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Block I: Unit I Set Theory 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain the definition on Sets; 

• Differentiate between various types of Sets; 

• Explain relation between Sets; 

• Perform various operations on Sets; 

• Define Venn diagram; 

• Calculate Cartesian product; 

• Create a Power set using the given subsets; 

• Explain counting principles; 

• Represent Tree diagrams; 

• Calculate Cardinality and Countability of Set; 

• Define basic Set Identities and Proofs; 

• Explain Pigeonhole Principle; 
 
Set is the fundamental discrete structure upon which all other discrete structures are built. 
The notion of sets was introduced by German Mathematician George Cantor (1845 - 1918) 
for a better understanding of finite sequences. Simply set in mathematics means exactly 
what it means in ordinary language, namely, a collection of objects. A battalion of soldiers, 
a ream of papers, the alphabet, all are examples of sets. 

1.1 Definition of Sets 

A set can be defined as a collection of things that are brought together because they obey 
a certain rule. These ‘things‘ may be anything like: numbers, people, shapes, cities etc. 
A fundamental concept of set theory is that of membership or belonging to a set. Some 
key points to be keep in mind: 

• A set should be well-defined means its objects should follow certain rule 
• Elements of a set should be distinguishable. Repetition will not make any 

difference. 
• Order of elements in a set is immaterial i.e. we can take any sequence of 

elements in a set. 

1.1.1 Notation 

We use uppercase letters: 𝐴, 𝐵, 𝐶, . .. to denote a set and elements are denoted in lowercase 

letter: 𝑥, 𝑦, 𝑧, 𝑝, 𝑞, 𝑟 . .. 

 

Elements of the set can be listed or definition of the variables can be given using a variable.  

For instance, 

The list of elements in a set can be represented as, 

𝑋 = {1,3,5,7,9} 

In order to describe the elements of the set we can write it as, 

𝑋 = {𝑥: 𝑥 = 2𝑛 − 1,1 ≤ 𝑛 ≤ 5, 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟} 
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we can use an identifier (′𝑥′ for example) to denote a representative element , while a ‘:’ symbol 

means ‘such that’ and then the rule that the identifier should obey: 

{𝑥 ∶  𝑥 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 |𝑥| < 5} 

or 

{𝑥 ∶  𝑥 ∈  𝑍, |𝑥|  < 5 } 

The latest way to write a set known as comprehension notation - can be expressed in standard 

form as: 

𝑥 | 𝑃(𝑥), where 𝑃(𝑥)is a statement states that the set comprised of all elements ′𝑥′ for which 

𝑃 is true. 

The symbol ∈ is used as follows: 

● ∈ Stands for ‘is an element of. . . . For Example:  𝑠𝑛𝑎𝑘𝑒 ∈  𝑆𝑒𝑡 𝑜𝑓 𝑅𝑒𝑝𝑡𝑖𝑙𝑒𝑠 

● ∉ Stands for ‘is not an element of . . . For example: 𝑁𝑒𝑤 𝐷𝑒𝑙ℎ𝑖 ∉

 𝑆𝑒𝑡 𝑜𝑓 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑖𝑡𝑖𝑒𝑠 

 

A set can be  

i. Finite: for example, 𝑠𝑒𝑡 𝑜𝑓 𝐼𝑛𝑑𝑖𝑎𝑛 𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑠 

ii. Infinite: for example, {3, 9, 12, 15, 18, . . . } 

(Note:  the use of the ellipsis . . .. indicates that sequence of numbers is endless). 

Always, remember one thing that the order in which the elements in a set occur is immaterial. 

1.2 Types of Sets 

Universal set: The collection of all elements under consideration is said to be Universal set 

and it is denoted by U. For example, the universal set may be {alphabetic characters} or {all 

living people} etc. 

Empty set: A set with no elements is called an empty or null set and generally denoted by 𝜙. 

For example, Let a set 𝐴 = {𝑎, 𝑏, 𝑐} is given then 𝜙 ⊆ 𝐴. But 𝜙 ∉ 𝐴. Thus, the inclusion of an 

element is the membership of an element in a set. 

Other examples, 

Example 1.1 

● If 𝑈 = 𝑆𝑒𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒    then 

𝑆𝑒𝑡 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑤𝑖𝑡ℎ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 50 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 = 𝜙 

 

● If 𝑈 = 𝑆𝑒𝑡 𝑜𝑓 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠  then {𝑥 | 𝑥2 = 10} = 𝜙 

 

1.3 Relations between Sets 

There are many ways in which sets may be related to one another. 

Equity 
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Two sets are said to be equal if they contain the same elements i.e. if every element 

of B is also in A, & every element of A is also in B, then we say  A = B.  

e.g. if 𝐴 = {1,2,3} 𝑎𝑛𝑑 𝐵 = {1,3,2} 𝑡ℎ𝑒𝑛 𝐴 = 𝐵 .Two sets A & B are set to be equal, iff 𝐴 ⊆

𝐵 𝑎𝑛𝑑 𝐵 ⊆ 𝐴 or symbolically, 

    𝐴 = 𝐵 ⇔ (𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐵 ⊆ 𝐴)    

Example 1.2 

{1,2,4}  =  {1,2,2,4};  

{1,4,2} = {1,2,4}; 

 {1,3,5, . . . } = {𝑥: 𝑥 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟} 

 

Subsets 

It can easily be imagine a set within a set. The contained set is called a subset of the containing 

set. If the set A is a subset of B, we write:  

     𝐴 ⊆ 𝐵 

Example 1.3 

✓ The set of people living in Delhi is subset of the set of people living in India 

✓ The set of organic compounds is the subset of chemical compounds. 

✓ Set 𝐴 is called a proper subset of a set 𝑩if 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵. Symbolically it is written 

as ⊂ 𝐵 . It is also called proper inclusion. A proper inclusion is not reflexive but it is 

transitive i.e. (𝐴 ⊂ 𝐵) and (𝐵 ⊂ 𝐶) ⇒ (𝐴 ⊂ 𝐶) 

Note: 

✓ Every set is a subset of the universal set, and the empty set is a subset of every set. 

i.e. for every set 𝐴, the empty set does not have anything that isn’t in 𝐴 . So for all sets 

𝐴 (𝜙 ⊆ 𝐴) 

✓ If A is a subset of B i.e.(𝐴 ⊆ 𝐵) and B is a subset of A i.e.(𝐵 ⊆ 𝐴) then 𝐴 𝑎𝑛𝑑 𝐵 should 

comprises of exactly similar elements, and hence they are equal. In further terms: If 

(𝐴 ⊆ 𝐵) and (𝐵 ⊆ 𝐴) then (𝐴 = 𝐵) 

Disjoint 

Disjoint sets can be defined as the sets with different elements with respect to each other. 

For Instance: 

 If 𝐴 = 𝑆𝑒𝑡 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎𝑛𝑑 𝐵 = {1, 3, 5, 11, 19}  then 𝐴 𝑎𝑛𝑑 𝐵  are disjoint sets. 

 

1.4 Operations on Sets 

Intersection 

The intersection of any two sets 𝐴 𝑎𝑛𝑑 𝐵, written as 𝐴 ∩ 𝐵, is the set consisting of all the 

elements which belong to both 𝐴 𝑎𝑛𝑑 𝐵 i.e. 
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    (𝐴 ∩  𝐵) = {𝑥 ∶  𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} 

  

Example: 1.4  (𝐴 ∩  𝐵) = (𝐵 ∩  𝐴)  

    (𝐴 ∩  𝐴) = 𝐴 𝑎𝑛𝑑 (𝐴 ∩  𝜙) = 𝜙 

Note:  

✓ Two sets 𝐴 𝑎𝑛𝑑 𝐵 are called disjoint iff (𝐴 ∩  𝐵) = 𝜙, i.e. 𝐴 𝑎𝑛𝑑 𝐵 have no element in 

common. 

✓ A collection of set is called disjoint collection if, for every pair of sets in the collection 

the two sets are disjoint. The elements of a disjoint collection are said to be mutually 

disjoint. 

e.g. If 𝐴 = {{1, 2}, {3}}, 𝐵 = {{1}, {2, 3}}, 𝑎𝑛𝑑 𝐶 = {{1, 2, 3}}now these sets are mutually 

disjoint because (𝐴 ∩  𝐵) = 𝜙, (𝐵 ∩  𝐶) = 𝜙 𝑎𝑛𝑑 (𝐴 ∩  𝐶) = 𝜙 . So the given sets are 

mutually disjoint. 

 

Union 

The union of 𝐴 𝑎𝑛𝑑 𝐵, written as (𝐴 ∪ 𝐵), is the set of all elements which are members of the 

set A or the set B or both  it is written as 

   (𝐴 ∪ 𝐵) = {𝑥 ∶  𝑥 ∈ 𝐴  𝑜𝑟  𝑥 ∈ 𝐵} 

i.e.     𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

     𝐴 ∪ 𝜙 = 𝐴 

     𝐴 ∪ 𝐴 = 𝐴 

 

Example 1.5  𝐴 = {0, 1, 2} 

   𝐵 = {0, −1, −2} 

Then       𝐴 ∪ 𝐵 = {−2, −1, 0, 1, 2} 

       𝐴 ∩ 𝐵 = {0} 

 

Complements 

Let 𝐴 𝑎𝑛𝑑 𝐵 be two sets. For any set A, the relative complement of 𝐵 with respect to 𝐴, written 

as 𝐴 − 𝐵  is the set consisting of all elements of 𝐴  which are not elements of 𝐵  i.e. 

   𝐴 − 𝐵 = {𝑥: 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵} 

Relative complements of 𝐵 with respect to 𝐴 can be written as 𝐴 \ 𝐵 

 

Let 𝑈 be the universal sets. For any set 𝐴, the relative complement of 𝐴 with respect to 𝑈, i.e. 

𝑈 − 𝐴  is called the absolute compliment of 𝐴 . It is often called the compliment of 𝐴  and 

denoted by 𝐴𝐶. 

 

i.e.   𝑈 − 𝐴 = 𝐴𝐶 = {𝑋: 𝑋 ∈ 𝑈 𝑎𝑛𝑑 𝑥 ∉ 𝐴} 

Note: we can represent 𝐴𝐶 as  𝐴′ also. 
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1.5 Venn Diagrams 

Introduction of the universal set permits the use of a pictorial device to study the connection 

between the subsets of a universal set and their intersection, union, difference and other 

operations. The diagrams used are called Venn Diagrams 

1.5.1 Definition 

Venn diagram is a schematic representation of a set by a set of points. The universal set U is 

represented by a set of points in a rectangle and a subset say A of U is represented by the 

interior of circle. The operation of union and intersection can be very simply represented 

through Venn diagrams. 

Thus “Venn diagrams are pictorial representations of sets and their inter-relations, and of them 

some basic results in set theory become obvious through these diagrams”. 

Any closed curve enclosing an area may be supposed to represent a set. 

Thus, let the circles A and B represent the sets A and B respectively. 

   
(Fig. 1.1 a) 𝐴 ∩ 𝐵 = ∅         (Fig. 1.1 b) 𝐵 ⊆ 𝐴 

   
(Fig. 1.1 c) 𝐴                 (Fig. 1.1 d) 𝐴𝑐 

 

 

Fig. 1.1 e  𝐴 ∩ 𝐵 
 

Thus from (Fig. 1.1 e), we see the portion common to two circles represents 𝐴 ∩ 𝐵, while 𝐴 ∪

𝐵 is represented by the total area covered by the two circles together. 

Suppose we represent the universal set 𝑈 by the rectangle in the (fig. 1.1 d). The component 

of 𝑆 with respect to 𝑈 denoted by 𝑆′ 𝑜𝑟 𝑆𝑐 (fig. 1.2). 

𝐵 
𝐴 

𝐴 

𝐵 

   U 𝐴    U 𝐴 

𝐵 𝐴 
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 (Fig. 1.2) 𝑆′ 𝑜𝑟 𝑆𝑐         

 

Venn diagrams can also help in visualizing some types of problems given below 

1.5.2 Complements 

Suppose, if 𝑈 is a universal complement or simply complement of a set 𝐴, denoted by 𝐴𝑐 is 

the set of elements which belong to 𝑈 but which do not belong to 𝐴: 

𝐴𝑐 = {𝑥: 𝑥 ∈ 𝑈, 𝑥 ∉ 𝐴} 

The relative complement of a set 𝐵 with respect to a set 𝐴, simply, the difference of 𝐴 and 𝐵, 

denoted by 𝐴/𝐵 is the set of elements which belong to 𝐴 but which do not belong to 𝐵. 

𝐴\𝐵 = {𝑥: 𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵} 

 

 

 

 

 

Cartesian product 

 

1.6 Cartesian product 

Let 𝐴 𝑎𝑛𝑑 𝐵  be two sets. The Cartesian (or direct) product of non-empty sets 𝐴 𝑎𝑛𝑑 𝐵 is 

defined as the set 𝐴 × 𝐵 is the set of all ordered pairs such that the first member of the ordered 

pair is an element of  𝐴  and the second member of 𝐵. The Cartesian product of  𝐴 𝑎𝑛𝑑 𝐵 

written as 𝐴 × 𝐵 and represented as  

𝐴 × 𝐵 = {(𝑎, 𝑏): 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵} 

 

Example 1.6    𝐴 = {𝑎, 𝑏}           𝑎𝑛𝑑                𝐵 = {1,2,3} 

𝐴 × 𝐵 = {(𝑎, 1), (𝑎, 2), (𝑎, 3), (𝑏, 1), (𝑏, 2), (𝑏, 3)} 

𝑆 

   𝐴𝑐 𝐴 𝐴 𝐵 

(Fig. 1.3 a)  𝑨𝒄 is shaded (fig. 1.3 b) 𝑨\𝑩  is shaded or 𝑨 −

𝑩 𝒐𝒓 𝑨~𝑩  
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Note: if 𝐴 = ∅ 𝑎𝑛𝑑 𝐵 is any non-empty set then 𝐴 × 𝐵 = ∅ = 𝐵 × 𝐴 

Remark 1: In general 𝐴 × 𝐵 ≠ 𝐵 × 𝐴 

Remark 2: If any one of the sets 𝐴 𝑎𝑛𝑑 𝐵 is empty then 𝐴 × 𝐵 = ∅ 

Remark 3: If 𝐴 𝑎𝑛𝑑 𝐵 have 𝑚 𝑎𝑛𝑑 𝑛 elements, then 𝐴 × 𝐵 has 𝑚𝑛 elements 

Remark 4: If 𝐴, 𝐵, 𝐶 are non-empty sets then 

𝐴 × (𝐵 × 𝐶) ≠ (𝐴 × 𝐵) × 𝐶 

1.7 Power Sets 

On several occasions testing all the combinations of elements in a set for the particular 

property involves numerous problems. In order to consider all such combinations in a set 𝑆, it 

needs to create a set which has these combinations as subsets of 𝑆 

Let 𝑆 be a set, and then the power set of 𝑆 i.e. set of all subsets of set 𝑆 can be represented 

as 𝑃(𝑆) 

Example 1.7  The power set P({3, 5, 7}) is the set of all subsets of {3, 5, 7}.  

Hence, P({3, 5, 7}) = {∅, {3}, {5}, {7}, {3, 5}, {3, 7}, {5, 7}, {3, 5, 7}}. 

Note that in the set of subsets, empty set and the set itself are among its members. 

An empty set has only one subset i.e itself. Thus,  

P (∅) = {∅}. 

The set {∅} has exactly two subsets, viz., ∅ and the set {∅} itself. Therefore, 

P ({∅}) = {∅, {∅}}. 

1.8 Counting Principles 

Initially we are introducing two basic counting principles i.e. Product Rule and Sum Rule. Later 

on, we will discuss the way they used to solve the counting problems 

1.8.1 Product Rule 

Assume that a process is broken down into two jobs and let there be 𝑛1 ways to conduct first 

job and for each first job there are 𝑛2 ways to conduct second job therefore in all there are 

𝑛1. 𝑛2 ways to get the entire process done. 

Example 1.8: 

A company with two employees namely Sanjeev and Pankaj, leases a floor in a building having 

12 offices. So in exactly how many ways does the distinct office can be assigned to both of 

the employees?  

It can be solve as, 

In the process to assign offices to two of the employees can be done by starting with Sanjeev 

to which an office can be assigned in 12 ways (since the total no. of offices in building is 12) 



8 | P a g e  
 

later on, Pankaj can be assigned an office in 11 ways (since an office is already allotted to 

Sanjeev). Hence using product rule we can express this situation as, 

12 x 11 = 132  

Ways to assign offices to these two employees. 

 

1.8.2 Sum Rule 

Let us consider if a job that can be done either in one of n1 methods or one of n2 methods 

thereafter none of the set of n1 methods are similar to the set with n2 methods thus, there are 

n1+n2 ways to conduct that job. 

Example 1.9 

A student can select only a project from three given lists out of which each one consists of 23, 

15 and 19 projects respectively. There is no repetition of any project among these three lists. 

Then how many projects is there that can be selected by students? 

Solution: The student can select a project either from the first list or the second list or the third 

list. Though no project is repeated in any of the list, using sum rule there are 23 +  15 +  19 =

 57 ways to select a project. 

 

Assume that if a job can be done in one of two methods and within that there is one which is 

common to both. In such a scenario, the sum rule cannot be used to count the number of 

methods to conduct the job. This can be done in two or more ways. We have to see whether 

to do this job in many ways that will be counted repeatedly. So we have to subtract those 

methods which we have counted twice. 

1.8.3 Subtraction Rule 

If a job that can be done in 𝑛1 ways or 𝑛2 ways then the total number of ways in which that 

job can be accomplished will be expressed as 𝑛1 + 𝑛2 and subtracting the number of ways 

that are common in these two ways. 

 

The rule of subtraction is also called as principle of inclusion–exclusion, particularly in case 

of counting the elements in the union of two sets. Assume that S1 and S2 are the two sets. At 

that time, there are |S1| ways to choice an element from S1 and |S2| ways to choice an 

element from S2. The total number of ways to choose an element from S1 or from S2, will be 

the number of ways to choose an element from the union of these two sets. It will be the sum 

of the number of ways to choose an element from S1 and the number of ways to choose an 

element from S2, minus the number of ways to choose an element that is in both S1 and S2. 

Mathematically it will be |S1 ∪ S2|ways to select an element in either S1 or in S2, and |S1 ∩ 

S2| ways to choose an element common to both sets, this will give a formula 

 

|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|. 

This is the expression for the total number of unique elements in the union of two sets. 

 

Example 1.10 

How many bytes either start with a 1 bit or terminated with the two bits 00? 

Solution: We can create a string of bits of length eight that will either start with 1 or terminates 

with two bits 00. We can create a string of bits having length eight that starts with a bit 1 in 27 
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= 128 ways. This is due to the product rule, since the first bit can be chosen in only single way 

and every other bits can be chosen in two ways. Similarly, we can create a string of bits with 

length eight terminating with the two bits 00, in 26 = 64 ways. This is due to the product rule, 

since each of the first six bits can be chosen in two ways and the last two bits can be chosen 

in only one way. 

 

Some of the ways to create a string of bits with length eight starts at 1 are the same as the 

ways to create a string of bits with length eight that terminates with the two bits 00. There are 

25 = 32 ways to create such a string. This uses the product rule, since the first bit can be 

chosen in only one way, every sixth bits can be chosen in two ways, and the last two bits can 

be chosen in one way. Subsequently, the number of strings of bits with length eight that starts 

at 1 or terminate at 00, which equals the number of ways to create a string of bits of length 

eight that starts at 1 or that terminates with 00, equals 128 + 64 − 32 = 160. 

 

1.8.4 Division Rule 

It is useful while solving listing problems. 

“There are 𝑛/𝑑 methods to do a job if it can be done using a process that can be conducted 

in 𝑛 ways, and for each way 𝑤, exactly 𝑑 out of the 𝑛 ways resemble to way 𝑤.” 

 

The division rule can be reaffirmed in terms of sets: “If a finite set S is the union of 𝑛 pairwise 

disjoint subsets each with 𝑑 elements, then 𝑛 =  |𝑆|/𝑑 .” 

 

We can demonstrate the division rule for counting with the following example. 

 

Example 1.11 

How many dissimilar ways to seat four people about a circular table, where two seating’s are 

assumed the same when each person has the same left and the right neighbor? 

 

Solution: Firstly, randomly select a seat around the table and tag it seat 1. Then tag the 

remaining seats in arithmetical order, arranged clockwise manner around the table.  

Consider the facts, 

- There are four ways to opt the person for seat 1,  

- Three ways to opt the person for seat 2,  

- Two ways to opt the person for seat 3,  

- One way to opt the person for seat 4.  

Therefore, we can say that this can be done in factorial 4 ways, i.e. 4!  =  24 ways to order the 

given four people for these seats.  

Though, each of the four choices for seat 1 leads to the same arrangement, as it can be 

distinguished two arrangements only when one of the people has a different immediate left or 

immediate right neighbor.  

Now we have four ways to select the person for seat 1, by the division rule it will be  

24/4 =  6 

different seating arrangements of four people around the circular table. 
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Fig. 1.4 

 

Tree Diagrams 

The problems on counting can also be solved by using trees. A tree contains a root; a number 

of branches originate from the root, and possible further branches originating the endpoints of 

other branches. To use trees in counting, we use a branch to represent each possible choice. 

We represent the possible outcomes by the leaves, which are the endpoints of branches not 

having other branches starting at them. 

 

Example 1.12 

Assume that “I Love India” T-shirts available in five variants: S, M, L, XL, and XXL. Besides 

this assume that each variant available in four different colors, yellow, orange, pink, and gray, 

except for XL, which available in orange, pink, and gray, and XXL, which have pink and gray. 

How many different t-shirts does a memento shop should stock to have at least one of each 

available variant and color of the T-shirt? 

 

Solution: The trees diagram in the given Figure 1-5 displays all the possible variants and 

color pairs. It follows that the memento shop owner needs to stock 17 different T-shirts. 

 
Fig. 1.5 
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1.9 Cardinality 

Sets are broadly used in counting problems, therefore for such use we need to study about 

their sizes. 

Let us assume that S be a set contains n distinct elements where n is any non-negative integer 

then the set S is said to be finite. The cardinality of set S can be represented by |S| which is 

in other term also called as number of elements in S. 

Examples 1.13 

✓ Let X be the set of odd positive integers less than 20. Then |X| = 10. 

✓ Let P be the set of prime positive integers less than 10. Then |P| = 5. 

✓ Though the null set contain no elements, it follows that |∅| = 0. 

We will also be interested in sets that are not finite. 

Infinite set: A set is called as infinite if it is not finite set. 

Example 1.14 The set of all positive integers is infinite set. 

Extending the notion of cardinality 

Till now the notion of cardinality was in the scope of finite sets which is used to compare the 

two finite sets on the basis of their sizes. Now we are extending this notion to infinite set where 

the comparison can be done on the basis of the difference between their sizes with respect to 

each other. 

These notions have vital applications to computer science. A set is said to be uncomputable 

in case of infeasibility of a computer program to find all its values, even with unlimited time 

and memory. This notion is used to explain why uncomputable sets exist. 

Definition: 

The sets A and B are said to have same cardinality only when their sizes are equal and have 

one to one correspondence between distinct elements of the set. It can be expressed as |A| = 

|B|. 

In case of infinite sets, we need to talk of the cardinality on relatively among two sets instead 

of being particular to a set. 

In other words, If there is a one to one correspondence between A and B, the size of A is 

less than or same as the size of B and we express it as |A| ≤ |B|. Here we can add that when 

|A| ≤ |B| and A and B have different cardinality, we can conclude that the cardinality of A is 

less than the cardinality of B and it will be |A| < |B|. 

1.10 Countability 

1.10.1 Countable Sets 

Now, we will divide infinite sets into two different groups, those with the similar cardinality as 

the set of natural numbers and those with a dissimilar cardinality. 
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Fig. 1.6 

 

A set is said to be countably infinite iff, it has the similar cardinality as the set of positive 

integers 𝑍+. A set is called countable iff, it is finite or countably infinite.  

Example 1.15 To show a set is countable: 

 
Fig. 1.7 

In order to proof that the set odd positive integers is finite, we need to have one to one 

correspondence with the set of positive integers 𝑍+. It can be expressed as, 

𝑓(𝑥)  =  2𝑥 –  1 

from 𝑍+ to the set of odd positive integers. We prove that 𝑓 is a one-to-one correspondence 

by showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that 

𝑓 (𝑥)  =  𝑓 (𝑦).  

Then 2𝑥 −  1 =  2𝑦 −  1, so 𝑥 =  𝑦. 

To see that it is onto, suppose that 𝑛 is an odd positive integer. Then 𝑛 is 1 less than an even 

integer 2𝑘, where 𝑘 is a natural number. Hence 𝑛 =  2𝑘 −  1 =  𝑓 (𝑘). 

An infinite set is countable if and only if it is possible to list the elements of the set in a sequence 

(indexed by the positive integers). The reason for this is that a one-to-one correspondence 𝑓 

from the set of positive integers to a set S can be expressed in terms of a sequence 

𝑎1, 𝑎2, . . . , 𝑎𝑥 , . . . , 𝑤ℎ𝑒𝑟𝑒 𝑎1  =  𝑓 (1), 𝑎2  =  𝑓 (2), . . . , 𝑎𝑥  =  𝑓 (𝑥), . . . . 

 

1.10.2 Uncountable Sets 

A set that is not countable is called uncountable. 

A significant proof method presented in 1879 by Georg Cantor and commonly known as the 

Cantor diagonalization argument. It was supposed to prove that the set of real numbers is not 

countable.  
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Let’s see that how the set of real numbers is uncountable, we assume in advance that the set 

of real numbers is countable and reach at a stage of contradiction. Then, the subset of all real 

numbers that are between 0 and 1 would also be countable (since any subset of a countable 

set is also countable). Under this assumption, the real numbers between 0 and 1 can be listed 

in some order, say, r1, r2, r3, ... We can decimal represent these real numbers like 

𝑟1 = 0. 𝑑11𝑑12𝑑13𝑑14. … … 

𝑟2 = 0. 𝑑21𝑑22𝑑23𝑑24. … … 

𝑟3 = 0. 𝑑31𝑑32𝑑33𝑑34. … … 

𝑟4 = 0. 𝑑41𝑑42𝑑43𝑑44. … … 

... 

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102 . . . , we have d11 = 2, 

d12 = 3, d13 = 7, and so on.) Then, form a new real number with decimal expansion  

r = 0.d1d2d3d4 . . . , where the decimal digits are determined by the following rule: 

𝑑𝑖 = {
4 𝑖𝑓 𝑑𝑖𝑖 ≠ 4
5 𝑖𝑓 𝑑𝑖𝑖 ≠ 4

 

(As an example, suppose that r1 = 0.23794102 . . . , r2 = 0.44590138 . . . , r3 = 0.09118764 . . 

. , r4 = 0.80553900 . . . , and so on. Then we have r = 0.d1d2d3d4 . . . = 0.4544 . . . , where d1 

= 4 because d11 ≠ 4, d2 = 5 because d22 = 4, d3 = 4 because d33 ≠ 4, d4 = 4 because d44 ≠ 

4, and so on.) 

Decimal expansion of each real number is unique by itself. Consequently, the real 

number 𝑟 is not equal to any of its component because the decimal expansion of r differs from 

the decimal expansion of their components to the right of the decimal point. 

Though there is a real number r between 0 and 1 that is not in the list, the supposition 

that all the real numbers between 0 and 1 could be listed should be false. Thus, all the real 

numbers between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is 

uncountable. Any set having an uncountable subset is uncountable. Therefore, the set of real 

numbers is uncountable. 

Results about Cardinality 

✓ If X and Y are countable sets, then their union is also countable. 

✓ If X and Y are sets with |X| ≤ |Y| and |Y| ≤|X|, then |X| = |Y|. In other terms, there is a 

one-to-one correspondence between X and Y. 

 

1.11 Basic Set Identities and Proofs 

Useful Definitions 

For 𝐴, 𝐵 subsets of the universal set 𝑈 
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𝑥 ∈ 𝐴 ∩ 𝐵 ⟺ 𝑥 ∈ 𝐴  𝑎𝑛𝑑  𝑥 ∈ 𝐵 

𝑥 ∈ 𝐴 ∪ 𝐵 ⟺ 𝑥 ∈ 𝐴  𝑜𝑟 𝑥 ∈ 𝐵 

𝑥 ∈ 𝐴 − 𝐵 ⟺ 𝑥 ∈ 𝐴  𝑎𝑛𝑑  𝑥 ∉ 𝐵 

𝑥 ∈ 𝐴𝐶 ⟺ 𝑥 ∉ 𝐴  

𝑥, 𝑦 ∈ 𝐴 × 𝐵 ⟺ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵 

1.11.1 Basic set Identities 

✓ Cumulative Law 

o 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

o 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

✓ Associative Law 

o (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) 

o (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶) 

✓ Distributive Laws 

o 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

o 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 

✓ Identity Laws 

o ∅ ∪ 𝐴 = 𝐴 ∪ ∅ = 𝐴 

o 𝐴 ∩ ∅ = ∅ ∩ 𝐴 = ∅ 

o 𝐴 ∩ 𝑈 = 𝑈 ∩ 𝐴 = 𝐴 

o 𝐴 ∪ 𝑈 = 𝑈 ∪ 𝐴 = 𝑈 

✓ Complement Law 

o 𝐴 ∪ 𝐴𝐶 = 𝑈 

o 𝐴 ∩ 𝐴𝐶 = ∅ 

o 𝑈𝐶 = ∅ 

o ∅𝐶 = 𝑈 

✓ Double Complement Law 

o (𝐴𝐶)𝐶 = 𝐴 

✓ Idempotent Law 

o 𝐴 ∪ 𝐴 = 𝐴 

o 𝐴 ∩ 𝐴 = 𝐴 

✓ De Morgan’s Law 

o (𝐴 ∪ 𝐵)𝐶 = 𝐴𝐶 ∩ 𝐵𝐶
 

o (𝐴 ∩ 𝐵)𝐶 = 𝐴𝐶 ∪ 𝐵𝐶 

✓ Alternative representation for set difference 

o 𝐴 − 𝐵 = 𝐴 ∩ 𝐵𝐶 

1.11.2 Proofs 

Distributive Law 

 For sets 𝐴, 𝐵, 𝐶 prove that 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

Proof:  Let 𝑥 ∈ 𝐴 ∪ (𝐵 ∩ 𝐶)          ⟺         𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ (𝐵 ∩ 𝐶) 
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⟺   𝑥 ∈ 𝐴         𝑜𝑟        (𝑥 ∈ 𝐵  𝑎𝑛𝑑  𝑥 ∈ 𝐶) 

⟺   (𝑥 ∈ 𝐴      𝑜𝑟     𝑥 ∈ 𝐵)      𝑎𝑛𝑑     (𝑥 ∈ 𝐴      𝑜𝑟     𝑥 ∈ 𝐶)  

⟺   𝑥 ∈ (𝐴 ∪ 𝐵)      𝑎𝑛𝑑       𝑥 ∈ (𝐴 ∪ 𝐶) 

⟺   𝑥 ∈ {(𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)} 

Thus, we can say  𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

 

1.12 Pigeonhole Principle 

The pigeonhole principle states that if n+1 pigeons fly into n pigeonholes, then at least one 

pigeonhole must contain two or more pigeons. This principle is illustrated in Figure 1.8 for 5 

pigeons and 4 pigeonholes. Illustration (a) shows the pigeons perched next to their holes, and 

(b) shows the correspondence from pigeons to pigeonholes. The pigeonhole principle is 

sometimes called the Dirichlet box principle because it was first stated formally by J. P. G. L. 

Dirichlet (1805–1859). 

 
Fig. 188 

Illustration (b) suggests the following mathematical way to phrase the principle. 

 

Generalized Pigeonhole Principle 

A generalization of the pigeonhole principle states that if n pigeons fly into m pigeonholes and, 

for some positive integer k, k < n/m, then at least one pigeonhole contains k + 1 or more 

pigeons. This is illustrated in Figure 1.9 for m = 4, n = 9, and k = 2. Since 2 < 9/4 = 2.25, at 

least one pigeonhole contains three (2 + 1) or more pigeons. (In this example, pigeonhole 3 

contains three pigeons.) 
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Fig. 1.9 
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Problems for Exercise 

1. Rephrase the statements given below using set notations 

a. The element 𝑥 is not a member of 𝐴 

b. The element 𝑏 is a member of 𝐵. 

c. 𝑌 is a subset of 𝑍. 

d. 𝑋 is not a subset of 𝑍. 

e. 𝑆 contain all the elements of 𝑈 

f. 𝐻 and 𝐺 contain the same elements. 

 

2. Write down the elements of the subsequent sets; assume 𝐼 = {1, 2, 3, . . . }. 

a. 𝐵 = {𝑏: 𝑏 ∈ 𝐼, 4 < 𝑥 < 15} 

b. 𝐸 = {𝑦: 𝑦 ∈ 𝐼, 𝑦 𝑖𝑠 𝑜𝑑𝑑, 𝑦 < 20} 

c. 𝐴 = {𝑛: 𝑛 ∈ 𝐼, 5 + 𝑛 = 6} 

 

3. Which of these sets are equal : {𝑥, 𝑦, 𝑧}, {𝑧, 𝑥, 𝑦}, {𝑦, 𝑧, 𝑥}, {𝑥, 𝑧, 𝑦}, {𝑦, 𝑥, 𝑧}. 

 

4. Distinguish between 𝑋 ⊆ 𝑌    𝑎𝑛𝑑    𝑋 ⊂ 𝑌 

 

5. Draw a Venn diagram of sets 𝑋, 𝑌, 𝑍 such that 

a. 𝑋 and 𝑌 have elements in common 

b. 𝑌 and 𝑍 have elements in common 

c. 𝑋 and 𝑍 are disjoint 

 

6. State the De Morgan’s Laws. 

 

7. Prove the Distributive Law: 𝑋 ∪ (𝑌 ∩ 𝑍) = (𝑋 ∪ 𝑌) ∩ (𝑋 ∪ 𝑍). 

 

8. State the finite sets among the following: 

a. 𝑆 = {𝑠𝑒𝑎𝑠𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟} 

b. 𝑇 = {𝑠𝑡𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑜𝑢𝑛𝑡𝑟𝑦} 

c. 𝑃 = {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 1} 

d. 𝐷 = {𝑑𝑜𝑔𝑠 𝑙𝑖𝑣𝑖𝑛𝑔 𝑖𝑛  𝑡ℎ𝑒 𝐼𝑛𝑑𝑖𝑎} 

 

9. Find the power set 𝑃(𝑋) of 𝑋 = {6, 7, 8, 9} 

 

10. Determine the size of the power set mentioned below: 

a. {𝑦: 𝑦 𝑖𝑠 𝑎 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘} 

b. {𝑦: 𝑦 𝑖𝑠 𝑎 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 “𝐼𝑁𝐷𝐼𝐴”} 

c. {𝑦: 𝑦 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 6} 
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Block I: Unit II Relation 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain the definition of relation; 

• Explain various types of relations; 

• Define Composition of Relation; 

• Represent the Pictorial Representation of Relation; 

• Explain Properties of Relation; 

Relationships among elements of sets occur in many perspectives. Each day we deal with 

relationships such as those between as business with its telephone number, an employee with 

his or her salary, a person with a relative, and so on. In mathematics we study relationship 

between a positive integer with one that it divides, a real number with one that is larger than 

it, and so on. Relations can solve problems such as knowing which pair of cities are linked by 

airline flights in a network finding, a sustainable order of different phases of a complex project, 

or bringing out a useful way to store information in computer databases. 

The notion of a relation is elementary concept in day to day life as well as in mathematics. We 

already used various relations. The act of comparing objects which are related to one another 

is associated with a relation.  

The relation among words suggests some used to examples of relation such as the relation of 

the father with son, mother with son, brother with sister etc. Familiar examples of relation in 

arithmetic are relations such as “greater than”, “less than” or “equal to”. We also know relation 

among the area of a circle with its radius and between the area of a square and its side. 

The straightest way to express a relationship among elements of two sets is to use ordered 

pairs made up of two related elements. For this reason, sets of ordered pairs are said to be a 

binary relation. 

2.1 Definition of Relation 

Let 𝐴 and 𝐵 be sets. A binary relation from 𝐴 to 𝐵 is a subset of 𝐴 ×  𝐵. 

It states that some of the elements in set 𝐴 are related to some of the elements in set 𝐵. In 

fact, if 𝑅 is a binary relation from 𝐴 to 𝐵 and if the ordered pair (𝑎, 𝑏) is in 𝑅, we would say that 

the element 𝑎 is related to the element 𝑏. 

Example 2.1 Consider 𝐴 =  {𝑎, 𝑏}  be a set of two students and consider 𝑏 =

{𝐶𝑆121, 𝐶𝑆131, 𝐶𝑆141} be the set of three courses. The Cartesian product 𝐴 ×  𝐵 gives all the 

alike pairings of students and courses. On the other hand 𝑅 =  {(𝑎, 𝐶𝑆121), (𝑏, 𝐶𝑆131)} 

represents the courses opt by the students. 

A binary relation 𝑅 from 𝐴 to 𝐵 assigns to each ordered pair (𝑎, 𝑏) in 𝐴 ×  𝐵 exactly one of 

the following statements. 

1. 𝑎 is related to 𝑏 i.e., 𝑎 𝑅 𝑏 or (𝑎, 𝑏) ∈ 𝑅 

2. 𝑎 is not related to 𝑏 i.e., 𝑎 𝑅 𝑏 or (𝑎, 𝑏) ∉ 𝑅 
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The elements of a set 𝐴 are termed as domain of a relation 𝑅 and the elements of set 𝐵 are 

termed as the range of 𝑅 

Remark:  𝑅 ⊆ 𝐴 × 𝐵 means 𝑅 is a relation from 𝐴 to 𝐵. If 𝐵 =  𝐴 then 𝑅 is said to be relation 

from 𝐴 to 𝐴. In such a case 𝑅 is called a relation in 𝐴. Therefore, any relation in 𝐴 is a subset 

of 𝐴 × 𝐴. Thus, the set 𝐴 × 𝐴 itself describes relation in 𝐴 and is said to be as a universal 

relation in 𝐴. While the empty set which is again a subset of 𝐴 × 𝐴 is called a void relation in 

A. 

2.2 Types of Relations 

2.2.1 Inverse Relation 

Assume 𝑅 be some relation from set 𝐴 to set 𝐵. the inverse of 𝑅, symbolized by 𝑅−1, is the 

relation from 𝐵 to 𝐴 with involves those ordered pairs, which, when reversed, belong to 𝑅; 

i.e., 

𝑅−1 = {(𝑏, 𝑎): (𝑎, 𝑏) ∈ 𝑅} 

Example 2.2 The inverse of the relation 𝑅 = {(1, 𝑦), (1, 𝑧), (3, 𝑦)}from 𝐴 = {1,2,3} 𝑡𝑜 𝐵 =

{𝑥, 𝑦, 𝑧} is as follows: 

𝑅−1 = {(𝑦, 1), (𝑧, 1), (𝑦, 3)} 

Obviously, if 𝑅 is some relation, then (𝑅−1)−1  =  𝑅. Also, the domain and range of 𝑅−1 are the 

same, respectively, to the range and domain of 𝑅. Besides, if 𝑅 is  a relation on 𝐴, then 𝑅−1  

is also a relation on 𝐴. 

2.2.2 Combined Relation 

Since relations from 𝐴 to 𝐵 are known to be the subsets of 𝐴 × 𝐵, two relations from 𝐴 

to 𝐵  can be combined in some way two sets can be combined. Consider the following 

examples. 

Example 2.3 Let 𝐴 = {1,2,3} and 𝐵 = {1,2,3,4}. Let 𝑅1 and 𝑅2 be two relations from 𝐴 to 𝐵 and 

the two relations are defined as follows: 

                               𝑅1 = {(1,1), (2,2), (3,3)} and 𝑅2 = {(1,1), (1,2), (1,3), (1,4)} . 

We can combine the two relations to obtain other relations as follows: 

(i)  𝑅1 ∪ 𝑅2 = {(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)} 

(ii) 𝑅1 ∩ 𝑅2 = {(1,1)} 

(iii) 𝑅1 − 𝑅2 = {(2,2), (3,3)} 

(iv) 𝑅2 − 𝑅1 = {(1,2), (1,3), (1,4)} 

 

2.3 Composition of Relation 

Relation is an association between two sets and is a group of ordered pairs that contains one 

object from each of the given set. If the element 𝑥 is from the first set and the element 𝑦 is 
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from the second set, then these elements are said to be related, if the ordered pair (𝑥, 𝑦) is in 

some relation. 

Definition 

Assume that we have three sets 𝐴, 𝐵 and 𝐶. A relation 𝑅 defined from 𝐴 to 𝐵, and a relation 𝑆 

defined from 𝐵 to 𝐶. We can now define a new relation called as the composition of 𝑅 and 𝑆, 

written as 𝑆 𝑜 𝑅. This new relation can be defined as follows: 

“If 𝑎 is an element in 𝐴 and 𝑐 is an element in 𝐶, then 𝑎(𝑆 𝑜 𝑅)𝑐, if and only if, there exists 

some element 𝑏 in 𝐵, such that 𝑎 𝑅 𝑏 and 𝑏 𝑆 𝑐. Thus, we have a relation 𝑆 𝑜 𝑅 from 𝑎 to 𝑐, if 

and only if, we can reach from 𝑎 to 𝑐 in two steps; i.e. from 𝑎 to 𝑏 related by 𝑅 and from 𝑏 to 𝑐 

related by 𝑆. In this way, relation 𝑆 𝑜 𝑅 can be inferred as 𝑅 followed by 𝑆, since this is the 

order in which the two relations need to be considered, first 𝑅 then 𝑆.” 

Example  2.4  Let us consider the three sets 𝐴 = {1,2,3,4}, 𝐵 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝐶 = {𝑥, 𝑦, 𝑧}. Let 

R be a relation from A to B and S is a relation from B to C. The two relations are defined as 

follows: 

𝑅 = {(1, 𝑎), (2, 𝑑), (3, 𝑎), (3, 𝑏), (3, 𝑑)}  and 

𝑆 = {(𝑏, 𝑥), (𝑏, 𝑧), (𝑐, 𝑦), (𝑑, 𝑧)}, 

then 

𝑆 𝑜 𝑅 = {(2, 𝑧), (3, 𝑥), (3, 𝑧)} 

 

 

Fig: 2.1 

Note: (𝑅 𝑜 𝑆) 𝑜 𝑇 =  𝑅 𝑜 (𝑆 𝑜 𝑇) 

Remark: Let R be a relation on set A. the power 𝑅𝑛, 𝑛 = 1,2,3, . .. are defined inductively by 

𝑅1 =  𝑅  and  𝑅2 =  𝑅 𝑜 𝑅, 𝑅3 =  𝑅2 𝑜  𝑅 and so on 

Likewise,     𝑅𝑛+1 =  𝑅𝑛 𝑜 𝑅 

Example 2.5: Let 𝑅 = {(1,1), (2,2), (3,2), (4,3)} 

Find the power 𝑅𝑛, 𝑛 = 2,3,4, . . . ? 

Solution:  

Since 𝑅2 =  𝑅 𝑜 𝑅,  

we find that 𝑅2 = {(1,1), (2,2), (3,2), (4,2)}.  
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Furthermore,  

Since 𝑅3 =  𝑅2 𝑜 𝑅, 𝑅3 = {(1,1), (2,2), (3,2), (4,2)}.  

Further computation shows that 𝑅4 is the same as 𝑅3, so 𝑅4 = {(1,1), (2,2), (3,2), (4,2)}. it 

shows that 𝑅𝑛 = 𝑅3𝑓𝑜𝑟 𝑛 = 4,5,6,7, . .. 

 

2.4 Domain & Range 

Domain:  Let the relation 𝑅 is defined from A to B. Then domain of R, written as (𝑅) , is 

defined as  

                     𝑫𝒐𝒎(𝑹) =  {𝑎 ∈ 𝐴: (𝑎, 𝑏) ∈ 𝑅 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈ 𝐵}  

 

Range: Let the relation 𝑅 is defined from A to B.  Then range of R, written as (𝑅) , is defined 

as  

                   𝑹𝒂𝒏(𝑹) =  {𝑏 ∈ 𝐵: (𝑎, 𝑏) ∈ 𝑅 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ 𝐴} . 

 

Example 2.6 : Let 𝐴 = {2,3,4} 𝑎𝑛𝑑  𝐵 = {3,4,5}. List the elements of each relation 𝑅 defined 

below and the domain and range. 

𝑎 ∈ 𝐴 is related to 𝑏 ∈ 𝐵, that is, a R b if  and only if 𝑎 < 𝑏 

Solution:  

 2 ∈ 𝐴 is less than 3 ∈ 𝐵, then 2𝑅3. Similarly, 2𝑅4, 2𝑅5, 3𝑅4, 3𝑅5, 4𝑅5 

Thus, 

𝑅 = {(2,3), (2,4), (2,5), (3,4), (3,5), (4,5)} 

Dom(𝑹) = {2,3,4} and Ran(𝑹) = {3,4,5} 

2.5 Pictorial Representation of Relation 

Initially we consider a relation 𝑆 on the set 𝑅 of real numbers; i.e., 𝑆 is a subset of 

𝑅2 = 𝑅 × 𝑅. 

Since 𝑅2 can be denoted by the set of points in the plane, we can picture 𝑆 by featuring those 

points in the plane which belong to 𝑆. The pictorial representation of the relation is sometimes 

called the graph of the relation. 

Frequently, the relation 𝑆 consists of all ordered pairs of real numbers which satisfy some 

given equation 

𝐸(𝑥, 𝑦) = 0 

Representation of Relations on Finite Sets 

Assume 𝐴 and 𝐵 are finite sets. The following are two of the illustrating a relation 𝑅 from 𝐴 to 

𝐵. 

(i). From a rectangular array whose rows are labeled by the elements of 𝐴 and whose 

columns are labeled by the elements of 𝐵. Put 1 in each position of the array whenever 
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𝑎 ∈ 𝐴 is related to 𝑏 ∈ 𝐵, that is, if (𝑎, 𝑏) ∈ 𝑅 , otherwise put 0. This array is said to be 

the matrix of the relation. 

(ii). Write down the elements of 𝐴 and the elements of 𝐵 in two disjoint disks, and then 

draw an arrow from 𝑎 ∈ 𝐴 to 𝑏 ∈ 𝐵 whenever 𝑎 is related to 𝑏. The picture will be 

known as the arrow diagram of the relation. 

 

Example 2.7 Let  𝐴 = {1,2,3} and 𝐵 = {𝑥, 𝑦, 𝑧}, then the relation 𝑅 from 𝐴 to 𝐵 defined as 𝑅 =

{(1, 𝑦), (1, 𝑧), (3, 𝑦)} can be represented in the above described ways (i) and (ii) as follows:  

     (ii) 

Fig: 2.2 

Directed Graphs of the Relations on Sets 

There is alternative way of visualizing a relation 𝑅 when 𝑅 is a relation from a finite set to itself. 

First we write down the elements of the set, and then we draw an arrow from each element 𝑥 

to each element 𝑦 whenever 𝑥 is related to 𝑦. This diagram is said to be the directed graph of 

the relation. Figure below shows the directed graph of the following relation R on the set 𝐴 =

{1,2,3,4} 

𝑅 = {(1,2), (2,2), (2,4), (3,2), (3,4), (4,1), (4,3)} 

Observe that there is an arrow from 2 to itself, since 2 is related to 2 under 𝑅.  

 
Fig: 2.3 
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2.6 Properties of Relation 

Let 𝑅 be the relations on a set 𝐴. i.e. 𝑅 ⊆ 𝐴 × 𝐴. 

2.6.1 Reflexive relation 

A binary relation 𝑅 in a set 𝐴 is reflexive if, for each  𝑎 ∈ 𝐴, 𝑎𝑅𝑎 , that is, 

(𝑎, 𝑎) ∈ 𝑅   𝑜𝑟   𝑅 = {(𝑎, 𝑎): ∀𝑎 ∈ 𝐴} 

The relation ≤ is reflexive in a set of real numbers since, for some 𝑥, we have 𝑥 ≤ 𝑥. The 

relation < is not reflexive in the set of real numbers, and the relation of proper inclusion is not 

reflexive in the family of subsets of a universal set. 

2.6.2 Symmetric Relation 

A relation 𝑅 in a set 𝐴 is symmetric if, for each 𝑎 and 𝑏 in 𝐴, whenever 𝑎 𝑅 𝑏, then 𝑏 𝑅 𝑎, i.e. 

whenever (𝑎, 𝑏) ∈ 𝑅 then (𝑏, 𝑎) ∈ 𝑅. 

The relations ≤, <, ≥, >  cannot be considered as symmetric relations in the set of real 

numbers, while the relation of equality is the sample of symmetric relation. The relation of 

similarity in the set of triangles in a plane can be called as both reflexive and symmetric. The 

relation of being a brother is not symmetric in the set of people. Though, it is symmetric in the 

set of all males. 

2.6.3 Transitive Relation 

A relation 𝑅 in a set 𝐴 is transitive if, for every 𝑎, 𝑏 and 𝑐 in 𝐴, whenever 𝑎𝑅𝑏 and 𝑏𝑅𝑐, then 

𝑎𝑅𝑐. 

The relations ≤, <, ≥, > and = are transitive in the set of real numbers. The relations ⊆, ⊂ and 

equality are also transitive in the family of subsets of a universal set. The relation of similarity 

of triangles in a plane is also transitive. While the relation of being a mother is not a transitive 

relation at all. 

2.6.4 Irreflexive relation 

A relation 𝑅 in a set A is irreflexive if, for each 𝑎 ∈ 𝐴, (𝑎, 𝑎) ∉ 𝑅 

Note that any relation which is not reflexive is not essentially irreflexive, and vice versa. The 

relation < in the set of real numbers is irreflexive because for no 𝑥 do we have 𝑥 < 𝑥. Likewise, 

the relation of proper inclusion in the set of all nonempty subsets of a universal set is irreflexive. 

The following is a simple example of a relation on {1,2,3} which is not reflexive and not 

irreflexive. 

Example 2.8  𝑅 = {(1,1), (1,2), (3,1)} is neither reflexive nor irreflexive. 

2.6.5 Antisymmetric Relation 

A relation 𝑅 in a set 𝐴 is antisymmetric if, for each 𝑎, 𝑏 in 𝐴, whenever 𝑎𝑅𝑏 and 𝑏𝑅𝑎, then 

𝑎 = 𝑏. Symbolically 𝑅 is antisymmetric in 𝐴 if whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅, then 𝑎 = 𝑏. 
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2.7 Partial Ordering 

A relation 𝑅 on a set S is said to be a partial order if it is reflexive, antisymmetric and transitive. 

i.e.  

1. Reflexivity: 𝑎𝑅𝑎  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑆 

2. Antisymmetric: 𝑎𝑅𝑎  𝑎𝑛𝑑 𝑏𝑅𝑎 ⇒  𝑎 = 𝑏 

3. Transitive 𝑎𝑅𝑏  𝑎𝑛𝑑 𝑏𝑅𝑐 ⇒ 𝑎𝑅𝑐 

A set 𝑆 together with a partial order 𝑅 is known as a partial order set or a poset and is 

denoted by (𝑆, 𝑅) 

Example 2.9 The relation “greater than or equal to (≥)” on 𝑍, the set of integers, is a partial 

ordering. 

Reflexivity: Since 𝑎 ≥ 𝑎 for every integer 𝑎, ≥ is reflexive 

Antisymmetric: Since 𝑎 ≥ 𝑏 and 𝑏 ≥ 𝑎 ⇒ 𝑎 = 𝑏, ≥ is antisymmetric  

Transitive Since 𝑎 ≥ 𝑏 and 𝑏 ≥ 𝑐 ⇒ 𝑎 ≥ 𝑐, ≥ is transitive. 

Hence, ≥ is partial ordering on Z, and (Z, ≥) is a poset. 

Example 2.10 

Let / be divides relation 𝑅 on a set 𝑁 of positive integers. That is, ∀ 𝑎, 𝑏 ∈ 𝑁, 𝑎/𝑏 ⇔ 𝑏 = 𝑘𝑎 for 

some integer 𝑘. Prove that / is partial relation on 𝑁. 

Solution: Reflexive: We have, 𝑎 ∈ 𝑁, 𝑎 is a divisor of 𝑎 i.e. 𝑎𝑅𝑎.Therefore, 𝑅 is reflexive. 

Antisymmetric: If 𝑎  is a divisor of 𝑏  then 𝑏  cannot be a divisor of 𝑎  unless 𝑎 = 𝑏 . Thus, 

𝑎𝑅𝑏 𝑎𝑛𝑑 𝑏𝑅𝑎 imply 𝑎 = 𝑏. Thus, R is antisymmetric. 

Transitive: Lastly, 𝑎 is a divisor of 𝑏 and 𝑏 is divisor of 𝑐 implies 𝑎 is a divisor of 𝑐. So, 𝑅 is 

transitive. 

Since 𝑅 is reflexive, antisymmetric and transitive, So, 𝑅 is a partial order relation. 

Observe that on the set of all integers, the above relation is not partial order set as 𝑎 and 

(−𝑎)both divide each other without being equal. 
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Problems for Exercises 

1. State the difference between ordered pair and a set assuming (𝑎, 𝑏) as orderd pair and 

{𝑎, 𝑏} as a set. 

 

2. Find the value of 𝑝 and 𝑞 if(3𝑝, 𝑝 − 2𝑞) = (6, −8). 

 

3. Let 𝑋 = {𝑚𝑎𝑙𝑒, 𝑓𝑒𝑚𝑎𝑙𝑒} and 𝑌 = {𝑐𝑎𝑡, 𝑑𝑜𝑔, 𝑓𝑖𝑠ℎ}.  Evaluate 

a. 𝑋 ×  𝑌 

b. 𝑌 ×  𝑋 

 

4. Assume, 𝑅  as the relation from 𝑃 = {1, 2, 3, 4}  to 𝑄 = {𝑥, 𝑦, 𝑧}  defined  

𝑅 = {(1, 𝑦), (1, 𝑧), (3, 𝑦), (4, 𝑥), (4, 𝑧)} 

a. Find out the domain  and range of 𝑅 

b. Find the 𝑅−1 of 𝑅. 

 

5. Each of the following is a relation on the positive integers 𝑁 

a. “𝑝 is less than 𝑞” 

b. “𝑝𝑞 is a square root of an integer”. 

c. 𝑝 + 𝑞 = 20 

d. 𝑝 + 4𝑞 = 20  

Determine whether the relations are among: reflexive, symmetric, antisymmetric, 

transitive. 

 

6. Let 𝑃 = {1, 3, 5, 7}  and let 𝑅  defined by “ 𝑎 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑏 ”, written 𝑎|𝑏 . 

𝑅 = {(1,1), (1,3), (1,5), (1,7), (3,3), (3,5), (3,7), (5,5), (5,7), (5,8)} 

Draw the directed graph of 𝑅. 

 

7. Let 𝑅 and 𝑆 are transitive relations on a set 𝐴. Show that 𝑅 ∩ 𝑆 is transitive. 

 

8. Let 𝐴 = {1, 2, 3}, 𝐵 = {𝑎, 𝑏, 𝑐}, and 𝐶 = {𝑥, 𝑦, 𝑧}. Consider the following relations 𝑅 from 

𝐴 to 𝐵 and 𝑆 from 𝐵 to 𝐶:  

𝑅 = {(1, 𝑏), (2, 𝑎), (2, 𝑐)}      𝑎𝑛𝑑       𝑆 = {(𝑎, 𝑦), (𝑏, 𝑥), (𝑐, 𝑦), (𝑐, 𝑧)} 

Find the composition relation 𝑅 ∘ 𝑆. 

 

9. Let 𝑅 defined from 𝐴 = {1, 3, 5, 6} to 𝐵 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑤ℎ𝑖𝑡𝑒} as 

𝑅 = {(1, 𝑟𝑒𝑑), (1, 𝑤ℎ𝑖𝑡𝑒), (3, 𝑏𝑙𝑢𝑒), (5, 𝑤ℎ𝑖𝑡𝑒)} 

Draw an arrow diagram of the relation 𝑅 

 

10. Prove (𝐴 × 𝐵) ∩ (𝐴 × 𝐶) = 𝐴 × (𝐵 ∩ 𝐶). 
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Block I: Unit III Function 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Define a Function; 

• Classify Functions; 

• Know the various types of Functions; 

• Explain Composition of Functions; 

• Define Recursive Function; 

Function plays an important role in Mathematics, Computer Science and many applications. 

We are primarily concerned with discrete functions which transform a finite set into another 

finite set. Computer output can be considered as a function of the input. A compiler transforms 

a program into a set of machine language instructions (the object program). Functions can 

also be used for counting and establishing the cardinality of sets. 

A function is something that associates each element of a set with an element of another 
set (which may or may not be the same as the first set). The concept of function appears 
quite often even in non-technical contexts. 
For example, 

✓ A social security number uniquely identifies the person 
✓ The income tax rate varies depending on the income 
✓ The final letter grade for a course is often determined by test and exam scores, 

homework and projects, and so on. 

 
In all these cases to each member of a set (social security number, income, tuple of test 
and exam scores, homework and projects) some member of another set (person, tax rate, 
letter grade, respectively) is assigned. 
 

It might have noticed, a function is quite like a relation. In fact, in this case a function is a 

special type of binary relation. 

In other words, “A relation is just a correspondence between two things. But function is 

the validity of a relation under certain conditions. A mother is related to his son or son is 

related to his mother. But if A is the mother of B then vice-versa is not true. It is the example 

of function.” 

3.1 Definition of Function 

Let A and B be two non-empty sets. A function 𝑓 from  A to B is a set of ordered pairs 

𝑓 ⊆ 𝐴 × 𝐵 

With the property that for each element 𝑥 in A there is a unique element 𝑦 in B such the 

(𝑥, 𝑦) ∈ 𝑓. The statement “𝑓  is a function from A to B” is usually represented symbolically by 

𝑓: 𝐴 → 𝐵 

A function can be represented pictorially as shown below 
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                                      Fig 3.1: Graphical representation of a function 

Note: 

✓ There may be some elements of the set B which are not associated to any element 

of the set A. 

✓ Each element of the set A must be associated to one and only one element of the 

set B. 

 If 𝑓 is a function from A to B, then A is called domain of 𝑓 denoted by dom 𝑓, its members are 

the first co-ordinates of the ordered pairs belonging to 𝑓 and the set B is called the co-domain. 

If (𝑥, 𝑦) ∈ 𝑓 , it is customary to write 𝑦 = 𝑓(𝑥), 𝑦 is called the image of 𝑥 ; and 𝑥 is a pre-image 

of 𝑦. 𝑦 is also called the value of 𝑓 at 𝑥. The set consisting of all the images of the elements 

of A under the function 𝑓 is called the range of 𝑓. It is denoted by 𝑓(𝐴) 

Thus, the range of  𝑓 = {𝑓(𝑥): 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴}  

Example 3.1  

Let 𝑓 be the function from the set of natural numbers 𝑁 to 𝑁 that maps each natural number 

𝑥 to 𝑥2 . Then the domain and codomain of this 𝑓 are 𝑁, the image of, say 3, under this 

function is 9, and its range is the set of squares, i.e. { 0, 1, 4, 9, 16, ....} . 

3.2 Classification of Function 

Functions can be classified mainly in two groups 

a. Algebraic Functions 

b. Transcendental functions 

Algebraic Functions 

 A function which consists of a finite number of terms involving powers and roots of the 

independent variables 𝑥  and the four fundamental operations of addition, subtraction, 

multiplication and division is called algebraic function. Three particular cases of the algebraic 

functions are: 
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(i) Polynomial functions. A function of the form 𝑎𝑜𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛 where 𝑛 is a 

positive integer and 𝑎𝑜, 𝑎1, … 𝑎𝑛 are real constants and 𝑎𝑜 ≠ 0 is called a polynomial 

of 𝑥 in degree 𝑛. e.g. 𝑓(𝑥) = 2𝑥3 + 5𝑥2 + 7𝑥 − 3 is a polynomial of degree 3. 

(ii) Rational functions. A function of the form 
𝑓(𝑥)

𝑔(𝑥)
 where 𝑓(𝑥) and 𝑔(𝑥) are polynomails 

in 𝑥, 𝑔(𝑥) ≠ 0 is called a rational function, e.g. 𝐹(𝑥) =
𝑥2+2𝑥+1

𝑥+2
 

(iii) Irrational functions. A function which involving radicals are called irrational functions. 

𝑓(𝑥) = √𝑥
3

+ 5 is an irrational function. 

Transcendental Functions 

A function which is not algebraic is called transcendental function. 

(i) Trigonometric functions. The six functions sin 𝑥 , cos 𝑥 , tan 𝑥 , sec 𝑥 , 𝑐𝑜𝑠𝑒𝑐 𝑥, cot 𝑥  

where  the angle 𝑥 is measured in radian are called trigonometric functions 

(ii) Inverse Trigonometric functions. The six functions 

sin−1 𝑥 , cos−1 𝑥 , tan−1 𝑥 , sec−1 𝑥 , 𝑐𝑜𝑠𝑒𝑐−1 𝑥, cot−1 𝑥  are called inverse trigonometric 

functions. 

(iii)  Exponential functions. A function 𝑓(𝑥) = 𝑎𝑥(𝑎 > 0) satisfying the law 𝑎1 = 𝑎 and 

𝑎𝑥  𝑎𝑦 = 𝑎𝑥+𝑦 is called the exponential function 

(iv) Logarithm functions. The inverse of the exponential function is called the logarithm 

function. . 

So, if 𝑦 = 𝑎𝑥(𝑎 > 0, 𝑎 = 1, 𝑥 ∈ 𝑅, 𝑦 > 0 then 𝑥 = log𝑎 𝑦 is called Logarithm function. 

 

3.3 Types of Function 

3.3.1 Into Function 

Let 𝑓 is a function from 𝐴 to 𝐵.  𝑓 is called into function if some elements of B are left, that is, 

some elements of B are not the image of any element of 𝐴. In other words the range is proper 

subset of co-domain B. So, a function is into function if its range is a proper subset of co-

domain (i.e., Range ⊂ co-domain) or we may say that there is a at least one element of co-

domain which does not correspond to any element of the domain.  

Let us consider the following example to understand the concept. 

Example 3.2 Let 𝐴 = {1,2,3}𝑎𝑛𝑑 𝐵 = {𝑝, 𝑞, 𝑟, 𝑠, 𝑡}. Let 𝑓 and 𝑔 are two functions from 𝐴 to 𝐵 

given as  𝑓 = {(1, 𝑝), (2, 𝑞), (3, 𝑟)}   𝑎𝑛𝑑  𝑔 = {(1, 𝑝), (2, 𝑞), (3, 𝑞)}. 𝑓 and 𝑔 are into functions. 

For better understanding, look at the diagrammatic representation of the two functions given 

below in figure 3.2: 
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                    Fig 3.2: Graphical representation of functions 𝒇 and 𝒈 given in example 3.2 

3.3.2 Onto Function 

Let 𝑓 is a function from 𝐴 to 𝐵.  𝑓 is called onto function if every element in B is the image of 

some element of  , that is, no element is left in B which is not the image of any element of 𝐴. 

In other words the range of 𝑓 is same as the co-domain B. 

Let us consider the following examples to understand the concept. 

Example 3.3  Let 𝐴 = {2,4,5} 𝑎𝑛𝑑 𝐵 = {𝑎, 𝑏, 𝑐}. Let 𝑓 be a function from 𝐴 to 𝐵 given as  𝑓 =

{(2, 𝑎), (4, 𝑏), (5, 𝑐)}, then 𝑓  is an onto function. 

Example 3.4  Let 𝐴 = {1,2,3,4} 𝑎𝑛𝑑 𝐵 = {𝑎, 𝑏, 𝑐}. Let g be a function from 𝐴 to 𝐵 given as  𝑔 =

{(1, 𝑎), (2, 𝑏), (3, 𝑐), (4, 𝑐)} then g  is an onto function. 

Here in the examples 3.3 and 3.4 it can be observed that all the elements of B are associated 

to some element of A, i.e., the range of the function is B itself (that is, Codomain). Such 

functions are called onto functions. So here Range = Codomain. Onto functions are called 

surjective functions or surjection. The graphical representation of the functions given in 

examples 3.3 and 3.4 are shown below in figure 3.3: 

 

      Fig 3.3: Graphical representation of functions 𝑓 and 𝑔 given in examples 3.3 and 3.4 

Methods of finding surjective function 

Let 𝑓: 𝐴 → 𝐵 

(i) Take any element of the domain say y 

(ii) Put 𝑓(𝑥) = 𝑦 

(iii) Solve 𝑓(𝑥) = 𝑦 𝑓𝑜𝑟 𝑥 
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(iv) Let 𝑥 = 𝑔(𝑦) 

(v) If  ∀ 𝑦 ∈ 𝐵, 𝑥 = 𝑔(𝑦) ∈ 𝐴, then 𝑓 is a surjective function. 

Example 3.5 Find whether the following functions are surjective or not 

(i) 𝑓: 𝑅 → 𝑅 given that 𝑓(𝑥) = 2𝑥3 − 1 ∀ 𝑥 ∈ 𝑅 

(ii) 𝑔: 𝐼 → 𝐼 given that 𝑔(𝑥) = 3𝑥 + 2 ∀𝑥 ∈ 𝐼 

Solution. 

(i) Let 𝑦 be an element of 𝑅 such that 𝑓(𝑥) = 𝑦 

                         2𝑥3 − 1 = 𝑦 

                                2𝑥3 = 𝑦 + 1 

or                                𝑥 = (
𝑦+1

2
)

1

3
 

It is clear that there is no value of 𝑦 in R for which 𝑥 ∉ 𝑅 

 ∴ 𝑓 is a surjective function 

(ii) Let 𝑦 be an element of 𝐼 such that 𝑔(𝑥) = 𝑦 

 ∴                                                   3𝑥 + 2 = 𝑦 

or                    𝑥 =
1

3
(𝑦 − 2) 

or 

clearly, if we put 𝑦 = 1 

                                                      𝑥 = −
1

3
 

which is not an element of 𝐼, the domain of 𝑔 

 ∴ 𝑔 is not a surjective function. 

3.3.3 One-one Function 

Let 𝑓 is a function from 𝐴 to 𝐵.  𝑓 is called one-one function if every element in B is the image 

of only one element of  𝐴, that is, no element of B is the image of more than one element of 

A. Let us consider the following example: 

Example 3.6 Let 𝐴 = {1, 4, 7},     𝐵 = {1, 16, 49} and 𝑓 is a function from 𝐴 to 𝐵 given as   

   𝑓 = {(1, 1, ), (4, 16), (7, 49)}. 

Here to every element of A, there exists a unique image in 𝐵, i.e. no element of B is the image 

of more than one element of A. Thus, 𝑓 is a one-one function. One-one functions are also 

called injective functions. We represent graphically the function 𝑓 as follows: 

 

  

                  Fig 3.4: Graphical representation of function 𝑓 given in example 3.6 
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Method of finding injective function 

Let 𝑓: 𝐴 → 𝐵 

(i) Take any two elements of the domain say a, b. 

(ii) Put 𝑓(𝑎) = 𝑓(𝑏) 

(iii) Solve 𝑓(𝑎) = 𝑓(𝑏). If 𝑓(𝑎) = 𝑓(𝑏) gives 𝑎 = 𝑏 then the function is injective, otherwise 

not. 

Example 3.7 Find whether the following functions are injective or not: 

(i) 𝑓: 𝑅 → 𝑅 given that 𝑓(𝑥) = 𝑥2 + 2 ∀ 𝑥 ∈ 𝑅 

(ii) 𝑔: 𝑁 → 𝑁 given that 𝑔(𝑥) = 2𝑥 + 3 ∀ 𝑥 ∈ 𝑁 

Solution.  

(i) Let 𝑥 and 𝑦 be two elements of R such that 𝑓(𝑥) = 𝑓(𝑦) 

                                    𝑓(𝑥) = 𝑓(𝑦) 

                                    𝑥2 + 2 = 𝑦2 + 2 

or                                    𝑥2 = 𝑦2 

or                                     𝑥 = ± 𝑦 

Hence 𝑓(𝑥) = 𝑓(𝑦) does not give 𝑥 = 𝑦 because for each value of 𝑥, there are two 

values of 𝑦 

 ∴ 𝑓 is not an injective function. 

(ii) Let 𝑥 and 𝑦 be two elements of 𝑁 such that 𝑔(𝑥) = 𝑔(𝑦) 

  ⟹                                      2𝑥 + 3 = 2𝑦 + 3 

or                                                𝑥 = 𝑦 

Here , 𝑔(𝑥) = 𝑔(𝑦), gives 𝑥 = 𝑦 

 ∴ 𝑔 is an injective function. 

3.3.4 Many-one function 

Let 𝑓 is a function from 𝐴 to 𝐵.  𝑓 is called many-one function if two or more than two elements 

of 𝐴  have same image in 𝐵. In other words we can say that the function is many one when 

two or more elements of the domain have the same image in co-domain. Let us consider the 

following example: 

Example 3.8 Let 𝐴 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝐵 = {𝑃, 𝑄, 𝑅, 𝑆} and 𝑓 is a function from 𝐴 to 𝐵 defined as  

        𝑓 = {(𝑝, 𝑃), (𝑞, 𝑃), (𝑟, 𝑅), (𝑠, 𝑆)}. 

Here, elements 𝑝 and 𝑞 of A have the same image 𝑃 in 𝐵. The function 𝑓 is a many one 

function. Graphical representation of 𝑓  is shown below in figure 3.5. 

 

                     Fig 3.5: Graphical representation of function 𝑓 given in example 3.8 
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We have defined above into, onto 1-1 and many-one functions. Combining these we get the 

following types of functions 

3.3.5 One-one into function 

A function 𝑓  is called one-one into function if it is both one-one and into. It satisfies the 

following properties: 

(i) No two elements of the domain have the same image 

(ii) There is at least one element in codomain which is not the image of any elements of 

the domain. Fig 3.6 illustrates one-one into function 

 
Fig: 3.6: Graphical representation of one-one into function 

3.3.6 One-one onto function 

A function 𝑓 is called one-one onto function if it is both one-one and onto. It satisfies the 

following properties: 

(i) No two elements of the domain have the same image. 

(ii) Every element of the codomain is the image of some element of the domain. 

 
Fig: 3.7 Graphical representation of one-one onto function 

One-one onto functions are also called bijective functions or bijection. 

Note: For objectivity of a function, we check both the surjectivity and injectivity of a function. 

Remark: A function 𝑓 is one to one if and only if 𝑓(𝑥) ≠ 𝑓(𝑦) whenever 𝑥 ≠ 𝑦. This way of 

expressing that 𝑓 is one to one is obtained by taking the contrapositive of the implication in 

the definition. 

3.3.7 Many-one into function 

A function 𝑓 is called many-one into function if it is both many-one and into. It has the following 

properties: 

(i) There are atleast 2 elements of the domain which correspond to the same element of 

the codomain. 

(ii) There is at least one element of the codomain which is not the image of any element 

of the domain. 



33 | P a g e  
 

 

Fig: 3.8 Graphical representation of Many-one into function 

3.3.8 Many-one onto function 

A function 𝑓 is called many-one onto function if it is both many-one and onto. It satisfies the 

following properties: 

(i) There are atleast two elements of the domain which correspond to the same element 

of the codomain. 

(ii) Every element of the codomain corresponds to some element of the domain. 

 
Fig: 3.9 Graphical Representation of Many-one onto function 

 

3.3.9 Identity function 

A function 𝑓: 𝐴 → 𝐴 defined by 𝑓(𝑥) = 𝑥  is called the identity function. In an identity function 

each element of the domain corresponds to itself. 

Example 3.9 The function 𝑓: 𝑁 → 𝑁 defined as 𝑓 =  {(1,1, ), (2,2), (3,3), , . . . } is an identity 

function. 

An identity function on a set A is generally denoted by 𝐼𝐴. It is clear from the definition that 𝐼𝐴 

is bijection on A. 

3.3.10 Constant function 

A function 𝑓: 𝐴 → 𝐵 defined by 𝑓(𝑥) = 𝑐 , where 𝑐  is a constant,  is called the identity function. 

In other words, a function 𝑓 in which all elements of A are associated with same elements of 

B is called a constant function. 

Example 3.10 Let 𝐴 = {1,2,3,5}  and  𝐵 = {1,2,3}  , then the function 𝑓: 𝐴 → 𝐵   defined as  

𝑓(𝑥) = 1, that is, 𝑓 = {(3,1), (2,1), (1,1), (5,1)} is a constant function. 
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3.4 Composition of Functions 

Let 𝑓: 𝐴 → 𝐵  and : 𝐵 → 𝐶  . The composition of 𝑓  and 𝑔 , denoted by 𝑔 ∘ 𝑓 , read as ‘𝑔  of 𝑓 

results in a new function from A to C and is given by (𝑔𝑜𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 in A. Hence, 

the composition 𝑔𝑜𝑓 first applies 𝑓 to map A into B, and it then employs 𝑔 to map B to C. In 

other words, the range space of 𝑓 becomes the domain space of 𝑔. Figure 3.10 illustrates the 

composition of the two function 𝑓 and 𝑔. 

 

                                                Fig 3.10: Composition of functions  

Example 3.11  Let 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏}  𝑎𝑛𝑑 𝐶 = {𝑟, 𝑠} and 𝑓: 𝐴 → 𝐵 be defined by 𝑓(1) =

𝑎, 𝑓(2) = 𝑎, 𝑓(3) = 𝑏 and 𝑔: 𝐵 → 𝐶 be defined by 𝑔(𝑎) = 𝑠, 𝑔(𝑏) = 𝑟. 

Then 𝑔𝑜𝑓: 𝐴 → 𝐶 is defined by 

    (𝑔𝑜𝑓)(1) = 𝑔(𝑓(1)) = 𝑔(𝑎) = 𝑠 

    (𝑔𝑜𝑓)(2) = 𝑔(𝑓(2)) = 𝑔(𝑎) = 𝑠 

    (𝑔𝑜𝑓)(3) = 𝑔(𝑓(3)) = 𝑔(𝑏) = 𝑟  

3.5 Recursively defined Function 

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this 

object in terms of itself. This process is called recursion. Recursion refers to several related 

concepts in computer science and mathematics. One can use recursion to define sequences, 

functions, and sets. Let us consider the example 3.12. 

Example 3.12 Let 𝑆(𝑛) be a sequence given as 1, 3, 9, 27,….. The sequence can explicitly 

be defined by the formula 𝑆(𝑛) = 3𝑛  for all integers 𝑛 ≥ 0, but the sequence can also be 

defined recursively as follows. 

(i) 𝑆(0) = 1 

(ii) 𝑆(𝑛 + 1) = 3 𝑆(𝑛) for all integers 𝑛 ≥ 0 

Here (ii) is the salient feature of recursion, namely, the feature of self-reference. 
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Problems for Exercise 

1. Define a function from a set 𝑋 into a set 𝑌. 

2. What is the domain, codomain, image of a function 𝑓: 𝑋 →  𝑌? 

3. Consider the function 𝑓 from 𝑃 = {𝑎, 𝑏, 𝑐, 𝑑} into 𝑄 = {𝑥, 𝑦, 𝑧, 𝑤} defined by Fig:3.11. 

 a) the image of each element of 𝑃 

b) the image of 𝑓; 

c) the graph of 𝑓, i.e. write 𝑓 as set of ordered pairs. 

 

Fig 3.11 

1. Let f assign to each state in India its capital city. Find: 

1.1. The domain of f, and 

1.2. 𝑓(𝑈𝑡𝑡𝑎𝑟𝑎𝑘ℎ𝑎𝑛𝑑), 𝑓(𝑀𝑎𝑑ℎ𝑦𝑎𝑝𝑟𝑎𝑑𝑒𝑠ℎ), 𝑓(𝑀𝑎ℎ𝑎𝑟𝑎𝑠ℎ𝑡𝑟𝑎) 

 

2. Let 𝐴 be the set of polygons in the plane. Let ℎ: 𝐴 → 𝑁 assign to each polygon P its 

number of sides. Find ℎ(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒), ℎ(ℎ𝑒𝑥𝑎𝑔𝑜𝑛) and ℎ(𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑) 

 

3. Let 𝑋 = {𝑎, 𝑏} and 𝑌 = {1, 2, 3}. Find the number n of functions: 

3.1. From 𝑋 into 𝑌 and 

3.2. From 𝑌 into 𝑋. 

 

4. Let 𝑓: 𝑅−> 𝑅 be the function which assigns to each real number 𝑥 its square 𝑥2. 

Describe different ways of defining 𝑓. 

 

5. Determine whether the function 𝑓(𝑥) = 𝑥2 from the set of integers to the set of integers 

is one to one. 

 

6. Determine whether the function 𝑓(𝑥) = 𝑥 + 1 is one to one. 

 

7. Let f be the function from {𝑎, 𝑏, 𝑐, 𝑑} to {1, 2, 3} defined by 𝑓(𝑎) = 3, 𝑓(𝑏) = 2, 𝑓(𝑐) = 1 

and 𝑓(𝑑) = 3. Is f a onto function? 
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Block II: Unit I Propositional Logic 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Define Propositional Logic; 

• Determine the truth value of the given statements: 

• Find the truth table of the proposition; 

• Explain Tautologies and Contradictions; 

• Obtain the Disjunctive Normal Form of the given statements; 

• Obtain the Conjunctive Normal Form of the given statements; 

• Find the Principal Disjunctive Normal Form (PDNF) of the given statements; 

Reasoning revolves around reasoning. We can call it as set of rules while working with logical 

reasoning. The history shows great signs over the timeframe that reasoning is being a 

constant factor in derivation of knowledge and its representation. This is all the critical work of 

George Boole, a famous British mathematician which was handy taken by Gotlob Frege. 

Modern philosopher and Mathematician Bertand Russell with Alfred Whitehead had come out 

with the new definite set of logics which are common in use now.  

Logic is based on truth and false of statements. However, there are many other factors which 

determine whether the statement is true of false. In spite of using individual statements, 

symbols had been used to represent arbitrary statements so that the results can be used.  

The types of logic are 

a. Propositional logic ( logic of sentences) 

b. Predicate logic ( logic of objects) 

c. Fuzzy logics 

d. Uncertainty logics etc. 

We are bit focused on Propositional logic and Predicate logics.  

4.1 Propositional Logic  

 It is basically logic of sentences or in other words it is the logic of statements. It is the way 

through which one studies the joining or modifying entire propositions, statements or 

sentences. 

One can also come up with more complicated propositions, statements or sentences as well 

as logical relationship or any property among them by deriving these basic statements. In this 

Propositional logic the basic statements can be called as indivisible units. Or in other words it 

cannot be further divided into statements. Hence propositional logic does not study these 

partial statements and hence doesn’t come out with any logical properties and relations on 

them i.e. subject and predicate of a statement. 

Among many propositional logics the truth functional propositional logic is perfect. It is based 

on logical operators and connectives which give rises to complex statements. Interestingly the 
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truth value of these complex statements depend upon the truth value of simple statements 

and hence once can derive that the statement is true or false and not both. 

This clearly shows that the sentences in this category are either true or false and also known 

as propositional sentences. 

4.2 Propositions 

As defined earlier a proposition is a sentence which is either true or false, but not both. We 

can also call like this if the proposition is true,  then its truth value is true. 

Example 4.1 Let us consider the following propositions along with their truth values:  

             1. Sky is blue  True 

 2.  Sun is yellow True 

Here the truth values of both of the propositions are true. 

Let us consider some propositions whose truth values are false.  

 3.  Bus can Fly False 

 4. “4 + 4 = 9”  False 

Let us see some other examples where the sentences are neither true nor false. 

 5. “Open the gate” 

 6. “Is the tea hot?” 

 7. What is the temperature outside? 

From these three sentences, we can come out with any result whether they are true of false, 

hence we can’t call them propositions.  . The 5th sentence is an order; the 6th sentence is a 

question, tea may be hot or cold. Similarly the 7th sentence asks about the temperature.  Thus, 

no definite set of information (true/false) can we derive from these sentences, so we can say 

they are not propositional sentences. 

4.2.1 Elements of propositions 

Simple true of false statements are called as basic propositions. When these simple 

statements are joined or combined using the connectives, they form complex sentences. We 

can say that propositions and connectives are two fundamental elements of propositional 

logic.  

Although there are many connectives, but are confining herewith five connectives, basic in 

nature are: 

• NOT 

• AND 

• OR 

• IF_THEN (or IMPLY) 
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• IF_AND_ONLY_IF 

They are also denoted by the symbols:   ¬,    ⋀,   ⋁,   ⟶, ⟷   respectively.  

4.1.2 Propositional Variable 

The name which is supposed to represent a proposition is commonly known as propositional 

variable. We can understand the same with some examples.  

1. P1: The earth is a planet (True) 

2. P2 : Fish walks on road (False) 

3. P3 : 2+ 2 = 4 (True) 

4.3 Basic Logic 

The logic starts with a variable. In simple words we can define variable as a letter we use for 

an unknown object of any type.  

 Let us consider the equation 𝑎 +  𝑏 =  10.   Here 𝑎 and 𝑏 are variables which denotes 

some values whose sum is 10.  

Lets us take another example. We write a statement that  

“Let B is superset of X”. This shows that B is a variable (where it is an unknown set) 

whereas we can’t call X as variable (it is a name given to set of all odd numbers).  

But in case of example where 𝑎 +  𝑏 =  15  and 2𝑎 +  3𝑏 =  20 , both 𝑎  and 𝑏  are 

variables even though the values are inter dependent with each other.  

It would be quite normal to say something like this: “Let 𝑥 and 𝑦 be two real numbers. Suppose 

that they satisfy the equations 𝑥 + 𝑦 = 8 and  𝑥 + 3𝑦 = 12. Determine the values of 𝑥 and 𝑦” It 

is then reasonable to call them variables, because initially no information is given about them. 

Further we have some relationships between  𝑥  and  𝑦  and from these relationships it is 

possible to deduce the exact values of 𝑥 and 𝑦. 

4.3.1 Logical Connectives 

The words and phrases (or symbols) used to form compound propositions are called 

connectives. There are five basic connectives called, Negation, Conjunction, Disjunction, 

Implication or conditional and Equivalence or Biconditional.  
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Table 4.1 Connectives, symbols and symbolic form 

Symbol 
used 

Connective 
word 

Nature of statement Symbolic 
form 

          ~, ¬  Not Negation ~𝑝 

⋀ And Conjunction 𝑝⋀𝑞 

∨ Or Disjunction 𝑝 ∨ 𝑞 

⇒, ⟶ If……then Implication (or Conditional) 𝑝 ⟶ 𝑞 

⟺, ⟷ If and only if Equivalence (or Bi-conditional) 𝑝 ⟷ 𝑞 

≡ Equivalence Equivalence of predicate 𝑝 ≡ 𝑞 

 

Negation 

If 𝑝 is any proposition, the negation of 𝑝, denoted by ~𝑝 and read as not 𝑝, is a proposition 

which is false when 𝑝 is true and true  when 𝑝 is false. Consider the statement 

               𝑝: 𝑃𝑎𝑟𝑖𝑠 𝑖𝑠 𝑖𝑛 𝐹𝑟𝑎𝑛𝑐𝑒 

Then the negation of  𝑝 is the statement 

 ~𝑝: 𝑃𝑎𝑟𝑖𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐹𝑟𝑎𝑛𝑐𝑒. 

Strictly speaking, negation is not a connective, since it does not join two statements and ~𝑝 is 

not really a compound statement. However, negation is a unary operation for the collection of 

statements, and ~𝑝 is a statement if 𝑝 is considered a statement. 

Example 4.2 The following propositions are equivalent: 

𝑝 : All people are intelligent. 

𝑞 : Every person is intelligent. 

𝑟 : Each person is intelligent. 

𝑠 : Any person is intelligent. 

Example 4.3 The negation of the proposition 

                                  𝑝 : All students are intelligent  

can be expressed in the following ways: 

 ~𝑝 : Some students are not intelligent. 

 ~𝑝 : There exists a student who is not intelligent. 

 ~𝑝 : At least one student is not intelligent. 

Example 4.4 The negation of  the proposition 

𝑞 : No student is intelligent . 

is  
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~𝑞 : Some students are intelligent. 

Note that “No student is intelligent” is not the negation of 𝑝; “All students are intelligent” is not 

the negation of 𝑞. 

Conjunction 

If 𝑝  and 𝑞  are two statements, then conjunction of 𝑝  and 𝑞  is the compound statement 

denoted by 𝑝⋀𝑞 and read as “𝑝 and 𝑞”. The compound statement 𝑝 ∧ 𝑞 is true when both 𝑝 

and 𝑞 are true, otherwise it is false.  

Example 4.5 

Form the conjunction of 𝑝 and 𝑞 for each of the following. 

a) 𝑝: Ram is healthy  𝑞: He has blue eyes 

b) 𝑝: It is cold   𝑞: It is raining 

c) 𝑝: 5𝑥 + 6 = 26   𝑞: 𝑥 > 3 

Solution:  

a)  𝑝 ∧ 𝑞: Ram is healthy and he has blue eyes 

b) 𝑝 ∧ 𝑞 : It is cold and raining. 

c) 𝑝 ∧ 𝑞 ∶ 5𝑥 + 6 = 26 and 𝑥 > 3 

Remarks 

The symbol ∧ has specific meaning which is corresponding to the connective ‘and’ appearing 

in the English language, although ‘and’ may also be used with some other meanings. In order 

to see the difference, consider the following three statements: 

(i) Nilam is a girl and Arjun is a boy. 

(ii) Shekhar switched on the computer and started to work 

(iii) Kanchan and Sheela are friends. 

In statement (i) the connective ‘and’ is used in the same sense as the symbol ∧. In (ii) the word 

‘and’ is used in the sense of ‘and then’ because the action described in “Shekhar started to 

work” after the action described in “shekhar switched on the computer”. Finally, in (iii) the world 

‘and’ is not at all a connective. 

In logic we may combine any two sentences to form a conjunction, there is no requirement 

that the two sentences be related in content or subject matter. Any combinations, however 

absurd, are permitted, of course, we are usually not interested in sentences like ‘’Tanvir loves 

to play cricket”, and 4 is divisible by 2’. 

Disjunction 

If 𝑝 and 𝑞 are two statements, the disjunction of 𝑝 and 𝑞 is the compound statement denoted 

by 𝑝⋁𝑞 and read as “𝑝 𝑜𝑟 𝑞”. The statement 𝑝⋁𝑞 is true if at least one of 𝑝 𝑜𝑟 𝑞 is true (The 

advertiser who writes ‘The candidate must know English or Hindi, certainly would not reject a 

candidate if he knows both the languages). It is false when both 𝑝 𝑎𝑛𝑑 𝑞 are false. 
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The English word “or” can be used in two different senses – as an inclusive (“and/or”) or 

exclusive (“either/or”). For example consider the following statements. 

1. 𝑝: He will go to Delhi or to Calcutta 

2. 𝑞: There is something wrong with bulb or with the circuit. 

In the compound statement (1), the disjunction of the statements 𝑝 has been used in exclusive 

sense (𝑝 or 𝑞 but not both); that is to say: one or the other possibility exists but not both. 

Clearly, a person can not do both. 

In compound statement (2), the connective or is being used in an inclusive sense 

(𝑝 𝑜𝑟 𝑞 𝑜𝑟 𝑏𝑜𝑡ℎ). In this case at least one of the two possibilities occurred, however both could 

have occurred. We shall always use ‘or’ in the inclusive sense unless it is stated. 

Example 4.6 Assign a truth value to each of the following statements. 

(i) 5 < 5 ⋁ 5 < 6 

(ii) 5 × 4 = 21 ∨ 9 + 7 = 17 

(iii) 6 + 4 = 10 ∨ 0 > 2 

Solution: 

(i) True, since one of its components 5 < 6 is true 

(ii) False, since both of its components are false. 

(iii) True, since one of its components 6 + 4 = 10 is true. 

Example 4.7 If 𝑝: It is cold and 𝑞: It is raining. 

Write simple verbal sentence which describes each of the following statements 

a) ~𝑝 b) 𝑝 ∧ 𝑞 c) 𝑝⋁𝑞 d) 𝑝 ∨ ~𝑞 
 

Solution:  

a) ~𝑝: It is not cold 

b) 𝑝 ∧ 𝑞: It is cold and raining 

c) 𝑝⋁𝑞: It is cold or raining 

d) 𝑝 ∨ ~𝑞: It is cold or it is not raining. 

 

Implication (If . . . Then) 

If 𝑝 and 𝑞 are two propositions, then ‘IF 𝑝 THEN 𝑞’ is a proposition (denoted by 𝑝 →  𝑞). In  

𝑝 →  𝑞, 𝑝 is called hypothesis or premise and 𝑞 is called conclusion or consequence. 

 

Example 4.8: 

Let 𝑝 denote “It is cold” and let 𝑞 denote “It rains”. Write the following statements in symbolic 

form 

a. It rains only if it is cold. 

b. A necessary condition for it to be cold is that it rain. 

c. A sufficient condition for it to be cold is that it rain. 
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Solution: 

a. 𝑞 →  𝑝 

b. 𝑝 →  𝑞 

c. 𝑞 →  𝑝 

 

Bi-conditional (If and only if) 

Let 𝑝 and 𝑞 are propositions. The proposition 𝑝 ↔  𝑞 is called bi-conditional and it is read as 

“𝑝 if and only if 𝑞” (or) “𝑝 iff 𝑞”. 

The truth value of 𝑝 ↔  𝑞 is true if both p and q are true or false;  𝑝 ↔  𝑞 is false if 𝑝 and 𝑞 

have different truth values. 

 

Example 4.9 

Determine the truth value of each of the following statements: 

a. Mumbai is in India if and only if 3 + 3 = 6. 

b. Mumbai is in India if and only if 3 + 3 = 7. 

c. Mumbai is in Australia if and only if 3 + 3 = 6. 

d. Mumbai is in Australia if and only if 3 + 3 = 7. 

Solution: 

(a) and (d) are true since the sub-statements are both true in (a) and both false in (d). 

On the other hand, (c) and (b) are false since the sub-statements have different truth 

values. 

 

Equivalence (Logical Equivalence ‘≡’) 

Two propositions p and q are said to be logically equivalent, or simply equivalent or equal, 

denoted by 

𝑝 ≡ 𝑞 

If they have identical truth values. 

 

4.3.2 Truth Tables 

The truth value of a proposition is either true (denoted by T) or false (denoted by F). A truth 

table is a table that shows the truth value of a compound proposition for all possible cases. 

For example, consider the conjunction of any two propositions 𝑝  and 𝑞 . The compound 

statement 𝑝 ∧ 𝑞 is true when both 𝑝 and 𝑞 are true, otherwise false. There are four possible 

cases. 

1. 𝑝 is true and 𝑞 is true. 

2. 𝑝 is true and 𝑞 is false. 

3. 𝑝 is false and 𝑞 is true. 

4. 𝑝 is false and 𝑞 is false. 

There four cases are listed in the first two columns and the truth values of ∧ 𝑞 , 𝑝 ∨ 𝑞  and  

~𝑝 are shown in the table below: 

Table 4.2 Truth tables of (a) 𝑝 ∧ 𝑞, (b) 𝑝 ∨ 𝑞  and (c) ~𝑝 
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𝑝 𝑞 (𝑝 ∧ 𝑞) 

T T T 

T F F 

F T F 

F F F 
 

𝑝 𝑞 (𝑝⋁𝑞) 

T T T 

T F T 

F T T 

F F F 

𝑝 ~𝑝 

T F 

F T 
 

 
(a) 

(b) (c) 

  

The truth value of a compound depends only on the truth values of the statements being 

combined and on the types of connectives being used. Truth tables are especially valuable in 

the determination of the truth of connectives being used. Truth tables are especially valuable 

in the determination of the truth values of propositions constructed from simpler propositions. 

Note that the first columns of the table are for the variables 𝑝, 𝑞, … … … and the number of rows 

depends on the number of variables. For 2 variables, 4 rows are necessary; for 3 variables, 8 

rows are necessary; in general, for 𝑛 variables, 2𝑛 rows are required. The truth value at each 

step is determined from the previous stages by the definition of connectives. The truth value 

of the proposition appears in the last column. 

Some Important Laws 

1. Idempotent Law 

a. 𝑝 ∨ 𝑝 ≡ 𝑝 

b. 𝑝 ∧ 𝑝 ≡ 𝑝 

2. Associative Law 

a. (𝑝 ∨ 𝑞) ∨ 𝑟 ≡ 𝑝 ∨ (𝑞 ∨ 𝑟) 

b. (𝑝 ∧ 𝑞) ∧ 𝑟 ≡ 𝑝 ∧ (𝑟 ∧ 𝑟) 

3. Commutative Law 

a. 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝 

b. 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝 

4. De-Morgan’s Law 

a. ∼ (𝑝 ∨ 𝑞) ≡∼ 𝑝 ∧∼ 𝑞 

b. ∼ (𝑝 ∧ 𝑞) ≡∼ 𝑝 ∨∼ 𝑞 

5. Distributive Law 

a. 𝑝 ∨ (𝑞 ∧ 𝑟) ≡ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟) 

b. 𝑝 ∧ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟) 

6. ∼∼ 𝑝 ≡ 𝑝 

7. 𝑝 ∨∼ 𝑝 ≡ 1, 𝑝 ∧∼ 𝑝 ≡ 0 

8. 𝑝 ∨ 1 ≡ 1, 𝑝 ∧ 1 ≡ 𝑝 

4.4 Tautologies and Contradictions 

A compound proposition that is always true for all possible truth values of its variables or in 

other words, that contains only T in the last column of its truth table is called a tautology. A 

compound proposition that is always false for all possible values of its variables or in other 

words, that contains only F in the last column of its truth table is called a contradiction. Finally 

a proposition that is neither a tautology nor a contradiction is called a contingency. 
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Example 4.10 Propositions like 

a) The professor is either a woman or a man. 

b) People either like watching TVs or they don’t. 

are always true and are called tautologies. 

Example 4.11 Propositions like 

a) 𝑥  is prime and 𝑥 is an even integer greater than 8 

b) All men are good and all men are bad 

are always false and are called contradictions. 

Example 4.12 Prove that the following propositions are tautology 

a) 𝑝 ⋁ ~𝑝   b) ~(𝑝 ∧ 𝑞) ∨ 𝑞    c) 𝑝 → (𝑝 ⋁ 𝑞) 

Solution: 

(a) The truth table of the given proposition is shown below. Since the truth value is TRUE 

for all possible values of the propositional variables which can be seen in the last 

column the table, the given proposition is tautology 

 

                                       Table 4.3 Truth table of 𝑝 ⋁ ~𝑝 

𝑝 ~𝑝 𝑝 ∨ ~𝑝 

T F T 

F T T 

 

(b) We construct the truth table for the expression in question. It can be seen that for any 

possible assignment of 𝑝 and 𝑞, the expression ~(𝑝 ∧ 𝑞) ∨ 𝑞 is true, which establishes 

that it is a tautology 

 

Table 4.4 Truth table of ~(𝑝 ∧ 𝑞) ∨ 𝑞. 

𝑝 𝑞 𝑝 ∧ 𝑞 ~(𝑝 ∧ 𝑞) ~(𝑝 ∧ 𝑞) ∨ 𝑞 

T T T F T 

T F F T T 

F T F T T 

F F F T T 

 

(c) We construct the truth table of the given expression. It can be seen from the last 

column of the truth table that the expression is true for all possible assignments of 𝑝 

and 𝑞. Hence the proposition is tautology. 
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Table 4.5 Truth table of 𝑝 → (𝑝 ∨ 𝑞) 

𝑝 𝑞 𝑝 ∧ 𝑞 𝑝 ∨ 𝑞 𝑝 → (𝑝 ∨ 𝑞) 

T T T T T 

T F F T T 

F T F T T 

F F F F T 

 

4.5 Normal Forms  

Let’s talk about normal forms. So far we have learned about the propositions, tautologies, 

contradictions and putting them in truth table. Surprisingly it is not always possible to 

construct the truth table when there are too many variables.  

So the better method is to transform the expressions p and q to some form of expressions 

i.e. 𝑝′ and 𝑞′  in such a way that they can denotes something like 𝑝 ≡ 𝑞.  

The standard forms are popularly known as normal forms or in some places it can also be 

called as canonical forms.  

Types of normal forms:  

1. Disjunctive normal forms  

2. Conjunctive normal forms. 

For simplifying the things, we often use the words product for the logical connective 

conjunction and sum for logical connective disjunction.  

We can take some other common terms like Elementary Product or Elementary Sum. 

4.5.1 Elementary Product 

It can be defined as a product of variable and their negation in a formula. For example, let us 

take two atomic variables p and q then 𝑝, ~𝑝, ~𝑝 ∧ 𝑞, and ~𝑝 ∧ 𝑞 ∧ ~𝑞 are the examples of 

elementary product. 

We are already familiar that any variable 𝑝, 𝑝 ∧ ~𝑝 is a contradiction. Hence, if 𝑝 ∧ ~𝑝 appears 

in the elementary product, then the product is definitely false.  

This clearly shows that the statement a necessary condition for an elementary product to be 

identically false is that it should contains at least one pair of factors in which one is the negation 

of the other. 

4.5.2 Elementary Sum 

An elementary sum can be defined as the sum of variable and its negation. We can take 

example of 𝑝 and 𝑞 be any two variables. Then 𝑝, ~𝑝, ~𝑝 ∨ 𝑞, and ~𝑝 ∨ 𝑞 ∨ ~𝑞 can be called 

as some examples of elementary sum. 

For an example we know for variable 𝑝, 𝑝 ∨ ~𝑝 is tautology. Hence, if 𝑝 ∨ ~𝑝 appears in the 

elementary sum, then the sum is identically true.  
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Hence, we can derive from this that for a statement the necessary condition for an elementary 

sum to be identically true is that it must contain at least one pair of factor in which one is the 

negation of the other.  

4.5.3 Disjunctive Normal Form 

We can define an expressive to be Disjunctive normal form or popularly known as DNF, when 

it is to be the sum of elementary products. 

For example, 𝑝 ∨ (𝑞 ∧ 𝑟) and 𝑝 ∨ (~𝑞 ∧ 𝑟) are in disjunctive normal form while 𝑝 ∧ (𝑞 ∧ 𝑟) is not 

in disjunctive normal form. 

Procedure to obtain a disjunctive normal form of a given logical expression 

In order to attain a DNF through algebraic expressions, it can be worked in three steps. 

a. We should remove all →  and ↔  by an equivalent expression containing the 

connectives ∨ ∧, 𝑎𝑛𝑑 ~ only 

b. Elimination of ~ before sums and products by using De Mogans law or by the 

double negation 

c. Implying the distributive law until we obtained a sum of elementary product  

 Let’s work out the above with a suitable example. 

Example 4.13 Obtain the DNF of the following: 

(a) 𝑝 ∧ (𝑝 ⇒ 𝑞) (b) 𝑝 ∧ (~𝑝 ⇒ (𝑞 ∨ (𝑞 ⇒ ~𝑟))) 

Solution:  

 

(a) 𝑝 ∧ (𝑝 ⇒ 𝑞) ≡ 𝑝 ∧ (~𝑝 ∨ 𝑞) 

                        ≡ (𝑝 ∧ ~𝑝) ∨ (𝑝 ∧ 𝑞)  

 

(b) 𝑝 ∧ (~𝑝 ⇒ (𝑞 ∨ (𝑞 ⇒ ~𝑟))) ≡ 𝑝 ∨ (~𝑝 ⇒ (𝑞 ∨ (~𝑞 ∨ ~𝑟))) 

≡ 𝑝 ∨ (𝑝 ∨ (𝑞 ∨ (~𝑞 ∨ ~𝑟))) 

≡ 𝑝 ∨ 𝑝 ∨ 𝑞 ∨ ~𝑞 ∨ ~𝑟 

≡ 𝑝 ∨ 𝑞 ∨ ~𝑞 ∨ ~𝑟 

4.5.4 Conjunctive Normal Form (CNF) 

A logical expression if it consists of a product of elementary sum is called as conjunctive 

normal form (CNF). Let us understand the same with a suitable example. 

Example 4.14 Find the conjunctive normal form of the followings: 

(a) 𝑝 ∧ (𝑝 ⇒ 𝑞) (b) [𝑞 ∨ (𝑝 ∧ 𝑟)] ∧ ~[(𝑝 ∨ 𝑟) ∧ 𝑞] 

Solution: 

(a) 𝑝 ∧ (𝑝 ⇒ 𝑞) ≡ 𝑝 ∧ (~𝑝 ∨ 𝑞) it is the CNF of the statement 

 

(b) [𝑞 ∨ (𝑝 ∧ 𝑟)] ∧ ~[(𝑝 ∨ 𝑟) ∧ 𝑞] ≡  [𝑞 ∨ (𝑝 ∧ 𝑟)] ∧ [~(𝑝 ∨ 𝑟) ∨ ~𝑞] 
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≡ [𝑞 ∨ (𝑝 ∧ 𝑟)] ∧ [(~𝑝 ∧ ~𝑟) ∨ ~𝑞] 

≡ (𝑞 ∨ 𝑝) ∧ (𝑞 ∨ 𝑟) ∧ (~𝑝 ∨ ~𝑞) ∧ (~𝑟 ∨ ~𝑞) 

After understanding DNF and CNF we are going to learn about PDNF i.e. Principal 

disjunctive Normal form. 

4.5.5 Principal Disjunctive Normal Form (PDNF) 

Let 𝑝 and 𝑞 be two statement variables. If we create all possible formulae that consist of 

conjunction of 𝑝 or ~𝑝 with 𝑞 or ~𝑞 excluding the forms where a variable and its negation both 

appear and any form equivalent to previously obtained form, we are going to get the following 

forms: 

𝑝 ∧ 𝑞, ~𝑝 ∧ 𝑞, 𝑝 ∧ ~𝑞, and ~𝑝 ∧ ~𝑞 

We can call these forms as minterms for the two variables 𝑝 and 𝑞.  

Interestingly we do find that all minterms are different. If there are 𝑛 variables in a statement 

formula, then there will be 2𝑛 minterms.  

Let’s find the minterms of the three variables 𝑝, 𝑞 and 𝑟, they are 

 𝑝 ∧ 𝑞 ∧ ~𝑟, 𝑝 ∧ 𝑞 ∧ 𝑟, 𝑝 ∧ ~𝑞 ∧ 𝑟, ~𝑝 ∧ 𝑞 ∧ ~𝑟, ~𝑝 ∧ 𝑞 ∧ 𝑟, 𝑝 ∧ ~𝑞 ∧ ~𝑟, ~𝑝 ∧ ~𝑞 ∧ 𝑟,and  ~𝑝 ∧

~𝑞 ∧ ~𝑟. 

An equivalent formula consisting of disjunctions of min-terms alone for a given formula is 

commonly called as principal disjunctive normal form (PDNF). Let’s do it with an example: 

Example 4.15 Write the PDNF of 𝑝 ∨ (𝑝 ∧ 𝑞) 

Solution: 

𝑝 ∨ (𝑝 ∧ 𝑞) ≡ (𝑝 ∧ 𝑇) ∨ (𝑝 ∧ 𝑞)   (𝑠𝑖𝑛𝑐𝑒    𝑝 ≡ (𝑝 ∧ 𝑇)) 

≡ (𝑝 ∧ (𝑞 ∨ ~𝑞)) ∨ (𝑝 ∧ 𝑞)   (𝑠𝑖𝑛𝑐𝑒    𝑝 ∨ ~𝑝 ≡ 𝑇) 

≡ ((𝑝 ∧ 𝑞) ∨ (𝑝 ∧ ~𝑞)) ∨ (𝑝 ∧ 𝑞)     (𝑢𝑠𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤) 

≡ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ ~𝑞) 

Example 4.16  Find the PDNF of the following statements: 

1. 𝑝 ∨ (𝑝 → 𝑞) 

2. 𝑝 ∨ (𝑝 ∧ 𝑞) 

3. 𝑝 → 𝑞 

Solution:  Let’s try to find out the PDNF through truth table: 

Finding of Principal Disjunctive Normal Form using Truth Table 

Firstly, for every truth value 𝑇  of the given formula in the truth table, write the minterm 

corresponding to the truth values of the variables. We all know that the minterm consists of 

the variable itself if its truth value is true and negation of the variable if its truth value is false. 

The disjunction of these minterms is the PDNF of the given formula. The PDNF of 𝑝 ∨ (𝑝 ∧ 𝑞) 

can be find as below: 
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Table 4.6 Truth table of 𝑝 ∨ (𝑝 ∧ 𝑞)and corresponding minterms 

𝑝 𝑞 𝑝 ∧ 𝑞 𝑝 ∨ (𝑝 ∧ 𝑞) 𝑀𝑖𝑛𝑡𝑒𝑟𝑚 

T T T T 𝑝 ∧ 𝑞 

T F F T 𝑝 ∧ ~𝑞 

F T F F  

F F F F  

 

The truth table, clearly shows that only two truth values are true for the given formula. 

Hence, the PDNF is (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ ~𝑞). 

4.5.6 Principal Conjunctive Normal Form (PCNF) 

Let 𝑝 and 𝑞 be two statement variables. If we try to create all possible formulae that consist of 

disjunctions of 𝑝 or ~𝑝 with 𝑞 or ~𝑞 excluding the forms where a variable and its negation both 

appear in any form equivalent to previously obtained form, we will have the following forms: 

𝑝 ∨ 𝑞, ~𝑝 ∨ 𝑞, 𝑝 ∨ ~𝑞, and ~𝑝 ∨ ~𝑞 

We can call these forms as maxterms for the two variables 𝑝 and 𝑞. In PDNF we do have 

minterms but in PCNF we will have maxterms.  

We can understand with an example for three variables 𝑝, 𝑞 and 𝑟, the maxterms are: 𝑝 ∨ 𝑞 ∨

~𝑟, 𝑝 ∨ 𝑞 ∨ 𝑟, 𝑝 ∨ ~𝑞 ∨ 𝑟, ~𝑝 ∨ 𝑞 ∨ ~𝑟, ~𝑝 ∨ 𝑞 ∨ 𝑟, 𝑝 ∨ ~𝑞 ∨ ~𝑟, ~𝑝 ∨ ~𝑞 ∨ 𝑟,and  ~𝑝 ∨ ~𝑞 ∨

~𝑟. 

For a given formula, an equivalent formula consisting of conjunction of max-terms alone is 

popularly called as Principal conjunctive normal form (PCNF). We can understand it better 

with the help of following  example: 

Example 4.17 Write the PCNF of 𝑝 ∧ (𝑝 ∨ 𝑞). 

Solution:  

𝑝 ∧ (𝑝 ∨ 𝑞) ≡ (𝑝 ∨ 𝐹) ∧ (𝑝 ∨ 𝑞)      (𝑠𝑖𝑛𝑐𝑒     𝑝 ∨ 𝐹 ≡ 𝑝) 

≡ (𝑝 ∨ (𝑞 ∧ ~𝑞)) ∧ (𝑝 ∨ 𝑞)   (𝑠𝑖𝑛𝑐𝑒    𝑞 ∨ ~𝑞 ≡ 𝐹) 

≡ ((𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ~𝑞)) ∧ (𝑝 ∨ 𝑞)     (𝑢𝑠𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤) 

≡ ((𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑞)) ∧ (𝑝 ∨ ~𝑞)     (𝑢𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤) 

≡ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ~𝑞)            (𝑠𝑖𝑛𝑐𝑒     𝑝 ∧ 𝑝 ≡ 𝑝) 

We will try to find the Principal Conjunctive Normal Form Using Truth Table 

The PCNF of a given formula using the truth table can be find out as follows.  

For any given formula in the truth table,for every truth value 𝐹  we write the max-term 

corresponding to the truth values. As maxterm consists of the variable itself it its truth value 

false and the negation of the variable if its truth value is true. 

The conjunction of these maxterms will be the PCNF of the given formula. 

PCNF of 𝑝 ∧ (𝑝 ∨ 𝑞) can be obtained as given in the table below: 
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Table 4.7 Truth table of 𝑝 ∧ (𝑝 ∨ 𝑞) and corresponding maxterms 

𝑝 𝑞 𝑝 ∨ 𝑞 𝑝 ∧ (𝑝 ∨ 𝑞) 𝑀𝑎𝑥𝑡𝑒𝑟𝑚 

T T T T  

T F T T  

F T T F 𝑝 ∨ ~𝑞 

F F F F 𝑝 ∨ 𝑞 

Hence, the PCNF is  (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ~𝑞). 

In last we can say that PDNF and PCNF techniques are very useful in understanding the 

logics effectively. 
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Problems for Exercise 

1. Let p be “He is tall” and let q be “He is handsome”. Write each of the following 

statements in symbolic form using p and q (Assume that “He is short” means “He is 

not tall”, i.e., ∼ 𝑝). 

a. He is tall and handsome. 

b. It is false that he is short or handsome. 

c. He is tall but not handsome. 

d. He is neither tall nor handsome. 

2. Determine the truth value of each of the following statements: 

a. 1+1=5 or 2+2=4 

b. 2+5=9 or 1+7=8 

3. Find the truth table of the proposition ∼ (𝑝 ∧∼ 𝑞). 

4. Find the truth tables of the following: 

a. 𝑝 ∧ (𝑞 ∨ 𝑟) 

b. (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟) 

5. Prove the associative law : (𝑝 ∧ 𝑞) ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟) 

6. Find a principle disjunctive normal form ∼ (𝑝 ∨ 𝑞) ↔ (𝑝 ∧ 𝑞) 

7. Obtain a principal disjunctive normal form(~𝑝 ∨∼ 𝑞) → (∼ 𝑝 ∧ 𝑟). 

8. Obtain a principle conjunctive normal form of (𝑞 ∨ (𝑝 ∧ 𝑞)) ∧∼ (𝑝 ∨ 𝑟) ∧ 𝑞) 

9. Obtain a PDNF for 𝑝 ↔ 𝑞 

10. Obtain PDNF of 𝑝 ∨ (∼ 𝑝 ∧∼ 𝑞 ∧ 𝑟). 
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Block II: Unit II Inference 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Define an Inference; 

• State the rule of the inference used in the given arguments; 

• Using modus ponens or modus tollens to make an argument for given statement; 

• Check whether the given argument is valid or not; 

• Translate the given statement into symbolic form; 

An inference can be defined as a process or a method of making logical conclusions on the 

basis of premises known or expected to be true. The derived conclusion is considered to be 

natural.  

The propositions that are assumed to be true are called hypotheses or premises. The 

proposition derived by the using the rules of inference is called conclusion. The process of 

deriving conclusions based on the assumption of premises is called a valid argument. 

It can be explained as the illogical, but rational stuff via perceiving facts patterns, context for 

understanding. In other words, inference does not used to derive conclusions but unlocks the 

new avenues for inquiry. Inferences can be categorized in two types as:  

1. Inductive Inference 

2. Deductive inference. 

 Let us look at the example of inductive inference: 

1. All Cricketers are fit. 

2. Sachin is a Cricketer. 

3. Therefore, Sachin is fit. 

Here we can check truthfulness of the premises and conclusion, besides logic & inference are 

interrelated: does the truth of the assumption follow the premises? 

To determine form of the inference is significant because on the basis of it, validity of an 

inference can be determined. However, the word “valid” itself depicts the form of inference 

rather than the truthiness of premises or the conclusion. It is possible that an inference can 

said to be valid even if some portion is false and may get invalid in spite of some portion of it 

is true. Thus, a valid form along with true premises will always have a true conclusion. 

For instance, 

1. All fruits come from trees. 

2. Apple is a type of fruit. 

3. Therefore, Apple comes from a tree. 

The truthiness of conclusion is closely related to premises, too. 

Now we bring an invalid form of inference. 
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1. All M are F 

2. B is a F 

3. Thus, B is a M 

Now let’s see how it is invalid, 

1. All mangoes are fruit. (Correct) 

2. All Bananas are fruit. (Correct) 

3. Therefore, Bananas are mangoes. (Wrong) 

A false conclusion may also come out of a valid argument with false premises : 

1. All Stars are Bright. 

2. LED is Bright. 

3. Thus, LED is a Star. 

If in case a false conclusion is made through making a valid argument from a given premises 

still then an inference remains valid and follows the form of a correct inference. 

A true conclusion from premises can be derived by using a valid argument.  

1. All tall people are actors (although wrong) 

2. Amitabh Bachhan  is tall (right, valid) 

3. Thus, Amitabh Bachhan is an actor (Right) 

 Let us look at the example of deductive inference: 

Usually we read such news in newspaper that “A cricket team from a village in Uttarakhand 

surprises by winning game by game. The team even overthrows the Mumbai team” 

Inference: The Village in Uttarakhand is not a village anymore. 

Inference is made on the ground of some known facts: The village was remote and 

historically had never distinguished itself; the resources need for cricket was short due to the 

lack of cricket clubs and a coach for proper training. Large cities might field good teams due 

to the greater availability of high quality players and resources; and teams that can practice 

longer under the guidance of coach can reasonably be expected to be better. 

5.1 Rule of Inference 

A rule of inference can be state as a form of logic where a function takes premises and 

assesses their syntax to return a conclusion. For instance, the rule of inference said to be 

modus ponens considers two premises, one in the form “If 𝑝 then 𝑞”, and another in the form 

“𝑝”, that returns the conclusion  “𝑞”. The rule is valid as far as semantics of classical logic are 

concerned, in the sense that conclusion will be true provided premises are true. 

Usually, a rule of inference retains truth is a kind of semantic property. It retains a common 

place in many-valued logic. But a rule of inference is strictly syntactic with no requirement to 

retain any semantic property. Typically, only recurring rules are significant; those provides a 

means to verify whether the given formulation is a conclusion of a given set of formulation 

according to the rule. 
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Well known rules of inference in propositional logic comprise modus ponens, modus tollens, 

and contraposition. Rules of inferences are used by first order predicate logic while treating 

logical quantifiers. 

Standard form of rules of inference 

In formal logic and other concerned domains, rules of inference are generally given in the 

subsequent standard form: 

Premise 1 → Premise 2 → . . . . Premise 𝑛 → Conclusion 

It means that on every occasion during some logical induction the given premises may 

achieved, the particular conclusion can be considered as well. 

The actual language of expression to explain both of the premises & conclusions is based on 

the perspective of the logical induction. For example, one may use logical formula as 

𝐴 → 𝐵 

 In prepositional logic, it is said to be modus ponens rule. Rules of inference are usually 

expressed as a model using syntactical variables. In the rule mentioned above, the syntactical 

variables 𝐴 and 𝐵 can assume any element of the universe to produce a countless set of 

inference rules. 

Derivations can be expressed as proof method made up of a set of rules linked to one another 

to form a proof. Any derivation ends with only one conclusion that is the statement said to be 

derived. If in case, the premises are gone unfulfilled then the derivation is said to be a proof 

of theoretical statement “if the premises exists, then the conclusion also exist”. 

5.2 Modus ponens 

Under propositional logic, modus ponens is a rule of inference that can be expressed as as "𝐴 

implies 𝐵; 𝐴 is declared as true, so therefore 𝐵 should be true.”  

Modus Ponens are among the most frequently used notions in logic and should not be 

interpreted as a law in logic but it’s a tool for the derivation of proofs that comprises the rule 

for definition and substitution as well. Though it is allowed to ignore a conditional statement 

from the logical derivation or an argument thus it is occasionally called as rule for detachment. 

The conviction in the inference is the acceptance that if the previous statements are true, then 

the final conclusion will also true.  In other words, 

If 𝐴 implies 𝐵 and 𝐴 is true, then 𝐵 is true.  

Example 5.1 Let us consider the following argument 

“If it is mango, It must be a fruit” 

“It is mango.” 
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Thus, “It must be a fruit” 

Formally, Modus ponens can be specified as: 

𝐴 → 𝐵, 𝐴

∴ 𝐵
 

It means that whenever there is an implication as  𝐴 → 𝐵 and 𝐴 comes in a line of proof then 

in place of 𝐴, 𝐵 can be placed in the later line. 𝐵  will be their only hint that is taken further in 

more complex derivation. 

It has a close relationship with another logical form of argument, modus tollens. Both of them 

have similar but invalid forms that will be discussed later. 

5.2.1 Formal Notation 

Logical notaion may be used to depict modus ponens rule 

𝐴 → 𝐵, 𝐴 ⊢ 𝐵 

Where,  ⊢ is a logical sign means that 𝐵 is a syntactic result of 𝐴 → 𝐵 and 𝐴 in few logical 

methods. 

((𝐴 → 𝐵)⋀𝐴) → 𝐵 

where 𝐴, and 𝐵 are propositions stated in some formal system. 

5.3 Modus tollens 

Under propositional logic, modus tollens is inference rule and valid argument form. It is an 

implementation of the common fact that in case of a statement which is true, then its 

contrapositive is also true.  

Modus tollens is also well known as law of contraposition, confirms the inference from 𝐴 

implies 𝐵 and the contradictory of 𝐵, to the contradictory of 𝐴. 

Formally, modus tollens rule can be expressed as 

𝐴 → 𝐵, ¬𝐵

∴ ¬𝐴
 

where 𝐴 → 𝐵  stands for the statement “ 𝐴  implies 𝐵 ” (and ¬𝐴 → ¬𝐵  is called the 

“contrapositive”). ¬𝐵 stands for “it is not the occasion that 𝐵” (or in brief “not 𝐵”). Then, 

whenever “𝐴 → 𝐵” and “¬𝐵” each appear by themselves as a line of a proof, then “¬𝐴” can 

validly be positioned on a later line.  

Modus tollens has close relationship with modus ponens. There are two alike, but invalid, 

forms of argument: asserting the consequent and contradicting the predecessor. 



55 | P a g e  
 

5.3.1 Formal notation 

In logical notations, modus tollens can be represented as: 

𝐴 → 𝐵,   ¬𝐵 ⊢ ¬𝐴 

Where,  ⊢ is a logical sign in the sense that ¬𝐴 is a syntactic result of 𝐴 → 𝐵 and ¬𝐵 in 

some logical system  

((𝐴 → 𝐵)⋀¬𝐵) → ¬𝐴 

where 𝐴 and 𝐵 are propositions expressed in some formal system 

Example 5.2 

“If the smoke sensor detected fire, the fire alarm will ring” 

“The fire alarm won’t ring” 

Thus, “no smoke was detected by the smoke sensor” 

Assuming that the premises are equally true (the fire alarm will ring if it detects smoke, and 

does indeed won’t ring), it follows that no smoke has been detected. This is a valid argument 

since it is not possible for the inference to be false if the premises are true. (It is feasible that 

there may have been the smoke that smoke sensor did not detected, but that does not nullify 

the argument; the first premise is “if the smoke sensor detects smoke.” It means the more 

important thing is that whether the sensor detects the smoke irrespective of whether smoke is 

present there or not.  

5.3.2 Relation to modus ponens 

In propositional logic, material implication is a valid rule of replacement that allows for a 

conditional statement to be replaced by a disjunction if and only if the antecedent is negated. 

The rule states that 𝑝 implies 𝑞 is logically equivalent to ~𝑝 or 𝑞 and can replace each other 

in logical proofs. 

Each use of modus tollens can be adapted to a use of modus ponens and one use of 

substitution to the premise which is a material implication. For example: 

If  𝐴, then 𝐵, (premise – material implication) 

If not 𝐵, then not 𝐴. (Derived by Substitution)  

Not 𝐵. (premise) 

Thus, not 𝐴 (derived by modus ponens) 

Likewise, each use of modus ponens can be converted to use of modus tollens and 

substitution. 



56 | P a g e  
 

5.4 Validity 

Logically, an argument is said to be valid if it is in such a form so that almost it become 

impossible for an inference to be false having premises true. It is not always essential that a 

valid argument needs to be true but if the assertion is true then it would assure that the 

conclusion based on that assertion will be true. It means that an argument schema is valid iff 

every argument of that logical structure is valid. 

5.4.1 Validity of an argument 

Though the logical consequence of the premises is the inference derived from it. So an 

argument’s validity is based on the validity of the premises. Hence the truth value of an 

argument is the criteria on the basis of which it will be called as valid while on the other hand 

the negation of this condition is a contradiction.  

Example 5.3 Let us consider the following argument: 

All birds have wings. 

parrot is a bird. 

Then, parrot has wings. 

Here truth values of the premises and conclusion are not responsible to make this argument 

valid but conclusion needs a logical context and that gives these two premises. Otherwise the 

argument would still remain valid where the truth value of premises and conclusion both are 

false.  

The argument given in example 2.4 is of the same logical form as above in example 2.3. 

Difference is that the truth value of premises and conclusion is false but the argument would 

be equally valid. 

Example 5.4 Let us consider the following argument: 

All vegetables are green. 

carrot is a vegetable. 

Therefore, Carrot is green. 

It doesn’t matter how the universe is, but it is not always possible that these argument 

would give true premises concurrently with false conclusion. 

Example 5.5 Let us consider the following argument: 

All human are immortal. 

Sachin is a man. 

Therefore, Sachin is mortal. 
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Here, the conclusion is not drawn from the premises so it contradicts the derived logic and 

hence the argument is invalid while in general the conclusion can be considered as true. 

 

From a standard point of view, whether an argument is valid is a matter of the argument’s 

logical form. Numerous techniques are engaged by logicians to represent an argument’s 

logical form. A simple example, applied to two of the above illustrations, is the following:  

Let the letters '𝐻', '𝑀', and '𝑆' stand, individually, for the set of men, the set of mortals, and 

Sachin. Using these symbols, an argument may be summarized as: 

All 𝐻 are 𝑀. 

𝑆 is a 𝐻. 

Thus, 𝑆 is a 𝑀. 

Likewise, another argument becomes: 

All 𝐻 are not 𝑀. 

𝑆 is a 𝐻. 

Thus, 𝑆 is a 𝑀. 

An argument can formally called as valid if the conclusion is drawn on the basis of the premises 

then no matter whether the premises are true or not. On the other hand, if in an argument a 

conclusion is not drawn on the basis of the premises then no matter the premises could be 

true but the argument will be called as invalid. 

5.4.2 Validity of Statements 

A statement can be called valid, i.e. logical truth, if it is true in all interpretations. 

5.5 Predicate Logic 

In mathematical logic, predicate logic is common term used to represent the formal logical 

systems where it is comprises of the syntactical variables 

There are two frequently used quantifiers are the  

1. Existential ∃ (“there exists”) quantifiers 

2. Universal ∀ (“for all”) quantifiers.  

The variables may possibly be any elements in the universe under consideration, or possibly 

relations or functions over that universe of discourse. For instance, an existential quantifier 

over a function symbol would be inferred as modifier “there is a function”.  

The foundations of predicate logic were given unconventionally by Gottlob Frege and Charles 

Sanders Peirce. 

 Let us consider the following sentences: 
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1. Mohit is a student. 

2. Shridhar is a student. 

3. Seema is a student. 

If we write the propositions for these three sentences, we will require three propositions. In the 

same way if we have a list of hundred students, then it is not suitable to write hundred 

propositions because the part ‘is a student’ of the sentence is repeated in all these sentences. 

Hence, it is better to assign a variable (say 𝑥) in place of the name of the student and keep 

the remaining  part as it is, and define a set 𝑋 of students from where 𝑥 can take its values. 

The sentence can be written as ‘𝑥  is a student’ in which the part ‘is a student’ is called 

predicate, and the set 𝑋 is called the universe of discourse for 𝑥. The complete sentence is 

called predicate on 𝑥. A predicate on 𝑥 is denoted by the symbols 𝑃, 𝑄, 𝑅 and so on, with 𝑥 in 

braces, that is, 𝑃(𝑥), 𝑄(𝑥), 𝑅(𝑥), and so on, respectively. 

For example,  

𝑃(𝑥): 𝑥 𝑖𝑠 𝑎 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 

𝑄(𝑥): 𝑥 𝑖𝑠 𝑎𝑛 𝑎𝑛𝑖𝑚𝑎𝑙 

A predicate can be defined without defining its universe of disclosure. In this case, the variable 

can take any value from the universal set. A predicate can also be defined over more than one 

variable. For example, consider the predicate on two variables. 

𝑃(𝑥, 𝑦): 𝑥 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑦 

If we replace 𝑥 by 6 and 𝑦 by 3, then it becomes a proposition ‘6 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 3’ whose 

truth value is 𝑡𝑟𝑢𝑒. 

5.6 Quantification 

Let us first assume the following sentence: 

 Rajesh is brilliant and Mohit is brilliant and Akansha is brilliant. 

If we form a set 𝐴 of three students, then the sentence can be transcribed as follows: 

 All the students of the set 𝐴 are brilliant. 

For writing a representational form of the sentence, we need a predicate on a variable 𝑥 like 

𝑃(𝑥): 𝑥 𝑖𝑠 𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡, and the domain of 𝑥 (called universe of discourse) defined as the set 𝐴, 

and a symbol for the phrase ‘for all’. The symbol is called quantifier. Thus, quantifier is a 

symbol that quantifies the variables. At the time when we use quantifier before a predicate,  

the predicate becomes a proposition. 

In logic, an idea that states the quantity of subjects in the domain of discourse assigned with 

a symbol and satisfies an open formula is called quantification. 

Two fundamental kinds of quantification in predicate logic are: 

1. Universal quantification 
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2. Existential quantification 

5.6.1 Universal Quantification 

It is used when a statement is true for all values given in the universe of discourse. It is denoted 

by the symbol ∀. The universal quantification of 𝑃(𝑥) is the statement 

𝑃(𝑥) for all values 𝑥 in the universe of discourse and is denoted by ∀𝑥𝑃(𝑥). We read ∀𝑥𝑃(𝑥) 

as ‘for all 𝑥𝑃(𝑥)’ or ‘for every 𝑥𝑃(𝑥)’. 

Note that ∀𝑥𝑃(𝑥) is true when 𝑃(𝑥) is true for every 𝑥 and is false when there is any 𝑥 for 

which 𝑃(𝑥) is not true. 

Example 5.6   Let 𝑃(𝑥): 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 and universe of discourse for 𝑥 is the set {1,2,3,4}. 

Find the truth value of ∀𝑥𝑃(𝑥). 

Solution: As every number in the set is not an even number, the statement ∀𝑥𝑃(𝑥) is false. 

Example 5.7 Let 𝑃(𝑥): 𝑥 ≠ 5 and universe of discourse for 𝑥 is the set {1,2,3,4}. Find the 

truth value of ∀𝑥𝑃(𝑥). 

Solution: As for every number 𝑥 in the set 𝑥 ≠ 5, the statement ∀𝑥𝑃(𝑥) is true. 

5.6.2 Existential Quantification 

The existential quantifier is used on the occasion of a statement is true for some values given 

in the universe of discourse. It is represented by the symbol ∃. The existential quantification 

of 𝑃(𝑥) is the statement 

There exists some 𝑥 in the universe of discourse such that 𝑃(𝑥) and it is symbolized by the 

symbol ∃𝑥𝑃(𝑥). 

Note that ∃𝑥𝑃(𝑥) is true when 𝑃(𝑥) is true for at least one value of 𝑥  in the universe of 

discourse and is false when 𝑃(𝑥)  is false for every 𝑥 in the universe of discourse. 

Example 5.8  Let 𝑃(𝑥): 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 and universe of discourse for 𝑥 is the set {1,2,3,4}. 

Find the truth value of ∃𝑥𝑃(𝑥). 

Solution:  As some numbers in the set are  even numbers, the statement ∃𝑥𝑃(𝑥) is true. 

Example 5.9 Let 𝑃(𝑥): 𝑥 > 5 and universe of discourse for 𝑥 is the set {1,2,3,4}. Find the truth 

value of ∃𝑥𝑃(𝑥). 

Solution: As none of the number in the set is greater than 5, the statement ∃𝑥𝑃(𝑥) is false. 
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Problems for Exercise: 

1. State the rule of the inference used in the following arguments 

a. If it rains, then the schools are closed; it rains. Therefore, the schools are 

closed. 

b. If it rains, then the schools are closed; the schools are not closed. Therefore it 

does not rain. 

2. Using modus ponens or modus tollens, make an argument for each one in the 

following. 

a. If this student is honest, she will not try to cheat when she takes a test. 

This student tried to cheat on a test. 

Therefore, _______________________  by modus ________ 

b. If it is raining today, I will take my umbrella. 

It is raining today. 

Therefore, ________________________ by modus ________ 

c. (𝑎 ∨ 𝑏) → 𝑐 

 𝑏 

Therefore, _________________________ by modus ________ 

d. I always bring my lunch on Friday. 

I will buy my lunch today. 

Therefore, _________________________ by modus ________ 

3. Supply the missing statement or reason in the following 

a. 𝑝 → ~𝑞;             𝑝      ∴ _________ 

b. ~𝑝 → 𝑞;          ~𝑝     ∴______ 

c. (∼ 𝑝 ∨ 𝑞) → ~(𝑞 ∧ 𝑟);          ∼ 𝑝 ∨ 𝑞     ∴ ________ 

d. (∼ 𝑝 ∧ 𝑞) → (𝑞 ∧∼ 𝑟);          ∼ 𝑝 ∧ 𝑞     ∴ ________   

e. (∼ 𝑝 ∨ 𝑞) → ~(𝑞 ∧ 𝑟);              𝑞 ∧ 𝑟        ∴ ________ 

f. (∼ 𝑝 ∧ 𝑞) → (𝑞 ∧∼ 𝑟);      ∼ (𝑞 ∧∼ 𝑟)   ∴ ________ 

4.  Check whether the argument is valid or not 

a. If I plant a tree, then I will get dirt under my nails. I didn’t get dirt under my nails. 

Therefore, I didn’t plant a tree. 

b. If I don’t change my oil regularly, my engine will die. My engine died. Thus, I 

didn’t change my oil regularly 

c. If I don’t tie my shoes, then I trip. I didn’t tie my shoes. Hence, I tripped. 

d. All racers live dangerously. Arnav is a racer. Therefore, Arnav lives 

dangerously 

5. Translate the following into symbolic form: 

a. Everybody loves him 

b. Somebody cried out for help and called the police. 

c. Nobody can ignore him. 

6. State whether the following are true or false, where 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 range over the integers. 

a. ∀𝑥, ∋ 𝑦.  (2𝑥 − 𝑦 = 0) 

b. ∀𝑥, 𝑥 < 10 ⇒ ∀𝑦, (𝑦 < 𝑥 ⇒ 𝑦 < 9) 

c. ∋ 𝑦. ∋ 𝑧. 𝑦 + 𝑧 = 100  

7. Formalize the following (over the real numbers): 

a. Negative numbers don’t have square roots 

b. Every positive number has exactly two square roots 
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Block II: Unit III Notion of Proof 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Verify the equality of two sets using a truth table; 

• Verify the equality of two sets using Venn Diagram; 

• Prove with contradiction method; 

• Verify whether or not a given proposition formula is a tautology; 

• Disprove the given statements by finding a counterexample; 

6.1 Notion of Proof 

Here all the discussion is about diverse methods of proof. Proving a theorem or a 

mathematical statement is fundamentally proving the validity of an argument. So far, 

equivalences and implications in propositional logic were in our discussion. We shall use 

some of these equivalences and implications to describe various methods of proof. Before 

defining the different methods of proof, we shall discuss some terms used to represent 

the statements. 

Theorem:  

A theorem is a statement, fact, or consequence that can be shown to be true. 

Proposition:  

It is deliberated as less significant theorem.  

Occasionally, to prove the theorem, we first prove some parts of the theorem individually, 

and then those results are used to prove the theorem. 

Lemma:  

A lemma is deliberated as a less significant theorem that is used to prove other theorems. 

Corollary:  

A corollary is a theorem that can be proved straight from a theorem that has been proved. 

Generously, a theorem is a valid argument comprises of some premises and an inference, 

or more precisely, it may be inferred as the universal quantification of a conditional 

statement. In few cases, a theorem may be a logical statement as well. 

6.2 Proof by implication 

As we know 𝑝 ⊢ 𝑞 means there is a proof of 𝑞 by put on inference rules to 𝑝, while  𝑝 → 𝑞 

states that 𝑞  holds each time 𝑝 does. These are not the similar things: provability (⊢) is 

separate to the theory (it’s a declaration about whether a proof exists or not) while implication 

(→) is inside (it’s a logical linkage for making compound propositions). But most of the time 

they mean almost equivalent. 
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 For instance, suppose that 𝑝 → 𝑞 can be proved without any assumptions: 

⊢ 𝑝 → 𝑞 

Since we can always take no notice of extra premises, we get 

𝑝 ⊢ 𝑝 → 𝑞 

And thus 

𝑝 ⊢ 𝑞, 𝑝 → 𝑞 

which gives 

𝑝 ⊢ 𝑞 

by put on modus ponens to the right-hand side. 

So we can go from ⊢ 𝑝 → 𝑞 to𝑝 ⊢ 𝑞. 

This shows that provability is in a sense weaker as compared to implication: it holds 

(supposing modus ponens) whenever implication does. But we frequently don’t use this fact 

much, since 𝑝 → 𝑞 is a much more suitable statement than 𝑝 ⊢ 𝑞. 

6.3 Converse 

In logic, the converse of an implicational statement is the consequence of reversing its two 

parts. For the implication 𝑝 → 𝑞, the converse is 𝑞 → 𝑝 

Consider 𝑆 be a statement of the form 𝑝 implies 𝑞 (𝑝 → 𝑞). Then the converse of 𝑆 is the 

statement 𝑞 implies 𝑝 (𝑞 → 𝑝). Usually, the verity of S says nothing about the verity of its 

converse, unless the predecessor 𝑝 and the resultant 𝑞 are logically equivalent. 

For instance, assume the true statement "If I am a human, so I am mortal." The converse of 

that statement is "If I am mortal, so I am a human," which is not essentially true. 

On the other side, the converse of a statement with mutually inclusive terms resides true, 

given the truth of the original proposition. Therefore, the statement "If I am a bachelor, then I 

am a single man" is logically equivalent to "If I am a single man, then I am a bachelor." 

A truth table depicts that 𝑆 and the converse of 𝑆 are not logically equal unless both terms 

imply each other: 

𝑝 𝑞  𝑝 → 𝑞  𝑞 → 𝑝 

T T T T 

T F F T 

F T T F 

F F T T 
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Going from a statement to its converse is the misconception of asserting the resultant. 

Though, if the statement 𝑆 and its converse are equal (i.e. if 𝑝 is true if and only if 𝑞 is also 

true), then asserting the resultant will be valid. 

6.4 Inverse 

In logic, an inverse is a type of conditional sentence which is an instantaneous inference made 

from a different conditional sentence. Every conditional sentence has an inverse: the 

contrapositive of the converse. The inverse of 𝑝 → 𝑞 is therefore ¬𝑝 → ¬𝑞. 

For instance, replacing propositions in natural language by logical variables, the inverse of the 

conditional proposition, “If it’s raining, then game will be abandoned” is “If it’s not raining, then 

game will not be abandoned”. 

Since a double negation has no logical consequence, the inverse of the inverse is logically 

same to the original condition. 

The inverse and the converse of a conditional are logically same to each other, just as the 

conditional and its contrapositive are logically same to each other. But the inverse of a 

conditional is not inferable from the conditional.  

For instance, “If it’s not raining, then game will not abandoned” cannot be inferred from “if it’s 

raining, then game will abandoned”. It could easily be the case that game will abandoned no 

matter what the weather is. 

6.5 Contrapositive 

Logically, contraposition rule states that a condition statement is reasonably same to its 

contrapositive. The contrapositive of the statement has its predecessor and resultant inverted 

and flipped: the contrapositive of 𝑝 → 𝑞 is thus ¬𝑞 → ¬𝑝.  

For instance, the proposition “All Mangoes are fruits” can be reaffirmed as the condition “if 

somewhat is Mango, then it is fruit”. At this moment, the law states that statement is 

indistinguishable to the contrapositive ”If somewhat is not fruit, then it is not mango” 

In order to verify an implication, a proof can be specified by its contrapositive that statement. 

Example 6.1 

Prove that if 𝑝 + 𝑞 ≥ 93, then 𝑝 ≥ 47 or 𝑞 ≥ 47, 𝑝 and 𝑞 being positive integers. 

Solution 

There looks to be no way to verify the given fact directly. Instead, one can prove by taking the 

contrapositive: not ” 𝑝 ≥ 47 or 𝑞 ≥ 47” implies not “𝑝 + 𝑞 ≥ 93”. By De Morgan’s law, the 

negation of ” 𝑝 ≥ 47 or 𝑞 ≥ 47” is “not 𝑝 ≥ 47 and 𝑞 ≥ 47” i.e., “𝑝 ≤ 46 and 𝑞 ≤ 46” So the 

contrapositive proposition is if “𝑝 ≤ 46 and 𝑞 ≤ 46” then 𝑝 + 𝑞 ≤ 93. This follows immediately 

from property of inequalities: 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 imply that 𝑎 + 𝑏 ≤ 𝑐 + 𝑑 for all real numbers 

𝑎, 𝑏, 𝑐, 𝑑 
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6.6 Negation 

Logically, negation, also known as logical counterpart, is an act that takes a proposition 𝑝 to 

another proposition “𝑛𝑜𝑡 𝑝”, written as ¬𝑝, which is inferred instinctively as being true when 𝑝 

is false and vice versa. 

Proof of negation is a kind of inference rule which clarifies how to prove a negation: 

To prove ¬𝑝, assume 𝑝 and derive illogicality. 

Example 6.2 

Prove that √2 is not rational. 

Solution: 

Suppose √2 is rational and it is equivalent to a division 𝑎/𝑏 with 𝑎 and 𝑏 comparatively prime. 

Then we would get 𝑎2 = 2𝑏2, hereafter 𝑎2 is even and so is 𝑎. Write 𝑎 = 2𝑐 and plug it back 

in to get 2𝑐2 = 𝑏2, from which we determine that 𝑏 is even as well. This is a contradiction ever 

since 𝑎 and 𝑏 were assumed to be comparatively prime. 

6.7 Contradiction 

It consists of a logical inconsistency between two or more propositions. It occurs when the 

propositions, taken together, yield two inferences which form the logic, typically opposite 

inversions of one another. 

Proof by contradiction is based on the fact that a statement is either true or false but not both 

at the same time. We get at a contradiction when we arrive at a situation where we say that a 

statement is both true and false at the same time. This shows that our initial assumptions are 

inconsistent. 

To prove that a statement 𝑝 is true, we assume that ¬𝑝 is true, and taking ¬𝑝 as premise, we 

draw a contradiction 𝐹 as the conclusion. ¬𝑝 ⇒ 𝐹 proves that ¬𝑝 → 𝐹 is true; thus, ¬𝑝 must  

be false, that is, 𝑝 must be true. We can summarize the steps as follows: 

1. Assume that 𝑝 is true. 

2. Using this assumption show a contradiction. 

Example 6.3 

Prove the statement ‘if 3𝑚 + 1  is even, then 𝑚  is odd’ utilizing the method of proof by 

contradiction. 

Solution 

Here 𝑝: 3𝑚 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛  and 𝑞: 𝑚 𝑖𝑠 𝑜𝑑𝑑. 

Let us consider that 𝑝 is true and ~𝑞 is true. 

Assume,  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛  and 3𝑚 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛. 
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Consider, 𝑚 = 2𝑎 for some integer, then 

3𝑚 + 1 = 3.2𝑎 + 1 = 6𝑎 + 1 

Since 6𝑎 = 2(3𝑎) 

This infers that 6𝑎 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

 ⇒ 6𝑎 + 1 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 

 ⇒ 3𝑚 + 1 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 

This is a contradiction to the statement that 3𝑚 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛 . Hence 𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑣𝑒𝑛 , i.e., 

𝑚 𝑖𝑠 𝑜𝑑𝑑. This proves the statement ‘if 3𝑚 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑡ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑’. 

6.8 Direct Proof 

In mathematics and logic, a direct proof is a way of confirming the truth or falsehood of a given 

statement by a straightforward combination of well-known facts, usually axioms, existing 

theorems, without making any further assumptions. 

In direct proof, we can restate the theorem or statement in the form of conditional statement 

𝑝 → 𝑞. We start with the statement that 𝑝 is true and then use the rules of inferences with given 

axioms or already proved theorems and definitions to show that 𝑞 is also true. 

Example 6.4  

Show that the square of an even number gives an even number. 

Solution 

First, we will reorganize the sentence. We have to verify ‘if 𝑘 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, then 

𝑘2 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟’. 

Here, 𝑝:  𝑘 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟. 

And 𝑞:  𝑘2𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟. 

Let us assume that 𝑘 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟. Then we can write 𝑘 = 2𝑛, where 𝑛 ∈ 𝑍 

𝑘2 = (2𝑛)2 = 4𝑛2 = 2(2𝑛2) 

This implies 𝑘2 is an even number. 

Example 6.5 

Show that the sum of two odd integers is an even number.  

Solution 

Let 𝑚 and 𝑛 be odd integers. 

Here 𝑝:  𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑. 
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 𝑞:  𝑚 + 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛. 

Let us assume 𝑝 is true, i.e., 𝑚 and 𝑛 are odd integers. 

As 𝑚 and 𝑛 are odd integers, we can state that 𝑚 = 2𝑎 + 1 and 𝑛 = 2𝑏 + 1 for some 

integers 𝑎 and 𝑏 

Now 𝑚 + 𝑛 = 2𝑎 + 1 + 2𝑏 + 1 

 = 2(𝑎 + 𝑏) + 2 

 = 2(𝑎 + 𝑏 + 1) 

Hence,  𝑚 + 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟. 

6.9 Proof by using truth table 

In the method of proving by using truth tables, the validity of propositional formulas is 

determined with respect to Boolean interpretations. Specifically, for discerning whether a 

propositional formula for Boolean interpretations is a tautology. 

Initially, the truth table of the various logical connectives has to create. 

One line for each Boolean interpretation has to be written of the set of variables that we are 

opting. If there are 𝑛 variables that we are opting then the amount of lines will be 2𝑛. 

There are as a result, two lines in the truth table for the only non-trivial unary connective 

𝑝 ~𝑝 

T F 

F T 

 

. . and four lines in the truth table for the binary connectives 

 

𝑝 𝑞 𝑝 ∧ 𝑞 ~(𝑝 ∧ 𝑞) ~(𝑝 ∧ 𝑞) ∨ 𝑞 

T T T F T 

T F F T T 

F T F T T 

F F F T T 

 

6.9.1 Proof of tautology 

Truth tables can be used to verify whether or not a given proposition formula is a tautology for 

Boolean interpretations. 

Let 𝑝 be a proposition formula we wish to validate. 

Afterward, determine its truth table. 
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In the column under the main connective of 𝑝, it can found the truth value of 𝑝 for every 

Boolean interpretation. 

- If this comprises nothing but T, then 𝑝 is a tautology 

- If this comprises nothing but F, then 𝑝 is a contradiction 

- If this comprises T for some Boolean interpretation and F for others, then 𝑝 is a liable 

statement. 

Example 6.6 

Whenever 𝑝 ⇒ 𝑞 and 𝑞 ⇒ 𝑟 are established as true, then 𝑝 ⇒ 𝑟 is accepted as true 

Solution 

𝑝 𝑞 𝑟 𝑝 ⇒ 𝑞 𝑞 ⇒ 𝑟 𝑝 ⇒ 𝑟 

T T T T T T 

T T F T F F 

T F T F T T 

T F F F T F 

F T T T T T 

F T F T F T 

F F T T T T 

F F F T T T 

 

 

Both premises are true as seen in the first, fifth, seventh, and eight rows of the truth table. 

Subsequently in each case the conclusion is also true, the argument is valid. 

This rule is valid rule of inference due the implication 

(𝑝 ⇒ 𝑞)⋀(𝑞 ⇒ 𝑟) ⇒ (𝑝 ⇒ 𝑟) is a tautology 

There are numerous arguments in mathematics comprises chain of if-then statements due to 

the fact that some statement implies a second and the second implies a third, anyone can 

determine that first statement implies the third one. 

6.10 Proof by counter example 

In the field of logic and especially in its applications to mathematics, a counterexample is an 

exception to a proposed general rule or law. For instance, consider the proposition “all fruits 

are sweet”. Because this statement claims that a definite property (sweetness) holds for all 

fruits, even a single example of acerbic fruit will prove it false. Thus, any acerbic fruit is a 

counterexample to “all fruit are sweet”. More specifically, a counterexample is a particular 

instance of the falsity of a universal quantification (a “for all” statement). 

Proof technique 

Let 𝑋 be the statement: 

     ∀𝑚 ∈ 𝐾: 𝑄(𝑚) (For all the elements 𝑚 of a given set 𝐾, the property 𝑄 holds.) 
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Such a statement need not necessarily be true. 

Let 𝑌 be the statement: 

     ∃𝑛 ∈ 𝐾: ¬𝑄(𝑛)  (There exists at least one element 𝑛 of the set 𝐾 such that the property 𝑄 

does not hold.) 

It follows immediately by De Morgan's laws that if 𝑌 is true, then 𝑋 must be false. 

Such a statement 𝑌 is stated to as a counterexample to 𝑋. 

The method to prove or disprove a statement in the form of 𝑋 by verifying either truth or the 

falsehood of a statement in the form of 𝑌 is said to be proof by counterexample. 

Example 6.7 

Statement: It is not necessary that all linear functions in one variable should perpendicular to 

one another. 

Proof: 

To establish that this is true, we need to find a pair of linear functions in one variable that are 

not perpendicular. We recommend the following counterexample: 

𝑓1(𝑘) = 3𝑘 + 4           𝑓2(𝑘) = 2𝑘 − 1 

To observe, these two linear functions are not perpendicular, we notice that the slope of the 

first function is 3. Thus, the slope of a perpendicular line must be −
1

3
. However, the slope of 

𝑓2 𝑖𝑠 2, not −
1

3
. So, it is not necessary. 

Note: While proving by counterexample only stating the counterexample is not sufficient but 

explaining why it is a counterexample is also must. 

 

  



69 | P a g e  
 

Problems for Exercise: 

1. Prove that the following sets are equal. Verify it with a truth table or a Venn Diagram. 

You may assume that A, B, and C are nonempty sets. Also assume that U is the 

universe. 

a. 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

b. 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 

c. 𝐴𝑐 − 𝐵 = (𝐴 ∪ 𝐵)𝑐 

d. 𝐴 − 𝐵𝑐 = 𝐴 ∩ 𝐵 

e. 𝐴 − 𝐵) ∪ (𝐴 ∩ 𝐶) = 𝐴 − (𝐵 − 𝐶) 

2. Prove that if 𝐴 and 𝐵 are finite sets then |𝐴 ∪ 𝐵| ≤ |𝐴| + |𝐵| and that equality holds 

when 𝐴 ∩ 𝐵 = ∅. 

3. Prove the following by contrapositive: 

a. An integer 𝑛 is even if and only if 𝑛 + 1 is odd. 

b. If 𝑛 and 𝑚 have the same parity then 𝑛 + 𝑚 is even 

4. Prove with contradiction method that √2 is irrational. 

5. Show that this identity holds for all positive integers: 

1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
 

6. Show that 𝑛! > 2𝑛𝑓𝑜𝑟 𝑛 ≥ 4 

7. Prove that every positive integer n: 

2 + 4 + 6 + ⋯ + 2𝑛 = 𝑛(𝑛 + 1) 

8. Disprove the following statements by finding a counterexample for each of them: 

a. ∀ real numbers 𝑎 and 𝑏, if 𝑏2  >  𝑎2, then 𝑏 > 𝑎 

b. ∀ real numbers 𝑥, 𝑦 𝑎𝑛𝑑 𝑧, if 𝑥 > 𝑦, then 𝑥𝑧 > 𝑦𝑧 

9. Prove that there is a prime number between 45 and 54. 

10. Prove that:  

Let 𝑚 and 𝑛 be integer. Then, there is no integer 𝑘 such that  

(3𝑚 + 2)(3𝑛 + 2) = 3𝑘 + 2  
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Block III: Unit I Combinatorics 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain the features of combinatorics; 

• Define Mathematical Induction; 

• Apply the principle of mathematical induction to prove statements; 

• Apply recursion to define sequences, functions, sets; 

• Explain recursive definition of the factorial function; 

• Apply Permutations and Combinations techniques to solve mathematical problems; 

In many discrete problems, we are challenged with problem of counting. Combinatorics is 

the branch of mathematics deals with the study of problems concerning the counting and 

discrete structures those are finite or countable.  

Features of combinatorics 

✓ The configurations of a specified class and size get counted. 

✓ Helps in taking decision when definite criteria are encountered and construction 

and exploration of objects meeting those criteria. 

✓ Evaluating ‘largest’, ‘smallest’, or ‘optimal’ objects. 

✓ Solution to the combinatorial problems can be obtained by applying algebraic 

techniques. 

Combinatorics has many applications in mathematical optimization, computer science etc. 

Graph theory is one of the oldest and most frequently accessible part of combinatorics 

having numerous associations with other areas. Estimations in analysis of algorithm and 

finding formulas is significant application of combinatorics in the field of computer science. 

Those who study combinatorics are called as combinatorialist or a combinatorist. 

7.1 Mathematical Induction 

Mathematical induction is a technique by virtue of which one can prove mathematical 

statements involving positive integers. The word induction means the method of inferring a 

general statement from the validity of particular cases. 

Before describing the method of mathematical induction, let us try to understand its power. To 

do this, let us consider the statement: 

1 + 2 + 3 + ⋯ … … … … … … … + 𝑛 =
𝑛(𝑛 + 1)

2
 

It is easy to check that this statement is true for 𝑛 = 1, for 𝑛 = 2 and 𝑛 = 3 etc. 

From the above, one cannot conclude that the statement is true for all positive 𝑛 as one can 

never be sure that the statement does not fail for some untried value of 𝑛. But it is also 

impossible to substitute infinite number of possible values of 𝑛 . Mathematical induction 
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reduces the proof to a finite number of steps and guarantee that there is no positive 𝑛 for which 

the statement fails to be determined. 

A formal statement of principle of mathematical induction can be stated as follows. 

Let 𝑆(𝑛) be a statement that involves positive integer 𝑛 = 1,2,3, … … … … Then 𝑆(𝑛) is true 

for all positive integer 𝑛 provided that 

1. 𝑆(1) is true 

2. 𝑆(𝑘 + 1) is true whenever 𝑆(𝑘) is true. 

So, there are three steps of proof using the principle of mathematical induction. 

Step 1(Inductive base): Verify that 𝑆(𝑘) is true. 

Step 2(Inductive hypothesis): Assume that 𝑆(𝑘) is true for an arbitrary value of 𝑘. 

Step 3(Inductive Step): Verify that 𝑆(𝑘 + 1) is true on the basis of the inductive hypothesis. 

Note (Change of inductive base): The principle of mathematical induction defined above 

begins at 𝑛 = 1 and proves the statement  for 𝑛 = 𝑘 + 1 assuming that the statement is true 

for 𝑛 = 𝑘(𝑘 ≥ 𝑛0) 

Example 7.1 Show that 

12 + 22 + 32 + ⋯ … … … … … … + 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6
, 𝑛 ≥ 1  

by mathematical induction. 

Solution: Let 𝑆(𝑛) be the given statement 

1. Inductive base: For 𝑛 = 1 we have 

12 =
1(1 + 1)(2 + 1)

6
= 1 

So, 𝑆(1) is true. 

2. Inductive hypothesis: Assume that 𝑆(𝑘) is true i.e, 

12 + 22 + 32 + ⋯ … … … … … + 𝑘2 =
𝑘(𝑘 + 1)(2𝑘 + 1)

6
 

3. Inductive Step: We wish to show the truth of 𝑆(𝑘 + 1)i.e., 

12 + 22 + 32 + ⋯ … … … … … + (𝑘 + 1)2 = (𝑘 + 1)(𝑘 + 2)(2𝑘 + 3)/6 

which has been obtained by substituting 𝑘 + 1 for 𝑛 is 𝑆(𝑛) 

Now, 12 + 22 + 32 + ⋯ … … … … … … . +(𝑘 + 1)2 = (12 + 22 + 32 + ⋯ … … + 𝑘2) + (𝑘 + 1)2 
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=
𝑘(𝑘 + 1)(2𝑘 + 1)

6
+ (𝑘 + 1) 

= (𝑘 + 1) [
2𝑘2 + 7𝑘 + 6

6
] 

=
(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3)

6
 

which is 𝑆(𝑘 + 1). That is 𝑆(𝑘 + 1) is true whenever 𝑆(𝑘) is true. 

by the principle of mathematical induction 𝑆(𝑛) is true for all positive integer 𝑛 

In some cases, the principle of mathematical induction is insufficient to prove certain 

statements. Thus, we have another form of mathematical induction known as strong form of 

mathematical induction. 

Principle of strong mathematical induction 

Let 𝑆(𝑛) be a statement defined on positive integers 𝑛 ∈ 𝑁  such that it has the following 

properties: 

1. 𝑆(𝑚) is true for some 𝑚 ∈ 𝑁. 

2. Whenever 𝑆(𝑚), 𝑆(𝑚 + 1), 𝑆(𝑚 + 2), … … … , 𝑆(𝑘) are true, 𝑆(𝑘 + 1) is true, where 𝑘 ≥

𝑚. 

Then, 𝑆(𝑛) is true for all natural numbers 𝑛 ≥ 𝑚 

The principle of strong mathematical induction has more assumptions than simple 

mathematical induction principle. Although the strong form of principle of mathematical 

induction appears to be different from the weak form, the two forms are actually equivalent 

because each can be obtained from the other. So, we can use either form of the mathematical 

induction.  

7.2 Recursive Mathematical Definition 

Sometimes it is difficult to define an object explicitly. However, it may be easy to define object 

in terms of itself. This repetition of method in a self-similar way is known as recursion. 

Recursion refers to several related concepts in computer science and mathematics. One can 

use recursion to define sequences, functions, sets.  

A problem can be clearly expressed through recursion and hence, it is a powerful tool for 

solving problem. A sequence or functions can be described by a recursive procedure and a 

recursive definition provides an easy way to find the successive terms of the sequence or 

values of the function. 
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Example 7.2 Let us consider the sequence1,3,9,27, . . . . . . ... The sequence can be defined 

explicitly by the formula 𝑆(𝑛) = 3𝑛 for all integers 𝑛 ≥ 0, but the sequence can also be defined 

recursively as follows. 

(i) 𝑆(0) = 1 

(ii) 𝑆(𝑛 + 1) = 3 𝑆(𝑛) for all integer 𝑛 ≥ 0 

Here (ii) is the salient feature of recursion, namely the feature of self-reference. 

Example 7.3  Write the recursive definition of the following sequences: 

2,4,8,16, … … … … 

Solution: Let the 𝑛𝑡ℎ term of the sequence be denoted by 𝑆(𝑛). The first term of the sequence 

is 2, and each successive term can be obtained by multiplying the preceding terms by 2. Thus, 

the sequence 𝑆(𝑛) can be defined as follows: 

𝑆(0) = 1 

𝑆(𝑛 + 1) = 2  𝑆(𝑛), 𝑛 ≥ 2 

7.2.1 Recursively Defined Functions 

A function whose domain is the set of non-negative integers can be defined recursively using 

the recursive definition. The basis step defines the function for some primitive values and the 

recursive step provides a way to calculate the value of the function for the other integers. 

Example 7.4  Write a recursive definition of the function 𝑓(𝑥) = 2𝑥 defined from the set of 

natural numbers (including 0) to the set of natural numbers. 

Solution: Since 𝑓(0) = 1   and  𝑓(𝑥 + 1) = 2𝑥+1 = 2.2𝑥 = 2. 𝑓(𝑥) the function can be defined 

recursively as follows: 

𝑓(𝑥) = {
1                      𝑓𝑜𝑟 𝑥 = 0

𝑥. 𝑓(𝑥 − 1)   𝑓𝑜𝑟 𝑥 ≥ 1 
 

7.2.2 Recursively Defined Sets 

A set is said to be recursively defined if the elements of the set can be defined using the 

recursive definition. The basis step defines the primitive elements of the set and the recursive 

definition generates the other elements of the set. 

Example 7.5 Write the recursive definition for the elements of the following set: 

𝐴 = {1, 4, 7, 10, … … } 

Solution The first term is 1, and each successive term can be obtained from the previous term 

by adding 3. Thus, the elements of the set 𝐴 can be defined recursively as follows: 

(i) 1 ∈ 𝐴 

(ii) If 𝑥 ∈ 𝐴, 𝑡ℎ𝑒𝑛 𝑥 + 3 ∈ 𝐴 
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7.3 Basics of Counting 

Let us consider the representation of characters in a computer. One bit (0 or 1) can represent 

two characters, and two bits (00, 01, 10, 11) can represent four characters. Using the product 

rule, it can be calculated that 𝑛 bits are used to represent 2𝑛 characters. This calculation will 

help us determine the number of bits required to represent 𝑛  characters and amount of 

memory needed to represent them. 

Combinatorics is concerned with arrangements and selection of objects. It plays an important 

role in various problems in discrete mathematics such as the generation of different codes and 

passwords from a set of given symbols, generation of different groups from a set of given 

objects, complexity of algorithms, and calculation of probabilities of events. 

Here, we shall discuss two basic counting principles – the product rule and the sum rule – and 

their role in solving different counting problems. 

7.3.1 Sum Rule 

Let us consider two events 𝐸1 and 𝐸2 that cannot occur simultaneously. Suppose the event 𝐸1 

can occur in 𝑛1 ways and event 𝐸2 can occur in 𝑛2ways. Then the event 𝐸1 or 𝐸2can occur in 

𝑛1 + 𝑛2 ways. 

In a generalized way, let us consider 𝑛 events 𝐸1, 𝐸2, … … , 𝐸𝑛 such that no two events can 

occur simultaneously. If the events 𝐸1, 𝐸2, … … , 𝐸𝑛  can occur in 𝑛1, 𝑛2, … … , 𝑛𝑛  ways, 

respectively, then one of events can occur in 𝑛1 + 𝑛2 + ⋯ … … + 𝑛𝑛 ways. 

Example 7.6 In how many ways can we select a student’s representative from 4 boys and 3 

girls? 

Solution: A boy can be selected in 4 ways and a girl can be selected in 3 ways. Since the 

representative may be a boy or a girl, the total number of ways to select a representative is 

4 + 3 = 7. 

7.3.2 Product Rule 

Let us consider two events 𝐸1 and 𝐸2. Suppose the event 𝐸1 can occur in 𝑛1 ways and for 

each of these 𝑛1 ways the event 𝐸2 can occur in 𝑛2ways. Then the event  𝐸1 and 𝐸2 can occur 

in 𝑛1𝑛2 ways. 

In a generalized way, let us consider 𝑛 events 𝐸1, 𝐸2, … … , 𝐸𝑛. If the events 𝐸1, 𝐸2, … … , 𝐸𝑛 

can occur in 𝑛1, 𝑛2, … … , 𝑛𝑛 ways, respectively, then all of events can occur in 𝑛1𝑛2 … … … 𝑛𝑛 

ways. 

Example 7.7 A building has 7 floors and each floor has 10 rooms. How many ways are there 

to get a room for rent? 

Solution: A floor can be chosen in 7 ways. As every floor contains 10 rooms, the total number 

of ways to pick a room is 7 × 10 = 70. 
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7.3.3 Counting ways of forming numbers from a set of digits 

For given set of digits, each time we have to find the numbers of certain digits, proper care 

must be taken before counting the numbers. There are two cases in forming a number of 

certain digits – repetition is allowed and repetition is not allowed.  

Example 7.8 How many different three-digit numbers can be formed by using the digits 

1, 2, 3, 4, 5 𝑎𝑛𝑑 6 when (a) repetition is not allowed and (b) repetition is allowed? 

Solution: 

(a) Let a three-digit number be represented by three places - - - . Since repetition is not 

allowed, the first place can be occupied in 6 different ways, the second place in 5 

different ways, and the third place in 4 distinct ways. Therefore, using the product rule, 

the total number of means to fill the three places is 6 .  5  .  4 = 120. 

(b) When repetition is allowed, the following method can be used to count the numbers. 

There will be 6 ways of filling each of the first, second, and third places. Thus, using 

the product rule, the total number of ways to fill the three places is 6 . 6 . 6 = 216. 

7.3.4 Inclusion – Exclusion Principle 

Suppose two tasks 𝐴 and 𝐵 can occur in 𝑛1𝑎𝑛𝑑 𝑛2 ways, where some of the 𝑛1𝑎𝑛𝑑 𝑛2 ways 

may be the same. In this situation, we cannot apply the sum rule, because the same number 

of ways will be counted twice. In such situations, we apply the inclusion – exclusion principle. 

According to this principle, if 𝐴 and 𝐵 are two set, then the number of elements in the set 𝐴 ∪

𝐵 is given by 

𝑛(𝐴 ∪ 𝐵) = 𝑛(𝐴) + 𝑛(𝐵) − 𝑛(𝐴 ∩ 𝐵) 

This principle holds for any number of sets. For three sets, it can be stated as follows: 

𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑛(𝐴) + 𝑛(𝐵) + 𝑛(𝐶) − 𝑛(𝐴 ∩ 𝐵) − 𝑛(𝐵 ∩ 𝐶) − 𝑛(𝐴 ∩ 𝐶) + 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) 

Example 7.9 There are 70 students in a class. The class teacher decided to organize two 

competitions – singing and dancing. Every student has to participate in at least one 

competition. The students who participated in the dance competition also get a chance to 

perform during the annual function. The students who participate in both the activities get 10 

additional points in general proficiency, 50 students participate in the singing competition and 

only 30 students do not get additional points in their general proficiency. Find the number of 

students who get the chance to perform during the annual function, but do not get additional 

points. 

Solution: Let 𝑆 denote the set of students who participate in the singing competition and 𝐷 

denote the set of students who participate in the dancing competition. 

Given that |𝑆 ∪ 𝐷| = 70 𝑎𝑛𝑑   |𝑆| = 50 
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|𝐷| = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑤ℎ𝑜 𝑔𝑒𝑡 𝑎 𝑐ℎ𝑎𝑛𝑐𝑒 𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

|𝑆 ∩ 𝐷| = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑤ℎ𝑜 𝑔𝑒𝑡 10 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

Given that |(𝑆 ∩ 𝐷)′| = 30, |𝑆 ∩ 𝐷| = 70 − 30 = 40. 

We know that |𝑆 ∪ 𝐷| = |𝑆| + |𝐷| − |𝑆 ∩ 𝐷|. Hence, 

|𝐷| = 70 − 50 + 40 = 60 

Thus, the number of students who get the chance to perform during the annual function but 

do not get additional points is 

|𝐷| − |𝑆 ∩ 𝐷| = 60 − 40 = 20 

7.3.5 Permutations and combinations 

Consider the problem of counting the arrangements of certain elements from a given set of 

elements. In this problem, the order of elements is important because each order will give a 

new arrangement. If we are asked to count the number of ways to select certain elements 

from a given set of elements, then the order of the elements is not important. Two different 

orders of elements will give the same selection. These counting problems are of special 

interest. Here we shall discuss the methods to find the answers for these counting problems. 

Permutation 

Any arrangement of 𝑛 objects in a given order is called a permutation of the objects (taken all 

at a time). The arrangement of any 𝑟 ≤ 𝑛 of these objects is called an 𝑟 − 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛. The 

number of r – permutation of a set with 𝑛 distinct elements is denoted by 𝑃(𝑛, 𝑟) or 𝑃𝑛
𝑟. 

Example 7.10 Consider a set of letters{𝑎, 𝑏, 𝑐}. 

(a) 𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, 𝑐𝑏𝑎 are permutation of three objects taken all at a time. 

(b) 𝑎𝑏, 𝑏𝑎, 𝑎𝑐, 𝑐𝑎, 𝑏𝑐, 𝑐𝑏 are permutations of any two of the three objects. 

Theorem 7.1 The number of r-permutations of a set with 𝑛 distinct elements is 𝑃(𝑛, 𝑟) =

𝑛(𝑛 − 1)(𝑛 − 2) … … (𝑛 − 𝑟 + 1). 

Proof: The first element can be selected in 𝑛 different ways. Now, 𝑛 − 1 elements are left in 

the set, and thus, there are 𝑛 − 1 ways to choose the second element. Similarly, the third 

element can be selected in 𝑛 − 2 ways. Continuing like this, the 𝑟𝑡ℎ element can be selected 

in 𝑛 − 𝑟 + 1 ways.  Thus, using the product rule, the total number of ways for r-permutations 

is given by 𝑃(𝑛, 𝑟) = 𝑛(𝑛 − 1)(𝑛 − 2) … … … (𝑛 − 𝑟 + 1). 

Theorem 7.2 Prove that 𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
. 
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Proof: 𝑃(𝑛, 𝑟) = 𝑛(𝑛 − 1)(𝑛 − 2) … … … (𝑛 − 𝑟 + 1) 

=
𝑛(𝑛 − 1)(𝑛 − 2) … … … (𝑛 − 𝑟 + 1)(𝑛 − 𝑟)!

(𝑛 − 𝑟)!
=

𝑛!

(𝑛 − 𝑟)!
 

Example 7.11 From a set of 5 books, in how many ways can 4 books be arranged in a 

bookshelf? 

Solution: Here 𝑛 = 5 and we have to find 4-premutations from a set of 5 elements. Thus, 

the total numbers of ways to arrange 4 books from a set of 5 books is 𝑃(5,4) =
5!

1!
= 120 

Example 7.12 In how many ways can 5 students arrange themselves in a row? 

Solution: The permutation of 𝑛 objects taken all at a time is given by 𝑛!. Thus, the total 

number of ways is 5! = 5 . 4 . 3 . 2 . 1 = 120 

Combination 

Let us consider a set of 𝑛 objects. An r-combination from the set of 𝑛 objects is any selection 

of r objects, where the order of the object does not matter. Consider a set of letter{𝑎, 𝑏, 𝑐}. 

Then 𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, 𝑐𝑏𝑎 represent different permutations, but they all represent the 

same combination. 

Number of r-combinations from set of n elements 

The number of r-combinations from a set of 𝑛 objects is denoted by 𝐶(𝑛, 𝑟) 𝑜𝑟 𝐶𝑟
𝑛 𝑜𝑟 (𝑛

𝑟
). 

Theorem7.3 The number of r-combinations from a set of 𝑛 objects equals  

𝐶(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 𝑟)!
 

Proof:  𝐶(𝑛, 𝑟) represents the number of r-combinations from the set of 𝑛 objects. Then each 

of the r-combinations contains 𝑟 objects, which can rearrange themselves in 𝑟! Ways. Thus 

𝐶(𝑛, 𝑟). 𝑟! = 𝑃(𝑛, 𝑟) 

𝐶(𝑛, 𝑟). 𝑟! =
𝑛!

(𝑛 − 1)!
 

𝐶(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 1)!
 

The following are some important results: 

1. 𝐶(𝑛, 0) =
𝑛!

0!(𝑛−0)!
= 1 

2. 𝐶(𝑛, 𝑛) =
𝑛!

𝑛!(𝑛−𝑛)!
= 1 

3. 𝐶(𝑛, 𝑟) =
𝑛!

𝑟!(𝑛−𝑟)!
=

𝑛!

[𝑛−(𝑛−𝑟)]!(𝑛−𝑟)!
=

𝑛!

(𝑛−𝑟)![𝑛−(𝑛−𝑟)]!
= 𝐶(𝑛, 𝑛 − 𝑟) 
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Example 7.13 Find the number of diagonals of a polygon having 𝑛 sides 

Solution: To count the number of diagonals, first we shall have to count the number of ways 

to join two points in a polynomial of 𝑛 sides, and this equals 𝐶(𝑛, 2) =
𝑛(𝑛−1)

2
. Since there will 

be 𝑛 sides in a polygon, the total number of diagonals 
𝑛(𝑛−1)

2
− 𝑛 =

𝑛(𝑛−3)

2
. 
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Problems for Exercise: 

1. Let 𝑃  be the proposition that the sum of the first 𝑛  odd numbers in 𝑛2 ; that is, 

𝑃(𝑛): 1 + 3 + 5 + ⋯ + (2𝑛 − 1) = 𝑛2 

(The 𝑛th odd number is 2𝑛 − 1, and the next odd number is 2𝑛 + 1.). Prove 𝑃 is true 

for every positive integer 𝑛 ∈ 𝑁. 

2. Prove the following proposition: 

𝑃(𝑛): 1 + 4 + 7 + ⋯ + (3𝑛 − 2) =
𝑛(3𝑛 − 1)

2
 

3. Prove the following proposition: 

𝑃(𝑛): 
1

1(3)
+

1

3(5)
+

1

5(7)
+ ⋯ +

1

(2𝑛 − 1)(2𝑛 + 1)
=

𝑛

2𝑛 + 1
 

4. Assume 𝑎 is a nonzero real number and 𝑛 is a nonnegative integer. Give a recursive 

definition of 𝑎𝑛. 

5. Give a recursive definition of ∑ 𝑎𝑘
𝑛
𝑘=0 . 

6. Let Fibonacci numbers, 𝑓0, 𝑓1, 𝑓2, … , are defined by the equations 𝑓0 = 0; 𝑓1 = 1; 𝑓𝑛 =

𝑓𝑛−1 + 𝑓(𝑛−2). Find the Fibonacci number 𝑓4. 

7. There are four bus lines between 𝐴 and 𝐵; and three bus lines between 𝐵 and 𝐶. Find 

the number of ways a person can travel: 

a. By bus from 𝐴 to 𝐶 by way of 𝐵; 

b. Roundtrip by bus from 𝐴 to 𝐶 by way of 𝐵. 

8. Give a recursive definition of the factorial function. 

9. Find 2!, 3!, 𝑎𝑛𝑑 4! 

10. Compute: 

𝑎) (
16

3
) ,     𝑎𝑛𝑑    𝑏) (

12

4
) 
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Block III: Unit II Recurrence Relation 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Define recurrence relation; 

• Model counting and other such problems using a recurrence relation; 

• Find the solution of recurrence relations; 

• Find the order and degree of the given recurrence relation; 

• Solve linear homogeneous recurrence relation with constant coefficients; 

• Solve linear non-homogeneous recurrence relation with constant coefficient; 

Suppose we ask to any known fellow the age of his oldest daughter. He could tell directly that 

she is 19 years old. Or he could tell that she is 6 years older than his second daughter. If we 

ask for the age of the second daughter, instead of telling us that she is 13 years old, he might 

tell us that she if 5 years older than his third daughter. In turn, he could tell us that his third 

daughter is 2 years older than his only son. When he tells us that his only son is 6 years old, 

we would have no difficulty in figuring out that his third daughter is 8 years old, his second 

daughter is 13 years old, and his oldest daughter is 19 years old. 

Several observations can be drawn from above example: 

(a) Using our prior knowledge can be a concise way to give information. 

(b) We do need to do some work to make use of the knowledge we already have. 

(c) We might try to refer to some prior knowledge in successive steps 

Such a chain of reference can only be terminated when we reach a point where we know 

explicitly what to do without referring to other prior knowledge. 

The amount of bacteria in a colony gets doubled in every single hour. If initially a colony have 

five bacteria, how many will be in next 𝑛 hours? To resolve this problem, assume 𝑎𝑛 be the 

amount of bacteria at the end of 𝑛 hours. Since the amount of bacteria doubles each hour, the 

relationship 𝑎𝑛 = 2𝑎𝑛−1 holds whenever 𝑛 is a positive integer. This type of counting problems 

is known as recurrence relation. We will discuss a variety of counting problems that can be 

modeled using solve the recurrence relations. Recursive definitions are used to solve the 

recurrence relations. 

8.1 Definition 

A recurrence relation is an equation that uses a recursive definition. We already know that 

recursive definitions can be used to define functions, sets and sequences. In the recursive 

definition, the recursive step is basically a relationship or a formula through which we calculate 

the next term with the help of the exiting terms. This is a recurrence relation. More explicitly, 

a recurrence relation is an equation that relates 𝑎𝑟 with one or more preceding terms in the 

sequence, namely 𝑎𝑟−1, 𝑎𝑟−2, … … … , 𝑎0  for all integers 𝑟  with 𝑟 ≥ 𝑟0 , where 𝑟0  is a non-

negative integer used to define the initial condition. 

Note: 𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑊𝑎𝑦𝑠 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 
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𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

Recursive definition of the sequence is the recurrence relation with initial condition. 

8.2 Modeling with Recurrence relation 

Many counting and other such problems can be modeled through recurrence relations, and 

therefore, these relations play an important role in solving such problems. First, we will learn 

to model a recurrence relation with the help of a few examples and then finding the solution 

of recurrence relations. 

Example 8.1(Compound Interest) 

Suppose that a person deposits Rs.10,000 in a saving account at a bank yielding 11% per 

year with compounded annually. How much be the amount after 30 years. 

Solution: To solve the problem, consider 𝑃𝑛 that denote the amount later 𝑛 years. Since the 

amount in the account next 𝑛 years equals the amount in the account next 𝑛 − 1 years plus 

interest for the 𝑛𝑡ℎ year, we see that the sequence {𝑃𝑛} satisfies the recurrence relation. 

𝑃𝑛 = 𝑃𝑛−1 + 0.11𝑃𝑛−1 = (1.11)𝑃𝑛−1 

The initial condition is   𝑃0 = 10,000 

Now, we can use an interactive approach to find a formula for 𝑃𝑛 

𝑃1 = (1.11)𝑃0 

𝑃2 = (1.11), 𝑃1 = (1.11)2𝑃0  

When the initial condition 𝑃0 = 10,000 is put then 𝑃𝑛 = (1.11)𝑛. 10,000 

𝑃30 = (1.11)30. 10,000 

= 𝑅𝑠. 2,28,922 

Example 8.2 (Chess Tournament) 

In a chess tournament, there are 𝑟 players and each player plays with every other player. Let 

𝑎𝑟 be the total number of games in the tournament. Find the recurrence relation for 𝑎𝑟.  

Solution: Let 𝑎𝑟−1 denote the number of games in a class tournament of 𝑟 − 1 players. Now, 

the 𝑟𝑡ℎ player will play with each of the 𝑟 − 1 players. Thus, the total number of games in a 

tournament of 𝑟 players shall be given by  

𝑎𝑟 = 𝑎𝑟−1 + (𝑟 − 1) 

Since there will be no game if there is only 1 player, 𝑎1 = 0 

Therefore, the required recurrence relation is, 

𝑎𝑟 = 𝑎𝑟−1 + (𝑟 − 1) 𝑓𝑜𝑟 𝑟 ≥ 2 

With the initial condition 𝑎1 = 0 
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8.3 Order and Degree of Recurrence Relations 

Let 𝑎𝑟 be a numeric function. A recurrence relation is an expression of the form 

𝑎𝑟 = 𝐹(𝑎𝑟−1 , 𝑎𝑟−2 , … … … , 𝑎𝑟−𝑘  , r) 

where,  

F is a function of some of the variables 𝑎𝑟−1, 𝑎𝑟−2, … … , 𝑎𝑟−𝑘, 𝑟  

(for our purpose, we shall consider F as a polynomial that depends on finitely many variables 

𝑎𝑟−1, 𝑎𝑟−2, … … , 𝑎𝑟−𝑘 𝑎𝑛𝑑 𝑟 )  . This relationship is used to find the 𝑟𝑡ℎ term with the help of one 

or more previous terms. 

The order of the recurrence relation 𝑎𝑟 = 𝐹(𝑎𝑟−1 , 𝑎𝑟−2 , … … … , 𝑎𝑟−𝑘  , r)  is 𝑘 , where 𝑎𝑟 

depends on some of the previous 𝑘 terms and  𝑘 is the smallest such integer. If the recurrence 

relation is 𝑎𝑟 = 𝐹(𝑎𝑟−1 , 𝑎𝑟−2 , … … … , 𝑎0 , r), where 𝑎𝑟 depends on all of its previous terms, the 

order is not defined. The degree of the recurrence relation is the degree of 𝐹 considering 𝐹as 

polynomial in its variables excluding 𝑟. A recurrence relation is called linear if its degree is 1. 

In other words, the  order of a recurrence relation can be calculated as the difference between 

the largest and the smallest subscripts (terms) of 𝑎  appearing in the recurrence relation. 

Similarly, just like calculating the degree of a polynomial of finitely many variables. For 

example, the degree of the polynomials 𝑓(𝑥) = 𝑥2 + 2𝑥 + 3 and 𝑓(𝑥, 𝑦) = 𝑥 + 𝑥2𝑦 + 4 are 2 

and 3, respectively. We can calculate the degree of a recurrence relation by assuming the 

terms 𝑎𝑟, 𝑎
𝑟−1

, 𝑎𝑟−2, … … as variables. 

In general, 

𝑂𝑟𝑑𝑒𝑟 𝑜𝑓 𝑎 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐿𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡

𝑈𝑛𝑖𝑡 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡
 

Example 8.3 Find the order and degree of the following recurrence relations: 

(a) 𝑎𝑟 = 2𝑎𝑟−1 − 𝑎𝑟−2 (d) 𝑎𝑟 = 𝑟𝑎𝑟−1 + 𝑎𝑟−2
2  

(b) 𝑎𝑟 = 𝑎𝑟−1 + 𝑟 (e) 𝑎𝑟 = √𝑎𝑟−1 + 𝑎𝑟−2 

(c) 𝑎𝑟 = 𝑟𝑎𝑟−1 + 𝑎(𝑟−2) + 𝑟2 (f) 𝑎𝑟 = 𝑎𝑟−1𝑎𝑟−2 + 𝑟 

 

Solution: 

(a) Order = 2, degree = 1 (d) Order = 2, degree = 2  

(b) Order = 1, degree = 1 (e) Order = 2, degree not defined 

(c) Order = 2, degree = 1 (f) Order = 2, degree = 2 

 

A recurrence relation is said to be homogenous if it does not contain a term that depends only 

on 𝑟. A recurrence relation that is not homogeneous is called non-homogeneous. For example, 
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the recurrence relation 𝑎𝑟 = 𝑎𝑟−1 + 𝑎𝑟−2  is homogenous, whereas the recurrence relation 

𝑎𝑟 = 𝑎𝑟−1 + 𝑟 is non-homogeneous. 

8.4 Linear Homogenous Recurrence Relations 

One important class of recurrence relations can be explicitly solved in a systematic way. 

A linear recurrence relation with constant coefficients is a recurrence relation of the form 

𝑎𝑟 = 𝑐1𝑎𝑟−1 + 𝑐2𝑎𝑟−2 + ⋯ … … … … + 𝑐𝑘𝑎𝑟−𝑘 + 𝑓(𝑟) 

Where 𝑐1, 𝑐2, … … … , 𝑐𝑘 are real numbers and 𝑐𝑘 ≠ 0. 

A linear recurrence relation with constant coefficients is called homogeneous if 𝑓(𝑟) = 0; 

otherwise, it is called non-homogenous. The solution of a recurrence relation is obtained in 

two parts – homogeneous solution and particular solution. 

8.4.1 Solving Linear Homogeneous Recurrence Relation with Constant Coefficients 

Method 1 

Suppose the recurrence relation is given  

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 

 𝑐1 and 𝑐2 are real number constants. 

Solution or complete solution of a recurrence relation is an expression for 𝑎𝑛 which satisfies 

the given recurrence relation. 

The general solution of a recurrence relation is that in which the number of arbitrary 

constants is equal to the order of the recurrence relation. 

The particular Integral (P.I.) or particular solution is that solution which is obtain from the 

general solution by giving the particular value to the constant. 

Thus, the complete solution of the recurrence relation is 

𝑎𝑛 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐶. 𝐹. ) + 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝑃. 𝐼. ) 

for linear homogeneous recurrence relation we will have a condition: 

𝑃. 𝐼. = 0 

Thus, in the case the complete solution will be defined as: 

𝑎𝑛 = 𝐶. 𝐹. 

Suppose, 𝑎𝑛 = 𝑟𝑛 is the genera; solution 

Then we will make the Auxiliary equation (A.E.) first 

𝑟𝑛 = 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 

Implies  𝑟𝑛−2[𝑟2 − 𝑐1𝑟 − 𝑐2] = 0 
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𝑟2 − 𝑐1𝑟 − 𝑐2 = 0  (𝐴. 𝐸. ) 

Above equation is the auxiliary equation and 𝑛 has two distinct roots 𝑟1 and 𝑟2. 

Hence, the sequence {𝑎𝑛} is a solution to the recurrence relation if and only if . 

𝑎𝑛 = 𝑙1𝑟1
𝑛 + 𝑙2𝑟2

𝑛        𝑓𝑜𝑟 𝑛 = 0, 1, 2, … …      𝑤ℎ𝑒𝑟𝑒 𝑙1  𝑎𝑛𝑑  𝑙2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 

Let us take an example to explain the above method 

 

Example 8.4  Solve the recurrence relation. 

𝑎𝑛+3 − 2𝑎𝑛+2 − 5𝑎𝑛+1 + 6𝑎𝑛 = 0 

Solution: Put 𝑎𝑛 = 𝑟𝑛 is the general solution 

Then     (𝑟3 − 2𝑟2 − 5𝑟 + 6)𝑟𝑛 = 0 

 𝐴. 𝐸. 𝑖𝑠    𝑟3 − 2𝑟2 − 5𝑟 + 6 = 0 

(𝑟 − 1)(𝑟 + 2)(𝑟 − 3) = 0 

𝑟 = 1, −2, 3 

Thus, complete solution is 𝑎𝑛 = 𝐶. 𝐹. 

𝑎𝑛 = 𝑙1(1)𝑛 + 𝑙2(−2)𝑛 + 𝑙3(3)𝑛 

Method 2 

Suppose, the recurrence relation 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 

𝑐1 and 𝑐2 be real numbers 𝑐2 ≠ 0 

𝐴. 𝐸. = 𝑟2 − 𝑐1𝑟 − 𝑐2 = 0   

Let 𝑟1𝑎𝑛𝑑 𝑟2be the roots now 

𝑟1 = 𝑟2 = 𝑟0, 𝑡ℎ𝑒𝑛 

The solution of the recurrence relation is 𝑎𝑛 = (𝑙1 + 𝑙2𝑛)𝑟1
𝑛       𝑓𝑜𝑟 𝑛 = 0, 1, 2, … … where 

𝑙1𝑎𝑛𝑑 𝑙2 are constants. 

Example 8.5  Solve the recurrence relation. 

𝑎𝑛+2 − 2𝑎𝑛+1 + 𝑎𝑛 = 0 

Solution: Put 𝑎𝑛 = 𝑟𝑛 is the general solution 

(𝑟2 − 2𝑟 + 1)𝑟𝑛 = 0 
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𝐴. 𝐸. is      𝑟2 − 2𝑟 + 1 = 0 

(𝑟 − 1)2 = 0,        𝑟 = 1, 1 

Complete solution is 𝑎𝑛 = (𝑙1 + 𝑙2𝑛)(1)𝑛 

= 𝑙1 + 𝑙2𝑛 

Method 3 

Suppose the recurrence relation is given 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

Then the auxiliary equation 𝐴. 𝐸. is  

(𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘) = 0 

Let the roots are 𝑟1, 𝑟1, 𝑟1, 𝑟1 … … 

Then the general solution 𝑛 of the recurrence relation is  

𝑎𝑛 = (𝑙1 + 𝑙2𝑛 + 𝑙3𝑛2 … + 𝑙𝑘𝑛𝑘−1)𝑟1
𝑛 

Example 8.6   Find the solution of the recurrence relation 𝑎𝑛 = −3𝑎𝑛−1 − 3𝑎𝑛−2 − 𝑎𝑛−3 with 

initial condition  

𝑎0 = 1, 𝑎1 = −2   𝑎𝑛𝑑   𝑎2 = −1 

Solution 

The 𝐴. 𝐸. is given as 

(𝑟3 + 3𝑟2 + 3𝑟 + 1) = 0 

(𝑟 + 1)3 = 0 

𝑟 = −1 

So, the complete solution is  

𝑎𝑛 = (𝑙1 + 𝑙2𝑛 + 𝑙3𝑛2)(−1)𝑛 

For 𝑛 = 0   1 = 𝑙1 … … … … … … … … … … … … … (𝑖) 

For 𝑛 = 1,    −2 = −(𝑙1 + 𝑙2 + 𝑙3) … … … … … … … … (𝑖𝑖) 

For 𝑛 = 2,   −1 = 𝑙1 + 2𝑙2 + 4𝑙3 … … … … … … … … … … (𝑖𝑖𝑖) 

 

By Eq. (𝑖)  𝑎𝑛𝑑  (𝑖𝑖) 

(1 + 𝑙2 + 𝑙3) = 2 
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     𝑙2 + 𝑙3 = 1 … … … … … … … … … … … … (𝐴) 

By Eq. (𝑖) 𝑎𝑛𝑑  (𝑖𝑖𝑖) 

1 + 2(𝑙2 + 2𝑙3) = −1 

𝑙2 + 2𝑙3 = −1 

𝑙2 + 𝑙3 = 1 

After solving the above equations we get 

𝑙3 = −2 

𝑙2 = 3 

Hence the final complete solution is  

𝑎𝑛 = (1 + 2𝑛2 − 3𝑛)(−1)𝑛 

𝑎𝑛 = (1 − 3𝑛 + 2𝑛2)(−1)𝑛 

Method 4 

If the roots of auxiliary equation are imaginary 

Suppose the recurrence relation is given  

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 

𝑐1 and 𝑐2 are real number constants. 

According to method 1, the auxiliary equation (𝐴. 𝐸. )comes out as: 

𝑟2 − 𝑐1𝑟 − 𝑐2 = 0 

Suppose the roots are 𝑟1 = 𝑎 + 𝑖𝑏 and 𝑟2 = 𝑎 − 𝑖𝑏, then the complete solution comes out as  

𝑎𝑛 = 𝑙1(𝑎 + 𝑖𝑏)𝑛 + 𝑙2(𝑎 − 𝑖𝑏)𝑛 

Now put 𝑎 = 𝑟 cos 𝛼 and 𝑏 = 𝑟 sin 𝛼 then 

𝑎𝑛 = 𝑟𝑛[𝑙1(cos 𝛼 + 𝑖 sin 𝛼) + 𝑙2(cos 𝛼 − 𝑖 sin 𝛼)] 

𝑎𝑛 = 𝑟𝑛[(𝑙1 + 𝑙2) cos 𝛼 + 𝑖 (𝑙1 − 𝑙2) sin 𝛼] 

Say    𝐿1 = 𝑙1 + 𝑙2  and 𝐿2 = (𝑙1 − 𝑙2)𝑖 

Thus,  𝑎𝑛 = 𝑟𝑛(𝐿1 cos 𝛼 + 𝐿2 sin 𝛼) is the complete solution where 𝑙1 𝑎𝑛𝑑 𝑙2 are arbitrary 

constants and 

𝑟 = √(𝑎2 + 𝑏2)       𝑎𝑛𝑑       𝛼 = tan−1 (
𝑏

𝑎
) 

 



87 | P a g e  
 

8.4.2 Solving Linear Non-homogeneous Recurrence Relation with Constant 

Coefficient 

So far we have discussed to solve linear homogeneous recurrence relations with constant 

coefficients. There was no use of particular Integral (P.I,) in that case because in that case 

always P.I. was equal to zero. 

Now we will solve linear but not homogeneous recurrence relations like :  

𝑎𝑛 = 3𝑎𝑛−1 + 2𝑛 

is the example of a linear non homogeneous recurrence  relation with constant coefficients 

i.e., the recurrence relation of the type 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 … … … … , 𝑐𝑘𝑎𝑛−𝑘 + 𝐹(𝑛) 

In such cases the A.E. will behave like the previous case in homogeneous equation. 

But the particular integral (P.I.) will be the main constraint to decide the complete solution of 

the equation. 

Thus,  

𝑎𝑛 = 𝐶. 𝐹. +𝑃. 𝐼. 

Now we will discuss how to find the P.I. 

 

(i) When   𝐹(𝑛) = 𝑝𝑛  , where 𝑝 is a constant. 

P.I. =
𝑝𝑛

𝐴.𝐸.
 and put 𝑟 = 𝑝 provided 𝐴. 𝐸. ≠ 0 

If 𝐴. 𝐸. = 0 𝑎𝑡 𝑟 = 𝑝 then 𝐹(𝑛) can be written in one of the following forms given in 

next cases 

(ii) When  (𝑟 − 𝑝)𝑎𝑛 = 𝑝𝑛 

then,  𝑃. 𝐼. =
𝑝𝑛

𝑟−𝑝
= 𝑛𝑝𝑛−1 

(iii) When  (𝑟 − 𝑝)2𝑎𝑛 = 𝑝𝑛 

then, 𝑃. 𝐼. =
𝑝𝑛

(𝑟−𝑝)2 = [
𝑛(𝑛−1)

2
] ∗ 𝑝𝑛−2 
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(iv) When (𝑟 − 𝑝)3𝑎𝑛 = 𝑝𝑛 

Then,  𝑃. 𝐼. =
𝑝𝑛

(𝑟−𝑝)3 = [
𝑛(𝑛−1)(𝑛−2)

3
] ∗ 𝑝𝑛−3 

and so on. 

Example 8.7     Solve 𝑎𝑛+2 − 4𝑎(𝑛+1) + 3𝑎𝑛 = 5𝑛 

Solution   Here 𝐹(𝑛) = 5𝑛
 

 𝐴. 𝐸. is     (𝑟2 − 4𝑟 + 3) = 0 

𝑟 = 1, 3 

𝐶. 𝐹. = 𝑙1(1)𝑛 + 𝑙2(3)𝑛 

𝑃. 𝐼. =
1

𝑟2 − 4𝑟 + 3
∗ 5𝑛 

=
5𝑛

52 − 4.5 + 3
=

5𝑛

8
 

Thus, the complete solution is 

𝑎𝑛 = 𝐶. 𝐹. +𝑃. 𝐼. 

𝑎𝑛 = 𝑙1 + 𝑙23𝑛 +
5𝑛

8
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Problems for Exercise 

1. Find a general formula for the Fibonacci sequence 

{

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2

𝑓0 = 0
𝑓1 = 1

 

2. Find the solution for the recurrence relation 

{

𝑥𝑛 = 6𝑥𝑛−1 − 9𝑥𝑛−2

𝑥0 = 2
𝑥1 = 3

 

3. Find the solution for the recurrence relation 

{

𝑥𝑛 = 2𝑥𝑛−1 − 5𝑥𝑛−2,   𝑛 > 2
𝑥0 = 1
𝑥1 = 5

 

4. Two persons Rajan and Vijay gamble dollars on the toss of a fair coin. Rajan has Rs. 

700 and Vijay has Rs. 300. In each play either Rajan wins Rs.10 from Vijay or loss 

Rs.10 to Vijay. The game is played without stop until one wins all the money of the 

other or goes forever. Find the probabilities of the following three possibilities: 

a. Rajan wins all the money of Vijay. 

b. Rajan loss all his money to Vijay. 

c. The game continues forever. 

5. Find an explicit  formula for the sequence given by the recurrence relation 

{
𝑥𝑛 = 15𝑥𝑛−2 − 10𝑥_(𝑛 − 3 − 60𝑥𝑛−4 + 72𝑥𝑛−5

𝑥0 = 1,   𝑥1 = 6,   𝑥2 = 9,   𝑥3 = −110,   𝑥4 = −45
 

6. Consider the non-homogeneous equation 

{
𝑥𝑛 = 3𝑥𝑛−1 + 10𝑥𝑛−2 + 7(5)𝑛

𝑥0 = 4
𝑥1 = 3

 

7. Consider the non-homogeneous equation 

{
𝑥𝑛 = 10𝑥𝑛−1 − 25𝑥𝑛−2 + 8(5)𝑛

𝑥0 = 6
𝑥1 = 10

 

8. Find an explicit formula for each of the sequences defined by the recurrence relation 

with initial conditions. 

a. 𝑥𝑛 = 5𝑥𝑛−1 + 3, 𝑥1 = 3 

b. 𝑥𝑛 = 3𝑥𝑛−1 + 5𝑛, 𝑥1 = 5 

c. 𝑥𝑛 = 2𝑥𝑛−1 + 15𝑥𝑛−2, 𝑥1 = 2, 𝑥2 = 4  

9. Find an explicit formula for each of the sequences defined by the non-homogeneous 

recurrence relations with initial conditions. 

a. 𝑥𝑛 = 2𝑥𝑛−1 + 15𝑥𝑛−2 + 2𝑛, 𝑥1 = 2, 𝑥2 = 4 

b. 𝑥𝑛 = 4𝑥𝑛−1 + 5𝑥𝑛−2 + 3, 𝑥1 = 3, 𝑥2 = 5 

c. 𝑥𝑛 = 3𝑥𝑛−1 − 2𝑥𝑛−2 + 2𝑛, 𝑥0 = 2, 𝑥1 = 4 

10. Show that if 𝑠𝑛 and 𝑡𝑛 are solutions for the non-homogeneous linear recurrence 

relation 

𝑥𝑛 = 𝑎𝑥𝑛−1 + 𝑏𝑥𝑛−2 + 𝑓(𝑛), 𝑛 > 2, 

Then 𝑥𝑛 = 𝑠𝑛 − 𝑡𝑛 is a solution for the homogeneous linear recurrence relation 

𝑥𝑛 = 𝑎𝑥𝑛−1 + 𝑏𝑥𝑛−2, 𝑛 > 2 
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Block III: Unit III Generating Function 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Define Generating functions; 

• Find the generating function for a given sequence; 

• Explain the properties of generating function; 

• Determine the numeric function corresponding to the given generating functions; 

• Find the solution of linear recurrence relations using generating functions; 

• Find the solution of combinatorial problem using generating function; 

Generating functions are used to represent sequence efficiently by coding the terms of a 

sequence as coefficient of powers of a variable in a formal series. Generating functions 

can be used to solve many types of counting problems, such as the number of ways to 

select or distribute objects of different kinds, subject to a variety of constraints, and the 

number of ways to make change for a dollar using coins of different denominations. 

Generating functions can be used to solve recurrence relations by translating a recurrence 

relation for the terms of a sequence into an equation involving a generating function. From 

this we can solve the original recurrence relation. Generating functions can also be used 

to prove combinatorial identities by taking advantage of relatively simple relationships 

between functions that can be translated into identities involving the terms of sequences.  

The notion of alternative representation is of great use in computer science. Binary 

numbers are an alternative representation of decimal numbers. Instead of adding, 

subtracting, multiplying and dividing decimal numbers directly, we represent them as 

binary numbers, use a computer to carry out all arithmetic operations on the binary 

numbers (which a computer can do easily), and then obtain the results of our computation 

by converting the results in binary numbers into decimal numbers. Similarly, an alternative 

representation of a real number using logarithm is very useful in many problems. Thus, a 

suitably chosen alternative representation leads to efficiency and case in some 

operations. 

9.1 Closed form expression  

Generating functions are frequently articulated in closed form (instead of a series), by some 

expression including operations defined for proper power series. These expressions in terms 

of the indeterminate x may involve arithmetic operations, differentiation with respect to x and 

substitution into other generating functions; since these operations are also defined for 

functions, the result expressed like a function of x. Certainly, the closed form expression can 

usually be interpreted as a function that can be estimated at (adequately small) concrete 

values of x. However such interpretation is not required to be promising, because proper 

power series are not required to give a convergent series when a nonzero numeric value is 

replaced for x.  
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Generating functions are not functions in the proper sense of a domain to a codomain 

mapping; the name is just traditional, and they are occasionally more suitably called 

generating series. 

Generating functions are important tools in discrete mathematics and their use is by no means 

confined to solve linear recurrence relations (as a closed form formula). The functions can be 

used to solve many types of counting problems. 

9.1.1 Definition of generating function 

The generating function for the sequence 𝑎0,  𝑎1, … … … … 𝑎𝑘 , … … … of real numbers is infinite 
series. 

𝐺(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … … + 𝑎𝑘𝑥𝑘 + ⋯ … … = ∑ 𝑎𝑘𝑥𝑘

∞

𝑘=0

 

Example 9.1 

The generating functions for the sequences {𝑎𝑘} where 𝑎𝑘 = 2, 𝑎𝑘 = 3𝑘     𝑎𝑛𝑑   𝑎𝑘 = (𝑘 + 1) 
are  

∑ 2𝑥𝑘

∞

𝑘=0

, ∑ 3𝑘𝑥𝑘

∞

𝑘=0

,   𝑎𝑛𝑑  ∑(𝑘 + 1)𝑥𝑘

∞

𝑘=0

 

respectively. 

It is often possible to find a formula (a closed form expression) for 𝐺(𝑥)  which can be 

manipulated algebraically to provide useful combinatorial information. 

9.1.2 Some special Generating Functions 

1. The function given by 

𝐺(𝑥) =
1

1 − 𝑥
 

the generating function of the sequence 1, 1, 1, 1, … … .. since 

𝐺(𝑥) = (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + ⋯ … … …            |𝑥| < 1 

Here   𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 1, … … … 

 

2. The function given by 

𝐺(𝑥) =
1

(1 − 𝑥)2
= ∑(𝑘 + 1)𝑥𝑘

∞

𝑘=0

 

is the generating function of the sequence 1, 2, 3, 4, … … … 

𝐺(𝑥) = (1 − 𝑥)−2 = 1 + 2𝑥 + 3𝑥2 + ⋯ … … … (𝑘 + 1)𝑥𝑘 + ⋯ … … 
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3. The function given by 

𝐺(𝑥) =
𝑥

(1 − 𝑥)2
= ∑(𝑘 + 1)𝑥𝑘+1

∞

𝑘=0

 

is the generating function of the sequence 0, 1, 2, 3, ………. Since 

𝐺(𝑥) = 𝑥(1 − 𝑥)−2 = 𝑥(1 + 2𝑥 + 3𝑥2 + ⋯ … … … … )

= 0 + 1𝑥 + 2𝑥2 + 3𝑥3 + ⋯ … … … + 𝑘𝑥𝑘 + ⋯ … … 

4. The function given by 

𝐺(𝑥) =
1

1 − 𝑎𝑥
,                |𝑎𝑥| < 1 

is the generating function of the sequence 1, 𝑎, 𝑎2, 𝑎3, … … 

We can derive a closed form expression for 𝐺(𝑥) by involving the formula for the sum of a 

geometric series. We can also apply indirect method as follows. 

Example 9.2 Find the generating function for the sequence 1, 𝑎, 𝑎2, … … … where 𝑎 is a fixed 

constant.  

Solution Let   𝐺(𝑥) = 1 + 𝑎𝑥 + 𝑎2𝑥2 + 𝑎2𝑥3 + ⋯ … … 

So,       𝐺(𝑥) − 1 = 𝑎𝑥 + 𝑎2𝑥2 + 𝑎2𝑥3 + ⋯ … … 

or,           
𝐺(𝑥)−1

𝑎𝑥
= 1 + 𝑎𝑥 + 𝑎2𝑥2 + ⋯ … … 

or ,           
𝐺(𝑥)−1

𝑎𝑥
= 𝐺(𝑥) ⟹ 𝐺(𝑥) =

1

1−𝑎𝑥
 

the required generating function is 
1

1−𝑎𝑥
. 

The results are summarized in the following table. 

                             Table 9.1 Sequences and Generating functions 

S. No General term of sequence 𝑎𝑘 
Generating Function 

𝐺(𝑥) 

1 1 
1

1 − 𝑥
 

2 𝑘 + 1 
1

(1 − 𝑥)2
 

3 𝑘 
𝑥

(1 − 𝑥)2
 

4 𝑘(𝑘 + 1) 
2𝑥

(1 − 𝑥)3
 

5 (𝑘 + 1)(𝑘 + 2) 
2

(1 − 𝑥)3
 

6 𝑎𝑘 
1

1 − 𝑎𝑥
 



93 | P a g e  
 

9.2 Properties of Generating Function 

Now we are going to discuss some of the properties of generating function. These properties 

will be the helpful in finding the generating function of a complex numeric function. 

Theorem 9.1 let {𝑎𝑟}, {𝑏𝑟}, 𝑎𝑛𝑑 {𝑐𝑟} be three sequence, and 𝐴(𝑥), 𝐵(𝑥) and 𝐶(𝑥) be the 

corresponding generating function. Show the following: 

(a) The generating function of the sequence {𝛼𝑎𝑟} is 𝛼𝐴(𝑥). 

(b) The generating functions of the sequence {𝑎𝑟 + 𝑏𝑟} is 𝐴(𝑥) + 𝐵(𝑥). 

(c) The generating function of the sequence {𝛼𝑟𝑎𝑟} is  𝐴(𝛼𝑥). 

(d) If 𝑐𝑟 = 𝑎𝑟 ∗ 𝑏𝑟, then 𝐶(𝑥) = 𝐴(𝑥). 𝐵(𝑥) 

Proof: 

(a) If 𝐶𝑟 = 𝛼𝑎𝑟, then 𝐶(𝑥) = 𝛼𝑎0 + 𝛼𝑎1𝑥 + 𝛼𝑎2𝑥2 + ⋯ … … + 𝛼𝑎𝑟𝑥𝑟 + ⋯ …. 

𝐶(𝑥) = 𝛼(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … + 𝑎𝑟𝑥𝑟 + ⋯ … … )𝐶(𝑥) = 𝛼𝐴(𝑥) 

 

(b) If 𝑐𝑟 = 𝑎𝑟 + 𝑏𝑟 then 

𝐶(𝑥) = 𝑎0 + 𝑏0 + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 + ⋯ … … + (𝑎𝑟 + 𝑏𝑟)𝑥𝑟 + ⋯ … … 𝐶(𝑥)

= (𝑎0+𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … + 𝑎𝑟𝑥𝑟 + ⋯ … ) + (𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ … …

+ 𝑏𝑟𝑥𝑟 + ⋯ … … )𝐶(𝑥) = 𝐴(𝑥) + 𝐵(𝑥) 

 

(c) If 𝑐𝑟 = 𝛼𝑟𝑎𝑟, then 𝐶(𝑥) = 𝛼0𝑎0 + 𝛼1𝑎1𝑥 + 𝛼2𝑎2𝑥2 + ⋯ … … + 𝛼𝑛𝑎𝑟𝑥𝑟 + ⋯ … … 

𝐶(𝑥) = 𝛼0𝑎0 + 𝑎1(𝛼𝑥) + 𝑎2(𝛼𝑥)2 + ⋯ … … + 𝑎𝑟(𝛼𝑥)𝑟 + ⋯ … … 𝐶(𝑥) = 𝐴(𝛼𝑥) 

 

(d) 𝑐𝑟 = 𝑎𝑟 ∗ 𝑏𝑟 = ∑ 𝑎𝑖𝑏𝑟−𝑖
𝑟
𝑖=0       𝑓𝑜𝑟 𝑟 ≥ 0 

thus   𝑐0 = 𝑎0𝑏0, 𝑐1 = 𝑎0𝑏1 + 𝑎1𝑏0,   𝑐2 = 𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0, … 

We have   𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … and 𝐵(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ … … 

𝐴(𝑥). 𝐵(𝑥) = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + (𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0)𝑥2 + ⋯ …

= 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ … = 𝐶(𝑥) 

Example 9.3 

Determine the numeric function corresponding to each of the following generating functions: 

(a) 𝐺(𝑥) =
2

1−4𝑥2 

 

(b) 𝐺(𝑥) =
1

𝑥2+3𝑥+2
 

 

(c) 𝐺(𝑥) =
1

𝑥2−2𝑥−3
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(d) 𝐺(𝑥) =
1

1−𝑥4 

Solution: 

(a) 𝐺(𝑥) =
2

1−4𝑥2 

 =
2

(1−2𝑥)(1+2𝑥)
 

 =
1

1−2𝑥
+

1

1+2𝑥
 

 = {1 + 2𝑥 + (2𝑥)2 + (2𝑥)3 + ⋯ } + {1 − 2𝑥 + (2𝑥)2 − (2𝑥)3 + ⋯ … } 

 = 2{1 + (2𝑥)2 + (2𝑥)4 + ⋯ } 

 = 2 + 23𝑥2 + 25𝑥4 + ⋯ … 

thus, the corresponding numeric function is 𝑎𝑟 = {

2                    𝑟 = 0
0          𝑖𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑

2𝑟+1  𝑖𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛
 

 

(b) 𝐺(𝑥) =
1

𝑥2+3𝑥+2
 

 =
1

(𝑥+1)(𝑥+2)
 

 =
1

𝑥+1
−

1

𝑥+2
=

1

𝑥+1
−

1

2
.

1

1+
𝑥

2

 

 = (1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ … … ) −
1

2
. (1 −

𝑥

2
+

𝑥2

4
−

𝑥3

8
+ ⋯ … ) 

 =
1

2
− (1 −

1

22) 𝑥 + (1 −
1

23) 𝑥2 − (1 −
1

24) 𝑥3 + ⋯ … … 

 

Thus, the corresponding numeric function is 𝑎𝑟 = (−1)𝑟 (1 −
1

2𝑟+1)     𝑟 ≥ 0  

 

(c) 𝐺(𝑥) =
1

𝑥2−2𝑥−3
 

 =
1

(𝑥+1)(𝑥−3)
 

 =
1

4
[

1

𝑥−3
−

1

𝑥+1
] 

 =
1

4
[−

1

3
(1 +

𝑥

3
+

𝑥2

9
+ ⋯ … ) − (1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ … )] 

 =
1

4
[

1

3
(1 +

𝑥

3
+

𝑥2

9
+ ⋯ … ) + (1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ … … )] 

 = −
1

4
[(

1

3
+ 1) + (

1

32 − 1) 𝑥 + (
1

33 + 1) 𝑥2 + ⋯ … … + (
1

3𝑟+1 + (−1)𝑟) 𝑥𝑟 + ⋯ … ] 

 

Thus, the corresponding numeric function 𝑎𝑟 = −
1

4
(

1

3𝑟+1 + (−1)𝑟) 
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(d) 𝐺(𝑥) =
1

1−𝑥4 

 = 1 + (𝑥4) + (𝑥4)2 + (𝑥4)3 + ⋯ … … . +(𝑥4)𝑟 + ⋯ … …. 

 = 1 + 𝑥4 + 𝑥8 + 𝑥12 + ⋯ … … + 𝑥4𝑟 + ⋯ … … 

Thus, the corresponding numeric function is 𝑎𝑟 = {
1            𝑖𝑓  𝑟 = 4𝑘, 𝑘 = 0, 1, 2, 3 … .
0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

9.3 Solution of Linear Recurrence Relations using Generating 
Functions 

We can find the solution to a recurrence relation with initial conditions by finding an explicit 

formula for the associated generating function. 

Example 9.4 

Use generating functions to solve the recurrence relation. 

(i) 𝑎𝑛 = 3𝑎𝑛−1 + 2                        𝑎0 = 1 

(ii) 𝑎𝑛 − 9𝑎𝑛−1 + 20𝑎𝑛−2             𝑎0 = −3, 𝑎1 = −10 

(iii) 𝑎𝑛+2 − 2𝑎𝑛−1 + 𝑎𝑛 = 2𝑛       𝑎0 = 2, 𝑎1 = 1  

Solution 

(i) Let  

𝐺(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

    where 𝐺(𝑥)is the generating function for the sequence {𝑎𝑛}. 

Multiplying each term in the given recurrence relation by 𝑥𝑛 and summing from 1 

to ∞, we get 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=1

= 3 ∑ 𝑎𝑛−1𝑥𝑛

∞

𝑛=1

+ 2 ∑ 𝑥𝑛

∞

𝑛=1

 

𝐺(𝑥) − 𝑎0 = 3𝑥𝐺(𝑥) + 2
𝑥

1 − 𝑥
  

(𝑆𝑖𝑛𝑐𝑒   𝐺(𝑥) = 𝑎0 + ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=1

, 3 ∑ 𝑎𝑛−1𝑥𝑛

∞

𝑛=1

= 3𝑥𝐺(𝑥), 2 ∑ 𝑥𝑛

∞

𝑛=1

= 2
𝑥

1 − 𝑥
) (1 − 3𝑥)𝐺(𝑥) = 𝑎0 + 2

𝑥

1 − 𝑥
 

                           =
1 + 𝑥

1 − 𝑥
  (𝑆𝑖𝑛𝑐𝑒  𝑎0 = 1) 
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𝐺(𝑥) =
1 + 𝑥

(1 − 𝑥)(1 − 3𝑥)
 =

2

1 − 3𝑥
−

1

1 − 𝑥
 

𝐺(𝑥) = (1 + 𝑥)/((1 − 𝑥)(1 − 3𝑥))   =  2/(1 − 3𝑥) − 1/(1 − 𝑥" " ) 

∴         ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 2 ∑ 3𝑛𝑥𝑛

∞

𝑛=0

− ∑ 𝑥𝑛

∞

𝑛=0

 

Hence 𝑎𝑛 = 2 . 3𝑛 − 1 which is the required solution. 

 

(ii) Let  

𝐺(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 𝑤ℎ𝑒𝑟𝑒 𝐺(𝑥)𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑎𝑛} 

Multiplying each term in the given recurrence relation by 𝑥𝑛 and summing from 

2 𝑡𝑜 ∞, we get, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=2

− 9 ∑ 𝑎𝑛−1𝑥𝑛

∞

𝑛=2

+ 20 ∑ 𝑎𝑛−2𝑥𝑛 = 0

∞

𝑛=2

 

or   [𝐺(𝑥) − 𝑎0 − 𝑎1𝑥] − 9𝑥[𝐺(𝑥) − 𝑎0] + 20𝑥2𝐺(𝑥) = 0 

or   𝐺(𝑥)[1 − 9𝑥 + 20𝑥2] = 𝑎0 + 𝑎1𝑥 − 9𝑎0𝑥 

or      𝐺(𝑥) =
𝑎0+𝑎1𝑥−9𝑎0𝑥

1−9𝑥+20𝑥2 =
−3−10𝑥+27𝑥

1−9𝑥+20𝑥2  

        ∵ 𝑎0 = −3   𝑎𝑛𝑑   𝑎1 = −10 

=
−3 + 17𝑥

(1 − 5𝑥)(1 − 4𝑥)
 

or     𝐺(𝑥) =
2

1−5𝑥
−

5

1−4𝑥
   (by partial fraction) 

∴    ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 2 ∑ 5𝑛𝑥𝑛

∞

𝑛=0

− 5 ∑ 4𝑛𝑥𝑛

∞

𝑛=0
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Hence     𝑎𝑛 = 2.5𝑛 − 5.4𝑛 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

 

(iii) Let  

𝐺(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

   𝑤ℎ𝑒𝑟𝑒 𝐺(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑎𝑛} 

Multiplying each term in the given recurrence relation by 𝑥𝑛 and summing from 0 

to ∞, we get,  

∑ 𝑎𝑛+2𝑥𝑛

∞

𝑛=0

− 2 ∑ 𝑎𝑛+1𝑥𝑛

∞

𝑛=0

+ ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= ∑ 2𝑛𝑥𝑛

∞

𝑛=0

 

or   
𝐺(𝑥)−𝑎0−𝑎1𝑥

𝑥2 − 2 (
𝐺(𝑥)−𝑎0

𝑥
) + 𝐺(𝑥) =

1

1−2𝑥
  

or  
𝐺(𝑥)−2−𝑥

𝑥2 − 2 (
𝐺(𝑥)−2

𝑥
) + 𝐺(𝑥) =

1

1−2𝑥
 

or  (𝑥2 − 2𝑥 + 1)𝐺(𝑥) = 2 + 3𝑥 +
𝑥2

1−2𝑥
 

or      𝐺(𝑥) =
2

(1−𝑥)2 +
3𝑥

(1−𝑥)2 +
𝑥2

(1−2𝑥)(1−𝑥)2 

By partial fraction   
𝑥2

(1−2𝑥)(1−𝑥)2 =
1

1−2𝑥
−

1

(1−𝑥)2 

∴           𝐺(𝑥) =
1

(1 − 𝑥)2
+

3𝑥

(1 − 𝑥)2
+

1

1 − 2𝑥
 

∴             ∑ 𝑎𝑛𝑥𝑛 =  ∑(𝑛 + 1)𝑥𝑛 + 3 ∑ 𝑛𝑥𝑛 + ∑ 2𝑛𝑥𝑛 

Hence     𝑎𝑛 = (𝑛 + 1) + 3𝑛 + 2𝑛 = 1 + 4𝑛 + 2𝑛. 

9.4 Solution of combinatorial problem using Generating Function  

Generating functions are useful in solving combinatorial problems. We know that combination 

of 𝑛 differrent objects taken 𝑟 at a time is given by 𝐶(𝑛, 𝑟). We also know that for a fixed 

positive integer 𝑛 
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𝐶(𝑛, 0) + 𝐶(𝑛, 1) + 𝐶(𝑛, 2)𝑥2 + ⋯ … … + 𝐶(𝑛, 𝑛) = (1 + 𝑥)𝑛 

This shows that (1 + 𝑥)𝑛 is the generating function of the numeric function 𝑎𝑟 = 𝐶(𝑛, 𝑟) and is 

the product of the function (1 + 𝑥) up to 𝑛 times. The function (1 + 𝑥) is the sum of two terms 

𝑥0 and 𝑥1, representing the selection of an object zero times and one time, respectively. Since 

each object can be selected zero times or one time, (1 + 𝑥) is the factor for each and the 

generating function (1 + 𝑥)𝑛 is the product of all 𝑛 factors. If we can select an object at most 

two times (zero, one, or two times), the factor corresponding to the object will be (1 + 𝑥 + 𝑥2). 

In this way, we can find factors for different objects and, finally, the generating function of the 

required numeric function. 

Example 9.5 

(i) Find the generating function of 𝑎𝑟, the number of ways to select 𝑟 balls from a pile 

of 3 green, 3 white, and 3 blue balls. 

Solution 

The generating function will be a multiplication of 3 factors corresponding to the 3 

colours green, white, and blue. Since there are 3 balls of each colour, one can 

select 0, 1, 2, or 3 balls from each colour. Thus, each factor is 1 + 𝑥 + 𝑥2 + 𝑥3. 

Hence, the required generating function will be 

𝐺(𝑥) = (1 + 𝑥 + 𝑥2 + 𝑥3)3 

 

(ii) Find the generating function of 𝑎𝑟, the number of ways to select 𝑟 objects from 𝑛 

objects with unlimited number of repetitions. Also find 𝑎𝑟.  

Solution 

each object can be selected 0, 1, 2, 3, … or infinite times. Thus, each factor will 

be 1 + 𝑥 + 𝑥2 + ⋯ …. Since there are 𝑛 objects, the required generating function 

is  

𝐺(𝑥) = (1 + 𝑥 + 𝑥2 + ⋯ … )𝑛 

𝐺(𝑥) = (
1

1 − 𝑥
)

𝑛

= (1 − 𝑥)−𝑛 

Now 𝑎𝑟 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑟𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 (1 − 𝑥)−𝑛 

𝑎𝑟 =
(−1)𝑟((−𝑛)(−𝑛 − 1) … … … (−𝑛 − 𝑟 + 1))

𝑟!
 

𝑎𝑟 =
(𝑛)(𝑛 + 1) … … … (𝑛 + 𝑟 − 1)

𝑟!
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𝑎𝑟 =
(𝑛 − 1)! (𝑛)(𝑛 + 1) … … … (𝑛 + 𝑟 − 1)

𝑟! (𝑛 − 1)!
 

𝑎𝑟 =
(𝑛 + 𝑟 − 1)!

𝑟! (𝑛 − 1)!
 

𝑎𝑟 = 𝐶(𝑛 + 𝑟 − 1, 𝑟) 
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Problems for Exercise 

1. Find the generating functions corresponding to the following sequences: 

a. (1, 2, 22, 23, … , 2𝑟, … ) 

b. (1,
2

3
,

3

9
,

4

27
, … ,

𝑟+1

3𝑟 , … ) 

2. Find the generating function of the numeric function defined as 

𝑎𝑟 = {
3𝑟  𝑓𝑜𝑟 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛

−3𝑟   𝑓𝑜𝑟 𝑟 𝑖𝑠 𝑜𝑑𝑑
 

3. Find the generating function of the following numeric functions: 

a.  𝑎𝑟 = 5 . 2𝑟 

b. 𝑎𝑟 = 3𝑟 + 5𝑟 

4. Find the generating function of the numeric function that satisfies the following 

recurrence relation: 

𝑎𝑟 = 𝑎𝑟−1 + 𝑎𝑟−2  𝑓𝑜𝑟 𝑟 ≥ 2 

𝑎0 = 0, 𝑎1 = 1 

5. Find the generating function of the numeric function that satisfies the recurrence 

relation 𝑎𝑟 = 2𝑎𝑟−1 + 1  𝑓𝑜𝑟 𝑟 ≥ 1, with the initial condition 𝑎0 = 1. Hence find the 

solution of the recurrence relation. 

6. Using the generating function, find the number of ways of selecting 6 objects from 3 

types of objects if repetitions of up to 4 objects of each type are allowed. 

7. How many solution of the equation 𝑛1 + 𝑛2 + 𝑛3 = 10 (𝑛𝑖 ≥ 2) are possible? 

8. Using the generating function , evaluate the sum 12 + 22 + 32 + ⋯ + 𝑟2. 

9. Find the generating function of 𝑎𝑟, the number of ways to select 𝑟 roses from a bunch 

of 4 pink, 4 white, and 4 yellow roses. 

10. Determine the numeric function corresponding to generating function: 

𝐺(𝑥) =
1

𝑥2 − 2𝑥 − 3
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Block IV: Unit I Algebraic Structure 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain Binary Composition & its properties; 

• Explain the Definition of an algebraic structure; 

• Define associative operation; 

• Determine whether or not the given operation in 𝑍 are associative; 

Algebras generally deal with discrete objects and are, therefore, is a natural part of discrete 

mathematics. Algebra as studied today consists largely of the investigation various types of 

structure which are abstractions from situations occurring widely in regular mathematical 

practice. Some of the most important of them are groups, rings and fields. Abstract algebra 

has many applications in computer science. For example, semi-groups have application to 

formal languages and automata theory, and groups have important application in in coding 

theory. Coding theory has developed techniques for introducing redundant information in 

transmitted data that help in detecting and sometimes in correcting errors. Some of these 

techniques make use of group theory. A particular important is in the use of finite machines in 

compiler design for the recognition of syntactically correct language structures. Another 

important notion in the study of algebra is that of a ring. Usually a group is equipped with one 

binary operation but a ring is consists of two binary operations connected by more than one 

relation. Coding theory represents a beautiful example of the applicability of abstract algebra. 

A variety of algebraic concepts can be used to describe codes and their properties. 

10.1 Introduction 

Let us consider a set 𝑋 = {1, 2, 3, 4}. If we add any two numbers of the set 𝑋 then it may be an 

element of the set 𝑋 (𝑒. 𝑔. 1 + 2 = 3), or may not be an element of the set 𝑋 (𝑒. 𝑔. 2 + 3 = 5). 

If it is possible to define an operation between two elements to produce an element of the set, 

then it builds a structure on the set 𝑋 with respect to the defined operation and has a significant 

meaning. Different types of structures can be built by adding additional properties. These 

structures are quite important, in sense that the elements of the set are related to each other 

through some properties. An arbitrary set with one or more binary operations defined on it is 

generally referred to as an algebraic structure, which is useful to study the algebraic properties 

of the members of the set. We can relate many apparently unrelated concepts in terms of 

algebraic properties through the study of algebraic structures.  
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10.2 Binary Composition & its properties 

Let 𝑋 be any non-empty set. A binary operation ∗ on 𝑋 is a rule to combine a pair of elements 

𝑥 and 𝑦 of 𝑋 in some way to form another element. Usually, we denote it by 𝑥 ∗ 𝑦. The word 

binary signifies that two elements are involved. Any given binary operation has certain 

algebraic properties, discussed below. 

10.2.1 Closure Law 

Let 𝑋 be a non-empty set. Then the set 𝑋 is called closed under ∗ if it satisfies the following 

property: 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ⟹ 𝑥 ∗ 𝑦 ∈ 𝑋 

Example 10.1 

(i) A non-empty set such as a set of natural numbers is closed under the binary 

operations such as addition and multiplication but are not closed under subtraction 

and division. This is because the difference of two natural numbers need not be a 

natural number, for example, 1 − 3 = −2 ; similarly, the division of two natural 

numbers may not be a natural number, for example, 
5

2
= 2.5 

(ii) Let us consider the set 𝑋 = {−2, −1, 0, 1, 2}. The set 𝑋 is not closed under the 

binary operation addition, as 2 + 2 = 4, which is not an element of the set 𝑋. It can 

be observed that 𝑋 is also not closed under multiplication. 

From these examples, it can be observed that not every finite set is closed under addition, 

multiplication, subtraction and so on. 

10.2.2 Associative Law 

The binary ∗ operation is said to be associative on the set 𝑋, if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋  

𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧 

If an operation is associative, then the term 𝑥 ∗ 𝑦 ∗ 𝑧 needs no parenthesis, and the terms 𝑥 ∗

(𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧, and 𝑥 ∗ 𝑦 ∗ 𝑧 are equal. 

Example 10.2 

Addition and multiplication are associative on the set of integers. 
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10.2.3 Existence of Identity element 

If there exists an element 𝑒 ∈ 𝑋 such that for all 𝑥 ∈ 𝑋 

𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥 

Then the element 𝑒 ∈ 𝑋 is said to be the identity element of 𝑋. 

Example 10.3 

Let us consider the set of real numbers. With respect to the binary operation addition in the 

set of real numbers, 0 is the identity element, since for every real number 𝑎,  

𝑎 + 0 = 0 + 𝑎 = 𝑎. 

With respect to the binary operation multiplication, 1 is the identity element, since for every 

real number 𝑎, 

𝑎 . 1 = 1 . 𝑎 

10.2.4 Existence of Inverse Element 

If for each element 𝑥 ∈ 𝑋 there exists an element 𝑦 ∈ 𝑋 such that 

𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 = 𝑒 

Then the element 𝑦 ∈ 𝑋 is called the inverse of 𝑥 ∈ 𝑋. 

Example 10.4 

Let us consider the set of real numbers. With respect to the binary operation addition, for every 

real number 𝑎, there exist a real number −𝑎 such that 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎. With respect 

to the binary operation multiplication. for every real number 𝑎, there exists a real number 
1

𝑎
 

such that 𝑎 .
1

𝑎
= 1 =

1

𝑎
 . 𝑎 

10.2.5 Commutative Law 

The binary operation ∗ is said to satisfy the commutative law if ∀  𝑥, 𝑦 ∈ 𝑋 

𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 

Example 10.5 

(i) In case of a set of real numbers, addition and multiplication are commutative, since 

for two real numbers 𝑎 and 𝑏,  𝑎 + 𝑏 = 𝑏 + 𝑎  and 𝑎𝑏 = 𝑏𝑎. 
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(ii) But in case of matrices, If we took a set of square matrices of order 𝑛, then the 

multiplication between two matrices is not commutative. 

let 𝐴 = [
1 2
0 0

]   𝑎𝑛𝑑   𝐵 = [
2 1
0 1

] 

Then 𝐴𝐵 = [
2 3
0 0

]   𝑎𝑛𝑑   𝐵𝐴 = [
2 4
0 0

] 

This shows that 𝐴𝐵 ≠ 𝐵𝐴 

10.3 Definition of an algebraic structure 

An algebraic structure is defined as a non-empty set with one or more than one binary 

operations. For example,(𝑁, +), (𝑍, +), (𝑅, +, . ) are algebraic structures. Noticeably addition 

and multiplication are both binary operations on the set R of real numbers. Thus, (𝑅, +, . ) is 

an algebraic structure equipped with two operations. 

 Let 𝑋 be a set and ∗ be a binary operation defined on the set 𝑋. The binary operation on the 

given set represents a structure between the elements of the set; thus, the algebraic system 

is also known as the algebraic structure and is denoted by (𝑋,∗). 
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Problems for Exercise 

11. Let 𝐴 = {0,1}. Is 𝐴 closed under: 

a. Multiplication 

b. Addition 

12. Let 𝐵 = {1,2}. Is 𝐵 closed under: 

a. Multiplication 

b. Addition 

13. Let 𝐶 = {1, 3, 5, … … } = {𝑛: 𝑛 𝑖𝑠 𝑜𝑑𝑑}. Is 𝐶 closed under: 

a. Multiplication 

b. Addition 

14. Let 𝐷 = {2, 4, 6, … … } = {𝑛: 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛}. Is 𝐷closed under: 

a. Addition 

b. Multiplication 

15. Let 𝐹 = {2, 4, 8, . . . . } = {𝑥: 𝑥 = 2𝑛, 𝑛 ∈ 𝑁}. Is 𝐹 closed under: 

a. Multiplication 

b. Addition 

16. Define associative operation 

17. Consider the set 𝑍 = {… … … , −1, 0, 1, 2, … … } of integers. Determine whether or not the 

following operation in 𝑍 are associative : 

a. Addition 

b. Subtraction 

c. Multiplication 

18. Determine whether or not the following operations on the integers 𝑍 are associative: 

a. Division 

b. Exponentiation 

19. Suppose an operation ∗ on a set 𝑆 is not associative. How many ways can the product 

𝑎 ∗ 𝑏 ∗ 𝑐 ∗ 𝑑 of the four elements be formed? 
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Block IV: Unit II Group I 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain the definition and properties of Group; 

• Define Semigroup; 

• Define Monoid; 

• Check whether the given set is a monoid; 

• Check whether a given set forms an abelian group; 

Group theory is one of the most important fundamental concepts of modern algebra. Groups 

come across unsurprisingly in various mathematical situations. They have found extensive 

uses in discipline like physics and biology predominantly in the study of crystal structure, 

configuration molecules and structure of human genes. 

The structure of a group is one of the core mathematical structures. Hence, the study of 

various algebraic structures finds its origin here. In this unit, we shall define groups and study 

some of their basic properties. 

11.1 Overview 

Consider G as a nonempty set where 𝐺 × 𝐺 = {(𝑎, 𝑏):  𝑎 ∈ 𝐺,   𝑏 ∈ 𝐺}. 

If 𝑓: 𝐺 × 𝐺 → 𝐺, then 𝑓 is called as binary operation on 𝐺. Hence, a binary operation on 𝐺 is a 

function that allot an element of 𝐺 to every ordered pairs of elements of 𝐺. 

The symbols such as +,   .  , 0, ∗  etc. are used to represent binary operations on a set. 

Therefore + will be a binary operation on 𝐺 if and only if 

𝑎 + 𝑏 ∈ 𝐺    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑎, 𝑏 ∈ 𝐺  𝑎𝑛𝑑  𝑎 + 𝑏  𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒. 

Likewise ∗ will be a binary operation on 𝐺 if an only if 

𝑎 ∗ 𝑏 ∈ 𝐺   𝑓𝑜𝑟 𝑎𝑙𝑙   𝑎, 𝑏 ∈ 𝐺 𝑎𝑛𝑑  𝑎 ∗ 𝑏  𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒. 

It is known as the closure property of the binary operation and the set 𝐺 is said to be close 

under binary operation. A binary operation on a set 𝐺 is occasionally called the composition 

in 𝐺. For the finite set, a binary operation on the set can be demarcated by means of a table, 

called the 𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒆 𝒕𝒂𝒃𝒍𝒆. 
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11.1.1 Definition and properties of Group 

Consider (𝐺,∗) as an algebraic structure, where ∗ is a binary operation, then the structure (𝐺,∗

) is called a group under * operation if the following conditions (properties) are satisfied 

1. Closure law: 

The operation is closed under *  i.e., 𝑎 ∗ 𝑏 ∈ 𝐺   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏 ∈ 𝐺. 

 

2. Associative law: 

The binary operation is associative under *  i.e.,  

𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏, 𝑐 ∈ 𝐺 

 

3. Identity element 

The existence of an identity element i.e.,  𝑒 ∈ 𝐺, such that 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 =

𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺 

 

4. Inverse element 

For every 𝑎 in 𝐺, there exists an element 𝑎′ (the inverse of 𝑎) in 𝐺 such that  

𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒 

 

Example 11.1 

(i) A group (𝑄, +) is a an algebraic system with the identity element 0. The inverse 

of 𝑥 ∈ 𝑄   𝑖𝑠 – 𝑥. 

 

(ii) A group (𝑅, +) is an algebraic system with the identity element 0. The inverse of 

𝑥 ∈ 𝑅  𝑖𝑠 – 𝑥. 

 

(iii) A group (𝑄 − {0}, . ) is an algebraic system with the identity element 1. The 

inverse of 𝑥 ∈ 𝑄 − {0}  𝑖𝑠 
1

𝑥
. 

 

(iv) A group (𝑅 − {0},   . ) is an algebraic system with the identity element 1. The 

inverse of 𝑥 ∈ 𝑅 − {0} 𝑖𝑠 
1

𝑥
. 

 

Theorem 11.1 (Elementary properties) 

Assume (𝐺, ∗) as a group. Then the following supposed to be true: 

(a) There exists one and only one identity. 

(b) Each element has a unique inverse. 

(c) (𝑎−1)−1 = 𝑎 for each 𝑎 ∈ 𝐺, where 𝑎−1 stands for the inverse of 𝑎. 

(d) (𝑎 ∗ 𝑏)−1 = 𝑏−1 ∗ 𝑎−1   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏 ∈ 𝐺. 

(e) 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 ⟹ 𝑏 = 𝑐   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏, 𝑐 ∈ 𝐺 (left cancellation law). 

(f) 𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 ⟹ 𝑏 = 𝑐   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏, 𝑐 ∈ 𝐺 (right cancellation law). 
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Proof: 

(a) Suppose 𝑒 and 𝑒′ are two elements of 𝐺 that act as identity elements. Then as 𝑒 ∈ 𝐺 

and 𝑒′ is the identity, 

𝑒 ∗ 𝑒′ = 𝑒′ ∗ 𝑒 = 𝑒 

and as 𝑒′ ∈ 𝐺 and 𝑒 is the identity. 

𝑒′ ∗ 𝑒 = 𝑒 ∗ 𝑒′ = 𝑒′ 

From the two equations, 𝑒 = 𝑒′ 

 

(b) Let 𝑎 ∈ 𝐺 be any element and let 𝑎1 and 𝑎2 be two inverse elements of 𝐺 then  

𝑎 ∗ 𝑎1 = 𝑎1 ∗ 𝑎 = 𝑒 = 𝑎 ∗ 𝑎2 = 𝑎2 ∗ 𝑎 

Now 𝑎1 = 𝑎1 ∗ 𝑒 = 𝑎1 ∗ (𝑎 ∗ 𝑎2) = (𝑎1 ∗ 𝑎) ∗ 𝑎2 = 𝑒 ∗ 𝑎2 = 𝑎2. Thus , the inverse of 

each element is unique. 

 

(c) Since 𝑎−1 is the inverse of 𝑎, 

𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 

which also implies that 𝑎 is the inverse of 𝑎−1. Thus, (𝑎−1)−1 = 𝑎 

 

(d) To prove (𝑎 ∗ 𝑏)−1 = 𝑏−1 ∗ 𝑎−1, we shall show the following: 

(𝑎 ∗ 𝑏) ∗ (𝑏−1 ∗ 𝑎−1) = (𝑏−1 ∗ 𝑎−1) ∗ (𝑎 ∗ 𝑏) = 𝑒 

(𝑎 ∗ 𝑏) ∗ (𝑏−1 ∗ 𝑎−1)

= 𝑎 ∗ (𝑏 ∗ 𝑏−1) ∗ 𝑎−1     (𝑢𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤)                                          

= 𝑎 ∗ 𝑒 ∗ 𝑎−1       (𝑠𝑖𝑛𝑐𝑒 𝑏 ∗ 𝑏−1 = 𝑒)                                          

= (𝑎 ∗ 𝑒) ∗ 𝑎−1           (𝑢𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤)                                          

= 𝑎 ∗ 𝑎−1 = 𝑒        (𝑠𝑖𝑛𝑐𝑒 𝑎 ∗ 𝑎−1 = 𝑒) 

(𝑏−1 ∗ 𝑎−1) ∗ (𝑎 ∗ 𝑏)

= 𝑏−1 ∗ (𝑎−1 ∗ 𝑎) ∗ 𝑏      (𝑢𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤)                                          

= 𝑏−1 ∗ 𝑒 ∗ 𝑏           (𝑆𝑖𝑛𝑐𝑒 𝑎 ∗ 𝑎−1 = 𝑒) 

                             = (𝑏−1 ∗ 𝑒) ∗ 𝑏       (𝑢𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤)                                          

= 𝑏−1 ∗ 𝑏 = 𝑒         (𝑠𝑖𝑛𝑐𝑒 𝑏 ∗ 𝑏−1 = 𝑒) 

Hence, (𝑎 ∗ 𝑏)−1 = 𝑏−1 ∗ 𝑎−1 

 

(e) Let 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 

We know that 𝑏 = 𝑒 ∗ 𝑏 

= (𝑎−1 ∗ 𝑎) ∗ 𝑏       (𝑠𝑖𝑛𝑐𝑒 𝑎 ∗ 𝑎−1 = 𝑒) = 𝑎−1 ∗ (𝑎 ∗ 𝑏)       (𝑢𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑤)

= 𝑎−1 ∗ (𝑎 ∗ 𝑐)        (𝑔𝑖𝑣𝑒𝑛 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐) = (𝑎−1 ∗ 𝑎) ∗ 𝑐 = 𝑒 ∗ 𝑐 = 𝑐 

Similarly, the right cancellation law can be proved. 
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11.2 Semi-group 

Consider (𝑆, ∗) as an algebraic system in which 𝑆 is a non-empty set and ∗ is a binary 

operation on set 𝑆. Thus 𝑆 is closed under the operation ∗. Such a system consisting of a 

non-empty set 𝑆 and a binary operation in 𝑆 is called a 𝐺𝑟𝑜𝑢𝑝𝑜𝑖𝑑 

An algebraic system (𝑆,∗) is said to be a semi-group after following conditions been satisfied: 

1. * the binary operation is a closed operation i.e., 𝑎 ∗ 𝑏 ∈ 𝑆    𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏  ∈ 𝑆. (closure 

law) 

2. The binary operation ∗ is an associative operation i.e., 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗

𝑐        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐 ∈ 𝑆. (associative law). 

Example 11.2 

A set containing positive integers equipped with the operation addition is a semi-group. 

11.3 Monoid 

An algebraic system (𝑆,∗) is said to be a monoid after following conditions been satisfied: 

1. The binary operation ∗ is a closed operation. (closure law) 

2. The binary operation ∗ is an associative operation (associative law). 

3. There exists an identity element, i.e., for some 𝑒 ∈ 𝑆,    𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑆. 

Therefore, a monoid is a semi-group (𝑆, ∗) that has an identity element. 

Example 11.3 

Check whether the set containing positive integers 𝑁 is a monoid with under the binary 

operation ∗ demarcated as 𝑎 ∗ 𝑏 = 𝐿𝐶𝑀(𝑎, 𝑏), ∀  𝑎, 𝑏 ∈ 𝑁. 

Solution: 

Closure property: The least common multiple (LCM) of two positive integers is a positive 

integer; thus, the set 𝑁 is closed with respect to the binary operation 𝐿𝐶𝑀. For example, 

𝐿𝐶𝑀(3, 4) = 12 and 𝐿𝐶𝑀 (4, 10) = 20. 

Associative law: From number theory, we know that 

𝐿𝐶𝑀(𝐿𝐶𝑀(𝑎, 𝑏), 𝑐) = 𝐿𝐶𝑀[𝑎, 𝐿𝐶𝑀(𝑏, 𝑐)] 

This implies that (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) 

Hence, the binary operation is associative. 
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Identity Element:  We know that 𝐿𝐶𝑀(1, 𝑎) = 𝑎 = 𝐿𝐶𝑀(𝑎, 1) for every positive integer 𝑎; 

thus, 1 is the identity element of the set of positive integers with respect to the binary 

operation. 

Hence, the set of positive integers is a monoid with respect to the binary operation ∗. 

11.4 Abelian Group 

The term ‘abelian’ is named after N.H. Abel, a Norwegian mathematician. Let G be a group 

under a binary operation ∗ is said to be 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 or 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 if it satisfies the commutative 

law i.e. 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑎, 𝑏 ∈ 𝐺 

Note: 

(i) A group equipped with addition as a binary operation is known as 𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆 𝒈𝒓𝒐𝒖𝒑 

and in case of multiplication as binary operation it known as 

𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒗𝒆 𝒈𝒓𝒐𝒖𝒑 . 

 

(ii) The number of elements in a group 𝐺 is said to be the order of that group. It is 

denoted by 𝑜(𝐺) or |𝐺|. 𝐺 is said to be finite if there are finite elements in  it, on the 

other hand if there are infinite elements in 𝐺 then it is said to infinite group. 

Example 11.4 

(i) Show that the set of integers 𝑍 forms an abelian group with respect to the addition of 

integers. 

Solution: 

𝐶𝑙𝑜𝑠𝑢𝑟𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦: Since the sum of two integers is also an integer, the set 𝑍 is closed with 

respect to addition; that is, ∀ 𝑎, 𝑏 ∈ 𝑍, 𝑎 + 𝑏 ∈ 𝑍. 

 

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝐿𝑎𝑤: Since the sum of integers is associative, the set of integers 𝑍 satisfies the 

associative law; that is , ∀ 𝑎, 𝑏 ∈ 𝑍,     𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐. 

 

𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑜𝑓 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦: The integer 0 ∈ 𝑍 is the identity element as for all  

𝑎 ∈ 𝑍, 𝑎 + 0 = 𝑎 = 0 + 𝑎 

 

𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑠𝑒: For every 𝑎 ∈ 𝑍, there exists −𝑎 ∈ 𝑍 such that 𝑎 + (−𝑎) = 0 = (−𝑎) +

𝑎. Thus the inverse of each element exists in 𝑍 with respect to addition. 
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𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝐿𝑎𝑤:  Since for all 𝑎, 𝑏 ∈ 𝑍,   𝑎 + 𝑏 = 𝑏 + 𝑎, the integers satisfy the 

commutative law with respect to addition. 

 The set 𝑍 of integers satisfies all the properties of an abelian group. Thus, it forms an 

abelian group with respect to addition. 

(ii) Show that the set of all positive rational numbers 𝑄+ forms an abelian group under 

the composition defined by 𝑎 ∗ 𝑏 =
𝑎𝑏

2
. 

Solution: 

Closure property For every 𝑎, 𝑏  ∈ 𝑄+,
𝑎𝑏

2
 is also in 𝑄+; therefore, 𝑄+ is closed with respect to 

the operation ∗. 

 

Associative Law:  let 𝑎, 𝑏, 𝑐 ∈ 𝑄+. Then 

                 (𝑎 ∗ 𝑏) ∗ 𝑐 =
𝑎𝑏

2
∗ 𝑐 =

𝑎𝑏

2
 .

𝑐

2
=

𝑎

2
 .

𝑏𝑐

2
= 𝑎 ∗ (𝑏 ∗ 𝑐).  

Hence, the operation ∗ is associative. 

 

Existence of identity:  If 𝑒 be the identity element of 𝑄+, 

  𝑎 ∗ 𝑒 = 𝑎 = 𝑒 ∗ 𝑎 ⟹
𝑎𝑒

2
= 𝑎 ⟹ 𝑎𝑒 = 2𝑎 ⟹ 𝑎(𝑒 − 2) = 0 

Since 𝑎 ≠ 0, 𝑒 = 2. Thus, 2 is the identity element. 

Existence of inverse:  Let 𝑎 ∈ 𝑄+. If 𝑏 is the inverse of 𝑎, then 𝑎 ∗ 𝑏 = 𝑒 = 𝑏 ∗ 𝑎. Then 
𝑎𝑏

2
=

2 ⟹ 𝑏 =
4

𝑎
. Thus , 4/𝑎 is the inverse of 𝑎. 

Hence all of the postulates of group are satisfied. Further ∗ 𝑏 = 𝑏 ∗ 𝑎 , the set 𝑄+ forms an 

abelian group under the given composition. 
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Problems for Exercise 

1. Define an identity element for an operation ∗ on a set 𝑆. 

2. Suppose 𝑒 is a left identity and 𝑓 is a right identity for an operation. Show that 𝑒 = 𝑓. 

3. Suppose an operation ∗ on a set 𝑆 has an identity element 𝑒. Define the inverse of an 

element 𝑎 in 𝑆. 

4. Define 

a. Semigroup 

b. Monoid 

5. Let 𝑆 be a semigroup with an identity element 𝑒, and suppose 𝑏 and 𝑏′ are inverses 

of an element 𝑎 in 𝑆. Show that 𝑏 = 𝑏′, that is, that inverses are unique if they exist. 

We note that this result need not be true if the operation is non-associative. 

6. Define the left and right cancellation laws for an operation ∗ on a set 𝑆. 

7. Define commutative operation 

8. Consider the set 𝑁 of positive integers, and let ∗ be the operation of least common 

multiple (LCM) on 𝑁. 

a. Find 4 ∗ 6, 3 ∗ 5, 9 ∗ 18 and 1 ∗ 6 

b. Is (𝑁,∗) a semi-group? Is it commutative 

c. Find the identity element of ∗. 

9. Show that (𝑎𝑏)−1 = 𝑏−1𝑎−1 

10. Show that identity element in a group G is unique. 

11. Prove that the set of all unimodulus complex number forms a group with respect to 

complex multiplication. Will it be abelian? 
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Block IV: Unit III Group II 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain the definition and properties of cosets; 

• Define the order of the group; 

• Prove Lagrange’s Theorem; 

• Define cyclic group; 

• Define permutation group; 

• Define Ring; 

• Define Field; 

So far, we have discussed about an algebraic structure and its properties along with the 

group theory though it is most important fundamental concept in algebra. 

Key terms that we used till now such as binary operations, composition of group, semi-

group, monoid, abelian group must be kept in mind to understand the upcoming concepts. 

In this unit, we are going to discuss about subgroup, permutation groups. cyclic groups, 

ring and fields. 

Note: So far, we have been denoting a group composition by *. This notation can be 

replaced by the given group composition. Now, for simplification, we shall use 𝑎𝑏 in place 

of 𝑎 ∗ 𝑏 whenever required. There should be no misinterpretation that the composition is 

only multiplication. 

12.1 Subgroup 

 Let (𝐺, ∗) be a group and 𝐻is a subset of 𝐺. (𝐻, ∗) is said to be a subgroup of 𝐺 if (𝐻, ∗

) is also a group by itself. 

Now every set is a subset of itself. Thus, if 𝐺 said to be a group, then the group 𝐺 is a 

subgroup of itself 𝐺. Also let 𝑒 be the identity element of the group 𝐺. Then the subset of 

𝐺 having only identity element is also a subgroup of 𝐺. So, the two subgroups (𝐺, ∗) and 

({𝑒}, ∗) of the group (𝐺, ∗) are termed as 𝒊𝒎𝒑𝒓𝒐𝒑𝒆𝒓 or 𝒕𝒓𝒊𝒗𝒊𝒂𝒍 subgroups, while others 

are termed 𝒑𝒓𝒐𝒑𝒆𝒓 or 𝒏𝒐𝒏𝒕𝒓𝒊𝒗𝒊𝒂𝒍 subgroups. 

Example 12.1 

(i) The multiplicative group {1, −1, 𝑖, −𝑖} has a subgroup {1, −1, 𝑖, −𝑖} 

(ii) The group of even integers under the operation addition is a subgroup of the  

group of all integers under addition only. 
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(iii) The set 𝑄+ of all non-zero positive rational numbers is a subgroup of the 

multiplicative group 𝑄∗ of all non-zero rational numbers 

In order to check whether a given subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 or not, we need to 

go through all the axioms of the group. Following is the theorems given below to simplify this 

to some extent. 

Theorem 12.1 

A non-empty subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if the following conditions are satisfied: 

(a) 𝑎, 𝑏 ∈ 𝐻 ⟹ 𝑎𝑏 ∈ 𝐻 

(b) 𝑎 ∈ 𝐻 ⟹ 𝑎−1 ∈ 𝐻 

Proof: Let 𝐻 be a subgroup of G. Then (a) and (b) hold immediately. Conversely, let the 

conditions (a) and (b) hold in 𝐻. 

 The closure property is satisfied due to (a) 

Now, 𝑎, 𝑏, 𝑐 ∈ 𝐻 ⟹ 𝑎, 𝑏, 𝑐 ∈ 𝐺 ⟹ 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐. Hence, the associative law holds in 𝐻. 

 Since it is given that  

𝑎 ∈ 𝐻 ⟹ 𝑎−1 ∈ 𝐻, 𝑎 ∈ 𝐻, 𝑎−1 ∈ 𝐻 ⟹ 𝑎𝑎−1 ∈ 𝐻 ⟹ 𝑒 ∈ 𝐻.  (since 𝑎𝑎−1 ∈ 𝐻 ⟹ 𝑎𝑎−1 ∈

𝐺 𝑎𝑛𝑑  𝑎𝑎−1 = 𝑒) 

Thus, an identity element exists in 𝐻. 

Condition (b) shows that the inverse of each element exists in 𝐻. Since 𝐻 satisfies all the 

conditions of group, it forms a group by itself, and hence, it is a subgroup of 𝐺. 

Theorem 12.2 

A non-empty subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if 𝑎, 𝑏 ∈ 𝐻 ⟹ 𝑎𝑏−1 ∈ 𝐻 

Proof: 

Let 𝐻 be a subgroup of 𝐺. Then 𝑎, 𝑏 ∈ 𝐻 ⟹ 𝑎𝑏−1 ∈ 𝐻 

Conversely, let the condition hold in 𝐻. Then  

𝑎, 𝑎 ∈ 𝐻 ⟹ 𝑎𝑎−1 ∈ 𝐻 ⟹ 𝑒 ∈ 𝐻    (𝑠𝑖𝑛𝑐𝑒 𝑎𝑎−1 ∈ 𝐻 ⟹ 𝑎𝑎−1 ∈ 𝐺  𝑎𝑛𝑑  𝑎𝑎−1 = 𝑒) 

Thus, an identity element exists in 𝐻. 
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For any 𝑎 ∈ 𝐻, 

𝑒, 𝑎 ∈ 𝐻 ⟹ 𝑒𝑎−1 ∈ 𝐻 ⟹ 𝑎−1 ∈ 𝐻    (𝑠𝑖𝑛𝑐𝑒   𝑒𝑎−1 ∈ 𝐻 ⟹ 𝑒𝑎−1 ∈ 𝐺  𝑎𝑛𝑑 𝑒𝑎−1 = 𝑎−1) 

Therefore, the inverse of each element exists in 𝐻. 

For any 𝑎, 𝑏 ∈ 𝐻, 

𝑎, 𝑏−1 ∈ 𝐻 ⟹ 𝑎(𝑏−1)−1 ∈ 𝐻 ⟹ 𝑎𝑏 ∈ 𝐻 (𝑏−1 ∈ 𝐻 ⟹ 𝑏−1 ∈ 𝐺 𝑎𝑛𝑑  𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒  𝑜𝑓 𝑏−1 𝑖𝑠 𝑏) 

Hence, 𝐻 is closed with respect to the given composition. 

Moreover, since the elements of 𝐻 are the elements of 𝐺, the associative law holds in 𝐻.  

Thus, 𝐻 satisfies all the conditions of a group; hence, it forms a group by itself and it is a 

subgroup of 𝐺. 

12.1.1 Cosets 

Let 𝑎 ∈ 𝐺 and 𝐻 be a subgroup of a group 𝐺. Then the non-empty set {𝑎ℎ ∶ ℎ ∈ 𝐻} is called 

the left coset generated by 𝑎 and 𝐻 and is symbolized as 𝑎𝐻. 

Also, the set 𝐻𝑎 = {ℎ𝑎 ∶ ℎ ∈ 𝐻} is said to be right coset and is symbolized by 𝐻𝑎. The element 

𝑎 is called a characteristic of 𝑎𝐻 and 𝐻𝑎. 

It is obvious that both 𝑎𝐻 and 𝐻𝑎 are subsets of 𝐺. If 𝑒 be the identity element of 𝐺, then 𝑒 ∈

𝐻 and 𝐻𝑒 = 𝐻 = 𝑒𝐻. Thus, 𝐻 itself is a left as well as right coset. 

Usually 𝑎𝐻 = 𝐻𝑎 , but in case of abelian group, each left coset coincides with the 

corresponding right coset. 

If the group is under the operation addition, then the right coset of 𝐻 in 𝐺 generated by 𝑎 is 

demarcated as 

𝐻 + 𝑎 = {ℎ + 𝑎 ∶ ℎ ∈ 𝐻} 

Also, the left coset 𝑎 + 𝐻 = {𝑎 + ℎ ∶ ℎ ∈ 𝐻}. 

Example 12.2 Consider the following group 𝐺 of integers under the operation addition: 

𝐺 = {… , −3, −2, −1, 0, 1, 2, 3, … } 

Consider 𝐻 be a subgroup of 𝐺 that holds only the elements which are multiples of 3. 

𝐻 = {… , −9, −6, −3, 0, 3, 6, 9, … } 
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The group 𝐺 is abelian and each right coset will be equal to its corresponding left coset. Let 

us form the right cosets of 𝐻 in 𝐺. As 0, 1, 2 ∈ 𝐺, 

𝐻 + 0 = {… , −9, −6, −3, 0, 3, 6, 9, … } = 𝐻 

𝐻 + 1 = {… , −8, −5, −2, 1, 4, 7, 10, … } 

𝐻 + 2 = {… , −7, −4, −1, 2, 5, 8, 11, … } 

𝐻 + 3 = {… , −9, −6, −3, 0, 3, 6, 9, … } = 𝐻 

It is noticeable that 𝐺 = 𝐻 ∪ (𝐻 + 1) ∪ (𝐻 + 2). Thus, any two right cosets are either equal or 

disjoint. The set of all disjoint right cosets produces a partition on the set 𝐺. 

Properties of Cosets 

Let 𝐻 be a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺, Then, 

1. 𝑎 ∈ 𝑎𝐻 

2. 𝑎𝐻 = 𝐻 ⟺  𝑎 ∈ 𝐻 

3. 𝑎𝐻 = 𝑏𝐻  𝑜𝑟  𝑎𝐻 ∩ 𝑏𝐻 = ∅ 

4. 𝑎𝐻 = 𝑏𝐻 ⟺    𝑎−1𝑏 ∈ 𝐻 

Similar results hold for right cosets. 

12.1.2 Index of a subgroup in a group 

Assume that 𝐻 is a subgroup of a group 𝐺, then the amount of distinct right (left) cosets of 𝐻 

in 𝐺 is called the index of 𝐻 in 𝐺 and is represented by [𝐺 ∶ 𝐻] or by 𝑖𝐺(𝐻). 

12.1.3 Centralizer and Normalizer 

Let 𝐺 be a group. The center 𝑍(𝐺) of the group 𝐺 is defined as follows: 

𝑍(𝐺) = {𝑧 ∈ 𝐺 ∶ 𝑧𝑥 = 𝑥𝑧   ∀  𝑥 ∈ 𝐺} 

It can be proved that the center of a group 𝐺 is a subgroup of 𝐺. 

Assume 𝐻 as a subgroup of a group 𝐺. Then the centralizer 𝐶(𝐻) and normalizer 𝑁(𝐻) of 𝐻 

in 𝐺 are demarcated as follows: 

𝐶(𝐻) = {𝑥 ∈ 𝐺 ∶ 𝑥ℎ = ℎ𝑥  ∀ℎ ∈ 𝐻} 

𝑁(𝐻) = {𝑥 ∈ 𝐺 ∶ 𝑥𝐻 = 𝐻𝑥} 
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               = {𝑥 ∈ 𝐺: 𝑥𝐻𝑥−1 = 𝐻} 

It can be easily shown that 𝐶(𝐻) and 𝑁(𝐻) are both subgroups of 𝐺 and 𝐶(𝐻) ⊆ 𝑁(𝐻). 

A subgroup 𝐻 of a group 𝐺 is said to be a 𝒏𝒐𝒓𝒎𝒂𝒍 𝒔𝒖𝒃𝒈𝒓𝒐𝒖𝒑 of 𝐺 if 𝑎𝐻 = 𝐻𝑎  ∀  𝑎 ∈ 𝐺. 

Example 12.3 Consider the group (𝑍, +). Let 𝐻 = {3𝑛 ∶ 𝑛 ∈ 𝑍} prove that H is a subgroup of 

𝑍. 

Solution 

It is a subgroup of 𝑍 since 

(i) 𝐻 is non-empty. 

(ii) Let 𝑥, 𝑦 ∈ 𝐻. Then there exist 𝑝, 𝑞 ∈ 𝑍 such that 𝑥 = 3𝑝, 𝑦 = 3𝑞 

Now 𝑥𝑦−1 = 3𝑝 − 3𝑞 = 3(𝑝 − 𝑞) 𝑤ℎ𝑒𝑟𝑒 𝑝 − 𝑞 ∈ 𝑍 

So 𝑥𝑦−1 ∈ 𝐻 

Therefore 𝐻 is a subgroup of 𝑍. 

12.1.4 Order of a group 

The order of the group can be defined as the number of elements in a group. 

The order of a group 𝐺 is symbolized by 𝑜(𝐺). A group of finite order is said to be a finite 

group. By using the notion of cosets we prove a theorem due to Langrange which expresses 

how the order of a finite group is related to the order of its subgroup. 

12.1.5 Lagrange’s Theorem 

Theorem 3.3 The order of each subgroup of a finite group is a divisor of the order of the group. 

Proof: 

Let 𝐺  be a finite group of order 𝑛 and 𝐻 be a subgroup of 𝐺  such that 𝑜(𝐻) = 𝑚 and 𝐻 =

{ℎ1, ℎ2, … … , ℎ𝑚}. For 𝑎 ∈ 𝐺, the right coset 𝐻𝑎 is defined as 𝐻𝑎 = {ℎ1𝑎, ℎ2𝑎, … … , ℎ𝑚𝑎} and 

𝑜(𝐻𝑎) = 𝑚. 

Each right coset of 𝐻 in 𝐺 will have 𝑚 discrete elements. Besides this, any two right cosets 

are either the same or disjoint. Suppose there are 𝑘 disjoint right cosets of 𝐻 in 𝐺, then the 

union of these right cosets is equal to the set 𝐺 . If the 𝑘  disjoint right cosets are 𝐻𝑎1,

𝐻𝑎2, … … , 𝐻𝑎𝑘, then 
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𝐺 = 𝐻𝑎1 ∪ 𝐻𝑎2 ∪ … … ∪ 𝐻𝑎𝑘 

⟹ 𝑜(𝐺) = 𝑜(𝐻𝑎1) + 𝑜(𝐻𝑎2) + ⋯ … … … + 𝑜(𝐻𝑎𝑘) 

⟹ 𝑛 = 𝑚𝑘 

⟹
𝑛

𝑚
= 𝑘 

Since 𝑘 ∈ 𝑍, 𝑚 is a divisor of 𝑛. Therefore, the order of every subgroup of a finite group is 

a divisor of the order of the group. 

Since the 𝑘 is number of disjoint right cosets of 𝐻 in 𝐺, thus different right  (left) cosets of 

𝐻 in 𝐺 =
𝑛

𝑚
=

|𝐺|

|𝐻|
.. 

Theorem 12.4 

If 𝐻 and 𝐾 be two subgroups of a group 𝐺, then 𝐻𝐾 is a subgroup of 𝐺 if and only if 𝐻𝐾 = 𝐾𝐻. 

Proof: 

Let 𝐻𝐾 be a subgroup of 𝐺 and 𝑥 ∈ 𝐻𝐾 

𝑥 ∈ 𝐻𝐾 ⟹ 𝑥−1 ∈ 𝐻𝐾   (𝑠𝑖𝑛𝑐𝑒  𝐻𝐾 𝑖𝑠 𝑎 𝑔𝑟𝑜𝑢𝑝) 

                       ⟹ 𝑥−1 = ℎ𝑘  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ ∈ 𝐻  𝑎𝑛𝑑 𝑘 ∈ 𝐾 

⟹ 𝑥 = (ℎ𝑘)−1 = 𝑘−1ℎ−1 

⟹ 𝑥 ∈ 𝐾𝐻       (𝑠𝑖𝑛𝑐𝑒  𝑘−1ℎ−1 ∈ 𝐾𝐻) 

Thus, 𝐻𝐾 ⊆ 𝐾𝐻 

Similarly, it can be shown that 𝐾𝐻 ⊆ 𝐻𝐾 and hence 𝐻𝐾 = 𝐾𝐻 

Conversely, let 𝐻𝐾 = 𝐾𝐻 

To prove that 𝐻𝐾 is a subgroup, we shall show that if 𝑎, 𝑏 ∈ 𝐻𝐾, then 𝑎𝑏−1 ∈ 𝐻𝐾. 

𝑎, 𝑏 ∈ 𝐻𝐾 ⟹ 𝑎 = ℎ1𝑘1, 𝑏 = ℎ2𝑘2 for some ℎ1, ℎ2 ∈ 𝐻 and 𝑘1, 𝑘2 ∈ 𝐾 

Then  

𝑎𝑏−1 = ℎ1𝑘1(ℎ2𝑘2)−1 

             = ℎ1𝑘1(𝑘2
−1 ℎ2

−1) 
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            = ℎ1(𝑘1𝑘2
−1)ℎ2

−1 

Since 𝑘1 𝑘2
−1 ∈ 𝐾 and ℎ2

−1 ∈ 𝐻, (𝑘1𝑘2
−1)ℎ2

−1 ∈ 𝐾𝐻. Given that 𝐻𝐾 = 𝐾𝐻; thus, 

(𝑘1𝑘2
−1)ℎ2

−1 ∈ 𝐻𝐾. Hence, 𝑘1𝑘2
−1 = ℎ and ℎ2

−1 = 𝑘 for some ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. Then  

𝑎𝑏−1 = ℎ1(ℎ𝑘) 

= (ℎ1ℎ)𝑘 

Thus, 𝑎𝑏−1 ∈ 𝐻𝐾      [𝑠𝑖𝑛𝑐𝑒   (ℎ1ℎ)𝑘 ∈ 𝐻𝐾] 

Hence, 𝐻𝐾 is a subgroup. 

12.3 Cyclic Group 

A group 𝐺 is called a cyclic group if, for some 𝑎 ∈ 𝐺, every element of 𝐺 is of the form 𝑎𝑛, 

where 𝑛 is some integer i.e., 𝐺 = {𝑎𝑛 ∶ 𝑛 ∈ 𝑍}. The element 𝑎 is then called a generator of 𝐺. 

If 𝐺 is a cyclic group generated by 𝑎, it is denoted by 𝐺 =< 𝑎 >. The element of 𝐺 are in the 

form 

… … … … … 𝑎−2, 𝑎−1, 𝑎0, 0, 𝑎, 𝑎2, 𝑎3 … … … … 

There may be more than one generator of a cyclic group. Every cyclic group has at least two 

generators, generator and inverse of it. 

Example 12.4 The set of integers with respect to + i.e. (𝑍, +) is a cyclic group, a generator 

being 1. 

Solution: 

We have 10 = 1, 11 = 1, 12 = 1 + 1 = 2,   13 = 1 + 1 + 1 = 3  𝑎𝑛𝑑   𝑠𝑜  𝑜𝑛 

Similarly, 1−1 = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 1 = −1 

1−2 = (12)−1 = −2, 13 = (13)−1 = (3)−1 = −3 and so on 

Thus, each element of 𝐺 can be expressed as some integral power of 1 

Similarly, we can show that −1 is also a generator. 

Example 12.5 The multiplicative group {1, 𝑤, 𝑤2} is a cyclic group. 
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Solution: We have 𝑤0 = 1, 𝑤1 = 𝑤, 𝑤2 = 𝑤2, 𝑤3 = 1  and (𝑤2)0 = 1, (𝑤2)1 = 𝑤2, (𝑤2)2 =

𝑤4 = 𝑤 

Thus each element of the group can be expressed as some integral powers of 𝑤 and 𝑤2. 

Hence the group is a cyclic group with generators 𝑤 and 𝑤2 

Some important properties of Cyclic Groups 

(i) Every cyclic group is an abelian group 

(ii) If 𝑎 is a generator of a cyclic group 𝐺, then 𝑎−1 is also a generator of 𝐺. 

(iii) If a cyclic group 𝐺 is generated by an element 𝑎 of order 𝑛, then 𝑎𝑚 is a generator 

of 𝐺 if and only if the greatest common divisor of 𝑚 and 𝑛 is 1 i.e., if and only if 𝑚 

and 𝑛 are relatives primes. 

Infinite Cyclic Group 

If 𝐻 is a cyclic group generated by 𝑎 subject to all the powers of 𝑎 are distinct, then  

𝐻 =< 𝑎 > is an infinite cyclic group. 

12.4 Permutation Group 

Let 𝐴 be a finite set. Then a function 𝑓 ∶ 𝐴 → 𝐴 is said to be a permutation of 𝐴 if  

(i) 𝑓 is one-one 

(ii) 𝑓 is onto 

i.e. 𝐴 bijection from 𝐴 to itself is called a permutation of 𝐴. 

The number of distinct elements in the finite set 𝐴 is called the degree of permutation. 

Consider a set 𝐴 = {𝑎1, 𝑎2, … … , 𝑎𝑛}  and let 𝑓 ∶ 𝐴 → 𝐴  be a bijection function. Then every 

element of 𝐴 has a unique image in 𝐴, no two distinct elements of 𝐴 have the same image, 

and every element of 𝐴 has a unique pre-image, under 𝑓. Thus, the range of 𝑓 is of the form 

𝑅𝑎𝑛(𝑓) = {𝑓(𝑎1), 𝑓(𝑎2) … … … … 𝑓(𝑎𝑛)} 

In the notation of the relations the function 𝑓 is given by 

𝑓 = {(𝑎1, 𝑓(𝑎1)), (𝑎2, 𝑓(𝑎2)), … … … , (𝑎𝑛, 𝑓(𝑎𝑛))} 

This is written in two line notation as 
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𝑓 = (
𝑎1

𝑓(𝑎1)   
𝑎2

𝑓(𝑎2) … … … …
𝑎𝑛

𝑓(𝑎𝑛)) 

Since 𝐴 is a finite set, its elements can be ordered as the first, the second, ….. , the 𝑛𝑡ℎ. 

Therefore, it is convenient to take 𝐴 to be a set of the form {1, 2, 3, … … , 𝑛} for some positive 

integer 𝑛 instead of {𝑎1, 𝑎2, 𝑎3, … … … , 𝑎𝑛}. 

In general, a permutation 𝑓 on the set {1, 2, 3, . . . . . . , 𝑛} can be written as  

𝑓 = (
1

𝑓(1)
   

2
𝑓(2)

… … … …
𝑛

𝑓(𝑛)) 

Obviously, the order of the column in the symbol is immaterial so long as the corresponding 

elements above and below in that column remain unchanged. 

12.4.1 Equality of two permutations 

Let 𝑓 and 𝑔 be two permutations on a set 𝑋. Then 𝑓 = 𝑔 if and only if 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 in 

𝑋. 

Example 12.6    Let 𝑓 and 𝑔 be given by 

𝑓 = (
1
2

  
2
3

  
3
4

  
4
1

)   𝑔 = (3
4

  
2
3

  1
2

  4
1

) 

Evidently 𝑓(1) = 2 = 𝑔(1),                  𝑓(2) = 3 = 𝑔(2) 

 𝑓(3) = 4 = 𝑔(3),                     𝑓(4) = 1 = 𝑔(4) 

Thus 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ {1, 2, 3, 4} which implies 𝑓 = 𝑔 

12.4.2 Identity Permutation 

If each element of a permutations be replaced by itself. Then it is called the identity 

permutations and is denoted by symbol 𝐼. For example, 

𝐼 = (
𝑎
𝑎

  𝑏
𝑏

  
𝑐
𝑐

 )  is an identity permutation. 

12.4.3 Product of Permutations (or composition of Permutation) 

The product of two permutations 𝑓  and 𝑔  of same degree is denoted by 𝑓 𝑜 𝑔   𝑜𝑟   𝑓𝑔 , 

meaning first perform 𝑔 and then perform 𝑓. 

𝑓 = (
𝑎1

𝑏1
  
𝑎2

𝑏2
  
𝑎3

𝑏3
… … 

𝑎𝑛

𝑏𝑛
), 
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𝑔 = (
𝑏1
𝑐1

  
𝑏2
𝑐2

  
𝑏3

𝑐3
… … 

𝑏𝑛

𝑐𝑛
), 

Then 𝑓𝑔 = (
𝑎1

𝑐1
  
𝑎2

𝑐2
  
𝑎3

𝑏3
… … 

𝑎𝑛

𝑐𝑛
) 

For, 𝑓 replaces 𝑎1  by 𝑏1  and then 𝑔 replaces 𝑏1  by 𝑐1  so that 𝑓𝑔 replaces 𝑎1  by 𝑐1 . 

Similarly, 𝑓𝑔 replaces 𝑎2 by 𝑐2, 𝑎3 by 𝑐3, … … 𝑎𝑛 by 𝑐𝑛. 

Clearly 𝑓𝑔 is also a permutation on 𝑆. 

It should be observed that the permutation 𝑔 has been written in such a manner that the 

second row of 𝑓 coincides with the first row of 𝑔. This is most essential in order to find 𝑓𝑔. 

If we want to write 𝑔𝑓, then 𝑓 should be written in such a manner that the second row of 𝑔 

must coincide with the first row of 𝑓. 

12.4.4 Inverse Permutation 

Since a permutation is one-one onto map and hence it is inversible, i.e., every permutation 𝑓 

on a set 

𝑃 = {𝑎1, 𝑎2 … … … , 𝑎𝑛} 

has a unique inverse permutation denoted by 𝑓−1. 

Thus if  𝑓 = (
𝑎1

𝑏1
  
𝑎2

𝑏2
… … … 

𝑎𝑛

𝑏𝑛
 ) 

Then  𝑓−1 = (
𝑏1
𝑎1

  
𝑏2
𝑎2

 … … …  
𝑏𝑛

𝑎𝑛
) 

Total Number of Permutations 

Let 𝑋 be a set consisting of 𝑛 distinct elements. Then the elements of 𝑋 can be permuted in 

𝑛! distinct ways. If 𝑆𝑛 be the set consisting of all permutation of degree 𝑛, then the set 𝑆𝑛 will 

have 𝑛!  distinct permutations of degree 𝑛 . This set 𝑆𝑛  is called the symmetric set of 

permutations of degree 𝑛. 

Example 12.7   If 𝐴 = {1, 2, 3}, then 𝑆3 = {𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} where 

𝑝0 = 𝐼𝐴 = (
1
1

  
2
2

  
3
3

),   𝑝1 = (
1
2

  
2
3

  
3
1

) 𝑝2 = (
1
3

  
2
1

  
3
2

) 𝑝3 = (
1
1

  
2
3

  
3
2

) 𝑝4 = (
1
3

  
2
2

  
3
1

)  𝑝5 = (
1
2

  
2
1

  
3
3

) 

The multiplication table for the composition of permutation in 𝑆3 is as given below: 
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Multiplication table for 𝑆3 

𝑜 𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

𝑝0 𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

𝑝1 𝑝1 𝑝2 𝑝0 𝑝5 𝑝3 𝑝4 

𝑝2 𝑝2 𝑝0 𝑝1 𝑝4 𝑝5 𝑝3 

𝑝3 𝑝3 𝑝4 𝑝5 𝑝0 𝑝1 𝑝2 

𝑝4 𝑝4 𝑝5 𝑝3 𝑝2 𝑝0 𝑝1 

𝑝5 𝑝5 𝑝3 𝑝4 𝑝1 𝑝2 𝑝0 

 

 The table shows that 

(i) The multiplication of any two permutations of 𝑆3 gives a permutation of 𝑆3. So, 𝑆3 

is closed with respect to multiplication. 

(ii) Associativity law holds for (𝑝1 𝑝3) 𝑝4 = 𝑝5 𝑝4 = 𝑝0 and 𝑝1 (𝑝3  𝑝4) = 𝑝1 𝑝1 = 𝑝0 

(iii) Identity element exists, 𝑝0  when composed with any permutation gives that 

permutation. 

(iv) Every permutation has its own  inverse. 

Hence 𝑆3 is group. It is  a non-commutative group since 𝑝1 𝑝2 ≠ 𝑝2 𝑝1,   𝑝3 𝑝2 ≠ 𝑝2 𝑝3 

Let 𝐴 be a  set of degree 𝑛. Let 𝑃𝑛 be the set of all permutations of degree 𝑛 on 𝐴. Then (𝑃𝑛,∗) 

is a group, called a permutation group and the operation ∗ is the composition (multiplication) 

of permutations. 

12.4.5 Cyclic Permutations 

A permutation which replaces 𝑛 objects cyclically is called a cyclic permutation of degree 𝑛. 

Let us consider the permutation. 

𝑃 = (
1
2

  
2
3

  3
4

  4
1

) 

This assignment of values could be presented schematically as follows. 
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                                                        Fig 12.1 Circular permutation                            

Such diagrams are cumbersome, we leave out the arrows and simply write 𝑆 = (1  2  3  4). 

We read the new symbols in cyclical order from left to right as follows: 1 is replaced by 2, 2 

is replaced by 3, 3 is replaced by 4, and 4 is replaced by 1 

Thus, the meaning of the symbol is to replace each number which follows and the last 

number by the first. 

Note that (1 2 3 4) = (2 3 4 1) = (3 4 1 2) = (4 1 2 3). Thus a circular permutation may be 

denoted by more than one rowed symbols. 

The number of elements permuted by a cycle is said to be its length and the disjoint cycles 

are those which have no common elements. 

12.5 RING 

A non-empty set 𝑅, together with two binary compositions + and . , is said to form a ring if 

the following axioms are satisfied: 

1. The set 𝑅 is closed with respect to the binary composition + and . , that is ∀ 𝑥, 𝑦 ∈

𝑅, 𝑥 + 𝑦 ∈ 𝑅  𝑎𝑛𝑑 𝑥𝑦 ∈ 𝑅. 

2. Addition is associative; that is, 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅 

3. Addition is commutative; that is, 𝑥 + 𝑦 = 𝑦 + 𝑥    ∀ 𝑥, 𝑦 ∈ 𝑅 

4. There exists an element denoted by 0 in 𝑅 such that 0 + 𝑥 = 𝑥    ∀ 𝑥 ∈ 𝑅 

5. For each element 𝑥 ∈ 𝑅, there exists an element −𝑥 ∈ 𝑅 such that 𝑥 + (−𝑥) = (−𝑥) +

𝑥 = 0 

6. Multiplication is associative; that is, 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧     ∀𝑥, 𝑦, 𝑧 ∈ 𝑅 

7. Multiplication is distributive with respect to addition; that is, for all 𝑥, 𝑦, 𝑧 ∈ 𝑅, 

𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 (𝑙𝑒𝑓𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤) and (𝑦 + 𝑧)𝑥 = 𝑦𝑥 +

𝑧𝑥 (𝑟𝑖𝑔ℎ𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤) 

It can be observed that 𝑅 is an abelian group with respect to addition. We can have any other 

binary compositions in place of addition and multiplication. Since these compositions are 

1

23

4
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natural and their properties are easy to understand, we have taken these compositions to 

define a ring; otherwise, any two symbols can be used to denote the two compositions. 

12.5.1 Commutative Ring 

A ring 𝑅 is called a commutative ring if multiplication is also commutative, that is, ∀ 𝑥, 𝑦 ∈ 𝑅,

𝑥𝑦 = 𝑦𝑥. 

12.5.2 Ring with Unity 

If in a ring 𝑅 there exists an element 𝑒 ∈ 𝑅 such that ∀𝑥 ∈ 𝑅,   𝑥𝑒 = 𝑒𝑥 = 𝑥, then 𝑅 is called a 

ring with unity. Generally, we denote the unity by 1. The element 1 is called the multiplicative 

identity. 

Example 12.8 

(i) The set of integers forms a ring with respect to usual addition and multiplication. 

This is also a commutative ring with unity. 

 

 

(ii) The set of all even integers is a commutative ring without unity with respect to usual 

addition and multiplication. 

Theorem 12.5 If 𝑅 is a ring, then the following results hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑅: 

(a) 𝑥 . 0 = 0 . 𝑥 = 0 

(b) 𝑥(−𝑦) = (−𝑥)𝑦 = −𝑥𝑦 

(c) (−𝑥)(−𝑦) = 𝑥𝑦 

(d) 𝑥(𝑦 − 𝑧) = 𝑥𝑦 − 𝑥𝑧 

Proof: 

(a) 𝑥 . 0 = 𝑥 . (0 + 0) 

 ⟹ 𝑥. 0 = 𝑥 . 0 + 𝑥 . 0 

 ⟹ 𝑥 . 0 + 0 = 𝑥 . 0 + 𝑥 . 0 

 ⟹ 0 = 𝑥 . 0    (using left cancellation law, as < 𝑅, +> is a group) 

(b) 𝑥 . 0 = 0 

 ⟹ 𝑥(−𝑦 + 𝑦) = 0 

 ⟹ 𝑥(−𝑦) + 𝑥𝑦 = 0 

 ⟹ 𝑥(−𝑦) = −(𝑥𝑦) 

Similarly, (−𝑥𝑦) = −𝑥𝑦 

(c) (−𝑥)(−𝑦) = −[𝑥(−𝑦)] = −(−𝑥𝑦) = 𝑥𝑦 

(d) 𝑥(𝑦 − 𝑧) = 𝑥[𝑦 + (−𝑧)] 

 = 𝑥𝑦 + 𝑥(−𝑧) 

 = 𝑥𝑦 − 𝑥𝑧 

12.5.3 Zero Divisor of Ring 

Let 𝑅 be a ring and 0 be the additive identity of the ring. We have already proved that for any 

element 𝑥 ∈ 𝑅, 𝑥0 = 0 = 0𝑥. However, in some of the rings, it may be possible that 𝑥𝑦 = 0 
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when neither 𝑥 = 0 nor 𝑦 = 0. This phenomenon leads to the definition of zero divisors. A non-

zero element 𝑥 ∈ 𝑅 is called a zero divisor if there exists an element 𝑦 ∈ 𝑅(𝑦 ≠ 0) such that 

𝑥𝑦 = 0 or 𝑦𝑥 = 0. 

Example 12.9 Let 𝑀  be a ring of all 2 × 2 matrices, with their elements as integers and 

addition and multiplication being the two ring operation. Then 𝑀 is a ring with zero divisors, as 

for 𝐴 = [
1 0
0 0

] and 𝐵 = [
0 0
1 0

], we have 𝐴𝐵 = [
0 0
0 0

]. Here, the null matrix is the zero element 

of the ring. 

12.5.4 Subrings 

Let 𝑆 be a non-empty subset of a ring 𝑅. 𝑆 is called a subring of 𝑅 if 𝑆 itself forms a ring under 

the binary compositions of 𝑅. 

Example 12.10 Let us consider the ring (𝑅, +, . ) of real numbers. The ring of integers (𝑍, +,

. ) is a subring of (𝑅, +, . ). 

12.5.5 Ring Homomorphism 

Let (𝑅, +, . ) and (𝑅1,∗, 𝑜) be two rings. A mapping 𝑓: 𝑅 → 𝑅1 is called a homomorphism if for 

all 𝑥, 𝑦 ∈ 𝑅 

 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) ∗ 𝑓(𝑦) 

And 𝑓(𝑥. 𝑦) = 𝑓(𝑥) 𝑜 𝑓(𝑦) 

Here, the binary compositions in the second ring are denoted by ∗, 𝑜 in order to avoid any 

confusion is defining the ring homomorphism. If we take the usual notations +,   .  in both of 

the rings, then the mapping 𝑓: 𝑅 → 𝑅1 is called a homomorphism if for all 

 𝑥, 𝑦 ∈ 𝑅 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) and 

 𝑓(𝑥. 𝑦) = 𝑓(𝑥). 𝑓(𝑦) 

An isomorphism in rings is the one-one onto homomorphism. 

12.5.6 Integral Domain 

A commutative ring 𝑅 is called an integral domain if 𝑅 has no zero divisors; that is, if 𝑎𝑏 = 0 

in 𝑅, then either 𝑎 = 0 or 𝑏 = 0. 

Example 12.11 The ring of the integers < 𝑍, +, . > is an integral domain. 

Theorem 12.6  A commutative ring 𝑅 is an integral domain if for all 𝑎, 𝑏, 𝑐 ∈ 𝑅(𝑎 ≠ 0)   𝑎𝑏 =

𝑎𝑐 ⟹ 𝑏 = 𝑐 

Proof:   Let 𝑅 be an integral domain. Then for (𝑎 ≠ 0) 
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 𝑎𝑏 = 𝑎𝑐 ⟹ 𝑎𝑏 − 𝑎𝑐 = 0 

 ⟹ 𝑎(𝑏 − 𝑐) = 0 

 ⟹ 𝑎 = 0 or (𝑏 − 𝑐) = 0 

⟹ 𝑏 − 𝑐 = 0 since 𝑎 ≠ 0 

 ⟹ 𝑏 = 𝑐 

Conversely, let for all    𝑎, 𝑏, 𝑐 ∈ 𝑅(𝑎 ≠ 0), 𝑎𝑏 = 𝑎𝑐 ⟹ 𝑏 = 𝑐 

Then 𝑎𝑏 = 0 ⟹ 𝑎𝑏 = 𝑎0 

 ⟹ 𝑏 = 0 

Thus, 𝑅 is without zero divisors, and hence, 𝑅 is an integral domain. 

12.5.7 Division Ring or Skew Field 

A ring 𝑅 with unity is called a division ring or skew field if the non-zero elements of 𝑅 form a 

group with respect to multiplication. In other words, a ring 𝑅 is called a division ring or a 

skew field if it satisfies the following two conditions: 

1. There exists unity. 

2. Each non-zero element possesses a multiplicative inverse. 

Since a division ring forms groups with respect to two binary operations, it must contain two 

identity elements 0 and 1 (with respect to addition and multiplication), and thus, a division 

ring has at least two elements. 

12.6 Field 

A commutative division ring is called a field. In other words, a ring 𝑅 is called a field if it 

satisfies the following conditions: 

1. 𝑅 is commutative. 

2. There exists unity. 

3. Each non-zero element possesses a multiplicative inverse. 

Example 12.12  The ring of rational number (𝑄, +, . ) is a field. The ring of real numbers also 

forms a field under usual addition and multiplication. 

Theorem 12.7  A field is an integral domain. 
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Proof:  Let (𝑅, +,   . ) be a field. Then 𝑅 is a commutative ring. Let 𝑥𝑦 = 0 in 𝑅. We have to 

show either 𝑥 = 0 or 𝑦 = 0. Let us assume that 𝑥 ≠ 0. Then 𝑥−1 exists, as 𝑅 is a ring. Thus, 

𝑥𝑦 = 0 ⟹ 𝑥−10 = 𝑦 ⟹ 𝑦 = 0, which shows that 𝑅 is an integral domain. 

Theorem 12.8  A field is non-zero finite integral domain.  

Proof: First, we shall show that there exists unity.  

Let  0 ≠ 𝑥 ∈ 𝑅 be any element.  

Then 𝑥𝑥1, 𝑥𝑥2, … … , 𝑥𝑥𝑛 are the elements of 𝑅. If 𝑥𝑥𝑖 = 𝑥𝑥𝑗 for some 𝑖 ≠ 𝑗, then by 

cancellation, we get 𝑥𝑖 = 𝑥𝑗, which is not true.  

Hence, 𝑥𝑥1, 𝑥𝑥2, … … , 𝑥𝑥𝑛 are distinct elements of 𝑅 placed in some order. One of these 

elements will be equal to 𝑥. Thus, 𝑥 = 𝑥𝑥𝑖 for some 𝑖. Let 𝑎 ∈ 𝑅 be any element. Then 

𝑥𝑎 = (𝑥𝑥𝑖)𝑎 

⟹ 𝑥𝑎 = 𝑥(𝑥𝑖𝑎) 

⟹ 𝑎 = 𝑥𝑖𝑎 

Since commutative law holds in 𝑅,  

𝑎 = 𝑥𝑖𝑎 = 𝑎_𝑥𝑖 

Thus, 𝑥𝑖 is the unity of 𝑅 and we shall denote it by1. Hence, for 1 ∈ 𝑅, 1 = 𝑥𝑥𝑗 for some 𝑗, 

which shows that 𝑥𝑗 is the multiplicative inverse of 𝑥. Any non-zero element of 𝑅 has a 

multiplicative inverse, and therefore, 𝑅 is a field. 
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Problem for Exercise: 

1. Suppose 𝐻 is a subset of a group 𝐺. Show that 𝐻 is a subgroup of 𝐺 if 𝐻 has the 

following three properties: 

a. The identity element 𝑒 belongs to 𝐻 

b. 𝐻 is closed under operation of 𝐺, i.e. if 𝑎, 𝑏 ∈ 𝐻 then 𝑎𝑏 ∈ 𝐻 

c. 𝐻 is closed under inverses, i.e., if 𝑎 ∈ 𝐻 then 𝑎−1 ∈ 𝐻 

2. Consider the group 𝑍 of integers under addition. Let 𝐻 be the subset of 𝑍 consisiting 

of all multiples of a positive integer 𝑚; that is, 𝐻 =

{. . . . , −3𝑚, −2𝑚, −𝑚, 0, 𝑚, 2𝑚, 3𝑚, . . . }. Show that 𝐻 is a subgroup of 𝒁. 

3. Let 𝐺 be any group and let 𝑎 be any element of 𝐺. Define the cyclic group generated 

by 𝑎, denoted by 𝑔𝑝(𝑎). 

4. Let 𝑎 be any element in a group 𝐺. Describe the cyclic group 𝑔𝑝(𝑎) when 𝑔𝑝(𝑎) is 

finite, and define the order of 𝑎. 

5. Let 𝐻 be a subgroup of a group 𝐺. Define a right (left) coset of 𝐻. 

6. Let 𝐻 be a subgroup of a group 𝐺. Define the index of 𝐻 in 𝐺, denoted by [𝐺: 𝐻] 

7. Consider the group 𝑍 of integers under addition and the subgroup 𝐻 =

{… … , −10, −5, 0, 5, 10, … … } consisting of the multiples of 5. Find  

a. The coset of 𝐻 in 𝑍 

b. The index of 𝐻 in 𝑍 

8. Consider the ring 𝑍 of integers. 

a. Is 𝑍 commutative? 

b. Does 𝑍 have a unity element? 

c. What are the units in 𝑍 

9. Prove that {𝑥|𝑥. 𝑥 = 𝑒} will be a subgroup of an abelian group (𝐺, . ) 

10. Show that 𝑎. 0 = 0. 𝑎 = 0 in a ring 𝑅. 
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Block V: Unit I Graph Theory 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Know the basic terminology of graph theory; 

• Define various Types of Graphs; 

• Define Euler Graph; 

• Explain Hamiltonian path and Circuit; 

• Define the set of vertices, the set of edges and the degree of each vertex in a given 

Graph; 

• Determine whether a given multigraphs is a Graph; 

• Define Graph Coloring & Chromatic number; 

Many situations that occur in Computer Science, Physical Science, Communication 

Science, Economics and many other areas can be analysed by using techniques found in 

a relatively new areas of mathematics called graph theory. 

Let us consider a set of different places in a city. To show the connectivity of these places, 

we often use a pictorial representation in which the places are denoted by dots and a line 

or a curve joins two dots if there is a route between those two places. This representation 

of places (vertices) and routes (edges) is called a graph and can be treated as an abstract 

mathematical system.  

 

 

 

 

 

Fig. 13.1 

The graphs can be used to represent almost any problem involving discrete arrangements 

of objects, where concern is not with the internal properties of these objects but with 

relationship among them. 

The foundations of graph theory were originated by the 𝐾�̈�𝑛𝑖𝑔𝑠𝑏𝑒𝑟𝑔 𝑏𝑟𝑖𝑑𝑔𝑒  problem. 

𝐾�̈�𝑛𝑖𝑔𝑠𝑏𝑒𝑟𝑔(Kaliningrad, a part of Russia) was a Prussian city situated on the sides of the 
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Pregel River. The figure 13.1 shows the river banks and the two islands formed by the 

splitting of the river. The river banks and islands were connected to each other through 

seven bridges. 

The 𝐾�̈�𝑛𝑖𝑔𝑠𝑏𝑒𝑟𝑔 bridge problem was to find whether it was possible to walk through the 

town in such a way as to traverse every bridge exactly once. In 1736, Leonhard Euler, a 

Swiss mathematician, came out with the solution in terms of graph theory. He presented 

the problem in a simple way by representing the landmasses by dots and bridges by lines 

that connected those landmasses. Euler proved that it was not possible to walk through 

the town by traversing through the seven bridges, crossing each bridge exactly once. He 

also explained why it was not possible. He introduced the concept of degree of a node, 

the number of edges touching a node, and proposed that any given graph can be 

traversed with each edge traversed exactly once if and only if it had zero or exactly two 

nodes of odd degree. 

Graph theory deals with study of graphs and their various properties. It has wide 

applications, as many real-life problems can be modeled through graphs. Communication 

network, data organization, link structures of web pages, job assignment, electrical 

network, and so on can easily be understood through graphs. Here we begin with some 

basic graph terminologies and then discuss some important concepts in graph theory. 

13.1 Basic Terminology 

A graph 𝐺 consists of two sets: 

(i) A non-empty set 𝑉 whose elements are called vertices, nodes or points of 𝐺. The 

set 𝑉(𝐺) is called the vertex set of 𝐺 

(ii) A set 𝐸 of edges such that each edge 𝑒 ∈ 𝐸 associated with ordered or unordered 

pairs of elements of 𝑉. The set 𝐸(𝐺) is called the edge set of G 

The graph 𝐺 with vertices 𝑉 and edges 𝐸 is written as 𝐺 = (𝑉, 𝐸) or 𝐺(𝑉, 𝐸). 

If an edge 𝑒 ∈ 𝐸 is associated with an ordered pair (𝑢, 𝑣) or an unordered pair (𝑢, 𝑣), where 

𝑢, 𝑣 ∈ 𝑉, then 𝑒 is said to connect 𝑢 and 𝑣  which are called as end points of 𝑒. An edge is 

said to be incident with the vertices in joins. Thus, the edge 𝑒 that joins the nodes 𝑢 and 𝑣 is 

said to be incident on each of its end points 𝑢 and 𝑣. Any pair of nodes that is connected by 

an edge in a graph is called adjacent nodes. 

In a graph a node that is not adjacent to another node is called an isolated node. A graph 

𝐺(𝑉, 𝐸) is said to be finite if it has a finite number of vertices and finite number of edges. (A 
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graph with a finite number of vertices must also have finite number of edges): otherwise, it is 

a infinite graph. 

If 𝐺 is a finite, |𝑉(𝐺)| denotes the number of vertices in 𝐺 and is called the order of 𝐺. Similarly 

if 𝐺 is finite, |𝐸(𝐺)| denotes the number of edges in 𝐺 and is called the size of 𝐺. We shall 

often refer to a graph of order 𝑛 and size 𝑚 an (𝑛, 𝑚) graph. If 𝐺 be a (𝑝, 𝑞) graph then 𝐺 has 

𝑝 vertices and 𝑞 edges. 

 

 

Above figure represents a graph 𝐺(𝑉, 𝐸) having seven vertices and eight edges, the set of 

vertices and edges are defined as follows: 

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8} 

Degree of a Vertex 

The degree of a vertex 𝑣 is the number of edges incident on the vertex. It is a positive number 

and is denoted by deg(𝑣). A loop is counted twice for the calculation of degree of a vertex. 

In above figure, deg (𝑣2) = 3 

In a graph  𝐺(𝑉, 𝐸),  the minimum and maximum degrees of a vertex are denoted by 

𝛿(𝐺)  𝑎𝑛𝑑 ∆(𝐺), respectively. 

𝛿(𝐺) = 𝑀𝑖𝑛(deg(𝑣) : 𝑣 ∈ 𝐺(𝑣)) 

∆(𝐺) = 𝑀𝑎𝑥(deg(𝑣) : 𝑣 ∈ 𝐺(𝑣)) 

Isolated Vertex and Pendent Vertex 

A vertex is called an isolated vertex if no edge is incident on the vertex. The degree of an 

isolated vertex is zero for example 𝑣4 in Fig 13.2. 

Fig 13.2 Graph with self-loop and parallel edges 
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A vertex is called a pendent vertex if the degree of the vertex is one for example, 𝑣7 in Fig 

13.2 

Self-loop and parallel Edges 

An edge starting and ending in the same vertex is called a self-loop. The edges 𝑒1 forms a 

self-loop (fig13.2). Edges associated with the same pair of vertices are called parallel edges. 

As per above figure 13.2, the edges 𝑒5 and 𝑒6 are parallel edges. 

Example 13.1 

Define formally the graph given in figure 13.3 that is, the set of vertices, the set of edges 

and the degree of each vertex. 

                                                             Fig 13.3 

Solution 

The graph 𝐺(𝑉, 𝐸) can be defined as follows: 

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}; 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣2), (𝑣1, 𝑣3), (𝑣3, 𝑣4)}; and  

deg(𝑣1) = 2, deg (𝑣2) = 3, deg(𝑣3) = 2, deg(𝑣4) = 1  𝑎𝑛𝑑 deg(𝑣5) = 0 

 

Theorem13.1 Let 𝐺(𝑉, 𝐸) be a graph having 𝑛 vertices 𝑒 edges. Then show that  

∑ deg (𝑣𝑖)

𝑛

𝑖=1

= 2𝑒 

Proof: Consider a graph of 𝑛  vertices 𝑣1, 𝑣2, 𝑣3, … … … , 𝑣𝑛  and 𝑒  edges. Every edge is 

incident on two vertices; hence, every edge is counted twice for the calculation of the total 

degree of all vertices. . This fact leads to the conclusion that the sum of degrees of all 

vertices is twice the number of edges in the graph. That is, 

∑ deg (𝑣𝑖)

𝑛

𝑖=1

= 2𝑒 

𝑣1 
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Undirected and Directed Graph 

An undirected graph 𝐺 consists of set 𝑉 of vertices and a set  𝐸 of edges such that each 

edge 𝑒 ∈ 𝐸 is associated with an unordered pair of vertices. 

 The graph shown in fig 13.4(a)   is an example of an undirected graph we can refer to an 

edge joining the vertex pair 𝑖 and 𝑗 as either (𝑖, 𝑗) or (𝑗, 𝑖). 

A directed graph (or digraph) 𝐺 consists of a set 𝑉 of vertices and a set 𝐸 of edges such 

that 𝑒 ∈ 𝐸 is associated with an ordered pair of vertices. In other words, if each edge of 

the graph 𝐺 has a direction then the graph is called directed graph. In the fig 1.3(b) each 

edge 𝑒 = (𝑢, 𝑣) is represented by an arrow or directed curve from initial point 𝑢 of 𝑒 to the 

terminal point 𝑣 

  

(a) Undirected  graph   (b) Directed graph 

Fig 13.4 

Sub-graphs 

A graph 𝐺1(𝑉1, 𝐸1) is said to be a subgraph of a graph 𝐺(𝑉, 𝐸) if 𝑉1 ⊆ 𝑉 and 𝐸1 ⊆ 𝐸2 and 

each edge has the same end vertices in 𝐺1as in 𝐺 

  

(a) (b) 

Fig. 13.5 

Subgraph of a graph (a) 𝐺(𝑉, 𝐸)  (b) 𝐺1(𝑉1, 𝐸1) 
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13.2 Types of Graphs 

13.2.1 Simple Graph 

A graph without self-loops and parallel edges is called a simple graph. A graph is called finite 

if it has a finite number of edges and finite number of vertices; otherwise, it is an infinite graph. 

 

Fig. 13.6 

13.2.2 Multi-graph, Trivial Graph and Null Graph 

A graph having some parallel edges is called a multi-graph. A graph is called trivial graph if it 

has one vertex and no edges. A graph having finite vertices is called a null graph if it has no 

edges. 

 

Fig 13.7 

13.2.3 Pseudo-graph 

A graph in which loops and multiple edges are allowed, is called a pseudo-graph. It may be 

noted that there is some lack of standardization of terminology in graph theory. Many words 

have almost obvious meaning, which are the same from book to book, but other is used 

differently by different authors. 

   

Fig 13.8 
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13.2.4 Complete Graph 

A simple graph is said to be complete graph if there exists an edge between every pair of 

vertices. A complete graph having 𝑛 vertices is denoted by 𝐾𝑛. 

    

 (a)     (b)     (c) 

Complete graphs (a) 𝐾3  (b) 𝐾4  (c) 𝐾5 

Fig 13.9 

13.2.5 Regular Graph 

A simple graph is said to be regular if the degree of each vertex is the same. If the degree of 

each vertex of a regular graph equals 𝑟, the graph is said to be 𝑟 −regular. 

 

Fig 13.10 

13.2.6 Bipartite Graph 

A graph 𝐺(𝑉, 𝐸) is said to be a bipartite graph if there exists a partition of the set 𝑉(𝐺) 

into two disjoint sets 𝑉1(𝐺) and 𝑉2(𝐺) such that each edge of the graph has its one end 

in 𝑉1(𝐺) and the other end in 𝑉2(𝐺). 

The graph shown  in fig 13.9 here is a bipartite graph. In this graph, the set 𝑉(𝐺) is 

partitioned into two disjoint sets 𝑉1(𝐺) and 𝑉2(𝐺), where 

𝑉1(𝐺) = {𝑣1, 𝑣2}   𝑎𝑛𝑑    𝑉2(𝐺) = {𝑣3, 𝑣4, 𝑣5} 
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Fig 13.11 

A bipartite graph is called complete bipartite if each vertex of 𝑉1(𝐺) is joined to each vertex 

of 𝑉2(𝐺) through an edge as per shown in the figure given below 

 

Fig. 13.12 

13.2.7 Platonic Graph 

These are of special interest among the regular graphs so-called Platonic graph, the 

graphs formed by the vertices and edges of the five regular (Platonic) solids – the 

tetrahedron, octahedron cube, dodecahedron and icosahedron. The graphs are shown in 

the following figures 

    

Fig. 13.13 

13.2.8 Weighted Graph 

A graph is called a weighted graph if all its edges have been assigned some positive real 

numbers (weights) to provide some additional information. For example, if we construct a 

graph of different places in a metropolitan city, then the traffic density (average number of 

vehicles per minute moving out through the route) of the different routes can be shown by 

defining weights to different edges 
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  Fig 13.14  

Walk 

Walk in a graph is an alternating sequence of vertices and edges, starting and ending with 

vertices. The starting and ending vertices are called terminal vertices of the walk. In a walk 

the edges are not repeated but vertices may be repeated. 

A walk with different terminal vertices is called open walk. 

A walk with same terminal vertex is called closed walk. 

Path 

A path is an open walk in which no vertex repeated (or appears more than once). The length 

of a path is the number of edges in path. Two vertices are said to be reachable from each 

other it there exists a path between them. In fig 13.14 Vertex 𝐴 is reachable from 𝐷. 

13.3 Connected graphs & its components 

A graph is said to be connected if every two vertices are reachable from each other. Otherwise 

the graph is said to be disconnected 

Every disconnected graph can be partitioned into connected subgraphs and these connected 

subgraphs are called components. 

 

 (Connected graph)     (Disconnected graph) 

Fig. 13.15 
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Theorem13.2 

A graph 𝐺 is disconnected if and only if its vertex set 𝑉 is partitioned into two non-empty, 

disjoint subsets 𝑉1 and 𝑉2 such that there exists no edge in 𝐺 whose one end vertex is in 

𝑉1 and the other is in 𝑉2 

Proof: Let the graph 𝐺  be disconnected. Every disconnected graph contains some 

components. Let 𝑉1  and 𝑉2  be the two components. Then 𝑉1 ∪ 𝑉2 = 𝑉  and 𝑉1 ∩ 𝑉2 = ∅. 

Thus, {𝑉1, 𝑉2} forms a partition of 𝑉 such that there exists no edge in 𝐺 whose one end 

vertex is in 𝑉1 and other is in 𝑉2. 

Let the vertex set 𝑉 be partitioned into two non-empty, disjoint subsets 𝑉1 and 𝑉2 such that 

there exists no edge in 𝐺 whose one end vertex is in 𝑉1 and the other is in 𝑉2. Since the 

vertices of the set 𝑉1 are not connected by the vertices of the set 𝑉2 , the graph is 

disconnected.  

This proves the theorem. 

Theorem13.3 

If a graph 𝐺 (connected or disconnected) has exactly two vertices of odd degree, there 

must be path joining the two vertices. 

Proof: 

Let the graph 𝐺 be connected. Then there exists a path between each pair of vertices. 

Thus, if the graph 𝐺 is connected and has exactly two vertices of odd degree, there will 

be a path between the two vertices. 

Let the graph 𝐺 be disconnected and let it have exactly two vertices of odd degree. We 

know that every disconnected graph contains components, and a component is a sub-

graph of the graph 𝐺 and hence forms a graph itself. Since the number of vertices having 

odd degree is two, the two vertices must be a part of one component. As every component 

is a connected graph, there exists a path between the two vertices. 

This proves the theorem 

13.4 Euler Graph 

The concept of Euler graph came from the question in what type of graph 𝐺 is it possible to 

find a closed walk passing through every edge of 𝐺, which Euler has described in his 

paper dealing with the 𝐾�̈�𝑛𝑖𝑔𝑠𝑏𝑒𝑟𝑔 bridge problem. 

A closed walk that contains all edges of a graph is called an Euler line, and a graph that 

contains an Euler line is called an Euler graph. We know that a walk traces each edge exactly 

once and it is connected. Since an Euler graph contains all edges of a graph, it is always 

connected and hence Euler graphs do not have isolated vertices. An open walk that includes 

all edges of a graph is called a unicursal line or an open Euler line. A connected graph that 

has a unicursal line is called a unicursal graph 
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(a)     (b) 

Euler and unicursal graphs (a) Euler graph    (b) Unicursal graphs 

Fig. 13.16 

From the definition of a unicersal line, it is clear that by adding an edge between the initial and 

final vertices of a unicursal line, we will get an Euler line. Thus, a connected graph is unicursal 

if and only if it has exactly two vertices of odd degree. 

13.5 Hamiltonian path and Circuit 

A Hamiltonian circuit is a closed walk that traverses each vertex of a graph 𝐺 exactly once 

except the starting vertex at which the walk also terminates. In the graph shown below is 

a Hamiltonian circuit (shown in bold lines) (𝑣1 𝑒3 𝑣3 𝑒5 𝑣5 𝑒6 𝑣4 𝑒8 𝑣2 𝑒1 𝑣1) 

 

(Hamiltonian circuit) 

Fig. 13.17 

Not every circuit in a graph is a Hamiltonian circuit. A circuit in a graph is said to be 

Hamiltonian if it includes all vertices of the graph. Hence, a Hamiltonian circuit in a graph 

of 𝑛 vertices contains exactly 𝑛 vertices and 𝑛 edges. 

It should be remembered that every connected graph need not contain a Hamiltonian 

circuit. There is no criterion or condition through which we can determine the existence of 

a Hamiltonian circuit in a graph. 
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A path obtained by removing one edge from a Hamiltonian circuit is called a Hamiltonian 

path. Thus, a Hamiltonian path contains all vertices of the graph and the length of the 

Hamiltonian path in a graph of 𝑛 vertices is 𝑛 − 1. Every graph that has a Hamiltonian 

circuit also has a Hamiltonian path but its converse is not true. 

Self-loops and parallel edges cannot be included in a Hamiltonian circuit(path) as a 

Hamiltonian circuit (path) traverses each vertex exactly once. Therefore, in searching for 

the existence of a Hamiltonian circuit (path) in a given graph, the graph can be made a 

simple graph by removing all self-loops and parallel edges. Each member of a family of 

complete graphs having three or more vertices contains a Hamiltonian circuit. 

A given graph may have more than one Hamiltonian circuit. As regards the presence of 

edge disjoint Hamiltonian circuit, the determination of the exact number of edge disjoint 

Hamiltonian circuits in a graph is also an unsolved problem. However, in a complete graph 

with odd number of vertices, the number of edge disjoint Hamiltonian circuits can be 

calculated. 

13.6 Graph Coloring & Chromatic number 

Colouring of a graph is the problem associated with the assignment of colours to the elements 

(vertices, edges, regions) of the graph such that no two adjacent elements have the same 

colour. The colouring of vertices so that no two vertices have the same colour is called vertex 

colouring; edge colouring and region colouring are similarly defined. Vertex colouring is the 

initial point of colouring of graphs, and other colouring problems can be transformed to vertex 

colouring.  

Chromatic Number 

Assigning colours to all vertices of a graph such that no two vertices have the same colour is 

called proper colouring, and the graph whose vertices are coloured in such a way is called a 

properly coloured graph. The minimum number of colours required to colour a graph properly 

is called the chromatic number of the graph, denoted by 𝑘(𝐺). For example, the chromatic 

number of the graph given in fig 13.18  is three as minimum three colours are required to 

colour the graph properly, but the chromatic number of the graph in given figure 1.16 is two 

as the graph can be properly coloured with only two colours. The vertices 𝑣1 and 𝑣3 can be 

assigned the same colour. 

 

(a) 3 – chromatic graph   (b) 2 – chromatic graph 

Fig. 13.18 

In discussion involving colouring of graphs, a connected graph is usually considered  because 

the colouring of one component of the graph has no effect on the colouring  of the other 
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components. Self-loops can be discarded and parallel edges may be replaced by a single 

edge for colouring of graphs, as colouring of vertices is not affected by this process. If a graph 

is a null graph, then its chromatic number is one, and if the graph is a complete graph of 𝑛 

vertices, then its chromatic number is 𝑛. 
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Problems for Exercise 

1. Draw a diagram for each of the following graphs 𝐺 = 𝐺(𝑉, 𝐸) 

a. 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷}, 𝐸 = [{𝐴, 𝐵}, {𝐷, 𝐴}, {𝐶, 𝐴}, {𝐶, 𝐷}] 

b. 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, 𝐸 = [{𝑎, 𝑑}, {𝑎, 𝑓}, {𝑏, 𝑐}, {𝑏, 𝑓}, {𝑐, 𝑒}] 

2. Draw a diagram of each of the following multigraphs 𝐺(𝑉, 𝐸) 𝑤ℎ𝑒𝑟𝑒 𝑉 =

{𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} and 

a. 𝐸 = [{𝑃2, 𝑃4}, {𝑃2, 𝑃3}, {𝑃3, 𝑃5}, {𝑃5, 𝑃4}] 

b. 𝐸 = [{𝑃1, 𝑃1}, {𝑃2, 𝑃3}, {𝑃2, 𝑃4}, {𝑃3, 𝑃2}, {𝑃4, 𝑃1}, {𝑃5, 𝑃4}] 

3. Determine whether or not each of the following multigraphs 𝐺(𝑉, 𝐸) is a graph where 

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷} and  

a. 𝐸 = [{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶}, {𝐶, 𝐷}] 

b. 𝐸 = [{𝐴, 𝐵}, {𝐵, 𝐵}, {𝐴, 𝐷}] 

c. 𝐸 = [{𝐴, 𝐵}, {𝐶, 𝐷}, {𝐴, 𝐵}, {𝐵, 𝐷}] 

d. 𝐸 = [{𝐴, 𝐵}, {𝐵, 𝐶}, {𝐶, 𝐵}, {𝐵, 𝐵}] 

4. Suppose 𝐺 = 𝐺(𝑉, 𝐸) has five vertices. Find the maximum number 𝑚 of edges in 𝐸 if:  

a. 𝐺 is a graph,  

b. 𝐺 is multigraph 

5.   A graph has 12 edges, two vertices of degree 3, two vertices of degree 4, and other 

vertices of degree 5. Find the number of vertices in the graph. 

6. Let 𝑒 denote the number of edges in a complete bipartite graph 𝐾_(𝑚, 𝑛). 

7. Consider a graph (multigraph) 𝐺. Define a closed path and a cycle in 𝐺. 

8. Consider the graph 𝐺 where 

𝑉(𝐺) = {𝐴, 𝐵, 𝐶, 𝐷}    𝑎𝑛𝑑     𝐸(𝐺) = [{𝐴, 𝐵}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}] 

Find the degree of each vertex in 𝐺. 

9. Find the connected components of 𝐺 where 𝑉(𝐺) = {𝐴, 𝐵, 𝐶, 𝑋, 𝑌, 𝑍} and  

a. 𝐸(𝐺) = [{𝐴, 𝑋}, {𝐶, 𝑋}] 

b. 𝐸(𝐺) = [{𝐴, 𝑌}, {𝐵, 𝐶}, {𝑍, 𝑌}, {𝑋, 𝑍}]. 

10. Find the connected components of 𝐺 where  𝑉(𝐺) = {𝐴, 𝐵, 𝐶, 𝑃, 𝑄} and 

a. 𝐸(𝐺) = [{𝐴, 𝐶}, {𝐵, 𝑄}, {𝑃, 𝐶}, {𝑄, 𝐴}] 

b. 𝐸(𝐺) = ∅, the empty set. 
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Block V: Unit II Trees 
 

Learning Objectives 
After completing this unit, the learner shall be able to: 

• Define a Tree; 

• Explain the properties of a Tree; 

• Define various types of Trees; 

• Define Binary Trees; 

• Find the preorder, inorder and post order traversal of a given Tree; 

• Explain Binary Search Tree; 

• Create a Binary Search Tree; 

• Use a binary tree to sort the given list of numbers; 

The word tree suggests branching out from a root and never completing a cycle. Trees form 

one of the most widely used subclass of graphs. This is due to the fact that many of the 

applications of graph theory, directly or indirectly, involve trees. Trees occur in situations 

where many elements are to be organized into some short of hierarchy. In computer science, 

trees are useful in organizing and storing data in a database. 

Here in this session the discussion will around the basic terminology of tree, their types, and 

properties, searching trees and traversing. 

14.1 Definition 

A tree is a connected acyclic graph i.e. a connected graph having no cycle. Its edges are 

called branches. Following are examples of trees with at most five vertices.  

A tree with only one vertex is called a 𝒕𝒓𝒊𝒗𝒊𝒂𝒍 𝒕𝒓𝒆𝒆 otherwise 𝑇 is a 𝒏𝒐𝒏𝒕𝒓𝒊𝒗𝒊𝒂𝒍 𝒕𝒓𝒆𝒆. 

 

Fig 14.1 

 

1 vertex 

2 vertices 

3 vertices 

4 vertices 5 vertices 
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14.2 Properties of Trees 

Characterization 

Trees have many equivalent characterizations, any of which could be taken as the definition. 

Such characterization are useful because we need only verify that a graph satisfies any one 

of them to prove that it is a tree, after which we can use all other properties. A few simple and 

important theorems on the general properties of trees are given below 

Theorem 14.1: Prove that there is one and only one path between every pair of vertices in a 

tree 𝑇. 

Proof: We know that between every pair of vertices, there exists a path connecting them 

because tree is a connected graph. 

Let us consider for now that there exists more than one path between a pair of vertices. These 

two paths will create a circuit and it is a contradiction to the definition of a tree. 

Hence, there is one and only one path between every pair of vertices in a tree T. 

Theorem 14.2 Prove that there are 𝑛 − 1 edges in a tree with 𝑛 vertices. 

Proof: we shall use the principle of mathematical induction to prove the theorem. Let us 

consider a tree with only one vertex only, that is, 𝑛 = 1. A tree with one vertex has no edge. 

Similarly, a tree with two vertices, that is, for 𝑛 = 2, has only one edge. Hence, the statement 

is true for 𝑛 = 1 and 𝑛 = 2. 

Let the statement be true for 𝑛 = 𝑘; that is, a tree with 𝑘 vertices has 𝑘 − 1 edges. We shall 

prove the statement for 𝑛 = 𝑘 + 1. If we insert a vertex in a tree of 𝑘 vertices, then the vertex 

must be joined by any of the 𝑘 vertices through one edge only, because a tree is a connected 

graph with no circuit. Thus, increase in the number of vertices by one, the number of edges 

also increased by one. 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = 𝑘 + 1,  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 = 𝑘 − 1 +

1 = 𝑘. This implies that the statement is true for 𝑛 = 𝑘 + 1, and hence, it is true for all natural 

numbers. 

Theorem 14.3 For any positive integer 𝑛, if 𝐺 is a connected graph with 𝑛 vertices and 𝑛 − 1 

edges, then 𝐺 is tree. 

Proof: Assume 𝑛 be a positive integer and Let 𝐺 is a specific but randomly chosen graph that 

is connected and has 𝑛 vertices and 𝑛 − 1 edges. It is proved with the theorem discussed 
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before that a tree is a connected graph without cycles or circuits. We have also proved in 

recent theorem that a tree has 𝑛 − 1 edges.  

Now, we will prove the converse that if 𝐺 has no circuit and 𝑛 − 1 edges, then 𝐺 is connected. 

We split 𝐺  into 𝐺1, 𝐺2, . . . . 𝐺𝑘 . Each 𝐺   is connected and it has no circuit, since 𝐺  has no 

circuits. Hence, each 𝐺𝑘 is a tree. Now, edge 𝑒1 = 𝑛1 − 1 and  

∑ 𝑒𝑖

𝑘

𝑖=1

= ∑(𝑛𝑖 − 1)

𝑘

𝑖=1

= 𝑛 − 𝑘  𝑜𝑟 𝑒 = 𝑛 − 𝑘 

Therefore, 𝑘 = 1 or 𝐺 has only one component, Hence, 𝐺 is a tree. 

Theorem 14.4 A graph is a tree if and only if it is insignificantly connected 

Proof: Assume that 𝐺 is a graph with 𝑛 vertices and let 𝐺 is a tree with 𝑛 vertices. We know 

that if a tree with has 𝑛 number of vertices then it has (𝑛 − 1) number of edges. If an edge is 

removed from 𝐺, then it has (𝑛 − 2) edges and 𝐺 becomes disconnected.  

Therefore 𝐺 is an insignificantly connected graph. 

On the other hand, let 𝐺 be a insignificantly connected graph with 𝑛 number of vertices. The 

number of edges of 𝐺 ≥ 𝑛 − 1 as 𝐺 is a connected graph. If possible, assume that 𝐺 is not a 

tree. Then there exists a circuit in 𝐺 and 𝐺 is still connected if an edge of this circuit is deleted 

from 𝐺. This controverts hypothesis that 𝐺 is a insignificantly connected graph. Therefore, 𝐺 

is a tree. 

On the basis of the results from earlier theorems following are different but similar definitions 

of tree. A graph having 𝑛 vertices is called a tree if 

1. 𝐺 is connected and has no circuits 

2. 𝐺 is connected and has 𝑛 − 1 edges 

3. 𝐺 is a acyclic and has 𝑛 − 1 edges 

4. There exists a unique path between every pair of vertices in 𝐺 

5. 𝐺 is a insignificantly connected graph. 

Thus, an undirected simple graph 𝑇 is a tree that satisfies any of the following corresponding 

conditions: 

• 𝑇 is connected and has no circuits. 

• 𝑇 has no circuits, and a circuit is formed if any edge is added to 𝑇. 

• 𝑇 becomes disconnected if any edge is removed from 𝑇. 
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• Every two vertices of 𝑇 are connected by a unique path. 

14.3 Types of Trees (Rooted, Binary) 

14.3.1 Rooted Trees 

 A tree in which a specific vertex can be distinguished from other vertices of a tree then such 

a tree is called as rooted trees. It is not similar to the natural trees in which they have their 

roots at the bottom whereas in the graph theory rooted trees are usually drawn with their roots 

at the top. Initially, we keep the root at the top. Beneath the root and on the same level, we 

place the vertices that can be extended from the root on a simple path of length 1. Same 

process is done with these vertices also on the same level but simple path of length 2. We 

repeat it until the entire tree is drawn. Definitions of some of the related terms can be given 

as. 

1. The number of edges laterally on unique path amongst vertex and the root can be 

called as level of vertex. The level of the root can be called as 0. The vertices 

immediately under the root are said to be in level 1 and so on. 

2. The maximum level to any vertex of the tree is called as height of that rooted tree. The 

deepness of a vertex 𝑣 in a tree is the distance of the path from the root to 𝑣. 

3. Given any interior vertex 𝑣 of a specific rooted tree, the children of 𝑣 are all those 

vertices that are nearby to 𝑣 and are one level further away from the root as compared 

to 𝑣. If 𝑤 is a child of 𝑣, the 𝑣 is called the parent of 𝑤, and two vertices that are both 

children of the same ancestor are called siblings. 

4. If the vertex has no children, then that vertex is called as leaf (or a terminal vertex). If 

any vertex has either one or two children, then that vertex is called an internal vertex. 

5. The offspring of the vertex 𝑢 is the set consisting of all the children of 𝑢 together with 

ancestry of those children. Given vertices 𝑣 and 𝑤, if 𝑣 lies on the unique path between 

𝑤 and the root, then 𝑣 is an ancestor of 𝑤 and 𝑤 is a offspring of 𝑣. 

These terms are illustrated in following figure 14.2. 
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Fig 14.2 

Example 14.1 

Consider the rooted tree in following figure 

 

Fig 14.3 

(a) What is the root of T? 

(b) Find the leaves and the internal vertices of 𝑇. 

(c) What are the levels of 𝑐 and 𝑒. 

(d) Find the children of 𝑐 and 𝑒. 

(e) Find the descendants of the vertices 𝑎 and 𝑐. 

Solution: 
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(a) Vertex 𝑎 is distinguished as the only vertex located at the top of the tree. Therefore 𝑎 

is the root. 

 

(b) The leaves are those vertices that have no children. These are 𝑏, 𝑓, 𝑔 and ℎ. The 

internal vertices are 𝑐, 𝑑 and 𝑒. 

(c) The levels of 𝑐 and 𝑒 are 1 and 2 respectively. 

(d) The children of 𝑐 are 𝑑 and 𝑒 and of 𝑒 are 𝑔 and ℎ. 

(e) The descendants of 𝑎 are 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ. The descendants of 𝑐 are 𝑑, 𝑒, 𝑓, 𝑔, ℎ. 

Rooted trees with the property that all of their internal vertices have the same number of 

children are used in many problems involving searching, sorting and coding. 

14.3.2 Binary Trees 

A tree in which a vertex can have at most two children then such a tree is called as binary 

tree. In the area computer science specifically dealing with algorithms, a binary tree having 

vertices of zero or two children is very useful. Thus, a specific class of binary can defined as 

follows: 

A full binary tree has exactly one vertex of degree two and other vertices of degree three or 

one. A complete binary tree is completely filled (every vertex has left as well as right child) at 

every level, except possibly the last, and all nodes are as far left as possible. 

 

(a) Full and Complete Binary tree 

(b) Complete but not full binary tree 

(c) Full but not complete binary tree 

Fig 14.4 
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From the definition of a binary tree, the following properties can be observed. 

Theorem 14.5 The total number of vertices 𝑛 in a full binary tree is always odd. 

Proof: Let us consider that 𝑛 be the vertices of a binary tree. As per the definition the degree 

of one vertex is two, and and on the other hand the remaining 𝑛 − 1 vertices is either one or 

three. We know that there are even numbers of vertices having an odd degree in a graph. 

Since, 𝑛 − 1 is an even number and therefore 𝑛 is an odd number. 

Theorem 14.6 The total number of pendent vertices in a fully binary tree with 𝑛 vertices is 
𝑛+1

2
. 

Proof: Let 𝑝 be the number of pendent vertices. The degree of one vertex in a full binary tree 

is two and that for the remaining vertices is three. We know that as per the earlier theorem a 

tree with 𝑛 vertices contains 𝑛 − 1 edges. Thus, using the equation 

∑ deg (𝑣𝑖)

𝑛

𝑖=1

= 2𝑒 

We have 1. 𝑝 + 2.1 + 3. (𝑛 − 𝑝 − 1) = 2(𝑛 − 1) 

⟹ 𝑝 + 2 + 3𝑛 − 3𝑝 − 3 = 2𝑛 − 2 

⟹ −2𝑝 = −𝑛 − 1 

⟹ 𝑝 =
𝑛 + 1

2
 

14.4 Tree Traversing 

A traversal of a tree is a process to traverse a tree in a systematic way so that each vertex is 

visited exactly once. Three commonly used traversals are preorder, postorder and inorder. 

We describe here these three process that may be used to traverse a binary tree. 

Preorder Traversal 

The recursive definition of preorder traversal of a binary tree is given as follows. 

(i) Initially start with the root 

(ii) Navigate to the left subtree in preorder 

(iii) Navigate to the right subtree in preorder 
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Postorder Traversal 

The recursive definition of postorder traversal of a binary tree is given as follows 

(i) Navigate to the left subtree in postorder 

(ii) Navigate to the right subtree in postorder 

(iii) Finally end up at the root 

Inorder Traversal 

The recursive definition of inorder traversal of a binary tree is given as follows 

(i) Navigate in inorder to the left subtree 

(ii) Visit through the root 

(iii) Navigate in inorder to the right subtree 

Example 14.3 Find the preorder, inorder and post order traversal of the following tree 𝑇 

 

Fig 14.5 

Preorder Traversal 

1. First visit the root 𝒂 

2. Traverse the left subtree and visit the root 𝒃. Now traverse the left subtree with 𝑏 as 

the root; it is empty. The traverse the right subtree of 𝒃 and visit the root 𝒅. There is 

no subtree of 𝒅.  

3. Then back to the root 𝒂, traverse the right subtree and visit the root 𝒄.  Traverse the 

left subtree with 𝑐 as the root and visit the root 𝑒. The subtree of 𝑒 is empty. Then 

traverse the right subtree of 𝒄 and visit the root 𝑓. The root 𝑓 has no subtree. 

All the vertices have been covered. Hence output is 𝒂   𝒃  𝒅  𝒄  𝒆  𝒇 
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Inorder Traversal 

1. First traverse the left subtree with root 𝒂 in inorder. Again traverse the left subtree 

with root 𝑏 in inorder. It is empty, so visit 𝑏. Now traverse right subtree of 𝑏. Then 

traverse left subtree of 𝑑 which is empty, visit 𝑑. The right subtree of 𝑑 is empty. 

2. Back to 𝒂 and visit 𝒂 

3. Traverse the right subtree of 𝒂 in inorder. Again traverse the left subtree of 𝑐 inorder. 

Then the left subtree of 𝑒 in inorder; it is empty. So visit 𝑒. Traverse the right subtree 

of 𝑐. There is no subtree of 𝑓, so visit 𝑓, so visit 𝑓. Back 𝑐 and visit 𝑐. 

All the vertices have been covered. Hence output is 𝒃  𝒅  𝒂  𝒆  𝒇  𝒄. 

Postorder Traversal 

1. Traverse the left subtree with root 𝒂 in post order. 

2. Traverse the left subtree with root 𝑏 in postorder. The left subtree of 𝑏 is empty. 

Traverse the right subtree. Since 𝑑 has no subtree, visit 𝑑. Then back to 𝑏 and visit 𝑏. 

Then back to 𝒂 and traverse the right subtree of  a. Traverse the left subtree with 𝑐 as 

root. Since 𝑒 has no subtree, visit 𝑒. Traverse the right subtree with 𝑐 as root. Since 𝑓 

has no subtree, visit 𝑓. Then back to 𝑐 and visit 𝑐. 

3. Back to the root 𝒂 and visit 𝒂. 

All the vertices have been covered. Hence output is 𝒅 𝒃 𝒆 𝒇 𝒄 𝒂 

Given an order of traversal of a tree it is possible to construct a tree. For example consider 

the following order: 

Inorder = 𝒅  𝒃  𝒆  𝒂  𝒄 

We can construct the binary tree shown below using this order of traversal: 

 

Fig 14.6 



153 | P a g e  
 

14.5 Binary Search Tree 

A binary search tree is basically a binary tree, and therefore it can be traversed in preorder, 

postorder, and inorder. If we traverse a binary search tree inorder and print the identifiers 

contained in the vertices of the tree, we get a sorted list of identifiers in the ascending order. 

Binary trees are used extensively in computer science to store elements from an ordered set 

such as a set of numbers or a set of strings. Suppose we have a set of strings and numbers. 

We call them as keys. We are interested in two of the many operations that can be performed 

on this set. 

1. Ordering (or sorting) the set. 

2. Searching the ordered set to locate a certain key and, in the event of not finding the 

key in the set, adding it at the right position so that the ordering of the set is maintained. 

Definition 

A binary tree 𝑇 in which data are linked with the vertices is called as binary search tree. The 

data are organized so that, for each vertex 𝑣 in 𝑇, each data item under the left subtree of 𝑣 

is less than that of data item in 𝑣 itself and each data item under the right subtree of 𝑣 is 

greater than that of data item in 𝑣 itself. Therefore, A binary search tree for a finite set 𝑆 is a 

labled binary tree where each vertex 𝑣 is associated with an element 𝑙(𝑣) ∈ 𝑆 such that 

1. for each vertex 𝑢 under the left subtree of 𝑣, 𝑙(𝑢) < 𝑙(𝑣), 

2. for each vertex 𝑢 under the right subtree of 𝑣, 𝑙(𝑢) > 𝑙(𝑣), and 

3. for each element 𝑎 ∈ 𝑆, there is a unique vertex 𝑣 such that 𝑙(𝑣) = 𝑎 

The binary tree 𝑇  is a binary search tree since each vertex in 𝑇 is greater than each number 

under its left subtree and is less than each number under its right subtree. 

Creating a Binary Search Tree 

In order to form a binary tree for a set of items a recursive procedure can be adopted as 

follows.  

At the start, we form a vertex and keep the first item in the list in this vertex and assign it as 

the key of the root of that tree. In order to add a new item to the tree, first we will compare it 

with the keys of vertices already in the tree, starting from the root and traversing to the left, if 

the item is less than that of the key at respective vertex and has a left child, or moving to the 

right if the item is greater than that of the key at the respective vertex and vertex has a right 

child. When the item is found less than the key at respective vertex with no child then we 
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create a new child to the left of that vertex. Similarly, when the item is found greater than the 

key at respective vertex having no right child, then we create a new right child and assign the 

item to it. In this manner, all the items in the list can be stored in the tree and thus a search 

tree is created. 

Example 14.2 Form a binary search tree for the data 16, 24, 7, 5, 8, 20, 40, 3 in the given order. 

Solution: We start by choosing the number 16 to be the root of the tree. Since the number 24 

is greater than 16, add a right child to the root and assign 24 to it. Similarly, next element in 

the list is 7 and again we need to start from the root and equate it with 16. Here 7 is less than 

the 16, add a left child to the root and assign 7 to it. Further we have 5 in the list which is less 

than 16 and 7 as well, then we move further down to the left child of 7 and assign the vertex 

to 5. Similar procedure is followed for remaining numbers in the list. The resultant binary 

search tree is given as below. 

 

 

 

 

 

 

 

 

 

Fig 14.7 
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3 
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Problems for Exercise: 

1. Define a rooted tree 𝑇, with an example and show how such a tree may be viewed as 

directed graph. 

2. Define the terms leaves and branches in a rooted tree 𝑇 and give examples. 

3. Let 𝑣 be a vertex in a rooted tree 𝑇 with root𝑅. Define the level or depth of 𝑣. 

4. Let 𝑇 be a rooted tree with root 𝑅 

a. Explain what it means for a vertex to precedes or follow another vertex in 𝑇. 

b. Define the notion of parent, children, and siblings in  𝑇 

5. A tree is a useful device for enumerating all the logical possibilities of sequence of 

event can occur in a finite number of ways. Use a tree to identify all the possible 

results of a tennis match between two players, Mahesh and Ajay, where the winner is 

the first player who wins two sets in a row or the first player who wins a total of three 

sets. 

6. Define a binary tree 𝑇 and give an example. 

7. Define right and left successors of a root node of a binary tree. Explain it with an 

example. 

8. Draw all possible non-similar binary trees with 3 nodes. 

9. A binary tree 𝑇 has 9 nodes. The inorder and preorder traversals of 𝑇 yield the 

following sequences of nodes: 

a. Inorder: 𝐸  𝐴  𝐶  𝐾  𝐹  𝐻  𝐷  𝐵  𝐺 

b. Preorder: 𝐹  𝐴  𝐸  𝐾  𝐶  𝐷  𝐻  𝐺  𝐵 

10. Use a binary tree to sort the following list of numbers 

15, 7, 24, 11, 27, 13, 18, 19, 9 
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Block V: Unit III Finite Automata 
 
Learning Objectives 
After completing this unit, the learner shall be able to: 

• Explain the basic concepts of Automation theory; 

• Find a phrase structure grammar to generate the set; 

• Explain Chomsky Hierarchy; 

• Define Deterministic Finite Automaton (DFA); 

• Design a DFA that accepts a given string; 

• Define Non-deterministic Finite Automaton (NFA); 

• Differentiate between Deterministic Finite Automaton and Non-Deterministic Finite 

Automaton; 

• Reduce the given DFA into minimal state DFA; 

• Design a Mealy machine; 

• Design a Moore machine; 

Words in a language can be combined in various ways. The grammar of a language tells us 

whether a combination of words is a valid sentence. The syntax of a natural language (body 

of words and methods of combining words used and understood by considerable community), 

that is, a spoken language, such as English, Hindi, Bengali or Tamil is extremely complicated. 

Research in the automatic translation of one language to another has led to the concept of 

formal language which is specified by a well-defined set of rules of syntax. We will describe 

the sentences of a formal language using a grammar which is an algebraic system describing 

the process by which instances of a language can be constructed.  

Formal languages are different from natural languages in that formal languages are designed 

for specific applications. They play an important role in programming languages in computer 

science. 

15.1 Basic concepts of Automation theory 

An automation is abstract model of a computer, which accepts some input (a string), produces 

output (yes / no or a string), and may have internal storage (usually a stack or tape). Three 

fundamental ideas are the major themes of this session: language, grammars and automata. 

15.1.1 Alphabet & Words 

An alphabet is a finite and non-empty set of symbols. The symbol ∑ is used to denote an 

alphabet. The elements of an alphabet are known as letters. For example 

∑ =  {𝑎, 𝑏, 𝑐} 𝑜𝑟  {0, 1} 

A word (string) is a finite sequence of the symbols of an alphabet. Let ∑ = {𝑎, 𝑏, 𝑐}. Then 𝑎𝑏𝑏𝑐,

𝑎𝑐𝑐𝑏, and 𝑏𝑏𝑎𝑐 are words over the alphabet ∑. The length of a word 𝑤, denoted by |𝑤|, is the 

number of symbols in the word. Let 𝑤 = 𝑎𝑏𝑏𝑐 be a word over the alphabet ∑ = {𝑎, 𝑏, 𝑐}. Then 

|𝑤| = 4. A word with zero occurrences of symbols (|𝑤| = 0) is called an empty word, denoted 

by 𝜆. 
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The concatenation of two words 𝑢 and 𝑣 is the word 𝑢𝑣 obtained by juxtaposing 𝑢 and 𝑣. If 

𝑢 = 𝑎𝑏𝑏𝑐 and 𝑣 = 𝑏𝑎𝑎𝑐, then 𝑢𝑣 = 𝑎𝑏𝑏𝑐𝑏𝑎𝑎𝑐. 

The reverse of a word 𝑤, denoted by 𝑤−1 or 𝑤𝑅, is the word having all letters of the word 𝑤 in 

the reverse order. If 𝑤 = 𝑎𝑐𝑏𝑏, then 𝑤−1 = 𝑏𝑏𝑐𝑎. 

If ∑ is an alphabet, then  *  is used to denote the set of all possible words generated over 

the alphabet ∑. The operator ∗ is called the Kleeny closure. The set *  always contains the 

empty word. If we exclude the empty word from * , then we have a set of non-empty words 

over the alphabet ∑ denoted by + . Thus, 

+  = *  −   {𝜆}      𝑜𝑟       * =
+ ∪ {𝜆} 

The symbol ∑𝑘  is used to denote the set of words of length 𝑘  over the alphabet ∑ . If 

∑ = {𝑎, 𝑏}, then 2 = {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}. 

Using the definition of ∑ 𝑘, we can define ∑∗ as follows: 

*    =   
0   ∪   

1   ∪   
2 … …  ∪   

k   ∪    
1+ k

    ∪   … … … 

15.1.2 Language 

A language over an alphabet ∑ is a subset of  * . Let ∑ = {𝑎, 𝑏}. Then the set {𝑎, 𝑎𝑎, 𝑎𝑎𝑎} is 

a language over ∑.  This language has a finite number of words; hence, it is a finite language. 

Example 15.1 Let 𝐿 = {𝑎𝑛𝑏𝑛 ∶ 𝑛 ≥ 0}. Find the words of the language. 

Solution: 𝐿 = {𝜆, 𝑎𝑏, 𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑏𝑏𝑏, … … } . The language 𝐿  consists of words in which the 

number of 𝑎′𝑠 is equal to that of 𝑏′𝑠 and all occurrences of 𝑏′𝑠 are followed by the occurrences 

of 𝑎′𝑠. 

15.1.3 Grammars 

Grammar is a set of rules to define a valid sentence in any language. Before giving a technical 

definition of grammar, we shall study, for the sake of simplicity, two sentences in English with 

a view of formalizing of construction of these sentences. A typical rule of English grammar 

specify that : 

1. A 𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆 is made up of a 𝒏𝒐𝒖𝒏 𝒑𝒉𝒓𝒂𝒔𝒆 followed by a 𝒗𝒆𝒓𝒃 𝒑𝒉𝒓𝒂𝒔𝒆. 

2. A 𝒏𝒐𝒖𝒏 𝒑𝒉𝒓𝒂𝒔𝒆 is made up of an 𝒂𝒓𝒕𝒊𝒄𝒍𝒆 followed by an 𝒂𝒅𝒋𝒆𝒄𝒕𝒊𝒗𝒆 followed by a 

𝒏𝒐𝒖𝒏, or 

3. A 𝒏𝒐𝒖𝒏 𝒑𝒉𝒓𝒂𝒔𝒆 is made up of an 𝒂𝒓𝒕𝒊𝒄𝒍𝒆 followed by a 𝒏𝒐𝒖𝒏; 

4. A 𝒗𝒆𝒓𝒃 𝒑𝒉𝒓𝒂𝒔𝒆 is made up of a 𝒗𝒆𝒓𝒃 followed by an 𝒂𝒅𝒗𝒆𝒓𝒃 

5. A 𝒗𝒆𝒓𝒃 𝒑𝒉𝒓𝒂𝒔𝒆 is made of a 𝒗𝒆𝒓𝒃; 

6. An article is a, or 

7. An article is the; 

8. An adjective is large, or 

9. An adjective is hungry; 

10. A noun is rabbit, or 
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11. A noun is mathematician; 

More concisely, we write this as 

< 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > → < 𝑁𝑜𝑢𝑛 𝑃ℎ𝑟𝑎𝑠𝑒 > < 𝑉𝑒𝑟𝑏 𝑃ℎ𝑟𝑎𝑠𝑒 > 

< 𝑁𝑜𝑢𝑛 𝑃ℎ𝑟𝑎𝑠𝑒 > → < 𝐴𝑟𝑡𝑖𝑐𝑙𝑒 > < 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 > < 𝑁𝑜𝑢𝑛 > 

< 𝑁𝑜𝑢𝑛 𝑃ℎ𝑟𝑎𝑠𝑒 > → < 𝐴𝑟𝑡𝑖𝑐𝑙𝑒 > < 𝑁𝑜𝑢𝑛 > 

< 𝑉𝑒𝑟𝑏 𝑃ℎ𝑟𝑎𝑠𝑒 > → < 𝑉𝑒𝑟𝑏 > < 𝐴𝑑𝑣𝑒𝑟𝑏 > 

< 𝑉𝑒𝑟𝑏 𝑃ℎ𝑟𝑎𝑠𝑒 > → < 𝑉𝑒𝑟𝑏 > 

< 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > → < 𝐴𝑟𝑡𝑖𝑐𝑙𝑒 > < 𝑁𝑜𝑢𝑛 > < 𝑉𝑒𝑟𝑏 > < 𝐴𝑑𝑣𝑒𝑟𝑏 > 

Now, we associate the actual words, 

< 𝐴𝑟𝑡𝑖𝑐𝑙𝑒 > →   𝑎 

< 𝐴𝑟𝑡𝑖𝑐𝑙𝑒 > → 𝑡ℎ𝑒 

< 𝑁𝑜𝑢𝑛 > → 𝑏𝑜𝑦 

< 𝑁𝑜𝑢𝑛 > → 𝑑𝑜𝑔 

< 𝑉𝑒𝑟𝑏 > → 𝑟𝑢𝑛𝑠 

< 𝑉𝑒𝑟𝑏 > → 𝑤𝑎𝑙𝑘𝑠 

< 𝑎𝑑𝑣𝑒𝑟𝑏 > → 𝑞𝑢𝑖𝑐𝑘𝑙𝑦 

< 𝑎𝑑𝑣𝑒𝑟𝑏 > → 𝑠𝑙𝑜𝑤𝑙𝑦 

Then some sentences in the language are 

𝐴 𝑏𝑜𝑦 𝑟𝑢𝑛𝑠 𝑞𝑢𝑖𝑐𝑘𝑙𝑦. 

𝑇ℎ𝑒 𝑑𝑜𝑔 𝑤𝑎𝑙𝑘𝑠 𝑠𝑙𝑜𝑤𝑙𝑦. 

This example illustrates the definition of a general concept in terms of simpler ones. With this 

background we can give definition of a grammar. This definition is due to Noam Chomsky. 

15.1.4 Definition of Grammar 

A phrase-structure grammar (or, simply, grammar) 𝐺 is defined by a 4 – tuple 𝐺 = (𝑉𝑁, 𝑉𝑇 , 𝑆, 𝑃) 

where 

(i) 𝑉𝑁 is a finite set of non-terminal symbols. 

(ii) 𝑉𝑇 is a finite set of terminal symbols 

(iii) Among all the non-terminals in 𝑉𝑁, there is a special non-terminal 𝑆 ∈ 𝑉𝑁, called 

the start symbol. 
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(iv) 𝑃 is a finite set where elements are 𝛼 → 𝛽 where 𝛼 and 𝛽 are strings on 𝑉𝑁 ∪ 𝑉𝑇, 

has at least one symbol from 𝑉𝑁 . Elements of 𝑃  are called productions or 

production rules. 

 

Set of production is the heart of a grammar and language specification. 

The nonterminal in 𝑉𝑛  are intermediate symbols used to describe the structure of the 

sentences. 

In the above example, 

𝑉𝑁 = {< 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >, < 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 >, < 𝑛𝑜𝑢𝑛 >, < 𝑣𝑒𝑟𝑏 >, < 𝑎𝑑𝑣𝑒𝑟𝑏 >} 

The terminals in 𝑉𝑇 are symbols used to make up sentences in the language. In the above 

example, 

𝑉𝑇 = {𝑎, 𝑡ℎ𝑒, 𝑏𝑜𝑦, 𝑑𝑜𝑔, 𝑟𝑢𝑛𝑠, 𝑤𝑎𝑙𝑘𝑠, 𝑞𝑢𝑖𝑐𝑘𝑙𝑦, 𝑠𝑙𝑜𝑤𝑙𝑦} 

The starting symbol 𝑆 is a special nonterminal that begins the generation of any sentence in 

the language. In the above example, 𝑆 =< 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >. 

The productions 𝑃 are grammatical rules that specify how sentences in the language can be 

made up. 

Example 15.2 Find a phrase structure grammar to generate the set {0𝑚1𝑛 ∶

𝑚  𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠} 

Solution: we will give two grammars 𝐺1 and 𝐺2 that generate this set. This will illustrate that 

two grammars can be generate the same language. 

The grammar 𝐺1 has alphabet 𝑉𝑛 = {𝑆}, terminals 𝑉𝑇  = {0, 1}, and productions 𝑆 → 0𝑆, 𝑆 →

𝑆1, 𝑎𝑛𝑑  𝑆 → 𝜆. 𝐺1 generates the correct set, since using the first production 𝑚 times puts 𝑚 

0𝑠 at the beginning of the string, and using the second production 𝑛 times puts 𝑛 times puts 

𝑛  1𝑠 at the end of the string. The details of this verification are left to the reader. 

The grammar𝐺2 has alphabet 𝑉𝑛 = {𝑆, 𝐴}, terminals 𝑉𝑇 = {0, 1} and productions 𝑆 → 0𝑆, 𝑆 →

1𝐴, 𝑆 → 1, 𝐴 → 1𝐴, 𝐴 → 1, 𝑆 → 𝜆. The details that this grammar generates the correct set are 

left as exercise for the reader. 

15.1.5 Types of Phrase structure grammar 

Phrase structure grammars can be classified according to the types of productions that are 

allowed. 

We will see the different types of languages defined in this scheme correspond to the classes 

of the languages that can be recognized using different models of computing machines. 

A 𝒕𝒚𝒑𝒆 𝟎  grammar has no restrictions on its productions. A 𝒕𝒚𝒑𝒆 𝟏  grammar can have 

productions only of the form 𝑤1 → 𝑤2 and 𝑤1 → 𝜆. A 𝒕𝒚𝒑𝒆 𝟐 grammar can have productions 

only of the form 𝑤1 → 𝑤2, where 𝑤1 is a single symbol that is not a terminal symbol. A 𝒕𝒚𝒑𝒆 𝟑 
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grammar can have productions only of the form 𝑤1 → 𝑤2 with 𝑤1 = 𝐴 and  𝑤2 = 𝑎𝐵 𝑜𝑟 𝑤2 = 𝑎, 

where 𝐴   𝑎𝑛𝑑   𝐵 are non-terminal symbols and 𝑎 is a terminal symbol, or with 𝑤1 = 𝑆 and 

𝑤2 = 𝜆. 

15.1.6 Chomsky Hierarchy 

From the definitions of different types of grammars we see that every type3 grammar is type 

2 grammars, every type 2 grammar is a type 1 grammar, and every type 1 grammar is a type 

0 grammar. Type 2 grammar are called 𝒄𝒐𝒏𝒕𝒆𝒙𝒕 𝒇𝒓𝒆𝒆 𝒈𝒓𝒂𝒎𝒎𝒂𝒓𝒔  since a non-terminal 

symbol that is the left side of a production can be replaced in a string whenever it occurs, no 

matter what else is in the string. A language generated by a type 2 grammar is called 

𝒄𝒐𝒏𝒕𝒆𝒙𝒕 𝒇𝒓𝒆𝒆 𝒍𝒂𝒏𝒈𝒖𝒂𝒈𝒆. When there is a production of the form 𝑙𝑤1𝑟 →  𝑙𝑤2𝑟 (but not of the 

form 𝑤1 → 𝑤2), the grammar is called type 1 or 𝒄𝒐𝒏𝒕𝒆𝒙𝒕 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆 since 𝑤1can be replaced 

by 𝑤2 only when it is surrounded by a regular grammar called 𝒓𝒆𝒈𝒖𝒍𝒂𝒓.  

 

 

                                       Fig 15.1  

Example 15.3 

1. {0𝑚1𝑛 ∶ 𝑚, 𝑛 = 0, 1, 2, … } is a regular language, since it can be generated by a regular 

grammar. 

2. {0𝑛1𝑛 ∶ 𝑛 = 0, 1, 2, … } is a context free language, since the productions in this grammar 

are 𝑆 → 0𝑆1 and 𝑆 → 𝜆. However, it is not a regular language 

3. The set {0𝑛1𝑛2𝑛 ∶ 𝑛 = 0, 1, 2, … }  is a context sensitive language, since it can be 

generated by a type 1 language, but not by any type 2 language. 

 

Type 3 or regular

Type 2 or Context free

Type 1 or Context Sensitive

Type 0 or phrase structure
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Table 15.1 The Chomsky Hierarchy 

Class of Grammar, 𝑮𝟏 Grammatical Characterization Machine Characterization 

Type 0 
Unrestricted (or phrase 
structure) 

Turing machine 

Type 1 Context-sensitive Linear Bounded Automation  

Type 2 Context-free Pushdown Automation 

Type 3 Regular (or right linear) Finite state machine 

 

15.2 Deterministic Finite State Automata 

A deterministic finite automaton (DFA) is a finite state machine where for each pair of state 

and input symbol, there is one and only one transition to the next state as defined by 

transition function. Formally, DFA is defined by a five – tuple 𝑀_𝐷 = (𝑄, ∑, 𝛿, 𝑞0, 𝐹), where 𝑄 

is a finite set of internal states, ∑ is a finite set of input symbols, called the alphabet, 

𝛿: 𝑄 × ∑ → 𝑄 is the transition function, 𝑞0 ∈ 𝑄 is the initial state, and 𝐹 ⊆ 𝑄 is the set of final 

states. Moreover, 𝐿(𝑀𝐷) is the language accepted by the machine 𝑀𝐷. 

Transition graphs are used to visualize and represent a finite automaton. A transition graph 

has the following components: 

A state 𝑞 is represented by a circle  

                                                       . 

                                                         Fig 15.2   

The initial (starting) state is given by a circle with an arrow  

                                                        

                                                          Fig 15.3 

The final state is represented by a double circle 

                                                                 

                                                                     Fig 15.4 

𝑞 

𝑞0 

𝑞 
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The transition between states is denoted by an arc between them with an input symbol and 

the direction is marked by an arrow 

 

                                                                     Fig 15.5 

A deterministic automaton works as follows: Initially, it is assumed that the automaton is in the 

initial state 𝑞0. The automaton reads the strings from left to right. Each transition consumes 

one input symbol and the transition function decides the next state. Finally, at the end of the 

string, the string is accepted if the automaton is in final state and is otherwise rejected. 

A state is said to be a dead state if it is not accepting state and for each input symbol the 

transition is defined to itself. 

 

Example 15.4  Let ∑ = {𝑎, 𝑏}. Design a DFA that accepts all the strings containing exactly one 

𝑎. 

Solution: Since the set of strings contains exactly one 𝑎, it can start and terminate with any 

number of 𝑏′𝑠. Let the starting state be 𝑞0; that is, initially the automaton will be at the state 

𝑞0. If the input symbol is 𝑏, then the state will remain the same; if the input symbol is 𝑎, the 

automaton will move to the next state 𝑞1. As the condition of exactly one 𝑎 has been fulfilled, 

the state 𝑞1 will be the final state. At 𝑞1 if the next input symbol is 𝑏, then the state will remain 

the same as 𝑏 can appear any number of times after one 𝑎. However, if the next input symbol 

is 𝑎, then the automaton will move to the next non-accepting state 𝑞2, and for any other input 

symbol the state will remain the same. 

The DFA 𝑀_𝐷 = (𝑄, ∑, 𝛿, 𝑞0, 𝐹) consists of the following sets: 

𝑄 = {𝑞0, 𝑞1, 𝑞2} and 𝐹 = {𝑞1} 

The transition function can be defined in the form of the transition table 

                                          Table 15.2 Transition table 

Present State 
Transition state for input symbols 

𝒂 𝒃 

𝑞0 𝑞1 𝑞0 

𝑞1 𝑞2 𝑞1 

𝑞2 𝑞2 𝑞2 

 

𝑞1 𝑞2 
 

𝑎 
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The transition graph is given as, 

 

 

                                                                     Fig 15.6 

Extended Transition Function 

The behavior of transition of a transition function over an arbitrary string needs to be 

determined. An extended transition function is defined as 𝛿 ∗: 𝑄 × ∑∗ → 𝑄, which reads a 

string in place of an input symbol and defines a new transition state after reading the string. 

For example, if 𝛿(𝑞0, 𝑎) = 𝑞1 and 𝛿(𝑞1, 𝑏) = 𝑞2, then 𝛿 ∗ (𝑞0, 𝑎𝑏) = 𝑞2.  

15.3  Non-deterministic Finite Automata 

A non-deterministic finite automaton (NFA) allows a set of moves for each situation rather than 

a fixed choice as in the case of deterministic automata. Formally, NFA is defined by a five-

tuple 𝑀𝑁 = (𝑄,  , 𝛿, 𝑞0, 𝐹), where 𝑄 is a finite set of internal states,  is a finite set of input 

symbols, called the alphabet, 𝛿. 𝑄 × ( ∪ {𝜆}) → 𝑃(𝑄) is the transition function, 𝑃(𝑄) is the 

power set of 𝑄, 𝑞0 ∈ 𝑄 is the initial state, and 𝐹 ⊆ 𝑄 is the set of final states. Moreover, 𝐿(𝑀𝑁) 

is the language accepted by the machine 𝑀𝑁. 

Differences between Deterministic Finite Automaton and Non-Deterministic Finite 

Automaton 

1. In NFA, the range of 𝛿 is the power set 𝑃(𝑄), which describes a set of transition 

states for a given input symbol and the existing state. For example, for a current state 

𝑞0 and an input symbol 𝑎, 𝛿(𝑞0, 𝑎) = {𝑞1, 𝑞2}. In DFA, each transition defines a 

unique state. 

2. NFA can make a transition without consuming an input symbol. It is defined as 𝜆 −

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛. For example, 𝛿(𝑞0, 𝜆) = 𝑞1. It is not possible in DFA. 

3. In NFA, there may be no transition defined for a specific state. For example, 

𝛿(𝑞0, 𝑎) = ∅. It is not possible in DFA. 

Although there are some differences between the definitions of DFA and NFA, it may be 

shown in formal theory that they are equivalent. For any given NFA, one may construct an 

equivalent DFA, and vice versa. 

In NFA, where several moves are possible, we start with one and move forward to check 

whether the given string is accepted or not. In case of non-acceptance, we move backwards 

and explore other choices. This process is called 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔. 

𝑞0 𝑞2 𝑞1 
 

𝑏 

𝑎 

𝑎,  𝑏 

𝑎 

𝑏 
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Example 15.5 Let ∑ = {𝑎, 𝑏}. Construct an NFA that accepts the set of all strings containing 

𝑎𝑏 as a substring. 

Solution: Since we need 𝑎𝑏 as a substring, in order to get 𝑎𝑏, we need two states after the 

initial state 𝑞0 

 

                                                                     Fig 15.7 

Now, before and after the string 𝑎𝑏, any number of 𝑎 and 𝑏 can appear. Thus, the NFA can 

be constructed as shown below, 

 

                                                                     Fig 16.8 

15.4 Minimization of Finite Automata 

For a given language, there may be more than one DFA that accepts the same language. The 

two or more deterministic finite automata that accept the same language will differ only in the 

number of states. Thus, the number of states in a DFA can be reduced without affecting the 

nature of the automata. The reduction procedure can be understood with the help of the 

following definitions: 

Two states 𝑞𝑖 and 𝑞𝑗 are called indistinguishable if 𝛿 ∗ (𝑞𝑖, 𝑤) ∈ 𝐹 → 𝛿 ∗ (𝑞𝑗, 𝑤) ∈ 𝐹 and 𝛿 ∗

(𝑞𝑖, 𝑤) ∉ 𝐹 → 𝛿 ∗ (𝑞𝑗, 𝑤) ∉ 𝐹 for all 𝑤 ∈ * . 

Two states 𝑞𝑖 and 𝑞𝑗 are called distinguishable by a string 𝑤 if there exists a string 𝑤 ∈ *  

such that 𝛿 ∗ (𝑞𝑖, 𝑤) ∈ 𝐹 and 𝛿 ∗ (𝑞𝑗, 𝑤) ∉ 𝐹 

The relation indistinguishable on the set of states of a DFA forms an equivalence relation. As 

every equivalence relation generates a partition on the given set in which the relation is 

defined, the relation indistinguishable will also generate a partition on the set of states. Let 

𝑀_𝐷 = (𝑄, ∑, 𝛿, 𝑞𝑅0, 𝐹) be a DFA and 𝑀𝑅 = (𝑄𝑅 , ∑, 𝛿𝑅 , 𝑞𝑅0, 𝐹𝑅) be the corresponding reduced 

DFA. The reduction procedure can be defined as follows: 

1. If a state is not accessible from the initial state through any path, then remove the 

state. 

𝑞2 
 

𝑎 

𝑞1 

𝑏 

𝑞0 𝑞1 

𝑎,  𝑏 

𝑎 

𝑎,  𝑏 

𝑏 

𝑞2 
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2. Check every pair of states (𝑞𝑖, 𝑞𝑗) for being distinguishable. For this purpose, if 𝑞𝑖 ∈ 𝐹 

and 𝑞𝑗 ∉ 𝐹 or vice versa, then identity (𝑞𝑖, 𝑞𝑗) as distinguishable. 

3. For all remaining pairs (𝑞𝑖, 𝑞𝑗) and all 𝛼 ∈ ∑, compute 𝛿(𝑞𝑖, 𝛼) and 𝛿(𝑞𝑗, 𝛼). Let 

𝛿(𝑞𝑖, 𝛼) = 𝑞𝑚 and 𝛿(𝑞𝑗, 𝛼) = 𝑞𝑁. If (𝑞𝑚, 𝑞
𝑁

) is identified as distinguishable through 

step 2, then identify (𝑞𝑖 , 𝑞𝑗)  also as distinguishable. 

4. Repeat step 3 until the chain of identification of distinguishable pairs terminates. This 

procedure will give all distinguishable pairs of states. 

5. Find the remaining indistinguishable pairs of states. This will generate a partition on 

the set of states. Hence, find the partition generated by the pair of indistinguishable 

states. 

6. For each set of partition {𝑞𝑖, 𝑞𝑗, … … , 𝑞𝑘}, create a state {𝑞𝑖, 𝑞𝑗, … … , 𝑞𝑘} in 𝑀𝑅. 

7. For each state {𝑞𝑖, 𝑞𝑗, … … , 𝑞𝑘}, the transition rule can be made as follows: 

Let 𝑞𝑥 ∈ {𝑞𝑖, 𝑞𝑗, … … , 𝑞𝑘}, and 𝑞𝑦 ∈ {𝑞𝑙 , 𝑞𝑚, … … , 𝑞𝑁}, such that 𝛿(𝑞𝑥, 𝛼) = 𝑞𝑦   𝑖𝑛  𝑀𝐷. 

Then 𝛿𝑅({𝑞𝑖, 𝑞𝑗, … … , 𝑞𝑘}, α) = {𝑞𝑙 , 𝑞𝑚, … … , 𝑞𝑁} in 𝑀𝑅. 

8. The initial and final states of 𝑀𝑅 are the states that include 𝑞0 and 𝑞𝑖 ∈ 𝐹, 

respectively. 

Example 15.6  Reduce the DFA shown in the given figure in to minimal state DFA. 

                                             

                                                                          Fig 15.9 

 

 

Solution 

(a) Since 𝑞0 ∉ 𝐹, 𝑞1 ∉ 𝐹  𝑎𝑛𝑑  𝑞2 ∈ 𝐹, it can be seen that (𝑞0, 𝑞1) and (𝑞1, 𝑞2) are 

distinguishable pairs of states. 

(b) Now the remaining pair is (𝑞0, 𝑞1). We shall check whether the pair (𝑞0, 𝑞1) is 

distinguishable or not. Since 𝛿(𝑞0, 𝑎) = 𝑞2, 𝛿(𝑞1, 𝑎) = 𝑞2 and (𝑞2, 𝑞2) is not marked as 

distinguishable pair of states as both states are same in the pair thus (𝑞0, 𝑞1) cannot 

be marked as distinguishable. Similarly 𝛿(𝑞0, 𝑏) = 𝑞1 and 𝛿(𝑞1, 𝑏) = 𝑞1, (𝑞0, 𝑞1) 

cannot be marked as distinguishable. From this, it can be identified as 

indistinguishable. 

𝑞0 

𝑞1 

𝑞2  𝑎 

𝑏 𝑎 

𝑏 

𝑎,  𝑏 



166 | P a g e  
 

(c) The indistinguishable pair of states is (𝑞0, 𝑞1). The pair (𝑞0, 𝑞1) generates the partition 

{{𝑞0, 𝑞1}, {𝑞2}}. Therefore, there will be two states in the reduced DFA, namely 

{𝑞0, 𝑞1} 𝑎𝑛𝑑 {𝑞2}. 

(d) Since 𝛿(𝑞0, 𝑎) = 𝑞2 and 𝛿(𝑞1, 𝑎) = 𝑞2, we have 𝛿𝑅({𝑞0, 𝑞1}, 𝑎) = {𝑞2}. Similarly, 

𝛿(𝑞0, 𝑏) = 𝑞1 and 𝛿(𝑞1, 𝑏) = 𝑞1 and therefore, 𝛿𝑅({𝑞0, 𝑞1}, 𝑏) = {𝑞0, 𝑞1}. Moreover, 

𝛿𝑅({𝑞2}, 𝑎) = {𝑞2} and 𝛿𝑅({𝑞2}, 𝑏) = {𝑞2}. 

(e) The state {𝑞0, 𝑞1} will be the initial state and the state {𝑞2} will be the final state. 

The transition graph of the reduced DFA can be drawn as below 

 

                                                                        Fig 15.10 

So far, we have discussed the finite state machines that accept or reject a given input string. 

Now we shall study a form of automaton that does not provide the decision of acceptance or 

rejection of a string, but provides an output in the form of another string. An automaton that 

accepts input strings and translates them into output strings is called an automaton with an 

output or a transducer. 

Let ∑ be a finite set of input symbols and ∏ be the finite set of output symbols. Then a 

transducer 𝑇 can be defined as 𝑇 ∶  * → * .  

In the case of a transducer, we get an output string for each input string. Thus, the concept 

of final state is meaningless in transducers. There are two types of transducers: 

1. Mealy machine 

2. Moore machine 

15.5  Mealy Machine 

A Mealy machine is defined as a six-tuple 𝑀_𝑒 (𝑄, ∑, ∏, 𝛿, 𝛾, 𝑞0), where 𝑄 is a finite set of 

internal states, ∑ is a finite set of input symbols, ∏ is a finite set of output symbols, 𝛿 ∶

𝑄 × ∑ → 𝑄 is the transition function that maps a state into another state for a given input 

symbol for a given state, and 𝑞0 ∈ 𝑄 is the initial state. 

In a Mealy machine, the output is given over the transition arc. The representation of a Mealy 

machine is similar to that of DFA, except the label of edges where a pair of symbol is assigned 

to each transition arc that shows the input symbols and the corresponding output symbols. In 

a Mealy machine, the length of the output string is the same as that of the input string. 

Example 15.7 Design a Mealy machine that generates the complement of a binary number. 

{𝑞0, 𝑞1} {𝑞2}  

𝑎 𝑎,  𝑏 

𝑏 
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Solution  Here, ∑ = {0,1}  𝑎𝑛𝑑 ∏ = {0, 1}. For the input 0, the output is 1, and for the input 1, 

the output is 0. The transition graph of the Mealy machine is shown below 

 

                                                               Fig 15.11 

 

                                                              Table 15.3 Transition table 

Present State 

Transition output 

Input = 0 Input = 1 

Next State Output Symbol Next state Output symbol 

𝑞0 𝑞0 1 𝑞0 0 

 

15.6 Moore Machine 

A Moore machine is defined as a six – tuple 𝑀𝑜(𝑄, ∑, ∏, 𝛿, 𝛾, 𝑞0), where 𝑄 is a finite set of 

internal states, ∑ is a finite set of input symbols, ∏ is a finite set of output symbols, 𝛿 ∶ 𝑄 × ∑ →

𝑄 is the transition function that maps a state into another state for a given input symbol, 𝛾 ∶

𝑄 → ∏ is the output function that maps a state into an output symbol, and 𝑞0 ∈ 𝑄 is the initial 

state. 

In a Moore machine, the output is given by the state itself. The representation of a Moore 

machine is similar to that of a DFA, except the state representation where we assign an output 

string is one more than that of the input string. The first symbol in the output string always 

specifies the start state. 

Example 15.8 Design a Moore machine that generates the complement of a binary number. 

Solution: Here, ∑ = {0,1} and ∏ = {0,1} 

For the input 0, the output is 1, and for the input 1, the output is 0. The transition graph of the 

Moore machine is shown below 

(0,1)(1,0) 

𝑞0 



168 | P a g e  
 

 

                                                                            Fig 15.12 

                                        

  

𝑞0/0 𝑞1/1 
0 

1 

1 
𝑞2/0 

0 

0 

1 
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Table 15.4 Transition table of Moore machine 

Present State 

Transition Output 

Next state 
Output Symbol 

Input =0 Input = 1 

𝑞0 𝑞1 𝑞2 0 

𝑞1 𝑞1 𝑞2 1 

𝑞2 𝑞1 𝑞2 0 

 

 

  



170 | P a g e  
 

Problems for Exercise: 

1. Define a word or string from a set 𝐴, and give an example. 

2. Define the operation of concatenation, and give an example. 

3. Consider the words 𝑢 = 𝑎2𝑏𝑎3𝑏2 and 𝑣 = 𝑏𝑎𝑏2. Find 

a. 𝑢𝑣 

b. 𝑣𝑢 

c. 𝑣2 

4. Define a language  over a  set 𝐴. 

5. Let 𝐾 and 𝐿 be languages over an alphabet 𝐴. Define the language 𝐾𝐿 over 𝐴 

6. Consider the language 𝐿 = {𝑎𝑏, 𝑐} over 𝐴 = {𝑎, 𝑏, 𝑐} find 

a. 𝐿0 

b. 𝐿3 

c. 𝐿−2 

7. Define the finite state automaton (FSA) 

8. Let 𝐴 = {𝑎, 𝑏}. Construct an automaton 𝑀 which will accept those words from 𝐴 

where the number of 𝑏′𝑠 is divisible by three. 

9. Define the state diagram 𝐷 = 𝐷(𝑀) of a finite state automaton 𝑀, and give an 

example. Usually, an automaton 𝑀 is defined by means of its state diagram rather 

than by listing its five parts. 

10. Construct a deterministic automaton equivalent to 

𝑀 = ({𝑞0, 𝑞1}, {0, 1}, 𝛿, 𝑞0, {𝑞0}) 
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Video Lectures of this course is available at: 

http://elearning.uou.ac.in/course/view.php?id=112 

 

Steps to access the course 

Step 1: open the link: elearning.uou.ac.in 

Step 2: Create a login ID at: http://elearning.uou.ac.in/login/signup.php? 

Step 3: Verify your credentials by clicking on the link sent to your registered   

              email. 

Step 4: Login to elearning.uou.ac.in 

Step 5: Click Online Course Tab on the top of the page. 

Step 6: Select Course on “Discreet Mathematics” 

Step 7: Click on Enroll Now button 

Step 8: Access the contents 
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