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COURSE INFORMATION

The present self-learning material “Linear Programming and Game Theory” has been
designed for B.Sc. (Sixth Semester) learners of Uttarakhand Open University, Haldwani.
This course is divided into 14 units of study. This Self Learning Material is a mixture of
Three Blocks.

First block is Linear Programming Problem. In the first unit of this block, we will study
Introduction and formulation of Linear Programming Problems, Components of an LPP:
decision variables, objective function, constraints, non-negativity, Types of LPP:
maximization, minimization, Real-life applications in industry, economics, management,
Feasible, infeasible, unbounded and optimal solutions

In unit second, solving two-variable LPP using graphical approach, plotting constraints and
identifying feasible region, Corner point principle and extreme points. Third unit focuses
on the Definition of convex sets and convex combinations, Polyhedral sets: intersections of
half-spaces, Hyperplanes, half-spaces and separation theorem, Extreme points and their
significance, Basic solutions and Basic Feasible Solutions (BFS), Correspondence between
BFS and extreme points.

Second block is Simplex Method: Fourth unit of this block we will study the Introduction
to Simplex algorithm. Tableau format and pivot operations, Improving a BFS and optimality
condition. Fifth unitis Need for artificial variables in > and = constraints, Big-M method
(penalty method), Two-phase method (Phase I: feasibility, Phase I1: optimality), Comparison
of Big-M vs Two-Phase, Solving LPP containing equality and > type constraints. Sixth unit
will examine causes of degeneracy, Effects of degeneracy on simplex iterations, Cycling
phenomenon. Seventh unit is Motivation for revised simplex in large LPPs, Basis matrix,
inverse of basis.

Third block is Duality. The Eigth unit of this block is Formulation of the dual problem
Primal—dual relationships, Weak and strong duality theorems. Ninth unit of this block will
Concept and need for Dual Simplex Method, Conditions for feasibility and optimality in
dual-simplex. Fouth Block is Sensitivity Analysis, Linear and Integer Programming. The
tenth unit of this block is post-optimality analysis of LPP, Changes in objective function
coefficients (cost vector), Changes in right-hand side vector (resource availability).
Eleventh unit is concept of parametric programming, Variations in cost coefficients and
RHS parameters, Graphical and simplex-based parametric analysis. Fifth block is
Application. Twelve unit of this block is Definition and mathematical formulation, Balanced
and unbalanced assignment models, Hungarian method for optimal assignment,
Maximization and minimization cases. In thirteen Unit we define the structure and
formulation of transportation models. In Fourteen and last unit of this book is Game theory.




Linear Programming and Game Theory Course Code-MT(N)- 223

Course Name: Linear Programming and Game theory Credit-04
Course Code: MT(N)- 223

SYLLABUS

Linear Programming and Game theory: Linear Programming Problem, Convexity and
Basic Feasible Solutions Formulation, Canonical and standard forms,

Graphical method; Convex and polyhedral sets, Hyperplanes, Extreme points; Basic
solutions, Basic Feasible Solutions, Reduction of feasible solution to basic feasible solution,
Correspondence between basic feasible solutions and extreme points.

Simplex Method: Optimality criterion, Improving a basic feasible solution,
Unboundedness, Unique and alternate optimal solutions; Simplex algorithm and its tableau
format; Artificial variables, Two-phase method, Big-M method.

Duality: Formulation of the dual problem, Duality theorems, Complimentary slackness
theorem, Economic interpretation of the dual, Dual-simplex method.

Sensitivity Analysis: Changes in the cost vector, right-hand side vector and the constraint
matrix of the linear programming problem.

Applications: Transportation Problem: Definition and formulation, Methods of finding
initial basic feasible solutions: Northwest-corner rule, Least- cost method, Vogel
approximation method; Algorithm for obtaining optimal solution. Assignment Problem:

Mathematical formulation and Hungarian method.
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BLOCK I: LINEAR PROGRAMMING
PROBLEM, CONVEXITY AND BASIC
FEASIBLE SOLUTIONS
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UNIT I- LINEAR PROGRAMMING
PROBLEM AND GAME THEORY

CONTENTS:

1.1  Introduction

1.2  Objectives

1.3  Linear Programming Problem
1.4  Convexity and Basic Feasible Solutions Formulation
1.5 Canonical forms

1.6  Standard Forms

1.7  Summary

1.8 Glossary

1.9 References

1.10 Suggested Reading

1.11 Terminal Questions

1.12 Answers

1.1 INTRODUCTION

In today's era of limited resources and increasing competition,
decision making has become an important part of every business,
industry and economic system. Two powerful mathematical tools that
aid scientific and rational decision-making are linear programming
(LP) and game theory. Both aim to provide optimal solutions, but they
differ in the types of decision problems they solve. Linear
Programming focuses on optimization of resources, whereas Game
Theory deals with competitive situations involving two or more
decision-makers.

Linear programming (LP) is widely used for optimizing specific types
of problems. In 1947, George Bernard Dantzig developed the simplex
algorithm, a highly effective method for solving linear programming

Department of Mathematics
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LINEAR
PROGRAMMING

The diagram shows that although Linear Programming and Game
Theory are different fields, some game-theoretic problems can be
solved using linear programming techniques.

problems (LPP). Since then, LP has been applied in diverse industries
such as banking, education, forestry, petroleum, manufacturing, and
trucking. The primary challenge in these fields often involves
distributing limited resources among various activities in the most
optimal manner. Real-world scenarios where LP is applicable vary
widely, including everything from assigning production facilities to
products to allocating national resources for domestic needs, from

portfolio selection to determining shipping patterns, and beyond. This
unit will cover the mathematical formulation of LPP, the graphical
method for solving two-variable LPP, as well as the simplex
algorithm, duality, dual simplex, and revised simplex methods for
solving LPP with any number of variables.

George Bernard Dantzig (8 November 1914 - 13 May 2005)
https://en.wikipedia.org/wiki/George_Dantzig
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1.2 OBJECTIVES

After studying this unit learner will be able

1. To Understand the concept of Linear Programming and how it is
used to solve real-life problems.

2. To Define and formulate Objective Function and Constraints, and
convert a problem into an LPP model.

. To understand basic principles like Feasible Region, Feasible
Solution, Optimal Solution. We will learn to solve two-variable
Linear Programming Problem using Graphical Method.

. To solve real-world situations like profit maximization and cost
minimization problems through LPP.

. To analyse conflict and cooperation among competing players.

. To develop strategies that yield the best possible results.

. To study decision-making where the outcome is influenced by
others’ actions.

1.3 LINEAR PROGRAMMING PROBLEM

Definition Of Linear Programming Problem: Linear Programming
(LP) is a mathematical technique used for the optimal utilization of
limited resources such as manpower, money, materials, machines, and
time. It helps to determine the best possible outcome—maximum
profit ~ or  minimum  cost—under  given  constraints.
This technique is widely used in business, economics, engineering,
agriculture, transportation, and military operations.

Meaning Of Game Theory: Game Theory is a branch of applied
mathematics that deals with strategic decision-making in competitive
situations. It studies the behavior and actions of two or more rational
players whose decisions affect each other’s outcomes. The central
idea is to determine the best possible strategy to win or gain maximum
advantage in a competitive scenario.

GENERAL LINEAR PROGRAMMING PROBLEM

Mathematically general linear programming can be represented as
follows:
Maximize (Or minimize) Z = ¢y x; + c;x5 + -+ + ¢, X, Subject to

ai1Xq + aA12Xo + ai3X3 + -+ aljx]- + -+ alnxn(s’ =, Z)bl

A21X1 + AgpXp + Ap3X3 + 0+ GpX; + A Xn (S, =, 2) by

Department of Mathematics
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and X1, X2, X3...., xn= 0

The above programming problem can be rewritten in compact form
as,
Maximize (Or Minimize) Z = }7_, ¢;x;

Subject to,

n
Z a;jxj(S,=,2)b; i =1,2,...,m (2)
j=1

(3)

The objective is to determine the values of x; that optimize (maximize
or minimize) the objective function (1). These values must satisfy to
the constraints (2) as well as non-negativity restrictions (3). In this
context, the coefficients ¢; are termed as cost coefficients, while a;;

represents technological coefficients; a;; denotes the quantity of the

i™" resource utilized per unit of variable xj, and bi signifies the overall
availability of the i™" resource.

Example 1: An oil company possesses two refineries - refinery A and
refinery B. Refinery A can produce 20 barrels of petrol and 25 barrels
of diesel daily, while refinery B can produce 40
barrels of petrol and 20 barrels of diesel per day. The company has a
minimum requirement of 1000 barrels of petrol and 800 barrels of
diesel. Operating refinery A costs Rs. 300 per day and refinery B costs
Rs. 500 per day. How many days should each refinery be operated to
minimize costs? Formulate this scenario as a linear programming
model.

Solution: To formulate this problem as a linear programming model,
let's define our decision variables:

Let x be the number of days refinery A is operated.
Let y be the number of days refinery B is operated.
Our objective is to minimize costs, so we want to minimize the total
operating cost: Minimize: 300 x + 500 y Subject to the constraints:

Department of Mathematics
Uttarakhand Open University Page 5
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1. Refinery A produces 20 barrels of petrol per day, and refinery B
produces 40 barrels. The total petrol production should be at least
1000 barrels: 20x + 40y = 1000
Refinery A produces 25 barrels of diesel per day, and refinery B
produces 20 barrels. The total diesel production should be at least
800 barrels: 25x + 20y = 800

3. Non-negativity constraints: x = 0,y = 0

This linear programming model represents the problem of minimizing
costs while meeting the production requirements for petrol and diesel.

OR

Minimize Z = 300x + 500y
Subject to,

20x + 40y = 1000

25x + 20y = 800

x,y=0

Example 2: In a particular factory, three machines, namely M;, M,,
and M, are utilized in the manufacturing process of two products, P,
and P,. Machine M; is occupied for 5 minutes for
producing one unit of P;, while M, is used for 3 minutes and M5 for
4 minutes. For one unit of P,, the time requirements are 1 minute for
M;, 4 minutes for M,, and 3 minutes for M5. The profit earned per
unit is Rs. 30 for P, and Rs. 20 for P,, regardless of whether the
machines operate at full capacity. How can we determine the
production plan that maximizes profit? Frame this problem as a linear
programming challenge.

Solution: To formulate this problem as a linear programming
problem, let's define our decision variables:

Let x, be the number of units of product P, produced. Let x, be the
number of units of product P, produced.

Our objective is to maximize profit, so we want to maximize the total
profit:

Maximize: 30x; + 20x,

Subject to the constraints:

1. Time constraint for machine M;: 15x; + x, < T;

Where T, is the total available time on machine M;.
2. Time constraint for machine M,:3x; + 4x, < T,

Department of Mathematics
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Where T, is the total available time on machine M,.
3. Time constraint for machine M5:4x; +3x, < Tj

Where T; is the total available time on machine Ms.
4. Non-negativity constraints: x; = 0,x, =0

Note: Here, we can take total available time for all machines is 60 i.e.,
T1 = Tz = T3 = 60

This linear programming model represents the problem of
determining the production plan that yields the highest profit while
considering the time constraints on each machine.

OR
Maximize Z = 30x; + 20x,
Subject to,

5X1 +X2 < 60

3x; +4x, <60
4x, + 3x, < 60

xX,%X, =0

1.4 CONVEXITY AND BASIC FEASIBLE
SOLUTION FORMULATION

So far we have derived geometrical properties from simple graphical
examples of two dimensions. Now, shall derive these properties,
mathematically, for the general linear programming problem. In this
chapter, h; shall draw the conclusion that all the properties that hold
true for simple problem (of two or three variables) also hold true for
the general linear programming problem (of n variables), if we think
of it as being represented graphically in an n-dimensional space.

First, we shall introduce a few important definitions and give proper
names to the concepts that we have been using in our discussion. The
main topic of this chapter is convex set theory. Recently, however,
the theory has found many important applications in linear
programming, games theory, economic and statistical decision theory.

An optimal as well as feasible solution to an LP problem is obtained
by choosing among several values of decision variables x,, x,, ... x,,
the one set of values that satisfy the given set of constraints

Department of Mathematics
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simultaneously and also provide the optimal (most suitable) value of
the given objective function.

Solution having values of decision variables x;(j = 1,2, ...,n) which
satisfy the constraints of a general LP model is called the solution to
that LP model.

Feasible Solution: Solution values of decision variables x;(j =
1,2, ..., n) which satisfy the constraints and non-negativity conditions
of a general LP model are said to constitute the feasible solution to
that LP model.

Basic Solution: For a set of m equations in n variables (n > m), a
solution obtained by setting (n —m) variables equal to zero and
solving for remaining m equations in m variables is called a basic
solution.

The (n — m) variables whose value did not appear in this solution are
called non-basic variables and the remaining m variables are called
basic variabels.

While obtaining the optimal solution to the LP problem by the
graphical method, the statement of the following theorems of linear
programming is used

(1) The collection of all feasible solutions to an LP problem
constitutes a convex set whose extreme points correspond to the
basic feasible solution.

(i) There are finite number of basic feasible solutions within the
feasible solution space.

(iii) If the convex of the feasible solutions of the system Ax =
b,x > 0, is a convex polyhedron, then at leas one of the extreme
points gives an optimal solution.

1.5 CANONICAL FORMS

The general linear programming problem discussed above can always
be put in the following form, called the canonical form:

Department of Mathematics
Uttarakhand Open University




Linear Programming and Game Theory Course code - MT(N)-223

MaximizeZ = CjX;j

n
j=1

n

subject to z a;jxj < b,
—

Xj > 0,

The characteristics of this form are

(a) all decision variables are non-negative,

(b) all constraints are of the ( <) type, and

(c) objective function is of maximization type.

Any linear programming problem can be put in the canonical form by
the

1. The minimization of a function, f(x), is equivalent to the
maximization use of some elementary transformations. of the
negative expression of this function, - f(x). For example, the
linear objective function

minimizeZ = ¢yxq + x5 + -+ + Xy
is equivalent to
maximizeG = —7Z = —¢1X1 — C3X3 — *** — CpXp,

with Z = —G. Therefore, for all linear programming problems the
objective function can be expressed in the maximization form.\

2. An inequality in one direction ( < or =) can be changed to an
inequality in the opposite direction ( = or <) by multiplying both
sides of the inequality by -1. For example, the linear constraint

ax, +ax, = b

is equivalent to

is equivalent to

—P1X1 — P2X2

Department of Mathematics
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3. Anequation may be replaced by two weak inequalities in opposite
directions. For example, a,x; + a,x, = b is equivalent to the two
simultaneous constraints

a;x; +ax, <b and ayx;+a,x,=>b
or a1x;+ax, <b and —a;x;—ayx, < —b.

So far, we have assumed the decision variables x;, x5, ..., x,, to be
all non-negative. It is possible, in actual practice, that a variable
may be unconstrained in sign, i.e., it may be positive or negative
(it may vary from —- to +). If a variable is unconstrained, it is

expressed as the difference between two nonnegative variables.
For example, if x is an unconstrained variable, then it can be
expressed as

x=x"—x", where x’ > 0and x" > 0.

1.6 STANDARD FORMS

The characteristics of the standard form are

1. All the constraints are expressed in the form of equations, except
the non-negativity constraints which remain inequalities ( = 0 ).

2. The right-hand side of each constraint equation is non-negative.

3. All the decision variables are non-negative.

4. The objective function is of the maximization or minimization

type.

The inequality constraints are changed to equality constraints by
adding or subtracting a non-negative variable from the left-hand sides
of such constraints. These new variables are called slack variables or
simply slacks. They are added if the constraints are ( < ) and
subtracted if the constraints are ( > ). Since in the case of ( =)
constraints the subtracted variable represents the surplus of left-hand
side over right-hand side, it is commonly known as surplus variable
and is, in fact, a negative slack. In our discussion, however, we shall
always use the name "slack" variable and its sign will depend on the
inequality sign in the constraint. Both decision variables and slack
variables are called admissible variables and are treated in the same
manner while finding a solution to a problem.

For example, the constraint

a X1+ azx, <0, V<V

Department of Mathematics
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is changed in the standard formto a,x; + a,x, +s; = b, where s; >
0. Also, constraint

P1X1 +P2x2 =2q,9=0

is changed to p;x;+p.x,—s,=¢q, Where s,>0.
The quantities s; and s, are variables and their values depend upon
the values. assumed by other x 's in a particular equation.

Before trying for the solution of the linear programming problem, it
must be expressed in the standard form. The information given by the
standard form is then expressed in the "table form" or "matrix form".

Let us consider the general linear programming problem

n

maximizeZ = Z CjXj
j=1
n
subject to a;jxj < b, (b; 20), i=123,..,m,

=1
x; =0, j=123,..,n

This is expressed in the standard form as

n
maximizeZ = Z CjX;
j=1

j=1
n
subject to

Such an L.P. problem formed after the introduction of slack or surplus
variables is called reformulated L.P. problem.

Now, solving the L.P. problem means determining the set of
nonnegative values of variables x; and s; which will maximize Z
while satisfying the constraint equations. The concept is simple but
we have a set of m equations with (m + n) unknowns and an infinite
number of solutions is possible. Clearly, a hit and trial method for
finding the optimal solution is not feasible. There is a definite need
for an efficient and systematic procedure which will yield the desired
solution in a finite number of trials. An iterative procedure called
simplex technique helps us to reach the optimal solution (if it exists)
in a finite number of iterations.

Department of Mathematics
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Examples
Express the following linear programming problem in the standard
form:

Maximize Z =3x; + 2x, + 5x3,
subject to 2x; — 3x, < 3,
X, + 2x, + 3x3 =5,
3x; + 2x3 < 2,
x1 =20,x, = 0.

Solution. Here x; and x, are restricted to be non-negative, while x5 is
unrestricted

Introducing  slack  variables, the standard form is
where x; > 0,x, > 0,x3 > 0,x3 >0,s; = 0,5, = 0and s; > 0.

maximize Z =3x; + 2x, + 5x3 — 5x" 3,
subject to 2x; — 3x, + 5, = 3,
X1+ 2%, + 3x5 —3x5 — s, =5,
3x; + 2x5 — 2x5 + 55 = 2,

CHECK YOUE PROGRESS

Linear Programming is a technique used for finding the
maximum or minimum value of a linear function subject to
certain constraints.

. The objective function in an LPP is always non-linear.
In LPP, all constraints must be linear inequalities or
equations.

. The feasible region of an LPP is always a straight line.

. An infeasible solution satisfies at least one constraint.

MULTIPLE CHOICE QUESTIONS

1. Linear Programming is used to:
A) Solve non-linear equations
B) Find the optimal value of a linear function
C) Minimize non-linear constraints
D) Solve differential equations

Department of Mathematics
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2. InaLinear Programming Problem, the constraints are always:
A) Non-linear
B) Quadratic
C) Linear equations or inequalities
D) Cubic

. The optimal solution of an LPP always lies at:
A) Midpoint of feasible region
B) Center of feasible region
C) Corner point (vertex) of feasible region
D) Outside the feasible region

. The function to be maximized or minimized in LPP is called:
A) Constraint function
B) Objective function
C) Decision variable
D) Feasible function

If the feasible region is unbounded and the objective function
increases indefinitely, then:

A) The problem has no solution

B) The problem is infeasible

C) The problem has an unbounded solution

D) The problem is degenerate

1.7 SUMMARY

Linear Programming & Operations Research provides a
comprehensive overview of two interconnected disciplines essential
for optimizing decision-making processes. Linear programming
offers a mathematical approach for resource allocation through the
formulation and solution of linear optimization problems. Operations
research, on the other hand, extends beyond linear programming to
encompass a broader range of mathematical techniques aimed at
addressing complex operational challenges across various industries.
By exploring these fields, individuals gain valuable insights into
modelling real-world problems and devising optimal solutions to
enhance organizational efficiency and decision-making effectiveness
in diverse domains such as manufacturing, logistics, finance, and
healthcare. In this unit we have learned about the basic definitions of
LPP, Feasible region, optimal solution, convex set, basic feasible
solution, optimal feasible solution and more useful definitions used to
solve the linear programming problem.
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1.8 GLOSSARY

Linear Programming Problem
Feasible Region

Optimal Solution

Convex Set

Basic Feasible Solution
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1.11 TERMINAL QUESTIONS
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1. Write down the mathematical form of a Linear Programming
Problem.
2. Explain the difference between feasible and infeasible solutions.

1.12 ANSWERS

CYQ1. True CYQ2. False CYQ3. True CYQA4. False
CYQ5. False

MCQL. B MCQ2 C MCQ3. C MCQ4. B
MCQ5. C
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UNIT-2: GRAPHICAL METHOD

CONTENTS:
2.1  Introduction
2.2 Objectives
2.3 General linear programming problem
2.4  LP solution
2.5  Graphical method
2.6 Outcomes and limitation of graphical method
2.7 Summary
2.8  Glossary
2.9  References
Suggested Readings
Terminal Questions

Answers

2.1 INTRODUCTION

The graphical method is a fundamental technique in operational research used to solve linear
programming Problems (LPPs) involving two decision variables. It provides a visual approach to
identify the optimal solution by representing the feasible region, formed by a set of linear
constraints, on a two-dimensional graph. Each constraint is expressed as a straight line, and the
region satisfying all constraints simultaneously is called the feasible solution space. The
objective function, usually aimed at maximization or minimization, is then represented as a
family of parallel lines to determine the point that yields the best value within this region. The
graphical method is particularly useful for developing an intuitive understanding of linear

DEPARTMENT OF MATHEMATICS
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programming concepts, feasibility, boundedness, and optimality, and serves as a foundational
step toward more advanced methods like the simplex Method.

George Bernard Dantzig, born on November 8, 1914, and
passing away on May 13, 2005 was an American
mathematical scientist renowned for his contributions to a
range of fields including industrial engineering, operations
research, computer science, economics, and statistics.

His most notable achievement is the development of the
simplex algorithm, a groundbreaking method for solving
linear programming problems. Dantzig's work in linear
programming has had a profound impact across numerous
industries and disciplines.

In addition to his work in optimization, Dantzig made
significant contributions to statistics. Interestingly, he
famously solved two open problems in statistical theory,
mistaking them for homework after arriving late to a lecture
by Jerzy Neyman. At the time of his passing, Dantzig held the
prestigious  positions  of  Professor ~ Emeritus  of :
Transportation Sciences and Professor of Operations George Bernard Dantzig

Research and Computer Science at Stanford University. (8 November 1914 — 13 May 2005)
https://en.wikipedia.org/wiki/George_Dantzig

2.2 OBJECTIVE

The main objectives of the Graphical Method unit in operational research are as follows:

To understand the basic concepts and formulation of a linear programming problem
(LPP) with two variables.

To learn how to represent constraints and objective functions graphically on a coordinate
plane.

To identify and construct the feasible region that satisfies all constraints simultaneously.
To determine the corner points (vertices) of the feasible region and evaluate the objective
function at these points.

To find the optimal solution (maximum or minimum value) of the objective function
using the graphical approach.

To analyze the conditions of feasibility, infeasibility, unboundedness and multiple
optimal solutions in LPPs.

To develop a clear visual understanding of optimization problems and prepare the
foundation for advanced analytical methods like the simplex method.
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2.3 GENERAL LINEAR PROGRAMMING PROBLEM

Mathematically general linear programming can be represented as follows:
Maximize (Or Minimize) Z= ¢;X, +C,X, +...+C X,

Subject to,

Ay X +a,X, X+ 3 X L+ X (£,=,2)b,

Ay X + 8y X, +8y5Xg F o Ay X+ + 3, X, (S,=5,2)b,
Xy + A Xy T AXg F o+ X et X (S,=,2)b;

Qg Xy F Ao Xy + QpaXy ot A X F o+ A X, (S,5,2

And X, X5, Xg,..., X, =0

The above programming problem can be rewritten in compact form as,
n

Maximize (Or Minimize) Z= ) c;x,

j=1
Subject to,

Za (£=2)b;i=12,..,m

” J —’ 1=

X; 2 0;j=12,..,n

The objective is to determine the values of x; that optimize (maximize or minimize) the objective
function (1). These values must satisfy to the constraints (2) as well as non-negativity restrictions
(3). In this context, the coefficients c; are termed as cost coefficients, while ajj represents
technological coefficients; ajj denotes the quantity of the i™ resource utilized per unit of variable
xj, and bi signifies the overall availability of the i resource.

Example 1: An oil company possesses two refineries - refinery A and refinery B. Refinery A
can produce 20 barrels of petrol and 25 barrels of diesel daily, while refinery B can produce 40
barrels of petrol and 20 barrels of diesel per day. The company has a minimum requirement of
1000 barrels of petrol and 800 barrels of diesel. Operating refinery A costs Rs. 300 per day and
refinery B costs Rs. 500 per day. How many days should each refinery be operated to minimize
costs? Formulate this scenario as a linear programming model.

Solution: To formulate this problem as a linear programming model, let's define our decision
variables:

Let x be the number of days refinery A is operated.
I ————
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Let y be the number of days refinery B is operated.

Our objective is to minimize costs, so we want to minimize the total operating cost:
Minimize: 300x+500y

Subject to the constraints:

1. Refinery A produces 20 barrels of petrol per day, and refinery B produces 40 barrels. The
total petrol production should be at least 1000 barrels: 20x+40y>1000

Refinery A produces 25 barrels of diesel per day, and refinery B produces 20 barrels. The
total diesel production should be at least 800 barrels: 25x+20y>800

3. Non-negativity constraints: x>0, y>0

This linear programming model represents the problem of minimizing costs while meeting the
production requirements for petrol and diesel.

OR

Minimize Z =300x+500y

Subject to,

20X + 40y >1000
25% + 20y > 800

X,y>0

Example 2: In a particular factory, three machines, namely M1, Mz, and Ms, are utilized in the
manufacturing process of two products, P1 and P,. Machine My is occupied for 5 minutes for
producing one unit of Py, while M2 is used for 3 minutes and M3 for 4 minutes. For one unit of
P2, the time requirements are 1 minute for M1, 4 minutes for M2, and 3 minutes for Ms. The
profit earned per unit is Rs. 30 for P1 and Rs. 20 for P2, regardless of whether the machines
operate at full capacity. How can we determine the production plan that maximizes profit? Frame
this problem as a linear programming challenge.

Solution: To formulate this problem as a linear programming problem, let's define our decision
variables:
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Let x1 be the number of units of product P, produced. Let x> be the number of units of product P>
produced.

Our objective is to maximize profit, so we want to maximize the total profit:
Maximize: 30x1+20x.
Subject to the constraints:

1. Time constraint for machine Ma: 15x1+x2<T1
Where T1 is the total available time on machine M.
Time constraint for machine Ma: 3x1+4x2<T»
Where T is the total available time on machine M.
Time constraint for machine Ms: 4x1+3x2<T3
Where T3 is the total available time on machine Ms.
4. Non-negativity constraints: x:>0, x>0
Note: Here, we can take total available time for all machinesis60 i.e., T, =T, =T, =60

This linear programming model represents the problem of determining the production plan that
yields the highest profit while considering the time constraints on each machine.
OR

Maximize Z =30x, + 20X,
Subject to,
5X +X, <60
3x, +4x, <60
4x, + 3%, <60

X, X, =0

24 LP SOLUTION

First, we will learn some terminologies for solution.
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Closed half plane: A linear inequality in two variables is known as a half plane. The
corresponding equality or the line is known as the boundary of the half plane. The half plane
along with its boundary is called a closed half plane.

In the context of linear inequalities in two variables, a half plane represents the region of the
coordinate plane that satisfies the inequality. The boundary of this region is defined by the
corresponding equality or line. When considering both the boundary and the region itself, it's
termed as a closed half plane. This closed half plane includes the boundary line and all the points
on one side of it.

Convex set: A set is convex if, for any two points within the set, the line segment connecting
those points remains entirely within the set. This property holds true for all pairs of points in the
set, making it a fundamental characteristic of convexity. Mathematically, A set S is said to be
convex set if forall x,yeS, Ax+(1-1)yeSVvAie[0,]].

For example, the set S ={(x,y):3x+2y <12} is convex because for two points (x,y,) and
(X,,Y,) €S, it is easy to see that A(x,VY,)+@—-2A)(X,,Y,)eSVAe[0,1]. While the set,
(S={(x,y):x* +y?>16}is not convex. Note that two points (4,0) and (0,4) S but
A(4,0)+(i—21)(0,4) ¢ S for 1=1/2.

Convex polygon: A convex polygon is indeed a convex set formed by the intersection of a finite
number of closed half planes. Each side of the polygon corresponds to a boundary line of a half
plane, and the polygon itself includes all the points within its boundaries. This property ensures
that the polygon is convex, meaning that any line segment connecting two points within the
polygon lies entirely within it.

Extreme points: The extreme points of a convex polygon are precisely the points where the
lines that bound the feasible region intersect. These points are crucial because any point within
the polygon can be expressed as a convex combination of the extreme points. Thus, they play a
fundamental role in characterizing the polygon's shape and properties.

Feasible solution (FS): A feasible solution in optimization refers to any solution that meets all
the constraints of the problem while maintaining non-negative values for the decision variables.
It's essentially a valid solution that adheres to the problem's requirements.

OR

A feasible solution to the problem is any non-negative solution that complies with every
restriction.

Basic solution (BS): In linear programming, particularly when dealing with a set of m
simultaneous equations in n variables (where n > m), a basic solution is obtained by setting (n -
I ————
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m) variables equal to zero and then solving the resulting system of equations for the remaining m
variables. These m variables are referred to as basic variables, while the (n - m) variables set to
zero are called non-basic variables. Basic solutions play a crucial role in optimization algorithms
such as the simplex method.

Basic feasible solution (BFS): A basic solution to a linear programming problem is termed a
basic feasible solution (BFS) if it satisfies all the non-negativity constraints.

Furthermore, a BFS is classified as degenerate if at least one of the basic variables has a value of
zero. Conversely, a BFS is considered non-degenerate if all of the basic variables have non-zero
and positive values.

These distinctions are significant in understanding the behavior of optimization algorithms such
as the simplex method.

Optimal basic feasible solution: An optimal basic feasible solution in linear programming is a
basic feasible solution that optimizes (maximizes or minimizes) the objective function. It
represents the best feasible solution among all basic feasible solutions in terms of achieving the
highest (or lowest) objective function value.

In linear programming, the optimal value of the objective function occurs at one of the extreme
points of the convex polygon formed by the set of feasible solutions of the linear programming
problem (LPP). This property is fundamental and is exploited in optimization algorithms such as
the simplex method to efficiently find the optimal solution. By examining the extreme points, we
can determine the best feasible solution that maximizes or minimizes the objective function.

Unbounded Solution: An LPP is said to have an unbounded solution if its solution can grow
infinitely large without violating any of the constraints. This means that there is no finite optimal
solution, and the objective function can be increased (in case of maximization) or decreased (in
case of minimization) indefinitely while still satisfying all the constraints.

2.5 GRAPHICAL METHOD

The graphical method is indeed suitable for solving Linear Programming Problems (LPPs) with
only two decision variables because it allows us to visualize the feasible region and the objective
function contour lines on a two-dimensional graph. By graphically identifying the corner points
of the feasible region and evaluating the objective function at these points, we can determine the
optimal solution.

However, when dealing with three or more decision variables, graphical methods become
impractical due to the difficulty of visualization. In such cases, the simplex method is commonly
I ————
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used. The simplex method is an iterative algorithm that systematically moves from one basic
feasible solution to another along the edges of the feasible region until the optimal solution is
reached. It's a powerful algorithm for solving linear programming problems of any size
efficiently.

The simplex method will indeed be discussed further in the next section, as it provides a robust
and efficient approach for solving LPPs with three or more variables.

Example 3: Solve the following LPP by graphical method.
Minimize Z =20x, +10x,
Subject to, x, +2x, <40
3x, + X, =230
4x, +3x, 260

X, X, =0
Solution: To solve this Linear Programming Problem (LPP) graphically, we'll start by plotting
the feasible region defined by the given constraints and then find the optimal solution within this
region.
Let's begin by plotting the constraint equations:

1. X;+2X,< 40
2. 3X:+X,> 30
3. 4x,+3%,> 60

To plot these equations, we'll first find their intercepts on the axes.
For X;+2X,=40, intercepts are:

When X1=0, 2X2=4O => X2=20
When X2=0, X1=4O

For 3X:+X,=30, intercepts are:

° When X1=O, X2=30
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When XFO, 3X1:30 => X1:10
For 4x,+3X,=60, intercepts are:

When X;=0, 3%X,=60 => x,=20
When XFO, 4X1:60 => X1:15

Now, we'll plot these points and draw the lines connecting them.

Next, we'll shade the region that satisfies all the inequalities. Since we're minimizing Z=20Xx,
+10x,, we're looking for the region where Z is the smallest.

Let's get to graphing it!

L ThRE00L,
O (0.0) 1 20 30 40 -

Figure 1: Unique optimal solution of example 3

Hence, the optimal solution of the shaded region is determined by the following table which
shows the given LPP has minimum value is Zmin = 240 at the points x1 = 6, x2 = 12.

Extreme Objective function
point Z =20x; +10x,
A (15,0) 300

B (40,0) 800
C(4,18) 260

D (6,12) 240

Example 4: Solve the following LPP by graphical method.

Minimize Z =4x, +3X,
_________________________________________________________________________________________________________________|
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Subject to, x, +2x, <6
2% +X, <8
X =7

X, X, =0

Solution: As seen in Figure 2, the limitations are plotted on the graph. There is no possible
solution to the problem because there is no feasible region in the solution space.

Figure 2: Feasible region of example 4

Example 5: Solve the following LPP by graphical method.

Minimize Z =3x, +5x,

Subject to, x, +2x, >10

X =5
X, <10

X, X, =0

Solution: It is evident from the graph in Figure 3 that the feasible region is open-ended. As a
result, Z's value can be increased indefinitely without going against any of the restrictions.
Therefore, the LPP has an infinite solution.

I ————
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x=5

xi+2xa=10

0(0.,0) 2 4 6 8 10— !

Figure 3: Unbounded solution of example 5

Note: It should be noted that an unbounded feasible zone does not always indicate the absence of
a finite optimal solution for an LP problem. Examine the subsequent LPP, which although
having an infinite feasible region, has an optimal viable solution.

Minimize Z =2x, — X,

Subject to, x, —x, <1

Figure 4: Finite optimal solution
Example 6: Solve the following LPP by graphical method.

Minimize Z =3x, +2X,
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Subject to, 6x, +4x, <24

Solution: As seen in Figure 5, the constraints are plotted on a graph by considering them as
equations, and the feasible region is then identified using the signs of their inequality.

I3
'}

AN

L O (0,00 3 \

Figure 5: An infinite number of optimal solution of example 6

The extreme points of the region are A(0,2), B(0,6), C(2,3) and D(2,2). As we can easily find
that slope of the objective function and one of the constraint 6x, +4x, = 24 coincide at line BC.

Also from figure BC is the boundary line of the feasible region. So we can say that the optimal

solution of LP problem can be obtained at any point of the line segment BC. From the following
table

Corners Objective Function
(x,y) Z =3x; 4+ 2x,
A(0,2) 1

B (0,6) 12

C(2,3) 12

D (2,2) 10
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The optimal solution Z=12 is same at two different extreme points B and C. As a result, there
exist several combinations of any two locations on the line segment BC that yield identical
values for the objective function, thereby serving as optimal solutions for the linear programming
problem. As a result, the provided LP issue has an endless number of optimal solutions.

2.6 OUTCOMES AND LIMITATION OF GRAPHICAL METHOD

The outcomes of the graphical method in Operational Research are as follows:

Ability to formulate and solve linear programming problems with two decision variables
using a visual approach.

Understanding of how to graphically represent constraints and objective functions on a
coordinate plane.

Skill to identify the feasible region and determine its corner points (vertices).

Capability to find the optimal solution (maximum or minimum) of the objective function
by evaluating it at the feasible region’s vertices.

Understanding of different solution types- unique, multiple, unbounded, and infeasible
solutions- in linear programming problems.

Development of a visual and conceptual understanding of optimization, providing a
foundation for more advanced methods such as the simplex method.

The limitations of the graphical method in Operational Research are as follows:

It is restricted to Linear Programming Problems with only two decision variables, since
higher-dimensional problems cannot be easily represented graphically.

It becomes impractical and complex when the number of constraints increases, making
the feasible region difficult to visualize accurately.

The method can only be used for linear relationships; it cannot handle non-linear
programming problems.

It does not provide sensitivity or post-optimal analysis, which are essential for
understanding how changes in parameters affect the solution.

The accuracy of the solution depends on precise graphical representation, which may lead
to approximation errors when plotting or interpreting the graph.

It is time-consuming and inefficient for large-scale real-world problems involving
multiple variables and constraints.

Check your progress

Problem 1: Using the graphical method solve the following LPP
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Minimize, z=-x+2y

Subject to the constraint, —x+3y <10; X+y<6; x—-y<2; X,y>0
Answer: x=2,y =0 and minimum z =-2

Problem 2: Using the graphical method solve the following LPP

Minimize, z =2x+ 3y

Subject to the constraint, x+y<30; x—y>0; y>3; 0<x<20,0<y<12

Answer: x =18,y =12 and maximum z =72

2./ SUMMARY

Linear Programming & Operations Research provides a comprehensive overview of two
interconnected disciplines essential for optimizing decision-making processes. Linear
programming offers a mathematical approach for resource allocation through the formulation
and solution of linear optimization problems. Operations research, on the other hand, extends
beyond linear programming to encompass a broader range of mathematical techniques aimed at
addressing complex operational challenges across various industries. By exploring these fields,
individuals gain valuable insights into modeling real-world problems and devising optimal
solutions to enhance organizational efficiency and decision-making effectiveness in diverse
domains such as manufacturing, logistics, finance, and healthcare. In this unit we have learned
about the basic definitions of LPP, Feasible region, optimal solution, convex set, basic feasible
solution, optimal feasible solution and more useful definitions used to solve the linear
programming problem. The overall summarization of this units are as follows:

> A hyper plane is a convex set.
Intersection of two convex sets is also a convex set.
The set of all feasible solutions of an LPP is a convex set.
The collection of all feasible solutions of an LPP constitutes a convex set whose extreme
points correspond to the basic feasible solutions.

GLOSSARY

Linear Programming Problem
Feasible Region
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Optimal Solution

Convex Set

Basic Feasible Solution
Optimal Basic Feasible Solution
Graphical Method
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2.11 TERMINAL QUESTION

Long Answer Type Question:

1: Solve graphically the following LPP and find maximum and minimum value of objective
function:

Maximize (or minimize) z =5x+ 3y
Subjectto: X+y<6; 2x+3y>3;0<x>3;0<y>3
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Solve graphically the following LPP and find maximum value of objective function:

Maximize z =5x+ 3y
Subjectto: X+y<6; 2x+3y>6; 0<x<4;0<y<3
Solve graphically the following LPP and find maximum value of objective function:
Maximize (or minimize) z =3x+ 2y
Subjectto: —2x+y=1 x<2; X+y<3; x,y>0
Short answer type question:

1: Solve graphically the following LPP and find maximum value of objective function:

Maximize z =2x+4y
Subject to: X+ 2y <5; x+y<4; x,y>0
Solve graphically the following LPP and find maximum value of objective function:
Maximize z =6X+Yy
Subjectto:2x+y>3; y—x>0; x,y>0
Objective type question:

1: The graphical method of solving a linear programming problem is applicable when the
number of decision variables is:

A) 1

B) 2

C)3

D) Any number

In the graphical method, the feasible region is:
A) The entire plane
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B) The area where all constraints overlap
C) The intersection of the objective function and one constraint
D) The area outside the constraints

The optimal solution to a linear programming problem using the graphical method is
found:

A) At the center of the feasible region

B) At any point within the feasible region

C) At a corner point (vertex) of the feasible region

D) Along the boundary of the feasible region

If the feasible region is unbounded, the linear programming problem:
A) Has no solution

B) Always has an optimal solution

C) May have an optimal solution if the objective function is bounded

D) Will have an infinite number of solutions

In a maximization problem using the graphical method, the objective function line is
shifted:

A) Parallel to itself towards the origin

B) Parallel to itself away from the origin

C) In any random direction

D) To the nearest constraint line

If two constraints intersect at a point in the feasible region, this point is called:

A) A feasible solution
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B) An infeasible solution

C) A corner point

D) The optimal solution

In the graphical method, the area where no constraints overlap is called:
A) The feasible region

B) The infeasible region

C) The optimal region

D) The objective region

When solving a linear programming problem graphically, the constraints are represented
by:

A) Straight lines
B) Curved lines
C) Dotted lines
D) Points

If the objective function is parallel to one of the constraints in the feasible region, then:

A) The problem has a unique solution

B) The problem has no solution

C) The problem has infinitely many solutions

D) The feasible region is empty

In a linear programming problem, the feasible region is bounded if:

A) The feasible region extends infinitely in one or more directions
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B) The feasible region is a closed polygon
C) The feasible region lies entirely within the first quadrant
D) The objective function has a finite value

Fill in the blanks:

The graphical method of solving linear programming problems is only applicable when
the number of decision variables is

In the graphical method, the region is the area where all constraints overlap.

The optimal solution in the graphical method is typically found at a point of
the feasible region.

The function line is shifted parallel to itself in the graphical method to find
the optimal solution.

If the feasible region is , the problem may have no finite optimal solution.
In the graphical method, each constraint is represented by a on the graph.

If the objective function is to one of the constraints in the feasible region,
the problem may have infinitely many optimal solutions.

The area on the graph that does not satisfy all the constraints is called the
region.

The point of intersection of two or more constraints in the graphical method is called a
point.

In the graphical method, a linear programming problem is said to be if the
feasible region is a closed and bounded area.

2.12 ANSWERS

Answer of short answer type question

Answer 1: Maximum z = 10.
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Problem has unbounded solution.
Answer of Long answer type question

Answer 1: x=3,y=3; Optimum z=24
2: X=4,y=2;0ptimum z =2

X=2,y=1; Maximum z =8

Answer of objective type question
Answer 1: B) : B) 3: C)
5: B) X C) 7: B)
9: C) . B)
Answer of fill in the question

Answer 1: 2 : Feasible 3: Corner : Objective

unbounded  6: straight line  7: Parallel : Infeasible

Corner (or vertex)  10:  Bounded
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UNIT-3: CONVEX SET AND THEIR PROPERTIES

CONTENTS:
3.1  Introduction
3.2 Objectives
3.3 Hyperplanes and hypersphere
3.4.1 Some important results
Extreme point
Convex polyhedron, convex cone and convex hull
Supporting and seprating hyperplanes
Convex functions
Summary
Glossary
References
Suggested Readings
Terminal Questions

Answers

3.1 INTRODUCTION

A convex set is a fundamental concept in operational research and optimization, forming the
basis for many analytical and computational techniques used to solve decision-making problems.
A set is said to be convex if, for any two points within it, the entire line segment joining those
points also lies within the set. This simple geometric idea leads to powerful mathematical
properties that greatly simplify optimization tasks, particularly in linear and nonlinear
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programming. Understanding convex sets and their properties such as convex combinations,
extreme points, separation theorems, and supporting hyperplanes is essential because many
feasible regions in operational research models are convex, ensuring that local optima are global
and that efficient solution methods can be applied. This chapter introduces these concepts,
develops their key properties, and highlights their importance in constructing and analyzing
optimization models.

3.2 OBJECTIVE

The main objectives of the chapter “convex set and their properties” presented in point form:

To introduce the concept of convex sets and explain their importance in operational
research.

To enable students to identify and verify whether a given set is convex.

To explain convex combinations and their role in defining convexity.

To study key features of convex sets such as extreme points, convex hulls, and faces.

To understand geometric properties including separation theorems and supporting
hyperplanes.

To highlight how convexity influences the structure of feasible regions in optimization
problems.

To prepare students to apply convexity concepts in linear programming, nonlinear
programming, and other optimization models.

HYPERPLANES AND HYPERSPHERE

A hyperplane is a flat, affine subspace of one dimension less than its ambient space.

Definition: InR", a hyperplane is defined as: H ={xeR":a'x =D}

where

e aeR"isanonzero normal vector,
e beR isascalar.

Remarks:

« In aeR? (plane), a hyperplane is a line.
« In R® (3D space), a hyperplane is a plane.
e In R", the hyperplane has dimension n—1.

Uses in Optimization
I ————
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« Hyperplanes are used to represent constraints like a’'x =b or to separate convex sets.
e They form the boundaries of feasible regions in linear programming.

2. Hyperspheres
A hypersphere is the generalization of a sphere to higher dimensions.
Definition

InR", a hypersphere with center ¢ and radius r >0 is:

S={xeR":|x—c|=r}

Remarks:

« In R?ahypersphere is a circle.
« In R®, itisasphere.
e In R", itis called an (n—1)-sphere, having dimension n-1.

The corresponding ball (interior region) is:
B={x:|x—c|<r}

Simple Visualization (Lower Dimensions)
Dimension Hyperplane Hypersphere

R? Line Circle
Plane Sphere

n—1-flat n—1-sphere

3.4 CONVEXSET

A convex set is a set of points with the property that, for any two points within the set, the entire
line segment joining those two points also lies completely inside the set.

Definition: A subset S — R", is said to be convex, if for any two points a,,a, €S, the line

segment joining the points a, and a, is also contained in S.

In other word, a subset S < R" is convex if and only if
a,a,eS=>da+@0-1)a,€S;0<A1<1.
I ————
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Figure 1 shows the figure of some convex set and non-convex set.

Convex Sets

e

Non-Convex Sets

& * ¥

Non-Convex Sets

Figure 1: Some figure of convex and non-convex set

Example 1: Show that the set S ={(y,, y,):3y,” + 2y, < 6} is convex set.
Solution: Let A, B e Swhere, X =(a;,a,) and Y =(b,,b,).

The line segment joining A& B is the set,
{uiu=41A+(1-1)B,0< A<}

Forsome A, 0< A <1, let u=(u;,u,) be a point of this set, so that
u, =4a, +@—A)b, and u, = Aa, + 1—A)b,

Now, 3u” +2u,” = 3[1a, + 1— )b, ]* + 2[Aa, + (1— )b, ]?

= 2[3a,” + 2b°]+ (1— 2)*[3a,” + 2b, ]+ 2A(1— A)(3a,b, + 2a,b,)
<62 +6(1— )2 +124(1- 1),

since (3a, +2a,b,) </(%,v3)? + (%v2)* /(y,V3)" + (¥,7/2)? ,
Thus, 3u,” +2u,” <6; and hence u =(u,,u,) is also a point of S.

Hence, S is a convex set.
The following results easily follow from the definition of a convex set.

(i) A hyperplane in R" is a convex set.
(i)  Aclosed ball in R", namely, {x] x—x, |<r}, where r >0 and x,,x € R", is a convex

set.
(iii)  Hyperspheres are convex sets (their interiors).
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(iv)  They are often used to express distance constraints in optimization and machine learning
(e.g., clustering, norm constraints).

3.4.1 SOME IMPORTANT RESULTS

Now we will discuss some important theorems and the results which are required to solve LPP.
Theorem 1: A hyperplane is a convex set.
Proof: Consider the hyperplane S ={x:cx =z}. Let x,and x, be two points in S. Then cx, =z

and cx, = z. Now, let a point x,be given by the convex combination of x,and x, as
Xy = X +(1—-2)x,,0< A <1. Then
cX; = c{AX, + (1—- )X, }
=cAx +([1L—-A)X,
=cz+(1l-A)z=1z
Therefore, X, satisfies cx =z and hence x, € S. x;being the convex combination of x, and x,
in S, S is a convex set. Thus a hyperplane is a convex set.

(Proof by another way) A hyperplane is typically defined as an affine subspace of dimension
n—1 in an n-dimensional vector space.

To prove that a hyperplane is a convex set, we need to show that for any two points x; and Xz in
the hyperplane, the line segment connecting them lies entirely within the hyperplane.

Consider the equation of a hyperplane in n-dimensional space:
a'x =b

where a is a non-zero vector normal to the hyperplane, x is a point in the hyperplane, and b is a
scalar constant.

Now, let x; and x> be two arbitrary points in the hyperplane, satisfying:

a'xi;=h

a'x=h
Consider any point x on the line segment connecting x1 and x2. This point can be expressed as:
X =t Xp+H(1-t)x2

where, 0<t<l1.
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Now, let's compute the dot product of a with x:

a'x = a'(txg+H(1-t)x2)

=ta"x1+(1-t)a'x, =tb+(1-t)b=b

Thus, a'™x=b, showing that x also lies on the hyperplane. Since this is true for any x on the line
segment connecting xi and Xz, the entire line segment lies within the hyperplane.

Therefore, a hyperplane is indeed a convex set.

Theorem 2: Intersection of two convex sets is also a convex set.

Proof: The intersection of two convex sets is indeed a convex set. This property is a fundamental
result in convex geometry and is known as the "intersection theorem™ or "convexity preserving
property of intersections.”

To prove this, let's suppose we have two convex sets A and B in some vector space. We want to
show that their intersection, denoted by ANB, is also convex.

Let x, y be any two points in ANB, and let 1 be a scalar such that 0<A<I.

Since x and y belong to ANB, they must belong to both A and B. Because A and B are convex
sets, the line segment connecting x and y lies entirely within both A and B.

Since A is convex, Ax+(1-A)y lies in A. Similarly, since B is convex, Ax + (1-A)y lies in B.
Therefore, Ax+(1-A)y lies in both A and B, which means it lies in their intersection ANB.

Thus, ANB is convex, as any point on the line segment between any two points in ANB also lies
within ANB.

Theorem 3: The set of all feasible solutions of an LPP is a convex set.

Proof: The set of all feasible solutions of a Linear Programming Problem (LPP) forms a convex
set.

An LPP typically involves optimizing a linear objective function subject to linear constraints.
The feasible region, which is the set of all points that satisfy these constraints, is typically a
convex set.

To see why, consider the constraints of an LPP:
Ax<hb
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where A is a matrix of coefficients, x is the vector of decision variables, and b is a vector of
constants.

Each constraint ai'x < bi represents a half-space in n-dimensional space, defined by a
hyperplane. The intersection of all these half-spaces forms the feasible region.

Since each constraint defines a convex set (a half-space is convex), the intersection of convex
sets (feasible region) is also convex. This means that any convex combination of feasible
solutions remains feasible, ensuring the convexity of the feasible set.

Therefore, the set of all feasible solutions of an LPP is indeed a convex set. This property is
crucial for the efficient solution of linear programming problems using convex optimization
techniques.

Remark: An LPP has an infinite number of feasible solutions if it has two feasible solutions,
since a feasible solution might be any convex combination of the two feasible solutions.

Theorem 4: The collection of all feasible solutions of an LPP constitutes a convex set whose
extreme points correspond to the basic feasible solutions.

Proof: Let's break down the proof into two parts:

1. The Feasible Region is Convex: To prove that the collection of all feasible solutions of
an LPP constitutes a convex set, we need to show that any convex combination of two feasible
solutions is also a feasible solution.

Let x; and x2 be two feasible solutions, meaning they satisfy all the constraints of the linear
programming problem. Now, consider the convex combination:

X=AxX1+(1-A)x2

where 0 <A <1.

Since x; and xz satisfy the constraints, it follows that:

Axi<b

Ax2<b

Multiplying these inequalities by A and 1-/ respectively and summing them, we get:
A(AX1)+(1-2)(Ax2) < Ab+(1-A)b

Simplifying:

A +(1-A)x2) <b

Thus, x also satisfies the constraints, making it a feasible solution. Since this holds for any A in
the range 0< 1 <1, the feasible region is convex.

2. Extreme Points Correspond to Basic Feasible Solutions: To prove that extreme points
of the feasible region correspond to basic feasible solutions, we need to show that each extreme
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point is indeed a basic feasible solution, and conversely, every basic feasible solution is an

extreme point.

. Extreme Points as Basic Feasible Solutions: Any convex combination of two distinct
feasible solutions lies strictly within the line segment connecting those two solutions.
Since an extreme point cannot be expressed as such a convex combination of two distinct
points, it must satisfy a minimal set of constraints, making it a basic feasible solution.
Basic Feasible Solutions as Extreme Points: Basic feasible solutions are those solutions
where a minimal set of constraints is active. If a solution is not a basic feasible solution, it
means it can be expressed as a convex combination of two distinct basic feasible
solutions. Therefore, it cannot be an extreme point.

Therefore, the extreme points of the feasible region correspond to the basic feasible solutions,

completing the proof.

3.5 EXTREME POINT

In convex analysis, extreme points help describe the “corners” or boundary-structure of a convex
set. Here is a clear and concise explanation.

Definition: An extreme point (vertex) of a convex set is a point of the set which does not lie on
any segment joining two other point of the set.

Thus, a point x of a convex set S is an extreme point of the set, if there does not exist any pair of
points x,, X, in S, such that

X=A%+1-1)X,;0<A<1

Note: We should observe that the inequality on A is required to be strict. An extreme point
always lies on the boundary of the set, but a boundary point of a convex set is not necessarily an
extreme point.

Definition (convex combination of vectors): Given a set of vectors {x;, X,, X;,..., X, }, a linear

combination
X=X + X + A Xg+, .+ A X }
is called the convex linear combination of the given vectors, if

k
A 2y Ay A 20 and - 4 =1

i=1
Theorem 5: The set of all convex combinations of a finite number of points of S R" is a
convex set.

Proof: Let, S ={x:x=>_Ax>0,> 4 =1},x, €S
i=1

i=1
We have to show that S is a convex set.
Let x,Xx €S cR", so that
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X =Z::ﬂ,i'xi, where 4, >0, Zml:/li' =1

And X" =Y A%, where 4, >0, Y 4 =1
i=1 i=1

Consider now the vector,
X=AX +(1-A)x;0<A<1

= Qm:zi'xi + (1—,1)§m;1,"xi
i=1 i=1

= Z[/Mil + (1_/1)}%"])9 = Zﬂi Xi
i=1 i=1
Where, 1, = +(1-A)4 ; 1=12,3,..,m
Since, 0<A<1, 4i >0, i >0, therefore z >0 for each i.

Also, iﬂi :zm:[ui +(1-2)A1] =z_zm:z; + (1—/1)_§m;/1;‘ —A+(1-1)=1

i=1 i=1
Hence xis a convex combination of the vectors X, X,, X;,..., X, Of X€S.
Thus for each pair of pointsx,x S, the line segment joining them is contained in the set.
Hence S is a convex set.

3.6 CONVEX POLYHEDRON, CONVEX CONE AND CONVEX
HULL

Definition (Convex polyhedron): A convex polyhedron is the set formed by all convex
combinations of a finite collection of linearly independent vectors.

The convex polyhedron generated by the finite set of linearly independent vectors
X Xy, Xz, .00y X, 1S the set

{X:X=Zlixi,ﬂi >0, A =1}
i=1

i=1

Definition (Convex cone): A non-empty subset C — R", is called a cone if for each x e C, and
A >0, the vector Axis also in C.

A cone is called a convex cone if it is a convex set.

Example 2: If Abe an mxn matrix, then the set of n—vectors xsatisfying Ax >0 is a convex
cone in R". It is a cone, because if Ax>0, then Aix >0 for non-negative A. It is convex

because if Ax® >0 and Ax® >0, then ALAX® +(1-2)x?]1>0.
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Definition (Convex hull of a set): Given a set Y < R",the smallest convex set containing Y is
called the convex hull of Y, and is denoted by <Y >.

It can be easily seen that the convex hull of a set is the intersection of all convex set containing
Y.
Example 3: Let A={x,,X,}. Then the line segment joining x;, x, is a convex set. Also if Sis

any convex set containing A, then it must contain the line segment joining x,, X, .
<A>={X: X=X +1-)x,.0< A <1}

Remarks: If A is finite subset of vectors in R", then the convex hull of A is the set of all convex
combinations of vectors in A.

3.7 SUPPORTING AND SEPRATING HYPERPLANES

Here is a clear and structured explanation of supporting and separating hyper planes, commonly
studied in convex analysis and operational research:

Supporting Hyperplanes

A supporting hyperplane to a convex set C — R" is a hyperplane that touches the set but does not
cut through it. Formally, a hyperplane

H={xeR":a'x=b},a=0

is said to support C if:

1. Cc{x:a'x<b}(or>b), and
2. The hyperplane intersects the boundary of C:

HNC=¢

Intuition

e A supporting hyperplane just “touches” the convex set from one side (like a tangent line
touching a convex curve).
« Every boundary point of a convex set has at least one supporting hyperplane.

Example

For a convex polygon, any line that touches the polygon at an edge or a vertex without cutting
through it is a supporting hyperplane.
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Separating Hyperplanes

A separating hyperplane is a hyperplane that places two disjoint sets on opposite sides.
Given two sets C,,C, < R",a hyperplane

H={x:a'x=b}

Separates them if: a'x<bV x eC,

And a'x>bVxeC,

Types of Separation

1. Weak Separation:
The hyperplane may touch one or both sets: a’x<bVxeC,, a'x>bVxeC,
Strong Separation:
There is a strict gap between the sets: a'x<b<a'yvxeC,,y eC,.

Remark: If two nonempty, disjoint, convex sets and at least one is open then a separating
hyperplane always exists.

Geometric Intuition
A supporting hyperplane touches a convex set from the outside.

A separating hyperplane stands between two disjoint sets and divides space so they lie on
different sides.

3.8 CONVEX FUNCTIONS

A convex function is a fundamental concept in optimization and mathematical analysis,
characterized by the property that the line segment between any two points on its graph lies
above or on the graph itself. Defined on a convex set, a function f is convex if for any two points
in its domain, the function value at any weighted average of these points does not exceed the
weighted average of their function values. This simple geometric attribute leads to powerful
analytical advantages most notably, any local minimum of a convex function is also a global
minimum, making convex functions central to optimization theory, economics, engineering, and
machine learning. Their structural simplicity and predictable behavior make them essential tools
for solving a wide range of real-world optimization problems.

Definition (convex function): A function f :R" — R is called convex on a convex set C if, for
all x,y e Cand for all 1 <[0,1]:
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f(AX+ A= A)Y) < A (X) + (L= A) F(y).

Definition (strictly convex function): Let S be a non-empty convex subset of R". A function
f(x) on S is said to be strictly convex if for two different vectors x, and x,in S.

FIAX+ (L= )Y < AF () +(L—A) f(y),0< A <1

Figure 2: Strictly convex function

Figure 3: Strictly concave function

From the two definitions given above, it is clear that every strictly convex function is inherently
convex. Figure 2 presents the graph of a strictly convex function for illustration.

Definition [Concave (strictly concave) function]: A function f(x) on a non-empty subset S of
R" is said to be concave (strictly concave) if — f (x) is convex (strictly convex).

Clearly, every strictly concave function is also concave, as follows directly from their

definitions. Figure 3 illustrates the graph of a strictly concave function for better understanding .
Y 1\ :

Figure 4: Both convex and concave function

Figure 5

C_________________________________________________________________________________|
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It is possible for a function to be both convex and concave. For example, f(x)=xis such a
function (Fig 4). The function in Figure 5 is strictly convex for x > x, but not strictly convex for

X < X,

Check your progress

Problem 1: Prove that the set x ={(x,, X,) | x> + X,> < 4} is a convex set.

Problem 2: Show that the following functions are convex over R*

() f(x)=3x (i) fe)=e and (i) f(x)= x|

3.9 SUMMARY

A convex set is fundamentally defined by the property that the line segment connecting any two
points within the set lies entirely within the set, formally expressed as containing all convex
combinations 0x + (1-0)y for any x, Yy in the set and 0<6<I1. This unit establishes that key
operations preserve convexity, including intersections, affine transformations (scaling and
translation), and linear combinations, while unions generally do not. Essential examples are
presented, such as hyperplanes, hypersphere, convex polyhedron, convex cone, convex hull,
supporting and separating hyperplanes and convex function which form the building blocks for
more complex convex structures. The concepts of convex hulls (the smallest convex set
containing a given collection) and extreme points (which cannot be expressed as convex
combinations of other set members) are introduced to characterize set boundaries. These
geometric foundations are crucial for optimization, as they ensure that local minima in convex
problems are global minima, and they underpin the theory behind linear programming, quadratic
programming, and more general convex optimization frameworks in operational research..

3.10 GLOSSARY

Hyperplanes
Hypersphere
Extreme point
Convex polyhedron
Convex cone
Convex hull
Supporting and seprating hyperplanes
I ————
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> Convex function
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3.13 TERMINAL QUESTION

Long Answer Type Question:

1: Examine whether the following set is convex or not:
S :{(Xl’XZ) X% 21 20, >0}

S ={(x,, X,) : 5% +2x, 210, 2x, +5x, >10}

S={(X, %) X +X,  <Lx +x,>1}

Show that S ={(X,, X,, X5) : 2X, — X, + X; < 4} < R® is a convex set.
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Determine the convex hull of the following sets:
A={(X. %) %" +%," =1}

A={0x, %)}

Prove that the set of all convex combinations of a finite number of points of S < R" is a
convex set.

5: Prove that a hyperplane is a convex set.

Short answer type question:
1:  Show that the function f(x)=2x’+ X, is a convex function over all of R?

2: Prove that intersection of two convex sets is also a convex set.

Objective type question:

Aset C = R" js convex if and only if:

It contains the origin

It contains all its boundary points

It contains the line segment between any two points in the set
It is closed and bounded

Which of the following sets is always convex?

The set of all integer points

The set of all solutions to a system of linear inequalities
The union of two convex sets

The boundary of a circle

The intersection of any collection of convex sets is:

Always convex

Always non-convex

Convex only when the collection is finite
Convex only when the sets are closed

A set is called strictly convex if:
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Every line segment between two points in the set lies completely outside the set
Every line segment lies on or outside the boundary

Every interior point of a line segment between two distinct points lies inside the set
It contains only one extreme point

Which of the following is not a convex set?

A disk (solid circle)

Aline in R?

A triangle including its interior
A hollow circular ring (annulus)

A half-space defined by @ X <b s:

Always convex
Always non-convex
Convex only if @=0
Convex only if >0

A supporting hyperplane to a convex set C must:

Pass through the origin

Intersect the interior of C

Touch the set without cutting through it
Divide the set into two equal parts

If two convex sets are non-empty, closed, and disjoint, then:

They can never be separated

A separating hyperplane always exists
They must intersect at a boundary point
They must lie in different dimensions

Extreme points of a convex set are points that:

Lie outside the set but on the boundary

Cannot be expressed as a convex combination of other points in the set
Always lie in the interior

Form the center of the set

The convex hull of a set of points is:
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The set of all concave combinations of the points
The largest convex set containing the points

C. The intersection of all convex sets not containing the points
D The smallest convex set containing the points

Fill in the blanks:

A set C is said to be convex if it contains the between any two of its points.
A function f is convex if its IS a convex set.
The intersection of any number of convex sets is always

A set is strictly convex if every interior point of the line segment between two distinct
points of the set lies the set.

A hyperplane is defined as the set of all points x satisfying the equation a* =

A half-space of the form a"x <b is always a set.

A separating hyperplane places two disjoint convex sets on sides of the
hyperplane.

A supporting hyperplane touches the convex set but does not it.
The convex hull of a set of points is the convex set containing those points.

A point that cannot be expressed as a convex combination of any other two points in the
set is called an point.

3.14 ANSWERS

Answer of long answer type question:

Answer 1: (i) convex (ii) convex (iii) convex

Answer 3: (i) < A>={(x,,%,): x> +X," <1}

(i) <A>={X: X=X +L-A)X,; 0<A<T}
Answer of objective type question:
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Answer 1: C) 2: B) : : C)
5: D) 6: A) : : B)
9: B) 10: D)

Answer of fill in the blanks

Answer 1:  line segment 2: epigraph : convex : inside

b 6: convex : opposite : cut through

smallest 10: extreme

DEPARTMENT OF MATHEMATICS
UTARAKHAND OPEN UNIVERSITY

PAGE 53




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

BLOCKA-II

SIMPLEX METHOD
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UNIT-4: SIMPLEX METHOD

CONTENTS:
4.1 Introduction
4.2 Objectives
4.3 Simplex Method
4.3.1 Canonical and standard forms of an LPP
4.3.2  Slack and Surplus variables
4.3.3  Basic Solution
4.3.4 Basic feasible solution
Simplex Algorithm
441 Simplex Table
Summary
Glossary
References
Suggested Readings
Terminal Questions
Answers

4.1 INTRODUCTION

The Simplex method isan iterative algebraic technique for solving Linear
Programming Problems (LPPs) with more than two decision variables by systematically
moving from one corner point of the feasible region to another until the optimal solution is
found. It involves converting inequalities to equations using slack, surplus, or artificial
variables, creating a simplex tableau, and then performing row operations (pivoting) to
find the entering and leaving variables until all variables in the objective function row
satisfy the optimality condition (non-negative for maximization or non-positive for
minimization).

4.2 OBJECTIVE

After reading this unit learners will be able to
e Various types of variables like slack and surplus variable.
I ————
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e Visualized the canonical and standard forms of an LPP.

e Implementation of simplex method and visualized the algorithm to solve the given LPP by
simplex method.

4.3 SIMPLEX METHOD

George Dantzig created the simplex approach in 1947 as an effective way to solve LP
problems with many of variables. The graphical technique and the simplex method both
involve examining the extreme points of the feasible region in order to get the best possible
solution. In this case, the ideal solution is located at a multi-dimensional polyhedron's
extreme point. The foundation of the simplex technique is the fact that, in the event that an
ideal solution exists, it can always be found inside one of the most basic feasible options.

4.3.1 CANONICAL AND STANDARD FORMS OF AN LPP

Any linear programming problem is said to be in canonical form if it can be expressed as,
Maximize, Z =¢,X, +C,X, +...+C, X,

Subject to,

QX+ 3%+ 3 X+ 3 X, <0, T=12,.,m

In“'n

Xy Xpyeey X, 20

These are some characteristics of this form,

0] The objective function is of maximization type Or Maximize Z. If we have given
minimize Z, we convert it to maximize by taking negative of Z i.e., Maximize (-2).

(i) All constraints should be of the type "<", except the non-negative restrictions.

(i) All variables are non-negative.
An LPP in such form known as Standard form:

Maximize (or minimize), Z =c,X, +C,X, +...+C, X,
Subject to,

A, X, +8,Xy +o kB X e+ X, =h,T=12,,m

X Xy ey X, 20
OR
Maximize (or minimize), Z =cx
Subject to,
Ax=Db,i=12,...m
x>0 (null vector)
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Where c¢=(c,,c,,...,C,) and n-component row vector; X = (X, X,,..., X,,) an m-component
column vector; b=[b,b,,..,b,] an m-component column vector and the matrix
A= (aij)
() All constraints are expressed in the form of equations, except the non-negative

restrictions.
(i) The RHS of each constraint equation is non-negative.

. The characteristic of this form are as follows:

mxn

4.3.2 SLACK AND SURPLUS VARIABLES

1. Slack Variables:
Slack variables are introduced to convert inequality constraints into equations.
For each inequality constraint of the form ai"X < bi, a slack variable Si is added such that
ai'x + si = bi.
Slack variables represent the amount by which the left-hand side of the constraint falls
short of the right-hand side to satisfy the constraint.
In the simplex method, slack variables start with a value of zero in the initial basic feasible
solution.
OR
Slack variable: A variable which is added to the LHS of a “<” type constraint to convert
the constraint into an equality is called slack variable.

2. Surplus Variables:

Surplus variables are introduced to convert inequality constraints into equations when the
inequalities are of the form ai™X > bi.

For each inequality constraint of the form @i"™X > bi, a surplus variable Si is added such
that &iTX — Si = bi.

Surplus variables represent the amount by which the left-hand side of the constraint
exceeds the right-hand side.

In the simplex method, surplus variables start with a value of zero in the initial basic
feasible solution.

Surplus variable: A variable which is subtracted from the LHS of a “>" type constraint to
convert the constraint into an equality is called surplus variable.

These additional variables allow the LP problem to be formulated in canonical form, where
all constraints are equations. The simplex method operates on LP problems in canonical
form, making it easier to identify and move between basic feasible solutions efficiently.
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4.3.3 BASIC SOLUTION
Consider a set of m linear simultaneous equations of n (n > m) variables.
Ax=Dh,

where A is an m x n matrix of rank m. If any m x m non-singular matrix B is chosen from
A and if all the (n — m) variables not associated with the chosen matrix are set equal to
zero, then the solution to the resulting system of equations is a basic solution (BS).
Basic solution has not more than m non-zero variables called basic variables. Thus the m
vectors associated with m basic variables are linearly independent. The variables which are
not basic, are termed as non-basic variables. If the number of non-zero basic variables is
less than m, then the solution is called degenerate basic solution. On the other hand, if none
of the basic variables vanish, then the solution is called non-degenerate basic solution. The
possible number of basic solutions in a system of m equations in unknowns is
N~ n!

" mi(n—m)!’

Theorem 1: The necessary and sufficient condition for the existence and non-degeneracy
of all the basic solutions of Ax = b is that every set of m columns of the augmented matrix
[A, b] is linearly independent.

Proof: To prove the theorem stating that the existence and non-degeneracy of all basic
solutions of Ax = b depend on every set of m columns of the augmented matrix [A, b] being
linearly independent, we'll need to establish both the necessity and sufficiency of this
condition.

Necessary condition: Let's first prove the necessity part. We want to show that if all basic
solutions exist and are non-degenerate, then every set of m columns of [A, b] must be
linearly independent.

Suppose that there exists a set of m columns of [A, b] that is linearly dependent. This
implies that there exists a nontrivial linear combination of these columns that equals the
zero vector. Without loss of generality, let's assume that the linear combination involves
the last column, corresponding to the vector b.

C1A1+C2A2+. . . +CmAm+Cm+1b=0

Where A represents the i column of A and ¢ are coefficients not all zero.

Since the last column of [A, b] is linearly dependent on the other columns, it means that the
system Ax = b has at least one redundant equation. In other words, the last component of b
can be expressed as a linear combination of the other components, rendering the system
degenerate.

Hence, if every set of m columns of [A, b] is linearly independent, then the system Ax = b
cannot have any redundant equations, ensuring the existence and non-degeneracy of all
basic solutions.
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Sufficient condition: Now let's prove the sufficiency part, i.e., if every set of m columns
of [A, b] is linearly independent, then all basic solutions exist and are non-degenerate.
Suppose all sets of m columns of [A, b] are linearly independent. This implies that each
component of b cannot be expressed as a linear combination of the other components.
Therefore, each equation in the system Ax = b contributes uniquely to the determination of
the solution.

Since there are no redundant equations, every basic solution of the system Ax = b
corresponds to a unique set of pivot variables, making the solution non-degenerate.
Furthermore, since each equation is necessary for determining the solution, all basic
solutions exist.

Therefore, the sufficiency part is proven.

Conclusion: Combining the necessity and sufficiency proofs, we conclude that the
existence and non-degeneracy of all basic solutions of Ax = b are guaranteed if and only if
every set of m columns of the augmented matrix [A, b] is linearly independent.

4.3.4 BASIC FEASIBLE SOLUTION (BFS)

As we know that, if a feasible solution x is also basic, meaning that it corresponds to a set
of linearly independent columns of the constraint matrix A, then it is termed a basic
feasible solution (BFS). Basic feasible solutions are important in LP because they often
correspond to the vertices of the feasible region (in the case of bounded LP problems), and
they serve as starting points for various optimization algorithms such as the simplex
method.
In summary, a basic feasible solution is a feasible solution that satisfies the additional
condition of being basic, implying that it corresponds to a set of linearly independent
constraints.

OR
An LPP's feasible solution is one that meets all of its constraints and non-negativity
restrictions. A viable solution is referred to as basic feasible solution (BFS) if it is basic
once more.
Theorem 2: The necessary and sufficient condition for the existence and non-degeneracy
of all possible basic feasible solutions of Ax = b, x> 0 is the linear independent of every set
of m columns of the augmented matrix [A, b], where A is the m x n coefficient matrix.
Proof: To prove the theorem that the existence and non-degeneracy of all possible basic
feasible solutions of the linear programming problem Ax = b, x > 0 depend on the linear
independence of every set of m columns of the augmented matrix [A, b], we need to
establish both the necessity and sufficiency of this condition.
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Necessary condition: Let's first prove the necessity part. We want to show that if all
possible basic feasible solutions exist and are non-degenerate, then every set of m columns
of [A, b] must be linearly independent.

Suppose that there exists a set of m columns of [A, b] that is linearly dependent. This
implies that there exists a nontrivial linear combination of these columns that equals the
zero vector. Without loss of generality, let's assume that the linear combination involves
the last column, corresponding to the vector b.

C1A1+CoA+. .. +CmAm+Cm+1b=0

Where Ai represents the i column of A and c; are coefficients not all zero.

Since the last column of [A, b] is linearly dependent on the other columns, it means that the
system Ax = b has at least one redundant equation. In other words, the last component of b
can be expressed as a linear combination of the other components, violating the non-
negativity constraint x > 0 and rendering the system degenerate.

Hence, if every set of m columns of [A, b] is linearly independent, then the system Ax = b
cannot have any redundant equations, ensuring the existence and non-degeneracy of all
possible basic feasible solutions.

Sufficient condition: Now let's prove the sufficiency part, i.e., if every set of m columns
of [A, b] is linearly independent, then all possible basic feasible solutions exist and are non-
degenerate.

Suppose all sets of m columns of [A, b] are linearly independent. This implies that each
component of b cannot be expressed as a linear combination of the other components.
Therefore, each equation in the system Ax=b contributes uniquely to the determination of
the solution.

Since there are no redundant equations, every basic feasible solution of the system Ax = b
corresponds to a unique set of pivot variables, making the solution non-degenerate.
Furthermore, since each equation is necessary for determining the solution, all possible
basic feasible solutions exist.

Therefore, the sufficiency part is proven.

Conclusion:
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Combining the necessity and sufficiency proofs, we conclude that the existence and non-
degeneracy of all possible basic feasible solutions of the linear programming problem Ax =
b, x > 0 are guaranteed if and only if every set of m columns of the augmented matrix [A,
b] is linearly independent.
Example 1: Find out the basic feasible solution for the system of linear equations
2%, +3X, — X, + 4%, =8
X, —2X, + 6%, —7X, =3
Xy, Xy, X5, X, 20
Proof: The given system of equations can be written as
ax +aX, +aX, +a,x, =b

where a, =[21],a, =[3,-2],a, =[-1,6],a, =[4,—7] and b =[8,-3]. The maximum number
of basic solutions that can be obtained is *“C, = 6. The six sets of 2 vectors out of 4 are

B1 = [a1, a2], B2 = [a1, &3], Bs = [a1, a4]

B4 = [a2, ag], Bs = [az, a4], Bs = [as, a4].
Here |B1|=-7, |B2| =18, |Bs|=-18, |B4| =16, |Bs | =—13, and |Bs | = —17. Since none of
these determinants vanishes, hence every set B; of two vectors is linearly independent.
Therefore, the vectors of the basic variables associated to each set Bi, i = 1,2,3,4,5,6 are
given by,

O

:_6 1 ;}{—83} B {—4154 /l 133}
T
2 o3 e
i LI

44117
And X —B’lb——i =
17|-6 -1|-3| |45/17

From above, we see that the possible basic feasible solutions are x =[1,2,0,0],
=[22/9,0,0,7/9], %, =[0,45/16,7/16,0] and x, =[0,0,44/17,45/17] which are also
non-degenerate. The other basic solutions are not feasible.
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Theorem 3: (Fundamental theorems of LP): If a linear programming problem has an
optimal solution, then the optimal solution will coincide with at least one basic feasible
solutions of the problem.

Proof: Let us consider that x™ is an optimal solution of the following LPP:

Maximize, z =cx

Subjectto Ax=b,x>0 .. (D)

Without loss of generality, we assume that the initial p component of optimal solution x”
are non-zero and the remaining (n— p) component of x~ are non-zero. Thus,

X =[%X, Xp00: X,,0,0,...,0]

P
Then, from (1), Ax" =b gives Za X =h,i=12,..,m
j=1

ij 7
Also, A=[a,a,,..,a,,a,,,,.,a,] gives

X +a,X, +..,a,X, =b ... (2)
p

Also, 7" =z, =Y ¢X .03
j=1

Now, if the vectors a,,a,,...,a,correspond to the non-zero components of x are linearly

independent, then, by definition of x” is a basic solution by definition, and the theorem is
valid in this instance. The simplest possible solution is non-degenerate if p = m.
Conversely, in the event where p is less than m, a degenerate basic feasible option will be
formed, wherein the basic variables (m - p) equal zero.

If vectors are not linearly independent, then they must be linearly dependent i.e., there
exists scalars 4;, j =1,2,..., p of which at least one of the 4,'s is non-zero such that

A + 4,3, +..+1,a,=0 .. (4
Suppose that at least one 4; > 0. If the non-zero 4 is not positive, then we can multiply (4)
by (-1) to get a positive 4;.

1<<p | X

Let u= Max{ﬁ} ...(5

Then s positive as x; >0V j=12,..., p and at least one A;is positive. Dividing (4) by

u and subtracting it from (2), we get

A
(xl —£]a1 +(x2 —ﬁ]az +...+(xp ——pjap =b
u u 7
A
And hence x = Hxl —ﬁjal,(x2 —ﬁjaz,...,(xp ——Pj,o,o,...,o}
u M H

is a solution of the systems of equations Ax=Db
I ————
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Again from (5), we have

y>]“ for j=12,..,p
X

i

Ory>ﬂ“ for j=1,2,..,p
XJ
This implies that all the components of x, are non-negative and hence x;is feasible

solution of Ax=Db,x>0. Again, for at least one value of j,we have, from (5),

A
X; —— =0, for at least one value of j.
y7;

As a result, we may observe that the feasible solution x: will have one extra zero than what
was demonstrated in (6). Therefore, there can be no more than (p—1) non-zero variables in
the possible solution x1. As a result, we have demonstrated that it is possible to decrease
the number of positive variables that provide an optimal solution.

cx, _Zc (x ——] ZchJ Zc e ——ch by (3®

Now, if we can show that,
P
Zc 4;=0
j=1

Then z =z  and this will prove that x, is an optimal solution.
We assume that equation (8) does not hold and we find a suitable real number y, such that
r(e A +edy +..+c,4,) >0

ie., ¢ (74) +c,(¥4) +...+¢,(p4,) > 0.
Adding (c;x, +¢C,X, +...+C,X,) to both sides, we get

C (X% +74) +Cy (X, + pA) + .o+ C (X, +74,) > C X +CoX, +.+C X = 7"
Again, multiply (4) by y and adding to (2), we get

(% +7rA)a + (X, +74)a, +..+ (X, +74,)a, =b

So that

[(x, + 74), (X + 7A;),eo (X, +74,),0,0,0]

is also a solution of the system Ax=Db

Now, we choose y such that,

X;+y4; 20V j=12,..,p

X; .
or y2——if 4,>0
A
I ————
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X; .
and ]/S—Ilf 4;>0

J

and y is unrestricted, if 4, =0.

Now equation (10) becomes a feasible solution of Ax=b,x>0.
Thus choosing y is such a way that,

X X.
Maxq——1t <y < Max{——+
A‘j>0 l] A‘j<0 l]

We see from equation (9) that the feasible solution equation (10) gives a greater value of

the objective function than z”. Which is the contradiction our assumption that z” is optimal
value. Thus we can say that

Zp:cjlj =0
i

Thus, x1 is likewise the best option. As a result, we demonstrate that the number of non-
zero variables in the given optimal solution is fewer than that of the one that was provided.
If the additional non-zero variables' corresponding vectors are linearly independent, then
the theorem follows because the new solution will be a fundamentally workable solution.
We can further reduce the number of non-zero variables as previously mentioned to obtain
a new set of optimal solutions if the new solution is once more not a fundamentally
possible option. We can keep going until we arrive at an ideal solution that is also a
basically feasible solution.

SIMPLEX ALGORITHM

Any LP problem that may be solved using a simplex algorithm always assumes the

existence of a starting BFS. We shall talk about the LP issue of maximizing kind using the

simplex approach here. Here's a simplified explanation of how it works:

Initialization: Start with an initial feasible solution. This can be achieved by solving a set

of linear equations or inequalities that satisfy the constraints of the problem.

Iteration: The algorithm iterates through a series of steps to improve the solution. At each

iteration, it selects a variable to enter the solution and a variable to leave the solution,

moving towards the optimal solution.

Optimality Test: At each iteration, the algorithm checks if the current solution is optimal.

If it is, the algorithm terminates. Otherwise, it proceeds to the next step.

Pivoting: If the current solution is not optimal, the algorithm performs a pivoting operation

to improve the solution. This involves selecting a pivot element in the current tableau (a

table representing the problem), and using it to update the tableau in a way that improves

the objective function value.

Repeat: Steps 3 and 4 are repeated until an optimal solution is found.
I ————
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The Simplex algorithm is efficient and can handle large-scale linear programming
problems with thousands or even millions of variables and constraints. However, it's worth
noting that in some cases, the algorithm may take exponential time to find the optimal
solution, although this is rare in practice.

The following are the steps involved in computing an optimal solution:

Step 1: If the given LPP is of minimization type, then convert the objective function to
maximizing type. Additionally, change all m constraints to non-negative bi's (i = 1, 2, ...,
m). Next, create an equation for each inequality constraint by adding a slack or surplus
variable, and give that variable a zero cost coefficient in the objective function.

Step 2: If necessary, introduce artificial variable(s) and take (-M) as the coefficient of each
artificial variables in the objective function.

Step 3: Obtain the initial basic feasible solution x, = B™'b, where B is the basis matrix
(Which is here an identity matrix).

Step 4: Calculate the net evaluation z; —C; =CgXg; —C;.

If z, —c; 20V jthen x; is an optimum BFS.

If at least once z; —c; <0. Then to improve the next solution we proceed in next step.
Step 5: If there are more than one negative z; —c;, then choose the most negative of them.
Let it be z, —c, for some j=Kk.

Ifall &, <0 (i=1,2, ...., m), then there exist an unbounded solution to the given problem.

If at least one a, >0(i=12,..,m) then the corresponding vector a, enters the basis B.
This column is called the key or pivot column.

Step 6: Divide each value of x; (i.e., b,) by the corresponding (but positive) number in
the key column and select a row which has the ratio non-negative and minimum i.e.,

Xor _ Min{ﬁ;aik > 0}
ark aik

We refer to this rule as the minimum ratio rule. This kind of row selection is known as the
pivot or key row, and it stands for the variable that will be eliminated from the fundamental
solution. The key or pivot element (let's say ark) is the element that is located where the
simplex table's key row and key column intersect.

Step 7: Use the relation to convert all other elements in its column to zeros and the leading
element to unity by dividing its row by the key element itself:

" a,; " Xgr .
aj=—-and Xer =20, i=r;j=12,.n
ark al’k
A a. N X R .
aij = a; ——La, and Xer = Xg; ——2Ca,, i=12,..m;i#r
rk rk

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 65




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

Step 8: Now go to the step 4 and repeat the procedure until all entries in (z; —c;) are

either positive or zero, or there is an indication of an unbounded solution.
SIMPLEX TABLE

The simplex for a standard LPP

Maximize, z = cx

Subject to, Ax=b

x>0

is given below:

Where, B = (ag,,8g,,.--,8g,), Dasis matrix

Xg = (Xg1, Xgz1--s X)), DASIC variables
Cg =[Cg1+Caoyees Capy ]

A= (aij)mxn

b=[b,b,,...b,]

c=(c,c,,...,C,)

X = (X0 Xpreems X;)

xB i IE:"J}r a til am 2

Er'—CJ, Z1=C] Z32—0C3

Table 2.1: Simplex table
Example 2: Using simplex method solve the following LPP.

Maximize, Z = X, —3X, + 2X,
Subject to,

3X, — X, +2X%, <7

—2X, +4x, <12

—4x, +3x, +8x, <10
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X, Xy, X3 =0

Solution: We have given the problem of minimization. So, at first we convert the problem
into maximization.

So, we have Max(Z,)=Min(-Z)=—-x, +3X, —2x%;. Now, introduced the slack variable
X,, Xsand Xg, then problem can be put in the standard form as

Max(Z,)=—x, +3X, — 2%, + 0x, + 0x; + 0x,

Subject to,

3K =X, +2X;+ X, =7

— 2% +4X, + X, =12

— 4%, +3X, +8X; + X, =10

Xp, Xy, Xg, Xgs Xs, Xg =0
Now, we apply the simplex algorithm (Step 2 to Step 8). The outcomes of each iteration
are displayed in Table 2.2. Since, z; —c¢; >0V jin the last iteration Table 2, condition of

optimality is satisfied. The optimal solutions are x =4,x,=5X,=0 and the
corresponding objective function is (Z,),., =11. Hence the solution of the original
problemis x, =4,x, =5,%,=0 and (Z,),;, =11

cj— -1 3 Mini

b s Ratio

7 -1 -

12 4 12/4=3
10 3 10/3=3.33

1/4
-3/4
3/4

4/5 2/5 1/10
2/5 1/5 3/10
10 1 -1/2
12/5 1/5 16/20
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Table 2.2: Simplex table
Example 3: Niki works at Job I and Job I, two part-time employment. She has a strict

limit of 12 hours per week that she would never work. She has calculated that she requires
two hours of preparation time for every hour she works at Job I, and one hour of
preparation time for every hour she works at Job I1. She has also decided that she cannot
spend more than sixteen hours preparing. How many hours a week should she work at each
job to optimize her income if she makes $40 an hour at Job | and $30 an hour at Job 11?
Solution: (Solution of this example is described in step wise procedure and also described
many questions which can be arise on mind during solving by simplex method) We will use
the above-mentioned algorithm to solve this problem.
Step 1: Define the issue. Write the constraints and the goal function.
Since the simplex method is used for problems that consist of many variables, it is not
practical to use the variables X, Y, z etc. We use symbols x;, X,, X, and so on.
X, = The number of hours per week Niki will work at Job | and
X, = The number of hours per week Niki will work at Job I1.
Traditionally, Z is selected as the variable to be maximized.
The formulation of the problem is the same as it was in the previous chapter.
Maximize, Z = 40x, + 30X,
Subject to,
X +X, <12
2%, + X, <16
X, X, 20
Step 2: Convert the inequalities into equations: For every inequality, one slack variable
is added to achieve this. Convert the equality into inequality x, +x, <12. We add a non-
negative variable y,, and we get

X +X,+Yy, =12
Here the variable y; picks up the slack, and it represents the amount by which xi+x; falls
short of 12. In this problem, if Niki works fewer than 12 hours, say 10, then y: is 2. Later
when we read off the final solution from the simplex table, the values of the slack variables
will identify the unused amounts.
We rewrite the objective function Z = 40x;+30x2 = 401+302 as —40x;—30x2+Z = 0
Subject to the constraints: —40x, —30x, +Z =0

X +X,+y =12
2% + X, +Y, =16
X =0:%x,>0
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Step 3: Construction of initial table of simplex method: Every inequality constraint is
displayed in a separate row. (In the simplex tableau, the non-negativity constraints are not
represented as rows.) Assign the bottom row to the objective function.

After the inequalities have been transformed into equations, we can use the following
augmented matrix representation of the issue to create the initial simplex tableau.

y2
0
1

L
0
0

C
12

16

—40 =30 0 0 l 0

The left and right sides of the equations are divided in this instance by a vertical line. The
goal function and constraints are divided by the horizontal line. Column C is the
representation of the right side of the equation.

It is important for the reader to note that the final four columns of this matrix resemble the
final matrix obtained by solving a system of equations. If we select x1 = 0 and x> = 0 at
random, we obtain

(7)) C

12
16
0

Which reads

y1=0, y>=16,Z2 =0

The basic solution related to the tableau is the result of solving for the remaining variables
after randomly allocating values to some of the variables. Thus, the basic solution for the
original simplex tableau is the one mentioned above. As indicated in the table below, we
can identify the fundamental solution variable to the right of the final column.

X] X2 ¥yl y2 Z
| 1 1 0 0|12 vy
2 1 0 1 0 | 16 vy

—40 30 0 0 | 0 Z

Step 4: The pivot column is indicated by the lowest row's most negative entry:
Since the bottom row's most negative entry is -40, column 1 is recognized.
I ————
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40
T

Question: Why do we select the lowest row entry that is the most negative?

Answer: The coefficient whose entry will raise the value of the objective function the
fastest is the greatest coefficient in the objective function, and it is represented by the most
negative entry in the bottom row.

The simplex approach starts at a corner where all of the primary variables, variables with
symbols like xi, x2, X3, etc. have zero values. Next, it advances from one corner point to the
next, always raising the goal function's value. Increasing the value of x; will make more
sense in the case of the objective function Z = 40x:+30x> than x2 will. The number of hours
a week that Niki works at Job | is represented by the variable xi. The variable x1 will raise
the goal function by $40 for every unit increment in the variable x1, as Job | pays $40 per
hour whereas Job 11 only pays $30.

Step 5: Do the quotient calculations. The row is identified by the least quotient. The
pivot element is the one that is found at the intersection of the row found in this step
and the column found in step 4.

We divide the items in the far right column by the entries in column 1, omitting the entry in
the bottom row, in accordance with the algorithm to find the quotient.

X] X2 ¥l y2 L
I I I 0 0 12 ¥l

I I 0 16 y2

—40 30 0 0 0 Z
T
Of the two quotients, 12 and 8, 8 is the smallest. Row 2 is thus identified. The highlighted
entry number two is located at the junction of row 2 and column 1. This is the key
component for us.

Question: Why do we look for quotients, and how does a row become identified by its
smallest quotient?

Answer: By adding the variable x;, we want to raise the value of the objective function
when we select the entry in the bottom row that is the most negative. However, we are
unable to select a value for x;. Can we allow for x;=100? Absolutely not! This is due to
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Niki's insistence on never working more than 12 hours at both jobs put together: xi+x. <
12. Can we allow for x1=12? Once more, the answer is no, as the time required to prepare
for task I is twice that of the actual task. Niki can work no more than 16 + 2 = 8 hours since
she never wants to spend more than 16 hours preparing.

You now understand why it is necessary to compute the quotients; doing so ensures that we
do not go against the limitations when identifying the pivot element.

Question: Why is the pivot element identified?
Answer: The simplex approach, as previously discussed, starts at one corner point and
advances to the next, always increasing the value of the objective function. By altering the
number of units of the variables, the objective function's value is increased. One variable's
number of units may be increased while the units of another are subtracted. We can
accomplish just that by pivoting.
The variable that is being added units is referred to as the entering variable, while the
variable that is being replaced units are referred to as the departing variable. The highest
negative item in the bottom row of the above table indicates that x: is the entering variable.
The lowest of all quotients was used to identify the departure variable, y-.

Step 6: Perform pivoting to make all other entries in this column zero

To get the row echelon form of an augmented matrix, we pivot the matrix. Getting a 1 at
the pivot element's location and then setting all other values in that column to zeros is the

process of pivoting. It is now our task to divide the entire second row by two in order to
turn our pivot element into a 1. The outcome is as follows.

X] x2 y1 y2 Z
1 1 1 0 0

(1] 12 0 12 o0

40 =30 0 I | 0
We add row 1 to the second row after multiplying it by -1 to get a zero in the entry above
the pivot element. We obtain

x| X2

da

0 1/2

[1] 12
40 30 0

We multiply the second row by 40 and add it to the last row in order to get a zero in the
element below the pivot.

X] X ' y2 Z
-12 0
1/2
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We now ascertain the fundamental solution linked to this tableau. Upon selecting xo =0
and y, = 0 at random, we arrive at x1 = 8, y1 = 4, and z = 320. The following matrix states
the same thing if we write the augmented matrix, whose left side is a matrix with one
column having a 1 and all other entries zeros.

X1y, 2 C
0 1 0 4
1 0 0 8
0 0 1 320

The answer linked to this matrix can be restated as follows: z = 320, y1=4, y»=0, x1 = 8§,
and x2 = 0. At this point in the game, Niki's profit Z is $320 if she works 8 hours at Job |
and 0 hours at Job 11.

Step 7: We are done when the bottom row contains no more negative entries; if not,
we go back to step 4 and repeat the process.

We must start over at step 4 because there is still a negative entry, -10, in the bottom row.
Instead of going over each step in detail again, this time we will find the column and row
that contain the pivot element and highlight it. This is the outcome.

xI  x2 I
0o [In |

1 12

0 -10 | 320

o~

By multiplying row 1 by 2, we create the pivot element 1, and we obtain
X] X2 y1 y2 Z
0 -1 0
| /2 0 1/2 0 8
0 ~10 0 20 | 320
We are done because there are no more negative entries in the bottom row.
Question: When there are no negative entries in the bottom row, why are we done?
Answer: The bottom row has the solution. The equation and the bottom row match.
0x, +0x, + 20y, +10y, + Z =400 or
Z =400-20y, —10y,
The maximum number Z can ever reach is 400 because all variables are non-negative, and
that can only occur when both y1 and y» are 0.

Step 8: Now that we have determined the fundamental solution linked to the final simplex

tableau, we read off our solutions. Once more, we examine the columns containing a 1 and
I ————
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all other entries are zeros. We choose y: = 0 and y» = 0 at random because the columns with

the labels y: and y- are not such columns, and we obtain

[(x; x» Z | C]
0 1 0 | 8
1 0 0 | 4

0 0 1 | 400

The wvalues of the matrix are z = 400, xx = 4, and x2 = 8.

According to the final solution, Niki will maximize her income to $400 if she works 4

hours at Job | and 8 hours at Job Il. She would have used up all of the working and

preparation time because both of the slack variables are 0, meaning that none will be left.

Example 4: Using Simplex method solve the following LP problem

Maximize, Z = 4x, +10x,

Subject to,

2%, + X, <50

2x, +5x, <100

2%, +3X, <90

X, X, =0

Solution Step 1: Introducing the slack variable.

Maximize, Z =4x, +10x, +0s, +0s, +0s,

Subject to,

2% + X, +8, =50

2%, +5%, +s, =100

2%, +3X, +s, =90

X, X5,8,8, =20

So, the given L.P.P. converted to the following system of linear equations.

50

0
0
1

90

Step 2: So, the basic feasible solution is given by x; = B™'b
S 1 0 0Y)50 50

ie,|s,|=/0 1 0100 |=|100
S, 0 0 1)90 90
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1 00 50
Here, B=|0 1 0|=B™ and b={100
0 0 1 90

Step 3: Now compute y;and (z; —c;) as follows:
1 0 0) (2]

-1

yl:B a1=

2

2

_2_

1

y,=B™a, = 5
3

0
0
1
0
O L
Y = B_lel =e,y,=B7e,=¢, and y; = B_les =&

Z,-C—=Cgy, — (0,0,0) —-4=-4

Z,—C,—=Cgy,—C, = (0,0,0)

Z; —C—=0Cgy; —C; = (010 O)

(1]
5
3
1]
0
0]

0
2,-C,—=Cgy,—¢, =(0,0,0) 1
0
0]
0

Z; —C;—=Cgys —C5 = (01070)

1

Step 4: The simplex table below now displays the initial basic feasible answer.

Cj 10

Cs yB XB

Y3 50

Y4
Vs 90

Zj
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Zj- Cj z -4 -10
(=0)
It is clear from the tableau that two of the zj-cj are negative. We select -10, which is the
most negative of these. The corresponding column vector (y-) enters the basis.

Step 5: Given that y»'s entries are all positive. We compute Min{ﬁ; Y > 0} le.,

ir

5 3

row and second column). As a result, the column element becomes the leading element for
the first iteration and the vector y4 departs from the basis ys.

Step 6: Utilizing the following transformation, convert all of y»'s elements to zeros and the
leading element, y2», to unity:

Vi = Yy — 22 yiti =1,2,3,4&i % 2
y

22

Min{50 100 90} = % . This occur for the element y2, = (=5) i.e. (element of second

y2j :h’ J 20’112a31415

Y22

y21:h:g;y20 :hzgormetc.

Yoo O Y22

" 100
Vio = Yio =22 Yy =50~ == x1=30

22

" 100
Vo =Yoo~ 2 ¥y =90 == x3=30

22

" y 2 4
Yar = ysl_y_zysz :Z_EXSZE

" 2 8
Y = yll_%mz :Z_EX:L:g

22

Yia = Y1a —My12 =0—1><1:—1, and so on.
22 5 5

Step 7: By using above mentioned calculation, the simplex table is given below:

Cj 4 0
Cs yB XB Y1 Va
0 30 8/5 -1/5
10 Y2 20 2/5 1/5
0 ys 30 4/5 -3/5

Zj 4 2
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Cj (=200)
With an increasing value of z, the following simplex table produces a new fundamental
feasible solution. Moreover, since z;. ¢j > 0, there is no chance for z to increase any further.
Thus, using only the most basic variables x,, s, and s, we have arrived at our ideal answer.

So, the optimal/maximal basic feasible solution of given LPP is x, =0, x, =20 with
maximum z=200.

Example 5: Using Simplex method solve the following LP problem
Minimize, Z = x, —3X; + 2X,

Subject to,

3X, =Xy +2%X; <7

—2X, +4x, <12

—4x, +3X%, +8%; <10

Xy, X3, X5 =0

Solution Step 1: Introducing the slack variable.

Maximize, Z~ = —(X, —3X, + 2%, ) + 0s, + 0s, + Os,

Subject to,

X, =Xy + 2%+, =7

—2X, +4X; +0.X, +s, =12

—4X, +3X; +8X; +5; =10

Xy, X3, X5, S;,S,,S5 20

So, the given L.P.P. converted to the following system of linear equations.

1 00
0 10
0 01

So, the obvious initial basic feasible solution is x, = B™'b where B =1, and
xg =basic variable corresponding to columns of basis matrix B(=1).
Step 2: So, the basic feasible solution is given by x; = B™'b
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Now, the simplex table is:
G
Ys XB
ya 7
Ys 12
Y6 10
z 0

Since there is at least one negative zj-cj, or z2-Cz, the existing basic feasible option is not
optimal. We choose the column corresponding to z»-Cz, i.e., column vector y» enters the

basis yg (Since at least one yi»>0). Further, since minimum Min{ﬁ; Vi, > O} is %(z 3),

i2

current basis vector ys leaves the basis. y.2 (= 4) is thus identified as the leading element.
We now change all other elements of the incoming column vector y. to zero and the
leading element to unity using E-Row operations. As seen in the following simplex table,
we obtain the improved basic feasible solution.
Cj -1 3 -2 0 0

Cs VB XB Y1 y2 \Z Y5
0 Ya 10 5/2 0 1
3 Y2 3 - 1 0

12

Y6 -
5/2

1/2

Over that z1-c1 is negative and thus the current basic feasible solution is not optimum. The
column corresponding to zi-c1 enters the next basis ys (since yi 1>0). Further, since only
I ————
DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 77




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

y11>0 both y12<0 and y13<0); current basis vector ys leave the basis. This gives y1 1 (= 5/2)
as the leading element. We change the leading element to unity and the other values in its
column y; to zero using E-row operations. The next simplex table displays the improved
basic feasible solution.
Cs :! XB Y3 Ya Ys Ye
-1 Y1 4 4/5 2/5 1/10 0
3 Y2 5 2/5 1/5 3/10
0 Y6 11 10 2/5 -1/2

z 11 12/5 1/5 8/10

In this table, all zi-ci >0, an optimal BFS has been attained. So, the optimal solution of the
given L.P.P. is,

Minimum Z = - Maximum Z~ =-11 with x, =4,x, =5 and x, =0.
Check your progress

Problem 1: Using Simplex method solve the following LP problem
Maximize, Z =107x, + X, + 2X,

Subject to,

14X, + X, —6X; +3%x, =7

16X, + X, —6X;, <5

33X, — X, —%X; <0

X;, Xy, X5, X, 20

Answer: Unbounded Solution
Problem 2: Using Simplex method solve the following LP problem
Maximize, Z =3x, + 2X,
Subject to,

X +X, <4

X —X, <2

33X, =X, —%; <0

X, X, 20

Answer: x, =3,x, =1,Z =11

45 SUMMARY

The simplex method is a powerful algorithm used to solve linear programming problems
by iteratively improving upon a feasible solution until an optimal solution is reached. The
overall summarization of this units are as follows:
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The necessary and sufficient condition for the existence and non-degeneracy of all the
basic solutions of Ax = b is that every set of m columns of the augmented matrix [A, b] is
linearly independent.

The necessary and sufficient condition for the existence and non-degeneracy of all possible
basic feasible solutions of Ax = b, x > 0 is the linear independent of every set of m columns
of the augmented matrix [A, b], where A is the m x n coefficient matrix.

If a linear programming problem has an optimal solution, then the optimal solution will
coincide with at least one basic feasible solutions of the problem.

After completion of this Unit learners will be able to solve the given LPP by using the
simplex method more effectively.

46  GLOSSARY

Slack and Surplus variable
Simplex Method
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49  TERMINAL QUESTION

Long Answer Type Question:
Using Simplex method solve the following LP problem

Maximize, Z =3x, + 2X, + 5X,

Subject to,
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X, +2X, + X, <430; 3%, +2X%, <460; X +4x, <420

X, Xy, X3 20

Using Simplex method solve the following LP problem

Maximize, Z = 2X, +4X, + X; + X,

Subject to,

X +3X, +X, <45 2% + X, <35 X, +4X; +X, <3

Xy Xy, X5, X, 20

Using Simplex method solve the following LP problem

Maximize, Z =4x, +3X, + 4X, + 6X,

Subject to,

X, +2X, +2X; +4X, <80;2X, +2X; + X, <60; 3x, +3X, + X; + X, <80
Xy Xoy X5, X, 20

Using Simplex method solve the following LP problem

Maximize, Z = 4x, +5x, +9x; +11x,

Subject to,

X+ X, + X3 + X, <15;7X +5X; +3X%, +2X, <120 ; 3x, +5X%, +10x, +15x, <100
Xy Xoy X3, X4 2 0.

Using Simplex method solve the following LP problem

Maximize, Z =15x, + 6X, +9x, + 2X,

Subject to,

2%, + X, +5X; +0.6X, <10; 3%, + X, +3X; +0.25x, <12; 7x, +Xx, <35
Xy Xy, X3, X, 2 0.

Using Simplex method solve the following LP problem

Maximize, Z =15x, + 6X, +9x, + 2X,

Subject to,

2X, + X, +5X, +0.6x, <10;3x, + X, + 3%, +0.25%, <12; 7x, +X, <35
X, Xy, X5, X, 2 0.

Using Simplex method solve the following LP problem

Maximize, Z = 4X, + X, + 3X; +5X,

Subject to,

4%, — X, —5X; —4X, <—20;3X, —2X, +4X, + X, <10; 8x, —3X, + 3%, +2x, <20
Xy Xy, X5, X, 20

has an unbounded solution.

Short answer type question:
I ————
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Using Simplex method solve the following LP problem
Maximize, Z =3x, + 2X,

Subject to,

X +X,<6; 2X, +X, <6,

X, X, =0

Using Simplex method solve the following LP problem
Maximize, Z = 2x, +3x,

Subject to,

X +X, <45 =X +X, <1;X +2X, <5

X, X, =0

Using Simplex method solve the following LP problem
Maximize, Z =5x, + 3x,

Subject to,

X +X, <25 5% +2X, <10;3x, +8x, <12

X, X, =0

Using Simplex method solve the following LP problem
Maximize, Z =5x, + 3x,

Subject to,

X <45 X, <3;X +2X, <18; X +X, <9

X, X, =0

Using Simplex method solve the following LP problem
Maximize, Z = X, + 2X, + 3X,

Subject to,
X, +2X, +3%; <10; x, +Xx, <5

X, %X, 20

Answer:

Fill in the blanks:

A variable which is added to the LHS of a “<” type constraint to convert the constraint into
an equality is called

A variable which is subtracted from the LHS of a “>” type constraint to convert the
constraint into an equality is called

The necessary and sufficient condition for the existence and non-degeneracy of all the
basic solutions of Ax = b is that every set of m columns of the augmented matrix [A, b] is

410 ANSWERS
. _______________________________________________________________________________________________________|
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Answer of long answer type question
X, =0, X, =100, X, = 230; Maximum(Z) =1350
X =1x, =1 %, =1/2,%, =0; Maximum(Z) =13/2
X, =280/13,x, =0, X, =20/13,x, =180/13; Maximum(Z) = 2280/13
X, =50/7,%, =0,%, =55/7,%, =0; Maximum(Z) =695/ 7
Unbounded solution.
Answer of short answer type question
1: X, =0, X, =6, Maximum(Z) =12
X, =4and x, =0or x, =1and X, = 2; Maximum(Z) =8
X =2,X,=0,MaxZ =10
X =4,X, =3, MaxZ =29
X =1X, =2,%X, =1.67; MaxZ =10
X =1X,=0,% =3, MaxZ =25
Answer of fill in the blank question

1 Slack Variable : Surplus variable
3: Linearly independent

DEPARTMENT OF MATHEMATICS SAGE 82
UTARAKHAND OPEN UNIVERSITY




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

UNIT-5: ARTIFICIAL VARIABLE, TWO-PHASE
AND BIG-M METHOD

CONTENTS:

51 Introduction

5.2 Objectives

5.3 Big-M method
Algorithm for Big-M method

54 Two Phase Method

5.5 Summary

5.6 Glossary

5.7 References

5.8 Suggested Readings

5.9 Terminal Questions

5.10 Answers

5.1 INTRODUCTION

The Big-M method is a technique used in linear programming to solve problems with
constraints that cannot be directly incorporated into the standard form. In linear
programming, problems are typically formulated to maximize or minimize a linear
objective function subject to linear equality and inequality constraints.

The Big-M method involves introducing a large positive constant (M) into the objective
function for each constraint that needs to be converted from inequality to equality form.
This constant ensures that the original problem's solution remains feasible even after
converting the inequality constraints into equality constraints.
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Since, both methods are used for solving linear programming problems, the simplex
method focuses on iteratively improving a feasible solution to reach optimality, while the
Big M method specifically addresses inequality constraints by introducing artificial
variables and a large penalty constant to guide the optimization process.

Generally, solution of linear programming problem having artificial variables are evaluated
by these two methods:

1. Big-M Method or Method of Penalties.
2. Two-Phase Method.

52 OBJECTIVE

After reading this unit learners will be able to

e Understand the basic concept of Big-M method or Method of Penalty
e Implement the Big-M method for the solution of LPP.

53 Big-M METHOD

An artificial variable is a temporary, fictitious variable added to equality (=) or greater-
than-or-equal-to (=) constraints in a Linear Programming problem. Its purpose is to help
find an initial basic feasible solution, which is necessary for methods like the Simplex
method. These variables are assigned a large penalty in the objective function so they are
driven out of the final solution, as they have no physical meaning.

LPP in which constraints may also have >, and = signs after ensuring that all bi > 0 are
considered in this section. In such cases basis matrix cannot be obtained as an identify
matrix in the stmling simplex table, therefore we introduce a new type of variable called
the artificial variable. These variables are fictitious and cannot have any physical meaning.
The artificial variable technique is a device to get the starting basic feasible solution, so
that simplex procedure may be adopted as usual until the optimal solution is obtained. To
solve such LPP there are two methods.

Q) The Big M Method or Method of Penalties.

(i)  The Two-phase Simplex Method.
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A non-negative variable is added to the left side of each equation in the usual form of an
LPP when the choice variables, slack variables, and surplus variables are unable to pay for
the original basic variables. We refer to this variable as an artificial variable.

One technique for solving LPP using artificial variables is the Big M approach. This
strategy assigns a very big negative price (—M) (where M is positive) to every fake variable
in the maximization type objective function. The issue can be resolved using the standard
simplex approach once the artificial variable or variables have been introduced.
Nevertheless, the following inferences are made from the final table when solving in
simplex.

Providing the optimality requirement is met and there are no artificial variables left in the
basis, the current solution is an optimal BFS.

If the optimality requirement is met and at least one artificial variable occurs in the basis at
zero level, the present solution is an optimal degenerate BFS.

If at least one artificial variable exists in the basis at a positive level and the optimality
criterion is met, then the issue has no feasible solution.

5.3.1 Algorithm for Big-M Method

The steps involved in applying the Big-M method generally include:

1. Convert inequality constraints to equality constraints by introducing slack
variables.

2. Introduce artificial variables for any inequality constraints that have a "> =" or
"="sign, but not for those with "< ,=".

Introduce a term in the objective function for each artificial variable multiplied by

a large positive constant (M). This term penalizes the objective function for the

presence of artificial variables.

Solve the modified linear programming problem using standard techniques, such

as the simplex method.

If any artificial variables remain positive in the optimal solution, it indicates that

the original problem is infeasible.

If the problem is feasible, eliminate the artificial variables from the solution to

obtain the optimal solution to the original problem.

The Big-M method is a widely used approach in linear programming, especially in
introductory courses and textbooks, as it provides a systematic way to handle constraints of
different types. However, care must be taken in choosing the value of M to avoid
numerical instability or other computational issues.
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Example 1: Using method of penalty (or Big M) solve the following LP problem
Maximize, Z = 6x, +4x,

Subject to,

2%, +3%, <30; 33X, +2X, <24; X, +X, >3

X, X, =0

Is the solution unique? If it is not, then find two different solutions.

Solution: Introducing the slack variable.

Maximize, Z = 6x, + 4x, +0s, +0s, + 0s,

Subject to,

2%, +3X, +s, =30

3X, +2X, +5, =24

X +3X, —S; =3

Xy X5,5;,S,,85 =0

Here, we can easily see that there is no initial basic feasible solution. So, we introduce an
artificial variable A > 0in the third constraints. Then the initial basic feasible solution are,

s, =30,5, =24 and A =3.

Now, corresponding to the basic variables s,,s, and A, the matrix Y = B'A(where
B =1, the identity matrix) and the net evaluation z; —c; (j=1,2,3,4,5,6) are computed,
Where ¢, =(0,0,— M).

So, the table will be

Cj

VB XB

Y3 30
Ya 24

Ve 3 1

z(=-3M) -M-6 -M-4 0
In the above table we can easily see that z, —c, and z, —c, are negative. Among these two

z, — ¢, has most negative value (Since M is very large), Therefore, y: enters the basis.

Since, Min{ﬁ;yil>0}=% This indicates ys leaves the basis and ys; becomes the
i1
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leading element. Since corresponding ys, A is the artificial variable. So, we drop it from
the objective function.

Ci

XB

24

15

3

2(=18) 0

Since z, —c, <0, y, enters the basis, Further, Min{ﬁ; Vis > O} :% :

i5

..y, leaves the basis and y,. becomes the leading element.

z(=48) 0 0

Since all z; —c; > 0.Thus, the optimal BFS of the given LPP is,

X, =8,x, =0 with max. Since Z =48.
Example 2: Using method of penalty (or Big M) solve the following LP problem
Maximize, Z =X, +2X, +3X; — X,

Subject to,
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X, +2X, +3X; =15; 2% + X, +5%X; =20; X, +2X, + X; + X, =10

X, Xy, Xg, Xy 20

Solution: We can see from the problem's requirements that the starting B does not have the
necessary identity column to make an identity matrix. So, we introduce artificial variables

A >0 and A, >0in the first and second constraints respectively. An initial basic feasible
solution, then, is

A =15A, =20 and x, =10.

Now corresponding to basic variables, A,A,and x,, the basis matrix Y =B™A and the net
evaluations z; —¢; (J =1,2,3,5,6) are computed, where c; =(—M —M —1). So the simplex is,

Cj -M

VB XB Y6

Ve 15 1
Vs 20 0

Ya 10 0

z -35M-10 -3M-2  -3M-4 -8M-4 0 0 0

Since the most negative (z,—c;) corresponds to vys, it enters the basis. Further,

Min{ﬁ; Vi > 0} = %,the current basis vector ys leaves the basis and y.3 becomes the leading
i3

element. As ys corresponds to an artificial variable A,, we drop ys column from subsequent
simplex tables.

VB

Ve

Y3

Ya
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Clearly, (z, —c,) is the only negative and hence ys enters the basis. Further Min{ﬁ; Y, > O}
i2

correspond to ye. SO, Yye leaves the basis and yi» becomes the leading element. Again, ys

corresponds to the artificial variable A and therefore we drop the artificial column ye in the

subsequent tables.

Cs VB XB Y1

y2 15/7 17
y3 25/7 37

ya 15/7 6/7

z 90/7 -6/7 O

Clearly, z, —c, <0 and, therefore, y; enters the basis. Further, Min{ﬁ; Vi > O} corresponds to

il

ya. S0, ya leaves the basis and ys1 becomes the leading element.

Cs yB XB Y1 Y2

2 Y2 0 1
3 Y3

1 Y1

Z 15

Since, all z; —c;are positive, therefore, an optimum basic feasible solution has been attained.

Hence, for the given LPP the optimal solution is,

Maximize, z=15; X, =X, =%, =5/2 and x, =0

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 89




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

Example 3: Using method of penalty (or Big M) solve the following LP problem
Minimize, Z =2x, +3Xx,

Subject to,

X, +X, 215; X, +2X, =26

X, X, 20

Proof: Introducing artificial and surplus variable, the given problem written in the standard form
as,

Maximize (Z') =Minimize (-Z) = —2x, —3X, + 0X, +0x, — Mx, — Mx,

Subject to,

X+ X, =X+ X =5, X, +2X, =X, + X =6 X, X,, Xg,eee

-2 -3 Mini Ratio

1/2 1/2 2/(1/2)=4

1/2 172 3/(1/2)=6

-(M+1)/2 (-M+3)/2
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From the last iteration in above mentioned table we see that z; —c; > 0for all j. Hence, the

optimality is satisfied. So, the optimal solution of given LPP is x, =4, x, =1 and the
corresponding Z,, =11

54 TWO PHASE METHOD

The Two-Phase Method is an algorithm used to solve linear programming problems, particularly
those that are not initially in standard form. It's a systematic approach to convert such problems
into standard form and then solve them using the simplex method. Here's a detailed explanation
of the Two-Phase Method:

Problem Setup:

Begin with a linear programming problem that may not be expressed in the standard
form, i.e., it may contain inequalities, non-negativity constraints, or objective functions
that are not in the form of maximization or minimization.

Phase I:

Objective: The objective of Phase | is to convert the original problem into an equivalent
problem that can be solved using the simplex method. This involves introducing artificial
variables to transform the problem into standard form.

Artificial Variables: Artificial variables are introduced for each inequality constraint in
the problem. These artificial variables help create an initial basic feasible solution. The
objective function in Phase | aims to minimize the sum of these artificial variables.

Initial Solution: The simplex method is then applied to this modified problem to find a
basic feasible solution.
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Feasibility Check: If the minimum value of the artificial variables is zero, indicating that
the original problem is feasible, the method proceeds to Phase Il. If the minimum value is
positive, it suggests that the original problem is infeasible.

Phase II:

Objective: In Phase Il, the artificial variables introduced in Phase | are eliminated, and
the original objective function is reintroduced.

Optimization: The simplex method is applied to optimize the original objective function
while maintaining feasibility. The basic feasible solution obtained from Phase | serves as
the starting point for Phase II.

Optimal Solution: The optimal solution found in Phase Il is the solution to the original
linear programming problem.

Conclusion:

Once Phase 11 is completed, the optimal solution provides the values of decision variables
that maximize or minimize the objective function, subject to the given constraints.

The Two-Phase Method ensures that linear programming problems can be solved even if
they are not initially presented in standard form, providing a systematic approach to
conversion and solution.

5.4.1 PROBLEM SOLVBING OF TWO PHASE METHOD

To obtain a basic feasible solution to the original L.P.P., the first part of this method involves
minimizing the sum of the artificial variable, subject to the stated constraints (known as the
auxiliary L.P.P.). Beginning with the fundamentally feasible solution found at the conclusion of
phase 1, the second step optimizes the original objective function.

The  algorithm's  iterative  process can be summed up as  follows:
Step 1: Put the provided L.P.P. into standard form and see if there is a feasible, basic solution
already in place.
(a) Proceed to phase 2 if a fundamental, feasible solution is available at the present time.
(b) Proceed to the following step if a ready, basic, and feasible solution is not available.

Phase |

Step 2: Add the artificial variable on the left side of every equation in which the initial basic
variables are missing. Construct an auxiliary objective function with the goal of minimizing the

overall sum of artificial variables.
|
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Thus, the new objective is to

Minimize z=A + A, +..+ A,

i.e., Maximize 2 =-A — A, —..— A,

where, A(i=12,...,m) are the non-negative artificial variables.

Step 3: Use the specially created L.P.P. and the simplex method. The least possible interaction
could result in either of the following three cases:

a. Max(Z") < 0and atleast one artificial vector appear in the optimum basis at a positive
level. In this instance, there is no feasible solution for the provided problem.
Max(Z") = 0and at least one artificial vector appears in the optimum basis at a zero level.
In this case proceed to phase-IlI.
Max(Z") =0 and no one artificial vector appears in the optimum basis. In this case also
proceed to phase-11.

Phase 11

Step 4: At this point, give each artificial variable that shows up in the basis at the zero level a
zero cost, and assign the actual cost to each variable in the objective function. Now, with the
specified restrictions, the simplex approach maximizes this new objective function. The modified
simplex table that was created at the end of phase I is subjected to the simplex method until an
optimal basic feasible solution is reached. At the conclusion of phase, I, the artificial variables
that are not basic are eliminated.

Note: It is possible to completely remove artificial variables from the simplex table that do not
occur in the fundamental solution.

Example 1: Using two-phase method solve the following LP problem
Maximize, Z =5x, +3x,

Subject to,

2% +X, <1; X +4X, >6;

X, X, =0
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Solution: Introducing the slack variable s, >0, a surplus variables s, >0 and an artificial
variables A >0 in the constraints of the linear programming problem.

So, the initial basic feasible solution is; s, =1 and A =6 with |, as the basis matrix.

Phase 1: The objective function of the auxiliary L.P.P. is to maximize Z" =—-A . Using now
simplex algorithm to the auxiliary linear programming problem, the simplex table is,

Initial iteration: Dropping of y,and introducing of v, .

YB

Y3

Ys

Zj

Zj- G z (=-6) -1 -4 0 1 0

Since z, —c, and z,—c, are negative, we choose the most negative of these, viz., -4. The

corresponding column vectory, enters the basis, Therefore, y1 enters the basis. Further, since,

Min{ﬁ; Y, > 0} =1, which occurs for element y1, y3 leaves the basis.

i2

Final iteration: Optimal solution.

Cs yB XB

0 Y2

-1 y5
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Since all (z; —c;) >0, an optimum basic feasible solution to the auxiliary L.P.P. is obtained .

But max. z~ <0 and an artificial variables is in the basis at a positive level. Thus, there isn't a
feasible option in the original L.P.P.

Example 2: Using two-phase method solve the following LP problem
Maximize, Z =5x, —4x, + 3x,

Subject to the constraints,

2%, + X, —6X, = 20;6x, +5X, +10x, < 76; 8%, —3X, + 6%, <50;

X, Xy, X3 =0

Solution: Introducing the slack variables s, >0 and s, >0, the given L.P.P. in the standard
form is:

Maximize, Z =5x, —4x, + 3X;, subject to the constraints:
2X, + X, —6X; = 20;6x, +5X, +10X, +s, =76; 8%, —3X, + 6X; +5S, =50;
X, X5, X3,5,,S, =0

In the matrix form the set of constraints is,

2 1 -6 00
6 5 10 1 O
8 -3 6 01

Given that there are no identity matrix columns that can be used as the initial basis matrix. To
complete the identity basis matrix, we add the necessary identity column or columns. Put in the
identity column [1 0 0] as the new column ys, in other words. Clearly, this amounts to the adding
an artificial variable A >0 in the 1* constraints.

Now, an initial basic feasible solutionis A =20, s, =76 and s, =50.

Phase 1: The objective function of the auxiliary L.P.P. is z* = —A,. The iterative simplex tables

for the auxiliary L.P.P. are;
I ————
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Initial iteration: Introduce y, and drop ;.

Ci

XB Y1

20 2
76 6

50 8 1

7% (= -20) -2 0 0 0

Since, z,—c, is negative, the column vector yi enters the basis. Further, since

Min{ﬁ; Yy > O} = %) ; ¥s leaves the basis. The element ys1 (=8) becomes the leading element.
i1

First iteration: Introduce y,and drop ;.

Y8 X8 y1 y2 ys3 Ys

Ye 15/2 0 714 -15/2 -1/4
Y4 7712 0 29/4 11/2 -3/4

Y1 25/4 1 -3/8 3/4 0 1/8

z*(=-15/2) O -714 15/2 0 1/4

Here, z, —c, is the only negative z; —c;. This indicates that y, enters the basis. Also

(714
becomes the leading element.

i2

Min{@; Vi, > O} _ (15/2) suggested that y, must leave the basis, thereby y,, (-7/4)

Final iteration: Optimum solution.

Cs yB X8 Y1 Y2 Y5 Ye
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y2 30/7 17 417
ya 52/7 217 -29/7

yi 55/7 1 0 0 1/14 3/14

7* (=0) 0 0 0 0 0 1
Since all z; —c; >0 an optimum solution to the auxiliary L.P.P has been reached. Moreover, the
table makes it clear that there are no artificial variables in the base.

Phase 2: Now, we consider the actual costs associated with the original variables. So, the
objective function is,

Z =5X%, —4X, + 3%, +0.s, +0.s,

The iterative simplex table for this phase is:

Cs Y XB ys Ys

-4 30/7 -30/7 -1/7
52/7 256/7 217

55/7 -6/7 1/14

z* (=155/7) O 0 69/7 13/4

Since all z; —c; >0 an optimum basic feasible solution has been reached. Hence an optimum
basic feasible solution to the given L.P.P. is,

X, =55/7,x, =30/7,X, =0; maximum z =155/7,
Example 3: Maximize, Z =3x, — X,

Subject to the constraints,

2%, +X, 2 2;% +3X, <2;X, <4

X, X, 20

Solution: Maximize, Z =3x, — X,
_________________________________________________________________________________________________________________|
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Subject to the constraints,

2%, +X, =S, +a, =2

X +3X,+S, =2

X, +S, =4

X, X5,5;,5,,55,8, =0

So, the auxiliary LPP will become
Maximize, Z* = 0x, —0x, +0s, +0s, +0s, —1a,
Subject to,

2%, +X, =S, +a, =2

X +3X,+S, =2

X, +S, =4

X, X5,5;,5,,85,8, =20

Phase |

Basic i Min ratio

Variables : . Xg Xy

i |—
52 2

53 =

7* =0 —A,

Since all A; >0, MaxZ" =0 and no artificial vector appears in the basis, we proceed to phase I1.
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Phase I1

Basic . ) Min ratio
Variables : - Xg X

X

52

53

(4]

i
[

-

S

c—ﬁl

(]
= —olH=]s
]

Since all A; >0, optimal basic feasible solution is obtained.

Hence, the solution is MaxZ =6, x, =2,x, =0.
Example 4: Maximize, Z =5x, +8x,

Subject to the constraints,

X, +2X, 23X +4X, 24X + X, <5

X, X, 20

Solution: Maximize, Z =5x, +8x,

Subject to the constraints,

3X, +2X, —S, +a, =3

X +4X,—s,+a, =4

X +X,+S;=5

Xy X5,5;,S5,S5, 8,8, =0
1
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So, the auxiliary LPP will become

Maximize, Z~ = 0x, +0x, +0s, +0s, + 0s, —1a, —1a,
Subject to,

3X, +2X, —S, +a, =3

X +4X,—s,+a, =4

X +X,+S;=5

Xy X5,5;,S5,S5, 8,8, =0

Phase 1

=

Basic . ) Min ratio
WVariables B X Xy,
3/2

1—

a

a;

dz

53 J

— | — [E=] 2

|
]

¢—,ﬁ|
2/5—
4

= =

¢—,ﬂ|

¢—,ﬁ|

Since allA; >0, MaxZ" =0 and no artificial vector appears in the basis, we proceed to phase 1.
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Phase 11

Basic Min ratio

Wariables . - . Mg Xy

X 2/8 2/ 2—

X2

53 37

Since all A; >0, optimal basic feasible solution is obtained. Therefore, the solution is,

MaxZ =40,x, =0,x, =5

Check your progress

Problem 1: Using penalty method to solve the following LP problem
Maximize, Z =2x, +3x,

Subject to,

X +2X, <4

X +X, =3

X, X, 20
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Answer: x, =2,X, =1, Maximum Z =7

Problem 2: Using Big-M method to solve the following LP problem
Minimize, Z =12x, + 20x,

Subject to,

6%, +8x, 2100

7x, +12x, >120

X, X, =0

Answer: x, =15,x, =5/4, Minimum Z =205

5.5 SUMMARY

The Big-M method is a technique used in linear programming to solve problems involving
artificial variables, typically in cases where constraints cannot be easily transformed into
standard form. It involves adding artificial variables with a very large positive or negative
coefficient, represented by "M," to the objective function. The purpose of these artificial
variables is to facilitate finding an initial feasible solution. The algorithm then proceeds to
minimize the impact of these artificial variables by driving their coefficients to zero, effectively
removing them from the solution. If any artificial variables remain in the final solution with non-
zero values, it indicates that the original problem has no feasible solution. The Big-M method is
particularly useful in dealing with complex constraints and ensures that the artificial variables do
not influence the optimal solution, unless they are necessary to indicate infeasibility.

5.6 GLOSSARY

Big-M method or Method of penalty
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TERMINAL QUESTION

Long Answer Type Question:

1. Using Big-M method to solve the following LP problem
Minimize, Z =5x, —6X, —7X,
Subject to,
X, +5X, —=3X; 215; 5X, —6X, +10X; >20; X, +X, + X, =5
X, Xpy X3 20
Using Big-M method to solve the following LP problem
Maximize, Z =2x, + X, +3X,
Subject to,
X + X, +2X; <5, 2X, +3X, +4x;, =12;
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X, X5, X3 20
Using Big-M method (Penalty method) to solve the following LP problem
Maximize, Z =8x,
Subject to the constraints;
X —X, 20;2% +3X, <6; 3% +3X, + X; + X, <80
X,, X, are unrestricted
Short answer type question:
1. Using Big-M method (Penalty method) to solve the following LP problem
Maximize, Z = 2x, + X,
Subject to,
3X, + X, =3;,4X, +3X, 26, X, +2X, <3;
X, X, =0
Using Big-M method (Penalty method) to solve the following LP problem
Maximize, Z =3x, + 2X, + X,
Subject to,
2X, + X, + X, =12; 3x, +4x, =11,
X,, X3 =0 and x, is unrestricted.

Fill in the blanks:

1: Linear programming is a technique of finding the

2: Any solution to a linear programming problem which also satisfies the non-negative
notification of the problem has
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5.10 ANSWERS

Answer of long answer type question

1: No feasible solution.

2: X =3,X, =2,%; =0; Maximum(Z) =8

X, =—6/5,x, =—6/5;Maximum(Z) =—-48/5
Answer of short answer type question
1: X =3/5,X, =6/5 Minimum(Z) =12/5

X, =11/3,x, =0, X, =14/3, Maximize(Z) =47/3

Answer of fill in the blank question

1 Optimal value : Feasible solution
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UNIT-6: RESOLUTION OF DEGENERACY

CONTENTS:

6.1  Introduction

6.2  Objectives

6.3  Degeneracy in linear programing
6.4  Summary

6.5 Glossary

6.6  References

6.7  Suggested Readings

6.8  Terminal Questions

6.9  Answers

6.1 INTRODUCTION

Degeneracy in linear programming occurs when a basic feasible solution has at least one basic
variable with a value of zero. This can happen when there is a tie for the minimum positive
replacement ratio in the simplex method, leading to a situation where an arbitrary choice is made
for the leaving variable. While it doesn't affect the feasibility or optimality of the solution,
degeneracy can cause the simplex method to take more iterations, potentially leading to
a cycling problem where the same set of basic feasible solutions repeat without improving the
objective function.

Recall that the simplex algorithm tries to increase a non-basic variable X, . If there is no
degeneracy, then xs will be positive after the pivot, and the objective value will improve. Recall
also that each solution produced by the simplex algorithm is a basic feasible solution with m
basic variables, where m is the number of constraints.

There are a finite number of ways of choosing the basic variables. (An upper bound is
n! / (n - m)! ml, which is the number of ways of selecting m basic variables out of n.) So, the
I ————
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simplex algorithm moves from bfs to bfs. And it never repeats a bfs because the objective is
constantly improving. This shows that the simplex method is finite, so long as there is no
degeneracy.

6.2 OBJECTIVE

After reading this unit learners will be able to

e Understand the concept of Degeneracy in LPP.

6.3 DEGENRACY IN LINEAR PROGRAMMING

In this section of linear programming, degeneracy occurs when a feasible solution has more than
one way to be optimal, or more technically, when the number of basic variables is less than the
number of constraints at a basic feasible solution. Here’s a detailed look at degeneracy in linear
programming:

1. Understanding Degeneracy
Definition:

. Degeneracy at a Vertex: In a linear programming problem, a vertex of the feasible
region is degenerate if there are more constraints (hyperplanes) intersecting at that vertex than
the number of dimensions (basic variables).
. Degeneracy in the Simplex Method: A basic feasible solution (BFS) is degenerate if
one or more of the basic variables are zero.

2. Causes of Degeneracy

. Redundant Constraints: Extra constraints that do not change the feasible region but
increase the number of intersections.

. Multiple Optimal Solutions: When the objective function is parallel to a constraint
boundary, leading to multiple solutions along that boundary.

3. Implications of Degeneracy

. Cycling: In the simplex method, degeneracy can cause the algorithm to revisit the same
BFS repeatedly, potentially leading to an infinite loop (cycling).
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. Stalling: The simplex method might make a pivot that does not improve the objective
function, causing the algorithm to "stall" and take longer to find the optimal solution.

4. Handling Degeneracy

Anti-Cycling Rules:

. Bland's Rule: Choose the entering and leaving variables using a fixed order to prevent
cycling.

. Lexicographic Ordering: Maintain a lexicographic ordering of the variables to ensure
progress in each step.

Perturbation Techniques:

. Slightly modify the right-hand side of the constraints to break ties and remove
degeneracy artificially.

Interior-Point Methods:

. These methods approach the optimal solution from within the feasible region rather than
along the edges, avoiding degeneracy issues inherent in vertex-based methods like the simplex

algorithm.

Degeneracy: Generativity is the property of obtaining a degenerate fundamental feasible
solution in a linear programming problem.

In an L.P.P., degeneracy can occur (i) at the beginning and (ii) at any point during the
subsequence iteration.

In case (i), every basic variable in the first basic feasible solution is zero. In case (ii), however,
multiple vectors are allowed to exit the basis at any time during a simplex method iteration. As a
result, the subsequent simplex iteration yields a degenerate solution where every basic variable is
zero. This implies that the objective function's value might not increase in the ensuing iterations.
Therefore, without enhancing the answer, the same simplex iteration subsequence can be
repeated indefinitely. We call this idea "cycling."”

Generally speaking, degeneracy is not problematic—that is, unless cycling happens. If there is a
tie in the replacement ratios, it usually suffices to choose a row at random. However, by
following these guidelines, the number of iterations needed to reach the optimal can be reduced.
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(1) Using the matching positive elements of the entering column vector, go from left to right to
divide the coefficients of basic variables (element of the column vector of the basic matrix) in the
simplex table where degeneracy is identified.

(if) The corresponding current basis vector departs the basis and the row with the least ratio,
measured from left to right column wise, becomes the pivot row.

Example 4: Maximize, Z = 22x, +30x, + 25X,

Subject to the constraints,

2%, + 2X, <100; 2Xx, + X, + X, <100, X, +2X, +2X, <100;
X, X5, X3 20

Solution: By introducing slack variables s, >0,s, >0 and s; >0 in the respective inequalities,
the set of constraints can be written as Ax=b, where

0 0 100
1 0b=[100|and X =[x, X, X S S, S
0 1

2 20
A=12 1 1
1 2 2 100

1
0
0

An obvious initial (starting) basic feasible solution in x, =B™b, where x; =[s, s, s,],
B =1, and b =[100 100 100].

x; =1b=1b gives [s, s, s,]=[100100 100]
Using now simplex method, the iterative simplex table are:

Initial iteration: Introduce y, and drop vy,

22

;] Y1

ya 2

ys 2
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Ye 1 2 0 0 1

z 0 -22 -30 -25 0 0 0

Since, z, —c, is the most negative z; —c;, y, enters the basis. Further, Min{ﬁ; Vip > O} =50
i2
occurs for the element y,, and y,,. Thus, there is tie among the ratios in the first and third rows,

i.e. among the basis vectors y, and y,. To obtain the unique current basis vector that will leave

the basis, we compute the ratios {ﬁ Yo, > 0} instead of {ﬁ Yo, > 0} for those column vector
i2 i2
which are in the basis. Here, since vy,,y.and y, are in the basis and there is a tie among y,and

y, for leaving the basis, we write the coefficients (elements) from above table:

Yoo Y5 Yo

Dividing these coefficients by the corresponding element of the entering column, i.e., of y,, we
obtain the following ratios:

Yo Y5 Vs

y, 12 02 02

y, 02 012 172

On comparing of ratios in the first column y, —row yields the smallest ratio and hence y, leaves
the basis.

First iteration: Introduce y, and drop vy,
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YB XB

Ya 0
Y5 50

y2 50

z 1500 -7 0 5 0 0 15

It is apparent from the above table that, (z, —c,) <0 and therefore y, enters the basis. Further,

since Min{ﬁ; Vi > 0} = % =0, on the current basis vector y,leaves the basis and y,,becomes

il

the leading element.

Second iteration: Introduce y, and drop ;.

Cs yB X8 y1 y2

22 yi 0 1 0
0 ys 50 0 0

30 y2 50 0 1

z 1,500 0 0 -9 7 0 8

Clearly, the solution is still not optimum, since (z,—c,;)<0. So, y,enters the basis. Further,

since Min{ﬁ; Yiz > O} = 5—?? the current basis vector y. leaves the basis and y,, becomes the
i3

leading element.

Final iteration:

Cs VB XB y2 Y3 Y6

22 y1 100/3 0 0 -1/3

25 y3 50/3 0 1 1/3
]
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50/3 0 1 0

z 1,650 0 0 0

Since, all (z; —c;) >0, an optimum basic feasible solution is,

X, =100/3,x, =100/3, X, =50/3 and maximum z =1,650.

Check your progress

Problem 1: Using two phase method to solve the following LP problem
Maximize, Z =10x, + 20X,

Subject to the constraint,

2% +X, =1

X +2X, =5

X, X, =0

Answer: x, =0,x, =3, Maximum z =60

Problem 2: Using two phase method to solve the following LP problem
Minimize, Z =2x, +4x,

Subject to, 2x, + X, 214; x, +3x, >18; x +X, >12; x,X, >0

Answer: x, =18,x, =0, Minimum z =36

6.4 SUMMARY

Degeneracy is important because we want the simplex method to be finite, and the generic
simplex method is not finite if bases are permitted to be degenerate.
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In principle, cycling can occur if there is degeneracy. In practice, cycling does not arise, but no
one really knows why not. Perhaps it does occur, but people assume that the simplex algorithm is
just taking too long for some other reason, and they never discover the cycling. * Researchers
have developed several different approaches to ensure the finiteness of the simplex method, even
if the bases can be degenerate. Bob Bland developed a very simple rule that prevents cycling.

Degeneracy in linear programming is a common occurrence, especially in large and complex
problems. While it can complicate the solution process by causing cycling or stalling, several
strategies like Bland’s Rule, perturbation techniques, and the use of interior-point methods
effectively address these issues. Understanding and handling degeneracy is crucial for efficient
and accurate linear programming solutions.

GLOSSARY

Degeneracy in linear programming
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6.8 TERMINAL QUESTION
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Long Answer Type Question:

1. Solve the L.P.P.
Maximize, z =5x, —2X, + 3X,
Subject to,
2X +2X, = X3 =25 3% —4X, <3; X, +3X; <5;
X, X5, X3 20
Solve the L.P.P.
Maximize, z = X, +1.5%, + 2x; +5X,

Subject to,

3%, +2X, +4X; + X, <6; 2X, + X, + X3 +5X, <4; 2X +6X, —8X; +4X, <5;

X +3X, —4X; +3X, =0; X,X,,X; =0

Using Two-phase method

Maximize, z = X, + 2X, +3X,

Subject to,

X, =Xy + X3 245 X +X, +2X; <8 X, —X%X;=2
X, Xpy X3 20

Using Two-phase method

Maximize, z =12x, +15x, +9X,

Subject to,

8%, +16x, +12x, <250; 4x, +8x, +10x, >80; 7Xx, +9X, +8Xx; =105
X, Xy, %3 20
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Short answer type question:

1 Solve the L.P.P.

Maximize, z =3x, + 2X, + 3X,

Subject to,

2X, + X, + X, < 2; 3X, +4X, +2X; 2 8,;

Xy Xoy Xg 20

Using two-phase method solve the following L.P.P.

Minimize, z = 2x, +4x,

Subject to,

2% +X, 214; X +3X,218; X +X, 212; X,X, =0

Using two-phase method solve the following L.P.P.

Minimize, z=3x, —X,

Subject to, 2x, +X, >2; X +3X, <2; X, <4; X, X, >0
Using two-phase method solve the following L.P.P.

Maximize, z =5x, +8x,

Subject to,

3X, +2X, 23; X +4X%, =24; X, +X, <5; X,X, >0

Using two-phase method solve the following L.P.P.

Minimize, z =X, + X, + X,

Subject to, x, —3X, +4X, =5; X, —2X, <3; 2X, + X; =2 4; x,X, =20

Objective type question:
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What is the purpose of the Two-Phase Method in linear programming?

a) To find the optimal solution directly

b) To handle problems where the initial basic feasible solution is not readily apparent
¢) To maximize the objective function

d) To minimize the objective function

In the first phase of the Two-Phase Method, the objective function is:

a) The original objective function

b) An artificial objective function, usually the sum of artificial variables

c) A constant value

d) Unchanged

Which of the following is introduced in the first phase of the Two-Phase Method?

a) Slack variables

b) Surplus variables
c) Artificial variables
d) All of the above

If the minimum value of the artificial objective function at the end of the first phase is
zero, this indicates:

a) The original problem has no feasible solution
b) The original problem is unbounded
c) A feasible solution to the original problem has been found

d) The problem needs to be reformulated
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What happens if the artificial variables are still in the basis at the end of Phase 1?

a) The original problem has multiple optimal solutions

b) The original problem is infeasible

c) The original problem is unbounded

d) The artificial variables are ignored in Phase 2

In Phase 2 of the Two-Phase Method, what is done after removing the artificial variables?
a) The original objective function is optimized using the feasible basis found in Phase 1
b) The process is restarted from Phase 1

c) New artificial variables are introduced

d) The solution is checked for optimality and feasibility

Why are artificial variables introduced in the Two-Phase Method?

a) To convert inequalities into equalities

b) To provide an initial basic feasible solution when one is not apparent

¢) To increase the complexity of the problem

d) To ensure the problem is bounded

Which of the following statements is true regarding the Two-Phase Method?

a) It guarantees an optimal solution in all cases
b) It is used when the primal problem has a readily available basic feasible solution

c) The second phase deals with the original linear programming problem after feasibility
is ensured in the first phase

d) It is only applicable to problems with all constraints as equalities
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6.9 ANSWERS

Answer of long answer type question
Answer 1: x, =23/3,x, =0,X, =5; Maximum z =85/3
X =0;X, =1.2;X, =0.9; x, =0; ; Maximum z =3.6
X, =18/5,x, =6/5,x, =8/5; Maximum z =108
X =6,X, =7,%; =0; Maximum z =177
Answer of short answer type question
Answer 1: X =0,X, =2,X, =0; Maximum z =4
X, =18,%, =0, ; Minimum z =36
X =3,%, =0,; Maximum z=9
X =0,%, =5,; Maximum z =40
X, =0,%, =5,; Maximum z =40
Answer of objective type question
Answer 1: b) 2: b)
c) 5: b)

b) 8: c)
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UNIT- 7: REVISED SIMPLEX METHOD

CONTENTS:

7.1 Introduction

7.2  Objectives

7.3 Revised Simplex Method
7.4  Summary

7.5  Glossary

7.6 References

7.7 Suggested Readings

7.8  Terminal Questions

7.9  Answers

7.1 INTRODUCTION

The revised simplex method isa computational variant of the traditional simplex
method for solving linear programming problems that uses matrix operations to improve
efficiency and accuracy, especially for large problems. Instead of manipulating a full tableau,
it maintains and updates a representation of the inverse of the basis matrix, only computing the
necessary data for each iteration. Key steps include calculating the inverse of the basis matrix
to find the optimal solution for the current iteration and determining the entering and leaving
variables by solving a system of equations.

7.2 OBJECTIVE

After reading this unit learners will be able to

e revised simplex method

7.3 REVISED SIMPLEX METHOS

Revised simplex method is a modification of the simplex method in the sense that it is more
economical on the computer, as it computes and stores only the relevant information needed

DEPARTMENT OF MATHEMATICS

UTARAKHAND OPEN UNIVERSITY PAGE 113




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

currently for testing and/or updating the current solution. Moreover, in the revised method,
the crux of the computations is rooted in the basis B and its inverse B2,

Computational Procedure:
Consider the L.P.P.:
Maximize z = cT X subject to the constraints: Ax = b, x > 0:

where ¢, x € R™, bT, € R™, and A is an m x n real matrix. In order to solve this L.P.P. by
the revised simplex method, we consider the objective function equation z = cx also as one of
the constraints and then seek a solution to the new system of (m + 1) simultaneous linear
equations in (n + 1) variables z, x4, x5, , X, such that z is as large as possible The set of
constraints can thus be represented as

ﬁx-zh, z-c¢l'x=0, and x =2 0
(n 0 [x]_[h'J -
L —c” ] Lot *=™

Let B be an initial basis submatrix of Aand Xz = B~1b be an initial basic feasible solution to
the original problem. Then, an initial basic feasible solution to the reformulated problem is
given by

Y o

s = B-.‘E, Where ;B‘LLXBT ZJ‘; Ef_[_b'ro:] and B‘:('Bcg ‘

Clearly, since B is invertible, therefore we can write

& = (6" O)

g8 !

By assumption B~ is known, Cz"B~tis known and hence all the elements of B=1 are
known. The V reader may check that B B=1 = I,,,.,.

Let us define a new (m + 1) xn matrix

A A A A A
Y =B'A where A= [ .,.J
-C

A B! 0][;\]_[ B! A ]
Yi “leB 1)L ¢y B1A -7

bue| B J P15 3.,

Llj"' i

or

where y, = B-'a, and g = ¢’ B'a,. )

Thus. we arrive at an interesting conclusion that the first m components of ¥, constitute the vector
y; and the (m+ 1)™ component is z;—c;; the first m components of _?:,, constitute x, and the (m+ [y
component is z (being treated as a variable).
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The above discussion enables us to give the computational procedure for solving
linear programming problems by Revised Simplex Method which is summarized below:

Revised Simplex Algorithm Major steps for the computation of an optimum solution of any
L.P.P. by revised simplex method are summarized below:

Step 1. Introduce slack and surplus variables, if needed, and restate the given L.P.P.
maximization standard form.

Step 2. Begin with an initial basis B = I,,, and form the auxiliary matrix B and write
down B~

Step 3. State the objective relation z = cx as an addition constraint and form A and b ,

A A A b
—C 0

Step 4. S\Zon?pute the net evaluations (g - ¢), j = 1, 2, ..., n by multiplying the successive
columns of A with the last row of B!, that is, by using the relation

A
(G- c)=(caB 1) [ ]
N
If all (zj~c;) are non-negative, the current basic solution is an optimum one.

where.

If at least one (zj-cj) is negative, determine the most negative of them say (
corresponding vector y, enters the basis. Go to Step 5.

If there is a tie for the most negative (z-
A

3 —¢y), the

¢ resolve the tie by any standard method. Go to Step 5

A .ty A .
Step 5. Compute y, = B .4, If all y, < 0, there exists an unbounded optimum solution to the
given problem.

If at least one y; > 0, consider the current x, and determine the departing vector. Go to Step 6.

Step 6. Write down the results obtained in Step 2 through Step 5 in a tabular form known as
revised simplex table.

Step 7. Convert the leading element to unity and all other elements of the entering column to
zero by suitable row operations and update the current basic feasible solution.

Step 8. Go to step 4 and repeat the procedure until an optimum basis feasible solution is
obtained or there is an unbounded solution.

Key differences from the standard simplex method

e Representation:

The standard method uses a full tableau that directly shows the constraints scaled to the basic
variables. The revised method uses a matrix representation of the basis, storing only the
inverse of the basis matrix (B™).
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o Efficiency:

For very large problems, the full tableau may not fit in computer memory, and even if it does,
calculating every value in the table is inefficient. The revised method only computes the data
needed for the current iteration, saving computer resources.

e Calculations:

It uses matrix operations and solves systems of equations to find the entering and leaving
variables, rather than the row operations of the standard method.

e Accuracy:

The revised method can reduce the accumulation of rounding errors compared to the
traditional method.

Remarks:

Benefit of revised simplex method is clearly comprehended in case of large LP
problems.
In simplex method the entire simplex tableau is updated while a small part of it is
used.
. The revised simplex method uses exactly the same steps as those in simplex method.
. The only difference occurs in the details of computing the entering variables and
departing variable.

Question 1. Use revised simplex method to solve the following L.P.P.:
Maximize z = 3x; + 5x, subject to the constraints:
x1<4,x,<6,3x; +2x,<18;and x; >0, x, > 0.

Solution: Step 1. Introducing the slack variables s;,>0, s; >0 and s; >0,

the given L.P.P. can be restated in the standard form as

vaxmize z = ¢ly

subject to the constraints: Ax = b and x > 0
0 = Y

4
» b= 6] and T=3 5, 0, 0, 0).
8
feasible solution i - 51=4, 5=

[0 0
vhere A=10 1 I 0
3 2 0 1
ic

]

0

0
Step 2. An initial bas

6 and s; = 18 with I, as the initial basis matrix.

L 01 0 0 I 0 00
0 v Bl ® =

A 0 1 curr CBTB'I | 0010

SRNIRINNNN NI IN IR IIIY

L0 0 0 I

Initial Iteration.
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Step 4. The net evaluations are given by

A
(Zj - CJ) = (CBTB_l 1)A = (CBTB—l 1) [,i\ll 32 33 34 35] =(-3, -5 0, 0, 0).
; : i A i
Since (z; —c,) is the most negative, Yy, enters the basis.

(1 0 0 0)

. 01 0 0
Step 5. Now, Y2=Blanfa=|l 0 0 1 0

A A A
and xg = Bl b = 18

Lo o0 0o 1)\ o)
Basic variable to be removed from the basis is determined by using

.| Xsi - _§‘1§}_
m}n.{yn'y,2>0}—mm.{] 2 = 6.

Since, this minimum ratio corresponds to basic variable sy, y, leaves the basis. Thus, y,, becomes
the leading element. .
The initial revised simplex table, therefore, is:

L

f

®

5

f

s
"
n
o
Y
~
¥s

~
n
0
2

First Iteration. _
' v dind .r elements of the entering col
Step 3. Converting the leading element to unity and all other ¢l & coloump o
7e10, We get

3 |
B yen =

This directly gives the new current quantitics as
1 0 0
B, ={0 1 0| and e B =03 0)
0o -2 1

DEPARTMENT OF MATHEMATICS SAGE 123
UTARAKHAND OPEN UNIVERSITY




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

S Z ’ .
Using these current quantities, an improved solution is
1 0
R . 0 1 0
Xp = B~l('urr [hf 0] = 0 -2 1

6
6 xB (Sl. X2 and .13 ba;,'c)

veseee

0 .5 0 - . 30 Jz

Step 4. The net evaluations are given by gy
G -c)=(g B Dia ay a3 A as]

=(-3 00 5 0).

Since (z; —¢,) is the only negative, ’3\11 enters the basis.
1 0 0 O
A 0o 0 O

Step 5. Now Y, = B, a = 0, =2

0
l

A A A 0
and Xp = B.Icurr b=| 0 |

0 0 30
Basic variable to be removed from the basis is determined by using

.| XBi oot 39}_
mgn.{y“ y,-j>0}-mm.{l 3 =2,

\ ii
Since, this minimum ratio corresponds to the basic variable s,, ys leaves the basis. The revised

simplex table, therefore, is

A
Yo
A
Y3
A
Y2
A
¥Ys
Z

Einal Iteration.
Step 3. Converting the leading element to unity and all other elements of the entering coloumn 10
zero, we get
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Step 4. The net evaluations are given by

A
G -¢)=0 3 1, nA=(, 0,0, 3, 1)
Since all (z; = ¢;) 2 0, an optimum basic feasible solution is obtained which is given by

X =2 x=6, Xy =2 and maximum z = 36.

Question 2.

Use revised simplex method to solve the L.P.P.,
Maximize z = 3x, + 2x, + 5x; subject to the constraints :

Xy * 2.\'2 + xq < 430, 3X| + ?.Y:; < 460, x; + 4xy € 420, x;, X9, X3 2 0.

Solution:
Solution. Step 1. By introducing the slack variables s, 2 0, s, 2 0 and s; 2 0, the given L.P.P.
can be re-written as
Maximize z = ¢’x subject to the constraints : Ax =b and x 20,
1 2 1100 430
where A=|3 0 2 0 1 Of, b=|460|and ¢'=(325 00 0)
1 4 0 0 0 1 420
Step 2. An obvious initial basic solution is
initial basis matrix. Now

5, = 430, 5, = 460 and 5, = 420 with B = I as the

A
| -
and B curr ~

Initial Iteration.
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Step 3. The net evaluations for non-basic variables are
(Zj - Cj) = (CBTB_l. 1) aj‘

=0 0,0 1)

1
3
1

-3
i .
Since (z; — ¢3) is the most negative, y; enters the basis.

Step 4. Now,

A A
Xg =B b=

Basic variable 1o be removed from the basis is determined by USINg

% 430 460 _
’2.).,.90 = min. {—l—'—z‘ s
_ _ Y . A the basis. Thus
Since this minimum ratio corresponds to basic variables s, ¥s leaves the Dasis. Yas become,
the leading element,

The initial revised simplex table therefore is :
A A
Yp B!
7 :
¥a
A
Ys
A
Y6

<

min.
i

First Iteration,

Step 2. Converting the leading element to unity and"all ‘other elements of the entéring colump o
zero, we get

-2 0 )
12 0
0 1
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This directly gives the new current quantiliés as

1 -172 0
Bl =|0 172 0|, ¢"B'=(0. 52 0).
0 0 1
Making use of these current quantities, an improved solution ‘s

L =172 0 §\(430
0 172 0 0} 460
0 0 1 0] 420
0 52 0 1)\ o
= [200, 230, 420, : 1150)
Xp Z
Step 3. The net evaluations tor the non-basic variables are given by

(3 - ¢) = (c5" B, 1)[ay, @&y, 23

A _nl T
Xg = B~ [b" 0] =

(51, x3 and sy basic)

2 0
: 3 1
= (0, 572 '
( 2.0 1) ; n
0

-3 2 0]
=(9/2,°2, 5/2).

. . i A
Since (z, - ¢y) is the only negative, y, enters the basis.

Step 5. Now = p-1 A
25 % M= 0200,4 0 220 (current = next of previous step)

] = 100

nrie 'Y A .
ariable 5, y, leaves the basis. The revised simplex

g : .\. ]
Also Min = {-~"~'» Yo > ()] = Min ’2_00 420
i {

Y
Since the minimum ratio corresponds 1o basic v
table is :

2 |

B R

e ————

A A
Yp B-!
A

Yy

A

Y

A

Yo

-
~

Final Iteration. Converting the leading eleme i
' nt to unity .
column to zero, we get W and all-other elements of the entering
(172 -1/4
0

=2
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sk

The net evaluation for non-basic variables are given by
G -c¢)=(l, 2,0, 1)[3), 8 as]=@ 1, 3)
2 0, an optimum basic feasible solution is attained -
172 -1/4 0 0 430
0 172 0 0 460
A A A
xg=Bl..b=| 2 1 1 o0

Since all g - ¢

1 2 0 1

= [100, 230, 665 : 1350]
Xp Z

Hence, x; = 0. x, = 100, x; = 230 and maximum z = 1350.

Question 2.

Use revised simplex method to solve the following L.P.P, :
Minimize. z = x; +.x, subject to the constraints :

x,+2x227, 4X’+X226. XI.XZZO..

Solution, By introducing surplus variables 82 0, 8 2 0 and artificial variables 4, > 0, 4,2

the given L.P.P. is written in the standard forp -
Maimize 2"= ¢’% subjectto the constaints: Ax = b and x 3 0

B I O 6
An initial basic feasible solution is A, = 7 and 4, = § with I, as the initial basis.

(12 - ) | g
41 0 -1 o

12 -1 01 0 7
Where A'= v b=l el = (e, -1, 070, -M, M),

Now,

L0 0wy

____________________________________________________________________________________________|
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and

with ¢’ = (-M, -M).
Initial Iteration. The net evaluations for non-basic variables are computed as :

(- ) = (M, M, [ &y, By g, )= (SM+ 1 -3MH I, M. M)

This shows that s"l enters the basis, since (z; — ¢;) is the most neg

Now 3\'1 = ﬁ-I('urr al = [l' 4, <oi:+4 ”
T G

ative.

. Xp = ﬁ-'c,,,,['bf, 0= 6: -13M)
Xp Z

The initial revised simplex table, therefore, is

A
3 B
A
¥ ; Y
e )
l -M -M -SM + 1

‘First Iteration. The updated basis inverse is
| -1/
A 0 1/4

B en =

(,) , and therefore

M M-1/4 ]

M-1 A A A -M+3 -M+1
(Zj-c'j)=(~M’ T' l)[az. &, a4]""( 4 v M, 4 )

. ; .. A '
Since (z, - ¢y) is the most negative, ¥, enters the basis.

Therefore, the next revised simplex (able is :
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Final Iteration. The updated basis inverse is

5 41 =171 0
B, ,=|-171 271 0
' =31 -1/7 |

Therefore, (5 - ¢) = (-3/7, -1/, 1) [y, 8] = 3/, 1/7).

Since, all (z; - ¢)) 2 0 an optlmum basis feasible solution is attamed Hence, an optimum basic
feasible solution is x; = 5/7, X; = 22/7; minimum z = 27/7.

¢ REMARK 1. SIMPLEX METHOD VERSUS REVISED SIMPLEX METHOD

Considered the general L.P.P. as of maximizing z = cx, subject to the constraints:

Ax =band x = 0 where Aisan mn matrix (m X n) and x as well as b are m X 1 matrices. In
solving the L.P.P. by simplex method suppose that artificial variables are not needed. Then,
we have to carry out the calculations of (n + 1) columns (columns corresponding to columns
of A and one column corresponding to xa. the basic solution) at each iteration. At each
iteration of simplex method, one non- basic variable is introduced into basis and one current
basic variable is removed from the basis.

Thus, in total we compute for m + n — 1 columns. Furthermore, for each of these columns,
we have to transform m + 1 elements (m corresponding to y;, and one corresponding to z; —
¢; ). For moving from one iteration to another we also need to calculate minimum ratio
Xiglyji. Hence, in all we have to perform multiplication (m + 1)(n - m + 1) times and addition
m(n-m+ 1) times.

In the revised simplex are m + 1 rows and m + 2 columns. So, for moving from one iteration
to another we have to make (m + n)? multiplication operations to get an improved solution
in addition to m(n — m) operations for calculating z; — ¢;. The major differences between
the two methods of solution are the following:

(i) In the revised simplex method, we need to make (m + 1) (m + 2) entries in each table
while in simplex method there are (m + 1) (m + 1) entries in each

(i) In the simplex method all y, are updated at each iteration, whereas in the revised simplex
method only the column of entering variable is updated.

(iii) If the number of variables, is significantly larger than number of constraints m, then the
computational efforts of the revised simplex method is smaller than that of the simplex
method.
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(iv) The inverse of the current basis matrix is obtained automatically in the revised simplex
method.

e Bounded variables:

Very often a linear programming problem may have, in addition to the given constrfxints, some (or all)
variables with lower and upper limits. In such cases the standard form of L.P.P. will look like :
Maximize z = cx subject to the constraints : Ax =bh, 1£x S0,

where X = [x), Xp, ... X,], BT = [b, By e by € = ey €20 oG 1 = [/l oo L) u = uy, my uy),
andA = (a): i=1L2 .,mj=12 ..,n

Here, A is an m x n real matrix and I and u denote the lower and upper bounds of x respectively.
In cases of unbounded variable, these limits are 0 and o respectively. . '

The inequality constraints I < x < u can be converted into equality constraints by introducing

~ slack and/or surplus variables s and s” as shown below :
x+s=u and x-5"=1

where : x20,.520 and s”20.

The lower bound constraint can be written as x = I + §” and tl
the remaining constraints,

wus x can be eliminated from all

The upper bound constraint can be written as x = u - s’. This does not serve the purpose,
since there is no guarantee that x will be non-negative.

The difficulty is overcome by using a special technique known as bounded variable simplex
method.

In bounded variable simplex method, the optimality condition for a solution is the same as the
simplex method, discussed earlier. But the inclusion of constraints x + s = u in the simplex
table requires modification in the feasibility condition of the simplex method due to the
following reasons:

(i) A basic variable should become a non-basic variable at its upper bound (in usual simplex
method all non-basic variables are at zero level).

(i) When a non-basic variable becomes basic variable, its value should not exceed its upper
bound and also should not disturb the non-negativity and upper bound conditions of all
existing basic variables.

Check your progress

Question 1. What is the revised simplex method?

The revised simplex method is technically equivalent to the traditional simplex method, but it
is implemented differently.

Question 2. Why do we use the revised simplex method?

The revised simplex approach is more efficient and accurate in terms of computing.
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Question 3. Which of the following is an advantage of the Revised Simplex Method over the
standard Simplex Method?

a) It is more computationally efficient and accurate.

b) It requires more manual calculations and a larger tableau.

c) Itis less effective at handling large-scale problems.

d) It cannot be used for maximization problems.

Question 4

In the Revised Simplex Method, what is Standard Form-11 typically used for?
a) When an identity matrix is obtained after adding slack variables.

b) When artificial variables are needed to form an identity matrix.

¢) When the problem has only one constraint.

d) When the objective function is being minimized.

Question 5

In the Revised Simplex Method tableau, what does the column denoted as 'B~' represent?
a) The inverse of the constraint matrix.

b) The inverse of the basis matrix.

c) The objective function coefficients.

d) The non-basic variables.
Question 6

Which of the following statements is NOT a characteristic of the Revised Simplex Method?

a) It avoids the need to calculate an initial basic feasible solution for certain problems.

b) It directly works with the inverse of the basis matrix (B~1)

c) It requires solving the dual problem to find the primal solution.

d) It is more computationally efficient, especially for large problems.

7.4 SUMMARY

When using the regular simplex approach to solve a linear programming

problem on a digital computer, the full simplex table must be stored in the computer
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table’s memory, which may not be possible for particularly big problems. However,
each iteration must include the calculation of each table. The revised simplex method,
which is a variation of the original approach, uses fewer computer resources since it
computes and maintains only the data that is currently needed for testing and/or
improving the current solution. To put it another way, it only requires a small amount
of effort. i.e.,

The non-basic variable that reaches the basis is determined using the net evaluation
row A;.

The pivoting column

To establish the minimal positive ratio, first, identify the present basis variables and
their values (Xg column), and then identify the basis variable to exit the basis.

By using the inverse of the current basis matrix at any iteration, the above information

can be directly extracted from the original equations.
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Degeneracy in linear programming
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7.8 TERMINAL QUESTION

Long Answer Type Question: Use revised simplex method to solve the following linear
programming problems:

1.
Maximize Z = 2x1 + x2
such that:
3x1+ dxo = 6
Ox1 +x2 =3
x1. X2 = O

Maximize z = x; + 2x, subject to the constraints: x; + x, <3, x; + 2x, <5
3x; + x,<6and xy,x, = 0.

3. Maximize z = x; + x, subject to the constraints: 3x; + 2x, <6, x; + 4x, <4
x1, %3 = 0.
4. Maximize z = 2x; + x, subject to the constraints: 3x; + 4x, <6, 6x; + x, <3

X1, %Xy = 0.

7.9 ANSWERS

Answer of long answer type question

Answer 1: x; =2/7 , x, = 9/7 and maximum value Z = 13/7.

e Check Your Progress
Q3 (@
Q4  (b)
Q5 (b
Q6 (o
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UNIT-8: DUALITY

CONTENTS:

8.1 Introduction

8.2 Objectives

8.3 Primal Problem

8.4 Dual Problem

8.5 Step-Wise Procedure for Formulating Dual Problem
8.6 Summary

8.7 Glossary

8.8 References

8.9 Suggested Readings
8.10  Terminal Questions

8.11 Answers

8.1 INTRODUCTION

The history of duality in linear programming (LPP) is linked to the work of John von
Neumann, who conjectured the duality theorem shortly after George Dantzig introduced LPP.
The theorem states that every linear program has an associated "dual™ problem, and solving
one can provide the solution to the other. The concept of duality was rigorously proven in 1948
and provides valuable insights like shadow prices and a way to solve problems that are
computationally easier in their dual form.

Duality in Linear Programming (LPP) is the principle that every LPP (called the primal) has a
related LPP, called the dual, which can be systematically constructed from it. The optimal
solutions of the primal and dual problems are interconnected: the optimal value of one provides
information about the optimal value of the other. For example, if the primal problem is a
maximization problem, the dual problem will be a minimization problem, and the objective
values will be equal at the optimum.

I ———
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Key concepts of duality

Primal and Dual: The original LPP is called the "primal,” and the derived LPP is the
"dual”.

Objective function: The type of objective function is reversed. A maximization
problem becomes a minimization problem, and vice versa.

Variables: Each constraint in the primal problem corresponds to a variable in the dual
problem. The number of constraints in the primal equals the number of variables in the
dual.

Constraints: The coefficients of the primal objective function become the right-hand
side values of the dual's constraints, and the right-hand side values of the primal
constraints become the coefficients of the dual's objective function.

8.2 OBJECTIVE

After reading this unit learners will be able to

e Understand the basic concept of Duality.

8.3 PRIMAL PROBLEM

Consider the standard form of a linear programming problem:
Primal LP: Minimize ¢'x

Subjectto Ax>Db

x>0

Where:

x is the vector of decision variables.

c is the vector of coefficients for the objective function.

A is the matrix of coefficients for the constraints.

b is the vector of constants on the right-hand side of the constraints.

8.4 DUAL PROBLEM

The concept of duality in Linear Programming Problems (LPP) is a fundamental aspect
of optimization theory. The dual problem provides deep insights into the structure of the
original (or primal) problem and can often be used to derive bounds on the optimal value
of the objective function.

________________________________________________________________________________________________________________|
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Here are some key points about the dual problem in LPP:
Duality Principle:
For every linear programming problem, known as the primal problem, there exists a
corresponding dual problem.
The solutions to the dual problem provide valuable information about the primal

problem and vice versa.
Fomulation:

Given a primal problem in the standard form:
Maximize ¢’ x

Subject to, Ax<bh, x>0

The corresponding dual problem is:
Minimize b"y

Subjectto, ATy >c, y>0

Here, A is the matrix of coefficients, ¢ and b are vectors, x and y are the variables for the
primal and dual problems, respectively.

The dual of the above primal problem (1) is formulated as follows:

Dual LP: Maximize b'y

Subjectto A"y <c

y>0
Where:

y is the vector of decision variables for the dual problem.

A" is the transpose of matrix A.
b is the same vector as in the primal problem.
c is the same vector as in the primal problem.

Remarks: One can readily detect the following from the definitions above:

(@) There is a dual variable for each primal constraint.

(b) There is a dual constraint for each primal variable.

I ———
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The primal and dual variable coefficients in the constraints are same except that they
are transposed,; i.e., the columns in the primal coefficient matrix becomes the rows in
the dual coefficient matrix.
While the number of primal variables and the number of dual constraints are exactly
equal, whereas the number of dual variables is exactly equal to the number of primal
constraints.
The right-hand side constants of the dual constraints become the objective coefficients
of the primal problem, whereas the objective coefficients of the primal variables
become the right-hand side constants of the dual constraints.

The following table can be used to summarize information about the dual variables' signs,

the type of restrictions, and the primal-dual objective:

Standard Dual
primal
objective

Obijective Constraints Variables
Maximization Minimization > Unrestricted
Minimization Maximization < Unrestricted

8.5 STEP-WISE PROCEDURE FOR FORMULATING
DUAL PROBLEM

The process of formulating a prime-dual pair involves several steps:
Step 1: In standard form, solve the given linear programming problem. Think of it as
the primal problem.
Step 2: Determine the factors that will be applied to the dual problem. These variables
have the same number as the constraint equations in the primal.
Step 3: Using the constants on the right side of the primal restrictions, write out the
objective function of the dual.
The dual will be a minimization problem if the primal problem is of the maximization
type, and vice versa.
Step 4: Write the constraints for the dual problem using the dual variable found in
Step 2.

If the primal is a maximization problem, the dual constraints must be all of > type. If
the primal is a minimization problem, the dual constraints must be all of < type.
The dual constraints' row coefficients are derived from the primal constraints' column
coefficients.
(c) The dual constraints' constants on the right side are the fundamental objective function's
coefficients.
(d) It is defined that the dual variables have an unrestricted sign.
I ———
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Step 5: Using steps 3 and 4, write down the dual of the given L.P.P.

Note: It is never required to take into account the dual constraints related to an artificial
variable since, in the standard form of the primal, the dual constraint relating to an
artificial variable is always redundant.

Remark 1: Primal-dual pairs are symmetric if the given linear programming problem is
in its canonical form.

2: The primal-dual pair is considered unsymmetric if the provided linear programming
problem is in its standard form.

Solved Example
Example 2: Find the dual of the following linear programming problem.

Maximize z =5x, +3x, , subject to the constraints

3%, +5x, <15, 5x, +2x%, <10, x, >0 and x, >0

Solution: Standard primal: Introducing slack variables s;,s, >0, the standard linear
programming problem is:

Maximize z =5x, +3x, +0.s, +0.5,, subject to the constraints

3X, +5X, +s, +0.s, =15,5x, +2X, + 0.5, +s, =10,X,, X,,S,,S, =0

Dual: Let w, and w, be the dual variables corresponding to the primal constraints. Then,
the dual problem will be:

Minimize z" = 5w, +10w,, subject to the constraints:

3w, +5wW, >5,5w, +2w, >3

w, +0.w, >0

ow, +w, >0

}:> w;, >0 and w, >0 unrestricted (redundant)

Here w, and w, unrestricted (redundant).

The dual variables w, and w,unrestricted” are dominated by w, >0 and w, >0.
Eliminating redundancy, the restricted variables are w, >0 and w, >0.

Example 3: Find the dual of the following linear programming problem.

Minimize z = 4x, +6Xx, +18X,, subject to the constraints

X +3X, 23, X, +2X; 25, X, X,,X; =0.

Solution: Standard primal: Introducing slack variables s;,s, >0, the standard linear
programming problem is:

Minimize z = 4x, +6x, +18%, +0.s, +0.s,, subject to the constraints

Dual: Let w, and w, be the dual variables corresponding to the primal constraints. Then,
the dual problem will be:

Minimize z" = 3w, +5w,, subject to the constraints:

w, + 0w, <4,3w, +w, <6, O.w, +2w, <18
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-w, +0.w, <0
ow, —w, <0

}:> w, >0 and w, >0 unrestricted (redundant)

Eliminating redundancy, the dual problem is:

Maximize z* = 3w, + 5w, subject to the constraints:

W, <4,3w, +w, <6,2w, <18, w, >0 and w, >0.

Example 4: Find the dual of the following linear programming problem.
Minimize z =3x, — 2X, + 4X,, subject to the constraints

3%, +5X, +4X; =7, 6X, + X, +3X; >4,

X —2X, —X3 <10, X, —2X, +5X; =3, 4X, +7X, —2X; > 2,.

X, X5, % 20

Solution: Introducing the slack  variable S; > 0surplus  variables
s,20,s,>20,5,>0,s,>0.

Minimize: z =3x, —2x, +4x; +0.s, +0.5, + 0.5, + 0.5,

Subject to constraint, 3x, —2x, +4X, —S, =7

6X, +X, +3X;, =S, =4

X —2X, — X3 +5, =10

X, —2X, +5%X; =S, =3

4% +TX, —2X3 —S; =2

X1y X5, X3,5,S,,S3,5,,8, =0

Dual: If w;(j =1,2,3,4,5) are the dual variables corresponding to mentioned five primal
constraints, So, the dual of the given L.P.P. will be;

Maximize z° = 7w, + 4w, +10w, + 3w, + 2w; , subject to the constraints:

3w, +6w, + 7w, +w, +4w, <3

SW, + W, —2W, —2W, + 7w, < -2

4w, + 3w, — W, +5w, — 2w, <4

-w, <0,-w, <0,w, <0,-~w, <0,-w, <0

w; (J =1,2,3,4,5) are unrestricted in sign.

Hence, after eliminating the redundancy, the dual variables are:
w, >0,w, 20,w, <0,w, >0, and w, >0

Example 5: Find the dual of the following linear programming problem.

Minimize z = x;, —3X, — 2X,, subject to the constraints

3X, — X, +2%X; <7, 2X, —4X, 212,—4x, +3X, +8%; =10 x, X, 20 and X3
unrestricted.

Solution: Initially, we introduced the slack and surplus variable s, >0 and s, >0

respectively, the primal problem is restated as,
I ———
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Minimize z =cx; subject to the constraints: Ax=Db, x>0
Where x =[X,, X, %5, X; ,5,,S,], € =[L,—3,—-2,2,0,0],b =[7,12,10] and
3 -1 2 -210

A=| 2 -4 0 0 0 -1|,whenX =X, —X,

-4 3 8 -8 0 O
Dual: If w=(w,,w,,w,) are the dual variables , then the dual of the given prima is
Maximize z° = 7w, +12w, +10w, subject to the
3w, + 2w, —4w, <1
-W, —4w, +3w, <-3=W, +4w, —3w, >3
2w, +8w, < -2
—2wW, —8w, <2

}:)—2W1—8W2 =2

w, <0
=w, <0 and w, >0
-w, <0
Where w;,w, and w, unrestricted.
Eliminating redundancy, dual variables are w;, <0,w, >0 and w, unrestricted. So, this
IS re-written as follows:

Maximize z° = 7w, +12w, +10w, subject to the constraints:
3w, + 2w, —4w, <1; w, +4w, —3w, > 3; —2w, —8w, =2;
w, <0 and w, >0, w, unrestricted.
Example 6:

Min Z,= 2x, + 5x;

Subject to

X]+X] E 2
2x+x:+H6x: < 6
X1-X:+3ixa=4
X1, X2, X:3= 0

Solution:
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Max Z,' = -2x; — 5x;
Subject to
X=Xy £ -2
2x+x,+H6x; <6
Xi-X2H3x:=4
Xt x-3x; <-4

X1, X2, X3= 0

Min Z,, = -2w, + 6w, + 4w — 4wy
Subject to
-wi + 2ws wa —wy = 0
“Wi + Wa- Wi twy = -2
6ws + 3wy 3w, = -5
W W Wi Wy =0

Some important theorems related to duality:

The dual of the dual is the primal.
Proof: Let the Primal L.P.P. be to determine x” € R™ so as to

Maximize f(x) = cx,c € R™ subject to the constraints:
Ax =bandx >0, bT € R™
where A is an m x n real matrix.
The dual of this primal is the L.P.P. of determining w” € R™ so as to
Minimize f(w) = bTw, bT € R™ subject to constraints:
ATw > ¢, wis unrestricted, ,c € R™.
Now, introduce surplus variables s > 0 in the constraints of the dual and write w = w; —
w,, where, w; = 0 and w; > 0.
The standard form of dual then is to
Minimize g(w) = bT(w; — w,), bT € R™ subject to constraints:
AT(w; —wy) —ILis =cT,c € R™.
w;, wyands = 0.
Considering this linear programming problem as our standard primal, the associated dual
problem will be to
Maximize h(y) = cy , ¢ € R™ subject to the constraints:
ADTy < (N, -y < ="

—y < 0(=y = 0) and y is unrestricted.
Eliminating redundancy, the dual problem may be re-written as:
Maximize h(y) = cy , ¢ € R™ subject to the constraints:
Ay <bandAy >bandy >0= Ay =0, bT € R™
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This problem, which is the dual of the dual problem, is just the primal problem we had
started with.
This completes the proof.

(Weak- Duality Theorem) Let x, be a feasible solution to the primal problem,
Maximize f(x)=cx subjectto: Ax<b,x<0

Where x" and ceR",b" e R™ and A is mxn real matrix. If w, be a feasible solution to

the dual of the primal, namely
Minimize g(w) =b"w, subject to: A'w>c",w>0
Where w' e R", then cx, eb’w,
(Basic duality theorem) Let a primal problem be
Maximize f(x) =cx subjectto: Ax<b,x>0,x",ceR"
And the associated dual be
Minimize g(w) =b"w subject to: A'w>c",w>0,w",b" ¢R"

Important characteristics of Duality

1. Dual of dual is primal

2. If either the primal or dual problem has a solution then the other also has a solution and
their optimum values are equal.

3. If any of the two problems has an infeasible solution, then the value of the objective
function of the other is unbounded.

4. The value of the objective function for any feasible solution of the primal is less than the
value of the objective function for any feasible solution of the dual.

5. If either the primal or dual has an unbounded solution, then the solution to the other
problem is infeasible.

6. If the primal has a feasible solution, but the dual does not have then the primal will not
have a finite optimum solution and vice versa.

Advantages and Applications of Duality

1. Sometimes dual problem solution may be easier than primal solution, particularly when
the number of decision variables is considerably less than slack / surplus variables.

2. In the areas like economics, it is highly helpful in obtaining future decision in the
activities being programmed.

3. In physics, it is used in parallel circuit and series circuit theory.
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4. In game theory, dual is employed by column player who wishes to minimize his
maximum loss while his opponent i.e. Row player applies primal to maximize his
minimum gains. However, if one problem is solved, the solution for other also can be
obtained from the simplex tableau.

5. When a problem does not yield any solution in primal, it can be verified with dual. 6.
Economic interpretations can be made and shadow prices can be determined enabling
the managers to take further decisions.

Symmetry property

For any primal problem and its dual problem, all relationships between them must be
symmetric because dual of dual is primal.

Fundamental duality theorem

e If one problem has feasible solution and a bounded objective function (optimal solution)
then the other problem has a finite optimal solution.

o If one problem has feasible solution and an unbounded optimal solution then the other
problem has no feasible solution.

e If one problem has no feasible solution then the other problem has either no feasible
solution or an unbounded solution.

If k th constraint of primal is equality then the dual variable wy is unrestricted in sign If p

th variable of primal is unrestricted in sign then p th constraint of dual is an equality.

CHECK YOUR PROGRESS

1. Which statement about duality in LPP is always TRUE?

(A) The dual always has a solution if the primal does.

(B) The optimal value of the primal equals the optimal value of the dual if both are feasible
and optimal.

(C) The dual is always a minimization problem.

(D) The dual variables must be non-negative.

2. What is the dual of a dual LPP?

a) The dual problem itself.

b) The primal problem.

¢) An entirely new problem with no relation to the primal.
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d) A problem with reversed constraints and objective function.

3. Inastandard LPP, if the i-th constraint in the primal problem is an equality (=)
constraint, the corresponding i-th dual variable will be:
a) Non-negative (> 0)
b) Non-negative (< 0)
¢) Unrestricted in sign
d) Zero
4. If the primal linear programming problem is unbounded, what can be said about

its dual problem?

a) The dual problem will always be unbounded.

b) The dual problem will have a finite optimal solution.

c) The dual problem will always be infeasible (have no feasible region).

d) The feasibility of the dual cannot be determined without more information.
. The duality theory in linear programming relates the primal problem to a

corresponding dual problem, and states that:

a) The optimal solution of the dual is always greater than the primal.

b) The primal and dual problems can have different optimal values if a solution
exists.

¢) Both primal and dual have the same optimum value, provided an optimal
solution exists for either problem.
d) The dual problem is only used for minimization problems.

Solution which satifies all the constraints of linear programming problem is called
(a) Feasible solution

(b) Bounded solution

(c) Unbounded solution

(d) None of these

7. Any feasible solution of a canonical maximization (respectively minimization) linear
programming problem which maximizes (respectively minimizes) the objective

function is called

(a) Feasible solution

(b) Optimal solution
I ———
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(c) Unbounded solution

(d) Bounded solution

8.6 SUMMARY

The summary of this unit are as follows:

Every linear programming problem (primal) has a corresponding dual problem.

The primal problem involves maximizing or minimizing an objective function subject
to constraints and non-negativity restrictions.

The dual problem is derived from the primal problem and involves a different set of
variables and constraints, effectively reversing the roles of the constraints and the
objective function.

For any feasible solutions to the primal and dual problems, the value of the objective
function in the primal problem is less than or equal to the value in the dual problem (for
maximization) or greater than or equal to the value in the dual problem (for
minimization).

If the primal problem has an optimal solution, the dual problem also has an optimal
solution, and the optimal values of their objective functions are equal.

Sometimes, solving the dual problem is easier than solving the primal problem. This
can be especially true when the dual problem has fewer constraints or variables.
Duality theory is also used in sensitivity analysis to understand how changes in the
coefficients of the primal problem affect the optimal solution.

Understanding duality is essential for grasping the deeper structure of linear
programming problems, providing insights that can be leveraged in both theoretical
analyses and practical applications.

8.7 GLOSSARY
Duality
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8.10 TERMINAL QUESTION

Short Answer Type Question:

Find the dual of the following problem

Maximize, z = 2000x, +3000x,

Subject to the constraints,

6%, +9x, <100; 2x, +X, <20; x,X, >0

Answer: X, =23/3,x, =0,X, =5; Maximum z=85/3
Find the dual of the following problem

Maximize, z =10x + 8y

Subject to,

X+2y>5; 2x—-y>12; x+3y=>4

x>0 and vy is unrestricted.

Answer: x, =0;x, =1.2;X, =0.9;x, =0; ; Maximum z=3.6
Find the dual of the following problem

Maximize, z =2X+5y + 6z
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Subject to,
S5X+6y—2<3;, -2X+y+4z<4;, x-5y+32<1; -3x—-3y+72<6;

X,y,2>0

Answer: x, =18/5,x, =6/5,%, =8/5; Maximum z =108

Find the dual of the following problem
Minimize, z=x, +2y
Subject to,
2X+4y <160; x—y=30; x>10; x>0 and y>0
Answer: X, =6,X, =7,%, =0; Maximum z =177
Find the dual of the following problem
Maximize, z=2x+3y+2
Subject to,
4x+3y+2=06;, Xx+2y+52 =4
X,y,2>0
Find the dual of the following problem
Maximize, z=3x+5y+7z
Subject to,
X+Yy+32<10; 4x—y+2z>15
X,y >0 and z is unrestricted.
Find the dual of the following problem
Minimize, z=x+y+2z
Subject to,

X—-3y+4z=5 x-2y<32y-2>4
I ———
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X,y >0 and z is unrestricted.

Find the dual of the following problem
Minimize, z =2x+3y +4z
Subject to,
2X+3y+522>22;3x+Yy+72=3;x+4y+62<5
X,y >0 and z is unrestricted.

Find the dual of the following problem

Maximize, z=6X+6y+z+7W+5s

Subject to,

3X+7y+82+5W+s=2; 2X+y+32+2W+95s=6

X,¥,z,w>0 and tis unrestricted.

Check Your Progress
1. (b)
2. (b)
3. (c)
4. (c)
5. (c)
6. (a)
;
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UNIT-9: DUAL SIMPLEX ALGORITHM

CONTENTS:
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9.6  References
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9.8  Terminal Questions

9.9  Answers

9.1 INTRODUCTION

Any LPP for which it is possible to find infeasible but better than optimal initial basic
solution can be solved by using dual simplex method. Such a situation can be recognized by
first expressing the constraints in ‘<’ form and the objective function in the maximization form.
After adding slack variables, if any right-hand side element is negative and the optimality
condition is satisfied then the problem can be solved by dual simplex method. Negative element
on the right-hand side suggests that the corresponding slack variable is negative. This means
that the problem starts with optimal but infeasible basic solution and we proceed towards its
feasibility. The dual simplex method is similar to the standard simplex method except that in
the latter the starting initial basic solution is feasible but not optimum while in the former it is
infeasible but optimum or better than optimum. The dual simplex method works towards

feasibility while simplex method works towards optimality.

9.2 OBJECTIVE
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After reading this unit learners will be able to

e Dual simplex method

DUAL SIMPLEX METHOD

Formulate the Dual Problem: Given a primal problem, formulate its dual.

Solve the Dual Problem Using Simplex Method: Sometimes, it is easier to solve the
dual problem than the primal problem. The solution to the dual provides information
about the primal solution.

Interpreting the Dual Solution: The values of the dual variables provide the shadow
prices or the marginal values of the resources in the primal problem.
Complementary Slackness: This principle helps in validating the solutions. For each
pair of primal and dual variables, at least one in the pair must be zero in the optimal
solution.

OR

If the primal problem is a maximization problem, the following set of rules govern the
derivation of the optimal solution:

Rule 1: The corresponding net evaluations of the initial primal variables are equal to the
difference between the left and right sides of the dual constraints associated with these initial
primal variables.

Rule 2: The negative of the corresponding net evaluations of the initial dual variables is
equal to the difference between the left and right sides of the primal constraints associated
with these initial dual variables.

Rule 3: If the primal (dual) problem is unbounded, then the dual (primal) problem has no
feasible solution.

Note: In rule 2, solve the dual problem by changing its objective from minimization to
maximization.

Solved Examples

Example 6: Using duality solve the following L.P.P

Maximize z =2x, + X, , subject to the constraints

X +2X, <10; X, +X, <6; X, —X,<2; X, —2X, <L X,X, =0
Solution: The dual problem for the given problem is as follows:
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Minimize z" =10w, + 6w, + 2w, + w, , subject to the constraints

W, +W, + W, + W, >2; 2w, + W, —W, —2w, =1, w,w,, w,,w, >0

Introducing surplus variables s, >0,s, >0 and artificial variables A >0, A, >0, an initial
basic feasible solution is A =2, A, =1. (The primal constraints associated with s ,s,, A, A,
are: —x <0,-x,<0,x, <M and x, <M).

The iterative simplex table are:

Initial Iteration: Introduce y, and Yy,

YB

Y1

Y2

Y7

1

1

Y8

2

1

Z*

-3M+10

-2M+6

First Iteration:

Introduce y, and drop v,

YB

Ws

Y2

Y3

Y8

Y7

3/2

1/2

3/2

-1/2

Y1

1/2

1/2

-1/2

1/2

Z*

-5-3M/2

1-M/2

7-3M/2

-5+3M/2

Second Iteration: Introduce y, and drop y,

VB

Y2

Va

Y3

1/3

V1

2/3

Z*

-4/3

Final Iteration: Optimal Solution.
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Y2

z* | -10 4

Thus, an optimum feasible solution to the dual problem is.
w, =0,w, =3/2 and w, =1/2; min(Z") = —(-10) =10.

Also the primal constraints associated with the dual variables A, A, are x, <M and x, <M

. Thus, by applying duality rules, the optimal solution to the primal problem is derived as
follows:

Starting dual variables

Corresponding {—(z; —c;)}

The difference between the
left and right sides of the
primal constraints associated
with the initial dual variables

Making use of Rule 2, we get
X—-M=-M+4 and x, -M =—M +2

X, =4 and x, =2

Hence , Maximum z = Minimum z~ =10
Example 7: Consider the linear programming

Maximize z = 3x, + 2X, +5X;, subject to the constraints
X +2X, + X, < a;; 3X +2X, <a,; X +4X, <ag;

Where a,, a,,a,are constant. For specific values of a,,a,, &, the optimal solution is

Basic X1 X2 X3 X4 X5 X6 Solution
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b2

b3

Where bi’s and ¢i’s are constant. Determine:

0] The values of a1, a2 and as that yield the given optimal solution.
(i)  The values of by, b2, bz and c1, 2, ¢3 in the optimal tableau.
(iii)  The optimal dual solution.

Solution: The optimal table indicates that slack variables x,, x;, X, are introduced in the three
primal constraints. They happen to be the starting primal basic variables also. Thus the
optimal basis inverse is given by B™ =[y, y. y,] from the optimal table.

(i)  We have B™b = X,

1/2 -1/4 0| a, | |100
0 1/2 O0fa,|=| ¢
-2 1 1a 20

1 1 1
= 8,-;2,-100,08, =, ~28,+8, +2, = 20

Also, z =cyx; = 1350 =200+ 5c, = ¢, = 230, where ¢, =[2 5 0].

Thus, we get a, =430,a, =460 and a, =480

(i)  The z-row gives:

4=cgy,—C =2b +5b, -3=2b, +5b, =7

c, =¢Cy,—¢,=1-0=1

C,=Cy¥s—C.=-1/2+5/2-0=2

To obtain the value of by, b2 and bs, we perform iteration on the starting primal table:

Initial Iteration: Introduce y, and dropy,
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First Iteration: Introduce y, and dropy,

YB XB Y1

ya | 200

Y5 230

Ye 480 1

1150 9/2

Second Iteration: Optimum Solution.

yB X8 Y1

Y2

Y3

Ve 80

1350

Comparing it with the given optimal table, we get

b,=-1/4,b,=3/2 and b, =4

(Note that the values of c,,c, are also readily available.)

(iit)  The dual problem is,
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Minimize z* = a,w, +a,w, +a,w;, subject to the constraints:
W, +3W, +W, >3, 2W, + W, +4w, > 2, W, + 2w, + 0w, =5
w, 20, w,>0and w, >0

The dual constraints associated with the starting primal variables x,, x; and x, and
w, >0,w, >0 and w,; >0

Thus we have the following information:

Starting primal
variables

Left minus right sides
of the associated dual
constraint Net
evaluation primal
optimal table

This using Rule 1 we get
¢, =w,-0=>w =c¢ =1

c,=w,-0=>w, =c, =2

O=w,—-0=w, =0

The optimal dual objective is Min. z*~ =1350 = a,w, +a,w,
Check Your Progress

. In dual simplex, the solution is always primal feasible and dual infeasible.
. In the dual simplex method, we maintain dual feasibility at every step and work to

achieve primal feasibility.

. in contrast, the primal simplex maintains primal feasibility and works toward dual feasibility
(optimality).

. Which condition necessitates the use of the Dual Simplex Method?
a) All constraints are of '<' type with positive RHS.
b) The initial basic solution is optimal but infeasible (negative RHS).

¢) The problem has multiple optimal solutions.

DEPARTMENT OF MATHEMATICS
UTARAKHAND OPEN UNIVERSITY




LINEAR PROGRAMMING AND GAME THEORY MT(N) - 223

d) The objective function is to be minimized.
In the Dual Simplex Method, the entering variable is chosen based on:
a) The most negative value in the objective row (Zj—Cj)
b) The most negative value in the RHS (Basic Variable) column.
c) The ratio of the RHS value to the corresponding negative coefficient in the pivot row.
d) The least positive value in the RHS column.
. What does a negative value in the RHS column of the final simplex tableau indicate in
the Dual Simplex Method?
Optimality has been reached.
The solution is feasible.
The current solution is infeasible, requiring further iterations.

An alternative optimal solution exists.

9.4 SUMMARY

The summary of this unit are as follows:

The Dual Simplex Method solves Linear Programming Problems (LPPs) by starting with

an optimal but infeasible solution, unlike the standard Simplex Method which begins feasible
and moves towards optimality. It works by iteratively removing the most negative basic
variable (maintaining optimality) and introducing a new variable (maintaining dual
feasibility) until all basic variables are non-negative, achieving both feasibility and
optimality. It's ideal for situations where adding constraints (like in Integer Programming)
makes the current solution infeasible but keeps the optimality conditions met. By contrast,
the dual simplex method takes a reversed approach. Rather than starting from a feasible
solution and moving towards optimality, it begins from a solution that would be optimal if the
primal constraints were fully satisfied. In other words, the objective row is already optimal,
but some RHS values are negative, indicating that the current solution is not primal feasible.
The dual simplex method then works to eliminate these infeasibilities. Once feasibility is
restored, the solution is guaranteed to be optimal.

9.5 GLOSSARY

> Duality

9.6 REFERENCES
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9.8 TERMINAL QUESTION

Long answer type question:
1. Solve the following LPP by using dual of the following problem
Maximize, z=8x+4y
Subject to,
4x+2y<30; 2x+4y <24
X,y>0
Solve the following LPP by using dual of the following problem
Minimize, z =15x +10y
Subject to,
3X+5y>5; 5x+2y >3

X,y>0
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Solve the following LPP by using dual of the following problem
Maximize, z =5x+2y

Subject to,

6X+Yy>6; 4x+3y >12; x+2y>4 and x,y >0

Solve the following LPP by using dual of the following problem
Maximize, z=2x+9y+z

Subject to,

X+4y+22>5;3x+Yy+2z>4; and x,y,z>0

Solve the following LPP by using dual of the following problem
Maximize, z=Xx+5y+ 3z

Subject to,

X+2y+2=3;,2x—y=4; and x,y,z>0

Solve the following LPP by using dual of the following problem
Minimize, z=10x+4y+5z+w

Subject to,

5x -7y +3z+0.5w>150; and x,y,z,w>0

Solve the following LPP by using dual of the following problem

Maximize, z=Xx—-y+3z+ 2w

Subject to,

X+y>-1 x-3y—z<7; x+z—-3w=-2and x,y,z,w>0
Solve the following LPP by using dual of the following problem
Maximize, z =2y -5z

Subject to,
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X+2>2;2X+y+62<6;x—y+3z=0and x,y,zZ,w>0

9.9 ANSWERS

Answer of long answer type question
1: Min (z) = 30x, + 24x,
Subject to, 4x, +2x, >8; 2x, +4X, >24;% >0;x, >0
The optimal solution is w, =6 and w, =3, max z =60
The optimal solution is w; =5/19 and w, =16/19, min z =235/19
Unbounded solution
w,=0,w, =0and w,=5/2;min z=5/2
Minimize (z7) = 3x, + 4x,
Subject to, x, +2x, 21, 2x, — X, 25;%, =3 and x, is unrestricted.
The optimal solution is x, =3 and x, =-1, min z" =5.
The optimal solution is x, =0; X, =0; X, =50; X, =0; min z~ = 250.
Unbounded solution.
Minimize z~ = 2x, +6X,

Subject to the constraint, X, +2X,+X;>0; X, —X; >2; X +6X, +3X,>-5 and

X, <0, X, 20 and X, is unrestricted in sign.

The optimal solution is x, =0; x, =2/3; X, =—4/3;min ' =4,

Check Your Progress
CYQ 1. True
CYQ 2. True
CYQ 3. True

CYQ 4. (b)
|
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CYQS5. ()
CYQ®. (c)
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BLOCK IV- SENSITIVE ANALYSIS,
LINEAR AND INTEGER PROGRAMMING
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UNIT -10 SENSITIVE ANALYSIS

CONTENTS:

10.1 Introduction

10.2  Objectives

10.3 Changes in The Right-Hand Side of The Constraints
10.4  Changes in The Cost Coefficients

10.5 Addition of a new variable

10.6  Changes in The Coefficients of The Constraints Aj
10.7 Summary

10.8 Glossary

10.9 Suggested Reading

10.10 References

10.11 Terminal Questions

10.12 Answers

10.1 INTRODUCTION

Sensitivity Analysis is a technique used to determine how the change
in input parameters (like cost, resources, or profit coefficients) affects
the optimal solution of a mathematical or decision-making model —
especially in Linear Programming Problems (LPP). It helps to check
how sensitive or stable the optimal solution is when there are small
changes in the data or assumptions.

Once the optimal solution to a linear programming problem has been
attained, it may be desirable to study how the current solution changes
when the parameters of the problem are changed. In many practical
problems this information is much more important than the single
result provided by the optimal solution. Such an analysis converts the
static linear programming solution into a dynamic tool to study the
effect of changing conditions such as in business and industry.

The change in parameters of the problem may be discrete or
continuous. The study of the effect of discrete changes in parameters
on the optimal solution is called sensitivity analysis or post optimality
analysis, while that of continuous changes in parameters is called
parametric programming.
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SENSITIVITY ANALYSIS

PARAMETERS VARIABLES

INPUT OBJECTIVE
DATA FUNCTION

This figure is a concept diagram explaining what Sensitivity Analysis
studies in a mathematical or optimization model (such as Linear
Programming). The central circle is Sensitivity Analysis, and the four
surrounding circles show the main components whose changes are
analyzed

10.2 OBJECTIVES

After studying this unit learner will be able

1. Understand the concept of Sensitivity Analysis.

2. Explain the importance of Sensitivity Analysis in evaluating the
stability.

3. To Determine the range of optimality for objective function
coefficients.

4. To Apply Sensitivity Analysis tools in managerial decision-
making and resource allocation.

10.3 CHANGES IN THE RIGHT-HAND SIDE
OF THE CONSTRAINTS bi

Suppose that an optimal solution to a linear programming problem
has already been found and it is desired to find the effect of
increasing or decreasing some resource. Clearly, this will affect not
only the objective function but also the solution. Large changes in
the limiting resources may even change the variables in the solution.

Examples:10.3.1 (a) Solve the problem

Department of Mathematics
Uttarakhand Open University Page 165




Linear Programming and Game Theory Course code - MT(N)-223

maximizeZ = 5x; +12x, + 4x3

subject to X1+ 2x;+x3<5
2x1 —x3 +3x3 =2
X1,X2,X3 =0

(b) Discuss the effect of changing the requirement vector from

[g] to [Z] on the optimum solution.

(c) Discuss the effect of changing the requirement vector from
5 3 . .

[2] to [9] on the optimum solution.

(d) Which resource should be increased and how much to
achieve the best marginal increase in the value of the objective
function?

(e) Which resource should be decreased and how much to
achieve the best marginal increase in the value of the objective
function?

Solution

(a) The standard form of this problem is
maximize Z = 5x; + 12x, + 4x; + 0s; — MA,,
subjectto x; + 2x, + x5 +s; = 5,

le_x2+3x3+A1 =2
X1,%X5,X3,51, A1 =0

Putting x; = x, = x3 = 0 in the constraint equations, we get s; = 5

and A; = 2 as the initial basic solution which can be expressed in
the form of a simple matrix or table10.3.1-1

Ce Obijective | 5 12 4 -M
function

Cj

variables
in current
solution

S1 1 2 1 1 0

As 2 -1 3 0 1

Initial basic feasible solution to the
artificial system

First Iteration: (i) Perform optimality test.
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12

X2

= ZepQyj

Cj
= Cj

—E

5+ 2M

(if) Make key element unity.

Table 10.3.1-3

X2

X3

S1

S

2

1

-M

Aq

-1

2/3 |

Key

element

unity

(i) Replace A; by x5.

Table 10.3.1-4

12

0

X2

13/7
«Key row

-2
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TK

Second feasible solution

Second Iteration. (i) Make key element unity. .

Table 10.3.1-5

X3 | 1 | Aq

0

7
2
3

Key element unity

(i) Replace s; by x,.

Table 10.3.1-6

12 4

X2 X3

- 4
a0i7 | M

TK

Third feasible solution

Third Iteration. (i) Make key element unity.
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Table 10.3.1-7

Xq b
1/7 13/7
(1) 9/5
Key
element

(i) Replace x5 by x;.

Table 10.3.1-8

m|\NDcn| R N o

|
o] 3

Optimal feasible solution

Thus, the optimal solution is x; = 9/5,x, = 8/5,x3 = 0,
Zoax =5%X9/54+12%x8/5+0 =141/5.

(b) New values of the current basic variables are given by

12

== A0 (37|

5

Since both x,; and x, are non-negative, the current basic solution
consisting of x; and x, remains feasible and optimal at the new
values x; = 11/5,x, = 12/5 and x; = 0. The new optimum value
of Zis5x11/5+12%x12/5+ 4 x 0 = 199/5.

(c) New values of the current basic variables are
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6_9
[iﬂzB_lb: 2 ‘55 158‘ l ‘
5

Since x, becomes —ve, the current optimal solution becomes
infeasible. As discussed dual simplex method may be used to clear
infeasibility of the problem. Table 6.44 is modified and written as
below.

Table 10.3.1-9

U‘ll\[\é(ﬂlb—\(ﬂll\):{’ o

|
o] 3

As b, = —E, the first row is the key row and x, is the outgoing

variable. Find the ratios of nonbasic elements of ¢; row to the elements
of key row. Neglect the ratios corresponding to positive or zero
elements of key row and choose the lowest ratio. The desired ratio is

-3/5
-1/5

variable and (— i) is the key element. Make the key element unity.
This is shown in table 10.3.1-10

Table 10.3.1-10

= 3. Hence ' x5 -column is the key column, x5 is the incoming

Key element unity

Department of Mathematics
Uttarakhand Open University Page 170




Linear Programming and Game Theory Course code - MT(N)-223

Replace x, by x5. This is shown in table 6.47.

Table 10.3.1-11

0
S1
-2
1

5
29

5
29

5

As all elements in ¢; row are negative or zero and all b; are positive,
the solution given by table 6.47 is optimal. The optimal solution is

X1 = O,xz = 0,x3 =3
Zinax = 5(0) + 12(0) + 4 x 3 = 12

(d) In order to find the resource that should be increased (or
decreased), we shall write the final objective function, which is

G= 5yl + 2yZ,

where y; = 29/5 and y, = —2/5 are the optimal dual variables.
Thus the first resource should be increased as each additional unit of
the first resource increases the objective function by 29/5. Next we
are to find how much the first resource should be increased so that
each additional unit continues to increase the objective function by
29/5. This requirement will be met so long as the primal problem
remains feasible. If A be the increase in the first resource, it can be
determined from the condition

Ll =e=[s s ]03

8+2A
_ [10/5+2A/5 — 2/5] _|7s |- [0]
~ | 5/5+A/5+4/5 | | o+a| = Lol
5
As x; and x, remain feasible ( > 0 ) for all values of A > 0, the first
resource can be increased indefinitely while maintaining the condition

that each additional unit will increase the objective function by 29/5.
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(e) The second resource should be decreased as each additional unit
of the second resource decreases the objective function by 2/5. Let A
be the decrease in the second resource. To find its extent, we make
use of the condition that the current solution remains feasible so long
as
X2] _ no1p  [2/5 _1/5] 5
] =B7'b= [1/5 2/5 224l

8+A
_ [10/5—2/5+2A/5] [o
~|5/5+4/5—-2A/5 9-24 ZA -

Evidently x, remains positive onIy so long as % >00rA<9/2.
If A > 9/2,x, becomes negative and must leave the solution.

10.4 CHANGES IN THE COST COEFFICIENTS

Changes in the coefficients of the objective function may take place
due to a change in cost or profit of either basic variables or non-basic
variables. Each of these two cases will first be considered separately.
The discussion, will then, be followed by a combined case. All the
three cases will be studied by considering an example.

A company wants to produce three products A,B and C . The unit
profits

EXAMPLE 10.4.1

on these products are Rs. 4, Rs. 6 and Rs. 2 respectively. These
products require two types of resources-man-power and material.
The following L.P. model is formulated for determining the
optimal product mix:

Maximize Z = 4x, + 6x, + 2x3,

subject to X1 + X + x3 < 3, (man-power)
X1 + 4x, + 7x3 < 9, (material)
X1,X2,X3 =0,

Where X1, X2, X3 are the X1,X2,%3 = 0,
(a) Find the optimal product mix and the corresponding profit to
the

(b) (i) Find the range on the values of non-basic variable
coefficient ¢3 company. such that the current optimal product
mix remains optimal.
(i) What happens if c3 is increased to Rs. 12?7 What is the new
optimal product mix in this case?
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(c) (i) Find the range on basic variable coefficient ¢, such that the
current optimal product mix remains optimal.
(i1) Find the effect when ¢; = Rs. 8 on the optimal product mix.
(d) Find the effect of changing the objective functionto Z = 2x; +
8x, +4x3 on the current optimal product mix.

Solution. The standard form of the problem is

maximizeZ = 4x, + 6x, + 2x3 + 0x4 + Ox;5

subject to x; + x5, + x5+ x, =3
x1+4x, + 7x3+x5=9
X1,X2,X3,X4,X5 = 0

Putting x; = x, = x5 = 0 in the constraint equations, we get x, = 3
and xs = 9 as the initial basic feasible solution which can be
expressed in the form of a simple matrix or table shown below.

Table 10.4.1-1

6 2

X3

1 0 3

7 0 1 9

Initial basic feasible solution

First Iteration: Perform optimally test

Table 10.4.1-2

6 2

E;

= ECBaij
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TK Initial basic feasible solution

(if) Make Key element unity

Table 10.4.1-3

X2 X3 Xs5

1 1 0

0 1/4

Key element

(iii) Replace xz by x,.

Table 10.4.1-4

6 2

X3

9
< Key row

5/2 -3/2

TK Second feasible solution

Second Iteration: (i) Make key element unity.

Table 10.4.1-5

X2 X3
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4/3 -1/3 1

0 1/4 9/4

Key element unity

(i) Replace x4 by x4

Table 10.4.1-6

6

-6 -2/3

10/3

Optimal feasible solution

~ Optimal solution is x; = 1,x, = 2,x3 =0 and Z,,, = Rs. (4 X
1+6%x2+2x%x0 ) = Rs. 16.
Effect of changing the objective function coefficient of a nonbasic
variable

(b) (i) The coefficient c5 corresponds to the non-basic variable x5 for
product C . In the optimal product mix shown in table 10.4.1-6 ,
product C is not produced because of the low associated profit of Rs.
2 per unit ( c3 ). Clearly, if c5 further decreases, it will have no effect
on the current optimal product mix. However, if c; is increased
beyond a certain value, it may become profitable to produce

As a rule, the sensitivity of the current optimal solution is determined
by the product C . studying how the current optimal solution given in
table 10.4.1-6 changes as a result of changes in the input data. When
value of c; changes, the value of net evaluation (relative profit
coefficient) of the non-basic variable x5 i.e., ¢; in table 10.4.1-6 also
changes. The table will remain optimal as long as ¢; remains
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nonpositive.
For table 6.53 to remain  optimal, <0
or

cs — (46) [‘21] <0

This means that as long as the unit profit of product C is less than
Rs. 8, it

orcz — (—4 + 12) < 0, or ¢3 < 8. is not profitable to produce it.
(i) If 5 = 12,85 = ¢3 — (4,6) [‘21]

orc; =12— (-4 +12) =12 — 8 = +4.

As ¢, becomes positive, the current product mix given by table
10.4.1-6 does not remain optimal. The optimum profit can be

increased further by producing product C. Non-basic variable x5 can
enter the solution to increase Z. This is shown in table 10.4.1-7.

Table 10.4.1-7

4 6

X1 | X2

First Iteration. (i) Make key element unity.

Table 10.4.1-8
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1

Key element unity

Table 10.4.1-9

6 2

X2

-8/3 | -4/3

Optimal feasible solution

~. New optimal product mix is x; =2,x, =0,x3 =1 and Z,,, =
Rs. (4x2+6x0+12x1 ) = Rs. 20.
Effect of changing the objective function coefficient of a basic
variable

(c) (i) Clearly, when c; decreases below a certain level, it may no
longer remain profitable to produce product A . On the other hand, if
c; increases beyond a certain value, it may become so profitable that
it is most paying to produce only product A . In either case the optimal
product mix will change and hence there is lower as well as upper
limit on ¢; within which the optimal product mix will not be affected.

Referring again to table 10.4.1-6, it can be seen that any variation in
¢, (and/or in c, also) will not change ¢; and ¢, (i.e., they remain zero),
while ¢3, ¢4, €5 will change. However, as long as ¢;(j = 3,4,5) remain
non-positive, table 10.4.1-6 will remain optimal. ¢, ¢, and ¢s can be
expressed as functions of c; as follows:
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G=2-(c,6)| | =2 (=, +12) = ¢; - 10,

. 4 4
C4=O_(C1,6) §C1—2)=—§C1+2,

1 1
E5=O_(C1,6) 1 =0_(_§C1+2)=§C1—2

[ 3 |

Forc;tobe <0,c;, —10 <0orc; <10,
forc‘4tobeso,—§c1+2sOorclzg,

forc_stobeSO,lél—ZS00r61S6.
3

= Range on ¢, for the optimal product mix to remain optimal is % <
c1 < 6.

Thus so long as c; lies within these limits, the optimal solution in
table 6.53 viz ., x; = 1,x, = 2,x3 = 0 remains optimal. However,
within this range, as the value of ¢, is changed, Z,,,, undergoes a
change. For example, whenc; =3, Z,.x =RS. 3 X 146X 2) =
Rs. 15.

(i) Whenc; = 8,63 =¢; —10 =8 —10 = -2,

¢, =—4fc;+2=—-4/3x8+2=-26/3,
Gs=1/3c;,—2=8/3—-2=+42/3,
El = EZ = 0

As ¢ becomes positive, the solution given in table 10.4.1-6 no

longer remains optimal. Slack variable xs enters the solution. This is
shown in table 10.4.1-7.

Table 10.4.1-10
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First Iteration. (i) Make key element unity.

Table 10.4.1-11

Cp .V, X1 Xo X5 b
4 1
8 X1 1 0 -3 1

6 0o 3 (1) 6 Keyelement unity

(i) Replace x, by s,
Table 10.4.1-12

6 2

-6 -8

Optimal feasible solution

Thus, the optimal product mix changes to x; = 3 units with Z.,,, =
Rs. 24. Effect of changing the objective function coefficients of
basic as well as non-basic variable.
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(d) The effect on the optimal product mix can be determined by
checking whether the ¢; row in table 10.4.1-6 remains nonpositive.

51=0,
52=0,
G = 4—(2,8) [‘21] —4—(-2+16)=-10<0,
4
) 3 8 8
C4=O—(2,8) 1 =0—(§—§)=0,

1

_ _§ 2 8
C5=0—(2,8) 1 =0—(§+§)=—2<0.

3

Hence the optimal solution does not change. The optimal product
mix remains x; = 1,x, = 2,x3=0and Z,,, =RS. (1 X2+ 2 X
8 4+ 0 X 4) = Rs. 18. There is indication of an alternate optimal
solution since ¢, = 0.

10.5 ADDITION OF A NEW VARIABLE

let us suppose that Research and Development department of the
company has proposed a fourth product D which requires 1 unit of
manpower and 1 unit of material and earns a unit profit of Rs. 3
when sold in the market. It is desired to find whether it is profitable
to produce product D.

Addition of this product in the already existing product mix is

equivalent to addition of a new variable (say x, ) and a column [ﬂ in

the initial Table 10.4.1-1. Now the present optimal product mix given
by the table 10.4.1-6 remains optimal so long as the relative profit
coefficient (net evaluation) of this new product, say ¢, remains non-
positive.

Now from the revised simplex method we know that

66 = C6 - CBP6 = C6 - CB : B_1P6 = C6 - T[P6,

where ¢, = Rs. 3,Pg = [ﬂ and 7 is the simplex multiplier

corresponding to the current optimal solution contained in Table
10.4.1-6 and is given by
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cgB™?!

(4,6)

1 1
3 3

f e =3 (10 2) [1] (10 g) —

As ¢, is non-positive, the present optimal solution does not change
even after the product D is introduced. As product D cannot improve
the present value of the maximum profit, it should not be produced.

If, however, ¢, turns out to be positive, it follows that product D can
increase the value of maximum profit; simplex method can then be
applied to find the new optimal solution.

EXAMPLE 10.5.1
Consider the problem

maximize Z = 45x; + 100x, + 30x3 + 50x,,

subject to  7x; + 10x, + 4x3 + 9x, < 1,200,
3xq1 + 40x, + x3 + x4, < 800,
X1,X2,X3,X4 = 0.

The optimal table for this problem is given below.

Table 10.5.1-1
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If a new variable x- is added to this problem with a column [ig] and

c; = 120, find the change in the optimal solution.

Solution
57 =C7—CBﬁ7 =C7—CB'B_1'P7 =C7—T[P7,

where ¢; = 120,P, = Eg] and m, the simplex multiplier

corresponding to the original optimal solution in table 10.5.1-1 is
4 1

given by = (g, m,) = ¢gB™' = (30,100) [ *°,  ®|=

T 150 75
22 2
(5:3)
_ 22 2\ 10
(G =k =120- (?’5) 10]
| =120 (220 + 20) = +40
B 3 3/ 7
Since ¢, is positive

Since ¢, is positive, the existing optimal solution can be improved.
4

1
_ L -2 2
Now P, =B~'P, = | ™5 - 10] - [ll
_ 2 kol T3
150 75

Now we start with the original optimal table (table 10.5.1-1) and add
entries corresponding to variable x, as follows:

Table 10.5.1-2

30 | 50 0

X3 | X4 X5 0

400/3

200/3«
Key row
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Cj +40
= ¢j

§ 25/3 50/3

TK

Make key element unity.

Table 10.5.1-3

Cp X5

30 X3 *

15
100 x, L

Replace x, by x,.

Table 10.5.1-4

-10| -6 -6 -15

Optimal feasible solution

Optimal feasible solution

Since ¢; is negative, table 10.5.1-4 gives the optimal solution with
x3 = 400/3, x;, = 200/3 (basic variables), x; = x, = x, = xc =
x¢ = 0 (hon-basic variables) and Z,,,, = 30 x 400/3 + 120 X
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200/3 = 4,000 + 8,000 = 12,000.

10.6 CHANGES IN THE COEFFICIENTS OF
THE CONSTRAINTS Ay

When changes take place in the constraint coefficients of a non-basic
variable in a current optimal solution, feasibility of the solution is not
affected. The only effect, if any, may be on the optimality of the
solution.

However, if the constraint coefficients of a basic variable get changed,
things become more complicated since the feasibility of the current
optimal solution may also be affected (lost). The basic matrix is
affected, which, in turn, may affect all the quantities given in the
current optimal table. Under such circumstances, it may be better to
solve the problem over again.

EXAMPLE 10.5.2

Find the effect of the following changes in the original optimal table
10.5.1-1of problem 10.5.1

(@) " x4 -column in the problem changes from [g] to [g]

. (b) " x4 -column changes from [g] to [553]

Solution

(a) x4 is a nonbasic variable in the optimal solution.

51 = Cl - CBP1 = Cl - CBB_1P1

= ¢, — nP;, where ¢c; = 45,P; = [;],

4 1
— cuB-1 = 15 15| _ (222

and 7 = cgB~ = (30,100)| ', ,'°|= (2.2).

150 75
S oA 7l = g _ (154 L 10\ _ 4 164 _ 29
o 61_45_(?‘5)[5]_45 (3+3)_45 3 3
Since ¢, remains non-positive, the original optimum solution
remains optimum for the new problem also.

b) ¢ =c, —cgP; = c; — cgB 1P
( 1 1 BYf1 1 B 1

B e (22 2\[5]_ e (110 16y _
=c-nh =45 (5 3)[g =15 (G4 5) = +3
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As c; is positive, the existing optimum solution can be improved.

NOW ﬁl == B_1P1 == “ [8 |: “
150 150

Now we start with the original optlmal table (table 10.5.1-1 and
incorporate the changes due to variable x;.

Table 10.5.2.1

45 30| 50 0

X1 X3 | X4 Xsg 0

4/5 - 1000/3

27/150 - - 2000/27 <
Key row

+3

TK

Make key element unity.

Table 10.5.2.2

Xy | Xs | Xg b

800/3

1/15

- - 2000/27
150/27 1/27 4127

Key Unity Element

Replace x, by x;.

Table 10.5.2.3

45| 100 | 30| 50

Cp SV X1 | Xy | x3| X4
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- | 5600/27
5127

4127 2000/27

10/9

145/9 | 65/9 | 10/9

Optimal feasible solution

Since ¢; is non-positive, table 10.5.2-3 gives the optimal solution with

2,000 5,600
=7 BT Ty

X, = x4 = X5 = X¢ = 0 (non-basic variables)

2,000 5,600 10,000 56,000 86,000
Zmax = 7 X 45 + 57 X 30 = 3 + 5 " 9

(basic variables)

CHECK YOUE PROGRESS

Problem 1: Obtain the optimum solution of the LPP

Maximize Z =15x, 4+ 45X, subject to the constraints:
X, +6X, < 240; 5, +2X, <162; X, <50;X;,X, =0

If maximum z =>"c;x;, j =1,2 and ¢, is kept fixed at 45,

determine how much can ¢, be changed without affecting the
above optimal solution.

Answer: Optimal solution: x; =27.1 X, =13.3; Maximum
z=1005; 2.8<¢c <1125
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MULTIPLE CHOICE QUESTIONS

1:  Choose the correct correct option for the statement “post-optimal
analysis is a technique to”

(a) Analyse how the optimal solution to a Linear Programming
Problem (LPP) is affected by changes in the problem inputs.

(b) Distribute resources in the most effective way.
(c) Minimize the operational costs.

(d) Describe the relationship between the dual problem and its
primal.

2: Addition of a new constraints in the existing constraints will
ensure a

(a) Change in the coefficient a;.

(b) Change in the objective function coefficient c;.

(c) Both (a) and (b).
(d) Neither (a) nor (b)
3. To achieve the maximum marginal increase in the objective

function value, it is advisable to increase the value of a resource with
the highest shadow price

(@) Smaller.
(b) larger.

(c) Both (a) and (b).
(d) Neither (a) nor (b)
Fill in the blanks:

1. Post-optimality analysis study only the continuous changes in the
parameter of

2. Optimum solution to an LPP is not very sensitive to the changes
in the RHS values of the

Department of Mathematics
Uttarakhand Open University Page 187




Linear Programming and Game Theory Course code - MT(N)-223

3. The optimality of the current solution may be affected if right
hand side of the constraints is

10.7 SUMMARY

Sensitivity Analysis is an important part of Linear Programming and
decision-making models. It studies how changes in the input data
(such as profit coefficients, resource availability, or constraint values)
affect the optimal solution of a problem.

It helps decision-makers understand how stable or sensitive the
current solution is when real-life conditions change. The analysis is
performed after obtaining the optimal solution, so it is also called
Post-Optimality Analysis.

10.8 GLOSSARY

Sensitivity Analysis: A method used to determine how changes in
input values (like profit, cost, or resources) affect the optimal
solution.

Post-Optimality Analysis: Another name for sensitivity analysis;
performed after obtaining the optimal solution to check its stability.

Optimal Solution: The best possible solution that maximizes profit
or minimizes cost in a Linear Programming Problem (LPP).

Objective Function Coefficient: The numerical value (like profit or
cost per unit) associated with a decision variable in the objective
function.

Range of Optimality: The range within which the coefficient of the
objective function can change without altering the optimal solution.

Range of Feasibility: The range of values for the right-hand side
(RHS) of constraints within which the current solution remains
feasible.

Constraint: A condition or limitation (like labour hours, materials,
or budget) that restricts the values of decision variables.

Right-Hand Side (RHS): The constant term in a constraint that
represents the total available resources.
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10.11 TERMINAL QUESTIONS

1. Determine the range within which c;,c, and b, can be varied

while preserving the optimality of the current solution in the
specified Linear Programming Problem (LPP).

Maximize, Z=3X+5Yy +4z

Subject to the constraints,
2x+3y <8; 2x+5y <10; 3x+2y+4z<15/%,y,2>0;
2. Inthe given LPP

Minimize, Z=3X+6Yy +z
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constraints,

Subject to the
X+Y+226; X+9y—-224;x+5y+2>24;x,y,2>0;

Solve the Linear Programming Problem (LPP) and analyze the impact
of modifying the requirement vector from [6, 4, 24] to [6, 2, 12] on

the optimal solution.
3. Inthe given LPP

Maximize, z = 4x, + 3x, +4X, +6X,

Subject to, x, +2X, +2X; +4X, <8;2X, +2X; + X, <6;

33X, +3X, + X+ X, <8 X, X,, %5, X, =20
(a) Identify the individual ranges for discrete changes in
a,,aand a,, that are consistent with maintaining the
optimal solution of the given LPP.

(b) If a,,is changed to a;, +Aa,,, determine the allowable
limit for the discrete change Aa,, in order to preserve the
optimality of the current solution.

10.12 ANSWERS

MCQ 1:(a) MCQ2:(c) MCQ 3:(b)

TQ1L. 1.25<c, <11.5; ¢, £1.10; 3.75<h, <17.42
TQ2. (@) x, =14;x, =0; X, =10; Minimum z =52
(b) x, =7;%x, =0; %X, =5; Minimum = 26
TQ3. (@) (15/16)<a,,; (-17/6)<a,, and (-1/8) <a,,
(b) —3<Aa, <17/21

Fill in the blank question
LPP 2: Constraints  3: Changed
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UNIT -11 PARAMETRIC LINEAR
PROGRAMMING AND INTEGER
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11.1 INTRODUCTION

In real-world decision-making problems, the parameters used in a
Linear Programming Problem (LPP) such as objective function
coefficients, resource availability, or constraint values, may not
always remain constant. To study how changes in these parameters
affect the optimal solution, we use Parametric Linear Programming
(PLP).

Parametric Linear Programming is an extension of the standard LPP
that analyses how the optimal solution changes when one or more
parameters of the problem vary continuously within a specified range.
It helps decision-makers understand the behaviour of the optimal
solution under different scenarios without resolving the problem
repeatedly. This concept is particularly useful in business, economics,
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and engineering applications where input data may fluctuate due to
uncertain market or resource conditions.

11.2 OBJECTIVES

After studying this unit learner will be able

1. To Understand the concept of Parametric Linear Programming
and how it extends the traditional LPP.
2. To Explain the need for studying the effect of changing
parameters in an optimization model.
. To Analyse how variations in objective function coefficients or
constraint values influence the optimal solution.
. To Determine the range of parameter values for which the
current optimal solution remains valid.

11.3 PARAMETRIC PROGRAMMING

In previous unit on sensitivity analysis discussed the effect of discrete
changes in the input coefficients of the linear programming problem
on its optimal solution. However, if there is continuous change in the
values of these coefficients, none of the results derived in that section
are applicable. Parametric linear programming investigates the effect
of predetermined continuous variations of these coefficients on the
optimal solution. It is simply an extension of sensitivity analysis and
aims at finding the various basic solutions that become optimal, one
after the other, as the coefficients of the problem change continuously.
The coefficients change as a linear function of a single parameter,
hence the name parametric linear programming for this computational
technique. As in sensitivity analysis, the purpose of this technique is
to reduce the additional computations required to obtain the changes
in the optimal solution.

Let the linear programming problem before parameterization be
minimize Z = CX, subject to AX = b,

X =0,

where C is the given cost vector.
Let this cost vector change to C+ AC’ so that the parametric cost
problem becomes
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minimizeZ = (C + AC")X,
subject to AX = b,
X=>0,

where C’ is the given predetermined cost variation vector and A is an
unknown (positive or negative) parameter. As A1 changes, the cost
coefficients of all variables also change. We wish to determine the
family of optimal solutions as A changes from —oo to +co.

This problem is solved by using the simplex method and sensitivity
analysis. When A = 0, the parametric cost problem reduces to the
original L.P. problem; simplex method is used to find its optimal
solution Let B and Xg represent the optimal basis matrix and the
optimal basic feasible solution respectively for A = 0. The net
evaluations or relative cost coefficients are all non-negative
(minimization problem) and are given by
C_'j = Cj — E] = Cj — ZcBaij = Cj — CBﬁ',

where cg is the cost vector of the basic variables and ﬁj is the j th
column (corresponding to the variable x; ) in the optimal table.

As A changes from zero to a positive or negative value, the feasible
region and values of the basic variables Xg remain unaltered, but the
relative cost coefficients change. For any variable x;, the relative cost
coefficient is given by

G = (¢; + Acj) — (cg + Acp)P;
= (C] - cBﬁj) + /1(le —_ Céﬁj) = CTJ + /15],

Since vectors C and C’ are known, ¢; and ¢; can be determined. For
the current minimization problem, ¢;(1) must be non-negative for the
solution to be optimal [c‘j (A) must be non-positive for a maximization
problem]. Thus

¢i(A) = 0, orc_j+/1€_]f > 0.

In other words, for a given solution, we can determine the range for 4
within which the solution remains optimal.

Example 11.3.1 Consider the linear programming problem
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maximize Z = 4x, + 6x5 + 2x3,
subject to X1+ xy+x3 <3,
X, +4x, +7x3 <9,

X1,%X5,%x3 = 0.

The optimal solution to this problem is given by the following table:

Table 11.3.1-1

solve this problem if the variation cost vector C' = (2,—2,2,0,0).
Identify all critical values of the parameter A.

Solution. The given parametric cost problem is

maximizeZ = (4 + 2A)x; + (6 — 2)x, + (2 + 2A) x5 + 0x4 + Oxg
subject to 1+x,+x3+x4=3

X1 +4x, +7x3+x5=9

X1,X2,X3,X4, X5 = 0

When A = 0, the problem reduces to the L.P. problem, whose optimal
solution is given by table 11.3.1-1. The relative profit coefficients in
this optimal table are all non-positive. For values of A other than zero,
the relative profit coefficients become linear functions of A, To
compute them we, first, add a new relative profit row called ¢’ ; row
to table11.3.1-1 . This is shown in table Table 11.3.1-2

Table 11.3.1-2
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Intable 11.3.1-2, ¢’ ; is calculated just as ¢; row except that vector C
is replaced by C’. For example,

¢, =c; —E; =¢; —Ecga;; = ¢; —cgPy

=6—(4,6)[(1)]=6—6=0

£ 8=l —cyP,
—2-(2,-2) [(1)] —0
& =—2—(2,-2) [(1’] -0

g =2—(2,—2)[_21] —2_(—2-4)=8

_ (8+2>_ 10
= =-=

W] s

c=0-(2,-2)

wlr—lkclulr—\

W =

Z'=1%x2-2x%x2=-2.

table 11.3.1-2, represents a basic feasible solution for the given
parametric cost problem. It is given by

x1=1,x,=2,x3=x,=x5 =0.
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Value of the objective function, Z(4) =Z+ AZ' =16 — 2A.
The relative profit coefficients, which are linear functions of A, are
given by

G(A) = ¢ +8,j = 1,2,34,5.

table 11.3.1-2, will be optimal if ¢;(4) < 0 for j = 3,4,5. Thus we can

determine the range of A for which table 11.3.1-2, remains optimal as
follows:

G(D) =+ A6, =—6+81<0 or A< 3/4,
10 10

GA) =G +A0=———FAs0or 12 -1,

Cs(1) = C5 + Ac = 2+4/1<0 /1<1

Cs(A) =¢C5 + Acs = gt3zAs0oriss.
Thus x; = 1,x, = 2,x3 = x, = xg = 0 is an optimal solution for the
given -parametric problem for all values of A between -1 and 1/2 and
Zoax = 16 — 2.

For A > 1/2, the relative profit coefficient of the non-basic variable
Xs, ‘namely ¢s(A) becomes positive and table 11.3.1-2, no longer
remains optimal. Regular simplex method is used to iterate towards
optimality. x is the entering variable and computation of ' 8 -column
indicates x, to be the variable that leaves the basis matrix so that the
key element is 1/3. The key element is made unity in table 11.3.1-2,

Table 11.3.1-2,
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Table 11.3.1-3 will be optimal if ¢;(1) <0, for j=234.
Now G(1) =G + A0, =2 - 41 <0 ~ 12>,

C3(A) = ¢3 + Ac; = —2 < 0, which is true,
G (D)=, +A,=—-4-21<0 = 1> -2.

~ Forall A > % the optimal solution is given by

X1=3,x,=x3=x4=0,xg =6and Z,, =12+ 64

For A < —1, the relative profit coefficient of the non-basic variable
x4 Namely ¢, (A) becomes positive and again table no longer remains
optimal. x, becomes the entering variable and x; the leaving variable.
Key element is 4/3. This element is made unity in table 11.3.1-4

Table 11.3.1-4

X2

0

Key element unity

Table 11.3.1-5

N

-2

S

6

=

N[ | = W
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Table 11.3.1-5 will be optimal if ¢;(1) <0 for j=13,5.
Now &,(A) = & +A¢; =2 +21<0 =A< -1,

) 17 11 17
c3(A) = C3 +Ac3=—7+7130 .'-ASH,

3 1
55(1) =C_'5 +A5é =—§+§ASO -'-ASB:

For all A<-1, the optimal solution is given by
x1=0,x2=z,x3=0,x4=2,x5=0 and Z max =22—7—§A.
Thus tables 11.3.1 —2,11.3.1 —4 and 11.3.1-6 give families of

optimal solutions for —1 < A < %,A > % and A < —1 respectively.

11.4  PARAMETRIC  RIGHT-HAND-SIDE
PROBLEM

The right-hand-side constants in a linear programming problem
represent the limits in the resources and the outputs. In some practical
problems all the resources are not independent of one another. A
shortage of one resource may cause shortage of other resources at
varying levels. Same is true for outputs also. For example, consider a
firm manufacturing electrical appliance. A shortage in electric power
will decrease the demand of all the electric items produced in varying
degrees depending upon the electric energy consumed by them. In all
such problems, we are to consider simultaneous changes in the right-
hand-side constants, which are functions of one parameter and study
how the optimal solution is affected by these changes.

Let the linear programming problem before parameterization be

maximizeZ = cX,
subject to AX = b,
X=0,

where b is the known requirement (right-hand-side) vector. Let this
requirement vector b change to b 4+ Ab’ so that parametric right-
hand-side problem becomes
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maximizeZ = cX,
subject to AX = b + Ab/,
X=>0,

Where b’ is the given and predetermined variation vector and A is an
unknown parameter. As A changes, the right-hand-constants also
change. We wish to decrmine the family of optimal solutions as A
changes from —oo t0 +o.

When A = 0, the parametric problem reduces to the original L. P.
problem; simplex method is used to find its optimal solution.

Let B and X represent the optimal basis matrix and the optimal basic
feasible solution respectively for A = 0. Then Xz = B71b. As A
changes from 26 to a positive or negative value, the values of the
basic variables change and the new values are given by

Xg =B 1(b+1b’) =B~'b + AB~'b’

=b+1b

A change in A has no effect on the values of relative profit coefficients
¢; i.e., ¢; values remain non-positive (maximization problem). For a

given basis matrix B, values of b and b can be calculated. The

solution Xg = b + Ab s feasible and optimal as long as b + Ab is
> 0. In other words, for a given solution we can determine the range
for A within which the solution remains optimal.

11.5 INTEGER PROGRAMMING

Integer programming is a specialized branch of mathematical
optimization that focuses on problems where some or all of the
decision variables are required to be integers. This is particularly
important in situations where fractional solutions are not practical or
possible, such as in scheduling, allocation, or logistics where
quantities must be whole numbers.

11.6 PURE AND MIXED INTEGER
PROGRAMMING PROBLEMS

Integer programming problems can be categorized into two main
types: pure integer programming and mixed integer programming.
Both types involve optimization where some or all of the decision
variables are required to be integers. Here’s a closer look at each type:
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Pure Integer Programming: In pure integer programming, all the
decision variables are constrained to be integers. This type of problem
is used when all variables in the optimization model must take on
whole number values.

Example 1: Consider a factory that produces two types of products
(Product 1 and Product 2). The objective is to maximize the profit
given the constraints on resources (e.g., labour, materials).

Maximize: Z = 4x, + 7x,
Subject to: 3x, +2x, <12

o5X, +3X, <15
X 20,%20; x,X, €Z

In this example, x, and x, represent the quantities of Product 1 and
Product 2, respectively, and both must be integers.

Mixed Integer Programming (MIP): In mixed integer
programming, only some of the decision variables are required to be
integers, while others can be continuous. This type of problem is
useful when some decisions are inherently discrete (e.g., number of
units produced), while others can vary continuously (e.g., amounts of
resources used).

Example 2: Consider a company that wants to determine the optimal
production quantities for two products, where one of the products can
be produced in fractional quantities (e.g., a liquid), and the other must
be in whole units.

Maximize: Z = 4x, + 7x,
Subject to: 3x, +2x, <12; 5x +3x, <15; x,>0;x,>0; x, €Z

Here, x, (the integer variable) might represent the number of whole
units of a product, while x, (the continuous variable) represents a
product that can be produced in any amount.

11.7 GOMORY’s ALL 1.P.P. METHOD

Gomory's All-Integer Programming Problem (All-1.P.P.) method is a
technique used to solve integer programming problems. Developed
by Ralph Gomory in the 1950s, this method is a cutting-plane

Department of Mathematics
Uttarakhand Open University Page 200




Linear Programming and Game Theory Course code - MT(N)-223

algorithm specifically designed to handle integer constraints. The
general approach involves solving a series of linear programming
relaxations and iteratively adding cuts (constraints) to eliminate non-
integer solutions, gradually converging to an integer solution.

Steps in Gomory's All-1.P.P. Method

1. Solve the Linear Programming Relaxation: Solve the original
integer programming problem without the integer constraints,
treating it as a standard linear programming problem.

This step provides an optimal solution to the relaxed problem, which
may not be an integer solution.

2. ldentify the Fractional Variables: Examine the optimal solution
from the LP relaxation. Identify any decision variables that have
non-integer values.

Generate Gomory Cuts: Write the equation corresponding to the
chosen fractional basic variable from the simplex tableau:

X+ a;X; =b,
i

Isolate the fractional parts of the coefficients and the right-hand

U

side: f,+> a;x; =h,
j

The Gomory cut is derived as: 3" (a, —|a, )x, > b, ~[b, |
j
Here, |.| denotes the floor function, which returns the greatest

integer less than or equal to the given number.

4. Add the Cut to the LP: Add the newly generated Gomory cut to
the original set of constraints.

This modifies the feasible region of the LP by cutting off the current
non-integer solution.

5. Re-Solve the LP: Solve the modified linear programming
problem with the added cut.

Repeat the process of generating cuts and re-solving until an integer
solution is found.

6. Check for Optimality: Once an integer solution is obtained,
check if it is optimal.
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If it is not optimal, further cuts might be necessary, or another branch-
and-bound approach may be combined to refine the solution.

Example 3: Consider a simple integer programming problem

Objective Function: Maximize Z =3x, + 2Xx,
Constraints:
2%, +X, <4
X +2X, <3
X, X, 20
X, X, €2
Step-by-Step lllustration:
1. Solve LP Relaxation:
Relax the integer constraints and solve the LP problem.
Suppose the optimal solution to the LP relaxation is x, =1.5,x, =1.0
2. ldentify Fractional Variables:
The current solution is x, =1.5, which is fractional.

3. Write the Equation for the Fractional Basic Variable:

Suppose the optimal tableau provides the following equation for x, :
X +0.5%, =15

4. lsolate the Fractional Parts:

The fractional part of x, =1.5 is 0.5

The equation can be written as: 0.5+ 0.5x, =1.5

5. Generate the Gomory Cut:
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The Gomory cut is derived as: 0.5x, >1.5-1

Simplifying this, we get: 0.5x, >0.5=x, >1
6. Add the Gomory Cut to the Original Constraints:

The new constraint x, >1 is added to the original set of constraints.

This modifies the feasible region of the LP to exclude the current non-
integer solution.

7. Re-Solve the LP:
Solve the modified LP problem with the added cut.
Repeat the process until an integer solution is found.

Gomory's constraints are a powerful tool in integer programming,
helping to iteratively eliminate non-integer solutions and converge to
an optimal integer solution. The process involves generating cuts
from the fractional parts of the basic variables in the optimal simplex
tableau and adding these cuts to the set of constraints. This method is
systematic and can be combined with other techniques like branch-
and-bound to solve complex integer programming problems
efficiently.

11.8 FRACTIONAL CUT METHOD-ALL
INTEGER LPP

The Fractional Cut Method is a technique used specifically for solving
all-integer linear programming problems. It involves iteratively
adding constraints (cuts) to eliminate non-integer solutions while
preserving feasible integer solutions. Here's a detailed breakdown of
the method:

Steps in the Fractional Cut Method

1. Solve the Linear Programming Relaxation: Solve the integer
programming problem (IPP) by first relaxing the integer
constraints, treating it as a linear programming problem (LPP).
This provides an optimal solution to the relaxed problem.
Identify Fractional Solutions: Examine the optimal solution of
the LP relaxation. Identify which variables have fractional
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values. If the solution is entirely integer, then it is already
optimal.

Generate Fractional Cuts: For each fractional solution,
generate a cutting plane (cut) that eliminates the current
fractional solution while keeping all feasible integer solutions.
The cut is derived from the simplex tableau.

. Add the Cut to the LP: Incorporate the new cut into the existing
constraints of the LP. This effectively narrows the feasible region
to exclude the fractional solution.

Re-Solve the LP: Solve the modified LP problem with the added
cut. Repeat the process of identifying fractional solutions and
generating cuts until an integer solution is found.

Check for Integer Solutions: After adding each cut and solving,
check if the resulting solution is an integer. If it is, then this is the
optimal integer solution. If not, continue with the process of
generating and adding cuts.

Example 4: Consider the following integer programming
problem:

Objective Function: Maximize Z =2x, + 3Xx,
Constraints:
X +2X, <5
2% +X, <6
X, X, 20
X, X, €2
Step-by-Step Ilustration:

1. Solve the LP Relaxation:

Relax the integer constraints and solve the LP problem. Suppose the
optimal solution is x, =2.5,x, =1.5.

2. ldentify Fractional Variables:

The optimal solution x, = 2.5,x, =1.5 are both fractional.

3. Generate Fractional Cuts:
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From the simplex tableau, we might find a cut for a fractional basic
variable. Assume the cut derived is: x, +X, <3

4. Add the Cut to the LP:
Add the constraint x, + x, <3 to the LP constraints.

5. Re-Solve the LP:

Solve the modified LP problem. Suppose the new optimal solution is
X, =2,%, =1, which is an integer solution.

6. Check for Integer Solutions:

The new solution x, =2,x,=1 is an integer and satisfies the
constraints.

Example 5: In the given LPP evaluate the optimum integer solution
Maximize Z = x, +4X,

Subject to; 2x, +4x,<7; 5x +3x,<15; x,x,>0 such that
X, X, €Z

Solution: Initially, we add the slack variable s, >0 and s, >0, an
initial basic feasible solution is s, =7 and s, =15. Using the simplex

method, an optimal non-integer solution is achieved, and it is
presented in the following simplex table:

Initial iteration: non-integer optimum solution

yB Y1 y2 Y3

y2 1
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Step 2: Because of the optimal solution is not an integer, we focus

solely on the fractional parts of xBl=£(=l+§) and

4
39 3
Xz :I(:9+Zj.
3 3| 3 _ 39 3

Step 3: Max {f,, f,}=M X{Z’Z}ZZ and Xg, —T(=9+Zj Le.,

both f, and f, are equal. Therefore, we arbitrarily select one of
these fractional parts. For instance, let’s choose f, .

Step 4: In the second row, since y,, =—-3/4, we write
Y, =—1+1/4

Step 5: Let G, denote the first Gomory slack. We can then express it
as follows:

G, =—"F, 0+ 0+ % + fuXs + %, = —% +%X1 +0.x, +%x3 +0.x,

Step 6: By adding this additional constraint to the optimal simplex
table, we obtain:

First Iteration: Drop G, and introduce y,

VB V1 V3

Y2

Since, the optimum solution is still non-integral, we introduce the
second Gomorian constraints.

Now, Xy, =—3/4 only is negative, this basic variable leaves the
basis. Further, since Max.
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Vs -1/2"-1/4
basis, i.e., x, becomes basic variable in place of G,.

zZ.—cC.
Max{( i J)’y3j <0}:max{ 1 1 }:—2, y, enters the

Second iteration: non-integer optimal solution.

Y8 XB Y1 y2 Y3 Y4

y2 1 0 1 0 0

ya 9/2 -5/2

yi 32 172

z 11/2 1/2

Since the optimal solution is still non-integral, we introduce the
second Gomory constraint. Now,

9 1 3 1
X, =—|=4+=|and X, =—|=1+=
==+ 3 | and Ko =314

Since, Max {f,, f,} = Max{%,%} =% i.e., both f, and f, are
equal. So, let us choose f, =1/2 and write y,, =—6+1/2.
SG, =—F 0+ Tx 4+ %, + X, + f,x, =-1/2+0.x, +0.x, + (1/ 2)X, +0.%,

Adding these additional constraints in the second iterative table, we
have

Third iteration: Drop G, and introduce y,.

;] Y3

y2 0

Ya
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3/2 1/2

-1/2 -1/2*

11/2 1/2

Final iteration: Optimal Solution in the integers.

VB

Y2

Ya

Y1

Y3

z

The table indicates that the optimal basic feasible solution has been
achieved. Therefore, the optimal solution is

X, =1 X, =1 and Maximum z =5.

The Fractional Cut Method, also known as Gomory's Cut Method, can
be applied to Mixed Integer Linear Programming Problems (MILPP).
These problems involve both integer and non-integer (continuous)
variables. The method iteratively adds constraints to the linear
programming relaxation to eliminate non-integer solutions for the
integer-constrained variables.

11.9 BRANCH AND BOUND METHOD

The Branch and Bound method is a widely used algorithm for solving
integer programming problems, including both pure integer and
mixed-integer problems. It systematically explores all potential
solutions to find the optimal one while efficiently pruning suboptimal
solutions to reduce computational effort.
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Steps in the Branch and Bound Method

1. Initialization: Solve the linear programming relaxation of the
integer programming problem (i.e., ignore the integer constraints) to
obtain an initial solution. This gives an upper bound for maximization
problems and a lower bound for minimization problems.

2. Branching: ldentify a variable that has a fractional value in the
current solution. Create two new subproblems (branches) by adding
constraints to this variable to take its floor and ceiling values.

For example, if x, =3.5in the current solution, create two new
problems: one with x; <3 and the other with x; > 4.

3. Bounding: Solve the LP relaxation of each new subproblem to
obtain new bounds.

If a subproblem yields an integer solution, compare it with the current
best solution and update the best solution if this one is better.

If the subproblem’s bound is worse than the current best solution or
infeasible, discard (prune) that branch.

4. Pruning: Eliminate branches that cannot yield a better solution
than the current best solution. This is done by comparing the bounds
of the subproblems to the current best known integer solution.

Discard infeasible branches or those that lead to worse solutions than
the current best solution.

5. Repeat: Continue the branching, bounding, and pruning process
until all branches have been either explored or pruned. The best
solution found during this process is the optimal integer solution.

Example 8: Consider the following integer programming
problem:

Objective Function: Maximize z = 3x, + 2Xx,

Constraints:
X +X, <4

X =X, <1
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X, X, 20
X, X, €Z
Step-by-Step Illustration:
1. Initialization:
Solve the LP relaxation:
Maximization z =3x, + 2X,
Subject to, x, +x, <4; X, — X, <1; x,X, >0
Suppose the optimal solution is x, =2.5,x, =1.5 with z =10.5.
Branching:

Create two new subproblems by branching on x;:

Subproblem 1: x, <2

Subproblem 2: x, >3

Bounding:

Solve the LP relaxation for Subproblem 1:

Maximize, Z =3x, + 2X,

Subject to, x, +Xx, <4; X, — X, <1; % <2; X,X%, >0

Suppose the optimal solutionis x, =2, x, = 2, with z =10 (an integer
solution).

Solve the LP relaxation for Subproblem 2:

Maximize, Z =3x, + 2X,

Subject to, x, +Xx, <4; X, — X, <1; % >3; x,X, >0
Suppose this subproblem is infeasible.
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4. Pruning: Subproblem 2 is pruned because it is infeasible. The
solution from Subproblem 1 is an integer solution with z =10,
S0 we update our best solution.
Repeat: Continue the process for any remaining branches (if
applicable). In this example, Subproblem 1 has provided an
integer solution that is feasible and maximizes z .

The Branch and Bound method is an effective algorithm for solving
integer programming problems by exploring and eliminating
suboptimal branches systematically. It is widely used in operations
research, scheduling, logistics, and other fields where optimization of
discrete decisions is crucial.

Example 9: Solve the following LPP using branch and bound
method.

Maximize, Z =7x, +9x,

Subject to the constraints, —x +3x, <6;7x +X, <35;x, <7;
X, X, >0 and x,x,eZ

Solution: Step 1: Disregarding the integer constraints, the optimal
solution to the given linear programming problem can be readily
obtained as:

X, =9/2,%, =7/2 and Maximum Z =63

Step 2: Since the solution is not an integer, let's select x, i.e.,

x, =9/ 2as the variable with the largest fractional value.

Step 3: Taking the value of z as the initial upper bound, i.e., z=63;
the lower bound is found by rounding off the values of x, and x, to

the nearest integers, i.e., X, =4 and x, = 3. Thus, the lower bound is
z, =55.

Step 4: Since [x1] =[9/2] = 4; where, [.] denote the greatest integer.
Sub-problem 1: Maximize z =7x, +9x,

Subject to constraints,
—X +3X%, <6; 7 +X,<35 0<x <4and 0<x, <7,
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Sub-problem 2: Maximize z =7x, +9x, subject to constraints,

—X +3X%, <6; 7x, +X,<35 0<x >5and 0<x, <7,

Step 5 Optimal solutions to the sub-problem are determined as
follows

Sub-problem 1: Maximize x, =4,x, =10/3 and Maximum z =58
Sub-problem 2: Maximize x, =5,x, =0 and Maximum z =35

Since the solution to sub-problem 1 is not in integers, we further
divide it into the following two sub-problems:
Sub-problem 3: Maximize z =7x, +9x,
Subject to, —x, +3X, <6; 7% +X, <35, 0<x, <4 and 0<x, <3
Sub-problem 4: Maximize z =7x, +9x,
Subject to, —x, +3x, <6; 7x +X, <35 0<x, <4 and 0<x, >4
Step 6: The optimal solutions to the sub-problem 3 and 4 are:
Sub-problem 3: x, =4, x, =3and maximum z =55.
Sub-problem 3: No feasible solution.
Step 7: Among the recorded integer-valued solutions, the highest
value of z is 55; therefore, the required optimal solution is:

X, =4, X, =3and maximum z =55.
The entire branch and bound procedure for the given problem is
shown below:

SUB-PROBLEM 2 SUB-PROBLEM 3

X = 5. Xy = 0
Non-integer _ max, 7 = 35
Optimum Solution

[

5 =92 x=1/

min. z = 63 v SUB-PROBLEM | - SUB-PROBLEM 4
L\

X =4, x=10/73 No feasible
max, 7 = 58

Lo i oD wi | solution
- - ‘\
Figure 1
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MULTIPLE CHOICE QUESTIONS

1: Ininteger programming, which type of decision variables are
used?

A) Only continuous variables

B) Only binary variables

C) Only integer variables

D) Both integer and continuous variables

2:  Which method is commonly used to solve integer programming
problems?

A) Gradient Descent
B) Branch and Bound
C) Newton's Method

D) Least Squares

3:  What type of optimization problem is an integer programming
problem classified as?

A) Linear

B) Non-linear

C) NP-hard

D) Polynomial-time

4: Ina mixed integer programming problem, some of the decision
variables are:

A) Real numbers
B) Integer numbers
C) Binary numbers

D) Both Aand B
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5. Which of the following is NOT a method used for integer
programming?

A) Simplex method

B) Cutting Plane method

C) Branch and Bound method

D) Genetic Algorithm

6: What is a Gomory cut?

A) A technique for dividing problems into subproblems

B) A type of cutting plane used to eliminate fractional solutions
C) A method for rounding solutions to the nearest integer

D) A type of constraint that ensures non-negativity

11.10 SUMMARY

Integer programming is a powerful tool for solving discrete
optimization problems, but it requires sophisticated methods to
handle its computational challenges. Its applications are vast and
impactful in various fields such as operations research, logistics,
finance, and more. Integer programming is used in various fields,
including:

Operations Research: Scheduling, resource allocation, production
planning.

Logistics: Vehicle routing, supply chain optimization.
Finance: Portfolio optimization, capital budgeting.

Telecommunications: Network design, bandwidth allocation.

11.11 GLOSSARY

Integer Programming

Gomory’s method
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Fractional cut method

Branch and bound method
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11.14 TERMINAL QUESTIONS

1. Solve the following IPP
Maximize, z =3y
Subject to the constraints,

X+2y<7; —x+y<2;x,y>0;and X,yeZ
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2: Find the optimal solution of the following IPP
Maximize, z=x-y

Subject to the constraints,

X+2y<4;6x+2y<9; x,y>0;and x,yeZ

3:  Find the optimal solution of the following IPP
Maximize, z = 2x + 3y

Subject to the constraints,

—3X+7y<14; 7x—3y<14; x,y>0;and x,yeZ

4.. Solve the following integer linear programming problems using
the branch and bound method.

Maximize, z = 2x + 3y
Subject to the constraints,

5x+7y<35/4x+9y<36; x,y>0and x,yeZ

11.15 ANSWERS

TQ 1: x, =0,x, =2,; Maximum z =6 TQ2: x=1y=0;
Maximum z=1 TQ3: x=3,y=3; Maximum z=15 TQ4.
X =4,%, =2, and Maximum z =14

MCQ1:D MCQ 2: B MCQ3: C

MCQ 4: D MCQ 5: A MCQ6: B
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BLOCK V: APPLICATION
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UNIT 12: -Assignment Problem

CONTENTS:
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12.2  Objectives

12.3  Definition of Assignment Problem

12.4  Mathematical Representation of Assignment Problem

12.5  The Hungarian Method for Solution of the Assignment
Problem

12.6  Variations of the Assignment Problem

12.7  Summary

12.8  Glossary

12.9  References

12.10 Suggested Reading

12.11 Terminal questions

12.12  Answers

12.1 INTRODUCTION:-

The Assignment Problem is a fundamental topic in Operations Research
that deals with the optimal allocation of limited resources to various tasks.
The objective is to assign a set of agents (such as workers, machines, or
employees) to an equal number of tasks (such as jobs, projects, or
machines) in such a way that the total cost, time, or distance is minimized
(or the total profit is maximized).

Typically, the Assignment Problem is represented using a cost matrix,
where each cell indicates the cost of assigning a particular agent to a
specific task. The challenge is to make one-to-one assignments—each
agent gets exactly one task, and each task is assigned to exactly one
agent—while minimizing the total cost or maximizing efficiency.

This problem has wide applications in fields such as production planning,
scheduling, transportation, and human resource management. It is often
solved using methods like the Hungarian Algorithm, which provides an
efficient solution for the optimal assignment.

12.2 OBJECTIVES:-

After studying this unit, the learner’s will be able to
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e Define Assignment Problem.
e Understand the Hungarian Method for solution of the
Assignment Problem

12.3 DEFINITION OF ASSIGNMENT PROBLEM: -

The cost of assigning the i — th facility (person) to the j — th work is
represented by c;;, and the assignment problem can be expressed as a n X
n matrix [c;;], also known as the cost or effectiveness matrix.
Jobs
1 2 3 .. j ..n

1 C11 C12 C13 .- Clj - C1pn
2 Cy1 Cpp Cp3 ... CZj - Con
3
Persons :
% Ci1 Cip Ciz ... Cij - Cin
n
Cn1 Cn2 Cpz .- an - Cnn

Effectiveness matrix

n persons can be assigned to n jobs in n! possible ways. One method may
be to find all possible n! assignments and evaluate total costs in all cases.
Then the assignment with minimum cost (as required) will give the
optimal assignment. But this method is extremely laborious. For example
if n = 8then the number of such possible assignments is 8! = 40320.
The evaluation of costs for all these allocations will take a large time.
Thus, there is a need to develop an easy computational technique for the
solution of assignment problems.

12.4 MATHEMATICAL REPRESENTATIONOF
ASSIGNMENT PROBLEM: -

Mathematically, the assignment problem can be expressed as follows:

_ {O, if the ith person is not assigned to jth job.
*ij =1 1,if the ith person assigned to jth job.

Then the problem is given by

n n
minimize Z = z CijXij = Z Z CijXij

n
j=1i=1 i=1 j=1
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Subject to constraints

n
Z x;j =1,i=12,..,n (one job is assigened to the ith person)

n
Z x;j = 1;j = 1,2,...,n (one person is assigened to the jth job)

and x;; = 0 or 1 (or x;; = x;;2)

Theoreml. (Reduction Theorem): If, in an assignment problem, a
constant is added or subtracted to every element of a row (or column) of
the cost matrix [c;;], then an assignment which minimize the total cost for
one matrix, also minimizes the total cost for the other matrix.

Or
Mathematically the theorem may state as follows:

Ifo = Xij,

n n
minimize Z = Z Z CijXij Vx;j s.t.

j=1i=1
n n
Sam1=nun2
i=1 =
Then x;; = X;; also
n n
minimize Z' = Z Z c'ijxij
j=1i=1

Where ¢';j =¢;jta; xb; , a; b; are constants, i
1,2,..,n

I
l—\
o
£
~
I

Proof: we have

n n
2= ) €

j=11i=1
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j=11i=1
n n n n n n
= Z Z CUXU + ZZ al’xij + Z Z b]xl]
j=11=1 j=1i=1 j=1i=1
n n n n
=Zizal lej iZb]<2XU)
=1 j=1 j=1 i=1
n n
=ZiZalliZb] 1
i=1 j=1
n n
i=1 j=1

n n
Since Z a; + z b; are independent of x;;.
i=1 =1

It follows that Z’ is minimized when Z is minimized.

Hence x;; = X;; which minimizes Z also minimizes Z'.

Theorem2. If all ¢;; > 0 and there exists a solution

n
cijxij =0

n
xl-j = XU s.t.
ji=1i=1

J

Then this solution is an optimal solution (i.e. this solution minimizes 7).
Proof: Sinceall ¢;; = 0
n n
Z = Z Z c;jx;; can not be negative.
j=1i=1
Thus its minimum value is zero, when x;; = Xj;.

n n
Hence the solution x;; = X;; for which Z cijxij =0
j=1i=1
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is an optimal solution.

12.5 THE HUNGARIAN METHOD FOR
SOLUTION OF THE ASSIGNMENT PROBLEM: -

The "assignment algorithm” is a powerful approach for resolving
assignment problems that is derived from the two previously discussed
theorems. The following is the process for the solution:

Step 1: Subtract from each element of the corresponding row the minimal

element of each row in the cost matrix [c;;].

Step2: Subtract from each element of the corresponding column the
minimal element of each column in the reduced matrix that was produced
in step 1.

Step3: (a) Examine each row of the matrix obtained in step 2 one after the
other until a row containing exactly one zero element is discovered. Since
an assignment will be made there, mark ([ ]) at this zero. To indicate that
they cannot be used to create new assignments, mark (X) at each
additional zero in the column that we mark. Continue doing this until the
final row has been examined.

(b) Once every row has been thoroughly examined, continue by looking at
the columns. Start by looking at column 1 and continue until you find a
column with exactly one unmarked zero. At this zero, mark ([ ]), and at
every other zero in the marked([_]) row, mark x. Continue doing this until
the final column has been examined.

(c) Repeat steps (a) and (b) one after the other until we arrive at one of the
two situations.
(i) Every zero has been crossed or marked([ ]).

(i) There are at least two unmarked zeros left in each row and column.
We have a maximal assignment (as much as we can) in case (i), and we
still have some zeros to deal in case (ii). To avoid using a very complex
algorithm, we use the trial-and-error method.

There are now two options:
(1) The full optimal assignment is obtained if it has an assignment in each

row and each column (i.e., the total number of marked ([ ]) zeros is
exactly n). (Refer to example 1)
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(i) The cost (effectiveness) matrix must be modified by adding or
subtracting to add more zeros if it does not contain assignment in every
row and column (that is, if the total number of marked ([ ]) zeros is fewer
than n). To do this, move on to step 4.

Step 4: When the matrix obtained in step 3 does not contain assignment in
every row and every column then we draw the minimum number of
horizontal and vertical lines necessary to cover all zeros at least once. For
this the following procedure is adopted.

(i) Mark (V) all rows for which assignment have not been made.
(i) Mark (/) column which have zeros is marked rows.

(iii) Mark (v)) rows (not already marked) which have assignment in
marked columns.

(iv) Repeat step (ii) and (iii) until the chain of marking ends.

(v) Draw minimum number of lines through unmarked rows and through
marked columns to cover all the zeros.

This procedure will yield the minimum number of lines (equal to the
number of assignments in the maximal assignment obtained in step 3) that
will pass through all zeros.

Step 5: Select the smallest of the elements that do not have a line through
them, subtract it from all these elements that do not have a line through
them, add it to every element that lies at the intersection of two lines and
leave the remaining elements of the matrix unchanged.

Step 6: At the end of step 5, number of zeros are increased (never
decreased) in the matrix than that in step 3.

Now re-apply the step 3 to the modified matrix obtained in step 5, to
obtain the desired solution.

Examplel: Solve the following minimal assignment problem:
Man-» 1 2 3 4

Jobl

I 12 30 21 15
1 18 33 9 31
i 44 25 24 21
v 23 30 28 14

Solution: For the clear understanding, this example is solved step by step
systematically.

Stepl: Substracting the smallest element of each row from every element
of the corresponding roiw, we get the following matrix:
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1
I 0
] 9
2
9

N =N

4
8 3
4 2

N

3
9
0
Il 3
v

3

0
0

[EEN
o &

14

Step2: subtracting smallest element of each column from every element of
the corresponding column, we get the followi9ng matrix:
1 2 3 4
I 0 14 9 3
I 9 20 0 22
Il 23 0 3 0
v 9 1214 0
Step3: now we test whether it is possible to make an assignment using the
zeros by the method described instep 3in$ 12.5
Starting with row I, we mark [ ] in the row containing only one zero and
cross(x) the zeros in the corresponding column in which [ ] lies. Thus, we
get the following table.

Again starting with column 1, we mark [ ] in the column containing only
one unmarked zero in the above table and cross out the zeros in the
corresponding row in which this assignment is marked. Thus, we get the
following table.
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Since in the last table, every row and every column have one assignment,

so we have the complete optimal zero assignment.

Job: | 1 i v

Man: 1 3 2 4
i.e.l - 1,11 - 3,1l - 2,1V - 4

Which is the optimal assignment.

Example2. A department head has four subordinates, and four tasks to be

performed. The subordinates differ in efficiency and the tasks differ in

their intrinsic difficulty. His estimate of the times each man would take to

perform each task is given in the effectiveness matrix below. How should
the task be allocated, one to a man, so as to minimize the total man hour?

subordinates

L L 1 1 I AV

A |8 26 17 11

Tasks B |13 28 4 26

C (38 19 18 15

D |19 26 24 10

Solution: Step 1: Subtracting the smallest element in each row from every

element of the corresponding row, we get the following matrix.

I O 1 e 4
A (0 18 9 13
B |9 24 0 22
C |23 4 3 0
D |9 16 14 O

Step 2: Subtracting the smallest element in each column of the above
matrix from every element of the corresponding column, we get the
following matrix.

L L\
A (0 14 9 13
B |9 20 0 22
CcC |23 0 3 O
D |9 12 14 O

The above matrix is the same as obtained in step 3 in example 1, therefore
for minimum man hours the allotment should be as follows:

Tasks A B C D
Subordinates | 1] I v
Man hours 8 4 19 10
i.eeA->I1,B->III,C->I1I,D->1V

The total man hoursare 8 + 4 + 19 + 10 = 41.
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12.6 VARIATIONS OF THE ASSIGNMENT
PROBLEM: -

1. Non-square matrix (Unbalanced assignment problem): Such a
problem is found to exist when the number of facilities is not equal to the
number of jobs. Since the Hungarian method of solution requires a square
matrix, fictitious facilities or jobs may be added and zero costs be assigned
to the corresponding cells of the matrix. These cells are then treated the
same way as the real cost cells during the solution procedure.

2. Maximization problem: Sometimes the assignment problem may deal
with maximization of the objective function. The maximization problem
has to be changed to minimization before the Hungarian method may be
applied. This transformation may be done in either of the following two
ways:

(a) By subtracting all the elements from the largest element of the matrix,
(b) By multiplying the matrix elements by 1.

The Hungarian method can then be applied to this equivalent minimization
problem to obtain the optimal solution.

3. Restrictions on assignments: Sometimes technical, space, legal or
other restrictions do not permit the assignment of a particular facility to a
particular job. Such problems can be solved by assigning a very heavy
cost (infinite cost) i.e, co or M to the corresponding cell. Such a job will
then be automatically excluded from further consideration (making
assignments).

4. Alternate optimal solutions: Sometimes, it is possible to have two or
more ways to strike off all zero elements in the reduced matrix for a given
problem. In such cases, there will be alternate optimal solutions with the
same cost. Alternate optimal solutions offer a great flexibility to the
management since it can select the one which is most suitable to its
requirement.

Example3. (Unbalanced Assignment Problem): A department head has
four tasks to be performed and three subordinates. The subordinates differ
in efficiency. The estimates of the time, each subordinate would take to
perform, are given below in the matrix. How should he allocate the tasks,
one to each man, so as to minimize the total man hours?

subordinates

1 2 3
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| 9 26 15
Tasks 1l 13 27 6
I {35 20 15
IV |18 30 20

Solution: Since the matrix is not square, it an unbalanced assignment
problem we introduce one fictitious subordinate (4th column with zero
costs) to get a square matrix. Thus the resulting matrix is shown in the
following table. Now the problem can be solved by usual method.

1 2 3 4
I 9 26 15 O
I |13 27 6 0
I |3 20 15 0
IV [18 30 20 O

Stepl: Subtracting the minimum element of each row from every element
of the corresponding row and then subtracting the minimum element of
each column from every element of the corresponding column, the matrix
reduces to

1
I 0
i 4
2
9

O NN
©O© O Oow

I
v

6

OO OO~

[
o
[
SN

Step2: Giving zero assignments in the usual manner, we observe that,
each row and each column have zero assignments.

\ 2 &y
T 35
g LR S

24 HD\ S
~1{ 9 v W [©)

Hence the optimal assignment is as follows.
Tasks — subordinates,I —» 1,11 — 3.11] - 2.
Task IV remains unassigned.

From the original matrix, the total time (man hours) =9 4+ 6 + 20 = 35
hours.
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Example4. (Maximization problem): Alpha Corporation has four plants
each of which can manufacture any of the four products. Production costs
differ from plant to plant as do sales revenue. From the following data,
obtain which product each plant should produce to maximize profit?

Sales revenue

(%1000)

Plant Product
l 1 2 3 4
A 50 68 49 62
B 60 70 51 74
C 55 67 53 70
D 58 65 54 69
Production cost

(21000)

Plant Product

) 1 2 3 4
A 49 60 45 61
B 55 63 45 69
C
D

52 62 49 68
55 64 48 66

Solution: Since, Profit = Sales revenue — Product cost, so the profit
matrix is as follows.

oO0Ow>

W w Rk
P O~ 0N
oo BMw
w N O RA

This is a maximization problem. We shall solve this problem by
converting it to minimization problem by both methods discussed in
article 12.6.

1. By Method 1: Subtracting each element of the above matrix from the
greatest element 8 of the matrix, the equivalent loss matrix is

OO w>

g Ul w Nk
~Nwkr oN
N AN AW
guo wN~
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Step 1 and 2: Subtracting the minimum element of cach row from all the
elements of the corresponding row and then subtracting minimum element
of each column from all the elements of the corresponding column, we get
the following matrix.

OO w>

R O o Ul
U1o o o|N
oOr R AMw
PP oo

Step 3: Giving zero assignments in the usual manner, we get the following

matrix.
( B, j,,ﬂT
Als s 4.2
S A
C I@ .
{

bl ol |

In the above table there is an assignment in each row and each column.
Hence the optimal assignment for maximum profit is

A->2,B-4C-1,D -3
and Max. Profit =X(8+ 5+ 3+ 6) X 1000 = 322000

2. By Method 2: Placing negative sign before each element of the profit
matrix, the equivalent loss matrix is

oOoOw>

I

Ul
I

~
I

o
I

vl

Now subtracting the minimum element of each row from every elements
of the corresponding row and then subtracting the minimum element of
each column from every element of the corresponding column, we get the
following matrix.
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oOOw>
N =R=X3
o oo
Ok D
=X

Which the same matrix is as obtained in step 1 and 2 in methods 1. Hence
giving zero assignments we get the same optimal solution as in method 1.

Example5: (restrictions on assignment): Four engineers are available to
design four projects. Engineer 2 is not competent to design the project B.
Given the following time estimates needed to cach engineer to design a
given project, find how should the engineers be assigned to projects so as
to minimize the total design time of four projects.

Projects
A B C D
1 12 10 17 11
Engineers 2 | 14 notsuitable 4 26
3 |6 10 16 4
4 |8 10 9 7

Solution: To avoid the assignment2 — B. we take its time to be very
large (say). Then the cost matrix of the resulting assignment problem is
shown in the following

A B C D
1 |12 10 17 11
2 |14 o0 4 26
3 |6 10 16 4
4 |8 10 9 7

Now we apply the assignment technique in the usual manner.

Stepl: Subtracting the minimum element of each row from every element
of the corresponding row and then subtracting minimum element of each
column from every clement of the corresponding column, the reduced
matrix is

A B C D
1 3 0 0 0
2 2 00 2 0
3 1 4 10 0
4 0 1 0 0

Step 2: Giving zero assignments in the usual manner, we observe that row
3 and column 3 have no zero assignments. So we draw minimum number
of lines to cover all zeros at least once. Number of such zeros is 3.
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o
LQ----’?r——————)(----):,(--
2 o0 2 Ejﬂ MO
1 4 10 i'( O)
L, --—----|----x———4:(———

v

@

Step 3: In the above table, the smallest of the uncovered elements is 1.

Subtracting this clement 1 from all uncovered elements, adding to each

element that lies at the intersection of two lines and leaving remaining

elements unchanged we get the following matrix.
A B C

R w8 o
= oo~ |0

3 0
1 1
0 9
0 0

A OwWN P

Step 4: Giving zero assignments in the usual manner, we observe that
each row and each column have a zero assignment.

[SN=)
&
=

(RSN
x
2

Hence the optimal assignment is
Engineer —» Project:1 > B,2—->D,3>A,4->C
From the given matrix total minimum time= 10 + 11 4+ 6 + 9 = 36.

SELF CHECK QUESTIONS

=

what is an Assignment Problem?

2. How is the Assignment Problem related to the Transportation
Problem?

State the main objective of the Assignment Problem.

What are the assumptions made in an Assignment Problem?
Define the term “feasible solution” in the context of the
Assignment Problem.

ok w
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6. Explain the difference between a balanced and an unbalanced
Assignment Problem.

What is a cost matrix?

8. What is meant by an optimal assignment?

~

12.7 SUMMARY:: -

In this unit, we have studied that the Assignment Problem is a special case
of the Transportation Problem in which the objective is to assign a number
of resources or tasks to an equal number of activities or agents in such a
way that the total cost or time is minimized (or profit is maximized). In
this problem, each resource can be assigned to only one task, and each
task must be assigned to only one resource. It is commonly applied in
situations such as assigning workers to jobs, machines to tasks, or
salesmen to territories. The cost or effectiveness of each possible
assignment is represented in a matrix form, and the goal is to find the
optimal one-to-one assignment that results in the minimum total cost. The
Hungarian Method is the most widely used algorithm to solve the
Assignment Problem efficiently. This problem plays an important role in
operations research and decision-making processes to ensure the optimal
utilization of available resources.

12.8 GLOSSARY:: -

e Assignment Problem: A special type of Transportation Problem
that deals with assigning a number of resources (like workers or
machines) to an equal number of tasks or jobs in a way that
minimizes total cost or time (or maximizes profit).

e Agent (Resource): The person, machine, or resource that needs to
be assigned to a particular task.

e Task (Job or Activity): The specific work or operation that must
be completed by an agent or resource.

e Cost Matrix: A square matrix that shows the cost, time, or
effectiveness of assigning each agent to each task.

e Feasible Assignment: An arrangement in which each agent is
assigned to exactly one task, and each task is assigned to exactly
one agent.

e Optimal Assignment: The assignment that results in the minimum
total cost or maximum total profit.
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e Hungarian Method: A systematic algorithm used to find the
optimal solution of the Assignment Problem efficiently.

e Balanced Assignment Problem: An Assignment Problem in
which the number of agents is equal to the number of tasks.

e Unbalanced Assignment Problem: A problem in which the
number of agents and tasks are not equal. It can be made balanced
by adding dummy rows or columns with zero cost.

e Dummy Row/Column: An artificial row or column added to
balance an unbalanced assignment problem, usually containing
zZero costs.

e Minimization Problem: A type of assignment problem in which
the goal is to minimize the total cost or time of performing all
tasks.

e Maximization Problem: A type of assignment problem in which
the goal is to maximize total profit or efficiency.

e Opportunity Cost: The difference between the cost of a selected
assignment and the minimum cost in the same row or column, used
during optimization steps in the Hungarian Method.

e Operations Research: A branch of applied mathematics that uses
analytical methods to make better decisions, under which the
Assignment Problem is studied.

e Optimal Solution: The best possible assignment that satisfies all
constraints and achieves the objective of minimum cost or
maximum profit.

12.9 REFERENCES: -

e Wagner, H. M. (2010). Principles of Operations Research: With
Applications to Managerial Decisions. Prentice Hall of India.

e Hamdy, A. Taha. (2003). Linear Programming and Network
Flows. Pearson Education.

e Ravindran, A. (2008). Operations Research and Management
Science Handbook. CRC Press.

e Winston, W. L. (2004). Operations Research: Applications and
Algorithms (4th Edition). Thomson Brooks/Cole.

12.10 SUGGESTED READING: -

Department of Mathematics
Uttarakhand Open University Page 233



Linear Programming and Game Theory MT(N)-223

e Dr. R.K.Gupta (2" Eddition, 2012), Krishna Publication, Operation
Research

e Er. Prem Kumar Gupta and Dr. D.S. Hira (7t" Edition,2014), S.Chand
& Company PVT. LTD., Operations Research

12.11 TERMINAL QUESTIONS: -

(TQ-1) Solve minimal assignment problem whose effectiveness matrix is

L 1 e 4
A |2 3 4 5
B (4 5 6 7
c |7 8 9 8
D |3 5 8 4

(TQ-2) Suggest optimum solution to the following assignment problem
and also the maximum sales:

Salesman Market (sales in Lakhs?)
[ 1 11 (\
A 44 80 52 60
B 60 56 40 72
C 36 60 48 48
D 52 76 36 40

(TQ-3) A company has a team of four salesmen and there are four
districts where the company wants to start its business. After taking into
account the capabilities of salesmen and the natrue of districts, the
company estimates that the profit per day in rupees for each salesman in
each district is as below.

District
1 2 3 4
A |16 10 14 11
Salesman B |14 11 15 15
C |15 15 13 12
D |13 12 14 15

(TQ-4) Four engineers are available to design four projects. Engineer 2
is not competent to design the project B. Given the following time
estimates needed to each engineer to design a given project, find how
should the engineers be assigned to projects so as to minimize the total
design time of four projects.
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Projects
A B C D
1 |16 14 14 12
Engineers 2 | 16 -- 17 13
3 |11 15 21 9
4 8 10 9
7

(TQ-5) Find the optimal assignment for the problem with the following
matrix:

~
~

111 v

WO ([ |U1 |~

[eX RN Rlegjee)

B wWw N -
N (b (O (w
NN

(TQ-6) Find the optimal assignment for the problem having the
following cost matrix:

1 11 111 1%
30 25 26 28
26 32 24 20
20 22 18 27
23 20 21 19

B W N R

(TQ-7) Solve the following assignment problem:

P Q R S
85 50 30 40
90 40 70 45
70 60 60 50
75 45 35 55

(R vy IeN

(TQ-8) Solve the following minimal assignment problem:

1 2 3 4
10 12 19 11
5 10 7 8

12 14 | 13 11
8 15 11 9

(e RvvIleN

(TQ-9) A company has 4 machines to do 3 jobs. Each job can be
assigned to one and only one machine. The cost of each job on each
machine is given in the following table:
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machine
w X Y Z
jobs A 18 24 28 32
B 8 13 17 19
C 10 15 19 22
What are the job assignments which will minimize the cost?

(TQ-10) Solve the following minimal assignment problem:

1 2 3 4 5
A 9 11 15 10 11
B 12 9 — 10 9
C — 11 14 11 7
D 14 8 12 7 8

12.12 ANSWERS: -

(TQ-1)A->II,LB-II,C—>1IV,D -1

Minimum cost= X20

(TQ-2)A—>1I,B—1V,C > III,D > I

Maximum sales = X252

(TQ-3) salesman - district,A—> 2,B > 4,C > 1,D > 3

Maximum profit = 61

(TQ-4) Engineer - Project: 1 > B,2 > D,3 > A,4->C

Minimum total time= 47 hours

(TQ-5) Min.cost = X16

(TQ-6) Min.cost = 386

(TQ-7) Min.cost = X9

(TQ-8) Min.cost = 338

(TQ-9) A->w,B - X,C - Y, No job is assigned to machine Z.

(TQ-10) A —>1,B - 11,C - V,D - IV, job I1I remains undone.
Min. cost = 32 units.
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CONTENTS:
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13.1 INTRODUCTION: -

The Transportation Problem is a classic optimization problem in
Operations Research (OR) that deals with the efficient distribution of
goods from multiple sources (such as factories or warehouses) to multiple
destinations (such as markets or retail outlets). The main objective is to
minimize the total transportation cost while satisfying the supply and
demand constraints at each source and destination.

In practical terms, it helps organizations decide how much of a product
should be shipped from each origin to each destination so that the overall
shipping cost is minimized, and all supply and demand requirements are
met

13.2 OBJECTIVES: -

After studying this unit, the learner’s will be able to
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e Define Transportation Problem.

e Understand Mathematical Formulation of Transportation
Problem.

e Explain Methods of Finding Initial Feasible Solution.

e Explain The Stepping Stone Method and MODI Method or u-
v Method.

e Define Unbalanced Transportation Problem.

13.3 TRANSPORTATION PROBLEM/ MODEL.: -

When a single homogeneous commodity needs to be delivered in different
quantities to many locations known as "destinations,” there are multiple
centers, often referred to as "origins" or "sources,” in the transportation
problem or model. In this case, each origin (or source) has a capacity (i.e.
availability), and each destination has a requirement, so that the total of
the capacities (i.e. available) at all origins (sources) equals the total of the
requirements at all destinations. There are known and distinct
transportation costs from each origin to each destination. Transporting the
entire quantity available from all sources to all destinations in order to
satisfy their needs while keeping the overall cost of transportation as low
as possible is the goal.

Therefore, the transportation problem (or model) focuses on reducing
transportation costs by satisfying the needs of every destination using the
complete amount of resources available at all sources.

13.4 NOTATIONS: -

The following notations will be applied to the transportation problem.

m = the numberof sources

n = the number of destinations

a; = the availability (or supply)at the i — th source

b; = the requirement (or demand) at the j — th destination

c;j = the cost of transportation of one unit from ith source to j — th
destination

x;; = the number of units to the transported from the i — th source to

Jj — th destination.

13.5 TABULAR REPRESENTATION OF
TRANSPORTATION PROBLEM: -

The above-described transportation problem can be shown in the
following tabular form, called a transportation table:
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Destinations — 74 w, w; W, | Capacity of the
sources 1 sources
F; C11 C12 C1j Cin a;
F, C21 C22 Coj Con a;
F; Ci1 Ciz Cij Cin a;
Fm Cm1 Cm2 ij Cmn Am
Requirements - | b, b, b; b, | & -
Sa-b
i=1 =1
Destinations — w; w, w; W, | Capacity of the
sources 1 sources
Fy X11 X12 X1j X1in a,
F, X21 X22 X2j Xon a;
F; Xin X Xij Xin a;
Fm Xmi Xm2 xmj Xmn Am
Requirements - | b, b, b; b, | & r
Sa-b
i=1 j=1

The above two tables can be combined together by writing the costs c;;
within the bracket (), as follows:

Destinations 174 w, w; W, Capacity
- of the
sources sources
Fy x11(€11)  X12(€12) x1j(C1j) X1n(€1n) a;
F, X21(C21)  X22(€22) xzj(Czj) Xon(C2n) a;
F; xi1(€i1)  Xip(Ci2) xij(cij) Xin (Cin) a;
Fm xml(cml) Xm2 (sz) xmj (ij) Xmn (Cmn) am
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—_

i

Requirements b, b, b; b, i
a;

L

.
1l
[y

13.6 MATHEMATICAL FORMULATION OF
TRANSPORTATION PROBLEM: -

Mathematically, a transportation problem can be stated as a linear
programming problem as follows:
Find x;;(i = 1,2, ...,m,j = 1,2, ...,n) to minimize the total transportation

cost, i.e.
m n
Min.Z =ZZCUXU (1)

X11 + X12 + -+ X1pn =
X211 + Xoo + -+ Xon =

A
I n
2
}i'e'zx” =q;fori=12,...m ..(2)

Xmit Xma + 0+ Xn = Ay

Subject to constraints

Demand constraints

X11 + Xo1 + o Xpg = by

X1z +Xgp + o+ Xz = by | 7

&l e. qu =b; forj=12,. .. (3)

Mee mEs sEE wEs EEE EEE wEs mEE wEs wEE wen wew I j=1

Xin T Xon + o+ X = bn)
n

@y + ay + -+ @y, = by + by + - +bleZal Zb, - (4)

j=1

And xj=0vi=12,..,mj=12,..,n

Thus the transportation problem is a L.P.P. of special type, where we are
required to find the values of m,n variable that minimizes the objective
function Z given by (1), satisfying (m + n) constraints given in (2) and
(3), constraint (4) and the non-negative restriction of variables.

13.7 TERMINOLOGY: -
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We will define a few terminologies used in transportation-related
problems here.
1. A Feasible Solution (F.S.)

A set of non-negative individual allocations (x;; = 0) that satisfy the
row and column sum restrictions, or the constraints of the problems or
models, represents a feasible solution to a transportation problem. In
order for a feasible solution to be found, it must

2. Basic Feasible Solution(B.F.S.)
If the total number of positive allocations is less than or equal to m +
n — 1 (one less than the sum of the number of rows and columns),
then a transportation problem's feasible solution of m is considered
basic. In other words, a B.F.S. of a T.P. does not contain more
than m + n — 1 positive allocation.

3. Optimal Solution
A feasible solution (not necessarily basic) is said to be optimal if it
minimizes the total transportation cost.

4. Non-degenerate Basic Feasible Solution

The term "non-degenerate basic feasible solution™ refers to a feasible
solution to the transportation problem if

(i) (m + n — 1) is precisely the total number of positive allocations.

(i) These allocations are situated independently.

To put it another way, a B.F.S. is considered non-degenerate if it
involves exactly (m + n — 1) individual positive allocations and
these allocations are used in independent positions; if not, it is
considered degenerate.

By "independent positions of the allocation,” we mean that combining
any or all of these allocations with horizontal and vertical lines would
never result in a closed circuit (loop). Only for the allocations in
independent places may one return to itself by making a sequence of
jumps from one occupied cell to another occupied cell, both vertically
and horizontally, without actually reversing the path. View the
following tables, where allocation positions are shown by
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Independent positions Non-Independent positions Non-Independent positions

| |
. . ; b 3 ﬁ—‘
e A | A 4
. . L ; [ t{; ¥ T |
s — e
..\3 L/

Closed circular loop

5. Balanced Transportation Problem
If the total supply (availability) at all origins (sources) equals the total
demand at all destinations, the transportation problem is considered

balanced. i.e.
m n
Z Cll' = Z b]

i=1 =1

~.

6. Unbalanced Transportation Problem
If the total supply (availability) at all origins (sources) is not equal to
the total demand at all destinations, the transportation problem is

considered unbalanced. i.e.
m n
Dyes 2

i=1 j=1
7. Rim Requirements
The quantity required for distribution, or _; b;, in a transportation

problem is referred to as the “rim requirement”.

Theorem 1: Existence of feasible solution
A necessary and sufficient condition for the existence of feasible solution
of a men transportation problem |s

Z a; = Z b; (Rim condition)

i=1 j=1
Theorem 2: Out of (m+n) equations (constraints) in a mxn
transportation problem, one (any) is redundant and remaining (m +n —
1) equations form a linearly independent set.
Theorem 3: Existence of an optimal solution
There always exists an optimal solution to balanced transportation
problem.

13.8 SOLUTION OF A TRANSPORTATION
PROBLEM: -

A transportation problem is solved, in general, by the following step by
step procedure.
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Step 1: To make a transportation table
Set up the problem in the form of a transportation if not given so,

Step 2: To check the balance in supply and requirements (demands)
Check whether the given T.P. is balanced or not. For a balanced m x n

T.P.

m n

2= Qb

i=1 j=1
i.e., the total supply (availability) at the sources must be equal to the total
requirements (demands) at all destinations whenever it is not so, a dummy
origin (sources) or destination (as the case may be) is created to balance
the supply and demands.

Step 3: To find an initial basic feasible solution (B.F.S.)

First we find an initial B.F.S. of the given T.P. by any of the methods
given in article 13.9. It is in general better to find initial B.F.S. by VAM
which will save their valuable time to reach the optimal solution of the
problem. Then

(1) Check whether the B.F.S. has allocations in exactly (m +n — 1) cells
or not. If the number of allocations is less than (m 4+ n — 1), then it is case
of degeneracy i.e., the B.F.S. is degenerate.

(ii) Check whether the B.F.S. has (m + n — 1) allocations in independent
positions or not. If not then either shift source allocation from an occupied
cell to an occupied (empty) cell or find B.F.S. by other method to get
exactly (m + n — 1) allocations in independent positions.

Step 4: To check the solution for optimality

Make optimality test to check the above non-degenerate solution obtained
in step 3 for optimality. If this solution is not optimal then proceed to the
next step.

Step 5: To find the modified (revised) solution

If the solution in step 3 is not optimal, then modify the solution by shifting
an allocation from an occupied all (cell having allocation) to an
unoccupied cell (cell having no allocation) so that total transportation cost
is not increased and the allocations remain in independent positions.

Step 6: Repeat steps 4 and 5 until an optimal solution is obtained.

13.9 METHODS OF FINDING INITIAL FEASIBLE
SOLUTION: -
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Finding the first basic feasible solution to the given transportation problem
can be done in a number of ways. Here, we outline the following three
simple methods.

1. Method 1: North-West Corner Method (NWCM)

2. Method 2: Lowest Cost Entry Method (LCEM) or Matrix Minima
Method (MMM)

3. Method 3: Vogel's Approximation Method (VAM) or Unit Cost Penalty
Method (UCPM)

13.9.1 North-West Corner Method (NWCM): -
In this method, we have the following steps:

Step 1: Start with the (1,1) at the north-west corner ie., the upper left
corner of the transportation table and allocate it the maximum possible
amount x,, which is equal to the minimum of available supply a, in row 1
and the demand required b, in the column 1 i.e..

x11 = min. (a4, by)
ie., ifa; < by, then allocate x,; = a; and move to cell (2,1) vertically
below cell (1,1) as the supply in row 1 is exhausted.
if a; > b, then allocate x;; = b; and move to cell (1,2) horizontally right
to cell (1, 1) as the requirement in column one is exhausted.
if a; = b, then allocate x,; = a; = b, and move to cell (2,2), diagonally
to cell (1,1) as the supply in row 1 and requirement in column 1 are
exhausted simultaneously.
Step 2: Adjust the supply and demand units in the respective rows and
columns i.e., in row 1 and column 1 through the cell (1, 1).
Step 3: Repeat the steps 1 and 2 with the new cell moved.
Step 4: Continue in this manner, step by step until the total available
supply is fully allocated to the cells destinations as required.

Note: that the procedure will end at the cell in the south-east corner (i.e.,
lowest right corner).

13.9.2 Lowest Cost Entry Method (LCEM) or Matrix

Minima Method (MMM): -
In this method, we have the following steps:

Step 1: Write all the costs within the brackets () in the transportation table.

Step 2: Examine the cost matrix carefully and find the lowest cost. Let it
be c;;. Then allocate x;; as much as possible in the cell (i,),i.e.x;; =

min. (a;, b;)
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(). Ifa; < bj,x;; = a;, then the capacity of the ith origin is completely
exhausted. In this case cross out the ith row of the transportation table and
decrease the requirement b; by a;. Now go to step 3.

(i) If a; > bj,x;; =b; , then the requirement of j-th destination is
completely satisfied. In this case cross out the j-th column of the
transportation table and decrease a; by b;. Now go to step 3.

(ili) Ifx;; = a; = b; then either cross-out the ith row or j-th column but
not both. Now go to step 3.

If such cell of lowest cost is not unique, select the cell where we can
allocate more amounts.

Step 3: Adjust the supply and demand in the row and column through the
cell in which allocation is made.

Step 4: Repeat the steps 2 and 3 leaving the cost of the cells in the row or
column already crossed, until all the supply is exhausted or all the
requirements are satisfied.

13.9.3 Method 3: Vogel's Approximation Method (VAM): -

In this method, each allocation is made on the basis of the penalty (or
opportunity) cost that would have incurred if allocation in certain cells
with minimum cost were missed. In this method, we have the following
steps:

Step 1: Write the differences of the smallest and the second smallest costs
(i.e. penalties) in each row to the right of the corresponding row and write
the similar differences (penalties) of each column below the corresponding
column.

Step 2: Select the row or column for which the penalty is the largest and
allocate the maximum possible amount to the cell with lowest cost in that
particular row or column.

If the largest penalty among rows and columns is not unique, select that
row or column in which we can allocate more amount in the lowest cost
cell of that row or column.

Step 3: Adjust the supply and demand units in the respective row and
column through the cell in which allocation is made and cross (or leave)
out the row (or column) in which the supply (or demand) is exhausted.

Department of Mathematics
Uttarakhand Open University Page 245



Linear Programming and Game Theory MT(N)-223

Step 4: Repeat the steps 1, 2 and 3 with the costs in the remaining rows
and columns left after crossing the exhausted row or column in previous
step till all the supply and demands are exhausted.

13.10 OPTIMALITY TEST: -

After obtaining the initial F.S. of a transportation problem, we evaluate
this solution for optimality, meaning we determine whether or not the
feasible solution found minimizes the overall cost of transportation. There,
we begin the optimality test to a non-degenerated B.F.S., or an F.S. with
(m + n — 1) allocations in independent positions.

For the test of the solution's optimality, the two approaches listed below
are generally used:

1. The stepping-stone method

2. The modified distribution (MODI) or u-v method.

13.11 THE STEPPING STONE METHOD: -

Examine the matrix that provides the transportation problem's basic
feasible solution (a feasible solution with exactly m + n — 1 allocations),
where m is the number of rows and n is the number of columns.

Follow these steps to test the B.F.S. for optimality using the stepping-
stone method:

Step 1: Choose an unoccupied cell, or one that has no allocation. Starting
from this cell, move horizontally and vertically along a closed path that
passes through at least three occupied cells utilized in the solution before
returning to this cell. Only the cells at the turning points in this closed path
can be taken into account, ignoring the other occupied and unoccupied
cells that cross the path. These cells at the path's turning points are
referred to as stepping stones.

Step 2: Allocate +1 unit to this chosen unoccupied cell, then alternately
assign —1 and +1 units to each of the above closed path's corner cells so
that the total of the row and column allocations remain unchanged.

Step 3: Add the unit costs in the cells with + 1 allocations and subtract the
unit costs in the cells with —1 allocations to determine the net change in
the cost along this closed path. The cell evaluation of the unoccupied cell
chosen in step 1 refers to this net change in cost, which can be either
positive or negative. The positive cell evaluation implies that the above
adjustment would increase the total cost while the negative cell evaluation
implies that this adjustment would decrease the total cost.
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Step 4: For every unoccupied cell in the solution, repeat steps 1 to 4.

Step 5: Examine each cell evaluation's signs. The solution under
evaluation is optimal and cannot be further improved if all are larger than
or equal to zero. The present solution is not ideal and can be further
improved if at least one of these cell evaluations is negative. In this case,
move on to step 6.

Step 6: Choose the unoccupied cell with the highest negative cell
evaluation, allocate a maximum number of units to it, and modify the units
in other occupied cells so that the total of the allocations in the rows and
columns remains the same.

Step 7: For every unoccupied cell in this new solution, repeat steps 1 to 6.
Continue this process until an optimal solution is found.
Because there are mn—-(m+n-1)=m-1)(n -
1) unoccupied cells, we must compute (m — 1)(n — 1) such cell
evaluations for each solution, which is extremely difficult.

We provide the following theorem (without proof) for the simultaneous
computation of cell evaluations for every unoccupied cell in order to avoid
this difficulty.

Theorem 4: If we have a B.F.S. consisting of (im + n — 1) independent
positive allocations, and a set of arbitrary numbers w; and v;,i =
1,2,...m;j=1.2...... n; such that
Crs = Uy + Vs
for all occupied cells (7, s) then the cell evaluationsd;; corresponding to
each empty cell (i, ) is given by
dij = Cij - (ul- + U])

Examplel. Solve the following transportation problem.

To Supply
1 2 3
1 2 7 4 5
From | 2 3 3 1 8
3 5 4 7 7
4 1 6 2 14
Demand 7 9 18 34

Solution:

Step 1: The initial B.F.S. of the above problem (by VAM) is given in the

following table.

Total transportation cost
=IB5%x24+2%x14+7%x44+2Xx6+8x1+10x2) =380
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aj

(2) (7) (4)

v
i

2 2 10

b; 7 9 18

Step 2: Now we determine a set of u; and v; s.t. for each occupied
cell (r,s),c,s =u, +v, . For this we choose u, = 0 (since row 4
contains maximum number of allocations).
Since
Ca1 =1 =Uys+ V1,640 =6 =Uy +Vy,C43 =2 =Uy + V3
v=1—-u=1Lv,=6—u,=6v3=2—u, =2
also c1=2=u +v,c3=1=u,+v3,c3,=4=u;+ 1,
w=2-v=lLu,=1-v3=-1lLu;=4—-v, =-2

Step 3: Then we find the cell evaluations u; + v; for each unoccupied cell
(i,j) and enter at the upper right corner of the corresponding unoccupied
cell.

Step 4: Then we find the cell evaluations
d;j = c;; — (u; + v;) (i.e., the difference of the upper right corner entry
from the upper left corner entry) for each unoccupied cell (i, j) and enterat
the lower right corner of the corresponding unoccupied cell.

Thus, we get the following table:

~

N
N

10

(n) (m) (r3)

Step 5: Since cell evaluation d,, = —2 < 0, so the solution under test is
not optimal.
Step 6: Since minimum d;; is d,, = —2 < 0 (negative), so we give

maximum allocation 8 to this cell from an occupied cell and make the
necessary changes in other allocations as shown in the following table.
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5
+0
P Rt eits L > 8 -0
L7 :
2 2-90 10 +0

Smce minimum allocation containing -0 is 2 — 6
taking2 — 6 = 0,we get 8 = 2

Step 7: The new B.F.S. (allocations in independent positions) thus

obtained is shown in the following table. For this B.F.S. total

transportation cost
=X(5X24+2x%x1+2x3+7x4+6x1+12x2) =376

This is less than that for the initial B.F.S.

(2) (7) (4)

2) (6) 8

(5) (4) (7)

(1) (6) (2)
(2) (12) 14

Step 8: Proceeding as in step 2, 3 and 4 (to test the optimality of the above
B.F.S.) we get the following table:
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(2) (7) G) |4 3)

v

1(2ey)

(3) (0)|(3) (1)

6 (o)

N

(5) (DHj4) (7) (2)

~

O (u3)

(1) (6) 4)2)

N
N

O (uy)

Since all d;; > 0. Hence, the B.F.S. shown by table in step 8 is an optimal
solution which is also unique.

Thus, the solution of the given transportation problem is
from source 1 transport 5 units to destination 1.
from source 2 transport 2 and 6 units to destinations 2 and 3 respectively.
from source 3 transport 7 units to destination 2.
And from source 4 transport 2 and 12 units to destinations 1 and 3
respectively which can also be written as

X11 =5,X00 = 2,X93 = 6,X35 = 7,X410 = 2,X43 =12
where x;; is the number of units to be transported from i-th source to j-th
destination.

And the total transportation cost (optimal) = X76.
13.12 MODI METHOD OR u-v METHOD: -

The MODI Method's iterative process for identifying the most optimal
solution to a minimization transportation problem is as follows:

Step 1. Create a transportation table by entering the requirements
by, b,, ..., b, and the sources' capacity a,, a,, ..., a,,. In each cell's upper
left corner, enter the different costs ¢;;. Use any of the techniques listed in

article 13.9 to find the problem's initial B.F. solution (allocation in
independent positions). Put the allocations in the cell centers.

Step 2: Choose a set of (m +n) numbers u; and v;,i = 1,2,...,m;j =
1,2..... n such that for each occupied cell (r,s)

Crs = Uy + Vg
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In order to do this, we give one of the u;s or v;'s an arbitrary value. The
remaining ones (m + n — 1) may then be solved algebraically using the
relation c,.; = u, + v, for occupied cells. generally, we select the row or
column with the greatest number of individual allocations, u; or v; = 0.

Step 3: For every unoccupied cell (i, j), find the cell evaluation u; + v;
and insert it in the upper right corner of the matching cell (i, j).

Step 4: For each unoccupied cell (i,j), get the cell evaluations
d;j = ¢;; — (u; + v;) and enter them in the associated cells' lower right
corners.

Step 5: Examine for unoccupied cells in the cell evaluationsd;; and
determine that

(i) The solution under test is optimum and unique if all d;; >0.

(if) The solution under test is optimal and there is an alternate optimal
solution if all d;; =0 and at least one d;;=0

(iii) The solution is not optimal if there is at least one d;; < 0. In the last
case, move on to step 6.

Step 6: Create a new B.F.S. by making an occupied cell empty, providing
the maximum allocation to the cell for which d overline eta is the greatest
negative, and modifying the units in the remaining occupied cells so that
the total of the allocations in the rows and columns remain unchanged.
Step 7: To determine whether this new B.F. solution is optimal, repeat
steps 2 to (5).

Until the optimal solution is found, continue improving the B.F.S.
interactively using steps 2 to (6).

The occupied (cells with allocations) and unoccupied (cells without
allocations) cells in the table will therefore look like this after all entries
have been made:

(Cells having no allocation)

(€;5) (€;5) (u; +7;)

Allocation

(djj = cjj — (1 + vj))
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13.13 UNBALANCED TRANSPORTATION
PROBLEM: -

An unbalanced transportation problem is defined as one in which the total
of all available quantities does not equal the total of all requirements. That

is, if
m
Zai * Zb]

i=1 j=1

A transportation problem that is unbalance gets transformed into one that
is balanced by creating a fictitious source or destination that will supply
the surplus supply or demand. Transporting a unit from the fictitious
source (or to the fictitious destination) is assumed to have no cost. By
introducing a fictional source or destination, the unbalanced transportation
problem is transformed into a balanced transportation problem, which is
then resolved using the previous techniques.

Example2. Determine the optimal transportation plan from the following
table given the plant to market shipping costs and quantities at each
market and available at each plant:

Plant Wi w, Ws W, Availability
F; 11 20 7 8 50
F, 21 16 10 12 40
F; 8 12 18 9 70
Requirements 30 25 35 40

Solution: Here total requirement of the market = 30 + 25 + 35 +
40 = 130 and total availability at the plants = 50 + 40 + 70 = 160

Since the total availability at three plants is 30 more than the total
requirements in four markets W, W, W;, W, . Therefore, this
transportation problem is unbalanced and so we convert this problem to a
balanced one by introducing a fictitious, market Wwith requirement 30
such that the cost of transportation from plants to this market
W5 are zero.

Thus, the balanced transportation problem is given by the following table:

Plant Wi w, W, W, Ws | Availability
F, 11 20 7 8 0 50
F, 21 16 10 12 0 40
F; 8 12 18 9 0 70
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| Requirements| 30 | 25 | 35 | 40 | 30 | Total160 |
By 'VAM', we get the following B.F. solution of the problem:
Market
Plant Wi Wy Wy Wy W5 a;
R (11) (7) (20) (11) |(7) (8) (0) (— 3)
25 25 50
(&) (9) 3)
I~ (21) (10) |(16) (14) |(10) (12) (11) [(O)
10 30 40
(11) (2) (1)
I (8) (d=2) (18) (8) (9) (0) —2)
30 25 15 70
(10) 2)
/)‘, 30 25 35 40 30 160

N

v 8 12 S 9 - 2
The solution given in the above table is an optimal solution as alld;; = 0.
Thus the optimal solution is
transport from plant F; to market W;, 25 units.
transport from plant £, to market W,, 25 units.
transport from plant F, to market W5, 10 units.
transport from plant F5 to market W;, 30 units.
transport from plant F; to market W, 25 units.
transport from plant F;to market W,, 15 units..
i.e. Xxq3=25x14 = 25xy3 =10,x3, = 25,x3; =30,x3, = 15
Total transportation cost
=3(25Xx7+4+25x84+10%x104+30%x8+25%x12+15x%9)
= 31150

It is important to note that 30 units are dispatched from plant F, to market

(Fictitious) Wy, In other words, we can say that 30 units are left
undispatched at the plant F».

SELF CHECK QUESTIONS

1. What is a Transportation Problem?

How is the Transportation Problem related to Linear

Programming?

What is the main objective of the Transportation Problem?

Define the term initial feasible solution.

What is the purpose of the Stepping Stone Method?

Explain the Modified Distribution Method (MODI).

What are the conditions for the optimal solution in a

Transportation Problem?

8. What is the difference between a Transportation Problem and an
Assignment Problem?

9. Give one real-life example where a Transportation Problem can be
applied.

N

No ok ow
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13.14 SUMMARY:: -

In this unit, we learned that the Transportation Problem is a type of Linear
Programming Problem (LPP) that deals with the efficient allocation of
resources in order to reduce the cost of transporting goods from multiple
sources (such as factories or warehouses) to multiple destinations. The
primary goal of this challenge is to discover the best cost-effective method
for distributing a commodity while meeting supply and demand
limitations at each source and destination. Each route between a source
and a destination has a transportation cost per unit, and the solution seeks
to reduce the overall transportation cost. The problem can be solved using
methods such as the North-West Corner Rule, Least Cost Method, and
Vogel's Approximation Method (VAM) to obtain an initial feasible
solution, followed by optimization techniques such as the Stepping Stone
Method or Modified Distribution Method (MODI) to achieve the optimal
solution.

13.15 GLOSSARY: -

e Transportation Problem: A special type of Linear Programming
Problem (LPP) that focuses on minimizing the cost of transporting
goods from multiple sources to multiple destinations while meeting
supply and demand constraints.

e Source (Origin): The point or location (such as a factory or
warehouse) from where goods are supplied or transported.

e Destination: The point or location (such as a market or store)
where goods are required or demanded.

e Supply: The quantity of goods available at each source for
transportation.

e Demand: The quantity of goods required at each destination.

e Transportation Cost: The cost incurred in transporting one unit of a
product from a source to a destination.

e Transportation Table (Matrix): A tabular representation
showing sources, destinations, supply, demand, and unit
transportation costs.

e Feasible Solution: A solution that satisfies all supply and demand
constraints without violating the non-negativity condition.

e Initial Basic Feasible Solution (IBFS): The starting solution that
satisfies all constraints before applying optimization methods.
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e North-West Corner Rule: A method used to find an initial
feasible solution by starting from the top-left (north-west) cell of
the transportation table.

e Least Cost Method: A method of finding an initial feasible
solution by selecting cells with the lowest transportation cost first.

e Vogel’s Approximation Method (VAM): A method used to
obtain an initial feasible solution by considering penalties
(difference between the two lowest costs in each row and column).

e Stepping Stone Method: An optimization method used to test
whether the current feasible solution is optimal and to improve it if
not.

e Modified Distribution Method (MODI Method): An efficient
method for testing the optimality of a transportation problem and
improving the current solution.

e Balanced Transportation Problem: A transportation problem in
which the total supply equals the total demand.

e Unbalanced Transportation Problem: A transportation problem
in which total supply does not equal total demand. It can be
balanced by adding a dummy source or destination.

e Degeneracy: A condition that occurs when the number of
occupied cells in the transportation table is less than (m + n —
1), where m is the number of sources and n is the number of
destinations.

e Optimal Solution: The feasible solution that results in the
minimum total transportation cost.
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13.18 TERMINAL QUESTIONS: -

(TQ-1) Solve the following transportation problems for minimum cost.

To
| I 1 v
A 15 10 17 18 2
From B 16 13 12 13 6
C 12 17 20 11 7
3 3 4 5

(TQ-2) Solve the following transportation problems for minimum cost.

Sources Destination Supply
X Y Z
A 2 7 4 50
B 3 3 7 70
C 5 4 1 80
D 1 6 2 140
Demand 70 90 180 340

(TQ-3) Obtain an optimal B.F.S. to the following T.P.

To
| I Il Available
A 7 3 4 2
From B 2 1 3 3
C 3 4 6 5
Demand 4 1 5 10

(TQ-4) A company has three plants A, B, C and three were houses X, Y
and Z. Number of units, available at the plants are 60, 70 and 80
respectively. Demands at X, Y and Z are 50, 80 and 80 respectively.
Unit’s costs of transportation are as follows:

X 1Y Z
A 8 7 3
B 3 |8 9
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[c [11]3 |5 |

(TQ-5) Solve the following transportation problem by North West corner
method.

To Supply
I I I
1| 19 | 16 | 12 14
From 2 | 22 13 | 19 16
3 | 14 | 28 8 12
Demand 10 15 17

(TQ-6) Solve the following transportation problem by North West corner
method.

To Supply
I 11 111 1A%
1 14 25 45 5 6
From 2 | 65 | 25 | 35 55 8
3 35 3 65 15 16
Demand 7 7 6 13

(TQ-7) Solve the following transportation problem by Lowest cost entry
method.

Warehouse Supply
I 11 111 1%
1 19 39 50 10 7
Factory 2 | 70 | 30 | 40 60 9
3 40 8 70 20 18

Demand 5 8 7 14

(TQ-8) Solve the following transportation problem by VAM method.

Destination Supply
1 11 111 v
1 5 8 3 6 30
Sources 2 4 5 7 4 50
3 6 2 4 6 20
Demand 30 40 20 10

(TQ-9) Solve the following transportation problem.

To Supply
I a1
1|21 ] 16 [25] 13 | 11
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From 2 17 18 14 23 13
3 32 27 | 28 41 19
Demand 6 10 12 15

(TQ-10) Solve the following transportation problem.

Market Supply
1 i 1l v
1 | 14 9 18 6 11
Plant 2 | 10 | 11 7 16 13
3 | 25 | 20 | 11 34 19
Demand 6 10 12 15

13.19 ANSWERS: -

(TQ-1) min.cost = X174

(TQ-2) min.cost =710

(TQ-3) min.cost = 333

(TQ-4) min.cost = X750

(TQ-5) x11 = 10,x5, = 11,x1, = 4,X53 = 5,x33 = 12,T.C.= 3588
(TQ-6) x11 = 4,x5, = 5,15 = 2,x3 = 3,X33 = 3,x34 = 13,T.C.=
3726

(TQ-7) X144 = 7,%X21 = 2,X31 = 3,X33 = 7,X3, = 8,X34 =
7,T.C.= X814

(TQ-8) x;; = 10,x5; = 20,x13 = 20, x5, = 20,x4 = 10,x3, =
20,T.C.= X370

(TQ-9):T.c.=%796

(TQ-10) oP.T.C.= %495
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UNIT 14: -Game Theory

CONTENTS:

14.1  Introduction

14.2  Objectives

14.3  Definition

14.4  Characteristics of Games
145  Terminology

14.6  Rules for Game Theory
14.7  Mixed Strategies

14.8  n Persons Zero-Sum Games
14.9  Limitations of Game Theory
14.10 Summary

14.11 Glossary

14.12 References

14.13 Suggested Reading

14.14 Terminal questions

14.15 Answers

14.1 INTRODUCTION: -

Game Theory is a branch of applied mathematics and economics that
studies how people (or players) make decisions in situations where the
outcome depends on the choices of all participants. It helps to understand

competition, cooperation, and strategic behavior.

For example, in business, politics, or even everyday life, people often have
to make choices considering what others might do. Game theory provides

tools to analyze these situations and find the best strategies.

14.2 OBJECTIVES: -

After studying this unit, the learner’s will be able to

e Explain game theory.
e Understand rules for game theory.
e Define n persons Zero-Sum games.
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14.3 DEFINITION: -

The general characteristics of competitive situations are considered by the
mathematical theory of games, sometimes known as game theory or
competitive strategies. When two or more people or organizations with
competing goals attempt to make decisions, this theory can be useful. In
these circumstances, a decision made by one decision-maker influences
the decisions made by one or more of the other decision-makers, and the
decision made by all parties determines the final result. In the field of
business, industry, economics, sociology, and military training, such
situations often arise. This theory can be applied to a wide range of
scenarios, including two players trying to win a game of chess, candidates
competing in an election, two adversaries preparing a war strategy,
businesses trying to hold onto market share, the start of advertising
campaigns by businesses promoting rival products, talks between
organizations and unions, etc. These situations are not the same as the
ones we have discussed, where nature was seen as a harmless opponent.

J. Von Neumann's minimax principle, which states that each competitor
will try to minimize his miximum loss (or maximize his minimal gain) or
attain best of the worst, is the foundation of game theory. This
mathematical theory has only been used to analyze basic competitive
problems so far. How a game should be played is not explained by the
theory. It merely outlines the process and guidelines for choosing plays.

Von Neumann, the "father of game theory,” invented the theory of games
in 1928, but it wasn't until he and Morgenstern published "Theory of
Games and Economic Behaviour" in 1944 that the theory got the attention
it deserved. There has been a significant gap between what the theory can
manage and the most real-world business and industrial scenarios because
it has only been able to analyze quite basic situations thus far. Therefore,
rather than its formal application to the resolution of actual issues, game
theory's main contribution has been its notions.

14.3.1 GAME MODELS

There are various types of game models. They are based on the factors like
the number of players participating, the sum of gains or losses and the
number of strategies available, etc.

1. Number of persons: If a game involves only two players, it is called
two-person game, if there are more than two players, it is named n-
person game. An n-person game does not imply that exactly n players
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are involved in it. Rather it means that the participants can be
classified into mutually exclusive groups, with all members in a
group having identical interests.

2. Sum of payoffs: If the sum of payoffs (gains and losses) to the
players is zero, the game is called zero-sum or constant-sum game,
otherwise non zero-sum game.

3. Number of strategies: If the number of strategies (moves or choices)
is finite, the game is called a finite game, if not, it is called infinite
game.

14.4 CHARACTERISTICS OF GAMES: -

A competitive game has the following characteristics:

(1) There are finite numbers of participants or competitors. If the number
of participants is 2, the game is called two-person game, for number
greater than two; it is called n-person game.

(2) Each participant has available to him a list of finite number of
possible courses of action. The list may not be same for each
participant.

(3) Each participant knows all the possible choices available to others but
does not know which of them is going to be chosen by them.

(4) A play is said to occur when each of the participants chooses one of
the courses of action available to him. The choices are assumed to be
made simultaneously so that no participant knows the choices made
by others until he has decided his own.

(5) Every combination of courses of action determines an outcome which
results in gains to the participants. The gain may be positive, negative
or zero. Negative gain is called a loss.

(6) The gain of a participant depends not only on his own actions but also
those of others.

(7) The gains (payoffs) for each and every play are fixed and specified in
advance and are known to each player. Thus each player knows fully
the information contained in the payoff matrix.

(8) The players make individual decisions without direct communication.

14.5 TERMINOLOGY: -

1. Game: It is an activity between two or more people in which each of
them does acts according to a set of rules, resulting in some gain
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(+ve, —ve, or zero) for each. If the actions in a game are determined
by abilities, it is considered a game of strategy; if they are determined
by chance, it is called a game of chance. Furthermore, a game can be
finite or infinite. A finite game has a limited number of moves and
options, whereas an infinite game has an infinite number of them.

2. Player: Every participant or competitor in a game is referred to as a
player. Each player takes an equally intelligent and sensible approach.

3. Play: A game play is defined as when each player selects one of his
options.

4. Strategy: It is the predetermined rule by which a player selects a
course of action from his list of options during the game. The player
does not need to know the opponent's strategy in order to decide a
particular strategy.

5. Pure Strategy: It is the choice rule to always take a certain course of
action. It is commonly represented by a numerical value that
corresponds to the course of activity.

6. Mixed Strategy: It is a decision made ahead of time to select a course
of action for each play based on a probability distribution. Thus, a
mixed strategy is a choice between pure strategies with certain fixed
probabilities (proportions). The advantage of a mixed approach, once
the game pattern is established, is that opponents are kept wondering
as to which line of action a player would take.

7. Optimal Strategy: An optimal strategy is one that puts the player in
the best position possible, regardless of his opponents' strategies. Any
deviation from this strategy would reduce his payoff.

8. Zero-Sum game: It is a game in which the total amount paid to all
players at the end of the game is zero. In such a game, the gain of
players that win is exactly equal to the loss of players that lose. For
example, two candidates fighting in elections, where the gain of votes
by one is the loss of votes by the other.

9. Two-Person zero-sum game: It is a game with only two participants
in which one's gain equals the other's loss. It is also known as a
rectangle game or matrix game because the payment matrix is
rectangular in shape. If there are participants and the sum of the game
is zero, it is called a "person zero-sum game." Iwo-person zero-sum
games have the following characteristics:

(a) There are only two players participating.
(b) Each player has a limited amount of strategies to use.
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(c) Each given method has a payoff,
(d) The total payoff for the two players at the end of each play is zero.

10. Nonzero-sum game: Here a third party receives or makes some
payment.

11. Payoff: It is the result of the game. The payoff (gain or game) matrix
is a table that shows the sums received by the player labeled on the left
after all conceivable game plays. The payment is made by the person
listed at the top of the table.

14.6 RULES FOR GAME THEORY: -

The basic rules employed in solving games are described below:

146.1 RULE 1. LOOK FOR A PURE STRATEGY (SADDLE
POINT)

Examplel. (Two-Person Zero-Sum Game with Saddle Point): In a
certain game, player A has three possible choices L, M and N, while
player B has two possible choices P and Q. Payments are to be made
according to the choices made.

Table: 1
Choices Payments
L,P Apays B3
L,Q B pays AX3
M, P Apays BX2
M,Q B pays A4
N,P B pays AX2
N,Q B pays AX3

What are the best strategies for players A and B in this game? What is the
value for the game A and B?

Solution: The above payments can be easily arranged in the form of a
matrix. Let positive number represent a payment from B to A and negative
number a payment from A to B. We, then, have the payoff matrix shown
in table 2.

Minimax and maximum values are also shown on the matrix. When player
A plays his first strategy (namely L), he may gain—3 or 3 depending upon
player B's selected strategy. He can guarantee, however, a gain of at least
min. {—3,3} = —3 regardless of B's selected strategy. Similarly, if A plays
his second strategy (namely M), he guarantees an income of at least min.
{—2,4} = =2, if he plays his third strategy (namely N) he guarantees an
income of at least min. {2, 3} = 2. Thus the minimum value in each row
represents the minimum gain guaranteed to A if he plays his pure (grand)
strategies.

Department of Mathematics
Uttarakhand Open University Page 263



Linear Programming and Game Theory MT(N)-223

These values are indicated in the matrix under 'Minimum of row Now,
player A, by selecting his third strategy (N), is maximizing his minimum
gain. This gain is given by max{—3,—2,2} = 2. This selection of player A
is called the maximin strategy and his corresponding gain is called the
maximin or lower value of the game.

Table: 2
Player B
Plans (choices)

P Q Minimum of row

L 3 j =1

Player A (plans choices) M 2 | 2

N 2 3 (2) maximin

Miximum of column (2) 4
minimax

Player B, on the other hand, wants to minimize his losses. He realizes that
if he plays his first pure strategy (namely P), he can lose no more than
max. {—3,—2,2} = 2, regardless of A’s selections. Similarly, if he plays
his second pure strategy (Q), the maximum he loses is max {3, 4,3} = 4.
These values are indicated in the above matrix by "Maximum of column.
Player B will select the strategy that minimizes his maximum loss. This is
given by strategy P and his corresponding loss is given by min. {2,4} = 2.
Player B's selection is called the minimax strategy and his corresponding
loss is called the minimax (or upper) value of the game.

It is seen from the conditions governing the minimax criterion that the
minimax (upper) value is greater than or equal to the maximin (lower)
value. When the two are equal (minimax value maximin value), the
corresponding pure strategies are called optimal strategies and the game is
anid to have a saddle point or equilibrium point and is called a stable
game. The value of the game is given by the saddle point and is equal to
the maximin and minimax values. Thus the saddle point is the point of
intersection of the two courses of action and the gain at this point is the
value of the game. The game is said to be fair if maximin value =
minimax value = 0, and is said to be strictly determinable inable if
maximin value = minimax value # 0. Note that neither player can
improve his position by selecting any other strategy. Saddle point is the
number which is lowest in its row and highest in its column.

In the above example, minimax value = maximin value = 2. The
value of the game is thus equal to 2. The game has a saddle point given by
the entry (N, P) of the matrix. As the game value is 2, (and not zero), the
game is not fait, though it is strictly determinable.
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The saddle point solution guarantees that neither player is tempted to
select a better strategy If B moves to the other strategy Q. player A may
move to strategy M, which means that B will lose X4, rather than X2 at
present. Likewise, A does not want to use a different strategy because if A
moves to strategy, say L, player B will adopt strategy P so that A will
losex3, rather than winning X2 presently.

We summaries below the steps required to detect a saddle point

(1) At the right of each row, write the row minimum and ring the largest of
them.

(2) At the bottom of each column, write the column maximum and ring the
smallest of them.

(3) If these two elements are same, the cell where the corresponding row
and column meet is a saddle point and the element in that cell is the value
of the game

(4) If the two ringed elements are unequal, there is no saddle point, and the
value of the game has between these two values.

(5) If there are more than one saddle points then there will be more than
one solution, each solution corresponding to each saddle point.

We give below a few more examples of games. Saddle points, if they
exist, have been ringed Optimum strategies and game values are also
indicated.

A No saddle point exists since there 1s no element which is both
- 4 the lowest 1n its row and highest in its column

3 2 1(2) Strategies: A, row | and B, column 2
A|-2 =3|-3 Saddlepomnt:(l, 2)

|—4 -5|-5 Game value: +2
3 @
B
1 13 117() Saddlepoint:(1,1)
Al-9 5 —11|-=11 Strategies: A, row |; B, column 1
10 =3 13 |-3 Game value: + 1
(H 13 13
B
16 4 0 14 -2] -2 Saddle point: (2, 3)
10 8 6 10 12| (6) Strategies: A, row 2; B, column 3
A 2 6 4 8 14 | 2 Game value: +6
L 0 2 2 0 |o
16 10 (6) 14 14

Department of Mathematics
Uttarakhand Open University Page 265



Linear Programming and Game Theory MT(N)-223

If there is no saddle point, neither player can optimize his chances by
using a pure strategy, they must mix some or all of their courses of sction,
resulting in mixed strategies.

Example2: Consider the game G with the following payoff.

Player B

B, B,

Player A A4 2 6
A, -2 A

(a) Show that G is strictly determinable, whatever A may be.

(b) Determine the value of G.
Solution: a) Ignoring whatever the value of . may be, the given payoff
matrix represents

B, B, Row minima
Ay 2 6 2
A, —2 2 -2
Column maxima 2 6

~ Maximin value= 2 and minimax value= 2.
=~ The game G is strictly determinable, whatever 2 may be.
b) Value of the game= 2

Strategies: A, row 1; B, column1.

14.6.2 RULE 2. REDUCE GAME BY DOMINANCE

If there are no pure strategies, the next step is to eliminate certain
strategies (rows and/or columns) through dominance. Rows and/or
columns of the payoff matrix that are less than at least one of the
remaining rows and/or columns are removed from further consideration.
The resulting game can be solved using a mixed strategy.

Example 3: (3 x 3 Game, Matrix Reduction by Dominance)Two
players P and Q play a game. Each of them has to choose one of the three
colours, white (W), black (B) and red (R) independently of the other.
Thereafter the colours are compared. If both P and have chosen white (W.
W), neither wins anything. If player P selects white and player Q black
(W, B), player P loses 2 or player wins the same amount and so on. The
complete payoff table is shown below (Table: 3). Find the optimum
strategies for P and Q and the value of the game.

Table: 3
Colour chosen by Q
w R B
W 0 —2 7
Colour chosen by P R 2 5 6
B 3 -3 8

Solution: This matrix has no saddle point. Evidently, player Q will not
play strategy R since this will result in heaviest losses to him and highest
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gains to player P. He can do better by playing columns W or B. Thus
column R is to be deleted and strategy R is called dominated strategy.

The dominance rule for columns is: Every value in the dominating
column(s) must be less than or equal to the corresponding value of the
dominated column. The resulting matrix is

Table: 4
Player Q
W B
w 0 -2
Player P B 2 5
R 3 -3

From table 4, it is clear that player P will not play row W since it will give
him returns lower than given by row B. Hence row W is dominated by
row B and can be deleted.

The dominance rule for rows is: Every value in the dominating row(s)
must be greater than or equal to the corresponding value of the dominated
row. The resulting matrix is

Table:5
Player Q
w B
B 2 5
Player P R 3 -3

This 2 x 2 matrix can be easily solved as discussed later.

Dominance need not be based on the superiority of pure strategies only.

A given strategy is also said to be dominated if it is inferior to some
convex linear combination (e.g., average) of two or more pure strategies.
To illustrate this let us consider the following game:

Table:6
B
1 2 3
1 6 1 3
A 2 0 9 7
3 2 3 4

This game has no saddle point. Further, none of the pure strategies of A is
inferior to any of his other pure strategies. However, average of A's first
and second pure strategies gives us
6+01+9 3+7
( 2 2 2 >:(3’5’5)
This is obviously superior to A's third pure strategy. Therefore, the third
strategy may be deleted from the matrix. The resulting matrix becomes

Table: 7
B
1 2 3
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1 6 1 3
A 2 0 9 7

14.6.3 RULE 3. SOLVE FOR A MIXED STRATEGY

When there is no saddle point and dominance has been exploited to shrink
the game matrix, players will choose varied strategies. A few distinct
techniques will be given to optimize each player's winning chances and
solve the game. One of the players must decide how much time to spend
on each row, while the other must figure out how much time to spend on
the each column. The payoffs earned will be the expected payoffs, and the
game's worth will be its expected value. These games are called unstable
games.

14.7 MIXED STRATEGIES(2 X 2 GAMES):-

Arithmetic and algebraic methods are utilized to determine optimal
strategies and game values for a 2 x 2 game. Each of these strategies will
be discussed in further depth now.

14.7.1 Arithmetic Method (Odds Method or Short Cut Method)
Optimum Strategies and Game Value for Finding
It provides a simple approach for determining the best strategy for each
player ina 2 x 2 game with no saddle points. It includes the following
steps.
(a) Subtract the two digits from column 1 and write the difference in
column 2, ignoring the sign.
(b) Subtract the two digits from column 2 and write the difference in
column 1, ignoring the sign.
(c) Repeat for the two rows.
These values are referred to as oddments. They are the frequency at
which players must implement their optimal strategy.
Example 4: (Two-person zero-sum game without saddle point) In a
game of matching coins, player A wins X2 if there are two heads, wins
nothing if there are two tails and loses X1 when there are one head and one
tail. Determine the payoff matrix, best strategies for each player and the
value of game to A.
Solution: The payoff matrix for A will be

Player B

H T

Player A H 2 -1
T -1 0

Since there is no saddle point, the optimal strategies will be mixed
strategies. Using the steps described above we get
Player B
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H T
Player A H 2 [ -1 ] 1 1/3+41=025
T [ -1] o0 3 3/3+1=0.75
1 3
025 0.75

Thus for optimum gains, player A should use strategy H for 25% of the
time and strategy T for 75% of the time, while player B should use
strategy H 25% of the time and strategy T 75% of the time.

To obtain the value of the game any of the following expressions may be
used:

Using A's oddments

1x2—-3%x1 1
B plays H; value of the game,V = %(—) = %(— —)

3+1 4
B plays T; val th V—%(lx_1+3xo)—%( 1)
plays T; value of the game,V = 31 = 7

Using B's oddments

Aplays H; val th V_¥(1x2—1><3)_¥( 1)
plays H; value of the game,V = 31 = 7

—1><1+0><3)= ( 1)

3+1 4

Aplays T; value of the game,V = ?( 2

The above values of V are equal only if sum of the oddments vertically
and horizontally are equal. Cases in which it is not so are treated later.
Thus the full solution of the game is

A(1,3); B(1,3); V =3%(-1/4)
This is the value of the game to A i.e., A gains X(—1/4) ie, he loses X1/4
which B, in turn, gets. Arithmetic method is easier than algebraic method
but it cannot be applied to larger games.

14.7.2 Algebraic Method for Finding Optimum Strategies and Game
Value

When using this method, it is expected that x represents the fraction of
time (frequency) in which player A employs strategy 1 and (1 — x)
represents the fraction of time (frequency) in which he uses strategy 2.
Similarly, y and (1 — y) denote the fraction of time that player B uses
methods 1 and 2, respectively.

Example 5: (Two-person zero-sum game without saddle point): The
two armies are at war. Army A has two airbases, one of which is thrice as
valuable as the other. Army B can destroy an undefended airbase, but it
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can destroy only one of them. Army A can also defend only one of them.
Find the best strategy for A to minimize its losses.

Solution: Since both armies have only two possible courses of action, the
gain matrix for army A is

Army B
1 2
Attack the Attack the
smaller airbase  larger airbase
Army A Defend 1 0 -3
smaller Both survive The larger one
airbase destroyed
Defend 2 -1 0
larger The smaller one | Both survived
airbase destroyed

There is no saddle point. Under this method, army A wants to divide its
plays between the two rows so that the expected winnings by playing the
first row are exactly equal to the expected winnings by playing the second
row irrespective of what army B does. In order to arrive at the optimum
strategies for Army A, it is necessary to equate its expected winnings
when army B plays column 1 to its expected winnings when army B plays
column 2,

i.e.,whenOx + (—1)(1—-x)=-3x+0((1 — x)

orwhen — 1+ x =—3xi.e.,4x =1 x = 1Y

Thus army A should play first row 1/4th of the time and second row 3/4%"
(=1 — x) of the time.

Similarly, army B wants to divide its time between columns 1 and 2 so
that the expected winnings are same by playing each column, no matter
what army A does. Optimum strategies for army B will be found by
equating its expected winnings when army A plays row 1 to its expected
winnings when army A plays row 2.

i.e.,when0.y — 3(1 —y) = -1y + 0(1 — y)

orwhen— 3 + 3y = —y

or when4y = 3orwheny = 3/4

Thus army B should play first column 3/4th of the time and second
column 1/4th (=1 — y) of the time. These optimum strategies can be
shown on the gain-matrix, which becomes

Army B
1 2
Army A 1 0 -3 | 1/4
2 -1 0 3/4
3/4 1/4

The game value can be found either for army A or for army B.
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Game value for army A: While army B plays column 1, 3/4 of time,
army A wins zero for 1/4 time and—1 for 3/4 time, also while army B
plays column 2 for 1/4 of time, army A wins —3 for 1/4 time and zero
for 3/4 time.

~Total expected winnings for army A are

l —30 ! 1 3) 42 3 ! 0 =
gamevaue—4( Xq~ ><4)+4(— ><4+ ><4)_— -

4
Game value for army B: While army A plays row 1,1/4 of time, army B
wins zero for 3/4 of time and 3 for 1/4 of time, also while army A plays
row 2,3/4 of time, army B wins —1 for 3/4 of time and zero for 1/4 of
time.

~Game value for army B

1 3 1 3 3 1 3 9 3
=—(Ox——3x—>+—(—1x—+0x—)=

4 4 4) " 4 4 4)”~ 16 16 4
Thus the full solution of the game is
4 (1 3) B. (3 1) _ 3
army A: army 4, 4 ,army b. 4, 4 game = 4,

14.8 n PERSONS ZERO-SUM GAMES:-

These games are typically considered as two coalitions established by the
n-persons involved. The characteristics of such a game are the values of
various games played by every possible coalition pair. For example,
players A, B, C, and D can create the following coalitions.

A against B,C, D;

B against A, C, D;

C against A, B, D;

D against A, B, C;

A,B against C,D;

A, C against B.D;

A.D against B, C.

If the value of the game for B, C, D coalition is V, then the value of the
game for A is -V, since it is zero-sum game. Thus in a four-person zero-
sum game there will be seven values or characteristics for the game, which
are obtained from the seven different coalitions

Example 6: Find the values of the three-person zero-sum game in which
player A has two choices X;, X,; player B has two choices Y;, Y, and player
C also has two choices Z,, Z,. The payoff matrix is shown in table below.

Choice Payoff
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A B C A B c
X Y, Z 3 2 —2
X, Y, Z, 0 2 1
X, Y, Z, 0 —1 4
X, Y, Z, 1 3 —1
X, Y, Z, 4 —1 0
X, Y, Z, 1 1 3
X, Y, Z, 1 0 2
X, Y, Z, 0 2 1

Solution: There are three possible coalitions:
1. Aagainst B, C;
2. Bagainst A, C,
3. Cagainst A, B.

We shall solve each of the resulting game.

1. Aagainst B,C. The payoff matrix in A’s terms is shown in table

below.
B,C
Y,,2, Y.,Z, Y, Z, Y, Z,
X, 3 0 0 1 (0)
X, 4 -1 1 0 -1
4 (0) 1 1

The first step is to look for a saddle point. The game has a saddle

point. Thus, we have the following solution for A against B, C.

A's best strategy is tilde Y; ,

B's and C's best combination of strategies is Y;,Z, value of the

game for A is zero, value of the game for B, C is zero.
2. Bagainst A, C: The payoff matrix in B's terms is shown in table

below.

Y
v

X124

X, 2,

AC

Xy, 24

Xy, Z,

2

2

-1

1

-1

3

0

2

The first step is to look for saddle point. In this game there is none. The
next step is to reduce the game by the rules of dominance. Columns X,,Z,
and X,, Z, are dominated and should, therefore, be deleted. The resulting
reduced matrix is shown in this table below.

AC

Y
v

X1,Z4

Xy, 24

2

-1

-1

0

1/4
3/4
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1 3
1/4  3/4

Solving this 2 x 2 game by arithmetic method we get the following result:
B's best strategy is to play choice Y; with a frequency of 1/4 and choice
Y, with a frequency of 3/4.A's and C's best strategy is for C to play Z,
and for A to play X, with frequency of 1/4 and X, with a frequency of 3/4

Val h B_2/4—3/4_ 1
alue of the game for =1/2+3/a" &

value of the game for A,C = 1/4

3. C against A, B: The payoff matrix in C’'s terms is shown in table

below.
A B
X% X% XY X,V
A —2 4 0 2
Z, 1 -1 3 1

The first step is to look for saddle point. In this case there is none. The
next step is to reduce the game by the rules of dominance. Columns X,, Y;
andX,, Y, are dominated by column X; and the resulting reduced matrix is
shown in table below.

A B
X, X,V
Z, —2 4 2 2/8
Z, 1 —1 6 6/8
5 3
5/8 3/8

Solving it by the arithmetic method we get the following results:

C's best strategy is to play choice Z; with a frequency of 2/8 and choice
Z, with a frequency of 6/8. A’'s and B's best strategy is for A to play X;
and for B to play Y; with a frequency of 5/8 and Y, with a frequency of
3/8.

-10/8+12/8 2/8 1
5/8+3/8 1 4

Value of the game for Cis =

value of the game for A, B = —1/4
Therefore, the characteristics of the game are
V(A) =0,V(B,C) =0,

1 1
V(B)=——-,V(4,C) =,
(B)=-7.V(A.0 =]
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1 1
V(C) = Z,V(A,B) = _Z

14.9 LIMITATIONS OF GAME THEORY: -

Our game theory discussion has only covered two- and n-person zero-sum
games. There are relatively few applications of game theory to real-world
situations. This is due to the following factors:

1.

Management choices are rarely made in a two-person environment; the
government or society is frequently an outside party participating in
decision-making.

Nonzero-sum games occur when the sum of the opponents' gains and
losses is not zero.

In actual life, it is rare for both parties to have equal information and
intelligence.

It is difficult to precisely calculate the payout matrix's values.
Inaccurate values in the matrix will produce misleading results. It is
not difficult to prove that one outcome is superior to the other, but it is
much more difficult to determine how much superior.

The game's solution is based on maximin or minimax principles,
which require players to select strategies that maximize the minimal
gains or minimize the highest losses. In actual life, managers may not
take such a cautious attitude and instead choose to take risks.
Furthermore, data about available strategies and payoffs may be
incomplete and uncertain.

In the real world, the chosen strategy is usually continued for a
sufficiently long period of time, which equates to long-term planning,
and for short durations, this method may be incorrect.

Game theory has not yet realized its full potential. It may become
increasingly popular for solving O.R. marketing difficulties as more
companies use computers to model their operations. The combination of
game theory and simulation for the solution of management marketing
problems is likely to provide game theory the boost it needs to become a
significant instrument for quantitative decision-making.

SELF CHECK QUESTIONS

What is Game Theory?

Define a two-person zero-sum game.
What are the characteristics of a game?
What do you mean by a payoff matrix?
What is a pure strategy?

Define a mixed strategy.

What is a saddle point in a game?

How is the value of a game determined?

ONoGa~LNE
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9. What is meant by maximin and minimax principles?

10. What is a dominant strategy?

11. Explain the difference between pure and mixed strategies.

12. What are n-person games, and how do they differ from two-
person games?

13. What are the rules for solving a game without a saddle point?

14.10 SUMMARY::-

In this unit, we have studied the following topics: game characteristics,
terminology, game theory rules, mixed strategies, n-person zero-sum
games, and game theory limitations. Game theory is a mathematical
framework for analyzing situations involving conflict and cooperation
among rational decision-makers known as players. It aids in establishing
optimal strategies in situations where the outcome of one player is
dependent on the strategies used by others. We investigated game
characteristics such as the number of participants, strategy types, and
payout structure; game theory terminology; and strategic decision-making
procedures.The notion of mixed strategies was created to deal with
scenarios in which participants randomly select their options in order to
attain the best potential results. We also investigated n-person zero-sum
games, which extend two-player competitive scenarios to numerous
players and have the total wins and losses of all participants sum to zero.
Finally, the constraints of game theory were explored, emphasizing how
real-world scenarios frequently contain imperfect knowledge, irrational
conduct, and shifting preferences, making practical application difficult.

14.11 GLOSSARY: -

e Game Theory: A branch of applied mathematics and operations
research that studies strategic interactions between rational
decision-makers (players).

e Player: An individual or decision-maker involved in the game
who selects strategies to achieve the best possible outcome.

e Strategy: A complete plan of action a player follows during the
game to achieve the desired payoff.

e Pure Strategy: A strategy in which a player consistently chooses
the same action every time the game is played.

e Mixed Strategy: A strategy in which a player randomly selects
among two or more pure strategies based on specific probabilities.
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Payoff: The reward or outcome received by a player as a result of
the combination of strategies chosen by all players.

Payoff Matrix: A table that shows the payoffs for each player for
all possible combinations of strategies.

Zero-Sum Game: A game in which one player’s gain is exactly
equal to the other player’s loss, so the total payoff remains constant
(sum equals zero).

Non-Zero-Sum Game: A game in which the total payoff to all
players is not necessarily zero; both players can gain or lose
simultaneously.

Two-Person Game: A game involving exactly two players
competing against each other.

n-Person Game: A game involving more than two players, where
strategies and payoffs depend on the collective actions of all
participants.

Saddle Point: A position in the payoff matrix that represents the
equilibrium point where both players’ strategies are optimal,
giving a stable solution to the game.

Value of the Game: The expected payoff to a player when both
players follow their optimal strategies in a zero-sum game.
Dominance: A rule used to simplify a game by eliminating
strategies that are less effective compared to others for a player.
Equilibrium Point (Nash Equilibrium): A situation where no
player can improve their payoff by unilaterally changing their
strategy, assuming the other players keep theirs unchanged.
Cooperative Game: A game where players can form coalitions
and make binding agreements to maximize their collective payoff.
Non-Cooperative Game: A game in which players make
independent decisions without forming alliances or agreements.
Limitations of Game Theory: Refers to the practical difficulties
in applying game theory due to assumptions of perfect rationality,
complete information, and static preferences, which may not hold
true in real-life situations.
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14.13 SUGGESTED READING: -

e Dr. R.K.Gupta (2" Eddition, 2012), Krishna Publication, Operation
Research.

e Er. Prem Kumar Gupta and Dr. D.S. Hira (7" Edition,2014),
S.Chand & Company PVT. LTD., Operations Research.

14.14 TERMINAL QUESTIONS: -

(TQ-1) For what value of A, the game with following payoff matrix is
strictly determinable?

Player B
By B, B
Ay A 6 2
Player A A, -1 A -7
Az -2 4 A

(TQ-2) Reduce the following dominance and find the game value:

Player B
| 11 111 114
I 3 2 4 0
Player A 11 3 4 2 4
111 4 2 4 0
v 0 4 0 8

(TQ-3) For any 2 x 2 two-person zero-sum game without any saddle
point, having payoff matrix for player A as

player B
B, B,
playerA Aq aq a,
Ay az azz

Find the optimal mixed strategies and value of the game.

(TQ-4) Define game theory and explain rules for game theory.

(TQ-5) Find the ranges of values of p and q which will render the
entry (2,2) a saddle point for the game
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Player B
B, B, B
Ay 2 4 5
Player A A, 10 7 q
As 4 p 6

(TQ-6) Reduce the following game by dominance property and solve it:

Player B
I 11 11 vV V
I 1 3 2 7 4
Player A 11 3 4 1 5 6
111 6 5 7 6 5
v 2 0 6 3 1

(TQ-7) Solve the following game by using the principle of dominance:

Player B
I 11 111 1% V VI
1 4 2 0 2 1 1
Player A 2 4 3 1 3 2 2
3 4 3 7 -5 1 2
4 4 3 4 -1 2 2
5 4 3 3 -2 2 2
(TQ-8) Solve the following game:
Player B
B, B,
A 30 2
Player A A, 4 14
As 6 9

(TQ-9) Define n person zero sum game.

(TQ-10) A and B play a game in which each has three
coins a 5p,a 10p and a 20p . Each player selects a coin without the
knowledge of the other's choice. If the sum of the coins is an odd amount,
A wins B' s coin; if the sum is even, B wins A's coin. Find the best
strategy for each player and the value of the game.

14.15 ANSWERS: -

(TQ-1)-1<2<2
(TQ-2) game value for A =8/3
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(TQ-3)

A11Q22 — Q12021
(a1 + az) — (as; +az)

value =

(TQ-S)p<7,q9=7

(TQ-6) optimal strategies for A: 111, optimal strategy for B: 11, game
value forA = 5

(TQ-7) game value13/7.

(TQ-8) game value206/19.

(TQ-10) optimal strategies for A: (1/2,1/2,0), optimal strategy

for B: (2/3,1/3,0), game value forA = 0
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