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COURSE INFORMATION 

The self-learning material titled Complex Analysis has been carefully designed for B.Sc. 

(Six Semester) learners at Uttarakhand Open University, Haldwani, to provide convenient 

access to high-quality academic content. The course is divided into fourteen systematic 

units that cover the essential areas of complex analysis. Units 1 and 2 introduce the basic 

concepts of the complex plane and stereographic projection, forming the foundation for 

understanding the subject. Units 3 and 4 explore complex functions, their properties, and 

the important ideas of limit, continuity, and differentiability. This foundation is further 

strengthened through Units 5 and 6, which focus on analytic functions, followed by 

Units 7 and 8, which present the theory and applications of complex integration. Units 9 

and 10 extend learning to power series and the expansion of analytic functions, while 

Unit 11 explains singularities and the behavior of functions near points of discontinuity. 

The advanced topics in Units 12, 13, and 14 cover the residue theorem, its applications, 

analytic continuation, and the principle of uniqueness.  

The material is structured not only to support the academic curriculum but also to help 

learners prepare for various competitive examinations. It explains fundamental concepts 

and theorems in a clear and accessible manner, making it suitable for both self-study and 

revision. Numerous examples, solved problems, and practice exercises have been 

carefully included to strengthen conceptual understanding and enhance problem-solving 

skills. Overall, this self-learning material enables students to develop a strong foundation 

in complex analysis and encourages independent learning through a well-organized and 

student-friendly approach. 
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UNIT 1: - Basics of Complex plane  

CONTENTS: 
1.1      Introduction 

1.2      Objectives 

1.3      Complex Numbers 

1.4      Equality of Complex Numbers 

1.5      Addition of Complex Numbers 

1.6      Multiplication of Complex   Numbers  

1.7      Difference of Complex Numbers  

1.8      Division of Complex Numbers  

1.9      Modulus of Complex Numbers 

1.10     Conjugate of Complex Numbers 

1.11     Absolute Value 

1.12     Modulus and Argument Polar Form of Complex Numbers 

1.13     Geometrical Representation of Complex Numbers 

1.14    Complex Plane or Argand Plane 

1.15     Properties of Properties of Modulus Arguments of Complex             

            Numbers 

1.16     Summary 

1.17     Glossary 

1.18     References 

1.19     Suggested Reading 

1.20     Terminal questions 

1.21     Answers 

 

1.1 INTRODUCTION: -  

Complex numbers extend the real number system to include solutions to 

equations that have no real solutions, such as  𝑥2 + 1 = 0 . A complex 

number is of the form  𝑧 = 𝑎 + 𝑖𝑏  where 𝑎 the real part, 𝑏 is the 

imaginary part, and 𝑖 is the imaginary unit with 𝑖2 = −1. They can be 

represented on the complex plane, with the real part on the horizontal axis 

and the imaginary part on the vertical axis. The term “Complex Number” 

was coined by C.F. Gauss, and later mathematicians like A.L. Cauchy, B. 

Riemann, and K. Weierstrass made significant contributions, enriching the 

subject with their original work. Basic operations with complex numbers, 



Complex Analysis  MT(N)-302 

Department of Mathematics  

Uttarakhand Open University Page 3 
 

such as addition, subtraction, multiplication, and division, follow specific 

rules. The modulus and argument provide a polar form, offering an 

alternative way to express complex numbers, which is particularly useful 

in advanced mathematics and engineering. 

1.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 To find the solutions to equations that lack real solutions. 

 To represent complex numbers as points or vectors on the complex 

plane. 

 To solved the form of complex numbers. 

 To solved the equation of straight line and circle. 

1.3 COMPLEX NUMBERS: -  

Complex numbers were introduced to provide solutions to equations like 

𝑥2 + 1 =  0, where there are no real solutions. These numbers include 

both real and imaginary parts and are denoted as 𝑎 + 𝑖𝑏, where 𝑎, 𝑏  are 

the real numbers, is called Complex Number. and 𝑖  represents the 

imaginary unit, which is defined as the square root of −1, also called 𝑖 as 

imaginary unit. 

If we represent a number in the form 𝑧 = 𝑥 + 𝑖𝑦,  then 𝑧  is called a 

complex Variable . Here, 𝑥 and 𝑦 are called the real and imaginary parts of 

𝑧  respectively. Sometimes we write z as  

𝑧 = (𝑥, 𝑦) 

we also write 

𝑅(𝑧) = 𝑥, 𝐼(𝑧) = 𝑦 

If 𝑥 = 0, 𝑖. 𝑒., 𝑧 = 𝑖𝑦, then 𝑧 is known as pure imaginary number. 

The complex conjugate of a complex number 𝑧 = 𝑥 + 𝑖𝑦  is denoted as  

𝑥 + 𝑖𝑦 and is equal to 𝑥 − 𝑖𝑦. In other words, it involves changing the sign 

of the imaginary part while leaving the real part unchanged.  

𝑧 = 𝑥 + 𝑖𝑦   𝑜𝑟    𝑧̅ = 𝑥 + 𝑖𝑦 

Example: the conjugate of −3 − 5𝑖 is 3 + 5𝑖. 
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It is easy to verify that 

𝑅(𝑧) = 𝑥 =
𝑧 + 𝑧̅

2
,      𝐼(𝑧) = 𝑦 =  

𝑧 − 𝑧̅

2𝑖
      

1.4 EQUALITY OF COMPLEX NUMBERS: -  

The equality of complex numbers follows the same principles as equality 

of real numbers. Two complex numbers 𝑥1 + 𝑖𝑦1  and 𝑥2 + 𝑖𝑦2 are 

considered equal if and only if both their real parts and imaginary parts are 

equal, i.e., 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2 . 

Formally 

𝑧1 = 𝑥1 + 𝑖𝑦1   𝑜𝑟   (𝑥1, 𝑦1),    𝑧2 = 𝑥2 + 𝑖𝑦2 𝑜𝑟   (𝑥2, 𝑦2) 

𝑧1 = 𝑧2 if and only if 𝑥1 = 𝑥2,      𝑦1 = 𝑦2. 

Remark: The phrases “greater than” or “less than” have no meaning in 

the set of complex numbers.  

1.5 ADDITION OF COMPLEX NUMBERS: -  

If 𝑧1 = 𝑥1 + 𝑖𝑦1   or (𝑥, 𝑦)  and 𝑧2 = 𝑥2 + 𝑖𝑦2 or (𝑥, 𝑦)  are any two 

complex numbers, then the sum of 𝑧1, and 𝑧2written as 𝑧1 + 𝑧2, is defined 

by  

𝑧1 + 𝑧2 = (𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2) 

𝑧1 + 𝑧2 = (𝑥1 + 𝑥2) + 𝑖(𝑦1 + 𝑦2) 

= (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2 ) 

Thus             (2 + 4𝑖) + (7 − 9𝑖) = (2 + 7) + 𝑖(4 − 9) = 9 − 5𝑖 

Properties of the Addition of complex numbers:  

The addition of complex numbers is commutative, associative, admits of 

identity element and every complex number possesses additive inverse. 

Commutativity of Addition in C: To Show that 𝑧1 + 𝑧2 = 𝑧2 + 𝑧1 , 

where 𝑧1 and 𝑧2 are any complex numbers. 

Proof: Let 𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2) , where 𝑥1, 𝑦1, 𝑥2, 𝑦2  are real 

numbers. 
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𝑧1 + 𝑧2 = (𝑥1, 𝑦1) + (𝑥2, 𝑦2) 

= (𝑥1 + 𝑥2, 𝑦1 + 𝑦2 ) 

= (𝑥2 + 𝑥1, 𝑦2 + 𝑦1 ) 

= (𝑥2, 𝑦2) + (𝑥1, 𝑦1) = (𝑧2 + 𝑧1) 

Hence 

𝑧1 + 𝑧2 = 𝑧2 + 𝑧1, for all complex numbers 𝑧1 and 𝑧2. 

Associativity of Addition in C: To Show that (𝑧1 + 𝑧2) + 𝑧3 = 𝑧1 +

(𝑧2 + 𝑧3), where 𝑧1 and 𝑧2 are any complex numbers. 

Proof: Let  

𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2), 𝑧3 = (𝑥3, 𝑦3), 

where  𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3 are real numbers. 

(𝑧1 + 𝑧2) + 𝑧3 = {(𝑥1, 𝑦1) + (𝑥2, 𝑦2)} + (𝑥3, 𝑦3) 

= (𝑥1 + 𝑥2, 𝑦1 + 𝑦2 ) + (𝑥3, 𝑦3) 

= ({𝑥1 + 𝑥2} + 𝑥3, {𝑦1 + 𝑦2} + 𝑦3) 

= (𝑥1 + {𝑥2 + 𝑥3}, 𝑦1 + {𝑦2 + 𝑦3}) 

= (𝑥1, 𝑦1) + (𝑥2 + 𝑥3, 𝑦2 + 𝑦3 ) 

= (𝑥1, 𝑦1) + {(𝑥2, 𝑦2) + (𝑥3, 𝑦3)} 

= 𝑧1 + ( 𝑧2 + 𝑧3) 

Hence (𝑧1 + 𝑧2) + 𝑧3 = 𝑧1 + (𝑧2 + 𝑧3), ∀ complex numbers 𝑧1, 𝑧2 and 𝑧3. 

Additive Identity: The complex number (0,0)  or 0 + 𝑖0  is additive 

identity, since for every complex number (𝑥, 𝑦), we obtain 

(𝑥, 𝑦) + (0,0) = (𝑥 + 0, 𝑦 + 0) =  (0,0) + (𝑥, 𝑦) 

The zero complex number, or complex number (0,0),  is represented 

simply by the symbol 0. A complex number 𝑥 +  𝑖𝑦 is considered non-

zero if at least one of the variables, 𝑥 and 𝑦, is not zero. 
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Additive Inverse: The complex number (−𝑥,−𝑦) is the additive inverse 

of the complex number (𝑥, 𝑦) since and also  

(𝑥, 𝑦) + (−𝑥,−𝑦) = (𝑥 − 𝑥, 𝑦 − 𝑦) = (0,0) = additive identity 

and                             (−𝑥, −𝑦) + (𝑥, 𝑦)  =  (0,0) 

The complex number (−𝑥, −𝑦)  is called the negative of the complex 

number (𝑥, 𝑦) and we denote (−𝑥, −𝑦) by −(𝑥, 𝑦).  

Thus if 𝑧 = (𝑥, 𝑦), then −𝑧 = −(𝑥, 𝑦)  =  (−𝑥, −𝑦). 

 Cancellation law for addition in C. If 𝑧1, 𝑧2 and 𝑧3. are any complex 

numbers, then  

𝑧1 + 𝑧3 = 𝑧2 + 𝑧3  ⇒  𝑧1 = 𝑧2  

1.6 MULTIPLICATION OF COMPLEX NUMBERS:  

If𝑧1 = 𝑥1 + 𝑖𝑦1   or (𝑥1, 𝑦1)  and 𝑧2 = 𝑥2 + 𝑖𝑦2 or (𝑥2, 𝑦2)  are any two 

complex numbers, then the product of 𝑧1, and 𝑧2  denoted by 

𝑧1𝑧2 = (𝑥1 + 𝑖𝑦1)(𝑥2 + 𝑖𝑦2) 

= (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑦1𝑥2) 

= (𝑥1, 𝑦1) + (𝑥2, 𝑦2) 

= (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑦1𝑥2 ) 

Ex- (3 + 3𝑖)(6 + 4𝑖) = (3 × 6 − 3 × 4) + 𝑖(3 × 4 + 3 × 6) 

= 6 + 30𝑖 

Or using the notation of order pairs, we obtain 

(3,3)(6,4) = (3 × 6 − 3 × 4,3 × 4 + 3 × 6) = (6,30) 

Properties of the Multiplication of complex numbers:  

The multiplication of complex numbers is commutative, associative, 

admits of identity element and every non-zero complex number possesses 

multiplicatively inverse. 

Commutativity of Multiplication in C: To Show that 𝑧1𝑧2 = 𝑧2𝑧1 , 

where 𝑧1 and 𝑧2 are any complex numbers. 
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Proof: Let 𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2) , where 𝑥1, 𝑦1, 𝑥2, 𝑦2  are real 

numbers, then we get 

𝑧1𝑧2 = (𝑥1, 𝑦1)(𝑥2, 𝑦2) 

= (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑦1𝑥2 ) 

= (𝑥2, 𝑦2)(𝑥1, 𝑦1) = (𝑧2𝑧1) 

Hence 

𝑧1𝑧2 = 𝑧2𝑧1, for all complex numbers 𝑧1 and 𝑧2. 

Associativity of Multiplication in C: To Show that (𝑧1𝑧2)𝑧3 = 𝑧1(𝑧2𝑧3), 

where 𝑧1 and 𝑧2 are any complex numbers. 

Proof: Let  

𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2), 𝑧3 = (𝑥3, 𝑦3), 

where  𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3 are real numbers. 

(𝑧1𝑧2)𝑧3 = {(𝑥1, 𝑦1)(𝑥2, 𝑦2)}(𝑥3, 𝑦3) 

= (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑦1𝑥2 )(𝑥3, 𝑦3) 

= ({𝑥1𝑥2 − 𝑦1𝑦2}𝑥3 − {𝑥1𝑦2 + 𝑦1𝑥2 }𝑦3, {𝑥1𝑥2 − 𝑦1𝑦2}𝑦3
+ {𝑥1𝑦2 + 𝑦1𝑥2 }𝑥3) 

= (𝑥1𝑥2𝑥3 − 𝑦1𝑦2𝑥3 − 𝑥1𝑦2𝑦3 − 𝑦1𝑥2 𝑦3, 𝑥1𝑥2𝑦3 − 𝑦1𝑦2𝑦3 + 𝑥1𝑦2𝑥3 +

𝑦1𝑥2𝑥3) By distributive law 

Also 

𝑧1(𝑧2𝑧3) = (𝑥1, 𝑦1){(𝑥2, 𝑦2)(𝑥3, 𝑦3)} 

= (𝑥1, 𝑦1)(𝑥2𝑥3 − 𝑦2𝑦3, 𝑥2𝑦3 + 𝑦2𝑥3 ) 

= (𝑥1{𝑥2𝑥3 − 𝑦2𝑦3} − 𝑦1{𝑥2𝑦3 + 𝑦2𝑥3 }, 𝑥1{𝑥2𝑦3 + 𝑦2𝑥3}

+ 𝑦1 {𝑥2𝑥3 − 𝑦2𝑦3 }) 

= (𝑥1𝑥2𝑥3 − 𝑦1𝑦2𝑥3 − 𝑥1𝑦2𝑦3 − 𝑦1𝑥2 𝑦3, 𝑥1𝑥2𝑦3 − 𝑦1𝑦2𝑦3 + 𝑥1𝑦2𝑥3 +

𝑦1𝑥2𝑥3) By distributive law 

Finally,  (𝑧1𝑧2)𝑧3 = 𝑧1(𝑧2𝑧3), ∀ complex numbers 𝑧1, 𝑧2 and 𝑧3 
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Multiplicative Identity: The complex number (1,0)  or 1 + 𝑖0  is 

multiplicative identity, since for every complex number (𝑥, 𝑦), we obtain 

(𝑥, 𝑦)(1,0) = (𝑥. 1 − 𝑦. 0, 𝑥. 0 +  𝑦. 1) =  (𝑥, 𝑦) = (1,0)(𝑥, 𝑦) 

Multiplicative Inverse: The complex number (𝑥, 𝑦) is the multiplicative 

inverse of the complex number (𝑎, 𝑏),then we have 

(𝑥, 𝑦)(𝑎, 𝑏) = (1,0)𝑠𝑖𝑚𝑝𝑙𝑦 1 

= (𝑥𝑎 − 𝑦𝑏, 𝑥𝑏 + 𝑦𝑎) = (1,0) 

𝑥𝑎 − 𝑦𝑏 = 1 and  𝑥𝑏 + 𝑦𝑎 = 0 

𝑥 =
𝑎

𝑎2 + 𝑏2
, 𝑦 =

−𝑏

𝑎2 + 𝑏2
 

⟹       𝑎2 + 𝑏2 ≠ 0 , which implies that 𝑎 and 𝑏 are not both zero i.e., (a, 

is a non-zero complex number) 

Thus every non-zero complex number possesses multiplicative inverse and 

the multiplicative inverse of the complex number (𝑎, 𝑏) ≠  (0,0) is the 

complex number 

(
𝑎

𝑎2 + 𝑏2
,
−𝑏

𝑎2 + 𝑏2
) 

If z is a non-zero complex number, the multiplicative inverse of 2 is 

denoted by 1/𝑧 or 𝑧−1.  

Cancellation law for multiplication in C. If 𝑧1, 𝑧2  and 𝑧3 . are any 

complex numbers, then  

𝑧1𝑧3 = 𝑧2𝑧3  ⇒  𝑧1 = 𝑧2  

1.7 DIFFERENCE OF COMPLEX NUMBERS: - 

If 𝑧1 and  𝑧2 are two complex number then 

 𝑧1 − 𝑧2 = 𝑧1 + (−𝑧2) 

Thus 𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2), then we get 

𝑧1 − 𝑧2 = 𝑧1 + (−𝑧2) = (𝑥1, 𝑦1) + (−𝑥2, −𝑦2) 

= (𝑥1 − 𝑥2,   𝑦1 − 𝑦2 ) 
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1.8 DIVISION OF COMPLEX NUMBERS: - 

If a complex number (𝑥, 𝑦) exists such that a complex number (𝑎, 𝑏) is 

divisible by a complex number (𝑐, 𝑑), then (𝑥, 𝑦)(𝑐, 𝑑) = (𝑎, 𝑏). 
We get 

(𝑥𝑐 − 𝑦𝑑, 𝑥𝑑 + 𝑦𝑐) = (𝑎, 𝑏) 
𝑥𝑐 − 𝑦𝑑 = 𝑎  𝑎𝑛𝑑 𝑥𝑑 + 𝑦𝑐 = 𝑏 

The above equations gives 

𝑥 =
𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
, 𝑦 =

𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2
 

For all 𝑐2 + 𝑑2 ≠ 0, which implies that 𝑐 and 𝑑 are not both zero. 

Or 

To divide two complex numbers, multiply the numerator and the 

denominator by the conjugate of the denominator. 

If   𝑧1 = 𝑎 + 𝑖𝑏,    𝑧2 = 𝑐 + 𝑖𝑑, the conjugate of  𝑧2 is 𝑧2̅ = 𝑐 − 𝑖𝑑 then 

𝑧1
𝑧2 

=
𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
 .
𝑐 − 𝑖𝑑 

𝑐 − 𝑖𝑑 
=
(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑)

𝑐2 + 𝑑2
 

=
(𝑎𝑐 − 𝑏𝑑)(𝑏𝑐 − 𝑎𝑑)

𝑐2 + 𝑑2
 

= (
𝑎𝑐−𝑏𝑑

𝑐2+𝑑2
) + 𝑖 (

𝑏𝑐−𝑎𝑑

𝑐2+𝑑2
) if 𝑐2 + 𝑑2 ≠ 0 

Therefore, in the set of complex numbers, division is always allowed, with 

the exception of by (0, 0). If 𝑧1 and  𝑧2  are two complex numbers such 

that 𝑧1 ≠ 0, then the relation defines the quotient of 𝑧1 and  𝑧2. 
𝑧1 

𝑧2
= 𝑧1.

1

𝑧2
= 𝑧1. (𝑧2)

−1 

 

1.9 MODULUS OF COMPLEX NUMBERS: - 

A complex number's modulus is a measurement of its absolute value or 

magnitude. Denoted by ∣ 𝑧 ∣, the modulus of a complex number 𝑧 = 𝑥 +
𝑖𝑦, where an is the real part and b is the imaginary part, is the square root 

of the sum of the squares of its real and imaginary components, or 𝑧 =

√(𝑥2 + 𝑦2).  
Clearly, ∣ 𝑧 ∣= 0 if and only if 𝑥 = 0 and 𝑦 = 0  That is, if and only if 𝑧 =
0.  Additionally, it is easily understood that for any complex number 

𝑧, |𝑧| ≥ 𝑅(𝑧) 𝑎𝑛𝑑 |𝑧| ≥ 𝐼(𝑧). 
Recall that we have for every real value of 𝜃, we get 

|𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = √𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1 

Therefore, the complex number 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 is referred to as a uni-

modular complex number since its modulus is always equal to 1. 
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If 𝑧1 and  𝑧2 are any two  complex numbers, then 
|𝑧1𝑧2| = |𝑧1||𝑧2| 

If 𝑧1is any complex number and 𝑧2 is a complex number that is not zero, 

then 

|
𝑧1
𝑧2
| =

|𝑧1|

|𝑧2|
 

 

1.10 CONJUGATE OF COMPLEX NUMBERS: -  

The complex number 𝑥 − 𝑖𝑦 is known as the conjugate of the complex 

number of 𝑧  and is represented by the symbol 𝑧̅ . If 𝑧 = 𝑥 + 𝑖𝑦  is any 

complex number. Therefore, if 

𝑧 = 2 + 3𝑖 and 𝑧 = 2 − 3𝑖 
i.e.,                                                |𝑧| = |𝑧̅| 

The following results are given below: 

i. 𝑧1 = 𝑧2 if and only if 𝑧1̅ = 𝑧2̅ 

ii. (𝑧̅)̅̅ ̅̅ = 𝑧. 

iii. 𝑧1 + 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ + 𝑧2̅, 𝑧1 − 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ − 𝑧2̅, 𝑧1𝑧2̅̅ ̅̅ ̅̅ = 𝑧1̅. 𝑧2̅ and (
𝑧1

𝑧2
)

̅̅ ̅̅ ̅
=

𝑧1̅̅ ̅

𝑧2̅̅ ̅
 ∀ 𝑧2 ≠ 0. 

iv. If 𝑧 = 𝑥 + 𝑖𝑦, then 

𝑧 + 𝑧̅ = (𝑥 + 𝑖𝑦) + (𝑥 − 𝑖𝑦) = 2𝑥 = 2𝑅(𝑧) 

v. A complex number purely imaginary if and only if 𝑧 + 𝑧̅ = 0. 

vi. If 𝑧 = 𝑥 + 𝑖𝑦, then 

𝑧 − 𝑧̅ = (𝑥 + 𝑖𝑦) − (𝑥 − 𝑖𝑦) = 2𝑖𝑦 = 2𝑖𝐼(𝑧) 

vii. A complex number purely real if and only if 𝑧 − 𝑧̅ = 0. 

viii. If 𝑧 = 𝑥 + 𝑖𝑦, then 𝑧𝑧̅ = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2 =

[√𝑥2 + 𝑦2]
2
= |𝑧|2 

Therefore, the product of two conjugate complex numbers is always ≥ 0, 
or a totally real number that is never negative. 

 

1.11 ABSOLUTE VALUE: - 

For a complex number 𝑧 = 𝑎 + 𝑖𝑏, where 𝑎 the real part is and 𝑏 is the 

imaginary part, the absolute value is defined as: 

|𝑧| = |𝑎 + 𝑖𝑏| = √𝑎2 + 𝑏2  

∴                        |𝑧|2 = 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑧𝑧̅ 
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|𝑧|2 = 𝑧𝑧̅ 

Also                                        𝑧1. 𝑧2̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ 𝑧2̅ 

Properties of the Absolute Value: 

 Non-negativity: ∣ 𝑧 ∣≥ 0 

           The absolute value is always non-negative. 

 Zero:                                 ∣ 𝑧 ∣= 0 

          if and only if z=0 (i.e., both the real and imaginary parts are zero). 

 Multiplicatively:                    |𝑧1. 𝑧2 | = |𝑧1||𝑧2| 

The absolute value of the product of two complex numbers is the 

product of their absolute values. 

 

 Triangle Inequality:        |𝑧1 + 𝑧2 | ≤ |𝑧1| + |𝑧2| 

The absolute value of the sum of two complex numbers is less than 

or equal to the sum of their absolute values. 

 Conjugate:                         ∣ 𝑧 ∣=∣ 𝑧̅ ∣ 

The absolute value of a complex number is equal to the absolute 

value of its conjugate. 

1.12 MODULUS AND ARGUMENT POLAR FORM 

OF COMPLEX NUMBERS: -  

Every non-zero complex numbers 𝑥 + 𝑖𝑦  can always be put in the form 

𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃), where 𝑟 and 𝜃 are both real numbers. 

Let 𝑥 + 𝑖𝑦 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃. Then equating real and 

imaginary parts on both sides, we obtain 

𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 

Then                                        𝑟 = √𝑥2 + 𝑦2 = |𝑥 + 𝑖𝑦| = |𝑧| 

𝜃 = tan−1
𝑦

𝑥
 

It follows  

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 𝑟𝑒𝑖𝜃 

where 𝑟 is known and is equal to the modulus of complex numbers z and 

that 𝑟, 𝜃 are called polar coordinates of 𝑧. 
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The argument of a complex number 𝑧 = 𝑥 + 𝑖𝑦   , denoted by as 𝜃 =

𝑎𝑚𝑝(𝑧) or 𝜃 = arg (𝑧), is the angle formed by the line joining the point 

𝑃(𝑥, 𝑦) to the origin with the positive real axis, calculated as 𝜃 = tan−1
𝑦

𝑥
, 

and together with the modulus, fully describes the number’s position and 

direction in the complex plane. 

 The argument of a complex number 𝑧 is not unique because it can 

differ by any integer multiple of 2𝜋. 

 The principal value of the argument of a complex number 𝑧 , 

denoted as 𝐴𝑟𝑔(𝑧), is the value of θ that lies within the interval 

−𝜋 < 𝜃 ≤ 𝜋 𝑜𝑟 0 < 𝜃 ≤ 2𝜋. 

 If 𝑧 = 0,  then 𝑎𝑟𝑔(𝑧) =  𝑎𝑟𝑔(0)  is not defined and 𝑎𝑟𝑔(𝑧)  is 

defined only if only 𝑧 ≠ 0. 

 If 𝐴𝑟𝑔(𝑧)denoted general value and argument 𝑎𝑟𝑔(𝑧)  denoted 

principal value, then 

𝐴𝑟𝑔(𝑧) = 𝑎𝑟𝑔(𝑧) + 2𝑛𝜋 ∀ 𝑛 ∈ 𝐼 

where 𝐼 = set of integers. 

 If  𝑧 = 𝑥 + 𝑖𝑦, then  

arg(𝑧) =

{
 
 
 

 
 
 
tan−1

𝑦

𝑥
, 𝑖𝑓 𝑥 > 0, 𝑦 > 0 𝑜𝑟 𝑦 ≤ 0

𝜋 + tan−1
𝑦

𝑥
𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0

−𝜋 + tan−1
𝑦

𝑥
𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0

𝜋

2
 𝑖𝑓 𝑥 = 0, 𝑦 > 0

−
𝜋

2
 𝑖𝑓 𝑥 = 0, 𝑦 < 0

              

1.13 GEOMETRICAL REPRESENTATION OF 

COMPLEX NUMBERS: -  

A complex number 𝑧 = 𝑥 + 𝑖𝑦  is defined as an ordered pair of real 

numbers (𝑥, 𝑦), where 𝑥 the real part is and 𝑦 is the imaginary part. 
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Fig.1 

A complex number 𝑧 = 𝑥 + 𝑖𝑦  can be represented by a point 𝑃  with 

Cartesian coordinates (𝑥, 𝑦) on a rectangular coordinate system, where the 

𝑋 −axis is the real axis and the 𝑌 − 𝑎xis is the imaginary axis. 

Each complex number corresponds to a unique point in the plane, and 

conversely, each point in the plane corresponds to one and only one 

complex number. 

1.14 COMPLEX PLANE OR ARGAND PLANE: -  

The complex plane, also known as the Argand plane or the z-plane, is a 

two-dimensional coordinate system used to represent complex numbers 

geometrically. Gauss was the first to produce in 1799 that complex 

numbers are represented by points in a plane, then this concept that was 

developed by Argand in 1806. In this plane, each complex number 𝑧 =

𝑥 + 𝑖𝑦 can identify with a point 𝑃 = (𝑥, 𝑦), where 𝑥 the real part is and 𝑦 

is the imaginary part. The horizontal axis, known as the real axis, contains 

all points of the form (𝑥, 0), representing real numbers, while the vertical 

axis, called the imaginary axis, includes points of the form (0, 𝑦), 

representing purely imaginary numbers. Points not on the real axis 

represent general complex numbers with both real and imaginary parts. 

The origin (0,0), represents the complex number0 + 𝑖0 . This graphical 

representation helps in visualizing complex number operations and 

understanding their properties. 

The nonnegative number ∣ 𝑧 ∣, called the modulus or absolute value of a 

complex number 𝑧 = 𝑥 + 𝑖𝑦 , represents the distance of the complex 

number 𝑧 from the origin in the complex plane. It is calculated using the 

formula: 
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|𝑧| = √𝑥2 + 𝑦2 

This is derived from the Pythagorean theorem, considering 𝑧 = (𝑥, 𝑦) as a 

point in the 𝑥𝑦 −plane.(see Fig.2.) 

 

Fig.2. 

The distance between two points 𝑧1 = 𝑥1 + 𝑖𝑦1,    𝑧2 = 𝑥2 + 𝑖𝑦2 in the 

complex plane is given by the distance formula: 

|𝑧1 − 𝑧2| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

This formula measures the straight-line distance between the points 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) in the complex plane. 

1.15 PROPERTIES OF PROPERTIES OF 

MODULUS ARGUMENTS OF COMPLEX 

NUMBERS: -  

Theorem1: Modulus and argument of the conjugate of two complex 

numbers, If 𝑧 is any  non-zero complex numbers, then 

|𝑧̅| = |𝑧| 𝑎𝑛𝑑 𝑎𝑟𝑔𝑧̅ = −𝑎𝑟𝑔𝑧 

Proof: Let |𝑧| = 𝑟 and 𝑎𝑟𝑔𝑧 = 𝜃 

Then from modulus argument form a complex number, we get 

𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑧̅ = 𝑟(𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃) = 𝑟[𝑐𝑜𝑠(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃)] 

Hence |𝑧̅| = 𝑟 = |𝑧| and 𝑎𝑟𝑔𝑧̅ = −𝑎𝑟𝑔𝑧 = −𝜃 
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Theorem2: Modulus and argument of the product of two complex 

numbers, If 𝑧1 and 𝑧2 are any two non-zero complex numbers, then 

|𝑧1. 𝑧2| = |𝑧1|. |𝑧2| and  𝑎𝑟𝑔(𝑧1𝑧2) = 𝑎𝑟𝑔(𝑧1) + 𝑎𝑟𝑔(𝑧2) 

Proof: |𝑧1. 𝑧2|
𝟐 = (𝑧1. 𝑧2)(𝑧1. 𝑧2)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1. 𝑧2. 𝑧1̅. 𝑧2̅ 

= (𝑧1. 𝑧1̅)(𝑧2. 𝑧2̅) = |𝑧1|
𝟐. |𝑧2|

𝟐 

|𝑧1. 𝑧2|
𝟐 = |𝑧1|

𝟐. |𝑧2|
𝟐 

⇒        

|𝑧1. 𝑧2| = |𝑧1|. |𝑧2| 

Let, the complex numbers, we get 

𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) 

𝑧2 = 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

Now, consider the product 𝑧1𝑧2: 

𝑧1𝑧2 = [𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)][𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)] 

= 𝑟1𝑟2[(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2) + 𝑖(𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 + 𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2)] 

= 𝑟1𝑟2[𝑐𝑜𝑠(𝜃1 + 𝜃2) + 𝑠𝑖𝑛(𝜃1 + 𝜃2)] 

𝑧1𝑧2 = 𝑟1𝑟2[𝑐𝑜𝑠(𝜃1 + 𝜃2) + 𝑠𝑖𝑛(𝜃1 + 𝜃2)] 

This shows that 𝑧1𝑧2 modulus -argument form, we obtain  

|𝑧1. 𝑧2| = 𝑟1𝑟2 = |𝑧1|. |𝑧2| 

arg(𝑧1𝑧2) = 𝑎𝑟𝑔(𝑧1) + 𝑎𝑟𝑔(𝑧2) 

Remark:   |𝑧1| = |
𝑧1

𝑧2
. 𝑧2| = |

𝑧1

𝑧2
| . |𝑧2|, 

|
𝑧1
𝑧2
| = |

𝑧1
𝑧2
| 

Theorem3 : Modulus and argument of the product of two complex 

numbers, If 𝑧1 and 𝑧2 are any two non-zero complex numbers, then 

|
𝑧1

𝑧2
| =

|𝑧1|

|𝑧2|
 and  𝑎𝑟𝑔 (

𝑧1

𝑧2
) =  𝑎𝑟𝑔(𝑧1) − 𝑎𝑟𝑔(𝑧2) 

Proof:  Let 𝑧1 and 𝑧2 be two complex numbers with arguments 𝜃1and 𝜃2 

and moduli  𝑟1  and 𝑟2 . In polar form, these complex numbers can be 

expressed as: 

𝑧1 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) 
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𝑧2 = 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

Now, consider the quotient 𝑧1/𝑧2: 

𝑧1
𝑧2
=
𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)

𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)
 

𝑧1
𝑧2
=
𝑟1
𝑟2
.
(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1)

(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)
 

To simplify the fraction, we multiply the numerator and the denominator 

by the complex conjugate of the denominator: 

𝑧1
𝑧2
=
𝑟1
𝑟2
.
(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2) + 𝑖(𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2 − 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2)

(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2)
 

=
𝑟1
𝑟2
.
(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2) + 𝑖(𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2 − 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2)

(𝑐𝑜𝑠2𝜃2 + 𝑖𝑠𝑖𝑛2𝜃2)
 

=
𝑟1
𝑟2
[𝑐𝑜𝑠(𝜃1 − 𝜃2) + 𝑖𝑠𝑖𝑛(𝜃1 − 𝜃2)] 

From this represent |
𝑧1

𝑧2
| is standard polar form, we get 

|𝑧1| = |
𝑧1
𝑧2
. 𝑧2| = |

𝑧1
𝑧2
| . |𝑧2|, 

|
𝑧1
𝑧2
| =

𝑟1
𝑟2
=
|𝑧1|

|𝑧2|
 

and                           𝑎𝑟𝑔 (
𝑧1

𝑧2
) =  𝜃1 − 𝜃2 = 𝑎𝑟𝑔(𝑧1) − 𝑎𝑟𝑔(𝑧2) 

Theorem4: Triangle Inequality 

The modulus of the sum of two complex numbers is less than or equal to 

sum of their moduli. 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| 

Proof: Suppose, 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

𝑧1 + 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) + 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2) 

|𝑧1 + 𝑧2| = √(𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2)2 + (𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2)2 
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= √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2) 

≤ √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2             𝑓𝑜𝑟  𝑐𝑜𝑠(𝜃1 − 𝜃2) ≤ 1  

= 𝑟1 + 𝑟2 = |𝑧1| + |𝑧2| 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| 

Theorem5: The modulus of the difference of two complex numbers is less 

than or equal to difference of their moduli. 

|𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2| 

Proof: Let, 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

|𝑧1| = 𝑟1, |𝑧2| = 𝑟2  

𝑧1 − 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) − 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2) 

|𝑧1 − 𝑧2| = √(𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2)2 + (𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2)2 

= √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2) 

≤ √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2             𝑓𝑜𝑟  𝑐𝑜𝑠(𝜃1 − 𝜃2) ≥ −1  

= 𝑟1 − 𝑟2 = |𝑧1| − |𝑧2| 

|𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2| 

Remark:  To prove  

|𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 

|𝑧1 − 𝑧2| = |𝑧1 + (−𝑧2)| 

≤ |𝑧1| + |−𝑧2|  by theorem2 

= |𝑧1| + |𝑧2| 

|𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 

Hence    |𝑧1| − |𝑧2| ≤ |𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 
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Theorem6: To prove |𝑧1 + 𝑧2| ≥ |𝑧1| − |𝑧2|. 

Proof: : Let, 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

|𝑧1| = 𝑟1, |𝑧2| = 𝑟2  

𝑧1 + 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) + 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2) 

|𝑧1 + 𝑧2| = √(𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2)2 + (𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2)2 

= √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2) 

≥ √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2             𝑓𝑜𝑟  𝑐𝑜𝑠(𝜃1 − 𝜃2) ≥ −1  

= 𝑟1 − 𝑟2 = |𝑧1| − |𝑧2|  if   𝑟1 > 𝑟2 

𝑟1 − 𝑟2 = |𝑧1| − |𝑧2| 

|𝑧1 + 𝑧2| ≥ |𝑧1| − |𝑧2|  if   |𝑧1| > |𝑧2| 

Theorem7: Parallelogram Law 

The sum of squares of the length of diagonals of a parallelogram is equal 

to the sum of squares of length of its sides, i.e., prove that  

|𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2[|𝑧1|
2 + |𝑧2|

2] 

OR 

To prove that |𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2[|𝑧1|
2 + |𝑧2|

2] 

Proof: Let 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2, then  

|𝑧1| = 𝑟1, |𝑧2| = 𝑟2  

𝑧1 + 𝑧2 = 𝑟1(𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1) + 𝑟2(𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

= (𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2) 

𝑧1 − 𝑧2 = (𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2) + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2) 

Now |𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = [(𝑟1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2)
𝟐 + 𝑖(𝑟1𝑠𝑖𝑛𝜃1 +

𝑟2𝑠𝑖𝑛𝜃2)
2] + [(𝑟1𝑐𝑜𝑠𝜃1 − 𝑟2𝑐𝑜𝑠𝜃2)

2 + (𝑟1𝑠𝑖𝑛𝜃1 − 𝑟2𝑠𝑖𝑛𝜃2)
2] 
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= [𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2)] + [𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2𝑐𝑜𝑠(𝜃1 − 𝜃2)] 

= [𝑟1
2 + 𝑟2

2] 

= 2[|𝑧1|
2 + |𝑧2|

2]                … (1) 

Geometrical interpretation: Let 𝑃 and Q be the points in the Argand 

diagram representing the complex numbers 𝑧1and 𝑧2 respectively. On 

completing the parallelogram OPRQ, then we get 

 

Fig.1 

 𝑧1 = 𝑂𝑃⃗⃗⃗⃗  ⃗, 𝑧2 = 𝑂𝑄⃗⃗⃗⃗⃗⃗ . 

𝑧1 + 𝑧2 = 𝑂𝑃 + 𝑂𝑄 = 𝑂𝑃 +  𝑃𝑅 = 𝑂𝑅, 

𝑧1 − 𝑧2 = 𝑂𝑃 − 𝑂𝑄 = 𝑄𝑃, 

|𝑧1| = 𝑂𝑃, |𝑧2| = 𝑂𝑄  

|𝑧1 + 𝑧2| = 𝑂𝑅, |𝑧1 − 𝑧2| = 𝑄𝑃 

From (1), we obtain 

𝑂𝑅2 +𝑄𝑃2 = 2(𝑂𝑃2 + 𝑂𝑄2) 

Theorem8: (Equation of Straight line)To find the equation of straight 

line joining two points𝑧1 and 𝑧2 in the complex plane. 

Proof: Let the equation of line AB joining the points A (𝑧1) and B(𝑧2), 

suppose point P(z) on it. So  
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Fig.2. 

𝑎𝑟𝑔 (
𝑧−𝑧1

𝑧1−𝑧2
) = 0 or 𝜋 

Consequently (
𝑧−𝑧1

𝑧1−𝑧2
) is purely real so that 

(
𝑧 − 𝑧1
𝑧1 − 𝑧2

) = (
𝑧 − 𝑧1
𝑧1 − 𝑧2

̅̅ ̅̅ ̅̅ ̅̅ ̅
) = (

𝑧̅ − 𝑧1̅
𝑧1̅ − 𝑧2̅

) 

(𝑧 − 𝑧1)(𝑧1̅ − 𝑧2̅) = (𝑧1 − 𝑧2)(𝑧̅ − 𝑧1̅) 

𝑧(𝑧1̅ − 𝑧2̅) − 𝑧̅(𝑧1̅ − 𝑧2̅) − 𝑧1𝑧1̅ + 𝑧1𝑧2̅ + 𝑧1𝑧1̅ − 𝑧2𝑧1̅ = 0 

𝑧(𝑧1̅ − 𝑧2̅) − 𝑧̅(𝑧1̅ − 𝑧2̅) + (𝑧1𝑧2̅ − 𝑧2𝑧1̅) = 0 is required equation of line. 

Theorem9: (Equation of a Circle) To show that the equation of circle in 

the Argand plane can be put in the form  

𝑧𝑧̅ + 𝑧̅𝑏 + 𝑏̅𝑧 + 𝑐 = 0 

where 𝑐 is real and 𝑏 is complex constant. 

Proof: Suppose 𝑎 be a complex coordinate of the centre 𝐶 and 𝑟 be the 

radius of circle. Consider any point 𝑃(𝑧) on the circle.  

Then the length of line 𝐶𝑃 = radius of circle   or   

|𝑧 − 𝑎| = 𝑟 

 
Fig.3. 

Squaring both sides, we have 
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|𝑧 − 𝑎|2 = 𝑟2 

(𝑧 − 𝑎)(𝑧̅ − 𝑎̅) = 𝑟2 

(𝑧𝑧̅ − 𝑎̅𝑧 + 𝑎𝑎̅ − 𝑎𝑧̅) = 𝑟2  

𝑧𝑧̅ − 𝑎̅𝑧 − 𝑎𝑧̅ + (|𝑎|2 − 𝑟2) = 0 

Taking – 𝑎 = 𝑏 and (|𝑎|2 − 𝑟2) = 𝑐 = 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑧𝑧̅ + 𝑧̅𝑏 + 𝑏̅𝑧 + 𝑐 = 0 

where 𝑐 is real and 𝑏 is complex constant. 

EXAMPLE1: Find real numbers A and B, if 𝐴 + 𝑖𝐵 =
3−2𝑖

7+4𝑖
 

SOLUTION: Let we have 

3 − 2𝑖

7 + 4𝑖
=
3 − 2𝑖

7 + 4𝑖
×
7 − 4𝑖

7 − 4𝑖
 

=
21 − 12𝑖 − 14𝑖 + 8𝑖2

49 − 16𝑖2
=
(21 − 8) − 26𝑖

49 + 16
 

𝐴 + 𝑖𝐵 =
13 − 26𝑖

65
=
13

65
−
26

65
𝑖 =

1

5
−
2

5
𝑖 

Equating real and imaginary parts, we obtain 

𝐴 =
1

5
 , 𝐵 = −

2

5
   

EXAMPLE2: Prove that |𝑎 + √𝑎2 − 𝑏2| + |𝑎 − √𝑎2 − 𝑏2| =
[|𝑎 − 𝑏| + |𝑎 − 𝑏|]2. 

SOLUTION: Suppose |𝑧1 + 𝑧2|
2 + |𝑧1 − 𝑧2|

2 = 2[|𝑧1|
2 + |𝑧2|

2] 

|𝑧1𝑧2| = |𝑧1|. |𝑧2| 

Now we shall prove the given problem 

[|𝑎 + √𝑎2 − 𝑏2| + |𝑎 − √𝑎2 − 𝑏2|]
2

= |𝑎 + √𝑎2 − 𝑏2|
2

+ |𝑎 − √𝑎2 − 𝑏2|
2

+ 2 |𝑎 + √𝑎2 − 𝑏2| |𝑎 − √𝑎2 − 𝑏2| 

= 2 [|𝑎|2 + |√𝑎2 − 𝑏2|
2

] + 2 |[𝑎 + √𝑎2 − 𝑏2] [𝑎 − √𝑎2 − 𝑏2]| 

= 2[|𝑎|2 + |𝑎2 − 𝑏2|] + 2|𝑎2 − (𝑎2 − 𝑏2)| 

= 2[|𝑎|2 + |𝑎2 − 𝑏2|] + 2|𝑏2| 
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= 2[|𝑎|2 + |𝑏2|] + 2|𝑎2 − 𝑏2| 

= [|𝑎 + 𝑏|2 + |𝑎 − 𝑏|2] + 2|𝑎 + 𝑏|. |𝑎 − 𝑏| 

= [|𝑎 + 𝑏|2 + |𝑎 − 𝑏|2]2 

Hence  

|𝑎 + √𝑎2 − 𝑏2| + |𝑎 − √𝑎2 − 𝑏2| = [|𝑎 − 𝑏| + |𝑎 − 𝑏|]2  is required the 

solution. 

EXAMPLE3: Determine the regions of Argand diagram given by 

|𝑧2 − 𝑧| < 1. 

SOLUTION: Let 𝑧 = 𝑟𝑒𝑖𝜃 

Then    𝑧2 − 𝑧 = 𝑟2𝑒𝑖2𝜃 − 𝑟𝑒𝑖𝜃  

= (𝑟2𝑐𝑜𝑠2𝜃 − 𝑟𝑐𝑜𝑠𝜃) + 𝑖(𝑟2𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛𝜃) 

|𝑧2 − 𝑧|2 = (𝑟2𝑐𝑜𝑠2𝜃 − 𝑟𝑐𝑜𝑠𝜃)2 + (𝑟2𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛𝜃)2 

= 𝑟4 + 𝑟2 − 2𝑟3cos (2𝜃 − 𝜃) 

But                                      |𝑧2 − 𝑧|2 < 1 

Hence                            

𝑟4 + 𝑟2 − 2𝑟3 cos 𝜃 < 1 

or                                  𝑟4 + 𝑟2 − 2𝑟3 cos 𝜃 − 1 < 0 

Hence  

𝑟4 + 𝑟2 − 2𝑟3 cos𝜃 − 1 = 0 

EXAMPLE4: Determine the region of 𝑧 −plane for which 

|𝑧 − 1| + |𝑧 + 1| ≤ 3. 

SOLUTION: Let  𝑧 = 𝑥 + 𝑖𝑦 

|𝑧 − 1| + |𝑧 + 1| = |𝑥 + 𝑖𝑦 − 1| + |𝑥 + 𝑖𝑦 + 1| 

= √(𝑥 − 1)2 + 𝑦2 +√(𝑥 + 1)2 + 𝑦2 

But          |𝑧 − 1| + |𝑧 + 1| ≤ 3 
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√(𝑥 − 1)2 + 𝑦2 +√(𝑥 + 1)2 + 𝑦2 ≤ 3 

√(𝑥 − 1)2 + 𝑦2 ≤ 3 −√(𝑥 + 1)2 + 𝑦2 

(𝑥 − 1)2 + 𝑦2 ≤ 9 + (𝑥 + 1)2 + 𝑦2 − 6√(𝑥 + 1)2 + 𝑦2 

0 < 4𝑥 + 9 − 6√(𝑥 + 1)2 + 𝑦2 

6√(𝑥 + 1)2 + 𝑦2 ≤ (4𝑥 + 9) 

36[(𝑥 + 1)2 + 𝑦2] ≤ 16𝑥2 + 81 + 72𝑥 

36𝑥2 + 36 + 36𝑦2 + 72𝑥 ≤ 16𝑥2 + 81 + 72𝑥 

36𝑥2 + 36 + 36𝑦2 ≤ 16𝑥2 + 81 

20𝑥2 + 36𝑦2 ≤ 45 

𝑥2

(9/4)
+

𝑦2

(5/4)
= 1 

EXAMPLE5: Show that the locus of z such that  

|𝑧 − 𝑎|. |𝑧 + 𝑎| = 𝑎2, 𝑎 > 0 

is a lemniscate. 

SOLUTION: Let              |𝑧2 − 𝑎2| = 𝑎2     or        𝑧2 − 𝑎2 = 𝑎2𝑒𝑖𝜆 

Put 𝑧 = 𝑟𝑒𝑖𝜃. Then                   𝑟2𝑒𝑖2𝜃 − 𝑎2 = 𝑎2𝑒𝑖𝜆 

This     ⇒                       𝑟2𝑐𝑜𝑠2𝜃 − 𝑎2 = 𝑎2𝑐𝑜𝑠𝜆  

𝑟2𝑠𝑖𝑛2𝜃 = 𝑎2𝑠𝑖𝑛𝜆 

Both above equations are squaring and adding 

(𝑟2𝑐𝑜𝑠2𝜃 − 𝑎2)2 + (𝑟2𝑠𝑖𝑛2𝜃)2 = 𝑎4 

𝑟2(𝑟2 − 2𝑎2𝑐𝑜𝑠2𝜃) = 0 

But 𝑟 ≠ 0 as 𝑧 ≠ 0 

𝑟2 − 2𝑎2𝑐𝑜𝑠2𝜃 = 0                     or              𝑟2 = 2𝑎2𝑐𝑜𝑠2𝜃    

which is lemniscates. 
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SELF CHECK QUESTIONS 

1. What is a complex number? Write its general form. 

2. Define the real and imaginary parts of a complex number 𝑧 = 𝑥 +

𝑖𝑦. 

3. What is the imaginary unit 𝑖? What is the value of 𝑖2? 

4. How can every complex number be represented on a complex 

plane (Argand plane)? 

5. What is the origin in the complex plane and what does it represent? 

6. How is the modulus geometrically represented in the Argand 

plane? 

7. Define the argument (amplitude) of a complex number. 

8. What is the principal value of the argument? 

1.16 SUMMARY: -  

In this unit, we explored the fundamental ideas related to complex 

numbers and their graphical representation on the complex or Argand 

plane. A complex number, expressed as 𝑧 = 𝑥 + 𝑖𝑦, combines a real and 

an imaginary part. We examined the equality of complex numbers and 

performed the basic operations of addition, subtraction, multiplication, and 

division. The concepts of modulus or absolute value, conjugate, and 

argument were introduced to describe the magnitude and direction of a 

complex number. Further, we expressed complex numbers in polar and 

exponential forms, which simplify many mathematical operations. The 

geometrical interpretation on the Argand plane provides a clear visual 

understanding of these operations. Important properties of modulus and 

argument were also discussed, followed by the idea of stereographic 

projection, which maps every point of the complex plane onto a sphere, 

thus extending the representation of complex numbers to include infinity. 

1.17 GLOSSARY: -  

 Complex Number: A number of the form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 

are real numbers, and 𝑖 is the imaginary unit with 𝑖2 = −1. 

 Real Part: The component 𝑎  in a complex number 𝑎 + 𝑏𝑖 , 

representing a real number. 

 Imaginary Part: The component 𝑏 in a complex number 𝑎 + 𝑏𝑖, 

representing a real number multiplied by the imaginary unit 𝑖. 

 Imaginary Unit (𝒊): A mathematical constant satisfying 𝑖2 = −1. 
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 Equality of Complex Numbers: Two complex numbers 𝑎 + 𝑏𝑖 

and 𝑐 + 𝑑𝑖 are equal if and only if 𝑎 = 𝑐 and 𝑏 = 𝑑. 

 Argand Plane (or Complex Plane): A plane in which the x-axis 

represents the real part and the y-axis represents the imaginary part 

of a complex number.  

 Absolute Value(Modulus): The distance from the origin to the 

point (𝑎, 𝑏) in the complex plane, calculated as ∣ 𝑧 ∣= √𝑎2 + 𝑏2 

for a complex number 𝑧 = 𝑎 + 𝑏𝑖. 

 Argument (Amplitude): The angle θ formed with the positive real 

axis, calculated using 𝜃 = tan−1
𝑏

𝑎
, (𝑏/𝑎) for a complex number 

𝑧 = 𝑎 + 𝑏𝑖. 

 Polar Form: A way to expressed as 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) or 𝑧 =

𝑟𝑒𝑖𝜃. 

 Conjugate of complex number: The conjugate of a complex 

number 𝑎 + 𝑏𝑖 is 𝑎 − 𝑏𝑖. 

 Addition of Complex Numbers: Combining two complex 

numbers by adding their real parts and their imaginary parts 

separately:  (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖. 

 Multiplication of Complex Numbers: Multiplying two complex 

numbers using distributive property and the fact that 𝑖2 = −1: 

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖. 

 Division of Complex Numbers: Dividing by multiplying the 

numerator and denominator by the conjugate of the denominator 

and simplifying:
𝑎+𝑏𝑖

𝑐+𝑑𝑖
=

(𝑎+𝑏𝑖)(𝑐−𝑑𝑖)

𝑐2+𝑑2
. 

 Properties of Modulus: 

i. |𝑧1𝑧2| = |𝑧1||𝑧2| 

ii. |
𝑧1

𝑧2
| =

|𝑧1|

|𝑧2|
 

iii. |𝑧| = |𝑧̅| 

 Properties of Argument: 

i. 𝑎𝑟𝑔(𝑧1𝑧2) = 𝑎𝑟𝑔(𝑧1) + 𝑎𝑟𝑔(𝑧2) 

ii. 𝑎𝑟𝑔 (
𝑧1

𝑧2
) =  𝑎𝑟𝑔(𝑧1) − 𝑎𝑟𝑔(𝑧2) 
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1.19 SUGGESTED READING: -  

 file:///C:/Users/user/Downloads/Paper-III-Complex-Analysis.pdf 

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 file:///C:/Users/user/Desktop/1456304480EtextofChapter1Module1

%20(1).pdf 

1.20 TERMINAL QUESTIONS: - 

(TQ-1) Define the modulus of a complex number. 

(TQ-2) If the complex numbers 𝑠𝑖𝑛𝑥 + 𝑖𝑐𝑜𝑠2𝑥 and 𝑐𝑜𝑠𝑥 − 𝑖𝑠𝑖𝑛2𝑥 are 

complex conjugate to each other, then the value of 𝑥.     

(TQ-3) A relation R on the set of complex numbers is defined by 

𝑧1𝑅𝑧2 ⇔
𝑧1−𝑧2

𝑧1+𝑧2
 real. Show that R is an equivalence relation. 

(TQ-4) Show that the origin and the point representing the roots of the 

equation 𝑧2 + 𝑝𝑧 + 𝑞 = 0 form an equilateral if 𝑝2 = 3𝑞. 

(TQ-5) Represent the complex number 𝑧 = 3 + 4𝑖 on the complex plane. 

(TQ-6) Find the modulus and argument of 𝑧 = 1 + 𝑖.  

(TQ-7) Show that ∣ 𝑧1𝑧2 ∣= |𝑧1||𝑧2|. 

(TQ-8) Find the conjugate of 𝑧 = 4 − 5𝑖 and plot it on the Argand plane. 

(TQ-9) Determine the locus of points representing complex numbers 

satisfying ∣ 𝑧 ∣= 2. 

(TQ-10) Show that |𝑧1 − 𝑧2| ≥ (|𝑧1| − |𝑧2|) 

(TQ-11) Find the locus of z such that 𝑅𝑒(𝑧) = 3.  

(TQ-12) Find the locus of z satisfying ∣ 𝑧 − 2 ∣=∣ 𝑧 + 2 ∣. 

(TQ-13)Prove that |𝑧1 − 𝑧2|
2 + |𝑧1 + 𝑧2|

2 = 2|𝑧1|
2 + 2|𝑧2|

2  and 

deduce that |𝛼 + √𝛼2 − 𝛽2| + |𝛼 − √𝛼2 − 𝛽2| = |𝛼 + 𝛽| + |𝛼 − 𝛽|  all 

the numbers concerned being complex. 

(TQ-14) Find the principal value of 𝑎𝑟𝑔 ′𝑖′.    

(TQ-15) If 𝑧 = −1 + 3𝑖, find its polar form. 

(TQ-16) If 𝑧1 = 2 + 3𝑖 and 𝑧2 = 1 − 4i, find 𝑧1 + 𝑧2 and 𝑧1𝑧2. 

(TQ-17) Find the principal value of  𝑎𝑟𝑔 (1 + 𝑖).  

file:///C:/Users/user/Downloads/Paper-III-Complex-Analysis.pdf
file:///C:/Users/user/Desktop/1456304480EtextofChapter1Module1%20(1).pdf
file:///C:/Users/user/Desktop/1456304480EtextofChapter1Module1%20(1).pdf
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(TQ-18) Explain how addition and multiplication of complex numbers 

are represented geometrically in the complex plane. 

(TQ-19) What is the effect of multiplying a complex number by 𝒊 in 

the complex plane? 

(TQ-20) Show that multiplication by 𝒆𝒊𝜽 corresponds to a rotation 

through an angle 𝜃. 

 

1.21 ANSWERS: - 

TERMINAL ANSWERS (TQ’S) 

(TQ-2) 𝑥 =
𝜋

8
,
5𝜋

8
,
9𝜋

8
, … 

(TQ-5)(𝑥, 𝑦) = (3,4) 

(TQ-6) 𝑧 = √2𝑒
𝜋

4 

(TQ-8) 𝑂𝑟𝑖𝑔𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 = (4,−5), 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑝𝑜𝑖𝑛𝑡 = (4,5) 

(TQ-9) 𝑅𝑎𝑑𝑖𝑢𝑠 = 2 

(TQ-11) 𝑥 = 3 

(TQ-12) 𝑥 = 0 

(TQ-15)√10𝑒𝑖(𝜋−𝑡𝑎𝑛
−13)  

(TQ-16) 𝑧1 + 𝑧2 = 3 − 𝑖, .𝑧1𝑧2 = 14 − 5𝑖 

(TQ-14) 
𝜋

2
 

 (TQ-17) 
𝜋

4
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UNIT2: Stereographic Projection 

CONTENTS: 
2.1      Introduction 

2.2      Objectives 

2.3      Euler’s formula 

2.4      𝑛𝑡ℎ Root of Unity 

2.5       Point at infinity 

2.6       Extended Complex Plane 

2.7      Stereographic Projection of Complex Numbers 

2.8      Summary 

2.9      Glossary 

2.10     References 

2.11     Suggested Reading 

2.12     Terminal questions  

  

2.1 INTRODUCTION: -  

Stereographic projection is a method of mapping points from the surface of 

a sphere onto a plane. It is achieved by projecting points from the North 

Pole of the sphere onto the equatorial plane, creating a one-to-one 

correspondence between the sphere (excluding the North Pole) and the 

plane. This projection preserves angles (is conformal) but distorts areas, 

making it particularly useful in geometry, complex analysis, cartography, 

and crystallography. In complex analysis, it provides a geometric 

representation of the extended complex plane or the Riemann sphere, 

linking complex numbers with points on the sphere. 

 

2.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 To understand the concept and definition of stereographic 

projection as a method of mapping points from a sphere onto a plane. 

 To recognize the Riemann sphere as a geometric model for the 

extended complex plane ℂ ∪  {∞}. 
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 To identify the correspondence between the point at infinity on the 

complex plane and the projection point on the sphere. 

 

 

 

2.3 EULER’S FORMULA: -  

The Taylor (Maclaurin) series expansions of 𝑒𝑥 , 𝑐𝑜𝑠𝑥, and 𝑠𝑖𝑛𝑥 can be 

used to obtain Euler's formula: 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ ⋯ ⋯ 

𝑐𝑜𝑠𝑥 = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
⋯ ⋯ ⋯ 

𝑠𝑖𝑛𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
⋯ ⋯ ⋯ 

Now putting 𝑥 = 𝑖𝜃 in 𝑒𝑥 

𝑒𝑖𝜃 = 1 +
𝑖𝜃

1!
+

(𝑖𝜃)2

2!
+

(𝑖𝜃)3

3!
+

(𝑖𝜃)4

4!
+ ⋯ ⋯ ⋯ 

simplify power of 𝑖: 

𝑒𝑖𝜃 = (1 −
(𝜃)2

2!
+

(𝜃)4

4!
− ⋯ ⋯ ⋯ ) + 𝑖 (𝜃 −

(𝜃)3

3!
+

(𝜃)5

5!
− ⋯ ⋯ ⋯ ) 

 

𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 

when 𝜃 = 𝜋 

𝑒𝑖𝜋 = 𝑐𝑜𝑠𝜋 + 𝑖𝑠𝑖𝑛𝜋 = −1 + 0𝑖 = −1 
Hence 

𝑒𝑖𝜋 + 1 = 0 
This is called Euler's Identity, and because it connects five essential 

constants, it is frequently hailed as the most exquisite mathematical 

equation: 

𝑒, 𝑖, 𝜋, 1 𝑎𝑛𝑑 0 
 

2.4 nth ROOT OF UNITY: -  

The 𝑛𝑡ℎ Root of Unity The nth roots of unity are the complex numbers 

that satisfy the equation  

𝑧𝑛  = 1 

where 𝑛 is a positive integer. 

Def: An nth root of unity is any complex number 𝑧 such that when 

raised to the power 𝑛 the result is 1. 
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In other words, if 𝑧 = 𝑒𝑖𝜃, then 𝑧𝑛  = 1 when 𝜃 =
2𝑘𝜋

𝑛
, where 𝑘 =

0,1,2,3 … … … , 𝑛 − 1. 
Thus, the nth roots of unity are given by: 

𝑧𝑘 = 𝑒𝑖
2𝑘𝜋

𝑛 = 𝑐𝑜𝑠 (
2𝑘𝜋

𝑛
) + 𝑖𝑠𝑖𝑛 (

2𝑘𝜋

𝑛
) ,

𝑘 = 0,1,2,3 … … … , 𝑛 − 1 

 

2.5 POINT AT INFINITY: -  

The linear transformation 𝑧 →  𝑤 =  𝑓(𝑧) is a one-to-one mapping of the 

finite complex plane onto itself, where (𝑧)  =  𝜆𝑧 +  µ, 𝜆 ≠  0. The 

inversion map 𝑧 →  𝑤 =  1/𝑧 does not exhibit this. 𝑧 = 𝑟𝑒𝑖𝜃 and 𝑤 =
 𝜌𝑒𝑖𝜑, where 𝜌 =  1/𝑟, are expressed in polar forms. As a result, points in 

the z-plane near the origin, 𝑟 ≈  0, are mapped onto points in the w-plane 

distance from the origin. Every point in the z-plane that is inside a disk with 

a small radius of ε is projected onto every point outside a disk with a big 

radius of 1/𝜀 in the w-plane. There is no picture of 𝑧 =  0 in the w-plane 

and the disk in the z-plane shrinks to the origin as 𝜀 →  0. There is no point 

in the z-plane that can be given 𝑤 =  0 as the image under inversion. 

Similarly, when the point z moves farther and farther from the origin, its 

image in the w-plane moves closer and closer to the origin in the w-plane. 

 

2.6 EXTENDED COMPLEX PLANE: -  

The complex plane C and a symbol ∞ that satisfies the following properties 

are referred to as the extended complex number system. 

(a) If 𝑧 ∈  ℂ, then 𝑧 +  ∞ =  𝑧 −  ∞ =  ∞, 𝑧/∞ =  0.  

(a) if𝑧 ∈  ℂ but 𝑧 ≠  0 𝑧. ∞ =  ∞ and 
𝑧

0
=  ∞.  

(c) ∞ +  ∞ =  ∞. ∞ =  ∞  

(d)∞/𝑧 =  ∞ (𝑧 ≠  0). 
The extended complex plane, represented by ℂ∞, is the set ℂ ∪  {∞}.  

The use of Riemann's spherical representation of complex numbers, which 

relies on stereographic projection, greatly clarifies the structure of the 

Argand plane at the point at infinity.  

 

 

2.7 STEREGOGRAPHIC PROJECTION OF 

COMPLEX NUMBERS: -  
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Complex numbers can also be represented by points on a sphere. To do this, 

one must establish a one-one correspondence between points on the surface 

of a sphere. 

 

Fig.4 

Let 𝑆′ be a sphere of unit radius with its center at 𝑂, and let 𝑁𝑆 be a diameter 

of the sphere. Let 𝜋 be a complex plane passing through 𝑂 and 

perpendicular to 𝑁𝑆. The points 𝑁 and 𝑆 are called the north and south 

poles, respectively. A complex number 𝑧 = 𝑥 + 𝑖𝑦 can be represented by a 

point 𝑃(𝑥, 𝑦) on the plane 𝜋. The line joining point 𝑁 to 𝑃 intersects the 

sphere 𝑆′ at another unique point 𝑃′, distinct from 𝑁. From Figure 1.16, it 

is also clear that if the point P lies on the plane outside the sphere, then P′ 

lies on the upper hemisphere of the sphere, and if P lies within the circle 

(inside the sphere), then 𝑃′ lies on the lower hemisphere. Thus, for every 

point on the plane, there exists a unique corresponding point on the sphere 

𝑆′, and conversely, for every point on the sphere 𝑆′ (except 𝑁), there exists 

a unique corresponding point (complex number) on the complex plane 𝜋. 

Hence, a one-to-one correspondence is established between all points on the 

sphere 𝑆′ (except 𝑁) and all points on the plane 𝜋. This mapping of the 

complex plane onto the sphere is called the stereographic projection of 

complex numbers. 

In order to incorporate the sphere's point 𝑁 into the one-to-one 

correspondence, we add an extra complex number 𝑧′, often known as the 

point at infinity, to the extended complex plane.  

The renowned mathematician Riemann was the first to present this idea. 

Consequently, the Riemann Sphere is another name for the sphere 𝑆′.  
 

This mapping can be represented analytically as follows: 
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Let the origin be the center of the sphere. Let two perpendicular lines lie in 

the plane. The axis is the y-axis. On is the z-axis. Then the equation of the 

sphere is 

   𝑋2 + 𝑌2 + 𝑍2 = 1                        … (1) 

and equation of the projection plane is 

                                         𝑍 = 0                                    … (2) 

It is clear that the coordinates of 𝑁 are (0,0,1).  
Let 𝑃(𝑥, 𝑦, 0) be a point on the plane 𝜋, and let 𝑃′(𝑋, 𝑌, 𝑍) be the 

corresponding point on the sphere. Since 𝑁(0,0,1), 𝑃′(𝑋, 𝑌, 𝑍), and 

𝑃(𝑥, 𝑦, 0) lie on the same straight line, therefore, 

              
𝑋−0

𝑥−0
=

𝑌−0

𝑦−0
=

𝑍−1

0−1
= 𝑘 =

𝑋

𝑥
=

𝑌

𝑦
=

1−𝑍

1
            … (3) 

                                𝑋 = 𝑥𝑘, 𝑌 = 𝑌𝑘, 𝑍 = 1 − 𝑘         … (4) 

where 𝑘 is a real number. Since the point (𝑋, 𝑌, 𝑍) lies on the unit sphere  

𝑆′, whose equation is 

𝑥2𝑘2 + 𝑦2𝑘2 + (1 − 𝑘)2 = 1 

𝑘 =
2

𝑥2 + 𝑦2 + 1
     (𝑘 ≠ 0) 

therefore, from equation (2), the coordinates of P′ are obtained as 

𝑋 =
2𝑥

𝑥2 + 𝑦2 + 1
, 𝑌 =

2𝑦

𝑥2 + 𝑦2 + 1
, 𝑍 =

𝑥2 + 𝑦2 − 1

𝑥2 + 𝑦2 + 1
 

Thus, the point on the sphere S′ corresponding to the complex number 𝑧 =
𝑥 + 𝑖𝑦 on the plane is 

𝑃′ (
2𝑥

𝑥2 + 𝑦2 + 1
,

2𝑦

𝑥2 + 𝑦2 + 1
,
𝑥2 + 𝑦2 − 1

𝑥2 + 𝑦2 + 1
) 

or 

𝑃′ (
2𝑥

|𝑧2| + 1
,

2𝑦

|𝑧2| + 1
,
𝑥2 + 𝑦2 − 1

|𝑧2| + 1
) 

Also, from equation (3), we have 

𝑥 =
𝑋

1 − 𝑍
, 𝑦 =

𝑌

1 − 𝑍
 

𝑧 = 𝑥 + 𝑖𝑦 =
𝑋 + 𝑖𝑦

1 − 𝑍
 

Hence, the complex number in the complex plane 𝜋 corresponding to a point 

(𝑋, 𝑌, 𝑍) on the sphere S′ is 

𝑍 =
𝑋 + 𝑖𝑌

1 − 𝑍
 

Only the top point of the sphere, 𝑁(0,0,1), has no corresponding point in 

the complex plane. The point corresponding to (0,0,1) on the complex 

plane is defined as the point at infinity.. 

 

Theorem1: A stereographic projection, every circle on the Riemann sphere 

is mapped to either a circles or straight line in the complex plane. 

Proof: Let a circle on the Riemann sphere 𝑆′ be formed by the intersection 

of the Riemann sphere 𝑆′ with a plane 
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                  𝑋2 + 𝑌2 + 𝑍2 = 1                        … (5) 

and 

                                              𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑 = 0      … (6) 

Let the coordinates of a point 𝑃′(𝑋, 𝑌, 𝑍) on the Riemann sphere be  

(𝑋, 𝑌, 𝑍), and let the corresponding point 𝑃(𝑥, 𝑦, 0) on the plane under 

stereographic projection have coordinates (𝑥, 𝑦, 0). The projection vertex 𝑁 

has coordinates (0,0,1). 
Since the points 𝑁(0,0,1), 𝑃′(𝑋, 𝑌, 𝑍) and 𝑃(𝑥, 𝑦, 0) lie on the same straight 

line, therefore, 

                          
𝑋−0

𝑥−0
=

𝑌−0

𝑦−0
=

𝑍−1

0−1
= 𝑘 =

𝑋

𝑥
=

𝑌

𝑦
=

1−𝑍

1
            … (7) 

where 𝑘 is a real number. 

Since the point (𝑋, 𝑌, 𝑍) lies on both equations (5) and (6), therefore, 

 

                                              𝑥2𝑘2 + 𝑦2𝑘2 + (1 − 𝑘)2 = 1    … (8) 

and 

                                       𝑘(𝑎𝑥 + 𝑏𝑦) + 𝑐(1 − 𝑘) + 𝑑 = 0      … (9) 

On eliminating 𝑘 from equations (8) and (9), we obtain 

                      (𝑐 + 𝑑)(𝑥2 + 𝑦2) + 2𝑎𝑥 + 2𝑏𝑦 + 𝑑 − 𝑐 = 0  … (10) 

which is the relation satisfied by the projection points of the points of the 

circle lying on the plane (6). 

If 𝑐 + 𝑑 ≠ 0, then equation (10) represents a circle, whereas if 𝑐 + 𝑑 = 0, 
it represents a straight line. 

However, 𝑐 + 𝑑 = 0 when the plane (6) passes through the north pole 

𝑁(0,0,1). Hence, if the circle defined by (5) and (6) on the Riemann sphere 

passes through the north pole 𝑁, its projection on the plane 𝜋 will be a 

straight line; otherwise, it will be a circle. 

In the special case when the plane (6), corresponding to projection (10), is 

parallel to the projection plane, then 𝑎 = 0, 𝑏 = 0; therefore, from 

projection (10), we get 

(𝑐 + 𝑑)(𝑥2 + 𝑦2) = 𝑐 − 𝑑 

which clearly represents a circle whose center is at the origin.  

On the other hand, if the plane (6) passes through both poles 𝑁 and 𝑆, then 

𝑐 = 𝑑 = 0. In that case, the corresponding projection (10) gives 

𝑎𝑥 + 𝑏𝑦 = 0 
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which represents a straight line passing through the origin. 

SOLVED EXAMPLE 

EXAMPLE1: Find all nth roots of unit. 

SOLUTION: The number 1 can be written in polar form as: 

1 = 𝑐𝑜𝑠0 + 𝑖𝑠𝑖𝑛0 

Since the complex exponential repeats every 2π, we can also  

1 = 𝑐𝑜𝑠2𝑘𝜋 + 𝑖𝑠𝑖𝑛2𝑘𝜋,      𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1,2, … . 𝑛 − 1 

Let   

𝑧 = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

Then 

𝑧𝑛 = (𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃) 

From the equation 𝑧𝑛 = 1, we obtain two conditions: 

𝑟𝑛 = 1 and 𝑛𝜃 = 2𝑘𝜋 

Thus 

𝑟 = 1 and 𝜃 =
2𝑘𝜋

𝑛
 

Therefore, the nth roots of unity are: 

𝑧𝑘 = 𝑐𝑜𝑠
2𝑘𝜋

𝑛
+ 𝑖𝑠𝑖𝑛

2𝑘𝜋

𝑛
, 𝑘 = 0,1,2, … . 𝑛 − 1 

or, in exponential (Euler) form: 

𝑧𝑘 = 𝑒
2𝑘𝜋

𝑛  

EXAMPLE2: For any two nonzero complex numbers 𝑧1 and 𝑧2 prove that 

|𝑧1 + 𝑧2| |  
𝑧1

|𝑧1|
+

𝑧2

|𝑧2| 
  | ≤ 2(|𝑧1| + |𝑧2|) 

SOLUTION:  Now we get, 

|𝑧1 + 𝑧2| |  
𝑧1

|𝑧1|
+

𝑧2

|𝑧2| 
  | 

= |𝑧1 + 𝑧2|
|𝑧1𝑧2‖ + 𝑧2|𝑧1||

|𝑧1𝑧2|
 

=
|𝑧1 + 𝑧2|

|𝑧1𝑧2|
(𝑧1𝑧2‖ + 𝑧2|𝑧1|) 
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= 2
|𝑧1 + 𝑧2|

|𝑧1𝑧2|
|𝑧1𝑧2| 

= 2|𝑧1 + 𝑧2| 

≤ 2(|𝑧1 + 𝑧2|) 

EXAMPLE3: Prove that the relation  

𝑛

2𝑛−1
= ∏ 𝑠𝑖𝑛 (

𝑘𝜋

𝑛
)

𝑛−1

𝑘=1

, 𝑛 ≥ 2 

SOLUTION: Suppose 1, 𝜌1, 𝜌2, … … 𝜌𝑛−1be the 𝑛 roots of unity, where 

𝜌𝑘 = 𝑒
2𝑘𝜋𝑖

𝑛 , 𝑘 = 1,2, … … … … … (𝑛 − 1), then 

𝑧𝑛 − 1 = (𝑧 − 1)(𝑧 − 𝜌1)(𝑧 − 𝜌2) … … (𝑧 − 𝜌𝑛) 

Dividing both sides by 𝑧 −  1 and letting 𝑧 →  1, we obtain 

𝑛 = (1 − 𝜌1)(1 − 𝜌2) … … (1 − 𝜌𝑛−1) 

Taking conjugate of both sides, we have 

𝑛 = (1 − 𝜌1̅̅ ̅)(1 − 𝜌2̅̅ ̅) … … (1 − 𝜌𝑛−1̅̅ ̅̅ ̅̅ ) 

Therefore 

𝑛2 = ∏ (1 − 𝑒
2𝑘𝜋𝑖

𝑛 )

𝑛−1

𝑘=1

(1 − 𝑒−
2𝑘𝜋𝑖

𝑛 ) 

= ∏ 2

𝑛−1

𝑘=1

(1 − 𝑐𝑜𝑠
2𝑘𝜋

𝑛
) 

= 4𝑠𝑖𝑛2 (
𝑘𝜋

𝑛
) 

We get the desired outcome by taking the nonnegative square root of each 

side. 

 

EXAMPLE4: Evaluate 𝑒𝑖𝜋/4 and write it in the form 𝑎 + 𝑖𝑏. 
SOLUTION: The Euler’s Formula is 

𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃             … (1) 

For 𝜃 =
𝜋

4
, we have 
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𝑒𝑖
𝜋
4 = 𝑐𝑜𝑠

𝜋

4
+ 𝑖𝑠𝑖𝑛

𝜋

4
     

=
1

√2
+ 𝑖

1

√2
=

√2

2
+ 𝑖

√2

2
 

EXAMPLE5: Let 𝑓(𝑧) = 𝑧2. Find the real and imaginary parts of 𝑓(𝑧). 

SOLUTION: Suppose 𝑓(𝑧) = 𝑥 + 𝑖𝑦,  then 

𝑓(𝑧) = (𝑥 + 𝑖𝑦)2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 

So, the real and imaginary parts of 𝑓(𝑧) are 

𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2,   𝑣(𝑥, 𝑦) = 2𝑥𝑦 

EXAMPLE6: Let 𝑃 = (
3

4
,

4

5
, 0) be a point on the unit sphere 𝑋2 + 𝑌2 +

𝑍2 = 1 stereographic projection onto the complex plane using projection 

from the north pole 𝑁 = (0,0,1). 

SOLUTION: Let the given points are: 

𝑋 =
3

4
, 𝑌 =

4

5
, 𝑍 = 0 

Using stereographic projection formula,  

𝑧 =
𝑋 + 𝑖𝑌

1 − 𝑍
 

Putting the values are 

𝑧 =

3
5 + 𝑖.

4
5

1 − 0
=

3

5
+ 𝑖.

4

5
 

So, the image of the point P on the complex is 𝑧 =
3

5
+ 𝑖.

4

5
. 

SELF CHECK QUESTIONS 

1. What is stereographic projection? Define it in your own words. 

2. From which point on the sphere is the stereographic projection 

usually taken? 

3. What is the projection plane in a stereographic projection of a 

sphere? 

4. How is a point on the sphere (except the projection point) 

represented on the plane under stereographic projection? 
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5. Derive the formula for stereographic projection from a sphere of 

radius 1 onto the plane. 

2.8 SUMMARY: -  

Stereographic projection is a method for projecting points from the surface 

of a sphere to a plane. In this projection, each point 𝑃 on the sphere (except 

the North Pole) is connected to the North Pole by a straight line. The 

intersection of this line with the equatorial plane represents the image of P 

on the plane. It establishes a one-to-one connection between the points on 

the sphere (excluding the projection point) and the entire complex plane, 

with the North Pole representing the point at infinity.This projection 

preserves angles (is conformal) and transforms circles on the sphere into 

circles or straight lines on the plane. It is widely used in complex analysis 

to relate the extended complex plane to the geometry of the sphere, known 

as the Riemann sphere. 

 

2.9 GLOSSARY: -  

 Stereographic Projection: A mapping in which points from a 

sphere's surface are projected onto a plane using lines drawn from a 

fixed point (typically the North Pole).  

 Projection Point (North Pole): A fixed point on the sphere from 

which lines can be formed to project other places onto the plane. 

 Projection Plane (Equatorial Plane): The plane onto which the 

sphere's points are projected, commonly denoted as 𝑧 = 0.  
 Unit Sphere: A sphere with radius 1 and center at the origin, 

commonly used to define stereographic projection.  

 Complex Plane: The plane that represents complex numbers, with 

each point corresponding to the complex number 𝑧 = 𝑥 + 𝑖𝑦. 
 Riemann Sphere: A sphere used in stereographic projection to 

represent the extended complex plane, including the point of 

infinity.  

 Point at Infinity: The picture of the projection point (North Pole) 

after stereographic projection; it depicts the "infinite" point on the 

complex plane.  

 Inverse Stereographic Projection: The process of projecting a 

point from the complex plane back onto the surface of the sphere. 

 Conformal Mapping: A sort of mapping that keeps the angles 

between curves. Stereographic projections are conformal.  

 Circle Preservation Property: In stereographic projection, circles 

on the sphere transfer to circles or straight lines on the plane. 
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 Equator: The circle on the sphere that is in the projection plane; it 

maps onto the unit circle in the complex plane when the sphere has 

radius one.  

 Latitude & Longitude Circles: Circles on the sphere that are 

parallel or perpendicular to the equator and project into circles or 

plane lines.  

 Extended Complex Plane: The complex plane plus the point at 

infinity, represented by 𝐶 ∪ {∞}. 
 

2.10 REFERENCES: -  
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 Erwin Kreyszig, Advanced Engineering Mathematics (2011), 
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2.11 SUGGESTED READING: -  

 file:///C:/Users/user/Desktop/1456304516EtextofChapter1Module2

%20(1).pdf 

 Murray R. Spiegel (2009) – Schaum’s Outline of Complex 

Variables, 2nd Edition. 

 R. Narayanaswamy (2005) – Theory of Functions of a Complex 

Variable, S. Chand & Company Ltd. 

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 

2.12 TERMINAL QUESTIONS: - 

(TQ-1) Define stereographic projection. Describe the process of 

projecting a point from the sphere onto the plane. 

(TQ-2) Derive the mathematical formula for stereographic projection 

from the unit sphere onto the complex plane. 

(TQ-3) Discuss how the point at infinity in the extended complex plane 

corresponds to the North Pole of the sphere. 

file:///C:/Users/user/Desktop/1456304516EtextofChapter1Module2%20(1).pdf
file:///C:/Users/user/Desktop/1456304516EtextofChapter1Module2%20(1).pdf


Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 39 
 

(TQ-4) Explain the relationship between the modulus of the complex 

number 𝑧 = 𝑥 + 𝑖𝑦 and the height 𝑍 of the corresponding point on the 

sphere. 

(TQ-5) Discuss how stereographic projection helps visualize functions of 

complex variables geometrically. 

(TQ-6) Show that under stereographic projection, the unit circle in the 

complex plane corresponds to the equatorial circle of the sphere. 

(TQ-7) Prove that for any point z on the complex plane, the coordinates  

(X, Y, Z) on the unit sphere are given 

𝑋 =
2𝑥

|𝑧|2 + 1
, 𝑌 =

2𝑦

|𝑧|2 + 1
, 𝑍 =

|𝑧|2 − 1

|𝑧|2 + 1
,  
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UNIT3: Complex Function and their 

properties 

CONTENTS: 
3.1      Introduction 

3.2      Objectives 

3.3      Function of Complex Variable 

3.4      Complex Function as Real-Valued Pairs 

3.5       Domain and Range 

3.4       Single valued and multivalued function 

3.5       Elementary Complex function 

3.6       Complex Function as Real-Valued Pairs 

3.7       Properties of Complex Numbers 

3.8       Functions of a Complex Variable as Mappings 

3.9       Summary 

3.10     Glossary 

3.11     References 

3.12     Suggested Reading 

3.13     Terminal questions 

3.14      Answers  

  

3.1 INTRODUCTION: -  

A complex function is a mathematical rule that associates each complex 

number 𝑧 = 𝑥 + 𝑖𝑦 with another complex value 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). 

Unlike real functions, complex functions operate on a two-dimensional 

plane, making their behavior richer and more geometric. The study of these 

functions forms the core of complex analysis, an important branch of 

mathematics with deep theoretical results and wide applications in physics, 

engineering, fluid dynamics, electromagnetism, and number theory. 

Understanding complex functions requires examining how they behave 

with respect to limits, continuity, and differentiability. A unique feature of 

complex functions is that differentiability is governed by the Cauchy–

Riemann equations, which impose strict conditions and lead to the powerful 

concept of analytic (holomorphic) functions. Such functions possess 

remarkable properties: they are infinitely differentiable, equal to their 

Taylor series, and preserve angles through conformal mappings. The study 
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of zeros, singularities, poles, and mapping behavior further enhances the 

understanding of how complex functions transform regions of the complex 

plane. Thus, complex functions and their properties provide a deep 

framework to explore both algebraic and geometric behavior within the 

complex plane. 

 

3.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 To understand the basic concept of a complex function and express 

it in terms of real and imaginary parts. 

 To analyze standard complex functions such as exponential, 

trigonometric, logarithmic, and Möbius transformations and their 

properties. 

3.3 FUNCTION OF COMPLEX VARIABLE: -  

A complex variable, represented by 𝑧, is any element of a set S contained 

on the complex plane 𝐶. A function 𝑓: 𝑆 → 𝐶 is a rule that assigns a unique 

complex value 𝑓(𝑧) to each 𝑧 ∈ 𝑆, indicated as 𝑤 = 𝑓(𝑧), where 𝑧 is the 

independent variable and 𝑤 the dependent variable. This function f 

translates elements from the domain S to the complex plane 𝐶, which is 

commonly represented by another complex plane known as the 𝑤 plane. If 

𝑆 is a subset of the real line, f is considered a complicated function of a real 

variable. The set 𝑆 is designated as the domain of 𝑓, and the collection of 

all 𝑓(𝑧) for 𝑧 in 𝑆 is recognized as the range of 𝑓. 
 

Or 

A function 𝑓: 𝐴 → 𝐵 assigns a unique complex number 𝑤0 = 𝑢0 + 𝑖𝑣0 ∈ 𝐵 

to each non-empty subset of the complex numbers 𝑧0 = 𝑥0 + 𝑖𝑦0 ∈ 𝐴.  

The integer 𝑤0 represents the value of f at 𝑧0, indicated by 𝑓(𝑧0) =  𝑤0. As 

𝑧 varies, so does 𝑓(𝑧) = 𝑤 in 𝐵. This function is a complex-valued function 

of a complex variable, with the dependent variable 𝑤 and the independent 

variable 𝑧. If 𝑆 is a subset of 𝐴, the image of 𝑆 under f is 𝑓(𝑆) = {𝑓(𝑧) ∣

, 𝑧 ∈ 𝑆}, while the range of 𝑓 is 𝑅 = {𝑓(𝑧) ∣ 𝑧 ∈ 𝐴}. 

For each non-zero complex number 𝑧 ∈ ℂ − {0}, the polar form is given by 

𝑧 = 𝑟𝑒𝑖𝜃, where 𝑟 =∣ 𝑧 ∣ is the modulus and 𝜃 ∈ [−𝜋, 𝜋] is the argument of 

𝑧. This can be written as 𝑧 = 𝑧(𝑟, 𝜃) = 𝑟𝑒𝑖𝜃. If we increase the argument 𝜃 

by 2𝜋, we get: 
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𝑧(𝑟, 𝜃 + 2𝜋) = 𝑟𝑒𝑖(𝜃+2𝜋) = 𝑟𝑒𝑖𝜃 . 𝑒2𝜋𝑖 = 𝑟𝑒𝑖𝜃 = 𝑧(𝑟, 𝜃) 

Thus, 𝑧(𝑟, 𝜃 + 2𝜋) returns to its original value, demonstrating the 

periodicity of the complex exponential function with period 2𝜋. 

Definition. A function 𝑓 is said to be single-valued if it satisfies 𝑓(𝑧) =

𝑓(𝑧(𝑟, 𝜃)) = 𝑧(𝑟, 𝜃 + 2𝜋), meaning the function's value remains 

unchanged when the argument θ is increased by 2𝜋.  

Otherwise, 𝑓 is said to be a multiple valued function. 

Example: 𝑓(𝑧) = 𝑧𝑛 , 𝑛 ∈ 𝑍 is said to a single valued function. 

Solution: 𝑓(𝑧) = 𝑓(𝑧(𝑟, 𝜃)) = (𝑟𝑒𝑖𝜃)
𝑛

 

𝑓(𝑧(𝑟, 𝜃 + 2𝜋)) = [𝑟𝑒𝑖(𝜃+2𝜋)]
𝑛

= 𝑟𝑛𝑒𝑖𝑛𝜃𝑒2𝜋𝑛𝑖  

= 𝑟𝑛𝑒𝑖𝑛𝜃𝑒2𝜋𝑛𝑖  

                                       {∵     𝑒2𝜋𝑛𝑖 = 1, 𝑛 ∈ ℤ } 

= (𝑟𝑒𝑖𝜃)
𝑛

= 𝑓(𝑧(𝑟, 𝜃)) 

Note:  If 𝑛 ∉ ℤ then 𝑓(𝑧) = 𝑧𝑛 is multiplied valued function. 

∵  𝑒2𝜋𝑛𝑖 ∉ 1, when 𝑛 ∉ ℤ. 

3.4 SINGLE VALUED AND MULTIVALUED 

FUNCTION: -  

If each value of z corresponds to exactly one value of 𝑤, then 𝑤 is referred 

to as a uniform or one-valued function of 𝑧. A multi-valued function of 𝑧 is 

one in which two or more values of 𝑤 correspond to some or all values of 

𝑧. A multi-valued function can be viewed as a collection of numerous one-

valued functions. Each one-valued function in the collection is referred to 

as a branch function of the multi-valued function, with a specific member 

of the collection serving as the major branch function of the multi-valued 

function. The value of the function at this branch function is known as the 

primary value. 

 

Example 1. If 𝑤 =  𝑧², then each value of 𝑧 corresponds to a specific value 

of 𝑤. Therefore, 𝑤 is a one-valued complex function of 𝑧.  
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Example 2. If 𝑤 =  𝑧1/2, then each value of 𝑧 corresponds to two values 

of 𝑤. Therefore, 𝑤 is a multi-valued function of 𝑧. 

 

3.5 ELEMENTARY COMPLEX FUNCTION: -  

1. Polynomial : A function of the form 𝑤 = 𝑎0𝑧𝑛 + 𝑎1𝑧𝑛−1 + ⋯ ⋯ +
𝑎𝑛−1𝑧 + 𝑎𝑛 where n∈N and a′ ≠ 0, 𝑎1, 𝑎2, a are complex constants 

is called a polynomial in the complex plane. It is called 

𝑛 exponential polynomial. 

 

           The particular case 𝑤 = 𝑎𝑧 + 𝑏 is known as linear transformation. 

2. Rational algebraic function:  A function of the form 𝑤 =
𝑃(𝑧)

𝑄(𝑧)
 

where 𝑃(𝑧) and 𝑄(𝑧) is a multiple term is called a rational algebraic 

function.  

The special case where 𝑎𝑑 − 𝑏𝑐 ≠ 0 is called bilinear (one-one) 

transformation or 𝑤 =
𝑎𝑧+𝑏 

𝑐𝑧+𝑑 
   fractional linear transformation. 

3. Exponential function: The functions defined as follows are called 

complex exponential functions. 

𝑤 = 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥(𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑦) 

 𝑎𝜖𝑅 if 𝑎𝑥 = 𝑒𝑧𝑙𝑜𝑔𝑎 where 𝑒 = 2.71828 

4. Trigonometrical functions: Trigonometrical functions are defined 

as follows. 

𝑠𝑖𝑛𝑥 =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
, 𝑐𝑜𝑠𝑥 =

𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2𝑖
 

𝑐𝑜𝑠𝑒𝑐𝑥 =
1

𝑠𝑖𝑛𝑥
=

2𝑖

𝑒𝑖𝑥 − 𝑒−𝑖𝑥
 

𝑠𝑒𝑐𝑥 =
1

𝑐𝑜𝑠𝑥
=

2𝑖

𝑒𝑖𝑥 − 𝑒−𝑖𝑥
 

𝑡𝑎𝑛𝑥 =
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
=

𝑒𝑖𝑥 − 𝑒−𝑖𝑥

𝑖(𝑒𝑖𝑥 + 𝑒−𝑖𝑥)
 

𝑐𝑜𝑡𝑧 =
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
=

𝑖(𝑒𝑖𝑥 + 𝑒−𝑖𝑥)

𝑒𝑖𝑥 − 𝑒−𝑖𝑥
 

           Some Standard Trigonometrical Results: 

a.  𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 = 1 

b. 𝑐𝑜𝑠(−𝑥) = 𝑐𝑜𝑠𝑥 

c. 𝑐𝑜𝑠2𝑥 = 𝑐𝑜𝑠2𝑥 − 𝑠𝑖𝑛2𝑥 

d. 𝑠𝑖𝑛3𝑥 = 3𝑠𝑖𝑛𝑥 − 4𝑠𝑖𝑛3𝑥 

e. 𝑐𝑜𝑠3𝑥 = 4𝑐𝑜𝑠3𝑥 − 3𝑐𝑜𝑠𝑥 

f. 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑦 = 2 𝑠𝑖𝑛
1

2
(𝑥 + 𝑦)𝑐𝑜𝑠

1

2
(𝑥 − 𝑦) 

g. 𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑠𝑦 = 2 𝑠𝑖𝑛
1

2
(𝑥 + 𝑦) 𝑠𝑖𝑛

1

2
(𝑦 − 𝑥) 

h. 𝑠𝑖𝑛(𝑥 ± 𝑦) = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 ± 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑦 

i. 𝑐𝑜𝑠(𝑥 ± 𝑦) = 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦 ∓ 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑦 
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j. 𝑠𝑒𝑐2𝑥 = 1 + 𝑡𝑎𝑛2𝑥 
 

SOLVED EXAMPLES 

EXAMPLE1: Prove that 𝑒𝑧 is a periodic function, where 𝑧 is a complex 

quantity. 

SOLUTION: If  𝑧 = 𝑥 + 𝑖𝑦, then 

𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥 . 𝑒𝑖𝑦 

= 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦) 

= 𝑒𝑥[𝑐𝑜𝑠(2𝑛𝜋 + 𝑦) + 𝑖𝑠𝑖𝑛(2𝑛𝜋 + 𝑦)] 
where n is any integer. 

Hence 𝑒𝑧 is a parodic function of period 2𝜋𝑖. 
EXAMPLE2: Prove that 𝑠𝑖𝑛𝑧, 𝑐𝑜𝑠𝑧, 𝑡𝑎𝑛𝑧 𝑒𝑡𝑐. Are periodic functions, 

where z is a complex quantity. 

SOLUTION: Let we get 

cos(𝑧 + 2𝑛𝜋) = 𝑐𝑜𝑠𝑧 𝑐𝑜𝑠2𝑛𝜋 − 𝑠𝑖𝑛𝑧 𝑠𝑖𝑛2𝑛𝜋 = 𝑐𝑜𝑠𝑧, 𝑛 being integer 

𝑠𝑖𝑛(𝑧 + 2𝑛𝜋) = 𝑠𝑖𝑛𝑧 𝑐𝑜𝑠2𝑛𝜋 − 𝑐𝑜𝑠𝑧 𝑠𝑖𝑛2𝑛𝜋 = 𝑠𝑖𝑛𝑧, 𝑛 being integer 

tan(𝑧 + 𝑛𝜋) =
𝑠𝑖𝑛 (𝑧+𝑛𝜋)

𝑐𝑜𝑠 (𝑧+𝑛𝜋)
=

𝑠𝑖𝑛𝑧 𝑐𝑜𝑠𝑛𝜋+𝑐𝑜𝑠𝑧 𝑠𝑖𝑛𝑛𝜋

𝑐𝑜𝑠𝑧 𝑐𝑜𝑠𝑛𝜋−𝑠𝑖𝑛𝑧 𝑠𝑖𝑛𝑛𝜋
= 𝑡𝑎𝑛𝑧, 𝑛 being integer 

From this, we conclude that 𝑐𝑜𝑠𝑧 and 𝑠𝑖𝑛𝑧 are periodic functions with 

period 2𝜋, and 𝑡𝑎𝑛 𝑧 is a periodic function with period 𝜋. 
EXAMPLE 3: Show that 𝑒𝑥𝑝(±𝑖 𝜋/2) = ±𝑖. 
SOLUTION: Let 𝑒𝑥𝑝(±𝑖𝜃) = 𝑐𝑜𝑠𝜃 ± 𝑖𝑠𝑖𝑛𝜃, we get 

𝑒𝑥𝑝(±𝑖 𝜋/2) =
𝑐𝑜𝑠𝜋

2
±

𝑖𝑠𝑖𝑛𝜋

2
= 0 ± 𝑖. 1 = ±𝑖 

EXAMPLE4: Prove that {𝑠𝑖𝑛(𝛼 − 𝜃) + 𝑒−𝛼𝑖𝑠𝑖𝑛𝜃}
𝑛

= 𝑠𝑖𝑛𝑛−1𝛼{𝑠𝑖𝑛(𝛼 −

𝑛𝜃) + 𝑒−𝛼𝑖𝑠𝑖𝑛𝑛𝜃}. 

SOLUTION: 𝐿. 𝐻. 𝑆 = {𝑠𝑖𝑛(𝛼 − 𝜃) + 𝑒−𝛼𝑖𝑠𝑖𝑛𝜃}
𝑛

 

= {𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝜃 + (𝑐𝑜𝑠𝛼 − 𝑖𝑠𝑖𝑛𝛼)𝑠𝑖𝑛𝜃}𝑛 

                 = {𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝜃 − 𝑖𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜃}𝑛 

                 = {𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜃}𝑛 = 𝑠𝑖𝑛𝑛𝛼{𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃}𝑛 

                 = 𝑠𝑖𝑛𝑛𝛼{𝑐𝑜𝑠𝑛𝜃 − 𝑖𝑠𝑖𝑛𝑛𝜃} by De-Moiver’s theorem 

 

and 𝑅. 𝐻. 𝑆. = 𝑠𝑖𝑛𝑛−1𝛼{𝑠𝑖𝑛(𝛼 − 𝑛𝜃) + 𝑒−𝛼𝑖𝑠𝑖𝑛𝑛𝜃} 

= 𝑠𝑖𝑛𝑛−1𝛼{𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝑛𝜃 − 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝑛𝜃 + (𝑐𝑜𝑠𝛼 − 𝑖𝑠𝑖𝑛𝛼)𝑠𝑖𝑛𝑛𝜃} 
= 𝑠𝑖𝑛𝑛−1𝛼{𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝑛𝜃 − 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝑛𝜃 + 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝑛𝜃 − 𝑖𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝑛𝜃} 

= 𝑠𝑖𝑛𝑛−1𝛼. 𝑠𝑖𝑛𝛼. { 𝑐𝑜𝑠𝑛𝜃 − 𝑖𝑠𝑖𝑛𝑛𝜃} 

= 𝑠𝑖𝑛𝑛𝛼{𝑐𝑜𝑠𝑛𝜃 − 𝑖𝑠𝑖𝑛𝑛𝜃} 
 

𝑳. 𝑯. 𝑺. = 𝑹. 𝑯. 𝑺. 
 

5. Hyperbolic function: Hyperbolic function is defined as follows. 

𝑠𝑖𝑛ℎ𝑥 =
𝑒𝑥 − 𝑒−𝑥

2
, 𝑐𝑜𝑠ℎ𝑥 =

𝑒𝑥 + 𝑒−𝑥

2
 

𝑐𝑜𝑠𝑒𝑐ℎ𝑥 =
1

𝑠𝑖𝑛ℎ𝑥
=

2

𝑒𝑥 − 𝑒−𝑥
, 𝑠𝑒𝑐ℎ𝑥 =

1

𝑐𝑜𝑠ℎ𝑥
=

2

𝑒𝑥 + 𝑒−𝑥
 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 45 
 

𝑡𝑎𝑛𝑧 =
𝑠𝑖𝑛ℎ𝑥

𝑐𝑜𝑠ℎ𝑥
=

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑐𝑜𝑡ℎ𝑥 =

𝑐𝑜𝑠ℎ𝑥

𝑠𝑖𝑛ℎ𝑥
=

𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

            Properties of Hyperbolic Functions: 

a. 𝑐𝑜𝑠ℎ2𝑥 − 𝑠𝑖𝑛ℎ2𝑥 = 1 

b. 𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥 

c. 𝑐𝑜𝑠ℎ2𝑥 = 𝑐𝑜𝑠ℎ2𝑥 + 𝑠𝑖𝑛ℎ2𝑥 = 1 + 2𝑠𝑖𝑛ℎ2𝑥 = 2𝑐𝑜𝑠ℎ2𝑥 − 1 

d. 𝑠𝑒𝑐ℎ2𝑥 = 1 − 𝑡𝑎𝑛ℎ2𝑥 

e. 𝑡𝑎𝑛2ℎ𝑥 =
2𝑡𝑎𝑛ℎ𝑥

(1+𝑡𝑎𝑛ℎ2𝑥)
 

f. 𝑠𝑖𝑛ℎ(𝑥 + 𝑦) = 𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑦 + 𝑐𝑜𝑠ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 

g. 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) = 𝑐𝑜𝑠ℎ𝑥 𝑐𝑜𝑠ℎ𝑦 + 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 

h. 𝑒𝑥 = 𝑐𝑜𝑠ℎ𝑥 + 𝑠𝑖𝑛ℎ𝑥 and 𝑒−𝑥 = 𝑐𝑜𝑠ℎ𝑥 − 𝑠𝑖𝑛ℎ𝑥 

i. 𝑠𝑖𝑛ℎ3𝑥 = 3𝑠𝑖𝑛ℎ𝑥 + 4𝑠𝑖𝑛ℎ3𝑥 

j. 𝑐𝑜𝑠ℎ3𝑥 = 4𝑐𝑜𝑠ℎ3𝑥 − 3𝑐𝑜𝑠ℎ𝑥 

k. 𝑡𝑎𝑛ℎ3𝑥 =
3𝑡𝑎𝑛ℎ𝑥+𝑡𝑎𝑛ℎ3𝑥

1+3𝑡𝑎𝑛ℎ2𝑥
 

 

SOLVED EXAMPLES 

EXAMPLE5: Show that  

𝑠𝑖𝑛 ℎ(𝑥 + 𝑦) cosh(𝑥 − 𝑦) =
1

2
(𝑠𝑖𝑛ℎ2𝑥 + 𝑠𝑖𝑛ℎ2𝑦). 

SOLUTION: Let 𝐿. 𝐻. 𝑆. = 𝑠𝑖𝑛 ℎ(𝑥 + 𝑦) cosh(𝑥 − 𝑦) 

. =
1

2
[𝑒(𝑥+𝑦) − 𝑒−(𝑥+𝑦)]

1

2
[𝑒(𝑥−𝑦) − 𝑒−(𝑥−𝑦)] 

=
1

4
[𝑒(2𝑥) − 𝑒(2𝑦) − 𝑒(−2𝑦) − 𝑒−(−2𝑥)] 

=
1

2
[
1

2
(𝑒2𝑥 − 𝑒−2𝑥) −

1

2
(𝑒2𝑦 − 𝑒−2𝑦)] 

=
1

2
[𝑠𝑖𝑛ℎ2𝑥 + 𝑠𝑖𝑛ℎ2𝑦] = 𝑅. 𝐻. 𝑆. 

EXAMPLE6: Show that 

𝑐𝑜 𝑠(𝛼 + 𝑖𝛽) + 𝑖𝑠𝑖𝑛(𝛼 + 𝑖𝛽) = 𝑒−𝛽(𝑐𝑜𝑠𝛼 + 𝑖𝑠𝑖𝑛𝛼) 

SOLUTION: Let 𝐿. 𝐻. 𝑆. =  𝑐𝑜 𝑠(𝛼 + 𝑖𝛽) + 𝑖𝑠𝑖𝑛(𝛼 + 𝑖𝛽) 

             = 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝑖𝛽 − 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝑖𝛽 + 𝑖𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝑖𝛽 + 𝑖𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝑖𝛽  

                         = 𝑐𝑜𝑠𝛼(𝑐𝑜𝑠𝑖𝛽 + 𝑖𝑠𝑖𝑛𝑖𝛽) + 𝑖𝑠𝑖𝑛𝛼(𝑐𝑜𝑠𝑖𝛽 + 𝑖𝑠𝑖𝑛𝑖𝛽) 

                          = (𝑐𝑜𝑠𝑖𝛽 + 𝑖𝑠𝑖𝑛𝑖𝛽)(𝑐𝑜𝑠𝛼 + 𝑖𝑠𝑖𝑛𝛼) 

= (𝑐𝑜𝑠ℎ𝛽 − 𝑠𝑖𝑛ℎ𝛽)(𝑐𝑜𝑠𝛼 + 𝑖𝑠𝑖𝑛𝛼)    ∵ 𝑐𝑜𝑠𝑖𝛽 = 𝑐𝑜𝑠ℎ𝛽, 𝑠𝑖𝑛𝑖𝛽 =
𝑖𝑠𝑖𝑛ℎ𝛽 

= 𝑒−𝛽(𝑐𝑜𝑠𝛼 + 𝑖𝑠𝑖𝑛𝛼) = 𝑅. 𝐻. 𝑆. 

EXAMPLE7: If 𝑐𝑜𝑠ℎ𝛼 = 𝑠𝑒𝑐𝜃, that 𝑡𝑎𝑛ℎ2 1

2
𝛼 = 𝑡𝑎𝑛2 1

2
𝜃. 

SOLUTION: Let we get 𝑐𝑜𝑠ℎ𝛼 = 𝑠𝑒𝑐𝜃 
𝑐𝑜𝑠ℎ𝛼

1
=

1

𝑐𝑜𝑠𝜃
 

Applying componendo and dividendo, we have 
𝑐𝑜𝑠ℎ𝛼 − 1

𝑐𝑜𝑠ℎ𝛼 + 1
=

1 − 𝑐𝑜𝑠𝜃

1 + 𝑐𝑜𝑠𝜃
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2𝑠𝑖𝑛ℎ2 1
2 𝛼

2𝑐𝑜𝑠ℎ2 1
2 𝛼

=
2𝑠𝑖𝑛2 1

2 𝜃

2𝑐𝑜𝑠2 1
2 𝜃

 

𝑡𝑎𝑛ℎ2
1

2
𝛼 = 𝑡𝑎𝑛2

1

2
𝜃 

           Note: The componendo and dividendo, is that if  

                      
𝑎

𝑏
=

𝑐

𝑑
, then 

𝑎−𝑏

𝑎+𝑏
=

𝑐−𝑑

𝑐+𝑑
. 

           EXAMPLE8: If  𝑡𝑎𝑛𝜃 = 𝑡𝑎𝑛ℎ𝑥 𝑐𝑜𝑡𝑦 and 𝑡𝑎𝑛𝜙 = 𝑡𝑎𝑛ℎ𝑥 𝑡𝑎𝑛𝑦, 
show that 

𝑠𝑖𝑛2𝜃

𝑠𝑖𝑛2𝜙
=

𝑐𝑜𝑠ℎ2𝑥 + 𝑐𝑜𝑠2𝑦

𝑐𝑜𝑠ℎ2𝑥 − 𝑐𝑜𝑠2𝑦
 

 SOLUTION: 𝐿. 𝐻. 𝑆. =  
𝑠𝑖𝑛2𝜃

𝑠𝑖𝑛2𝜙
=

2𝑡𝑎𝑛𝜃/(1+𝑡𝑎𝑛2𝜃)

2𝑡𝑎𝑛𝜙/(1+𝑡𝑎𝑛2𝜙)
 

=
𝑡𝑎𝑛𝜃

1 + 𝑡𝑎𝑛2𝜃
×

1 + 𝑡𝑎𝑛2𝜙

𝑡𝑎𝑛𝜙
=

𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜙
 .

1 + 𝑡𝑎𝑛2𝜙

1 + 𝑡𝑎𝑛2𝜃
 

=
𝑡𝑎𝑛ℎ𝑥 𝑐𝑜𝑡𝑦

𝑡𝑎𝑛ℎ𝑥 𝑡𝑎𝑛𝑦
×

1 + 𝑡𝑎𝑛ℎ2𝑥𝑡𝑎𝑛2𝑦

1 + 𝑡𝑎𝑛ℎ2𝑥𝑐𝑜𝑡2𝑦
 

             Substituting the given values of 𝑡𝑎𝑛𝜃 and 𝑡𝑎𝑛𝜙 

=
𝑐𝑜𝑠2𝑦

𝑠𝑖𝑛2𝑦
.
𝑐𝑜𝑠ℎ2𝑥𝑐𝑜𝑠2𝑦 + 𝑠𝑖𝑛ℎ2𝑥𝑠𝑖𝑛2𝑦

𝑐𝑜𝑠ℎ2𝑥𝑐𝑜𝑠2𝑦
.

𝑐𝑜𝑠ℎ2𝑥𝑠𝑖𝑛2𝑦

𝑐𝑜𝑠ℎ2𝑥𝑠𝑖𝑛2𝑦 + 𝑠𝑖𝑛ℎ2𝑥𝑐𝑜𝑠2𝑦
 

=
𝑐𝑜𝑠ℎ2𝑥𝑐𝑜𝑠2𝑦 + 𝑠𝑖𝑛ℎ2𝑥𝑠𝑖𝑛2𝑦

𝑐𝑜𝑠ℎ2𝑥𝑠𝑖𝑛2𝑦 + 𝑠𝑖𝑛ℎ2𝑥𝑐𝑜𝑠2𝑦
 

=
(2𝑐𝑜𝑠ℎ2𝑥)(2𝑐𝑜𝑠2𝑦) + (2𝑠𝑖𝑛ℎ2𝑥)(2𝑠𝑖𝑛2𝑦)

(2𝑐𝑜𝑠ℎ2𝑥)(2𝑠𝑖𝑛2𝑦) + (2𝑠𝑖𝑛ℎ2𝑥)(2𝑐𝑜𝑠2𝑦)
 

=
(1 + 𝑐𝑜𝑠ℎ2𝑥)(1 + 𝑐𝑜𝑠2𝑦) + (𝑐𝑜𝑠ℎ2𝑥 − 1)(1 − 𝑐𝑜𝑠2𝑦)

(1 + 𝑐𝑜𝑠ℎ2𝑥)(1 − 𝑐𝑜𝑠2𝑦) + (𝑐𝑜𝑠ℎ2𝑥 − 1)(1 + 𝑐𝑜𝑠2𝑦)
 

[∵ 2𝑐𝑜𝑠ℎ2𝑥 = 1 + 𝑐𝑜𝑠ℎ2𝑥; 2𝑠𝑖𝑛ℎ2𝑥 = 𝑐𝑜𝑠ℎ2𝑥 − 1] 

=
2(𝑐𝑜𝑠ℎ2𝑥 + 𝑐𝑜𝑠2𝑦)

2(𝑐𝑜𝑠ℎ2𝑥 − 𝑐𝑜𝑠2𝑦)
=

𝑐𝑜𝑠ℎ2𝑥 + 𝑐𝑜𝑠2𝑦

𝑐𝑜𝑠ℎ2𝑥 − 𝑐𝑜𝑠2𝑦
= 𝑅. 𝐻. 𝑆. 

  
6. Logarithmic function: If 𝑧 =  𝑒𝑤, 𝑤 =  𝐼𝑛𝑧 or log𝑒 𝑧is written. 

Which is known as the natural factor of 𝑧. Hence,  
𝑤 = 𝑙𝑜𝑔𝑧 = 𝑙𝑜𝑔𝑟 + 𝑖(2𝑛𝜋 + 𝜃); 𝑛

= 0,1,2 ⋯ ⋯ ⋯ [𝑟 = |𝑧|, 𝜃 = 𝑎𝑚𝑝(𝑧)]  
represents a multivalued function. Its primary branch function .The 

value for 𝑛 =  0  is obtained.  

Similarly, the logarithmic function is defined based on any real 

number 𝑎. 
If 𝑧 = 𝑎𝑤 , then 𝑤 = log𝑎 𝑧 (𝑎 > 0, 𝑎 ≠ 0,1) 

Clearly,  𝑤 = log𝑎 𝑧 =
𝐼𝑛𝑧

𝐼𝑛𝑎
 

 

SOLVED EXAMPLES 
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EXAMPLE9: Find the principal of general value of 𝑙𝑜𝑔(−1 + 𝑖) 

SOLUTION: Let −1 + 𝑖 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

𝑟𝑐𝑠𝜃 = −1, 𝑟𝑠𝑖𝑛𝜃 = 1 
Squaring and adding, we get 

𝑟2 = 2, 𝑖. 𝑒. , 𝑟 = √2 

Now 𝑐𝑜𝑠𝜃 = −1/√2 and 𝑠𝑖𝑛𝜃 = 1/√2 

𝜃 =
3

4
𝜋 

−1 + 𝑖 = √2 (𝑐𝑜𝑠
3

4
𝜋 + 𝑖𝑠𝑖𝑛

3

4
𝜋) = √2𝑒(

3𝜋
4

)𝑖
 

The general value is  

𝑙𝑜𝑔(−1 + 𝑖) = 𝑙𝑜𝑔 {√2𝑒(
3𝜋
4

)𝑖𝑒2𝑛𝜋𝑖} 

𝑙𝑜𝑔√2 +
3

4
𝜋𝑖 + 2𝑛𝜋 =

1

2
𝑙𝑜𝑔2 + (2𝑛 +

3

4
) 𝜋𝑖 

Substituting 𝑛 = 0, the principal value is given by 

𝑙𝑜𝑔(−1 + 𝑖) =
1

2
𝑙𝑜𝑔2 +

3

4
𝜋𝑖 

EXAMPLE10: Find the principal of general value of 𝑙𝑜𝑔(−3). 
SOLUTION: Let −3 = −3 + 𝑖0 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

So                              𝑟𝑐𝑜𝑠𝜃 = −3, 𝑟𝑠𝑖𝑛𝜃 = 0 

These give 𝑟2 = 9 𝑖. 𝑒. , 𝑟 = 3. 
Substituting 𝑟 = 3, we obtain 

𝑐𝑜𝑠𝜃 = −1 and 𝑠𝑖𝑛𝜃 = 0, giving 𝜃 = 𝜋 

−3 = 3(𝑐𝑜𝑠𝜋 + 𝑖𝑠𝑖𝑛𝜋) = 3. 𝑒𝑖𝜋 

𝐿𝑜𝑔(−3) = 𝑙𝑜𝑔{3. 𝑒𝑖𝜋. 𝑒2𝑛𝜋𝑖} 

= 𝑙𝑜𝑔3 + 𝑙𝑜𝑔 𝑒(2𝑛𝜋+𝜋)𝑖 

= 𝑙𝑜𝑔3 + (2𝑛 + 1)𝜋𝑖 
            Hence the principal value of 𝑙𝑜𝑔(−3) 𝑖. 𝑒., 𝑙𝑜𝑔(−3) is obtained by    

             putting 𝑛 = 0, then 

𝐿𝑜𝑔(−3) = 𝑙𝑜𝑔3 + 𝑖𝜋 

EXAMPLE11: Find the principal of general value of 𝑙𝑜𝑔(−𝑖). 

SOLUTION: Let −𝑖 = (𝑐𝑜𝑠
𝜋

2
− 𝑖𝑠𝑖𝑛

𝜋

2
) = 𝑒−𝑖𝜋/2 

So that 

log(−𝑖) = 𝑙𝑜𝑔𝑒−𝑖𝜋/2 = −𝑖𝜋/2, giving the principal value. 

𝐿𝑜𝑔(−𝑖) = log(−𝑖) + 2𝑛𝜋𝑖 = − (
𝑖𝜋

2
) + 2𝑛𝜋𝑖 =

1

2
(4𝑛 − 1)𝜋𝑖. 

EXAMPLE12: Express 𝑙𝑜𝑔(1 + 𝑖)(1−𝑖)in the form 𝐴 + 𝑖𝐵. 

SOLUTION: Let  

𝑙𝑜𝑔(1 − 𝑖)(1−𝑖) = (1 − 𝑖)𝑙𝑜𝑔 (1 + 𝑖) 

= (1 − 𝑖) [
1

2
log(12 + 12) + 𝑖𝑡𝑎𝑛−11] 

= (1 − 𝑖) [
1

2
𝑙𝑜𝑔2 + 𝑖

𝜋

4
] 
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= [
1

2
𝑙𝑜𝑔2 +

𝜋

4
] + −1 [

𝜋

4
−

1

2
𝑙𝑜𝑔2] 

 

which is the form 𝐴 + 𝑖𝐵. 

 

7. Inverse Function: If 𝑧 =  𝑠𝑖𝑛 𝑤, then 𝑤 =  𝑠𝑖𝑛¹𝑧 is called the 

inverse of 𝑧. Similarly, other trigonometric inverse functions 𝑐𝑜𝑠 𝑧, 

𝑡𝑎𝑛 𝑧, 𝑐𝑜𝑠𝑒𝑐 𝑧 and 𝑐𝑜𝑡¹𝑧 are defined. All these functions are multi-

valued functions and can be expressed in terms of logarithms as 

follows. 

𝑠𝑖𝑛−1 𝑧 =
1

𝑖
𝑙𝑜𝑔 {𝑖𝑧 + √1 − 𝑧2} 

𝑐𝑜𝑠−1 𝑧 =
1

𝑖
𝑙𝑜𝑔 {𝑧 + √𝑧2 − 1} 

𝑡𝑎𝑛−1 𝑧 =
1

2𝑖
𝑙𝑜𝑔 (

1 + 𝑖𝑧

1 − 𝑖𝑧
) 

𝑐𝑜𝑠𝑒𝑐−1 𝑧 =
1

𝑖
log (

1 + √𝑧2 − 1

𝑧
) 

𝑠𝑒𝑐−1 𝑧 =
1

𝑖
log (

1 + √1 − 𝑧2

𝑧
) 

𝑐𝑜𝑡−1 𝑧 =
1

2𝑖
𝑙𝑜𝑔 (

𝑧 + 𝑖

𝑧 − 𝑖
) 

 

8. Inverse Hyperbolic function: If 𝑧 =  𝑠𝑖𝑛ℎ𝑤 then The 𝑠𝑖𝑛ℎ 

inverse of 𝑤 =  𝑠𝑖𝑛ℎ is called the inverse. Similarly, the other 

hyperbolic inverse functions 𝑐𝑜𝑠ℎ𝑧, 𝑡𝑎𝑛ℎ𝑧, 𝑠𝑒𝑐ℎ𝑧, 𝑐𝑜𝑠𝑒𝑐ℎ𝑧, and 

𝑐𝑜𝑡 ℎ𝑧 are defined. All of these functions are also multivalued 

functions. They can be expressed in terms of logarithms as follows. 

 

𝑠𝑖𝑛ℎ−1 𝑧 = 𝑙𝑜𝑔 {𝑧 + √1 − 𝑧2} 

𝑐𝑜𝑠ℎ−1 𝑧 = 𝑙𝑜𝑔 {𝑧 + √𝑧2 − 1} 

𝑡𝑎𝑛ℎ−1 𝑧 =
1

2
𝑙𝑜𝑔 (

1 + 𝑧

1 − 𝑧
) 

𝑐𝑜𝑠𝑒𝑐−1 𝑧 = 𝑙𝑜𝑔 (
1 + √𝑧2 − 1

𝑧
) 

𝑠𝑒𝑐−1 𝑧 = 𝑙𝑜𝑔 (
1 + √1 − 𝑧2

𝑧
) 

𝑐𝑜𝑡ℎ−1 𝑧 =
1

2𝑖
𝑙𝑜𝑔 (

𝑧 + 1

𝑧 − 1
) 

 

SOLVED EXAMPLE 

EXMPLE13: Express cos−1(𝑥 + 𝑖𝑦) in the form of 𝐴 + 𝑖𝐵. 
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SOLUTION: Let us consider cos−1(𝑥 + 𝑖𝑦) = 𝐴 + 𝑖𝐵 

cos(𝐴 + 𝑖𝐵) = 𝑥 + 𝑖𝑦 

𝑐𝑜𝑠𝐴𝑐𝑜𝑠(𝑖𝐵) − 𝑠𝑖𝑛𝐴𝑠𝑖𝑛(𝑖𝐵) = 𝑥 + 𝑖𝑦 

𝑐𝑜𝑠𝐴𝑐𝑜𝑠ℎ𝐵 − 𝑠𝑖𝑛𝐴𝑠𝑖𝑛ℎ𝐵 = 𝑥 + 𝑖𝑦 
Equating real and imaginary parts on both sides, we obtain 

                          𝑐𝑜𝑠𝐴𝑐𝑜𝑠ℎ𝐵 = 𝑥                                   … (1) 

                          𝑠𝑖𝑛𝐴𝑠𝑖𝑛ℎ𝐵 = −𝑦                                … (2) 

From (1) and (2), we get 

                                                𝑐𝑜𝑠ℎ𝐵 =
𝑥

𝑐𝑜𝑠𝐴
 

                                               𝑠𝑖𝑛ℎ𝐵 = −
𝑦

𝑠𝑖𝑛𝐴
   

𝑥2

𝑐𝑜𝑠2𝐴
−

𝑦2

𝑠𝑖𝑛2𝐴
= 𝑐𝑜𝑠ℎ2𝐵 − 𝑠𝑖𝑛ℎ2𝐵 = 1 

𝑥2𝑠𝑖𝑛2𝐴 − 𝑦2𝑐𝑜𝑠2𝐴 = 𝑐𝑜𝑠2𝐴 𝑠𝑖𝑛2𝐴 

𝑥2𝑠𝑖𝑛2𝐴 − 𝑦2(1 − 𝑠𝑖𝑛2𝐴) = (1 − 𝑠𝑖𝑛2𝐴) 𝑠𝑖𝑛2𝐴 

𝑥2𝑠𝑖𝑛2𝐴 − 𝑦2 + 𝑦2𝑠𝑖𝑛2𝐴 = (𝑠𝑖𝑛2𝐴 − 𝑠𝑖𝑛4𝐴) 

𝑠𝑖𝑛4𝐴 + (𝑥2 + 𝑦2 − 1)𝑠𝑖𝑛2𝐴 − 𝑦2 = 0 
So that 

𝑠𝑖𝑛2𝐴 =
−(𝑥2 + 𝑦2 − 1) ± √(𝑥2 + 𝑦2 − 1)2 + 4𝑦2

2
 

Since 𝑠𝑖𝑛2𝐴 must be positive, therefore neglecting the −𝑖𝑣𝑒 𝑠𝑖𝑔𝑛, we 

obtain 

𝑠𝑖𝑛2𝐴 =
√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (𝑥2 + 𝑦2 − 1)

2
 

𝑠𝑖𝑛𝐴 = ± [
√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (𝑥2 + 𝑦2 − 1)

2
]

1/2

 

𝐴 = ±𝑠𝑖𝑛−1 [
√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (𝑥2 + 𝑦2 − 1)

2
]

1/2

         … (3) 

 

From (1) and (2), we have 

                                                𝑐𝑜𝑠𝐴 =
𝑥

𝑐𝑜𝑠ℎ𝐵
 

                                               𝑠𝑖𝑛𝐴 = −
𝑦

𝑠𝑖𝑛ℎ𝐵
   

𝑥2

𝑐𝑜𝑠ℎ2𝐵
+

𝑦2

𝑠𝑖𝑛ℎ2𝐵
= 𝑐𝑜𝑠2𝐴 + 𝑠𝑖𝑛2𝐴 = 1 

𝑥2𝑠𝑖𝑛ℎ2𝐵 + 𝑦2𝑐𝑜𝑠ℎ2𝐵 = 𝑐𝑜𝑠ℎ2𝐵𝑠𝑖𝑛ℎ2𝐵 

𝑥2𝑠𝑖𝑛ℎ2𝐵 + 𝑦2(1 + 𝑠𝑖𝑛ℎ2𝐵) = (1 + 𝑠𝑖𝑛ℎ2𝐵)𝑠𝑖𝑛ℎ2𝐵 

𝑥2𝑠𝑖𝑛ℎ2𝐵 + 𝑦2 + 𝑦2𝑠𝑖𝑛ℎ2𝐵 = (𝑠𝑖𝑛ℎ2𝐵 + 𝑠𝑖𝑛ℎ4𝐵) 

𝑠𝑖𝑛ℎ4𝐵 + (1 − 𝑥2 − 𝑦2)𝑠𝑖𝑛ℎ2𝐵 − 𝑦2 = 0 
 

So that 

𝑠𝑖𝑛ℎ2𝐵 =
−(1 − 𝑥2 − 𝑦2) ± √(1 − 𝑥2 − 𝑦2)2 + 4𝑦2

2
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But 𝑠𝑖𝑛2𝐴𝑠𝑖𝑛ℎ2𝐵 must be positive, therefore neglecting the 

−𝑖𝑣𝑒 𝑠𝑖𝑔𝑛, we obtain 

𝑠𝑖𝑛ℎ2𝐵 =
√(1 − 𝑥2 − 𝑦2)2 + 4𝑦2 − (1 − 𝑥2 − 𝑦2)

2
 

𝑠𝑖𝑛ℎ𝐵 = ± [
√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (1 − 𝑥2 − 𝑦2)

2
]

1/2

 

𝐵 = ±𝑠𝑖𝑛ℎ−1 [
√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (1 − 𝑥2 − 𝑦2)

2
]

1/2

      … (4) 

Note : The general value of cos−1(𝑥 + 𝑖𝑦)  𝑖. 𝑒. , cos−1(𝑥 + 𝑖𝑦) is given    

 By     

cos−1(𝑥 + 𝑖𝑦) = 2𝑛𝜋 ± cos−1(𝑥 + 𝑖𝑦) = 2𝑛𝜋 ± (𝐴 + 𝑖𝐵) 

           where 𝐴 and 𝐵 are found in equation (3) and (4). 

EXMPLE14: Express sin−1(𝑥 + 𝑖𝑦) in the form of 𝐴 + 𝑖𝐵. 
SOLUTION: Proceed exactly as in Ex.1. 

If we already found cos−1(𝑥 + 𝑖𝑦), then 𝑠𝑖𝑛−1(𝑥 + 𝑖𝑦) can also be 

deduced from it shown that 

Now, we get 

𝑠𝑖𝑛−1(𝑥 + 𝑖𝑦) =
𝜋

2
− cos−1(𝑥 + 𝑖𝑦) 

=
𝜋

2
± 𝑠𝑖𝑛−1 [

√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (𝑥2 + 𝑦2 − 1)

2
]

1/2

 

±𝑠𝑖𝑛ℎ−1 [
√(1 − 𝑥2 − 𝑦2)2 + 4𝑦2 − (1 − 𝑥2 − 𝑦2)

2
]

1/2

,  

 

EXMPLE15: Express 𝑐𝑜𝑠ℎ−1(𝑥 + 𝑖𝑦) in the form of 𝛼 + 𝑖𝛽. 
SOLUTION: Now we have 

𝑐𝑜𝑠ℎ−1(𝑥 + 𝑖𝑦) = 𝛼 + 𝑖𝛽 

𝑥 + 𝑖𝑦 = 𝑐𝑜𝑠 ℎ(𝛼 + 𝑖𝛽) = cos{𝑖(𝛼 + 𝑖𝛽)} = cos(𝑖𝛼 − 𝛽) 

𝑐𝑜𝑠𝑖𝛼 𝑐𝑜𝑠(𝛽) + 𝑠𝑖𝑛𝑖𝛼 𝑠𝑖𝑛𝛽 = 𝑐𝑜𝑠ℎ𝛼 𝑐𝑜𝑠𝛽 + 𝑖𝑠𝑖𝑛ℎ𝛼 𝑠𝑖𝑛𝛽 
Equating real and imaginary parts on both sides, we have 

𝑐𝑜𝑠ℎ𝛼 𝑐𝑜𝑠𝛽 = 𝑥                   … (1) 

𝑠𝑖𝑛ℎ𝛼 𝑠𝑖𝑛𝛽 = 𝑦                    … (2) 

From (1) and (2), we get 

 𝑐𝑜𝑠𝛽 = 𝑥/𝑐𝑜𝑠ℎ𝛼   and 𝑠𝑖𝑛𝛽 = 𝑦/𝑠𝑖𝑛ℎ𝛼  
𝑥2

𝑐𝑜𝑠ℎ2𝛼
+

𝑦2

𝑠𝑖𝑛ℎ2𝛼
= 𝑐𝑜𝑠2𝛽 + 𝑠𝑖𝑛2𝛽 = 1 

𝑥2𝑠𝑖𝑛ℎ2𝛼 + 𝑦2𝑐𝑜𝑠ℎ2𝛼 = 𝑐𝑜𝑠ℎ2𝛼 𝑠𝑖𝑛ℎ2𝛼 
Proceed exactly as in Ex.1, we obtain 

𝛼 = ±𝑠𝑖𝑛ℎ−1 [
√(1 − 𝑥2 − 𝑦2)2 + 4𝑦2 − (1 − 𝑥2 − 𝑦2)

2
]

1
2

 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 51 
 

Again find 𝛽, we get 

𝑐𝑜𝑠ℎ𝛼 = 𝑥/𝑐𝑜𝑠𝛽 

𝑠𝑖𝑛ℎ𝛼 = 𝑦/𝑠𝑖𝑛𝛽 

𝑥2

𝑐𝑜𝑠2𝛽
−

𝑦2

𝑠𝑖𝑛2𝛽
= 𝑐𝑜𝑠ℎ2𝛼 − 𝑠𝑖𝑛ℎ2𝛼 = 1 

𝑥2𝑠𝑖𝑛ℎ2𝛼 + 𝑦2𝑐𝑜𝑠ℎ2𝛼 = 𝑐𝑜𝑠ℎ2𝛼 𝑠𝑖𝑛ℎ2𝛼 
Proceed exactly as in Ex.1, we obtain 

𝛼 = ±𝑠𝑖𝑛−1 [
√(𝑥2 + 𝑦2 − 1)2 + 4𝑦2 − (𝑥2 + 𝑦2 − 1)

2
]

1
2

 

EXMPLE 16: Express 𝑡𝑎𝑛−1(𝑥 + 𝑖𝑦) in the form of 𝐴 + 𝑖𝐵. 
SOLUTION: Let tan−1(𝑥 + 𝑖𝑦) = 𝐴 + 𝑖𝐵, then 

𝑡𝑎𝑛(𝐴 + 𝑖𝐵) = 𝑥 + 𝑖𝑦 
and 

𝑡𝑎𝑛(𝐴 − 𝑖𝐵) = 𝑥 − 𝑖𝑦 
Now equating complex conjugates, we get 

𝑡𝑎𝑛2𝐴 = 𝑡𝑎𝑛[(𝐴 + 𝑖𝐵) + (𝐴 − 𝑖𝐵)] 

=
𝑡𝑎𝑛[(𝐴 + 𝑖𝐵) + (𝐴 − 𝑖𝐵)]

1 − 𝑡𝑎𝑛(𝐴 + 𝑖𝐵) 𝑡𝑎𝑛(𝐴 − 𝑖𝐵)
 

=
(𝑥 + 𝑖𝑦) + (𝑥 − 𝑖𝑦)

1 − (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦)
 

=
2𝑥

1 − (𝑥2 + 𝑦2)
=

2𝑥

1 − 𝑥2 − 𝑦2
 

2𝐴 = 𝑡𝑎𝑛−1
2𝑥

1 − 𝑥2 − 𝑦2
 

𝐴 =
1

2
𝑡𝑎𝑛−1

2𝑥

1 − 𝑥2 − 𝑦2
 

Again 

𝑡𝑎𝑛(2𝑖𝐵) = 𝑡𝑎𝑛 [(𝐴 + 𝑖𝐵) − (𝐴 − 𝑖𝐵)] 

=
𝑡𝑎𝑛[(𝐴 + 𝑖𝐵) − (𝐴 − 𝑖𝐵)]

1 + 𝑡𝑎𝑛(𝐴 + 𝑖𝐵) 𝑡𝑎𝑛(𝐴 − 𝑖𝐵)
=

(𝑥 + 𝑖𝑦) − (𝑥 − 𝑖𝑦)

1 + (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦)
 

=
2𝑖𝑦

1 + 𝑥2 + 𝑦2
=

2𝑖𝑦

1 + 𝑥2 + 𝑦2
 

𝑖𝑡𝑎𝑛ℎ2𝐵 =
2𝑖𝑦

1 + 𝑥2 + 𝑦2
 

[∵ 𝑡𝑎𝑛 (𝑖𝜃) = 𝑖𝑡𝑎𝑛ℎ𝜃] 
 

𝑡𝑎𝑛ℎ2𝐵 =
2𝑦

1 + 𝑥2 + 𝑦2
 

2𝐵 = 𝑡𝑎𝑛ℎ−1
2𝑦

1 + 𝑥2 + 𝑦2
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𝐵 =
1

2
𝑡𝑎𝑛ℎ−1

2𝑦

1 + 𝑥2 + 𝑦2
 

Hence 

𝑡𝑎𝑛−1(𝑥 + 𝑖𝑦) = 𝐴 + 𝑖𝐵

=
1

2
𝑡𝑎𝑛−1

2𝑥

1 − 𝑥2 − 𝑦2
+

𝑖

2
𝑡𝑎𝑛ℎ−1

2𝑦

1 + 𝑥2 + 𝑦2
 

Note : The general value of 𝑡𝑎𝑛−1(𝑥 + 𝑖𝑦)  𝑖. 𝑒. , 𝑡𝑎𝑛−1(𝑥 + 𝑖𝑦) is given    

 By     

𝑡𝑎𝑛−1(𝑥 + 𝑖𝑦) = 𝑛𝜋 ± 𝑡𝑎𝑛−1(𝑥 + 𝑖𝑦)

= 2𝑛𝜋 +
1

2

2𝑥

1 − 𝑥2 − 𝑦2
+

𝑖

2
𝑡𝑎𝑛ℎ−1

2𝑦

1 + 𝑥2 + 𝑦2
 

EXMPLE 17: Prove that 𝑠𝑖𝑛ℎ−1(𝑐𝑜𝑡𝑥) = 𝑙𝑜𝑔 (𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥) 

SOLUTION: Let sinh−1(𝑐𝑜𝑡𝑥) = 𝑦, then 

𝑠𝑖𝑛ℎ𝑦 = 𝑐𝑜𝑡𝑥 

∴                 𝑐𝑜𝑠ℎ𝑦 = √1 + 𝑠𝑖𝑛ℎ2𝑦 = √1 + 𝑐𝑜𝑡2𝑥 = 𝑐𝑜𝑠𝑒𝑐𝑥 

Adding above equations, we get 

𝑠𝑖𝑛ℎ𝑦 + 𝑐𝑜𝑠ℎ𝑦 = 𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥 
Or  

𝑒𝑦 = 𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥 
Or  

𝑦 = 𝑙𝑜𝑔 (𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥) 

 ∴                                   𝑠𝑖𝑛ℎ−1(𝑐𝑜𝑡𝑥) = 𝑙𝑜𝑔 (𝑐𝑜𝑡𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑥) 

 

3.6 COMPLEX FUNCTION AS REAL-VALUED 

PAIRS: -  

A complex function 𝑓(𝑧) takes a complex number as input and gives 

another complex number as output. Since every complex number can be 

expressed in terms of its real part and imaginary part, it becomes easier to 

analyze and understand complex functions by separating them into these 

two components 

Consider the complex function denoted by 𝑓(𝑧) = 𝑧2 and replace z by 𝑥 +

𝑖𝑦 and can be expressed as 

𝑓(𝑧) = (𝑥2 − 𝑦2) + 𝑖(2𝑥𝑦) 

Now if we substitute 𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2 and 𝑣(𝑥, 𝑦) = 2𝑥𝑦, then 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

Where 𝑢: ℝ2 → ℝ and 𝑣: ℝ2 → ℝ are real-valued functions between real 

variables 𝑥 and 𝑦. Simply put, 𝑅𝑒 𝑓(𝑧) and 𝐼𝑚 𝑓(𝑧) are real-valued 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 53 
 

functions of two variables. The advantage of working with a complex 

function represented in the form (13) is that we are familiar with real valued 

functions with several variables. 

Additionally, a complex number (𝑧) can have a polar representation (𝑟 𝜃). 

A complicated function, 𝑓(𝑧), can be represented as 

𝑓(𝑟 𝜃) = 𝑢(𝑟 𝜃) + 𝑖𝑣(𝑟 𝜃) 

For Example, let 𝑓(𝑧) = 𝑧3, in polar coordinates can be expressed as 

𝑓(𝑟 𝜃) = [𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)]3 

= 𝑟3(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3 

                                    = 𝑟3(𝑐𝑜𝑠3𝜃 + 𝑖𝑠𝑖𝑛3𝜃) [using De Moivre’s 

theorem] 

Where   𝑢(𝑟 𝜃) = 𝑟3𝑐𝑜𝑠3𝜃 and 𝑣(𝑟 𝜃) = 𝑟3𝑠𝑖𝑛3𝜃. 

SOLVED EXAMPLES 

EXAMPLE18: Separate 𝑒𝑧into real and imaginary parts. 

SOLUTION: Now we have 𝑒𝑧 = 𝑒𝑥+𝑖𝑦  

= 𝑒𝑥 . 𝑒𝑖𝑦 = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦) 

= 𝑒𝑥𝑐𝑜𝑠𝑦 + 𝑖𝑒𝑥𝑠𝑖𝑛𝑦 

Which is the form of 𝑎 + 𝑖𝑏, where 𝑎 and 𝑏 are real. 

EXAMPLE19: Separate 𝑡𝑎𝑛𝑧 into real and imaginary parts. 

SOLUTION: Now, 𝑡𝑎𝑛𝑧 =
𝑠𝑖𝑛𝑧

𝑐𝑜𝑠𝑧
=

𝑠𝑖𝑛(𝑥+𝑖𝑦)

𝑐𝑜𝑠 (𝑥+𝑖𝑦)
 

=
𝑠𝑖𝑛(𝑥 + 𝑖𝑦)

𝑐𝑜𝑠 (𝑥 + 𝑖𝑦)
 

=
𝑠𝑖𝑛(𝑥 + 𝑖𝑦)

𝑐𝑜𝑠 (𝑥 + 𝑖𝑦)
×

2cos (𝑥 − 𝑖𝑦)

2cos (𝑥 − 𝑖𝑦)
 

=
𝑠𝑖𝑛[(𝑥 + 𝑖𝑦) + (𝑥 − 𝑖𝑦)] + 𝑠𝑖𝑛[(𝑥 + 𝑖𝑦) + (𝑥 − 𝑖𝑦)]

𝑐𝑜𝑠[(𝑥 + 𝑖𝑦) + (𝑥 − 𝑖𝑦)] + 𝑐𝑜𝑠[(𝑥 + 𝑖𝑦) + (𝑥 − 𝑖𝑦)]
 

=
𝑠𝑖𝑛2𝑥 + 𝑠𝑖𝑛 (2𝑖𝑦)

𝑐𝑜𝑠2𝑥 + 𝑐𝑜𝑠 (2𝑖𝑦)
 

=
𝑠𝑖𝑛2𝑥 + 𝑖𝑠𝑖𝑛ℎ(2𝑦)

𝑐𝑜𝑠2𝑥 + 𝑐𝑜𝑠ℎ(2𝑦)
 

= (
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠2𝑥 + 𝑐𝑜𝑠ℎ(2𝑦)
) + (

𝑠𝑖𝑛ℎ2𝑦

𝑐𝑜𝑠2𝑥 + 𝑐𝑜𝑠ℎ(2𝑦)
) 

 

EXAMPLE20: Separate 𝑡𝑎𝑛ℎ𝑧 into real and imaginary parts. 

SOLUTION: Now, 𝑡𝑎𝑛ℎ𝑧 =
𝑠𝑖𝑛ℎ𝑧

𝑐𝑜𝑠ℎ𝑧
=

𝑠𝑖𝑛(𝑥+𝑖𝑦)

𝑐𝑜𝑠 (𝑥+𝑖𝑦)
 

=
1

𝑖
[
𝑠𝑖𝑛𝑖(𝑥 + 𝑖𝑦)

𝑐𝑜𝑠𝑖(𝑥 + 𝑖𝑦)
] 
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=
1

𝑖

𝑠𝑖𝑛(𝑖𝑥 − 𝑦)

𝑐𝑜𝑠(𝑖𝑥 − 𝑦)
 

= −
1

𝑖

𝑠𝑖𝑛(𝑦 − 𝑖𝑥)

𝑐𝑜𝑠(𝑦 − 𝑖𝑥)
 

= −
𝑖

𝑖2

2𝑠𝑖𝑛(𝑦 − 𝑖𝑥)cos (𝑦 + 𝑖𝑥)

2𝑐𝑜𝑠(𝑦 − 𝑖𝑥)cos (𝑦 + 𝑖𝑥)
 

= 𝑖
𝑠𝑖𝑛 [(𝑦 − 𝑖𝑥) + (𝑦 + 𝑖𝑥) + 𝑠𝑖𝑛 [(𝑦 − 𝑖𝑥) − (𝑦 + 𝑖𝑥)]

𝑐𝑜𝑠 [(𝑦 − 𝑖𝑥) + (𝑦 + 𝑖𝑥) + 𝑐𝑜𝑠 [(𝑦 − 𝑖𝑥) − (𝑦 + 𝑖𝑥)]
 

[∵ 2𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐴 = 𝑠𝑖𝑛(𝐴 + 𝐵) + 𝑠𝑖𝑛(𝐴 − 𝐵) ,
2𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 = 𝑐𝑜𝑠(𝐴 + 𝐵) + 𝑐𝑜𝑠(𝐴 − 𝐵)] 

= 𝑖
𝑠𝑖𝑛 2𝑦 + 𝑠𝑖𝑛 (−2𝑖𝑥)

𝑐𝑜 𝑠 2𝑦 + 𝑐𝑜𝑠 (−2𝑖𝑥)
 

= 𝑖
𝑠𝑖𝑛 2𝑦 − 𝑖𝑠𝑖𝑛ℎ2𝑥

𝑐𝑜𝑠 2𝑦 + 𝑐𝑜𝑠ℎ2𝑥
 

=
𝑖𝑠𝑖𝑛 2𝑦 − 𝑖2𝑠𝑖𝑛ℎ2𝑥

𝑐𝑜𝑠 2𝑦 + 𝑐𝑜𝑠ℎ2𝑥
 

=
𝑖𝑠𝑖𝑛ℎ 2𝑥 + 𝑖 𝑠𝑖𝑛2𝑦

𝑐𝑜𝑠 2𝑦 + 𝑐𝑜𝑠ℎ2𝑥
 

=
𝑠𝑖𝑛ℎ 2𝑥

𝑐𝑜𝑠 2𝑦 + 𝑐𝑜𝑠ℎ2𝑥
+ 𝑖

𝑠𝑖𝑛2𝑦

𝑐𝑜𝑠 2𝑦 + 𝑐𝑜𝑠ℎ2𝑥
 

EXAMPLE21: Separate 𝑠𝑒𝑐ℎ𝑧 into real and imaginary parts. 

SOLUTION: Now,  

𝑠𝑒𝑐ℎ𝑧 =
1

𝑐𝑜𝑠ℎ𝑧
 

=
1

cosh(𝑥 + 𝑖𝑦)
=

1

cosi(𝑥 + 𝑖𝑦)
 

=
1

𝑐𝑜𝑠𝑖 (𝑖𝑥 − 𝑦)
=

1

𝑐𝑜𝑠(𝑦 − 𝑖𝑥)
 

=
2𝑐𝑜𝑠 (𝑦 + 𝑖𝑥)

2𝑐𝑜𝑠(𝑦 + 𝑖𝑥)𝑐𝑜𝑠 (𝑦 − 𝑖𝑥)
 

= 2
𝑐𝑜𝑠𝑦𝑐𝑜𝑠(𝑖𝑥) − 𝑠𝑖𝑛𝑦𝑠𝑖𝑛(𝑖𝑥) 

𝑐𝑜𝑠[(𝑦 + 𝑖𝑥) + (𝑦 − 𝑖𝑥)] + 𝑐𝑜𝑠[(𝑦 + 𝑖𝑥) − (𝑦 − 𝑖𝑥)]
 

= 2
𝑐𝑜𝑠𝑦 𝑐𝑜𝑠ℎ𝑥 − 𝑖𝑠𝑖𝑛𝑦 𝑠𝑖𝑛ℎ𝑥 

𝑐𝑜𝑠[(𝑦 + 𝑖𝑥) + (𝑦 − 𝑖𝑥)] + 𝑐𝑜𝑠[(𝑦 + 𝑖𝑥) − (𝑦 − 𝑖𝑥)]
 

= 2
𝑐𝑜𝑠𝑦 𝑐𝑜𝑠ℎ𝑥 − 𝑖𝑠𝑖𝑛𝑦 𝑠𝑖𝑛ℎ𝑥 

𝑐𝑜𝑠[(𝑦 + 𝑖𝑥) + (𝑦 − 𝑖𝑥)] + 𝑐𝑜𝑠[(𝑦 + 𝑖𝑥) − (𝑦 − 𝑖𝑥)]
 

= 2
𝑐𝑜𝑠𝑦 𝑐𝑜𝑠ℎ𝑥 

𝑐𝑜𝑠2𝑦 + cos (2𝑖𝑥)
 

= 2
𝑐𝑜𝑠𝑦 𝑐𝑜𝑠ℎ𝑥 

𝑐𝑜𝑠ℎ2𝑥 + cos2y
− 𝑖

2𝑐𝑜𝑠𝑦 𝑐𝑜𝑠ℎ𝑥 

𝑐𝑜𝑠ℎ2𝑥 + cos2y
 

 

3.7 PROPERTIES OF COMPLEX NUMBERS: -  
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1. Domain and Range: The domain of 𝒇(𝒛) is the set of all complex 

numbers z for which 𝑓(𝑧) is defined. The range of 𝒇(𝒛) is the set 

of all values that 𝑓(𝑧) can take. 

Example: If 𝑓(𝑧) = 𝑧1, then the domain is all 𝑧 ≠  0, and the range 

is all complex numbers except 0. 

2. Limit of a Complex Function: A limit exists when the value 

approaches the same number from all directions in the complex 

plane.  Complex numbers have infinitely many approach paths, so 

limits are more restrictive. 

3. Continuity: A function f(z) is continuous at 𝑧0 if 

lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0) 

This is similar to real analysis, but applies to all plane directions. 

4. Differentiability: A complex function is differentiable at 𝑧0 if the limit 

𝒇′(𝒛) = lim
𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
 

exists (and is the same from all directions). Complex 

differentiability is very strong. 

5. Cauchy’s Riemannian Equations: For a differentiability of 

𝑓(𝑧) = 𝑢 + 𝑖𝑣 : 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,    

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

6. Algebra of Complex Functions: If f and g are complex function, 

then 

a. 𝑓 + 𝑔 

b. 𝑓 − 𝑔 

c. 𝑓𝑔 

d. 
𝑓

𝑔
 

are complex Functions. 

7. Analyticity (Holomorphic Functions): A function is analytic at a 

point if it is differentiable in a neighborhood of that point. 

Analytic functions have powerful properties: 

 infinitely differentiable  

 represented by power series harmonic 

 real and imaginary parts 

8. Harmonic Property: If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic, then both u and 

v satisfy: 
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𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,    𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0 

Therefore, both parts are harmonic functions. 

9. Zeros, Poles, and Singularities: 

 Zeros: points where 𝑓(𝑧) = 0. 

 Poles: points where the function blows up to infinity. 

 Isolated singularities classify into removable, pole, or 

essential. 

10. Mapping Property: A complex function transforms one region of 

the plane into another. 

 Lines can become circles. 

 Circles can become other curves. 

 Analytic functions preserve angles (conformal mapping). 

The above properties will be explained in the next unit, where you will 

study the behavior of complex functions including limits, continuity, 

differentiability, analyticity, Cauchy-Riemann equations, singularities, 

and mappings to gain a deeper understanding of their structure and 

behavior. 

3.8 FUNCTIONS OF A COMPLEX VARIABLE AS 

MAPPINGS: -  

Consider the function 𝑓 ∶ ℂ →  ℂ, defined as 𝑓(𝑧) = 𝑧2, where z is a 

complex variable or a point in the complex plane. This is a mapping 

between a complex valued function and a complex variable. 

Sometimes it is also represented as 𝑤 = 𝑧2,  where 𝑧 is member of z-plane 

(domain of definition) and 𝑤 its value, a complex number, member of w -

plane (see Fig.1). 

 

Fig.1 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 57 
 

Thus, point 𝑧 in the z-plane is mapped to point 𝑤 in the w-plane. The image 

of a point z in the domain of definition is the point 𝑤 = 𝑓(𝑧). The image of 

the complete domain of definition is known as the range of f. To see a 

graphical representation of a mapping) 𝑤 = 𝑓(𝑧), let us set 𝑧 = 𝑥 + 𝑖𝑦, 𝑤 =
𝑢 + 𝑖𝑣. 

𝑢 + 𝑖𝑣 = (𝑥 + 𝑖𝑦)2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 

The equation 

𝑢 = 𝑥2 − 𝑦2, 𝑣 = 2𝑥𝑦𝑖 
is a transformation from the 𝑦 -plane to the 𝑢𝑣 –plane.  

 

SELF CHECK QUESTIONS 

1. What is a complex function? Write an example. 

2. If 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), identify the real and imaginary parts. 

3. Define the domain and range of a complex function. 

4. Write the real and imaginary parts of 𝑒𝑧 . 

5. State the principal value of 𝑙𝑜𝑔𝑧. 

6. Find 𝑠𝑖𝑛(𝑧) in terms of 𝑥 and 𝑦. 

3.9 SUMMARY: -  

A complex function is a rule that assigns each complex number 𝑧 = 𝑥 + 𝑖𝑦 

a unique complex value 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) where 𝑢 and  are real-

valued functions of two variables. The study of complex functions focuses 

on their limits, continuity, differentiability, and analytic behavior. A 

function is continuous if its value approaches 𝑓(𝑧0) from every direction in 

the complex plane, and it is differentiable only when it satisfies the Cauchy–

Riemann equations, which makes complex differentiability much stronger 

than real differentiability. Functions that are differentiable on a region are 

called analytic and possess powerful properties such as infinite 

differentiability, representation by power series, and conformal (angle-

preserving) mappings. Complex functions also include important families 

like exponential, trigonometric, logarithmic, and Möbius transformations, 

each having special geometric and algebraic properties that make complex 

analysis rich and widely applicable. 

 

3.10 GLOSSARY: -  

 Complex Function: A rule that assigns each complex number 𝑧 a 

complex value 𝑓(𝑧). 
 Real Part & Imaginary Part: For 𝑓(𝑧) = 𝑢 + 𝑖𝑣, 𝑢 is the real 

part and 𝑣 is the imaginary part. 
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 Domain: Set of complex numbers where the function is defined. 

 Range: Set of output complex values of the function. 

 Limit: The value a function approaches as 𝑧 approaches a point 

from any direction. 

 Continuity: 𝑓(𝑧) is continuous at 𝑧 0 if 𝑓(𝑧) = 𝑓(𝑧0). 
 Differentiability: A function has a derivative at 𝑧 0 if the limit 

𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
 

            exists. 

 Cauchy–Riemann Equations: Conditions 𝑢𝑥 = 𝑣𝑦 and 𝑢𝑦 =

−𝑣𝑥 . 

 Analytic Function: A function differentiable on a region; behaves 

smoothly and equals its power series. 

 Modulus: Magnitude of a complex number, |𝑓(𝑧)| = √𝑢2 + 𝑣2. 
 Argument: Angle a complex number makes with the positive real 

axis. 

 Singularity: A point where the function is not analytic. 

 Zero: A point where 𝑓(𝑧) = 0. 
 Pole: A point where 𝑓(𝑧) becomes infinite. 

 Möbius Transformation: A mapping 
𝑐𝑧+𝑑

𝑎𝑧+𝑏
   that sends 

lines/circles to lines/circles. 

 Conformal Mapping: Angle-preserving mapping; analytic 

functions with non-zero derivatives. 

 

3.11 REFERENCES: -  

 Brown, J. W., & Churchill, R. V. (2022), Complex Variables and       

Applications (10th Edition). McGraw-Hill. 

  S. Ponnusamy & H. Silverman (2021), Complex Variables with 

Applications. Birkhäuser/Springer. 

 

3.12 SUGGESTED READING: -  

 Goyal and Gupta (Twenty first edition 2010), Function of complex 

Variable. 

 Murray R. Spiegel (2009) – Schaum’s Outline of Complex 

Variables, 2nd Edition. 

 R. Narayanaswamy (2005) – Theory of Functions of a Complex 

Variable, S. Chand & Company Ltd 

 

3.13 TERMINAL QUESTIONS: - 
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(TQ-1) Prove that for all values of 𝑥, 𝑦, real or complex, the following 

are true 

k. 𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 = 1 

l. 𝑐𝑜𝑠(−𝑥) = 𝑐𝑜𝑠𝑥 

m. 𝑐𝑜𝑠2𝑥 = 𝑐𝑜𝑠2𝑥 − 𝑠𝑖𝑛2𝑥 

n. 𝑠𝑖𝑛3𝑥 = 3𝑠𝑖𝑛𝑥 − 4𝑠𝑖𝑛3𝑥 

o. 𝑐𝑜𝑠3𝑥 = 4𝑐𝑜𝑠3𝑥 − 3𝑐𝑜𝑠𝑥 

p. 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑦 = 2 𝑠𝑖𝑛
1

2
(𝑥 + 𝑦)𝑐𝑜𝑠

1

2
(𝑥 − 𝑦) 

q. 𝑐𝑜𝑠𝑥 − 𝑐𝑜𝑠𝑦 = 2 𝑠𝑖𝑛
1

2
(𝑥 + 𝑦) 𝑠𝑖𝑛

1

2
(𝑦 − 𝑥) 

r. 𝑠𝑖𝑛(𝑥 ± 𝑦) = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑦 ± 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑦 

s. 𝑐𝑜𝑠(𝑥 ± 𝑦) = 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦 ∓ 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑦 

t. 𝑠𝑒𝑐2𝑥 = 1 + 𝑡𝑎𝑛2𝑥 

u. 𝑐𝑜𝑠𝑒𝑐2𝑥 = 1 + 𝑐𝑜𝑡2𝑥 

(TQ-2)  Prove that for all values of 𝑥, 𝑦, real or complex. 

a. 𝑐𝑜𝑠ℎ2𝑥 − 𝑠𝑖𝑛ℎ2𝑥 = 1 

b. 𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥 

c. 𝑐𝑜𝑠ℎ2𝑥 = 𝑐𝑜𝑠ℎ2𝑥 + 𝑠𝑖𝑛ℎ2𝑥 = 1 + 2𝑠𝑖𝑛ℎ2𝑥 = 2𝑐𝑜𝑠ℎ2𝑥 − 1 

d. 𝑠𝑒𝑐ℎ2𝑥 = 1 − 𝑡𝑎𝑛ℎ2𝑥 

e. 𝑡𝑎𝑛2ℎ𝑥 =
2𝑡𝑎𝑛ℎ𝑥

(1+𝑡𝑎𝑛ℎ2𝑥)
 

f. 𝑠𝑖𝑛ℎ(𝑥 + 𝑦) = 𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑦 + 𝑐𝑜𝑠ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 

g. 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) = 𝑐𝑜𝑠ℎ𝑥 𝑐𝑜𝑠ℎ𝑦 + 𝑠𝑖𝑛ℎ𝑥 𝑠𝑖𝑛ℎ𝑦 

h. 𝑒𝑥 = 𝑐𝑜𝑠ℎ𝑥 + 𝑠𝑖𝑛ℎ𝑥 and 𝑒−𝑥 = 𝑐𝑜𝑠ℎ𝑥 − 𝑠𝑖𝑛ℎ𝑥 

i. 𝑠𝑖𝑛ℎ3𝑥 = 3𝑠𝑖𝑛ℎ𝑥 + 4𝑠𝑖𝑛ℎ3𝑥 

j. 𝑐𝑜𝑠ℎ3𝑥 = 4𝑐𝑜𝑠ℎ3𝑥 − 3𝑐𝑜𝑠ℎ𝑥 

k. 𝑡𝑎𝑛ℎ3𝑥 =
3𝑡𝑎𝑛ℎ𝑥+𝑡𝑎𝑛ℎ3𝑥

1+3𝑡𝑎𝑛ℎ2𝑥
 

(TQ-3) Show that 
1+𝑡𝑎𝑛ℎ𝑥

1−𝑡𝑎𝑛ℎ𝑥
= 𝑐𝑜𝑠ℎ2𝑥 + 𝑠𝑖𝑛ℎ2𝑥 

(TQ-4) Split into real and imaginary parts 
𝑒𝑖𝜃

(𝟏−𝒌𝒆𝒊𝝓)
 . 

(TQ-5) Resolve 𝑒sin (𝑥+𝑖𝑦)into real and imaginary parts. 

(TQ-6) If 𝐸 (
𝑥−𝑎+𝑖𝑦

𝑥+𝑎+𝑖𝑦
) = 𝑃 + 𝑖𝑄, find 𝑃 and 𝑄. 

(TQ-7) Show that tanh(𝑥 + 𝑦) =
𝑡𝑎𝑛ℎ𝑥+𝑡𝑎𝑛ℎ𝑦

1+𝑡𝑎𝑛ℎ𝑥 𝑡𝑎𝑛ℎ𝑦
 

(TQ-8) If sin(𝜃 + 𝑖𝜙) = 𝑐𝑜𝑠𝛼 + 𝑖𝑠𝑖𝑛𝛼, then prove that  

𝑐𝑜𝑠2𝜃 = 𝑠𝑖𝑛ℎ2∅ = ±𝑠𝑖𝑛𝛼 

(TQ-9) Separate 
𝑐𝑜𝑠 (𝑥+𝑖𝑦)

(𝑥+𝑖𝑦)+1
 into real and imaginary parts. 

(TQ-10) If 𝑠𝑖𝑛(𝜃 + 𝑖𝜙) = 𝜌(𝑐𝑜𝑠𝛼 + 𝑖𝑠𝑖𝑛𝛼), prove that 

𝜌2 =
1

2
[𝑐𝑜𝑠ℎ2𝜙 − 𝑐𝑜𝑠2𝜃] and 𝑡𝑎𝑛𝛼 = 𝑡𝑎𝑛ℎ𝜙 𝑐𝑜𝑡𝜃 

 (TQ-11) If 𝑡𝑎𝑛(𝜃 + 𝑖𝜙) = (𝑡𝑎𝑛𝛼 + 𝑖𝑠𝑒𝑐𝛼), prove that 

𝑒2𝜙 = ±𝑐𝑜𝑡
1

2
𝛼 and 2𝜃 = 𝑛𝜋 +

𝜋

2
+ 𝛼 

 (TQ-12) Prove that  
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𝑙𝑜𝑔 (
1

1 − 𝑒𝑖𝛼
) = 𝑙𝑜𝑔 (

1

2
𝑐𝑜𝑠𝑒𝑐

𝛼

2
) + 𝑖 (

𝜋

2
−

𝛼

2
) 

 

 (TQ-13) Prove that  

𝑙𝑜𝑔 𝑡𝑎𝑛 (
𝜋

4
+ 𝑖

𝛼

2
) = 𝑖𝑡𝑎𝑛−1(𝑠𝑖𝑛ℎ𝛼) 

 (TQ-14) Prove that 

𝑠𝑖𝑛ℎ−1𝑥 = 𝑡𝑎𝑛ℎ−1
𝑥

√1 + 𝑥2
 

(TQ-15) Prove that 

𝑡𝑎𝑛ℎ−1𝑥 = 𝑠𝑖𝑛ℎ−1
𝑥

√1 − 𝑥2
 

(TQ-16) Prove that 

𝑐𝑜𝑡ℎ−1(2/𝑥) = 𝑠𝑖𝑛ℎ−1
𝑥

√4 − 𝑥2
 

 (TQ-17) If 𝑐𝑜𝑠ℎ𝑥 = 𝑠𝑒𝑐𝜃,  then prove that 𝑥 = 𝑙𝑜𝑔(𝑠𝑒𝑐𝜃 ± 𝑡𝑎𝑛𝜃) 

 (TQ-18) If 𝑐𝑜𝑠ℎ−1(𝑥 + 𝑖𝑦) + 𝑐𝑜𝑠ℎ−1(𝑥 − 𝑖𝑦) = 𝑐𝑜𝑠ℎ−1𝑎, show that  

2(𝑎 − 1)𝑥2 + 2(𝑎 + 1)𝑦2 = 𝑎2 − 1. 

 (TQ-19) Show that 𝑠𝑖𝑛−1(𝑖𝑥) = 𝑛𝜋 + 𝑖(−1)𝑛 𝑙𝑜𝑔{𝑥 + √1 + 𝑥2}. 

 (TQ-20) Prove that 𝑡𝑎𝑛−1 [𝑖
𝑥−𝑎

𝑥+𝑎
] = −

1

2
𝑖𝑙𝑜𝑔 (

𝑎

𝑥
). 

(TQ-21) Prove that 𝑖𝑖 = 𝑒−(4𝑛+1)/2 

(TQ-22) If 𝑖𝛼+𝑖𝛽 = 𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦),then prove that 

𝑥 = −
1

2
(4𝑛 + 1)𝜋𝛽 and 𝑦 =

1

2
(4𝑛 + 1)𝜋𝛼. 

(TQ-23) = 𝑚𝑥+𝑖𝑦 , then prove that 

𝑦

𝑥
=

2 tan−1 𝑏
𝑎

log(𝑎2 + 𝑏2)
 

where only principal values considered. 

(TQ-24) Prove that (1 + 𝑖𝑡𝑎𝑛𝛼)1+𝑖𝑡𝑎𝑛𝛽can have real values, one of them 

is (𝑠𝑒𝑐𝛼)𝑠𝑒𝑐2𝛽. 
Prove that the following 

a. 𝑠𝑖𝑛ℎ−1 𝑧 = 𝑙𝑜𝑔{𝑧 + √1 − 𝑧2} 

b. 𝑐𝑜𝑠ℎ−1 𝑧 = 𝑙𝑜𝑔{𝑧 + √𝑧2 − 1} 

c. 𝑡𝑎𝑛ℎ−1 𝑧 =
1

2
𝑙𝑜𝑔 (

1+𝑧

1−𝑧
) 

d. 𝑐𝑜𝑠𝑒𝑐−1 𝑧 = 𝑙𝑜𝑔 (
1+√𝑧2−1

𝑧
) 

e. 𝑠𝑒𝑐−1 𝑧 = 𝑙𝑜𝑔 (
1+√1−𝑧2

𝑧
) 

f. 𝑐𝑜𝑡ℎ−1 𝑧 =
1

2𝑖
𝑙𝑜𝑔 (

𝑧+1

𝑧−1
) 
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3.14 ANSWERS: - 

TERMINAL ANSWERS (TQ’S) 

 

(TQ-4) (
𝒄𝒐𝒔𝜽−𝒌𝒄𝒐𝒔(𝜽−𝝓)

𝟏−𝟐𝒌𝒄𝒐𝒔𝝓+𝒌𝟐 ) + 𝒊 (
𝒔𝒊𝒏𝜽−𝒌𝒔𝒊𝒏(𝜽−𝝓)

𝟏−𝟐𝒌𝒄𝒐𝒔𝝓+𝒌𝟐 ) 

(TQ-5) 𝑒sin 𝑥𝑐𝑜𝑠ℎ𝑦. 𝑒𝑖𝑐𝑜𝑠𝑥 𝑠𝑖𝑛ℎ𝑦  

(TQ-6) 𝑃 = 𝑒𝑝𝑐𝑜𝑠𝑞 and 𝑄 = 𝑒𝑝𝑠𝑖𝑛𝑞, where 𝑝 =
𝑥2+𝑦2−𝑎2

(𝑥+𝑎)2+𝑦2 and 𝑞 =

2𝑎𝑦

(𝑥+𝑎)2+𝑦2 
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UNIT4: Limit, Continuity and 

Differentiability 

CONTENTS: 
4.1      Introduction 

4.2      Objectives 

4.3      Point set 

4.4      Neighborhood 

4.5      Limit point 

4.6      Continuity 

4.7       Discontinuity 

4.8       Differentiability 

4.9       Rolle’s Theorem 

4.10      Lagrange’s Mean Value Theorem 

4.11      Summary 

4.12      Glossary 

4.13      References 

4.14      Suggested Reading 

4.15      Terminal questions 

4.16      Answers  

  

4.1 INTRODUCTION: -  

Limit, continuity, and differentiability are key notions in complex analysis 

that help us understand the behavior of complicated functions. The limit of 

a complex function is the value that the function approaches as the input 

variable approaches a specific point in the complex plane. A function is 

considered to be continuous at a point if its limit exists and equals the 

function's value, ensuring that there are no abrupt leaps or breaks. 

Differentiability of a complex function at a point necessitates not just 

continuity but also the presence of a unique complex derivative, which is a 

much greater requirement than in real analysis. This leads to analyticity and 

the solution of the Cauchy-Riemann equations. These principles, when 

combined, serve as the foundation for more advanced conclusions in 

complex analysis, such as analytic continuation, contour integration, and 

conformal mapping. 

 

4.2 OBJECTIVES: -  
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After studying this unit, the learner’s will be able to  

 Understand the concept of limits. 

 Understand the definition of continuity.  

 Classify different types of discontinuities.  

 Understand differentiability. 

 Apply the concepts of limit, continuity, and differentiability. 

 Develop problem-solving skills related to evaluating limits, 

checking continuity, and finding derivatives in various contexts. 

 

4.3 POINT SET: -  

A point set in the complex plane refers to a gathering of points, each 

representing a distinct element within the set. These points, commonly 

referred to as numbers or elements of the set, collectively constitute the 

spatial arrangement of the set within the two-dimensional complex plane. 

4.4 NEIGHBORHOOD: -  

In the Argand plane (also known as the complex plane), the neighborhood 

of a point 𝑧0 is defined as the set of points 𝑧 such that the distance 

between 𝑧0 and 𝑧 (denoted as |𝑧 − 𝑧0| < 𝜀 is less than some positive real 

number ε. Mathematically, it can be expressed as {𝑧 ∈ ℂ: |𝑧 − 𝑧0| < 𝜀 }, 

where ℂ represents the complex numbers. This neighborhood represents 

an open set around the point z, where all points within a certain distance 𝜀 

from 𝑧 are included.  

The neighborhood of the point at infinity in the complex plane is the set 

of points 𝑧 s.t.  |𝑧| < 𝑘 where 𝑘 is any positive real number. 

4.5 LIMIT POINT: -  

The limit of a function 𝑓(𝑧), defined in a deleted (punctured) neighborhood 

of a point 𝑧0, is said to tend to 𝑙 if for every arbitrary number 𝜀 >

0 (however small), there exists a 𝛿 > 0 such that 

0 <∣ 𝑧 − 𝑧0 ∣< 𝛿 implies ∣ 𝑓(𝑧) − 𝐿 ∣< 𝜀. 

Symbolically, the limit is written as 

lim
𝑧→𝑧0

𝑓(𝑧) = 𝐿 
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In the limit of a real function, when 𝑥 ≥  𝑎, then 𝑥 ≥  𝑎 moves along the 

𝑥 axis, whether to the left or to the right of 𝑎. However, in the limit of a 

complex function, when 𝑥 ≥  𝑎, then a can move along any curved path in 

the planar domain. The limit exists only if the limit of the function is the 

same in each case. 

SOLVED EXAMPLES 

EXAMPLE1: If 𝑓(𝑧) = 𝑧2, then prove that 𝑙𝑖𝑚
𝑧→𝑧0

𝑧0
2. 

SOLUTION: Here we have to show that for any given 𝛿 𝜖 >  0, it can be 

obtained (depending on 𝜖) such that 
|𝑧 − 𝑧0| < 𝜖 

While 

0 <∣ 𝑧 − 𝑧0 ∣< 𝛿 

If 𝛿 ≤ 1,then  

0 <∣ 𝑧 − 𝑧0 ∣< 𝛿 ⇒∣ 𝑧 − 𝑧0 ∣=∣ 𝑧 − 𝑧0 ∣∣ 𝑧 + 𝑧0 ∣ 

< 𝛿 ∣ 𝑧 − 𝑧0 + 2𝑧0 ∣ 

< 𝛿{∣ 𝑧 − 𝑧0 ∣ +|2𝑧0|} 

< 𝛿{1 + 2|𝑧0|} 

Let                                      𝛿 = 𝑚𝑖𝑛 (1,
𝜖

1+2|𝑧0|
) 

|𝑧2 − 𝑧0
2| < 𝜖 𝑤ℎ𝑖𝑙𝑒 ∣ 𝑧 − 𝑧0 ∣< 𝛿  

∴                                        𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝑙𝑖𝑚
𝑧→𝑧0

𝑧0
2 

EXAMPLE2: Prove that 

𝐿𝑖𝑚
𝑧→𝑧0

3𝑧4 − 2𝑧3 + 8𝑧2 − 2𝑧 + 5

𝑧 − 𝑖
= 4 + 4𝑖 

SOLUTION: Here we have to show that 𝜖 > 0 can be obtained for any 

arbitrary 𝛿 >  0, so that 

|
3𝑧4 − 2𝑧3 + 8𝑧2 − 2𝑧 + 5

𝑧 − 𝑖
− (4 − 4𝑖)| < 𝜖, 𝑤ℎ𝑒𝑛 0 < |𝑧 − 𝑖| < 𝛿 

 ∴     𝑧 ≠ 1, so that 
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3𝑧4 − 2𝑧3 + 8𝑧2 − 2𝑧 + 5

𝑧 − 𝑖

=
[3𝑧3 − (2 − 3𝑖)𝑧2 + (5 − 2𝑖)𝑧 + 5𝑖](𝑧 − 𝑖)

𝑧 − 𝑖
 

= 3𝑧3 − (2 − 3𝑖)𝑧2 + (5 − 2𝑖)𝑧 + 5𝑖 

If 𝛿 ≤ 1, then 

= |3𝑧3 − (2 − 3𝑖)𝑧2 + (5 − 2𝑖)𝑧 + 5𝑖| 

= |𝑧 − 𝑖||3𝑧2 − (6𝑖 − 2)𝑧 − 1 − 4𝑖| 

= |𝑧 − 𝑖|3(𝑧 − 𝑖 + 𝑖)2 − (6𝑖 − 2)(𝑧 − 𝑖 + 𝑖) − 1 − 4𝑖 

= |𝑧 − 𝑖||3(𝑧 − 𝑖)2 − (12𝑖 − 2)(𝑧 − 𝑖) − 10 − 6𝑖| 

=< 𝛿{3|𝑧 − 𝑖|2 + |12𝑖 − 2||𝑧 − 𝑖| + |−10 − 6𝑖|} 

=< 𝛿(3 + 13 + 12) = 28𝛿 

So if 𝛿 = 𝑚𝑖𝑛 [1,
𝜖

28
], then we get desired Result. 

EXAMPLE3: (Theorems of limits): If 𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝐴 and 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐵, 

then prove that 

i. 𝐿𝑖𝑚
𝑧→𝑧0

[𝑓(𝑧) + 𝑔(𝑧)] = 𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) + 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐴 + 𝐵 

ii. 𝐿𝑖𝑚
𝑧→𝑧0

[𝑓(𝑧) − 𝑔(𝑧)] = 𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) − 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐴 − 𝐵 

iii. 𝐿𝑖𝑚
𝑧→𝑧0

[𝑓(𝑧)𝑔(𝑧)] = [𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧)] [𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧)] = 𝐴𝐵 

iv. 𝐿𝑖𝑚 
𝑓(𝑧)

𝑔(𝑧)
=

𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧)

𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧)
=

𝐴

𝐵
 

SOLUTION:  

i. Suppose  𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝐴 and 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐵, we get, for given 

𝜖 > 0, ∃ 𝛿1(> 0) and 𝛿2(> 0) such that 

|𝑓(𝑧) − 𝐴| <
𝜖

2
  whenever 0 < |𝑧 − 𝑧0| < 𝛿1 

|𝑓(𝑧) − 𝐵| <
𝜖

2
  whenever 0 < |𝑧 − 𝑧0| < 𝛿2 

                 then ∀ 𝑧 with 0 < |𝑧 − 𝑧0| < 𝛿 = 𝑚𝑖𝑛{𝛿1, 𝛿2 }, we obtain 
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|𝑓(𝑧) + 𝑔(𝑧) − (𝐴 + 𝐵)| ≤ |𝑓(𝑧) − 𝐴| + |𝑔(𝑧) − 𝐵| 

<
𝜖

2
+
𝜖

2
= 𝜖 

                 ⟹                   𝐿𝑖𝑚
𝑧→𝑧0

[𝑓(𝑧) + 𝑔(𝑧)] = 𝐴 + 𝐵 

ii. Suppose  𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝐴 and 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐵, we get, for given 

𝜖 > 0, ∃ 𝛿1(> 0) and 𝛿2(> 0) such that 

|𝑓(𝑧) − 𝐴| <
𝜖

2
  whenever 0 < |𝑧 − 𝑧0| < 𝛿1 

|𝑓(𝑧) − 𝐵| <
𝜖

2
  whenever 0 < |𝑧 − 𝑧0| < 𝛿2 

                 then ∀ 𝑧 with 0 < |𝑧 − 𝑧0| < 𝛿 = 𝑚𝑖𝑛{𝛿1, 𝛿2 }, we obtain 

|𝑓(𝑧) + 𝑔(𝑧) − (𝐴 − 𝐵)| ≤ |𝑓(𝑧) − 𝐴| + |𝑔(𝑧) − 𝐵| 

<
𝜖

2
+
𝜖

2
= 𝜖 

Since for every 𝜀 > 0 such that 𝛿 exists, the definition of limit 

gives: 

 ⟹                               𝐿𝑖𝑚
𝑧→𝑧0

[𝑓(𝑧) − 𝑔(𝑧)] = 𝐴 − 𝐵 

iii. Suppose  𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) = 𝐴 and 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐵, we get, for given 

𝜖 > 0, ∃ 𝛿1(> 0) and 𝛿2(> 0) such that 

|𝑓(𝑧) − 𝐴| <
𝜖

2
  whenever 0 < |𝑧 − 𝑧0| < 𝛿1 

|𝑓(𝑧) − 𝐵| <
𝜖

2
  whenever 0 < |𝑧 − 𝑧0| < 𝛿2 

                  then ∀ 𝑧 with 0 < |𝑧 − 𝑧0| < 𝛿 = 𝑚𝑖𝑛{𝛿1, 𝛿2 }, we obtain 

                   |𝑓(𝑧)𝑔(𝑧) − (𝐴𝐵)| ≤ |𝐵(𝑓(𝑧) − 𝐴) + 𝐴(𝑔(𝑧) − 𝐵) +

(𝑓(𝑧) − 𝐴)(𝑔(𝑧) − 𝐵)| 

≤ |𝐵||𝑓(𝑧) − 𝐴| + |𝐴||𝑓(𝑧) − 𝐵| + |𝑓(𝑧) − 𝐴||𝑔(𝑧) − 𝐵| 

< 𝜖(|𝐴| + |𝐵|)√𝜖 + 𝜖 

Since 𝜖(> 0) is arbitrary, we get  

𝑓(𝑧)𝑔(𝑧) = (𝐴𝐵) 
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iv. Suppose 𝐿𝑖𝑚
𝑧→𝑧0

𝑔(𝑧) = 𝐵 but 𝐵 ≠ 0 we get, for given 𝜖 > 0, 

∃ 𝛿(> 0) such that 

|𝑔(𝑧) − 𝐵| < 𝜖 whenever 

0 < |𝑧 − 𝑧0| < 𝛿 

Let us consider 𝜖 =
|𝐵|

2
, the above inequality reduces to 

|𝐵|

2
< |𝑔(𝑧)| <

3|𝐵|

2
 whenever 

0 < |𝑧 − 𝑧0| < 𝛿 

Now for  0 < |𝑧 − 𝑧0| < 𝛿, we get 

|
1

𝑔(𝑧)
−
1

𝐵
| = |

𝑔(𝑧) − 𝐵

𝐵𝑔(𝑧)
| 

=
|𝑔(𝑧) − 𝐵|

|𝐵||𝑔(𝑧)|
≤
2|𝑔(𝑧) − 𝐵|

|𝐵|2
<
2𝜖

|𝐵|2
 

Since 𝜖(> 0) is arbitrary, we obtain 

𝐿𝑖𝑚
𝑧→𝑧0

1

𝑔(𝑧)
=
1

𝐵
 

Now using(iii) we get 

 

𝐿𝑖𝑚
𝑧→𝑧0

𝑓(𝑧)

𝑔(𝑧)
= 𝐿𝑖𝑚

𝑧→𝑧0
𝑓(𝑧)𝐿𝑖𝑚

𝑧→𝑧0
 
1

𝑔(𝑧)
 =

𝐴

𝐵
. 

EXAMPLE4: Find the following limits using the above limit rules: 

a. lim
𝑥→𝑐

(𝑥3 + 4𝑥2 − 3) 

b. lim
𝑥→𝑐

(𝑥4+𝑥2−1)

𝑥2+5
 

c. lim
𝑥→𝑐

(2𝑥 + 5) 

d. lim
𝑡→6

8(𝑡 − 5)(𝑡 − 7) 

e. lim
𝑥→2

(𝑥+2)

𝑥2+5𝑥+6
 

SOLUTION: 

a. lim
𝑥→𝑐

(𝑥3 + 4𝑥2 − 3) = lim
𝑥→𝑐

 𝑥3 + lim
𝑥→𝑐

4𝑥2 − lim
𝑥→𝑐

3 = 𝑐3 + 4𝑐2 − 3. 

b. lim
𝑥→𝑐

(𝑥4+𝑥2−1)

𝑥2+5
=

lim
𝑥→𝑐

(𝑥4+𝑥2−1)

lim
𝑥→𝑐

(𝑥2+5)
=

(lim
𝑥→𝑐

𝑥4+lim
𝑥→𝑐

𝑥2−lim
𝑥→𝑐

1)

(lim
𝑥→𝑐

𝑥2+lim
𝑥→𝑐

5)
=

𝑐4+𝑐2−1

𝑐2+5
. 

c. lim
𝑥→𝑐

(2𝑥 + 5) = lim
𝑥→𝑐

2𝑥 + lim
𝑥→𝑐

5 = 2𝑐 + 5. 

d. lim
𝑡→6

8(𝑡 − 5)(𝑡 − 7) = 8 (lim
𝑥→𝑐

𝑡 − lim
𝑥→𝑐

5)(lim
𝑥→𝑐

𝑡 − lim
𝑥→𝑐

7) = 8 ×

(6 − 5)(6 − 7) = 8 × (1) × (−1) = −8. 
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e. lim
𝑥→2

(𝑥+2)

𝑥2+5𝑥+6
=

lim
𝑥→2

(𝑥+2)

lim
𝑥→2

(𝑥2+5𝑥+6)
=

2+2

22+5×2+6
=

4

4+10+6
=

4

20
=

1

5
= 0.2. 

EXAMPLE5: If 𝑙𝑖𝑚
𝑧−𝑧0

𝑓(𝑧) exists, prove that it is unique. 

SOLUTION: Let  𝑙𝑖𝑚
𝑧−𝑧0

𝑓(𝑧) = 𝑙1 and 𝑙𝑖𝑚
𝑧−𝑧0

𝑓(𝑧) = 𝑙2, where 𝑙1 ≠ 𝑙2. 

Now 

𝑙𝑖𝑚
𝑧−𝑧0

𝑓(𝑧) = 𝑙1 ⇒ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛿1 > 0, 𝜖 > 0 

So that 

|𝑓(𝑧) − 𝑙1| <
𝜖

2
 𝑤ℎ𝑖𝑙𝑒 0 < |𝑧 − 𝑧0| < 𝛿1 

Similarly 

 

𝑙𝑖𝑚
𝑧−𝑧0

𝑓(𝑧) = 𝑙2 ⇒ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛿2 > 0, 𝜖 > 0 

So that 

|𝑓(𝑧) − 𝑙2| <
𝜖

2
 𝑤ℎ𝑖𝑙𝑒 0 < |𝑧 − 𝑧0| < 𝛿2 

Let 𝛿 = 𝑚𝑖𝑛 (𝛿1, 𝛿2 ), then 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛿 > 0, 𝜖 > 0  

so that  

|𝑓(𝑧) − 𝑙1| <
𝜖

2
𝑎𝑛𝑑 |𝑓(𝑧) − 𝑙2| <

𝜖

2
 while 0 < |𝑧 − 𝑧0| <  𝛿 

Now 

|𝑙1 − 𝑙2| = |𝑙1 − 𝑓(𝑧) − 𝑙2| 

≤ |𝑙1 − 𝑓(𝑧)||𝑓(𝑧) − 𝑙2| 

<
𝜖

2
+

𝜖

2
 while 0 < |𝑧 − 𝑧0| <  𝛿 

 ∴                                                |𝑙1 − 𝑙2| < 𝜖 

Since this is true for every ∈>  0 and is arbitrary. Hence 

|𝑙1 − 𝑙2| = 0 ⇒ 𝑙1 = 𝑙2 

Therefore, 𝑙𝑖𝑚
𝑧−𝑧0

𝑓(𝑧) if it exists, will be unique. 

EXAMPLE6: Show that the lim
𝑧→0

(
𝑧̅

𝑧
) does not exist. 

SOLUTION: If the limit exists, it must depend on the path 𝑧 of approaching 

0. 

But when along the 𝑥 −axis 𝑧 → 0 then 𝑦 =  0. 

 ∴        𝑧 = 𝑥 + 𝑖𝑦 = 𝑥    and    𝑧̅ = 𝑥 − 𝑖𝑦 = 𝑥 

Now         

𝑙𝑖𝑚
𝑧→0

𝑧̅

𝑧
= 𝑙𝑖𝑚

𝑦→0

𝑥

𝑥
= 1                       … (1) 

But when along the 𝑦 −axis 𝑧 → 0 then 𝑥 =  0. 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑖𝑦    and    𝑧̅ = 𝑥 + 𝑖𝑦 = −𝑖𝑦 
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Now 

𝑙𝑖𝑚
𝑧→0

𝑧̅

𝑧
= 𝑙𝑖𝑚

𝑦→0

−𝑖𝑦

𝑖𝑦
= −1                … (2) 

 

Since (1) and (2) are unequal. Hence 𝑙𝑖𝑚
𝑧→0

𝑧̅

𝑧
 does not exist. 

EXAMPLE7: If 𝑓(𝑧) = 𝑧2, prove that lim
𝑧→0

𝑓(𝑧) = 𝑧2. 

SOLUTION: Let 𝜖 > 0 given, to find 𝛿 > 0 s.t. |𝑧2 − 𝑧0
2| <∈ whenever 

0 < |𝑧 − 𝑧0| < 𝛿 

Consider                   |𝑧2 − 𝑧0
2| = |(𝑧 − 𝑧0)(𝑧 + 𝑧0)| 

|𝑧 + 𝑧0||𝑧 − 𝑧0| < 𝛿|𝑧 + 𝑧0| 

= |𝑧 − 𝑧0 + 2𝑧0| ≤ 𝛿|𝑧 − 𝑧0| + 2𝛿|𝑧0| < 𝛿𝛿 + 2𝛿|𝑧0| =∈ 

  ∵ now 𝛿 > 0s.t. min{
∈

1+2|𝑧0|
, 1} 

 ⇒                                           |𝑧2 − 𝑧0
2| <∈ 

⇒                                             𝑙𝑖𝑚
𝑧→0

𝑓(𝑧) = 𝑧0
2  

4.6 CONTINUITY: -  

A function 𝑓: ℂ → ℂ is said to be continuous at a point 𝑧0 ∈ ℂ if, for every 

𝜖 > 0, there exists a 𝛿 > 0 such that whenever ∣ 𝑧 − 𝑧0 ∣< 𝛿, it follows that 

∣ 𝑓(𝑧) − 𝑓(𝑧0) ∣< 𝜖. In other words, small changes in the input 𝑧 near 𝑧0 

result in small changes in the output 𝑓(𝑧). The function f is continuous on 

a set 𝑆 ⊆ ℂ if it is continuous at every point in 𝑆. 

OR 

A function 𝑓: 𝐷 → ℂ is said to be continuous at a point 𝑧0 ∈ 𝐷 iff ∀  ∈>

0, ∃ 𝛿 > 0 s.t ∣ 𝑓(𝑧) − 𝑓(𝑧0) ∣< 𝜖 whenever 𝑧 ∈ 𝐷 and ∣ 𝑧 − 𝑧0 ∣<∈. 

Continuity from left and continuity from right: Let f be a function 

defined on an open interval I and let 𝑎𝜖𝐼. We say that f is continuous from 

the left at  𝑎 if  𝑙𝑖𝑚
𝑥→𝑎−0

𝑓(𝑥) exists and is equal to 𝑓 (𝑎). Similarly according 

to be continuous from the right at a if lim if 𝑙𝑖𝑚
𝑥→𝑎+0

𝑓(𝑥) exists and is equal 

to 𝑓 (𝑎). 

Continuous function: A function 𝑓 is said to be continuous if, for every 

point in its domain, the limit of the function equals its value. 
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Continuity in an Open interval: A function  f is said to be a continuous in 

the open interval ]𝑎, 𝑏[ if it is continuous at each point of the interval. 

Or 

A function 𝑓 is continuous on an open interval (𝑎, 𝑏) if 𝑓 is continuous at 

every point 𝑐 ∈ (𝑎, 𝑏). 

Since (𝑎, 𝑏) is open, every point 𝑐 in it has points on both sides, so that 

𝑙𝑖𝑚
𝑥→𝑐

𝑓(𝑥) =𝑓(𝑐)  ∀ 𝑐 ∈ (𝑎, 𝑏) 

Continuity in a Closed interval: 

Let f be a function defined on the closed interval [𝑎, 𝑏]. We say that f is 

continuous 𝑎+ 𝑎 if it is continuous from the right at 𝑎 and also the 𝑓 is 

continuous at 𝑏 if it is continuous from the left at 𝑏. Further, 𝑓 is said to be 

continuous on the closed interval [𝑎, 𝑏], if (i) it is continuous from the right 

at 𝑎, (ii) continuous from the left at 𝑏 and (iii) continuous on the open 

interval ]𝑎, 𝑏[. 

Or 

A function 𝑓 is continuous on a closed interval [𝑎, 𝑏] then,  

 𝑓 is continuous at every interior point 𝑐 of  [𝑎, 𝑏] 𝑖. 𝑒., at 𝑐𝜖]𝑎, 𝑏[ if 

𝑓(𝑐 − 0) = 𝑓(𝑐) = 𝑓(𝑐 + 0) 𝑖. 𝑒., if 

𝑙𝑖𝑚
𝑥→𝑐−0

𝑓(𝑥) = 𝑓(𝑐) = 𝑙𝑖𝑚
𝑥→𝑐+0

𝑓(𝑥). 

 𝑓 is continuous at right-hand limit at the left end point 𝑏, if 

𝑓(𝑏) = 𝑓(𝑏 − 0) 𝑖. 𝑒.,  𝑙𝑖𝑚
𝑥→𝑏−0

𝑓(𝑥) 

 𝑓 is continuous at left-hand limit at the left end point 𝑏, if 

𝑓(𝑎) = 𝑓(𝑎 + 0) 𝑖. 𝑒.,  𝑙𝑖𝑚
𝑥→𝑎+0

𝑓(𝑥). 

4.7 DISCONTINUITY: -  

If a function is not continuous at a point, then it is said to be discontinuous 

at that point and the point is called a point of discontinuity of the function. 

 Type of Discontinuity: 

1. Removable Discontinuity: A function is known as Removable 

discontinuity at a point 𝑎 if 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)., but not equal to 𝑓(𝑎).  
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2. Finite Discontinuity: The left-hand and right-hand limits exist but 

are not equal:  

lim
𝑥→𝑎+

𝑓(𝑥) ≠ lim
𝑥→𝑎−

𝑓(𝑥) 

3. Infinite Discontinuity:  

 The function approaches ±∞ as 𝑥 approaches the point. 

 There is a vertical asymptote at the point. 

4. Oscillatory Discontinuity: 

 The function oscillates infinitely as 𝑥 → 𝑎.  

 So the limit does not exist. 

SOLVED EXAMPLES 

EXAMPLE1: A function 𝑓(𝑥) defined as follow: 

𝑓(𝑥) =

{
 
 

 
 (

𝑥2

𝑎
) − 𝑎,    𝑤ℎ𝑒𝑛 𝑥 < 𝑎

0,                        𝑤ℎ𝑒𝑛 𝑥 = 𝑎

𝑎 − (
𝑥2

𝑎
)          𝑤ℎ𝑒𝑛 𝑥 > 𝑎

 

Prove that the function 𝑓(𝑥) is continuous at 𝑥 = 𝑎. 

SOLUTION: Let 𝑓(𝑎 + 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 + ℎ) = 𝑙𝑖𝑚
ℎ→0

𝑓 [𝑎 −
𝑎2

(𝑎+ℎ)
] 

 [∵ 𝑓(𝑥) =  𝑎 − (
𝑥2

𝑎
)  𝑓𝑜𝑟 𝑥 > 𝑎] 

= [𝑎 −
𝑎2

(𝑎)
] = 𝑎 − 𝑎 = 0 

𝑓(𝑎 − 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 − ℎ) = 𝑙𝑖𝑚
ℎ→0

𝑓 [
(𝑎 − ℎ)2

𝑎
− 𝑎] 

[∵ 𝑓(𝑥) =  (
𝑥2

𝑎
) − 𝑎 𝑓𝑜𝑟 𝑥 < 𝑎] 

= (
𝑎2

𝑎
) − 𝑎 = 𝑎 − 𝑎 = 0 

Then also have 𝑓(𝑎) = 0. 

Hence 𝑓(𝑎 + 0) = 𝑓(𝑎 − 0) = 𝑓(𝑎),  therefore 𝑓(𝑥) is continuous at 𝑥 =

0 
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EXAMPLE2: Examine the function defined below for continuity at 𝑥 = 𝑎: 

𝑓(𝑥) =
1

𝑥 − 𝑎
𝑐𝑜𝑠𝑒𝑐 (

1

𝑥 − 𝑎
) , 𝑥 ≠ 𝑎 

𝑓(𝑥) = 0, 𝑥 = 𝑎 

SOLUTION: Let 

𝑓(𝑎 + 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 + ℎ) 

= lim 
ℎ→0

1

𝑎 + ℎ − 𝑎
𝑐𝑜𝑠𝑒𝑐

1

𝑎 + ℎ − 𝑎
=  𝑙𝑖𝑚

ℎ→0

1

ℎ𝑠𝑖𝑛 (
1
ℎ)
  

                             = +∞,                 since ℎ𝑠𝑖𝑛 (
1

ℎ
) → 0 𝑎𝑠 ℎ → 0. 

𝑓(𝑎 − 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 − ℎ) 

= lim 
ℎ→0

1

𝑎 − ℎ − 𝑎
𝑐𝑜𝑠𝑒𝑐

1

𝑎 − ℎ − 𝑎
= 𝑙𝑖𝑚

ℎ→0−
− [

1

ℎ𝑠𝑖𝑛 (−
1
ℎ)
]  

=  𝑙𝑖𝑚
ℎ→0

1

ℎ𝑠𝑖𝑛 (
1
ℎ)

 

= +∞,                 since ℎ𝑠𝑖𝑛 (
1

ℎ
) → 0 𝑎𝑠 ℎ → 0. 

Also                                         𝑓(𝑎) = 0 

Since  𝑓(𝑎 + 0) = 𝑓(𝑎 − 0) ≠ 𝑓(𝑎) the function 𝑓(𝑥) is discontinuous at 

𝑥 = 𝑎. 

EXAMPLE3: Examine the function defined below for continuity at 𝑥 = 𝑎: 

𝑓(𝑥) =
𝑠𝑖𝑛2𝑎𝑥

𝑥2
𝑓𝑜𝑟 𝑥 ≠ 0, 𝑓(𝑥) = 1 𝑓𝑜𝑟 𝑥 = 0. 

SOLUTION: Let 𝑓(0) = 1 

𝑓(0 + 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(0 + ℎ) = 𝑙𝑖𝑚
ℎ→0

𝑓(ℎ) = 𝑙𝑖𝑚
ℎ→0

𝑠𝑖𝑛2𝑎ℎ

ℎ2
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= lim 
ℎ→0

𝑠𝑖𝑛2𝑎ℎ

(𝑎ℎ)2
𝑎2 =  1. 𝑎2 = 𝑎2 

𝑓(0 − 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(0 − ℎ) = 𝑙𝑖𝑚
ℎ→0

𝑓(−ℎ) = 𝑙𝑖𝑚
ℎ→0

𝑠𝑖𝑛2(−𝑎ℎ)

(−ℎ2)
 

= lim 
ℎ→0

𝑠𝑖𝑛2𝑎ℎ

(ℎ)2
= 𝑎2 

Now 𝑓(𝑥) is continuous at 𝑥 = 0 iff 

𝑓(0 + 0) = 𝑓(0 − 0) = 𝑓(0) 

Hence f(x) is discontinuous at 𝑥 = 0 unless 𝑎 = 1. 

EXAMPLE4: A function 𝑓(𝑥) is defined as follows: 

𝑓(𝑥) = 1 + 𝑥 𝑖𝑓 𝑥 ≤ 2𝑓𝑎𝑛𝑑 𝑓(𝑥) = 5 − 𝑥 𝑖𝑓 𝑥 ≥ 2. 

Is the function continuous at 𝑥 = 2? 

SOLUTION: Here  𝑓(2) = 1 + 2 𝑜𝑟 5 − 2 = 3 

𝑓(2 + 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(2 + ℎ) = 𝑙𝑖𝑚
ℎ→0

[5 − (2 + ℎ)] 

= 𝑙𝑖𝑚
ℎ→0

[3 − ℎ] = 3 

and  

𝑓(2 − 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(2 − ℎ), where h is + 𝑖𝑣𝑒 and very small 

               = 𝑙𝑖𝑚
ℎ→0

[1 − (2 − ℎ)],    [∵ 2 − ℎ < 2 and 𝑓(𝑥) = 1 + 𝑥 if 𝑥 < 2] 

= 𝑙𝑖𝑚
ℎ→0

[3 − ℎ] = 3 

Thus 

𝑓(2 + 0) = 𝑓(2 − 0) = 𝑓(2). 

Hence the 𝑓(𝑥) is continuous at 𝑥 = 2. 

4.8 DIFFERENTIBILITY: -  
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Let I denote the open interval ]𝑎, 𝑏[ in R and let 𝑥0𝜖𝐼. Then a function 

𝑓: 𝐼 → 𝑅 is said to be differential (or derivable) at 𝑥0 iff  

𝑙𝑖𝑚
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

Or 

𝑙𝑖𝑚
ℎ→0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

exists finitely and this limit, if it exists finitely, is called the differential 

coefficient or derivative of 𝑓 with respect to 𝑥 at 𝑥 = 𝑥0. 

Progressive and regressive derivatives:  

The progressive derivative of 𝑓 at 𝑥 = 𝑥0 is obtained by 

𝑙𝑖𝑚
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
, ℎ > 0 

It is also called the right hand differential coefficient of 𝑓 at 𝑥 = 𝑥0 and 

denoted by 𝑹 𝒇′(𝒙𝟎) or by 𝒇′(𝒙𝟎 + 𝟎). 

The progressive derivative of 𝑓 at 𝑥 = 𝑥0 is obtained by 

𝑙𝑖𝑚
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

−ℎ
, ℎ > 0 

It is also known as the left hand differential coefficient of 𝑓 at 𝑥 = 𝑥0 and 

denoted by 𝑳 𝒇′(𝒙𝟎) or by 𝒇′(𝒙𝟎 + 𝟎). 

Open interval]𝒂, 𝒃[: A function 𝑓: ]𝑎, 𝑏[ → 𝑅 is called  differentiable in 

]𝑎, 𝑏[ iff it is differentiable at every point of ]𝑎, 𝑏[. 

Closed interval[𝒂, 𝒃]: A function 𝑓: [𝑎, 𝑏] → 𝑅 is called  differentiable in 

[𝑎, 𝑏] iff 𝑅𝑓′(𝑎) exist 𝐿𝑓′(𝑏) exists and f is differentiable at every point of 

]𝑎, 𝑏[. 

Alternative definition of differentiability: Let 𝑓 be a function defined on 

an interval 𝐼 and let a be an interior point of 𝐼. then by the definition of 

𝑓′(𝑎), assuming it to exist, we get 

𝑓′(𝑎) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
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𝑖. 𝑒., 𝑓′(𝑎) exists if for a given 𝜖 > 0, ∃𝛿 > 0, such that 

|
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
−𝑓′(𝑎)| < 𝜖,𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 0 < |𝑥 − 𝑎| < 𝛿 

Or  

𝑥𝜖]𝑎 − 𝛿, 𝑎 + 𝛿[ ⇒ 𝑓′(𝑎) − 𝜖 <
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
< 𝑓′(𝑎) + 𝜖 

THEOREM1: If a function f is differentiable at a point 𝑥0and 𝑐 is any 

real number, then the function 𝑐𝑓 is also differentiable at 𝑥0 and 

(𝑐𝑓)′(𝑥0) = 𝑐𝑓
′(𝑥0). 

PROOF: By the definition of 𝑓’(𝑥), we get 

𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑓′(𝑥0) 

Now   

= 𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑐𝑓)(𝑥) − (𝑐𝑓)(𝑥0)

𝑥 − 𝑥0
= 𝑙𝑖𝑚

𝑥→𝑥0

𝑐𝑓(𝑥) − 𝑐𝑓(𝑥0)

𝑥 − 𝑥0
 

= 𝑙𝑖𝑚
𝑥→𝑥0

[𝑐
𝑓(𝑥) − 𝑐𝑓(𝑥0)

𝑥 − 𝑥0
] 

= 𝒄 𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑐𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑐𝑓′(𝑥0) 

Hence 𝑐𝑓 is differentiable at 𝑥0 and (𝑐𝑓)′(𝑥0) = 𝑐𝑓′(𝑥0). 

THEOREM2: Let 𝑓 and 𝑔 be defined on an interval 𝐼. If 𝑓 and 𝑔 are 

differentiable at 𝑥0𝜖𝐼, then so also is 𝑓 + 𝑔 and  

(𝑓 + 𝑔)′(𝑥0) = 𝑓
′ (𝑥0) + 𝑔′(𝑥0) 

PROOF: Let 𝑓 and 𝑔 are differentiable at (𝑥0), then 

𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑓′(𝑥0) 

𝑙𝑖𝑚
𝑥→𝑥0

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
= 𝑔′(𝑥0) 

Now  
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𝑙𝑖𝑚
𝑥→𝑥0

(𝑓 + 𝑔)(𝑥) − (𝑓 + 𝑔)(𝑥0)

𝑥 − 𝑥0
= 𝑙𝑖𝑚

𝑥→𝑥0
[
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
+
𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
] 

= 𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
+ 𝑙𝑖𝑚

𝑥→𝑥0

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
 

As the limit of a sum is equal to the sum of the limits. 

= 𝑓′(𝑥0) + 𝑔
′(𝑥0) 

Hence 𝑓 + 𝑔 is differentiable at 𝑥0 and 

(𝑓 + 𝑔)′(𝑥0) = 𝑓′(𝑥0) + 𝑔
′(𝑥0). 

THEOREM3: : Let 𝑓 and 𝑔 be defined on an interval 𝐼. If 𝑓 and 𝑔 are 

differentiable at 𝑥0𝜖𝐼, then so also is 𝑓 + 𝑔 and  

(𝑓𝑔)′(𝑥0) = 𝑓
′ (𝑥0)𝑔(𝑥0) + 𝑓(𝑥0)𝑔′(𝑥0) 

PROOF: Let 𝑓 and 𝑔 are differentiable at (𝑥0), then 

𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑓′(𝑥0) 

𝑙𝑖𝑚
𝑥→𝑥0

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
= 𝑔′(𝑥0) 

= 𝑙𝑖𝑚
𝑥→𝑥0

(𝑓𝑔)(𝑥) − (𝑓𝑔)(𝑥0)

𝑥 − 𝑥0
= 𝑙𝑖𝑚

𝑥→𝑥0

𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑥0)𝑔(𝑥0)

𝑥 − 𝑥0
 

= 𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑥0)𝑔(𝑥) + 𝑓(𝑥0)𝑔(𝑥) − 𝑓(𝑥0)𝑔(𝑥0)

𝑥 − 𝑥0
 

= 𝑙𝑖𝑚
𝑥→𝑥0

[
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 𝑔(𝑥) + 𝑓(𝑥0)

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
] 

 

= 𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
𝑙𝑖𝑚
𝑥→𝑥0

𝑔(𝑥) + 𝑓(𝑥0) 𝑙𝑖𝑚
𝑥→𝑥0

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
 

= 𝑓′(𝑥0)𝑔(𝑥0) + 𝑓(𝑥0)𝑔′(𝑥0) 

Now that fact 

𝑙𝑖𝑚
𝑥→𝑥0

𝑔(𝑥) = 𝑔(𝑥0) 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 77 

 

Hence 𝑓𝑔 is differentiable at 𝑥0 

(𝑓𝑔)′(𝑥0) = 𝑓
′ (𝑥0)𝑔(𝑥0) + 𝑓(𝑥0)𝑔′(𝑥0) 

SOLVED EXAMPLES 

EXAMPLE1: Prove that 𝑓(𝑥) = |𝑥| is continuous at x=0, but not 

differentiable at 𝑥 = 0 where |𝑥|means the numerical value or the absolute 

value of 𝑥. 

SOLUTION: we get 𝑓(0) = |0| 
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EXAMPLE2: Show that the function 𝑓(𝑥) = |𝑥| + |𝑥 − 1| is not 

differentiable at 𝑥 = 0 and 𝑥 = 1. 

SOLUTION: If 𝑥 < 0, then 
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EXAMPLE3: Let 𝑓(𝑥) be an even function.  If 𝑓’(0) exists, find its 

value. 

SOLUTION: Let 𝑓(𝑥) be an even function, so 𝑓(−𝑥) = 𝑓(𝑥) ∀𝑥. 

 

 

EXAMPLE4: Let 𝑓(𝑥) = 𝑥
𝑒1/𝑥−𝑒−1/𝑥

𝑒1/𝑥+𝑒−1/𝑥
, 𝑥 ≠ 0; 𝑓(0) = 0. Show that 𝑓(𝑥) 

is continuous but derivable at 𝑥 = 0. 

SOLUTION: We have 𝑓(0) = 0; 
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4.9 ROLLE’S THEOREM: -  

If a function 𝑓 (𝑥) is such that 

i. 𝑓(𝑥) is continuous in the closed interval [𝑎, 𝑏], 

ii.  𝑓 (𝑥) exists for every point in the open interval ]𝑎, 𝑏[, 

iii.  𝑓(𝑎) 𝑓(𝑏), then there exists at least one value of 𝑥, say 𝑐, where 

𝑎 <  𝑐 < ℎ such that 𝑓′(𝑐) =  0. 

Proof: Since 𝑓 is continuous on [𝑎, 𝑏], it is bounded on [𝑎, 𝑏]. Let 𝑀 and 𝑚 

be the supremum and infimum off respectively in the closed interval [𝑎, 𝑏]. 

Now either 𝑀 = 𝑚 or 𝑀 ≠ 𝑚. 

If 𝑀 = 𝑚, then 𝑓 is a constant function over [𝑎, 𝑏] and consequently 𝑓 (𝑥) 

=  0 for all 𝑥 in [𝑎, 𝑏]. Hence the theorem is proved in this case. 

If 𝑀 ≠ 𝑚, then at least one of the numbers M and m must be different from 

the equal values 𝑓 (𝑎) and 𝑓(𝑏). For the sake of definiteness, let 𝑀 =

 𝑓(𝑎).  

Since every continuous function on a closed interval attains its supremum, 

therefore, there exists a real number 𝑐 in [𝑎, 𝑏] such that 𝑓(𝑐) =  𝑀. Also, 

since 𝑓(𝑎) = 𝑀 = 𝑓(𝑏), therefore, 𝑐 is different from both 𝑎 and 𝑏. This 

implies that 𝑐𝜖]𝑎, 𝑏[. 

Now 𝑓 (𝑐) is the supremum off on [𝑎, 𝑏], therefore, 

𝑓(𝑥) ≤  𝑓(𝑐)∀𝑥 𝑖𝑛 [𝑎, 𝑏]                      … (1) 

In particular, for all positive real numbers ℎ such that 𝑐 − ℎ lies in [𝑎, 𝑏]. 

𝑓(𝑐 − ℎ) ≤ 𝑓(𝑐) 
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𝑓(𝑐 − ℎ) − 𝑓(𝑐)

−ℎ
≥ 0.                        … (2) 

Since 𝑓′(𝑥) exists at each point of ]𝑎, 𝑏[  and hence, in particular 𝑓′(𝑐) 

exists,so taking limit as ℎ → 0,abovw equation gives 𝐿𝑓′(𝑐) ≥ 0. 

Similarly, from (1) 

𝑓(𝑐 + ℎ) ≤  𝑓(𝑐) 

By the same argument as above, we get 

𝑅𝑓′(𝑐) ≤ 0 

Since 𝑓′(𝑐) exists, hence 

𝐿𝑓′(𝑐) = 𝑓′(𝑐) = 𝑅𝑓′(𝑐) 

Now the above equations we conclude that 𝑓′(𝑐) = 0. 

Similarly 

𝑀 = 𝑓(𝑎) ≠ 𝑚 

Note 1: There may be more than one point like cat which 𝑓 (𝑥) vanishes. 

Note 2: Rolle's theorem will not hold good 

i. if 𝑓(𝑥) is discontinuous at some point in the interval 𝑎 ≤ 𝑥 ≤  𝑏. 

ii. if 𝑓(𝑥) does not exist at some point in the interval 𝑎 <  𝑥 <  𝑏. 

iii.  𝑓(𝑎) ≠ 𝑓(𝑏). 

Note3: It can be seen that the conditions of Rolle's theorem are not 

necessary for 𝑓′(𝑥) to vanish at some point in ]𝑎, 𝑏[. For example, 𝑓(𝑥)  =

 𝑐𝑜𝑠 (1/𝑥) is discontinuous at 𝑥 = 𝑂 in the interval [−1,2] but 𝑓′(𝑥) 

vanishes at an infinite number of points in the interval. 

SOLVED EXAMPLES 

EXAMPLE1: Discuss the applicability of Rolle’s theorem in the interval 

[−1,1] to the function 𝑓(𝑥) = |𝑥|. 

SOLUTION: Given 𝑓(𝑥) = |𝑥|, ℎ𝑒𝑟𝑒 

𝑓(−1) = |−1| = 1, 𝑓(1) = |1| = 1 

So that 
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𝑓(−1) = 𝑓(1) 

EXAMPLE2: Discuss the applicability of Rolle’s theorem to 𝑓(𝑥) =

𝑙𝑜𝑔 [
𝑥2+𝑎𝑏

(𝑎+𝑏)𝑥
], in the interval [𝑎, 𝑏], 0 < 𝑎, 𝑏. 

SOLUTION: Here 
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4.10 LAGRANGE’S MEAN VALUE THEOREM: -  

If a function 𝑓 (𝑥) is 

i. continuous in a closed interval [𝑎, 𝑏], and 

ii. differentiable in the open interval ]𝑎, 𝑏 [𝑖. 𝑒. , 𝑎 <  𝑥 <  𝑏, then 

there exists at least one value ′𝑐′ of 𝑥 lying in the open interval 

]𝑎, 𝑏[ such that 

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝑐) 

Proof: Let the function ∅(𝑥)explained by  

∅(𝑥) = 𝑓(𝑥) + 𝐴𝑥                     … (1) 

Where A is a constant to be chosen such that 𝜙(𝑎) = 𝜙(𝑏) 

𝑓(𝑎) + 𝐴𝑎 = 𝑓(𝑏) + 𝐴𝑏 

𝐴 = −
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 84 

 

 

 

SOLVED EXAMPLES 

EXAMPLE1: If 𝑓(𝑥) = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) and 𝑎 = 0, 𝑏 = 4, find 𝑐 

using Lagrange’s mean value theorem. 

SOLUTION: we get 

 

EXAMPLE2: Let 𝑓: [0,1] → 𝑹 be defined by 

𝑓(𝑥) = (𝑥 − 1)2 + 2  ∀ 𝑥𝜖[0,1] 

Find the equation of the tangent to graph of this curve which is parallel to 

the chord joining the points (0,3) and (1,2) of the curve. 
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SOLUTION: Because 𝑓(𝑥) is a polynomial function, it is continuous on 

[0,1] and differentiable in]0,1[.  According to Lagrange's mean value 

theorem, there exists some 𝑐𝜖]0,1[ such that 

𝑓(1) − 𝑓(0)

1 − 0
= 𝑓′(𝑐) 𝑜𝑟  

2 − 3

1
= 𝑓′(𝑐) 𝑜𝑟 − 1 = 𝑓′(𝑐) 

Now 

𝑓′(𝑥) = 2(𝑥 − 1)𝑜𝑏𝑡𝑎𝑖𝑛𝑠 𝑓′(𝑐) = 2(𝑐 − 1) 

Thus     2(𝑐 − 1) = −1 𝑖. 𝑒. , 𝑐 =
1

2
 

  ∴ 𝑓(𝑐) =
9

4
, so that the point of contact of the tangent is (

1

2
,
9

4
) and 

slope is 𝑓′(𝑐) = −1. Hence 

𝑦 −
9

4
= −1(𝑥 −

1

2
)   𝑜𝑟 4𝑥 + 4𝑦 = 11 

SELF CHECK QUESTIONS 

1. State the formal (𝜀– 𝛿) definition of limit. 

2. What is the condition for a function to be continuous at a point? 

3. Write the relationship between continuity and differentiability. 

4. Give one example of a function that is continuous but not 

differentiable. 

5. Explain why a function with a “corner” cannot be differentiable. 

4.11 SUMMARY: -  

In this Unit, we learned that limits, continuity, and differentiability are basic 

calculus notions that characterize the behavior and smoothness of functions. 

The limit of a function describes how it behaves when the input approaches 

a specific value, laying the groundwork for defining continuity and 

derivatives. A function is said to be continuous at a point when its limit 

exists and equals the function's value at that point, showing that the graph 

has no breaks or jumps. Differentiability, on the other hand, refers to the 

presence of a single derivative at a given location, indicating that the 

function changes smoothly with no corners, cusps, or discontinuities. While 

every differentiable function is continuous, the opposite is not always true: 

a function might be continuous but not differentiable. Overall, these 

principles aid in understanding how functions vary, behave locally, and 

promote the study of instantaneous rates of change in mathematics and 

applied sciences. 

 

4.12 GLOSSARY: -  
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 Limit: The value a function approaches as the input gets closer to a 

particular point. 

 Left-Hand Limit (LHL): The limit of a function as the input 

approaches a point from the left side. 

 Right-Hand Limit (RHL): The limit of a function as the input 

approaches a point from the right side. 

 Existence of Limit: A limit exists if LHL and RHL are equal. 

 Continuity: A function is continuous at a point if the limit exists 

and equals the function’s value at that point, meaning no break or 

jump in the graph. 

 Discontinuity: A point where a function is not continuous; can be a 

jump, removable, or infinite discontinuity. 

 

 Differentiability: A function is differentiable at a point if its 

derivative exists there, meaning the graph is smooth without corners 

or cusps. 

 Derivative: The instantaneous rate of change of a function or the 

slope of the tangent line at a point. 

 Non-Differentiable Point: A point where the derivative does not 

exist, often due to a corner, cusp, discontinuity, or vertical tangent. 

 Smooth Function: A function that is continuous and has a 

derivative at every point in its domain. 

 First Principle of Derivative: Definition of derivative using the 

limit 

𝑓′(𝑥) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 Relationship Between Concepts: Every differentiable function is 

continuous, but a continuous function may not be differentiable. 
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4.15 TERMINAL QUESTIONS: - 

(TQ-1) Discuss the continuity and Discontinuity of the following 

functions: 

i. 𝑓(𝑥) = 𝑥3 − 3𝑥 

ii. 𝑓(𝑥) = 𝑥 + 𝑥−1 

iii. 𝑓(𝑥) = 𝑒−1/𝑥 

iv. 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 

v. 𝑓(𝑥) = 𝑐𝑜𝑠 (
1

𝑥
)𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 0. 

vi. 𝑓(𝑥) = 𝑠𝑖𝑛 (
1

𝑥
)𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 0. 

vii. 𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑥
𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 1. 

viii. 𝑓(𝑥) =
𝑒1/𝑥−1

𝑒1/𝑥+1
 𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 1. 

ix. 𝑓(𝑥) =
𝑒1/𝑥

𝑒1/𝑥+1
 𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 0. 

x. 𝑓(𝑥) =
𝑥𝑒1/𝑥

𝑒1/𝑥+1
+ sin (1/𝑥) 𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 0. 

xi. 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠(1/𝑥) 𝑤ℎ𝑒𝑛 𝑥 ≠ 0, 𝑓(0) = 0. 

(TQ-2) A function f defined on [0,1] is given by 

𝑓(𝑥) = {
𝑥    𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
−1   𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

 

Show that 𝑓 takes every value between 0 and 1, but it is continuous only 

at the point 𝑥 =
1

2
. 

(TQ-3) Prove that the function f defined by  

𝑓(𝑥) = {

1

2
    𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

1

3
   𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

 

is discontinuous everywhere. 

(TQ-4) Show that the function 𝑓 defined by 𝑓(𝑥) =
𝑥𝑒1/𝑥

1+𝑒1/𝑥
 , 𝑥 ≠

0, 𝑓(0) = 1 is not continuous at 𝑥 = 0 and also show how the discontinuity 

can be removed. 
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(TQ-5) Show that the function 𝑓(𝑥) = 3𝑥2 + 2𝑥 − 1 is continuous for 

𝑥 = 2. 

(TQ-6) Show that the function 𝑓(𝑥) = (1 + 2𝑥)1/𝑥 , 𝑥 ≠ 0, 𝑓(𝑥) =

𝑒2, 𝑥 = 0 is continuous at 𝑥 = 0. 

(TQ-7) Show that the function 𝑓 defined by 𝑓(𝑥) =
𝑒1/𝑥−1

𝑒1/𝑥+1
, 𝑥 ≠ 0 and 

𝑓(0) = 0 is discontinuous at 𝑥 = 0. 

(TQ-8) Show that the following function is continuous at 𝑥 = 0. 

𝑓(𝑥) =
𝑠𝑖𝑛−1𝑥

𝑥
, 𝑥 ≠ 0, 𝑓(0) = 1. 

(TQ-9) Prove that the function 𝑓(𝑥) =
|𝑥|

𝑥
 for 𝑥 ≠ 0, 𝑓(0) = 0 is 

continuous at all points except 𝑥 = 0. 

(TQ-10) Discuss the continuity of 𝑓(𝑥) = (1/𝑥)𝑐𝑜𝑠(1/𝑥) 

(TQ-11) Discuss the continuity of 𝑓(𝑥) =
1

1−𝑒1/𝑥
 , when 𝑥 ≠ 0 and 

𝑓(0) = 0 for all values of 𝑥. 

(TQ-12) If function f is continuous on [𝑎, 𝑏], differentiable on ]𝑎, 𝑏[ and 

if 𝑓′(𝑥) = 0 for all 𝑥 in ]𝑎, 𝑏[, then prove that 𝑓(𝑥) has a constant value 

throughout [𝑎, 𝑏]. 

(TQ-13) If 𝑓(𝑥) and 𝜙(𝑥) are functions continuous on [𝑎, 𝑏] and 

differentiable on ]𝑎, 𝑏[ and if 𝑓′(𝑥) = 𝜙′ throughout the interval ]𝑎, 𝑏[, then 

prove that 𝑓(𝑥) and 𝜙(𝑥) differ only by a constant. 

(TQ-14) If 𝑓′(𝑥) = 𝑘 for each point 𝑥 of [𝑎, 𝑏], 𝑘 being a constant, the 

prove that 

𝑓(𝑥) = 𝑘𝑥 + 𝐶 ∀ 𝑥𝜖[𝑎, 𝑏] 

where C is a constant. 

(TQ-15) If 𝑓 is continuous on [𝑎, 𝑏] and 𝑓′(𝑥) ≥ 0 in ]𝑎, 𝑏[, then prove 

that  𝑓 is increasing in [𝑎, 𝑏] 

(TQ-16) State and prove Rolle’s theorem.   

(TQ-17) State and prove Lagrange’s mean value theorem. 

(TQ-18) Show that 
𝑥

1+𝑥
< log(1 + 𝑥) < 𝑥 𝑓𝑜𝑟 𝑥 > 0. 

(TQ-19) Show that between any two roots of 𝑒𝑥𝑐𝑜𝑠𝑥 = 1 ∃ at least one 

root of 𝑒𝑥𝑠𝑖𝑛𝑥 − 1 = 0. 

(TQ-20) If 𝑎 + 𝑏 + 𝑐 = 0, then show that the quadratic equation 3𝑎𝑥2 +

2𝑏𝑥 + 𝑐 = 0 has at least one root in ]𝑎, 𝑏[. 

(TQ-21) Let 𝑓(𝑥) = 𝑥
𝑒1/𝑥−𝑒−1/𝑥

𝑒1/𝑥+𝑒−1/𝑥
 , 𝑥 ≠ 0; 𝑓(0) = 0. Show that 𝑓(𝑥) is 

continuous but not derivable at 𝑥 = 0. 
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(TQ-22) Let 𝑓(𝑥) = 𝑒−1/𝑥
2
sin (1/𝑥) when 𝑥 ≠ 0 and 𝑓(0) = 0. Show 

that at every point 𝑓 has a differential coefficient and this is continuous at 

𝑥 = 0. 

 

 4.16 ANSWERS: - 

TERMINAL ANSWERS (TQ’S) 

(TQ-1) 

i. Continuous at 𝑥 = 0. 

ii. Discontinuous at 𝑥 = 0. 

iii. Discontinuous at 𝑥 = 0. 

iv. Continuous for all 𝑥. 

v. Discontinuous at 𝑥 = 0. 

vi. Discontinuous at 0. 

vii. Continuous for all 𝑥. 

viii. Discontinuous at 0. 

ix. Discontinuous at 0. 

x. Discontinuous at 0. 

xi. Continuous for all 𝑥. 
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ANALYTIC FUNCTIONS AND COMPLEX 

INTEGRATION 
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UNIT5: Analytic Function-I 

CONTENTS: 
5.1   Introduction 

5.2   Objectives 

5.3   Analytic Functions 

5.3.1  Theorems 

5.4    Summary  

5.5     Glossary 

5.6     References  

5.7     Suggested Readings 

5.8     Terminal Questions  

5.9     Answer 

 

5.1 INTRODUCTION: -  

Dear learners, in the previous units, we studied the basics of the complex 

plane, stereographic projection, complex functions and their properties, as 

well as limits, continuity, and differentiability. In this unit, we will discuss 

the basic concept and basic properties of analytic functions. In the study of 

complex analysis, the idea of an analytic function is very important. 

An analytic function is a function of a complex variable that is 

differentiable at every point within a region of the complex plane. This 

requirement is far stronger than differentiability for real-valued functions, 

because differentiability in the complex sense implies smooth and 

consistent behaviour in all directions in the plane.  

Analytic functions - also known as holomorphic or regular functions - 

possess remarkable mathematical properties. Analytic functions have 

wide-ranging applications beyond pure mathematics. In physics and 

engineering, they arise naturally in problems involving fluid flow, 

electromagnetic fields, and heat conduction, where the potential functions 

satisfy the same conditions as those of analytic functions. Their ability to 

model smooth, continuous, and interdependent quantities makes them 

essential tools for describing real-world phenomena. 

 

5.2 OBJECTIVES: -  

 Describe the meaning and characteristics of an analytic 

(holomorphic) function in complex analysis. 
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 Explain and derive, the Cauchy–Riemann equations for given 

complex functions to determine analyticity 

 Apply analytic function properties to solve simple problems. 

5.3 ANALYTIC FUNCTIOS: -  

A function f(z) of a complex variable z = x + iy is said to be analytic at a 

point z₀ if: 

i. It is differentiable at z₀. 

ii. It remains differentiable in some neighborhood of z₀ (that is, 

within some open region around that point). 

In symbols: 

𝑓 ′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0)

∆𝑧
 

must exist and the limit must be independent of the direction from which 

∆𝑧 → 0 in the  complex plane. 

 

Cauchy–Riemann Equations: 

 

If 𝑓(𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦), where u and v are real-valued functions of 

two real variables, then f is analytic if and only if the partial derivatives of 

u and v exist, are continuous, and satisfy: 

i. ∂u/∂x = ∂v/∂y 

ii. ∂u/∂y = −∂v/∂x 

Examples: 

 f(z) = zⁿ (for integer n) 

 f(z) = eᶻ 

 f(z) = sin z, cos z 

 f(z) = 1/z (analytic except at z = 0) 

 f(z) = log z (analytic except along its branch cut) 

5.3.1 THEOREM: -  

Theorem 1.  If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, then  𝑢, 𝑣 satisfy 

the equations: 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
  

Provided the four partial derivatives 𝑢𝑥, 𝑢𝑦 , 𝑣𝑥, 𝑣𝑦   exist. 
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Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, then   
𝑑𝑤

𝑑𝑧
 exists so 

that 
𝑑𝑤

𝑑𝑧
 has the same value along every path, 

 

i. Along 𝒙 − 𝒂𝒙𝒊𝒔: 𝛿𝑧 = 𝛿𝑥. 
𝑑𝑤

𝑑𝑧
= lim

𝛿𝑧→0

𝛿𝑤

𝛿𝑧
= lim

𝛿𝑥→0

𝛿𝑤

𝛿𝑥
=

𝜕𝑤

𝜕𝑥
… … . (1) 

ii. Along 𝒚 − 𝒂𝒙𝒊𝒔: 𝛿𝑧 = 𝑖𝛿𝑦. 
𝑑𝑤

𝑑𝑧
= lim

𝛿𝑧→0

𝛿𝑤

𝛿𝑧
= lim

𝛿𝑦→0

𝛿𝑤

𝑖𝛿𝑦
= −𝑖

𝜕𝑤

𝜕𝑦
… … (2) 

 

Equating (1) to (2),  
𝜕𝑤

𝜕𝑥
= −𝑖

𝜕𝑤

𝜕𝑦
 

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
== −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
 

This implies that 

  
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
. 

These equations are known as Cauchy Riemann equations.  

This is necessary condition for 𝑓(𝑧) to be analytic. 

 

Note: It is mandatory, that if 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 

𝐷, then  𝑢, 𝑣 satisfy the Cauchy Riemann equations. But converse is not 

true. 

 

Theorem 2.   If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, if 
 

i. 𝑢, 𝑣 are differentiable in 𝐷 and  𝑢𝑥 = 𝑣𝑦, 𝑢𝑦 = 𝑣𝑥, 

ii. The partial derivatives 𝑢𝑥, 𝑣𝑥,, 𝑢𝑦, 𝑣𝑦 all are continuous in domain 

𝐷. 
Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷. Where 𝑢 =
𝑢(𝑥, 𝑦), 𝑣 = 𝑣(𝑥, 𝑦). 
Therefore 𝑓(𝑧) = 𝑢 + 𝑖𝑣 =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 𝑓(𝑥, 𝑦). 
Then 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
, 

 

It means  

 

𝑢𝑥 = 𝑣𝑦, 𝑢𝑦 = −𝑣𝑥,                … (1) 
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Also let these derivatives be continuous. 

 

Let the increments 𝛿𝑧, 𝛿𝑢, 𝛿𝑧, 𝛿𝑤 of 𝑧, 𝑢, 𝑣, 𝑤 correspond to the 

increments 𝛿𝑥, 𝛿𝑦 of 𝑥 

and 𝑦. Continuity of 

𝑢𝑥 ⇒  𝛿𝑢 = 𝑢𝑥𝛿𝑥 + 𝑢𝑦𝛿𝑦 + 𝛼𝛿𝑥 + 𝛽𝛿𝑦. 

 

Similarly  

𝑣𝑥 ⇒  𝛿𝑣 = 𝑣𝑥𝛿𝑥 + 𝑣𝑦𝛿𝑦 + 𝛼1𝛿𝑥 + 𝛽1𝛿𝑦. 

Where 𝛼, 𝛽, 𝛼1, 𝛽1 all tend to zero as 𝛿𝑥 → 0, 𝛿𝑦 → 0,  
𝛿𝑤

𝛿𝑧
=

𝛿𝑢 + 𝑖𝛿𝑣

𝛿𝑥 + 𝑖𝛿𝑦
       … (2) 

 

𝛿𝑢 + 𝑖𝛿𝑣 = 𝛿𝑥(𝑢𝑥 + 𝑖𝑣𝑥) + 𝛿𝑦(𝑢𝑦 + 𝑖𝑣𝑦) + (𝛼 + 𝑖𝛼1)𝛿𝑥 + (𝛽 + 𝑖𝛽1)𝛿𝑦 

= 𝛿𝑥(𝑢𝑥 + 𝑖𝑣𝑥) + 𝑖 𝛿𝑦(−𝑖𝑢𝑦 + 𝑣𝑦)+𝛼′ 𝛿𝑥 + 𝛽′𝛿𝑦,  

where 𝛼′ = 𝛼 + 𝑖𝛼1, 𝛽′ =  𝛽 + 𝑖𝛽1. 
Using (1), 𝛿𝑢 + 𝑖𝛿𝑣 = (𝑢𝑥 + 𝑖𝑣𝑥)(𝛿𝑥 +  𝑖𝛿𝑦)+𝛼′ 𝛿𝑥 + 𝛽′𝛿𝑦. 

Dividing by 𝛿𝑥 +  𝑖𝛿𝑦 and then using (2), 
𝛿𝑤

𝛿𝑧
= 𝑢𝑥 + 𝑖𝑣𝑥 +

𝛼′𝛿𝑥 

𝛿𝑥 + 𝑖𝛿𝑦
+

𝛽′𝛿𝑥 

𝛿𝑥 + 𝑖𝛿𝑦
 

or 

|
𝛿𝑤

𝛿𝑧
− (𝑢𝑥 + 𝑖𝑣𝑥)| = |

𝛼′𝛿𝑥 

𝛿𝑧
+

𝛽′𝛿𝑦 

𝛿𝑧
| ≤ |𝛼′|. |

𝛿𝑥

𝛿𝑧
| + |𝛽′|. |

𝛿𝑦

𝛿𝑧
| 

≤ |𝛼′| + |𝛽′| as |𝛿𝑥| ≤ |𝛿𝑥 + 𝑖𝛿𝑦| 
 

or 

|
𝛿𝑤

𝛿𝑧
−

𝜕𝑤

𝜕𝑥
| ≤ |𝛼| +  |𝛼1| + |𝛽| +  |𝛽1| 

 

as 𝛼′ =  𝛼 + 𝑖𝛼1. 
But when 𝛿𝑧 → 0, the R.H.S. → 0.  

 

Hence, 

 

lim
𝛿𝑧→0

𝛿𝑤

𝛿𝑧
−

𝜕𝑤

𝜕𝑥
= 0 or 

𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
= 𝑢𝑥 + 𝑖𝑣𝑥. 

But 𝑢𝑥 , 𝑣𝑥 exist. Hence 
𝑑𝑤

𝑑𝑧
 exists so that 𝑤 is analytic in 𝐷. 

Remark 1: If 𝑓(𝑥) is continuous in 𝑎 ≤ 𝑥 ≤ 𝑏 and differentiable in 𝑎 <
𝑥 < 𝑏, then 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥 + 𝜃ℎ), 0 < 𝜃 < 1. 
 

Remark 2:𝛿𝑢 = 𝛿𝑥. 𝑢𝑥(𝑥 + 𝜃𝛿𝑥, 𝑦 + 𝛿𝑦) + 𝛿𝑦. 𝑢𝑦(𝑥, 𝑦 + 𝜃′𝛿𝑦) where 

 0 < 𝜃 < 1, 0 < 𝜃′ < 1. 
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Theorem 3. If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic function in a domain 𝐷 and 

𝑧 = 𝑟𝑒𝑖𝜃 where 𝑢, 𝑣, 𝑟, 𝜃 are all real, show that the Cauchy Riemann 

equations are: 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
,

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

 

Or 

 

To derive the necessary and sufficient condition for 𝑓(𝑧) to be analytic in 

polar coordinates. 

 

Proof: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an analytic functions in a domain 𝐷.  So that 

Cauchy Riemann equations  
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
           … (1) 

 

                                   
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
           … (2) 

 

are satisfied. 

 

To prove that polar form of (1) and (2) are: 

 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
,

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
. 

We have 𝑥 = 𝑟𝑠𝑖𝑛𝜃, 𝑦 = 𝑟𝑐𝑜𝑠𝜃. 

Then 𝑟2 = 𝑥2 + 𝑦2, 𝑡𝑎𝑛 𝜃 =
𝑦

𝑥
, 𝜃 = 𝑡𝑎𝑛−1(𝑦 𝑥⁄ ). 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
= 𝑐𝑜𝑠𝜃,

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
= 𝑠𝑖𝑛𝜃. 

𝜕𝜃

𝜕𝑥
=

1

1 + (
𝑦2

𝑥2)
. (

−𝑦

𝑥2
) =

−𝑠𝑖𝑛𝜃

𝑟
 

𝜕𝜃

𝜕𝑦
=

1

1 + (
𝑦2

𝑥2)
. (

1

𝑥
) =

𝑐𝑜𝑠𝜃

𝑟
 

𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
.
𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝜃
.
𝜕𝜃

𝜕𝑥
 

𝜕𝑢

𝜕𝑥
= 𝑐𝑜𝑠𝜃.

𝜕𝑢

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑢

𝜕𝜃
… … … … … . (3) 

𝜕𝑣

𝜕𝑦
=

𝜕𝑣

𝜕𝑟
.
𝜕𝑟

𝜕𝑦
+

𝜕𝑣

𝜕𝜃
.
𝜕𝜃

𝜕𝑦
 

 
𝜕𝑣

𝜕𝑦
= 𝑠𝑖𝑛𝜃

𝜕𝑣

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑣

𝜕𝜃
… … … … … … . . (4) 
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By virtue of (1), (3) and (4) give, 

 

 

𝑐𝑜𝑠𝜃.
𝜕𝑢

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑢

𝜕𝜃
=  𝑠𝑖𝑛𝜃

𝜕𝑣

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑣

𝜕𝜃
 

………………………………………………………………(5) 

 
𝜕𝑢

𝜕𝑦
 =

𝜕𝑢

𝜕𝑟
.
𝜕𝑟

𝜕𝑦
+

𝜕𝑢

𝜕𝜃
.
𝜕𝜃

𝜕𝑦
 

             = 𝑠𝑖𝑛𝜃
𝜕𝑣

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑣

𝜕𝜃
 

 
𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑟
.
𝜕𝑟

𝜕𝑥
+

𝜕𝑣

𝜕𝜃
.
𝜕𝜃

𝜕𝑥
 

= 𝑐𝑜𝑠𝜃
𝜕𝑣

𝜕𝑟
−

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑣

𝜕𝜃
 

By virtue of (2), the last two equations give, 

 

𝑠𝑖𝑛𝜃
𝜕𝑢

𝜕𝑟
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑢

𝜕𝜃
= − 𝑐𝑜𝑠𝜃

𝜕𝑣

𝜕𝑟
+

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑣

𝜕𝜃
… . . (6) 

 

(5) × cos 𝜃 + (6) × 𝑠𝑖𝑛𝜃 gives 

 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
 

                                                           

……………………………….(7) 

𝑠𝑖𝑛𝜃
𝜕𝑣

𝜕𝜃
+

𝑐𝑜𝑠𝜃

𝑟

𝜕𝑢

𝜕𝜃
= − 𝑐𝑜𝑠𝜃

𝜕𝑣

𝜕𝑟
+

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑣

𝜕𝜃
 

 

 

                                     
𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

                                               

……………………………………….(8) 

From (7) and (8), the require result follows. 

Theorem 4. Derivative of 𝒘 in polar form. 

 

To prove that, 
𝑑𝑤

𝑑𝑧
= 𝑒−𝑖𝜃

𝜕𝑤

𝜕𝑟
= −

𝑖

𝑟
𝑒−𝑖𝜃

𝜕𝑤

𝜕𝜃
 

 

Proof. Cauchy Riemann equations in polar form are: 
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𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
,

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

We have 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃, 
𝑟2 = 𝑥2 + 𝑦2, 

𝜃 = 𝑡𝑎𝑛−1(𝑦 𝑥⁄ ) 
 

 
𝜕𝜃

𝜕𝑥
=

1

1 + (
𝑦2

𝑥2)
. (

−𝑦

𝑥2
) =

−𝑠𝑖𝑛𝜃

𝑟
 

𝜕𝜃

𝜕𝑦
=

1

1 + (
𝑦2

𝑥2)
. (

1

𝑥
) =

𝑐𝑜𝑠𝜃

𝑟
 

𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
 =

𝜕𝑤

𝜕𝑟
.

𝜕𝑟

𝜕𝑥
+

𝜕𝑤

𝜕𝜃
.

𝜕𝜃

𝜕𝑥
 

=
𝜕𝑤

𝜕𝑟
. 𝑐𝑜𝑠𝜃 −

𝑠𝑖𝑛𝜃

𝑟

𝜕𝑤

𝜕𝜃
 

or 

 

 
𝑑𝑤

𝑑𝑧
=  𝑐𝑜𝑠𝜃 (

𝜕𝑢

𝜕𝑟
+ 𝑖

𝜕𝑣

𝜕𝑟
)-−

𝑠𝑖𝑛𝜃

𝑟
(

𝜕𝑢

𝜕𝜃
+ 𝑖

𝜕𝑣

𝜕𝜃
) 

= (𝑐𝑜𝑠𝜃-𝑖𝑠𝑖𝑛𝜃) (
𝜕𝑤

𝜕𝑟
) = 𝑒−𝑖𝜃 𝜕𝑤

𝜕𝑟
 

or 
𝑑𝑤

𝑑𝑧
= 𝑒−𝑖𝜃

𝜕𝑤

𝜕𝑟
. 

Again from (1), 
𝑑𝑤

𝑑𝑧
=  𝑐𝑜𝑠𝜃 (

1

𝑟

𝜕𝑣

𝜕𝜃
−

𝑖

𝑟

𝜕𝑢

𝜕𝜃
) −

𝑠𝑖𝑛𝜃

𝑟
(

𝜕𝑤

𝜕𝜃
) 

=  −
𝑖

𝑟
(𝑐𝑜𝑠𝜃-𝑖𝑠𝑖𝑛𝜃), 

𝜕𝑤

𝜕𝜃
=

−𝑖

𝑟
𝑒−𝑖𝜃

𝜕𝑤

𝜕𝜃
 

or 
𝑑𝑤

𝑑𝑧
-=

−𝑖

𝑟
𝑒−𝑖𝜃 𝜕𝑤

𝜕𝜃
 

 

Theorem 5. Continuity is necessary but not sufficient condition for the 

existence of a  finite derivative. 

 

Proof.  I. A function which is differentiable is necessary continuous. 

Suppose 𝑓(𝑧) is differentiable at 𝑧 = 𝑧0. 
To prove that 𝑓(𝑧) is continuous at 𝑧 = 𝑧0. 

𝑓′(𝑧0) = lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)

ℎ
 

= lim
ℎ→0

𝑓(𝑧0 − ℎ) − 𝑓(𝑧0)

ℎ
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                                                 ………………..(1) 

By assumption, this limit exists and is unique. 

From (1), we have, 

𝑓′(𝑧0) = lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)

ℎ
+ 𝜀 

and  

𝑓′(𝑧0) = lim
ℎ→0

𝑓(𝑧0 − ℎ) − 𝑓(𝑧0)

−ℎ
+ 𝜀′ 

where 𝜀, 𝜀′ → 0 as ℎ → 0. 
Consequently ℎ𝑓′(𝑧0) =  𝑓(𝑧0 + ℎ) − 𝑓(𝑧0) + ℎ 𝜀 

and 

−ℎ𝑓′(𝑧0) =  𝑓(𝑧0 − ℎ) − 𝑓(𝑧0) − ℎ𝜀′ 

Making ℎ → 0, we obtain, 

0 = lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0) and 0 = lim
ℎ→0

𝑓(𝑧0 − ℎ) − 𝑓(𝑧0). 

This implies lim
ℎ→0

𝑓(𝑧0 + ℎ) = 𝑓(𝑧0) = lim
ℎ→0

𝑓(𝑧0 − ℎ). 

This implies 𝑓(𝑧) is continuous at 𝑧 = 𝑧0. 
 

II. If a function is continuous, then it is not necessarily differentiable.  

We shall prove this by solved examples. 

 

Theorem 6. an analytic function in a region R, with constant modulus is 

constant. 

Proof. Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 be an analytic function with constant modulus. 

Then, 

|𝑓(𝑧)| = |𝑢 + 𝑖𝑣| = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This implies √𝑢2 + 𝑣2=constant= 𝑐 . 

Squaring both sides, we get 𝑢2 + 𝑣2 = 𝑐2        … (1) 

Differentiating equation (1) partially with respect to 𝑥, we get, 

2𝑢
𝜕𝑢

𝜕𝑥
+ 2𝑣

𝜕𝑣

𝜕𝑥
 = 0 

This implies, 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑥
 = 0           ………(2) 

Again, differentiating equation (1) partially with respect to 𝑦, we get, 

2𝑢
𝜕𝑢

𝜕𝑦
+ 2𝑣

𝜕𝑣

𝜕𝑦
 = 0 

This implies, 
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𝑢
𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕𝑣

𝜕𝑦
 = 0 

Since,  
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 

 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

−𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑥
 = 0 

                                                                ………(3) 

Squaring and adding (2) and (3), we get, 

(𝑢2 + 𝑣2) {(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

} = 0 

⇒ (
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

=0      ………(4) 

Since 𝑢2 + 𝑣2 = 𝑐2 ≠ 0 and 𝑓′(𝑧) =
𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑥
. 

Therefore |𝑓′(𝑧)|2 = 0.  

This implies |𝑓′(𝑧)| = 0. 

This implies 𝑓(𝑧) is constant. 

SOLVED EXAMPLES 

EXAMPLE 1: Explain that 𝑤 = 𝑓(𝑧) = |𝑧|2 is analytic function or not. 

SOLUTION: Consider the function 𝑓(𝑧) = |𝑧|2. 

To prove that 𝑓(𝑧) is continuous everywhere but not differentiable 

everywhere except at               𝑧 = 0,  

For a function 𝑓(𝑧) is continuous at a point 𝑧0. 
i. It must be defined at 𝑧0. 

ii. It's limit must exist at 𝑧0. 
i. 𝑓(𝑧0) = lim

𝑧→𝑧0

𝑓(𝑧). 

 

Given 𝑓(𝑧) = |𝑧|2 = |𝑥 + 𝑖𝑦|2 = (√𝑥2 + 𝑦2)2 = 𝑥2 + 𝑦2 + 𝑖0. 

It implies that 𝑢 = 𝑥2 + 𝑦2, 𝑣 = 0. 
Let 𝑧 = 𝑎 be any point in the domain of 𝑓(𝑧) where 𝑎 ∈ ℂ. 

Then  

lim
𝑧→𝑎

𝑓(𝑧) = lim
𝑧→𝑎

|𝑧|2 = 𝑓(𝑎) = |𝑎|2. 
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lim
𝑧→𝑎

𝑓(𝑧) = 𝑓(𝑎). 

 

Hence function 𝑓(𝑧) is continuous at this domain ℂ since 𝑎 is arbitrary 

 

Differentiability of 𝑓(𝑧) = |𝑧|2. 

𝑓′(𝑧0) = lim
𝛿𝑧→0

𝑓(𝑧0 + 𝛿𝑧) − 𝑓(𝑧0)

ℎ
 

= lim
𝛿𝑧→0

|𝑧0 + 𝛿𝑧|2 − |𝑧0|2

ℎ
 

= lim
𝛿𝑧→0

(𝑧0 + 𝛿𝑧)(𝑧0̅ + 𝛿𝑧̅̅ ̅) − 𝑧0𝑧̅

ℎ
 

= lim
𝛿𝑧→0

𝑧0𝛿𝑧̅̅ ̅ + 𝛿𝑧(𝑧0̅ + 𝛿𝑧̅̅ ̅)

𝛿𝑧
 

 

𝑓′(𝑧0) = lim  
𝛿𝑧→0

  (𝑧0 

𝛿𝑧̅

𝛿𝑧
+   𝑧0̅̅ ̅̅ + 𝛿𝑧̅)      … (1) 

 

If this limit will exist, then it will be independent of the path along which 

𝛿𝑧 → 0.  
 

Case I: Let 𝛿𝑧 → 0 along real axis so that 𝛿𝑧̅ = 𝛿𝑧 = 𝛿𝑥, 𝛿𝑦 = 0  and 

𝛿𝑥 → 0 as 𝛿𝑧 → 0 

Now (1) becomes 

 

𝑓′(𝑧0) = lim  
𝛿𝑥→0

  (𝑧0 +   𝑧0̅̅ ̅̅ + 𝛿𝑥) 

                          𝑓′(𝑧0) = 𝑧0 +   𝑧0̅̅ ̅̅                       … (2) 

 

Case II: Let 𝛿𝑧 → 0 along imaginary axis so that 𝛿𝑧̅ = 𝛿𝑧 = 𝑖 𝛿𝑦,   and 

𝛿𝑦 → 0 as   𝛿𝑧 → 0. 

Now (1) becomes: 

𝑓′(𝑧0) = lim  
𝛿𝑦→0

  (𝑧0 (
−𝑖𝛿𝑦

𝑖𝛿𝑦
) +   𝑧0̅̅ ̅̅ − 𝑖 𝛿𝑦) 
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𝑓′(𝑧0) =   𝑧0̅̅ ̅̅ − 𝑧0                … (3) 

 

 

From (2) and (3), we see that 𝑓′(𝑧0) along the two paths are different 

except at 𝑧 = 0.   

Hence 𝑓′(𝑧0) does not exist everywhere except at 𝑧 = 0. Consequently 

𝑓(𝑧) is not  differentiable except at 𝑧 = 0. 
Since the definition of analytic function: A function f(z) of a complex 

variable 𝑧 =  𝑥 +  𝑖𝑦 is said to be analytic at a point z₀ if: 

i. It is differentiable at z₀. 

ii. It remains differentiable in some neighborhood of z₀ (that is, within 

some open region around that point). 

In symbols: 

𝑓 ′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0)

∆𝑧
 

must exist and the limit must be independent of the direction from which 

∆𝑧 → 0 in the  complex plane. 

The function 𝑓(𝑧) = |𝑧|2 is differentiable at 𝑧 = 0. But 𝑓′(𝑧0) does not 

exist  everywhere except at    𝑧 = 0. So the function is no where analytic.  

The function  𝑓(𝑧) = |𝑧|2 is not differentiable at neighbourhood of  𝑧 =
0. Whether the function 𝑓(𝑧) = |𝑧|2 is satisfied the C-R equations at 𝑧 =
0.  

The C-R equations 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 are  

Given 𝑓(𝑧) = |𝑧|2 = |𝑥 + 𝑖𝑦|2 = (√𝑥2 + 𝑦2)2 = 𝑥2 + 𝑦2 + 𝑖0. 

It implies that 𝑢(𝑥, 𝑦) = 𝑥2 + 𝑦2, 𝑣(𝑥, 𝑦) = 0. 
 

At 𝑧 = 0, 
𝜕𝑢

𝜕𝑥
= lim

𝑥→0

𝑢(𝑥, 0) − 𝑢(0,0)

𝑥
= lim

𝑥→0

𝑥2 − 0

𝑥
= 0. 

𝜕𝑢

𝜕𝑦
= lim

𝑥→0

𝑢(0, 𝑦) − 𝑢(0,0)

𝑦
= lim

𝑦→0

𝑦2 − 0

𝑦
= 0. 

𝜕𝑣

𝜕𝑥
= lim

𝑥→0

𝑣(𝑥, 0) − 𝑣(0,0)

𝑥
= lim

𝑥→0

0 − 0

𝑥
= 0. 

𝜕𝑣

𝜕𝑦
= lim

𝑥→0

𝑣(0, 𝑦) − 𝑣(0,0)

𝑦
= lim

𝑦→0

0 − 0

𝑦
= 0. 

 

Hence Cauchy -Riemann equations are satisfied at 𝑧 = 0. 
 

EXAMPLE 2: Prove that the function 𝑓(𝑧) = 𝑢 + 𝑖𝑣, where  
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𝑓(𝑧) =
𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
, 𝑧 ≠ 0, 𝑓(0) = 0 

is continuous and that Cauchy-Riemann equations are satisfied at the 

origin yet 𝑓′(𝑧) does not exist. 

SOLUTION: 𝑢 + 𝑖𝑣 = 𝑓(𝑧) 

=
𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖)

𝑥2 + 𝑦2
 

=
(𝑥3 − 𝑦3) + 𝑖(𝑥3 + 𝑦3)

𝑥2 + 𝑦2
, 𝑧 ≠ 0. 

This implies that 𝑢 =
(𝑥3−𝑦3)

𝑥2+𝑦2 , 𝑣 =
(𝑥3+𝑦3)

𝑥2+𝑦2 , where 𝑥 ≠ 0, 𝑦 ≠ 0. 

I. To prove that 𝑓(𝑧) is continuous everywhere.  

When 𝑧 ≠ 0, 𝑢 and 𝑣 both are rational functions of 𝑥 and 𝑦 

with non - zero denominators.  

It follows that 𝑢, 𝑣 and therefore and 𝑓(𝑧) are continuous 

functions everywhere except 𝑧 = 0.  

To test the continuity of 𝑢,, 𝑣 at 𝑧 = 0, we change  𝑢,, 𝑣 to 

polar co-ordinates: 

𝑢 = 𝑟(𝑐𝑜𝑠3𝜃 − 𝑠𝑖𝑛3𝜃), 𝑣 = 𝑟(𝑐𝑜𝑠3𝜃 + 𝑠𝑖𝑛3𝜃).  

As 𝑧 → 0, 𝑟 → 0. 

Evidently, lim
𝑟→0

𝑢 = 0 = lim
𝑟→0

𝑣. 

This implies lim
𝑧→0

𝑓(𝑧) = 0 = 𝑓(0).  

This implies 𝑓(𝑧) is continuous everywhere. 

 

II. To show that Cauchy-Riemann equations are satisfied at 𝑧 = 0. 

𝑓(0) = 0 ⇒ 𝑢(0,0) + 𝑖𝑣(0,0) 

= 0 

⇒ 𝑢(0,0) = 0 = 𝑣(0,0). 

Recall that, At 𝑧 = 0 

 
𝜕𝑢

𝜕𝑥
= lim

ℎ→0

𝑢(0 + ℎ, 0) − 𝑢(0,0)

𝑥
 

 
𝜕𝑢

𝜕𝑥
= lim

𝑥→0

𝑢(𝑥, 0) − 𝑢(0,0)

𝑥
= lim

𝑥→0

𝑥 − 0

𝑥
= 1. 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 103 

 
 

𝜕𝑢

𝜕𝑦
= lim

𝑦→0

𝑢(0, 𝑦) − 𝑢(0,0)

𝑦
= lim

𝑦→0

−𝑦 − 0

𝑦
= − 1. 

𝜕𝑣

𝜕𝑥
= lim

𝑥→0

𝑣(𝑥, 0) − 𝑣(0,0)

𝑥
= lim

𝑥→0

𝑥

𝑥
= 1. 

𝜕𝑣

𝜕𝑦
= lim

𝑦→0

𝑣(0, 𝑦) − 𝑣(0,0)

𝑦
= lim

𝑦→0

𝑦 − 0

𝑦
= 1. 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 

 

 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

 

Hence Cauchy -Riemann equations are satisfied at 𝑧 = 0. 
 

III. To prove that 𝑓′(0) does not exist: 

𝑓′(0) = lim
𝑧→0

𝑓(𝑧) − 𝑓(0)

𝑧
 

= lim
𝑧→0

𝑓(𝑧) − 0

𝑧
 

𝑓′(0) = lim
𝑧→0

(𝑥3 − 𝑦3) + 𝑖(𝑥3 + 𝑦3)

(𝑥2 + 𝑦2)(𝑥 + 𝑖𝑦)
 

 

Let 𝑧 → 0 along the path 𝑦 = 𝑥, 
 

 

then, 

𝑓′(0) = lim
𝑥→0

(𝑥3 − 𝑥3) + 𝑖(𝑥3 + 𝑥3)

(𝑥2 + 𝑥2)(𝑥 + 𝑖𝑥)
=

𝑖

1 + 𝑖
 

 

 

Let 𝑧 → 0 along the path 𝑥 − axis, then 

𝑓′(𝑥) = lim
𝑥→0

(𝑥3 − 0) + 𝑖(𝑥3 + 0)

(𝑥2 + 0)(𝑥 + 𝑖0)
 

Since 𝑦 = 0. 
𝑓′(𝑥) =  1 + 𝑖 

 

𝑓′(0) = {
𝑖 (1 + 𝑖) along the path 𝑦 = 𝑥⁄

1 + 𝑖 along the path 𝑦 = 0
  

 

Since the values of 𝑓′(0) are not unique along different paths. Hence 

𝑓′(0) does not exist. As a result of which 𝑓(𝑧) is not analytic at 𝑧 = 0. 
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EXAMPLE 3: Show that the function: 

𝑓(𝑧) = 𝑒−𝑧−4
, 𝑧 ≠ 0 and 𝑓(0) = 0, is not analytic at 𝑧 = 0, 

although Cauchy Riemann  equations are satisfied at the point. How 

would you explain this? 

SOLUTION: To show that Cauchy Riemann equation are satisfied at 𝑧 =
0. 

𝑤 = 𝑓1(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

It is given that  

0 = 𝑓(0) = 𝑢(0,0) + 𝑖𝑣(0,0) 

This implies 

𝑢(0,0) = 0 = 𝑣(0,0) 
 

If 𝑧 ≠ 0, 𝑓(𝑧) = 𝑒𝑥𝑝(−𝑧−4) = 𝑢 + 𝑖𝑣 

 

 

or 

exp[−(𝑥 + 𝑖𝑦)−4] = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

 

this implies  
 

𝑢(𝑥, 0) + 𝑖𝑣(𝑥, 0) = 𝑒𝑥𝑝(−(𝑥)−4), 
and 

𝑢(0, 𝑦) + 𝑖𝑣(0, 𝑦) = 𝑒𝑥𝑝(−(𝑦)−4), 
 

 

𝑢(𝑥, 0) =  𝑒𝑥𝑝(−(𝑥)−4), , 𝑣(𝑥, 0) = 0. 
and  

𝑢(𝑥, 0) = 𝑒𝑥𝑝(−(𝑥)−4)) , 𝑣(𝑥, 0) = 0. 
and      𝑢(0, 𝑦) = 𝑒𝑥𝑝(−(𝑦)−4)) , 𝑣(0, 𝑦) = 0. 

 

and 

𝑢(0, 𝑦) + 𝑖𝑣(0, 𝑦) = 𝑒𝑥𝑝(−(𝑦)−4), 
 

Recall that,  

 
𝜕𝑢

𝜕𝑥
= lim

ℎ→0

𝑢(𝑥 + ℎ, 0) − 𝑢(𝑥, 𝑦)

𝑥
 

At 𝑧 = 0, 

𝜕𝑢

𝜕𝑥
= lim

ℎ→0

𝑢(ℎ, 0) − 𝑢(0,0)

𝑥
 

= lim
𝑥→0

𝑒𝑥𝑝(−(𝑥)−4))  − 0

𝑥
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=lim
𝑥→0

1

𝑥
[

1

𝑒𝑥𝑝(
1

𝑥4)
] 

=lim
𝑥→0

1

𝑥
[

1

1+
1

𝑥4+
1

𝑥42!
+⋯……..

] 

= lim
𝑥→0

[
1

1 +
1

𝑥4 +
1

𝑥42!
+ ⋯ … … . .

] =
1

∞
= 0. 

 

At 𝑧 = 0, 

𝜕𝑢

𝜕𝑦
= lim

𝑦→0

𝑢(0, 𝑦) − 𝑢(0,0)

𝑦
 

= lim
𝑥→0

𝑒𝑥𝑝(−(𝑦)−4))  − 0

𝑦
 

=lim
𝑦→0

[
𝑒𝑥𝑝(−

1

𝑦4)−0

𝑦
] = 0 

=lim
𝑦→0

1

𝑥
[

1

1+
1

𝑦4+
1

𝑦82!
+⋯……..

] 

= lim
𝑦→0

[
1

1 +
1

𝑦4 +
1

𝑦42!
+ ⋯ … … . .

] =
1

∞
= 0. 

 

 

 

At 𝑧 = 0, 

 
𝜕𝑣

𝜕𝑥
= lim

𝑥→0

𝑣(𝑥, 0) − 𝑣(0,0)

𝑥
= lim

𝑥→0

0 − 0

𝑥
= 0 

 
𝜕𝑣

𝜕𝑦
= lim

𝑦→0

𝑣(0, 𝑦) − 𝑣(0,0)

𝑦
= lim

𝑦→0

0 − 0

𝑦
= 0. 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

Hence Cauchy -Riemann equations are satisfied at 𝑧 = 0. 
 

II. To show that 𝑓(𝑧) is not analytic  at 𝑧 = 0,  
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lim
𝑧→0

𝑓(𝑧) = 0 = lim
𝑧→0

[𝑒𝑥𝑝(−𝑧−4)]. 

Let 𝑧 → 0, along the path  𝑧 = 𝑟𝑒𝑖𝜋 4⁄ → 0. 

So that, 

𝑟 → 0 as 𝑧 → 0. 

lim
𝑧→0

𝑓(𝑧) = lim
𝑧→0

[𝑒𝑥𝑝(−𝑧−4)] = lim
𝑟→0

𝑒𝑥𝑝[−𝑟−4𝑒−𝑖𝜋]

= lim
𝑟→0

𝑒𝑥𝑝[−𝑟−4] 

= lim
𝑟→0

[𝑒𝑥𝑝 (
1

𝑟4
)] = 0∞ = ∞. 

  

It shows that lim
𝑧→0

𝑓(𝑧) does exist. Consequently 𝑓(𝑧) is not continuous at 

𝑧 = 0. Hence 𝑓(𝑧) is not necessarily differentiable at 𝑧 = 0. Therefore 

𝑓(𝑧) is not analytic at 𝑧 = 0. So the function:𝑓(𝑧) = 𝑒−𝑧−4
, 𝑧 ≠ 0 and 

𝑓(0) = 0, is not analytic at 𝑧 = 0, although Cauchy Riemann equations 

are satisfied at the point. 

 

EXAMPLE 4: Show that the function: 

𝑓(𝑧) = |𝑥𝑦|1 2⁄  is not analytic (regular) at 𝑧 = 0, although Cauchy 

Riemann Equations  are satisfied at the point. How would you explain 

this? 

SOLUTION: 𝑢 + 𝑖𝑣 = 𝑓(𝑧) = |𝑥𝑦|1 2⁄ , 

 Hence 𝑢(𝑥, 𝑦) = |𝑥𝑦|1 2⁄ , 𝑣(𝑥, 𝑦) = 0. 

At 𝑧 = 0,  
𝜕𝑢

𝜕𝑥
= lim

𝑥→0

𝑢(𝑥,0)−𝑢(0,0)

𝑥
= lim

𝑥→0

0−0

𝑥
= 0. 

𝜕𝑢

𝜕𝑦
= lim

𝑦→0

𝑢(0, 𝑦) − 𝑢(0,0)

𝑦
= lim

𝑦→0

0 − 0

𝑦
= 0. 

𝜕𝑣

𝜕𝑥
= lim

𝑥→0

𝑣(𝑥, 0) − 𝑣(0,0)

𝑥
= lim

𝑥→0

0 − 0

𝑥
=. 

𝜕𝑣

𝜕𝑦
= lim

𝑦→0

𝑣(0, 𝑦) − 𝑣(0,0)

𝑦
= lim

𝑦→0

0 − 0

𝑦
= 0. 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 

 

 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

 

Hence Cauchy -Riemann equations are satisfied at 𝑧 = 0. 
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To prove that 𝑓′(0) does not exist: 

𝑓′(0) = lim
𝑧→0

𝑓(𝑧) − 𝑓(0)

𝑧 − 0
 

= lim
𝑧→0

|𝑥𝑦|1 2⁄ − 0

𝑥 + 𝑖𝑦
 

                                                    = lim
𝑥→0

𝑥√𝑚−0

𝑥+𝑖𝑚𝑥
 along 𝑦 = 𝑚𝑥. 

=
√𝑚

1 + 𝑖𝑚
 

Since the values of 𝑓′(0) are not unique along different paths. Limit 

depends on  𝑚  and so on it is not unique. Hence 𝑓′(0) does not exist. 

As a result of which 𝑓(𝑧) is not analytic (regular) at 𝑧 = 0.    
 

5.4 SUMMARY: -  

  The concept of an analytic function is central to the study of Complex 

Analysis. A complex function 𝑓(𝑧), where 𝑧 =  𝑥 +  𝑖𝑦, is said to be 

analytic (or holomorphic) at a point if it is differentiable in a neighborhood 

of that point in the complex plane. Analytic functions play a role in 

complex analysis similar to that of differentiable functions in real analysis, 

but they possess much stronger and more elegant properties due to the 

nature of complex differentiation.  

For a function 𝑓(𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦), where u and v are real-valued 

functions representing the real and imaginary parts respectively, the 

Cauchy–Riemann (C–R) equations provide the necessary and sufficient 

conditions for analyticity. These equations are: 𝑢ₓ =  𝑣ᵧ and 𝑢ᵧ =  −𝑣ₓ. 
If these partial derivatives exist and are continuous in a region, then 𝑓(𝑧) 

is analytic in that region. These equations link the behavior of the real and 

imaginary parts of the function, ensuring that the derivative of 𝑓(𝑧) is 

independent of the direction of approach in the complex plane. 

In summary, the Analytic Function Unit introduces learners to the core 

ideas of complex differentiability, the Cauchy–Riemann equations. These 

concepts form the foundation for deeper topics such as complex 

integration, conformal mapping, and the residue theorem. Analytic 

functions are not only central to pure mathematics but also find significant 

applications in physics and engineering, particularly in potential theory, 

fluid flow, and electromagnetic field analysis. 

 

5.5 GLOSSARY: -  
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 Complex Numbers: In mathematics, a complex number is an 

element of a number system that extends the real numbers with a 

specific element denoted i, called the imaginary unit and satisfying 

the equation 𝑖2 = −1; every complex number can be expressed in 

the form 𝑎 ± 𝑖𝑏  where a and b are real numbers. Because no real 

number satisfies the above equation, i was called an imaginary 

number by René Descartes. For the complex number  𝑎 ± 𝑖𝑏 , a is 

called the real part, and b is called the imaginary part. The set of 

complex numbers is denoted by either of the symbols ℂ or C. 

 Limit: A function 𝑓(𝑧) tends to the limit 𝑙 as 𝑧 tends to 𝑧0 along 

any path, if to each positive arbitrary number 𝜀, however small, 

there corresponds a positive number 𝛿, such that |𝑓(𝑧) − 𝑙| < 𝜀 

whenever 0 < |𝑧 − 𝑧0| < 𝛿 and we write lim
𝑧→𝑧0

𝑓(𝑧) = 𝑙, where 𝑙 is 

finite. 

 Continuity: For a function 𝑓(𝑧) is continuous at a point 𝑧0. It must 

be defined at 𝑧0. It's limit must exist at 𝑧0. 𝑓(𝑧0) = lim
𝑧→𝑧0

𝑓(𝑧). 

 

iii. Differentiability: In symbols: 

𝑓 ′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0)

∆𝑧
 

 must exist and the limit must be independent of the 

direction from which ∆𝑧 → 0 in the complex plane. 

 A function that is differentiable at every point in some region of 

the complex plane. 

 Has a complex derivative that exists and is continuous. 

 Can be expressed as a power series (Taylor series) around any 

point in its domain. 

 Also called holomorphic function. 
 

CHECK YOUR PROGRESS 

 

CYP 1.  At 𝑧 = 0. the function 𝑓(𝑧) = 𝑧̅ is not differentiable. True\False 

CYP 2. 𝑓(𝑧) = 1 (𝑧 − 1)3⁄ , 𝑧 ≠ 1 is analytic. True\False. 

CYP3. Continuity is the necessary nut not the sufficient condition for the 

existence of a  finite derivative. True\False. 

CYP4.  If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, then  𝑢, 𝑣 satisfy the 

Cauchy Riemann equations. True\False. 

CYP5. Cauchy Riemann equations are sufficient for a function to be 

analytic True\False. 

CYP6. The function 𝑓(𝑧) = 𝑥𝑦 + 𝑖𝑦: 
i. Everywhere continuous 

https://en.wikipedia.org/wiki/Number_system
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
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ii. Analytic 

iii. Everywhere Continuous but not analytic 

iv. None of these 

CYP7. The analytic function whose real part is 𝑒𝑥𝑐𝑜𝑠𝑦 is: 

i. 𝑒𝑧 + 𝑐𝑖 
ii. 𝑒2𝑧 

iii. 𝑥𝑒𝑧 
iv. None of these 

CYP8. If 𝑓(𝑧)  is an analytic function whose real part is constant, the 

𝑓(𝑧)is a  …… 

CYP9. If 𝑓(𝑧)and 𝑓(𝑧)̅̅ ̅̅ ̅̅  are both analytic, that 𝑓(𝑧)is a ……………… 

CYP10. An analytic function in a region R, with constant modulus is 

…………..         
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 Conway, J. B. (1978). Functions of one complex variable I (2nd 

ed.). New York, NY: Springer. 
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https://nptel.ac.in/courses/111106084 

5.8 TERMINAL QUESTIONS: -  

TQ1: State the basic difference between the limit of a function of a real 

variable and that of a complex variable. 

https://nptel.ac.in/courses/111106084
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………………………………………………………………

…… 

        

………………………………………………………………

…………… 

 

TQ 2:  If 𝑓(𝑧)and 𝑓(𝑧)̅̅ ̅̅ ̅̅  are both analytic, show that 𝑓(𝑧)is a constant. 

             

………………………………………………………………

………. 

           

………………………………………………………………

………… 

 

TQ3: If 𝑓(𝑧)  is an analytic function whose real part is constant, prove 

that f 𝑓(𝑧)is  a  constant function. 

         

 ………………………………………………………………

………………….. 

 

 ………………………………………………………………

………………….. 

 

TQ4:  Show that for the function 

𝑓(𝑧) = {
(𝑧̅ )2 𝑧⁄ , 𝑧 ≠ 0.

0, 𝑧 = 0
 

the C-R equations are satisfied at origin.  Does 𝑓 ′(0) exist? 

 ..……………………………………………………………………                             

            ……….. 

    

………………………………………………………………

…………. 

 

5.9 ANSWERS: -  

CHECK YOUR PROGRESS: 

CYP1: True. 

CYP2: False. 

CYP3: True. 
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CYP4: True. 

CYP5: False. 

CYP6: (iii) 

CYP7: (i) 

CYP8:  constant function 

CYP9:  constant function. 

CYP10: constant function 

 

TERMINAL QUESTIONS: 

TQ4: No. 
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UNIT6: Analytic Function-II 

CONTENTS: 
6.1 Introduction 

6.2 Objectives 

6.3   Definitions 

i. Conjugate function 

ii. Harmonic function 

iii. Orthogonal system 

6.4 Construction of an analytic function 

6.5 Theorems  

6.6 Analyticity and zeros different functions 

6.7 Branch point 

6.8 Branch cut and branch of multi-valued functions 

6.9 Summary  

6.10 Glossary 

6.11 References  

6.12 Suggested Readings 

6.13 Terminal Questions  

6.14 Answers 

 

6.1 INTRODUCTION: -  

Complex analysis is a fundamental branch of mathematics that studies 

functions of complex variables. It provides powerful tools and concepts 

that are widely applied in physics, engineering, and applied sciences.  

Dear learner's in previous unit we have studied the basics of analytic 

function and it's properties. The topics covered in this unit ranging from 

definitions to advanced concepts like branch points and multi-valued 

functions—form the backbone of understanding analytic functions and 

their properties.  

The concept traces back to studies of harmonic functions by Euler and 

d’Alembert, arising from physics problems in heat flow, fluid flow, and 

mechanics. However, the idea of a harmonic conjugate was not yet 

formalized. Augustin-Louis Cauchy established the foundation of complex 

analysis and introduced the Cauchy–Riemann equations. He proved that if 

f(z) = u(x, y)+iv(x, y) is analytic, then u and v must satisfy the Cauchy–

Riemann equations. This formalized the concept of a harmonic conjugate: 

a function v paired with u to form a holomorphic function.   
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Bernhard Riemann expanded the geometric interpretation of complex 

functions. He studied how harmonic functions and their conjugates 

correspond to orthogonal families of curves and showed that analytic 

functions preserve angles (conformal maps). His work solidified the 

importance of harmonic conjugates in complex function theory. Harmonic 

conjugates became widely used in potential theory, electrostatics, 

hydrodynamics, and conformal mapping methods such as the Schwarz–

Christoffel transformation. These applications linked mathematical theory 

to physical problems. Today, the harmonic conjugate is a key concept in: 

analytic function theory, PDEs and potential theory, conformal geometry, 

Fourier analysis. 

 

 

Ref: 

https://darwinthenandnow.com/wpcontent/uploads/

2016/05/Riemann-Bernhard.jpg  

 

Georg Friedrich Bernhard Riemann Born in 

Germany, 1826-1866 Mathematician Established 

the mathematics for general relativity and 

pioneered contributions to differential geometry; 

formulated the Riemann integral, Fourier 

series, prime-counting function,  contributed 

to complex analysis including Riemann 

surfaces, Riemann hypothesis, and the analytic 

number theory. 

Fig 1.1. 

 

6.2 OBJECTIVES: -  

 Describe the meaning and characteristics of an Conjugate function, 

Harmonic function and Orthogonal system. 

 Explain the Construction of an analytic function. 

 Discuss Branch point, Branch cut and branch of multi-valued 

functions. 

 

6.3 DEFINITION: -  

The given definitions are useful for the study of analytic functions. 

 

6.3.1 CONJUGATE FUNCTION: -  

https://en.wikipedia.org/wiki/Bernhard_Riemann
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Riemannian_Geometry
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Prime-counting_function
https://en.wikipedia.org/wiki/Prime-counting_function
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Riemann_surfaces
https://en.wikipedia.org/wiki/Riemann_surfaces
https://en.wikipedia.org/wiki/Riemann_hypothesis
https://en.wikipedia.org/wiki/Analytic_number_theory
https://en.wikipedia.org/wiki/Analytic_number_theory
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If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, and 𝑢 and 𝑣 satisfy the 

Laplace's equations  

∇2𝑉 = 0, 
 

then 𝑢 and 𝑣 are called conjugate harmonic functions or conjugate 

functions simply. 

 

∇2𝑉 = 0,  

means  (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) 𝑉 = 0. 

 

Where, ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 

Del Operator: The gradient operator, Del (∇), in Cartesian Coordinates 

 

 
 

 
 

6.3.2 HARMONIC FUNCTION: -  

A function 𝑢(𝑥, 𝑦) is called harmonic function if first and second order 

partial derivatives of 𝑢 are continuous and 𝑢 satisfy Laplace's equation,  

 

∇2𝑉 = 0 
A complex function is harmonic iff its real and imaginary parts are 

harmonic. Thus, it suffices to treat only the real valued functions, in the 

study of harmonic functions. From the linearity of the differential 

operator, ∇2 it follows that the set of all harmonic maps on a domain forms 

a vector space. In particular all linear functions (𝑎𝑥 + 𝑏𝑦) are harmonic. 

However, it is not true that product of two harmonic functions is 

harmonic. For example, 𝑥𝑦 is harmonic but 𝑥2y2 is not harmonic. 

 

EXAMPLE: 
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6.3.3 ORTHOGONAL SYSTEM: -  

Two families of curves 𝑢(𝑥, 𝑦) = 𝑐1, 𝑣(𝑥, 𝑦) = 𝑐2, are said to form an 

Orthogonal system if they intersect at right angles at each of their points of 

intersection. 

 

6.4 CONSTRUCTION OF ANALYTIC FUNCTION: 

-  

 Method I. Milne's Thomson's Method: 

We have, 𝑧 = 𝑥 + 𝑖𝑦 so that 𝑥 =
𝑧+𝑧̅

2
, 𝑦 =

𝑧−𝑧̅

2𝑖
. 

𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

or 

𝑓(𝑧) = 𝑢 (
𝑧 + 𝑧̅

2
,
𝑧 − 𝑧̅

2𝑖
) + 𝑖𝑣 (

𝑧 + 𝑧̅

2
,
𝑧 − 𝑧̅

2𝑖
). 

In fact, this relation is formal identity in two independent variables 𝑧 and 

𝑧̅. 

By setting 𝑥 = 𝑧, 𝑦 = 0 so that 𝑧 = 𝑧̅, we obtain: 

𝑓(𝑧) = 𝑢(𝑧, 0) + 𝑖𝑣(𝑧, 0) ……………………………..(1) 

We know that 𝑓′(𝑧) =
𝑑𝑤

𝑑𝑧
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 

=
𝜕𝑢

𝜕𝑥
− 𝑖

𝜕𝑢

𝜕𝑦
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(by Cauchy Riemann equations) 

Taking 

𝜕𝑢

𝜕𝑥
= ∅1(𝑥, 𝑦) = ∅1(𝑧, 0) 

𝜕𝑢

𝜕𝑦
= ∅2(𝑥, 𝑦) = ∅2(𝑧, 0) 

We get                                          𝑓′(𝑧) = ∅1(𝑧, 0) − 𝑖∅2(𝑧, 0) 

Integration yields the result, 

𝑓(𝑧) = ∫[∅1(𝑧, 0) − 𝑖∅2(𝑧, 0)]𝑑𝑧 + 𝑐, 

where 𝑐 is a constant. 

We can calculate 𝑓(𝑧) directly if 𝑢 is known. 

Similarly if 𝑣(𝑥, 𝑦) is given, then it can be proved that: 

𝑓(𝑧) = ∫[𝜓1(𝑧, 0) + 𝑖𝜓2(𝑧, 0)]𝑑𝑧 + 𝑐′, 

Where  
𝜕𝑣

𝜕𝑦
= 𝜓1(𝑥, 𝑦) 

𝜕𝑣

𝜕𝑥
= 𝜓2(𝑥, 𝑦). 

EXAMPLE: 

 

Step I:  
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Step II: 

 

  

 

 

Step III: 

 

 

Step IV: 

 

 

 

 

  Method II. Suppose 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic and 𝑢 is known. To 

determine 𝑓(𝑧). 

Firstly we shall determine 𝑣. 

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 

= (−
𝜕𝑢

𝜕𝑦
) 𝑑𝑥 + (

𝜕𝑢

𝜕𝑥
) 𝑑𝑦, 

By Cauchy-Riemann equations. 



Complex Analysis  MT(N)-302 
 

Department of Mathematics  

Uttarakhand Open University Page 118 

 
 

Taking 𝑀 = −
𝜕𝑢

𝜕𝑦
, 𝑁 =

𝜕𝑢

𝜕𝑋
, we get, 

𝑑𝑣 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦  ……………………..(1) 

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
= −

𝜕2𝑢

𝜕𝑦2 −
𝜕2𝑢

𝜕𝑥2 = −∇2𝑢 = 0 (For 𝑢 satisfies Laplace's equation ) 

or 

𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
. 

Consequently (1) is exact differential equation. 

So equation (1) can be integrated and 𝑣 can be determined from the 

equation 𝑓(𝑧) = 𝑢 + 𝑖𝑣. 

EXAMPLE: 

 

 

 

 

(using integration with respect to 𝑥 as 𝑦 constant) 

 

6.5 THEOREMS: -   

THEOREM 1:  Suppose 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic on domain 𝐷 in ℂ,  
then ℎ = 𝑅𝑒 𝑓(𝑧) is harmonic on 𝐷 

 
PROOF: A function 𝑢(𝑥, 𝑦) is called harmonic function if first and 

second order partial derivatives of 𝑢 are continuous and 𝑢 satisfy 

Laplace's equation,  
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∇2𝑉 = 0, 

 

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) 𝑉 = 0. 

 

Since  𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, then  𝑢, 𝑣 satisfy the 

equations: 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
, … (1) 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
… . (2) 

Since differentiating equation (1) with respect to 𝑦 and differentiating 

equation (2) with respect to 𝑥 and adding (1) and (2), 

 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=

𝜕2𝑣

𝜕𝑦𝜕𝑥
−

𝜕2𝑣

𝜕𝑥𝜕𝑦
= 0. 

 

Thus, the real part of any analytic function is a harmonic function. The 

imaginary part is also harmonic for the same reason. 

 

THEOREM 2:  If  𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic on domain 𝐷 in ℂ,  prove 

that the curves 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  form two orthogonal 

families. 

 

PROOF:Since  𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, then  𝑢, 𝑣 satisfy 

the equations: 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
, … (1) 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
… . (2) 

To prove that the curves 𝑢(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐1,  𝑣(𝑥, 𝑦) =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐2,  form two orthogonal families.. 

Let 𝑚1 = slop of the tangent to the curve 𝑢 = 𝑐1. 

𝑚2 = slop of the tangent to the curve 𝑣 = 𝑐2. 

If we show that 𝑚1𝑚2 = −1. 
Taking differential of the curve 𝑢 = 𝑐1 and the curve 𝑣 = 𝑐2. 

𝑑𝑢 = 0, 𝑑𝑣 = 0. 
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 = 0 

𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 = 0 
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𝑚1 =
𝑑𝑦

𝑑𝑥
=

𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦

, = −
𝑢𝑥

𝑢𝑦
 

𝑚2 =
𝑑𝑦

𝑑𝑥
=

𝜕𝑣
𝜕𝑥
𝜕𝑣
𝜕𝑦

, = −
𝑣𝑥

𝑣𝑦
 

𝑚1𝑚2 = (−
𝑢𝑥

𝑢𝑦
) (−

𝑣𝑥

𝑣𝑦
) =

𝑢𝑥𝑣𝑥

𝑢𝑦𝑣𝑦
=

𝑢𝑥𝑣𝑥

(−𝑣𝑥)(𝑢𝑥)
= −1 

 

 

So the curves 𝑢(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐1,  𝑣(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐2,  form 

two orthogonal families. 

 

THEOREM 3: To prove that  

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
=

4𝜕2

𝜕𝑧𝜕𝑧̅
 

PROOF: Let  𝑧 = 𝑥 + 𝑖𝑦.  
Then 𝑧̅ = 𝑥 − 𝑖𝑦. 

𝑥 =
𝑧 + 𝑧̅

2
, 𝑦 =

𝑧 − 𝑧̅

2𝑖
 

                                                                                            𝑦 = −
𝑖

2
(𝑧 − 𝑧̅). 

This implies 
𝜕𝑥

𝜕𝑧
=

1

2
=

𝜕𝑥

𝜕𝑧̅
 

𝜕𝑦

𝜕𝑧̅
=

𝑖

2
= −

𝜕𝑦

𝜕𝑧
 

Let 𝑓 = 𝑓(𝑥, 𝑦). 
 

Then 𝑓 = 𝑓(𝑥, 𝑦) = 𝑓(𝑧, 𝑧̅), also, 

 
𝜕𝑓

𝜕𝑧
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧
= 

1

2
(

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
) 

𝜕𝑓

𝜕𝑧̅
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
= 

1

2
(

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
) 

 

𝜕2𝑓

𝜕𝑧𝜕𝑧̅
=

𝜕

𝜕𝑧

𝜕𝑓

𝜕𝑧̅
=

1

4
(

𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦
) (

𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦
) 𝑓 

Or 

𝜕2𝑓

𝜕𝑧𝜕𝑧̅
=

1

4
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑓 

Or 
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𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

 

 

THEOREM 4:  If  𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic on domain 𝐷 in ℂ, prove 

that, 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |Rf(z)|𝟐 = 2|f ′(z)|2. 

PROOF: 𝒇(𝑧) = 𝑢 + 𝑖𝑣, 𝑅𝑓(𝑧) = 𝑢. 
 

𝜕𝑢2

𝜕𝑥2
= 2𝑢

𝜕𝑢

𝜕𝑥
 

                                                                                         ……………………………..(1) 
      After differentiation equation (1). 

𝜕2𝑢2

𝜕𝑥2
= 2 [(

𝜕𝑢

𝜕𝑥
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑥2
] 

 
                                                                                     …………………………………(2) 

𝜕2𝑢2

𝜕𝑦2
= 2 [(

𝜕𝑢

𝜕𝑦
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑥2
] 

                                                                                         
……………………………….(3) 
 
 
 
Adding equation (2) and (3), 
 
𝜕𝑢2

𝜕𝑥2+
𝜕𝑢2

𝜕𝑦2 = 2 [(
𝜕𝑢

𝜕𝑥
)

2

+ 𝑢
𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑦
)

2

+ 𝑢 (
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)] 

 
But 𝑢 satisfies Laplace's equation, 
 

So, by using 
𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

 
𝜕2𝑢2

𝜕𝑥2 +
𝜕2𝑢2

𝜕𝑦2 = 2 [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

]…………….(4) 

 

But f ′(z) =
dw

dz
=

𝜕𝑤

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 

 
From equation (4), 
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𝜕2𝑢2

𝜕𝑥2 +
𝜕2𝑢2

𝜕𝑦2 = 2|f ′(z)|2. 

Or 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) |Rf(z)|𝟐 = 2|f ′(z)|2 

THEOREM 5:  If  𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is a analytic on domain 𝐷 in ℂ, 

f ′(z) ≠ 0, prove that, 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑙𝑜𝑔|f(z)| = 0. 

If |f(z)| is the product of a function of 𝑥 and a function of 𝑦, show that  

f(z) = eαz2+βz+γ, 

where α is real and β, γ are complex constants. 

 

 

PROOF: Recall that, 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= 4

𝜕2

𝜕𝑧𝜕𝑧̅
 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)  𝑙𝑜𝑔|f(z)| = 4

𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔|f(z)| 

= 4
𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔|f ′(z)|2 

= 2
𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔f ′(z)f ′(𝑧̅) as |z|2 = zz̅ 

= 2 [
𝜕2

𝜕𝑧𝜕𝑧̅
 𝑙𝑜𝑔f ′(z) +

𝜕2

𝜕𝑧𝜕𝑧̅
𝑙𝑜𝑔f ′(𝑧̅)] 

= 2 [
𝜕

𝜕𝑧
 
f ′′(z)

f ′(z)
+

𝜕

𝜕𝑧

f ′′(z)

f ′(z)
] = 2[0 + 0} = 0. 

  

 It follows from the fact 𝑓(𝑧) is treated as constant in differentiating 

with respect to 𝑧  and 𝑓(𝑧̅) is treated as constant in differentiating with 

respect to 𝑧.  
Second Part:  

 

Let |f(z)| = ∅(𝑥)𝜓(𝑦). 
 

By the first part, 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)  𝑙𝑜𝑔|f(z)| = 0 

Or 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)  𝑙𝑜𝑔∅(𝑥)𝜓(𝑦). 
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=
𝜕2

𝜕𝑥2
(𝑙𝑜𝑔∅ + 𝑙𝑜𝑔𝜓) +

𝜕2

𝜕𝑦2
(𝑙𝑜𝑔∅ + 𝑙𝑜𝑔𝜓) 

= 0 
or  

𝜕2

𝜕𝑥2
𝑙𝑜𝑔∅(𝑥) +

𝜕2

𝜕𝑦2
 𝑙𝑜𝑔𝜓(𝑦) 

=
𝑑2

𝜕𝑥2
𝑙𝑜𝑔∅(𝑥) +

𝑑2

𝜕𝑦2
 𝑙𝑜𝑔𝜓(𝑦) 

= 0. 
or  

𝑑2

𝜕𝑥2
𝑙𝑜𝑔∅(𝑥) = −

𝑑2

𝜕𝑦2
 𝑙𝑜𝑔𝜓(𝑦) = 2𝑝, 𝑠𝑎𝑦 

[L.H.S. and R.H.S. both are independent of each other]. 

𝑑2

𝜕𝑥2
𝑙𝑜𝑔∅ = 2𝑝, 

gives on integration 
𝑑(𝑙𝑜𝑔∅)

𝑑𝑥
= 2𝑝𝑥 + 𝑞. 

Again integrating, 𝑙𝑜𝑔∅(𝑥) = 𝑝𝑥2 + 𝑞𝑥 + 𝑟. 
Similarly − 𝑙𝑜𝑔𝜓(𝑦) = 𝑝𝑦2 + 𝑞1𝑦 + 𝑟1. 

𝑙𝑜𝑔∅𝜓 = 𝑙𝑜𝑔∅ + 𝑙𝑜𝑔𝜓 = 𝑝(𝑥2 − 𝑦2) + (𝑞𝑥 − 𝑞1𝑦) + (𝑟 − 𝑟1) 

Or 
|f ′(z)| = ∅(𝑥)𝜓(𝑦) = exp [𝑝(𝑥2 − 𝑦2) + (𝑞𝑥 − 𝑞1𝑦) + (𝑟 − 𝑟1)] … . . (1) 

Now since, |exp[α𝑧2 + 𝛽𝑧 + 𝑦]]|= |exp[α(𝑥 + 𝑖𝑦)2 + 𝛽(𝑥 + 𝑖𝑦) + 𝑦]]| 
= |exp[α(𝑥2 − 𝑦2) + 2𝑖αxy + (a + ib)(𝑥 + 𝑖𝑦) + (𝑐 + 𝑖𝑑)]| 

as  α is real. 

= |exp[α(𝑥2 − 𝑦2) + 𝑎𝑥 − 𝑏𝑦 + 𝑐]. exp[𝑖 (2αxy ) + bx + ay + d)]]| 
= exp[α(𝑥2 − 𝑦2) + 𝑎𝑥 − 𝑏𝑦 + 𝑐]. 

 

(as |eip = 1| for any real p) 

6.1 which is of the same from as (1),  
 

Hence we can write, 

f ′(z) = 𝑒𝑥𝑝(α𝑧2 + 𝛽𝑧 + 𝑦).  
 

6.6 ANALYTICITY AND ZEROS DIFFERENT 

FUNCTIONS: -   
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6.7 BRANCH POINTS: -   

The idea of branch points arose from attempts to understand multi-valued 

analytic functions such as √𝑧,  𝑙𝑜𝑔𝑧 and  𝑧1 𝑛 ⁄ mathematicians noticed that 

these functions could not be made single-valued on the whole complex 

plane, leading to the identification of special points—later called branch 

points—where values cycle when circling the point. Key contributors 

include Argand, Wessel, and Cauchy, who laid foundational work in 

analytic continuation and geometric interpretations. Bernhard Riemann 

revolutionized the concept by introducing Riemann surfaces, showing that 

multi-valued functions become single-valued on appropriately constructed 

multi-layered surfaces. Branch points were defined as locations where 

sheets of these surfaces meet. Riemann distinguished algebraic and 

logarithmic branch points and deeply connected the idea to analytic 

continuation. Following Riemann, Weierstrass, Puiseux, Schwarz, and 

Poincaré made the notion more rigorous through work on analytic 

continuation, series expansions, monodromy, and differential equations. 

Branch points became standardized objects in algebraic geometry and 
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complex analysis. In the modern framework, branch points are studied in 

complex manifolds, algebraic curves, monodromy theory, and singularity 

theory. They also play key roles in physics, including quantum mechanics, 

statistical mechanics, and quantum field theory, where functions often 

possess branch cuts linked to physical observables. 

 

 

 
EXAMPLES: 

 

         

               
 

6.8 BRANCH CUT AND BRANCH OF 

MULTIVALUED FUNCTION: -   

The concept of a branch cut in complex analysis emerged during the 19th 

century as mathematicians struggled to understand multi-valued functions 

such as √𝑧,  𝑙𝑜𝑔𝑧 and  𝑧1 𝑛 ⁄  Early work by Argand, Wessel, and Cauchy 

clarified analytic continuation and the behavior of functions on the 

complex plane, but these functions still exhibited discontinuities when 

encircling certain points. To handle this, mathematicians began 

deliberately “cutting” the plane so a multi-valued function could be treated 

as single-valued on the remaining domain. The decisive advance came 

from Bernhard Riemann in the 1850s. Rather than viewing branch cuts as 

artificial slits, Riemann introduced Riemann surfaces, where branch points 
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join different sheets of the surface. In this geometric picture, a branch cut 

represents the projection onto the complex plane of where sheets are 

connected. Riemann’s viewpoint clarified that branch cuts are not intrinsic 

to the function itself but are chosen by the analyst to define a single-

valued branch. By the late 19th and early 20th centuries, the concept 

became fully formalized in the works of Weierstrass, Schwarz, and 

Poincaré. Today, branch cuts are standard tools in complex analysis, 

differential equations, and theoretical physics, especially in quantum field 

theory and analytic continuation.A branch cut is a curve or line removed 

from the complex plane to make a multi-valued complex function single-

valued on the remaining domain. A branch cut is a curve (or connected 

set) in the complex plane chosen so that a multi-valued function can be 

restricted to a domain where it becomes single-valued and analytic. 

The cut prevents closed loops around branch points, which would 

otherwise cause the function to change value. A branch cut connects one 

or more branch points (or a branch point to infinity). The cut itself is not 

unique; different choices produce different branches of the same function. 

Across a branch cut, the function has a jump discontinuity, corresponding 

to switching between different sheets of its Riemann surface. 

 

\ 

Reason: Circling the origin changes the argument by 2𝜋, creating infinitly 

many values. 
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Fig 1.2. 

 

 

 

SOLVED EXAMPLES 
 

EXAMPLE1:Find the analytic function  𝑓(𝑧) = 𝑢 + 𝑖𝑣 which the real 

part is 

𝑢 = 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦) 
 

Solve by Milne's Thomson's method and differential equation method? 

 

SOLUTION: 

Method I. Milne's Thomson's Method: 

𝜕𝑢

𝜕𝑥
= ∅1(𝑥, 𝑦) = ∅1(𝑧, 0) = 𝑒𝑧(𝑧, 0) = 𝑒𝑧(𝑧 + 1). 

𝜕𝑢

𝜕𝑦
= ∅2(𝑥, 𝑦) = ∅2(𝑧, 0) = 0 

Integration  yields the result, 

𝑓(𝑧) = ∫[∅1(𝑧, 0) − 𝑖∅2(𝑧, 0)]𝑑𝑧 + 𝑐, 
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= ∫[𝑒𝑧(𝑧 + 1) − 𝑖. 0]𝑑𝑧 + 𝑐, 

=  ∫(𝑧𝑒𝑧 + 𝑒𝑧)𝑑𝑧 + 𝑐, 

= (𝑧 − 1)𝑒𝑧 + 𝑒𝑧 + 𝑐 = 𝑧𝑒𝑧 + 𝑐 

 Method II. Suppose 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic and 𝑢 is known. To 

determine 𝑓(𝑧). 

Firstly we shall determine 𝑣. 

𝜕𝑢

𝜕𝑦
= −𝑒𝑥(−𝑥𝑠𝑖𝑛𝑦 − 𝑦𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) 

𝜕𝑢

𝜕𝑥
= 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦 + 𝑐𝑜𝑠𝑦) 

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 

= (−
𝜕𝑢

𝜕𝑦
) 𝑑𝑥 + (

𝜕𝑢

𝜕𝑥
) 𝑑𝑦, 

𝑣 =  ∫ (−
𝜕𝑢

𝜕𝑦
) 𝑑𝑥 + (

𝜕𝑢

𝜕𝑥
) 𝑑𝑦 = 

𝑣 = ∫ 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦 + 𝑠𝑖𝑛𝑦)𝑑𝑥 (𝑡𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑦 𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) + 

∫(𝑡ℎ𝑜𝑠𝑒 𝑡𝑒𝑟𝑚𝑠 𝑤ℎ𝑖𝑐ℎ 𝑑𝑜 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑥)𝑑𝑦 + 𝑐 

𝑣 = 𝑠𝑖𝑛𝑦. ∫ 𝑥𝑒𝑥𝑑𝑥 + (𝑦𝑐𝑜𝑠𝑦 + 𝑠𝑖𝑛𝑦) ∫ 𝑒𝑥 𝑑𝑥 + ∫ 0𝑑𝑦 + 𝑐 

= [(𝑥 − 1)𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦 + 𝑠𝑖𝑛𝑦]𝑒𝑥 + 𝑐 

𝑣 = [𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦]𝑒𝑥 + 𝑐 

𝑓(𝑧) = 𝑢 + 𝑖𝑣 = 𝑒𝑥(𝑥𝑐𝑜𝑠𝑦 − 𝑦𝑠𝑖𝑛𝑦) + 𝑖[𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦]𝑒𝑥 + 𝑐 

= 𝑥𝑒𝑥(𝑐𝑜𝑠𝑦 + 𝑦𝑠𝑖𝑛𝑦) + 𝑖𝑦[𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦]𝑒𝑥 + 𝑖𝑐 

𝑓(𝑧) = (𝑥 + 𝑖𝑦)𝑒𝑥𝑒𝑖𝑦 + 𝑐′ = 𝑧𝑒𝑧 + 𝑐′ 
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EXAMPL2:If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic function and 𝑢 − 𝑣 =

𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦), 

find 𝑓(𝑧)  in terms of 𝑧. 
  

SOLUTION: Given 𝑓(𝑧) = 𝑢 + 𝑖𝑣 …..(1) 

𝑢 − 𝑣 = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦)……(2) 

By (1), 𝑖𝑓(𝑧) = 𝑖𝑢 − 𝑣……………(3) 

Adding (1) and (3), 

(1 + 𝑖)𝑓(𝑧) = (𝑢 − 𝑣) + 𝑖(𝑢 + 𝑣). 
Taking 𝑢 − 𝑣 = 𝑈, 𝑢 + 𝑣 = 𝑉, (1 + 𝑖)𝑓 = 𝐹(𝑧), 
We obtain 

𝐹(𝑧) = 𝑈 + 𝑖𝑉  

𝑓(𝑧) = 𝑢 + 𝑖𝑣  is analytic it implies 𝐹(𝑧) = 𝑈 + 𝑖𝑉  is analytic. 

By (2), 𝑈 = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) 

 
𝜕𝑢

𝜕𝑥
= ∅1(𝑥, 𝑦) = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦), ∅1(𝑧, 0) = 𝑒𝑧(𝑧, 0) = 𝑒𝑧 , 

𝜕𝑢

𝜕𝑦
= ∅2(𝑥, 𝑦) = ∅2(𝑧, 0) = −𝑒𝑧 . 

By Milne's method, 

𝐹(𝑧) = ∫[∅1(𝑧, 0) − 𝑖∅2(𝑧, 0)]𝑑𝑧 + 𝑐, 

= ∫[𝑒𝑧 + 𝑖𝑒𝑧]𝑑𝑧 + 𝑐, 

= ∫[1 + 𝑖]𝑒𝑧𝑑𝑧 + 𝑐, 

(1 + 𝑖)𝑓 = (1 + 𝑖)𝑒𝑧 

Or 

𝑓(𝑧) = 𝑐1 + 𝑒𝑧 . 

6.9 SUMMARY: -   

This unit deals with analytic functions in complex analysis. An analytic 

function is one which is differentiable at every point in a region of the 

complex plane. Such functions have real and imaginary parts that are 
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closely related through certain conditions known as the Cauchy–Riemann 

equations. The real and imaginary parts of an analytic function are called 

conjugate functions. Each of these parts satisfies Laplace’s equation and 

hence they are known as harmonic functions. The curves represented by 

constant values of these functions intersect each other at right angles and 

therefore form an orthogonal system. The unit also explains how to 

construct an analytic function when either its real part or imaginary part is 

given. This is done by checking whether the given part is harmonic and 

then determining its conjugate using the Cauchy–Riemann equations. 

Important theorems related to analytic functions are discussed, such as 

conditions for analyticity, properties of harmonic functions, and the 

behavior of zeros of analytic functions. The unit emphasizes that zeros of 

analytic functions are isolated unless the function is identically zero 

everywhere in the region. Finally, the unit introduces multi-valued 

functions like logarithmic and root functions. Concepts such as branch 

point, branch cut, and branch are explained to make these functions single-

valued. A branch point is a point where the function changes value when 

encircled, while a branch cut is a curve removed from the plane to avoid 

this ambiguity. A branch refers to a specific single-valued version of a 

multi-valued function. 

6.10 GLOSSARY: -  

 Complex Numbers: In mathematics, a complex number is an 

element of a number system that extends the real numbers with a 

specific element denoted i, called the imaginary unit and satisfying 

the equation 𝑖2 = −1; every complex number can be expressed in 

the form 𝑎 ± 𝑖𝑏  where a and b are real numbers. Because no real 

number satisfies the above equation, i was called an imaginary 

number by René Descartes. For the complex number  𝑎 ± 𝑖𝑏 , a is 

called the real part, and b is called the imaginary part. The set of 

complex numbers is denoted by either of the symbols ℂ or C. 

 Limit: A function 𝑓(𝑧) tends to the limit 𝑙 as 𝑧 tends to 𝑧0 along 

any path, if to each positive arbitrary number 𝜀, however small, 

there corresponds a positive number 𝛿, such that |𝑓(𝑧) − 𝑙| < 𝜀 

whenever 0 < |𝑧 − 𝑧0| < 𝛿 and we write lim
𝑧→𝑧0

𝑓(𝑧) = 𝑙, where 𝑙 is 

finite. 

 Continuity: For a function 𝑓(𝑧) is continuous at a point 𝑧0. It must 

be defined at 𝑧0. It's limit must exist at 𝑧0. 𝑓(𝑧0) = lim
𝑧→𝑧0

𝑓(𝑧). 

 Differentiability: In symbols: 

https://en.wikipedia.org/wiki/Number_system
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
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𝑓 ′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0)

∆𝑧
 

must exist and the limit must be independent of the direction from which 

∆𝑧 → 0 in the complex plane. 

 Analytic function: A function f(z) of a complex variable z = x + 

iy is said to be analytic at a point z₀ if: 

a. It is differentiable at z₀. 

b. It remains differentiable in some neighborhood of z₀ (that     

           is, within some open region around that point). 

       In symbols: 

𝑓 ′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0)

∆𝑧
 

must exist and the limit must be independent of the direction from which 

∆𝑧 → 0 in the  complex plane. 

 

 

CHECK YOUR PROGRESS 

 

Fill in the Blanks 

CYP1: If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic in a domain 𝐷, and 𝑢 and 𝑣 satisfy 

 …………………………………….then 𝑢 and 𝑣 are called 

conjugate harmonic functions  or conjugate functions simply. 

 

CYP2: Two families of curves 𝑢(𝑥, 𝑦) = 𝑐1, 𝑣(𝑥, 𝑦) = 𝑐2, are said to form 

…………….           

…………….if they intersect at right angles at each of their points 

of intersection. 

CYP3: Suppose 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is ……………..on domain 𝐷 in ℂ,  then 

ℎ = 𝑅𝑒 𝑓(𝑧) is    harmonic on 𝐷 
 

CYP4: 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
= ⋯ 

CYP5: log (𝑧 − 2) has a branch point at …………. 

CYP6:  An analytic function with constant modulus is: 

  

(a) Variable (b) May be variable or constant (c) Constant (d) None of 

these. 
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6.13 TERMINAL QUESTIONS: -   

TQ1: For what values of 𝑧 the function 𝑤 defined by the equation ceases 

to be analytic? 

𝑧 = 𝑙𝑜𝑔𝜌 + 𝑖∅, 𝑤 = 𝜌(𝑐𝑜𝑠∅ + 𝑖𝑠𝑖𝑛∅). 
TQ2: For what values of 𝑧 the function 𝑤 defined by the equation  

𝑧 = 𝑠𝑖𝑛ℎ𝑢. 𝑐𝑜𝑠𝑣 + 𝑖𝑐𝑜𝑠ℎ𝑢. 𝑠𝑖𝑛𝑣, 𝑤 = 𝑢 + 𝑖𝑣. 
ceases to be analytic? 

TQ3: If 𝑢 = (𝑥 − 1)3 − 3𝑥𝑦2 + 3𝑦2 determine 𝑣 so that 𝑢 + 𝑖𝑣 is a 

regular function of 𝑥 + 𝑖𝑦. 
TQ4: If 𝑢 − 𝑣 = (𝑥 − 𝑦)(𝑥2 + 4𝑥𝑦 + 𝑦2) and 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is an 

analytic function of 𝑧 = 𝑥 + 𝑖𝑦, find 𝑓(𝑧) in terms of 𝑧. 
 

6.14 ANSWERS: -   

CHECK YOUR PROGRESS: 

CYP1: the Laplace's equations ∇2𝑉 = 0, 
CYP2: an Orthogonal system 

CYP3: analytic. 

CYP4: 
4𝜕2

𝜕𝑧𝜕𝑧̅
 

https://nptel.ac.in/courses/111106084
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CYP5: 𝑧 = 2 

CYP6: c 

 

TERMINAL QUESTIONS: 

 

TQ1. 𝑤 is analytic function in any finite domain.  

TQ2.𝑧 = ±𝑖. 
TQ3. 𝑣 = 3𝑦(𝑥2 − 2𝑥 + 1) − 𝑦3 + 𝑐 

TQ4.𝑓(𝑧) =  𝑐1 − 𝑖𝑧3. 
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UNIT 7: Complex Integration-I 

          CONTENTS: 
       7.1       Introduction 

       7.2      Objectives 

       7.3      Domain and Contour 

       7.4      Complex line integral 

       7.5      Cauchy’s Theorem 

       7.6      Extension of Cauchy’s theorem 

       7.7      Summary 

       7.8      Glossary 

       7.9      References 

       7.10     Suggested Reading 

       7.11     Terminal questions  

       7.12     Answers  
 

7.1 INTRODUCTION:- 

In mathematics, a line integral is an integral where the function to 

be integrated is evaluated along a curve. The terms path integral, curve 

integral, and curvilinear integral are also used; contour integral is used as 

well, although that is typically reserved for line integrals in the complex 

plane. A complex integral is the process of computing integrals of a 

complex-valued function over a path in the complex plane, similar to how 

real integrals are computed over intervals on the real line. These integrals 

are fundamentally line integrals and are often defined by parameterizing 

the path, breaking the complex integral into a pair of real line integrals, 

and using multivariate calculus. The result can depend on the specific path 

taken, but for some functions, the integral is independent of the path, 

which is determined by applying the complex version of the Fundamental 

Theorem of Calculus. 

7.2 OBJECTIVES:- 

After studying this unit, learner will be able to  

(i) Domain and Contour  

(ii) Complex line integral  

(iii)   Cauchy’s Theorem 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Contour_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral
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7.3 DOMAIN AND CONTOUR:- 

 DOMAIN (REGION) 

A set 𝑆 of points in the Agarnd plane is said to be connected set if any two 

of its points can be joined by a continuous curve, all of whose points 

belong to 𝑆. 

An open connected set is called an open domain. If the boundary points of 

𝑆 are also added to an open domain, then it is called closed domain. 

 CONTOUR 

By contour, we mean a continuous chain of a finite number of regular arcs. 

If the contour is closed and does not intersect itself, then it is called closed 

contour. 

Examples. Boundaries of triangles and rectangles. 

 

 SIMPLY AND MULTIPLY CONNECTED DOMAINS 

A domain in which every closed curve can be shrunk to a point without 

passing out of the region is called a simply connected domain. If a domain 

is not simply connected. then it is called multiply connected domain. 

 WEIERSTRASS M-TEST 

If |𝑢𝑛(𝑧)| ≤ 𝑀𝑛 where 𝑀𝑛 is independent of 𝑧 in a domain 𝑅 and Σ𝑀𝑛, 

the series of positive constants is convergent, then the series Σ𝑢𝑛(𝑧) is 

uniformly convergent. 

Remark: A uniformly convergent series of continuous functions can be 

integrated by term. 

 

7.4 COMPLEX LINE INTEGRAL:- 

Suppose 𝑓(𝑧) is continuous at every point of a curve 𝐶 having a finite 

length, i.e. 𝐶 is a rectifiable curve. 

Divide 𝐶 into 𝑛 parts by means of points 

𝑧0, 𝑧i, 𝑧2, … , 𝑧𝑛 , 
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Fig: 7.4 

Let 

𝑎 = 𝑧0, 𝑏 = 𝑧𝑛.  

We choose a point 𝜉𝑘  on each arc joining 𝑧𝑘−1 to 𝑧𝑘. 

Form the sum 

𝑆𝑛 = ∑  

𝑛

𝑟=1

𝑓(𝜉𝑟)(𝑧𝑟 − 𝑧𝑟−1). 

Suppose maximum value of (𝑧𝑟 − 𝑧𝑟−1) → 0 as 𝑛 → ∞. 

Then the sum 𝑆𝑛 tends to a fixed limit which does not depend upon the 

mode of subdivision and denote this limit by 

∫  
𝑏

𝑎

𝑓(𝑧)𝑑𝑧 or ∫ 
𝐶

𝑓(𝑧)𝑑𝑧 

which is called the complex line integral or line integral of 𝑓(𝑧) along 𝐶. 

An evaluation of integral by such method is also called ab-initio method. 

Remark 1:  

 
Remark 2: Line integrals are also called path or contour integrals. Given 

the ingredients we define the complex line integral  

                

 
you should note that this notation looks just like integrals of a real 

variable. We don’t need the vectors and dot products of line integrals in 

ℝ2. Also, make sure you understand that the product 𝑓(𝛾(𝑡))𝛾(𝑡) is just 

a product of complex numbers. An alternative notation uses 𝑑𝑧 = 𝑑𝑥 +
𝑖𝑑𝑦 to write  
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Example 1.  

                     

  
Example 2.  

                       

 

Example 3.  

                     

 
 

Notation. By the symbol ∫  
𝐶

𝑓(𝑧)𝑑𝑧 we mean the integral of 𝑓(𝑧) along a boundary 

𝐶 in the positive sense. In case of closed paths, the positive direction is anti-clockwise. 

The integral along 𝐶 is often called a contour integral. 
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7.5 CAUCHY’S THEOREM:- 

Cauchy's Theorem in complex analysis, named for Augustin-Louis 

Cauchy (1789-1857), states that the integral of a holomorphic (analytic) 

function around a simple closed loop in a simply connected region is zero, 

a discovery he made in the early 1800s, though his initial proofs involved 

continuity assumptions {1, 2, 4, 5}. Later, Édouard Goursat (1858-1936) 

proved the theorem without requiring differentiability of the derivative (f' 

being continuous), leading to the modern Cauchy - Goursat theorem, 

forming the bedrock for complex analysis, Cauchy's Integral Formula, and 

the powerful Residue Theorem.  

Statement:  If a function 𝑓 ( 𝑧 ) is analytic and single valued inside and 

on a simple closed contour 𝐶; then ∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0 

 

                                                                                 Fig. 7.5 

Proof. Firstly, we shall prove a lemma: 

Lemma. Given 𝜀 > 0 it is possible to divide the region inside 𝐶 into finite 

number of meshes either complete square 𝐶𝑛 or partial square 𝐷𝑛 such that 

within each mesh there exists a point 𝑧0 for which 

|
𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0)| < 𝜀 ∀ 𝑧 in the mesh.                …….     (1)  

Proof of the lemma. 

Gourset's Lemina. Suppose the lemma is not true. It means that the 

lemma fails at least in one mesh. Subdivide this mesh by means of lines 

joining the middle points of the opposite sides. If there is still at least one 

part which does not satisfy the condition (1). Again, subdivide that part in 

the same way. This process comes to an end after a finite number of steps, 

when the condition (1) is satisfied for every subdivision, or the process 

may go on indefinitely. In the second case, we obtain a sequence of 

squares (each contained in the preceding ones) which has 𝑧0 as its limit 

point at which the condition (1) is not satisfied. Of course, 𝑧0 is an interior 

point of 𝐶. Since the condition (1) is not satisfied at 𝑧0 and so 

https://www.google.com/search?q=%C3%89douard+Goursat&sca_esv=3a0fd967ae8fceb0&rlz=1C1VDKB_enIN1067IN1067&ei=MHM2aaAy2JGx4w-bqKqoAQ&ved=2ahUKEwiMpebJsq2RAxWoUGwGHRpiBjcQgK4QegQIARAE&uact=5&oq=history+cauchy+theorem+in+complex+analysis&gs_lp=Egxnd3Mtd2l6LXNlcnAiKmhpc3RvcnkgY2F1Y2h5IHRoZW9yZW0gaW4gY29tcGxleCBhbmFseXNpczIIECEYoAEYwwQyCBAhGKABGMMEMggQIRigARjDBEjwLlCnBliUIHABeACQAQCYAYkCoAHnDqoBBTAuMS43uAEDyAEA-AEBmAIIoALUDcICChAAGLADGNYEGEfCAgoQIRigARjDBBgKmAMAiAYBkAYIkgcFMS4wLjegB5I6sgcDMi03uAfNDcIHBTAuNS4zyAcVgAgA&sclient=gws-wiz-serp&mstk=AUtExfAcThdF9IYtNJAYNVs-4xzbTHqSAWf77TS_V7PRadPMNC1t-seLSyG1MWgXgBL-TGhwS6TNtWWaXV-9eBjm2dRK3u5ADvX4uHwXoFDGPcAwyZh6-M22wElwPwtTqpsBS-jM-WmiserdLOF8xvO3llGu0H-GvaxFlb31kddPmvloJ3qe2cf7nP3G-xSvkEKsdkoi&csui=3
https://www.google.com/search?q=Cauchy-Goursat+theorem&sca_esv=3a0fd967ae8fceb0&rlz=1C1VDKB_enIN1067IN1067&ei=MHM2aaAy2JGx4w-bqKqoAQ&ved=2ahUKEwiMpebJsq2RAxWoUGwGHRpiBjcQgK4QegQIARAF&uact=5&oq=history+cauchy+theorem+in+complex+analysis&gs_lp=Egxnd3Mtd2l6LXNlcnAiKmhpc3RvcnkgY2F1Y2h5IHRoZW9yZW0gaW4gY29tcGxleCBhbmFseXNpczIIECEYoAEYwwQyCBAhGKABGMMEMggQIRigARjDBEjwLlCnBliUIHABeACQAQCYAYkCoAHnDqoBBTAuMS43uAEDyAEA-AEBmAIIoALUDcICChAAGLADGNYEGEfCAgoQIRigARjDBBgKmAMAiAYBkAYIkgcFMS4wLjegB5I6sgcDMi03uAfNDcIHBTAuNS4zyAcVgAgA&sclient=gws-wiz-serp&mstk=AUtExfAcThdF9IYtNJAYNVs-4xzbTHqSAWf77TS_V7PRadPMNC1t-seLSyG1MWgXgBL-TGhwS6TNtWWaXV-9eBjm2dRK3u5ADvX4uHwXoFDGPcAwyZh6-M22wElwPwtTqpsBS-jM-WmiserdLOF8xvO3llGu0H-GvaxFlb31kddPmvloJ3qe2cf7nP3G-xSvkEKsdkoi&csui=3
https://www.google.com/search?q=Residue+Theorem&sca_esv=3a0fd967ae8fceb0&rlz=1C1VDKB_enIN1067IN1067&ei=MHM2aaAy2JGx4w-bqKqoAQ&ved=2ahUKEwiMpebJsq2RAxWoUGwGHRpiBjcQgK4QegQIARAG&uact=5&oq=history+cauchy+theorem+in+complex+analysis&gs_lp=Egxnd3Mtd2l6LXNlcnAiKmhpc3RvcnkgY2F1Y2h5IHRoZW9yZW0gaW4gY29tcGxleCBhbmFseXNpczIIECEYoAEYwwQyCBAhGKABGMMEMggQIRigARjDBEjwLlCnBliUIHABeACQAQCYAYkCoAHnDqoBBTAuMS43uAEDyAEA-AEBmAIIoALUDcICChAAGLADGNYEGEfCAgoQIRigARjDBBgKmAMAiAYBkAYIkgcFMS4wLjegB5I6sgcDMi03uAfNDcIHBTAuNS4zyAcVgAgA&sclient=gws-wiz-serp&mstk=AUtExfAcThdF9IYtNJAYNVs-4xzbTHqSAWf77TS_V7PRadPMNC1t-seLSyG1MWgXgBL-TGhwS6TNtWWaXV-9eBjm2dRK3u5ADvX4uHwXoFDGPcAwyZh6-M22wElwPwtTqpsBS-jM-WmiserdLOF8xvO3llGu0H-GvaxFlb31kddPmvloJ3qe2cf7nP3G-xSvkEKsdkoi&csui=3
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|
𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0)| ≮ 𝜀 where |𝑧 − 𝑧0| < 𝛿, 

𝛿 being a small number of depending upon 𝜀. 

This declares that 𝑓(𝑧) is not differentiable at 𝑧0 so that 𝑓(𝑧) is not 

analytic at 𝑧0, contrary to the initial assumption that 𝑓(𝑧) is analytic at 

every interior point of 𝐶. Hence the lemma is true. From the lemma, 

𝑓(𝑧) − 𝑓(𝑧0)

𝑧 − 𝑧0
− 𝑓′(𝑧0) = 𝜂(𝑧) where |𝜂| < 𝜀              … . . (2)  

and 𝜂 → 0 as 𝑧 → 𝑧0. 

Thus 𝑓(𝑧) = (𝑧 − 𝑧0)𝜂(𝑧) + 𝑓(𝑧0) + (𝑧 − 𝑧0)𝑓
′(𝑧0) 

Proof of the Cauchy’s theorem. Divide the interior of 𝐶 into complete 

squares 𝐶1, 𝐶2, … , 𝐶𝑛 and partial squares 𝐷1, 𝐷2, … , 𝐷𝑚, part of whose 

boundaries are parts of 𝐶. 

Consider the integral 

∑ 

𝑛

𝑟=1

∫  
𝐶𝑟

𝑓(𝑧)𝑑𝑧 + ∑ 

𝑚

𝑟=1

∫  
𝐷𝑟

𝑓(𝑧)𝑑𝑧 

where the path of every integral being in anti-clockwise direction. 

In the complete sum, integration along each straight side of each square 

(complete or partial) happens to be taken twice in opposite directions and 

so all the integrals along straight sides of squares cancel. The integrals, 

which remain, are taken along curved boundaries of partial squares 

because these are described only once. The integrals which are left behind 

sum equal to 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧

∴ ∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = ∑  

𝑛

𝑟=1

 ∫  
𝐶𝑟

 𝑓(𝑧)𝑑𝑧 + ∑ 

𝑚

𝑟=1

 ∫  
𝐷𝑟

 𝑓(𝑧)𝑑𝑧

              …… . .      (3)  

In view of (2), 

∫  
𝐶𝑟

 𝑓(𝑧)𝑑𝑧 = ∫  
𝐶𝑟

  [𝑓(𝑧0) + (𝑧 − 𝑧0)𝜂 + (𝑧 − 𝑧0)𝑓
′(𝑧0)]𝑑𝑧

 = [𝑓(𝑧0) − 𝑧0𝑓
′(𝑧0)]∫  

𝐶𝑟

 𝑑𝑧 + 𝑓′(𝑧0)∫  
𝐶𝑟

 𝑧𝑑𝑧 + ∫  
𝐶𝑟

  (𝑧 − 𝑧0)𝜂(𝑧)𝑑𝑧
 

Using the fact 

∫  
𝐶𝑟

𝑑𝑧 = 0 = ∫  
𝐶𝑟

𝑧𝑑𝑧 

 

we obtain ∫  
𝐶𝑟

𝑓(𝑧)𝑑𝑧 = ∫  
𝐶𝑟

(𝑧 − 𝑧0)𝜂𝑑𝑧 

In view of this, (3) becomes 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = ∑  

𝑛

𝑟=1

 ∫  
𝐶𝑟

  (𝑧 − 𝑧0)𝜂𝑑𝑧 + ∑  

𝑚

𝑟=1

 ∫  
𝐷𝑟

  (𝑧 − 𝑧0)𝜂𝑑𝑧 
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|∫ 
𝐶

 𝑓(𝑧)𝑑𝑧| ≤ ∑  

𝑛

𝑟=1

  |∫  
𝐶𝑟

  (𝑧 − 𝑧𝑗)𝜂𝑑𝑧| + ∑  

𝑛

𝑟=1

  |∫  
𝐷𝑟

  (𝑧 − 𝑧0)𝜂𝑑𝑧| 

≤ ∑  

𝑛

𝑟=1

 ∫  
𝐶𝑟

  |(𝑧 − 𝑧0)||𝜂||𝑑𝑧| + ∑  

𝑚

𝑟=1

 ∫  
𝐷𝑟

  |𝑧 − 𝑧0||𝜂||𝑑𝑧| 

< ∑  𝑛
𝑟=1  𝜀 ∫  

𝐶𝑟
  |𝑧 − 𝑧0||𝑑𝑧| + ∑  𝑚

𝑟=1  𝜀 ∫  
𝐷𝑟

  |𝑧 − 𝑧0||𝑑𝑧| (4) 

as |𝜂| < 𝜀. 

Let 𝑙𝑛 , 𝐴𝑛 be respectively the length of the side and area of square 𝐶𝑛. 

Similarly 𝑙𝑛 
′, A𝑛 

′ denote respectively length and area of square 𝐷𝑛. Then 

(4) takes the form 

|∫ 
𝐶

 𝑓(𝑧)𝑑𝑧| < ∑  

𝑛

𝑟=1

𝜀𝑙𝑟√2∫  
𝐶𝑟

|𝑑𝑧| + ∑  

𝑛

𝑟=1

𝜀𝑙𝑟
′√2∫  

𝐷𝑟

|𝑑𝑧| 

[Since |𝑧 − 𝑧0| ≤ 𝑙𝑟√2 = diagonal of square 𝐶𝑟 ] 

= ∑  

𝑛

𝑟=1

𝜀𝑙𝑟√2. 4𝑙𝑟 + ∑  

𝑚

𝑟=1

𝜀𝑙𝑟
′√2. (4𝑙𝑟

′ + 𝑠𝑟) 

For ∫  
𝐶𝑟

|𝑑𝑧| = perimeter of square 𝐶𝑟] 

 = 4𝜀√2 [∑  

𝑛

𝑟=1

 𝐴𝑟
2 + ∑  

𝑚

𝑟=1

 𝐴𝑟
′ ] + 𝜀√2∑  

𝑚

𝑟=1

  𝑙𝑟
′ 𝑠𝑟

 = 4𝜀√2 ⋅ 𝐴 + 𝜀√2∑  

𝑚

𝑟=1

  𝑙𝑟
′ 𝑠𝑟

 

where 𝐴 = total area of squares of  𝑙 with which the region was originally 

covered. Also let 𝐿 be total length of boundary of 𝐶. Then 

|∫ 
𝐶

 𝑓(𝑧)𝑑𝑧| = 4𝜀√2A + 𝜀√2∑  

𝑚

𝑟=1

 𝑙𝑠𝑟

 = 4𝜀√2A + 𝜀 𝑙 𝐿 √2

 

or 

|∫  
𝐶

 𝑓(𝑧)𝑑𝑧| < 𝜀|4√2A + 𝑙 L √2| 

Since 𝜀 is arbitrary and so making 𝜀 → 0, we get 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 0 

Alternate Proof of Cauchy's theorem. Here we use Green's theorem to 

prove the present theorem. 

Green's Theorem. If 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦),
𝜕𝑄

𝜕𝑥̇
,
𝜕𝑃

𝜕𝑦
 all are continuous functions 

of 𝑥 and 𝑦 in a closed contour 𝐶, then ∫  
𝐶

(𝑃𝑑𝑥 + 𝑄𝑑𝑦) = ∬  
𝐶

(
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
) 𝑑𝑥𝑑𝑦…∗ 
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Cauchy's Theorem. If 𝑓(𝑧) is analytic function of 𝑧 and if 𝑓′(𝑧) is 

continuous at each point within and on a closed contour 𝐶, then 

∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0. 

Proof. 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic and so it is continuous on contour 𝐶 and 

also 𝑓′(𝑧) exists. It means that 𝑢, 𝑣, 𝑢𝑥 , 𝑢𝑦, 𝑣𝑥 , 𝑣𝑦 all are continuous in 𝐶. 

𝑓(𝑧) = 𝑢 + 𝑖𝑣 =  analytic ⇒ 𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥 

𝑢𝑥 − 𝑣𝑦 = 0   ⋯ (1),                        𝑢𝑦 + 𝑣𝑥 = 0    …… . (2) 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = ∫ 
𝐶

  (𝑢 + 𝑖𝑣)(𝑑𝑥 + 𝑖𝑑𝑦) 

                                                                              = ∫  
𝐶

  (𝑢𝑑𝑥 − 𝑣𝑑𝑦) +

𝑖 ∫  
𝐶

  (𝑣𝑑𝑥 + 𝑢𝑑𝑦)             

using (*), we get 

 = ∬ 
𝐶

  (
𝜕(−𝑣)

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)⋯𝑑𝑦 + 𝑖 ∬ 

𝐶

  (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)𝑑𝑥𝑑𝑦 using (1) 𝑑(2)

 = −∬ 
𝐶

 0𝑑𝑥𝑑𝑦 + 𝑖 ∬ 
𝐶

 0𝑑𝑥𝑑𝑦 = 0

 

Note. Goursat showed that for the truth of the theorem the assumption of 

the continuity of 𝑓′(𝑧) is not necessary and so Cauchy's theorem holds iff 

𝑓(𝑧) is analytic writhin and on 𝐶. 

Cauchy- Goursat Theorem 

In 1900 the French mathematician Edouard Goursat proved that the 

assumption of continuity of  𝑓′is not necessary to reach the conclusion 

of Cauchy's theorem. The resulting modified version of Cauchy's theorem 

is known today as the Cauchy - Goursat Theorem. as we can expect, with 

fewer hypotheses, the proof of this version of Cauchy's theorem is more 

complicated than the one just presented. 

Statement: If a function f is analytic at all points interior to and on a 

simple closed contour C, then ∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0. 

Example: The function f(z) = 𝑒𝑧 is entire and consequently is analytic at 

all points within and on any simple closed contour C. It follows from the 

Cauchy-Goursat Theorem that ∫  
𝐶

𝑒𝑧𝑑𝑧 = 0 

Question 1. If 𝑓(𝑧) =
𝑧2+5𝑧+6

𝑧−2
, does Cauchy's theorem apply 

(i) When path of integration is a circle 𝐶 of radius 3 and centre at origin. 

(ii) When path of integration is a circle 𝐶 of radius 1 and centre at the 

origin. 

Solution. (i). When path is circle 𝐶 given by |𝑧 − 0| = 3, then 𝑧 = 2 lies 

inside 𝑐 and so 𝑓(𝑧) =
𝑧2+5𝑧+6

𝑧−2
 is not analytic inside 𝑐. Hence Cauchy's 

theorem is not applicable and so ∫  
𝐶

𝑓(𝑧)𝑑𝑧 ≠ 0. 

(ii) When 𝐶 is circle |𝑧 − 0| = 1, then 𝑧 = 2 lies outside 𝐶. ∴ 𝑓(𝑧) =
𝑧2+5𝑧+6

𝑧−2
 is analytic inside 𝐶 and hence ∫  

𝐶
𝑓(𝑧)𝑑𝑧 = 0 

https://mathshistory.st-andrews.ac.uk/Biographies/Goursat/
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Question 2. Verify Cauchy's theorem for the function 𝑓(𝑧) = 𝑧3 − 𝑖𝑧2 −
5𝑧 + 2𝑖 if path is circle given by |𝑧 − 1| = 2. 

Solution. Evidently 𝑓(𝑧) is analytic within and on 𝐶. Hence, by Cauchy's 

theorem, 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = 0               …… . . (1)  

For 𝐶: |𝑧 − 1| = 2, 𝑧 − 1 = 2𝑒𝑖0, 𝑑𝑧 = 2𝑖𝑖𝑒𝑖0𝑑𝜃 

 ∫  
𝐶

 𝑓(𝑧)𝑑𝑧 = ∫  
2𝜋

𝐶

  (𝑧3 − 𝑖𝑧2 − 5𝑧 + 2𝑖)𝑑𝑧

 = ∫  
2𝜋

0

  [(1 + 2𝑒𝑖𝜃)
3
− 𝑖(1 + 2𝑒𝑖𝜃)

2
− 5(1 + 2𝑒𝑖𝜃) + 2𝑖] 2𝑒𝑖0𝑖𝑑𝜃 = 0

 

or ∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0... (2).  

For ∫  
2𝜋

𝐶
𝑒𝑖𝑘𝜃𝑑0 = 0 if 𝑘 is any non-zero integer. 

(1) and (2) ⇒ Cauchy's theorem is verified. 

Question 3. Verify Cauchy's Theorem and integrating 𝑒𝑖𝑧 along the 

boundary of the triangle with vertices at the points 1 + 𝑖,−1 + 𝑖 and −1 −
𝑖. 
 

Solution. 𝑓(𝑧) = 𝑒𝑖𝑧 is analytic within and upon closed contour △ 𝐴𝐵𝐶 

and so by Cauchy's   

                  Theorem ∫  
𝐶

 𝑓(𝑧)𝑑𝑧 = 0 

                                    Let𝐼 = ∫  
𝐶

 𝑓(𝑧)𝑑𝑧 = 𝐼1(𝐴𝐵⃗⃗⃗⃗  ⃗) + 𝐼2(𝐵𝐶⃗⃗⃗⃗  ⃗) +

𝐼3(𝐶𝐴⃗⃗⃗⃗  ⃗)         …… . (1) 

   Then  𝐼 = ∫  
𝐶

𝑒𝑖𝑧𝑑𝑧 = (
𝑒𝑖𝑧

𝑖
), 

 
                                                                      Fig. 7(a) 

For 𝐼1, equation of 𝐴𝐵⃗⃗⃗⃗  ⃗ is 𝑦 = 𝑥, 𝑧 = 𝑥 + 𝑖𝑦 = (1 + 𝑖)𝑥 

𝐼1(𝐴𝐵⃗⃗⃗⃗  ⃗) = [
𝑒𝑖𝑧

𝑖
]
𝐶

= [
𝑒𝑖(1+𝑖)𝑥

𝑖
]
𝑥=−1

𝑥=1

 =
1

𝑖
[𝑒(𝑖−1) − 𝑒−(𝑖−1)]

 

For 𝐼2, equation of 𝐵𝐶 is 𝑦 = 1, 𝑧 = 𝑥 + 𝑖𝑦 = 𝑥 + 𝑖 
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𝐼2 = [
𝑒𝑖𝑧

𝑖
]
𝐶

= [
𝑒𝑖(𝑥+𝑖)

𝑖
] = [

𝑒𝑖𝑥′−1

𝑖
]
𝑥=1

𝑥=−1

 =
1

𝑖
(𝑒−𝑖−1 − 𝑒𝑖−1)

 

For 𝐼3: equation of 𝐶𝐴⃗⃗⃗⃗  ⃗, 𝑥 = −1, 𝑧 = 𝑥 + 𝑖𝑦 = −1 + 𝑖𝑦 

𝐼3 = [
𝑒𝑖𝑧

𝑖
]
𝐶

= [
𝑒𝑖(−1+𝑖𝑦)

𝑖
]
𝐶

= [
𝑒−𝑖−𝑦

𝑖
]
𝑦=1

𝑦=−1

 

or,  𝐼3 =
1

𝑖
(𝑒−𝑖+1 − 𝑒−𝑖−1) 

𝐼 = 𝐼1 + 𝐼2 + 𝐼3 =
1

𝑖
[(𝑒𝑖−1 − 𝑒1−𝑖) + (𝑒−𝑖−1 − 𝑒𝑖−1) + (𝑒−𝑖+1 − 𝑒−𝑖−1)]

 = 0

 

or, 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = 0              ……… (2)  

(1) & (2) ⇒ Cauchy's theorem is verified. 

 

7.6 EXTENSION OF CAUCHY’S THEOREM:- 

Suppose 𝑓(𝑧) is analytic in a simply connected domain 𝐷. Then the 

integral along any rectifiable curve in 𝐷 joining any given points of 𝐷 is 

the same, i.e., it does not depend upon the curve joining the two points. 

Proof. Suppose the two points A(𝑧1) and 𝐵(𝑧2) of the simply connected 

domain 𝐷 are joined by the curves 𝐶1 and 𝐶2 as shown in the diagram. 

Then, by Cauchy's theorem 

or 

∫  
𝐴𝐿𝐵𝑀𝐴

𝑓(𝑧)𝑑𝑧 = 0 

or  ∫  
𝐴𝐿𝐵

𝑓(𝑧)𝑑𝑧 + ∫  
𝐵𝑀𝐴

𝑓(𝑧)𝑑𝑧 = 0 

or 

∫  
𝐴𝐿𝑙𝐵

𝑓(𝑧)𝑑𝑧⋯∫  
𝐴𝑀𝐵

𝑓(𝑧)𝑑𝑧 = 0 

or 

∫  
𝐶1

𝑓(𝑧)𝑑𝑧 − ∫  
𝐶2

𝑓(𝑧)𝑑𝑧 = 0 
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                                                                          Fig. 7(c) 

or 

∫  
𝐶1

𝑓(𝑧)𝑑𝑧 = ∫  
𝐶2

𝑓(𝑧)𝑑𝑧 

This proves the required result. 

 

Question 4. Show that ∫  
𝐶

𝑒−2𝑧𝑑𝑧 is independent of the path 𝐶 joining the 

points 1 − 𝜋𝑖 to 3 + 𝜋𝑖 and determine its value. 

Solution. Let 𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧, where 𝑓(𝑧) = 𝑒−2𝑧 and 𝐶 is a straight-line 

joining point 1 − 𝜋𝑖 to 3 + 𝜋𝑖. Evidently 𝑓(𝑧) is differentiable every 

where in 𝑧-plane. Hence 𝑓(𝑧) is analytic in entire 𝑧-plane ∴ By corollary 

1 of Cauchy's theorem ∫  
𝐶

𝑓(𝑧)𝑑𝑧 is independent of path of integration. 

 
                                                                    Fig. 7(d)  

Also ∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = ∫  
2+3𝜋𝑖

1−𝜋𝑖

  𝑒−2𝑧𝑑𝑧 = −
1

2
(𝑒−2𝑧)𝑧=1

𝑧=2+3𝜋𝑖 

= −
1

2
[𝑒−2(2+3𝜋𝑖) − 𝑒−2(1−𝜋𝑖)] = −

1

2
(𝑒−4 − 𝑒−2) 

as 𝑒−6𝜋𝑖 = 1 = 𝑒2𝜋𝑖 

∴  ∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 =
1

2
(𝑒−2 − 𝑒−4)     …… . (1) 

Let𝐼 = ∫
𝐶
 𝑓(𝑧)𝑑𝑧 = 𝐼1(𝐴𝐵⃗⃗⃗⃗  ⃗) + 𝐼2(𝐵𝐶⃗⃗⃗⃗  ⃗) 

For 𝐼1: equation of 𝐴𝐵 is 𝑦 = −𝜋, 𝑧 = 𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝜋, 𝑑𝑥 = 𝑑𝑧 
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𝐼1 = ∫  
2

1

  𝑒−2(𝑥−𝑖𝜋)𝑑𝑥 = 𝑒2𝑖𝜋 ∫  
2

1

  𝑒−2𝑥𝑑𝑥 = 1.∫  
2

1

  𝑒−2𝑥𝑑𝑥

 = (
𝑒−2𝑥

−2
)

𝑥=1

𝑥=2

= −
1

2
(𝑒−4 − 𝑒−2)

 

For 𝐼2: equation of 𝐵𝐶 is 𝑥 = 2, 𝑧 = 2 + 𝑖𝑦, 𝑑𝑧 = 𝑖𝑑𝑦 

𝐼2  = ∫  
3𝜋

−𝜋

  𝑒−2(2+𝑖𝑦)𝑖𝑑𝑦 =
𝑖𝑒−4

−2
(𝑒−𝑖2𝑦)

𝑦=−𝜋

𝑦=3𝜋

 = −
𝑖

2𝑒4
(𝑒−6𝑖𝜋 − 𝑒−𝑖2𝜋) = 0 as 𝑒−6𝑖𝜋 = 1 = 𝑒−2𝜋

𝐼  = ∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = 𝐼1(𝐴𝐵⃗ ) + 𝐼2(𝐵𝐶⃗⃗⃗⃗  ⃗)

 =
1

2
(𝑒−2 − 𝑒−4) + 0(2)

 

This integral is the same along two different paths: 

(i) line 𝐴𝐶⃗⃗⃗⃗  ⃗ 

(ii) line 𝐴𝐵⃗⃗⃗⃗  ⃗ + line 𝐵𝐶⃗⃗⃗⃗  ⃗ 

This ⇒ Integral is independent of path. 

 

Corollary 1. Let a closed contour 𝐶 contain another closed contour 𝐶1. 

Let 𝑓(𝑧) be analytic at every point lying in the ring-shaped domain 

bounded by 𝐶 and 𝐶1. 

Then ∫  
𝐶

𝑓(𝑧)𝑑𝑧 = ∫  
𝐶1

𝑓(𝑧)𝑑𝑧 

Proof. We make a cross at joining a point Λ of the contour 𝐶 to a point 𝐸 

of 𝐶1. By Cauchy's theorem, 

∫  
ABCDAEFGEA 

𝑓(𝑧)𝑑𝑧 = 0 

or 

∫  
𝐴𝐵𝐶𝐷𝐴

 𝑓(𝑧)𝑑𝑧 + ∫  
𝐴𝐸

 𝑓(𝑧)𝑑𝑧

+∫  
𝐸𝐹𝐺𝐸

 𝑓(𝑧)𝑑𝑧

+∫  
𝐸𝐴

 𝑓(𝑧)𝑑𝑧 = 0

 

But ∫  
𝐴𝐸

𝑓(𝑧)𝑑𝑧 = −∫  
𝐸𝐴

𝑓(𝑧)𝑑𝑧 

 
                                                                 Fig. 7(e) 
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and so ∫  
𝐴𝐸

𝑓(𝑧)𝑑𝑧 + ∫  
𝐸𝐴

𝑓(𝑧)𝑑𝑧 = 0 

Hence  ∫  
𝐴𝐵𝐶𝐷𝐴

𝑓(𝑧)𝑑𝑧 + ∫  
𝐸𝐹𝐺𝐸

𝑓(𝑧)𝑑𝑧 = 0 

or 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 − ∫  
𝐸𝐺𝐹𝐸

𝑓(𝑧)𝑑𝑧 = 0 

or 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = ∫  
𝐶1

𝑓(𝑧)𝑑𝑧 

𝐶Deduction.  If the contour 𝐶 contains non-intersecting contours 

𝐶1, 𝐶2 …𝐶𝑛, then 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = ∫  
𝐶1

𝑓(𝑧)𝑑𝑧 + ∫  
𝐶2

𝑓(𝑧)𝑑𝑧 + ⋯+ ∫  
𝐶𝑛

𝑓(𝑧)𝑑𝑧 

Theorem. An upper bound for a complex integral. If a function 𝑓(𝑧) is 

continuous on a contour 𝐶 of length 𝑙 and if 𝑀 be the upper bound of 

|𝑓(𝑧)| on 𝐶, then |∫  
𝐶

 𝑓(𝑧)𝑑𝑧| ≤ 𝑀𝑙.  

Proof. Divide the contour 𝐶 into 𝑛 parts by means of points 

𝑧0, 𝑧1, 𝑧2, … 𝑧𝑛. We choose a point 𝜉𝑟 on each arc joining 𝑧𝑟−1 to 𝑧𝑟. Form 

the sum 

𝑆𝑛 = ∑  

𝑛

𝑟=1

𝑓(𝜉𝑟)(𝑧𝑟 − 𝑧𝑟−1) 

Also suppose maximum value of (𝑧𝑟 − 𝑧𝑟−1) → 0 as 𝑛 → ∞. 

We define ∫  
𝐶

𝑓(𝑧)𝑑𝑧 = lim
𝑛→∞

 𝑆𝑛 

|𝑆𝑛| = |∑  

𝑛

𝑟=1

 𝑓(𝜉𝑟)(𝑧𝑟 − 𝑧𝑟−1)| ≤ ∑  

𝑛

𝑟=1

  |𝑓(𝜉𝑟)| ⋅ |𝑧𝑟 − 𝑧𝑟−1| ≤ ∑  

𝑛

𝑟=1

 𝑀|𝑧𝑟 − 𝑧𝑟−1|   …… (1)  

Making 𝑛 → ∞ and noting (1), we get 

|∫ 
𝐶

 𝑓(𝑧)𝑑𝑧| ≤ lim
𝑛→∞

 𝑀 ∑  

𝑛

𝑟=1

  |𝑧𝑟 − 𝑧𝑟−1|          ……… (2)  

But lim
𝑛→∞

 ∑  𝑛
𝑟=1 |𝑧𝑟 − 𝑧𝑟−1| 

 = lim
𝑛→∞

 [|𝑧1 − 𝑧0| + |𝑧2 − 𝑧1| + ⋯+ |𝑧𝑛 − 𝑧𝑛−1|]

 = lim
𝑛→∞

 [chord𝑧1𝑧0 + chord𝑧2𝑧1 + ⋯ + chord𝑧𝑛𝑧𝑛−1]

 = lim
𝑛→∞

 [arc𝑧1𝑧0 + arc𝑧2𝑧1 + ⋯+ arc𝑧𝑛𝑧𝑛−1]

 = arc length of contour 𝐶 = 𝑙.

 

Using this in (2), |∫  
𝐶

 𝑓(𝑧)𝑑𝑧| ≤ 𝑀𝑙 

Question. Find  ∫  
𝑐

𝑧2

𝑧−5
dz where c is a circle |𝑧|  = 2. 

Solution. Since z = 5 is only singularity and lies outside the circle, the 

function is analytic inside and onto the contour, so the value of integral is 

zero. 

Question. Which of the following is the statement of Cauchy’s Integral 

Theorem? 
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a) If a function f (z) is analytic and its derivative f’ (z) is continuous at all 

points inside and on a simple closed curve C, then ∫C f(z) dz = 0 

b) If a function f (z) is non-analytic and its derivative f’ (z) is continuous 

at all points inside and on a simple closed curve C, then ∫C f(z) dz = 0 

c) If a function f (z) is analytic and its derivative f’ (z) is discontinuous at 

all points inside and on a simple closed curve C, then ∫C f(z) dz = 0 

d) If a function f (z) is non-analytic and its derivative f’ (z) is 

discontinuous at all points inside and on a simple closed curve C, then 

∫C f(z) dz = 0 

Solution. Answer: a 

Explanation: Cauchy’s Integral Theorem states that ‘If a function f (z) is 

analytic and its derivative f’ (z) is continuous at all points inside and on a 

simple closed curve C, then 

 ∫C f(z) dz = 0. 

 

Question. Which of the following theorems can be applied in the function 

of Cauchy’s Integral Theorem? 

a) Green’s Theorem 

b) Stokes Theorem 

c) Gauss Divergence Theorem 

d) Taylors Theorem 

Solution. Answer (a) is correct. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Integration of Entire function is always zero 

on any contour. 

Problem 2. The value of  ∫  
|𝑧| = 1

𝑧

𝑧 − 2
dz  is equal to. 

Problem 3. The value of  ∫  
𝑐
sin 𝑧 dz , where c is a circle 

z = 2 . 
Problem 4. If 𝑓(𝑧) is analytic within and on whole 𝐶, 

∫  
𝑐
𝑓(𝑧)dz is equal to. 

Problem 5. If f has no singularities inside the curve, 

then the complex line integral around that closed curve 

is zero. 

 

 

7.7 SUMMARY:- 

 

1. WEIERSTRASS M-TEST 
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If |𝑢𝑛(𝑧)| ≤ 𝑀𝑛 where 𝑀𝑛 is independent of 𝑧 in a domain 𝑅 and Σ𝑀𝑛, 

the series of positive constants is convergent, then the series Σ𝑢𝑛(𝑧) is 

uniformly convergent. A uniformly convergent series of continuous 

functions can be integrated by term. 

 

2. Green's Theorem. If 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦),
𝜕𝑄

𝜕𝑥̇
,
𝜕𝑃

𝜕𝑦
 all are continuous 

functions of 𝑥 and 𝑦 in a closed contour 𝐶, then ∫  
𝐶

(𝑃𝑑𝑥 + 𝑄𝑑𝑦) =

∬  
𝐶

(
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
) 𝑑𝑥𝑑𝑦…∗ 

3. Cauchy's Theorem. If 𝑓(𝑧) is analytic function of 𝑧 and if 𝑓′(𝑧) is 

continuous at each point within and on a closed contour 𝐶, then 

∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0. 

4. If f has no singularities inside the curve, then the complex line integral 

around that closed curve is zero. 

5. The domain must be simply connected or the curve must at least be 

deformable to a point without crossing outside the domain. 

6. In complex analysis, Cauchy’s theorem states that if a function is 

holomorphic on a simply connected domain, then the integral of the 

function over any closed curve in that domain is zero. There are several 

important extensions (or generalizations) of Cauchy’s theorem that relax 

its assumptions or broaden its applicability. 

7. Simply connected domain has no "holes" in it, A domain that is not 

simply connected is called a multiply connected domain; that is, a multiply 

connected domain has "holes" in it. 

8. Application of Cauchy's Integral Theorem  

 Solving complex integrals quickly 

 Verifying analyticity of a function 

 Evaluating real definite integrals using contour integration 

 Deriving Taylor and Laurent series 

 Computing residues in advanced complex analysis 

 

7.8 GLOSSARY:- 
 

1. Analytic function: An analytic function (also called a holomorphic 

function) is a complex function that can be locally represented by a 

convergent power series.  

2. continuous function: in complex analysis, the idea of a continuous 

function is almost the same as in real analysis, but with the function 

defined on complex numbers instead of real numbers. 
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3. Double integration: Double integration (also called a double 

integral) is a way to integrate a function of two variables over a region in 

the plane. It extends the idea of single-variable integration (area under a 

curve) to two dimensions (volume under a surface). 
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7.11 TERMINAL AND MODEL QUESTIONS:- 
 

Q 1. States and prove Cauchy theorem. 

Q 2. If a function 𝑓(𝑧) is continuous on a contour 𝐶 of length 𝑙 and if 𝑀 

be the upper bound of |𝑓(𝑧)| on 𝐶, then prove that |∫  
𝐶

 𝑓(𝑧)𝑑𝑧| ≤ 𝑀𝑙.  

Q 3. States and prove Extension of Cauchy theorem. 

Q 4. Define Complex line integral.     

Q 5. Compute ∫  
𝛾
  𝑧2𝑑𝑧 along the unit circle. 

Q 6. Prove that Integrals ∫  
𝛾
  𝑒𝑧𝑑𝑧 = ∫  

𝛾
 𝑆𝑖𝑛𝑧 𝑑𝑧 = ∫  

𝛾
 𝐶𝑜𝑠𝑧 𝑑𝑧 = 0, where 

𝛾 is any circle. 

 

https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdfW
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7.12 ANSWERS:- 

TQ5. 0 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 

        CQY 5. True  
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UNIT 8: Complex Integration-II 

CONTENTS: 

       8.1       Introduction 

       8.2      Objectives 

       8.3      Cauchy's integral formula 

       8.4      Extension of Cauchy's integral formula 

       8.5       Cauchy integral formula for the derivative of an   

                    analytic function 

       8.6      Poisson's Integral formula 

       8.7      Morera's theorem 

       8.8      Leoville’s theorem  

       8.8      Summary 

       8.9      Glossary 

       8.10    References 

       8.11     Suggested Reading 

       8.12     Terminal questions  

       8.13     Answers  
 

8.1 INTRODUCTION:- 

 

The Cauchy integral formula is rooted in the 19th-century work of 

French mathematician Augustin-Louis Cauchy, who developed it as a 

central result of complex analysis. Building on his Cauchy's Integral 

Theorem, the formula, originally published in a less general form, 

establishes that a holomorphic function on a disk is fully determined by 

its values on the disk's boundary. This breakthrough provided powerful 

new tools for evaluating complex integrals and understanding function 

behavior.  

8.2 OBJECTIVES:- 

After studying this unit, learner will be able to  

(i)  Cauchy's integral formula 

(ii)  Poisson's Integral formula  

              (iii)  Morera's theorem 

             (iv)  Leoville’s theorem 

 

https://www.google.com/search?rlz=1C1VDKB_enIN1067IN1067&cs=0&sca_esv=fb293ac4e671f160&q=Cauchy%27s+Integral+Theorem&sa=X&ved=2ahUKEwi21cvK_siQAxUdTGwGHYoRMY0QxccNegQIBRAB&mstk=AUtExfDOCjbGPwiUX3EOrXfAdySPH-tLV7TujM9rP-vCNWmFpMA91e5b9N91TBxR-xyQYTHqH9N9AU8xOww7OOaaFyj6PE6Vqnas249KGB_oY8ky64LdsumZMfngmMqSXYSDPqfHvs-zVb5FFjWGIVjDhRMyw0JAW6_Z3JCjKlo1SEcrgv0&csui=3
https://www.google.com/search?rlz=1C1VDKB_enIN1067IN1067&cs=0&sca_esv=fb293ac4e671f160&q=Cauchy%27s+Integral+Theorem&sa=X&ved=2ahUKEwi21cvK_siQAxUdTGwGHYoRMY0QxccNegQIBRAB&mstk=AUtExfDOCjbGPwiUX3EOrXfAdySPH-tLV7TujM9rP-vCNWmFpMA91e5b9N91TBxR-xyQYTHqH9N9AU8xOww7OOaaFyj6PE6Vqnas249KGB_oY8ky64LdsumZMfngmMqSXYSDPqfHvs-zVb5FFjWGIVjDhRMyw0JAW6_Z3JCjKlo1SEcrgv0&csui=3
https://www.google.com/search?rlz=1C1VDKB_enIN1067IN1067&cs=0&sca_esv=fb293ac4e671f160&q=holomorphic+function&sa=X&ved=2ahUKEwi21cvK_siQAxUdTGwGHYoRMY0QxccNegQIBRAC&mstk=AUtExfDOCjbGPwiUX3EOrXfAdySPH-tLV7TujM9rP-vCNWmFpMA91e5b9N91TBxR-xyQYTHqH9N9AU8xOww7OOaaFyj6PE6Vqnas249KGB_oY8ky64LdsumZMfngmMqSXYSDPqfHvs-zVb5FFjWGIVjDhRMyw0JAW6_Z3JCjKlo1SEcrgv0&csui=3
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8.3 CAUCHY’S INTEGRAL FORMULA:- 

Cauchy's integral formula. If 𝑓(𝑧) is analytic within and on a closed 

contour 𝐶, and if a is any point within 𝐶, then 

𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
 

Proof. Suppose 𝑓(𝑧) is analytic within and on a closed contour 𝐶 and 𝑎 is 

an interior point of 𝐶. To prove that 𝑓(𝑎) =
1

2𝜋𝑖
∫  

𝐶

𝑓(𝑧)𝑑𝑧

𝑧−𝑎
. 

Describe a circle 𝛾 about the centre 𝑧 = 𝑎 of small radius 𝑟 s.t. this circle 

|𝑧 − 𝑢̈| = 𝑟 does not intersect the curve 𝐶. The function 
𝑓(𝑧)

𝑧−𝑎
 is analytic in 

the annulus bounded by 𝐶 and 𝛾. Hence by, 

 
                                                                Fig. 8(a) 

corollary to Cauchy's theorem, 

∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
= ∫ 

𝛾

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
             … … . (1)  

or 

∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
= ∫ 

𝛾

 
𝑓(𝑧) − 𝑓(𝑎)

𝑧 − 𝑎
𝑑𝑧 + ∫ 

𝛾

 
𝑓(𝑎)𝑑𝑧

𝑧 − 𝑎
            … … (2)  

Since 𝑓(𝑧) is analytic within 𝐶 and so it is continuous at 𝑧 = 𝑎 so that 

given 𝜀 > 0, there exists 𝛿 > 0 s.t. |𝑓(𝑧) − 𝑓(𝑎)| < 𝜀    … (3) for 

|𝑧 − 𝑎| < 𝛿   … (4). Since 𝑟 is at our choice and so we can take  𝑟 < 𝑔/ 

so that (4) is satisfied ∀𝑧 on the circle 𝛾. For any point 𝑧 on 𝛾, 𝑧 − 𝑎 =

𝑟𝑒𝑖0. 

∫ 
𝛾

𝑓(𝑎)

𝑧 − 𝑎
𝑑𝑧 = ∫  

2𝜋

0

𝑓(𝑎)𝑟𝑒𝑖(0𝑖𝑑(0)

𝑟𝑒𝑖0
= 2𝜋𝑖𝑓(𝑎). 

Hence, by (2), |∫  
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧−𝑎
− 2𝜋𝑖𝑓(𝑎)| = |∫  

𝛾
 
𝑓(𝑧)−𝑓(𝑎)

𝑧−𝑎
𝑑𝑧| 

≤ ∫ 
𝛾

|𝑓(𝑧) − 𝑓(𝑎)|

|𝑧 − 𝑎|
⋅ |𝑑𝑧| <

𝜀

𝑟
∫ 

𝛾

|𝑑𝑧| =
𝜀

𝑟
⋅ 2𝜋𝑟 

or 

|∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
− 2𝜋𝑖𝑓(𝑎)| < 2𝜋𝑖 

Since 𝜀 is arbitrary and so making 𝜀 → 0, we get 

∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
− 2𝜋𝑖𝑓(𝑎) = 0 or 𝑓(𝑎) =

1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
        … . .  (5)  
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Remarks. (1) |𝒂 − 𝒃| < 𝜀 ⇒ 𝒂 − 𝒃 = 0 

This result is of vital importance for further study. 

(2) ∫  
𝛾

|𝑑𝑧| = circumference of the circle 𝛾 = 2𝜋. radius 

(3) Prom the equations (1) and (5), 

1

2𝜋𝑖
∫ 

𝛾

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 = 𝑓(𝑎) =

1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 

Corollary 1. Gauss Mean Value Theorem. 

If 𝑓(𝑧) is analytic in a domain 𝐷 and if the circular domain |𝑧 − 𝑧0| ≤ 𝜌 

is contained in 𝐷, then 

𝑓(𝑧0) =
1

2𝜋
∫  

2𝜋

0

𝑓(𝑧0 + 𝜌𝑒𝑖𝜃)𝑑𝜃 

That is to say, the value of 𝑓(𝑧) at 𝑧0 is equal to the average of its value 

of the boundary of the circle |𝑧 − 𝑧0| = 𝜌. 

Proof. By (1) and (5), 

𝑓(𝑧0) =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑧0
=

1

2𝜋𝑖
∫ 

𝛾

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑧0

|𝑧 − 𝑧0| = 𝜌 ⇒ 𝑧 − 𝑧0 = 𝜌𝑒𝑖𝜃 ⇒ 𝑑𝑧 = 𝜌𝑖𝑒𝑖𝜃𝑑0

𝑓(𝑧0) =
1

2𝜋𝑖
∫ 

𝛾

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑧0
=

1

2𝜋𝑖
∫  

2𝜋

0

 𝑓(𝑧0 + 𝜌𝑒𝑖𝜃)
𝜌𝑖𝑒𝑖0

𝜌𝑒𝑖0
𝑑0

 

or 

𝑓(𝑧0) =
1

2𝜋
∫  

2𝜋

0

𝑓(𝑧0 + 𝜌𝑒𝑖0)𝑑𝜃 

 

8.4 EXTENSION OF CAUCHY’S INTEGRAL 

FORMULA:- 

Extension of Cauchy's integral formula to multiply connected regions. If 

𝑓(𝑧) is analytic in a ring-shaped region bounded by two closed curves 𝐶1 

and 𝐶2 and 𝑎 is a point in the region between 𝐶1 and 𝐶2. 

𝑓(𝑎) =
1

2𝜋𝑖
∫  

𝐶2

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 −

1

2𝜋𝑖
∫  

𝐶1

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 

where 𝐶2 is outer curve. 

Proof. Describe a circle 𝛾 about the point 𝑧 = 𝑎 of radius 𝑟 such that the 

circle lies in the ring shapped region. The function 
𝑓(𝑧)

𝑧−𝑎
 is analytic in the 

region bounded by three closed curves 𝐶1, 𝐶2, and 𝛾. By corollary 2 to 

Cauchy's theorem ∫  
𝐶2

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧 = ∫  

𝐶1

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧 + ∫  

𝛾

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧 where the integral 

along each curve is taken in anti-clockwise direction. Using Cauchy's 

integral formula, 
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                                                                  Fig. 8(b) 

∫  
𝐶2

 
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 = ∫  

𝐶1

 
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 + 2𝜋𝑖𝑓(𝑎)

𝑓(𝑎) =
1

2𝜋𝑖
∫  

𝐶2

 
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 −

1

2𝜋𝑖
∫  

𝐶1

 
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧

 

 

Note. In the Fig. 8(b) 𝛾 is a closed circle. 

8.5 CAUCHY’S INTEGRAL FORMULA FOR 

DERIVATIVE OF ANALYTIC FUNCTION:- 

 Cauchy integral formula for the derivative of an analytic function.  

If a function 𝑓(𝑧) is analytic within and on a closed contour 𝐶 and 𝑎 is 

ary' point lying in it, then 

𝑓′(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)2
 

 

Or, Using Cauchy's integral formula to find the first derivative of an 

analytic function 

𝑓(𝑧) at 𝑧 = 𝑧0. 

Proof. Let 𝑎 + ℎ be a point in the neighbourhoods of a point 𝑎, then by 

Cauchy's integral formula, 

𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 

and 

𝑓(𝑎 + ℎ) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − (𝑎 + ℎ)
 

From which we get 
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𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 =

1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)

ℎ
[

1

𝑧 − 𝑎 − ℎ
−

1

𝑧 − 𝑎
] 𝑑𝑧

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)

(𝑧 − 𝑎)ℎ
[(1 −

ℎ

𝑧 − 𝑎
)

−1

− 1] 𝑑𝑧

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)

(𝑧 − 𝑎)ℎ
[

ℎ

𝑧 − 𝑎
+ (

ℎ

𝑧 − 𝑎
)

2

+ (
ℎ

𝑧 − 𝑎
)

3

… ] 𝑑𝑧

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)

𝑧 − 𝑎
[

1

𝑧 − 𝑎′
+

ℎ

(𝑧 − 𝑎)2
+

ℎ2

(𝑧 − 𝑎)3
+ ⋯ ] 𝑑𝑧

 

Taking limit as ℎ → 0, we get 

or 

lim
ℎ→0

 
𝑓(𝑎 + ℎ) − 𝑓 (

𝑑
𝑑)

ℎ
=

1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)

𝑧 − 𝑎
[

1

𝑧 − 𝑎
+ 0 + 0 … ] 𝑑𝑧 

 

𝑓′(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)2
 

Theorem. Higher order derivatives.  

If a function 𝑓(𝑧) is analytic within and on a dlosed contour 𝐶 and 𝑎 is 

any point within 𝐶 then derivatives of all orders are analytic and are given 

by 

𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1
 

 

Proof. Prove as in previous theorem 5, that 

𝑓(1)(𝑎) = 𝑓′(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)2
 

This proves that the required result is true for 𝑛 = 1. Let us suppose that 

the required result is true for 𝑛 = 𝑚 so that 

𝑓(𝑚)(𝑎) =
𝑚!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑚+1
 

Let 𝑎 + ℎ be a point in the neighbourhood of 𝑎. Observe that 

𝑓(𝑚)(𝑎 + ℎ) − 𝑓(𝑚)(𝑎)

ℎ

=
𝑚!

2𝜋𝑖ℎ
∫ 

𝐶

 𝑓(𝑧) {
1

(𝑧 − 𝑎 − ℎ)𝑚+1
−

1

(𝑧 − 𝑎)𝑚+1
} 𝑑𝑧 

 

 =
𝑚!

2𝜋𝑖ℎ
∫ 

𝐶

 
𝑓(𝑧)

(𝑧 − 𝑎)𝑚+𝑇
[(1 −

ℎ̇

𝑧 − 𝑎
)

−(𝑚+1)

− 1] 𝑑𝑧

 =
𝑚!

2𝜋𝑖ℎ
∫ 

𝐶

 
𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
[
ℎ(𝑚 + 1)

𝑧 − 𝑎
+

(𝑚 + 1)(𝑚 + 2)

2!
(

ℎ

𝑧 − 𝑎
)

2

+ ⋯ ] 𝑑𝑧

 =
𝑚!

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
[(

𝑚 + 1

𝑧 − 𝑎
) +

(𝑚 + 1)(𝑚 + 2)

2!

ℎ

(𝑧 − 𝑎)2
+ ⋯ ] 𝑑𝑧
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Taking limit as ℎ → 0 

lim
ℎ→0

 
𝑓(𝑚)(𝑎 + ℎ) − 𝑓(𝑚)(𝑎)

ℎ

=
𝑚!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑚+1
[(

𝑚 + 1

𝑧 − 𝑎
) + 0 + 0 + ⋯ ] 𝑑𝑧′′′ 

or 

𝑓(𝑚+1)(𝑎) =
(𝑚 + 1)𝑚!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑠

(𝑧 − 𝑎)𝑚+2
 

or 

𝑓(𝑚+1)(𝑎) =
(𝑚 + 1)!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑚+2
 

This proves that the required result is true for 𝑛 = 𝑚 + 1 if it is true for 

𝑛 = 𝑚. But we have already seen that it is true for 𝑛 = 1 and so it is true 

for 𝑛 = 2 and so on. It follows that the required result is true for any 

positive integral value of 𝑛. 

Since 𝑓(1)(𝑎), 𝑓(2)(𝑎), 𝑓(3)(𝑎), … all exist. 

Consequently 𝑓(1)(𝑎), 𝑓(2)(𝑎), … all aré analytic within 𝐶. 

Problem. Prove that 𝑓′′′(𝑎) =
3!

2𝜋𝑖
∫  

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−𝑎)4 

where 𝐶 is a contour containing 𝑧 = 𝛼. 

 

Corollary. If 𝐶 be a closed contour containing the origin inside it, prove 

that 

𝑎𝑛

𝑛!
=

1

2𝜋𝑖
∫ 

𝐶

𝑒𝑎𝑧𝑑𝑧

𝑧𝑛+1
 

 

Solution. We have 

𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1

𝑓(𝑛)(0) =
𝑛!

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧𝑛+1

 

Taking 𝑓(𝑧) = 𝑒𝑎𝑧 so that 𝑓(𝑛)(𝑧) = 𝑎𝑛𝑒𝑎𝑧, we obtain 

or 

𝑓(𝑛)(0) = 𝑎𝑛 =
𝑛!

2𝜋𝑖′
∫ 

𝐶

 
𝑒𝑎𝑧𝑑𝑧

𝑧𝑛+1

𝑎𝑛

𝑛!
 =

1

2𝜋𝑖
∫ 

𝐶

 
𝑒𝑎𝑧𝑑𝑧

𝑧𝑛+1

 

Question 1. Evaluate ∫  
𝐶

𝑒2𝑧𝑑𝑧

(𝑧+1)4 where 𝑐 is |𝑧| = 3 

Solution. We know that 

𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1
 

Put 𝑎 = −1, 𝑛 = 3 
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𝑓(3)(−1) =
3!

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

(𝑧 + 1)4
                (1)  

Take 𝑓(𝑧) = 𝑒2𝑧, then 𝑓(𝑛)(𝑧) = 2𝑛𝑒2𝑧 

∴  

𝑓(3)(−1) = 23𝑒−2 =
8

𝑒2

8

𝑒2
 =

3!

2𝜋𝑖
∫ 

𝐶

 
𝑒2𝑧𝑑𝑧

(𝑧 + 1)4
 or 

8𝜋𝑖

3𝑒2
= ∫ 

𝐶

 
𝑒2𝑧𝑑𝑧

(𝑧 + 1)4

 

Question 2. Using Cauchy integral formula, calculate the following 

integrals : 

(i) ∫  
𝐶

𝑧𝑑𝑧

(9−𝑧2)(𝑧+𝑖)
, where 𝐶 is the circle |𝑧| = 2 described in positive sense. 

 

(ii) ∫  
𝐶

𝑑𝑧

𝑧(𝑧+𝜋𝑖)
, where C-is |𝑧 + 3𝑖| = 1 

(iii) ∫  
𝐶

cosh (𝜋𝑧)𝑑𝑧

𝑧(𝑧2+1)
, where 𝐶 is circle | ⋅ 𝑧| = 2. 

 

(iv) ∫  
𝐶

𝑒𝑎𝑧𝑑𝑧

(𝑧−𝜋𝑖)
, where 𝐶 is the ellipse |𝑧 − 2| + |𝑧 + 2| = 6. 

 

(v) Evaluate ∫  
𝐶

𝑑𝑧

𝑧−2
, where 𝐶 is |𝑧| = 3. 

 

Solution. By Cauchy's integral formula, 𝑓(𝑎) =
1

2𝜋𝑖
∫  

𝐶

𝑓(𝑧)𝑑𝑧

𝑧−𝑎
 

or, 

∫ 
𝐶

 
𝑓(𝑧)

𝑧 − 𝑎
𝑑𝑧 = 2𝜋𝑖𝑓(𝑎)                     (1)  

where 𝑧 = 𝑎 is a point inside contour 𝐶 and 𝑓(𝑧) is analytic within and 

upon 𝐶. 

Step I. Let  𝐼 = ∫  
𝐶

𝑧𝑑𝑧

(9−𝑧2)(𝑧+𝑖)
 

Take 

𝑓(𝑧) =
𝑧

9 − 𝑧2
 

Then 

𝐼 = ∫ 
𝐶

 
𝑓(𝑧)

[𝑧 − (−𝑖)]

 = 2𝜋𝑖𝑓(−𝑖), by (1)

 = 2𝜋𝑖 [
−𝑖

9 − (−𝑖)2
] =

2𝜋

9 + 1
=

𝜋

5
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                                                                  Fig. 8(c) 

Here 𝑓(𝑧) is analytic within ani upon 𝐶 s.t. |𝑧| = 2 and 𝑧 = −𝑖 lies inside 

𝐶. 

Step II. Let 𝐼 = ∫  
𝐶

𝑑𝑧

𝑧(𝑧+𝜋𝑖)
. 

Take 𝑓(𝑧) =
1

𝑧
, then 

𝐼 = ∫ 
𝐶

 
𝑓(𝑧)

[𝑧 − (−𝜋𝑖)]

 = 2𝜋𝑖𝑓(−𝜋𝑖), by (1)

 = 2𝜋𝑖 (
1

−𝜋𝑖
) = −2

 

Here 𝑧 = −𝜋𝑖 lies inside 𝐶 and 𝑓(𝑧) is analytic within 𝐶. 

Step III. Let 𝐼 = ∫  
𝐶

cosh (𝜋𝑧)

𝑧(𝑧2+1)
𝑖𝑧. 

Take 𝑓′(𝑧) = cosh (𝜋𝑧) = cos (𝑖𝜋𝑧) and 𝐶 is |𝑧| = 2. 

 
                                                            Fig. 8(d) 

𝑰 = ∫ 
𝐶

 
𝑓(𝑧)

𝑧(𝑧2 + 1)
 

                                                    I = ∫  
𝐶

  [
𝐴

𝑧
+

𝐵

𝑧−𝑖
+

𝐶

𝑧+𝑖
] 𝑓(𝑧)𝑑𝑧           

…….. (2) 
1

𝑧(𝑧 − 𝑖)(𝑧 + 𝑖)
=

𝐴

𝑧
+

𝐵

𝑧 − 𝑖
+

𝐶

𝑧 + 𝑖
 

𝐴 =
1

(𝑧 − 𝑖)(𝑧 + 𝑖)
= 1 at 𝑧 = 0 

B =
1

𝑧(𝑧 + 𝑖)
= −

1

2
 at 𝑧 = 𝑖 

C =
1

𝑧(𝑧 − 𝑖)
= −

1

2
 at 𝑧 = −𝑖 
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                                                                        Fig. 8(e) 

 

Here 𝑧 = 0, 𝑖, −𝑖 are points inside 𝐶. 

According to (1), (2) gives 

𝐼  = 2𝜋𝑖[𝐴𝑓(0) + 𝐵𝑓(𝑖) + 𝐶𝑓(−𝑖)]

 = 2𝜋𝑖 [𝑓(0) −
1

2
𝑓(𝑖) −

1

2
𝑓(−𝑖)]

 = 2𝜋𝑖 [cos (0) −
1

2
cos (𝑖2𝜋) −

1

2
cos (−𝑖2𝜋)]

 = 2𝜋𝑖 [1 +
1

2
+

1

2
] = 4𝜋𝑖             ………….. (1)

 

 

Step IV. Let 𝐼 = ∫  
𝐶

𝑒𝑎𝑧𝑑𝑧

𝑧−𝜋𝑖
 

𝐶 is ellipse  |𝑧 − 2| + |𝑧 + 2| = 6 

or 

[(𝑥 − 2)2 + 𝑦2]1/2 = 6 − [(𝑥 + 2)2 + 𝑦2]1/2 

Squaring, we get 

𝑥2 + 𝑦2 + 4 − 4𝑥 = 36 + (𝑥2 + 𝑦2 + 4 + 4𝑥) − 12[(𝑥 + 2)2 + 𝑦2]1/2 

or,  12(𝑥2 + 𝑦2 + 4 + 4𝑥)1/2 = 36 + 8𝑥 

or,  3(𝑥2 + 𝑦2 + 4 + 4𝑥)1/2 = 9 + 2𝑥 

Again squaring, 

9(𝑥2 + 𝑦2 + 4 + 4𝑥) = 81 + 4𝑥2 + 36𝑥 

or, 

5𝑥2 + 9𝑦2 = 45 

or, 

𝑥2

9
+

𝑦2

5
= 1. 

Comparing, 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 we get 𝑎2 = 9, 𝑏2 = 5 

𝑎 = 3, 𝑏 = √5 = 2.2 approx.  

Evidently 𝑧 = 𝜋𝑖 = 3.14𝑖 lies outside 𝐶. 

∴ 𝐼 = 0, by Cauchy’s theorem. 
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Fig: 8(f) 

 

Step (v).  𝐼 = ∫  
𝐶

𝑑𝑧

𝑧−2
= ∫  

𝐶

𝑓(𝑧)𝑑𝑧

𝑧−𝑎
 

Then 𝑎 = 2, 𝑓(𝑧) = 1. 𝐶 is circle |𝑧| = 3 whose centre is at 𝑧 = 0 and 

radius = 3. 

∴  𝑎 = 2 lies inside 𝐶. 

According to (1), (2) gives 

For 

𝐼 = 2𝜋𝑖𝑓(𝛼) = 2𝜋𝑖𝑓(2) = 2𝜋𝑖(1) = 2𝜋𝑖 
𝑓(𝑧) = 1 ⇒ 𝑓(2) = 1. 

Question 3. (i) Evaluate ∫  
𝐶

tan (𝑧/2)𝑑𝑧

(𝑧−𝑥0)2  

where 𝐶 is the boundary of the square whose sides lie along the lines 𝑥 =

±2, 𝑦 = ±2 and it is described in positive sense, where |𝑥0| < 2. 

(ii) Evaluate ∫  
𝐶

𝑑𝑧

𝑧2+2𝑧+2
, where 𝐶 is the square having vertices at 

(0,0), (−2,0), (−2, −2), (0, −2) oriented in anticlockwise direction. 

(Kanpur 1999) 

(iii) Evaluate ∫  
𝐶

sin 𝑧𝑑𝑧

(𝑧−
𝜋

4
)

3 where 𝐶 is |𝑧 −
𝜋

4
| =

1

2
 

(iv) If 𝐶 is unit circle about the origin, described in positive sense, show 

that 

∫ 
𝐶

𝑒−𝑧

𝑧2
𝑑𝑧 = −2𝜋𝑖 and ∫ 

𝐶

(
sin 𝑧

𝑧
) 𝑑𝑧 = 0 

 

Solution. By Cauchy's integral formula, 

𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)
 

and 

𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1
(1) 

This  ⇒ ∫  
𝐶

𝑓(𝑧)𝑑𝑧

𝑧−𝑎
= 2𝜋𝑖𝑓(𝑎) 

and 

∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1
=

2𝜋𝑖

𝑛!
𝑓(𝑛)(𝑎) (2) 

where 𝑧 = 𝑎 lies inside 𝐶 and 𝑓(𝑧) is analytic within and upon 𝐶. 

Step I. Let 
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𝐼 = ∫ 
𝐶

tan (𝑧/2)

(𝑧 − 𝑥0)2
𝑑𝑧 

where 𝐶 is rectangle 𝐴𝐵𝐶𝐷 and point 𝑧 = 𝑥0 lies within 𝐶. 

Take 𝑓(𝑧) = tan (𝑧/2). 

Then 𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−𝑥0)2 

=
2𝜋𝑖

1!
𝑓(1)(𝑥0), according to (2) 

= 2𝜋𝑖 {
𝑑

𝑑𝑧
[tan (𝑧/2)]}

𝑧=𝑥0

 

= 2𝜋𝑖
1

2
sec2 (

𝑥0

2
) = 𝜋𝑖sec2  (

𝑥0

2
) 

 
Fig. 8(g) 

Ans. 

Step II. Let 𝐼 = ∫
𝐶

 
𝑑𝑧

(𝑧2+2𝑧+2)
 

𝐶 is square 𝑂𝐴𝐵𝐶. 

𝑧2 + 2𝑧 + 2 = 0 gives (𝑧 + 1)2 + 1 = 0 

or, 

(𝑧 + 1)2 = −1 = 𝑖2  or  𝑧 + 1 = ±𝑖 
𝑧 = 𝛽 lies inside 𝐶 as shown in the figure. 

 
Fig. 8(h) 

where 𝑓(𝑧) =
1

𝑧−𝛼
 

Ans. 

∴  𝐼 = −𝜋 

Step III. Let 



COMPLEX ANALYSIS                                                          MT(N)-302 

 
 

Department of Mathematics  

Uttarakhand Open University Page 162 

 
 

𝐼 = ∫ 
𝐶

sin 𝑧𝑑𝑧

(𝑧 −
𝜋
4)

3 

where 𝐶 is |𝑧 −
𝜋

4
| =

1

2
. 

Take 𝑓(𝑧) = sin 𝑧 and so 𝑓′(𝑧) = cos 𝑧, 

𝑓′′(𝑧) = −sin 𝑧, 𝑓′′ (
𝜋

4
) = −

1

√2
. 

Then 𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−
𝜋

4
)

3 =
2𝜋𝑖

2!
𝑓′′ (

𝜋

4
), according to (2). 

= 𝜋𝑖 (−
1

√2
) =

−𝜋𝑖

√2
 

Step IV. (a) Let 𝐼 = ∫  
𝐶

𝑒−𝑧

𝑧2 𝑑𝑧 

𝐶 is circle |𝑧| = 1. 

Take 𝑓(𝑧) = 𝑒−𝑧. Then 𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−0)2 

According (2), this gives 

𝐼 =
2𝜋𝑖

1!
𝑓′(0) 

as 𝑧 = 0 lies inside 𝐶. 

𝑓(𝑧) = 𝑒−𝑧 ⇒ 𝑓′(𝑧) = −𝑒−𝑧 ⇒ 𝑓′(0) = −𝑒−0 = −1

∴𝐼 =
2𝜋𝑖

1!
(−1) = −2𝜋𝑖

 

(b) Let 𝐼 = ∫  
𝐶

sin 𝑧

𝑧
𝑑𝑧 where |𝑧| = 1. 

Take 𝑓(𝑧) = sin 𝑧, then 

𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−0)
= 2𝜋𝑖𝑓(0) = 2𝜋𝑖sin (0) = 0. 

 

Question 4. The value of ∫  
1

𝑧
𝑑𝑧 where 𝐶 is circle 𝑧 = 𝑒𝑖𝜃, 0 ≤ 0 ≤ 𝜋 is: 

(a)𝜋𝑖 
(b)−𝜋𝑖 
(c)2𝜋𝑖 
(d)0  

Solution.Ans.(a).𝑧 = 𝑒𝑖0 ⇒ 𝑑𝑧 = 𝑒𝑖𝜃𝑖𝑑𝜃 

⇒ 𝑑𝑧 = 𝑖𝑧𝑑0 ⇒
𝑑𝑧

𝑧
= 𝑖𝑑0 

∫  
1

𝑧
𝑑𝑧 = ∫  

𝜋

0

𝑖𝑑𝜃 = 𝜋𝑖 

Question 5. Evaluate ∫  
𝑐

|𝑧|𝑑𝑧, where is upper half part of corde |𝑧| = 1. 

 

Solution. Here |𝑧| = 1, 𝑧 = 𝑒𝑖𝜃, 𝑑𝑧 = 𝑒𝑖0𝑖𝑑𝜃 

∫ 
𝑐

|𝑧|𝑑𝑧 = ∫ 
𝑐

𝑑𝑧 = ∫  
𝜋

0

𝑒𝑖𝜃𝑖𝑑𝜃 = (𝑖𝑖𝜃)
0

𝜋
= 𝑒𝑖𝜋 − 1 = −1 − 1 = −2 

Question 6. Evaluate the following integrals by using Cauchy's integral 

formula: 
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(i) ∫  
𝐶

sin (𝜋𝑧2)+cos (𝜋𝑧2)

(𝑧−1)(𝑧−2)
𝑑𝑧 where 𝑐 is circle |𝑧| = 3 

(ii) 
1

2𝜋𝑖
∫  

𝐶

𝑒𝑧𝑡

𝑧2+1
𝑑𝑧∀𝑡 > 0 where 𝑐 is |𝑧| = 3 

(iii) ∫  
𝐶

(𝑧−1)𝑑𝑧

(𝑧+1)2(𝑧−2)
, where 𝑐 is |𝑧 − 𝑖| = 2 

(iv) ∫  
𝐶

(sin 𝑧)6

(𝑧−
𝜋

6
)

3 𝑑𝑧, where 𝑐 is ircle |𝑧| = 1. 

(v) ∫  
𝐶

𝑒3𝑧𝑑𝑧

𝑧+𝑖
 if c is circle |𝑧 + 1 + 𝑖| = 2 

(vi) ∫  
𝐶

𝑒𝑎𝑧

𝑧2+1
𝑑𝑧 if 𝑐 is circle |𝑧| = 2. 

Solution. Step I. Here we use two results: 

(𝑅1) If 𝑓(𝑧) is analytic within and on a closed contour 𝐶, then 

∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0. 

(𝑅2) If 𝑧 = 𝑎 is a point inside a closed contour 𝐶 and 𝑓(𝑧) is analytic 

within and on 𝐶, then 

1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
= 𝑓(𝑎) 

(𝑅3) 𝑓(𝑛)(𝑎) =
!𝑛

2𝜋𝑖
∫  

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−𝑎)𝑛+1 for 𝑛 = 1,2,3, …. 

where 𝑧 = 𝑎 is inside 𝐶. 

To evaluate (i). 𝐼 = ∫  
𝐶

{sin (𝜋𝑧2)+cos (𝜋𝑧2)}

(𝑧−1)(𝑧−2)
𝑑𝑧 

where 𝑐 is circle |𝑧| = 3. 

𝑧 = 1, 𝑧 = 2 both lic inside 𝑐 

Take 𝑓(𝑧) = sin (𝜋𝑧2) + cos (𝜋𝑧2) 

Then 𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−1)(𝑧−2)
= ∫  

𝐶
𝑓(𝑧)𝑑𝑧 [

1

𝑧−2
−

1

𝑧−1
] 

 = ∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 2
− ∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 1
= 2𝜋𝑖[𝑓(2) − 𝑓(1)], by (𝑅2)

 = 2𝜋𝑖[{sin (𝜋22) + cos (𝜋22)} − {sin (𝜋 ⋅ 1) + cos (𝜋 ⋅ 1)}]

 = 2𝜋𝑖[(0 + 1) − (0 − 1)] = 4𝜋𝑖

 

To evaluate (ii). 𝐼 =
1

2𝜋𝑖
∫  

𝐶

𝑒𝑧𝑡𝑑𝑧

(𝑧2+1)
∀𝑡 > 0 

where 𝐶 is |𝑧| = 3. Take 𝑓(𝑧) = 𝑒𝑧𝑡 " 
1

𝑧2 + 1
=

1

(𝑧 − 𝑖)(𝑧 + 𝑖)
=

1

2𝑖
[

1

𝑧 − 𝑖
−

1

𝑧 + 𝑖
] 

Here 𝑧 = 𝑖, 𝑧 = −𝑖 both lie inside 𝐶. 

𝐼 =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)

2𝑖
[

1

𝑧 − 𝑖
−

1

𝑧 + 𝑖
] 𝑑𝑧 

This ⇒ 2𝑖𝐼 = 𝑓(𝑖) − 𝑓(−𝑖), by (𝑅2) 

= 𝑒𝑖𝑡 − 𝑒−𝑖𝑡 = 2𝑖sin (𝑡) 

⇒ 𝐼 = sin (𝑡) 

To evaluate(iii). 
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 𝐼 = ∫
𝐶

 
(𝑧−1)𝑑𝑧

(𝑧+1)2(𝑧−2)
 

where 𝐶 is |𝑧 − 𝑖| = 2 

(𝑧 + 1)2(𝑧 − 2) = 0 ⇒ 𝑧 = −1, 𝑧 = 2 

If 𝑧 = −1, then |𝑧 − 𝑖| = | − 1 − 𝑖| = |1 + 𝑖| = √2 < 2 = 𝑅 

If 𝑧 = 2, then |𝑧 − 𝑖| = |2 − 𝑖| = √5 > 2 = 𝑅 

∴  𝑧 = −1 lies inside 𝐶 and 𝑧 = 2 lies outside 𝐶. 

Take 𝑓(𝑧) =
(𝑧−1)

𝑧−2
, then 𝐼 = ∫  

𝐶

𝑓(𝑧)

[𝑧−(−1)]2 

⇒  𝐼 = 2𝜋𝑖
𝑓′(−1)

1!
, by (𝑅3) = 2𝜋𝑖 (−

1

9
) = −

2𝜋𝑖

9
 

For 𝑓(𝑧) =
𝑧−1

𝑧−2
= 1 +

1

𝑧−2
⇒ 𝑓′(𝑧) = −

1

(𝑧−2)2 𝑓′(−1) = −
1

(3)2 

To evaluate (iv). Let 𝐼 = ∫  
𝐶

(sin 𝑧)6𝑑𝑧

(𝑧−
𝜋

6
)

3 , where 𝐶 is |𝑧| = 1. 

𝑧 =
𝜋

6
=

3.14

6
= 0.52 lies inside 𝐶. Take 𝑓(𝑧) = (sin 𝑧)6 

Then 𝐼 = ∫  
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−
𝜋

6
)

3 =
2𝜋𝑖

2!
𝑓′′ (

𝜋

6
) = 𝜋𝑖𝑓′′ (

𝜋

6
), by (𝑅3) 

𝑓(𝑧) = (sin 𝑧)6 ⇒ 𝑓′(𝑧) = 6(sin 𝑧)5cos (𝑧)

⇒ 𝑓′′(𝑧) = 6[5(sin 𝑧)4(cos 𝑧)2 − (sin 𝑧)6]

⇒ 𝑓′′ (
𝜋

4
) = 6 [5 (

1

2
)

4

(
√3

2
)

2

− (
1

2
)

6

] =
21

16

𝐼 = 𝜋𝑖𝑓′′ (
𝜋

6
) = 𝜋𝑖 (

21

16
)

 

To evaluate (v). Let 𝐼 = ∫  
𝐶

𝑒3𝑧𝑑𝑧

𝑧+𝑖
, where 𝑐 is |𝑧 + 1 + 𝑖| = 2 

Take 𝑓(𝑧) = 𝑒3𝑧&𝑧 + 𝑖 = 0 ⇒ 𝑧 = −𝑖 

If 𝑧 = −𝑖, then |𝑧 + 1 + 𝑖| = | − 𝑖 + 1 + 𝑖| = 1 < 2 = 𝑅. 

∴  𝑧 = −𝑖 lies inside 𝐶. 

By (𝑅2), 𝐼 = 2𝜋𝑖𝑓(−𝑖) = 2𝜋𝑖𝑒−3𝑖  

To evaluate (vi). Let 𝐼 = ∫  
𝐶

𝑒𝑎𝑧

𝑧2+1
𝑑𝑧, 𝑐 is |𝑧| = 2. 

                             Same as (ii) and answer is 𝐼 = 2𝜋𝑖sin (𝑎). 

Question 9. Evaluate the following: 

(i) ∫  
𝐶

(𝑧2−4)𝑑𝑧

𝑧(𝑧2+9)
, where 𝑐 is |𝑧| = 1. 
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(ii) ∫  
𝐶

𝑒𝑧

𝑧−2
𝑑𝑧, where 𝑐 is (a) |𝑧| = 3, (b) |𝑧| = 1. 

(iii) ∫  
𝐶

(𝑧−3)𝑑𝑧

𝑧2+2𝑧+5
, where 𝑐 is (a) |𝑧| = 1, (b) |𝑧 + 1 − 𝑖| = 2. 

Solution.(i). Let  

𝐼 = ∫  
𝐶

(𝑧2−4)𝑑𝑧

𝑧(𝑧2+9)
, 

where 𝑐 is circle |𝑧| = 1. 𝑧(𝑧2 + 9) = 0 ⇒ 𝑧 = 0,3𝑖, −3𝑖 

If 𝑧 = 0, then |𝑧| = |0| = 0 < 1, 

If 𝑧 = ± 3𝑖, then |𝑧| = | ± 3𝑖| = 3 > 1. 

∴  𝑧 = 0 lies inside C. 𝑧 = 3𝑖, 𝑧 = −3𝑖 

both lie outside 𝐶. Take 𝑓(𝑧) =
𝑧2−4

𝑧2+9
, then 

𝐼 = ∫ 
𝐶

𝑓(𝑧)

𝑧 − 0
= 2𝜋𝑖𝑓(0), by (𝑅2) = 2𝜋𝑖 (

0 − 1

0 + 9
) = −

8𝜋𝑖

9
 

(ii). Let  

𝐼 = ∫ 
𝐶

𝑐𝑛

𝑧 − 2
𝑑𝑧 

(a) 𝐶 is circle |𝑧| = 3. Evidently 𝑧 = 2 lies inside 𝑐. 

 

(b) Cis circle |𝑧| = 1, in this case 𝑧 = 2 lies outside 𝑐. 

𝑓(𝑧) =
𝑒𝑧

𝑧−2
 is analytic inside 𝐶. ∴ 𝐼 = 0, by (𝑅1) 

 (iii). Let  

𝐼 = ∫ 
𝐶

(𝑧 − 3)𝑑𝑧

𝑧2 + 2𝑧 + 5
 

 (a) Where 𝐶 is |𝑧| = 1 , 𝑧2 + 2𝑧 + 5 = 0 ⇒ 𝑧 = −
2±√(4−20)

2
 

⇒  𝑧 = −1 ± 2𝑖. Take 𝛼 = −1 + 2𝑖, 𝛽 = −1 − 2𝑖.

 |𝛼| = |𝛽| = √5 > 1. ∴  𝑧 = 𝛼, 𝑧 = 𝛽 lie outside 𝑐.
 

         ∴  𝐼 = 0,    by(𝑅1). 

 (b) Here 𝐶 is |𝑧 + 1 − 𝑖| = 2 

If 𝑧 = 𝛼 = −1 + 2𝑖, then |𝑧 + 1 − 𝑖| = |(−1 + 2𝑖) + 1 − 𝑖| = |𝑖| =

1 < 2 

If 𝑧 = 𝛽 = −1 − 2𝑖, then |𝑧 + 1 − 𝑖| = | − 1 − 2𝑖 + 1 − 𝑖| = | − 3𝑖| =
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3 > 2. 

∴  𝑧 = 𝛼 lies inside 𝐶 and 𝑧 = 𝛽 lies outside 𝐶. 

𝐼 = ∫ 
𝐶

(𝑧 − 3)𝑑𝑧

(𝑧2 + 2𝑧 + 5)
= ∫ 

𝐶

(𝑧 − 3)𝑑𝑧

(𝑧 − 𝛼)(𝑧 − 𝛽)
 

Take 𝑓(𝑧) =
𝑧−3

𝑧−𝛽
, then 𝐼 = ∫  

𝐶

𝑓(𝑧)𝑑𝑧

𝑧−𝛼
 

∴  𝐼 = 2𝜋𝑖𝑓(𝛼) = 2𝜋𝑖 (
𝑧−3

𝑧−𝛽
) at 𝑧 = 𝛼 

⇒  𝐼 =
2𝜋𝑖(𝛼 − 3)

𝛼 − 𝛽
= 2𝜋𝑖

(−1 + 2𝑖 − 3)

4𝑖
= 𝜋(−2 + 𝑖) 

 

Question 10. Evaluate the following integrals: 

(i) ∫
𝐶

 
𝑑𝑧

𝑧2−1
 where 𝐶 is 𝑥2 + 𝑦2 = 4 

(ii) ∫
𝐶

 
𝑒3𝑖𝑧𝑑𝑧

(𝑧+𝜋)3, where 𝐶 is |𝑧 − 𝜋| = 3.2 

(iii) ∫
𝐶

 
(4−3𝑧)𝑑𝑧

𝑧(𝑧−1)(𝑧−2)
, where 𝐶 is |𝑧| =

3

2
 

Solution. (i). 

                       Let 𝐼 = ∫
𝐶

 
𝑑𝑧

(𝑧−1)(𝑧+1)
 where 𝐶 is |𝑧| = 2. 

                       Evidently 𝑧 = 1, 𝑧 = −1 both lie inside 𝐶. 

𝐼 =
1

2
∫  

𝐶
(

1

𝑧−1
−

1

𝑧+1
) 𝑑: : = 2𝜋𝑖[𝑓(1) − 𝑓(−1)] = 2𝜋𝑖(1 − 1) = 0  

 

(ii). Let 𝐼 = ∫  
𝐶

𝑒3𝑖𝑧𝑑𝑧

(𝑧+𝜋)3, where 𝐶 is |𝑧 − 𝜋| = 3.2𝑧 + 𝜋 = 0 ⇒ 𝑧 = −𝜋. 

Now if 𝑧̇ = −𝜋, then |𝑧 − 𝜋| = | − 𝜋 − 𝜋| = 2𝜋 = 2 × 3.14 > 3.2 

∴  𝑧 = −𝜋 lies outside 𝐶. 

⇒  ∫
𝐶

 
𝑒3𝑖𝑧𝑑𝑧

(𝑧 + 𝜋)3
= 0 

 (iii) 𝐼 = ∫
𝐶

 
(1−3𝑧)𝑑𝑧

𝑧(𝑧−1)(𝑧−2)
 

Here 𝐶 is |𝑧| =
3

2
. Evidently 𝑧 = 0, 𝑧 = 1 both inside 𝐶 and 𝑧 = 2 lies 

outside 𝑐. 

Take 𝑓(𝑧) =
4−3𝑧

𝑧−2
 

Then 𝐼 = ∫
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧(𝑧−1)
= ∫

𝐶
 𝑓(𝑧) (

1

𝑧−1
−

1

𝑧
) 𝑑𝑧 

By (𝑅2), 𝐼 = 2𝜋𝑖[𝑓(1) − 𝑓(0)] 

⇒  𝐼 = 2𝜋𝑖 [(
4 − 3𝑧

𝑧 − 2
)

at 𝑧=1
− (

4 − 3𝑧

𝑧 − 2
)

at 𝑧=0
] 

= 2𝜋𝑖[−1 − (−2)] = 2𝜋𝑖. 
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Question 13. (i) Integrate 
1

(𝑧3−1)2, the counter clockwise around the circle 

|𝑧 − 1| = 1 

(ii) Evaluate ∫
𝐶

 
𝑧𝑑𝑧

𝑧2+1
, where 𝑐 is (a) |𝑧 +

1

𝑧
| = 2, (b) |𝑧 + 𝑖| = 1. 

Solution. (i) Let 𝐼 = ∫
𝐶

 
𝑑𝑧

(𝑧3−1)2 , 𝑐 is |𝑧 − 1| = 1 

(𝑧3 − 1) = 0 ⇒ (𝑧 − 1)(𝑧2 + 𝑧 + 1) = 0 ⇒ 𝑧 = 1 and 𝑧 = −
1+𝑖√3

2
 

If 𝑧 = 1 lies inside 𝐶. 

If 𝑧 = −
1+𝑖√3

2
, then |𝑧 − 1| = |

−1+𝑖√3

2
− 1| = |

−3+𝑖√3

2
| 

=
1

2
√12 =

2√3

2
= √3 > 1 

∴  𝑧 = −
1+𝑖√3

2
 lies outside 𝐶. Similarly, 𝑧 = −

1−𝑖√3

2
 lies outside 𝐶. Take 

𝑓(𝑧) =
1

(𝑧2+𝑧+1)2, then 

𝐼 = ∫ 
𝐶

𝑓(𝑧)

(𝑧 − 1)2
= 2𝜋𝑖𝑓′(1), by (𝑅3) of Problem (8) 

⇒  𝐼 = 2𝜋𝑖 {
−2(2𝑧 + 1)

(𝑧2 + 𝑧 + 1)3
}

𝑧=1

= −
4𝜋𝑖

9
 

 

(ii) (a) Let 𝐼 = ∫
𝐶

 
𝑧𝑑𝑧

𝑧2+1
, where 𝐶 is (a) |𝑧 +

1

𝑧
| = 2 

|𝑧 +
1

𝑧
| = 2 ⇒ |𝑧2 + 1| = |2𝑧| ⇒ |𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 + 1| = 2|𝑥 + 𝑖𝑦| 

⇒  (𝑥2 − 𝑦2 + 1)2 + 4𝑥2𝑦2 = 4(𝑥2 + 𝑦2) 
⇒  (𝑥2 − 𝑦2)2 + 1 + 2(𝑥2 − 𝑦2) + 4𝑥2𝑦2 = 4(𝑥2 + 𝑦2) 
⇒  (𝑥2 + 𝑦2)2 + 1 = 2𝑥2 + 6𝑦2 
⇒  (𝑥2 + 𝑦2 − 1)2 + 2(𝑥2 + 𝑦2) = 2𝑥2 + 6𝑦2 
⇒  (𝑥2 + 𝑦2 − 1)2 = 4𝑦2 ⇒ 𝑥2 + 𝑦2 − 1 = ±2𝑦 
⇒  (𝑥 − 0)2 + (𝑦 ± 1)2 = 2 

⇒ Circle 𝑐1, centre (0,1), 𝑟2 = √2 and circle 𝑐2, centre (0, −1), 𝑟2 = √2 

⇒ 𝑐1, |𝑧 − 𝑖| = √2 and 𝑐2: |𝑧 + 𝑖| = √2

 𝐼 = ∫ 
𝐶

 
𝑧𝑑𝑧

(𝑧 + 𝑖)(𝑧 − 𝑖)
= ∫  

𝐶1

 
𝑧𝑑𝑧

(𝑧 + 𝑖)(𝑧 − 𝑖)
+ ∫  

𝐶2

 
𝑧𝑑𝑧

(𝑧 + 𝑖)(𝑧 − 𝑖)

 

Take 𝑓 =
𝑧

𝑧+𝑖
 for 𝑐1 and 𝑔 =

𝑧

𝑧−𝑖
 for 𝑐2 

Then 𝐼 = ∫  
𝐶1

𝑓(𝑧)𝑑𝑧

𝑧−𝑖
+ ∫  

𝐶2

𝑔(𝑧)𝑑𝑧

𝑧+𝑖
 

= 2𝜋𝑖[𝑓(𝑖) + 𝑔(−𝑖)], by Cauchy's integral formula. 

 = 2𝜋𝑖 [(
𝑧

𝑧 + 𝑖
)

at 𝑧=𝑖
+ (

𝑧

𝑧 − 𝑖
)

at 𝑧=−𝑖
]

 = 2𝜋𝑖 [
1

2
+

1

2
] = 2𝜋𝑖
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(ii) (b) Let 𝐼 = ∫  
𝐶

𝑧𝑑𝑧

𝑧2+1
, where 𝐶 is |𝑧 + 𝑖| = 1. 

Centre of circle 𝐶 is at 𝑧 = −𝑖 and radius 1 . 

Take 𝑓 =
𝑧

𝑧−𝑖
, then 𝐼 = ∫  

𝐶

𝑓(𝑧)𝑑𝑧

𝑧+𝑖
 

∴  𝑙 = 2𝜋𝑖𝑓(−𝑖) = 2𝜋𝑖 (
𝑧

𝑧−𝑖
) at 𝑧 = −𝑖 or 𝐼 = 𝜋𝑖 

 

Question 12. Let 𝑃(𝑧) = 𝑎 + 𝑏𝑧 + 𝑐𝑧2 and 

∫ 
𝐶

𝑃(𝑧)

𝑧
𝑑𝑧 = ∫ 

𝐶

𝑃(𝑧)

𝑧2
𝑑𝑧 = ∫ 

𝐶

𝑃(𝑧)

𝑧3
𝑑𝑧 = 2𝜋𝑖 

where 𝐶 is circle |𝑧| = 1. Evaluate 𝑃(𝑧). 

Solution. Here we use the formula 

𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1
… ( ∗), where 𝑧 = 𝑎 lies inside 𝑐 

In view of this we evaluate 𝑃(𝑧). 

Give 1 =
1

2𝜋𝑖
∫  

𝐶

𝑃(𝑧)𝑑𝑧

(𝑧−0)
=

1

2𝜋𝑖
∫  

𝐶

𝑃(𝑧)𝑑𝑧

(𝑧−0)2 =
1

2𝜋𝑖
∫  

𝐶

𝑃(𝑧)𝑑𝑧

(𝑧−0)3 

⇒  1 = 𝑃(0) = 𝑃′(0) =
𝑃′′(0)

! 2
(1) 

Given 𝑃(𝑧) = 𝑎 + 𝑏𝑧 + 𝑐𝑧2 

Then 𝑃′(𝑧) = 𝑏 + 2𝑐𝑧, 𝑃′′(𝑧) = 2𝑐 

⇒  𝑃(0) = 𝑎, 𝑃𝑝′(0) = 𝑏, 𝑃′′(0) = 2𝑐 (2) 

Putting this in (1), 1 = 𝑎 = 𝑏 = 𝑐 

Now (2) ⇒ 𝑃(𝑧) = 1 + 𝑧 + 𝑧2. 

 

8.6 POISSON’S INTEGRAL FORMULA:- 

Poisson's Integral formula. If 𝑓(𝑧) is analytic within and on a circle 𝐶 

defined by |𝑧| = 𝑅 and if 𝑎 is any point within 𝐶, then 

𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

(𝑅2 − 𝑎𝑎‾)𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)(𝑅2 − 𝑧𝑎‾)
 

 

Hence deduce the Poisson's formula 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫  

2𝜋

0

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖𝜙)𝑑𝜙

𝑅2 − 2𝑅𝑟cos (𝜃 − 𝜙) + 𝑟2
 

where 𝑎 = 𝑟𝑒𝑖𝜃  is any point inside the circle |𝑧| = 𝑅 

 

Proof. Suppose 𝑓(𝑧) is analytic within and on the circle 𝐶 defined |𝑧| =

𝑅 and 𝑎 = 𝑟𝑒𝑖0 is any point 𝐴 inside 𝐶 so that 

0 < 𝑟 < 𝑅. 

The inverse 𝐴′(𝑎′) of 𝐴(𝑎) w.r.t. the circle 𝐶 is given by 𝑎′ =
𝑅2

𝑎‾
 which 

lies outside the circle 𝐶. By Cauchy's integral formula, 
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𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
(1) 

Since 𝑓(𝑧) is analytic within and upon the circle 𝐶 and so 
𝑓(𝑧)

𝑧−𝑎′ is analytic 

within and on 

 
Fig. 8(i) 

 

∫ 
𝐶

 
𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎′
= 0           … … … … (𝟐)  

[Note that 
𝑓(𝑧)

𝑧−𝑎
 is not analytic within 𝐶 ] (1) - (2) gives 

or 

𝑓(𝑎) − 0 =
1

2𝜋𝑖
∫ 

𝐶

  [
𝑓(𝑧)

𝑧 − 𝑎
−

𝑓(𝑧)

𝑧 − 𝑎′
] 𝑑𝑧

𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

 
(𝑎 − 𝑎′)𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)(𝑧 − 𝑎′)

 =
1

2𝜋𝑖
∫ 

𝐶

 
(𝑎 −

𝑅2

𝑎‾ ) 𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎) (𝑧 −
𝑅2

𝑎‾ )
=

1

2𝜋𝑖
∫ 

𝐶

 
(𝑎𝑎‾ − 𝑅2)𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)(𝑎‾𝑧 − 𝑅2)

 

or 

𝑓(𝑎) =
1

2𝜋𝑖
∫ 

𝐶

 
(𝑅2 − 𝑎𝑎‾)𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)(𝑅2 − 𝑧𝑎̈)
          … … . . (3)  

This proves the first required result. 

Any point 𝑧 on |𝑧| = 𝑅 is expressible as 𝑧 = 𝑅𝑒𝑖𝜙. 

Also 𝑎 = 𝑟𝑒𝑖0 so that 𝑎‾ = 𝑟𝑒−𝑖0. 

Now 

𝑅2 − 𝑎𝑎‾  = 𝑅2 − 𝑟𝑒𝑖0 ⋅ 𝑟𝑒−𝑖0 = 𝑅2 − 𝑟2 (4)

(𝑧 − 𝑎)(𝑅2 − 𝑧𝑎‾)  = (𝑅𝑒𝑖𝜙 − 𝑟𝑒𝑖0)(𝑅2 − 𝑅𝑒𝑖𝜙𝑟𝑒−𝑖𝜃) (4)

 = 𝑅𝑒𝑖𝜙(𝑅 − 𝑏𝑒𝑖(𝜃−𝜙))(𝑅 − 𝑟𝑒−𝑖(𝜃−𝜙))
𝑐

(4)

 = 𝑅𝑒𝑖𝜙[𝑅2 + 𝑟2 − 𝑟𝑅(𝑒𝑖(𝜃−𝜙) − 𝑒−𝑖(𝜃−𝜙))] (5)

 = 𝑅𝑒𝑖𝜙[𝑅2 + 𝑟2 − 2𝑟𝑅cos (𝜃 − 𝜙)] (6)

𝑑𝑧 = 𝑑(𝑅𝑒𝑖𝜙) = 𝑅𝑖𝑒𝑖𝜙𝑑𝜙 (6)

 

Writing (3) with the help of (4), (5) and (6), 
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𝑓(𝑎) =
1

2𝜋𝑖
∫  

2𝜋

0

 
(𝑅2 − 𝑟2)𝑓(𝑧)𝑅𝑒𝑖𝜙𝑖𝑑𝜙

[𝑅2 − 2𝑅𝑟cos (𝜙 − 𝜃) + 𝑟2]Re𝑖𝜙

 =
1

2𝜋
∫  

2𝜋

0

 
(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖𝜙)𝑑𝜙

[𝑅2 − 2𝑅𝑟cos (𝜃 − 𝜙) + 𝑟2]

 

This proves the second required result. 

Remark. If we assume 𝒇(𝒂) = 𝒖(𝒓, 𝜽) + 𝑖𝒗(𝒓, 𝜽) 

and  𝑓(𝑅𝑒𝑖𝜙) = 𝑢(𝑅, 𝜙) + 𝑖𝑣(𝑅, 𝜙) 

then the last equation gives, on equating real and imaginary parts, 

𝑢(𝑟, 𝜃) =
1

2𝜋
∫  

2𝜋

0

 
(𝑅2 − 𝑟2)𝑢(𝑅, 𝜙)𝑑𝜙

𝑅2 − 2𝑅𝑟cos (𝜃 − 𝜙) + 𝑟2

𝑣(𝑟, 𝜃) =
1

2𝜋
∫  

2𝜋

0

 
(𝑅2 − 𝑟2)𝑣(𝑅, 𝜙)𝑑𝜙

𝑅2 − 2𝑅𝑟cos (𝜃 − 𝜙) + 𝑟2

 

Theorem. Using Poisson's integral formula for a circle, show that 

∫  
2𝜋

0

𝑒cos 𝜙cos (sin 𝜙)𝑑𝜙

5 − 4cos (𝜃 − 𝜙)
=

2𝜋

3
𝑒cos 0cos (sin 𝜃) 

Solution. By Poisson's integral formula, 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫  

2𝜋

0

 
(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖𝜙)𝑑𝜙

𝑅2 + 𝑟2 − 2𝑟𝑅cos (𝜃 − 𝜙)
(1) 

If we compare R.H.S. of (1) with the given integral, then we find 

𝑅2 + 𝑟2 = 5 (2)

𝑟𝑅 = 2 (3)

𝑓(𝑅𝑒𝑖𝜙) = 𝑒𝑖cos 𝜙cos (sin 𝜙) (4)

 

(2) & (3) ⇒ 𝑅 = 2, 𝑟 = 1 and so 𝑅2 − 𝑟2 = 4 − 1 = 3 

Now (4) ⇒ 𝑓(𝑟𝑒𝑖𝜃) = 𝑒cos 𝜃cos (sin 𝜃) 

Putting values from (2), (3), (5) and (6) in (1), we get 

𝑒cos 𝜃cos (sin 𝜃) =
1

2𝜋
∫  

2𝜋

0

 
3𝑒cos 𝜙cos (sin 𝜙)𝑑𝜙

5 − 4cos (𝜃 − 𝜙)

⇒ 
2𝜋

3
𝑒cos 𝜃 ⋅ cos (sin 𝜃) = ∫  

2𝜋

0

 
𝑒cos 𝜃cos (sin 𝜙)𝑑𝜙

5 − 4cos (𝜃 − 𝜙)

 

  

8.7 MORERA’S THEOREM:- 

Morera's theorem. If 𝑓(𝑧) is a continuous function in a domain 𝐷 and if 

for every closed contour 𝐶 in the domain 𝐷, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 0 

then 𝑓(𝑧) is analytic within 𝐷. (It is a sort of converse of Cauchy's 

theorem). 

Proof. Let 𝑧0 be a fixed point and 𝑧 a variable point inside the domain 𝐷. 
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The value of the intergal ∫  
𝑧

𝑧0
𝑓(𝑡)𝑑𝑡 is independent of the curve joining 𝑧0 

to 𝑧 and depends on 𝑧 only. 

Write 

𝐹(𝑧) = ∫  
𝑧

𝑧0

𝑓(𝑡)𝑑𝑡 

Let 𝑧 + ℎ be a point in the neighbourhood of 𝑧. 

 

𝐹(𝑧 + ℎ) − 𝐹(𝑧) = ∫  
𝑧+ℎ

𝑧0

 𝑓(𝑡)𝑑𝑡 − ∫  
𝑧

𝑧0

 𝑓(𝑡)𝑑𝑡

 = ∫  
𝑧+ℎ

𝑧0

 𝑓(𝑡)𝑑𝑡 + ∫  
𝑧0

𝑧

 𝑓(𝑡)𝑑𝑡 = ∫  
𝑧+ℎ

𝑧

 𝑓(𝑡)𝑑𝑡

|
𝐹(𝑧 + ℎ) − 𝐹(𝑧)

ℎ
− 𝑓(𝑧)| = |

1

ℎ
∫  

𝑧+ℎ

𝑧

 𝑓(𝑡)𝑑𝑡 − 𝑓(𝑧)| =
1

|ℎ|
|∫  

𝑧+ℎ

𝑧

  [𝑓(𝑡) − 𝑓(𝑧)]𝑑𝑡|

 ≤
1

|ℎ|
∫  

𝑧+ℎ

𝑧

  |𝑓(𝑡) − 𝑓(𝑧)||𝑑𝑡| <
𝜀

|ℎ|
|ℎ|

 or  [
|𝑓(𝑡) − 𝑓(𝑧)| < 𝜀 for |𝑡 − 𝑧| < 𝛿 because of continuity of 𝑓(𝑧)]

𝐹(𝑧 + ℎ) − 𝐹(𝑧)
ℎ − 𝑓(𝑧)|  < 𝜀 which tends to 0 as 𝜀 → 0

 

Thus  lim
ℎ→0

 
𝐹(𝑧+ℎ)−𝐹(𝑧)

ℎ
− 𝑓(𝑧) = 0, or 𝐹′(𝑧) = 𝑓(𝑧). 

Thus the derivative of 𝐹(𝑧) exists and so 𝐹(𝑧) is analytic in 𝐷. But we 

know that the derivative of analytic function is analytic. (Refer Theorem 

6). 

Therefore 𝐹′(𝑧). i.e. 𝑓(𝑧) is analytic in 𝐷. 

Remark. The above theorem can also be restated as follows: 

If (𝑧) is analytic in a simply connected region 𝐷 of the complex plane, 

show that there exists a function 𝐹′(𝑧), analytic in 𝐷, and such that 

𝐹′(𝑧) = 𝑓(𝑧) for 𝑧 in 𝐷. 

Theorem. A necessary and sufficient condition for a function 𝑓(𝑧) to 

possess an indefinite integral in a simply connected domain 𝐷 is that the 

function is analytic in D. Further, any two indefinite integrals differ by a 

constant. 

Proof. Let 𝑓(𝑧) possess an indefinite integral 𝐹(𝑧) so that 

𝐹(𝑧) = ∫  
𝑧

𝑎

 𝑓(𝑡)𝑑𝑡                 … …     (1)  

To prove that 𝑓(𝑧) is analytic. 

By (1), 𝐹′(𝑧) = 𝑓(𝑧), showing thereby 𝐹(𝑧) possess a derivative 𝑓(𝑧). 
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Also, the derivative of an and function is analytic. It follows that 𝑓(𝑧) is 

analytic. 

Conversely suppose that 𝑓(𝑧) is analytic in a domain 𝐷. To prove that 

𝑓(𝑧) possesses an indefinite integral. Let 𝑧0 be any fixed point and 𝑧 an 

arbitrary point in 𝐷. 

 Write  1 𝐹(𝑧) = ∫  
𝑧

𝑧0

 𝑓(𝑡)𝑑𝑡            … … . . (2)  

For the integral of 𝑓(𝑧) along any curve in 𝐷 joining 𝑧0 to 𝑧 is the same.  

Prove as in Theorem 8 that 𝐹′(𝑧) = 𝑓(𝑧). This proves that 𝑓(𝑧) possesses 

indefinite integral, given by (2). 

Second Part. Let 𝐹(𝐺) and 𝐺(𝑍) be two indefinite integrals of the same 

function 𝑓(𝑧). Then 

𝐹′(𝑧) = 𝑓(𝑧) = 𝐺′(𝑧)

 This ⇒ 𝐹′(𝑧)′ = 𝐺′(𝑧) ⇒
𝑑

𝑑𝑧
(𝐹 − 𝐺) = 0

 

Integrating, we get 𝐹 − 𝐺 = 𝑐. 

This completes the proof. 

Fundamental theorem of Integral Calculus. Let 𝑓(𝑧) be single palued 

analytic function in a simple connected domain 𝐷. If 𝑎, 𝑏 ∈ 𝐷, then 

∫  
𝑏

𝑎

𝑓(𝑧)𝑑𝑧 = 𝐹(𝑏) − 𝐹(𝑎), where 𝐹(𝑧) is an indefinite integral of 𝑓(𝑧). 

Proof. By definition of indefinite integral, 

𝐹(𝑧) = ∫  
𝑧

𝑧0

 𝑓(𝑡)𝑑𝑡

𝐹(𝑏) − 𝐹(𝑎) = ∫  
𝑏

𝑧0

 𝑓(𝑡)𝑑𝑡 − ∫  
𝑎

𝑧0

 𝑓(𝑡)𝑑𝑡 = ∫  
𝑏

𝑧0

 𝑓(𝑡)𝑑𝑡 + ∫  
𝑧0

𝑎

 𝑓(𝑡)𝑑𝑡

 = ∫  
𝑏

𝑎

 𝑓(𝑡)𝑑𝑡

 

or  𝐹(𝑏) − 𝐹(𝑎) = ∫  
𝑏

𝑎
𝑓(𝑧)𝑑𝑧. 

Cauchy's inequality. If 𝑓(𝑧) is analytic within and on a circle 𝐶, given 

by |𝑧 − 𝑎| = 𝑅 and if |𝑓(𝑧)| ≤ 𝑀 for every 𝑧 on 𝐶, then |𝑓(𝑛)(𝑎)| ≤
𝑀𝑛!

𝑅𝑛 . 

 

Proof. |𝑧 − 𝑎| = 𝑅 ⇒ 𝑧 − 𝑎 = Re𝑖0 ⇒ 𝑑𝑧 = 𝑖Re𝑖0𝑑𝜃 ⇒ |𝑑𝑧| = 𝑅𝑑𝜃 

We know that 𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫  

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−𝑎)𝑛+1 

or 

|𝑓(𝑛)(𝑎)| ≤
𝑛!

2𝜋
∫ 

𝑐

 
|𝑓(𝑧)| ⋅ |𝑑𝑧|

|𝑧 − 𝑎′|𝑛+1
≤

𝑀𝑛!

2𝜋𝑅𝑛+1
∫  

2𝜋

0

 𝑅𝑑𝜃

 =
𝑀𝑛!

2𝜋𝑅𝑛+1
2𝜋𝑅

|𝑓(𝑛)(𝑎)| ≤
𝑀𝑛!

𝑅𝑛
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Remark 1. If we take 𝑎𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
, then |𝑎𝑛| ≤

𝑀

𝑅𝑛. 

Remark 2. A function 𝑓(𝑧) is called an integral function or entire function 

if it is analytic in every finite region. 

 

8.8 LIOVILLE’S THEOREM:- 

If an entire function 𝑓(𝑧) is bounded for all values of 𝑧, then it is constant.  

Or, If a function 𝑓(𝑧) is analytic for finite values of 𝑧, and is bounded, 

then 𝑓(𝑧) is constant. 

Or, If 𝑓 is regular in whole 𝑧-plane and if |𝑓(𝑧)| < 𝑘 ∀𝑧, then 𝑓(𝑧) must 

be constant. 

Proof. Let 𝑎 and 𝑏 be arbitrary distinct points in 𝑧-plane and let 𝐶 be a 

large circle with centre 𝑧 = 0 and radius 𝑅 such that 𝐶 encloses 𝑎 and 𝑏. 

Equation of 𝐶 is |𝑧| = 𝑅𝑠𝑜𝑡ℎ𝑎𝑡𝑧 = 𝑅𝑒𝑖𝜃, 𝑑𝑧 = 𝑖𝑅𝑒𝑑𝜃
𝑖𝜃 |𝑑𝑧| = 𝑅𝑑𝜃. 

𝑓(𝑧) is bounded ∀𝑧 ⇒ |𝑓(𝑧)| ≤ 𝑀  ∀ 𝑧 where 𝑀 > 0. 

By Cauchy's integral formula, 

 

 
or 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑀𝑅|𝑎−𝑏|

(𝑅−|𝑎|)(𝑅−|𝑏|)
→ 0 as 𝑅 → ∞. 

∴  𝑓(𝑎) − 𝑓(𝑏) = 0 or 𝑓(𝑎) = 𝑓(𝑏), showing thereby 𝑓(𝑧) is constant. 
 

 

CHECK YOUR PROGRESS 

True or false Questions 
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Problem 1. If any entire function is bounded then it is 

constant. 

Problem 2. If 𝑓(𝑧) is a continuous function in a domain 𝐷 and if 

for every   

closed contour 𝐶 in the domain 𝐷, ∫  
𝐶

𝑓(𝑧)𝑑𝑧 = 0 then 𝑓(𝑧) is 

analytic within 𝐷. 

Problem 3. ∫  
𝛾

|𝑑𝑧| = circumference of the circle 𝛾 = 2𝜋. radius 

Problem 4. If 𝑓(𝑧) is analytic within and on a circle 𝐶, 

given by 

 |𝑧 − 𝑎| = 𝑅 and if |𝑓(𝑧)| ≤ 𝑀 for every 𝑧 on 𝐶, then 

 |𝑓(𝑛)(𝑎)| ≤
𝑀𝑛!

𝑅𝑛 . 

 

 

 

8.9 SUMMARY: 

 

1. Cauchy's integral formula. If 𝑓(𝑧) is analytic within and on a closed 

contour 𝐶, and if a is any point within 𝐶, then 𝑓(𝑎) =
1

2𝜋𝑖
∫  

𝐶

𝑓(𝑧)𝑑𝑧

𝑧−𝑎
 

2. Poisson's Integral formula. If 𝑓(𝑧) is analytic within and on a circle 

𝐶 defined by |𝑧| = 𝑅 and if 𝑎 is any point within 𝐶, then 𝑓(𝑎) =
1

2𝜋𝑖
∫  

𝐶

(𝑅2−𝑎𝑎‾)𝑓(𝑧)𝑑𝑧

(𝑧−𝑎)(𝑅2−𝑧𝑎‾)
 

3. If an entire function 𝑓(𝑧) is bounded for all values of 𝑧, then it is 

constant.  

 

4. A function 𝑓(𝑧) is called an integral function or entire function if it is 

analytic in every finite region. 

8.10 GLOSSARY :- 
 

integration  

Analytic function 
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8.13 TERMINAL AND MODEL QUESTIONS:- 
 

Q 1. States and prove Fundamental theorem of Integral Calculus. 

Q 2. States and prove Cauchy integral formula for higher order derivative. 

Q 3.  States and prove Morera's theorem.  

Q 4. Define Cauchy’s Roots Test.     

Q 5. States and prove Poisson's Integral formula. 

8.14 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 

 

https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdf
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UNIT-9: Power Series 

CONTENTS 

9.1  Introduction 

9.2  Objectives 

9.3  Power series 

9.3.1 Absolute convergence of n

nza  

9.4 Test for convergence of series n

nza  

9.5 Radius of convergence of power series 

9.6 Some function of a power series 

9.7 Summary 

9.8  Glossary  

9.9   References 

9.10 Suggested Readings 

9.11  Terminal Questions 

9.12 Answers 

9.1 INTRODUCTION:- 

A power series is an infinite series of the form
n

n

n zza )( 0

0






, where na  

are complex coefficients and 0z  is a fixed complex number called the 

center of the series. In complex analysis, power series play a fundamental 

role because they provide a powerful way to represent complex functions 

locally with high precision and smoothness. This unit introduces the 

concept of power series, their convergence properties, and the radius and 

region of convergence, which determine where the series defines an 

analytic function. It also explores how term-by-term differentiation and 

integration preserve convergence within this region, allowing power series 

to serve as a bridge between algebraic expressions and analytic behavior 

of complex functions. Through these concepts, power series become 

essential tools for the study of analytic continuation, Taylor and Laurent 

expansions, and solving differential equations in the complex plane. 

9.2 OBJECTIVES:- 
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The main objectives of the unit “power series” presented in point form: 

 To define power series and understand their general structure and 

notation. 

 To study the concepts of radius of convergence and interval/region 

of convergence, and learn methods for determining them. 

 To explore the relationship between power series and analytic 

functions, including conditions under which a power series 

represents an analytic function. 

 To understand the properties of power series such as term-by-term 

differentiation and integration, and how these operations affect 

convergence. 

 To learn how power series can be used to express complex 

functions through Taylor and Maclaurin series expansions. 

 To apply power series techniques in problem-solving, including 

function approximation and solving complex differential 

equations. 

 To introduce the concept of uniqueness of power series 

representation and analytic continuation 

9.3 POWER SERIES:- 

Definition: A series of the form, 
n

n

n za


0

 or 
n

n

n aza )(
0






 

is called a power series, where, 

 na , a = complex constant 

z  complex variable. 

The second form n

n aza )(   can be reduced to the first form by 

substitution az    so that, 
n

n

n

n aaza   )( . 

The first form is easier to work with than the second, so we focus only on 

the first. 

  

orza n

n simply 


0n

n

n za . 

9.3.1 ABSOLUTE CONVERGENCE OF n

nza :- 
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The power series n

nza  is said to be absolute convergent if the series 

n

n za ||||  is not convergent. 

The power series n

nza  is said to be conditionally convergent if n

nza  

is convergent but n

n za ||||  is not convergent. 

9.4 TEST FOR CONVERGENCE OF SERIES 
n

nza :- 

Here we have provided some list of tests and results which are helpful to 

find out the convergence of the series. 

1. If  nu is convergent, then 0lim 


n
n

u . 

2. If 


n

n

n v

u
lim finite non-zero quantity, then the two series  nu  and 

 nv have identical in nature. 

3. Comparison test:  nu is absolutely convergent if |||| nn vu  and 

 nv is convergent. 

4. Root test: Let lu n

n  /1|| . Then series  nu is convergent 

(absolutely) or divergent according as 1l  or 1l . The test will 

fail if 1l . 

5. Ratio test: The series  nu is convergent or divergent according 

as, 1lim 1 


n

n

n u

u
 or > 1.  

6:  The series  pn

1
is convergent if 1p  and divergent if 1p . 

7: Dirichlet’s test: The series  nnua is convergent if 

(i) knkas
n

i

in ,||
1

 


being a finite number. 

(ii) 0lim 


n
n

u  

(iii) )( 1 nn uu  is convergent. 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY  Page 180 

 

9.5 RADIUS OF CONVERGENCE OF POWER 

SERIES:- 

The radius of convergence of a power series is a fundamental concept in 

complex analysis that determines the region in which the series converges 

to an analytic function. Given a power series of the form  n

n zza )( 0
, 

the radius of convergence R specifies the distance from the center 0z  

within which the series converges absolutely and uniformly on compact 

sets, and beyond which it diverges. This radius can be computed using 

tests such as the ratio or root test, and it reflects how the behavior of the 

coefficients na  influences convergence. Understanding the radius of 

convergence is essential for analyzing where a power series represents a 

valid analytic function and how its domain of analyticity is determined by 

singularities in the complex plane. 

Consider the power series   )(zuza n

n

n
, say,  nu is convergent if, 

1||lim /1 


n

n
n

u . 

This implies, 1||.||lim1||lim /1/1 


zaza n

n
n

nn

n
n

 

Taking ,
1

||lim /1

R
a n

n
n




we get 

1
||


R

z
 or Rz || . 

Hence,  n

nza is convergent or divergent according as, Rz ||  or 

Rz || .So, corresponding to every power series  n

nza ,   a non-

negative number R  such that Rz ||  if the series is convergent and 

Rz || if the series is divergent. 

Now if we draw a circle of radius R with centre at origin, then 

(i) The power series  n

nza is convergent for every z within this 

circle ( Rz || ). 

(ii) The power series  n

nza is divergent for every z outside the circle 

( Rz || ). 
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Such a circle is known as the circle of convergence, and its radius R is 

referred to as the radius of convergence of the power series n

nza . 

There are three possibilities for R. 

(i) 0R , in this situation, the series converges only at z = 0. 

(ii) R is finite, in this situation, the series is convergent at each point 

within this circle and diverges at each point outside of the circle. 

(iii) R is infinite, in this situation the series is convergent z . 

Note:
n

n

n

n

n
n a

a
a

R

1/1 lim||lim
1 


 . 

9.6 SOME FUNCTION OF A POWER SERIES:- 

A power series defines a function, often called the some function of the 

series, within the region where the series converges. Given a series of the 

form  n

n zza )( 0
, this function is obtained by assigning to each point z 

in its interval or disk of convergence the value of the infinite sum. Within 

this region, the sum function is analytic, meaning it possesses derivatives 

of all orders and can itself be differentiated or integrated term-by-term. 

The behavior of this function is closely tied to the radius of convergence, 

beyond which the series no longer represents a meaningful value. Thus, 

the function of a power series provides a powerful tool for expressing and 

studying analytic functions in complex analysis. 

If  n

nzazf )( , then )(zf  is called some function of power series. 

Theorem 1: The power series  n

nza either, 

(i) Converges for every z.  or  (ii) Converges 

only for 0z  

(iii) converges for some z . 

Proof: It is enough to provide one example for each case. 

(i) Consider the power series 
!n

z n

. Now, comparing this with 

 )(zun
, we find that 
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)1(

!
.

)!1(

1

1











n

z

z

n

n

z

u

u
n

n

n

n  

10||.
)1(

1
limlim 1 









z

nu

u

n
n

n

n
 

Hence the power series, 
!n

z n

 is convergent for every z. 

(ii) Consider the power series   n

n unz ! , say 

Then, 









 0,

0,0
||!.lim||lim

zif

zif
znu n

n
n

n
 

, nu i.e.,  nzn! is convergent if 0z  and divergent if 0z . 

(iii) The power series  nz is convergent if 1|| z  and is not 

convergent if 1|| z . 

Theorem 2: If the power series  n

nza converges for a particular value 

0z of z , then it converges absolutely for every z for which |||| 0zz  . 

Proof: Suppose the power series  n

nza is convergent for 0zz  , so that 


n

n za 0 is convergent. Consequently, 0lim 0 


n

n
n

za .                    … (1) 

Our aim is to prove that  n

nza  is convergent for every z for which 

|||| 0zz  . 

(1)   a real positive constant 0M  s.t., nMza n

n  . 

Now, 

n

n

n

n

n
z

z
Mz

z

M
za

00

||.
||

  

Or 

n

n

n
z

z
Mza

0

 . But the geometric series  n

n

z

z

||

||

0

is convergent z

s.t. 

1
||

||

0


z

z
 i.e., |||| 0zz  . 
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By comparison test || n

nza  is convergent z s.t., |||| 0zz  . 

Consequently,  n

nza is absolutely convergent z  s.t., |||| 0zz  . 

Remarks: For every power series  n

nza , there exists a number R such 

that  R0 with the following properties. 

(i) The series converges absolutely for every z such that Rz || . 

(ii) The series divergent if Rz ||  

This statement is called Cauchy Hadamard theorem.  

Theorem 3: To show that the power series 






0

1

n

n

n zna , obtained by 

differentiating the power series 


0n

n

n za , has the same radius of 

convergence as the original series 


0n

n

n za . 

Proof: Let us consider R  and 
'R are the radius of convergence of the 

series. 




0n

n

n za  and 






0

1

n

n

n zna respectively. 

Then, 
'

/1/1 1
||lim,

1
||lim

R
na

R
a n

n
n

n

n
n




. 

Now, we have only to show that 
'RR  . 

For this we have only to prove that 1lim /1 


n

n
n . Now. By Cauchy theorem 

on limit 

n

n

n

n

n
n a

a
a !/1

limlim 


  

So, 1
1

1lim
1

limlim /1 












 nn

n
n

nn

n

n
. 
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Theorem 4: (Analyticity of the power series): The sum function )(zf  of 

the power series 


0n

n

n za  represents an analytic function inside the circle 

of convergence. 

Or 

If the radius of convergence of power series 


0n

n

n za is a positive real 

number R , then prove that the function )(zf  defined by 





0

)(
n

n

n zazf

is analytic in Rz || . 

Proof: Suppose, 





0

)(
n

n

n zazf , 





0

1)(
n

n

n znazg . 

If R be the radius of convergence of the power series 


0n

n

n za then it will 

also be the power series of 






0

1

n

n

n zna which is an derived series of 




0n

n

n za  (By theorem 3).  

Let us consider a point z within the circle Rz ||  so that Rz || . Also   

a real number 0r s.t. Rrz || . Then the series 


0n

n

n za is convergent 

for Rz || so that 


0n

n

nra is bounded.  

This implies a finite real number 0M  s.t. Mra n

n || . 

For the sake of convenience, we write  ||,|| hz   

h is chosen so that, rhz  |||| . 

 












 1)(
)(

)()( n
nn

n nz
h

zhz
azg

h

zfhzf
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



















0

1)(
.||

n

n
nn

n na 



 

 








0

1)(.
n

nnn

n
n

r

M
  

 








0

1)(.
n

nnn n
M

  




 



































 




0

.
n

nnn

r

n

rr

M 




 

 























































 





0 01

1

1

1
.

n

n

n r
n

rr

M 


             … (1) 

But 











 


 r

r

r
1

1
                                             … (2) 

Let 

n

n r
nA 















0


. Then 

...32

32




















rrr
A


 

...2

32




















rrr
A


 

Subtracting, 

r

r

rrrr
A




































1

...1

32

    (By sum infinite 

series of geometric progression) 
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22 )(
1























r

r

r

rA              … (3) 

Writing (1) with the help of (3) 




















2)(

)(
)()(





 r

r

r

r

r

rM
zg

h

zfhzf
 


















2)(

1





 r

r

r

Mr
 

2

2

))((

.








rr

Mr
 

Or 
2))((

.
)(

)()(










rr

Mr
zg

h

zfhzf
 

Making 0h , so that 0||  h , we get 

0)(
)()(

lim
0





zg

h

zfhzf

h
. 

Consequently, )(
)()(

lim
0

zg
h

zfhzf

h





. For modulus of any quantity 

0  

Or )()(' zgzf  . 

But )(zg  exists so that )(' zf  exists z s.t. Rz || . 

It means that )(zf  is analytic for Rz ||  and has )(zg  as its derivative. 

Since )(zg  is itself a power series with the same radius of convergence, 

we may differentiate it to obtain the second derivative of the original 

series. Using similar reasoning, one can show that this second derivative 

also remains analytic within the same circle of radius Rz || . Moreover 

the derivatives can be found by term by term differentiation. Thus the sum 

of function of a power series represents an analytic function inside the 

circle of convergence.  
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Corollary 1: The function defined by a power series is continuous 

throughout any domain completely contained within its circle of 

convergence. 

Corollary 2: A power series 


0n

n

n za  may be integrated term by term 

along any contour   that lies entirely inside its circle of convergence. 

Corollary 3: A power series 


0n

n

n za  may be differentiated term by term 

in every region located within its circle of convergence. 

Example 1: Evaluate the radius of convergence of the following power 

series. 

(i) 


0n
n

n

n

z
  (ii) 







0
21

2

n

nn

in

z
 (iii) 



0

2

)!2(

)!(

n

n

n

zn
 (iv)

 


0

!

n
n

n

n

zn
 

Solution (i): We have 


0n
n

n

n

z
. 

Comparing this series with 


0n

n

n za , we get 
nn

n
a

1
 . 

0
11

lim
1

lim||lim
1

/1

/1 












 nn
a

R n

n

nn

n

n
n

 

0
1


R
 so that, R . 

(ii) We have here, 
21

2

in
a

n

n





. 

nn

n
n

n

n

n
n nn

a
R 2/14

/1

4

/1

)1(2

1
lim

)1(

2
lim||lim

1


























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 

















...

2

1
1

)(2

1
lim

2

)1(
lim

5/12

2/14

nn

n
nn

n

n
 












...

2

1
1

)(

1
lim.

2

1
52/1 nn nn

 

2

1
11

2

1
 . For 1lim /1 



n

n
n  

2R . 

(iii) Since we have, 
!2

)!( 2

n

n
an  . Then 

!2)12)(22(

]!)1[(

}!)1(2{

)!)1(( 22

1
nnn

nn

n

n
an









  

Or 
)2/11(4

/11

)12(2

1

)12)(22(

)1(

}!)1(2{

)!)1(( 22

1

n

n

n

n

nn

n

n

n

a

a

n

n



















  

4/1
)01(4

01
lim/1 1 




 


n

n

n a

a
R . Hence radius of convergence is 4R  

(iv) Here, 
nn

n

n
a

2!
  

nnn
n

n

n

n
a

)1(

!

)1(

!)1(
11









  

So, 
nn

n

n

n

n

n

n

n

n

n

a

a
























1
1

1

)1()1(

!)1(
1

1  

e

n

a

a
R

n

n

n

n
/1

1
1

1
lim/1 1 











 


. Hence, eR  . 
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Example 2: Compute the radius of convergence of the power series listed 

below. 

(i) 
n

n

n zi





0

)43(   (ii) n

n

n

iz
n

)2(
)1(

0









 (iii)

 
n

n
p
z

n



0

1
 

Solution (i): We have given, 
n

n

nn

n ziza 





0

)43( . 

n

n ia )43(  . Then 
nnn

n ia 5]43[|)43(||| 22  . 

5)5(lim||lim
1 /1/1 



nn

n

n

n
n

a
R

 Or 
5

1
R  

(ii) We have n

n

n
n

n iz
n

aza )2(
)1(

)(
0




 




 i.e., 
n

a
n

n

)1(
 and 

ia 2  

Now, 














 




11

)1( 1

1

1
n

n

a

a

n
a

n

n

n

n . 

So, 1
1

1

1
lim

!
limlim

1 1 





















n

n

n

a

a

R nn
n

n

n
. Hence, 1R  

(iii) We have given 
n

n
p

n

n z
n

za 





0

1
. After comparing we get 

pn
n

a
1

 so that, 

1
01

1

1
1

1

)1(
lim

1 1 


































 



p

p

p

p

n

n

n

n

n

n

a

a

R
. Hence, 1R  
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Example 3: Prove that the series, ....
)1(.2.1

)1()1(

.1

.
1 2 




 z

cc

bbaa
z

c

ba
 has 

unit radius of convergence.  

Solution: Neglecting the first term, 

)1(...)1(....2.1

)1(...)1()1(...)1(






ncccn

nbbbnaaa
an  

))(1(...)1()1(....2.1

))(1(...)1()()1(...)1(
1

ncncccnn

nbnbbbnanaaa
an




  

Dividing, 













































n

c

n

n

b

n

a

ncn

nbna

a

a

n

n

1
1

1

11

))(1(

))((1  

1
)01)(01(

)01)(01(
lim

1 1 



 


n

n

n a

a

R
. Hence, 1R . 

Example 4: Find the radius of convergence of the series 

....
8.5.2

5.3.1

5.2

3.1

2

32  zz
z

 

Solution: The coefficient of 
nz of the given power series is given by, 

)13(...8.5.2

)12(...5.3.1






n

n
an  then 

)23(...8.5.2

)12(...5.3.1
1






n

n
an  

Now, 



























n

n

n

n

a

a

n

n

3

2
1

2

1
1

.
3

2

)23(

)12(1 . Then, 
3

2

)01(.3

)01.(2
lim

1 1 



 


n

n

n a

a

R
. 

Hence, 
2

3
R . 
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Theorem 5 (Abel’s theorem on limit): If  n

nza converges, then 

 n

nzazf )( approaches to )1(f  as 1z  in such a manner that 

||1

1

z

z




remains bounded. 

Proof: We 1have already given that  n

nza  is convergent and 
||1

1

z

z




 is 

bounded. Now we have to prove that for )1()( fzf   as 1z . 

Without loss of generality, we may assume   0na      … (1) 

Since this can be obtained by adding suitable constant to 0a . According to 

equation (3) of theorem 4, 0K s.t. K
z

z






||1

1
        … (2) 

Write, 
n

nn zazazaazs  ...)( 2

210        … (3) 

Then nnn saaaas  ...)1( 210 , say 

Making n then we obtaion, 0lim 


n
n

s        … (4) 

Applying definition of limit, given  ,0  a positive integer m s.t.,  

 |0| nsmn                    

Or, mnsn  ||                                … (5) 

By (2), 









00

0)1()1(
n

n

n

n

n aaf  

Or, 0)1( f            … (6) 

then by (3) 

n

nn zazazaazs  ...)( 2

210  

n

nn zsszsszsss )(...)()( 1

2

12010 
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n

n

nn

n zszzszzszs  

 )(...)()1( 1

1

2

10 , 

Making n , n

n
n

n

n

nn
n

zszszzs







  lim)1()(lim
0

 

Using (4), we get 

n

n

n

n

n

nn
n

zszszzs 










00

)1()(lim  

Using (4), we get. 

n

n

nn
n

zszzs 






0

)1()(lim  

Or 
n

n

n zszzf 





0

)1()(  









  









1

0

)1(
m

n mn

n

n

n

n zszsz  












  









1

0

||.|||1||)(|
m

n mn

n

n

n

n zszszzf  












  









1

0

|||1|
m

n mn

nn

n zzsz        [On summing the geometric progression] 
















 





1

0 ||1

||.|1|
|1|

m

n

m
n

n
z

zz
zsz   









 





1

0

|||1|
m

n

mn

n zKzsz    

The first term on the right-hand side can be made arbitrarily small by 

choosing sufficiently close to 1. This implies that 0)( zf  as 1z . 

But 0)1( f . )1()( fzf  as 1z . 
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Example 5: Find the domain of convergence of the power series 
n

iz

i
 









 1

2
 

Solution: Since we have 

n

n
iz

i
u 












1

2
then 

1

1
1

2


 











n

n
iz

i
u  

Now, 
|1|

2

1

2
limlim 1

iziz

i

u

u

n
n

n

n 










 

As we know that the given series is convergent if 1
|1|

2


 iz
 i.e., 

2|1|  iz  

Hence, the series converges at every point lying outside the circle with 

center at )1( iz  and radius 2. 

Check your progress 

Problem 1: Find the radius of convergence of the power series 




1

(log)
n

nn z . 

Answer: 0R  

Problem 2: Find the radius of convergence of the power series 























1 21

2

n

nz
in

in
.

1R  

Answer: 1R  

9.7SUMMARY:- 

The unit “Power Series” in complex analysis explores infinite series of the 

form   n

n zza )( 0 , emphasizing their fundamental role in representing 

analytic functions within a certain region. It introduces the concepts of the 

radius and circle of convergence, which determine where the series 

converges or diverges, and explains how tests such as the ratio and root 

tests are used to compute convergence regions. This uni highlights that 

power series converge absolutely and uniformly inside their circle of 
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convergence and can be differentiated or integrated term-by-term, 

preserving analyticity. It also discusses boundary behavior, noting that 

convergence at the boundary is not guaranteed and must be checked 

separately. Overall, the unit provides a foundational understanding of how 

power series serve as powerful tools for expanding, analyzing, and 

approximating analytic functions in the complex plane. 

9.8  GLOSSARY: - 

 Power series 

 Absolute convergence of power series 

 Convergence of power series 

 Radius of convergence of power series 

 Some function of power series 
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9.11 TERMINAL QUESTIONS:- 

Long Answer Type Question: 

1: Find the domain of convergence of following power series 

(a) 

n

n z

z

n

n







 





1

!

)12(...5.3.1

1

  (b) 

n

n i

iz


















1 2

1
 

2: Determine the behaviour of 
n

z n

on the circle of convergence. 

3: Determine the behaviour of 
 n

z n

41

4

on the circle of convergence. 

4: Which value of z the series 
 nz )1(

1
2

is converges and also find 

its sum. 

5: State and prove the Abel’s theorem. 

Short answer type question: 

1: Define the power series and radius of convergence of power series 

2: Write down some test to check the convergence of power series.  

3: Find the domain of convergence of following power series. 

(i) 
n

n

zn


1

!   (ii)  
n

n
iz

i





1
1

2  

4: Determine the region of convergence of the following series 

(i) 










1
3

1

4)1(

)2(

n
n

n

n

z
   (ii) 











1

12
1

)!12(
)1(

n

n
n

n

z
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5: Show that the radius of convergence of the power series 

 
n

n
i

iz





1
2

 is given by 5||  iz . 

Objective type questions: 

1. A power series 
n

n zza )( 0 converges absolutely for: 

a)  All z 

b)  Rzz  || 0  

c)  Rzz  || 0  

d)  Only at 0| zz   

2. The radius of convergence R of a power series can be found 

using: 
a)  Cauchy–Riemannequations 

b)  Ratiotest 

c)  Green'stheorem 

d)  Stokes’ theorem 

3. If 
n

n za  has radius of convergence R, then the series diverges 

for: 

a)  Rz ||  

b)  Rz ||  

c)  Rz ||  

d)  Both (b) and (c) 

4. For the power series 
!n

z n

, the radius of convergence is: 

a)  0 

b)  1 

c)  ∞ 

d)  Undefined 

5. The function represented by a power series is: 

a)  Always analytic inside its circle of convergence 

b)  Neveranalytic 

c)  Analytic only at the center 

d)  Analytic only if the coefficients are real 

6. If R1 and R2 are radii of convergence for two series, the 

product’s radius is: 

a)  
21 RR   
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b)  ),min( 21 RR  

c)  ),max( 21 RR  

d)  
21RR  

7. A power series n

n za )2(   has center at: 

a)  0 

b)  1 

c)  2 

d) -2 

8. The interval or region of convergence of a power series is 

usually: 
a)  A line segment 

b)  Entire plane 

c)  A disk centered at the expansion point 

d)  A rectangle in the plane 

9. The series 
nzn  has radius of convergence: 

a)  0 

b)  1 

c)  2 

d)  ∞ 

10. At the boundary Rzz  || 0  

a)  The series always converges 

b)  The series always diverges 

c)  Convergence depends on individual terms 

d)  The series becomes a polynomial 

Fill in the blanks: 

1: A power series is generally written in the form 
n

n zza )( 0 , 

where 0z  is called the ________. 

2: The set of points where a power series converges forms a 

________ in the complex plane. 

3: The radius of convergence R of n

nza  can be found using the 

ratio test 
|/|suplim

1

1 nn aa
R



 provided the limit exists, which is 

known as the ________ formula. 
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4: Inside the circle of convergence, a power series represents an 

________ function. 

5: If the radius of convergence of a series is R, then the series 

converges absolutely for all points satisfying  || 0zz  ________.  

6: The power series 
!n

z n

has a radius of convergence equal to 

________.  

7: At the boundary Rzz  || 0 , the convergence of a power series is 

________. 

8: The largest disk in which a power series converges is called the 

________ of convergence. 

9: A power series n

n za converges only at 0z  if its radius of 

convergence is ________. 

10: If a power series converges at a point 
1z , then it converges for all z 

such that 010 || zzzz  . This is known as the ________ 

property of convergence. 

9.12  ANSWERS 

Answer of long answer type questions: 

Answer 1(a): This shows that the series is convergent inside the circle of 

radius 2/3 and centre at 3/4z . 

(b): This series is convergent for set of values of z which lie inside the 

circle of radius 5  and center at iz   

Answer 2: The series 
n

z n

is convergent for every value of z other than 

1 on the circle of convergence. 

Answer 3: The series 
 n

z n

41

4

 is convergent for all values of z on the 

circle except iz  ,1 . 
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Answer 4: The series is convergent for 1|1| 2 z  and 
2

4 1

41 zn

z n




  as 

1
|1|

1
2


z

. 

Answer of short answer type questions: 

Answer 3(i): The series is not convergent z  except 0z  

(ii) The series converges for all points located outside the circle of 

radius 2 centered at )1( iz  . 

Answer 4(i): Series converges absolutely, for 4|2| z  

(ii): For all values of z, series converges absolutely. 

Answer of objective type question: 

1:      b   2: b   3: c  

 4: c 

5: a  6: b   7: c  

 8: c 

9: b  10: c 

Answer of fill in the blanks 

1: Center   2: disk  3: ratio 

 4: analytic 

5: R   6:    7: uncertain

 8: circle 

9: 0   10: monotonic 
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UNIT-10:Expansion of Analytic Functions 

CONTENTS 

10.1 Introduction 

10.2 Objective  

10.3 Taylor’s theorem 

10.4 Laurent’s theorem 

10.5 Uniqueness of Laurent’s expansion 

10.6 Maximum modulus principle 

10.7 Summary 

10.8 Glossary  

10.9  References 

10.10 Suggested Readings 

10.11 Terminal Questions 

10.12 Answers 

10.1 INTRODUCTION:- 

In complex analysis, the expansion of analytic functions provides 

powerful tools for representing complex functions in series form around a 

point. If a function is analytic within a neighbourhood of a point z0, it can 

be expressed as a Taylor series, which is a power series involving non-

negative integer powers of )( 0zz  . This representation not only 

simplifies computation but also reveals important local properties of the 

function. However, when a function is analytic in an annular region (a 

ring-shaped domain) around 0z  but not necessarily at 0z  itself, it can be 

expressed in a more general form known as the Laurent series, which 

includes both positive and negative powers of )( 0zz  . The Laurent series 

thus extends the idea of the Taylor series to functions with isolated 

singularities, enabling deeper analysis of their behaviour near such points 

and forming the foundation for concepts like residues and contour 

integration in complex analysis. 

10.2 OBJECTIVES:- 

The objectives of the “Expansion of Analytic Function” unit in complex 

analysis are to study how analytic functions can be represented in the form 
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of infinite series and to understand the importance of such expansions in 

complex function theory. This chapter aims to:  

 Explain the concept and derivation of the Taylor series for 

functions that are analytic within a certain region;  

 Introduce the Laurent series for functions that are analytic in an 

annular region, allowing for the inclusion of negative powers;  

 Distinguish between the regions of convergence for both series 

 Apply these series expansions to identify and classify singularities 

and to solve problems involving residues and contour integration. 

Through these objectives, students develop a deeper insight into 

the behaviour and structure of analytic functions in the complex 

plane. 

10.3 TAYLOR’S THEOREM:- 

In the complex analysis, Taylor’s theorem provides a way to express an 

analytic function as an infinite power series around a given point within its 

region of analyticity. 

Theorem 1: If a function 𝑓(𝑧) is analytic within a circle 𝐶 with its centre 

𝑧 = 𝑎 and radius 𝑅, then at every point 𝑧 inside 𝐶, 

𝑓(𝑧) = ∑  

∞

𝑛=0

𝑓(𝑛)(𝑎)
(𝑧 − 𝑎)𝑛

𝑛!
  or  𝑓(𝑧) = ∑  

∞

𝑛=0

𝑎𝑛(𝑧 − 𝑎)𝑛 

Where, 

𝑎𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
 

Proof: Let 𝑓(𝑡) be analytic within a circle 𝐶 whose equation is |𝑡 − 𝑎| =
𝑅. Let 𝑧 be any point within 𝐶 s.t. |𝑧 − 𝑎| = 𝑟 < 𝑅. 

By Cauchy's integral formula, 

𝑓(𝑧) =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)𝑑𝑡

𝑡 − 𝑧

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎) − (𝑧 − 𝑎)

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)

(𝑡 − 𝑎)
[1 − (

𝑧 − 𝑎

𝑡 − 𝑎
)]

−1

𝑑𝑡
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Figure: 1 

𝑓(𝑧) =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)

𝑡 − 𝑎
[1 +

𝑧 − 𝑎

𝑡 − 𝑎
+ (

𝑧 − 𝑎

𝑡 − 𝑎
)

2

+ ⋯ + (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛

 + (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛+1

(1 −
𝑧 − 𝑎

𝑡 − 𝑎
)

−1

] 𝑑𝑡

[ For 
1

1 − 𝑏
= (1 − 𝑏)−1 = 1 + 𝑏 + 𝑏2 + ⋯ + 𝑏𝑛 +

𝑏𝑛+1

1 − 𝑏
]

 

Using the formula, 
𝑓(𝑛)(𝑎)

𝑛!
=

1

2𝜋𝑖
∫  

𝐶

𝑓(𝑡)𝑑𝑡

(𝑡−𝑎)𝑛+1, we get 

𝑓(𝑧) = 𝑓(𝑎) + (𝑧 − 𝑎)
𝑓′(𝑎)

1!
+ (𝑧 − 𝑎)2

𝑓′′(𝑎)

2!
+

       … + (𝑧 − 𝑎)𝑛
𝑓(𝑛)(𝑎)

𝑛!
+ 𝑈𝑛+1    … (1)

 

where  𝑈𝑛+1 =
(𝑧−𝑎)1+𝑛

2𝜋𝑖
∫  

𝐶

𝑓(𝑡)𝑑𝑡

(𝑡−𝑧)(𝑡−𝑎)𝑛+1 

∴  |𝑈𝑛+1| ≤
|𝑧 − 𝑎|𝑛+1

2𝜋
∫ 

𝐶

 
|𝑓(𝑡)| ⋅ |𝑑𝑡|

(|𝑡 − 𝑎| − |𝑧 − 𝑎|)|𝑡 − 𝑎|𝑛+1

 ≤
𝑀

2𝜋
(

𝑟

𝑅
)

𝑛+1

⋅
1

(𝑅 − 𝑟)
⋅ 2𝜋𝑅  where 𝑀 = max. |𝑓(𝑡)| on 𝐶.

 

or  |𝑈𝑛+1| ≤ 𝑀. (
𝑟

𝑅
)

𝑛+1

⋅
1

1−(
𝑟

𝑅
)

→ 0 as 𝑛 → ∞. 

For  lim
𝑛→∞

  (
𝑟

𝑅
)

𝑛+1

= 0 as 
𝑟

𝑅
< 1. 

∴  lim
𝑛→∞

 𝑈𝑛+1 = 0. 
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𝑓(𝑧) = lim
𝑛→∞

  [𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
𝑓′′(𝑎) + ⋯

+
(𝑧 − 𝑎)𝑛

𝑛!
𝑓(𝑛)(𝑎)] 

or 

𝑓(𝑧) = ∑  

∞

𝑛=0

 
(𝑧 − 𝑎)𝑛

𝑛!
𝑓(𝑛)(𝑎) = ∑  

∞

𝑛=0

 𝑎𝑛(𝑧 − 𝑎)𝑛  … (2)  

 where 𝑎𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
 

Note: The above theorem can also be restated as: 

Let 𝑓(𝑧) be analytic at all points within a circle 𝐶0 with its centre 𝑧0 and 

radius 𝑅. Let 𝑧 be any point inside 𝐶0. Then prove that 

𝑓(𝑧) = 𝑓(𝑧0) + ∑  

∞

𝑛=1

(𝑧 − 𝑧0)𝑛

𝑛!
𝑓(𝑛)(𝑧0). 

Deduction: Since 𝑧 is a point within the circle |𝑡 − 𝑎| = 𝑅 s.t. |𝑧 − 𝑎| =
𝑟 < 𝑅 so that we can take 𝑧 = 𝑎 + ℎ, ℎ = 𝑧 − 𝑎. 

Putting in (2), 𝑓(𝑎 + ℎ) = ∑  ∞
𝑛=0

ℎ𝑛

𝑛!
𝑓(𝑛)(𝑎) 

or 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) + ⋯ 

This is alternative form to Taylor's series. 

(ii) If we write 𝑎 = 0 in (2), then we get 

𝑓(𝑧) = ∑  

∞

𝑛=0

𝑎𝑛𝑧𝑛 𝑓(𝑧) = ∑  

∞

𝑛=0

𝑓(𝑛)(0)𝑧𝑛

𝑛!
 

This is also known as Maclaurin's series. 

(iii) The domain of convergence of the series (2) is given by |𝑧 − 𝑎| < 𝑅, 

where the radius 𝑅 of convergence is the distance from 𝑎 to the nearest 

singularity of the function 𝑓(𝑧). On the circle |𝑧 − 𝑎| = 𝑅, the series may 

or may not converge. 
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Taylor’s theorem is significant because it allows an analytic 

function to be expressed as a polynomial-like series, making it easier to 

study its local behaviour, compute function values, and analyse properties 

such as differentiation and integration in the complex plane. 

10.4 LAURENT’S THEOREM:- 

In the complex analysis, Laurent’s theorem extends the idea of Taylor’s 

Theorem to functions that are analytic not in a full disk but in an annular 

region (a ring-shaped domain) around a point. 

Theorem 2: Laurent's Theorem. Suppose a function 𝑓(𝑧) is analytic in the 

closed ring bounded by two concentric circles 𝐶 and 𝐶′ of centre 𝑎 and 

radii 𝑅 and 𝑅′, (𝑅′ < 𝑅). If 𝑧 is any point of the annulus, then 

𝑓(𝑧) = ∑  

∞

𝑛=0

𝑎𝑛(𝑧 − 𝑎)𝑛 + ∑  

∞

𝑛=1

𝑏𝑛(𝑧 − 𝑎)−𝑛 

where 

𝑎𝑛 =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)𝑛+1
, 𝑏̇𝑛 =

1

2𝜋𝑖
∫  

𝐶′

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)−𝑛+1
 

Proof: Let 𝑓(𝑧) be analytic in the closed ring bounded by two concentric 

circles 𝐶 and 𝐶′ of centre 𝑎 and radii 𝑅 and 𝑅′, (𝑅′ < 𝑅). Then if 𝑧 is any 

point within the ring space, then 

𝑅′ < |𝑧 − 𝑎| = 𝑟 < 𝑅. 

Here we shall make use of the following facts : 

(i)  
1

1−𝑏
= (1 − 𝑏)−1 = 1 + 𝑏 + 𝑏2 + ⋯ + 𝑏𝑛 +

𝑏𝑛+1

1−𝑏
 

(ii)  [1 −
𝑡−𝑎

𝑧−𝑎
]

−1

=
1

1−[(𝑡−𝑎)/(𝑧−𝑎)]
=

𝑧−𝑎

𝑧−𝑡
 

(iii)  lim
𝑛→∞

  (
𝑟

𝑅
)

𝑛

= 0 = lim
𝑛→∞

  (
𝑅′

𝑟
)

𝑛

 as 
𝑟

𝑅
< 1,

𝑅′

𝑟
< 1. 

(iv)  ∫  
𝐶

|𝑑𝑡| = 2𝜋. radius of circle 𝐶 = circumference. 

By extension to Cauchy's integral formula, 
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Figure: 2 

𝑓(𝑧) =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)𝑑𝑡

𝑡 − 𝑧
−

1

2𝜋𝑖
∫  

𝐶′
 
𝑓(𝑡)𝑑𝑡

𝑡 − 𝑧

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎) − (𝑧 − 𝑎)
+

1

2𝜋𝑖
∫  

𝐶′
 

𝑓(𝑡)𝑑𝑡

(𝑧 − 𝑎) − (𝑡 − 𝑎)

 =
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)

𝑡 − 𝑎
[1 − (

𝑧 − 𝑎

𝑡 − 𝑎
)]

−1

𝑑𝑡 +
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)

𝑧 − 𝑎
[1 − (

𝑡 − 𝑎

𝑧 − 𝑎
)]

−1

𝑑𝑡

 

=
1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑡)

𝑡 − 𝑎
[1 + (

𝑧 − 𝑎

𝑡 − 𝑎
) + (

𝑧 − 𝑎

𝑡 − 𝑎
)

2

+ ⋯

+ (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛

+ (
𝑧 − 𝑎

𝑡 − 𝑎
)

𝑛+1

{1 − (
𝑧 − 𝑎

𝑡 − 𝑎
)}

−1

] 𝑑𝑡

 +
1

2𝜋𝑖
∫  

𝐶′
 
𝑓(𝑡)

𝑧 − 𝑎
[1 + (

𝑡 − 𝑎

𝑧 − 𝑎
) + (

𝑡 − 𝑎

𝑧 − 𝑎
)

2

+ ⋯

+ (
𝑡 − 𝑎

𝑧 − 𝑎
)

𝑛

+ (
𝑡 − 𝑎

𝑧 − 𝑎
)

𝑛+1

{1 −
𝑡 − 𝑎

𝑧 − 𝑎
}

−1

] 𝑑𝑡

 

Taking  𝑎𝑛 =
1

2𝜋𝑖
∫  

𝐶

𝑓(𝑡)𝑑𝑡

(𝑡−𝑎)𝑛+1, 

𝑏𝑛 =
1

2𝜋𝑖
∫  

𝐶′

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)−𝑛+1
= 𝑎−𝑛 

𝑓(𝑧) = [𝑎0 + (𝑧 − 𝑎)𝑎1 + (𝑧 − 𝑎)2𝑎2 + ⋯ + 𝑎𝑛(𝑧 − 𝑎)𝑛 + 𝑈𝑛+1] 

+ [
𝑏1

𝑧 − 𝑎
+

𝑏2

(𝑧 − 𝑎)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑎)𝑛
+ 𝑉𝑛+1]     … (1)  

where  𝑈𝑛+1 =
1

2𝜋𝑖
∫  

𝐶

𝑓(𝑡)

𝑡−𝑧
(

𝑧−𝑎

𝑡−𝑎
)

𝑛+1

𝑑𝑡, 

𝑉𝑛+1 =
1

2𝜋𝑖
∫  

𝐶′

𝑓(𝑡)

𝑧 − 𝑡
(

𝑡 − 𝑎

𝑧 − 𝑎
)

𝑛+1

𝑑𝑡 

Let 𝑀 = max. |𝑓(𝑡)|on𝐶, 𝑀′ = max. |𝑓(𝑡)| on 𝐶′. 

|𝑈𝑛+1| ≤
1

2𝜋
∫ 

𝐶

  |𝑓(𝑡)| ⋅ |
𝑧 − 𝑎

𝑡 − 𝑎
|

𝑛+1 |𝑑𝑡|

(|𝑡 − 𝑎| − |𝑧 − 𝑎|)

 ≤
𝑀

2𝜋
(

𝑟

𝑅
)

𝑛+1 2𝜋𝑅

(𝑅 − 𝑟)
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or  |𝑈𝑛+1| ≤ 𝑀 (
𝑟

𝑅
)

𝑛+1

⋅
1

1−(𝑟/𝑅)
→ 0  as 𝑛 → ∞ 

Hence lim
𝑛→∞

 𝑈𝑛+1 = 0 

|𝑉𝑛+1| ≤
1

2𝜋
∫  

𝐶′
  |𝑓(𝑡)| ⋅ |

𝑡 − 𝑎

𝑧 − 𝑎
|

𝑛+1

⋅
|𝑑𝑡|

(|𝑧 − 𝑎| − |𝑡 − 𝑎|)

 ≤
𝑀′

2𝜋
(

𝑅′

𝑟
)

𝑛+1
2𝜋𝑅′

(𝑟 − 𝑅′)

 

or  |𝑉𝑛+1| ≤ 𝑀′ (
𝑅′

𝑟
)

𝑛+1

⋅
1

(𝑟/𝑅′)−1
→ 0  as 𝑛 → ∞ 

Hence lim
𝑛→∞

 𝑉𝑛+1 = 0 

Making 𝑛 → ∞ in (1) and noting the above facts, 

𝑓(𝑧) = ∑  

∞

𝑛=0

 𝑎𝑛(𝑧 − 𝑎)𝑛 + ∑  

∞

𝑛=1

 
𝑏𝑛

(𝑧 − 𝑎)𝑛
     … (2)  

Deduction. Take 𝐶0 a circle whose equation is 

𝑅′ < |𝑡 − 𝑎| = 𝑅0 < 𝑅. 

Then 

𝑎𝑛 =
1

2𝜋𝑖
∫  

𝐶0

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)𝑛+1
, 𝑏𝑛 =

1

2𝜋𝑖
∫  

𝐶0

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)−𝑛+1
= 𝑎−𝑛 

In this event (2) becomes 

𝑓(𝑧) = ∑  

∞

𝑛=0

 𝑎𝑛(𝑧 − 𝑎)𝑛 + ∑  

∞

𝑛=1

  (𝑧 − 𝑎)−𝑛𝑎−𝑛

 = ∑  

∞

𝑛=0

 𝑎𝑛(𝑧 − 𝑎)𝑛 + ∑  

∞

𝑛=−1

  (𝑧 − 𝑎)𝑛𝑎𝑛 = ∑  

∞

𝑛=−∞

 𝑎𝑛(𝑧 − 𝑎)𝑛

 

or 

𝑓(𝑧) = ∑  

∞

𝑛=−∞

𝑎𝑛(𝑧 − 𝑎)𝑛 with 𝑎𝑛 =
1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)𝑛+1
 

10.5 UNIQUENESS OF LAURENT’S 

EXPANSION:- 
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The uniqueness of Laurent’s expansion is an important property 

established in the expansion of analytic function chapter in complex 

analysis. 

Theorem 3: (Uniqueness of Laurent expansion) Suppose that we have 

obtained in any manner or as the definition of 𝑓(𝑧), the formula 

𝑓(𝑧) = ∑  

∞

𝑛=−∞

𝐴𝑛(𝑧 − 𝑎)𝑛 , 𝑅′ < |𝑧 − 𝑎| < 𝑅 

Is the series necessarily identical with the Laurent's series? 

Proof: Let 𝑓(𝑧) = ∑  ∞
𝑛=−∞ 𝐴𝑛(𝑧 − 𝑎)𝑛 

To prove that (1) is identical with the Laurent's expansion 

𝑓(𝑧) = ∑  

∞

𝑛=−∞

𝑎𝑛(𝑧 − 𝑎)𝑛  … (2) with 𝑎𝑛 =
1

2𝜋𝑖
∫  

𝐶0

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑎)𝑛+1
 

If we show that 𝐴𝑛 = 𝑎𝑛, the result will be proved. Equation to 𝐶0 is |𝑡 −
𝑎| = 𝑟, i.e. 𝑡 − 𝑎 = 𝑟𝑒𝑖𝜃 , 𝑅′ < 𝑟 < 𝑅. 

𝑎𝑛 =
1

2𝜋𝑖
∫  

𝐶0

  ∑  

∞

𝑚=−∞

 𝐴𝑚(𝑡 − 𝑎)𝑚
𝑑𝑡

(𝑡 − 𝑎)𝑛+1 

=
1

2𝜋𝑖
∑  

∞

𝑚=−∞

 𝐴𝑚 ∫  
𝐶0

  (𝑡 − 𝑎)𝑚−𝑛−1𝑑𝑡 

=
1

2𝜋𝑖
∑  

∞

𝑚=−∞

 𝐴𝑚 ∫  
2𝜋

0

  𝑟𝑚−𝑛−1𝑒𝑖(𝑚−𝑛−1)𝜃𝑖𝑟𝑒𝑖𝜃𝑑𝜃 

=
1

2𝜋
∑  

∞

𝑚=−∞

 𝐴𝑚𝑟𝑚−𝑛 ∫  
2𝜋

0

  𝑒𝑖(𝑚−𝑛)𝜃𝑑𝜃 

 If  𝑚 ≠ 𝑛, ∫  
2𝜋

0

  𝑒𝑖(𝑚−𝑛)𝜃𝑑𝜃 

= [
𝑒𝑖(𝑚−𝑛)𝜃

𝑖(𝑚 − 𝑛)
]

0

2𝜋

= 0 as 𝑒2𝑝𝜋𝑖=1 
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If 𝑚 = 𝑛, ∫  
2𝜋

0

  𝑒𝑖(𝑚−𝑛)𝜃𝑑𝜃 = ∫  
2𝜋

0

  𝑒0𝑑𝜃 = 2𝜋 

∴  𝑎𝑛 =
1

2𝜋
𝐴𝑛 ⋅ 𝑟𝑛−𝑛 ⋅ 2𝜋 = 𝐴𝑛 

Example 1: Obtain the Taylor and Laurent's series which represents the 

function 
𝑧2−1

(𝑧+2)(𝑧+3)
 in the regions 

(i)  |𝑧| < 2, 

(ii)  2 < |𝑧| < 3, 

(iii)  |𝑧| > 3. 

Solution: Suppose 𝑓(𝑧) =
𝑧2−1

(𝑧+2)(𝑧+3)
= 1 −

5𝑧+7

(𝑧+2)(𝑧+3)
 

or 

𝑓(𝑧) = 1 +
3

𝑧 + 2
−

8

𝑧 + 3
    … (1)  

(i) When, |𝑧| < 2, then 
|𝑧|

2
< 1 

𝑓(𝑧) = 1 +
3

2
(1 +

𝑧

2
)

−1

−
8

3
(1 +

𝑧

3
)

−1

 = 1 +
3

2
[1 − (

𝑧

2
) + (

𝑧

2
)

2

− (
𝑧

2
)

3

+ ⋯ ] −
8

3
[1 −

𝑧

3
+ (

𝑧

3
)

2

− (
𝑧

3
)

3

+ ⋯ ]

 = 1 +
3

2
∑  

∞

0

  (−1)𝑛
𝑧𝑛

2𝑛
−

8

3
∑  

∞

0

  (−1)𝑛
𝑧𝑛

3𝑛

 = 1 + ∑  

∞

0

  (−1)𝑛 [
3

2𝑛+1
−

8

3𝑛+1
] 𝑧𝑛  Ans. 

 

This is Taylor's series valid for |𝑧| < 2 

(ii)  When, 2 < |𝑧| < 3. 

Then 
2

|𝑧|
< 1,

|𝑧|

3
< 1. 
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𝑓(𝑧) = 1 +
3

𝑧
(1 +

2

𝑧
)

−1

−
8

3
(1 +

𝑧

3
)

−1

 = 1 +
3

𝑧
[1 −

2

𝑧
+ (

2

𝑧
)

2

− (
2

𝑧
)

3

+ ⋯ ] −
8

3
[1 −

𝑧

3
+ (

𝑧

3
)

2

− (
𝑧

3
)

3

+ ⋯ ]

 = 1 +
3

𝑧
∑  

∞

0

  (−1)𝑛
2𝑛

𝑧𝑛
−

8

3
∑  

∞

0

  (−1)𝑛
𝑧𝑛

3𝑛

 = 1 + ∑  

∞

0

  (−1)𝑛 [
3.2𝑛

𝑧𝑛+1
−

8𝑧𝑛

3𝑛+1
]

 

This is Laurent's series in the annulus 2 < |𝑧| < 3. 

(iii) When, |𝑧| > 3, then 
3

|𝑧|
< 1,

2

|𝑧|
<

2

3
< 1. 

𝑓(𝑧) = 1 +
3

𝑧 + 2
−

8

𝑧 + 3
 

= 1 +
3

𝑧
(1 +

2

𝑧
)

−1

−
8

𝑧
(1 +

3

𝑧
)

−1

 

= 1 +
3

𝑧
∑  

∞

0

  (−1)𝑛 (
2

𝑧
)

𝑛

−
8

𝑧
∑  

∞

0

  (−1)𝑛 (
3

𝑧
)

𝑛

 

= 1 + ∑  ∞
0  

(−1)𝑛

𝑧𝑛+1
[3 ⋅ 2𝑛 − 3𝑛 ⋅ 8] Ans. 

Example 2: Expand 
1

𝑧2−3𝑧+2
 for 

(i)  0 < |𝑧| < 1, 

(ii)  1 < |𝑧| < 2, 

(iii)  |𝑧| > 2. 

Solution: Let 𝑓(𝑧) =
1

𝑧2−3𝑧+2
=

1

(𝑧−2)(𝑧−1)
⇒  𝑓(𝑧) =

1

𝑧−2
−

1

𝑧−1
       … (1) 

Then 

(i)  When 0 < |𝑧| < 1. 

From (1),  

𝑓(𝑧) = (1 − 𝑧)−1 −
1

2
(1 −

𝑧

2
)

−1

 = ∑  

∞

0

  𝑧𝑛 −
1

2
∑  

∞

0

  (
𝑧

2
)

𝑛

 = ∑  

∞

𝑛=0

  (1 −
1

2𝑛+1
) 𝑧𝑛
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This is Maclaurin's expansion in case 0 < |𝑧| < 1. 

 (ii)  When  1 < |𝑧| < 2. 

Then  
1

|𝑧|
< 1,

|𝑧|

2
< 1. 

Now (1) is expressible as 

𝑓(𝑧) = −
1

2
(1 −

𝑧

2
)

−1

−
1

𝑧
(1 −

1

𝑧
)

−1

 

= −
1

2
∑  

∞

0

  (
𝑧

2
)

𝑛

−
1

𝑧
∑  

∞

0

  𝑧−𝑛 .  

This is Laurent's expansion in the annulus 1 < |𝑧| < 2. 

(iii)  When |𝑧| > 2. 

Then 
2

|𝑧|
< 1, so that 

1

|𝑧|
<

1

2
< 1. 

Now (1) is expressible as 

𝑓(𝑧) =
1

𝑧
(1 −

2

𝑧
)

−1

−
1

𝑧
(1 −

1

𝑧
)

−1

 =
1

𝑧
∑  

∞

0

  (
2

𝑧
)

𝑛

−
1

𝑧
∑  

∞

0

  (
1

𝑧
)

𝑛

 = ∑  

∞

𝑛=0

 (−1 + 2𝑛)
1

𝑧𝑛+1

 

This is Laurent's expansion in the annulus 2 < |𝑧| < 𝑅. 

Example 3: Obtain the expression for 
(𝑧−2)(𝑧+2)

(𝑧+1)(𝑧+4)
 which are valid when  

(i)  |𝑧| < 1  (ii)  1 < |𝑧| < 4   (iii)  |𝑧| > 4. 

Solution:  𝑓(𝑧) =
𝑧2−4

𝑧2+5𝑧+4
= 1 −

(5𝑧+8)

(𝑧+4)(𝑧+1)
 

𝑓(𝑧) = 1 −
1

1 + 𝑧
−

4

𝑧 + 4
         … (1)  

(i)  When |𝑧| < 1. 

𝑓(𝑧) = 1 − (1 + 𝑧)−1 − (1 +
𝑧

4
)

−1

 

= 1 − [1 − 𝑧 + 𝑧2 − ⋯ + (−1)𝑛𝑧𝑛 + ⋯ ] 
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− [1 −
𝑧

4
+ (

𝑧

4
)

2

− ⋯ + (−1)𝑛 (
𝑧

4
)

𝑛

+ ⋯ ] 

= −1 + [𝑧 − 𝑧2 + ⋯ + (−1)𝑛+1𝑧𝑛 + ⋯ ] 

+ [(
𝑧

4
) − (

𝑧

4
)

2

+ ⋯ + (−1)𝑛+1 (
𝑧

4
)

𝑛

+ ⋯ ] 

= −1 + ∑  

∞

0

  (−1)𝑛+1 ⋅ [1 + 4−𝑛]𝑧𝑛 

This is Maclaurin's series. 

(ii)  When 1 < |𝑧| < 4. Then 
1

|𝑧|
< 1,

|𝑧|

4
< 1. 

Now (1) is expressible as 

𝑓(𝑧) = 1 −
1

𝑧
(1 +

1

𝑧
)

−1

− (1 +
𝑧

4
)

−1

 

= 1 −
1

𝑧
[1 −

1

𝑧
+

1

𝑧2
− ⋯ ] − [1 −

𝑧

4
+ (

𝑧

4
)

2

− ⋯ ] 

= [−
1

𝑧
+

1

𝑧2
−

1

𝑧3
+ ⋯ ] − [

−𝑧

4
+ (

𝑧

4
)

2

+ ⋯ ] 

= ∑  

∞

𝑛=1

  (−1)𝑛 [
1

𝑧𝑛
− (

𝑧

4
)

𝑛

] 

This is Laurent's series. 

(iii)  When |𝑧| > 4, then 
4

|𝑧|
< 1, and |𝑧| > 4 > 1 ⇒ |𝑧| > 1 ⇒

1

|𝑧|
< 1. 

Now (1) is expressible as,  

𝑓(𝑧) = 1 −
1

𝑧
(1 +

1

𝑧
)

−1

−
4

𝑧
(1 +

4

𝑧
)

−1

 

= 1 −
1

𝑧
[1 −

1

𝑧
+

1

𝑧2
+ ⋯ ] −

4

𝑧
[1 −

4

𝑧
+ (

4

𝑧
)

2

− ⋯ ] 

= 1 −
1

𝑧
∑  

∞

𝑛=0

  (−1)𝑛
1

𝑧𝑛
−

4

𝑧
∑  

∞

𝑛=1

  (−1)𝑛 (
4

𝑧
)

𝑛
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= 1 − ∑  

∞

𝑛=0

  (−1)𝑛 [
1

𝑧𝑛+1
+ (

4

𝑧
)

𝑛+1

] = 1 + ∑  

∞

𝑛=0

 
(−1)𝑛+1

𝑧𝑛+1
(1 + 4𝑛+1) 

= 1 + ∑  

𝑛

  (−1)𝑛(1 + 4𝑛) ⋅
1

𝑧𝑛
 

Example 4: If 0 < |𝑧 − 1| < 2, then express 𝑓(𝑧) =
𝑧

(𝑧−1)(𝑧−3)
 in a series 

of positive and negative powers of (𝑧 − 1). 

Solution: Let 𝑢 = 𝑧 − 1. Then, by what is given, 

0 < |𝑢| < 2, so that 
|𝑢|

2
< 1.

𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 − 3)
=

𝐴

𝑧 − 1
+

𝐵

𝑧 − 3

𝐴 = [
𝑧

𝑧 − 3
]

𝑧=1
=

1

1 − 3
= −

1

2
, 𝐵 = [

𝑧

𝑧 − 1
]

𝑧=3
=

3

3 − 1
=

3

2

𝑓(𝑧) = −
1

2(𝑧 − 1)
+

3

2(𝑧 − 3)
=

3

2(𝑢 − 2)
−

1

2𝑢

 = −
3

4
(1 −

𝑢

2
)

−1

−
1

2𝑢

 = −
3

4
∑  

∞

𝑛=0

  (
𝑢

2
)

𝑛

−
1

2𝑢
= −

3

4
∑  

∞

𝑛=0

 
(𝑧 − 1)𝑛

2𝑛
−

1

2(𝑧 − 1)

 

Example 5: Prove that log 𝑧 = (𝑧 − 1) −
(𝑧−1)2

2!
+ ⋯ … , |𝑧 − 1| < 1. 

Solution: Let 𝑓(𝑧) = log 𝑧. By Taylor's theorem 

𝑓(𝑧) = ∑  

∞

𝑛=0

(𝑧 − 𝑎)𝑛
𝑓(𝑛)(𝑎)

𝑛!

= 𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
𝑓′′(𝑎) + ⋯ 

Taking 𝑎 = 1, we get 𝑓(1) = log 1 = 0, 

𝑓′(𝑧) =
1

𝑧
, 𝑓′′(𝑧) =

−1

𝑧2

∴  𝑓(1) = 0, 𝑓′(1) = 1, 𝑓′′(1) = −1 etc. 

𝑓(𝑧) = 𝑓(1) + (𝑧 − 1)𝑓′(1) +
(𝑧 − 1)2

2!
𝑓′′(1) + ⋯ = 0 + (𝑧 − 1) −

(𝑧 − 1)2

2!
+ ⋯

 

Example 6: Expand log (1 + 𝑧) in a Taylor's series about 𝑧 = 0 and 

determine the region of eonvergence for the resulting series. 
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Solution: Let 𝑓(𝑧) = log (1 + 𝑧). Then 

𝑓′(𝑧) =
1

1 + 𝑧
𝑓′′(𝑧) = −

1

(1 + 𝑧)2
, 𝑓′′′(𝑧) =

2!

(1 + 𝑧)3

𝑓𝑖𝑣(𝑧) = −
3!

(1 + 𝑧)4
… , 𝑓(𝑛)(𝑧) = (−1)𝑛−1

(𝑛 − 1)!

(1 + 𝑧)𝑛
 etc. 

 

Hence  𝑓(0) = log 1 = 0, 𝑓′(0) = 1, 𝑓′′(0) = −1, 𝑓′′′(0) = 2 !, 

𝑓𝑖𝑣(0) = −3!, … , 𝑓(𝑛)(0) = (−1)𝑛−1(𝑛 − 1)!  etc.  

Therefore 

𝑓(𝑧) =log (1 + 𝑧) = 𝑓(0) + 𝑧𝑓′(0) +
𝑧2

2!
𝑓′′(0) +

𝑧3

3!
𝑓′′′(0)

 +
𝑧4

4!
𝑓𝑖𝑣(0) + ⋯ +

𝑧𝑛

𝑛!
𝑓(𝑛)(0) + ⋯

=0 + 𝑧 −
𝑧2

2!
+

𝑧3

3!
⋅ 2! −

𝑧4

4!
⋅ 3! + ⋯ +

𝑧𝑛

𝑛!
(−1)𝑛−1(𝑛 − 1)! + ⋯

=𝑧 −
𝑧2

2
+

𝑧3

3
−

𝑧4

4
+ ⋯ + (−1)𝑛−1

𝑧𝑛

𝑛
+ ⋯

 

Let 𝑢𝑛 denote the 𝑛th term of the series. Then 

𝑢𝑛 =
(−1)𝑛−1𝑧𝑛

𝑛
, 𝑢𝑛+1 =

(−1)𝑛𝑧𝑛+1

𝑛 + 1
.

∴  lim
𝑛→∞

  |
𝑢𝑛

𝑢𝑛+1
| = lim

𝑛→∞
  |

𝑛 + 1

𝑛𝑧
| =

1

|𝑧|

 

Hence by D' Alembert's ratio test, the series converges for 

|𝑧| < 1 

It can be easily shown that the series converges for |𝑧| = 1 except for 𝑧 =
−1. It may be noted that 𝑧 = −1 is the singularity of log (1 + 𝑧) nearest 

the point 𝑧 = 0. Thus the series converges for all values of 𝑧 within the 

circle |𝑧| = 1. 

Example 7: Prove that log 𝑧 = (𝑧 − 1) −
(𝑧−1)2

2!
+ ⋯ … , |𝑧 − 1| < 1. 

Solution: Let 𝑓(𝑧) = log 𝑧. By Taylor's theorem 
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𝑓(𝑧) = ∑  

∞

𝑛=0

(𝑧 − 𝑎)𝑛
𝑓(𝑛)(𝑎)

𝑛!

= 𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
𝑓′′(𝑎) + ⋯ 

Taking 𝑎 = 1, we get 𝑓(1) = log 1 = 0, 

 𝑓′′(𝑧) =
1

𝑧
, 𝑓′′(𝑧) =

−1

𝑧2

 ∴  𝑓(1) = 0, 𝑓′(1) = 1, 𝑓′′(1) = −1 etc. 

 𝑓(𝑧) = 𝑓(1) + (𝑧 − 1)𝑓′(1) +
(𝑧 − 1)2

2!
𝑓′′(1) + ⋯ = 0 + (𝑧 − 1) −

(𝑧 − 1)2

2!
+ ⋯

 

Example 8: Expand log (1 + 𝑧) in a Taylor's series about 𝑧 = 0 and 

determine the region of convergence for the resulting series. 

Solution: Let 𝑓(𝑧) = log (1 + 𝑧). Then, 

𝑓′′(𝑧) =
1

1 + 𝑧
𝑓′′(𝑧) = −

1

(1 + 𝑧)2
, 𝑓′′′(𝑧) =

2!

(1 + 𝑧)3

𝑓2𝑣(𝑧) = −
3!

(1 + 𝑧)4
… , 𝑓(𝑛)(𝑧) = (−1)𝑛−1

(𝑛 − 1)!

(1 + 𝑧)𝑛
 etc. 

 

Hence 𝑓(0) = log 1 = 0, 𝑓′(0) = 1, 𝑓′′(0) = −1, 𝑓′′′(0) = 2!, 

𝑓𝑖𝑣(0) = −3!, … , 𝑓(𝑛)(0) = (−1)𝑛−1(𝑛 − 1)!  etc.  

Therefore, 

𝑓(𝑧) =log (1 + 𝑧) = 𝑓(0) + 𝑧𝑓′(0) +
𝑧2

2!
𝑓′′(0) +

𝑧3

3!
𝑓′′′(0)

 +
𝑧4

4!
𝑓𝑖𝑣(0) + ⋯ +

𝑧𝑛

𝑛!
𝑓(𝑛)(0) + ⋯

=0 + 𝑧 −
𝑧2

2!
+

𝑧3

3!
⋅ 2! −

𝑧4

4!
⋅ 3! + ⋯ +

𝑧𝑛

𝑛!
(−1)𝑛−1(𝑛 − 1)! + ⋯

=𝑧 −
𝑧2

2
+

𝑧3

3
−

𝑧4

4
+ ⋯ + (−1)𝑛−1

𝑧𝑛

𝑛
+ ⋯

 

Let 𝑢𝑛 denote the 𝑛th term of the series. Then 

𝑢𝑛 =
(−1)𝑛−1𝑧𝑛

𝑛
, 𝑢𝑛+1 =

(−1)𝑛𝑧𝑛+1

𝑛 + 1
.

∴ lim
𝑛→∞

  |
𝑢𝑛

𝑢𝑛+1
| = lim

𝑛→∞
  |

𝑛 + 1

𝑛𝑧
| =

1

|𝑧|
.
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Hence by D’ Alombert's ratio test, the series converges for 

|𝑧| < 1. 

It can be easily shown that the series converges for |𝑧| = 1 except for 𝑧 =
−1. 

If may be noted that 𝑧 = −1 is the singularity of log (1 + 𝑧) nearest the 

point 𝑧 = 0. Thus thes seties converges for all values of 𝑧 within the circle 

|𝑧| = 1. 

 

 = ∑  

∞

𝑛=0

  ∑  

∞

𝑚=0

 𝑎𝑛𝑎‾𝑚𝑟𝑚+𝑛𝑒𝑖(𝑛−𝑚)𝜃

∫  
2𝜋

0

  |𝑓(𝑧)|2𝑑𝜃 = ∑  

∞

𝑛=0

  ∑  

∞

𝑚=0

 𝑎𝑛𝑎‾𝑚𝑟𝑚+𝑛 ∫  
2𝜋

0

  𝑒𝑖(𝑛−𝑚)𝜃𝑑𝜃

 = 2𝜋 ∑  

∞

𝑛=0

 𝑎𝑛𝑎‾𝑛𝑟2𝑛 , according to (∗)

 or  
1

2𝜋
∫  

2𝜋

0

  |𝑓(𝑟𝑒𝑖𝜃)|
2
𝑑𝜃 = ∑  

∞

𝑛=0

  |𝑎𝑛|2𝑟2𝑛

 

This proves the first required result. By (1), 

∑  

∞

𝑛=0

|𝑎𝑛|2𝑟2𝑛 =
1

2𝜋
∫  

2𝜋

0

|𝑓(𝑧)|2𝑑𝜃 ≤
𝑀2

2𝜋
∫  

2𝜋

0

𝑑𝜃 = 𝑀2 

This proves the second required result. 

Example 9: If 𝑓(𝑧) = ∑  ∞
0 𝑎𝑛𝑧𝑛(|𝑧| < 𝑅) and 𝑀(𝑟) is the upper bound of 

|𝑓(𝑧)| on the circle |𝑧| = 𝑟, (𝑟 < 𝑅), then prove that |𝑎𝑛|𝑟𝑛 ≤ 𝑀(𝑟)∀𝑛. 

Solution: Given |𝑓(𝑧)| ≤ 𝑀∀𝑧 on |𝑧| = 𝑟. 

Also |𝑧| = 𝑟 ⇒ 𝑧 = 𝑟𝑒𝑖𝜃. 

𝑎𝑛 =
𝑓(𝑛)(0)

𝑛!
=

1

2𝜋𝑖
∫ 

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 0)𝑛+1
 

 

|𝑎𝑛| ≤
1

2𝜋
∫ 

𝐶

|𝑓(𝑧)|

|𝑧|𝑛+1
⋅ |𝑑𝑧| ≤

𝑀

2𝜋𝑟𝑛+1
⋅ 2𝜋𝑟 

10.6 MAXIMUM MODULUS PRINCIPLE:- 
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The maximum modulus principle is a fundamental result in the expansion 

of Analytic Function chapter and, more broadly, in complex analysis. It 

describes how the magnitude (or modulus) of an analytic function behaves 

within a region of the complex plane.  

Theorem 4: Maximum modulus principle. Suppose 𝑓(𝑧) is analytic 

within and on a simple closed contour 𝐶 and 𝑓(𝑧) is not constant. Then 

|𝑓(𝑧)| reaches its maximum value on 𝐶 (and not in'side  ), that is to.say, if 

𝑀 is the maximum value of |𝑓(𝑧)| on and within 𝐶, then |𝑓(𝑧)| < 𝑀 for 

every 𝑧 inside 𝐶. 

Proof: We prove this theorem by the method of contradiction. Analyticity 

of 𝑓(𝑧) declares that 𝑓(𝑧) is continuous within and on 𝐶. Consequently 

⌈𝑓(𝑧) ∣ attains its maximum value 𝑀 at some point within or on 𝐶. We 

want to show that |𝑓(𝑧)| attains the value 𝑀 at a point lying on the 

boundary of 𝐶 (and not inside 𝐶 ). Suppose, if possible, this value is not 

attained on the boundary of 𝐶 but is attained at a point 𝑧 = 𝑎 within 𝐶 so 

that 

max. |𝑓(𝑧)| = |𝑓(𝑎)| = 𝑀    … (1)  

and 

|𝑓(𝑧)| ≤ 𝑀∀𝑧 within 𝐶           … (2)  

Describe a circle Γ with 𝑎 as centre lying within 𝐶. Now 𝑓(𝑧) is not 

constant and its continuity implies the existence of a point 𝑧 = 𝑏 inside Γ 

s.t. |𝑓(𝑏)| < 𝑀. 

Example 10: Expand 𝑓(𝑧) =
1

(𝑧+1)(𝑧+3)
 in Laurent series valid for: 

(a)  |𝑧| > 3   (b)  0 < |𝑧 + 1| < 2 

Solution: 𝑓(𝑧) =
1

(𝑧+1)(𝑧+3)
=

1

2
(

1

𝑧+1
−

1

𝑧+3
)          … (1) 

Case I:  When |𝑧| > 3 ⇒
|𝑧|

3
> 1 ⇒

3

|𝑧|
< 1 ⇒

1

|𝑧|
<

1

3
< 1. 

∴  𝑓(𝑧) =
1

2𝑧
[(1 +

1

𝑧
)

−1

− (1 +
3

𝑧
)

−1

] =
1

2𝑧
∑  

∞

𝑛=0

  (−1)𝑛 [
1

𝑧𝑛
−

3𝑛

𝑧𝑛
]

 = ∑  

∞

𝑛=0

  (−1)𝑛+1
1

𝑧𝑛+1
= ∑  

∞

𝑛=1

  (−1)𝑛
1

𝑧𝑛

 

Case II:  0 < |𝑧 + 1| < 2. Put 𝑧 + 1 = 𝑡, then, by (1) 
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𝑓(𝑧) =
1

2
[
1

𝑡
−

1

𝑡 + 2
] , |𝑡| < 1 ⇒ |

𝑡

2
| <

1

2
< 1

 =
1

2
[
1

𝑡
−

1

2
(1 +

𝑡

2
)

−1

] =
1

2
[
1

𝑡
−

1

2
∑  

∞

𝑛=0

  (−1)𝑛 (
𝑡

2
)

𝑛

]

 =
1

2
[

1

𝑧 + 1
−

1

2
∑  

∞

𝑛=0

  (−1)𝑛
(𝑧 + 1)𝑛

2𝑛
]

 

Example 11:  If the function 𝑓(𝑧) is analytic when |𝑧| < 𝑅 and has the 

Taylor's expansion  ∑  ∞
0 𝑎𝑛𝑧𝑛. Show that if 𝑟 < 𝑅, 

1

2𝜋
∫  

2𝜋

0

|𝑓(𝑟𝑒𝑖𝜃)|
2

𝑑𝜃 = ∑  

∞

0

|𝑎𝑛|2𝑟2𝑛  

Hence prove that if 

|𝑓(𝑧)| ≤ 𝑀 when |𝑧| < 𝑅, ∑  

∞

0

|𝑎𝑛|2𝑟2𝑛 ≤ 𝑀2 

Solution: Since 𝑓(𝑧) is analytic for |𝑧| < 𝑅, then 𝑓(𝑧) is analytic within 

and on a closed curve 𝐶 defined by 

|𝑧| = 𝑟, 𝑟 < 𝑅 

So 𝑓(𝑧) can be expanded in a Taylor's series within |𝑧| = 𝑟 

so that 

𝑓(𝑧) = ∑  

∞

0

𝑎𝑛𝑧𝑛 = ∑  

∞

0

𝑎𝑛𝑟𝑛𝑒𝑖𝑛𝜃, 𝑧 = 𝑟𝑒𝑖𝜃 

Note that if 𝑘 is any integer, 

then  

∫  
2𝜋

0
  𝑒𝑖𝑘𝜃𝑑𝜃 = {

2𝜋   𝑖𝑓 𝑘 = 0
0     𝑖𝑓 𝑘 ≠ 0

      ….. (*) 

|𝑓(𝑧)|2 = 𝑓(𝑧)𝑓(𝑧) = ∑  

∞

𝑛=0

 𝑎𝑛𝑟𝑛𝑒𝑖𝑛𝜃 ∑  

∞

𝑚=0

 𝑎‾𝑚𝑟𝑚𝑒−𝑖𝑚𝜃 

= ∑  

∞

𝑛=0

  ∑  

∞

𝑚=0

 𝑎𝑛𝑎‾𝑚𝑟𝑚+𝑛𝑒𝑖(𝑛−𝑚)𝜃 
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∫  
2𝜋

0

  |𝑓(𝑧)|2𝑑𝜃 = ∑  

∞

𝑛=0

  ∑  

∞

𝑚=0

 𝑎𝑛𝑎‾𝑚𝑟𝑚+𝑛 ∫  
2𝜋

0

  𝑒𝑖(𝑛−𝑚)𝜃𝑑𝜃 

= 2𝜋 ∑  

∞

𝑛=0

 𝑎𝑛𝑎‾𝑛𝑟2𝑛 , according to (∗) 

or  
1

2𝜋
∫  

2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|

2
𝑑𝜃 = ∑  ∞

𝑛=0 |𝑎𝑛|2𝑟2𝑛 

This proves the first required result. By (1), 

∑  

∞

𝑛=0

|𝑎𝑛|2𝑟2𝑛 =
1

2𝜋
∫  

2𝜋

0

|𝑓(𝑧)|2𝑑𝜃 ≤
𝑀2

2𝜋
∫  

2𝜋

0

𝑑𝜃 = 𝑀2 

This proves the second required result. 

Example 12: If 𝑓(𝑧) = ∑  ∞
0 𝑎𝑛𝑧𝑛(|𝑧| < 𝑅) and 𝑀(𝑟) is the upper bound 

of |𝑓(𝑧)| on the circle |𝑧| = 𝑟, (𝑟 < 𝑅), then prove that |𝑎𝑛|𝑟𝑛 ≤
𝑀(𝑟)∀𝑛. 

Solution: Given |𝑓(𝑧)| ≤ 𝑀 ∀𝑧 on |𝑧| = 𝑟. 

Also |𝑧| = 𝑟 ⇒ 𝑧 = 𝑟𝑒𝑖𝜃. 

𝑎𝑛 =
𝑓(𝑛)(0)

𝑛!
=

1

2𝜋𝑖
∫ 

𝐶

 
𝑓(𝑧)𝑑𝑧

(𝑧 − 0)𝑛+1

∴  |𝑎𝑛| ≤
1

2𝜋
∫ 

𝐶

 
|𝑓(𝑧)|

|𝑧|𝑛+1
⋅ |𝑑𝑧| ≤

𝑀

2𝜋𝑟𝑛+1
⋅ 2𝜋𝑟

 

or |𝑎𝑛|𝑟𝑛 ≤ 𝑀 = 𝑀(𝑟). 

Check your progress
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10.7 SUMMARY:- 

The “Expansion of Analytic Function” unit in complex analysis focuses on 

representing analytic functions as infinite series and understanding their 

behaviour in different regions of the complex plane. It introduces the 

Taylor series, which expresses a function as a power series in terms of (z-

a) when the function is analytic within a neighborhood of a point a, 

allowing local approximation and analysis. For functions that are analytic 

in an annular region, the chapter presents the Laurent series, a more 

general expansion that includes both positive and negative powers of (z-a), 

enabling the study of functions with isolated singularities. The chapter 

also discusses the maximum modulus principle, which states that a non-

constant analytic function cannot attain its maximum modulus inside a 

domain but only on its boundary. Together, these concepts provide 

powerful tools for analyzing, approximating, and classifying analytic 

functions and understanding their properties in the complex plane. 

10.8 GLOSSARY: - 

 Taylor’s theorem 

 Laurent’s theorem 

 Uniqueness of Laurent’s expansion 

 Maximum modulus principal 
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 J.B. Conway, (2000), Functions of One Complex Variable, Narosa 

Publishing House, 
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10.11TERMINAL QUESTION: - 

Long answer type question 

1:  Find the Laurent series of the function 𝑓(𝑧) =
1

𝑧2(1−𝑧)
 about 𝑧 =

0. 

Hint: 𝑓(𝑧) =
1

𝑧2 (1 − 𝑧)−1 =
1

𝑧2
(1 + 𝑧 + 𝑧2 + ⋯ ) =

1

𝑧2
∑  ∞

𝑛=0 𝑧𝑛 

𝑓(𝑧) =
1

𝑧2
+

1

𝑧
+ 1 + ∑𝑛=1

∞  𝑧𝑛 

2: Find the Laurent expansion of 
)2)(1(  zz

z
 about the singularity

2z . Specify the region of convergence and nature of singularity at 

2z . 

3: (a) Expand 
z

1
as Taylor’s series about 1z . 

(b) Determine Laurent’s expansion of the function 

3

4

sin
)(














z

z
zf  in the annulus 1

4
0 


z  

4: Expand 
1

1
)(






z

z
zf  as a Taylor’s series about 

)(1)(0)( iiiziizi   its Laurent’s series for the domain  ||1 z . 
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5: Expand 
)23(

1
2  zzz

for the regions 

(i) 1||0  z  (ii) 1||0  z  (iii) 2|| z  

Short answer type question 

1: Expand zsin in a Taylor’s series about
4


z . 

2: Expand 1||,
)1)(2(

1



z

zz
 in the form of Laurent’s series. 

3: Expand 
)2)(1(

1

 zz
for the regions 

(i) 1||0  z  (ii) 1||0  z  (iii) 2|| z  

4: Find the expansion of 
)2)(1(

1
22  zz

in powers of z when, 

(i) 1|| z  (ii) 2||1  z  (iii) 2|| z  

Objective type question: 

1:  If )(zf  is analytic at az  , its Taylor series expansion about az   

is 

A) 
n

n

n azc )( 




 

B)  n

n

n

az
n

af
)(

!

)(

0






 

C)  n

n

n

az
n

af
)(

!

)(

1






 

D)  n

n

n

az
n

af
)(

!

)(

1






 

2:  The Laurent series of a function )(zf  is valid in which region? 

A)  Entire complex plane 

B)  A disk Raz  ||  
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C)  An annulus 
21 || razr   

D)  A line segment on the real axis 

3:  The principal part of a Laurent series consists of 

A)  Positive powers of )( az   

B)  Negative powers of )( az   

C)  Constant terms only 

D)  Both positive and negative powers 

4.  The Taylor series is a special case of the Laurent series when 

A)  The principal part is zero 

B)  The function has an essential singularity 

C)  The region is an annulus 

D)  The coefficients are all zero 

5.  The coefficients na  and nb  in the Laurent series are given by 

A)  Real derivatives of )(zf  

B)  Cauchy’s integral formulas 

C)  Fourier transforms 

D)  Laplace transforms 

6.  According to the Maximum Modulus Principle, if )(zf  is non-

constant and 

analytic in a domain D, the maximum of |)(| zf  occurs 

A)  At the center of D 

B)  At a critical point of )(zf  

C)  On the boundary of D  

D)  At any interior point of D  

7.  If )(zf  is constant in a region, then 

A)  The modulus |)(| zf  has both maximum and minimum inside the 

region 

B)  The Maximum Modulus Principle does not apply 

C)  The modulus |)(| zf  is the same everywhere 

D)  )(zf  has a singularity 

8.  The Laurent series is particularly useful for studying 

A)  Continuous functions 

B)  Functions with isolated singularities 

C)  Harmonic functions 

D)  Real-valued functions 
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10.12ANSWERS:- 

Answer of check your answer 

Answer of problem 1: 
22

14

0 3
)1()(







 
n

n

n

n z
zf  

Answer of problem 2: 



































000

)1(

3

1

2
)1(

8

1

224

1
)(

n
n

nn

n

n

n

n zz

zz
zf  

 

Answer of long answer type question: 

2: 








0

)2(
2

2
)(

n

nz
z

zf , Radius of convergence = 1, 2z  is a pole 

of order 1 and singularity at 2z  is a pole. 

3 (a): 
n

n

n zzf )1()1()(
0






;  

3(b):

 

  




dmman  

2

0

)sin().sinh(sin.cos)cos().cosh(sin.sin
2

1
 

Where 3;cos
4

 nm


  and )( nn ab  . So the Laurent’s series 

given by 






























00

4

4
)(

n
n

n

n

n

n

z

b
zazf




 

4: (i) 
n

n

n zzf 





0

)1(21)(  (ii) 







0 2

)1()1(
1)(

n
n

nn z
zf  

(iii) 
n

n

n

zz
zf

1
)1(

2
1)(

0






  
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5: (i) 

n

nn

n z
z

z



















00 24

1

2

1
 (ii) 

n

nn

n z

z
z

zz



















00 22

11

2

1
 

(iii) 

n

nn

n

zz
z

zz




















00

2

2

11

2

1
 

Answer of short answer type question: 

1: 










































 !

4

24
sin)(

0 n

z
n

zf

n

n




 2: 
















 1
0 2

1
1)1(

n
n

nn z  

3: (i) 
n

n
n

z



 









0
12

1
1  (ii) 




 










0
1

2 1

2

1

n
n z

z  

(iii) 
1

0 2

1
)21(







 
n

n

n
 

4: (i) 
n

n
n

n z )(
2

1
1)1( 2

0
1




 







  (ii)

 










 
0

22
0

1

2
1

2

1
)1(

2
)1(

n
n

n

n
n

n
n z

 

(iii) |)21(|)1( 22

0

nn

n

n z  




  

Answer of objective questions 

1: B  2: C  3: B  4:

 A 

5: B  6: C  7: C  8:

 B 
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UNIT-11: Singular Points 

CONTENTS 

11.1 Introduction 

11.2 Objective  

11.3 Zero of an analytic function 

11.4 Singular points 

11.5 Summary 

11.6 Glossary  

11.7  References 

11.8 Suggested Readings 

11.9 Terminal Questions 

11.10 Answers 

11.1 INTRODUCTION: - 

The Singularity unit in complex analysis deals with the study of 

points at which a complex function fails to be analytic or differentiable. 

These points, known as singular points or singularities, play a crucial role 

in understanding the behavior of complex functions near regions where 

they break down. The chapter classifies singularities into different types 

removable, poles, and essential singularities based on the nature of the 

function’s behavior around them. By analyzing these singular points using 

tools such as Laurent series expansion and residue calculation, one can 

evaluate complex integrals and study the local and global properties of 

analytic functions. This topic forms the foundation for advanced concepts 

like the residue theorem and evaluation of contour integrals in complex 

analysis. 

11.2 OBJECTIVE:- 

The main objectives of the chapter “Singularity” in complex analysis are 

as follows: 

1. To understand the concept of analytic functions and identify points 

where they fail to be analytic, known as singularities. 

2. To learn the classification of singular points such as removable 

singularities, poles, and essential singularities. 
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3. To study the behavior of complex functions in the neighborhood of 

different types of singularities. 

4. To understand how to represent functions near singular points 

using the Laurent series expansion. 

5. To develop the ability to determine residues at singular points, 

which are crucial for evaluating contour integrals. 

6. To apply the knowledge of singularities in solving problems 

related to the Residue Theorem and complex integration. 

7. To build a strong conceptual foundation for advanced topics in 

analytic continuation, meromorphic functions, and complex 

mapping. 

11.3 ZERO OF AN ANALYTIC FUNCTION:- 

A zero of an analytic function is a point in the complex plane where the 

function’s value becomes zero. 

Definition: A zero of an analytic function f(z) is a value of z such that f(z) 

= 0. 

Suppose f(z) is analytic in a domain D and a is any point D. Then f(z) can 

be expanded as a Taylor's series about z = a in the form 

 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛∞
𝑛=0    ...(1),   

𝑎𝑛 =
𝑓(𝑛)(𝑎)

𝑛 !
      ...(2) 

Suppose a0 = a1 = ... = am-1 = 0 and am ≠ 0 

so that, 𝑓(𝑎) = 𝑓′(𝑎) = 𝑓"(𝑎) = ⋯ = 𝑓(𝑚−1)(𝑎) = 0, 𝑓(𝑚)(𝑎) ≠ 0. 

In this case we way say that f(z) has a zero of order m at z = a. 

Now (1) takes the from 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 =∞
𝑛=𝑚 ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛+𝑚∞

𝑛=0   

            = (𝑧 − 𝑎)𝑚 ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛∞
𝑛=0 . 

Taking ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛∞
𝑛=0 = 𝜙(𝑧)  ...(3),   

Since, f(z) = (z - a)m 𝜙(𝑧) 

By (3),  𝜙(𝑎) = [∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛∞
𝑛=0 ]𝑧=𝑎  
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              = [𝑎𝑚 + ∑ 𝑎𝑛+𝑚(𝑧 − 𝑎)𝑛∞
𝑛=1 ]𝑧=𝑎 = 𝑎𝑚 . 

But am ≠ 0 so that 𝜙(𝑎) ≠ 0. 

Thus we define 

Definition: An analytic function f(z) is said to have a zero of order m if 

f(z) is expressible as f(z) = (z - a)m ϕ(𝑧) where ϕ(𝑧) is analytic and 

ϕ(a) ≠ 0 f(z) is said to have a simple zero at z = a if z = a is a zero of 

order one.      

11.4 SINGULAR POINTS:- 

Definitions: A singularity (or singular point) of a function is the point at 

which the function ceases be analytic. For example if 𝑓(𝑧) =
1

𝑧−2
, then z = 

2 is a singularity of  f (z). 

There re various types of singularities exist. 

1. Isolated singularity: A point az   is said to be isolated 

singularity of f(z) if 

 (i) f(z) is not analytic at az  . 

 (ii) f(z) is analytic in the deleted neighbourhood of az  , i.e. 

there exists a  

neighbourhood of az   containing no other singularity. 

az   is called a non-isolatied singularity of f(z) if az  is a singularity 

and every deleted neighborhood of az   contains at least one-singularity 

of f(z). 

Examples 1: The function f(z) = 1/z is analytic everywhere except at 

0z , therefore 0z  is an isolated singularity.  

2: The function 𝑓(𝑧) =
𝑧+2

(𝑧−1)𝑧−2) (𝑧−3)
 has three isolated 

singularities at z = 1, 2 and 3. 

3: The function 𝑓(𝑧) =
2

sin(
𝜋

𝑧
)
 has an infinite number of isolated 

singularities  all lying on the segment of real axis from z = - 1 to z = 1. 

These  singularities are at 𝑧 = ±
1

𝑛
, where n = 1, 2, 3, ... . The origin 0z  
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is also a singularity, but it is not isolated. Since every neighborhood of 

0z  contains other singularities of the function. 

4: f(z) = log z has non-isolated singularity at 0z , (every point on 

negative  real axis including 0z  is a non-isolated singularity of 

zzf log)(  ). 

5: 𝑓(𝑧) =
1

sin(𝜋𝑧)
 has isolated singularity for all z such that z = n and n 

= 0, + 2, + 3, ... . 

Definition: Let az   be an isolated singularity of a function f (z), then by 

definition, there exists a deleted neighborhood  0 < |z - a| < r, in which f(z) 

analytic. Hence, if z be any point this neighborhood, then by Laurent's 

expansion, 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +∞
𝑛=0 ∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛∞

𝑛=1 . 

∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛∞
𝑛=1  is called the principal part of the expansion of f (z). 

Now three cases arise. 

I Removable singularity: If the principal part of f(z) contains no 

term, i.e. if bn = 0 ∀ n then the singularity az   is called removable 

singularity of f (z). In this case 𝑓(𝑧) = ∑ 𝑎𝑛
∞
0 (𝑧 − 𝑎)𝑛  

An Alternate definition: A singularity az  is called a removable 

singularity of f(z) if lim
𝑧→𝑎

𝑓(𝑧) exists finitely. 

Examples 6:  Suppose 𝑓(𝑧) =
sin 𝑧

𝑧
. Then lim

𝑧→0
 

sin 𝑧

𝑧
= 1.  

∴ z = 0 is a removable singularity. 

Again  
sin 𝑧

𝑧
=

1

𝑧
(𝑧 −

𝑧3

3!
+

𝑧5

5!
− ⋯ ) = 1 −

𝑧2

3!
+

𝑧4

5!
− ⋯ 

Since no negative power of z occurs. Hence z = 0 is a removable 

singularity of f(z). [by the first def.] 

II Pole: If 𝑏𝑛 = 0 ∀ 𝑛 𝑠. 𝑡. 𝑛 > 𝑚, i.e., if the principal part contains a 

finite number of terms, say m, then the singularity az   is called a pole of 

order m of f (z). A pole of order one is called a simple pole. 

Thus if az   is a pole of order n of the function f(z) then f(z)  will 

have the expansion of the form 𝑓(𝑧) ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +∞
𝑛=0 ∑ 𝑏𝑛(𝑧 −𝑚

𝑛=1

𝑎)−𝑛  

An Alternate definition: A function f(z) is said to have pole of order n if 

it is expressible as 𝑓(𝑧) =
𝜙 (𝑧)

(𝑧−𝑎)𝑛 where 𝜙 (𝑧) is analytic and 𝜙 (𝑎) ≠ 0.  
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Residue of a function f(z) at a simple pole z = a is defined as lim
𝑧→𝑎

(𝑧 −

𝑎)𝑓(𝑧) =  𝑅𝑒𝑠 (𝑧 = 𝑎)  

Or 

𝑅𝑒𝑠 (𝑧 = 𝑎) = lim
𝑧→𝑎

𝜙 (𝑧)

Ψ′(z)′, where 𝑓(𝑧) =
𝜙 (𝑧)

Ψ (𝑧)
. 

Example 7: If 𝑓(𝑧) =
1

(𝑧−5)3(𝑧−4)2, then 5z  is a pole of order 3 and

4z  is a pole of order 2. 

Solution: Res (𝑧 = 1) = lim
𝑧→1

(𝑧 − 1)𝑓(𝑧) =  lim
𝑧→1

(
𝑧+1

𝑧−2
) =

2

−1
= −2. 

III Essential Singularity: If 𝑏𝑛 ≠ 0 for indefinitely many values of n, 

i.e., the principal part contains an infinite number of terms, i.e., the series 
∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛∞

𝑛=1  contains an infinite number of terms, then the 

singularity z = a is called an essential singularity. 

An Alternate definition. If there exists no finite value of n s.t. 

  lim
𝑧→𝑎

(𝑧 − 𝑎)𝑛𝑓(𝑧) = 𝑐 = finite non-zero constant, then 

az   is called essential singularity. 

Example 8: 0z is an essential singularity of  𝑒
1

𝑧, since the expansion of 

𝑒
1

𝑧. 

 𝑒
1

𝑧 = 1 +
1

𝑧
+

1

𝑧22!
+

1

𝑧23!
+ ⋯ is an infinite series of negative 

powers of z. 

Remark: az   is called removal singularity, or pole or essential 

singularity of f(z) according as expansion of f(z)  contains no negative 

powers of az  or contains finite number of negative powers of az   or 

contains an infinite number of negative powers of az  . 

Theorem 1: If f(z) has a pole at z = a, then |f (z)| → ∞ as z → a. 

Proof: Suppose f(z) has a pole of order m at z = a. 

To prove that |f (z)| → ∞ as z → a.  

 By assumption, the principal part of the expansion of f(z) contains only m 

terms so that  

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +
∞

𝑛=0
∑ 𝑏𝑛(𝑧 − 𝑎)−𝑛

𝑚

𝑛=1
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           = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +∞
𝑛=0

𝑏1

𝑧−𝑎
+

𝑏2

(𝑧−𝑎)𝑛 +
𝑏𝑚

(𝑧−𝑎)𝑚 

           = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +∞
𝑛=0

1

(𝑧−𝑎)𝑚
[𝑏1(𝑧 − 𝑎)𝑚−1 +

𝑏2(𝑧 − 𝑎)𝑚−2 + ⋯ + 𝑏𝑚] 

The expression within the square bracket on R.H.S. → 𝑏𝑚 as 𝑧 → 𝑎 so that 

the whole R.H.S. expression → ∞ as 𝑧 → 𝑎. 

Consequently, |𝑓 (𝑧)| → ∞ as 𝑧 → 𝑎. 

Theorem 2: If an analytic function f(z) has a pole of order m at z = a, 

then 
1

𝑓(𝑧)
 has a zero of order m at z = a and conversely. 

Proof (i): Suppose an analytic function f(z) has a pole of order m at z = a  

so that 𝑓(𝑧) =
𝜙 (𝑧)

(𝑧−𝑎)𝑚               …(1)  

Where, 𝜙(𝑎) ≠ 0 and 𝜙(𝑧) is analytic. 

To prove that 
1

𝑓(𝑧)
 has a zero of order m. 

  
1

𝑓(𝑧)
=

(𝑧−𝑎)𝑚

𝜙 (𝑧)
= (𝑧 − 𝑎)𝑚 Ψ(𝑧), where 

1

𝜙
=

Ψ and Ψ(𝑎) ≠ 0. 

This ⇒
1

𝑓
 has a zero of order m at z = a. 

(ii): Suppose 
1

𝑓(𝑧)
 has a zero of order m at z = a  so that 

1

𝑓(𝑧)
=

(𝑧 − 𝑎)𝑚𝑔(𝑧) where g(z) is analytic and g(a) ≠ 0. 

This ⇒ 𝑓(𝑧) =
1

(𝑧−𝑎)𝑚𝑔(𝑧)
=

ℎ (𝑧)

(𝑧−𝑎)𝑚 where 
1

𝑔(𝑧)
= ℎ (𝑧).  

Now 𝑓(𝑧) =
ℎ (𝑧)

(𝑧−𝑎)𝑚 where h (z)  as analytic and h (a) ≠ 0. 

This ⇒ f (z) has a pole of order m at z = a. 

Theorem 3: (Zeros are isolated) Let f (z) be analytic is a domain D. Then 

unless f (z) is identically zero, there exists a nbd of each point in D 

through out which the function has no zero, except possibly at the point 

itself. In order words the zeroes of an analytic function are isolated. 

Proof: Let z = a be a zero of order m of an analytic function f(z). Then we 

may write f(z) = (z - a)m 𝜙 (z), where 𝜙 (z) is analytic and 𝜙 (a) ≠ 0. 

Evidently (z - a)m ≠ 0 at z ≠ a. 
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Now there exists no other point in the deleted neighbouhood |z - a| < r at 

which f (z) = 0 

Hence the zero az  is an isolated singularity. 

This is true for every zero of f(z). Therefore the zeroes of f(z) are isolated 

singularity. 

Poles are isolated :Let z = a  be a pole of order m of an analytic function 

f(z), then 
1

𝑓(𝑧)
 is analytic and has a zero of order m at z = a. Since zeroes 

are isolated and hence poles are isolated. 

The point at infinity: The behaviour of the point 𝑧 = ∞ is studied by the 

substitution 𝑧 =
1

𝑡
 in f (z). The behaviour of f (z) at 𝑧 = ∞ determined by 

the behaviour of 𝑓 (
1

𝑡
) at t = 0. 

It follows that f(z)has a zero or pole, at 𝑧 = ∞ is according as 𝑓 (
1

𝑡
) has 

the corresponding property at t = 0. 

Theorem 4 (Limiting point of zeros): Let f(z) be an analytic function in a 

simply connected region D. Let a1, a2, ..., an... be a sequence of zeros 

having a as its limit point, a being the interior point of D. Then either f(z) 

vanishes identically or else has an isolated essential singularity at z = a.  

                     

Proof: Suppose f (z) is analytic in a connected domain D so that it is 

continuous in D. So f (a) = 0. So f (z) has zeros at a1, a2,...an,... as near as 

we please to a. Consequently f(a) = 0. Further a cannot be a zero of f(z) on 

account of the fact that zeros are isolated. Hence f(z) = 0 for every z in the 

domain D. 

 Next we consider the case in which f(z) ≠ 0 for every z inside D. 

In this case f (z) must have a singularity at z = a. This singularity is 

isolated but it is not a pole. For |f (z)|does not tend to ∞ 𝑎 𝑧 → 𝑎 in any 

manner. Therefore z = a, which is limit point of zeros, must be an isolated 

essential singularity. 

Remark: (Remember the result) Limit point of zeros is an isolated 

essential singularity. 

Limit point of poles: Suppose z = a  is a limit point of the sequence of 

poles of an analytic function f(z). Then every neighbourhood of the point z 

= a containing poles of the given function. Therefore the point z = a is a 

singularity of f(z). This singularity cannot be a pole, since it is not isolated. 

Such a singularity is called non-isolated essential singularity or essential 

singularity simply. 
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Theorem 5: If f (z) and g(z) are analytic in Ω and if f(z) = g (z) on a set 

which has a limit point in Ω, then f (z) is identically equal to g (z). 

Proof:  Let, Ψ (𝑧) = 𝑓(𝑧) − 𝑔(𝑧). Analyticity of the functions f (z) and g 

(z) implies the analyticity of Ψ (𝑧). Also zeros of Ψ (𝑧) are isolated and 

the limit point of zeros of Ψ (𝑧) belongs to the interior of the domain D. 

Therefore this limit point is an isolated essential singularity, i.e., this limit 

point does not belong to the domain of regularity. But f (z) is analytic 

everywhere. Consequently Ψ (𝑧) = 0 so that f (z) = g (z). 

Theorem 6: If a single valued function f (z) has no singularities other 

than poles in the finite part of the plane or at the infinity, then f (z) is a 

rational function.       

Proof: A function f (z)  is said to be polynomial if it is expressible in the 

form      f (z) = a0 + a1z + a2z
2 + ... + anz

n 

A function f(z) is said to be a rational function if it is expressible in the 

form 𝑓(𝑧) =  
𝜙 (𝑧)

Ψ (𝑧)
 where 𝜙 (𝑧) and Ψ (𝑧) both are polynomials. 

 Now we come to the proof of the theorem. Let f(z) be a single 

valued function such that f(z) has no singularity except poles at any point 

(including ∞). So let us suppose that f (z) has poles at z1, z2, ..., zk of order 

m1, m2, ..., mk in the finite part of the z-plane. Then f(z) is expressible as  

   𝑓(𝑧) =
𝜙 (𝑧)

(𝑧−𝑧1)𝑚1(𝑧−𝑧2)𝑚2…(𝑧−𝑧𝑘)𝑚𝑘
   

  ...(1) 

where 𝜙 (𝑧) is analytic for all finite values of z. By (1),  

   𝜙 (𝑧) = (𝑧 − 𝑧1)𝑚1(𝑧 − 𝑧2)𝑚2 … (𝑧 − 𝑧𝑘)𝑚𝑘 
  ...(2) 

Consequently 𝜙 (𝑧) has Maclaurin's expression as 

   𝜙 (𝑧) = ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0  for all finite values of z.  

 ...(3) 

To discuss the behaviour of 𝜙 (𝑧) 𝑎𝑡 𝑧 = ∞, where it many have a pole of 

order m. 

Putting 𝑧 =
1

𝑧′ in (3), 𝜙 (
1

𝑧′) = ∑ 𝑎𝑛(𝑧′)−𝑛∞
𝑛=0     

 ...(4) 

The behaviour of 𝜙 (𝑧) at 𝑧 = ∞ is the same as behaviour of 𝜙 (
1

𝑧′) at z' = 

0. 
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Since 𝜙 (𝑧) has a pole of order m at 𝑧 = ∞ so that 𝜙 (
1

𝑧′) also has a pole 

at z' = 0 of order m. It follows that the series (4) for 𝜙 (
1

𝑧′) must contain 

finite number of terms.  

Now (4) becomes  𝜙 (
1

𝑧′) = ∑ 𝑎𝑛(𝑧′)−𝑛∞
𝑛=0     

 ...(5) 

This ⇒ 𝜙 (𝑧) = ∑ 𝑎𝑛𝑧𝑛∞
𝑛=0 ⇒ 𝜙 (𝑧) is a polynomial   

 ...(6) 

∴ In either case, 𝜙 (𝑧) is a polynomial as obvious from (2) and (5). In this 

event (1) becomes 𝑓(𝑧) = 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 /[(𝑧 − 𝑧1)𝑚1(𝑧 − 𝑧2)𝑚2 … (𝑧 −
𝑧𝑘)𝑚𝑘 ] 

This ⇒ f(z)  is a rational function. 

Example 9: A rational function has no singularities other than poles. 

Solution: Suppose f(z) is a rational function so that it is expressible as 

𝑓(𝑧) =
𝜙 (𝑧)

Ψ (z)
 where  𝜙 (𝑧) and Ψ (𝑧) both are polynomial having no factor 

in common. Singularities of f (z) are given by Ψ (𝑧) = 0, i.e., by zeros of 

Ψ (𝑧).  

But zeros of Ψ (𝑧) are the poles of 
1

Ψ (z)
. Finally singularities of f (z) are 

poles at the zeros of Ψ (z). 

Theorem 7: A function which has no singularity in the finite part of the 

planes or at infinity is constant.      

          

Proof: Suppose the function f (z), 

(i) has no singularity in the finite part of z-plane. 

or 

(ii) has no singularity at 𝑧 = ∞. 

(i) ⇒ 𝑓(𝑧) can be expanded in Taylor's series about z = 0 in the form 

𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛 , …∞
𝑛=0  (1) where z is a point inside or on |z| = R, where R  

is arbitrary large positive number. 

(ii) ⇒ 𝑓 (
1

𝑧
) is analytic at z = 0. 

Hence, 𝑓 (
1

𝑧
) can be expanded by Taylor's theorem as  
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  𝑓 (
1

𝑧
) = ∑ 𝑏𝑛𝑧𝑛∞

𝑛=0       

   

This ⇒ 𝑓(𝑧) = ∑
𝑏𝑛

𝑧𝑛
∞
𝑛=0        

 ...(2) 

By (1) and (2), we get ∑ 𝑎𝑛 𝑧𝑛 = ∑
𝑏𝑛

𝑧𝑛
∞
𝑛=0

∞
𝑛=0     

 ...(3) 

(3) can hold if an = 0 = bn for n = 1, 2, 3, ... and a0 = b0 

If follows that f (z) = a0 = b0 

∴ 𝑓(𝑧) = constant. 

Theorem 8: To show that a function which has no singularity in the finite 

part of the plane and has a pole of order n at infinite is a polynomial of 

degree n. 

Or 

A function f (z), which is regular everywhere except at infinity where it has 

a pole of order n, is a polynomial of degree n.     

      

Proof: Suppose, 

(i) f (z) is regular in the finite part of the z-plane. 

(ii) f (z) has a pole of order n at 𝑧 = ∞. 

To prove that f (z) is a polynomial of degree n. 

(i) ⇒ 𝑓(𝑧) can be expanded in Taylor's series about the point z = 0 as  

𝑓(𝑧) = ∑ 𝑎𝑚𝑧𝑚∞
𝑚=0 , 𝑡ℎ𝑒𝑛 𝑓 (

1

𝑧
) = ∑ 𝑎𝑚𝑧−𝑚∞

𝑚=0     ...(1) 

(ii) ⇒ 𝑓 (
1

𝑧
) has a pole of order n at z = 0 

⇒ Principal part of Laurent's expansion of 𝑓 (
1

𝑧
) contains only n terms 

⇒ 𝑓 (
1

𝑧
) = ∑ 𝑎𝑚𝑧−𝑚∞

𝑚=0  

⇒ 𝑓(𝑧) = ∑ 𝑎𝑚𝑧𝑚∞
𝑚=0  

⇒ 𝑓(𝑧) is a polynomial of degree n. 

This proves that f(z) is a polynomial of degree n. 
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Theorem 9(a): A polynomial of degree n has no singularities in the finite 

part of the plane but has a pole of order n at infinity. 

Proof: Consider a polynomial P(z) of degree n given by, 

  P(z) = a0 + a1z + a2z
2 + ... + anz

n, an ≠ 0. 

Then 𝑃 (
1

𝑧
) = 𝑎0 +

𝑎1

𝑧
+

𝑎2

𝑧2 + ⋯ +
𝑎𝑛

𝑧𝑛
 which has pole of order n at z = 0. 

Consequently P(z) has a pole of order n at 𝑧 = ∞. Also it is obvious that P 

(z) has no singularities in the finite part of the plane.  

Characterization of polynomials 

Theorem 9 (b): The order of a zero of a zero of a polynomial equals the 

order of its first non-vanishing derivative. 

Proof: Suppose z = a is a zero of order m of a polynomial P (z). 

Then P (z) = (z - a)m Q (z), Q(a) ≠ 0. 

Differentiating both sides successively m times, we get 

P'(z) = m(z - a)m-1 Q (z) + (z - a)m Q'(z) 

P''(z) = m(m - 1)(z - a)m - 2 Q(z) + 2m(z - a)m - 1 Q'(z) + (z - a)m Qn(z) 

...................  ...................  ................... 

 ................... 

...................  ...................  ................... 

 ................... 

Pm(z) = m! Q(z) + mC1 m! (z - a) Q'(Z) + ... + (z - a)m Qm(z). 

Putting z = a in above relations, we get 

P (a) = P'(a) = P"(a) = ... = P m - 1 (a) = 0 

And, Pm(a) = m! Q(a) ≠ 0. 

 Hence the order of a zero of a polynomial equals the order of its 

non-vanishing derivative. 

Theorem 10 (Due to Riemann) If z = a is an isolated singularity of f (z) 

and if f (z) is bounded on some deleted neighborhood of a, then a is a 

removable singularity. 

Proof: Let f(z) be bounded on some deleted neighbourhood N(a) of a. Let 

M be the maximum value of |f (z)| on a circle C defined by |z -a| = r, where 
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the radius r is chosen so small that C lies entirely within N (a). Laurent's 

expansion for f (z) gives 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +∞
𝑛=0 ∑ 𝑏𝑛(𝑧 − 𝑎)𝑛∞

𝑛=1    

 ...(1) 

Where, 𝑏𝑛 =
1

2𝜋𝑖
∫ (𝑧 − 𝑎)𝑛−1

𝐶
𝑓(𝑧)𝑑𝑧 

∴ |𝑏𝑛| <
𝑀

2𝜋
 ∫ |𝑧 − 𝑎|𝑛−1|𝑑𝑧| =

𝑀𝑟𝑛−1

2𝜋𝐶
. 2𝜋𝑟 = 𝑀𝑟𝑛 

∴ |𝑏𝑛| <  𝑀𝑟𝑛 which → 0 as 𝑟 → 0. 

∴ 𝑏𝑛 = 0 ∀ 𝑛. 

This ⇒ the principal part of Laurent's expansion for f(z) contains no term. 

By definition, this proves that z = a is a removable singularity. 

Theorem 11 (Weierstrass Theorem): If z = z0 is an essential singularity 

of f(z), prove that given any positive numbers, r, 𝜀 and any number c, there 

is a point in the circle |z - z0| < r at which |f (z) - c| < 𝜀. 

Or 

 In other words, in every arbitrary neighbourhood of an essential 

singularity, there exists a point (and therefore an infinite number of 

points) at which the function differs as little as we please from any pre-

assigned number. 

Proof: Suppose the theorem is false. Then given 𝜀, 𝑟 > 0 and a number c, 

there exists a point in the circle |z - z0| < r at which |f (z) - c| < 𝜀 so that 
1

|𝑓 (𝑧)−𝑐|
< 𝜀 whenever |z - z0| < r. 

Making use of Riemann's theorem (Theorem 10), we see that the function 
1

|𝑓 (𝑧)−𝑐|
 has a removable singularity so that principal part of Laurent's 

expansion 
1

𝑓 (𝑧)−𝑐
 about the point z0 does not contain any term so that 

1

𝑓 (𝑧)−𝑐
= ∑ 𝑎𝑛

∞
𝑛=0 (𝑧 − 𝑧0)𝑛    ...(1) 

If 𝑎0 ≠ 0, we define 
1

𝑓 (𝑧0)−𝑐
 =  a0 so that 𝑓 (𝑧0) = 𝑐 + (

1

𝑎0
) 

It means that 
1

𝑓 (𝑧)−𝑐
 is analytic and non-zero at 𝑧0. 

∴ As a result of which f(z) itself is analytic at 𝑧0. Contrary to the initial 

assumption that 𝑧0 is an essential singularity of f (z). 
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Again if an = 0 for n = 0, 1, 2, ..., m - 1 then (1) becomes 

1

𝑓 (𝑧)−𝑐
= ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞

𝑛=𝑚   

  = am (z - z0)
m + am + 1 (z - z0)

m + 1 + ...   

  = (z - z0)
m [am + am + 1 (z - z0) + ... ] 

  = (𝑧 − 𝑧0)𝑚 ∑ 𝑎𝑚+𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0  

This shows that the point z0 is a zero of order m of 
1

𝑓 (𝑧)−𝑐
 so that 𝑓 (𝑧) − 𝑐 

has a pole of order m at 𝑧 − 𝑧0. Moreover c is merely a constant. 

Therefore f (z) also has a pole of order m at 𝑧0. Again we get a 

contradiction. Hence we have the theorem as stated. 

Remark: The above theorem can also be expressed as: Show that an 

analytic function comes arbitrary close to any complex value in every 

neighbourhood of an essential singularity. 

Example 10: Find the singularities of the function 
𝑒

𝑐
(𝑧−𝑎)

𝑒
𝑧
𝑎−1

, indicating the 

character of each singularity.       

    

Solution: Let 𝑓(𝑧) =
𝑒

𝑐
(𝑧−𝑎)

𝑒
𝑧
𝑎−1

 

(i) We write exp (
𝑧

𝑎
) in place of 𝑒

𝑧

𝑎. 

Then, 𝑓(𝑧) =
exp(

𝑐

𝑧−𝑎
)

𝑒
𝑧
𝑎−1

=
exp(

𝑐

𝑧−𝑎
)

exp(1+
𝑧−𝑎

𝑎
)−1

 

   =
exp(

𝑐

𝑧−𝑎
)

exp (1)exp (
𝑧−𝑎

𝑎
)−1

=
𝑒

𝑐
(𝑧−𝑎)

𝑒.𝑒
𝑧−𝑎

𝑎
−1

 

   = −𝑒
𝑐

(𝑧−𝑎) [1 − 𝑒. 𝑒
(𝑧−𝑎)

𝑎 ]
−1

 

   = −𝑒
𝑐

(𝑧−𝑎). [1 − 𝑒. {1 +
𝑧−𝑎

𝑎
+ (

(𝑧−𝑎)

𝑎
)

2

.
1

2!
+ ⋯ }]

−1

 

   = − [1 +
𝑐

𝑧−𝑎
+ (

𝑐

𝑧−𝑎
)

2

.
1

2!
+ ⋯ ] 
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   × [1 + 𝑒 {1 +
𝑧−𝑎

𝑎
+ (

𝑧−𝑎

𝑎
)

2

.
1

2!
+ ⋯ } +

𝑒2 {1 + (
𝑧−𝑎

𝑎
) + ⋯ }

2

+ ⋯ ]  

 Clearly this expansion contains positive and negative powers of z - 

a. In particular, terms containing negative powers of z - a are infinite in 

number. Hence by definition, z = a is an essential singularity. 

(ii) 𝑓(𝑧) =
exp(

𝑐

𝑧−𝑎
)

exp(
𝑧

𝑎
)−1

 

Evidently denominator has zero of order 1 at 

𝑒
𝑧
𝑎 = 1 = 𝑒2𝑛 𝜋𝑖 , 𝑖. 𝑒. , 𝑧 = 2𝑛𝜋𝑖𝑎. 

Consequently f (z) has a pole of order one at each point z = 2n𝜋𝑖𝑎 (where 

n = 0, + 1, + 2, ...). 

Example 12: Show that the function ez has an isolated essential 

singularity at 𝑧 = ∞. 

Solution:  Let  f(z) = ez  ...(1) 

The behaviour of f (z) at 𝑧 = ∞ is the same as the behaviour of 𝑓 (
1

𝑧
) at z 

= 0. 

(i) ⇒ 𝑓 (
1

𝑧
) =  𝑒

1

𝑧 = 1 +
1

𝑧
+

1

𝑧2 .
1

2 !
+ ⋯ = 1 + ∑

1

𝑧𝑛 𝑛!

∞
𝑛=1  

Or 

𝑓 (
1

𝑧
) = 1 + ∑

1

(𝑧 − 0)𝑛 𝑛 !

∞

𝑛=1

 

 This is Laurent's expansion of 𝑓 (
1

𝑧
) about the point z = 0. This 

expansion contains an infinite number of terms in the negative power of z. 

Hence, by def., z = 0 is an essential singularity of 𝑓 (
1

𝑧
). Consequently f(z) 

has essential singularity at 𝑧 = ∞. 

Example 13: Show that the function 𝑒
1

𝑧 actually takes every value except 

zero an infinite number of times in the neighbourhood of z = 0. 

Solution: If we show that the function 𝑓(𝑧) = 𝑒
1

𝑧 has an essential 

singularity at z = 0, the result will follow. 
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Evidently  𝑓(𝑧) = 𝑒
1

𝑧 = 1 +
1

𝑧
+

1

𝑧2 2 !
= 1 + ∑

𝑧−𝑛

𝑛 !

∞
𝑛=1  

This is Laurent's expansion of 𝑓(𝑧) about the point z = 0. The principal 

part of  𝑓(𝑧) is ∑
𝑧−𝑛

𝑛 !

∞
𝑛=1  which contains an infinite number of terms. 

Hence, by def., z = 0 is an essential singularity. 

Example 14: Find kind of singularities of the following: 

(i) 
cot 𝜋𝑧

(𝑧−𝑎)2at z = a and 𝑧 = ∞     (ii) tan (
1

𝑧
) at 

z = 0.           

(iii) 𝑐𝑜𝑠𝑒𝑐 (
1

𝑧
) at z = 0.    (iv) sin [

1

(1−𝑧)
] 

at z = 1.                

Solution: Recall that the limit point of poles is a non-isolated essential 

singularity, whereas limit point of zeros is an isolated essential singularity. 

(i) 𝑓(𝑧) =
cot 𝜋𝑧

(𝑧−𝑎)2 =
cos 𝜋𝑧

(sin 𝜋𝑧)(𝑧−𝑎)2 

Poles of f (z) are given by (sin 𝜋 𝑧)(𝑧 − 𝑎)2 = 0 

This ⇒ sin 𝜋 𝑧 = 0, (𝑧 − 𝑎)2 = 0. 

 Now  sin 𝜋 𝑧 = 0 gives 𝜋𝑧 = 𝑛𝜋 or z = n, where n = 0, + 1, + 2, ... 

. Obviously 𝑧 = ∞ is a limit of these poles. Hence 𝑧 = ∞ is non-isolated 

essential singularity.   

  (z - a)2 = 0 gives z = a, a 

Hence z = a is a double pole. 

(ii) 𝑓(𝑧) tan (
1

𝑧
) =

sin(
1

𝑧
)

cos(
1

𝑧
)
  

Poles of 𝑓(𝑧) are given by cos (
1

𝑧
) = 0. 

This ⇒
1

𝑧
= 2𝑛𝜋 ±

𝜋

2
 

⇒ 𝑧 =
1

(2𝑛±
1

2
)𝜋

, where n = + 1,+ 2, ..., 

Obviously z = 0 is the limit of these poles. Hence z = 0 is non-isolated 

essential singularity. 

(iii) 𝑓(𝑧) = 𝑐𝑜𝑠𝑒𝑐 (
1

𝑧
) =

1

sin(
1

𝑧
)
. 
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Poles of f(z) are given by sin (
1

𝑧
) = 0. 

∴  
1

𝑧
= 𝑛𝜋 or 𝑧 =

1

𝑛𝜋
, where n = + 1, + 2, .... 

Evidently z = 0 is a limit point of these poles. Hence z = 0 a non-isolated 

essential singularity.  

(iv) 𝑓(𝑧) = sin (
1

1−𝑧
) 

Zeros of (z) are given by sin (
1

1−𝑧
) = 0. 

∴  
1

1−𝑧
= 𝑛𝜋  or  1 − 𝑧 =

1

𝑛𝜋
 

or 

𝑧 = 1 −
1

𝑛𝜋
 where n = + 1, + 2, ... 

 Evidently z=1 is a limit point of these zeros. Hence z = 1 is 

isolated essential singularity. 

Example 15: Find residue of 𝜙(𝑧) = cot 𝑧 at the points zn = 𝑛𝜋 for n = 1, 

2, ... . What is the nature of singularity at = ∞ ? Justify your answer.  

Solution: 𝜙(𝑧) = cot 𝑧 =
cos 𝑧

sin 𝑧
=

𝑓 (𝑧)

𝑔  (𝑧)
, say  ... (1) 

Poles of  𝜙(𝑧) are given by putting denominator equal to zero. 

∴  Poles are given by z = 0 = sin 0 

General value is given by 𝑧 = 𝑛𝜋 + (−1)𝑛 (0) = 𝑛𝜋 = 𝑧𝑛 , say 

∴  z = zn = 𝑛𝜋 for n = 0., 1, 2, 3, ... . 

These are the poles. Evidently 𝑧 = ∞ is a limit of these poles. 

Hence 𝑧 = ∞ is a non-isolated essential singularity of 𝜙(𝑧).  

Residue of 𝜙(𝑧) at z = zn is 

  = lim
𝑧→𝑛 𝜋

𝑓 (𝑧)

𝑔′ (𝑧)
= lim

𝑧→𝑛 𝜋

cos 𝑧

cos 𝑧
= 1., By (1). 

Residue (z = zn) = 1. 

Example 16: Specify the nature of singularity at z = - 2  of  f (z) = (z - 3) 

sin (
1

𝑧+2
) . 
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Solution: Zero of f (z) are given by f (z) = 0 or (𝑧 − 3) sin (
1

𝑧+2
) = 0 

This implies z = 3 and sin (
1

𝑧+2
) = 0 = sin 0 

⇒
1

𝑧+2
= 𝑛𝜋 + (−1)𝑛(0) = 𝑛𝜋  

⇒ 𝑧 + 2 =
1

𝑛𝜋
⇒ 𝑧 = −2 +

1

𝑛𝜋
  , or 𝑧 = −2 +

1

𝑛𝜋
 for n = 1, 2, 3, ... . 

Limit points of zeros is z = -2. 

∴ z = - 2 is isolated essential singularity. 

Example 17: What kind of singularity has the function 

(i)  𝑓(𝑧) =
1

cos(
1

𝑧
)
 at z = 0 ? 

(ii) and cot z at 𝑧 = ∞ ? 

Solution (i): 𝑓(𝑧) =
1

cos(
1

𝑧
)
 

Poles of f (z) are given by cos (
1

𝑧
) = 0 = cos (

𝜋

2
) 

This  ⇒
1

𝑧
= 2𝑛𝜋 ±

𝜋

2
= (2𝑛 ±

1

2
) 𝜋 

or 

𝑧 =
1

(2𝑛±
1

2
)𝜋

 where  𝑛 = 0, 1, 2, 3, … 

Evidently z = 0 is the limit of these poles. 

Hence z = 0 is non-isolated essential singularity.  

(ii)  f (z) = cot z  (See Problem 14) 

Example 18: Find zeros and poles of (
𝑧+1

𝑧2+1
)

2

.  

Solution: Let  𝑓(𝑧) =
(𝑧+1)2

(𝑧2+1)2 

I. Zeros of f (z) are given by (z + 1)2 = 0 

or, z = -1, -1. 

∴ z = - 1 is a zero of order 2. 

II. Poles of f (z) are given by (z2 + 1)2 = 0 or (z - i)2 (z - i)2 = 0 
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or, z = -i, -i, i, i. 

∴ z = -1 and z = i  both are poles of order 2. 

Example 19: What kind of singularities have the following. 

(i)  
1

sin 𝑧−cos 𝑧
𝑎𝑡 𝑧 =

𝜋

4
.   (ii)  sin z - cos z at 𝑧 = ∞ 

(iii)  
𝑒𝑧

𝑧2+4
     (iv)  

1−𝑒𝑧

1+𝑒𝑧  𝑎𝑡 𝑧 = ∞ 

(v)  z cosec z at 𝑧 = ∞. 

Solution: Recall that the limit point of the poles is a non-isolated essential 

singularity whereas limit point of zeros is an isolated essential singularity. 

(i)  Suppose 𝑓(𝑧) =
1

sin 𝑧−cos 𝑧
. 

Poles of f(z) are obtained by putting the denominator equal to zero, i.e., sin 

z - cos z = 0 which gives tan z = 1. 

∴ 𝑧 = 𝑛𝜋 +
𝜋

4
 where 𝑛 = 0, ±1, ±2, ±3, … 

Obviously 𝑧 =
𝜋

4
 is a simple pole. 

(ii)  f (z) = sin z - cos z. 

Zeros of f (z) are given by 

sin z - cos z = 0 or tan z = 1. 

Hence 𝑧 = 𝑛𝜋 +
𝜋

4
, where n = 0, + 1, + 2. + 3, ... 

Evidently 𝑧 = ∞ is the limit point of these zeros and hence 𝑧 = ∞ is 

isolated essential singularity.       

     

(iii)  Suppose 𝑓(𝑧) =
𝑒𝑧

𝑧2+4
. 

Poles of f(z) are given by putting denominator equal to zero, i.e.,  

   (z2 + 4) = 0  or z = + 2i 

Hence z = 2i, -2i are simple poles. 

(iv) Let 𝑓(𝑧) =
1−𝑒𝑧

1+𝑒𝑧. 

Poles of f(z) are given by 1 + ez = 0, i.e. 𝑒𝑧 = −1 = 𝑒𝜋𝑖 = 𝑒(2𝑛𝜋+𝜋) 𝑖 
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This ⇒ z = (2n + 1) 𝜋𝑖, where n = 0, + 1, + 2, ... 

Evidently 𝑧 = ∞ is the limit of these poles. 

Hence 𝑧 = ∞ is non-isolated essential singularity. 

(v) Let  𝑓(𝑧) = 𝑧 𝑐𝑜𝑠𝑒𝑐 𝑧 =
𝑧

sin 𝑧
. 

Poles of f (z) are given by sin z = 0. 

∴  𝑧 = 𝑛𝜋 (𝑛 = 0, ±1, ±2, … . ). 

Evidently 𝑧 = ∞ is the limit of these poles. 

Hence 𝑧 = ∞ is non-isolated essential singularity. 

Example 20 (a). Discuss the nature of singularities of the following 

functions: 

(i) tan z   (ii) 
1

𝑧(1−𝑧2)
 

(iii) 
𝑧

1+𝑧4    (iv) 
sin 𝑧

(𝑧−𝜋)2. 

Solution: (i) Let 𝑓(𝑧) = tan 𝑧 =
sin 𝑧

cos 𝑧
. 

To obtain the singularities of f (z) equating to zero the denominator of f 

(z), we get 

cos 𝑧 = 0   or  𝑧 = 2𝑛𝜋 ±
𝜋

2
, 𝑛 𝜖 𝐼 

or    𝑧 = (4𝑛 ± 1)
𝜋

2
, 𝑛 ∈  𝐼 

or    𝑧 = (2𝑛 + 1)
𝜋

2
, 𝑛 ∈ 𝐼. 

Hence 𝑧 = (2𝑛 + 1)
𝜋

2
, (𝑛 ∈ 𝐼) give the simple poles of f (z). 

(ii) Let  𝑓(𝑧) =
1

𝑧(1−𝑧2)
. 

Singularities of f (z) are given by z (1 - z2) = 0 

or   z = 0, -1, 1, which are the simple poles. 

(iii) Let 𝑓(𝑧) =
𝑧

1+𝑧4. 

Singularities of f (z) are given by 1 + z4 = 0  or 𝑧 = (−1)
1

4 

Or 𝑧 = (cos 𝜋 + 𝑖 sin 𝜋)
1

4 = {cos(2𝑛𝜋 + 𝜋) +  𝑖 sin(2𝑛𝜋 + 𝜋)}
1

4 
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      = cos(2𝑛 + 1)
𝜋

4
+ 𝑖 sin(2𝑛 + 1)

𝜋

4
= 𝑒𝑖 (2𝑛+1) 𝜋

4
 . 

Putting n = 0, 1, 2, 3, we get 𝑧 = 𝑒
𝑖𝜋

4 , 𝑒
3𝜋𝑖

4 , 𝑒
5𝜋𝑖

4 , 𝑒
7𝜋

4  which are the simple 

poles of f (z). 

(iv) Let 𝑓(𝑧) =
sin 𝑧

(𝑧−𝜋)2. 

Singularities of f (z) are given by (z - 𝜋)2 = 0. 

Thus z = 𝜋 is a pole of order two of f (z). 

Example 20(b). Show that the function 𝑓(𝑧) =
𝑧2+4

𝑒𝑧  has an isolated 

singularity at 𝑧 = ∞ 

Solution: Take 𝑧 =
1

𝑦
 

∴ 𝑓 (
1

𝑦
) = (4 +

1

𝑦2) 𝑒
−

1

𝑦 

 = (4 +
1

𝑦2) {1 −
1

𝑦
+

1

𝑦2 3!
−

1

𝑦3.  3!
… } 

 = 4 −
4

𝑦
+  (1 + 2)

1

𝑦2 + (−1 −
2

3
)

1

𝑦3 + (
1

2
+

1

6
) 1/

1

𝑦4 + ⋯ 

 = 4 −
4

𝑦
+

3

𝑦2 −
5

3𝑦3 +
2

3𝑦4 ...... 

This contains an infinite terms of negative powers of y. Hence 𝑓 (
1

𝑦
) has 

isolated essential singularity at y = 0. 

This ⇒ f (z) has an isolated essential singularity at 𝑧 = ∞. 

Example 20(c): Find the nature and location of the singularities of the 

function 𝑓(𝑧) =
1

𝑧(𝑒𝑧−1)
. Prove that f (z) can be expanded in the form 

1

𝑧2 −
1

2𝑧
+ 𝑎0 + 𝑎2𝑧2 + 𝑎4𝑧4 + ⋯ where 0 < |z| < 2𝜋 and find the values of a0 

and a2. 

Solution: The singularities of f (z) are given by z.(ez - 1) = 0  

∴ z = 0 and 𝑒𝑧 = 1 = 𝑒2𝑛𝜋𝑖 (n = 0, + 1, + 2, ...) 

Hence the singularities of f are at z = 0 and z = 2𝑛𝜋𝑖 (n = 0, + 1, + 2, ...). It 

follows that z occurs as a factor of ez - 1 too. Hence z = 0 is a double pole 

of (z). 

The other singularities + 2𝜋, +4𝜋, + 6𝜋, ... are simple pole. 
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Hence f (z) can be expanded as a Laurent's series in the region 0 < |z| < 2𝜋 

in powers of z. As z = 0 is a double pole, the principal part of f(z) consists 

of two terms only. 

Therefore the expansion of f(z) will be of the form 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛 +∞
𝑛=0

𝑏1

𝑧
+

𝑏2

𝑧2.  ...(1) 

Now, 𝑓(𝑧) =
1

𝑧(𝑒𝑧−1)
 

 =
1

𝑧[(1+𝑧+
𝑧2

2 !
+

𝑧3

3 !
+

𝑧4

4 !
+⋯ )−1]

 

 =
1

𝑧2
[1 +

𝑧

2
+

𝑧2

6
+

𝑧3

24
+

𝑧4

120
+ ⋯ ]

−1 

 

 =
1

𝑧2 [1 − (
𝑧

2
+

𝑧2

6
+

𝑧3

24
+

𝑧4

120
+ ⋯ ) + (

𝑧

2
+

𝑧2

6
+

𝑧3

24
+ ⋯ )

2

−

(
𝑧

2
+

𝑧2

6
+ ⋯ )

3

+                                       (
𝑧

2
+ ⋯ )

4

− ⋯ ]  

  =
1

𝑧2
[1 −

𝑧

2
+

1

12
𝑧2 +

1

360
𝑧4 + ⋯ ] 

 =
1

𝑧2 −
1

2𝑧
+

1

12
+

1

720
𝑧2 + ⋯       

 ...(2) 

Comparing (1) and (2), we obtain 

𝑎0 =
1

12
  𝑎𝑛𝑑 𝑎2 =

1

720
. 

Example 21: Find zeros and discuss of singularity of the function 𝑓(𝑧) =
(𝑧−2)

𝑧2 sin (
1

𝑧−1
) . 

Solution: Poles of f(z) are obtained by putting denominator equal to zero, 

i.e., z2 = 0. 

This ⇒ 𝑧 = 0, 0. 

⇒ 𝑧 = 0 is a pole of order two. 

Zeros of (f(z) are given by (𝑧 − 2) sin (
1

𝑧−1
) = 0 

This ⇒ 𝑧 = 2 and 
1

𝑧−1
= 𝑛𝜋 ⇒ 𝑧 = 2, 𝑧 =

1

𝑛𝜋
+ 1. 
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Thus z = 2 is a simple zero. The limit point of the zeros given by z = 1 + 
1

𝑛𝜋
, where n = + 1, + 2, ... is z = 1. Therefore z = 1 is isolated essential 

singularity.    

Example 22: Find Laurent series of 𝑓(𝑧) = (𝑧 − 3) sin (
1

𝑧+2
) about 

singularity z = - 2 and indicate nature of singularity.  

Solution: 𝑠𝑖𝑛 𝜃 = 𝜃 =
𝜃3

3 !
+

𝜃5

5 !
−

𝜃7

7 !
… … … .. 

∴  𝑓(𝑧) = (𝑧 − 3) [
1

(𝑧+2)
−

1

3 !
.

1

(𝑧+2)3 +
1

5 !(𝑧+2)5 … … . ] 

which represents Laurent's series. 

Second Part: Zeros of f (z) are given by (𝑧 − 3) sin (
1

𝑧+2
) = 0 ⇒ 𝑧 −

3 = 0, sin (
1

𝑧+2
) = 0 

⇒ sin (
1

𝑧 + 2
) = 0 = sin(𝑛𝜋) ⇒

1

𝑧 + 2
= 𝑛𝜋 

⇒ 𝑧 + 2 =
1

𝑛𝜋
⇒ 𝑧 =

1

𝑛𝜋
− 2 for n = 1, 2, 3, 4, ............ 

𝑧 =
1

∞
− 2 = −2 is limit of zeros. 

∴ z = -2 is isolated essential singularity. 

Example 23: Show that the function 𝑒
−

1

𝑧2 has ni singularities. 

Solution: Let  𝑓(𝑧) = 𝑒
−

1

𝑧2 =
1

𝑒
−

1

𝑧2
 

Poles of f(z) are given by 𝑒
−

1

𝑧2 = 0, which is not possible for any value of 

z, real or complex. 

Zeros of f(z) are given by 𝑒
−

1

𝑧2 = 0 = 𝑒−∞ so that 
1

𝑧2 = ∞. 

This ⇒ 𝑧 = 0, (repeated twice).  

Hence z = 0 is a zero of order two so that there is no limit of the zero. 

Consequently there is no singularity. Finally, f(z) is free from any 

singularity. 

Check your progress 
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Problem 1: Locate and name all the singularities of  𝑓(𝑧) =
𝑧8+𝑧4+2

(𝑧−1)3 (3𝑧+2)2 

Solution: Poles of f(z) are given by (z -1)3 (3z + 2)2 = 0 

This ⇒ z = 1, pole of order 3 and  𝑧 = −
2

3
, pole of order 2. 

Problem 2: Write the principal part of the function 









zz
zf

1
exp

1
)(  at 

its singular point. 

Solution: 






0

1 !

1
)(

n
n nz

zf  

11.5 SUMMARY:- 

The chapter on singular points classifies points where a complex function 

fails to be analytic, focusing primarily on isolated singularities. These are 

categorized into three types based on the function's Laurent series 

expansion in a punctured disk around the point: a removable singularity if 

the principal part (negative powers) is zero, allowing the function to be 

redefined as analytic; a pole of order m if the principal part has finitely 

many terms, causing the function's magnitude to approach infinity; and 

an essential singularity if the principal part has infinitely many terms, 

leading to the chaotic behavior described by Picard's Theorem, where the 

function attains every complex value (with one possible exception) 

infinitely often in every neighborhood. This classification is fundamental 

for applying the Residue Theorem, which uses the Laurent series 

coefficient b1 (the residue) to evaluate complex integrals, and extends to 

infinity via the substitution w=1/z, with functions analytic everywhere 

except for poles being termed meromorphic. 

11.6 GLOSSARY:- 

1. Zero of an analytic function 

2. Singular point 

3. Isolated singularity 

4. Non-isolated singularity 

5. Removable singularity 

6. Pole 

7. Residue 

8. Essential singularity 
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9. The point at infinity. 
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11.9 TERMINAL QUESTION:- 

Long answer type question 

1: Classify the singularities of a function of a complex variable. Show 

that the only singularities of 
2)(

cot
)(

az

z
zf





are poles. 

2: Determine the nature of the pole at the origin of the function 

mzz

e
zf

z

sin
)(  . 

https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdf


COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 250 

 

3: What kind of singularity has the following functions: 

(i) 
)/1cos(

1

z
at 0z   (ii) zcot at z  

4: Determines nature and investigate the behavior of the functions at 

infinity 

(i) 
az sinsin

1


   (ii) 

az coscos

1


 

(iii) 
2

cot

z

z
    (iv) 

2

cos

z

z
 

(v) 
)cos2(

1
3 zz 

   (vi) 
21 z

e z


 

5: Classify the singularities of a function )(zf . Locate the 

singularities of )1log( z and classify them. 

Short answer type question 

1: Distinguish between pole and essential singularity. 

2: Define (i) a removable singularity (ii) a pole (iii) an isolated 

singularity of f(z). Give one example in each case. 

 

Objective type question: 

1.  The function 
z

z
zf

sin
)(  has: 

A)  A removable singularity at z = 0 

B)  A simple pole at z = 0 

C)  An essential singularity at z = 0 

D)  A non-isolated singularity at z = 0 

2.  The function 
)/1sin(

1
)(

z
zf  has: 

A)  A simple pole at z = 0 

B)  A pole of order 2 at z = 0 

C)  An essential singularity at z = 0 

D)  A non-isolated singularity at z = 0 
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3. For the function 
3)1(

)(



z

e
zf

z

 the point 1z  is: 

A)  A removable singularity 

B)  A pole of order 1 

C)  A pole of order 3 

D)  An essential singularity 

4.  The nature of the singularity of zezf /1)(  at z=0 is: 

A)  Removable 

B)  Simple Pole 

C)  Essential Singularity 

D)  Pole of order 2 

5.  A function )(zf  has a pole of order m at az  . Which of the 

following is TRUE? 

A)  )(lim zfaz  exists and is finite. 

B)   |)(|lim zfaz . 

C)  )()(lim 1 zfaz m

az



   exists and is non-zero. 

D)  )()(lim zfaz m

az   does not exist. 

6.  The function 
)4(

1
)(

2 


zz
zf  has: 

A) Three simple poles 

B)  One simple pole and one pole of order 2 

C)  Three poles, one of which is of order 2 

D)  A removable singularity at z=0 

7.  According to Picard's Theorem, in every neighborhood of an 

essential singularity, a function: 

A)  Is bounded. 

B)  Takes all complex values, with at most one exception. 

C)  Takes only real values. 

D)  Becomes zero. 

8. The point z=0 for the function 
2

cos1
)(

z

z
zf


  is: 

A)  A simple pole 

B)  A pole of order 2 

C)  An essential singularity 

D)  A removable singularity 
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9.  The singularity of 
z

z
zf

)1log(
)(


 at z=0 is: 

A)  A removable singularity 

B)  A simple pole 

C)  An essential singularity 

D)  A branch point (not an isolated singularity) 

10.  If the principal part of the Laurent series of a function about an 

isolated singular point contains an infinite number of terms, the point is 

called: 

A)  A Removable Singularity 

B)  A Pole 

C)  An Essential Singularity 

D)  A Regular Point 

11. The function f(z) = (𝑧 − 3)
1

2 has the following singularity at z = 3: 

A)  Pole  

B)  Branch point   

C)  Removable singularity   

D)  Essential singularity 

12.  Which of the following is correct: 

A)  Zeros of f(z) is a singular point 

B)  Poles are not isolated 

C)  Limit points of poles of f(z) are not isolated. 

D)  Limit points of zeros is an isolated essential singularity.      

13.  Which one is correct: For the function f(z) = tan (
1

𝑧
) , 𝑧 = 0 is 

A)  an isolated essential singularity 

B)  a simple pole 

C)  a non-isolated essential singularity 

D)  none of these          

14. The number of roots of z3 e-z = 0 inside |z| = 1 is  

A)  one   

B)  three 
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C)  six   

D)  two.    

15. The function f (z) = sin z: 

A)  is bounded     

B)  is not analytic 

C)  has only real zeros   

D)  none of these. 

Fill in the blanks: 

1.  𝑓(𝑧) = sin (
1

𝑧
) has an ...... singularity at z = 0. 

2. 𝑓(𝑧) =
𝑧

𝑧2−1
 has a pole of order ........... at z = 1. 

3. The points where f '(z) = 0 or f ' (z) = ∞, called .............. points.        

11.10 ANSWERS 

Answer of long answer type question: 

1: 0z  is a pole of order 2 

nz   where ...,3,2,1,0 n  

Are simple poles z is non-isolated essential singularity. 

2: 0z is simple pole. 

The function has simple poles at each of these points. 

m

n
z


 , where ...,3,2,1,0 n  

z  is non-isolated essential singularity. 

3 (i): The function has simple poles at each of the point 

)2/12(

1




n
z , where ,1,0 n 0z is a limit of these 

poles and hence 0z  is non-isolated essential singularity. 
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3 (ii): The function has single poles at each of the points nz  , where 

...,3,2,1,0 n  

 and z is a limit of these poles and so z is non-isolated 

essential singularity. 

4 (i):  If 
2


  m , ( ...),2,1,0 m  

then   kz 2 and ...),2,1,0(,)12(  kkz   are 

simple poles, if 
2


  m  

then for even m , 
2

2


  k and, for odd m , 
2

)12(


  kz  

are poles of second order: z is a limit of poles in all cases. 

Answer of objective questions: 

1: A   2: D  3: C 

 4: C 

5: B   6: A  7: B 

 8: D 

9: B   10: C  11: C 

 12: D 

13: A   14: B  15: A 

 

Answer of fill in the blanks:  

1.  Essential    2. One    3.  

Singular. 
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UNIT-12: Residue Theorem 

CONTENTS 

12.1 Introduction 

12.2 Objective  

12.3 Residue at a pole 

12.4 Residue at infinity 

12.5 Cauchy residue theorem 

12.6 Computation of residue at a finite pole 

12.7 Summary 

12.8 Glossary  

12.9  References 

12.10 Suggested Readings 

12.11 Terminal Questions 

12.12 Answers 

12.1 INTRODUCTION:- 

The residue theorem is one of the central results in complex 

analysis, providing a powerful method for evaluating complex integrals, 

especially those around closed contours. It establishes a deep connection 

between the values of a complex function inside a contour and the integral 

of that function around the contour, by relating the integral to the sum of 

residues of the function’s singularities enclosed by the path. Essentially, if 

a function is analytic except for isolated singular points, the integral of the 

function around a simple closed contour is 2πi times the sum of its 

residues at those singularities. This theorem not only simplifies the 

computation of many real and complex integrals but also has broad 

applications in mathematics, physics, and engineering, including in 

evaluating improper integrals, solving differential equations, and 

analyzing physical systems. 

12.2 OBJECTIVE:- 

The objectives of the chapter residue theorem in complex analysis are: 
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1. To understand the concept of singularities and residues of complex 

functions. 

2. To learn methods for finding residues at different types of singular 

points. 

3. To state and prove the residue theorem and understand its 

significance in complex integration. 

4. To apply the Residue Theorem in evaluating complex contour 

integrals. 

5. To use the theorem to evaluate definite and improper real integrals 

that are otherwise difficult to compute. 

6. To develop problem-solving skills and deepen the understanding of 

the relationship between analytic functions and their singularities 

12.3 RESIDUE AT A POLE:- 

The residue at a pole in complex analysis focuses on understanding how to 

determine the residue of a complex function at its poles, which are specific 

types of isolated singularities where the function approaches infinity. A 

pole of a function is a point at which the function can be expressed as a 

ratio of two analytic functions, with the denominator vanishing at that 

point. 

Definition: Suppose a single valued function f (z) has a pole of order m at 

z = a, then y definition of pole the principal part of Laurent's expansion of 

f (z) contains only m terms so that 

    𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 + ∑ 𝑏𝑛(𝑧 −𝑚
𝑛=1

∞
𝑛=0

𝑎)−𝑛   ...(1) 

where      





C

nn

C

nn
az

dzzf

i
b

az

dzzf

i
a

11 )(

)(

2

1
,

)(

)(

2

1


 

C being a circle |z - a| = r. 

Evidently  
C

dzzf
i

b )(
2

1
1


     

 ...(2) 

The coefficient b1 is called the residue of f(z) at the pole z = a and is 

denoted by the symbol Res(z = a). Thus Res (z = a) = b1. 
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Evidently the value of b1, given by (2), does not depend upon the order of 

the pole and hence it represents a general definition of the residue at a 

pole. 

Consider the case in which z = a is a simple pole. i.e., z = a is a pole of 

order 1.  

Then (1) becomes 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛 +
𝑏1

(𝑧−𝑎)
∞
𝑛=0   

 This   ⇒  lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 𝑏1 

 Using (2), we get  𝑅𝑒𝑠 (𝑧 = 𝑎) = lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) = 𝑏1


C

dzzf
i

)(
2

1


  

Here the circle C may be replaced by any closed contour containing within 

it no other singularity except z = a. 

Example 1: If f(z) is a function such that for positive integer m, a value 

𝜙 (z0) ≠ 0 and 𝜙 (z) = (z - z0)
m f(z) is analytic at z0, then prove that f(z) 

has a pole of order m at z0.  

Solution:  f(z) has a pole of order m at z0  

⇒ 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 +∞
𝑛=0 ∑

𝑏𝑛

(𝑧−𝑎)𝑛
𝑚
𝑛=1  and 𝑏𝑚 ≠ 0. 

 = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 +
𝑏1

𝑧−𝑧0
+

𝑏2

(𝑧−𝑧0)2 + ⋯ +
𝑏𝑚

(𝑧−𝑧0)𝑚
∞
𝑛=0   

Multiplying by (z - z0)
m, we get  

(𝑧 − 𝑎)𝑚𝑓(𝑧) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑧 − 𝑧0)𝑚+𝑛 + 𝑏1(𝑧 − 𝑧0)𝑚−1 + 𝑏2(𝑧 − 𝑧0)𝑚−2

+ ⋯ + 𝑏𝑚. 

   = 𝜙(𝑧), say 

 ⇒ 𝜙(𝑧) = (𝑧 − 𝑧0)𝑚𝑓(𝑧) 

Also 𝑏𝑚 ≠ 0 ⇒ 𝜙(𝑧0) ≠ 0. This proves the example. 

12.4 RESIDUE AT INFINITY:- 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 258 

 

The chapter residue at infinity in complex analysis introduces the concept 

of evaluating the residue of a complex function at the point at infinity, 

which is treated as an extended point on the complex plane in the context 

of the Riemann sphere. 

Definition: If f(z) has an isolated singularity at 𝑧 = ∞ or is analytic there, 

then the residue at 𝑧 = ∞ is defined, as  

   𝑅𝑒𝑠(𝑧 = ∞) = 
C

dzzf
i

)(
2

1


 

where C is any closed contour which encloses all the finite singularities of 

f (z). The integral is taken in positive direction (anticlockwise direction). 

Remark (i): The function mat be regular at infinity, yet has a residue 

there. Consider the function 𝑓(𝑧) =
𝑏

(𝑧−𝑎)
. 

For this function 

   𝑅𝑒𝑠(𝑧 = ∞) = −
1

2𝜋𝑖  


CC

dz
az

b

i
dzzf

)(2

1
)(


 

     = −
𝑏

2𝜋𝑖
∫

𝑟𝑖𝑒𝑖𝜃

𝑟𝑒𝑖𝜃

2𝜋

0
𝑑𝜃 =

−
𝑏

2𝜋
∫ 𝑑𝜃 = −𝑏

2𝜋

𝐶
 

Where, C is the circle |z - a| = r 

∴  𝑅𝑒𝑠(𝑧 = ∞) = −𝑏 

Also z = a is a simple pole of f (z) and its residue there is  
C

bdzzf
i

)(
2

1


 

Therefore Res(z = a) = b = -Res (z = ∞) 

(ii) If a function is analytic at a point z = a, then its residue at z = a will be 

zero, but not so at infinity. 

(iii) If 𝑓(𝑧) =
(z2+2z+7) ez

(z−5)2 (z−2)7(z−9)3
, then f(z) has poles at z = 5, 2, 9 of orders 

2, 7, 3 respectively. 

12.5 CAUCHY RESIDUE THEOREM:- 
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The “Cauchy residue theorem” in complex analysis presents one of the 

most powerful and elegant results for evaluating contour integrals of 

analytic functions. The Cauchy residue theorem states that if a function is 

analytic inside and on a closed contour except for a finite number of 

isolated singularities, then the integral of the function around the contour 

is equal to 2πi times the sum of the residues of the function at those 

singularities. This theorem serves as a generalization of Cauchy’s Integral 

Theorem and provides a direct link between the local behavior of a 

function near its singular points and its global integral properties. The 

chapter focuses on understanding the statement and proof of the theorem, 

computing residues at different types of singularities, and applying the 

theorem to evaluate complex contour integrals and real definite integrals 

that are difficult to solve using elementary methods. 

Theorem 1(Cauchy's Residue Theorem): If f(z) is analytic within and on 

a closed contour C, except at a finite number of poles z1, z2, z3 ......, zn 

within C, then 

   
C

dzzf )( 2𝜋𝑖 ∑ 𝑅𝑒𝑠 (𝑧 = 𝑧𝑟)𝑛
𝑟=1  

where R.H.S. denotes sum of residues of f(z) at its poles lying within C. 

Proof: Suppose 𝛾1, 𝛾2, … … 𝛾𝑛 are the circles with centres at z1, z2, ......, zn, 

respectively and radii so small that they lie within closed curve C and do 

not overlap f(z) is analytic within the annulus bounded by these circles and 

the curve C, By corollary to Cauchy's theorem.  

   

n

dzzfdzzfdzzfdzzf
C 

)(...)()()(

21

  

 ...(1) 

 But, 
C

dzzf )( = residue of f (z) at z = z1. 

    = Res(z = z1) 

 ∴ 
1

)(


dzzf =2𝜋𝑖 Res (z = z1). 

 Using this in (1), we get 
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   idzzf
C

2)(  Res (z = z1) + ... + 2𝜋𝑖 Res (z = zn) 

     = 2𝜋 𝑖 ∑ 𝑅𝑒𝑠 (𝑧 = 𝑧𝑟)𝑛
𝑟=1  

Theorem 2: If a function f(z) is analytic except at finite number of 

singularities including that at infinity), then the sum of residue of these 

singularities is zero. 

Proof: Let C be a closed contour which encloses all the singularities of 

f(z), except that at infinity. The sum Σ𝑅 of residue at all these singularities 

within C is given by  

   idzzf
C

2)(   Σ𝑅  

[This follows from Cauchy's residue theorem] 

This  ⇒
1

2𝜋𝑖   Rdzzf
C

)(  

Also  )(Re)(
2

1
  zsdzzf

i
C


 

Adding these two equations, we get Res(𝑧 = ∞) + Σ𝑅 = 0. 

This proves the required result. 

Example 2: Evaluate the residues of 
z2

(z−1)(z−2)(z−3)
 at 1, 2, 3, and infinity 

and show that their sum is zero.  

Solution: Let 𝑓(𝑧) =
𝑧2

(𝑧−1)(𝑧−2)(𝑧−3)
 

 𝑅𝑒𝑠 (𝑧 = 1) = lim
𝑧→1

(𝑧 − 1)𝑓(𝑧) = lim
𝑧→1

𝑧2

(𝑧−2)(𝑧−3)
  

    =
1

(1−2)(1−3)
=

1

2
 

 𝑅𝑒𝑠(𝑧 = 2) =  lim
𝑧→2

(𝑧 − 2)𝑓(𝑧) = lim
𝑧→2

𝑧2

(𝑧−1)(𝑧−3)
= −4 

 𝑅𝑒𝑠(𝑧 = 3) =  lim
𝑧→3

(𝑧 − 3)𝑓(𝑧) = lim
𝑧→3

𝑧2

(𝑧−1)(𝑧−2)
=

9

2
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 𝑅𝑒𝑠(𝑧 = +∞) = lim
𝑧→∞

−𝑧 𝑓(𝑧) = lim
𝑧→∞

−𝑧3

(𝑧−1)(𝑧−2)(𝑧−3)
= −1 

Sum of residues =
1

2
− 4 +

9

2
− 1 = 0. 

Example 3: Evaluate the residue of 
z3

(z−1)(z−2)(z−3)
 at z = ∞. 

Solution: We expand the function in the neighbourhood of z = ∞ as 

follows: 

 𝑓(𝑧) =
𝑧3

(𝑧−1)(𝑧−2)(𝑧−3)
 

 = (1 −
1

𝑧
)

−1

 (1 −
2

𝑧
)

−1

 (1 −
3

𝑧
)

−1

 

 = (1 +
1

𝑧
+ ⋯ ) (1 +

2

𝑧
+ ⋯ ) (1 +

3

𝑧
+ ⋯ ) 

 = 1 +
6

𝑧
+  ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓

1

𝑧
. 

Hence the residue at infinity = - 6 = negative coefficient of 
1

𝑧
. 

Example 4: Evaluate the residues of f(z) where f(z) = 
ez

z2(z2+9)
 at z = 0, -3i, 

+ 3i. 

Solution: Here, 𝑓(𝑧) =
𝑒𝑧

𝑧2(𝑧2+9)
.  

It's poles are z = 0, -3i, + 3i. 

Since z = 0 is the pole of second order, so 

𝑅𝑒𝑠 𝑓(𝑧) =
1

1 !
.

𝑑

𝑑𝑧
(

𝑒𝑧

𝑧2+9
) at z = 0 

 =
𝑒𝑧.(𝑧2+9)−𝑒𝑧.2𝑧

(𝑧2+9)2
 at = 0 

 =
1

9
. 

z = -3i is a simple pole, 

 
)3(

lim
)9(

)3(
lim)(Re

2232233 izz

e

zz

eiz
zfs

z

iz

z

iziz 








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    =
𝑒−3𝑖

(−3𝑖)2(−6𝑖)
= −

𝑖𝑒−3𝑖

54
. 

Similarly, Res𝑓(z) =
𝑧=3𝑖

𝑖𝑒3𝑖

54
. 

Example 5: Evaluate buy the method of calculus of residues

 
C

zz

dz

)1)(1(
where, C is circle |z|=3. 

Solution: Let 𝑓(𝑧) =
1

(𝑧−1) (𝑧+1)
. Poles of f (z) are given by (z - 1) (z + 1) 

= 0 or, z = 1, -1. These are simple poles and lie within C. 

Res (𝑧 = 1) = Lt
𝑧→1

(𝑧 − 1)𝑓(𝑧) =  Lt
𝑧→1

(𝑧−1)

(𝑧−1) (𝑧+1)
 

  = Lt
𝑧→1

1

𝑧+1
=

1

2
  

Res (𝑧 = −1) = Lt
𝑧→−1

(𝑧 + 1)𝑓(𝑧) =  Lt
𝑧→−1

1

(𝑧−1) 
=

−1

2
 

Res (z = 1) + Res (z = - 1) = 
1

2
−

1

2
= 0 

So,  
C

idzzf 2)( (sum of residues) = 2𝜋𝑖 (0) = 0. 

Example 6: Evaluate by method of calculus of residues: 

   
C

zz

dz

)4)(1( 2
, where c is a circle |z| = 3.  

Solution: For poles (z2 + 1) (z - 4) = 0 ⇒ z = i, -i, 4, z = 4 lies outside c. 

Res (𝑧 = 𝑖) = lim
𝑧→𝑖

(𝑧 − 𝑖)
1

(𝑧−𝑖)(𝑧+𝑖)(𝑧−4)
=

1

2𝑖 (𝑖−4)
 

Res  (𝑧 = −𝑖) = lim
𝑧→−𝑖

(𝑧 − 𝑖)
1

(𝑧−𝑖)(𝑧+𝑖)(𝑧−4)
= −

1

2𝑖 (−𝑖−4)
 

   =
1

2𝑖 (𝑖+4)
 

Sum of residues =
1

2𝑖
[

1

𝑖−4
+

1

𝑖+4
] =

2𝑖

2𝑖 (𝑖2−17)
= −

1

17
 

Value of integral = 2𝜋𝑖 (−
1

17
) = −

2𝜋𝑖

17
. 
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Example 7: Using residue theorem, evaluate  
C

z

zz

dze
2)1(

, where C is circle 

|z| = 2 

Solution. Let  


C

z

zz

dze
I

2)1(
 

where C is circle |z| = 2. 

Here centre is z = 0 and radius = 2. 

∴  z = 0, 1 are poles lying within C. 

z = 0 is a simple pole. 

Res (𝑧 = 0) = lim
𝑧→0

 (𝑧 − 0)𝑓(𝑧) =  lim
𝑧→0

𝑧 [
𝑒𝑧

𝑧 (𝑧−1)2] 

 = lim
𝑧→0

𝑒𝑧

𝑧 (𝑧−1)2 =
𝑒0

(0−1)2 = 1 

z = 1 is a pole of order 2. Take (𝑧) =
𝜙 (𝑧)

(𝑧−1)2 , where 𝜙 (𝑧) =
𝑒𝑧

𝑧
. 

Res(z = 1) =
𝜙′(1)

1!
, 𝜙′(𝑧) =

𝑒𝑧 .  𝑧−1.  𝑒𝑧 

𝑒2
 

 𝜙′(1) =
𝑒1 .  1− 𝑒1 

12 = 0 

∴ Res (z = 1) = 0. 

By Cauchy's residue theorem, I = 2𝜋𝑖 (sum of residues within c) 

  = 2𝜋𝑖 [Res (z = 0) + Res (z = 1)] 

  = 2𝜋𝑖 [1 + 0] = 2𝜋𝑖 

Theorem 3: If an analytic function f(z) has a pole at 𝑧 = ∞, then the 

residue of f(z) at infinity is the negative of the coefficient of 
1

z
 in the 

expansion of f(z) for the values of z in the neighbourhood of z = ∞. 

Proof: Suppose f(z) has pole of order m at z = ∞. Then 𝑓 (
1

𝑧′) has a pole of 

order m at z' = 0. 𝑓 (
1

𝑧′
) has Laurent's expansion in the neighbourhood of z' 

= 0 in the form  
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  𝑓 (
1

𝑧′) = ∑ 𝑎𝑛𝑧′𝑛 +∞
𝑛=0 ∑ 𝑏𝑛𝑧′−𝑛∞

𝑛=1    

 ...(1) 

Putting 
1

𝑧′ = 𝑧, we get 𝑓(𝑧) = ∑ 𝑎𝑛𝑧−𝑛 + ∑ 𝑏𝑛𝑧𝑛𝑚
𝑛=1

∞
𝑛=0   

 ...(2) 

    


























C

m

n

n

n

C n

n

n

C

dzzbdzzadzzf
10

)(  










C

n
m

n

n

C

n

n

n dzzbdzza
10

 




C

dzza 1

1 , For, all the other integrals vanish. 

 = 𝑎1 ∫ (𝑟𝑒𝑖𝜃2𝜋

0
)−1𝑖𝑟𝑒𝑖𝜃𝑑𝜃 = 𝑎1𝑖 ∫ 𝑑𝜃 = 2𝜋𝛼1𝑖

2𝜋

0
 

Or 
1)(

2

1
adzzf

i
C

 
 But )(Re)(

2

1
  zsdzzf

i
C


 

∴  Res (𝑧 = ∞) = −𝑎1.      ...(3) 

From (2), it is clear that −𝑎1 is the negative of the coefficient of 
1

𝑧
 in the 

neighbourhood of 𝑧 = ∞. In view of this, (3) proves the required result. 

Theorem 4: To prove that )(Re)( 


zszzfLim
z

 provided f (z) is 

analytic at 𝑧 = ∞. 

Proof: Let f (z) be analytic at 𝑧 = ∞ so that 𝑏𝑛 = 0∀𝑛 𝑠. 𝑡. 1 < 𝑛 < 𝑚, as 

obvious from (2). 

Now (2) becomes 

 𝑓(𝑧) = ∑ 𝑎𝑛𝑧−𝑛∞
𝑛=0  

or 𝑓(𝑧) = 𝑎0 +
𝑎1

𝑧
+

𝑎2

𝑧2
+ ⋯ 

or 𝑧 𝑓(𝑧) = 𝑎1 +  
𝑎2

𝑧
+

𝑎3

𝑧2
+ ⋯ if a0 = 0. 

Taking limit as 𝑧 = ∞, we get Lim
𝑧→∞

 𝑧𝑓(𝑧) = a1 
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or  Lim
𝑧→∞

[−𝑧 𝑓(𝑧)] = −𝑎1 = 𝑅𝑒𝑠 (𝑧 = ∞) 

if a0 = 0 and the limit has a definite value. 

Example 8: Find residue of 
𝑧3

𝑧2−1
 at 𝑧 = ∞. 

Solution: 𝑓(𝑧) =
𝑧3

𝑧2−1
=

𝑧3

𝑧2 (1 −
1

𝑧2)
−1

 

⇒ 𝑓(𝑧) = 𝑧 [1 +
1

𝑧2
+

1

𝑧4
+ ⋯ ] = 𝑧 +

1

𝑧
+

1

𝑧3
+ ⋯ 

Res (𝑧 = ∞) = −𝑐𝑜𝑒𝑓𝑓. 𝑜𝑓
1

𝑧
= −1.  

12.6 COMPUTATION OF RESIDUE AT A FINITE 

POLE:- 

Now we are going to discuss the computation of residue at a finite pole. 

1. Residue of f(z) at a simple pole z = a. 

(i) Res (𝑧 = ∞) = Lim
𝑧→𝑎

 (𝑧 − 𝑎)𝑓(𝑧). 

(ii) Let 𝑓(𝑧) =
𝜙(𝑧)

Ψ (𝑧)
 have a simple pole at z = a,  

where Ψ (𝑧) = (𝑧 − 𝑎)𝐹(𝑧) and 𝐹(𝑎) ≠ 0. 

Then, residue of f(z) at z = a 

 = Lim
𝑧→𝑎

 (𝑧 − 𝑎)𝑓(𝑧) 

 = Lim
𝑧→𝑎

 (𝑧 − 𝑎)
𝜙(𝑧)

Ψ (𝑧)
      

 [form
0

0
] 

 = Lim
𝑧→𝑎

 
(𝑧−𝑎)[𝜙(𝑎)+(𝑧−𝑎)𝜙′(𝑎)+

(𝑧−𝑎)2

2!
𝜙′′(𝑎)+⋯ ]

Ψ (𝑎)+(𝑧−𝑎)Ψ′(𝑎)+
(𝑧−𝑎)2

2!
Ψ′′(𝑎)+⋯

       (by Taylor's 

theorem) 

 = Lim
𝑧→𝑎

 
𝜙(𝑎)+(𝑧−𝑎)Ψ′(𝑎)+

(𝑧−𝑎)2

2!
𝜙′′(𝑎)+⋯

Ψ′(𝑎)+
(𝑧−𝑎)

2!
Ψ′′(𝑎)+⋯

=
𝜙(𝑧)

Ψ′(𝑧)
 

For, Ψ (𝑎) = 0 
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∴ Res (𝑧 = 𝑎)
𝜙(𝑧)

Ψ′(𝑧)
 

2. Residue at a pole of order m. 

Theorem 5: If f(z) has a pole of order m at z = 0, then show that the 

residue at a is the limit of  

  
1

(m−1)!
 

dm−1

dzm−1
[(𝑧 − a)m f(𝑧)]as 𝑧 → a.        

Or 

To prove that the residue of 
ϕ (z)

(z−a)m at z = a is
ϕ(m−1) (a)

(m−1) !
. 

Proof: Suppose f (z) has a pole of order m at z = a so that f (z) is 

expressible  

    𝑓(𝑧) =
𝜙 (𝑧)

(𝑧−𝑎)𝑚.     

 ...(1) 

where 𝜙 (𝑎) ≠ 0 𝑎𝑛𝑑 𝜙(𝑧) is analytic. 

Residue of f (z) at z = a is b1, where b1 is given by 

  𝑏1 =
1

2𝜋𝑖
∫ 𝑓(𝑧)𝑑𝑧 =

1

2𝜋𝑖
∫

𝜙 (𝑧)𝑑𝑧

(𝑧−𝑎)𝑚𝐶𝐶
 

      =
1

(𝑚−1)!
.

(𝑚−1)!

2𝜋𝑖
∫

𝜙 (𝑧)𝑑𝑧

(𝑧−𝑎)𝑚−1+1𝐶
 

      =
1

(𝑚−1)!
. 𝜙(𝑚−1)(𝑎), by Cauchy's integral formula. 

Using (1), we get 

   Res (𝑧 = 𝑎) =
1

(𝑚−1)!

𝑑𝑚−1

𝑑𝑧𝑚−1
[(𝑧 − 𝑎)𝑚𝑓 𝑧)] 𝑎𝑠 𝑧 →

𝑎.       Proved. 

Theorem 6 (Liouville's Theorem): If function is analytic at every point 

and finite at infinity, then it must be constant. 

Proof: Let f (z) be the given function. Let a and b be any two distinct 

points then the only singularities of the function 

𝐹 (𝑧) =
𝑓(𝑧)

(𝑧−𝑎)(𝑧−𝑏)
 are z = a and z = b, and possibly at infinity.  
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But, Res (𝑧 = ∞) = Lim
𝑧→∞

− 𝑧 𝐹 (𝑧). 

Or, Res (𝑧 = ∞) = [Lim
𝑧→∞

 
−𝑧

(𝑧−𝑎)(𝑧−𝑏)
] × [Lim

𝑧→∞
 𝑓(𝑧)] = 0. finite number  

Or, Res (𝑧 = ∞) = 0. 

Since the sum of all the residues is zero and so  

Res (z = a) + Res (z = b) + Res (z = ∞) = 0 

Or, Lim
𝑧→𝑎

 (𝑧 − 𝑎)𝐹(𝑧) + Lim
𝑧→𝑏

 (𝑧 − 𝑏)𝐹(𝑧) +  0 = 0 

Or, 
𝑓 (𝑎)

𝑎−𝑏
+

𝑓 (𝑏)

𝑏−𝑎
= 0 or f (a) = f(b), 

showing there by f(z) is constant. 

Remark: This theorem has been already proved in previous unit. 

3. Residue at a pole  z = a of any order. 

We have seen that the residue of f(z) at z = a is the coefficient of 
1

𝑧−𝑎
 in Laurent's expansion of f(z) and therefore coefficient of 

1

𝑡
 in the 

expansion of f(a + t) as a power series. 

Working rule (for computing the residue) 

(1) Res (𝑧 = 𝑎) = Lim
𝑧→𝑎

 (𝑧 − 𝑎)𝑓 (𝑧) for simple pole. 

(2) Res (𝑧 = 𝑎) =
𝜙(𝑚−1) (𝑎)

(𝑚−1) !
 for pole of order m, if 𝑓(𝑧)

𝜙 (𝑧)

(𝑧−𝑎)𝑚 

(3) Res (𝑧 = 𝑎) =
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶
𝑑𝑧 for pole of any order. 

(4) Res (𝑧 = ∞) =
1

2𝜋𝑖
∫ 𝑓(𝑧)

𝐶
, 𝑅𝑒𝑠 (𝑧 = ∞) = Lim

𝑧→∞
− 𝑧𝑓 (𝑧) if limit 

exists. 

(5) Res (𝑧 = ∞) = negative of the coefficient of 
1

𝑧
 in the expansion of 

f(z) in    the neighbourhood of 𝑧 = ∞. 

(6) 
C

dzzf )( = 2𝜋𝑖 ∑ 𝑅𝑒𝑠 (𝑧 = 𝑧𝑟)𝑛
𝑟=1  
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(7) If 𝑓(𝑧) =
𝜙 (𝑧)

Ψ (𝑧)
 has a simple pole at z = a, then Res (𝑧 = 𝑎) =

𝜙 (𝑎)

Ψ′(𝑎)
. 

This formula is applied at those places, where Ψ (𝑧) can not be factored. 

these rules are illustrated by the following examples. 

Example 9: Find the residue of 
𝑧3

(𝑧−1)4(𝑧−2)(𝑧−3)
 at z = 1, 2, 3. 

Solution: Let 𝑓(𝑧) =
𝑧3

(𝑧−1)4(𝑧−2)(𝑧−3)
 

(i) Take 𝜙 (𝑧) =
𝑧3

(𝑧−2)(𝑧−3)
. Then 𝑓(𝑧) =

𝜙 (𝑧)

(𝑧−1)4 

   Res (𝑧 = 1) =
𝜙(3) (1)

3!
    ...(1) 

Breaking 𝜙 (𝑧) into partial fractions 

  𝜙 (𝑧) = 𝑧 + 5 =
8

𝑧−2
+

27

𝑧−3
 

  𝜙′(𝑧) = 1 +
8

(𝑧−2)2 +
27

(𝑧−3)2 

  𝜙′′(𝑧) = −
16

(𝑧−2)3 +
54

(𝑧−3)3 

  𝜙(3)(𝑧) =
48

(𝑧−2)4 −
162

(𝑧−3)4 

  𝜙(3)(1) = 48 −
162

16
=

303

8
 

Using this in (1|), we get 

  Res (𝑧 = 1) =
303

8×6
=

101

16
     

  Ans. 

  Res (𝑧 = 2) = Lim
𝑧→2

 (𝑧 − 2)𝑓(𝑧) 

    = Lim
𝑧→2

 
𝑧3

(𝑧−1)4(𝑧−3)
=

8

1×(−1)
= −8  

  Ans. 

  Res (𝑧 = 3) = Lim
𝑧→3

 (𝑧 − 3)𝑓(𝑧) 
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    = Lim
𝑧→3

 
𝑧3

(𝑧−1)4(𝑧−2)
 

    =
27

(3−1)4(3−2)
=

27

16
.    

  Ans. 

Example 10: Find residue of 
1

(𝑧2+1)3 at z = i. 

Solution: 𝑓(𝑧) =
1

(𝑧2+1)3
=

𝜙 (𝑧)

(𝑧−𝑖)3
, where 𝜙 (𝑧) =

𝜙 (𝑧)

(𝑧+𝑖)3
 

∴ 𝜙′(𝑧) =
−3

(𝑧+𝑖)4 , 𝜙′′(𝑧) =
12

(𝑧+𝑖)5 

 𝜙′′(𝑖) =
12

(𝑖+𝑖)5 =
12

(2𝑖)5 =
3

8𝑖
 

Res (𝑧 = 𝑖) =
𝜙′′(𝑖)

2 !
=

3

16𝑖
 z = i is a pole of order 3.   

Example 11: Find residue of 𝑓(𝑧) =
1

(𝑧2+𝑎2)2 at z = ia. 

Solution: 𝑓(𝑧) =
1

(𝑧+𝑖𝑎)2 (𝑧−𝑖𝑎)2 =
𝜙 (𝑧)

(𝑧−𝑖𝑎)2 , 𝜙(𝑧) =
1

(𝑧−𝑖𝑎)2 

⇒ f (z) has a pole of order 2 at z = ia. 

Res (z = ia) = Lim
𝑧+𝑖𝑎

 
𝜙′(𝑧)

(1)
= Lim

𝑧→𝑖𝑎
 

−2

(𝑧+𝑖𝑎)3 =
−2

(2𝑖𝑎)3 =
𝑖

4𝑎3. 

Example 12: Determine the order of poles and values of residues of the 

function 

  (i) 𝑐𝑜𝑠𝑒𝑐 𝑧   (ii) 
𝑧+3

𝑧2−2𝑧
.    

  

Solution: (i)  𝑓(𝑧) = 𝑐𝑜𝑠𝑒𝑐 𝑧 =
1

sin 𝑧
 

Poles are given by sin 𝑧 = 0 = sin 0 

∴  z = 0 is simple pole of f (z). 

Write 𝑓(𝑧) =
𝜙 (𝑧)

Ψ (z)
, then 𝜙 (𝑧) = 1, Ψ (z) = sin 𝑧. 

Res(𝑧 = 0) = lim
𝑧→0

𝜙 (𝑧)

Ψ′ (z)
= lim

𝑧→0
 

1

cos 𝑧
=

1

cos(0)
= 1. 
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∴  Res (z = 0) = 1.        

(ii) 𝑓(𝑧) =
(𝑧+3)

𝑧2−2𝑧 
=

𝑧+3

𝑧 (𝑧−2)
 

Poles of f(z) are z (z - 2) = 0 

or,  z = 0, z = 2 both are simple poles. 

Res (z = 0) = lim
𝑧→0

 (𝑧 − 0)𝑓(𝑧) 

     = lim
𝑧→0

 𝑧. [
(𝑧+3)

𝑧 (𝑧−2)
] = lim

𝑧→0
 (

𝑧+3

𝑧−2
) =

0+3

0−2
=

3

−2
 

Res (z = 2) = lim
𝑧→0

 (𝑧 − 2)𝑓(𝑧) = lim
𝑧→2

 
(𝑧−2)(𝑧+3)

𝑧 (𝑧−2)
= lim

𝑧→2
 
𝑧+3

𝑧
=

2+3

2
=

5

2
.  

 ∴ Res (𝑧 = 0) = −
3

2
 

Res (𝑧 = 2) =
5

2
 

Example 13: Find residues of 
𝑧+1

𝑧2(𝑧−3)
.    

Solution: Let 𝑓(𝑧) =  
𝑧+1

𝑧2(𝑧−3)
. 

Poles of f(z) are given by  

   z2 (z - 3) = 0,  

    z = 0 is a pole of order 2  

    z = 3 is a simple pole. 

Res (𝑧 = 3) = lim
𝑧→3

 (𝑧 − 3)𝑓(𝑧) 

  = lim
𝑧→3

(𝑧 − 3)
(𝑧+1)

𝑧2(𝑧−3)
= lim

𝑧→3

𝑧+1

𝑧2 =
3+1

32 =
4

9
 

For z = 0,  𝑓(𝑧) =
𝜙(𝑧)

𝑧2 , 𝜙(𝑧) =
𝑧+1

𝑧−3
  

 𝜙′(𝑧) =
1.(𝑧−3)−1.(𝑧+1)

(𝑧−3)2  

∴ 𝜙′(0) =
(0−3)−(0+1)

(0−3)2
=

−4

9
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Res (𝑧 = 0) = −
4

9
, Res (𝑧 = 3) =

4

9
.      

Example 14: Find the residue of 
z3

z2−1
 at 𝑧 = ∞. 

Solution: Let 𝑓(𝑧) =
𝑧3

𝑧2−1
.  

Then, 𝑓(𝑧) =
𝑧3

𝑧2 (1 −
1

𝑧2)
−1

 

  = 𝑧 [1 +
1

𝑧2 +
1

𝑧4 +
1

𝑧6 + ⋯ ] 

Or 𝑓(𝑧) = 𝑧 +
1

𝑧
+

1

𝑧3
+

1

𝑧5
+ ⋯ 

Res (𝑧 = ∞) = − (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓
1

𝑧
) = −(1) = −1. 

Example 15: If 𝜙(z)and 𝛹(𝑧) are two regular functions and z = a is once 

repeated root of 𝛹(z) = 0 and ϕ(z) ≠ 0, then prove that residue of 
ϕ(z)

 Ψ(z)
 at 

z = a is  

    
6ϕ′(a)Ψ′′(a)−2ϕ(a)Ψ′′′(a)

3[Ψ′′(a)]2  

Solution: Given (1) z = a is once repeated root of Ψ(z) = 0. 

(2) ϕ(a) ≠ 0 

(3) ϕ (z) and Ψ(𝑧) are analytic functions. 

(1) ⇒ Ψ(𝑧) = (𝑧 − 𝑎)2𝑓(𝑧)  ...(4)  & 𝑓(𝑎) ≠ 0 

Then 
ϕ(z)

Ψ(𝑧)
=

ϕ(z)

(𝑧−𝑎)2𝑓(𝑧)
    ...(5) has pole at z = a of order 2. 

We know that residue of 
𝐹 (𝑧)

(𝑧−𝑎)𝑛 at z = a is 
𝐹(𝑛−1)(𝑎)

(𝑛−1)
 

According to this, residue of 
ϕ

Ψ
=

ϕ

(𝑧−𝑎)2𝑓
 at z = a 

is   
𝑑

𝑑𝑧
{

ϕ(z)

𝑓(𝑧)
} at z = a. 

So our aim is to show that 
𝑑

𝑑𝑧
{

ϕ

𝑓
}

𝑎𝑡 𝑧=𝑎
=

6ϕ′(a)Ψ′′(a)−2ϕ(a)Ψ′′′(a)

3[Ψ′′(a)]2
  

 ...(6) 
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At   𝑧 = 𝑎,
𝑑

𝑑𝑧
{

𝜙(𝑧)

𝑓(𝑧)
} =

𝜙′(𝑎)𝑓(𝑎)−𝑓′(𝑎)𝜙(𝑎) 

[𝑓(𝑎)]2
   

 ...(7) 

we remove f, f' from (7). 

By (4), 𝛹(𝑧) = (𝑧 − 𝑎)2 𝑓(𝑧) 

⇒ 𝛹′(𝑧) = 2(𝑧 − 𝑎)𝑓(𝑧) + (𝑧 − 𝑎)2𝑓′(𝑧)     

 ...(8) 

Again differentiating w.r.t. z,  

   𝛹′′(𝑧) = 2𝑓(𝑧) + 4 (𝑧 − 𝑎)𝑓′(𝑧) + (𝑧 − 𝑎)2𝑓′′(𝑧)  

 ...(9) 

⇒ 𝛹′′′(𝑧) = 2𝑓′(𝑧) + 4𝑓′(𝑧) + 4(𝑧 − 𝑎)𝑓′′(𝑧) + 2(𝑧 − 𝑎)𝑓′′(𝑧) +

(𝑧 − 𝑎)2𝑓′′(𝑧) ...(10) 

Putting z = a in equations. (8), (9) and (10), we get 

  𝛹′(𝑎) = 0 ...(8),  𝛹′′(𝑎) = 2𝑓(𝑎) ...(9), 

 𝛹′′′(𝑎) = 6𝑓′(𝑎) ...(10) 

Putting equations (9') & (10') in (7), 

At 𝑎 = 𝑧,
𝑑

𝑑𝑧
{

𝜙

𝑑𝑧
} =

1

2
𝜙′(𝑎)𝛹′′(𝑎)−

1

6
𝛹′′′(𝑎).𝜙(𝑎)

{
1

2
𝛹′′(𝑎)}

2 =
6𝜙′(𝑎)𝛹′′(𝑎)−2𝛹′′(𝑎).𝜙(𝑎) 

3{
1

2
𝛹′′(𝑎)}

2  

General Problems on Calculus of Residues 

Example 16: Evaluate 
C

dzzf )( = 𝑧e
1

z d𝑧 around the unit circle. 

Solution. Let 𝑓(𝑧) = 𝑧𝑒
1

𝑧 𝑓(𝑧) lhas only one singularity (pole) at z = 0. 

   𝑓(𝑧) = 𝑧𝑒
1

𝑧 = 𝑧 [1 +
1

𝑧
+

1

𝑧2 2!
+

1

𝑧33!
+ ⋯ ] 

    = 𝑧 + 1 +
1

𝑧 2!
+

1

𝑧23!
+ ⋯ 

Res (z = 0) = coeff of 
1

𝑧
 in the expansion of (z) = 

1

2!
=

1

2
 

By Cauchy's residue theorem, 
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dzzedzzf
CC

  2

1

)( = 2𝜋𝑖. 𝑅𝑒𝑠 (𝑧 = 0) =
2𝜋𝑖

2
= 𝜋𝑖 

Example 17: Evaluate 
C

dz
z)cosh(

1
where c is |z| = 2. 

Solution: Write 𝑓(𝑧) =
1

cosh(𝑧)
  

Poles of f(z) are given by cosh (z) = 0 ⇒ cos(𝑖𝑧) = cos (
𝜋

2
) 

⇒  𝑖𝑧 = 2𝑛𝜋 ±
𝜋

2
⇒ 𝑧 = −2𝑛𝜋𝑖 ∓

𝑖𝜋

2
𝑛 = 0, 1, 2, … 

 𝑧 =
𝑖𝜋

2
, 𝑧 = −

𝑖𝜋

2
 are simple poles inside c. 

Formula for Res of 
𝑓 (𝑧)

𝑔 (𝑧)
 for simple pole z = a is 

𝑓 (𝑧)

𝑔 (𝑧)
 when 𝑧 → 𝑎. 

Res (𝑧 =
𝑖𝜋

2
) = lim

𝑧→
𝑖𝜋

2

1
𝑑

𝑑𝑧
(cosh 𝑧)

= lim
𝑧→

𝑖𝜋

2

 
1

sinh(𝑧)
 

  = lim
𝑧→

𝑖𝜋

2

1
1

𝑖
sin(𝑖𝑧)

=
𝑖

sin(𝑖
𝑖𝜋

2
)

=
𝑖

sin(
−𝜋

2
)
 

Similarly, Res (𝑧 = −
𝑖𝜋

2
) = 𝑖 

  idzzf
C

2)(  [𝑅𝑒𝑠 (𝑧 =
𝑖𝜋

2
) +  𝑅𝑒𝑠 (𝑧 = −

𝑖𝜋

2
)] =

2𝜋𝑖[(−𝑖) + 𝑖] = 0 

Example 18: Obtain Laurent's expansion of the function f(z) =
1

z2 sinh(z)
 

at the isolated singularity and hence evaluate 
C

dz
zz )sinh(

1
2

, where c is 

circle |z - 1| = 2. 

Solution: 𝑓(𝑧) =
𝑑𝑧

𝑧2 sinh(𝑧)
=

1

𝑧2(𝑧+
𝑧3

3!
+

𝑧5

5!
+⋯ )

 

 =
1

𝑧3 [1 − (
𝑧2

6
+

𝑧4

120
… ) + (

𝑧2

6
+

𝑧4

120
… )

2

+ ⋯ ] 

 =
1

𝑧3 [1 −
𝑧2

6
−

𝑧4

120
+

𝑧4

36
… ] =

1

𝑧3 −
1

6𝑧
+ 𝑧 (

1

36
−

1

120
) … 
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or, 𝑓(𝑧) =
1

𝑧3 −
1

6𝑧
+

7𝑧

360
…       

 ...(1) 

which is the required Laurent's expansion. 

 z = 0 is a pole inside circle c given by |z - 1| = 2 

Res (z = 0) = coeff. of 
1

𝑧−0
 in the expansion (1) = −

1

6
 

By Cauchy's residue theorem,  

36

2
)0(Re.2

)sinh(

1
2




ii
zsidz

zz
C

  

Example 19: Evaluate 
C

zdzez /14   where c is circle |z| = 1. 

Solution: Let 𝑓(𝑧) = 𝑧4 𝑒
1

𝑧, then z = 0 is the only pole of it which is 

inside c. 

 𝑓(𝑧) = 𝑧4 𝑒
1

𝑧 = 𝑧4 (1 +
1

𝑧
+

1

𝑧2 2!
+

1

𝑧33!
+

1

𝑧44!
+

1

𝑧55!
… ) 

Res (z = 0) = coeff. of 
1

𝑧
 in this expansion =

1

5!
=

1

120
 

∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑧4 𝑒
1

𝑧 𝑑𝑧 = 2𝜋𝑖. 𝑅𝑒𝑠 (𝑧 = 0) =
2𝜋𝑖

120
=

𝜋𝑖

60𝐶𝐶
    

Theorem 7: If AB is the arc θ1 < θ < θ2 of the circle 

   |z - a| = r and if 

  lim
𝑧→𝑎

 (𝑧 − 𝑎)𝑓(𝑧) =  𝑘 (constant), 

then  lim
𝑟→0

 ∫ 𝑓(𝑧)𝑑𝑧 = 𝑖 (𝜃2 − 𝜃1)𝑘.
𝐴𝐵

   

Proof: Since, lim
𝑧→𝑎

 (𝑧 − 𝑎)𝑓(𝑧) = 𝑘 

∴ given 𝜀 > 0, ∃ 𝛿 depending upon 𝜀 s.t. 

   |(z - a) f (z) - k| < 𝜀. For |z - a| < 𝛿  

But |z - a| = r. Therefore if we take r < 𝛿. 
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then  |(z - a) f (z) - k| < 𝜀 on the arc AB 

This ⇒ (𝑧 − 𝑎)𝑓(𝑧) − 𝑘 = 𝜂 where |𝜂| < 𝜀 

         ⇒ 𝑓(𝑧) =
𝑘+𝜂

𝑧−𝑎
  

∴ ∫ 𝑓(𝑧)𝑑𝑧 = ∫ (
𝑘+𝜂

𝑧−𝑎
) 𝑑𝑧 

𝐴𝐵𝐴𝐵
 

   = ∫ (
𝑘+𝜂

𝑟𝑒𝑖𝜃)
𝜃2

𝜃1
𝑟𝑒𝑖𝜃𝑖𝑑𝜃, 𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 

   = 𝑘𝑖 ∫ 𝑑𝜃 + 𝑖
𝜃2

𝜃1
∫ 𝜂 𝑑𝜃

𝜃2

𝜃1
 

Check your progress 

Problem 1: Apply the calculus of residues to prove that ∫  
∞

0

sin 𝑚𝑥

𝑥
𝑑𝑥 =

𝜋

2
. 

Problem 2: Find the residue of 
)3)(2()1( 4

3

 zzz

z
at 3,2,1z . 

12.7 SUMMARY:- 

The Residue Theorem unit establishes a profoundly powerful tool in 

complex analysis, stating that if a function is analytic inside and on a 

simple closed contour C, except for a finite number of isolated 

singularities z1, z2,…,zn inside C, then the contour integral of the function 

around C is simply 2πi times the sum of the residues of the function at 

those singularities, formally expressed as . This theorem elegantly reduces 

the often-difficult evaluation of complex contour integrals to the algebraic 

computation of residues at the enclosed poles, providing an essential 

method for solving definite real integrals, evaluating infinite series, and 

has far-reaching applications in physics and engineering. 

12.8 GLOSSARY:- 

 Residue at a pole 

 Residue at infinity 

 Cauchy residue theorem. 
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 E.T. Copson, (1970), Introduction to Theory of Functions of 

Complex Variable, Oxford University Press.  

 Theodore W. Gamelin,(2001) Complex Analysis, Springer-Verlag, 

2001. 

12.11TERMINAL QUESTION:- 

Long answer type question 

1: State and prove Cauchy's residue theorem. 

2:  Find poles and resides of the function 𝑓(𝑧) =
2𝑧+1

𝑧2−𝑧−2
. 

3: Evaluate 
C

z

dz

)cosh(
where C is 2|| z  

4: Using residue theorem evaluate  
C

z

zz

e
2)1(

, where C is circle 

2|| z  

https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdf


COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 277 

 

5: Find resides of the function 
)3)(2)(1(

3

 zzz

z
at the point 

3,2,1z respectively. 

Short answer type question 

1: Evaluate the integral dz
zz

e

z

z





2||

)1(
 using residue theorem.  

2: Evaluate the integral dz
z

z

z





3||

2 1

cos
 using residue theorem 

3: dz
zz

z





4||

2 )2)(9(

1
 

4: Evaluate the integral dz
z

e

z

z


1||

3
 using residue theorem. 

5: Evaluate the integral dze
z

z


1||

/1
 using residue theorem. 

6: Evaluate the integral dz
z

z

z


2||

4

sin
 using residue theorem. 

7: Evaluate the integral dz
zz

z

z








2||

2

2

)4(

1
 using residue theorem. 

Objective type question: 

1: The residue of 
z3

(z−1)(z−2)(z−3)
 at z = 1, 2, 3 are respectively. 

a) 
1

2
, −8,

27

2
   

b) 1, −8,
27

2
  

c) 
1

2
, 0,

27

2
   

d)  None of these   
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2:  The number of poles of 𝑓(z) =
1

z(z2+3)(z2+2)3 inside the circle |z| = 

1 are: 

a) 1   

b) 9   

c) 5   

d) 2                 

3: The Residue Theorem states that for a simply connected domain D 

and a function f(z) analytic on D except for finitely many isolated 

singularities inside a simple closed contour C, the integral 

C dzzf )(  is equal to: 

a)  The sum of all singularities of f(z) in D. 

b)  2πi times the sum of the residues of f(z) at the singularities inside 

C. 

c)  The product of the residues of f(z) at the singularities inside C. 

d)  2π times the sum of the residues of f(z) at the singularities inside C. 

4:  The residue of f(z) = 1/(z² + 1) at z = i is: 

a)  -i/2 

b)  i/2 

c)  1/(2i) 

d)  1/(2i) 

5:  Consider the function 
2

)(
z

e
zf

z

 . Which of the following is the 

value of  1||
?)(

Z
dzzf  

a)  0 

b)  2πi 

c)  πi 

d)  -2πi 
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6:  What is the residue of 
5

)cos(
)(

z

z
zf   at z = 0? 

a)  1/24 

b)  -1/24 

c)  1/4! 

d)  0 

7:  To evaluate the real integral  





2

0 cos35

d
 using the Residue 

Theorem, we substitute 
iez  . The resulting contour integral is: 

a)    1|| 2 3103z zz

dz
 

b)    1|| 2 )3103(

2

z zzi

dz
 

c)    1|| 2 )1(

2

z zi

dz
 

d)    1|| )cos35(z zz

dz
 

Fill in the blanks: 

1: The coefficient a₋₁ in the Laurent series expansion of f(z) about an 

isolated singularity z₀ is called the ……. of f(z) at z₀. 

2:  According to Cauchy's residue theorem,  
C

dzzf ...................)( , 

where the sum is over all singularities inside C. 

3:  To evaluate the real integral 



 21 x

dx
 using the residue theorem, one 

typically uses a contour consisting of the real axis from -R to R and a 

large ________ in the upper half-plane. 

Answer: Semicircle (or semi-circle) 

4: The function zzf cot)(   has singularities at nz  . These are all 

________ poles. 

Match the Following: 
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Column A: Function 

1. f(z) = 1 / (z² + a²) 

2. f(z) = ez / zⁿ 

3. f(z) = sin(z)/z³ 

4. f(z) = 1 / (z - z₀)³ 

Column B: Residue at the specified singularity 

A.  1/((n-1)!) 

B.  0 

C.  1/(2ai) 

D.  0 (Residue for a pole of order >1 where the relevant Laurent 

coefficient is zero) 

12.12ANSWERS:- 

Answer of check your progress 

Problem 2: 
16

101
)1(Re zs ; 8)2(Re zs ; 

16

27
)3(Re zs  

Answer of long answer type question 

2: Poles are z = 2, -1, Resides = 
5

3
,

1

3
.   3: 0 

4: i2        5:

 
2

27
,8,

2

1
  

Answer of short answer type question: 

1: )1(2 ei    2: 0   3:

 )32(
39

2
i


 

4: i     5: i2    6:

 
3

i
  

7: 
2

i
 

Answer of objective question: 
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1: a  2: a   3: b  

 4: c 

5: b  6: b   7: b 

Answer of fill in the blanks: 

1:   Residue  2: 2πi × Σ Res(f, zk) 

 3: Semicircle 

4:  Simple 

Answers of match the following: 

1   C (Residue at z = ai is 1/(2ai)) 

2   A (Residue at z = 0 is 1/(n-1)!) 

3   B (The singularity at z = 0 is removable, so residue is 0) 

4   D (The Laurent series has a coefficient a₋₃=1, but a₋₁=0) 
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UNIT-13: Application of Residue Theorems 

CONTENTS 

13.1 Introduction 

13.2 Objective  

13.3 Jordan’s Inequality 

13.4 Evaluation of real definite integrals 

13.5 Integration round the unit circle 

13.6 Evaluation of integrals of the type ∫  
∞

−∞
f(z)dz 

13.7 Poles lie on the real axis 

13.8 Summary 

13.9 Glossary  

13.10  References 

13.11 Suggested Readings 

13.12 Terminal Questions 

13.13 Answers 

13.1 INTRODUCTION:- 

The Residue Theorem, a crowning achievement of complex 

integration, elegantly reduces the global problem of evaluating a contour 

integral to the local, often straightforward, algebraic computation of 

residues at enclosed singularities. While its initial power is demonstrated 

through the evaluation of standard real integrals, its true versatility is 

unlocked when confronting more sophisticated problems, such as those 

involving integrals over the entire real line of functions combined with 

trigonometric expressions like eimx or sin(mx). For these, the successful 

application often hinges on establishing that the integral over an auxiliary 

contour, typically a large semicircle, vanishes in the limit; a step crucially 

supported by Jordan's Inequality, which provides the necessary bound for 

the decay of the exponential e−mIm(z) along the arc. This foundational 

strategy extends the theorem's reach far beyond real calculus, enabling the 

summation of infinite series via contour integration of functions 

like πcot(πz), the efficient computation of inverse Laplace and Fourier 

transforms, and even finding applications in number theory to prove results 

like the Prime Number Theorem, solidifying the Residue Theorem as an 

indispensable tool across pure and applied mathematics. 
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13.2 OBJECTIVE:- 

After the study of this chapter, learner shall understand: 

 To understand the concept and statement of the Residue 

Theorem: Explain how the theorem relates contour integrals of 

analytic functions to the sum of residues enclosed within a closed 

contour. 

 To learn methods for calculating residues: Develop proficiency 

in determining residues at simple, multiple, and essential poles using 

various techniques such as limits and Laurent series expansion. 

 To apply the residue theorem to evaluate complex integrals: 
Demonstrate how to compute contour integrals around closed paths 

in the complex plane using residues. 

 To evaluate real definite integrals using contour integration: 
Illustrate how real improper integrals—especially those involving 

rational, trigonometric, and exponential functions—can be solved 

efficiently with the help of the residue theorem. 

 To explore the role of singularities in integration: Understand 

how the location and type of singular points affect the value of 

contour integrals. 

 To strengthen problem-solving skills in complex integration: 

Apply theoretical knowledge to practical examples and develop 

strategies for selecting suitable contours in various integration 

problems. 

 To appreciate the theoretical and practical importance of 

residues: Recognize the significance of the residue theorem in 

mathematics, physics, and engineering—particularly in evaluating 

integrals, solving differential equations, and studying signal 

processing. 

13.3 JORDAN'S INEQUALITY:- 

If 0 ≤ 𝜃 ≤ 𝜋/2, then the inequality 
20

𝜋
≤ sin⁡0 ≤ 0 is known as Jordan's 

inequality. 

Theorem 1 (Jordan's Lemma): If 𝑓(𝑧) is analytic except at finite number 

of singularities and if 𝑓(𝑧) → 0 uniformly as 𝑧 → ∞, then 

lim
𝑅→∞

 ∫ 
Γ

𝑒𝑖𝑚𝑧𝑓(𝑧)𝑑𝑧 = 0,𝑚 > 0 

where Γ denotes the semi-circle |𝑧| = 𝑅, 𝐼(𝑧) > 0. 

Here 𝑅 is taken so large that all the singularities of 𝑓(𝑧) lie within the semi 
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circle Γ. (No singularitiy lies on the boundary of the semi circle). 

Proof: ∵ 𝑓(𝑧) → 0 uniformly as |𝑧| → ∞ 

∴ ⁡∃𝜀 > 0 s.t. |𝑓(𝑧)| ≤ 𝜀∀𝑧 on Γ.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)

⁡|𝑧| = 𝑅 ⇒ 𝑧 = 𝑅𝑒𝑖𝜃 ⇒ 𝑑𝑧 = 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 ⇒ |𝑑𝑧| = 𝑅𝑑𝜃⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)

𝑒𝑖𝑚𝑧 = exp⁡(𝑖𝑚𝑅𝑒𝑖𝜃) = exp⁡[𝑖𝑚𝑅(cos⁡𝜃 + 𝑖sin⁡𝜃)]

𝑒𝑖𝑚𝑧 = 𝑒𝑖𝑚𝑅cos⁡𝜃 ⋅ 𝑒−𝑚𝑅sin⁡𝜃

 

or 

Hence |𝑒𝑖𝑚𝑧| = 𝑒−𝑚𝑅sin⁡𝜃                                   ... (3)  

as |𝑒𝑖𝑝| = 1 for every real 𝑝. 

|∫ 
Γ

  𝑒𝑖𝑚𝑧𝑓(𝑧)𝑑𝑧|⁡≤ ∫ 
Γ

  |𝑒𝑖𝑚𝑧| ⋅ |𝑓(𝑧)| ⋅ |𝑑𝑧|

⁡< ∫  
𝜋

0

  𝑒−𝑚𝑅sin⁡𝜃𝜀 ⋅ 𝑅𝑑𝜃

⁡≤ ∫  
𝜋

0

 𝜀𝑅 ⋅ 𝑒−𝑚𝑅(2𝜃/𝜋)𝑑𝜃 as 
20

𝜋
≤ sin⁡𝜃 ≤ 𝜃

⁡=
𝜋𝜀𝑅

−2𝑚𝑅
[𝑒−2𝑚𝑅𝜃/𝜋]

0

𝜋
=

𝜋𝜀

2𝑚
(1 − 𝑒−2𝑚𝑅) → 0 as 𝑅 → ∞

∴⁡⁡ lim
𝑅→∞

 ∫ 
Γ

  𝑒𝑖𝑚𝑧𝑓(𝑧)𝑑𝑧 = 0,𝑚 > 0.

 

13.4 EVALUATION OF REAL DEFINITE 

INTEGRALS:- 

This section is mainly devoted to the evaluation of real definite integrals. 

We evaluate these integrals by the method of contour integration. The 

contour may be a circle, semi-circle or quadrant of circle 

Method for writing the function 𝒇(𝒛) of a given integral 

Integral Function 𝒇(𝒛) and 

Contour 

Contou

r 

1. ∫
0

2𝜋
 

cos2⁡3𝜃𝑑𝜃

1 + 2𝑝cos⁡𝜃 + 𝑝2
 
𝑓(𝑧) =

1 + 𝑒𝑖6𝜃

1 + 2𝑝cos⁡𝜃 + 𝑝2
 

as 2cos2⁡3𝜃 = 1 + cos⁡6𝜃 

Unit 

circle 

2. 
∫  

2𝜋

0

𝑒cos⁡𝜃 ⋅ cos 

(sin⁡𝜃 − 𝑛𝜃)𝑑𝜃 

𝑓(𝑧) = 𝑒cos⁡𝜃

exp⁡𝑖(sin⁡𝜃 − 𝑛𝜃), 𝑧 = 𝑒𝑖𝜃
 

Unit 

circle 
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3. ∫
0

2𝜋
 
cos⁡2𝜃𝑑𝜃

5 + 4cos⁡𝜃
 

𝑓(𝑧) =
𝑒𝑖2𝜃

5 + 4cos⁡𝜃
, 𝑧

= 𝑒𝑖𝜃  

Unit 

circle 

4. ∫
0

2𝜋
 
sin⁡2𝜃𝑑𝜃

5 + 4cos⁡𝜃
 

𝑓(𝑧) =
𝑒𝑖2𝜃

5 + 4cos⁡𝜃
, 𝑧

= 𝑒𝑖𝜃  

Unit 

circle 

5. ∫
0

∞
 
sin⁡2𝑥𝑑𝑥

5 + 4cos⁡𝑥
 𝑓(𝑧) =

𝑒𝑖2𝑧

5 + 4cos⁡𝑧
 

Semi 

circle 

6. ∫
0

∞
 
sin2⁡𝑚𝑥𝑑𝑥

𝑥2(𝑥2 + 𝑎2)
 

𝑓(𝑧) =
1 − 𝑒𝑖2𝑚𝑧

𝑧2(𝑧2 + 𝑎2)

 as 2sin2⁡𝑚𝑥 = 1 − cos⁡2𝑚𝑥

 

Semi 

circle 

idented 

at 𝑧 = 0 

7. ∫
0

∞
 
cos2⁡𝑚𝑥𝑑𝑥

𝑥2(𝑥2 + 𝑎2)
 

𝑓(𝑧) =
1 + 𝑒𝑖2𝑚𝑧

𝑧2(𝑧2 + 𝑎2)

 as 2cos2⁡𝑚𝑥 = 1 + cos⁡2𝑚𝑥

 

Semi 

circle 

idented 

at 𝑧 = 0 

8. ∫
−∞

∞
 
cos⁡𝑚𝑥𝑑𝑥

𝑥2 + 𝑥 + 1
 𝑓(𝑧) =

𝑒𝑖𝑚𝑧

𝑧2 + 𝑧 + 1
 

Semi 

circle 

9. ∫
−∞

∞
 
𝑥sin⁡𝑚𝑥𝑑𝑥

𝑥2 + 𝑎2
 𝑓(𝑧) =

𝑧𝑒𝑖𝑚𝑧

𝑧2 + 𝑎2
  

10

. ∫
0

∞
 
(log⁡𝑥)2𝑑𝑥

𝑥2 + 𝑎2
 𝑓(𝑧) =

(log⁡𝑧)2

𝑧2 + 𝑎2
 

Semi 

circle 

idented 

at 𝑧 = 0 

11

. 
∫  

∞

0

log⁡𝑥𝑑𝑥

𝑥2 + 1
 𝑓(𝑧) =

log⁡𝑧

𝑧2 + 1
 

Semi 

circle 

idented 

at 𝑧 = 0 

12

. 
∫  

∞

0

log⁡𝑥𝑑𝑥

𝑥 + 1
 𝑓(𝑧) =

(log⁡𝑧)2

𝑧 + 1
 

Double 

circle 

13

. 
∫
0

∞
 
log⁡𝑥𝑑𝑥

𝑥2 + 𝑥 + 1
 𝑓(𝑧) =

(log⁡𝑧)2

𝑧2 + 𝑧 + 1
 

Double 

circle 

14

. ∫
0

∞
 
log⁡𝑥𝑑𝑥

𝑥4 + 𝑥2 + 1
 𝑓(𝑧) =

log⁡𝑧

𝑧4 + 𝑧2 + 1
 

Semi 

circle 

idented 

at 𝑧 = 0 
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15

. 
∫  

∞

0

(log⁡𝑥)2𝑑𝑥

𝑥 + 1
 𝑓(𝑧) =

(log 𝑧)3

z + 1
 

Double 

circle 

idented 

at 𝑧 = 0 

 

Remark 1: Note the denominators of integrals 10,11,14⁡are even 

functions of 𝑥 whereas denominators of 12,13,15 are not even functions of 

𝑥. 

2:  If log⁡𝑧 or (log⁡𝑧)𝑛 occurs in the integrand, then the contour will be 

idented at 𝑧 = 0, whereas if integrand contains log⁡(𝑥2 + 1) or log⁡(𝑥 + 1), 
then it will not be idented at 𝑧 = 0. Observe integrals 11 and 14. 

13.5 INTEGRATION ROUND THE UNIT 

CIRCLE:- 

 

We proceed to evaluate the integrals of the type 

∫  
2𝜋

0

𝑓(sin⁡𝜃, cos⁡𝜃)𝑑𝜃 

If we take 𝑧 = 𝑒𝑖𝜃, then the above takes the form 

∫ 
𝐶

𝜙(𝑧)𝑑𝑧. For 
𝑧 + 𝑧−1

2
= cos⁡𝜃,

𝑧 − 𝑧−1

2𝑖
= sin⁡𝜃 

where 𝐶 is the unit circle |𝑧| = 1. 

Example 1: Evaluate ∫  
2𝜋

0

𝑑θ

𝑎+𝑏cos⁡θ
 

Solution: Take 𝐶 as unit circle |𝑧| = 1 and so 𝑧 = 𝑒𝑖𝜃 , 

𝑑𝑧 = 𝑒𝑖𝜃𝑖𝑑𝜃 = 𝑖𝑧𝑑𝜃 ⇒
𝑑𝑧

𝑖𝑧
= 𝑑𝜃 

Let𝐼 = ∫
0

2𝜋
 

𝑑𝜃

𝑎 + 𝑏cos⁡𝜃
= ∫

𝐶
  (
𝑑𝑖

𝑖𝑧
) ⋅

1

𝑎 +
𝑏
2
(𝑒𝑖0 + 𝑒−𝑖𝜃)

 

= ∫ 
𝐶

(
𝑑𝑧

𝑖𝑧
) ⋅

1

𝑎 +
𝑏
2 (𝑧 +

1
𝑧)

=
2

𝑖𝑏
∫ 
𝐶

𝑑𝑧

(𝑧2 +
2𝑎
𝑏 𝑧 + 1)

 

or, 
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𝐼 =
2

𝑖𝑏
∫ 
𝐶

𝑓(𝑧)𝑑𝑧, where 𝑓(𝑧) =
1

𝑧2 +
2𝑎
𝑏 𝑧 + 1

 

For poles : 𝑧2 +
2𝑎

𝑏
𝑧 + 1 = 0 ⇒ 𝑧 = −

𝑎±√(𝑎2−𝑏2)

𝑏
 

Take 𝛼 = −
𝑎+√(𝑎2−𝑏2)

𝑏
, 𝛽 = −

𝑎−√(𝑎2−𝑏2)

𝑏
 

Then 𝛼𝛽 = 1⁡&⁡|𝛽| > 1. ∴ ⁡ |𝛼| < 1 

Only Pole 𝑧 = 𝛼 lies inside 𝑐. 

Res(𝑧 = 𝛼) = lim𝑧→𝛼  (𝑧 − 𝛼)𝑓(𝑧) = lim𝑧→𝛼  
(𝑧 − 𝛼)

(𝑧 − 𝛼)(𝑧 − 𝛽)
 

=
1

𝛼 − 𝛽
=

𝑏

2√(𝑎2 − 𝑏2)

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ⋅
𝑏

2√(𝑎2 − 𝑏2)
=

𝜋𝑖𝑏

√(𝑎2 − 𝑏2)

𝐼 =
2

𝑖𝑏
∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = (
2

𝑖𝑏
)

𝜋𝑖𝑏

√(𝑎2 − 𝑏2)
=

2𝜋

√(𝑎2 − 𝑏2)

 

Example 2: Prove that, 

∫  
2𝜋

0

cos2⁡3𝜃𝑑𝜃

1 − 2𝑝cos⁡2𝜃 + 𝑝2
=
𝜋(1 − 𝑝 + 𝑝2)

1 − 𝑝
, 0 < 𝑝 < 1 

 

Solution:  Let 𝐶 denote unit circle |𝑧| = 1. 

and 

𝐼 = ∫  
2𝜋

0

cos2⁡30𝑑0

1 − 𝜌cos⁡20 + 𝑝2
 s.t. 0 < 𝑝 < 1 

Then 

𝐼⁡=
1

2
∫  

2𝜋

0

 
(1 + cos⁡60)𝑑𝜃

1 − 2𝑝cos⁡2𝜃 + 𝑝2

⁡=  R.P. 
1

2
∫  

2𝜋

0

 
(1 + 𝑒𝑖60)𝑑𝜃

1 − 𝑝(𝑒𝑖2𝜃 + 𝑒−20) + 𝑝2
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Putting 𝑧 = 𝑒𝑖𝜃  so that 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃,
𝑑𝑧

𝑖𝑧
= 𝑑𝜃, we get 

𝐼 = R. P ⋅
1

2
∫
𝐶
 

(1 + 𝑧6)

1 − 𝑝(𝑧2 + 𝑧−2) + 𝑝2
𝑑𝑧

𝑖𝑧

= R. P. (
−1

2𝑖𝑝
)∫

𝐶
 

𝑧(1 + 𝑧6)𝑑𝑧

𝑧4 − (
1 + 𝑝2

𝑝 )𝑧2 + 1
 

or 𝐼 = R.P. 
−1

2𝑖𝑝
∫
𝐶
 𝑓(𝑧)𝑑𝑧 

... (1), ⁡𝑓(𝑧) =
𝑧(1+𝑧6)

𝑧4−(
1+𝑝2

𝑝
)𝑧2+1

 

Poles of 𝑓(𝑧) are given by 𝑧4 − (
1+𝑝2

𝑝
) 𝑧2 + 1 = 0 

or 𝑝𝑧4 − (1 + 𝑝2)𝑧2 + 𝑝 = 0⁡ or ⁡𝑧2 =
(1+𝑝2)±[(1+𝑝2)

2
−4𝑝2]

1/2

2𝑝
 

or 𝑧2 =
(1+𝑝2)±(1−𝑝2)

2𝑝
=

1

𝑝
, 𝑝 so that 𝑧 = ±

1

√𝑝
, ±√𝑝 

The poles lying within the unit circle 𝐶 are ±√𝑝 as 0 < 𝑝 < 1 

Res(𝑧 = √𝑝) + Res(𝑧 = −√𝑝) 

⁡= lim
𝑧→√𝑝

 (𝑧 − √𝑝)𝑓(𝑧) + lim
𝑧→−√𝑝

 (𝑧 + √𝑝)𝑓(𝑧)

⁡= lim
𝑧→√𝑝

 
(𝑧 − √𝑝)𝑧(1 + 𝑧6)

(𝑧2 − 𝑝)(𝑧2 − 1/𝑝)
+ lim

𝑧→−√𝑝
 
(𝑧 + √𝑝)𝑧(1 + 𝑧6)

(𝑧2 − 𝑝)(𝑧2 − 1/𝑝)

⁡=
(1 + 𝑝3)√𝑝

(√𝑝 + √𝑝)(𝑝 − 1/𝑝)
+

(−√𝑝)(1 + 𝑝3)

(−√𝑝 − √𝑝)(𝑝 − 1/𝑝)

⁡ as 𝑧2 − 𝑝 = (𝑧 − √𝑝)(𝑧 + √𝑝)

⁡=
𝑝(1 + 𝑝3)

𝑝2 − 1

 

∫  
𝐶
𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum of residues within 𝐶) =

2𝜋𝑖𝑝(1+𝑝3)

𝑝2−1
 

Now by (1), 𝐼 = R.P. (−
1

2𝑖𝑝
)
2𝜋𝑖𝑝(1+𝑝3)

𝑝2−1
= R.P. (

1+𝑝2−𝑝

1−𝑝
) 𝜋 

or 

𝐼 = (
1 + 𝑝2 − 𝑝

1 − 𝑝
)𝜋 

Example 3: Evaluate ∫  
𝜋

0

𝑎𝑑𝜃

𝑎2+sin2 ⁡𝜃
⁡ where, 𝑎 > 0. 

 

Solution: Let 𝐼 = ∫  
𝜋

0

𝑎𝑑𝜃

𝑎2+sin2 ⁡𝜃
 

Then 
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𝐼 = ∫  
𝜋

0

2𝑎𝑑𝜃

2𝑎2 + 2sin2⁡𝜃
= ∫  

𝜋

0

2𝑎𝑑0

2𝑎2 + 1 − cos⁡20
 

⁡= ∫  
2𝜋

0

 
𝑎𝑑𝑡

2𝑎2 + 1− cos⁡𝑡
, putting 2𝜃 = 𝑡

⁡= ∫  
2𝜋

0

 
𝑎𝑑𝑡

2𝑎2 + 1−
1
2
(𝑒𝑖𝑡 + 𝑒−𝑖𝑡)

 

Putting 𝑧 = 𝑒𝑖𝑡 so that 𝑑𝑧 = 𝑖𝑒𝑖𝑡𝑑𝑡, we get 

𝐼 = ∫  
𝐶

2𝑎

2(2𝑎2+1)−(𝑧+𝑧−1)
⋅
𝑑𝑧

𝑖𝑧
, where 𝐶 is unit circle |𝑧| = 1 

or ⁡𝐼 =
2𝑎

𝑖
∫  
𝐶

𝑑𝑧

2(2𝑎2+1)𝑧−𝑧2−1
= 2𝑎𝑖 ∫  

𝐶

𝑑𝑧

𝑧2−2(2𝑎2+1)𝑧+1
 

or 

𝐼 = 2𝑎𝑖∫
𝐶
 𝑓(𝑧)𝑑𝑧 

…(1), 𝑓(𝑧) =
1

𝑧2 − 2(2𝑎2 + 1)𝑧 + 1
 

Poles of 𝑓(𝑧) are given by 

𝑧2 − 2(2𝑎2 + 1)𝑧 + 1 = 0 

or 

𝑧⁡=
2(2𝑎2 + 1) ± √[4(2𝑎2 + 1)2 − 4]

2

⁡= 2𝑎2 + 1 ±√[(2𝑎2 + 1)2 − 1] = 2𝑎2 + 1 ± 2𝑎√(𝑎2 + 1)

 

Taking 𝛼 = 2𝑎2 + 1+ 2𝑎√(𝑎2 + 1) 

𝛽 = 2𝛼2 + 1 − 2𝑎√(𝑎2 + 1) 

we get 𝑧 = 𝛼, 𝛽. Evidently. |𝛼| > 1 and |𝛽| < 1. 

𝑓(𝑧) has only one simple pole 𝑧 = 𝛽 lying within 𝐶. 

Res(𝑧 = 𝛽) = lim
𝑧→𝛽

 (𝑧 − 𝛽)𝑓(𝑧) = lim
𝑧→𝛽

 
(𝑧 − 𝛽) ⋅ 1

(𝑧 − 𝛼)(𝑧 − 𝛽)

=
1

𝛽 − 𝛼
=

1

−4𝑎√(𝑎2 + 1)

 

By Cauchy's residue theorem 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues within 𝐶) =
2𝜋𝑖

−4𝑎(𝑎2 + 1)1/2
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Using this in (1), we get 𝐼 =
2𝑖𝑎.2𝜋𝑖

−4𝑎(𝑎2+1)1/2
=

𝜋

(1+𝑎2)1/2
 

Example 4: Prove that 

∫  
2𝜋

0

(1 + 2cos⁡𝜃)𝑛cos⁡𝑛𝜃𝑑𝜃

3 + 2cos⁡𝜃
=
2𝜋

√5
(3 − √5)𝑛 

𝑛 being positive integer. 

Solution: Let 𝐼 = ∫  
2𝜋

0

(1+2cos⁡𝜃)𝑛cos⁡𝑛𝜃𝑑𝜃

3+2cos⁡𝜃
 

Then 

𝐼 =  R.P. ∫  
2𝜋

0

(1 + 𝑒𝑖𝜃 + 𝑒−𝑖𝜃)
𝑛
𝑒𝑖𝑛𝜃𝑑𝜃

3 + 𝑒𝑖𝜃 + 𝑒−𝑖𝜃
 

Putting 𝑧 = 𝑒𝑖𝜃  so that 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃, we get 

𝐼 =  R.P. ∫ 
𝐶

(1 + 𝑧 + 𝑧−1)𝑛𝑧𝑛

(3 + 𝑧 + 𝑧−1)
⋅
𝑑𝑧

𝑖𝑧
 

where 𝐶 is unit circle. 

𝐼 =  R.P. 
1

𝑖
∫ 
𝐶

 
(𝑧2 + 𝑧 + 1)𝑛𝑑𝑧

𝑧2 + 3𝑧 + 1
 so 𝐼 =  R.P. 

1

𝑖
∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 (1) 

where 

𝑓(𝑧) =
(𝑧2 + 𝑧 + 1)𝑛

𝑧2 + 3𝑧 + 1
 

Poles of 𝑓(𝑧) are given by 𝑧2 + 3𝑧 + 1 = 0. 

This gives 𝑧 =
−3±√5

2
. Take 𝛼 =

−3+√5

2
, 𝛽 =

−3−√5

2
 

Then 𝛼𝛽 = 1, |𝛼| < 1, |𝛽| > 1. 

∴ ⁡𝑓(𝑧) has only one simple pole 𝑧 = 𝛼 lying within 𝐶. 

Res(𝑧 = 𝛼)⁡= lim
𝑧→𝛼

 (𝑧 − 𝛼)𝑓(𝑧) = lim
𝑧→𝛼

 
(𝑧 − 𝛼)(𝑧2 + 𝑧 + 1)𝑛

(𝑧 − 𝛼)(𝑧 − 𝛽)

⁡=
(𝛼2 + 𝛼 + 1)𝑛

𝛼 − 𝛽
=
1

5
[(
−3 + √5

2
)

2

+
−3+ √5

2
+ 1]

𝑛

⁡=
1

√5
[
9 − 6√5 + 5 − 6 + 2√5 + 4

4
]

𝑛

=
(3 − √5)𝑛

√5

 

By Cauchy's residue theorem, 
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∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum of residues within 𝐶) =
2𝜋𝑖(3 − √5)𝑛

√5
 

Using this in (1), 𝐼 = R.P. 
1

𝑖
⋅
2𝜋𝑖

√5
(3 − √5)𝑛 

=
2𝜋

√5
(3 − √5)𝑛 

Example 5: Prove that ∫  
2𝜋

0

sin2⁡𝜃𝑑𝜃

𝑎+𝑏cos⁡𝜃
=

2𝜋

𝑏2
[𝑎 − √(𝑎2 − 𝑏2)] , where 𝑎 >

𝑏 > 0 

Solution: Let 𝐼 = ∫  
2𝜋

0

sin2 ⁡𝜃𝑑𝜃

𝑎+𝑏cos⁡𝜃
= ∫  

2𝜋

0

(1−cos⁡2𝜃)𝑑𝜃

2𝑎+2𝑏cos⁡𝜃
 

Then 

𝐼 =  R.P. ∫  
2𝜋

0

(1 − 𝑒𝑖2𝜃)𝑑𝜃

2𝑎 + 𝑏(𝑒𝑖𝜃 + 𝑒−𝑖𝜃)
 

Putting 𝑧 = 𝑒𝑖𝜃  so that 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃, we get 

𝐼 =  R.P. ∫ 
𝐶

(1 − 𝑧2)

2𝑎 + 𝑏(𝑧 + 𝑧−1)

𝑑𝑧

𝑖𝑧
 

where 𝐶 is unit circle |𝑧| = 1. 

or 

𝐼 =  R.P. 
1

𝑖
∫ 
𝐶

 
(1 − 𝑧2)𝑑𝑧

2𝑎𝑧 + 𝑏𝑧2 + 𝑏
=  R.P. 

1

𝑖𝑏
∫ 
𝐶

 
(1 − 𝑧2)𝑑𝑧

𝑧2 + (2𝑎/𝑏)𝑧 + 1

𝐼 =  R.P. 
1

𝑖𝑏
∫ 
𝐶

 𝑓(𝑧)𝑑𝑧⁡ … (1), 𝑓(𝑧) =
1 − 𝑧2

𝑧2 + (2𝑎/𝑏)𝑧 + 1

 

Poles of 𝑓(𝑧) are given by 𝑧2 +
2𝑎

𝑏
𝑧 + 1 = 0. 

or 

𝑧 =
−(2𝑎/𝑏) ± [(4𝑎2/𝑏2) − 4]1/2

2
=
−𝑎 ± (𝑎2 − 𝑏2)1/2

𝑏
 

Take 

𝛼 =
−𝑎 + (𝑎2 − 𝑏2)1/2

𝑏
, 𝛽 =

−𝑎 − (𝑎2 − 𝑏2)1/2

𝑏
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Then 𝛼𝛽 = 1, |𝛽| > 1, |𝛼| < 1. 

Hence 𝑓(𝑧) has a simple pole a 𝑧 = 𝛼 within 𝐶. 

Res(𝑧 = 𝛼)⁡= lim
𝑧→𝛼

 (𝑧 − 𝛼)𝑓(𝑧) = lim
𝑧→𝛼

 
1 − 𝑧2

𝑧 − 𝛽

⁡=
1 − 𝛼2

𝛼 − 𝛽
=
𝛼(1/𝛼 − 𝛼)

𝛼 − 𝛽

⁡=
𝛼(𝛽 − 𝛼)

𝛼 − 𝛽
= −𝛼 as 𝛼𝛽 = 1

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧⁡= 2𝜋𝑖 ⋅ Res(𝑧 = 𝛼) = −2𝜋𝑖𝛼

 

Now (1) becomes 

or 

𝐼 =  R.P. 
1

𝑖𝑏
(−2𝜋𝑖⋯ ) =  R.P. (

−2𝜋𝛼

𝑏
)

𝐼 =  R.P. 
2𝜋

𝑏2
[𝑎 − (𝑎2 − 𝑏2)1/2] =

2𝜋

𝑏2
[𝑎 − (𝑎2 − 𝑏2)1/2]

 

Example 6: Evaluate ∫  
𝜋

0

sin4 ⁡𝜃𝑑𝜃

𝑎+𝑏cos⁡𝜃
, where 𝑎 > 𝑏 > 0. 

Solution: 𝑎 > 𝑏 > 0 ⇒ 𝑎2 − 𝑏2 > 0 = √𝑎2 − 𝑏2 = real 

Let 

𝐼 = ∫  
𝜋

0

 
sin4⁡𝜃𝑑𝜃

𝑎 + 𝑏cos⁡𝜃
=
1

2
∫  

2𝜋

0

 
sin4⁡𝜃𝑑𝜃

𝑎 + 𝑏cos⁡𝜃
(1) 

Take 𝐶 as |𝑧| = 1 or, 𝑧 = 𝑒𝑖𝜃, 𝑑𝑧 = 𝑒𝑖𝜃𝑖𝑑𝜃,
𝑑𝑧

𝑖𝑧
= 𝑑0 

By eqs. (1), 

𝐼 = ∫ 
𝐶

 (
𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
)

4
𝑑𝜃

2𝑎 + 𝑏(𝑒𝑖𝜃 + 𝑒−𝑖𝜃)
=

1

16
∫ 
𝐶

  (𝑧 −
1

𝑧
)
4

⋅
𝑑𝑧

𝑖𝑧
⋅

1

2𝑎 + (𝑧 + 𝑧−1)𝑏
(2) 

or, 𝐼 =
1

16𝑖
∫  
𝐶

(𝑧2−1)
4
𝑑𝑧

𝑧4[2𝑎𝑧+𝑏(𝑧2+1)]
⁡ or ⁡𝐼 =

1

16𝑖𝑏
∫  
𝐶
𝑓(𝑧)𝑑𝑧 

where 𝑓(𝑧) =
(𝑧2−1)

4

𝑧4[𝑧2+
2𝑎𝑧

𝑏
+1]

 

For poles of 𝑓(𝑧): 𝑧4 [𝑧2 +
2𝑎𝑧

𝑏
+ 1] = 0 

⇒ ⁡𝑧 = 0, (pole of order 4) and 𝑧2 +
2𝑎𝑧

𝑏
+ 1 = 0 

or 
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𝑏𝑧2 + 2𝑎𝑧 + 𝑏 = 0⁡ or, ⁡𝑧 = −
𝑎 ± √𝑎2 − 𝑏2

𝑏
 

Take 𝛼 = −
𝑎+√𝑎2−𝑏2

𝑏
, 𝛽 =

−𝑎−√𝑎2−𝑏2

𝑏
. Then 𝛼𝛽 = 1 and 𝛼 < 1 and so 𝛽 >

1. Thus 𝑧 = 0 (pole of order 4) and 𝑧 = 𝛼, (pole of order one) lie within 𝐶. 

Res(𝑧 = 𝛼) = lim
𝑧→𝛼

 (𝑧 − 𝛼)𝑓(𝑧) = lim
𝑧→𝛼

 
(𝑧 − 𝛼)(𝑧2 − 1)4

𝑧4(𝑧 − 𝛼)(𝑧 − 𝛽)

⁡=
(𝛼2 − 1)4

𝛼4(𝛼 − 𝛽)
= (𝛼 −

1

𝛼
)
4

⋅
𝑏

2√𝑎2 − 𝑏2
= (𝛼 − 𝛽)4

𝑏

2√𝑎2 − 𝑏2

⁡= (
2√𝑎2 − 𝑏2

𝑏
)

4

⋅
𝑏

2√𝑎2 − 𝑏2
=

8

𝑏3
(𝑎2 − 𝑏2)3/2

 Res (𝑧 = 0) =  coeff. of 
1

𝑧
 in expansion of 

(𝑧2 − 1)4

𝑧4 (𝑧2 +
2𝑎𝑎
𝑏 + 1)

⁡=  coeff. of 
1

𝑧
 in (1 − 𝑧2)4 [1 + (𝑧2 +

2𝑎𝑧

𝑏
)]

−1

⁡=  coeff of 
1

𝑧
 in 

(1 − ⁡4𝐶1𝑧
2 + ⁡4𝐶2𝑧

4…) [1 − (𝑧2 +
2𝑎𝑧

𝑏
) + (𝑧2 +

2𝑎𝑧

𝑏
)
2

− (𝑧2 +
2𝑎𝑧

𝑏
)
3

+⋯]

⁡= [2 (
2𝑎

𝑏
) − (

2𝑎

𝑏
)
3

] + ⁡4𝐶: (
2𝑎

𝑏
) = −

8𝑎3

𝑏3
+
12𝑎

𝑏

 

Res(𝑧 = 0) + Res(𝑧 = 𝛼) =
8

𝑏3
(𝑎2 − 𝑏2)3/2 + (

12𝑎

𝑏
−
8𝑎3

𝑏3
) 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧⁡= 2𝜋𝑖[Res(𝑧 = 0) + Res(𝑧 = 𝛼)]

⁡= 2𝜋𝑖 [
8

𝑏3
(𝑎2 − 𝑏2)3/2 +

12𝑎

𝑏
−
8𝑎3

𝑏3
]

 

Putting this in eq. (2), we get 

𝐼 =
𝜋

𝑏4
[(𝑎2 − 𝑏2)3/2 − 𝑎3 +

3

2
𝑎𝑏2] 

Example 7: Prove that ∫  
2𝜋

0

cos⁡2𝜃𝑑𝜃

5+4cos⁡𝜃
=

𝜋

6
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Solution:  Let 𝐼 = ∫  
2𝜋

0

cos⁡20𝑑𝜃

5+4cos⁡𝜃
= R.P. ∫  

2𝜋

0

𝑒𝑖2𝜃𝑑𝜃

5+2(𝑒𝑖𝜃+𝑒−𝑖𝜃)
 

Putting 𝑧 = 𝑒𝑖𝜃 , 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃,
𝑑𝑧

𝑖𝑧
= 𝑑𝜃. 

𝐼 = R.P. 
1

𝑖
∫  
𝐶

𝑧2𝑑𝑧

5+2(𝑧+𝑧−1)
⋅
1

𝑧
, where 𝐶 is the circle |𝑧| = 1. 

or, 𝐼 = R.P. 
1

𝑖
∫  
𝐶

𝑧2𝑑𝑧

2𝑧2+5𝑧+2
= R.P. 

1

2𝑖
∫  
𝐶
𝑓(𝑧)𝑑𝑧 

where 𝑓(𝑧) =
𝑧2

𝑧2+
5

2
𝑧+1

. For poles : 𝑧2 +
5

2
𝑧 + 1 = 0 

or, ⁡2𝑧2 + 5𝑧 + 2 = 0⁡ or, ⁡𝑧 = −2,−
1

2
. 

∴⁡ only 𝑧 = −
1

2
 lies within 𝐶. 

Res (𝑧 = −
1

2
)⁡= lim

𝑧→−
1
2

  (𝑧 +
1

2
) 𝑓(𝑧) = lim

𝑧→−
1
2

 
(𝑧 +

1
2)𝑧

2

(𝑧 + 2)(𝑧 + 2)

⁡= lim
𝑧→−

1
2

 
𝑧2

𝑧 + 2
=

1/4

2 −
1
2

=
1

6

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧⁡= 2𝜋𝑖. Res(𝑧 = 𝑖) = 2𝜋𝑖. (
1

6
)

 

Put in (1), 

𝐼 =  R.P. 
1

2𝑖
⋅
2𝜋𝑖

6
=
𝜋

6
 

Example 8: Evaluate by contour integration : ∫  
𝜋

0
(
1+2cos⁡𝜃

5+4cos⁡𝜃
)𝑑𝜃 

Solution: Let 𝐼 = ∫  
𝜋

0
(
1+2cos⁡𝜃

5+4cos⁡𝜃
)𝑑𝜃. Then 𝐼 =

1

2
∫  
2𝜋

0
(
1+2cos⁡𝜃

5+4cos⁡𝜃
) 𝑑𝜃 

Take circle 𝑐 as |𝑧| = 1, 𝑧 = 𝑒𝑖𝜃 , 𝑑𝑧 = 𝑒𝑖𝜃, 𝑧 = 𝑖𝑧𝑑0 

𝐼 =
1

2
𝑅. 𝑃.∫ 

𝑐

 
(1 + 2𝑒𝑖0)

5 + 2 (𝑧 +
1
𝑧)

(
𝑑𝑧

𝑖𝑧
) =

𝑅.𝑃.

2𝑖
∫ 
𝑐

 
(1 + 2𝑧)𝑑𝑧

5𝑧 + 2𝑧2 + 2
 

=
𝑅. 𝑃.

4𝑖
∫ 
𝑐

 
(1 + 2𝑧)𝑑𝑧

𝑧2 +
5𝑧
2
+ 1

 or 𝐼 =
𝑅. 𝑃.

4𝑖
∫ 
𝑐

 𝑓(𝑧)𝑑𝑧(1) 

where 𝑓(𝑧) =
1+2𝑧

𝑧2+
5𝑧

2
+1

. Poles are given by 𝑧2 +
5𝑧

2
+ 1 = 0 

⇒ 2𝑧2 + 5𝑧 + 2 = 0 ⇒ 𝑧 = −
5±3

4
= −2,−

1

2
= 𝛼, 𝛽, say. 

𝑧 = 𝛼 lies outside 𝑐 as |𝑧| = 2 > 1. 𝑧 = 𝛽 lies inside 𝑐. 
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Res(𝑧 = 𝛽) = lim
𝑧→𝛽

 (𝑧 − 𝛽)𝑓(𝑧) = lim
𝑧→𝛽

 
(𝑧 − 𝛽)(1 + 2𝑧)

(𝑧 − 𝛼)(𝑧 − 𝛽)

= lim
𝑧→𝛽

  (
1 + 2𝑧

𝑧 − 𝛼
) =

1 + (−1)

𝛽 − 𝛼
=

0

𝛽 − 𝛼
= 0

∫ 
𝑐

 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖. Res(𝑧 = 𝛽) = 2𝜋𝑖(0) = 0

 

Now(1)  

⇒ 𝐼 = 0. 

Example9:Evaluate∫  
𝜋

0
(
1+2cos⁡𝜃

4+5cos⁡𝜃
) 𝑑𝜃. 

Solution: Let 𝐼 = ∫  
𝜋

0

(1+2cos⁡𝐽)

4+5cos⁡𝜃
𝑑𝜃 =

1

2
∫  
2𝜋

0
(
1+2cos⁡𝜃

4+4cos⁡𝜃
) 𝑑𝜃 

or, ⁡𝐼 =
1

2
 R.P. ∫  

2𝜋

0

(1+2𝑒𝑖𝜃)𝑑𝜃

4+
5

2
(𝑒𝑖𝜃+𝑒−𝑖𝜃)

. Take 𝑐 as unit 

circle |𝑧| = 1 or 𝑧 = 𝑒𝑖𝜃, 𝑑𝑧 = 𝑒𝑖𝜃𝑖𝑑𝜃 = 𝑖𝑧𝑑𝜃 

we get 𝐼 = R.P. 
1

2
∫  
𝑐

2(1+2𝑧)

8+5(𝑧+𝑧−1)
(
𝑑𝑧

𝑖𝑧
) = R.P. 

1

𝑖
∫  
𝑐

(1+2𝑧)𝑑𝑧

5𝑧2+8𝑧+5
 

or 

𝐼 =  R.P. 
1

5𝑖
∫ 
𝑐

 
(1 + 2𝑧)𝑑𝑧

𝑧2 + (
8
5
)𝑧 + 1

=  R.P. 
1

5𝑖
∫ 
𝑐

 𝑓(𝑧)𝑑𝑧 (1) 

where 𝑓(𝑧) =
1+2𝑧

𝑧2+
8𝑧

5
+1

. Poles of 𝑓(𝑧) are given by 

5𝑧2 + 8𝑧 + 5 = 0 ⇒ 𝑧 = −
8 ± 6𝑖

10
= −

4 ± 3𝑖

5
 

Take 𝛼 =
−4+3𝑖

5
, 𝛽 =

−4−3𝑖

5
. Here |𝛼| = 1 = |𝛽|. 

𝑧 = 𝛼, 𝛽, the simple poles lie inside 𝑐. 𝑓(𝑧) =
(1+2𝑧)

(𝑧−𝛼)(𝑧−𝛽)
 

Sum of residues =
1+2𝛼

𝛼−𝛽
+

1+2𝛽

𝛽−𝛼
=

2(𝛼−𝛽)

𝛼−𝛽
= 2 

∫ 
𝑐

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖, Residues = 2𝜋𝑖(2) = 4𝜋𝑖 

⇒ ⁡𝐼 = R. 
1

5𝑖
∫  
𝑐
𝑓(𝑧)𝑑𝑧 = R.P. (

1

5𝑖
) (4𝜋𝑖) =

4𝜋

5
 

Example 10: By the method of contour integration, prove that 

∫  
2𝜋

0

𝑒cos⁡𝜃 ⋅ cos⁡(sin⁡𝜃 − 𝑛𝜃)𝑑𝜃 =
2𝜋

𝑛!
 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 296 

 

where 𝑛 is a positive integer. 

Or 

Prove that ⁡∫  
2𝜋

0
𝑒cos⁡𝜃 ⋅ cos⁡(𝑛𝜃 − sin⁡𝜃)𝑑𝜃 =

2𝜋

𝑛!
 

Solution: Let |𝑧| = 1 denote the circle 𝐶 and 

𝐼⁡= ∫  
2𝜋

0

  𝑒cos⁡𝜃 ⋅ cos⁡(sin⁡𝜃 − 𝑛𝜃)𝑑𝜃

⁡=  R.P. ∫  
2𝜋

0

  𝑒cos⁡𝜃 ⋅ 𝑒𝑖(sin⁡𝜃−𝑛𝜃)𝑑𝜃

 

or ⁡𝐼 = R.P. ∫  
2𝜋

0
exp⁡[cos⁡𝜃 + 𝑖(sin⁡𝜃 − 𝑛𝜃)]𝑑𝜃 

=  R.P. ∫  
2𝜋

0

exp. (𝑒𝑖𝜃 − 𝑖𝑛𝜃)𝑑𝜃 =  R.P. ∫ 
𝐶

exp⁡(𝑧)𝑒−𝑖𝑛𝜃
𝑑𝑧

𝑖𝑧
, 𝑧 = 𝑒𝑖𝜃 

or ⁡𝐼 = R.P. 
1

𝑖
∫  
𝐶

𝑒𝑧𝑑𝑧

𝑧𝑛+1
= R.P. 

1

𝑖
∫  
𝐶
𝑓(𝑧)𝑑𝑧             … (1) 

where 𝑓(𝑧) =
𝑒𝑧

𝑧𝑛+1
. This has pole at 𝑧 = 0 of order 𝑛 + 1. 

Res(𝑧 = 0)′ =
1

𝑛!

𝑑𝑛

𝑑𝑧𝑛
[𝑒𝑧]𝑧=0 =

1

𝑛!
⋅ 𝑒0 =

1

𝑛!
 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 (sum of residues within 𝐶 ) =
2𝜋𝑖

𝑛!
 

Now (1) takes the form 𝐼 = R.P. 
1

𝑖

2𝜋𝑖

𝑛!
=

2𝜋

𝑛!
 

Example 11: Prove that ∫  
2𝜋

0
𝑒−cos⁡𝜃cos⁡(𝑛𝜃 + sin⁡𝜃)𝑑𝜃 =

2𝜋(−1)𝑛

𝑛!
 

where 𝑛 is a positive integer. 

Solution: Let 𝐼 = ∫  
2𝜋

0
𝑒−cos⁡𝜃 ⋅ cos⁡(𝑛𝜃 + sin⁡𝜃)𝑑𝜃 

Then 

𝐼 =  R.P. ∫  
2𝜋

0

  𝑒−cos⁡𝜃 ⋅ 𝑒−(sin⁡𝜃+𝑛𝜃)𝑖𝑑𝜃

= R.P. ∫  
2𝜋

0

 exp⁡[−cos⁡𝜃 − 𝑖sin⁡𝜃 − 𝑖𝑛𝜃]𝑑𝜃

 

or 
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𝐼 =  R.P. ∫  
2𝜋

0

exp⁡(−𝑒𝑖𝜃 − 𝑖𝑛𝜃)𝑑𝜃 =  R.P. ∫  
2𝜋

0

exp⁡(−𝑒𝑖𝜃) ⋅ 𝑒−𝑖𝑛𝜃𝑑𝜃 

Putting 𝑧 = 𝑒𝑖0 so that 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃, we obtain 

or 

𝐼 =  R.P. ∫  
2𝜋

0

exp. (−𝑧) ⋅ (𝑧)−𝑛
𝑑𝑧

𝑖𝑧
 R.P. 

1

𝑖
∫ 
𝐶

𝑒−𝑧

𝑧𝑛+1
𝑑𝑧 

where 𝐶 is unit circle |𝑧| = 1. 

or 

𝐼 =  R.P. 
1

𝑖
∫ 
𝐶

𝑓(𝑧)𝑑𝑧⁡ …  (1) 𝑓(𝑧) =
𝑒−𝑧

𝑧𝑛+1
 

𝑓(𝑧) has a pole of order 𝑛 + 1 at 𝑧 = 0 which lies within 𝐶, 

Res(𝑧 = 0) =
1

𝑛!
[
𝑑𝑛

𝑑𝑧𝑛
𝑒−𝑧]

𝑧=0
=

1

𝑛!
[(−1)𝑛𝑒−𝑧]𝑧=0 =

(−1)𝑛

𝑛!
 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues within 𝐶) =
2𝜋𝑖(−1)𝑛

𝑛!
 

∴ By(1), 𝐼 = R ⋅ P ⋅
1

𝑖

2𝜋𝑖(−1)𝑛

𝑛!
=
2𝜋(−1)𝑛

𝑛!
 

Example 12: Prove that ∫  
𝜋

−𝜋

𝑎cos⁡𝑑𝜃

𝑎+cos⁡𝜃
= 2𝜋𝑎 [1 −

𝑎

√(𝑎2−1)
] , 𝑎 > 1 

Solution: Let 𝐼 = ∫  
𝜋

−𝜋

𝑎cos⁡𝜃𝑑𝜃

𝑎+cos⁡𝜃
= 2∫  

𝜋

0

𝑎cos⁡0𝑑𝜃

𝑎+cos⁡0
 as 𝑓(−0) = 𝑓(0) 

or 

I=R.P. ∫  
2𝜋

0

 
𝑎𝑒𝑖𝜃𝑑𝜃

𝑎 +
1
2
(𝑒𝑖𝜃 + 𝑒−𝑖𝜃)

. Put 𝑧 = 𝑒𝑖0, 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃 

I =  R.P. ∫  
𝐶
 

2𝑎𝑧

2𝑎+(𝑧+𝑧−1)

𝑑𝑧

𝑖𝑧
=  R.P. 

2𝑎

𝑖
∫  
𝐶
 𝑓(𝑧)𝑑𝑧      … (1) 

where 𝑓(𝑧) =
𝑧

𝑧2+2𝑎𝑧+1
 and 𝐶 is the unit circle |𝑧| = 1. Poles are given by 

𝑧2 + 2𝑎𝑧 + 1 = 0 so that 𝑧 = 𝛼, 𝛽 where 𝛼 = −𝑎 +√(𝑎2 − 1), 𝛽 =

−𝑎 − (𝑎2 − 1)1/2. Then 𝛼𝛽 = 1, |𝛼| < 1, |𝛽| > 1. Hence 𝑓(𝑧)′ has one 

simple pole at 𝑧 = 𝛼 within 𝐶. 
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Res(𝑧 = 𝛼) = lim
𝑧→𝛼

 (𝑧 − 𝛼)𝑓(𝑧) = lim
𝑧→𝛼

 
𝑧

𝑧 − 𝛽
=

𝛼

𝛼 − 𝛽

=
−𝑎 + (𝑎2 − 1)1/2

2(𝑎2 − 1)1/2
 

By Cauchy's residues theorem, 

∫ 
𝐶

 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ⋅ Res(𝑧 = 𝛼) =
2𝜋𝑖[−𝑎 + (𝑎2 − 1)1/2]

2(𝑎2 − 1)1/2

∴⁡  By (1), 𝐼 =  R.P. 
2𝑎

𝑖
⋅ 𝜋𝑖 [

−𝑎

(𝑎2 − 1)1/2
+ 1] = 2𝜋𝑎 [1 −

𝑎

(𝑎2 − 1)1/2
]

 

Example 13: Show that 

∫  
𝜋

0

tan⁡(𝜃 + 𝑖𝑎)𝑑𝜃 = 𝑖𝜋, where 𝑅(𝑎) > 0 

Solution: Let 𝐼 = ∫  
𝜋

0
tan⁡(𝜃 + 𝑖𝑎)𝑑𝜃 

Then 

𝐼 = ∫  
𝜋

0

 
2sin⁡(𝜃 + 𝑖𝑎) ⋅ cos⁡(𝜃 − 𝑖𝑎)

2cos⁡(𝜃 + 𝑖𝑎)cos⁡(𝜃 − 𝑖𝑎)
𝑑𝜃

⁡= ∫  
𝜋

0

  [
sin⁡2𝜃 + sin⁡(2𝑖𝑎)

cos⁡2𝜃 + cos⁡(2𝑖𝑎)
] 𝑑𝜃

⁡=
1

2
∫  

2𝜋

0

 
sin⁡𝑡 + 𝑖sinh⁡2𝑎

cos⁡𝑡 + cosh⁡2𝑎
𝑑𝑡,⁡ where 2𝜃 = 𝑡

 

Putting 𝑧 = 𝑒𝑖𝑡 so that 𝑑𝑧 = 𝑖𝑒𝑖𝑡𝑑𝑡,
𝑑𝑧

𝑖𝑧
= 𝑑𝑡, we get 

 

=
1

2
∫ 
𝐶

  [

𝑧 − 𝑧−1

2𝑖 + 𝑖sinh⁡2 ⋅

𝑧 + 𝑧−1

2 + cosh⁡2𝑎
]
𝑑𝑧

𝑖𝑧
, where 

I= −
1

2
∫  
𝐶
 𝑓(𝑧)𝑑𝑧… (1) where 𝑓(𝑧) =

𝑧2−1−2𝑧 sinh 2𝑎

𝑧(𝑧2+2𝑧 cosh 2𝑎+1)
(i) 

 

Poles of 𝑓(𝑧) are given by 

𝑧(𝑧2 + 2𝑧cosh⁡2𝑎 + 1) = 0 
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This 

⇒ 𝑧 = 0, 𝑧2 + 2𝑧cosh⁡2𝑎 + 1 = 0

⇒ 𝑧 = 0, 𝑧 = −cosh⁡2𝑎 ± √(cosh2⁡2𝑎 − 1)

⇒ 𝑧 = 0, 𝑧 = −cosh⁡2𝑎 ± sinh⁡2𝑎 ⇒ 𝑧 = 0, 𝛼, 𝛽

 

where 

𝛼 = −cosh⁡2𝑎 + sinh⁡2𝑎
𝛽 = −cosh⁡2𝑎 − sinh⁡2𝑎

 

Evidently 𝛼𝛽 = 1, |𝛼| < 1 so that |𝛽| > 1.. 

𝑓(𝑧) has two simple poles at 𝑧 = 0, 𝛼 within 𝐶. 

Res(𝑧 = 0)⁡= lim
𝑧→0

 (𝑧 − 0) ⋅ 𝑓(𝑧) = lim
𝑧→0

 
𝑧2 − 2𝑧sinh⁡2𝑎 − 1

𝑧2 + 2𝑧cosh⁡2𝑎 + 1

⁡=
0 − 0 − 1

0 + 0 + 1
= −1

 

Res(𝑧 = 𝛼)⁡= lim
𝑧→𝛼

 (𝑧 − 𝛼)𝑓(𝑧)

⁡= lim
→𝛼

 
(𝑧 − 𝛼)(𝑧2 − 𝑣2𝑧sinh⁡2𝑖 − 1)

/
𝑧(𝑧 − 𝛼)(𝑧 − 𝛽)𝑢

⁡=
𝛼2 − 2𝛼sinh⁡2𝑎 − 1

𝛼(𝛼 − 𝛽)
=
𝛼 − 2sinh⁡2𝑎 − 𝛽

𝛼 − 𝛽
 For 𝛼𝛽 = 1.

⁡=
2sinh⁡2𝑎 − 2sinh⁡2𝑎

2sinh⁡2𝑎
= 0.

 

Res(𝑧 = 𝛼) + Res(𝑧 = 0) = 0 + (−1) = −1. 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues within 𝐶) = 2𝜋𝑖(−1) 

Now, by (1), 𝐼 = −
1

2
(−2𝜋𝑖) = 𝑖𝜋. 

Example 14: Apply the calculus of residues to evaluate 

(i) ∫  
2𝜋

0

sin⁡𝑛𝜃𝑑𝜃

1+2𝑎cos⁡𝜃+𝑎2
, 

(ii) ∫  
2𝜋

0

cos⁡𝑛𝜃𝑑𝜃

1+2𝑎cos⁡𝜃+𝑎2
 

where 𝑎2 < 1 and 𝑛 is a positive integer. 

 

Solution: Let 𝐼 = ∫  
2𝜋

0

𝑒𝑖𝑛𝜃𝑑𝜃

1+2𝑎cos⁡𝜃+𝑎2
 

Then 
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𝐼 = ∫  
2𝜋

0

(𝑒𝑖𝜃)
𝑛
𝑑𝜃

1 + 𝑎2 + 𝑎(𝑒𝑖𝜃 + 𝑒−𝑖0)
 

Putting 𝑧 = 𝑒𝑖𝜃  so that 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃, we get 

𝐼 = ∫ 
𝐶

𝑧𝑛

1 + 𝑎2 + 𝑎(𝑧 + 𝑧−1)

𝑑𝑧

𝑖𝑧
 

=
1

𝑖
∫ 
𝐶

𝑧𝑛𝑑𝑧

(1 + 𝑎2)𝑧 + 𝑎𝑧2 + 𝑎
, where 𝐶 is circle |𝑧| = 1 

or 

𝐼 =
1

𝑎𝑖
∫ 
𝐶

 
𝑧𝑛𝑑𝑧

𝑧2 + 𝑎𝑧 +
𝑧
𝑎
+ 1

=
1

𝑖𝑎
∫ 
𝐶

 𝑓(𝑧) ⋅ 𝑑𝑧⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ … (1)  

where 

𝑓(𝑧) =
𝑧𝑛

(𝑧 + 𝑎) (𝑧 +
1
𝑎)

 

Simple poles of 𝑓(𝑧) are 𝑧 = −𝑎 and 𝑧 = −
1

𝑎
. But 𝑎2 < 1. 

Hence 𝑧 = −𝑎 lies within 𝐶 and 𝑧 = −1/𝑎 lies outside 𝐶. 

Res(𝑧 = −𝑎) = lim𝑧→−𝑎  (𝑧 + 𝑎)𝑓(𝑧) = lim𝑧→−𝑎  
𝑧𝑛

𝑧 + (1/𝑎)
 

=
(−𝑎)𝑛

−𝑎 + (1/𝑎)
=
(−1)𝑛𝑎𝑛+1

1 − 𝑎2
 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum of residues within 𝐶) =
2𝜋𝑖(−1)𝑛𝑎𝑛+1

1 − 𝑎2
 

∴ By (1), 𝐼 =
1

𝑎𝑖
⋅
2𝜋𝑖(−1)𝑛𝑎𝑛+1

1−𝑎2
=

2𝜋(−1)𝑛𝑎𝑛

1−𝑎2
 

or 

∫  
2𝜋

0

𝑒𝑖𝑛𝜃𝑑𝜃

1 + 2𝑎cos⁡𝜃 + 𝑎2
=
2𝜋(−1)𝑛𝑎𝑛

−1 − 𝑎̇2
 

Equating real and imaginary parts we get 
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∫  
2𝜋

0

cos⁡(𝑛𝜃)𝑑𝜃

1 + 2𝑎cos⁡𝜃 + 𝑎2
=
2𝜋(−1)𝑛𝑎𝑛

1 − 𝑎2
 

and 

∫  
2𝜋

0

sin⁡(𝑛0)𝑑𝜃

1 + 2𝑎cos⁡𝜃 + 𝑎2
= 0 

13.6 EVALUATION OF INTEGRALS OF THE 

TYPE ∫  
∞

−∞
𝑓(𝑧)𝑑𝑧:- 

∫  
∞

−∞
𝑓(𝑧)𝑑𝑧 where, the function 𝑓(𝑧) is s.t. no pole of 𝑓(𝑧) lies on the real 

line, but poles lie in the upper half of 𝑧-plane. We evaluate the above 

integrals by considering them along a closed contour 𝐶 consisting of 

(i)  semi circle Γ s.t. |𝑧| = 𝑅 in the upper half plane. 

(ii)  real axis from −𝑅 to 𝑅. 

Then we try to show that integral along Γ vanishes as |𝑧| → ∞. 

Thus ∫  
𝐶
𝑓(𝑧)𝑑𝑧 = ∫  

Γ
𝑓(𝑧)𝑑𝑧 + ∫  

𝑅

−𝑅
𝑓(𝑧)𝑑𝑧. 

Taking limit as 𝑅 → ∞,∫  
𝐶
𝑓(𝑧)𝑑𝑧 = ∫  

∞

−∞
𝑓(𝑧)𝑑𝑧. 

By Cauchy's residues theorem, this becomes 

 

Figure: 1 

∫  
∞

−∞

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum of residues within 𝐶) 

Example 15:  Provethat∫  
∞

0

𝑑𝑥

1+𝑥2
=

𝜋

2
. 

Solution: Consider the integral,  



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 302 

 

⁡∫  
𝐶

 𝑓(𝑧)𝑑𝑧, where 𝑓(𝑧) =
1

1 + 𝑧2

⁡∫  
𝐶

 𝑓(𝑧)𝑑𝑧 = ∫  
𝑅

−𝑅

 𝑓(𝑥)𝑑𝑥 + ∫ 
Γ

 𝑓(𝑧)𝑑𝑧(1)

 

Here 𝐶 is the closed contour consisting of Γ, the upper half of the large circle 

|𝑧| = 𝑅 and the real axis from −𝑅 to 𝑅. Poles of 𝑓(𝑧) are 𝑧 = ±𝑖. 
𝑓(𝑧) has only one simple pole at 𝑧 = 𝑖 inside 𝐶. 

Res(𝑧 = 𝑖) = lim
𝑧→𝑖

 (𝑧 − 𝑖)𝑓(𝑧) = lim
𝑧→𝑖

 (𝑧 − 𝑖)
1

(𝑧 − 𝑖)(𝑧 + 𝑖)
=

1

2𝑖
. 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues within 𝐶) =
2𝜋𝑖

2𝑖
= 𝜋 

lim
|𝑧|→∞

 𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
1

1 + 𝑧2
= 0. Hence, by Theorem 7,  

lim
𝑅→∞

 ∫ 
Γ

𝑓(𝑧)𝑑𝑧 = 𝑖(𝜋 − 0)(0) = 0 

Making 𝑅 → ∞ in (1) and noting this, we get 

𝜋 = ∫  
∞

−∞

𝑓(𝑥)𝑑 + 0 or ∫  
∞

−∞

𝑑𝑥

1 + 𝑥2
= 2∫  

∞

0

𝑑𝑥

1 + 𝑥2
= 𝜋 or ∫  

∞

0

𝑑𝑥

1 + 𝑥2

=
𝜋

2
 

Example 16: Prove that if 𝑎 > 0, then ∫  
∞

0

𝑑𝑥

𝑥4+𝑎4
=

𝜋√2

4𝑎3
 

Solution: Let 𝑓(𝑧) =
1

𝑧4+𝑎4
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧, where 𝐶 is 

closed contour consisting of Γ, the upper half of large circle |𝑧| = 𝑅 and 

real axis from −𝑅 to 𝑅 (see Fig. 1). Poles of 𝑓(𝑧) are given by 𝑧4 + 𝑎4 =
0. 

or 𝑧4 = −𝑎4 = 𝑒2𝑛𝜋𝑖𝑒𝜋𝑖𝑎4⁡ or ⁡𝑧 = 𝑎𝑒𝑖(2𝑛𝑖+1)𝜋/4 where 𝑛 = 0,1,2,3. 

But only two simple poles 𝑧 = 𝑎𝑒𝜋𝑖/4, 𝑎𝑒3𝜋𝑖/4 lie within 𝐶. We know that 

Res(𝑧 = 𝛼) = lim
𝑧→𝛼

 
𝜙(𝑧)

𝜓′(𝑧)
 where 𝑓 =

𝜙(𝑧)

𝜓′(𝑧)
, [Formula for simple pole] 

or 
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Res(𝑧 = 𝛼)⁡= lim
𝑧→𝛼

 
1

4𝑧3
= lim

𝑧→𝛼
 
𝑧

4𝑧4
= lim

𝑧→𝛼
 
−𝑧

4𝑎4
 as 𝑧4 + 𝑎4 = 0

∴ ⁡Res(𝑧 = 𝑎𝑒𝜋𝑖/4)⁡+Res(𝑧 = 𝑎𝑒3𝜋𝑖/4)

⁡=
1

−4𝑎4
[𝑎𝑒𝜋𝑖/4 + 𝑎𝑒3𝜋𝑖/4] =

−1

4𝑎3
[𝑒𝜋𝑖/4 + 𝑒𝜋𝑖 ⋅ 𝑒−𝑖𝜋/4]

⁡= −
1

4𝑎3
[𝑒𝑖𝜋/4 − 𝑒−𝑖𝜋/4] = −

1

4𝑎3
2𝑖sin⁡

𝜋

4
=

−𝑖

2𝑎3√2

 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues within 𝐶) 

or 

∫ 
Γ

𝑓(𝑧)𝑑𝑧 +∫  
𝑅

−𝑅

𝑓(𝑧)𝑑𝑧 =
2𝜋𝑖(−𝑖)

2𝑎3√2
,=

𝜋√2

2𝑎3
 

Making 𝑅 → ∞, we get ⁡ lim
𝑅→∞

 ∫  
Γ
𝑓(𝑧)𝑑𝑧 + ∫  

∞

−∞
𝑓(𝑥)𝑑𝑥 =

𝜋√2

2𝑎3
. 

lim
|𝑧|→∞

 𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
𝑧

𝑧4 + 𝑎4
= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ … (1)

lim
𝑅→∞

 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧⁡ = 𝑖(𝜋 − 0)(0) = 0⁡⁡⁡⁡⁡⁡ … (1)
 

By previous theorems, Eq. (1) becomes ∫  
∞

−∞
𝑓(𝑥)𝑑𝑥 =

𝜋√2

2𝑎3
 

or 

∫  
∞

−∞

𝑑𝑥

𝑥4 + 𝑎4
= 2∫  

∞

0

𝑑𝑥

𝑥4 + 𝑎4
=
𝜋√2

2𝑎3
 or ∫  

∞

0

𝑑𝑥

𝑥4 + 𝑎4
=
𝜋√2

4𝑎3
 

Similar Problem. Prove by contour integration 

∫  
∞

0

𝑑𝑥

𝑥4 + 1
=
𝜋

2
√2 

Example 17:  By the method of contour integration, prove that 

∫  
∞

0

cos⁡𝑚𝑥𝑑𝑥

𝑥2+𝑎2
=

𝜋𝑒−𝑚𝑎

2𝑎
 where 𝑚 ≥ 0, 𝑎 > 0 and deduce that 

∫  
∞

0

𝑥sin⁡(𝑚𝑥)

𝑥2+𝑎2
𝑑𝑥 =

𝜋

2
𝑒−𝑚𝑎 

Solution: Let 𝑓(𝑧) =
𝑒inz 

𝑧2+𝑎2
. Consider ∫  

𝐶
𝑓(𝑧)𝑑𝑧 where 𝐶 is closed contour 
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as shown in Fig. 1. Poles of 𝑓(𝑧) are given by 𝑧2 + 𝑎2 = 0 or 𝑧 = ±𝑖𝑎. 

𝑓(𝑧) has only simple one pole 𝑧 = 𝑖𝑎 inside 𝐶. 

or 

Res(𝑧 = 𝑖𝑎) = lim
𝑧→𝑖𝑎

 (𝑧 − 𝑖𝑎)𝑓(𝑧) = lim
𝑧→𝑖𝑎

 
(𝑧−𝑖𝑎)𝑒𝑖𝑚𝑧

(𝑧+𝑖𝑎)(𝑧−𝑖𝑎)
⁡⁡⁡… (1)

or 
Res(𝑧 = 𝑖𝑎)⁡=

1

2𝑖𝑎
𝑒−𝑚𝑎

lim
|𝑧|→∞

 
1

𝑧2+𝑎2
⁡= 0. Hence by Jordan's lemma 

 

lim
𝑅→∞

 ∫ 
Γ

 
𝑒𝑖𝑚𝑧

𝑧2 + 𝑎2
𝑑𝑧 = lim

𝑅→∞
 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 = 0⁡⁡⁡⁡ … (2)  

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues with 𝐶) =
2𝜋𝑖𝑒−𝑚𝛼

2𝑖𝑎
 

or 

∫ 
Γ

𝑓(𝑧)𝑑𝑧 +∫  
𝑅

−𝑅

𝑓(𝑥)𝑑𝑥 =
𝜋

𝑎
𝑒−𝑚𝑎 

Making 𝑅 → ∞ and noting (2), we get 

∫  
∞

−∞

𝑓(𝑥)𝑑𝑥 =
𝜋

𝑎
𝑒−𝑚𝑎 or ∫  

∞

−∞

𝑒𝑖𝑚𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

𝜋

𝑎
𝑒−𝑚𝑎 

Equating real parts, we get 

∫  
∞

−∞

 
cos⁡𝑚𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

𝜋

𝑎
𝑒−𝑚𝑎 ⁡⁡⁡⁡⁡⁡⁡… (3)  

or 

∫  
∞

0

 
cos⁡𝑚𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

𝜋

2𝑎
𝑒−𝑚𝑎 ⁡⁡⁡⁡⁡⁡… (4)  

Deductions. (i) Taking 𝑚 = 𝑎 = 1 in (4), we get 

∫  
∞

0

cos⁡𝑥

𝑥2 + 1
𝑑𝑥 =

𝜋

2
𝑒−1 =

𝜋

2𝑒
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(ii) Taking 𝑚 = 1 in equation (3), we get ∫  
∞

−∞

cos⁡𝑥

𝑥2+𝑎2
𝑑𝑥 =

𝜋

𝑎
𝑒−𝑎 

(iii) Taking 𝑎 = 2,𝑚 = 1 in (4), we get ∫  
∞

0

cos⁡𝑥

𝑥2+4
𝑑𝑥 =

𝜋

4
𝑒−2 =

𝜋

4𝑒2
 

(iv) Taking 𝑚 = 1 in (4) 

∫  
𝜋/2

0

cos⁡𝑥

𝑥2 + 𝑎2
𝑑𝑥 =

𝜋

2𝑎
𝑒−2 

(ii) Differentiating equation (4) w.r.t. 𝑚, 

∫  
𝑚

0

 −
𝑥sin⁡(𝑚𝑥)𝑑𝑥

𝑥2 + 𝑎2
=

𝜋

2𝑎
𝑒−𝑚𝑎 , (−𝑎)

⇒⁡ ∫  
𝑚

0

 
𝑥sin⁡(𝑚𝑥)

𝑥2 + 𝑎2
𝑑𝑥 =

𝜋

2
𝑒−𝑚𝑎

 

∫  
∞

0

cos⁡(𝑎𝑥)

𝑥2 + 1
𝑑𝑥 =

𝜋

2
𝑒−𝑎 

Example 18: If 𝑎 > 0,𝑚 > 0, then ∫  
∞

0

cos⁡𝑚𝑥𝑑𝑥

(𝑥2+𝑎2)2
=

𝜋

4𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 

 

Solution: 𝑓(𝑧) =
𝑒𝑖𝑚𝑧

(𝑎2+𝑧2)2
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧, 

where 𝐶 is the closed contour c isisting of Γ, the upper half of large circle 

|𝑧| = 𝑅 and real axis from −𝑅 to 𝑅 (See diagram 1). Evidently 

lim
|𝑧|→∞

 
1

(𝑧2 + 𝑎2)2
= 0. 

Hence, by Jordan's lemma, 

lim
𝑅→∞

 ∫ 
Γ

 
𝑒𝑖𝑚𝑧𝑑𝑧

(𝑧2 + 𝑎2)2
= 0⁡ or ⁡ lim

𝑅→∞
 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 = 0⁡⁡⁡⁡⁡⁡ … (1)  

Poles of 𝑓(𝑧) are 𝑧 = ±𝑖𝑎. (Repeated two times), 𝑓(𝑧) has only one pole 

order two at 𝑧 = 𝑎𝑖 within 𝐶. 

𝑓(𝑧) =
𝜙(𝑧)

(𝑧 − 𝑎𝑖)2
, where 𝜙(𝑧) =

𝑒𝑖𝑚𝑧

(𝑧 + 𝑎𝑖)2

Res(𝑧 = 𝑖𝑎)⁡= lim
𝑧→𝑖𝑎

 𝜙′(𝑥)

=⁡ lim
𝑧→𝑖𝑎

 
𝑒𝑖𝑚𝑧[𝑖𝑚(𝑧 + 𝑖𝑎)2 − 2(𝑧 + 𝑖𝑎)]

(𝑧 + 𝑖𝑎)4

=⁡ lim
𝑧→𝑖𝑎

 
𝑒𝑖𝑚𝑧[𝑖𝑚(𝑧 + 𝑖𝑎) − 2]

(𝑧 + 𝑖𝑎)3
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=
𝑒−𝑚𝑎[𝑖𝑚 ⋅ 2𝑖𝑎 − 2]

(2𝑖𝑎)3
=
𝑒−𝑚𝑎(1 + 𝑚𝑎)

4𝑎3𝑖
. 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖[Res(𝑧 = 𝑖𝑎)] = 2𝜋𝑖𝑒−𝑚𝑎
(1 + 𝑚𝑎)

4𝑎3𝑖
 

or 

∫ 
Γ

𝑓(𝑧)𝑑𝑧 +∫  
𝑅

−𝑅

𝑓(𝑥)𝑑𝑥 =
𝜋(1 +𝑚𝑎)

2𝑎3
𝑒−𝑚𝑎 

Making 𝑅 → ∞ and noting (1), we get 

or 

∫  
∞

−∞

𝑒𝑖𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥 =

𝜋

2𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎 

Equating real parts from both sides, 

∫  
∞

−∞

cos⁡𝑚𝑥𝑑𝑥

(𝑥2 + 𝑎2)2
=

𝜋

2𝑎3
(1 +𝑚𝑎)𝑒−𝑚𝑎  

But 

∫  
∞

−∞

cos⁡𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥 = 2∫  

∞

0

cos⁡𝑚𝑥

(𝑥2 + 𝑎2)2
𝑑𝑥 

Hence the last gives ∫  
∞

0

cos⁡𝑚𝑥

(𝑥2+𝑎2)2
𝑑𝑥 =

𝜋

4𝑎3
(1 + 𝑚𝑎)𝑒−𝑚𝑎. 

Deductions. (i) Putting 𝑚 = 1, we get 

∫  
∞

0

cos⁡𝑥𝑑𝑥

(𝑥2 + 𝑎2)2
=

𝜋

4𝑎3
(1 + 𝑎)𝑒−𝑎 

(ii) Taking 𝑚 = 𝑎 = 1, we obtain 

∫  
∞

0

cos⁡𝑥

(𝑥2 + 1)2
𝑑𝑥 =

𝜋

4
⋅ 2𝑒−1 =

𝜋

2𝑒
 

Example 19: Apply the method of 𝑐alculus of residues to prove that, 

∫  
∞

0

log⁡(1 + 𝑥2)

1 + 𝑥2
𝑑𝑥 = 𝜋log⁡2 
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Solution: Let 𝑓(𝑧) =
log⁡(𝑧+𝑖)

1+𝑧2
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧 where 𝐶 is 

a closed contour consisting of Γ, the upper half of large circle |𝑧| = 𝑅 real 

axis from - 𝑅 to 𝑅 as shown in Figure 1. 

lim
|𝑧|→∞

 𝑧𝑓(𝑧) = [ lim
|𝑧|→∞

 
𝑧

𝑧 − 𝑖
] [ lim

|𝑧|→∞
 
log(𝑧 + 𝑖)

𝑧 + 𝑖
] = 1(0) = 0⁡⁡⁡⁡⁡⁡⁡⁡ …⁡(1)  

∴⁡ By Theorem, lim
𝑅→∞

 ∫  
Γ
𝑓(𝑧)𝑑𝑧 = 𝑖(𝜋 − 0)(0) = 0 

Poles of 𝑓(𝑧) are 𝑧 = ±𝑖. 
𝑓(𝑧) has only one simple pole at 𝑧 = 𝑖 within 𝐶. 

Res(𝑧 = 𝑖)⁡= lim
𝑧→𝑖

 (𝑧 − 𝑖)𝑓(𝑧) = lim
𝑧→𝑖

 
log⁡(𝑧 + 𝑖)

𝑧 + 𝑖

⁡=
log⁡2𝑖

2𝑖
=
log⁡(2𝑒𝑖𝜋/2)

2𝑖
=
log⁡2 + (𝜋𝑖/2)

2𝑖

 

By Cauchy's residue theorem, 

or 

⁡∫  
𝐶

 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖[Res(𝑧 = 𝑖)] =
2𝜋𝑖

2𝑖
[log⁡2 + (𝑖𝜋/2)]

⁡∫ 
Γ

 𝑓(𝑧)𝑑𝑧 + ∫  
𝑅

−𝑅

 𝑓(𝑥)𝑑𝑥 = 𝜋 [log⁡2 +
𝜋𝑖

2
]

 

Making 𝑅 → ∞ and noting (1), 

∫  
∞

−∞

log⁡(𝑥 + 𝑖)

𝑥2 + 1
𝑑𝑥 = 𝜋 [log⁡2 +

𝜋𝑖

2
] 

Equating real parts from both sides, 
1

2
∫  
∞

−∞

log⁡(𝑥2+1)

𝑥2+1
𝑑𝑥 = 𝜋log⁡2 

or 

1

2
∫  

∞

−∞

log⁡(1 + 𝑥2)

𝑥2 + 1
𝑑𝑥 = ∫  

∞

0

log⁡(1 + 𝑥2)

1 + 𝑥2
𝑑𝑥 = 𝜋log⁡2 

Example 20: Apply the calculus of residues to evaluate the integral 

∫  
∞

−∞

cos⁡𝑥𝑑𝑥

(𝑥2+𝑎2)(𝑥2+𝑏2)
, (𝑎 > 𝑏 > 0). 

Solution: Let 𝑓(𝑧) =
𝑒𝑖𝑧

(𝑧2+𝑎2)(𝑧2+𝑏2)
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧, wh 

𝐶 is a closed contour as shown in Figure 1, 
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Evidently lim
|𝑧|→∞

 
1

(𝑧2+𝑎2)(𝑧2+𝑏2)
= 0. 

Hence, by Jordan's lemma, lim
𝑅→∞

 ∫  
Γ

𝑒𝑖𝑧𝑑𝑧

(𝑧2+𝑎2)(𝑧2+𝑏2)
= lim

𝑅→∞
 ∫  
Γ
𝑓(𝑧)𝑑𝑧 = 0 

Poles of 𝑓(𝑧) are 𝑧 = ±𝑖𝑎, ±𝑖𝑏. 

Only two simple poles at 𝑧 = 𝑖𝑎, 𝑖𝑏 lie within 𝐶. 

Res(𝑧 = 𝑖𝑎)⁡= lim
𝑧→𝑖𝑎

 (𝑧 − 𝑖𝑎)𝑓(𝑧) = lim
𝑧→𝑖𝑎

 
(𝑧 − 𝑖𝑎)𝑒𝑖𝑧

(𝑧 − 𝑖𝑎)(𝑧 + 𝑖𝑎)(𝑧2 + 𝑏2)

⁡=
𝑒−𝑎

2𝑖𝑎(−𝑎2 + 𝑏2)

 

Res(𝑧 = 𝑖𝑏)⁡= lim
𝑧→𝑖𝑏

 (𝑧 − 𝑖𝑏)𝑓(𝑧) = lim
𝑧→𝑖𝑏

 
(𝑧 − 𝑖𝑏)𝑒𝑖𝑧

(𝑧 − 𝑖𝑏)(𝑧 + 𝑖𝑏)(𝑧2 + 𝑎2)

⁡=
𝑒−𝑏

2𝑖𝑏(−𝑏2 + 𝑎2)
=

𝑒−𝑏

2𝑖𝑏(𝑎2 − 𝑏2)

Res(𝑧 = 𝑖𝑎)⁡+Res(𝑧 − 𝑖𝑏) =
1

2𝑖(𝑎2 − 𝑏2)
(
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
)

 

By Cauchy's residues theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum of residues within 𝐶) 

or 

∫ 
Γ

𝑓(𝑧)𝑑𝑧 +∫  
𝑅

−𝑅

𝑓(𝑥)𝑑𝑥 =
2𝜋𝑖

2𝑖(𝑎2 − 𝑏2)
(
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
) 

Making 𝑅 → ∞ and noting (1), we get 

∫  
∞

−∞

𝑒𝑖𝑥𝑑𝑥

(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)
=

𝜋

𝑎2 − 𝑏2
(
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
) 

Equating real parts from both sides 

∫  
∞

−∞

cos⁡𝑥 ⋅ 𝑑𝑥

(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)
=

𝜋

𝑎2 − 𝑏2
(
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
) 

Note. The last also gives 

or 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 309 

 

2⁡∫  
∞

0

 
cos⁡𝑥 ⋅ 𝑑𝑥

(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)
=

𝜋

𝑎2 − 𝑏2
[
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
]

⁡∫  
∞

0

 
cos⁡𝑥 ⋅ 𝑑𝑥

(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)
=

𝜋

2(𝑎2 − 𝑏2)
[
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
]

 

Example 21: Show that ∫  
∞

0

𝑥sin⁡𝑎𝑥

𝑥2+𝑘2
𝑑𝑥 =

𝜋

2
𝑒−𝑎𝑘, (where 𝑎 > 0, 𝑘 > 0 ). 

Solution: Let 𝑓(𝑧) =
𝑧𝑒𝑖𝑎𝑧

𝑧2+𝑘2
. Consider the integral ∫  

𝐶
𝑓(𝑧)(𝑑𝑧), where 𝐶 is 

a closed contour as shown in figure 1. 

lim
|𝑧|→∞

 
𝑧

𝑧2+𝑘2
= 0. Hence by Jordan's lemma, 

lim
𝑅→∞

 ∫ 
Γ

 
𝑧

𝑧2 + 𝑘2
𝑒𝑖𝑎𝑧𝑑𝑧 = lim

𝑅→∞
 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 = 0⁡⁡⁡⁡⁡⁡⁡ … (1)  

Poles of 𝑓(𝑧) are given by 𝑧2 + 𝑘2 = 0 or 𝑧 = ±𝑖𝑘. Now 𝑧 = 𝑖𝑘 is the only 

simple pole within 𝐶. 

Res(𝑧 = 𝑖𝑘) = lim
𝑧→𝑖𝑘

 (𝑧 − 𝑖𝑘)𝑓(𝑧) = lim
𝑧→𝑖𝑘

 
𝑧𝑒𝑖𝑎𝑧

𝑧 + 𝑖𝑘
=
𝑒−𝑎𝑘

2
 

By Cauchy's residue theorem, 

⁡∫  
𝐶

 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum of residues within 𝐶) = 𝜋𝑖𝑒−𝑎𝑘

⁡∫ 
Γ

 𝑓(𝑧)𝑑𝑧 + ∫  
𝑅

−𝑅

 𝑓(𝑥)𝑑𝑥 = 𝜋𝑖𝑒−𝑎𝑘
 

Making 𝑅 → ∞ and noting (1), we get 

∫  
∞

−∞

𝑓(𝑥)𝑑𝑥 = ∫  
∞

−∞

𝑥𝑒𝑖𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 = 𝜋𝑖𝑒−𝑎𝑘 

Equating imaginary parts from both sides, 

∫  
∞

−∞

𝑥′sin⁡𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 = 2∫  

∞

0

𝑥sin⁡𝑎𝑥

𝑥2 + 𝑘2
𝑑𝑥 = 𝜋𝑒−𝑎𝑘 

or 

∫  
∞

0

 
𝑥sin⁡𝑎𝑥𝑑𝑥

𝑥2 + 𝑘2
𝑑𝑥 =

𝜋

2
𝑒−𝑎𝑘 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡… (2)  
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Deductions. (i) Putting 𝑘 = 1 in (2), ∫  
∞

0

𝑥sin⁡𝑎𝑥

𝑥2+1
𝑑𝑥 =

𝜋

2
𝑒−𝑎 

(ii) Putting 𝑎 = 1 in (2), ∫  
∞

0

𝑥sin⁡𝑥

𝑥2+𝑘2
𝑑𝑥 =

𝜋

2
𝑒−𝑘 

(iii) Putting 𝑎 = 𝑘 = 1 in (2), ∫  
∞

0

𝑥sin⁡𝑥

𝑥2+1
𝑑𝑥 =

𝜋

2
𝑒−1 =

𝜋

2𝑒
. 

Example 22: Prove that ∫  
∞

−∞

𝑑𝑥

(𝑥2+𝑏2)(𝑥2+𝑐2)2
=

𝜋(𝑏+2𝑐)

2𝑏𝑐2(𝑏+𝑐)2
 where 𝑏 > 0, 𝑐 >

0. 

Solution: Let 𝑓(𝑧) =
1

(𝑧2+𝑏2)(𝑧2+𝑐2)2
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧 

where 𝐶 is the closed contour consisting of Γ∼, the upper half of large circle 

|𝑧| = 𝑅 and real axis from −𝑅 to 𝑅. See Figure 1. 

lim
|𝑧|→∞

 𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
𝑧

(𝑧2 + 𝑏2)(𝑧2 + 𝑐2)2
= 0 

Hence, by theorem, 

lim
𝑅→∞

 ∫  
Γ
 𝑓(𝑧)𝑑𝑧 = 𝑖(𝜋 − 0)(0) = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡ …⁡(1)  

Poles of 𝑓(𝑧) are 𝑧 = ±𝑖𝑏, ±𝑖𝑐, 𝑓(𝑧) has only two poles within 𝐶, namely 

at 𝑧 = 𝑖𝑏 (order 1) and 𝑧 = 𝑖𝑐 (order 2) 

Res(𝑧 = 𝑖𝑏) = lim
𝑧→𝑖𝑏

 (𝑧 − 𝑖𝑏)𝑓(𝑧) 

⁡= lim
𝑧→𝑖𝑏

 
(𝑧 − 𝑖𝑏)

(𝑧 − 𝑖𝑏)(𝑧 + 𝑖𝑏)(𝑧2 + 𝑐2)2
=

1

2𝑖𝑏(−𝑏2 + 𝑐2)2

𝑓(𝑧) =
𝜙(𝑧)

(𝑧 − 𝑖𝑐)2
⁡, where 𝜙(𝑧) =

1

(𝑧2 + 𝑏2)(𝑧 + 𝑖𝑐)2

𝜙′(𝑧) = −2𝑧(𝑧2 + 𝑏2)−2(𝑧 + 𝑖𝑐)−2 − 2(𝑧 + 𝑖𝑐)−3(𝑧2 + 𝑏2)−1

𝜙′(𝑖𝑐) =
−2𝑖𝑐

(−𝑐2 + 𝑏2)2(−4𝑐2)
−

2

−8𝑖𝑐3(−𝑐2 + 𝑏2)

⁡=
𝑖

2𝑐(𝑏2 − 𝑐2)2
−

𝑖

4𝑐3(𝑏2 − 𝑐2)
=

(3𝑐2 − 𝑏2)𝑖

4𝑐3(𝑏2 − 𝑐2)2

Res(𝑧 = 𝑖𝑐) =
𝜙′(𝑖𝑐)

1!
= 𝜙′(𝑖𝑐)

 

Res(𝑧 = 𝑖𝑏) + Res(𝑧 = 𝑖𝑐) 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 311 

 

⁡=
1

2𝑖𝑏(𝑏2 − 𝑐2)2
+

(3𝑐2 − 𝑏2)𝑖

4𝑐3(𝑏2 − 𝑐2)2

⁡=
𝑖

4(𝑏2 − 𝑐2)2
[
−2

𝑏
+
3𝑐2 − 𝑏2

𝑐3
] =

𝑖[−2𝑐3 + 𝑏(3𝑐2 − 𝑏2)]

4𝑏𝑐3(𝑏2 − 𝑐2)2

⁡=
𝑖[(𝑐3 − 𝑏3) − 3𝑐2(𝑐 − 𝑏)]

4𝑏𝑐3(𝑏2 − 𝑐2)2
=
𝑖(𝑐 − 𝑏)[𝑐2 + 𝑏2 + 𝑐𝑏 − 3𝑐2]

4𝑏𝑐3(𝑏2 − 𝑐2)2

⁡=
𝑖(𝑐 − 𝑏)(𝑏 − 𝑐)(𝑏 + 2𝑐)

4𝑏𝑐3(𝑏2 − 𝑐2)2
= −

𝑖(𝑏 + 2𝑐)

4𝑏𝑐3(𝑏 + 𝑐)2

 

By Cauchy's residue theorem, 

∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residues within 𝐶) 

or 

∫ 
Γ

𝑓(𝑧)𝑑𝑧 + ∫  
𝑅

−𝑅

𝑓(𝑥)𝑑𝑥 =
2𝜋𝑖[−𝑖(𝑏 + 2𝑐)]

4𝑏𝑐3(𝑏 + 𝑐)2
 

Making 𝑅 → ∞ and noting (1), 

∫  
∞

−∞

 
𝑑𝑥

(𝑥2 + 𝑏2)(𝑥2 + 𝑐2)3
=

𝜋(𝑏 + 2𝑐)

2𝑏𝑐3(𝑏 + 𝑐)2
⁡⁡⁡⁡⁡⁡⁡…⁡(2)  

Deduction. Putting 𝑏 = 1, 𝑐 = 2, we get 

∫  
∞

−∞

𝑑𝑥

(𝑥2 + 1)(𝑥2 + 4)2
=

𝜋(1 + 4)

2 × 8 × 9
=

5𝜋

144
 

or 

∫  
∞

0

𝑑𝑥

(𝑥2 + 1)(𝑥2 + 4)2
=

5𝜋

288
 

Example 23: Evaluate ∫  
∞

−∞

𝑑𝑥

(𝑥2+4)(𝑥2+9)2
. 

 

Solution: Prove as in equation (2) of the above example 22 that, 

∫  
∞

−∞

𝑑𝑥

(𝑥2 + 𝑏2)(𝑥2 + 𝑐2)2
=

𝜋(𝑏 + 2𝑐)

2𝑏𝑐3(𝑏 + 𝑐)2
 

Putting 𝑏 = 2, 𝑐 = 3, we get 
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∫  
∞

−∞

𝑑𝑥

(𝑥2 + 4)(𝑥2 + 9)2
=

𝜋(2 + 6)

2 × 2 × 33(2 + 3)2
=

2𝜋

675
. 

Example 24: Prove that ∫  
∞

0

cos⁡𝑚𝑥𝑑𝑥

𝑥4+𝑥2+1
=

𝜋

√3
𝑒−

𝑚

2
√3 ⋅ sin⁡(

𝑚

2
+

𝜋

6
). 

Solution: Let 𝑓(𝑧) =
𝑒𝑖𝑚𝑧

𝑧4+𝑧2+1
 

Consider the integral ∫  
𝐶
𝑓(𝑧)𝑑𝑧 where 𝐶 is closed contour as shown in 

Figure 1. 

Evidently lim
|𝑧|→∞

 
1

𝑧4+𝑧2+1
= 0. Hence, by Jordan's lemma, 

lim
𝑅→∞

 ∫ 
Γ

 
𝑒𝑖𝑚𝑧𝑑𝑧

𝑧4 + 𝑧2 + 1
= lim

𝑅→∞
 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 = 0⁡⁡⁡⁡⁡⁡⁡ …⁡(1)  

Poles of 𝑓(𝑧) are given by 

𝑧4 + 𝑧2 + 1 = 0 or (𝑧2 − 1)(𝑧4 + 𝑧2 + 1) = 0 

This ⇒ 𝑧6 − 1 = 0 ⇒ 𝑧6 = 1 = 𝑒2𝑛𝜋𝑖 ⇒ 𝑧 = 𝑒2𝑛𝜋𝑖/6, ⇒ 𝑧 = 𝑒𝑛𝜋𝑖/3, (𝑛 =
0,1,2,3,4,5) 
The values 𝑒𝑖𝜋/3, 𝑒𝑖2𝜋/3, 𝑒𝑖4𝜋/3, 𝑒𝑖5𝜋/3 are the roots of 𝑧4 + 𝑧2 + 1 = 0. 

The poles lying within 𝐶 are 𝑒𝜋𝑖/3, 𝑒2𝜋𝑖/3. 

Let 𝛼 = 𝑒𝜋𝑖/3, then 𝛼2 = 𝑒2𝜋𝑖/3. 

Thus 𝑓(𝑧) has two simple poles at 𝑧 = 𝛼, 𝛼2 within 𝐶. 

Res(𝑧 = 𝛼) = lim
𝑧→𝛼

 
𝜙(𝑧)

𝜓′(𝑧)
 for simple pole where 𝑓(𝑧) =

𝜙(𝑧)

Ψ(𝑧)
 

= lim
𝑧→𝛼

 
𝑒𝑖𝑚𝑧

4𝑧3 + 2𝑧
 

Res(𝑧 = 𝛼) + Res(𝑧 = 𝛼2) 

⁡=
𝑒𝑖𝑚𝛼

4𝛼3 + 2𝛼
+

𝑒𝑖𝑚𝛼2

4𝛼6 + 2𝛼2

⁡=
exp⁡(𝑖𝑚𝑒𝜋𝑖/3)

4𝑒𝜋𝑖 + 2𝑒𝜋𝑖/3
+

exp⁡(𝑖𝑚𝑒2𝜋𝑖/3)

𝑥 + 2exp⁡(
2𝜋𝑖
3 )

⁡ For 𝛼6 − 1 = 0

⁡=

exp⁡{𝑖𝑚 (
1 + 𝑖√3

2
)}

−4 + 2(
1 + 𝑖√3

2 )

+

exp⁡{𝑖𝑚 (
−1 + 𝑖√3

2
)}

4 + 2(
−1 + 𝑖√3

2 )
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⁡=
exp⁡{

𝑚
2 (𝑖 − √3)}

−3 + 𝑖√3
+
exp⁡{

𝑚
2 (−𝑖 − √3)}

3 + 𝑖√3

⁡= exp⁡(
−𝑚√3

2
) [
exp⁡(𝑖𝑚/2) ⋅ (−3 − 𝑖√3)

12

⁡+
(3 − 𝑖√3)exp⁡(−𝑖𝑚/2)

12
]

⁡=
1

12
exp⁡(

−𝑚√3

2
) [−3(𝑒𝑖𝑚/2 − 𝑒−𝑖𝑚/2) − 𝑖√3(𝑒𝑖𝑚/2 + 𝑒−𝑖𝑚/2)]

⁡=
1

12
exp⁡(

−𝑚√3

2
) [−6𝑖sin⁡

𝑚

2
− 2𝑖√3cos⁡

𝑚

2
]

⁡= −
4𝑖√3

12
exp⁡(

−𝑚√3

2
) [
√3

2
sin⁡

𝑚

2
+
1

2
cos⁡

𝑚

2
]

⁡=
−𝑖

√3
exp⁡(

−𝑚√3

2
)sin⁡(

𝑚

2
+
𝜋

6
)

 

By Cauchy's residues theorem, ∫  
𝐶
𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 (Sum of residues within  

). 

or ⁡∫  
Γ
𝑓(𝑧)𝑑𝑧 + ∫  

𝑅

−𝑅
𝑓(𝑥)𝑑𝑥 =

2𝜋𝑖(−𝑖)

√3
exp⁡(

−𝑚√3

2
) sin⁡(

𝑚

2
+

𝜋

6
) 

Making 𝑅 → ∞ and noting (1), we get 

∫  
∞

−∞

𝑒𝑖𝑚𝑥𝑑𝑥

𝑥4 + 𝑥2 + 1
=
2𝜋

√3
exp⁡(

−𝑚√3

2
) sin⁡(

𝑚

2
+
𝜋

6
) 

Equating real parts from both sides 

∫  
∞

−∞

cos⁡𝑚𝑥𝑑𝑥

𝑥4 + 𝑥2 + 1
=
2𝜋

√3
exp⁡(

−𝑚√3

2
) sin⁡(

𝑚

2
+
𝜋

6
) 

or 

∫  
∞

0

cos⁡𝑚𝑥𝑑𝑥

𝑥4 + 𝑥2 + 1
=

𝜋

√3
exp⁡(

−𝑚√3

2
)sin⁡(

𝑚

2
+
𝜋

6
) 

Example 25: Apply the calculus of residues to prove that 

∫  
∞

0

𝑥6𝑑𝑥

(𝑥4 + 𝑎4)2
=
3𝜋√2

16𝑎
, 𝑎 > 0 
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Solution: Let ⁡𝑓(𝑧) =
𝑧6

(𝑧4+𝑎4)2
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧 where 𝐶 is 

a closed contour as shown in Figure 1. Poles of 𝑓(𝑧) are given by 

𝑧4 + 𝑎4 = 0⁡ or ⁡𝑧4 = −𝑎4 = −𝑒2𝑛𝜋𝑖 ⋅ 𝑒𝜋𝑖 ⋅ 𝑎4 

𝑧 = 𝑎𝑒(2𝑛+1)𝜋𝑖/4 where 𝑛 = 0,1,2,3. 

𝑓(𝑧) has two poles each of order 2 at 𝑧 = 𝛼 = 𝛼𝑒𝜋𝑖/4, 𝑧 = 𝛽 = 𝑒3𝜋𝑖/4 

within 𝐶 and so 𝛼4 + 𝑎4 = 0 = 𝛽4 + 𝑎4. 

lim
|𝑧|→∞

 𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
𝑧7

(𝑧4 + 𝑎4)2
= 0⁡⁡⁡⁡⁡⁡⁡⁡ … (1)  

Hence, by theorem, lim
𝑅→∞

 ∫  
Γ
𝑓(𝑧)𝑑𝑧 = 𝑖(𝜋 − 0)(0) = 0 

To find the residue of 𝑓(𝑧) at the double pole 𝑧 = 𝛼, we put 𝑧 = 𝛼 + 𝑡 in 

𝑓(𝑧) and equate the coefficient of 
1

𝑡
. 

𝑓(𝑧)⁡=
(𝛼 + 𝑡)6

[(𝛼 + 𝑡)4 + 𝑎4]2
=

(𝛼 + 𝑡)6

(𝑎4 + 𝛼4 + 4𝛼3𝑡 + 6𝛼2𝑡2 +⋯)2

⁡=
(𝛼 + 𝑡)6

(4𝛼3𝑡 + 6𝛼2𝑡2 +⋯)2
 For 𝑎4 + 𝛼4 = 0.

⁡=
(𝛼 + 𝑡)6

16𝛼6𝑡2
(1 +

3𝑡

2𝛼
) − 2

⁡=
(𝛼6 + 6𝛼5𝑡 + ⋯)

16𝛼6𝑡2
(1 −

3𝑡

𝛼
+⋯)

⁡=
(𝛼6 + 6𝛼5𝑡 + ⋯)

16𝛼6
(
1

𝑡2
−

3

𝑡𝛼
+⋯)

 

Here coefficient of 
1

𝑡
 is 

1

16𝛼6
(−3𝛼5 + 6𝛼5) =

3

16𝛼

Res(𝑧 = 𝛼) + Res(𝑧 = 𝛽) =
3

16
(
1

𝛼
+
1

𝛽
) =

3

16𝑎
(𝑒−𝜋𝑖/4 + 𝑒−3𝜋𝑖/4)

⁡=
3

16𝑎
[
1 − 𝑖

√2
+ cos⁡(

−3𝜋

4
) + 𝑖sin⁡(

−3𝜋

4
)]

⁡=
3

16𝑎
[
1 − 𝑖

√2
−

1

√2
−

𝑖

√2
] =

−3 × 2𝑖

16𝑎√2
=
−3𝑖√2

16𝑎

 

By Cauchy's residues theorem, 
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∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( Sum residues within 𝐶) =
2𝜋𝑖

16𝑎
(−3𝑖√2) 

or 

∫ 
Γ

𝑓(𝑧)𝑑𝑧 +∫  
𝑅

−𝑅

𝑓(𝑧)𝑑𝑧 =
3𝜋√2

8𝑎
 

Making 𝑅 → ∞ and noting (1), we get 

∫  
∞

−∞

𝑥6𝑑𝑥

(𝑥4 + 𝑎4)2
= 2∫  

∞

0

𝑥6𝑑𝑥

(𝑥4 + 𝑎4)2
=
3𝜋√2

8𝑎
 

or 

∫  
∞

0

𝑥6𝑑𝑥

(𝑥4 + 𝑎4)2
=
3𝜋√2

16𝑎
 

Example 26: By contour integration, prove that 

∫  
∞

−∞

𝑥2𝑑𝑥

(𝑥2 + 𝑎2)3
=

𝜋

8𝑎3
 

Solution: Let𝑓(𝑧) =
𝑧2

(𝑧2+𝑎2)3
. Consider ∫  

𝐶
𝑓(𝑧)𝑑𝑧 where 𝐶 is a closed 

contour as shown in figure 1. Poles of 𝑓(𝑧) are given by (𝑧2 + 𝑎2)3 = 0 or 

𝑧 = ±𝑖𝑎. Evidently 𝑧 = 𝑖𝑎 is the only pole of order 3 within 𝐶. Putting 𝑧 =
𝑖𝑎 + 𝑡 in the value of 𝑓(𝑧), 

𝑓(𝑖𝑎 + 𝑡)⁡=
(𝑖𝑎 + 𝑡)2

[(𝑖𝑎 + 𝑡)2 + 𝑎2]3
=
𝑡2 − 𝑎2 + 2𝑖𝑎𝑡

(𝑡2 + 2𝑖𝑎𝑡)3

⁡=
(𝑡2 − 𝑎2 + 2𝑖𝑎𝑡)

(2𝑖𝑎𝑡)3
[1 +

𝑡

2𝑖𝑎
]
3

⁡= (
𝑡2 − 𝑎2 + 2𝑖𝑎𝑡

−8𝑖𝑎3𝑡3
) [1 −

3𝑡

2𝑖𝑎
−
3𝑡2

2𝑎2
……]

⁡=
(𝑡2 − 𝑎2 + 2𝑖𝑎𝑡)

−8𝑖𝑎3
[
1

𝑡3
−

3

2𝑖𝑎𝑡2
−

3

2𝑎2𝑡
… ]

 

Here coefficient of 
1

𝑡
 is 

−1

8𝑖𝑎3
[1 +

3

2
− 3] =

1

16𝑖𝑎3
 

∫  
𝐶
𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖( sum of residue within 𝐶) = 2𝜋𝑖Res(𝑧 = 𝑖𝑎) 

or 
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⁡∫ 
Γ

 𝑓(𝑧)𝑑𝑧 +∫  
𝑅

−𝑅

 𝑓(𝑥)𝑑𝑥 =
2𝜋𝑖

16𝑖𝑎3
⁡⁡⁡⁡⁡⁡⁡⁡… (1)

⁡ lim
|𝑧|→∞

 𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
𝑧3

(𝑧2 + 𝑎2)3
= 0⁡⁡⁡⁡⁡⁡ … (2)

 

∴ By Theorem 7, lim
𝑅→∞

 ∫  
Γ
𝑓(𝑧)𝑑𝑧 = 𝑖(𝜋 − 0)(0) = 0 

Making 𝑅 → ∞ in (1) and noting (2), we get  

∫  
∞

−∞

𝑥2𝑑𝑥

(𝑥2 + 𝑎2)3
=

𝜋

8𝑎3
 

13.7 POLES LIE ON THE REAL AXIS:- 

In the previous article we have supposed that the function 𝑓(𝑧) has no pole 

on the real line. Now we drop this condition. In the present case the function 

𝑓(𝑧) has poles within the semicircle Γ as well as on the real line. We exclude 

the poles on the real line by enclosing them with semi circles of small radii. 

This procedure is called "identing at a point". This process is illustrated by 

the following solved problems. 

Example 27: Prove that ∫  
∞

0

log⁡𝑥𝑑𝑥

(1+𝑥2)2
= −

𝜋

4
. 

 

Solution: Let 𝑓(𝑧) =
log⁡𝑧

(1+𝑧2)2
. Consider the integral ∫  

𝐶
𝑓(𝑧)𝑑𝑧, where 𝐶 is 

the closed contour consisting of Γ, the upper half of large circle |𝑧| = 𝑅 and 

real axis from −𝑅 to 𝑅 idented at 𝑧 = 0 by a small semi-circle 𝛾 of radius 

𝑟. (See Fig. 2) 𝑧 = 0 is a branch point of 𝑓(𝑧). Poles of 𝑓(𝑧) are given by 

(1 + 𝑧2)2 = 0,⁡ or ⁡𝑧 = 𝑖, −𝑖 

 

 

Figure: 2 
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𝑓(𝑧) has only one pole within 𝐶 of order 2 at 𝑧 = 𝑖. 

Res(𝑧 = 𝑖)⁡=
𝜙′(𝑖)

1!
 where 𝜙(𝑧) =

log⁡𝑧

(𝑧 + 𝑖)2
 so that 

𝑓(𝑧)⁡=
𝜙(𝑧)

(𝑧 − 𝑖)2

𝜙′(𝑧)⁡=
[𝑧−1(𝑧 + 𝑖)2 − 2(𝑧 + 𝑖)log⁡𝑧]

(𝑧 + 𝑖)4
=
𝑧−1(𝑧 + 𝑖) − 2log⁡𝑧

(𝑧 + 𝑖)3

𝜙′(𝑖)⁡=
−𝑖2𝑖 − 2log⁡𝑖

−8𝑖
= −

1

4𝑖
[1 − log⁡𝑒𝑖𝜋/2]

⁡=
𝑖

4
[1 − 𝑖

𝜋

2
] =

1

4
[𝑖 +

𝜋

2
]

Res(𝑧 = 𝑖)⁡=
1

4
(
𝜋

2
+ 𝑖)

 

By Cauchy's residue theorem, 

∫  
−𝑟

−𝑅

 𝑓(𝑥)𝑑𝑥 +∫ 
𝛾

 𝑓(𝑧)𝑑𝑧 + ∫  
𝑅

𝑟

 𝑓(𝑥)𝑑𝑥 + ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖. Res(𝑧 = 𝑖)

⁡

 

= 2𝜋𝑖 ⋅
1

4
(
𝜋

2
+ 𝑖)      … (1) 

lim
𝑧→∞

 𝑧𝑓(𝑧) = lim
𝑧→∞

  [
𝑧2

(1 + 𝑧2)2
] [
log 𝑧

𝑧
] = (0)(0) = 0⁡⁡⁡⁡⁡ …⁡(2)  

∴⁡ By theorem, lim
𝑅→∞

 ∫  
Γ
𝑓(𝑧)𝑑𝑧 = 𝑖(𝜋 − 0)(0) = 0      … (3) 

⁡lim
𝑧→0

 𝑧𝑓(𝑧) = lim
𝑧→0

 
𝑧log⁡𝑧

(1 + 𝑧2)2
= lim

𝑡→∞
 
(1/𝑡)log⁡(1/𝑡)𝑡4

(1 + 𝑡2)2

⁡= lim
𝑡→∞

 
𝑡3(log⁡1 − log⁡𝑡)

(1 + 𝑡2)2
= lim

𝑡→∞
  [

𝑡4

(1 + 𝑡2)2
] [
−log⁡𝑡

𝑡
]

⁡= (1) ⋅ 0 = 0.

 

∴⁡ By theorem, lim
𝑟→0

 ∫  
𝛾
𝑓(𝑧)𝑑𝑧 = −𝑖(𝜋 − 0)(0) = 0 

The negative sign is taken because the ‘semicircle 𝛾 is negatively oriented. 

Making 𝑟 → 0,𝑅 → ∞ in (1) and noting (2), (3), 

⁡∫  
0

−∞

 𝑓(𝑥)𝑑𝑥 + 0 + ∫  
∞

0

 𝑓(𝑥)𝑑𝑥 + 0 =
𝜋

2
[𝑖
𝜋

2
− 1]
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∫  
0

−∞
 
log⁡𝑥

(1+𝑥2)2
𝑑𝑥 + ∫  

∞

0
 
log⁡𝑥

(1+𝑥2)2
𝑑𝑥 =

𝜋

2
[𝑖

𝜋

2
− 1]        … (4) 

⁡

⁡∫  
0

−∞

 
log⁡𝑥𝑑𝑥

(1 + 𝑥2)2
= ∫  

0

∞

 
log⁡(−𝑦)(−𝑑𝑦)

(1 + 𝑦2)2
, where − 𝑦 = 𝑥

⁡= ∫  
∞

0

 
log⁡(𝑦𝑒𝑖𝜋)𝑑𝑦

(1 + 𝑦2)2

⁡= ∫  
∞

0

  (log⁡𝑦 + 𝑖𝜋)
𝑑𝑦

(1 + 𝑦2)2

⁡= ∫  
∞

0

  (log⁡𝑥 + 𝑖𝜋)
𝑑𝑥

(1 + 𝑥2)2

 

Using this in (4), 

∫  
∞

0

(log⁡𝑥 + 𝑖𝜋)
𝑑𝑥

(1 + 𝑥2)2
+ ∫  

∞

0

log⁡𝑥𝑑𝑥

(1 + 𝑥2)2
=
𝜋

2
(
𝑖𝜋

2
− 1) 

Equating real parts, 

∫  
∞

0

 
log⁡𝑥𝑑𝑥

(1 + 𝑥2)2
+∫  

∞

0

 
log⁡𝑥𝑑𝑥

(1 + 𝑥2)2
= −

𝜋

2

∫  
∞

0

 
log⁡𝑥𝑑𝑥

(1 + 𝑥2)2
= −

𝜋

4

 

Example 28: Evaluate ∫  
∞

0

𝑥𝑎−1𝑑𝑥

1−𝑥
 and ∫  

∞

0

𝑥𝑎−1𝑑𝑥

1+𝑥
, where 0 < 𝑎 < 1. 

 

Solution: Let 𝑓(𝑧) =
𝑧𝑎−1

1−𝑧
, where 0 < 𝑎 < 1. Then 1 − 𝑎 > 0. 

For poles : (1 − 𝑧)𝑧1−𝑎 = 0 ⇒ 𝑧 = 0,1. 

All these are simple poles and lie on 𝑥-axis. Consider ∫  
𝐶
𝑓(𝑧)𝑑𝑧 where 𝐶 

is a closed contour consisting of upper half part of large circle Γ s.t. |𝑧| = 𝑅 

and real axis from −𝑅 to 𝑅 idented at 𝑧 = 0,1 by small semi circles 𝛾1, 𝛾2 

of radii 𝑟1, 𝑟2 respectively. Evidently no pole lies writhin 𝐶. 

∴ ⁡∫ 
𝐶

𝑓(𝑧)𝑑𝑧 = 0 
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Figure: 3 

or, ⁡∫  
𝐶
𝑓(𝑧)𝑑𝑧 + ∫  

−𝑟1

−𝑅
𝑓(𝑥)𝑑𝑥 + ∫  

𝛾1
𝑓(𝑧)𝑑𝑧 + ∫  

1−𝑟2

𝑟1
𝑓(𝑥)𝑑𝑥 +

∫  
𝛾2
𝑓(𝑧)𝑑𝑧 + ∫  

𝑅

1+𝑟2
𝑓(𝑥)𝑑𝑥 = 0 

Making 𝑅 → ∞ and 𝑟1, 𝑟2 → 0, ? get 

lim
𝑅→∞

 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 +∫  
0

−∞

 𝑓(𝑥)𝑑𝑥 + ∫  
𝛾1

 𝑓(𝑧)𝑑𝑧 +∫  
1

0

 𝑓(𝑥)𝑑𝑥 +∫  
𝛾2

 𝑓(𝑧)𝑑𝑧 

+∫  
∞

1

 𝑓(𝑥)𝑑𝑥 = 0 where 𝑟1, 𝑟2 → 0

⇒ ∫  
0

−∞

 𝑓(𝑥)𝑑𝑥 + ∫  
∞

0

 𝑓(𝑥)𝑑𝑥 +∑  

2

𝑖=1

  lim
𝑖→0

 ∫  
𝛾𝑖

 𝑓(𝑧)𝑑𝑧

= − lim
𝑅→∞

 ∫ 
Γ

 𝑓(𝑧)𝑑𝑧 …⁡(1)

 

Now ∫  
0

−∞
𝑓(𝑥)𝑑𝑥 = ∫  

0

−∞

𝑥𝑎−1

1−𝑥
𝑑𝑥, put 𝑥 = −𝑡 

⁡= ∫  
0

∞

  (−𝑡)𝑎−1
(−𝑑𝑡)

1 + 𝑡
= ∫  

∞

0

 
(𝑡𝑒𝑖𝜋)

𝑎−1
𝑑𝑡

1 + 𝑡

⁡= ∫  
∞

0

  𝑡𝑎−1𝑒𝑖𝜋𝑡 ⋅
(−1)𝑑𝑡

1 + 𝑡

 

or, 

∫  
0

−∞

 𝑓(𝑥)𝑑𝑥 = −∫  
∞

0

 
𝑥𝑎−1𝑒𝑖𝜋𝑎

1 + 𝑥
𝑑𝑥⁡⁡⁡⁡⁡⁡⁡ … (2)  
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and 

∫  
∞

0

 𝑓(𝑥)𝑑𝑥 = ∫  
∞

0

 
𝑥𝑎−1𝑑𝑥

1 − 𝑥
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡… (3)  

If 𝐾1 = lim
𝑧→0

 (𝑧 − 0)𝑓(𝑧) = lim
𝑧→0

 
𝑧𝑎

1−𝑧
=

0

1
= 0 

∴ ⁡ lim
𝑟1→0

 ∫  
𝛾1

 𝑓(𝑧)𝑑𝑧 = −𝑖(𝜃2 − 𝜃1)𝐾1 = −𝑖(𝜋 − 0)(0) = 0⁡⁡⁡⁡⁡ … (4)  

If 𝐾2 = lim
𝑧→1

 (𝑧 − 1)𝑓(𝑧) = lim
𝑧→1

 (𝑧 − 1)
𝑧𝑎−1

1−𝑧
= lim

𝑧→1
  − 𝑧𝑎−1 = −1. 

∴ ⁡ lim
𝑟2→0

 ∫  
𝛾1

 𝑓(𝑧)𝑑𝑧 = −𝑖(𝜃2 − 𝜃1)𝐾2 = −𝑖(𝜋 − 0)(−1) = 𝑖𝜋⁡⁡⁡⁡⁡⁡ … . (5)  

Adding the last two results, 

∑ 

2

𝑖=1

  lim
𝑟𝑖→0

 ∫  
𝛾𝑖

 𝑓(𝑧)𝑑𝑧 = 0 + 𝑖𝜋 = 𝑖𝜋⁡⁡⁡⁡⁡⁡⁡ … (6)  

By theorem, lim
𝑅→∞

 ∫  
Γ
𝑓(𝑧)𝑑𝑧 = 𝑖(𝜃2 − 𝜃1)𝐾3 = 0       … (7) 

as 

𝐾3 = lim
|𝑧|→∞

 𝑧𝑓(𝑧) = lim
|𝑧|→∞

 
𝑧𝑎

1 − 𝑧
= 0 as 0 < 𝑎 < 1 

Putting values from (2), (3), (6) & (7) in (1), we get 

−∫  
∞

0

𝑥𝑎−1𝑒𝑖𝜋𝑎𝑑𝑥

1 + 𝑥
+∫  

∞

0

𝑥𝑎−1𝑑𝑥

1 − 𝑥
+ 𝑖𝜋 = 0 

Equating real and imaginary parts, 

and 

⁡−∫  
∞

0

 
𝑥𝑎−1 cos(𝜋𝑎) 𝑑𝑥

1 + 𝑥
+∫  

∞

0

 
𝑥𝑎−1𝑑𝑥

1 − 𝑥
= 0⁡⁡⁡⁡ … (8)

⁡−∫  
∞

0

 
𝑥𝑎−1 sin(𝜋𝑎)𝑑𝑥

1 + 𝑥
+ 𝜋 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ … (9)

⁡(9) ⇒ ∫  
∞

0

 
𝑥𝑎−1𝑑𝑥

1 + 𝑥
=

𝜋

sin(𝜋𝑎)
⁡⁡⁡⁡⁡⁡… (10)
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Put eq. (10) in (8), ∫  
∞

0

𝑥𝑎−1𝑑𝑥

1−𝑥
= 𝜋cot⁡(𝜋𝑎) 

From eq. (10) & (11), we get the required results. 

 

Check your progress 

Problem 1: Apply the calculus of residues to prove that ∫  
∞

0

sin⁡𝑚𝑥

𝑥
𝑑𝑥 =

𝜋

2
. 

Problem 2: Prove that ∫  
∞

0

sin⁡𝜋𝑥

𝑥(1−𝑥2)
𝑑𝑥 = π 

13.8 SUMMARY:- 

The chapter on the application of the residue theorem demonstrates its 

power as a pivotal tool in complex analysis for evaluating a wide range of 

definite real integrals that are often intractable by standard calculus 

techniques. The core strategy involves selecting an appropriate complex 

contour integral whose value relates directly to the desired real integral. By 

applying the residue theorem, the value of this contour integral is computed 

as 2πi times the sum of the residues of the integrand's singularities enclosed 

within the contour. This approach is systematically tailored to different 

classes of integrals, including trigonometric integrals over [0, 2π] via 

substitution on the unit circle, improper rational integrals over (-∞, ∞) using 

semicircular contours, integrals involving trigonometric functions 

combined with rational functions, and those requiring indented contours to 

bypass singularities on the real axis. Ultimately, the method transforms the 

challenging problem of real integration into the more algebraic and often 

simpler task of calculating complex residues. 

13.9 GLOSSARY:- 

1. Jordan's Lemma: A key result used to prove that the integral along 

a large semicircular arc in the upper or lower half-plane vanishes for 

certain integrands, typically those involving eiaz. 

2. Pole: A type of isolated singularity. A pole of order n at z0 is one 

where the function can be written as 
nzz

zg
zf

)(

)(
)(

0
 , 

with g(z) analytic and non-zero at z0. A pole of order 1 is called 

a simple pole. 

3. Principal Value (P.V.): A method for assigning a finite value to an 

improper integral that is not convergent in the usual sense, often 
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used when the limits of integration approach infinity symmetrically 

or when approaching a singularity symmetrically. 

4. Residue: The coefficient a−1 of the (z−z0)
−1 term in the Laurent 

series expansion of a function around an isolated singularity z0. It is 

denoted as Res(f, z0). 

5. Residue Theorem: The central theorem stating that if a function is 

analytic inside and on a simple closed contour C, except for a finite 

number of isolated singularities, then the contour integral is ∮Cf(z)dz 

= 2πi∑Res(f, zk), where the sum is over all residues inside C. 
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13.12TERMINAL QUESTIONS:- 

Long answer type question 

https://archive.nptel.ac.in/content/syllabus_pdf/111106141.pdf
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1: Evaluate. √
2𝜋

1+𝑎cos⁡𝜃
, 𝑎2 < 1. 

2: prove that ∫  
𝜋

0

𝑎𝑑𝜃

𝑎2+cos2⁡𝜃
=

𝜋

(1+𝑎2)1/2
 

3: Evaluate, ∫  
𝜋

0

𝑑𝜃

2+sin2 ⁡𝜃
 

 

4:  Evaluate ∫  
2𝜋

0

𝑑𝜃

1−2𝑎cos⁡𝜃+𝑎2
, where 0 < 𝑎 < 1. 

5: If 𝑎 ≥ 0, then evaluate ∫  
∞

0

cos⁡(𝑎𝑥)

𝑥2+1
𝑑𝑥. 

Hint: First proves that ∫  
∞

0

cos⁡(𝑚𝑥)

𝑥2+𝑎2
𝑑𝑥 =

𝜋

2𝑎
𝑒−𝑚𝑎, where 𝑚 ≥ 0, 𝑎 > 0. 

Then putt  𝑚 = 𝑎 and 𝑎 = 1 in the above equation we get the required 

result. 

Short answer type question 

1: Prove that ∫  
∞

0

cos⁡𝑚𝑥𝑑𝑥

𝑥4+𝑥2+1
=

𝜋

6
(3sin⁡

𝑚

2
+ √3cos⁡

𝑚

2
) exp⁡(

−𝑚√3

2
) 

Hint: First prove that, 

∫  
∞

∞

 
cos⁡𝑚𝑥𝑑𝑥

𝑥4 + 𝑥2 + 1
⁡=

𝜋

√3
exp⁡(

−𝑚√3

2
) sin⁡(

𝑚

2
+
𝜋

6
)

⁡=
𝜋

√3
exp⁡(

−𝑚√3

2
) [(sin⁡

𝑚

2
) ⋅

√3

2
+
1

2
cos⁡

𝑚

2
]

⁡=
𝜋

2√3 ⋅ √3
exp⁡(

−𝑚√3

2
) [3sin⁡

𝑚

2
+ √3cos⁡

𝑚

2
]

 

 

 

2: Classify the singularities of a function of a complex variable. Show 

that the only singularities of 
cot⁡𝜋𝑧

(𝑧−𝑎)2
 are poles. Find the residues of the 

function at these poles. 

3: Determine the nature of the pole at the origin of the function 
𝑒𝑧

𝑧sin⁡𝑚𝑧
 

and find the residue. 

 

Objective type question: 

1.  The Residue Theorem is used to evaluate: 

A.  Real integrals 

B.  Line integrals of analytic functions 
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C.  Improper integrals 

D.  All of the above 

2.  If )(zf  has isolated singularities inside a simple closed contour C, 

then according to the Residue theorem:  
C

dzzf ?)(  

A.  0 

B.  i2  Residues of )(zf  inside C 

C.  i  Residues of )(zf  inside C 

D.  None of these 

3.  The residue of 
2)(

1
)(

az
zf


 at az   is: 

A.  0 

B.  1 

C.  ∞ 

D.  Undefined 

4.  The integral 
C

z

dz
, where C is the unit circle ∣z∣=1, is: 

A.  0 

B.  2πi 

C.  πi 

D.  1 

5.  The Residue Theorem helps in evaluating real definite integrals of 

which form? 

A.  



dxxf )(  

B.  



2

0
)sin,(cos df  

C.  Both A and B 

D.  Neither A nor B 

6.  The residue at a simple pole az   is given by: 

A.  
2))((lim azzfaz   

B.  ))((lim azzfaz   

C.  )])(([lim azzf
dz

d
az   

D.  None of these 

7.  Which of the following integrals can be evaluated using the residue 

theorem? 

A. 



12x

dx
 

B.  dx
x

x



0

sin
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C.  




d 

2

0
cos45

1
 

D.  All of these 

8.  The residue of 
3)1(

)(



z

e
zf

z

at 1z  is: 

A.  4/e  

B.  e  

C.  !3/e  

D.  !2/e  

9.  For 
)1(

1
)(

2 


z
zf , the poles are: 

A.  1z  

B.  iz   

C.   ,0z  

D.  None of these 

10.  The contour integral 



2||

2 )1(
z

zz

dz
 is equal to: 

A.  0 

B.  2πi 

C.  2πi×(sum of residues at z=0, z=1) 

D.  Undefined 

13.13ANSWERS 

Answer of long answer type question: 

1.  
2𝜋

√1−𝑎2
    3. ⁡

𝜋

√6
.   4.

 2𝜋/(1 − 𝑎2) 

Answer of short answer type question: 

3: 𝐼 = −2𝜋𝑖(−2/3) =
4𝜋𝑖

4
 

Answer of objective questions 

1: D  2: B  3: A  4:

 B 

5: C  6: B  7: D  8:

 D 

9: B  10: C 
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UNIT-14: Analytic Continuation 

CONTENTS 

14.1 Introduction 

14.2 Objective  

14.3 Meromorphic functions 

14.4 Rouche’s theorem 

14.5 Analytic continuation 

14.6 Complete analytic function 

14.7 Summary 

14.8 Glossary  

14.9  References 

14.10 Suggested Readings 

14.11 Terminal Questions 

14.12 Answers 

14.1 INTRODUCTION:- 

Analytic continuation is a fundamental concept in complex 

analysis that allows us to extend the domain of a given analytic function 

beyond its initial region of definition while preserving analyticity. Often, a 

function represented by a power series converges only within a certain 

disk, but through analytic continuation, we can construct a larger analytic 

function that coincides with the original one on the overlap of their 

domains. This process reveals the deeper structure of complex functions, 

helps identify natural boundaries and singularities, and enables the study 

of functions such as the Riemann zeta function, the logarithm, and many 

special functions in broader domains. Analytic continuation thus serves as 

an essential tool for expanding the reach of analytic functions and 

understanding their global behavior in the complex plane. 

The unit on meromorphic functions, Rouché’s theorem, and 

analytic continuation introduces fundamental ideas that extend the study 

of analytic functions to a broader and deeper context within complex 

analysis. It begins by exploring meromorphic functions, which generalize 

analytic functions by allowing isolated poles while preserving analyticity 

elsewhere, providing a rich framework for understanding complex 

behavior. The unit then presents Rouché’s theorem, a key result used to 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 327 

 

compare analytic functions on a closed contour and determine the number 

of zeros within it, offering powerful techniques for root-counting and 

function comparison. Finally, it examines analytic continuation, the 

method of extending an analytic function beyond its initial domain of 

definition using overlapping regions where the function remains analytic. 

Together, these topics build essential tools for analyzing and extending 

complex functions across wider regions of the complex plane. 

14.2 OBJECTIVES:- 

After the study of this unit, learner shall understand: 

1. To understand the concept of meromorphic functions, their 

definition, properties, and how they differ from analytic and entire 

functions. 

2. To identify and classify poles as the only singularities of 

meromorphic functions and to study their behavior in the complex 

plane. 

3. To learn the statement, conditions, and applications of Rouché’s 

theorem for determining the number of zeros of analytic functions 

within a closed contour. 

4. To apply Rouché’s theorem in solving problems involving root-

location, polynomial analysis, and comparison of complex 

functions. 

5. To introduce the idea of analytic continuation and explain how 

analytic functions can be extended beyond their initial domains. 

6. To understand the uniqueness principle of analytic continuation, 

based on the identity theorem. 

7. To develop the ability to use these concepts to analyze the global 

behavior of complex functions, particularly how functions behave 

near singularities and across extended regions. 

14.3 MEROMORPHIC FUNCTIONS:- 

The study of meromorphic functions and Rouché’s Theorem forms a 

crucial part of complex analysis, providing powerful tools for 

understanding the behavior of analytic functions in the complex plane. A 

meromorphic function, defined as a function that is analytic everywhere 

except at isolated poles, serves as a natural extension of rational functions 

and plays a central role in many areas of mathematics and mathematical 

physics. Rouché’s Theorem, on the other hand, is a key result in complex 

function theory that allows us to compare two analytic functions on a 
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closed contour to determine how many zeros lie inside it. By analyzing the 

dominance of one function over another on the boundary, the theorem 

provides a practical method for counting zeros without explicitly solving 

equations. Together, the concepts of meromorphic functions and Rouché’s 

Theorem offer deep insights into the structure, zeros, and singularities of 

complex functions, and form essential tools for advanced problem-solving 

in complex analysis. 

Definition ( Meromorphic function): A function is called meromorphic 

if, in the finite complex plane, its only singularities are isolated poles. 

Definition (Entire function): A function that is free of singularities 

throughout the entire finite complex plane is known as an entire function. 

Theorem 1: (Mittag Leffler's expansion theorem) Suppose that the only 

singularities of 𝑓(𝑧) in the finite part of the 𝑧-plane are simple poles at 

𝑎1, 𝑎2, … 𝑎𝑛 arranged in the order of increasing absolute values. Also 

suppose that 

(i) Residues of 𝑓(𝑧) at 𝑎1, 𝑎2, … , 𝑎𝑛 be 𝑏1, 𝑏2, … , 𝑏𝑛, 

(ii) < 𝐶𝑛 > is a sequence of circles (or rectangles or squares) of radii 

𝑅𝑛 or 𝑅𝑛 is the minimum distance of 𝐶𝑛 from the origin) 𝐶𝑛 encloses 

𝑎1, 𝑎2, … , 𝑎𝑛 and no other poles. On the circle 𝐶𝑛 , |𝑓(𝑧)| < 𝑀, where 𝑀 is 

independent of 𝑛 and 𝑅𝑛 → ∞ as 𝑛 → ∞. 

Then for all values of 𝑧 except poles, 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

𝑏𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎𝑛
) 

Proof. Consider the integral, 𝐼 = ∫  
𝐶𝑛

𝑓(𝑡)𝑑𝑡

𝑡−𝑧
 

 

Figure 1 
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𝑧 being any point (except pole) inside the circle 𝐶𝑛. The function 
𝑓(𝑡)

𝑡−𝑧
 has 

simple pole at 𝑡 = 𝑧. 

Evidently any pole of 𝑓(𝑡) is a pole of 𝑓(𝑡)/(𝑡 − 𝑧). But 𝑓(𝑡) has simple 

poles at 𝑡 = 𝑎1, 𝑎2, … , 𝑎𝑛. Hence, 
𝑓(𝑡)

𝑡−𝑧
 has simple poles at 𝑧, 𝑎𝑚(𝑚 =

1,2,… , 𝑛). 

Residuc of 
𝑓(𝑡)

𝑡−𝑧
 at 𝑧 is lim

𝑡→𝑧
 (𝑡 − 𝑧)

𝑓(𝑡)

(𝑡−𝑧)
= 𝑓(𝑧). Residue of 

𝑓(𝑡)

𝑡−𝑧
 at 𝑎𝑚 is 

lim
𝑡→𝑎𝑚

 (𝑡 − 𝑎𝑚)
𝑓(𝑡)

(𝑡 − 𝑧)
 = [ lim

𝑡→𝑖𝑚
 (𝑡 − 𝑎𝑚)𝑓(𝑡)] ⋅ [ lim

𝑡→𝑎𝑚
 
1

𝑡 − 𝑧
]

 =
𝑏𝑚

𝑎𝑚 − 𝑧
.  For residuc of 𝑓(𝑡) at 𝑎𝑚 is 𝑏𝑚

 

By Cauchy's residue theorem 

dt
zt

tf

nC

 

)(
  = 2𝜋𝑖 ( Sum of residues of 

𝑓(𝑡)

𝑡−𝑧
 within 𝐶𝑛) 

= 2𝜋𝑖 [ Residues at 𝑧, 𝑎1, 𝑎2, … , 𝑎𝑛] 

= 2𝜋𝑖 [𝑓(𝑧) + ∑  

𝑛

𝑚=1

 𝑏𝑚/(𝑎𝑚 − 𝑧)] 

or  
1

2𝜋𝑖
∫  
𝐶𝑛

𝑓(𝑡)𝑑𝑡

𝑡−𝑧
= 𝑓(𝑧) + ∑  𝑛

𝑚=1
𝑏𝑚

𝑎𝑚−𝑧
         … (1) 

Suppose 𝑓(𝑡) is analytic at 𝑡 = 0. Putting 𝑧 = 0 in (1), 

1

2𝜋𝑖
∫  
𝐶𝑛

 
𝑓(𝑡)

𝑡
𝑑𝑡 = 𝑓(0) + ∑  

𝑛

𝑚=1

 
𝑏𝑚
𝑎𝑚
       … (2)  

Subtracting (2) from (1), 

1

2𝜋𝚤
∫  
𝐶𝑛

 
𝑧𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑧)𝑡
= 𝑓(𝑧) − 𝑓(0) + ∑  

𝑛

𝑚=1

 
𝑧𝑏𝑚

𝑎𝑚(𝑎𝑚 − 𝑧)
      … (3)  

But  |
1

2𝜋𝑖
∫  
𝐶𝑛
 
𝑧𝑓(𝑡)𝑑𝑡

𝑡(𝑡−𝑧)
| ≤ |

1

2𝜋𝑖
| ∫  
𝐶𝑛

|𝑧|⋅|𝑓(𝑡)|⋅|𝑑𝑡|

|𝑡|(|𝑡|−|𝑧|)
 

 ≤
1

9𝜋

𝑀|𝑧|

𝑅𝑛(𝑅𝑛 − |𝑧|)
∫  
𝐶𝑛

  |𝑑𝑡| =
𝑀|𝑧|

𝑅𝑛 − |𝑧|

 → 0 as 𝑛 → ∞.
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For  lim
𝑛→∞

 𝑅𝑛 = ∞ 

 ∴  lim
𝑛→∞

 ∫  
𝐶𝑛
′
𝑧𝑓(𝑡)𝑑𝑡

(𝑡−𝑧)𝑡
= 0 

Making 𝑛 → ∞ in (3) and noting this, 

or 

𝑓(𝑧) − 𝑓(0) + ∑  

∞

𝑚=1

 
𝑧𝑏𝑚

𝑎𝑚(𝑎𝑚 − 𝑧)
= 0

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

  (
𝑏𝑛

𝑧 − 𝑎𝑛
+
𝑏𝑛
𝑎𝑛
)

 

Finally 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

𝑣𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎𝑛
) 

Example 1: Prove that 

cot 𝑧 =
1

𝑧
+ 2𝑧∑  

∞

𝑛=1

1

𝑧2 − 𝑛2𝜋2
 

Solution: Let 𝑓(𝑧) = cot 𝑧 −
1

𝑧
=

𝑧cos 𝑧−sin 𝑧

𝑧sin 𝑧
 

Poles of 𝑓(𝑧) are given by sin 𝑧 = 0, 

or 

𝑧 = 𝑛𝜋 where 𝑛 ± 1,±2,…
𝑧 = 0 is not a pole of 𝑓(𝑧).

 

For lim
𝑧→0

 𝑓(𝑧) = lim
𝑧→0

 
zcos 𝑧−sin 𝑧

zsin 𝑧
, [ form 

0

0
] 

 = lim
𝑧→0

 
−𝑧sin 𝑧 + cos 𝑧 − cos 𝑧

sin 𝑧 + 𝑧cos 𝑧
, [ form 

0

0
]

 = lim
𝑧→0

 
−sin 𝑧 − 𝑧cos 𝑧

cos 𝑧 + cos 𝑧 − 𝑧sin 𝑧
=
0

2
= 0

 

or lim
𝑧→0

 𝑓(𝑧) = 0, so that 𝑓(𝑧) has a removable singularity at 𝑧 = 0 

So we can define 𝑓(0) = 0. 

Res(𝑧 = 𝑛𝜋) = lim
𝑧→𝑛𝜋

 (𝑧 − 𝑛𝜋)𝑓(𝑧) 
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 = lim
𝑧→𝑛𝜋

 
(𝑧 − 𝑛𝜋)(𝑧cos 𝑧 − sin 𝑧)

𝑧sin 𝑧
, form 

0

0

 = lim
𝑧→𝑛𝜋

 
(𝑧 − 𝑛𝜋)(−𝑧sin 𝑧 + cos 𝑧 − cos 𝑧) + 1. (𝑧cos 𝑧 − sin 𝑧)

sin 𝑧 + 𝑧cos 𝑧

 

 

Figure 2 

=
𝑛𝜋cos 𝑛𝜋

𝑛𝜋cos 𝑛𝜋
= −𝑖 

Let Res (𝑧 = 𝑛𝜋) = 𝑏𝑛 and 𝑧 = 𝑛𝜋 = 𝑎𝑛. 

Then Res (𝑧 = 𝑎𝑛) = 𝑏𝑛 = 1 if 𝑎𝑛 = 𝑛𝜋 

Similarly 𝑏𝑛 = 1 if 𝑎𝑛 = −𝑛𝜋 for 𝑛 = 1,2,3, ………. 

Let the contour 𝑐𝑛 be the square 𝐴𝐵𝐶𝐷 with centre at the origin and each 

side of length (2𝑛 + 1)𝜋 so that its vertices are at points (𝑛 +
1

2
) 𝜋(±1 ±

𝑖). 

Among all these poles, there are two poles 𝑧 = 𝑛𝜋, 𝑧 = −𝑛𝜋 whose 

absolute values are greater than other Poles. 

The minimum distance 𝑅𝑛 of 𝐶𝑛 from origin is 

(𝑛 +
1

2
)𝜋 → ∞ as 𝑛 → ∞ 

The length 𝑙𝑛 (perimeter of square 𝐴𝐵𝐶𝐷 ) is 

4 × 2 (𝑛 +
1

2
)𝜋 = 8 (𝑛 +

1

2
)𝜋 ∴  𝑙𝑛 = 8𝑅𝑛 , which is constant. 

|cot 𝑧| = |𝑖 (
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

𝑒𝑖𝑧 − 𝑒−𝑖𝑧
)| = |𝑖| |

𝑒𝑖2𝑧 + 1

𝑒𝑖2𝑧 − 1
| = |

𝑒𝑖2(𝑥+𝑖𝑦) + 1

𝑒𝑖2(𝑥+𝑖𝑦) − 1
|

≤
|𝑒𝑖2𝑥| ⋅ |𝑒−2𝑦| + 1

|𝑒𝑖2𝑥| ⋅ |𝑒−2𝑦| − 1
=
𝑒−2𝑦 + 1

𝑒−2𝑦 − 1
 as |𝑒𝑖2𝑥| = 1

|cot 𝑧| ≤

{
 

 
𝑒−2𝑦 + 1

𝑒−2𝑦 − 1
=
1 + 𝑒2𝑦

1 − 𝑒2𝑦
 if 𝑦 is negative 

 or 
𝑒−2𝑦 + 1

1 − 𝑒−2𝑦
=

1

𝑒2𝑦
− 1

 if 𝑦 > 0
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→ 1 if 𝑦 → ∞ or 𝑦 → −∞. 

∴  cot 𝑧 is bounded 

⇒  𝑓(𝑧) = cot 𝑧 −
1

𝑧
 is bounded in 𝐶𝑛 as 

1

𝑧
=

1

(𝑛+
1

2
)𝜋
→ 0 as 𝑛 → ∞. 

On  𝐴𝐵, 𝑦 = (𝑛 +
1

2
) 𝜋 and on 𝐶𝐷, 𝑦 = −(𝑛 +

1

2
)𝜋 

Now applying Mittag Leffler's theorem, 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

 𝑏𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎𝑛
)

=0 +∑  

∞

𝑛=1

 1 (
1

𝑧 − 𝑛𝜋
+
1

𝑛𝜋
) +∑  

∞

𝑛=1

 1 ⋅ (
1

𝑧 + 𝑛𝜋
−
1

𝑛𝜋
)

= ∑  

∞

𝑛=1

  (
1

𝑧 − 𝑛𝜋
+

1

𝑧 + 𝑛𝜋
) = ∑  

∞

𝑛=1

 
2𝑧

𝑧2 − 𝑛2𝜋2

 

or, 

cot 𝑧 −
1

𝑧
= ∑  

∞

𝑛=1

2𝑧

𝑧2 − 𝑛2𝜋2
 

or, 

cos 𝑧 =
1

𝑧
+∑  

∞

𝑛=1

 
2𝑧

𝑧2 − 𝑛2𝜋2
  … . . (2)  

Example 2: Prove that,  𝜋cot 𝜋𝑧 =
1

𝑧
+ ∑  ∞

𝑛=1
2𝑧

𝑧2−𝑛2
 

Solution: Replacing 𝑧 by 𝜋𝑧 in equation (2) in previous example, 

cot 𝜋𝑧 =
1

𝑧𝜋
+∑  

∞

𝑛=1

2𝜋𝑧

𝜋2𝑧2 − 𝑛2𝜋2
 

or 

𝜋 cot 𝜋𝑧 =
1

𝑧
+∑  

∞

𝑛=1

2𝑧

𝑧2 − 𝑛2
     … (3) 

Example 3: Prove that, 𝑧cot 𝜋𝑧 =
1

𝜋
+

𝑧

𝜋
Σ′ (

1

𝑧−𝑛
+

1

𝑧+𝑛
) 
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where accent indicates that 𝑛 = 0 is omitted. 

Solution. 
2𝑧

𝑧2−𝑛2
=

1

𝑧+𝑛
+

1

𝑧−𝑛
 

Now (3) in previous example is expressible as, 

𝜋cot 𝜋𝑧 =
1

𝑧
+∑  

∞

𝑛=1

(
1

𝑧 + 𝑛
+

1

𝑧 − 𝑛
) 

Multiplying by 
𝑧

𝜋
, 

𝑧cot 𝜋𝑧 =
1

𝜋
+
𝑧

𝜋
∑  

∞

𝑛=1

(
1

𝑧 + 𝑛
+

1

𝑧 − 𝑛
) 

Example 4: Prove that, cosec𝑧 =
1

𝑧
+ 2𝑧∑  ∞

𝑛=1
(−1)𝑛−1

𝑛2𝜋2−𝑧2
 

Solution: Let 𝑓(𝑧) = cosec𝑧 −
1

𝑧
=

𝑧−sin 𝑧

𝑧sin 𝑧
, 𝑧 ≠ 0. 

Poles of 𝑓(𝑧) are given by sin 𝑧 = 0 

or 

𝑧 = 𝑛𝜋  where 𝑛 = ±1, ±2,±3,… 

𝑧 = 0 is not a pole of 𝑓(𝑧), but it is a removable singularity. For 

 lim
𝑧→0

 𝑓(𝑧) = lim
𝑧→0

 
𝑧−sin 𝑧

𝑧sin 𝑧
,  form 

0

0
] 

= lim
𝑧→0

 
1−cos 𝑧

sin 𝑧+𝑧cos 𝑧
; by L. Hospital's rule. 

= lim
𝑧→0

 
sin 𝑧

cos 𝑧 − 𝑧sin 𝑧 + cos 𝑧̇
=
0

2
= 0 

However, we may define 𝑓(0) = 0. 

Res(𝑧 = 𝑛𝜋) = lim
𝑧→𝑛𝜋

 
𝜙(𝑧)

𝜓′(𝑧)
, where 𝑓(𝑧) =

𝜙(𝑧)

𝜓(𝑧)

 = lim
𝑧→𝑛𝜋

 
(𝑧 − sin 𝑧)

𝑑
𝑑𝑧
(𝑧sin 𝑧)

= lim
𝑧→𝑛𝜋

 
𝑧 − sin 𝑧

𝑧cos 𝑧 + sin 𝑧

 =
𝑛𝜋

𝑛𝜋cos 𝑛𝜋
=

1

cos 𝑛𝜋
= (−1)−𝑛 = (−1)𝑛

 

Let, 𝑛𝜋 = 𝑎𝑛 , (−1)
𝑛 = 𝑏𝑛 
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Similarly Res (𝑧 = −𝑛𝜋) = (−1)𝑖𝑛 

Thus Res (𝑧 = 𝑎𝑛) = 𝑏𝑛 = (−1)𝑛 if 𝑎𝑛 = −𝑛𝜋 or 𝑛𝜋. See Figure of 

Problem No. (1) and discuss the same thing here. 

 |cosec𝑧| = |
1

sin 𝑧
| = |

2𝑖

𝑒𝑖𝑧 − 𝑒−𝑖𝑧
| =

2

|𝑒𝑖(𝑥+𝑖𝑦) − 𝑒−𝑖(𝑥+𝑖𝑦)|

 ≤
2

|𝑒𝑖𝑥| ⋅ |𝑒−𝑦| − |𝑒−𝑖𝑥| ⋅ |𝑒𝑦|

 

As, |𝑒𝑖𝑥| = 1, 

and  
1

|𝑎±𝑏|
≤

1

|𝑎|−|𝑏|
 

 =
2

𝑒−𝑦−𝑒𝑦
 

∴  |cosec𝑧| ≤ {

2

𝑒−𝑦−𝑒𝑦
, if 𝑦 < 0

2

𝑒𝑦−𝑒−𝑦
, if 𝑦 > 0

 ;→ 0 as 𝑦 → ∞ or 𝑦 → −∞. 

∴  cosec𝑧 is bounded in 𝑐𝑛. 

Cosequently, cosec(𝑧 −
1

𝑧
) is bounded in 𝑐𝑛 

as 

1

𝑧
=

1

(𝑛 +
1
2)𝜋

→ 0 as 𝑛 → ∞. 

Now applying Mittag Leffler's theorem, 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

𝑏𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎𝑛
) 

or, 

𝑓(𝑧) = 0 +∑  

∞

𝑛=1

  (−1)𝑛 (
1

𝑧 − 𝑛𝜋
+
1

𝑛𝜋
)

 +∑  

∞

𝑛=1

  (−1)𝑛 (
1

𝑧 + 𝑛𝜋
−
1

𝑛𝜋
)

 = ∑  

∞

𝑛=1

  (−1)𝑛 [
1

𝑧 − 𝑛𝜋
+

1

𝑧 + 𝑛𝜋
] = ∑  

∞

𝑛=1

 
2𝑧(−1)𝑛

𝑧2 − 𝑛2𝜋2

 

or, 
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cosec𝑧 −
1

𝑧
= 2𝑧∑  

∞

𝑛=1

(−1)𝑛

𝑧2 − 𝑛2𝜋2
 

or, 

cosec𝑧 =
1

𝑧
+ 2𝑧∑  

∞

𝑛=1

(−1)𝑛−1

𝑛2𝜋2 − 𝑧2
 

Example 5: Prove that tan 𝑧 = ∑  ∞
𝑛=1

2𝑧

(𝑛+
1

2
)
2
𝜋2−𝑧2

. 

Solution: Let 𝑓(𝑧) = tan 𝑧 =
sin 𝑧

cos 𝑧
. Poles of 𝑓(𝑧) are given by 

cos 𝑧 = 0 = cos 
𝜋

2
⇒ 𝑧 = 𝑚𝜋 ±

𝜋

2
 for 𝑚 = 0,±1,±2,… 

or, 

𝑧 = ±(𝑚𝜋 +
𝜋

2
)  for 𝑚 = 0,1,2,3, … , 𝑛. 

Let 𝑏𝑛 = Residue of 𝑓(𝑧) = tan 𝑧 at 𝑧 = 𝑎̇𝑛 = ±(𝑛 +
1

2
)𝜋 

Then 𝑏𝑛 = Res(𝑧 = 𝑎𝑛) = lim
𝑧→𝑎𝑛

 
sin 𝑧

𝑑

𝑑𝑧
(cos 𝑧)

= lim
𝑧→𝑎𝑛

 
−sin 𝑧

sin 𝑧
= −1 

Let the contour 𝑐𝑛 be the square 𝐴𝐵𝐶𝐷 with centre at the origin and and 

length of each side be 2(𝑛 + 1)𝜋 so that its vertices are points (𝑛 +
1)𝜋(±1 ± 𝑖) 

 

Figure 3 

The poles 𝑧 = 𝑎𝑚 for 𝑚 = 0,1,2,… , 𝑛 lie within 𝑐𝑛 and no other poles lie 

inside 𝑐𝑛. In this sequence of poles, there are two poles 𝑧 = (𝑛 +
1

2
) 𝜋 and 

𝑧 = −(𝑛 +
1

2
) 𝜋 whose absolute value is greatest compared to those of the 

other poles. The minimum distance 𝑅𝑛 of 𝑐𝑛 from the origin is (𝑛 + 1)𝜋. 
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The length 𝑙𝑛 (perimeter of square 𝐴𝐵𝐶𝐷 of 𝑐𝑛 is 4 × 2(𝑛 + 1)𝜋 = 8(𝑛 +
1)𝜋. Hence 𝑙𝑛 = 8𝑅𝑛. 

|tan 𝑧| = |
sin 𝑧

cos 𝑧
| = |(

𝑒𝑖𝑧 − 𝑒−𝑖𝑧

𝑒𝑖𝑧 + 𝑒−𝑖𝑧
)
1

𝑖
| = |

𝑒𝑖(𝑥+𝑖𝑦) − 𝑒−𝑖(𝑥+𝑖𝑦)

𝑒𝑖(𝑥+𝑖𝑦) − 𝑒−𝑖(𝑥+𝑖𝑦)
|

 ≤
|𝑒𝑖𝑥||𝑒−𝑦| + |𝑒−𝑖𝑥| ⋅ |𝑒𝑦|

|𝑒𝑖𝑥| ⋅ |𝑒−𝑦| − |𝑒−𝑖𝑥| ⋅ |𝑒𝑦|
 as |

𝑎 ± 𝑏

𝑐 ± 𝑑
| ≤

|𝑎| + |𝑏|

|𝑐| − |𝑑|
 if |𝑐| > |𝑑|

 =
𝑒−𝑦 + 𝑒𝑦

𝑒−𝑦 − 𝑒𝑦
 as |𝑒±𝑖𝑥| = 1

 =
1 + 𝑒2𝑦

1 − 𝑒2𝑦

 

This ⇒ |tan 𝑧| ≤ {

1+𝑒2𝑦

1−𝑒2𝑦
 if 𝑦 < 0

1+𝑒−2𝑦

1−𝑒−2𝑦
 if 𝑦 > 0

 

→ 1 as 𝑦 → ∞ or 𝑦 → −∞ 

∴  tan 𝑧 is bounded in 𝑐𝑛. 

On 𝐴𝐵, 𝑦 = (𝑛 + 1)𝜋, and on 𝐶𝐷, 𝑦 = −(𝑛 + 1)𝜋 

Now applying Mittag Leffler's theorem, we get 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

𝑏𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎𝑛
) 

But 𝑓(0) = tan 0 = 0. 

∴  𝑓(𝑧 = ∑  

∞

𝑛=1

  (−1) {
1

𝑧 − (𝑛 +
1
2) 𝜋

+
1

(𝑛 +
1
2)𝜋

} 

 +∑  

∞

𝑛=1

  (−1) {
1

𝑧 + (𝑛 +
1
2)𝜋

−
1

𝑧 + (𝑛 +
1
2)𝜋

}

= ∑  

∞

𝑛=1

  (−1) {
1

𝑧 − (𝑛 +
1
2)𝜋

+∑  

∞

𝑛=1

  ⋅
1

𝑧 + (𝑛 +
1
2) 𝜋

}

 

or, 

tan 𝑧 = −∑  

∞

𝑛=1

2𝑧

𝑧2 − (𝑛 +
1
2)

2

𝜋2
= ∑  

∞

𝑛=1

2𝑧

(𝑛 +
1
2)

2

𝜋2 − 𝑧2
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Example 6: Prove that, sec 𝑧 = 4𝜋∑  ∞
𝑛=0

(−1)𝑛(2𝑛+1)

(2𝑛+1)2𝜋2−4𝑧2
. 

Solution. Let 𝑓(𝑧) = sec 𝑧 =
1

cos 𝑧
 

Poles of 𝑓(𝑧) are given by cos 𝑧 = 0 = cos (
𝜋

2
) 

or, 

𝑧 = 𝑚𝜋 ±
𝜋

2
 for 𝑚 = 0,±1, ±2,… , ±𝑛 

or, 

𝑧 = ±(𝑚𝜋 +
𝜋

2
)  for 𝑚 = 0,1,2,3, … , 𝑛. 

Take 𝑎𝑚 = (𝑚 +
1

2
)𝜋 or −(𝑚 +

1

2
) 𝜋 for 𝑚 = 0,1,2,… , 𝑛. 

Let the contour be 𝑐𝑛, the square 𝐴𝐵𝐶𝐷 with centre at the origin and 

length of each side is 2(𝑛 + 1)𝜋 so that its vertices are at points (𝑛 +
1)𝜋(±1 ± 𝑖) (see Figure of Problem 5). 

The contour 𝑐𝑛 contains all the above poles and no other Poles. The 

minimum distance 𝑅𝑛 of 𝑐𝑛 from the origin is (𝑛 + 1)𝜋. The length 𝑙𝑛 

(perimeter of square 𝐴𝐵𝐶𝐷) is 4 × 2(𝑛 + 1)𝜋 = 8(𝑛 + 1)𝜋. Hence 𝑙𝑛 =
8𝑅𝑛 

|sec 𝑧| = |
2

𝑒𝑖𝑧 + 𝑒−𝑖𝑧
| = |

2

𝑒𝑖(𝑥+𝑖𝑦) + 𝑒−𝑖(𝑥+𝑖𝑦)
|

 =
2

|𝑒𝑖𝑥 ⋅ 𝑒−𝑦 + 𝑒−𝑖𝑥 ⋅ 𝑒𝑦|
≤ |

2

|𝑒𝑖𝑥| ⋅ |𝑒−𝑦| − |𝑒−𝑖𝑥| ⋅ |𝑒𝑦|
|

 =
2

𝑒−𝑦 − 𝑒𝑦
 as |

1

𝑎 ± 𝑏
| ≤

1

|𝑎| − |𝑏|
 if |𝑎| > |𝑏|

 

and 

|𝑒±𝑖𝑥| = 1 

Thus |sec 𝑧| = |𝑓(𝑧)| = {

2

𝑒−𝑦−𝑒𝑦
 if 𝑦 < 0

2

𝑒𝑦−𝑒−𝑦
 if 𝑦 > 0

 

→ 0 as 𝑦 → ∞ or 𝑦 → −∞. 

∴  𝑓(𝑧) = sec 𝑧 is bounded in 𝑐𝑛. 

If  𝑎𝑛 = (𝑛 +
1

2
)𝜋, then 𝑏𝑛 = Pes (𝑧 = 𝑎𝑛) = lim

𝑧→𝑎𝑛
 

1
𝑑

𝑑𝑧
(cos 𝑧)

 

or, 
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𝑏𝑛  = lim
𝑧→𝑎𝑛

 
−1

sin 𝑧
=

−1

sin (𝑛𝜋 +
𝜋
2)
= −

1

cos (𝑛𝜋)
=

−1

(−1)𝑛

 = (−1)(−1)𝑛 as (−1)−𝑛 = (−1)𝑛

 

or,  𝑏𝑛 = (−1)
𝑛+1. Similarly 𝑏𝑛 = (−1)

𝑛 if 𝑎𝑛 = −(𝑛 +
1

2
) 𝜋𝑓(0) =

sec (0) = 1 

Applying Mittag Leffler's theorem, 

𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=0

 𝑏𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎𝑛
)

⇒  𝑓(𝑧) = 1 +∑  

∞

𝑛=0

  (−1)𝑛+1 [
1

𝑧 − (𝑛 +
1
2
)𝜋

+
1

(𝑛 +
1
2
) 𝜋
]

 +∑  

∞

𝑛=0

  (−1)𝑛 [
1

𝑧 + (𝑛 +
1
2)𝜋

−
1

(𝑛 +
1
2) 𝜋

]

 = 1 +∑  

∞

𝑛=0

  (−1)𝑛

[
 
 
 
 
 
 

1

𝑧 + (𝑛 +
1
2) 𝜋 −

1

𝑧 − (𝑛 +
1
2) 𝜋

]

 −∑  

∞

𝑛=0

  (−1)𝑛 [
1

(𝑛 +
1
2)𝜋

+
1

(𝑛 +
1
2) 𝜋

]

 = 1 +∑  

∞

𝑛=0

  (−1)𝑛
2 (𝑛 +

1
2) 𝜋

(𝑛 +
1
2
)
2

𝜋2 − 𝑧2
−∑  

∞

𝑛=0

 
(−1)𝑛 ⋅ 2

(𝑛 +
1
2)𝜋

 

or, 

sec 𝑧 = 1 + 4𝜋∑  

∞

𝑛=0

 
(2𝑛 + 1)𝜋(−1)𝑛

(2𝑛 + 1)2𝜋2 − 4𝑧2
−
4

𝜋
∑  

∞

𝑛=0

 
(−1)𝑛

2𝑛 + 1
    … (1)  

But ∑  ∞
𝑛=0

(−1)𝑛

2𝑛+1
= 1 −

1

3
+

1

5
−

1

7
… =

𝜋

4
 

This ⇒ 1−
4

𝜋
∑  ∞
𝑛=0

(−1)𝑛

2𝑛+1
= 0. Putting this in (1), 
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sec 𝑧 = 4𝜋∑  

∞

𝑛=0

(2𝑛 + 1)𝜋(−1)𝑛

(2𝑛 + 1)2𝜋2 − 4𝑧2
 

Note: The above problem can also be expressed as 

sec 𝑧 = 4𝜋∑  

∞

𝑛=1

(−1)𝑛−1(2𝑛 − 1)

(2𝑛 − 1)2𝜋2 − 4𝑧2
 

or, 

sec 𝑧 = 4𝜋∑  

∞

𝑛=1

(−1)𝑛(2𝑛 − 1)

4𝑧2 − (2𝑛 − 1)2𝜋2
 

Example 7: Prove that if −𝜋 < 𝛼 < 𝜋, then 

cos (𝛼𝑧)

sin (𝜋𝑧)
=
1

𝜋𝑧
+
2𝑧

𝜋
∑  

∞

𝑛=:

(−1)𝑛
cos (𝑛𝛼)

𝑧2 − 𝑛2
 

Solution: Let 𝑓(𝑧) =
cos (𝛼𝑧)

sin (𝜋𝑧)
. 

Poles of 𝑓(𝑧) are given by sin (𝜋𝑧) = 0 = sin (𝑛𝜋) 
⇒  𝜋𝑧 = 𝑛𝜋 or 𝑧 = 𝑛 for 𝑛 = 0,±1, ±2′, … 

Take 𝑎𝑛 = 𝑛 or −𝑛. 

𝑏𝑛 = Res(𝑧 = 𝑎𝑛) = lim
𝑧→𝑎𝑛

 
cos (𝛼𝑧)

𝑑
𝑑𝑧
(sin 𝜋𝑧)

= lim
𝑧→𝑎𝑛

 
cos (𝛼𝑧)

𝜋cos (𝜋𝑧)

 =
cos (𝑛𝛼)

𝜋cos (𝑛𝜋)
 if 𝑎𝑛 = 𝑛 or − 𝑛

 =
(−1)𝑛

𝜋
cos (𝑛𝛼) as (−1)𝑛 = (−1)−𝑛 , cos (𝑛𝜋) = (−1)𝑛

 

 

Let square 𝐴𝐵𝐶𝐷 denote the closed contour 𝑐𝑛 with centre at the origin 

and each side = 2(𝑛 +
1

2
) = 2𝑛 + 1 and so its vertices are at points 

(𝑛 +
1

2
) (±1 ± 𝑖). 

The contour 𝑐𝑛 encloses all poles 𝑎𝑛(𝑛 = 0,1,2,… , 𝑛). In this sequence of 

poles, there are two pols 𝑧 = 𝑛 and 𝑧 = −𝑛 whose absolute value is 

greater than those of other poles. The minimum distance 𝑅𝑛 of 𝑐𝑛 from the 

centre is (𝑛 +
1

2
) ⇒ ∞ as 𝑛 → ∞. The length 𝑙𝑛 (perimeter of 𝐴𝐵𝐶𝐷 ) is 

4 × 2 (𝑛 +
1

2
) = 8𝑛 + 4 so that 𝑙𝑛 = 8𝑅𝑛 
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Note that 𝑒𝑖𝛼𝑧 = 𝑒𝑖𝛼(𝑥+𝑖𝑦) = 𝑒𝑖𝛼𝑥𝑒−𝛼𝑦 

⇒ |𝑒𝑖𝛼𝑧| = 𝑒−𝛼𝑦   as |𝑒±𝑖𝛼𝑥| = 1. 

Similarly |𝑒−𝑖𝛼𝑧| = 𝑒𝛼𝑦 , |𝑒𝑖𝜋𝑧| = 𝑒−𝜋𝑦 , |𝑒−𝑖𝜋𝑧| = 𝑒𝜋𝑦  

and 

|
𝑎 ± 𝑏

𝑐 ± 𝑑
| ≤

|𝑎| + |𝑏|

|𝑐| − |𝑑|
 if |𝑐| > |𝑑| 

In view of this, we get 

|
cos (𝛼𝑧)

sin (𝜋𝑧)
| = |

(𝑒𝑖𝛼𝑧 + 𝑒−𝑖𝛼𝑧)𝑖

(𝑒𝑖𝜋𝑧 − 𝑒−𝑖𝜋𝑧)
| ≤

|𝑒𝑖𝛼𝑧| + |𝑒−𝑖𝛼𝑧|

|𝑒𝑖𝜋𝑧| − |𝑒−𝑖𝜋𝑧|

 ≤
𝑒−𝛼 + 𝑒𝛼𝑦

𝑒−𝜋𝑦 − 𝑒𝜋𝑦
 or 

𝑒𝛼𝑦 + 𝑒−𝛼𝑦

𝑒𝜋𝑦 − 𝑒−𝜋𝑦

 =
𝑒−𝛼𝑦(1 + 𝑒2𝛼𝑦)

𝑒−𝜋𝑦(1 − 𝑒2𝜋𝑦)
 or 

𝑒𝛼𝑦(1 + 𝑒−2𝛼𝑦)

𝑒𝜋𝑦(1 − 𝑒−2𝜋𝑦)

 <
1 + 𝑒2𝛼𝑦

1 − 𝑒2𝜋𝑦
 or 

1 + 𝑒−2𝛼𝑦

1 − 𝑒−2𝜋𝑦
→ 1 as 𝑦 → −∞ or 𝑦 → +∞

 

according as 𝑦 < 0 or 𝑦 > 0. 

On  𝐴𝐵, 𝑦 = 𝑛 +
1

2
, and on 𝐶𝐷, 𝑦 = −(𝑛 +

1

2
) 

∴ 𝑓(𝑧) is bounded in 𝑐𝑛. 

𝑓(0) = lim
𝑧→0

 
cos (𝛼𝑧)

sin (𝜋𝑧)
= {lim

𝑧→0
 
𝜋𝑧

sin (𝜋𝑧)
} {lim

𝑧→0
 cos (𝛼𝑧)} ⋅

1

𝜋𝑧

 = (1)(1) ⋅
1

𝜋𝑧
 or, 𝑓 (0;=

1

𝜋𝑧

 

By Mittag Leffler's theorem, 

f(𝑧) = 𝑓(0) + ∑  ∞
𝑛=1  𝑏𝑛 (

1

𝑧−𝑎𝑛
+

1

𝑎𝑛
) 

=
1

𝜋𝑧
+ ∑  ∞

𝑛=1   (−1)
𝑛 cos (𝑛𝛼)

𝜋
[
1

𝑧−𝑛
+

1

𝑛
] +∑  ∞

𝑛=1   (−1)
𝑛 cos (𝑛𝛼)

𝜋
[
1

𝑧+𝑛
−

1

𝑛
] 

=
1

𝜋𝑧
+∑  

∞

𝑛=1

  (−1)𝑛
cos (𝑛𝛼)

𝜋
⋅ (

2𝑧

𝑧2 − 𝑛2
) 

or,  
cos (𝛼𝑧)

sin (𝜋𝑧)
=

1

𝜋𝑧
+

2𝑧

𝜋
∑  ∞
𝑛=1 (−1)

𝑛 cos (𝑛𝛼)

𝑧2−𝑛2
. 

Example 8: Prove that 
1

𝑒𝑧−1
= −

1

2
+

1

𝑧
+ ∑  ∞

𝑛=1
2𝑧

𝑧2+4𝜋2𝑛2
 

Solution: Let 𝑓(𝑧) =
1

2
+

1

𝑒𝑧−1
=

𝑒𝑧+1

2(𝑒𝑧−1)
. Then 
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𝑓(0) = lim
𝑧→0

 
𝑒𝑧 + 1

2(𝑒𝑧 − 1)
= lim

𝑧→0
 
2 + 𝑧 +

𝑧2

2! +⋯

2(𝑧 +
𝑧2

2! + ⋯)

 = {lim
𝑧→0

 
2 + 𝑧 +

𝑧2

2! +⋯

2(𝑧 +
𝑧2

2! +⋯)
} ⋅

1

𝑧
= (

2

2
)(
1

𝑧
) =

1

2

 

or,  𝑓(0) =
1

𝑧
 

Poles of 𝑓(𝑧) are given by 2(𝑒𝑧 − 1) = 0 

⇒ 𝑒𝑧 = 1 = 𝑒2𝑛𝜋𝑖 ⇒ 𝑧 = 2𝑛𝜋𝑖. for 𝑛 = 0,±1, ±2,… 

Take 𝑎𝑚 = 2𝑚𝜋𝑖 or −2𝑚𝜋𝑖, for 𝑚 = 0,1,2,… , 𝑛. 

𝑏𝑛 = Res(𝑧 = 𝑎𝑛) = lim𝑧→𝑎𝑛  

1
2
(𝑒𝑧 + 1)

𝑑
𝑑𝑧
(𝑒𝑧 − 1)

= lim𝑧→𝑎𝑛  

1
2
(𝑒𝑧 + 1)

𝑒𝑧
 

=

1
2 (1 + 1)

1
= 1 if 𝑎𝑛 = 2𝑛𝜋𝑖  or − 2𝑛𝜋𝑖 

Let the centour 𝑐𝑛 be square 𝐴𝐵𝐶𝐷 with centre at the origin and length of 

each side = 2 × 2(𝑛 +
1

2
) 𝜋 = (4𝑛 + 2)𝜋 

and its vertices are at points 2 (𝑛 +
1

2
) 𝜋(±1 ± 𝑖) = (2𝑛 + 1)𝜋(±1 ± 𝑖) 

The contour 𝑐𝑛 encloses all poles 𝑎𝑚 = 0,1,2,… , 𝑛. See figure of previous 

example 

 |𝑓(𝑧)| =
1

2
|(
𝑒𝑧 + 1

𝑒𝑧 − 1
)| =

1

2
|
𝑒𝑥 ⋅ 𝑒𝑖𝑦 + 1

𝑒𝑥 ⋅ 𝑒𝑖𝑦 − 1
|

 ≤
1

2
(
𝑒𝑥 + 1

𝑒𝑥 − 1
)  or 

1

2
(
𝑒𝑥 + 1

1 − 𝑒𝑥
)  according as 𝑥 > 0 or 𝑥 < 0

 →
1

2
 as 𝑥 → ∞ or 𝑥 → −∞.

 

∴   𝑓(𝑧) is bounded in 𝑐𝑛. 

Applying Mittag Leffler theorem, 
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𝑓(𝑧) = 𝑓(0) +∑  

∞

𝑛=1

 𝑏𝑛 (
1

𝑧 − 𝑎𝑛
+
1

𝑎̇𝑛
)

 =
1

𝑧
+∑  

∞

𝑛=1

 1 (
1

𝑧 − 2𝑛𝜋𝑖
+

1

2𝑛𝜋𝑖
) +∑  

∞

𝑛=1

 1 (
1

𝑧 + 2𝑛𝜋𝑖
−

1

2𝑛𝜋𝑖
)

 =
1

𝑧
+∑  

∞

𝑛=1

 
2𝑧

𝑧2 + 4𝑛2𝜋2

 

or,  
1

2
+

1

𝑒𝑧−1
=

1

𝑧
+∑  ∞

𝑛=1
2𝑧

𝑧2+4𝜋2𝑛2
 

or, 
1

𝑒𝑧−1
= −

1

2
+

1

𝑧
+∑  ∞

𝑛=1
2𝑧

𝑧2+4𝜋2𝑛2
 

Example 9: Show that 
1

2𝜋𝑖
∫  
𝐶

𝑑𝑧

𝑧−𝑎
 is an integer. 

where, 𝑐 is circle |𝑧 − 𝑎| = 𝑟 

Or, 

If 𝐶 is a circle |𝑧 − 𝑎| = 𝑟, then 

1

2𝜋𝑖
∫ 
𝐶

𝑑𝑧

𝑧 − 𝑎
= 1 

Solution: On circle |𝑧 − 𝑎| = 𝑟, we can take 𝑧 − 𝑎 = 𝑟𝑒𝑖0 so that 

𝑑𝑧 = 𝑟𝑒𝑖𝜃𝑖𝑑𝜃 

1

2𝜋𝑖
∫ 
𝐶

𝑑𝑧

𝑧 − 𝑎
=

1

2𝜋𝑖
∫  
2𝜋

0

𝑟𝑒𝑖𝜃𝑖𝑑0

𝑟𝑒𝑖𝜃
=

1

2𝜋𝑖
∫  
2𝜋

0

𝑖𝑑0 = 1 

Theorem 2 (Number of poles and zeros of a meromorphic function): 

Let 𝑓(𝑧) be analytic inside and on a simple closed curve 𝐶 except for a 

finite number of poles inside 𝐶, and let 𝑓(𝑧) ≠ 0 on 𝐶. Prove that 

1

2𝜋𝑖
∫ 
𝐶

𝑓′(𝑧)𝑑𝑧

𝑓(𝑧)
= 𝑁 − 𝛽 

where 𝑁 and 𝑃 are respectively the number of zeros and the number of 

poles of 𝑓(𝑧) inside 𝐶. A pole or zero of order 𝑛 is counted 𝑛 times. 

Proof: Suppose that 𝑓(𝑧) is analytic within and on a simple closed curve 

𝐶 except at a pole 𝑧 = 𝑎 of order 𝑝 inside 𝐶. Also suppose that 𝑓(𝑧) has a 

zero of order 𝑛 at 𝑧 = 𝑏 inside 𝐶. Then we wish to prove that 

1

2𝜋𝑖
∫ 
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 𝑛 − 𝑝 
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Figure 4 

Let 𝛾1 and Γ1 be non-overlapping circles inside 𝐶 with their centres at 𝑧 =
𝑎 and 𝑧 = 𝑏 respectively. 

Then, by Corollary to Cauchy's theorem, 

1

2𝜋𝑖
∫ 
𝐶

 
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 =

1

2𝜋𝑖
∫  
𝛾1

 
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 +

1

2𝜋𝑖
∫  
Γ1

 
𝑓′(𝑧)𝑑𝑧

𝑓(𝑧)
       … (1)  

𝑓(𝑧) has a pole of order 𝑝 at 𝑧 = 𝑎 

⇒ 𝑓(𝑧) =
𝑔(𝑧)

(𝑧 − 𝑎)𝑝
       … (2)  

where 𝑔(𝑧) is analytic and non zero within and on 𝛾1. 

Taking log of (2) 

log 𝑓(𝑧) = log 𝑔(𝑧) − 𝑝log (𝑧 − 𝑎) 

Differentiating, this w.r.t. 𝑧, 

𝑓′(𝑧)

𝑓(𝑧)
=
𝑔′(𝑧)

𝑔(𝑧)
−

𝑝

𝑧 − 𝑎
 

or 

∫  
𝛾1

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = ∫  

𝛾1

𝑔′(𝑧)

𝑔(𝑧)
𝑑𝑧 − 𝑝∫  

𝛾1

𝑑𝑧

𝑧 − 𝑎
 

= ∫  
𝛾1

 
𝑔′(𝑧)

𝑔(𝑧)
𝑑𝑧 − 2𝜋𝑖𝑝        … (3)  

Since 𝑔(𝑧) is analytic and so 𝑔′(𝑧) is analytic and hence 𝑔′(𝑧)/𝑔(𝑧) is 

analytic within and on 𝛾1. Hence, by Cauchy's theorem 

∫  
𝛾1

𝑔′(𝑧)

𝑔(𝑧)
𝑑𝑧 = 0 
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Then 

∫  
𝛾1

 
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 0 − 2𝜋𝑖𝑝, by (3)    … (4)  

𝑓(𝑧) has a zero of order 𝑛 at 𝑧 = 𝑏 

⇒ 𝑓(𝑧) = (𝑧 − 𝑏)𝑛𝜙(𝑧)       … (5)  

where 𝜙(𝑧) is analytic and non-zero within and on Γ1. Consequently 

𝜙′(𝑧) and so 𝜙′(𝑧)/𝜙(𝑧) is analytic within and on Γ1. 

Hence, by Cauchy's theorem, 

∫  
Γ1

 
𝜙′(𝑧)

𝜙(𝑧)
𝑑𝑧 = 0         … (6)  

Taking log of (5), 

log 𝑓(𝑧) = 𝑛log (𝑧 − 𝑏) + log 𝜙(𝑧) 

Differentiating this 

𝑓′(𝑧)

𝑓(𝑧)
=

𝑛

𝑧 − 𝑏
+
𝜙′(𝑧)

𝜙(𝑧)
 

Integrating along Γ1 and noting (6), 

∫  
Γ1

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 𝑛 ∫  

Γ1

𝑑𝑧

𝑧−𝑏
= 2𝜋𝑖𝑛 (See previous 

example) 

or 

∫  
Γ1

 
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 2𝜋𝑖𝑛     … (7)  

Writing (1) with the help of (4) and (7), 

1

2𝜋𝑖
∫ 
𝐶

 
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = −𝑝 + 𝑛     … (8)  

Now we suppose that 𝑓(𝑧) has poles of order 𝑝𝑚 at 𝑧 = 𝑎𝑚 for 𝑚 =
1,2,… , 𝑟 and 𝑓(𝑧) has zero of order 𝑛𝑚 at 𝑧 = 𝑏𝑚 for 𝑚 = 1,2,… , 𝑠 

within 𝐶. Enclose each pole and zero by non-overlapping circles 

𝛾1, 𝛾2, … , 𝛾𝑟 and Γ1, … , Γ𝑠. This type of construction is always possible. 

Since poles and zeros are isolated. Now (8) becomes 
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1

2𝜋𝑖
∫ 
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = − ∑  

𝑟

𝑚=1

𝑝𝑚 + ∑  

𝑠

𝑚=1

𝑛𝑚 

Taking ∑  𝑟
𝑚=1 𝑝𝑚 = 𝑃, ∑  𝑠

𝑚=1 𝑛𝑚 = 𝑁, we obtain 

1

2𝜋𝑖
∫ 
𝐶

𝑓′(𝑧)𝑑𝑧

𝑓(𝑧)
= 𝑁 − 𝑃 

Example 10: If 𝑓(𝑧) = 𝑧5 − 3𝑖𝑧2 + 2𝑧 + 𝑖 − 1, then evaluate ∫  
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧, 

where 𝐶 encloses zero of 𝑓(𝑧) ? 

Solution: Given 𝑓(𝑧) has 5 zeros. Since, 𝑁 = 5, it has no poles. 

 

∴  𝑃 = 0. By Theorem 2, 
1

2𝜋𝑖
∫ 
𝐶

𝑓′(𝑧)

𝑓(𝑧)
= 𝑁 − 𝑃 = 5− 0 = 5 

∫ 
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 10𝜋𝑖 

Theorem 3: Principle of argument. If 𝑓(𝑧) is analytic inside and on 𝐶, 

then 

𝑁 =
1

2𝜋
⋅ Δ𝐶arg 𝑓(𝑧) 

 

Proof: We know that 

1

2𝜋𝑖
∫ 
𝐶

 
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 𝑁 − 𝑃      … (1)  

where 𝑃 = number of poles inside 𝐶, 𝑁 = number of zeros inside 𝐶. 

In the present case 𝑓(𝑧) has no poles inside 𝐶 and hence 𝑃 = 0. Then (1) 

takes the form 

1

2𝜋𝑖
∫ 
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 𝑁 − 0 = 𝑁 

or 

2𝜋𝑖𝑁 = [log 𝑓(𝑧)]𝐶 = Δ𝐶 log𝑓(𝑧)      … (2)  

where Δ𝐶  stands for the variation of log 𝑓(𝑧) as 𝑧 moves once round 𝐶. 

But 
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log 𝑓(𝑧) = log |𝑓(𝑧)| + 𝑖arg 𝑓(𝑧) 

For 

log (𝑥 + 𝑖𝑦) =
1

2
log (𝑥2 + 𝑦2) + 𝑖tan−1 (𝑦/𝑥) 

or 

Δ𝐶log 𝑓(𝑧) = Δ𝐶log |𝑓(𝑧)| + 𝑖Δ𝐶arg 𝑓(𝑧) 

But  Δ𝐶log |𝑓(𝑧)| = 0 as log |𝑓(𝑧)| is single valued. 

Hence  Δ𝐶log 𝑓(𝑧) = 𝑖 ⋅ Δ𝐶arg 𝑓(𝑧). Using this in (2), 2𝜋𝑖𝑁 = 𝑖 ⋅
Δ𝐶arg 𝑓(𝑧) 
or 

𝑁 =
1

2𝜋
Δ𝐶arg 𝑓(𝑧) 

14.4 ROUCHE’S THEOREM:- 

Rouché’s theorem is a powerful result in complex analysis that helps 

determine the number of zeros of analytic functions within a closed 

contour without having to solve the function explicitly. The theorem 

compares two analytic functions on a simple closed curve and states that if 

one function dominates the other on the boundary, then both functions 

have the same number of zeros inside that region. This comparison 

principle makes Rouché’s Theorem particularly useful for locating zeros 

of complex polynomials, analyzing stability in differential equations, and 

simplifying root-finding problems. By providing a geometric approach to 

counting zeros based on boundary behavior, the theorem becomes an 

essential tool in both theoretical and applied aspects of complex function 

theory. 

Theorem 4 (Rouche's theorem): If 𝑓(𝑧) and 𝑔(𝑧) are analytic inside and 

on a simple closed curve 𝐶 and if |𝑔(𝑧)| < |𝑓(𝑧)| on 𝐶, then 𝑓(𝑧) and 

𝑓(𝑧) + 𝑔(𝑧) both have the same number of zeros inside 𝐶. 

Proof: Suppose 𝑓(𝑧) and 𝑔(𝑧) are analytic inside and on a simple closed 

curve 𝐶 and 

|𝑔(𝑧)| < |𝑓(𝑧)| on 𝐶. 

(i) Firstly we shall prove that neither 𝑓(𝑧) nor 𝑓(𝑧) + 𝑔(𝑧) has zeros on 

𝐶. 



COMPLEX ANALYSIS  MT(N)-302 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY Page 347 

 

If 𝑓(𝑧) has a zero at 𝑧 = 𝑎 on 𝐶, then 𝑓(𝑎) = 0. 

Also |𝑔(𝑎)| < |𝑓(𝑎)| = 0. 

This 

⇒ |𝑔(𝑎)| < 0 ⇒ |𝑔(𝑎)| = 0 

𝑓(𝑎) = 0. |𝑔(𝑎)| = 0 ⇒ |𝑓(𝑎)| = 0| = 𝑔(𝑎)| ⇒ |𝑓(𝑎) = |𝑔(𝑎)|

 ⇒ |𝑔(𝑧)| = |𝑓(𝑧)| at 𝑧 = 𝑎 on 𝐶.
 

Contrary to the assumption |𝑔(𝑧)| < |𝑓(𝑧)| on 𝐶.Again if 𝑓(𝑧) + 𝑔(𝑧) 
has a zero at 𝑧 = 𝑎 on 𝐶, then 𝑓(𝑎) + 𝑔(𝑎) = 0 so that 𝑓(𝑎) = −𝑔(𝑎) or 

|𝑔(𝑎)| = |𝑓(𝑎)|. 
Again we get a contradiction. Hence the result (i) is established. 

(ii) Let 𝑁1 and 𝑁2 be number of zeros of 𝑓 and 𝑓 + 𝑔 respectively inside 

𝐶. 

If we show that 𝑁1 = 𝑁2, the result will be proved. Since the functions 𝑓 

and 𝑓 + 𝑔 both are analytic within and on 𝐶 and have no poles inside 𝐶. 

Therefore, by the usual formula 

gives 

1

2𝜋𝑖
∫ 
𝐶

 𝑓′𝑑𝑧 = 𝑁 − 𝑃

1

2𝜋𝑖
∫ 
𝐶

 𝑓′𝑑𝑧 = 𝑁1 and 
1

2𝜋𝑖
∫ 
𝐶

 
𝑓′ + 𝑔′

𝑓 + 𝑔
𝑑𝑧 = 𝑁2

 

Subtracting we get 

1

2𝜋𝑖
∫ 
𝐶

  [
𝑓′ + 𝑔′

𝑓 + 𝑔
−
𝑓′

𝑓
] 𝑑𝑧 = 𝑁2 −𝑁1           … (1)  

Take 𝑔/𝑓 = 𝜙 so that 𝑔 = 𝜙𝑓 

or 

|𝑔| < |𝑓| ⇒ |𝑔/𝑓| < 1 = |𝜙 ∣< 1.

𝑓′ + 𝑔′

𝑓 + 𝑔
=
𝑓′ + 𝑓′𝜙 + 𝜙′𝑓

𝑓 + 𝜙𝑓
=
𝑓′(1 + 𝜙) + 𝜙′𝑓

𝑓(1 + 𝜙)

 

or 

𝑓′ + 𝑔′

𝑓 + 𝑔
−
𝑓′

𝑓
=

𝜙′

1 + 𝜙
 

Using this in (1), 

or 
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𝑁2 −𝑁1 =
1

2𝜋𝑖
∫ 
𝐶

 
𝜙′

1 + 𝜙
𝑑𝑧 

𝑁2 −𝑁1 =
1

2𝜋𝑖
∫ 
𝐶

 𝜙′(1 + 𝜙)−1𝑑𝑧                 …(2)
 

Since we have seen that |𝜙| < 1 and so binomial expansion of (1 + 𝜙)−1 

is possible and the binomial expansion thus obtained is uniformly 

convergent and hence term by term integration is permissible. Hence 

∫ 
𝐶

 𝜙′(1 + 𝜙)−1𝑑𝑧 = ∫ 
𝐶

 𝜙′[1 − 𝜙 + 𝜙2 −𝜙3 +⋯]𝑑𝑧

 = ∫ 
𝐶

 𝜙′𝑑𝑧 − ∫ 
𝐶

 𝜙′𝜙𝑑𝑧 +∫ 
𝐶

 𝜙2𝜙′𝑑𝑧 −∫ 
𝐶

 𝜙2𝜙′𝑑𝑧 +⋯
 

The functions 𝑓 and 𝑔 both are analytic within and on 𝐶 and 𝑔(𝑧) ≠ 0 for 

any point on 𝐶. Hence 𝑔/𝑓 = 𝜙 is analytic and non-zero for any point on 

𝐶. Therefore  𝜙 and its all derivatives are analytic. By Cauchy's integral 

theorem, each integral on R.H.S. of (3) vanishes. Consequently 

∫ 
𝐶

𝜙′(1 + 𝜙)−1𝑑𝑧 = 0 

In this event, (2) takes the form 

𝑁2 −𝑁1 = 0 or 𝑁1 = 𝑁2. 

Example 11: Consider the function 𝑧6 − 5𝑧4 + 7 

(i)  If 𝑓(𝑧) = 7, 𝑔(𝑧) = 𝑧6 − 5𝑧4, then 𝑓 + 𝑔 = given polynomial and 

|
𝑔(𝑧)

𝑓(𝑧)
| = |

𝑧6−5𝑧4

7
| ≤

|𝑧|6+5|𝑧|4

7
=

1+5

7
< 1 and so given polynomial has no 

zero in |𝑧| < 1. 

(ii) If 𝑓(𝑧) = −5𝑧4, 𝑔(𝑧) = 𝑧6 + 7, then 𝑓 + 𝑔 = given polynomial 

has 4 zeros in |𝑧| < 3. 

(iii) If 𝑓(𝑧) = 𝑧6, 𝑔(𝑧) = −5𝑧4 + 7, then 𝑓 + 𝑔 = given polynomial 

has 6 zeros in 

|𝑧| < 3. 

Theorem 5: Fundamental Theorem of Algebra. Every Polynomial of 

degree 𝑛 has exactly' 𝑛 zeros. 

Or 

Prove that the polynomial equation 𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 +

⋯… . .+𝑎𝑛𝑧
𝑛, 𝑎𝑛 ≠ 0, 𝑛 ≥ 1 has exactly 𝑛 roots. 
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Proof: Consider the Polynomial,  𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 +⋯+ 𝑎𝑛𝑧

𝑛 s.t. 𝑎𝑛 ≠
0 

Take 
1

1

2

210 ...)(,)( 

 n

n

n

n zazazaazgzazf  

Let 𝐶 be a circle |𝑧| = 𝑟 where, 𝑟 > 1. 

|𝑔(𝑧)| ≤ |𝑎0| + |𝑎1|𝑟 + |𝑎2|𝑟
2 +⋯+ |𝑎𝑛−1|𝑟

𝑛−1

 ≤ |𝑎0|𝑟
𝑛−1 + |𝑎1|𝑟

𝑛−1|+|𝑎2|𝑟
𝑛−1 +⋯|𝑎𝑛−1|𝑟

𝑛−1 

= (|𝑎0| + |𝑎1| + |𝑎2| + ⋯+ |𝑎𝑛−1|)𝑟
𝑛−1 

But |𝑓(𝑧)| = |𝑎𝑛𝑧
𝑛| = |𝑎𝑛|𝑟

𝑛 

𝑓(𝑧) = 𝑎𝑛𝑧
𝑛 , 𝑔(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧

2 +⋯+ 𝑎𝑛−1𝑧
𝑛−1 

∴ |
𝑔(𝑧)

𝑓(𝑧)
| ≤

||𝑎0|+|𝑎1| + |𝑎2| + ⋯+ |𝑎𝑛−1|]𝑟
𝑛−1

|𝑎𝑛|𝑟𝑛

 =
|𝑎0| + |𝑎1| + |𝑎2| + ⋯+ |𝑎𝑛−1|

|𝑎𝑛|𝑟

 

Now if |𝑔(𝑧)| < |𝑓(𝑧)| so that |𝑔(𝑧)/𝑓(𝑧)| < 1, then 

|𝑎0| + |𝑎1| + |𝑎2| + ⋯+ |𝑎𝑛−1|

𝑟|𝑎𝑛|
< 1 

This ⇒ 𝑟 >
|𝑎0|+|𝑎1|+|𝑎2|+⋯|𝑎𝑛−1|

|𝑎𝑛|
. 

Since 𝑟 is arbitrary and hence by choosing 𝑟 large enough, the last 

condition can be satisfied so that |𝑔(𝑧)| < |𝑓(𝑧)|. Now applying Rouche's 

theorem, we find that the given polynomial 𝑓(𝑧) + 𝑔(𝑧) has the same 

number of zeros as 𝑓(𝑧). But 𝑓(𝑧) = 𝑎𝑛𝑧
𝑛 has exactly 𝑛 zeros all located 

at 𝑧 = 0. Consequently 𝑓(𝑧) + 𝑔(𝑧) has exactly 𝑛 zeros. Consequently 

the given polynomial has exactly 𝑛 zeros. 

Theorem 6 (Inverse Function Theorem): Suppose a function 𝑤 = 𝑓(𝑧) 

be analytio at a point 𝑧 = 𝑧0 where 𝑓′(𝑧0) ≠ 0. Also let 𝑤0 = 𝑓(𝑧0). Then 

there exists a neighbourhood 𝐺 of the point 𝑤0 in 𝑤-plane in which the 

function 𝑤 = 𝑓(𝑧) has a unique inverse 𝐹(𝑤) = 𝑧, where 𝐹 = 𝑓−1 in the 

sense that the function 𝐹 is analytic and single valued in the 

neighbourhood 𝐺 and 𝐹(𝑤0) = 𝑧0 and 𝐹′(𝑤) =
1

𝑓′(𝑧)
. 
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Proof: Given (1) 𝑤0˙ = 𝑓(𝑧0), 𝑓
′(𝑧0) ≠ 0 

Write 𝜙(𝑧) = 𝑓(𝑧) − 𝑤0                               … (1) 

Then, 𝜙(𝑧0) = 𝑓(𝑧0) − 𝑤0 = 0, by (1) 

or, 

𝜙(𝑧0) = 0, 𝜙
′(𝑧) = 𝑓′(𝑧)

𝑓′(𝑧0) ≠ 0 ⇒ 𝑓(𝑧) is not a constant function 
 

⇒  𝜙(𝑧) ≠ 0 and 𝑓′(𝑧) ≠ 0. 

It is given that 𝑓(𝑧) is analytic at 𝑧 = 𝑧0. Hence the function 𝜙(𝑧) is 

analytic in same neighbourhood of 𝑧0. Since zeros are isolated and 

therefore 𝜙(𝑧) and 𝑓′(𝑧) do not have any zero in some deleted 

neighbourhood of 𝑧0. Therefore given 𝜀 > 0, ∃𝑛𝑏𝑑0 < |𝑧 − 𝑧0
′ | < 𝜀 such 

that 𝜙(𝑧) is analytic and 𝜙(𝑧) ≠ 0, 𝑓′(𝑧) ≠ 0. Suppose 𝐷 =
{𝑧: |𝑧 − 𝑧0| < 𝜀} and 𝐶 = {𝑧: |𝑧 − 𝑧0| = 𝜀}. Then 𝐷 represents open disc 

and 𝐶 represents its boundary. Since 𝜙(𝑧) ≠ 0 ∀𝑧 such that |𝑧 − 𝑧0| ≤ 𝜀, 
we conclude that |𝜙(𝑧)| alttains its minimum value 𝑚 on the circle 𝐶. 

Choose 𝛿 > 0 such that 0 < 𝛿 < 𝑚. Now we want to prove that 𝑓(𝑧) 
assumes exactly once every value 𝑤1 in the open disc 𝐷1 = {𝑤: |𝑤 −
𝑤0| < 𝛿}. For this we apply Rouche's theorem to the functions 𝑤0 −𝑤1 

and 𝜙(𝑧). Evidently |𝑤0 − 𝑤1| < 𝛿 < 𝑚 = min
𝑧𝜀𝐶

 |𝜙(𝑧)| ≤ |𝜙(𝑧)| 

∴ ∵ |𝑤0 −𝑤1| < |𝜙(𝑧)| on 𝐶 

|𝑤0 −𝑤1|

|𝜙(𝑧)|
< 1 on 𝐶 

By Rouche's theorem the function 𝜙(𝑧) and the function 𝜙(𝑧) + 𝑤0 −
𝑤1 = 𝑓(𝑧) − 𝑤0 +𝑤0 − 𝑤1 = 𝑓(𝑧) − 𝑤1 have the same number of zeros 

in 𝐷. But the function 𝜙(𝑧) has only one zero 𝑧0 in 𝐷 as 

𝜙(𝑧0) = 𝑓(𝑧0) − 𝑤0 = 𝑤0 −𝑤0 = 0 

Consequently the function 𝑓(𝑧) − 𝑤1 has only one zero 𝑧1 in 𝐷. It means 

that 𝑓(𝑧) assumes value 𝑤1 exactly once in 𝐷. 

Consequently 𝑤 = 𝑓(𝑧) has a unique inverse function 𝐹 and so we 

assume 𝑧 = 𝐹(𝑤) in D. Now we want to show that 𝐹 is analytic. 

𝑦 
𝐹(𝑤) − 𝐹(𝑤1)

𝑤 − 𝑤1
=

𝑧 − 𝑧1
𝑓(𝑧) − 𝑓(𝑧1)

= {
𝑓(𝑧) − 𝑓(𝑧1)

𝑧 − 𝑧1
}

−1

= {𝑓′𝑧1}
−1 

as 𝑧 → 𝑧1 and so 𝑤 → 𝑤1. 
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∴  𝐹′(𝑤1) =
1

𝑓′(𝑧1)
 

This ⇒ 𝐹′(𝑤) exists in the 𝑛𝑏𝑑𝐷1 of 𝑤0 so that 𝐹 is analytic. 

This completes the proof of the theorem. 

Example 12: Prove that all the roots of 𝑧7 − 5𝑧3 + 12 = 0 lie between 

the circles |𝑧| = 1 and |𝑧| = 2. 

Solution I: Consider the circle 𝐶1 defined by |𝑧| = 1. Suppose 𝑓(𝑧) = 12 

and 𝑔(𝑧) = 𝑧7 − 5𝑧3. Then 𝑓 and 𝑔 both are analytic within and on 𝐶1. 

 |
𝑔

𝑓
| = |

𝑧7−5𝑧3

12
| ≤

|𝑧|7+5|𝑧|3

12
=

(1)7+5(1)3

12
=

6

12
< 1. 

|
𝑔

𝑓
|  < 1 or |𝑔| < |𝑓|. 

Applying Rouche's theorem, we find that 𝑓(𝑧) + 𝑔(𝑧) = 𝑧7 − 5𝑧3 + 12 

has the same number of zeros inside 𝐶1 as 𝑓(𝑧) = 12. But 𝑓(𝑧) has no 

zeros inside 𝐶1. It means that 𝑧7 − 5𝑧3 + 12 has no zeros inside 𝐶1. 

 

II: Consider the circle 𝐶2 defined by |𝑧| = 2. 

Let 𝑓(𝑧) = 𝑧7, 𝑔(𝑧) = −5𝑧3 − 12. Then 𝑓 and 𝑔 both are analytic within 

and on 𝐶2. 

 |
𝑔

𝑓
| =

|−5𝑧3+12|

||𝑧7|
≤

5|𝑧|3+12

|𝑧|7
=

5(2)3+12

27
=

52

128
< 1 

or |𝑔/𝑓| < 1 or |𝑔| < |𝑓| 

Hence, by Rouche's theorem, 𝑓 + 𝑔 = 𝑧7 − 5𝑧3 + 12 has the same 

number of zeros inside 𝐶2 as 𝑓(𝑧) = 𝑧7. 

But 𝑓(𝑧) = 𝑧7 has seven zeros inside 𝐶2, all located at the origin. It 

follows that 𝑧7 − 5𝑧3 + 12 has seven zeros inside 𝐶2. 

Thus we have shown that the given equation has no root inside |𝑧| = 1, 

but has seven roots inside |𝑧| = 2. From this we can conclude the required 

result. 

Example 13: Using Rouche's theorem determine the number of zeros of 

the polynomial 

𝑃(𝑧) = 𝑧10 − 6𝑧7 + 3𝑧3 + 1 in |𝑧| < 1 

Solution: Let 𝑃(𝑧) = 𝑧10 − 6𝑧7 + 3𝑧3 + 1, 
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𝑓(𝑧) = −6𝑧7, 𝑔(𝑧) = 𝑧10 + 3𝑧3 + 1 

Then )()()( zgzfzP   

Consider the circle 𝐶 defined by |𝑧| = 1. Then 𝑓(𝑧) and 𝑔(𝑧) both are 

analytic within and upon 𝐶. 

|
𝑔

𝑓
| = |

𝑧10 + 3𝑧3 + 1

−6𝑧7
| ≤

|𝑧|10 + 3|𝑧|3 + 1

6|𝑧|7
=
110 + 3(1)3 + 1

6(1)7

 =
5

6
< 1

 

Or |
𝑔

𝑓
| < 1 or |𝑔| < |𝑓| 

Applying Rouche's theorem, we find that, 𝑓 + 𝑔 = 𝑃(𝑧) has the same 

number of zeros inside 𝐶 as 𝑓(𝑧) = −6𝑧7. But 𝑓(𝑧) has seven zeros 

inside 𝐶. Hence 𝑃(𝑧) has seven zeros inside 𝐶. 

Example 14: Use Rouche's theorem to show that the equation 𝑧5 + 15𝑧 +

1 = 0 has one root in the disc |𝑧| < 3/2 and four roots in the annulus 
3

2
<

|𝑧| < 2. 

Solution I: Let |𝑧| = 2 represent the circle 𝐶1. We have 𝑧5 + 15𝑧 + 1 =
0. Take 𝑓(𝑧) = 𝑧5 and 𝑔(𝑧) = 15𝑧 + 1. 

Then, |
𝑔

𝑓
| = |

15𝑧+1

𝑧5
| =

15|𝑧|+1

|𝑧|5
=

15.2+1

25
=

31

32
< 1. 

∴  |𝑔| < |𝑓|. Applying. Rouche's theorem, we find that 𝑓(𝑧) + 𝑔(𝑧) =
𝑧5 + 15𝑧 + 1 has the same number of zeros as 𝑓(𝑧) inside 𝐶1. But 𝑓(𝑧) 
has five zeros inside 𝐶1, all located at 𝑧 = 0. It follows that 𝑧5 + 15𝑧 +
1 = 0 has five roots inside |𝑧| = 2. 

II: Consider the circle 𝐶2 defined by |𝑧| = 3/2. 

Take 𝑓(𝑧) = 15𝑧, 𝑔(𝑧) = 𝑧5 + 1. 

Then, 1
720

275

)2/3(15

1)2/3(

||15

1||

15

1 555











z

z

z

z

f

g
 

Or |||| fg   

Use Applying Rouche’s theorem, we find that 1155  zzgf  has the 

same number of zeroes inside 
2C  as zzf 15)(  . But )(zf  has one zero, 

located at 0z . It follows 01155  zz  has one root inside 
2C . As a 
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result of which four zeroes of 1155  zz  must lie in the ring 

2||2/3  z . 

Example 15: Show that the equation 05432 234  zzzz  has no 

real or purely imaginary roots and that it has one complex root in each 

quadrant. 

Solution: Let 05432)( 234  zzzzzf  and ivuzf )( . 

I: To prove that the given equation has no real root. 

Because all the coefficients of the equation are real and positive, it cannot be 
satisfied by any positive value of the variable z , indicating that the equation has 

no positive real roots.  

Putting xz   

5432)( 234  xxxxxf  

542)12( 222  xxxxx  

xxxx  03)1(2)1( 2222     … (1) 

Hence, the equation has no negative real root. 

II: The equation has purely imaginary roots.  

Taking 05432, 234  iyyiyyiyz  

Or 0)2(2)53( 324  yyiyy  

This 02,053 324  yyyy  

There is no single value of yyy that satisfies both equations simultaneously, 

making them inconsistent. Therefore, the given equation does not possess any 

purely imaginary roots. 

III: To show that the equation has one root in the first quadrant. 

For this let  Rz i ,20,Re  OABO. Let c denote the complete  

boundary of this quadrant (see figure 5). 
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Figure 5 

(a) Along OA: On this line xz   and x varies from 0 to  . 

5432)()( 234  xxxxivuxfzf  

00tan
5432

0
tantanarg 1

234

11 









 

xxxxv

u
f  

0arg  fOA  

(b) Along arc AB: 
iz Re  where 

2
0,


 R . 

𝑓(𝑧) = 𝑢 + 𝑖𝑣 = 𝑅4𝑒4𝑖 [1 +
2

𝑅𝑒𝑖
+

3

𝑅2𝑒2𝑖
+

4

𝑅3𝑒3𝑖
+

5

𝑅4𝑒4𝑖
]

 → 𝑅4𝑒4𝑖  as 𝑅 → ∞

arg 𝑓 = tan−1 (
𝑅4sin 4

𝑅4cos 4𝜃
) = tan−1 (tan 4 ) = 4

△𝐴𝐵 arg 𝑓 = 4[ ]0
𝜋/2

= 4(
𝜋

2
− 0) = 2𝜋

 

(c)  Along BO: On this line 𝑧 = 𝑖𝑦 and 𝑦 varies from ∞ to 0. 

𝑓(𝑧) = 𝑓(𝑖𝑦) = 𝑢 + 𝑖𝑣 = 𝑦4 − 2𝑖𝑦3 − 3𝑦2 + 4𝑖𝑦 + 5

 = (𝑦4 − 3𝑦2 + 5) + 𝑖(−2𝑦3 + 4𝑦)

𝑢 = 𝑦4 − 3𝑦2 + 5, 𝑣 = −2𝑦3 + 4𝑦 = 2𝑦(2 − 𝑦2)

arg 𝑓 ≡ tan−1 (
𝑣

𝑢
) = tan−1 

2𝑦(2 − 𝑦2)

(𝑦4 − 3𝑦2 + 5)
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Δ𝐵𝑂arg 𝑓 = [tan−1 
𝑣

𝑢
]
𝑦=∞

0

 which is zero for both limits. 

It means that as 𝑦 moves from ∞ to 0 along 𝐵𝑂, the point 𝑤 = 𝑢 + 𝑖𝑣 

starting from any point on 𝑢-axis comes back to some point on 𝑢-axis. The 

manner in which 𝑤 moves is shown below : 

𝑦 ∞ √2 0 

(𝑢, 𝑣) (∞,−∞) (3,0) (5,0) 

tan−1 (𝑣/𝑢) 0 0 0 

 

Also 

√2 < 𝑦 < ∞ ⇒ 𝑢 > 0, 𝑣 < 0

0 < 𝑦 < √2 ⇒ 𝑢 > 0, 𝑣 > 0.
 

From the chart it is clear that as 𝑦 moves from ∞ to 0 along 𝑦-axis, the 

point (𝑢, 𝑣) starting from third quadrant reaches in the first quadrant. But 

the curve is parallel to 𝑢-axis through out this journey and so Δ𝐵𝑂 arg 𝑓 =
0. 

Finally 

Δ𝑐arg 𝑓 = Δ𝑂𝐴arg 𝑓 + Δ𝐴𝐵arg 𝑓 + Δ𝐵𝑂arg 𝑓

 = 0 + 2𝜋 + 0 = 2𝜋

𝑁 =
1

2𝜋
⋅ Δ𝑐arc𝑓 =

1

2𝜋
⋅ 2𝜋 = 1

 

This shows that the equation has one root in the first quadrant. Since 

complex roots occur in pairs. 

Hence the second root (conjugate to the first) will lie in the fourth 

quadrant. 

The equation is of degree four and so it will have four roots. Out of the 

remaining two roots one lies in the second quadrant and the other 

conjugate to it lies the third quadrant. 

Example 16: In which quadrant do the roots of the equation 

𝑧4 + 𝑧3 + 4𝑧2 + 2𝑧 + 3 = 0 lie ? 

Solution: Let 𝑓(𝑧) = 𝑧4 + 𝑧3 + 4𝑧2 + 2𝑧 + 3 = 0, 𝑓(𝑧) = 𝑢 + 𝑖𝑣 
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I: To prove that the given equation has no real root. Evidently 

𝑓(𝑥) = 𝑥4 + 𝑥3 + 4𝑥2 + 2𝑥 + 3. Since all the coefficients of this 

equation are all real and positive and so it is not satisfied by any positive 

value of 𝑥, showing thereby it has no positive real root. 

Putting, 𝑧 = −𝑥, 

𝑓(−𝑥) = 𝑥4 − 𝑥3 + 4𝑥2 − 2𝑥 + 3

 = 𝑥2 (𝑥2 − 𝑥 +
1

4
) +

15

4
𝑥2 − 2𝑥 + 3

 = 𝑥2 (𝑥 −
1

2
) + 2(1 − 𝑥) + 1 +

15

4
𝑥2 > 0 if 

1

2
< 𝑥 < 1

 

Again, 𝑓(−𝑥) = 𝑥3(𝑥 − 1) + 4𝑥 (𝑥 −
1

2
) + 3 > 0 if 𝑥 > 1 

Thus, 𝑓(−𝑥) > 0 if 
1

2
< 𝑥 < 1 or if 𝑥 > 1. 

This proves that the equation has no negative real root. Finally, the 

equation has no real root. 

II: The equation has no purely imaginary root. 

Putting 𝑧 = 𝑖𝑦, or 

𝑦4 − 𝑖𝑦3 − 4𝑦2 + 2𝑖𝑦 + 3 = 0

(𝑦4 − 4𝑦2 + 3) + 𝑖𝑦(2 − 𝑦2) = 0
 

This implies, 𝑦4 − 4𝑦2 + 3 = 0, 𝑦(2 − 𝑦2) = 0 

 ⇒ (𝑦2 − 1)(𝑦2 − 3) = 0, 𝑦(2 − 𝑦2) = 0. 

These two equations are not satisfied by any common value of 𝑦. Hence 

the result II follows. 

III: To determine the number of complex roots in the first quadrant. 

For this let 𝑧 = 𝑅𝑒𝑖𝜃, 0 ≤ 𝜃 ≤
𝜋

2
, 𝑅 → ∞ define the first quadrant OABO. 

Let c denote the complete boundary of this quadrant. See Fig. 82 on Page 

469. 

(a)  Along OA. 𝑧 = 𝑥 and 𝑥 varies from 0 to ∞. 

𝑓(𝑧) = 𝑢 + 𝑖𝑣 = 𝑓(𝑥) = 𝑥4 + 𝑥3 + 4𝑥2 + 2𝑥 + 3

arg 𝑓 = tan−1 
𝑣

𝑢
= tan−1 (

0

𝑥4 + 𝑥3 + 4𝑥2 + 2𝑥 + 3
) = 0∀𝑥 ≥ 0.

∴  Δ𝑂𝐴arg 𝑓 = 0

 

(b) Along arc 𝐀𝐁, 𝑧 = 𝑅𝑖𝜃 , 𝑅 → ∞, 0 ≤ 𝜃 ≤ 𝜋/2 
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𝑓(𝑧) = 𝑅4𝑒4𝑖𝜃 [1 +
1

𝑅𝑒𝑖𝜃
+

4

𝑅2𝑒2𝑖𝜃
+

2

𝑅3𝑒3𝑖𝜃
+

3

𝑅4𝑒4𝑖𝜃
]

→ 𝑅4𝜄4𝜃  as 𝑅 → ∞

 

Δ𝐴𝐵arg 𝑓 = [4𝜃]
𝜋/2 = 4(

𝜋

2
− 0) = 2𝜋 

(c) Along BO. 𝑧 = 𝑖𝑦 and 𝑦 varies from ∞ to 0 . 

This, 𝑢 + 𝑖𝑣 = 𝑓(𝑧) = 𝑦4 − 𝑖𝑦3 − 4𝑦2 + 2𝑖𝑦 + 3 

And it implies, 𝑢 = 𝑦4 − 4𝑦2 + 3 = (𝑦2 − 3)(𝑦2 − 1) 

𝑣 = −𝑦3 + 2𝑦 = 𝑦(2 − 𝑦2)

Δ𝐵𝑂arg 𝑓 = [tan
−1 
𝑣

𝑢
]
𝑦=∞

0

= [tan−1 (
−𝑦3 + 2𝑦

𝑦4 − 4𝑦2 + 3
)]

∞

0
 

which is zero for both the limits. 

It means that as 𝑦 changes from ∞ to 0 , the point 𝑤 = 𝑢 + 𝑖𝑣 starting 

from any point on 𝑢-axis comes back to some point on 𝑢-axis. The manner 

in which 𝑤 moves is shown below: 

𝑦 ∞ √3 √2 1 0 

(𝑢, 𝑣) (∞,−∞) (0,−√3) (−1,0) (0,1) (3,0) 

tan−1 (
𝑣

𝑢
) 0 −

𝜋

2
 𝜋 

𝜋

2
 0 

 

arg 𝑓 = tan−1 
𝑣

𝑢
tan−1 

𝑦(2 − 𝑦2)

(𝑦2 − 3)(𝑦2 − 1)
 

From the chart and diagram, it is clear that as 𝑦 moves from ∞ to 0 along 

positive 𝑦-axis, the point (𝑢, 𝑣) takes one complete round around the 

origin in clockwise direction. Hence 

Δarg 𝑓(𝑧) = −2𝜋 

Thus the total change in arg 𝑓(𝑧) is given by 

Δarg 𝑓(𝑧) = 0 + 2𝜋 − 2𝜋 = 0 

Now the principle of argument declares that the number of zeros in the 

first quadrant is 
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1

2𝜋
Δarg 𝑓(𝑧) =

1

2𝜋
⋅ (0) = 0 

It means that the equation has no complex root in the first quadrant. IV. 

Since the coefficients of the given equation are all real the conjugate 

complex roots occur in pairs. It follows that there is no complex root in the 

fourth quadrant. 

 

Figure 6 

 

14.5 ANALYTIC CONTINUATION:- 

Analytic continuation is a process of extending the definition of a domain 

of an analytic function in which it is originally defined. This process is not 

possible in case of functions of a real variable. 

Definition: Suppose a function 𝑓1(𝑧) is analytic in the domain 𝐷1. If there 

exists a function 𝑓2(𝑧) analytic in a domain 𝐷2 such that 

(i) 𝐷2 has a part 𝐷12 common with 𝐷1. 

(ii) 𝑓1(𝑧) = 𝑓2(𝑧) for every 𝑧 in 𝐷12. 

then the function 𝑓2(𝑧) is known as analytic continuation of 𝑓1(𝑧) from 𝐷1 

into 𝐷2 via 𝐷12. Of cource we may equivalently say that 𝑓1 is analytic 

continuation of 𝑓2 from 𝐷1 to 𝐷2 via. 𝐷12. 
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Figure 7 

 

Figure 8 

For analytic continuation, it is sufficient that 𝐷1 and 𝐷2 have only a small 

arc in common for example the arc𝐴𝐵𝐶 is common in 𝐷1 and 𝐷2. 

An alternate definition: If 𝑓(𝑧) is analytic in a domain 𝑆1 and if 𝑓(𝑧) is 

also analytic in a domain 𝑆2 containing 𝑆1 and if 𝜙(𝑧) = 𝑓(𝑧)∀𝑧 ∈ 𝑆2, 

then 𝜙(𝑧) is said to give the analytic continuation of 𝑓(𝑧) in the domain 

𝑆2. 

Example 17: Let 𝑓(𝑧) = ∑  ∞
𝑛=0 𝑧

𝑛 , 𝜙(𝑧) =
1

1−𝑧
. 

Then 𝑓(𝑧) is analytic at all points within the circle |𝑧| = 1 and 𝜙(𝑧) is 

analytic at all points except 𝑧 = 1. Also 𝜙(𝑧) = 𝑓(𝑧) within |𝑧| = 1. 

Hence 𝜙(𝑧) gives the continuation of 𝑓(𝑧) over the rest of the plane. 

Example 18: Let 𝑓1(𝑧) = ∑  ∞
𝑛=0 𝑧

𝑛 , 𝑓2(𝑧) = ∑  ∞
𝑛=0

1

2
(
1+𝑧

2
)
𝑛

 

The first power series 𝑓(𝑧) is convergent inside the circle 𝑅1 defined by 

|𝑧| = 1 and has the sum =
1

1−𝑧
. The second power series is in G.P. 

geometrical (progression) with first term 
1

2
 and common ratio =

1+𝑧

2
 and 

hence it is convergent for |
1+𝑧

2
| < 1 or |𝑧 + 1| < 2. 

The sum function of the second power series is 

1

2
⋅

1

1 − (1 + 𝑧)/2
=

1

1 − 𝑧
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Thus 𝑓1(𝑧) is analytic inside the circle 𝑅1 s.t. |𝑧| = 1 and 𝑓2(𝑧) is analytic 

inside the circle 𝑅2 s.t. |𝑧 + 1| = 2. Also 𝑓1(𝑧) = 𝑓2(𝑧) in a region 

common to the interiors of 𝑅1 and 𝑅2. 

Thus, it is obvious that 𝑓2(𝑧) extends the domain of the analytic function 

𝑓1(𝑧) to a larger domain 𝑅2. Here 𝑓2 is the analytic continuation of 𝑓1 from 

𝑅1 into 𝑅2. 

 

Figure 9 

14.6 COMPLETE ANALYTIC FUNCTION:- 

An analytic function 𝑓 with domain 𝐷 is called a function element and is 

denoted by (𝑓,𝐷 ). 

Definition: Suppose 𝑓(𝑧) is analytic in a domain 𝐷. Let us form all 

possible analytic continuations of ( 𝑓, 𝐷 ) and then all possible analytic 

continuations of ( 𝑓1, 𝐷1 ), (𝑓2, 𝐷2), (𝑓3, 𝐷3), … , (𝑓𝑛 , 𝐷𝑛) and so on. At 

some stage we arrive at a function 𝐹(𝑧) such that for any 𝑣, 𝐹(𝑣) denotes 

the value of values obtained for 𝑣 by all possible continuation to 𝑣, that is 

to say. 

𝐹(𝑧) = {

𝑓1(𝑧) if 𝑧 ∈ 𝐷1
𝑓2(𝑧) if 𝑧 ∈ 𝐷2
………………
𝑓𝑛(𝑧) if 𝑧 ∈ 𝐷𝑛

 

Such a function 𝐹(𝑧) is called complete analytic function. In this process 

of continuation, we may arrive at a closed curve beyond which it is not 

possible to take analytic continuation. Such a closed curve is called the 

natural boundary of the compelte analytic function. A point outside the 

natural boundary is called the singularity of complete analytic function. 

Theorem 7: If 𝑓(𝑧) is analytic in a domain 𝑅 and 𝑓(𝑧) = 0 at all points 

on arc 𝑃𝑄 inside 𝑅, then 𝑓(𝑧) = 0 throughout 𝑅. 

Proof: Suppose 𝑓(𝑧) is analytic within a domain 𝑅. Let 𝑃𝑄 be an arc 

inside 𝑅.s.t. 

𝑓(𝑧) = 0∀𝑧 on 𝑃𝑄        … (1)  
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To prove that 𝑓(𝑧) = 0 through out 𝑅. Take an 

 

Figure 10 

𝑓(𝑧) = ∑  

∞

𝑛=0

 𝑎𝑛(𝑧 − 𝑧0)
𝑛         … (2)  

where 𝑎𝑛 =
𝑓(𝑛)(𝑧0)

𝑛!
 

Since 𝑧0 lies on 𝑃𝑄 and hence 𝑓(𝑧0) = 0; by (1). 

This  ⇒ 𝑓(𝑧) = 0 at 𝑧 = 𝑧0 

 ⇒ 𝑓(𝑧), 𝑓′(𝑧), 𝑓′′(𝑧), … , 𝑓(𝑛)(𝑧) = 0 at 𝑧 = 𝑧0
 ⇒ 𝑓(𝑛)(𝑧0) = 0 when 𝑛 = 0,1,2,3,…

 

Here 𝑓(0)(𝑧) = 𝑓(𝑧) 

⇒ 𝑎𝑛 = 0, for 𝑛 = 0,1,2,3,… 

In this event (2) becomes 

𝑓(𝑧) = ∑  

∞

𝑛=0

 𝑎𝑛(𝑧 − 𝑧0)
𝑛 = ∑  

∞

𝑛=0

 0(𝑧 + 𝑧0)
𝑛 = 0

∴ 𝑓(𝑧) = 0 for any point inside 𝐶

 

By considering another arc inside 𝑅, we can repeat the same process. In 

this way, we can prove that 𝑓(𝑧) = 0 throughout 𝑅. 

Deductions (i) If 𝑓(𝑧) is analytic in a domain 𝑅 and if 𝑓(𝑧) vanishes at 

any point of 𝑅0, where 𝑅0 is a part of 𝑅, then 𝑓(𝑧) = 0 throughout 𝑅. 

Solution: Take an arc𝑃𝑄 inside 𝑅0. Then 𝑓(𝑧) = 0∀𝑧 on 𝑃𝑄. Now prove 

this as in Theorem 7. 

(ii) If 𝑓1(𝑧) and 𝑓2(𝑧) are analytic in the same domain 𝐷 and are such that 
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𝑓1(𝑧) = 𝑓2(𝑧) in a domain 𝐷0 which is a part of 𝐷, then 𝑓1(𝑧) = 𝑓2(𝑧) i.h 

roughout 𝐷. 

Or, 

Show that if two functions 𝑓1(𝑧) and 𝑓2(𝑧) are equal at all points of a line 

𝐿 in a region 𝐷 in which they are holomorphic, the functions are equal at 

all points of 𝐷. 

Solution: Suppose 𝑓1(𝑧) and 𝑓2(𝑧) are holomorphic (analytic) in a region 

𝐷. Let 𝐷0 be a part of 𝐷 s.t. 

𝑓1(𝑧) = 𝑓2(𝑧)∀𝑧 ∈ 𝐷0        … (1)  

To prove that 𝑓1(𝑧) = 𝑓2(𝑧) throughout 𝐷. 

Write 

𝑓(𝑧) = 𝑓1(𝑧) − 𝑓2(𝑧) 

Now 

(1) ⇒ 𝑓(𝑧) = 0 ∀𝑧 ∈ 𝐷0 ,      … (2)  

Take an arc( or line )𝑃𝑄 in 𝐷0. Then we have 

𝑓(𝑧) = 0∀𝑧 on 𝑃𝑄.                … (3)  

This follows from (2). 

Now we shall prove a lemma. 

Lemma: If 𝑓(𝑧) is analytic in a domain 𝑅 and if 𝑓(𝑧) = 0 along an 

arc𝑃𝑄 inside 𝑅, then 𝑓(𝑧) = 0 throughout 𝑅. 

The proof of the lemma starts. Prove as in Theorem 7. 

Going back to the actual problem, we have 𝑓(𝑧) = 0∀𝑧 ∈ 𝐷. 

(This follows from the lemma). 

or, 𝑓1(𝑧) − 𝑓2(𝑧) = 0 throughout 𝐷 

 𝑓1(𝑧) = 𝑓2(𝑧) throughout 𝐷 

An alternative proof: If 𝑧1, 𝑧2, lie on the line 𝐿, then 

lim
𝑧2→𝑧1

 
𝑓(𝑧2) − 𝑓(𝑧1)

𝑧2 − 𝑧1
= lim

𝑧2→𝑧1
 
𝜙(𝑧2) − 𝜙(𝑧1)

𝑧2 − 𝑧1
 

Thus the first derivatives of 𝑓 and 𝜙 are equal at all points of 𝐿. Similarly, 

all the other derivatives of 𝑓 and 𝜙 can be shown to be equal at all points 

of 𝐿; and therefore, the functions are equal at all points of 𝐷. 
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Theorem 8: If a function 𝑓(𝑧) and all its derivatives vanish at point 𝑎, 

then 𝑓(𝑧) and all its derivatives will vanish at all points in the domain of 

𝑎. 

Proof: By Taylor's theorem, 𝑓(𝑧) = ∑  ∞
𝑛=0 𝑎𝑛(𝑧 − 𝑎)

𝑛 where 
𝑓𝑛(𝑎)

𝑛!
= 𝑎𝑛 

By assumption, 𝑎0 = 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 0. 

Hence 𝑓(𝑧), 𝑓′(𝑧), 𝑓′′(𝑧) all vanish at all points of the domain. 

Theorem 9: Uniqueness of analytic continuation. There cannot be more 

than one continuation of analytic continuation 𝑓2(𝑧) into the same domain 

Proof: Let 𝑓1(𝑧) be analytic in a domain 𝐷1 and let 𝑓2
′(𝑧) and 𝑔2(𝑧) be 

analytic continuations of the same function 𝑓1(𝑧) from 𝐷1 into the domain 

𝐷2 via 𝐷12 which is common to both 𝐷1 and 𝐷2 (See fig. 7 & 8). 

If we show that 𝑓2(𝑧) = 𝑔2(𝑧) throughout 𝐷2, the result will follow. 

By the definition of analytic continuation. 

(i) 𝑓1(𝑧) = 𝑓2(𝑧)∀𝑧 ∈ 𝐷12 

and  𝑓2(𝑧) is analytic in 𝐷2 

(ii) 𝑓1(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷12 

and  𝑔2(𝑧) is analytic in 𝐷2. 

From (i) and (ii), it follows that,  𝑓2(𝑧) = 𝑓1(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷12 

Or, 𝑓2(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷12 

Or, (𝑓2 − 𝑔2)(𝑧) = 0∀𝑧 ∈ 𝐷12 

𝑓2 and 𝑔2 are analytic in 𝐷2 ⇒ 𝑓2 − 𝑔2 is analytic in 𝐷2. 

Thus we see that (𝑓2 − 𝑔2)(𝑧) vanishes in 𝐷12 which is a part of 𝐷2. Also, 

the function is analytic in 𝐷2. Hence, we must have 

(𝑓2 − 𝑔2)(𝑧) = 0∀𝑧 ∈ 𝐷2.      (See Theorem 

7) 

or, 𝑓2(𝑧) = 𝑔2(𝑧)∀𝑧 ∈ 𝐷2. 

Check your progress 

Problem 1: Show that one root of the equation 014  zz lies in the 

first quadrant. 
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Problem 2: Using Rouche’s theorem to show that three out of the four 

zeroes of 0364  zz  lie in .2||1  z  

14.7 SUMMARY:- 

This unit cover the topic on meromorphic functions, Rouché’s theorem, 

and analytic continuation explores key concepts of complex analysis that 

describe how analytic functions behave, extend, and relate within the 

complex plane. It begins with meromorphic functions, which are analytic 

everywhere in a domain except at isolated poles, highlighting their 

structure, properties, and representation as ratios of analytic functions. The 

chapter then introduces Rouché’s theorem, a powerful result used to 

compare two analytic functions on a closed contour to determine whether 

they have the same number of zeros inside it, making it especially useful 

in locating zeros of complex functions and polynomials. Finally, it 

discusses analytic continuation, the process through which an analytic 

function can be extended beyond its initial radius or region of convergence 

by using overlapping analytic segments, emphasizing the principle of 

uniqueness based on the identity theorem. Overall, the chapter explains 

how these tools collectively deepen our understanding of the global 

behavior of analytic functions across the complex plane. 

14.8 GLOSSARY:- 

 Meromorphic function 

 Rouche’s theorem 

 Analytic continuation 

 Complete analytic function 
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14.11TERMINAL QUESTIONS:- 

Long answer type question 

1: State and prove Mittag Leffler's expansion theorem. 

2: State and prove Rouche's theorem. 

3: Define analytic continuation by making figure on answer sheet. 

4: Show that roots of the equation 0119 26  zz all lie between 

the circles 1|| z  and 3|| z . 

5: Prove that all the roots of 0165  izz  lie between the circles 

1|| z  and 2|| z . 

Short answer type question 

1: Find the number of roots of the equation 0155  zz . 

2: Prove that 573 38  zzz  has exactly two zeroes in first 

quadrant.  

3: Show that the equation )1( ize z   has one root in the first 

quadrant. 

4: Find out the number of zeroes of the polynomial 

14)( 258  zzzzF  that lie inside the circle 1|| z .  

5: Find the number of zeros of the polynomial 

112222 234  zzzz  inside the circle 1|| z .  
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Objective type question: 

1.  A meromorphic function on a domain D is analytic everywhere 

except at: 

A.  Essential singularities 

B.  Poles 

C.  Branch points 

D.  Removable singularities 

2.  Which of the following is a meromorphic function on C? 

A.  
ze  

B.  zsin  

C.  
1

1
2 z

 

D.  zlog  

3. A function is meromorphic in the finite complex plane if and only if 

its 

singularities (in that plane) are: 

A.  Removable 

B.  Poles only 

C.  Poles or essential 

D.  Poles or branch points 

4.  Rouché’s Theorem helps in determining: 

A.  The order of a pole 

B.  The number of zeros inside a closed contour 

C.  Radius of convergence of a Taylor series 

D.  Existence of Laurent expansion 

5. According to Rouché’s Theorem, if |)(||)()(| zfzgzf  on a 

simple closed contour C, then: 

A. )(zg has no zeros inside C 

B.  )(zf  and )(zg  have the same number of zeros inside C 

C.  )(zf  must be constant inside C 

D.  )(zf  and )(zg  have no poles 

6.  To apply Rouché’s Theorem, both functions must be: 
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A.  Meromorphic on C 

B.  Continuous on C 

C.  Analytic inside and on C 

D.  Analytic only on C 

7.  Analytic continuation allows extending an analytic function: 

A. To regions where the function is multivalued 

B.  Beyond its radius of convergence 

C.  Only within its original circle of convergence 

D.  To infinity 

8.  Analytic continuation is unique if: 

A.  The function is periodic 

B.  The function is bounded 

C.  The continuation is performed along two different paths 

D.  The domain is simply connected and the initial analytic function is 

fixed 

9. The process of analytic continuation is based on which 

principle? 

A.  Cauchy Integral Formula 

B.  Maximum Modulus Principle 

C.  Identity Theorem 

D.  Liouville’s Theorem 

10.  Which of the following is NOT true for a meromorphic 

function? 

A.  It can be expressed as the ratio of two analytic functions 

B.  It may have essential singularities 

C.  It may have poles 

D.  It is analytic except at isolated singularities 

11.  Rouché’s Theorem is typically applied to determine: 

A.  Behavior near essential singularities 

B.  The number of zeros for polynomials 

C.  Whether a function is entire 

D.  The sum of residues 

12.  Analytic continuation fails when: 
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A.  A singularity blocks the extension 

B.  The function is entire 

C.  The domain is simply connected 

D.  The function is bounded 

14.12ANSWERS:- 

Answer of short answer type question: 

1: One zero inside 1|| z  (here take zf 5 , 14  zg ) 

 3 zero inside 2|| z  (here take 4zf  , 15  zg ) 

5: Take 11f , g remaining terms, then 

1
11

8

11

2222





g

f
. Polynomial does not have any zero 

inside c. 

Answer of objective questions 

1: B  2: C  3: B  4:

 B 

5: B  6: C  7: B  8:

 D 

9: C  10: B  11:  B  12:

 A 
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