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UNIT 1: -Vector Space 

CONTENTS: 
1.1      Introduction 

1.2      Objectives 

1.3      Binary Operation 

1.4      Group 

1.5      Field 

1.6      Vector Space 

1.7      General Properties of Vector Space 

1.8      Summary 

1.9      Glossary 

1.10     References 

1.11     Suggested Reading 

1.12     Terminal questions  

 

1.1 INTRODUCTION: -  

Linear Algebra is a vital branch of mathematics that focuses on the study 

of vectors, matrices, and linear transformations. It is primarily concerned 

with systems of linear equations and the properties of vector spaces and 

mappings between them. Central to linear algebra are operations such as 

vector addition, scalar multiplication, and matrix multiplication, which 

provide a structured way to model and solve real-world problems. The 

subject also explores key concepts like linear independence, span, basis, 

dimension, and rank, which help describe the structure and behavior of 

vector spaces. 

In addition to its theoretical importance, linear algebra has extensive 

practical applications across various disciplines. In computer science, it 

underpins algorithms in machine learning, computer graphics, and 

cryptography. In engineering and physics, it is used to model physical 

systems and solve equations related to circuits, forces, and motion. Linear 

algebra also plays a crucial role in economics, optimization, and data 

analysis, where large systems of equations must be managed efficiently. Its 

blend of theory and application makes linear algebra a foundational tool in 

modern science and technology. 

In this unit we will studied about the A vector space is a group of items, 

known as vectors, that remain within the same set even after being 

multiplied (scaled) by numbers, known as scalars, and joined together. 
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These scalars typically originate from complex numbers ℂ or real numbers 

ℝ. Associativity, commutativity, the presence of a zero vector, and additive 

inverses are some of the rules (axioms) that must be followed by operations 

like vector addition and scalar multiplication in a vector space. ℝ2 (the two-

dimensional plane) and ℝ3 (the three-dimensional space) are two instances 

of vector spaces. 

1.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 Define Binary Operations on a set. 

 Define Group and Field. 

 Define Vector space and its properties. 

1.3 BINARY OPERATION: -  

Consider a non-empty set 𝑆. A binary operation (also known as a binary 

composition) in 𝑆 is any function from 𝑆 × 𝑆 to 𝑆. 

If 𝑓: 𝑆 × 𝑆 →  𝑆 be is a binary composition in 𝑆 𝑎𝑛𝑑 𝑥𝑦 ∈ 𝑆 then 𝑓(𝑥, 𝑦) 

is the composite of 𝑥 and 𝑦 under the composition𝑓. It is often indicated 

by any of the following symbols. 

∗, 𝑇, ⊥,⊕, +, … , Juxtaposition 

When a binary composition is represented by a set ∗ and 𝑥, 𝑦 ∈ 𝑆, the 

composite of 𝑥 and 𝑦 under this composition is represented by 𝑥 ∗  𝑦. 

 

Example1. Binary operation defined on numbers (real numbers ℝ): 

 Addition: 𝑎 + 𝑏 (𝑒. 𝑔. , 3 + 5 = 8) 
 Multiplication: 𝑎 × 𝑏 (𝑒. 𝑔. , 4 × 6 = 24) 
 Subtraction: 𝑎 − 𝑏(𝑒. 𝑔. , 7 − 2 = 5) 

 Maximum: 𝑚𝑎𝑥 (𝑎, 𝑏)(𝑒. 𝑔. , 𝑚𝑎𝑥 (4,9) = 9) 

Example2. Binary operation defined on sets: 

 Union: 𝐴 ∪ 𝐵(𝑒. 𝑔. , {1,2} ∪ {2,3} = {1,2,3}) 

 Intersection: 𝐴 ∩ 𝐵 (𝑒. 𝑔. , {1,2} ∩ {2,3} = {2}) 

1.4 GROUP: -  
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Let 𝐺 be a non-empty set and ∗ be a binary operation defined on it, then 

(𝐺,∗) is said to be group if it satisfies the following properties: 

a) Closure property: 

𝑎 ∗ 𝑏 ∈ 𝐺 ∀ 𝑎, 𝑏 ∈ 𝐺 

b) Associativity: 

𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 

c) Existence of identity: 

∃ an element 𝑒 ∈ 𝐺 such that  

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 ∀𝑎 ∈ 𝐺 

Where 𝑒 is called identity of ∗ in 𝐺. 

d) Existence of inverse: 

For each element 𝑎 ∈ 𝐺 ∃ 𝑏 ∈ 𝐺 such that 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 

Where 𝑏  is called inverse of element 𝑎  with respect to ∗ and we 

write 

𝑏 = 𝑎−1 

Abelian or Commutative Group: A group (𝐺,∗)  is said to be abelian 

group if  

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 ∀ 𝑎, 𝑏 ∈ 𝐺 

A group which are not abelian called non-abelian or non-commutative 

group. 

Example3. Show that the set 𝑍 of integers (positive or negative including 0 

with additive binary operation is an infinite abelian group. 

Solution: Let us apply the group-axioms to all integers. 

a) Closure property: Closure property is satisfied because the sum of any 

two integers is an integer. 

b) Associativity: The associative property is satisfied, because of 

𝑎, 𝑏, 𝑐 are any three integers, then 

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

c) Existence of identity: The axiom on identity is satisfied, because 0 is 

the identity element in the set 𝑍 such that 

d) Existence of inverse: The axiom on inverse is satisfied, because the 

inverse of any integer 𝑎  is the integer −𝑎  such that 𝑎 +  (−𝑎)  =

 (−𝑎)  +  𝑎 =  0 the identity element. 
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e) Commutativity:  Since, we know that 𝑎 + 𝑏 = 𝑏 + 𝑎 ∀𝑎, 𝑏 ∈ 𝑍, the 

commutative law is satisfied. 

Also, the number of elements in 𝑍 is infinite. 

Hence, the set 𝑍  is an infinite abelian group with additive binary 

operation. 

Example4. Show that the set (1,1, 𝑖, − 𝑖) is an abelian finite group of order 

4 under multiplication. 

Solution: 

a) Closure property: Closure property is satisfied as  

1(−1) − 1, 1. 𝑖 = 𝑖, 𝑖. (−𝑖)  =  1, 1. (−𝑖)  =  − 𝑖 𝑒𝑡𝑐. 

b) Associativity: Associative property is satisfied as  

(1. 𝑖) (−𝑖) = 1. {𝑖 (−𝑖))  =  1, {1. 𝑖). (−1)  =  1, {𝑖(−1)}

= − 𝑖 𝑒𝑡𝑐. 

c) Existence of identity: Axioms on identity is satisfied, 1 being the 

multiplicative identity. 

d) Existence of inverse. Axiom an inverse in satisfied since the inverse 

of each element of the set exists 

1.1 = 𝑒 = 1, (−1) (−1)  =  𝑒 =  1, 𝑖(−𝑖)  =  𝑒 =  1, (−𝑖) (𝑖)  

=  𝑒 =  1 

e) Commutativity: The commutative law is also satisfied as  

1(−1) = (−1). 1, (−1) 𝑖 =  𝑖 (−1) 𝑒𝑡𝑐. 

Since, there are four elements in the given set, hence it is a group of 

order 4. 

Example5. Show that the set of all positive rational numbers forms an 

abelian group under the composition defined by  

𝑎 ∗ 𝑏 =
(𝑎𝑏) 

2
 

Solution: Let 𝑄+ denote the set of all positive rational numbers to show 

(𝑄+,∗) is a group. 

a)  Closure property: For every 𝑎, 𝑏 ∈ 𝑄+,
𝑎𝑏

2
∈ 𝑄+ 

⇒ 𝑄+ is a closed under the composition∗. 

b) Associativity: Let 𝑎, 𝑏, 𝑐 ∈ 𝑄+, then 

(𝑎 ∗ 𝑏) ∗ 𝑐 =
[(𝑎𝑏)/2]. 𝑐

2
=

𝑎[(𝑏𝑐)/2] 

2
= 𝑎 ∗ (

𝑏𝑐

2
) = 𝑎 ∗ (𝑏 ∗ 𝑐) 
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c) Existence of identity: An element 𝑒 will be the identity element if 

𝑒 ∈ 𝑄+ and if 

                                𝑒 ∗ 𝑎 = 𝑎 = 𝑎 ∗ 𝑒 ∀𝑎 ∈ 𝑄+ 

⇒                            𝑒 ∗ 𝑎 = 𝑎
(𝑒𝑎)

2
= 𝑎 ⇒ (

𝑎

2
) (𝑒 − 2) = 0 

⇒                                                    𝑒 = 2 

∵                                          𝑎 ∈ 𝑄+ ⇒ 𝑎 ≠ 0 

∵ 2 ∈ 𝑄+ and we have 2 ∗ 𝑎 =
2𝑎

2
= 𝑎 = 𝑎 ∗ 2 ∀ 𝑎 ∈ 𝑄+ 

⇒ 2 is the identity element.  

 

d) Existence of inverse: Let 𝑎 ∈ 𝑄+, 𝑏 is the inverse of 𝑎, then we 

must have 

𝑏 ∗ 𝑎 = 𝑒 = 2  

⇒                                          
(𝑏𝑎)

2
 =  2 ⇒  𝑏 =

4

𝑎
 

⇒                                               𝑎 ∈ 𝑄+  ⇒
4

𝑎
∈ 𝑄+  

We have (4/ 𝑎) ∗ 𝑎 = {(4/𝑎). 𝑎}/2 = 2 = 𝑎 ∗ (4/𝑎) 

⇒  4/ 𝑎 is the inverse of 𝑎  

⇒  inverse of each element of 𝑄+ exist. 

e)  Commutativity: Let 𝑎, 𝑏 ∈ 𝑄+  

⇒                             𝑎 ∗ 𝑏 =
𝑎𝑏

2
=

𝑏𝑎

2
= 𝑏 ∗ 𝑎 

Hence (𝑄+,∗)  is an abelian group. 

Example6. Show that the set 𝑄 of positive irrational does not form a group 

with respect to multiplication. 

Solution: Here √𝑎. √𝑎 = 𝑎∀𝑎 ∈  𝑄, the set of rational numbers, so the set 

of positive irrationals does not satisfy the closure property with respect to 

multiplication. 

Hence the set of positive irrationals does not form a group with respect to 

multiplication. 

1.5 FIELD: -  

Let 𝐹  be a non-empty set that has two binary operations, addition and 

multiplication, represented by the symbols " + " and ". " respectively. This 

means that for every 𝑎, 𝑏 ∈  𝐹, we have 𝑎 + 𝑏 ∈  𝐹 𝑎𝑛𝑑 𝑎. 𝑏 ∈  𝐹. If the 
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following conditions are satisfied, this algebraic structure (𝐹, +, . )  is 

referred to as a field: 

a) Addition is commutative i.e. 

𝑎 + 𝑏 = 𝑏 + 𝑎 ∀𝑎, 𝑏 ∈ 𝐹 
b) Addition is associative i.e. 

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)∀𝑎, 𝑏, 𝑐 ∈ 𝐹 
 

c) ∃ an element 0 in 𝐹 such that 

𝑎 + 0 = 𝑎∀𝑎 ∈ 𝐹 

d) To each element 𝑎 𝑖𝑛 𝐹 ∃ an element −𝑎 𝑖𝑛 𝐹 such that 

𝑎 + (−𝑎) = 0 
e) Multiplication is commutative i.e. 

𝑎. 𝑏 = 𝑏. 𝑎 ∀𝑎, 𝑏 ∈ 𝐹 
f) Multiplication is associative i.e. 

(𝑎. 𝑏). 𝑐 = 𝑎. (𝑏. 𝑐)∀𝑎, 𝑏, 𝑐 ∈ 𝐹 

g) ∃ an element 1 in 𝐹 such that 

𝑎. 1 = 𝑎∀𝑎 ∈ 𝐹 

h) To each element 𝑎 𝑖𝑛 𝐹 ∃ an element 𝑎−1 𝑖𝑛 𝐹 such that 

𝑎𝑎−1 = 1 
i) Multiplication is distributive with respect to addition. i.e. 

𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐 ∀𝑎, 𝑏, 𝑐 ∈ 𝐹 

Example7. The set 𝑄 of all rational numbers is a field the addition and 

multiplication of rational numbers being the two field compositions. The 

rational number 0 is the zero element of this field and the rational number 

1 is the unity of this field. 

 

Example8. The set 𝑅  of all real numbers is a field, the addition and 

multiplication of real numbers being the two field compositions. Since 𝑄 ⊂
𝑅, therefore the field of rational numbers is a subfield of the field of rational 

numbers. 

 

Example9. The set 𝐶 of all complex numbers is a field, the addition and 

multiplication of complex numbers being the two field compositions. 

Since 𝑅 ⊂ 𝐶, therefore the field of real numbers is a subfield of the field of 

complex numbers. 

 

Example10. The set of numbers of the form 𝑎 + 𝑏√2, with 𝑎 𝑎𝑛𝑑 𝑏  as 

rational numbers is a field. We can easily show that all the field postulates 

are satisfied in this case. 

 

1.6 VECTOR SPACE: -  
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Let (𝐹, +, . ) be a field. We will refer to the components of 𝐹 as scalars. 

Assume that 𝑉 is a non-empty set, whose elements will be called vectors. If 

𝑉 is a vector space over the field 𝐹, then 

1. An internal composition known as the addition of vectors, 

represented by the symbol ‘ + ’, is defined in 𝑉. Moreover, 𝑉 is an 

abelian group for this composition, i.e. 

a) 𝛼 + 𝛽 ∈ 𝑉 ∀ 𝛼, 𝛽 ∈ 𝑉. 
b) 𝛼 + 𝛽 = 𝛽 + 𝛼 ∀ 𝛼, 𝛽 ∈ 𝑉. 
c) 𝛼 + (𝛽 + 𝛾) = (𝛼 + 𝛽) + 𝛾 ∀ 𝛼, 𝛽, 𝛾 ∈ 𝑉. 
d) ∃ an element 𝟎 ∈ 𝑉 such that 𝛼 + 𝟎 = 𝛼 ∀𝛼 ∈ 𝑉 

Where 𝟎 is called zero vector. 

e) To every vector 𝛼 ∈ 𝑉 ∃ a vector − 𝛼 ∈ 𝑉 such that  
𝛼 + (−𝛼) = 0 

2. Scalar multiplication is an external composition in 𝑉  over 𝐹  i.e., 

𝑎𝛼 ∈ 𝑉 ∀ 𝑎 ∈ 𝐹 and ∀𝛼 ∈ 𝑉 . To put it another way, V is closed 
with respect to scalar multiplication. 

3. The two compositions scalar multiplication and vector addition 

fulfill the following requirements: 

a) 𝑎(𝛼 + 𝛽) = 𝑎𝛼 + 𝑎𝛽 ∀𝑎 ∈ 𝐹 𝑎𝑛𝑑 ∀𝛼, 𝛽 ∈ 𝑉  
b) (𝑎 + 𝑏)𝛼 = 𝑎𝛼 + 𝑏𝛼 ∀ 𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 ∀𝛼 ∈ 𝑉 

c) (𝑎𝑏)𝛼 = 𝑎(𝑏𝛼) ∀ 𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 ∀𝛼 ∈ 𝑉 

d) 1𝛼 = 𝛼 ∀𝛼 ∈ 𝑉  
Where 1 is unity element of the field 𝐹. 

When 𝑉 is a vector space over the field 𝐹, we shall say that 𝑉(𝐹) is a vector 

space. 

 

Example11. The vector space of all polynomials over a field 𝐹. 

Solution: Let 𝐹[𝑥] represent the set of all polynomials over a field 𝐹 in an 

indeterminate 𝑥. Then, 𝐹[𝑥] is a vector space over the field 𝐹 with respect 

to the product of a polynomial by a constant polynomial (i.e., by an element 

of 𝐹) as scalar multiplication and the addition of two polynomials as vector 

addition. Let 

𝑓(𝑥) = ∑𝑎𝑖𝑥
𝑖 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

𝑔(𝑥) = ∑𝑏𝑖𝑥𝑖 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ 

𝑎𝑛𝑑                 ℎ(𝑥) = ∑𝑐𝑖𝑥𝑖 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ 

be an arbitrary member of  𝐹[𝑥]. 

Equality of two polynomials: we define 𝑓(𝑥) = 𝑔(𝑥)  ⇔ 𝑎𝑖 = 𝑏𝑖  ∀ 𝑖 =

0,1,2,3, … 

Addition Composition in 𝑭[𝒙]: we define 
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𝑓(𝑥) + 𝑔(𝑥) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 + ⋯ 

𝑓(𝑥) + 𝑔(𝑥) = ∑(𝑎𝑖 + 𝑏𝑖)𝑥𝑖 

∵  𝑎0 + 𝑏0, 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, …  all are elements of 𝐹 , therefore 𝑓(𝑥) +

𝑔(𝑥) ∈ 𝐹[𝑥]  and thus 𝐹[𝑥]  is closed with respect to addition of 

polynomials. 

Scalar multiplication in  𝑭[𝒙]𝐨𝐯𝐞𝐫 𝑭: If 𝑘  is any scalar i.e., 𝑘 ∈ 𝐹 , we 

define  

𝑘𝑓(𝑥) = 𝑘𝑎0 + (𝑘𝑎1)𝑥 + (𝑘𝑎2)𝑥2 + (𝑘𝑎3)𝑥3 + ⋯ 

= ∑ (𝑘𝑎𝑖) 𝑥𝑖. 

Since 𝑘𝑎0, 𝑘𝑎1, 𝑘𝑎2, … are all elements of 𝐹, therefore 𝑘𝑓(𝑥) ∈  𝐹[𝑥] and 

thus 𝐹[𝑥] is closed with respect to scalar multiplication. 

Now we shall show that 𝐹[𝑥]  is a vector space for these two compositions. 

 

Commutativity of addition in 𝑭[𝒙]: We have  

𝑓(𝑥) + 𝑔(𝑥) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 + ⋯ 

                                     = (𝑏0 + 𝑎0) + (𝑏1 + 𝑎1)𝑥 + (𝑏2 + 𝑎2)𝑥2 + ⋯ 

[since addition in the field F is commutative] 

                                     = 𝑔(𝑥) + 𝑓(𝑥) 

Associativity of addition in 𝑭[𝒙]: We have  

     [𝑓(𝑥) + 𝑔(𝑥)] + ℎ(𝑥) = ∑(𝑎𝑖 + 𝑏𝑖)𝑥𝑖 + ∑𝑐𝑖𝑥𝑖  

=  ∑[(𝑎𝑖 + 𝑏𝑖) + 𝑐𝑖]𝑥𝑖 

= ∑[𝑎𝑖 + (𝑏𝑖 + 𝑐𝑖)]𝑥𝑖  

= ∑𝑎𝑖𝑥𝑖 + ∑(𝑏𝑖 + 𝑐𝑖)𝑥𝑖 

= 𝑓(𝑥) + 𝑔(𝑥) + ℎ(𝑥)] 
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Existence of additive identity in 𝑭[𝒙]:  Let 0 denote the zero polynomial 

over the field 𝐹 i.e., 

 

0 = 0 + 0𝑥 + 0𝑥2 + 0𝑥3 + ⋯ . 𝑇ℎ𝑒𝑛 0 ∈ 𝐹[𝑥]𝑎𝑛𝑑 0 + 𝑓(𝑥) = 𝑓(𝑥). 

∴ the zero polynomial 0 is the additive identity.  

Existence of additive inverse of each member of 𝑭[𝒙]: Let −𝑓(𝑥) be the 

polynomial over the field 𝐹 defined as 

−𝑓(𝑥) = −𝑎0 + (−𝑎1)𝑥 + (−𝑎2)𝑥2 + ⋯ 

 Then − 𝑓(𝑥) ∈ 𝐹[𝑥]and we have − 𝑓(𝑥) + 𝑓(𝑥) = 0  

i. e. , the zero polynomial.  

∴ −𝑓(𝑥) is the additive inverse of 𝑓(𝑥). 

Thus 𝐹[𝑥] is an abelian group with respect to addition of poyoomials 

Now for the operation of scalar multiplication we make the following 

observations. 

1. If  𝑘 ∈ 𝐹, then 

 

𝑘[𝑓(𝑥) + 𝑔(𝑥)] = 𝑘[(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 + ⋯ ] 

                              = 𝑘(𝑎0 + 𝑏0) + 𝑘(𝑎1 + 𝑏1)𝑥 + 𝑘(𝑎2 + 𝑏2)𝑥2 + ⋯ 

                             = (𝑘𝑎0 + 𝑘𝑏0) + (𝑘𝑎1 + 𝑘𝑏1)𝑥 + (𝑘𝑎2 + 𝑘𝑏2)𝑥2 + ⋯ 

                           = [𝑘𝑎0 + (𝑘𝑎1)𝑥 + (𝑘𝑎2)𝑥2 + (𝑘𝑎3)𝑥3 + ⋯ ] + [𝑘𝑏0

+ (𝑘𝑏1)𝑥 + (𝑘𝑏2)𝑥2 + (𝑘𝑏3)𝑥3 + ⋯ ] 

                           = 𝑘(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) + 𝑘(𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2

+ 𝑏3𝑥3 + ⋯ ) 

                           = 𝑘𝑓(𝑥) + 𝑘𝑔(𝑥). 

2. If 𝑘1, 𝑘2 ∈ 𝐹, then 
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(𝑘1 + 𝑘2 )𝑓(𝑥)

= (𝑘1 + 𝑘2 )𝑎0 + [(𝑘1 + 𝑘2 )𝑎1]𝑥 + [(𝑘1 + 𝑘2 )𝑎2]𝑥2

+ [(𝑘1 + 𝑘2 )𝑎3]𝑥3 + ⋯ 

                   = (𝑘1𝑎0 + 𝑘2 𝑎0) + (𝑘1𝑎1 + 𝑘2 𝑎1)𝑥 + (𝑘1𝑎2 + 𝑘2 𝑎2)𝑥2 + ⋯ 

            = [𝑘1𝑎0 + (𝑘1𝑎1)𝑥 + (𝑘1𝑎2)𝑥2 + (𝑘1𝑎3)𝑥3 + ⋯ ] + [𝑘2𝑎0

+ (𝑘2𝑎1)𝑥 + (𝑘2𝑎2)𝑥2 + (𝑘2𝑎3)𝑥3 + ⋯ ] 

                    = 𝑘1(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ )

+ 𝑘2(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) 

                     = 𝑘1𝑓(𝑥) + 𝑘2𝑓(𝑥) 

 

1. 3. If 𝑘1, 𝑘2 ∈ 𝐹, then 

(𝑘1𝑘2 )𝑓(𝑥) = (𝑘1𝑘2 )𝑎0 + [(𝑘1𝑘2 )𝑎1]𝑥 + [(𝑘1𝑘2 )𝑎2]𝑥2

+ [(𝑘1𝑘2 )𝑎3]𝑥3 + ⋯ 

                         = 𝑘1(𝑘2 𝑎0) + 𝑘1(𝑘2 𝑎1)𝑥 + 𝑘1(𝑘2 𝑎2)𝑥2 + ⋯ 

                         = 𝑘1[𝑘2𝑎0 + (𝑘2𝑎1)𝑥 + (𝑘2𝑎2)𝑥2 + (𝑘2𝑎3)𝑥3 + ⋯ ] 

                         = 𝑘1[𝑘2𝑓(𝑥)] 

4. If 1 is the unity element of the field 𝐹, then  

1 𝑓(𝑥) = 1𝑎0 + (1𝑎1)𝑥 + (1𝑎2)𝑥2 + (1𝑎3)𝑥3 + ⋯ ] 

              = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 𝑓(𝑥). 

Hence 𝐹[𝑥] is a vector space over the field F. 

Example12. Let 𝑉 be the set of all pairs (𝑥, 𝑦) of real numbers, and let 𝐹 

be the field of real numbers. Define  

(𝑥, 𝑦) + (𝑥1, 𝑦1) = (𝑥 + 𝑥1, 0) 
𝑐 (𝑥, 𝑦)  = (𝑐𝑥, 0) 

Is V, with these operations, a vector space over the field of real numbers? 

Solution: A vector space will not be a vector space if any of its postulates 

are not met. We will demonstrate that the identity element is absent for the 

vector addition operation as described in this problem. Assume the identity 

element for the vector addition operation is the ordered pair (𝑥1, 𝑦1). In such 

case, we should have 
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(𝑥, 𝑦) + (𝑥1, 𝑦1) = (𝑥, 𝑦)∀𝑥, 𝑦 ∈ 𝑅 

⇒                                          (𝑥 + 𝑥1, 0) = (𝑥, 𝑦)∀𝑥, 𝑦 ∈ 𝑅 

But if 𝑦 ≠ 0, then we cannot have (𝑥 + 𝑥1, 0) = (𝑥, 𝑦). Thus there exists 

no element (𝑥1, 𝑦1) of V such that  

(𝑥, 𝑦) + (𝑥1, 𝑦1) = (𝑥, 𝑦)∀𝑥, 𝑦 ∈ 𝑉 

Therefore, the identity element does not exist and V is not a vector space 

over the field R. 

Example13. How many elements are there in the vector space of 

polynomials of degree at most n in which the coefficients are the elements 

of the field 𝐼 (𝑝) over the field 𝐼(𝑝), 𝑝 being a prime number? 

Solution: The field 𝐼 (𝑝)  is the field ({0, 1, 2, . . . , 𝑝 − 1}, +𝑝,×𝑝) . The 

number of distinct elements in the field I (p) is p. 

If 𝑓(𝑥) is a polynomial of degree at most n over the field 𝐼 (𝑝),then 

 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 

 where 𝑎0, 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 ∈ 𝐼(𝑝) 

Now in the polynomial 𝑓(𝑥), the coefficient of each of the 𝑛 + 1 terms 

𝑎0, 𝑎1𝑥, 𝑎2𝑥2, 𝑎3𝑥3, … , 𝑎𝑛𝑥𝑛  can be filled in 𝑝 ways because any of the 

𝑝 elements of the field 𝐼 (𝑝) can be filled there. 

Thus, we can have 𝑝 × 𝑝 × 𝑝 ×. . . 𝑢𝑝𝑡𝑜 (𝑛 + 1) 𝑡𝑖𝑚𝑒𝑠 i.e., 𝑝𝑛+1 dis-tinct 

polynomials of degree at most 𝑛 over the field 𝐼 (𝑝). Hence if 𝑃. is the 

vector space of polynomials of degree at most 𝑛 in which the coefficients 

are the elements of the field 𝐼 (𝑝)  over the field 𝐼 (𝑝) , then  𝑃𝑛 . has 

𝑝𝑛+1distinct elements. 

 

1.7 PROPERTIES OF VECTOR SPACE:-   

Theorem1. Let 𝑉(𝐹) be a vector space and 𝟎 be the zero vector of 𝑉. 

Then  

a) 𝑎𝟎 = 𝟎 ∀𝑎 ∈ 𝐹 

b) 𝟎𝛼 = 𝟎 ∀𝛼 ∈ 𝑉 

c) 𝑎(−𝛼) = −(𝑎𝛼) ∀𝑎 ∈ 𝐹, ∀𝛼 ∈ 𝑉 

d) (– 𝑎)𝛼 = −(𝑎𝛼) ∀𝑎 ∈ 𝐹, ∀𝛼 ∈ 𝑉 

e) 𝑎(𝛼 − 𝛽) = 𝑎𝛼 − 𝑎𝛽 ∀ 𝑎 ∈ 𝐹 𝑎𝑛𝑑  ∀𝛼, 𝛽 ∈ 𝑉 

f) 𝑎𝛼 = 𝟎 ⇒ 𝑎 = 0 𝑜𝑟 𝛼 = 𝟎 

Proof: 
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a) we have 

                             𝑎𝟎 = 𝑎(𝟎 + 𝟎)                                                    [∵ 𝟎 = 𝟎 + 𝟎] 

                                   = 𝑎𝟎 + 𝑎𝟎 

∴                  𝟎 + 𝑎𝟎 = 𝑎𝟎 + 𝑎𝟎                         [∵ 𝑎𝟎 ∈ 𝑉 𝑎𝑛𝑑 𝟎 + 𝑎𝟎 = 𝑎𝟎] 

Since 𝑉 is an abelian group with respect to addition. Therefore by right 

cancellation law in V, we get 

𝟎 = 𝑎𝟎 

b) We have 

                             𝟎𝛼 = (𝟎 + 𝟎)𝛼                                                   [∵ 𝟎 = 𝟎 + 𝟎] 

                                   = 𝟎𝛼 + 𝟎𝛼 

∴                 𝟎 + 𝟎𝛼 = 𝟎𝛼 + 𝟎𝛼                        [∵ 𝟎𝛼 ∈ 𝑉 𝑎𝑛𝑑 𝟎 + 𝟎𝛼 = 𝟎𝛼] 

Since 𝑉 is an abelian group with respect to addition. Therefore by right 

cancellation law in V, we get 

𝟎 = 𝟎𝛼 

c) We have  

𝑎[𝛼 + (−𝛼)] = 𝑎𝛼 + 𝑎(−𝛼) 

⟹                                                      𝑎𝟎 = 𝑎𝛼 + 𝑎(−𝛼) 

⇒                                                           𝟎 = 𝑎𝛼 + 𝑎(−𝛼)                    [∵ 𝑎𝟎 = 𝟎] 

⟹                                   𝑎(−𝛼)is the additive inverse of 𝑎𝛼 

⟹                                                𝑎(−𝛼) = −(𝑎𝛼) 

d) We have  

[𝑎 + (−𝑎)]𝛼 = 𝑎𝛼 + (−𝑎)𝛼 

⟹                                                      𝟎𝛼 = 𝑎𝛼 + (−𝑎)𝛼 

⇒                                                           𝟎 = 𝑎𝛼 + (−𝑎)𝛼                   [∵ 𝟎𝛼 = 𝟎] 

⟹                                   (−𝑎)𝛼 is the additive inverse of 𝑎𝛼 
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⟹                                                (−𝑎)𝛼 = −(𝑎𝛼) 

e) We have  

𝑎(𝛼 − 𝛽) = 𝑎[𝛼 + (−𝛽)] = 𝑎𝛼 + 𝑎(−𝛽) 

                                            = 𝑎𝛼 + [−(𝑎𝛽)]               [∵ 𝑎(−𝛽) = −(𝑎𝛽)] 

                                            = 𝑎𝛼 − 𝑎𝛽  

f) Let 𝑎𝛼 = 𝟎  and  𝑎 ≠ 𝟎 . Then 𝑎−1 exists because 𝑎 is a non-zero 

element of 𝐹. 

∴ 𝑎𝛼 = 𝟎 ⇒ 𝑎−1(𝑎𝛼) = 𝑎−1𝟎 ⇒ (𝑎−1𝑎)𝛼 = 𝟎 ⟹ 1𝛼 = 𝟎 ⟹ 𝛼

= 𝟎 

Again let 𝑎𝛼 = 𝟎 and 𝛼 ≠ 𝟎.Then to prove that 𝑎 = 𝟎. Suppose 𝑎 ≠

𝟎. Then 𝑎−1exists. 

∴ 𝑎𝛼 = 𝟎 ⇒ 𝑎−1(𝑎𝛼) = 𝑎−1𝟎 ⇒ (𝑎−1𝑎)𝛼 = 𝟎 ⟹ 1𝛼 = 𝟎 ⟹ 𝛼

= 𝟎 

Thus, we get contradiction that 𝛼 must be a zero vector. Therefore, a must 

be equal to zero. Hence  

𝛼 ≠ 𝟎 and 𝑎𝛼 = 𝟎 ⇒ 𝑎 = 𝟎 

Theorem2: Let 𝑉(𝐹) be a vector space. Then 

a) If  𝑎, 𝑏 ∈ 𝐹 and 𝛼 is a non zero vector of 𝑉, we have 

𝑎𝛼 = 𝑏𝛼 ⇒ 𝑎 = 𝑏 

b) If  𝛼, 𝛽 ∈ 𝑉 and 𝑎 is a non zero element of 𝐹 , we have 

𝑎𝛼 = 𝑎𝛽 ⇒ 𝛼 = 𝛽 

Proof:  

a) We have 𝑎𝛼 = 𝑏𝛼 

⇒                                              𝑎𝛼 − 𝑏𝛼 = 𝟎 

⇒                                             (𝑎 − 𝑏)𝛼 = 𝟎 

⇒                                                    𝑎 − 𝑏 = 0                                    ∵ 𝛼 ≠ 0 

⇒                                                            𝑎 = 𝑏 

b) We have 𝑎𝛼 = 𝑎𝛽 

⇒                                              𝑎𝛼 − 𝑎𝛽 = 𝟎 

⇒                                             𝑎(𝛼 − 𝛽) = 𝟎 

⇒                                                    𝛼 − 𝛽 = 0                                   ∵ 𝑎 ≠ 0 

⇒                                                            𝛼 = 𝛽 
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1.8 SUMMARY: -  

In this unit we covered important algebraic structures that are essential to 

both linear and abstract algebra in this course. Combining two members of 

a set to create another element of the same set is known as a binary 

operation. A set that possesses a binary operation satisfying closure, 

associativity, identity, and invertibility is called a group. When two 

operations (addition and multiplication) are defined and meet the field 

axioms of commutativity, associativity, distributivity, identities, and 

inverses for both operations, the structure is called a field. A vector space is 

a collection of vectors formed over a field that supports vector addition and 

scalar multiplication, following particular axioms. Additionally, we 

investigated the generic characteristics of vector spaces, including 

distributive laws, additive inverses, zero vector uniqueness, and scalar 

multiplication. A vector space is a collection of vectors constructed over a 

field that enables vector addition and scalar multiplication, satisfying 

specified axioms. We also looked into the general properties of vector 

spaces, such as scalar multiplication, distributive laws, additive inverses, 

and zero vector uniqueness. 

1.9 GLOSSARY: -  

 Vector Space: A set of vectors along with two operations vector 

addition and scalar multiplication that satisfies a set of axioms (like 

associativity, distributivity, existence of a zero vector, etc. 

 Vector: An element of a vector space. It can be represented as a 

quantity having both magnitude and direction, but in algebra, it's 

simply an ordered list of numbers or functions. 

 Scalar: An element of the field over which the vector space is 

defined. Scalars are used to multiply vectors (e.g., real numbers in 

ℝⁿ). 

 Field: A set with two operations (addition and multiplication) where 

every non-zero element has a multiplicative inverse. Examples: Real 

numbers (ℝ), Complex numbers (ℂ). 

   Zero Vector: A unique vector in every vector space that, when 

added to any other vector, leaves it unchanged. Denoted as 0. 

 Vector Addition: An operation that combines two vectors to 

produce a third vector, following the rules of component-wise 

addition. 

 Scalar Multiplication: The operation of multiplying a vector by a 

scalar (from the field), scaling its magnitude. 
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 Linear Combination: An expression formed by multiplying 

vectors by scalars and adding the results. 

 Norm: A function that assigns a length (magnitude) to each vector 

in a vector space. 
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 K.P.Gupta (20th Edition,2019), Pragati Publication, Linear Algebra 

1.12 TERMINAL QUESTIONS: - 

(TQ-1) Show that the set 𝑍 of all integers form a group with respect to 

binary operation ∗ defined by  

𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 1∀ 𝑎, 𝑏 ∈ 𝑍 

is an abelian group.  

 (TQ-2) Show that the complex field C is a vector space over the real 

field R. 

(TQ-3) Let 𝑉 be the set of all pairs (𝑥, 𝑦) of real numbers, and let 𝐹 be the 

field of real numbers. Define  

(𝑥, 𝑦) + (𝑥1, 𝑦1) = (3𝑦 + 𝑦1, −𝑥 − 𝑥1) 
𝑐 (𝑥, 𝑦)  = (3𝑐𝑦, −𝑐𝑥) 

Is V, with these operations, a vector space over the field of real numbers? 

 

(TQ-4) The set of all convergent sequences is a vector space over the field 

of real numbers. 

(TQ-5) Define a vector space. State and explain the axioms that must be 

satisfied for a set to be a vector space. 

(TQ-6) Show that the set 𝑄 of positive irrational does not form a group 

with respect to multiplication. 

(TQ-7) Show that the set (1,1, 𝑖, − 𝑖) is an abelian finite group of order 4 

under multiplication. 
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(TQ-8) Show that any two bases of a finite-dimensional vector space have 

the same number of elements. 

(TQ-9) Define a group. List and explain the four group axioms. 

(TQ-10) Show that (ℚ, +) is a group but (ℚ,×) is not. 
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2.1 INTRODUCTION:-  

In this unit, we will study about the important concepts related to vector 

subspaces and their properties. A vector subspace is a subset of a vector 

space that is itself a vector space under the same operations. The algebra of 

subspaces deals with operations like intersection and sum of subspaces. The 

linear combination of vectors refers to forming new vectors by multiplying 

given vectors with scalars and adding them. The set of all possible linear 

combinations of a given set of vectors is called their linear span, which is 

itself a subspace. Finally, the linear sum of two subspaces is the smallest 

subspace containing both subspaces, formed by taking all possible sums of 

vectors from each subspace. Subspaces are important for solving linear 

equations, defining basis, and understanding vector space structure. 

2.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  

 Define Vector Subspaces. 

 Define Linear combinations of vectors. 

 Define linear span. 
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 Define linear sum of two subspaces. 

2.3 VECTOR SUBSPACES: -  

Let 𝑊 ⊆  𝑉 and let 𝑉 be a vector space over the field 𝐹. If 𝑊 is a vector 

space over 𝐹 with respect to the operations of vector addition and scalar 

multiplication in 𝑉, then 𝑊 is referred to as a subspace of 𝑉. 

Theorem1: The necessary and sufficient condition for a non-empty subset 

𝑊 of a vector space 𝑉 (𝐹) to be a subspace of 𝑉 is that 𝑊 is closed under 

vector addition and scalar multiplication in 𝑉. 

Proof: If 𝑊 is a vector space over 𝐹 with respect to scalar multiplication in 

𝑉 and vector addition, then 𝑊  must be closed with respect to these two 

compositions. Therefore, the condition is necessary. 

The condition is sufficient. Now assume that 𝑊  is closed under vector 

addition and scalar multiplication in 𝑉, and that 𝑊 is a non-empty subset 

of 𝑉. 

Let 𝛼 ∈ 𝑊. If 1 is the unity element of 𝐹, then −1 ∈ 𝐹. Now 𝑊 is closed 

under scalar multiplication. Therefore 

−1 ∈  𝐹, 𝛼 ∈ 𝑊 ⇒ (−1)𝛼 ∈  𝑊 ⇒  −(1𝛼) ∈  𝑊  

⇒            −𝛼 ∈ 𝑊                                [∵ 𝛼 ∈ 𝑊 ⇒ 𝛼 ∈ 𝑉 𝑎𝑛𝑑 1𝛼 = 𝛼 𝑖𝑛 𝑉]. 

Thus, the additive inverse of each element of 𝑊 is also in 𝑊.  

Now 𝑊 is closed under vector addition.  

Therefore 𝛼 ∈ 𝑊, −𝛼 ∈ 𝑊 ⇒ 𝛼 + (−𝛼) ∈ 𝑊 ⇒ 𝟎 ∈ 𝑊  where 𝟎 is the 

zero vector of 𝑉. 

A zero vector of 𝑉  is also a zero vector of 𝑊 . Vector addition will be 

associative and commutative in 𝑊  as the elements of 𝑉  are also the 

elements of 𝑊. Thus, in terms of vector addition, 𝑊 is an abelian group. 

Moreover, 𝑊 is closed under scalar multiplication is known. Since 𝑊 is a 

subset of 𝑉, the other postulates of a vector space will also hold in 𝑊 . 

For these two compositions, 𝑊 itself becomes a vector space. 

 

Theorem2: The necessary and sufficient conditions for a non-empty subset 

𝑊 of a vector space 𝑉 (𝐹) to be a subspace of 𝑉 are 

a) 𝛼 ∈ 𝑊, 𝛽 ∈ 𝑊 ⇒ 𝛼 + 𝛽 ∈ 𝑊 
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b)  𝑎 ∈ 𝐹, 𝛼 ∈ 𝑊 ⇒ 𝑎𝛼 ∈ 𝑊 

Proof: The conditions are necessary: W is an abelian group with respect 

to vector addition if it is a subspace of V. Consequently, 𝛼 ∈ 𝑊, 𝛽 ∈ 𝑊 ⇒

𝛼 + 𝛽 ∈ 𝑊 . Also, under scalar multiplication,  𝑊  must be closed. As a 

result, condition (b) is also necessary. 

The conditions are sufficient: Now suppose 𝑊 is a non-empty subset of 

satisfying the two given conditions. From condition (a) we have  

𝛼 ∈ 𝑊, −𝛼 ∈ 𝑊 ⇒ 𝛼 − 𝛼 ∈ 𝑊 

Thus, the zero vector of 𝑉 belongs to 𝑊 and it will also be the zero vector 

of 𝑊. 

𝑁𝑜𝑤                          0 ∈  𝑊, 𝛼 ∈  𝑊 ⇒ 0 − 𝛼 ∈ 𝑊 ⇒ −𝛼 ∈ 𝑊. 

Thus, the additive inverse of each element of 𝑊 is also in 𝑊.  

𝐴𝑔𝑎𝑖𝑛                     𝛼 ∈ 𝑊, 𝛽 ∈ 𝑊 ⇒ −𝛼 ∈ 𝑊, −𝛽 ∈ 𝑊 

⇒                             𝛼 − (−𝛽) ∈ 𝑊, ⇒ 𝛼 + 𝛽 ∈ 𝑊 

Thus 𝑊 is closed with respect to vector addition. 

Vector addition will be both commutative and associative in 𝑊  as the 

components of 𝑊  are also the elements of 𝑉 . Therefore, under vector 

addition, 𝑊 is an abelian group. 𝑊 is closed under scalar multiplication as 

well, according to condition (b). Since 𝑊  is a subset of 𝑉 , the other 

postulates of a vector space will also hold in 𝑊. 𝑊 is therefore a subspace 

of 𝑉. 

 

Theorem3: The necessary and sufficient condition for a non-empty subset 

𝑊 of a vector space 𝑉 (𝐹) to be a subspace of 𝑉 is  

𝑎, 𝑏 ∈  𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈  𝑊 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊 

Proof: The condition is necessary. If W is a subspace of V, then W must 

be closed under scalar multiplication and vector addition. Therefore 

𝑎 ∈ 𝐹, 𝛼 ∈ 𝑊 ⇒ 𝑎𝛼 ∈ 𝑊 

𝑎𝑛𝑑                                 𝑏 ∈ 𝐹, 𝛽 ∈ 𝑊 ⇒ 𝑏𝛽 ∈ 𝑊  

𝑁𝑜𝑤                      𝑎𝛼 ∈ 𝑊, 𝑏𝛽 ∈ 𝑊 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊 

Hence the condition is necessary. 
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The condition is sufficient. Now suppose W is a non-empty subset of 

satisfying the given condition i.e., 

 𝑎, 𝑏 ∈  𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈  𝑊 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊 

Taking 𝑎 = 1, 𝑏 = 1, we see that if 𝛼, 𝛽 ∈  𝑊, then 1𝛼 + 1𝛽 ∈ 𝑊 ⇒ 𝛼 +

𝛽 ∈ 𝑊 

 

[∵ 𝛼 ∈ 𝑊 ⇒ 𝛼 ∈ 𝑉𝑎𝑛𝑑 1𝛼 = 𝛼 𝑖𝑛 𝑉] 

Thus 𝑊 is closed under vector addition. 

Now taking 𝑎 = −1, 𝑏 = 0, we see that if 𝛼 ∈ 𝑊 then  

                           (−1) 𝑎 + 0𝛼 ∈  𝑊           [In place of 𝛽 we have taken 𝛼] 

⇒                      −(1𝛼) + 0 ∈ 𝑊 ⇒ −𝛼 ∈ 𝑊  

Thus, the additive inverse of each element of 𝑊 is also in 𝑊.  

Taking𝑎 = 0, 𝑏 = 0, we see that if 𝛼 ∈  𝑊 then 

0𝛼 + 0𝛼 ∈ 𝑊 ⇒ 0 + 0 ∈ 𝑊 ⇒ 0 ∈ 𝑊 

Thus, the zero vector of belongs to 𝑊. It will also be the zero vector of 𝑊. 

Since the elements of 𝑊  are also the elements, of 𝑉 , therefore vector 

addition will be associative as well as commutative in 𝑉. Thus 𝑊  is an 

abelian group with respect to vector addition. 

Now taking 𝛽 = 0, we see that if 𝑎, 𝑏 ∈ 𝐹𝑎𝑛𝑑 ∈  𝑊, then 

 

𝑎𝛼 + 𝑏0 ∈  𝑊 𝑖. 𝑒. , 𝑎𝛼 + 0 ∈  𝑊𝑖. 𝑒. , 𝑎𝛼 ∈  𝑊. 

Thus 𝑊 is closed under scalar multiplication. The remaining postulates of 

a vector space will hold in 𝑊 since they hold in 𝑉 of which 𝑊 is a subset. 

Hence 𝑊 (𝐹) is a subspace of 𝑉 (𝐹). 

Theorem4: A non-empty subset 𝑊 of a vector space 𝑉 (𝐹) is a subspace 

of 𝑉 if and only if for each pair of vectors 𝛼, 𝛽 𝑖𝑛 𝑊 and each scalar 𝑎 in 𝐹 

the vector 𝑎𝛼 + 𝛽 is again in 𝑊. 
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Proof: The condition is necessary: 𝑊 must to be closed with respect to 

both vector addition and scalar multiplication if 𝑊 is a subset of  𝑉. 

Therefore,                   𝑎 ∈ 𝐹, 𝛼, 𝛽 ∈ 𝑊 ⇒ 𝑎𝛼 ∈ 𝑊 

 𝑓𝑢𝑟𝑡ℎ𝑒𝑟𝑚𝑜𝑟𝑒,               𝑎𝛼 ∈ 𝑊, 𝛽 ∈ 𝑊 ⇒ 𝑎𝛼 + 𝛽 ∈ 𝑊 

Thus, the condition is necessary. 

The condition is sufficient: 𝑊  is a non-empty subset of  𝑉 , and  𝑎 ∈

𝐹, 𝛼, 𝛽 ∈ 𝑊 ⇒ 𝑎𝛼 + 𝛽 ∈ 𝑊 is given. We are to prove that 𝑊 is a subspace 

of 𝑉. 

(i) Since 𝑊 is non-empty, therefore there is at least one vector in 𝑊, 

say  𝛾 . Now  1 ∈ 𝐹 ⇒ −1 ∈ 𝐹 . Therefore taking  𝑎 = −1, 𝛼 =

𝛾, 𝛽 = 𝛾, we get from the given condition that  

(−1)𝛾 + 𝛾 = −(1𝛾) + 𝛾 = −𝛾 + 𝛾 = 0 𝑖𝑠 𝑖𝑛 𝑊 

(ii) Now let 𝑎 ∈ 𝐹, 𝛼 ∈ 𝑊, Since 0 𝑖𝑠 𝑖𝑛 𝑊, therefore taking 𝛽 = 0 in 

the given condition, we get  

𝑎𝛼 + 0 = 𝑎𝛼 𝑖𝑠 𝑖𝑛 𝑊  

Thus 𝑊 is closed with respect to scalar multiplication. 

(iii) Let  𝛼 ∈ 𝑊 . Since  −1 ∈ 𝐹 and 𝑊  is closed with respect to scalar 

multiplication, therefore, 

(−1)𝛼 =  −(1𝛼) = −𝛼 𝑖𝑠 𝑖𝑛 𝑊. 

(iv) We have  1 ∈ 𝐹 . If  𝛼, 𝛽 ∈ 𝑊 , then 1𝛼 + 𝛽 = 𝛼 + 𝛽 . Thus 𝑊  is 

closed with respect to vector addition. 

The remaining postulates of a vector space will hold in 𝑊 since they hold 

in of which 𝑊 is a subset. 

Hence 𝑊 is a subspace of 𝑉.  

Example1: The set 𝑊 of ordered triads (𝑎1 , 𝑎2, 0) , where 𝑎1, 𝑎2 ∈ 𝐹 is a 

subspace of 𝑉3(𝐹). 

Solution: Let 𝛼 = (𝑎1 , 𝑎2 , 0) and 𝛽 = (𝑏1, 𝑏2, 0) be any two elements of 

𝑊. Then 𝑎1 , 𝑎2, 𝑏1, 𝑏2 ∈ 𝐹 If 𝑎, 𝑏 be any two elements of 𝐹, we have 

 𝑎𝛼 + 𝑏𝛽 = 𝑎(𝑎1, 𝑎2, 0) + 𝑏(𝑏1, 𝑏2, 0) = (𝑎𝑎1 , 𝑎𝑎2 , 0) + (𝑏𝑏1, 𝑏𝑏2, 0) =

(𝑎𝑎1 + 𝑏𝑏1, 𝑎𝑎2 + 𝑏𝑏2) ∈ 𝑊  

Since 𝑎𝑎1 + 𝑏𝑏1, 𝑎𝑎2 + 𝑏𝑏2 ∈  𝐹 and the last co-ordinate of this triad is 

zero.  
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Hence 𝑊 is a subspace of 𝑉3(𝐹). 

Example2: Let 𝑉 be the vector space of all polynomials in an indeterminate 

𝑥 over a field 𝐹. Let 𝑊 be a subset of 𝑉 consisting of all polynomials of 

𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 𝑛. Then 𝑊 is a subspace of 𝑉. 

Solution: Let  𝛼 𝑎𝑛𝑑 𝛽 be any two elements of 𝑊 . Then 𝛼, 𝛽  are 

polynomials over 𝐹 of 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 𝑛. If 𝑎, 𝑏 are any two elements of 𝐹, then 

𝑎𝛼 + 𝑏𝛽 will also be a polynomial of 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 𝑛. Therefore 𝑎𝛼 + 𝑏𝛽 ∈

𝑊 Hence 𝑊 is a subspace of 𝑉. 

Example3: If 𝑎1, 𝑎2, 𝑎3 are fixed elements of a field 𝐹, then the set 𝑊 of 

all ordered triads (𝑥1, 𝑥2, 𝑥3) of elements of 𝐹, such that 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0 

is a subspace of 𝑉3(𝐹). 

Solution: Let 𝛼 = (𝑥1, 𝑥2, 𝑥3) 𝑎𝑛𝑑 𝛽 = (𝑦1, 𝑦2, 𝑦3)  be any two elements 

of 𝑊. Then 𝑥1, 𝑥2, 𝑥3, 𝑦1 , 𝑦2, 𝑦3 are elements of 𝐹 and are such that 

                                            𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0                                  … (1) 

𝑎𝑛𝑑                                     𝑎1𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3 = 0                                 … (2) 

If 𝑎, 𝑏 ∈ 𝐹, we have 

                  𝑎𝛼 + 𝑏𝛽 = 𝑎(𝑥1, 𝑥2, 𝑥3) + 𝑏(𝑦1 , 𝑦2 , 𝑦3) 

= (𝑎𝑥1, 𝑎𝑥2, 𝑎𝑥3) + (𝑏𝑦1 , 𝑏𝑦2 , 𝑏𝑦3) 

   = (𝑎𝑥1 + 𝑏𝑦1 , 𝑎𝑥2 + 𝑏𝑦2 , 𝑎𝑥3 + 𝑏𝑦3) 

Now 𝑎1(𝑎𝑥1 + 𝑏𝑦1) + 𝑎2(𝑎𝑥2 + 𝑏𝑦2) + 𝑎3(𝑎𝑥3 + 𝑏𝑦3) 

= 𝑎(𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3) + (𝑎1𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3) 

                     = 𝑎0 + 𝑏0 = 0 

∴ 𝑎𝛼 + 𝑏𝛽 = (𝑎𝑥1 + 𝑏𝑦1 , 𝑎𝑥2 + 𝑏𝑦2 , 𝑎𝑥3 + 𝑏𝑦3) ∈ 𝑊 

Hence 𝑊 is a subspace of 𝑉3(𝐹). 

Example4: Prove that the set of all solutions (𝑎, 𝑏, 𝑐) of the equation 𝑎 +

 𝑏 +  2𝑐 =  0 is a subspace of the vector space 𝑉3(𝑅). 
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Solution: Let 𝑊 = {(𝑎, 𝑏, 𝑐): 𝑎, 𝑏, 𝑐 ∈ 𝑅 𝑎𝑛𝑑 𝑎 +  𝑏 +  2𝑐 =  0 } 

To prove that 𝑊 is a subspace of 𝑉3(𝑅) or 𝑅3. 

Let 𝛼 = (𝑎1 , 𝑏1, 𝑐1) 𝑎𝑛𝑑 𝛽 = (𝑎2, 𝑏2, 𝑐2) be any two elements of 𝑊. Then 

 𝑎1 + 𝑏1 + 2𝑐1 =  0 𝑎𝑛𝑑 𝑎2 + 𝑏2 + 2𝑐2 =  0  

If 𝑎, 𝑏 be any two elements of 𝑅, we have  

                   𝑎𝛼 + 𝑏𝛽 = 𝑎(𝑎1, 𝑏1, 𝑐1) + 𝑏(𝑎2 , 𝑏2, 𝑐2) 

= (𝑎𝑎1 , 𝑎𝑏1, 𝑎𝑐1) + (𝑏𝑎2, 𝑏𝑏2, 𝑏𝑐2) 

  = (𝑎𝑎1 + 𝑏𝑎2, 𝑎𝑏1 + 𝑏𝑏2, 𝑎𝑐1 + 𝑏𝑐2) 

Now (𝑎𝑎1 + 𝑏𝑎2) + (𝑎𝑏1 + 𝑏𝑏2) + 2(𝑎𝑐1 + 𝑏𝑐2) 

= 𝑎(𝑎1 + 𝑏1 + 2𝑐1) + 𝑏(𝑎2 + 𝑏2 + 2𝑐2) 

                               = 𝑎0 + 𝑏0 = 0 

∴            𝑎𝛼 + 𝑏𝛽 = (𝑎𝑎1 + 𝑏𝑎2, 𝑎𝑏1 + 𝑏𝑏2, 𝑎𝑐1 + 𝑏𝑐2) ∈ 𝑊 

Thus 𝛼, 𝛽 ∈ 𝑊 𝑎𝑛𝑑 𝑎, 𝑏 ∈ 𝑅 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊 

Hence 𝑊 is a subspace of 𝑉3(𝑅). 

2.4 ALGEBRA OF SUBSPACES: -  

Theorem5: The intersection of any two subspaces  𝑊1𝑎𝑛𝑑 𝑊2  of vector 

space 𝑉(𝐹) is also a subspace of 𝑉(𝐹). 

Proof: ∵ 𝟎 ∈ 𝑊1 𝑎𝑛𝑑 𝑊2 both therefore 𝑊1  ∩  𝑊2 is not empty. 

𝐿𝑒𝑡                                 𝛼, 𝛽 ∈ 𝑊1  ∩  𝑊2 𝑎𝑛𝑑 𝑎, 𝑏 ∈ 𝐹 

𝑁𝑜𝑤                           𝛼 ∈ 𝑊1  ∩  𝑊2 ⇒ 𝛼 ∈ 𝑊1𝑎𝑛𝑑 𝛼 ∈ 𝑊2 

𝑎𝑛𝑑                              𝛽 ∈ 𝑊1  ∩  𝑊2 ⇒ 𝛽 ∈ 𝑊1𝑎𝑛𝑑 𝛽 ∈ 𝑊2 

∵ 𝑊1 is a subspace, therefore 

𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈ 𝑊1 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊1 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈ 𝑊2 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊2 
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Now 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊1𝑎𝑛𝑑 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊2 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊1  ∩  𝑊2 

Thus 𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈ 𝑊1  ∩  𝑊2 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊1  ∩  𝑊2 

Hence 𝑊1  ∩  𝑊2 is a subspace of 𝑉(𝐹). 

Theorem6: The union of two subspaces is a subspace if and only if one is 

contained in the other. 

Proof: Suppose 𝑊₁ 𝑎𝑛𝑑 𝑊₂ are two subspaces of a vector space 𝑉.  

Let  𝑊1 ⊆ 𝑊2 𝑜𝑟 𝑊2 ⊆ 𝑊1 . Then  𝑊1 ∪ 𝑊2 = 𝑊2 𝑜𝑟 𝑊1 . But 𝑊1 , 𝑊2  are 

subspaces and therefore, 𝑊1 ∪ 𝑊2 is also a subspace. 

Conversely, suppose 𝑊1 ∪ 𝑊2 is a subspace.  

To prove that 𝑊1 ⊆ 𝑊2 𝑜𝑟 𝑊2 ⊆ 𝑊1 . 

Let us assume that 𝑊₁ is not a subset of 𝑊₂ and 𝑊₂ is also not a subset 

of 𝑊1. 

Now that 𝑊₁ is not a subset of 𝑊2 ⇒ ∃ 𝛼 ∈ 𝑊1  𝑎𝑛𝑑 𝛼 ∉ 𝑊2              … (1) 

𝑎𝑛𝑑 𝑊₂ is not a subset of 𝑊1 ⇒ ∃ 𝛽 ∈ 𝑊2 𝑎𝑛𝑑 𝛽 ∉ 𝑊1                      . . . (2)  

From (1) and (2), we have 

𝛼 ∈ 𝑊1 ∪ 𝑊2  𝑎𝑛𝑑 𝛽 ∈ 𝑊1 ∪ 𝑊2 

Since 𝑊1 ∪ 𝑊2 is a subspace, therefore 𝛼 + 𝛽 is also in 𝑊1 ∪ 𝑊2 

 But 𝛼 + 𝛽 ∈ 𝑊1 ∪ 𝑊2 ⇒ 𝛼 + 𝛽 ∈ 𝑊1𝑜𝑟𝑊2.  

Suppose 𝛼 + 𝛽 ∈ 𝑊1 . Since 𝛼 ∈ 𝑊1and 𝑊₁ is a subspace, therefore  (𝛼 +

𝛽) − 𝛼 = 𝛽 𝑖𝑠 𝑖𝑛 𝑊₁. 

But from (2), we have  𝛽 ∉ 𝑊1 . Thus, we get a contradiction. Again, 

suppose that 𝛼 + 𝛽 ∈ 𝑊2. Since 𝛽 ∈ 𝑊2  and 𝑊₂ is a sub-space, therefore 

(𝛼 + 𝛽) − 𝛽 = 𝛼 is in 𝑊2. But from (1), we have 𝛼 ∉ 𝑊2. Thus, here also 

we get a contradiction. Hence either 𝑊1 ⊆ 𝑊2 𝑜𝑟 𝑊2 ⊆ 𝑊1. 

Theorem7: Arbitrary intersection of subspaces i.e., the inner section of any 

family of subspaces of a vector space is a subspace. 
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Proof: Let  𝑉(𝐹) be a vector space and let {𝑊𝑡: 𝑡 ∈ 𝑇} be any family of 

subspaces  𝑉 . Here  𝑇  is an index set and is such that ∀ 𝑡 ∈ 𝑇, 𝑊𝑡  is a 

subspace of 𝑉. 

𝐿𝑒𝑡                               𝑈 = ⋂ 𝑊𝑡

𝑡∈𝑇

= {𝑥 ∈ 𝑊𝑡∀𝑡 ∈ 𝑇} 

be the intersection of this family of subspaces of 𝑉. Then to prove that 𝑈 is 

also a subspace of 𝑉.  

Obviously 𝑈 ≠ 𝜙 , since at least the zero vector 𝟎 𝑜𝑓 𝑉 is in 𝑊𝑡∀𝑡 ∈ 𝑇 

Now let 𝑎, 𝑏 ∈ 𝐹 and 𝛼, 𝛽 be any two elements of ⋂ 𝑊𝑡

𝑡∈𝑇

 

 Then 𝛼, 𝛽 ∈ 𝑊𝑡 ∀𝑡 ∈ 𝑇. Since each 𝑊𝑡  is a subspace of 𝑉, therefore 𝑎𝛼 +

𝑏𝛽 ∈ 𝑊𝑡∀𝑡 ∈ 𝑇.  

Thus 𝑎𝛼 + 𝑏𝛽 ∈ ⋂ 𝑊𝑡

𝑡∈𝑇

 

Thus 𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈ ⋂ 𝑊𝑡 ⇒

𝑡∈𝑇

𝑎𝛼 + 𝑏𝛽 ∈ ⋂ 𝑊𝑡

𝑡∈𝑇

 

Hence ⋂ 𝑊𝑡

𝑡∈𝑇

is a subspace of 𝑉(𝐹). 

 

2.5 LINEAR COMBINATION OF VECTORS: -  

Let  𝑉(𝐹) be a vector space. If 𝛼1 , 𝛼2, … , 𝛼𝑛 ∈ 𝑉, then any vector 

𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛;  𝑎1 , 𝑎2 , … , 𝑎𝑛 ∈ 𝐹 

is called a linear combination of vectors 𝛼1 , 𝛼2, … , 𝛼𝑛. 

2.6 LINEAR SPAN: -  

Let 𝑉(𝐹) be a vector space and 𝑆 be any non-empty subset of 𝑉. Then the 

linear span of S is the set of all linear combinations of finite sets of elements 

of 𝑆 and is denoted by 𝐿(𝑆). 

𝐿(𝑆) = {𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛;  𝛼1, 𝛼2, … , 𝛼𝑛 

𝑖𝑠 𝑎𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑆 𝑎𝑛𝑑 𝑎1 , 𝑎2 , … , 𝑎𝑛   
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𝑖𝑠 𝑎𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐹} 

 

Theorem8: The linear span  𝐿(𝑆) of any subset 𝑆 of a vector space  𝑉(𝐹) 

is a subspace of  𝑉 generated by  𝑆 i.e. 

𝐿(𝑆) = {𝑆} 

Proof: Let 𝛼, 𝛽 be any two elements of𝐿(𝑆). Then  

𝑇ℎ𝑒𝑛                           𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚 

𝑎𝑛𝑑                             𝛽 = 𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑛𝛽𝑛 

Where the 𝑎′𝑠 𝑎𝑛𝑑 𝑏′𝑠 are elements of 𝐹 and the 𝛼′𝑠 𝑎𝑛𝑑 𝛽′𝑠 are elements 

of 𝑆. 

If 𝑎, 𝑏 be any two elements of 𝐹, then 

𝑎𝛼 + 𝑏𝛽 = 𝑎(𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚)

+ 𝑏(𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑛𝛽𝑛) 

                  = 𝑎(𝑎1𝛼1) + 𝑎(𝑎2𝛼2) + ⋯ + 𝑎(𝑎𝑚𝛼𝑚) + 𝑏(𝑏1𝛽1) + 𝑏(𝑏2𝛽2)

+ ⋯ + 𝑏(𝑏𝑛𝛽𝑛) 

                 = (𝑎𝑎1)𝛼1 + (𝑎𝑎2)𝛼2 + ⋯ + (𝑎𝑎𝑚)𝛼𝑚 + (𝑏𝑏1)𝛽1 + (𝑏𝑏2)𝛽2

+ ⋯ + (𝑏𝑏𝑛)𝛽𝑛 

                                                                                                                                                                         

Thus  𝑎𝛼 + 𝑏𝛽   has been expressed as a linear combination of a finite 

set  𝛼1 , 𝛼2, … , 𝛼𝑚, 𝛽1, 𝛽2 , … , 𝛽𝑛 of the elements of  𝑆 . Consequently  𝑎𝛼 +

𝑏𝛽 ∈ 𝐿(𝑆). 

Thus  𝑎, 𝑏 ∈ 𝐹  and 𝛼, 𝛽 ∈ 𝐿(𝑆) ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝐿(𝑆) . Hence L(S) is a 

subspace of 𝑉(𝐹). 

Also each element of S belongs to 𝐿(𝑆), because if 𝛼𝑟 ∈ 𝐿(𝑆), then 𝛼𝑟 =

1𝛼𝑟  and this implies that𝛼𝑟 ∈ 𝐿(𝑆). Thus 𝐿(𝑆) is a subspace of 𝑉 𝑎𝑛𝑑 𝑆 is 

contained in 𝐿(𝑆). 

Now if 𝑊  is any subspace of 𝑉 containing 𝑆, then each element of 𝐿(𝑆) 

must be in 𝑊 because 𝑊 is to be closed under vector addition and scalar 

multiplication. Therefore 𝐿(𝑆) will be contained in 𝑊. 

Hence 𝐿(𝑆) = {𝑆} 𝑖. 𝑒. , 𝐿(𝑆) is the smallest subspace of 𝑉 containing 𝑆. 
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Example5. The subset containing a single element (1,0,0) of the vector 

space 𝑉3(𝐹) generates the subspace which is the totality of the elements of 

the form (𝑎, 0, 0). 

 

Example6. The subset {(1, 0, 0), (0, 1, 0)} of 𝑉3(𝐹) generates the subspace 

which is the totality of the elements of the form (𝑎, 𝑏, 0). 

 

Example7. The subset 𝑆 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}  of 𝑉3(𝐹)  

generates or spans the entire vector space 𝑉3(𝐹)  i.e., 𝐿(𝑆) = 𝑉.  

If (𝑎, 𝑏, 𝑐) be any element of 𝑉, then  

(𝑎, 𝑏, 𝑐) = 𝑎 (1, 0, 0) + 𝑏(0, 1, 0) + 𝑐 (0, 0, 1) 

Thus (𝑎, 𝑏, 𝑐)  ∈ 𝐿 (𝑆). Hence 𝑉 ⊆ 𝐿(𝑆). Also 𝐿(𝑆) ⊆ 𝑉.  

Hence 𝐿 (𝑆) = 𝑉. 

 

Example8. Let 𝑉 be the vector space of all polynomials over the field 𝐹. 

Let 𝑆 be the subset of 𝑉 consisting of the polynomials 𝑓0, 𝑓1, 𝑓2 , … defined 

by 𝑓𝑛 = 𝑥𝑛, 𝑛 = 0, 1, 2, . . . . .. Then𝑉 = 𝐿 (𝑆). 

 

2.7 LINEAR SUM OF TWO SUBSPACES:-   

Let 𝑉 (𝐹) be a vector space with two subspaces, 𝑊1𝑎𝑛𝑑 𝑊2. 𝑊1 + 𝑊2, 

which represents the linear sum of the subspaces 𝑊1𝑎𝑛𝑑 𝑊2, is the set of 

all sums𝛼1 + 𝛼2 such that 𝛼1 ∈ 𝑊1 and 𝛼2 ∈ 𝑊2,  

𝑊1 + 𝑊2 = {𝛼1 + 𝛼2; 𝛼1 ∈ 𝑊1 , 𝛼2 ∈ 𝑊2} 

 

Theorem9: If 𝑊1𝑎𝑛𝑑 𝑊2 are subspaces of vector space 𝑉(𝐹), then 

a) 𝑊1 + 𝑊2  is subspace of 𝑉(𝐹). 

b) 𝑊1 + 𝑊2 = {𝑊1 ∪ 𝑊2}𝑖. 𝑒. 𝐿(𝑊1 ∪ 𝑊2} = 𝑊1 + 𝑊2 

Proof: a) Let 𝛼, 𝛽 be any two elements of 𝑊1𝑎𝑛𝑑 𝑊2. Then 𝛼 = 𝛼1 + 𝛼2 

and 𝛽 = 𝛽1 + 𝛽2 where 𝛼1 , 𝛽1 ∈ 𝑊1 and 𝛼2, 𝛽2 ∈ 𝑊2. If 𝑎, 𝑏 ∈ 𝐹, we have  

                         𝑎𝛼 + 𝑏𝛽 = 𝑎(𝛼1 + 𝛼2) + 𝑏(𝛽1 + 𝛽2) 

                                          = (𝑎𝛼1 + 𝑏𝛽1) + (𝑎𝛼2 + 𝑏𝛽2) 

∵ 𝑊1 is a subspace of 𝑉, therefore 𝑎, 𝑏 ∈ 𝐹 and 

𝛼1, 𝛽1 ∈ 𝑊1 ⇒ 𝑎𝛼1 + 𝑏𝛽1 ∈ 𝑊1  

Similarly,                      𝛼2, 𝛽2 ∈ 𝑊2 ⇒ 𝑎𝛼2 + 𝑏𝛽2 ∈ 𝑊2 

Hence 𝑎𝛼 + 𝑏𝛽 = (𝑎𝛼1 + 𝑏𝛽1) + (𝑎𝛼2 + 𝑏𝛽2) ∈ 𝑊1 + 𝑊2 
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Thus 𝑎, 𝑏 ∈ 𝐹 and 𝛼, 𝛽 ∈ 𝑊1 + 𝑊2 ⇒ 𝑎𝛼 + 𝑏𝛽 ∈ 𝑊1 + 𝑊2 

Hence 𝑊1 + 𝑊2 is a subspace of 𝑉(𝐹). 

b) ∵ 𝑊2 contains the zero vector, therefore if 𝛼1 ∈ 𝑊1, then we can write 

𝛼1 = 𝛼1 + 0 ∈ 𝑊1 + 𝑊2  

Thus 𝑊1 ⊆ 𝑊1 + 𝑊2 

Similarly, 𝑊2 ⊆ 𝑊1 + 𝑊2                                                                                                                                                                                                                                             

Hence 𝑊1 ∪ 𝑊2 ⊆ 𝑊1 + 𝑊2 

Therefore 𝑊1 + 𝑊2  is a subspace of 𝑉(𝐹) containig𝑊1 ∪ 𝑊2. 

Now to prove that  𝑊1 + 𝑊2 = {𝑊1 ∪ 𝑊2}  we should prove that 𝑊1 +

𝑊2 ⊆ 𝐿(𝑊1 ∪ 𝑊2) and𝐿(𝑊1 ∪ 𝑊2) ⊆ 𝑊1 + 𝑊2. 

Let 𝛼 = 𝛼1 + 𝛽1 be any element of 𝑊1 + 𝑊2. Then𝛼1 ∈ 𝑊1 and 𝛽1 ∈ 𝑊2. 

Therefore 𝛼1, 𝛽1 ∈ 𝑊1 ∪ 𝑊2 . We can write 

 

𝛼1 + 𝛽1 = 1𝛼1 + 1𝛽1 

Thus 𝛼1 + 𝛽1 is a linear combination of a finite number of elements𝛼1 , 𝛽1 ∈

𝑊1 ∪ 𝑊2. 

Therefore                      𝛼1, 𝛽1 ∈ 𝐿(𝑊1 ∪ 𝑊2). 

∴                                     𝑊1 + 𝑊2 ⊆ 𝐿(𝑊1 ∪ 𝑊2) 

Also 𝐿(𝑊1 ∪ 𝑊2) is the smallest subspace containing 𝑊1 + 𝑊2 and 𝑊1 +

𝑊2 is a subspace containing  𝑊1 ∪ 𝑊2 . Therefore 𝐿(𝑊1 ∪ 𝑊2)  must be 

contained in 𝑊1 + 𝑊2. Consequently 

𝐿(𝑊1 ∪ 𝑊2) ⊆ 𝑊1 + 𝑊2. 

Hence 𝑊1 + 𝑊2 = 𝐿(𝑊1 ∪ 𝑊2) = {𝑊1 ∪ 𝑊2}. 

Example9. If 𝑆, 𝑇 are subset of 𝑉(𝐹), then 

a) 𝑆 ⊆ 𝑇 ⇒ 𝐿(𝑆) ⊆ 𝐿(𝑇) 

b) 𝐿(𝑆 ∪ 𝑇) = 𝐿(𝑆) + 𝐿(𝑇) 

c) 𝑆 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑉 ⇔ 𝐿(𝑆) = 𝑆 
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d) 𝐿(𝐿(𝑆)) = 𝐿(𝑆) 

Solution: a) Let 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 ∈ 𝐿(𝑆)  where 

{𝛼1, 𝛼2, … , 𝛼𝑛} is a finite subset of 𝑆. ∵ 𝑆 ⊆ 𝑇, therefore {𝛼1 , 𝛼2, … , 𝛼𝑛} is 

also a finite subset of 𝑇. So 𝛼 ∈ 𝐿(𝑇). 

Thus 𝛼 ∈ 𝐿(𝑆) ⇒ 𝛼 ∈ 𝐿(𝑇) 

∴ 𝐿(𝑆) ⊆ 𝐿(𝑇) 

b) Let 𝛼 ∈ 𝐿(𝑆 ∪ 𝑇), then 

𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚 + 𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑝𝛽𝑝 

Where {𝛼1, 𝛼2, … , 𝛼𝑚, 𝛽1 , 𝛽2, … , 𝛽𝑝}is a finite subset of 𝑆 ∪ 𝑇 such that 

{𝛼1, 𝛼2, … , 𝛼𝑚} ⊆ 𝑆𝑎𝑛𝑑 { 𝛽1, 𝛽2, … , 𝛽𝑝} ⊆ 𝑇 

Now 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚 ∈ 𝐿(𝑆) 

And 𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑝𝛽𝑝 ∈ 𝐿(𝑇) 

Therefore  𝛼 ∈ 𝐿(𝑆) + 𝐿(𝑇) 

Hence 𝐿(𝛽) ⊆ 𝐿(𝑆) + 𝐿(𝑇) 

Let 𝛾 be any element of 𝐿(𝑆) + 𝐿(𝑇). Then, 𝛾 = 𝛽 + 𝛿, where 𝛽 ∈ 𝐿(𝑆) 

and 𝛿 ∈ 𝐿(𝑇). A linear combination of a finite number of elements from 𝑆 

will now be represented by 𝛽 , while a linear combination of a limited 

number of elements from 𝑇 will be represented by 𝛿. Consequently, a linear 

combination of a finite number of 𝑆 ∪ 𝑇 elements will be 𝛽 + 𝛿 ∈ 𝐿(𝑆 ∪ 𝑇) 

Thus, 

𝐿(𝑆) + 𝐿(𝑇) ⊆ 𝐿(𝑆 ∪ 𝑇) 

Hence 𝐿(𝑆 ∪ 𝑇) = 𝐿(𝑆) + 𝐿(𝑇) 

c) Suppose 𝑆 is a subspace of 𝑉. Then we are to prove that 𝐿 (𝑆) = 𝑆.  

Let 𝛼 ∈ 𝐿(𝑆) . Then  𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛  where 

𝑎1 , 𝑎2 , … , 𝑎𝑛 ∈ 𝐹  and 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝑆 . But 𝑆  is a subspace of 𝑉 . 

Therefore, it is closed with respect to scalar multiplication and vector 

addition. Hence  𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 ∈  𝑆. Thus  

𝛼 ∈ 𝐿(𝑆) ⇒ 𝛼 ∈ 𝑆 

Therefore 𝐿(𝑆) ⊆ 𝑆. Also 𝑆 ⊆ 𝐿(𝑆). Therefore 𝐿(𝑆) = 𝑆. 
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Converse: Suppose 𝐿(𝑆) = 𝑆. Then to prove that 𝑆 is a sub-space of 𝑉. 

We know that 𝐿(𝑆) is a subspace of 𝑉. Since 𝑆 = 𝐿(𝑆), therefore 𝑆 is 

also a subspace of 𝑉. 

d)  𝐿(𝐿(𝑆)) is the smallest subspace of 𝑉 containing 𝐿(𝑆). But 𝐿(𝑆) is a 

subspace of 𝑉 . Therefore, the smallest subspace of 𝑉  containing 

𝐿(𝑆) is 𝐿(𝑆) itself. Hence 𝐿(𝐿(𝑆)) = 𝐿(𝑆). 

2.8 SUMMARY:-  

The basic ideas of vector spaces have been covered in this section, with an 

emphasis on vector subspaces and their properties. We looked at operations 

like intersection and sum of subspaces, which are part of the algebra of 

subspaces. Additionally, we studied linear vector combinations and how 

they serve as the foundation for the idea of linear span, which denotes the 

smallest subspace that contains a specific collection of vectors. Last but not 

least, we looked at the linear sum of two subspaces, which is the set of all 

possible vector sums extracted from each subspace. When combined, these 

ideas offer a more thorough comprehension of the composition and 

functions of vector spaces. 

 

2.9 GLOSSARY: -  

 Vector Subspace – A subset of a vector space that is itself a vector 

space under the same operations of vector addition and scalar 

multiplication. 

 Zero Subspace – The smallest subspace of any vector space 

consisting only of the zero vector. 

 Proper Subspace – A subspace that is strictly smaller than the 

entire vector space (i.e., not equal to the whole space). 

 Algebra of Subspaces – The study of operations on subspaces, such 

as their intersection and sum. 

 Intersection of Subspaces – The set of all vectors that belong to 

both subspaces; always forms a subspace. 

 Linear Combination – An expression formed by multiplying 

vectors with scalars and adding them together. 

 Linear Span (or Span) – The set of all linear combinations of a 

given set of vectors; it is the smallest subspace containing those 

vectors. 

 Linear Independence in Subspaces – A set of vectors in a 

subspace is linearly independent if none of them can be expressed 

as a linear combination of the others. 

 Basis of a Subspace – A minimal set of linearly independent vectors 

that spans the subspace. 
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 Dimension of a Subspace – The number of vectors in a basis of the 

subspace; it measures the "size" or "degrees of freedom" of the 

subspace. 

 Linear Sum of Subspaces – The set of all possible sums of a vector 

from one subspace and a vector from another; denoted as U+WU + 

WU+W. 

 Direct Sum of Subspaces – A special case of linear sum where each 

element of the sum can be written uniquely as a sum of vectors from 

the two subspaces. 
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 K.P.Gupta (20th Edition,2019), Pragati Publication, Linear Algebra 

2.12 TERMINAL QUESTIONS: - 

(TQ-1) Let 𝑉 be the set of all pairs (𝑥, 𝑦) of real numbers and let F be 

the field of real numbers. Examine in each of the following cases whether 

V is a vector space over the fielf of real no. or not? 

a) (𝑥, 𝑦) + (𝑥1, 𝑦1) = (𝑥 + 𝑥1, 𝑦 + 𝑦1) 

𝑐(𝑥 + 𝑦) = (|𝑐|𝑥, |𝑐|𝑦)  

b) (𝑥, 𝑦) + (𝑥1, 𝑦1) = (𝑥 + 𝑥1, 𝑦 + 𝑦1) 

𝑐(𝑥 + 𝑦) = (0, 𝑐𝑦)  

c) (𝑥, 𝑦) + (𝑥1, 𝑦1) = (𝑥 + 𝑥1, 𝑦 + 𝑦1) 

𝑐(𝑥 + 𝑦) = (𝑐2𝑥, 𝑐2𝑦)  

 (TQ-2) Show that the convergent sequences are a vector space over the 

field of real numbers. 
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(TQ-3) Show that the set 𝑊of the elements of the vector space  𝑉3(𝑅) of 

the form (𝑥 + 2𝑦, 𝑦, −𝑥 + 3𝑦); 𝑥, 𝑦 ∈ 𝑅 is a subspace of  𝑉3(𝑅). 

(TQ-4) Show that the intersection of any collection of subspaces of a 

vector space is a subspace. Can you replace 'intersection' by Unton' in this 

proposition? 

(TQ-5) Define a vector subspace. State the conditions for a subset of a 

vector space to be a subspace. 

(TQ-6) What is the zero subspace? Give an example. 

(TQ-7) Explain the difference between a proper subspace and the whole 

vector space. 

(TQ-8) What is the linear span of a set of vectors? Why is it always a 

subspace? 

(TQ-9) Define the linear sum of two subspaces. How is it different from 

the direct sum? 

(TQ-10) Show that the set of all polynomials of degree at most nnn forms 

a subspace of the vector space of all polynomials.  

(TQ-11) Prove that the intersection of two subspaces is also a subspace. 

(TQ-12) Show that the union of two subspaces is not necessarily a 

subspace. Give an example. 

(TQ-13) Prove that every subspace of Rn\mathbb{R}^nRn contains the 

zero vector. 

(TQ-14) Show that the set of all solutions to a homogeneous linear system 

forms a subspace. 

(TQ-15) Prove that the span of a set of vectors is the smallest subspace 

containing them. 
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UNIT 3: Linear Dependence and Linear 

Independence 

CONTENTS: 
3.1      Introduction 

3.2      Objectives 

3.3      Linear Dependence 

3.4      Linear Independence 

3.5      Summary 

3.6      Glossary 

3.7      References 

3.8     Suggested Reading 

3.9     Terminal questions  

 

3.1 INTRODUCTION: -  

In linear algebra, the concepts of linear independence and linear 

dependence describe the relationship among a set of vectors in a vector 

space. A set of vectors is said to be linearly independent if no vector in the 

set can be expressed as a linear combination of the others. 

On the other hand, a set of vectors is linearly dependent if at least one of the 

vectors can be expressed as a linear combination of the others. In such a 

case, the above equation admits a non-trivial solution, meaning that some 

coefficients are not zero. Linear dependence implies redundancy, as one or 

more vectors do not add any new dimension to the span of the set. 

These concepts are fundamental in determining the basis of a vector space, 

since a basis must consist of linearly independent vectors. Moreover, they 

are directly related to the idea of dimension, which counts the maximum 

number of linearly independent vectors in a space. Thus, the study of linear 

independence and dependence is essential for understanding vector spaces, 

solving systems of linear equations, and analyzing linear transformations. 

3.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 Define linear dependence. 
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 Define linear independence. 

 Proof theorems related to linear independence and linear 

dependence. 

3.3 LINEAR DEPENDENCE: -  

Let 𝑉 (𝐹) be a vector space. A finite set {𝛼1, 𝛼2, … , 𝛼𝑛} of vectors of 𝑉 is 

said to be linearly dependent if there exists scalars 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐹 not all 

of them 0 such that 

𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 = 0 

3.4 LINEAR INDEPENDENCE: -  

Let 𝑉 (𝐹) be a vector space. A finite set {𝛼1, 𝛼2, … , 𝛼𝑛} of vectors of 𝑉 is 

said to be linearly independent if every relation of the form 

𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 = 0, 𝑎𝑖 ∈ 𝐹, 1 ≤ 𝑖 ≤ 𝑛 

⇒                                       𝑎𝑖 = 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 1 ≤ 𝑖 ≤ 𝑛 

If all of the finite subsets of an infinite set of vectors of 𝑉  are linearly 

independent, then the set is said to be linearly independent, if not, it is 

known as linear dependent. 

 

Theorem1: Let 𝑉(𝐹)  be a vector space. If 𝛼1, 𝛼2, … , 𝛼𝑛 are non-zero 

vectors in 𝑉 then either they are linearly independent or some 𝛼𝑘, 2 ≤ 𝑘 ≤
𝑛, is a linear combination of the preceding ones 𝛼1, 𝛼2, … , 𝛼𝑘−1. 

Proof: We don't need to prove anything if 𝛼1, 𝛼2, … , 𝛼𝑛  are linearly 

independent. Let us assume that 𝛼1, 𝛼2, … , 𝛼𝑛 are linearly dependent. Then, 

a relation of the form exists. 

                        𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 = 0                                            … (1) 

The scalar coefficients 𝛼1, 𝛼2, … , 𝛼𝑛  are not all zero. Assume that 𝑎𝑘 ≠
0 for  𝑘  is the greatest integer, 𝑖. 𝑒. 𝑎𝑘+1 = 0, 𝑎𝑘+2 = 0, … , 𝑎𝑛 = 0 . This 

assumption is safe since, at most, if 𝑎𝑘 ≠ 0 𝑡ℎ𝑒𝑛 𝑘 = 𝑛. 

. 

Also  2 ≤ 𝑘 . Because if 𝑎2 = 0, 𝑎3 = 0, … , 𝑎𝑛 = 0  then 𝑎1𝛼1 =
0 𝑎𝑛𝑑 𝛼1 ≠ 0 ⇒ 𝑎1 = 0. This contradicts the fact that not all the 𝑎′𝑠 𝑎𝑟𝑒 0. 

Now equation (1) reduces to 

𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 = 0; 𝑎𝑘 ≠ 0 

𝑎𝑘𝛼𝑘 = −𝑎1𝛼1 − 𝑎2𝛼2 − ⋯ − 𝑎𝑘−1𝛼𝑘−1 

𝑎𝑘
−1(𝑎𝑘𝛼𝑘) = 𝑎𝑘

−1(−𝑎1𝛼1 − 𝑎2𝛼2 − ⋯ − 𝑎𝑘−1𝛼𝑘−1) 



LINEAR ALGEBRA  MT(N)-301 

Department of Mathematics  

Uttarakhand Open University Page 36 
 

𝛼𝑘 = (−𝑎𝑘
−1𝑎1)𝛼1 + (−𝑎𝑘

−1𝑎2)𝛼2 + ⋯ + (−𝑎𝑘
−1𝑎𝑘−1)𝛼𝑘−1 

 

Thus𝛼𝑘  is a linear combination of its preceding vectors. 

 

Theorem2: The set of non-zero vectors 𝛼1, 𝛼2, … , 𝛼𝑛of 𝑉(𝐹) is linearly 

dependent if some as,  𝛼𝑘 , 2 ≤ 𝑘 ≤ 𝑛 ,, is a linear combination of the 

preceding ones. 

Proof: If some 𝛼𝑘 , 2 ≤ 𝑘 ≤ 𝑛, is a linear combination of the preceding ones 

𝛼1, 𝛼2, … , 𝛼𝑘−1 then there exists scalars 𝑎1, 𝑎2, … , 𝑎𝑘−1 such that 

𝛼𝑘 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑘−1𝛼𝑘−1 

⇒                            1𝛼𝑘 − 𝑎1𝛼1 − 𝑎2𝛼2 − ⋯ − 𝑎𝑘−1𝛼𝑘−1 = 0 

⇒                                𝑡ℎ𝑒 𝑠𝑒𝑡 (𝛼1, 𝛼2, … , 𝛼𝑘) 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡. 
Hence the set {𝛼1, 𝛼2, … , 𝛼𝑛}of which {𝛼1, 𝛼2, … , 𝛼𝑘} is a subset, must be 

linearly dependent. 

 

Theorem3: If in a vector space 𝑉(𝐹), a vector 𝛽 is a linear combination of 

the set of vectors 𝛼1, 𝛼2, … , 𝛼𝑛, then the set of vectors 𝛽, 𝛼1, 𝛼2, … , 𝛼𝑛  is 

linearly dependent. 

Proof: Since 𝛽 is a linear combination of 𝛼1, 𝛼2, … , 𝛼𝑛, therefore there exist 

scalars 𝑎1, 𝑎2, … , 𝑎𝑛, such that  

                                𝛽 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛                                   
⇒                            1𝛽 − 𝑎1𝛼1 − 𝑎2𝛼2 − ⋯ − 𝑎𝑛𝛼𝑛 = 0                         … (1) 

 

In equation (1) the scalar coefficient of 𝛽 𝑖𝑠 1 which is ≠ 0. Hence from 

equation (1) not all the scalar coefficients are 0 . Therefore the set 

𝛽, 𝛼1, 𝛼2, … , 𝛼𝑛 is linearly dependent. 

 

Theorem4: Let 𝑆 be a linearly independent subset of a vector Space 𝑉. 

Suppose 𝛽 is a vector in 𝑉 which is not in the subspace spanned by 𝑆. Then 

the set obtained by adjoining 𝛽 to 𝑆 is lincarly independent. 

Proof: Let  𝛼1, 𝛼2, … , 𝛼𝑛 are vectors in 𝑆 and let  

                         𝑐1𝛼1 + 𝑐2𝛼2 + ⋯ + 𝑐𝑚𝛼𝑚 + 𝑏𝛽 = 0                                … (1) 

 

Then 𝑏 must be zero, for otherwise 

𝛽 = (−
𝑐1

𝑏
) 𝛼1 + (−

𝑐2

𝑏
) 𝛼2 + ⋯ + (−

𝑐𝑚

𝑏
) 𝛼𝑚 

And consequently 𝛽  is in the subspace spanned by 𝑆  which is a 

contradiction. 

Putting 𝑏 = 0 in equation (1), we get 

𝑐1𝛼1 + 𝑐2𝛼2 + ⋯ + 𝑐𝑚𝛼𝑚 = 0 

⇒                            𝑐1 = 0, 𝑐2 = 0, … , 𝑐𝑚 = 0 

Because the set {𝛼1, 𝛼2, … , 𝛼𝑚} is linearly independent since it is a subset 

of a linearly independent set 𝑆. 

Thus equation (1) implies 

𝑐1 = 0, 𝑐2 = 0, … , 𝑐𝑚 = 0, 𝑏 = 0 
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Therefore, the set {𝛼1, 𝛼2, … , 𝛼𝑚 , 𝛽} is linearly independent. If 𝑆′ is the set 

obtained by adjoining 𝛽 to 𝑆, then we have proved that every finite subset 

of 𝑆′ is linearly independent. 

 

Example1: Prove that if two vectors are linearly dependent then one of 

them is a scalar multiple of the other. 

Solution: Let 𝛼, 𝛽 be two linearly dependent vectors of the vector space 

𝑉(𝐹). Then 𝑎, 𝑏 ∈ 𝐹(where 𝑎, 𝑏 not both zero), such that 

𝑎𝛼 + 𝑏𝛽 = 0 

If 𝑎 ≠ 0 then we get 

𝑎𝛼 = −𝑏𝛽 

⇒                           𝛼 = (−
𝑏

𝑎
) 𝛽 ⇒ 𝛼is a scalar multiple of 𝛽. 

If 𝑏 ≠ 0 then we get 

𝑏𝛽 = −𝑎𝛼 

⇒                           𝛽 = (−
𝑎

𝑏
) 𝛼 ⇒ 𝛽is a scalar multiple of 𝛼. 

Thus one of the vectors 𝛼 𝑎𝑛𝑑 𝛽 is a scalar multiple of the other. 

 

Example2: In the vector space 𝑉𝑛(𝐹), the system of 𝑛 vectors 

𝑒1 = (1,0,0, … ,0), 𝑒2 = (0,1,0, … ,0), … , 𝑒𝑛 = (0,0,0, … ,0,1) 

Is linearly independent where 1 denotes the unity of the field 𝐹. 

Solution: Let 𝑎1, 𝑎2, … , 𝑎𝑛 be any scalars, then 

𝑎1𝑒1 + 𝑎2𝑒2 + ⋯ + 𝑎𝑛𝑒𝑛 = 0 

⇒             𝑎1(1,0,0, … ,0) + 𝑎2(0,1,0, … ,0) + ⋯ + 𝑎𝑛(0,0,0, … ,0,1) = 0 

⇒                                 (𝑎1, 𝑎2, … , 𝑎𝑛) = (0,0, … ,0) 

⇒                                𝑎1 = 0, 𝑎2 = 0, … , 𝑎𝑛 = 0 

Therefore the given set of 𝑛 vectors is linearly independent. 

In particular  {(1,0,0), (0,1,0), (00,1)} is a linearly independent subset of 

𝑉3(𝐹) 

 

Example3: Every superset of a linearly dependent set of vectors is linearly 

dependent. 

Solution: Let 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑛} be a linearly dependent set of vectors. 

Then ∃ scalars 𝑎1, 𝑎2, … , 𝑎𝑛 not all zero such that 

                                         𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 = 0                           … (1) 

Now let 𝑆′ = {𝛼1, 𝛼2, … , 𝛼𝑛 , 𝛽1, 𝛽2, … , 𝛽𝑚} be a superset of 𝑆. Then from 

equation (1)  

           𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 + 0𝛽1 + 0𝛽2 + ⋯ + 0𝛽𝑚 = 0         … (2) 

Since from equation (2) the scalar coefficients are not all zero, therefore 𝑆′ 

is linearly dependent. 

 

Example4: A system consisting of a single non-zero vector is always 

linearly independent. 
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Solution: Let 𝑆 = {𝛼} be a subset of a vector space 𝑉 and let 𝛼 ≠ 0. If 𝑎 is 

any scalar, then 

𝑎𝛼 = 0 

⇒                                                            𝑎 = 0 

Hence the set 𝑆 is linearly independent. 

 

Example5: Show that 

𝑆 = {(1,2,4), (1,0,0), (0,1,0), (0,0,1)} 
is a linearly independent subset of 𝑉3(𝑅)where 𝑅  is the field of real 

numbers. 

Solution: We have 

1(1,2,4) + (−1)(1,0,0) + (−2)(0,1,0) + (−4)(0,0,1) 

                 = (1,2,4) + (−1,0,0) + (0, −2,0) + (0,0, −4) 

                    = (0,0,0)𝑖, 𝑒. 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 

Since in the above relation the scalar coefficients 1, −1, −2, −4 are not all 

zero, therefore the given 𝑆 is linearly independent. 

 

Example6: If 𝐹  is the field of real numbers, prove that the vectors 
(𝑎1, 𝑎2) and (𝑏1, 𝑏2) in 𝑉2(𝐹) are linearly dependent iff  

𝑎1𝑏2 − 𝑎2𝑏1 = 0 

Solution: Let 𝑥, 𝑦 ∈ 𝐹. Then 

𝑥(𝑎1, 𝑎2) + 𝑦(𝑏1, 𝑏2) = (0,0) 

⇒                                (𝑥𝑎1 + 𝑦𝑏1, 𝑥𝑎2 + 𝑦𝑏2) = (0,0) 

Therefore 𝑥𝑎1 + 𝑦𝑏1 = 0 𝑎𝑛𝑑 𝑥𝑎2 + 𝑦𝑏2 = 0 

The necessary and sufficient condition for these equations to possess a non-

zero solution is that 

|
𝑎1  𝑏1 
𝑎2   𝑏2

| = 0  

𝑖. 𝑒.                                         𝑎1𝑏2 − 𝑎2𝑏1 = 0 
 

Hence the given system is linearly dependent iff 

𝑎1𝑏2 − 𝑎2𝑏1 = 0 
 

Example7: If 𝛼1𝑎𝑛𝑑 𝛼2  are vectors of 𝑉(𝐹), 𝑎, 𝑏 ∈ 𝐹, show that the set 
{𝛼1, 𝛼2, 𝑎𝛼1 + 𝑏𝛼2 } is linearly independent. 

Solution: We have 

(−𝑎)𝛼1 + (−𝑏)𝛼2 + 1(𝑎𝛼1 + 𝑏𝛼2) 

                                    = (−𝑎 + 𝑎)𝛼1 + (−𝑏 + 𝑏)𝛼2 

                                    = 0𝛼1 + 0𝛼2 = 0 𝑖. 𝑒. 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 

Whatever may be the scalars (−𝑎) 𝑎𝑛𝑑 (−𝑏) ∵ 1 ≠ 0, therefore the given 

set of vectors is linearly dependent. 

 

Example8: If 𝛼, 𝛽, 𝛾  are linearly dependent vectors of 𝑉(𝐹) where 𝐹 is 

any subfield of the field of complex numbers then so also are 𝛼 + 𝛽, 𝛽 +
𝛾, 𝛾 + 𝛼. 
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Solution: Let 𝑎, 𝑏, 𝑐 be scalars such that  

𝑎 (𝛼 + 𝛽) + 𝑏(𝛽 + 𝛾) + 𝑐 (𝛾 + 𝛼) = 0  
𝑖. 𝑒.                          (𝑎 + 𝑐)𝛼 + (𝑎 + 𝑏)𝛽 + (𝑏 + 𝑐)𝛾 = 0                      … (1) 
But 𝛼, 𝛽, 𝛾 are linearly independent. Therefore (1) implies  

𝑎 + 0𝑏 + 𝑐 = 0  
𝑎 + 𝑏 + 0𝑐 = 0  
0𝑎 + 𝑏 + 𝑐 = 0  

The coefficient matrix 𝐴 of these equations is  

𝐴 = [
1   0   1
1   1   0
0   1   1

] 

We have rank 𝐴 = 3 i.e., the number of unknowns 𝑎, 𝑏, 𝑐. 

 

Therefore 𝑎 = 0, 𝑏 = 0, 𝑐 = 0 is the only solution of the given equations. 

 

Hence 𝛼 + 𝛽, 𝛽 + 𝛾, 𝛾 + 𝛼 are also linearly independent. 

 

Example9: Show that the set {1, 𝑥, 1 + 𝑥 + 𝑥²} is a linearly independent set 

of vectors in the vector space of all polynomials over the real number field. 

Solution: Let 𝑎, 𝑏, 𝑐 be scalars (real numbers) such that  

𝑎 (1) + 𝑏𝑥 + 𝑐(1 + 𝑥 + 𝑥²) = 0. 
We have 

𝑎 (1) + 𝑏𝑥 + 𝑐(1 + 𝑥 + 𝑥2) = 0 

⇒                                      (𝑎 + 𝑐) + (𝑏 + 𝑐)𝑥 + 𝑐𝑥2 = 0  
⇒                                            𝑎 + 𝑐 = 0, 𝑏 + 𝑐 = 0, 𝑐 = 0  
⇒                                                   𝑐 = 0, 𝑏 = 0, 𝑎 = 0 

Therefore the vectors 1, 𝑥, 1 + 𝑥 + 𝑥²  are linearly independent over the 

field of real numbers. 

 

Example10: Show that the vectors (1, 1, 0, 0), (0, 1, −1, 0), (0, 0, 0, 3) in 

𝑅4 are linearly independent. 

Solution: Let 𝑎, 𝑏, 𝑐 be scalars i.e., real numbers such that  

        𝑎(1, 1, 0, 0) +  𝑏 (0, 1, −1, 0) + 𝑐 (0, 0, 0, 3) = (0, 0, 0, 0)          … (1) 

𝑇ℎ𝑒𝑛                                     𝑎 +  0𝑏 +  0𝑐 =  0  
𝑎 +  𝑏 +  0𝑐 =  0  

0𝑎 −  𝑏 +  0𝑐 =  0  
0𝑎 +  0𝑏 +  3𝑐 =  0 

 

The only solution of the above equations is 𝑎 = 0, 𝑏 = 0 𝑐 = 0  

Thus the linear relation (1) among the three given vectors is possible only 

if 𝑎 = 0, 𝑏 = 0, 𝑐 = 0  

Hence the three given vectors in 𝑅4 are linearly independent. 

 

3.5 SUMMARY: -  
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In this unit we have examined the ideas of linear dependency and linear 

independence in this unit. A group of vectors is said to be linearly dependent 

if at least one of them exhibits redundancy among the others and can be 

written as a linear combination of the others. A set of vectors is said to be 

linearly independent if no vector can be expressed as such a combination, 

indicating that each vector makes a distinct contribution to the span. These 

principles are essential to comprehending vector space structure because 

they give rise to the concepts of dimension and basis. 

3.6 GLOSSARY: -  

 Linear Combination – An expression formed by multiplying 

vectors with scalars and adding them together. 

 Linearly Dependent Set – A set of vectors is linearly dependent if 

at least one vector can be expressed as a linear combination of the 

others, or equivalently, if there exist scalars (not all zero) such that 

their linear combination equals the zero vector. 

 Linearly Independent Set – A set of vectors is linearly independent 

if the only solution to their linear combination equaling the zero 

vector is when all the scalars are zero. 

 Trivial Linear Combination – The combination of vectors where 

all scalar coefficients are zero, giving the zero vector. 

 Non-trivial Linear Combination – A linear combination where at 

least one scalar is non-zero; if this equals the zero vector, it indicates 

dependence. 

 Dimension – The number of vectors in a basis of a vector space; 

represents the maximum number of linearly independent vectors in 

the space. 

 Span of a Set – The collection of all linear combinations of a given 

set of vectors; forms a subspace. 

 Redundancy in Vectors – Occurs when a set of vectors is linearly 

dependent, meaning at least one vector does not add a new 

“direction” to the span. 

 Unique Representation – A property of linearly independent 

vectors, where each vector in the span can be written uniquely as a 

linear combination of the basis vectors. 
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3.9 TERMINAL QUESTIONS: - 

(TQ-1) Prove that the set of non-zero vectors  𝛼1, 𝛼2, … , 𝛼𝑛  of 𝑉 (𝐹) is 

linearly dependent ⇔ one of these vectors is a linear combination of the 

remaining (𝑛 − 1) vectors. 

 (TQ-2) Prove that any subset of a linearly independent set of vectors is 

also linearly independent. 

(TQ-3) In the vector space 𝐹[𝑥] of all polynomials over the field 𝐹 the 

infinite set 𝑆 = {1, 𝑥, 𝑥2, 𝑥³, . . . } is linearly independent. 

(TQ-4) If 𝛼, 𝛽, 𝛾  are linearly independent vectors of 𝑉(𝐹) 𝑤ℎ𝑒𝑟𝑒 𝐹 is the 

field of complex numbers, then so also are  

𝛼 + 𝛽, 𝛼 − 𝛽, 𝛼 − 2𝛽 + 𝛾 

(TQ-5) Is the vector (3, − 1, 0, − 1) in the subspace of ℝ4 spanned by the 

vectors,  (2, −1, 3, 2), (−1, 1, 1, −3) 𝑎𝑛𝑑 (1,1,9, −5)? 

(TQ-6) Determine whether the vectors (1,2,3), (2,4,6), and (3,6,9) in 

ℝ3are linearly independent. 

(TQ-7) Check if the vectors (1,0,1), (0,1,1), and (1,1,2) are linearly 

independent in ℝ3. 

(TQ-8) Find the values of a for which the vectors (1,a,0), (0,1,a), and 

(a,0,1) are linearly dependent. 

(TQ-9) Show that the set {1, 𝑥, 𝑥2}is linearly independent in the vector 

space of polynomials 𝑃2. 
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(TQ-10) Determine whether the vectors (1,2), (3,6) are linearly 

independent in ℝ3. 

(TQ-11) Show that in ℝ3 , any set of four vectors must be linearly 

dependent. 

(TQ-12) Prove that if a subset 𝑆 of a vector space is linearly independent, 

then every subset of 𝑆 is also linearly independent. 

(TQ-13) Show that the set {1, 𝑥, 1 + 𝑥 + 𝑥²} is a linearly independent set 

of vectors in the vector space of all polynomials over the real number field. 

(TQ-14) If 𝛼, 𝛽, 𝛾  are linearly dependent vectors of 𝑉(𝐹) where 𝐹 is any 

subfield of the field of complex numbers then prove that also are 𝛼 + 𝛽, 𝛽 +
𝛾, 𝛾 + 𝛼. 

(TQ-15) In the vector space 𝑉𝑛(𝐹), then prove that the system of 𝑛 vectors 

𝑒1 = (1,0,0, … ,0), 𝑒2 = (0,1,0, … ,0), … , 𝑒𝑛 = (0,0,0, … ,0,1) 

is linearly independent where 1 denotes the unity of the field 𝐹. 

(TQ-16) Determine all values of 𝑘  for which the vectors 

(1, 𝑘, 1), (2,1,3), (1,1,2) are linearly dependent. 
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UNIT 4: -Basis 

CONTENTS: 
4.1      Introduction 

4.2      Objectives 

4.3      Basis of a Vector Space 

4.4      Finite Dimensional Vector Space 

4.5      Dimension of a Finitely Generated Vector Space 

4.6      Dimension of a Subspace 

4.7     Summary 

4.8     Glossary 

4.9      References 

4.10    Suggested Reading 

4.11     Terminal questions  

 

4.1 INTRODUCTION: -  

In linear algebra, a basis of a vector space is a set of vectors that is both 

linearly independent and spans the entire space. This means that every 

vector in the space can be uniquely expressed as a linear combination of the 

basis vectors. The concept of a basis provides the simplest and most 

efficient way to describe a vector space, removing redundancy and ensuring 

uniqueness of representation. 

The number of vectors in a basis is called the dimension of the vector space, 

which serves as a measure of its size or degrees of freedom. Choosing an 

appropriate basis is fundamental for simplifying problems in vector spaces, 

such as solving systems of equations, representing linear transformations, 

and performing computations in geometry and applied mathematics. 

4.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 Define Basis of a Vector Space. 

 Understand Finite Dimensional Vector Space. 

 Solve Dimension of a Vector Space and Dimension of a Subspace. 
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4.3 BASIS OF A VECTOR SPACE: -  

A basis of 𝑉 (𝐹) is a subset 𝑆 of a vector space 𝑉 (𝐹), if 

i. The vectors in 𝑆 are linearly independent. 

ii. 𝑉(𝐹) is generated by 𝑆, 𝑖. 𝑒. 𝐿(𝑆) = 𝑉 𝑖. 𝑒., where each vector in 𝑉 is 

a linear combination of a finite number of 𝑆. 

 

Example1. A system 𝑆  consisting of 𝑛 vectors 𝑒1 = (1,0,0, … ,0), 𝑒2 =

(0,1,0, … ,0), … , 𝑒𝑛 = (0,0,0, … ,0,1) is a basis of 𝑉 (𝐹). 

Solution: We should first show that 𝑆 is a set of vectors that are linearly 

independent.  

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be any scalars, then 

𝑎1𝑒1 + 𝑎2𝑒2 + ⋯ + 𝑎𝑛𝑒𝑛 = 0 

⇒             𝑎1(1,0,0, … ,0) + 𝑎2(0,1,0, … ,0) + ⋯ + 𝑎𝑛(0,0,0, … ,0,1) = 0 

⇒                                 (𝑎1, 𝑎2, … , 𝑎𝑛) = (0,0, … ,0) 

⇒                                𝑎1 = 0, 𝑎2 = 0, … , 𝑎𝑛 = 0 

Therefore the given set of 𝑛 vectors is linearly independent. 

The next step is to prove that 𝐿(𝑆) = 𝑉𝑛(𝐹). Every time, we have 𝐿(𝑆) ⊆
𝑉𝑛(𝐹).  We have to prove that 𝑉𝑛(𝐹) ⊆  𝐿(𝑆), that is, that every vector in 

𝑉𝑛(𝐹) is a linear combination of 𝑆′𝑠 elements. 

Let 𝛼 = (𝑎1, 𝑎2, … , 𝑎𝑛) be any vector in 𝑉𝑛(𝐹). We can write 

(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝑎1(1,0, … , 0) + 𝑎2(0, 1, 0, … , 0) + ⋯ 

+𝑎𝑛(0,0, … , 0, 1) 

𝑖. 𝑒.                  𝛼 = 𝑎1𝑒1 + 𝑎2𝑒2 + ⋯ + 𝑎𝑛𝑒𝑛  

Hence 𝑆 is a basis of 𝑉(𝐹). We shall call this particular basis the standard 

basis of 𝑉𝑛(𝐹). 

4.4 FINITE DIMENSIONAL VECTOR SPACE: -  

If there is a finite subset 𝑆 𝑜𝑓 𝑉  such that  𝑉 = 𝐿 (𝑆) , then the vector 

space 𝑉(𝐹) is said to be finite dimensional or finitely generated. 

𝑉𝑛(𝐹) , the vector space of  𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 , is a vector space with finite 

dimensions. 

There are no finite dimensions in the vector space 𝐹 [𝑥] of all polynomials 

over a field 𝐹. It is impossible to find a finite subset 𝑆 𝑜𝑓 𝐹 [𝑥] that spans 

𝐹 [𝑥]. It is possible to refer to a vector space that is not finitely created as 

an infinite dimensional space. For all polynomials over a field, the vector 

space 𝐹 [𝑥] is hence infinitely dimensional. 
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Theorem1. Existence of basis of a finite dimensional vector space: There 

exists a basis for each finite dimensional vector space. 

Proof: Let  𝑉(𝐹)  be a finitely generated vector space. Let  𝑆 =

{𝛼1, 𝛼2, … , 𝛼𝑚} be a finite subset of such that 𝐿 (𝑆) = 𝑉. We can assume 

that 𝑆 has no zero members. 

If 𝑆 is linearly independent, then  𝑆 itself is a basis of 𝑉 . If 𝑆 is linearly 

dependent, then there exists a vector 𝛼𝑖 ∈ 𝑆 which may be written as a linear 

combination of the preceding vectors 𝛼1, 𝛼2, … , 𝛼𝑖−1. 

If we omit this vector  𝛼𝑖 ∈ 𝑆 , then the remaining set  𝑆′  of 𝑚 − 1 

vectors  𝛼1, 𝛼2, … , 𝛼𝑖−1, 𝛼𝑖+1, … , 𝛼𝑚 also generates  𝑉 𝑖. 𝑒. , 𝑉 = 𝐿 (𝑆′) . For 

if 𝛼 is any element of 𝑉, then 𝐿(𝑆) = 𝑉 implies that 𝛼 can be written as a 

linear combination of 𝛼1, 𝛼2, … , 𝛼𝑚 Let  𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ +

𝑎𝑖−1𝛼𝑖−1 + 𝑎𝑖𝛼𝑖 + 𝑎𝑖+1𝛼𝑖+1 + ⋯ + 𝑎𝑛𝛼𝑛  But 𝛼𝑖  can be expressed as a 

linear combination of  𝛼1, 𝛼2, … , 𝛼𝑖−1 . Let  𝛼𝑖 = 𝑏1𝛼1 + 𝑏2𝛼2 + ⋯ +

𝑏𝑖−1𝛼𝑖−1. Putting this value of 𝛼𝑖 in the expression for 𝛼, we get  

𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑖−1𝛼𝑖−1 + 𝑎𝑖(𝑏1𝛼1 + 𝑏2𝛼2 + ⋯ + 𝑏𝑖−1𝛼𝑖−1) + 

𝑎𝑖+1𝛼𝑖+1 + ⋯ + 𝑎𝑛𝛼𝑛  

Thus  𝛼  has been expressed as a linear combination of the 

vectors  𝛼1, 𝛼2, … , 𝛼𝑖−1, 𝛼𝑖+1, … , 𝛼𝑚 . In this way  𝛼 ∈ 𝑉 ⇒ 𝛼  can be 

expressed as a linear combination of the vectors belonging to the set 𝑆′. 

Thus 𝑆′ generates 𝑉𝑖. 𝑒. , 𝐿(𝑆′) = 𝑉. 

𝑆′  is a basis of  𝑉  if it is linearly independent Following the preceding 

procedure, we will obtain a new set of 𝑛 − 2 vectors that produce 𝑉 if 𝑆′ is 

linearly dependent. If we keep doing this, we will eventually get a linearly 

independent subset of 𝑆 that generates and is so a basis of 𝑉 after a limited 

number of steps. 

The most likely scenario is that we will be left with a subset of 𝑆 that span 𝑉 

and has just one non-zero vector. A set with a single non-zero vector will 

constitute a basis of  𝑉  since we know that it is absolutely linearly 

independent. 

 

Theorem2. Dimension theorem for vector space. If  𝑉(𝐹)  is a finite 

dimensional vector space, then any two bases of 𝑉 have the same number 

of elements. 
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Proof: Assume that  𝑉(𝐹)  is a finite dimensional vector space. Then  𝑉                                                

definitely possesses a basis. Let  𝑆1 = {𝛼1, 𝛼2, … , 𝛼𝑚}  and 𝑆2 =
{ 𝛽1, 𝛽2, … , 𝛽𝑛} be two bases of 𝑉. We shall prove that 𝑚 = 𝑛.                                                                                                                                                                                                               

Since  𝑉 = 𝐿(𝑆1)  and 𝛽1 ∈ 𝑉 , therefore  𝛽1  can be expressed as a linear 

combination of 𝛼1, 𝛼2, … , 𝛼𝑛 . Consequently, the set  𝑆3 =
{𝛽1, 𝛼1, 𝛼2, … , 𝛼𝑛} , which also obviously generates  𝑉(𝐹)  is linearly 

dependent. Therefore, there exists a member𝛼𝑖 ≠ 𝛽𝑖 , of this set 𝑆3, such 

that 𝛼𝑖, is a linear combination of the preceding vectors 𝛽1, 𝛼1, 𝛼2, … , 𝛼𝑖−1. 

if we omit the vector 𝛼𝑖 from 𝑆3 then 𝑉 is also generated by the remaining 

set 

𝑆4 = {𝛽1, 𝛼1, 𝛼2, … , 𝛼𝑖−1, 𝛼𝑖+1, … , 𝛼𝑚} 

Since  𝑉 = 𝐿(𝑆4) and  𝛽2 ∈ 𝑉  therefore  𝛽2  can be expressed as a linear 

combination of the vectors belonging to 𝑆4. Consequently, the set 

 

𝑆5 = {𝛽2, 𝛽1, 𝛼1, 𝛼2, … , 𝛼𝑖−1, 𝛼𝑖+1, … , 𝛼𝑚} 

is linearly dependent. Therefore, there exists a member𝛼𝑗 of this set𝑆5, such 

that 𝛼𝑗  is a linear combination of the preceding vectors. Obviously  𝛼𝑗         

will be different from 𝛽1𝑎𝑛𝑑 𝛽2 since {𝛽1, 𝛽2} is a linearly independent set. 

If we exclude the vector 𝛼𝑗 from 𝑆5. then the remaining set will generate 

𝑉 (𝐹). 
We may continue to proceed in this manner. Here each step consists in the 

exclusion of an 𝛼 and the inclusion of a 𝛽 in the set 𝑆1. 

Obviously, the set 𝑆1  of 𝛼′𝑠 cannot be exhausted before the set𝑆2  of 𝛽′𝑠 

otherwise 𝑉 (𝐹) will be a linear span of a proper subset of 𝑆2, and thus 𝑆2, 

will become linearly dependent. Therefore, we must have 

𝑚 ≮ 𝑛 

Interchanging the role of  𝑆1 𝑎𝑛𝑑  𝑆2, we shall get that                                  

𝑛 ≮ 𝑚 

𝐻𝑒𝑛𝑐𝑒                                                𝑚 = 𝑛 

 

4.5 DIMENSION OF A FINITELY GENERATED 

VECTOR SPACE: -  

The dimension of a finite dimensional vector space 𝑉 (𝐹) is the number of 

elements in any basis of that space, and it is represented by 𝑑𝑖𝑚 𝑉. 

The vector space 𝑉𝑛(𝐹),  is of dimension 𝑛. The vector space 𝑉3(𝐹),  is of 

dimension 3. 

Theorem3. Extension theorem: Every linearly independent subset of a 

finitely generated vector space 𝑉 (𝐹) forms a part of a basis of 𝑉. 

Or 
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Every linearly independent subset of a finitely generated vector space 𝑉(𝐹) 

is either a basis of 𝑉 or can be extended to form a basis of 𝑉. 

Proof: Let 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑚} be a subset of a finite dimensional vector 

space  𝑉 (𝐹)  that is linearly independent.  𝑉  has a finite basis, say 

{𝛽1, 𝛽2, … , 𝛽𝑛}, if 𝑑𝑖𝑚 𝑉 = 𝑛. Consider the set 

𝑆1 = {𝛼1, 𝛼2, … , 𝛼𝑚 , 𝛽1, 𝛽2, … , 𝛽𝑛} 

Obviously  𝐿(𝑆1) = 𝑉 . Since the  𝛼′𝑠  can be expressed as linear 

combinations of the 𝛽′𝑠 therefore the set 𝑆1 is linearly dependent. 

Consequently, a certain vector of 𝑆1 is a linear combination of its previous 

vectors. Due to the linear independence of the 𝛼′𝑠, this vector cannot be any 

of them. Consequently, this vector needs to be some 𝛽, let's say 𝛽𝑖 . Consider 

the set after removing the vector 𝛽𝑖. from 𝑆1. 

𝑆2 = {𝛼1, 𝛼2, … , 𝛼𝑚 ,  𝛽1, 𝛽2, … ,  𝛽𝑖−1,  𝛽𝑖+1, … , 𝛽𝑛} 

Obviously 𝐿(𝑆2) = 𝑉. 𝑆₂ is the necessary extended set that is a basis of 𝑉 

and will be a basis of  𝑉  if it is linearly independent. The preceding 

procedure can be repeated a limited number of times to obtain a linearly 

independent set that contains 𝛼1, 𝛼2, … , 𝛼𝑚and spans 𝑉 if 𝑆₂ is not linearly 

independent. This collection will contain  𝑆 and will be a basis for  𝑉 . 

Exactly 𝑛 − 𝑚 elements of the set of 𝛽′𝑠 will be adjacent to 𝑆 to form a 

basis of 𝑉 since every basis of 𝑉 has the same number of elements. 

 

Theorem4. Each set of (𝑛 + 1) or more vectors of a finite dimensional 

vector space 𝑉 (𝐹) of dimension 𝑛 are linearly dependent. 

Proof: Let 𝑉 (𝐹)  be a vector space of dimension 𝑛 that has a finite 

dimension. Let 𝑆 be a subset of 𝑉 that contains (𝑛 + 1) or more vectors and 

is linearly independent. 𝑆 will then be a component of 𝑉′𝑠 basis. As a result, 

a basis of 𝑉 with more than 𝑛 vectors will be obtained. However, there will 

be exactly 𝑛 vectors in each basis of 𝑉. Thus, our "assumption" is incorrect. 

𝑆 must therefore be linearly dependent if it consists of (𝑛 + 1) or more 

vectors. 

Theorem5. Let 𝑉 be a vector space which is spanned by a finite set of 

vectors 𝛽1, 𝛽2, … , 𝛽𝑚. Then any linearly independent set of vectors in 𝑉 is 

finite and contains no more than m vectors. 

Proof: Let 𝑆 = {𝛽1, 𝛽2, … , 𝛽𝑚}  
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𝑉 has a finite basis and 𝑑𝑖𝑚 𝑉 ≤ 𝑚 since 𝐿 (𝑆) = 𝑉. Because of this, all 

subsets 𝑆′ 𝑜𝑓 𝑉 that have more than 𝑚 vectors are linearly dependent. The 

theorem is so proved. 

Theorem6. If 𝑉(𝐹) is a finite dimensional vector space of dimension 𝑛, 

then any set of 𝑛 linearly independent vectors in 𝑉 forms a basis of 𝑉. 

Proof: Let {𝛼1, 𝛼2, … , 𝛼𝑛}  be a linearly independent subset of a vector 

space 𝑉(𝐹)  of dimension 𝑛, which has a finite dimension. It is possible to 

extend 𝑆 to form a basis of 𝑉 if it is not a basis of 𝑉. As a result, a basis of 

𝑉  with more than 𝑛  vectors will be obtained. 

However, there must be exactly 𝑛 vectors in each basis of 𝑉. As a result, 

𝑆 must be a basis of 𝑉 and our assumption is incorrect. 

Theorem7. If a set 𝑆 of 𝑛 vectors of a finite dimensional vector space 𝑉(𝐹)  

of dimension n generates 𝑉(𝐹), then 𝑆 is a basis of 𝑉. 

Proof: Let 𝑉 (𝐹)  be a vector space of dimension n that has a finite 

dimension. Consider a subset of 𝑉, 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑛}, such that 𝐿(𝑆) =

𝑉. S is a basis of 𝑉 if it is linearly independent. There will be a proper subset 

of 𝑆 that forms a basis of 𝑉 𝑖𝑓 𝑆 is not linearly independent. Consequently, 

we will have a basis of 𝑉 with less than 𝑛 elements. However, there must 

be exactly 𝑛 elements in each basis of 𝑉. 𝑆 must therefore be the basis of 𝑉 

as it cannot be linearly dependent. 

 

4.6 DIMENSION OF A SUBSPACE: -  

Theorem8. Every subspace 𝑊 of a finite dimensional vector space 𝑉(𝐹) of 

dimension 𝑛 is a finite dimensional space with dim 𝑚 ≤ 𝑛. 

𝐴𝑙𝑠𝑜                             𝑉 = 𝑊 𝑖𝑓𝑓 dim 𝑉 = dim 𝑊 

Proof: Let  𝑉(𝐹) be a vector space of  𝑑𝑖𝑚 𝑛  with finite dimensions. 

Assume that  𝑉  has a subspace 𝑊 . Any (𝑛 + 1) vectors in 𝑉  are linearly 

dependent, and any subset of 𝑊  with (𝑛 + 1) or more vectors is also a 

subset of 𝑉. Consequently, there can be a maximum of 𝑛 vectors in any 

linearly independent set of vectors in  𝑊 . Let  𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑚}  be a 

linearly independent subset of 𝑊 with maximum number of elements. We 

claim that 𝑆 is a basis of 𝑊. The proof is as follows: 
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(i) 𝑆 is a linearly independent subset of 𝑊. 

(ii) 𝐿(𝑆) = 𝑊 

Let  𝛼 be any of 𝑊′𝑠 elements. We assume that the biggest independent 

subset of  𝑊  contains  𝑚 vectors, so the  (𝑚 +
1) vectors  𝛼, 𝛼1, 𝛼2, … , 𝛼𝑚 belong to  𝑊 are linearly dependent. 

At this point, the set  {𝛼1, 𝛼2, … , 𝛼𝑚} is linearly dependent. As a result, it 

has a vector that can be represented as a linear combination of the vectors 

that came before it. This vector cannot be any of these  𝑚  vectors 

as 𝛼1, 𝛼2, … , 𝛼𝑚  are linearly independent. It must therefore be  𝛼  itself. 

Thus 𝛼 can be expressed as a linear combination of 𝛼1, 𝛼2, … , 𝛼𝑚. Hence 

𝐿(𝑆) = 𝑊. 

∴                                                𝑆 𝑖𝑠 𝑎 𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑊. 

∴                                             𝑑𝑖𝑚 𝑊 = 𝑚 𝑎𝑛𝑑 𝑚 ≤ 𝑛 

Now if 𝑉 = 𝑊, then every basis of 𝑉is also a basis of 𝑊. Hence 𝑑𝑖𝑚 𝑉 =

𝑑𝑖𝑚 𝑊 = 𝑛. 

Conversely let 𝑑𝑖𝑚 𝑊 = 𝑑𝑖𝑚 𝑉 = 𝑛. Then to prove that 𝑊 = 𝑉. 

Let 𝑆 be one of 𝑊′𝑠 bases. If 𝑆 includes 𝑛 vectors, then 𝐿(𝑆) = 𝑊. Given 

that 𝑆 is a subset of 𝑉 and contains 𝑛 linearly independent vectors, 𝑆 is also 

a basis of 𝑉, Therefore 𝐿(𝑆) = 𝑉. Hence 𝑊 = 𝑉. We thus conclude: 

If 𝑊 is a proper subspace of a finite-dimensional vector space 𝑉 then 𝑊 is 

finite dimensional and 𝑑𝑖𝑚 𝑊 <  𝑑𝑖𝑚 𝑉. 

 

Theorem9. If 𝑊 is a subspace of a finite-dimensional vector space 𝑉, every 

linearly independent subset of 𝑊 is finite and is part of a (finite) basis for 

𝑊. 

Proof: Let dim 𝑉 = 𝑛. Assume that 𝑉 has a subspace 𝑊. Let 𝑆0 be a subset 

of 𝑊 that is linearly independent. Let 𝑆 be a linearly independent subset 

of  𝑊  that has the greatest number of elements and contains  𝑆0 . 

Consequently, 𝑆 is a linearly independent subset of 𝑉 as well. Thus, 𝑆 will 

have no more than 𝑛 elements. 𝑆 is finite as a result, and 𝑆0 is also finite. 

We are now claiming that 𝑆 is a basis of 𝑊. The following is the proof: 

(i) S is a linearly independent subset of W. 

(ii) L(S) = W 
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Because 𝛽 must be in the linear span of 𝑆 if it is in 𝑊. The subset of 𝑊 

those results from adjoining beta to 𝑆 will be linearly independent if 𝛽 is 

not in the linear span of 𝑆. Consequently, 𝑆 will no longer be the largest 

linearly independent subset of 𝑊  that contains  𝑆0 . Thus , 𝛽 ∈ 𝑊 ⇒ 𝛽 ∈
𝐿(𝑆) . Consequently  𝑊 ⊆ 𝐿 (𝑆) . 𝐿(𝑆) ⊆ 𝑊  since  𝑆  is a subset of the 

subspace 𝑊. 

Hence                                                𝐿(𝑆) = 𝑊 

Thus 𝑆 is finite basis of 𝑊 and 𝑆0 ⊆ 𝑆. 

 

Theorem10. Let 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑛},  be a basis of a finite dimensional 

vector space 𝑉(𝐹)  of dimension 𝑛 . Then every element a of 𝑉  can be 

uniquely expressed as 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛;  𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐹 

Proof: Since  𝑆  is a basis of  𝑉 , therefore  𝐿(𝑆)  =  𝑉  Therefore any 

vector 𝛼 ∈ 𝑊 can be expressed as  

𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 

To show uniqueness let us suppose that  

𝛼 = 𝑏1𝛼1 + 𝑏2𝛼2 + ⋯ + 𝑏𝑛𝛼𝑛 

Then we must show that 𝑎1 = 𝑏1, 𝑎2 = 𝑏2, … , 𝑎𝑛 = 𝑏𝑛 

We have 

𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 = 𝑏1𝛼1 + 𝑏2𝛼2 + ⋯ + 𝑏𝑛𝛼𝑛 

⇒               (𝑎1 − 𝑏1)𝛼1 + (𝑎2 − 𝑏2)𝛼2 + ⋯ + (𝑎𝑛 − 𝑏𝑛)𝛼𝑛 = 0 

⇒                      𝑎1 − 𝑏1 = 0, 𝑎2 − 𝑏2 = 0, … , 𝑎𝑛 − 𝑏𝑛 = 0 

∵ 𝛼1, 𝛼2, … , 𝛼𝑛 are linearly independent. 

⇒                        𝑎1 = 𝑏1, 𝑎2 = 𝑏2, … , 𝑎𝑛 = 𝑏𝑛 

 

Theorem11. If 𝑊₁ 𝑎𝑛𝑑 𝑊₂  are two subspaces of a finite dimensional 

vector space 𝑉(𝐹), then 

𝑑𝑖𝑚 (𝑊1 + 𝑊2) =  𝑑𝑖𝑚 𝑊1 + 𝑑𝑖𝑚 𝑊2 + 𝑑𝑖𝑚 (𝑊1 ∪ 𝑊2) 

Proof: Let 𝑑𝑖𝑚 (𝑊1 ∩ 𝑊2) = 𝑘  and let the set 𝑆 = {𝛾1, 𝛾2, … , 𝛾𝑘}  be a 

basis of 𝑊1 ∩ 𝑊2. Then 𝑆 ⊆ 𝑊1 𝑎𝑛𝑑 𝑆 ⊆ 𝑊2. 
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Since 𝑆 is linearly independent and 𝑆 ⊆ 𝑊1, therefore 𝑆 can be extended to 

form a basis of 𝑊1. Let {𝛾1, 𝛾2 , … , 𝛾𝑘 , 𝛼1, 𝛼2, … , 𝛼𝑚} be a basis of 𝑊1. Then 

𝑑𝑖𝑚 𝑊1 = 𝑘 + 𝑚. Similarly let {𝛾1, 𝛾2, … , 𝛾𝑘 , 𝛽1, 𝛽2, … , 𝛽𝑡} be a basis of 

𝑊2. Then 𝑑𝑖𝑚 𝑊2 = 𝑘 + 𝑡. 

∴        dim 𝑊1 + dim 𝑊2 − dim(𝑊1 ∩ 𝑊2) = (𝑚 + 𝑘) + (𝑘 + 𝑡) − 𝑘 

                                                                               = 𝑘 + 𝑚 + 𝑡   
Therefore, to prove the theorem we must show that 

dim(𝑊1 + 𝑊2) = 𝑘 + 𝑚 + 𝑡 

We claim that the set 𝑆1 = {𝛾1, 𝛾2 , … , 𝛾𝑘 , 𝛼1, 𝛼2, … , 𝛼𝑚 , 𝛽1, 𝛽2, … , 𝛽𝑡} is a 

basis of 𝑊1 + 𝑊2. 

Firstly, we have to show that 𝑆1 is linearly independent. Let 

𝑐1𝛾1 + 𝑐2𝛾2 + ⋯ + 𝑐𝑘𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚 + 𝑏1𝛽1 + 𝑏2𝛽2 

+ ⋯ + 𝑏𝑡𝛽𝑡 = 0      … (1) 

⇒ 𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑡𝛽𝑡

= −(𝑐1𝛾1 + 𝑐2𝛾2 + ⋯ + 𝑐𝑘𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯
+ 𝑎𝑚𝛼𝑚)                                                                            … (2) 

 

Now −(𝑐1𝛾1 + 𝑐2𝛾2 + ⋯ + 𝑐𝑛𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚) ∈ 𝑊1 

since it is a linear combination of a basis of 𝑊1. Again 

𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑡𝛽𝑡 ∈ 𝑊2 

Since it is a linear combination of elements belonging to a basis of 𝑊2. 

Also, by virtue of the equality (2), 𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑡𝛽𝑡 ∈ 𝑊1 . 

Therefore 𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑡𝛽𝑡 ∈ 𝑊1 ∩ 𝑊2 . Therefore it can be 

expressed as a liner combination of the basis of 𝑊1 ∩ 𝑊2. Thus we have a 

relation of the form 

𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑡𝛽𝑡 = 𝑑1𝛾1 + 𝑑2𝛾2 + ⋯ + 𝑑𝑘𝛾𝑘  

⇒               𝑏1𝛽1 + 𝑏2𝛽2 + ⋯ + 𝑏𝑡𝛽𝑡 − 𝑑1𝛾1 − 𝑑2𝛾2 − ⋯ − 𝑑𝑘𝛾𝑘 = 0 

But  𝛽1, 𝛽2, … , 𝛽𝑡 , 𝛾1, 𝛾2, … , 𝛾𝑘 are linearly independent vectors. Therefore 

we must have 

𝑏1 = 0, 𝑏2 = 0, … , 𝑏𝑡 = 0 
Putting these values in equation (1), we get 

𝑐1𝛾1 + 𝑐2𝛾2 + ⋯ + 𝑐𝑘𝛾𝑘 + 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑚𝛼𝑚 = 0 

⇒               𝑐1 = 0, 𝑐2 = 0, … , 𝑐𝑘 = 0, 𝑎1 = 0, 𝑎2 = 0, … , 𝑎𝑚 = 0 

Since the vectors  𝛾1, 𝛾2, … , 𝛾𝑘 , 𝛼1, 𝛼2, … , 𝛼𝑚  are linearly independent. 

Thus, the relation (1) implies 

𝑐1 = 0, … , 𝑐𝑘 = 0, 𝑎1 = 0, … , 𝑎𝑚 = 0, 𝑏1 = 0, … , 𝑏𝑡 = 0 

Therefore, the set 𝑆1 is linearly independent. 

Now to show that 𝐿(𝑆1) = 𝑊1 + 𝑊2 

Since 𝑊1 + 𝑊2 is a subspace of 𝑉  and each elements of 𝑆1 ∈ 𝑊1 + 𝑊2 , 

therefore 𝐿(𝑆1) ⊆ 𝑊1 + 𝑊2. 

Again let 𝛼 be any element of 𝑊1 + 𝑊2. Then 

𝛼 = 𝑠𝑜𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑊1 + 𝑠𝑜𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑊2 

 = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑊1

+ 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑊2 

    = 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑆1 
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∴                                 𝛼 ∈ 𝐿(𝑆1). ℎ𝑒𝑛𝑐𝑒𝑊1 + 𝑊2 ⊆ 𝐿(𝑆1) 

∴                                            𝐿(𝑆1) = 𝑊1 + 𝑊2 

∴                         𝑆1 𝑖𝑠 𝑎 𝑏𝑎𝑠𝑖𝑠 𝑜𝑓 𝑊1 + 𝑊2𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 

dim(𝑊1 + 𝑊2) = 𝑘 + 𝑚 + 𝑡 
Hence the theorem proved. 

   

Example2. Let 𝑉 be the vector space of all 2 × 2 matrices over the field 𝐹. 

Prove that  𝑉  has dimension  4  by exhibiting a basis for  𝑉  which has  4 

elements. 

Solution: Let 𝛼 = [
1   0
0   0

] , 𝛽 = [
0   1
0   0

] , 𝛾 = [
0   0
1   0

]  𝑎𝑛𝑑 𝛿 = [
0   0
0   1

]  four 

elements of 𝑉.  

The subset 𝑆 = {𝛼, 𝛽, 𝛾, 𝛿} 𝑜𝑓 𝑉 is linearly independent because  

𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 + 𝑑𝛿 = 0 

⇒                          𝑎 [
1   0
0   0

] + 𝑏 [
0   1
0   0

] + 𝑐 [
0   0
1   0

] + 𝑑 [
0   0
0   1

] = 0 

⇒                                                   [𝑎   𝑏
𝑐   𝑑

] = [
0   0
0   0

] 

⇒                                             𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0 

Also 𝐿(𝑆) = 𝑉 because if [
𝑎   𝑏
𝑐   𝑑

]is any vector in 𝑉, then we can write 

[𝑎   𝑏
𝑐   𝑑

] = 𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 + 𝑑𝛿 

Therefore  𝑆  is a basis of  𝑉 . since no. of elements in  𝑆 𝑖𝑠 4 , therefore 

𝑑𝑖𝑚 𝑉 = 4. 

 

Example3. If 𝑊₁ 𝑎𝑛𝑑 𝑊₂  are finite-dimensional subspaces with the same 

dimension, and if 𝑊1 ⊆ 𝑊2 , 𝑡ℎ𝑒𝑛 𝑊1 = 𝑊2 . 

Solution: Since 𝑊1 ⊆ 𝑊2 , therefore 𝑊₁ is also a subspace of 𝑊₂. Now 

𝑑𝑖𝑚 𝑊1 = 𝑑𝑖𝑚 𝑊2. Therefore we must have 𝑊1 = 𝑊2. 

 

Example4. Let 𝑉 be the vector space of ordered pairs of complex numbers 

over the real field 𝑅 i.e., let 𝑉 be the vector space 𝐶(𝑅). Show that the set 

𝑆 = {(1, 0), (𝑖, 0), (0, 1), (0, 𝑖)} is a basis for 𝑉. 

Solution: 𝑆 is linearly independent. We have 

 𝑎 (1, 0) + 𝑏 (𝑖, 0) + 𝑐 (0, 1) + 𝑑 (0, 𝑖) = (0, 0)  
⇒                                    (𝑎 + 𝑖𝑏, 𝑐 + 𝑖𝑑) = (0, 0) 

⇒                                𝑎 + 𝑖𝑏 = 0, 𝑐 + 𝑖𝑑 = 0 

⇒                              𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0.  
Therefore 𝑆 is linearly independent. Where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 

 

Now we shall show that 𝐿(𝑆) =  𝑉. Let any ordered pair (𝑎 + 𝑖𝑏, 𝑐 + 𝑖𝑑)  ∈
𝑉 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐, 𝑑 ∈  𝑅. Then as shown above we can write  (𝑎 + 𝑖𝑏, 𝑐 +
𝑖𝑑) = 𝑎 (1, 0) + 𝑏 (𝑖, 0) + 𝑐 (0, 1) + 𝑑 (0, 𝑖) . Thus any vector in 𝑉 is 

expressible as a linear combination of elements of 𝑆. Therefore 𝐿(𝑆) = 𝑉 

and so 𝑆 is a basis for 𝑉. 
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Example5. Show that a system  𝑋  consisting of the vectors  𝛼1 =
(1,0,0,0), 𝛼2 = (0,1,0,0), 𝛼3 = (0, 0, 1, 0)𝑎𝑛𝑑 𝛼4 = (0,0,0,1) is a basis set 

of 𝑅4(𝑅).  

Solution: First we show that the set  𝑋  is a linearly independent set of 

vectors. 

If 𝑎1, 𝑎2, 𝑎3, 𝑎4 be any scalars i.e, elements of the field 𝑅, then  

 𝑎1𝛼1 + 𝑎2𝛼2 + 𝑎3𝛼3 + 𝑎4𝛼4 =  𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 

 ⇒   𝑎1(1,0,0,0) + 𝑎2(0,1,0,0) + 𝑎3(0, 0, 1, 0) + 𝑎4(0, 0, 0,1) = (0,0,0,0) 

⇒                                  ( 𝑎1, 𝑎2, 𝑎3, 𝑎4) = (0,0,0,0) 

⇒                                  𝑎1 = 0, 𝑎2 = 0, 𝑎3 = 0, 𝑎4 = 0 

 Therefore the given set 𝑋 of four vectors is linearly independent. Now we 

shall show that 𝑋 generates 𝑅4 i.e., each vector of 𝑅4 can be expressed as a 

linear combination of the vectors of 𝑋. 

Let (𝑎, 𝑏, 𝑐, 𝑑) be any vector in𝑅4. We can write  

(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 (1, 0, 0, 0) + 𝑏(0, 1, 0, 0) + 𝑐 (0, 0, 1, 0)  + 𝑑 (0, 0, 0, 1) 
                       = 𝑎𝛼1 + 𝑏𝛼2 + 𝑐𝛼3 + 𝑑𝛼4 

Thus (𝑎, 𝑏, 𝑐, 𝑑) has been expressed as a linear combination of the vectors 

of 𝑋 and so 𝑋 generates 𝑅4. 

Since  𝑋 is a linearly independent subset of  𝑅4  and it also generates 𝑅4 , 

therefore it is a basis of 𝑅4. 

 

4.7 SUMMARY: -  

In this unit we have studied the vector space's basis is a linearly independent 

set of vectors that spans the space and offers a minimum and comprehensive 

representation of all of its elements. We have examined this idea in this unit. 

We investigated finite-dimensional vector spaces, in which the number of 

vectors in the basis is finite, and we proved that the dimension of the space 

is determined by the number of vectors in any basis. We also looked at the 

dimension of a finitely produced vector space, highlighting how it is 

dependent on the size of the generating basis. We then applied this concept 

to the study of a subspace, demonstrating that the subspace inherits a 

dimension that is smaller than or equal to the parent spaces. 

4.8 GLOSSARY: - 

 Basis – A set of linearly independent vectors that spans a vector 

space; provides the simplest building blocks to represent all vectors 

in the space. 
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 Spanning Set – A set of vectors whose linear combinations can 

generate the entire vector space. Every basis is a spanning set but 

with the extra condition of linear independence. 

 Finite Basis – A basis consisting of a finite number of vectors. A 

vector space with such a basis is called a finite-dimensional vector 

space. 

 Infinite Basis – A basis with infinitely many vectors, associated 

with infinite-dimensional vector spaces (e.g., function spaces). 

 Cardinality of Basis – The number of vectors in a basis; defines the 

dimension of the vector space. 

 Standard Basis – A commonly used basis for Euclidean spaces 

(e.g., for ℝ𝑛 ,  the standard basis is {(1, 0…,0), 

(0,1,0,…,0),…,(0,0,…,1)}. 

  Ordered Basis – A basis in which the order of vectors matters, 

important for defining coordinates of vectors uniquely. 

 Change of Basis – The process of converting coordinates of a vector 

from one basis to another, often represented using a change-of-basis 

matrix. 

 Orthonormal Basis – A basis where vectors are orthogonal 

(perpendicular) and normalized (length 1). Useful in inner product 

spaces. 

  Hamel Basis – A basis for a vector space over a field where every 

element can be written as a finite linear combination of basic 

elements. 

 Schauder Basis – A type of basis for infinite-dimensional spaces 

where infinite linear combinations (series) may be used. 

  Basis Vector – An individual vector belonging to a basis set; 

together with others, it helps in uniquely representing any vector in 

the space. 

 Coordinate Vector (relative to a basis) – The unique list of scalars 

(coefficients) corresponding to the linear combination of basis 

vectors that represent a given vector. 
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4.11 TERMINAL QUESTIONS: - 

(TQ-1) Show that the infinite set 𝑆 = {1, 𝑥, 𝑥2, . . . , 𝑥𝑛 , … }  is a basis of the 

vector space 𝐹[𝑥] of polynomials over the field 𝐹. 

 (TQ-2) Show that the set 𝑆 = {1, 𝑥, 𝑥2, . . . , 𝑥𝑛} of 𝑛 + 1 polynomials in 𝑥 

is a basis of the vector space  𝑃𝑛(𝑅) , of all polynomials 

in 𝑥 (𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑛) over the field of real numbers. 

(TQ-2) Show that the vectors  𝛼1 = (1,0, −1), 𝛼2 = (1,2,1), 𝛼3 =

(0, −3,2) form a basis set of 𝑅3. 

(TQ-4) Prove that any finite set 𝑆 of vectors, not all zero vectors, contains 

a linearly independent subset 𝑇 which spans the same space as 𝑆. 

(TQ-5) If 𝑊₁ 𝑎𝑛𝑑 𝑊₂  are finite-dimensional subspaces with the same 

dimension, and if 𝑊1 ⊆ 𝑊2 , 𝑡ℎ𝑒𝑛 𝑊1 = 𝑊2 . 

(TQ-6) If 𝑊₁ 𝑎𝑛𝑑 𝑊₂ are two subspaces of a finite dimensional vector 

space 𝑉(𝐹), then 

𝑑𝑖𝑚 (𝑊1 + 𝑊2) =  𝑑𝑖𝑚 𝑊1 + 𝑑𝑖𝑚 𝑊2 + 𝑑𝑖𝑚 (𝑊1 ∪ 𝑊2) 

(TQ-7) Let 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑛},  be a basis of a finite dimensional vector 

space 𝑉(𝐹) of dimension 𝑛. Then every element a of 𝑉 can be uniquely 

expressed as 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛; 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐹 

(TQ-8) Show that a system  𝑋  consisting of the vectors  𝛼1 =

(1,0,0,0), 𝛼2 = (0,1,0,0), 𝛼3 = (0, 0, 1, 0)𝑎𝑛𝑑 𝛼4 = (0,0,0,1) is a basis set 

of 𝑅4(𝑅).  
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UNIT 5: -Linear Transformation 
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5.13     Terminal questions  

5.14     Answers  

 

5.1  INTRODUCTION 

In linear algebra, a linear transformation is a special type of function 

between two vector spaces that preserves the fundamental operations of 

vector addition and scalar multiplication.Linear transformations are 

important because they connect the abstract concept of vector spaces with 

concrete matrix operations. Every linear transformation can be represented 

by a matrix, and operations such as rotation, reflection, projection, and 

scaling in geometry are practical examples of linear transformations. 

Thus, linear transformation serves as a bridge between algebraic structures 

and geometric interpretations, making it a fundamental tool in 

mathematics, physics, computer science, and engineering. 

5.2  OBJECTIVES  

After studying this unit, the learner’s will be able to  

  Understand the Concept of a Linear Transformation  

  Learn The fundamental Properties  

  Explore the Relationship. 



LINEAR ALGEBRA  MT(N)-301 

 Department of Mathematics  

Uttarakhand Open University Page 58 
 

 Apply Linear Transformations. 

 Define Linear Operator and Linear Functional. 

5.3 LINEAR TRANSFORMATION 

Consider the vector spaces               over the same field  . A linear 

transformation is a function                  such that, for all      
            ,  

                                                                                            
The linearity property is another name for condition (1). It is clear that for 

any        and for all scalars    , the condition (1) is equal to the 

condition 

                      

5.4  LINEAR OPERATOR 

Consider a vector space     . A linear operator on   is a function   from 

  such that, for all                 ,  

                        

If    is a linear transformation from           itself, then    is a linear 

operator on  . 

Example1. The function                defined by            
                 is a linear transformation from                . 

Solution: Let                                    
If      , then 

                 [                        ] 
                                                              

                                                   

                                                     

                                                       

                                                             

                                             

   is a linear from               . 

 

Example2. Let       be the vector space of all     matrices over the 

field  . Let   be a fixed     matrix over  , and let   be a fixed     

matrix over  . The correspondence                 defined by      
          is a linear operator on  . 

Solution: If    is a     matrix over the field   , then     is also an 

    matrix over the field  . Therefore   is a function from         . 

Now let       and      . Then 

                   [           ] 
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   is a linear transformation from        . Thus   is a linear operator on 

 . 

 

Example3. Let        be the vector space of all polynomials over the 

field  . Let                
         

     be a polynomial of 

degree   in the indeterminate  . Let us define 

                                           
             

                                                            
Then the correspondence                 is a linear operator on  . 

Solution: If      is a polynomial over the field  , then       as defined 

above is also a polynomial over the field   . Thus if        , then 

       . Therefore   is a function from         .  

Also if             and      , then  

 [           ]                   
   is a linear transformation from        .  

The operator         is called the differentiation operator. It should be 

noted that for polynomials the definition of differentiation can be given 

purely algebraically, and does not require the usual theory of limiting 

processes. 

 

Example4. Let      be the vector space of all continuous functions from 

        . If     and we define   by  

        ∫     
 

 

         

Then   is a linear transformation from         . 

Solution: If    is real valued continuous function, then    , as defined 

above, is also a real valued continuous function. Thus 

          
 Also the operation of integration satisfies the linearity property. Therefore 

  is a linear transformation from         . 

 

Theorem1. Let   be a linear transformation from a vector space      into 

a vector space     . Then  

i.           on the left hand side is zero vector of         on the 

right hand side is zero vector of  . 

ii.                  
iii.                        . 

iv.                                       
                                           

Proof:  

i. Let    . Then       . We have 

                                      [                                 ] 
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                                                                            [
                      ] 

                                                    [                             ] 
Now in the vector space  , we have 

                                     
By left cancellation law for addition in  . 

ii. We have 
   [      ]             

 [                             ] 
But   [      ]                                                                   [      ] 
Thus in  , we have  

  [      ]    

                                                                        
 

iii.         [      ] 
                                                                                      [            ] 
                                      [     ]                                                    [       ] 
                                            

iv. We shall prove the result by induction on  , the number of vectors 

in the linear combination                . Suppose  
                       

                                      
Then  
                   

                              

                                                            

                            [                             ]   

              [      ] 
                                                                  
Now the proof is complete by induction since the result is true when the 

number of vectors in the linear combination is 1. 

 

5.5 RANGE AND NULL SPACE OF LINEAR 

TRANSFORMATION 

Range of a linear transformation: Let   be the linear transformation 

from         , and let               be two vector spaces. In this case, 

the set of all vectors         such that         for some         is the 

range of  , denoted as     . 

The image set of           is hence the range of  , i.e. 
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Theorem2. If                are two vector spaces and    is a linear 

transformation from         , then range of   is a subspace of  . 

Proof: Obviously      is a non-empty subset of  .  

Let           . Then there exist vectors       in   such that  

                   
Let     be any elements of the field  . We have  

                              

                                                 [                             ]  
Now   is a vector space. Therefore          and          

                                              
Consequently                              
Thus        and              

                                                

Therefore      is a subspace of  .  

 

Null space of a linear transformation: Let   be a linear transformation 

from         , and let               be two vector spaces. The set of 

all vectors        such that                           is then the null 

space of  , denoted as     . Consequently,  

                        

The null space of   is also known as the kernel of   if we consider the 

linear transformation                  to be a vector space 

homomorphism of         . 

 

Theorem3. If                are two vector spaces and    is a linear 

transformation from         , then the kernel of   or the null space of   is 

a subspace of  . 

Proof: Let                      .  

Since          , therefore at least          

Thus      is a non-empty subset of  .  

Let             Then         and        .  

Let       . Then           and  
                            [                             ] 
                                                
                          

Thus                                   .  

Therefore      is a subspace of  . 

5.6 RANK AND NULLITY OF LINEAR 

TRANSFORMATION  
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Considering   to be finite dimensional, let   be a linear transformation 

from a vector space      onto a vector space     . The dimension of the 

range of    is represented by the rank of         which is equal 

to         . i.e. 

 

             
 

The dimension of the null space of    is represented by the nullity 

of    represented by     . i.e. 

             

 

Theorem5. Let         be vector spaces over the field   and let   be a 

linear transformation from         . Suppose that   is finite dimensional. 

Then 

                          . 

Proof: Let   be the null space of  . Then   is a subspace of  . Since   is 

finite dimensional, therefore    is finite dimensional. Let        
              and let              be a basis for  . 

Since               is a linearly independent subset of  , therefore we 

can extend it to form a basis of   . Let          and let 

                         be a basis for  . 

The vectors                                     are in range of  . 

We claim that                    is a basis for the range of  . 

 

(i) First we shall prove that the vectors 

 

                 span the range of  .  

Let             . Then there exists     such that        . 

Now                                             
     

                                                  

                                                      
         

                                   

                                        
 

  The vectors                  span the range of  . 

 

(ii) Now we shall show that the vectors                  are linearly 

independent. 

 

Let             such that 

                         

                                         [               ]    
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For some          

[  each vector in    can be expressed as a linear combination of the 

vectors           forming a basis of  ] 

 The vectors                  are linearly independent.  

 The vectors                  form a basis of range of  .  

                                              
                                                   
 

Example5. Show that the mapping               defined as 

                   
is a linear transformation from               .  Find the range, rank, 

null-space and nullity of T. 

Solution: Let                           .  

Then                                                  
Also let        . Then              and 

           [                   ] 
                                             

                                                              

      

                                                                 

       
                                                              

                                    

                                                    
                                                
                                                  
                                              

The vectors               span the range of  . Thus the range of   is the 

subspace of       spanned by the vectors                   
Now the vectors                          are linearly independent 

because if        , then 

                            
                     

                                                      

                                                               
 The vectors                  form a basis for range of  .  

Hence                           .  

Nullity of                            .  

Null space of   must be the zero subspace of      . 

Otherwise,                         
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       is the only element of       which belongs to null space of  . 

Null space of   is the zero subspace of      . 

 

Example6. Consider the basis               of     where     
                               Express           in terms of the 

basis        . 

 

Let         be defined as  

                                     . Find          . 

Solution: Let                       

                                
Then                   .  

Solving these equations, we get                 
                        
Now                          

                                                       
[                              ] 

                                                        

                                                      

                                        
 

5.7 ALGEBRA OF LINEAR TRANSFORMATION  

Let   be a vector space over a field  . The set of all linear transformations 

from   to itself is denoted by 

                          

This set becomes an algebra (called the algebra of linear transformations) 

when we define the following operations: 

1. Addition: 

For                   

                       

2. Scalar Multiplication: 

For                

               

3. Multiplication (Composition): 

For                   
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            (     ) 

These operations satisfy the properties of algebra over  : 

 Under addition and scalar multiplication,       is a vector space. 

 Under multiplication (composition),       is closed and 

associative. 

 Multiplication distributes over addition. 

 

5.8 LINEAR FUNCTIONAL 

Consider a vector space      . We know that the field   is a vector space 

over  . This is the vector space     . We'll just write it as  . A linear 

functional on    is a linear transformation from         . We will now 

define a linear functional independently. 

Consider a vector space V (F). A linear functional on V is defined as a 

function   from   into   if 

                                         
for every   in  ,       is in   if   is a linear functional on      . A linear 

function on   is a scalar valued function since      is a scalar. 

Example7. Let        be the vector space of ordered   -tuples of the 

elements of the field  . 

Let           , be   field elements of  . If  

                       
Let   be a function from               defined by 

                       

Then prove that   is a functional on       . 
Solution: Let                        . If        , we have  

            [                              ] 
                                              

                                                     
                                                        

                                                         

                                         
                                      
 

Example8. Prove that the trace function is a linear functional on the space 

of all     matrices over a field  . 

Solution: Let   be a positive integer and   be a field. Let       be the 

vector space of all     matrices over  . If   [   ]     , then the 

trace of   is the scalar  
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                     ∑   

 

   

 

Thus, the trace of   is the scalar obtained by adding the elements of   

lying along the principal diagonal. 

The trace function is a linear functional on    because if        and 

  [   ]      [   ]      , then  

                            (  [   ]   
  [   ]   

) 

                                             ([         ]   
)  ∑           

 

   

 

                                           ∑     ∑   

 

   

 

   

 

                                                             
  The trace function is a linear functional. 

 

Theorem6. Let   be a linear functional on a vector space      . Then 

(i)        Where   on the left-hand side is zero vector of         

on the right-hand side is zero element of  . 

 

(ii)                    
Proof:(i)   Let    . Then       . We have 

                                                             [                        ] 
                                                                        [                       ] 
                                                               [                         ] 
Now   is a field, we have 

                              

                         
By left cancellation law for addition in  . 

(ii) We have 
   [      ]             

   [                         ] 
But   [      ]                                                                         [      ] 
Thus in  , we have  

             

                                                                         
 

 

5.9  SUMMARY  

In this unit, we studied the concept of Linear Transformation, which is a 

mapping between vector spaces that preserves vector addition and scalar 

multiplication. We explored Linear Operators (transformations from a 
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vector space to itself), the Range (Image) and Null Space (Kernel) of a 

transformation, and the important Rank-Nullity Theorem, which relates 

the dimension of the range and null space to the dimension of the domain. 

We also discussed the Algebra of Linear Transformations, covering 

their addition, scalar multiplication, and composition, as well as the notion 

of Linear Functionals, which are special linear transformations mapping 

vectors to scalars. Together, these topics provide a foundation for 

understanding the structure and behavior of linear systems in abstract and 

applied mathematics. 

5.10  GLOSSARY  

 Linear Mapping: Another term for a linear transformation; 

emphasizes the mapping property from one vector space to 

another. 

 Linear Operator: A linear transformation from a vector space   

to itself (T:V→V). 

 Endomorphism: A homomorphism (linear transformation) from a 

vector space to itself. 

 Automorphism: A bijective linear transformation from a vector 

space to itself (an invertible linear operator). 

 Matrix Representation: Every linear transformation T:V→W can 

be represented as a matrix once bases for V and 𝑊 are chosen. 

 Kernel (Null Space): The set of all vectors in the domain that are 

mapped to the zero vector. 

 Range (Image): The set of all possible outputs (values) of a linear 

transformation. 

 Rank: The dimension of the range (image) of a linear 

transformation. 

 Nullity: The dimension of the kernel (null space) of a linear 

transformation. 

 Algebra of Linear Transformations: The study of addition, 

scalar multiplication, and composition of linear transformations. 

 Linear Functional: A special linear transformation from a vector 

space to its underlying field, i.e., f:V→F. 

 Diagonalizable Operator: A linear operator that can be 

represented by a diagonal matrix with respect to some basis. 

 Invertible Transformation: A linear transformation that has an 

inverse mapping, requiring it to be both injective and surjective. 
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5.13 TERMINAL QUESTIONS 

(TQ-1) The function               defined by                

                         is a linear transformation 

from               . 

 (TQ-2) The function                defined by                

       is a linear transformation. 

(TQ-3) Show that the mapping         is defined as             

          is a linear transformation from         . Find the range, 

rank, null space and nullity of  . 

(TQ-4) Let   be a finite-dimensional vector space over the field   and let 

  be an ordered basis for  . Prove that the function    which assigns to 

each vector   in   the      coordinate of   relative to the ordered basis   is 

a linear functional on  . 
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(TQ-5) What is the difference between a linear transformation and a 

general function? 

(TQ-6) Define the kernel and range of a linear transformation. 

(TQ-7) What do you mean by the rank and nullity of a linear 

transformation? State the Rank-Nullity Theorem. 

(TQ-8) Explain the difference between a linear transformation and a 

linear operator. 

(TQ-9) Define a linear functional. Give an example. 

(TQ-10) Prove that the composition of two linear transformations is also 

linear. 

(TQ-11) Show that every linear transformation from     tom   can be 

represented by a matrix. 

(TQ-12) State and prove the Rank-Nullity Theorem. 

(TQ-13) Let        be the vector space of ordered   -tuples of the 

elements of the field  . 

Let           , be   field elements of  . If  

                       
Let   be a function from               defined by 

                       

Then prove that   is a functional on       . 

(TQ-15) Consider the basis               of     where     
                               Express           in terms of the 

basis        . 

(TQ-16) Let         be defined as  

                                     . Find          . 

The function               defined by                          
  is a linear transformation from               . 

 

 

5.14  ANSWERS 

(TQ-3) Null space of       , nullity of     , rank of     . The 

set                      is a basis set for     . 
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UNIT 6: -Homomorphism and Isomorphism 

CONTENTS: 
6.1      Introduction 

6.2      Objectives 

6.3      Homomorphism of a Vector Space 

6.4      Isomorphism of a Vector Space 

6.5      Quotient Space 

6.6      Direct Sum of Spaces 

6.7      Coordinates 

6.8      Kernel of A Homomorphism 

6.9      Injective Homomorphism (One-To-One): 

6.10    Image Of A Homomorphism 

6.11     Summary 

6.12       Glossary 

6.13     References 

6.14     Suggested Reading 

6.15     Terminal questions  

 

6.1  INTRODUCTION 

This section will cover some key ideas that create more complex 

relationships and structures in vector spaces. A vector space is said to be 

homomorphic if linear transformations maintain scalar multiplication and 

vector addition. A specific bijective homomorphism that demonstrates the 

structural similarity of two vector spaces is called an isomorphism of a 

vector space. A subspace of a vector space can be "factored out" to create 

a new space of cosets, which is the quotient space. In order to ensure that 

every vector has a distinct decomposition, the direct sum of spaces offers a 

method for building larger vector spaces from smaller ones. Last but not 

least, coordinates explain how vectors can be uniquely defined in relation 

to a selected basis. 

In linear algebra, a homomorphism is a structure-preserving map between 

two vector spaces defined over the same field. It is essentially a linear 

transformation that respects the operations of vector addition and scalar 

multiplication. 

An isomorphism is a special kind of homomorphism that is both one-to-

one (injective) and onto (surjective). It establishes a perfect 
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correspondence between two vector spaces, showing that they are 

essentially the same in terms of structure. 

6.2  OBJECTIVES  

After studying this unit, the learner’s will be able to  

 Understand Homomorphism of a Vector Space. 

 Explore Isomorphism of a Vector Space. 

 Study Quotient Space. 

 Examine Direct Sum of Spaces and Disjoint Subspaces. 

6.3  HOMOMORPHISM OF A VECTOR SPACE  

We consider two vector spaces              . Then a mapping  

       
is called to as a homomorphism or a linear transformation if 

i.                         

ii.                        

Then the conditions     and      can be combined into a single condition 

                                       

If    is a homomorphism of          , then    is called a homomorphic 

image of U. 

Theorem1. If   is a homomorphism of               , then 

(i)         where          are the zero vectors of         

respectively. 

(ii)                  

Proof: (i) Let     . Then       . Since    is the zero vector of  , 

therefore 

                               

Now   is an abelian group with respect to addition of vectors. 

                                                         

                                                by left cancellation law. 

(ii) If    , then    . Also, we have  
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         [      ]             

Now                                              

               

6.4  ISOMORPHISM VECTOR SPACE  

We consider two vector spaces              . Then a mapping  

       

is called to as a isomorphism of           if 

i.   is one-one. 

ii.   is onto. 

iii.                                        

Symbolically, we write            to indicate that the two vector 

spaces         are isomorphic. 

The vector space      is also called the isomorphic image of the vector 

space     . 

If    is a homomorphism of                , then    will become an 

isomorphism of          if   is one-one. Also, in addition if   is onto  , 

then   will become an isomorphism of         . 

 

Theorem2. Two finite dimensional vector spaces over the same field are 

isomorphic if and only if they are of the same dimension. 

Proof: Let               be two vector spaces of dimension  , each of 

which has a finite dimension. Then prove that           . 

Let the set of vectors  {          }    {          } be the basis of 

        respectively. 

Any vector     can be uniquely expressed as 

                   

Let       be defined by 

                      

Since in the expression of   as a linear combination of           , the 

scalars          are unique, therefore the mapping   is well defined 

i.e.,      is a unique element of  . 

  is one-one. We have  
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   is one-one. 

           . If                  is any element of  , then   an 

element                     such that 

                                     

   is onto. 

  is a linear transformation. We have  

 [                                       ] 

          [                                     ] 

                                              

                                                

                                                  

   is a linear transformation. 

Hence   is an isomorphism of        .  

                                                           . 

Conversely, let                be two isomorphic finite dimensional 

vector spaces. 

Then to prove that            . 

 Let         . Let    {          }  be a basis of   . If    is an 

isomorphism of          , we shall show 
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that    {                   }  is a basis of  . Then   will also be of 

dimension  . 

First, we shall show that    is linearly independent.  

                                                                 

                          [                            ] 

                              [                        ] 

                      

[                                    ] 

    is linearly independent. 

Now we have to prove that         . For this we prove that any 

vector     can be expressed as a linear combination of the vectors of 

the set    . Since    is onto    therefore                . 

Let                     

Then                            

                                           

Thus   is a linear combination of the vectors of the set    . Hence  

        

    is a basis of  . Since    contains    vectors, therefore      . 

 

Theorem3. Every   dimensional vector space      is isomorphic to 

       
Proof: Let {          } be any basis of     . Then every vector     

can be uniquely expressed as 

                         

The ordered                           . 

Let              be defined by                  .  
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Since in the expression of   as a linear combination of            the 

scalars             are unique, therefore       is a unique element 

of       and thus the mapping   is well defined  

  is one-one. Let                    and             

       be any two elements of  . We have 

          

                                               

                                                             

                                                            

                                                                

   is one-one. 

               . Let                   . Then   an element      

                 such that 

                                 

   is onto. 

  is a linear transformation. If                   , we have 

         

         [                                       ] 

         [                                     ] 

                                        

                                        

                                    

                                                  

                    

   is a linear transformation. 

Hence   is an isomorphism of               .  
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                                                                   . 

Example1. Show that the mapping                defined 

by                      is a homomorphism of                . 

Solution: Let                               be any two elements 

of      . Also let     be any two elements of  . We have 

            [                         ] 
                                                  [                         ] 
                                                                   
                                                                   
                                                                           
   is a linear transformation.  

To show that   is onto      . Let         be any element of       . Then 
                and we have                      . Therefore    is 

onto      . 
Therefore   is a homomorphism of                . 
 

Example2. If    is a finite dimensional vector space and    is an 

isomorphism of         , prove that   must map         . 

Solution: Let        be a vector space of dimension    that has finite 

dimensions. Let   be a linear transformation,   is one-one, and let   be an 

isomorphism of         . To prove that            .  

Let    have a basis    {          } . First, we will prove that     

{                   } is also a basis of  . We claim that    is linearly 

independent. The proof is as follows: 

Let                                             

                          [                            ] 

                              [                        ] 

                      

[                                    ] 

    is linearly independent. 

Now    is of dimension    and     is a linearly independent subset 

of   containing   vectors. Therefore     must be a basis of  . Therefore 

each vector in   can be expressed as a linear combination of the vectors 

belonging to   . 
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Now we shall show that   is onto  . Let   be any element of  . Then there 

exist scalars          such that 

                             

                     

Now                   and the          of this element is 

 . Therefore            . Hence   is an isomorphism of         . 

 

Example3. If   is finite dimensional and   is a homomorphism of   into 

itself which is not onto prove that there is some           such that 

        . 

Solution: If    is a homomorphism of    into itself, then           

Suppose there is no non-zero vector        such that       . Then   is 

one-one. Because 

          
                                             

                                                 [                            ]  
                                          
Now    is finite dimensional and    is a linear transformation of    into 

itself. Since     is one-one, therefore    must be onto   . But it is given 

that   is not onto. Therefore, our assumption is wrong. Hence there will be 

a non-zero vector        such that       . 

 

Example4. Define linear transformation of a vector space       into a 

vector space     . Show that 

                  
 the mapping of       into itself is not a linear transformation.  

Solution: Let                be two vector spaces over the same 

field  . A mapping       is called a linear transformation of   into   

if 

                                        

Now to show that the mapping  

                  
of      into itself is not a linear transformation. 

Take                       as two vectors of       and        
   as two elements of the field  . 

Then                           
By the definition of mapping  , we have  
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From equation (1) and (2), we see that 

                      
Hence   is not a linear transformation of       into itself. 

 

6.5  QUOTIENT SPACE 

Let   be any subspace of     , which is a vector space. Let   be any of 

    elements. Then the set 

    {        } 
is called a right cost of        generated by  . Similarly, the set 

    {        } 
is called a left cost of        generated by  . 

We will refer to     as simply a coset of        created by  . It is 

obvious that both             are subsets of  . Since addition in   

is commutative, we get          . 
The following results about costs are both to be remembered: 

 

(i) We have      and      . Therefore   itself is a coset of 

      . 

(ii)           
 

6.6  DIRECT SUM OF SPACES 

Let            be subspaces of a vector space     . If each element 

    can be expressed in one and only one way as              , 

then    is said to be the direct sum of             where     
                . 

If a vector space       is a direct sum of its two 

subspaces           then we should have not only          but 

also that each vector of   can be uniquely expressed as sum of an element 

of    and an element of   . Symbolically the direct sum is represented 

by the notation        . 

 

Disjoint subspaces: In the vector space     , two subspaces          

are considered disjoint if their intersection is the zero subspace, i.e. if 

       { }  
 

 

6.7  COORDINATES  
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Let       be a vector space with finite dimensions. Let 

  {          } be an ordered basis for  . 

When we say that the vectors of   have been enumerated in a well-defined 

manner, we mean that the vectors that occupy the first, second, nth 

positions in the set   are fixed. 

Let     . Then there exists a unique                      of scalars 

such that 

                   ∑    

 

   

 

The                      is called the         of coordinates of  

relative to the ordered basis  . The scalar  , is called      coordinate of a 

relative to the ordered basis  . The     matrix 

  [

  

  

 
  

] 

Is called the coordinate matrix of a relative to the ordered basis  . 

It should be mentioned that the   vector's coordinates are unique for the 

same basis set  , but only in relation to a specific ordering of  . There are 

various ways to arrange the basis of set   . The coordinates of   may 

change with a change in the ordering of B. 

 

6.8  KERNEL OF A HOMOMORPHISM 

If      W is a linear transformation (homomorphism) between vector 

spaces V and W, then the kernel of T is defined as 

 

      {         } 
where    is the zero vector in W 

The kernel consists of all vectors in the domain V that are mapped to the 

zero vector of the codomain W. 

Example: Let        be defined by 

                   
Then 

      {                      } 

Properties: 

1.       is always a subspace of V. 

Sol: The        is 

       {          } 
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To be a subspace of V, a set must satisfy three conditions: 

Since                 

If           , then                 so           . 

If            then                     so    
    . 

2. If       { }, then T is injective (one-to-one). 

By definition, T is injective if 

             ⟹        ⟹       ⟹    

But this is exactly the definition of       { }. So If the kernel 

only contains the zero vector, then no two distinct vectors in V can 

map to the same image → T is injective. 

3. The dimension of the kernel is called the nullity of T. Nullity is 

defined as: 

                        

It measures how many "degrees of freedom" there are in the solution to 

        By the Rank-Nullity Theorem: 

                         

where: 

            (     ) (dimension of the image), 

                         

 

6.9 INJECTIVE HOMOMORPHISM (ONE-TO-

ONE)  

An injective homomorphism (or one-to-one linear transformation) is a 

linear map       between two vector spaces such that different 

vectors in V map to different vectors in W. Formally, T is injective if 

              ⟹         ⟹           
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Equivalently, T is injective if and only if its kernel is trivial, i.e., 

 

      { } 
This means that the only vector in V that maps to the zero vector in W is 

the zero vector itself. Injective homomorphisms preserve distinctness of 

elements and play a key role in establishing isomorphisms between vector 

spaces. 

 

6.10  IMAGE OF A HOMOMORPHISM 

The image of a homomorphism (also called the range) describes the set 

of all possible outputs of the homomorphism. 

If      W is a linear homomorphism (linear transformation) between 

vector spaces, then the image of T is defined as: 

      {             } 

Properties: 

1. Subspace Property:       is always a subspace of W. 

2. Relation to Subjectivity: If        , then T is surjective 

(onto). 

3. Rank: The dimension of       is called the rank of T. 

Example5. Show that the set                           } is a basis of 

       where   is the field of real numbers. Hence find the coordinates of 

the vector         with respect to the above basis. 

Solution: The dimension of the vector space         is  . If the set   is 

linearly independent, then   will form a basis of        because   contains 

  vectors. Let       be scalars in   such that  

                                        

                                                            
                                             

                                                       
                                                 
Now to find the coordinates of         with respect to the ordered basis  . 

Let       be scalars in   such that  
                                      

                                           

                                    
                                     

 Hence the coordinates of the vector         are         i.e.,       
     . 
 



LINEAR ALGEBRA  MT(N)-301 

Department of Mathematics  

Uttarakhand Open University Page 82 
 

Example6. Construct three subspaces         of a vector space   so 

that                         . 
Solution: Take the vector space        

Obviously     {         }    {         }       
 {           } are three subspaces of   . 

We have                   and       {     } 
                                                   
Also, it can be easily shown that  

         and       {     } 
                                                   

Thus                        . 
 

6.11  SUMMARY  

An important term in the study of vector spaces is homomorphism and 

isomorphism. A homomorphism is a linear transformation between two 

vector spaces that respects the algebraic structure of the spaces by 

preserving the operations of scalar multiplication and vector addition. By 

transferring vector spaces into one another while preserving their linear 

characteristics, homomorphisms aid in our understanding of their linkages. 

In contrast, an isomorphism is a unique kind of homomorphism that is 

both onto (surjective) and one-to-one (injective). By establishing a perfect 

correspondence between two vector spaces, an isomorphism demonstrates 

that they are structurally similar and only differ in the labels of their 

constituent parts. 

6.12  GLOSSARY  

 Homomorphism (Linear Transformation): A function     W 

between two vector spaces that preserves vector addition and 

scalar multiplication. 

  Isomorphism: A bijective (one-to-one and onto) homomorphism 

that establishes structural equivalence between two vector spaces. 

 Kernel of a Homomorphism: The set of all vectors in V that map 

to the zero vector in W under T. 

 Image of a Homomorphism: The set of all vectors in W that are 

outputs of      for some    . 

 Injective Homomorphism (One-to-One): A homomorphism 

where distinct vectors in V map to distinct vectors in W; 

equivalently, the kernel contains only the zero vector. 

 Surjective Homomorphism (Onto): A homomorphism whose 

image equals the entire codomain W. 
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 Linear Isomorphism: A bijective homomorphism, implying that 

the two vector spaces have the same dimension. 

 Automorphism: An isomorphism from a vector space to itself. 

 Endomorphism: A homomorphism from a vector space to itself. 

 Dimension Preservation: In isomorphisms, both vector spaces 

must have the same dimension, ensuring structural equivalence. 
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6.15  TERMINAL QUESTIONS 

(TQ-1) Let      be the vector space of all complex numbers        

over the field of reals    and let    be a mapping from               

defined as                  . Show that   is an isomorphism. 

(TQ-2)                 are two finite dimensional vector spaces such 

that             . If    is an isomorphism of          prove 

that   must map         . 

(TQ-3) Find the coordinates of the vector          of    relative to the 

basis                                   . 

(TQ-4) Let            be two subspaces of a finite dimensional vector 

space   . If                                   { }  , prove 

that          . 

(TQ-5) Show that the set                           } is a basis of 

       where   is the field of real numbers. Hence find the coordinates of 

the vector         with respect to the above basis. 

(TQ-6) Define a homomorphism between two vector spaces. Give an 

example. 
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(TQ-7) What is meant by the kernel and image of a homomorphism? 

Prove that both are subspaces. 

(TQ-8) Define Rank-Nullity. 

(TQ-9) What is an isomorphism? Give necessary and sufficient conditions 

for a linear transformation to be an isomorphism. 

(TQ-10) Prove that if       is an isomorphism, then            

(TQ-11) Show that the composition of two isomorphisms is an 

isomorphism. 

(TQ-12) Show that the inverse of an isomorphism is also an isomorphism. 

(TQ-13) Give an example of a homomorphism that is not an 

isomorphism. 
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7.1 INTRODUCTION: -  

In linear algebra, the concept of dual space plays an important role in 

extending the study of vector spaces. Given a vector space 𝑉 over a field 𝐹, 

the dual space of 𝑉 , denoted by  𝑉∗ , is defined as the set of all linear 

functionals from 𝑉 𝑡𝑜 𝐹. A linear functional is a linear transformation that 

maps a vector in 𝑉 to a scalar in the field 𝐹. The dual space itself forms a 

vector space over the same field  𝐹 . If  𝑉  is finite-dimensional 

with 𝑑𝑖𝑚 (𝑉) = 𝑛, then the dual space 𝑉∗ also has dimension 𝑛. Each basis 

of 𝑉 gives rise to a dual basis in 𝑉∗, which allows us to connect vectors 

with linear functional in a systematic way. 

The concept of dual space is significant because it provides a framework for 

studying vector spaces from the perspective of linear functionals rather than 

vectors. It is widely used in advanced topics like differential geometry, 

functional analysis, optimization, and theoretical physics. 

7.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 Define Dual Space. 

 Define Dual Bases. 

 Define Second Dual Space. 
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7.3 DUAL SPACE: -  

Consider the vector space  𝑉  over the field  𝐹 . Then the set  𝑉′ , which 

contains all linear functionals on 𝑉, is a vector space over the field 𝐹. The 

dual space of 𝑉 is the vector space 𝑉′. 
The dual space of 𝑉 is also sometimes denoted by the symbols 𝑉∗ 𝑎𝑛𝑑 𝑉̂. 

Another name for the dual space of V is the conjugate space of V. 

 

7.4 DUAL BASES: -  

Theorem1. Let 𝑉 be an 𝑛-dimensional vector space over the field  𝐹 and 

let 𝐵 =  {𝛼1, 𝛼2, … , 𝛼𝑛} be an ordered basis for 𝑉. If {𝑥1, 𝑥2, … , 𝑥𝑛} is any 

ordered set of 𝑛 scalars, then there exists a unique linear functional 𝑓 𝑜𝑛 𝑉 

such that 𝑓(𝛼𝑖) = 𝑥𝑖;  𝑖 = 1, 2, . . . , 𝑛. 

Proof: Existence of 𝒇. Let 𝛼 ∈ 𝑉. 

Since 𝐵 =  {𝛼1, 𝛼2, … , 𝛼𝑛} is a basis for  𝑉 , therefore there exist unique 

scalars𝑎1, 𝑎2, … , 𝑎𝑛 such that  

𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 

For this vector 𝛼, let us define 

𝑓(𝛼) = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 

Obviously 𝑓(𝛼) as defined above is a unique element of 𝐹. Therefore 𝑓 is a 

well-defined rule for associating with each vector 𝛼 in 𝑉 a unique scalar 

𝑓(𝛼) 𝑖𝑛 𝐹. Thus 𝑓 is a function from 𝑉 𝑖𝑛𝑡𝑜 𝐹. 

The unique representation of 𝛼𝑖 ∈ 𝑉 as a linear combination of the vectors 

belonging to the basis 𝐵 is 

𝛼𝑖 = 0𝛼1 + 0𝛼2 + ⋯ + 1𝛼𝑖 + 0𝛼𝑖+1 + ⋯ + 0𝛼𝑛 

Therefore according to our definition of 𝑓, we have 

 𝑓(𝛼𝑖) = 0𝑥1 + 0𝑥2 + ⋯ + 1𝑥𝑖 + 0𝑥𝑖+1 + ⋯ + 0𝑥𝑛 

𝑖. 𝑒.               𝑓(𝛼𝑖) = 𝑥𝑖;  𝑖 = 1, 2, . . . , 𝑛 

Now to show that 𝑓 is a linear functional. Let 𝑎, 𝑏 ∈ 𝐹 and 𝛼, 𝛽 ∈ 𝑉. Let 
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𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 

𝑎𝑛𝑑                               𝛽 = 𝑏1𝛼1 + 𝑏2𝛼2 + ⋯ + 𝑏𝑛𝛼𝑛 

Then  

𝑓(𝑎𝛼 + 𝑏𝛽) 

       = 𝑓[𝑎(𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛) + 𝑏(𝑏1𝛼1 + 𝑏2𝛼2 + ⋯ + 𝑏𝑛𝛼𝑛)] 

       = 𝑓[(𝑎𝑎1 + 𝑏𝑏1)𝛼1 + (𝑎𝑎2 + 𝑏𝑏2)𝛼2 + ⋯ + (𝑎𝑎𝑛 + 𝑏𝑏𝑛)𝛼𝑛] 

       = (𝑎𝑎1 + 𝑏𝑏1)𝑥1 + (𝑎𝑎2 + 𝑏𝑏2)𝑥2 + ⋯ + (𝑎𝑎𝑛 + 𝑏𝑏𝑛)𝑥𝑛 

       = 𝑎(𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛) + 𝑏(𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛) 

       = 𝑎𝑓(𝛼) + 𝑏𝑓(𝛽) 

∴ 𝑓 is a linear functional on 𝑉. Thus there exists a linear functional 𝑓 𝑜𝑛 𝑉 

such that 𝑓(𝛼𝑖) = 𝑥𝑖;  𝑖 = 1, 2, . . . , 𝑛. 

Uniqueness of 𝒇. Let 𝑔 be the linear functional on 𝑉such that 

𝑔(𝛼𝑖) = 𝑥𝑖;  𝑖 = 1, 2, . . . , 𝑛. 

For any vector 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛 ∈ 𝑉, we have 

      𝑔(𝛼) = 𝑔(𝑎1𝛼1 + 𝑎2𝛼2 + ⋯ + 𝑎𝑛𝛼𝑛) 

                = 𝑎1𝑔(𝛼1) + 𝑎2𝑔(𝛼2) + ⋯ + 𝑎𝑛𝑔(𝛼𝑛)               [∵ 𝑔 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟] 

               = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 

                = 𝑓(𝛼) 

Thus 𝑔(𝛼) = 𝑓(𝛼)∀ 𝛼 ∈ 𝑉 

∴         𝑔 = 𝑓 

The above expression shows the uniqueness of 𝑓. 

Theorem2. Let 𝑉 be an 𝑛-dimensional vector space over the field 𝐹 and let 

𝐵 =  {𝛼1, 𝛼2, … , 𝛼𝑛} be a basis for 𝑉. Then there is a uniquely determined 

basis  𝐵′ = {𝑓1, 𝑓2, … , 𝑓𝑛}  for  𝑉′  such that 𝑓𝑖(𝛼𝑗) = 𝛿𝑖𝑗 . Consequently the 

dual space of an 𝑛-dimensional space is 𝑛-dimensional 

The basis 𝐵′ is called the dual basis of 𝐵. 
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Proof: Let 𝐵 =  {𝛼1, 𝛼2, … , 𝛼𝑛} is an ordered basis for  𝑉 . Therefore by 

theorem 1, there exists a unique linear functional 𝑓1  𝑜𝑛 𝑉 such that 

𝑓1(𝛼1) = 1, 𝑓1(𝛼2) = 0, … , 𝑓1(𝛼𝑛) = 0 

Where {1, 0 , . . . ,0} is an ordered set of 𝑛 scalars.  

In fact, for each 𝑖 =  1, 2 , . . . , 𝑛  there exists a unique linear functional such 

that 

𝑓𝑖(𝛼𝑗) = {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

𝑖. 𝑒.                                          𝑓𝑖(𝛼𝑗) = 𝛿𝑖𝑗                                                      … (1) 

Where 𝛿𝑖𝑗 ∈  𝐹 is Kronecker delta i.e. 𝛿𝑖𝑗 = 1 𝑖𝑓 𝑖 =  𝑗 and 𝛿𝑖𝑗 = 0 𝑖𝑓 𝑖 ≠

𝑗 . 

Let  𝐵′ = {𝑓1, 𝑓2, … , 𝑓𝑛} . Then  𝐵′  is a subset of  𝑉′  containing  𝑛  distinct 

elements of 𝑉′. We shall show that 𝐵′ is a basis for 𝑉′. 

First we shall show that 𝐵′ is linearly independent. 

Let                  𝑐1𝑓1 + 𝑐2𝑓2 + ⋯ + 𝑐𝑛𝑓𝑛 = 0̂  

⇒          (𝑐1𝑓1 + 𝑐2𝑓2 + ⋯ + 𝑐𝑛𝑓𝑛)(𝛼) = 0̂(𝛼) ∀𝛼 ∈ 𝑉 

⇒ 𝑐1𝑓1(𝛼) + 𝑐2𝑓2(𝛼) + ⋯ + 𝑐𝑛𝑓𝑛(𝛼) = 0∀𝛼 ∈ 𝑉 [∵ 0̂(𝛼) = 0] 

⇒                                              ∑ 𝑐𝑖𝑓𝑖(𝛼)

𝑛

𝑖=1

= 0∀𝛼 ∈ 𝑉 

Putting 𝛼 = 𝛼𝑗  ; 𝑗 = 1,2, … , 𝑛 

⇒                                           ∑ 𝑐𝑖𝑓𝑖(𝛼𝑗)

𝑛

𝑖=1

= 0; 𝑗 = 1,2, … , 𝑛 

⇒                                                  ∑ 𝑐𝑖𝛿𝑖𝑗

𝑛

𝑖=1

= 0; 𝑗 = 1,2, … , 𝑛 

⇒                                                              𝑐𝑗 = 0; 𝑗 = 1,2, … , 𝑛 

⇒ 𝑓1, 𝑓2, … , 𝑓𝑛  are linearly independent. 
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Also, we have to prove that the linear span of 𝐵′ is equal to 𝑉′. 

Let 𝑓 ∈ 𝑉′. The linear functional 𝑓 will be completely determined if we 

define it on a basis for 𝑉. So let 

                                            𝑓(𝛼𝑖) = 𝑎𝑖 ; 𝑖 = 1,2, … , 𝑛                                 … (2) 

We have to prove that 

𝑓 = 𝑎1𝑓1 + 𝑎2𝑓2 + ⋯ + 𝑎𝑛𝑓𝑛 = ∑ 𝑎𝑖𝑓𝑖

𝑛

𝑖=1

 

We know that two linear functional on 𝑉 are equal if they agree on a basis 

of 𝑉. Let 𝛼𝑗 ∈ 𝐵 ; 𝑗 = 1,2, … , 𝑛, then 

                         [∑ 𝑎𝑖𝑓𝑖

𝑛

𝑖=1

] (𝛼𝑗) = ∑ 𝑎𝑖𝑓𝑖

𝑛

𝑖=1

(𝛼𝑗) 

                                                    = ∑ 𝑎𝑖𝛿𝑖𝑗

𝑛

𝑖=1

                      [𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)] 

                                                    = 𝑎𝑗, 𝑜𝑛 𝑠𝑢𝑚𝑚𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡  

                                                        𝑡𝑜 𝑖 𝑎𝑛𝑑 𝑟𝑒𝑚𝑒𝑚𝑏𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑎𝑡  

                                                       𝛿𝑖𝑗 = 1 𝑤ℎ𝑒𝑛 𝑖 = 𝑗 𝑎𝑛𝑑 𝛿𝑖𝑗 = 0 

                                                        𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗 

                                                   = 𝑓(𝛼𝑗) 

Thus            [∑ 𝑎𝑖𝑓𝑖

𝑛

𝑖=1

] (𝛼𝑗) = 𝑓(𝛼𝑗)∀𝛼𝑗 ∈ 𝐵 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑓 = ∑ 𝑎𝑖𝑓𝑖

𝑛

𝑖=1

 

Thus every element  𝑓 𝑖𝑛 𝑉′  can be expressed as a linear combination 

of 𝑓1, 𝑓2 , … , 𝑓𝑛. 

∴ 𝑉′ = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑝𝑎𝑛 𝑜𝑓 𝐵′. 



LINEAR ALGEBRA  MT(N)-301 

Department of Mathematics  

Uttarakhand Open University Page 90 
 

Hence 𝐵′ is a basis for 𝑉′. 

Theorem3. Let 𝑉 be an 𝑛-dimensional vector space over the field  𝐹 and 

let  𝐵 = {𝑎, . . . , 𝑎𝑛)  be a basis for  𝑉 . Let  𝐵′ = {𝑓1, 𝑓2, … , 𝑓𝑛} be the dual 

basis of 𝐵. Then for each linear functional 𝑓 𝑜𝑛 𝑉, we have 

𝑓 = ∑ 𝑓(𝛼𝑖)𝑓𝑖

𝑛

𝑖=1

 

and for each vector 𝛼 𝑖𝑛 𝑉 we have 

 𝛼 =  ∑ 𝑓𝑖(𝛼)𝛼𝑖

𝑛

𝑖=1

 

Proof: Since 𝐵′ is dual basis of 𝐵, therefore 

                                                 𝑓𝑖(𝛼𝑗) = 𝛿𝑖𝑗                                                      … (1) 

If 𝑓 is a linear functional on 𝑉, then 𝑓 ∈ 𝑉′ for which 𝐵′ is basis. Therefore 

𝑓 can be expressed as a linear combination of 𝑓1, 𝑓2, … , 𝑓𝑛. Let  

𝑓 = ∑ 𝑐𝑖𝑓𝑖

𝑛

𝑖=1

 

Then  

                        𝑓(𝛼𝑗) = [∑ 𝑐𝑖𝑓𝑖

𝑛

𝑖=1

] (𝛼𝑗) 

                                   = ∑ 𝑐𝑖𝑓𝑖

𝑛

𝑖=1

(𝛼𝑗) 

                                  = ∑ 𝑐𝑖

𝑛

𝑖=1

𝛿𝑖𝑗 

                                  = 𝑐𝑗 ; 𝑗 = 1,2, … , 𝑛 

∴                           𝑓 = ∑ 𝑓(𝛼𝑖)𝑓𝑖

𝑛

𝑖=1
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Now let 𝛼 be any vector in 𝑉. Let  

                         𝛼 = 𝑥1𝛼1 + 𝑥2𝛼2 + ⋯ + 𝑥𝑛𝛼𝑛 = ∑ 𝑥𝑗𝛼𝑗

𝑛

𝑗=1

                      … (2) 

Then 

                   𝑓𝑖 (𝛼) = 𝑓𝑖 (∑ 𝑥𝑗𝛼𝑗

𝑛

𝑗=1

)                                   [𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(2)] 

                               = ∑ 𝑥𝑗𝑓𝑖(𝛼𝑗)

𝑛

𝑗=1

                           [∵ 𝑓𝑖𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙] 

                               = ∑ 𝑥𝑗

𝑛

𝑗=1

𝛿𝑖𝑗 

                               = 𝑥𝑖  

∴ 𝛼 = 𝑓1(𝛼)𝛼1 + 𝑓2(𝛼)𝛼2 + ⋯ + 𝑓𝑛(𝛼)𝛼𝑛 = ∑ 𝑓𝑖(𝛼)𝛼𝑖

𝑛

𝑖=1

 

Theorem4. Let 𝑉 be an 𝑛-dimensional vector space over the field 𝐹. If 𝛼 is 

a non-zero vector in  𝑉 , there exists a linear functional 𝑓 𝑜𝑛 𝑉  such that 

𝑓(𝛼) ≠ 0. 

Proof: Since 𝛼 ≠ 0, therefore {𝛼} is a linearly independent subset of 𝑉. So 

it can be extended to form a basis for  𝑉. Thus there exists a basis 𝐵 =

 {𝛼1, 𝛼2, … , 𝛼𝑛} 𝑓𝑜𝑟 𝑉 such that 𝛼1 = 𝛼. 

If 𝐵′ = {𝑓1, 𝑓2, … , 𝑓𝑛} is the dual basis, then 

 𝑓1  (𝛼) = 𝑓1(𝛼1)  =  1 ≠ 0. 

Thus there exists linear functionals 𝑓1, such that 

𝑓1 (𝛼) ≠ 0 

Corollary: Let 𝑉 be an 𝑛-dimensional vector space over the field 𝐹. If 

 𝑓 (𝛼) = 0∀𝑓 ∈ 𝑉′, 𝑡ℎ𝑒𝑛 𝛼 = 0. 
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Proof: Suppose 𝛼 ≠ 0. Then there is a linear functional 𝑓 𝑜𝑛 𝑉 such that 

𝑓(𝛼) ≠ 0. This contradicts the hypothesis that 

𝑓 (𝛼) = 0∀𝑓 ∈ 𝑉′. Hence we must have 𝛼 = 0. 

Theorem5. Let 𝑉 be an 𝑛-dimensional vector space over the field 𝐹. If 𝛼, 𝛽 

are any two different vectors in  𝑉 , then there exists a linear 

functional 𝑓 𝑜𝑛 𝑉 such that 𝑓 (𝛼) ≠  𝑓(𝛽). 

Proof: We have 𝛼 ≠ 𝛽 ⇒ 𝛼 − 𝛽 ≠ 0. 

Now 𝛼 − 𝛽 is a non-zero vector in 𝑉. Therefore by theorem 4, there exists, 

a linear functional 𝑓 𝑜𝑛 𝑉 such that  

𝑓 (𝛼 − 𝛽) ≠ 0  

⇒                                          𝑓 (𝛼) − 𝑓(𝛽) ≠ 0  

⇒                                                        𝑓(𝛼) ≠ 𝑓 (𝛽).  

Hence the result. 

7.5 SECOND DUAL SPACE: -  

Every vector space 𝑉 is known to have a dual space 𝑉′ that contains all of 

the linear functionals on 𝑉. 

𝑉′ is now a vector space as well. It will therefore also have a dual space 

(𝑉′)′  that contains all linear functionals on  𝑉′ . This dual space of  𝑉′  is 

known as the Second Dual Space of 𝑉, and we will simply refer to it as 𝑉′′ 
 

𝑑𝑖𝑚 𝑉 = 𝑑𝑖𝑚 𝑉′ = 𝑑𝑖𝑚 𝑉′′ indicates that they are isomorphic to each other 

if 𝑉 is finite-dimensional. 

 

Theorem6. Let 𝑉 be a finite dimensional vector space over the field 𝐹. If 𝛼 

is any vector in 𝑉, the function 𝐿𝛼 𝑜𝑛 𝑉′ defined by 

𝐿𝛼 = 𝑓(𝛼) ∀ 𝑓 ∈  𝑉′ 

is a linear functional on 𝑉 i.e.𝐿𝛼 ∈ 𝑉′′. 

Also the mapping 𝛼 → 𝐿𝛼 is an isomorphism of 𝑉 𝑜𝑛𝑡𝑜 𝑉". 

Proof: If 𝛼 ∈ 𝑉 𝑎𝑛𝑑 𝑓 ∈ 𝑉′ then 𝑓 (𝛼) is a unique element of 𝐹. Therefore 

the correspondence 𝐿𝛼 defined by 
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                                    𝐿𝛼(𝑓) =  𝑓(𝛼)∀ 𝑓 ∈ 𝑉′                                            … (1) 

is a function from 𝑉′ 𝑖𝑛𝑡𝑜 𝐹.  

Let 𝑎, 𝑏 ∈  𝐹 𝑎𝑛𝑑 𝑓, 𝑔 ∈  𝑉′ . Then 

 𝐿𝛼(𝑎𝑓 +  𝑏𝑔) =  (𝑎𝑓 +  𝑏𝑔)(𝛼) 

                            =  (𝑎𝑓)(𝛼) +  (𝑏𝑔)(𝛼) 

                            =  𝑎𝑓(𝛼) +  𝑏𝑔(𝛼) 

[𝑏𝑦 𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑠] 

                            =  𝑎[𝐿𝛼(𝑓)]  +  𝑏[𝐿𝛼(𝑔)]  

Therefore 𝐿𝛼 is a linear functional on 𝑉′ and thus 𝐿𝛼 ∈ 𝑉′′. Now let 𝜓 be 

the function from 𝑉 𝑖𝑛𝑡𝑜 𝑉" defined by 

𝜓(𝛼) = 𝐿𝛼∀𝛼 ∈ 𝑉 

𝝍 is one-one. If 𝛼, 𝛽 ∈ 𝑉, then 

𝜓(𝛼) = 𝜓(𝛽) 

⇒                  𝐿𝛼 = 𝐿𝛽 ⇒ 𝐿𝛼(𝑓) = 𝐿𝛽(𝑓)∀𝑓 ∈ 𝑉′ 

⇒             𝑓(𝛼) = 𝑓(𝛽)∀𝑓 ∈ 𝑉′ 

⇒         𝑓(𝛼) − 𝑓(𝛽) = 0 ∀𝑓 ∈ 𝑉′ 

⇒               𝑓(𝛼 − 𝛽) = 0 ∀𝑓 ∈ 𝑉′ 

⇒                     𝛼 − 𝛽 = 0                                                             [𝑏𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 4] 

⇒                      𝛼 = 𝛽 

∴ 𝜓 is one − one. 

𝜓 is a linear transformation. 

Let 𝑎, 𝑏 ∈  𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈ 𝑉. Then 

                                  𝜓(𝑎𝛼 + 𝑏𝛽) = 𝐿(𝑎𝛼+𝑏𝛽)                 [𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝜓] 

For every 𝑓 ∈ 𝑉′, we have 
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𝐿(𝑎𝛼+𝑏𝛽)(𝑓) = 𝑓(𝑎𝛼 + 𝑏𝛽) = 𝑎𝑓(𝛼) + 𝑏𝑓(𝛽) = 𝑎𝐿𝛼(𝑓) + 𝑏𝐿𝛽(𝑓)

= (𝑎𝐿𝛼)(𝑓) + (𝑏𝐿𝛽)(𝑓) = (𝑎𝐿𝛼 + 𝑏𝐿𝛽)(𝑓) 

∴ 𝐿(𝑎𝛼+𝑏𝛽) = 𝑎𝐿𝛼 + 𝑏𝐿𝛽 = 𝑎𝜓(𝛼) + 𝑏𝜓(𝛽) 

⇒ 𝜓(𝑎𝛼 + 𝑏𝛽) = 𝑎𝜓(𝛼) + 𝑏𝜓(𝛽) 

⇒ 𝜓 is a linear transformation from 𝑉 𝑖𝑛𝑡𝑜 𝑉′. Since we have  𝑑𝑖𝑚 𝑉 =

𝑑𝑖𝑚 𝑉′′ therefore  𝜓 is one-one⇒ 𝜓 must also be onto. 

Hence 𝜓 is an isomorphism of 𝑉 𝑜𝑛𝑡𝑜 𝑉". 

Theorem7. Let 𝑉 be a finite dimensional vector space over the field 𝐹. If 𝐿 

is a linear functional on the dual space 𝑉′ 𝑜𝑓 𝑉, then there is a unique vector 

𝛼 ∈  𝑉 such that 𝐿(𝑓) = 𝑓(𝛼) ∀𝑓 ∈ 𝑉′. 

Proof: This theorem is an immediate corollary of theorem 6. We should 

first prove theorem 6. Then we should conclude like this: 

The correspondence  𝛼 → 𝐿𝛼  is a one-to-one correspondence between 

𝑉𝑎𝑛𝑑 𝑉" . Therefore if  𝐿 ∈ 𝑉", there exists a unique vector 𝛼 ∈  𝑉  such 

that 𝐿 = 𝐿𝛼. i.e. such that  

𝐿(𝑓) = 𝑓(𝛼) ∀𝑓 ∈ 𝑉′ 

Theorem8. Let 𝑉 be a finite dimensional vector space over the field  𝐹 . 

Each basis for 𝑉′ is the dual of some basis for 𝑉. 

Proof: Let 𝐵′ = {𝑓1, 𝑓2, … , 𝑓𝑛} be a basis for 𝑉 . Then there exists a dual 

basis (𝐵′)′ = {𝐿1, 𝐿2, … , 𝐿𝑛} 𝑓𝑜𝑟 𝑉′′ such that 

                                                     𝐿𝑖(𝑓𝑗) = 𝛿𝑖𝑗                                                 … (1) 

By previous theorem, for each 𝑖 there is a vector 𝛼𝑖 ∈ 𝑉 such that 

                            𝐿𝑖 = 𝐿𝛼𝑖
;  𝐿𝛼𝑖

(𝑓) = 𝑓(𝛼𝑖)∀𝑓 ∈ 𝑉′                                   … (2) 

The correspondence 𝛼 → 𝐿𝛼, is an isomorphism of 𝑉 𝑜𝑛𝑡𝑜 𝑉′′. Under an 

isomorphism of a basis is mapped onto a basis. Therefore  𝐵 =

 {𝛼1, 𝛼2, … , 𝛼𝑛}  is a basis for  𝑉  because it is the image set of a basis 

for 𝑉′′under the above isomorphism. 

Putting 𝑓 = 𝑓𝑗, in (2), we get  
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𝑓𝑗(𝛼𝑖) = 𝐿𝛼𝑖
(𝑓𝑗) = 𝐿𝑖(𝑓𝑗) = 𝛿𝑖𝑗  

∴ 𝐵′ = {𝑓1, 𝑓2, … , 𝑓𝑛} is the dual of the basis 𝐵. Hence the theorem. 

 

Theorem9. Let 𝑉 be a finite dimensional vector space over the field 𝐹. Let 

𝐵 be a basis for 𝑉 𝑎𝑛𝑑 𝐵′ be the dual basis of 𝐵. Then show that   

𝐵′′ = (𝐵′)′ = 𝐵 

Proof: Let 𝐵 =  {𝛼1, 𝛼2, … , 𝛼𝑛} be a basis for 𝑉, 𝐵′ = {𝑓1 , 𝑓2, … , 𝑓𝑛} be the 

dual basis of 𝐵 𝑖𝑛 𝑉′ and 𝐵′′ = (𝐵′)′ = {𝐿1, 𝐿2, … , 𝐿𝑛} be the dual basis of 

𝐵 𝑖𝑛 𝑉". Then 

                                         𝑓𝑖 (𝛼𝑗) = 𝛿𝑖𝑗   

𝑎𝑛𝑑                                 𝐿𝑖(𝑓𝑗) = 𝛿𝑖𝑗; 𝑖 = 1,2, … , 𝑛 & 𝑗 = 1,2, … , 𝑛 

If 𝛼 ∈ 𝑉, then there exists 𝐿𝛼 ∈ 𝑉" such that 

 𝐿𝛼(𝑓) = 𝑓(𝛼)∀ 𝑓 ∈ 𝑉′ 

Taking 𝛼𝑖, in place of 𝛼, we see that for each𝑗 = 1, . . . , 𝑛, 

𝐿𝛼𝑖
(𝑓𝑗) = 𝑓𝑗(𝛼𝑖) = 𝐿𝑖(𝑓𝑗) = 𝛿𝑖𝑗 

Thus 𝐿𝛼𝑖
, and 𝐿𝑖, agree on a basis for 𝑉′. Therefore 

𝐿𝛼𝑖
= 𝐿𝑖 

If we identify  𝑉" 𝑤𝑖𝑡ℎ 𝑉  through natural isomorphism  𝛼 ↔ 𝐿𝛼 , then we 

consider 𝐿𝛼, as the same element as 𝛼. So  

𝐿𝛼𝑖
= 𝐿𝑖 = 𝛼𝑖  ;  𝑖 =  1, 2, . . . , 𝑛. 

Thus 𝐵′′ = 𝐵. 

 

Example1. Find the dual basis of the basis set 𝐵 =

{(1, 1, 3), (0, 1, −1), (0, 3, −2)} for 𝑉3(𝑅). 

Solution: Let 𝛼1 =  (1, −1, 3), 𝛼2 = (0, 1, −1), 𝛼3 = (0, 3, −2). 
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Then 𝐵 = {𝛼1, 𝛼2, 𝛼3}. If 𝐵′ = {𝑓1, 𝑓2, 𝑓3} is a dual basis of 𝐵 , then 

𝑓1(𝛼1) = 1, 𝑓1(𝛼2) = 0, 𝑓1(𝛼3) = 0, 

𝑓2(𝛼1) = 1, 𝑓2(𝛼2) = 0, 𝑓2(𝛼3) = 0 

𝑎𝑛𝑑                           𝑓3(𝛼1) = 1, 𝑓3(𝛼2) = 0, 𝑓3(𝛼3) = 0 

Now to find explicit expressions for 𝑓1, 𝑓2 , 𝑓3. Let (𝑎, 𝑏, 𝑐) ∈ 𝑉3(𝑅). 

Let (𝑎, 𝑏, 𝑐) =  𝑥(1, − 1, 3) +  𝑦(0, 1, − 1) +  𝑧(0, 3, − 2) … (1) 

                      =  𝑥𝛼1 + 𝑦 𝛼2 + 𝑧𝛼3 

Then𝑓1(𝑎, 𝑏, 𝑐) = 𝑥, 𝑓2(𝑎, 𝑏, 𝑐) =  𝑦, 𝑓3(𝑎, 𝑏, 𝑐)  =  𝑧  

Now to find the values of 𝑥, 𝑦, 𝑧. 

From (1), we have 

𝑥 = 𝑎, −𝑥 + 𝑦 + 3𝑧 = 𝑏, 3𝑥 − 𝑦 − 2𝑧 = 𝑐 

Solving these equations, we have  

𝑥 =  𝑎, 𝑦 =  7𝑎 −  2𝑏 −  3𝑐 , 𝑧 =  𝑏 +  𝑐 −  2𝑎  

Hence 𝑓1(𝑎, 𝑏, 𝑐) = 𝑎,         𝑓2(𝑎, 𝑏, 𝑐) =  7𝑎 −  2𝑏 −  3𝑐,  

𝑓3(𝑎, 𝑏, 𝑐)  =  𝑏 +  𝑐 −  2𝑎   

Therefore𝐵′ = {𝑓1 , 𝑓2, 𝑓3}  is a dual basis of 𝐵 where 𝑓1, 𝑓2 , 𝑓3 are as defined 

above. 

Example2. The vectors  𝛼1 =  (1, 1, 1), 𝛼2 =  (1, 1, − 1) 𝑎𝑛𝑑 𝛼3 =

 (1, − 1, − 1) form a basis   𝑉3(𝐶) If {𝑓1, 𝑓2, 𝑓3} the dual basis and if 𝛼 =

 (0, 1, 0), find 𝑓1(𝛼), 𝑓2(𝛼)𝑎𝑛𝑑  𝑓3(𝛼). 

Solution: Let 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + 𝑎3𝛼3.Then 

𝑓1(𝛼) = 𝑎1, 𝑓2(𝛼) = 𝑎2𝑎𝑛𝑑  𝑓3(𝛼) = 𝑎3 

Now 𝛼 = 𝑎1𝛼1 + 𝑎2𝛼2 + 𝑎3𝛼3  

⇒  (0, 1, 0) = 𝑎1(1, 1, 1) + 𝑎2(1, 1, − 1) + 𝑎3(1, − 1, − 1) 

⇒  (0, 1, 0) = (𝑎1 +  𝑎2 + 𝑎3, 𝑎1 +  𝑎2 − 𝑎3, 𝑎1 − 𝑎2 − 𝑎3) 
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⇒ 𝑎1 + 𝑎2 + 𝑎3 = 0, 𝑎1 +  𝑎2 − 𝑎3 = 1, 𝑎1 −  𝑎2 − 𝑎3 = 0 

⇒ 𝑎1 = 0, 𝑎2 =
1

2
, 𝑎3 = −

1

2
 

∴ 𝑓1(𝛼) = 0, 𝑓2(𝛼) =
1

2
𝑎𝑛𝑑  𝑓3(𝛼) = −

1

2
 

 

Example3. If 𝑓  is a non-zero linear functional on a vector space  𝑉  and 

if 𝑥 is an arbitrary scalar, does there necessarily exist a vector 𝛼 𝑖𝑛 𝑉 such 

that 𝑓(𝛼)  =  𝑥 ? 

Solution: 𝑓 is a non-zero linear functional on 𝑉. Therefore there must be 

some non-zero vector 𝛽 𝑖𝑛 𝑉  such that  𝑓(𝛽)  =  𝑦  where 𝑦  is a non-zero 

element of 𝐹.  

If 𝑥 is any element of 𝐹, then  

𝑥 =  (𝑥𝑦−1)𝑦 =  (𝑥𝑦−1)𝑓(𝛽)  =  𝑓[(𝑥𝑦−1)𝛽] 

[𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙] 

Thus there exists 𝑥 =  (𝑥𝑦−1)𝛽 ∈ 𝑉 such that 𝑓(𝛼)  =  𝑥. 

Example4. Prove that if 𝑓 is a linear functional on an 𝑛-dimen-sional vector 

space 𝑉(𝐹), then the set of all those vectors 𝛼 for which 𝑓(𝛼)  =  0 is a 

subspace of 𝑉, what is the dimension of that subspace? 

Solution: Let 𝑁 = {𝛼 ∈ 𝑉: 𝑓(𝛼) = 0}.  

𝑁 is not empty because at least 0 ∈ 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(0)  =  0  

Let 𝛼, 𝛽 ∈  𝑁 Then 𝑓(𝛼)  =  0, 𝑓(𝛽)  =  0 

If 𝑎, 𝑏 ∈  𝐹 we have 

 𝑓(𝑎𝛼 − 𝑏𝛽)  =  𝑎𝑓(𝛼)  +  𝑏𝑓(𝛽)  = 𝑎0 + 𝑏0 = 0 ∴  𝑎𝛼 +  𝑏𝛽 ∈ 𝑁  

Thus 𝑎, 𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝛼, 𝛽 ∈ 𝑁 ⇒ 𝑎𝛼 +  𝑏𝛽 ∈ 𝑁 ,  

⇒ 𝑁 is a subspace of 𝑉 . This subspace 𝑁 is the null space of 𝑓. We know 

that  

𝑑𝑖𝑚 𝑉 = 𝑑𝑖𝑚 𝑁 + 𝑑𝑖𝑚 (𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑓).  
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(i) If  𝑓  is zero linear functional, then range of  𝑓  consists of zero 

element of 𝐹 alone. Therefore 𝑑𝑖𝑚 (𝑟𝑎𝑛𝑔𝑒 𝑓 ) = 0 in this case. 

In this case, we have  

dim 𝑉 = dim 𝑁 + 0 ⇒  𝑛 =  𝑑𝑖𝑚𝑁 

(ii) If 𝑓 is a non-zero linear functional on 𝑉, then 𝑓 𝑖𝑠 𝑜𝑛𝑡𝑜 𝐹. So range 

of  𝑓  consists of all  𝐹  in this case. The dimension of the vector 

space 𝐹′ 𝑖𝑠 1. . In this case we have 

𝑑𝑖𝑚 𝑉 = 𝑑𝑖𝑚 𝑁 + 1 ⇒ 𝑑𝑖𝑚𝑁 =  𝑛 −  1 

 

7.6 SUMMARY:-  

In linear algebra, the dual space of a vector space V over a field F, denoted 

by 𝑉∗, is the set of all linear functionals from V to F. A linear functional is 

a linear transformation that maps a vector to a scalar while preserving 

linearity. The dual space plays a crucial role in understanding the structure 

of vector spaces, providing a way to study them through scalar-valued 

functions. The dimension of 𝑉∗is equal to the dimension of 𝑉, and the dual 

basis corresponding to a given basis of V provides an important link 

between the space and its dual. Dual spaces are widely used in functional 

analysis, quantum mechanics, and differential geometry, as they provide a 

natural framework to study bilinear forms, adjoint operators, and duality 

principles in mathematics. 

7.7 GLOSSARY:-  

 Dual Space (𝑽∗):The set of all linear functionals from a vector 

space 𝑉 into its underlying field 𝐹. 

 Linear Functional: A linear transformation f:V→F that maps 

vectors to scalars while preserving linearity, i.e., 

𝑓(𝛼𝑢 + 𝛽𝑣) = 𝛼𝑓(𝑢) + 𝛽𝑓(𝑣). 

 Basis of a Vector Space:A linearly independent set of vectors in V 

that spans the entire space. 

 Dual Basis: For a basis {𝑣1, 𝑣2, … … , 𝑣𝑛} of V, the corresponding 

dual basis {𝑓1 , 𝑓2, … … , 𝑓𝑛} in 𝑽∗is defined such that 𝑓𝑖(𝑣𝑗) = 𝛿𝑖𝑗. 

 Kronecker Delta (𝜹𝒊𝒋): A function defined as 𝛿𝑖𝑗 = 1, and 𝛿𝑖𝑗 =

0 if 𝑖 ≠ 0. Used in defining dual bases. 

 Dimension of Dual Space: If 𝑑𝑖𝑚(𝑉) = 𝑛, then 𝑑𝑖𝑚(𝑽∗) = 𝑛. 
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 Evaluation Map: A natural map 𝜙: 𝑉 → 𝑽∗∗(double dual), defined 

by 𝜙(𝑣)(𝑓) = 𝑓(𝑣), where 𝑓 ∈ 𝑽∗ . 

 Double Dual (𝑽∗∗):The dual space of the dual space. There is a 

canonical isomorphism 𝑉 ≅ 𝑽∗∗for finite-dimensional spaces.  

 Annihilator: For a subspace 𝑊 ⊆ 𝑉 , the annihilator 𝑊0 ⊆ 𝑉 ∗ is 

the set of all functionals 𝑓 ∈ 𝑽∗such that 𝑓(𝑤) = 0 for all 𝑤 ∈ 𝑊. 

 Reflexivity: The property that a finite-dimensional vector space 𝑉 

is naturally isomorphic to its double dual 𝑽∗∗ . 
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7.10 TERMINAL QUESTIONS: - 

(TQ-1) Let 𝑉 be a vector space over the field 𝐹. Let 𝑓 be a non-zero linear 

functional on 𝑉 and let 𝑁 be the null space of 𝑓. Fix a vector 𝛼0  ∈  𝑉 which 

is not in 𝑁. Prove that for each 𝛼 ∈  𝑉 there is a scalar 𝑐 𝑎𝑛𝑑 𝑎 vector 𝛽 

in 𝑁 such that 𝛼 = 𝑐𝛼0 + 𝛽. Prove that 𝑐 𝑎𝑛𝑑 𝛽 are unique. 

 (TQ-2) Prove that every finite dimensional vector space Vis isomor-phic 

to its second conjugate space v ** under an isomorphism which is 

independent of the choice of a basis in V. 

(TQ-3) Find the dual basis of the basis set 𝐵 = {(1, 0, 0)(0, 1, 0), (0, 0, 1)} 

for 𝑉3(𝑅). 

(TQ-4) Find the dual basis of the basis set  𝐵 =

{(1, − 2, 3)(1, −1, 1), (2, − 4, 7)} of 𝑉3(𝑅). 
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(TQ-5) Prove that if 𝑓 is a linear functional on an 𝑛-dimen-sional vector 

space 𝑉(𝐹), then the set of all those vectors 𝛼 for which 𝑓(𝛼)  =  0 is a 

subspace of 𝑉, what is the dimension of that subspace? 

(TQ-6) Explain the difference between the dual space and the bidual space 

(double dual). 

(TQ-7) The vectors  𝛼1 =  (1, 1, 1), 𝛼2 =  (1, 1, − 1) 𝑎𝑛𝑑 𝛼3 =

 (1, − 1, − 1) form a basis   𝑉3(𝐶) If {𝑓1, 𝑓2, 𝑓3} the dual basis and if 𝛼 =

 (0, 1, 0), find 𝑓1(𝛼), 𝑓2(𝛼)𝑎𝑛𝑑  𝑓3(𝛼). 

 (TQ-8) Find the dual basis of the basis set 𝐵 =

{(1, 1, 3), (0, 1, −1), (0, 3, −2)} for 𝑉3(𝑅). 

7.11 ANSWERS: - 

(TQ-3) 𝐵′ = {𝑓1, 𝑓2, 𝑓3}  where  𝑓1(𝑎, 𝑏, 𝑐) = 𝑎, 𝑓2(𝑎, 𝑏, 𝑐)  =

 𝑏 𝑓3(𝑎, 𝑏, 𝑐)  =  𝑐 

(TQ-4) 𝐵′ = {𝑓1, 𝑓2, 𝑓3}  where  𝑓1(𝑎, 𝑏, 𝑐) = −3𝑎 − 5𝑏 − 2𝑐, 𝑓2(𝑎, 𝑏, 𝑐) =

 2𝑎 + 𝑏 𝑓3(𝑎, 𝑏, 𝑐) = 𝑎 + 2𝑏 +  𝑐 
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8.1 INTRODUCTION 

In this unit, we focused on algebra of polynomial, Vandermonde matrix, eigen avalue and 

eigen function. Now again, we emphasize on Vector Spaces. After the study of Linear 

Transformation, we have studied some properties of a linear operator. Here, we shall elaborate 

these concepts and matrices help us in a great deal. Basis of a matrix and its role to understand 

eigen values and eigen vectors will be discussed in detail. Besides this, diagonalisation process 

and required conditions will be discussed thoroughly. 

8.2 OBJECTIVE 

After the study of this chapter, learner shall understand: 

 Linear operators and their properties.  

 Polynomial of matrices. 

 Vandermonde matrix 

 For finite-dimensional vector spaces, T can be represented as a matrix. 

 How can we convert square matrix into diagonal matrix? 

 Role of basis of a linear transformation in diagonalisation. 

8.3 POLYNOMIAL OF MATRICES 

In linear algebra, the algebra of polynomials plays a central role, especially when dealing with 

linear operators and matrices.  

Definition: Let 
n

n xaxaxaaxp  ...)( 2

210  

be a polynomial with coefficients from a field F (e.g., R, C). 

If A is a square matrix of order mm , then the polynomial of matrix A is defined as: 

n

n AaAaAaIaAp  ...)( 2

210  

Where, I is the identity matrix of the same size as A. 

Example 1 (i):  If 232)( xxxp   then for matrix A, 232)( AAIAp  . 

(ii): If 75)( 3  xxxp  then for matrix A, IAAAp 75)( 3  . 
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Example 2: If 









43

21
A , then 










2215

107
2A . Let 532)( 2  xxxf  and 

25)( 2  xxxg  then, 








































3721

1416

50

05

129

63

4430

2014
532)( 2 IAAAf  

And 












































00

00

20

02

2015

105

2215

107
25)( 2 IAAAg  

Thus, we can say that A is zero of )(tg . 

Properties: Let gf , be the polynomials. Then for any square matrix A  and scalar k , we have 

the followings: 

(i) )()())(( AgAfAgf     (ii) )())(( AkfAkf   

(iii) )()())(( AgAfAfg      (iv) )()()()( AfAgAgAf   

Point (iv) shows that any two polynomials in A commute with each other. 

8.4 FACTORISATION OF POLYNOMIAL 

Let the ring ][tK  of polynomials over a field K. A polynomial ][tKp  of positive degree is 

said  to be irreducible if fgp  implies gorf is a scalar. 

Lemma 1: Suppose ][tKp  is irreducible. If p divides the product fg of polynomials 

][, tKgf  , the p divides g . More, generally, if p divides the product of n polynomials 

nfff ,...,, 21 , then p divides one of them.  

Proof: Suppose p divides fg but not f . Because p is irreducible, the polynomials f  and p

must then be relative prime. Thus, there exist polynomials ][, tKnm   such that 1 npmf . 

Multiplying this equation by g , we obtain npgmfgg  . 

Now suppose p divides nfff ,...,, 21 . If p  divides 1f , then we are through. If not, then by the 

above result p  divides the product nff ,...,2 . By induction on pn,  divides one of the 

polynomials nff ,...,2 . Thus, the lemma is proved.   
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Unique Factorization Theorem 1: Let f be a non-zero polynomial in ][tK . Then f can be 

written uniquely (except for order) as a product, 
nppkpf ...21 , where Kk and ip are monic 

irreducible polynomials in ][tK . 

Proof: We prove the existence of such a product first. If f is irreducible or if Kf  , then such a 

product clearly exists. On the other hand, suppose ghf  where f and g are nonscalars. Then g 

and h have degrees less than that of f. By induction, we can assume  

rgggkg ...211  and shhhkh ...212  

Where Kkk 21, and ig  and jh are monic irreducible polynomials. Accordingly,  

sr hhhkgggkkf .......)( 3212121 , is our desired representation. 

We next prove uniqueness (except for order) of such a product for f . Suppose 

mr qqqkpppkf .......)( 21

'

211   

Where Kkk ', and mn qqqppp ,...,,,,..., 2121  are monic irreducible polynomials. Now 1p divides 

mqqqk ,...,, 21

'
. Because 1p  is irreducible, it must divide one of the iq by the lemma. Say 1p  

divides 
1q . Because 1p  and 

1q  are both irreducible and monic, 1p =
1q . Accordingly, 

mn qqkpkp ...... 2

'

2   

By induction, we have that mn   and mn qpqp  ,...,22  for some rearrangement of the iq . We 

also have that 'kk  . Thus, the theorem is prove. 

When the field K is the complex field C, we obtain the result known as the Fundamental 

Theorem of Algebra, whose proof is beyond the scope of this discussion. 

Corollary 1: (Fundamental theorem of algebra): Let )(tf  be a non-zero polynomial over the 

complex field C. Then )(tf  can be written uniquely (except order) as a product 

))...()(()( 21 nrtrtrtktf   

Where, Crk i , as a product of linear polynomials. 

In the case of the real field R we have the following result. 
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Corollary 2: (Fundamental theorem of algebra): Let )(tf  be a non-zero polynomial over the 

complex field R. Then )(tf  can be written uniquely (except order) as a product 

)()...()()( 21 tptptkptf m  

Where, Rk  and )(tpi are monic irreducible polynomials of degree one or two. 

8.5 LAGRANGES INTERPOLATION 

Lagrange‟s Interpolation is a technique to find out a unique polynomial of degree at most n that 

passes through n+1 given distinct points ),(...,),,(),,( 1100 nn yxyxyx .  

i.e., if want to find out a unique polynomial )(xP  of degree at most n  such that: 

niforyxP ii ...,,1,0)(  . Then the Lagrange interpolation polynomial is: 





n

i

ii xLyxP
0

)()( , where, the Lagrange basis polynomial are 


 




n

j ji

j

i

ij

xx

xx
xL

0

)( . 

Here, each )(xLi  satisfies: 

(i) 1)( ii xL  

(ii) 0)( ji xL  for ij   

Thus, each term )(xLy ii  contributes only at its own ix  

Example 3: Suppose we want the polynomial that passes through the points )5,4(),3,2(),2,1(

then find the interpolating polating polynomial.  

Solution: First, compute the basis polynomials: 

3

)4)(2(

)3)(1(

)4)(2(

)41)(21(

)4)(2(
)(0














xxxxxx
xL  

2

)4)(1(

)2)(1(

)4)(1(

)42)(12(

)4)(1(
)(1














xxxxxx
xL  



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 
Uttarakhand Open University Page 106 
 

6

)2)(1(

)2)(3(

)2)(1(

)24)(14(

)2)(1(
)(2












xxxxxx
xL  

So, the required interpolating polynomial is )(5)(3)(2)( 210 xLxLxLxP   

8.6 VANDERMONDE MATRIX 

A Vandermonde matrix is a special type of matrix where each row is a geometric progression 

of the corresponding ix . For 1n  distnict numbers 
nxxx ...,,, 10
, the Vandermonde matrix is: 

























n

nnn

n

n

n

xxx

xxx

xxx

xxx

V











2

2

2

22

1

2

11

0

2

00

1

1

1

1

 

Here, each row corresponds to powers of one interpolation point. 

 It is used to set up equations for finding coefficients of the interpolating polynomial. 

 Its determinant is, 



nji

ij xxV
0

)()det(  

which is nonzero if all ix  are distinct. 

 This ensures that the interpolation problem has a unique solution. 

Note 1: The Vandermonde matrix links interpolation points to polynomial coefficients and 

guarantees uniqueness when the ix  values are distinct. 

2: If we want to find a polynomial 
n

n xaxaxaaxP  ...)( 2

210 , that passes through the 

points ),( ii yx , we can write the system: 







































nn y

y

y

a

a

a

V

1

0

1

0
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Thus, solving this system gives the coefficients of the interpolating polynomial.  

Example 4: Let we have three data points, )2,2(),3,1(),1,0(  and we want to find the polynomial, 

2

210)( xaxaaxP  . 

Now, in the first step, the Vandermonde matrix is, 





































421

111

001

221

111

001

2

2

2

V  

In second step, write the system: 



















































2

3

1

421

111

001

2

1

0

a

a

a

 

In third step, solve the equation: 

On solving the first row: 10 a . 

From second row: 231 2121  aaaa . 

From third row: 1422421 2121  aaaa . 

So, we get the unknown, 10 a ; 
2

7
1 a ; 

2

3
2 a  

Hence the final polynomial is, 
2

2

3

2

7
1)( xxxP  . 

8.7 POLYNOMIAL IDEAL 

A polynomial ideal is a set of polynomials closed under addition and multiplication by any 

polynomial, usually described by its generators. They are the algebraic foundation for solving 

systems of polynomial equations. 

When the ring is a polynomial ring ]...,,,[ 21 nxxxR (for example R[x, y]), we talk about 

polynomial ideals. 
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 A polynomial ideal is just an ideal in this polynomial ring. 

 That means: it is a set of polynomials closed under addition and under multiplication by 

any polynomial from the ring. 

Generators of polynomial ideals 

Every polynomial ideal can be described by its generators. 

If kfff ...,,, 21 are polynomials, then the ideal generated by them is: 

]}...,,,[|...{...,,, 21221121 nikkk xxxRgfgfgfgfff   

This means: all combinations of kfff ...,,, 21  multiplied by arbitrary polynomials. 

Example 5: In :][xR ]}[)(|)({ 22 xRxhxhxx   

i.e., all polynomials divisible by 2x . 

In :],[ yxR ]},[,|),(),({, yxRghyxygyxxhyx   

i.e., all polynomials with no constant term (since every term is at least divisible by x or y). 

Importance: Polynomial ideals are central in algebraic geometry and computational algebra: 

 They describe sets of polynomial equations. 

 The variety of an ideal  kfff ...,,, 21 is the set of all points where all if  vanish. 

 Algorithms like Gröbner bases are used to work with polynomial ideals computationally. 

8.8 TAYLOR’S FORMULA 

For a smooth scalar function )(xf , the Taylor expansion around a point a is: 

)()(
!

)(
...)(

!2

)(
)()()()( 2

''
' xRax

n

af
ax

af
axafafxf n

n
n

  

Where )(xRn is the remainder term. 

In linear algebra, we often apply Taylor‟s formula to matrix functions. 
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Suppose A  is a square matrix and )(xf  is a smooth function (like xe , ,sin x xcos , )1( xIn  , 

etc.). Then we can define: 

...
!

)0(
...

!2

)0(
)0()0()( 2

''
'  n

n

A
n

f
A

f
AfIfAf  

This is just the Taylor series expansion of )(xf , with x replaced by the matrix A.  

8.9 ALGEBRICALLY CLOSED FIELD 

Definition: A field F is called algebraically closed if every non-constant polynomial with 

coefficients in F has at least one root in F. In other words, 

If ][)( xFxp   and degree 1)( p  then there exist some Fa such that 0)( ap  

A field F is algebraically closed if: 

1. Every polynomial in ][xF  factors completely into linear factors over F. 

Faaxaxaxcxp in  );)...()(()( 21  

2. It has no proper algebraic extensions (it is “maximal” in that sense). 

Example 6: The polynomial 012 x  has Ci  but not algebraically closed in Real number 

(R) and also not algebraically closed in rational number (Q) 

8.10 BASICS OF LINEAR OPERATORS   

In this section, we shall discuss linear operators (T) on a finite-dimensional vector space V(F). 

We know that a linear operator T on a vector space V(F) is a mapping T: V  V, such that  

    T( x + y) =  T(x) + T(y)   x, y  V and ,   F. 

We have already studied following important properties of such a linear operator T:  

(i) T is non-singular (i.e. one to one) if and only if   ker(T) = {0}.  

(ii) T is invertible  T is non-singular  T is onto. 

(iii) T is singular  ker T  {0} 

 



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 
Uttarakhand Open University Page 110 
 

8.11 EIGEN VALUES & EIGEN VECTORS 

Now, we shall define eigen value and eigen vectors of T as: 

Eigen Values of T: Let T be linear operator on a vector space V(F). A scalar   F is called an 

eigen value or characteristic value of T, if there exists some V  0, v  V such that,  T(v) =  v. 

Eigen Vector: If  is an eigen value of T, then v  V such that T(v) = v is called an eigen 

vector or characteristic vector belonging to . 

Eigen space: The set of all eigenvectors of T belonging to an eigenvalue  is called an 

eigenspace of T, belonging to . It is represented as . Hence  

        = { v  V : T(v) =  v }. 

Example 7: Let T : R
2
  R

2
 be a linear operator defined be T(x, y) = (2x + y, x + 2y). By trial 

and error method, we find one eigen value of T and corresponding eigen vector. 

  We observe that  T(1, 1) = (3, 3) = 3(1, 1) 

    Or  T(2, 2) = (6, 6) = 3(2, 2) 

Here 3 is an eigenvalue of T and (1, 1) , (2, 2)  R
2 
are corresponding eigenvectors. 

 Also T(3, -3) = (3, -3) = 1(3, -3) 

So here 1 is eigenvalue of T and (3, -3) R
2
 is corresponding eigenvector. 

 Example 8: Let T : R
3
  R

3
 be a linear operator whose matrix with respect to the standard basis 

{ e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) } is A =  . 

So, T(e1) = e1 = 1e1 

T(e2) = e2 = 1e2 

T(e3) = 0 = 0 e3. 

We observe that 1, 1 and 0 are eigenvalues of T and corresponding eigenvectors are e1, e2 and e3 

respectively.  
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Note: Now we discuss the eigenspace W1 corresponding to eigenvalue 1. So  W1 = { v  R
3
 : 

T(v) = .v }. Let v  R
3
 . then there exist , ,   R such that 

v = e1 +  e2 +  e3 

So v  W1 iff    T ( e1 +  e2 +  e3) = 1 ( e1 +  e2 +  e3) 

iff    T(e1) +  T(e2) +  T(e3) =  e1 +  e2 +  e3 

   iff    e1 +  e2 +  .0 e3 = e1 +  e2 +  e3 

   iff   e3 = 0   or  = 0 

So W1 = { e1 +  e2 :  ,   R }. In the same way, we can show that the eigenspace W0 , 

corresponding to eigenvalue „0‟ is  

  W0 = { e3 :   R } 

Theorem 2: Let T be a linear operator on a vector space V(F). 

(i) If  0  v  V is an eigenvector of T, then   F satisfying T(v) = v is unique. 

(ii) The eigenspace  corresponding to an eigen value   F is a subspace of V(F). 

(iii)   = ker (T –  I) . 

Proof: (i) As we know, for uniqueness; we always consider two values and show that both are 

equal i.e. value is unique. Suppose, if possible, there exist  ,   F such that T(v) =  v  and  

T(v) =  v   

 
        = v   or    (  – )v = 0 

But v  0, so  

  –  = 0    or     =  

Hence  is unique. 

(ii) We know that   = { v  V : T(v) =  v } 

Claim:   is a subspace of V(F). As  T(0) = 0     T(0) =  0   . So 0  i.e.  is non-

empty. Let v1 , v2  and  a, b  F. then  
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  T(v1) = v1    and    T(v2) = v2  

 Now, T (av1 + bv2) =  aT(v1) + b T(v2) ; as T is linear 

  = a( v1) + b( v2) 

T (av1 + bv2) = a( v1) + b( v2) 

So, av1 + bv2 is an eigenvector, corresponding to eigenvalue . 

Hence  av1 + bv2 ,   v1 , v2  ;  a, b  F. 

Hence   is a subspace of V(F). 

(iii)   By definition,  

   = { v  V : T(v) =  v } 

So   = { v  V : T(v) =  Iv }, where I is identity operator 

 = { v  V : T(v) = ( I) v } 

  = { v  V : (T  I) v = 0 } 

Hence  = ker (T –  I) . 

Theorem 3: Let T be a linear operator on a finite-dimensional vector space V(F). Then    F is 

an eigenvalue of T if and only if T–  I is singular. 

Proof:  Necessary Condition: Let  be an eigenvalue of T. Then there exists some 0  v  V, 

Such that, T(v) = v 

     T(v) =  I(v)  where I is identity operator. 

     T(v) = (  I)(v) 

    (T  I) (v) = 0,   where v  0. 

So v  ker (T –  I). We already know that 0  ker (T –  I). So,  ker (T –  I)  {0}. 

Hence  T – I is singular. 
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 Sufficient condition:  Let T – I be singular operator . 

   ker (T –  I)  {0}, 

   there exists some 0  v  V, such that (T  I) (v) = 0. 

   T(v)   I(v) = 0. 

  T(v) = v ,  where I(v) = v. 

So,  is an eigenvalue of T. 

Note: (1) If T is singular, then „0‟ is always an eigenvalue of T. As T – 0I = T , it can be 

obviously observed. 

(2) Till now, we have understood that if T is a linear operator on a finite-dimensional 

vector space, then the following statements are equivalent: 

(i) is an eigenvalue of T. 

(ii)  The operator T –  I is singular or non-invertible.  

(iii)  det (T –  I) = 0. 

Characteristic values and Characteristic polynomial of a matrix: 

Suppose T be a linear operator on a finite dimensional (say dim V = n) vector space V(F). Let  

be an ordered basis for V and let A be the matrix of T with respect to the basis  i.e. A = [T  . 

For any scalar   F, we have  

  [T –  I  = [T   [ I  

   =  A –  I,  where I is n  n unit matrix. 

So det(T –  I) = det [T –  I  = det (A –  I). Hence  is a characteristic value of T if and only 

if det (A –  I) = 0. 

Note: From above discussion, we conclude that – 

(i)     Let A = [  ;    F. A scalar   F is called an eigen value of A if  

      det(A – I) = 0. 
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(ii) Let A = [  ;    F. Then the polynomial f(x) = det (A –  I) is called the 

characteristic polynomial of the matrix A. 

The equation f(x) = 0 is called the characteristic equation of the matrix A. Here we  observe 

that    F is an eigen value of the matrix  A if and only if f( ) = 0. 

Similar Matrices: Let A = [  and B = [  and P = [  where , ,   F. 

Then A and B are called similar matrices if, there exist a matrix P such that  

 A = P
-1

 B P , where P is non-singular matrix. 

You might have studied that similarity of matrices is an equivalence relation i.e. it is reflexive, 

symmetric and transitive. 

Theorem 4: Similar matrices have the same characteristic polynomial and hence the same 

characteristic values. 

Proof: Let us consider two square matrices A and B of  order. Then A and B are similar i.e. 

there exists an non-singular matrix P such that  

    B = P
-1

 A P. 

So, B – xI = P
-1

 A P – xI = P
-1

 A P – x P
-1

 I P 

 = P
-1

 (A – xI) P. 

So, det (B – xI) = det (P
-1

 (A – xI) P)  

           =   det (A – xI) det P  

 det (B – xI) = det (A – xI). 

   A and B have the same characteristic polynomials and consequently same eigenvalues. 

Note: (1) You have studied in the chapter „Linear Transformation’ that, if T be linear operator 

on an n-dimensional vector space. If  , ' are two ordered bases of V such that A = [T  and B = 

[T  , then there exists a non-singular matrix P (over F) such that B = P
-1

 A P. 

(2) Let T be a linear operator on a finite-dimensional vector space V(F). then the characteristic 

polynomial of T is det(A – xI) , where A is the matrix of T in any ordered basis for V. 
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(3)  If T is a linear operator on an n-dimensional vector space and if A = [T  with respect to an 

ordered basis  for V, then A is an  matrix and so det (A – xI) is  a polynomial of degree n. 

Hence T cannot have more than n distinct eigenvalues. 

(4) The eigenvalues of a linear operator defined on V(F) may not belong to F. For example, let T 

be a linear operator an R
2
(R), whose matrix with respect to the standard ordered basis is 

 A =   

The characteristic polynomial of A is det (A – xI) = 0 

     x
2
 + 1 = 0 

This equation has no roots in R (though, its roots x =  i  C). 

Cayley-Hamilton Theorem 5 (for a linear operator): Every linear operator T on an n-

dimensional vector space V(F) satisfies its characteristic equation f(x) = 0, i.e. f(T) = 0. 

Proof: Let A be the matrix of T with respect to any basis  of V. So, A = [T  

Hence for matrices, Cayley-Hamilton theorem states that every square matrix satisfies its 

characteristic equation. Hence if f(x) = det(A – xI) =  + x + x
2
 + ….. +  x

n
 = 0 , is the 

characteristic equation of A, then  

 f(A) = I + A + A
2
 + ….. +  A

n
 = 0 

     [ I  + [T  +  [T
2
  + …. +  [T

n
  = [0  

   [f(T)  = [0  

Hence f(T) = I + T +  T
2
 + …. +  T

n
 = 0 

Example 9: Find the eigen values, eigen vectors and eigen spaces of A =   

Solution: Step-I: Characteristic equation of A is |A – xI| = 0 

 
 

 = 0   or  x
2
 – 1 = 0  or  x =  1 

Hence eigenvalues of A are {+1, -1}. 
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Step-II:  An eigenvector X, corresponding to the eigenvalue 1 is given by  

 AX = X   or   (A – I)X = 0. 

Here  = 1  and   X =   

So, (A – I)X =   =   

 
     = . 

We can take any value for solution. Let  =  = 1. Then an eigen vector corresponding to  = 

1 is 

  X =  = [ 1  1]
T
. 

Again eigenvector for  = 1 is 

(A – I)X = 0       or      =  

      +  = 0 

If   = 1 , then  = 1  

 So an eigenvector corresponding to  = 1 is  X =   

  Step-III: The two eigenspaces W1 and  are given by  

     W1 = {  :   R } and   = {  :  R }. 

Example 10: Let T : R
3

R
3
 be a linear operator, where  

    T(e1) = 5e1 – 6e2 – 6e3 ;      T(e2) = -e1 + 4e2 +2e3 ;    T(e3) = 3e1 – 6e2 – 4e3 

Find the characteristic values of T and compute the corresponding eigenvectors. 

Solution: On the basis of given relations, the matrix of T is  
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    A =  

So the characteristic equation is det (A – xI) = 0. 

       = 0. 

On solving, we get x = 1, 2, 2. So eigenvalues of T are 1, 2, 2. 

Case-I: An eigenvector corresponding to  = 2 is given by  

     (A – 2I)X = 0 

       =   

Now R2  R2 + 2R1 and R3  R3 + 2R1 

      =  

Since rank of coefficient matrix =  number of non-zero rows = 1. So, n – r  or 3 – 1 = 2 variables 

can be given arbitrary values. 

  So we have   3x1 – x2 + 3x3 = 0     …..(1) 

 If we take x3 = 0, we get one arbitrary solution X = [  . 

 If we take x2 = 0, we get X = [  . 

 So, two eigenvectors corresponding to  = 2 are  

       X1 =     and    X2 =    .  

 Case-II: Now eigenvector corresponding to  = 1 is  

     (A – I)X = 0 
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     =  

   R1   , we get 

   =  

 R2  R2 + 6R1  and    R3  R3 + 6R1 

   =  

 R2  R2  and  R3  2R3 

   =  

 R3  R3 – R2 , we get 

    =  

Hence rank of coefficient matrix is 2. So only 3 – 2 = 1 variable can be given arbitrary value. 

Now  x1 –  +  = 0   and 0 + x2 – x3 = 0 

Let x3 =   R,   then x2 =  

So   x1 =    =   

So X = [  = [  = [  = [ . 
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Example 11: Show that the eigen values of a diagonal matrix are exactly the elements in the 

diagonal. Hence prove that if a matrix B is similar to a diagonal matrix D, then the diagonal 

elements of D are the eigen values of B. 

Solution: Step-I: Let A =  

Characteristic equation of A is det (A – xI) = 0. So 

     = 0 

     ( ) ( ) ….. ( ) = 0 

 
 
x = ,  , …. , . 

Hence the eigenvalues of A are its diagonal entries. 

Step-II: We have already proved that similar matrices have identical eigenvalues. So both 

matrices have same eigen values. 

Example 12: Let V be the vector space of all real-valued continuous functions. Prove that the 

linear operator T: V V defined as (Tf)x =   has no eigenvalues. 

Solution: Suppose  is an eigenvalue of T. Then there exists some 0  f  V such that Tf = f. 

    (Tf)(x) = ( f)(x) 

      =  f(x),  by given condition    ….(1) 

Differentiating with respect to x, we get 

    f(x) = f'(x),  or    =  , considering   0 

On integration, logef(x) =  + loge a  or  f(x) = a    ….(2) 
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Putting x = 0 in equation (2), we get 

   f(0) = ae
0
     or      a = f(0) 

So     f(x) = f(0)         ….(3) 

For equation (3) , we have  

   =   

 f(0) (    =  f(x),   using equation (1) 

    f(0)  (   1) =  f(0)  ;  using (3) 

       =    

     = 0 ,     contradiction. 

So initial assumption was wrong. Hence T has no eigenvalue. 

Note: We observed that diagonal matrices are easiest to find eigen values. So it is a natural 

question, whether we can transform every square matrix into diagonal matrix? 

The answer is NO. Then there is a need of condition for that. Let us study these basics: 

 

8.12 DIAGONALIZABLE OPERATOR 

A linear operator T on a finite-dimensional vector space V(F) is  called diagonalizable, if there 

exists an ordered basis  of V such that the matrix of T with respect to the basis  is a diagonal 

matrix, so  

     [T  =   = diag(α1,…, αn). 

Diagonalizable matrix: An n n matrix A over a field F is said to be diagonalizable, if it is 

similar to a diagonal matrix.  Also A is diagonalizable if there exists an invertible matrix P such 

that P
-1

 A P = D, where D   is a diagonal matrix. The matrix P is our actual need. 
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8.13 BASIS OF DIAGONALIZABLE OPERATORS 

Theorem 6: A linear operator T on a finite-dimensional vector space V(F) is diagonalizable if 

and only if there exists a basis of V consisting of eigenvectors of T. 

Proof: If Part: Let T be diagonalizable, Then  an ordered basis  = {v1, ….., vn} of V such that 

the matrix of T relative to  is [T  = . From above expression, we 

get, 

 T(V1) = v1 + 0v2 + …. + 0vn  

  T(V2) = v1 + v2 + …. + 0vn 

 - - - - - - - - - - - - - - - - - - - - - - 

  T(Vn) =  + 0 + …. + vn 

Or , we can write T(Vi) =  ; i = 1, 2, …, n. Hence v1, v2 , ….., vn are eigenvectors of T i.e. the 

basis  consists of eigenvectors of T. 

Only if part: Let  = {v1, ….., vn}  be a basis of V consisting of eigenvectors of T. Then,    

F such that  

 T(Vi) =  ; i = 1, 2, …, n. 

So, [T  =  

Hence T is diagonalizable.  

Theorem 7: Let T be a linear operator on a finite-dimensional vector space V(F). Then the 

eigenvectors corresponding to distinct eigenvalues of T are linearly independent.  

Proof: Let , ….. ,  be m distinct eigen values of T and let v1, ….., vm be the corresponding 

eigen vectors of T. Then    
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 T(Vi) =  ; i = 1, 2, …, m    ….(1) 

Claim: S = {v1, ….., vm} is linearly independent. Here we use the principle of mathematical 

induction. If m = 1, then  S = { v1} where v1  0. We know that a single non-zero vector is 

always linearly independent. So result is true for = 1. Suppose the set { v1, ..., } is linearly 

independent, where k < m. We shall prove that the set { v1, ...,  , } is also linearly 

independent . 

 Let     + …..+  +   = 0 ;   F                         ….(2) 

     T(  + …..+  + ) = T(0) 

    T( ) + …. + T( ) + T( ) = 0 

      ( ) + …. +  ( ) +  ( ) = 0   ….(3) 

Multiplying equation (2) by  and then subtracting from equation (3), we get 

   (   + …. + (   = 0. 

But v1,..,   are linearly independent. 

So    (  ) = 0 = …. = (  ) 

     = 0 …. =    as  , ….. ,  are all distinct. 

Putting these values in equation (2), we get 

 = 0     = 0, as    0. 

So {v1, ..., } are also linearly independent if { v1, ..., } are linearly independent. But we 

have already proved that the result is true  for m = 1. Hence by principle of mathematical 

induction, S = { v1, ..., }is linearly independent.  

Corollary 3: If T is a linear operator on an n-dimensional vector space V(F), then T can not 

have more than n distinct eigenvalues. 

Proof: Let us consider that T has m distinct eigenvalues where m > n. From this theorem, the 

corresponding m eigen vectors of T are linearly independent. But dim V = n, so maximum 

number of linearly independent vectors in V(F) is n. Contradiction! 
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So T can‟t have more than n distinct eigen values. 

Corollary 4: Let T be a linear operator on an n-dimensional vector space V(F) and suppose that 

T has n distinct eigenvalues. Then T is diagonalizable. 

Proof: Suppose T has n distinct eigenvalues, say , …..,  . Let , ….,  be the 

corresponding eigenvectors. By using this theorem, , ….,  are linearly independent over F. 

Since dim V = n, so  = { , …., } is an ordered basis of V which consists of eigenvectors of  

T. Hence by this theorem, T is diagonalizable. 

Corollary 5: Let T be a linear operator on a finite-dimensional vector space. Let , …..,   be 

distinct eigenvalues of T and Wi be the eigenspace of T corresponding to the eigenvalue   ; 1  

i  m.  

So W = W1 + W2 + …. + Wm 

 If   is an ordered basis for  , then  = { , ….,  } is an ordered basis for W. Further dim 

W = dim W1 + …. + dim Wm. 

Proof:   Let W1 + W2 + …. + Wm = 0 ; where wi  Wi ; ; 1  i  m. 

Claim: wi = 0 for each i. Suppose there are some non-zero wi. If we ignore zero wi, then,  

 + + …. +  = 0,  each  is non-zero. 

 All these vectors are linearly dependent.  

But corresponding eigenvalues  , …..,   are all distinct.  

 Contradiction! 

So by this theorem, all wi = 0. 

Step II: As  is an ordered basis for Wi. 

   spans  . 

      = { , ….,  } spans the subspace W = W1 + W2 + …. + Wm 
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Claim:   is a linearly independent set. Let x1 + …. + xm = 0,  where    is some linear 

combination of the vectors in . So as proved in Step-I,  = 0  for each i. As each  is linearly 

independent. 

    all the scalars in  must be zero. 

     is a linearly independent set. 

Hence  is a basis of W = W1 + …. + Wm 

    dim W = dim W1 + …. + dim Wm. 

Theorem 8: Let , …..,   be n distinct eigenvalues of an n  n matrix A and let X1, …., Xn be 

the corresponding eigenvectors of A. If P = [X1, …., Xn] be n  n matrix, then A is 

diagonalizable and P
-1

 A P = diag ( , ….,  ). 

Proof: By corollary (3) of previous theorem, it is obvious that A is diagonalizable. Since we 

know that eigenvectors associated with different eigenvalues are linearly Independent. 

  X1, …., Xn are linearly independent. 

So all Xi are non-zero vectors also. 

     det(P)  0      i.e. P is invertible. 

Given that A  =  , i = 1, 2, …., n    ….(1) 

Now AP = A [X1, …., Xn] = [AX1, …., AXn] 

= [ X1, …., Xn]    using(1) 

= [X1, …., Xn]    

So, AP = P diag ( , …..,  )   

  P
-1

 A P = diag ( , ….,  ). 



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 
Uttarakhand Open University Page 125 
 

Example 13:  Let A =       then , 

(i) Find eigenvalues of A, corresponding eigenvectors and eigenspaces of A. 

(ii) Is a diagonalizable ? 

(iii) Find a non-singular matrix P such that P
-1

 A P is a diagonal matrix. 

Solution: (i) Characteristic equation of A is  

|A – xI| =   = 0 

On solving we get x = 1, 2, 2. 

Case (i): Eigenvector corresponding to x = 1 is given by (A – I)x = 0 

     =   

R1  R2 , we get  

  =  

R2  R2 + 4R1   and R3  R3 + 3R1    

     =  

  R2  R2 

     =  

  R3  R3 – R2  

     =  

-x1 + 3x2 + 2x3 = 0,  and    3x2 + x3 = 0 

Since rank of coefficient matrix = 2. So only 3 – 2 = 1 variable will take arbitrary value. Let x3 = 

3 , then  x2 = -1  and   x1 = 3 
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So X1 =  

Case (ii): Eigen vector, corresponding to x = 2 is (A – 2I)X = 0 

      =  

   R1  R2 , we get  

     =  

   R2  R2 + 3R1   and  R3  R3 + 3R1    

     =  

      -x1 + 2x2 + 2x3 = 0 

Here rank of coefficient matrix is 1. So 3 – 1 = 2 variables can take arbitrary value. By taking x2 

= 0, we get x1 = 2, x3 = 1. By taking x3 = 0, we get x1 = 2, x2 = 1. So two linearly independent 

eigenvectors corresponding to x = 2 are X2 =      and    X3 =     

 Case (iii): W1 = { aX1 : a  R } = { a(3, -1, 3) : a  R }  

W2 = {bX2 + cX3 :  b, c  R } =  { b(2, 0, 1) + c(2, 1, 0) : b , c  R}   

(iii) First we show that X1, X2 , X3 are linearly independent over R. Let a, b  R such 

that  aX1 + bX2  + c X3 = 0. Then 

a(3, -1, 3) + b(2, 0, 1) + c(2, 1, 0) =(0, 0, 0) 

   3a + 2b + 2c = 0 

   -a + 0b + 0c = 0   a = 0 

   3a + b + 0c = 0 
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So we have    b + c = 0 and b = 0 

    c = 0 

So X1, X2 , X3 are linearly independent. Hence A is diagonalizable.  

(iii)  Let P =  =   

Now using elementary properties of matrices, we can get   . Then it can be easily verified that  

  A P =  . 

Example 14: For the matrix, A = , find a matrix P,  such that A P is a 

diagonal matrix.  

Solution: For given matrix, characteristic equation is |A – xI| =  = 0 

On solving, we get x = 5, 3, -3. As  A is 3  3 matrix having three different eigenvalues. So A is 

diagonalizable. 

Case I: Eigenvector, corresponding to x = 5 is given by (A – 5I)X = 0 

     =  

R1   R1 , we get 

     =  

   R2  R1 + R2   and  R3  R3 + R1   , we get 
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     =   

   R2   R2 

     =  

   R3  R3 – R2  

        =   

    -2x1 + x2 + 0 x3 = 0. 

    x2 + 2x3 = 0. 

If we take, x3 = -1 , then x2 = 2 , x1 = 1 .  

So eigenvector corresponding to x = 5 is, X1 = [  . 

Case II: Now eigenvector corresponding to x = 3 is (A – 3I)X = 0 

     =  

   R2  R1 + R2   and  R3  R3 + R1   , we get 

     =  

    -x1 + x2 = 0  and x3 = 0 

    x1 = x2 and   x3 = 0 

So eigenvector corresponding to x = 3 is ,  X2 = [  . 

Case III: eigenvector corresponding to x = -3 is  
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   (A + 3I)X = 0 

       =  

   R1   R1 , we get 

     =  

   R2  R2 – R1   and R3  R3 – R1   , we get 

     =   

   R3  R3 + R2  

       =  

      2x1 + x2 = 0 and  x2 – 2x3 = 0 

 If we take x3 = 1, then x2 = 2 and x1 = -1. So eigenvector corresponding to x = -3 is X3 = [ 

 . Here eigen vectors corresponding to distinct eigen values are linearly 

independent.  

So P =  =  . 

 Now, we can get  such that 

     A P =  . 
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Example 15: Find the eigenvalues and bases of the corresponding characteristic spaces of the 

matrix A  =    

Is A diagonalizable? Justify. 

Solution: The characteristic equation of A is  = 0 

On solving, we get  x = 2, 2, 3. 

Case (i): Eigenvector, corresponding to x = 2 is given by (A – 2I)X = 0 

     =  

   R3  R3 + 2R2  

    =  

       x2 = 0 , x2 + x3 = 0     x3 = 0 

x1 can take any real value .  Let x1 = 1 

So    X1 =  

Case (ii): Eigen vector, corresponding to x = 3 is (A – 3I)X = 0 

     =  

R3  R3 + R2 

   =  
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  -x1 + x2 = 0 ,  2x2 + x3 = 0. 

If we take x3 = -2, then x2 = 1, x1 = 1. So eigenvector corresponding to x = 3 is  

   X2 =  . 

Bases: The characteristic space W2, corresponding to the eigenvalue x = 2 is spanned by X1. 

Hence {X1}is a basis of W2. Similarly {X2} is a basis of W3. Thus we have obtained two linearly 

independent eigen vectors X1 and X2, corresponding to eigen values 2, 2, 3 of A. So we can‟t get 

a 3 3 invertible matrix P such that  

AP =  

Hence A is not diagonalizable. 

Theorem 9: Let T be a linear operator on a finite-dimensional vector space V(F). If , ….,  

are k distinct eigenvalues of T and  be the eigenspace of T corresponding to the eigenvalue  

(1  i  k ), then the following conditions are equivalent – 

(i) T is diagonalizable. 

(ii) The characteristic polynomial of T is  

  f(x)  =  ……  , where 

   = dim  (1  i  k ) and  + …. +  = dim V = n. 

(iii)  dim V =  dim  + ….. + dim . 

Proof: Since we know that  = {  : T( ) =  } 

     = {  : (T ) ( ) =0 } 

Claim: We shall prove (i)  (ii) 

Suppose T is diagonalizable. Then there exists an ordered basis  = { , …. , } of V such that 

the matrix of T relative to  is  
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[T   =  . 

Suppose c1 is repeated  times, …,  is repeated  times. Then  

   [T   = diag [ ] . 

So, characteristic polynomial of T is given by 

   f(x) =   ……  , where 

    +  + …. +  = n = dim V. 

Thus [T – I   has only  zeros on the main diagonal for all i = 1, 2, …., k and  

rank (T – I) = n –  ;  i = 1, 2, …., k   ….(1) 

Then by rank-nullity theorem, 

 Rank(T – I) + Nullity(T – I) = dimV = n    ….(2) 

Using equation (1), we have 

  Nullity (T – I) =  

    dim ker(T – I) =  

   dim  =  for i = 1, 2, …., k . 

Claim: Now we shall prove (ii)  (iii) 

  Here given that, dim V =  +  + …. +  

       dim V = dim  + ….. + dim . 

Claim: Now we shall show (iii)  (i) . 

  Let dim V = dim  + ….. + dim      ….(3) 

  Let   W =  +  + …. + . 
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Since , ….,  are distinct eigenvalues of T and  , …. ,  are the corresponding 

eigenspaces of T, so  

 dim W = dim  + ….. + dim  (we have proved this in theorem)   ….(4) 

Further, if  is a basis of  , for i = 1, 2, …., k ; where  = ker(T – I) ,  

Then  = { , …., } is a basis of W. From equations (3) and (4), we conclude that  

  dim V = dim W and so V = W =  +  + …. +  , since W is a subspace of V. 

 Hence  = { , …., } is a basis of V consisting of eigenvectors of T and so T is 

diagonalizable. 

Check your progress 

Problem 1: Find the characteristic polynomials for the identity operator and zero operator on an 

n-dimensional vector space. 

Problem 2: If  c   0, is an eigenvalue of an invertible operator T, then prove that     is an 

eigenvalue of     . 

Problem 3: Let T be a linear operator on R
3
 which is represented in the standard ordered basis 

by the matrix  A = [
    
    
     

] . Prove that T is diagonalizable by exhibiting a basis for R
3
, 

each  vector of which is eigen vector of T. 

Problem 4: Find the eigenvalues, eigenvectors of the matrix  

    A = [
   
   
   

] .   

Problem 5: Find the eigenvalues, eigenvectors and eigenspaces of the matrix A = [
   
   
   

]   . 

Problem 6: Find the eigenvalues, eigenvectors and eigenspaces of the matrix A=[
    
    
    

]. 

 Also prove that A is diagonalizable. 
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8.14 SUMMARY 

In this unit, we understood the concept of linear operators and their different applications. One of 

such applications is invertibility of T. Then we elaborated the role of bases of T and their 

representations. At last, we ensured some conditions of diagonalisation of square matrices. 

8.15 GLOSSARY 

Eigen Values of T: Let T be linear operator on a vector space V(F). A scalar   F is called an 

eigen value or characteristic value of T, if there exists some V  0,  

    v  V such that,  T(v) =  v. 

Eigen Vector: If  is an eigen value of T, then v  V such that T(v) = v is called an eigen 

vector or characteristic vector belonging to . 

Eigen space: The set of all eigenvectors of T belonging to an eigenvalue  is called an 

eigenspace of T, belonging to . It is represented as . Hence, 

        = { v  V : T(v) =  v }. 

Similar Matrices: Let A = [  and B = [  and P = [  where , ,   F. 

Then A and B are called similar matrices if, there exist a matrix P such that  A = P
-1

 B P , where 

P is non-singular matrix. 
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8.18 TERMINAL QUESTION 

Long answer type question 

1: Let T be a linear operator on a vector space V(F). Then prove the following: 

(iv) If  0  v  V is an eigenvector of T, then   F satisfying T(v) = v is unique. 

(v) The eigenspace  corresponding to an eigen value   F is a subspace of V(F). 

(vi)   = ker (T –  I) . 

2: State and prove the Cayley-Hamilton Theorem for a linear operator. 

3: Find the eigen values,  eigen vectors and eigen spaces of 22  identity matrix. 

4: Show that the eigen values of a diagonal matrix are exactly the elements in the diagonal. 

Hence prove that if a matrix B is similar to a diagonal matrix D, then the diagonal 

elements of D are the eigen values of B. 

5: Let V be the vector space of all real-valued continuous functions. Then prove that the 

linear operator T: V V defined as (Tf)x =   has no eigenvalues. 

6: For the matrix, A = , find a matrix P,  such that A P is a diagonal 

matrix.  

Short answer type question 

1: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that   

F is an eigenvalue of T if and only if T–  I is singular. 

2: Prove that similar matrices have the same characteristic polynomial and hence the same 

characteristic values. 

3: Prove that A linear operator T on a finite-dimensional vector space V(F) is diagonalizable 

if and only if there exists a basis of V consisting of eigenvectors of T. 

4: Let T be a linear operator on a finite-dimensional vector space V(F). Then prove that the 

eigenvectors corresponding to distinct eigenvalues of T are linearly independent.  
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1:  For the matrix A = [
   
   
     

], prove that there exists a matrix P such that  

      AP = [
   
   
   

] . 

2: Let A = [
     
    
     

]      then  

(i) Find eigenvalues of A, corresponding eigenvectors and eigen spaces of A. 

(ii) Is a diagonalizable? 

(iii) Find a non-singular matrix P such that P
-1

A P is a diagonal matrix. 

8.19 ANSWERS 

Answers of check your progress: 

1. {(1 – x)
n
 , (–1)

n
 x

n
}. 

3. (eigen values are 3, -1, -1, and P = [
   
   
   

]). 

4.  {1, k(1,0,0) : k  R } 

5.  [ 1, -1; X1 = [
 
 
 
] , X2 = [

 
 
 
] , X3 = [

 
  
 
]  W1 = L{ X1 , X2 } ,     = L { X3}  ] . 

6.  {1, 2, 5;   [
 
 
 
] ,   [

 
 
 
] ,   [

 
 
 
] } 

Answer of long question: 

3: Eigenvalues of A are { +1, -1}. Eigen vector corresponding to  = 1 is 

  X =  = [ 1  1]
T
 and eigenvector corresponding to  = 1 is  X =   

6: 
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Unit-9: DETERMINANTS 

 

CONTENTS: 

 

9.1 Introduction 

9.2 Objectives 

9.3 Determinant  

9.3.1     Determinant of order 1 

9.3.2     Determinant of order 2 

9.3.3     Determinant of order 3 

9.4 Minors and cofactor 

9.5 Definition of determinant in terms of cofactor 

9.6 Properties of determinant  

9.7 Vandermonde matrix 

9.8 Product of two determinant of the same order  

9.9 Non singular and singular matrix 

9.10 Linear equation  

9.11 System of non –homogenous linear equation( Cramer’s rule) 

9.12 Adjoint of square matrix  

9.13 Method for finding the value of determinant of order 4 or more . 

9.14 Determinants and volume  

9.15 Summary  

9.16 Glossary 

9.17 References  

9.18 Suggested readings 

9.19 Self assessment questions 

9.19.1  Multiple choice questions 

9.19.2  Fill in the blanks  

9.20 Terminal questions 

 9.20.1  Short answer type questions 

 9.20.2   Long answer type question 

9.1 INTRODUCTION 

In this unit we show that how to find the determinant of the matrix, we emphasize that 

an nn  array of scalars enclosed by straight lines called determinant of order     the 
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determinant function was first discovered during the investigation of system of linear 

(Homogeneous and Non Homogeneous) Equation. 

We solved the determinant of matrix of order       … and then we define a determinant of 

general nn matrix. 

9.2 OBJECTIVE 

After reading this unit you will be able to: 

 Understand minors and cofactors. 

 Find determinant value of a square matrix. 

 Understand properties of determinant and its uses. 

 Find product of the two determinant and its uses. 

 Know about singular and nonsingular matrices. 

 Find solution system of non-homogeneous linear using Cramer’s Rule. 

 Find Adjoint of a square matrix. 

9.3 DETERMINANT 

Definition: Each n-square matrix is assigned a special scalar is called determinant of A, and 

it is denoted by | | 

   | |= |

             
   
            

| 

9.3.1 DETERMINANTS OF ORDERS 1 

If  
1111 

 aA  then | |      

9.3.2 DETERMINANTS OF ORDERS 2 

If   0
      
      

1 then | |   (Product of principal diagonal element) – (Product of non-

principal                               diagonal element) 

| |                

Example: - if   0
  
  

1 then, | |= (2.5) – (4.3) 

       = 10 – 12 

       = -2 

9.3.3 DETERMINANTS OF ORDERS 3 
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Let  
33

 ijaA  [

         
         
         

]  

Then | |                                                                

     Or 

 | |     |
      
       

|     |
      
      

|     |
      
      

| 

     Or 

333231

232221

131211

aaa

aaa

aaa

A   

Then arrange these number in rows and columns and first two rows again write in last

 

9.4 MINORS AND COFACTORS 

Consider the determinant of 33  matrix (in general) 

 A= |

         
         
         

| 

Then if we leave the column and the row passing through the element   , then the second 

order determinant is called minor of the element     and it is denoted by     

For example: The minor of the element     |
      
      

|      

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

a11 a12 a13 

a21 a22 a23 

 

l1+ l2+ l3=L m1+ m2+ m3=M 

 

l1 

l2 

l3 

m1 

m2 

m3 
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  The minor of the element     |
      
      

|= 12M  

Cofactors: The minor     multiplied by (  )    is called cofactor of the element     and it is 

denoted by     

      (  )        

For example: - The cofactor of the element     (  )           

  The cofactor of the element     (  )            

9.5 DEFINITION OF DETERMINANTS IN TERMS OF 

COFACTOR 

Let A be any n-row’s square matrix then the determinants of A is the sum of the product of 

the element of any column or any row with their corresponding cofactor 

ij

n

jori

ij AaAei 



11

..  where, either i or j is fixed 

Example: 

1. If          

 

| |  ∑   

 

   

                         

2. Write the cofactors and minors of each element of the matrix   [
   
    
    

] 

Solution: The matrix of the element     |
   
   

|            

       The matrix of the element     |
   
  

|            

       The matrix of the element     |
  
   

|              

       The matrix of the element     |
  
   

|            
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       The matrix of the element     |
  
  

|            

       The matrix of the element     |
  
   

|              

       The matrix of the element     |
  
   

|              

       The matrix of the element     |
  
   

|              

       The matrix of the element     |
  
  

|            

The cofactor of the element     (  )             

The cofactor of the element     (  )              

The cofactor of the element     (  )              

The cofactor of the element     (  )              

The cofactor of the element     (  )             

The cofactor of the element     (  )             

The cofactor of the element     (  )              

The cofactor of the element     (  )             

The cofactor of the element     (  )             

9.6 PROPERTIES OF DETERMINANTS 

Theorem 1: The value of determinant does not change when rows and columns are 

interchange 

Proof: Let A be any square matrix of order n 

   [

             
   
          

]

   

 

Then 

| |  ∑    
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Let us take a matrix of order 3 for example 

      [

         
         
         

] 

| |     |
      
      

|     |
      
      

|     |
      
      

| 

            (             )     (             )     (             ) 

            (             )     (             )     (             ) 

             |
      
      

|     |
      
      

|     |
      
      

| 

         [

         
         
         

] 

Hence the determinants of any matrix A and its transpose matrix   are equal. 

Theorem 2: If any two columns or rows of a determinant are interchanged then the values of 

determinant is negative multiple of determinant of original matrix. 

Proof: - Consider a matrix A of order 3 

                [

         
         
         

] 

 

     | |     |
      
      

|     |
      
      

|     |
      
      

| 

                     (             )     (             )

    (             )    ( ) 

Now interchanging any two rows or columns 

      

Then new matrix 



















333231

131211

232221

1

aaa

aaa

aaa

A  

| |                (             )     (             )     (             ) 
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                      ,                                                           -

 ,   (             )     (             )     (             )- 

 So,    AA 1  

Note:  

1. If any row or column in any matrix is multiplied by any scalar K then determinant of 

the matrix is K times of the determinants of the original matrix 

For example: |
            
         
         

|   |

         
         
         

| 

2. If all the elements of matrix multiplied by constant K then determinant is equal to    

time of the value of determinant of original matrix, where n is order of matrix. 

i.e.  |  |    | | 

3. If any two rows or columns are identical of any matrix then determinant is zero. 

Theorem 3: If in a determinant each element in any row or column consists of the sum of 

two terms, then determinant can be written as sum of two determinants 

Proof: Let   [

           
           
           

] 

Expanding the determinant along the first column 

| |  (     ) |
      
      

|  (     ) |
      
      

|  (     ) |
      
      

| 

         |
      
      

|     |
      
      

|     |
      
      

|   |
      
      

|   |
      
      

|

  |
      
      

| 

 |

         
         
         

|  |

       
       
       

| 

Theorem 4: If the element of any row or column added by K time the corresponding element 

of any other row or column, then determinants of the matrix are same  

Proof: -      [

         
         
         

] and     [
              
              
              

] 
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Then    |

              
              
              

|   |

         
         
         

|  |

          
          
          

| 

               | |   |

         
         
         

| 

 KOA    [If any two columns are identical then determinant will be zero] 

  | | 

Example: If   [
    

    

    
] then show that 

| |  (   )(   )(   ) 

Solution: | |  [
    

    

    
] 

Applying                      then we get 

  [
    

         

         
] 

Expanding the determinant along the first column 

| |   |        

        
|   |      

      
|    |

    
    

| 

= 00))(())(( 2222  acabacab  

 (   )(   )(   )  (   )(   )(   ) 

 (   )(   )*(   )  (   )+ 

))()(( bcacab   

))()(( accbba   

9.7 VANDERMODE MATRIX 

A matrix is at form 
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    [

   
   

  
   

   

  
   

   

  
   

  
  
   

   

]is called vandermode matrix 

And its determinant 

| |  ∏ (     )

       

 

Example 4: Find the determinant of  

     |

  
  

  
   

  
 
  

| 

Solution:    (  )          

   (  )    (  )(   )       

   (  )    (  )(   )   (  )(   )       

  ------  

    (  )(   )   (   )              

Where    (  )    

Then 













1

2

)2))(1(

)1(

nn

n  

Example 5: Let A be a square matrix of order n, then show that 

1. | ̅|  | |̅̅ ̅̅    2. |  |  | |̅̅ ̅̅  

Solution 1. let  
nnijaA


   [   ]   

 then  
nnijaA


  

So | ̅|  |   ̅̅ ̅|  |   |
̅̅ ̅̅ ̅  | |̅̅ ̅̅  

2. A be a square matrix of order n, and      ̅̅̅̅  

So |  |  |  ̅̅̅̅ |  | ̅ |  | ̅|  | |̅̅ ̅̅   

  |  |  | | and | ̅|  | |̅̅ ̅̅  

Example 6: Show that the determinant of Hermitian matrix always a real number  
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Solution: Let A be a Hermitian matrix 

  Then      

  |  |  | | 

  AAT   

  | |̅̅ ̅̅  | | 

Let      is the determinant of A 

  | |       

  | |̅̅ ̅̅       

  But  | |̅̅ ̅̅  | | 

              

              

      

  | |         

Example 7: Show that the determinant of Skew symmetric matrix of odd order is zero. 

Solution: Let A be a skew symmetric of odd order 

        

  |  |  |  |  |(  ) |  (  ) | |   |  |    | | 

  | |  (  ) | |     |  |   | | 

Since n is odd so (  )     

Now  | |   | | 

   | |    

  | |    

9.8 PRODUCT OF THE TWO DETERMINANT OF THE SAME 

ORDER 
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Example 8: If A and B are two square matrices of same order then prove that 

     |  |  | || | 

Solution: Let   [

         
         
         

]    [

         
         
         

] 

   

 [

                                                            
                                                            
                                                            

] 

Now we know that 

If | |  |

         
         
         

|  | |  |

         
         
         

| 

| || |

 |

                                                            
                                                            
                                                            

| 

    Hence |  |  | || | 

Rule: Let A and B are only two matrices of same order 

 Let | |  |

         
         
         

|  and | |  |

         
         
         

| then 

| || |

 |

                                                            
                                                            
                                                            

| 

In general this is simply row by column multiplication 

Example 9: If A be a square matrix of order n then show that  

     |  |  | |    

Solution: Let A and B are two square matrices of order n 

Then we know that |   |  | || | 

If we replace B with A then 
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|   |  | || | 

  |  |  | |  

In similar way   |  |  | |  

Example 10: Show that the determinant of an idempotent matrix is either 0 or 1 

Solution: Let A is an idempotent matrix, then 

       

  |  |  | | 

  | |  | | 

| |(| |   )    

 | |                        | |      

 | |                | |    

Note: It is necessary condition the determinant of idempotent matrix is 0 or 1 but not 

sufficient. 

For Example: If   0
  
  

1 Then | |             

Example 11: Show that the determinant of orthogonal matrix is either 1 or -1 

Solution: Let A is an orthogonal matrix, then 

         

  |    |  | | 

  | ||  |    

  | || |        |  |  | | 

  | |      | |    

  | |           

Note: Determinant of a diagonal matrix, upper triangular matrix, lower triangular matrix is 

the product of principal diagonal elements. 
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Example 12: If   [
   
   
   

]  Then | |     

Solution:   [
   
   
   

]is upper triangular matrix so its determinant values are the product 

of principal diagonal matrix  

Hence | |           

Example 13: Show that the value of determinant of skew Hermitian matrix of order n, is 

either 0 (zero) or purely imaginary if n is odd and real, if n is even. 

Solution: Let A be a skew Hermitian matrix and 

   | |          

        (By definition of skew Hermitian matrix) 

  |  |  |  | 

  |  ̅̅̅̅ |  (  ) | | 

  | |̅̅ ̅̅  (  ) | | 

Case 1: If n is even then, 

 | |̅̅ ̅̅  | |                                        | |    

   | |        

Case 2: If n is odd then, 

002)(  xxiyxiyxAA  

 | |̅̅ ̅̅  | |                (    )                           

 | |      If       then | |    

If     then  | | is purely imaginary. 

9.9 NON SINGULAR MATRIX AND SINGULAR MATRIX 

Non- Singular Matrix: A matrix ‘A’ is said to be non-singular matrix if its determinant is 

non zero. 
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Singular Matrix: A matrix ‘A’ is said to be singular matrix if its determinant is zero. 

9.10 LINEAR EQUATION (HOMOGENEOUS AND NON-

HOMOGENOUS EQUATION) 

Linear homogenous equation: The equation is of the form            is called linear 

homogenous equation in x, y, z.  

Linear non-homogenous equation: The equation is of the form          

            is called non-homogenous equation in x, y, z.  

9.11 SYSTEM OF NON-HOMOGENOUS LINEAR EQUATION 

(CRAMER’S RULE) 

If we have n linear simultaneous equation in n variable  ,          

i.e.                               

                         

                                        

                         

 Let      |

      
      

    
    

  
      

 
    

|     

Suppose     is the cofactor of element      in   then multiplying this given equation 

by    ,             and adding 

  (                     )    (                     )   

   (                     ) 

      ( )    ( )                        

       where,    is the determinant obtained by replacing first column element of   by 

         then    
  

 
 

Again multiplying these equations by              and adding then we get 
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Where    is determinant obtained by replacing second column element of   by          

In similar way, we get 

                       
  
 

 

      

                       
  
 

 

This method of solving n simulations linear non-homogenous equation provided | |    

where A is the coefficient matrix. This method is known as Cramer’s rule 

Example 14: Solve the following system at equation by Cramer’s rule 

            

             

          

Solution: The coefficient matrix of given system at non-homogenous linear equation is 

    [
    
   
    

]    [
 
 
 
] 

    | |   |
  
   

|   |
  
  

|   |
  
   

| 

    (   )   (    )                               

Therefore the system of non-homogenous linear has unique solution  

Now using Cramer’s rule 

   [
    
   
    

]         [
   
   
   

]          [
    
   
    

]     

Hence the solution is 

  
  
 
 
  

  
                      

  
 
 
  

  
                 

  
 
 
  

  
   

9.12 ADJOINT OF A SQUARE MATRIX 
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Let   [   ]   
be a square matrix of order n then the transpose of a matrix B=,   -   where 

    is the cofactor of the element     called Adjoint of matrix A and it is denoted by AdjA or 

adjA. 

If    

nnnnn

n

aa

aa

A




















...

.........

...

1

111

 

Then the cofactor matrix 

nnnnn

n

AA

AA

C




















...

.........

...

1

111

 

Then adjA= transpose of the matrix C 

 adjA= 

nnnnn

n

AA

AA

C




















...

.........

...

1

111

 

Example 17: Find the adjoint of the matrix 

     [
   
   
   

] 

Solution: Let us find the cofactor               etc at the element of | | we have 

5
13

21
11 A ,                  |

  
  

|         |
  
  

|      

     |
  
  

|         |
  
  

|           |
  
  

|       

    |
  
  

|          |
  
  

|         |
  
  

|       

Therefore the matrix C formed at the cofactor of the element of | | is 

   

111

113

315







C  

Now adjA is the transpose of the matrix C. 

adjA= 3 
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Example 18: Prove that at     the values of given determinant  

   |
           
            
             

|    

Solution:    We have  |
           
            
             

| 

Applying 122 RRR  and 133 RRR   

 |
           
       
        

| or |
           
   
    

| by 3322
6

1
,

2

1
RRRR   

Solving the determinant along the first row then we get  

(   )(     )  (    )(    )  (    )(   ) 

  6(   )   (    )    (    ) 

Put     then the value of determinant 

= 6(4-2) - 4(8-3) + (3.4 - 4) 

= 6.2 - 4(5) + 8 

=12 - 20 + 8 

=0 

Example 19: If |

    
     

 

    
     

 

    
     

 

|                    

                           

Solution: We have  |

    
     

 

    
     

 

    
     

 

|   |

    
  

    
  

    
  

|  |

    
   

 

    
   

 

    
   

 

| 

(By theorem (properties of determinants)) 

 =|

    
  

    
  

    
  

|        |

     
 

     
 

     
 

| 



LINEAR ALGEBRA  MT(N)-301 

Uttarakhand Open University 

Department of Mathematics Page 154 
 

(By taking          common from first row, second row and third row of the second 

determinant) 

 =|

     
 

     
 

     
 

|        |

     
 

     
 

     
 

| 

(By       then       of the first determinant so determinant is unchanged) 

  (          ) |

     
 

     
 

     
 

| 

By vandermode matrix the value of above determinant is 

  (          )(     )(     )(     )    but            

So (     ) (     )(     )    

So if |

    
     

 

    
     

 

    
     

 

|    then (          ) must be zero. 

Hence             

Example 20: Prove that if       and |

   

      

      
|                    

Solution: We have |

   

      

      
|    

Multiplying by       in first, second and third column of the determinant from left side 

respectively then we get 

 

     
|
      

      

         

|    

Taking xyz common from     row at the above determinant 

     

     
|
      

      

   

|          after that       

Then determinant is (  )  time the original determinant.  
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|

   
      

      
|                       (

133122 , CCCCCC  ) 

|

   
            

            
|    

Expanding along first row 

 |
(   )(   ) (   )(   )

(   )(        ) (   )(        )
|    

  (   )(   ) |
      

                
|    

Taking (   )     (   ) is common from first and second column 

 (   )(   )*(   )(        )  (        )(   )+    

0))()()(( 2222  xyzyxzyzyzxzxy  

 (   )(   )(   )(        )    

But                    because       all are distinct, so (        ) = 0. 

Example 21: Solve the following system of linear equation by Cramer’s rule 

          

          

          

Solution: We have   |
    
    
    

|   (    )   (    )   (    ) 

        (   )      

Thus      and therefore the system has a unique solution given by 
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|
    
   
    

|

 
 

|
   
    
    

|

 
 

|
    
    
   

|

  
 

  
 

            
 

   
 

 

   
 

 

   
 

 

   
 

Hence             

9.13 USEFUL METHOD FOR FINDING THE VALUE OF 

DETERMINANT OF ORDER 4 OR MORE 

Let A be any non zero square matrix of order n  
nnijaA


 with     

Step 1: Choose an element in A such that ija =1 or if nonexistent,       

Step 2: Using     as a swivel, apply elementary row or column operations to put 0’s in all the 

other positions in the column or row containing     

i.e. if we apply row operation then to put 0 in all the other position in the column and similar 

for column operation 

Step 3: Expand the determinant by the column or row (according to our selection of 

operation) containing     

Example 22: Find the determinant of a matrix A of order 44  

| |  |

  
  

  
   

    
   

   
   

| 

Solution:| |  |

  
  

  
   

    
   

   
   

| 

Step 1: Choose an element     because       

Step 2: Apply row operation and put 0’s in all the other positions in third column  

         Apply 211 2RRR  and 233 3RRR  and 244 RRR   
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| |  |

   
  

  
   

  
  

  
  

| 

Step 3: Now expanding the determinant by the third column 

  | |  (  )   |
    
   
   

| 

  (             )         

9.14 DETERMINANTS AND VOLUME: 

Let A is any square matrix 

  |

      
      

    
    

  
      

  
    

| 

Let    (             ) 

   (             ) 

                   

   (             ) 

Then the determinant are related to the notions of area and volume 

Let U be the parallelepiped determined by 

  *                                + 

When     then U is parallelogram 

Let V denote the volume of U then 

   Absolute volume of determinant of A 

Example 23:   Let    (     )   (     )   (     ) 

Then find the volume of the parallelepiped in three dimension space  

Solution:    (     )   (     )   (     ) 

So the volume is the absolute volume of 
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| |  |
   
   
   

|   (   )   (   )   (   ) 

             

Hence volume   | |    

Example 24: Find the value of | | where 

  |
    

    
    

| Where w is the cube root of unity. 

Solution: Cube root of unity in complex number system is solution of the equation     

 , then the values of z satisfied the above equation is called cube root of unity. 

Now                                                  

                                                                                   

So    ( )     (     )              ( )     (     ) 

So       (     )      (     )                          

  (   (   )   (      ))
 
 ⁄                   

   

 
     

   

 
 

]sincos)sin(cos,sin[cos   nineoreiei ininni 

Put                             

1k  then 



3

2
sin

3

2
cos iz  

2k  then 
    2

22

3

2
sin

3

2
cos 


 iz  

Hence cube root of unity are  and 2 . 

And also 01 2    

Now the given determinant applying 3211 cccc   

Then we get 
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





11

11

1

2

22

22







A or 







10

10

0
2

2

A  

| |    

Example 25: Evaluate |
       
       
       

| 

Solution: Let us denote the given determinant by    ( ) 

   ( )  |
       
       
       

| 

Applying row transformation by using 122 RRR   and 133 RRR   

Then we get  

   ( )  |
       

                
                

| 

Taking       are common from first, second, third columns respectively 

Then we get 

   ( )     |
    
          
          

| 

Now applying 122 RRR  and 133 RRR   

Then                           ( )       |
    
    
    

| 

Taking common       from first, second and third row respectively 

Then                                ( )        |
    
    
    

| 

Expanding along first row 

   ( )          
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9.15 SUMMARY  

In this unit we learned to find  the  value of determinant of any matrix, which will help us in 

solving the linear equation, it will also be helpful to understand the concept of eigen value 

and  rank of matrix, 

9.16 GLOSSARY 

1. Identical row or column: Any two row or column are same  

2. Parallelepiped: A solid body of which each face is a parallelogram, 

3. Absolute: Free from imperfection. 
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9.19 SELF ASSESMENT QUESTIONS 

9.19.1  Multiple choice question: 

1. The values of       where   |

  
  

  
  

  
  

  
  

| 

(a)   l.m      (b)    l.t                    

(c)    l.m.n.p                     (d)    l.t.v.s 

2. The value of t show that |
    
    

|    
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(a)    3, 10                   (b)   5, 7                   

(c)   8, 9                            (d) 1, 2   

3. If   (   )   
 such that       and       if       otherwise zero then det of A 

is 

(a)    3                       (b)   9                       

(c)         (d) 27 

4. Determinant of Nilpotent matrix will be 

(a)   A prime number     (b) Multiple of 2 

  (c) Always 1      (d) None 

5. Determinant of Skew symmetric matrix of order 3 is 

(a)    3                        (b)   5                       

(c) 1                                    (d) 0 

6. If A is any non singular square matrix f order 3, then determinant of    ( ) is 

 (a)    | |     (b) | |  

(c)  | |     (d) None 

7. If   [
   
    
    

] then cofactor of element     is 

 (a)    | |     (b)   | |  

(c)  | |     (d) None 

8. If A is any Square matrix of order n and determinant of    is 

 (a)    1                    (b)   0                  

(c)   4                                     (d) None 

9. If   [
   
      

      
] then determinant of A is 

 (a)           (b)   (   ) 
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(c)      (   )(   )    (d)   (   )(   )(   ) 

10. If |
     
       
       

|    then the  value of U 

 (a)              (b)         

(c)             (d)         

ANSWERS: 

1. (d) 2. (a) 3. (c) 4. (d) 5. (d) 

6. (b) 7. (b) 8. (a) 9. (d) 10. (a) 

 

9.19.2  Fill in the blanks: 

Fill in the blanks ‘…….’ So that the following statements are complete and correct 

1. A is square matrix of order n and |  |     

2. The value of determinant …………. When rows and columns are interchanged 

3. |

     
     
     

|    then       is……….and     are………… 

4. If A and B be two Square matrix of same order then |   |     

5. Determinant of hermition matrix is always…………. 

6. If                                       

7. A is idempotent matrix of order n and its determinant is ……..or……. 

8. If A is non zero and| |  |

     

       
   

     
        
     

    
  

| is also…… 

ANSWERS:  

1. | |̅̅ ̅̅  2. Does not change 3. Non zero, distinct 4. | | | | 
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5. Real 6. 3, 1 7. 1, 0 8. Non zero 

9.20 TERMINAL QUESTIONS 

9.20.1  Short answer type questions: 

1. Show that if   |

     

       
   

     
        
     

    
  

| then determinant of A is (   )  

2. Evaluate |

    (   )
    (   )
    (   )

| 

3. Show that |

     
      

     
     

      
  

      
  

|    

4. Show that |    |  | |     where n is a order of matrix A 

5. Evaluate |

  
  

  
  

  
  

  
  

| 

6. Evaluate |
      
       
        

| 

7. If    |
   
   
   

| and     |
     
    
    

| then show that       

ANWERS: 2. 0 

2.20.2 Long answer type questions: 

1. Show that at least one real number  , show that      is zero where  

  (
       
     
      

) 

2. Solve the following system of linear equation by Cramer’s rule 
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3. Solve the following system of linear equation by Cramer’s rule 

             

            

          

4. Solve the following system of linear equation by Cramer’s rule 

              

           

           

5. Find the adjoint of the matrix   [
     
    
    

] 

6. Show that the determinant of any matrix A, whose first row is the sum of other row is 

zero. 

7. Show that |

  
  

  
  

  
  

  
  

|  (      )  

8. Prove that |

         
          

        
         

              
              

    
    

|      .  
 

 
 

 

 
 

 

 
 

 

 
/ 

ANSWERS:  

2.             3.             

4.            
 ⁄  

 

5. [
      
      
       

] 
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UNIT-10: ELEMENTARY CANONICAL FORM 

CONTENTS 

10.1 Introduction 

10.2  Objectives  

10.3  Jordan blocks 

10.4  Generalized eigenspaces 

10.5  Jordan Canonical form 

10.6   Jordan decomposition theorem 

10.7 Summary 

10.8 Glossary 

10.9   References 

10.10   Suggested Readings 

10.11 Terminal Questions 

10.12  Answers 

10.1 INTRODUCTION 

An upper triangular matrix of a specific shape known as a Jordan matrix encoding a 

linear operator on a finite-dimensional vector space with regard to some basis is called a Jordan 

normal form, or Jordan canonical form (JCF) in linear algebra. In such a matrix, the diagonal 

entries to the left and bottom of any non-zero off-diagonal entry equal to 1 are identical, and they 

are located immediately above the main diagonal (on the superdiagonal).  

A vector space V over a field K is defined. If and only if all of the matrix's eigenvalues 

fall inside K, or, to put it another way, if the operator's characteristic polynomial divides into 

linear factors over K, there will be a basis with regard to which the matrix has the necessary 

form. If K is algebraically closed (that is, if it is the field of complex numbers), then this 
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condition is always met. The eigenvalues (of the operator) are the diagonal entries of the normal 

form, and the algebraic multiplicity of the eigenvalue is the number of times each eigenvalue 

appears. 

The Jordan normal form of an operator is sometimes known as the Jordan normal form of 

M if the operator was initially given by a square matrix M. Any square matrix that has its field of 

coefficients expanded to include all of the matrix's eigenvalues has a Jordan normal form. While 

it is customary to group blocks for the same eigenvalue together, no ordering is imposed among 

the eigenvalues or among the blocks for a given eigenvalue, though the latter could be ordered 

by weakly decreasing size. Despite its name, the normal form for a given M is not entirely 

unique because it is a block diagonal matrix formed of Jordan blocks, the order of which is not 

fixed. 

In particular, the Jordan–Chevalley decomposition is straightforward when applied to a 

basis where the operator adopts its Jordan normal form. The Jordan normal form is a specific 

case of the diagonal form for diagonalizable matrices, such as normal matrices. 

The Jordan decomposition theorem was initially proposed by Camille Jordan in 1870, and 

the Jordan normal form bears his name. 

 

A matrix example in Jordan normal form. Every matrix 

entry that isn't visible is zero. The squares that are 

delineated are called "Jordan blocks". One number 

lambda is present on the main diagonal of each Jordan 

block, whereas ones are present above it. The 

eigenvalues of the matrix are called lambdas, and they 

don't have to be unique. 

10.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of Jordan blocks.  

 Implement the application of Jordan canonical form. 

 Understand the concept of Jordan decomposition theorem. 

 Visualized and understand the concept of nilpotent operator. 

10.3 JORDAN BLOCKS 



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University Page 167 

 

Let V denote a finite dimensional vector space over a field F. 

Suppose that the characteristic polynomial of T splits in F and λ1, . . . , λk are the distinct 

eigenvalues of T in F. Let 
k

NNN  ...,,,
21

be the distinct eigenspaces of T.  

We know that the diagonalizability of T means the following direct sum decomposition 

of V in terms of distinct eigenspaces of T given by  

k
NNNV   ...

21
.  

Naively, diagonalizability fails if some
i

N  is “small”. 

Definition 1: Let F . We define a Jordan block J to be the matrix  





































0...000

1...000

.

.

.

.

.

.

.

.

.

.

.

.
00...10

00...01

J  

Note that the principal diagonal entries are all λ and the upper diagonal entries are all 1. Every 

other entry is 0. We often omit 0 from the expression. 

Our aim is to select an ordered basis B of V such that 























k

B

A

A

A

T

...00

.

.
...

.

.

.

.

0...0

0...0

][
2

1

 

where each 0 is a zero matrix, and each iA  is a square matrix of the form ( ) or a Jordan block 

J  defined above, such that  is an eigenvalue of T.  

Definition 2: The matrix 
BT][  is called a Jordan canonical form of T. We say that the ordered 

basis B is a Jordan canonical basis for T.  

Jordan block iA  is almost a diagonal matrix. 
BT][  is a diagonal matrix if and only if each iA  is of 

the form ( ).  
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Example 1: Suppose that T is a linear operator on 8C  , and B = {v1, · · · , v8} is an ordered basis 

for 8C such that  



































































00

10

30

13

)1(

100

110

011

][ BTJ  

is a Jordan canonical form of T.  

The characteristic polynomial of T is  

234 )3()1()det( tttJtI  , 

and hence the multiplicity of each eigenvalue is the number of times the eigenvalue appears on 

the diagonal of J.  

Also observe that v1, v4, v5 and v7 are the only vectors in B that are eigenvectors of T. These are 

the vectors corresponding to the columns of J with no 1 above the diagonal entry. Note that, 

T(v2) = v1 +v2 and therefore (T − I)(v2) = v1 and (T − I)(v3) = v2, since v1 and v4 are eigenvectors 

of T corresponding to λ = 2. It follows that (T −I) 
3
 (vi) = 0 for i = 1, 2, 3, 4.  

Similarly, (T − 3I) 
2
 (vi) = 0 for i = 5, 6 and (T − 0I) 

2
 (vi) = 0 for i = 7, 8 

In view of these observations, we can say that: 

 If v lies in a Jordan canonical basis for a linear operator T and is associated with a Jordan 

block with diagonal entry λ, then (T − λI)
p
 (v) = 0 for some large enough p. Eigenvectors satisfy 

this condition for p = 1.  

Our aim is to prove that every linear operator whose characteristic polynomial splits has a 

Jordan canonical form that is unique upto the order of the Jordan blocks. It is not true that Jordan 

canonical form is completely determined by the characteristic polynomial of the operator. 

Example 2: Let 'T be the linear operator on 8C such that ,][ '' JT B  , where B is the ordered 

basis of the previous example and  
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

































0

0

3

3

1

1

1

1

'J  

Then the characterstic polynomial of 'T is also 224 )3()1( ttt  , which is the same as that of T of 

the previous example, but the Jordan canonical forms are different. 

10.4 GENERALIZED EIGENSPACES 

We now extend the definition of eigenspace to generalized eigenspace of an operator T. Our aim 

is to select ordered bases for these subspaces such that their union form an ordered basis for V 

and the Jordan canonical form is achieved. 

Definition 3: Let T be a linear operator on a vector space V, and let F . A nonzero vector v 

in V is called a generalized eigenvector of T corresponding to λ if and only if (T − λI)
p
(v) = 0 for 

some positive integer p.  

Note that if v is a generalized eigenvector of T corresponding to λ, and if p is the smallest 

positive integer for which (T −λI)
p 

(v) = 0, then (T − λI)
p−1 

(v) is an eigenvector of T 

corresponding to λ. Therefore, λ is an eigenvalue of T 

Definition 4: Let T be a linear operator on V, and let λ ∈ F be an eigenvalue of T. The 

generalized eigenspace of T corresponding to λ, denoted by Kλ, is the subset of V defined by  

Kλ = {v ∈ V | (T − λI)
p
(v) = 0, p ∈ N}.  

Kλ consists of the zero vector and all generalized eigenvectors corresponding to λ. 

Theorem 1:  Let T be a linear operator on V, and let λ be an eigenvalue of T. Then  

(i) Kλ is a T-invariant subspace of V containing the eigenspace 

Nλ(= ker(T − λI)).  

(ii) For any scalar ,  the restriction of IT   to K  is one-one.  
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Proof (i): It is easy to verify.  

(ii) Let Kv  and 0))((  vIT  . Suppose that 0v . Let p be the smallest integer for 

which  

(T − λI)
p
(v) = 0, and let w = (T − λI)

p−1
(v)  0. Then (T − λI)(w) = (T − λI)

p
(v) = 0, and hence 

Nw . Furthermore,  

(T − µI)(w) = (T − µI)(T − λI)
p−1

(v) = (T − λI)
p−1

 (T − µI)(v) = 0,  

so that Nw . But }0{  NN , and thus w = 0, contrary to the hypothesis. So v = 0 and 


 KIT |)(  is one-one. 

Theorem 2: Let T be a linear operator on a finite dimensional vector space V such that the 

characteristic polynomial of T splits in V. Suppose that λ is an eigenvalue of T with multiplicity 

m. Then  

(i) dim(Kλ) ≤ m.  

(ii) ))ker(( mITK   .  

Proof (i): Let KW  , and let p(t) be the characteristic polynomial of TW = T|W . Then p(t) 

divides the characteristic polynomial of T, and therefore it follows that λ is the only eigenvalue 

of TW . Hence p(t) = (t − λ)
d
 , where d = dim(W) and d ≤ m.  

(ii) Clearly  KIT m  ))ker(( . Now let W and p(t) be as in (i). Then p(TW ) is 0 by the 

Cayley-Hamilton theorem. Therefore, (T −λI)
d 

(v) = 0 for all v ∈ W. Since d ≤ m, we have 

))ker(( mITK   . 

10.5 JORDAN CANONICAL FORM 

 

Theorem 3: Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Let k ....,,, 21 be the distinct eigenvalues of T. Then, 

for every v ∈ V, there exist vectors  

k
KvKvKv k   ...,,,

21 21 ; 

Such that kvvvv  ....21  
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Proof: The natural number k denotes the number of distinct eigenvalues of T. The proof in by 

induction on the number k.  

Let k = 1, and let m be the multiplicity of 1 . Then, mT )( 1  is the characteristic 

polynomial of T, and hence 0)( 1  mIT   by the Cayley-Hamilton theorem. Thus 
1kV  , and 

the result follows.  

Now suppose that for some integer k > 1, the result is true whenever T has less than k 

distinct eigenvalues. We assume that T has k distinct eigenvalues. Let mk denote the multiplicity 

of λk and p(t) the characteristic polynomial of T. Then p(t) = (t − λk)
mk

 q(t), for some polynomial 

q(t) not divisible by (t − λk). Let Wk = range(T − λkI)
mk

 . Then, Wk is T-invariant.  

Observe that (T −λkI)
mk

 maps ik onto itself for i < k. For suppose that i < k. Since (T 

−λkI)
mk

 maps  ik  into itself and since ik   , 

it follows from a previous theorem that the restriction of IT k  to ik is one-to-one and hence 

onto. 

One consequence of this observation is that for ki  , ik  is contained in 
KW ; and hence 

i  is an eigenvalue of 
KWT  for i < k. Next, observe that λk is not an eigenvalue of 

KWT . For, 

suppose that vvT k)( for some v ∈ Wk. Then v = (T − λkI)
mk

 (w) for some w ∈ V , and it 

follows that  

)()())((0
1

wITvIT km

kk


  .  

Therefore, 
k

KW   and by a previous theorem we get v = (T − λkI)
mk

 (w) = 0. This shows that v 

can not be an eigenvector, hence λk is not an eigenvalue of 
KWT .  

We observe that every eigenvalue of 
KWT is an eigenvalue of T and the distinct 

eigenvalues of 
KWT  are λ1, · · · , λk−1. Now let v ∈ V. Then (T − λkI)

mk
 (v) ∈

KW . Since 
KWT  has k 

−1 distinct eigenvalues λ1, · · · , λk−1, the induction hypothesis applies.  

Let 
i

K 
' be the generalized eigenspace for the operator 

KWT with respect to the eigenvalue

i , for i = 1, 2, . . . , k − 1. Hence, by the induction hypothesis, there exist vectors  

'

1

'

2

'

1 121
...,,,


  k

KwKwKw k  , 

 such that  

121 ...)()(  k

m
wwwvIT k . 

We note that  

(a) 
ii

KK  ' for ki   

(b) km

k IT )(  maps 
i

K  onto itself for ki   
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Therefore, it follows that there exist vectors 
i

Kvi  for ki  , such that ii

m

k wvIT k  )()(  . 

Hence, )()(...)()()()( 11  k

m

k

m

k

m

k vITvITvIT kkk  ,  

and it follows that 

k
Kvvvv k   )...( 121 . Therefore, there exists a vector 

k
Kvk  such that 

kvvvv  ...21
. 

Theorem 4: Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Let k  ...21 be the distinct eigenvalues of T 

with multiplicities kmmm  ...21  respectively. For ki 1 , let Bi denote an ordered basis for 

i
K . Then, the following statements are true.  

(i)  ji BB  for ji  . 

(ii) kBBB  ...1  is an ordered basis for V. 

(iii) kiformK ii ....,,1,)dim(  . 

Proof (i): Let v ∈ Bi ∩ Bj⊂ iK  ∩ jK , where ji  . By a previous theorem, IT i is one-one 

on jK , and therefore 0)()(  vIT p

i  for every positive integer p. This contradicts the fact 

that iKv  , and the result follows.  

(ii) Let v ∈ V. We know by the previous theorem that, for ki 1 , there exist vectors 

ii Kv   such that v = v1 + · · · + vk. Therefore B spans V, since each vi is a linear 

combination of the vectors of Bi . Let q be the cardinality of B. Then dim V ≤ q. For each 

i, let di = dim( iK ). Then, )dim(
1

1

Vmdq
k

i

k

i

ii  


. Hence, )dim(Vq  ; 

consequently B is a basis for V .  

(iii) Using (ii) we see that  



k

i

k

i

ii md
1

1

. But ii md  , and therefore ii md   for all i. 

Corollary 1: Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Then T is diagonalizable if and only if Nλ = Kλ for 

every eigenvalue λ of T. 

Proof: T is diagonalizable over F if and only if dim(Nλ) = dim(Kλ) for each eigenvalue λ of T. 

But dim(Nλ) ≤ dim(Kλ), and hence these subspaces have same dimension if and only if they are 

equal.  



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University Page 173 

 

Our aim is to select suitable bases for the generalized eigenspaces of the linear operator 

T, so that we may use the previous theorem and obtain a Jordan canonical form. We will find the 

following definition useful. 

Definition 5: Let T be a linear operator on a vector space V. Let v be a generalized eigenvector 

of T corresponding to the eigenvalue λ. Suppose that p is the smallest positive integer for which 

0)()(  vIT p . Then, the ordered set  

}),)((...,),()(),(){( 21 vvITvITvITC pp     

is called a cycle of length p of generalized eigenvectors of T corresponding to λ. The vectors 

)()( 1 vIT p  and v are called the initial vector and the end vector of the cycle, respectively. 

Remark: Notice that the initial vector of a cycle of generalized eigenvectors of T is the only 

eigenvector of T in the cycle. Also observe that if v is an eigenvector of T corresponding to the 

eigenvalue λ, then the set {v} is a cycle of generalized eigenvectors of T corresponding to λ of 

length 1.  

Let us recall some of the main observations of the first example that we discussed. 

Suppose that T is a linear operator on 8C , and B = {v1, · · · , v8} is an ordered basis for 8C such 

that 



































































00

10

30

13

)1(

100

110

011

][ BTJ  

is a Jordan canonical form of T.  

(1) The first four vectors of B lie in K1.  

(2) The vectors in B that determine the first Jordan block of J are of the form  

{v1, v2, v3} = {(T − I)
2
(v3), (T − I)(v3), v3}.  

(3) (T − I)
3
 (v3) = 0.  
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The relation between these vectors is the key to finding Jordan canonical form. We observe that 

the subset C1 = {v1, v2, v3}, C2 = {v4}, C3 = {v5, v6}, C4 = {v7, v8} are the cycles of generalized 

eigenvectors of T that occur in B. Notice that B is a disjoint union of these cycles. Moreover, if 

Wi = span(Ci), for 1 ≤ i ≤ 4, we see that Ci is a basis for Wi and iW cT
i
][  is the i-th Jordan block of 

the Jordan canonical form of T.  

Theorem 5: Let T be a linear operator on a finite dimensional vector space V whose 

characteristic polynomial splits in F. Suppose that B is a basis for V such that B is a disjoint 

union of cycles of generalized eigenvectors of T. Then the following statements are true:  

(i) For each cycle C of generalized eigenvectors contained in B, the subspace W = span(C) is 

T-invariant, and [TW]C is a Jordan block.  

(ii) B is a Jordan canonical basis for V. 

Proof: Suppose that the cycle C corresponding to λ has length p, and v is the end vector of C. 

Then, C = {v1, · · · , vp}, where vi = (T − λI)
p−i

 (v) for i < p and vp = v. We have 

1

)1(

1 )()())(( 

  i

ip vvITvIT  . Therefore, T maps W into itself, and we see that [TW]C is a 

Jordan block.  

We can repeat the arguments of (i) for each cycle in B and finally obtain [T]B.  

With the help of following theorems we will see that a Jordan canonical basis is nothing but 

union of disjoint cycles of generalized eigen vectors corresponding to the eigen values of the 

operator.  

Properties 1: Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. 

Suppose that C1, · · ·, Cr are cycles of generalized eigenvectors of T corresponding to λ, such that 

the initial vectors of the Ci s are distinct and form a linearly independent set. Then the Ci’s are 

disjoint and 
r

i iCC
1

 is linearly independent. 

2: Every cycle of generalized eigenvectors of a linear operator is linearly independent. 

3: Let T be a linear operator on a finite dimensional vector space V, and let λ be an 

eigenvalue of T. Then Kλ has an ordered basis consisting of a union of disjoint cycles of 

generalized eigenvectors corresponding to λ. 

Example 3: Let 

























411

501

213

A  
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The characteristic polynomial of A is p(t) = (t − 3)(t − 2)
2
, hence λ1 = 3, λ2 = 2 are the distinct 

eigenvalues with multipilcites 1 and 2 respectively. Then dim(
1

K ) = 1 and dim(
2

K  ) = 2. 

Clearly, 

11
)3ker(  KITN  and 

1
)1,2,1( N . Therefore, 



































1

2

1

1B  is a basis for 
1

K . 

Since dim(
2

K  ) = 2, therefore a generalized eigenspace has a basis consisting of union of cycles 

of length 1 or a single cycle of length 2. The first case is impossible because the vectors in this 

case would be eigenvectors contradicting the fact that dim(
2

N ) = 1. Therefore, the desired basis 

is a cycle of length 2. A vector v is the end vector of such a cycle if and only if 0))(2(  vIA , 

but 0)()2( 2  vIA . Simple calculation shows that 























































0

2

1

,

1

3

1

 

is a basis for the solution space of 0)2( 2  xIA . Now choose a vector v in this set so that 

0)2(  vIA . The vector v = (−1, 2, 0) is a candidate for v. Since )1,3,1())(2(  vIA  we 

obtained the cycle of generalized eigenvectors B2  },)2{( vvIA






















































0

2

1

,

1

3

1

 

Then, 





































































0

2

1

,

1

3

1

,

1

2

1

B  

is a Jordan canonical basis and 


























20

12

)3(

][ BTJ  

Is a Jordan canonical form for A . 



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University Page 176 

 

10.6 JORDAN DECOMPOSITION THEOREM 

Definition 6: An operator T: V → V is called nilpotent if T
k
 = 0 for some positive integer k. 

Theorem 6 (Jordan Decomposition): Let T be a linear operator on a finite dimensional vector 

space V such that the characteristic polynomial of T splits in F. Then T = S + Z, where S is a 

diagonalizable operator, Z is a nilpotent operator and SZ = ZS.  

Proof: We divide the proof into the following steps.  

Step 1: T has only one distinct eigenvalue λ, of multiplicity n = dim V. Then, V = Kλ. If we take 

Z = T − λI, S = λI, then T = Z + S and ZS = SZ. Moreover, S is diagonal in every basis and Z is 

nilpotent, for V = Kλ = ker(Z
n
 ).  

Step 2: In the general case, let λ1, . . . , λk be the distinct eigenvalues of T with multiplicities n1, . 

. ., nk. Let 
i

Ki TT
| . Then T = T1⊕· · ·⊕Tk. Since each Ti has only one eigenvalue λi , we can 

apply the previous result.  

Thus Ti = Si + Zi; such that Si = λiI is diagonal on 
i

K


 and Ni = Ti − Si is nilpotent of order ni on
i

K


 

. Then T = S + N, where S = S1 ⊕· · · ⊕Sk and Z = Z1 ⊕· · · ⊕Zk. Clearly SZ = ZS. Moreover, Z 

is nilpotent and S is diagonalizable. For, if m = max(n1, · · · , nk), 

then Zm = (Z1)
m

 ⊕ · · · ⊕ (Zk)
m

 = 0; and S is diagonalized by a basis for V which is made up of 

bases for the generalized eigenspaces. Hence the proof. 

Definition 7 (Uniqueness of S and Z): Under the hypothesis of the Jordan decomposition 

theorem, there is only one way of expressing T as S + Z, where S is diagnalizable, Z is nilpotent 

and SZ = ZS.  

Proof: Let kKK  ...,,1  be the generalized eigenspaces of T corresponding to the distinct 

eigenvalues k ...,,1 . Then, kKKV   ...1  and kTTT  ...1 , where 
iKi TT | .  

Note that iK is invariant under every operator that commute with T. Since S and Z both 

commute with T, therefore iK  is invariant under S and Z. Put IS ii  and iii STZ   . It 

suffices to show that iK SS
i
| , for this iK ZZ

i
| , proving the uniqueness of S and Z.  

Since S is diagonalizable, so is 
iKS | . Therefore iKiK SSIS

ii
   || is diagonalizable. This 

operator is the same as 
iKi ZZ | . Since 

iKZ |  commutes with Ii and with Ti, it also commutes 

with Zi . We can use binomial theorem to prove that 
iNi ZZ |  is nilpotent.  
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Hence, the matrix representation of iN SS
i
|  is nilpotent diagonal matrix, and therefore the zero 

matrix. Hence the proof. 

Computation: 

By a previous theorem, each generalized eigenspace iK  contains an ordered basis Bi consisting 

of a union of disjoint cycles of generalized eigenvectors corresponding to i . Then 
k

i iBB
1

  is 

a Jordan canonical basis for T. For each i, let 
iki TT | , and let 

iBii TA ][  . Then Ai is the Jordan 

canonical form for Ti, and 























k

B

A

A

A

TJ

000

::::

0...0

0...0

][
2

1

 

is the Jordan canonical form for T. We now follow the book by Friedberg et.al. to describe the 

technique of dot diagrams, followed by some illustrative examples. 

The Dot Diagram of 
iKi TT | : Suppose that Bi is a disjoint union of cycles of generalized eigen 

vectors C1, · · · , 
inC with length p1 ≥ p2 ≥ · · · ≥ 

inp respectively. The dot diagram of Ti contains 

one dot for each vector in Bi, and the dots are configured according to the following rules. 

 The array consists of ni columns (one column for each cycle). 

 Counting from left to right, the j
-th

 column consists of the pj dots that correspond to the 

vectors of Cj starting with the initial vector at the top and continuing down to the end 

vector. 

)().( 1

1
1 vIT

p

i



   )().( 2

1
2 vIT

p

i



   … 
)().(

1

i

in

n

p

i vIT


   

)().( 1

2
1 vIT

p

i



   )().( 2

2
2 vIT

p

i



   … 
)().(

2

i

in

n

p

i vIT


   

: : : : 

))(.( 1vIT i  ))(.( 2vIT i  … ).(
inv  
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1.v  
2.v    

 The dot diagram of Ti has ni columns (one for each cycle) and p1 rows. Since p1 ≥ p2 ≥ · · 

· ≥ 
inp , the columns of the dot diagram either become shorter in length or remain the 

same in length as we move from left to right 

(i) )dim(
i

Nni   

(ii) ri is the number of dots in the i
-th

 row, given by  

r1 = dimV − rank(T − λ1I);  

rj = rank((T − λiI))
j−1

 − rank((T − λiI)
j
) if j > 1. 

Example 3: Let 





























3010

0110

0130

1012

A  

Then, p(t) = (t − 2)
3
 (t − 3) is the characteristic polynomial. The distinct eigenvalues are λ1 = 2, λ2 

= 3 with multiplicities 3 and 1 respectively. Therefore, 3)dim( 1 K  and 1)dim( 2 K . Let 

.,
21 |2|1  KK TTTT   

The dot diagram of 
1T : It has 3 dots. The possibilities are 

… .  . 

. 

. 

. 

. 

We now calculate r1 = 4−rank(A−2I) = 4−2 = 2. Therefore, r2 = 1 and the dot diagram is 

.   . 

                                                                            . 
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Therefore, the Jordan canonical form for T1 is 
























)2(

20

12

 and the Jordan canonical form for 

T is 

































)3(

)2(

20

12

J  

We now find a Jordan canonical basis for T. We first find a Jordan canonical basis for T1. 

1

21

.

.)2.(

v

vvIT 
 

Therefore v1 ∈ ker((T − 2I)
2
 ) but ))2ker((1 ITv  . Now 

























































1120

0000

0000

1120

)2(;

1010

0110

0110

1010

)2( 2IAIA  

It is easy to see that a basis for ker((T − 2I)
2
) = )1K  is  

                                          





















































































2

0

1

0

,

0

2

1

0

,

0

0

0

1

. 

Note that 





















0

2

1

0

 and 





















0

2

1

0

 do not belong to 
1

N . Choose 























0

2

1

0

1v  
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And consider (T − 2I)(v1) = (A − 2I)(v1) =





























1

1

1

1

 

Now choose v2 = 





















0

0

0

1

 which belongs to 
1

N and which is linearly independent of 





























1

1

1

1

. Then 































































































1

1

1

1

,

0

2

1

0

,

0

0

0

1

1B  is linearly independent and hence a basis for 
1

K . 

Therefore, the Jordan canonical basis 































































































1

1

1

1

,

0

2

1

0

,

0

0

0

1

1B  is associated to the diagram as 





































































0

2

1

0

.

0

0

0

1

.

1

1

1

1

.

 

Since λ2 = 3 has multiplicity 1, we have dim(
2

K  ) = dim(
2

N ) = 1. Hence, any eigenvector 

constitute a basis B2. Therefore, we may consider 

                               .

1

0

0

1

2













































B  
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Thus,  



















































































































1

0

0

1

,

1

1

1

1

,

0

2

1

0

,

0

0

0

1

21 BBB  

is a Jordan canonical basis for A. If we take Q = 





























1001

0021

0011

1101

. 

then QJQ
−1

 = A 

Example 4: Let 































7362

3322

3102

2242

A . 

The characteristic polynomial is p(t) = (t − 2)
2
(t − 4)

2
 and the eigenvalues are λ1 = 2, λ2 = 4. Let 

11 KT  , 
22 KT  . 

Dot diagram of T1 :              

. .          : 

Now r1 = 4 − rank(A − 2I) = 4 − 2 = 2. Therefore, the correct dot diagram is 

                                                                            . . 

Hence 









20

02
][

111 BTA . In this case B1 is any basis of 
1

N  

e.g., 



































































0

2

1

0

,

2

0

1

2

1B . 
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Dot diagram of T2: We have r1 = 4 − rank(A − 4I) = 4 − 3 = 1, therefore the correct dot diagram 

is 

                                                                          : 

and the Jordan block 









40

14
][

222 BTA , where B2 is any basis for 
2

K  corresponding to the 

dots. In this case B2 is a cycle of length 2. The end vector of this cycle is a vector 

))4ker(( 2

2
ITKv   , such that ))4ker((

1
ITNv   . It is easy to see that a basis for 

1
N

is 

                                            













































1

1

1

0

 

Choose v to be any solution of 















































1

1

1

0

)4( xIA  

for example, v = 


























0

1

1

1

)4( xIA  

Thus B2 = {(A − 4I)v, v} = 





































































0

1

1

1

,

1

1

1

0

. Therefore, 















































































































0

1

1

1

,

1

1

1

0

,

0

2

1

0

,

2

0

1

2

21 BBB  
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is a Jordan canonical basis for A. The corresponding Jordan canonical form is 

                       









2

1

0

0

A

A
J , 

Where 









20

02
1A  and 










40

14
2A  

Check your progress 

Problem 1: For the characteristic polynomial 224 )3()1( ttt   find the Jordan canonical form. 

Problem 2: Check the characteristic polynomial for the matrix 































7362

3322

3102

2242

A . 

10.7 SUMMARY 

In this unit, we have learned about the important concept of Jordan blocks, Jordan canonical 

forms, Jordan decomposition theorem, generalized eigenspaces and nilpotent operator. After 

completion of this unit learners will be able to: 

 Formation of Jordan Canonical form on the basis of characteristic polynomial of any 

matrix. 

 Find out any matrix is nilpotent or not. 

 Visualized the concept of Jordan decomposition theorem. 

10.8 GLOSSARY 

 Jordan Blocks 

 Jordan canonical form 

 Jordan decomposition theorem 

 Generalized eigenspaces 
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10.11 TERMINAL QUESTION 

Long Answer Type Question: 

1. Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Let k ....,,, 21 be the distinct eigenvalues of 

T. Then show that , for every v ∈ V, there exist vectors  

k
KvKvKv k   ...,,,

21 21 ; Such that kvvvv  ....21  

2. Let T be a linear operator on a finite dimensional vector space V, such that the 

characteristic polynomial of T splits in F. Let k  ...21 be the distinct eigenvalues 

of T with multiplicities kmmm  ...21  respectively. For ki 1 , let Bi denote an 

ordered basis for 
i

K . Then prove that the following statements are true.  

https://www.meripustak.com/Author-Minking-Eie-and-Shou-Te-Chang
https://nptel.ac.in/courses/111106051
https://archive.nptel.ac.in/courses/111/104/111104137
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(a)  ji BB  for ji  . 

(b) kBBB  ...1  is an ordered basis for V.  

(c) kiformK ii ....,,1,)dim(    

3. Let T be a linear operator on a finite dimensional vector space V such that the 

characteristic polynomial of T splits in F. Then prove that T = S + Z, where S is a 

diagonalizable operator, Z is a nilpotent operator and SZ = ZS. 

Short answer type question: 

1. Let T be a linear operator on V, and let λ be an eigenvalue of T. Then prove that 

(i) Kλ is a T-invariant subspace of V containing the eigenspace Nλ(= ker(T − λI)).  

(ii) For any scalar ,  the restriction of IT   to K  is one-one.  

2. Let T be a linear operator on a finite dimensional vector space V such that the 

characteristic polynomial of T splits in V. Suppose that λ is an eigenvalue of T with 

multiplicity m. Then  

(i) dim(Kλ) ≤ m.  

(ii) ))ker(( mITK    

3. Under the hypothesis of the Jordan decomposition theorem prove that, there is only one 

way of expressing T as S + Z, where S is diagnalizable, Z is nilpotent and SZ = ZS. 

Fill in the blanks: 

1. Every cycle of generalized eigenvectors of a linear operator is …………… 

2. An operator T: V → V is called nilpotent if …………………for some positive integer k 

10.12 ANSWERS 

Answers of check your progress:   

1: 

































0

0

3

3

1

1

1

1

 

2:  p(t) = (t − 2)
2
(t − 4)

2
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Answer of fill in the blanks questions: 

1. linearly independent  2. T
k
 = 0    
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UNIT-11: INNER PRODUCT SPACES 

CONTENTS 

11.1 Introduction 

11.2 Objectives 

11.3  Inner product spaces 

11.4  Cauchy Schwarz inequality  

11.5 Summary 

11.6 Glossary 

11.7 Reference 

11.8 Suggested readings 

11.9 Terminal questions 

11.10 Answers 

11.1 INTRODUCTION 

The concept of an inner product space evolved from the practical needs of Fourier 

analysis and classical geometry, with early ideas of orthogonality and function expansions in the 

18th century laying groundwork. Mathematician Giuseppe Peano formalized the idea in 1898 by 

defining a vector space with an inner product, which he termed a "linear system". The modern 

notion of an abstract inner product space, generalized from the Euclidean dot product, became a 

crucial tool in the development of functional analysis, particularly with the work of David 

Hilbert and the introduction of Hilbert spaces.  

An inner product space is a vector space equipped with an inner product, a binary operation that 

takes two vectors and returns a scalar. This operation, a generalization of the dot product, allows 

for formal definitions of geometric concepts like vector length (norm), the distance between 

vectors, and orthogonality. Inner product spaces satisfy properties including linearity, symmetry, 

and positive-definiteness, which define the inner product itself and the resulting norm.  

https://www.google.com/search?sca_esv=2db8da7bfdc23969&rlz=1C1VDKB_enIN1067IN1067&cs=0&q=Giuseppe+Peano&sa=X&ved=2ahUKEwiu0ZfhhKiPAxVo3TgGHWViOP4QxccNegQIAxAB&mstk=AUtExfABjCYP2FikiyozamO6H6tYUdDH9VC9SKSbEP3cF6EgTkBYsX9vQSQINRxaHm3a3kc9qgjRpkrbw1lth-N3G7YaTBdKz-9bcYdYa0yPJ0X1sNKa9_HOXKu2DxId1Cl4gUwMoAQqi0GCqCnh4YKjaOi9Rg7tnr9lLIuAkif0u8Ea4C0W_cNMveUFWYVmY7u1clcN&csui=3
https://www.google.com/search?sca_esv=2db8da7bfdc23969&rlz=1C1VDKB_enIN1067IN1067&cs=0&q=linear+system&sa=X&ved=2ahUKEwiu0ZfhhKiPAxVo3TgGHWViOP4QxccNegQIAxAC&mstk=AUtExfABjCYP2FikiyozamO6H6tYUdDH9VC9SKSbEP3cF6EgTkBYsX9vQSQINRxaHm3a3kc9qgjRpkrbw1lth-N3G7YaTBdKz-9bcYdYa0yPJ0X1sNKa9_HOXKu2DxId1Cl4gUwMoAQqi0GCqCnh4YKjaOi9Rg7tnr9lLIuAkif0u8Ea4C0W_cNMveUFWYVmY7u1clcN&csui=3
https://www.google.com/search?sca_esv=2db8da7bfdc23969&rlz=1C1VDKB_enIN1067IN1067&cs=0&q=functional+analysis&sa=X&ved=2ahUKEwiu0ZfhhKiPAxVo3TgGHWViOP4QxccNegQIBRAB&mstk=AUtExfABjCYP2FikiyozamO6H6tYUdDH9VC9SKSbEP3cF6EgTkBYsX9vQSQINRxaHm3a3kc9qgjRpkrbw1lth-N3G7YaTBdKz-9bcYdYa0yPJ0X1sNKa9_HOXKu2DxId1Cl4gUwMoAQqi0GCqCnh4YKjaOi9Rg7tnr9lLIuAkif0u8Ea4C0W_cNMveUFWYVmY7u1clcN&csui=3
https://www.google.com/search?sca_esv=2db8da7bfdc23969&rlz=1C1VDKB_enIN1067IN1067&cs=0&q=David+Hilbert&sa=X&ved=2ahUKEwiu0ZfhhKiPAxVo3TgGHWViOP4QxccNegQIBRAC&mstk=AUtExfABjCYP2FikiyozamO6H6tYUdDH9VC9SKSbEP3cF6EgTkBYsX9vQSQINRxaHm3a3kc9qgjRpkrbw1lth-N3G7YaTBdKz-9bcYdYa0yPJ0X1sNKa9_HOXKu2DxId1Cl4gUwMoAQqi0GCqCnh4YKjaOi9Rg7tnr9lLIuAkif0u8Ea4C0W_cNMveUFWYVmY7u1clcN&csui=3
https://www.google.com/search?sca_esv=2db8da7bfdc23969&rlz=1C1VDKB_enIN1067IN1067&cs=0&q=David+Hilbert&sa=X&ved=2ahUKEwiu0ZfhhKiPAxVo3TgGHWViOP4QxccNegQIBRAC&mstk=AUtExfABjCYP2FikiyozamO6H6tYUdDH9VC9SKSbEP3cF6EgTkBYsX9vQSQINRxaHm3a3kc9qgjRpkrbw1lth-N3G7YaTBdKz-9bcYdYa0yPJ0X1sNKa9_HOXKu2DxId1Cl4gUwMoAQqi0GCqCnh4YKjaOi9Rg7tnr9lLIuAkif0u8Ea4C0W_cNMveUFWYVmY7u1clcN&csui=3
https://www.google.com/search?rlz=1C1VDKB_enIN1067IN1067&cs=0&sca_esv=2db8da7bfdc23969&q=dot+product&sa=X&ved=2ahUKEwj5uejOg6iPAxXz4jgGHVSjAQ0QxccNegQIBBAB&mstk=AUtExfBKzboWxPgvO_4q0smSQUsbWAOFQMZeIDrBUY19CDRtKHirljBkZXq1E-Vj-WlopliVp-hSqg2EWiBjqWbOTJvvFHZVUwGfyTKpUWDnaMabGRCO-Q03nV4w5TrX5qX6MR3KyWDAWx6FitDJmv8nApHArT1o_PI2PnrPycPjc05gv08&csui=3
https://www.google.com/search?rlz=1C1VDKB_enIN1067IN1067&cs=0&sca_esv=2db8da7bfdc23969&q=norm&sa=X&ved=2ahUKEwj5uejOg6iPAxXz4jgGHVSjAQ0QxccNegQIBBAC&mstk=AUtExfBKzboWxPgvO_4q0smSQUsbWAOFQMZeIDrBUY19CDRtKHirljBkZXq1E-Vj-WlopliVp-hSqg2EWiBjqWbOTJvvFHZVUwGfyTKpUWDnaMabGRCO-Q03nV4w5TrX5qX6MR3KyWDAWx6FitDJmv8nApHArT1o_PI2PnrPycPjc05gv08&csui=3
https://www.google.com/search?rlz=1C1VDKB_enIN1067IN1067&cs=0&sca_esv=2db8da7bfdc23969&q=orthogonality&sa=X&ved=2ahUKEwj5uejOg6iPAxXz4jgGHVSjAQ0QxccNegQIBBAD&mstk=AUtExfBKzboWxPgvO_4q0smSQUsbWAOFQMZeIDrBUY19CDRtKHirljBkZXq1E-Vj-WlopliVp-hSqg2EWiBjqWbOTJvvFHZVUwGfyTKpUWDnaMabGRCO-Q03nV4w5TrX5qX6MR3KyWDAWx6FitDJmv8nApHArT1o_PI2PnrPycPjc05gv08&csui=3
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11.2 OBJECTIVE 

After the study of this chapter, we shall understand:  

 Inner product space 

 Norm of a Vector 

 Normed linear space 

 Cauchy-Schwarz’s inequality 

11.3 INNER PRODUCT SPACES  

In this chapter, we shall consider vector spaces over the field or real numbers (R) or complex 

numbers (C) only. In R
3
, we define dot product (or scalar product) as follows: 

Let        ⃗ = (x1 , x2 , x3) ,  ⃗⃗ = (y1 , y2 , y3)  in R
3
 where all xi  , yj  R 

Now      ⃗ .  ⃗⃗ = x1y1 + x2y2 + x3y3  =   ⃗⃗   ⃗  

We observe that dot product satisfies the following properties: 

(i)  ⃗   ⃗   0 i.e.    x1
2
  + x2

2
  + x3

2
  0  

Also if         x1
2
  + x2

2
  + x3

2
 = 0   

                  x1  =  x2  =  x3 = 0 

i.e.        ⃗ = (0 , 0 , 0) =   ⃗⃗ 

(ii)  ⃗ .  ⃗⃗ =  ⃗⃗   ⃗  , as we already know. 

(iii)  ⃗ . (    ⃗⃗  +   ⃗ ) =   ( ⃗ .  ⃗⃗) +   ( ⃗ .  ⃗ )              ,    R 

Here (ii) and (iii) properties can easily be verified. Similarly we can define dot product on R
n
. 

Sometime  ⃗ .  ⃗⃗ is represented as <  ⃗ ,  ⃗⃗ >. Now we generalize the concept of dot product as 

inner product in a vector space. 

Inner Product: An inner product on a vector space V is a map < ,  > : V   V  R satisfying the 

following properties : 

(i) < x , x >  0 and < x , x > = 0 if and only if x = 0. 

(ii) < x , y >   =  < y , x > 

(iii) <x + z , y >  = < x , y >  + < z , y >     and  < x , y + z >   = < x , y >   + < x , z >    

(iv) < ax , y >   = a < x , y >    x , y , z   V and a  R 

Generally function in analysis is represented by f ; but here, we represent it by < ,  >.  
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So (V, < ,  > ) is called an inner product space. For brevity, we say V is an inner product space 

without explicitly mentioning the inner product < ,  >. 

Example 1: The dot product defined above on R
n
 (in particular R

2
 ) is an inner product. It can be 

easily verified. Sometimes it is called standard inner product. 

Example 2: If we consider inner product on V(C), where C represent field of complex numbers, 

then following properties must be satisfied : 

(i) < x , y >    = <       ̅̅ ̅̅ ̅̅  >, where <       ̅̅ ̅̅ ̅̅  > is complex conjugate of < x , y > .    

(ii) < x , x >     0 and < x , x >  = 0   x = 0. 

(iii) <  x +  y , z >    =   < x , z >  +   < y , z >     where   ,    C 

(iv) < x ,   y+ z  >  =  ̅ < x , y >   +   ̅  < x , z >    

Example 3: Prove that the vector space C
n
(C) = { ( 1, ……..  n) :  I  C } is an inner product 

space with   respect to the inner product :  < u , v >  =  1  
̅̅ ̅ +  2  

̅̅ ̅ + ………. +  n  
̅̅ ̅ , where u = 

( 1, ……..,  n), v = ( 1, …….., n)  C
n
 

Solution: Given that  :  < u , v >  =  1  
̅̅ ̅ + ………. +  n  

̅̅ ̅    ………(1) 

So we have  

(i) < v , u >  = 1  ̅̅ ̅ + ………. + n  ̅̅ ̅ 

 <        ̅̅ ̅̅ ̅̅  >  =     ̅̅ ̅              ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = (     ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅ ) + ……… + (     ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅ ) 

            =   
̅̅ ̅  1 + ………. +   

̅̅ ̅  n   (as    ̅̅ ̅  ̅̅ ̅̅ ̅̅ ̅ =   n  n) 

              =   1  
̅̅ ̅ + ………. +  n  

̅̅ ̅ 

So, <        ̅̅ ̅̅ ̅̅  >  =  < u , v >   

(ii) < u , u >  =  1  ̅̅ ̅ + ………. +  n  ̅̅ ̅   

    = |  1|
2
 + ……… + |  n|

2
     0  

Also  < u , u >  = 0 |  1|
2
 + ……… + |  n|

2
  =  0 

  1 = 0 =  2  = ……. =  n 

 u = ( 1, ……..  n),= (0, …….. , 0) =  ̅ 

(iii) Let   ,    C and w = ( 1 , ……. , n)  C
n
 , then  

<  u +  v , w >  = <  ( 1, ……..,  n) + ( 1, …….., n), ( 1 , ……. , n) > 

   = < (   1 +   1 , ……,   n +   n ), ( 1 , ……. , n) > 

  = (  1 +   1 )   ̅ + ……..  + (  n +   n )   ̅̅ ̅ 

   = (  1   ̅  +   1   ̅ ) + ……  + (  n   ̅̅ ̅ +   n   ̅̅ ̅ ) 

   =   ( 1   ̅  + ……. +  n   ̅̅ ̅  ) +  ( 1   ̅ + …….. + n   ̅̅ ̅ ) 
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     =   < u , w > +  < v , w > 

 Hence C
n
 is an inner product space. 

Note: The inner product given by equation (1) is called the standard inner product on C
n
. 

Example 4: Prove that the following is an inner product on R
2
,   

  < u , v >  =  1 1 – 2  1 2 – 2  2 1 + 5  2 2 , where u = ( 1 ,  2)  and v = ( 1 , 2 )  R
2
. 

Solution:  Here < u , v >  will be a real number, so  

(i) < u , v >  =  <        ̅̅ ̅̅ ̅̅  >  , obviously. 

(ii) < u , u >  =  1  1 – 2  1  2 – 2  2  1 + 5  2  2 

    =   
  – 4  1  2 + 5   

   

    =   
  – 4  1  2 + 4   

  +   
  

    =  (  1 – 2  2 )
2
   0 

 Now, < u , u >  = 0 ,  

   (  1 – 2  2 )
2
  +   

  = 0 , 

    1 – 2  2 = 0 and  2 = 0. 

So  < u , u >  = 0   u = ( 1 ,  2)  = (0 , 0) 

(iii) Let   ,    R and w = ( 1 , 2)  R
2
 , then 

  u +  v =  ( 1 ,  2) + ( 1 ,  2) = (  1 +   1 ,   2 +   2 ) 

Now,     <  u +  v , w > = < (  1 +   1 ,   2 +   2 ) , ( 1 , n ) > 

   = (  1 +   1) 1 – 2(  1 +   1 ) 2 – 2 (  2 +   2) 1 + 5 (  1 +   1) 1 

     =   ( 1  1 – 2  1  2 – 2  2  1 + 5  2  2)  

     +  ( 1  1 – 2 1  2 – 2 2  1 + 5 2  2)  

     =   <u , w > +   < v , w >  ,   ( using (1) ) 

Hence < u , v > , defined by equation (1), is an inner product on R
2
. 

Example 5: Let V be the vector space of all real polynomials of degree  2. Prove that 

< f(x) , g(x) > = ∫           
 

 
 ,  f(x) , g(x)  V, is an inner product on V. 

Solution: (i) Since f(x) and g(x) are real polynomials, so < f(x) , g(x) >   R 

            Hence  < f(x) , g(x) >  =  <             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = <              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 

(ii) Now  < f(x) , f(x) >  =  ∫           
 

 
 =  ∫        

 

 
   0 
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           Also,   < f(x) , f(x) >  = 0 , if and only if 

  ∫        
 

 
  = 0  , if and only if 

   f(x)  = 0 ,  

              So,  < f(x) , f(x) >  = 0     f(x) = 0,  

(iii)     Let   ,    R and f(x), g(x), h(x)  V. Then 

               <   f(x) +   g(x) , h(x) >  = ∫ (           )      
 

 
  

                =   ∫           
 

 
   +  ∫           

 

 
 

                  =    < f(x) , h(x) >   +   < g(x), h(x) >   

Hence < f(x) , g(x) >  , defined by equation (1) is an inner product on V. 

Example 6: Given  1 = ( 1, 3),  2 = (2, 1)  R. Find an    R
2
 such that <   ,  1 > = 3,  

   <  ,  2  > = -1.  Here < , > is the standard inner product on R
2
. 

Solution: We know that the standard inner product on R
2
 is   

    < (a1 , a2 ) ,( b1 , b2) > = a1b1  + a2b2   …….(1) 

  Let   = (x, y)  R
2
. 

So, <  ,  1 > = < (x, y), (1, 3) >  = x + 3y = 3    ………(2) 

 <   ,  2  >  = < (x, y), (2, 1) >  = 2x + y  = -1    ……….(3) 

On solving equations (2) and (3), we get  x = -6/5 , y = 7/5  

So,   = ( 
  

 
 , 

 

 
 ) 

Example 7: Let W1 and W2 be two subspaces of a vector space V . If W1 and W2 are both inner 

product spaces, then prove that W1  + W2 is also an inner product space. 

Solution:   Let  x, y   W1  + W2, then 

 x = x1  + x2, y = y1 + y2 where x1 , y1  W1  and  x2 , y2 W2 
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We define,   < x , y > = < x1 , y1 >  + < x2 , y2 >      ……..(1) 

Here, <x1 , y1 > is the inner product on W1 and <x2 , y2 > is the inner product on W2.
. 

Now from equation (1), we have 

(i) <       ̅̅ ̅̅ ̅̅  > =                       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    +         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

           = < x1 , y1 >  + < x2 , y2 >    ( as W1 and W2 are I.P.S.) 

           =  < x , y > 

(ii) < x , x >  =  < x1 , x1 >  + < x2 , x2 >   

Since,  < x1 , x1 >   0 and < x2 , x2 >   0 

  < x1 , x1 >  + < x2 , x2 >   0  

  < x , x >   0  

 Also, < x , x >  =  0  

   < x1 , x1 >  = 0  and < x2 , x2 >  = 0 

  x1 = 0 and x2 = 0 

   x = x1 + x2  = 0 

(iii)   Let   ,    F and z = z1 + z2   W1  + W2 

Now,  x +  y  =   (x1 + x2 ) +   (y1 + y2)  = ( x1 +  y1 ) + ( x2 +  y2 ) 

 So, <  x +  y , z >   = < ( x1 +  y1 ) + ( x2 +  y2 ) , z1 + z2 > 

    = < ( x1 +  y1 , z1 > + <  x2 +  y2  , z2 > 

    =   < x1 , z1 >  +  < y1 , z1 >  +   < x2 , z2 >  +  < y2 , z2 >   

   =   (< x1 , z1 > +   < x2 , z2 >  ) +   (< y1 , z1 >  + < y2 , z2 >  ) 

   =   < x , z > +   < y , z >  ,  ( using eqn. (1) ) 

Hence, W1  + W2 is also an inner product space. 

Theorem 1: Let V be an inner product space and u, v, w  V ;         F  (where F = R or C) 

then, 

(i) < u,  v >  =   ̅  < u, v > 

(ii) < 0, v >     =  < u,  >   = 0 

(iii) < u, v >    = 0,    u  V   v = 0, and 

(iv) < u, v >    = 0,    v  V    u = 0,  

(v) < u, w >   =   < v, w > ,     w  V  u = v 

Proof: (i)   By definition of inner product 

< u,  v >   = <        ̅̅ ̅̅ ̅̅ ̅̅  >  =  ̅  <      ̅̅ ̅̅ ̅ >   =  ̅  < u, v > 
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(ii)  We know for any u  V and 0  F  , 0u = 0  V 

So, < 0, v > = < 0u, v >  = 0  < u, v > = 0 

Similarly ,   < u, 0 >  = < u, 0v >  =   ̅ < u, v >  =  0 < u, v >   = 0   

(iii) It is given that    < u, v >    = 0,    u  V 

In particular, we can write,  

 < u, v >    = 0 

   u = 0 

Similarly, we can prove other part. 

(iv) Let < u, w >   =   < v, w > ,     w  V  then, 

< u – v, w >   = < u, w >    < v, w >    = 0 

 < u – v, w >   = 0   w  V 

 So by previous part,  u – v = 0   u = v. 

Conversely, If we take  u = v, then 

 < u, w >   < v, w >  = < u – v, w >   = < 0 , w > = 0 

Hence , < u, w >   =   < v, w >  w  V. 

Note: If V is an inner product space with standard inner product and say V = R
3
, then for a  R

3
, 

We have, < a, a > = a1
2
  + a2

2
 + a3

2
  where a = ( a1 , a2 , a3 ), 

Here √  
      

      
    or √        is defined as norm of vector a.  Actually, it is 

generalization of length of a physical vector. 

Norm of a Vector:  Let V be an inner product space. The norm function    .  : V  R has the   

following properties : 

(i)  x   0 and   x    0 if and only if x = 0 ; x   V 

(ii)   x  =   |    x  ,    F , x   V,  
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Norm of a vector v  V is defined as   v  =  √       . 

A vector u in an inner product space V is said to be of unit norm or unit length if  

 u  = 1 or < u, u > = 1. 

Furthermore, given a non-zero vector v  V, there is a vector u   V such that 

 u  = 1 and v =  v  u. 

This u is called the unit vector along v, because   u = 
 

     
   and    u     =  

     

     
 = 1 

Example 8: (i) Find the norm of the vector x = (2, -3, 6)  R
3
 . 

(ii) Prove that  
 

     
    is of unit length. 

Solution: (i) Using the concept of standard inner product of R
3
, we have  

 < x, x >  =  2(2)  + (-3) (-3) + 6(6) = 49 

 Hence,  x   = √        =  √   = 7 units 

(ii)  Let u =  
 

     
   = 

 

 
 (2, -3, 6) = ( 

 

 
 , 

  

 
 , 

 

 
) 

< u, u > = 
 

 
 (

 

 
)  +   (

  

 
) (

  

 
)   +   ( 

 

 
) (

 

 
) = 

  

  
 = 1 

     u    = 1  u =  
 

     
   is of unit length. 

Example 9: Let V be an inner product space and x, y, z  V. Prove that  

             x    
2
  +   x – y 

2
  = 2 (     

2
  +     

2
 ). Also interpret it geometrically. 

Solution: Some writers say it parallelogram law. 

We have  x    
2
  = < x + y , x + y >  = < x , x + y > + < y , x + y > 

= < x , x > + < x , y > + < y , x > + < y , y >     ……….(1) 

Now,    x    
2
  = < x  y , x – y  >  = < x , x – y  >  < y , x – y  > 

  = < x , x >   < x , y >  < y , x > + < y , y >     ……….(2) 



LINEAR ALGEBRA   MT(N) - 301 
 

Department of Mathematics 

Uttarakhand Open University Page 195 

 

 Adding equation (1) and (2) , we have 

   x    
2
  +   x    

2
 = 2 (< x , x > + < y , y > )    = 2 

(     
2
  +     

2
 ) 

Geometric interpretation: Let x and y be two vectors in the vector space V2(R) with standard 

inner product defined on it. Suppose the vector x is represented by the side AB and the vector y 

by the side BC of a parallelogram ABCD. Then the vectors x + y and x – y represented the 

diagonals AC and DB of the parallelogram. 

 So, AC
2
 + DB

2
 = 2(AB

2
 + BC

2
)  i.e. the sum of the squares of the sides of a parallelogram is 

equal to the sum of the squares of its diagonals. 

Example 10: Prove that we can always define an inner product on a finite-dimensional vector 

space V(R) or V(C). 

Solution: Let V be a finite- dimensional vector space over the field F = R or C. 

Let B = {  1 , ….. ,  n
 
} be a basis for V . 

Let    ,    V.  Then we can write    = a1  1 + ….. + an  n and    = b1  1+….. + bn  n   

Where, a1, …., an and b1, …., bn are uniquely determined elements of F. 

 Let us define  <   ,   >  = a1   
̅̅ ̅̅  + ….. + an   

̅̅ ̅̅    ……….(1) 

Now it can be easily verified that above expression satisfies all the conditions of inner   product.   

Hence, we can always define an inner product on a finite dimensional vector space V(C). 

Example 11:  If  ,   are vectors in an inner product space V(F) and a, b  F, then prove that 

(i)    a   +  b   2
 = |a|

2     
2 

 + a ̅     ,      +  ̅            + |b|
2
     2

 

(ii) Re    ,   = 
 

 
 (    +    2

          2
 ) 

Solution: (i) We have,  

  a   +  b   2
 =  a   +  b  , a   +  b     =   a   , a          +  b   , a   +  b    

=  a      ,  a          + b       , a   +  b    

= a      , a     + a      ,        + b       , a    + b       , b      
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= a ̅     ,    +  a ̅     ,      +   ̅        +   b  ̅            

  = |a|
2     

2 
 + a ̅     ,    +  ̅            + |b|

2
     2

 

(ii) Now we can write  

    +    2
 =     +   ,   +      =     ,         +     ,   +     

=     ,    +     ,      +         +               

     +    2
  =     

2 
 +    ,      +          +    2

    …..(1) 

Also,         2
 =        ,         =     ,              ,        

  =     ,          ,                +            

        2
 =     

2 
     ,                 +    2

              …..(2) 

 Now subtracting equation (2) from equation (1), we get  

    +    2
          2

  =    ,      +           +    ,      +           

          = 2(   ,      +         ) 

          =  2(   ,      +        ̅̅ ̅̅ ̅̅ ̅   ) 

           =  2 (2 Re    ,   ) 

So,      Re    ,     = 
 

 
 (    +    2

          2
 ) 

Note: (1) If F = R, then  Re    ,    =     ,     

So,    ,     = 
 

 
 (    +    2

          2
 ) 

 (2) An inner product space V(R) is called Euclidean space while V(C) is called unitary space. 

Example 12: If   and    are vectors in a unitary space, then prove that –  

(i) 4   ,      =     +    2
          2

  + i     + i   2
    i     i   2

   

(ii)    ,        =  Re    ,      + i Re    , i      
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Solution: (i) As in previous example, we can write  

       +    2
  =     

2 
 +    ,      +          +    2

   

and        2
 =     

2 
     ,                 +    2

              

 So,              +    2
          2

   = 2   ,      + 2           ……..(1) 

Now                    + i   2
 =     + i  ,   + i     =     ,          +  i   ,   + i    

         =     ,    +     , i      +           +      i            

         =      
2
 +  ̅     ,       + i          +  i   ̅             

         =     
2 

  i    ,      + i          +    2
   

 So       i     + i   2
  = i     

2  
+    ,                + i    2

    ………..(2) 

 Replacing i by –i , we get 

   -i     + i   2
  = - i     

2  
+    ,                + i    2

   ………..(3) 

 Hence adding equations (1), (2) and (3), we get 

      +    2
          2

  + i     + i   2
    i     i   2

  =  4    ,       

(ii) From the knowledge of complex numbers, we have  

      ,        =  Re    ,      + i Im    , i        ……….(1) 

If z = x + iy, then y = Im z = Re { -i ( x + iy) } = Re (-iz) 

  Im    ,     = Re { -i    ,    } =  Re {   ̅   ,    }  =  Re {    , i    }   

So from (1), we have   

                                                       ,        =  Re    ,      + i Re    , i    

Note: In the study of physical vectors, we define dot/scalar product as  ⃗.  ⃗⃗ = ab cos  , where a = 

| ⃗|, b = | ⃗⃗| and   is the angle between  ⃗ and   ⃗⃗. 

Since we know that |cos  |  1. So, ab|cos  |  ab  as  a   0 , b   0. 
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 | ⃗.  ⃗⃗|   ab    or | ⃗.  ⃗⃗|   | ⃗|| ⃗⃗| 

This is a particular case of Cauchy-Schwarz’s inequality, which we shall study for an inner 

product space. 

11.4 CAUCHY SCHWARZ INEQUALITY 

Theorem 2: Let V be an inner product space. If x , y  V, then  

     |   ,    |         +   y  . Further, equality holds if and only if x and y are linearly 

dependent (that is, one is a multiple of other). 

Proof:  Here we shall give three different proofs of Cauchy-Schwarz’s inequality: 

(i) It is basically geometric in nature 

(ii) Here we shall use basic concepts of calculus 

(iii) Here we shall use some results on quadratic equations. 

Proof: Case (i):   If x = 0 or y = 0,  

Then    ,    = 0 and either    ,    = 0 or    ,    = 0, 

Hence the result is obviously true. 

Case (ii):  Now consider the case, when     =   y  = 1, 

Consider       , x     , then by definition of inner product  

                                ,        0,  

         ,     2   ,    +    ,      0 

     1  2   ,    + 1   0 

               ,     1                ……….(1)  

 Similarly,      ,        0,   

                  ,     1    ………(2)  

Combining both results, we get  
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  |   ,   |  1   or |   ,   |        y  as      =   y  = 1 

Now, we prove the statement concerning the equality 

Let |   ,   |  1   , then     ,    = 1 or -1 

If    ,    = 1, then from the above discussion of inequalities, we deduce that  

        ,        0   or x = y 

If    ,    = -1, we can deduce that x = -y. 

Thus equality holds if and only if either x + y = 0 or x – y = 0. 

i.e. if and only if x =  y.  

So x and y are linearly dependent, when equality holds. 

Case (iii): Now suppose x and y be non-zero and not necessarily of unit length. 

Then u = 
 

     
    and v =  

 

     
     s.t.  u  =  v  = 1 

Then as in last case, we have |   ,   |  1    

   So | 
 

     
  , 

 

     
  |  =  

        

           
  1    

                               , 

Now, in the case of equality, we have                         , 

If x and y are non-zero, then                         or 

                                        

If we assume,                         

             
 

     
  , 

 

     
   = 1  

               
 

     
   =  

 

     
   

                    x    = (  
     

     
  ) y 
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                  x is a scalar multiple of y, or x and y are linearly dependent. 

 The other case is similar. 

Proof 2: Fix x and y in V. 

If y = 0, then the result is obviously true. 

So, we take y  0 

Let us consider the real valued function of the real variable  

   f(t) =            . 

We want to investigate the extremum points of f. 

So, f(t) =        + 2t        + t
2
            .……(1) 

So we observe that f(t) is a polynomial in t with real coefficients. 

Now f '(t)  = 2        + 2t          

So to will be an extremum point for f if f '(to) = 0, 

 i.e.          + to         = 0 

 So,     to =  
       

      
  

Now  f '(t)  = 2          = 2      2
 > 0 as y   0 

So f(t) is minimum at t = to 

   0   f(to)     f(t) for all t 

  f(t)  0 for all t 

From equation (1) , we get 

         + 2to        +   
           0 

         
            

      
  + 

          

      
   0 
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   0  

        2
  

          

      
   

   |      |              

Proof 3: Let p(t) = at
2
 + bt + c be a quadratic polynomial in t with real coefficient. We know that 

for imaginary roots, p(t) will always remain +ve or always remain –ve. 

         

For this to happen , b
2
 – 4ac  0. 

 Now f(t) as in second proof is a quadratic polynomial in t with real coefficients                     

             a =        , b = 2       and c =        

Also f(t) is always non negative. So we conclude that b
2
 – 4ac  0. From this, we shall get the 

required result. 

Note: If we consider R
n
 with dot(scalar) product, then Cauchy-Schwarz inequality becomes 

  | ∑     
 
   |   (∑   

 
  )

1/2
  (∑   

 
  )

1/2
 , for all xi , yi  R. 

This concrete inequality is quite useful in analysis. 

Theorem 3: (Triangle Inequality) If   ,   are vectors in an inner product space V, then    

          +                    

Proof:  We have ,          +  
2
 = <  +  ,  +  > = < ,  +  > + <  ,  +  >  

           = < ,  >  + < ,  > +  <  ,  > + <  ,  >  

           =      2
 +     2

 + (< ,  > + <     ̅̅ ̅̅̅ > ) 

        +  
2
 =      2

 +     2
 + 2 Re (< ,  >)   ……(1) 
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But Re (z)  |z| ,  

So,     +  
2
       2

 +     2
 + 2 | < ,  > |  

           2
 +     2

 + 2            , ( by Cauchy Schwarz inequality) 

         +  
2
   (      +      )2

 

 So,      +           +       

Geometrical Interpretation:  

Suppose the vectors  ,   represent the sides AB and BC respectively of a  ABC in the 

Euclidean space. 

Then     = AB and     = BC. 

Also the vector  +    represents the side AC of the triangle ABC and     +   = AC. 

Then from above inequality we know,     +           +       

   AC  AB + BC 

If inequality holds, i.e. AC < AB + BC is true for any triangle 

ABC. 

If equality holds, then AC = AB + BC means points A, B, C are 

collinear. 

Example 13: Verify Cauchy Schwarz inequality for  = (1, 2, -2), and  = (2, 3, 6)  R
3
. 

Solution: With standard inner product, we have   

   < ,  > = 2 + 6 – 12 = -4,    so  | < ,  >  | = 4 

Now,    
2
 = 1 + 4 + 4,        so           = 3 

And     
2
 = 4 + 9 + 36 ,       then        = 7 

So ,          = 21 
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Hence, | < ,  > |           is verified. 

Example 14: If in an inner product space V,     +          +     , then prove that   and  

are linearly dependent. Show by means of an example that the converse may NOT be true. 

Solution: Given expression is (     +   )
2
   (      +      )2

 

       <  +  ,  +  >  =      2
 +     2

 + 2            

       < ,  >  + < ,  > +  <  ,  > + <  ,  > =    2
 +    2

 + 2         

       < ,  > + <     ̅̅ ̅̅̅ >  = 2         

      2 Re (< ,  >)  = 2         or  Re (< ,  >)  =            ……(1) 

But,  Re (< ,  >)   | < ,  > |       

 So,   | < ,  > |                …….(2) 

But, by Cauchy Schwarz inequality  

     | < ,  > |                 …….(3)  

From equation (2) and (3) , we have  

  | < ,  > |             

So from the equality case of Cauchy Schwarz inequality, we conclude that  and  are linearly 

dependent . 

Conversely, let us take,   

   = (1, -2, 2),   = (-2, 4, -4)  R
3
 

Then obviously  and  are linearly dependent as   =     

Now,       = √      = 3 ; 

      = √        = 6 

   +  = (-1, 2, -2)           = √      = 3 
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 So,     +           +       

but  and  are linearly dependent . 

Example 15: If W is a subspace of V and v   V satisfies < ,  > + <  ,  >  <  ,  >, for all 

w  W , then prove that < ,  > = 0 for all  w  W, where V is an inner product space. 

Solution: Since W is a subspace of V(F), therefore 

       
 

 
 . w = 

 

 
   W,  n  N ; 

 

 
  F. 

Given expression is  

   < ,  > + <  ,  >  <  ,  >, for all w  W   …..(1) 

Replacing w by  
 

 
 in equation (1) , we get 

    < , 
 

 
  > + < 

 

 
 ,  >  < 

 

 
 , 

 

 
  >       or    

 

 
  < ,  > + 

 

 
  <  ,  >  

 

     <  ,  > 

or   < ,  > + <  ,  >  
 

 
 <  ,  >,    n  N 

Taking lim n   , we get 

      < ,  > + <  ,  >    0 

Thus < ,  > + < ,  >    0 ,  w  W     …..(2) 

Replacing w by –w in equation (2), we get  

   < ,    > + <   ,  >    0  

   < ,  >  < ,  >    0  

  or                       0      …..(3) 

From equations (2) and (3), we conclude that  

                       0    w  W    …..(4) 

Since W is a subspace of V, so i  F and w  W  iw  W 



LINEAR ALGEBRA   MT(N) - 301 
 

Department of Mathematics 

Uttarakhand Open University Page 205 

 

Replacing w by iw in equation (4), we get  

                         0  

   ̅                    0  

                      0  

                      = 0       …..(5)  

So subtracting equation (5) from equation (4), we get  

  2      = 0 or        = 0    w  W. 

Definition (Metric): A metric on a set X is a function d : X  X  R with the following   

properties:  

(i) d(x, y)   0 for x, y  X and  d(x, y)   0 if and only if x = y. 

(ii) d(x, y) = d(y, x), for all x, y  X 

(iii) d(x, z)  d(x, y) + d(y, z), for all x, y, z  X  

(iv) Property (iii) is called the triangle inequality. 

Theorem 4: Let V be an inner product space. If we define d(x, y) =          for x, y  V, 

Then d is a metric on V. 

Proof: (i) By definition of norm, we know  

               0  

   d(x, y)   0 , 

 Also, d(x, y)   0 , if and only if 

               = 0 , if and only if  

                   x – y = 0   , if and only if  

     x = y 

(ii) d(x, y) =        =              
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      = |-1|         by      = | |     ;   F , x  V 

         =        = d(y, x) 

(iii)   d(x, z) =        

  =                

               , by triangle inequality  

So ,  d(x, z)  d(x, y) + d(y, z), for all x, y, z  V. 

Hence d is a metric on V.  

Problem 1: Let V be a vector space of all real polynomials of degree   2, with inner product 

   < f(x), g(x) > = ∫           
 

  
 ,   f(x), g(x)   V 

 If f(x) = x
2
 + x – 4 and g(x) = x – 1, then find    

(i)   < f(x), g(x) >     and    

(ii)  < g(x), g(x) > 

Check your progress 

Which of the following problems are True or False 

Problem 1: If u = (-1, 1/4) and v = (4, -1/8) then  u  = 
√  

 
 . 

Problem 2: Cauchy Schwarz inequality for  = (1, 2, -2) and  = (2, 3, 6)  R
3
 is verified.  

Problem 3: If  ,   are vectors in an inner product space V, then 

                         +                   is called triangle inequalities. 

         Problem 4: If   is non – zero vector then norm of   is always positive. 

Problem 5: If     then norm of   is never zero. 

11.5 SUMMARY 
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In this chapter we understood the process of generalization from ordinary vectors to vector 

spaces. So other basic concepts viz angle, length, distance were also generalized respectively as 

inner product, norm, and metric, An inner product space is a vector space equipped with an inner 

product, a generalized dot product operation that assigns a scalar to each pair of vectors. This 

additional structure allows for the formal definition of geometric concepts like the length (norm) 

of a vector, the distance between vectors, and the angle between them. Key properties of an inner 

product include linearity, positive-definiteness (a vector's inner product with itself is zero only if 

it's the zero vector), and symmetry (or Hermitian symmetry for complex spaces).  

11.6 GLOSSARY 

 Inner Product: An inner product on a vector space V is a map < ,  > : V   V  R 

satisfying the following properties : 

(i) < x , x >  0 and < x , x > = 0 if and only if x = 0. 

(ii) < x , y >   =  < y , x > 

(iii) <x + z , y >  = < x , y >  + < z , y >     and  < x , y + z >   = < x , y >   + < x , z >    

(iv) < ax , y >   = a < x , y >    x , y , z   V and a  R. 

 

 Norm of a Vector:  Let V be an inner product space. The norm function    .  : V  R has the 

following properties : 

(i)  x   0 and   x    0 if and only if x = 0 ; x   V 

(ii)   x  =   |    x  ,    F , x   V,  

Norm of a vector v  V is defined as   v  =  √       . 
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11.9    TERMINAL QUESTION 
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1: Prove that for any    R
2
 , we can write    = <   ,  1  >  1 + <   ,  2  >  2 where  1 = (1, 

0) ,  2 = (0, 1) 

2: Let V be a vector space over a field F. Let W1 and W2 be twp subspaces of V(F) such 

that W1 and W2 are two inner product spaces also. Then prove that – 

(i) A positive multiple of an inner product is also an inner product. 

(ii) Difference of two inner products may not be an inner product. 

3: Let V (R) be a vector space of polynomials with inner product defined by < f , g > = 

∫           
 

 
 . If f(x) = x

2
 + 1 and g(x) = x – 1, then find < f, g > and  g   .  

11.10    ANSWERS 

Answers of check your progress: 

1. True         2. True        3. True         4. True          5. False 

Answers of terminal question: 

2. (i) Let < u, v > be an inner product and   > 0,     R. Then it can be easily verified 

that   < u, v > is also an inner product. 

(ii)  Difference of two inner products may not be positive. Now do it yourself.  

3.  < f , g > = 
  

  
 and   g     = 

 

√ 
. 
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UNIT-12: ORTHOGONALITY AND 

ORTHONORMALITY 

CONTENTS 
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12.4  Orthogonal basis  

12.5  Orthonormality  

12.6 Orthonormal basis 

12.7 Summary 

12.8 Glossary 

12.9 Reference 

12.10 Suggested readings 

12.11 Terminal questions 

12.12 Answers 

12.1 INTRODUCTION 

Orthogonality and orthonormality are key concepts in linear algebra that describe specific 

relationships between vectors in a vector space. Two vectors are said to be orthogonal if their 

dot product is zero, meaning they are perpendicular to each other. A set of vectors is called 

orthonormal if the vectors are not only orthogonal but also each have a unit length (norm equal 

to one). Orthonormal sets simplify many mathematical operations, such as projections, 

transformations, and decompositions, and are widely used in applications like signal processing, 

quantum mechanics, and numerical computations. These concepts form the foundation for 

constructing efficient and stable vector representations in various mathematical and engineering 

problems. 
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12.2 OBJECTIVES 

After the study of this chapter, we shall understand:  

 Understand the concept of orthogonality in vector spaces and identify orthogonal 

vectors using the dot product. 

 Define and recognize orthonormal sets of vectors and understand their significance in 

forming orthonormal bases. 

 Learn to compute the dot product and use it to test for orthogonality and normalize 

vectors. 

 Apply the Gram-Schmidt process to convert a set of linearly independent vectors into 

an orthonormal set. 

 Explore the geometric interpretation of orthogonality and orthonormality in Euclidean 

spaces. 

 Understand the role of orthonormal vectors in simplifying vector projections, 

decompositions, and matrix operations. 

 Use orthonormal bases to represent vectors and solve problems more efficiently in 

linear algebra and applied mathematics. 

 Recognize applications of orthogonality and orthonormality in real-world fields such as 

signal processing, machine learning, and quantum physics. 

12.3 ORTHOGONALITY  

Orthogonality: Let V be an inner product space. An element u  V is said to be orthogonal to v 

 V if < u, v > = 0. Obviously, orthogonality is a symmetric relation i.e. if u is orthogonal to v, 

then v is also orthogonal to u.  

   <  u, v > = 0 , if and only if < v , u > = 0 

Note: (1)  Zero vector is orthogonal to each v  V as  < 0, v > = < v , 0 > = 0 

(2)   If u  V is orthogonal to v  V , then every scalar multiple of u is orthogonal to v. Let k  F 

and < u , v > = 0 then < ku , v > = k < u, v > = 0. So ku is also orthogonal to v ,    k  F. 

(3)  Zero vector is the only vector which is orthogonal to itself. If u is orthogonal to u, then 

< u, u > = 0  u = 0 

(4) A vector u  V is said to be orthogonal to set S if it is orthogonal to each vector in S. That is   

< u , v > = 0, for every v  V. 
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(5) Two subspaces W1 and W2 of V(F) are called orthogonal if every vector in each subspace is 

orthogonal to every vector in the other. 

(6)  Let S be a set of vectors in an inner product space V. Then S is said to be an orthogonal set 

provided that any two distinct vectors in S are orthogonal. So,  < u , v > = 0, for every distinct u, 

v  S. 

Example 1: If 





















1

1

2

u  and 



















3

2

1

v  are the vectors. Are these vectors u and v orthogonal? 

Solution: To check the orthogonality, first calculate the dot product: 

1322)3)(1()2)(1()1)(2(. vu . 

Since, 01. vu . Hence the vectors are  not orthogonal.  

Note: The vectors u and v are not orthogonal because their dot product is not zero. 

Example 2: Find a vector that is orthogonal to the vector 









4

3
u . 

Solution: Let 









y

x
v  be a vetor such that to be orthogonal to the given vector u. Now, if the 

vectors u and v  are orthogonal then their dot product will be zero. 

So, 043.  yxvu . Here, 3,4  yx  are one of the solution of the equation 043  yx . 

Therefore, 











3

4
v  are orthogonal to u .  

12.4 ORTHOGONAL BASIS 

An orthogonal basis for a vector space is a set of linearly independent vectors that are mutually 

orthogonal, meaning the dot product of any two distinct vectors is zero. Unlike an orthonormal 

basis, the vectors in an orthogonal basis are not necessarily of unit length. 

Definition: A set of vectors },...,,,{ 321 nvvvv  in a real inner product space V is an orthogonal 

basis if: 



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University  Page 212 
 

(i) The vectors span V (i.e. they form a basis) 

(ii) jivv ji  0.  

Example 3: Let 


















2

0
,

0

1
21 vv . Then, 

0)2)(0()0)(1(. 21 vv . So, }.{ 21 vv is an orthogonal basis for 2R . 

How is it useful? 

 Orthogonal bases simplify vector projections. 

 They're used in the Gram-Schmidt process to construct orthonormal bases. 

 Calculations (especially involving decompositions or projections) become much simpler 

when working with orthogonal vectors. 

12.5 ORTHONORMALITY  

Orthonormality: Let S be a set of vectors in an inner product space V. The S is said to be an 

orthonormal set if:  

(a)  u  S      = 1 

(b) u, v  S and u  v, then < u , v > = 0 

Thus an orthonormal set is an orthogonal set with the additional property that norm of each 

vector is 1. So a set S consisting of mutually orthogonal unit vectors is called an orthonormal set.  

A finite set S = {  1 , ….. ,  n
 
} is orthonormal if 

       <  i ,  j >   = Sij ={
      
       

 , 

12.6 ORTHONORMAL BASIS 

Orthonormal Basis: If an orthonormal set S is a basis of an inner product space V, then the set 

S is called an orthonormal basis of V.  

To convert an orthogonal basis to an orthonormal basis: If },...,,,{ 321 nvvvvS   is the set of 

orthogonal basis of any vector space V then we can convert this orthogonal set to orthonormal set 

by normalizing each vector of S to form orthonormal basis. 
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Normalized the each vector as: ni
v

v
v

i

i
i ...,,3,2,1

^

  

Example 4: Let 





















2

1

2

1

1v  and 























2

1

2

1

2v  are two vectors then show that },{ 21 vv  forms an 

orthonormal basis of 2R . 

Solution: To show a set is an orthonormal basis, we need to verify two things: 

1. Vectors are unit vectors (norm = 1). 

2. Vectors are orthogonal (dot product = 0). 

Step 1: Check norms: 11
2

1

2

1

2

1

2

1
22

1 
















v  

11
2

1

2

1

2

1

2

1
22

2 
















v  

Step 2: Check orthogonality: 0
2

1

2

1

2

1

2

1

2

1

2

1
. 21 


































vv  

Therefore, the set },{ 21 vv  is an orthonormal basis of 2R . 

Example 5: Given the vectors, 























































1

0

0

,

0

1

1

,

0

1

1

321 uuu  

Use normalization to check whether this set forms an orthonormal basis of 3R . 

Solution: Step 1: Normalize each vector, 
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

























0

2

1

2

1

2
2011 1222

1

u
u  




























0

2

1

2

1

2
201)1( 2222

2

u
u  



















1

0

0

1100 3

222

3 uu  

Step 2: Check orthogonality 

00.01.1)1(1. 21 uu  

01.00.10.1. 31 uu  

01.00.10).1(. 32 uu  

All vectors are orthogonal and can be normalized to unit vectors. 

So, the normalized vectors form an orthonormal basis of R
3
. 

Example 6: the set S = { (1, 0, 0), ( 0, 1, 0), (0, 0, 1) } is an orthonormal basis of R
3
. 

Also, it can be easily verified that the set  

 S
'
= { ( 

 

√ 
 , 0, 

 

√ 
 ) , ( 

 

√ 
 , 0, 

  

√ 
 ), (0, 1, 0) } is another orthonormal basis of R

3
. 

Theorem 1: (Pythagoras Theorem) Prove that vectors x and y in a real inner product space 

(Euclidean space) V are orthogonal if and only if  

            x     
2
 =    

2
  +     

2
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Solution: We have,  

    x     
2
 = < x + y, x + y > =  < x, x + y > + < y, x + y >  

           = < x, x > +  < x, y > + < y, x  > +  < y, y >  

           =     
2
  + < x, y > +  <     ̅̅ ̅̅̅ > +     

2
 

      x     
2
  =      

2
  + 2< x, y > +     

2
 as V is real I.P.S.  …..(1) 

But given that ,   x     
2
 =    

2
  +     

2
      …..(2) 

So we have,     
2
  +     

2
  =      

2
  + 2< x, y > +     

2
 

    < x, y > = 0 

      x and y are orthogonal. 

Conversely, let x and y be orthogonal 

         < x, y > = 0 

then as done above, it can be observed, 

       x     
2
  =      

2
  + 2< x, y > +     

2
 

By using, < x, y > = 0, we get 

  x     
2
 =    

2
  +     

2
 

Theorem 2:  In a complex inner product space (or unitary space) V, if x is orthogonal to y, then  

 x     
2
 =    

2
  +     

2
 

However, the converse may NOT be true. Justify. 

Solution: If x is orthogonal to y, then  < x, y > = 0 

          <     ̅̅ ̅̅̅ > = 0 

         < y , x > = 0, 

Now, 
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   x     
2
 = < x, x > +  < x, y > + < y, x  > +  < y, y > , (by previous example) 

 So,    x     
2
 =    

2
  +     

2
 

Conversely, let V = C
2
(C) with standard inner product 

 Let x = (0, i ) and y = (0, 1)  V. Then  

       < x , y > = 0 + i = i  0 

 So x is not orthogonal to y. 

 Also,    
2
  = 0(0) + i( )̅ = i(-i) = 1 

                
2
  = 0 + 1 = 1 

 Now,   x + y = (0, 1 + i)  

           x     
2
  = 0 + (1 + i) (1 – i) = 2 

 Hence,  x     
2
 =    

2
  +     

2
 , though x is not orthogonal to y. 

Example 7: Find a vector of unit length which is orthogonal to the vector (3, -2, 2) of R
3
(R) 

relative to the standard inner product . 

Solution:  Let x = (3, -2, 2) and y = (a, b, c)  R
3
 be orthogonal vectors.  

 Then   < x, y > = 0 

    3a – 2b + 2c = 0 

This system has infinite (actually uncountable) solutions. Let us take one solution by taking 

 a = 2, b = -3, c = -6 

So, y = (2, -3, -6) is orthogonal to x = (3, -2,  2) 

Now,     
2
 = 4 + 9 + 36 = 49       = 7 

So, u = 
 

     
 = 

 

 
 (2, -3, -6)    u = ( 

  

 
 , 

  

 
 , 

  

 
 ) 
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Theorem 3: An orthogonal set of non-zero vectors in an inner product space V is linearly 

independent. 

Proof: Let S be an orthogonal set of non-zero vectors of V. In order to show that S is linearly 

independent, we shall prove that every finite subset of S is linearly independent. 

 Let {v1, v2, ….., vn} be any finite subset of S.  

 By orthogonality of S, we have  

       < vi , vj > = 0 , for i   j    …..(1) 

 Let us assume  1v1 + ….. +  nvn = 0   ; where  i   F, 

So,      <  1v1 + ….. +  nvn ,  1v1 + ….. +  nvn > = 0 

             <  1v1 ,  1v1 + ….. +  nvn >  + ….. + <  nvn ,  1v1 + ….. +  nvn > = 0  

    (<  1v1 ,  1v1 > + …. + <  1v1 , nvn >) + …. + (<  nvn ,  1v1 > + …. + <  nvn , nvn >) = 0 

        1  ̅̅ ̅ < v1 , v1 > + 2   ̅̅ ̅ < v2 , v > + …. + n  ̅̅ ̅ < vn , vn > ; using equation (1) 

      
2
     

2
   +     

2
     

2
  + ….. +     

2
     

2
  = 0 

But every term is non-negative and sum is zero. 

So,       
2
     

2
 = 0   i 

 But each vi  0, by statement. 

 So, |     
2
 = 0   i 

       = 0    I = 1, 2, 3, …., n. 

 So, {v1, v2, ….., vn } is linearly independent subset of S.  

   every finite subset of S is linearly independent. 

    S in linearly independent. 

Note: In the same way, it can be proved that an orthonormal set S in an inner product space V is 

linearly independent.  
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Theorem 4: If {v1, v2, ….., vn } is an orthonormal set in V and if  w   V, then,  

         u = w   ∑     
         ; is orthogonal to each of v1, v2, ….., vn. 

Solution: For any i = 1, 2, ….., n. we have 

         < u, vi > = <  w  ∑    
 
       , vi > , where  i = < w, vi >   

             =  < w –       –       – …. –      , vi > 

               = < w, vi >   –    < v1 , vi >   ….      < vi , vi >  ….      < vn , vi >   

             = < w, vi >  –    ….           ….       

        < u, vi >    = < w, vi >  – < w, vi >   =  0 

So, < u, vi >   = 0 , for i = 1, 2, ….., n 

Hence u is orthogonal to vi , for i = 1, 2, ….., n. 

Complete Orthonormal Set: An orthonormal set is said to be complete if it is not contained in 

any larger orthonormal set.  

Orthonormal dimension: Let V be a finite-dimensional inner product space of dimension n. If 

S is any orthonormal set in V then S is linearly independent. So S cannot contain more than n 

distinct vectors. The orthonormal dimension of V is defined as the largest number of vectors an 

orthonormal set in V can contain. 

For finite dimensional inner product spaces, orthonormal dimension is same as linear dimension. 

Note: Now we recall some basics of vectors in R
2
. It will help us to ‘visualize’ the geometry 

behind Gram-Schmidt orthogonalisation process. 

 Example 8: Let us consider two vectors  ⃗  and  ⃗  in R
2
. Then  

    |  ⃗  |  = a  and |  ⃗  | = b 

          We have to find: 

(i) projection of   ⃗  on  ⃗  

(ii) component of   ⃗  along  ⃗  . 

(iii)  component of   ⃗  perpendicular to  ⃗ . 



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University  Page 219 
 

Solution: Let us realize these vectors as shown – 

So,  OA = |  ⃗  |  = a  ,  AOB =   

 (i) Projection of   ⃗  on  ⃗   

    = OB = OA cos  

     =  
      ⃗⃗  ⃗    ⃗⃗  ⃗ 

   
 as    ⃗⃗⃗      ⃗⃗   = ab cos  

Projection of   ⃗  on  ⃗  =  
     ⃗⃗  ⃗    ⃗⃗  ⃗ 

  
 .  

 (ii) Component of of   ⃗  along  ⃗  = ( Projection of   ⃗  on  ⃗  ) 

  ̂ =  
     ⃗⃗⃗      ⃗⃗  ⃗ 

  
    

   ⃗⃗  ⃗

  
 =  

     ⃗⃗⃗      ⃗⃗  ⃗    ⃗⃗  ⃗

    ,  

(iii) From vector law of addition, we have  

    ⃗⃗⃗⃗  ⃗  =   ⃗⃗ ⃗⃗  ⃗  +    ⃗⃗⃗⃗  ⃗   

   ⃗  = 
     ⃗⃗⃗      ⃗⃗  ⃗    ⃗⃗  ⃗

     +   ⃗⃗⃗⃗  ⃗   

So,   ⃗⃗⃗⃗  ⃗  = component of  ⃗  perpendicular to  ⃗  =  ⃗   
     ⃗⃗⃗      ⃗⃗  ⃗    ⃗⃗  ⃗

      

These fundamental concepts will help you to understand the next theorem. 

Check your progress 

Problem 1: Prove that   v  =   |    v , for all    F , x   V 

Problem 2: If {v1, v2, ….., vn } is an orthonormal set and if w = ∑    
 
         V,  Then prove 

that     = < w, vi > for i = 1, 2, …, n. 

12.7 SUMMARY 

Orthogonality and orthonormality are fundamental concepts in vector spaces, especially in 

inner product spaces. Two vectors are said to be orthogonal if their inner product is zero, 

meaning they are at a right angle to each other. A set of vectors is called orthonormal if all the 

vectors are not only mutually orthogonal but also have unit length (norm equal to one). 
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Orthonormal sets are especially useful because they simplify many operations, such as 

projections and coordinate transformations. Any orthogonal set of non-zero vectors is linearly 

independent, and using processes like Gram-Schmidt (we will learn in upcoming units) any 

linearly independent set can be converted into an orthonormal set, which is very helpful in 

building orthonormal bases in vector spaces. 

12.8 GLOSSARY 

 Inner Product: An inner product on a vector space V is a map < ,  > : V   V  R 

satisfying the following properties : 

(i) < x , x >  0 and < x , x > = 0 if and only if x = 0. 

(ii) < x , y >   =  < y , x > 

(iii) <x + z , y >  = < x , y >  + < z , y >     and  < x , y + z >   = < x , y >   + < x , z >    

(iv) < ax , y >   = a < x , y >    x , y , z   V and a  R. 

 

 Norm of a Vector:  Let V be an inner product space. The norm function    .  : V  R has the 

following properties : 

(i)  x   0 and   x    0 if and only if x = 0 ; x   V 

(ii)   x  =   |    x  ,    F , x   V,  

Norm of a vector v  V is defined as   v  =  √       . 

 Complete Orthonormal Set: An orthonormal set is said to be complete if it is not 

contained  in any larger orthonormal set.  

 Gram-Schmidt orthogonlisation Process: Every finite-dimensional inner product space  

has an orthonormal basis. 
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12.11    TERMINAL QUESTION 

Long answer type question 

1. Explain the concept of orthogonality and orthonormality in inner product spaces. 

Illustrate with suitable examples. 

2. State and explain the Gram-Schmidt orthogonalization process. Apply it to the vectors 

)0,1,1(1 


v  and )1,0,1(2 


v to obtain an orthonormal set. 

3. Prove that any set of non-zero orthogonal vectors in an inner product space is linearly 

independent. 

4. Describe how to express a given vector as a linear combination of an orthonormal basis. 

Give an example in R
3
. 

5.  Discuss the role of orthogonal and orthonormal vectors in projection of vectors. How 

does an orthonormal basis simplify vector projection? 

Short answer type questions: 

1. Define orthogonality in the context of vector spaces. 

2. What is an orthonormal set of vectors? 

3. How can you check if two vectors are orthonormal? 

4. What is the significance of orthonormal basis in vector spaces? 

5. Can a set of orthogonal vectors be linearly dependent? Justify. 

6. Write the condition for two vectors 


u  and 


u  to be orthogonal in terms of dot product. 

7. Give an example of an orthonormal set in R
2
 

8. What is the norm of each vector in an orthonormal set? 

9. What is the angle between two orthogonal vectors? 

Objective type questions: 

1: Let 


u  and 


v  be two vectors in an inner product space. If ⟨


u ,


v ⟩=0, then the vectors are: 

A)  Linearly dependent 

B)  Equal 

C)  Orthogonal 

D)  Orthonormal 

2:  Which of the following is true for an orthonormal set of vectors },...,,{ 21 nvvv ? 
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A)  jivv ji  1,  

B)  jivv ji  1,  and ivi 1  

C)  jivv ji  0,  

D)  jivv ji ,0,   

3: Which of the following statements is not true about an orthonormal basis in a vector 

space? 

A)  All vectors are orthogonal to each other 

B)  All vectors have unit length 

C)  Any vector in the space can be written as a linear combination of the basis vectors 

D)  The inner product of any two basis vectors is always 1 

 4: If 


u  and 


v  are orthogonal vectors, then the angle between them is: 

A) 0  

B) 90  

C)  180  

D)  Cannot be determined 

5: In R
3
, which of the following sets is orthonormal? 

A)  {(1,0,0),(0,1,0),(0,0,1)} 

B)  {(1,1,0),(0,1,1),(1,0,1)} 

C)  {(2,0,0),(0,2,0),(0,0,2)} 

D)  {(1,1,1),(−1,−1,1),(1,−1,−1)} 

6:  If a set of non-zero vectors are pairwise orthogonal, then the set is: 

A)  Linearly dependent 

B)  Orthonormal 

C)  Linearly independent 

D)  A basis 

7:  Which of the following is always true for an orthonormal set  {


u , 


v } 

A)  


 21 vv  is orthogonal 


 21 vv  

B)  221 


vv  
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C)  1, 21 


vv  

D)  


 21 vv  

8: The Gram-Schmidt process is used to: 

A)  Find the determinant of a matrix 

B)  Find eigenvalues of a matrix 

C)  Convert a linearly independent set to an orthonormal set 

D)  Solve a system of linear equations 

9: Let )2,1(1 


v  and )1,2(2 


v . Then 


1v  and 


2v are: 

A)  Orthogonal 

B)  Orthonormal 

C)  Linearly dependent 

D)  Not orthogonal 

10:  If },,{ 321



uuu is an orthonormal basis in R
3
 and 

3Rv 


then the projection of 


v  onto the 

subspace spanned by the basis is: 

A)  


v  

B)  






 ii i uuv
3

1
,  

C)  






 vu
i i

3

1
 

D)  


vv ,  

True and False questions: 

1: If two vectors are orthogonal, then their dot product is zero. 

2: An orthonormal set is always linearly dependent. 

3: All orthonormal vectors are orthogonal, but not all orthogonal vectors are orthonormal. 

4: If a vector has unit length, it is automatically orthogonal to other vectors. 

5: The zero vector is orthogonal to every vector in a vector space. 

6: Every orthogonal set of vectors in R
n
 can be converted into an orthonormal set. 

7: If u ⋅v =0, then u  and v  must both be the zero vector. 

8: In an orthonormal basis, the coordinates of a vector are given by inner products with the  



LINEAR ALGEBRA   MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University  Page 224 
 

 basis vectors. 

9: Orthonormal vectors must all lie on the same line. 

10: The Gram-Schmidt process can be applied only to orthogonal vectors. 

Fill in the blanks questions: 

1: Two vectors are said to be __________ if their inner product is zero. 

2: A set of vectors is called __________ if the vectors are mutually orthogonal and each has 

unit length. 

3: The process used to convert a linearly independent set into an orthonormal set is called 

the __________ process. 

4: If 0. 


vu , then vectors 


u and 


v are __________. 

5: In an orthonormal basis, the length (or norm) of each vector is equal to __________. 

6: If a set of non-zero vectors is orthogonal, then it is always __________. 

7: The dot product of any two different vectors in an orthonormal set is __________. 

8: The projection of a vector 


v onto a unit vector 


u is given by __________. 

9: The standard basis vectors in R
n
 form an __________ basis. 

10: To normalize a vector


v , divide it by its __________. 

12.12    ANSWERS 

Answers of check your progress: 

2. Given that {v1, v2, ….., vn } is an orthonormal set. So 

        < vi , vj > = {
         
         

       …..(1) 

  We have , < w, vi > =  ( 1v1 + ….. +  nvn , vi ) 

              =  1 < v1 , vi > + …. +  i < vi , vi > + ….+  n < vn , vi > 

             = 0 +….+   i + 0 + …. + 0 

       < w, vi >  =  i , for i = 1, 2, …., n. 

Answer of Short answer type questions: 

4: An orthonormal basis simplifies computations, such as projections and coordinate 

transformations, because the inner products directly give the components of any vector. 

5: No, a set of non-zero orthogonal vectors is always linearly independent. 
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6: 0. 


vu    7: {(1,0),(0,1)} 

8: The norm is 1.   9: 90 degrees 

 

Answer of objective type questions: 

 

1:  C  2: B  3: D  4: B 

5:  A  6: C  7: A  8: C 

9:  A  10: B 

 

Answer of True and False: 

1:   True  2: False  3: True  4: False 

5:  True  6: True  7: False  8: True 

9:  False  10: False 

 

Answer of fill in the blanks 

1:  Orthogonal  2: Orthonormal  3: Gram-Schmidt 

4:  Orthogonal  5: 1   6: Linearly independent 

7:  0   8: 


uuv ).(   9: Orthonormal 

10:  magnitude (or norm) 
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UNIT-13: GRAM-SCHMIDT ORTHOGONALIZATION 

PROCESS 

CONTENTS 

13.1 Introduction 

13.2 Objectives 

13.3  Orthonormal dimension  

13.3  Gram-Schmidt orthogonalisation process  

13.4 Bessel’s inequality 

13.5 Orthogonal complement 

13.6     Riesz representation theorem  

13.7 Summary 

13.8 Glossary 

13.9 Reference 

13.10 Suggested readings 

13.11 Terminal questions 

13.12 Answers 

13.1 INTRODUCTION 

The Gram-Schmidt orthogonalization process is a method used in linear algebra to convert a set 

of linearly independent vectors into an orthogonal (or orthonormal) set spanning the same 

subspace. It works by iteratively subtracting the projections of each vector onto the previously 

obtained orthogonal vectors, ensuring that each new vector added to the set is orthogonal to those 

already processed. This technique is fundamental in many applications, such as simplifying 

computations in vector spaces, constructing orthonormal bases in Hilbert spaces, and performing 

QR decomposition in numerical analysis. 
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The Gram-Schmidt orthogonalization process is named after two mathematicians: Jørgen 

Pedersen Gram, a Danish mathematician, and Erhard Schmidt, a German mathematician. 

 Jørgen P. Gram introduced concepts related to orthogonality and projections in the late 

19th century (around 1883), particularly in the context of statistics. 

 Erhard Schmidt later formalized and extended Gram's ideas in 1907, particularly in the 

setting of Hilbert spaces. 

Although both contributed independently, the process as we know it today became widely 

recognized due to Schmidt’s work, and the combined name acknowledges both of their 

contributions. 

 

27 June 1850-29 April 1916 (aged 65) 

 

13 January 1876-6 December 

1959 (aged 83) 

13.2 OBJECTIVES 

After the study of this chapter, we shall understand:  

 Orthogonalisation and Gram-Schmidt process. 

 Cauchy Schwarz and Bessel inequalities. 

 Riesz representation theorem. 

 

13.3 GRAM-SCHMIDT ORTHOGONALISATION PROCESS 

Theorem 1: Every finite-dimensional inner product space has an orthonormal basis. 
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Proof: Let V(F) be an n-dimensional inner product space and let S = {v1, ….., vn }be a basis of 

V. Firstly, we shall construct an orthogonal set in V with the help of elements of S. Since S is a 

basis, so all elements of S are non-zero.  

Let us take, 

  w1 = v1 , w2 = v2 – 
               

      
  or  w2 = v2 – 

               

      
      …..(1) 

Since v1  0 , so        0, 

 We have,           =               where   = 
            

      
  

 So,           =                       

           =             
            

      
      

   =                      = 0 

                = 0  and v2 =         =          , 

We observe that      0 , for otherwise, v2 = v1 

    v1 , v2 are linearly dependent. 

This is contradictory, as S is a basis , so every subset of S will be linearly independent. 

  Let w3 = v3 – 
               

      
   –  

               

      
       …..(2) 

 where         0 ,          0 

 We can write,  w3 = v3 –  1w1 –  2w2 , where  

    1 = 
            

      
      and   2 = 

            

      
     …..(3) 

 Now,           = < v3 –  1w1 –  2w2 , w2 > 

            =                1               2            

            =             
            

      
               

            

      
      

    

            =                                 (as            = 0 ) 



LINEAR ALGEBRA   MT(N)-301 
 

Department Of Mathematics 

Uttarakhand Open University Page 229 
 

                       = 0 

 Similarly,            = 0, 

 Also,  v3 =  1w1 +  2w2 + w3 

 If follows that { w1, w2, w3 } is an orthogonal set. Further w3  0 , for otherwise,{w1, w2, w3 } is 

linearly dependent, which is again a contradiction. Here you should note that { w1, w2, v3 }= { 

v1, v2     1v1,, v3 } is linearly independent as { v1, v2, v3 }are linearly independent. Proceeding 

in a similar manner, if we take 

    wn = vn – 
                  

        
    …. – 

               

      
   , then it can be verified that {w1, …., 

wn} is an orthogonal set . Consequently,  T = { 
     

     
   , …. , 

     

     
 } is an orthogonal set. Since an 

orthonormal set is linearly independent and so T forms basis of V as dim V = n. 

 Hence T is an orthonormal basis of v. 

Note: (1) To obtain an orthonormal basis of V, where V = R
3
 i.e. dim V = 3, we proceed as 

follows:  

(i) Let {v1, v2, v3} be a basis of V. 

(ii) Find {w1, w2, w3} where w1 = v1  

           w2 = v2 – 
               

      
   

           w3 = v3 – 
               

      
   –  

               

      
      

(iii) { 
     

     
   , 

     

     
  , 

     

     
  } is an orthogonal basis of V. 

(2)  Generally existence theorem in analysis are non-constructive i.e. you prove the theorem, but 

there is no formula or general method to solve numerical questions. But Gram-Schmidt process 

is constructive in nature. It provides a method to solve numerical. 

Example 1: Apply the Gram-Schmidt process to the vectors given below to obtain an 

orthonormal basis for R
3
(R) with the standard inner product:  

(i) S1 = { (1, 1, 0) , ( 1, 0, 1) , (0, 1, 1) } 

(ii) S2 = { (1, 1, 0) , ( 1, 0, -1) , (0, 3, 4) } 

Solution: (i) Let v1 = (1, 1, 0) ,  v2 = ( 1, 0, 1) , v3 = (0, 1, 1) 

Let w1 = v1 = (1, 1, 0) ,              
  = <     ,    > = 1

2
 + 1

2
 + 0 = 2 
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   = 

 

√ 
 (1, 1, 0) =  (

 

√ 
 , 

 

√ 
 , 0) 

Let  w2 = v2 – 
               

      
      …..(1) 

                   =            = 1
2
 + 0 + 0 = 1 

  So,  w2 = ( 1, 0, 1)   
 

 
 (1, 1, 0) = ( 

 

 
 ,  

 

 
 , 1 ). 

               
  = <     ,    > = 

 

 
  

   So,   
     

      
   = √

 

 
  ( 

 

 
 ,  

 

 
 , 1 ) = =  (

 

√ 
 ,  

 

√ 
 , 

 

√ 
 ) 

  Again, let w3 = v3 –  
               

      
     – 

               

      
      …..(2) 

 So we obtain,            =            = 0 + 1 + 0 = 1 and               = 
 

 
  

        
  = 2 ,        

   =  
 

 
 

So form equation (2) , we have  

   w3  = (0, 1, 1)  
 

 
 (1, 1, 0)  

 

 
 ( 

 

 
 ,  

 

 
 , 1 ) 

 

 
 =  (  

 

 
 , 

 

 
 , 

 

 
 ) 

        
   =  

 

 
   

     

      
   =  ( 

 

√ 
 , 

 

√ 
 , 

 

√ 
 )  

Hence orthonormal basis is { (
 

√ 
 , 

 

√ 
 , 0) , (

 

√ 
 ,  

 

√ 
 , 

 

√ 
 ) , ( 

 

√ 
 , 

 

√ 
 , 

 

√ 
 ) } 

(ii) Do it yourself. 

  S1 = { (
 

√ 
 ,   , 

 

√ 
 ) , ( 

 

√ 
,   ,  

 

√ 
) , ( 0 ,  ,  ) } 

 Example 2:  Let V be a set of real functions satisfying  
   

    + 9y = 0, 

(i) Prove that V is a two-dimensional real vector space. 

(ii)      In V, inner product is defined by  

                            < y, z > = ∫      
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Find an orthonormal basis for V. 

Solution: (i) Suppose V is a collection of solutions of    

     
   

   
 + 9y = 0  

   Let  
 

  
   D 

     (D
2
 + 9) y = 0 

 Auxiliary equation is  m
2
 + 9 = 0 or m =  3i 

 So, solution is  y =  c1 cos3x +  c2 sin3x 

 Let V= {c1 cos3x +  c2 sin3x:  c1, c2   R }      …..(1) 

 Let S = {cos3x, sin3x} 

 The Wronskian of  v1 = cos3x and v2 = sin3x is  

      W(x) =  |
    
   

  

   

  

|    =  |
           

              
|  =  3  0 

 So S is linearly independent subset of V and by equation (1) , L(S)=V.  

Hence S is a basis of V. 

Thus,  dimV = 2  

(ii)   Let v1 = cos3x, v2  = sin3x  

 Now       w1= v1 , So     || w1 ||
2   

= <  w1 , w1  > = ∫      (  )   
 

 
 

      = ∫   
        

 
   

 

 
 = 

 

 
 , on solving 

     
  

        
 = √

 

 
 . cos 3x 

Let w2 = v2 – 
               

      
       …..(2) 

        < v2 , w1 >  = < v2 , v1 >  =  ∫              
 

 
 = 

 

 
∫          

 

 
 = 0,  
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       w2 = v2 = sin 3x 

Now,      
   = < w2 , w2 >   = ∫      (  )   

 

 
 = ∫   (

         

 
 )   

 

 
 = 

 

 
  

       
      

     
  = √

 

 
  sin 3x 

Hence an orthonormal basis of V is  { √
 

 
  cos 3x , √

 

 
  sin 3x } 

Example 3: Obtain an orthonormal basis for V, the space of all real polynomials of degree at 

most 2, the inner product being defined by       

      < f, g > = ∫  ( ) ( )   
 

 
 

Solution:  We have,  V = { a0 + a1 x + a2 x
2
 ; ai  R }  

Let S = {1, x, x
2
}. Then obviously, S is a basis of V  

Let v1 = 1, v2 = x and v3 = x
2
 

So, w1 = v1 = 1 

Now ||w1||
2
  = < w1 , w1 > =  ∫        

 

 
 = 1 

Let     w2 = v2 – 
               

      
         …..(1) 

Now  < v2 , w1 >  = < v2 , v1 >  = ∫     
 

 
 = 

 

 
 

     w2 = x – 
 

 
  

Hence ,  ||w2||
2
  = < w2 , w2 > =  ∫ (   

 

 
 )    

 

 
 = 

 

  
 

So,  
      

     
   = √   (x   

 

 
 )   =   √  (x   

 

 
 )    

Let w3 = v3 –  
               

      
     – 

               

      
       …..(2) 

Since,            = ∫       
 

 
 = 
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                            = ∫    (    
 

 
 )   

 

 
 = 

 

  
 

    w3 = x
2
 – 

 

 
 . 1 – (    

 

 
 )  =  x

2
 – x + 

 

 
  

              ||w3||
2
  = < w3 , w3 > = ∫  (   –      

 

 
 )     

 

 
 = 

 

   
  

   
      

     
   = √    (   –      

 

 
 )   =   √  (   –      

 

 
 )    

Hence an orthonormal basis of V is  

  { 1,  √  (x   
 

 
 )  ,  √  (   –      

 

 
 ) } 

13.4 BESSEL’S INEQUALITY 

Theorem 2: If V is an inner product space and if {w1 , …. ,wn} is an orthonormal set in V , then  

∑        
 
         ||v||

2
 , for all v  V 

Furthermore, equality holds if and only if V is in subspace spanned by w1 , …. ,wn. 

Proof: Let v  V be arbitrary. 

Consider the vector  

   x = v – ∑       
 
   ; where    = < v ,    >     …..(1) 

 Then,  < x, x >  = < v – ∑       
 
   , v – ∑       

 
     

     = < v, v >   < v ,  ∑       
 
   >   < ∑       

 
   , v > + < ∑       

 
   , ∑       

 
   > 

     = ||v||
2
 – ∑    ̅̅ ̅   

   < v ,    > – ∑     
 
   < wi , v > + ∑ ∑   

 
   

 
     <    ,    > 

     = ||v||
2
  ∑        ̅̅ ̅̅ ̅̅ ̅   

    < v , wj >  ∑         
          ̅̅ ̅̅ ̅̅ ̅   + 

∑ ∑   
 
   

 
     ̅. 1      ( as <    ,    > = 1 only if i = j ) 

 So, < x, x >  = ||v||
2
  ∑           

       ∑           
       ∑           

       

       < x, x >  = ||v||
2
  ∑           

      = ||v||
2
  ∑          ̅̅ ̅̅ ̅̅ ̅     

      as   | z | = |  ̅ |   
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     || x ||
2
 = ||v||

2
  ∑              

           …..(2) 

Since || x ||
2
  0,  so by equation (2), we have  

   ||v||
2
  ∑              

        0   or  ∑            
           ||v||

2
 for each v  V 

If the equality holds i.e. if  ∑            
           ||v||

2
 , then from equation (2), we have  

  || x ||
2
   0 or  || x ||   0 

          x = 0 

So, v = ∑       
 
    = ∑          

      

Thus, if the equality holds, then v is linear combination of { w1 , …. ,wn }. 

Conversely, if v is a linear combination of { w1 , …. ,wn }, then we can write 

v = ∑       
 
   where    = < v ,    >   

 So, x = 0    || x ||
2
  = 0 

 Hence from equation (2), we have 

    ||v||
2
  =   ∑            

          i.e. equality holds. 

13.5 ORTHOGONAL COMPLEMENT 

Let V be an inner product space, and let S be any set of vectors in V. The orthogonal 

complement of S (written as    and read as S perpendicular or S perp.) is defined by  

      = { v  V : < u, v > = 0    u  S } 

Thus    is the set of all those vectors in V which are orthogonal to every vector in S. 

Theorem 3: Let S be any set of vectors in an inner product space V. Then    is a subspace of V. 

Proof: By definition,    = { v  V : < u, v > = 0    u  S} 

Since < 0, u > = 0    u  S 

So, 0     and thus     is not empty. 
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Let x, y   F and w1 , w2     

Then < w1 , u > = 0  u  S  and  

              < w2 , u > = 0  u  S   

So, < xw1 + yw2, u > =  x < w1 , u > + y < w2 , u > 

      = x.0 + y.0 = 0  u  S   

So,  xw1 + yw2      w1 , w2     and x, y  F 

Hence    is a subspace of V. 

Note: (1) Here we should note that S MAY NOT be a subspace of V while    is always a 

subspace  of V. 

(2)  Obviously, it can be observed that     =  {  ̅ } and {  ̅    = V. 

Orthogonal Complement of an orthogonal complement: Let S be any subset of an inner 

product space V. the    is a subset of B. 

We define (   )  , written as     , by  

        = { v  V : < v, u > = 0 ,   u     }  

Obviously      is a subspace of V. 

Note: It is very easy to show that S         

Let u  S , then < u, v > = 0  v     .  

So by definition of     , we conclude that u      . So        

Theorem 4: (Projection Theorem) Let W be any subspace of a finite dimensional inner product  

 space V. Then (i) V = W       (ii)       = W 

Proof: (i) By definition ,     = { v  V : < v, u > = 0 ,   u  W } , and    is a subspace of V. 

By the given hypothesis, W is also a finite dimensional inner product space and so W has an 

orthonormal basis.  
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Let  S = { w1 , …. ,wm }  be an orthonormal basis of  W. 

      < wi , wj > = {
            
         

       …..(1) 

Let v  V be arbitrary, 

Let w = ∑       
 
   , where    = < v, wi >      …..(2) 

Now we assume x = v – w      …..(3) 

Then,  

    < x, wi > = < v – w, wi > = < v, wi >  < w, wi > 

        =  < v, wi >    <       + …. +       , wi > 

      =  < v, wi >    < w1 , wi > ….     < wi , wi >  ….     < wm , wi > 

       =  < v, wi >  0   ….      

        = < v, wi >    < v, wi >   

So, < x, wi > = 0 , for  i = 1, 2, …. , m.   …..(4) 

Since S is a basis of W, each u  W is expressible as 

    u =   w1 +    w2 + …. +   wm ;       F 

We have ,  < x, u > = < x,   w1 + …. +   wm > 

            =   ̅ < x, w1 > + …. +   
̅̅ ̅̅  < x, wm > 

              =   ̅ .0 + …. +   
̅̅ ̅̅  . 0 = 0,     ( using eqn. 4 ) 

So < x, u > = 0 ,  u  W 

      x      . 

From equation (3) , v = w + x where w  W and x        

     V = W +           …..(5) 
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 Now we shall prove that W       = {0} 

 Let y  W      be arbitrary, 

  y  W and  y      

 Now y        < y, u > = 0  u  W 

In particular,   < y, y > = 0 as y  W 

   y = 0 and W       = {0}      …..(6) 

  From equation (5) and (6) , we get  

   V = W       

 (ii)   From part (i) , we have  

  V = W             …..(7) 

Since    is a subspace of V, on replacing W by    in eq
n
 (7), we get,  

  V =                  …..(8) 

As V is finite-dimensional, so from eqns (7) & (8), we get  

  dim V = dim W + dim       …..(9) 

      and  dim V = dim    + dim         

   dim W = dim            …..(10) 

But we already know that W       . 

So from equation (10), we have  

   W =      

Example 4: If S1 and S2 are subsets of an inner product space V, then show that  

   S1  S2     
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Solution:  Let x    
  , then < x, y > = 0 , for each y  S2. 

In particular, < x, z > = 0,  z  S1 as S1  S2   

    x    
   

Hence   
      

   

 Example 5: If W1 and W2 are subspaces of a finite-dimensional inner product space V, then 

prove that – 

(i) ( W1 + W2 )  =   
       

   

(ii) ( W1  W2 )  =   
     

   

Solution: Since we know that  

       W1  W1 + W2 and W2  W1 + W2 

So by previous example, we have 

    (W1 + W2 )     
   and (W1 + W2 )     

   

So, (W1 + W2 )  =   
       

      …..(1) 

Now, suppose z    
       

   be arbitrary   

      z    
    and   z    

    

     < z , x > = 0 ,  x  W1  and   < z , y > = 0 ,  y  W2      …..(2) 

Now any t    
       

   can be written as  

      t = x + y for some x  W1 , y  W2  

So    < z, t > = < z , x + y > = < z , x > + < z , y > 

            =  0 ,            (using eq
n
  (2) ) 

So, z  ( W1 + W2 )   and hence  

                 
       

    ( W1 + W2 )       ….(3) 
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From equation (1) and (3) , we get 

          ( W1 + W2 )  =   
       

        ….(4) 

(ii)  Since   
   and    

   are subspaces of V, so on taking   
   in place of W1  and   

   in place 

of W2 in eq
n
 (4), we get  

         (   
       

  )  = (   
  )    (   

  )   

So    (   
       

  )   =    
         

      

                =   W1  W2      as      = W 

     (   
       

  )      = ( W1   W2 )  

          
       

    =  ( W1  W2 )  

Example 6: Let W be a finite-dimensional proper subspace of an inner product space V. Let    

V and    W. Show that there is a vector    V such that     is orthogonal to W. 

Solution: We know that every finite-dimensional inner product space has an orthonormal basis. 

Let { 1 , …., n } be an orthonormal basis of W. 

Let   = ∑      
          where <  , i >  F 

Then   W,      For each j, 1    j    n we have  

          <     , j  > = <   ∑      
          , j  > 

            = <   , j >   ∑      
       <    , j  > 

            = <   , j >   <   , j >   as  <    , j  > = 

      

             = 0 

        <     , j  >  = 0, for all j =1, 2, …., n.   …..(1) 

Let w   W be arbitrary, we can write 

      w  = ∑   
 
        where        F 
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We have <     ,   >  = <     , ∑   
 
      > 

=   ∑   ̅
 
    <     ,    >   = 0 ,   by eq

n
  (1) 

   <     ,   >  = 0 ,   for each w   W 

Hence     is orthogonal to W. 

13.6 RIESZ REPRESENTATION THEOREM 

Theorem 5: Let V(R) be a finite-dimensional linear functional f : V  R . Then there exists a 

unique y  V such that f(x) = < x , y > ,   x  V. 

Proof: Suppose there exists y  V such that  

   f(x) = < x , y > ,  for all x  V. 

Let us choose an orthonormal basis { e1 , …., en } of V 

Then y = ∑   
 
        for some      R 

Now f  L (V, R) and f is completely determined if we know f (  ) for 1  i  n 

Now f (  ) = <    , y > =    for 1  i  n  

This suggest that we take y = ∑  (  )
 
       

It is easy to check that f(x) = < x , y > for all x  V 

For if x = ∑     , then  f(x) = ∑   (  )       …..(1) 

Also < x , y >  = < x , ∑  (  )    >  

    = < ∑     , ∑  (  )    > 

    = ∑  (  )       <    ,    >      …..(2) 

    = ∑  (  )     as  <    ,    >  =       = {
      
      

    

From equations (1) and (2) , we conclude that  
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   f(x) = < x , y > for all x  R
n
 

Uniqueness: Now, suppose z is such that, 

     f(x) = < x , z > for all x  V 

then, f(x) = < x , z > = < x , y > 

    <  x , z – y  > = 0 for all x. 

In particular, for x = z – y, we obtain 

     < z – y , z – y > = 0 

        z – y = 0  

             z = y 

So y is unique. 

Geometric Interpretation: 

If f = 0, then the obvious choice is y = 0.  

If f  0, then f is a linear form and W = ker f is of  

dimension n – 1, where n = dim V. 

Thus  there is a unit vector u perpendicular to W, for   

 V = W      ( that is , u is a unit normal to the “plane” ). y must therefore be a multiple  u of 

u. The choice of  is determined by the equation   

f(u) = < u , y >  = < u ,  u >   =    

Thus we take y =  u where   = f(u) 

For  x  V, we have x = w + tu, where w  W and t  R 

Then f(x) = f(w + tu) = f(w) + t f(u) = t f(u) 

Also < x, y > = < w + tu,  u > =    < w, u > + t   < u , u > = t   = t f(u) 

Hence the result. 
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Theorem 6: For any linear operator T on a finite-dimensional inner product space V, there exists 

a unique linear operator T
*
 on V such that  

   < T  ,   > = <  , T
*
   > for all   ,    V. 

Proof: Let T be a linear operator on a finite dimensional inner product space V over the field F. 

Let    V and f be a functional from V into F defined by 

    f( ) = < T  ,  >       V       …..(1) 

Here T  stands for T( ) 

Claim: f is a linear functional on V. 

 Let a , b  F and 1 , 2  V  , then 

  f ( a 1 + b 2 ) = < T( a 1 + b 2 )  ,  >   

     = < ( aT 1 + bT 2 )  ,  >   as T is linear 

    = a <  T 1 ,  >   + b <  T 2 ,  >   

    = a f ( 1) + b f ( 2) , using equation (1) 

Hence f is a linear functional on V. 

So by Riesz representation theorem, there exists a unique '  V such that  

    f ( ) = <  , ' >        V      …..(2) 

 From equations (1) and (2), we observe that if T is a linear operator on V, then corresponding to 

every vector  in V, there is a uniquely determined vector ' in V such that    

< T  ,   > = <  , ' >        V    

Let us denote by T
*
 the rule which associates  with ' i.e. let  T

*   = '  

Then T
*
 is a function from V in to V and is such that  

    < T  ,   > = <  , T
*
  >           V      …..(3) 

Claim: T
*
 is a linear operator on V. 
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 Let a, b  F and 1 , 2  V . Then      V , we have  

  <  , T
*
 (a 1 + b 2 ) >   = < T  ,  a 1 + b 2  >       using equation (3) 

     =  ̅ < T  ,  1 > +  ̅  < T  ,  2 > 

    =  ̅ <   , T
*
 1 > +   ̅ <   , T

*
 2 >    again by (3) 

    =  <   , a T
*
 1 > +   <   , b T

*
 2 > 

    = <   , a T
*
 1 + b T

*
 2 > 

Hence T
*
 (a 1 + b 2 ) =  a T

*
 1 + b T

*
 2 

Thus T
*
 is a linear operator on V 

Hence corresponding to a linear operator T on V, there exists a linear operator T
*
 on V  

such that ,    < T  ,   > = <  , T
*
  >           V     

Uniqueness: Let S be a linear operator on V such that  

   < T  ,   > = <  , S  >           V    

Then  <  , T
*
  > = <  , S  >           V    

       T
*
  = S                 V    

          T
*
  = S  

So T
*
 is unique. 

Check your progress 

Problem 1: Apply the Gram–Schmidt orthogonalisation process to the vectors

)1,0,1(),0,1,1( 21  vv and
3

3 )1,1,0( Rv   (standard dot product) to produce an orthonormal 

basis },,{ 321 eee for span },,{ 321 vvv . Show your working.  
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13.7 SUMMARY 

In this chapter we understood the process of generalization from ordinary vectors to vector 

spaces. So other basic concepts viz angle, length, distance were also generalized respectively as 

inner product, norm, and metric. As we have studied orthogonal compotent of ordinary vectors, 

we studied here Gram-Schmidt orthogonalisation process. Besides this, we learned various 

concepts and applications of inner product. 

13.8 GLOSSARY 

 Inner Product: An inner product on a vector space V is a map < ,  > : V   V  R 

satisfying the following properties : 

(i) < x , x >  0 and < x , x > = 0 if and only if x = 0. 

(ii) < x , y >   =  < y , x > 

(iii) <x + z , y >  = < x , y >  + < z , y >     and  < x , y + z >   = < x , y >   + < x , z >    

(iv) < ax , y >   = a < x , y >    x , y , z   V and a  R. 

 

 Norm of a Vector:  Let V be an inner product space. The norm function    .  : V  R has the 

following properties : 

(i)  x   0 and   x    0 if and only if x = 0 ; x   V 

(ii)   x  =   |    x  ,    F , x   V,  

Norm of a vector v  V is defined as   v  =  √       . 

 Complete Orthonormal Set: An orthonormal set is said to be complete if it is not 

contained  in any larger orthonormal set.  

 Gram-Schmidt orthogonlisation Process: Every finite-dimensional inner product space  

has an orthonormal basis. 
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13.11    TERMINAL QUESTION 

1. Explain the Gram-Schmidt Orthogonalization process. Derive the general formula used to 

construct an orthogonal basis from a linearly independent set of vectors. 

2. Apply the Gram-Schmidt process to the vectors )1,1,0(),1,0,1(),0,1,1( 321  vvv  in R
3
 

and find an orthonormal basis. Show all necessary steps. 

Short answer type question 

1. What is the Gram-Schmidt orthogonalization process? 

2. State the necessary condition for applying the Gram-Schmidt process to a set of vectors. 

3. What is the difference between an orthogonal set and an orthonormal set? 

4. How does the Gram-Schmidt process ensure that vectors are orthogonal? 

5. Why is it necessary to normalize vectors after applying the Gram-Schmidt process? 

6. What is the role of projection in the Gram-Schmidt process? 

7. Can the Gram-Schmidt process be applied to complex vector spaces? Justify your answer. 

8. Does the Gram-Schmidt process change the dimension of the subspace spanned by the 

vectors? Explain. 

9. Write the formula for the projection of a vector vvv onto a vector uuu. 

10. What type of product (operation) is used in the Gram-Schmidt process to calculate 

projections? 

Objective type questions: 

1. The Gram-Schmidt process is used to: 

A)  Solve linear equations 

B)  Diagonalize a matrix 

C)  Convert a set of linearly dependent vectors into orthogonal vectors 

D)  Convert a set of linearly independent vectors into an orthogonal basis 

2.  What property does the set of vectors produced by the Gram-Schmidt process satisfy? 
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A)  They are linearly dependent 

B)  They are orthogonal 

C)  They are not normalized 

D)  They form a skew-symmetric set 

3.  In the Gram-Schmidt process, after orthogonalizing the vectors, what step is required to 

get an orthonormal basis? 

A)  Take the determinant 

B)  Normalize each vector 

C)  Take the inverse of the vectors 

D)  Apply Gaussian elimination 

4.  The Gram-Schmidt process requires that the initial set of vectors be: 

A)  Linearly dependent 

B)  Orthonormal 

C)  Linearly independent 

D)  Eigenvectors 

5.  In an inner product space, the Gram-Schmidt process can be applied to: 

A)  Only real vector spaces 

B)  Only complex vector spaces 

C)  Both real and complex inner product spaces 

D)  Only Euclidean spaces 

6.  Which of the following is true about the vectors produced by the Gram-Schmidt process? 

A)  They span a different subspace than the original vectors 

B)  They span the same subspace as the original vectors 

C)  They are always eigenvectors 

D)  They are linearly dependent 

7.  In the Gram-Schmidt process, which operation is repeatedly used to make vectors 

orthogonal? 

A)  Cross product 

B)  Matrix multiplication 

C)  Projection 

D)  Inverse computation 

8.  What is the purpose of subtracting projections in the Gram-Schmidt process? 

A)  To increase vector length 

B)  To ensure orthogonality 
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C)  To normalize the vector 

D)  To find eigenvalues 

9.  If the Gram-Schmidt process is applied to a set of vectors in R
n
, how many orthogonal 

vectors are obtained? 

A)  n + 1 

B)  Same as the number of original vectors 

C)  Always 1 

D)  Depends on the dimension of the space only 

10.  Which of the following is a necessary condition for applying the Gram-Schmidt process 

successfully? 

A)  The matrix must be symmetric 

B)  Vectors must be orthogonal 

C)  Vectors must be linearly independent 

D)  Vectors must be unit vectors 

Fill in the blanks questions: 

1.  The Gram-Schmidt process converts a set of linearly independent vectors into an 

_______ set. 

2.  The vectors obtained from the Gram-Schmidt process span the _______ subspace as the 

original set of vectors. 

3.  In the Gram-Schmidt process, each new vector is made orthogonal by subtracting its 

_______ onto the previous vectors. 

4.  After applying the Gram-Schmidt process, we can obtain an _______ basis by 

normalizing each orthogonal vector. 

5.  The inner product used in the Gram-Schmidt process depends on the _______ structure of 

the vector space. 

6.  The Gram-Schmidt process can be applied to vectors in both _______ and _______ inner 

product spaces. 

7.  The projection of vector v onto vector u is given by u
uu

uv
.

,

,




, where ⟨⋅,⋅⟩ denotes the 

_______. 

8.  The orthogonal vectors produced by the Gram-Schmidt process are not necessarily of 

_______ length. 
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True and false questions: 

1. The Gram-Schmidt process can be applied to any set of vectors, whether linearly 

independent or not. 

2. The vectors generated by the Gram-Schmidt process are orthogonal to each other. 

 

3. After applying the Gram-Schmidt process, the resulting vectors always form an 

orthonormal set. 

4. The Gram-Schmidt process changes the span of the original set of vectors. 

5. The Gram-Schmidt process can be used in both real and complex inner product spaces. 

6. The projection of a vector onto another is required to ensure orthogonality in the Gram-

Schmidt process. 

7. You must apply matrix inversion during the Gram-Schmidt orthogonalization process. 

8. The Gram-Schmidt process can be used to create an orthogonal basis for any subspace of 

R
n
. 

 

13.12    ANSWERS 

Answers of check your progress: )0,1,1(
2

1
1 e ; )2,1,1(

6

1
2 e  and )1,1,1(

3

1
3 e  

Answer of objective type question: 

1:  D  2: B  3: B  4: C 

5:  C  6: B  7: C  8: B 

9:  B  10: C 

Answer of fill in the blanks: 

1:  Orthogonal  2: Same   3: Projection 

4:  Orthonormal  5: Vector Space  6: Real, Complex 

7:  Inner product  8: Unit 
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Answer of TRUE and FALSE: 

1:    False   2: True  3: False  4: False 

5:  True  6: True  7: False  8: True 
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UNIT-14: UNITARY AND NORMAL OPERATOR 

CONTENTS 

14.1 Introduction 
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14.3  Adjoint operator 

14.4   Self-adjoint operator 

14.5  Skew-symmetric and skew-Hermitian operator  

14.6 Positive operator 

14.7 Non-negative operator 

14.8 Unitary operator 

14.9 Normal operator 

14.10 Summary 

14.11 Glossary 

14.12   References 

14.13   Suggested Readings 

14.14 Terminal Questions 

14.15  Answers 

14.1 INTRODUCTION 

German mathematician David Hilbert, who lived from January 23, 1862, to February 14, 

1943, was a very influential mathematician of the late 19th and early 20th centuries. The 

foundations of geometry, the spectral theory of operators and its application to integral 

equations, the calculus of variations, commutative algebra, algebraic number theory, 
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mathematical physics, and the foundations of mathematics (especially proof theory) are just a 

few of the many fundamental concepts that Hilbert discovered and developed. 

Hilbert embraced and upheld the transfinite numbers and set theory of Georg Cantor. He 

introduced a set of issues in 1900 that paved the way for 20th-century mathematical research. 

Important tools utilized in modern mathematical physics were invented by Hilbert and his 

pupils, who also helped to establish rigor in the field. Hilbert was a pioneer in the fields of 

mathematical logic and proof theory. 

An inner product structure on a C-vector spaces induces a “mirrored” twin for every 

linear transformation, called the adjoint. Linear operators equal their own adjoints have many 

important properties. 

 

14.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the basic concept of unitary operator and normal operator. 

 Understand the basic concept of adjoint operator and self-adjoint operator. 

 Understand the concept of skew-symmetric and skew-Hermitian operator. 

 Understand the concept of positive and non-negative operator. 

14.3 ADJOINT OPERATORS 

Let T be a linear operator on an inner product space V (here V need not be finite dimensional). 

We say that T has an adjoint T
*
 if there exists a linear operation T

*
 in V  
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  such that   < T  ,   > = <  , T
*
  >           V     

Note: In previous unit, we have proved that every linear operator on a finite-dimensional inner 

product space posses an adjoint. But it should be noted that if V is not finite-dimensional, then 

some linear operator on V may possess an adjoint while the other may not. In any case if T 

possesses an adjoint T
*
, then it must be unique. Also observe that the adjoint of T depends not 

only upon T, but also on the inner product on V.  

Theorem 1: Let V be a finite-dimensional inner product space and let B = { 1 , …., n } be an 

ordered orthonormal basis for V . Let T be a linear operator on V and let A = [aij        be the 

matrix of T with respect to the ordered basis B. Then aij = < T j, i > 

Proof:  As B is an orthonormal basis for V, so for any     V , 

    = ∑     
            

Replacing  by T j , we get  

   T j = ∑        
 
           ;    j = 1, 2, ….., n   …..(1) 

Now if A = [aij        be the matrix of T in the ordered basis B, then we have  

   T j = ∑      
 
       ;  j = 1, 2, ….., n    …..(2) 

Since the expression for T   as a linear combination of vectors in B is unique, so from equations 

(1) and (2), we have  

     aij = < T j , i >  ; 1  i  n, 1  j  n 

Corollary 1: Let V be a finite dimensional inner product space and let T be a linear operator on 

V. In any orthonormal basis for V, the matrix of T
*
 is the conjugate transpose of the matrix of T. 

Proof: Let B = { 1 , …., n } be an orthonormal basis for V. Let A = [aij        be  the matrix of 

T in ordered basis B.  

Then    aij = < T j , i >     …..(1) 

Now T
*
 is also a linear operator on V.  

Let C = [cij         be the matrix of T
*
 in the ordered basis B.  
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Then    cij = < T
*
 j, i >     …..(2) 

We have    cij = < T
*
 j, i > = <        

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  >  

         = <       
̅̅ ̅̅ ̅̅ ̅̅ ̅ >     by definition of T

*
  

          =     ̅̅ ̅  

So  C = [   ̅̅ ̅           and hence C = A
*
, where A

*
 is the conjugate transpose of A. 

Note: It should be remembered that in this corollary the basis B is an orthonormal basis and not 

an ordinary basis. 

Theorem 2:  Let S and T be linear operators on an inner product space V and c  F. If S and T 

possess adjoints, the  operators S + T, cT, ST, T
*
 will possess adjoints. 

Also (i) (S + T)
*
 = S

*
 + T

*  

  
(ii) (cT)

*
 =  ̅ T

*
 

 (iii) (S T)
*
 = T

*
 S

*
 

  (iv)  (T
*
)

* 
 = T 

Proof: (i) As S and T are linear operators on V, so S + T is also a linear operator on V. 

Now for every         V , we have  

  < (S + T)       > = < S  + T      > = < S      > + < T      > 

         = <    S*
 > + <    T*

  > ,  by definition of adjoint 

        = <    S*
 + T

*
  >  

        =  <    ( S*
 + T

*
 )  > 

Thus for the linear operator S + T on V there exists a linear operator S
*
 + T

*
 on V such that 

   < (S + T)       > = <    ( S*
 + T

*
 )  >  for all       V 

Therefore, the linear operator S + T has an adjoint. By the definition and by the uniqueness of 

adjoint, we get 
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   (S + T)
*
 = S

*
 + T

*
 

(ii) Since T is a linear operator on V, therefore cT is also a linear operator on V. For every 

      V, we have  

  < (cT)       > = < cT       > = c < T       > = c <      T*
  > 

    =  <      ̅ T
*
  >  = <        ̅ T

*
 )   > 

  < (cT)       > =  <       T )
*
  > 

Thus for the linear operator cT on V ,  a linear operator   T )
*
  or  ̅ T

*
 on V such that 

  < (cT)       > = <       T )
*
  >         V. 

Hence the linear operator cT possesses an adjoint. By the definition and by the uniqueness of 

adjoint, we get 

    (cT)
*
 =  ̅ T

*
 

(iii) We observe that ST is a linear operator on V 

 Now         V  , we have 

   < (ST)       > = < ST       >  

    = < T     S*
  >    by definition of adjoint 

    =  <      T*
 S

*
  > 

    =  <      ( T*
 S

*
 )   > 

Thus for the linear operator ST on V  a linear operator T
*
 S

*
 on V such that  

  < (ST)       > = <      ( T*
 S

*
 )   >          V     

Therefore, the linear operator ST has an adjoint. By the definition and by the uniqueness of 

adjoint, we get  (S T)
*
 = T

*
 S

*
 

 (iv)  The adjoint of T i.e. T
*
 is a linear operator on V. For every        V, we have 

< T
*
  ,   > = <      ̅̅ ̅̅ ̅̅ ̅̅ ̅ >  
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    = <      ̅̅ ̅̅ ̅̅ ̅̅  > 

     = <  ,T   > 

Thus for the linear operator T
*
 on V, there exists a linear operator T on V such that 

   < T
*
  ,   > = <  ,T   > for all       V   

Therefore, the linear operator T
*
 has an adjoint. By the definition and by the uniqueness of 

adjoint, we have (T
*
)

* 
 = T 

Note: (1) If V is a finite-dimensional inner product space, then the result is true for arbitrary 

linear operators S and T. In a finite-dimensional inner product space, each linear operator 

possesses and adjoint. 

(2)  The operation of adjoint behaves like the operation of conjugation on complex numbers. 

14.4 SELF-ADJOINT OPERATORS 

Self-adjoint transformation: A linear operator T on an inner product space V is said to be self-

adjoint if           T
* 
 = T 

A self-adjoint linear operator on a real inner product space is called symmetric while a  self-

adjoint linear operator on a complex inner product space is called Hermitian. 

e.g. the zero operator  ̂ and the identity operator I on any inner product space V are self-adjoint. 

For every       V, we have  

   <  ̂  ,   > = <  ,   > = 0 = <   ,   > = <   ,  ̂    > 

   So     ̂*
 =  ̂ 

 Similarly, < I  ,   > = <   ,   > = <  , I   > 

   So     I
*
 = I 

14.5 SKEW-SYMMETRIC/ SKEW-HERMITION OPERATORS 

Skew-symmetric / skew-Hermitian operator: If a linear operator T on an inner product space 

V is such that     T
* 
 = – T  
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then T is called skew-symmetric or skew-Hermitian according as the vector space V is real or 

complex. 

Theorem 3: Every linear operator T on a finite dimensional complex inner product space V can 

be uniquely expressed as  

  T = T1 + iT2, where T1 & T2 are self-adjoint linear operators on V. 

Proof:  Let T = 
 

 
 (T + T

*
) + i (

  –   

  
)  

Suppose T1 = 
      

 

 
and T2 = 

  –   

  
 

So, T = T1 + iT2       …..(1) 

Now    
  =  

     

 
   

= 
 

 
 (T

*
 + (T

*
)
*
 ) = 

 

 
 (T

*
 + T ) = T1 

So T1 is self-adjoint 

Again   
  = [ 

 

  
 (T  T

*
)]

*
 = ( 

 

   
 

̅̅ ̅
) (T  T

*
)
*
 = 

 

     
 (T

*
  T) 

     
  =  

 

  
 (T  T

*
) 

So T2 is also self-adjoint. Thus T can be expressed as a sum of two self-adjoint operators. 

Uniqueness: Let T = U1 + iU2 where U1 and U2 are both self-adjoint linear operators.  

So,  T
*
 = (U1 + iU2)

*
 =   

  +   ̅  
  =   

   i   
  = U1 – i U2 

So  T + T
*
 = 2U1 or U1 = 

 

 
 (T  T

*
) = T1  

Similarly, T – T
* 
= 2i U2 or U2 = 

 

  
 (T  T

*
) = T2 

So T = T1 + iT2 = U1 + iU2 i.e. representation is unique. 

Note: If T is linear operator on a complex inner product space V which is Not finite dimensional, 

then the above result will be still true provided, it is given that T possesses adjoint. 

Theorem 4: Every linear operator T on a finite-dimensional inner product space V can be 

uniquely expressed as   T = T1 + T2, where T1 is self-adjoint and T2 is skew. 
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Proof: Let T = 
 

 
 ( T + T

*
) + 

 

 
 (T – T

*
 ) 

where T1 =  
 

 
 ( T + T

*
) and T2 = 

 

 
 (T – T

*
 ) 

then   T = T1 + T2     …..(1) 

Now   
  = [ 

 

 
 (T  T

*
)]

*
 = 

 

 
 ( T + T

*
)
*
 =  

 

 
 (T

*
 + T)  = T1 

So T1 is self-adjoint. 

Similarly   
  = [ 

 

 
 (T  T

*
)]

*
 = 

 

 
 (T – T

*
)
*
 = 

 

 
 (T* – T) 

         
  =   

 

 
 (T – T

*
) = –T2 

So T2 is skew. 

Hence T can be expressed as a sum of two linear operators where T1 in self-adjoint and T2 in 

skew. 

Uniqueness:  Let T = U1 + U2 , where U1 is self-adjoint and U2 in skew. 

Then   T
*
 = (U1 + U2)

*
 =   

  +   
  = U1 – U2 

So     T + T 
*
 = 2U1

 
 or U1 = 

 

 
 (T  T

*
) = T1  

and    T – T
* 
= 2 U2 or U2 = 

 

 
 (T  T

*
) = T2 

Hence    T = T1 + T2 = U1 + U2  

   The expression (1) for T is unique. 

Note: If T is a linear operator on an inner  product space V which is NOT finite-dimensional, 

then the above result will be still true provided T possesses adjoint. 

Theorem 5: A necessary and sufficient condition that a linear transformation T on an inner 

product space V be  ̂  is that < T      > = 0,         V 

Proof: Necessary condition: Let T = 0, then         V , we have  

    < T      > = <  ̂      >  = <      >  = 0 
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So the condition is necessary. 

Sufficient condition: Let T be a linear operator such that   

    < T      > = 0,         V  

Taking    =T , we get 

   < T     T   > = 0          V 

       T   = 0             V 

  
    T =  ̂   

Hence the condition is sufficient. 

Theorem 6: A necessary and sufficient condition that a linear transformation T on a unitary 

space be  ̂ is that    < T     > = 0          V 

Proof: Necessary condition: Let T =  ̂  , then        V 

   < T     > = <  ̂     > = < 0   > = 0 

Hence the condition is necessary. 

Sufficient condition: Let T be a linear operator satisfying  

     < T     > = 0          V    …..(1) 

Replacing  by      , we get 

   < T              > = 0 

  <              > = 0 

 
  <       > + <       > + <       > + <       > = 0 

     <       > + <       > = 0 ,   using (1) 

So          V , we have 

   <       > + <       > = 0     …..(1) 



LINEAR ALGEBRA     MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University Page 259 
 

Since above result is true        V , so by replacing   and   , we get 

    <        > + <         > = 0 

     ̅<       > + i <       > = 0 

   i <       > + i <       > = 0 

      <       > + <       > = 0    ….(2) 

Adding equation (1) and (2), we get 

   2 <       > = 0 

    <       > = 0          V  

Let  =    , then 

     <           > = 0           V 

       = 0             V 

    T =  ̂  

Hence the condition in sufficient. 

Note: (1) Above result may fail for Eulidean space, e.g., let us consider V2(R) with standard 

inner product space. Let T be a linear operator on V2(R) defined as 

   T(a, b) = (b, -a)             (a, b)    V2(R) 

Then obviously T   ̂ . But 

     < T(a, b),  (a, b) > = < (b, -a),  (a, b) >  

           = ba – ab = 0 

  So < T     > = 0          V2(R) , through T   ̂. 

(2)  However if T is self-adjoint then the above theorem is true for Euclidean spaces also. 

Finally, we have the following theorem – 
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Theorem 7: A necessary and sufficient condition that a self-adjoint linear transformation T on 

an inner product space V be  ̂ is that  

    < T     > = 0  , for all      V 

Proof:  Necessary part is same as in previous theorem. 

Sufficient condition: Let   < T     > = 0          V 

So  < T              > = 0           V 

     <              > = 0 

 
  <       > + <       > + <       > + <       > = 0 

     <       > + <       > = 0  

    <       > + <     T*
  > = 0 

   <       > + <     T  > = 0 , as given T = T
*
   …..(1) 

Now two cases may arise – 

Case I: If V is a complex inner product space. Then do as in previous theorem. 

Case II: If V is a real inner product space. 

Then  <     T  > = <       > as  <      > = <       ̅̅ ̅̅ ̅̅ ̅ > = <     > 

So from equation (1), we have 

     2 <       > = 0 or   <       > = 0          V 

Let us put  =     

    <        > = 0      V 

           = 0       V 

          =  ̂ 
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Theorem 8: A necessary and sufficient condition that a linear transformation T on a unitary 

space (of any dimension) be self-adjoint (Hermitian) is that, 

   <       >  be real       V 

Proof: Necessary condition: Let T be self-adjoint operator on a unitary space V i.e. T
*
 = T. 

Then for every    V , we have 

   <       >  = <     T*
  >   = <     T  >   = <       ̅̅ ̅̅ ̅̅ ̅̅  > 

    <       >   is real        V 

Sufficient condition: Let <       >   be real      V. We have to prove that T
*
 = T. For every 

      V , we have  

  < T              > = <              >   

   < T              > = <       > + <       > + <       > + <       >          ....(1) 

Since  < T              > , <       >  and <       >   are real. 

 
  <       > + <       >  must be real 

So   <       > + <       >  =                      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

         = <        ̅̅ ̅̅ ̅̅ ̅̅  > + <        ̅̅ ̅̅ ̅̅ ̅̅  > 

        =  <       > +  <       > 

So        V , we have 

   <       > + <       >  = <       > +  <       >         ….(2) 

Replacing  by  i  in equation (2), we get 

  <         > + <          >  = <          > +  <          > 

      ̅<       > + i <       >  =  i <       > +   ̅ <       > 

   i <       > + i <       >  =  i <       >    i <       > 
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   <       > +  <       >  =   <       >     <       >    …(3) 

on  equation(2) – equation(3), we get 

    <       > = <       > 

    <       > = <       > 

   <       > = < T
*
      >         V 

     T = T
*
  

Note: If V is finite-dimensional, then we can take advantage of the fact that T must possess 

adjoint. So in this case, the converse part of the theorem can be easily proved as:  

Since <       >  is real      V 

So,   <       >   = <       ̅̅ ̅̅ ̅̅ ̅̅  > = <        ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = <        >    

    <          >   = 0      

    <            >   = 0       V  (by previous theorem) 

         =  ̂  or   T = T
*
 

Example 1:  Let V = V2(C) with standard inner product. Let T be the linear operator defined by 

  T(1, 0) = (1, -2) and T(0, 1) = (i, -1) 

If   = (a, b)  V2(C) , then find T
*

 

Solution: Obviously B = {(1,0), (0, 1)} is an orthonormal basis of V. Let us find [T]B i.e. 

   T(1, 0) = (1, -2) = 1(1, 0) – 2(0, 1) 

   T(0, 1) = (i, -1) = i(1, 0) – 1(0, 1) 

     [T]B = *
  

    
 +   [T

*
 ]B = *

   
    

 +  

Now, (a, b) = a(1, 0) + b(0, 1). So coordinate matrix of T
*
 (a, b) in B is  

   = *
   
    

 + *
 
 
+ = *

    
     

+, 
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  T
*
 (a, b) = (a – 2b) (1, 0) + ( ia – b) (0, 1) = (a – 2b, ia – b) 

 Example 2: A linear operator on R
2
 is defined by  

   T(x, y) = (x + 2y, x – y ) 

Find the adjoint T
*
, if the inner product is standard one. 

Solution: Let B = {(1, 0) , (0, 1)} be an orthonormal basis of V, We find [T]B. By given rule. 

   T(1, 0) = (1, 1) and t(0, 1) = (2, -1). 

So  [T]B = *
  
   

+ 

The matrix of T
* 
in the ordered basis B is the transpose of the matrix [T]B. 

So [T
*
]B = *

  
   

+ 

The coordinate matrix of T
*
(x, y) in the basis B  

   = *
  
   

+ *
 
 + =  [

   
    

] 

So T
*
(x, y) = (x + y, 2x – y) 

Example 3: Let T be a linear operator on V2(C) defined by  

   T(1, 0) = (1+ i, 2) ; T(0, 1) = (i, i) 

Using the standard inner product – 

(i) Find the matrix of T
*
 in the standard ordered basis 

(ii) Does T commute with T
*
 ? 

Solution: (i) T(1, 0) = (1 + i, 2) = (1 + i) (1, 0) + 2(0, 1) 

   T(0, 1) = (i, i) = i(1, 0) + i(0, 1) 

  So    [T]B = *
    

  
 +   

Then   [T
*
]B = *

    
    

+ 
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  (ii)    [T]B [T
*
]B = *

    
  

 +  *
    
    

+ = *
     

     
+ 

   [T
*
]B  [T]B = *

    
    

+ *
    

  
 +  = *

     
      

+ 

Since [T]B [T
*
]B     [T

*
]B  [T]B  

       [T T
*
]B     [T

*
 T]B  

So     T T
*
     T

*
 T 

Example 4: Prove that the product of two self-adjoint operators on an inner product space is 

self-adjoint iff the two operators commute. 

Solution: Let T and S be two self-adjoint operators s.t.  T
*
 = T  and S

*
 = S 

IF PART: Let T and S commute i.e. TS = ST 

Now,    (TS)
*
  = S

*
 T

*
 

          = S T 

          = T S  

So TS is also self-adjoint. 

ONLY IF PART: Let ST be self-adjoint 

  (ST)
* 
=  ST 

  T
*
 S

*
 = ST 

  T S = S T 

i.e. S and T commute 

Example 5: Let         V and T is a linear transformation on V. Also if  f( ) = <        ̅̅ ̅̅ ̅̅ ̅̅  >,  

   V , then prove that f is a linear functional. Also find a vector ' such that  f( ) = <     ' >    

   V 

Solution:  (i)  Given that       f( ) = <        ̅̅ ̅̅ ̅̅ ̅̅  >,     V 

So f is a function from V into F. Let a, b  V and 1 , 2  V . Then  
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   f(a 1 + b  2)   = <                    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = <               ,  > 

    =  a <     ,  > + b <     ,  > 

    = a <         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > + <         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > = a f(  ) + b f(  ) 

So f is a linear functional on V. 

(ii) If V is finite dimensional , then there exists a unique vector  ' such that  

    f( ) = <     ' >       V 

We have f( ) = <        ̅̅ ̅̅ ̅̅ ̅̅  > = < T     >  =  <     T*
  >    

     if f( ) = <     ' >    , then  

   <     T*
  >  = <     ' >     

Hence  = T
*
  

Example 6: Let V be a finite-dimensional inner product space and T be a linear operator on V. If 

T is invertible, then prove that T
*
 is invertible and (T

*    
= (    )

*
. 

Solution: Suppose T is invertible. Then  

    T     = I  

       (T    )
*
 = I

*
 

       (    )
*
 T

*
 = I    as I*

 
= I 

        T*
 
is also invertible and

 
(T

*    
= (    )

*
. 

Example 7: Let T be a linear operator on a finite-dimensional inner product space V. Then T is 

self-adjoint iff its matrix in every orthonormal basis is a self-adjoint matrix. 

Solution: Let B be any orthonormal basis for T. Then  

   [ T
*
]B = [ T   

       …..(1) 

IF PART: Let T be self-adjoint i.e. T = T
*
. Then from (1), [T]B = [ T   

  i.e. [T]B is a self-adjoint 

matrix. 
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ONLY IF PART: Let [T]B be a self-adjoint matrix. Then [T]B = [ T   
   

         = [ T
*
]B  ;  using eq

n
 (1) 

       T = T
*
 

Example 8: If T is a self-adjoint linear operator on a finite dimensional inner product Space V, 

then det(T) is real. 

Solution: Let B be any orthonormal basis for V.  Then  

    [T
*
]B = [T   

    

But  T
*
 = T       [T]B = [T   

      …..(1) 

Let   [T]B = A    A = A
*
 

det  A = det (A
*
) =        ̅̅ ̅̅ ̅̅ ̅̅ ̅ = det (A) is real. 

Example 9: If T is self-adjoint, then  S
*
 TS is self-adjoint   S. Conversely if S is invertible and 

S
*
 TS is self-adjoint, then T is self-adjoint. Prove both results. 

Solution: Given that T is self-adjoint, so T
*
 = T. Now (S

*
 TS)

*
 = S

*
 T

*
 (S

*
)
*
 = S

*
 TS  

So   S
*
 TS is self-adjoint. Now, conversely, let S be invertible, then S

*
 in also invertible. If S

*
 TS 

is self-adjoint , then  

     (S
*
 TS)

*
 = S

*
 TS 

     S
*
 T

* 
S = S

*
 TS 

So   (S
*    (S

*
 T

* 
S)     = (S

*    (S
*
 T

 
S)      

   ((S
*    S

*
)  T

* 
(S   ) = ((S

*    S
*
)  T

 
(S   ) 

     I T
*
 I = I T I 

    T
*
 = T   

or T is self-adjoint. 
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Example 10: Let V be a finite-dimensional inner product space, and T be any linear operator on 

V. Suppose W is a subspace of V which is invariant under T. Then prove that the orthogonal 

complement of W is invariant under T
*
. 

Solution:  Given that W is invariant under T. 

Claim:     is invariant under T
*
.Let        be arbitrary. Then we shall prove that T

*
 B is in 

   i.e. T
*
 B is orthogonal to every vector in W. Let    W . Then  

   <     T*
  >  = < T     >    

            = 0  , since    W  T   W and  is orthogonal to every vector in W. 

So T
*
  is orthogonal to every vector   W 

So T
*
  is in   . 

       is invariant under T
*
. 

14.6 POSITIVE OPERATOR 

Positive operator: A linear operator T on an inner product space V is called positive (in 

symbols, T > 0), if –  

(i) T is self adjoint i.e. T
* 
= T, and  

(ii) < T     >    0    0 

If  = 0, then < T     > = 0. Hence if T is positive, then < T     >     0     V and  < T     > 

= 0    = 0. 

14.7 NON-NEGATIVE OPERATOR 

Non-Negative operator: A linear operator T on an inner product space V is called non-negative, 

if –  

(i) It is self-adjoint , and  

(ii) < T     >     0     V 

Note: (1) Every positive operator is also a non-negative operator. 
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(2) If T is a non-negative operator, then < T     > = 0 , is possible even if   0. So a non-

negative operator may not be a positive operator  

(3) If S and T are two linear operators on an inner product space V, then we define 

         S > T if S – T > 0 

(4) Some authors say a positive operator as „positive definite’. 

Theorem 9: Let V be an inner product space and T be a linear operator on V. Let „p‟ be the 

function defined on ordered pairs of  ,   V by  

   p( , ) = < T     >   

Then the function p is an inner product on V iff T is a positive operator. 

Proof: Step I: Let a, b  F and  1 , 2  V . Then  

   p (a 1 + b  2, )   =  <               ,  > = <              ,  > 

    =  a <     ,  > + b <     ,  > 

    = a p(   ,  ) + b p(   ,  ) 

So the function p satisfies linearity property. 

Step II: Now the function p will be an inner product on V if and only if    

      p( , ) =         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and p( , ) > 0,   0 

So we have p( , ) = < T     >   

              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  <       ̅̅ ̅̅ ̅̅ ̅̅  > = <     T  >  

Also   p( , ) = < T      > . 

Hence the function p will be an inner product on iff 

(i) < T     >   = <     T  >  ,   V i.e.  T is self-adjoint. 

(ii) < T      >  > 0  if    0 

Hence the function p will be an inner product on V iff the linear operator T is positive. 
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Note: Now we shall show that if V is finite-dimensional, then every inner product on V is of  the 

type as discussed in next theorem – 

Theorem 10: Let V(F) be a finite-dimensional inner product space with inner product < , > . If p 

is any inner product on V, there is a unique positive linear operator T on V such that  p( , ) = < 

T     >   ,   V. 

Proof:  Let   V be a fixed vector and f : V   F such that  

   f( ) = p( , )      V 

As we have seen, p satisfies linearity property, so f is a linear functional on V. Hence by Riesz 

representation theorem, there exists a unique vector  ' in such that  

   f( ) = <     ' >    in V 

    p( , ) = <     ' >    in V 

Let us define T : V   V such that T   = '. 

So      p( , ) = <     T  >   ,   V   …..(1) 

We also have, p( , ) = <     T  >   

   p( , ) =         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , by conjugacy property of inner product p 

    = <        ̅̅ ̅̅ ̅̅ ̅̅  > = < T      > 

Thus, we have, p( , ) = < T      >  ,   V  …..(2) 

Linearity of T: Let 1 , 2  V and a1 , a2  F. Then for all r  V, we have 

    <                ,   > =  p(            , )    

             =     p(   , )   +    p(   , )   , by linearity of p 

          =  <                  ,   >, by linearity of inner product < , > 

So, we have, T               =                
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Hence T is a linear operator. Thus, we have proved the existence of a linear operator T with p( , 

) = < T      >. Since p is an inner product, so by previous theorem, T is positive. 

Uniqueness: Suppose there are two linear operators T and U such that 

    p( , ) = < T      > = < U      >   ,   V 

Then < T    U      >  = 0  ,   V   …..(3) 

Let us keep  fixed. Then from equation (3), we see that the vector T    U  is orthogonal to 

every vector  in  V.  

Therefore T    U  = 0,       V 

       T    U  ,       V 

Hence T is unique. 

Theorem 11: Let V be a finite-dimensional inner product space and T a linear operator on V. 

Then t is positive if and only if there is an invertible linear operator U on V such that T = U
* 
U. 

Proof: Let T = U
* 
U, where U in an invertible linear operator on V. 

  Since T
*
 = (U

*
U)

*
   = U

*
(U

*
)
*
 = U

*
U = T 

So T is self-adjoint. Also, 

  < T      >  = <  U
*
U      >  = <  U    U**

   > =  <  U    U   >  0 

 Also < T      >  = 0    <  U    U   > = 0    U  = 0  

        = 0, as U in invertible and V is finite-dimensional, so U is non-singular. 

 So if     0, then < T      >   0   

 Hence T is positive. 

 Conversely, suppose T is positive.Then p( , ) = < T      > is an inner product on V. Suppose 

{  1 , …., n } be a basis for V which is orthonormal with respect to the inner product <  ,  > and 

let {  1 , …., n} be a basis orthonormal with respect to the inner product p. So,   
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     p( i , j) = ij = < i , j >  

Now, let U be the unique linear operator on V such that U  i = i ; i = 1, 2, …., n. Obviously U is 

invertible, because it carries a basis onto a basis. We have 

   p( i , j) = < i , j > = < U i , U j > 

Now let ,   V ; such that 

      = ∑     
 
     and     = ∑     

 
     . Then  

     < T      >  =  p( , )  

 < T      >  = p (∑     
 
    , ∑     

 
    ) = ∑ ∑     ̅

 
   

 
            

          = ∑ ∑     ̅
 
   

 
             = <  ∑       

 
    , ∑       

 
     > 

         = < U ∑     
 
    , U ∑     

 
    > =  < U , U   >  = < U

*
 U ,  > 

Thus  ,   V , we have  

    < T      >  = < U
*
 U ,  >  

  T = U
*
 U 

Positive Matrix: Let A = [          be a square matrix of order n over the field of R or C, then A 

is said to be positive if :  

(i) A
*
 = A, and 

(ii) ∑ ∑       ̅
 
   

 
        > 0, where x1 , …., xn

 
  F and not all zero 

Principal Minors of a Matrix: Let A = [          be a an arbitrary field F. The principal minors 

of A are the n scalars defined as – 

der A
(K)

 = det (

       

   
       

) , where K = 1, 2, …, n. 

Suppose A = [          over R or C. Then A is positive if the principal minors of A are all 

positive. (Its converse is also true). 

Example 1: Which of the following matrices are positive – 



LINEAR ALGEBRA     MT(N)-301 
 

Department of Mathematics 

Uttarakhand Open University Page 272 
 

 (i)  *
     

    
+   (ii)  *

   
  

+     (iii) 

[
 
 
 
  

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 ]
 
 
 
 

 

Solution: (i) Here obviously A
*
 = A. So A is self-adjoint. Now principal minors of A are 1 and 

 |
    

    
| i.e.  1 and 1. 

So both the principal minors of A are +ve . Hence A is a +ve matrix. 

(ii)    It is not self-adjoint. Hence it is not positive. 

 (iii)   Here    A
*
 = A. Also all the principal minors viz 1, 

 [
 

 

 
 

 

 

 

 

] and |
|

 
 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

|
|  are positive (verify). Hence A is positive. 

Example 2: Prove that every entry on the main diagonal of a positive matrix is positive. 

Solution: Let A = [          be a positive matrix. So  

   ∑ ∑       ̅
 
   

 
        > 0,     ….(1) 

where x1 , …., xn
 
 are any n scalars (not all zero). Now suppose that out of n scalars x1 , …., xn

 
 , 

we take xi = 1 and each of the remaining (n – 1) scalars is taken as zero. Then from equation (1), 

we conclude that     > 0   i. Hence each entry on the main diagonal of a +ve matrix is positive.  

14.8 UNITARY OPERATOR 

Definition: In a inner product space V, let T be a linear operator. Then the operator T is called 

unitary operator if adjoint *T of T exist and ITTTT  **  

Note 1: In a finite dimensional inner product space T is unitary iff ITT *  

2: A linear operator T on a finite dimensional inner product space V is unitary iff T preserve 

inner product. 

14.9 NORMAL OPERATOR 
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In this section we will learn about the important topic in inner product space. 

Definition: Let in a inner product space V, T be a linear operator. Then the operator T is called 

normal operator or normal if it commutes with its adjoint i.e., TTTT **  . 

Note 1: If vector space is of finite dimensional then *T will definitely exist. 

2: If vector space is not of finite dimensional then definition will make sense only if T possesses 

adjoint.  

Theorem 12: Every self-adjoint operator is normal. 

Proof: Let we consider T be a self-adjoint operator then obviously, TT * . 

Therefore, we can say that TTTT **  , 

Hence T is normal 

Theorem 13: Every unitary operator is normal. 

Proof: Let we consider T be a unitary operator then obviously, ITTTT  **  

Therefore, we can say that TTTT **  , 

Hence T is normal. 

Theorem 14: Let in a inner product space V, T be a normal operator. Then a necessary and 

sufficient condition that   be a characteristic vector of T is that it be a characteristic vector of 
*T . 

Proof: Let us consider T be a normal operator on an inner product space V. If V , then we 

have, 

),(),(),()( **2
 TTTTTTT   

)(),( ***  TTT   

Since T is normal and if V ,  

 *TT                     ……….. (1) 

If c be scalar, then (1) can be written as 

IcTIcTcIT  ****)(  

Now we have to show, cIT   is normal. 

We have, ))(())(( ** IcTcITcITcIT   

        IcccTTcTT  **  

Also ))(()()( ** cITIcTcITcIT   

       IcccTTcTT  **  

As we know T is normal. So,  

)()())(( ** cITcITcITcIT   

Thus, )( cIT   is normal. Now from (1), 

VcITcIT   )()())(( *
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VIcTcIT   )()()( **                   ………. (2) 

By equation (2) we can say that, 

0)(0)( *   IcTiffcIT  

i.e.,  cTiffcT  *)(  

Thus, we can say that  is a eigen vector of T corresponding to the eigen value c if and only if it 

is a characteristic vector of *T  corresponding to the eigen value c . 

Remark 1: The characteristic vector for T belonging to distinct characteristic values is 

orthogonal if T is a normal operator on an inner product space V.   

2: In a normal operator's characteristic spaces are pairwise orthogonal to each other. 

Definition (Normal matrix): A square order complex matrix A is called normal if, 

AAAA **  . 

If matrix is diagonal matrix D, then obviously 

DDDD **   

Remark 1: A unitarily equivalent to a diagonal matrix iff matrix is normal. 

Solved example 

Example 1: If in a inner product space V, T be a normal operator. Then cT is also a normal 

operator for any scalar c.  

Proof: We have given that T be a normal operator i.e., TTTT **   

Since, **)( TccT   

Now, )())(())(( *** TTccTccTcTcT   

Again, ))(())(()()( *** TTcccTTccTcT   

Thus we can say, )()())(( ** cTcTcTcT   

Hence, cT is normal. 
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Example 2: In a inner product space V, if 
21,TT  are normal operator with the property that either 

commutes with the adjoint of other, then prove that 
21 TT   and 21TT  are also normal operator. 

Solution: We have given 
21,TT are normal. Therefore,  

1

*

1

*

11 TTTT   and 2

*

2

*

22 TTTT   

According to question it is given that, 

1

*

2

*

21 TTTT   and 2

*

1

*

12 TTTT   

Now, ))(())((
*

2

*

121

*

2121 TTTTTTTT   

*

22

*

12

*

21

*

11 TTTTTTTT   

*

222

*

11

*

2

*

11 TTTTTTTT   

)()( 21

*

221

*

1 TTTTTT  ))(( 21

*

2

*

1 TTTT   

)()( 21

*

21 TTTT   

Thus, 
21 TT   is normal. 

Now, 
*

1

*

221

*

1

*

221

*

2121 )())(( TTTTTTTTTTTT   

*

12

*

21 )( TTTT  

))((
*

12

*

21 TTTT  

))(( 2

*

11

*

2 TTTT  

2

*

11

*

2 )( TTTT  

21

*

1

*

2 )( TTTT  

)()())(( 21

*

2121

*

1

*

2 TTTTTTTT   

Thus, 21TT  is normal. 
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Example 3: In a finite dimensional complex inner product space let T be the linear operator. 

Show that T is normal if and only if its real and imaginary parts commute. 

Solution: Let 
21 iTTT  . Then 1

*

1 TT   and 2

*

2 TT  . Let we assume that 
1221 TTTT   then we 

have to prove that T is normal. 

We have, 21

*

2

*

1

*

21

* )( iTTTiTiTTT   

2

21221

2

12121

* ))(( TTiTTiTTiTTiTTTT 
2

2

2

1 TT           [ ]1221 TTTT   

Also, 
2

2

2

1

2

21221

2

12121

* ))(( TTTTiTTiTTiTTiTTTT   

TTTT **  . Hence T  is normal. 

Conversely, we assume that T  is normal then we have to prove that TTTT **  . 

2

21221

2

1

2

21221

2

1 TTiTTiTTTTiTTiTT   

0)(2 1221  TTTTi  

01221  TTTT               [ ]02 i   

1221 TTTT   

Check your progress 

Problem 1: In a finite dimensional complex inner product space let T be the linear operator. 

Show that T is normal if and only if its real and imaginary parts commute. 

Solution: Let 
21 iTTT  . Then 1

*

1 TT   and 2

*

2 TT  . Let we assume that 
1221 TTTT   then we 

have to prove that T is normal. 

We have, 21

*

2

*

1

*

21

* )( iTTTiTiTTT   

2

21221

2

12121

* ))(( TTiTTiTTiTTiTTTT 
2

2

2

1 TT           [ ]1221 TTTT   

Also, 
2

2

2

1

2

21221

2

12121

* ))(( TTTTiTTiTTiTTiTTTT   

TTTT **  . Hence T  is normal. 
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Conversely, we assume that T  is normal then we have to prove that TTTT **  . 

2

21221

2

1

2

21221

2

1 TTiTTiTTTTiTTiTT   

0)(2 1221  TTTTi  

01221  TTTT               [ ]02 i  

1221 TTTT   

Problem 2: Let S and T be two positive linear operators on an inner product space V. Then 

prove that S + T is also positive operator. 

Solution: Given S
*
 = S and T

*
 = T 

So  (S + T)
*
 = S

*
 + T

*
 = S + T 

So  S+ T is self adjoint. 

Also, if    V, then 

 < (S+T)  ,  > =  < S   +T  ,  > = < S   ,  > + < T   ,  > 

But S and T are positive. So   < S   ,  >  0 and < T   ,  >  0 . 

     < (S+T)  ,  >  0. 

Hence S + T is positive. 

Problem 3: Let V be a finite-dimensional inner product space and T be a self- adjoint linear 

operator on V. Prove that the range of T is the orthogonal complement of the null space of T i.e.   

R(T) = [N(T)   . 

Solution: Let   R(T). Then  a vector   V such that   = T . Let r be an arbitrary vector of 

[N(T)    . Then Tr = 0  

We have  

  <     r > = < T     r >  = <     T*
r > = <     Tr > as T

*
 = T 

     =   <     0 > = 0 
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Thus <     r > = 0         N(T) 

So,      [N(T)     R(T)  [N(T)       …..(1)  

Since V = N(T)  [N(T)    

   dim V = dim N(T) + dim [N(T)       …..(2) 

By Rank- nullity theorem, we have 

   dim V = dim R(T) + dim N(T)    …..(3) 

So we conclude that dim R(T) = dim [N(T)      …..(4) 

From equation (1) and (4) , we conclude that  

    R(T) = [N(T)    

14.10 SUMMARY 

In this unit we have learned about the most essential tool name as operators used in inner product 

space like adjoint operator, self-adjoint operator, skew-symmetric operator, positive operator, 

unitary operator and normal operator. Mostly, the uses of these operators to solve out the matrix 

problems. Other important concepts introduced in this unit were: 

 Every self-adjoint operator is normal. 

 Every unitary operator is normal 

 The operation of adjoint behaves like the operation of conjugation on complex numbers 

 Every positive operator is also a non-negative operator 

14.11 GLOSSARY 

 Unitary operator 

 Normal operator 

 Adjoint operator 

 Self-adjoint operator 

 Skew-symmetric or Hermitian operator.  
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14.14    TERMINAL QUESTION 

Long answer type question 

1: Let S and T be linear operators on an inner product space V and c  F. If S and T possess 

adjoints, then prove that the operators S + T, cT, ST, T
*
 will possess adjoints. 

2: Prove that Every linear operator T on a finite dimensional complex inner product space V 

can be uniquely expressed as  

 T = T1 + iT2, where T1 & T2 are self-adjoint linear operators on V. 

3: Prove that every linear operator T on a finite-dimensional inner product space V can be 

uniquely expressed as   T = T1 + T2, where T1 is self-adjoint and T2 is skew. 

4: Prove that the necessary and sufficient condition that a linear transformation T on a 

unitary space (of any dimension) be self-adjoint (Hermitian) is that, 

   <       >  be real       V 

Short answer type question 

1: Let V be a finite-dimensional inner product space and let B = { 1 , …., n } be an 

ordered orthonormal basis for V . Let T be a linear operator on V and let A = [aij        be 

the matrix of T with respect to the ordered basis B. Then prove that aij = < T j, i >. 

2: In any orthonormal basis for V and T be the linear operator on V, then prove that the 

matrix of T
*
 is the conjugate transpose of the matrix of T. 

3: Prove that the necessary and sufficient condition that a linear transformation T on an 

inner product space V be  ̂  is that < T      > = 0,         V 

4: Prove that the necessary and sufficient condition that a linear transformation T on a 

unitary space be  ̂ is that < T     > = 0          V 
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5: A linear operator on R
2
 is defined by  

   T(x1, y1) = (x1+ 2y1, x1 – y1) 

Find the adjoint T
*
, if the inner product is standard one. 

6: Prove that the product of two self-adjoint operators on an inner product space is self-

adjoint iff the two operators commute. 

7: If T is self-adjoint, then  S
*
 TS is self-adjoint   S. Conversely if S is invertible and S

*
 TS 

is self-adjoint, then T is self-adjoint. Prove both results. 

8: Prove that characteristic of normal operator are pair-wise orthogonal. 

9: Prove that each self-adjoint and unitary operaor are normal operator 

10:  If in a inner product space V, T be a normal operator. Then prove that cT is also a normal 

operator for any scalar c.  

11: If in a finite dimensional vector space V, T be a linear operator. If VTT   *
 

Fill in the blanks 

1:  (S + T)
*
 = ………….. 

2: A linear operator T on an inner product space V is said to be self-adjoint if ……….. 

3: A linear T is called skew-symmetric or skew-Hermitian according as the vector space V is 

…………………… 

4: A necessary and sufficient condition that a linear transformation T on a unitary space be 

 ̂ is that ……………….. 

14.15    ANSWERS 

Answer of short question 

5: [T
*
]B = *

  
   

+ 

Answer of fill in the blanks 

1: S
*
 + T

* 
  2: T

* 
= T   3: Real or Complex 

4: < T     > = 0          V 
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