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COURSE INFORMATION 

 

The present self-learning material “Linear Programming and Game Theory” has been 

designed for B.Sc. (Sixth Semester) learners of Uttarakhand Open University, Haldwani. 

This course is divided into 14 units of study. This Self Learning Material is a mixture of 

Three Blocks. 

First block is Linear Programming Problem.  In the first unit of this block, we will study 

Introduction and formulation of Linear Programming Problems, Components of an LPP: 

decision variables, objective function, constraints, non-negativity, Types of LPP: 

maximization, minimization, Real-life applications in industry, economics, management, 

Feasible, infeasible, unbounded and optimal solutions 

In unit second, solving two-variable LPP using graphical approach, plotting constraints and 

identifying feasible region, Corner point principle and extreme points. Third unit focuses 

on the Definition of convex sets and convex combinations, Polyhedral sets: intersections of 

half-spaces, Hyperplanes, half-spaces and separation theorem, Extreme points and their 

significance, Basic solutions and Basic Feasible Solutions (BFS), Correspondence between 

BFS and extreme points. 

Second block is Simplex Method: Fourth unit of this block we will study the Introduction 

to Simplex algorithm. Tableau format and pivot operations, Improving a BFS and optimality 

condition. Fifth unit is   Need for artificial variables in ≥ and = constraints, Big-M method 

(penalty method), Two-phase method (Phase I: feasibility, Phase II: optimality), Comparison 

of Big-M vs Two-Phase, Solving LPP containing equality and ≥ type constraints. Sixth unit 

will examine causes of degeneracy, Effects of degeneracy on simplex iterations, Cycling 

phenomenon. Seventh unit is Motivation for revised simplex in large LPPs, Basis matrix, 

inverse of basis. 

Third block is Duality. The Eigth unit of this block is Formulation of the dual problem 

Primal–dual relationships, Weak and strong duality theorems. Ninth unit of this block will 

Concept and need for Dual Simplex Method, Conditions for feasibility and optimality in 

dual-simplex. Fouth Block is Sensitivity Analysis, Linear and Integer Programming. The 

tenth unit of this block is   post-optimality analysis of LPP, Changes in objective function 

coefficients (cost vector), Changes in right-hand side vector (resource availability). 

Eleventh unit is concept of parametric programming, Variations in cost coefficients and 

RHS parameters, Graphical and simplex-based parametric analysis. Fifth block is 

Application. Twelve unit of this block is Definition and mathematical formulation, Balanced 

and unbalanced assignment models, Hungarian method for optimal assignment, 

Maximization and minimization cases. In thirteen Unit we define the structure and 

formulation of transportation models. In Fourteen and last unit of this book is Game theory. 
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Course Name:  Linear Programming and Game theory                    Credit-04                                  

Course Code: MT(N)- 223 

 

SYLLABUS 

 

Linear Programming and Game theory: Linear Programming Problem, Convexity and 

Basic Feasible Solutions Formulation, Canonical and standard forms,  

Graphical method; Convex and polyhedral sets, Hyperplanes, Extreme points; Basic 

solutions, Basic Feasible Solutions, Reduction of feasible solution to basic feasible solution, 

Correspondence between basic feasible solutions and extreme points. 

Simplex Method: Optimality criterion, Improving a basic feasible solution, 

Unboundedness, Unique and alternate optimal solutions; Simplex algorithm and its tableau 

format; Artificial variables, Two-phase method, Big-M method. 

Duality:  Formulation of the dual problem, Duality theorems, Complimentary slackness 

theorem, Economic interpretation of the dual, Dual-simplex method.  

Sensitivity Analysis: Changes in the cost vector, right-hand side vector and the constraint 

matrix of the linear programming problem. 

Applications: Transportation Problem: Definition and formulation, Methods of finding 

initial basic feasible solutions: Northwest-corner rule, Least- cost method, Vogel 

approximation  method; Algorithm for obtaining optimal solution. Assignment Problem: 

Mathematical formulation and Hungarian method. 
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UNIT I- LINEAR PROGRAMMING 

PROBLEM AND GAME THEORY 
    

 

CONTENTS: 
 

1.1     Introduction 

1.2     Objectives 

1.3     Linear Programming Problem 

1.4     Convexity and Basic Feasible Solutions Formulation 

1.5     Canonical forms 

1.6     Standard Forms 

1.7     Summary 

1.8     Glossary 

1.9     References 

1.10   Suggested Reading 

1.11   Terminal Questions  

1.12   Answers 
 

 

 

 

 

1.1 INTRODUCTION 

In today's era of limited resources and increasing competition, 

decision making has become an important part of every business, 

industry and economic system. Two powerful mathematical tools that 

aid scientific and rational decision-making are linear programming 

(LP) and game theory. Both aim to provide optimal solutions, but they 

differ in the types of decision problems they solve. Linear 

Programming focuses on optimization of resources, whereas Game 

Theory deals with competitive situations involving two or more 

decision-makers. 

Linear programming (LP) is widely used for optimizing specific types 

of problems. In 1947, George Bernard Dantzig developed the simplex 

algorithm, a highly effective method for solving linear programming  
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The diagram shows that although Linear Programming and Game 

Theory are different fields, some game-theoretic problems can be 

solved using linear programming techniques. 

problems (LPP). Since then, LP has been applied in diverse industries 

such as banking, education, forestry, petroleum, manufacturing, and 

trucking. The primary challenge in these fields often involves 

distributing limited resources among various activities in the most 

optimal manner. Real-world scenarios where LP is applicable vary 

widely, including everything from assigning production facilities to 

products to allocating national resources for domestic needs, from 

portfolio selection to determining shipping patterns, and beyond. This 

unit will cover the mathematical formulation of LPP, the graphical 

method for solving two-variable LPP, as well as the simplex 

algorithm, duality, dual simplex, and revised simplex methods for 

solving LPP with any number of variables. 

 

George Bernard Dantzig (8 November 1914 - 13 May 2005) 
https://en.wikipedia.org/wiki/George_Dantzig 
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1.2 OBJECTIVES 

 
After studying this unit learner will be able  

1. To Understand the concept of Linear Programming and how it is 

used to solve real-life problems.  

2. To Define and formulate Objective Function and Constraints, and 

convert a problem into an LPP model.   

3. To understand basic principles like Feasible Region, Feasible 

Solution, Optimal Solution. We will learn to solve two-variable 

Linear Programming Problem using Graphical Method.  

4. To solve real-world situations like profit maximization and cost 

minimization problems through LPP.  

5. To analyse conflict and cooperation among competing players. 

6. To develop strategies that yield the best possible results. 

7. To study decision-making where the outcome is influenced by 

others’ actions. 

1.3 LINEAR PROGRAMMING PROBLEM 

Definition Of Linear Programming Problem: Linear Programming 

(LP) is a mathematical technique used for the optimal utilization of 

limited resources such as manpower, money, materials, machines, and 

time. It helps to determine the best possible outcome—maximum 

profit or minimum cost—under given constraints. 

This technique is widely used in business, economics, engineering, 

agriculture, transportation, and military operations. 

Meaning Of Game Theory: Game Theory is a branch of applied 

mathematics that deals with strategic decision-making in competitive 

situations. It studies the behavior and actions of two or more rational 

players whose decisions affect each other’s outcomes. The central 

idea is to determine the best possible strategy to win or gain maximum 

advantage in a competitive scenario. 

GENERAL LINEAR PROGRAMMING PROBLEM 

Mathematically general linear programming can be represented as 

follows: 

Maximize (Or minimize) Z = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 Subject to 

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + ⋯ + 𝑎1𝑗𝑥𝑗 + ⋯ + 𝑎1𝑛𝑥𝑛(≤, =, ≥)𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + ⋯ + 𝑎2𝑗𝑥𝑗 + ⋯ + 𝑎2𝑛𝑥𝑛(≤, =, ≥)𝑏2 
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𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + 𝑎𝑖3𝑥3 + ⋯ + 𝑎𝑖𝑗𝑥𝑗 + ⋯ + 𝑎𝑖𝑛𝑥𝑛(≤, =, ≥)𝑏𝑖  

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + 𝑎𝑚3𝑥3 + ⋯ + 𝑎𝑚𝑗𝑥𝑗 + ⋯ + 𝑎𝑚𝑛𝑥𝑛(≤, =, ≥)𝑏𝑚 

and x1, x2, x3 …., xn≥ 0 

The above programming problem can be rewritten in compact form 

as, 

Maximize (Or Minimize) Z = ∑𝑗=1
𝑛  𝑐𝑗𝑥𝑗 

Subject to, 

∑  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑥𝑗(≤, =, ≥)𝑏𝑖; 𝑖 = 1,2, … , 𝑚 (2) 

𝑥𝑗 ≥ 0; 𝑗 = 1,2, … , 𝑛 (3) 

The objective is to determine the values of 𝑥𝑗 that optimize (maximize 

or minimize) the objective function (1). These values must satisfy to 

the constraints (2) as well as non-negativity restrictions (3). In this 

context, the coefficients 𝑐𝑗 are termed as cost coefficients, while 𝑎𝑖𝑗 

represents technological coefficients; 𝑎𝑖𝑗 denotes the quantity of the 

𝑖 th  resource utilized per unit of variable 𝑥𝑗, and 𝑏𝑖 signifies the overall 

availability of the 𝑖 th  resource. 

Example 1: An oil company possesses two refineries - refinery A and 

refinery B. Refinery A can produce 20 barrels of petrol and 25 barrels 

of diesel daily, while refinery B can produce 40 

barrels of petrol and 20 barrels of diesel per day. The company has a 

minimum requirement of 1000 barrels of petrol and 800 barrels of 

diesel. Operating refinery A costs Rs. 300 per day and refinery B costs 

Rs. 500 per day. How many days should each refinery be operated to 

minimize costs? Formulate this scenario as a linear programming 

model. 

Solution: To formulate this problem as a linear programming model, 

let's define our decision variables: 

Let 𝑥 be the number of days refinery A is operated. 

Let 𝑦 be the number of days refinery 𝐵 is operated. 

Our objective is to minimize costs, so we want to minimize the total 

operating cost: Minimize: 300 x + 500 y Subject to the constraints: 
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1. Refinery A produces 20 barrels of petrol per day, and refinery B 

produces 40 barrels. The total petrol production should be at least 

1000 barrels: 20𝑥 + 40𝑦 ≥ 1000 

2. Refinery A produces 25 barrels of diesel per day, and refinery B 

produces 20 barrels. The total diesel production should be at least 

800 barrels: 25𝑥 + 20𝑦 ≥ 800 

3. Non-negativity constraints: 𝑥 ≥ 0, 𝑦 ≥ 0 

This linear programming model represents the problem of minimizing 

costs while meeting the production requirements for petrol and diesel. 

OR 

 Minimize 𝑍 = 300𝑥 + 500𝑦

 Subject to, 

20𝑥 + 40𝑦 ≥ 1000

25𝑥 + 20𝑦 ≥ 800

𝑥, 𝑦 ≥ 0

 

Example 2: In a particular factory, three machines, namely M1, M2, 

and M3, are utilized in the manufacturing process of two products, P1 

and P2. Machine M1 is occupied for 5 minutes for 

producing one unit of P1, while M2 is used for 3 minutes and M3 for 

4 minutes. For one unit of P2, the time requirements are 1 minute for 

M1, 4 minutes for M2, and 3 minutes for M3. The profit earned per 

unit is Rs. 30 for P1 and Rs. 20 for P2, regardless of whether the 

machines operate at full capacity. How can we determine the 

production plan that maximizes profit? Frame this problem as a linear 

programming challenge. 

Solution: To formulate this problem as a linear programming 

problem, let's define our decision variables: 

Let 𝑥1 be the number of units of product P1 produced. Let 𝑥2 be the 

number of units of product P2 produced. 

Our objective is to maximize profit, so we want to maximize the total 

profit: 

Maximize: 30𝑥1 + 20𝑥2 

Subject to the constraints: 

1. Time constraint for machine M1: 15𝑥1 + 𝑥2 ≤ 𝑇1 

Where 𝑇1 is the total available time on machine M1. 

2. Time constraint for machine M2: 3𝑥1 + 4𝑥2 ≤ 𝑇2 
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Where 𝑇2 is the total available time on machine M2. 

3. Time constraint for machine M3: 4𝑥1 + 3𝑥2 ≤ 𝑇3 

Where 𝑇3 is the total available time on machine 𝑀3. 

4. Non-negativity constraints: 𝑥1 ≥ 0, 𝑥2 ≥ 0 

Note: Here, we can take total available time for all machines is 60 i.e., 

𝑇1 = 𝑇2 = 𝑇3 = 60 

This linear programming model represents the problem of 

determining the production plan that yields the highest profit while 

considering the time constraints on each machine. 

OR 

Maximize 𝑍 = 30𝑥1 + 20𝑥2 

Subject to, 

5𝑥1 + 𝑥2 ≤ 60 

3𝑥1 + 4𝑥2 ≤ 60 
4𝑥1 + 3𝑥2 ≤ 60 

𝑥1, 𝑥2 ≥ 0 

 

1.4 CONVEXITY AND BASIC FEASIBLE 

SOLUTION FORMULATION 
 

So far we have derived geometrical properties from simple graphical 

examples of two dimensions. Now, shall derive these properties, 

mathematically, for the general linear programming problem. In this 

chapter, ℎ𝑖 shall draw the conclusion that all the properties that hold 

true for simple problem (of two or three variables) also hold true for 

the general linear programming problem (of 𝑛 variables), if we think 

of it as being represented graphically in an 𝑛-dimensional space. 

First, we shall introduce a few important definitions and give proper 

names to the concepts that we have been using in our discussion. The 

main topic of this chapter is convex set theory. Recently, however, 

the theory has found many important applications in linear 

programming, games theory, economic and statistical decision theory. 

An optimal as well as feasible solution to an LP problem is obtained 

by choosing among several values of decision variables 𝑥1, 𝑥2, … 𝑥𝑛 

the one set of values that satisfy the given set of constraints 
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simultaneously and also provide the optimal (most suitable) value of 

the given objective function. 

Solution having values of decision variables 𝑥𝑗(𝑗 = 1,2, … , 𝑛) which 

satisfy the constraints of a general LP model is called the solution to 

that LP model. 

Feasible Solution: Solution values of decision variables 𝑥𝑗(𝑗 =

1,2, … , 𝑛) which satisfy the constraints and non-negativity conditions 

of a general LP model are said to constitute the feasible solution to 

that LP model. 

Basic Solution: For a set of 𝑚 equations in 𝑛 variables (𝑛 > 𝑚), a 

solution obtained by setting (𝑛 − 𝑚) variables equal to zero and 

solving for remaining 𝑚 equations in 𝑚 variables is called a basic 

solution. 

The (𝑛 − 𝑚) variables whose value did not appear in this solution are 

called non-basic variables and the remaining 𝑚 variables are called 

basic variabels. 

While obtaining the optimal solution to the LP problem by the 

graphical method, the statement of the following theorems of linear 

programming is used  

(i) The collection of all feasible solutions to an LP problem 

constitutes a convex set whose extreme points correspond to the 

basic feasible solution. 

(ii) There are finite number of basic feasible solutions within the 

feasible solution space. 

(iii) If the convex of the feasible solutions of the system 𝑨𝒙 =
𝒃, 𝒙 ≥ 𝟎, is a convex polyhedron, then at leas one of the extreme 

points gives an optimal solution. 

 

1.5 CANONICAL FORMS 
 

The general linear programming problem discussed above can always 

be put in the following form, called the canonical form: 
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Maximize𝑍 = ∑  

𝑛

𝑗=1

  𝑐𝑗𝑥𝑗

 subject to ∑  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1,2, … , 𝑚,

𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛.

 

The characteristics of this form are 

(a) all decision variables are non-negative, 

(b) all constraints are of the ( ≤ ) type, and 

(c) objective function is of maximization type. 

Any linear programming problem can be put in the canonical form by 

the 

1. The minimization of a function, 𝑓(𝑥), is equivalent to the 

maximization use of some elementary transformations. of the 

negative expression of this function, - 𝑓(𝑥). For example, the 

linear objective function 

minimize𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 

is equivalent to 

maximize𝐺 = −Z = −𝑐1𝑥1 − 𝑐2𝑥2 − ⋯ − 𝑐𝑛𝑥𝑛 , 

with Z = −G. Therefore, for all linear programming problems the 

objective function can be expressed in the maximization form.\ 

2. An inequality in one direction ( ≤ or ≥ ) can be changed to an 

inequality in the opposite direction ( ≥ or ≤ ) by multiplying both 

sides of the inequality by -1. For example, the linear constraint 

𝑎1𝑥1 + 𝑎2𝑥2 ≥ 𝑏 

is equivalent to 

−𝑎1𝑥1 − 𝑎2𝑥2 ≤ −𝑏. 

Also 

𝑝1𝑥1 + 𝑝2𝑥2 ≤ 𝑞 

is equivalent to 

−𝑝1𝑥1 − 𝑝2𝑥2 ≥ −𝑞. 
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3. An equation may be replaced by two weak inequalities in opposite 

directions. For example, 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏 is equivalent to the two 

simultaneous constraints 

𝑎1𝑥1 + 𝑎2𝑥2 ≤ 𝑏  and 𝑎1𝑥1 + 𝑎2𝑥2 ≥ 𝑏
 or 𝑎1𝑥1 + 𝑎2𝑥2 ≤ 𝑏  and −𝑎1𝑥1 − 𝑎2𝑥2 ≤ −𝑏.

 

4. So far, we have assumed the decision variables 𝑥1, 𝑥2, … , 𝑥𝑛 to be 

all non-negative. It is possible, in actual practice, that a variable 

may be unconstrained in sign, i.e., it may be positive or negative 

(it may vary from −
 

 
 to +). If a variable is unconstrained, it is 

expressed as the difference between two nonnegative variables. 

For example, if 𝑥 is an unconstrained variable, then it can be 

expressed as 

𝑥 = 𝑥′ − 𝑥′′,  where 𝑥′ ≥ 0 and 𝑥′′ ≥ 0. 

1.6 STANDARD FORMS 
 

The characteristics of the standard form are 

1. All the constraints are expressed in the form of equations, except 

the non-negativity constraints which remain inequalities ( ≥ 0 ). 

2. The right-hand side of each constraint equation is non-negative. 

3. All the decision variables are non-negative. 

4. The objective function is of the maximization or minimization 

type. 

The inequality constraints are changed to equality constraints by 

adding or subtracting a non-negative variable from the left-hand sides 

of such constraints. These new variables are called slack variables or 

simply slacks. They are added if the constraints are ( ≤ ) and 

subtracted if the constraints are ( ≥ ). Since in the case of ( ≥ ) 

constraints the subtracted variable represents the surplus of left-hand 

side over right-hand side, it is commonly known as surplus variable 

and is, in fact, a negative slack. In our discussion, however, we shall 

always use the name "slack" variable and its sign will depend on the 

inequality sign in the constraint. Both decision variables and slack 

variables are called admissible variables and are treated in the same 

manner while finding a solution to a problem. 

For example, the constraint 

𝑎1𝑥1 + 𝑎2𝑥2 ≤ 𝑜̇, 𝑣̇ ≤ 𝑣̇ 
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is changed in the standard form to 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑠1 = 𝑏, where 𝑠1 ≥
0. Also, constraint 

𝑝1𝑥1 + 𝑝2𝑥2 ≥ 𝑞, 𝑞 ≥ 0 

is changed to 𝑝1𝑥1 + 𝑝2𝑥2 − 𝑠2 = 𝑞, where 𝑠2 ≥ 0. 

The quantities 𝑠1 and 𝑠2 are variables and their values depend upon 

the values. assumed by other 𝑥 's in a particular equation. 

Before trying for the solution of the linear programming problem, it 

must be expressed in the standard form. The information given by the 

standard form is then expressed in the "table form" or "matrix form". 

Let us consider the general linear programming problem 

maximizeZ = ∑  

𝑛

𝑗=1

  𝑐𝑗𝑥𝑗

 subject to ∑  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , (𝑏𝑖 ≥ 0), 𝑖 = 1,2,3, … , 𝑚,

𝑥𝑖 ≥ 0, 𝑗 = 1,2,3, … , 𝑛.

 

This is expressed in the standard form as 

maximizeZ = ∑  

𝑛

𝑗=1

  𝑐𝑗𝑥𝑗

𝑗 = 1

 n 

 subject to 

 

Such an L.P. problem formed after the introduction of slack or surplus 

variables is called reformulated L.P. problem. 

Now, solving the L.P. problem means determining the set of 

nonnegative values of variables 𝑥𝑗 and 𝑠𝑖 which will maximize Z 

while satisfying the constraint equations. The concept is simple but 

we have a set of 𝑚 equations with (𝑚 + 𝑛) unknowns and an infinite 

number of solutions is possible. Clearly, a hit and trial method for 

finding the optimal solution is not feasible. There is a definite need 

for an efficient and systematic procedure which will yield the desired 

solution in a finite number of trials. An iterative procedure called 

simplex technique helps us to reach the optimal solution (if it exists) 

in a finite number of iterations. 
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Examples  

Express the following linear programming problem in the standard 

form: 

 Maximize 𝑍 =3𝑥1 + 2𝑥2 + 5𝑥3,
 subject to 2𝑥1 − 3𝑥2 ≤ 3,

𝑥1 + 2𝑥2 + 3𝑥3 ≥ 5,

3𝑥1 + 2𝑥3 ≤ 2,

𝑥1 ≥ 0, 𝑥2 ≥ 0.

 

Solution. Here 𝑥1 and 𝑥2 are restricted to be non-negative, while 𝑥3 is 

unrestricted 

Introducing slack variables, the standard form is 

where  𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3
′ ≥ 0, 𝑥3

′′ ≥ 0, 𝑠1 ≥ 0, 𝑠2 ≥ 0 and 𝑠3 ≥ 0. 

maximize Z =3𝑥1 + 2𝑥2 + 5𝑥3
′ − 5𝑥′′ 3,

 subject to 2𝑥1 − 3𝑥2 + 𝑠1 = 3,

𝑥1 + 2𝑥2 + 3𝑥3
′ − 3𝑥3

′′ − 𝑠2 = 5,

3𝑥1 + 2𝑥3
′ − 2𝑥3

′′ + 𝑠3 = 2,

 

 

 

CHECK YOUE PROGRESS 

1. Linear Programming is a technique used for finding the 

maximum or minimum value of a linear function subject to 

certain constraints. 

2. The objective function in an LPP is always non-linear.  

3. In LPP, all constraints must be linear inequalities or 

equations. 

4. The feasible region of an LPP is always a straight line. 

5. An infeasible solution satisfies at least one constraint. 

 

MULTIPLE CHOICE QUESTIONS 

1. Linear Programming is used to: 

A) Solve non-linear equations 

B) Find the optimal value of a linear function 

C) Minimize non-linear constraints 

D) Solve differential equations 
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2. In a Linear Programming Problem, the constraints are always: 

A) Non-linear 

B) Quadratic 

C) Linear equations or inequalities 

D) Cubic 

 

3. The optimal solution of an LPP always lies at: 

A) Midpoint of feasible region 

B) Center of feasible region 

C) Corner point (vertex) of feasible region 

D) Outside the feasible region 

 

4. The function to be maximized or minimized in LPP is called: 

A) Constraint function 

B) Objective function 

C) Decision variable 

D) Feasible function 

 

5. If the feasible region is unbounded and the objective function 

increases indefinitely, then: 

A) The problem has no solution 

B) The problem is infeasible 

C) The problem has an unbounded solution 

D) The problem is degenerate 

1.7 SUMMARY 

Linear Programming & Operations Research provides a 

comprehensive overview of two interconnected disciplines essential 

for optimizing decision-making processes. Linear programming 

offers a mathematical approach for resource allocation through the 

formulation and solution of linear optimization problems. Operations 

research, on the other hand, extends beyond linear programming to 

encompass a broader range of mathematical techniques aimed at 

addressing complex operational challenges across various industries. 

By exploring these fields, individuals gain valuable insights into 

modelling real-world problems and devising optimal solutions to 

enhance organizational efficiency and decision-making effectiveness 

in diverse domains such as manufacturing, logistics, finance, and 

healthcare. In this unit we have learned about the basic definitions of 

LPP, Feasible region, optimal solution, convex set, basic feasible 

solution, optimal feasible solution and more useful definitions used to 

solve the linear programming problem.  
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1.8 GLOSSARY 
 

Linear Programming Problem 

Feasible Region 

Optimal Solution 

Convex Set 

Basic Feasible Solution 
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1.11 TERMINAL QUESTIONS  
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1. Write down the mathematical form of a Linear Programming 

Problem. 

2. Explain the difference between feasible and infeasible solutions. 

1.12 ANSWERS 
 

CYQ1.  True      CYQ2.  False     CYQ3.  True          CYQ4.  False  

CYQ5.  False 

 

MCQ1.  B         MCQ2.  C          MCQ3.  C               MCQ4.  B 

MCQ5.  C 
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UNIT-2: GRAPHICAL METHOD 

CONTENTS: 

2.1  Introduction 

2.2  Objectives 

2.3  General linear programming problem 

2.4 LP solution 

2.5 Graphical method 

2.6 Outcomes and limitation of graphical method 

2.7 Summary 

2.8  Glossary  

2.9   References 

2.10 Suggested Readings 

2.11  Terminal Questions 

2.12 Answers 

2.1 INTRODUCTION 

The graphical method is a fundamental technique in operational research used to solve linear 

programming Problems (LPPs) involving two decision variables. It provides a visual approach to 

identify the optimal solution by representing the feasible region, formed by a set of linear 

constraints, on a two-dimensional graph. Each constraint is expressed as a straight line, and the 

region satisfying all constraints simultaneously is called the feasible solution space. The 

objective function, usually aimed at maximization or minimization, is then represented as a 

family of parallel lines to determine the point that yields the best value within this region. The 

graphical method is particularly useful for developing an intuitive understanding of linear 
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programming concepts, feasibility, boundedness, and optimality, and serves as a foundational 

step toward more advanced methods like the simplex Method. 

George Bernard Dantzig, born on November 8, 1914, and 
passing away on May 13, 2005, was an American 

mathematical scientist renowned for his contributions to a 

range of fields including industrial engineering, operations 
research, computer science, economics, and statistics. 

His most notable achievement is the development of the 

simplex algorithm, a groundbreaking method for solving 
linear programming problems. Dantzig's work in linear 

programming has had a profound impact across numerous 
industries and disciplines. 

In addition to his work in optimization, Dantzig made 

significant contributions to statistics. Interestingly, he 

famously solved two open problems in statistical theory, 
mistaking them for homework after arriving late to a lecture 

by Jerzy Neyman. At the time of his passing, Dantzig held the 

prestigious positions of Professor Emeritus of 

Transportation Sciences and Professor of Operations 
Research and Computer Science at Stanford University. 

 

George Bernard Dantzig 

(8 November 1914 – 13 May 2005) 
https://en.wikipedia.org/wiki/George_Dantzig 

2.2 OBJECTIVE 

The main objectives of the Graphical Method unit in operational research are as follows: 

 To understand the basic concepts and formulation of a linear programming problem 

(LPP) with two variables. 

 To learn how to represent constraints and objective functions graphically on a coordinate 

plane. 

 To identify and construct the feasible region that satisfies all constraints simultaneously. 

 To determine the corner points (vertices) of the feasible region and evaluate the objective 

function at these points. 

 To find the optimal solution (maximum or minimum value) of the objective function 

using the graphical approach. 

 To analyze the conditions of feasibility, infeasibility, unboundedness and multiple 

optimal solutions in LPPs. 

 To develop a clear visual understanding of optimization problems and prepare the 

foundation for advanced analytical methods like the simplex method. 
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2.3 GENERAL LINEAR PROGRAMMING PROBLEM 

Mathematically general linear programming can be represented as follows: 

Maximize (Or Minimize) Z= nnxcxcxc  ...2211  

Subject to, 

111313212111 ),,(...... bxaxaxaxaxa nnjj   

222323222121 ),,(...... bxaxaxaxaxa nnjj   

……………………………………………………… 

ininjijiii bxaxaxaxaxa ),,(......332211   

……………………………………………………… 

mnmnjmjmmm bxaxaxaxaxa ),,(......332211   

And 0,...,,, 321 nxxxx  

The above programming problem can be rewritten in compact form as, 

Maximize (Or Minimize) Z= 


n

j

jj xc
1

                   …………….. (1) 

Subject to, 

mibxa i

n

j

jij ,...,2,1;),,(
1




                            ………………. (2) 

njx j ,...,2,1;0                                                ………………. (3) 

The objective is to determine the values of xj that optimize (maximize or minimize) the objective 

function (1). These values must satisfy to the constraints (2) as well as non-negativity restrictions 

(3). In this context, the coefficients cj are termed as cost coefficients, while aij represents 

technological coefficients; aij denotes the quantity of the ith resource utilized per unit of variable 

xj, and bi signifies the overall availability of the ith resource. 

Example 1: An oil company possesses two refineries - refinery A and refinery B. Refinery A 

can produce 20 barrels of petrol and 25 barrels of diesel daily, while refinery B can produce 40 

barrels of petrol and 20 barrels of diesel per day. The company has a minimum requirement of 

1000 barrels of petrol and 800 barrels of diesel. Operating refinery A costs Rs. 300 per day and 

refinery B costs Rs. 500 per day. How many days should each refinery be operated to minimize 

costs? Formulate this scenario as a linear programming model. 

Solution: To formulate this problem as a linear programming model, let's define our decision 

variables: 

Let x be the number of days refinery A is operated.  
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Let y be the number of days refinery B is operated. 

Our objective is to minimize costs, so we want to minimize the total operating cost: 

Minimize: 300x+500y 

Subject to the constraints: 

1. Refinery A produces 20 barrels of petrol per day, and refinery B produces 40 barrels. The 

total petrol production should be at least 1000 barrels: 20x+40y≥1000 

2. Refinery A produces 25 barrels of diesel per day, and refinery B produces 20 barrels. The 

total diesel production should be at least 800 barrels: 25x+20y≥800 

3. Non-negativity constraints: x≥0, y≥0 

This linear programming model represents the problem of minimizing costs while meeting the 

production requirements for petrol and diesel. 

OR 

Minimize yxZ 500300   

Subject to, 

10004020  yx  

8002025  yx  

0, yx  

Example 2: In a particular factory, three machines, namely M1, M2, and M3, are utilized in the 

manufacturing process of two products, P1 and P2. Machine M1 is occupied for 5 minutes for 

producing one unit of P1, while M2 is used for 3 minutes and M3 for 4 minutes. For one unit of 

P2, the time requirements are 1 minute for M1, 4 minutes for M2, and 3 minutes for M3. The 

profit earned per unit is Rs. 30 for P1 and Rs. 20 for P2, regardless of whether the machines 

operate at full capacity. How can we determine the production plan that maximizes profit? Frame 

this problem as a linear programming challenge. 

Solution: To formulate this problem as a linear programming problem, let's define our decision 

variables: 
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Let x1 be the number of units of product P1 produced. Let x2 be the number of units of product P2 

produced. 

Our objective is to maximize profit, so we want to maximize the total profit: 

Maximize: 30x1+20x2 

Subject to the constraints: 

1. Time constraint for machine M1: 15x1+x2≤T1  

Where T1 is the total available time on machine M1. 

2. Time constraint for machine M2: 3x1+4x2≤T2  

Where T2 is the total available time on machine M2. 

3. Time constraint for machine M3: 4x1+3x2≤T3  

Where T3 is the total available time on machine M3. 

4. Non-negativity constraints: x1≥0, x2≥0 

Note: Here, we can take total available time for all machines is 60 i.e., 60321  TTT  

This linear programming model represents the problem of determining the production plan that 

yields the highest profit while considering the time constraints on each machine. 

OR 

Maximize 
21 2030 xxZ   

Subject to, 

605 21  xx  

6043 21  xx  

6034 21  xx  

0, 21 xx  

2.4 LP SOLUTION 

First, we will learn some terminologies for solution. 
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Closed half plane: A linear inequality in two variables is known as a half plane. The 

corresponding equality or the line is known as the boundary of the half plane. The half plane 

along with its boundary is called a closed half plane. 

In the context of linear inequalities in two variables, a half plane represents the region of the 

coordinate plane that satisfies the inequality. The boundary of this region is defined by the 

corresponding equality or line. When considering both the boundary and the region itself, it's 

termed as a closed half plane. This closed half plane includes the boundary line and all the points 

on one side of it. 

Convex set: A set is convex if, for any two points within the set, the line segment connecting 

those points remains entirely within the set. This property holds true for all pairs of points in the 

set, making it a fundamental characteristic of convexity. Mathematically, A set S is said to be 

convex set if for all Syx , , ]1,0[)1(   Syx . 

For example, the set }1223:),{(  yxyxS  is convex because for two points ),( 11 yx  and 

Syx ),( 22
, it is easy to see that ]1,0[),)(1(),( 2211   Syxyx . While the set, 

}16:),{(( 22  yxyxS is not convex. Note that two points (4,0) and (0,4) S  but 

Si  )4,0)(()0,4(   for 2/1 . 

Convex polygon: A convex polygon is indeed a convex set formed by the intersection of a finite 

number of closed half planes. Each side of the polygon corresponds to a boundary line of a half 

plane, and the polygon itself includes all the points within its boundaries. This property ensures 

that the polygon is convex, meaning that any line segment connecting two points within the 

polygon lies entirely within it. 

Extreme points: The extreme points of a convex polygon are precisely the points where the 

lines that bound the feasible region intersect. These points are crucial because any point within 

the polygon can be expressed as a convex combination of the extreme points. Thus, they play a 

fundamental role in characterizing the polygon's shape and properties. 

Feasible solution (FS): A feasible solution in optimization refers to any solution that meets all 

the constraints of the problem while maintaining non-negative values for the decision variables. 

It's essentially a valid solution that adheres to the problem's requirements. 

OR 

A feasible solution to the problem is any non-negative solution that complies with every 

restriction. 

Basic solution (BS): In linear programming, particularly when dealing with a set of m 

simultaneous equations in n variables (where n > m), a basic solution is obtained by setting (n - 
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m) variables equal to zero and then solving the resulting system of equations for the remaining m 

variables. These m variables are referred to as basic variables, while the (n - m) variables set to 

zero are called non-basic variables. Basic solutions play a crucial role in optimization algorithms 

such as the simplex method. 

Basic feasible solution (BFS): A basic solution to a linear programming problem is termed a 

basic feasible solution (BFS) if it satisfies all the non-negativity constraints. 

Furthermore, a BFS is classified as degenerate if at least one of the basic variables has a value of 

zero. Conversely, a BFS is considered non-degenerate if all of the basic variables have non-zero 

and positive values. 

These distinctions are significant in understanding the behavior of optimization algorithms such 

as the simplex method. 

Optimal basic feasible solution: An optimal basic feasible solution in linear programming is a 

basic feasible solution that optimizes (maximizes or minimizes) the objective function. It 

represents the best feasible solution among all basic feasible solutions in terms of achieving the 

highest (or lowest) objective function value. 

In linear programming, the optimal value of the objective function occurs at one of the extreme 

points of the convex polygon formed by the set of feasible solutions of the linear programming 

problem (LPP). This property is fundamental and is exploited in optimization algorithms such as 

the simplex method to efficiently find the optimal solution. By examining the extreme points, we 

can determine the best feasible solution that maximizes or minimizes the objective function. 

Unbounded Solution: An LPP is said to have an unbounded solution if its solution can grow 

infinitely large without violating any of the constraints. This means that there is no finite optimal 

solution, and the objective function can be increased (in case of maximization) or decreased (in 

case of minimization) indefinitely while still satisfying all the constraints. 

2.5 GRAPHICAL METHOD 

The graphical method is indeed suitable for solving Linear Programming Problems (LPPs) with 

only two decision variables because it allows us to visualize the feasible region and the objective 

function contour lines on a two-dimensional graph. By graphically identifying the corner points 

of the feasible region and evaluating the objective function at these points, we can determine the 

optimal solution. 

However, when dealing with three or more decision variables, graphical methods become 

impractical due to the difficulty of visualization. In such cases, the simplex method is commonly 



Linear programming and game theory  MT(N)-223 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 23 

 

used. The simplex method is an iterative algorithm that systematically moves from one basic 

feasible solution to another along the edges of the feasible region until the optimal solution is 

reached. It's a powerful algorithm for solving linear programming problems of any size 

efficiently. 

The simplex method will indeed be discussed further in the next section, as it provides a robust 

and efficient approach for solving LPPs with three or more variables. 

Example 3: Solve the following LPP by graphical method. 

Minimize 
21 1020 xxZ   

Subject to, 402 21  xx  

303 21  xx  

6034 21  xx  

0, 21 xx  

Solution: To solve this Linear Programming Problem (LPP) graphically, we'll start by plotting 

the feasible region defined by the given constraints and then find the optimal solution within this 

region. 

Let's begin by plotting the constraint equations: 

1. x1+2x2 ≤ 40 

2. 3x1+x2 ≥ 30 

3. 4x1+3x2   ≥ 60 

To plot these equations, we'll first find their intercepts on the axes. 

For x1+2x2=40, intercepts are: 

 When x1=0, 2x2=40 => x2=20 

 When x2=0, x1=40 

For 3x1+x2=30, intercepts are: 

 When x1=0, x2=30 
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 When x2=0, 3x1=30 => x1=10 

For 4x1+3x2=60, intercepts are: 

 When x1=0, 3x2=60 => x2=20 

 When x2=0, 4x1=60 => x1=15 

Now, we'll plot these points and draw the lines connecting them. 

Next, we'll shade the region that satisfies all the inequalities. Since we're minimizing Z=20x1

+10x2, we're looking for the region where Z is the smallest. 

Let's get to graphing it! 

 
 Figure 1: Unique optimal solution of example 3 

 
Hence, the optimal solution of the shaded region is determined by the following table which 

shows the given LPP has minimum value is Zmin = 240 at the points x1 = 6, x2 = 12. 

 

Example 4: Solve the following LPP by graphical method. 

Minimize 
21 34 xxZ   
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Subject to, 62 21  xx  

82 21  xx  

71 x  

0, 21 xx  

Solution: As seen in Figure 2, the limitations are plotted on the graph. There is no possible 

solution to the problem because there is no feasible region in the solution space. 

 

Figure 2: Feasible region of example 4 

 

Example 5: Solve the following LPP by graphical method. 

Minimize 
21 53 xxZ   

Subject to, 102 21  xx  

51 x  

102 x  

0, 21 xx  

Solution: It is evident from the graph in Figure 3 that the feasible region is open-ended. As a 

result, Z's value can be increased indefinitely without going against any of the restrictions. 

Therefore, the LPP has an infinite solution. 
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Figure 3: Unbounded solution of example 5 

Note: It should be noted that an unbounded feasible zone does not always indicate the absence of 

a finite optimal solution for an LP problem. Examine the subsequent LPP, which although 

having an infinite feasible region, has an optimal viable solution. 

Minimize 
212 xxZ   

Subject to, 121  xx  

31 x  

0, 21 xx  

 

 
Figure 4: Finite optimal solution 

Example 6: Solve the following LPP by graphical method. 

Minimize 
21 23 xxZ   
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Subject to, 2446 21  xx  

22 x  

31 x  

0, 21 xx  

 

Solution: As seen in Figure 5, the constraints are plotted on a graph by considering them as 

equations, and the feasible region is then identified using the signs of their inequality. 

 

Figure 5: An infinite number of optimal solution of example 6 

The extreme points of the region are A(0,2), B(0,6), C(2,3) and D(2,2). As we can easily find 

that slope of the objective function and one of the constraint 2446 21  xx coincide at line BC. 

Also from figure BC is the boundary line of the feasible region. So we can say that the optimal 

solution of LP problem can be obtained at any point of the line segment BC. From the following 

table  
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The optimal solution Z=12 is same at two different extreme points B and C. As a result, there 

exist several combinations of any two locations on the line segment BC that yield identical 

values for the objective function, thereby serving as optimal solutions for the linear programming 

problem. As a result, the provided LP issue has an endless number of optimal solutions. 

2.6 OUTCOMES AND LIMITATION OF GRAPHICAL METHOD 

The outcomes of the graphical method in Operational Research are as follows: 

1. Ability to formulate and solve linear programming problems with two decision variables 

using a visual approach. 

2. Understanding of how to graphically represent constraints and objective functions on a 

coordinate plane. 

3. Skill to identify the feasible region and determine its corner points (vertices). 

4. Capability to find the optimal solution (maximum or minimum) of the objective function 

by evaluating it at the feasible region’s vertices. 

5. Understanding of different solution types- unique, multiple, unbounded, and infeasible 

solutions- in linear programming problems. 

6. Development of a visual and conceptual understanding of optimization, providing a 

foundation for more advanced methods such as the simplex method. 

The limitations of the graphical method in Operational Research are as follows: 

1. It is restricted to Linear Programming Problems with only two decision variables, since 

higher-dimensional problems cannot be easily represented graphically. 

2. It becomes impractical and complex when the number of constraints increases, making 

the feasible region difficult to visualize accurately. 

3. The method can only be used for linear relationships; it cannot handle non-linear 

programming problems. 

4. It does not provide sensitivity or post-optimal analysis, which are essential for 

understanding how changes in parameters affect the solution. 

5. The accuracy of the solution depends on precise graphical representation, which may lead 

to approximation errors when plotting or interpreting the graph. 

6. It is time-consuming and inefficient for large-scale real-world problems involving 

multiple variables and constraints. 

Check your progress 

Problem 1: Using the graphical method solve the following LPP 
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Minimize, yxz 2  

Subject to the constraint, 103  yx ; 6 yx ; 2 yx ; 0, yx  

Answer: 0,2  yx  and minimum 2z  

Problem 2: Using the graphical method solve the following LPP 

Minimize, yxz 32   

Subject to the constraint, 30 yx ; 0 yx ; 3y ; 120,200  yx  

Answer: 12,18  yx  and maximum 72z  

 

2.7 SUMMARY 

Linear Programming & Operations Research provides a comprehensive overview of two 

interconnected disciplines essential for optimizing decision-making processes. Linear 

programming offers a mathematical approach for resource allocation through the formulation 

and solution of linear optimization problems. Operations research, on the other hand, extends 

beyond linear programming to encompass a broader range of mathematical techniques aimed at 

addressing complex operational challenges across various industries. By exploring these fields, 

individuals gain valuable insights into modeling real-world problems and devising optimal 

solutions to enhance organizational efficiency and decision-making effectiveness in diverse 

domains such as manufacturing, logistics, finance, and healthcare. In this unit we have learned 

about the basic definitions of LPP, Feasible region, optimal solution, convex set, basic feasible 

solution, optimal feasible solution and more useful definitions used to solve the linear 

programming problem. The overall summarization of this units are as follows:  

 A hyper plane is a convex set. 

 Intersection of two convex sets is also a convex set. 

 The set of all feasible solutions of an LPP is a convex set. 

 The collection of all feasible solutions of an LPP constitutes a convex set whose extreme 

points correspond to the basic feasible solutions. 

2.8  GLOSSARY 

 Linear Programming Problem 

 Feasible Region 
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 Optimal Solution 

 Convex Set 

 Basic Feasible Solution 

 Optimal Basic Feasible Solution 

 Graphical Method 
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2.11 TERMINAL QUESTION 

Long Answer Type Question: 

1: Solve graphically the following LPP and find maximum and minimum value of objective 

function: 

 Maximize (or minimize) yxz 35   

 Subject to: ;6 yx 332  yx ; 30  x ; 30  y  

https://www.openai.com/chatgpt
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2: Solve graphically the following LPP and find maximum value of objective function: 

 Maximize yxz 35   

 Subject to: ;6 yx 632  yx ; 40  x ; 30  y  

3: Solve graphically the following LPP and find maximum value of objective function: 

 Maximize (or minimize) yxz 23   

 Subject to: ;12  yx 2x ; 3 yx ; 0, yx  

Short answer type question: 

1: Solve graphically the following LPP and find maximum value of objective function: 

 Maximize yxz 42   

 Subject to: ;52  yx 4 yx ; 0, yx  

2: Solve graphically the following LPP and find maximum value of objective function: 

 Maximize yxz  6  

 Subject to: 0,;0;32  yxxyyx   

Objective type question: 

1: The graphical method of solving a linear programming problem is applicable when the 

number of decision variables is: 

A) 1 

B) 2 

C) 3 

D) Any number 

2: In the graphical method, the feasible region is: 

A) The entire plane 



Linear programming and game theory  MT(N)-223 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 32 

 

B) The area where all constraints overlap 

C) The intersection of the objective function and one constraint 

D) The area outside the constraints 

3: The optimal solution to a linear programming problem using the graphical method is 

found: 

A) At the center of the feasible region 

B) At any point within the feasible region 

C) At a corner point (vertex) of the feasible region 

D) Along the boundary of the feasible region 

4: If the feasible region is unbounded, the linear programming problem: 

A) Has no solution 

B) Always has an optimal solution 

C) May have an optimal solution if the objective function is bounded 

D) Will have an infinite number of solutions 

5: In a maximization problem using the graphical method, the objective function line is 

shifted: 

A) Parallel to itself towards the origin 

B) Parallel to itself away from the origin 

C) In any random direction 

D) To the nearest constraint line 

6: If two constraints intersect at a point in the feasible region, this point is called: 

A) A feasible solution 
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B) An infeasible solution 

C) A corner point 

D) The optimal solution 

7: In the graphical method, the area where no constraints overlap is called: 

A) The feasible region 

B) The infeasible region 

C) The optimal region 

D) The objective region 

8: When solving a linear programming problem graphically, the constraints are represented 

by: 

A) Straight lines 

B) Curved lines 

C) Dotted lines 

D) Points 

9: If the objective function is parallel to one of the constraints in the feasible region, then: 

A) The problem has a unique solution 

B) The problem has no solution 

C) The problem has infinitely many solutions 

D) The feasible region is empty 

10: In a linear programming problem, the feasible region is bounded if: 

A) The feasible region extends infinitely in one or more directions 
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B) The feasible region is a closed polygon 

C) The feasible region lies entirely within the first quadrant 

D) The objective function has a finite value 

Fill in the blanks: 

1: The graphical method of solving linear programming problems is only applicable when 

the number of decision variables is __________. 

2: In the graphical method, the __________ region is the area where all constraints overlap. 

3: The optimal solution in the graphical method is typically found at a __________ point of 

the feasible region. 

4: The __________ function line is shifted parallel to itself in the graphical method to find 

the optimal solution. 

5: If the feasible region is __________, the problem may have no finite optimal solution. 

6: In the graphical method, each constraint is represented by a __________ on the graph. 

7: If the objective function is __________ to one of the constraints in the feasible region, 

the problem may have infinitely many optimal solutions. 

8: The area on the graph that does not satisfy all the constraints is called the __________ 

region. 

9: The point of intersection of two or more constraints in the graphical method is called a 

__________ point. 

10: In the graphical method, a linear programming problem is said to be __________ if the 

feasible region is a closed and bounded area. 

2.12  ANSWERS 

Answer of short answer type question 

Answer 1:  Maximum z = 10. 
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2:   Problem has unbounded solution. 

Answer of Long answer type question 

Answer 1: 3,3  yx ; Optimum 24z  

2: 2,4  yx ; Optimum 2z  

3: 1,2  yx ; Maximum 8z  

Answer of objective type question 

Answer 1:  B)  2: B)  3: C)  4: C) 

5: B)  6: C)  7: B)  8: A) 

9: C)  10: B) 

Answer of fill in the question 

Answer 1: 2 2: Feasible 3: Corner  4: Objective 

5: unbounded 6: straight line 7: Parallel 8: Infeasible 

9: Corner (or vertex) 10: Bounded 
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UNIT-3: CONVEX SET AND THEIR PROPERTIES 

CONTENTS: 

3.1  Introduction 

3.2  Objectives 

3.3  Hyperplanes and hypersphere 

3.4.1 Some important results 

3.5 Extreme point 

3.6 Convex polyhedron, convex cone and convex hull 

3.7 Supporting and seprating hyperplanes 

3.8 Convex functions 

3.9 Summary 

3.10  Glossary  

3.11   References 

3.12 Suggested Readings 

3.13  Terminal Questions 

3.14 Answers 

3.1 INTRODUCTION 

A convex set is a fundamental concept in operational research and optimization, forming the 

basis for many analytical and computational techniques used to solve decision-making problems. 

A set is said to be convex if, for any two points within it, the entire line segment joining those 

points also lies within the set. This simple geometric idea leads to powerful mathematical 

properties that greatly simplify optimization tasks, particularly in linear and nonlinear 
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programming. Understanding convex sets and their properties such as convex combinations, 

extreme points, separation theorems, and supporting hyperplanes is essential because many 

feasible regions in operational research models are convex, ensuring that local optima are global 

and that efficient solution methods can be applied. This chapter introduces these concepts, 

develops their key properties, and highlights their importance in constructing and analyzing 

optimization models. 

3.2 OBJECTIVE 

The main objectives of the chapter “convex set and their properties” presented in point form: 

 To introduce the concept of convex sets and explain their importance in operational 

research. 

 To enable students to identify and verify whether a given set is convex. 

 To explain convex combinations and their role in defining convexity. 

 To study key features of convex sets such as extreme points, convex hulls, and faces. 

 To understand geometric properties including separation theorems and supporting 

hyperplanes. 

 To highlight how convexity influences the structure of feasible regions in optimization 

problems. 

 To prepare students to apply convexity concepts in linear programming, nonlinear 

programming, and other optimization models. 

3.3 HYPERPLANES AND HYPERSPHERE 

A hyperplane is a flat, affine subspace of one dimension less than its ambient space. 

Definition: In
nR , a hyperplane is defined as: }:{ bxaRxH Tn   

where 

 
nRa is a nonzero normal vector, 

 Rb  is a scalar. 

Remarks: 

 In 
2Ra  (plane), a hyperplane is a line. 

 In 
3R  (3D space), a hyperplane is a plane. 

 In 
nR , the hyperplane has dimension n−1. 

Uses in Optimization 
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 Hyperplanes are used to represent constraints like bxaT   or to separate convex sets. 

 They form the boundaries of feasible regions in linear programming. 

2. Hyperspheres 

A hypersphere is the generalization of a sphere to higher dimensions. 

Definition 

In nR , a hypersphere with center c and radius 0r  is: 

}:{ rcxRxS n   

Remarks: 

 In 
2R a hypersphere is a circle. 

 In 
3R , it is a sphere. 

 In 
nR , it is called an (n–1)-sphere, having dimension n-1. 

The corresponding ball (interior region) is: 

}:{ rcxxB   

Simple Visualization (Lower Dimensions) 

Dimension Hyperplane Hypersphere 

2R  Line Circle 

3R  Plane Sphere 

nR  n−1-flat n−1-sphere 

3.4 CONVEX SET 

A convex set is a set of points with the property that, for any two points within the set, the entire 

line segment joining those two points also lies completely inside the set. 

Definition: A subset 
nRS  , is said to be convex, if for any two points Saa 21, , the line 

segment joining the points 
1a  and 

2a is also contained in S. 

In other word, a subset 
nRS   is convex if and only if  

10;)1(, 2121   SaaSaa . 
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Figure 1 shows the figure of some convex set and non-convex set. 

 
Figure 1: Some figure of convex and non-convex set 

 

Example 1: Show that the set }623:),{(
2

2

2

121  yyyyS  is convex set. 

Solution: Let SBA , where, ),( 21 aaX   and ),( 21 bbY  . 

The line segment joining BA& is the set, 

}10,)1(:{   BAuu  

For some  , 10   , let ),( 21 uuu   be a point of this set, so that 

111 )1( bau    and 
222 )1( bau    

Now, 
2

22

2

11

2

2

2

1 ])1([2])1([323 babauu    

)23)(1(2]23[)1(]23[ 2211

2

2

2

1

22

1

2

1

2 babababa    

)1(12)1(66 22   , 

Since 2

2

2

1

2

1

2

12211 )2()3()2()3()23( yyxxbaba  , 

Thus, 623
2

2

2

1  uu ; and hence ),( 21 uuu   is also a point of S.  

Hence, S is a convex set. 

The following results easily follow from the definition of a convex set. 

(i)  A hyperplane in 
nR  is a convex set. 

(ii)  A closed ball in 
nR , namely, }|:|{ 0 rxxx  , where 0r  and 

nRxx ,0 , is a convex 

set. 

(iii) Hyperspheres are convex sets (their interiors). 
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(iv) They are often used to express distance constraints in optimization and machine learning 

(e.g., clustering, norm constraints). 

3.4.1  SOME IMPORTANT RESULTS 

Now we will discuss some important theorems and the results which are required to solve LPP. 

Theorem 1: A hyperplane is a convex set. 

Proof: Consider the hyperplane }.:{ zcxxS   Let 
1x and 

2x be two points in S. Then zcx 1

and zcx 2
. Now, let a point 3x be given by the convex combination of 

1x and 
2x as 

10,)1( 213   xxx . Then 

})1({ 213 xxccx    

       
21 )1( xxc    

       zzcz  )1(   

Therefore, 3x  satisfies zcx  and hence Sx 3 . 3x being the convex combination of 
1x  and 

2x

in S, S is a convex set. Thus a hyperplane is a convex set. 

 

(Proof by another way) A hyperplane is typically defined as an affine subspace of dimension 

n−1 in an n-dimensional vector space. 

To prove that a hyperplane is a convex set, we need to show that for any two points x1 and x2 in 

the hyperplane, the line segment connecting them lies entirely within the hyperplane. 

Consider the equation of a hyperplane in n-dimensional space: 

aTx =b 

where a is a non-zero vector normal to the hyperplane, x is a point in the hyperplane, and b is a 

scalar constant. 

Now, let x1 and x2 be two arbitrary points in the hyperplane, satisfying: 

aTx1=b 

aTx2=b 

Consider any point x on the line segment connecting x1 and x2. This point can be expressed as: 

x =t x1+(1−t)x2 

where, 0≤ t ≤1. 
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Now, let's compute the dot product of a with x: 

aTx = aT(tx1+(1−t)x2) 

=taTx1+(1−t)aTx2 =tb+(1−t)b=b 

Thus, aTx=b, showing that x also lies on the hyperplane. Since this is true for any x on the line 

segment connecting x1 and x2, the entire line segment lies within the hyperplane. 

Therefore, a hyperplane is indeed a convex set. 

Theorem 2: Intersection of two convex sets is also a convex set. 

Proof: The intersection of two convex sets is indeed a convex set. This property is a fundamental 

result in convex geometry and is known as the "intersection theorem" or "convexity preserving 

property of intersections." 

To prove this, let's suppose we have two convex sets A and B in some vector space. We want to 

show that their intersection, denoted by A∩B, is also convex. 

Let x, y be any two points in A∩B, and let λ be a scalar such that 0≤λ≤1. 

Since x and y belong to A∩B, they must belong to both A and B. Because A and B are convex 

sets, the line segment connecting x and y lies entirely within both A and B. 

Since A is convex, λx+(1−λ)y lies in A. Similarly, since B is convex, λx + (1−λ)y lies in B. 

Therefore, λx+(1−λ)y lies in both A and B, which means it lies in their intersection A∩B. 

Thus, A∩B is convex, as any point on the line segment between any two points in A∩B also lies 

within A∩B. 

Theorem 3: The set of all feasible solutions of an LPP is a convex set. 

Proof: The set of all feasible solutions of a Linear Programming Problem (LPP) forms a convex 

set. 

An LPP typically involves optimizing a linear objective function subject to linear constraints. 

The feasible region, which is the set of all points that satisfy these constraints, is typically a 

convex set. 

To see why, consider the constraints of an LPP: 

Ax ≤ b 
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where A is a matrix of coefficients, x is the vector of decision variables, and b is a vector of 

constants. 

Each constraint ai
Tx ≤ bi represents a half-space in n-dimensional space, defined by a 

hyperplane. The intersection of all these half-spaces forms the feasible region. 

Since each constraint defines a convex set (a half-space is convex), the intersection of convex 

sets (feasible region) is also convex. This means that any convex combination of feasible 

solutions remains feasible, ensuring the convexity of the feasible set. 

Therefore, the set of all feasible solutions of an LPP is indeed a convex set. This property is 

crucial for the efficient solution of linear programming problems using convex optimization 

techniques. 

Remark: An LPP has an infinite number of feasible solutions if it has two feasible solutions, 

since a feasible solution might be any convex combination of the two feasible solutions. 

Theorem 4: The collection of all feasible solutions of an LPP constitutes a convex set whose 

extreme points correspond to the basic feasible solutions. 

Proof: Let's break down the proof into two parts: 

1. The Feasible Region is Convex: To prove that the collection of all feasible solutions of 

an LPP constitutes a convex set, we need to show that any convex combination of two feasible 

solutions is also a feasible solution. 

Let x1 and x2 be two feasible solutions, meaning they satisfy all the constraints of the linear 

programming problem. Now, consider the convex combination: 

x=λx1+(1−λ)x2 

where 0 ≤λ ≤1. 

Since x1 and x2 satisfy the constraints, it follows that: 

Ax1 ≤ b  

Ax2 ≤ b 

Multiplying these inequalities by λ and 1−λ respectively and summing them, we get: 

λ(Ax1)+(1−λ)(Ax2) ≤ λb+(1−λ)b 

Simplifying: 

A(λx1+(1−λ)x2) ≤ b 

Thus, x also satisfies the constraints, making it a feasible solution. Since this holds for any λ in 

the range 0≤ λ ≤1, the feasible region is convex. 

2. Extreme Points Correspond to Basic Feasible Solutions: To prove that extreme points 

of the feasible region correspond to basic feasible solutions, we need to show that each extreme 
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point is indeed a basic feasible solution, and conversely, every basic feasible solution is an 

extreme point. 

 Extreme Points as Basic Feasible Solutions: Any convex combination of two distinct 

feasible solutions lies strictly within the line segment connecting those two solutions. 

Since an extreme point cannot be expressed as such a convex combination of two distinct 

points, it must satisfy a minimal set of constraints, making it a basic feasible solution. 

 Basic Feasible Solutions as Extreme Points: Basic feasible solutions are those solutions 

where a minimal set of constraints is active. If a solution is not a basic feasible solution, it 

means it can be expressed as a convex combination of two distinct basic feasible 

solutions. Therefore, it cannot be an extreme point. 

Therefore, the extreme points of the feasible region correspond to the basic feasible solutions, 

completing the proof. 

3.5 EXTREME POINT 

In convex analysis, extreme points help describe the “corners” or boundary‐structure of a convex 

set. Here is a clear and concise explanation. 

Definition: An extreme point (vertex) of a convex set is a point of the set which does not lie on 

any segment joining two other point of the set.  

Thus, a point x of a convex set S is an extreme point of the set, if there does not exist any pair of 

points 
21, xx in S, such that 

10;)1( 21   xxx  

Note: We should observe that the inequality on   is required to be strict. An extreme point 

always lies on the boundary of the set, but a boundary point of a convex set is not necessarily an 

extreme point. 

Definition (convex combination of vectors): Given a set of vectors }...,,,,{ 321 kxxxx , a linear 

combination 

}...,332211 kk xxxxx    

is called the convex linear combination of the given vectors, if 

0...,,,, 321 k  and 1
1




k

i

i  

Theorem 5: The set of all convex combinations of a finite number of points of 
nRS   is a 

convex set. 

Proof: Let, SxxxxS i

m

i

i

m

i

ii  


},1,0:{
11

  

We have to show that S is a convex set. 

Let nRSxx ''' , , so that 
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,
1

'' 



m

i

ii xx  where 0
'
i , 




m

i

i

1

'
1  

And ,
1

'''' 



m

i

ii xx  where 0
''
i , 




m

i

i

1

''
1  

Consider now the vector, 

10;)1( '''   xxx  





m

i

ii

m

i

ii xx
1

''

1

'
)1(   





m

i

ii

m

i

iii xx
11

'''
])1([   

Where, 
'''

)1( iii   ; mi ...,,3,2,1  

Since, 10   , 0' i , 0'' i , therefore 0i  for each i.  

Also, 1)1()1(])1([
1

''

1

'''

1

'

1

 



m

i

i

m

i

ii

m

i

i

m

i

i  

Hence x is a convex combination of the vectors mxxxx ...,,,, 321  or Sx . 

Thus for each pair of points Sxx ''' , , the line segment joining them is contained in the set. 

Hence S  is a convex set. 

3.6 CONVEX POLYHEDRON, CONVEX CONE AND CONVEX 

HULL 

Definition (Convex polyhedron): A convex polyhedron is the set formed by all convex 

combinations of a finite collection of linearly independent vectors. 

The convex polyhedron generated by the finite set of linearly independent vectors 

mxxxx ...,,,, 321  is the set 

 








 


m

i

ii

m

i

ii xxx
11

1,0,:   

Definition (Convex cone): A non-empty subset 
nRC  , is called a cone if for each Cx , and 

0 , the vector x is also in C. 

A cone is called a convex cone if it is a convex set. 

Example 2: If A be an nm  matrix, then the set of n vectors x satisfying 0Ax  is a convex 

cone in 
nR . It is a cone, because if 0Ax , then 0xA  for non-negative  . It is convex 

because if 0)1( Ax  and 0)2( Ax , then 0])1([ )2()1(  xxA  . 
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Definition (Convex hull of a set): Given a set ,nRY  the smallest convex set containing Y is 

called the convex hull of ,Y  and is denoted by  Y . 

It can be easily seen that the convex hull of a set is the intersection of all convex set containing 

Y.  

Example 3: Let },{ 21 xxA  . Then the line segment joining 
21, xx  is a convex set. Also if S is 

any convex set containing ,A then it must contain the line segment joining 
21, xx . 

}10.)1(:{ 21   xxxxA  

Remarks: If A is finite subset of vectors in nR , then the convex hull of A is the set of all convex 

combinations of vectors in A.  

3.7 SUPPORTING AND SEPRATING HYPERPLANES 

Here is a clear and structured explanation of supporting and separating hyper planes, commonly 

studied in convex analysis and operational research: 

Supporting Hyperplanes 

A supporting hyperplane to a convex set 
nRC   is a hyperplane that touches the set but does not 

cut through it. Formally, a hyperplane 

0},:{  abxaRxH Tn  

is said to support C if: 

1. )(}:{ borbxaxC T  , and 

2. The hyperplane intersects the boundary of C: 

CH  

Intuition 

 A supporting hyperplane just “touches” the convex set from one side (like a tangent line 

touching a convex curve). 

 Every boundary point of a convex set has at least one supporting hyperplane. 

Example 

For a convex polygon, any line that touches the polygon at an edge or a vertex without cutting 

through it is a supporting hyperplane. 
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Separating Hyperplanes 

A separating hyperplane is a hyperplane that places two disjoint sets on opposite sides. 

Given two sets ,, 21

nRCC  a hyperplane 

}:{ bxaxH T   

Separates them if: 1CxbxaT   

And 2CxbxaT   

Types of Separation 

1. Weak Separation: 

The hyperplane may touch one or both sets: 1CxbxaT  , 2CxbxaT   

2. Strong Separation: 

There is a strict gap between the sets: 21, CyCxyabxa TT  . 

Remark: If two nonempty, disjoint, convex sets and at least one is open then a separating 

hyperplane always exists. 

Geometric Intuition 

 A supporting hyperplane touches a convex set from the outside. 

 A separating hyperplane stands between two disjoint sets and divides space so they lie on 

different sides. 

3.8 CONVEX FUNCTIONS 

A convex function is a fundamental concept in optimization and mathematical analysis, 

characterized by the property that the line segment between any two points on its graph lies 

above or on the graph itself. Defined on a convex set, a function f is convex if for any two points 

in its domain, the function value at any weighted average of these points does not exceed the 

weighted average of their function values. This simple geometric attribute leads to powerful 

analytical advantages most notably, any local minimum of a convex function is also a global 

minimum, making convex functions central to optimization theory, economics, engineering, and 

machine learning. Their structural simplicity and predictable behavior make them essential tools 

for solving a wide range of real-world optimization problems. 

Definition (convex function): A function RRf n :  is called convex on a convex set C if, for 

all Cyx , and for all :]1,0[  



Linear programming and game theory  MT(N)-223 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 47 

 

)()1()())1(( yfxfyxf   . 

Definition (strictly convex function): Let S be a non-empty convex subset of nR . A function 

)(xf  on S is said to be strictly convex if for two different vectors 
1x  and 

2x in S. 

10),()1()()])1([   yfxfyxf  

 

 

  
                     Figure 2: Strictly convex function                             Figure 3: Strictly concave function 

 

From the two definitions given above, it is clear that every strictly convex function is inherently 

convex. Figure 2 presents the graph of a strictly convex function for illustration.  

Definition [Concave (strictly concave) function]: A function )(xf  on a non-empty subset S of 

nR  is said to be concave (strictly concave) if )(xf  is convex (strictly convex). 

Clearly, every strictly concave function is also concave, as follows directly from their 

definitions. Figure 3 illustrates the graph of a strictly concave function for better understanding . 

  

 

                     Figure 4: Both convex and concave function                                  Figure 5 
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It is possible for a function to be both convex and concave. For example, xxf )( is such a 

function (Fig 4). The function in Figure 5 is strictly convex for 0xx   but not strictly convex for 

0xx  . 

Check your progress 

Problem 1: Prove that the set }4|),{(
2

2

2

121  xxxxx  is a convex set. 

Problem 2: Show that the following functions are convex over 1R  

(i) 23)( xxf    (ii) xexf )(  and  (iii) ||)( xxf   

 

3.9 SUMMARY 

A convex set is fundamentally defined by the property that the line segment connecting any two 

points within the set lies entirely within the set, formally expressed as containing all convex 

combinations θx + (1-θ)y for any x, y in the set and 0≤θ≤1. This unit establishes that key 

operations preserve convexity, including intersections, affine transformations (scaling and 

translation), and linear combinations, while unions generally do not. Essential examples are 

presented, such as hyperplanes, hypersphere, convex polyhedron, convex cone, convex hull, 

supporting and separating hyperplanes and convex function which form the building blocks for 

more complex convex structures. The concepts of convex hulls (the smallest convex set 

containing a given collection) and extreme points (which cannot be expressed as convex 

combinations of other set members) are introduced to characterize set boundaries. These 

geometric foundations are crucial for optimization, as they ensure that local minima in convex 

problems are global minima, and they underpin the theory behind linear programming, quadratic 

programming, and more general convex optimization frameworks in operational research.. 

3.10  GLOSSARY 

 Hyperplanes 

 Hypersphere 

 Extreme point 

 Convex polyhedron 

 Convex cone 

 Convex hull 

 Supporting and seprating hyperplanes 
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 Convex function 
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3.13 TERMINAL QUESTION 

Long Answer Type Question: 

1: Examine whether the following set is convex or not: 

(i) }0,0,1:),{( 212121  xxxxxxS  

(ii) }1052,1025:),{( 212121  xxxxxxS  

(iii) }1,1:),{( 21

2

2

2

121  xxxxxxS   

2: Show that 
3

321321 }42:),,{( RxxxxxxS   is a convex set. 

https://www.openai.com/chatgpt
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3: Determine the convex hull of the following sets: 

(i) }1:),{(
2

2

2

121  xxxxA  

(ii) )},{( 21 xxA   

4: Prove that the set of all convex combinations of a finite number of points of 
nRS   is a 

convex set. 

5: Prove that a hyperplane is a convex set. 

Short answer type question: 

1: Show that the function 
2

2

2

12)( xxxf  is a convex function over all of 2R  

2: Prove that intersection of two convex sets is also a convex set.  

Objective type question: 

1: A set 
nRC   is convex if and only if: 

A.  It contains the origin 

B.  It contains all its boundary points 

C.  It contains the line segment between any two points in the set 

D.  It is closed and bounded 

2: Which of the following sets is always convex? 

A.  The set of all integer points 

B.  The set of all solutions to a system of linear inequalities 

C.  The union of two convex sets 

D.  The boundary of a circle 

3: The intersection of any collection of convex sets is: 

A.  Always convex 

B.  Always non-convex 

C.  Convex only when the collection is finite 

D.  Convex only when the sets are closed 

4: A set is called strictly convex if: 
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A.  Every line segment between two points in the set lies completely outside the set 

B.  Every line segment lies on or outside the boundary 

C.  Every interior point of a line segment between two distinct points lies inside the set 

D.  It contains only one extreme point 

5: Which of the following is not a convex set? 

A.  A disk (solid circle) 

B.  A line in 
2R  

C.  A triangle including its interior 

D.  A hollow circular ring (annulus) 

6: A half-space defined by bxaT   is: 

A.  Always convex 

B.  Always non-convex 

C.  Convex only if 0a  

D.  Convex only if 0b  

7: A supporting hyperplane to a convex set C must: 

A.  Pass through the origin 

B.  Intersect the interior of C 

C.  Touch the set without cutting through it 

D.  Divide the set into two equal parts 

8: If two convex sets are non-empty, closed, and disjoint, then: 

A.  They can never be separated 

B.  A separating hyperplane always exists 

C.  They must intersect at a boundary point 

D.  They must lie in different dimensions 

9: Extreme points of a convex set are points that: 

A.  Lie outside the set but on the boundary 

B.  Cannot be expressed as a convex combination of other points in the set 

C.  Always lie in the interior 

D.  Form the center of the set 

10: The convex hull of a set of points is: 
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A.  The set of all concave combinations of the points 

B.  The largest convex set containing the points 

C.  The intersection of all convex sets not containing the points 

D.  The smallest convex set containing the points 

Fill in the blanks: 

1: A set C is said to be convex if it contains the ________ between any two of its points. 

2: A function f is convex if its ________ is a convex set. 

3: The intersection of any number of convex sets is always ________. 

4: A set is strictly convex if every interior point of the line segment between two distinct 

points of the set lies ________ the set. 

5: A hyperplane is defined as the set of all points x satisfying the equation 
xa  = ________. 

6: A half-space of the form bxaT   is always a ________ set. 

7: A separating hyperplane places two disjoint convex sets on ________ sides of the 

hyperplane. 

8: A supporting hyperplane touches the convex set but does not ________ it. 

9: The convex hull of a set of points is the ________ convex set containing those points. 

10: A point that cannot be expressed as a convex combination of any other two points in the 

set is called an ________ point. 

3.14  ANSWERS 

Answer of long answer type question: 

Answer 1: (i) convex     (ii) convex   (iii) convex 

Answer 3: (i) }1:),{(
2

2

2

121  xxxxA  

(ii) }10;)1(:{ 21   xxxxA  

Answer of objective type question: 
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Answer 1:  C)  2: B)   3: A)   4: C) 

5: D)  6: A)   7: C)   8: B) 

9: B)  10: D) 

Answer of fill in the blanks 

Answer 1: line segment 2: epigraph 3: convex  4: inside 

5: b   6: convex  7: opposite 8: cut through 

9: smallest  10: extreme 
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UNIT- 4: SIMPLEX METHOD 

 

CONTENTS: 

4.1  Introduction 

4.2  Objectives 

4.3  Simplex Method 

4.3.1  Canonical and standard forms of an LPP 

4.3.2 Slack and Surplus variables 

4.3.3 Basic Solution 

4.3.4 Basic feasible solution 

4.4 Simplex Algorithm 

          4.4.1 Simplex Table 

4.5 Summary 

4.6  Glossary  

4.7   References 

4.8 Suggested Readings 

4.9  Terminal Questions 

4.10 Answers 

 

4.1 INTRODUCTION 

The Simplex method is an iterative algebraic technique for solving Linear 

Programming Problems (LPPs) with more than two decision variables by systematically 

moving from one corner point of the feasible region to another until the optimal solution is 

found. It involves converting inequalities to equations using slack, surplus, or artificial 

variables, creating a simplex tableau, and then performing row operations (pivoting) to 

find the entering and leaving variables until all variables in the objective function row 

satisfy the optimality condition (non-negative for maximization or non-positive for 

minimization).   

 

4.2 OBJECTIVE 

After reading this unit learners will be able to  

 Various types of variables like slack and surplus variable. 

https://www.google.com/search?sca_esv=1e4238bc8dc008dd&rlz=1C1VDKB_enIN1067IN1067&q=simplex+tableau&sa=X&ved=2ahUKEwjOkM_4-pOQAxVXxTgGHaOKCc0QxccNegQIIRAB&mstk=AUtExfBwBG3c5IX6oNVqDApu-s4KLdIXf5hoUzapIz0SYTeDHBjb94xnj4ccy2Q2iU9NprlQntN4E8tVFwdtylINPcEQRADxPAP6IVvlsxxUb9YJcYRfdGKjm22N9--buSg0Wzd2NuuXL0pcaGOzgGvqGnsZHkOsSCLAlg_hwA2VE4IwakHzxNoXmKHzEyx0yTU3LQVB6rvV-zg67pQa7wskStj_t0YhyMqbjeg6Tp0OHgB_zA&csui=3
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 Visualized the canonical and standard forms of an LPP. 

 Implementation of simplex method and visualized the algorithm to solve the given LPP by 

simplex method. 

 

4.3 SIMPLEX METHOD 

George Dantzig created the simplex approach in 1947 as an effective way to solve LP 

problems with many of variables. The graphical technique and the simplex method both 

involve examining the extreme points of the feasible region in order to get the best possible 

solution. In this case, the ideal solution is located at a multi-dimensional polyhedron's 

extreme point. The foundation of the simplex technique is the fact that, in the event that an 

ideal solution exists, it can always be found inside one of the most basic feasible options. 

 

4.3.1 CANONICAL AND STANDARD FORMS OF AN LPP 

Any linear programming problem is said to be in canonical form if it can be expressed as, 

Maximize, nn xcxcxcZ  ...2211  

Subject to, 

mibxaxaxaxa innijjiii ,...,2,1,......2211
  

0,...,, 21 nxxx  

These are some characteristics of this form, 

(i) The objective function is of maximization type Or Maximize Z. If we have given 

minimize Z, we convert it to maximize by taking negative of Z i.e., Maximize (-Z). 

(ii) All constraints should be of the type "" , except the non-negative restrictions.  

(iii) All variables are non-negative.  

            An LPP in such form known as Standard form: 

Maximize (or minimize), nn xcxcxcZ  ...2211  

Subject to, 

mibxaxaxaxa innijjiii ,...,2,1,......2211
  

0,...,, 21 nxxx  

OR 

Maximize (or minimize), cxZ   

   Subject to, 

mibAx ,...,2,1,   

0x (null vector) 



LINEAR PROGRAMMING AND GAME THEORY                                               MT(N) - 223 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 57 

 

Where ),...,,( 21 ncccc   and n-component row vector; ),...,,( 21 mxxxx   an m-component 

column vector; ],...,,[ 21 mbbbb   an m-component column vector and the matrix 

nmijaA  )( . The characteristic of this form are as follows: 

(i) All constraints are expressed in the form of equations, except the non-negative 

restrictions. 

(ii) The RHS of each constraint equation is non-negative. 

 

4.3.2 SLACK AND SURPLUS VARIABLES 

 

1. Slack Variables: 

Slack variables are introduced to convert inequality constraints into equations. 

 For each inequality constraint of the form aiTx ≤ bi, a slack variable si is added such that 

aiTx + si = bi. 

 Slack variables represent the amount by which the left-hand side of the constraint falls 

short of the right-hand side to satisfy the constraint. 

 In the simplex method, slack variables start with a value of zero in the initial basic feasible 

solution. 

                                                                 OR 

 Slack variable: A variable which is added to the LHS of a “≤” type constraint to convert 

the constraint into an equality is called slack variable. 

 

2. Surplus Variables: 

 Surplus variables are introduced to convert inequality constraints into equations when the 

inequalities are of the form aiTx ≥ bi. 

 For each inequality constraint of the form aiTx ≥ bi, a surplus variable si is added such 

that aiTx – si = bi. 

 Surplus variables represent the amount by which the left-hand side of the constraint 

exceeds the right-hand side. 

 In the simplex method, surplus variables start with a value of zero in the initial basic 

feasible solution. 

Surplus variable: A variable which is subtracted from the LHS of a “≥” type constraint to 

convert the constraint into an equality is called surplus variable. 

These additional variables allow the LP problem to be formulated in canonical form, where 

all constraints are equations. The simplex method operates on LP problems in canonical 

form, making it easier to identify and move between basic feasible solutions efficiently. 
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4.3.3 BASIC SOLUTION 

Consider a set of m linear simultaneous equations of n (n > m) variables.  

Ax = b,  

where A is an m × n matrix of rank m. If any m × m non-singular matrix B is chosen from 

A and if all the (n − m) variables not associated with the chosen matrix are set equal to 

zero, then the solution to the resulting system of equations is a basic solution (BS). 

Basic solution has not more than m non-zero variables called basic variables. Thus the m 

vectors associated with m basic variables are linearly independent. The variables which are 

not basic, are termed as non-basic variables. If the number of non-zero basic variables is 

less than m, then the solution is called degenerate basic solution. On the other hand, if none 

of the basic variables vanish, then the solution is called non-degenerate basic solution. The 

possible number of basic solutions in a system of m equations in unknowns is 

)!(!

!

mnm

n
Cm

n


 . 

Theorem 1: The necessary and sufficient condition for the existence and non-degeneracy 

of all the basic solutions of Ax = b is that every set of m columns of the augmented matrix 

[A, b] is linearly independent. 

Proof: To prove the theorem stating that the existence and non-degeneracy of all basic 

solutions of Ax = b depend on every set of m columns of the augmented matrix [A, b] being 

linearly independent, we'll need to establish both the necessity and sufficiency of this 

condition. 

Necessary condition: Let's first prove the necessity part. We want to show that if all basic 

solutions exist and are non-degenerate, then every set of m columns of [A, b] must be 

linearly independent. 

Suppose that there exists a set of m columns of [A, b] that is linearly dependent. This 

implies that there exists a nontrivial linear combination of these columns that equals the 

zero vector. Without loss of generality, let's assume that the linear combination involves 

the last column, corresponding to the vector b. 

c1A1+c2A2+…+cmAm+cm+1b=0 

Where Ai represents the ith column of A and ci are coefficients not all zero. 

Since the last column of [A, b] is linearly dependent on the other columns, it means that the 

system Ax = b has at least one redundant equation. In other words, the last component of b 

can be expressed as a linear combination of the other components, rendering the system 

degenerate. 

Hence, if every set of m columns of [A, b] is linearly independent, then the system Ax = b 

cannot have any redundant equations, ensuring the existence and non-degeneracy of all 

basic solutions. 
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Sufficient condition: Now let's prove the sufficiency part, i.e., if every set of m columns 

of [A, b] is linearly independent, then all basic solutions exist and are non-degenerate. 

Suppose all sets of m columns of [A, b] are linearly independent. This implies that each 

component of b cannot be expressed as a linear combination of the other components. 

Therefore, each equation in the system Ax = b contributes uniquely to the determination of 

the solution. 

Since there are no redundant equations, every basic solution of the system Ax = b 

corresponds to a unique set of pivot variables, making the solution non-degenerate. 

Furthermore, since each equation is necessary for determining the solution, all basic 

solutions exist. 

Therefore, the sufficiency part is proven. 

Conclusion: Combining the necessity and sufficiency proofs, we conclude that the 

existence and non-degeneracy of all basic solutions of Ax = b are guaranteed if and only if 

every set of m columns of the augmented matrix [A, b] is linearly independent. 

4.3.4 BASIC FEASIBLE SOLUTION (BFS) 

As we know that, if a feasible solution x is also basic, meaning that it corresponds to a set 

of linearly independent columns of the constraint matrix A, then it is termed a basic 

feasible solution (BFS). Basic feasible solutions are important in LP because they often 

correspond to the vertices of the feasible region (in the case of bounded LP problems), and 

they serve as starting points for various optimization algorithms such as the simplex 

method. 

In summary, a basic feasible solution is a feasible solution that satisfies the additional 

condition of being basic, implying that it corresponds to a set of linearly independent 

constraints. 

OR 

An LPP's feasible solution is one that meets all of its constraints and non-negativity 

restrictions. A viable solution is referred to as basic feasible solution (BFS) if it is basic 

once more. 

Theorem 2: The necessary and sufficient condition for the existence and non-degeneracy 

of all possible basic feasible solutions of Ax = b, x ≥ 0 is the linear independent of every set 

of m columns of the augmented matrix [A, b], where A is the m × n coefficient matrix. 

Proof: To prove the theorem that the existence and non-degeneracy of all possible basic 

feasible solutions of the linear programming problem Ax = b, x ≥ 0 depend on the linear 

independence of every set of m columns of the augmented matrix [A, b], we need to 

establish both the necessity and sufficiency of this condition. 
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Necessary condition: Let's first prove the necessity part. We want to show that if all 

possible basic feasible solutions exist and are non-degenerate, then every set of m columns 

of [A, b] must be linearly independent. 

Suppose that there exists a set of m columns of [A, b] that is linearly dependent. This 

implies that there exists a nontrivial linear combination of these columns that equals the 

zero vector. Without loss of generality, let's assume that the linear combination involves 

the last column, corresponding to the vector b. 

c1A1+c2A2+…+cmAm+cm+1b=0 

Where Ai represents the ith column of A and ci are coefficients not all zero. 

Since the last column of [A, b] is linearly dependent on the other columns, it means that the 

system Ax = b has at least one redundant equation. In other words, the last component of b 

can be expressed as a linear combination of the other components, violating the non-

negativity constraint x ≥ 0 and rendering the system degenerate. 

Hence, if every set of m columns of [A, b] is linearly independent, then the system Ax = b 

cannot have any redundant equations, ensuring the existence and non-degeneracy of all 

possible basic feasible solutions. 

Sufficient condition: Now let's prove the sufficiency part, i.e., if every set of m columns 

of [A, b] is linearly independent, then all possible basic feasible solutions exist and are non-

degenerate. 

Suppose all sets of m columns of [A, b] are linearly independent. This implies that each 

component of b cannot be expressed as a linear combination of the other components. 

Therefore, each equation in the system Ax=b contributes uniquely to the determination of 

the solution. 

Since there are no redundant equations, every basic feasible solution of the system Ax = b 

corresponds to a unique set of pivot variables, making the solution non-degenerate. 

Furthermore, since each equation is necessary for determining the solution, all possible 

basic feasible solutions exist. 

Therefore, the sufficiency part is proven. 

Conclusion: 
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Combining the necessity and sufficiency proofs, we conclude that the existence and non-

degeneracy of all possible basic feasible solutions of the linear programming problem Ax = 

b, x ≥ 0 are guaranteed if and only if every set of m columns of the augmented matrix [A, 

b] is linearly independent. 

Example 1: Find out the basic feasible solution for the system of linear equations 

8432 4321  xxxx  

3762 4321  xxxx  

0,,, 4321 xxxx  

Proof: The given system of equations can be written as  

bxaxaxaxa  44332211  

where ]7,4[],6,1[],2,3[],1,2[ 4321  aaaa  and ]3,8[ b . The maximum number 

of basic solutions that can be obtained is 4C2 = 6. The six sets of 2 vectors out of 4 are  

B1 = [a1, a2], B2 = [a1, a3], B3 = [a1, a4] 

B4 = [a2, a3], B5 = [a2, a4], B6 = [a3, a4]. 

Here |B1 | = −7, |B2 | = 18, |B3 | = −18, |B4 | = 16, |B5 | = −13, and |B6 | = −17. Since none of 

these determinants vanishes, hence every set Bi of two vectors is linearly independent. 

Therefore, the vectors of the basic variables associated to each set Bi, i = 1,2,3,4,5,6 are 

given by, 




































2

1

3

8

21

32

7

11

11
bBxB  




































13/14

13/45

3

8

21

16

13

11

22
bBxB  




































9/7

9/22

3

8

21

47

18

11

33
bBxB  
































16/7

16/45

3

8

32

16

16

11

44
bBxB  





























 




13/7

13/44

3

8

32

47

13

11

55
bBxB  

And 


































17/45

17/44

3

8

16

47

17

11

66
bBxB  

From above, we see that the possible basic feasible solutions are ]0,0,2,1[1 x ,

]9/7,0,0,9/22[2 x , ]0,16/7,16/45,0[3 x  and ]17/45,17/44,0,0[4 x  which are also 

non-degenerate. The other basic solutions are not feasible. 
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Theorem 3: (Fundamental theorems of LP): If a linear programming problem has an 

optimal solution, then the optimal solution will coincide with at least one basic feasible 

solutions of the problem. 

Proof: Let us consider that *x  is an optimal solution of the following LPP: 

Maximize, cxz   

Subject to 0,  xbAx                                                      … (1) 

Without loss of generality, we assume that the initial p component of optimal solution *x

are non-zero and the remaining )( pn   component of *x  are non-zero. Thus, 

]0,...,0,0,,...,,[ 21

*

pxxxx   

Then, from (1), bAx *  gives mibxa i

p

j

jij ...,,2,1,
1




 

Also, ],...,,,,...,,[ 121 npp aaaaaA   gives 

bxaxaxa pp  ...,2211                                                    … (2) 

Also, 



p

j

jj xczz
1

max

*                                               … (3) 

Now, if the vectors paaa ,...,, 21 correspond to the non-zero components of *x are linearly 

independent, then, by definition of *x  is a basic solution by definition, and the theorem is 

valid in this instance. The simplest possible solution is non-degenerate if p = m. 

Conversely, in the event where p is less than m, a degenerate basic feasible option will be 

formed, wherein the basic variables (m - p) equal zero. 

If vectors are not linearly independent, then they must be linearly dependent i.e., there 

exists scalars pjj ,...,2,1,  of which at least one of the sj '  is non-zero such that 

0...2211  ppaaa                                            … (4) 

Suppose that at least one 0j . If the non-zero j is not positive, then we can multiply (4) 

by (-1) to get a positive j . 

Let 















j

i

pj x
Max




1
                                                      … (5) 

Then  is positive as pjx j ,...,2,10   and at least one j is positive. Dividing (4) by 

 and subtracting it from (2), we get 

baxaxax p

p

p 






































...2

2
21

1
1

 

And hence 








































 0,...,0,0,,...,, 2

2
21

1
1











 p

pxaxaxx                   … (6) 

is a solution of the systems of equations bAx   
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Again from (5), we have 

j

i

x


   for pj ...,,2,1  

Or 
j

i

x


   for pj ...,,2,1  

This implies that all the components of 
1x  are non-negative and hence 

1x is feasible 

solution of 0,  xbAx . Again, for at least one value of ,j we have, from (5), 

,0


i
jx for at least one value of j. 

As a result, we may observe that the feasible solution x1 will have one extra zero than what 

was demonstrated in (6). Therefore, there can be no more than (p−1) non-zero variables in 

the possible solution x1. As a result, we have demonstrated that it is possible to decrease 

the number of positive variables that provide an optimal solution. 














p

j

jj

p

j

j

j

p

j

jj

p

j

j

jj czcxcxccxz
11

*

11

1

' 1









, by (3)    …… (7) 

Now, if we can show that, 

0
1




p

j

jjc                                                                                … (8) 

Then 
*' zz   and this will prove that 

1x  is an optimal solution. 

We assume that equation (8) does not hold and we find a suitable real number  , such that  

0)...( 2111  ppccc   

i.e., 0)(...)()( 2211  ppccc  . 

Adding )...( 2211 pp xcxcxc   to both sides, we get 

*

2211222111 ...)(...)()( zxcxcxcxcxcxc ppppp                  … (9) 

Again, multiply (4) by  and adding to (2), we get 

baxaxax ppp  )(...)()( 222111   

So that 

]0,0,0),(),...,(),[( 2211 ppxxx                                      … (10) 

is also a solution of the system bAx   

Now, we choose  such that, 

pjx jj ,...,2,10    

or 0 j

j

j
if

x



  
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and 0 j

j

j
if

x



  

and  is unrestricted, if 0j . 

Now equation (10) becomes a feasible solution of 0,  xbAx . 

Thus choosing  is such a way that, 



























 j

j

j
j

j

j

x
Max

x
Max

jj





 00

 

We see from equation (9) that the feasible solution equation (10) gives a greater value of 

the objective function than 
*z . Which is the contradiction our assumption that 

*z is optimal 

value. Thus we can say that 

0
1




p

j

jjc   

Thus, x1 is likewise the best option. As a result, we demonstrate that the number of non-

zero variables in the given optimal solution is fewer than that of the one that was provided. 

If the additional non-zero variables' corresponding vectors are linearly independent, then 

the theorem follows because the new solution will be a fundamentally workable solution. 

We can further reduce the number of non-zero variables as previously mentioned to obtain 

a new set of optimal solutions if the new solution is once more not a fundamentally 

possible option. We can keep going until we arrive at an ideal solution that is also a 

basically feasible solution. 

4.4 SIMPLEX ALGORITHM 

Any LP problem that may be solved using a simplex algorithm always assumes the 

existence of a starting BFS. We shall talk about the LP issue of maximizing kind using the 

simplex approach here. Here's a simplified explanation of how it works: 

1. Initialization: Start with an initial feasible solution. This can be achieved by solving a set 

of linear equations or inequalities that satisfy the constraints of the problem. 

2. Iteration: The algorithm iterates through a series of steps to improve the solution. At each 

iteration, it selects a variable to enter the solution and a variable to leave the solution, 

moving towards the optimal solution. 

3. Optimality Test: At each iteration, the algorithm checks if the current solution is optimal. 

If it is, the algorithm terminates. Otherwise, it proceeds to the next step. 

4. Pivoting: If the current solution is not optimal, the algorithm performs a pivoting operation 

to improve the solution. This involves selecting a pivot element in the current tableau (a 

table representing the problem), and using it to update the tableau in a way that improves 

the objective function value. 

5. Repeat: Steps 3 and 4 are repeated until an optimal solution is found. 
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The Simplex algorithm is efficient and can handle large-scale linear programming 

problems with thousands or even millions of variables and constraints. However, it's worth 

noting that in some cases, the algorithm may take exponential time to find the optimal 

solution, although this is rare in practice. 

The following are the steps involved in computing an optimal solution: 

Step 1: If the given LPP is of minimization type, then convert the objective function to 

maximizing type. Additionally, change all m constraints to non-negative bi's (i = 1, 2, ..., 

m). Next, create an equation for each inequality constraint by adding a slack or surplus 

variable, and give that variable a zero cost coefficient in the objective function. 

Step 2: If necessary, introduce artificial variable(s) and take (-M) as the coefficient of each 

artificial variables in the objective function. 

Step 3: Obtain the initial basic feasible solution bBxB

1 , where B is the basis matrix 

(Which is here an identity matrix). 

Step 4: Calculate the net evaluation jBjBjj cxccz  . 

(i) If 0 jj cz j then 
Bx  is an optimum BFS. 

(ii) If at least once 0 jj cz . Then to improve the next solution we proceed in next step. 

Step 5: If there are more than one negative ,jj cz   then choose the most negative of them. 

Let it be kk cz   for some .kj   

(i) If all 0ika  (i = 1, 2, …., m), then there exist an unbounded solution to the given problem. 

(ii) If at least one ),...,2,1(0 miaik   then the corresponding vector ka enters the basis B. 

This column is called the key or pivot column. 

Step 6: Divide each value of 
Bx  (i.e., ib ) by the corresponding (but positive) number in 

the key column and select a row which has the ratio non-negative and minimum i.e.,  









 0; ik

ik

Bi

rk

Br a
a

x
Min

a

x
 

We refer to this rule as the minimum ratio rule. This kind of row selection is known as the 

pivot or key row, and it stands for the variable that will be eliminated from the fundamental 

solution. The key or pivot element (let's say ark) is the element that is located where the 

simplex table's key row and key column intersect. 

Step 7: Use the relation to convert all other elements in its column to zeros and the leading 

element to unity by dividing its row by the key element itself:  

rk

rj
rj

a

a
a 
^

 and ,
^

rk

Br
Br

a

x
x  njri ...,2,1;   

ik

rk

rj

ijij a
a

a
aa 

^

 and ,
^

ik

rk

Br
BiBr a

a

x
xx  rimi  ;...,2,1  
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Step 8: Now go to the step 4 and repeat the procedure until all entries in )( jj cz   are 

either positive or zero, or there is an indication of an unbounded solution.  

4.4.1 SIMPLEX TABLE 

The simplex for a standard LPP 

Maximize, cxz   

Subject to, bAx   

0x  

is given below: 

Where, ),,...,,( 21 BmBB aaaB  basis matrix 

),,...,,( 21 BmBBB xxxx  basic variables 

],...,,[ 21 BmBBB cccc   

nmijaA  )(  

],...,,[ 21 mbbbb   

),...,,( 21 ncccc   

),...,,( 21 nxxxx   

 
Table 2.1: Simplex table 

Example 2: Using simplex method solve the following LPP. 

Maximize, 321 23 xxxZ   

Subject to, 

723 321  xxx  

1242 21  xx  

10834 321  xxx  
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0,, 321 xxx  

Solution: We have given the problem of minimization. So, at first we convert the problem 

into maximization. 

So, we have Max(
1Z ) 321 23)( xxxZMin  . Now, introduced the slack variable 

54 , xx and 6x , then problem can be put in the standard form as 

Max(
1Z ) 654321 00023 xxxxxx   

Subject to,  

723 4321  xxxx  

1242 521  xxx  

10834 6321  xxxx  

0,,,,, 654321 xxxxxx  

Now, we apply the simplex algorithm (Step 2 to Step 8). The outcomes of each iteration 

are displayed in Table 2.2. Since, jcz jj  0 in the last iteration Table 2, condition of 

optimality is satisfied. The optimal solutions are 0,5,4 321  xxx  and the 

corresponding objective function is 11)( max1 Z . Hence the solution of the original 

problem is  0,5,4 321  xxx  and 11)( min1 Z  
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Table 2.2: Simplex table 

Example 3: Niki works at Job I and Job II, two part-time employment. She has a strict 

limit of 12 hours per week that she would never work. She has calculated that she requires 

two hours of preparation time for every hour she works at Job I, and one hour of 

preparation time for every hour she works at Job II. She has also decided that she cannot 

spend more than sixteen hours preparing. How many hours a week should she work at each 

job to optimize her income if she makes $40 an hour at Job I and $30 an hour at Job II? 

Solution: (Solution of this example is described in step wise procedure and also described 

many questions which can be arise on mind during solving by simplex method) We will use 

the above-mentioned algorithm to solve this problem.  

Step 1: Define the issue. Write the constraints and the goal function. 

Since the simplex method is used for problems that consist of many variables, it is not 

practical to use the variables zyx ,, etc. We use symbols 321 ,, xxx  and so on. 

1x The number of hours per week Niki will work at Job I and 

2x The number of hours per week Niki will work at Job II. 

Traditionally, Z is selected as the variable to be maximized.  

The formulation of the problem is the same as it was in the previous chapter. 

Maximize, 
21 3040 xxZ   

Subject to, 

1221  xx  

162 21  xx  

0, 21 xx  

Step 2: Convert the inequalities into equations: For every inequality, one slack variable 

is added to achieve this. Convert the equality into inequality 1221  xx . We add a non-

negative variable 
1y , and we get  

12121  yxx  

Here the variable y1 picks up the slack, and it represents the amount by which x1+x2 falls 

short of 12. In this problem, if Niki works fewer than 12 hours, say 10, then y1 is 2. Later 

when we read off the final solution from the simplex table, the values of the slack variables 

will identify the unused amounts. 

We rewrite the objective function Z = 40x1+30x2 = 401+302 as −40x1−30x2+Z = 0 

Subject to the constraints: 03040 21  Zxx  

12121  yxx  

162 221  yxx  

0:0 21  xx  
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Step 3: Construction of initial table of simplex method: Every inequality constraint is 

displayed in a separate row. (In the simplex tableau, the non-negativity constraints are not 

represented as rows.) Assign the bottom row to the objective function. 

After the inequalities have been transformed into equations, we can use the following 

augmented matrix representation of the issue to create the initial simplex tableau. 

 

 
The left and right sides of the equations are divided in this instance by a vertical line. The 

goal function and constraints are divided by the horizontal line. Column C is the 

representation of the right side of the equation.  

 

It is important for the reader to note that the final four columns of this matrix resemble the 

final matrix obtained by solving a system of equations. If we select x1 = 0 and x2 = 0 at 

random, we obtain 

 
Which reads 

y1=0, y2=16, Z = 0 

The basic solution related to the tableau is the result of solving for the remaining variables 

after randomly allocating values to some of the variables. Thus, the basic solution for the 

original simplex tableau is the one mentioned above. As indicated in the table below, we 

can identify the fundamental solution variable to the right of the final column. 

 
Step 4: The pivot column is indicated by the lowest row's most negative entry:  

Since the bottom row's most negative entry is -40, column 1 is recognized. 
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Question: Why do we select the lowest row entry that is the most negative? 

Answer: The coefficient whose entry will raise the value of the objective function the 

fastest is the greatest coefficient in the objective function, and it is represented by the most 

negative entry in the bottom row.  

 

The simplex approach starts at a corner where all of the primary variables, variables with 

symbols like x1, x2, x3, etc. have zero values. Next, it advances from one corner point to the 

next, always raising the goal function's value. Increasing the value of x1 will make more 

sense in the case of the objective function Z = 40x1+30x2 than x2 will. The number of hours 

a week that Niki works at Job I is represented by the variable x1. The variable x1 will raise 

the goal function by $40 for every unit increment in the variable x1, as Job I pays $40 per 

hour whereas Job II only pays $30. 

Step 5: Do the quotient calculations. The row is identified by the least quotient. The 

pivot element is the one that is found at the intersection of the row found in this step 

and the column found in step 4. 

We divide the items in the far right column by the entries in column 1, omitting the entry in 

the bottom row, in accordance with the algorithm to find the quotient.  

 
Of the two quotients, 12 and 8, 8 is the smallest. Row 2 is thus identified. The highlighted 

entry number two is located at the junction of row 2 and column 1. This is the key 

component for us. 

Question: Why do we look for quotients, and how does a row become identified by its 

smallest quotient? 

Answer: By adding the variable x1, we want to raise the value of the objective function 

when we select the entry in the bottom row that is the most negative. However, we are 

unable to select a value for x1. Can we allow for x1=100? Absolutely not! This is due to 
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Niki's insistence on never working more than 12 hours at both jobs put together: x1+x2 ≤ 

12. Can we allow for x1=12? Once more, the answer is no, as the time required to prepare 

for task I is twice that of the actual task. Niki can work no more than 16 ÷ 2 = 8 hours since 

she never wants to spend more than 16 hours preparing. 

You now understand why it is necessary to compute the quotients; doing so ensures that we 

do not go against the limitations when identifying the pivot element. 

Question: Why is the pivot element identified? 

Answer: The simplex approach, as previously discussed, starts at one corner point and 

advances to the next, always increasing the value of the objective function. By altering the 

number of units of the variables, the objective function's value is increased. One variable's 

number of units may be increased while the units of another are subtracted. We can 

accomplish just that by pivoting.  

The variable that is being added units is referred to as the entering variable, while the 

variable that is being replaced units are referred to as the departing variable. The highest 

negative item in the bottom row of the above table indicates that x1 is the entering variable. 

The lowest of all quotients was used to identify the departure variable, y2. 

Step 6: Perform pivoting to make all other entries in this column zero 

To get the row echelon form of an augmented matrix, we pivot the matrix. Getting a 1 at 

the pivot element's location and then setting all other values in that column to zeros is the 

process of pivoting. It is now our task to divide the entire second row by two in order to 

turn our pivot element into a 1. The outcome is as follows. 

 
We add row 1 to the second row after multiplying it by -1 to get a zero in the entry above 

the pivot element. We obtain 

 
We multiply the second row by 40 and add it to the last row in order to get a zero in the 

element below the pivot. 
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We now ascertain the fundamental solution linked to this tableau. Upon selecting x2 = 0 

and y2 = 0 at random, we arrive at x1 = 8, y1 = 4, and z = 320. The following matrix states 

the same thing if we write the augmented matrix, whose left side is a matrix with one 

column having a 1 and all other entries zeros. 

 
The answer linked to this matrix can be restated as follows: z = 320, y1 = 4, y2 = 0, x1 = 8, 

and x2 = 0. At this point in the game, Niki's profit Z is $320 if she works 8 hours at Job I 

and 0 hours at Job II.  

Step 7: We are done when the bottom row contains no more negative entries; if not, 

we go back to step 4 and repeat the process. 

We must start over at step 4 because there is still a negative entry, -10, in the bottom row. 

Instead of going over each step in detail again, this time we will find the column and row 

that contain the pivot element and highlight it. This is the outcome. 

 
By multiplying row 1 by 2, we create the pivot element 1, and we obtain 

 
We are done because there are no more negative entries in the bottom row. 

Question: When there are no negative entries in the bottom row, why are we done? 

Answer: The bottom row has the solution. The equation and the bottom row match. 

400102000 2121  Zyyxx  or 

21 1020400 yyZ   

The maximum number Z can ever reach is 400 because all variables are non-negative, and 

that can only occur when both y1 and y2 are 0. 

Step 8: Now that we have determined the fundamental solution linked to the final simplex 

tableau, we read off our solutions. Once more, we examine the columns containing a 1 and 
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all other entries are zeros. We choose y1 = 0 and y2 = 0 at random because the columns with 

the labels y1 and y2 are not such columns, and we obtain 

 
The values of the matrix are z = 400, x1 = 4, and x2 = 8.  

According to the final solution, Niki will maximize her income to $400 if she works 4 

hours at Job I and 8 hours at Job II. She would have used up all of the working and 

preparation time because both of the slack variables are 0, meaning that none will be left. 

Example 4: Using Simplex method solve the following LP problem 

Maximize, 
21 104 xxZ   

Subject to, 

502 21  xx  

10052 21  xx  

9032 21  xx  

0, 21 xx  

Solution Step 1: Introducing the slack variable. 

Maximize, 32121 000104 sssxxZ   

Subject to, 

502 121  sxx  

10052 221  sxx  

9032 321  sxx  

0,,, 2121 ssxx  

So, the given L.P.P. converted to the following system of linear equations. 

























































90

100

50

10032

01052

00112

3

2

1

2

1

s

s

s

x

x

 

Step 2: So, the basic feasible solution is given by bBxB

1  

i.e., 





































































90

100

50

90

100

50

100

010

001

3

2

1

s

s

s
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Here, 1

100

010

001


















 BB  and 



















90

100

50

b  

Step 3: Now compute jy and )( jj cz   as follows: 



















































 

2

2

2

2

2

2

100

010

001

1

1

1 aBy  



















































 

3

5

1

3

5

1

100

010

001

2

1

2 aBy  

22

1

411

1

3 , eeByeeBy  
 and 33

1

5 eeBy  
 

44

2

2

2

)0,0,0(1111 

















 cyccz B  

1010

3

5

1

)0,0,0(2222 

















 cyccz B  

00

0

0

1

)0,0,0(3333 




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







 cyccz B  

00

0

1

0

)0,0,0(4444 

















 cyccz B  

00

1

0

0

)0,0,0(5555 

















 cyccz B  

Step 4: The simplex table below now displays the initial basic feasible answer. 

  cj 4 10 0 0 0 

cB yB xB y1 y2 y3 y4 y5 

0 y3 50 2 1 1 0 0 

0 y4 100 2 5 0 1 0 

0 y5 90 2 3 0 0 1 

 zj  0 0 0 0 0 
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 zj- cj z 

(=0) 

-4 -10 0 0 0 

It is clear from the tableau that two of the zj-cj are negative. We select -10, which is the 

most negative of these. The corresponding column vector (y2) enters the basis. 

Step 5: Given that y2's entries are all positive. We compute 








 0; jr

ir

Bi y
y

x
Min  i.e., 

5

100

3

90
,

5

100
,

1

50










Min . This occur for the element y22 = (=5) i.e. (element of second 

row and second column). As a result, the column element becomes the leading element for 

the first iteration and the vector y4 departs from the basis yB.  

Step 6: Utilizing the following transformation, convert all of y2's elements to zeros and the 

leading element, y22, to unity:  

2&4,3,2,1;2

22

2
^

 iiy
y

y
yy i

j

ijij  

5,4,3,2,1,0;
22

2
^

2  j
y

y
y

j

j  

.20
5

100
;

5

2

22

20
20

22

21
^

21 etcor
y

y
y

y

y
y   

301
5

100
5012

22

20
10

^

10  y
y

y
yy  

303
5

100
9032

22

20
30

^

30  y
y

y
yy  

5

4
3

5

2
232

22

21
31

^

31  y
y

y
yy  

5

8
1

5

2
212

22

21
11

^

11  y
y

y
yy  

5

1
1

5

1
012

22

24
14

^

14  y
y

y
yy , and so on. 

Step 7: By using above mentioned calculation, the simplex table is given below: 

  cj 4 10 0 0 0 

cB yB xB y1 y2 y3 y4 y5 

0 y3 30 8/5 0 1 -1/5 0 

10 y2 20 2/5 1 0 1/5 0 

0 y5 30 4/5 0 0 -3/5 1 

 zj  4 10 0 2 0 
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 zj- 

cj 

z 

(=200) 

0 0 0 2 0 

With an increasing value of z, the following simplex table produces a new fundamental 

feasible solution. Moreover, since zj- cj > 0, there is no chance for z to increase any further. 

Thus, using only the most basic variables
12 , sx  and 3s we have arrived at our ideal answer. 

So, the optimal/maximal basic feasible solution of given LPP is 20,0 21  xx  with 

maximum 200z . 

Example 5: Using Simplex method solve the following LP problem 

Minimize, 532 23 xxxZ   

Subject to, 

723 532  xxx  

1242 32  xx  

10834 532  xxx  

0,, 532 xxx  

Solution Step 1: Introducing the slack variable. 

Maximize, 321532

* 000)23( sssxxxZ   

Subject to, 

723 1532  sxxx  

12.042 2532  sxxx  

10834 3532  sxxx  

0,,,,, 321532 sssxxx  

So, the given L.P.P. converted to the following system of linear equations. 








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
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






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
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x

x

  or bAx   

So, the obvious initial basic feasible solution is bBxB

1  where 3IB  , and  

Bx basic variable corresponding to columns of basis matrix )( IB  . 

Step 2: So, the basic feasible solution is given by bBxB

1  
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i.e., 



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Here, 1
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Now, the simplex table is: 

  cj -1 3 -2 0 0 0 

cB yB xB y1 y2 y3 y4 y5 y6 

0 y4 7 3 -1 2 1 0 0 

0 y5 12 -2 4 0 0 1 0 

0 y6 10 -4 3 8 0 0 1 

 z 0 1 -3 2 0 0 0 

 

Since there is at least one negative zj-cj, or z2-c2, the existing basic feasible option is not 

optimal. We choose the column corresponding to z2-c2, i.e., column vector y2 enters the 

basis yB (Since at least one yi 2>0). Further, since minimum 








 0; 2

2

i

i

Bi y
y

x
Min  is )3(

4

12
 , 

current basis vector y5 leaves the basis. y22 (= 4) is thus identified as the leading element. 

We now change all other elements of the incoming column vector y2 to zero and the 

leading element to unity using E-Row operations. As seen in the following simplex table, 

we obtain the improved basic feasible solution.  

  cj -1 3 -2 0 0 0 

cB yB xB y1 y2 y3 y4 y5 y6 

0 y4 10 5/2 0 2 1 1/4 0 

3 y2 3 -

1/2 

1 0 0 1/4 0 

0 y6 1 -

5/2 

0 8 0 -

3/4 

1 

 z 9 -

1/2 

0 2 0 3/4 0 

 

Over that z1-c1 is negative and thus the current basic feasible solution is not optimum. The 

column corresponding to z1-c1 enters the next basis yB (since yi 1>0). Further, since only 
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y11>0 both y12<0 and y13<0); current basis vector y4 leave the basis. This gives y1 1 (= 5/2) 

as the leading element. We change the leading element to unity and the other values in its 

column y1 to zero using E-row operations. The next simplex table displays the improved 

basic feasible solution. 

cB yB xB y1 y2 y3 y4 y5 y6 

-1 y1 4 1 0 4/5 2/5 1/10 0 

3 y2 5 0 1 2/5 1/5 3/10 10 

0 y6 11 0 0 10 2/5 -1/2 1 

 z 11 0 0 12/5 1/5 8/10 0 

 

In this table, all zi-ci 0, an optimal BFS has been attained. So, the optimal solution of the 

given L.P.P. is, 

Minimum Z = - Maximum 11* Z  with 5,4 32  xx  and 05 x . 

Check your progress 

Problem 1: Using Simplex method solve the following LP problem 

Maximize, 321 2107 xxxZ   

Subject to, 

73614 4321  xxxx  

5616 321  xxx  

03 321  xxx  

0,,, 4321 xxxx  

Answer: Unbounded Solution 

Problem 2: Using Simplex method solve the following LP problem 

Maximize, 
21 23 xxZ   

Subject to, 

421  xx  

221  xx  

03 321  xxx  

0, 21 xx  

Answer: 11,1,3 21  Zxx  

4.5 SUMMARY 

The simplex method is a powerful algorithm used to solve linear programming problems 

by iteratively improving upon a feasible solution until an optimal solution is reached. The 

overall summarization of this units are as follows:  
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 The necessary and sufficient condition for the existence and non-degeneracy of all the 

basic solutions of Ax = b is that every set of m columns of the augmented matrix [A, b] is 

linearly independent. 

 The necessary and sufficient condition for the existence and non-degeneracy of all possible 

basic feasible solutions of Ax = b, x ≥ 0 is the linear independent of every set of m columns 

of the augmented matrix [A, b], where A is the m × n coefficient matrix. 

 If a linear programming problem has an optimal solution, then the optimal solution will 

coincide with at least one basic feasible solutions of the problem. 

After completion of this Unit learners will be able to solve the given LPP by using the 

simplex method more effectively. 

4.6  GLOSSARY 

 Slack and Surplus variable 

 Simplex Method 
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4.9  TERMINAL QUESTION 

Long Answer Type Question: 

1. Using Simplex method solve the following LP problem 

Maximize, 321 523 xxxZ   

Subject to, 

https://www.openai.com/chatgpt
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4302 321  xxx ; 46023 31  xx ; 4204 31  xx  

0,, 321 xxx  

2. Using Simplex method solve the following LP problem 

Maximize, 4321 42 xxxxZ   

Subject to, 

43 421  xxx ; 32 21  xx ; 34 432  xxx  

0,,, 4321 xxxx  

3. Using Simplex method solve the following LP problem 

Maximize, 4321 6434 xxxxZ   

Subject to, 

80422 4321  xxxx ; 6022 431  xxx ; 8033 4321  xxxx  

0,,, 4321 xxxx  

4. Using Simplex method solve the following LP problem 

Maximize, 4321 11954 xxxxZ   

Subject to, 

154321  xxxx ; 1202357 4331  xxxx ; 100151053 4321  xxxx  

0,,, 4321 xxxx . 

5. Using Simplex method solve the following LP problem 

Maximize, 4321 29615 xxxxZ   

Subject to, 

106.052 4321  xxxx ; 1225.033 4321  xxxx ; 357 41  xx  

0,,, 4321 xxxx . 

6. Using Simplex method solve the following LP problem 

Maximize, 4321 29615 xxxxZ   

Subject to, 

106.052 4321  xxxx ; 1225.033 4321  xxxx ; 357 41  xx  

0,,, 4321 xxxx . 

7. Using Simplex method solve the following LP problem 

Maximize, 4321 534 xxxxZ   

Subject to, 

20454 4321  xxxx ; 10423 4321  xxxx ; 202338 4321  xxxx  

0,,, 4321 xxxx  

has an unbounded solution. 

Short answer type question: 
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1. Using Simplex method solve the following LP problem 

Maximize, 
21 23 xxZ   

Subject to, 

621  xx ; 62 21  xx ; 

0, 21 xx  

2. Using Simplex method solve the following LP problem 

Maximize, 
21 32 xxZ   

Subject to, 

421  xx ; 121  xx ; 52 21  xx  

0, 21 xx  

3. Using Simplex method solve the following LP problem 

Maximize, 
21 35 xxZ   

Subject to, 

221  xx ; 1025 21  xx ; 1283 21  xx  

0, 21 xx  

4. Using Simplex method solve the following LP problem 

Maximize, 
21 35 xxZ   

Subject to, 

41 x ; 32 x ; 182 21  xx ; 921  xx  

0, 21 xx  

5. Using Simplex method solve the following LP problem 

Maximize, 321 32 xxxZ   

Subject to, 

1032 321  xxx ; 521  xx  

0, 21 xx  

Answer: 

Fill in the blanks: 

1: A variable which is added to the LHS of a “≤” type constraint to convert the constraint into 

an equality is called ……………………. 

2: A variable which is subtracted from the LHS of a “≥” type constraint to convert the 

constraint into an equality is called ……………… 

3: The necessary and sufficient condition for the existence and non-degeneracy of all the 

basic solutions of Ax = b is that every set of m columns of the augmented matrix [A, b] is 

…….……….. 

 

4.10  ANSWERS 
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Answer of long answer type question  

1: 1350)(;230,100,0 321  ZMaximumxxx  

2: 2/13)(;0,2/1,1,1 4321  ZMaximumxxxx  

3: 13/2280)(;13/180,13/20,0,13/280 4321  ZMaximumxxxx  

4: 7/695)(;0,7/55,0,7/50 4321  ZMaximumxxxx  

5: Unbounded solution. 

Answer of short answer type question 

1: 12)(,6,0 21  ZMaximumxx  

2: 8)(;2104 2421  ZMaximumxandxorxandx  

3: 10,0,2 21  ZMaxxx  

4: 29,3,4 21  ZMaxxx  

5: 10;67.1,2,1 321  ZMaxxxx  

25;3,0,1 321  ZMaxxxx  

Answer of fill in the blank question 

1:  Slack Variable     2:  Surplus variable   

3:  Linearly independent     
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UNIT-5: ARTIFICIAL VARIABLE, TWO-PHASE 

AND BIG-M METHOD  

CONTENTS: 

5.1  Introduction 

5.2  Objectives 

5.3  Big-M method 

 5.3.1 Algorithm for Big-M method 

5.4  Two Phase Method 

5.5 Summary 

5.6  Glossary  

5.7   References 

5.8 Suggested Readings 

5.9  Terminal Questions 

5.10 Answers 

5.1 INTRODUCTION 

The Big-M method is a technique used in linear programming to solve problems with 

constraints that cannot be directly incorporated into the standard form. In linear 

programming, problems are typically formulated to maximize or minimize a linear 

objective function subject to linear equality and inequality constraints. 

The Big-M method involves introducing a large positive constant (M) into the objective 

function for each constraint that needs to be converted from inequality to equality form. 

This constant ensures that the original problem's solution remains feasible even after 

converting the inequality constraints into equality constraints. 
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Since, both methods are used for solving linear programming problems, the simplex 

method focuses on iteratively improving a feasible solution to reach optimality, while the 

Big M method specifically addresses inequality constraints by introducing artificial 

variables and a large penalty constant to guide the optimization process. 

Generally, solution of linear programming problem having artificial variables are evaluated 

by these two methods: 

1. Big-M Method or Method of Penalties. 

2. Two-Phase Method. 

5.2 OBJECTIVE 

After reading this unit learners will be able to  

 Understand the basic concept of Big-M method or Method of Penalty 

 Implement the Big-M method for the solution of LPP.  

5.3 Big-M METHOD 

An artificial variable is a temporary, fictitious variable added to equality (=) or greater-

than-or-equal-to (≥) constraints in a Linear Programming problem. Its purpose is to help 

find an initial basic feasible solution, which is necessary for methods like the Simplex 

method. These variables are assigned a large penalty in the objective function so they are 

driven out of the final solution, as they have no physical meaning.  

LPP in which constraints may also have >, and = signs after ensuring that all bi ≥ 0 are 

considered in this section. In such cases basis matrix cannot be obtained as an identify 

matrix in the stm1ing simplex table, therefore we introduce a new type of variable called 

the artificial variable. These variables are fictitious and cannot have any physical meaning. 

The artificial variable technique is a device to get the starting basic feasible solution, so 

that simplex procedure may be adopted as usual until the optimal solution is obtained. To 

solve such LPP there are two methods. 

(i) The Big M Method or Method of Penalties.  

(ii)       The Two-phase Simplex Method. 

 

 



LINEAR PROGRAMMING AND GAME THEORY                                               MT(N) - 223 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 85 

 

A non-negative variable is added to the left side of each equation in the usual form of an 

LPP when the choice variables, slack variables, and surplus variables are unable to pay for 

the original basic variables. We refer to this variable as an artificial variable.  

 

One technique for solving LPP using artificial variables is the Big M approach. This 

strategy assigns a very big negative price (−M) (where M is positive) to every fake variable 

in the maximization type objective function. The issue can be resolved using the standard 

simplex approach once the artificial variable or variables have been introduced. 

Nevertheless, the following inferences are made from the final table when solving in 

simplex. 

1: Providing the optimality requirement is met and there are no artificial variables left in the 

basis, the current solution is an optimal BFS. 

 

2: If the optimality requirement is met and at least one artificial variable occurs in the basis at 

zero level, the present solution is an optimal degenerate BFS. 

3: If at least one artificial variable exists in the basis at a positive level and the optimality 

criterion is met, then the issue has no feasible solution. 

5.3.1 Algorithm for Big-M Method 

The steps involved in applying the Big-M method generally include: 

1. Convert inequality constraints to equality constraints by introducing slack    

               variables. 

2. Introduce artificial variables for any inequality constraints that have a "> =" or   

               "=" sign, but not for those with "< ,=". 

3. Introduce a term in the objective function for each artificial variable multiplied by   

              a large positive constant (M). This term penalizes the objective function for the  

              presence of artificial variables. 

4. Solve the modified linear programming problem using standard techniques, such  

               as the simplex method. 

5. If any artificial variables remain positive in the optimal solution, it indicates that  

               the original problem is infeasible. 

6. If the problem is feasible, eliminate the artificial variables from the solution to  

               obtain the optimal solution to the original problem. 

The Big-M method is a widely used approach in linear programming, especially in 

introductory courses and textbooks, as it provides a systematic way to handle constraints of 

different types. However, care must be taken in choosing the value of M to avoid 

numerical instability or other computational issues. 
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Example 1: Using method of penalty (or Big M) solve the following LP problem 

Maximize, 
21 46 xxZ   

Subject to, 

3032 21  xx ; 2423 21  xx ; 321  xx  

0, 21 xx  

Is the solution unique? If it is not, then find two different solutions. 

Solution: Introducing the slack variable. 

Maximize, 32121 00046 sssxxZ   

Subject to, 

3032 121  sxx  

2423 221  sxx  

33 321  sxx  

0,,,, 32121 sssxx  

Here, we can easily see that there is no initial basic feasible solution. So, we introduce an 

artificial variable 01 A in the third constraints. Then the initial basic feasible solution are, 

24,30 21  ss  and 31 A . 

Now, corresponding to the basic variables 
21, ss  and 

1A , the matrix ABY 1 (where 

IB  , the identity matrix) and the net evaluation )6,5,4,3,2,1(  jcz jj  are computed, 

Where ),0,0( McB  . 

So, the table will be  

  cj 6 4 0 0 0 -M 

cB yB xB y1 y2 y3 y4 y5 y6 

0 y3 30 2 3 1 0 0 0 

0 y4 24 3 2 0 1 0 0 

-M y6 3 1 1 0 0 -1 1 

  z (= -3M) -M-6 -M-4 0 0 M 0 

In the above table we can easily see that 
11 cz   and 

22 cz   are negative. Among these two 

11 cz   has most negative value (Since M is very large), Therefore, y1 enters the basis. 

Since, 
1

3
0; 1

1










i

i

Bi y
y

x
Min . This indicates y6 leaves the basis and y31 becomes the 
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leading element. Since corresponding y6, 1A  is the artificial variable. So, we drop it from 

the objective function.  

  cj 6 4 0 0 0 

cB yB xB y1 y2 y3 y4 y5 

0 y3 24 0 1 1 0 2 

0 y4 15 0 -1 0 1 3 

6 y1 3 1 1 0 0 -1 

  z (= 18) 0 2 0 0 -6 

Since ,055  cz 5y  enters the basis, Further,
3

15
0; 5

5










i

i

Bi y
y

x
Min . 

4y  leaves the basis and 25y becomes the leading element. 

  cj 6 4 0 0 0 

cB yB xB y1 y2 y3 y4 y5 

0 y3 14 0 5/3 1 -2/3 0 

0 y5 5 0 -1/3 0 1/3 1 

6 y1 8 1 2/3 0 1/3 1 

  z (= 48) 0 0 0 2 0 

Since all .0 jj cz Thus, the optimal BFS of the given LPP is, 

0,8 21  xx  with max. Since 48Z . 

Example 2: Using method of penalty (or Big M) solve the following LP problem 

Maximize, 4321 32 xxxxZ   

Subject to, 
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1532 321  xxx ; 2052 321  xxx ; 102 4321  xxxx  

0,,, 4321 xxxx  

Solution: We can see from the problem's requirements that the starting B does not have the 

necessary identity column to make an identity matrix. So, we introduce artificial variables 

01 A  and 02 A in the first and second constraints respectively. An initial basic feasible 

solution, then, is  

20,15 21  AA  and 104 x . 

Now corresponding to basic variables, 21, AA and 
4x , the basis matrix ABY 1  and the net 

evaluations )6,5,3,2,1(  jcz jj  are computed, where )1(  MMcB
. So the simplex is, 

  cj 6 4 0 0 0 -M 

cB yB xB y1 y2 y3 y4 y5 y6 

-M y6 15 1 2 3 0 0 1 

-M y5 20 2 1 5 0 1 0 

-1 y4 10 1 2 1 1 0 0 

 z -35M-10 -3M-2 -3M-4 -8M-4 0 0 0 

Since the most negative )( 33 cz   corresponds to y3, it enters the basis. Further, 

,
5

20
0; 3

3










i

i

Bi y
y

x
Min the current basis vector y5 leaves the basis and y23 becomes the leading 

element. As y5 corresponds to an artificial variable 2A , we drop y5 column from subsequent 

simplex tables. 

cB yB xB y1 y2 y3 y4 y6 

-M y6 3 -1/5 7/5 0 0 1 

3 y3 4 2/5 1/5 1 0 0 

-1 y4 6 3/5 9/5 0 1 0 
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 z -3M+6 

5

2

5


M
 

5

16

5

7


 M
 

0 0 0 

Clearly, )( 22 cz   is the only negative and hence y5 enters the basis. Further 








 0; 2

2

i

i

Bi y
y

x
Min  

correspond to y6. So, y6 leaves the basis and y12 becomes the leading element. Again, y6 

corresponds to the artificial variable 1A and therefore we drop the artificial column y6 in the 

subsequent tables. 

cB yB xB y1 y2 y3 y4 

2 y2 15/7 -1/7 1 0 0 

3 y3 25/7 3/7 0 1 0 

-1 y4 15/7 6/7 0 0 1 

 z 90/7 7/6  0  0 0 

Clearly, 022  cz  and, therefore, y1 enters the basis. Further, 








 0; 1

1

i

i

Bi y
y

x
Min  corresponds to 

y4. So, y4 leaves the basis and y31 becomes the leading element. 

cB yB xB y1 y2 y3 y4 

2 y2 15/6 0 1 0 1/6 

3 y3 15/6 0 0 1 -3/6 

1 y1 15/6 1 0 0 7/6 

 z 15 0 0  0 1 

Since, all jj cz  are positive, therefore, an optimum basic feasible solution has been attained. 

Hence, for the given LPP the optimal solution is, 

Maximize, 15z ; 2/5321  xxx  and 04 x  
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Example 3: Using method of penalty (or Big M) solve the following LP problem 

Minimize, 
21 32 xxZ   

Subject to, 

1521  xx ; 62 21  xx  

0, 21 xx  

Proof: Introducing artificial and surplus variable, the given problem written in the standard form 

as, 

Maximize )( 'Z Minimize  )( Z  654321 0032 MxMxxxxx   

Subject to, 

55321  xxxx ; 62 6421  xxxx ; 0,....,,, 6321 xxxx
 

   jc  -2 -3 0 0 -M -M Mini Ratio 

Bc  B 
Bx  b 

1a  
2a  

3a  4a  
5a  6a   

-M 
5a  5x  5 1 1 -1 0 1 0 5/1=5 

-M 
6a  6x  6 1 2 0 -1 0 1 6/2=3 

jj cz   -2M+2 -3M+3 M M 0 0  

-M 
5a  5x  2 1/2 0 -1 1/2 1   2/(1/2)=4 

-3 
2a  

2x  3 1/2 1 0 -1/2 0   3/(1/2)=6 

jj cz   -(M+1)/2 0 M (-M+3)/2 0    
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-2 
1a  

1x  4 1 0 -2 1      

-3 
2a  

2x  1 0 1 1 -1      

jj cz   0 0 1 1      

From the last iteration in above mentioned table we see that 0 jj cz for all j. Hence, the 

optimality is satisfied. So, the optimal solution of given LPP is 1,4 21  xx  and the 

corresponding 11min Z  

 

5.4 TWO PHASE METHOD 

The Two-Phase Method is an algorithm used to solve linear programming problems, particularly 

those that are not initially in standard form. It's a systematic approach to convert such problems 

into standard form and then solve them using the simplex method. Here's a detailed explanation 

of the Two-Phase Method: 

1. Problem Setup: 

 Begin with a linear programming problem that may not be expressed in the standard 

form, i.e., it may contain inequalities, non-negativity constraints, or objective functions 

that are not in the form of maximization or minimization. 

2. Phase I: 

 Objective: The objective of Phase I is to convert the original problem into an equivalent 

problem that can be solved using the simplex method. This involves introducing artificial 

variables to transform the problem into standard form. 

 Artificial Variables: Artificial variables are introduced for each inequality constraint in 

the problem. These artificial variables help create an initial basic feasible solution. The 

objective function in Phase I aims to minimize the sum of these artificial variables. 

 Initial Solution: The simplex method is then applied to this modified problem to find a 

basic feasible solution. 
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 Feasibility Check: If the minimum value of the artificial variables is zero, indicating that 

the original problem is feasible, the method proceeds to Phase II. If the minimum value is 

positive, it suggests that the original problem is infeasible. 

3. Phase II: 

 Objective: In Phase II, the artificial variables introduced in Phase I are eliminated, and 

the original objective function is reintroduced. 

 Optimization: The simplex method is applied to optimize the original objective function 

while maintaining feasibility. The basic feasible solution obtained from Phase I serves as 

the starting point for Phase II. 

 Optimal Solution: The optimal solution found in Phase II is the solution to the original 

linear programming problem. 

4. Conclusion: 

 Once Phase II is completed, the optimal solution provides the values of decision variables 

that maximize or minimize the objective function, subject to the given constraints. 

 The Two-Phase Method ensures that linear programming problems can be solved even if 

they are not initially presented in standard form, providing a systematic approach to 

conversion and solution. 

5.4.1 PROBLEM SOLVBING OF TWO PHASE METHOD 

To obtain a basic feasible solution to the original L.P.P., the first part of this method involves 

minimizing the sum of the artificial variable, subject to the stated constraints (known as the 

auxiliary L.P.P.). Beginning with the fundamentally feasible solution found at the conclusion of 

phase 1, the second step optimizes the original objective function. 

  The algorithm's iterative process can be summed up as follows:  

Step 1: Put the provided L.P.P. into standard form and see if there is a feasible, basic solution 

already in place.  

(a) Proceed to phase 2 if a fundamental, feasible solution is available at the present time.  

(b) Proceed to the following step if a ready, basic, and feasible solution is not available.  

Phase I 

Step 2: Add the artificial variable on the left side of every equation in which the initial basic 

variables are missing. Construct an auxiliary objective function with the goal of minimizing the 

overall sum of artificial variables. 
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Thus, the new objective is to 

Minimize nAAAz  ...21  

i.e., Maximize nAAAz  ...21

*
 

where, ),...,2,1( miAi   are the non-negative artificial variables. 

Step 3: Use the specially created L.P.P. and the simplex method. The least possible interaction 

could result in either of the following three cases: 

a. 0)( * ZMax and atleast one artificial vector appear in the optimum basis at a positive 

level. In this instance, there is no feasible solution for the provided problem. 

b. 0)( * ZMax and at least one artificial vector appears in the optimum basis at a zero level. 

In this case proceed to phase-II. 

c. 0)( * ZMax  and no one artificial vector appears in the optimum basis. In this case also 

proceed to phase-II. 

Phase II 

Step 4: At this point, give each artificial variable that shows up in the basis at the zero level a 

zero cost, and assign the actual cost to each variable in the objective function. Now, with the 

specified restrictions, the simplex approach maximizes this new objective function. The modified 

simplex table that was created at the end of phase I is subjected to the simplex method until an 

optimal basic feasible solution is reached. At the conclusion of phase, I, the artificial variables 

that are not basic are eliminated.  

Note: It is possible to completely remove artificial variables from the simplex table that do not 

occur in the fundamental solution.  

Example 1: Using two-phase method solve the following LP problem 

Maximize, 
21 35 xxZ   

Subject to, 

12 21  xx ; 64 21  xx ; 

0, 21 xx  
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Solution: Introducing the slack variable 01 s , a surplus variables 02 s  and an artificial 

variables 01 A  in the constraints of the linear programming problem. 

So, the initial basic feasible solution is; 11 s  and 61 A with 
2l as the basis matrix. 

Phase 1: The objective function of the auxiliary L.P.P. is to maximize 1

* AZ  . Using now 

simplex algorithm to the auxiliary linear programming problem, the simplex table is, 

Initial iteration: Dropping of 3y and introducing of 
2y .  

  cj 0 0 0 0 -1 

cB yB xB y1 y2 y3 y4 y5 

0 y3 1 2 1 1 0 0 

-1 y5 6 1 4 0 -1 1 

 zj - -1 -4 0 1 -1 

 zj - cj z (= -6) -1 -4 0 1 0 

Since 
11 cz   and 

22 cz   are negative, we choose the most negative of these, viz., -4. The 

corresponding column vector
2y  enters the basis, Therefore, y1 enters the basis. Further, since, 

10; 2

2










i

i

Bi y
y

x
Min , which occurs for element y12, y3 leaves the basis. 

Final iteration: Optimal solution. 

cB yB xB y1 y2 y3 y4 y5 

0 y2 1 2 1 1 0 0 

-1 y5 2 -7 0 -4 -1 1 

  z (= -2) 7 0 4 1 0 
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Since all 0)(  jj cz , an optimum basic feasible solution to the auxiliary L.P.P. is obtained . 

But max. 0* z  and an artificial variables is in the basis at a positive level. Thus, there isn't a 

feasible option in the original L.P.P. 

Example 2: Using two-phase method solve the following LP problem 

Maximize, 321 345 xxxZ   

Subject to the constraints, 

761056;2062 321321  xxxxxx ; 50638 321  xxx ; 

0,, 321 xxx  

Solution: Introducing the slack variables 01 s  and 02 s , the given L.P.P. in the standard 

form is:  

Maximize, 321 345 xxxZ  , subject to the constraints: 

761056;2062 1321321  sxxxxxx ; 50638 2321  sxxx ; 

0,,,, 21321 ssxxx  

In the matrix form the set of constraints is, 





























































50

76

20

10638

011056

00612

2

1

3

2

1

s

s

x

x

x

 

Given that there are no identity matrix columns that can be used as the initial basis matrix. To 

complete the identity basis matrix, we add the necessary identity column or columns. Put in the 

identity column [1 0 0] as the new column y6, in other words. Clearly, this amounts to the adding 

an artificial variable 01 A  in the 1st constraints.  

Now, an initial basic feasible solution is 201 A , 761 s  and 502 s . 

Phase 1: The objective function of the auxiliary L.P.P. is 1

* Az  . The iterative simplex tables 

for the auxiliary L.P.P. are; 
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Initial iteration: Introduce
1y and drop 5y . 

  cj 0 0 0 0 0 -1 

cB yB xB y1 y2 y3 y4 y5 y6 

-1 y6 20 2 1 -6 0 0 1 

0 y5 76 6 5 10 1 0 0 

0 y4 50 8 -3 6 0 1 0 

  z* (= -20) -2 -1 6 0 0 0 

Since, 
11 cz   is negative, the column vector y1 enters the basis. Further, since 

8

50
0; 1

1










i

i

Bi y
y

x
Min ; y5 leaves the basis. The element y31 (=8) becomes the leading element. 

First iteration: Introduce
2y and drop 6y . 

cB yB xB y1 y2 y3 y4 y5 y6 

-1 y6 15/2 0 7/4 -15/2 0 -1/4 1 

0 y4 77/2 0 29/4 11/2 1 -3/4 0 

0 y1 25/4 1 -3/8 3/4 0 1/8 0 

  z* (= -15/2) 0 -7/4 15/2 0 1/4 0 

Here, 
22 cz   is the only negative jj cz  . This indicates that 

2y  enters the basis. Also 

)4/7(

)2/15(
0; 2

2

2 








i

i

B y
y

x
Min  suggested that 6y  must leave the basis, thereby )4/7(12 y  

becomes the leading element.  

Final iteration: Optimum solution. 

cB yB xB y1 y2 y3 y4 y5 y6 
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0 y2 30/7 0 1 -30/7 0 -1/7 4/7 

0 y4 52/7 0 0 256/7 1 2/7 -29/7 

0 y1 55/7 1 0 -6/7 0 1/14 3/14 

  z* (= 0) 0 0 0 0 0 1 

Since all 0 jj cz  an optimum solution to the auxiliary L.P.P has been reached. Moreover, the 

table makes it clear that there are no artificial variables in the base. 

Phase 2: Now, we consider the actual costs associated with the original variables. So, the 

objective function is, 

21321 .0.0345 ssxxxZ   

The iterative simplex table for this phase is: 

cB yB xB y1 y2 y3 y4 y5 

-4 y2 30/7 0 1 -30/7 0 -1/7 

0 y4 52/7 0 0 256/7 1 2/7 

5 y1 55/7 1 0 -6/7 0 1/14 

  z* (= 155/7) 0 0 69/7 0 13/4 

Since all 0 jj cz  an optimum basic feasible solution has been reached. Hence an optimum 

basic feasible solution to the given L.P.P. is, 

;0,7/30,7/55 321  xxx  maximum ,7/155z  

Example 3: Maximize, 
213 xxZ   

Subject to the constraints, 

23;22 2121  xxxx ; 42 x  

0, 21 xx  

Solution: Maximize, 
213 xxZ   
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Subject to the constraints, 

22 1121  asxx  

23 221  sxx  

432  sx  

0,,,,, 132121 asssxx  

So, the auxiliary LPP will become 

Maximize, 132121

* 100000 asssxxZ   

Subject to, 

22 1121  asxx  

23 221  sxx  

432  sx  

0,,,,, 132121 asssxx  

 

Since all 0,0 *  MaxZj  and no artificial vector appears in the basis, we proceed to phase II. 
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Since all ,0 j  optimal basic feasible solution is obtained. 

Hence, the solution is 0,2,6 21  xxZMax . 

Example 4: Maximize, 
21 85 xxZ   

Subject to the constraints, 

44;323 2121  xxxx ; 521  xx  

0, 21 xx  

Solution: Maximize, 
21 85 xxZ   

Subject to the constraints, 

323 1121  asxx  

44 2221  asxx  

5321  sxx  

0,,,,,, 2132121 aasssxx  
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So, the auxiliary LPP will become 

Maximize, 2132121

* 1100000 aasssxxZ   

Subject to, 

323 1121  asxx  

44 2221  asxx  

5321  sxx  

0,,,,,, 2132121 aasssxx  

 

Since all ,0 j 0* MaxZ  and no artificial vector appears in the basis, we proceed to phase II. 
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Since all ,0 j  optimal basic feasible solution is obtained. Therefore, the solution is, 

5,0,40 21  xxZMax  

Check your progress 

Problem 1: Using penalty method to solve the following LP problem 

Maximize, 
21 32 xxZ   

Subject to, 

42 21  xx  

321  xx  

0, 21 xx  
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Answer: 1,2 21  xx , Maximum 7Z  

Problem 2: Using Big-M method to solve the following LP problem  

Minimize, 
21 2012 xxZ   

Subject to, 

10086 21  xx  

120127 21  xx  

0, 21 xx  

Answer: ,4/5,15 21  xx  Minimum 205Z  

5.5 SUMMARY 

The Big-M method is a technique used in linear programming to solve problems involving 

artificial variables, typically in cases where constraints cannot be easily transformed into 

standard form. It involves adding artificial variables with a very large positive or negative 

coefficient, represented by "M," to the objective function. The purpose of these artificial 

variables is to facilitate finding an initial feasible solution. The algorithm then proceeds to 

minimize the impact of these artificial variables by driving their coefficients to zero, effectively 

removing them from the solution. If any artificial variables remain in the final solution with non-

zero values, it indicates that the original problem has no feasible solution. The Big-M method is 

particularly useful in dealing with complex constraints and ensures that the artificial variables do 

not influence the optimal solution, unless they are necessary to indicate infeasibility. 

5.6  GLOSSARY 

 Big-M method or Method of penalty 

5.7  REFERENCES 

 Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali: Linear Programming and 

Network Flows (4th edition). John Wiley and Sons, 2010. 

 Hamdy A. Taha: Operations Research: An Introduction (10th edition). Pearson, 2017. 
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 Paul R. Thie and Gerard E. Keough: An Introduction to Linear Programming and Game 

Theory (3rd edition), Wiley India Pvt. Ltd, 2014. 

 Swarup, K., Gupta, P. K., & Mohan, M. (2017). An introduction to management science 

operation research. Sultan Chand & Sons educational publishers, New Delhi. 

 OpenAI. (2024). ChatGPT (August 2024 version) [Large language model]. OpenAI. 

https://www.openai.com/chatgpt 

5.8 SUGGESTED READING 

 G. Hadley, Linear Programming, Narosa Publishing House, 2002.  

 Frederick S. Hillierand Gerald J. Lieberman: Introduction to Operations Research (10th 

edition). McGraw-Hill Education, 2015. 

 https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A== 

5.9  TERMINAL QUESTION 

Long Answer Type Question: 

1. Using Big-M method to solve the following LP problem 

Minimize, 321 765 xxxZ   

Subject to, 

1535 321  xxx ; 01065 321  xxx ; 5321  xxx  

0,, 321 xxx  

2. Using Big-M method to solve the following LP problem 

Maximize, 321 32 xxxZ   

Subject to, 

52 321  xxx ; 12432 321  xxx ;  

https://www.openai.com/chatgpt
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0,, 321 xxx  

3. Using Big-M method (Penalty method) to solve the following LP problem 

Maximize, 
28xZ   

Subject to the constraints; 

021  xx ; 632 21  xx ; 8033 4321  xxxx  

21, xx are unrestricted  

Short answer type question: 

1. Using Big-M method (Penalty method) to solve the following LP problem 

Maximize, 
212 xxZ   

Subject to, 

;32;634;33 212121  xxxxxx  

0, 21 xx  

2. Using Big-M method (Penalty method) to solve the following LP problem 

Maximize, 321 23 xxxZ   

Subject to, 

;1143;122 31321  xxxxx  

0, 32 xx  and 
1x  is unrestricted. 

Fill in the blanks: 

1: Linear programming is a technique of finding the ……………………. 

2: Any solution to a linear programming problem which also satisfies the non-negative 

notification of the problem has ……………… 
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5.10  ANSWERS 

Answer of long answer type question  

1: No feasible solution. 

2: 8)(;0,2,3 321  ZMaximumxxx  

3: 5/48)(;5/6,5/6 21  ZMaximumxx  

Answer of short answer type question 

1: 5/12)(,5/6,5/3 21  ZMinimumxx  

2: 3/47)(,3/14,0,3/11 321  ZMaximizexxx  

Answer of fill in the blank question 

1:  Optimal value     2:  Feasible solution  
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UNIT- 6: RESOLUTION OF DEGENERACY 

CONTENTS: 

6.1  Introduction 

6.2  Objectives 

6.3 Degeneracy in linear programing 

6.4  Summary 

6.5  Glossary  

6.6   References 

6.7 Suggested Readings 

6.8  Terminal Questions 

6.9 Answers 

6.1 INTRODUCTION 

Degeneracy in linear programming occurs when a basic feasible solution has at least one basic 

variable with a value of zero. This can happen when there is a tie for the minimum positive 

replacement ratio in the simplex method, leading to a situation where an arbitrary choice is made 

for the leaving variable. While it doesn't affect the feasibility or optimality of the solution, 

degeneracy can cause the simplex method to take more iterations, potentially leading to 

a cycling problem where the same set of basic feasible solutions repeat without improving the 

objective function.  

Recall that the simplex algorithm tries to increase a non-basic variable 𝑋𝑠 . If there is no 

degeneracy, then xs will be positive after the pivot, and the objective value will improve. Recall 

also that each solution produced by the simplex algorithm is a basic feasible solution with m 

basic variables, where m is the number of constraints.  

There are a finite number of ways of choosing the basic variables. (An upper bound is                 

n! / (n - m)! m!, which is the number of ways of selecting m basic variables out of n.) So, the 

https://www.google.com/search?q=simplex+method&rlz=1C1VDKB_enIN1067IN1067&oq=DEGENRACY+IN+LINEAR+PROGRAMMING&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIJCAEQABgNGIAEMgkIAhAAGA0YgAQyCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yCAgJEAAYFhge0gEJMzUyMWowajE1qAIIsAIB8QV4efrJQc2sHw&sourceid=chrome&ie=UTF-8&ved=2ahUKEwjC9KSgsvOQAxUXSGwGHWVrORUQgK4QegYIAAgAEAQ
https://www.google.com/search?q=cycling&rlz=1C1VDKB_enIN1067IN1067&oq=DEGENRACY+IN+LINEAR+PROGRAMMING&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIJCAEQABgNGIAEMgkIAhAAGA0YgAQyCAgDEAAYFhgeMggIBBAAGBYYHjIICAUQABgWGB4yCAgGEAAYFhgeMggIBxAAGBYYHjIICAgQABgWGB4yCAgJEAAYFhge0gEJMzUyMWowajE1qAIIsAIB8QV4efrJQc2sHw&sourceid=chrome&ie=UTF-8&ved=2ahUKEwjC9KSgsvOQAxUXSGwGHWVrORUQgK4QegYIAAgAEAU
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simplex algorithm moves from bfs  to bfs. And it never repeats a bfs because the objective is 

constantly improving. This shows that the simplex method is finite, so long as there is no 

degeneracy. 

6.2 OBJECTIVE 

After reading this unit learners will be able to  

 Understand the concept of Degeneracy in LPP.  

 

6.3 DEGENRACY IN LINEAR PROGRAMMING 

In this section of linear programming, degeneracy occurs when a feasible solution has more than 

one way to be optimal, or more technically, when the number of basic variables is less than the 

number of constraints at a basic feasible solution. Here’s a detailed look at degeneracy in linear 

programming: 

1. Understanding Degeneracy 

Definition: 

 Degeneracy at a Vertex: In a linear programming problem, a vertex of the feasible 

region is degenerate if there are more constraints (hyperplanes) intersecting at that vertex than 

the number of dimensions (basic variables). 

 Degeneracy in the Simplex Method: A basic feasible solution (BFS) is degenerate if 

one or more of the basic variables are zero. 

2. Causes of Degeneracy 

 Redundant Constraints: Extra constraints that do not change the feasible region but 

increase the number of intersections. 

 Multiple Optimal Solutions: When the objective function is parallel to a constraint 

boundary, leading to multiple solutions along that boundary. 

3. Implications of Degeneracy 

 Cycling: In the simplex method, degeneracy can cause the algorithm to revisit the same 

BFS repeatedly, potentially leading to an infinite loop (cycling). 
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 Stalling: The simplex method might make a pivot that does not improve the objective 

function, causing the algorithm to "stall" and take longer to find the optimal solution. 

4. Handling Degeneracy 

Anti-Cycling Rules: 

 Bland's Rule: Choose the entering and leaving variables using a fixed order to prevent 

cycling. 

 Lexicographic Ordering: Maintain a lexicographic ordering of the variables to ensure 

progress in each step. 

Perturbation Techniques: 

 Slightly modify the right-hand side of the constraints to break ties and remove 

degeneracy artificially. 

Interior-Point Methods: 

 These methods approach the optimal solution from within the feasible region rather than 

along the edges, avoiding degeneracy issues inherent in vertex-based methods like the simplex 

algorithm. 

Degeneracy: Generativity is the property of obtaining a degenerate fundamental feasible 

solution in a linear programming problem. 

In an L.P.P., degeneracy can occur (i) at the beginning and (ii) at any point during the 

subsequence iteration. 

In case (i), every basic variable in the first basic feasible solution is zero. In case (ii), however, 

multiple vectors are allowed to exit the basis at any time during a simplex method iteration. As a 

result, the subsequent simplex iteration yields a degenerate solution where every basic variable is 

zero. This implies that the objective function's value might not increase in the ensuing iterations. 

Therefore, without enhancing the answer, the same simplex iteration subsequence can be 

repeated indefinitely. We call this idea "cycling." 

Generally speaking, degeneracy is not problematic—that is, unless cycling happens. If there is a 

tie in the replacement ratios, it usually suffices to choose a row at random. However, by 

following these guidelines, the number of iterations needed to reach the optimal can be reduced. 



LINEAR PROGRAMMING AND GAME THEORY                                               MT(N) - 223 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 109 

 

(i) Using the matching positive elements of the entering column vector, go from left to right to 

divide the coefficients of basic variables (element of the column vector of the basic matrix) in the 

simplex table where degeneracy is identified. 

(ii) The corresponding current basis vector departs the basis and the row with the least ratio, 

measured from left to right column wise, becomes the pivot row.  

Example 4: Maximize, 321 253022 xxxZ   

Subject to the constraints, 

10022,1002;10022 32132121  xxxxxxxx ; 

0,, 321 xxx  

Solution: By introducing slack variables 0,0 21  ss  and 03 s  in the respective inequalities, 

the set of constraints can be written as bAx  , where 





































100

100

100

,

100221

010112

001022

bA  and  321321 sssxxxX   

An obvious initial (starting) basic feasible solution in bBxB

1 , where  321 sssxB  , 

3IB   and ]100100100[b . 

IbbIxB  1  gives   ]100100100[321 sss  

Using now simplex method, the iterative simplex table are: 

Initial iteration: Introduce 
2y  and drop 6y  

  cj 22 30 25 0 0 -0 

cB yB xB y1 y2 y3 y4 y5 y6 

0 y4 100 2 2 0 1 0 0 

0 y5 100 2 1 1 0 1 0 
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0 y6 100 1 2 2 0 0 1 

 z 0 -22 -30 -25 0 0 0 

Since, 
22 cz   is the most negative jj cz  , 

2y  enters the basis. Further, 500; 2

2










i

i

Bi y
y

x
Min

occurs for the element 
12y  and 32y . Thus, there is tie among the ratios in the first and third rows, 

i.e. among the basis vectors 
4y  and 6y . To obtain the unique current basis vector that will leave 

the basis, we compute the ratios 








 0; 2

2

i

i

ij
y

y

y
 instead of 









 0; 2

2

i

i

Bi y
y

x
for those column vector 

which are in the basis. Here, since 54 , yy and 6y  are in the basis and there is a tie among 
4y and 

6y  for leaving the basis, we write the coefficients (elements) from above table: 

 
4y  

5y  6y  

4y  1 0 0 

6y  0 0 1 

Dividing these coefficients by the corresponding element of the entering column, i.e., of 
2y , we 

obtain the following ratios: 

 
4y  

5y  6y  

4y  1/2 0/2 0/2 

6y  0/2 0/2 1/2 

On comparing of ratios in the first column 6y row yields the smallest ratio and hence 6y  leaves 

the basis.  

First iteration: Introduce 
1y  and drop 

4y  
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cB yB xB y1 y2 y3 y4 y5 y6 

0 y4 0 1 0 -2 1 0 -1 

0 y5 50 3/2 0 0 0 1 -1/2 

30 y2 50 1/2 1 1 0 0 1/2 

 z 1500 -7 0 5 0 0 15 

It is apparent from the above table that, 0)( 11  cz  and therefore 
1y  enters the basis. Further, 

since 0
1

0
0; 1

1










i

i

Bi y
y

x
Min , on the current basis vector 

4y leaves the basis and 
11y becomes 

the leading element. 

Second iteration: Introduce 3y  and drop 5y . 

cB yB xB y1 y2 y3 y4 y5 y6 

22 y1 0 1 0 -2 1 0 -1 

0 y5 50 0 0 3 -3/2 1 -1 

30 y2 50 0 1 2 -1/2 0 1 

 z 1,500 0 0 -9 7 0 8 

Clearly, the solution is still not optimum, since 0)( 33  cz . So, 3y enters the basis. Further, 

since ,
3

50
0; 3

3










i

i

Bi y
y

x
Min  the current basis vector 5y  leaves the basis and 23y becomes the 

leading element. 

Final iteration: 

cB yB xB y1 y2 y3 y4 y5 y6 

22 y1 100/3 1 0 0 0 2/3 -1/3 

25 y3 50/3 0 0 1 -1/2 1/3 1/3 
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30 y2 50/3 0 1 0 1/2 -2/3 1/3 

 z 1,650 0 0 0 5/2 3 11 

Since, all 0)(  jj cz , an optimum basic feasible solution is, 

3/50,3/100,3/100 311  xxx  and maximum 650,1z . 

Check your progress 

Problem 1: Using two phase method to solve the following LP problem 

Maximize, 
21 2010 xxZ   

Subject to the constraint,  

12 21  xx  

52 21  xx  

0, 21 xx  

Answer: 3,0 21  xx , Maximum 60z  

Problem 2: Using two phase method to solve the following LP problem 

Minimize, 
21 42 xxZ   

Subject to, 142 21  xx ; 183 21  xx ; 1221  xx ; 0, 21 xx  

Answer: 0,18 21  xx , Minimum 36z  

 

6.4 SUMMARY 

Degeneracy is important because we want the simplex method to be finite, and the generic 

simplex method is not finite if bases are permitted to be degenerate.  
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In principle, cycling can occur if there is degeneracy. In practice, cycling does not arise, but no 

one really knows why not. Perhaps it does occur, but people assume that the simplex algorithm is 

just taking too long for some other reason, and they never discover the cycling. • Researchers 

have developed several different approaches to ensure the finiteness of the simplex method, even 

if the bases can be degenerate. Bob Bland developed a very simple rule that prevents cycling. 

Degeneracy in linear programming is a common occurrence, especially in large and complex 

problems. While it can complicate the solution process by causing cycling or stalling, several 

strategies like Bland’s Rule, perturbation techniques, and the use of interior-point methods 

effectively address these issues. Understanding and handling degeneracy is crucial for efficient 

and accurate linear programming solutions. 

6.5  GLOSSARY 

 Degeneracy in linear programming  

6.6  REFERENCES 

 Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali: Linear Programming and 

Network Flows (4th edition). John Wiley and Sons, 2010. 

 Hamdy A. Taha: Operations Research: An Introduction (10th edition). Pearson, 2017. 

 Paul R. Thie and Gerard E. Keough: An Introduction to Linear Programming and Game 

Theory (3rd edition), Wiley India Pvt. Ltd, 2014. 

 Swarup, K., Gupta, P. K., & Mohan, M. (2017). An introduction to management science 

operation research. Sultan Chand & Sons educational publishers, New Delhi. 

 OpenAI. (2024). ChatGPT (August 2024 version) [Large language model]. OpenAI. 

https://www.openai.com/chatgpt 

6.7 SUGGESTED READING 

 G. Hadley, Linear Programming, Narosa Publishing House, 2002.  

 Frederick S. Hillierand Gerald J. Lieberman: Introduction to Operations Research (10th 

edition). McGraw-Hill Education, 2015. 

 https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==  

 

6.8  TERMINAL QUESTION 

https://www.openai.com/chatgpt
https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==
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Long Answer Type Question: 

1. Solve the L.P.P. 

Maximize, 321 325 xxxz   

Subject to, 

222 321  xxx ; 343 21  xx ; 53 32  xx ; 

0,, 321 xxx   

2. Solve the L.P.P. 

Maximize, 4321 525.1 xxxxz   

Subject to, 

6423 4321  xxxx ; 452 4321  xxxx ; 54862 4321  xxxx ; 

0343 4321  xxxx ; 0,, 321 xxx  

3. Using Two-phase method 

Maximize, 321 32 xxxz   

Subject to, 

4321  xxx ; 82 321  xxx ; 231  xx  

0,, 321 xxx  

4. Using Two-phase method 

Maximize, 321 91512 xxxz   

Subject to, 

25012168 321  xxx ; 801084 321  xxx ; 105897 321  xxx  

0,, 321 xxx  
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Short answer type question: 

1: Solve the L.P.P. 

Maximize, 321 323 xxxz   

Subject to, 

22 321  xxx ; 8243 321  xxx ;  

0,, 321 xxx  

2: Using two-phase method solve the following L.P.P. 

Minimize, 
21 42 xxz   

Subject to, 

142 21  xx ; 183 21  xx ; 1221  xx ; 0, 21 xx  

3: Using two-phase method solve the following L.P.P. 

Minimize, 
213 xxz   

Subject to, 22 21  xx ; 23 21  xx ; 42 x ; 0, 21 xx  

4: Using two-phase method solve the following L.P.P. 

Maximize, 
21 85 xxz   

Subject to, 

323 21  xx ; 44 21  xx ; 521  xx ; 0, 21 xx  

5. Using two-phase method solve the following L.P.P. 

Minimize, 321 xxxz   

Subject to, 543 321  xxx ; 32 21  xx ; 42 32  xx ; 0, 21 xx  

Objective type question: 
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1: What is the purpose of the Two-Phase Method in linear programming? 

a) To find the optimal solution directly 

b) To handle problems where the initial basic feasible solution is not readily apparent 

c) To maximize the objective function 

d) To minimize the objective function 

2: In the first phase of the Two-Phase Method, the objective function is: 

a) The original objective function 

b) An artificial objective function, usually the sum of artificial variables 

c) A constant value 

d) Unchanged 

3: Which of the following is introduced in the first phase of the Two-Phase Method? 

a) Slack variables 

b) Surplus variables 

c) Artificial variables 

d) All of the above 

4: If the minimum value of the artificial objective function at the end of the first phase is 

zero, this indicates: 

a) The original problem has no feasible solution 

b) The original problem is unbounded 

c) A feasible solution to the original problem has been found 

d) The problem needs to be reformulated 
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5: What happens if the artificial variables are still in the basis at the end of Phase 1? 

a) The original problem has multiple optimal solutions 

b) The original problem is infeasible 

c) The original problem is unbounded 

d) The artificial variables are ignored in Phase 2 

6: In Phase 2 of the Two-Phase Method, what is done after removing the artificial variables? 

a) The original objective function is optimized using the feasible basis found in Phase 1 

b) The process is restarted from Phase 1 

c) New artificial variables are introduced 

d) The solution is checked for optimality and feasibility 

7: Why are artificial variables introduced in the Two-Phase Method? 

a) To convert inequalities into equalities 

b) To provide an initial basic feasible solution when one is not apparent 

c) To increase the complexity of the problem 

d) To ensure the problem is bounded 

8: Which of the following statements is true regarding the Two-Phase Method? 

a) It guarantees an optimal solution in all cases 

b) It is used when the primal problem has a readily available basic feasible solution 

c) The second phase deals with the original linear programming problem after feasibility 

is ensured in the first phase 

d) It is only applicable to problems with all constraints as equalities 
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6.9  ANSWERS 

Answer of long answer type question 

Answer 1: 5,0,3/23 321  xxx ; Maximum 3/85z  

2: ;0;9.0;2.1;0 4321  xxxx ; Maximum 6.3z  

3: 5/8,5/6,5/18 321  xxx ; Maximum 108z  

4: 0,7,6 321  xxx ; Maximum 177z  

Answer of short answer type question 

Answer 1: 0,2,0 321  xxx ; Maximum 4z  

2: ,0,18 21  xx ; Minimum 36z  

3: ,0,3 21  xx ; Maximum 9z  

4: ,5,0 21  xx ; Maximum 40z  

5: ,5,0 21  xx ; Maximum 40z  

Answer of objective type question 

Answer 1: b)   2: b)   3: c) 

4:  c)   5: b)   6: a) 

7:  b)   8: c) 
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UNIT- 7: REVISED SIMPLEX METHOD 

CONTENTS: 

7.1  Introduction     

7.2  Objectives 

7.3  Revised Simplex Method 

7.4 Summary 

7.5  Glossary  

7.6   References 

7.7 Suggested Readings 

7.8  Terminal Questions 

7.9 Answers 

7.1 INTRODUCTION 

The revised simplex method is a computational variant of the traditional simplex 

method for solving linear programming problems that uses matrix operations to improve 

efficiency and accuracy, especially for large problems. Instead of manipulating a full tableau, 

it maintains and updates a representation of the inverse of the basis matrix, only computing the 

necessary data for each iteration. Key steps include calculating the inverse of the basis matrix 

to find the optimal solution for the current iteration and determining the entering and leaving 

variables by solving a system of equations.  

7.2 OBJECTIVE 

After reading this unit learners will be able to  

 revised simplex method  

7.3 REVISED SIMPLEX METHOS 

Revised simplex method is a modification of the simplex method in the sense that it is more 

economical on the computer, as it computes and stores only the relevant information needed 
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currently for testing and/or updating the current solution. Moreover, in the revised method, 

the crux of the computations is rooted in the basis B and its inverse 𝐵−1. 

Computational Procedure: 

 Consider the L.P.Р.:  

Maximize z = 𝑐𝑇𝑋 subject to the constraints: Ax = b, x ≥ 0:  

where 𝑐𝑇, x ∈ 𝑅𝑛, 𝑏𝑇, ∈ 𝑅𝑛,  and A is an m × n real matrix. In order to solve this L.P.P. by 

the revised simplex method, we consider the objective function equation z = cx also as one of 

the constraints and then seek a solution to the new system of (m + 1) simultaneous linear 

equations in (n + 1) variables z, 𝑥1, 𝑥2,  ......, 𝑥𝑛 such that z is as large as possible The set of 

constraints can thus be represented as 

            

Let B be an initial basis submatrix of A and 𝑋𝐵 = 𝐵−1𝑏 be an initial basic feasible solution to 

the original problem. Then, an initial basic feasible solution to the reformulated problem is 

given by  

 

Clearly, since B is invertible, therefore we can write  

 

By assumption 𝐵−1 is known,  𝐶𝐵
𝑇𝐵−1is known and hence all the elements of  𝐵−1̂ are 

known. The V reader may check that 𝐵̂ 𝐵−1̂ = 𝐼𝑚+1. 
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The above discussion enables us to give the computational procedure for solving 

linear programming problems by Revised Simplex Method which is summarized below:  

Revised Simplex Algorithm Major steps for the computation of an optimum solution of any 

L.P.P. by revised simplex method are summarized below:  

Step 1. Introduce slack and surplus variables, if needed, and restate the given L.P.Р.   

              maximization standard form. 

Step 2. Begin with an initial basis 𝐵 = 𝐼𝑚 and form the auxiliary matrix 𝐵̂  and write   

             down 𝐵−1̂. 

Step 3. State the objective relation z = cx as an addition constraint and form 𝐴̂ and 𝑏̂ ,  

             where. 

                   

 

Step 6. Write down the results obtained in Step 2 through Step 5 in a tabular form known as 

revised simplex table.  

Step 7. Convert the leading element to unity and all other elements of the entering column to 

zero by suitable row operations and update the current basic feasible solution. 

 Step 8. Go to step 4 and repeat the procedure until an optimum basis feasible solution is 

obtained or there is an unbounded solution. 

Key differences from the standard simplex method 

 Representation:  

The standard method uses a full tableau that directly shows the constraints scaled to the basic 

variables. The revised method uses a matrix representation of the basis, storing only the 

inverse of the basis matrix (B⁻¹).  
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 Efficiency:  

For very large problems, the full tableau may not fit in computer memory, and even if it does, 

calculating every value in the table is inefficient. The revised method only computes the data 

needed for the current iteration, saving computer resources.  

 Calculations:  

It uses matrix operations and solves systems of equations to find the entering and leaving 

variables, rather than the row operations of the standard method.  

 Accuracy:  

The revised method can reduce the accumulation of rounding errors compared to the 

traditional method.  

Remarks:  

1. Benefit of revised simplex method is clearly comprehended in case of large LP 

problems.  

2. In simplex method the entire simplex tableau is updated while a small part of it is 

used.  

3. The revised simplex method uses exactly the same steps as those in simplex method.  

4. The only difference occurs in the details of computing the entering variables and 

departing variable. 

Question 1. Use revised simplex method to solve the following L.P.P.: 

                     Maximize 𝑧 = 3𝑥1 + 5𝑥2 subject to the constraints: 

                     𝑥1 ≤ 4, 𝑥2 ≤ 6, 3𝑥1 + 2𝑥2 ≤ 18; and 𝑥1 ≥ 0, 𝑥2 ≥ 0. 

Solution: Step 1. Introducing the slack variables 𝑠1, ≥ 0, 𝑠1 ≥ 0 and 𝑠1 ≥ 0, 

the given L.P.P. can be restated in the standard form as  
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Question 2.  

           

 

Solution: 
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Question 2.  
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 REMARK 1. SIMPLEX METHOD VERSUS REVISED SIMPLEX METHOD 

Considered the general L.P.P. as of maximizing z = cx, subject to the constraints:  

Ax = b and x ≥ 0 where A is an mn matrix (𝑚 × 𝑛) and x as well as b are 𝑚 × 1 matrices. In 

solving the L.P.P. by simplex method suppose that artificial variables are not needed. Then, 

we have to carry out the calculations of (𝑛 + 1) columns (columns corresponding to columns 

of A and one column corresponding to xa. the basic solution) at each iteration. At each 

iteration of simplex method, one non- basic variable is introduced into basis and one current 

basic variable is removed from the basis. 

Thus, in total we compute for 𝑚 + 𝑛 − 1 columns. Furthermore, for each of these columns, 

we have to transform m + 1 elements (m corresponding to 𝑦𝑗 , and one corresponding to 𝑧𝑗 −

𝑐𝑗  ). For moving from one iteration to another we also need to calculate minimum ratio 

𝑋𝑖𝐵/𝑦𝑗𝑘  Hence, in all we have to perform multiplication (m + 1)(n - m + 1) times and addition 

m (n - m + 1) times. 

In the revised simplex are m + 1 rows and m + 2 columns. So, for moving from one iteration 

to another we have to make (𝑚 + 𝑛)2 multiplication operations to get an improved solution 

in addition to 𝑚(𝑛 − 𝑚) operations for calculating 𝑧𝑗 − 𝑐𝑗. The major differences between 

the two methods of solution are the following:  

(i) In the revised simplex method, we need to make (m + 1) (m + 2) entries in each table 

while in simplex method there are (m + 1) (m + 1) entries in each 

(ii) In the simplex method all 𝑦, are updated at each iteration, whereas in the revised simplex 

method only the column of entering variable is updated. 

(iii) If the number of variables, is significantly larger than number of constraints m, then the 

computational efforts of the revised simplex method is smaller than that of the simplex 

method. 
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(iv) The inverse of the current basis matrix is obtained automatically in the revised simplex 

method. 

 Bounded variables: 

 

The upper bound constraint can be written as x = u - 𝑠′. This does not serve the purpose, 

since there is no guarantee that x will be non-negative. 

The difficulty is overcome by using a special technique known as bounded variable simplex 

method. 

In bounded variable simplex method, the optimality condition for a solution is the same as the 

simplex method, discussed earlier. But the inclusion of constraints x + 𝑠′ = u in the simplex 

table requires modification in the feasibility condition of the simplex method due to the 

following reasons: 

(i) A basic variable should become a non-basic variable at its upper bound (in usual simplex 

method all non-basic variables are at zero level). 

(ii) When a non-basic variable becomes basic variable, its value should not exceed its upper 

bound and also should not disturb the non-negativity and upper bound conditions of all 

existing basic variables. 

Check your progress 

Question 1. What is the revised simplex method? 

The revised simplex method is technically equivalent to the traditional simplex method, but it 

is implemented differently. 

Question 2. Why do we use the revised simplex method? 

The revised simplex approach is more efficient and accurate in terms of computing. 
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Question 3. Which of the following is an advantage of the Revised Simplex Method over the 

standard Simplex Method? 

a) It is more computationally efficient and accurate. 

b) It requires more manual calculations and a larger tableau. 

c) It is less effective at handling large-scale problems. 

d) It cannot be used for maximization problems.  

Question 4 

In the Revised Simplex Method, what is Standard Form-II typically used for? 

a) When an identity matrix is obtained after adding slack variables. 

b) When artificial variables are needed to form an identity matrix. 

c) When the problem has only one constraint. 

d) When the objective function is being minimized.  

Question 5 

In the Revised Simplex Method tableau, what does the column denoted as '𝐵−1′ represent? 

a) The inverse of the constraint matrix. 

b) The inverse of the basis matrix. 

c) The objective function coefficients. 

d) The non-basic variables.  

Question 6 

Which of the following statements is NOT a characteristic of the Revised Simplex Method? 

a) It avoids the need to calculate an initial basic feasible solution for certain problems. 

b) It directly works with the inverse of the basis matrix (𝐵−1) 

c) It requires solving the dual problem to find the primal solution. 

d) It is more computationally efficient, especially for large problems.  

 

7.4 SUMMARY 

When using the regular simplex approach to solve a linear programming 

problem on a digital computer, the full simplex table must be stored in the computer 



LINEAR PROGRAMMING AND GAME THEORY                                          MT(N) - 223 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
PAGE 133 

 

table’s memory, which may not be possible for particularly big problems. However, 

each iteration must include the calculation of each table. The revised simplex method, 

which is a variation of the original approach, uses fewer computer resources since it 

computes and maintains only the data that is currently needed for testing and/or 

improving the current solution. To put it another way, it only requires a small amount 

of effort. i.e., 

 The non-basic variable that reaches the basis is determined using the net evaluation 

row ∆𝑗. 

 The pivoting column 

 To establish the minimal positive ratio, first, identify the present basis variables and 

their values (XB column), and then identify the basis variable to exit the basis. 

By using the inverse of the current basis matrix at any iteration, the above information 

can be directly extracted from the original equations. 
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 Degeneracy in linear programming  
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7.8  TERMINAL QUESTION 

Long Answer Type Question: Use revised simplex method to solve the following linear 

programming problems: 

1.  

             

2. Maximize z = 𝑥1 + 2𝑥2 subject to the constraints: 𝑥1 + 𝑥2 ≤ 3, 𝑥1 + 2𝑥2 ≤ 5 

  3𝑥1 + 𝑥2 ≤ 6 and 𝑥1, 𝑥2 ≥ 0. 

𝟑. Maximize z = 𝑥1 + 𝑥2 subject to the constraints: 3𝑥1 + 2𝑥2 ≤ 6, 𝑥1 + 4𝑥2 ≤ 4 

     𝑥1, 𝑥2 ≥ 0. 

𝟒. Maximize z = 2𝑥1 + 𝑥2 subject to the constraints: 3𝑥1 + 4𝑥2 ≤ 6, 6𝑥1 + 𝑥2 ≤ 3 

     𝑥1, 𝑥2 ≥ 0. 

7.9  ANSWERS 

Answer of long answer type question 

Answer 1: 𝑥1 = 2/7 , 𝑥2 = 9/7 and maximum value 𝑍 = 13/7. 

 Check Your Progress 

Q 3        (a) 

Q 4        (b) 

Q 5        (b) 

Q 6        (c)  
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UNIT-8: DUALITY 

CONTENTS: 

8.1         Introduction 

8.2  Objectives 

8.3  Primal Problem 

8.4  Dual Problem 

8.5        Step-Wise Procedure for Formulating Dual Problem 

8.6         Summary 

8.7  Glossary 

8.8   References 

8.9  Suggested Readings 

8.10  Terminal Questions 

8.11 Answers 

8.1 INTRODUCTION 

The history of duality in linear programming (LPP) is linked to the work of John von 

Neumann, who conjectured the duality theorem shortly after George Dantzig introduced LPP. 

The theorem states that every linear program has an associated "dual" problem, and solving 

one can provide the solution to the other. The concept of duality was rigorously proven in 1948 

and provides valuable insights like shadow prices and a way to solve problems that are 

computationally easier in their dual form.  

Duality in Linear Programming (LPP) is the principle that every LPP (called the primal) has a 

related LPP, called the dual, which can be systematically constructed from it. The optimal 

solutions of the primal and dual problems are interconnected: the optimal value of one provides 

information about the optimal value of the other. For example, if the primal problem is a 

maximization problem, the dual problem will be a minimization problem, and the objective 

values will be equal at the optimum.  

https://www.google.com/search?q=primal&sca_esv=c9e3226669c932ab&rlz=1C1VDKB_enIN1067IN1067&ei=TMAvaZu4A-i1wcsPg6T36A8&ved=2ahUKEwj_2vOKzqCRAxVAT2wGHTF1FQMQgK4QegYIAQgAEAU&uact=5&oq=Duality+IN+LPP&gs_lp=Egxnd3Mtd2l6LXNlcnAiDkR1YWxpdHkgSU4gTFBQMgsQABiABBiRAhiKBTIFEAAYgAQyBRAAGIAEMgUQABiABDIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHkjyIVB8WLsVcAF4AZABAJgBogKgAaIMqgEFMC4yLjW4AQPIAQD4AQGYAgigAsYMwgIKEAAYsAMY1gQYR8ICDRAAGIAEGLADGEMYigXCAg4QABiwAxjkAhjWBNgBAcICExAuGIAEGLADGEMYyAMYigXYAQHCAhkQLhiABBiwAxhDGMcBGMgDGIoFGK8B2AEBwgIKEAAYgAQYQxiKBcICDRAAGIAEGLEDGEMYigXCAgoQLhiABBhDGIoFwgIQEC4YgAQYQxjHARiKBRivAZgDAIgGAZAGEroGBggBEAEYCZIHBTEuMi41oAeHLbIHBTAuMi41uAe9DMIHBTAuNC40yAcb&sclient=gws-wiz-serp
https://www.google.com/search?q=dual&sca_esv=c9e3226669c932ab&rlz=1C1VDKB_enIN1067IN1067&ei=TMAvaZu4A-i1wcsPg6T36A8&ved=2ahUKEwj_2vOKzqCRAxVAT2wGHTF1FQMQgK4QegYIAQgAEAY&uact=5&oq=Duality+IN+LPP&gs_lp=Egxnd3Mtd2l6LXNlcnAiDkR1YWxpdHkgSU4gTFBQMgsQABiABBiRAhiKBTIFEAAYgAQyBRAAGIAEMgUQABiABDIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHjIGEAAYFhgeMgYQABgWGB4yBhAAGBYYHkjyIVB8WLsVcAF4AZABAJgBogKgAaIMqgEFMC4yLjW4AQPIAQD4AQGYAgigAsYMwgIKEAAYsAMY1gQYR8ICDRAAGIAEGLADGEMYigXCAg4QABiwAxjkAhjWBNgBAcICExAuGIAEGLADGEMYyAMYigXYAQHCAhkQLhiABBiwAxhDGMcBGMgDGIoFGK8B2AEBwgIKEAAYgAQYQxiKBcICDRAAGIAEGLEDGEMYigXCAgoQLhiABBhDGIoFwgIQEC4YgAQYQxjHARiKBRivAZgDAIgGAZAGEroGBggBEAEYCZIHBTEuMi41oAeHLbIHBTAuMi41uAe9DMIHBTAuNC40yAcb&sclient=gws-wiz-serp
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Key concepts of duality 

 Primal and Dual: The original LPP is called the "primal," and the derived LPP is the 

"dual". 

 Objective function: The type of objective function is reversed. A maximization 

problem becomes a minimization problem, and vice versa. 

 Variables: Each constraint in the primal problem corresponds to a variable in the dual 

problem. The number of constraints in the primal equals the number of variables in the 

dual. 

 Constraints: The coefficients of the primal objective function become the right-hand 

side values of the dual's constraints, and the right-hand side values of the primal 

constraints become the coefficients of the dual's objective function. 

8.2 OBJECTIVE 

After reading this unit learners will be able to  

 Understand the basic concept of Duality. 

8.3 PRIMAL PROBLEM 

Consider the standard form of a linear programming problem: 

Primal LP: Minimize xcT
                                                     ……………. (1) 

Subject to bAx   

0x  

Where: 

 x is the vector of decision variables. 

 c  is the vector of coefficients for the objective function. 

 A  is the matrix of coefficients for the constraints. 

 b  is the vector of constants on the right-hand side of the constraints. 

8.4 DUAL PROBLEM 

The concept of duality in Linear Programming Problems (LPP) is a fundamental aspect 

of optimization theory. The dual problem provides deep insights into the structure of the 

original (or primal) problem and can often be used to derive bounds on the optimal value 

of the objective function. 
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Here are some key points about the dual problem in LPP: 

1. Duality Principle: 

 For every linear programming problem, known as the primal problem, there exists a 

corresponding dual problem. 

 The solutions to the dual problem provide valuable information about the primal 

problem and vice versa. 

2. Fomulation:  

Given a primal problem in the standard form: 

Maximize xcT
 

Subject to, 0,  xbAx  

The corresponding dual problem is: 

Minimize ybT  

Subject to, 0,  ycyAT  

Here, A is the matrix of coefficients, c and b are vectors, x and y are the variables for the 

primal and dual problems, respectively.  

The dual of the above primal problem (1) is formulated as follows: 

Dual LP: Maximize ybT  

Subject to cyAT   

0y  

Where: 

 y is the vector of decision variables for the dual problem. 

 
TA  is the transpose of matrix A . 

 b is the same vector as in the primal problem. 

 c is the same vector as in the primal problem. 

Remarks: One can readily detect the following from the definitions above:  

(a) There is a dual variable for each primal constraint. 

(b) There is a dual constraint for each primal variable.  
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(c) The primal and dual variable coefficients in the constraints are same except that they 

are transposed; i.e., the columns in the primal coefficient matrix becomes the rows in 

the dual coefficient matrix. 

(d) While the number of primal variables and the number of dual constraints are exactly 

equal, whereas the number of dual variables is exactly equal to the number of primal 

constraints. 

(e) The right-hand side constants of the dual constraints become the objective coefficients 

of the primal problem, whereas the objective coefficients of the primal variables 

become the right-hand side constants of the dual constraints. 

The following table can be used to summarize information about the dual variables' signs, 

the type of restrictions, and the primal-dual objective: 

 

Standard 

primal 

objective 

Dual 

 Objective Constraints Variables 

Maximization Minimization   Unrestricted 

Minimization Maximization   Unrestricted 

 

8.5 STEP-WISE PROCEDURE FOR FORMULATING 

DUAL PROBLEM 

The process of formulating a prime-dual pair involves several steps:  

Step 1: In standard form, solve the given linear programming problem. Think of it as 

the primal problem.  

Step 2: Determine the factors that will be applied to the dual problem. These variables 

have the same number as the constraint equations in the primal.  

Step 3: Using the constants on the right side of the primal restrictions, write out the 

objective function of the dual.  

The dual will be a minimization problem if the primal problem is of the maximization 

type, and vice versa.  

Step 4: Write the constraints for the dual problem using the dual variable found in 

Step 2. 

 

(a) If the primal is a maximization problem, the dual constraints must be all of   type. If 

the primal is a minimization problem, the dual constraints must be all of   type.  

(b) The dual constraints' row coefficients are derived from the primal constraints' column 

coefficients.  

(c) The dual constraints' constants on the right side are the fundamental objective function's 

coefficients.  

(d) It is defined that the dual variables have an unrestricted sign.  
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Step 5: Using steps 3 and 4, write down the dual of the given L.P.P. 

Note: It is never required to take into account the dual constraints related to an artificial 

variable since, in the standard form of the primal, the dual constraint relating to an 

artificial variable is always redundant.  

Remark 1: Primal-dual pairs are symmetric if the given linear programming problem is 

in its canonical form. 

2: The primal-dual pair is considered unsymmetric if the provided linear programming 

problem is in its standard form. 

Solved Example 

Example 2: Find the dual of the following linear programming problem. 

Maximize 
21 35 xxz  , subject to the constraints 

0,1025,1553 12121  xxxxx  and 02 x  

Solution: Standard primal: Introducing slack variables 0, 21 ss , the standard linear 

programming problem is: 

Maximize 2121 .0.035 ssxxz  , subject to the constraints 

0,,,,10.025,15.053 212121212121  ssxxssxxssxx  

Dual: Let 
1w  and 

2w  be the dual variables corresponding to the primal constraints. Then, 

the dual problem will be: 

Minimize 21 105 wwz  , subject to the constraints: 

325,553 2121  wwww  

00
0.0

0.0
21

21

21









wandw

ww

ww
 unrestricted (redundant) 

Here 
21 wandw  unrestricted (redundant). 

The dual variables 
21 wandw unrestricted” are dominated by 00 21  wandw . 

Eliminating redundancy, the restricted variables are 00 21  wandw .  

Example 3: Find the dual of the following linear programming problem. 

Minimize 321 1864 xxxz  , subject to the constraints 

0,,,52,33 3213221  xxxxxxx . 

Solution: Standard primal: Introducing slack variables 0, 21 ss , the standard linear 

programming problem is: 

Minimize 21321 .0.01864 ssxxxz  , subject to the constraints 

Dual: Let 1w  and 2w  be the dual  variables corresponding to the primal constraints. Then, 

the dual problem will be: 

Minimize 21 53 wwz  , subject to the constraints: 

182.0,63,4.0 212121  wwwwww  
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00
0.0

0.0
21

21

21









wandw

ww

ww
 unrestricted (redundant) 

Eliminating redundancy, the dual problem is: 

Maximize 
21 53 wwz  subject to the constraints: 

.00;182,63,4 212211  wandwwwww  

Example 4: Find the dual of the following linear programming problem. 

Minimize 321 423 xxxz  , subject to the constraints 

0,,

,2274,352,1027

,436,7453

321

321321321

321321







xxx

xxxxxxxxx

xxxxxx

. 

Solution: Introducing the slack variable 03 s surplus variables 

0,0,0,0 5421  ssss . 

Minimize: 5421321 .0.0.0.0423 ssssxxxz   

Subject to constraint, 7423 1321  sxxx  

436 2321  sxxx  

1027 3321  sxxx  

352 4321  sxxx  

2274 5321  sxxx  

0,,,,,,, 54321321 sssssxxx  

Dual: If )5,4,3,2,1( jw j  are the dual variables corresponding to mentioned five primal 

constraints, So, the dual of the given L.P.P. will be; 

Maximize 54321

* 231047 wwwwwz  , subject to the constraints: 

34763 54321  wwwww  

27225 54321  wwwww  

42534 54321  wwwww  

0,0,0,0,0 54321  wwwww  

)5,4,3,2,1( jw j  are unrestricted in sign. 

Hence, after eliminating the redundancy, the dual variables are: 

0,0,0,0,0 54321  wandwwww  

Example 5: Find the dual of the following linear programming problem. 

Minimize 321 23 xxxz  , subject to the constraints 

0,10834,1242,723 2132121321  xxxxxxxxxx  and 3x  is 

unrestricted.  

Solution: Initially, we introduced the slack and surplus variable 01 s  and 02 s  

respectively, the primal problem is restated as, 
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Minimize cxz  ; subject to the constraints: 0,  xbAx  

Where ],,,,,[ 21

''

3

'

321 ssxxxxx  , ]10,12,7[],0,0,2,2,3,1[  bc  and 

























008834

100042

012213

A , when 
''

3

'

33 xxx   

Dual: If ),,( 321 wwww   are the dual variables , then the dual of the given prima is 

Maximize 321

* 10127 wwwz   subject to the  

1423 321  www  

334334 321321  wwwwww  

282
282

282
21

31

31









ww

ww

ww
 

00
0

0
21

2

1









wandw

w

w
 

Where 321, wandww  unrestricted. 

Eliminating redundancy, dual variables are 321 0,0 wandww   unrestricted. So, this 

is re-written as follows: 

Maximize 321

* 10127 wwwz   subject to the constraints: 

1423 321  www ; 334 321  www ; 282 21  ww ; 

321 ,00 wwandw   unrestricted. 

Example 6: 

                         

                      
Solution: 
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Some important theorems related to duality:  

1. The dual of the dual is the primal. 

Proof: Let the Primal L.P.P. be to determine 𝑥𝑇 ∈ ℝ𝑛 so as to  

              Maximize 𝑓(𝑥) = 𝑐𝑥, 𝑐 ∈ ℝ𝑛 subject to the constraints: 

              𝐴𝑥 = 𝑏 and 𝑥 ≥ 0,  𝑏𝑇 ∈ ℝ𝑚  

where A is an m × n real matrix. 

The dual of this primal is the L.P.P. of determining 𝑤𝑇 ∈ ℝ𝑚 so as to  

Minimize 𝑓(𝑤) = 𝑏𝑇𝑤, 𝑏𝑇 ∈ ℝ𝑚 subject to constraints: 

𝐴𝑇𝑤 ≥ 𝑐𝑇, 𝑤 is unrestricted, , 𝑐 ∈ ℝ𝑛. 

Now, introduce surplus variables 𝑠 ≥ 0 in the constraints of the dual and write 𝑤 = 𝑤1 −

𝑤2, where, 𝑤1 ≥ 0 and 𝑤1 ≥ 0. 

The standard form of dual then is to  

Minimize 𝑔(𝑤) = 𝑏𝑇(𝑤1 − 𝑤2), 𝑏𝑇 ∈ ℝ𝑚 subject to constraints: 

𝐴𝑇(𝑤1 − 𝑤2) − 𝐼𝑛𝑠 = 𝑐𝑇 , 𝑐 ∈ ℝ𝑛. 

𝑤1, 𝑤2 and 𝑠 ≥ 0. 

Considering this linear programming problem as our standard primal, the associated dual 

problem will be to  

Maximize ℎ(𝑦) = 𝑐𝑦 , 𝑐 ∈ ℝ𝑛 subject to the constraints: 

(𝐴𝑇)𝑇𝑦 ≤ (𝑏𝑇)𝑇, −(𝐴𝑇)𝑇𝑦 ≤ −(𝑏𝑇)𝑇 

−𝑦 ≤ 0 (⟹ 𝑦 ≥ 0) and 𝑦 is unrestricted. 

Eliminating redundancy, the dual problem may be re-written as: 

Maximize ℎ(𝑦) = 𝑐𝑦 , 𝑐 ∈ ℝ𝑛 subject to the constraints: 

𝐴𝑦 ≤ 𝑏 and 𝐴𝑦 ≥ 𝑏 and 𝑦 ≥ 0 ⟹ 𝐴𝑦 = 0, 𝑏𝑇 ∈ ℝ𝑚  
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This problem, which is the dual of the dual problem, is just the primal problem we had 

started with. 

This completes the proof. 

 

2. (Weak- Duality Theorem) Let 0x  be a feasible solution to the primal problem, 

Maximize cxxf )(  subject to: 0,  xbAx  

Where 
Tx  and mTn RbRc  ,  and A is nm  real matrix. If 0w  be a feasible solution to 

the dual of the primal, namely 

Minimize wbwg T)( , subject to: 0,  wcwA TT  

Where 
mT Rw  , then 00 wbcx T  

3. (Basic duality theorem) Let a primal problem be  

Maximize cxxf )(  subject to: nT RcxxbAx  ,,0,  

And the associated dual be 

Minimize wbwg T)(  subject to: mTTTT RbwwcwA  ,,0,  

 

Important characteristics of Duality  

1. Dual of dual is primal  

2. If either the primal or dual problem has a solution then the other also has a solution and 

their optimum values are equal.  

3. If any of the two problems has an infeasible solution, then the value of the objective 

function of the other is unbounded.  

4. The value of the objective function for any feasible solution of the primal is less than the 

value of the objective function for any feasible solution of the dual.  

5. If either the primal or dual has an unbounded solution, then the solution to the other 

problem is infeasible.  

6. If the primal has a feasible solution, but the dual does not have then the primal will not 

have a finite optimum solution and vice versa. 

Advantages and Applications of Duality  

1. Sometimes dual problem solution may be easier than primal solution, particularly when 

the number of decision variables is considerably less than slack / surplus variables.  

2. In the areas like economics, it is highly helpful in obtaining future decision in the 

activities being programmed.  

3. In physics, it is used in parallel circuit and series circuit theory.  
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4. In game theory, dual is employed by column player who wishes to minimize his 

maximum loss while his opponent i.e. Row player applies primal to maximize his 

minimum gains. However, if one problem is solved, the solution for other also can be 

obtained from the simplex tableau.  

5. When a problem does not yield any solution in primal, it can be verified with dual. 6. 

Economic interpretations can be made and shadow prices can be determined enabling 

the managers to take further decisions. 

Symmetry property  

For any primal problem and its dual problem, all relationships between them must be 

symmetric because dual of dual is primal.  

Fundamental duality theorem  

 If one problem has feasible solution and a bounded objective function (optimal solution) 

then the other problem has a finite optimal solution.  

 If one problem has feasible solution and an unbounded optimal solution then the other 

problem has no feasible solution.  

 If one problem has no feasible solution then the other problem has either no feasible 

solution or an unbounded solution.  

If k th constraint of primal is equality then the dual variable 𝑤𝑘 is unrestricted in sign If p 

th variable of primal is unrestricted in sign then p th constraint of dual is an equality. 

 

CHECK YOUR PROGRESS 

 

1. Which statement about duality in LPP is always TRUE? 

(A) The dual always has a solution if the primal does. 

(B) The optimal value of the primal equals the optimal value of the dual if both are feasible 

and optimal. 

(C) The dual is always a minimization problem. 

(D) The dual variables must be non-negative.  

2. What is the dual of a dual LPP? 

a) The dual problem itself. 

b)  The primal problem. 

c) An entirely new problem with no relation to the primal. 
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d) A problem with reversed constraints and objective function. 

 

3. In a standard LPP, if the i-th constraint in the primal problem is an equality (=) 

constraint, the corresponding i-th dual variable will be: 

a) Non-negative (≥ 0) 

b) Non-negative (≤ 0) 

c) Unrestricted in sign 

d) Zero 

4. If the primal linear programming problem is unbounded, what can be said about 

its dual problem? 

a) The dual problem will always be unbounded. 

b)  The dual problem will have a finite optimal solution. 

c) The dual problem will always be infeasible (have no feasible region). 

d) The feasibility of the dual cannot be determined without more information. 

5. The duality theory in linear programming relates the primal problem to a 

corresponding dual problem, and states that:  

a) The optimal solution of the dual is always greater than the primal. 

b) The primal and dual problems can have different optimal values if a solution 

exists. 

c) Both primal and dual have the same optimum value, provided an optimal 

solution exists for either problem. 

d) The dual problem is only used for minimization problems. 

 

6. Solution which satifies all the constraints of linear programming problem is called 

 (a) Feasible solution 

 (b) Bounded solution  

(c) Unbounded solution  

(d) None of these 

      7. Any feasible solution of a canonical maximization (respectively minimization) linear   

          programming problem which maximizes (respectively minimizes) the objective     

          function is called 

 (a) Feasible solution  

(b) Optimal solution  
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(c) Unbounded solution  

(d) Bounded solution 

 

 

8.6 SUMMARY 

The summary of this unit are as follows: 

 Every linear programming problem (primal) has a corresponding dual problem. 

 The primal problem involves maximizing or minimizing an objective function subject 

to constraints and non-negativity restrictions. 

 The dual problem is derived from the primal problem and involves a different set of 

variables and constraints, effectively reversing the roles of the constraints and the 

objective function. 

 For any feasible solutions to the primal and dual problems, the value of the objective 

function in the primal problem is less than or equal to the value in the dual problem (for 

maximization) or greater than or equal to the value in the dual problem (for 

minimization). 

 If the primal problem has an optimal solution, the dual problem also has an optimal 

solution, and the optimal values of their objective functions are equal. 

 Sometimes, solving the dual problem is easier than solving the primal problem. This 

can be especially true when the dual problem has fewer constraints or variables. 

 Duality theory is also used in sensitivity analysis to understand how changes in the 

coefficients of the primal problem affect the optimal solution. 

Understanding duality is essential for grasping the deeper structure of linear 

programming problems, providing insights that can be leveraged in both theoretical 

analyses and practical applications. 
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8.10  TERMINAL QUESTION 

Short Answer Type Question: 

1. Find the dual of the following problem 

Maximize, 
21 30002000 xxz   

Subject to the constraints, 

202;10096 2121  xxxx ; 0, 21 xx  

Answer: 5,0,3/23 321  xxx ; Maximum 3/85z  

2. Find the dual of the following problem 

Maximize, yxz 810   

Subject to, 

52  yx ; 122  yx ; 43  yx  

0x  and y  is unrestricted. 

Answer: ;0;9.0;2.1;0 4321  xxxx ; Maximum 6.3z  

3. Find the dual of the following problem 

Maximize, zyxz 652   

https://www.openai.com/chatgpt
https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==
https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==
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Subject to, 

135;442;365  zyxzyxzyx ; 6733  zyx ;  

0,, zyx  

Answer: 5/8,5/6,5/18 321  xxx ; Maximum 108z  

4. Find the dual of the following problem 

Minimize, yxz 21   

Subject to, 

16042  yx ; 30 yx ; 0;10  xx  and 0y  

Answer: 0,7,6 321  xxx ; Maximum 177z  

5. Find the dual of the following problem 

Maximize, zyxz  32  

Subject to, 

;452;634  zyxzyx  

0,, zyx  

6. Find the dual of the following problem 

Maximize, zyxz 753   

Subject to, 

1524;103  zyxzyx  

0, yx  and z is unrestricted. 

7. Find the dual of the following problem 

Minimize, zyxz   

Subject to, 

42;32;543  zyyxzyx  
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0, yx  and z is unrestricted. 

8. Find the dual of the following problem 

Minimize, zyxz 432   

Subject to, 

564;373;2532  zyxzyxzyx  

0, yx  and z is unrestricted. 

9. Find the dual of the following problem 

Maximize, swzyxz 5766   

Subject to, 

69232;25873  swzyxswzyx  

0,,, wzyx  and t is unrestricted. 

 

Check Your Progress 

1. (b) 

2. (b) 

3. (c) 

4. (c) 

5. (c) 

6. (a) 

7. (b) 
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UNIT- 9: DUAL SIMPLEX ALGORITHM 

CONTENTS: 

9.1  Introduction     

9.2  Objectives 

9.3  Dual Simplex Method 

9.4 Summary 

9.5  Glossary  

9.6   References 

9.7 Suggested Readings 

9.8  Terminal Questions 

9.9 Answers 

9.1 INTRODUCTION 

Any LPP for which it is possible to find infeasible but better than optimal initial basic 

solution can be solved by using dual simplex method. Such a situation can be recognized by 

first expressing the constraints in ‘≤’ form and the objective function in the maximization form. 

After adding slack variables, if any right-hand side element is negative and the optimality 

condition is satisfied then the problem can be solved by dual simplex method. Negative element 

on the right-hand side suggests that the corresponding slack variable is negative. This means 

that the problem starts with optimal but infeasible basic solution and we proceed towards its 

feasibility. The dual simplex method is similar to the standard simplex method except that in 

the latter the starting initial basic solution is feasible but not optimum while in the former it is 

infeasible but optimum or better than optimum. The dual simplex method works towards 

feasibility while simplex method works towards optimality. 

9.2 OBJECTIVE 
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After reading this unit learners will be able to  

 Dual simplex method  

9.3 DUAL SIMPLEX METHOD  

 Formulate the Dual Problem: Given a primal problem, formulate its dual. 

 Solve the Dual Problem Using Simplex Method: Sometimes, it is easier to solve the 

dual problem than the primal problem. The solution to the dual provides information 

about the primal solution. 

 Interpreting the Dual Solution: The values of the dual variables provide the shadow 

prices or the marginal values of the resources in the primal problem. 

 Complementary Slackness: This principle helps in validating the solutions. For each 

pair of primal and dual variables, at least one in the pair must be zero in the optimal 

solution. 

OR 

If the primal problem is a maximization problem, the following set of rules govern the 

derivation of the optimal solution: 

Rule 1: The corresponding net evaluations of the initial primal variables are equal to the 

difference between the left and right sides of the dual constraints associated with these initial 

primal variables. 

Rule 2: The negative of the corresponding net evaluations of the initial dual variables is 

equal to the difference between the left and right sides of the primal constraints associated 

with these initial dual variables. 

Rule 3: If the primal (dual) problem is unbounded, then the dual (primal) problem has no 

feasible solution. 

Note: In rule 2, solve the dual problem by changing its objective from minimization to 

maximization. 

Solved Examples 

Example 6: Using duality solve the following L.P.P 

Maximize 212 xxz  , subject to the constraints 

0,;12;2;6;102 2121212121  xxxxxxxxxx  

Solution: The dual problem for the given problem is as follows: 
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Minimize 4321

* 2610 wwwwz  , subject to the constraints 

0,,,;122;2 432143214321  wwwwwwwwwwww  

Introducing surplus variables 0,0 21  ss  and artificial variables 0,0 21  AA , an initial 

basic feasible solution is 1,2 21  AA . (The primal constraints associated with 
2121 ,,, AAss  

are: MxandMxxx  2121 ,0,0 ). 

The iterative simplex table are: 

Initial Iteration: Introduce 
1y  and 8y  

cB yB wB y1 y2 y3 y4 y5 y6 y7 y8 

-M y7 2 1 1 1 1 -1 0 1 0 

-M y8 1 2 1 -1 -2 0 -1 0 1 

 z*  -3M -3M+10 -2M+6 2 M+1 M M 0 0 

 

First Iteration: Introduce 3y  and drop 7y  

cB yB wB y1 y2 y3 y4 y5 y6 y7 y8 

-M y7 3/2 0 1/2 3/2 2 -1 1/2 1 -1/2 

-10 y1 1/2 1 1/2 -1/2 -1 0 -1/2 0 1/2 

 z*  -5-3M/2 0 1-M/2 7-3M/2 11-2M M 5-M/2 0 -5+3M/2 

 

Second Iteration: Introduce 2y  and drop 1y  

cB yB wB y1 y2 y3 y4 y5 y6 y7 y8 

-2 y3 1 0 1/3 1 4/3 -2/3 1/3 2/3 -1/3 

-10 y1 1 1 2/3 0 -1/3 -1/3 -1/3 1/3 13 

 z*  -12 0 -4/3 0 5/3 14/3 8/3 M-14/3 M-8/3 

 

Final Iteration: Optimal Solution. 
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cB yB wB y1 y2 y3 y4 y5 y6 y7 y8 

-2 y3 1/2 -

1/2 

0 1 3/2 -1/2 1/2 1/2 -1/2 

-6 y2 3/2 3/2 1 0 -1/2 -1/2 -1/2 1/2 1/2 

 z*  -10 2 0 0 1 4 2 M-4 M-2 

Thus, an optimum feasible solution to the dual problem is. 

10)10()min(;2/12/3,0 *

321  Zwandww . 

Also the primal constraints associated with the dual variables 
21, AA  are Mx 1

 and Mx 2

. Thus, by applying duality rules, the optimal solution to the primal problem is derived as 

follows: 

Starting dual variables  
1A  

2A  

Corresponding )}({ jj cz   )4(  M  -(M-2) 

The difference between the 

left and right sides of the 

primal constraints associated 

with the initial dual variables 

Mx 1
 Mx 2

 

 

Making use of Rule 2, we get  

41  MMx  and 22  MMx  

24 21  xandx  

Hence , Maximum 10*  zMinimumz  

Example 7: Consider the linear programming  

Maximize 321 523 xxxz  , subject to the constraints 

;4;23;2 3212211321 axxaxxaxxx   

Where 321 ,, aaa are constant. For specific values of 321 ,, aaa the optimal solution is 

Basic x1 x2 x3 x4 x5 x6 Solution 



LINEAR PROGRAMMING AND GAME THEORY                                           MT(N) - 223 
 
 

  

DEPARTMENT OF MATHEMATICS 

UTARAKHAND OPEN UNIVERSITY 
155 

 

Z 4 0 0 c1 c2 0 1350 

x2 b1 1 0 1/2 -1/4 0 100 

x3 b2 0 1 0 1/2 0 c3 

x6 b3 0 0 -2 1 1 20 

 

Where bi’s and ci’s are constant. Determine: 

(i) The values of a1, a2 and a3 that yield the given optimal solution. 

(ii) The values of b1, b2 , b3 and c1, c2 , c3 in the optimal tableau. 

(iii) The optimal dual solution. 

Solution: The optimal table indicates that slack variables 654 ,, xxx  are introduced in the three 

primal constraints. They happen to be the starting primal basic variables also. Thus the 

optimal basis inverse is given by ][ 654

1 yyyB   from the optimal table. 

(i) We have BxbB 1  























































20

100

112

02/10

04/12/1

3

3

2

1

c

a

a

a

 

202,
2

1
,100

4

1

2

1
3213221  aaacaaa  

Also, 23052001350 33  ccxcz BB , where ]052[Bc . 

Thus, we get 460,430 21  aa  and 4803 a  

(ii) The z-row gives: 

7523524 212111  bbbbcycB  

101441  cycc B  

202/52/1552  cycc B  

To obtain the value of b1, b2 and b3, we perform iteration on the starting primal table: 

Initial Iteration: Introduce 3y  and drop 5y  

   3 2 5 0 0 0 
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cB yB xB y1 y2 y3 y4 y5 y6 

0 y4 4301 a  1 2 1 1 0 0 

0 y5 4602 a  3 0 2 0 1 0 

0 y6 4803 a  1 4 0 0 0 1 

  0 -3 -2 -5 0 0 0 

 

First Iteration: Introduce 
2y  and drop

4y  

cB yB xB y1 y2 y3 y4 y5 y6 

0 y4 200  -1/2 2 0 1 -1/2 0 

0 y5 230  3/2 0 1 0 1/2 0 

0 y6 480  1 4 0 0 0 1 

  1150 9/2 -2 0 0 5/2 0 

 

Second Iteration: Optimum Solution. 

cB yB xB y1 y2 y3 y4 y5 y6 

2 y2 100 -1/4 1 0 1/2 -1/4 0 

5 y3 230  3/2 0 1 0 1/2 0 

0 y6 80 -4 0 0 -2 1/2 1 

  1350 4 0 0 1 2 0 

 

Comparing it with the given optimal table, we get 

2/3,4/1 21  bb  and 43 b  

(Note that the values of 21,cc  are also readily available.) 

(iii) The dual problem is, 
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Minimize 331211

* wawawaz  , subject to the constraints:  

502,242,33 321321321  wwwwwwwww  

00,0 321  wandww  

The dual constraints associated with the starting primal variables 54 , xx  and 6x  and 

0,0 21  ww  and 03 w  

Thus we have the following information: 

Starting primal 

variables  
4x  5x  6x  

Left minus right sides 

of the associated dual 

constraint Net 

evaluation primal 

optimal table 

01 w  

1c  

02 w  

2c  

03 w  

0 

 

This using Rule 1 we get 

10 1

*

111  cwwc  

20 2

*

222  cwwc  

000
*

33  ww  

The optimal dual objective is Min. 
*

22

*

11

* 1350 wawaz   

Check Your Progress 

1. In dual simplex, the solution is always primal feasible and dual infeasible. 

2. In the dual simplex method, we maintain dual feasibility at every step and work to     

     achieve primal feasibility. 

3. in contrast, the primal simplex maintains primal feasibility and works toward dual feasibility 

(optimality). 

4. Which condition necessitates the use of the Dual Simplex Method? 

a) All constraints are of '≤' type with positive RHS. 

b) The initial basic solution is optimal but infeasible (negative RHS). 

c) The problem has multiple optimal solutions. 
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d) The objective function is to be minimized. 

5. In the Dual Simplex Method, the entering variable is chosen based on: 

a) The most negative value in the objective row (𝑍𝑗−𝐶𝑗) 

b) The most negative value in the RHS (Basic Variable) column. 

c) The ratio of the RHS value to the corresponding negative coefficient in the pivot row. 

d) The least positive value in the RHS column. 

6. What does a negative value in the RHS column of the final simplex tableau indicate in 

the Dual Simplex Method? 

a) Optimality has been reached. 

b) The solution is feasible. 

c) The current solution is infeasible, requiring further iterations. 

d) An alternative optimal solution exists. 

 

9.4 SUMMARY 

The summary of this unit are as follows: 

The Dual Simplex Method solves Linear Programming Problems (LPPs) by starting with 

an optimal but infeasible solution, unlike the standard Simplex Method which begins feasible 

and moves towards optimality. It works by iteratively removing the most negative basic 

variable (maintaining optimality) and introducing a new variable (maintaining dual 

feasibility) until all basic variables are non-negative, achieving both feasibility and 

optimality. It's ideal for situations where adding constraints (like in Integer Programming) 

makes the current solution infeasible but keeps the optimality conditions met. By contrast, 

the dual simplex method takes a reversed approach. Rather than starting from a feasible 

solution and moving towards optimality, it begins from a solution that would be optimal if the 

primal constraints were fully satisfied. In other words, the objective row is already optimal, 

but some RHS values are negative, indicating that the current solution is not primal feasible. 

The dual simplex method then works to eliminate these infeasibilities. Once feasibility is 

restored, the solution is guaranteed to be optimal. 

9.5  GLOSSARY 

 Duality 
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9.8  TERMINAL QUESTION 

Long answer type question: 

1. Solve the following LPP by using dual of the following problem 

Maximize, yxz 48   

Subject to, 

2442;3024  yxyx  

0, yx  

2. Solve the following LPP by using dual of the following problem 

Minimize, yxz 1015   

Subject to, 

325;553  yxyx  

0, yx  

https://www.openai.com/chatgpt
https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==
https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=ZLCHeZEhCZ8yCri36nSF3A==
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3. Solve the following LPP by using dual of the following problem 

Maximize, yxz 25   

Subject to, 

42;1234;66  yxyxyx  and 0, yx  

4. Solve the following LPP by using dual of the following problem 

Maximize, zyxz  92  

Subject to, 

;423;524  zyxzyx  and 0,, zyx  

5. Solve the following LPP by using dual of the following problem 

Maximize, zyxz 35   

Subject to, 

;42;32  yxzyx  and 0,, zyx  

6. Solve the following LPP by using dual of the following problem 

Minimize, wzyxz  5410  

Subject to, 

;1505.0375  wzyx  and 0,,, wzyx  

7. Solve the following LPP by using dual of the following problem 

Maximize, wzyxz 23   

Subject to, 

73;1  zyxyx ; 23  wzx and 0,,, wzyx  

8. Solve the following LPP by using dual of the following problem 

Maximize, zyz 52   

Subject to, 
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03;662;2  zyxzyxzx  and 0,,, wzyx  

9.9  ANSWERS 

Answer of long answer type question 

1: Min ( 21

* 2430) xxz   

 Subject to, 0;0;442;824 212121  xxxxxx   

 The optimal solution is 61 w  and 32 w , max 60z  

2: The optimal solution is 19/51 w  and 19/162 w , min 19/235z  

3: Unbounded solution 

4: 01 w , 02 w  and  2/53 w ; min 2/5z  

5: Minimize 21

* 43)( xxz    

 Subject to, 3;52;12 12121  xxxxx   and 
2x  is unrestricted. 

 The optimal solution is 31 x  and 12 x , min 5* z . 

6: The optimal solution is 01 x ; 02 x ; 503 x ; 04 x ; min 250* z . 

7: Unbounded solution. 

8: Minimize 21

* 62 xxz   

 Subject to the constraint, 536;2;02 32132321  xxxxxxxx  and 

0,0 21  xx  and 3x is unrestricted in sign. 

 The optimal solution is 01 x ; 3/22 x ; 3/43 x ; min 4* z . 

Check Your Progress 

CYQ 1. True 

CYQ 2. True 

CYQ 3. True 

CYQ 4. (b) 
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CYQ 5. (c) 

CYQ 6. (c) 
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10.1 INTRODUCTION 
 

Sensitivity Analysis is a technique used to determine how the change 

in input parameters (like cost, resources, or profit coefficients) affects 

the optimal solution of a mathematical or decision-making model — 

especially in Linear Programming Problems (LPP). It helps to check 

how sensitive or stable the optimal solution is when there are small 

changes in the data or assumptions. 

Once the optimal solution to a linear programming problem has been 

attained, it may be desirable to study how the current solution changes 

when the parameters of the problem are changed. In many practical 

problems this information is much more important than the single 

result provided by the optimal solution. Such an analysis converts the 

static linear programming solution into a dynamic tool to study the 

effect of changing conditions such as in business and industry. 

The change in parameters of the problem may be discrete or 

continuous. The study of the effect of discrete changes in parameters 

on the optimal solution is called sensitivity analysis or post optimality 

analysis, while that of continuous changes in parameters is called 

parametric programming.  
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This figure is a concept diagram explaining what Sensitivity Analysis 

studies in a mathematical or optimization model (such as Linear 

Programming). The central circle is Sensitivity Analysis, and the four 

surrounding circles show the main components whose changes are 

analyzed 

10.2 OBJECTIVES 

 
After studying this unit learner will be able  

 

1. Understand the concept of Sensitivity Analysis. 

2. Explain the importance of Sensitivity Analysis in evaluating the 

stability. 

3.  To Determine the range of optimality for objective function 

coefficients. 

4. To Apply Sensitivity Analysis tools in managerial decision-

making and resource allocation. 

 

10.3 CHANGES IN THE RIGHT-HAND SIDE 

OF THE CONSTRAINTS bi 

Suppose that an optimal solution to a linear programming problem 

has already been found and it is desired to find the effect of 

increasing or decreasing some resource. Clearly, this will affect not 

only the objective function but also the solution. Large changes in 

the limiting resources may even change the variables in the solution. 

Examples:10.3.1 (a) Solve the problem 
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𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞𝒁 = 𝟓𝒙𝟏 + 𝟏𝟐𝒙𝟐 + 𝟒𝒙𝟑

 subject to 𝒙𝟏 + 𝟐𝒙𝟐 + 𝒙𝟑 ≤ 𝟓

𝟐𝒙𝟏 − 𝒙𝟐 + 𝟑𝒙𝟑 = 𝟐

𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ≥ 𝟎

 

(b) Discuss the effect of changing the requirement vector from 

[𝟓
𝟐

] to [
𝟕
𝟐

] on the optimum solution. 

(c) Discuss the effect of changing the requirement vector from 

[𝟓
𝟐

] to [
𝟑
𝟗

] on the optimum solution. 

(d) Which resource should be increased and how much to 

achieve the best marginal increase in the value of the objective 

function? 

(e) Which resource should be decreased and how much to 

achieve the best marginal increase in the value of the objective 

function? 

Solution 

(a) The standard form of this problem is 

maximize Z = 5𝑥1 + 12𝑥2 + 4𝑥3 + 0𝑠1 − MA1, 

subject to  𝑥1 + 2𝑥2 + 𝑥3 + 𝑠1 = 5, 

2𝑥1 − 𝑥2 + 3𝑥3 + A1 = 2

𝑥1, 𝑥2, 𝑥3, 𝑠1,  A1 ≥ 0
 

Putting 𝑥1 = 𝑥2 = 𝑥3 = 0 in the constraint equations, we get 𝑠1 = 5 

and A1 = 2 as the initial basic solution which can be expressed in 

the form of a simple matrix or table10.3.1-1 

CB  Objective 

function 

𝑐𝑗  

5 12 4 0 -M  

0  variables 

in current 

solution 

𝑥1 𝑥2 𝑥3 𝑠1 A1 b 

0  S1 1 2 1 1 0 5 

-M  A1 2 -1 3 0 1 2 

   Initial basic feasible solution to the 

artificial system 

First Iteration: (i) Perform optimality test. 
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Table10.3.1-2 

𝑐𝑗  5 12 4 0 -M 𝑏  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1  A1 5  

0 𝑠1 1 2 1 1 0 5 
2𝛽 
key 

row 

-M A1  2 -1 (3) 0 1 2  

E𝑗

= Σ𝑐B
𝑎𝑖𝑗  

 -2 M M -3 M 0 -M   

𝑐𝑗

= 𝑐𝑗

− E𝑗 

 5 + 2M 12 − M 4 + 3M 0 0  𝑐𝑗E𝑗 

(ii) Make key element unity. 

Table 10.3.1-3 

𝑐8 c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1  A1 𝑏  

0 𝑠1 1 2 1 1 0 5  

-M A1 2/3 
−1
/3 

(1) 0 1/3 2/3 

Key 

element 

unity 

(ii) Replace A1 by 𝑥3. 

Table 10.3.1-4 

 𝑐𝑗 5 12 4 0 -M 𝑏           𝜃 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1  A1 13/3 
13/7  

←Key row 

0 𝑠1 1/3 (7/3) 0 1 
-

1/3 
2/3 −2 

4 𝑥3 2/3 -1/3 1 0 1/3   
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E𝑗

= Σ𝑐B
𝑎𝑖𝑗  

 8/3 -4/3 4 0 4/3   

𝑐𝑗̅

= 𝑐𝑗

− E𝑗 

 7/3 
40/3 

 
0 0 

-

M-
4

3
 

  

                                                 ↑ 𝐾                         Second feasible solution        

Second Iteration. (i) Make key element unity. . 

Table 10.3.1-5 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1 A1 𝑏 

0 𝑠1 
1

7
 (1) 0 

3

7
 −

1

7
 

13

7
 

4 𝑥3 
2

3
 −

1

3
 1 0 

1

3
 

2

3
 

       Key element unity 

(ii) Replace 𝑠1 by 𝑥2. 

Table 10.3.1-6 

 𝑐𝑗 5 12 4 0 -M 𝑏 𝜃 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1  A1 13/7 13 

12 𝑠1 1/7 1 0 3/7 -1/7 9/7 
9/

5 ←Key 

row 

4 𝑥3 5/7 0 1 1/7 2/7   

E𝑗

= Σ𝑐B
𝑎𝑖𝑗  

 32/7 12 4 40/7 -4/7   

𝑐𝑗̅

= 𝑐𝑗

− E𝑗 

 3/7 
4 

 
0 

-

40/7 
-M-

4

7
   

↑ 𝐾                                                   Third feasible solution 

Third Iteration. (i) Make key element unity. 
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Table 10.3.1-7 

 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1  A1 𝑏 

12 𝑥2 1/7 1 0 3/7 -1/7 13/7 

4 𝑥3 (1) 0 7/5 1/5 2/5 9/5 

Key 

element 

(ii) Replace 𝑥3 by 𝑥1. 

Table 10.3.1-8 

 Cj 5 12 4 0 -M 𝑏 

CB c.s.v 𝒙𝟏 𝑥2 𝑥3 𝑠1 A1 

12 𝑥2 0 1 −
1

5
 

2

5
 −

1

5
 

8

5
 

5 𝑥1 1 0 
7

5
 

1

5
 

2

5
 

9

5
 

E𝑗

= Σ𝒄𝐁𝑎𝑖𝑗 
 5 12 

23

5
 

29

5
 −

2

5
 

 

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 0 0 −
3

5
 −

29

5
 

−M

+
2

5
 

 

                                                                                                                                                     

Optimal feasible solution 

 

Thus, the optimal solution is 𝑥1 = 9/5, 𝑥2 = 8/5, 𝑥3 = 0, 

𝑍max = 5 × 9/5 + 12 × 8/5 + 0 = 141/5. 

(b) New values of the current basic variables are given by 

[
𝑥2

𝑥1
] = 𝐁−1𝐛 = [

2

5
−

1

5
1

5

2

5

] [
7
2

] = [

14

5
−

2

5
7

5
+

4

5

] = [

12

5
11

5

]. 

Since both 𝑥1 and 𝑥2 are non-negative, the current basic solution 

consisting of 𝑥1 and 𝑥2 remains feasible and optimal at the new 

values 𝑥1 = 11/5, 𝑥2 = 12/5 and 𝑥3 = 0. The new optimum value 

of Z is 5 × 11/5 + 12 × 12/5 + 4 × 0 = 199/5. 

(c) New values of the current basic variables are 
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[
𝑥2

𝑥1
] = 𝐁−1𝐛 = [

2

5
−

1

5
1

5

2

5

] [
3
9

] = [

6

5
−

9

5
3

5
+

18

5

] = [
−

3

5
21

5

]. 

Since 𝑥2 becomes −𝑣𝑒, the current optimal solution becomes 

infeasible. As discussed dual simplex method may be used to clear 

infeasibility of the problem. Table 6.44 is modified and written as 

below. 

Table 10.3.1-9     

 Cj 5 12 4 0 -M 𝑏 

CB c.s.v 𝒙𝟏 𝑥2 𝑥3 𝑠1 A1 

12 𝑥2 0 1 −
1

5
 

2

5
 −

1

5
 

−3

5
key row 

5 𝑥1 1 0 
7

5
 

1

5
 

2

5
 

21

5
 

E𝑗

= Σ𝒄𝐁𝑎𝑖𝑗 
 5 12 

23

5
 

29

5
 −

2

5
 

 

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 0 0 −
3

5
 −

29

5
 

−M

+
2

5
 

 

 ↑k                                        

 

As 𝑏1 = −
3

5
, the first row is the key row and 𝑥2 is the outgoing 

variable. Find the ratios of nonbasic elements of 𝑐𝑗 row to the elements 

of key row. Neglect the ratios corresponding to positive or zero 

elements of key row and choose the lowest ratio. The desired ratio is 
−3/5

−1/5
= 3. Hence ' 𝑥3 '-column is the key column, 𝑥3 is the incoming 

variable and (−
1

5
) is the key element. Make the key element unity. 

This is shown in table 10.3.1-10 

Table 10.3.1-10 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑠1  A1 𝑏 

12 𝑥2 0 -5 (1) -2 1 3 

5 𝑥1 1 0 
7

5
 

1

5
 

2

5
 

21

5
 

       Key element unity 
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Replace 𝑥2 by 𝑥3. This is shown in table 6.47. 

Table 10.3.1-11 

 Cj 5 12 4 0 -M 𝑏 

CB c.s.v 𝒙𝟏 𝑥2 𝑥3 𝑠1 A1 

4 𝑥3 0 -5 1 -2 1 3 

5 𝑥1 1 7 0 
1

5
 -1 0 

E𝑗

= Σ𝒄𝐁𝑎𝑖𝑗 
 5 15 4 

29

5
 −1 

 

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 0 -3 0 −
29

5
 

−𝑀
+ 1 

 

 

As all elements in 𝑐‾𝑗 row are negative or zero and all 𝑏𝑖 are positive, 

the solution given by table 6.47 is optimal. The optimal solution is 

𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 3

𝑍max = 5(0) + 12(0) + 4 × 3 = 12
 

(d) In order to find the resource that should be increased (or 

decreased), we shall write the final objective function, which is 

G = 5𝑦1 + 2𝑦2, 

where 𝑦1 = 29/5 and 𝑦2 = −2/5 are the optimal dual variables. 

Thus the first resource should be increased as each additional unit of 

the first resource increases the objective function by 29/5. Next we 

are to find how much the first resource should be increased so that 

each additional unit continues to increase the objective function by 

29/5. This requirement will be met so long as the primal problem 

remains feasible. If Δ be the increase in the first resource, it can be 

determined from the condition 

[
𝑥2

𝑥2
] = 𝐁−1𝐛 = [

2/5 −1/5
1/5 2/5

] [5 + Δ
2

] 

= [
10/5 + 2Δ/5 − 2/5

5/5 + Δ/5 + 4/5
] = [

8+2Δ

5
9+Δ

5

] ≥ [
0
0

]. 

As 𝑥1 and 𝑥2 remain feasible ( ≥ 0 ) for all values of Δ > 0, the first 

resource can be increased indefinitely while maintaining the condition 

that each additional unit will increase the objective function by 29/5. 
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(e) The second resource should be decreased as each additional unit 

of the second resource decreases the objective function by 2/5. Let Δ 

be the decrease in the second resource. To find its extent, we make 

use of the condition that the current solution remains feasible so long 

as 

[
𝑥2

𝑥1
] = 𝐁−1𝐛 = [

2/5 −1/5
1/5 2/5

] [ 5
2 − Δ

] 

= [
10/5 − 2/5 + 2Δ/5
5/5 + 4/5 − 2Δ/5

] = [

8+Δ

5
9−2Δ

5

] ≥ [
0
0

]. 

Evidently 𝑥1 remains positive only so long as 
9−2Δ

5
≥ 0 or Δ ≤ 9/2. 

If Δ > 9/2, 𝑥1 becomes negative and must leave the solution. 

10.4 CHANGES IN THE COST COEFFICIENTS 
 

Changes in the coefficients of the objective function may take place 

due to a change in cost or profit of either basic variables or non-basic 

variables. Each of these two cases will first be considered separately. 

The discussion, will then, be followed by a combined case. All the 

three cases will be studied by considering an example. 

A company wants to produce three products A, B and C . The unit 

profits 

EXAMPLE 10.4.1 

on these products are Rs. 4, Rs. 6 and Rs. 2 respectively. These 

products require two types of resources-man-power and material. 

The following L.P. model is formulated for determining the 

optimal product mix: 

 Maximize 𝒁 = 𝟒𝒙𝟏 + 𝟔𝒙𝟐 + 𝟐𝒙𝟑,
 subject to 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 ≤ 𝟑, (man-power) 

𝒙𝟏 + 𝟒𝒙𝟐 + 𝟕𝒙𝟑 ≤ 𝟗, (material) 

𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ≥ 𝟎,

 

Where 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 are the 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ≥ 𝟎, 

(a) Find the optimal product mix and the corresponding profit to 

the 

(b) (i) Find the range on the values of non-basic variable 

coefficient 𝒄𝟑 company. such that the current optimal product 

mix remains optimal. 

(ii) What happens if 𝒄𝟑 is increased to Rs. 12? What is the new 

optimal product mix in this case? 
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(c) (i) Find the range on basic variable coefficient 𝒄𝟏 such that the 

current optimal product mix remains optimal. 

(ii) Find the effect when 𝒄𝟏 = Rs. 8 on the optimal product mix. 

(d) Find the effect of changing the objective function to 𝒁 = 𝟐𝒙𝟏 +
𝟖𝒙𝟐 + 𝟒𝒙𝟑 on the current optimal product mix. 

 

Solution. The standard form of the problem is 

maximize𝑍 = 4𝑥1 + 6𝑥2 + 2𝑥3 + 0𝑥4 + 0𝑥5

 subject to 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 3

𝑥1 + 4𝑥2 + 7𝑥3 + 𝑥5 = 9

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0

 

Putting 𝑥1 = 𝑥2 = 𝑥3 = 0 in the constraint equations, we get 𝑥4 = 3 

and 𝑥5 = 9 as the initial basic feasible solution which can be 

expressed in the form of a simple matrix or table shown below. 

Table 10.4.1-1 

 𝑐𝑗 4 6 2 0 0  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 

0 𝑥4 1 1 1 1 0 3 

0 𝑥5 1 4 7 0 1 9 

                                                            Initial basic feasible solution 

First Iteration: Perform optimally test 

Table 10.4.1-2 

 𝑐𝑗 4 6 2 0 0   

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 𝜃 

0 𝑥4 1 1 1 1 0 3 3 

0 𝑥5 1 (4) 7 0 1 9 
9/4←

𝐾𝑒𝑦 𝑟𝑜𝑤 

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 0 0 0 0 0  
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𝑐𝑗

= 𝑐𝑗

− E𝑗 

 4 6 2 0 0  

 

                                          ↑ 𝐾                  Initial basic feasible solution 

(ii) Make Key element unity 

Table 10.4.1-3 

𝑐B 𝑐𝑗 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 

0 𝑥4 1 1 1 1 0 3 

0 𝑥5 1/4 (1) 7/4 0 1/4 9/4 

                                                   Key element 

(iii) Replace 𝑥5 by 𝑥2. 

Table 10.4.1-4 

 𝑐𝑗 4 6 2 0 0   

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 𝜃 

0 𝑥4 (3/4) 0 -3/4 1 -1/4 3/4 1 

6 𝑥2 1/4 1 7/4 0 1/4 9/4 
9
← 𝐾𝑒𝑦 𝑟𝑜𝑤 

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 3/2 6 21/2 0 3/2  

 

𝑐𝑗

= 𝑐𝑗

− E𝑗 

 5/2 0 -17/2 0 -3/2  

 

                                  ↑ 𝐾                                        Second feasible solution 

Second Iteration: (i) Make key element unity. 

Table 10.4.1-5 

𝑐B 𝑐𝑗 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 
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0 𝑥4 1 0 -1 4/3 -1/3 1    

6 𝑥2 1/4 1 7/4 0 1/4 9/4 

                                                                              Key element unity 

(ii) Replace 𝑥4 by 𝑥1 

Table 10.4.1-6 

 𝑐𝑗 4 6 2 0 0  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 

4 𝑥1 1 0 -1 4/3 -1/3 1 

6 𝑥2 0 1 2 -1/3 1/3 2 

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 4 6 8 10/3 2/3  

𝑐𝑗

= 𝑐𝑗

− E𝑗 

 0 0 -6 
-

10/3 
-2/3  

                                                   Optimal feasible solution 

 

∴ Optimal solution is 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 0 and 𝑍max = Rs. (4 ×
1 + 6 × 2 + 2 × 0 ) = Rs. 16. 

Effect of changing the objective function coefficient of a nonbasic 

variable 

(b) (i) The coefficient 𝑐3 corresponds to the non-basic variable 𝑥3 for 

product C . In the optimal product mix shown in table 10.4.1-6 , 

product C is not produced because of the low associated profit of Rs. 

2 per unit ( 𝑐3 ). Clearly, if 𝑐3 further decreases, it will have no effect 

on the current optimal product mix. However, if 𝑐3 is increased 

beyond a certain value, it may become profitable to produce 

As a rule, the sensitivity of the current optimal solution is determined 

by the product C . studying how the current optimal solution given in 

table 10.4.1-6 changes as a result of changes in the input data. When 

value of 𝑐3 changes, the value of net evaluation (relative profit 

coefficient) of the non-basic variable 𝑥3 i.e., 𝑐‾3 in table 10.4.1-6 also 

changes. The table will remain optimal as long as 𝑐‾3 remains 
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nonpositive. 

∴ For table 6.53 to remain optimal, 𝑐‾3 ≤ 0 

or 

𝑐3 − (4,6) [
−1
2

] ≤ 0 

This means that as long as the unit profit of product C is less than 

Rs. 8, it 

or 𝑐3 − (−4 + 12) ≤ 0, or 𝑐3 ≤ 8. is not profitable to produce it. 

(ii) If 𝑐3 = 12, 𝑐‾3 = 𝑐3 − (4,6) [
−1
2

] 

or 𝑐‾3 = 12 − (−4 + 12) = 12 − 8 = +4. 

As 𝑐‾3, becomes positive, the current product mix given by table 

10.4.1-6 does not remain optimal. The optimum profit can be 

increased further by producing product C. Non-basic variable 𝑥3 can 

enter the solution to increase Z. This is shown in table 10.4.1-7. 

Table 10.4.1-7 

𝑐B 

𝑐𝑗 

c.s.v. 

4 6 12 0 0   

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 𝜃 

4 𝑥1 1 0 -1 
4

3
 −

1

3
 1 -1 

6 𝑥2 0 1 (2) −
1

3
 

1

3
 2 1 

E, = Σ𝑐B𝑎𝑖ij  4 6 8 
10

3
 

2

3
   

𝑐‾𝑗 = 𝑐𝑗 − E𝑗  0 0 4 −
10

3
 −

2

3
   

    ↑ K     

 

First Iteration. (i) Make key element unity. 

Table 10.4.1-8 

𝑐3 c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 

4 𝑥1 1 0 -1 
4

3
 −

1

3
 1 
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6 𝑥2 0 
1

2
 (1) −

1

6
 

1

6
 1 

       Key element unity 

(ii) Replace 𝑥2 by 𝑥3. 

Table 10.4.1-9 

 𝑐𝑗 4 6 2 0 0  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 

4 𝑥1 1 1/2 0 7/6 -1/6 2 

12 𝑥3 0 1/2 1 -1/6 1/6 1 

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 4 8 12 8/3 4/3  

𝑐𝑗

= 𝑐𝑗

− E𝑗 

 0 -2 0 -8/3 -4/3  

                                                   Optimal feasible solution 

 

∴. New optimal product mix is 𝑥1 = 2, 𝑥2 = 0, 𝑥3 = 1 and 𝑍max = 

Rs. (4 × 2 + 6 × 0 + 12 × 1 ) = Rs. 20. 

Effect of changing the objective function coefficient of a basic 

variable 

(c) (i) Clearly, when 𝑐1 decreases below a certain level, it may no 

longer remain profitable to produce product A . On the other hand, if 

𝑐1 increases beyond a certain value, it may become so profitable that 

it is most paying to produce only product A . In either case the optimal 

product mix will change and hence there is lower as well as upper 

limit on 𝑐1 within which the optimal product mix will not be affected. 

Referring again to table 10.4.1-6, it can be seen that any variation in 

𝑐1 (and/or in 𝑐2 also) will not change 𝑐‾1 and 𝑐‾2 (i.e., they remain zero), 

while 𝑐‾3, 𝑐‾4, 𝑐‾5 will change. However, as long as 𝑐‾𝑗(𝑗 = 3,4,5) remain 

non-positive, table 10.4.1-6 will remain optimal. 𝑐‾3, 𝑐‾4 and 𝑐‾5 can be 

expressed as functions of 𝑐1 as follows: 
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𝑐‾3 = 2 − (𝑐1, 6) [−1
2

] = 2 − (−𝑐1 + 12) = 𝑐1 − 10,

𝑐‾4 = 0 − (𝑐1, 6) [

4

3

−
1

3

] = 0 − (
4

3
𝑐1 − 2) = −

4

3
𝑐1 + 2,

𝑐‾5 = 0 − (𝑐1, 6) [
−

1

3
1

3

] = 0 − (−
1

3
𝑐1 + 2) =

1

3
𝑐1 − 2.

 

For 𝑐‾3 to be ≤ 0, 𝑐1 − 10 ≤ 0 or 𝑐1 ≤ 10, 

for 𝑐‾4 to be ≤ 0, −
4

3
𝑐1 + 2 ≤ 0 or 𝑐1 ≥

3

2
, 

for 𝑐‾5 to be ≤ 0,
1

3
𝑐1 − 2 ≤ 0 or 𝑐1 ≤ 6. 

∴ Range on 𝑐1 for the optimal product mix to remain optimal is 
3

2
≤

𝑐1 ≤ 6. 

Thus so long as 𝑐1 lies within these limits, the optimal solution in 

table 6.53 viz ., 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 0 remains optimal. However, 

within this range, as the value of 𝑐1 is changed, 𝑍max  undergoes a 

change. For example, when 𝑐1 = 3, 𝑍max = Rs. (3 × 1 + 6 × 2) = 

Rs. 15. 

(ii) When 𝑐1 = 8, 𝑐‾3 = 𝑐1 − 10 = 8 − 10 = −2, 

𝑐‾4 = −4𝛽𝑐1 + 2 = −4/3 × 8 + 2 = −26/3,

𝑐‾5 = 1/3𝑐1 − 2 = 8/3 − 2 = +2/3,

𝑐‾1 = 𝑐‾2 = 0.

 

As 𝑐‾5 becomes positive, the solution given in table 10.4.1-6 no 

longer remains optimal. Slack variable 𝑥5 enters the solution. This is 

shown in table 10.4.1-7. 

Table 10.4.1-10 

𝒄𝐁                cj  

                          C.S.V.       

8 6 2 0 0  

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓  𝜽  

8 𝒙𝟏 1 0 -1 
4

3
 −

1

3
 1 -3  

6 𝒙𝟐 0 1 2 −
1

3
 (

1

3
)

3

 2 6 
← 
Key 

row 
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E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 8 6 4 

26

3
 −

2

3
    

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 0 0 -2 −
26

3
 

2

3
    

 

First Iteration. (i) Make key element unity. 

Table 10.4.1-11 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏  

8 𝑥1 1 0 -1 
4

3
 −

1

3
 1  

6 𝑥2 0 3 6 -1 (1) 6 Key element unity 

(ii) Replace 𝑥2 by 𝑠2 

Table 10.4.1-12 

 𝑐𝑗 8 6 2 0 0  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 

𝑐B 𝑥1 1 1 1 1 0 3 

8 𝑥5 0 3 6 -1 1 6 

0  4 8 12 8/3 4/3  

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 8 8 8 8 0  

𝑐𝑗

= 𝑐𝑗 − E𝑗  
 0 -2 -6 -8 0  

                                                   Optimal feasible solution 

 

Thus, the optimal product mix changes to 𝑥1 = 3 units with 𝑍max = 

Rs. 24. Effect of changing the objective function coefficients of 

basic as well as non-basic variable. 
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(d) The effect on the optimal product mix can be determined by 

checking whether the 𝑐‾𝑗 row in table 10.4.1-6 remains nonpositive. 

𝑐‾1 = 0,
𝑐‾2 = 0,

𝑐‾3 = 4 − (2,8) [
−1
2

] = 4 − (−2 + 16) = −10 < 0,

𝑐‾4 = 0 − (2,8) [

4

3

−
1

3

] = 0 − (
8

3
−

8

3
) = 0,

 

𝑐‾5 = 0 − (2,8) [
−

1

3
1

3

] = 0 − (
2

3
+

8

3
) = −2 < 0. 

Hence the optimal solution does not change. The optimal product 

mix remains 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 0 and 𝑍max = Rs. (1 × 2 + 2 ×
8 + 0 × 4) = Rs. 18. There is indication of an alternate optimal 

solution since 𝑐‾4 = 0. 

10.5 ADDITION OF A NEW VARIABLE 

let us suppose that Research and Development department of the 

company has proposed a fourth product D which requires 1 unit of 

manpower and 1 unit of material and earns a unit profit of Rs. 3 

when sold in the market. It is desired to find whether it is profitable 

to produce product D. 

Addition of this product in the already existing product mix is 

equivalent to addition of a new variable (say 𝑥4 ) and a column [
1
1

] in 

the initial Table 10.4.1-1. Now the present optimal product mix given 

by the table 10.4.1-6 remains optimal so long as the relative profit 

coefficient (net evaluation) of this new product, say 𝑐‾6 remains non-

positive. 

Now from the revised simplex method we know that 

𝑐‾6 = 𝑐6 − 𝐜B𝐏6 = 𝑐6 − 𝐜B ⋅ 𝐁−1𝐏6 = 𝑐6 − 𝜋𝐏6, 

where 𝑐6 = Rs. 3, 𝐏6 = [
1
1

] and 𝜋 is the simplex multiplier 

corresponding to the current optimal solution contained in Table 

10.4.1-6 and is given by 
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𝜋 = 𝐜B𝐁−1

 = (4,6) [

4

3
−

1

3

−
1

3

1

3

] = (
10

3
,
2

3
) .

∴  𝑐‾6 = 3 − (
10

3
,
2

3
) [

1
1

] = 3 − (
10

3
+

2

3
) = −1.

 

As 𝑐‾6 is non-positive, the present optimal solution does not change 

even after the product D is introduced. As product D cannot improve 

the present value of the maximum profit, it should not be produced. 

If, however, 𝑐‾6 turns out to be positive, it follows that product D can 

increase the value of maximum profit; simplex method can then be 

applied to find the new optimal solution. 

EXAMPLE 10.5.1 

Consider the problem 

maximize 𝑍 = 45𝑥1 + 100𝑥2 + 30𝑥3 + 50𝑥4,
 subject to 7𝑥1 + 10𝑥2 + 4𝑥3 + 9𝑥4 ≤ 1,200,

3𝑥1 + 40𝑥2 + 𝑥3 + 𝑥4 ≤ 800,

𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

 

The optimal table for this problem is given below. 

Table 10.5.1-1 

 𝑐𝑗 45 100 30 50 0 0  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑏 

30 𝑥3 
5

3
 0 1 

7

3
 

4

15
 −

1

15
 

800

3
 

  
1

30
 1 0 −

1

30
 −

1

150
 

2

75
 

40

3
 

100 𝑥2 
25

3
 0 0 −

50

3
 −

22

3
 −

2

3
  

         

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 −
25

3
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If a new variable 𝑥7 is added to this problem with a column [
10
10

] and 

𝑐7 = 120, find the change in the optimal solution. 

Solution 

𝑐‾7 = 𝑐7 − 𝐜𝐁𝐏7 = 𝑐7 − 𝐜𝐁 ⋅ 𝐁−1 ⋅ 𝐏7 = 𝑐7 − 𝜋𝐏7, 

where 𝑐7 = 120, 𝑃7 = [
10
10

] and 𝜋, the simplex multiplier 

corresponding to the original optimal solution in table 10.5.1-1 is 

given by 𝜋 = (𝜋1, 𝜋2) = 𝐜𝐁𝐁−1 = (30,100) [

4

15
−

1

15

−
1

150

2

75

] =

(
22

3
,

2

3
). 

 ∴  
𝑐‾7 = 𝑐7 − 𝜋P7 = 120 − (

22

3
,
2

3
) [

10
10

]

 = 120 − (
220

3
+

20

3
) = +40.

 Since 𝑐‾7 is positive 

 

Since 𝑐‾7 is positive, the existing optimal solution can be improved. 

Now  𝐏7 = 𝐁−1𝐏7 = [

4

15
−

1

15

−
1

150

2

75

] [
10
10

] = [
2
1

5

]. 

Now we start with the original optimal table (table 10.5.1-1) and add 

entries corresponding to variable 𝑥7 as follows: 

Table 10.5.1-2 

 𝑐𝑗 45 100 30 50 0 0 120   

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 b 𝜽 

30 𝑥3 5/3 0 1 7/3 4/15 
-

1/15 

2 800/3 400/3 

100 𝑥2 1/30 1 0 
-

1/30 

-

1/150 
2/75 

(1/5) 40/3 200/3←
𝐾𝑒𝑦 𝑟𝑜𝑤 
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𝑐𝑗

= 𝑐𝑗

− E𝑗  

 
-

25/3 
0 0 

-

50/3 
-22/3 -2/3 

+40 

↑ 𝐾 

  

Make key element unity. 

Table 10.5.1-3 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑏 

30 𝑥3 
5

3
 0 1 

7

3
 

4

15
 −

1

15
 2 

800

3
 

100 𝑥2 
1

6
 5 0 −

1

6
 −

1

30
 

2

15
 (1) 

200

3
 

Replace 𝑥2 by 𝑥7. 

Table 10.5.1-4 

 

 𝑐𝑗 45 100 30 50 0 0 120  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 b 

30 𝑥3 4/3 -10 1 8/3 1/3 -1/3 0 400/3 

120 𝑥7 1/6 5 0 
-

1/6 

-

1/30 
2/15 

1 200/3 

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 60 300 30 60 6 6 

120  

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 -15 
-

200 
0 -10 -6 -6 0 -15 

                                                        Optimal feasible solution 

 

Optimal feasible solution 

Since 𝑐‾𝑗 is negative, table 10.5.1-4 gives the optimal solution with 

𝑥3 = 400/3, 𝑥7 = 200/3 (basic variables), 𝑥1 = 𝑥2 = 𝑥4 = 𝑥5 =
𝑥6 = 0 (non-basic variables) and 𝑍max = 30 × 400/3 + 120 ×
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200/3 = 4,000 + 8,000 = 12,000. 

 

10.6 CHANGES IN THE COEFFICIENTS OF 

THE CONSTRAINTS AIJ 

When changes take place in the constraint coefficients of a non-basic 

variable in a current optimal solution, feasibility of the solution is not 

affected. The only effect, if any, may be on the optimality of the 

solution.  

However, if the constraint coefficients of a basic variable get changed, 

things become more complicated since the feasibility of the current 

optimal solution may also be affected (lost). The basic matrix is 

affected, which, in turn, may affect all the quantities given in the 

current optimal table. Under such circumstances, it may be better to 

solve the problem over again. 

EXAMPLE 10.5.2 

Find the effect of the following changes in the original optimal table 

10.5.1-1of problem 10.5.1 

(a) ' 𝑥1 '-column in the problem changes from [
7
3

] to [
7
5

]. 

. (b) ' 𝑥1 '-column changes from [
7
3

] to [
5
8

]. 

Solution 

(a) 𝑥1 is a nonbasic variable in the optimal solution. 

𝑐‾1 = 𝑐1 − 𝐜𝐁𝐏1 = 𝑐1 − 𝐜𝐁𝐁−1𝐏1

 = 𝑐1 − 𝜋𝐏1 ,  where 𝑐1 = 45, 𝐏1 = [
7
5

] ,
 

and  𝜋 = 𝐜𝐁𝐁−1 = (30,100) [

4

15
−

1

15

−
1

150

2

75

] = (
22

3
,

2

3
). 

∴  𝑐‾1 = 45 − (
22

3
,

2

3
) [

7
5

] = 45 − (
154

3
+

10

3
) = 45 −

164

3
= −

29

3
. 

Since 𝑐1 remains non-positive, the original optimum solution 

remains optimum for the new problem also. 

(b)  𝑐‾1 = 𝑐1 − 𝐜𝐁𝐏1 = 𝑐1 − 𝐜𝐁𝐁−1𝐏1 

= 𝑐1 − 𝜋P1 = 45 − (
22

3
,
2

3
) [

5
8

] = 45 − (
110

3
+

16

3
) = +3 
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As 𝑐‾1 is positive, the existing optimum solution can be improved. 

Now 𝐏1 = 𝐁−1𝐏1 = [

4

15
−

1

15

−
1

150

2

75

] [5
8

] = [

4

75
27

150

]. 

Now we start with the original optimal table (table 10.5.1-1 and 

incorporate the changes due to variable 𝑥1.  

Table 10.5.2.1 

 𝑐𝑗 45 100 30 50 0 0   

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b θ 

30 𝑥3 4/5 0 1 7/3 4/15 
-

1/15 

800/3 1000/3 

120 𝑥2 27/150 1 0 
-

1/30 

-

1/150 
2/75 

40/3 2000/27←
𝐾𝑒𝑦 𝑟𝑜𝑤 

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 
+3 

↑ 𝐾 
0 0 

-

50/3 
-22/3 -2/3   

Make key element unity. 

 Table 10.5.2.2 

c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b 

𝑥3 4/5 0 1 7/3 4/15 
-

1/15 

800/3 

𝑥2 1 150/27 0 
-

5/27 

-

1/27 
4/27 

2000/27 

                                                     Key Unity Element 

Replace 𝑥2 by 𝑥1. 

Table 10.5.2.3 

 𝑐𝑗 45 100 30 50 0 0  

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b 
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30 𝑥3 0 -40/9 1 67/27 8/27 
-

5/27 

5600/27 

120 𝑥1 1 50/9 0 -5/27 
-

1/27 
4/27 

2000/27 

E𝑗

= Σ𝑐B𝑎𝑖𝑗 
 45 350/3 30 595/9 65/9 10/9 

 

𝑐‾𝑗
= 𝑐𝑗

− E𝑗 

 0 -50/3 0 
-

145/9 

-

65/9 

-

10/9 
 

                                                             Optimal feasible solution 

 

Since 𝑐‾𝑗 is non-positive, table 10.5.2-3 gives the optimal solution with 

𝑥1 =
2,000

27
, 𝑥3 =

5,600

27
  (basic variables) 

𝑥2 = 𝑥4 = 𝑥5 = 𝑥6 = 0 (non-basic variables) 

𝑍max =
2,000

27
× 45 +

5,600

27
× 30 =

10,000

3
+

56,000

9
=

86,000

9

 

 

 

CHECK YOUE PROGRESS 

Problem 1: Obtain the optimum solution of the LPP 

Maximize 21 4515 xxZ   subject to the constraints: 

0,;50;16225;2406 2122121  xxxxxxx  

If maximum 2,1,  jxcz jj
 and 2c  is kept fixed at 45, 

determine how much can 1c  be changed without affecting the 

above optimal solution. 

Answer: Optimal solution: 3.13,1.27 21  xx ; Maximum 

1005z ; 5.1128.2 1  c  
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MULTIPLE CHOICE QUESTIONS 

1: Choose the correct correct option for the statement “post-optimal 

analysis is a technique to”  

            (a) Analyse how the optimal solution to a Linear Programming 

Problem (LPP) is affected by changes in the problem inputs. 

(b)  Distribute resources in the most effective way. 

(c)  Minimize the operational costs. 

(d)  Describe the relationship between the dual problem and its 

primal. 

2: Addition of a new constraints in the existing constraints will 

ensure a 

            (a) Change in the coefficient 
ija . 

(b)  Change in the objective function coefficient 
jc . 

(c)  Both (a) and (b). 

(d)  Neither (a) nor (b) 

           3. To achieve the maximum marginal increase in the objective 

function value, it is advisable to increase the value of a resource with 

the highest shadow price  

            (a)   Smaller. 

(b)  larger. 

(c)  Both (a) and (b). 

(d)  Neither (a) nor (b) 

 Fill in the blanks: 

1. Post-optimality analysis study only the continuous changes in the 

parameter of ……………………. 

2. Optimum solution to an LPP is not very sensitive to the changes 

in the RHS values of the ……………… 
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3. The optimality of the current solution may be affected if right 

hand side of the constraints is ………… 

10.7 SUMMARY  

Sensitivity Analysis is an important part of Linear Programming and 

decision-making models. It studies how changes in the input data 

(such as profit coefficients, resource availability, or constraint values) 

affect the optimal solution of a problem. 

It helps decision-makers understand how stable or sensitive the 

current solution is when real-life conditions change. The analysis is 

performed after obtaining the optimal solution, so it is also called 

Post-Optimality Analysis. 

10.8 GLOSSARY 

Sensitivity Analysis: A method used to determine how changes in 

input values (like profit, cost, or resources) affect the optimal 

solution. 

Post-Optimality Analysis: Another name for sensitivity analysis; 

performed after obtaining the optimal solution to check its stability. 

Optimal Solution: The best possible solution that maximizes profit 

or minimizes cost in a Linear Programming Problem (LPP). 

Objective Function Coefficient: The numerical value (like profit or 

cost per unit) associated with a decision variable in the objective 

function. 

Range of Optimality: The range within which the coefficient of the 

objective function can change without altering the optimal solution. 

Range of Feasibility: The range of values for the right-hand side 

(RHS) of constraints within which the current solution remains 

feasible. 

Constraint: A condition or limitation (like labour hours, materials, 

or budget) that restricts the values of decision variables. 

Right-Hand Side (RHS): The constant term in a constraint that 

represents the total available resources. 
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10.11 TERMINAL QUESTIONS  
 

1. Determine the range within which 43 ,cc and 2b  can be varied 

while preserving the optimality of the current solution in the 

specified Linear Programming Problem (LPP). 

Maximize, zyxz 453   

Subject to the constraints, 

0,,;15423;1052;832  zyxzyxyxyx ; 

2.  In the given LPP 

Minimize, zyxz  63  
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Subject to the constraints, 

0,,;245;45;6  zyxzyxzyxzyx ; 

Solve the Linear Programming Problem (LPP) and analyze the impact 

of modifying the requirement vector from [6, 4, 24] to [6, 2, 12] on 

the optimal solution. 

3.  In the given LPP  

 Maximize, 4321 6434 xxxxz   

 Subject to, 622;8422 4314321  xxxxxxx ;  

 0,,,;833 43214321  xxxxxxxx  

(a) Identify the individual ranges for discrete changes in 

2212, aa and 23a  that are consistent with maintaining the 

optimal solution of the given LPP. 

(b) If 
11a is changed to 

1111 aa  , determine the allowable 

limit for the discrete change 
11a  in order to preserve the 

optimality of the current solution. 

 

10.12 ANSWERS 

      MCQ 1:(a) MCQ 2: (c) MCQ 3:(b) 

           TQ1.  5.1125.1 3  c ; 10.14 c ; 42.1775.3 2  b  

TQ2.  (a) ;10;0;14 321  xxx  Minimum 52z  

(b) ;5;0;7 321  xxx  Minimum = 26 

TQ3. (a) 
2212 )6/17(;)16/15( aa   and 23)8/1( a  

 (b) 21/173 11  a  

Fill in the blank question 

         1: LPP 2: Constraints 3: Changed 
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UNIT -11   PARAMETRIC LINEAR 

PROGRAMMING AND INTEGER 

PROGRAMMING 

    
CONTENTS: 
 

   11.1        Introduction 

   11.2       Objectives 

 11.3       Parametric Programming 

 11.4       Parametric Right-Hand-Side Problem 

 11.5       Integer Programming  

 11.6       Pure and Mixed integer Programming 

 11.7       Gomory’s all LPP Method 

 11.8       Factional cut Method all integer LPP 

 11.9       Branch and Bound Method 

 11.10     Summary  

 11.11     Glossary 

 11.12     References  

 11.13    Suggested Reading  

 11.14    Terminal Questions  

 11.15      Answers 

 
 

11.1 INTRODUCTION 
 

In real-world decision-making problems, the parameters used in a 

Linear Programming Problem (LPP) such as objective function 

coefficients, resource availability, or constraint values, may not 

always remain constant. To study how changes in these parameters 

affect the optimal solution, we use Parametric Linear Programming 

(PLP). 

Parametric Linear Programming is an extension of the standard LPP 

that analyses how the optimal solution changes when one or more 

parameters of the problem vary continuously within a specified range. 

It helps decision-makers understand the behaviour of the optimal 

solution under different scenarios without resolving the problem 

repeatedly. This concept is particularly useful in business, economics, 
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and engineering applications where input data may fluctuate due to 

uncertain market or resource conditions. 

 

11.2 OBJECTIVES 

 
After studying this unit learner will be able  

1. To Understand the concept of Parametric Linear Programming 

and how it extends the traditional LPP. 

2. To Explain the need for studying the effect of changing 

parameters in an optimization model. 

3. To Analyse how variations in objective function coefficients or 

constraint values influence the optimal solution. 

4. To Determine the range of parameter values for which the 

current optimal solution remains valid. 

11.3 PARAMETRIC PROGRAMMING 

In previous unit on sensitivity analysis discussed the effect of discrete 

changes in the input coefficients of the linear programming problem 

on its optimal solution. However, if there is continuous change in the 

values of these coefficients, none of the results derived in that section 

are applicable. Parametric linear programming investigates the effect 

of predetermined continuous variations of these coefficients on the 

optimal solution. It is simply an extension of sensitivity analysis and 

aims at finding the various basic solutions that become optimal, one 

after the other, as the coefficients of the problem change continuously. 

The coefficients change as a linear function of a single parameter, 

hence the name parametric linear programming for this computational 

technique. As in sensitivity analysis, the purpose of this technique is 

to reduce the additional computations required to obtain the changes 

in the optimal solution.  

Let the linear programming problem before parameterization be 

minimize 𝑍 = 𝐂𝐗, subject to 𝐀𝐗 = 𝐛, 

𝑋 ≥ 0, 

where 𝐂 is the given cost vector. 

Let this cost vector change to 𝐂 + 𝜆𝐂′ so that the parametric cost 

problem becomes 
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minimize𝑍 = (𝐂 + 𝜆𝐂′)𝐗,
 subject to 𝐀𝐗 = 𝐛,

𝐗 ≥ 𝟎,
 

where 𝐶′ is the given predetermined cost variation vector and 𝜆 is an 

unknown (positive or negative) parameter. As 𝜆 changes, the cost 

coefficients of all variables also change. We wish to determine the 

family of optimal solutions as 𝜆 changes from −∞ to +∞. 

This problem is solved by using the simplex method and sensitivity 

analysis. When 𝜆 = 0, the parametric cost problem reduces to the 

original L.P. problem; simplex method is used to find its optimál 

solution Let 𝐁 and 𝐗𝐁 represent the optimal basis matrix and the 

optimal basic feasible solution respectively for 𝜆 = 0. The net 

evaluations or relative cost coefficients are all non-negative 

(minimization problem) and are given by 

𝑐‾𝑗 = 𝑐𝑗 − E𝑗 = 𝑐𝑗 − Σ𝒄𝐁𝑎𝑖𝑗 = 𝑐𝑗 − 𝐜𝐁𝐏𝑗, 

where 𝐜𝐁 is the cost vector of the basic variables and 𝐏𝑗 is the 𝑗 th 

column (corresponding to the variable 𝑥𝑗 ) in the optimal table. 

As 𝜆 changes from zero to a positive or negative value, the feasible 

region and values of the basic variables 𝐗𝐁 remain unaltered, but the 

relative cost coefficients change. For any variable 𝑥𝑗, the relative cost 

coefficient is given by 

𝑐‾𝑗(𝜆) = (𝑐𝑗 + 𝜆𝑐𝑗
′) − (𝐜𝐁 + 𝜆𝐜𝐁

′ )𝐏𝑗

 = (𝑐𝑗 − 𝐜𝐁𝐏𝑗) + 𝜆(𝑐𝑗
′ − 𝐜𝐁

′ 𝐏𝑗) = 𝑐‾𝑗 + 𝜆𝑐‾𝑗
′
 

Since vectors 𝐂 and 𝐂′ are known, 𝑐‾𝑗 and 𝑐‾𝑗
′ can be determined. For 

the current minimization problem, 𝑐‾𝑗(𝜆) must be non-negative for the 

solution to be optimal [𝑐‾𝑗(𝜆) must be non-positive for a maximization 

problem]. Thus 

𝑐‾𝑗(𝜆) ≥ 0, or 𝑐‾𝑗 + 𝜆𝑐‾𝑗
′ ≥ 0. 

In other words, for a given solution, we can determine the range for 𝜆 

within which the solution remains optimal. 

 

Example 11.3.1 Consider the linear programming problem 
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maximize Z = 4𝑥1 + 6𝑥2 + 2𝑥3,
 subject to 𝑥1 + 𝑥2 + 𝑥3 ≤ 3,

𝑥1 + 4𝑥2 + 7𝑥3 ≤ 9,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

 

The optimal solution to this problem is given by the following table: 

Table 11.3.1-1 

 

 𝑐𝑗  

 

4 6 2 0 0 
 

 

CB c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 b 

4 
𝑥1 1 0 -1 

4

3
 -

1

3
 

1 

6 
𝑥2 0 1 2 −

1

3
 

1

3
 2 

E𝑗

= Σ𝑐B
𝑎𝑖𝑗  

 4 6 8 10/3 2/3  

𝑐𝑗

= 𝑐𝑗

− E𝑗 

 0 0 -6 -10/3 -2/3  

 

 

solve this problem if the variation cost vector 𝐂′ = (2, −2,2,0,0). 

Identify all critical values of the parameter 𝜆. 

Solution. The given parametric cost problem is 

maximize Z = (4 + 2𝜆)𝑥1 + (6 − 2𝜆)𝑥2 + (2 + 2𝜆)𝑥3 + 0𝑥4 + 0𝑥5

 subject to  1 + 𝑥2 + 𝑥3 + 𝑥4 = 3

 𝑥1 + 4𝑥2 + 7𝑥3 + 𝑥5 = 9

 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0

 

When 𝜆 = 0, the problem reduces to the L.P. problem, whose optimal 

solution is given by table 11.3.1-1. The relative profit coefficients in 

this optimal table are all non-positive. For values of 𝜆 other than zero, 

the relative profit coefficients become linear functions of 𝜆e To 

compute them we, first, add a new relative profit row called 𝑐‾′ 𝑗 row 

to table11.3.1-1 . This is shown in table Table 11.3.1-2 

Table 11.3.1-2 
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𝑐′ B 

 

𝑐′ 𝑗 

𝑐𝑗 

2 -2 2 0 0  

4 6 2 0 0  

c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 

4 𝑥1 1 0 -1 
4

3
 −

1

3
 1 

-2 

6 𝑥2 0 1 2 −
1

3
 

1

3
 2 

𝑐‾𝑗  0 0 -6 −
10

3
 −

2

3
 Z = 16 

𝑐‾′ 𝑗  0 0 8 −
10

3
 

4

3
 𝑍′ = −2 

 

In table 11.3.1-2, 𝑐‾′ 𝑗 is calculated just as 𝑐‾𝑗 row except that vector C 

is replaced by 𝐂′. For example, 

𝑐‾2 = 𝑐2 − E2 = 𝑐2 − Σ𝐜B𝑎𝑖2 = 𝑐2 − 𝐜B𝐏2

 = 6 − (4,6) [
0
1

] = 6 − 6 = 0

∴  𝑐‾1
′  = 𝑐1

′ − 𝐜B
′ 𝐏1

 = 2 − (2, −2) [
1
0

] = 0

𝑐‾2
′  = −2 − (2, −2) [0

1
] = 0

𝑐‾3
′ =2 − (2, −2) [

−1
2

] = 2 − (−2 − 4) = 8

 

𝑐‾4
′ = 0 − (2, −2) [

4

3

−
1

3

] = − (
8

3
+

2

3
) = −

10

3
,

𝑐‾5
′ = 0 − (2, −2) [

−
1

3
1

3

] = − (−
2

3
−

2

3
) =

4

3
,

𝑍′ = 1 × 2 − 2 × 2 = −2.

 

table 11.3.1-2, represents a basic feasible solution for the given 

parametric cost problem. It is given by 

𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 𝑥4 = 𝑥5 = 0. 
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Value of the objective function, 𝑍(𝜆) = 𝑍 + 𝜆𝑍′ = 16 − 2𝜆. 

The relative profit coefficients, which are linear functions of 𝜆, are 

given by 

𝑐‾𝑗(𝜆) = 𝑐‾𝑗 + 𝜆𝑐‾𝑗
′, 𝑗 = 1,2,3,4,5. 

table 11.3.1-2, will be optimal if 𝑐‾𝑗(𝜆) ≤ 0 for 𝑗 = 3,4,5. Thus we can 

determine the range of 𝜆 for which table 11.3.1-2, remains optimal as 

follows: 

𝑐‾3(𝜆) = 𝑐‾3 + 𝜆𝑐‾3
′ = −6 + 8𝜆 ≤ 0  or  𝜆 ≤ 3/4,

𝑐‾4(𝜆) = 𝑐‾4 + 𝜆𝑐‾4
′ = −

10

3
−

10

3
𝜆 ≤ 0  or  𝜆 ≥ −1,

𝑐‾5(𝜆) = 𝑐‾5 + 𝜆𝑐‾5
′ = −

2

3
+

4

3
𝜆 ≤ 0  or  𝜆 ≤

1

2
.

 

Thus 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 𝑥4 = 𝑥5 = 0 is an optimal solution for the 

given -parametric problem for all values of 𝜆 between -1 and 1/2 and 

𝑍max = 16 − 2𝜆. 

 For 𝜆 > 1/2, the relative profit coefficient of the non-basic variable 

𝑥5, 'namely 𝑐‾5(𝜆) becomes positive and table 11.3.1-2, no longer 

remains optimal. Regular simplex method is used to iterate towards 

optimality. 𝑥5 is the entering variable and computation of ' 𝜃 '-column 

indicates 𝑥2 to be the variable that leaves the basis matrix so that the 

key element is 1/3. The key element is made unity in table 11.3.1-2,  

Table 11.3.1-2, 

𝑐B
′  𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 

2 4 𝑥1 1 0 -1 
4

3
 −

1

3
 1 

-2 6 𝑥2 𝚥 3 6 -1 (1) 6 

 

Table 11.3.1-3 

𝑐′ B 
2 

0 

𝑐′ 𝑗 
 

2 -2 2 0 0 
 

𝑐𝑗 4 6 2 0 0 

𝑐B c.s.v. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 

4 𝑥1 1 1 1 1 0 3 

0 𝑥5 0 3 6 -1 1 6 
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 𝑐‾𝑗 0 2 -2 -4 0 𝑍 = 12 

 𝑐‾′ 𝑗 0 -4 0 -2 0 𝑍′ = 6 

 

Table 11.3.1-3 will be optimal if 𝑐‾𝑗(𝜆) ≤ 0, for 𝑗 = 2,3,4. 

Now  𝑐‾2(𝜆) = 𝑐‾2 + 𝜆𝑐‾′ 2 = 2 − 4𝜆 ≤ 0 ∴ 𝜆 ≥
1

2
, 

𝑐‾3(𝜆) = 𝑐‾3 + 𝜆𝑐‾3
′ = −2 ≤ 0,  which is true, 

𝑐‾4(𝜆) = 𝑐‾4 + 𝜆𝑐‾4
′ = −4 − 2𝜆 ≤ 0 ∴ 𝜆 ≥ −2.

 

∴ For all 𝜆 ≥
1

2
, the optimal solution is given by 

𝑥1 = 3, 𝑥2 = 𝑥3 = 𝑥4 = 0, 𝑥5 = 6 and 𝑍max = 12 + 6𝜆 

For 𝜆 < −1, the relative profit coefficient of the non-basic variable 

𝑥4 namely 𝑐‾4(𝜆) becomes positive and again table  no longer remains 

optimal. 𝑥4 becomes the entering variable and 𝑥1 the leaving variable. 

Key element is 4/3. This element is made unity in table 11.3.1-4  

Table 11.3.1-4 

𝑐′ B 
2 

𝑐𝐵 c.s.v. 𝑥1 𝒙𝟐 𝑥3 𝑥4 𝑥5 𝑏 

4 𝑥1 
3

4
 0 −

3

4
 (1) −

1

4
 

3

4
 

-2 6 𝑥2 0 1 2 −
1

3
 

1

3
 2 

Key element unity 

Table 11.3.1-5 

𝑐′ B 

𝑐𝑗  2 -2 2 0 0  

𝑐B c.s.v. 4 6 2 0 0  

  𝑥1 𝒙𝟐 𝑥3 𝑥4 𝑥5 𝑏 

 0 𝑥4 
3

4
 0 −

3

4
 1 −

1

4
 

3

4
 

-2 6 𝑥2 
1

4
 1 

7

4
 0 

1

4
 

9

4
 

  𝑐‾𝑗 
5

2
 0 −

17

2
 0 −

3

2
 𝑍 =

27

2
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  𝑐‾′ 𝑗 
5

2
 0 

11

2
 0  

1

2
 𝑍′ = −

9

2
 

 

Table 11.3.1-5 will be optimal if 𝑐‾𝑗(𝜆) ≤ 0 for 𝑗 = 1,3,5. 

Now 𝑐‾1(𝜆) = 𝑐‾1 + 𝜆𝑐‾1
′ =

5

2
+

5

2
𝜆 ≤ 0 ∴ 𝜆 ≤ −1, 

𝑐‾3(𝜆) = 𝑐‾3 + 𝜆𝑐‾3
′ = −

17

2
+

11

2
𝜆 ≤ 0 ∴ 𝜆 ≤

17

11
,

𝑐‾5(𝜆) = 𝑐‾5 + 𝜆𝑐‾5
′ = −

3

2
+

1

2
𝜆 ≤ 0 ∴ 𝜆 ≤ 3:

 

For all 𝜆 ≤ −1, the optimal solution is given by 

𝑥1 = 0, 𝑥2 =
9

4
, 𝑥3 = 0, 𝑥4 =

3

4
, 𝑥5 = 0 and 𝑍max =

27

2
−

9

2
𝜆. 

Thus tables 11.3.1 − 2,11.3.1 − 4  and 11.3.1-6 give families of 

optimal solutions for −1 ≤ 𝜆 ≤
1

2
, 𝜆 ≥

1

2
, and 𝜆 ≤ −1 respectively. 

 

11.4 PARAMETRIC RIGHT-HAND-SIDE 

PROBLEM 
 

The right-hand-side constants in a linear programming problem 

represent the limits in the resources and the outputs. In some practical 

problems all the resources are not independent of one another. A 

shortage of one resource may cause shortage of other resources at 

varying levels. Same is true for outputs also. For example, consider a 

firm manufacturing electrical appliance. A shortage in electric power 

will decrease the demand of all the electric items produced in varying 

degrees depending upon the electric energy consumed by them. In all 

such problems, we are to consider simultaneous changes in the right-

hand-side constants, which are functions of one parameter and study 

how the optimal solution is affected by these changes. 

Let the linear programming problem before parameterization be 

maximize𝐙 = 𝐜𝐗,
 subject to 𝐀𝐗 = 𝐛,

𝐗 = 0,
 

where 𝐛 is the known requirement (right-hand-side) vector. Let this 

requirement vector 𝐛 change to 𝐛 + 𝝀𝐛′ so that parametric right-

hand-side problem becomes 
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maximize𝑍 = 𝐜𝐗,
 subject to 𝐀𝐗 = 𝐛 + 𝜆𝐛′,

𝐗 ≥ 0,
 

Where 𝐛′ is the given and predetermined variation vector and 𝜆 is an 

unknown parameter. As 𝜆 changes, the right-hand-constants also 

change. We wish to decrmine the family of optimal solutions as 𝜆 

changes from −∞ to +∞. 

When 𝜆 = 0, the parametric problem reduces to the original L. P. 

problem; simplex method is used to find its optimal solution. 

Let 𝐁 and 𝐗𝐁 represent the optimal basis matrix and the optimal basic 

feasible solution respectively for 𝜆 = 0. Then 𝐗B = 𝐁−1𝐛. As 𝜆 

changes from  260 to a positive or negative value, the values of the 

basic variables change and the new values are given by 

𝐗𝐁 = 𝐁−1(𝐛 + 𝜆𝐛′) = 𝐁−1𝐛 + 𝜆𝐁−1𝐛′

 = 𝐛 + 𝜆𝐛
′  

A change in 𝜆 has no effect on the values of relative profit coefficients 

𝑐‾𝑗 i.e., 𝑐‾𝑗 values remain non-positive (maximization problem). For a 

given basis matrix 𝐁, values of 𝐛 and 𝐛
′
 can be calculated. The 

solution 𝐗𝐁 = 𝐛 + 𝜆𝐛
′
 is feasible and optimal as long as 𝐛 + 𝜆𝐛

′
 is 

≥ 0. In other words, for a given solution we can determine the range 

for 𝜆 within which the solution remains optimal. 

11.5 INTEGER PROGRAMMING 

Integer programming is a specialized branch of mathematical 

optimization that focuses on problems where some or all of the 

decision variables are required to be integers. This is particularly 

important in situations where fractional solutions are not practical or 

possible, such as in scheduling, allocation, or logistics where 

quantities must be whole numbers. 

11.6 PURE AND MIXED INTEGER 

PROGRAMMING PROBLEMS 

Integer programming problems can be categorized into two main 

types: pure integer programming and mixed integer programming. 

Both types involve optimization where some or all of the decision 

variables are required to be integers. Here’s a closer look at each type: 
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Pure Integer Programming: In pure integer programming, all the 

decision variables are constrained to be integers. This type of problem 

is used when all variables in the optimization model must take on 

whole number values. 

Example 1: Consider a factory that produces two types of products 

(Product 1 and Product 2). The objective is to maximize the profit 

given the constraints on resources (e.g., labour, materials). 

Maximize:
21 74 xxZ   

Subject to: 1223 21  xx  

1535 21  xx  

0,0 21  xx ; Zxx 21,  

In this example, 
1x  and 

2x  represent the quantities of Product 1 and 

Product 2, respectively, and both must be integers. 

Mixed Integer Programming (MIP): In mixed integer 

programming, only some of the decision variables are required to be 

integers, while others can be continuous. This type of problem is 

useful when some decisions are inherently discrete (e.g., number of 

units produced), while others can vary continuously (e.g., amounts of 

resources used). 

Example 2: Consider a company that wants to determine the optimal 

production quantities for two products, where one of the products can 

be produced in fractional quantities (e.g., a liquid), and the other must 

be in whole units. 

Maximize:
21 74 xxZ   

Subject to: 1223 21  xx ; 1535 21  xx ; 01 x ; 02 x ; Zx 1
 

Here, 
1x  (the integer variable) might represent the number of whole 

units of a product, while 
2x  (the continuous variable) represents a 

product that can be produced in any amount. 

11.7 GOMORY’s ALL I.P.P. METHOD 

Gomory's All-Integer Programming Problem (All-I.P.P.) method is a 

technique used to solve integer programming problems. Developed 

by Ralph Gomory in the 1950s, this method is a cutting-plane 
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algorithm specifically designed to handle integer constraints. The 

general approach involves solving a series of linear programming 

relaxations and iteratively adding cuts (constraints) to eliminate non-

integer solutions, gradually converging to an integer solution. 

Steps in Gomory's All-I.P.P. Method 

1. Solve the Linear Programming Relaxation: Solve the original 

integer programming problem without the integer constraints, 

treating it as a standard linear programming problem. 

This step provides an optimal solution to the relaxed problem, which 

may not be an integer solution. 

2. Identify the Fractional Variables: Examine the optimal solution 

from the LP relaxation. Identify any decision variables that have 

non-integer values. 

3. Generate Gomory Cuts: Write the equation corresponding to the 

chosen fractional basic variable from the simplex tableau: 

ij

j

iji bxax   

 Isolate the fractional parts of the coefficients and the right-hand 

side: 
ij

j

iji bxaf   

The Gomory cut is derived as:     iij

j

ijij bbxaa   

Here,  .  denotes the floor function, which returns the greatest 

integer less than or equal to the given number. 

4. Add the Cut to the LP: Add the newly generated Gomory cut to 

the original set of constraints. 

This modifies the feasible region of the LP by cutting off the current 

non-integer solution. 

5. Re-Solve the LP: Solve the modified linear programming 

problem with the added cut. 

Repeat the process of generating cuts and re-solving until an integer 

solution is found. 

6. Check for Optimality: Once an integer solution is obtained, 

check if it is optimal. 
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If it is not optimal, further cuts might be necessary, or another branch-

and-bound approach may be combined to refine the solution. 

Example 3: Consider a simple integer programming problem 

Objective Function: Maximize 
21 23 xxZ   

Constraints: 

42 21  xx  

32 21  xx  

0, 21 xx  

Zxx 21,  

       Step-by-Step Illustration: 

1. Solve LP Relaxation: 

Relax the integer constraints and solve the LP problem. 

Suppose the optimal solution to the LP relaxation is 0.1,5.1 21  xx  

2. Identify Fractional Variables: 

The current solution is 5.11 x , which is fractional. 

3. Write the Equation for the Fractional Basic Variable: 

Suppose the optimal tableau provides the following equation for 
1x : 

5.15.0 21  xx  

4. Isolate the Fractional Parts: 

The fractional part of 5.11 x  is 0.5 

The equation can be written as: 5.15.05.0 2  x  

5. Generate the Gomory Cut: 
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The Gomory cut is derived as: 15.15.0 2 x  

Simplifying this, we get: 5.05.0 2 x 12  x  

6. Add the Gomory Cut to the Original Constraints: 

The new constraint 12 x  is added to the original set of constraints. 

This modifies the feasible region of the LP to exclude the current non-

integer solution. 

7. Re-Solve the LP: 

Solve the modified LP problem with the added cut. 

Repeat the process until an integer solution is found. 

Gomory's constraints are a powerful tool in integer programming, 

helping to iteratively eliminate non-integer solutions and converge to 

an optimal integer solution. The process involves generating cuts 

from the fractional parts of the basic variables in the optimal simplex 

tableau and adding these cuts to the set of constraints. This method is 

systematic and can be combined with other techniques like branch-

and-bound to solve complex integer programming problems 

efficiently. 

11.8 FRACTIONAL CUT METHOD-ALL 

INTEGER LPP 

The Fractional Cut Method is a technique used specifically for solving 

all-integer linear programming problems. It involves iteratively 

adding constraints (cuts) to eliminate non-integer solutions while 

preserving feasible integer solutions. Here's a detailed breakdown of 

the method: 

Steps in the Fractional Cut Method 

1. Solve the Linear Programming Relaxation: Solve the integer 

programming problem (IPP) by first relaxing the integer 

constraints, treating it as a linear programming problem (LPP). 

This provides an optimal solution to the relaxed problem. 

2. Identify Fractional Solutions: Examine the optimal solution of 

the LP relaxation. Identify which variables have fractional 



Linear Programming and Game Theory          Course code – MT(N)-223                                                           
 

Department of Mathematics  
Uttarakhand Open University Page 204 
 

values. If the solution is entirely integer, then it is already 

optimal. 

3. Generate Fractional Cuts: For each fractional solution, 

generate a cutting plane (cut) that eliminates the current 

fractional solution while keeping all feasible integer solutions. 

The cut is derived from the simplex tableau. 

4. Add the Cut to the LP: Incorporate the new cut into the existing 

constraints of the LP. This effectively narrows the feasible region 

to exclude the fractional solution. 

5. Re-Solve the LP: Solve the modified LP problem with the added 

cut. Repeat the process of identifying fractional solutions and 

generating cuts until an integer solution is found. 

6. Check for Integer Solutions: After adding each cut and solving, 

check if the resulting solution is an integer. If it is, then this is the 

optimal integer solution. If not, continue with the process of 

generating and adding cuts. 

Example 4: Consider the following integer programming 

problem: 

      Objective Function: Maximize 
21 32 xxZ   

Constraints: 

52 21  xx  

62 21  xx  

0, 21 xx  

Zxx 21,  

Step-by-Step Illustration: 

1. Solve the LP Relaxation: 

Relax the integer constraints and solve the LP problem. Suppose the 

optimal solution is 5.1,5.2 21  xx . 

2. Identify Fractional Variables: 

The optimal solution 5.1,5.2 21  xx  are both fractional. 

3. Generate Fractional Cuts: 
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From the simplex tableau, we might find a cut for a fractional basic 

variable. Assume the cut derived is: 321  xx  

4. Add the Cut to the LP: 

Add the constraint 321  xx  to the LP constraints. 

5. Re-Solve the LP: 

Solve the modified LP problem. Suppose the new optimal solution is 

1,2 21  xx , which is an integer solution. 

6. Check for Integer Solutions: 

The new solution 1,2 21  xx  is an integer and satisfies the 

constraints. 

Example 5: In the given LPP evaluate the optimum integer solution 

Maximize 
21 4xxZ   

Subject to; 742 21  xx ; 1535 21  xx ; 0, 21 xx  such that 

Zxx 21,  

Solution: Initially, we add the slack variable 01 s  and 02 s , an 

initial basic feasible solution is 71 s  and 152 s . Using the simplex 

method, an optimal non-integer solution is achieved, and it is 

presented in the following simplex table: 

Initial iteration: non-integer optimum solution 

cB yB xB y1 y2 y3 y4 

4 y2 7/4 1/2 1 1/4 0 

0 y4 39/4 7/2 0 -3/4 1 

 z 7 1 0 1 0 
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Step 2: Because of the optimal solution is not an integer, we focus 

solely on the fractional parts of 









4

3
1

4

7
1Bx  and 











4

3
9

4

39
2Bx . 

Step 3: Max  
4

3

4

3
,

4

3
, 21 









 Maxff  and 









4

3
9

4

39
2Bx  i.e., 

both 
1f  and 

2f  are equal. Therefore, we arbitrarily select one of 

these fractional parts. For instance, let’s choose
2f . 

Step 4: In the second row, since 4/323 y , we write 

4/1123 y  

Step 5: Let 
1G denote the first Gomory slack. We can then express it 

as follows: 

432142432322221201 .0
4

1
.0

2

1

4

3
xxxxxfxfxfffG   

Step 6: By adding this additional constraint to the optimal simplex 

table, we obtain: 

First Iteration: Drop 
1G  and introduce 

1y  

cB yB xB y1 y2 y3 y4 
1G  

4 y2 7/4 1/2 1 1/4 0 0 

0 y4 39/4 7/2 0 -3/4 1 0 

0 
1G  -3/4 -1/2 0 -1/4 0 1 

 z 7 1 0 1 0 0 

Since, the optimum solution is still non-integral, we introduce the 

second Gomorian constraints. 

Now, 4/33 Bx  only is negative, this basic variable leaves the 

basis. Further, since Max. 



Linear Programming and Game Theory          Course code – MT(N)-223                                                           
 

Department of Mathematics  
Uttarakhand Open University Page 207 
 

 
13

3

,2
4/1

1
,

2/1

1
max0, yy

y

cz
Max j

j

jj




























 enters the 

basis, i.e., 
1x  becomes basic variable in place of 

1G . 

Second iteration: non-integer optimal solution. 

cB yB xB y1 y2 y3 y4 
1G  

4 y2 1 0 1 0 0 1 

0 y4 9/2 0 0 -5/2 1 7 

1 y1 3/2 1 0 1/2 0 -2 

 z 11/2 0 0 1/2 0 2 

Since the optimal solution is still non-integral, we introduce the 

second Gomory constraint. Now,  











2

1
4

2

9
2BX  and 










2

1
1

2

3
3BX  

Since, Max  
2

1

2

1
,

2

1
, 32 









 Maxff  i.e., both 
2f  and 3f  are 

equal. So, let us choose 2/12 f  and write 2/1623 y . 

4321421323222121202 .0)2/1(.0.02/1 xxxxxfxfxfxffG   

Adding these additional constraints in the second iterative table, we 

have 

Third iteration: Drop 
2G  and introduce 3y . 

cB yB xB y1 y2 y3 y4 
1G  

2G  

4 y2 1 0 1 0 0 1 0 

0 y4 9/2 0 0 -5/2 1 7 0 
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1 y1 3/2 1 0 1/2 0 -2 0 

0 
2G  -1/2 0 0 *2/1  0 0 1 

 z 11/2 0 0 1/2 0 2 0 

   Final iteration: Optimal Solution in the integers. 

cB yB xB y1 y2 y3 y4 
1G  

2G  

4 y2 1 0 1 0 0 1 0 

0 y4 7 0 0 0 1 7 -5 

1 y1 1 1 0 0 0 -2 1 

0 y3 1 0 0 1 0 0 -2 

 z 5 0 0 0 0 2 1 

The table indicates that the optimal basic feasible solution has been 

achieved. Therefore, the optimal solution is 

1,1 21  xx  and Maximum 5z . 

The Fractional Cut Method, also known as Gomory's Cut Method, can 

be applied to Mixed Integer Linear Programming Problems (MILPP). 

These problems involve both integer and non-integer (continuous) 

variables. The method iteratively adds constraints to the linear 

programming relaxation to eliminate non-integer solutions for the 

integer-constrained variables. 

11.9   BRANCH AND BOUND METHOD 

The Branch and Bound method is a widely used algorithm for solving 

integer programming problems, including both pure integer and 

mixed-integer problems. It systematically explores all potential 

solutions to find the optimal one while efficiently pruning suboptimal 

solutions to reduce computational effort. 
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Steps in the Branch and Bound Method 

1. Initialization: Solve the linear programming relaxation of the 

integer programming problem (i.e., ignore the integer constraints) to 

obtain an initial solution. This gives an upper bound for maximization 

problems and a lower bound for minimization problems. 

2. Branching: Identify a variable that has a fractional value in the 

current solution. Create two new subproblems (branches) by adding 

constraints to this variable to take its floor and ceiling values. 

For example, if 5.3ix in the current solution, create two new 

problems: one with 3ix  and the other with 4ix . 

3. Bounding: Solve the LP relaxation of each new subproblem to 

obtain new bounds. 

If a subproblem yields an integer solution, compare it with the current 

best solution and update the best solution if this one is better. 

If the subproblem's bound is worse than the current best solution or 

infeasible, discard (prune) that branch. 

4. Pruning: Eliminate branches that cannot yield a better solution 

than the current best solution. This is done by comparing the bounds 

of the subproblems to the current best known integer solution. 

Discard infeasible branches or those that lead to worse solutions than 

the current best solution. 

5. Repeat: Continue the branching, bounding, and pruning process 

until all branches have been either explored or pruned. The best 

solution found during this process is the optimal integer solution. 

Example 8: Consider the following integer programming 

problem: 

Objective Function: Maximize 
21 23 xxz   

Constraints: 

421  xx  

121  xx  
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0, 21 xx  

Zxx 21,  

Step-by-Step Illustration: 

1. Initialization: 

Solve the LP relaxation: 

Maximization 
21 23 xxz   

Subject to, 421  xx ; 121  xx ; 0, 21 xx  

Suppose the optimal solution is 5.1,5.2 21  xx  with .5.10z  

2. Branching: 

Create two new subproblems by branching on 
1x : 

Subproblem 1: 21 x  

Subproblem 2: 31 x  

3. Bounding: 

Solve the LP relaxation for Subproblem 1:  

Maximize, 
21 23 xxZ   

Subject to, 421  xx ; 121  xx ; 21 x ; 0, 21 xx  

Suppose the optimal solution is ,2,2 21  xx with 10z  (an integer 

solution). 

Solve the LP relaxation for Subproblem 2:  

Maximize, 
21 23 xxZ   

Subject to, 421  xx ; 121  xx ; 31 x ; 0, 21 xx  

Suppose this subproblem is infeasible. 
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4. Pruning: Subproblem 2 is pruned because it is infeasible. The 

solution from Subproblem 1 is an integer solution with 10z , 

so we update our best solution. 

5. Repeat: Continue the process for any remaining branches (if 

applicable). In this example, Subproblem 1 has provided an 

integer solution that is feasible and maximizes z . 

The Branch and Bound method is an effective algorithm for solving 

integer programming problems by exploring and eliminating 

suboptimal branches systematically. It is widely used in operations 

research, scheduling, logistics, and other fields where optimization of 

discrete decisions is crucial. 

Example 9: Solve the following LPP using branch and bound 

method. 

Maximize, 
21 97 xxZ   

Subject to the constraints, 7;357;63 22121  xxxxx ; 

0, 21 xx  and Zxx 21,  

Solution: Step 1: Disregarding the integer constraints, the optimal 

solution to the given linear programming problem can be readily 

obtained as: 

2/7,2/9 21  xx  and Maximum 63Z  

Step 2: Since the solution is not an integer, let's select 
1x  i.e., 

2/9
*

1 x as the variable with the largest fractional value. 

Step 3: Taking the value of z as the initial upper bound, i.e., 63z ; 

the lower bound is found by rounding off the values of 
1x  and 

2x  to 

the nearest integers, i.e., 41 x  and 32 x . Thus, the lower bound is 

551 z . 

Step 4: Since ;4]2/9[][ 1
* x  where, [.]  denote the greatest integer. 

Sub-problem 1: Maximize 
21 97 xxz   

Subject to constraints, 

;7040;357;63 212121  xandxxxxx  
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Sub-problem 2: Maximize 
21 97 xxz    subject to constraints, 

;7050;357;63 212121  xandxxxxx  

Step 5 Optimal solutions to the sub-problem are determined as 

follows 

Sub-problem 1: Maximize 3/10,4 21  xx  and Maximum 58z  

Sub-problem 2: Maximize 0,5 21  xx  and Maximum 35z  

Since the solution to sub-problem 1 is not in integers, we further 

divide it into the following two sub-problems: 

Sub-problem 3: Maximize 
21 97 xxz    

Subject to, 3040;357;63 212121  xandxxxxx  

Sub-problem 4: Maximize 
21 97 xxz    

Subject to, 4040;357;63 212121  xandxxxxx  

Step 6: The optimal solutions to the sub-problem 3 and 4 are: 

Sub-problem 3: 3,4 21  xx and maximum 55z . 

Sub-problem 3: No feasible solution. 

Step 7: Among the recorded integer-valued solutions, the highest 

value of z is 55; therefore, the required optimal solution is:  

3,4 21  xx and maximum 55z . 

The entire branch and bound procedure for the given problem is 

shown below: 
 

 
Figure 1 
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MULTIPLE CHOICE QUESTIONS 

1: In integer programming, which type of decision variables are 

used? 

A) Only continuous variables 

B) Only binary variables 

C) Only integer variables 

D) Both integer and continuous variables 

2: Which method is commonly used to solve integer programming 

problems? 

A) Gradient Descent 

B) Branch and Bound 

C) Newton's Method 

D) Least Squares 

3: What type of optimization problem is an integer programming 

problem classified as? 

A) Linear 

B) Non-linear 

C) NP-hard 

D) Polynomial-time 

4: In a mixed integer programming problem, some of the decision 

variables are: 

A) Real numbers 

B) Integer numbers 

C) Binary numbers 

D) Both A and B 
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5: Which of the following is NOT a method used for integer 

programming? 

A) Simplex method 

B) Cutting Plane method 

C) Branch and Bound method 

D) Genetic Algorithm 

6: What is a Gomory cut? 

A) A technique for dividing problems into subproblems 

B) A type of cutting plane used to eliminate fractional solutions 

C) A method for rounding solutions to the nearest integer 

D) A type of constraint that ensures non-negativity 

11.10 SUMMARY 

Integer programming is a powerful tool for solving discrete 

optimization problems, but it requires sophisticated methods to 

handle its computational challenges. Its applications are vast and 

impactful in various fields such as operations research, logistics, 

finance, and more. Integer programming is used in various fields, 

including: 

Operations Research: Scheduling, resource allocation, production 

planning. 

Logistics: Vehicle routing, supply chain optimization. 

Finance: Portfolio optimization, capital budgeting. 

Telecommunications: Network design, bandwidth allocation. 

11.11 GLOSSARY 

Integer Programming 

Gomory’s method 
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Fractional cut method 

Branch and bound method 
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11.14 TERMINAL QUESTIONS  
 

 1. Solve the following IPP 

Maximize, yz 3  

Subject to the constraints, 

0,;2;723  yxyxyx ; and Zyx ,  



Linear Programming and Game Theory          Course code – MT(N)-223                                                           
 

Department of Mathematics  
Uttarakhand Open University Page 216 
 

2:  Find the optimal solution of the following IPP 

Maximize, yxz   

Subject to the constraints, 

0,;926;42  yxyxyx ; and Zyx ,  

3:  Find the optimal solution of the following IPP 

Maximize, yxz 32   

Subject to the constraints, 

0,;1437;1473  yxyxyx ; and Zyx ,  

4.. Solve the following integer linear programming problems using 

the branch and bound method. 

Maximize, yxz 32   

Subject to the constraints, 

0,;3694;3575  yxyxyx  and Zyx ,  

 

11.15 ANSWERS 
 

TQ 1: ,2,0 21  xx ; Maximum 6z   TQ2: 0,1  yx ; 

Maximum 1z  TQ3: 3,3  yx ; Maximum 15z   TQ4.  

,2,4 21  xx  and Maximum 14z  

MCQ 1: D  MCQ 2: B   MCQ 3: C 

MCQ 4: D  MCQ 5: A   MCQ 6:  B 
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 BLOCK V: APPLICATION 
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12.1 INTRODUCTION:-  

The Assignment Problem is a fundamental topic in Operations Research 

that deals with the optimal allocation of limited resources to various tasks. 

The objective is to assign a set of agents (such as workers, machines, or 

employees) to an equal number of tasks (such as jobs, projects, or 

machines) in such a way that the total cost, time, or distance is minimized 

(or the total profit is maximized). 

Typically, the Assignment Problem is represented using a cost matrix, 

where each cell indicates the cost of assigning a particular agent to a 

specific task. The challenge is to make one-to-one assignments—each 

agent gets exactly one task, and each task is assigned to exactly one 

agent—while minimizing the total cost or maximizing efficiency. 

This problem has wide applications in fields such as production planning, 

scheduling, transportation, and human resource management. It is often 

solved using methods like the Hungarian Algorithm, which provides an 

efficient solution for the optimal assignment. 

12.2 OBJECTIVES:-  

After studying this unit, the learner’s will be able to  
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 Define Assignment Problem. 

 Understand the Hungarian Method for solution of the 

Assignment Problem 

12.3 DEFINITION OF ASSIGNMENT PROBLEM: -  

The cost of assigning the  𝑖 − 𝑡ℎ facility (person) to the 𝑗 − 𝑡ℎ  work is 

represented by 𝑐𝑖𝑗, and the assignment problem can be expressed as a 𝑛 ×

𝑛 matrix [𝑐𝑖𝑗], also known as the cost or effectiveness matrix. 

Jobs 

 

Effectiveness matrix 

𝑛 persons can be assigned to 𝑛 jobs in 𝑛! possible ways. One method may 

be to find all possible 𝑛! assignments and evaluate total costs in all cases. 

Then the assignment with minimum cost (as required) will give the 

optimal assignment. But this method is extremely laborious. For example 

if 𝑛 =  8 then the number of such possible assignments is 8!  =  40320. 

The evaluation of costs for all these allocations will take a large time. 

Thus, there is a need to develop an easy computational technique for the 

solution of assignment problems. 

 

12.4 MATHEMATICAL REPRESENTATIONOF 

ASSIGNMENT PROBLEM: -  

Mathematically, the assignment problem can be expressed as follows: 

𝑥𝑖𝑗 = {
0, if the 𝑖th person is not assigned to 𝑗th job.
1, if the 𝑖th person assigned to 𝑗th job.        

 

Then the problem is given by 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

{= ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

} 

 1      2      3   …    𝑗   …   𝑛 

1 
2 
3 

Persons ⋮ 
𝑖 
⋮ 

𝑛 
 

𝑐11  𝑐12  𝑐13  …  𝑐1𝑗  … 𝑐1𝑛 

𝑐21  𝑐22  𝑐23  …  𝑐2𝑗  … 𝑐2𝑛 

…     …    …  …  …  …  … 

…     …    …  …  …  …  … 

𝑐𝑖1  𝑐𝑖2  𝑐𝑖3    …  𝑐𝑖𝑗  … 𝑐𝑖𝑛 

…     …    …  …  …  …  … 

𝑐𝑛1  𝑐𝑛2  𝑐𝑛3  …  𝑐𝑛𝑗  … 𝑐𝑛𝑛 
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Subject to constraints 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1; 𝑖 = 1,2, … , 𝑛 (𝑜𝑛𝑒 𝑗𝑜𝑏 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑒𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑝𝑒𝑟𝑠𝑜𝑛) 

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1; 𝑗 = 1,2, … , 𝑛 (𝑜𝑛𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑒𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑗𝑜𝑏) 

𝑎𝑛𝑑 𝑥𝑖𝑗 = 0 𝑜𝑟 1 (𝑜𝑟 𝑥𝑖𝑗 = 𝑥𝑖𝑗
2) 

Theorem1. (Reduction Theorem): If, in an assignment problem, a 

constant is added or subtracted to every element of a row (or column) of 

the cost matrix [𝑐𝑖𝑗], then an assignment which minimize the total cost for 

one matrix, also minimizes the total cost for the other matrix. 

Or  

Mathematically the theorem may state as follows: 

If 𝑥𝑖𝑗 = 𝑋𝑖𝑗,  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

∀𝑥𝑖𝑗 𝑠. 𝑡. 

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1 = ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 & 𝑥𝑖𝑗 ≥ 0 

Then 𝑥𝑖𝑗 = 𝑋𝑖𝑗  also  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍′ = ∑ ∑ 𝑐′𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 

Where 𝑐′
𝑖𝑗 = 𝑐𝑖𝑗 ± 𝑎𝑖 ± 𝑏𝑗 , 𝑎𝑖 , 𝑏𝑗  are constants, 𝑖 = 1,2, … , 𝑛; 𝑗 =

1,2, … , 𝑛 

Proof: we have 

𝑍′ = ∑ ∑ 𝑐′
𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1
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      = ∑ ∑(𝑐𝑖𝑗 ± 𝑎𝑖 ± 𝑏𝑗)𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 

       = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

± ∑ ∑ 𝑎𝑖𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

± ∑ ∑ 𝑏𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 

      = 𝑍 ± ∑ 𝑎𝑖

𝑛

𝑖=1

(∑ 𝑥𝑖𝑗

𝑛

𝑗=1

) ± ∑ 𝑏𝑗

𝑛

𝑗=1

(∑ 𝑥𝑖𝑗

𝑛

𝑖=1

) 

      = 𝑍 ± ∑ 𝑎𝑖

𝑛

𝑖=1

. 1 ± ∑ 𝑏𝑗

𝑛

𝑗=1

. 1 

      = 𝑍 ± ∑ 𝑎𝑖

𝑛

𝑖=1

± ∑ 𝑏𝑗

𝑛

𝑗=1

 

Since ∑ 𝑎𝑖

𝑛

𝑖=1

± ∑ 𝑏𝑗

𝑛

𝑗=1

 are independent of 𝑥𝑖𝑗. 

It follows that  𝑍′ is minimized when 𝑍 is minimized. 

Hence 𝑥𝑖𝑗 = 𝑋𝑖𝑗 which minimizes 𝑍 also minimizes 𝑍′. 

Theorem2. If all 𝑐𝑖𝑗 ≥ 0 and there exists a solution 

𝑥𝑖𝑗 = 𝑋𝑖𝑗  𝑠. 𝑡. ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

= 0 

Then this solution is an optimal solution (i.e. this solution minimizes 𝑍). 

Proof: Since all 𝑐𝑖𝑗 ≥ 0 

∴           𝑍 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 can not be negative. 

Thus its minimum value is zero, when 𝑥𝑖𝑗 = 𝑋𝑖𝑗. 

Hence the solution 𝑥𝑖𝑗 = 𝑋𝑖𝑗  for which ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

𝑛

𝑗=1

= 0  
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is an optimal solution. 

12.5 THE HUNGARIAN METHOD FOR 

SOLUTION OF THE ASSIGNMENT PROBLEM: -  

The "assignment algorithm" is a powerful approach for resolving 

assignment problems that is derived from the two previously discussed 

theorems. The following is the process for the solution: 

Step 1: Subtract from each element of the corresponding row the minimal 

element of each row in the cost matrix [𝑐𝑖𝑗]. 

Step2: Subtract from each element of the corresponding column the 

minimal element of each column in the reduced matrix that was produced 

in step 1. 

Step3: (a) Examine each row of the matrix obtained in step 2 one after the 

other until a row containing exactly one zero element is discovered. Since 

an assignment will be made there, mark (⎕) at this zero. To indicate that 

they cannot be used to create new assignments, mark (×)  at each 

additional zero in the column that we mark. Continue doing this until the 

final row has been examined. 

(b) Once every row has been thoroughly examined, continue by looking at 

the columns. Start by looking at column 1 and continue until you find a 

column with exactly one unmarked zero. At this zero, mark (⎕), and at 

every other zero in the marked(⎕) row, mark ×. Continue doing this until 

the final column has been examined. 

 

(c) Repeat steps (a) and (b) one after the other until we arrive at one of the 

two situations. 

(i) Every zero has been crossed or marked(⎕). 

 

 (ii) There are at least two unmarked zeros left in each row and column. 

 

We have a maximal assignment (as much as we can) in case (i), and we 

still have some zeros to deal in case (ii). To avoid using a very complex 

algorithm, we use the trial-and-error method. 

 

There are now two options: 

 

(i) The full optimal assignment is obtained if it has an assignment in each 

row and each column (i.e., the total number of marked (⎕) zeros is 

exactly 𝑛). (Refer to example 1) 
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(ii) The cost (effectiveness) matrix must be modified by adding or 

subtracting to add more zeros if it does not contain assignment in every 

row and column (that is, if the total number of marked (⎕) zeros is fewer 

than 𝑛). To do this, move on to step 4. 

Step 4: When the matrix obtained in step 3 does not contain assignment in 

every row and every column then we draw the minimum number of 

horizontal and vertical lines necessary to cover all zeros at least once. For 

this the following procedure is adopted. 

 

(i) Mark(√) all rows for which assignment have not been made. 

 

(ii) Mark (√) column which have zeros is marked rows. 

 

(iii) Mark (√)  rows (not already marked) which have assignment in 

marked columns. 

 

(iv) Repeat step (ii) and (iii) until the chain of marking ends. 

(v) Draw minimum number of lines through unmarked rows and through 

marked columns to cover all the zeros. 

This procedure will yield the minimum number of lines (equal to the 

number of assignments in the maximal assignment obtained in step 3) that 

will pass through all zeros. 

 

Step 5: Select the smallest of the elements that do not have a line through 

them, subtract it from all these elements that do not have a line through 

them, add it to every element that lies at the intersection of two lines and 

leave the remaining elements of the matrix unchanged. 

 

Step 6: At the end of step 5, number of zeros are increased (never 

decreased) in the matrix than that in step 3. 

 

Now re-apply the step 3 to the modified matrix obtained in step 5, to 

obtain the desired solution. 

 

Example1: Solve the following minimal assignment problem: 

Man→ 

Job↓ 

1    2    3    4 

I 

II 

III 

IV 

12  30  21  15  

18  33   9   31 

44  25  24  21 

23  30  28  14 

Solution: For the clear understanding, this example is solved step by step 

systematically. 

Step1: Substracting the smallest element of each row from every element 

of the corresponding roiw, we get the following matrix: 
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 1    2    3    4 

I 

II 

III 

IV 

0    18   9    3  

9    24   0   22 

23   4    3    0 

9    16  14   0 

 

Step2: subtracting smallest element of each column from every element of 

the corresponding column, we get the followi9ng matrix: 

 1    2    3    4 

I 

II 

III 

IV 

0    14   9    3  

9    20   0   22 

23   0    3    0 

9    12  14   0 

Step3: now we test whether it is possible to make an assignment using the 

zeros by the method described in step 3 in $ 12.5 

Starting with row I, we mark ⎕ in the row containing only one zero and 

cross(×) the zeros in the corresponding column in which ⎕ lies. Thus, we 

get the following table. 

 
 

 

Again starting with column 1, we mark ⎕ in the column containing only 

one unmarked zero in the above table and cross out the zeros in the 

corresponding row in which this assignment is marked. Thus, we get the 

following table. 
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Since in the last table, every row and every column have one assignment, 

so we have the complete optimal zero assignment. 

Job: I II III IV 

Man: 1 3 2 4 

𝑖. 𝑒. 𝐼 → 1, 𝐼𝐼 → 3, 𝐼𝐼𝐼 → 2, 𝐼𝑉 → 4 
Which is the optimal assignment. 

 

Example2. A department head has four subordinates, and four tasks to be 

performed. The subordinates differ in efficiency and the tasks differ in 

their intrinsic difficulty. His estimate of the times each man would take to 

perform each task is given in the effectiveness matrix below. How should 

the task be allocated, one to a man, so as to minimize the total man hour? 

  subordinates 

I      II      III     IV 

 

Tasks 

A 

B 

C 

D 

8     26     17     11  

13   28      4      26 

38   19     18     15 

19    26    24     10 

Solution: Step 1: Subtracting the smallest element in each row from every 

element of the corresponding row, we get the following matrix. 

 

 I      II      III     IV 

A 

B 

C 

D 

0     18      9      13  

9     24      0      22 

23    4       3       0 

9      16    14      0 

 

Step 2: Subtracting the smallest element in each column of the above 

matrix from every element of the corresponding column, we get the 

following matrix. 

 I      II      III     IV 

A 

B 

C 

D 

0     14      9      13  

9     20      0      22 

23    0       3       0 

9      12    14      0 

 

The above matrix is the same as obtained in step 3 in example 1, therefore 

for minimum man hours the allotment should be as follows: 

Tasks A B C D 

Subordinates I III II IV 

Man hours 8 4 19 10 

𝑖. 𝑒. 𝐴 → 𝐼, 𝐵 → 𝐼𝐼𝐼, 𝐶 → 𝐼𝐼, 𝐷 → 𝐼𝑉 

The total man hours are 8 + 4 + 19 + 10 = 41. 



Linear Programming and Game Theory                                MT(N)-223 

Department of Mathematics  

Uttarakhand Open University Page 226 
 

12.6 VARIATIONS OF THE ASSIGNMENT 

PROBLEM: -  

1. Non-square matrix (Unbalanced assignment problem): Such a 

problem is found to exist when the number of facilities is not equal to the 

number of jobs. Since the Hungarian method of solution requires a square 

matrix, fictitious facilities or jobs may be added and zero costs be assigned 

to the corresponding cells of the matrix. These cells are then treated the 

same way as the real cost cells during the solution procedure. 

 

2. Maximization problem: Sometimes the assignment problem may deal 

with maximization of the objective function. The maximization problem 

has to be changed to minimization before the Hungarian method may be 

applied. This transformation may be done in either of the following two 

ways: 

 

(a) By subtracting all the elements from the largest element of the matrix, 

 

(b) By multiplying the matrix elements by 1. 

 

The Hungarian method can then be applied to this equivalent minimization 

problem to obtain the optimal solution. 

 

3. Restrictions on assignments: Sometimes technical, space, legal or 

other restrictions do not permit the assignment of a particular facility to a 

particular job. Such problems can be solved by assigning a very heavy 

cost (infinite cost) i.e, ∞ 𝑜𝑟 𝑀 to the corresponding cell. Such a job will 

then be automatically excluded from further consideration (making 

assignments). 

 

4. Alternate optimal solutions: Sometimes, it is possible to have two or 

more ways to strike off all zero elements in the reduced matrix for a given 

problem. In such cases, there will be alternate optimal solutions with the 

same cost. Alternate optimal solutions offer a great flexibility to the 

management since it can select the one which is most suitable to its 

requirement. 

 

Example3. (Unbalanced Assignment Problem): A department head has 

four tasks to be performed and three subordinates. The subordinates differ 

in efficiency. The estimates of the time, each subordinate would take to 

perform, are given below in the matrix. How should he allocate the tasks, 

one to each man, so as to minimize the total man hours? 

  subordinates 

1      2       3      
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Tasks 

I 

II 

III 

IV 

9     26     15     

13   27      6       

35   20     15      

18   30     20      

 

Solution: Since the matrix is not square, it an unbalanced assignment 

problem we introduce one fictitious subordinate (4th column with zero 

costs) to get a square matrix. Thus the resulting matrix is shown in the 

following table. Now the problem can be solved by usual method. 

 1      2       3       4 

I 

II 

III 

IV 

9     26     15      0 

13   27      6       0 

35   20     15      0 

18   30     20      0 

 

Step1: Subtracting the minimum element of each row from every element 

of the corresponding row and then subtracting the minimum element of 

each column from every element of the corresponding column, the matrix 

reduces to 

 1      2       3       4 

I 

II 

III 

IV 

0      6       9       0 

4      7       0       0 

26    0       9       0 

9     10     14      0 

 

Step2: Giving zero assignments in the usual manner, we observe that, 

each row and each column have zero assignments. 

 

 
Hence the optimal assignment is as follows. 

 

Tasks → subordinates, 𝐼 →  1, 𝐼𝐼 → 3. 𝐼𝐼𝐼 → 2. 
 

Task IV remains unassigned. 

 

From the original matrix, the total time (man hours) = 9 + 6 + 20 = 35 

hours. 
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Example4. (Maximization problem): Alpha Corporation has four plants 

each of which can manufacture any of the four products. Production costs 

differ from plant to plant as do sales revenue. From the following data, 

obtain which product each plant should produce to maximize profit? 

 

 

Plant 

↓ 

Sales revenue 

(₹1000) 

Product 

1       2      3       4 

A 

B 

C 

D 

50    68    49     62  

60    70    51     74 

55    67    53     70 

58    65    54     69 

 

 

 

Plant 

↓ 

Production cost 

(₹1000) 

Product  

1       2      3       4 

A 

B 

C 

D 

49    60    45     61  

55    63    45     69 

52    62    49     68 

55    64    48     66 

 

Solution: Since,  Profit = Sales revenue −  Product cost , so the profit 

matrix is as follows. 

 

 

  

1       2      3       4 

A 

B 

C 

D 

1       8      4       1  

5       7      6       5 

3       5      4       2 

3       1      6       3 

 

This is a maximization problem. We shall solve this problem by 

converting it to minimization problem by both methods discussed in 

article 12.6. 

 

1. By Method 1: Subtracting each element of the above matrix from the 

greatest element 8 of the matrix, the equivalent loss matrix is 

 

 

  

1       2      3       4 

A 

B 

C 

D 

7       0      4       7  

3       1      2       3 

5       3      4       6 

5       7      2       5 
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Step 1 and 2: Subtracting the minimum element of cach row from all the 

elements of the corresponding row and then subtracting minimum element 

of each column from all the elements of the corresponding column, we get 

the following matrix. 

 

 

 

  

1       2      3       4 

A 

B 

C 

D 

5       0      4       5  

0       0      1       0 

0       0      1       1 

1       5      0       1 

 

Step 3: Giving zero assignments in the usual manner, we get the following 

matrix. 

 
In the above table there is an assignment in each row and each column. 

Hence the optimal assignment for maximum profit is 

 

𝐴 → 2, 𝐵 → 4, 𝐶 → 1, 𝐷 → 3  
𝑎𝑛𝑑 𝑀𝑎𝑥. 𝑃𝑟𝑜𝑓𝑖𝑡 = ₹(8 + 5 + 3 + 6) × 1000 = ₹22000 
 

2. By Method 2: Placing negative sign before each element of the profit 

matrix, the equivalent loss matrix is 

 

 

  

    1            2           3            4 

A 

B 

C 

D 

−1      − 8    −  4      − 1  
−5      − 7     − 6      − 5 
−3      − 5     − 4      − 2 
−3      − 1     − 6      − 3 

 

Now subtracting the minimum element of each row from every elements 

of the corresponding row and then subtracting the minimum element of 

each column from every element of the corresponding column, we get the 

following matrix. 

 

 

  

1       2      3       4 
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A 

B 

C 

D 

5       0      4       5  

0       0      1       0 

0       0      1       1 

1       5      0       1 

 

Which the same matrix is as obtained in step 1 and 2 in methods 1. Hence 

giving zero assignments we get the same optimal solution as in method 1. 

 

Example5: (restrictions on assignment): Four engineers are available to 

design four projects. Engineer 2 is not competent to design the project B. 

Given the following time estimates needed to cach engineer to design a 

given project, find how should the engineers be assigned to projects so as 

to minimize the total design time of four projects. 

 

  Projects  

A             B            C         D 

 

Engineers 

1 

2 

3 

4 

12           10           17        11  

14    not suitable      4       26 

6              10          16         4 

8              10           9          7 

 

Solution: To avoid the assignment2 →  𝐵. we take its time to be very 

large (say). Then the cost matrix of the resulting assignment problem is 

shown in the following 

 A             B            C         D 

1 

2 

3 

4 

12           10           17        11  

14            ∞            4        26 

6              10          16         4 

8              10           9          7 

 

Now we apply the assignment technique in the usual manner. 

 

Step1: Subtracting the minimum element of each row from every element 

of the corresponding row and then subtracting minimum element of each 

column from every clement of the corresponding column, the reduced 

matrix is 

 A             B            C         D 

1 

2 

3 

4 

3               0            0          0  

2              ∞            2         0 

1               4           10         0 

0               1             0         0 

 

Step 2: Giving zero assignments in the usual manner, we observe that row 

3 and column 3 have no zero assignments. So we draw minimum number 

of lines to cover all zeros at least once. Number of such zeros is 3. 
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Step 3: In the above table, the smallest of the uncovered elements is 1. 

Subtracting this clement 1 from all uncovered elements, adding to each 

element that lies at the intersection of two lines and leaving remaining 

elements unchanged we get the following matrix. 

 A             B            C         D 

1 

2 

3 

4 

3               0            0          1  

1              ∞            1         0 

0               3             9         0 

0               1             0         1 

 

Step 4: Giving zero assignments in the usual manner, we observe that 

each row and each column have a zero assignment. 

 
Hence the optimal assignment is 

 

Engineer →  Project: 1 →  B, 2 → D, 3 → A, 4 → C 
 

From the given matrix total minimum time= 10 + 11 + 6 + 9 = 36. 
 

SELF CHECK QUESTIONS 

1. what is an Assignment Problem? 

2. How is the Assignment Problem related to the Transportation 

Problem? 

3. State the main objective of the Assignment Problem. 

4. What are the assumptions made in an Assignment Problem? 

5. Define the term “feasible solution” in the context of the 

Assignment Problem. 
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6. Explain the difference between a balanced and an unbalanced 

Assignment Problem. 

7. What is a cost matrix? 

8. What is meant by an optimal assignment? 

 

12.7 SUMMARY: -  

In this unit, we have studied that the Assignment Problem is a special case 

of the Transportation Problem in which the objective is to assign a number 

of resources or tasks to an equal number of activities or agents in such a 

way that the total cost or time is minimized (or profit is maximized). In 

this problem, each resource can be assigned to only one task, and each 

task must be assigned to only one resource. It is commonly applied in 

situations such as assigning workers to jobs, machines to tasks, or 

salesmen to territories. The cost or effectiveness of each possible 

assignment is represented in a matrix form, and the goal is to find the 

optimal one-to-one assignment that results in the minimum total cost. The 

Hungarian Method is the most widely used algorithm to solve the 

Assignment Problem efficiently. This problem plays an important role in 

operations research and decision-making processes to ensure the optimal 

utilization of available resources. 

12.8 GLOSSARY: -  

 Assignment Problem: A special type of Transportation Problem 

that deals with assigning a number of resources (like workers or 

machines) to an equal number of tasks or jobs in a way that 

minimizes total cost or time (or maximizes profit). 

 Agent (Resource): The person, machine, or resource that needs to 

be assigned to a particular task. 

 Task (Job or Activity): The specific work or operation that must 

be completed by an agent or resource. 

 Cost Matrix: A square matrix that shows the cost, time, or 

effectiveness of assigning each agent to each task. 

 Feasible Assignment: An arrangement in which each agent is 

assigned to exactly one task, and each task is assigned to exactly 

one agent. 

 Optimal Assignment: The assignment that results in the minimum 

total cost or maximum total profit. 
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 Hungarian Method: A systematic algorithm used to find the 

optimal solution of the Assignment Problem efficiently. 

 Balanced Assignment Problem: An Assignment Problem in 

which the number of agents is equal to the number of tasks. 

 Unbalanced Assignment Problem: A problem in which the 

number of agents and tasks are not equal. It can be made balanced 

by adding dummy rows or columns with zero cost. 

 Dummy Row/Column: An artificial row or column added to 

balance an unbalanced assignment problem, usually containing 

zero costs. 

 Minimization Problem: A type of assignment problem in which 

the goal is to minimize the total cost or time of performing all 

tasks. 

 Maximization Problem: A type of assignment problem in which 

the goal is to maximize total profit or efficiency. 

 Opportunity Cost: The difference between the cost of a selected 

assignment and the minimum cost in the same row or column, used 

during optimization steps in the Hungarian Method. 

 Operations Research: A branch of applied mathematics that uses 

analytical methods to make better decisions, under which the 

Assignment Problem is studied. 

 Optimal Solution: The best possible assignment that satisfies all 

constraints and achieves the objective of minimum cost or 

maximum profit. 
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12.11 TERMINAL QUESTIONS: - 

(TQ-1) Solve minimal assignment problem whose effectiveness matrix is  

 I      II      III     IV 

A 

B 

C 

D 

2      3       4       5  

4      5       6       7 

7      8       9       8 

3      5       8       4 

 

 (TQ-2) Suggest optimum solution to the following assignment problem 

and also the maximum sales: 

Salesman Market (sales in Lakhs₹) 

I II III IV 

A 44 80 52 60 

B 60 56 40 72 

C 36 60 48 48 

D 52 76 36 40 

 

(TQ-3) A company has a team of four salesmen and there are four 

districts where the company wants to start its business. After taking into 

account the capabilities of salesmen and the natrue of districts, the 

company estimates that the profit per day in rupees for each salesman in 

each district is as below. 

  

 

  

District  

1          2        3       4 

 

Salesman 

A 

B 

C 

D 

16       10    14       11  

14       11    15       15 

15       15    13       12 

13       12    14       15 

 

(TQ-4) Four engineers are available to design four projects. Engineer 2 

is not competent to design the project B. Given the following time 

estimates needed to each engineer to design a given project, find how 

should the engineers be assigned to projects so as to minimize the total 

design time of four projects. 
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  Projects  

A             B            C         D 

 

Engineers 

1 

2 

3 

4 

16           14           14        12  

16            --           17        13 

11           15           21         9 

8              10           9          

7 

 

(TQ-5) Find the optimal assignment for the problem with the following 

matrix: 

 𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 5 3 1 8 
2 7 9 2 6 
3 6 4 5 7 
4 3 7 7 6 

 

(TQ-6) Find the optimal assignment for the problem having the 

following cost matrix: 

 𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 30 25 26 28 
2 26 32 24 20 
3 20 22 18 27 
4 23 20 21 19 

 

(TQ-7) Solve the following assignment problem: 

 𝑃 𝑄 𝑅 𝑆 
𝐴 85 50 30 40 
𝐵 90 40 70 45 
𝐶 70 60 60 50 
𝐷 75 45 35 55 

 

(TQ-8) Solve the following minimal assignment problem: 

 1 2 3 4 
𝐴 10 12 19 11 
𝐵 5 10 7 8 
𝐶 12 14 13 11 
𝐷 8 15 11 9 

 

(TQ-9) A company has 4 machines to do 3 jobs. Each job can be 

assigned to one and only one machine. The cost of each job on each 

machine is given in the following table: 
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  machine 

  𝑊 𝑋 𝑌 𝑍 
jobs 𝐴 18 24 28 32 

 𝐵 8 13 17 19 
 𝐶 10 15 19 22 

What are the job assignments which will minimize the cost? 

 

(TQ-10) Solve the following minimal assignment problem: 

 1 2 3 4 5 
𝐴 9 11 15 10 11 
𝐵 12 9 − 10 9 
𝐶 − 11 14 11 7 
𝐷 14 8 12 7 8 

 

12.12 ANSWERS: - 

(TQ-1) 𝐴 → 𝐼𝐼, 𝐵 → 𝐼𝐼𝐼, 𝐶 → 𝐼𝑉, 𝐷 → 𝐼 

Minimum cost= ₹20  

(TQ-2) 𝐴 → 𝐼𝐼, 𝐵 → 𝐼𝑉, 𝐶 → 𝐼𝐼𝐼, 𝐷 → 𝐼 

Maximum sales = ₹252 

(TQ-3) 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 → 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡, 𝐴 → 2, 𝐵 → 4, 𝐶 → 1, 𝐷 → 3  
Maximum profit = ₹61 

(TQ-4) Engineer →  Project: 1 →  B, 2 → D, 3 → A, 4 → C 
Minimum total time= 47 ℎ𝑜𝑢𝑟𝑠 

(TQ-5) 𝑀𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹16 

(TQ-6) 𝑀𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹86 

(TQ-7) 𝑀𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹9 

(TQ-8) 𝑀𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹38 

(TQ-9) 𝐴 → 𝑊, 𝐵 → 𝑋, 𝐶 → 𝑌, No job is assigned to machine 𝑍. 

(TQ-10) 𝐴 → 𝐼, 𝐵 → 𝐼𝐼, 𝐶 → 𝑉, 𝐷 → 𝐼𝑉, job 𝐼𝐼𝐼 remains undone. 

𝑀𝑖𝑛. 𝑐𝑜𝑠𝑡 = 32 𝑢𝑛𝑖𝑡𝑠. 
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13.1 INTRODUCTION: -  

The Transportation Problem is a classic optimization problem in 

Operations Research (OR) that deals with the efficient distribution of 

goods from multiple sources (such as factories or warehouses) to multiple 

destinations (such as markets or retail outlets). The main objective is to 

minimize the total transportation cost while satisfying the supply and 

demand constraints at each source and destination. 

In practical terms, it helps organizations decide how much of a product 

should be shipped from each origin to each destination so that the overall 

shipping cost is minimized, and all supply and demand requirements are 

met 

13.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  
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 Define Transportation Problem. 

 Understand Mathematical Formulation of Transportation 

Problem. 

 Explain Methods of Finding Initial Feasible Solution. 

 Explain The Stepping Stone Method and MODI Method or u-

v Method. 

 Define Unbalanced Transportation Problem. 

13.3 TRANSPORTATION PROBLEM/ MODEL: -  

When a single homogeneous commodity needs to be delivered in different 

quantities to many locations known as "destinations," there are multiple 

centers, often referred to as "origins" or "sources," in the transportation 

problem or model. In this case, each origin (or source) has a capacity (i.e. 

availability), and each destination has a requirement, so that the total of 

the capacities (i.e. available) at all origins (sources) equals the total of the 

requirements at all destinations. There are known and distinct 

transportation costs from each origin to each destination. Transporting the 

entire quantity available from all sources to all destinations in order to 

satisfy their needs while keeping the overall cost of transportation as low 

as possible is the goal. 

Therefore, the transportation problem (or model) focuses on reducing 

transportation costs by satisfying the needs of every destination using the 

complete amount of resources available at all sources. 

 

13.4 NOTATIONS: -  

 

The following notations will be applied to the transportation problem. 

𝑚 = the numberof sources 
𝑛 = the number of destinations 
𝑎𝑖 = the availability (or supply)at the 𝑖 − 𝑡ℎ source 
𝑏𝑗 =  the requirement (or demand) at the 𝑗 − 𝑡ℎ destination 

𝑐𝑖𝑗 = the cost of transportation of one unit from ith source to j − th 

           destination 
𝑥𝑖𝑗 = the number of units to the transported from the 𝑖 − 𝑡ℎ source to 

           𝑗 − 𝑡ℎ destination. 
 

13.5 TABULAR REPRESENTATION OF 

TRANSPORTATION PROBLEM: -  

The above-described transportation problem can be shown in the 

following tabular form, called a transportation table: 
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𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 → 

𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ↓ 
𝑊1 𝑊2 … 𝑊𝑗  … 𝑊𝑛 Capacity of the 

sources 

𝐹1 𝑐11 𝑐12 … 𝑐1𝑗  … 𝑐1𝑛 𝑎1 

𝐹2 𝑐21 𝑐22  𝑐2𝑗   𝑐2𝑛 𝑎2 

⋮ … … … … … … ⋮ 
⋮ … … … … … … ⋮ 
𝐹𝑖 𝑐𝑖1 𝑐𝑖2  𝑐𝑖𝑗   𝑐𝑖𝑛 𝑎𝑖  

⋮ … … … … … … ⋮ 
⋮ … … … … … … ⋮ 

        

𝐹𝑚 𝑐𝑚1 𝑐𝑚2 … 𝑐𝑚𝑗  … 𝑐𝑚𝑛 𝑎𝑚 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 → 𝑏1 𝑏2 … 𝑏𝑗  … 𝑏𝑛 
∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

 

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 → 

𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ↓ 
𝑊1 𝑊2 … 𝑊𝑗  … 𝑊𝑛 Capacity of the 

sources 

𝐹1 𝑥11 𝑥12 … 𝑥1𝑗 … 𝑥1𝑛 𝑎1 

𝐹2 𝑥21 𝑥22  𝑥2𝑗   𝑥2𝑛 𝑎2 

⋮ … … … … … … ⋮ 
⋮ … … … … … … ⋮ 
𝐹𝑖 𝑥𝑖1 𝑥𝑖2  𝑥𝑖𝑗  𝑥𝑖𝑛 𝑎𝑖  

⋮ … … … … … … ⋮ 
⋮ … … … … … … ⋮ 
𝐹𝑚 𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑗 … 𝑥𝑚𝑛 𝑎𝑚 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 → 𝑏1 𝑏2 … 𝑏𝑗  … 𝑏𝑛 
∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

 

The above two tables can be combined together by writing the costs 𝑐𝑖𝑗 

within the bracket (), as follows: 

 

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
→ 

𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ↓ 

𝑊1 𝑊2 … 𝑊𝑗  … 𝑊𝑛 Capacity 

of the 

sources 

𝐹1 𝑥11(𝑐11) 𝑥12(𝑐12) … 𝑥1𝑗(𝑐1𝑗) … 𝑥1𝑛(𝑐1𝑛) 𝑎1 

𝐹2 𝑥21(𝑐21) 𝑥22(𝑐22)  𝑥2𝑗(𝑐2𝑗)  𝑥2𝑛(𝑐2𝑛) 𝑎2 

⋮ … … … … … … ⋮ 
⋮ … … … … … … ⋮ 
𝐹𝑖 𝑥𝑖1(𝑐𝑖1) 𝑥𝑖2(𝑐𝑖2)  𝑥𝑖𝑗(𝑐𝑖𝑗)  𝑥𝑖𝑛(𝑐𝑖𝑛) 𝑎𝑖  

⋮ … … … … … … ⋮ 
⋮ … … … … … … ⋮ 
𝐹𝑚 𝑥𝑚1(𝑐𝑚1) 𝑥𝑚2(𝑐𝑚2) … 𝑥𝑚𝑗(𝑐𝑚𝑗) … 𝑥𝑚𝑛(𝑐𝑚𝑛) 𝑎𝑚  
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𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠
→ 

𝑏1 𝑏2 … 𝑏𝑗  … 𝑏𝑛 
∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

13.6 MATHEMATICAL FORMULATION OF 

TRANSPORTATION PROBLEM: -  

Mathematically, a transportation problem can be stated as a linear 

programming problem as follows: 

Find 𝑥𝑖𝑗(𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) to minimize the total transportation 

cost, i.e. 

                                            𝑀𝑖𝑛. 𝑍 =∑∑𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                                      … (1) 

Subject to constraints 

𝑥11 + 𝑥12 +⋯+ 𝑥1𝑛 = 𝑎1
𝑥21 + 𝑥22 +⋯+ 𝑥2𝑛 = 𝑎2
………………………………
………………………………
𝑥𝑚1 + 𝑥𝑚2 +⋯+ 𝑥𝑚𝑛 = 𝑎𝑚}

 
 

 
 

𝑖. 𝑒.∑𝑥𝑖𝑗

𝑛

𝑖=1

= 𝑎𝑖  𝑓𝑜𝑟 𝑖 = 1,2,… ,𝑚   … (2) 

 

Demand constraints 

 
𝑥11 + 𝑥21 +⋯+ 𝑥𝑚1 = 𝑏1
𝑥12 + 𝑥22 +⋯+ 𝑥𝑚2 = 𝑏2
………………………………
………………………………
𝑥1𝑛 + 𝑥2𝑛 +⋯+ 𝑥𝑚𝑛 = 𝑏𝑛}

 
 

 
 

𝑖. 𝑒.∑𝑥𝑖𝑗

𝑚

𝑗=1

= 𝑏𝑗  𝑓𝑜𝑟 𝑗 = 1,2,… , 𝑛       … (3) 

 

     𝑎1 + 𝑎2 +⋯+ 𝑎𝑚 = 𝑏1 + 𝑏2 +⋯+ 𝑏𝑛 𝑖. 𝑒.∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

          … (4) 

And 𝑥𝑖𝑗 ≥ 0 ∀𝑖 = 1,2,… ,𝑚, 𝑗 = 1,2,… , 𝑛 

Thus the transportation problem is a L.P.P. of special type, where we are 

required to find the values of 𝑚, 𝑛 variable that minimizes the objective 

function 𝑍 given by (1), satisfying (𝑚 +  𝑛) constraints given in (2) and 

(3), constraint (4) and the non-negative restriction of variables. 

 

13.7 TERMINOLOGY: -  
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We will define a few terminologies used in transportation-related 

problems here. 

1. A Feasible Solution (F.S.) 

A set of non-negative individual allocations (𝑥𝑖𝑗 ≥ 0 ) that satisfy the 

row and column sum restrictions, or the constraints of the problems or 

models, represents a feasible solution to a transportation problem. In 

order for a feasible solution to be found, it must 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

 

2. Basic Feasible Solution(B.F.S.)  

If the total number of positive allocations is less than or equal to 𝑚 +

 𝑛 −  1 (one less than the sum of the number of rows and columns), 

then a transportation problem's feasible solution of m is considered 

basic. In other words, a B.F.S. of a T.P. does not contain more 

than 𝑚 + 𝑛 − 1 positive allocation. 

 

3.  Optimal Solution 

A feasible solution (not necessarily basic) is said to be optimal if it 

minimizes the total transportation cost. 

 

4. Non-degenerate Basic Feasible Solution 

The term "non-degenerate basic feasible solution" refers to a feasible 

solution to the transportation problem if 

 (i) (𝑚 +  𝑛 −  1) is precisely the total number of positive allocations. 

 

(ii) These allocations are situated independently. 

 To put it another way, a B.F.S. is considered non-degenerate if it 

involves exactly  (𝑚 +  𝑛 −  1)  individual positive allocations and 

these allocations are used in independent positions; if not, it is 

considered degenerate. 

By "independent positions of the allocation," we mean that combining 

any or all of these allocations with horizontal and vertical lines would 

never result in a closed circuit (loop). Only for the allocations in 

independent places may one return to itself by making a sequence of 

jumps from one occupied cell to another occupied cell, both vertically 

and horizontally, without actually reversing the path. View the 

following tables, where allocation positions are shown by 
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5. Balanced Transportation Problem 

If the total supply (availability) at all origins (sources) equals the total 

demand at all destinations, the transportation problem is considered 

balanced. i.e. 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

 

6. Unbalanced Transportation Problem 

If the total supply (availability) at all origins (sources) is not equal to 

the total demand at all destinations, the transportation problem is 

considered unbalanced. i.e. 

∑𝑎𝑖

𝑚

𝑖=1

≠∑𝑏𝑗

𝑛

𝑗=1

 

7. Rim Requirements 

The quantity required for distribution, or ∑ 𝑏𝑗
𝑛
𝑗=1 , in a transportation 

problem is referred to as the “rim requirement”. 

 

Theorem 1: Existence of feasible solution 

A necessary and sufficient condition for the existence of feasible solution 

of a men transportation problem is 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

(𝑅𝑖𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

Theorem 2: Out of  (𝑚 + 𝑛) equations (constraints) in a  𝑚 × 𝑛 

transportation problem, one (any) is redundant and remaining (𝑚 + 𝑛 −
1) equations form a linearly independent set. 

Theorem 3: Existence of an optimal solution 

There always exists an optimal solution to balanced transportation 

problem. 

 

13.8 SOLUTION OF A TRANSPORTATION 

PROBLEM: -  

A transportation problem is solved, in general, by the following step by 

step procedure. 
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Step 1: To make a transportation table 

Set up the problem in the form of a transportation if not given so, 

 

Step 2: To check the balance in supply and requirements (demands)  

Check whether the given T.P. is balanced or not. For a balanced 𝑚 × 𝑛 

T.P. 

∑𝑎𝑖

𝑚

𝑖=1

=∑𝑏𝑗

𝑛

𝑗=1

 

i.e., the total supply (availability) at the sources must be equal to the total 

requirements (demands) at all destinations whenever it is not so, a dummy 

origin (sources) or destination (as the case may be) is created to balance 

the supply and demands. 

 

Step 3: To find an initial basic feasible solution (B.F.S.) 

First we find an initial B.F.S. of the given T.P. by any of the methods 

given in article 13.9. It is in general better to find initial B.F.S. by VAM 

which will save their valuable time to reach the optimal solution of the 

problem. Then 

 

(1) Check whether the B.F.S. has allocations in exactly (𝑚 + 𝑛 − 1) cells 

or not. If the number of allocations is less than (𝑚 + 𝑛 − 1), then it is case 

of degeneracy i.e., the B.F.S. is degenerate.  

(ii) Check whether the B.F.S. has (𝑚 + 𝑛 − 1) allocations in independent 

positions or not. If not then either shift source allocation from an occupied 

cell to an occupied (empty) cell or find B.F.S. by other method to get 

exactly (𝑚 + 𝑛 − 1) allocations in independent positions. 

 

Step 4: To check the solution for optimality 

Make optimality test to check the above non-degenerate solution obtained 

in step 3 for optimality. If this solution is not optimal then proceed to the 

next step. 

 

Step 5: To find the modified (revised) solution 

If the solution in step 3 is not optimal, then modify the solution by shifting 

an allocation from an occupied all (cell having allocation) to an 

unoccupied cell (cell having no allocation) so that total transportation cost 

is not increased and the allocations remain in independent positions. 

 

Step 6: Repeat steps 4 and 5 until an optimal solution is obtained. 

 

13.9 METHODS OF FINDING INITIAL FEASIBLE 

SOLUTION: -  
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Finding the first basic feasible solution to the given transportation problem 

can be done in a number of ways. Here, we outline the following three 

simple methods. 

1. Method 1: North-West Corner Method (NWCM) 

 

2. Method 2: Lowest Cost Entry Method (LCEM) or Matrix Minima 

Method (MMM) 

 

3. Method 3: Vogel's Approximation Method (VAM) or Unit Cost Penalty 

Method (UCPM) 

 

13.9.1 North-West Corner Method (NWCM): - 
In this method, we have the following steps: 

 

Step 1: Start with the (1, 1) at the north-west corner ie., the upper left 

corner of the transportation table and allocate it the maximum possible 

amount 𝑥11 which is equal to the minimum of available supply 𝑎1 in row 1 

and the demand required 𝑏1 in the column 1 i.e..  

𝑥11 =  𝑚𝑖𝑛. (𝑎1, 𝑏1) 
i.e., if 𝑎1 < 𝑏1, then allocate 𝑥11 = 𝑎1  and move to cell (2,1) vertically 

below cell (1, 1) as the supply in row 1 is exhausted.  

if 𝑎1 > 𝑏1 then allocate 𝑥11 = 𝑏1 and move to cell (1,2) horizontally right 

to cell (1, 1) as the requirement in column one is exhausted. 

if 𝑎1 = 𝑏1 then allocate 𝑥11 = 𝑎1 = 𝑏1 and move to cell (2,2), diagonally 

to cell (1, 1) as the supply in row 1 and requirement in column 1 are 

exhausted simultaneously. 

Step 2: Adjust the supply and demand units in the respective rows and 

columns i.e., in row 1 and column 1 through the cell (1, 1). 
Step 3: Repeat the steps 1 and 2 with the new cell moved. 

Step 4: Continue in this manner, step by step until the total available 

supply is fully allocated to the cells destinations as required. 

 

Note: that the procedure will end at the cell in the south-east corner (i.e., 

lowest right corner). 

 

13.9.2 Lowest Cost Entry Method (LCEM) or Matrix 

Minima Method (MMM): - 
In this method, we have the following steps: 

 

Step 1: Write all the costs within the brackets () in the transportation table. 

 

Step 2: Examine the cost matrix carefully and find the lowest cost. Let it 

be 𝑐𝑖𝑗 . Then allocate 𝑥𝑖𝑗  as much as possible in the cell  (𝑖, 𝑗), 𝑖. 𝑒. 𝑥𝑖𝑗 =

 𝑚𝑖𝑛. (𝑎𝑖, 𝑏𝑗) 
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(i).  If 𝑎𝑖 <  𝑏𝑗  , 𝑥𝑖𝑗  = 𝑎𝑖 , then the capacity of the ith origin is completely 

exhausted. In this case cross out the ith row of the transportation table and 

decrease the requirement 𝑏𝑗  𝑏𝑦 𝑎𝑖. Now go to step 3.  

 

(ii) If  𝑎𝑖 >  𝑏𝑗  , 𝑥𝑖𝑗  = 𝑏𝑗  , then the requirement of j-th destination is 

completely satisfied. In this case cross out the j-th column of the 

transportation table and decrease 𝑎𝑖 𝑏𝑦  𝑏𝑗. Now go to step 3. 

 

(iii) If 𝑥𝑖𝑗 = 𝑎𝑖 = 𝑏𝑗 then either cross-out the ith row or j-th column but 

not both. Now go to step 3.  

If such cell of lowest cost is not unique, select the cell where we can 

allocate more amounts. 

 

Step 3: Adjust the supply and demand in the row and column through the 

cell in which allocation is made. 

Step 4: Repeat the steps 2 and 3 leaving the cost of the cells in the row or 

column already crossed, until all the supply is exhausted or all the 

requirements are satisfied. 

 

13.9.3 Method 3: Vogel's Approximation Method (VAM): - 
 

In this method, each allocation is made on the basis of the penalty (or 

opportunity) cost that would have incurred if allocation in certain cells 

with minimum cost were missed. In this method, we have the following 

steps: 

 

Step 1: Write the differences of the smallest and the second smallest costs 

(i.e. penalties) in each row to the right of the corresponding row and write 

the similar differences (penalties) of each column below the corresponding 

column. 

 

Step 2: Select the row or column for which the penalty is the largest and 

allocate the maximum possible amount to the cell with lowest cost in that 

particular row or column. 

 

If the largest penalty among rows and columns is not unique, select that 

row or column in which we can allocate more amount in the lowest cost 

cell of that row or column. 

 

Step 3: Adjust the supply and demand units in the respective row and 

column through the cell in which allocation is made and cross (or leave) 

out the row (or column) in which the supply (or demand) is exhausted. 
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Step 4: Repeat the steps 1, 2 and 3 with the costs in the remaining rows 

and columns left after crossing the exhausted row or column in previous 

step till all the supply and demands are exhausted. 

 

13.10 OPTIMALITY TEST: -  

After obtaining the initial F.S. of a transportation problem, we evaluate 

this solution for optimality, meaning we determine whether or not the 

feasible solution found minimizes the overall cost of transportation. There, 

we begin the optimality test to a non-degenerated B.F.S., or an F.S. with 

(𝑚 +  𝑛 −  1) allocations in independent positions. 

 

For the test of the solution's optimality, the two approaches listed below 

are generally used: 

1. The stepping-stone method  

2. The modified distribution (MODI) or u-v method. 

 

13.11 THE STEPPING STONE METHOD: -  

Examine the matrix that provides the transportation problem's basic 

feasible solution (a feasible solution with exactly 𝑚 + 𝑛 − 1 allocations), 

where  𝑚  is the number of rows and  𝑛  is the number of columns. 

 

Follow these steps to test the B.F.S. for optimality using the stepping-

stone method: 

Step 1: Choose an unoccupied cell, or one that has no allocation. Starting 

from this cell, move horizontally and vertically along a closed path that 

passes through at least three occupied cells utilized in the solution before 

returning to this cell. Only the cells at the turning points in this closed path 

can be taken into account, ignoring the other occupied and unoccupied 

cells that cross the path. These cells at the path's turning points are 

referred to as stepping stones. 

Step 2: Allocate +1 unit to this chosen unoccupied cell, then alternately 

assign −1 and +1 units to each of the above closed path's corner cells so 

that the total of the row and column allocations remain unchanged. 

 

Step 3: Add the unit costs in the cells with + 1 allocations and subtract the 

unit costs in the cells with −1 allocations to determine the net change in 

the cost along this closed path. The cell evaluation of the unoccupied cell 

chosen in step 1 refers to this net change in cost, which can be either 

positive or negative. The positive cell evaluation implies that the above 

adjustment would increase the total cost while the negative cell evaluation 

implies that this adjustment would decrease the total cost. 
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Step 4: For every unoccupied cell in the solution, repeat steps 1 to 4. 

 

Step 5: Examine each cell evaluation's signs. The solution under 

evaluation is optimal and cannot be further improved if all are larger than 

or equal to zero. The present solution is not ideal and can be further 

improved if at least one of these cell evaluations is negative. In this case, 

move on to step 6. 

 

Step 6: Choose the unoccupied cell with the highest negative cell 

evaluation, allocate a maximum number of units to it, and modify the units 

in other occupied cells so that the total of the allocations in the rows and 

columns remains the same. 

 

Step 7: For every unoccupied cell in this new solution, repeat steps 1 to 6. 

Continue this process until an optimal solution is found. 

Because there are  𝑚𝑛 − (𝑚 +  𝑛 −  1)  =  (𝑚 −  1)(𝑛 −
 1) unoccupied cells, we must compute  (𝑚 −  1)(𝑛 −  1)  such cell 

evaluations for each solution, which is extremely difficult. 

 

We provide the following theorem (without proof) for the simultaneous 

computation of cell evaluations for every unoccupied cell in order to avoid 

this difficulty. 

 

Theorem 4: If we have a B.F.S. consisting of (𝑚 +  𝑛 −  1) independent 

positive allocations, and a set of arbitrary numbers  𝑢𝑖 𝑎𝑛𝑑 𝑣𝑗 , 𝑖 =

 1, 2 , . . . , 𝑚; 𝑗 =  1,2. . . . . . 𝑛; such that  

𝑐𝑟𝑠 = 𝑢𝑟 + 𝑣𝑠 
for all occupied cells (𝑟, 𝑠) then the cell evaluations𝑑𝑖𝑗 corresponding to 

each empty cell (𝑖, 𝑗) is given by  

𝑑𝑖𝑗 = 𝑐𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) 

 

Example1. Solve the following transportation problem. 

 

 

 

From 

 To Supply 

1 2 3 

1 2 7 4 5 

2 3 3 1 8 

3 5 4 7 7 

4 1 6 2 14 

Demand 7 9 18 34 

 

Solution: 

Step 1: The initial B.F.S. of the above problem (by VAM) is given in the 

following table. 

Total transportation cost 

= ₹(5 × 2 + 2 × 1 + 7 × 4 + 2 × 6 + 8 × 1 + 10 × 2) = ₹80 
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Step 2: Now we determine a set of  𝑢𝑖  𝑎𝑛𝑑 𝑣𝑗  s.t. for each occupied 

cell  (𝑟, 𝑠), 𝑐𝑟𝑠 = 𝑢𝑟 + 𝑣𝑠 . For this we choose  𝑢4 =  0  (since row 4 

contains maximum number of allocations). 
Since 

𝑐41 = 1 = 𝑢4 + 𝑣1, 𝑐42 = 6 = 𝑢4 + 𝑣2, 𝑐43 = 2 = 𝑢4 + 𝑣3 

∴             𝑣1 = 1 − 𝑢4 = 1, 𝑣2 = 6 − 𝑢4 = 6, 𝑣3 = 2− 𝑢4 = 2 

𝑎𝑙𝑠𝑜      𝑐11 = 2 = 𝑢1 + 𝑣1, 𝑐23 = 1 = 𝑢2 + 𝑣3, 𝑐32 = 4 = 𝑢3 + 𝑣2 

∴             𝑢1 = 2 − 𝑣1 = 1, 𝑢2 = 1 − 𝑣3 = −1, 𝑢3 = 4 − 𝑣2 = −2 
 

Step 3: Then we find the cell evaluations 𝑢𝑖 + 𝑣𝑗 for each unoccupied cell 

(𝑖, 𝑗) and enter at the upper right corner of the corresponding unoccupied 

cell. 

Step 4: Then we find the cell evaluations 
𝑑𝑖𝑗 = 𝑐𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) (i.e., the difference of the upper right corner entry 

from the upper left corner entry) for each unoccupied cell (𝑖, 𝑗) and enterat 

the lower right corner of the corresponding unoccupied cell. 

Thus, we get the following table: 

 

 
Step 5: Since cell evaluation 𝑑22  = −2 < 0, so the solution under test is 

not optimal. 

 

Step 6: Since minimum  𝑑𝑖𝑗  is  𝑑22  = −2 < 0  (negative), so we give 

maximum allocation 𝜃  to this cell from an occupied cell and make the 

necessary changes in other allocations as shown in the following table. 
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Since minimum allocation containing – 𝜃 𝑖𝑠 2 − 𝜃 

∴                        taking 2 − 𝜃 = 0,we get 𝜃 = 2 
 

Step 7: The new B.F.S. (allocations in independent positions) thus 

obtained is shown in the following table. For this B.F.S. total 

transportation cost  

= ₹ (5 ×  2 +  2 × 1 +  2 × 3 +  7 × 4 +  6 × 1 +  12 × 2)  = ₹76 
 

This is less than that for the initial B.F.S. 

 
 

 

Step 8: Proceeding as in step 2, 3 and 4 (to test the optimality of the above 

B.F.S.) we get the following table: 
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Since all 𝑑𝑖𝑗 >  0. Hence, the B.F.S. shown by table in step 8 is an optimal 

solution which is also unique. 

 

Thus, the solution of the given transportation problem is 

from source 1 transport 5 units to destination 1. 

from source 2 transport 2 and 6 units to destinations 2 and 3 respectively. 

from source 3 transport 7 units to destination 2. 

And from source 4 transport 2 and 12 units to destinations 1 and 3 

respectively which can also be written as 

𝑥11 = 5, 𝑥22 = 2, 𝑥23 = 6, 𝑥32 = 7, 𝑥41 = 2, 𝑥43 = 12 

where 𝑥𝑖𝑗 is the number of units to be transported from i-th source to j-th 

destination. 

 

And the total transportation cost (optimal) = ₹76. 

13.12 MODI METHOD OR u-v METHOD: -  

The MODI Method's iterative process for identifying the most optimal 

solution to a minimization transportation problem is as follows: 

 

Step 1: Create a transportation table by entering the requirements 

𝑏1, 𝑏2, … , 𝑏𝑛 and the sources' capacity 𝑎1, 𝑎2, … , 𝑎𝑚. In each cell's upper 

left corner, enter the different costs 𝑐𝑖𝑗. Use any of the techniques listed in 

article 13.9 to find the problem's initial B.F. solution (allocation in 

independent positions). Put the allocations in the cell centers. 

 

Step 2: Choose a set of (𝑚 + 𝑛) numbers 𝑢𝑖 𝑎𝑛𝑑 𝑣𝑗, 𝑖 =  1, 2 , … ,𝑚; 𝑗 =

 1,2……𝑛 such that for each occupied cell  (𝑟, 𝑠) 
 

𝑐𝑟𝑠 = 𝑢𝑟 + 𝑣𝑠 
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In order to do this, we give one of the  𝑢𝑖
′𝑠 𝑜𝑟 𝑣𝑗′𝑠 an arbitrary value. The 

remaining ones (𝑚 +  𝑛 −  1) may then be solved algebraically using the 

relation 𝑐𝑟𝑠 = 𝑢𝑟 + 𝑣𝑠 for occupied cells. generally, we select the row or 

column with the greatest number of individual allocations, 𝑢𝑖  𝑜𝑟  𝑣𝑗 =  0. 

Step 3: For every unoccupied cell (𝑖, 𝑗), find the cell evaluation 𝑢𝑖 + 𝑣𝑗 

and insert it in the upper right corner of the matching cell (𝑖, 𝑗). 
Step 4: For each unoccupied cell  (𝑖, 𝑗) , get the cell evaluations 
𝑑𝑖𝑗 = 𝑐𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) and enter them in the associated cells' lower right 

corners. 

Step 5: Examine for unoccupied cells in the cell evaluations 𝑑𝑖𝑗  and 

determine that 

(i) The solution under test is optimum and unique if all  𝑑𝑖𝑗 > 0 . 

 

(ii) The solution under test is optimal and there is an alternate optimal 

solution if all  𝑑𝑖𝑗 ≥ 0  and at least one  𝑑𝑖𝑗 =  0 . 

 

(iii) The solution is not optimal if there is at least one 𝑑𝑖𝑗 < 0. In the last 

case, move on to step 6. 

Step 6: Create a new B.F.S. by making an occupied cell empty, providing 

the maximum allocation to the cell for which d overline eta is the greatest 

negative, and modifying the units in the remaining occupied cells so that 

the total of the allocations in the rows and columns remain unchanged. 

Step 7: To determine whether this new B.F. solution is optimal, repeat 

steps (2) to (5). 

 

Until the optimal solution is found, continue improving the B.F.S. 

interactively using steps 2 to (6). 

 

The occupied (cells with allocations) and unoccupied (cells without 

allocations) cells in the table will therefore look like this after all entries 

have been made: 

 



Linear Programming and Game Theory                                MT(N)-223 

Department of Mathematics  

Uttarakhand Open University Page 252 
 

13.13 UNBALANCED TRANSPORTATION 

PROBLEM: -  

An unbalanced transportation problem is defined as one in which the total 

of all available quantities does not equal the total of all requirements. That 

is, if 

  

∑𝑎𝑖

𝑚

𝑖=1

≠∑𝑏𝑗

𝑛

𝑗=1

 

 

A transportation problem that is unbalance gets transformed into one that 

is balanced by creating a fictitious source or destination that will supply 

the surplus supply or demand. Transporting a unit from the fictitious 

source (or to the fictitious destination) is assumed to have no cost. By 

introducing a fictional source or destination, the unbalanced transportation 

problem is transformed into a balanced transportation problem, which is 

then resolved using the previous techniques. 

 

Example2. Determine the optimal transportation plan from the following 

table given the plant to market shipping costs and quantities at each 

market and available at each plant: 

 

Plant 𝑊1 𝑊2 𝑊3 𝑊4 Availability 

𝐹1 11 20 7 8 50 

𝐹2 21 16 10 12 40 

𝐹3 8 12 18 9 70 

Requirements 30 25 35 40  

 

Solution: Here total requirement of the market =  30 +  25 +  35 +
 40 =  130 and total availability at the plants =  50 +  40 +  70 =  160 

 

Since the total availability at three plants is 30 more than the total 

requirements in four markets  𝑊1, 𝑊2, 𝑊3, 𝑊4 . Therefore, this 

transportation problem is unbalanced and so we convert this problem to a 

balanced one by introducing a fictitious, market  𝑊5with requirement 30 

such that the cost of transportation from plants to this market 
𝑊5 are zero. 

Thus, the balanced transportation problem is given by the following table: 

 

Plant 𝑊1 𝑊2 𝑊3 𝑊4 𝑊5 Availability 

𝐹1 11 20 7 8 0 50 

𝐹2 21 16 10 12 0 40 

𝐹3 8 12 18 9 0 70 
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Requirements 30 25 35 40 30 Total 160 

By 'VAM', we get the following B.F. solution of the problem: 

 
The solution given in the above table is an optimal solution as all𝑑𝑖𝑗 ≥ 0. 

Thus the optimal solution is 

transport from plant 𝐹1 to market  𝑊3, 25 units. 

transport from plant 𝐹₁ to market  𝑊4, 25 units. 

transport from plant 𝐹₂ to market 𝑊3, 10 units. 

transport from plant 𝐹3 to market 𝑊1, 30 units. 

transport from plant 𝐹3 to market 𝑊₂, 25 units. 

transport from plant  𝐹3to market 𝑊4, 15 units.. 

𝑖. 𝑒.      𝑥13 = 25, 𝑥14 = 25, 𝑥23 = 10, 𝑥32 = 25, 𝑥31 = 30, 𝑥34 = 15 

Total transportation cost 

= ₹(25 × 7 + 25 × 8 + 10 × 10 + 30 × 8 + 25 × 12 + 15 × 9)
= ₹1150 

 

It is important to note that 30 units are dispatched from plant 𝐹₂ to market 

(Fictitious)  𝑊5 , In other words, we can say that 30 units are left 

undispatched at the plant 𝐹₂. 
 

 

SELF CHECK QUESTIONS 

1. What is a Transportation Problem? 

2. How is the Transportation Problem related to Linear 

Programming? 

3. What is the main objective of the Transportation Problem? 

4. Define the term initial feasible solution. 

5. What is the purpose of the Stepping Stone Method? 

6. Explain the Modified Distribution Method (MODI). 

7. What are the conditions for the optimal solution in a 

Transportation Problem? 

8. What is the difference between a Transportation Problem and an 

Assignment Problem? 

9. Give one real-life example where a Transportation Problem can be 

applied. 
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13.14 SUMMARY: -  

In this unit, we learned that the Transportation Problem is a type of Linear 

Programming Problem (LPP) that deals with the efficient allocation of 

resources in order to reduce the cost of transporting goods from multiple 

sources (such as factories or warehouses) to multiple destinations. The 

primary goal of this challenge is to discover the best cost-effective method 

for distributing a commodity while meeting supply and demand 

limitations at each source and destination. Each route between a source 

and a destination has a transportation cost per unit, and the solution seeks 

to reduce the overall transportation cost. The problem can be solved using 

methods such as the North-West Corner Rule, Least Cost Method, and 

Vogel's Approximation Method (VAM) to obtain an initial feasible 

solution, followed by optimization techniques such as the Stepping Stone 

Method or Modified Distribution Method (MODI) to achieve the optimal 

solution. 

 

13.15 GLOSSARY: -  

 Transportation Problem: A special type of Linear Programming 

Problem (LPP) that focuses on minimizing the cost of transporting 

goods from multiple sources to multiple destinations while meeting 

supply and demand constraints. 

 Source (Origin): The point or location (such as a factory or 

warehouse) from where goods are supplied or transported. 

 Destination: The point or location (such as a market or store) 

where goods are required or demanded. 

 Supply: The quantity of goods available at each source for 

transportation. 

 Demand: The quantity of goods required at each destination. 

 Transportation Cost: The cost incurred in transporting one unit of a 

product from a source to a destination. 

 Transportation Table (Matrix): A tabular representation 

showing sources, destinations, supply, demand, and unit 

transportation costs. 

 Feasible Solution: A solution that satisfies all supply and demand 

constraints without violating the non-negativity condition. 

 Initial Basic Feasible Solution (IBFS): The starting solution that 

satisfies all constraints before applying optimization methods. 
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 North-West Corner Rule: A method used to find an initial 

feasible solution by starting from the top-left (north-west) cell of 

the transportation table. 

 Least Cost Method: A method of finding an initial feasible 

solution by selecting cells with the lowest transportation cost first. 

 Vogel’s Approximation Method (VAM): A method used to 

obtain an initial feasible solution by considering penalties 

(difference between the two lowest costs in each row and column). 

 Stepping Stone Method: An optimization method used to test 

whether the current feasible solution is optimal and to improve it if 

not. 

 Modified Distribution Method (MODI Method): An efficient 

method for testing the optimality of a transportation problem and 

improving the current solution. 

 Balanced Transportation Problem: A transportation problem in 

which the total supply equals the total demand. 

 Unbalanced Transportation Problem: A transportation problem 

in which total supply does not equal total demand. It can be 

balanced by adding a dummy source or destination. 

 Degeneracy: A condition that occurs when the number of 

occupied cells in the transportation table is less than (𝑚 +  𝑛 −

 1), where m is the number of sources and n is the number of 

destinations. 

 Optimal Solution: The feasible solution that results in the 

minimum total transportation cost. 
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13.18 TERMINAL QUESTIONS: - 

(TQ-1) Solve the following transportation problems for minimum cost. 

  To  

  I II III IV  

 A 15 10 17 18 2 

From B 16 13 12 13 6 

 C 12 17 20 11 7 

  3 3 4 5  

 

 (TQ-2) Solve the following transportation problems for minimum cost. 

 

Sources Destination Supply 

X Y Z 

A 2 7 4 50 

B 3 3 7 70 

C 5 4 1 80 

D 1 6 2 140 

Demand 70 90 180 340 

 

(TQ-3) Obtain an optimal B.F.S. to the following T.P. 

 

  To  

  I II III Available 

 A 7 3 4 2 

From B 2 1 3 3 

 C 3 4 6 5 

 Demand  4 1 5 10 

 

(TQ-4) A company has three plants A, B, C and three were houses X, Y 

and Z. Number of units, available at the plants are 60, 70 and 80 

respectively. Demands at X, Y and Z are 50, 80 and 80 respectively. 

Unit’s costs of transportation are as follows: 

 X Y Z 

A 8 7 3 

B 3 8 9 
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C 11 3 5 

 

(TQ-5) Solve the following transportation problem by North West corner 

method. 

 

 

 

From 

 To Supply 

𝐼 𝐼𝐼 𝐼𝐼𝐼 
1 19 16 12 14 
2 22 13 19 16 
3 14 28 8 12 

Demand 10 15 17  
 

(TQ-6) Solve the following transportation problem by North West corner 

method. 

 

 

 

From 

 To Supply 

𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 14 25 45 5 6 
2 65 25 35 55 8 
3 35 3 65 15 16 

Demand 7 7 6 13  
 

 (TQ-7) Solve the following transportation problem by Lowest cost entry 

method. 

 

 

 

 

 

Factory 

 Warehouse Supply 

𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 19 39 50 10 7 
2 70 30 40 60 9 
3 40 8 70 20 18 

Demand 5 8 7 14  
 

(TQ-8) Solve the following transportation problem by VAM method. 

 

 

 

Sources 

 Destination Supply 

𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 5 8 3 6 30 
2 4 5 7 4 50 
3 6 2 4 6 20 

Demand 30 40 20 10  
 

(TQ-9) Solve the following transportation problem. 

 

 

 

 To Supply 

𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 21 16 25 13 11 
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From 2 17 18 14 23 13 
3 32 27 28 41 19 

Demand 6 10 12 15  
 

(TQ-10) Solve the following transportation problem. 

 

 

 

 

 

Plant 

 Market Supply 

𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
1 14 9 18 6 11 
2 10 11 7 16 13 
3 25 20 11 34 19 

Demand 6 10 12 15  

 

 13.19 ANSWERS: - 

(TQ-1) 𝑚𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹174 

(TQ-2)  𝑚𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹710 

(TQ-3) 𝑚𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹33 

(TQ-4) 𝑚𝑖𝑛. 𝑐𝑜𝑠𝑡 = ₹750 

(TQ-5) 𝑥11 = 10, 𝑥22 = 11, 𝑥12 = 4, 𝑥23 = 5, 𝑥33 = 12, 𝑇. 𝐶.= ₹588 

(TQ-6) 𝑥11 = 4, 𝑥22 = 5, 𝑥12 = 2, 𝑥23 = 3, 𝑥33 = 3, 𝑥34 = 13, 𝑇. 𝐶.=

₹726 

(TQ-7) 𝑥14 = 7, 𝑥21 = 2, 𝑥31 = 3, 𝑥23 = 7, 𝑥32 = 8, 𝑥34 =
7, 𝑇. 𝐶. = ₹814 

(TQ-8) 𝑥11 = 10, 𝑥21 = 20, 𝑥13 = 20, 𝑥22 = 20, 𝑥24 = 10, 𝑥32 =

20, 𝑇. 𝐶. = ₹370 

(TQ-9) : 𝑇. 𝐶. = ₹796 

(TQ-10) 𝑂𝑃. 𝑇. 𝐶.= ₹495 
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14.14    Terminal questions  
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14.1 INTRODUCTION: -  

Game Theory is a branch of applied mathematics and economics that 

studies how people (or players) make decisions in situations where the 

outcome depends on the choices of all participants. It helps to understand 

competition, cooperation, and strategic behavior. 

For example, in business, politics, or even everyday life, people often have 

to make choices considering what others might do. Game theory provides 

tools to analyze these situations and find the best strategies. 

14.2 OBJECTIVES: -  

After studying this unit, the learner’s will be able to  

 Explain game theory. 

 Understand rules for game theory. 

 Define 𝑛 persons Zero-Sum games. 
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14.3 DEFINITION: -  

The general characteristics of competitive situations are considered by the 

mathematical theory of games, sometimes known as game theory or 

competitive strategies. When two or more people or organizations with 

competing goals attempt to make decisions, this theory can be useful. In 

these circumstances, a decision made by one decision-maker influences 

the decisions made by one or more of the other decision-makers, and the 

decision made by all parties determines the final result. In the field of 

business, industry, economics, sociology, and military training, such 

situations often arise. This theory can be applied to a wide range of 

scenarios, including two players trying to win a game of chess, candidates 

competing in an election, two adversaries preparing a war strategy, 

businesses trying to hold onto market share, the start of advertising 

campaigns by businesses promoting rival products, talks between 

organizations and unions, etc. These situations are not the same as the 

ones we have discussed, where nature was seen as a harmless opponent. 

J. Von Neumann's minimax principle, which states that each competitor 

will try to minimize his miximum loss (or maximize his minimal gain) or 

attain best of the worst, is the foundation of game theory. This 

mathematical theory has only been used to analyze basic competitive 

problems so far. How a game should be played is not explained by the 

theory. It merely outlines the process and guidelines for choosing plays. 

Von Neumann, the "father of game theory," invented the theory of games 

in 1928, but it wasn't until he and Morgenstern published "Theory of 

Games and Economic Behaviour" in 1944 that the theory got the attention 

it deserved. There has been a significant gap between what the theory can 

manage and the most real-world business and industrial scenarios because 

it has only been able to analyze quite basic situations thus far. Therefore, 

rather than its formal application to the resolution of actual issues, game 

theory's main contribution has been its notions. 

 

14.3.1 GAME MODELS 

 

There are various types of game models. They are based on the factors like 

the number of players participating, the sum of gains or losses and the 

number of strategies available, etc. 

 

1. Number of persons: If a game involves only two players, it is called 

two-person game, if there are more than two players, it is named n-

person game. An n-person game does not imply that exactly n players 
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are involved in it. Rather it means that the participants can be 

classified into mutually exclusive groups, with all members in a 

group having identical interests. 

 

2. Sum of payoffs: If the sum of payoffs (gains and losses) to the 

players is zero, the game is called zero-sum or constant-sum game, 

otherwise non zero-sum game. 

 

3. Number of strategies: If the number of strategies (moves or choices) 

is finite, the game is called a finite game, if not, it is called infinite 

game. 

14.4 CHARACTERISTICS OF GAMES: -  

A competitive game has the following characteristics: 

(1) There are finite numbers of participants or competitors. If the number 

of participants is 2, the game is called two-person game, for number 

greater than two; it is called 𝑛-person game. 

(2) Each participant has available to him a list of finite number of 

possible courses of action. The list may not be same for each 

participant. 

(3) Each participant knows all the possible choices available to others but 

does not know which of them is going to be chosen by them. 

(4) A play is said to occur when each of the participants chooses one of 

the courses of action available to him. The choices are assumed to be 

made simultaneously so that no participant knows the choices made 

by others until he has decided his own. 

(5) Every combination of courses of action determines an outcome which 

results in gains to the participants. The gain may be positive, negative 

or zero. Negative gain is called a loss. 

(6) The gain of a participant depends not only on his own actions but also 

those of others. 

(7) The gains (payoffs) for each and every play are fixed and specified in 

advance and are known to each player. Thus each player knows fully 

the information contained in the payoff matrix. 

(8) The players make individual decisions without direct communication. 

14.5 TERMINOLOGY: -  

1. Game: It is an activity between two or more people in which each of 

them does acts according to a set of rules, resulting in some gain 
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(+𝑣𝑒, −𝑣𝑒, 𝑜𝑟 𝑧𝑒𝑟𝑜) for each. If the actions in a game are determined 

by abilities, it is considered a game of strategy; if they are determined 

by chance, it is called a game of chance. Furthermore, a game can be 

finite or infinite. A finite game has a limited number of moves and 

options, whereas an infinite game has an infinite number of them. 

2. Player: Every participant or competitor in a game is referred to as a 

player. Each player takes an equally intelligent and sensible approach. 

3. Play: A game play is defined as when each player selects one of his 

options. 

4. Strategy: It is the predetermined rule by which a player selects a 

course of action from his list of options during the game. The player 

does not need to know the opponent's strategy in order to decide a 

particular strategy. 

5. Pure Strategy: It is the choice rule to always take a certain course of 

action. It is commonly represented by a numerical value that 

corresponds to the course of activity. 

6. Mixed Strategy: It is a decision made ahead of time to select a course 

of action for each play based on a probability distribution. Thus, a 

mixed strategy is a choice between pure strategies with certain fixed 

probabilities (proportions). The advantage of a mixed approach, once 

the game pattern is established, is that opponents are kept wondering 

as to which line of action a player would take. 

7. Optimal Strategy: An optimal strategy is one that puts the player in 

the best position possible, regardless of his opponents' strategies. Any 

deviation from this strategy would reduce his payoff. 

8. Zero-Sum game: It is a game in which the total amount paid to all 

players at the end of the game is zero. In such a game, the gain of 

players that win is exactly equal to the loss of players that lose. For 

example, two candidates fighting in elections, where the gain of votes 

by one is the loss of votes by the other. 

9. Two-Person zero-sum game: It is a game with only two participants 

in which one's gain equals the other's loss. It is also known as a 

rectangle game or matrix game because the payment matrix is 

rectangular in shape. If there are participants and the sum of the game 

is zero, it is called a "person zero-sum game." Iwo-person zero-sum 

games have the following characteristics: 

 

(a) There are only two players participating. 

(b) Each player has a limited amount of strategies to use. 
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(c) Each given method has a payoff, 

(d) The total payoff for the two players at the end of each play is zero. 

10. Nonzero-sum game: Here a third party receives or makes some 

payment. 

11. Payoff: It is the result of the game. The payoff (gain or game) matrix 

is a table that shows the sums received by the player labeled on the left 

after all conceivable game plays. The payment is made by the person 

listed at the top of the table. 

14.6 RULES FOR GAME THEORY: -  

The basic rules employed in solving games are described below: 

 

14.6.1 RULE 1. LOOK FOR A PURE STRATEGY (SADDLE 

POINT) 

 

Example1. (Two-Person Zero-Sum Game with Saddle Point): In a 

certain game, player  𝐴  has three possible choices  𝐿, 𝑀 𝑎𝑛𝑑 𝑁 , while 

player 𝐵  has two possible choices  𝑃 𝑎𝑛𝑑 𝑄 . Payments are to be made 

according to the choices made. 

Table: 1 

Choices Payments 

𝐿, 𝑃 𝐴 𝑝𝑎𝑦𝑠 𝐵 ₹3 
𝐿, 𝑄 𝐵 𝑝𝑎𝑦𝑠 𝐴 ₹3 
𝑀, 𝑃 𝐴 𝑝𝑎𝑦𝑠 𝐵 ₹2 
𝑀, 𝑄 𝐵 𝑝𝑎𝑦𝑠 𝐴 ₹4 
𝑁, 𝑃 𝐵 𝑝𝑎𝑦𝑠 𝐴 ₹2 
𝑁, 𝑄 𝐵 𝑝𝑎𝑦𝑠 𝐴 ₹3 

What are the best strategies for players 𝐴 𝑎𝑛𝑑 𝐵 in this game? What is the 

value for the game 𝐴 𝑎𝑛𝑑 𝐵? 

Solution: The above payments can be easily arranged in the form of a 

matrix. Let positive number represent a payment from 𝐵 𝑡𝑜 𝐴 and negative 

number a payment from 𝐴 𝑡𝑜 𝐵. We, then, have the payoff matrix shown 

in table 2. 

 

Minimax and maximum values are also shown on the matrix. When player 

A plays his first strategy (namely 𝐿), he may gain−3 𝑜𝑟 3 depending upon 

player 𝐵′𝑠 selected strategy. He can guarantee, however, a gain of at least 

min. {−3,3} = −3 regardless of B's selected strategy. Similarly, if 𝐴 plays 

his second strategy (namely 𝑀), he guarantees an income of at least min. 
{−2,4} = −2, if he plays his third strategy (namely N) he guarantees an 

income of at least min. {2, 3} = 2. Thus the minimum value in each row 

represents the minimum gain guaranteed to 𝐴 if he plays his pure (grand) 

strategies. 
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These values are indicated in the matrix under 'Minimum of row Now, 

player 𝐴, by selecting his third strategy (N), is maximizing his minimum 

gain. This gain is given by max{−3, −2,2} = 2. This selection of player 𝐴 

is called the maximin strategy and his corresponding gain is called the 

maximin or lower value of the game. 

Table: 2 

 
 

Player 𝐵, on the other hand, wants to minimize his losses. He realizes that 

if he plays his first pure strategy (namely 𝑃), he can lose no more than 

max. {−3, −2, 2} = 2, regardless of 𝐴′𝑠 selections. Similarly, if he plays 

his second pure strategy (𝑄), the maximum he loses is max {3, 4, 3} = 4. 

These values are indicated in the above matrix by "Maximum of column. 

Player 𝐵 will select the strategy that minimizes his maximum loss. This is 

given by strategy 𝑃 and his corresponding loss is given by min. {2, 4} = 2. 

Player 𝐵′𝑠 selection is called the minimax strategy and his corresponding 

loss is called the minimax (or upper) value of the game. 

 

It is seen from the conditions governing the minimax criterion that the 

minimax (upper) value is greater than or equal to the maximin (lower) 

value. When the two are equal (minimax value maximin value), the 

corresponding pure strategies are called optimal strategies and the game is 

anid to have a saddle point or equilibrium point and is called a stable 

game. The value of the game is given by the saddle point and is equal to 

the maximin and minimax values. Thus the saddle point is the point of 

intersection of the two courses of action and the gain at this point is the 

value of the game. The game is said to be fair if 𝑚𝑎𝑥𝑖𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 =
𝑚𝑖𝑛𝑖𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 = 0 , and is said to be strictly determinable inable if 

𝑚𝑎𝑥𝑖𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑖𝑛𝑖𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 ≠ 0 . Note that neither player can 

improve his position by selecting any other strategy. Saddle point is the 

number which is lowest in its row and highest in its column. 

 

In the above example,  𝑚𝑖𝑛𝑖𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 = 2 . The 

value of the game is thus equal to 2. The game has a saddle point given by 

the entry (𝑁, 𝑃) of the matrix. As the game value is 2, (and not zero), the 

game is not fait, though it is strictly determinable. 
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The saddle point solution guarantees that neither player is tempted to 

select a better strategy If 𝐵 moves to the other strategy 𝑄. player 𝐴 may 

move to strategy 𝑀, which means that B will lose ₹4, rather than ₹2 at 

present. Likewise, 𝐴 does not want to use a different strategy because if 𝐴 

moves to strategy, say  𝐿 , player  𝐵  will adopt strategy  𝑃  so that  𝐴  will 

lose₹3, rather than winning ₹2 presently. 

 

We summaries below the steps required to detect a saddle point 

 

(1) At the right of each row, write the row minimum and ring the largest of 

them. 

 

(2) At the bottom of each column, write the column maximum and ring the 

smallest of them. 

 

(3) If these two elements are same, the cell where the corresponding row 

and column meet is a saddle point and the element in that cell is the value 

of the game 

 

(4) If the two ringed elements are unequal, there is no saddle point, and the 

value of the game has between these two values. 

 

(5) If there are more than one saddle points then there will be more than 

one solution, each solution corresponding to each saddle point. 

 

We give below a few more examples of games. Saddle points, if they 

exist, have been ringed Optimum strategies and game values are also 

indicated. 
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If there is no saddle point, neither player can optimize his chances by 

using a pure strategy, they must mix some or all of their courses of sction, 

resulting in mixed strategies. 

 

Example2: Consider the game G with the following payoff. 

 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 

 𝑃𝑙𝑎𝑦𝑒𝑟 𝐵 
 𝐵1 𝐵2 

𝐴1 2 6 
𝐴2 −2 𝜆 

(a) Show that G is strictly determinable, whatever 𝜆 may be. 

(b) Determine the value of G. 

Solution: a) Ignoring whatever the value of 𝜆. may be, the given payoff 

matrix represents 

 𝐵1 𝐵2 𝑅𝑜𝑤 𝑚𝑖𝑛𝑖𝑚𝑎 
𝐴1 2 6 2 
𝐴2 −2 𝜆 −2 

𝐶𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑥𝑖𝑚𝑎 2 6  
∴ Maximin value= 2 and minimax value= 2. 

∴ The game 𝐺 is strictly determinable, whatever 𝜆 may be. 

b) Value of the game= 2 

     Strategies: 𝐴, row 1; 𝐵, column1. 

 

14.6.2 RULE 2. REDUCE GAME BY DOMINANCE 
If there are no pure strategies, the next step is to eliminate certain 

strategies (rows and/or columns) through dominance. Rows and/or 

columns of the payoff matrix that are less than at least one of the 

remaining rows and/or columns are removed from further consideration. 

The resulting game can be solved using a mixed strategy. 

Example 3: (3 x 3 Game, Matrix Reduction by Dominance)Two 

players P and Q play a game. Each of them has to choose one of the three 

colours, white (W), black (B) and red (R) independently of the other. 

Thereafter the colours are compared. If both P and have chosen white (W. 

W), neither wins anything. If player P selects white and player Q black 

(W, B), player P loses 2 or player wins the same amount and so on. The 

complete payoff table is shown below (Table: 3). Find the optimum 

strategies for P and Q and the value of the game. 

Table: 3 

 

 

 

Colour chosen by P 

 Colour chosen by Q 

 W R B 

W 0 −2 7 
R 2 5 6 
B 3 −3 8 

Solution: This matrix has no saddle point. Evidently, player Q will not 

play strategy R since this will result in heaviest losses to him and highest 
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gains to player P. He can do better by playing columns W or B. Thus 

column R is to be deleted and strategy R is called dominated strategy. 

 

The dominance rule for columns is: Every value in the dominating 

column(s) must be less than or equal to the corresponding value of the 

dominated column. The resulting matrix is 

Table: 4 

 

 

 

Player  P 

     Player Q 

 W B 

W 0 −2 
B 2 5 
R 3 −3 

From table 4, it is clear that player P will not play row W since it will give 

him returns lower than given by row B. Hence row W is dominated by 

row B and can be deleted. 

The dominance rule for rows is: Every value in the dominating row(s) 

must be greater than or equal to the corresponding value of the dominated 

row. The resulting matrix is 

Table:5 

 

 

 

Player  P 

     Player Q 

 W B 

B 2 5 
R 3 −3 

This 2 × 2 matrix can be easily solved as discussed later. 

Dominance need not be based on the superiority of pure strategies only. 

A given strategy is also said to be dominated if it is inferior to some 

convex linear combination (e.g., average) of two or more pure strategies. 

To illustrate this let us consider the following game: 

Table:6 

 

 

 

A 

  B 

 1 2 3 

1 6 1 3 
2 0 9 7 
3 2 3 4 

This game has no saddle point. Further, none of the pure strategies of A is 

inferior to any of his other pure strategies. However, average of A's first 

and second pure strategies gives us 

(
6 + 0

2
,
1 + 9

2
,
3 + 7

2
) = (3,5,5) 

This is obviously superior to A's third pure strategy. Therefore, the third 

strategy may be deleted from the matrix. The resulting matrix becomes 

 

Table: 7 

 

 

  B 

 1 2 3 
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A 
1 6 1 3 
2 0 9 7 

 
14.6.3 RULE 3. SOLVE FOR A MIXED STRATEGY 

When there is no saddle point and dominance has been exploited to shrink 

the game matrix, players will choose varied strategies. A few distinct 

techniques will be given to optimize each player's winning chances and 

solve the game. One of the players must decide how much time to spend 

on each row, while the other must figure out how much time to spend on 

the each column. The payoffs earned will be the expected payoffs, and the 

game's worth will be its expected value. These games are called unstable 

games. 

 

14.7 MIXED STRATEGIES(𝟐 × 𝟐 𝑮𝑨𝑴𝑬𝑺):-  

Arithmetic and algebraic methods are utilized to determine optimal 

strategies and game values for a 2 × 2 game. Each of these strategies will 

be discussed in further depth now. 

 

14.7.1 Arithmetic Method (Odds Method or Short Cut Method) 

Optimum Strategies and Game Value for Finding 

It provides a simple approach for determining the best strategy for each 

player in a 2 × 2 game with no saddle points. It includes the following 

steps. 

(a)  Subtract the two digits from column 1 and write the difference in 

column 2, ignoring the sign. 

(b) Subtract the two digits from column 2 and write the difference in 

column 1, ignoring the sign. 

(c) Repeat for the two rows. 

These values are referred to as oddments. They are the frequency at 

which players must implement their optimal strategy. 

Example 4: (Two-person zero-sum game without saddle point) In a 

game of matching coins, player A wins ₹2 if there are two heads, wins 

nothing if there are two tails and loses ₹1 when there are one head and one 

tail. Determine the payoff matrix, best strategies for each player and the 

value of game to A. 

Solution: The payoff matrix for A will be 

 

 

Player  A 

     Player B 

 H T 

H 2 −1 
T −1 0 

Since there is no saddle point, the optimal strategies will be mixed 

strategies. Using the steps described above we get 

        Player B 
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Player  A 

 H T  

H 2 −1 1    1/3 + 1 = 0.25 
T −1 0 3    3/3 + 1 = 0.75 

  1 
0.25 

3 
0.75 

 

Thus for optimum gains, player A should use strategy H for 25% of the 

time and strategy T for 75% of the time, while player B should use 

strategy H 25% of the time and strategy T 75% of the time. 

To obtain the value of the game any of the following expressions may be 

used: 

Using A's oddments 

𝐵 𝑝𝑙𝑎𝑦𝑠 𝐻;  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒, 𝑉 = ₹ (
1 × 2 − 3 × 1

3 + 1
) = ₹ (−

1

4
) 

 

𝐵 𝑝𝑙𝑎𝑦𝑠 𝑇;  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒, 𝑉 = ₹ (
1 × −1 + 3 × 0

3 + 1
) = ₹ (−

1

4
) 

 

Using B's oddments 

 

𝐴 𝑝𝑙𝑎𝑦𝑠 𝐻;  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒, 𝑉 = ₹ (
1 × 2 − 1 × 3

3 + 1
) = ₹ (−

1

4
) 

 

𝐴 𝑝𝑙𝑎𝑦𝑠 𝑇;  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒, 𝑉 = ₹ (
−1 × 1 + 0 × 3

3 + 1
) = ₹ (−

1

4
) 

 

The above values of V are equal only if sum of the oddments vertically 

and horizontally are equal. Cases in which it is not so are treated later. 

Thus the full solution of the game is  

𝐴 (1, 3);  𝐵 (1, 3);  𝑉 = ₹(−1/4) 
This is the value of the game to A i.e., A gains ₹(−1/4) ie, he loses ₹1/4 

which B, in turn, gets. Arithmetic method is easier than algebraic method 

but it cannot be applied to larger games. 

 

14.7.2 Algebraic Method for Finding Optimum Strategies and Game 

Value 

When using this method, it is expected that 𝑥 represents the fraction of 

time (frequency) in which player A employs strategy 1 and  (1 − 𝑥) 

represents the fraction of time (frequency) in which he uses strategy 2. 

Similarly,  𝑦 and  (1 − 𝑦) denote the fraction of time that player B uses 

methods 1 and 2, respectively. 

 

Example 5: (Two-person zero-sum game without saddle point): The 

two armies are at war. Army A has two airbases, one of which is thrice as 

valuable as the other. Army B can destroy an undefended airbase, but it 
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can destroy only one of them. Army A can also defend only one of them. 

Find the best strategy for A to minimize its losses. 

Solution: Since both armies have only two possible courses of action, the 

gain matrix for army A is 

   Army B 

   1 2 
   Attack the 

smaller airbase 

Attack the 

larger airbase 

Army A Defend 

smaller 

airbase 

1 0 
Both survive 

−3 
The larger one 

destroyed 

Defend 

larger 

airbase 

2 −1 
The smaller one 

destroyed 

0 
Both survived 

 

There is no saddle point. Under this method, army A wants to divide its 

plays between the two rows so that the expected winnings by playing the 

first row are exactly equal to the expected winnings by playing the second 

row irrespective of what army B does. In order to arrive at the optimum 

strategies for Army A, it is necessary to equate its expected winnings 

when army B plays column 1 to its expected winnings when army B plays 

column 2. 

𝑖. 𝑒. , 𝑤ℎ𝑒𝑛 0𝑥 + (−1)(1 − 𝑥) = −3𝑥 + 0( (1 −  𝑥) 
𝑜𝑟 𝑤ℎ𝑒𝑛 −  1 +  𝑥 = − 3𝑥 𝑖. 𝑒. , 4𝑥 =  1 ∴  𝑥 =  ¼ 
Thus army A should play first row 1/4th of the time and second row 3/4th 

(= 1 −  𝑥 ) of the time. 

Similarly, army B wants to divide its time between columns 1 and 2 so 

that the expected winnings are same by playing each column, no matter 

what army A does. Optimum strategies for army B will be found by 

equating its expected winnings when army A plays row 1 to its expected 

winnings when army A plays row 2. 

𝑖. 𝑒. , 𝑤ℎ𝑒𝑛 0. 𝑦 −  3(1 −  𝑦)  =  −1. 𝑦 +  0(1 −  𝑦) 
𝑜𝑟 𝑤ℎ𝑒𝑛 −  3 +  3𝑦 =  − 𝑦 
𝑜𝑟 𝑤ℎ𝑒𝑛 4𝑦 =  3 𝑜𝑟 𝑤ℎ𝑒𝑛 𝑦 =  3/4 
Thus army B should play first column 3/4th of the time and second 

column 1/4th (−1 −  𝑦)  of the time. These optimum strategies can be 

shown on the gain-matrix, which becomes 

 

 

Army  A 

      Army B 

 1 2  

1 0 −3 1/4  
2 −1 0 3/4 

  3/4 1/4  
The game value can be found either for army A or for army B. 
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Game value for army A: While army B plays column 1, 3/4 of time, 

army A wins zero for 1/4 time and−1 𝑓𝑜𝑟 3/4 time, also while army B 

plays column 2 𝑓𝑜𝑟 1/4 of time, army A wins −3 𝑓𝑜𝑟 1/4 time and zero 

for 3/4 time. 

∴Total expected winnings for army A are 

 

𝑔𝑎𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 =
3

4
(0 ×

1

4
− 1 ×

3

4
) +

1

4
(−3 ×

1

4
+ 0 ×

3

4
) = −

9

16
−

3

16

= −
3

4
 

Game value for army B: While army A plays row 1, 1/4 of time, army B 

wins zero for 3/4 of time and 3 𝑓𝑜𝑟 1/4 of time, also while army A plays 

row 2, 3/4 of time, army B wins −1 𝑓𝑜𝑟 3/4 of time and zero for 1/4 of 

time. 

 

∴Game value for army B  

=
1

4
(0 ×

3

4
− 3 ×

1

4
) +

3

4
(−1 ×

3

4
+ 0 ×

1

4
) = −

3

16
−

9

16
= −

3

4
 

Thus the full solution of the game is  

𝑎𝑟𝑚𝑦 𝐴: 𝑎𝑟𝑚𝑦 (
1

4
,
3

4
) , 𝑎𝑟𝑚𝑦 𝐵: (

3

4
,
1

4
)  𝑔𝑎𝑚𝑒 =  − 

3

4
 , 

 

14.8 𝒏 PERSONS ZERO-SUM GAMES:-  

These games are typically considered as two coalitions established by the 

n-persons involved. The characteristics of such a game are the values of 

various games played by every possible coalition pair. For example, 

players A, B, C, and D can create the following coalitions. 

𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵, 𝐶, 𝐷; 
𝐵 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐴, 𝐶, 𝐷; 
𝐶 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐴, 𝐵, 𝐷; 
𝐷 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐴, 𝐵, 𝐶; 
𝐴, 𝐵 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐶, 𝐷; 
𝐴, 𝐶 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵. 𝐷; 
𝐴. 𝐷 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵, 𝐶. 
If the value of the game for B, C, D coalition is V, then the value of the 

game for A is -V, since it is zero-sum game. Thus in a four-person zero-

sum game there will be seven values or characteristics for the game, which 

are obtained from the seven different coalitions 

 

Example 6: Find the values of the three-person zero-sum game in which 

player 𝐴 has two choices 𝑋1, 𝑋2; player 𝐵 has two choices 𝑌1, 𝑌2 and player 

𝐶 also has two choices 𝑍1, 𝑍2. The payoff matrix is shown in table below. 

 

Choice Payoff  
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𝐴 𝐵 𝐶 𝐴 𝐵 𝐶 
𝑋1 𝑌1 𝑍1 3 2 −2 
𝑋1 𝑌1 𝑍2 0 2 1 
𝑋1 𝑌2 𝑍1 0 −1 4 
𝑋1 𝑌2 𝑍2 1 3 −1 
𝑋2 𝑌1 𝑍1 4 −1 0 
𝑋2 𝑌1 𝑍2 1 1 3 
𝑋2 𝑌2 𝑍1 1 0 2 
𝑋2 𝑌2 𝑍2 0 2 1 

 

Solution: There are three possible coalitions: 

1. 𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵, 𝐶; 
2. 𝐵 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐴, 𝐶, 
3. 𝐶 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐴, 𝐵. 

We shall solve each of the resulting game. 

1. 𝑨 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑩, 𝑪. The payoff matrix in 𝐴′𝑠 terms is shown in table 

below. 

  𝐵, 𝐶  
  𝑌1, 𝑍1 𝑌1, 𝑍2 𝑌2, 𝑍1 𝑌2, 𝑍2  

𝐴 𝑋1 3 0 0 1 (0) 
𝑋2 4 −1 1 0 −1 

  4 (0) 1 1  
 

The first step is to look for a saddle point. The game has a saddle 

point. Thus, we have the following solution for 𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐵, 𝐶. 

𝐴′𝑠 best strategy is tilde 𝑌1 , 

𝐵′𝑠 𝑎𝑛𝑑 𝐶′𝑠  best combination of strategies is  𝑌1, 𝑍2  value of the 

game for 𝐴 is zero, value of the game for 𝐵, 𝐶 is zero. 

2. 𝑩 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑨, 𝑪: The payoff matrix in 𝐵′𝑠 terms is shown in table 

below. 

  𝐴, 𝐶 
  𝑋1, 𝑍1 𝑋1, 𝑍2 𝑋2, 𝑍1 𝑋2, 𝑍2 

𝐵 𝑌1 2 2 −1 1 
𝑌2 −1 3 0 2 

 

The first step is to look for saddle point. In this game there is none. The 

next step is to reduce the game by the rules of dominance. Columns 𝑋1, 𝑍2 

and 𝑋2, 𝑍2 are dominated and should, therefore, be deleted. The resulting 

reduced matrix is shown in this table below. 

    

  𝐴, 𝐶   

  𝑋1, 𝑍1 𝑋2, 𝑍1   

𝐵 𝑌1 2 −1 1 1/4 
𝑌2 −1 0 3 3/4 
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  1 
1/4 

3 
3/4 

  

 

Solving this 2 × 2 game by arithmetic method we get the following result: 

𝐵′𝑠 best strategy is to play choice 𝑌1 with a frequency of 1/4 and choice 

𝑌2 with a frequency of 3/4.𝐴′𝑠 𝑎𝑛𝑑 𝐶′𝑠 best strategy is for 𝐶 to play 𝑍1 

and for 𝐴 to play 𝑋1 with frequency of 1/4 and 𝑋2 with a frequency of 3/4 

 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒 𝑓𝑜𝑟 𝐵 =
 2/4 − 3/4

1/4 + 3/4
= −

1

4
 

 

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒 𝑓𝑜𝑟 𝐴, 𝐶 =  1/4 
 

3. C against A, B: The payoff matrix in 𝐶′𝑠 terms is shown in table 

below. 

  𝐴, 𝐵 
  𝑋1, 𝑌1 𝑋1, 𝑌2 𝑋2, 𝑌1 𝑋2, 𝑌2 

𝐶 𝑍1 −2 4 0 2 
𝑍2 1 −1 3 1 

 

The first step is to look for saddle point. In this case there is none. The 

next step is to reduce the game by the rules of dominance. Columns 𝑋2, 𝑌1 

and𝑋2, 𝑌2 are dominated by column 𝑋1 and the resulting reduced matrix is 

shown in table below.  

  𝐴, 𝐵   

  𝑋1, 𝑌1 𝑋1, 𝑌2   

𝐶 𝑍1 −2 4 2 2/8 
𝑍2 1 −1 6 6/8 

  5 
5/8 

3 
3/8 

  

 

Solving it by the arithmetic method we get the following results: 

𝐶′𝑠 best strategy is to play choice 𝑍1 with a frequency of 2/8 and choice 

𝑍2 with a frequency of 6/8. 𝐴′𝑠 𝑎𝑛𝑑 𝐵′𝑠 best strategy is for 𝐴 to play 𝑋1 

and for 𝐵 to play 𝑌1 with a frequency of 5/8 and 𝑌2 with a frequency of 

3/8. 

 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒 𝑓𝑜𝑟 𝐶 𝑖𝑠 =
−10/8 + 12/8

5/8 + 3/8
=

2/8

1
=

1

4
 

 

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒 𝑓𝑜𝑟 𝐴, 𝐵 =  − 1/4 
Therefore, the characteristics of the game are 

𝑉(𝐴) = 0, 𝑉(𝐵, 𝐶) = 0,  

𝑉(𝐵) = −
1

4
, 𝑉(𝐴, 𝐶) =

1

4
,  
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𝑉(𝐶) =
1

4
, 𝑉(𝐴, 𝐵) = −

1

4
 

 

14.9 LIMITATIONS OF GAME THEORY: -  

Our game theory discussion has only covered two- and n-person zero-sum 

games. There are relatively few applications of game theory to real-world 

situations. This is due to the following factors: 

1. Management choices are rarely made in a two-person environment; the 

government or society is frequently an outside party participating in 

decision-making. 

2. Nonzero-sum games occur when the sum of the opponents' gains and 

losses is not zero. 

3. In actual life, it is rare for both parties to have equal information and 

intelligence. 

4. It is difficult to precisely calculate the payout matrix's values. 

Inaccurate values in the matrix will produce misleading results. It is 

not difficult to prove that one outcome is superior to the other, but it is 

much more difficult to determine how much superior. 

5. The game's solution is based on maximin or minimax principles, 

which require players to select strategies that maximize the minimal 

gains or minimize the highest losses. In actual life, managers may not 

take such a cautious attitude and instead choose to take risks. 

Furthermore, data about available strategies and payoffs may be 

incomplete and uncertain. 

6. In the real world, the chosen strategy is usually continued for a 

sufficiently long period of time, which equates to long-term planning, 

and for short durations, this method may be incorrect. 

Game theory has not yet realized its full potential. It may become 

increasingly popular for solving O.R. marketing difficulties as more 

companies use computers to model their operations. The combination of 

game theory and simulation for the solution of management marketing 

problems is likely to provide game theory the boost it needs to become a 

significant instrument for quantitative decision-making. 

 

SELF CHECK QUESTIONS 

1. What is Game Theory? 

2. Define a two-person zero-sum game. 

3. What are the characteristics of a game? 

4. What do you mean by a payoff matrix? 

5. What is a pure strategy? 

6. Define a mixed strategy. 

7. What is a saddle point in a game? 

8. How is the value of a game determined? 



Linear Programming and Game Theory                               MT(N)-223 

Department of Mathematics  

Uttarakhand Open University Page 275 
 

9. What is meant by maximin and minimax principles? 

10. What is a dominant strategy? 

11. Explain the difference between pure and mixed strategies. 

12. What are n-person games, and how do they differ from two-

person games? 

13. What are the rules for solving a game without a saddle point? 

14.10 SUMMARY:-  

In this unit, we have studied the following topics: game characteristics, 

terminology, game theory rules, mixed strategies, n-person zero-sum 

games, and game theory limitations. Game theory is a mathematical 

framework for analyzing situations involving conflict and cooperation 

among rational decision-makers known as players. It aids in establishing 

optimal strategies in situations where the outcome of one player is 

dependent on the strategies used by others. We investigated game 

characteristics such as the number of participants, strategy types, and 

payout structure; game theory terminology; and strategic decision-making 

procedures.The notion of mixed strategies was created to deal with 

scenarios in which participants randomly select their options in order to 

attain the best potential results. We also investigated n-person zero-sum 

games, which extend two-player competitive scenarios to numerous 

players and have the total wins and losses of all participants sum to zero. 

Finally, the constraints of game theory were explored, emphasizing how 

real-world scenarios frequently contain imperfect knowledge, irrational 

conduct, and shifting preferences, making practical application difficult. 

14.11 GLOSSARY: -  

 Game Theory: A branch of applied mathematics and operations 

research that studies strategic interactions between rational 

decision-makers (players). 

 Player: An individual or decision-maker involved in the game 

who selects strategies to achieve the best possible outcome. 

 Strategy: A complete plan of action a player follows during the 

game to achieve the desired payoff. 

 Pure Strategy: A strategy in which a player consistently chooses 

the same action every time the game is played. 

 Mixed Strategy: A strategy in which a player randomly selects 

among two or more pure strategies based on specific probabilities. 
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 Payoff: The reward or outcome received by a player as a result of 

the combination of strategies chosen by all players. 

 Payoff Matrix: A table that shows the payoffs for each player for 

all possible combinations of strategies. 

 Zero-Sum Game: A game in which one player’s gain is exactly 

equal to the other player’s loss, so the total payoff remains constant 

(sum equals zero). 

 Non-Zero-Sum Game: A game in which the total payoff to all 

players is not necessarily zero; both players can gain or lose 

simultaneously. 

 Two-Person Game: A game involving exactly two players 

competing against each other. 

 n-Person Game: A game involving more than two players, where 

strategies and payoffs depend on the collective actions of all 

participants. 

 Saddle Point: A position in the payoff matrix that represents the 

equilibrium point where both players’ strategies are optimal, 

giving a stable solution to the game. 

 Value of the Game: The expected payoff to a player when both 

players follow their optimal strategies in a zero-sum game. 

 Dominance: A rule used to simplify a game by eliminating 

strategies that are less effective compared to others for a player. 

 Equilibrium Point (Nash Equilibrium): A situation where no 

player can improve their payoff by unilaterally changing their 

strategy, assuming the other players keep theirs unchanged. 

 Cooperative Game: A game where players can form coalitions 

and make binding agreements to maximize their collective payoff. 

 Non-Cooperative Game: A game in which players make 

independent decisions without forming alliances or agreements. 

 Limitations of Game Theory: Refers to the practical difficulties 

in applying game theory due to assumptions of perfect rationality, 

complete information, and static preferences, which may not hold 

true in real-life situations. 
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14.14 TERMINAL QUESTIONS: - 

(TQ-1) For what value of 𝜆, the game with following payoff matrix is 

strictly determinable? 

  𝑃𝑙𝑎𝑦𝑒𝑟 𝐵 
  𝐵1 𝐵2 𝐵3 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 
𝐴1 𝜆 6 2 
𝐴2 −1 𝜆 −7 
𝐴3 −2 4 𝜆 

 

 (TQ-2) Reduce the following dominance and find the game value:  

  𝑃𝑙𝑎𝑦𝑒𝑟 𝐵 

  𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 
𝐼 3 2 4 0 
𝐼𝐼 3 4 2 4 
𝐼𝐼𝐼 4 2 4 0 

 𝐼𝑉 0 4 0 8 
 

(TQ-3) For any 2 × 2 two-person zero-sum game without any saddle 

point, having payoff matrix for player 𝐴 as 

  𝑝𝑙𝑎𝑦𝑒𝑟 𝐵 
  𝐵1 𝐵2 

𝑝𝑙𝑎𝑦𝑒𝑟𝐴 𝐴1 𝑎11 𝑎12 
𝐴2 𝑎21 𝑎22 

Find the optimal mixed strategies and value of the game.  

(TQ-4) Define game theory and explain rules for game theory. 

(TQ-5) Find the ranges of values of  𝑝 𝑎𝑛𝑑 𝑞  which will render the 

entry (2,2) a saddle point for the game 



Linear Programming and Game Theory                               MT(N)-223 

Department of Mathematics  

Uttarakhand Open University Page 278 
 

  𝑃𝑙𝑎𝑦𝑒𝑟 𝐵 
  𝐵1 𝐵2 𝐵3 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 
𝐴1 2 4 5 
𝐴2 10 7 𝑞 
𝐴3 4 𝑝 6 

 

(TQ-6) Reduce the following game by dominance property and solve it:  

  𝑃𝑙𝑎𝑦𝑒𝑟 𝐵  

  𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 𝑉 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 
𝐼 1 3 2 7 4 
𝐼𝐼 3 4 1 5 6 
𝐼𝐼𝐼 6 5 7 6 5 

 𝐼𝑉 2 0 6 3 1 
 

(TQ-7) Solve the following game by using the principle of dominance: 
  𝑃𝑙𝑎𝑦𝑒𝑟 𝐵 

  𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉 𝑉 𝑉𝐼 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 
1 4 2 0 2 1 1 
2 4 3 1 3 2 2 
3 4 3 7 −5 1 2 

 4 4 3 4 −1 2 2 
 5 4 3 3 −2 2 2 

(TQ-8) Solve the following game: 
  

  𝑃𝑙𝑎𝑦𝑒𝑟 𝐵 

  𝐵1 𝐵2 
 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 
𝐴1 30 2 
𝐴2 4 14 
𝐴3 6 9 

(TQ-9) Define 𝑛  person zero sum game. 

(TQ-10) A and B play a game in which each has three 

coins  𝑎 5𝑝, 𝑎 10𝑝 𝑎𝑛𝑑 𝑎 20𝑝 . Each player selects a coin without the 

knowledge of the other's choice. If the sum of the coins is an odd amount, 

A wins B' s coin; if the sum is even, B wins A's coin. Find the best 

strategy for each player and the value of the game. 

 

14.15 ANSWERS: - 

(TQ-1) −1 ≤ 𝜆 ≤ 2 

(TQ-2) 𝑔𝑎𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝐴 = 8/3 
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(TQ-3) 

𝑣𝑎𝑙𝑢𝑒 =
𝑎11𝑎22 − 𝑎12𝑎21

(𝑎11 + 𝑎22) − (𝑎12 + 𝑎21)
 

(TQ-5) 𝑝 ≤ 7, 𝑞 ≥ 7 

(TQ-6) optimal strategies for 𝐴: 𝐼𝐼𝐼, optimal strategy for 𝐵: 𝐼𝐼, game 

value for𝐴 = 5 

(TQ-7) game value13/7. 

(TQ-8) game value206/19. 

(TQ-10) optimal strategies for 𝐴: (1/2,1/2,0), optimal strategy 

for 𝐵: (2/3,1/3,0), game value for𝐴 = 0 
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