% NNV (F 2 _ 7
=2— logf'(z)f'(2) as |z|* = zZ

02 02
=2 lazaz_ logf'(z) + aZaZ_logf (Z)l
a fII a fII
_,|9 (Z)+_ @] _
0z f'(z) 0z f'(z)

2[0+ 0} =0.

It follows from the fact f(z) is treated as constant in differentiating
with respect to z and f(Z) is treated as constant in differentiating with
respect to z.

Second Part:

Let [f(z)| = @)Y (y).
By the first part,
0?2 0?2
—+ = | loglf(z)| =0
ax2 T 5y7
Or
0?2 0?2
<ﬁ + a_yZ> log@ ()Y (y).
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02 02
=3 (log® + logy) + 37 (log® + logy)
=0
or
02 02
%2 log®(x) + y? log(y)
d? d?
= @109(25(96) + y? log(y)
=0.
or
d? d?
@log(z)(x) = ~3y2 logy(y) = 2p,say
[L.H.S. and R.H.S. both are independent of each other].
dZ
- - - W log(Z) = 2p,
glves on Integration
d(log®)
o 2px +q.

Again integrating, log®@(x) = px? + qx + .
Similarly — logy(y) = py? + q,y + 1.
log®y = log® + logy = p(x* —y*) + (qx — q1y) + (r — 1)
Or
If"' ()| = 8C)Y(y) = exp[p(x? — y?) + (gx — qy) + (r = )] ... (1)
Now since, |exp[az? + Bz + y]]|= lexp[a(x + iy)? + B(x + iy) + y]]I
= |lexp[a(x? — y?) + 2iaxy + (a + ib) (x + iy) + (c + id)]|

as a is real.

= |exp[a(x? — y2) + ax — by + c].exp[i (2axy ) + bx + ay + d)]]|

= expla(x? —y%) + ax — by +c].

(as |e®P = 1| for any real p)
6.1 which is of the same from as (1),

Hence we can write,
f'(z) = exp(az? + Bz + y).

6.6 ANALYTICITY AND ZEROS DIFFERENT
FUNCTIONS: -
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* Analytic Function: A function complex-differentiable at every point in an open set
(domain).

» Zero of an Analytic Function: A point zy where f(zg) = 0.

= Multiplicity (Order) of a Zero: If f(z;) = 0, but f’(zo) #£ 0, it's a simple zero
(order ). If f(zg) = f'(zg) = ... = ™ V(zg) = 0and ™ (zg) # 0, it's a zero of
order m, meaning f(z) = (z — zy)" g(z) where g(zp) # 0.

» Isolated Zeros: For a non-trivial analytic function, zeros cluster at a finite distance;
they don't accumulate (have no limit points) within the domain, ensuring they are
distinct points.

Examples Across Functions
* Polynomials (f(z) = - 1): Zeros at z = 1, —1, each simple. Zeros are finite.

» Trigonometric (f(z) = sin(z)): Zeros at z = nx (integers), each simple (like z =
in), infinite but isolated (can't get closer than & to another zero).

» Exponential (f(2) = e* — 1): Zeros at z = 2xin (integers times 2xi), infinite and
isolated.

« Analytic vs. Non-Analytic: f(x) = |x| (real analysis) has a zero at x = 0, but it's
not differentiable (not analytic in C), so concepts like order and isolation behave
differently.

6.7 BRANCH POINTS: -

The idea of branch points arose from attempts to understand multi-valued
analytic functions such as v/z, logz and z/™ mathematicians noticed that
these functions could not be made single-valued on the whole complex
plane, leading to the identification of special points—Iater called branch
points—where values cycle when circling the point. Key contributors
include Argand, Wessel, and Cauchy, who laid foundational work in
analytic continuation and geometric interpretations. Bernhard Riemann
revolutionized the concept by introducing Riemann surfaces, showing that
multi-valued functions become single-valued on appropriately constructed
multi-layered surfaces. Branch points were defined as locations where
sheets of these surfaces meet. Riemann distinguished algebraic and
logarithmic branch points and deeply connected the idea to analytic
continuation. Following Riemann, Weierstrass, Puiseux, Schwarz, and
Poincaré made the notion more rigorous through work on analytic
continuation, series expansions, monodromy, and differential equations.
Branch points became standardized objects in algebraic geometry and
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complex analysis. In the modern framework, branch points are studied in
complex manifolds, algebraic curves, monodromy theory, and singularity
theory. They also play key roles in physics, including quantum mechanics,
statistical mechanics, and quantum field theory, where functions often
possess branch cuts linked to physical observables.

For a complex number : re'” . we define log : logr + if. There are thus infinitely
many values, or “branches”, of log 2. for # may take an infinity of values. For example.
T hi Jxi
log i or ar ar...,

G ] Y
¥

depending on which choice of # we make

Consider the three curves shown in the diagram. On C', we could choose £ to be always
in the range (0, §), and then log > would be continuous and single-valued going round C1.
On Cy, we could choose ¢ € (3, 37") and log z would again be continuous and single-valued.
But for C's, which encircles the origin, there is no such choice; whatever we do, log z cannot
be made continuous around Cj (it must either “jump” somewhere or be multi-valued). A
branch point of a function — here, the origin — is a point which it is impossible to encircle
with a curve upon which the function is continuous and single-valued. The function is
said to have a branch point singularity at that point.

EXAMPLES:
(i) log(z — a) has a branch point at 2z = a.

(ii) log(z? — 1) = log(z + 1) + log(z — 1) has two branch points, at +1.

ves 1/ -0 Ji . . .
(iii) 272 = \/r /2 has a branch point at the origin.

6.8 BRANCH CUT AND BRANCH OF
MULTIVALUED FUNCTION: -

The concept of a branch cut in complex analysis emerged during the 19th
century as mathematicians struggled to understand multi-valued functions
such as v/z, logz and z'/™ Early work by Argand, Wessel, and Cauchy
clarified analytic continuation and the behavior of functions on the
complex plane, but these functions still exhibited discontinuities when
encircling certain points. To handle this, mathematicians began
deliberately “cutting” the plane so a multi-valued function could be treated
as single-valued on the remaining domain. The decisive advance came
from Bernhard Riemann in the 1850s. Rather than viewing branch cuts as
artificial slits, Riemann introduced Riemann surfaces, where branch points
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join different sheets of the surface. In this geometric picture, a branch cut
represents the projection onto the complex plane of where sheets are
connected. Riemann’s viewpoint clarified that branch cuts are not intrinsic
to the function itself but are chosen by the analyst to define a single-
valued branch. By the late 19th and early 20th centuries, the concept
became fully formalized in the works of Weierstrass, Schwarz, and
Poincaré. Today, branch cuts are standard tools in complex analysis,
differential equations, and theoretical physics, especially in quantum field
theory and analytic continuation.A branch cut is a curve or line removed
from the complex plane to make a multi-valued complex function single-
valued on the remaining domain. A branch cut is a curve (or connected
set) in the complex plane chosen so that a multi-valued function can be
restricted to a domain where it becomes single-valued and analytic.
The cut prevents closed loops around branch points, which would
otherwise cause the function to change value. A branch cut connects one
or more branch points (or a branch point to infinity). The cut itself is not
unique; different choices produce different branches of the same function.
Across a branch cut, the function has a jump discontinuity, corresponding
to switching between different sheets of its Riemann surface.

Complex Logarithm: log z

Branch points: () and co

Typical branch cut: the negative real axis

CA (—00,0]y

Reason: Circling the origin changes the argument by 2, creating infinitly
many values.

Square Root: /2
Branch points: ) and oo

Typical branch cut: the negative real axis

'\-"'G — T.l.-"?giﬂ_-’?j g c (—T."__, ';T]
Behavior: Crossing the cut flips the sign of the square root.

Inverse Trigonometric Functions

arcsin z

e Branch points: —1 and 1
e Typical branch cuts:

(—o0,—1] and [1,00)
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arccos z

s Same branch points and cuts as arcsin z.

arctan z
¢ Branch points: 2 and —i

s Typical branch cuts: vertical lines from i and —i to infinity:
i[l,00), —i[l,00)

log z vz

I Im
L

/ I F-P Re

Branch points: 00,00 Branch points: 0,00

Fig 1.2.

SOLVED EXAMPLES

EXAMPLEL:Find the analytic function f(z) = u + iv which the real
part is

u = e*(xcosy — ysiny)

Solve by Milne's Thomson's method and differential equation method?

SOLUTION:
Method I. Milne's Thomson's Method:
ou
™ =0,(x,y) =0,(z,0) = e?(z,0) = e?(z+ 1).
ou
oy ?,(x,y) = 0,(2,0) =0

Integration yields the result,

() = f [0,(2,0) — i, (2, 0)]dz + ¢,
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_ f[eZ(z +1)—i0]dz+c

= f(zez +e?)dz +c,

=(z—-1e*+e*+c=ze’+c

Method I1. Suppose f(z) = u + iv is analytic and u is known. To
determine f(z).

Firstly we shall determine v.

du — _exX( . iny)
% = —e xsiny — ycosy — siny
ou .
— = e*(xcosy — ysiny + cosy)
O0x
dp = ov o+ ov d
v = 3 X 3y y

v= f e*(xsiny + ycosy + siny)dx (treating y as constant) +
f(those terms which do not contain x)dy + c

V= siny.fxexdx + (ycosy + siny)f e*dx + f 0dy + ¢

= [(x — 1)siny + ycosy + sinyle* + ¢
v = [xsiny + ycosyle* + ¢
f(2) =u+iv = e*(xcosy — ysiny) + i[xsiny + ycosyle* + ¢
= xe*(cosy + ysiny) + iy[cosy + isinyle* + ic

f(z2) = (x+iy)e*e” + ¢’ = ze? + ¢’
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EXAMPL2:If f(z) = u + iv is analytic functionand u — v =
e*(cosy — siny),

find f(z) interms of z.

SOLUTION: Given f(z) = u + iv .....(1)
u—v =e*(cosy — siny)...... 2
By (1), if(z) =iu—v............... 3)
Adding (1) and (3),
A+Df(2)=w—-v)+i(u+v).
Takingu—v=U,u+v=V,(1+i)f = F(2),
We obtain
F(z)=U+1iV
f(z) = u+iv isanalytic it implies F(z) = U + iV is analytic.
By (2), U = e*(cosy — siny)

0

01; = 01(x,y) = e*(cosy — siny),0,(z,0) = e*(z,0) = e?,
du
- 0, (x,¥) = 0,(z,0) = —e”.

By Milne's method,

F(z) = f [0,(2,0) — i6,(z 0)]dz + c.
= f[ez + ie?ldz + c,

= f[l +ile*dz +c,

AI+Df =0 +ie”
Or

f(z) =c; + e~

6.9 SUMMARY: -

This unit deals with analytic functions in complex analysis. An analytic
function is one which is differentiable at every point in a region of the
complex plane. Such functions have real and imaginary parts that are

Department of Mathematics
Uttarakhand Open University Page 129



Complex Analysis MT(N)-302

closely related through certain conditions known as the Cauchy—Riemann
equations. The real and imaginary parts of an analytic function are called
conjugate functions. Each of these parts satisfies Laplace’s equation and
hence they are known as harmonic functions. The curves represented by
constant values of these functions intersect each other at right angles and
therefore form an orthogonal system. The unit also explains how to
construct an analytic function when either its real part or imaginary part is
given. This is done by checking whether the given part is harmonic and
then determining its conjugate using the Cauchy—Riemann equations.
Important theorems related to analytic functions are discussed, such as
conditions for analyticity, properties of harmonic functions, and the
behavior of zeros of analytic functions. The unit emphasizes that zeros of
analytic functions are isolated unless the function is identically zero
everywhere in the region. Finally, the unit introduces multi-valued
functions like logarithmic and root functions. Concepts such as branch
point, branch cut, and branch are explained to make these functions single-
valued. A branch point is a point where the function changes value when
encircled, while a branch cut is a curve removed from the plane to avoid
this ambiguity. A branch refers to a specific single-valued version of a
multi-valued function.

6.10 GLOSSARY: -

e Complex Numbers: In mathematics, a complex number is an
element of a number system that extends the real numbers with a
specific element denoted i, called the imaginary unit and satisfying
the equation i? = —1; every complex number can be expressed in
the forma + ib where a and b are real numbers. Because no real
number satisfies the above equation, i was called an imaginary
number by René Descartes. For the complex number a +ib , ais
called the real part, and b is called the imaginary part. The set of
complex numbers is denoted by either of the symbols C or C.

e Limit: A function f(z) tends to the limit [ as z tends to z, along
any path, if to each positive arbitrary number &, however small,
there corresponds a positive number §, such that |f(z) —I| < e
whenever 0 < |z — z,| < § and we write lim f(z) = [, where [ is

Z-2Zg
finite.
e Continuity: For a function f(z) is continuous at a point z,. It must
be defined at z,. It's limit must exist at z,. f(z,) = Zli‘? f(2).
—Zg

e Differentiability: In symbols:
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f (20) = f(Zo + Az) — f(20)

must exist and the limit must be mdependent of the direction from which
Az — 0 in the complex plane.
e Analytic function: A function f(z) of a complex variable z = x +
Iy is said to be analytic at a point zo if:
a. It is differentiable at zo.
b. It remains differentiable in some neighborhood of zo (that
IS, within some open region around that point).

In symbols:

) = tim f(zo + A7) = f(20)
0

must exist and the limit must be mdependent of the direction from which
Az — 0 inthe complex plane.

CHECK YOUR PROGRESS

Fill in the Blanks

CYP1: If f(z) = u+ iv is analytic in a domain D,and u and v satisfy
........................................... then u and v are called

conjugate harmonic functions or conjugate functions simply.

CYP2: Two families of curves u(x, y) = ¢;, v(x,y) = c,, are said to form
................ if they intersect at right angles at each of their points
of intersection.

CYP3: Suppose f(z) =u+ivis .......c...on.... on domain D in C, then
h=Re f(z)Is harmonic on D
CYP4:

02 02

CYP5: log(z — 2) has a branch point at .............
CYP6: An analytic function with constant modulus is:

(a) Variable (b) May be variable or constant (c) Constant (d) None of
these.
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e Ponnusamy, S. (2011). Foundations of complex analysis (3rd ed.).
Narosa Publishing House.

e Spiegel, M. R. (1964). Complex variables: With an introduction to
conformal mapping and its applications (Schaum’s Outline
Series). New York, NY: McGraw-Hill

e Churchill, R. V., & Brown, J. W. (1990). Complex analysis and
applications (9th ed.). New York, NY: McGraw-Hill.

e Goyal, J. N., & Gupta, K. P. (2017). Theory of functions of a
complex variable. Krishna Prakashan Media Pvt. Ltd

6.12 SUGGESTED READING: -

e Ahlfors, L. V. (1979). Complex analysis (3rd ed.). New York, NY:
McGraw-Hill Education.

e Conway, J. B. (1978). Functions of one complex variable I (2nd
ed.). New York, NY: Springer

e Copson, E. T. (1978). Theory of functions of a complex variable
(2nd ed.). Oxford, England: Oxford University Press.

e https://nptel.ac.in/courses/111106084

6.13 TERMINAL QUESTIONS: -

TQL: For what values of z the function w defined by the equation ceases
to be analytic?
z =logp + i®,w = p(cos@ + isin®).

TQ2: For what values of z the function w defined by the equation

z = sinhu.cosv + icoshu. sinv,w = u + iv.
ceases to be analytic?
TQ3: Ifu = (x — 1)3 — 3xy? + 3y? determine v so that u + iv is a
regular function of x + iy.
TQ4: fu—v=(x—-y)(x?+4xy +y?) and f(z) =u+ivisan
analytic function of z = x + iy, find f(z) in terms of z.

6.14 ANSWERS: -

CHECK YOUR PROGRESS:

CYP1.: the Laplace's equations V2V = 0,
CYP2: an Orthogonal system
CYP3: analytic.

. 40°
CYP4. 5707
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CYP5:z=2
CYP6: c

TERMINAL QUESTIONS:

TQ1. w is analytic function in any finite domain.
TQ2.z = +i.
TQ3.v=3y(x?—-2x+1)—y3+c
TQ4.f(z) = ¢, —iz53.
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UNIT 7: Complex Integration-I
CONTENTS:

7.1 Introduction

7.2  Objectives

7.3 Domain and Contour
7.4 Complex line integral
7.5 Cauchy’s Theorem
7.6 Extension of Cauchy’s theorem
7.7  Summary

7.8  Glossary

7.9  References

7.10  Suggested Reading
7.11  Terminal questions
7.12  Answers

7.1 INTRODUCTION:-

~ In mathematics, a line integral is an integral where the function to
be integrated is evaluated along a curve. The terms path integral, curve
integral, and curvilinear integral are also used; contour integral is used as
well, although that is typically reserved for line integrals in the complex
plane. A complex integral is the process of computing integrals of a
complex-valued function over a path in the complex plane, similar to how
real integrals are computed over intervals on the real line. These integrals
are fundamentally line integrals and are often defined by parameterizing
the path, breaking the complex integral into a pair of real line integrals,
and using multivariate calculus. The result can depend on the specific path
taken, but for some functions, the integral is independent of the path,
which is determined by applying the complex version of the Fundamental

Theorem of Calculus.

7.2 OBJECTIVES:-

After studying this unit, learner will be able to

()  Domain and Contour
(i)  Complex line integral

(iii) Cauchy’s Theorem

Department of Mathematics
Uttarakhand Open University Page 134


https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Contour_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral

COMPLEX ANALYSIS MT(N)-302

7.3 DOMAIN AND CONTOUR:-

e  DOMAIN (REGION)

A set S of points in the Agarnd plane is said to be connected set if any two
of its points can be joined by a continuous curve, all of whose points
belong to S.

An open connected set is called an open domain. If the boundary points of
S are also added to an open domain, then it is called closed domain.

. CONTOUR

By contour, we mean a continuous chain of a finite number of regular arcs.
If the contour is closed and does not intersect itself, then it is called closed
contour.

Examples. Boundaries of triangles and rectangles.

e SIMPLY AND MULTIPLY CONNECTED DOMAINS
A domain in which every closed curve can be shrunk to a point without
passing out of the region is called a simply connected domain. If a domain
is not simply connected. then it is called multiply connected domain.

e WEIERSTRASS M-TEST
If lu,(2)| < M,, where M,, is independent of z in a domain R and ZM,,,
the series of positive constants is convergent, then the series Xu, (z) is
uniformly convergent.

Remark: A uniformly convergent series of continuous functions can be
integrated by term.

7.4 COMPLEX LINE INTEGRAL:-

Suppose f(z) is continuous at every point of a curve C having a finite
length, i.e. C is a rectifiable curve.
Divide C into n parts by means of points

20, Ziy Zy ey Zqps
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a z21 & 3 X

o
Fig: 7.4
Let

a=2zy,b=2z,.
We choose a point & on each arc joining z,_; to z.
Form the sum

Su =) FEIG 7).

Suppose  maximum value of (z,—z_,)—>0 as n- oo
Then the sum S,, tends to a fixed limit which does not depend upon the
mode of subdivision and denote this limit by

Lb f(z)dz or Lf(z)dz

which is called the complex line integral or line integral of f(z) along C.
An evaluation of integral by such method is also called ab-initio method.
Remark 1:

To define complex line integrals, we will need the following ingredients:
¢ The complex plane: z = x + iy
e The complex differential dz = dx + idy
e A curve in the complex plane: y(r) = x(¢) + iy(r), defined fora <t < b.

» A complex function: f(z) = u(x,y) +iv(x,y)

Remark 2: Line integrals are also called path or contour integrals. Given
the ingredients we define the complex line integral

b
/f(z}ﬂ‘z 1=/ flr@)y' (1) dt. (la)
¥ a

you should note that this notation looks just like integrals of a real
variable. We don’t need the vectors and dot products of line integrals in
R2. Also, make sure you understand that the product f (y(t))y(t) is just
a product of complex numbers. An alternative notation uses dz = dx +
idy to write

/f(z)dz:/(u+iu}(dx+idy} (1b)
¥ ¥
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Let’s check that Equations la and 1b are the same. Equation 1b is really a multivariable calculus
expression, so thinking of y(r) as (x(1), y(r)) it becomes

1]
/ flz)dz = / (1), Y1) + i0(x(), (O] (') + iy (1)) dt
¥ a

But,
u(x(t), y(1)) +iv(x(®), (1)) = f(r(1)

and
X'+ iy (1) =y'(1)

so the right hand side of this equation is
b
/ flr @)y (D dt.
a

That is, it is exactly the same as the expression in Equation 1a.

Example 1.

Compute /E d z along the straight line from 0 to 1 +i.
¥

Solution: We parametrize the curve as y(f) = (1 + i) with0 < 1 < 1. So /() = | +i. The line

integral is
| . .
2i(1
/fd;;:/ AL+ iR +i)dt = 20 ;”).
0

Example 2.

Compute /E d z along the straight line from 0 to 1 + i.
Y

Solution: We can use the same parametrization as in the previous example. So,

1
/Edz:/ t(1 — i1 +i)dt = 1.
¥ 0

Example 3.

Compute /z2 d z along the unit circle.
¥

Solution: We parametrize the unit circle by y(0) = e where 0 < 0 < 2. We have Y'(0) = jelf
So, the integral becomes

2r - n ) 8539
/z2 dz= / e?ie™ 4o = / ie’? dg = —
¥ 0 0 3

Notation. By the symbol fC f(z)dz we mean the integral of f(z) along a boundary

C inthe positive sense. In case of closed paths, the positive direction is anti-clockwise.
The integral along C is often called a contour integral.

I
=0.
0
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7.5 CAUCHY’S THEOREM:-

Cauchy's Theorem in complex analysis, named for Augustin-Louis
Cauchy (1789-1857), states that the integral of a holomorphic (analytic)
function around a simple closed loop in a simply connected region is zero,
a discovery he made in the early 1800s, though his initial proofs involved
continuity assumptions {1, 2, 4, 5}. Later, Edouard Goursat (1858-1936)
proved the theorem without requiring differentiability of the derivative (f'
being continuous), leading to the modern Cauchy - Goursat theorem,
forming the bedrock for complex analysis, Cauchy's Integral Formula, and
the powerful Residue Theorem.

Statement: If a function f ( z ) is analytic and single valued inside and
on a simple closed contour C; then fC f(z2)dz=0

YA
r—~" "~ 1T =——y=g—- -
B e 1
8 ' \,'
. : ' : @
! // '
1N Y :
iy o s '
S S N
O : P> X
Fig. 7.5
Proof. Firstly, we shall prove a lemma:

Lemma. Given € > 0 it is possible to divide the region inside C into finite
number of meshes either complete square C,, or partial square D,, such that
within each mesh there exists a point z, for which

f(2) = f(20)

Z — Z

Proof of the lemma.
Gourset's Lemina. Suppose the lemma is not true. It means that the
lemma fails at least in one mesh. Subdivide this mesh by means of lines
joining the middle points of the opposite sides. If there is still at least one
part which does not satisfy the condition (1). Again, subdivide that part in
the same way. This process comes to an end after a finite number of steps,
when the condition (1) is satisfied for every subdivision, or the process
may go on indefinitely. In the second case, we obtain a sequence of
squares (each contained in the preceding ones) which has z, as its limit
point at which the condition (1) is not satisfied. Of course, z, is an interior
point of C. Since the condition (1) is not satisfied at z, and so

— f'(zy)| < €V z in the mesh. e (D)
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f(2) = f(20)
Z— Z
6 being a small number of depending upon @ e.
This declares that f(z) is not differentiable at z, so that f(z) is not
analytic at z,, contrary to the initial assumption that f(z) is analytic at
every interior point of C. Hence the lemma is true. From the lemma,
%JZCO(ZO) — f'(z0) = n(z) where [n| < € e (2)
and n—-0 as Z = Z,.
Thus f(2) = (z — 2o)n(2) + f(20) + (z — 20) f ' (20)
Proof of the Cauchy’s theorem. Divide the interior of C into complete
squares Cy, C,, ..., C,, and partial squares Dy, D, ..., D,,, part of whose
boundaries are parts of C.
Consider the integral

Zn: L f(z)dz+§: i f(z)dz

r=1
where the path of every integral being in anti-clockwise direction.
In the complete sum, integration along each straight side of each square
(complete or partial) happens to be taken twice in opposite directions and
so all the integrals along straight sides of squares cancel. The integrals,
which remain, are taken along curved boundaries of partial squares
because these are described only once. The integrals which are left behind

—f'(Zo) < & where |Z—ZO| <6,

sum equal to
f f(z)dz
¢ n m (3)
ajy@uzzﬁf@w+;Lf@w
In view of (2),

f(2)dz = f [f(zy) + (z—zo)n + (z— 25)f' (z0)]dz
o c

T

=U&&—%f&mf¢h+f&&fzw+f (2 — 2o)n(2)dz
cr cr C

T

Using the fact
dz=0= f zdz
Cr Cr
we obtain Jo f(@)dz= [, (z—z)ndz
In view of this, (3) becomes

L f(2)dz = i fc (z — zy)ndz + i fD (z — zy)ndz
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ff(z)dz < f (z—zj)ndz +z (z — zy)ndz
¢ r=1 "G r=1 !"Pr
<> [ 1=z + Y [ 1z=zliniiaz]
r=1 ~Cr r=1 "Dr
»n 1ef |z — z||dz] + ¥, sf |z — z,||dz| (4)

as In| < e.
Let [,,, A,, be respectively the length of the side and area of square C,.
Similarly 1, ', A,, ' denote respectively length and area of square D,,. Then

(4) takes the form
n n
ff(z)dz < elrﬁj |dz|+z sl,c\/ij \dz|
Dy

[Since |z — z,| < I, \/_ dlagonal of f square C ]
=z el V2. 4l, +Z eUNZ. (AL + 5.)

r=1

Forf |dz| = perimeter of square C ]

Z A$+Z Y
r=1 r=1

m
=4£\/§-A+e\/iz l,s,

where A = total area of squares of [ with which the region was originally
covered. Also let L be total length of boundary of C. Then

= 48\/2

m
+ s\/fz l)s,
r=1

m
f F(2)dz| = 4ev2A + ev2 Z Is,
¢ =1
=4e\2A+ €l L2
or
f f(2)dz| < €|4V2A + 1 L2|
Cc
Since ¢ is arbitrary and so making € — 0, we get
f f(z)dz=0
Cc

Alternate Proof of Cauchy's theorem. Here we use Green's theorem to
prove the present theorem.

Green's Theorem. If P(x,y), Q(x, y),%, 2—5 all are continuous functions
of x and y in a closed contour C, then [. (Pdx + Qdy) = [[. (Z—z—
op

3) dxdy ... *
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Cauchy's Theorem. If f(z) is analytic function of z and if f'(2) is
continuous at each point within and on a closed contour C, then
) c f(@dz=0

Proof. f(z) = u + iv is analytic and so it is continuous on contour C and
also f'(z) exists. It means that u, v, uy, u,, vy, v, all are continuous in C.

f(z) =u+iv = analytic = u, =v),u, = -0,
U —v, =0 - (1), U, +v, =0 .....(2)

j f(z)dz =f (u +iv)(dx + idy)
c c

= [. (udx — vdy) +
i J, (vdx +udy)
using (*), we get

52 [ (- s

—ﬂ dedy+ijf Odxdy =0
c c

Note. Goursat showed that for the truth of the theorem the assumption of
the continuity of f'(z) is not necessary and so Cauchy's theorem holds iff
f(z) is analytic writhin and on C.

Cauchy- Goursat Theorem

In 1900 the French mathematician Edouard Goursat proved that the
assumption of continuity of f'is not necessary to reach the conclusion
of Cauchy's theorem. The resulting modified version of Cauchy's theorem
is known today as the Cauchy - Goursat Theorem. as we can expect, with
fewer hypotheses, the proof of this version of Cauchy's theorem is more
complicated than the one just presented.

Statement: If a function fis analytic at all points interior to and on a
simple closed contour C, then fC f(z)dz = 0.

Example: The function f(z) = eZ is entire and consequently is analytic at
all points within and on any simple closed contour C. It follows from the
Cauchy-Goursat Theorem that ) c efdz=0

z%45z+46

Question 1. If f(2) = , does Cauchy's theorem apply

(i) When path of integration is a (:|rcle C of radius 3 and centre at origin.
(i) When path of integration is a circle C of radius 1 and centre at the
origin.

Solution. (i). When path is circle C given by |z — 0] = 3, then z = 2 lies

2245246 .

inside ¢ and so f(z) = is not analytic inside c. Hence Cauchy's

theorem is not appllcable and o) ) c f(2)dz # 0.
(if) When C is circle |z — 0| = 1, then z = 2 lies outside C. - f(2) =

2245746 is analytic inside C and hence Jo f(2dz =0
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Question 2. Verify Cauchy's theorem for the function f(z) = z3 — iz? —
5z + 2i if path is circle given by |z — 1| = 2.

Solution. Evidently f(z) is analytic within and on C. Hence, by Cauchy's
theorem,

j f(2)dz=0 e (1)
c
ForC:|z—1|=2,z— 1= 2e%,dz = 2i'e’d6

f f(z)dz = f " (z3 —iz? =5z + 2i)dz
c c

21
_ j (14 2¢9) —i(1+2¢9)" — 5(1 + 2¢%) + 2i| 2¢%id6 = 0

0
or fc f(z)dz = 0... (2).
For fczn ek9do=0 if k is any non-zero integer.
(1) and (2) = Cauchy's theorem is verified.
Question 3. Verify Cauchy's Theorem and integrating e along the
boundary of the triangle with vertices at the points 1 +i,—1 + iand —1 —

L.

Solution. f(z) = e is analytic within and upon closed contour A ABC
and so by Cauchy's
Theorem [. f(2)dz =0

Let] = [, f(2)dz = I,(AB) + L,(BC) +
L(CA)  .....(D |
Then I = [, e?dz = (i)

l

e I3CV - §5)

o >

0= V= )

Fig. 7(a)
For I, equation of 4B is y=x,z=x+iy=1Q+1i)x

. iz pl(1+i)x x=1
-] -]
Cc x=-1

= 1 e(i_l) — e_(i_l)
] 1

For I,, equationof BCisy=1,z=x+iy=x+1i
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x=-1

eliz eiCe+i) eix'—l
l c l l =1

— %(e‘i_l _ ei—1)

For Iy: equation of CA,x = -1,z = x + iy = =1 + iy

iz pi(=1+iy) e—i-v]Y=71
' (o t Cc ! y=1

or, I; = %(e‘”1 —ei71)

10, . , . , ,
= byt 1y = (e = o)+ (e — ) 4 (etH1 i)

=0
or,

f f(@dz=0 ... (2)
Cc
(1) & (2) = Cauchy's theorem is verified.

7.6 EXTENSION OF CAUCHY’S THEOREM:-

Suppose f(z) is analytic in a simply connected domain D. Then the
integral along any rectifiable curve in D joining any given points of D is
the same, i.e., it does not depend upon the curve joining the two points.
Proof. Suppose the two points A(z,) and B(z,) of the simply connected
domain D are joined by the curves C; and C, as shown in the diagram.

Then, by Cauchy's theorem
or

f f(z2)dz=0

ALBMA
or Jog f@dz+ [, f(2)dz =0
or

f(z)dz - f(z)dz=0
ALIB AMB
or

fz)dz—| f(z)dz=0
o [
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Fig. 7(c)
or

f(2)dz=| f(z)dz
ol C,

This proves the required result.

Question 4. Show that fC e~??dz is independent of the path C joining the
points 1 — i to 3 + i and determine its value.

Solution. Let I = fc f(2)dz, where f(z) = e~2% and C is a straight-line
joining point 1 —mi to 3 + wi. Evidently f(z) is differentiable every
where in z-plane. Hence f(z) is analytic in entire z-plane .. By corollary
1 of Cauchy's theorem [ ¢ f(2)dz is independent of path of integration.

->

2~ 3 D

<> = -~
L 3(2 — i) :

Cl - 7TidA1
Fig. 7(d)

2+3mi

1 )
Also f f(2)dz =f e ?2dz = — - (e7%2)zz2t3m
c 1-mi 2
— _1[6—2(2+3m') _ e—z(l—m‘)] — _%(6—4 _ e—2)
as e 6Tl = 1 = g2
1
(2)dz==(2%2—-¢e%) .....(1
f 2
c

Letl = [ f(z)dz = I,(AB) + I,(BC)
For I;: equationof ABisy = —m,z =x + iy = x —inm,dx = dz
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2 2 2
L =f e 2=y = e””f e ¥dx = 1.f e ¥dx
1

1 1

For I,: equationof BCisx = 2,z = 2 + iy,dz = idy

— o —22+iY) iy — ie™ —i2y Y =37
I, = B e idy = = (e )y=—rr
i . . .
= _2_64(6—6111 _ e—lZTL’) =0ase 0" =1 =27
I = f f(2)dz = I,(AB) + 1,(BC)
c

= %(e‘2 —e ™) +0(2)
This integral is the same along two different paths:
(i) line AC
(i) line AB + line BC
This = Integral is independent of path.

Corollary 1. Let a closed contour C contain another closed contour C;.
Let f(z) be analytic at every point lying in the ring-shaped domain
bounded by C and C;.

Then [, f(2)dz = fcl f(2)dz

Proof. We make a cross at joining a point A of the contour C to a point E
of C;. By Cauchy's theorem,

f(z2)dz=0

-];BCDAEFGEA
or

f f(z)dz + f(z2)dz
ABCDA AE
+ f f(z)dz
EFGE

+ f(z)dz=20
EA

But [, f(2)dz = — [, f(2)dz

Fig. 7(e)
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and so Jug f@dz+ [, f(2)dz =0
Hence Japepa f@dz + [ . f(2)dz =0
or

Lf(z)dz — LGFE f(z)dz=0

or
f f(z)dz = f(z)dz
c Cy

Cbeduction. |f the contour C contains non-intersecting contours
Cl, Cz C‘l’ll then

j f(2)dz = f(z)dz+ | f(z2)dz+ -+ f(z)dz
Cc Cn

Cy1 C,
Theorem. An upper bound for a complex integral. If a function f(2) is

continuous on a contour C of length [ and if M be the upper bound of
If (2)| on C, then I, f(2)dz| < ML
Proof. Divide the contour C into n parts by means of points
Zy, 21,23, .. Zy. WWe choose a point &,. on each arc joining z,_; to z,. Form
the sum

Sp = z &)z — 2,_1)
r=1

Also suppose maximum value of (z,—z._;) >0 as n— oo.
We define [, f(2)dz = lim S,
n—-oo

S, | =

Y FE 2| < FEN Nz =7l £ . Mlze = 2] e (1)
r=1 r=1 r=1

Making n — oo and noting (1), we get

fc f(2)dz

But lim -, |z, — z._4]
n—-oo

n
< lim MZ |z, — zp—q| (2)
n—-oo
r=1

= lim [|z; — zo| + |2z, — 21| + - + |2, — z,4]]
n—-o0o

= lim [chordz, z, + chordz,z, + - + chordz, z,,_4]

n—-oo

= lim [arcz,z, + arcz,z, + -+ + arcz, 2,1 ]

n—-oo
= arc length of contour C = L.
Using thisin (2), | [, f(2)dz| < Ml

Question. Find fc %dz where c is a circle |z] = 2.

Solution. Since z = 5 is only singularity and lies outside the circle, the
function is analytic inside and onto the contour, so the value of integral is
zero.

Question. Which of the following is the statement of Cauchy’s Integral
Theorem?

Department of Mathematics
Uttarakhand Open University Page 146



COMPLEX ANALYSIS MT(N)-302

a) If a function f (z) is analytic and its derivative f* (z) is continuous at all
points inside and on a simple closed curve C, then [cf(z) dz = 0
b) If a function f (z) is non-analytic and its derivative f” (z) is continuous
at all points inside and on a simple closed curve C, then Jc f(z) dz = 0
c) If a function f(z) is analytic and its derivative f* (z) is discontinuous at
all points inside and on a simple closed curve C, then Jc f(z) dz = 0
d) If a function f (z) is non-analytic and its derivative f (z) is
discontinuous at all points inside and on a simple closed curve C, then
cf(z)dz=0

Solution. Answer: a
Explanation: Cauchy’s Integral Theorem states that ‘If a function f (z) is
analytic and its derivative f* (z) is continuous at all points inside and on a
simple closed curve C, then

[cf(z) dz = 0.

Question. Which of the following theorems can be applied in the function

of Cauchy’s Integral Theorem?
a) Green’s Theorem
b) Stokes Theorem
C) Gauss Divergence Theorem
d) Taylors Theorem

Solution. Answer (a) is correct.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Integration of Entire function is always zero
on any contour.

Problem 2. The value of [ _, ——dz isequal to.

Problem 3. The value of fc sinz dz , where c is a circle
z=12.

Problem 4. If f(z) is analytic within and on whole C,
J. f(2)dz is equal to.

Problem 5. If f has no singularities inside the curve,
then the complex line integral around that closed curve
is zero.

7.7 SUMMARY:-

1. WEIERSTRASS M-TEST
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If lu,(2)| < M,, where M,, is independent of z in a domain R and ZM,,,
the series of positive constants is convergent, then the series Xu,(z) is
uniformly convergent. A uniformly convergent series of continuous

functions can be integrated by term.

2. Green's Theorem. If P(x,y),Q(x,y),%,g—i all are continuous

functions of x and y in a closed contour C, then fC (Pdx + Qdy) =

II. (Z—i—g—;) dxdy ... x

3. Cauchy's Theorem. If f(z) is analytic function of z and if f'(z) is
continuous at each point within and on a closed contour C, then
fc f(z)dz = 0.

4. If f has no singularities inside the curve, then the complex line integral
around that closed curve is zero.

5. The domain must be simply connected or the curve must at least be
deformable to a point without crossing outside the domain.

6. In complex analysis, Cauchy’s theorem states that if a function is
holomorphic on a simply connected domain, then the integral of the
function over any closed curve in that domain is zero. There are several
important extensions (or generalizations) of Cauchy’s theorem that relax
its assumptions or broaden its applicability.

7. Simply connected domain has no "holes" in it, A domain that is not
simply connected is called a multiply connected domain; that is, a multiply
connected domain has "holes™ in it.

8. Application of Cauchy’s Integral Theorem

. Solving complex integrals quickly

. Verifying analyticity of a function

. Evaluating real definite integrals using contour integration

. Deriving Taylor and Laurent series

. Computing residues in advanced complex analysis

7.8 GLOSSARY :-

1.  Analytic function: An analytic function (also called a holomorphic
function) is a complex function that can be locally represented by a
convergent power series.

2. continuous function: in complex analysis, the idea of a continuous
function is almost the same as in real analysis, but with the function

defined on complex numbers instead of real numbers.
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3. Double integration: Double integration (also called a double
integral) is a way to integrate a function of two variables over a region in
the plane. It extends the idea of single-variable integration (area under a

curve) to two dimensions (volume under a surface).
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7.11 TERMINAL AND MODEL QUESTIONS:-

Q 1. States and prove Cauchy theorem.
Q 2. Ifa function f(z) is continuous on a contour C of length [ and if M

be the upper bound of |f(z)| on C, then prove that |fC f(z)dz| < Ml.

Q 3. States and prove Extension of Cauchy theorem.
Q 4. Define Complex line integral.

Q 5. Compute fy z%dz along the unit circle.
Q 6. Prove that Integrals fy e?dz = fy Sinz dz = fy Cosz dz = 0, where

y is any circle.
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7.12 ANSWERS:-

TQ5.0
CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. True
CYQ 3. True
CYQ 4. True
CQY 5. True
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UNIT 8: Complex Integration-I|
CONTENTS:

8.1 Introduction

8.2  Objectives

8.3  Cauchy's integral formula

8.4  Extension of Cauchy's integral formula

8.5  Cauchy integral formula for the derivative of an
analytic function

8.6  Poisson's Integral formula

8.7  Morera's theorem

8.8  Leoville’s theorem

8.8  Summary

8.9  Glossary

8.10 References

8.11 Suggested Reading

8.12 Terminal questions

8.13  Answers

8.1 INTRODUCTION:-

The Cauchy integral formula is rooted in the 19th-century work of
French mathematician Augustin-Louis Cauchy, who developed it as a
central result of complex analysis. Building on his Cauchy's Integral
Theorem, the formula, originally published in a less general form,
establishes that a holomorphic function on a disk is fully determined by
its values on the disk’'s boundary. This breakthrough provided powerful
new tools for evaluating complex integrals and understanding function

behavior.

8.2 OBJECTIVES:-

After studying this unit, learner will be able to
(i) Cauchy's integral formula

(i) Poisson's Integral formula

(iii) Morera's theorem

(iv) Leoville’s theorem
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8.3 CAUCHY’S INTEGRAL FORMULA -

Cauchy's integral formula. If f(z) is analytic within and on a closed
contour C, and if a is any point within C, then
1 [ f(2)dz
f(a)_Zm' c Z—a
Proof. Suppose f(z) is analytic within and on a closed contour C and a is
an interior point of C. To prove that f(a)= fC [z)dz

2mi z—a '

Describe a circle y about the centre z = a of small radius r s.t. this circle
f(2) .

|z — ii| = r does not intersect the curve C. The functlon |s analytic in
the annulus bounded by C and y. Hence by,
Fig. 8(a)

corollary to Cauchy's theorem,

f(z)dz f(2)dz

Z—azf zZ—a ()

c 1
or
f f@dz _ [ f(2)—f(@) dz+ f fldz @
y Z—a y Z—a

Since f(z) is analytic within C and so it is continuous at z = a so that
given € > 0, there exists § >0 st. |f(z)—f(a)l<e .. (3) for
|z—al <& .. (4). Since r is at our choice and so we can take r < g/

so that (4) is satisfied Yz on the circle y. For any point zony,z —a =
i0

ret.
f@ (7 f@reid©0) _
j;,z— adZ - ol0 = 2mif (a).
Hence, by (2), |/, 222 - 2nif (a)| = |, 222 qy|
= o -], |dz| <—f |dz| = omr
Y |Z_a| r y r
or

< 2mi

f(z)dz .
fc - 2mif (a)
Since ¢ is arbitrary and so making € — 0, we get

f@dz_ o if@) = 0 or fla) = — [ L2

c Z—a 2ni ), z—a

. (5)
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Remarks. (1) [a—b|<e=>a-b=0
This result is of vital importance for further  study.
) fy |dz| = circumference of the circle y =2m radius
(3) Prom the equations (1) and (5),
1 1
— f(Z) dz = f(a) = — f(Z) dz
21i yZ—a 2ni).z—a

Corollary 1. Gauss Mean Value Theorem.
If f(2) is analytic in a domain D and if the circular domain |z — z,| < p
is contained in D, then

2

1 .
Flzo) = 5 f £(z0 + pei®)ds

That is to say, the value of f(z) at z, is equal to the average of its value
of the boundary of the circle |z — z,| = p.
Proof. By (1) and (5),

Fzo) = 1 f(2)dz 1 Jf(z)dz
Y

2mi ), z — 2y 2mi), Z — Z

|z—z0l =p=2z—2y=pe? = dz=pie?d0

1 (f(®dz 1 (% o pie’®
f(zo) = .fyz— jo f(zo + pe'®) do

ie
2mi Zy 2mi pelo
or
21

1 )
Fa) = 5= fo £(z0 + pe®®)dd

8.4 EXTENSION OF CAUCHY’S INTEGRAL
FORMULA:-

Extension of Cauchy's integral formula to multiply connected regions. If
f(z) is analytic in a ring-shaped region bounded by two closed curves C;
and C, and a is a point in the region between C; and C,.

e [ [@ g L[ @

d
2ni ),z —a Z 7 omi ogZ—a
where C, is outer curve.
Proof. Describe a circle y about the point z = a of radius r such that the

circle lies in the ring shapped region. The function 1) s analytic in the

zZ—a
region bounded by three closed curves C;, C,, and y. By corollary 2 to
' @4, f® f@) '
Cauchy'stheorem [, ~—dz = [ ——dz+ [ ~— dz where the integral
along each curve is taken in anti-clockwise direction. Using Cauchy's
integral formula,

dz
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Fig. 8(b)
@ 4, - fc f(zl dz + 2mif (@)

sz_a zZ —

_ 1 ([ f&
fla)= ZEiLzz—adZ_

oW

2ni)e z—a

Note. In the Fig. 8(b) y is a closed circle.
8.5 CAUCHY’S INTEGRAL FORMULA FOR

DERIVATIVE OF ANALYTIC FUNCTION:-

Cauchy integral formula for the derivative of an analytic function.
If a function f(z) is analytic within and on a closed contour C and a is
ary' point lying in it, then

, 1 f(z)dz
fi@ = 2mi ) (z — a)?
Or, Using Cauchy's integral formula to find the first derivative of an
analytic function
f(2)atz = z,.

Proof. Let a + h be a point in the neighbourhoods of a point a, then by
Cauchy's integral formula,

1 (f(2)
fla) =-—

, dz
2mi Jo.z —a

and

1 f(z)dz
flath - 2mi czZ— (a+h)
From which we get
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fla+h)=f@@) 1 [ f(2) 1 1
h _Zm'f [z—a—h_z—a]dz
1 f(2) ho\!
- 2mi C(z—a)hl(l_z—a) —1ldz

2 3
) Zjn' (zf—(za))h L St + ) l “

fo)y| 1 h N h? p
~ 2mi cz—alz—a (z—a)2 (z—a)3 z
Taking limit h -0, we get
or
fla+ h) f 1
lim /(2) +0+0...]dz
h—0 27n cZ—alz—a
, 1 f(z)dz
f'(a) =

2mi ). (z — a)?

Theorem. Higher order derivatives.

If a function f(z) is analytic within and on a dlosed contour C and a is
any point within C then derivatives of all orders are analytic and are given
by

f(z)dz

2mi ) (z — a)nt?

™ (a) =

Proof. Prove as in previous theorem 5, that
1 f(z)dz
D(a) = f'(a) =

fO@=f@ =52 G
This proves that the required result is true for n = 1. Let us suppose that
the required result is true for n = m so that

m) f(2)dz
O 2mi ), (z — a)™t?
Let a + h be a point in the neighbourhood of a. Observe that
ff™@a+h) - ™ ()

n
- Zr:i!hfc 1@ {(z —a 1 MM (7 — i)mﬂ}dz

. —(m+1)

_ ml f(2) h

 2mih ), (z — a)m*T [(1 Cz-— a> B 1] dz

_ ml f(z) [hm+1) m+1Dm+2); h \°

~ 2mih (Z—a)"”ll z—a + 2! (Z—a) +.“le

B f(2) m+1 (m+1)(m+2) h
me ( ) +

z—a)"”1 z—a 2! (z — a)?

+o |z
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Taking limitash — 0
-~ fM™(a+h) - f™(a)
lim
h—-0 h
_m! f(2) [(m +1

- 2mi ), (z — a)m+t

)+0+0+---]dz"'

or
- _ (m+ 1)m! f(2)ds
o (a) = 21i fC (z — a)m+2
or
£ (g = (m+ 1)! f(z)dz

2mi ). (z —a)m*?

This proves that the required result is true for n = m + 1 if it is true for
n = m. But we have already seen that it is true for n = 1 and so it is true
for n = 2 and so on. It follows that the required result is true for any
positive integral value of n.

Since FD (@), FP(a), F®(a), .. all exist.
Consequently f™M(a),f@(a),.. all aré analytic within C.

" _ 3 f(z)dz
Problem. Prove that f(a) = Je o
where C is a contour containing zZ=a.

Corollary. If C be a closed contour containing the origin inside it, prove
that
a™ 1 e%dz

n!  2mi ), z"1

Solution. We have

. _nl f(2)dz
f®(@) = 2mi ), (z — a)n*!
Fm(0) = nl [ f(z)dz

2mi ), z™t1
Taking f(z) =e%* so that fM™(z)=a"%, we obtain

or
M0 = g" = n! feazdz
f ( )_a _27.”:/ c Zn+1
a™ 1 e%dz

n!  2mi), z"t1

2z
Question 1.  Evaluate fc (;f; where ¢ is |z| =3

Solution. We know that
n! f(z)dz
(n) —
@ Znifc (z — a)n*!

Puta=-1,n=3
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3 3 f(2)dz
fOED = 2mi ) (z + 1)* (1)
Take f(z) = e??, then fM(z) = 2"e??
SO =2 =5
8 3! e??dz 8mi e??dz
ez 2mi). z+D* " 3e2 ). @+ 1"
Question 2. Using Cauchy mtegral formula, calculate the followmg

integrals

Z - - - - -
Q) fc m, where C is the circle |z| = 2 described in positive sense.

(ii) J. Z(Zdjm), where C-is |z + 3i| = 1

cosh(nz)dz
(iii) Je =i

> : where C IS circle | - z| = 2.
z(z%+1)

(iv) fce dz, where C is the ellipse |z—2|+|z+2|=6.

(v) Evaluatef ~ where C is |z| = 3.
Solution. By Cauchy's integral formula, f(a) = fC fiz)gz
or,
flz) .
fcz—adz_ 2mif (a) (D
where z = a is a point inside contour C and f(z) is analytic within and
upon C.
d

Step l. Let I= fC m
Take

f@ =35
Then

@
"Lv—em

= 2mif (=i), by (1)
[ 2n T

= 2m [9 —_(l—i)z] “9+1 5
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> S

Fig. 8(c)
Here f(z) is analytic within ani upon C s.t. |z| = 2 and z = —i lies inside
C.
_ dz
Step I Let I=]. g
Take f(2) = i then
yp—i_
¢ [z — (—mi)]
= 2mif (—mi), by (1)
1
= 2mi (—) = -2
—Trl
Here z = —mi lies inside C and f(z) is analytic within C.
_ cosh(mz) .

Step . Let I=]. procrerd.

Take f'(z) = cosh(mz) = cos(imz) and C is |z| = 2.
y . ‘ o ‘.

(&) 2 - Tx

n C.

........ (2)
1 A B C
z(z—D(z+1) z z—i z+i
1
A =latz=0
Z-Dz+)
1 1 N
z(z+1i) 2 2=t
1 1 N
z2(z—10) gy HE=
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Fig. 8(e)

Here z = 0,1, —i are points inside C.
According to (1), (2) gives

I = 2mi[Af(0) + Bf (i) + Cf (—i)]
1 1
= 2mi [f(O) = Ef(i) — Ef(—i)]

= 2mi [cos(O) - 1cos(i27t) - 1cos(—izn)]

2 2
—2'[1+1+1]—4' 1
= 2mi St =4m (D)
e%dz
Step V. Let I=[ —
C is ellipse |z—=2|+|z+2|=6
or

[(x —2)* + y?]/2 = 6 — [(x + 2)* + y?]'/?
Squaring, we get
x2+y2+4—4x =36+ (x?+y%2+4+4x) — 12[(x + 2)? + y?]Y/?
or, 12(x> + y?2 + 4 + 4x)/? = 36 + 8x
or, 3(x2+y?2+4+4x)/2 =9 + 2x
Again squaring,
9(x% +y2+ 4+ 4x) = 81 + 4x? + 36x

or,
5x2+9y% =45
or,
x2 yz
4 =1.
9 "

. x2  y?
Comparing, = + 25 = 1 we get a’> =9,b> =5

b

a=3b=+V5=22 approx.
Evidently z = wi = 3.14i lies outside C.
~ I = 0, by Cauchy’s theorem.
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y‘}

weoull

Fig: 8(f)

Step (v). I = fc — =1 fiz_)zz

Then a = 2,f(z) = 1.C is circle |z| = 3 whose centre is at z =0 and

radius = 3.
La=2 lies inside C.
According to 1), 2 gives
For

[ = 2nmif (a) = 2mif (2) = 2mi(1) = 2mi
fz)=1=f(2)=1

Question 3. (|) Evaluate fc tan(z/2)dz

(z=x0)?
where C is the boundary of the square whose sides lie along the lines x =
+2,y = +2 and it is described in positive sense, where |x,| < 2.
. dz . . .
(if) Evaluate fC T where C is the square having vertices at
(0,0),(—2,0),(—2,—2),(0,—2) oriented in anticlockwise direction.
(Kanpur 1999)
f sin zdz
Cc m\3
(=2

(iv) If C is unit circle about the origin, described in positive sense, show
that

(iii)  Evaluate where  C is |z - %| = %

—Z st
fZ—dZ——Zm and dz=0
c

Solution. By Cauchy's integral formula

_ f(z)dz
fla)= 2mi c(z—a)
and
n f(z)dz
f® (@) = anf (z—a)rt? D
This = [ 19% = 2nif (a)
and
f(dz  2mi
| Gy = F @ @
where z = a lies inside C and f(z) is analytic within and upon C.
Step I. Let
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_ [ tan(z/2)
B C (Z - xo)z
where C is rectangle ABCD and point z =x, lies within C.
Take f(z) = tan(z/2).
_ f(z)dz

Then' I = Cc (Z—Xo)z
= % FD(x,), according to 2)

d
= Zﬂi{— tan(z/2 }

AL CDIN

1 Xo Xo
— P 2 (Y)Y — 5 2 (2
—ZmZSec (2)—msec (2)

b
—— - —— X
Xp O X0
A ﬁ B y = -2
x=—2 . . x=2
Fig. 8(g)
Ans.
_ dz

Step 1. Let I=J. Gmmm

C is square OABC.
z24+2z+2=0gives (z+1)2+1=0
or,
(z+1)?=-1=i?orz+1=+i
z = f lies inside C as shown in the figure.

‘A
‘ >
-2,0A _ 0|0, 0 x
B
e} ey Cl©. -2
Fig. 8(h)
where f(z) = ﬁ
Ans.
I=—-m

Step I11. Let
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/= f sin zdz
(-3
where C is |z — —| = %

Take f(z) =sinz and so f'(z) = cos z,

f"@) = =sinz,f" (7) = —%.

Then! = [ {;2‘323 = 22—”!"]”” (%) according to (2).

Step V. (@) Let I=/, ez;zzdz
C is circle |z| = 1.
_ —z _ f(2)dz
Take f(z) =e= Then I=], @02
According (2), this gives
_2mi
I'==r17(0)

as z = 0 lies inside C.
f@=e?=f(@)=-e7=>f(0)=-e"=~1

) _ZTl.'i _ ]

(b) LetT = |, SN2 4z where |z| = 1.

z

Take f(z) = sin z, then

_ [ f@»dz _ ,_. P _
I'=]. e 2mif (0) = 2misin(0) = 0.

Question 4. The value of [ idz where C iscirclez = e??,0 < 0 < m is:
(@i

(b)—mi

(c)2mi

(d)o

Solution.Ans.(a).z = e = dz = ¢%id@

dz
=>dz = izd0:>?= id0

1 T
f—dz=f ido = mi
Z 0

Question 5. Evaluate fc |z|dz, where is upper half part of corde |z| = 1.

Solution. Here |z| = 1,z = e%®,dz = e®id6

V3
f|z|dz=fdz=f eieidez(ii9)7(:=ei"—1=—1—1=—2
c c 0

Question 6. Evaluate the following integrals by using Cauchy's integral
formula:
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OJ sin(rzl)icos(mz®) 3, where ¢ i circle  |z] =3

(z-1)(z-2)
. 1 .

(1) —Je 2+1szt >0 where c IS |z| =3
(z—-1)dz . T
(iii) Je ETe where c is lz—i| =2

: 6
(iv) Je ((Slnj))S dz, where c is ircle |z| = 1.

.

6
e3%dz . . . .

(v) fc — if c is circle lz+14+i|=2
(vi) f —dzifciscircle |z| = 2.
Solutlon Step . Here we use two results:
(R,) If f(2) is analytic within and on a closed contour C, then
fc f(z)dz = 0.

(R,) If z =a is a point inside a closed contour C and f(z) is analytic
within and on C, then

f(z)dz
i = f(a)
f(z)d
(R;) f™(a) = =, (Z_Z)nzﬂ for n=123 .
where z = a is inside C.
. _ {sin(mz?)+cos(nz?)}
To evaluate (i). I=]. oo ¥

where c is circle |z| = 3.
z =1,z = 2 both lic inside ¢
Take f(2) = sin(mz?) + cos(mz?)

Then! = [, L®% _ = [, f(2)dz __L]

¢ (z-1)(z-2) z—1

f (Z)dZ f (Z)d

) = 2mi[f(2) — f(D], by (Rz)

= Zm[{sm(n22) + cos(nZZ)} — {sin(m - 1) + cos(m - 1)}]
= 2i[(0 + 1) — (0 — 1)] = 4

. 1
To evaluate (ii). I=— fC (z2+1) L Zvt>0
where C is |z| = 3. Take f(z) = eZt "
_ 1 1 [ 1 1 ]
z24+1 (z=-D(z+10) 2lz—i z+i

Here z = i,z = —i both lie inside C.

f(Z) 1
me Z—l_Z+i]dZ
This = 2il = f(i) — f(—0), by (Rz)

= et — e~ = 2isin(t)
= [ = sin(t)

To evaluate(iii).
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_ (z—-1)dz
I'= fC (z+1)2(z-2)

where C is |z —i| = 2
(z+1D*(z-2)=0=>z=-1,z=2

If z=-1, then |z—il=|-1-i|=]1+i|=vV2<2=R

If z=2, then lz—i|=]2-i|=vV5>2=R

~z=-=1 lies inside C and =z=2 lies outside C.

_ (-1 _ f(2)

Take f@ === then I=]. T
=1 (1) = _2m

= I =2mi——, by (R3) = Zm( 9) =-

-1

For f@=5 =1+ 5= @ =/ (-D=-4;

To evaluate (iv). Let = [, (S(mz)) , where C is |z|=1.

z=2=22-052 lies inside C. Take f(z)=(sin2)°

f(Z)dZ ﬂ m (TN _ e (T
Thenl = [, ‘(. 6) == f (6) = mif (6) by (R3)

f(2) = (sinz)® = f'(z) = 6(sinz)°cos(2)
= f"(z) = 6[5(sinz)*(cos z)? — (sin z)°]

- -6 () -6)] -5
I =mif" (g) =m (i)

e3%dz

To evaluate (v). Let szc — where ¢ is |z+14+i|=2

Take f(z) =e3&z+i=0>z=—
If z =i, then lz+1+i|=|—-i+14+i|=1<2=R.
WZ=—i lies inside C.

By (Rz),l = Zﬂlf(—l) = an’e—3i

To evaluate  (vi). Let =], ;sz,c is |z = 2.

Same as (ii) and answer is [ = 2misin(a).

Question 9. Evaluate the following:
2_
(i) J; (ZZ(ZZ—?:)Z, where c is 1z| = 1.
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(i) J.dz, where ¢ is (@) |z21=3, () |z=1.

(iii) [, 2% where ¢ is (a) |z = 1, (b) |z + 1 — i| = 2.

z242z+5’

Solution.(i). Let

_ (z%2-4)dz
I'= fC z(z2+9) '

where c is circle |z] = 1.z(z2+9) = 0 = z = 0,3i, —3i
Ifz=0,then|z| =10 =0< 1,
If z =+ 3i,then |z| = | + 3i| =3 > 1.

~ z=0Iiesinside C. z = 3i,z = —3i

both lie outside C. Take f(z) = z:: then
_ f(z)_ ] _ _(0—1)_ 8mi
I_fcz—o_sz(o)’bY(RZ)_27” 059)= "9

(ii). Let

CTl
I = d
LZ—Z z

() C iscircle |z| = 3. Evidently z = 2 lies inside c.

(b) Cis circle |z] =1, in this case z=2 lies outside c.

f(2) = % is  analytic inside C...1=0, by (Ry))
(iii). Let
[ = f (z—3)dz

cZ:+2z+5

(a)WhereCis|z|=1,zz+22+5=0:>z=—@

= z=-1x2i.Takea=-1+ 2, =—-1-2i.

la| = |B| =V5 > 1.~ z = a,z = B lie outside c.

~ 1=0, by(R,).

(b)HereCis|z+1—i|=2
If z=a=—-1+2i, then |z+1—i|=|(-1+20)+1—i|=]i|=
1<2
fz=B=—-1-2ithen|z+1—i|=|—-1-2i+1—i|=]|-3i|=
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3> 2.
~ z =« liesinside C and z = 3 lies outside C.
(z—-3)dz (z—-3)dz
(z +2z+5) J.(z-a)(z-p)

z-3 _ f(z)dz
Take f@=— 5 then I=], —
z-3
- | = 2mif () = 2mi (Z ﬁ) at zZ=a
2mi(a — 3) (-1+2i—3)
= =2 — = -2 [
«—F i ¥ n(—=2+1)

Question 10. Evaluate the following integrals:
. dz .

(I) fC 21 where C IS x% + yz =4
. e3iZgz .

(ii) Jc prmwns? where C is |z —m| = 3.2

(4-3z)dz .
(III) fC m, where C is |Z| ==

Solution. (i).

— dZ 1 —

Let =], ) where € is |z| = 2.
Evidently z = 1,z = —1 both lie inside C.

1=21 (= —L) d::=2mi[f(1) - f(-1)] = 2mi(1—1) = 0

z—1 z+1

(ii). Let I—f ¢ )3, where C is |z—m| =32z+n=0=>2z = —m.
Now if Zz=—m, then|z—m|=|—7m—m| =2mr =2 %x3.14 > 3.2
N Z=—T lies outside C.
e3Zdz
= _— =
fc (z + m)3
(III) I :f (1-3z)dz

C z(z-1)(z-2)

Here C is |z| = ; Evidently z = 0,z = 1 both inside C and z = 2 lies

outside c.
Take f(2) = t:BzZ
f(z)dz 1 1
Then =l @ (50
By (Ry), I = 2mi[f (1) — f(0)]

[=32 ,{(4—32) (4—32) ]
= | = 2mi —
z—2 atz=1 z—2 at z=0

= 2mi[—1 — (—2)] = 2mi.
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Question 13. (i) Integrate )2, the counter clockwise around the circle
lz—1] =1
(ii) Evaluate [, 22 where c is (a) |z + 2| = 2, () [z +i] = L.

dz

Solution. Q) Let I = fC (237)2’ c

IS lz—1| =1

(-1D=0>@-DE+z+1)=0=z=1 ad z=-"2

If z=1 lies inside C.

Ifz = 1+h/_ ,then |z - 1| = | L+ivs 1| = | 3+h/_|
1 2\/_
=oVi2=—= =vV3>1
zZ=- 1+;ﬁ lies outside C. Simllarly, 7 =18 lies outside C. Take

1
f(Z) = m, then

f - f(2) = 2mif'(1), by (R3) of Problem (8)

(z—1)?
= { 2(22+1)} 4i
= = _— e —
"z +1)? sl 9

.. zdz . 1
(i) (@) LetI = [ —.» Where C is (a) |z +;| =2

Z+§| =2=|z2+ 1| =|2z| = [x? —y? + 2ixy + 1| = 2|x + iy|
(x?2 —y2 +1)? + 4x%y? = 4(x% + y?)
(x2—y2)2 4+ 1+ 2(x% —y?) + 4x%y? = 4(x? + y?)

(x?2 +y2)%2+1=2x%+6y?

(x?2+y2—=1)2+ 2(x%? + y?) = 2x? + 6y?
(x2+y2—-1)2=4y?2>5x2+y2—-1=+2y
(x—0)2+(@y+1)?2=2

= Circle c;, centre (0,1),7, = 2 and circle c,, centre (0,—1),7, = V2
=c,lz—il=V2andc,: |z +i| =2

L AR

zdz _ zdz 4 f
(z+i)(z—i)_ ¢, Z+D(z=1D) (z+i)(z—i)
Take f= ; for 1 and g = T for Cy
f(z )dz (z2)dz
Then I'= fC1 z—i sz gz+i

= 2mi[f (i) + g(—i)], by Cauchy's integral formula.

“ami|(2) 4G5 ]

~omift e Y] = 2m
—7'l,'l2 2—7Tl
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(ii) (b) Let I = [, ==, where C is |z + i| = 1.

7241’
Centre of wcircle € is a =z=-—i and radius 1
_ Z _ f(z)dz
Take f=— then I=[.— -
s U= 2mif (—1) = 2mi (=) a z=—i o I=mi

Question 12. Let P(z) = a + bz + cz? and
P P P
f (2) dz = f (2) dz = f (2) dz = 2mi
Cc c Cc

z z?2 z3
where C is circle |z| = 1. Evaluate P(z).
Solution. Here we use the formula
n! f(z)dz L
f™(a) = 2w ) =y ("), where z = a lies inside ¢
c(z—
In view of this we evaluate P(2).
Give 1 = 1 P(z)dz _ 1 f P(z)dz _ 1 f P(z)dz

2mi 7C (z—0)  2mi’C (z-0)2  2mi 'C (z-0)3

P"(0)
= 1=P(0)=P'(0) = ¥ (D
Given P(z) = a + bz + cz?
Then P'(z) = b+ 2cz,P"(2) = 2¢c
= P(0) =a,Pp'(0) =b,P"(0) = 2¢ (2)
Putting this in (2), l=a=b=c

Now (2) = P(z) = 1+ z + z2.

8.6 POISSON’S INTEGRAL FORMULA:-

Poisson’s Integral formula. If f(z) is analytic within and on a circle C
defined by |z| = R and if a is any point within C, then

1 ((R?—ad)f(2)dz
fla)= 2mi ), (z — a)(R? — za)

Hence deduce the Poisson's formula
, 1 (™ (R*—=12)f(Re?)d
frei®) = _f 2( )f (Re?)d¢
2m ), R?— 2Rrcos(6 — ¢) + r?
where a = re'® is any point inside the circle |z] = R

Proof. Suppose f(z) is analytic within and on the circle C defined |z| =
R and a = re' is any point A inside C so that
0<r<R.

The inverse A’'(a") of A(a) w.r.t. the circle C is given by a’ = ; which
lies outside the circle C. By Cauchy's integral formula,
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f(z)dz
fla) = i (1)
Since f(z) is analytic within and upon the circle C and S0~ f(z) -~ is analytic
within and on
A
A’ R¥/3)
A(a
o s
C
Fig. 8(i)
f(2)dz
= - (2)
Cc
[Note that 2% is not analytic within ¢ ] (1) - (2) gives
or
1 f(z) f(2) ]
f(a)_o_szc [z—a z—a dz
1 (a—a)f(2)dz
fla)= 2ni ). (z—a)(z—a")
c
RZ
1 f (a - 7>f(z)dz 1 [ (ad@—-R)f(2)dz
- 2mi ), (z— a)( R2> 2mi ) (z — a)(az — R?)
or
1 (R? —aa)f(z)dz
f(a)=2 . Zf - ..(3)
mi ). (z—a)(R? —za)
This proves the first required result.
Any point z on |z|=R is expressible as z=Re'.
Also a=re? S0 that a=re0,
Now
R?—aa = R? —re'® - re 0 = RZ — 2 (4)
(z— a)(R? — za) = (Re® —rei®)(R? — Re'Pre=¥) (4)
= Re®(R — be'®=®))(R — re~i(0-)° (4)
= Re'?[R? + 12 —rR(e!0=9) — ¢=i(0-9))] (5)
= Re'?[R? + r? — 2rRcos(8 — ¢)] (6)
dz = d(Re'®) = Rie*d¢ (6)

Writing (3) with the help of (4), (5) and (6),
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B T (R2—r3f(2)Re%idg
fla)= Zm'j;) [R? — 2Rrcos(¢p — 0) + r2]Rei®

1 (RP—r?)f(Re'?)d¢

~2m), [R%—2Rrcos(6 — ) +12]

This proves the second required result.
Remark. If we assume f(a) =u(r,0) +iv(r,0)
and f(Re'®) =u(R, ¢) + iv(R, ¢)

then the last equation gives, on equating real and imaginary parts,

2T (R? = r?>)u(R, ¢p)do
u(r,0) = —f
2w ), R?—2Rrcos(0 — @) +1?
1 (™ (R*-=1H)v(R,¢)dd
v(r,0) = —f
2w ), R?—2Rrcos(6 — ¢) +r?
Theorem. Using Poisson's integral formula for a circle, show that
fZ” e ®cos(sinp)dp  2m
o 5 —4cos(0— o) 3
Solution. By Poisson's integral formula,

cosO0

e cos(sin )

2m 2 .2 ip
f(rei®) = if z(R _ r2)f(Re?)d¢ 1)
2w ), R*+71%—2rRcos(8 — ¢)
If we compare R.H.S. of (1) with the given integral, then we find
R>+712=5 (2)
R =2 3)
f(Rei®) = eS¢ cos(sin ¢) (4)

2)&@B)>R=2r=1andsoR?—r2=4—-1=3
Now (4) = f(rei®) = e cos(sin 0)
Putting values from (2), (3), (5) and (6) in (1), we get
2T 3¢05$ cos(sin ¢)de
cosf@ : —_—
e cos(sin @) an; 5~ 4cos(d — ¢)
2 2T @¢0s0 cos(sin ¢p)d ¢
—,cos6 , : —
= 3¢ cos(sin @) J;) 5 — 4cos(0 — ¢)

8.7 MORERA’S THEOREM:-

Morera's theorem. If f(z) is a continuous function in a domain D and if
for every closed contour C in the domain D,

fcf(z)dz =0

then f(z) is analytic within D. (It is a sort of converse of Cauchy's
theorem).
Proof. Let z, be a fixed point and z a variable point inside the domain D.
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The value of the intergal fZZO f(t)dt is independent of the curve joining z,

to z and depends on z only.
Write

F(z)=f f(t)dt

Zo

Let z + h be a point in the neighbourhood of z.

z+h z
F(z+h) —F(z) = f(t)dt—f F(D)dt

Zg+h Zgo z+h

| fwde+ | foyde= j F(o)de

F h —F ’ 1 z+h 1 z+h
FEED=IO o) = [ rwae-ro| =l [ v - s
< [0 - rea < o m
=Tl 7

|f(t) — f(2)| < e for [t — z| < § because of continuity of f(z)]
F(z+ h)—F(2)
) - f@

< e whichtendstoOas s - 0

Thus lim w — f(2) =0, or F'(z) = f(2).

Thus the derivative of F(z) exists and so F(z) is analytic in D. But we
know that the derivative of analytic function is analytic. (Refer Theorem
6).

Therefore F'(z). ie. f(2) is analytic in D.
Remark. The above theorem can also be restated as follows:
If (2) is analytic in a simply connected region D of the complex plane,
show that there exists a function F'(z), analytic in D, and such that
F'(z) = f(z) forz in D.

Theorem. A necessary and sufficient condition for a function f(z) to
possess an indefinite integral in a simply connected domain D is that the

function is analytic in D. Further, any two indefinite integrals differ by a

constant.
Proof. Let f(z) possess an ir;definite integral F(z) so that
F(z) = f fde ... (D
To prove tﬁat f(2) is analytic.

By (1), F'(z) = f(2), showing thereby F(z) possess a derivative f(z).
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Also, the derivative of an and function is analytic. It follows that f(z) is
analytic.

Conversely suppose that f(z) is analytic in a domain D. To prove that
f(z) possesses an indefinite integral. Let z, be any fixed point and z an
arbitrary point in D.

Write 1 F(z) = fz f®)dt e (2)

For the integral of f(z) along any curve in D joining z, to z is the same.
Prove as in Theorem 8 that F'(z) = f(z). This proves that f(z) possesses
indefinite integral, given by (2).
Second Part. Let F(G) and G(Z) be two indefinite integrals of the same
function f(z). Then
F'(2) = f(2) = G'(2)
d

This = F'(2) =G'(2) = E(F -G)=0
Integrating, we get F—-G=c.
This completes the proof.

Fundamental theorem of Integral Calculus. Let f(z) be single palued
analytic function in a simple connected domain D. If a,b € D, then

b

f f(z)dz = F(b) — F(a), where F(z) is an indefinite integral of f(2).
a

Proof. By definition of indefinite integral,

F(z) = f F(Odt

F(b) — F(a) = fb f(t)dt—fza f()dt = fzb f(t)dt+J:0 f(Odt

0 0

= fb f()dt

or F(b) —F(a) = [, f(2)dz.
Cauchy's inequality. If f(2) is analytic within and on a circle C, given
by |z —a| = R and if | f(z)| < M for every z on C, then |[f ™ (a)| < A;—T.

Proof. |z—a|=R = z—a=Re?® = dz=iRe®df = |dz| = Rd6
! f(2)d
We know that fM(a) == [ =2

2mi (z—a)n+1

n! [ |f(2)|-|dz| Mn! (%7
TN f < j Rd6
|f (a)| =2 c |Z _ ar|n+1 - Zan+1 0
Mn!

= —ZﬂR”“ 2R

Mn!
lf™(a)| < R

or
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)
Remark 1. If we take a,= fn—'(a) then |a,| < I’:—n

Remark 2. A function f(z) is called an integral function or entire function
if it is analytic in every finite region.

8.8 LIOVILLE’S THEOREM:-

If an entire function f(z) is bounded for all values of z, then it is constant.
Or, If a function f(z) is analytic for finite values of z, and is bounded,
then f(2 IS constant.
Or, If f is regular in whole z-plane and if | f (z)| < k Vz, then f(z) must
be constant.
Proof. Let a and b be arbitrary distinct points in z-plane and let C be a
large circle with centre z = 0 and radius R such that C encloses a and b.
Equation of C is |z| = Rsothatz = Re'®,dz = iRel)|dz| = Rd#.
f(z) isbounded Vz = |f(2)| < M V z where M > 0.

By Cauchy's integral formula,

dz 1 z)dz
f(a)_ij e ) (b)ZZm' sz(—}b
1
fl@) =~ fb) =5 - f (=) f@)dz
f f(2)dz
2m (z—a)(z—D)
) “bl [ If(2)]|de]
7(@) =1 < f (2l — laD(zl — 1))
_ M|a — b| - 2nR
=22(R —Jal) - R—[b])
or
If @ = FO < Gavincin = © as R .

~ f(a) — f(b) = 0or f(a) = f(b), showing thereby f(z) is constant.

CHECK YOUR PROGRESS

True or false Questions
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Problem 1. If any entire function is bounded then it is

constant.

Problem 2. If f(z) is a continuous function in a domain D and if
for every

closed contour C in the domain D, fC f(z)dz = 0then f(z) is
analytic within D.

Problem 3. fy |dz| = circumference of the circle y = 2m. radius

Problem 4. If f(z) is analytic within and on a circle C,
given by
|z—a| =Randif |f(z)| < M for every z on C, then

Mn!

f® @] <22

8.9 SUMMARY:

1. Cauchy’s integral formula. If f(2) is analytic within and on a closed

contour C, and if a is any point within C, then f(a) = ﬁ %

2. Poisson's Integral formula. If f(z) is analytic within and on a circle
C defined by |z| =R and if a is any point within C, then f(a) =
if (R?-aa)f(z)dz

2ni °C  (z—a)(R?%-za)

3. If an entire function f(z) is bounded for all values of z, then it is

constant.

4. A function f(z) is called an integral function or entire function if it is

analytic in every finite region.

8.10 GLOSSARY :-

integration

Analytic function
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8.13 TERMINAL AND MODEL QUESTIONS:-

Q 1. States and prove Fundamental theorem of Integral Calculus.
Q 2. States and prove Cauchy integral formula for higher order derivative.

Q 3. States and prove Morera's theorem.
Q 4. Define Cauchy’s Roots Test.

Q 5. States and prove Poisson's Integral formula.

8.14 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. True
CYQ 3. True
CYQ 4. True
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UNIT-9: Power Series

CONTENTS
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9.7  Summary
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9.9  References

9.10 Suggested Readings

9.11 Terminal Questions

9.12 Answers

9.1 INTRODUCTION:-

A power series is an infinite series of the formZan(z —-1,)", where a,
n=0

are complex coefficients and z, is a fixed complex number called the

center of the series. In complex analysis, power series play a fundamental
role because they provide a powerful way to represent complex functions
locally with high precision and smoothness. This unit introduces the
concept of power series, their convergence properties, and the radius and
region of convergence, which determine where the series defines an
analytic function. It also explores how term-by-term differentiation and
integration preserve convergence within this region, allowing power series
to serve as a bridge between algebraic expressions and analytic behavior
of complex functions. Through these concepts, power series become
essential tools for the study of analytic continuation, Taylor and Laurent
expansions, and solving differential equations in the complex plane.

9.2 OBJECTIVES:-
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The main objectives of the unit “power series” presented in point form:

To define power series and understand their general structure and
notation.

To study the concepts of radius of convergence and interval/region
of convergence, and learn methods for determining them.

To explore the relationship between power series and analytic
functions, including conditions under which a power series
represents an analytic function.

To understand the properties of power series such as term-by-term
differentiation and integration, and how these operations affect
convergence.

To learn how power series can be used to express complex
functions through Taylor and Maclaurin series expansions.

To apply power series techniques in problem-solving, including
function approximation and solving complex differential
equations.

To introduce the concept of uniqueness of power series
representation and analytic continuation

9.3

POWER SERIES:-

Definition: A series of the form, > a,z" or > a,(z—a)"

n=0 n=0

is called a power series, where,
a,, a = complex constant
Z = complex variable.
The second form Zan(z—a)" can be reduced to the first form by

substitution z=¢ +a so that,

Saz-a)=Yas"

The first form is easier to work with than the second, so we focus only on
the first.

> a,z" orsimply Y a,z".
n=0

9.3.1 ABSOLUTE CONVERGENCE OF > az":-
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The power series Zanz" is said to be absolute convergent if the series
>la, [l z|" is not convergent.

The power series > a, z" is said to be conditionally convergent if > a z"
IS convergent but Z| a, |l z|" is not convergent.

94 TEST FOR CONVERGENCE OF SERIES
> az"-

Here we have provided some list of tests and results which are helpful to
find out the convergence of the series.

1. If Zun is convergent, thenlim u, =0.
nN—o0
U, L : :
2. If lim =" =finite non-zero quantity, then the two series > u, and
n—o Vn

>_v, have identical in nature.

3. Comparison test: Zun is absolutely convergent if |u, |<]v, |and

>_v, is convergent.

4. Root test: Let »|u, ["=I. Then series > u, is convergent

(absolutely) or divergent according as | <1 or | >1. The test will
fail if 1 =1.

5. Ratio test: The series Zun is convergent or divergent according

un-¢—l
l'In

as, lim <lor>1.

N—0)

6: The series Znip is convergent if p >1 and divergent if p<1.

7: Dirichlet’s test: The series Zanun is convergent if

Zai <kvn, k being a finite number.

i=1

) s =

(i) imu,=0

n—o

(iiiy > (u, —u,,) is convergent.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 179



COMPLEX ANALYSIS MT(N)-302

9.5 RADIUS OF CONVERGENCE OF POWER
SERIES:-

The radius of convergence of a power series is a fundamental concept in
complex analysis that determines the region in which the series converges

to an analytic function. Given a power series of the form Zan(z —2,)",

the radius of convergence R specifies the distance from the center z,

within which the series converges absolutely and uniformly on compact
sets, and beyond which it diverges. This radius can be computed using
tests such as the ratio or root test, and it reflects how the behavior of the
coefficients a, influences convergence. Understanding the radius of
convergence is essential for analyzing where a power series represents a
valid analytic function and how its domain of analyticity is determined by
singularities in the complex plane.

Consider the power series » a,z" = > u,(z), say, Y_u, is convergent if,

lim |u, [""<1.
n—o0

This implies, lim |a,z" [""<1=lim |a, ['".|z|<1
n—o0 n—o
H H 1/n 1
Taking lim |a, [""=—,we get
n—w R
z
2] <1 or |z|<R.

Hence, Zanz”is convergent or divergent according as, |z|<R or

| z|> R.So, corresponding to every power series Zanz", 3 a non-
negative number R such that |z|< R if the series is convergent and
| z |> Rif the series is divergent.

Now if we draw a circle of radius R with centre at origin, then

(1 The power series Zanz” is convergent for every z within this
circle (] z|< R).

(i) The power series Zanz“ is divergent for every z outside the circle
(Iz>R).
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Such a circle is known as the circle of convergence, and its radius R is
referred to as the radius of convergence of the power series > a, z".

There are three possibilities for R.
(M R =0, in this situation, the series converges only at z = 0.

(i) Riis finite, in this situation, the series is convergent at each point
within this circle and diverges at each point outside of the circle.

(iii)  Ris infinite, in this situation the series is convergent Vz.

a‘n+l
an

1 . .
Note: = =lim | a, |'"= lim
R n—oo

n—0

9.6 SOME FUNCTION OF A POWER SERIES:-

A power series defines a function, often called the some function of the
series, within the region where the series converges. Given a series of the

formZan(z —2,)", this function is obtained by assigning to each point z

in its interval or disk of convergence the value of the infinite sum. Within
this region, the sum function is analytic, meaning it possesses derivatives
of all orders and can itself be differentiated or integrated term-by-term.
The behavior of this function is closely tied to the radius of convergence,
beyond which the series no longer represents a meaningful value. Thus,
the function of a power series provides a powerful tool for expressing and
studying analytic functions in complex analysis.

If f(2)= Zanz” , then f(z) is called some function of power series.
Theorem 1: The power series > "a, z" either,

0] Converges for every z. or (i)  Converges
only for z=0

(iili)  converges for some z.

Proof: It is enough to provide one example for each case.

0] Consider the power series Zz—l Now, comparing this with
n!

> u,(z), we find that
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n+1

Uy _ 2™ 0l 2
u N+ z"  (n+1)

H un+l H

lim [ = lim Jzl=0<1
e U n—w (n+1)

. " .
Hence the power series, Z — is convergent for every z.
ni

(i)  Consider the power series » z"nl=>"u, , say
0,if z=0
Then, im |u, |=limnl|z|"=3
N> N> oo,if z#0
"+ Uy, Qe = > nlz"is convergent if z=0 and divergent if z 0.

(ili)  The power series 22” is convergent if |z|<1 and is not
convergent if |z > 1.

Theorem 2: If the power series Zanz" converges for a particular value
z,0f z, then it converges absolutely for every z for which | z|<] z, |.

Proof: Suppose the power series Zanz" is convergent for z =z, so that

Zanzon is convergent. Consequently, lim a,z; =0. .. (D)
n—o0

Our aim is to prove that Zanz” is convergent for every z for which

|zI<l 7, |-
(1) =3 areal positive constant M >0 s.t., |[a,2"|<M Vn.
n
z
Now, |a,z"| < T |z =M=
z
n n
z . . .
Or [a,2"|< M‘— . But the geometric series Z|l Z] —is convergent Vz
z, Z,
s.t.
| Z]

—<lie,|z|dz].
| Z,
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-.By comparison test Z| a,z"| is convergent Vzst, |zl z,].
Consequently, Zanz” is absolutely convergent Vz s.t., | z|<] z, |.

Remarks: For every power series Zanz” , there exists a number R such
that 0 < R < oowith the following properties.

Q) The series converges absolutely for every z suchthat |z |< R.
(i)  The series divergent if | z|> R

This statement is called Cauchy Hadamard theorem.

Theorem 3: To show that the power series Znanz”*l, obtained by
n=0

differentiating the power series Zanz“, has the same radius of
n=0

convergence as the original series Zanzn :
n=0

Proof: Let us consider R and R are the radius of convergence of the
series.

> a,z" and ) na,z"* respectively.
n=0 n=0

. 1 . 1
Then, lim |a, ['"==,lim |na, ['"==-.
n—w R now R

Now, we have only to show that R=R'.

For this we have only to prove that lim n*’" =1. Now. By Cauchy theorem

n—o0

on limit

: I
lim a, """ = lim Znst

nN—o0 n—o an

So, fim n*" = fim " jim [1+ 1):1.

n—o n—oo n n—oo n
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Theorem 4: (Analyticity of the power series): The sum function f(z) of

the power series Zanz“ represents an analytic function inside the circle
n=0
of convergence.

Or

If the radius of convergence of power series Zanz“ IS a positive real
n=0

number R, then prove that the function f(z) defined by f(z) = Zanz”

n=0
isanalyticin [ z|<R.

Proof: Suppose, f(z)=> a,z", g(z)=) naz"".

n=0 n=0

If R be the radius of convergence of the power series Zanz” then it will
n=0

also be the power series of Znanz”’1 which is an derived series of
n=0

> a,z" (By theorem 3).
n=0

Let us consider a point z within the circle |z|=R so that |z|<R. Also 3

a real number r >0s.t. | Z|< r <R. Then the series Zanz” is convergent
n=0

for | z|< Rsothat Y a,r" is bounded.

n=0
This implies a finite real number M >0 s.t. [a,r" <M .
For the sake of convenience, we write |z |= p,|h|=€

his chosen so that, | z|+|h|<Tr .

- ‘Z a{—(z i h?]n mLA nz“‘l}

|f(z+hr:—f(z)_g(z)
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n:Oe

_EM|(pre) _(p) _ne(p)

ST (e (2

_yM 1 1 e (P

_ge.l_[wj 1_(/0) pnz;‘n(rj . (D)
L r r

But—+ - " Q)

1_(p+e} r—p—e

.

2 3
Subtracting, A(1—£j=£+(£j +(£j =.=—" (By sum infinite
r r r r

series of geometric progression)
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P
.

=P N
o] T *
r

Writing (1) with the help of (3)

|f(z+h)—f(z)_g(z)‘<M{ rr e 2}
| h elr-p-¢ r—p (r-p)

M1 r—pee
slr—-p-¢ (r-p)°

_ Mr. &2
e(r—p—e)r-p)?

Or|f(z+h}2—f(z)

Mr.e
(r—p—&)r-p)

—9(2)‘<
Making h — 0, so that | h|=& — 0, we get

lim
h—0

|f(z+hz—f(z)_g(z) <0

=g(z). For modulus of any quantity

Consequently, lim f(z+ hr: — @)

>0
Orf'(z)=g(2).
But g(z) exists so that f (z) exists Vzst. |z|<R.

It means that f(z) is analytic for |z|< R and has g(z) as its derivative.
Since g(z) is itself a power series with the same radius of convergence,
we may differentiate it to obtain the second derivative of the original
series. Using similar reasoning, one can show that this second derivative
also remains analytic within the same circle of radius | z|= R. Moreover
the derivatives can be found by term by term differentiation. Thus the sum
of function of a power series represents an analytic function inside the
circle of convergence.
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Corollary 1: The function defined by a power series is continuous
throughout any domain completely contained within its circle of
convergence.

Corollary 2: A power series Zanz” may be integrated term by term
n=0

along any contour T" that lies entirely inside its circle of convergence.

Corollary 3: A power series Zanz” may be differentiated term by term
n=0

in every region located within its circle of convergence.

Example 1: Evaluate the radius of convergence of the following power
series.

: = 72" . 2 2"z" =2z
M 25 M 2 @ 2 o
Iy

Solution (i): We have Zz—n

n=0

Comparing this series with Zanz” , We get a, = PR
n=0

1/n
1 . . 1 .
Z=Ilm|a [""=lim| = | =Ilm
n
R now n—

n—o0

lz0 so that, R=o.
R

-n

(i)  We have here, a, = ——.
1+in

1/n__

1/n
i—Iim|a| IimL —Iim;
R now " N—> [(1+ n4) Nesoo 2(1+ n4)1/2n
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4\-1/2n
= lim (1+n) =1 1-1/ {l 15+ }
n—o0 n—oo 2(n ) n 2n
:l li 1:/Ln 2 [1_ 15 + :|
2 = (n'") 2n
=1><1x1:£. For lim n'" =1
2 2 n—o0
~R=2.
1 2
i Since we have, a :_(n.) . Then
(i) =)
n
_((n+)H*  [(n+Dn!P?
" RM+DH (2n+2)(2n +1)2n!
¢ B _ (n+DH*  (+1)*  n+1 1+1/n

a, {20+)} (@n+2)(2n+1) 2(2n+1) 4(L+1/2n)

la,.|  1+0
©4(1+0)

1/R =1Iim

n—)oo| a
n

=1/4. Hence radius of convergence is R =4

. nr
(iv)  Here, a, =

_ (n+DY  nl
" (+)™ (n+1)"

a,; (n+1)! n" 1
SO’ = I = =
a, (m+1)™ (n+D" 1Y)
1+
n
1/R:||m|a“+1 __1 ~=1/e. Hence, R=e.
nﬁm‘ an 1
1+~
n
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Example 2: Compute the radius of convergence of the power series listed
below.

n

(i) i(3+4i)”zn (ii) i(_l)n(z—Zi)” (iii)

N iz”
p
n=0 n

Solution (i): We have given, Y a,z" => (3+4i)"z".
n=0

—a =(3+4i)". Then |a, |5 (3+4i)" |=[3 +47]" =5".

1_ lim |a, ['"=lim(5")"" =5 0Or R _1
R n—w n—w 5

(i) We have Ya(z-a) =i%(z—2i)" e, an:%and

a=2i
_ n+l
Now, an+l:(1) :h:_i )
n+1 a, n+1
So, %zlim al _fim ™ Zfim 1 —1. Hence, R=1
n—o0 an

n— I now
n+! (1+ 1)
n

0

. 0 1., .
(iii)  We have given Zanz :Z—z . After comparing we get
n=0

np

1
a, = - so that,

p

p p
£:|im|a”+1|: n = 1 :(Lj =1.Hence, R=1
R > a, 1.1 1+0

n
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a.b - a(@a+1)b(b+1) z° +.... has
1.c 1.2.c(c+1)

Example 3: Prove that the series, 1+

unit radius of convergence.

Solution: Neglecting the first term,

a = a(@a+ld..(a+n-1)b(+1)..(b+n-1)
" 1.2..nc(c+1)..(c+n-1)

_a(@a+l..(a+n-1)(@+nbd+1)..(b+n-1)(b+n)
e 1.2.n.(n+c(c+1)...(c+n-1)(c+n)

a b
_(a+nXb+n)_(l+nl}+n]

Dividing, 2t — : -1
a, (n+D(c+n) (1+j(1+cj
n n
i: 'm|an+1 = (1+0)(1+0) =1. Hence, R=1.
R nela, | (L+0)1+0)

Example 4: Find the radius of convergence of the series

13 , 135 ;

z +
2" 25" 258

Solution: The coefficient of z" of the given power series is given by,

, _1.35..(2n-1)
" 25.8..(3n-1)

_ 1.35..(2n+1)

then a_,, =
" 2.58..(3n+2)

Now, B _ (2041 :Z_ . Then, = =1lim 8| _ 2:(1+0) :z.
a, (3n+2) 3@+2j R nla, | 3.(+0) 3
3n
Hence, R = 3 .
2
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Theorem 5 (Abel’s theorem on limit): If > a z"converges, then
f(z)=Zanz”approaches to f(1) as z—1 in such a manner that

1-z ]
u remains bounded.
1-|z|

. i 1-z .
Proof: We lhave already given that Zanz" Is convergent and 1| || IS

bounded. Now we have to prove that for f(z) »> f(1) as z —»1.
Without loss of generality, we may assume Zan =0 ...(1)

Since this can be obtained by adding suitable constant to a,. According to

. 1-z
equation (3) of theorem 4, 3K > 0s.t. H <K ...(2
~|z
Write, s, (z2)=a, +a,z+a,2° +..+a,2" ...(3)

Then s, (1) =a,+a +a, +..+4a, =S, say

Making n — cothen we obtaion, lim s, =0 ... (4

Applying definition of limit, given ¢ > 0,3 a positive integer ms.t.,
vn>m=|s, -0k e

Or, |s,lkeVn=m ... (5

BY () 1= Y 8,0" =Y a,=0

or, f(1)=0 ... (6)
then by (3)
s,(2)=a,+a,z+a,2" +..+a,2"

=S, +(S,—S,)Z+ (S, —8)2* +..+ (S, -, ,)Z"
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=s,(1-2)+s,(z—=2°)+...+s, (2" =2") +5,2"

Making n — oo, lim s, (z) = (1-2)>_s,z" +lim s 2"
N—o0 =0 n—o

Using (4), we get

lim s, (z) =(1-2)) s,2" + > s,2"

n—e n=0 n=0

Using (4), we get.

msn(z)=(1—z)isnz"
or f(2)=(-2)3s,2"

=(1- z){misnz” +isnz"}

n=0 n=m

m-1 0
S () K1-z] l:anz” +>Is,].12" @
n=0 n=m
m-1 0
<1-z| anz” + gz [z]" [On summing the geometric progression]
n=0 n=m

|-t 1-z|.|z]|"
gi-z] z&}

m-1
J1-z|| > s,2"+Ke|z |m}
| In=0

The first term on the right-hand side can be made arbitrarily small by
choosing sufficiently close to 1. This implies that f(z) >0 as z—1.

But f(1)=0. f(z) > f(as z—1.
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Example 5: Find the domain of convergence of the power series
Z( 2i j

Z+i+1

. n . n+l
Solution: Since we have u, =( 2 ) then u, :( 2 J

z+i+1 z+i+1

un+1

Now, lim =Iim| : |= 2.
n%‘un n%ooz+|+1| [z+1+1]

As we know that the given series is convergent if#_<l ie.,
|z+1+1i|

|z+1+1i]>2

Hence, the series converges at every point lying outside the circle with
center at z=—(1+1)and radius 2.

Check your progress

Problem 1: Find the radius of convergence of the power series

i(log)”z“.

Answer: R=0

Problem 2: Find the radius of convergence of the power series
Z n 2?L| R
~' 1+2in

Answer: R=1

9.7SUMMARY :-

The unit “Power Series” in complex analysis explores infinite series of the
form Zan(z—zo)" , emphasizing their fundamental role in representing

analytic functions within a certain region. It introduces the concepts of the
radius and circle of convergence, which determine where the series
converges or diverges, and explains how tests such as the ratio and root
tests are used to compute convergence regions. This uni highlights that
power series converge absolutely and uniformly inside their circle of
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convergence and can be differentiated or integrated term-by-term,
preserving analyticity. It also discusses boundary behavior, noting that
convergence at the boundary is not guaranteed and must be checked
separately. Overall, the unit provides a foundational understanding of how
power series serve as powerful tools for expanding, analyzing, and
approximating analytic functions in the complex plane.

9.8 GLOSSARY: -

> Power series

> Absolute convergence of power series

> Convergence of power series

> Radius of convergence of power series

> Some function of power series
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9.11 TERMINAL QUESTIONS:-

Long Answer Type Question:

1: Find the domain of convergence of following power series
2.1.35.. (2n D(1-z w(iz—ljn

a b L=

@ 3 = j Ol

2: Determine the behaviour of Z % on the circle of convergence.

4n

. . z .
3: Determine the behaviour of Z 1 on the circle of convergence.

+4n
4: Which value of z the series Zﬁ is converges and also find
+2
its sum.
5: State and prove the Abel’s theorem.

Short answer type question:

1: Define the power series and radius of convergence of power series
2: Write down some test to check the convergence of power series.
3: Find the domain of convergence of following power series.

(i) HZ:;”!Z” (ii) ;(2i2+i+1)

4. Determine the region of convergence of the following series
o D (i) Xy
¥ (n+1)°4" ~ (2 =1)!
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5: Show that the radius of convergence of the power series

o0

Z(i%Jr i)n is given by|z +il< /5.

Objective type questions:

1. A power series Zan (z—z,)"converges absolutely for:
a) All z

b) lz-2z,|<R

C) |z-z,>R

d) Onlyat |z=2,

2. The radius of convergence R of a power series can be found
using:
a) Cauchy—Riemannequations

b) Ratiotest
C) Green'stheorem
d) Stokes’ theorem

3. If Zanz” has radius of convergence R, then the series diverges
for:

a) |z]<R

b) |z|=R

C) |z|>R

d) Both (b) and (c)

4. For the power series ZZ—' , the radius of convergence is:
n!

a) 0

b) 1

C) 00

d) Undefined

5. The function represented by a power series is:

a) Always analytic inside its circle of convergence

b) Neveranalytic

c) Analytic only at the center

d) Analytic only if the coefficients are real

6. If R: and R> are radii of convergence for two series, the
product’s radius is:
a) R +R,
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b)

c)
d)

7.
a)
b)

c)
d)

8.
usuall
a)
b)
c)
d)

9.
a)
b)

c)
d)

10.
a)
b)
c)
d)

min( R,,R,)
mex(R,, R,)
RlRZ

A power series Zan(z —2)" has center at:

0
1
2
-2

The interval or region of convergence of a power series is

Y.

A line segment

Entire plane

A disk centered at the expansion point
A rectangle in the plane

The series an” has radius of convergence:
0

1
2
o0

At the boundary |z—-z, |=R

The series always converges

The series always diverges

Convergence depends on individual terms
The series becomes a polynomial

Fill in the blanks:

A power series is generally written in the form Zan (z—12,)",
where z, is called the

The set of points where a power series converges forms a
in the complex plane.

The radius of convergence R of Zanzn can be found using the

ratio test R = ! provided the limit exists, which is

limsup|a,,,/a,|
known as the formula.
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4: Inside the circle of convergence, a power series represents an
function.
5: If the radius of convergence of a series is R, then the series

converges absolutely for all points satisfying | z — z, |<

6: The power series Z z_' has a radius of convergence equal to
n!
7 At the boundary |z -z, |= R, the convergence of a power series is
8: The largest disk in which a power series converges is called the
of convergence.
9: A power series Zanz” converges only at z =0 if its radius of

convergence is

10: If a power series converges at a point z,, then it converges for all z
such that | z -z, |< |z, — z,|. This is known as the
property of convergence.

9.12 ANSWERS

Answer of long answer type questions:

Answer 1(a): This shows that the series is convergent inside the circle of
radius 2/3 and centre at z =4/3.

(b):  This series is convergent for set of values of z which lie inside the
circle of radius +/5 and center at z = —i

n

. z" .
Answer 2: The series Z— is convergent for every value of z other than
n

1 on the circle of convergence.

ZAn

1+4n

Answer 3: The series Z is convergent for all values of z on the

circle except z =+1,+i.
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4n
.. 1
Answer 4: The series is convergent for | z” +1[>1 and )’ z =— as
1+4n 2
1,
|27 +1]

Answer of short answer type questions:

Answer 3(i): The series is not convergent V z except z=0

(i) The series converges for all points located outside the circle of
radius 2 centered atz = —(1+1).

Answer 4(i): Series converges absolutely, for |z +2|< 4
(i):  For all values of z, series converges absolutely.

Answer of objective type question:

1: b 2: b 3: C
4: C

5 a 6 b 7 c
8: C

9 b 10: c

Answer of fill in the blanks

1: Center 2: disk 3: ratio
4. analytic

5: R 6: 00 7: uncertain
8: circle

9: 0 10: monotonic
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UNIT-10:Expansion of Analytic Functions

CONTENTS

10.1 Introduction

10.2 Obijective

10.3 Taylor’s theorem
10.4 Laurent’s theorem

10.5 Uniqueness of Laurent’s expansion
10.6 Maximum modulus principle

10.7 Summary

10.8 Glossary

10.9 References

10.10 Suggested Readings

10.11 Terminal Questions

10.12 Answers

10.1 INTRODUCTION:-

In complex analysis, the expansion of analytic functions provides
powerful tools for representing complex functions in series form around a
point. If a function is analytic within a neighbourhood of a point zo, it can
be expressed as a Taylor series, which is a power series involving non-
negative integer powers of (z—z,). This representation not only
simplifies computation but also reveals important local properties of the
function. However, when a function is analytic in an annular region (a
ring-shaped domain) around z, but not necessarily at z, itself, it can be

expressed in a more general form known as the Laurent series, which
includes both positive and negative powers of (z —z,) . The Laurent series

thus extends the idea of the Taylor series to functions with isolated
singularities, enabling deeper analysis of their behaviour near such points
and forming the foundation for concepts like residues and contour
integration in complex analysis.

10.2 OBJECTIVES:-

The objectives of the “Expansion of Analytic Function” unit in complex
analysis are to study how analytic functions can be represented in the form
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of infinite series and to understand the importance of such expansions in
complex function theory. This chapter aims to:

e Explain the concept and derivation of the Taylor series for
functions that are analytic within a certain region;

e Introduce the Laurent series for functions that are analytic in an
annular region, allowing for the inclusion of negative powers;

e Distinguish between the regions of convergence for both series

e Apply these series expansions to identify and classify singularities
and to solve problems involving residues and contour integration.
Through these objectives, students develop a deeper insight into
the behaviour and structure of analytic functions in the complex
plane.

10.3 TAYLOR’S THEOREM:-

In the complex analysis, Taylor’s theorem provides a way to express an
analytic function as an infinite power series around a given point within its
region of analyticity.

Theorem 1: If a function f(z) is analytic within a circle C with its centre
z = a and radius R, then at every point z inside C,

[ee)

f@a=Y @ o @)=Y anz-ar
n=0 n=0
Where,
f™@
=

Proof: Let f(t) be analytic within a circle C whose equation is |t — a| =
R. Let z be any point within C s.t. |z — a| =r < R.

By Cauchy's integral formula,

1 [ f(tde
@ =55 ct—z
1 f(Odt

:2m' c(t—a)—(z—a)
f() Z —-a
"~ 2mi c (t— a) a )] dt
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Figure: 1
L (f@O  z=a_ z=ay il
f@=szct_ta[1+i_z+(i_z) +'"+C—Z)

(=) () e

1 n+1
= — -1 - 2 n
IForl_b—(l b) 1+b+b“+--+b +1_b]

fM@ 1 f(®dt

Using the formula, —= = —. gy We get
! a n a
@ = 1@+ -2 s - ap 2
M (q
ot (z - a)nf n'( ) +Upy; (1)
_ (z-a)¥7 f(t)dt
where Unyy = =5 Je (t-z)(t-a)**1
|z —al*™ lf ()] - 1dt|
o |Upsal < f ——
2 c(t—al—|z—al])|t —aql
M /r n+1 1
S%(E) -(R_T)-ZnR where M = max. |f(t)| onC.
r n+1 1
or |Un+1| SM-(E)l '1_(1)_>0 as n — oo,
n+
For lim (1) =0 as T<1.
n-o \R R

oo hm Un+1 = O

n—-oo
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f(2) = lim lf(a)+(z—a)f (a)+( a) F(@) +
(z—a)"

—f™(a )l

or

f™(a)

n!

where a,, =

Note: The above theorem can also be restated as:
Let f(z) be analytic at all points within a circle C, with its centre z, and
radius R. Let z be any point inside C,. Then prove that

f(2) = fz) + Z EZB) o gy,

Deduction: Since z is a point within the circle |t —a| =R s.t. |z —a| =
r <Rsothatwecantakez =a+ h,h =z —a.

Putting in (2), f(a + h) = —f(") (a)

or

hZ
fla+h)=f(a)+hf'(a)+ - f"(a) + -

This is alternative form to Taylor's series.
(i) If we write a = 0 in (2), then we get

o)

f2) =) an" f(2) = Z 7o

n=0

This is also known as Maclaurin's series.
(iii) The domain of convergence of the series (2) is given by |z — a| < R,
where the radius R of convergence is the distance from a to the nearest
singularity of the function f(z). On the circle |z — a| = R, the series may
or may not converge.
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Taylor’s theorem is significant because it allows an analytic
function to be expressed as a polynomial-like series, making it easier to
study its local behaviour, compute function values, and analyse properties
such as differentiation and integration in the complex plane.

10.4 LAURENT’S THEOREM:-

In the complex analysis, Laurent’s theorem extends the idea of Taylor’s
Theorem to functions that are analytic not in a full disk but in an annular
region (a ring-shaped domain) around a point.

Theorem 2: Laurent's Theorem. Suppose a function f(z) is analytic in the
closed ring bounded by two concentric circles ¢ and C’ of centre a and
radii R and R', (R’ < R). If z is any point of the annulus, then

o)

f@ =) az-ay+ i bu(z - @)™

n=0

where

1 fode 1 F(O)dt

"o2mi) (6 — )t 2mi ) (6 — @)

Proof: Let f(z) be analytic in the closed ring bounded by two concentric
circles C and C' of centre a and radii R and R’, (R" < R). Then if z is any
point within the ring space, then

R'<|z—a|=1r<R.

Here we shall make use of the following facts

: L 1Pl 2 4 .4 pn g "

M ==a 1b) =1+b+ b2+t b+ 2

.. t—-al~ 1 z—a

(i) [1 T z-al T i-[t-a)/Gz-a)]  z-t

. N\ _ BT R’ n r R’

(i) Jim (7)" = 0= lim (T) as RELT <L

(iv) fC |dt| = 2m. radius of circle C = circumference.

By extension to Cauchy's integral formula,
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Figure: 2
fde 1 f(o)de

f(Z)ZZHiCt—Z 2mi Jor t—2z
1 f(t)dt 1 f(t)dt
‘zm a—ay—@—a)+mﬁc,@—a)—a—a)
f@® zZ - f@® t—a i
Zm t—a[ (t—a Zm cZ—a z—a)] dt

g | L () + (=) -
Y (D) - i:;‘}l]dt
bor [ L (20 (25) +
(o) (20 - e

F(t)dt
e

(t_a)n+1’

Taking a, = p—
1 f(odt

b, = =a-
"oo2mi ) (t—a) T "

f@ =lag+ (@ —a)a; + (z—a)az + -+ an(z — Q)" + Ups4]

b, b, b,
L—a+@—ay+ e _@n+nﬂ] (D)

1 ft) (z—a n+l
where Un+1 = % c E(;) dt,

2mi C,Z—t

Let M = max. |[f(t)|onC, M’ = max.|f(t)|onC'.

n+1 |dt|
|Un+1|< f lf(®)] - a| (It—al—|z—al)
M ryn+l 27'[R
= (E) (R—1)
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1
. -
1-(r/R)

r n+1
or |Upsil S M (E) 0 as n — oo

Hence lim U, =0
n—-co

a n+1 |dt|
(Iz=al =t —al)

1
< .
Vsl _anC, folr | —

M' (R\™" 2nR’'
S _
2T (r—R")

r

R[ n+1 1

Or |Vn+1| S M (7) ’ (T/R’)—l -

Hence limV,,, =0
n—->oo

0 as n — o

Making n — oo in (1) and noting the above facts,

o)

f(z2) = z a,(z—a)" + Z oo @

n=0
Deduction. Take C, a circle whose equation is
R' < |t—a| =Ry <R.
Then
1 f(t)dt b = 1 f(t)dt

a = . ) - . = a—
"o 2mi) ()" 2mi ) (t— a)TH n

In this event (2) becomes

o)

f@=) az-ar+ i (z—a)"a_,

= i a,(z — a)" + i (z — a)"a, = i a,(z — a)
) = = £

f2) = i an(z = 0" with a, = C(tfftszﬂ
10.5 UNIQUENESS OF LAURENT’S
EXPANSION:-
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The uniqueness of Laurent’s expansion IS an important property
established in the expansion of analytic function chapter in complex
analysis.

Theorem 3: (Uniqueness of Laurent expansion) Suppose that we have
obtained in any manner or as the definition of f(z), the formula

f(2) = z A (z— "R <|z—a| <R

n=-—o

Is the series necessarily identical with the Laurent's series?
Proof: Let f(2) = YXy-_ o Ap(z— )™

To prove that (1) is identical with the Laurent's expansion

N . 1 fmdt
f(2) = Z (=) @ witha =50 ) G

n=-—oo

If we show that 4,, = a,,, the result will be proved. Equation to C, is |t —
al|=r,ie.t—a=re,R" <r <R.

Z (t —a)mnldt
me__oo
2 Z f rm-n-1 L(m n-— 1)9”.eu9d9
i =
2r
Z AmT'm nf elm-n)0 4o
an__oo

21

If m# n,f eim-n)0 49

0

2pmi=1

pli(m-n)6 2m
= I =0ase

~litm—n) o
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21 ] 2T
Ifm = n,f elm-mogg — f e%df = 2n
0 0

1
LA, = 27TA .2 = A,

Example 1: Obtain the Taylor and Laurent's series which represents the

z%-1
function pETES TS in the regions
0] lz| < 2,
(i) 2<z| <3,
@)  |z| > 3.

— __z*-1 . 5z+7
Solution: Suppose f(z) = e 1 D
or

3 8
=14+ —-- . (1
[ =1+ z+2 z+3 @

(1 When, |z| < 2, then <1
3 z\~1 8 z\71
f(z)=1+§(1+§) —5(1+§)

2 3

IS R
S e

8
=1+ Z (" [2n+1 - 3n+1]zn Ans.
0

This is Taylor's series valid for |z| < 2
(i)  When, 2 < |z| < 3.

Then— 1ﬂ<1
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f2) = 1+§(1 +§>_1—§(1 +2)

2

) ] S5

L[32"  8z"
_1+Z ( 1) [n+1 3n+1]

This is  Laurent's  series in the annulus 2 < |z| < 3.

(iii))  When, |z| > 3, then—<1 = |< 2<1.

14 i
/@) z+2 z+3

<1430+9) 50+
=1+§§ () 53 ()
0 0

—1+35 ¢ Znﬂ “[3-2" — 3" 8] Ans,

n

Example 2: Expand a3 for
(i 0<|z] <1,

(i) 1<|z| <2,

@iii)y  |z| > 2.

. A _ 1 L _ L
Solution: Let f(2) = 5 ——= = 2)(2 5 = f(z) = - -~
Then
0] When 0 < |z| < 1.

From (1),
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This is Maclaurin’s expansion incase 0 < |z| < 1.

(i)  When 1< |z| < 2.

Then L <q,2

— <1
|Z] 2

Now (1) is expressible as

=y 20D

This is Laurent's expansion in the annulus 1<|z|<2.

(iii)  When |z| > 2.

Then 2 <1, SO that Ll
. || ] |z] 2

Now (1) is expressible as

<1.

n

This is Laurent's expansion in the annulus 2 < |z|<R.

Example 3: Obtain the expression for % which are valid when
(M lz] <1 (i) 1<|z| <4 @iii)  |z| > 4.
L _z2-4 __(5z+8)
Solution: f(Z) T z245z+4 (z+4)(z+1)
1 4
=1- - . (1
f@ 1+z z+4 (1)

0] When |z| < 1.
f@=1-1+27—(1+ Z)_l

=1—-[1—z4+2z*—+(=D"z"+ -]
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e € I ee oL A
=—14+[z—z>+ 4+ (-1)"1z" + -]

n

DG s e () e
=1+ ) (D" [1+47]z"
+§O: + z

This is Maclaurin's series.
(i) When1< |z| < 4. Thené <18«

Now (1) is expressible as

1\t AN
f(z)=1—;<1+;) _(HZ)

1 1 1 VA Z\ 2
== t-gt |- 1-3+ () - ]
1 1 1 -z Z\2
=2t @)
= [ 1 Z\

j— _ njyi__ _[(_—

_z( D AL (4)]

n=1
This is Laurent's series.

(i)  When |z|>4,then|§|<1,and lz| >4>1=|7| >1:>é<1.

Now (1) is expressible as,
-l Y
f(Z)_ Z Z VA Z
1 1 1 4 4 4\?
:1—_[1__+_2+...]__ 1___|_<_> — ...
Z Z Z VA VA VA

. 15: AN 1n<4>"
B z ( )Z” z =D z
n=0 n=1

-1
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—1—Z< o |+ (5) ]-1+Z(‘n1’:“<1+4n+1>

—1 +Z (—1)n(1+4n)-zin

Example 4: If 0 < |z — 1| < 2, then express f(z) = m in a series

of positive and negative powers of (z—-1).
Solution: Let u = z — 1. Then, by what is given,

u
O<|u|<2,sothat%<1.
_ z _ A 4 B
&= =" 2=1"2=3
z 1 1 3 3
A_[z—3]zzl_1—3___ z—l] T3-1 2
_ 1 4 3 _ 3 1
&= 23" 2u-2 u
3 w1
=_2(1=2) ——
4( 2) 2u
_ 32 (u)” Z(Z—l)n 1
4 2 B 2(z—1)
n=0
Example 5: Prove that logz = (z — 1) — 222 Llz—1 < 1.

2!
Solution: Let f(z) = logz. By Taylor's theorem

(n)
) = § (z -y
e

2
=f@+@-af (@ +——f"(a)+

Takinga =1, we get f(1) =log1 = 0,

1 -1
F@=—f"@=—
L f)=0,f'(1)=1f"(1) = -1 etc.

_ , (z - )2 " (z-1)°
f@O=f+E-Df D+ fr)+-=0+GE-1)————+

Example 6: Expand log(1+ z) in a Taylor's series about z =0 and
determine the region of eonvergence for the resulting series.
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Solution: Let f(z) = log(1 + z). Then
nr 2!
“aro) D= ar s

iv — 3! n-— 1( _1)'
f (Z)——m ,f™(2) = (-1) dto" etc.

n

f'@=13

Hence f(0) =log1=0,f'(0)=1,f"(0)=—1,f"(0)=21,
f?0)==3,...,.f™0)=(-1)"(n—1)! etc.
Therefore
Z2 Z3
f(2) =log(1 +2) = f(0) + zf'(0) + 5, £7(0) + 5 f(0)

AR z"
+wa(0) + -+ _|f(n)(0) + -

=0 + ZZ+Z3 SPANETI = 2 = 1) 4 -

B TIANET 41 AR
z2 z3 z* z”

= -t — —— ... -1l — 4 ...

b e R CE Vit

Let u,, denote the nth term of the series. Then

(_1)n—1zn (_1)nzn+1
U, =——m—m,U =
n n n+1 n+1
) o In+1 1
. lim = lim | —
now [Upyql  noe | nz ||

Hence by D' Alembert's ratio test, the series converges for
lz] <1

It can be easily shown that the series converges for |z| = 1 except for z =
—1. It may be noted that z = —1 is the singularity of log(1 + z) nearest
the point z = 0. Thus the series converges for all values of z within the
circle |z| = 1.

Example 7: Prove that logz=(z—-1)— Cab LN wlz—1] < 1.
2!
Solution: Let f(z) = logz. By Taylor's theorem
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m
ﬂ@—}j(—)”'()

(z-a)?
=f(@ + @z = a)f' (@ +——F—f"(@) +

Takinga = 1, we get f(1) =logl =0,
1 -1
f'@=-.f"@=—

~ f()=0,f'(1)=1f"(1) =—1etc.

_ , (z— )2 " (z — 1)?
f@=fD+E-Df Q)+ ff+=0+(z-1) - +

2!

Example 8: Expand log(1+ z) in a Taylor's series about z =0 and
determine the region of convergence for the resulting series.

Solution: Let f(z) = log(1 + z). Then,

1 2!
@ =1 (Z)z_(1+z)2’f (Z)=(1+z)3
f? (Z)——m SM(2) = (1) 1(1+Z)n ete.

Hence £(0) =log1 =0, f'(0) = 1, f"(0) = —1, f"(0) = 21,

f0)==-3,...,.f™0)=(-1)"1(n—1)! etc.
Therefore,

2 3
£(2) =log(1 + 2) = £(0) + 2f'(0) + 5 £(0) + 57 f'(0)

_|_Z_fiv(()) + ..._|_Z_f(n)(0) + .-
4! n!

ZZ Z3 Z4- n

z
_— — - ikt — (=D (n -
=0+z 2|+3| 2! 4l -3+ +n!( D (n -1+
72 3 4 Py
=z —— 4+ — —— 4 ... 11— 4.
z 2+3 4+ + (1) n+

Let u,, denote the nth term of the series. Then

(_1)n—1zn (_1)nzn+1
= Uy = ———————.
n n n+1 n + 1
i . In+1 1
lim = lim | =—,
noo Uyl noo | nz ||
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Hence by D’ Alombert's ratio test, the series converges for
lz| < 1.

It can be easily shown that the series converges for |z| = 1 except for z =
—1.

If may be noted that z = —1 is the singularity of log(1 + z) nearest the
point z = 0. Thus thes seties converges for all values of z within the circle
|z| = 1.

andmrm+nei(n—m)0

Il
i
s 1M

I
NgE

21
andmrm+n J etm-m)é 1p
0

[ reoras
0

0

S
Il
o

Il

N

)
"M8ﬁ

o

a,a,r", according to ()

n

1 2 0 2 >
- i — 2,.2n
of 27‘[_[0 |f(re )l do n§=0 lan|?r

This proves the first required result. By (1),

= 2 2 (2
> lanlrin =5 [ ip@rds <5 [ do =2
n=0 27 Jo 2 Jo

This proves the second required result.

Example 9: If f(2) = X3 a,z™(|z| < R) and M(r) is the upper bound of
|f(2)] on the circle |z| = r, (r < R), then prove that |a,|r™ < M(r)vn.

Solution: Given lf(2)] < MVz on |z| = .

Also |z| =17 = z =re',

_f™o) 1 f f(z)dz
Cc

nl  2mi).(z—-0)nt?

n

L (1f@2I

lan| < —— d
n 21T C|Z|n+1

dz| < - 2mr

27-”/-1‘L+1

10.6 MAXIMUM MODULUS PRINCIPLE:-
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The maximum modulus principle is a fundamental result in the expansion
of Analytic Function chapter and, more broadly, in complex analysis. It
describes how the magnitude (or modulus) of an analytic function behaves
within a region of the complex plane.

Theorem 4: Maximum modulus principle. Suppose f(z) is analytic
within and on a simple closed contour C and f(z) is not constant. Then
|f (2)| reaches its maximum value on C (and not in'side ), that is to.say, if
M is the maximum value of |f(z)| on and within C, then |f(z)| < M for
every z inside C.

Proof: We prove this theorem by the method of contradiction. Analyticity
of f(z) declares that f(z) is continuous within and on C. Consequently
[f(2) | attains its maximum value M at some point within or on C. We
want to show that |f(z)| attains the value M at a point lying on the
boundary of C (and not inside C ). Suppose, if possible, this value is not
attained on the boundary of C but is attained at a point z = a within C so
that

max. [f (D] = |fl@l=M ..(1)
and
|f (2)| < MVz within C - (2)

Describe a circle ' with a as centre lying within C. Now f(z) is not
constant and its continuity implies the existence of a point z = b inside T’
s.t. |[f(b)| < M.

. _ 1 . . . .
Example 10: Expand f(z) = e in Laurent series valid for:
@ |z] >3 (b) 0<|z+1|<2
- _ 1 (1 _ 1
Solution: f(z) = (z+1)(z+3) 2 (z+1 z+3) - (1)
Case I: When|z|>3:> >1:>||<1:>ﬁ< 3t
1 <1+1>‘1 (1+3>‘1 1 i q1o3n
f(Z)_ZZ z z =D VAL AL
c 1 < 1
z ( 1)n+1 Zn+1 — z (_1)nZ_n
n=0 n=1

Casell: 0<|z+ 1| <2.Putz+1=t,then, by (1)
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1711 1 1
f(z)=§_?—t+—2],|t|<1:>|—|<§<1
11 1<1 t)—l _1[1 1w : 1)n( )n]
2|t 2\ 72 2|t 24 2
1] 1 15:( )n(z+1)”
2|12+1 24 2

Example 11: If the function f(z) is analytic when |z| < R and has the
Taylor's expansion .5’ a,z™. Show that if r < R,

1 2T ] 2 ®
- |f(re‘9)| de = Z |an|2r2n
0

2m ),
Hence prove that if
If(2)] < M when || < R,Z la, 272" < M2
0
Solution: Since f(z) is analytic for |z| < R, then f(z) is analytic within
and on a closed curve C defined by

|z| =7, <R

So f(z) can be expanded in a Taylor's series within |z| =171
so that

f(2) = Z a,z" = Z a,r"e™®, z = re'®
0 0
Note that if k is any integer,
then
[ e de_{o Frso *)

If(2)|? = f(Z)ﬁ = Z a,r"ein? Z G, rme=ime

(o] (o]
— z z andmrm+nei(n—m)9
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2T ® ® 21
f If (2)[2d6 = z z a4, ,, 7™ f eitn-mo g
0

n=0 m=0
[ee]
=2m z a,a,r?", according to (*)
n=0

or L |f(re®) o = 552, lagl?r2n
This proves the first required result. By (1),

2

2
thzm——f rords <5 [ ao =

This proves the second required result.

Example 12: If f(2) = X5 a,z™(|z| < R) and M(r) is the upper bound
of |f(z)| on the circle |z| =7, (r <R), then prove that |a,|r" <
M(r)vn.

Solution: Given lf(2)| <MVz on |z] = 7.
Also |z| =7 = z=re.
_f®O) _ 1 [ f@dz
"oonl 2mi). (z—0)ntt

If (2|
~ la nl—z ¢ 1z |dz] sannH-an

orla,|r™ < M = M (7).

Check your progress
Problem 1: Find Tavlor's series expansion of the function f(z) =

-4 +9
around - =10.

Problem 2: Find the Laurent’s series of the function

1 . .
fiz)=————— valid in the region 1<| z|< 2.
I +1)

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 218



COMPLEX ANALYSIS MT(N)-302

10.7 SUMMARY:-

The “Expansion of Analytic Function” unit in complex analysis focuses on
representing analytic functions as infinite series and understanding their
behaviour in different regions of the complex plane. It introduces the
Taylor series, which expresses a function as a power series in terms of (z-
a) when the function is analytic within a neighborhood of a point a,
allowing local approximation and analysis. For functions that are analytic
in an annular region, the chapter presents the Laurent series, a more
general expansion that includes both positive and negative powers of (z-a),
enabling the study of functions with isolated singularities. The chapter
also discusses the maximum modulus principle, which states that a non-
constant analytic function cannot attain its maximum modulus inside a
domain but only on its boundary. Together, these concepts provide
powerful tools for analyzing, approximating, and classifying analytic
functions and understanding their properties in the complex plane.

10.8GLOSSARY: -

e Taylor’s theorem

e Laurent’s theorem

e Uniqueness of Laurent’s expansion
e Maximum modulus principal
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10.11TERMINAL QUESTION: -

Long answer type question

1

1 Find the Laurent series of the function f(z) = pETen about z =
0.
. 1 _ 1 1 voo
Hint: f@=5A-2)"t=504z+22+)=ZE00 2"
1 1
f(2) =Z_2+E+ 1+Y7 .,z
2: Find the Laurent expansion of S about the singularity

(z+D(z+2)

z=-2. Specify the region of convergence and nature of singularity at
z2=-2.

3: €)) Expand %as Taylor’s series aboutz =1.

(b) Determine Laurent’s expansion of the function

f(Z)=LZ3 in the annulus 0 < |z — 2| <1
T 4
Z —_
4
z-1 _
4:  Expand  f(z) = & a Tajors series about

(i)z=0(ii)z=1(iii) its Laurent’s series for the domain 1<|z |< «.
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5: Expand for the regions

2(z°-32+2)
() 0zl (i) O<dzkl (i) |zp2

Short answer type question

1: Expand sin z in a Taylor’s series about z = %
2: Expand 1t ,| Z|<1 in the form of Laurent’s series.
(z+2)(z+))
1 .
3: Expand ————— for the regions
(z-D(z-2)

()  O0<zlkl (i) O<zll (i) |z]>2

4: Find the expansion of

1 ,
11221 2) in powers of z when,

(i) lz<1 (i) 1<zl~2 (i) |z]>+2
Objective type question:
1: If f(z) is analytic at z = a, its Taylor series expansion about z = a

is

A) D c,(z-a)"

B) > (- a)"

no N:

z, f'(a N
C) > (| )(z —a)

o Ne

=, f"(a 0
D) z#(z —a)

n— N
2: The Laurent series of a function f(z) is valid in which region?
A) Entire complex plane
B) A disk|z—a|<R

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 221



COMPLEX ANALYSIS MT(N)-302

C)
D
3:

A)
B)
C)
D)
4,

A)
B)
C)
D)
5.

A)
B)
C)
D)
6.

An annulus n<Jz-al<r,

A line segment on the real axis
The principal part of a Laurent series consists of

Positive powers of (z-a)
Negative powers of (z-a)
Constant terms only
Both positive and negative powers

The Taylor series is a special case of the Laurent series when

The principal part IS zero
The function has an essential singularity
The region IS an annulus
The coefficients are all zero

The coefficients a, and b, in the Laurent series are given by

Real derivatives of f(2)
Cauchy’s integral formulas
Fourier transforms
Laplace transforms

According to the Maximum Modulus Principle, if f(z) is non-

constant and

A)
B)
C)
D)
7.

A)
region
B)

C)

D)

8.

A)
B)
C)
D)

analytic in a domain D, the maximum of | f(z)| occurs

At the center of D
At a critical point of f(2)
On the boundary of D
At any interior point of D

If f(z) is constant in a region, then

The modulus | f(z)| has both maximum and minimum inside the

The Maximum  Modulus  Principle does not apply
The  modulus | f(2)] is the same  everywhere
f(2) has a singularity

The Laurent series is particularly useful for studying

Continuous functions
Functions with isolated singularities
Harmonic functions

Real-valued functions
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10.12ANSWERS:-

Answer of check your answer

4n+1l
z

32n+2

Answer of problem 1: f(z) = i(—l)n

n=0

Answer of problem 2:

1&(zY) 1S, ,0(z) 1&(D
f(2)=—=)|=| +=) D" =| —=—

0=3ls) w2l w25

Answer of long answer type question:

2: f(2)= ?22 + Z(z +2)", Radius of convergence = 1, z=-2 is a pole
n=0

of order 1 and singularity at z=—-2 is a pole.
3(@): f(2)=2.(-1)"(z-1";
n=0

3(b):

_ L T[sin ¢.cosh(sin 8).cos(mé) + cos ¢.sinh(sin 6).sin(mo) e

%

Where ¢ = % +cosg;m=n+3 and b, =a_,. So the Laurent’s series

given by

40 T@=1-22(D"2" ) f@)=1- z( 2 (Z v

B _gw B ni
(i) f(2)=1 anz(;( 1) z”
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5: (i)

(iii)

Answer of short answer type question:

w 1)
1: £(2) =§sin(%+n—”j (—4

3: (i)

(iii)

4: (i)

(iii)

—+iz”—%i( j (i)

n=0 n=0

381

2143\ 2

2 n!

Z( 2”+1]Zn i ->.7

n=0

SEr(ige)er @

w . 72 w
nZ:o:(_l) 12n+1 ; 22n+2

> (D7 a-20)

Answer of objective questions

1:

B 2: C
A
B 6: C
B

MT(N)-302

sl
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UNIT-11: Singular Points

CONTENTS
11.1 Introduction
11.2 Obijective

11.3 Zero of an analytic function
11.4 Singular points

11.5 Summary

11.6 Glossary

11.7 References

11.8 Suggested Readings

11.9 Terminal Questions

11.10 Answers

11.1 INTRODUCTION: -

The Singularity unit in complex analysis deals with the study of
points at which a complex function fails to be analytic or differentiable.
These points, known as singular points or singularities, play a crucial role
in understanding the behavior of complex functions near regions where
they break down. The chapter classifies singularities into different types
removable, poles, and essential singularities based on the nature of the
function’s behavior around them. By analyzing these singular points using
tools such as Laurent series expansion and residue calculation, one can
evaluate complex integrals and study the local and global properties of
analytic functions. This topic forms the foundation for advanced concepts
like the residue theorem and evaluation of contour integrals in complex
analysis.

11.2 OBJECTIVE:-

The main objectives of the chapter “Singularity” in complex analysis are
as follows:

1. To understand the concept of analytic functions and identify points
where they fail to be analytic, known as singularities.
2. To learn the classification of singular points such as removable

singularities, poles, and essential singularities.
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3. To study the behavior of complex functions in the neighborhood of
different types of singularities.

4, To understand how to represent functions near singular points
using the Laurent series expansion.

5. To develop the ability to determine residues at singular points,
which are crucial for evaluating contour integrals.

6. To apply the knowledge of singularities in solving problems
related to the Residue Theorem and complex integration.

7. To build a strong conceptual foundation for advanced topics in
analytic continuation, meromorphic functions, and complex
mapping.

11.3 ZERO OF AN ANALYTIC FUNCTION:-

A zero of an analytic function is a point in the complex plane where the
function’s value becomes zero.

Definition: A zero of an analytic function f(z) is a value of z such that f(z)
=0.

Suppose f(z) is analytic in a domain D and a is any point D. Then f(z) can
be expanded as a Taylor's series about z = a in the form

f(2) =Xn-0an(z—a)" (1),

— f(n)(a) (2)

n n!

Suppose agp=a1 =.. =am1=0and am # 0
so that, f(a) = f'(a) = f"(a) = = f"V(a) = 0,f™(a) # 0.
In this case we way say that f(z) has a zero of order mat z = a.
Now (1) takes the from
f(2) =Yneman(z —a)" =X7_ 0 anim(z — @)™
=(z—a)" Y= Ansm(z — )™
Taking X770 an+m(z — @)™ = ¢(2) - (3),
Since, f(2) = (z-a)" ¢ (2)

By (3)1 d)(a) = [ ;.10=0 an+m(z - a)n]z=a
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= [am + Zﬁ:l an+m(z - a)n]z=a = Q-
But am # 0 so that ¢(a) # 0.
Thus we define

Definition: An analytic function f(z) is said to have a zero of order m if
f(z) is expressible as f(z) = (z - @™ &(z) where ¢(z) is analytic and
d(a) # 0 f(z) is said to have a simple zero at z = a if z = a is a zero of
order one.

11.4 SINGULAR POINTS:-

Definitions: A singularity (or singular point) of a function is the point at
1

which the function ceases be analytic. For example if f(z) = — then z =
2 is a singularity of f (2).

There re various types of singularities exist.

1. Isolated singularity: A point z=a is said to be isolated

singularity of f(z) if
0] f(z) is not analyticat z=a.

(i) f(2) is analytic in the deleted neighbourhood of z=a, I.e.
there exists a

neighbourhood of z = a containing no other singularity.

z=a Is called a non-isolatied singularity of f(z) if z=ais a singularity
and every deleted neighborhood of z =a contains at least one-singularity
of f(2).

Examples 1: The function f(z) = 1/z is analytic everywhere except at
z =0, therefore z =0 is an isolated singularity.

z+2

2: The function f(z) = T vy — has three isolated
singularitiesat z =1, 2 and 3.
3: The function f(z) = ﬁ has an infinite number of isolated

singularities all lying on the segment of real axis fromz =-1toz = 1.
These singularities are at z = i%, wheren=1,2 3,.... Theorigin z=0
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is also a singularity, but it is not isolated. Since every neighborhood of
z =0 contains other singularities of the function.

4. f(z) = log z has non-isolated singularity at z =0, (every point on
negative real axis including z=0 is a non-isolated singularity of
f(z)=logz).

. _ 1 . . . 3
5: f(z) = pry— has isolated singularity for all z such that z=nand n

=0,+2,+3, ...

Definition: Let z=a be an isolated singularity of a function f (z), then by
definition, there exists a deleted neighborhood 0 < |z - a <, in which f(z)
analytic. Hence, if z be any point this neighborhood, then by Laurent's

expansion, f(z) =Yoo, (z— )"+ X5, by(z —a)™.

w1 b, (z—a)™™ is called the principal part of the expansion of f (z).
Now three cases arise.

I Removable singularity: If the principal part of f(z) contains no
term, i.e. if by = 0 V n then the singularity z=a is called removable
singularity of f (z). In this case f(z) = X5’ a, (z — a)™

An Alternate definition: A singularity z=ais called a removable
singularity of f(z) if y—rﬁf(z) exists finitely.

si sin z

Examples 6: Suppose f(z) = :Z. Then lim = 1.
zZ—
~ z =0is a removable singularity.
. sinz 1 z3  z5 z2  z*
Again Z2=(z-L 45— ) =105

Since no negative power of z occurs. Hence z = 0 is a removable
singularity of f(z). [by the first def.]

I Pole: If b, = 0V ns.t.n > m, i.e, if the principal part contains a
finite number of terms, say m, then the singularity z = a is called a pole of
order m of f (z). A pole of order one is called a simple pole.

Thus if z=a is a pole of order n of the function f(z) then f(z) will
have the expansion of the form f(z) Xo—oan(z—a)™ + X7 b,(z —
a) "

An Alternate definition: A function f(z) is said to have pole of order n if
it is expressible as f(z) = (:’_% where ¢ (z) is analytic and ¢ (a) # 0.
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Residue of a function f(z) at a simple pole z = a is defined as lim(z —
a)f(z) = Res (z =a)

Or

¢ (z) ¢ @
Res (z=a) = hm 2" where f(z) = v

Example 7: If f(z) = - ! then z=5 is a pole of order 3 and

(z-5)3(z-4)?
Z =4 isapole of order 2.

z—2 -1

Solution: Res (z =1) = llm(z - 1Df(2) = llm (Z+1) =2 =_2

1 Essential Singularity: If b, # 0 for indefinitely many values of n,
i.e., the principal part contains an infinite number of terms, i.e., the series

m_1b,(z—a)™™ contains an infinite number of terms, then the
singularity z = a is called an essential singularity.

An Alternate definition. If there exists no finite value of n s.t.

lim(z — a)"f(z) = ¢ =finite non-zero constant, then
Z—a
z = a is called essential singularity.

1
Example 8: z =0is an essential singularity of ez, since the expansion of
1
ez.

1
ez=1+ +——+——+-- is an infinite series of negative

22| 23|
powers of z.

Remark:z=a is called removal singularity, or pole or essential
singularity of f(z) according as expansion of f(z) contains no negative
powers of z—aor contains finite number of negative powers of z—a or
contains an infinite number of negative powers of z —a.

Theorem 1: If f(z) has a pole at z = a, then |f (z)| » w0 asz — a.
Proof: Suppose f(z) has a pole of order mat z = a.
To prove that |f (z)] » w0 asz — a.

By assumption, the principal part of the expansion of f(z) contains only m
terms so that

[0e]

FD=) aG-art+y bG-w
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by by bm

z—a (z—a)™" + (z—a)m

=)y oan(z—a)™ +

1
(z—a)™

=itz — "+ m bz - )™ 4

by(z — Q)™ 2 + - + by

The expression within the square bracket on R.H.S. = b,,, as z — a so that
the whole R.H.S. expression - w0 as z — a.

Consequently, |f (z)] > w0 asz - a.

Theorem 2: If an analytic function f(z) has a pole of order m at z = a,

then % has a zero of order m at z = a and conversely.

Proof (i): Suppose an analytic function f(z) has a pole of order matz = a
_ 9@

so that f(z) = g (1)

Where, ¢ (a) # 0 and ¢(z) is analytic.
To prove that % has a zero of order m.

1 (z-a)™ _

=(z—-a)™¥(2), where

f@  ¢@
Yand W(a) # 0.

S |r

This = }lc has a zero of order m at z = a.

L has a zero of order m at z = a so that — =
f(2) f(2

(z — a)™g(z) where g(z) is analytic and g(a) # 0.

(if): Suppose

1 __h@ .
e — e Where S5 =h (2).

This= f(z) =

Now f(z) = % where h (z) as analytic and h (a) # 0.

This = f (z) has a pole of order mat z = a.

Theorem 3: (Zeros are isolated) Let f (z) be analytic is a domain D. Then
unless f (z) is identically zero, there exists a nbd of each point in D
through out which the function has no zero, except possibly at the point
itself. In order words the zeroes of an analytic function are isolated.

Proof: Let z = a be a zero of order m of an analytic function f(z). Then we
may write f(z) = (z - )™ ¢ (z), where ¢ (z) is analytic and ¢ (a) # 0.

Evidently (z-a)" #0atz + a.
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Now there exists no other point in the deleted neighbouhood |z - a] < r at
whichf (z) =0

Hence the zero z =ais an isolated singularity.

This is true for every zero of f(z). Therefore the zeroes of f(z) are isolated
singularity.

Poles are isolated :Let z = a be a pole of order m of an analytic function

f(z), then % is analytic and has a zero of order m at z = a. Since zeroes

are isolated and hence poles are isolated.

The point at infinity: The behaviour of the point z = oo is studied by the
substitution z =% in f (z). The behaviour of f (z) at z = co determined by

the behaviour of f (%) att=0.

It follows that f(z)has a zero or pole, at z = oo is according as f G) has
the corresponding property at t = 0.

Theorem 4 (Limiting point of zeros): Let f(z) be an analytic function in a
simply connected region D. Let ai, az, ..., an... be a sequence of zeros
having a as its limit point, a being the interior point of D. Then either f(z)
vanishes identically or else has an isolated essential singularity at z = a.

Proof: Suppose f (z) is analytic in a connected domain D so that it is
continuous in D. So f (a) = 0. So f (z) has zeros at a1, az...an,... as near as
we please to a. Consequently f(a) = 0. Further a cannot be a zero of f(z) on
account of the fact that zeros are isolated. Hence f(z) = 0 for every z in the
domain D.

Next we consider the case in which f(z) # 0 for every z inside D.
In this case f (z) must have a singularity at z = a. This singularity is
isolated but it is not a pole. For |f (z)|does not tend to co a z — a in any
manner. Therefore z = a, which is limit point of zeros, must be an isolated
essential singularity.

Remark: (Remember the result) Limit point of zeros is an isolated
essential singularity.

Limit point of poles: Suppose z = a is a limit point of the sequence of
poles of an analytic function f(z). Then every neighbourhood of the point z
= a containing poles of the given function. Therefore the point z=a is a
singularity of f(z). This singularity cannot be a pole, since it is not isolated.
Such a singularity is called non-isolated essential singularity or essential
singularity simply.
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Theorem 5: If f (z) and g(z) are analytic in Q and if f(z) = g (z) on a set
which has a limit point in Q, then f () is identically equal to g (2).

Proof: Let, ¥ (z) = f(z) — g(z). Analyticity of the functions f (z) and g
(2) implies the analyticity of W (z). Also zeros of W (z) are isolated and
the limit point of zeros of W (z) belongs to the interior of the domain D.
Therefore this limit point is an isolated essential singularity, i.e., this limit
point does not belong to the domain of regularity. But f (z) is analytic
everywhere. Consequently ¥ (z) = 0 so that f (z) =g (2).

Theorem 6: If a single valued function f (z) has no singularities other
than poles in the finite part of the plane or at the infinity, then f (z) is a
rational function.

Proof: A function f (z) is said to be polynomial if it is expressible in the
form f(z) =ao+aiz+az® + ... + an?"

A function f(z) is said to be a rational function if it is expressible in the

form f(z) = % where ¢ (z) and W (z) both are polynomials.

Now we come to the proof of the theorem. Let f(z) be a single
valued function such that f(z) has no singularity except poles at any point
(including o). So let us suppose that f (z) has poles at z1, z», ..., zk of order
miy, My, ..., Mg in the finite part of the z-plane. Then f(z) is expressible as

f@ = o~

(z-2)™1(z-22)"2..(z—z)) "k

()

where ¢ (z) is analytic for all finite values of z. By (1),

¢ (2) =(z—2)"(z—2)" ...(z — z,) "™

(2)
Consequently ¢ (z) has Maclaurin's expression as

¢ (z2) = Y- apz™ for all finite values of z.

-(3)

To discuss the behaviour of ¢ (z) at z = o, where it many have a pole of
order m.

Putting z = 5 in(3), ¢ (%) =Yy ap(z)™
(4
1

The behaviour of ¢ (z) at z = o is the same as behaviour of ¢ (Z,) atz' =
0.
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Since ¢ (z) has a pole of order m at z = o so that ¢ (i) also has a pole
at z' = 0 of order m. It follows that the series (4) for ¢ (i) must contain
finite number of terms.
1 o n-
Now (4) becomes ¢ (;) = Yo an(z)™
..(5)

This = ¢ (2) = Yp-0 anz™ = ¢ (2) is a polynomial

..(6)

= In either case, ¢ (z) is a polynomial as obvious from (2) and (5). In this
event (1) becomes f(z) = polynomial /[(z — z,)™ (z — z,)™2 ... (z —
Zy )™ ]

This = f(z) is a rational function.
Example 9: A rational function has no singularities other than poles.
Solution: Suppose f(z) is a rational function so that it is expressible as

f(z) = % where ¢ (z) and W (z) both are polynomial having no factor

in common. Singularities of f (z) are given by ¥ (2) = 0, i.e., by zeros of
Y (2).

But zeros of W (z) are the poles of \PL(Z) Finally singularities of f (z) are
poles at the zeros of ¥ (z).

Theorem 7: A function which has no singularity in the finite part of the
planes or at infinity is constant.

Proof: Suppose the function f (2),

(i) has no singularity in the finite part of z-plane.

or

(i) has no singularity at z = oo.

() = f(2) can be expanded in Taylor's series about z = 0 in the form

f(2) = Yy-0a,z™, ... (1) where z is a point inside or on |z| = R, where R
is arbitrary large positive number.

(i)=>f (i) is analytic at z = 0.

Hence, f (i) can be expanded by Taylor's theorem as
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This = (2) = Xyo
)

By (1) and (2), we get Lo a, 2" = Yoo =
-(3)

(3)canhold ifan=0=bnforn=1,2,3,...and ao = bo
If follows that f (z) = ao = bo
= f(z) = constant.

Theorem 8: To show that a function which has no singularity in the finite
part of the plane and has a pole of order n at infinite is a polynomial of
degree n.

Or

A function f (z), which is regular everywhere except at infinity where it has
a pole of order n, is a polynomial of degree n.

Proof: Suppose,

(i) f (2) is regular in the finite part of the z-plane.
(i) f (2) has a pole of order nat z = oo.

To prove that f (z) is a polynomial of degree n.

(i) = f(2) can be expanded in Taylor's series about the point z =0 as
f@) = Trcoamz™ then f (7) = Eincg amz ™ ()
(i)=>f G) has a pole of ordernatz=0

= Principal part of Laurent's expansion of f G) contains only n terms

1\ _ v -m
= f(;) = Lm=0amZ

= f(2) =Zn=0amz™
> f(2) is a polynomial of degree n.

This proves that f(z) is a polynomial of degree n.
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Theorem 9(a): A polynomial of degree n has no singularities in the finite
part of the plane but has a pole of order n at infinity.

Proof: Consider a polynomial P(z) of degree n given by,
P(z) = ap + a1z + @22 + ... + anZ", an # 0.

2
Then P (1) = ay + 2+ = + -+ == which has pole of order n at z = 0.
z z z Zn

Consequently P(z) has a pole of order n at z = co. Also it is obvious that P
(2) has no singularities in the finite part of the plane.

Characterization of polynomials

Theorem 9 (b): The order of a zero of a zero of a polynomial equals the
order of its first non-vanishing derivative.

Proof: Suppose z = a is a zero of order m of a polynomial P (z).
ThenP (2) = (z-a)" Q (2), Q(a) #0.

Differentiating both sides successively m times, we get
P@=mz-a™ Q@)+ (-a)"Q@)

P*@) =m(m-1)z-a)" * Q@) +2miz-a)" ' Q') + (z- a)" Q")

PM"z) =m! Q) + "Cim! (z-a) Q'(Z2) + ... + (z-a)" Q"(2).
Putting z = a in above relations, we get
P@)=P@=P'@=..=P™'@=0

And, P™(a) = m! Q(a) # 0.

Hence the order of a zero of a polynomial equals the order of its
non-vanishing derivative.

Theorem 10 (Due to Riemann) If z = a is an isolated singularity of f (z)
and if f (z) is bounded on some deleted neighborhood of a, then a is a
removable singularity.

Proof: Let f(z) be bounded on some deleted neighbourhood N(a) of a. Let
M be the maximum value of |f ()| on a circle C defined by |z -a| = r, where
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the radius r is chosen so small that C lies entirely within N (a). Laurent's
expansion for f (z) gives

f@@)=Yra,z—a)" +Yy-1by(z—a)"
()

Where, b, = — [, (z — &)""* f(2)dz

o by 5% fc |z — a|* |dz| = MZ—T: 2nr = Mr™

o |by| < Mr™which - 0asr — 0.

~b,=0Vn.

This = the principal part of Laurent's expansion for f(z) contains no term.
By definition, this proves that z = a is a removable singularity.

Theorem 11 (Weierstrass Theorem): If z = zo is an essential singularity
of f(z), prove that given any positive numbers, r, € and any number c, there
is a point in the circle |z - zo| < r at which |f (z) - ¢| < €.

Or

In other words, in every arbitrary neighbourhood of an essential
singularity, there exists a point (and therefore an infinite number of
points) at which the function differs as little as we please from any pre-
assigned number.

Proof: Suppose the theorem is false. Then given &, > 0 and a number c,
there exists a point in the circle |z - zo| < r at which |f () - ¢| < € so that

< & whenever |z - zo| <.

1
|f (z)—c|

Making use of Riemann's theorem (Theorem 10), we see that the function
L has a removable singularity so that principal part of Laurent's

If (z)—cl

expansion 7 (Zl)_c about the point zo does not contain any term so that
1 oo

f(2)-c = Zin=0 an (Z - ZO)n "'(1)

1

T ao so that f (z,) = ¢+ ( )

If ag # 0, we define =
Qo

1

It means that
f(@)-c

is analytic and non-zero at z,.

~ As a result of which f(z) itself is analytic at z,. Contrary to the initial
assumption that z, is an essential singularity of f (z).
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Againifa,=0forn=0, 1, 2, ..., m - 1 then (1) becomes

1
f(2)-c

= Yn=m an(z — 2p)"

=am (z-20)"+am+1(Z-20)" "1+ ...
=(z-2)"[am+am+1(Z-20) + ... ]
= (2 = 20)™ Y=o Aman(Z — o)™

This shows that the point zo is a zero of order m of

1
o= sothat f (z) — ¢

has a pole of order m at z—z,. Moreover ¢ is merely a constant.
Therefore f (z) also has a pole of order m at z,. Again we get a
contradiction. Hence we have the theorem as stated.

Remark: The above theorem can also be expressed as: Show that an
analytic function comes arbitrary close to any complex value in every
neighbourhood of an essential singularity.

-, indicating the

ea—1

. . iy T
Example 10: Find the singularities of the function =

character of each singularity.

. (zfa)
Solution: Let f(z) = =%

ea—1

(1) We write exp (i) in place of eg.

Then, f(z) = e"pz(ﬁ) __en()

cor1 exp(1+T) 1

() oo
exp (1)exp (?)—1 o e.e?_l

c (z-a)
= —ela|l—e.e a ]

_c _ N2 -1
= —e(z—a)_[l_e_{]_ +ﬂ+((z a)) i+}]
a a 2!

[1+—+ )2%+]
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frvefrez2e (2 2o
92{1+(?)+...} _|_]

Clearly this expansion contains positive and negative powers of z -
a. In particular, terms containing negative powers of z - a are infinite in
number. Hence by definition, z = a is an essential singularity.

() 1) = 2255

Evidently denominator has zero of order 1 at

Z

ea=1=e2nm

,l.e.,z = 2nmia.

Consequently f (z) has a pole of order one at each point z = 2nmia (where
n=0+1+2..).

Example 12: Show that the function e* has an isolated essential
singularity at z = oo.

Solution: Let f(z) =€’ ..(1)

The behaviour of f (z) at z = oo is the same as the behaviour of f G) at z
=0.

. 1 1 1,1 1 . 1
(I)if(;) = ez = 1+;+Z—Z.;+"' = 1+Zn=1m

Or

f@:”;m

This is Laurent's expansion of f(é) about the point z = 0. This
expansion contains an infinite number of terms in the negative power of z.
Hence, by def., z = 0 is an essential singularity of f G) Consequently f(2)
has essential singularity at z = co.

1
Example 13: Show that the function ez actually takes every value except
zero an infinite number of times in the neighbourhood of z = 0.

1
Solution: If we show that the function f(z) =ez has an essential
singularity at z = 0, the result will follow.
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1 w 2z M
72221 1+Zn=1

n!

Evidently f(z) = ez =1+ Ly

This is Laurent's expansion of f(z) about the point z = 0. The principal

part of f(z) is Z;?f:li—' which contains an infinite number of terms.
Hence, by def., z = 0 is an essential singularity.

Example 14: Find kind of singularities of the following:

.\ cotmz _ _ i 1

Q) (Z_a)zat z=aandz = oo (if) tan (Z) at
z=0.

1 _ . . 1

(iii) cosec (;) atz=0. (iv) sin [_(1—2)]
atz=1.

Solution: Recall that the limit point of poles is a non-isolated essential
singularity, whereas limit point of zeros is an isolated essential singularity.

. cotmz cosz
(I) f(Z) - (z—a)? B (sinmz)(z—a)?

Poles of f (z) are given by (sinm z)(z —a)? =0
This= sintz=0,(z—a)? = 0.

Now sinmz=0givesmz=nmorz=n,wheren=0,+1,+2, ...
. Obviously z = oo is a limit of these poles. Hence z = oo is non-isolated
essential singularity.

(z-a)’=0givesz=a,a

Hence z = a is a double pole.

(i) £ (2) tan (2) = (())

Poles of f(z) are given by cos G) = 0.

This = 1 = 2nm + =
z 2

>z= ;1 wheren=+1+2, ..,
(2nt3)n

Obviously z = 0 is the limit of these poles. Hence z = 0 is non-isolated
essential singularity.

1

(iii) f(z) = cosec (i) = (D)
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Poles of f(z) are given by sin G) =0.
l=nmorz=— wheren=+1+2, ...
Z nm

Evidently z = 0 is a limit point of these poles. Hence z = 0 a non-isolated
essential singularity.

(V) f(2) = sin ()
Zeros of (z) are given by sin (TZ) =0.

1 1
—=nmworl—z=—
1-z nm

or
1

z=1——wheren=+1+2, ..
nm

Evidently z=1 is a limit point of these zeros. Hence z = 1 is
isolated essential singularity.

Example 15: Find residue of ¢(z) = cotz at the points z, = nt forn =1,
2, ... . What is the nature of singularity at = oo ? Justify your answer.

cosz _ f(2)
sinz g (2) say - (1)

Solution: ¢(z) = cotz =

Poles of ¢(z) are given by putting denominator equal to zero.
Poles are given by z=0=sin 0

General value is given by z = nt + (=1)™ (0) = nm = z,,, say
Zz=zy=nmforn=0,123, ...

These are the poles. Evidently z = oo is a limit of these poles.

Hence z = oo is a non-isolated essential singularity of ¢ (z).

Residue of ¢p(z) at z =z, is

= lim £ = lim <£ = 1, By (1).

zonng' (2) z-nmCoSZ

Residue (z =zn) = 1.

Example 16: Specify the nature of singularity at z=-2 of f(z) =(z - 3)
1

sin (—) .
Z+2
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Solution: Zero of f (z) are given by f (z) =0 or (z — 3) sm( +2) 0
.. . . 1 .

This implies z = 3 and sin (H—z) =0 =sin0

=> ﬁ =nr + (=1)"(0) = nn

=>oz+2=i=>z=—2+i ,orz=—2+iforn:1,2,3,....
nm nm nm

Limit points of zeros is z = -2.
z = - 2 is isolated essential singularity.

Example 17: What kind of singularity has the function
Q) f(z)_ ()atz—O’P

(i) andcotzatz = o0 ?

Solution (i): f(z) =

1
cos(3)
Poles of f (z) are given by cos G) =0 = cos (g)

This =2 =2nm §=(2n+)

or

where n=0,1,2,3, ...

7 = 1
" s
Evidently z = 0 is the limit of these poles.

Hence z = 0 is non-isolated essential singularity.

(i) f(z) =cot z (See Problem 14)

2
Example 18: Find zeros and poles of ( 1) .

(z+1)?
(z2+1)2

Solution: Let f(z) =

I Zeros of f (z) are given by (z + 1)>=0
or, z=-1,-1.
= -1isa zero of order 2.
1. Poles of f (2) are given by (z> + 1)>=0o0r (z-i)*(z-i)?=0
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or, Z=-I, -, 1,1
z=-1and z =i both are poles of order 2.

Example 19: What kind of singularities have the following.

i — L1 atz==% i sinz-coszatz = oo
sinz—cosz 4
z

z
(iv) 1+:z atz = o

e
(i) ——
(v) zcoseczatz = oo.

Solution: Recall that the limit point of the poles is a non-isolated essential
singularity whereas limit point of zeros is an isolated essential singularity.

1

sinz—cosz’

(i)  Suppose f(z) =

Poles of f(z) are obtained by putting the denominator equal to zero, i.e., sin
z - cos z =0 which givestan z = 1.

z=nm+7wheren = 0,£1,12,43, ..
Obviously z = % is a simple pole.
(i) f(2=sinz-cosz.
Zeros of f (z) are given by

sinz-cosz=0ortanz=1.
Hencez=nn+%,wheren:0,il,12.i3,

Evidently z = oo is the limit point of these zeros and hence z = oo is
isolated essential singularity.

eZ
z244'

(iii)  Suppose f(z) =
Poles of f(z) are given by putting denominator equal to zero, i.e.,
(Z2+4)=0 or z=+2i

Hence z = 2i, -2i are simple poles.

(v) Let f(z) = =5
Poles of f(z) are given by 1 + e =0, i.e. e? = —1 = g™l = (M i

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 243



COMPLEX ANALYSIS MT(N)-302

This =z=2n+1)mi,wheren=0,+1,+2,..
Evidently z = oo is the limit of these poles.

Hence z = oo is non-isolated essential singularity.

(v) Let f(z) = z cosec z =

Sin Z.

Poles of f (z) are given by sinz = 0.
z=nrt(n=0,+1,42,....).

Evidently z = oo is the limit of these poles.

Hence z = oo is non-isolated essential singularity.

Example 20 (a). Discuss the nature of singularities of the following
functions:

1

(I) tan z (II) m
. sin z
(i) o (iv) s

Solution: (i) Let f(z) = tanz = :inz.

0sz

To obtain the singularities of f (z) equating to zero the denominator of f
(2), we get

cosz=0 or Z=2nni§,nel
or Z=(4ni1)g,n € I
or Z=(2n+1)g,n el

Hence z = (2n + 1)%, (n € I) give the simple poles of f (z).

.. _ 1
(i) Let f(z) = R
Singularities of f (z) are givenby z (1-2%) =0
or z=0, -1, 1, which are the simple poles.

(iii)) Let £(2) =

z
1+z4
1
Singularities of f (z) are givenby 1 +z*=0 orz = (—1)=

1 1
Orz = (cosm+ isinm)s = {cos(2nm + m) + isin(2nm + m)}+

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 244



COMPLEX ANALYSIS MT(N)-302

= cos(2n + 1)%+ isin(2n + 1)% = el (@n+1) %.

im  3mi S5mi 7w
Putting n =0, 1, 2, 3, we get z =e+,e + ,e +,e+ Wwhich are the simple
poles of f ().

sinz
(z-m)%

(V) Letf(z) =

Singularities of f (2) are given by (z - m)? = 0.
Thus z = m is a pole of order two of f (2).

z%+4

eZ

Example 20(b). Show that the function f(z) = has an isolated

singularity at z = oo

Solution: Take z = i

()= (14303

- (4+y_12){1_i+y213!_y3.13! }

=4-24 A+ D+ (1= 5+ (G+5) 1/ 5+

4 3 5 2
=4-Z4 4=
y y? 3y 3y*

This contains an infinite terms of negative powers of y. Hence f (i) has
isolated essential singularity at y = 0.

This = f (z) has an isolated essential singularity at z = oo.

Example 20(c): Find the nature and location of the singularities of the

function f(2) = z(ezl—l)' Prove that f (z) can be expanded in the form ziz -

i + ag + a,z% + a,z* + - where 0 < |z| < 27 and find the values of ag
and az.

Solution: The singularities of f (z) are given by z.(e*- 1) =0
~z=0ande?=1=e* (n=0,+1,+2,..)

Hence the singularitiesof fareatz=0andz=2nwi (n=0,+1, +2,..). It
follows that z occurs as a factor of e? - 1 too. Hence z = 0 is a double pole
of (2).

The other singularities + 2m, +4m, + 6m, ... are simple pole.
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Hence f (z) can be expanded as a Laurent's series in the region 0 < |z| < 2r
in powers of z. As z = 0 is a double pole, the principal part of f(z) consists
of two terms only.

Therefore the expansion of f(z) will be of the form f(z) = Y7y a,z™ +
b b
—+4+2 (1)

z z2’

Now, f(z) =

z(eZ 1)
1

o|(1+2+ 5454 D )]

=t[1+i+24+2 424 ]_1

[1— e T I COLAN S I

iz—i i+iz +
4 2z 12 720
(2)
Comparing (1) and (2), we obtain
o 1
a0—12 ana a, = 720.

Example 21: Find zeros and discuss of singularity of the function f(z) =
(z-2)
T2z 7-1
sin (5):

Solution: Poles of f(z) are obtained by putting denominator equal to zero,
ie.,z2=0.

This= z=0,0.
= z = 0 is a pole of order two.
Zeros of (f(z) are given by (z — 2) sin (ﬁ) =0

ThiS:>Z=2andL=nn:>Z=2,Z=i+1.
z—-1 nt
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Thus z = 2 is a simple zero. The limit point of the zeros givenby z =1 +
i, wheren =+ 1, + 2, ...isz = 1. Therefore z = 1 is isolated essential
singularity.

Example 22: Find Laurent series of f(z) = (z—3) sm( )about
singularity z = - 2 and indicate nature of singularity.

g5 @7
Solution: sin9 =60 = — + T gy e e

f(z)_(z—3)[ L]

(z+2) 31 "(z42)3  5!(z+2)°

which represents Laurent's series.
Second Part: Zeros of f (z) are given by (z — 3) sin (Z%z) =0=>z—

3=0,sin(——)=0

= sin(
Z

1
) =0 = sin(nn) = Pl

+2 +2

=>z+2=i=>z=i—2forn:1,2,3,4, ............
nm nm

zZ= é — 2 = =2 s limit of zeros.

~ z=-2 s isolated essential singularity.

1
Example 23: Show that the function e 22 has ni singularities.

1
Solution: Let f(z) = e 2% = _1

e 72

1
Poles of f(z) are given by e 22 = 0, which is not possible for any value of
z, real or complex.

1
. = — 1
Zeros of f(z) are givenby e 22 =0 =e~% s0 thatZ—2 = oo,

This = z = 0, (repeated twice).

Hence z = 0 is a zero of order two so that there is no limit of the zero.
Consequently there is no singularity. Finally, f(z) is free from any
singularity.

Check your progress
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z84z%442

Problem 1: Locate and name all the singularities of f(z) = oD Garay

Solution: Poles of f(z) are given by (z -1)* (3z + 2) =0

This=z=1,poleoforder3and z= —g, pole of order 2.

. . . 1 1
Problem 2: Write the principal part of the function f(z) :;exp(gj at
its singular point.

Solution: f(z) = i%

~z"nl

11.5 SUMMARY :-

The chapter on singular points classifies points where a complex function
fails to be analytic, focusing primarily on isolated singularities. These are
categorized into three types based on the function's Laurent series
expansion in a punctured disk around the point: a removable singularity if
the principal part (negative powers) is zero, allowing the function to be
redefined as analytic; a pole of order m if the principal part has finitely
many terms, causing the function's magnitude to approach infinity; and
an essential singularity if the principal part has infinitely many terms,
leading to the chaotic behavior described by Picard's Theorem, where the
function attains every complex value (with one possible exception)
infinitely often in every neighborhood. This classification is fundamental
for applying the Residue Theorem, which uses the Laurent series
coefficient b: (the residue) to evaluate complex integrals, and extends to
infinity via the substitution w=1/z, with functions analytic everywhere
except for poles being termed meromorphic.

11.6 GLOSSARY:-

Zero of an analytic function
Singular point

Isolated singularity
Non-isolated singularity
Removable singularity
Pole

Residue

Essential singularity
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9. The point at infinity.

11.7 REFERENCES:-

> Ruel V.Churchill, (1960), Complex Variables and Applications,
McGraw-Hill, New-York.

> S. Ponnusamy, (2011), Foundations of Complex Analysis (2nd
edition), Narosa Publishing House.

> Murray R. Spiegel, (2009), Schaum’'s Outline of Complex
Variables (2nd edition).

> https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdf

> Goyal, H. S., & Gupta, C. P. (2015). Function of a Complex
Variable and Its Applications (Revised Edition). Krishna
Prakashan Media (P) Ltd., Meerut, India.

11.8 SUGGESTED READING:-

> L. V. Ahlfors,(1966), Complex Analysis, Second edition,
McGraw-Hill, New York.

> J.B. Conway, (2000), Functions of One Complex Variable, Narosa
Publishing House,

> E.T. Copson, (1970), Introduction to Theory of Functions of
Complex Variable, Oxford University Press.

> Theodore W. Gamelin,(2001) Complex Analysis, Springer-Verlag,
2001.

11.9 TERMINAL QUESTION:-

Long answer type question

1: Classify the singularities of a function of a complex variable. Show

that the only singularities of f(z) = (COt—”)ZZ are poles.

2: Determine the nature of the pole at the origin of the function

z

e

f(z) =— .
zsin mz
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3: What kind of singularity has the following functions:

i ——atz=0 ii cotzat z=o0

W cos(1/ z) i
4. Determines nature and investigate the behavior of the functions at

infinity

. 1 .. 1

I —_ 1 [ —

W sin z—sin a W COSZ +cosa

cotz . CoS Z

(iii) 5 (iv) 2

z z
1 . e’

% _ Vi

V) 7°(2 —cos z) Vi) 1+ 2°

5: Classify the singularities of a function f(z). Locate the

singularities of log(z —1) and classify them.

Short answer type question

1 Distinguish between pole and essential singularity.

2: Define (i) a removable singularity (ii) a pole (iii) an isolated
singularity of f(z). Give one example in each case.

Objective type question:

sin z

1. The function f(z) = 5 has
A) A removable singularity at z = 0
B) A simple pole at z = 0
C) An essential singularity at z = 0
D) A non-isolated singularity at z =0

2. The function f(z) =— has:

sin(1/ z)

A) A simple pole at z = 0
B) A pole of order 2 at z = 0
C) An essential singularity at z = 0

D) A non-isolated singularity at z =0
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z

3. For the function f(z) =(e—1)3 the point z=1 is:
Z j—
A) A removable singularity
B) A pole of order 1
C) A pole of order 3
D) An essential singularity
4, The nature of the singularity of f(z)=e"?at z=0 is:
A) Removable
B) Simple Pole
C) Essential Singularity
D) Pole of order 2
5. A function f(z) has a pole of order m at z=a. Which of the
following IS TRUE?
A) lim, ,, f(z) exists and is finite.
B) lim,, [f(2)w.
C) lim . (z-a)™" f(z) exists and is non-zero.
D) lim, . (z—a)" f(z) does not exist.
. 1
6. The function f(z) = ———— has:
2(z° +4)
A) Three simple poles

B) One simple pole and one pole of order 2
C) Three  poles, one of which is of order 2
D) A removable singularity at z=0

7. According to Picard's Theorem, in every neighborhood of an
essential singularity, a function:
A) Is bounded.
B) Takes all complex values, with at most one exception.
C) Takes only real values.

D) Becomes zero.

8. The point z=0 for the function f(z):l_;# is
A) A simple pole
B) A pole of order 2
C) An essential singularity

D) A removable singularity
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9.

A)
B)
C)
D)

10.

The singularity of f(z) :Mat z=0 Is:
z

A removable singularity

A simple pole

An essential singularity

A branch point (not an isolated singularity)

If the principal part of the Laurent series of a function about an

isolated singular point contains an infinite number of terms, the point is

called:

A)
B)
C)
D)

11.

A)
B)
C)
D)

12.

A)
B)
C)
D)

13.

A)
B)
C)
D)

14.

A)
B)

A Removable Singularity
A Pole
An Essential Singularity

A Regular Point

The function f(z) = (z — 3)% has the following singularity at z = 3:
Pole

Branch point

Removable singularity

Essential singularity

Which of the following is correct:

Zeros of f(z) is a singular point

Poles are not isolated

Limit points of poles of f(z) are not isolated.

Limit points of zeros is an isolated essential singularity.
Which one is correct: For the function f(z) = tan (é) ,z=201Is

an isolated essential singularity

a simple pole

a non-isolated essential singularity

none of these

The number of roots of z3 e = 0 inside |z| = 1 is
one

three
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C) SiX

D) two.

15.  The function f (z) = sin z:
A) is bounded

B) IS not analytic

C) has only real zeros

D) none of these.

Fill in the blanks:
1. f(z) =sin G) hasan ...... singularity at z = 0.

2. f(z) = 222—1 has a pole of order ........... atz=1.
3. The points where f'(z) =0 or f' (z) = o, called .............. points.

11.10 ANSWERS

Answer of long answer type question:

1: z =0 isapole of order 2

z=nwhere n=0,+1,+2,+3,...

Are simple poles z = oo is non-isolated essential singularity.
2: z = Ois simple pole.

The function has simple poles at each of these points.

7="7 where n=0,+1,+2,+3,...
m

z = oo is non-isolated essential singularity.

3(i): The function has simple poles at each of the point
1
Z_(ZnilIZ)ﬂ'

poles and hence z =0 is non-isolated essential singularity.

. where n=0,%1, z=0is a limit of these
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3 (ii): The function has single poles at each of the points z = ns, where

n=0,+1+2,+3,...

and z =oois a limit of these poles and so z = cois non-isolated

essential singularity.

4G): Ifa# m7z+§,(m:0,i1,i2,...)

then z=2kz+aoand z=02k+D)7z—a,(k=0,+£1,+2,...) are

. . T
simple poles, if ¢ =mz + 5

then for even m, a=2k7r+%and, forodd m, z=(2k +1)7z+%

are poles of second order: z = is a limit of poles in all cases.

Answer of objective questions:

1: A 2:
4: C

5 B 6
8: D

9 B 10
12: D

13: A 14:

Answer of fill in the blanks:

1. Essential
Singular.

One

11:

15:
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UNIT-12: Residue Theorem

CONTENTS

12.1 Introduction

12.2 Objective

12.3 Residue at a pole

12.4 Residue at infinity

12.5 Cauchy residue theorem
12.6 Computation of residue at a finite pole
12.7 Summary

12.8 Glossary

12.9 References

12.10 Suggested Readings
12.11 Terminal Questions
12.12 Answers

12.1 INTRODUCTION:-

The residue theorem is one of the central results in complex
analysis, providing a powerful method for evaluating complex integrals,
especially those around closed contours. It establishes a deep connection
between the values of a complex function inside a contour and the integral
of that function around the contour, by relating the integral to the sum of
residues of the function’s singularities enclosed by the path. Essentially, if
a function is analytic except for isolated singular points, the integral of the
function around a simple closed contour is 2mi times the sum of its
residues at those singularities. This theorem not only simplifies the
computation of many real and complex integrals but also has broad
applications in mathematics, physics, and engineering, including in
evaluating improper integrals, solving differential equations, and
analyzing physical systems.

12.2 OBJECTIVE:-

The objectives of the chapter residue theorem in complex analysis are:
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To understand the concept of singularities and residues of complex
functions.

To learn methods for finding residues at different types of singular
points.

To state and prove the residue theorem and understand its
significance in complex integration.

4. To apply the Residue Theorem in evaluating complex contour
integrals.
5. To use the theorem to evaluate definite and improper real integrals
that are otherwise difficult to compute.
6. To develop problem-solving skills and deepen the understanding of
the relationship between analytic functions and their singularities
12.3 RESIDUE AT A POLE:-

The residue at a pole in complex analysis focuses on understanding how to
determine the residue of a complex function at its poles, which are specific
types of isolated singularities where the function approaches infinity. A
pole of a function is a point at which the function can be expressed as a
ratio of two analytic functions, with the denominator vanishing at that

point.

Definition: Suppose a single valued function f (z) has a pole of order m at
z = a, then y definition of pole the principal part of Laurent's expansion of
f (z) contains only m terms so that

a) "

where

f(2) =Xr—0an(z— @)™ + X0t bn(z —
()

_ij f(z)dz b _if f(z)dz

S 2Add(z—a)™' " 24l (z—a)™

n

C C

Cbeingacircle|z-a| =r.

Evidently b, = ZL-[ f(2)dz
Z C

(2)

The coefficient by is called the residue of f(z) at the pole z = a and is
denoted by the symbol Res(z = a). Thus Res (z = a) = bs.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 256



COMPLEX ANALYSIS MT(N)-302

Evidently the value of by, given by (2), does not depend upon the order of
the pole and hence it represents a general definition of the residue at a
pole.

Consider the case in which z = a is a simple pole. i.e., z = a is a pole of
order 1.

by
(z-a)

Then (1) becomes  f(z2) = Ympan(z—a)™ +

This = lim(z —a)f(z) = b,
VAud)
Using (2), we get Res (z=a) =lim(z—a)f(z) = by
z—-a
1
=—| f(2)dz
]
Here the circle C may be replaced by any closed contour containing within

it no other singularity except z = a.

Example 1: If f(z) is a function such that for positive integer m, a value
¢ (zo) # 0 and ¢ (2) = (z - zo)™ f(2) is analytic at zo, then prove that f(z)
has a pole of order m at zo.

Solution: f(z) has a pole of order m at zo

00 byn
= f(2)=Yn0an(Zz—2z)" + 20, P—— and b,, = 0.

b1 b2 bm
z-2z9 (z—20)? L (z—zo)™

= 21010=0 an(z — zp)" +

Multiplying by (z - o)™, we get

(z=@™f(2) = ) ay @ = 2)™" + by(z = 2" + by(z = )"
B
= ¢(2), say
= ¢(2) = (2 —20)"f(2)

Also b,, # 0 = ¢(z,) # 0. This proves the example.

12.4 RESIDUE AT INFINITY:-
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The chapter residue at infinity in complex analysis introduces the concept
of evaluating the residue of a complex function at the point at infinity,
which is treated as an extended point on the complex plane in the context
of the Riemann sphere.

Definition: If f(z) has an isolated singularity at z = oo or is analytic there,
then the residue at z = oo is defined, as

Res(z = o) = -%j f (2)dz

where C is any closed contour which encloses all the finite singularities of
f (z). The integral is taken in positive direction (anticlockwise direction).

Remark (i): The function mat be regular at infinity, yet has a residue

there. Consider the function f(z) = (Zfa).

For this function

Res(z = @) = —-= [ 12z _Zij

_ f27r riet?
2mi e‘e

b r2m
_ch dd = —b
Where, Cisthecircle |z-a|=r

Res(z = ) = —b

Also z = ais a simple pole of f (z) and its residue there is ZLJ‘ f(z)dz=Db
7 C

Therefore Res(z = a) = b = -Res (z = o)

(i) If a function is analytic at a point z = a, then its residue at z = a will be
zero, but not so at infinity.

_ (z2+22+7) €? _
(iii) If f(2) = o5 (0= ey then f(z) has poles at z =5, 2, 9 of orders

2, 7, 3 respectively.

12.5 CAUCHY RESIDUE THEOREM:-
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The “Cauchy residue theorem” in complex analysis presents one of the
most powerful and elegant results for evaluating contour integrals of
analytic functions. The Cauchy residue theorem states that if a function is
analytic inside and on a closed contour except for a finite number of
isolated singularities, then the integral of the function around the contour
is equal to 2mi times the sum of the residues of the function at those
singularities. This theorem serves as a generalization of Cauchy’s Integral
Theorem and provides a direct link between the local behavior of a
function near its singular points and its global integral properties. The
chapter focuses on understanding the statement and proof of the theorem,
computing residues at different types of singularities, and applying the
theorem to evaluate complex contour integrals and real definite integrals
that are difficult to solve using elementary methods.

Theorem 1(Cauchy's Residue Theorem): If f(z) is analytic within and on
a closed contour C, except at a finite number of poles zi, z, z3 ...... , Zn
within C, then

j f(z)dz =2mi ¥, Res (z = z,)

where R.H.S. denotes sum of residues of f(z) at its poles lying within C.

Proof: Suppose v, ¥z, - - Y are the circles with centres at z1, zo, ...... , Zn,
respectively and radii so small that they lie within closed curve C and do
not overlap f(z) is analytic within the annulus bounded by these circles and
the curve C, By corollary to Cauchy's theorem.

jf(z)dz :If(z)dz+_|.f(z)dz+...+J'f(z)dz

c 7

()

But, I f (z)dz = residue of f (z) at z = z1.

C
= Res(z = 71)

I f (z)dz =2mi Res (z = z1).

7

Using this in (1), we get
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I f(z)dz=27iRes (z=121) + ... + 2mi Res (2 = zn)
C

=2mi)yy_,Res(z=2z)

Theorem 2: If a function f(z) is analytic except at finite number of
singularities including that at infinity), then the sum of residue of these
singularities is zero.

Proof: Let C be a closed contour which encloses all the singularities of
f(z), except that at infinity. The sum XR of residue at all these singularities
within C is given by

j f(2)dz = 27 TR
C

[This follows from Cauchy's residue theorem]

This :ﬁ_{[f(z)dz:ZR

Also [ f(2)dz = Res(z = )
27 3

Adding these two equations, we get Res(z = «) + ZR = 0.

This proves the required result.

Example 2: Evaluate the residues of at 1, 2, 3, and infinity

Z
(z-1)(z-2)(z-3)
and show that their sum is zero.

2
Solution: Let f(z) = m

. — 1 Zz
Res (z=1) = lim(z — Df(2) = lim ~———

_ 1 _1
T (1-2)1-3) 2

Res(z=2) = Li_rg(z —2)f(z) =lim —4

Z —
752 (z-1)(z-3)

. 1 z =2
RGS(Z = 3) = Ll_rg(z - 3)f(Z) - B_rg (z-1)(z-2) 2
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Res(z = +x) = 11m —z f(z) = lim =z _ -1

z—00 (z—1)(z-2)(z-3)

Sumofresidues=%—4+§—1=0.

- H Z3 —
Example 3: Evaluate the residue of DD atz=oo

Solution: We expand the function in the neighbourhood of z = o as
follows:

z3

f@) = eeses
=(1-)" (1) (=Y
=142+ ) (124 ) (1434

=1+ S + higher powers of é
Hence the residue at infinity = - 6 = negative coefficient of 5

Example 4: Evaluate the residues of f(z) where f(z) = 2( ) ———atz =0, -3i,
+3i.

. . _ e?
Solution: Here, f(z) = prTeERTSY
It's poles are z = 0, -3i, + 3i.

Since z = 0 is the pole of second order, so

d

Res f(z) = = —(

1! dz

)mz_o

249

z(,2 _,Z
:e.(z +9)—e .Zzat:O

(z2+9)2

g.
z = -3i is a simple pole,
z

Res f(z) = lim w—' _%
2=-3i =3 7%(2° +9) =3 z°(z* - 3i)
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-3i -3i

_ e _ ie
T (=3D)2(=60) 54
ie3i

Similarly, Resf(z) = —

z=31 54
Example 5: Evaluate buy the method of calculus of residues

IL where, C is circle |z|=3.
2 (z-D(z+1)

L _ 1
Solution: Let f(z) = oD G

=0or,z=1,-1. These are simple poles and lie within C.

Poles of f (z) are given by (z- 1) (z + 1)

Res (7= 1) = Lt (2= DF(2) = Lt =0

7—1 (z—-1) (z+1)

1

_ 1
- T2

z—12z+1

1 -1

Res (z=-1) = z—L>'E1(Z+ Df(z) = Lt

z--1(z-1) 2

Res(z=1)+Res(z=-1)= =0

N |-
N |-

So, I f (z2)dz = 27 (sum of residues) = 2mi (0) = 0.
C

Example 6: Evaluate by method of calculus of residues:

IZL , Where c is a circle |z| = 3.
L (@ +1)(z-4)

Solution: For poles (z2+ 1) (z-4)=0=1z =1, -i, 4, z = 4 lies outside c.

1 1
(z—-)(z+1)(z—4) ~ 2i (i—4)

Res (z = i) = lim(z — i)
VAl

. . . 1 1
Res (z=—0) = lim(z - D om0 = ~acs
_ 1
T 20 (i+4)
Sum of residues = l[i+ A2 __1
2i li-4  i+4 2i (i2-17) 17

2mi
17"

Value of integral = 2mi (— %) =
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e‘dz L
Example 7: Using residue theorem, evaluate I where C is circle

2(z-1)""

|zl =

Solution. Let | = ILZZ
22(z-1)

where C is circle |z| =
Here centre is z = 0 and radius = 2.
~ 2=0, 1 are poles lying within C.

z=01isasimple pole.

Res(z=0) = hm (z — O)f(Z) = hmZ [z (z 21)2]

. e? ef
=lim e = oo = 1

z=1is apole of order 2. Take (z) =

where ¢ (z) = —

1)2 !

Res(z=1) = "”%()——”Z

11’

1
=0

P'(1) =
Res(z=1)=0.
By Cauchy's residue theorem, | = 2mi (sum of residues within c)
=2mi [Res (z=0) + Res (z=1)]
=2mi [1+ 0] =2mi

Theorem 3: If an analytic function f(z) has a pole at z = oo, then the
residue of f(z) at infinity is the negative of the coefficient of i in the
expansion of f(z) for the values of z in the neighbourhood of z = oo

Proof: Suppose f(z) has pole of order m at z = co. Then f G) has a pole of

ordermatz'=0. f (i) has Laurent's expansion in the neighbourhood of z'
=0 in the form
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1 [ee] A [ee] Ir—
f (_/) = Zn:O anz " +Zn=1bnz n

VA

(1)

Putting % =z,weget f(z) =Xmoanz "+ X0 byz"
)
[ f(2)z =j(ianz“jdz +j(§m:bnz“]dz

= ianjz’”dz +ibnjz”dz
C C

=0 n=1

=

alj' z7'dz , For, all the other integrals vanish.
C

=a, fozn(reie)‘lirewde = alifOZ” do = 2mayi
or - [f@dz=-a  But——[f(2)dz=Res(z=x)
274 c 2 s

~ Res (z = 0) = —q;. .(3)

From (2), it is clear that —a, is the negative of the coefficient of é in the
neighbourhood of z = co. In view of this, (3) proves the required result.

Theorem 4: To prove thatLim—zf (z) = Res(z =) provided f (z) is
analytic at z = oo,

Proof: Let f (z) be analytic at z = oo so that b, = 0Vns.t.1 <n <m,as
obvious from (2).

Now (2) becomes
f(2) = Xnzoanz™
o f(D=ag+2+2+-
or  zf(@)=a+ 2+5+--ifa=0.

Taking limit as z = oo, we get Lim zf (z) = a1
Z—00
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or Lim[-z f(2)] = —a;, = Res (z = )

if ag = 0 and the limit has a definite value.

-1
Solution: f(z) = =2, (1-3)

2.1 z2 22

1 1 1 1
= f(Z)—Z[1+Z—2+Z—4+"']—Z+;+Z—3+'“

Res (z = ©) = —coeff. ofi =—-1.

12.6 COMPUTATION OF RESIDUE AT A FINITE
POLE:-

Now we are going to discuss the computation of residue at a finite pole.

1. Residue of f(z) at a simple pole z = a.
(i) Res (z = ) = Lim (z — a)f (2).

VARd)
(i) Let f(2) = (Z) have asimple poleatz =

where ¥ (z) = (z — a)F(z) and F(a) # 0.
Then, residue of f(z) atz =a

= Lim (z - O)f (2)

_ 2@
= L1m (z—a) )
[form —]
0
0@+ -9 @+ 52 @)+ |
= Lim G- a) (by Taylor's
ma Y (@)+(z-a)¥ (o) +——¥'" (a)+
theorem)
- $@+@-¥ @+ ELY @ ()
= Lim (z a) ==
z—-a Y (@) +=5=v" @+ W (z)
For, ¥ (a) =0
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_ ¢(2)
Res (z = a) e
2. Residue at a pole of order m.

Theorem 5: If f(z) has a pole of order m at z = 0, then show that the
residue at a is the limit of

1 dam-1
(m-1)! dzm-1

[(z—a)™f(z)]as z — a.

Or

(m-1)
To prove that the residue of 0@ ot7=qis—@
(z—a)m (m-1)!

Proof: Suppose f (z) has a pole of order m at z = a so that f (2) is
expressible

) =22
(1)
where ¢ (a) # 0 and ¢(z) is analytic.

Residue of f (z) at z = a is bs, where by is given by

_ ¢ (2)dz
__f f(Z)dZ 2mi fC (z—a)m

2mi

1 (m-1)! f ¢ (z)dz

T (m-1)!" 2mi JC (z—q)ym-1t1

(m o . ™=V (a), by Cauchy's integral formula.

Using (1), we get

1 am-1
(m-1)tdzm-1

Res (z=a) = [(z—a)™f2z)]asz—>

a. Proved.

Theorem 6 (Liouville's Theorem): If function is analytic at every point
and finite at infinity, then it must be constant.

Proof: Let f (z) be the given function. Let a and b be any two distinct
points then the only singularities of the function

f(@)
(z—a)(z-b)
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But, Res (z = ) = Lim — z F (2).
Z—00

Or,Res (z = w0) = [Ll ] [le f(z)] = 0. finite number

z—o0 (z— a)(z b) Z—00
Or, Res (z = ©) = 0.
Since the sum of all the residues is zero and so
Res(z=a)+Res(z=b)+Res(z=00) =0

Or, Lim (z— a)F(z) + Lir{)l (z=b)F(z)+ 0=0
Z—a VA

f@ , r _ —
Or, — T = 0 or f (a) = f(b),

showing there by f(z) is constant.
Remark: This theorem has been already proved in previous unit.
3. Residue at a pole z = a of any order.

We have seen that the residue of f(z) at z = a is the coefficient of
ﬁ in Laurent's expansion of f(z) and therefore coefficient of % in the
expansion of f(a + t) as a power series.

Working rule (for computing the residue)

1) Res(z=a) = %1_)12 (z — a)f (z) for simple pole.

(2 Res(z=a) = —() for pole of order m, if f(z) ¢ @)

z—a)m

3) Res (z=a) = ﬁfc f (z) dz for pole of any order.

4 Res(z=o)= —f f(2),Res (z = o0) = le — zf (z) if limit

2mi
exists.

5) Res (z = o) = negative of the coefficient of§ in the expansion of
f(z) in the neighbourhood of z = oco.

(6) j f(z)dz=2mi Y™, Res (z = z,)

C
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@) If f(z) = 2@ pas a simple pole at z = a, then Res (z =a) =

¥ (2)
¢ (a)
¥'(a)

This formula is applied at those places, where ¥ (z) can not be factored.

these rules are illustrated by the following examples.

- . z3 _
Example 9: Find the residue of e Az=123

23
(z-1)*(z-2)(z-3)

Solution: Let f(z) =

(l) Take ) (Z) = m Then f(Z) = 1)4
3)
Res(z=1) = ¢ _(1) (1)
Breaking ¢ (z) into partial fractions
8 27
¢(Z)—Z+5—;+;
reN 8 27
(D) =1+ 5+ 5
" 54
¢7(2) = -2 2)3 ML
@)y =28 162
(@) = 5~ e
®) _ ez _ 308
$*(1) = 48 o = g
Using this in (1]), we get
303 101
ReS(Z—l)—&—1—6
Ans.
Res(z=2) = IZJI_)IIZI (z—2)f(2)
—Lim—2—=—%_=-_3g

z52 (z-1*%(z-3)  1x(-1)
Ans.

Res (z=3) = IZ,l_gl (z—-3)f(2)
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= Lim _z
T 73 (2-1D*(z-2)
_ 27 _27
T (3-1)*(3-2) 16
Ans.
Example 10: Find residue of ) atz=1.
Solution: f(2) = —— = 2% \where ¢ (2) = 22

(z2+1)3  (z-0)¥ ( +0)3

! _ -3 " _ 12
¢'(2) = G 07 = T

12 12 3

¢"(0D) = (i+)5 (25 8i

Res(z=1i) = ¢2fi) = % z =i is a pole of order 3.

Example 11: Find residue of f(z) = m atz=ia.

P _ 1 _ 9@ _ 1
Solution: f(Z) T (z+ia)? (z—ia)?2 ~ (z—ia)? ,d)(Z) " (z—ia)?
= f (2) has a pole of order 2 at z = ia.

=i Y@ _ i 2= 2 L
Res (2=1a) = Lim “57= = Lim =005 = Gy ~ 30

Example 12: Determine the order of poles and values of residues of the
function

Z+3
z2-2z7

(i) cosec z (i)

Solution: (i) f(z) = cosec z = e

Poles are given by sinz = 0 = sin0

z = 0is simple pole of f (z).

Write f(z) = £ E; then ¢ (z) = 1, ¥ (2) = sin z.

¢@ _ o1 1
RGS(Z—O)_lmqﬂ() y_r)r(l)cosz_cos(o)_
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Res (z=0)=1.

.. _ (z+3) _ z+3
(“) f(Z) T 22222 T z(z-2)
Poles of f(z) arez (z-2) =0
or, z =0, z = 2 both are simple poles.

Res (z=0) = ii_r}rg (z—-0)f(2)

=limz.[(z+3)]=lzi_r)ré (ﬁ):E:i

z-0 Lz (z-2) z—2 0-2 -2
1 B _ i m2)@+3) _
Res(z=2) = ili‘% (z—-2)f(2) £1_r)r% aPTE lzllg

Res(z=0)=—§

Res(z=2) = g
z+1

Example 13: Find residues of gyt

z+1
z2(z-3)"

Solution: Let f(z) =
Poles of f(z) are given by
72 (z-3) =0,
z=0is a pole of order 2

z =3 is asimple pole.

Res (z=3) = £1_r)r31 (z—-3)f(2)

- Ll{g(z B 3) z2(z-3) z—>32_2 T a2

Forz=0,  f(2)=22,¢@) =22

)
z2 3

1.(z—-3)-1.(z+1)

¢'(2) == 50

_ (0-3)—(0+1) _ —4

¢'(0) = o2 T

(z+1) .. z+1 _ 3+1

MT(N)-302

Z+3 _ 243

E.

4

9
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Res(z=0) = —g, Res (z = 3) =§.
Z3

Example 14: Find the residue of ——at z = co.
L _z3
Solution: Let f(z) = 7

1

3 -1
Then, f(2) =§—2(1—Z—2)
1 1 1
=Z[1+Z—2+Z—4+Z—6+"']
1 1 1
Orf(Z)—Z+;+Z—3+Z—5+"'

Res (z = ©0) = — (coefficient ofé) =—-(1) =-1.

Example 15: If ¢(z)and ¥ (z) are two regular functions and z = a is once

@)
e at

repeated root of ¥ (z) = 0 and ¢(z) # 0, then prove that residue of
z=alis

64’ (WP (@)-2¢@WP"" (a)
3[¥" (a)]?

Solution: Given (1) z = a is once repeated root of ¥(z) = 0.

(2) ¢(a) #0
(3) ¢ (z) and W(z) are analytic functions.
D) =>¥(x) =(E-a)?*f(2) ..(4) &f(a)#0

0@ 6@
Then & = ematre

...(5) has pole at z = a of order 2.

F (2) I I )
Ton Atz =ais——

We know that residue of

According to this, residue of% = > atz=a

(z-a)

is %{qf’g;} atz=a.

So our aim is to show that 1{9} — 50 @Y @-20@W% ()
d 3[¥''(a)]?

z \f
..(6)
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__d (@) _ ¢'@f@-f'(@)¢)
Al zZ=4 dz{ } [f(@)]?
(7)
we remove f, f' from (7).
By (4), ¥(2) = (z — a)* f(2)

=>¥'(2) =2(z— a)f (2) + (z— a)*f'(2)
.(8)

Again differentiating w.r.t. z,

V'(2)=2f@)+4(z-a)f (@) +(z-a)?*f"(2)

f(2)

.(9)

>¢"2)=2f'"2)+4f' (2)+4(z-a)f"(2)+2(z—a)f"(2) +
(z—-a)*f"(2) ...(10)

Putting z = a in equations. (8), (9) and (10), we get

P'@)=0 ..8), ¥"(a)=2f(a) .(9),
Y (@) = 6f'(a)  ..(10)

Putting equations (9") & (10" in (7),

dz) —

1 1
=" (¥ (@)—=¥"" (a).¢(a) ! "mea)=29" ().
Ata=z,i{¢}—2¢ a 1a i a.p@)  e¢' (@)W (la) ZWZ(a)cp(a)

@ v @} 3 @)
General Problems on Calculus of Residues

1
Example 16: Evaluate j f (z2)dz = zez dz around the unit circle.
C

Solution. Let f(z) = zeé f (z) Ihas only one singularity (pole) at z = 0.

f(Z)=Z€§=Z[1+§+ ! +L+...]

z22!  z33!

zz+1+i+i+...
z 2!

z23!

Res (z = 0) = coeff ofi in the expansion of (z) = % = %

By Cauchy's residue theorem,
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1 . 2mi .

[ f(2)dz = [ 26?dz = 2mi. Res (z = 0) = == = mi

C C

Example 17: Evaluate |

dzwherecis |z| =
cosh( )

1

Solution: Write f(z) = cosh(2)

Poles of f(z) are given by cosh (z) = 0 = cos(iz) = cos (g)

= iz=2nni§=’z=—2nm’$i§n=0,1,2,...
i i . ..
z=—,z=—_are simple poles inside c.
Formula for Res of f for simple polez=ais fi iwhen Z - a.

] . 1 . 1
Res (z = E) = lim = lim —
2 ”T—(coshz) 4 sinh(z)
2

Zo— dz

i i

- th;lf sin(iz) - Sin(i%r) - sin(_?”)

Similarly, Res (z = —%) =i

I f(z)dz =2n [Res (z = %) + Res (z = —%)] =

2mi[(=i) +i] = 0

1
z2 sinh(z)

Example 18: Obtain Laurent's expansion of the function f(z) =

at the isolated singularity and hence evaluatej';dz, where c is

z° sinh( 2)
circle |z-1| =
Solution: f(z) = zzsﬁlzh(z) _ 22<Z+%1+ZS_T+ )
:Z%[l_z__a ]_———+ (3—16—1—;0)
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which is the required Laurent's expansion.
z=0is apole inside circle c given by |z- 1| =2
Res (z = 0) = coeff. of ﬁ in the expansion (1) = —%

By Cauchy's residue theorem,

J‘z.;dz:zm.Res(z:o):__:__
2 2 sinh( z) 6 3

Example 19: Evaluatejz4e1’zdz where cis circle |z| = 1.
C

1
Solution: Let f(z) = z* ez, then z = 0 is the only pole of it which is
inside c.

1
4 = 4 1 1 1 1 1
f(Z)—Z ez =727 (1+;+222!+ﬁ+m+%...)
Res (z = 0) = coeff. oflinthisexpansion=i=i
z 5! 120

i

1 .
fc f(2)dz = fC z*ezdz = 2mi.Res (z=0) = % ==

Theorem 7: If AB is the arc 8; < 6 < 6, of the circle
|z-al=randif
lim (z —a)f(z) = k (constant),
zZ-a
Proof: Since, lim (z—a)f(z) =k
Z—-a

~ given € > 0,3 § depending upon ¢ s.t.
(z-a)f(z)-k|<e. For|z-al<é

But |z - a| = r. Therefore if we take r < §.
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then |(z-a)f(z) - k| <eonthearc AB
This= (z—a)f(z) —k =nwhere|n| <e
> f@) =2
[pf@dz= ] (IZ(_LZ) dz
= f:lz (%) re®®idg, z—a =re®

= ki f,”d6 +i [,"n do

Check your progress

sinmx

Problem 1: Apply the calculus of residues to prove that f0°° dx = %

X

23

at z
(z-1)*(z-2)(z-73)

Problem 2: Find the residue of =123.

12.7 SUMMARY:-

The Residue Theorem unit establishes a profoundly powerful tool in
complex analysis, stating that if a function is analytic inside and on a
simple closed contour C, except for a finite number of isolated
singularities z1, z»,...,zn inside C, then the contour integral of the function
around C is simply 2zi times the sum of the residues of the function at
those singularities, formally expressed as . This theorem elegantly reduces
the often-difficult evaluation of complex contour integrals to the algebraic
computation of residues at the enclosed poles, providing an essential
method for solving definite real integrals, evaluating infinite series, and
has far-reaching applications in physics and engineering.

12.8 GLOSSARY:-

> Residue at a pole
> Residue at infinity
> Cauchy residue theorem.
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12.11TERMINAL QUESTION:-

Long answer type question

1: State and prove Cauchy's residue theorem.
2: Find poles and resides of the function f(z) = Zf:iz
) dz .
3:  Evaluate j where Cis | z|= 2
= cosh(z)
: : e’ L
4: Using residue theorem evaluate _[— where C is circle

22(z-1)>%"
|z|=2
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ZS

(z-D(z-2)(z-3)

5: Find resides of the function at the point
z =1,2,3respectively.

Short answer type question

1: Evaluate the integral dz using residue theorem.

|z]=2

2: Evaluate the integral _[ CS Szldz using residue theorem
5+
|2|=3
1
3: j —— 3z
s (27 +9)(2+2)
z
4: Evaluate the integral J' e—sdz using residue theorem.
|z|=1
5: Evaluate the integral _[ e'*dz using residue theorem.
|z|=1
: sin z . .
6: Evaluate the integral I—4dz using residue theorem.
|z|=2
2
7: Evaluate the integral j 224+1dz using residue theorem.
2 z2(z° +4)

Objective type question:

atz =1, 2, 3 are respectively.

. . z3
1: The residue of m

1 27
3 87
by 1,-8%

1 27
9 203

d) None of these
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2:

1 are:

a)
b)

c)
d)

3:

d)

The number of poles of f(z) = inside the circle |z| =

1
z(z2+3)(z%2+2)3

1
9
5

2

The Residue Theorem states that for a simply connected domain D
and a function f(z) analytic on D except for finitely many isolated
singularities inside a simple closed contour C, the integral

§C f (2)dz is equal to:

The sum of all singularities of f(z) in D.

2mi times the sum of the residues of f(z) at the singularities inside
C.

The product of the residues of f(z) at the singularities inside C.

2w times the sum of the residues of f(z) at the singularities inside C.
The residue of f(z) = 1/(z2+ 1) atz =i is:

-i/2

i12

1/(2i)

1/(2i)

z

Consider the function f(z) :e—z. Which of the following is the
z

value of ffi2|=1 f(z)dz?

0
2w
T

-2mi
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d)

cos(z) B

What is the residue of f(z) = = atz=0?

1/24
-1/24
1/41
0

. 2 dé . .
To evaluate the real integral IO 5230050 using the Residue
+

Theorem, we substitute z =€'’. The resulting contour integral is:

f dz
-1 322 +10Z + 3

§ 2dz
l-1§(32% +10z + 3)
§ 2dz

=1i(z% +1)

§ dz
21 7(5 + 3€0S 2)

Fill in the blanks:

1:

The coefficient a1 in the Laurent series expansion of f(z) about an
isolated singularity zo is called the ....... of f(z) at zo.

According to Cauchy's residue theorem, §c f(2)dz=.ccorvirn. ,
where the sum is over all singularities inside C.

> using the residue theorem, one

1+X
typically uses a contour consisting of the real axis from -R to R and a

large in the upper half-plane.
Answer: Semicircle (or semi-circle)

To evaluate the real integral J

4: The function f(z)=cotz has singularities at z=ns. These are all

poles.

Match the Following:

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 279



COMPLEX ANALYSIS

Column A: Function

1 f(z)=1/(2+ a3
2. f(z) =e*/ 2

3. f(z) = sin(z)/z®

4 f(z) =1/ (z- z)’

Column B: Residue at
A. 1/((n-1)N

B. 0

C. 1/(2ai)

D.

coefficient is zero)

MT(N)-302

singularity

0 (Residue for a pole of order >1 where the relevant Laurent

12.12ANSWERS:-

Answer of check your progress

Problem2: Res(z=1) :Ql; Res(z=2)=-8; Res(z=23) :z
16 16
Answer of long answer type question
2: Polesare z = 2, -1, Resides = g% 0
4: 27
1oga
2 2
Answer of short answer type question:
1: 2r(e—1) 2: 3:
2r .
—((2+3i
29 (2+3i)
4: iz 5: 6:
_iz
3
7. Iﬁ
2

Answer of objective question:
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1 a 2 a 3 b
4. C
5 b 6: b 7 b

Answer of fill in the blanks:

1: Residue 2: 27i x X Res(f, zk)
3: Semicircle
4: Simple

Answers of match the following:

1 = C (Residue at z = ai is 1/(2ai))
2 = A (Residue at z = 0 is 1/(n-1)N)
3 = B (The singularity at z = 0 is removable, so residue is 0)
4 = D (The Laurent series has a coefficient a ,=1, but a ,=0)
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UNIT-13: Application of Residue Theorems

CONTENTS

13.1 Introduction

13.2 Objective

13.3 Jordan’s Inequality

13.4 Evaluation of real definite integrals

13.5 Integration round the unit circle

13.6 Evaluation of integrals of the type ffooo f(z)dz

13.7 Poles lie on the real axis
13.8 Summary

13.9 Glossary

13.10 References

13.11 Suggested Readings
13.12 Terminal Questions
13.13 Answers

13.1 INTRODUCTION:-

The Residue Theorem, a crowning achievement of complex
integration, elegantly reduces the global problem of evaluating a contour
integral to the local, often straightforward, algebraic computation of
residues at enclosed singularities. While its initial power is demonstrated
through the evaluation of standard real integrals, its true versatility is
unlocked when confronting more sophisticated problems, such as those
involving integrals over the entire real line of functions combined with
trigonometric expressions like €™ or sin(mx). For these, the successful
application often hinges on establishing that the integral over an auxiliary
contour, typically a large semicircle, vanishes in the limit; a step crucially
supported by Jordan's Inequality, which provides the necessary bound for
the decay of the exponential e ™™® along the arc. This foundational
strategy extends the theorem's reach far beyond real calculus, enabling the
summation of infinite series via contour integration of functions
like zcot(zz), the efficient computation of inverse Laplace and Fourier
transforms, and even finding applications in number theory to prove results
like the Prime Number Theorem, solidifying the Residue Theorem as an
indispensable tool across pure and applied mathematics.
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13.2 OBJECTIVE:-

After the study of this chapter, learner shall understand:

e To understand the concept and statement of the Residue
Theorem: Explain how the theorem relates contour integrals of
analytic functions to the sum of residues enclosed within a closed
contour.

e To learn methods for calculating residues: Develop proficiency
in determining residues at simple, multiple, and essential poles using
various techniques such as limits and Laurent series expansion.

e To apply the residue theorem to evaluate complex integrals:
Demonstrate how to compute contour integrals around closed paths
in the complex plane using residues.

e To evaluate real definite integrals using contour integration:
Illustrate how real improper integrals—especially those involving
rational, trigonometric, and exponential functions—can be solved
efficiently with the help of the residue theorem.

e To explore the role of singularities in integration: Understand
how the location and type of singular points affect the value of
contour integrals.

e To strengthen problem-solving skills in complex integration:
Apply theoretical knowledge to practical examples and develop
strategies for selecting suitable contours in various integration
problems.

e To appreciate the theoretical and practical importance of
residues: Recognize the significance of the residue theorem in
mathematics, physics, and engineering—particularly in evaluating
integrals, solving differential equations, and studying signal
processing.

13.3 JORDAN'S INEQUALITY:-

If 0 <6 < m/2, then the inequality ? <sin0 < 0 is known as Jordan's
inequality.

Theorem 1 (Jordan’s Lemma): If f(z) is analytic except at finite number
of singularities and if f(z) — 0 uniformly as z — oo, then

Jim e™?f(z)dz=0,m>0
—00 F

where r denotes the semi-circle |z| = R,I(z) > 0.
Here R is taken so large that all the singularities of f(z) lie within the semi
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circle T. (No singularitiy lies on the boundary of the semi circle).
Proof: = f(z) = 0 uniformly as |z| = o

& de>0s.t. |f(z)| < evzonT. (D
|z| =R = z = Re'® = dz = iRe?dd = |dz| = Rd6 (2)

e™? = exp(imRe'®) = exp[imR(cos @ + isin 6)]
eimz — oimRcos6 , ,—mRsin 6

or
Hence |eim?| = g ~mRsin 6 - (3)

as [e®| = 1 for every real p.

j ez (7)dz| < f le™z| - |£(2)] - |dz]

r Fn

<f e_mRSineé"RdQ
0

™ 20
< eR - e MR(29/M) 40 a5 — <sinf <0
0

meR TE
= —omR [e—ZmRH/n']:)[ = %(1 — e_sz) —-0asR - o
» lim e™?f(z)dz = 0,m > 0.

r

13.4 EVALUATION OF REAL DEFINITE
INTEGRALS:-

This section is mainly devoted to the evaluation of real definite integrals.
We evaluate these integrals by the method of contour integration. The
contour may be a circle, semi-circle or quadrant of circle

Method for writing the function f(z) of a given integral

Integral Function  f(2) and | Contou
Contour r
i60
L fzn cos?360d6 f(z) = o 21 te T Unit
' 0 2 pcosv T p circle
1+ 2pcos® +p as 2cos® 360 = 1 + cos 660
21
5 f 2080 . o f(z) = gcos? Unit
' (sinOH _ n6)de exp i(sin @ —n@),z = e | circle
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i26
20d6 R — Unit
3 2n COS f(2) 'z .
Jo 5 + 4cos 6 >+ 4cc;s gig circle
i26
in 260d6 =— Unit
n 2n SIN f(2) 'z .
Jo 5 + 4cos 6 o+ 4Cf gig circle
5 I sin 2xdx et?? Semi
' O 54 4cosx f(@) = 5 + 4cos z circle
o Sin“ mxdx f(2) =————< circle
6. fo x2(x2 + a?) z?(z% + a?) idented
as 2sin?mx =1 —cos2mx| atz = 0
cos? mxdx f(2) 1+etm gﬁgé
) 7)) = — 87—
[£ I x2(x2 + a?) z*(z% + a?) idented
as 2cos?mx = 1+ cos2mi atz = 0
3 e cos mxdx imz Semi
' —®xZ4+x+1 fz) = 22+z+1 circle
9 w Xxsinmxdx zelmz
: f_oo—xz_l_az f@ =3
Semi
10 w (logx)?dx (log 2)? circle
J-0 2 + a2 f(@) = 72 + a2 idented
atz=20
Semi
11 * log xdx _logz circle
. x2+1 f@) = 722 + 1 idented
atz=20
12 *logxdx (log z)2 Double
o x+1 f@)=—"7 circle
13 w logxdx (log z)? Double
Jo 507 f(2) = circle
x“+x+1 zc+z+1
Semi
14 o logxdx _ logz circle
/o X+ x2+1 f(Z)_Z4_|_Zz_|_1 idented
atz=20
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Double
15 * (logx)?dx (log z)3 circle
: fo x+ 1 z)=— 1 idented
atz=0

Remark 1:  Note the denominators of integrals 10,11,14 are even
functions of x whereas denominators of 12,13,15 are not even functions of
X.

2: If log z or (log z)™ occurs in the integrand, then the contour will be
idented at z = 0, whereas if integrand contains log(x? + 1) or log(x + 1),
then it will not be idented at z = 0. Observe integrals 11 and 14.

13.5 INTEGRATION ROUND THE UNIT
CIRCLE:-

We proceed to evaluate the integrals of the type

2

f(sin 8, cos 6)do
0

If we take z = e, then the above takes the form

z+z71 z—z Y
f ¢(z)dz. For = cos 0, — =sin @
c 2 2i
where C is the unit circle |z| = 1.
] 21 ae
Example 1: Evaluate fo Theecs

Solution: Take C as unit circle |z] = 1 and so z = e'?,

. dz
dz = e?idf = izdo = — = de
2T d@ di 1
Let/ = fo a+ bcosf fc (E) .

a +g(e"° + e~i9)

#(%).;zif dz
c\iz a+g(z+%) ib C(Zz+%z+1)

or,
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2 1
I = .—f f(z)dz, where f (2) = ————
i) z2 + %Z +1
For poles : 2+ +1=0o 7= SHED)
Take @ = —an@D o ay(@i-bh
b ’ b
Then af =1&|B8]>1.~ |a] <1
Only Pole zZ=a lies inside c.
R = =1li = li (Z - O!)
es(z=a) =lim,,(z—a)f(2) =lim,_, C-0z-p
1 b
a—-B 2/ -b?)
f f(z)dz = 2mi b mib
Z)AZ = LTl - =
¢ 2/(a*=b%) (e = b?)

Tib 27

= fc fdz = () N RN D

Example 2:  Prove that,

2T cos?36d6 (1l —p+p?
o 1—2pcos26+p 1-p
Solution: Let C denote unit circle |z| = 1.
and
I_.I‘Z” cos?30d0 o<y <1
A 1—pc0520+pzs" p
Then

[ 1 fzn (1 + cos 60)do
~2), 1—2pcos26 + p?
1 (1+e*°)ds

2w
= R.P. & .
Zfo 1—p(e®?f +e720) + p?
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Putting z=e® so that dz=ie"9d9,f—zz=d9, we  get
1 1+ z° d
I=RP-=f, (2 Z_)Z 2.—2
271 —-p(z24+z72) +p?iz .
-1 z(1+ z%)dz
=R.P.( )fc ( )
4

i) (L) o
or I= R.P. %fcf(z)dz
_ z(1+2z°)
(L) f0) =

Poless of f(z) are given by z*— (1;,;2)22 +1=0

1/2
42— (1+p2)i[(1+p2)2—4p2]

or pz*—(1+p?)z2+p=0 or

2p
2 _ (1+p*)x(1-p%) _ 1 _ 41
z4 = o —p,p SO that Z—i\[i,i\/};

The poles lying within the unit circle C are +,/p as 0<p<1
Res(z = \/z_)) + Res(z = —\/;_))

= Zli% (z—p)f(2) + Zii{n@(z +./0)f (2)

=Pz +z% (24 p)z(1+ 2%

B zllr\r/lﬁ (z2 —p)(z2-1/p) * zll{nﬁ (z2 —p)(z2-1/p)

_ a+p)p . (—/p) (1 +p*)
We+p@—-1/p) (—/p—P)(@—-1/D)

asz? —p=(z—.p)(z+p)

or

_p(1+p%)
= o1
fc f(z)dz =2mi(  Sum of residues within C) = mgg—l_ng)

Now by (1), I= RP. (—)Z2P)_ gp  (HE2),

2ip p2-1 1-p

or
<1 +p? — 'p)
[=(———|r
1-p
: m__add
Example 3: Evaluate Js RN where, a> 0.
T add

Solution: Let! = [

0 aZ+sin?26
Then
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I_f” 2ad6 _f” 2ad0
~ J, 2a2+2sin26 ), 2a%+1— cos20

—jzn adt tting 20 = t
~ ), 2a2+1—cost PUEY T

_jZ” adt
0 2a2+41— %(eit + e-it)

Putting z=el S0 that dz = ie'tdt, we get
2a dz . . .

1=/ et -Gi T e Where € s unit circle |z] =1

or =80 Y —oaif — %
i 7C 2(2a%+1)z—z2%2-1 C z2-2(2a%+1)z+1

or

I =2aif.f(z)dz

(D, f(2) =

z2—-2QRa%?+1)z+1
Poles of f(z) are given by
z2-2QR2a’+1)z+1=0

or

,_ 2@+ D+ V[4Q2a? +1)? — 4]
B 2
=2a%>+1++[(2a?+1)2—1] = 2a®* + 1 + 2a,/(a? + 1)

Taking & = 2a? + 1 + 2a/(a? + 1)
f=2a%?+1-2a/(a?+1)

we get z=a,p. Evidently. la] > 1 and IB] < 1.
f(z) has only one simple pole z = S lying within C.

Res(z = B) = lim(z — B)f(2) = lim (z—p)-1
z-f z—p (Z — CZ)(Z — ’B)
1 1

B—a —4a,/(a?+ 1)

By Cauchy's residue theorem

2mi
—4a(a? + 1)1/2

f f(2)dz = 2mi( sum of residues within C) =
c
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. . . 2ia.2mi T
Using this in (1), we get I=—4a(a2+1)1/2=(1+a2)1/2

Example 4: Prove that

2T (1 4+ 2cosO)*cosnfdl 2m
f ( ) =—=(3B-V5)"
0 3 + 2cos 8 V5
n being positive integer.
2w (1+2cos )" cosnodo

Solution: Let I = fo 3+2cos 6

Then

2T (1 + ei@ + e—ie)neinede

I = R.P. - .
0 3+ el 4 10

Putting z = e so that dz = ie‘?d@, we get

(1+z+zH"z" dz

I = R.P. .
c B+z+z1) iz

where C is unit circle.

I—RPl (z2+z+1)"dz = RP 1J‘ 4 L
i), z2+3z+1 SO_"icf(Z)Z (1)

where
(@ +z+ )"
f@ = z2+3z+1
Poles of f(2) are given by z2+3z+1=0.
This gives z= _3;—”6. Take a = _S:ﬁ,ﬁ = _3;@
Then af =1,]a| < 1,8 > 1.
~ f(2) has only one simple pole z = « lying within C.
R ) =i . (z—a)(z?+z+ 1)"
esz=a)=lmz-a)f(2) = lm—""— o= p
n
_@tatr 1[(-3+V5)" 3+vE
B a-p "5 2 2
1 l9—6\/§+5—6+2\/§+4ln_(3—\/§)"
V5 4 5

By Cauchy's residue theorem,
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, , o 2mi(3 —V5)"
f f(2)dz = 2mi( Sum of residues within () = —————
c V5
i is i - 1.2ma
Using this in (1), I = RP.7- = (3 V5)"

_27‘[

V5

2
Example 5: Prove that fozn :fbi‘zz = Z—Z a—+(a% - bz)],where a>
b>0

B -V5)"

2w sin? 0d6 _ fZTf (1—cos 20)do

0 a+bcosd®

Then

j2n (1 _ eize)dg
I = R.P. - .
o 2a+b(e? +e-t)

Putting z = e so that dz = ie‘?d@, we get

(1-2% dz
I = R.P. f —
c2a+b(z+z1)iz

where C is unit circle |z| = 1.
or

1 (1-2z%)dz 1 (1-2z%)dz
I == RP —_.I- = RP —f
iJc2az+bz?+b ibJ.z2+ (2a/b)z +1

I=RP ! d 1 = Loz
= R. E.l-cf(z) Z .. ( )’f(Z)_ZZ+(2a/b)Z+1

Poles of f(2) are given by z% + %az +1=0.
or

—(2a/b) + [(4a?/b?) — 41?2 —a + (a® — b?)V/?
Z = =
2 b
Take

_ —a+(a®—DbH)"? —a — (a? — p?)/?

“= b b= b
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Then af =1,|B| > 1,]a] < 1.
Hence f(z) has a simple pole a z = a within C.

2

Res(z =a) = li_r)rclt(z —a)f(z) = ll_l};

z—p
1-a* a(l/a—a)
T a-f  a-p
=%=—aa5aﬁ=l

f f(z)dz = 2mi - Res(z = a) = —2mia
c

Now @ becomes
or
I = RP 1 i — RP (—27ra)
= R.P. ib( mi---) = R.P. >
2n 21
I=RP. 3 [a — (a2 — b2)1/2] = = [a — (a® - b2)1/7]
Example 6: Evaluate fon ZT;Z?Z, where a>b>0.

Solution: a >b > 0= a?® — b? >0 =+Va? — b2 = real

Let
B j’” sin* 6do 11’2” sin* 8d6 .
~Jy a+bcos®  2J, a+bcosB @
Take € as  |zl=1 or, z=e¥ dz=e"ids, 5 =d0
By egs. (1),
el — e=i0\"* dae 1 1\ dz 1
I:f , 0 1 10 :_f (Z__> g -7 (2)
c 2i 2a+b(e® +e79) 16, z iz 2a+(Z+z"Y)b
_ i (zz—l)4dz 1
or, I'= 16i /C z4[2az+b(z2+1)] or I'= 16ib fc f(2)dz
where f(z) = _yt
N 24[22+%+1]
For poles of f(2):z* [22 + 2% + 1] =0

2az

= z=0, (pole of  order 4) and z% + —-+1=0
or
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a++Va? —b?
bz? + 2az+ b =0 or, 2= ——
Take @ = — LY@ ﬁ—L.Thenaﬁ=1anda<1andso[>’>

1.Thusz =0 (pole of order 4) and z = a, (pole of order one) lie within C.

(z-a)(z* - D*

Res(z = @) = lim (s — ) (2) = lim o= o

(a _1)4 ( _l>4.L—( _'B)4L
ata-p) \"Ta W —pz N
_ Zvaz—b2 b (a _ p2yare
b 2\/a2 b2 b

(z2 - 1*
z* (z2 + ZZa + 1)

1
Res (z = 0) = coeff. of Z in expansion of

1 2az\1"*
= coeff. of; in (1 —2z%)* [1 + (z + —)]

b
= coeff of —
2az 2az\2 2az\°
(1— *Cz% + *Cyz* ) |1 - |z +—> + (ZZ +—) - (Zz +—) + -
b b b
_ 2(2a> (2a>3 \ ac (2a> _ 8a3+ 12a
B b b ‘b - b3 b
8 12a 8a3
Res(z =0) + Res(z = a) = s (a? — b?)3/% + <T - b—3>

f f(z)dz = 2mi[Res(z = 0) + Res(z = a)]
c

12a 8a3

— _ 2\3/2 -
= 2mi (a — b?)3% + 5 b3

Putting this in eq. (2), we get

:l 2 _ K2)3/2 _ 43 E 2]
b4[(a b*) a +2ab

2m cos260d6 _ w

5+4cosf 6

Example 7:  Prove that [,
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. . __ (2m cos20df __ 21 e20 40
Solution: Let I=[" .= RP [ (e
Putting z=e",dz = ie?dy, " = db.

2
I= RP. X —Z% .1 where ¢ is the circle |z]=1.
i7C 542(z+z7 1) z
1 z%2dz 1
or, I = RPZ e Sprtegaa R.P. 2_lfC f(Z)dZ
—_Z : 245 —
where f(z) = ErE. For poles : z°+7z+1=0
or, 222 +5z+2=0 or, z=—2,—3.

+ only z = —~ lies within C.

1
R ( 1) i ( +1>f() . (z+§)z2
es|Z=——Z)= 1lIm |Z T+ < Z) = 11m
2/ ge-d 2 73 (21 2)(z+2)
. 72 1/4 1
= lim =—=—
Z_,_%Z +2 5 _% 6
1
f f(2)dz = 2mi.Res(z = i) = 2mi. (g)
Cc
Putin (1),
[ = RP 1 2mi m
20 66
. . . . T (1+2cos 6
Example 8: Evaluate by contour integration : fo (5+4c056) dé
. __ (T (1+42cos 6 _ 1 r2m (14+2cos6
Solution: Let] = [ (5+4c056) dg. Thenl = Zfo (5+4c059) de
Takecirclecas |z| =1,z =%, dz = e'?,z = izd0
R (14 2e) (dz> _R.P.( (1+2z)dz
B iz) 20 ), 5z+2z2+2

2 65+2(z+%)

_R.P.((1+2z)dz

_RP. .
or —chf@ 2(1)

_ 1+2z . 2 5z _
where  f(z) =——z—. Poles are given by z°+—+1=0
Z +7+1 2
$2ﬁ+52+220:22_%?:_Z_%=%ﬁ, say.

z = «a liesoutside cas |z| =2 > 1.z = [ lies inside c.
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o @-p(+22)
Res(z=p) = ll_f)rllg(z B)f(2) = ;1_{1[} (z—a)(z—B)
1+22)=1+(—1)= 0 ~0

=;i—r’%<z—a’ .B_a ,B—C(
jf(z)dZ= 2mi.Res(z = B) = 2mi(0) = 0

Now(1)

=1=0.

Example9:Evaluate f,’ (iizzzz z) do.

. _ (™ (1+2cos)) _ 1 c2m (1+2cosf
Solution: Let [ = [~ ———=°df = _ [ (4+4CO59) de

(1+2¢%%)ae
4+§('ei9+e_i9)' '
circle |zl = 1orz =e'%,dz = e%idf = izd6

_ 1 2(1+2z) dz\ __ 1 (1+2z)dz
weget/ =RP.:[ 2020 (%) _gp oy 20

or, [ ==RP. [7" Take c as unit
2 0

8+5(z+z71) iz 24+8z+5
or
= RP 1 (1+ 2z)dz RP 1J‘f( )d )
= X, = = S Z)az
L CZ2+(§)Z+1 St
where f(z) = 1*22_ Poles of f(2) are given b
24204 g y
522+ 8z+5=0=>z= 8tor_ 23
Z Z = zZ = 10 = 5
Take a=""2p =2 Here la] =1=|8]
_ . . — _ (1+22)
z=a,f, the simple zoles( Iﬂl)e inside c.f(z) = rEawey—r
- 1+2a 1+2 2(a—
Sum of residues = e T3 ap — 2
ff(z)dz = 2mi, Residues = 2mi(2) = 4mi
C
1 1 N _4m
= I = R. L[ f@dz = R.P. (3) @miy =%

Example 10: By the method of contour integration, prove that

21 21T
f es9 . cos(sin @ — nh)do = —
o !
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where n is a positive integer.

Or
Prove that fozn e®s? . cos(nf — sin )dO = i—’f
Solution: Let |z| = 1 denote the circle € and

2T
I= j es9 . cos(sin @ — nh)do
0

21
= R.P. f ecos@ ,ei(sinH—nH)de
0
or I =RP. [" exp[cos§ + i(sin 6 — n6)]d6

2 . . dz .
= R.P. f exp. (e — ing)df = R.P. j exp(z)e~"? — 7= et
0 c

or I= RP. [ %= RP. 1 f(2)dz . @

where f(z) = Z,il. This has pole at z=0 of order n+1.
— [ d" z — 1 0 — 1

Res(z = 0) _Eﬁ[e 12=0 = et =—

By Cauchy's residue theorem,

2mi
f f(2)dz = 2mi (sum of residues within C) = -
c !

12mi 21

Now (@D)] takes the form I = R.P. =

i n! n!
Example 11: Prove that fozn e=%°30 cos(nf + sin 8)dg = 2

n!

where n is a positive integer.

Solution: Let] = [°"

. €7 cos(nf + sin 6)d6

Then
21
I = R.P. f e—C059 . e_(Sin9+n9)id9
0
271
=R.P. f exp[—cos 8 — isin @ — inf]d6
0

or
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21

21
I=RP. f exp(—e® — ind)do = R.P. f exp(—ei?)-e"m9dg
0 0

Putting z=el so that dz=ieds, we  obtain
or

I=RP jzn ‘”dZRP 1f e_zd
= R.P. . exp.(—2) - (2) iz R ) g z

where C IS unit circle |z] = 1.
or
1 e’
I = R.P. chf(z)dz ~ (D) f(2)= e

f(z) has a pole of order n + 1 at z = 0 which lies within C,

. lypdr 1 0 s ="
Res(z =0) = o [ﬁe L:O = E[(_l) e )= = nl
By Cauchy's residue theorem,
. : - 2mi(=1)"
f f(z2)dz = 2mi( sum of residues within C) = —
c !
12mi(—1)" 2r(=1)"
~By(1),I=R-P-= =
y(1) [ n! n!
i T acosdf __ _ a
Example 12: Prove that [ ——— = 2ra [1 —J(az——l)]’a > 1
. __ (T acosfdf T acos 0df _ _
Solution: Let [=[_ ——— = 2J, ——— a  f(=0)=£(0)
or
2m ae'?do . .
I=R.P. f 1 .Putz =e,dz = ie??do
0 a+ 7(ei9 + e~i9)
2az dz 2a
[= R.P. fC m; = R.P. ch f(Z)dZ (1)
Z . - - -
where f(z) = Ty and C is the unit circle |z| = 1. Poles are given by

z2+2az+1=0 so that z=a,f where a= —a+\/fa2 —1),[3 =
—a— (a®> —1)Y2. Then af = 1,|a] < 1,|8] > 1. Hence f(z)' has one
simple pole at z = a within C.
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Res(z=a)=li_r)ré(2—a)f(z) =li_r)rf}(zfﬁ=a_ﬁ
_—a+ (a2 -2
 2(az-1)V2

By Cauchy's residues theorem,

Uy = i Res(y = _ 2mi[—a+ (a® — 1)Y/?]
Lf(z) z=2mi-Res(z =a) = 2(a? — 1)172

2a
By (1), = R.P. - [(

az_—l)l/z+1]=27ra[1—(L]

az —1)1/2
Example 13: Show that
T
f tan(6 + ia)d@ = im, where R(a) > 0
0
Solution: Let I = [, tan(6 + ia)d®

Then

do

2cos(8 + ia)cos(6 — ia)
B j’” [sin 20 + sin(2ia)
0
1

B j’” 2sin(0 + ia) - cos(6 — ia)
0

cos 26 + cos(2ia)
.[’Z” sint + isinh 2a
o cost+ cosh2a

2

dt, where 20 =t

Putting z = e so that dz = ie“dt,% = dt, we get

-1

1f z _2? + isinh 2 -| 4%
=— — —, where
2Jc |z +22 + cosh2al| ¥

z%2—1-2zsinh 2a ’I)
z(z%2+2z cosh 2a+1)\

|I= —%fc f(2)dz ...(1) where f(z) =

Poles of f(z) are given by

z(z% + 2zcosh2a+1) =0
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This
=2z=0,z>+ 2zcosh2a+1=0
=z=0,z= —cosh2a+ \/(coshz 2a—1)
= 2z=0,z=—cosh2a +sinh2a=2z=0,¢,0

where

a = —cosh 2a + sinh 2a

B = —cosh 2a — sinh 2a
Evidently af =1,|a|l <1 ) that IB] > 1..

f(z) has two simple poles at z = 0, « within C.

) oy ) i z%2 — 2zsinh2a — 1
es(z = )—Zl_r)%(Z— )'f(Z)_Zl_r,%ZZ+2zcosh2a+1
0-0-1

T0+0+1

Res(z =a) = li_r)?x(z —a)f(2)
(z — a)(z? — v2zsinh 2i — 1)

= lim z(z—a)(z—P)u
—a /
a? — 2asinh2a—1 a— 2sinh2a—p For af = 1
= = orafl = 1.
a(a = p) a—=p
_ 2sinh2a —2sinh2a
B 2sinh 2a B

Res(z=a)+Res(z=0)=0+(-1) = —1.
By Cauchy's residue theorem,

f f(2)dz = 2mi( sum of residues within C) = 2mi(—1)
c

Now, by (1),1 = =5 (=2mi) = ir.

Example 14: Apply the calculus of residues to evaluate

. 21 sinnfdo
(i) fO 1+2acos 6 +a?’
.. 21 cosnfdo
(”) fO 1+2acos 8+a?
where a?<1 and n is a positive integer.

L 27 einfqg
Solution: LetI = fO m

Then
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[ j-Zn (eiH)ndQ
0

1+a?+a(e’ +e~0)

Putting z = e so that dz = ie'?d#, we get

I_f z" dz
o1+ at+alz4+zY) iz

1 z"dz .
= ch A+adz+ a2+ a,where Ciscircle |z| =1

or

1 z"dz 1

I =— A =,—j f(Z)dZ (1)

Wlez?+az++1 1)

where
n
f(2) =
(z+a) (z + %)
Simple poles of f(z) are z=—a and z= —%. But a?<1.
Hence z=—a lies within C and z=-1/a lies outside C.
Zn

Res(z = —a) =lim,,_,(z+ a)f(2) =lim,__, m

_ (_a)n _ (_1)nan+1
—a+(1/a) 1-—a?

By Cauchy's residue theorem,

2mi(—1)"a™t?
1—a?

j- f(2)dz = 2mi( Sum of residues within C) =
c

. 1 2mi(-1)"a™!  2n(-1)"a”
RA By (1)’ I= a ' 1—a? - 1-a?
or
j‘Z” en?dp _2n(=1)"a"
o 1l+2acosf+a? —1-—a?

Equating real and imaginary parts we get
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fz” cos(nd)dd  2m(—1)"a"
o 1+2acosf+a?2  1-—a?

and

jZ” sin(n0)do
o 1+42acosf+a?

13.6 EVALUATION OF INTEGRALS OF THE
TYPE [ f(z)dz-

= f(z)dz where, the function £ (z) is s.t. no pole of £(z) lies on the real

line, but poles lie in the upper half of z-plane. We evaluate the above
integrals by considering them along a closed contour C consisting of
(1 semi circle T st |z|=R in the upper half plane.
(i) real axis from —R to R.

Then we try to show that integral along I' vanishes as |z| — co.

Thus [ f(@)dz = [ f(2)dz + [*, f(z)dz.
Taking limit as R- o, [ f(2)dz= [ f(2)dz
By Cauchy's residues theorem, this becomes
YA
I
»- > » X
-R 0] R

Figure: 1

f f(2)dz = 2mi( Sum of residues within C)

Example 15: Provethatf,” —— = .
. . . 1+x 2
Solution: Consider the integral,
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fcf(z)dz, where f(z) = 1722
j f(2)dz = j fx)dx + f f(@)dz(1)
C —R r

Here C is the closed contour consisting of T, the upper half of the large circle
|z| = R and the real axis from —R to R. Poles of f(z) are z = +i.
f(z) has only one simple pole at z = i inside C.
Res(y = D) — i O 2 I . 1 1
es(z = l) = ZILTLI(Z — l)f(Z) = Zlirll(Z — l)m = 2_L

By Cauchy's residue theorem,

j f(z)dz = 2mi( sum of residues within C) = ST
c

lim zf(z) = lim

|z o0 |z]>0 1 + z

= 0. Hence, by Theorem 7,

}%i_r)glo Jrf(z)dz =i(r—0)(0)=0

Making R — oo in (1) and noting this, we get

_f°° i+0 ']'°° dx _2f°° dx J‘°° dx
" _Oof(x) or o l+x2 7, T+x2 " o 1+x?

(0
2

_

x* a4 4q3

Example 16: Prove that if a > 0, then f

Solution: Let f(z) = —.—. Consider the integral f f(z)dz, where C is

closed contour con5|st|ng of I, the upper half of large circle |z| = R and
real axis from —R to R (see Fig. 1). Poles of f(z) are given by z* + a* =
0.

or z* = —a* = e?WieTigt or z=qe!@MtLT/4 where n=0,1,2,3.
But only two simple poles z = ae™/4, ae3™/* lie within C. We know that

¢(2) ¢(2) .
where = , [Formula for simple pole
ay' (@ f=yey | ple  pole]

Res(z=a) = llm

or
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z -z
I = - 4 _
Res(z = a) = 11m N3 lmalc P ll_l}'f(lx v asz*+a*=0

» Res(z = ae™/*) +Res(z = ae3mi/*)

1 : . -1, S
= — p [aem/4 + ae3m/4] — 4_a?)[em/zt +em . e_m/4]

1 . 1 T —i
— /4 _ o-in/4| = — ___2isin— =
 4a3 le | R VNG

By Cauchy's residue theorem,
f f(z)dz = 2mi( sum of residues within C)
Cc

or

2mi(—i) _ mV2
2a3v2 ' 2a3

frf(z)dz + j_i f(z)dz =

Making R — oo, we get lim [ f(2)dz + [, f(x)dx = %

3

(D

}%im f(z)dz =i(r—=0)(0)=0 ..(1)
-~ Jp

lim zf(z) = 11
|z]—>co f( )= |z|»o0 z% + a4

By previous theorems, Eq. (1) becomes [* f(x)dx = %/3

or

© dx * dx 2 © dx 2
| wra=2] or |
0

Xt +at x*+a* 2a3 x*+a*  4a3

Similar Problem. Prove by contour integration

© dx T
| *v2
0

x4 +1 2

Example 17: By the method of contour integration, prove that

fo'e) d -ma
[rE where m>0,a>0 and deduce that
0 x2+a? 2a

o xsin(mx) T _
fo x2+a? =_e M
Solution: Let f(z) = ——. Consider f f(z)dz where C is closed contour
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as shown in Fig. 1. Poles of f(z) are given by z? + a? = 0 or z = tia.
f(2) has only simple one pole z = ia inside C.

or
N 1 o _ 1 (z—ia)ei™?
Res(z = la)l— ZILI}}l (z—ia)f(z) Zh_)r}}l e (D)
— — _— _p—Mma
o Res(z = ia) = S €
im ——— = 0. Hence by Jordan's lemma
|z| 00 Z +a
imz
}%I—I}olo Fmd2=1%1_{rolojrf(z)dz=0 (2)
By Cauchy's residue theorem,
] ) ) 2mwie M
f f(2)dz = 2mi( sum of residues with ) = ————
c 2ia
or
R T
f f(2)dz + f f(x)dx =—e™™¢
r -R a
Making R — oo and noting (2), we get
© T © eimx T
f_wf(x)dx = ae_ma or .I-_oomdx = Ee‘ma
Equating real parts, we get
®cosmx mw .
_OOXZ—-|-aZ x—ae (3)
or
j‘°° cos mx . _ie—ma @
o X24+a?2 " 2a N

Deductions. (i) Takingm = a = 1 in (4), we get

j‘“’ cosxd n_, T
x=ze t=—
0o X2+1 2 2e
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(i) Taking m=1 in equation (3), we get [ Sopdx="e""

_ _ COosXx _T -2 _ L
(iii) Taking a=2,m=1 in (4), we get fo S, dx = 4e =
(iv) Takingm = 1 in (4)

j”/z cos x A
—— —dx=—e2
o X%+a? 2a

(ii) Differentiating equation (4) w.r.t. m,

x2+a?2 Zae_ma' (=a)

fm xsin(mx) T
0

fm xsin(mx)dx
0

X2 +a2 T2

X ==-e

j°° cos(ax) s
d —-a
0o X241 2

cosmxdx _ m —ma
(x2+a?)2 ~ 4a3 (1 + ma)e

Example 18: Ifa > 0,m > 0, then [~

Solution: f(z)=%. Consider  the integral fc f(2)dz,

where C is the closed contour c isisting of T', the upper half of large circle
|z| = R and real axis from —R to R (See diagram 1). Evidently

1
lim ——— =
2ot (22 + a?)?2

Hence, by Jordan's lemma,

Lmde
}gl_g)lof T =0 or }%1_1)120 Ff(z)dz =0 ..(1

Poles of f(z) are z = t+ia. (Repeated two times), f(z) has only one pole
order two at z = ai within C.

B ¢(Z) B eimz
f(Z) = m, where ¢(Z) = m
Res(z = ia) = Zli_)rlg}l¢’(x)
e™[im(z + ia)? — 2(z + ia)]

= lim
z~ia (z +ia)*
_e™[im(z + ia) — 2]
= lim -
z~ia (z + ia)3
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e ™ im-2ia—2] e ™*(1+ma)
(2ia)3 B 4qa3i

By Cauchy's residue theorem,

; . g L+ ma)
Lf(z)dz = 2mi[Res(z = ia)] = 2mie vy
or
R n(l+ma) _
[ rerdz+ [ pogax="011D,
r -R
Making R —> and noting (1), we
or
© elmx T
T 5 5<5 ma
o (2 + a2)2 =53 (1+ma)e”

Equating real parts from both sides,

® cosmxdx ma
2t ad)? - 243 (1 +ma)e
But
cos mx p ) ®  cosmx
——dx = ——dx
o (X2 4+ a?)? o (x?4a?)?

Hence  the  last  gives  [° o

(x2+a?)?
Deductions. (i) Putting m = 1, we get

o)

cos xdx
0 (xZ + a2)2 4_ 3

(1 +a)e™@

(ii) Taking m = a = 1, we obtain

f Ccosx T 5 4T
rDE T T

Example 19: Apply the method of calculus of residues to prove that,

dx = mlog 2

j‘“’ log(1 + x2)
o 1+x2

get

= % (1+ ma)e ™.
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Solution: Let f(z) = lofi—zz“;i). Consider the integral fC f(z)dz where C is

a closed contour consisting of T', the upper half of large circle |z| = R real
axis from - R to R as shown in Figure 1.

z log(z + i)

— i] llzlllglooz—-l-l = 1(0) =0 (1)

li = [ li
|z|1£>noto(Z) |z|1£>noo VA

= By Theorem, lim J. f(@)dz =i(m—0)(0)=0

Poles of f(2 are z = +i.
f(z) has only one simple pole at z = i within C.
. . . log(z+1)
Res(z =i)=lim(z—-i)f(z) = lim———F—
z—1 z-i Z+1
_log2i _log(2e™?) log2+ (mi/2)
20 2i B 2i
By Cauchy's residue theorem,

or

f f(2)dz = 2ni[Res(z = i)] = %[logZ + (im/2)]
c

R i
f f(2)dz + f f(x)dx=m [logZ + ?]
r -R
Making R — oo and noting (1),

® log(x + i i
f g(—)dxzrr[log2+?]

e X241
o) 2
Equating real parts from both sides, %f_oo %dx = mlog 2
or
1 * log(1+ x?) “log(1+ x2)
ff_ooxz—-l—ldx = f T1gaz XTmos?

Example 20: Apply the calculus of residues to evaluate the integral

0o cos xdx
|- GFran sy (@> b > 0).

. i elz . .
Solution: Let f(z) = EFPrYEI Consider the integral fC f(2)dz, wh
C is a closed contour as shown in Figure 1,
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1

. . izg .
Hence, by Jordan's lemma, lim J: m = lim Jo f(2)dz=0
Poles of f(2 are z = *ia, +ib.
Only two simple poles at z = ia, ib lie within C.
Res(z = ig) = 1 . _ i (z —ia)e”
es(z = ia) = lim (z = {a)f (z) = |lim (z—ia)(z + ia)(z? + b?)
e—a
- 2ia(—a? + b?)
Res(z = ib) = 1 " _ 1 (z — ib)e”
es(z=ib) = lim z = i)/ (1) = i o+ ) (22 + @)
B e—b B e—b
~ 2ib(—=b% +a?)  2ib(a? — b2)
R =ia) +R b) = ! e” e
es(z = ia) +Res(z — ib) = 2i(a b\ b 7
By Cauchy's residues theorem,
f f(2)dz = 2mi( Sum of residues within C)
Cc
or
.[’ g+ j‘R e = 21i e? e@
Ff(Z) Z _Rf(x) x_Zi(az_bz) b a
Making R — oo and noting (1), we get
j‘°° e dx o e? ea
oo (X2 +a2)(x2+b2) aZz-b2\ b a
Equating real parts from both sides
j‘°° cos x - dx _om e @
o (X2 +a2)(x2+b2) aZz-b2\ b a
Note. The last also gives

or
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2f°° cosx - dx T e ea
o (xZ+a®)(x2+b%) a?-b%| b a

j“’ cosx - dx B i eP ea
o (x2+a?)(x2+b2) 2(a2-b2)| b a

Example 21: Show that [~ 2% gy = ge‘“k, (where a >0,k >0 ).

0 x2+4k2
Solution: Let f(z) = % Consider the integral [. f(z)(dz), where C is
a closed contour as shown in figure 1.

= 0. Hence by Jordan's lemma,

1m
|Z|—>00 z2+K2

; iaz — i —
I%l_{glo e e'*dz 1%1_{1010 fr f(2)dz=0 ..(1)
Poles of f(z) are given by z2 + k? = 0 or z = +ik. Now z = ik is the only
simple pole within C.

iaz —ak

. — . _. — . _e
Res(z = k) = lim (2 = 01 (2) = Jiy - ==

By Cauchy's residue theorem,
f f(2)dz = 2mi( Sum of residues within C) = wie %k
Cc

R
f f(2)dz + f f(x)dx = mie %
r -R

Making R — oo and noting (1), we get

0 o) xeiax
f f(x)dxzf mdxznie‘ak

Equating imaginary parts from both sides,

j‘°° x'sin ax f‘” xsin ax
- — - — —ak
0

X = X = me
oo X2+ k2 x% + k2
or
j‘w xsinaxdxd T )
—————dx=—e
o X2+k? 2 )
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Deductions. (i) Putting k=1 in (2), fOOO xs;r:_c;xd T -a
i i — H o xsinx 1-[ —k
(i) Putting a=1 in (2), fo g ="e
i _ 15 — 11 © xsinx _ T 4 _ T
(iii) Putting a = k = 1in (2), fo e dx = Cet =1

dx _ m(b+2c)

Example 22: Prove that [~ where b > 0,¢ >

0.
. 1 . .
Solution: Let f(z) = GITDGITE Consider the integral [. f(z)dz

where C is the closed contour consisting of T, the upper half of large circle
|z| = R and real axis from —R to R. See Figure 1.

© (x2+b2)(x2+c2)2 2bc?(b+c)?

VA
dim 2f (@) = I Gz 1 o)z

Hence, by theorem,

Ili_r)glo Jo f(@)dz =i(r—0)(0)=0 .. (1)

Poles of f(z) are z = *ib, tic, f(z) has only two poles within C, namely
at z = ib (order 1) and z = ic (order 2)

Res(z = ib) = le_)rg (z—=ib)f(2)

- lim (z —ib) 1

250 (z—ib)(z + ib)(z% + c2)2 2ib(—b? + ¢?)?
92 _

fz) = m ywhere ¢(2) = (z2 + b?)(z + ic)?

@' (z) = -2z2(z2+ b?)2(z+ic) 2= 2(z+ic)3(z? + b?)?!
L —2ic 2

¢'(ic) = (—c2 + b2)2(—4c?) —8ic3(—c? + b?)

~ i i (B - bY)i

T 2c(b% = c2)2 4c3(b%2 —c2)  4c3(b? — c2)?

Res(z=ic)—¢( )—d)( c)

Res(z = ib) + Res(z = ic)
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B 1 N (3¢c? — b?)i
"~ 2ib(b%2 —¢2)?2  4¢3(b? — c?)?2
i -2 3c¢?2-=b?*| i[-2c®+b(3c? - b?)]
— =

b c3

~ (b2 — c2)2 4bc3(b? — c2)2
i[(c®—=b3)—3c?(c—b)] i(c—Db)[c?+ b?+ch—3c?]
- 4bc3(b? — c?)2 - 4bc3(b? — c?)2
i(c = b)(b—c)(b + 2¢) i(b + 2¢)
T 4bc3(b2—c2)2  4bc3(b +0)?

By Cauchy's residue theorem,
f f(z2)dz = 2mi( sum of residues within C)
Cc

or

R _ 2mi[—i(b + 20)]
frf(z)dz + j_R f(x)dx = b3 (b ¥ 0)2

Making R — oo and noting (1),

f°° dx (b +20) )
oo X2+ b2)(x2+¢2)3 2bc3(b+c)2 7 (2)
Deduction. Putting b = 1, ¢ = 2, we get
.l'°° dx _n(1+4) b5m
o (2+1D(x2+4)2 2x8%x9 144
or
.l'°° dx _ 5w
o (x2+1)(x2+4)2 288
. [ dx
Example 23: Evaluate o DI

Solution: Prove as in equation (2) of the above example 22 that,

dx (b + 2c)

f_w (x2 + b2)(x2 +¢c2)2  2bc3(b +c)?

Putting b = 2,¢ = 3, we get
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f°° dx B (2 + 6) _2m

o (X244 (x2+9)2 7 2x2x33(2+3)2 675

foo cosmxdx __ le_%\ﬁ . sin (E_l_ E)
0 x*+x2+1 3 2 6/
N . _ elmz
Solution: Let f(2) = v Ty
Consider the integral fC f(z)dz where C is closed contour as shown in
Figure 1.

Example 24: Prove that

Evidently |llim = 0. Hence, by Jordan's lemma,
Z|—

o z4¥+z2+1

_ e™?dz _
lim | ————= zllm f f(2)dz=0 ..(1)
—00 r

R—o00 r Z4 + Z2 +1
Poles of f(z) are given by
z*+z2+1=00r(z?-1)(z*+2z?+1)=0

This=> 26 —1=0=26=1 =" = 7 = 62111'51'/6,:> 7 = enm’/3’(n —

0,1,2,3,4,5)
The values e'™/3,e?27/3, gi4m/3 ¢i5T/3 gre the roots of z* +z2+1 = 0.
The poles lying within C are e™/3 e2m/3,
Let a = e™/3, then a? = e?m/3,
Thus f(z) has two simple poles at z=a,a® within C.
Res(z = a) = 93711 v for simple pole where f(2) )
eimz
= lim ——
zl—r>rr11 473 + 2z
Res(z = a) + Res(z = a?)
gima eimocZ
= +
4a3 + 2a  4a + 2a?
exp(ime™/3)  exp(ime?™i/3
= p( ) p( ) Fora®—1=0

= . 3 :
de™ + 2e™/ x + 2exp (%)

_Y {im <1 +2N§)} exp {im <—1%/§>}

_4+2<1+2i\/§> ¥ 4+2<—1-;i\/§>
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_exp {% (i — \/§)} exp {% (—i— \/§)}
ST 3viv3 3+iV3
—mv/3\ [exp(im/2) - (=3 — iV/3)
e (5|0
(3 — ivV3)exp(—im/2)
+ 12

1 ) ) ) )
EEXP< nzl 3) [_3(elm/2 — e—tm/Z) _ i\/§(elm/2 + e—lm/Z)]

1 mv3
Eexp( )[—6151n——21\/_cos?]

4i\3 —mv/3 \/§_ m 1 m
= - exp > —sm—+zcos?

12 2 2
_ —1 -mv3\ | (m 4 n)
= \/gexp > sin > 15
By Cauchy's residues theorem, fC f(2)dz = 2mi (Sum of residues within

).

or I f(@)dz + f f(x)dx ni/(_ Y exp (_";/g) sin (% + %)
Making R — oo and noting (1), we get

® e™dx  2m -mV3\ /m =«
| s pee(Tr )G +g)

Equating real parts from both sides

j‘°° cosmxdx 21 —mv3\ | (m+n)
xttxz+1 3o\ Tz )M T

or

j‘°° cosmxdx  m —-mv3\ . (m+n)
T - S U A VI

Example 25: Apply the calculus of residues to prove that

(x* + a*)? ~ 16a a>0

j‘w x0dx 312
0
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Solution: Let f(z) = ﬁ Consider the integral fC f(z)dz where C is
a closed contour as shown in Figure 1. Poles of f(z) are given by

z4*+a* =0 or z* = —a* = —e?" . g™ . g*

z = qe(@n+omi/4 where n=0,1,2,3.
f(2) has two poles each of order 2 at z = a = ae™/*,z = = e3™/4
within € and so a* + a* = 0 = g* + a*.

llm Zf(z) = l Z—7 =0 (D

|—>oo (Z4- + a4)2

Hence, by theorem, lim J. f(2)dz = i(m - 0)(0) =0

To find the residue of f(z) at the double pole z = a, we putz =a + t in
f(2) and equate the coefficient of %

B (a +t)° B (a +t)°
f(Z) - [(a, + t)4 + a4]2 - (a4 + 0.’4 + 40,’3t + 6a2t2 + )2
(a +t)°

Fora* + a* = 0.

~ (423t + 6a2t2 + - )2
a+t)° 3t
2a

16a0t?2
(a® + 6a5t + -++) 3t
16a°t? a
_(a6+6a5t+---)(1 3 )
N 16a° t? ta

- 1
Here coefficient of Cls

3
2.5 5y —
Toqs (3@ +6a°) =72

Res(z = a) + Res(z =) = 136 (clx + ;) Tea (e—m/4 + e—3m/4)
3 11—-1i 3 . 3

ey oo () +isn ()

3 l-i 1 i1 -3x2i -3iV2

_E[\/_ _T_T 16av2  16a

By Cauchy's residues theorem,
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. : i 2mi
f f(2)dz = 2mi( Sum residues within C) = 1ea (—=3iV2)
Cc

or

R 3mV2
jrf(z)dz+f_R f(z)dz = ga

Making R — oo and noting (1), we get

f°° x0dx _Zf‘” x0dx 3 3mV2
o xt+at)z 7)) (x*+aY?  8a

or

j°° x0dx B 32
0 (x*+a*)?  16a

Example 26: By contour integration, prove that

']'°° x2dx m
o X2 +a?)3  8a3

z2

Solution: Letf(2) =1 Consider fc f(2)dz where C is a closed

(z2+a2)?’
contour as shown in figure 1. Poles of f(z) are given by (z? + a?)3 = 0 or
z = tia. Evidently z = ia is the only pole of order 3 within C. Putting z =
ia + t in the value of f(2),

_ (ia + t)? t?2 —a? + 2iat
fla+t)= [Ga+ 02+ a2 (¢2 + 2iat)?

(t* — a® + 2iat) t1?

- (2iat)3 +E

t? —a® + 2iat 3t 3t

N N
(t* —a® + 2iat) 1 3 3

- —8ia3 t3  2iat? 2a?t ]

Here coefficient of % is 8;:3 [1 + 3 - 3] = 16;3

Jo f(@)dz = 2mi( sum of residue within C) = 2miRes(z = ia)
or
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21

frf(z)d”f_R f(x)dx =iz D

3

Jim 2f(2) = lim_ Za2)3 0 ..(2)

By Theorem 7, Jim J. f(2)dz = i(m—0)(0) =0

Makingg R - o in (1) and noting (2, we  get
T

f_oo (x%2 4+ a?)3 ~ 843

13.7 POLES LIE ON THE REAL AXIS:-

In the previous article we have supposed that the function f(z) has no pole
on the real line. Now we drop this condition. In the present case the function
f(z) has poles within the semicircle T as well as on the real line. We exclude
the poles on the real line by enclosing them with semi circles of small radii.
This procedure is called "identing at a point”. This process is illustrated by
the following solved problems.

o logxdx _ w

Example 27: Prove that )

0 (1+x2)2 4

Solution: Let f(z) = Consider the integral f f(2)dz, where C is

the closed contour con5|st|ng of I, the upper half of large circle |z| = R and
real axis from —R to R idented at z = 0 by a small semi-circle y of radius
r. (See Fig. 2) z = 0 is a branch point of f(z). Poles of f(z) are given by

Z)Z

(1+2z%)%=0,0r z=1,—i

- R
Figure: 2
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f(z) has only one pole within C of order 2 at z = i.

Res(z =1i) = (;b’l(!i) = % so that
_ %)
f(z)= =10
.oz z+ D)% —2(z+D)logz] z7'(z+ i) — 2logz
$'(2) = z+ )" - (z + 1)
¢'(i) = _Ql_—fjlogl — _i [1 — logei”/z]

poim 2
Res(z=i)=%(g+i)

By Cauchy's residue theorem,

f_r f(x)dx +f f(z)dz +J f(x)dx + jr f(2)dz = 2mi.Res(z = i)
-R Y T

= 2mi - —( +l) - (1)

1
llm Zf(z) = 11m [(1 - z2)Zl [ ogz =0)0)=0 ..

.. By theorem, Jim Jo f@dz=i(m-0)(0)=0 ..(3)

1 lim zlogz . (1/t)log(1/0)t*
Zl_r)rézf(Z) = m (1 + 22)2 = m (1 +t2)2

_ t3(logl—logt) log t
= lim = lim [

oo (1 + t2)2 t—)()o (1 + tz)

=(1)-0=0.

= By theorem, lim fy f(2)dz=—i(m—0)(0)=0
r—

The negative sign is taken because the ‘semicircle y is negatively oriented.
Making r — 0,R — oo in (1) and noting (2), (3),

fo f(x)dx+0+foof(x)dx+0:g[ig_1]
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[0 tlogx ;. e logx dx:z[iz_l] - (4

0 (14x2)2 0 (1+x2)? 2

% logxdx fo log(—y)(—dy)
= ,where —y =x

o (I+x2)2 ), (A+y?)?
_ (™ log(ye™)dy
- jo (1+y2)?
= fm (logy + in)d—y
0 (1+y?)?

—fool timy—2
= i (logx m)(1+x2)2

Using this in (4),

f°° | iy dx N ® logxdx _n(in 1)
, UoBx Him eyt ) Tz 2\2

Equating real parts,

® logxdx N ® logxdx m
o +x»2 "), (1+x2)2 2
® logxdx m
o T+x»)2 4

a—1 a—-1
Example 28: Evaluate |~ xl_:x and [~ x1+:x, where 0<a < 1.

a—-1
Solution: Let f(z) = le where 0<a<1. Then 1—a>0.
Forpoles: (1 —2)z'"¢=0=2=0,1.

All these are simple poles and lie on x-axis. Consider fC f(z)dz where C

is a closed contour consisting of upper half part of large circle I' s.t. |[z]| = R
and real axis from —R to R idented at z = 0,1 by small semi circles y,, vy,
of radii r,, r, respectively. Evidently no pole lies writhin C.

fcf(z)d2= 0
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R ) I

Figure: 3
or, [, f@dz+ [ f@dx+ [ f(dz+ [ f(x)dx +
[ f@dz+ ], f@dx=0

Making R — oo and ry, 1, — 0, ? get

llmff(z)dz+f f(x)dx+f f(z)dz+f f(x)dx+f f(z)dz

+f f(x)dx = 0 where ry, 1, = 0
1
2

:>f0 f(x)dx+foo f(x)dx+z limf f(2)dz
— 0 Vi

i—-0

i=1

=—lim | f(2)dz . (1)
R— r

Now [°_ f(x)dx = [° =

IS >“if’? [l

B L
0 1+t

or,

j:of(x)dxz—fow%dx . (2)
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and

1—x

j:o flx)dx = j:o X" dx ..(3)

If K, = lim (z = 0)f (2) = limZ-=2=0

z—01-z 1

- lim j F(2)dz = —i(0, — 0.)K, = —i(m—0)(0) =0 ..(4)
-0 "

If K, = lim(z = 1)f (2) = lim(z = 1) 2— = lim — 27 = —1.
Ty "

Adding the last two results,

2
z lirr%)f f(@dz=0+in=in  ..(6)
i=1 T Yi

By theorem, Jim Jo f(2)dz = i(6, — 6,)K; =0 )
as

a

=0as0<ax<l1

K; = li = li
3 |z|1£>noozf(z) |z|1£>noo 1—12z

Putting values from (2), (3), (6) & (7) in (1), we get

0 xa—leinadx [ xa—ldx
—f _ f +imr=0
0 1+x o 1—x
Equating real and imaginary parts,
and
® x% 1 cos(ma) dx © x4 1dx
- [
0 1+x o 1—x
® x*1sin(ma) dx
—f =0 -.(9)
0 1+x
) j‘“’ x* tdx T 10
= =
o 1+x  sin(ma) (10)
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Put eq. (10) in 8), [ ’““1‘_1:" = mcot(ma)

From eq. (10) & (11), we get the required results.

Check your progress

Problem 1: Apply the calculus of residues to prove that [~ SInmx g

X

sin mx
x(1-x2)

Problem 2: Prove that dx =T

13.8 SUMMARY:-

The chapter on the application of the residue theorem demonstrates its
power as a pivotal tool in complex analysis for evaluating a wide range of
definite real integrals that are often intractable by standard calculus
techniques. The core strategy involves selecting an appropriate complex
contour integral whose value relates directly to the desired real integral. By
applying the residue theorem, the value of this contour integral is computed
as 2mi times the sum of the residues of the integrand's singularities enclosed
within the contour. This approach is systematically tailored to different
classes of integrals, including trigonometric integrals over [0, 2m] via
substitution on the unit circle, improper rational integrals over (-0, ) using
semicircular contours, integrals involving trigonometric functions
combined with rational functions, and those requiring indented contours to
bypass singularities on the real axis. Ultimately, the method transforms the
challenging problem of real integration into the more algebraic and often
simpler task of calculating complex residues.

13.9 GLOSSARY:-

1. Jordan's Lemma: A key result used to prove that the integral along
a large semicircular arc in the upper or lower half-plane vanishes for
certain integrands, typically those involving e'®.

2. Pole: A type of isolated singularity. A pole of order n at zo is one
where the function can be written as f(2) :%,
o
with g(z) analytic and non-zero at zo. A pole of order 1 is called
a simple pole.
3. Principal Value (P.V.): A method for assigning a finite value to an

improper integral that is not convergent in the usual sense, often
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used when the limits of integration approach infinity symmetrically
or when approaching a singularity symmetrically.

Residue: The coefficient a1 of the (z—z0) ' term in the Laurent
series expansion of a function around an isolated singularity zo. It is
denoted as Res(f, zo).

Residue Theorem: The central theorem stating that if a function is
analytic inside and on a simple closed contour C, except for a finite
number of isolated singularities, then the contour integral is $cf(z)dz
= 2miy Res(f, zx), where the sum is over all residues inside C.
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13.12TERMINAL QUESTIONS:-

Long answer type question
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1: Evaluate. /2—” a? < 1.
1+acos @

. b4 adé _ b1
2: prove that f° ———— = T

. i3 dae
3: Evaluate, fo 5mes
4. Evaluate fOZn' #0594-112’ where 0 < a < 1.
5. If a>0, then evaluate [ e gy,

x“+1

Hint: First proves that f,~ szi’Zf) x =——e™™4, where m > 0,a > 0.

Then putt m =a and a = 1 in the above equation we get the required
result.

Short answer type question

1: Prove that [ S25m*4% _ %(35in§ +v3cos %) exp (—m\/§)

0 x*+x2+1 2

Hint: First prove that,

f°° cosmxdx T —-mv/3 (m N n)
Cxtrxaz+1l 3o\ )2 T
o —mV/3 ( ] m) \/§+ 1 m
= \/gexp > Sin > > > COS >
T —m\/§ m m
2\/g_\/gexp< > >[sm2+\/_cosz]
2: Classify the singularities of a function of a complex variable. Show

cotmz

that the only singularities of )2

are poles. Find the residues of the
function at these poles.

3: Determine the nature of the pole at the origin of the function Zsiizmz
and find the residue.
Objective type question:

1. The Residue Theorem is used to evaluate:

A. Real integrals
B. Line integrals of analytic functions
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C. Improper integrals
D. All of the above
2. If f(z) has isolated singularities inside a simple closed contour C,

then according to the Residue theorem: § f(z2)dz="
C

0

27 Residues of f(z) inside C
bl Residues of f(z) inside C
None of these

The residue of f(z) = at z=a is:

(z-a)°
0
1

(e 0]

Undefined

> OOm> w U0 WP

The integral §% where C is the unit circle [z|=1, is:
z
C

0

2mi

7191

1

. The Residue Theorem helps in evaluating real definite integrals of
which form?

j“; f (x)dx

J.O o f (cos 4,sin 8)da

Both A and B
Neither A nor B
The residue at a simple pole z = a is given by:

A
B
C
D
6.
A lim . f(z)(z-a)’
B
C
D.
7.

qoOwW>

lim, . f(z)(z—-a)

im ., 2 [f(2)(z-a)]
dz

None of these
Which of the following integrals can be evaluated using the residue
theorem?

T d
A J;Oxz )-(rl
tsin x
B. '([de
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27 1
[t do
5-4cosé@

0

MT(N)-302

D. All of these
The residue of f(z) = e—gat z=11is:
-1
A el4d
B. e
C. e/3
D. el/2!
1
9. For f(z) =-——-—, the poles are:
@)=z iy P
A z=+1
B. Z=+i
C. z=0,0
D. None of these
10.  The contour integral § ZL is equal to:
lz|=2 -
A. 0
B. 2mi
C. 2mix(sum of residues at z=0, z=1)
D. Undefined
13.13ANSWERS
Answer of long answer type question:
1 — 3 = 4
' Vi-a? ' Ve’ '
2n/(1—a?)
Answer of short answer type question:
3 I=-2mi(-2/3)=""
Answer of objective questions
1: D 2: B 3: 4:
B
5: C 6: B 7: 8:
D
9: B 10: C

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY

Page 325



COMPLEX ANALYSIS MT(N)-302

UNIT-14: Analytic Continuation

CONTENTS

14.1 Introduction

14.2 Obijective

14.3 Meromorphic functions
14.4 Rouche’s theorem

14.5 Analytic continuation
14.6 Complete analytic function
14.7  Summary

14.8 Glossary

14.9  References

14.10 Suggested Readings
14.11 Terminal Questions
14.12 Answers

14.1 INTRODUCTION:-

Analytic continuation is a fundamental concept in complex
analysis that allows us to extend the domain of a given analytic function
beyond its initial region of definition while preserving analyticity. Often, a
function represented by a power series converges only within a certain
disk, but through analytic continuation, we can construct a larger analytic
function that coincides with the original one on the overlap of their
domains. This process reveals the deeper structure of complex functions,
helps identify natural boundaries and singularities, and enables the study
of functions such as the Riemann zeta function, the logarithm, and many
special functions in broader domains. Analytic continuation thus serves as
an essential tool for expanding the reach of analytic functions and
understanding their global behavior in the complex plane.

The unit on meromorphic functions, Rouché’s theorem, and
analytic continuation introduces fundamental ideas that extend the study
of analytic functions to a broader and deeper context within complex
analysis. It begins by exploring meromorphic functions, which generalize
analytic functions by allowing isolated poles while preserving analyticity
elsewhere, providing a rich framework for understanding complex
behavior. The unit then presents Rouché’s theorem, a key result used to
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compare analytic functions on a closed contour and determine the number
of zeros within it, offering powerful techniques for root-counting and
function comparison. Finally, it examines analytic continuation, the
method of extending an analytic function beyond its initial domain of
definition using overlapping regions where the function remains analytic.
Together, these topics build essential tools for analyzing and extending
complex functions across wider regions of the complex plane.

14.2 OBJECTIVES:-

After the study of this unit, learner shall understand:

1. To understand the concept of meromorphic functions, their
definition, properties, and how they differ from analytic and entire
functions.

2. To identify and classify poles as the only singularities of
meromorphic functions and to study their behavior in the complex
plane.

3. To learn the statement, conditions, and applications of Rouché’s
theorem for determining the number of zeros of analytic functions
within a closed contour.

4. To apply Rouché’s theorem in solving problems involving root-
location, polynomial analysis, and comparison of complex
functions.

5. To introduce the idea of analytic continuation and explain how
analytic functions can be extended beyond their initial domains.

6. To understand the uniqueness principle of analytic continuation,
based on the identity theorem.

7. To develop the ability to use these concepts to analyze the global
behavior of complex functions, particularly how functions behave
near singularities and across extended regions.

14.3 MEROMORPHIC FUNCTIONS:-

The study of meromorphic functions and Rouché’s Theorem forms a
crucial part of complex analysis, providing powerful tools for
understanding the behavior of analytic functions in the complex plane. A
meromorphic function, defined as a function that is analytic everywhere
except at isolated poles, serves as a natural extension of rational functions
and plays a central role in many areas of mathematics and mathematical
physics. Rouché’s Theorem, on the other hand, is a key result in complex
function theory that allows us to compare two analytic functions on a
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closed contour to determine how many zeros lie inside it. By analyzing the
dominance of one function over another on the boundary, the theorem
provides a practical method for counting zeros without explicitly solving
equations. Together, the concepts of meromorphic functions and Rouché’s
Theorem offer deep insights into the structure, zeros, and singularities of
complex functions, and form essential tools for advanced problem-solving
in complex analysis.

Definition ( Meromorphic function): A function is called meromorphic
if, in the finite complex plane, its only singularities are isolated poles.

Definition (Entire function): A function that is free of singularities
throughout the entire finite complex plane is known as an entire function.

Theorem 1: (Mittag Leffler's expansion theorem) Suppose that the only
singularities of f(z) in the finite part of the z-plane are simple poles at
a;, a,, ...a, arranged in the order of increasing absolute values. Also
suppose that

0] Residues of f(z) at a,, ay, ..., a, be by, by, ..., by,

(i) < C, > is a sequence of circles (or rectangles or squares) of radii
R, or R, is the minimum distance of C, from the origin) C,, encloses
a, a,, ..., a, and no other poles. On the circle C,, |f(z)| < M, where M is
independent of n and R,, » o asn — oo,

Then for all values of z except poles,

f(Z)=f(0)+ibn( —+)

Z—a, ay

Proof. Consider the integral, I = fC —fit_):t

Y

P X

Figure 1
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z being any point (except pole) inside the circle C,. The function g has
simple pole at t = z.

Evidently any pole of f(t) is a pole of f(t)/(t — z). But f(t) has simple
poles att = a4, a,, ..., a,. Hence, f( ) has simple poles at z, a,,,(m =
1,2,..,n).

. f(® - NSO . f(© .
Residuc of —,atzis 1t1_I)IZl (t—2) s f(2). Residue of — atan is

tl—1>£zr,1n (t — (f( )) 11m (t - am)f(t)] [ lim ]
= a:’i pt For residuc of f(t) at a,, is b,

By Cauchy's residue theorem

Itf (t)dt = 2mi ( Sum of residues of (—) within C )
A

= 2mi [ Residues at z, a,, a,, ..., a,|

= 2 [f(Z) + Z b/ (am — z)]
m=1

or — [ LO% = f(2) + % (1)

aAm—2Z

Suppose f(t) is analytic at t = 0. Putting z = 0 in (1),

— f()dt—f(0)+z

2Ti

Subtracting (2) from (1),

2f (B)dt
= 0 Z _ ..(3
2mi t—2)t =@ =)+ m(am z) )
Cn -
zf(t)dt |z|-]f (£)]-]dt|
But E Cn t(t-2z) |2m| Cn  |tI(IEI-|2])
<1 1 M|z| f _ M|Z|
~9mR (R |z|) |Z|

- 0asn — oo,
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For limR, =

n—-oo

Zf(t)dt
) Tlll_r)glo an (t-2)t =0

Making n — oo in (3) and noting this,
or

f(2) - £(0) + Z e

£) = F(0) + i( —+2)

Finally

) = fO +i n(— o)

Example 1: Prove that

[o2]
1
cotz =—+ Z >
2 —n?n

zcosz—sinz

[\1

Solution: Let f(z) = cotz —i =

zsinz

Poles of f(z) are given by sinz = 0,
or

zZz=nmwheren+1,+2,..
z = 0 is not a pole of f (2).

ZCO0S Z—Ssin z 0
For hmf(z) = 11 ————, [ form —]
zsin z 0
. —zsinz + cosz — cosz
= lim - , | form =
Z—0 sinz + zcos z 0
) —sinz — zcos z 0
= lim —==-=0
z-0Cc0SZ+ cosz—zsinz 2

or lir%f(z) = 0, so that f(z) has a removable singularity at z = 0
So we can define f(0) = 0.

Res(z = nm) = Zl_i)rgln (z —nm)f(2)
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. (z—nm)(zcosz — sin z) 0
= lim - , form —
Z-NnT zZsIn z 0
Y (z —nm)(—2zsinz + cosz — cos z) + 1. (zcos z — sin z)
= lim _
zZ-nm sin z + zcos z
»
D < o
\ 4 A
—p X
O nn (n+-2->1t
: B
Figure 2
NMCOS NI ,
= = —1
NMCOS NI

Let Res (z = nm) = b,, and z = nmw = a,,.

ThenRes (z=a,) =b, =1ifa, =nn

Similarly b,, =1 ifa,, = —nm forn = 1,2,3, ... ... ....

Let the contour c,, be the square ABCD with centre at the origin and each

side of length (2n + 1)m so that its vertices are at points (n + %) n(+1+
Q).

Among all these poles, there are two poles z = nm, z = —nm whose
absolute values are greater than other Poles.

The minimum distance R,, of C,, from origin is

1
(n+§>rr—>ooasn—>oo

The length ,, (perimeter of square ABCD ) is

1 1
4x2 (n + 5) m=28 (n + E) m - l, = 8R,, which is constant.
eiZ + e—iZ eiZZ +1 ei2(x+iy) +1

eiZZ -1
le?*|-le 2| +1 e +1
~le2x|-|le2Y| -1 e -1

|cotz| = P 2(c+D) _ 1

as e =1

e —1 1-e2

e‘2y+1_ 1 .
Tl —e v ey

e™®+1 1+e? _
5 if y is negative
|cotz| < ify>0
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- 1lify—>oory—> —oco.
~ cotz is bounded
= f(z)—cotz——lsbounded in C, as ( 11) - 0asn — oo.

On AB,y=(n+5)nandonCD,y=—( )
Now applying Mittag Leffler's theorem,

f(2) = FO)+ i (= )

- 1
B Z (z — N nn) Z (z + nm nn)
n=1 n=1
Z ( Z + nn) Z -n 7r2
n=1 n=1
or,
cotz ——=
Z -n 7r2
or,

1 ©o
cosz =—+ Z —n2n2 e (2)

n:

[\1

Example 2: Prove that, mcotnz = i + X ZZZ_—ZnZ

Solution: Replacing z by mz in equation (2) in previous example,

[o9)
1
cotmz = —+ Z 7 23
zZm 2 —n?n

or

T[COtT[Z—— Z —n2 - (3)

Example 3: Prove that, zcotmz = = + 2%’ (L + L)
Vs Vs

Z—n zZ+n
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where accent indicates that n = 0 is omitted.
Solution. ZZZ_Z : :

n2 z+n  z-n

Now (3) in previous example is expressible as,

1 w1 1
ncotnz=—+2( + )
VA 4 Z+n zZz—n
n=

MuMpwmgbyg

zcotnz =

=||P—‘

2 ()

)n—l

Example 4: Prove that, cosecz = - + 2z )

nrr2 z2

z—sinz

Solution: Let f(z) = cosecz — i = z# 0.

Poles of f(z) are given by sinz = 0

zsinz ’

or
z = nmw wheren = +1,+2,+3, ...

z = 0 is not a pole of f(2), but it is a removable singularity. For

z—sinz 0
y_r)réf(z) il_r)ré — , form E]
= lim ——°% . py L. Hospital's rule.
Z—0 sinz+zcos z
sinz 0
= lim ==—=0
z-0C0SZ — zsinz + cosz 2
However, we may define f(0) = 0.
¢(2) ¢(2)
Res(z = nm) = lim ———, where
== e O T
(z —sinz) ) z—sinz
= ll d— = 1lm —_—
zZ-nm (ZSln 7) z-nmw ZCOS Z + SIn Z

nm

1
= — — (_1)—1‘! — (_1)11

nmcos nm cosnm

Let, nt = a,, (—1)" = b,
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Similarly Res (z = —nm) = (—1)"
Thus Res (z = a,) = b, = (—1)" if a,, = —nm or nm. See Figure of
Problem No. (1) and discuss the same thing here.

2
T [eiGHD) — om iG]

2i

eiz _ e—iz

sinzl
- 2
~ le®]-le¥| —|e7™*| - [e”]

|cosecz| =

As, [e®| =1,

1 1

and — < ——
laxb| — |a|-|b]

_ 2
- e Y—e¥

= ey,lfy<0

cosecz| < ;2> 0asy s ocoo0ry— —oo,

= ify>0
~. cosecz is bounded in c,,.
Cosequently, cosec(z — i) is bounded in ¢,
as

1 1
—=———->0asn - oo,
z

()

Now applying Mittag Leffler's theorem,

f(2) :f(0)+§: bn(z_lan-l_%)

or,
f2)=0+ i D" (z —1nn + %)
+z = 1)n<z+nn_E>
Z = 1)n[ —nm Z+nn] Z ZZZZE n1)7:2

or,
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1n1
cosecz——+2 Z ( )

e 2z
n=1 2 -
(n+5) m?—-z2

Solution: Let f(z) =tanz = % Poles of f(z) are given by

Example 5: Prove that tan z =

T T
cosz=0= coszzz=mniz form=0,+1,+2,...
or,

z=+ (mn + g) form=20,1,2,3,..,n

Let b,, = Residue of f(z) =tanzatz=a, =t (n +%)7r
Then b, = Res(z = a,,) = lim 5 SMZ_ _ im ﬂ =-1
Z-an d—(cos z) z-a, SNz
Let the contour c,, be the square ABCD with centre at the origin and and
length of each side be 2(n + 1) so that its vertices are points (n +

Dr(£1 £90)

A

+1Dr(—1+DHB A+ D+

D+ 1)x (1 -1

+Dr(—1-nC

Y

Figure 3
The poles z = a,, for m = 0,1,2, ..., n lie within ¢,, and no other poles lie
inside c,. In this sequence of poles, there are two poles z = (n + %) m and

zZ=- (n + %) 7 whose absolute value is greatest compared to those of the
other poles. The minimum distance R,, of c¢,, from the origin is (n + 1)m.
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The length 1,, (perimeter of square ABCD of ¢, is4 X 2(n+ 1)m = 8(n +
1)m. Hence [,, = 8R,,.

sin z ez —e~iz\ 1 pi(X+iy) _ p=i(x+iy)
ltan z] = CoS zZ - <eiz+e—i2 7 - eilx+iy) — p—i(x+iy)
le™|le=| + [e~™] - e”| |aib la| + |b| Lol > 1
le™] - le=>| = le=™*] - [e¥| ™ lc £ dl ™ |c| —|d]
eV +e | = 1
=5 as [et*| =
14+e?
C1-—e
2y
_ o ity <0
This = |tanz| < .
1+e~2Y
fy >0

1-e
—>1asy—>ooory—> —o0
~ tan z is bounded in c,,.
OnAB,y =(n+ )m,andonCD,y = —-(n+ )&
Now applying Mittag Leffler's theorem, we get

)= f (0)+i (= o)

But f(0) =tan0 = 0.

-'-f(z=;(—1) Z_(l T " 1171

or,

o0
tanz = —z
n=1 z2
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Example 6: Prove that, secz = 4m Y., %.

Solution. Let f(z) = secz =

Cos z

Poles of f(z) are given by cosz = 0 = cos (g)
or,

T
Z=mni§ form=0,+1,%+2,..,tn

or,

z=+ (mn + g) form = 0,1,2,3, ..., n.

Take a,,, = (m +%)Tl’ or — (m +%)Tl’f0l’m =0,12,..,n.

Let the contour be c,, the square ABCD with centre at the origin and
length of each side is 2(n + 1)m so that its vertices are at points (n +
1)m(+1 £ i) (see Figure of Problem 5).

The contour c,, contains all the above poles and no other Poles. The
minimum distance R,, of ¢,, from the origin is (n + 1)m. The length [,
(perimeter of square ABCD) is4 x 2(n+ 1)mr = 8(n+ 1)w. Hence [,, =
8R,

2 2
Iseczl = |7~ =%| = |siero) 1 i)
_ 2 < 2
- |eix.e_y+e—ix.ey|_ |elx|.|e_y|_|e—lx|.|ey|
2 ! |< 1 if |a| > |b
= as < if |a
eV —eY atb |a] — |b] lal > 1]
and
lex*| =1
2 .
— ify<o0
Thus [secz| = |f(2)| ={¢ ;¢
P ify>0

—>0asy > oory — —oo,
~ f(z) = secz is bounded in c,.
If a, = (n +%)T[, then b,, = Pes (z = a,) = lim

zZ—ay E(cos z)

1

or,
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by = lim —— = L _ CE——
nT msinz Sm(mﬂ_%)_ cos(nm) ~ (—1)"

=(EDEDYas (D™ = (=D

or, b, = (—1)™1. Similarly b, = (—1)" if @, = — (n +31) f(0) =
sec(0) =1

Applying Mittag Leffler's theorem,

f(2) = F(O)+ i (= o)

n=0
N +1 1 1
MEACREED I i v e e e o

=0 Z+(n+1)ﬂ——1 1

1+) RS LI SN VIR
2 1
n=0 (n+%) % —2z% n=0 (n+7)n
or,
C @nt DDt 4 (D"
=1+4 z —= (1
secz =143 ) Ont 1) — 4z mr1 D
n= n—O
-nH" 1. 1 1
But £i0 o AT =
This = 1——Zn 05, 31 0. Putting this in (1),
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2n+ Dr(=1)"
4 (2n+ 1)?n? — 422
n=

secz = 4m

Note: The above problem can also be expressed as

(-H)"'2n-1)
o (2n —1)?n? — 422

secz = 4w

or,

-D"@n-1)
] 47?2 — (2n — 1)%n?

secz = 4w

n=

Example 7: Prove that if -7 < a < m, then

cos(az) 1 2z - cos(na)
- =—+— —-D)"'"—0—=
sin(mz) mnz m zZ%—n
n=:
L __ cos(az)
Solution: Let f(z) = Py

Poles of f(z) are given by sin(nz) = 0 = sin(nm)
> mamz=nmorz=nforn=0+1,+2, ...
Take a,, = nor —n.

cos(az cos(az
b, = Res(z = a,)) = lim d#= im £os@z).
Z>an 4 (sinwz) % mcos(mz)
_ cos(na) £ =
= Tcos(nm) ifa, =nor —n
_ =D

cos(na) as (—1)" = (—=1)™", cos(nm) = (—=1)"

Let square ABCD denote the closed contour c,, with centre at the origin
and each side = 2 (n + %) = 2n + 1 and so its vertices are at points

(n+3) @10

The contour ¢, encloses all poles a,,(n = 0,1,2, ..., n). In this sequence of
poles, there are two pols z = n and z = —n whose absolute value is
greater than those of other poles. The minimum distance R,, of c,, from the

centre is (n + %) = o0 asn — oo. The length L,, (perimeter of ABCD ) is

4x2(n+3)=8n+4sothat L, = 8R,
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Note that eiaz — eia(x+iy) — eiaxe—ay

= |el?| = =@ as |eti*¥| = 1.

Similarly |e=i9z| = e®, |eiz| = ¢~ |e~inz| = g™
and

|b|
|d|

if [c| > |d|

la| +
‘c+d Ic| —

In view of this, we get

(eiaz + e—iaz)i
(einz _ e—inz)
e ¥ +eW  eW teTW

|eiaz| + |e—iaz|

- |einz| _ |e—irrz|

cos(az)|

sin(mz)|

T e —e™ or e™w —e™ ™

e (1 +e?™) e (1+e2W)
e—ny(l — eZny) or erry(l — e—ery)
1+e?®w  1+4e 2w

<1—e2”y or 1_e_2ny—>1asy—>—ooory—>+oo

accordingasy < 0ory > 0.
On AB,y = n+%, andonCD,y = —(n+%)
~ f(z) is bounded in c,.

B cos(az) ) nZ 1
0= 10 e~ iy s imeosten)} -
1
=@ — orf(0=—

By Mittag Leffler's theorem,

f(2) = £(0) + iy bn (i + )

z—an Qn

_+Z (- 1)ncos(na)[ ] Y2 (= 1)ncos(na)[

1 N c 1 ,, cos(na) ( 2z
Tz Z D — ZZ—TL2>
n=1

cos(az) _ 1 22 oo ( 1)11 cos(na)
' sin(mz) nz =1 z2-n2’

Z+n ]

2z
z2+4m%n?

1 11 o

= ——+-+ 3
zZ_1 2z Ln=1
ef+1

= . Then

e?-1 2(e?-1)

Solution: Let f(z) = ;
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0 =t S 2+ z+50+
0) =lim im 5
UED T (rh e )
ZZ
L 2t ztort 1 /2y/1\ 1
-t - 00
z 02(z+%+ ) d d
1
or, f(0) =~
Poles of f(z) are given by 2(e? —1) =0
= e?=1=e?" = z=2nmi.forn =0,41,42, ...
Take a,,, = 2mmi or —2mmi, form = 0,1,2, ..., n.
%(e2+1) %(e2+1)
bn = Res(z = an) = limZ_,an d— = limZ_,an e—z
—_ zZ
dz(e 1)
A+

T =1ifa, = 2nmi or — 2nmi

Let the centour c,, be square ABCD with centre at the origin and length of
each side = 2 x 2(n+%)7r =(4n+2)n
and its vertices are at points 2 (n + %) n(x1+i)=C2n+ (£l 1)

The contour ¢, encloses all poles a,, = 0,1,2, ..., n. See figure of previous
example

1=l -2

1(e"+1> 1(ex+1

e*-eV+1
ex-e” —1

) accordingas x > 0orx <0

=2\ex—1) " 2\1 —ex
1
—>§ as X —> 00 or x — —00,

~ f(z) is bounded in c,,.
Applying Mittag Leffler theorem,
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F@)=F0)+ i (= 1)

1 1 S 1
=t > (o5 )
+ Z (Z — 2nmi Znnl) + zZ+ 2nmwi 2nmi

8

Z
n=1 n=1
(o]
1 N z 2z
oz z2 + 4n?m?
n=1
1
or, 2 ~z + Z z +4712n2
1 1 2z
o 21 eZ 1 T2 + z + Z z2+4m2n2

1 dz . .
Example 9: Show that — [ —— is an integer.
o 2mi °C z—a
where, c iscircle |z —a| =7

Or,
If C isacircle |z — a| = r, then
1 dz _
2ni ).z —a

Solution: On circle |z — a| = r, we can take z — a = re'® so that

dz = re‘®ido

1f dz 1 j‘Z”rewidO_ 1 fz’f 20 = 1
2ni).z—a 2mi), re®  2mi), =

Theorem 2 (Number of poles and zeros of a meromorphic function):
Let £ (z) be analytic inside and on a simple closed curve C except for a
finite number of poles inside C, and let f(z) # 0 on C. Prove that

f'(z)dz
anf f(z) N-F

where N and P are respectively the number of zeros and the number of
poles of f(z) inside C. A pole or zero of order n is counted n times.

Proof: Suppose that f(z) is analytic within and on a simple closed curve
C except at a pole z = a of order p inside C. Also suppose that f(z) has a
zero of order n at z = b inside C. Then we wish to prove that

1(f@,
2mi f(z)
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Figure 4

Let y; and I'; be non-overlapping circles inside C with their centres at z =
a and z = b respectively.

Then, by Corollary to Cauchy's theorem,

f'(2) f! ) f'(2)dz
), 76 % = ok sz o W
f(z) hasapoleoforderpatz =a
_ 9(2)
= f(z2) = G-ap (2)

where g(z) is analytic and non zero within and on y;
Taking log of (2)

logf(z) = logg(z) — plog(z — a)
Differentiating, this w.r.t. z,

f'2 _9')

_ _ p
@ 9@ z-a
or
r@, (9@, [ d
Lﬂ@”‘Ly@d erw

Since g(z) is analytic and so g'(z) is analytic and hence g'(z)/g(z) is
analytic within and on y, . Hence, by Cauchy's theorem

g()
90 =0
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Then

f@,
Ll 110 dz = 0 — 2mip,by (3) ..(4)

f(z) hasazeroofordernatz=»>b
=>f@=z-b)"¢= ..(5

where ¢(z) is analytic and non-zero within and on I';. Consequently
¢'(z) and so ¢’ (z)/p(2) is analytic within and on T7;.

Hence, by Cauchy's theorem,

¢’ (2)
r, ¢(2)

dz=0 .. (6)

Taking log of (5),
log f(z) = nlog(z — b) + log¢(2)
Differentiating this

f@_ n_ ¢@®
f@ " z2=b" 6

Integrating along I'; and noting (6),

I '@ g, — nfrl ZdTZ = 27in (See previous

1 f(2) b
example)
or
f'(2) .
dz = 2min 7
o @ @
Writing (1) with the help of (4) and (7),

1 (@
2ni ). f(2)

Now we suppose that f(z) has poles of order p,, at z = a,, for m =
1,2,..,7 and f(z) has zero of order n,, at z=b,, for m=1,2,...,s
within C. Enclose each pole and zero by non-overlapping circles
Y1, Va2, -, ¥y and Ty, ..., Ts. This type of construction is always possible.
Since poles and zeros are isolated. Now (8) becomes

dz=-p+n ..(8)
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1 (f@, Z Z N
21 (z)
= m=1
Taking X.0.—1 Pm = P, X5=1 Ny = N, we obtain

f(z)dz
ZnJ f(z) —F

Example 10: If f(z) = z° — 3iz? + 2z + i — 1, then evaluate |_ ’;(( ))d ,

where C encloses zero of f(z) ?

Solution: Given f(z) has 5 zeros. Since, N = 5, it has no poles.

~ P =0. By Theorem 2,

f'(z) B B
2—7_[l,cf(z)—N—P—5—0—5
flz) .

@ dz = 10mi

Theorem 3: Principle of argument. If f(z) is analytic inside and on C,
then

1
N = o Acarg f(2)

Proof: We know that

f'(2)
2mi c f(2)

where P = number of poles inside C, N = number of zeros inside C.
In the present case f(z) has no poles inside C and hence P = 0. Then (1)
takes the form

dz=N-P ..(1)

f'(@)
2mi c f(2)

or
2miN = [logf(2)]c = Aclogf(z) ..(2)

where A stands for the variation of log f (z) as z moves once round C.
But

dz=N-0=N
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log f(2) = log|f(2)| + iarg f(2)

For
1
log(x + iy) = Elog(x2 + y?) + itan1(y/x)

or

Aclog f(2) = Aclog|f(2)| + iAcarg f(2)
But Aclog|f(2)| = 0 aslog|f(z)] is single valued.
Hence Aclogf(z) =i Acarg f(z). Using this in (2), 2riN =i -

Acarg f(2)
or

1
N = ZTACargf(z)

14.4 ROUCHE’S THEOREM:-

Rouché’s theorem is a powerful result in complex analysis that helps
determine the number of zeros of analytic functions within a closed
contour without having to solve the function explicitly. The theorem
compares two analytic functions on a simple closed curve and states that if
one function dominates the other on the boundary, then both functions
have the same number of zeros inside that region. This comparison
principle makes Rouché’s Theorem particularly useful for locating zeros
of complex polynomials, analyzing stability in differential equations, and
simplifying root-finding problems. By providing a geometric approach to
counting zeros based on boundary behavior, the theorem becomes an
essential tool in both theoretical and applied aspects of complex function
theory.

Theorem 4 (Rouche’s theorem): If f(z) and g(z) are analytic inside and
on a simple closed curve C and if |g(z)| < |f(z)| on C, then f(z) and
f(2) + g(z) both have the same number of zeros inside C.

Proof: Suppose f(z) and g(z) are analytic inside and on a simple closed
curve C and

lg(2)| < |f(2)| onC.

(i) Firstly we shall prove that neither f(z) nor f(z) + g(z) has zeros on
C.
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If f(z) hasazeroatz =aonC,then f(a) = 0.
Also |g(a)| < |f(a)| = 0.
This

= [g(@)| <0=]g(a)] =0

f(@ =0.1g@| = 0= |f(@] = 0] = g(@| = If(@) = |g(@)
= 19| = |f () atz=aonC.

Contrary to the assumption |g(z)| < |f(z)| on C.Again if f(z) + g(2)
hasazeroatz =aon C, then f(a) + g(a) = 0 so that f(a) = —g(a) or
lg(@)| = |f(a)].

Again we get a contradiction. Hence the result (i) is established.

(i1) Let Ny and N, be number of zeros of f and f + g respectively inside
C.

If we show that N; = N,, the result will be proved. Since the functions f
and f + g both are analytic within and on C and have no poles inside C.
Therefore, by the usual formula
gives
1
21
1 1 (f'+9
— '"dz = N; and — dz = N.
Znifcf z 1 an 27rifcf+g z 2

Subtracting we get

ff’dzzN—P
c

1 fl +gl fl B
szc v T dz =N, — N, (1)
Take g/f = ¢ sothat g = ¢f
or

gl <IfI=lg/fl<1=1¢I<1.
f'+g9 _f+1o+¢'f frA+d)+'f

f+9  f+éf fA+¢)
or
fl_l_gl_f_I: ¢I
f+g f 1+¢

Using this in (1),
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Ny—t, = [ 24
el A

N. N—1 (1 ~1d 2
M= asete Lo

Since we have seen that |¢p| < 1 and so binomial expansion of (1 + ¢)~!
is possible and the binomial expansion thus obtained is uniformly
convergent and hence term by term integration is permissible. Hence

L¢’(1+¢)‘1dz=fc¢r[1_¢+¢2_¢3+___]dz
=fc<;b’dz—fc<;b'<;bdz+fc¢2¢'dz_jc¢z¢,dz+___

The functions f and g both are analytic within and on C and g(z) # 0 for
any point on C. Hence g/f = ¢ is analytic and non-zero for any point on
C. Therefore 4 and its all derivatives are analytic. By Cauchy's integral
theorem, each integral on R.H.S. of (3) vanishes. Consequently

f ¢'(1+ ¢)ldz=0
C

In this event, (2) takes the form
NZ _Nl = Ooer = Nz.

Example 11: Consider the function zé — 5z* + 7
(1 If f(z) =7,9(z) = z° — 5z*, then f + g = given polynomial and

65z 6+5)z* _ 145 . )
% 2 - “l < ll45lal” 145 < 1 and so given polynomial has no

7 7
zeroin |z| < 1.
(i) If f(z) = —52% g(z) = z° + 7, then f + g = given polynomial
has 4 zeros in |z| < 3.
(iii) If f(2) = 2% g(2) = —5z* + 7, then f + g = given polynomial
has 6 zeros in
|z] < 3.

Theorem 5: Fundamental Theorem of Algebra. Every Polynomial of
degree n has exactly' n zeros.

Or

Prove that the polynomial equation P(z) = aq + a,z + a,z* +
v ta,z" a, # 0,n > 1 has exactly n roots.
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Proof: Consider the Polynomial, a, + a,z + a,z? + -+ a,z" s.t. a,, #
0

Take f(z)=a,z",9(z)=a, +a,z+a,z° +...+a,,2""
Let C be a circle |z| = r where, r > 1.

92| < lagl + laglr + laglr? + -+ + a4 [r™ 1
< laglr™? + lag|r™ H+aylr™ ™t + - lap_q [r™?

= (laol + las| + lag| + -+ lap_ Dr™1
But |f(2)| = la,z™| = |a,|r"
f(2) =a,zg(z) =ay+a;z+ a,z? + -+ a,_,z" 1

19(2)

- llaol+lail + lagl + -+ lay_q|]r" !
f(2)

la, |r™
_laol + lag] + lag| + -+ + lay_4|
la,|r

Now if |g(2)| < |f(2)] so that |g(2)/f(2)| < 1, then

laol + las| + lay| + -+ |a,_4]

<1
rla,l

lagl+|a|+]laz|+--lan—ql

lanl

This=r >

Since r is arbitrary and hence by choosing r large enough, the last
condition can be satisfied so that |g(z)| < |f(z)|. Now applying Rouche’s
theorem, we find that the given polynomial f(z) + g(z) has the same
number of zeros as f(z). But f(z) = a,z" has exactly n zeros all located
at z = 0. Consequently f(z)+ g(z) has exactly n zeros. Consequently
the given polynomial has exactly n zeros.

Theorem 6 (Inverse Function Theorem): Suppose a function w = f(z)
be analytio at a point z = z, where f’(zo) # 0. Also let wy = f(z,). Then
there exists a neighbourhood G of the point w, in w-plane in which the
function w = f(z) has a unique inverse F(w) = z, where F = f~1 in the
sense that the function F is analytic and single valued in the

neighbourhood G and F(w,) = z, and F'(w) =

1
f'@
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Proof: Given (1) wy = f(z,), f'(2z5) # 0

Write ¢(z) = f(z) —wy (D)
Then, ¢(z,) = f(z,) —wo = 0, by (1)
or,

P(20) = 0,9'(2) = f'(2)

f'(z5) # 0 = f(2) is not a constant function
= ¢(z) # 0and f'(z) # 0.

It is given that f(z) is analytic at z = z,. Hence the function ¢(z) is
analytic in same neighbourhood of z,. Since zeros are isolated and
therefore ¢(z) and f’(z) do not have any zero in some deleted
neighbourhood of z,. Therefore given ¢ > 0,3nbd0 < |z — z;5| < & such
that ¢(z) is analytic and ¢(z) #0,f'(z) #0. Suppose D =
{z:1z—zy] <e}and C = {z:|z — z,| = €}. Then D represents open disc
and C represents its boundary. Since ¢(z) # 0 Vz such that |z — z,| < ¢,
we conclude that |¢(z)] alttains its minimum value m on the circle C.

Choose § > 0 such that 0 < § < m. Now we want to prove that f(z)
assumes exactly once every value w,; in the open disc D, = {w:|w —
wy| < 6}. For this we apply Rouche's theorem to the functions w, — w;
and ¢(z). Evidently |wy—wi|<d<m= r;lgigl|¢(z)| < |¢p(2)]

s lwe —wy| < |p(2)|onC
lwo — wyl
lp(2)

By Rouche's theorem the function ¢ (z) and the function ¢(z) + wy —
w; = f(2) —wy + wy —w; = f(2) — w; have the same number of zeros
in D. But the function ¢ (z) has only one zero z, in D as

<lonC

¢(Zo):f(Zo)—Wo=W0—WO=O

Consequently the function f(z) — w, has only one zero z, in D. It means
that f(z) assumes value w; exactly once in D.

Consequently w = f(z) has a unique inverse function F and so we
assume z = F(w) in D. Now we want to show that F is analytic.

Fw)-Fw)  z—z,  (f(2) = [f(z1)
Y zZ— 2z

w-wy  f@—f(z)

asz —» z;andsow — wy.

} ={f'z}™
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1
& F'lwy) = ——=

)= 76
This = F'(w) exists in the nbdD; of w, so that F is analytic.
This completes the proof of the theorem.

Example 12: Prove that all the roots of z7 — 523 4+ 12 = 0 lie between
the circles |z| = 1 and |z| = 2.

Solution I: Consider the circle C; defined by |z| = 1. Suppose f(z) = 12
and g(z) = z” — 5z3. Then f and g both are analytic within and on C;.

-
f

|4 <torigl <1f1

z7-523

12

< |z|”+5]z1° _ (D7+5(1D)° _ 6

< <1
12 12 12

Applying Rouche's theorem, we find that f(2) + g(z) = z7 — 523 + 12
has the same number of zeros inside C; as f(z) = 12. But f(z) has no
zeros inside C;. It means that z7 — 5z3 + 12 has no zeros inside C;.

I: Consider the circle C, defined by |z| = 2.

Let f(2) = z7,g(z) = —5z3 — 12. Then f and g both are analytic within
and on C,.

<1

|g| _|-52%+12] < SlzlP+12 _ 52)%+12 _ 52
f llz7t =zl 27 128

or|g/fl <lor|g| <|fl

Hence, by Rouche's theorem, f + g = z7 — 523 + 12 has the same
number of zeros inside C, as f(z) = z”.

But f(z) = z7 has seven zeros inside C,, all located at the origin. It
follows that z7 — 523 + 12 has seven zeros inside Cs.

Thus we have shown that the given equation has no root inside |z| = 1,
but has seven roots inside |z| = 2. From this we can conclude the required
result.

Example 13: Using Rouche's theorem determine the number of zeros of
the polynomial

P(z)=2z%-6z"+3z3+1in|z| <1

Solution: Let P(z) = z1° — 627 + 323 + 1,
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f(z) =—6z7,9(z) =2z°+3z3+ 1

Then P(z) = f(2)+g(2)
Consider the circle C defined by |z| = 1. Then f(z) and g(z) both are
analytic within and upon C.

7=

zw+3f+1<de+3pﬁ+1_1w+3mf+1
—627 6|z|” B 6(1)7

_21
G
or |2 < 1orlgl <Ifl

Applying Rouche's theorem, we find that, f + g = P(z) has the same
number of zeros inside C as f(z) = —6z’. But f(z) has seven zeros
inside C. Hence P(z) has seven zeros inside C.

Example 14: Use Rouche's theorem to show that the equation z> + 15z +
1 = 0 has one root in the disc |z| < 3/2 and four roots in the annulus % <
lz| < 2.

Solution I: Let |z| = 2 represent the circle C;. We have z° + 15z + 1 =
0. Take f(z) = z° and g(z) = 15z + 1.

15z+1
25

__15|z|+1 _ 15241 _ 31
|z|® 25 32

<1

Then, |§| =

~ |gl < |f|- Applying. Rouche's theorem, we find that f(z) + g(z) =
z° + 15z + 1 has the same number of zeros as f(z) inside C;. But f(z)
has five zeros inside C;, all located at z = 0. It follows that z> + 15z +
1 = 0 has five roots inside |z| = 2.

I1: Consider the circle C, defined by |z| = 3/2.

Take f(z) = 15z,g(2) = z° + 1.

5 5 5
Then, 9|_z +1|£|ZI +1_@/2°+1_275
f| |15z | 15|z 15(33/2) 720
Or|gl< f|

Use Applying Rouche’s theorem, we find that f + g = z°> +15z +1 has the
same number of zeroes inside C, as f(z) =15z . But f(z) has one zero,

located at z=0. It follows z° +15z+1=0 has one root inside C,. As a
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result of which four zeroes of z° +15z +1 must lie in the ring
3/12<z|<?2.

Example 15: Show that the equation z* +2z° +3z° + 4z +5=0 has no
real or purely imaginary roots and that it has one complex root in each
quadrant.

Solution: Let f(z)=z*+22°+3z°+4z+5=0 and f(z)=u+iv.

I: To prove that the given equation has no real root.
Because all the coefficients of the equation are real and positive, it cannot be
satisfied by any positive value of the variable Z , indicating that the equation has
no positive real roots.
Putting z =—x
f(—x) =x* —2x* +3x* —4x+5
=X*(X* —=2X+1) + 2x* —4x+5
2 2 2 2
=X (X"=1D) +2(x-D)° +3>0vx ...(1)
Hence, the equation has no negative real root.
I: The equation has purely imaginary roots.
Taking z =iy, y* —2iy® —3y* +4iy +5=0
Or (y*-3y*+5)—-2i(y’-2y)=0
This = y* —3y*+5=0,y° -2y =0
There is no single value of yyy that satisfies both equations simultaneously,
making them inconsistent. Therefore, the given equation does not possess any
purely imaginary roots.

I1l:  To show that the equation has one root in the first quadrant.

For this let z=Re'’,0<60 <27, R — 00 OABO. Let ¢ denote the complete
boundary of this quadrant (see figure 5).
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T X

Figure 5

(@)  Along OA: On this line z=x and xvaries fromQ to oo.

f(z2)=f(X)=u+iv=x*+2x>+3x* +4x+5

arg f =tan > = tan™* — 0 - =tan"0=0
v X" +2X° +3X° +4x+5

Agparg f =0
(b)  Along arc AB: z =Re" where R—)oo,OSQS%.

2 3 4 5

f(2) = u+iv = R*e*? [1+ + + +
Rei9 Rzezl'é? RSeSie R4e4i9

- R*e*0 3R >
= tan~! Risint0 =tan !(tan40) =446
arg f = tan Ricosdg | = m@n (tan49) =
_ /2 _ 2 (T _ o) =
Agpargf =4[0], —4(2 0)—27‘[
(c) Along BO: On this line z = iy and y varies from oo to 0.

f(2)=f@y) =u+iv=y*—-2iy3-3y*+4iy+5
= (y* =3y +5) +i(=2y> + 4y)
u=y*—3y2+5v=-2y3+4y =2y(2—vy?)
v 2y(2 —y?)
= -1(_Y) — -1
arg f = tan (u) = tan " —3y215)
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0
Apoarg f = [tan‘1 Z]ym which is zero for both limits.

u
It means that as y moves from oo to 0 along BO, the point w = u + iv
starting from any point on u-axis comes back to some point on u-axis. The
manner in which w moves is shown below :

y o0 V2 0
(u' 17) (Oo' _Oo) (3,0) (5,0)
tan™ (v /1) 0 0 0

Also

\/§<y<00=>u>0,v<0
O<y<\/§:>u>0,v>0.
From the chart it is clear that as y moves from oo to 0 along y-axis, the
point (u, v) starting from third quadrant reaches in the first quadrant. But

the curve is parallel to u-axis through out this journey and so Az, arg f =
0.

Finally

Acarg f = Apgarg f + Ayparg f + Apparg f
=042r4+0=2m
N = ! A = ! 2t =1
= carcf = e T=

This shows that the equation has one root in the first quadrant. Since
complex roots occur in pairs.

Hence the second root (conjugate to the first) will lie in the fourth
quadrant.

The equation is of degree four and so it will have four roots. Out of the
remaining two roots one lies in the second quadrant and the other
conjugate to it lies the third quadrant.

Example 16: In which quadrant do the roots of the equation
z*+ 23 4+4z24+22+3=01le?

Solution: Let f(z) =z*+ 23+ 42>+ 2z+3=0,f(z) =u+iv
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I: To prove that the given equation has no real root. Evidently
f(x) =x*+x3+4x?>+2x+3. Since all the coefficients of this
equation are all real and positive and so it is not satisfied by any positive
value of x, showing thereby it has no positive real root.

Putting, z = —x,
f(=x)=x*—x3+4x*-2x+3

1 15
= 2 2 _ —_ —2—2
x(x x+4)+4x x+ 3

1 15 1
=x2(x—§)+2(1—x)+1+rx2>01f§<x<1

Again, f(—x) = x*(x = 1) +4x(x —3) + 3> 0if x > 1
Thus,f(—x)>0if%<x< lorifx > 1.

This proves that the equation has no negative real root. Finally, the
equation has no real root.
I: The equation has no purely imaginary root.

Putting z = iy, or

y*—iy? —4y* +2iy+3=0
O*-4y*+3)+iy(2-y*) =0

This implies, y* —4y2 +3 = 0,y(2 —y2) =0
= (?-1DW*-3)=0,y(2-y?» =0.

These two equations are not satisfied by any common value of y. Hence
the result 11 follows.

I1l:  To determine the number of complex roots in the first quadrant.
Forthis let z = Re®®,0 < 0 < g,R — oo define the first quadrant OABO.

Let ¢ denote the complete boundary of this quadrant. See Fig. 82 on Page
469.
@ Along OA. z = x and x varies from 0 to co.

f@=u+iv=f(x)=x*+x3+4x*+2x+3
0
x*+x3+4x24+2x+3

v
arg f = tan™! o= tan~! (
& Agqargf =0

(b) Along arc AB,z = R¥®,R - 00,0 < § < 1/2

>=0‘v’x20.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY Page 356



COMPLEX ANALYSIS MT(N)-302

4 2 3
- |

Rei@ RZeZiH + RBeBiH + R4e4i9

— R** as R - o

f(z) = R*e*? 1+

Vs
Agparg f = [40]7/% = 4 (E_ 0) =2

(c) Along BO. z = iy and y varies from o t0 0 .
This, u +iv = f(z) = y* —iy3 —4y? + 2iy + 3
And it implies, u = y* —4y?2 +3 = (y2 - 3)(y? - 1)

v=-y'+2y =y2-y?

0 L P+ ]
ABOargf = [tan 1;] = ltan 1 <m>l
y=co w

which is zero for both the limits.

It means that as y changes from o to 0, the point w = u + iv starting
from any point on u-axis comes back to some point on u-axis. The manner
in which w moves is shown below:

y 0 V3 V2 1 0
(u,v) (00,—0) | (0,—V3) | (=1,0) | (0,1) | (3,0)
(Y T T
tan (;) 0 —E T E 0
v y@2=y?)
arg f = tan Etan OZ—DOI-1)

From the chart and diagram, it is clear that as y moves from oo to 0 along
positive y-axis, the point (u, v) takes one complete round around the
origin in clockwise direction. Hence

Aarg f(z) = —2m
Thus the total change in arg f(z) is given by
Aargf(z) =0+2n—2nr =0

Now the principle of argument declares that the number of zeros in the
first quadrant is
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1 1
RS A = — =
S—dargf(2) =+ (0) =0
It means that the equation has no complex root in the first quadrant. IV.
Since the coefficients of the given equation are all real the conjugate
complex roots occur in pairs. It follows that there is no complex root in the
fourth quadrant.

@[ 1)

@/ ' x@ )u
-1, 0)\ 3.0
@
(0,-V3) (oo, — o)

Figure 6

14.5 ANALYTIC CONTINUATION:-

Analytic continuation is a process of extending the definition of a domain
of an analytic function in which it is originally defined. This process is not
possible in case of functions of a real variable.

Definition: Suppose a function f; (z) is analytic in the domain D, . If there
exists a function £, (z) analytic in a domain D, such that

(i) D, has a part D;, common with D;,.
(ii) f1(2) = f2(z) forevery z in D,,.

then the function £, (z) is known as analytic continuation of f; (z) from D,
into D, via D;,. Of cource we may equivalently say that f; is analytic
continuation of £, from D; to D, via. Dy,.
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Figure 8

For analytic continuation, it is sufficient that D, and D, have only a small
arc in common for example the arcABC is common in D, and D,.

An alternate definition: If f(z) is analytic in a domain S; and if f(z) is
also analytic in a domain S, containing S; and if ¢(2) = f(2)Vz € S,,
then ¢(z) is said to give the analytic continuation of f(z) in the domain
S,.

Example 17: Let f(2) = Yoo 2™ ¢ (2) = i

Then f(z) is analytic at all points within the circle |z| = 1 and ¢(2) is
analytic at all points except z = 1. Also ¢ (z) = f(z) within |z| = 1.
Hence ¢(z) gives the continuation of f(z) over the rest of the plane.

n
Example 18: Let f;(2) = X2, 2™, f2(2) = X2, %(1;)
The first power series f(z) is convergent inside the circle R, defined by

|z| = 1 and has the sum = 1—; The second power series is in G.P.

geometrical (progression) with first term % and common ratio = % and

hence it is convergent for |1LZZ <lor|z+1| <2

The sum function of the second power series is

1 1
1-(1+2)/2 1-z

1
2
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Thus f; (z) is analytic inside the circle R, s.t. |z| = 1 and £, (2) is analytic
inside the circle R, s.t. |z + 1| = 2. Also f;(z) = f,(z) inaregion
common to the interiors of R; and R,.

Thus, it is obvious that f, (z) extends the domain of the analytic function
f1(2) to a larger domain R,. Here £, is the analytic continuation of f; from
R; into R,.

Figure 9

14.6 COMPLETE ANALYTIC FUNCTION:-

An analytic function f with domain D is called a function element and is
denoted by (f, D ).

Definition: Suppose f(z) is analytic in a domain D. Let us form all
possible analytic continuations of ( f,D ) and then all possible analytic
continuations of ( f;,D; ), (f, D), (fs, D), ..., (f,, D,,) and so on. At
some stage we arrive at a function F(z) such that for any v, F (v) denotes
the value of values obtained for v by all possible continuation to v, that is
to say.

fi(z)ifz € D;

F(Z) — fz(Z) leEDZ
fn(2)ifz € D,

Such a function F(z) is called complete analytic function. In this process

of continuation, we may arrive at a closed curve beyond which it is not

possible to take analytic continuation. Such a closed curve is called the

natural boundary of the compelte analytic function. A point outside the
natural boundary is called the singularity of complete analytic function.

Theorem 7: If f(z) is analytic in a domain R and f(z) = 0 at all points
on arc PQ inside R, then f(z) = 0 throughout R.

Proof: Suppose f(z) is analytic within a domain R. Let PQ be an arc
inside R.s.t.

f(z) = 0Vzon PQ - (1)
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To prove that f(z) = 0 through out R. Take an

b4

A R
.
> X

)

Figure 10

f@=) aG-2)" @)
n=0
M,
where a,, = -2 n(, o

Since z, lies on PQ and hence f(z,) = 0; by (1).
This = f(z) =0atz = z,

= f(2),f (2, f"(2), ..fM(z) =0at z = z,
= fM(z,) = 0 whenn = 0,1,2,3, ...

Here f©)(2) = f(2)
=a, =0,forn=0,1,23,..

In this event (2) becomes

o)

F@) =) anz=2)" =Y 0z+27)" =0

n=0

~ f(z) = 0 for any point inside C

By considering another arc inside R, we can repeat the same process. In
this way, we can prove that f(z) = 0 throughout R.

Deductions (i) If f(z) is analytic in a domain R and if f(z) vanishes at
any point of Ry, where R, is a part of R, then f(z) = 0 throughout R.

Solution: Take an arcPQ inside R,. Then f(z) = 0Vz on PQ. Now prove
this as in Theorem 7.
(i) If f1(2) and f,(z) are analytic in the same domain D and are such that
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f1(z) = f,(2) inadomain D, which is a part of D, then f; (z) = f,(2) i.h
roughout D.

Or,

Show that if two functions f; (z) and £, (z) are equal at all points of a line
L in aregion D in which they are holomorphic, the functions are equal at
all points of D.

Solution: Suppose f; (z) and f,(z) are holomorphic (analytic) in a region
D. Let D, be a part of D s.t.

i) = f,(DVzeD, ..(1)

To prove that f; (z) = f,(2) throughout D.
Write

f(@) = f1(2) = f2(2)
Now
(D =>f(z)=0vzeD,, ..(2)
Take an arc( or line )PQ in D,. Then we have
f(z) = 0Vz on PQ. . (3)

This follows from (2).

Now we shall prove a lemma.

Lemma: If f(2) is analytic in a domain R and if f(z) = 0 along an
arcPQ inside R, then f(z) = 0 throughout R.

The proof of the lemma starts. Prove as in Theorem 7.

Going back to the actual problem, we have f(z) = 0vVz € D.
(This follows from the lemma).

or, f1(z) — f,(z) = 0 throughout D

f1(2) = f,(z) throughout D
An alternative proof: If z, z,, lie on the line L, then

li f(z3) — f(z,) T ¢(z;) — d(z,)
im ————— = lim
Zy—2Zq ZZ —_— Zl Zy—Zq ZZ —_— Zl

Thus the first derivatives of f and ¢ are equal at all points of L. Similarly,
all the other derivatives of f and ¢ can be shown to be equal at all points
of L; and therefore, the functions are equal at all points of D.
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Theorem 8: If a function f(z) and all its derivatives vanish at point a,
then f(z) and all its derivatives will vanish at all points in the domain of
a.

Proof: By Taylor's theorem, f(2) = Yoo a,(z — a)™ where r'a _ a,

n!_

By assumption, ay = a; = a, =az =--=0.
Hence f(2), f'(2), f" (z) all vanish at all points of the domain.

Theorem 9: Uniqueness of analytic continuation. There cannot be more
than one continuation of analytic continuation £, (z) into the same domain

Proof: Let f;(z) be analytic in a domain D, and let f;(z) and g,(z) be
analytic continuations of the same function f; (z) from D, into the domain
D, via D;, which is common to both D, and D, (See fig. 7 & 8).

If we show that £, (z) = g,(2) throughout D,, the result will follow.
By the definition of analytic continuation.

() f1(2) = f2(2)Vz € Dy,

and f,(z) is analytic in D,

(i) f1(2) = g2(2)Vz € Dy,

and g,(z) is analytic in D,.

From (i) and (ii), it follows that, f,(z) = f,(2) = g,(2)Vz € Dy,
Or, f,(z) = g,(z2)Vz € Dy,

Or, (f, —g2)(2) = 0Vz € Dy,

f> and g, are analytic in D, = f, — g, is analytic in D,.

Thus we see that (f, — g,)(2) vanishes in D,, which is a part of D,. Also,

the function is analytic in D,. Hence, we must have

(f2 — 92)(2z) = OVz € D,. (See Theorem
7
or, f,(z) = g,(z)Vz € D,.

Check your progress

Problem 1: Show that one root of the equation z* + z +1 =0 lies in the
first quadrant.
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Problem 2: Using Rouche’s theorem to show that three out of the four
zeroes of z* +6z+3=0 liein1<|z|< 2.

14.7 SUMMARY:-

This unit cover the topic on meromorphic functions, Rouché’s theorem,
and analytic continuation explores key concepts of complex analysis that
describe how analytic functions behave, extend, and relate within the
complex plane. It begins with meromorphic functions, which are analytic
everywhere in a domain except at isolated poles, highlighting their
structure, properties, and representation as ratios of analytic functions. The
chapter then introduces Rouché’s theorem, a powerful result used to
compare two analytic functions on a closed contour to determine whether
they have the same number of zeros inside it, making it especially useful
in locating zeros of complex functions and polynomials. Finally, it
discusses analytic continuation, the process through which an analytic
function can be extended beyond its initial radius or region of convergence
by using overlapping analytic segments, emphasizing the principle of
uniqueness based on the identity theorem. Overall, the chapter explains
how these tools collectively deepen our understanding of the global
behavior of analytic functions across the complex plane.

14.8 GLOSSARY:-

Meromorphic function
Rouche’s theorem
Analytic continuation
Complete analytic function
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14.11TERMINAL QUESTIONS:-

Long answer type question

1 State and prove Mittag Leffler's expansion theorem.

2: State and prove Rouche's theorem.

3: Define analytic continuation by making figure on answer sheet.
4: Show that roots of the equation z° —9z° +11=0all lie between

the circles | z|=1 and | z|=3.

5: Prove that all the roots of z° +z —16i =0 lie between the circles
|z|=1and |z]=2.

Short answer type question

1: Find the number of roots of the equation z° +5z+1=0.

2: Prove that z° +3z° + 7z +5 has exactly two zeroes in first
quadrant.

3: Show that the equation e™* =z —(L+1i) has one root in the first
quadrant.

4. Find out the number of zeroes of the polynomial

F(z) = z® —4z° + z° —1 that lie inside the circle | z|=1.

5: Find the number of zeros of the polynomial
27* —27° + 27 + 22 +11 inside the circle | 2 |=1.
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Objective type question:

1. A meromorphic function on a domain D is analytic everywhere
except at:
A. Essential singularities
B. Poles
C. Branch points
D. Removable singularities
2. Which of the following is a meromorphic function on C?
A. e’
B. sin z
1

C. 5

2 +1
D. log z

3. A function is meromorphic in the finite complex plane if and only if
its

singularities (in that plane) are:

Removable

Poles only

Poles or essential
Poles or branch points

CoOw>

&

Rouché’s Theorem helps in determining:

The order of a pole

The number of zeros inside a closed contour
Radius of convergence of a Taylor series
Existence of Laurent expansion

CoOw>

5. According to Rouché’s Theorem, if | f(z) —g(z) |<| f(z)|on a
simple closed contour C, then:

A. g(z) has no zeros inside C

B. f(z) and g(z) have the same number of zeros inside C
C. f (z) must be constant inside C

D f(z) and g(z) have no poles

6. To apply Rouché’s Theorem, both functions must be:
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A. Meromorphic on C

B. Continuous on C

C. Analytic inside and on C

D. Analytic onlyon C

7. Analytic continuation allows extending an analytic function:
A. To regions where the function is multivalued

B. Beyond its radius of convergence

C. Only within its original circle of convergence

D. To infinity

8. Analytic continuation is unique if:

A. The function is periodic

B. The function is bounded

C. The continuation is performed along two different paths
D. The domain is simply connected and the initial analytic function is
fixed

9. The process of analytic continuation is based on which
principle?

A. Cauchy Integral Formula

B. Maximum Modulus Principle

C. Identity Theorem

D. Liouville’s Theorem

10.  Which of the following is NOT true for a meromorphic
function?

A. It can be expressed as the ratio of two analytic functions
B. It may have essential singularities

C. It may have poles

D. It is analytic except at isolated singularities

11. Rouché’s Theorem is typically applied to determine:
A. Behavior near essential singularities

B. The number of zeros for polynomials

C. Whether a function is entire

D. The sum of residues

12.  Analytic continuation fails when:
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A. A singularity blocks the extension

B. The function is entire

C. The domain is simply connected

D. The function is bounded

14.12ANSWERS:-

Answer of short answer type question:

1: One zero inside | z|=1 (here take f =5z, g =2z*+1)
3 zeroinside |z |=2 (heretake f =z*, g=5z+1)

5: Take f =11, g =remaining terms, then

i = 2+2+2+2 = L] < 1. Polynomial does not have any zero
g 11 11

inside c.

Answer of objective questions

1:

B 2: C 3: B 4:

B

B 6 C 7 B 8

D

C 10 B 11: B 12
A
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