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 UNIT 1:  BASIC CONCEPTS OF SETS 

 

CONTENTS: 

1.1 Introduction 

1.2 Objectives 

1.3 Sets 

1.4 Methods of describing a set 

1.5 Types of sets  

1.6 Subset, Superset and Power set 

1.7 Operations on a set  

1.8 De Morgan‘s Laws 

1.9 Cartesian Product of two sets 

1.10 Functions or Mappings 

1.11 Kinds of Functions 

1.12 Inverse Function 

1.13 Composite of Functions 

1.14 Summary 

1.15 Glossary 

1.16 References 

1.17 Suggested Reading 
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1.1 INTRODUCTION 
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Set theory, branch of mathematics that deals with the properties of well-defined collections of 

objects, which may or may not be of a mathematical nature, such as numbers or functions. 

The theory is less valuable in direct application to ordinary experience than as a basis for 

precise and adaptable terminology for the definition of complex and sophisticated 

mathematical concepts. 

Between the years 1874 and 1897, the German mathematician and logician Georg 

Cantor created a theory of abstract sets of entities and made it into a mathematical discipline. 

This theory grew out of his investigations of some concrete problems regarding certain types 

of infinite sets of real numbers. A set, wrote Cantor, is a collection of definite, distinguishable 

objects of perception or thought conceived as a whole. The objects are called elements or 

members of the set. 

1.2 OBJECTIVES 

After studying this unit, learner will be able to  

i. To analyze and predict the behavior of these systems over time. 

ii. To provide solutions to problems that cannot be solved using other mathematical 

techniques. 

iii. To understand the definition of differential equation. 

 

1.3 SETS 

A set is a well - defined collection of distinct objects. 

By a ‗well – defined‘ collection of objects we mean that there is a rule by means of which it is 

possible to say, without ambiguity, whether a particular object belongs to the collection or 

not. The objects in a set are ‘distinct’ means we do not repeat an object over and over again 

in a set. 

Each object belonging to a set is called an element of the set. Sets are usually denoted by 

capital letters A, B, N, Q, S etc. and the elements by lower case letters a, b, c, x etc. 

The symbol   is used to indicate ‗belongs to‘. Thus x   A   x is an element of the set A. 

The symbol   is used to indicate ‗does not belong to‘. Thus x   A   x is not an element of 

the set A. 

Example: Let A = {1, 2, 3, 4, 5} be a set then we say 1   , 2  A, 3  , 4  , 5   but 6  

A, 7  A, 8  A. 

1.4 METHODS OF DESCRIBING A SET 

There are two methods of describing a set. 

(1) Roster Method.  

https://www.britannica.com/science/mathematics
https://www.britannica.com/science/numeral
https://www.britannica.com/science/function-mathematics
https://www.britannica.com/biography/Georg-Ferdinand-Ludwig-Philipp-Cantor
https://www.britannica.com/biography/Georg-Ferdinand-Ludwig-Philipp-Cantor
https://www.britannica.com/topic/set-mathematics-and-logic
https://www.merriam-webster.com/dictionary/discipline
https://www.merriam-webster.com/dictionary/infinite
https://www.britannica.com/science/real-number
https://www.britannica.com/science/element-mathematics
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In this method, a set is described by listing all its element, separating by commas and 

enclosing within curly brackets. 

For Example. (i) If A is the set of odd natural numbers less than 10, then in roster form. 

                            A = {1, 3, 5, 7, 9} 

(ii) if B is the set of letters of the world FOLLOW, then in roster form. 

                            B = {F, O, L, W} 

(2) Set Builder Method. 

Listing the element of a set is sometimes difficult and sometimes impossible. We do not have 

a roster form of the set or rational number or the set of real numbers. In set builder 

method, a set is described by means of some property which is shared by all the 

element of the set. 

For Example. (i) If P is the set of all prime numbers, then 

                                  P = {x : x is a prime number} 

(ii) if A is the set of all natural numbers between 5 and 50, then  

                                 A = {x : x    and 5 < x < 50}  

1.5 TYPES OF SETS 

(i) Finite set. A set is said to be finite if the number of its elements is   

     Finite i.e. its elements can be counted, by one by one, with counting   

     coming to end. 

For Example. (a) the set of letters in the English alphabet is finite set since it has 26 

elements. 

(b) Set of all multiples of 10 less than 10000 is a finite set. 

(ii) Infinite set. A set is said to be infinite if the number of its elements is infinite i.e. we 

count its elements, one by one, the counting never comes to an end.  

For Example. (a) the set of all points in a straight line is an infinite set. 

(b) the sets      ,   all are infinite sets. 

(iii) Null Set. A set having no element is known as a null set or void set or an empty set and is 

denoted by   or {}. 

For Example. (a) {x : x is an integer and     } =  , because there is no integer whose 

square is 3. 

(iv) Singleton Set. A set having only one element is called a singleton set. 
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For Example. (a) {a} is a singleton set. 

(b) {x:        and x  } = { -1 } is a singleton set. 

1.6 SUBSET, SUPERSET AND POWER SET 

Set A is said to be a subset of Set B if all the elements of Set A are also present in Set B. In 

other words, set A is contained inside Set B. Example: If set A has {X, Y} and set B has {X, 

Y, Z}, then A is the subset of B because elements of A are also present in set B. 

Subset Symbol 

In set theory, a subset is denoted by the symbol ⊆ and read as ‗is a subset of‘. 

Using this symbol we can express subsets as follows: 

A ⊆ B; which means Set A is a subset of Set B. 

Note: A subset can be equal to the set. That is, a subset can contain all the elements that are 

present in the set. 

All Subsets of a Set 

The subsets of any set consists of all possible sets including its elements and the null set. Let 

us understand with the help of an example. 

Example: Find all the subsets of set A = {1,2,3,4} 

Solution: Given, A = {1,2,3,4} 

Subsets are {},{1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4},{1,2,3}, {2,3,4}, 

{1,3,4}, {1,2,4},{1,2,3,4}. 

Superset Definition 

In set theory, set A is considered as the superset of B, if all the elements of set B are the 

elements of set A. For example, if set A = {1, 2, 3, 4} and set B = {1, 3, 4}, we can say that 

set A is the superset of B. As the elements of B [(i.e.,)1, 3, 4] are in set A. We can also say 

that B is not a superset of A. 

Superset Symbol 

The superset relationship is represented using the symbol ―⊃‖. For instance, the set A is the 

superset of set B, and it is symbolically represented by A ⊃ B. 

Consider another example, 
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X = {set of polygons}, Y = {set of irregular polygons} 

Then X is the superset of Y (X⊃Y). In other words, we can say that Y is a subset of X 

(Y⊂X). 

Proper Superset 

The proper superset is also known as a strict superset. The set B is the proper superset of set 

A, then all the elements of set A are in B, but set B must contain at least one element which is 

not present in set A. 

For example, let us take four sets. 

A = {a, b, c}, B = {a, b, c, d}, C = (a, b, c}, D = {a, b, e} 

From the sets given above, 

B is the proper superset of A, as B is not equal to A 

C is a superset of set A, but the set C is not a proper superset of set A, as C = A 

D is not a superset of A, as the set D does not contain the element ―c‖ which is present in set 

A.  

Power Set 

The set of all subsets of a set A is called the power set of A and denoted by P(A). 

i.e. P(A) = {S: S ⊂   }. 

For Example. (i) if A = {a}, then P(A) = { , A} 

 (ii) If B = {1, 2} then P{B} =   ,{1}, {2}, B} 

Theorem 1. Every set a subset of itself. 

Proof. Let A is any set. Since x   A   x   A, therefore A ⊂  . 

Theorem 2. Empty set is a subset of every set. 

Proof. Given two sets A and B, let A= . 

By definition, A is a subset of B if and only if every element in A is also in B. 

This means that A would not be a subset of B if there exists an element in A that is not in B. 

However, there are no elements in A. This means there cannot exist an element in A that is 

not in B. Thus, A is a subset of B. 

Since A =   and B is an arbitrary set, the   must be a subset of all sets. 

 

https://byjus.com/maths/subsets/
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Theorem 3. The empty set is unique. 

Proof. Let          be two empty sets. 

Since empty set is a subset of every set . 

Therefore    ⊂    and    ⊂    

         that proves the uniqueness of  . 

Note: if a set has n elements, then the number of subsets is     

1.7 OPERATIONS ON A SETS 

1. Union of Sets. The union of two sets X and Y is equal to the set of elements that are 

present in set X, in set Y, or in both the sets X and Y. This operation can be represented as; 

 X ∪ Y = {a: a   X or a   Y} 

Let us consider an example, say; set A = {1, 3, 5} and set B = {1, 2, 4}  

Then A ∪ B = {1, 2, 3, 4, 5} 

Properties of Union of Sets 

(i) For any two Sets A and B, A ⊂  ∪   or B ⊂  ∪   

Proof. Let x be any element of A. then  

                     x   A     x    ∪   

therefore      A ⊂  ∪   

similarly, we can prove B ⊂  ∪   

(ii) For any set A,  ∪   = A. 

Proof.  ∪   = {x: x     or x     } 

                      = {x: x     }            [    has no element] 

                      = A 

(iii) Union of sets is idempotent i.e. foe any set A, A∪   = A. 

Proof. A ∪   = {x: x     or x   A} 

                       = {x: x     }  

                       = A  

(iv) Union of sets is commutative. 

Proof.  A ∪   = {x: x     or x   B} 

                       = {x: x     or x     }  

                          = B ∪   

Note: Union of sets is Associative. 

 

2. Intersection of Sets. The intersection of two sets X and Y is the set of all elements which 

belong to both X and Y. This operation can be represented as; 

 X   Y = {a: a   X and a   Y} 

Let us consider an example, say; set A = {1, 3, 5} and set B = {1, 2, 4}  

Then A   B = {1} 
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Properties of Intersection of Sets 

(i) For any two sets A and B, A   B ⊂   and A   B ⊂  . 

Proof. Let x be any element of A   B. then  

              x           x     and x      

                                   x     (in particular) 

 

Therefore     A   B ⊂    

Similarly, we can prove A   B ⊂  . 

(ii) Intersection of sets is idempotent i.e. foe any set A, A    = A. 

Proof. A    = {x: x     and x   A} 

                       = {x: x     }  

                       = A  

(iii) Intersection of sets is commutative. 

Proof.  A    = {x: x     and x   B} 

                       = {x: x     and x     }  

                          = B    

Note: Intersection of sets is Associative. 

 

3. Difference of Sets. The difference of two sets A and B is the set of all elements which are 

in A but not in B.  

The difference of sets A and B is denoted by A – B. 

i.e. A – B = {x: x     and x   B} 

For example. (i) if A = {1, 2, 3, 4, 5} and B {2, 4, 6, 8}, then A – B = {1, 3, 5}, B – A = {6, 

8}. 

Clearly,      A – B   B - A  

Note. The difference of sets is not commutative. 

 

4. Complement of a Set. Let U be the universal set and A ⊂  . then complement of A is the 

set of those elements of U which are not in A. the complement of A is denoted by   . 

Symbolically,    = U – A = {x:  x     and x   A} = {x: x   A} 

For example. If U is the set of all natural numbers and A is the set of even natural numbers, 

then  

                       = U – A 

                         = the set of those natural numbers which are not even 

                         = the set of odd natural numbers. 

5. Symmetric Difference of Sets. If A and B are any two sets, then the sets (A – B) 

∪       is called the symmetric difference of A and B. 

The symmetric difference of A and B is denoted by A   B and read as ‗A symmetric 

difference B‘. 

For Example. If A = {a, b, c, d, e} and B = {c, d, e, f, g}, then 

 A – B = {a, b}, B – A = {f, g}  
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Therefore A   B = (A – B) ∪       

                               = {a, b} ∪ {f, g} = {a, b, f, g}. 

1.8 DE MORGAN’S LAWS 

For any two sets A and B, prove that 

(a)   ∪                  (b)          ∪    

Proof. (a) We need to prove,   ∪           

Let X =   ∪     and Y =       

Let p be any element of X, then p   X ⇒ p     ∪     

⇒ p   (A ∪ B) 

⇒ p   A or p   B 

⇒ p   A‘ and p   B‘ 

⇒ p   A‘ ∩ B‘ 

⇒ p   Y 

∴ X ⊂ Y              . . . (i) 

Again, let q be any element of Y, then q   Y ⇒ q   A‘ ∩ B‘ 

⇒ q      and q      

⇒ q   A or q   B 

⇒ q   (A ∪ B) 

⇒ q     ∪     

⇒ q   X 

∴ Y ⊂ X              . . . (ii) 

From (i) and (ii) X = Y 

  ∪     =       

(b) We need to prove,           ∪    

Let X =        and Y =   ∪    

Let p be any element of X, then p   X ⇒ p          

⇒ p   (A ∩ B) 
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⇒ p   A and p   B 

⇒ p      or p      

⇒ p     ∪   ⇒ p   Y 

∴ X ⊂ Y ————–(i) 

Again, let q be any element of Y, then q   Y ⇒ q     ∪    

⇒ q      or q      

⇒ q   A and q   B 

⇒ q   (A ∩ B) 

⇒ q          

⇒ q   X 

∴ Y ⊂ X ————–(ii) 

From (i) and (ii) X = Y 

      =   ∪    

1.9 CARTESIAN PRODUCT OF TWO SETS 

Given two non-empty sets A and B. The Cartesian product A × B is the set of all ordered pairs 

of elements from A and B,  

i.e., A × B = {(p, q): p   A, q   B} 

If either P or Q is the null set, then A × B will also be an empty set, 

 i.e., A × B = φ 

For Example: if A = {1, 2} and B = {3, 4, 5}, then the Cartesian Product of A and B is A × B 

= {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}. 

 

 Cardinality of Cartesian Product? 

The cardinality of Cartesian products of sets A and B will be the total number of ordered pairs 

in the A × B. 

Let p be the number of elements of A and q be the number of elements in B. 

So, the number of elements in the Cartesian product of A and B is pq. 

i.e. if n(A) = p,           n(B) = q,         then n(A × B) = pq. 

 

1.10 FUNCTIONS OR MAPPINGS 

  A function can be visualized as an input/output device.  

 

https://byjus.com/maths/empty-set/
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Let A & B be any two non-empty sets. If there exists a rule ‗f ‘ which associates to every 

element x   A, a unique element y   B, then such rule ‗f ‘ is called a function or mapping 

from the A to the set A to the  

set B. 

We write f: A    read ‗f ‘ is a function from X to Y. 

The set A is called the domain of f and the set B is called the Co-domain of f. 

Range of f = f(A) = {f(x): x   A} , clearly f(A) ⊂ B.  

 

1.11 KINDS OF FUNCTIONS  

(1) Equal Functions. Let A and B be sets and f: A    and f: B    be functions. We say 

that f and g are equal and write f = g if f(a) = g(b) for all a   A. If f and g are not equal, we 

write f     

 

(2) One – One Function (Injective Function). A function f is one-to-one if every 

element of the range of g corresponds to exactly one element of the domain of f. One-to-one 

is also written as 1-1.  

Formally, it is stated as, if f(x) = f(y) implies x=y, then f is one-to-one mapped, or f is 1-1. 

 

Example. Show that f: R→ R defined as f(a) = 3a3 – 4 is one to one function? 

Solution: Let f ( a1 ) = f ( a2 ) for all a1 , a2   R 

so 3a1
3 – 4 = 3a2

3 – 4 

a1
3 = a2

3  

a1
3 – a2

3 = 0 

(a1 – a2) (a1 + a1a2 + a2
2) = 0 

a1 = a2 and (a1
2 + a1a2 + a2

2) = 0  
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(a1
2 + a1a2 + a2

2) = 0 is not considered because there are no real values of a1 and a2. 

Therefore, the given function f is one-one. 

(3) Onto Function (Surjective Function). Onto function could be explained by considering 

two sets, Set A and Set B, which consist of elements. If for every element of B, there is at 

least one or more than one element matching with A, then the function is said to be onto 

function or surjective function. 

 

Note: To show that a function f is an onto function, put y = f(x), and show that we can 

express x in terms of y for any y   B. 

 

Example 1. Let A = {1, 5, 8, 9) and B {2, 4} And f ={(1, 2), (5, 4), (8, 2), (9, 4)}. Then prove 

f is a onto function. 

Solution: From the question itself we get, 

A={1, 5, 8, 9),  B = {2, 4} & f={(1, 2), (5, 4), (8, 2), (9, 4)} 

So, all the element on B has a domain element on A or we can say element 1 and 8 & 5 and 9 

has same range 2 & 4 respectively. 

Therefore, f: A → B is a surjective function. 

Example 2.  How to tell if this function is an onto function? g: R → R defined by g(x) = 1 + 

x
2
 

Solution: Given the function g(x) = 1 + x
2
. 

For real numbers, we know that x
2
 > 0. So 1 + x

2
 > 1. g(x) > 1 and hence the range of the 

function is (1, ∞). Whereas, the second set is R (Real Numbers). So the range is not equal to 

codomain and hence the function is not onto. 

Example 3. If f: R → R defined as f(x) = 2x. 

Solution. Let y = 2x then x = 
 

 
 

Thus, for every y R, we have x = 
 

 
   R such that f(x) = y.  

Thus, f is onto. 

Example 4.  Consider the function f: R → R defined as f(x)= x
2
.  

Solution. Let y = x
2
 therefore x = ±    

The square of any real number is non-negative. 
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It means that y ≥ 0. 

Thus, for y ≤ 0, we cannot find an element x such that f(x) = y. 

Thus, the range of f(x) is the set of non-negative real numbers and the negative real numbers 

are not in the image of f(x).  

As a result, f(x) is not onto. 

Note: If you restrict the co-domain to   ∪ {0}, which is the set of non-negative real 

numbers, the function becomes onto. 

 

1.12 INVERSE FUNCTION 

 

Let f: A → B be a one – one and onto function. Then the function  

g: B → A which associates to each element b    the unique element 

 a    such that f(a) = b is called the inverse function of f. the inverse function of f is denoted 

by    . 

Note: every function does not have an inverse. A function f: A → B has inverse iff f is one – 

one and onto. If f has inverse, then f is said to be invertible and    : B → A. also if a   , 

then f(a) = b where b     

  a =         

 

1.13 COMPOSITE OF FUNCTION 

 

Let f : A → B and g : B → C be two functions. Then the composition of f and g, denoted by g 

∘ f, is defined as the function g ∘ f : A → C given by g ∘ f (x) = g(f (x)), ∀ x   A. 

Domain: f(g(x)) is read as f of g of x. In the composition of (f o g) (x) the domain of function 

f becomes g(x). The domain is a set of all values which go into the function. 

Example: If f(x) = 3x+1 and g(x) = x
2
, then f of g of x,  

                  f(g(x)) = f(x
2
) = 3x

2
+1. 

If we reverse the function operation, such as f of f of x,  

g(f(x)) = g(3x+1) = (3x+1)
2
 

Check your progress 

True or false Questions 

Problem 1. function f: R→ R, then f(x) = 2x is injective. 
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Problem 2. function f: R→ R, then f(x) = 2x+1 is not injective. 

Problem 3. The onto function is also called the surjective function.              

Problem 4. function f: R→ R, f(x) = | | is an onto function.  

Problem 5. In the surjective function, the range of the function ―f‖ is equal to the codomain. 

 

1.14 SUMMARY 

 

1. A set is a well - defined collection of distinct objects. 

2. A ⊆ B; which means Set A is a subset of Set B. 

3. For any two sets A and B, A   B ⊂   and A   B ⊂  . 

4. (a)   ∪                (b)          ∪    

5. Let f: A → B and g: B → C be two functions. Then the composition of f and g, 

denoted by g ∘ f, is defined as the function g ∘ f: A → C given by g ∘ f (x) = g(f (x)), ∀ 

x   A. 

 

1.15 GLOSSARY  

 

 Numbers  

 letters  

 Collections of objects 
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1.18 TERMINAL AND MODEL QUESTIONS 

 

Q 1. Prove that the function f:     is given by f(x) =    is one – one function. 

Q 2. Prove that the function f:     is given by f(x) =    is not onto function. 

Q 3.  Let A = [– 1, 1]. Then, discuss whether the following functions defined on A are one-

one, onto or bijective. 

(a) f(x) = 
 

 
.             (b) f(x) =    

Q 4.  If f(x) = 3x
2
, then find ( f ∘ f )(x). 

Q 5. If f (x) = 2x and g(x) = x+1, then find ( f ∘ g )(x) if x = 1. 

1.19 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. False 

        CYQ 5. True 

TERMINAL QUESTIONS 

         TQ 3. (a) One - One but not Onto. 

                    (b) Not One - One and not Onto. 

         TQ 4. 27    

         TQ 5. 4 
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Unit-2: GROUPS 

CONTENT: 

 

2.1 Introduction  

2.2  Objectives 

2.3  Binary Operation 

2.4 Group 

2.5 Some general properties of group 

2.6 Special group 

2.7 Order of a group 

2.8 Summary  

2.9 Glossary  

2.10   References 

2.11  Suggested Readings 

2.12  Terminal Questions 

2.13 Answers 

2.1 INTRODUCTION 

The founder of group theory is generally considered to be Évariste Galois (1811–

1832), a French mathematician who developed the foundational concepts of the theory in the 

early 19th century. Galois introduced the idea of a group as a way to study the symmetries of 

the roots of polynomial equations, leading to what is now called Galois theory. This work 

laid the groundwork for understanding the solvability of polynomials and provided a deep 

connection between algebra and geometry. 

Although Galois is credited with formalizing group theory, earlier contributions to the 

concept of groups were made by mathematicians such as Joseph-Louis Lagrange, who 

studied permutations in his work on equations, and Carl Friedrich Gauss, who considered 
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groups in the context of number theory. However, it was Galois who first explicitly defined 

and used the structure of a group as we understand it today. 

Group theory is a fundamental branch of abstract algebra that studies algebraic 

structures known as groups, which consist of a set of elements combined with an operation 

that satisfies four core properties: closure, associativity, the existence of an identity element, 

and the existence of inverses. Groups serve as a unifying framework to explore and formalize 

the concept of symmetry in mathematics, science, and engineering, appearing naturally in 

diverse contexts such as geometry, number theory, and physics. They describe 

transformations that preserve structure, like rotations, reflections, or permutations, and 

provide a systematic way to study these transformations. Groups are categorized into 

different types, such as finite and infinite groups, abelian (commutative) and non-abelian 

(non-commutative) groups, and specific subtypes like cyclic, dihedral, and permutation 

groups. The study of group theory has profound applications, ranging from solving 

polynomial equations and analyzing crystal symmetries in chemistry to underpinning 

quantum mechanics, cryptography, and coding theory. Its abstract nature and wide 

applicability make group theory a cornerstone of modern mathematics. 

2.2 OBJECTIVES 

The main objectives of studying group theory are tailored to provide students with a 

foundational understanding of the subject and prepare them for advanced studies or 

applications. These objectives include: 

1. Understand the Basics of Group Theory: Introduce students to the fundamental 

concepts of groups, including their definitions, properties, and examples, such as 

cyclic groups, permutation groups, and symmetry groups. 

2. Develop Problem-Solving Skills: Teach students how to apply group-theoretic 

methods to solve mathematical problems, such as verifying group properties, 

analyzing subgroups, and working with cyclic and normal subgroups. 

3. Explore Group Structure: Familiarize students with the structural aspects of groups, 

including Lagrange‟s theorem, order of elements, cosets, and the concept of normality 

and quotient groups. 

4. Connect with Other Areas of Mathematics: Establish connections between group 

theory and other areas, such as linear algebra, number theory, and abstract algebra, to 

demonstrate its interdisciplinary nature. 

5. Develop Logical and Abstract Thinking: Enhance students‟ ability to think logically 

and abstractly by analyzing and proving theorems within the framework of group 

theory. 

These objectives align with the goal of equipping learners with both theoretical understanding 

and practical tools to analyze and apply permutation groups in various mathematical contexts. 
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By achieving these objectives, students in a B.Sc. course gain a strong foundation in group 

theory, which is essential for pursuing higher studies in mathematics or applying the concepts 

in related scientific fields. 

2.3 BINARY OPERATION 

A binary operation is an operation that combines two elements (operands) from a set to 

produce another element of the same set. Formally, if S is a set, a binary operation on S is a 

function: 

SSS  :  

Here,   is the binary operation, and for any SbaSba  ,, . Here, we can also say that S is 

closed with respect to the binary operation  . 

Examples 1: Addition on integers (Z): Let Z denotes the set of integers then ""  denote 

binary operation if, 

ZZZ  :  

i.e., for all Zba ,  we should have Zba  . Then we called ""  is the binary operation on 

Z . 

e.g., if Z5,3  then 3 + 5 = 8 

Example 2: Multiplication on real numbers (R): Let R denotes the set of real numbers then 

""  or "." denote binary operation if, 

RRR  :  

i.e., for all Rba ,  we should have Rba  . Then we called "." is the binary operation on 

R . 

e.g., 2⋅3 = 6 

Note 1: Throughout the book we will use multiplication by "." . 

Note 2: If nA || , then 2|| nAA  . Hence, the number of elements from AA to A  are 

2

)( nn .  

Note 3:  In general, we will say,   is the binary operation on any set X  if and only 

Xba  , for all Xba , . 
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Remarks 1: Every function from AA  to A  defines a binary operation on A and 

conversely.  

Remarks 2: Binary operation is always a function. 

Some more examples on binary operation: 

(i) On the set of natural number (N): 

(i) },min{ baba   

(ii) },max{ baba   

(iii) ),( baLCMba   

(iv) ),( baGCDba   

(v) baba   

All, from (i) to (v) are binary operation on the set of natural numbers. 

(B) On the set of real number (R): 

(vi) baba   

(vii) baba .  

(viii) bababa .  

(ix) 
2

ba
ba


  

(x) baba   

All, from (vi) to (ix) are binary operation on the set of real numbers (R) except (x) because 

R 2/1)1(  

(C) On the set of positive real number (R
+
): As we know that set of positive real 

number is }0|{  xRxR  

(xi) baba   

(xii) baba .  

(xiii) beaba
log

  

(xiv) 
2

ba
ba


  

(xv) baba   

All, from (xi) to (xv) are binary operation on the set of positive real numbers. 

(D) On the set of power set of natural number P(N): As we know that power set of 

natural number is the collection of all the subset of natural number i.e., 

}|{)( NXXNP  . 

(xvi) YXYX   

(xvii) YXYX   

(xviii) YXYX   
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(xix) )()( XYYXYX   

All, from (xvi) to (xix) are binary operation on the set of power set of natural number. 

2.4 GROUP 

To define the group we first need to focus some other important definitions and concepts 

related to group which will helpful to understand the concept of group more easily. 

Algebraic Structure: A set equipped with one or more binary operation on it is called an 

algebraic structure.  

e.g., .),,( R  is an algebraic structure because set of real number (R) is closed with respect to 

both the operation addition and multiplication.  

Groupoid: A set equipped with one binary operation is defined as a groupoid.  

e.g., (N, +), (N, .), (R, +), (R, .), (Z, +), (Z, .) are groupoid because these are closed with 

respect to their mentioned operation.  

Semi-group: A groupoid with associative binary operation is called semi-group. 

i.e., A set G along with the binary operation   is called semi-group if it satisfies the 

following conditions. 

(i) For all Gba , , Gba  .                            [Name as closed property] 

(ii) For all Gcba ,, , cbacba  )()(       [Name as associative property]  

Example 3: (R, +) is semi group because for each Rcba ,, , we always get  

(i) Rba   

(ii) cbacba  )()(  

For e.g., R
2

3
,1  then 

2

5

2

3
1  , which is also an element of R i.e, R

2

5
. 

i.e, Rba  Rba  ,  

Again, R


4

5
,

2

3
,1  then 

4

5

4

1
1

4

5

2

3
1

4

5

2

3
1 
























 
   

And 
4

5

4

5

2

5

4

5

2

3
1 







 









  
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So, we can say that 






 

























 


4

5

2

3
1

4

5

2

3
1    

i.e, cbacba  )()( Rcba  ,,  

Similarly, we can check for any other elements of R. 

Hence, we can say that (R, +) is semi group. 

Monoid: A semi group ),( G  is called monoid if there exist an element Ge  such that for 

all Ga , aeaea  . Such element (e) in a group G is called the identity element. 

i.e., A set G along with the binary operation   is called monoid if it satisfies the following 

conditions. 

(i) For all Gba , , Gba  .                                        [Name as closed property] 

(ii) For all Gcba ,, , cbacba  )()(                   [Name as associative property]  

(iii) For all GeGa  , such that aeaea   [Name as existence of identity  

property] 

 Example 4: (R, +) is monid because for each Rcba ,, , we always get  

(i) Rba   

(ii) cbacba  )()(  

(iii) In R, there exist R0  such that aaa  00  for all Ra  

We can understand (i) and (ii) from example 3. 

For (iii), we know that in a set of real number the element “0” is such element which on 

addition with any real number always give the same element.  

For e.g., 10101  , )1(010)1(  , 20202  , 

)2(020)2(   

Similarly, we can check these three properties for any other elements of R. 

Hence, we can say that (R, +) is monoid. 

Group: A monoid ),( G  is called group if and only if each element of G possess its inverse 

with respect to the operation  . 

i.e., A set G along with the binary operation   is called group if it satisfies the following 

conditions. 
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(i) For all Gba , , Gba  .                                        [Name as closed property] 

(ii) For all Gcba ,, , cbacba  )()(                   [Name as associative property]  

(iii) For all GeGa  , such that aeaea   [Name as existence of identity  

property] 

(iv) For all GbGa  , such that abeba   [Name as existence of inverse  

property] 

Here such element b is called the inverse of a „OR‟ Most of the time, we denote inverse of 

the element a as 1a  (notation).  

Note: If we say a is the inverse of b then we can also say that b is the inverse of a.  

Example 5: (R, +) is group because for each Rcba ,, , we always get  

(i) Rba   

(ii) cbacba  )()(  

(iii) In R, there exist R0  such that aaa  00  for all Ra  

(iv) In R, for each Ra  we always get Ra such that aaaa  )(0)(  

For e.g.,  1)1(0)1(1 Inverse of 1 is -1 i.e. 11 1   

Similarly,  2)2(0)2(2  Inverse of 2  is 2  i.e. 2)2( 1 
 

So, we can say that every element Ra , we can always find Ra  such that on operation 

we get the identity element. 

i.e., 0)()(  aaaa  

Hence, we can say that (R, +) is group. 

Abelian group: A group ),( G  is called abelian group if it satisfies the commutative 

property. 

i.e., A group ),( G  is called abelian group if ,, Gba  abba  .  

e.g., (R, +) is abelian group, (Z, +) is abelian group 

Note 1: Similarly, we can prove that ),(),,(),,(  CQZ  are abelian group. 

2:  If the group is not abelian then we referred it as non-abelian group.   

Note: Throughout this book, whenever we say *G it means the set without zero element.  

i.e., }0{* GG . 
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e.g., }0{*  RR , }0{*  QQ , }0{*  CC  etc.  

Here, we can easily check that ,.)(,.),(,.),( *** CQR are form group. 

Example 6: Show that set of natural number N is not group with respect to addition. 

Solution: As we know that set of natural number is closed with respect to addition i.e., 

addition of any two natural number is again a natural number. But in the set of natural we did 

not get any number Ne such that Naaeaea  , . Generally, for addition 0 is the 

identity element because Naaaa  ,00  but N0 .  

Hence (N, +) does not satisfies the existence of identity property that why N is not group with 

respect to addition.  

Example 7: Show that the set .....},3,2,,0,,2,3{.. mmmmmmG  of multiples of 

integers by a fixed integer m is a group with respect to addition. 

Solution: We can also define G as, }|{ ZzandfixedismmzG   

We will said the given set G is group with respect to the operation addition if it satisfies the 

following properties. 

Closure property: Let smbrmaGba  ,, where, Zsr , . 

Then msrsmrmba )(   

As we know that, ),( Z  is group with respect to addition then ZlsrZsr  ,  

So, Glmmsrba  )(  

Hence, G is closed with respect to addition. 

Associative property: Since the element of G are all integers and we know that the ),( Z  is 

group. Hence it will also satisfy the associative property.  

Existence of identity: G0  and we have Gaaaa  ,00 . 

Existence of inverse: Let rm be any arbitrary element of G, where Zr . Since Z is closed 

with respect to addition then Zr . 

Then Gmmrrrmmr  00)()(  

Similarly, Gmmrrmrrm  00)()(  

Hence, rm  is the additive inverse of rm .  



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 23 
 

Thus every element of G possesses additive inverse of rm . 

Hence G is a group with respect to addition.  

Example 8: Show that the set of all positive rational numbers forms an abelian group under 

the composition defined by, 
2

*
ab

ba   

Solution: Let 
Q  denote the set of all positive rational number. If we define the operation   

such as 
2

*
ab

ba  , then we have to prove that pair ),( Q  is a group. 

Closure Property: As we know that in the set of positive rational number, 
 Qba, , we 

have always Q
ab

2
. Hence 

Q  is closed with respect to the operation  . 

Associative property: Let 
Qcba ,, then, 

)(
22222

)( cba
bcacab

c
ab

cba 

























  

Existence of identity: Let us consider e  be the identity element of 
Q then

 Qa , we 

have aea *  i.e., 2
2

 ea
ae

.  

Similarly we can prove, aae *  i.e., 2
2

 ea
ea

. 

So, 
 Qaeaaea ** , here obviously we get 2e . Since

Q2 , thus we can say that 

),( Q  possess the identity element.  

Existence of inverse: Let us consider a  be the arbitrary element of 
Q . We say the element 

b be the inverse of a then we have eba *  i.e., 
a

be
ab 4

2
2

 . Now, 
Qa , then  

Q
a

4
 such that )/4(2)/4( aaaa  . As a is the arbitrary element then we can say 

that each element of 
Q  possess its inverse element.  

Hence, ),( Q  is a group. 

Commutativity: Let
Qba, . Then, ab

baab
ba 

22
.  

Hence, ),( Q  is an abelian group. 
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2.5 SOME GENERAL PROPERTIES OF GROUP 

Let us consider a non-empty subset equipped with a binary operation denoted by 

multiplication. Throughout this book, we assume the operation of multiplication (.) unless 

specified otherwise. The theorems and corollaries that hold true for the operation of 

multiplication will also be valid for other operations. Therefore, learners should not be 

confused by statements and theorems with respect to the operations.  

Theorem 1: (Uniqueness of identity): The identity element in a group is unique.  

Proof: To prove that identity element is unique we have to first consider the group G has two 

identity elements e  and 'e . Since G is group, then obviously Gee '  (by closure property). 

If e  is the identity then, '' eee                … (1) 

If 'e  is the identity then, eee '               … (2) 

But 'ee is the unique element of G. 

Therefore by (1) and (2) '' eee   and eee '  

ee  '  

Hence, we now confirmed that identity element will be unique.  

Theorem 2: (Uniqueness of inverse): The inverse of each element in a group is unique.  

Proof: To prove that inverse of each element is unique we have to first consider the element 

„a‟ of a group G has two inverse elements b  and c . Let e is the identity element of G.  

If b  is the inverse of a then baeab                  … (1) 

If c  is the inverse of a then caeac                  … (2) 

Now, from (1) and (2) 

bbeebacb  )()(      [As e is the identity element then, bbe  ] 

Also, ceccecba  )()(       [As e is the identity element then, cec  ] 

As G is group so it will be satisfy associative property with respect to composition 

multiplication. 
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Therefore, cbacbcba  )()(  

Hence inverse is unique.  

Theorem 3: If the inverse of a  is 1a , then the inverse of 1a  is a  i.e., aa  11)(  

Proof: Let G be the group and e  be the identity element of the group. Also we have assumed 

that 1a  is the inverse element of any arbitrary element a. Then for any arbitrary element of 

Ga . eaa 1                                            [By the concept of inverse in G] 

eaaaa 11111 )())((    

11111 )(])[(   aaaa                              [Group always satisfies the associative property] 

11)()(  aea  

Hence, aa  11)(  

Note 1: The inverse of identity element is itself i.e., eeeee 11   . 

2: In the additive group inverse of any arbitrary element Ga  is a . 

3: Generally in the additive group 0 is the identity element. 

4: Generally in the multiplicative group 1 is the identity element. 

Example 9: In a group G, show that 111)(,,   ababGba . 

Solution: Let Gba ,  and 11,  ba  are their inverse respectively. Then, 

aaeaa 11    

and bbebb 11    

Now, 1111 ])[())((   abababab             [composition is associative] 

11)]([  abba  

1)(  aae  

eaa  1  
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Also, )]([))(( 1111 abababab    

ebbbaabbaab   11111 ])[(])[(  

Thus we have, ))(())(( 1111   ababeabab  

Hence we have, 111)(   abab . 

Note 1: In additive notation the statement of this theorem will be, )()()( abba  . 

Note 2: It can be generalized by induction as follows: 

1111111 .......)........(   cbaijkkjicba  

Theorem 4: (Cancellation laws hold good in a group) If cba ,,  are elements of G, then 

cbcaba                            (Left cancellation law) 

and cbacab           (Right cancellation law) 

Proof: Let G be a group and GaGa  1 such that aaeaa 11   , where e is the 

identity element. 

Now, )()( 11 acaabaacab       [Multiplying both sides on the left by 1a ] 

caabaa )()( 11    

eceb   

cb   

Also, 11 )()(   acaabacaba  

cbcebeaacaab   )()( 11  

Note 1: In additive notation these results can be written as cbcaba   

Example 10: If cba ,,  are any two elements of a group G, then the equation bax   and 

bya   have unique solutions in G. 

Solution: Let G be a group and GaGa  1 such that aaeaa 11   , where e is the 

identity element. 

Since, GbGaGbGa   ,, 1  
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Gba  1                                                                       [By closure property] 

Now, substitute ba 1  for x in the left hand side of the equation bax  , we have 

bebbaabaa   )()( 11  

Thus, bax 1  is a solution in G of the equation bax  .  

Now, we have to show that the solution is unique. For it suppose that 
1xx   and 

2xx   are 

two solution of the equation bax  . 

Then, bax 1
 and bax 2

 

21 axax  , then by left cancellation law, 

21 xx   

Therefore, the solution is unique.  

Similarly, we can prove that the equation bya   have unique solutions in G. 

2.6 SPECIAL GROUP 

In this section we will define some special types of group which are more roughly used in 

many units and are more useful to understand the similarities and dissimilarities of many 

groups. 

Addition modulo n: We shall now define a new type of addition known as „addition modulo 

m‟ and written as ba m  , where a and b are any integer and m is a fixed positive integer. 

Thus by definition we have, mrrba m  0, . 

Where r is the least non-negative remainder when ba   is divided by m. Which is read as “a 

is congruent to b modulo m” 

e.g., 125 2  , since 1)3(2725   and when we divide (5+2) by 2 we get the 

remainder 1. Thus, we say 125 2  . 

e.g., 2315 4  , since 2)4(418315   and when we divide )315(   by 4 we get the 

remainder 2. Thus, 2315 4  . 
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Note 1: abba mm   

2: When a and b are two integer such that )( ba  is divisible by a fixed positive integer m, 

then we write )(mod mba  . Which is read as “a is congruent to b modulo m”. 

3: )()( cbacba mmm   

e.g., )13(153)13(15 444   

Multiplication modulo n: Now define a new type of multiplication known as „multiplication 

modulo m‟ and written as ba m  , where a and b are any integer and m is a fixed positive 

integer. 

Thus by definition we have, mrrba m  0, . 

Where r is the least non-negative remainder when ba  is divided by m.  

e.g., 025 2  , since 0)5(21025   and when we divide ( 25 ) by 2 we get the 

remainder 0. Thus, we say 025 2  . 

e.g., 1315 4  , since 1)11(445315   and when we divide )315(   by 4 we get the 

remainder 1. Thus, 1315 4   

Note 1: abba mm   

2: )()( cbacba mmm   

Example 11: (Additive group of integers modulo m) The set }1...,,2,1,0{  mG  of first 

m non-negative integer is a group, the composition being addition reduced modulo m. 

Proof: Closed property: As we know by definition of addition modulo m.  

rba m   where, 10  mr . Therefore for all Gba ,  we get Gba m  )( . Hence G is 

closed with respect to the operation addition modulo m. 

Associative property: Let Gcba ,,  and m is fixed positive integer. 

Then,  )( cba mm )( cba m   

  The least non-negative remainder when )( cba   is divided by m 
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  The least non-negative remainder when cba  )(  is divided by m 

cba m )(   

cba mm  )(  

Thus,  )( cba mm cba mm  )(  

Existence of identity: We have G0 , also if we have any Ga  then, 00 mm aaa  . 

Therefore, 0 is the identity element of G.  

Existence of inverse: As 0 is the identity element so inverse of 0 is 0 itself. Also if a is any 

non-identity element of G then am  is also an element of G . 

Now, 0)(  ama m . Hence we can say that every non-identity element of G has inverse 

in G.  

Commutative: ba m   The least non-negative remainder when ba   is divided by m 

  The least non-negative remainder when ab   is divided by m 

ab m   

i.e., abba mm   

Hence, ),( mG   is abelian group.  

Note: In general, we denote }1...,,2,1,0{  mZm  and say mZ  is abelian group with respect 

to the operation (w.r.t.) addition modulo m i.e., ),( mmZ   is abelian group.  

e.g., ),( 56 Z , ),( 22 Z , ),( 33 Z  etc. are the abelian group.  

U(n): We will define an important group most commonly used in this book. Here, U(n) is the 

collection of all natural number less than n and relatively prime to n i.e.,  

}1),gcd(|{)(  nxandnxNxnU  

e.g. }3,1{}1)4,gcd(4|{)4(  xandxNxU  

e.g., }4,3,2,1{)5( U  
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e.g., }7,5,3,1{)8( U  

Example 12: )(nU  is always an abelian group with respect to the operation multiplication 

modulo n ( n ) for all Nn .  

Solution: As we know, }1),gcd(|{)(  nxandnxNxnU . 

Here, obviously if )(, nUba   then 1),gcd( nab   

)(nUba n   or in general we can say )(nUab . Thus, )(nU  is closed w.r.t. operation

n . 

As multiplication modulo n is associative and commutative both hence )(nU  will also.  

Since, NnnU  )(1  then 1 will be the identity of )(nU  i.e., )(nUa , 

aaa nn  11  

Now consider, }...,,,{)( 21 kaaanU   for any Nn  

Let )(nUa then, }...,,,{ 21 kaaaaaa  are also element of )(nU  as it is closed and none of the 

two elements of }...,,,{ 21 kaaaaaa  are same (Here it should be remember always that

ini aaaa  ). 

If it is then, jnin aaaa   or ji aaaa   

)(mod naaaa ji   

)(| ji aaaan  )(| ji aaan    

Since, )(nUa and anna |1),gcd(   

)(| ji aan  )(mod0 naa ji   

)(mod naa ji   

Hence all }...,,,{ 21 kaaaaaa  are distnict. 

)(nUar   such that aaaa nrrn  1  
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Which means ra  is the inverse of a. So, we can say every element of )(nU has its inverse in

)(nU . Thus, )(nU  is abelian group with respect to the operation multiplication modulo n.  

Quaternion group ( 8Q ): An another important non-abelian group name as quaternion group 

and denoted by 
8Q  and defined as, 

},,,,,,1,1{8 kkjjiiQ  , which satisfies the rule, 

kij  and kji  ; ijk  and ikj  ; jki  and jik   

Also, 1222  kji and ikj   

Note: 8Q  is non-abelian group with respect to the operation multiplication. 

2.7 ORDER OF A GROUP 

The order of a group is the number of elements it contains, denoted by ∣G∣. Sometime we 

name it as the cardinality of the group. A group may have finite element, countable element 

or uncountable elements. If any group G has finite element say n then we say group of order 

n otherwise we called group of infinite order.  

e.g., (R, +) is infinite group. 

Euler  function: A function from natural number (N) to natural number (N) such that  

)(n  Collection of all natural number less than n and relatively prime to n. The mean of 

relatively prime is that whose g.c.d with n is 1.  

If n  is any natural number and kn

k

nn
pppn ...21

21 is the prime factorisation of n, then 

))...()(()(
11

22

1

11
2211 

 kk n

k

n

k

nnnn
ppppppn  

e.g., 82.4)13)(22()3.2()24( 233   

Example 13: Find the order of the group )2( 5U . 

Answer: Since order of )2( 5U is )2( 5 .  

We know that, 16163222)2( 1555    
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Note: If p is prime then, 1)(  pp  

Check your progress 

If }4,3,2,1,0{5 Z  and the operation 5 then find the following problems. 

Problem 1: Is ),( 55 Z  a group? 

Problem 2: Find the order of the group ),( 55 Z . 

Problem 3: Find the identity element of ),( 55 Z  

Problem 4: Find the inverse element of the element of 4  in ),( 55 Z . 

 

2.8 SUMMARY 

This unit on group theory introduces the concept of a group, a fundamental structure in 

abstract algebra defined by a set and a binary operation satisfying closure, associativity, 

identity, and inverse properties. Key topics include examples of groups such as integers under 

addition and symmetric groups, classifications like Abelian and non-Abelian groups. On the 

basic of this we further study Subgroups, Lagrange's theorem (relating subgroup order to 

group order), normal subgroups, and quotient groups in upcoming units. The chapter explores 

the applications of group theory in understanding symmetry, transformations, and 

mathematical structures in various domains, providing tools for solving problems in 

geometry, physics, and beyond. Group theory has applications in diverse fields such as 

geometry, number theory, physics, and cryptography, making it a cornerstone of modern 

mathematics. 

2.9 GLOSSARY 

 Binary operation. 

 Algebraic structure. 

 Group. 

 Semi group. 

 Monoid. 

 Abelian group. 

 Order of the group. 

 Euler  function. 
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 Addition modulo n. 

 Multiplication modulo n. 
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2.12 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Show that the set of all positive rational numbers forms an abelian group under the 

composition defined by, 
2

*
abba

ba


 . 

2.  Show that set of all matrices of order nn  with respect to the operation 

multiplication is form non-abelian group when 3n . 

3.
 

Show that power set of natural number is form group with respect to the operation 

defined by, )()( XYYXYX   where )(, NPYX  . 

4.
 

Show that set of natural number is form group with respect to the operation 

defined by, ),( baGCDba  where Nba , . 

5. Show that set of natural number is form group with respect to the operation 

defined by, ),( baLCMba  where Nba ,  
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6. Prove that 
nZ  is form group with respect to the operation addition modulo n. 

Short Answer Type Question: 

1. Prove that the Quaternion group 8Q  is group with respect to operation multiplication. 

2. Find the order of the group )5( 99U . 

3. Prove that )8(U  is a group with respect to the operation multiplication modulo 8. 

4. Prove that 
5Z  is a group with respect to the operation addition modulo 5. 

5. Prove that cancellation laws hold good in a group. 

6. Is set of natural number forms a group with respect to operation addition? If No, then 

why? 

Fill in the blanks: 

1. A group G is a set equipped with a binary operation that satisfies four properties: 

closure, associativity, the presence of an …………. element, and the existence of 

………. for each element. 

2. A group G is called …………. if Gbabaab  , . 

3. The identity element e of a group G satisfies the property ……………. 

4. In any group G, the inverse of an element a is denoted by 1a and satisfies  …….. 

5. A …………. is a non-empty set G with a binary operation that satisfies closure, 

associativity, identity, and inverse properties. 

6. The …………  of a group G  is the total number of elements in G. 

7. In a group G, 1)(ab …………… 

 

Objective type questions:  

1. Which of the following is a necessary property of a group? 
a) Associativity 

b) Commutativity 

c) Distributivity 

d) Reflexivity 

2. A group G  is called Abelian if: 
a) G is finite 

b) G has an identity element 

c) G is commutative 

d) G is cyclic 
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3. The identity element of a group G: 
a) Is unique 

b) Has no inverse 

c) May not exist 

d) Is not required to satisfy associativity 

4. Which of the following is not a group under the usual operation? 
a) The set of integers under addition 

b) The set of rational numbers under multiplication 

c) The set of natural numbers under addition 

d) The set of real numbers under addition 

5. A group with a finite number of elements is called: 
a) Infinite group 

b) Cyclic group 

c) Finite group 

d) Symmetric group 

6. Which of the following groups is cyclic? 
a) The set of integers under addition 

b) The set of rational numbers under multiplication 

c) The set of even integers under addition 

d) The set of real numbers under multiplication 

7. If G is a group, and a, b ∈ G, then (ab)
−1

 equals: 

a) 1ab  

b) 11  ab  

c) 11  ba  

d) ab 1  

8. In a group G, the identity element e satisfies: 

a) ee 2  

b) Ggeggge  ..  

c) ee 1  

d) All of the above 

True and False questions: 

1. Every group has a unique identity element. 

2. In a group, every element has a unique inverse. 

3. The set of natural numbers under addition forms a group. 

4. A group G is called Abelian if ab = ba for all a,b ∈G. 

5. If G is a group, then the equation ax = b always has a unique solution for x in G. 

6. The identity element of a group G is always equal to 1. 

7. The set of all even integers under addition forms a group. 

8. A finite group cannot have an infinite subgroup. 
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9. The set of real numbers under multiplication forms a group. 

10. The set of matrices under matrix multiplication always forms a group. 

11. If G is a group and Ga , then aa  11)( . 

2.13 ANSWERS 

Answer of check your progress: 

Problem 1: Yes 

Problem 2: 5 

Problem 3: 0 

Problem 4: 1 

Answer of short answer type question: 

2. 9854  

6. Set of natural number is not form a group with respect to operation addition because 

additive identity N0 . 

Answer of the objective type question: 

1. a)  2. c)  3. a)  4. c) 

5. c)  6. c)  7. b)  8. d) 

Answer of the fill in the blanks: 

1. Identity,  Inverses  2. Abelian 3. Gaaeaae  ..  

4. eaaaa   .. 11   5. Group  6. Order 

7. 
11  ab  

Answer of True and False: 

1. True  2: True  3: False  4: True 

5: True  6: False  7: True  8: True 

9: False  10: False  11: True 
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Unit-3: SUBGROUP 

CONTENT: 

 

3.1 Introduction  

3.2  Objectives 

3.3  Subgroup 

3.4 One-step subgroup test 

3.5 Two-step subgroup test 

3.6 Algebra of complexes of a group 

3.7 Properties of subgroups 

3.8 Summary  

3.9 Glossary  

3.10   References 

3.11  Suggested Readings 

3.12  Terminal Questions 

3.13 Answers 

3.1 INTRODUCTION 

The concept of subgroups emerged as a part of the development of group theory in the 

19th century. Group theory originated from the study of algebraic equations, particularly the 

work of Évariste Galois in the early 1830s. Galois introduced the idea of groups to analyze 

the solvability of polynomial equations, leading to what is now known as Galois theory. His 

work hinted at the importance of subsets of groups that retain group structure, laying the 

groundwork for subgroups. 

Later, Arthur Cayley in the mid-1800s formalized the concept of groups and 

explored their properties systematically. Subgroups became an essential tool in understanding 
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the structure of larger groups. Camille Jordan and Sophus Lie further advanced the study of 

subgroups in the context of finite groups and continuous transformation groups, respectively. 

By the late 19th and early 20th centuries, mathematicians like Emmy Noether and Élie 

Cartan expanded the application of subgroups to abstract algebra and geometry. The study of 

subgroups has since become a cornerstone of modern algebra, with applications in number 

theory, geometry, cryptography, and physics. 

By studying subgroups, mathematicians gain a deeper understanding of the structure 

and behavior of groups, enabling them to explore more advanced concepts in abstract algebra 

and its applications. 

3.2 OBJECTIVES 

The objectives of studying subgroups in group theory are as follows: 

1. Understand Structural Hierarchies: To analyze how a smaller subset of a group 

inherits the group properties and interacts with the larger group. 

2. Identify Symmetries: Subgroups help in identifying specific symmetries or 

transformations within a group that hold unique significance. 

3. Simplify Problem-Solving: By focusing on subgroups, problems involving complex 

groups can often be reduced to simpler components. 

4. Explore Properties: To study properties like closure, associativity, identity, and 

inverses within smaller subsets and verify their subgroup status. 

5. Classify Groups: Subgroups help in classifying groups by revealing internal 

structures, such as normal subgroups, cyclic subgroups, or center subgroups. 

6. Understand Generators: Subgroups often arise from generators of a group and help 

in exploring cyclic structures. 

7. Applications in Science and Engineering: Subgroups are used in symmetry analysis, 

cryptography, quantum mechanics, and other fields to isolate specific behaviors or 

properties of larger systems. 

3.3 SUBGROUP 

A subgroup is a subset of a group that itself forms a group under the same binary operation 

as the parent group. To qualify as a subgroup, the subset must satisfy the group axioms: 

closure, associativity, identity, and inverses. Subgroups are fundamental in understanding the 

internal structure of groups and play a key role in simplifying and solving problems in group 

theory. For example, the set of even integers is a subgroup of the integers under addition. 

Subgroups are used to explore the symmetries of objects, simplify complex group operations, 

and form the basis for advanced concepts like normal subgroups and quotient groups. 
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Definition: Let ,*)(G  be a group and GH  , we say H is a subgroup of G if ,*)(H  is group 

itself. Generally, we denoted it as GH  .  

Throughout this book whenever we use the symbol GH   it always mean that H is subgroup 

of G.  

Note 1: The operation on group and its subgroup are always same. For e.g. as we know that 

set of integer )(Z is group with respect to the operation addition and }4,3,2,1,0{5 Z is 

subset of Z  but 
5Z  is not subgroup of Z because the operation used in 

5Z  is addition 

modulo 5 i.e., operation on 5Z  and Z are not same. 

Some useful subgroup corresponds to their respective group 

(i) ),(),(  CR  

(ii) ),(),(),(  CRQ  

(iii) ),(),(),(),(),(  CRQZmZ  

(iv) ,.)(,.)(,.)( *** CRQ   

Note 1: For any ,*)(G  the subset of i.e., }{e  and G itself are always subgroups of the group

,*)(G . Here, }{e  is called trivial subgroup of ,*)(G  and G itself called improper subgroup 

of ,*)(G . 

2: If GH   such that GH  then H is called proper subgroup of ,*)(G . So, we can say that 

}{e  is also a proper subgroup of ,*)(G .  

Example 1: Find all the subgroup of the quaternion group )( 8Q . 

Solution: In the previous unit we have studied about the quaternion group form a non-abelian 

group with respect to the operation multiplication. As we know that },,,1{8 kjiQ  , 

which satisfies the rule.  

kij  and kji  ; ijk  and ikj  ; jki  and jik   

Also, 1222  kji and ikj   

Now, we can easily check that the following subset of 8Q  like,  

}1{1 H  
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}1,1{2 H  

},,1,1{3 iiH   

},,1,1{4 jjH   

},,1,1{5 kkH   

86 },,,1{ QkjiH   

Here, all 61, toiHi   are proper and improper subset of 
8Q and also these 61, toiHi  are 

form itself group with respect to the operation multiplication. Hence we can say these 

61, toiHi   are subgroup of 8Q . 

3.4 ONE-STEP SUBGROUP TEST (OST) 

The one-step subgroup test is a straightforward technique used in group theory to check 

whether a given subset H of a group G is a subgroup of G. 

Theorem 1: If GH   such that H  then GH   if and only if HbaHba  1,, . 

Where   is the binary operation on G. 

Proof: Let we assume that HbaHba  1,, . 

Given H  there exist an element Ha . 

Haa  1
, since we know that eaa  1 , which means identity element He . So, we 

can say existence of identity element in H. 

If }{eH   only, then the theorem done because we know that }{e  is always a subgroup of 

any group called trivial subgroup of G. 

But if }{eH   then there exist Hea  )(  then by definition, 

HaaeHea   11, , which means every non-identity element possesses its inverse 

in H. Therefore we can say that if Ha  then Ha 1 . So, we can say existence of inverse 

element in H. 

Now, let Hba , then obviously by definition Hba  11,  
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Now again Ha  and Hb 1  then Hba   11)(  i.e., Hba  . So, we can say H is 

closed with respect to the operation  . 

Since G is a group so it will satisfies the associativity property and hence its each subset will 

also the satisfies the associative property with respect to the operation  . 

Conversely, Let we assume that GH  is a subgroup of ),( G . It means H itself is a group 

with respect to the operation  . So, if any elements Hba ,  then there inverse will also 

belongs to the group i.e., Hba  11, . Now if Hba 1, , then by closure property on group 

HbaHba   ,,1 . 

Note 1: If G is a group with respect to the operation multiplication and GH   such that 

H  then GH   if and only if HabHba  1,, . 

2: If G is a group with respect to the operation addition and GH   such that H  then 

GH   if and only if HbaHba  )(,,  i.e., Hba  . 

Algorithm for OST: To claim GH   for given GH  . 

Step 1: Show H  

Hint: Think about the identity element He  

Step 2: Choose arbitrary Hyx ,  and write the property of yx & as member of H. 

Step 3: Evaluate 1. yx  and using step-2 show that Hyx 1. . 

Example 2: Prove that set of integer is subgroup of set of real number with repsct to the 

operation addition. 

Solution: To prove that the set of integers Z is a subgroup of the set of real numbers R under 

the operation of addition, we use the subgroup criteria. Specifically, we check that: 

1. Z is non-empty. 

2. Z is closed under addition. 

3. Z is closed under taking inverses. 

Step 1: Z is non-empty 

The set of integers Z contains at least one element, e.g., 0∈Z. Hence, Z is non-empty. 
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Step 2: Closure under addition 

If Zba , , then their sum ba   is also an integer )(.,. Zbaei  . Since the integers are 

closed under addition, this property holds. 

e.g., Z2,1  then Z 121)2(1  

Step 3: Closure under inverses 

For any integer Za , its additive inverse a  is also an integer ( Za ). Hence, Z is closed 

under taking inverses i.e., Zaaaaa  2)(  as Za  

e.g., Z2,1  then Z 321)2(1  

3.5 TWO-STEP SUBGROUP TEST (TST) 

The two-step subgroup test is a two-step based technique used in group theory to check 

whether a given subset H of a group G is a subgroup of G. 

Theorem 2: A non-empty subset H of a group G is a subgroup of G if and only if  

(i) HabHbHa  , . 

(ii) HaHa  1  where 1a  is the inverse of a in G. 

Proof: If part: Let H be a subgroup of G then H must be closed with respect to the operation 

multiplication i.e., the composition in G. Therefore HabHbHa  , .  

Now, let Ha  then Ha 1 as H is subgroup hence group itself.  It means each element of 

H possesses its inverse in H.  

Only if part: Since HabHbHa  , , it means H is closed with respect to 

multiplication.  

Associativity: Since G is a group so it will satisfies the associativity property and hence its 

each subset will also the satisfies the associative property with respect to the operation 

multiplication.  

Existence of identity: Since the identity of the subgroup is the same as the identity of the 

group. Now, HaHa  1    [According to the condition] 

Further, HaaHaHa   11,  
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He         [From the given condition] 

i.e., the identity e is an element of H. 

Existence of inverse: Since HaHa  1 , it means each element of H possesses its 

inverse. Hence H itself is a group for the composition in G. So H is a subgroup of G.  

3.6 ALGEBRA OF COMPLEXES OF A GROUP 

Any non-empty subset (H) of a group (G) is called the complexes of the group. IF H is 

closed with respect to the given operation then we say that the complex H is stable for the 

composition in the group G and that the composition in G has induced a composition in H. If 

for this induced composition H itself is a group, then H is called a subgroup of the group. 

If H and K are two complexes of the group G then multiplication of complexes defined as,  

},|{ KkHhhkHK  . 

Obviously, GHK  . Thus HK is a complex of G consisting of the elements of G obtained 

on multiplying each member of H with each member of K.  

Note: As we know that complex H is always a subset of the group G then the associativity 

and commutativity will always hold on complex H. 

Example 3: Multiplication (Addition) of complexes is associative. 

Solution: We have to prove that )()( KLHLHK  . 

Let h, k, l are arbitrary element of H, K and L respectively, so that LHKlhk )()(   

But, )()()( KLHklhlhk   

)()( KLHLHK                                                … (1) 

Similarly, we can show that LHKKLH )()(      …. (2) 

Hence, by (1) and (2) we get )()( KLHLHK  . 

Note: Whenever we say KHHK  , then it does not mean that we should have 

KkandHhkhhk  . What we require is that each element of the set HK should be 

present in KH and each element of KH should be present in HK.  
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Inverse of a complexes: Let H be any complex of G. Then we define, 

}:{ 11 HhhH    i.e., 1H  is the complexes of G consisting of the inverses of the element 

of H.  

Theorem 3: If H and K are any two complexes of a group G, then 111)(   HKHK . 

Proof: Let x  be any arbitrary element of 1)( HK . Then, 

KkHhhkx   ,,)( 1  

1111   HKhkx              [ 1111 ,   KkHh ] 

111)(   HKHK                                            … (1) 

Again let y be any arbitrary element of 11  HK  

Then HhKkhky   ,,11  

11 )()(   HKhky  

Hence, 111 )(   HKHK                                 … (2) 

By, (1) and (2) we get, 111)(   HKHK  

Theorem 4: If H is any subgroup of a group G, then HH 1)( . Also show that converse is 

not true. 

Proof: Let 1h  be any arbitrary element of 1H . Then Hh . 

Now H is a subgroup of G, therefore HhHh  1 .  

Thus HhHh   111 . Therefore HH 1  

Again, HhHh  1  

111)(   Hh  

1 Hh  

1 HH  
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Thus, we can say that 1 HH  

Note: If H is a complex of a group G and 1 HH , then it is not necessary that H is a 

subgroup of G. For example, }1{H  is a complex of the multiplicative group }1,1{ G . 

Also }1{1 H . Since -1 is the inverse of 1  in G. But }1{H  is not a subgroup of G. 

We have H 1)1)(1( . Thus H is not closed with respect to the multiplication.  

Theorem 5: If H is any subgroup of a group G, then HHH  . 

Proof: Let 
21hh  be any element of HH where HhHh  21 , . Since H is subgroup of G, 

therefore HhhHhh  2121,  

HHH   

Now let h be any element of H. Then we can write heh  , where e  is the identity element of 

G. Now, HHhe , since HeHh  ,  

Thus HHH  . 

Hence, HHH   

3.7 PROPERTIES OF SUBGROUPS 

Theorem 6: A necessary and sufficient condition for a non-empty subset H of a group G to 

be a subgroup is that HHH 1 . 

Proof: The condition is necessary: It is given that H is a subgroup of G. Let 1ab  be any 

arbitrary element of 1HH . Then HbHa  , . 

Since H itself is a group, therefore HbHb  1 . 

Thus HabHbHa   11, . 

Hence, HHH 1 . 

The condition is sufficient: It is given that HHH 1 . 

Let 11,   HHabHbHa . Since HHH 1 , therefore HabHHab   111 . 

Thus HabHbHa  1, . Since H is a subgroup of G. 
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Corollary 1: : A necessary and sufficient condition for a non-empty subset H of a group G to 

be a subgroup is that HHH 1 . 

Proof: The condition is necessary: Suppose H is a subgroup of G, then by theorem 

HHH 1 . 

Now H is a subgroup of G. Therefore He . If h is any arbitrary element of H, then 

11   HHheheh                [ 11,   HeHh ] 

1 HHH  

Hence, HHH 1  

The condition is sufficient: It is given that HHH 1 . 

HHH  1  

Hence by theorem, H is subgroup of G.  

Theorem 7: If H, K are two subgroup of a group G, then HK is a subgroup of G, iff 

KHHK  . 

Proof: Let us consider H, K are two subgroup of a group G and KHHK  then we have to 

prove that HK is a subgroup of G. So, we have only to show that HKHKHK 1))((  (By 

corollary 1) 

We have, 11111 )())(())((   HKKHHKHKHKHK  

1)(  HHK      [ K is a subgroup KKK  1 ] 

1)(  HKH       [ KHHK  ] 

)( 1 HHK  

KH                  [ H is a subgroup HHH  1 ] 

HKKHHK   is a subgroup of G.  

Conversely, suppose that HK is a subgroup. 

Then, HKHK 1)(  
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HKHK   11        [ K is a subgroup KK  1  and similarly, HH  1 ] 

Note: If H, K are subgroups of an abelian group G, then HK is a subgroup of G.  

Theorem 9: If 
1H  and 

2H  are two subgroup of a group G, then 
21 HH   is also a subgroup 

of G.  

Proof: Let 
1H  and 

2H  are two subgroup of a group G then we have to show that 
21 HH   is 

also a subgroup of G. To prove this we will use the one step subgroup test.  

For it let, 
21, HHba   then we have only to show that 

21

1 HHab  . 

Now if 
2121, HHaHHba  and 

21 HHb   

1Ha  and 
2Ha , Similarly, 

1Hb  and 
2Hb . 

Further,
1

1

11, HabHbHa         [As 
1H  is subgroup then by one step subgroup test] 

Similarly, 
2

1

21, HabHbHb      [As 
2H  is subgroup then by one step subgroup test] 

So, we have 
1

1 Hab   and 
21

1

2

1 HHabHab    

Hence, we achieved that if 
21, HHba   then 

21

1 HHab  . So, we can claim that 

21 HH   is also a subgroup of G if 
1H  and 

2H  are two subgroup of the group G. 

Corollary 2: Arbitrary intersection of subgroups of a group is also a subgroup of the group. 

Proof: Let G be a group and }|{ TtHt   be the family of subgroups tH  of the group G, 

where T be the indexed set. We have to show that }|{ TtHH t   is also the subgroup of 

G. 

For it let, tt HaTtHba  }|{,  and TtHb t   

Now, tt HabHba  1,  for all Tt . As tH  is arbitrary subgroup from the family of 

subgroup }|{ TtHt  hence we get,  

}|{}|{, 1 TtHabTtHba tt  
   [Because tH  are subgroups for all Tt ] 

Thus, arbitrary intersection of subgroups of a group is also a subgroup of the group. 
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Example 4: Show by suitable example that the union of two subgroup is not necessarily a 

subgroup while intersection of subgroup is a subgroup. 

Solution: As we know that set of integer (Z) is a group with respect to the operation addition. 

Also, we know that mmZ, is fixed integer is a subgroup of Z. So, we can say that  

,...}6,4,2,0,2,4,6{......},6,4,2,0{2 Z  

And ,...}9,6,3,0,3,6,9{......},96,3,0{3 Z  are two subgroup of Z.  

Now, ...}9,6,4,3,2,0{32  ZZ . 

Now, ZZ 322   and ZZ 323   but ZZ 32523  . Hence, ZZ 32   is not 

closed with respect to the operation addition. So, we can say that union of two subgroup is 

not necessarily a subgroup.  

...},18,12,6,0{32  ZZ  

Theorem 10: Union of two subgroups is a subgroup if and only if one is contained in the 

other.  

Proof: Let 
21, HH  are two subgroups of a group G and also we consider that 

21 HH   or 

12 HH  . Then obviously,  

If 
21 HH   then 

21121 HHHHH   is subgroup as 
1H  is subgroup; 

And if 
12 HH   then 

21221 HHHHH   is subgroup as 
2H is subgroup.  

Thus, if one subgroup is contained in the other subgroup then union of two subgroups is a 

subgroup. 

Conversely, suppose that 
21 HH   is subgroup where

21, HH  are two subgroups. So, we 

have to prove that either 
21 HH   or 

12 HH  . 

For it, let we suppose that
1H  is not subset of 

12 HaH   and 
2Ha     … (1) 

And if, 
2H  is not subset of 

21 HbH   and 
1Hb           … (2) 

Now, from (1) and (2), we get 
21 HHa   and 

21 HHb  . 

Since we have
21 HH   is subgroup, therefore cab   (say) is also an element of 

21 HH  . 
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But 
121 HcHHcab   or 

2Hc  

Suppose 
1Hcab   then 

1

1 Hcab         [
1H  is a subgroup, therefore 

1

1

1 HaHa   ] 

But from (2), we have 
1Hb . Thus we get a contradiction. 

Again suppose 
2Hcab   then 

2

1 Hcba    [
2H  is a subgroup, therefore 

2

1

2 HbHb   ] 

But from (1), we have 
2Ha . Thus here also we get a contradiction. 

Hence either 
21 HH   or 

12 HH  . 

Hence the theorem proved. 

Example 5: Can an abelian group have a non-abelian subgroup? 

Solution: Since every subgroup of an abelian group is abelian. If G is an abelian group and H 

is a subgroup of G, then the operation on H is commutative because it is already commutative 

in G and H is a subset of G. Hence an abelian group cannot have a non-abelian subgroup.  

Example 6: Can a non-abelian group have a abelian subgroup? 

Solution: A non-abelian group can have [an abelian subgroup]. For example the quaternian 

group 8Q is non-abelian while its subgroup },,1,1{ iiH   is abelian subgroup.  

Example 7: Can a non-abelian group have a non-abelian subgroup? 

Solution: A non-abelian group can have a non-abelian subgroup. For example, as we know 

that every group G has G and }{e  are its two ready-made subgroup. Similary, the quaternian 

group 8Q has 8Q  and }{e are two its subgroup where 8Q  is non-abelian. So we can say that a 

non-abelian group have a non-abelian subgroup. 

Check your progress 

If },,,1{8 kjiQ   is a group with respect to the operation multiplication then find the 

following problems. 

Problem 1: Is }1,1{1 H  a subgroup group of 8Q  ? 

Problem 2: Is },,1,1{2 jjH   a subgroup group of 8Q ? 
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Problem 3: Is },,1,1{2 kkH   a subgroup group of 
8Q ? 

Problem 4: Find the abelian and non-abelian subgroup of 
8Q ? 

 

3.8 SUMMARY 

The unit on subgroups explores the concept and properties of subgroups within the context of 

group theory. It begins by defining a subgroup as a subset of a group that itself satisfies the 

group axioms: closure, associativity, the existence of an identity element, and inverses. The 

unit introduces key criteria like the subgroup test, which states that a non-empty subset is a 

subgroup if it is closed under the group operation and inverses. Examples of subgroups, 

including trivial and improper subgroups, are discussed to illustrate the concept. The unit also 

delves an important role to learn about Lagrange's Theorem, which relates the order of a 

subgroup to the order of the parent group, and the concept of cyclic subgroups generated by a 

single element, which we will learned later. Overall, this unit emphasizes the utility of 

subgroups in analyzing the structure and symmetry of groups. 

3.9 GLOSSARY 

 Subgroup. 

 One-step subgroup test. 

 Two-step subgroup test. 

 Complexes of the group. 
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3.12 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Show that a necessary and sufficient condition for a non-empty subset H of a finite 

group G to be a sub-group is that HabHbHa  , . 

2.  If G is a group, the centre of G, )(GZ  is defined by, 

}|{)( GxxzzxGzGZ  . Prove that )(GZ  is a subgroup of G. 

3. If Ga  we define }|{)( axxaGxaN  . Prove that )(aN  is a subgroup of G. 

4. Let G be a group, H is a subgroup of G. Let for Gx , }|{ 11 HhxhxxHx   . 

Prove that 1xHx  is a subgroup of G.  

5. Show that integral multiple of 5 form a subgroup of the additive group of integers. 

6. Show that all those element of an abelian group G which satisfy the relation ea 2

constitute a subgroup of G.  

Short Answer Type Question: 

1. Let H be a subgroup of a group G and define }:{ HxxHGxT   then prove that T 

is a subgroup of G. 

2. Define a subgroup with examples. What is the difference between a complex and a 

subgroup of a group.  

3. Give an example of a non-abelian group G which has the property that every proper 

subgroup of G is abelian. 

4. Show that a group can never be expressed as the union of two of its proper subgroup.  

Fill in the blanks: 

1. A subset H of a group G is a subgroup if it is __________ under the group operation 

and contains the __________ of G. 
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2. The identity element of a subgroup H is the same as the __________ element of the 

parent group G. 

3. A subgroup H is called a __________ subgroup if it only contains the identity 

element. 

4. If a is an element of a group G, the set of all powers of a, }|{ Znan  , forms a 

__________ subgroup of G. 

5. A non-empty subset H of a group G is a subgroup if Hba , implies __________ in 

H, and Ha 1 . 

6. The subgroup generated by an element Gg is called the __________ subgroup of 

G. 

7. The __________ subgroup of any group G is G itself. 

Objective type questions:  

1. Which of the following is NOT a requirement for a subset H of a group G to be a 

subgroup? 

a)  H is non-empty. 

b)  H is closed under the group operation. 

c)  H contains all elements of G. 

d)  H is closed under inverses. 

2. The set of integers under addition forms a group. Which of the following subsets is a 

subgroup? 

a)  The set of all odd integers. 

b)  The set of all even integers. 

c)  The set of all positive integers. 

d)  The set of all negative integers. 

3. If H is a subgroup of a group G, then: 

a)  H must be finite. 

b)  H must contain at least two elements. 

c)  The identity element of G is in H. 

d)  H must be equal to G. 

4. If H is a subgroup of G, which of the following must hold? 

a)  H is closed under addition. 

b)  H contains the identity element of G. 

c)  H is closed under multiplication. 

d)  H contains the inverse of each of its elements. 

5. Which of the following is not a criterion for GH   to be a subgroup? 

a)  H  

b)  H is closed under the group operation 

c)  For all HabHba  1,,  

d)  H is commutative 
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6. The intersection of two subgroups of a group G: 

a)  Is always a subgroup of G 

b)  Is never a subgroup of G 

c)  Depends on the group G 

d)  Is equal to G 

7. If H and K are subgroups of a group G, then KH   

a)  Is always a subgroup of G 

b)  Is a subgroup only if KH  or HK   

c)  Is never a subgroup of G 

d)  Is a subgroup if  KH  

8. A subgroup H of G is called proper if: 

a)  GH   

b)  }{, eHGH   

c)  GH   

d)  GH   

9. A nonempty subset H of a group G is a subgroup if and only if: 

a)  H is closed under the group operation 

b)  H is closed under inverses and the group operation 

c)  H is closed under scalar multiplication 

d)  H satisfies HhgHgh  ,1  

10. If G is a finite group and H is a subgroup of G, then the order of H: 

a)  Divides the order of G 

b)  Equals the order of G 

c)  Must be prime 

d)  Is always odd 

11. If H is a subgroup of G  and Gg , 1gHg : 

a)  Is always a subgroup of G 

b)  Is never a subgroup of G 

c)  Is equal to H 

d)  Is equal to G 

12. A subgroup H of a group G is normal if and only if: 

a)  HggH  for all Gg  

b)  H is abelian 

c)  H is cyclic 

d)  H is finite 

True and False questions: 

1. Every group has exactly one trivial subgroup. 

2. The identity element of a group does not necessarily belong to its subgroups. 
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3. The union of two subgroups is always a subgroup. 

4. A non-empty subset of a group is a subgroup if it is closed under the group operation 

and inverses. 

5. If H is a subgroup of G, then H must also be a normal subgroup. 

6. The center of a group G is always a normal subgroup of G. 

7. If G is a finite group and H is a subgroup of G, then the order of H divides the order 

of G. 

8. The intersection of any two subgroups of a group is always a subgroup. 

9. A group with no proper non-trivial subgroups is called a simple group. 

10. The union of all subgroups of a group G forms a subgroup of G. 

11. If H is a proper subgroup of G, then H must be finite. 

3.13 ANSWERS 

Answer of check your progress: 

Solution 1:  Yes. 

Solution 2:  Yes. 

Solution 3:  Yes. 

Solution 4:  The abelian subgroup of 8Q  are }{1 eH  , }1,1{2 H , },,1,1{3 iiH  , 

},,1,1{4 jjH  , },,1,1{5 kkH   

The non-abelian subgroup of 8Q  are 8Q . 

Answer of the objective type question: 

1.   c  2. b  3. c  4. b, c, d 

5.   d  6. a  7. c  8. c 

9.   d  10. a  11. a  12. a 

Answer of the fill in the blanks: 

1. Closed, Identity element  2. Identity  3. Trivial 

4. Cyclic     5. ab    6. Cyclic 

7. Improper 

Answer of  True and False: 
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1.   True  2. False  3. False  4. True 

5.  False  6. True  7. True  8. True 

9.  True  10. False  11. False 
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Unit-4: CYCLIC GROUP AND LAGRANGE’S 

THEOREM 

CONTENT: 

4.1 Introduction  

4.2  Objectives 

4.3  Order of group 

4.4 Generation of element 

4.5 Order of an element 

4.6 Cyclic group 

4.7 Lagrange’s theorem 

4.8 Summary  

4.9 Glossary  

4.10   References 

4.11  Suggested Readings 

4.12  Terminal Questions 

4.13 Answers 

4.1 INTRODUCTION 

Joseph-Louis Lagrange made significant contributions to abstract algebra, 

particularly in group theory and permutation theory. His most famous result, Lagrange’s 

Theorem, established that the order of a subgroup divides the order of a finite group, laying 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERITY Page 57 
 

the groundwork for later developments in group theory. His work in permutation groups 

influenced Évariste Galois, leading to the foundation of Galois theory, which connects group 

theory with field theory and polynomial equations. Lagrange also studied resolvents in 

algebraic equations, contributing to the understanding of polynomial roots and their 

symmetries. His insights into number theory and modular arithmetic played a key role in the 

development of modern algebraic structures, influencing later mathematicians like Cauchy 

and Galois. 

Joseph-Louis Lagrange (born Giuseppe Luigi 

Lagrangia or Giuseppe Ludovico De la 

Grange Tournier; 25 January 1736 – 10 

April 1813), also reported as Giuseppe Luigi 

Lagrange
 

or Lagrangia,
 

 was an 

Italian mathematician, physicist and astrono

mer, later naturalized French. He made 

significant contributions to the fields 

of analysis, number theory, and 

both classical and celestial mechanics. 

 

 

Joseph-Louis Lagrange 

25 January 1736 – 10 April 1813 

https://images.app.goo.gl/Goewxm3NQYvF

whrP7  

Lagrange’s theorem provides crucial insights into the possible sizes of subgroups 

within a given group and serves as a foundational tool for further studies in algebra, such as 

in the classification of groups and the study of cosets. However, it does not guarantee the 

existence of subgroups of every divisor of ∣G∣, only that such sizes are possible. 

In this unit we will also learn about the cyclic group. The concept of cyclic groups 

has its roots in the early development of group theory, which emerged in the 18th and 19th 

centuries. The origins of cyclic groups can be traced back to the work of Joseph-Louis 

Lagrange (1736–1813), who studied permutations and the structure of algebraic equations. 

However, the formal definition and deeper exploration of cyclic groups came later with 

Évariste Galois (1811–1832), whose work on Galois theory introduced the idea of groups 

associated with polynomial equations. 

In the 19th century, Augustin-Louis Cauchy (1789–1857) and Camille Jordan (1838–

1922) further developed group theory, formalizing concepts like group order, generators, and 

cyclic subgroups. Cyclic groups were recognized as fundamental building blocks of finite 

groups, playing a crucial role in modular arithmetic and number theory, as seen in the 

works of Carl Friedrich Gauss (1777–1855). Over time, cyclic groups became central in 

abstract algebra, influencing ring theory, field theory, and cryptography. Today, they are 

one of the most basic and widely used algebraic structures in mathematics. 

https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Naturalization
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Celestial_mechanics
https://images.app.goo.gl/Goewxm3NQYvFwhrP7
https://images.app.goo.gl/Goewxm3NQYvFwhrP7
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4.2 OBJECTIVES 

The objectives of studying the unit on cyclic groups and Lagrange’s theorem in abstract 

algebra are as follows: 

1. Understanding the Concept of Cyclic Groups – Define cyclic groups and explore 

their properties, including generation by a single element. 

2. Classification of Cyclic Groups – Differentiate between finite and infinite cyclic 

groups and understand their structures. 

3. Exploring Generators – Identify generators of cyclic groups and determine the 

conditions under which an element can generate the entire group. 

4. Subgroups of Cyclic Groups – Prove that every subgroup of a cyclic group is also 

cyclic and characterize the subgroups of finite cyclic groups. 

5. Order of Elements – Understand the relationship between the order of an element 

and the order of the group, including how to compute element orders. 

6. Lagrange’s theorem- Understand the concept of Lagrange’s theorem and its 

implementation. 

By the end of the chapter, students should have a strong foundational understanding of cyclic 

groups and their significance in algebra and applied mathematics. 

4.3 ORDER OF GROUP 

Definition: Let ,*)(G  be a group then we say G is finite or infinite group, as number of 

elements in G are finite or infinite.  

When G is finite set say n, then we denote cardinality i.e.,  ||)( GGCard The order of 

 )(GOG n . 

Else, we say G  is infinite group instead of saying G is infinite order group. 

For e.g., 8)( 8 QO , 5)( 5 ZO , 4})},11,7,5,1({))8(( 12 CardUCard . 

4.4 GENERATION OF ELEMENT 

Let ),( G  be a group then, if GaGa  1 and GaGaNm mm   )(,, 1  

i.e., Gaa mm ,  

Note: We will write ea 0  i.e., eaeaa mm  0.  
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Then define, GZmaS m  }|{  

Then S is called the subset generated by a and denoted by  a  

i.e., }|{ ZmaSa m   

GZmaSaGa m  }|{,  

e.g., If 
8QG   and ia  , then }1,,1,{},,,{ 432 iiiiiii   

e.g., If }14,13,11,8,7,5,4,1{)15( UG  is a group with respect to the operation 15 . As 

)15(4 U  then 

}4,1{...},1,4,1,4{,...}4,4,4{4 32   

4.5 ORDER OF AN ELEMENT 

Let G be a group and Ga , then the order of element a  is defined as the cardinality of the 

set  aS  and denoted by )(aO . 

i.e., for Ga , ||||)( SaaO   

if  a  is infinite set then we say a is an element of infinite order.  

Observation: If Ga  such that maS  ||||  

},...,,,{ 32 eaaaaa m   

i.e.,  aaaaaa nn ,...,,...,,, 132  

claim as, ma  ||  

},...,,,{ 32 eaaaaa m  .  

Let Zn then mrrmqn  0,  

},...,,,{..)( 32 mrrarqmrmqrmqn aaaaaaeaaaaaa    

Note: If Ga , then the smallest Nm  is said to be order of a if eam   and denoted by 

)(GO . If no such m exist, then a  is of infinite order. 

Result and properties: 
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(i) For any G, the identity element is the only element of order 1 in G i.e., 1)( eO  

Hence, for any element Ga , eaaO 1)(  

(ii) We know that ee 1  i.e., we can say that e  is the self-inverse element.  

Moreover, if Gea   such that aa 1  

As 1)(  aOea  

As eaaaaa  1  

2)(2  aOea  

Hence, every element of order 2 is self-inverse.  

(iii) A non-identity element is of order 2 iff it is self-inverse. 

(iv) }|){(}|{ 1 ZmaZmaa mm    

}|){( 1 Zra r    

 1aa  

)()( 1 aOaO  

Hence, we can say that order of any element in a group is same as its inverse ‘OR’ in any 

group order of element is equal to the order of inverse element. 

(v) Let Ga  then Gx , )()( 1 aOxaxO   

Proof: eamaO m )(  

mrea  1,  

121121 ))(()(   xxaxaxxaxxax  

Then by induction, 11)(   xxaxax nn  

If mn   then, 11)(   xxaxax mm  

If mr   then we say rxaxO  )( 1  

Such that exax r  )( 1  
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exxar  1  

eexxar  1  

ear  , which is a contradiction because mr   

GaGxmxaxO   &)( 1  

Hence, )()( 1 aOxaxO 

 

Example 1: Find the order of each element of the group 8Q ? 

Solution: As we know that },,,1{8 kjiQ  . 

Since 1 is the identity element of 8Q  therefore 1)1( O . 

Now, 1)1( 1   and 1)1)(1()1( 2  . So 2)1( O . 

ii 1)( , 1))(()( 2  iii , iiiii  ))()(()( 3 , 1))()()(()( 4  iiiii . So 4)( iO  

ii  1)( , 1))(()( 2  iii , iiiii  ))()(()( 3 , 1))()()(()( 4  iiiii . So 

4)( iO  

jj 1)( , 1))(()( 2  jjj , jjjjj  ))()(()( 3 , 1))()()(()( 4  jjjjj . So 4)( jO  

jj  1)( , 1))(()( 2  jjj , jjjjj  ))()(()( 3 , 

1))()()(()( 4  jjjjj . So 4)(  jO  

Similarly, we can evaluate that )(4)( kOkO  . 

Hence in 8Q , 4)()()()()()(,2)1(,1)1(  kOkOjOjOiOiOOO . 

Example 2: Find the order of each element of the group 6Z ? 

Solution: As we know that }5,4,3,2,1,0{6 Z  is a group with respect to the operation 

addition modulo 6.  

Since 0 is the identity element of 6Z  therefore 1)0( O  

Now, 41111)1(,3111)1(,211)1(,1)1( 666

4

66

3

6

21  , 

6)1(0111111)1(,511111)1( 66666

6

6666

5  O . 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERITY Page 62 
 

Again, 3)2(0222)2(,422)2(,2)2( 66

3

6

21  O , 

2)3(033)3(,3)3( 6

21  O  

3)4(0444)4(,244)4(,4)4( 66

3

6

21  O , 

And, 25555)5(,3555)5(,455)5(,5)5( 666

4

66

3

6

21  , 

6)5(0555555)5(,155555)5( 66666

6

6666

5  O  

Note 1: In the infinite multiplicative group of non-zero rational numbers, the order of every 

element except the element 1 and -1 is infinite. 

2: In the additive group of integers the order of every element except 0 is infinite. 

3: In an infinite group elements may be of finite as well as of infinite order. 

Theorem 1: The order of every element of a finite group is finite and less than or equal to the 

order of the group. 

Proof: Let us consider G be a finite group with respect to the operation multiplication. Let 

Ga  then all positive integral powers of a i.e., ,...,, 32 aaa . All these are element of G , by 

closure axioms. Since G has a finite number of elements, therefore all these integral power of 

a cannot be distinct element of G . Let us suppose that )( sraa sr  . 

Now, sssrsr aaaaaa    

eaaa srsr   0  

- where srm   

Since sr  , therefore m is a positive integer. Thus there exists a positive integer m such that 

eam  . 

Now we know that every set of positive integers has a least member. Therefore the set of all 

those positive integers m such that eam   has least member, say n. Thus there exists a least 

positive integer n  such that ean  . Therefore )(aO  is finite. 

Now to prove that )()( GOaO  . 

Let naO )(  where )(GOn  . Since Ga , therefore by closure property naaaa ,...,,, 32  

are element of G and no two of these are same. If it is possible, let nrsaa sr  1, . 
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Then ea sr  . Since nsr 0 , therefore ea sr   implies that the order of a is less than 

n. This is a contradiction. Hence naaaa ,...,,, 32  are n distinct elements of  G. Since 

)(GOn  , therefore this is not possible. Hence we must have )()( GOaO  . 

Theorem 2: The order of an element of a group is the same as that of its inverse 1a . 

Proof: Let n and m be the orders of a and 1a  respectively. We have eanaO n )(  

(Identity element) 

eaea nn   )()( 111  

nmnaO   )( 1  

Also, eamaO m   )()( 11  

eaea mm  1)(            [ ebeb 1 ] 

mnmaO  )(  

Now, nm   and nmmn  . 

If the order of a  is infinite, then the order of 1a  cannot be finite. Because 

)()( 1 aOmaO   is finite. Therefore, if the order of a is infinite, then the order of 1a  

must also be infinite.  

Theorem 3: The order of any integral power of an element a cannot exceed the order of a . 

Proof: Let ka  be any integral power of a . Let naO )( . 

Now, eanaO n )( (identity element) 

eaea nkkkn  )(  

eaea nkkkn  )(  

naOea knk  )()(  

Theorem 4: If the element a  of a group G is of order n, then eam   iff n is a divisor of m. 

Proof: Let n  be a divisor of m . Then there exists an integer q  such that mnq  . 

Now, eeaaa qqnnqm  )( . 
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Conversely, let eam  . 

Since m is an integer and n is a positive integer, therefore by division algorithm there exist 

integers q  and r  such that 

,rnqm  where nr 0 . 

Now, rrrqrqnrnqrnqm aeaaeaaaaaa   )(        [ ean  ] 

eaea rm  . 

Since nr 0 , therefore  ear  r must be equal to zero because otherwise )(aO  will not 

be equal to n. If naO )( , then there will exist no positive integer nr   such that ear  . 

nnqm   is a divisor of m. 

Some properties of order of an elements: 

1: If xa,  are the elements of any group then a  and axx 1  are the same. 

2: Order of ab  is the same as that of ba where a  and b are any elements of a group. 

3: If a  is an element of order n  and p is prime to n, then pa  is also of order n. 

4: If a  and b  are any elements of a group ,G  then 11)(   bbabab nn  for any integer n.  

5: If G is an abelian group then, then for all Gba ,  and all integers n, 
nnn baab )( . 

6: For every element a  in a group G , ea 2 , then G is an abelian group. 

7: A group G is abelian  if every element of G except the identity element is of order 

two. 

8: Every element of a group G is its own inverse then G is abelian. 

9: If ba,  are any two elements of a group G , then 222)( baab   iff G is abelian. 

10:  If G is a group of even order then it has an element ea   satisfying ea 2 . 

Example 3: Let G be a group and let Ga  be of finite order n. Then for any integer k, we have 

),gcd(),gcd(

)(
)(

kn

n

kn

aO
aO k  , where gcd Greatest common divisor.  
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Solution: Let mkn ),gcd( . Then obviously, qmkpmn  ,  for some integers p  and q such that 

1),gcd( qp . 

Let eaealaO kllkk  )()(  

kln |         [ klneanaO kl |;)(  ] 

qlpqmlpm ||   

lp |  

Again eeaaaaa qqnqnqmppqmpk  )()()(  

Therefore, paO k |)(  i.e., pl |  

Now again, pl |  and pllp | . 

),gcd(
)(

kn

n

m

n
paO k 

 

4.6 CYCLIC GROUP 

Definition: A group G with respect to the operation multiplication is cyclic if there exists an 

element Gg such that every element in G can be written as: 

}|{ ZngG n  .  

It means every element of the group G is of the form ng  i.e., if Ga  then a can be written 

as mga  , where m is some integer. 

 The element g is called a generator of the group. 

 If the group is finite of order n, then: 

},...,,,{ 1210  nggggG  

 In terms of additive group the cyclic group G is defined as },|{ ZnGgngG   
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Note: Any group G is said to be cyclic if there exist an element Ga  which have order 

equal to the order of that group. Such element ''a  will called the generator of that group. 

Examples: 

4. Integers under addition: Z=⟨1⟩, because every integer is a multiple of 1 (i.e., Z = 

{…,−2,−1,0,1,2,… }) 

5. Modulo arithmetic: }1...,,2,1,0{  nZn
under addition mod n is cyclic. 

For example, }4,3,2,1,0{15 Z . 

6. Multiplicative group of units modulo n: The group }6,5,4,3,2,1{
*

7 Z  under 

multiplication mod 7 is cyclic since  }1,5,4,6,2,3{}3,3,3,3,3,3{3 654321 *

7Z . 

Since, 4)7(mod813,6)7(mod273,2)7(mod93,33,13 43210   

13.5)7(mod3.33,53.4)7(mod3.33 5645  . 

7. Set of cube root of unity i.e., },,1{ 2  is form cyclic group with respect to operation 

multiplication.  

Key Properties: 

 Every cyclic group is abelian (commutative). 

 Every subgroup of a cyclic group is also cyclic. 

 A cyclic group of order n has )(n  generators, where   is Euler’s totient function. 

Some properties of cyclic group: 

Theorem 5: Every subgroup of a cyclic group is abelian group. 

Proof: Let G be a cyclic group. Then there exists an element Gg  such that: 

}|{ ZngG n   

Take any two elements Gba , . Since G is cyclic, there exist integers m and n such that: 

nm gbga  ,  

We want to show that baab  . 

Now compute: 
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nmnm gggab  . . Similarly, mnmn gggba  .  

Since addition of integers is commutative so, mnnm gg     

Now, baab   

Therefore, G is abelian. 

Theorem 6: If a is the generator of a cyclic group then its inverse is also an generator of the 

group. 

Proof: Let G be a cyclic group such that: 

}|{ ZnaaG n   

So every element of G is of the form na  for some integer n. 

Now consider the element 1a . We want to show that: Ga  1 . 

That is, the powers of 1a  also generate all elements of G. 

Take any element Gan  . We can write: nn aa  )( 1  

So every Gan  is also in  1a . 

Similarly, the powers of 1a are of the form: 

nn aa  )( 1
 

But Ga n   because G contains all powers of a, including negative ones. 

So: GZmaZnaaa mnn   }|{}|){( 11  

Example 7: Find the generator of 6Z . 

Solution: Step 1: Find a generator: 

Check if 1 is a generator. We compute 1 under addition mod 6: 

1 mod  6=1; 1+1=2 mod  6=2; 1+1+1=3 mod  6=3 

4, 5, 0 (eventually you get all elements) 

So,  6}5,4,3,2,1,0{1 Z  

⇒ 1 is a generator. 
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Step 2: Find the inverse of 1 mod 6 

In 6Z , the inverse of 1 (under addition) is 5 because: 

1+5 ≡ 0 mod  6. So, −1 ≡ 5 mod  6 

Step 3: Check if 5 is also a generator 

Now compute  5  (adding 5 repeatedly mod 6): 

5 mod  6 = 5; 5+5 = 10 mod  6 = 4; 4+5 = 9 mod  6 = 3; 3+5 = 8 mod  6 = 2; 2+5 = 7 mod  6 = 

1; 1+5 = 6 mod  6 = 0  

So: ⟨5⟩ = {0,1,2,3,4,5}= Z6  

⇒ 5 is also a generator. 

4.7 LAGRANGE’S THEOREM 

In group theory, one of the foundational results is Lagrange’s Theorem, named after the 

mathematician Joseph-Louis Lagrange. It explores a beautiful relationship between a group 

and its subgroups — specifically, how the size (or order) of a subgroup relates to the size of 

the entire group. 

In essence, Lagrange’s Theorem tells us that in a finite group, the number of elements in 

any subgroup divides evenly into the number of elements in the group. 

This result is powerful because: 

 It restricts the possible sizes of subgroups. 

 It helps us understand the structure of a group. 

 It leads to deeper results in algebra, such as Cauchy’s Theorem and the 

classification of finite groups. 

Theorem 7 (Statement of Lagrange’s theorem): The order of each subgroup of a finite 

group is divisor of the order of that group. 

Proof: Let we consider G be a finite group of order n and also H be any subgroup of G such 

that order of H is m. Suppose mhhh ...,,, 21  are the m members of H. Let Ga . Then Ha is a 

right coset of H in G and we have, Ha }...,,,{ 21 ahahah m . 

Here, Ha  has m distinct member members, since jiji hhahah  (But we have given all 

shi '  are different) 
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Therefore each right coset of H in G has m distnict members. Any two distinct right cosets of 

H in G are disjoint, it means they have no common element. Since G is a finite group then the 

number of distinct right coset of H in G will be finite, say equal to k. The union of these k 

distinct  right coset of H in G is equal to G. Thus if, 
kHaHaHa ,...,, 21
 are the k distnict right 

coset of H in G, then kHaHaHaG  ...21  

The number of element of in GThe number of element in 1Ha  The number of element 

in 2Ha …  The number of element in kHa  (Because we know that two distinct right 

cosets are mutually disjoint). 

kmnkmGO  )(  

m
m

n
k   is divisor of n  

)(HO  is a divisor of )(GO . 

Hence the theorem proved. 

Note 1: Here k is called the index of H in G denoted by ]:[ HG  or )(HiG . We have here, 

knm / . Thus k is divisor of n. 

2: The index of every subgroup of a finite group is divisor of the order of the group. 

3: If H is a subgroup of a finite group G, then the index of H in GThe number of distinct 

right (or left) coset of H in G. Hence, ]:[ HG
)(

)(
)(

HO

GO
HiG  . 

4: The converse of Lagrange’s theorem need not to be true. In later unit we get an important 

example that 12 is divisor of the Alternating group
4A  but 

4A  does not possesses any 

subgroup of order 12. 

Corollory 1: The order of every element of a finite group is a divisor of the order of the 

group. 

Proof: Let G be a finite group with ∣G∣ = n. Let Ga , with order m then  a  is the 

subgroup generated by a. Then by Lagrange’s Theorem, the order of any subgroup of a 

finite group divides the order of the group. 

So, nGma  ||||||  

Therefore, GofOrderaofOrder | . 

Corollary 2: If G be a finite group of order n and Ga , then ean  . 
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Example 8: Group }7,6,5,4,3,2,1,0{8 Z  under addition mod 8 

 The group order is ∣G∣=8. 

 Possible orders of subgroups (by Lagrange): divisors of 8 → {1,2,4,8} 

Let’s look at the element 
82 Z . 

What is the order of 2? 

2⋅1 ≡ 2 mod  8; 2⋅2 ≡ 4 mod  8; 2⋅3 ≡ 6 mod  8; 2⋅4 ≡ 0 mod  8 

So order of 2 = 4, and it divides 8 ⇒ ✅ Lagrange’s Theorem holds. 

Example 9: Multiplicative group }6,5,4,3,2,1{
*

7 Z  

This is the group of integers modulo 7 under multiplication (excluding 0). 

 ∣G∣=6 

 Possible orders of subgroups: {1,2,3,6} 

Check the order of 
*

73 Z : 

)7(mod331  ; )7(mod232  ; )7(mod633  ; )7(mod434  ; )7(mod535  ; 

)7(mod136   

So order of 3= 6, which divides 6 ⇒ ✅ Lagrange’s Theorem holds. 

Theorem 8: Every group of prime order s cyclic. 

Proof: Let G be a group and let ∣G∣ = p, where p is a prime number. 

Let e be the identity element of G. 

Take any element Ga  such that ea  . 

By Lagrange's Theorem, the order of an element Ga  divides the order of the group. 

So the order of a, denoted order of a, divides p. 

Since ea  , the only possible divisors of p are 1 and p, and it can't be 1 (that would mean 

ea  ). 

Thus, order of a is p. 

This means: },...,,,{ 12  paaaea  
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has p distnict elements ⇒ ⟨a⟩=G 

So, G is generated by a ⇒ G is cyclic. 

Theorem 9 (Cauchy’s theorem): Let G be a finite group, and let p be a prime number that 

divides the order of G. Then G contains an element of order p. 

‘OR’ 

If ∣G∣ = n and np | , where p is prime, then Ga  such that paO )( . 

Proof: Let G be a finite abelian group, and let || Gp , where p is prime. We proceed by 

induction on ∣G∣. 

If pG || , then G is a group of prime order ⇒ G is cyclic ⇒ Every non-identity element has 

order p.  

Now assume the theorem holds for all finite abelian groups of order less than n. Let ∣G∣=n, and 

suppose np | . Let e be the identity in G 

If every non-identity element has order not divisible by p, consider let Ga , ea  , and 

let  a  be the cyclic subgroup generated by a. Then ma  || and since G is abelian, the 

quotient group  aG /  is also abelian. 

But now nma  || ∣, and if np | but mp |  then |/|  aGp . 

By induction  aG / , has an element of order p, which lifts to an element in G whose order 

is a multiple of p, a contradiction. 

Therefore, there exists an element in G whose order is divisible by p, and in fact we can find 

one of order exactly p. 

✅ This completes the theorem. 

Theorem 10: Every finite group of composite order has a proper subgroup. 

Proof: What does this mean? 

 A composite number is a positive integer greater than 1 that is not prime — i.e., it 

has divisors other than 1 and itself. 

 A proper subgroup of a group G is a subgroup GH  such that }{eH   and 

GH   

So the theorem says: 

If G is a finite group and ∣G∣ is a composite number, then G has at least one nontrivial 

proper subgroup. 
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Now, let G be a finite group and let ∣G∣ = n, and suppose n is composite. So abn  , where 

na 1  and nb 1 . In particular, na |  

We want to show that G has a proper subgroup. 

Step 1: Use Lagrange’s Theorem 

 Lagrange's Theorem says: 

If GH  , then |||| GH  

 Let a be a proper divisor of n (i.e. na 1 ). 

 Then by Cauchy’s Theorem (or sometimes just structure of groups), in many 

standard proofs, we can say: 

There exists an element Gg  such that dgO )( , for some nd | , and then the cyclic 

subgroup  g  has order d. 

But even without invoking Cauchy’s Theorem, we can say: 

 There must exist a cyclic subgroup of order d, where nd | , nd 1 , due to the 

structure of finite groups. 

So G has a subgroup of order d, and since nd 1 , this subgroup is: 

→ Nontrivial (more than identity) 

→ Proper (smaller than the whole group) 

Conclusion: 

Every finite group of composite order must have a proper nontrivial subgroup, because 

the order of the group has at least one proper divisor, and Lagrange's Theorem ensures that 

a subgroup of that order (or at least one dividing ∣G∣) can exist. 

Theorem 11: Every subgroup of a cyclic group is cyclic. 

Proof: We’ll prove this for infinite cyclic group and finite cyclic group. 

Case 1: Infinite Cyclic Group 

Let  aG , and suppose ZG  (the integers under addition). Let GH   be any subgroup. 

Every subgroup of Z  is of the form }|{ ZkmkmZ  , for some non-negative integer m. 

So: 
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  maH , where m is the smallest positive integer in H. 

 Therefore, H is cyclic, generated by ma . 

Done for infinite cyclic groups. 

Case 2: Finite Cyclic Group 

Let  aG  be a finite cyclic group of order n, so eaaaaeG nn   },,...,,,{ 12 . 

Let GH  be a subgroup. We want to show that H is also cyclic. 

Step 1: Use element orders and divisors 

Let }{eH  . Then H contains some powers of a, say: 

,...},{ 21 kk
aaH   

Let m be the smallest positive integer such that Ham  . We claim  maH  

Step 2: Show that Ham   

Since Ham   and H is a subgroup, all powers of ma  are in H, so: 

Ham   

Step 3: Show that every element of H is a power of 
ma  

Let Hak  . Use the division algorithm rmqk  ,where mk 0  

Then rmqrmqk aaaa )(   

Since Haa mqk )(, , and H is a group ⇒ their product inverse: 

Haaa qmkr  ).(  

But mr 0 , and m was the smallest positive exponent such that Ham   so: 

 If 0r , it contradicts the minimality of m 

 So 0r , and qmk aa )(  

Hence  mmk aHaa  
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Step 4: Combine both inclusions 

Since Ham   and  mm aHaH  

Thus, H is cyclic, generated by ma . 

Hence the theorem proved that Every subgroup of a cyclic group (finite or infinite) is itself 

cyclic. 

Corollary 3: If  aG  has order n, then for every divisor nd | , there exists exactly one 

subgroup of order d- namely  dna / . 

Check your progress 

Let G be a finite group of order 20. Answer the following problems with proper reasoning 

and justification: 

Problem 1: List all possible orders of subgroups of G. Justify your answer using Lagrange’s 

Theorem. 

Problem 2: Can G be a cyclic group? If yes, give an example and discuss the number of 

generators. 

Problem 3: If G is cyclic, find the number of elements of order 4 in G. 

Problem 4: Let  aG  be a cyclic group of order 20. Find the order of the elements 
52 , aa  and 10a . 

 

4.8 SUMMARY 

This unit on Cyclic Groups, Lagrange’s Theorem, and Order of an Element explores 

fundamental concepts in group theory. A cyclic group is a group generated by a single 

element, meaning every element in the group can be written as a power (or multiple) of that 

generator. These groups are always abelian and can be finite or infinite. Lagrange’s 

Theorem states that in a finite group, the order (number of elements) of any subgroup divides 

the order of the group, leading to important consequences such as constraints on possible 

subgroup sizes and element orders. The order of an element is the smallest positive integer n 

such that ean  , where e is the identity element. This order always divides the order of the 

group. Together, these concepts help classify groups, analyze subgroup structure, and 

understand the behavior of elements within algebraic systems. 

4.9 GLOSSARY 

 Order of group. 

 Generation of an element. 
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 Order of an element. 

 Cyclic group. 

 Generating element 

 Index of a subgroup 

 Lagrange’s theorem 
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4.12 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Define a cyclic group. Prove that every cyclic group is abelian. Also, give one 

example each of a finite and an infinite cyclic group. Discuss whether every abelian 

group is cyclic. 

2.  State and prove that every subgroup of a cyclic group is cyclic. Also, determine the 

number of subgroups in a cyclic group of order 30 and list their orders. 

3. State and prove Lagrange’s Theorem for finite groups. 

4. Using the Lagrange’s theorem, explain why a group of order p, where p is a prime 

number, must be cyclic and has no proper nontrivial subgroups. 
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5. Define the order of an element in a group. Prove that the order of an element Ga  is 

equal to the order of the cyclic subgroup generated by a. Also, prove that if ean  , 

then the order of a divides n. 

6. Let G be a finite group, and let Ga . Prove that the order of the element a divides 

the order of the group G. Give an example to support your result. 

Short Answer Type Question: 

1. Define a cyclic group with an example. 

2. What is the difference between a finite cyclic group and an infinite cyclic group? 

3. List all the generators of 
8Z . 

4. Is every cyclic group abelian? Justify your answer. 

5. How many subgroups does a cyclic group of order 15 have? 

6. State Lagrange’s Theorem. 

7. If a group has order 20, what are the possible orders of its subgroups? 

8. Can a group of order 10 have a subgroup of order 3? Why or why not? 

9. If G is a group of prime order, prove that it has no proper non-trivial subgroups. 

10. Give an example of a group where not every divisor of the group order corresponds to 

a subgroup. 

11. Define the order of an element in a group. 

12. What is the order of the element 3 in the group 7Z ? 

13. Prove that the order of any element divides the order of the group. 

14. If the order of an element a is 6, what is the order of 2a ? 

15. In a cyclic group of order 10, how many elements are there of order 5? 

Fill in the blanks: 

1. A group G is called cyclic if there exists an element Gg  such that every element of 

G can be written as a ______ of g. 

2. The number of generators of a cyclic group of order n is equal to ______. 

3. Every subgroup of a cyclic group is ______. 

4. A cyclic group of order 6 has ______ generators. 

5. Lagrange’s Theorem states that the order of any subgroup of a finite group divides the 

______ of the group. 

6. If a group G has order 20, then the possible orders of its elements are the ______ of 

20. 

7. In a finite group, the order of an element always ______ the order of the group. 

8. A group of prime order is always ______. 

9. The order of an element Ga  is the smallest positive integer n such that na ______. 

10. If the order of a group is 8, then no element can have order ______. 

11. In a cyclic group of order 10, the order of the element 2a  is ______. 
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12. The identity element of any group has order ______. 

Objective type questions:  

1. Which of the following is always true for a cyclic group G? 

A)  G is always infinite 

B)  Every element of G has the same order 

C)  Every subgroup of G is cyclic 

D)  G has no proper subgroups 

2. If a group G has order 20, what are the possible orders of its subgroups? 

A)  1, 2, 4, 5, 10, 20 

B)  1, 2, 3, 4, 5, 10, 20 

C)  1, 5, 10, 20 

D)  Any positive integer less than 20 

3. In a group G, if an element a has order 5, what is the smallest positive integer n such  

that ean   (identity)? 

A)  0 

B)  1 

C)  5 

D)  10 

4. How many generators does a cyclic group of order 7 have? 

A)  1 

B)  2 

C)  6 

D)  7 

5. What is the order of the identity element in any group? 

A)  0 

B)  1 

C)  Depends on the group 

D)  Cannot be determined 

6. If  aG  is a cyclic group of order 8, what is the order of the element 2a ? 

A)  4 

B)  8 

C)  2 

D)  1 

7. Let G be a group of order 15. What are the possible orders of elements in G? 

A)  1, 3, 5, 15 
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B)  1, 5, 15 

C)  1, 3, 15 

D)  Any divisor of 15 

8. How many subgroups does a cyclic group of order 10 have? 

A)  5 

B)  10 

C)  4 

D)  6 

9. If an element a in a group has order 7, what is the order of 1a ? 

A)  1 

B)  7 

C)  6 

D)  Cannot be determined 

10. A group G is cyclic if: 

A)  It has only one element 

B)  It has a finite number of elements 

C)  Every element is the identity 

D)  There exists an element Gg  such that every element of G is a power of g 

True and False questions: 

1. Every cyclic group is abelian. 

2. If a group has only one generator, then it must be cyclic. 

3. Every abelian group is cyclic. 

4. A cyclic group of order n has )(n  generators. 

5. Lagrange’s Theorem states that the order of a subgroup divides the order of the group. 

6. If an element Ga  has order 6, then the order of G must be 6. 

7. Every divisor of the group’s order corresponds to a subgroup. 

8. If a group has order 9, then it cannot have an element of order 6. 

9. The order of any element in a finite group divides the order of the group. 

10. In a group of order 11, every non-identity element has order 11. 

11. The identity element is the only element of order 1. 

12. If eak  , then the order of a is k. 

4.13 ANSWERS 

Answer of check your progress: 
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Problem 1:  Possible orders of subgroups are the divisors of 20: 

Divisors of 20 = 1, 2, 4, 5, 10, 20 

By Lagrange’s Theorem, the order of any subgroup must divide the order of the group. 

Problem 2:  Yes, G can be cyclic. 

Example: The group 
20Z  (integers modulo 20 under addition) is a cyclic group of order 20. 

Number of generators = 8)20(   

Problem 3:  In a cyclic group of order 20, the number of elements of order d is )(d  if d 

divides 20. Since 4 divides 20, the number of elements of order 4 = 2)4(  . 

Problem 4:  Use the formula, Order of 
),gcd( kn

n
a k  , here 20n  

Order of 10
2

20

)2,20gcd(

202 a  

Order of 4
5

20

)5,20gcd(

205 a  

Order of 2
10

20

)10,20gcd(

2010 a  

Answer of the fill in the blanks: 

1. power  2. Euler’s totient function ϕ(n)  3. cyclic 

4. 2 (since ϕ(6)=2\phi(6) = 2ϕ(6)=2)     5. order  

  

6. divisors  7. divides    8. Cyclic 

9. identity element 10. 3 (because 3 does not divide 8)  

11. 5 (since 5
)5,2gcd(

10
 )     12. 1 

Answer of the objective type question: 

1.   C  2. A  3. C  4. C 

5.   B  6. A  7. D  8. A 

9.   B  10. D   
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Answer of  True and False: 

1.   True  2. True  3. False  4. True 

5.  True  6. False  7. False  8. True 

9.  True  10. True  11. True  12. False 

 



 

 

 

 

 

 

 

 

 

BLOCK- II 

NORMAL SUBGROUP, PERMUTATION 

GROUP AND GROUP HOMOMORPHISM 
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Unit-5: NORMAL SUBGROUP 

CONTENT: 
 

5.1 Objectives  

5.2  Introduction  

5.3  Normal Subgroup  

 5.3.1 Simple group 

5.4  Quotient group  

5.5  Summary  

5.6  Glossary  

5.7   References 

5.8  Suggested Readings 

5.9  Terminal Questions 

5.10 Answers 

 

5.1 INTRODUCTION 

        Évariste Galois was a French mathematician born in 

Bourg-la-Reine who possessed a remarkable genius for 

mathematics. Among his many contributions, Galois founded 

abstract algebra and group theory, which are fundamental to 

computer science, physics, coding theory and cryptography. 

       It is tribute to the genius of Galois that he recognized that 

those subgroups for which the left and right cosets coincide are 

distinguished ones. Very often in mathematics the crucial 

problem is to recognize and to discover what the relevant 

concepts are.  

 

Évariste Galois 

25 October 1811 – 31 May 

1832 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 83 
 

 

In the previous sessions, we have already learned that how any set G can be formed a 

group with respect to (w.r.t.) the given operation. We have also learned about various types 

of groups and their properties. Some applications of group like subgroup, cyclic group, order 

of the group, permutation group, homomorphism, isomorphism, center of the group, cosets 

and Lagranges theorem are already studies in previous classes. In this unit we will learn about 

the Normal subgroups and its use to construct the quotient group.  

As we know that, in a group G, it is not always true that gH = Hg for all g G where, 

H is a subgroup of a group G.  

Example 1: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and 

{ ,(1 2)}H I is a subgroup of G. Since (2, 3)a G   then the left coset of a in G i.e.,  

 {(2 3) ,(2 3)(1 2)} (2 3),(1 3 2)aH I   

And the right coset of a in G is, 

 {I(2 3),(1 2)(2 3)} (2 3),(1 2 3)Ha    

Here clearly, we can see that aH Ha  

In other words, right cosets are not always the same as left cosets. Group theory 

depends heavily on the subgroups for which this characteristic holds because they enable the 

creation of a new class of groups known as factor or quotient groups. Homomorphisms, a 

generalisation of isomorphisms, can be used to study factor groups. 

5.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the basic definition of normal subgroup and quotient group.  

 Implement the application of theorems into various problem 

 Construction of various types of quotient groups 

5.3 NORMAL SUBGROUP 

Definition: A subgroup H of a group G is normal in G if gH = Hg for all g  G. In other 

words, the right and left cosets of a group G must be exactly the same for a subgroup H to be 

considered normal subgroup. 

If H is a normal subgroup of the group G then symbolically it is represented as H G . 
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Example 2: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and 

{ ,(1 2 3),(1 3 2)}H I is a subgroup of G. Since (1, 2)a G   then the left coset of a in G 

i.e.,  

 {(1 2) ,(1 2)(1 2 3),(1 2)(1 3 2)} (1 2),(2 3),(1 3)aH I   

And the right coset of a in G is, 

 {I(1 2),(1 2 3)(1 2),(1 3 2)(1 2)} (1 2),(1 3),(2, 3)Ha    

Similarly, we can see that aH Ha a G    

So, we can say that H is the normal subgroup of G. 

Note 1: If we are saying that H is a normal subgroup of G i.e., gH = Hg for all g  G then its 

mean that there exist h H such that gh is any element of gH which will be equal to any 

element of 'h g where 'h H  i.e., 'gh h g . 

In example 2, (1 2)(1 3 2) (1 2 3)(1 2)  

Proper subgroup:A subgroup H of a group G is called proper subgroup of G if H G  and it 

is represented as H G  and it is read as “H is a proper subgroup of G”.  

Since, G G i.e., G is subset of itself so G, is called improper subgroup of G.  

 A subgroup H which contains only identity element i.e.,  H e  is called the trivial 

subgroup of G.  

5.3.1 SIMPLE GROUP 

Definition: If a group has no proper normal subgroup is called a simple group. 

Theorem 1: If G be a group and H is the subgroup of G. Then the following statement are 

equivalent.  

1. The subgroup H is normal in G 

2. For all 1,a G aHa H   

3. For all 1,a G aHa H   

Proof: (1) (2) . We have given H is the normal subgroup of G then aH Ha a G   . It 

means for a given h H , a G  there exist 'h H such that 'ah h a . Since a G  and G is 

the group then 1a G  . 

1 1

1

( ) ( )ah a ha a

aha h H

 



 

  
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So, 1aHa H a G     

)3()2(   Let Ga and H is normal subgroup of G, then we have already prove that

HaHa 1 . Now we have only to show that GaaHaH  1 .  

Since GaGa  1  

Therefore we have   GaHaHa 
 111  

GaHHaa  1  

  GaaHaaHaaa   111  

  GaaHaaHaaa   111  

GaaHaH  1  

Now again for each Ga , HaHa 1  and 1 aHaH  

So, for all Ga , 1 aHaH  

)1()3(   Suppose that GaaHaH  1  then we have to prove that H is normal in G. 

Since, for all Ga , 1 aHaH  

  GaaaHaHa  1  

GaaHHa   

each left coset of H in G is a right coset of H in G. 

H is normal subgroup of G. 

Theorem 2: A subgroup H of a group G is normal in G iff the product of two right or left 

coset of H in G is again a right or left coset of H in G. 

Proof: Suppose H is a normal subgroup in G and Ha, Hb are two right coset of H in G where,

Gba , . Then 

baHHHbHa )())((   

                bHaH )(                 [ H is normal aHHa  ] 

                HHab                     [ HHH  ] 

               Hab                         [ GabGbGa  , ] 

Therefore, Hab is also a right coset of H in G. 

Conversely, we will suppose that the product of two right cosets of H in G is again a right 

coset of H in G. Let x be any arbitrary element of G then 1x will also an element of G. So, 
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Hx  and 1Hx  are two distinct right cosets of H in G. Thus, 1HxHx is also a right coset of H 

in G. Therefore we must have, 

GxHHxHx 1  

GxHxhxh  1

1
and Hhh  ,1

 

  GxHhxhxhh 
 1

1

1

1

1

1  and Hhh  ,1
 

GxHxhx  1  and Hh    [ HHh 
1

1  as Hh 
1

1  since Hh 1
] 

H is a normal subgroup of G. 

Theorem 3: Intersection of two normal subgroup of a group is also a normal subgroup of the 

group.  

Solution: Let G be a group and H, K are of its two normal subgroup of G. Now, we have to 

prove that KH  is also a normal subgroup of G. Let a be any element of KH  i.e.,  

KxandHxKHx   

Since, H and K are both normal in G. Therefore, HaxaHhGa  1,  

Similarly, KaxaKxGa  1,  

Now, again Haxa 1 , Kaxa 1 KHaxa  1  

Hence KH  is a normal subgroup of G.  

Corollary: Arbitrary collection of normal subgroup is also a normal subgroup of the group 

i.e., let G be a group and let  nH n :  be the family of normal subgroup of G where   is 

the index set then n
n

H

  is the arbitrary intersection of the family of normal subgroups which 

is also a normal subgroup of G. 

Solved Examples 

Example 3: Show that each subgroup of the Abelian group G is a normal subgroup of the 

group.  

Solution: Let G be a Abelian group and H is a subgroup of the group. Suppose that Hh

and Gx . 

Now consider, )( 11 hxxxhx    

                                  hxx )( 1  

                                  Hheh   

So, HHxhxHhGx  1,, is a normal subgroup of G.  
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Example 4: Prove that the alternating subgroup 
nA  is the normal subgroup of the symmetric 

group nS   

Solution: Suppose that nS and
nA . As we know that 

nA is collection of all even 

permutation of nS  so,   is a even permutation. Now, there are two cases arises, 

Case I: If  is odd permutation then 1  is also an odd permutation. As we know that 

product of odd and even permutation is odd permutation, it means  is odd permutation. 

Similarly, product of two odd permutation is even permutation i.e., 1  is even 

permutation. 

So, for nnn AAS  1,,  . Thus, 
nA  is normal subgroup. 

Case II: If  is even permutation then 1  is also an even permutation. As we know that 

product of two even permutation is even permutation, it means  is even permutation. 

Similarly, product of two even permutation   and 1  is even permutation i.e., 1  is 

even permutation. 

So, for nnn AAS  1,,  . Thus, nA  is normal subgroup. 

From the both cases we have conclude that nA  is normal subgroup of nS .  

Example 5: If H is a subgroup of index 2 in G then H is a normal subgroup of G.  

Solution: If H is a subgroup of index 2 in G, it means, number of distinct right (left) coset of 

H in G are 2. So, G can be written in the union of two of its distinct right (left) cosets i.e., 

xHHHxHG  , here Hx because if it is HxHxH  .  

As we know that no element common to H  and xH  therefore, we must have 

GxHxxH   

Hence H is normal subgroup of G.  

e.g. Index of alternating subgroup nA  in the symmetric group nS  is 2. So, nA  is the normal 

subgroup in the symmetric group nS . 

Example 6: If H is normal in G and K is a subgroup of G such that GKH  . Then, show 

that H is also a normal subgroup of K.  

Solution: We have given that H is normal in G so, H will also a subgroup of G. Since, 

KH  where, K is a subgroup of G. So we have only to show that H is also a normal 

subgroup of K. Let x be any arbitrary element of K then x will also belong to G therefore we 
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have xHHx  . Since, H is a subgroup of G and Kx we have xHHx  . Thus, H is 

normal subgroup of K.  

Example 7: If N is normal in G and H is subgroup of G then show that NH  is normal 

subgroup of H.  

Solution: As we know that intersection of two subgroup of G is also a subgroup of G then 

NH  will be subgroup of G. Similarly, since HNH   so, NH  will also subgroup of 

H. Now, only to prove that NH  is normal in H. 

Let x be any element of H and a be any element of NH  then a will belong in both H and 

N. Since, N is normal in G then Naxa 1 . Again,  

 

Thus, we can say that NHaxa 1  

i.e., NH  is normal subgroup of H.  

Example 8: Prove that every complex is commutative with normal subgroup.  

Solution: Let N is a normal subgroup and H is any complex of the group G. Then we have to 

prove that NH = HN. 

Let HhNnwhereNHnh  , . We can rewrite ).( 11 nhhhnhhhnh    Since, N is normal 

subgroup therefore, Nnhh 1 . Hence HNnh  which means, HNNH  . 

Again, let HhNnwhereHNhn  , . We can rewrite  hhnhhhnhhn 11   . Since, N is 

normal subgroup therefore, Nhnh 1 . Hence NHhn  which means, NHHN  . 

Hence NH = HN. 

Example 9: If N is normal subgroup of G and H is subgroup of G, Prove the following 

(i) HN is a subgroup of G 

(ii) N is a normal subgroup of HN. 

Solution: As, we know by theorem that if H, K are subgroup of G, then HK is subgroup of G 

iff HK = KH. Using the previous example, HN will also a subgroup because N and H both are 

subgroup of G such that NH = HN. 

Now HN is subgroup of G and N is normal subgroup of G also HNN  . Therefore, N is 

subgroup of HN. We have only to prove that N is a normal in HN. Let 11nh be arbitrary 

element of HN and n be any element of N. Then NnHh  11 , and we have 

Nhnnnhnhnnh   1

1

1

111

1

1111 )()()( . Since N is normal in G and GhNnnn 


1

1

11 , . 

Therefore N is a normal subgroup of HN.  

HaxaHax  1,
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Example 10: If N and M are two normal subgroups of G such that  eMN  . Then show 

that each element of N commutes with each element of M.  

Solution: Since N and M are two normal subgroups of G such that  eMN  . Then to 

prove that for any element MmNn  ,  

nmmnnm ,  

Consider the element 11  mnmn . As we know Nmnm 1  because N is normal and Nn

therefore, Nmnmn  11 . 

Again, as we know Mnmn 1  because M is normal and Mm therefore, Mmnmn  11 . 

Now, Nmnmn  11  and Mmnmn  11 MNmnmn   11  

}{11 emnmn        [Because,  eMN  ] 

NnMmmnnm  ,  

i.e., every element of N commutes with every element of M. 

Example 11: If in a group G, H is the only subgroup of finite order m then H is normal in G.  

Solution: We have given H is subgroup of G such that O(H) = m. To prove this example, 

first we consider the set  HhxhxxHx   :11  and we will prove that this set is the 

subgroup of G. As we know by the theorem that any set H will subgroup of G if 

HbaHab  ,1 . Let Hhh 21,  then 11

2

1

1 ,   xHxxxhxxh  

Now consider,       11

2

1

1

11

2

1

1

11

2

1

1

  xhxxxhxxhxxhxxhxxh  

  111

21

11

21 )(   xHxxhhxxhexh  

1

21

11

21 , 
 xHxhhxHxhh . Hence, 1xHx  is subgroup of G. 

Now we will prove that mxHxO  )( 1 . Let  mhhhhH ,...,,, 321  where all mtoihi 1,  are 

distinct then  11

3

1

2

1

1

1 ,...,,,   xxhxxhxxhxxhxHx m . Here, no element in xH 1x  are same 

because if it is, 

jiji hhxxhxxh   11 , which is not possible. So, mxHxO  )( 1 . 

But we have H is the only such subgroup of order m. Therefore we must have,

GxHxHx 1 . Thus, H is normal subgroup of G.  

Example 12: By an example verify that if H is normal in G and K is normal in H then K may 

not be normal in G.  
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Solution: Let us consider the following subgroup of the group 4S  on the four symbols a, b, c, 

d.  

 )(),(),)((),)((),)((),(),(, dbcacbdadbcadcbabcdacbaIG   

 ))((),)((),)((, cbdadbcadcbaIH   

 ))((, dcbaIK   

As we can easily seen that H is a subgroup of G and K is a subgroup of H.  Index of H in G is 

2 i.e., 2]:[ HG , it means H is normal in G. Similarly, index of K in H is 2 i.e., 2]:[ KH , 

it means K is normal in H.                          [ 24/8)(/)(]:[  HOGOHG ] 

Here, K is not normal in G because for the element Gdcba ),,,(  and the element

Kdcba ),)(,( .  

We have Kcbdaabcddcbadcbadcbadcbadcba  ))(())()()(())()()(( 1  

Thus, K is not normal subgroup of G.  

Example 13: If H is subgroup of G, let  HxhxGxHN  1:)(  then show that 

(1) N(H) is the largest subgroup of G in which H is normal. 

(2) H is normal in G iff GHN )( . 

Solution 1: In example 11, we have already prove that N(H) is the subgroup of G which is 

normal in G.  

First we have to prove that H is a normal subgroup of N(H). Let Hh , therefore HhHh 1

. Thus )(HNh i.e., )(HNH  . So, H is subgroup of N(H). To show that H is normal in 

N(H). Let )(HNx , then HxHx 1  

)(HNxHxxH   

  H is normal in N(H).  

Now, we have to prove that N(H) is largest such subgroup in which H is normal. For it, let K 

is a subgroup of G in which H is normal then we have only to prove that )(HNK  .  

Let Kk , since H is normal in K, therefore we have kHHk   

KkHkHk  1  

)(HNk  

)(HNK   

2: Let H is the normal subgroup of G and Gx . Then GxHxxH   

GxHxHx  1   
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)(HNx therefore )(HNG  but we know GHN )( . 

Thus, )(HNG   

Conversely, let )(HNG   then Gx )(HNx  

GxHxHx  1  

GxHxxH   

H is normal in G.  

5.4 QUOTIENT GROUP 

Definition: If H is a normal subgroup of a group G. Then the collection of all distinct cosets 

of H in G denoted by G/H is a group with respect to the operation multiplication of cosets 

defined as,  

 (aH)(bH) = abH „or‟ (Ha)(Hb) = Hab Gba  ,  

Or 

If H is a normal subgroup of a group G, then the set 

 GaHaHG  :/  is always form a group  under the composition multiplication of cosets 

such that (Ha)(Hb) = Hab Gba  ,  

Note: If H is a normal subgroup of the additive group G. Then the set HG /  is defined as 

 GaaHHG  :/  with respect to the operation addition of cosets such that 

GbabaHbHaH  ,)()()(  

Theorem 13: Set of all distinct cosets of normal subgroup of a group is a group with respect 

to composition multiplication of cosets.  

Proof: Let us consider collection of distinct right (left) cosets of normal subgroup H under G 

is 

 GaHaHG  :/  

and the composition multiplication of cosets is  

(Ha)(Hb) = Hab Gba  ,  

Closure axioms: Let HGHbHa /,   where Gba , then 

HGHabHHabbHaHbaHHHbHa /)()())((    

Since we know that if H is normal subgroup of G then  

(i) GaaHHa   
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(ii) HHH   

And also if G is a group then it will satisfy closure property i.e., if GabGba ,  

Associativity: Let HGHcHbHa /,,   where Gcba ,,  

Now consider, ))((])()[(])()[()])()[(( HbcHacHbHHacbHHHaHcHbHa   

                                ))]()([())(()()( HcHbHaHcabHcabHbcHa   

[Because G is group so it will satisfy associative property] 

Existence of identity: We know that HGHeH / where e is the identity element of G, 

then we have only to prove that H is the identity element of the group HG / . 

Let HGHa /  then HaeaHHaHe  )())((  

H is the identity element of the group HG / . 

Existence of inverse: Let HGHa / . Then HGHa /1  [Because if Ga then 

HGHaGa /11   ] 

Now, HHeaaHHaHa   )())(( 11  

So, coset Ha is the inverse of 1Ha in HG /  

Hence, collection of distinct right (left) of normal subgroup H in G is form a group with 

respect to the operation product of cosets. 

 

Example 14: The alternating group  )231(),321(,3 IA   is the normal subgroup of the 

symmetric group  )231(),321(),32(),31(),21(,3 IS   then  3333 )32(,/ AAAS  is the 

quotient group. 

Example 15: Consider the normal subgroup of Z3 of Z . The coset of Z3 in Z are,  

 ,...9,6,3,0,3,6...,30  Z  

 ,...10,7,4,1,2,5...,31  Z  

 ...11,8,5,,2,1,4...,32  Z  

Here, )32()31()30( ZZZZ   

The composition table of the group ZZ 3/ is given below. 

ZZZZ

ZZZZ

ZZZZ

ZZZ

31303232

30323131

32313030

323130









 

In general, the cosets of nZ in Z are 
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))1((...)3()2()1()0( nZnnZnZnZnZZ   then 

 ))1((),...,3(),2(),1(),0(/ nZnnZnZnZnZnZG   

The sum of the cosets Zk  and Zl  is Zlk  . Notice that we have written our cosets 

additively, because the group operation is integer addition. 

Example 16: If H is a normal subgroup of the finite group G then 
)(

)(
]/[

HO

GO
HGO  . 

Solution: As we know that ]/[ HGO Number of distinct right coset of H in G. 

 ]/[ HGO Index of H in G. 

HinelementofNumber

GinelementofNumber
HGO  ]/[  

)(

)(
]/[

HO

GO
HGO   

Example 17: Prove that corresponding to every Abelian group its quotient group is Abelian 

but their converses need not to be true. 

Solution: Let G be a Abelian group and H is its normal subgroup. If elements Gba ,  are 

such that HbHa, are distinct right cosets of quotient group HG / . 

Now, ))(()()())(( HaHbbaHabHHbHa        [Since G is Abelian Gbabaab  , ] 

HG / is Abelian group. 

But converse is need not be true. Since  3333 )32(,/ AAAS   is Abelian group because order 

of 23/6]/[ 33 ASO which is prime and we know that every group of prime order is 

Abelian while 3S  is not a Abelian group.  

Example 18: If H is normal in G and a be any element of order n in G then order of the 

element Ha in G/H is divisor of n.  

Solution: As we know that the identity element of the quotient group G/H is H itself. We 

have given in a group G, Ga s.t. eaeinaO n  ..)( . Let us assume mHaO )( . 

Now consider, 

HHeHatimesnuptoaaaHtimesnuptoHaHaHaHa nn  )...().....)()(()(  

But we have already assume that mHaO )( i.e., HHa m )( . 

)(/)( aOHaO    [If order of any element a in a group G is n then mniffeam | ] 

Check your progress 
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Problem 1: What will be the order of the group 








 }1,1{

8Q
O ? 

Problem 2: Check the distinct right and left coset of 3S ? 

Problem 3: Check that 
5A is the normal subgroup of 5S ? 

 

5.5 SUMMARY 

In this unit, we have studied the basic definition of Normal subgroup, Simple group and 

Quotient group. We have also learn about the above discussed group‟s related theorems and 

there implementation in various examples. The overall summarization of this units are as 

follows: 

 Right cosets are not always the same as left cosets 

 Alternating subgroup nA  is the normal subgroup of the symmetric group nS   

 If a group has no proper normal subgroup is called a simple group. 

 Quotient group always forms a group not a subgroup because identity element of 

group and subgroup are always same while quotient group and group has always 

different identity 

5.6 GLOSSARY 

 H is a subgroup of the group G is represented symbolically as GH  . 

 H is a normal subgroup of the group G is represented symbolically as H G . 

 Group with no proper normal subgroup is called a simple group. 
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rd

 Edition), Wiley, 2011. 

5.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that alternating group ( nA ) is the normal subgroup the symmetric group ( nS ). 

2. Prove that a factor group of a cyclic group is cyclic. 

3. Suppose that a group G  has a subgroup of order n . Prove that the intersection of all 

subgroups of G of order n  is a normal subgroup of G . 

4. Show that 4S  has a unique subgroup of order 12. 

5. Suppose that H is a normal subgroup of a finite group G . If HG / has an element of 

order n , show that G  has an element of order n . 

Short Answer Type Question: 

6. Give one example each of the following 

(a) A subgroup H  of a group G which is not normal in G . 

(b) A non-abelian subgroup H  of a non-abelian subgroup G which is normal in G . 

7. If 5,30  HG then what will be HG / . 

8. Prove that each subgroup of cyclic group is normal. 

9. Determine the coset decomposition of the subgroup  )21(,IH  corresponding to the 

symmetric group 3S . 

Fill in the blanks: 

10. Product of two right coset in a group G is …….. in G . 

11. Every subgroup H of index 2 in H is ……. in G . 
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12. If H is normal subgroup of G then HG / is called …….. 

Objective type questions:  

1. Which of the following statements is true for a normal subgroup N of a group G? 

A) N is always the center of G 

B) For every g G, gN = Ng 

C) N is always abelian 

D) N⊆Z(G), where Z(G) is the center of G 

2. If N is a normal subgroup of G, then the quotient group G/N: 

A) Is always abelian 

B) Has the same order as G 

C) Has an order that divides the order of G 

D) Has elements all conjugate to each other 

3. A subgroup N of a group G is normal if and only if: 

A) N is the center of G 

B) G/N is cyclic 

C) gN=Ng for every g G 

D) N is abelian 

4. If G is a group and N is a normal subgroup of G, then the elements of G/N are: 

A) Cosets of N in G 

B) Conjugates of elements in N 

C) Elements of G fixed by N 

D) None of the above 

5. For a subgroup of G, N is normal in G if: 

A) gNg−1=N for all g G 
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B)  N⊆Z(G) 

C) N is abelian 

D) G/N is cyclic 

5.10 ANSWERS 

Answer of self cheque question: 

1. 4  2.   (  ) (     )  3. Yes 

Answer of terminal question: 

7. 6/ HG  10. Right coset 11. Normal 12. Quotient group 

Answer of objective questions:  

1. B) 2. C)  

3. C)  4. A) 

5. A) 
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Unit-6: PERMUTATION GROUP 

CONTENT: 

 

6.1 Introduction  

6.2  Objectives 

6.3  Permutation  

6.4 Similar Permutation 

6.5 Group of Permutation 

6.6 Even and Odd Permutation 

6.7 Alternating group An 

6.8 Order of Permutation 

6.9 Summary  

6.10 Glossary  

6.11   References 

6.12  Suggested Readings 

6.13  Terminal Questions 

6.14 Answers 

 

6.1 INTRODUCTION 

The concept of permutation groups lies at the heart of group theory, a key area of 

abstract algebra that studies the symmetry and transformations of mathematical structures. 

Permutation groups specifically focus on the set of all bijections (permutations) of a set, 

closed under composition, and their properties. Their origins trace back to the late 18th 

century when Joseph-Louis Lagrange explored permutations in the context of polynomial 

equations. Paolo Ruffini made early attempts to link permutations to the solvability of 

equations, but it was Évariste Galois in the early 19th century who laid the rigorous 
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foundation. Galois's innovative work demonstrated how permutations could explain the 

solvability of polynomials, giving rise to what is now known as Galois theory. Since then, 

permutation groups have become a central tool in mathematics, influencing fields like 

combinatorics, geometry, and cryptography, while also serving as a gateway to understanding 

symmetry in nature and theoretical sciences. 

6.2 OBJECTIVES 

The main objectives of studying permutation groups include: 

1. Introduction to Symmetry: Understanding how permutation groups describe and 

formalize the concept of symmetry in mathematical structures. 

2. Basic Properties: Learning the fundamental properties of permutation groups, 

including closure, associativity, identity, and inverses. 

3. Symmetric and Alternating Groups: Exploring key examples such as symmetric 

groups nS  and alternating groups nA , their orders, and their roles in group theory. 

4. Transpositions and Cycles: Understanding how permutations can be expressed in 

terms of disjoint cycles and transpositions, and using these representations to simplify 

computations. 

5. Group Actions: Introducing the concept of group actions and their applications in 

studying orbits, stabilizers, and symmetry. 

6. Applications to Polynomials: Connecting permutation groups to the roots of 

polynomials and introducing the basics of Galois theory, highlighting the relationship 

between group theory and equation solvability. 

7. Problem-Solving: Developing problem-solving skills by working with examples and 

exercises involving permutations, compositions, and decompositions. 

8. Foundational Knowledge: Building a foundation for more advanced topics in 

algebra, such as automorphisms, abstract groups, and field theory. 

These objectives align with the goal of equipping learners with both theoretical understanding 

and practical tools to analyze and apply permutation groups in various mathematical contexts. 

6.3 PERMUTATION 

Let }....,,,{ 21 naaaX   is any finite set. 

Define, XXffSX  :|{ , such that f is one-one and on-to}  

i.e., XS The collection of all one-one and on-to map from X  to X . 

Then XS  forms a group ... torw  composition of maps as the binary operation given and 

!)( nSO X   
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Note 1:  Since, XXfSf X  :   

Defined as, 
ii baf )(  such that f is one-one and on-to. 

i.e., 
11)( baf  , 

22 )( baf  , 33 )( baf  , …, nn baf )(  

where, sbi '  are nothing but sai '  only in some different arrangement. 

Then the permutation on X is defined as 










)(...)()()(

...

321

321

n

n

afafafaf

aaaa
 

If we denote it by, 

f









)(...)()()(

...

321

321

n

n

afafafaf

aaaa
= 









n

n

bbbb

aaaa

...

...

321

321
 

Where )( ii afb   

2: A permutation on X is a n2  matrix where the first row is given by the elements of 

X and second row is given by their image by some bijection on X. Infact, the second 

row is an permutation of the first row.  

3: If nX ||  then permutation is called of degree n.  

4: Let }....,,,{ 21 naaaX   define 




















 X

n

n

n Sf
afafafaf

aaaa
S

)(...)()()(

...

321

321
 

Then !|| nSn   

Where, nS The set of all the permutation of degree n.  

5: On any set X, a bijection is defined as a symmetry on X but if X is finite, it defines a 

permutation on X of degree equal to cardinality of X i.e., Card (X). 

6: Let nSgf , , then aby two permutation are said to be equal if Xaagaf iii  )()(  

 e.g., 









3142

4321
f  and 










1234

4321
g  are two permutation of degree 4, 

then by interchanging columns we can write 









3142

4321
g  

7: Permutation does not affect by rearranging columns. 

 e.g., 



























3412

4231

2314

1432

3142

4321
g  
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8: If degree is known or X is well-known is well-known and 









n

n

bbaa

aaaa

...

...

321

321
   

 Such that 
rr ba  ; 2,1r  

 Then we can exclude 
21 & aa  from the permutations 

 i.e., 


















n

n

n

n

bbbb

aaaa

bbaa

aaaa

...

...

...

...

543

543

321

321
  

Identity Permutation: If I is a permutation of degree n such that I replaces each element by 

the element itself, then I is called the identity permutation of degree n.  

Thus, 

















9...321

9...321

...

...

321

321
and

aaaa

aaaa

n

n
  are identity permutation of degree 

n and 9 respectively.  

Product or composition of two permutation: The product or composite of two 

permutations nSf   and nSg   of degree n denoted by fg , is obtained by second carrying 

out the operation defined by g and then by f.  

Let 









n

n

cccc

bbbb
f

...

...

321

321
 and 










n

n

bbbb

aaaa
g

...

...

321

321
 

Then 









)(...)()()(

...

321

321

n

n

afgafgafgafg

aaaa
fg  

i.e., 









n

n

cccc

aaaa
fg

...

...

321

321
 

Here, first g replace 
1a  by 

1b  i.e., 
11)( bag   then after that f replace 

1b  by 
1c  i.e., 

111 )()( cbfafg  . 

Obviously nSfg   i.e., fg is also a permutation of degree n. Thus the product of two 

permutation of degree n is also a permutation of degree n.  

Example 1: Let 









231

321
f  and 










132

321
g  be two permutation of degree 3. Then 




























123

321

132

321

231

321
fg  



























312

321

231

321

132

321
gf  

Clearly, gffg   



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 102 
 

Note: Product of two permutations is not commutative.  

r-Cycle: If 













nr

nrr

aaaaa

aaaaa

...

...

1132

121  then   is called r-cycle and written as, 

)...( 321 raaaa . Where, remaining ntoriai 1;  , are unchanged.  

e.g., )543(
354

543

35421

54321


















  

Note: If  is r-cycle i.e., )...( 321 raaaa  then we say   is of length r. 

i.e., Length of cycle = No. of symbols used in that cycle. 

e.g., )341(  is 3-cycle and )21(  is 2-cycle. 

Transposition: A cycle of length two is called a transposition.  

e.g., )21(1  , )31(2   

Note 1: A cycle does not change by re-arranging symbols maintaining cyclic order. 

e.g., )43215()32154()21543()15432()54321(   but )15342()54321(   

because here symbols does not maintain the cyclic order.  

2: A permutation may not be a cycle. 

e.g., )65()4321(
87561432

87654321









  

by   is not cycle. 

Disjoint permutation: Two permutations are said to be disjoint if they have no common 

symbol. Since every permutation can be written in terms of r-cycle. Hence two cycles are 

said to be disjoint if they have no common symbol. 

e.g., )65(&)4321(  are disjoint permutation because they have no common symbol. 

Remarks 1: Every permutation can be written as product of two disjoint cycles. 

e.g., )65()4321(
87561432

87654321









  

Example 1: If f and g are disjoint cycles, then gffg  . 

Solution: Since the cycles f and g have no common symbols. Therefore the elements 

permuted by f are left unchanged by g and also the elements permuted by g remain the same 

under by f. Therefore we shall have gffg  . 

e.g., Let )54(),321(  gf  
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


















45321

54321
,

54132

54321
gf  

Then, 

















45321

54321

54132

54321
fg  

 









45132

54321
fg  and similarly, 










45132

54321
gf  

Hence, gffg  . 

Observation: Let )231()31)(21(   i.e. cycle )231(  can be wriiten as product of 

transposition. 

Similarly, )2341()41)(31)(21(   i.e., cycle )2341(  can be wriiten as product of 

transposition. 

Similarly, every cycle can be written as product of transposition.  

Hence, we can say that every permutation can be written as product of disjoint cycles and 

every cycle can be written as product of transposition.  

Hence, every permutation can be written as product of transposition.  

e.g., )876)(25341(
68723514

87654321









                 .... (1)  

Since, )41)(31)(51)(21()25341(  and )76)(86()876(   

Then by (i) we can write,  

)76)(86)(41)(31)(51)(21()876)(25341(
68723514

87654321









  

Note 1: Every r-cycle can be expressed as product of (r-1) transposition. 

2: Transposition of any cycle are not unique. 

e.g., )21)(31)(41)(51()54321(                                        … (1) 

and also, )15432()54321(   (Because cycle does not affect by re-arranging symbols 

maintaining cyclic order).  

)32)(42)(52)(12()15432()54321(                       … (2) 

By (1) and (2) we can say that transposition is not unique. Similarly we can find other 

transposition  

Cycle decomposition (CD): Let nS  then we can write   as, 

kCCC ...21 , where sCi ' are cycle of length in  (say) and ktoisCi 1;'  , are disjoint. 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 104 
 

If   nni The degree of   

Then the multiset, }...,,,{ 21 knnn  is defined as the cycle decomposition of .  

Note: For uniqueness in general we write CD as, 

CD of }...,,,{ 21 knnn ; 1 ii nn  

e.g., 
6)65)(43)(2)(1( S  

4321 ...)65)(43)(2)(1( CCCC  

CD of  2,2,1,1  

Example 2: 
10)21)(354)(432)(321( S , then find the C.D. of  ? 

Answer: Here, 10)21)(354)(432)(321( S  and it is obvious that  is not disjoint. 

)10)(9)(8)(7)(6)(54)(3)(2)(1(
10987645321

10987654321









  

Then C.D. of }2,1,1,1,1,1,1,1,1{  

Note: If nS  then, 

(i) If   is an r-cycle then C.D. of },)(1...,,1,1{ rtimesrn   

(ii) If  is a transposition then C.D. of }2,)2(1...,,1,1{ timesn  

6.4 SIMILAR PERMUTATION 

Similar Permutation: Two permutations are said to be similar permutation if they have the 

same cycle decomposition. 

e.g., If 
4)43)(21( S  then C.D. of }2,2{  

If 
4)31)(21( S  i.e., )4)(231(

4213

4321









  then C.D. of }3,1{ . Hence the 

permutation  , are not similar because their cycle decomposition is not unique.  

e.g., Permutations 66 )641(,)531( SS    are similar because their cycle 

decomposition is {1, 1, 1, 3}. 

De-arrangement: If nS  s.t., C.D. of },...,,{ 21 knnn , a permutation   is called de-

arrangement if ktoini 11  . Then   is called de-arrangement.  

e.g., If C.D. of any }5{  and if C.D. of any }3,2{  then we called  &  are de-

arrangement.  
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6.5 GROUP OF PERMUTATION 

In mathematics, a group of permutations is a collection of permutations (bijective 

mappings) on a set that satisfies the axioms of a group. Here’s a breakdown of the concept. 

Theorem 1: The set nS  of all permutation on n  symbols is a finite group of !n  with respect 

to composition of mapping as the operation. For 2n , this group is abelian for 2n it is 

always non-abelian.  

Proof: Let }....,,,{ 21 naaaX   is any finite set. 

Define, XXffSn  :|{ , such that f is one-one and on-to}  

i.e., nS The collection of all one-one and on-to map from X  to X . 

Clearly, we know that !)( nSO X   and we have to show nS  forms a group ... torw  composition 

of maps as the binary operation. 

Closed: Let n

n

n

n

n

n
S

bbbb

aaaa
gandS

cccc

bbbb
f 



















...

...

...

...

321

321

321

321
 be any two 

permutation of degree n where scsb ii ','  are some arrangement of sai ' . Then by product or 

composition of two permutations, denoted multiplicatively, we have 

n

n

n
S

cccc

aaaa
fg 










...

...

321

321
 

Similarly nSgf  ,  we have nSfg  . Hence, nS  is closed with respect to composition of 

permutation. 

Associativity: Permutations multiplication is associative in general i.e., nShgf  ,,  

We have, )()( ghfhfg  . 

Existence of Identity: n

n

n
S

aaaa

aaaa
I 










...

...

321

321
 is the identity permutation because for 

all n

n

n
S

bbbb

aaaa
f 










...

...

321

321
, we have fIIf  . Hence nS  contains an identity 

permutation. 

Existence of inverse: Let n

n

n
S

bbbb

aaaa
f 










...

...

321

321
 be an element of nS  then  

n

n

n
S

aaaa

bbbb
f 








 

...

...

321

3211  such that I
aaaa

aaaa
ff

n

n










...

...

321

3211  
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Similarly we get Iff 1  

Hence we can say that nn SfSf  1,  such that ffIff 11   . 

Hence, nS  is group of order !n with respect to the product of permutations as compositions.  

Now, If 1n , then the set has only one element and every group of order 1 is abelian. If 

2n , then the set nS  has !2  i.e., 2 element and we know every group of order 2 is again 

abelian group. Now, we have only to show every group of order 2n  is non-abelian by 

giving a suitable example.  

Let 









231

321
f  and 










132

321
g  be two permutation of degree 3. Then 




























123

321

132

321

231

321
fg  



























312

321

231

321

132

321
gf  

Clearly, gffg   

6.6 EVEN AND ODD PERMUTATION 

In mathematics, an even permutation and an odd permutation are terms used to describe 

permutations of a set, based on the number of transpositions (pairwise swaps) required to 

achieve the permutation. 

Even Permutation: A permutation is called even if it can be expressed as a product of an 

even number of transpositions. 

Odd Permutation: A permutation is called odd if it can be expressed as a product of an odd 

number of transpositions.  

e.g., Every transposition is an odd permutation. 

Key Properties: 

1. Every permutation is either even or odd, but not both. 

2. The identity permutation (where no elements are swapped) is always even because it 

requires zero transpositions. 

3. The parity (even or odd nature) of a permutation does not change when multiplying 

permutations. For example: 

Example 3: The product of two even permutation is an even permutation. 
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Answer: Suppose f and g are two even permutation. Further suppose that f can be expressed 

as the product of r transposition and g can be expressed as the product of s transpositions. 

Then r and s are both even as given f and g are even. Now fg can be expressed as the product 

of r+s transpositions. Since r+s is even, therefore fg is an even permutation.  

Hence we can say that, Even × Even = Even 

Note: In a similar way we can prove the following: 

1: The product of two odd permutation is an even permutation i.e., Odd × Odd = Even 

2: The product of an even permutation and an odd permutation is an odd permutation 

i.e., Even × Odd = Odd ‘OR’ Odd × Even = Odd 

Example 4: The inverse of an even permutation is an even permutation and the inverse of 

an odd permutation is an odd permutation. 

Answer: Let f is an even permutation and 1f  is the inverse of f such that Iff 1 . As we 

know that identity permutation is an even permutation and also product of two even 

permutation is an even permutation. On combining these two concepts we assure that 1f  

should be definitely an even permutation because, 

 Even (f is even) × 1f (unkown permutation) = Even     [By  the rule, Even × Even = Even] 

This is possible only when, 1f  should be even.  

Theorem 2: Out of the !n  permutations on n symbols, 
2

!n
 are even permutations and 

2

!n
 are 

odd permutations.  

Proof: Out of !n  permutations on n symbols let the even permutation let the even 

permutations be meee ,...,, 21  and the odd permutations be kooo ,...,, 21 . 

Since a permutation is either even permutation or an odd permutation but not both, therefore 

!nkm   

If nS  is a set of all permutations of degree n, then 

},...,,,,...,,{ 2121 kmn oooeeeS  . Let nSt  and suppose t is a transposition. Since nS  is a 

group with respect to permutation multiplication, therefore km totototetete ,...,,,,...,, 2121  are all 

elements of nS . Obviously mtetete ,...,, 21  are all odd permutations and ktototo ,...,, 21 are all 

even permutations. 
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Since, no two of the permutations mtetete ,...,, 21 are equal because, 

jiji eetete   (By left cancellation law in the group np ). Therefore, ji ee  , then 

ji tete  . 

Thus the m odd permutations mtetete ,...,, 21  are distnict elements of nS . But we have 

supposed that nS  contains exactly k odd permutations. Therefore m cannot be greater than k. 

Thus, 

km                         … (1) 

Similarly, we can show that the k even permutations ktototo ,...,, 21  are distnict element of nS . 

Therefore, we must have 

     mk        … (2) 

From (1) and (2), it follows that 
2

!n
km   

6.7 ALTERNATING GROUP An 

The alternating group is a fundamental concept in group theory, a branch of abstract 

algebra. It is closely related to the symmetric group and consists of all even permutations of 

a finite set. 

Definition: If nA  is the set of all even permutation of nS  of degree n i.e., 

nA {  |nS is an even permutation} 

Then obviously, cardinality of nA  will be 
2

!n
. 

Theorem 3: The set of nA  of all even permutation of degree n forms a group of order 
2

!n
 

with respect to the permutation multiplication.  

Proof: Let nA  be the collection of all the even permutation of nS . Also, we know that 

product of two even permutation is an even permutation, which shows that nA  is closed with 

respect to the permutation multiplication. So, when we say f be any even permutation in nS . 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 109 
 

nAf         [As 
nA  is the collection of all even permutation] 

Since, nS  is associative with respect to the permutation multiplication and nn SA  . 

nA  is also satisfies the associativity with respect to the permutation multiplication. 

If I is an identity permutation of degree n then I is an even permutation. Therefore 
nAI  . 

Now we have, nAffIfIf   

I  is an identity element.  

Now, let f be any even permutation in nS . If 1f  is the inverse of f in the group of all 

permutation of degree n, then 1f  is also an even permutation because 

nAfffIff   11
. 

Thus nn AfAf  1
such that 

11   ffIff  

i.e., each element of nA  possess inverse.  

As we know that number of even permutation in nS  are 
2

!n
. Hence, cardinality of nA  is 

2

!n
. 

Note: As we know that product of two odd permutation is even permutation. Hence, the set 

of all odd permutation of nS  is not form group with respect to the permutation multiplication 

as it is not closed.  

Example 5: Show that the set 3S  of all permutation on three symbols }3,2,1{  is a finite non-

abelian group of !3  order  with respect to permutation multiplication. 

Solution: We have )}231(),321(),32(),31(),21(,{3 IS  . Where I is the identity permutation.  

Let we rename elements of 3S as, 

)231(),321(),32(),31(),21(, 654321  fffffIf . Then we prepare the 

composition table as, 

Product of 

permutation 
1f  2f  3f  4f  5f  6f  

1f  
1f  2f  3f  4f  5f  6f  
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2f  2f  
1f  6f  5f  4f  3f  

3f  3f  5f  1f  6f  2f  4f  

4f  4f  6f  5f  1f  3f  2f  

5f  5f  3f  4f  2f  6f  1f  

6f  6f  4f  2f  3f  1f  5f  

 

Since all the elements in the composition table are also the elements of 3S . Here, in the 

composition table If 1
, is the identity element of 3S  (because for each if , 

3111 toiffff ii  ) 

Also from the composition table we can easily seen that, 

The inverse of 
11 ff   

The inverse of 
22 ff   

The inverse of 33 ff   

The inverse of 
44 ff   

The inverse of 65 ff   

The inverse of 56 ff   

So, inverse of each element of 3S  belongs in 3S . Hence, 3S  forms a group. 

Now, from table we can easily seen that, 632. fff   while 523. fff   i.e., 2332 .. ffff  . So, 

we can say that 3S  is a non-abelian group.  

Example 6: Show that the set 4S  of all permutation on three symbols }4,3,2,1{  is a finite 

non-abelian group of order )24(!4  with respect to permutation multiplication. 

Solution: We have  

)}.2341(),3241(),2431(

),4231(),3421(),4321(),42)(13(),41)(32(),41)(32(),43)(21(),342(),432(

),341(),431(),241(),421(),231(),321(),43(),42(),32(),41(),31(),21(,{4 IS 

.  

Where, I is the identity permutation.  Similarly, rename the elements of 4S as in previous 

example 5, we can prepare the composition table by which we can prove that 4S is non-

abelian group.  
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Example 7: Show that the set 
4A  of all even permutation on three symbols }4,3,2,1{  is a 

finite non-abelian group of order )12(
2

!4
  with respect to permutation multiplication. 

Solution: We have  

)}.2341(),3241(),2431(

),4231(),3421(),4321(),42)(13(),41)(32(),41)(32(),43)(21(),342(),432(

),341(),431(),241(),421(),231(),321(),43(),42(),32(),41(),31(),21(,{4 IS 

.  

Then the collection of all even permutation is, 

)}.42)(13(),41)(32(

),41)(32(),43)(21(),342(),432(),341(),431(),241(),421(),231(),321(,{4 IA 
 

Where, I is the identity permutation.  Similarly, rename the elements of 
4A  as in previous 

example 5, we can prepare the composition table by which we can prove that 
4A is non-

abelian group.  

Theorem 4: nA  is a subgroup of nS . 

Proof: Let nS ,  such that  & are even permutation then obviously nA , . Since 

inverse of even permutation is also an even permutation. It means, 1  is even permutation.  

Now, since 1&   are even permutation and product of two even permutation is even 

permutation. Then obviously, 1.   is even permutation. Hence nA1. .  

Hence by one step subgroup test nA  is a subgroup of NnSn  . 

6.8 ORDER OF PERMUTATION 

The order of a permutation refers to the number of times the permutation must be applied to 

return to the original arrangement of the elements. 

Definition: Any permutation  is called the permutation of order k if Ik  , where k is the 

least such natural number.  

e.g., Let )321(  then )231()321).(321(.2    

then, I )321).(231(.23  . Hence order   is 3. 

Note 1: Every cycle of length r is an element of order r. 

2: In mathematical terms, the order of a permutation is the least common multiple (LCM) of 

the lengths of its disjoint cycles. 
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e.g., Consider the permutation σ = (1 3 5)(2 4) in cycle notation: 

 It has two disjoint cycles: (1 3 5) of length 3, and (2 4) of length 2. 

 The order of σ is the LCM of the lengths of these cycles:  

e.g., Order of σ = LCM(3,2)=6. 

2. Identity permutation ϵ = () 

 Contains no cycles (or cycles of length 1). 

 The order is 1 because applying it any number of times leaves the elements 

unchanged. 

Steps to Find the Order: 

1. Write the permutation in disjoint cycle form. 

2. Determine the length of each cycle. 

3. Compute the LCM of these lengths. 

Example 8: Find the order of the permutation σ = (1 3 5)(2 4). 

Solution: Consider the permutation σ = (1 3 5)(2 4) in cycle notation: 

 It has two disjoint cycles: (1 3 5) of length 3, and (2 4) of length 2. 

 The order of σ is the LCM of the lengths of these cycles:  

Example 9: Find the order of the permutation 









68723514

87654321
  

Solution: Consider the permutation, )876)(25341(
68723514

87654321









 . 

It has two disjoint cycles: )25341(1 c  of length 5 and )876(2 c  of length 2. Hence the 

order of the cycle )25341(  is 5 and order of the cycle )876(  is 3.  

Then order of 15)3,5()}(),({ 21  LCMcOcOLCM . 

Note: If the cycles are not disjoint then first make to them disjoint for finding the order of the 

permutation.  

Check your progress 

If 









10598764123

10987654321
  then find the following problems. 

Problem 1: Partition the given permutation into disjoint cycle including the length one. 

Problem 2: Write the cycle decomposition of   



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 113 
 

Problem 3: Find the order of  . 

Problem 4: Find the inverse of  . 

 

6.9 SUMMARY 

In this unit, we have studied, a group permutation is a mathematical concept involving the 

set of all permutations (rearrangements) of a given set, typically represented as Sn, the 

symmetric group of degree n. This group contains all n! permutations of n elements and is 

equipped with the operation of composition, where two permutations are combined by 

performing one after the other. The identity permutation leaves all elements unchanged, and 

every permutation has an inverse that restores the original arrangement. Permutations can be 

expressed in cycle notation, which simplifies their analysis. The order of a permutation, 

determined as the least common multiple (LCM) of the lengths of its disjoint cycles, indicates 

how many times the permutation must be applied to return to the starting arrangement. 

Symmetric groups are fundamental in abstract algebra, with applications in combinatorics, 

geometry, and other fields of mathematics. 

6.10 GLOSSARY 

 Permutation group nS . 

 Alternating group nA  

 Cyclic permutation. 

 Cycle decomposition. 

 Transposition. 

 De-arrangement.  

 Similar permutation. 

 Order of permutation. 
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6.13 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Define the symmetric group Sn. Explain the concept of permutations and their 

representation in cycle notation. Discuss the significance of disjoint cycles and how 

they simplify the study of permutations. Provide examples to illustrate your 

explanation. 

2. What is the order of a permutation? Explain the steps to determine the order of a 

permutation using disjoint cycle notation. Why is the least common multiple (LCM) 

of cycle lengths significant in this context? Illustrate your answer with detailed 

examples. 

3. Discuss the algebraic structure of the symmetric group Sn. Highlight its key 

properties, such as closure, associativity, the identity element, and inverses. Explain 

why Sn is non-abelian for n ≥ 3and provide examples to support your discussion. 

4. Show that 4S  is a non-abelian group of order 24. 

5. What is a cyclic permutation? Explain its properties and how it differs from a general 

permutation. Discuss the role of cyclic permutations in the structure of Sn and give 

examples to illustrate your explanation. 

6. Show that 4A  is a non-abelian group of order 12. 

Short Answer Type Question: 

1. Prove that 2S  is a finite abelian group. 

2. Prove that nA  is subgroup of nS  
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3. Prove that number of even and odd permutations in nS  are same. 

4. Prove that the set 
nA  of all even permutation of degree n forms a group of order 

2

!n
 

with respect to the permutation multiplication 

5. Prove that the inverse of an even permutation is an even permutation and the inverse 

of an odd permutation is an odd permutation. 

6. Prove that the product of two even permutation is an even permutation. 

7. Show that multiplication of permutation is not commutative in general.  

Fill in the blanks: 

1. The symmetric group Sn consists of all …………. of n elements. 

2. The alternating group An is a subgroup of Sn that contains all …………permutations. 

3. A transposition is a permutation that swaps ……….. elements and leaves the rest 

unchanged. 

4. The order of the symmetric group S4 is ………… 

5. A permutation can be expressed as a product of ………….. 

6. A k-cycle is a permutation that cyclically permutes …………. elements. 

7. The sign of a permutation is +1 if the permutation is ………………. 

8. The identity permutation in Sn leaves every element ……………  

9. In S3, the total number of permutations is ………………  

10. The composition of two even permutations results in an ………… permutation. 

Objective type questions:  

1. What is the order of the symmetric group Sn? 

a)  n! 

b)  2n  

c)  n 

d)  n2  

2. Which of the following is true about a permutation group? 

a)  It is always abelian. 

b)  It is a subgroup of the symmetric group. 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 116 
 

c)  It contains only even permutations. 

d)  It is infinite for n ≥ 3. 

3. The alternating group An is defined as: 

a)  The set of all even permutations of Sn. 

b)  The set of all odd permutations of Sn. 

c)  The group of all permutations of size n −1. 

d)  The subgroup of all transpositions in Sn. 

4. What is the number of transpositions required to express a permutation in Sn? 

a)  Exactly 1 

b)  Equal to the length of the permutation cycle 

c)  It depends on the permutation 

d)  Equal to n 

5. The identity element in a permutation group Sn is represented by: 

a)  The permutation that reverses all elements 

b)  The permutation that leaves all elements unchanged 

c)  The longest cycle in Sn 

d)  The product of all transpositions in Sn 

6. What is the sign of a permutation if it is an odd permutation? 

a)  +1 

b)  −1 

c)  0 

d)  Depends on n 

7. If σ and τ are two permutations in Sn, what is στ? 

a)  The sum of σ and τ. 

b)  The product of σ and τ. 

c)  The composition of σ and τ. 

d)  Always the identity element. 

8. Which of the following is not a subgroup of S3? 

a)  {e} 

b)  A3 

c)  S3 

d)  {(1 2),(1 3)} 

9. In the permutation group S4, the total number of even permutations is: 

a)  12 

b)  24 

c)  6 

d)  8 

10. A cycle of length k in a permutation group is called a: 

a)  Transposition 

b)  k-cycle 

c)  Simple permutation 

d)  Subgroup 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 117 
 

True and False questions: 

1. Every permutation in Sn can be expressed as a product of transpositions. 

2. The identity permutation is the only even permutation in Sn. 

3. The order of a permutation is the smallest positive integer k such that the 

permutation raised to the k-th power is the identity. 

4. The alternating group An is a normal subgroup of Sn. 

5. The composition of two odd permutations is always an odd permutation. 

6. In the symmetric group S3, there are six elements, including the identity. 

7. A transposition is an even permutation. 

8. The alternating group A4 has 12 elements. 

9. The symmetric group Sn is abelian for n ≥ 3. 

10. Any subgroup of a symmetric group is itself a permutation group. 

6.14 ANSWERS 

Answer of check your progress: 

Problem 1: )10)(98765)(4)(2)(31(  

Problem 2: Cycle decomposition of }5,2,1,1,1{  

Problem 3: Order of 10  

Problem 4: )56789)(31(1   

Answer of objective question 

1.  a)  2. b)  3. a)  4. c) 

5.  b)  6. b)  7. c)  8. d) 

9.  a)  10. b) 

Answer of fill in the blanks: 

1. Permutation   2. Even   3. Two 

4. 24    5. Transposition  6. K 

7. Even    8. Unchanged  9. 6 

10. Even 

Answer of True and False 

1. True   2. False  3. True  4. True 

5. False   6. True  7. False  8. True 

9. False   10. True 
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Unit-7: GROUP HOMOMORPHISM 

 

CONTENT: 

7.1 Introduction  

7.2   Objectives 

7.3  Homomorphism 

 7.3.1 Image or range of a homomorphism 

 7.3.2 Kernel of homomorphism 

7.4 Summary 

7.5  Glossary  

7.6   References 

7.7  Suggested Readings 

7.8  Terminal Questions 

7.9 Answers 

7.1 INTRODUCTION 

The term "homomorphism" appeared as early as 1892, 

when it was attributed to the mathematician Felix 

Klein (1849–1925).  

Christian Felix Klein was a German mathematician and 

mathematics educator, known for his work with group 

theory, complex analysis, non-Euclidean geometry, and 

on the associations between geometry and group theory. 

His 1872 Erlangen program, classifying geometries by 

their basic symmetry groups, was an influential synthesis 

of much of the mathematics of the time. 

 

Christian Felix Klein 

25 April 1849 – 22 June 1925
 

https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Non-Euclidean_geometry
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Erlangen_program
https://en.wikipedia.org/wiki/Symmetry_group
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A homomorphism is a fundamental concept in algebra and mathematics, particularly in the 

study of structures such as groups, rings, and vector spaces. It refers to a structure-preserving 

map between two algebraic structures of the same type. Homomorphisms are essential in 

understanding the relationships and transformations between these structures. 

7.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of special types of mapping between two groups named as 

homomorphism which will helpful to deal with isomorphism. It may be possible these 

groups are under the different binary operations. 

 Know that under the homomorphism mapping how the properties of two groups are 

relate. 

 Understand about the other type of mapping like endomorphism and automorphism. 

 Understand the basic properties of homomorphism and their related other theorems 

and definitions.  

7.3 HOMOMORPHISM 

Definition: A mapping  from a group  into the group is said to be a 

homomorphism if it preserve the composition under  i.e.,  

 

Or 

A mapping is said to be homomorphism if, 

 

where, and are the groups under the operation and  respectively.  

Note 1: The range of  in is called the homomorphic image of . 

2: In general, we take both the groups and under the same operation multiplication and 

write is a homomorphism between to if, , without the 

loose of generality.  

Example 1: A mapping , from set of integer to the set of even integer such that 

 

f ),( G .),( 'G

f

Gbabfafbaf  ,)().()*(

': GGf 

Gbabfafbaf  ,)().()*(

G
'G '' '.'

f G
'G

G
'G

f G
'G Gbabfafabf  ,)()()(

EZf :

Zxxxf  2)(
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is a homomorphism. 

Answer: We have given the mapping  such that 

 

at first, we will check mapping is well defined as  

Now, we will check mapping also preserve the composition for it for any  

 

preserve the composition.  

Hence given mapping is an homomorphism. 

Example 2: Show that the Mapping , from set of integer under the operation 

addition to the group  under the operation multiplication defined as 

 

is a homomorphism. 

Answer: Case I: If both are even integers. It means then their 

sum will also an even integer i.e.,  

 

Case II: If  both are odd integers i.e.,  then their sum will be 

even integer i.e.,  

 

Case III: If  are such that x is even integer and y is odd integer i.e.,

 then their sum will be odd integer then, 

 

Case IV: If  are such that x is odd integer and y is even integer i.e.,

 then their sum will be odd integer then, 

 

Hence the given mapping is an homomorphism.  

Example 3: Show that the Mapping , from set of positive real numbers to the set 

of real number defined as is an homomorphism. 

Answer: As we know that set of positive real numbers ( ) is form group under the 

operation multiplication and the group R is form group under the operation addition.  

EZf :

Zxxxf  2)(

)()(22 yfxfyxyx 

Zyx ,

)()(22)(2)( yfxfyxyxyxf 

f

f

GZf :

 1,1 G








oddisxif

evenisxif
xf

,1

,1
)(

Zyx , 1)(,1)(  yfxf

Zyxyfxfyxf  ,)()(1.11)(

Zyx , 1)(,1)(  yfxf

Zyxyfxfyxf  ,)()()1).(1(1)(

Zyx ,

1)(,1)(  yfxf

Zyxyfxfyxf  ,)()()1.(11)(

Zyx ,

1)(,1)(  yfxf

Zyxyfxfyxf  ,)()()1).(1(1)(

f

RRf :

 Rxxxf log)(

R
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Here, clearly the mapping is well-defined since, for  

 

  [Taking logarithm both side] 

 

Now,  

Hence f is a homomorphism.  

Homomorphism onto: A onto mapping from a group  into the group is said to 

be a homomorphism onto if it preserve the composition under  i.e.,  

. 

Endomorphism: A homomorphism from a group to itself is called an endomorphism.  

Example 4: If G be a group and a mapping such that, such that  be a 

homomorphism then show that G is a Abelian group.  

Proof: Since G be a group then for any elements , G will satisfies the closure 

property i.e., and for every element belongs to G there exist its inverse in G.  

Now,  

 is Abelian group.  

Theorem 1: If be a homomorphism then, 

(i) If e is the identity of G, then  is the identity of  

(ii) For any element ,  

(iii) If H is subgroup of then is subgroup of  

(iv) If K is subgroup of , then  is a subgroup of G. 

Furthermore, if K is normal in then  is normal in G.  

(v) If order of any element  is finite then the order of  is divisor of the 

order of . 

Proof (i): Let  and are the identity elements of the group G and . Since  is the 

mapping from G to  then  will be the elements of . 

Now, , then by the right cancellation law 

 

yx 

yx loglog 

 Ryxyfxf ,)()(

 Ryxyfxfyxxyxyf ,)()(loglog)log()(

),( G .),( 'G

f

Gbabfafbaf  ,)().()*(

G

GGf : 1)(  xxf

Gyx ,

Gxy

        yxxfyfxyfxyxy   1111111

G

': GGf 

)(ef 'G

Ga   11 )()(
  afaf

G )(Hf 'G

'G  '1 )()( GkfGkKf 

'G )(1 Kf 

Ga )(af

Ga

e
'e 'G f

'G )(ef 'G

)()()()()(' efefeefefefe 

)(' efe 
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i.e.,  is the identity of . 

(ii): Let a be any element of G then  will be also in G because G itself a group. Since we 

have,                                                               … (1) 

As we know that if and is also a group then  

Now multiplying by  both side in equation (1) 

Then,  

So,  

(iii): We have given H is subgroup of G then to prove that  is subgroup of . If 

                       [By the subgroup test of any nonempty subset of G]  

Since  is the homomorphism then there exist  

Now consider,  

Hence we have prove that if then  

 is subgroup of . 

(iv): Let K is subgroup of  and define H to be ; that is H is the set of all such 

that . If , then . Since K is 

subgroup of . Therefore, and H is the subgroup of G. 

If K is normal in then we have to show for  

But, 

 

Since K is normal in G therefore  

H is normal subgroup of G. 

(v): Let  and  i.e.,  

Taking f-image both side we get,  

 (m times)  

 

If order of  in is n then  

7.3.1 IMAGE OR RANGE OF A HOMOMORPHISM 

)(ef 'G

1a

)()()()( 11'   afafaafefe

')( GafGa 
'G   '1

)( Gaf 


  1
)(


af

         )()()()()()()()( 1111'1
afafafafafafafeaf  

  )()(
1

afaf 


)(Hf 'G

HxyHyx  1,

f )(),(..)(, yfbxfatsHfba 

  )()()()()()( 1111 Hfxyfyfxfyfxfab  

)(, Hfba  )(1 Hfab 

 )(Hf 'G

'G )(1 Kf  Gg

')( GKgf  Hba ,   Kbfafbfafabf 
 111 )()()()()(

'G Hab 1

'G Hhgg 1 GgHh  ,

          Khfhfgfgfgfhfgfgfhfgfhggf 
 )()()()()()()()()()()(

11111

Hhgg 1



Ga maO )( eam 

)()( efaf m 

)()....()()( afafafaf )(ef

  ')( eaf
m


)(af 'G )(|))(( aOafo
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Definition: If  is a homomorphism then range of homomorphism is defined as, 

 '' )(|)( ggfGgGffRange  .  

We can also say that ')( GGf  . It is also called image of a homomorphism. 

Theorem 2: If  is a homomorphism then range of homomorphism is subgroup of

'G . 

Proof: Let we consider, )(, Gfyx  .  

Gba  ,  s.t., ybfxaf  )(,)( . As we know, ')( GGf  . 

Now, 111 )]()[())()((   bfafbfafxy  

)()( 1 cfabf                                                                          [Since f is a homomorphism] 

where Gabc  1 .                                                                     [By one step subgroup test] 

)(1 Gfxy   . 

Hence range of homomorphism is a subgroup of co-domain.  

Remarks 1: If f is onto homomorphism, then )(' GfG  .  

2: If f is a homomorphism then we know that the range of homomorphism is a subgroup of 

co-domain. So, by the Lagrange’s theorem )(|))(( 'GOGfO . 

Theorem 3: If  is a homomorphism. If G is abelian then image of homomorphism 

is also an abelian subgroup of 'G . 

Proof: Let G is an abelian group and  is an homomorphism. Let )(, Gfyx   then 

Gba  ,  s.t., ybfxaf  )(,)( .  

Now, )()()( abfbfafxy                   [Since f is an homomorphism] 

yxafbfbaf  )()()(      [Since Gba ,  and G is an abelian group i.e. baab  ] 

Hence )(Gf  is an abelian whenever G is abelian. 

': GGf 

': GGf 

': GGf 

': GGf 
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Theorem 4: If  is a homomorphism. If G is cyclic then image of homomorphism 

is also a cyclic subgroup of 'G . 

Proof: Let  is an homomorphism, which means group operation must be 

preserved. Let Gyx ,  and )()(,)( 11 Gfyyfxxf   be the respective images of yx, . 

Now, 
11)()()( yxyfxfxyf                   [Since f is an homomorphism]. 

Given G be a cyclic and let a  be the generator. 

 .: ZnaaG n   Let us assume that )(Gf  is a cyclic. Group such that  

 .:)( ZlbbGf l   Let max  , nay  , kbx 1
and rbx 2

. It follows that: 

rknmrknm bafbbaaf   )()(  

We can think we have to demonstrate that an element b may produce the elements in H that 

are the pictures of G through the homomorphism ϕ. 

Since homomorphism transfers identity to identity, the identities may be produced using b by 

using the same exponent operation to the generator a: 

Zmebbaaef mmmm   ,)( '00  

Inverse to inverse is sent by homomorphism: 

Zmbaf mm   ,)(
'

 

Therefore, as b can generate all the elements of )(),( GfGf  is also cyclic. 

 

7.3.2 KERNEL OF A HOMOMORPHISM 

Definition: If  is a homomorphism then kernel of homomorphism is the collection 

of all elements of domain set which are mapped into the identity elements of range set.  

OR 

If  is a homomorphism then, 

  

Where is the identity element of  

Theorem 5: If  is a homomorphism then is the normal subgroup of G.  

': GGf 

': GGf 

': GGf 

': GGf 

 ')(|ker exfGxf 

'e 'G

': GGf  fker
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Proof: Since we have given is an homomorphism and we know that 

 then first we will prove that is a subgroup of G. for it let 

 

Now,  

 

Hence we have it means is the subgroup of G. 

Now we have to prove that is the normal subgroup of G. For it let g be any element of 

G and k be any element of . Then , we have  

 

 

Hence, is normal subgroup of G.  

Theorem 6: A homomorphism is one-one if and only if . 

Proof: We have given is an homomorphism and let mapping is ono-one. If 

 be any element 

Then and also  

Since is one-one so,  

Hence, . 

Conversely, let contains only the identity element. 

For it let,  

then  

 

 

 

 

f is one-one. 

Check your progress 

Problem 1: Is ),(),(:  ZZf  such that nknf .)(  , where k  is fixed, a homomorphism? 

': GGf 

 ')(|ker exfGxf  fker

'' )(,)(ker, eyfexffyx 

  '1''111 ][)()()()()( eeeyfxfyfxfxyf  

fxy ker1  

fyx ker,  fxy ker1  fker

fker

fker ')( ekf 

  '11'11 )()()()()()()()( egfgfgfegfgfkfgfgkgf 


fxgkg ker1  

fker

': GGf  }{ker ef 

': GGf 

fx ker

')( exf 
')( eef 

f fxexefxf ker)()( 

}{ker ef 

fker

)()( yfxf 

'1)]()[( eyfxf 

'1)( exyf  

}{ker1 efxy  

}{1 exy  

yx 
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Problem 2: Is ),(),(: mmZZf   such that )(mod)( mnnf  , a homomorphism? 

Problem 3: Is .)},,,1,1{(),(: iiGZf   such that ninf )( , a homomorphism? Also 

find this homomorphism is one-one? 

 

7.4 SUMMARY 

In this unit, we have studied about the mapping like homomorphism which help identify and 

understand similarities between different algebraic structures by revealing how one structure 

can be transformed into another while maintaining its core properties. They play a crucial 

role in classification, simplification, and decomposing mathematical structures. 

Homomorphisms are ubiquitous in mathematics and serve as the building blocks for more 

complex concepts like isomorphisms, automorphisms and representations. 

A homomorphism is a structure-preserving map between two algebraic structures of the 

same type, such as groups, rings, or vector spaces. It ensures that the operations in one 

structure correspond to the operations in the other, maintaining their algebraic properties. For 

example, in a group homomorphism f, the relation f(a∗b) = f(a)∗f(b) holds for all elements a 

and b. Homomorphism’s are crucial for understanding relationships between mathematical 

structures, as they reveal how one structure can be transformed into another while preserving 

its essential characteristics. They are foundational for concepts like kernels, images, 

isomorphism’s, and automorphisms, making them central to algebra and its applications. 

7.5 GLOSSARY 

 Homomorphism 

 Kernel of homomorphism mapping f. 

 Range or Image of homomorphism 

 Endomorphism 
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7.8 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that if  is a homomorphism. If G is cyclic then image of 

homomorphism is also a cyclic subgroup of 'G . 

2. A homomorphism is one-one if and only if . 

3. If is an homomorphism then prove that the set  

where is the identity element of is the normal subgroup of . 

4. Prove that if is an homomorphism then order of any element is 

divisor of the order of .  

5. If two subgroups are normal in such that , then  

 

Short Answer Type Question: 

1. Prove that if  is a homomorphism then range of homomorphism is 

subgroup of 'G . 

': GGf 

': GGf  }{ker ef 

': GGf   ')(| exfGxA 

'e 'G G

': GGf  ')( Gaf 

Ga

KH , G KH 

HK

HG

K

G

\

\


': GGf 
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2. Prove that if is an homomorphism and H is subgroup of then is 

subgroup of . 

3. If f is a homomorphism from then prove that f is one-one if and only if 

. 

4. An endomorphism f in a group G such that  then G is abelian.  

5. Prove that if  is a homomorphism then is the normal subgroup of G. 

 

Fill in the blanks: 

1. If be a homomorphism then for any element ,  

2. If be a homomorphism and e is the identity element of G then identity 

element of will be ………… 

3. ……… is the infinite cyclic group 

4. A cyclic group of order 123456789 is isomorphic to ………. 

5. The kernel of a group homomorphism HG : is a …………… subgroup of G. 

6. The ………………… homomorphism maps every element of G to the identity 

element of H. 

7. If HG : is a homomorphism, then  )( 1g ………… 

8. The image of a group homomorphism is a …………………… of the codomain. 

Objective questions: 

1. A function HG : is a group homomorphism if: 

(A)  )()().( baba    

(B)  )().().( baba    

(C)  baba .).(   

(D)  )().().( abba    

2. If a function HG : is a group homomorphism, which of the following is always 

true? 

(A)  HG ee )( , where HG ee ,  are identity of G and H respectively. 

': GGf  G )(Hf

'G

': GGf 

}{ker ef 

1)(  xxf

': GGf  fker

': GGf  Ga ............)( 1 af

': GGf 

'G
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(B)  
HG ee )(  

(C)  )( Ge  is undefined 

(D)  None 

3. The kernel of a group homomorphism HG : is defined as: 

(A)  })(|{)( GegGgKer    

(B)  })(|{)( HehHhKer    

(C)  })(|{)( HegGgKer    

(D)  })(|{)( GehHhKer    

4. If a function HG : is a group homomorphism, which of the following is true 

about the image of  ? 

(A)  It is a normal subgroup of H 

(B)  It is a subgroup of H  

(C)  It is a proper subgroup of H 

(D)  None of these. 

5. Which of the following is NOT preserved under a group homomorphism HG : ? 

(A)  Identity element 

(B)  Inverse 

(C)  Group of individual elements 

(D)  Closure under the group operation 

6. A group homomorphism HG : maps an abelian group G to: 

(A)  An Abelian group H 

(B)  An non-abelian group H 

(C)  Either an abelian or non-abelian group H 

(D)  None 

7. Let HG :  be a homomorphism. The kernel of  : 

(A)  Is a subgroup of G but not necessarily normal 

(B)  Is a normal subgroup of G 

(C)  Is a subgroup of H 

(D)  May not be a subgroup of G 

TRUE (T) and FALSE (F):  
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1. A homomorphism HG : maps every subgroup of G to a subgroup of H.   

2. If HG : is a surjective homomorphism and G is cyclic, then H is cyclic.  

3. The image of a group homomorphism is always a normal subgroup of the codomain.  

4. A homomorphism HG :  is a homomorphism and GgeG H )( , then G 

has no identity element. 

7.9 ANSWERS 

Answer of self cheque question: 

1. Yes  2. Yes  3. Yes this is homomorphism but not on-to. 

Answer of fill in the blanks 

1.  2. f(e)  3. Z  4.  

5. Normal 6. Trivial  7. 
1))(( g  8.  Subgroup 

Answer of objective type question: 

1. (B)  2. (A)  3. (C)  4. (B) 

5. (C)  6. (C)  7. (B) 

Answer of TRUE and FALSE: 

1. F  2. T  3. F  4. F 

 

 

 

 

 

 

 

 

  1
)(


af
123456789Z
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Unit-8: GROUP ISOMORPHISM 

 

CONTENT: 

8.1 Introduction  

8.2   Objectives 

8.3  Isomorphism 

8.4  Fundamental theorems 

8.5 Summary 

8.6  Glossary  

8.7   References 

8.8  Suggested Readings 

8.9 Terminal Questions 

8.10 Answers 

8.1 INTRODUCTION 

Group isomorphism is a fundamental concept in abstract algebra that formalizes the idea of 

two groups being structurally identical, even if their elements and operations appear different 

on the surface. Specifically, an isomorphism between two groups is a bijective (one-to-one 

and onto) function that preserves the group operation, meaning that the image of the product 

of any two elements in the first group is equal to the product of their images in the second 

group. This concept allows mathematicians to classify and study groups by their underlying 

structure rather than their specific representations, facilitating the identification of groups that 

are essentially the same in terms of their algebraic properties. Understanding group 

isomorphism is crucial for exploring deeper relationships within group theory and its 

applications across various areas of mathematics and science. 

8.2 OBJECTIVES 
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The objectives of this unit on isomorphism in group theory are typically focused on 

understanding and applying the concept of structural equivalence between groups. The key 

objectives include: 

1. Understanding Isomorphism: To define group isomorphism formally and explain its 

significance in identifying groups that are structurally identical, regardless of their 

representation. 

2. Recognizing Isomorphic Groups: To develop the ability to determine whether two 

groups are isomorphic by verifying the properties of an isomorphism, such as 

bijectiveness and preservation of the group operation. 

3. Exploring Properties: To examine the properties of groups that are preserved under 

isomorphism, such as order, group structure, and specific characteristics like 

commutativity. 

4. Classifying Groups: To use isomorphism as a tool for classifying groups into 

equivalence classes, simplifying the study of group theory by focusing on group 

structures rather than specific examples. 

5. Applications of Isomorphism: To apply the concept of isomorphism in solving 

problems in abstract algebra and understanding its implications in other mathematical 

and scientific contexts. 

6. Building Intuition: To provide illustrative examples and counterexamples that 

deepen the conceptual understanding of group isomorphism. 

By achieving these objectives, students gain a foundational grasp of isomorphism, enabling 

them to explore deeper topics in algebra and related fields. 

8.3 ISOMORPHISM 

Two groups are isomorphic if there exists a one-to-one correspondence (bijection) between 

their elements that preserves the group operation. In simpler terms, two groups are 

isomorphic if they have the same structure, meaning they behave the same mathematically, 

even if their elements or how they are represented might look different. 

Definition: A mapping  from a group  into the group is said to be 

isomorphism if it satisfies the following condition, 

(i)  is ono-one i.e,  is injective i.e., distinct element in G have distinct f- image in 'G  

(ii) is on-to i.e,  is surjective. 

(iii) i.e., preserve the composition i.e. the image of the 

product is the product of the images. 

f ),( G .),( 'G

f f

f f

Gbabfafbaf  ,)().()*( f
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Key Properties of Isomorphic Groups: 

1. Bijection: The mapping   is both injective (one-to-one) and surjective (onto), 

ensuring every element of H corresponds to exactly one element of G. 

2. Preservation of Structure: The group operation is preserved, meaning the result of 

combining two elements in G is mapped to the combination of their images in H. 

Implications: 

 If G and H are isomorphic, they are "essentially the same" as groups. Their order 

(number of elements), subgroup structure, and other group-theoretic properties are identical. 

 However, their specific representations or elements may differ. 

Example: 

1. The additive group of integers modulo 4 (Z4) and the cyclic group of order 4 are 

isomorphic because both have the same structure: a single generator that cycles through four 

elements. 

2. The group of rotations of a square and Z4 are not isomorphic, because the rotation 

group includes reflections, making it non-cyclic, whereas Z4 is cyclic. 

Example 1: Show that the Mapping , from set of positive real numbers to the set 

of real number defined as is an isomorphism. 

Answer: In the previous example we have already proved that given mapping is a 

homomorphism. Now, we are going only to show that mapping (f) is a bijective mapping 

(i.e., f is one-one and on-to) 

One-One: Let s.t.,  

 

 

 

f is one-one mapping. 

On-to: If be any real number then clearly . It means for each we have 

 such that  

f is on-to mapping. 

Hence, f  is an isomorphism.  

RRf :

 Rxxxf log)(

Ryx, )()( yfxf 

yx loglog 

yx ee loglog 

yx 



Ry Re y Ry

Re y
Ryeef yy  )log()(


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Example 2: Show that there is no isomorphism from where, Q is set of 

rational number. 

Answer: To prove this example let we assume that  is an isomorphism.  Since 

is an isomorphism so will also a on-to function i.e., for s.t.,  

 

 

       [Since, f preserve the compostion] 

 

  where, , which is a contradiction because there is no rational number 

which is the solution of quadratic equation . Hence our assumption is wrong. So, 

there is no map  which is an isomorphism.  

Some important properties of isomorphic mappings: 

Let f be a isomorphic mapping of a group G into a group 'G then followings are some 

properties to be noted. 

(i) The f image of the identity e of G is the identity of 'G  i.e., )(ef  is the identity of 

'G . 

Proof: Let e  be the identity of G and 'e be the identity of 'G . Let a  any element of G. Then 

')( Gaf  . 

Now, )()(' afafe         [ 'e  is the identity of 'G ] 

)(eaf    [ e  is the identity of G ] 

)()( afef   [ f  is an isomorphic mapping] 

Now in the group 'G , we have 

)()()(' afefafe   

)(' efe                   [by right cancellation law in 'G ] 

)(ef  is the identity of 'G  

}0{: QQf

}0{: QQf

f f QxQ  }0{2

2)( xf

2
22











xx
f

2
22



















x
f

x
f

2
22



















x
f

x
f

22  y 









2

x
fy

022 x

}0{: QQf
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(ii) The f image of the inverse of an element a of G is the inverse of the f-image of a 

i.e., 11 )]([)(   afaf  

Proof: Suppose e  is the identity of G and 'e  is the identity of 'G . Then ')( eef  . Now let a 

be any element of G. Then Ga 1  and eaa 1 . We have 

)()()()( 11'   afafaafefe  [ f is a composition preserving] 

Therefore )( 1af  is the inverse of )(af in the group 'G . Thus 11 )]([)(   afaf . 

(iii) The order of an element a of G is equal to the order of its image )(af . 

Proof: Suppose e  is the identity of G. Then )(ef  is the identity of 'G . Let the order of a be 

finite and let it be equal to n.  

Then )()( efafea nn   

)()......( eftimesnaaaaaf   

)()....()()( eftimesnafafaf   

 )()]([ efaf n order of naf )( . 

If now the order of )(af  is m, then 

)()]([ efaf m   

)()....()()( eftimesmafafaf   

)()......( eftimesmaaaaaf  )()( efaf m   

eam   

order of ma   

Thus nm   and nmmn   

Remarks: If two groups 1G  and 
2G  are isomorphic then following points we achieved. 

1. 1G  is abelian  2G  is abelian. 

2. 1G  is cyclic  2G  is cyclic. 

3. 1G  is non-abelian  2G  is non-abelian. 

4. Order of 1G  is n   Order of 
2G  is n . 

5. 1G  is countable  2G  is countable. 

6. 1G  has m element of order k  2G  has m element of order k. 

7. 1G  has r subgroup of order n  2G  has r subgroup of order n. 

8. 1G  and 
2G  has the same class equation. 
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9. )()( 21 GZGZ  . 

10. No. of conjugate classes class in 1G  = No. of conjugate classes class in 
2G  

Infact, 1G  and 
2G  are the same group in two different notation for the elements and for the 

binary operation. 

Note 1: If )(aO  is finite then, then )]([ afO  can not be finite. 

2: While forming such a mapping we should keep in mind the above three facts that an 

isomorphic mapping must preserve identities, inverse and orders.  

Theorem 1: Let N be a normal subgroup of a group G. A mapping ,  defined 

as then is a homomorphism of G onto and . 

Proof: We have given the mapping such that . As we know 

if then . 

First we will check that  is a onto homomorphism from G to . For it, let 

then, 

                 [ is normal subgroup of G] 

 is a homomorphism from G to . 

Since for each element there exist an element such that .  

Hence, f is on-to mapping.  

Let is the kernel of this homomorphism then,  

Now, we have only to prove that . Let x be any element of . Then , 

where N is the identity of . But according to mapping i.e., 

                [Because if H is normal subgroup of G and then ] 

So, . Therefore  

Conversely, let y be any element of . Then  

We have . Therefore  

Thus, . Therefore  

Hence, .  

8.4 FUNDAMENTAL THEOREMS 

f NGGf /: 

GxNxxf )( f NG / Nf ker

NGGf /:  GxNxxf )(

Gx NGNx /

f NG / NGba /, 

)()())(()( bfafNbNaNababf  N

f NG /

NGNx / Gx GxNxxf )(

fker  NxfGxf  )(|ker

Nf ker fker Nxf )(

NG / NNxxf )(

NxNNx  HHx  Hx

Nxfx ker Nf ker

N NNy 

NNnnf )( fn ker

fnNn ker fN ker

Nf ker
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Theorem 2: Fundamental theorem on group homomorphism: If  is onto 

homomorphism then  where  

OR 

In other word, “Every homomorphic image of a group G is isomorphic to some quotient 

group of G”.  

Proof: We have given a on-to homomorphism from . Let we define a map 

s.t.  

First, we have to show that  is an isomorphism. For it initially we shall show the mapping 

 is well-defined by,  

 

 

 

 

 

 

On retracing theses steps backwards, we will get that is one-one. 

Again as  

is an homomorpshism. 

Now we will check is onto, let be any element. Since is onto then there 

exist  such that, 

  

Now, . 

is on-to 

 is an isomorphism. 

Hence, . 

Theorem 3: (Second fundamental theorem of Isomorphism). If and are two 

subgroups of the group where is normal subgroup of then,  

': GGf 

'G
K

G
 fK ker

f 'GtoG

': G
K

G
 GaafKa  ),()(



 kbKa 

fKab ker1  

'1)( eabf  

'1)()( ebfaf  

  '1
)()( ebfaf 


)()( bfaf 

)()( KbKa  



)()()()()()()( KbKabfafabfKabKaKb  



 '' Gg  ': GGf 

Gg

')( ggf 

  ')( ggfKg 





'G
K

G


H K

G H G
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. 

Proof: By the previous theorems in normal subgroups we can easily seen that will be 

normal subgroup of because .  Similarly, as 

will be normal in HK. 

Now, we define a map s.t.,  

 

Then as  

Which shows the mapping is well-defined.  

Again,  

is an homomorphism.  

Obviously, the mapping is on-to also then by using the first fundamental theorem we find that 

 

 

Since,  

                                 

                                                                     [As H is normal subgroup of G] 

                                                        [  

So,  

Hence the theorem is proved.  

Lemma: Let in a group , if are normal in such that then is a normal 

subgroup of and converse of the theorem is also true. 

Proof: is a non empty subset of , by definition. 

Now, for any  

 

KH

K

H

HK




KH 

K KKHandHKH 

HGHKH ,

H

HK
Kf :

Hkkf )(

)()( 212121 kfkfHkHkkk 

)()()( 21212121 kfkfHkHkkHkkkf 

f

Hkffk  )(ker

HHk 

Hk

KHk  ]ker KfasKk 

KHf ker

G KH , G ,KH 
H

K

H

G

H

K

H

G

H

K
HkHk 21,

H

K
kHkHkHkHkHk 

 1

21

1

21

1

21 ))(())((

f

K

H

HK

ker

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 is a subgroup.  

Again for any  and , we notice that 

 

as K is normal in G gives . 

Conversely, let any element and . In order to prove that  is normal in we 

must show that . 

We know that and . Since we have given is a 

normal subgroup of , therefore 

 

                           [As H is normal in G] 

 

is normal subgroup of . Also the quotient group implies that H is normal in G. 

Therefore, is normal subgroup of and . 

Theorem 4: (Third isomorphism theorem). If two subgroups are normal in such 

that , then  

 

Proof: By the above lemma we know that if are normal in such that , then 

is a normal subgroup of  and, therefore, we can talk about . 

First, we will define a map s.t.,  

 

Since, H is well defined as  

 

H

K


H

K
Hk 

H

G
Hg 

H

K
kgHgHkHgHgHgHkHg   111 ))(()(

,, KkGg  Kkgg 1

Gx Kk K G

Kxkx 1

Gxwhere
H

G
Hx  Kkwhere

H

K
Hk 

H

K

H

G

H

K
HxHkHx 1))()((

H

K
Hxkx  1

Kxkx  1

K G
H

K

K G KH 

KH , G

KH 

HK

HG

K

G

\

\


KH , G KH 

H

K

H

G

HK

HG

\

\

K

G

H

G
f :

GaKaHaf  ,)(

HbHa 
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Now, we will check  is a homomorphism as 

. 

Here, ontoness of is obvious. 

Using first fundamental theorem of group homomorphism we can write that, 

, so, we will claim that . 

A member of will be some member of . 

Now,  

 

 

 

Hence we find  

Hence our result is proved. This theorem is also named as “Freshman’s Theorem”.  

Remarks: In the above theorem, since we have put  because we have notice that 

is normal in and hence we are talking about . Thus we do not need to prove 

separately that is normal in .  

Theorem 5: Let the mapping be an onto homomorphism with . Let the 

subgroup of the group , define  

 

Then 

(i) is subgroup of and . 

(ii) is normal in iff  is normal in . 

KHab  1

KbKa 

)()( HbfHaf 

f

)()())(()()( HbfHafKbKaKabHabfHaHbf 

f

f

HG

K

G

ker

/


H

K
f ker

fker
H

G

KHaffHa  )(ker

KKa 

Ka

H

K
Ha

HK

HG

K

G

/

/


f
H

K
ker

H

K

H

G

HK

HG

/

/

H

K

H

G

': GGf  Kf ker

'H
'G

 ')(| HxfGxH 

H G HK 

'H
'G H G
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(iii) is normal in  then  

(iv) There exist a one to one association from the from the family of all subgroup of

 onto the family of all subgroup of , that contain . 

Proof (i): Since, , it means . 

Let  

 

 

 

 

Thus is subgroup of G. 

Since  

Hence for each we have . 

(ii): Suppose is normal subgroup of . Let the elements . Since the given 

mapping is onto so s.t. . Since  

Now, 

 

   [Because H is normal subgroup in G means 

] 

Thus is normal in . 

Conversely, assume that is normal in . 

For any elements , , 

 

as  

as           [ is normal in ] 

 

i.e., is normal in  

(iii) Let us defining a mapping s.t., 

'H
'G

H

G

H

G


'

'

'S

'G S G K

HeHeef  '')( H

')(),(, HyfxfHyx 

')(),( Hyfxf 

  '1
)()( Hyfxf 


'1)( Hxyf  

Hxy  1

H

'')(ker HexfKfx 

Kx HKHx 

H G
'''' , HhGg 

HhGg  , '' )(,)( hhfggf  '', HhHh 

  )()()(
1''1 gfhfgfghg
 

'11 )()()()( Hhggfgfhfgf  

Hhgg 1

'H
'G

'H
'G

Hh Gg

  '11 )()())(( Hgfhfgfhggf  

'' )(,)( GgfHhf 

'' )(,)( GgfHhf  'H
'G

Hhgg  1

H G

'

'

:
H

G
G 
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Since  is well define as  

 

, which shows mapping is well defined. 

Now, we will verify that the mapping preserve the composition as 

 

Again, for any , since and is onto s.t.,  

Or that showing that  is onto. 

By using fundamental theorem then 

 

Now,  

 

 

Hence  

(iv) Define mapping s.t., 

 

Where H is  for any in by (i) we know that it is subgroup of G, 

containing K and thus a member of S.  is well defined mapping. 

Let now  where  

Then where 

 

 

Now for any , since is onto, we can find s.t.,  

 

But this shows  

 

 

)()( ' gfHg 


21 gg  )()( 21 gfgf 

)()( 2

'

1

' gfHgfH 

)()( 21 gg  



)()()()()()()()( 212

'

1

'

21

'

21

'

21 gggfHgfHgfgfHggfHgg  

'

'
''

H

G
gH  '' Gg  f Gg ')( ggf 

''' )()( gHgfHg  

ker'

' G

H

G


')(ker Hxx  

'' )( HxfH 

HxHxf  ')(

Hker

,: ' SS 

HH )( '

 ')(| HxfGx  'H
'S



)()( '' TH   ''' , STH 

TH 

 ')(| HxfGxH 

 ')(| TxfGxT 

''' GHh 
': GGf  ,Gh

'')( Hhhf 

THh 

')( Thf 

'''' THTh 
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Similarly  

i.e., or is one-one. 

We will show now that  is onto. 

Let be any member, is a subgroup of and . 

Consider  

Then  as  

Again, for any  

And  

i.e., is subgroup of . 

We show is the required pre-image of H under , 

i.e., we show , 

For it we have to show  

Let then  

 

Or that  

Again, if  

Then  

 

 

 

 

Thus  

Hence  

Or that and so  is onto 

Hence the theorem proved. 

Example 3: Show that any infinite cyclic group is isomorphic to  the group of 

integers. 

Solution: Let  be any infinite cyclic group. 

'' HT 

'' HT  



SH  H G HK 

 HhhfHf  |)()(

)(Hf )()( ' HfeefHe 

HhhHfhfhf  2121 ,),()(),(

)()())()((
1

21

1

21 Hfhhfhfhf 


)(Hf 'G

')( HHf  

HH )( '

 ')(| HxfGxH 

Hx
')()( HHfxf 

 ')(| HxfGxx 

 ')(| HxfGxH 

 ')(| HxfGxx 

)()( ' HfHxf 

)()(.., hfxftsHh 

'1)( exhf  

Kfxh   ker1

 HKHKhx 

  HHxfGx  ')(|

 ')(| HxfGxH 

HH )( ' 

 ,ZG

 aG
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Define, , s.t., 

 

Since  is of infinite order, for all and for no  

Thus or that f is well defined. 

Again  f is 1-1. 

 

Shows that f is a homomorphism. 

f  is obviously onto and hence the isomorphism is established. 

Corollary: Every subgroup of an infinite cyclic group is an infinite cyclic group which is 

isomorphic to the group itself. 

Example 4: Any finite cyclic group of order n is isomorphic to  the group of integers 

addition modulo n. 

Solution: Let be a cyclic group s.t., 

 

then  

Define  s.t.,  

f  is clearly well defined 1-1 onto mapping. 

Again  

Thus is a homomorphism and hence an isomorphism. 

Remark: Any two cyclic groups of same order (finite) are isomorphic and each cyclic group 

of infinite order is isomorphic to Z (set of integer). 

Check your progress 

Problem 1: Since 
224 ZZQ  , then find whether the identity element 1 of 

4Q map in        

22 ZZ  ? 

Problem 2: Is 84 QZ   and why? 

 

8.5 SUMMARY 

ZGf :

Ziiaf i  ,)(

 aG Gai  Zi
ji aa  ji 

)()( jiji afafjiaa 

 jiji aajiafaf )()(

)()()().( jijiji afafjiafaaf  

nZ

 aG

naOGO  )()(

   1....,,2,1,0,,...,,, 12   nZaaaeG n

n

nZGf : iaf i )(

)()()().( j

n

i

n

jiji afafjiafaaf n 


f
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In this unit we have learned group isomorphism is a concept in abstract algebra that identifies 

when two groups are structurally identical. Two groups are isomorphic if there exists a 

bijective mapping between them that preserves the group operation, ensuring that the 

algebraic structure of one group corresponds exactly to the other. This equivalence focuses on 

the underlying structure rather than the specific elements or representations of the groups. 

Isomorphic groups share properties like order, identity, inverses, and the results of operations, 

making isomorphism a powerful tool for classifying and studying groups in a simplified and 

generalized way. On the other manner we can say that if two groups are isomorphic in which 

one group is completely given then on the basis of given group we can unfold the unknown 

group completely even these groups are under the different binary operations. We have also 

learned about the fundamental theorems of isomorphism which are helpful to solve out 

various problems. 

One of the important concept we have learned in this unit that every infinite cyclic 

group is isomorphic to the set of integers (Z). 

8.6 GLOSSARY 

  represents two groups  are isomorphic to each other. 

 Fundamental theorem on isomorphism 
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'GG  ',GG
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8.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that every finite cyclic group of order  is isomorphic to the set of integer 

under the operation addition modulo n. 

2. Prove that every infinite cyclic group is isomorphic to . 

3. Prove that there is no isomorphism from to . 

4. If two subgroups are normal in such that , then  

 

5. Prove that relation of isomorphism is an equivalence relation. 

6. State and prove the fundamental theorem on group homomorphism. 

7. State and prove the second fundamental theorem of Isomorphism. 

9. State and prove the third fundamental theorem of Isomorphism. 

Short Answer Type Question: 

1. If is an homomorphism and H is subgroup of then is subgroup of

. 

2. If f is a homomorphism from then prove that f is one-one if and only if 

. 

3. Prove that any finite cyclic group of order  is isomorphic to the quotient group

, where  

4. An endomorphism f in a group G such that  then G is abelian.  

Objective type question 

1. What does it mean for two groups G and H to be isomorphic? 

a) They have the same number of elements. 

n

Z

Q }0{*  QQ

KH , G KH 

HK

HG

K

G

\

\


': GGf  G )(Hf

'G

': GGf 

}{ker ef 

n

NZ /  nN

1)(  xxf
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b) They are structurally identical but may have different element labels. 

c) Their multiplication tables are the same in layout. 

d) They have the same generators. 

 

2. Which of the following properties is preserved under group isomorphism? 

a) Order of the group. 

b) Order of an element. 

c) Commutativity of the group. 

d) All of the above. 

 

3. If two groups G and H are isomorphic, which of the following statements is true? 

a) G and H have the same number of subgroups. 

b) G and H have the same order. 

c) G and H have the same group operation. 

d) Both a) and b). 

 

4. If G and H are isomorphic groups, which of the following is not necessarily true? 

a) G and H have the same number of elements of each order. 

b) G and H have the same subgroup lattice. 

c) G and H are cyclic. 

d) G and H have identical presentations. 

 

5. Which of the following groups is isomorphic to 
4Z ? 

a) The Klein four-group 4V  

b) The group {1,i,−1,−i} under multiplication. 

c) 
22 ZZ  . 

d) The group of integers modulo 4 under addition. 

 

6. If G is a group of order 35, then G: 

a) Is cyclic. 

b) Is isomorphic to 35Z . 

c) Has a unique group structure. 

d) All of the above. 

 

7. How many non-isomorphic groups are there of order 8? 

a) 3 

b) 5 

c) 6 

d) 8 

 

8. Which of the following statements is true about isomorphic groups G and H? 

a)  G and H have the same order of elements. 
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b)  If G is cyclic, H must be cyclic. 

c)  If G is abelian, H must be abelian. 

d)  All of the above. 

 

9. If G and H are isomorphic groups, then: 

a)  They have the same group operation. 

b)  They have the same multiplication table (up to relabeling). 

c)  Their elements are exactly the same. 

d)  They have the same generators but different subgroup structures. 

 

10. Which of the following is a necessary condition for two groups to be isomorphic? 

a)  They have the same number of generators. 

b)  They have the same order. 

c)  They are both abelian or both non-abelian. 

d)  All of the above. 

 

11. Two groups GGG and HHH are said to be isomorphic if: 

a)  They have the same number of elements. 

b)  They have the same algebraic structure. 

c)  They have the same identity element. 

d)  They have the same order of elements. 

 

12. Which of the following is not preserved under an isomorphism? 

a)  Order of the group. 

b)  Commutativity of the group. 

c)  The specific symbols used for elements. 

d)  The group operation. 

 

13. If G≅H, which of the following statements is true? 

a)  G and H have the same number of subgroups. 

b)  G and H are both finite or both infinite. 

c)  G and H have the same order of elements. 

d)  All of the above. 

 

Fill in the blanks: 

1. If two groups are isomorphic then  

2. If two groups of finite order are isomorphic then number of elements of order n 

in are = …………. 

3. A cyclic group of order 123456789 is isomorphic to ………. 

4. If G≅H and G has n generators, then H also has …………………… generators. 

',GG ..........)( GO

',GG

G
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5. Two groups G and H are isomorphic if there exists a ………. mapping HG : that 

is a bijective homomorphism. 

6. If G and H are isomorphic, then they have the same ……… of elements. 

7. If G is a cyclic group of order n, then G is isomorphic to …….. 

8. Every group of prime order p is ……… and isomorphic to pZ . 

9. If two groups are isomorphic, their subgroup ……….. are identical. 

10. If two groups G and H are isomorphic, their center Z(G) is isomorphic to …….. 

11. If G and H are isomorphic, then G is abelian if and only if  ……….. is abelian. 

True and False question: 

1. If two groups G and H are isomorphic, then they have identical multiplication tables 

(up to relabeling). 

2. Every group of order 4 is isomorphic to    

3. Every abelian group is isomorphic to a subgroup of Q, the group of rational numbers 

under addition. 

4. The group of real numbers R under addition is isomorphic to the group of positive 

real numbers R* under multiplication. 

5. If G and H are isomorphic groups, every automorphism of G corresponds to an 

automorphism of H. 

6. If G is a group of prime order, then G is isomorphic to     

7. Any two groups of the same order are isomorphic. 

8. An infinite cyclic group is isomorphic to Z. 

 

8.10 ANSWERS 

Answer of objective question: 

1. b)  2. d)  3. d)  4. c) 

5. d)  6. d)  7. b)  8. d) 

9. b)  10. d)  11. b)  12. c) 

13. d) 

Answer of fill in the blanks: 

1.   2. Number of elements of order n in   3.  )( 'GO
'G 123456789Z
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4. n  5. Bijective     6. Order 

7. nZ   8. Cyclic      9. Structures 

10. Z(H)  11. H 

Answer of True and False: 

1. True  2. False  3. True  4. True 

5. True  6. False  7. False  8. True 

 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 152 
 

Unit-9: CAYLEY’S THEOREM AND CLASS 

EQUATION 

CONTENT: 
 

9.1 Introduction  

9.2   Objectives 

9.3  Conjugate element 

9.4  Normalizer of an element of a group  

 9.4.1 Self conjugate element 

9.5  Centre of a group  

9.6  Cayley’s theorem 

9.7  Class Equation 

9.8 Partition of an integer 

9.9 Summary 

9.10  Glossary  

9.11   References 

9.12  Suggested Readings 

9.13  Terminal Questions 

9.14 Answers 
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9.1 INTRODUCTION 

British mathematician Arthur Cayley FRS, who lived 

from 16 August 1821 to 26 January 1895, was very 

active and focused primarily on algebra. He 

contributed to establishing the current British school 

of pure mathematics. 

Cayley used to find it amusing to solve challenging 

arithmetic problems as a kid. He enrolled in Trinity 

College in Cambridge, where he excelled in 

mathematics, Greek, French, German, and Italian. He 

practised law for 14 years. 

 

 

Arthur Cayley FRS 

16 August 1821 – 26 January 1895 

https://en.wikipedia.org/wiki/Arthur_Cayley 

Theorizing that every square matrix is a root of its own characteristic polynomial, he 

established what is now known as the Cayley-Hamilton theorem for matrices of orders 2 and 

3. He was the first to introduce the contemporary definition of a group as a set with a binary 

operation that complies with certain rules. Mathematicians used to refer to permutation 

groups when they used the term "groups." In honour of Cayley, Cayley's theorem, Cayley 

tables, and Cayley graphs all bear his name. 

In this we will also learn about the conjugate element in a group is that to differentiate 

any group into different conjugate classes by its property of satisfying the condition of 

equivalence relation. After partition group into different conjugate classes we will learn about 

the important definition of normalizer of any element in a group and centre of the group 

which will help us to define the class equation. Various theorems of conjugate element, 

normalizer and centre of the group and their related application to solve different types of 

examples are also discussed in this unit. 

9.2 OBJECTIVES 

After reading this unit learners will be able to  

 Understand the concept of conjugate element and equivalence relation in cojugacy. 

 Understand the application of normalize of an element. 

https://en.wikipedia.org/wiki/Arthur_Cayley


Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 154 
 

 Understand about the special type of normal subgroup name as center of the group. 

 Understand the concept that how we can define an isomorphism from any group to the 

permutation group which is named as Cayley’s theorem. 

 Solve more examples on class equation. 

 Understand the basic properties of Cayley’s theorem and class equation and also their 

related other theorems. 

9.3 CONJUGATE ELEMENT  

Definition: Two elements a and b in a group G are said to be conjugate to each other or b is 

said to be conjugate to a if ..tsGx  

  axxb 1  

Then b is called transform of a by x. Symbolically, it is denoted by ab ~  and this relation in 

G is called relation of conjugacy. 

Theorem 1: Conjugacy relation is an equivalence relation on G.  

Proof: Reflexivity: Let a be any arbitrary element of a group G and e is the identity of the 

group. Then 

Gaaaaeea   ~1 . Therefore the relation is reflexive. 

Symmetry: We have to prove if ba ~ then ab ~ . Let ba ~ then ..tsGx  

bxxa 1  

  bxaxxbxxxxax   1111  

As we know if Gx then Gx 1  

Transitivity: Let ba ~ and cb ~ then cyybbxxa 11 ,    for some Gyx , .  

Again,  xcyyxa 11   

)()( 111 yxcyxcyxyxa      [Since G is a group then   GyxGyx 
1

, ] 

ca ~ and thus, relation is transitive.  

Hence, conjugacy is an equivalence relation.  

Classes of conjugate elements: The differences between the classes are follows: 

(1) Elements from the same classes will be conjugate. 

(2) Different elements from different classes will be not conjugate. 

The collection of all elements which are conjugate to Ga will be denoted by C(a) or 
~

a  and 

defined as:  
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 }~)( axGxaC   or  })( 1axxbGbaC   

For the finite group G, number of distinct element in C(a) will be denoted by ca. 

9.4 NORMALIZER OF AN ELEMENT OF A GROUP 

Definition: If G is a group and a be any arbitrary element of a group then normalizer of a is 

the collection of such elements in G which commutes with a. It is denoted by N(a) and 

defined as: 

 xaaxGxaN )(  

Note 1: If e is the identity element of G then GeN )(  

2: If G is abelian group and Ga  then GaN )(  

Theorem 2: The normalizer of Ga  is the subgroup of G. 

Proof: Since,  xaaxGxaN )( . Let x, y are any element of G then yaayxaax  , . 

First, we will show that, Gy 1 . Since, GyGy  1  because G is a group.   

Now,   1111 )(   yyayyayy    [Pre and post multiply by 1y  in yaay  ] 

1111 )()(   ayyyyyay         [G satisfied the associativity] 

11   eayaey                          [e is the identity element of G] 

11   ayay  

)(1 aNy    

Now we have to prove that )(1 aNxy   

Consider, 11 )()(   yaxxya  

11 )()(   yxaxya                             [ax = xa] 

)()( 11   ayxxya                             [G satisfied the associativity] 

)()( 11 ayxxya                              [ 11   ayay ] 

axyxya )()( 11                             [G satisfied the associativity] 

)(1 aNxy    

Hence, normalizer of any element Ga i.e., )(aN  is the subgroup of G. 

Theorem 3: Any two elements of a group give rise to same conjugate to Ga  iff  they 

belong to the same right coset of normalizer of a in G. 
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Proof: Let us consider, Gyx ,  then xaNx )( and yaNy )( . Since x, y are in the same 

right coset of N(a) in G. 

yaNxaN )()(                       [If H is subgroup and Hx then HHx  ] 

)(1 aNxy                      [If H is a subgroup of G, then HabHbHa  1 ] 

axyaxy 11                       [By definition of normalizer of an element of G] 

   yaxyxyaxyx 1111    

ayyxxyyaxx 1111 )()(    

ayeyaxex 11    

ayyaxx 11    

yx,  give rise to same conjugate of a.  

Theorem 4: If G is a finite group then the number of distinct element in C(a) are 
))((

)(

aNO

GO
. 

Then further prove that 
))((

)(
)(

aNO

GO
GO , where summation runs over one element of 

each conjugate class.  

Proof: By the previous theorem 6, we know that two elements of a group give rise to same 

conjugate to Ga  if they belong to the same right coset of normalizer of a in G. In the other 

sense it means, different conjugate to Ga  belongs to different right coset of N(a) in G. 

Thus we get a “one-to-one correspondence between the conjugates of Ga and right cosets 

of N(a) in G”. 

Thus, ca = Number of distnict element in C(a) 

             = Number of distinct right coset of N(a) in G.  

             = The index of N(a) in G = 
))((

)(

aNO

GO
 

Further, If )(...,),(),( 21 kaCaCaC are k distinct conjugate class in G, Then 

)(...)()( 21 kaCaCaCG   

Number of element in G = Number of element in )( 1aC + Number of element in )( 2aC + 

…+ Number of element in )( kaC  

  acGO )( , where summation runs over one element of each conjugate class 

 
))((

)(
)(

aNO

GO
GO  
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Hence proof the result. 

9.4.1 SELF CONJUGATE ELEMENT 

Definition: An element Ga  is said to be self conjugate if Gxaxxa  1 i.e, C(a) 

contains only singleton element {a}. In other manner, we can say those self conjugate 

elements are those elements of G which commutes with every element of G. Sometimes self 

conjugate element is also called invariant element of G.  

9.5 CENTRE OF A GROUP 

Definition: Collection of all self conjugate element of a group is called centre of group G. It 

is denoted by Z(G) and defined as, 

 GaaxxaGxGZ )(  

e.g.: The centre of the quaternion group  kkjjiiQ  ,,,,,,1,18  is  ,1,1)( 8 QZ . 

Theorem 5: The centre of a group G, Z(G) is the normal subgroup of group.  

Proof: First we will prove that Z(G) is subgroup of G. For it, let )(, 21 GZxx   then be 

definition Gaaxax  11
and Gaaxax  22

 

Since we have, Gaaxax  22
  Gaxaxxxaxx 

 1

22

1

2

1

22

1

2 )(  

Gaxxaxaxxx 


)()(
1

22

1

2

1

22

1

2  

Gaaexeax 
 1

2

1

2  

Gaaxax 
 1

2

1

2  

)(
1

2 GZx 


 

Now consider,   )(
1

21

1

21 axxaxx


  

                                           )(
1

21


 axx                                 [ ])(

1

2

1

2

1

2


 axaxGZx  

                                           
1

21 )(


 xax                                 [By associativity] 

                                           
1

21)(


 xax                                 [ ])( 111 axaxGZx   

                                           )(
1

21


 xxa                                 [By associativity] 

)(
1

21 GZxx 


 

Hence Z(G) is subgroup of G. 
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Now we have only to prove that Z(G) is always normal in G. For it let GaGZx  ),( then, 

11 )(   aaxaxa  

           1)(  axa  

          )( 1 aax  

          )()( GZxex   

Thus, )(),( 1 GZaxaGaGZx    

Hence, Z(G) is the normal subgroup of group of G.  

Theorem 6: Any element, )(GZa  iff GaN )( .  

Proof: Let )(GZa then Gxaxxa   

Also,  GxaxxaGxaN  |)(  

So, )(GZa Gxaxxa   

                         GxaNx  )(             [By definition of N(a)]  

                    GaN  )(  

Corollary: If G is finite )(GZa  iff O( )())( GOaN  . 

Theorem 7: If G be the finite group and Z(G) be the centre of the group G. Then class 

equation of G can be written as, 





)( )]([

)(
)]([)(

GZa aNO

GO
GZOGO  

Where, summation runs over one element a in each conjugate class containing more than one 

element.  

Proof: As we know by the previous theorem that class equation of G is 


))((

)(
)(

aNO

GO
GO , where, summation runs over one element a in each conjugate class. 

By corollary, we know that if G is finite )(GZa  iff O( )())( GOaN  . 

1
))((

)(
)( 

aNO

GO
iffGZa  

Number of elements in conjugate class of a is one whenever )(GZa . 

Thus, order of Z(G) will be equal to the number of conjugate classes each having single 

element which is itself. If we take a such element which belongs any of these conjugate 

classes, we have 1
))((

)(


aNO

GO
. Hence the class equation can be rewrite as, 
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



)()( ))((

)(

))((

)(
)(

GZaGZa aNO

GO

aNO

GO
GO  

Since, 



)( ))((

)(
))((

GZa aNO

GO
GZO  

Hence, 



)( ))((

)(
))(()(

GZa aNO

GO
GZOGO                                              …(1) 

Note: This equation (1) is called the class equation of any finite group G.  

Example 1:  Find the class equation for the group S3. 

Answer: We know the symmetric group ( 3S ) on three symbols 1, 2, 3 is  

 )231(),321(),32(),31(),21(,3 IS  .  

Then we have, 

Z( 3S ) = {e} and C(12) = {(12),(23),(13)} because )32()21)(31)(21( 1   shows that (2 3) is a 

conjugate of (1 3). 

Similarly we can find, C(123) = {(123),(132)}. Hence the class equation of 3S is, 

| 3S | = |Z( 3S )| + |C(12)| + |C(123)|  i.e., 3! = 1 + 3 + 2. 

Theorem 8: If nPGO )( , where P is a prime number, then }{)( eGZ  . 

Proof: As we know for a finite group G the class equation of G is  





)( ))((

)(
))(()(

GZa aNO

GO
GZOGO  where, summation runs over those conjugate class which 

containing more than one element. We have given nPGO )( so, the divisor of )(GO are 

nk PPpp ,...,...,,,1 2  i.e., of the form nkwherePk 1 .  

Since Ga we have N(a) is subgroup of G. By Lagrange’s theorem we know that

)(|))(( GOaNO .  

Also we know that if )()]([)()( GOaNOGaNGZa  .  

Thus if )(GZa  then )]([ aNO  will be of the form nkwherePk 1 . 

Let us consider, mGZO ))(( , where m is a positive integer nm  . Now by class equation  





)()( GZa

k

n
n

GZa
k

n
n

P

P
Pm

P

P
mP nkwhere 1        … (1)  

Since 
nPP | so, P will divide each term of the right hand side of the equation (1) 

mP |  
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Therefore centre of G must contain element other then identity. Therefore }{)( eGZ  . 

Theorem 9: Every group of order 2P is Abelian. 

Proof: We have given order of the group is 2P  i.e., 2)( PGO  . So, the positive divisors of 

2P  are 2,,1 PP . By the previous theorem 11 we know that if nPGO )( , where P is a prime 

number, then }{)( eGZ  . It means, 1))(( GZO . As we know that centre of the group is 

subgroup of G and by Lagrange’s theorem “Order of every subgroup of a finite group is 

divisor of the order of the group”. So either PGZO ))(( or 2))(( PGZO  .  

If 2))(( PGZO  then we have nothing to prove.  

Otherwise, if PGZO ))((  there exist an element Gx  which is not in Z(G) i.e., 

)(GZx .  

Since N(x) is subgroup of G and )(xNx . Also GxxaaxGZa  )( . 

)(xNa  

)()( xNGZ   

Since )(GZx PxNO  ))((( but ))(( xNO  must be divisor of 2P  

))((( xNO  must be equal to 2P  

GxN  )(  

)(GZx , thus we get a contradiction. 

Hence, GPGZO  2))(( is Abelian group because )(GZ is always Abelian group.  

Example 2: Is a group of order 121 is Abelian? 

Answer: Since, 211121)( GO , where 11 is a prime number. Hence G will be Abelian 

group. 

Example 3: Prove that corresponding to every cyclic group its quotient group is cyclic but 

their converses need not to be true. 

Solution: Let G be a cyclic group such that  aG i.e., a is the generator of G and H is its 

subgroup. Then according to theorem every subgroup of G will be normal subgroup of G. If 

elements Gan   then nn HaHa )(  will be element of quotient group HG / . 

Therefore HG / is a cyclic group and Ha  will be generator of it.  
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But converse is need not be true. Since  3333 )32(,/ AAAS   is Abelian group because order 

of 23/6]/[ 33 ASO which is prime and we know that every group of prime order is cyclic 

while 3S  is not a Abelian group.  

Theorem 10: If )(/ GZG  is cyclic if and only if G is Abelian.  

Proof: Let us consider )(/ GZG  is cyclic. It means, if the element a is the generator of G 

then aGZ )( will be generator of )(/ GZG . 

Let Gyx , then  )(/)(,)( GZGyGZxGZ  positive integers nm,  such that  

 

we have  where and  where  

Now,  

 

is abelian. 

Conversely, assume that G is Abelian. If G is Abelian then .  

i.e. trivial subgroup which is always cyclic.  

Hence the theorem.  

Example 4: If G be a non-Abelian group of order where P is prime then Z(G) has exactly 

P element.  

Proof: We have given be a non-Abelian group of order where P is prime. Then According 

to Lagrange’s theorem possibilities of order of Z(G) is . 

Case I
st
: We know by previous theorem if , where P is a prime number, then 

. 

Case II
nd

: Let  

is cyclic and by theorem we can say that G is Abelian which is a contradiction. 

So our assumption is wrong. 

Case III
rd

: Let  

 is cyclic and by theorem we can say that G is Abelian which is again a 

contradiction. So again our one of the assumption is wrong. 

So, the only possibilities is left that  i.e., Z(G) has exactly P element. 

9.6 CAYLEY’S THEOREM 

    nnmm
aGZaGZyGZaGZaGZxGZ )()()(&)()()( 

 maxx 1 )(1 GZx 
nayy 1 )(1 GZy 

nmnmnmnmnm aaxyaayxaayxayaxayaxxy )()()())())(( 1111111111 

xyaxayaaxyaaxy mnmnnm  111111 )(

G

GGZ )(

}{)(/ eGZG 

3P

3P

32 ,,,1 PPP

nPGO )(

1)]([}{)(  GZOeGZ

2)]([ PGZO    PPPGZGO  23 /)(/

)(/ GZG

3)]([ PGZO    1/)(/ 33  PPGZGO

}{)(/ eGZG 

PGZO )]([
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Theorem 11:  Every group is isomorphic to a permutation group. 

Proof: A(G) is the collection of all permutations of the set G, where G is the any group. Let 

us define a map  such that 

, where  

First we will check the mapping is well defined as, 

 

One-One:  

 

           [By cancellation rule in G] 

 mapping is one-one 

Onto: For any , since . Here we can easily see that is pre-

image of y or that is onto and hence permutation on .  

Thus,  

Assume that be set of all such permutations. Now we will show that is a subgroup of 

. Since is non-empty set because . 

Let  

Then since  

           

We find             [Note , identity of ] 

Also as  

We find  

So,  

is subgroup of . 

Define mapping , s.t., 

 

then is well defined as well as one-one map as, 

 

 

G

GGfa :

axxfa )( Ga

)()( yfxfayaxyx aa 

)()( yfxf aa 

ayax 

yx 



Gy yyaayafa   )()( 11
ya 1

af G

)(GAfa 

K K

)(GA K Kfe 

Kff ba ,

  )()()()( 11
11 xbbxbfxffxff bbbbb

  

xxfex e  )(

  1
1


 bb

ff Ife  )(GA

  xxfxabbxabxfxff ababa  )()()()()(

baab fff 

  Kfffff
abbaba  


11

1


K )(GA

KG :

afa )(



ba 

bxax 
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Obviously,  is onto and  

 

Hence,  is a homomorphism and also an isomorphism which proves the result that every 

group is isomorphic to a permutation group. 

Remarks: We can define other statement of Cayley’s theorems like “ If is finite group of 

order then will be isomorphic to the subgroup of symmetric group .  

Example 5: Using Cayley’s theorem find the permutation group which is isomorphic to the 

group under the operation multiplication modulo . 

Answer: Let A be any permutation group such as defined in the Cayley’s theorem. 

, where  is defined as s.t.  

So,  

 

 

 

Thus, and  

If we identify  with the permutation , other permutations are , . 

Hence  is required permutation group isomorphic to . 

Example 6: Using Cayley’s theorem find the permutation group which is isomorphic to the

. 

Answer: As we know that the dihedral group ( ) of order 8 is  

 

Let the set defined in the Cayley’s theorem is given by  where function 

defined by, and by the theorem. Now we determine , the required 

permutation group as 

 

 

xxfxf ba  )()(

ba ff 

ba  



)()()( bafffab baab  



G

G

n G nS

}8,6,4,2{G )( 10

 GafA a  | af axfa  Gxa ,

2)6(,6)8(,8)4(,4)2( 2222  ffff

4)6(,2)8(,6)4(,8)2( 4444  ffff

8)6(,4)8(,2)4(,6)2( 8888  ffff

6)6(,8)8(,4)4(,2)2( 6666  ffff

If 6  IffffK  6842 ,,,

2f )4321( )42()31( )2341(

 IA ),2341(),42()31(),321( G

4D

4D

 124432432

4 ,|,,,,,,,  baabbeabababaabaaaaD

 GxfK x  |

xyyfx )( KD 4
K

baabfeaafaafaaf aaaa

243322 )(,)(,)(,)( 

aefabbfbbafbbaf aaaa
 )(,)(,)(,)( 32

2
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Thus  can be identified with the permutation  

Again,   

 

Thus, can be identified with . 

In the continuation, we can say,  

Again,  etc., we get 

 

Similarly,  

 

 

Therefore,  

Hence,  

9.7 CLASS EQUATION 

In the unit 2 we have already learned about some important theorems of class equations and 

their proof which are as follows: 

Theorem 12: If G be the finite group and Z(G) be the centre of the group G. Then class 

equation of G can be written as 

 

In this section we will learn applications part of class equation in different type of examples. 

Example 7: If is the index of in a group then the conjugate class has at most  

elements. 

Answer: We have  and  

Since,  always 

 

af )8765)(4321(

baabfaafeafaaf
aaaa

3323 )(,)(,)(,)( 2222 

2222 )(,)(,)(,)( 2222 aefbabfabbafbbaf
aaaa



2a
f )86()75)(42()31(

)6785()2341(3 a
f

baabaafbabaaf abab

322 )(,)( 

)54)(63)(72)(81(abf

)64)(73)(82)(51(2 
ba

f

)74)(83)(52)(61(3 
ba

f

)84)(53)(62)(71(bf










)48)(35)(26)(17(),47)(38)(25)(16(),46)(37)(28)(15(

),45)(36)(27)(18(,),5876)(1432(),68)(57)(24)(13(),5678)(1234( I
K

4DK 





)( )]([

)(
)]([)(

GZa aNO

GO
GZOGO

n )(GZ G n

))((

)(

GZO

GO
n 

))((

)(
))((

aNO

GO
aclO 

)()( aNGZ 

))((.))(())(())(( GZOkaNOaNOGZO 
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i.e.,  

Hence, maximum value of  is when .  

Example 8: If be order of a non-abelian group then determine  and also number 

of conjugate classes of G. 

Solution: We have given group  is non-abelian, , s.t.,  

Since we know that  

So, the possibilities that  will be  

Similarly  

But by the previous theorems we know that . Since group is non-abelian then 

. So, the only possibilities will be . 

Similarly, and as  

So, we find  

Let we assume k be the total number of conjugate classes. Since 

 

 

 

When then number of conjugate classes is  

[Since ] 

So,  are remaining classes and each have order given by 

 

Hence,  

Example 9: Write the class equation of quaternion group  

Solution: We have the quaternion group . 

First we determine the conjugate class of . Since we know that in any group  

[ and as , we find ] 

k

n

GZOk

GZOn

aNO

GO
aCO 

))((.

))((.

))((

)(
))((

))(( aCO 1k

3P ))(( GZO

)(G Ga GaNGZ

 )()(

3)(|))(( PGOGZO 

))(( GZO 32 ,,,1 PPP

32 ,,,1))(( PPPaNO 

1))(( GZO

3))(( PGZO  2))(( PorPGZO 

2))(( PorPaNO  )()( aNGZ



2))((,))(( PaNOPGZO 

)(aCG
Ga


 
 


)( )(

))(())(())(()(
GZa GZaGa

aCOaCOaCOGO





)(

3 ))(())((
GZa

aCOGZOp

)(GZa pGZO ))((

1))((}{)()(  aCOoraaCGZa

pk 

p
p

p

aNO

GO
aCO 

2

3

))((

)(
))((

  123  ppkppkpp

 kjiQ  ,,,18

 kjiQ  ,,,18

i )(aNa 

maxax  aaaa mm ..  )(aNam 
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Thus,  or  

Therefore,  gives  

Since  because  

And  

Hence  or  

As we know that   

 

                [as and ] 

Similarly other conjugate classes are  

Since we know that  then as  

 

Now, we verify the class equation as  

 

, which is the class equation of the group . 

Example 10: For a finite group let number of conjugate class is 3. Then prove that either 

group is cyclic or isomorphic to . 

Solution: Since we have given that group has number of conjugate classes are 3. If these 

conjugate classes are of order 1, then , which is of order prime that means group 

will be cyclic. If G has a class of order >1 then is non-abelian because if will abelian 

then there does not exist any class of order >1.  

Let three classes of are , , . 

Assume that .  

If                         [If we have assume that ] 

 and also we have  

 

 

 

)(iNi  )(}1,,,{ 432 iNiiii 

8)( QiNi  8|))((|4 iNO

)(iNj ijji 

88 )( QiNQj



4))(( iNO  iiN )(

))((

)(
))((

aNO

GO
aCO 

2
4

8

))((

)(
))(( 8 

iNO

QO
iCO

 iiiC  ,)( )(iCi )(,1 iCikiki  

    }1{,}1{,,)(,,)(  kkkCjjjC

)(1))(( GZaaCO  1))1((,1))1((  COCO

 1,1)( 8  QZ





)(

))(())(()(
GZa

aCOGZOGO

)222(118 
8Q

G

3S

G

3)( GO

G G

G 1C
2C 3C

1)( 3 CO

2)(1)()( 321  nCOCOCO nGO )(

)(|2)( 3 GOnCO  2|2  nn

2)2(|)2(  nnn

212 orn 

43orn 
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is abelian.                          [Because we know every group of order  is abelian] 

Now there is only one possibility left that in one class is of length 1. Let

. It means . 

By class equation,  

But  

 

 

Similarly,  

If  and  

Then ,  

 

 

This is a contradiction 

Thus either  

Or  

If  

Then  

 

But  

 

 and  

Or that  

Similarly, if , then  

is non-abelian group of 6 which is isomorphic to  i.e., . 

Example 11: Let be a group such that finite. If has only two 

conjugate classes then prove that is a group of order 2.  

Answer: Let . Since has only 2 conjugate classes, namely and . 

 for some . 

G
2porp

G

1)(,1)(,1)( 321  COCOCO 1))(( GZO

)()(1)()()()( 32321 COCOCOCOCOGOn 

)(|)(,)(|)( 333 COCOnGOCO 

)(1)(|)( 233 COCOnCO 

)(1)( 23 COCO 

)(1)( 32 COCO 

)(1)( 23 COCO  )(1)( 32 COCO 

)()( 23 COCO  )()( 32 COCO 

)()( 23 COCO 

1)(1|)()(1|)( 3333  COCOCOCO

)(1)( 23 COCO 

)(1)( 32 COCO 
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 for all  in . 

Suppose  

Then  

Since order of all non identify elements in is same,  

; a contradiction 

 

for all  

Suppose  

then  

for some  

 

 

In this way, we get  

Since  

 

 

By Fermat’s theorem,  

, a contradiction 

 

. So,  for all  

 is abelian. 

So, each conjugate class in  is of length one. Since has only two classes, which means 

is of order 2. 

Note: There are infinite group having non-trivial element has finite order and group has only 

2 conjugate classes. Therefore, it is necessary to assume that s.t. finite. 

9.8 PARTITION OF AN INTEGER 
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Let  be a positive integer. A sequence of positive integers where 

 such that is called a partition of and are 

called parts of partition.  

For example, let , then number of partition are 3 i.e., 

 

let , then number of partition are 5 i.e., 

 

The number of partition of any integer  is denoted by . For example, ,

 e.tc. 

Theorem 13: The number of conjugate classes in  is . 

Proof: Let Collection of all conjugate classes in . 

Collection of all partition of n.  

Let . 

Assume that as product of disjoint cycles as where . 

the selection of cycles in a pattern such that . This gives a partition 

 of . 

Now we define s.t., 

 

 is well defined as  

 

are conjugate in  

are similar in  
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Suppose  

So,  are not conjugate are not similar 

 have different cycle structure 

Corresponding partitions are different 

i.e.,  where, of course, 

 

 

is one-one 

is onto for, let be a partition of . Then  

Define  

Then  

And  

is both 1-1 and onto 

So,  

number of conjugate classes in  is  

Example 12: Verify the class equation in  and also find its all conjugate classes. 

Answer: By the theorem 4 we know that number of conjugate classes in  are which 

is 5. Also we know that two conjugate classes of any group are either disjoint or identical. In 

other word we can say that two permutations are conjugate if and only they are similar. In  

the base elements of conjugate classes are  

As we know that in the permutation group  number of distinct r-cycle are . So, 

in  number of distinct cycle of length 2 are  

Similarly, in  number of distinct cycle of length 3 are  

Similarly, in  number of distinct cycle of length 4 are  
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in  number of permutation of type are  

so,  

Since centre of contains only identity element so,  i.e.,  

Now the class equation of is,  

 

i.e.,  

Example 13: Find the class equation of a group of order 6. 

Answer: Let be a group of order 6. So, there are two cases arises that either group is 

abelian or not. 

Case I: Let group is abelian then we know that will be isomorphic to  i.e., 

 

Since is abelian then  

So, the class equation will be,  

Case II: If group is non-abelian then we know that will be isomorphic to or   i.e., 

 

As we know that the permutation on group on the 3 symbol  is 

.  

Initially we examine the conjugacy classes of  for it first we will find center element of . 

Since,  and  and so 

  

Further,  and . 

So, . So the only trivial conjugacy class is [(1)]={1} i.e.,  or 

. 

Now observe that for the element (12) we have that: 
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So, the conjugacy class of is  and the conjugacy classes of 

remaining elements are  

So, the conjugacy classes of is, 

 

And the class equation is, 

 

Hence, 

  

Note: Two permutations in are conjugates iff they have the same cycle type. Let  

and also let are the distinct integers which appear in times 

respectively in the cycle type of (including 1 cycles). Let be the number of cycles of 

length , so that  

then, number of conjugate of  

OR 

Number of element commutes with  

Example 14: Find the number of cycle which commute with  

Solution: We first rewrite the given permutation as . Since all 

cycles of permutations are disjoint so they are commutes i.e., . 

So, cycle type of is, 
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Cycle of length 1  

Cycle of length 2  

Cycle of length 3  

Cycle of length 4  

i.e., cycle type of , where  

So, number of conjugate of  

Example 15: Find the number of cycle which commute with  

Solution: We first re-write the given permutation as . Since all 

cycles of permutations are disjoint so they are commutes i.e., 

. So, cycle type of is, 

Cycle of length 1  

Cycle of length 2  

Cycle of length 3  

Cycle of length 4  

i.e., cycle type of , where  

So, number of conjugate of  

Example 16: Evaluate all permutations in which commutes with 

(i)  (ii)  (iii)  

Solutions (i): As we know that . Since and 

 are distinct permutation in .  

in  

 in  

As we know  and  break up into two conjugate classes each conjugate 

classes are of length 12 in . 

)1(

)62(

)345(

)10987(

)4,3,2,1( 104321 

4.3.2

!10

)!14)(!13)(!12)(!11(

!10
1111



11)21)(478)(695( S

11)478)(695)(21( S

11)478)(695)(21)(11)(10)(4)(3( S 

)11)(10)(4)(3(

)21(

)695(

)478(

)3,3,2,1,1,1,1( 113221111 

2.9.2!.4

!11

)!23)(!12)(!41(

!11
214



5A

)12345( )123( )34)(12(

60
2

120

2

)(
)( 5

5 
SO

AO
5)12345( A

I5432 ,,,,  5A

5))((  NO
5A

12
5

60

))((

)(
))(( 5 




NO

AO
CO

5A

)12345( )13245(

5A



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 174 
 

(ii): Let s.t.  fixes 1, 2, 3. Then either or . Since  are all 

permutation in  commuting with . Thus  are only permutation in  commuting 

with . 

in  

 in  

 has all cycles of length 3 in  

(iii): As we know that there are 8 permutations in  commuting with  which are: 

. From this set only even permutation

. All these permutations of commuting with 

 

in  

 in  which is same like  in . 

Hence conjugate class of  in  and  remains same. 

Example 17: Find all the conjugate classes of and also show that is simple. 

Answer: By using the previous examples we can verify that has 5 conjugate classes and 

these are: 

 

{All 20 permutation commute with cycle  of length 3 in .} 

 {All 15 permutation commute with cycle in .} 

 {12 cycles of length 5} 

 {12 cycles of length 5} 

These are the total 60 elements in . 

Let be any subgroup of which is normal s.t , . As is the union of 

some conjugate classes in . Since cannot divide . 

Hence, is simple 

Check your progress 
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Problem 1: What will be the class equation of any group of order 3? 

Problem 2: What will be the class equation of Klein group (Klein group: Any group of 

order 4 such that each of its non-identity elements are self inverse, generally this group is 

denoted by -group)? 

Problem 3: Which of the following isomorphism relation is correct and why? 

                    (i)                                                                   (ii)     

Problem 4: Find the finite number of distinct classes in },,1,1{4 iiQ  ? 

Problem 5: Find the number of element in the centre of },,1,1{4 iiQ  ? 

Problem 6: Find the class equation of },,1,1{4 iiQ  ? 

 

9.9 SUMMARY 

In this unit, we have studied the definition and theorems related to conjugate of an 

element, normalizer of an element and centre of the group and also learn their 

implementation on various examples. We have also learn in this unit how these subgroup are 

essentials in the formation of class equation which will further discussed briefly in the 

upcoming units. The overall summarization of this units are as follows: 

 Conjugacy relation is an equivalence relation on G. 

 



)( ))((

)(
))(()(

GZa aNO

GO
GZOGO  is known as class equation of any group. 

 Every group of order 2p is abelian group. 

Also in this unit, we have studied about the Cayley’s theorem, various examples related to 

the class equations and partition of an integer. After completions of this unit learners will be 

able to characterized to any group into distinguish conjugacy classes and also by the class 

equation of any group learners will be able to find the number of element in the centre, 

number of different conjugate classes, number of element in the different conjugate class and 

order of the group. In a simple way we can say that with the help of conjugate classes we can 

get most of the information about the group without any prior knowledge. 

9.10 GLOSSARY 

  denotes two elements  of a group G are conjugate to each other. 

4K

42 ZD  222 ZZD 

ab ~ ba,
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  denotes collection of elements of group which are conjugate to a. 

  denotes number of elements in group which are conjugate to a. 

  denotes centre of the group. 

  denotes the normalizer of a.  

  denotes the partition of any positive integer 
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9.13 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that any two conjugate classes of a group are either disjoint or identical. 

2. If the order of a group is prime ( ), then prove of G has exactly elements. 

3. If is normal subgroup of G, having prime index p then prove that is cyclic. 
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4. If G be a non-Abelian group of order then prove that number of 

elements in centre of group Z(G) are 11. 

5. If G be a group of order then find the number of elements in its centre. 

6. State and prove the class equation. 

7. Prove that cojugacy is an equivalence relation. 

8. State and prove the Cayley’s theorem. 

9. Prove that dihedral group  is isomorphic to the symmetric group . 

10. Find number of conjugate classes in . 

11. Find the class equation of a non-abelian group of order 8. 

12. Find the number of cycle which commute with . 

13. Prove that  is simple. 

14. Let be a group such that finite. If has only two conjugate 

classes then prove that is a group of order 2.  

15. Prove that the number of conjugate classes in  is . 

16. Find the conjugate class of and -1 in  and also find the class equation of . 

Short Answer Type Question: 

1. Find the number of elements of the in the centre of the group having order

. 

2. Prove that centre of the group is an abelian group 

3. If is a non-abelian of order then prove that has exactly 2 element.  

4. Find number of element which are conjugate to . 

5. Prove that if G is finite,  iff O( . 

6. Write the class equation of non-abelian group of order . 

7. Write all the partition of 5 i.e., . 

8. Find the number of elements in the centre of the group having class equation 

. 
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9. Write the class equation of  under the operation multiplication 

modulo 7. 

Fill in the blanks: 

1. Two elements a and b in a group G are such that  then b will called ……… 

to a. 

2. Every group of order  is ……. 

3. Centre of the group G is the ……… subgroup of G.  

4. If is non-abelian group of order 125 then Z(G) has …….. elements.  

5. Every group is isomorphic to a …………. 

6.  is …………………. group. 

7. Number of conjugate classes in  are …………. 

8. The class of non-abelian group of order 6 is  ………… 

9. If the class equation of any group is  then group is ……………… 

9.14 ANSWERS 

Answer of self cheque question: 

1. 1+1+1   2. 1+1+1+1   

3.          is correct because    is abelian group not cyclic. 

4. 4   5. 4   6.     1+1+1+1 

Answer of long question: 

5. 121   10. 6   12.  

 

16.  and class equation is  

Answer of short question: 
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1.   4. 3  

Answer of fill in the blanks: 

1. Conjugate  2. Abelian 3. Normal 4. 5 

5. Permutation group  6. Simple  7.   8. 6 = 1+2+3 

9. Abelian 

49,31,25,7,5

)(nP



 

 

 

 

 

 

 

 

 

BLOCK- III 

RING, IDEAL, INTEGRAL DOMAIN AND 

FIELD 
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Unit-10: INTRODUCTION TO RING 

CONTENTS: 

10.1      Introduction 

10.2      Objectives 

10.3      Ring. Definition 

10.4      Ring with Unity. Definition 

10.5      Commutative Ring. Definition 

10.6      Boolean Ring. Definition 

10.7       p-Rings. Definition 

10.8       Zero divisor 

10.9       Ring without zero divisors  

10.10     Characteristics of a Ring. Definition 

10.11     Subring 

10.12     Improper and Proper Subring 

10.13     Summary 

10.14    Glossary 

10.15    References 

10.16    Suggested Reading 

10.17    Terminal questions  

10.18    Answers 

 

10.1 INTRODUCTION 

In algebra, the study of rings is known as ring theory. In rings, addition and 

multiplication are defined and have characteristics in common with those of the operations 
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specified for integers. Ring theory explores the structure of rings, their representations, or in 

other words, modules, special classes of rings (such as group rings, division rings), as well as 

a variety of properties that have proven useful both for the theory's own purposes and for its 

practical applications, such as homological properties and polynomial identities. Rings that 

are commutative are significantly easier to understand than those that are not.  

Commutative ring theory, often known as commutative algebra, is a significant 

branch of modern mathematics that has its roots in algebraic geometry and algebraic number 

theory, which offer several natural instances of commutative rings. The relationship between 

these three disciplines algebraic geometry, algebraic number theory, and commutative 

algebra is so close that it is sometimes impossible to determine which discipline a given 

result belongs to. A basic theorem for algebraic geometry is, for instance, Hilbert's 

Nullstellensatz, which is formulated and proven in terms of commutative algebra. 

Noncommutative rings have a very distinct character since they have a greater 

potential for strange behaviour. Although the theory has grown on its own, a relatively recent 

tendency has attempted to mirror the commutative growth by geometrically modelling the 

theory of some classes of noncommutative rings as if they were rings of functions on 

(inexistent) "noncommutative spaces." With the advancement of noncommutative geometry 

and the discovery of quantum groups, this movement began in the 1980s. Noncommutative 

rings, particularly noncommutative Noetherian rings, have been better understood as a result. 

10.2 OBJECTIVES 

The study of rings is a deep and multifaceted field with applications in various areas of 

mathematics and beyond, the importance of ideals in the study of rings and algebraic 

structures. The Ring Theory unit aims to: 

1. Introduce the Concept of Rings: 
 Define rings, subrings, and different types of rings (commutative, non-commutative, 

rings with unity, etc.). 

 Provide examples like Z, Q, R and Mn(R) (matrix rings). 

2. Understand Basic Properties and Operations in Rings: 
 Explain addition and multiplication in rings. 

 Discuss distributive, associative, and commutative properties. 

 Introduce zero divisors, units, boolean ring and polynomial ring. 

10.3 RING 
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Let R be a non-empty set then the algebraic structure .),,( R  equipped with two binary 

operations addition and multiplication is called a ring if the following conditions are satisfied: 

i. (   ) is an abelian group. 

ii. (   ) is semi group. 

iii. Distributive laws holds, i.e.,  

  (   )                                [Right distributive law]        

                             (   )                                [Left distributive law]    

Example 1: Show that the set ),|3{ QbabaR   is a ring under the usual addition and 

multiplication as binary compositions. 

Solution: First we can easily prove that ),( R  is an abelian group and .),(R  is a semi group. 

Let 3bax  , 3dcy   and Rfez  3   

Then Rbcadbdacdcbaxy  3)()3()3)(3(  

Since Qbdac 3  and Qbcad   

Now, )3}(3)()3{()( febcadbdaczxy   

3)3()333( bceadebdfacfbcfadfbdeace   

)()( yzxzxy   

Finally, }3)()){(3()( fdecbazyx   

3)()33( bebcafadbfbdaeac   

}3)()3{(}3)()3{( beafbfaebcadbdac   

xzxyzyx  )(  

Similarly, yzxyzyx  )( . 

Hence R is a ring. 

Example 2: A Gaussian integer ][iZ  is a complex number defined as 

},|{][ ZbaibaiZ  . Show that ][iZ  forms a ring under ordinary addition and 

multiplication of complex numbers.  

Solution: Let iba  and idc   be any Gaussian integer then, 

)()()()( dbicaidciba   

And )()()()( bcadibdacidciba   



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 184 
 

These are again Gaussian integer because )(),(),(),( bcadbdacdbca   all are again 

belongs to .Z  Hence we can say that ][iZ  is closed with respect to ordinary addition and 

multiplication of complex numbers.  

As we know that set is complex number is form abelian group with respect to addition and 

hence ][iZ  will be also associative and as well as commutative with respect to addition. 

Since ][00 iZi   is the additive identity of the Gaussian integer. The additive inverse of 

bia  is )()( bia  . 

Now, ][01 iZi   is the multiplicative inverse of the Gaussian integer because Zba  ,  

)01)(())(01( ibiaibabiai  . 

Also ][iZ  satisfies the left and right distributive law. Hence we can say that the Gaussian 

integer ][iZ  form ring i.e., .),],[( iZ  is form ring. 

10.4 RING WITH UNITY 

In a ring R, if there exist an element R1  (multiplicative identity) such that 

Raaaa  1..1 , then R is called  a ring with unit element. Here, the element R1 , is 

called the unit element of the ring. Thus if a ring possesses multiplicative identity, then it is a 

ring with unity.  

10.5 COMMUTATIVE RING 

If a ring R is commutative with respect to the operation multiplication then the ring .),,( R  is 

called commutative ring i.e., if we have Rbaabba  ,.. , then R is called a commutative 

ring.  

Note: In future we shall denote the multiplication composition in a ring R not by the symbol 

'.'  but by multiplicative notation. Thus we shall write ab in place of ba. . 

Example: 

1. (     ) is a ring. This ring is called ring of integers. 

2. (      ) is a ring,   being fixed integer. This ring is Commutative ring. 

3. (     ) is a ring. This ring is called ring of real numbers. This ring is a commutative 

ring with unity element. 

4. (     ) is a commutative ring. This ring is called ring of rational numbers. 
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10.6 BOOLEAN RING 

A ring (     ) is called Boolean ring if all elements are indempotent i.e., 

                      

e.g., }1,0{2 Z  is the Boolean ring because 00.002   and 11.112   

10.7 p- RING 

A ring (     ) is called p-ring if 

                    
Similarly we define 2-ring. 

 

10.8  ZERO DIVISOR 

The non zero elements a,b of a ring R are knows as proper divisors of zero or zero divisors if 

     or     . 

Example: 

1. The ring has matrices has zero divisors, for example if  

  [
    
     

]    [
      
     

] 

 

Then 

   [
    
     

]    

Hence the ring   *               + of matrices has zero divisors. 

2. The rings of a number do not have zero divisors. For  no two non-zero numbers such 

that their product is zero. 

10.9 RING WITHOUT ZERO DIVISORS 

 A ring is called without zero divisors if product of two non-zero elements of R is not zero if  

     where                   both     and    . 

If we say that R is aring with zero divisors *                 + 

Some common examples on ring 

As we have already discussed, in abstract algebra, a ring is a set equipped with two binary 

operations (usually addition and multiplication) that generalize arithmetic properties. Here 

are some common examples: 
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1.  Standard Number Rings 

I. Integers (Z) – The set of all integers with usual addition and multiplication. This is a 

commutative ring with identity 1. 

II. Integers modulo n ( nZ ) – The set {0, 1,..., n−1} under modular arithmetic. This is a finite 

ring. 

III. Rational, Real, and Complex Numbers (Q, R, C) – These form fields, which are also 

rings. 

IV. Gaussian Integers (Z[i]) – The set of complex numbers of the form iba  , where 

Zba , . 

2.  Polynomial Rings 

I. Polynomial Ring (Z[x], R[x], C[x]) – The set of polynomials with coefficients in a 

given ring (e.g., integers or real numbers). 

II. Modular Polynomial Ring ( ][xZn ) – Polynomials with coefficients in nZ . 

3.  Matrix Rings 

I. Ring of n×n Matrices ( )(RM n ) – The set of all n×n matrices over a ring R, with usual 

matrix addition and multiplication. 

II. Upper Triangular Matrix Ring – Matrices where all entries below the diagonal are 

zero. 

4.  Function Rings 

I.  Ring of Continuous Functions ),( RXC – The set of all continuous real-valued 

functions on a space X , with pointwise addition and multiplication. 

II. Laurent Series Ring (C((x))– The ring of formal power series that allow negative 

exponents. 

5.  Special Rings 

I. Boolean Ring – A ring where xx 2  for all x  (e.g., 
2Z ). 

II. Quaternions (H) – A non-commutative ring that extends complex numbers. 

III. Group Rings (Z[G]) – Rings constructed from a group G and a ring R. 

Later in higher classes you will learn with deeper explanation of these.  

Some proof of useful rings 
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1.  The Ring of Integers Z: The set of integers Z  with standard addition and 

multiplication forms a ring. 

Proof: Closure: Sum and product of any two integers is an integer. 

 Associativity: Addition and multiplication are associative. 

 Additive Identity: 0 is in Z and aa  0  

 Additive Inverse: For every Za , there exists –a such that 0)(  aa  

 Distributivity: acabcba  )(  

 Commutativity of Addition: abba   

Since Z satisfies all the ring axioms, it is a commutative ring with identity 1. 

2.  The Ring of Integers Modulo n, nZ : The set {0,1,..., n−1} with addition and 

multiplication modulo n forms a ring. 

Proof: Closure: If nZba , , then nba mod)(  and nba mod).(  are in nZ . 

 Associativity: Follows from associativity of integer addition and multiplication. 

 Additive Identity: nmod0  is the identity. 

 Additive Inverse: Every nZa  has an inverse na mod . 

 Distributivity: )(mod)( nacabcba  . 

Thus, nZ  is a finite commutative ring with identity 1.  

3.  The Ring of Polynomials R[x]:  

For any commutative ring R, the set of polynomials with coefficients in R forms a ring under 

usual addition and multiplication. 

Proof: Closure: The sum/product of two polynomials is still a polynomial. 

 Associativity: Follows from associativity of polynomial addition and multiplication. 

 Additive Identity: The zero polynomial 0 exists. 

 Additive Inverse: Given 0...][ axaxP n

n  , the inverse is 

00 ...)...(][ axaaxaxP n

n

n

n   

 Distributivity: Polynomial multiplication distributes over addition. 

Thus, R[x] is a commutative ring with identity 1 if R has identity. 
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4.  The Ring of nn  Matrices )(RM n
 

The set of all nn  matrices with entries in a ring R, with matrix addition and multiplication, 

forms a ring. 

Proof: Closure: Sum and product of two nn  matrices remain in )(RM n . 

 Associativity: Follows from associativity of matrix addition and multiplication. 

 Additive Identity: The zero matrix 0 satisfies AAA  00  

 Additive Inverse: Each A has an inverse A  such that AAAA  )(0)(  

 Distributivity: ACABCBA  )(  and BCACCBA  )( . 

This is a non-commutative ring if n > 1. 

5.  The Boolean Ring 

A Boolean ring consists of elements {0, 1} with addition and multiplication defined as: 

 Addition: ba  is XOR : 011,101,110,000   

 Multiplication: ba . is AND: 11.1,00.1,01.0,00.0   

Proof: Closure: XOR and AND are well-defined for {0, 1}. 

 Associativity: XOR and AND are associative. 

 Additive Identity: 0 is the identity for addition. 

 Additive Inverse: Each element is its own inverse since 0 aa  

 Distributivity: acabcba  ).( . 

 Idempotence: aa 2 , which is a special property of Boolean rings. 

This is a commutative ring without an identity. 

6.  The Ring of Continuous Functions C(X, R)  

Let C(X, R) be the set of all real-valued continuous functions on a topological space X. 

Addition and multiplication are defined pointwise: 

 )()())(( xgxfxgf   

 )()())(.( xgxfxgf   

Proof: Closure: Sum and product of continuous functions remain continuous. 

 Associativity: Follows from real number operations. 

 Additive Identity: The zero function 0)( xf  
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 Additive Inverse: )(xf  is still continuous. 

 Distributivity: fhfghgf  )(.  

This is a commutative ring with identity (the constant function 1). 

7.  The Quaternions H 

The set of quaternions consists of numbers of the form:  

Rdcbadkcjbia  ,,,,  

where 1222  kjikji  

Proof: Closure: Sum and product of quaternions remain quaternions. 

 Associativity: Holds for quaternion addition and multiplication. 

 Additive Identity: kji 0000   

 Additive Inverse: The inverse of kdjcbia   is kdjcbia   

 Distributivity: qsqrsrq  )(  

8. The Ring of p-adic Integers pZ  

The p-adic integers form a ring where numbers are represented using an infinite sequence of 

digits in base p. The set pZ  consists of limits of sequences of integers modulo increasing 

powers of p. 

Proof: We have to prove that pZ  is a Ring 

 Closure: Addition and multiplication are well-defined in pZ  

 Associativity: Inherited from integer operations. 

 Additive Identity: The element 0 (represented as 0, 0, 0, …) is in pZ . 

 Additive Inverse: Every element has an inverse in pZ  

 Distributivity: Follows from modular arithmetic in powers of p. 

pZ  is a commutative ring with identity. 

9. The Ring of Continuous Functions C(X, R) 

The set of all continuous functions RXf : forms a ring under point-wise addition and 

multiplication. 
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Proof: We have to prove that C(X, R) is a Ring 

 Closure: Sum and product of continuous functions remain continuous. 

 Associativity: Inherited from R. 

 Additive Identity: The zero function 0)( xf  

 Additive Inverse: If )(xf is continuous, so is )(xf  

 Distributivity: )()()()())()()(( xhxfxgxfxhxgxf   

C(X, R) is a commutative ring with identity. 

10.10  CHARACTERISTIC OF A RING 

The characteristic of a ring R is explained as the smallest positive in integer . s.t.    

     . If their exist no positive integer, then R is called characteristic zero. Therefore R is 

of characteristic zero if          and for any positive integer . 

Theorem 1: (Elementary properties of ring) If       are arbitrary elements of a ring R, 

then  

Prove that. 

i.         

Solution: Let                                                

                                                              (   )                        by left distribution law 

         

                         
Now we get 

                                                                                                                             ( ) 
Again 

      

                                                             (   )                        by right distribution law 

         

              
By cancellation law in (R,+), we obtain 

                                                                                                                               ( ) 

ii.  (  )   (  )  (  )  
Solution: From (1) and (2) ,we obtain the results 

                                                         (    )   (  )           For         

 ( )   (  )     

   (  )     

                                                              (  )   (  )                                    ( ) 

Since the additive inverse of    is a (  ) 

Similarly 

                                                   (    )   (  )         
(    )    and      

  (  )     

Since the additive inverse of    is a(  ) . 

                                                           (  )  (  )                                       ( ) 
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From (3) and (4), we obtain 

 (  )  (  )   (  ) 
iii.  (  )(  )     

     Solution: Let (  )(  )   , (  )-  by (ii) 

                                                   , (  )- again by (ii) 

                                                                                  For – (  )           
iv.  

Solution:        (   )   ,  (  )- 
                                                         (  ) 
                                                        ,   - 

                                         
v.  

Solution:         (   )  ,  (  )-  

                                        (  )  

                                        ,   - 
                                           

Theorem 2: If R is a ring with unity element 1, then  

(  )      (  )                 and (  )(  )     
 

Proof:                                      (    )  (  )      

    (  )      

  (  )    

Since (  )    ,  [For           ] 

Again                           (    )   (  )      

                                                    (  )      

                                                     (  )    

This implies  (  )     Also (  )     

(  )      (  ) 

Now taking     in above equation 

(  )(  )  (  )(  )   (  ) 

(  )(  )   (  )    

For  (  )    in additive group or (  )(  )   . 

 

Theorem 3: A ring without zero divisors iff the cancellation laws hold in  . 

Proof: Suppose R be a ring without zero divisors. 

To prove that cancellation laws hold in R.  

Since let                            . 

Then             (   )    

Also     and   has no zero divisors. 

Hence            

Thus                

Similarly we can show that               

Conversely,  Let R be a ring s.t. cancellation laws hold in R. 
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To prove that R has no zero divisors. 

Suppose the contrary. Then R has zero divisors, then 

                and       

                for a.0=0       By left cancellation law 

 A Contradiction, for     

Similarly            . A Contradiction, for    . 

Theorem 4: If R is a Boolean ring then  

(i)            

(ii)               is commutative. 

 

Proof: 

(i) Suppose        

  (   )                              is Boolean ring,            

  (   )(   )     

              

5 

      

                                        (R is Boolean) 

         

      or      . 

(ii) Now 

(   )                                                        is Boolean 

 (   )(   )      

  (   )   (   )      

 (     )  (     )                        By distributive law 

 (    )  (    )                                          

Finally, (   )  (     )      

 (   )  (     )       . 

Left cancellation law of addition in R gives       . 

Taking                           , we get 

                            

                       

                                  

                           ,             by left cancellation law 

                           . 

Theorem 5: If R is any ring with identity 1, show that R has positive characteristic    iff    is 

the at least positive integer for which      , 0 being additive identity of R.  
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Proof: Let R be a ring with unity element e. 

 ( )     characteristic of R is 0. 

Suppose  ( )      finite number so that n is at least positive integer s.t.     . Let a be 

any element of R. Then 

      (  )  For        . 

 (  )      . 

Thus   is the least positive integer s.t.     .  

This proves that the characteristic of R is n. 

SOLVED EXAMPLE 

 

Example 3: Let   and   be arbitrary elements of a ring R whose characteristic is two and 

     . Then prove that, (   )        (   )  

Solution: Suppose           

 The characteristic of R is two             

       

(   )  (   )(   )   (   )   (   ) 

                (   )             

       

(   )  (   )(   )   (   )   (   ) 

                (   )             

       

Hence, (   )        (   )  

Example 4: If any element a has the multiplicative inverse, then a cannot be a divisor of 

zero, where the underlying set of a ring. 

Solution: Suppose let R be a ring and     s.t.   has the inverse       so     

To prove that   is not zero divisor of zero. Suppose not then 

  is divisor  of zero so   the element                  and       

        (  )       

 (    )    

          

Contrary   . Hence required the solution. 

 

10.11  SUBRING 
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Let R be a ring. A non empty subset s of the set R is said to be a subring of R if S is closed 

under addition and multiplication in R and S itself is a ring for those operations. 

iff   is closed for compositions in R 

iff                     . 

Theorem 6: The necessary and sufficient conditions for a non empty subset S of a ring R to 

be a subring of R are            (i) a,b   S   a-b S.              (ii) ) a,b   S   ab  S. 

Proof: Let S be a Subring of a ring R so that S itself is a ring. 

To prove that 

(i) a,b   S   a-b   S.          (ii) a,b  S   ab  S. 

S is ring   (S, +) is an abelian group. 

Hence a,b   S   a, -b   S [Each elemant of S has additive inverse in S] 

                         a+(-b)  S [S is closed w.r.t.(+)] 

                               a-b   S. Hence the condition (i) 

Again S is ring  (S,  ) is a semi group 

                            is closed w.r.t. multiplication 

                          ab S   a,b S. Hence the condition (ii) 

Conversely, let S is non empty subset of R s.t. the conditions (i) and (ii) hold. 

To prove that S is a subring of R, it is enough to show that S is a ring. 

The condition (i) says that  

                          a,a   S   a-a  S  0  S. 

Again                0  S, a S   0-a  S  -a S. 

i.e.                     a   S  -a   S. 

Consequently, a, b  S  a, -b  S 

                                    a-(-b)  S      by condition (i) 

                                     a+b  S 

                        a,b  S  a,b   

                                   a+b= b+a.                       Fot (R, +) is a abelian group. 

Similarly, we can show that 

a+ (b+c) = (a+b)+c    a,b, c  S. 

Hence the above facts prove that (S, +) is an abelian group. Associatively of multiplication 

over  

addition holds in S. Since they hold in R. Finally we have show that (S, +,   ) is a ring. 
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Theorem 7: The intersection of two subring is again a subring. 

Proof: Let    and    be two subring of ring R. 

Since 0   and 0    at least 0      . Therefore       is non-empty. 

Let a,b       , then 

                                 a       a    and a    

and                            b       b   and b   . 

But    and    are subring of R, therefore 

                                  a, b     a-b    and ab    

and                            a, b     a-b    and ab   . 

Consequently, a,b        a-b       and ab         

Hence       is a subring of R. 

10.12 PROPER AND IMPROPER SUBRING 

If R is any ring, then * + and R are always subring of R. These are said to be improper 

subrings. The subrings of R other than these two, if any, are said to be proper subrings of R. 

Example: 

(i) The ring of Gaussian integers is a subring of ring of complex numbers. 

(ii) The ring of rational numbers is a subring of ring of real numbers. 

(iii) The ring of integers is a subring of a ring of rational numbers. 

 

Check your progress 

Problem 1: Check that the singleton set }0{ is ring or not? 

Problem 2: Check that the singleton set contain the identity element form a ring? 

Problem 3: Check that the set }1,0{ is ring with unity or not? 

 

10.13 SUMMARY 

In this unit, we have studied the basic terminology used in ring theory. We have also read 

about the basic idea of ring with some theorems and examples. We have defined 

commutative and non commutative.  

Ring theory is a fundamental branch of abstract algebra that studies algebraic 

structures called rings, which consist of a set equipped with two binary operations: addition 
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and multiplication. Rings generalize number systems like integers and polynomials, allowing 

for diverse structures such as commutative rings, integral domains, division rings, and 

fields. Key concepts include ideals, ring homomorphisms, quotient rings, and polynomial 

rings, which play a crucial role in algebraic structures and applications in number theory, 

geometry, and cryptography. The study of zero divisors, units, and prime/maximal ideals 

helps in understanding factorization and divisibility in algebra. Ring theory provides a 

foundation for advanced topics like module theory, field extensions, and algebraic 

geometry. This unit is basic outlook of ring theory and concepts of this unit will be beneficial 

for the learners in the upcoming units. 

10.14 GLOSSARY 

 Ring 

 Gaussian integer 

 Subring 

 Boolean Ring 

 Characteristic of ring 

 Ring with unity 

 Ring with zero divisor 

 Ring without zero divisor 
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10.17 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Prove that set of integers is a commutating ring ‘or’ ,.),( Z  is a commutative ring. 

2. Prove that set of rational numbers is a commutative ring. 

3. Prove that ring without zero divisors iff the cancellation laws hold in   

4. State and prove the necessary and sufficient condition for any subset of ring to be a 

subring. 

5. Prove that set of rational numbers is a subring of set of real number. 

 

Short Answer Type Question: 

1. If R is any ring with identity 1, then prove that R has positive characteristic    iff    is 

the at least positive integer for which       , 0 being additive identity of R. 

2. In any ring (R) any element a has the multiplicative inverse, then prove that a cannot 

be a divisor of zero. 

3. Prove that intersection of two subring of a ring is also a subring. 

4. Define the ring and subring with example. 

5. Let   and   be arbitrary elements of a ring R whose characteristic is two and    
  . Then prove that, 

(   )        (   )  

 

Objective type questions 

1. Which of the following is NOT necessarily true for a ring (R, +, ⋅)? 

A)  R is closed under addition and multiplication. 

B)  R has an additive identity. 

C)  R is commutative under multiplication. 

D)  R satisfies the distributive laws. 
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2. The ring 
nZ  is a field if and only if: 

A)  n is even. 

B)  n is prime. 

C)  n is a perfect square. 

D)  n is composite. 

3. Which of the following is an example of a non-commutative ring? 

A)  Z 

B)  )(2 RM  (the set of 2×2 real matrices) 

C)  Q[x] 

D)  R 

4. A ring R is called an integral domain if: 

A)  R is commutative and has no zero divisors. 

B)  Every nonzero element of R has a multiplicative inverse. 

C)  R contains no proper ideals. 

D)  R has characteristic 0. 

5. Which of the following is NOT an ideal in Z? 

A)  2Z 

B)  3Z 

C)  Z 

D)  Q 

6. The characteristic of the ring Z/6Z is: 

A)  0 

B)  6 

C)  3 

D)  2 

7. The set of all n×n upper triangular matrices over a field forms a: 

A)  Commutative ring 

B)  Non-commutative ring 

C)  Integral domain 

D)  Field 

8. In a Boolean ring, which property always holds? 

A)  xx 2  for all Rx  

B)  xx 3  for all Rx  

C)  R is a field 

D)  R is an integral domain 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 199 
 

9. If R is a ring with unity, which of the following must be true? 

A)  Every element of R has a multiplicative inverse. 

B)  R must be commutative. 

C)  R contains a multiplicative identity. 

D)  R is a field. 

10. The center of a ring R is defined as: 

A)  The set of units in R. 

B)  The set of all elements that commute with every element of R. 

C)  The set of all nilpotent elements. 

D)  The set of all zero divisors. 

Fill in the blanks: 

1. Intersection of two subring of any ring is also a ………….  

2. Intersection of two ideal of any ring is also an …………. 

3. Set of rational number is subring of set of …………….. 

4. A ring (R) without zero divisors iff  the cancellation laws ……………….. in   . 

5. Set of integers is a ……………….. ring with unity 

True and False questions: 

1.  Every ring has a multiplicative identity. 

2.  Every field is an integral domain. 

3.  The set of all 2×2 real matrices forms a commutative ring under matrix addition and 

multiplication. 

4.  The set Z of integers forms a field. 

5.  The characteristic of any finite field is always a prime number. 

6.  Every integral domain is a field. 

7.  If a ring is commutative and has no zero divisors, then it must be a field. 

8.  In a Boolean ring, every element is idempotent. 

9.  Every finite integral domain is a field. 

10.  If R is a ring and 0ab  for some Rba , , then either 0a  or 0b  

10.18 ANSWERS 

Answer of self cheque question: 

1. Yes 2. Yes 3. Yes 
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Answer of objective type question 

1.  C  2. B  3. B  4. A 

5.  D  6. B  7. B  8. A 

9.  C  10. B 

 

Answer of fill in the blanks: 

1. Subring 2. Ideal  3. Real  4. R       5. Commutative 

 

Answer of true and false: 

1. False   2. True  3. False  4. False 

5.  True  6. False  7. False  8. True 

9.  True  10. False 
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Unit-11: INTEGRAL DOMAIN 

CONTENTS: 

11.1      Introduction 

11.2      Objectives 

11.3      Integral domain 

11.4      Ordered integral domain 

11.5     Summary 

11.6    Glossary 

11.7    References 

11.8    Suggested Reading 

11.9    Terminal questions  

11.10    Answers 

 

11.1 INTRODUCTION 

The concept of an integral domain originates from the study of number systems and 

algebraic structures, particularly in the development of ring theory in the late 19th and early 

20th centuries. Mathematicians such as Richard Dedekind and David Hilbert contributed 

significantly to the formalization of rings and ideals, which laid the foundation for the study 

of integral domains. The term "integral domain" itself emerged as algebraists sought to 

generalize the properties of integers to more abstract settings, particularly in algebraic 

number theory and polynomial rings. 

An integral domain is a commutative ring with unity (1 ≠ 0) that has no zero divisors. 

This means that for any two elements ba,  in the ring, if 0ab , then either 0a  or 0b . 

This property ensures that multiplication behaves similarly to that in the integers, preventing 

the collapse of nonzero elements into zero. Integral domains generalize the arithmetic of 

integers and appear naturally in many mathematical structures, including polynomial rings, 

algebraic number fields, and function fields. 

Historically, the study of integral domains led to further classifications, such as principal 

ideal domains (PIDs), unique factorization domains (UFDs), and fields. The concept is 
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fundamental in many areas of mathematics, including algebraic geometry, number theory, 

and commutative algebra. 

11.2 OBJECTIVES 

The objectives of studying the integral domain unit are: 

1. Understanding the Definition: 

 Learn what an integral domain is and how it differs from other algebraic structures. 

2. Properties of Integral Domains: 

 Identify key properties such as commutativity, unity, and absence of zero divisors. 

 Understand the cancellation law in an integral domain. 

3. Examples and Counterexamples: 

 Study examples of integral domains like ℤ (integers), ℚ (rationals), ℝ (reals), and 

polynomial rings. 

 Identify rings that are not integral domains due to the presence of zero divisors (e.g., 

ℤ/6ℤ). 

4. Difference Between Integral Domains and Other Rings: 

 Compare integral domains with commutative rings, fields, and division rings. 

 Understand why every field is an integral domain, but not every integral domain is a 

field. 

5.  Zero Divisors and Their Absence: 

 Learn how the absence of zero divisors affects calculations in an integral domain. 

6. Applications in Algebra and Beyond: 

 Explore the role of integral domains in abstract algebra, number theory, and 

cryptography. 

 11.3 INTEGRAL DOMAIN 

Definition: Any ring is called integral domain, if it satisfies the following conditions 

(i)  should be commutative ring 

(ii) has unit element 

(iii)  should be without zero divisors. 

Some authors defining to integral domain in a different way that an integral domain is a 

commutative ring without zero divisors. They do not demand that an integral domain have 

the unit element without a doubt. 

)(R

R

R

R
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Set of integer ( ) is a most common example of a ring to be an integral domain. We know 

that is a commutative ring with unity and also  does not possess zero divisors. We know 

that if are integers such that , then either or must be zero. 

The other rings which are examples of infinite integral domains are  

and the example of finite integral domain is . 

Inversible elements in a ring with unity: In a ring  each element possess additive 

inverse. Therefore when we talking about inversible of an element, we only asking about 

invertiablity with respect to the operation multiplication. If is a ring with unity, then an 

element  is called inversible, if there exist  such that . Then we 

rewrite . 

Examples 1: In the ring of integers 1 and -1 are the only two inversible elements. 

2: In the set of  non singular matrices with real numbers as elements are the only 

inversible elements of the ring of all matrices with elements as real numbers. 

Example 3: Prove that the set of integers Z with standard addition and multiplication is an 

integral domain. 

Solution: Z is a Commutative Ring with Unity 

 Addition and multiplication are associative and commutative. 

 The additive identity is 0 and the multiplicative identity is 1. 

 The distributive property holds: acabcba  )( for all Zcba ,,  

 Every integer has an additive inverse (e.g., a is the inverse of a ). 

No Zero Divisors 

 Suppose Zba ,  such that 0. ba  

 This means 0ab  

 Since integers obey the fundamental property that the product of two nonzero integers 

is never zero, it follows that either 0a  or 0b  

 Hence, Z has no zero divisors. 

Example 4: The set of all polynomials with integer coefficients, denoted as Z[x], forms an 

integral domain. 

Solution: Z[x] is a Commutative Ring with Unity 

 Addition and multiplication of polynomials satisfy associativity and commutativity. 

 The additive identity is 0 (the zero polynomial). 

 The multiplicative identity is 1 (the constant polynomial 1). 

I

I I

ba, 0ab a b

,.),(,.),,(,.),,(  RQC

),},4,3,2,1,0({ 55 

)(R

R

Ra Rb baab 1

1 ab

nn

nn
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 The distributive property holds. 

No Zero Divisors 

 Suppose ][)(),( xZxgxf   such that 0)().( xgxf  

 This means the product of the two polynomials is the zero polynomial. 

 In polynomial rings over an integral domain (like Z), if the product is zero, then at 

least one of the polynomials must be the zero polynomial. 

 Since Z is an integral domain, Z[x] inherits this property. 

Thus, Z[x] is an integral domain. 

Example 5: The set of rational numbers Q forms an integral domain under standard addition 

and multiplication. 

Solution: Q is a Commutative Ring with Unity 

 Rational numbers satisfy the properties of a ring (associativity, commutativity, 

distributivity). 

 The additive identity is 0. 

 The multiplicative identity is 1. 

 Every element has an additive inverse. 

No Zero Divisors 

 Suppose Qba ,  such that 0. ba . 

 Since Q consists of fractions 
q

p
 (where Zqp , , 0q ), the product 

21

21

2

2

1

1 .
qq

pp

q

p

q

p
  

 If 0
21

21 
qq

pp
, then 021 pp  

 Since integers have no zero divisors, either 01 p  or 02 p , meaning either 0a  or 

0b  

Thus, Q is an integral domain. 

Example 6: Give an example of ring which is not an integral domain? 

Solution: As we know that nZ  is a ring for all Nn . But nZ  is not an integral domain for 

all Nn . For e.g., }7,6,5,4,3,2,1,0{8 Z  is a ring but it is not an integral domain as 8Z  is 

not without zero divisor. 

Because 804,02 Z  and 804.2 Z . 

Hence 8Z  is a ring but not an integral domain.  
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Theorem 1: A commutative ring is an integral domain iff  

  

Proof: Let is an integral domain. 

Also let  

Then  

 

 

Since , we get  

Conversely, let the given condition holds good. 

Let be a arbitrary elements with . 

Suppose  

Then  

 using given condition 

Hence  whenever  or that is an integral domain. 

Remark: Any ring  is said to satisfy left cancellation law if  

 

1. Similarly we can talk of right cancellation law. It is to notify that cancellation is of 

only non zero elements. 

 

Theorem 2: The characteristic of an integral domain is 0 or 0n  according as the order of 

any non-zero element regarded as a member of the additive group of the integral domain is 

either 0 or n. 

Proof: Let D be an integral domain. 

If a non-zero element of D  is of order zero, then the characteristic of D is zero.  

Let the order of the non-zero element a be finite and equal to n . Then 0na . Suppose b is 

any other non-zero element of D. 

We have 0na  

0)(  bna  

....(  aaa  upto n terms 0) b  

....(  ababab  upto n terms 0)   

....(  bbba  upto n terms 0)   

R )0(,,  aRcba

cbacab 

R

)0(  aacab

0 acab

0)(  cba

00  cbora

0a cb 

Rba , 0a

0ab

0.aab 

0 b

00  bab 0a R

)(R )0(,,  aRcba

cbacab 
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0)(  nba  

But D  is without zero divisors. Therefore 0a  and 0)( nba  

0)(  nba  

But the order of a  is nn  is the least positive integer such that 0na . Also we have 

00 n . Thus n  is the least positive integer such that Dxnx  0 . Hence D  is of 

characteristic n . 

Theorem 3: Each non-zero element of an integral domain D, regarded as a member of the 

additive group of D, is of the same order.  

Proof: Let D be an integral domain. Suppose a is a non-zero element of D and )(aO  is finite 

and say, equal to n . 

Suppose b is any other non-zero element of D  and mbO )( . 

We have 0)(  nanbO  

0 nb  

nmnbO  )( . 

Similarly, 0)(0)(  mbambmbO  

...(  bba upto m times) 0  

...(  abab upto m times) 0  

...(  abab upto m times) 0  

...(  aa upto m times)b 0  

0)(  bma  

0ma   [ 0b  and D is without zero divisors] 

mnmaO  )(  

Now, nm  , nmmn  . Hence )()( bOaO  . 

Theorem 4: The characteristic of an integral domain is either 0 or a prime number. 

Proof: Suppose D  is an integral domain. Let Da0 . If )(aO  is zero, then the 

characteristic of D  is 0. If )(aO  is finite, let paO )( . Then the characteristic of D  will be 

p . We have to now prove that p  must be prime. 

Suppose p  is not prime. Let 
21 ppp   where 1,1 21  pp  and pp 1

 also pp 2
. 

Since D is an integral domain, therefore the product of two non-zero element of D  cannot be 

equal to 0. 
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0aa  i.e., 02 a  

Now in an integral domain two non-zero elements are of the same order. 

0)()( 22  papaOpaO  

0)( 2

21  app                                                                   ][ 21 ppp   

...( 22  aa  upto 
21 pp  terms 0)   

0))(( 21  apap  terms 0)   

  either 00 21  aporap    [ D  is without zero divisors] 

But pp 1
and pp 2

. Also p  is the least positive integer such that 0pa . Hence p  

must be prime. 

11.4 ORDERED INTEGRAL DOMAINS 

Definition: An integral domain .),,( D  is said to be ordered if D contains a subset D  such 

that 

(i) D  is closed with respect to addition and multiplication as defined on D . 

(ii) ,Da one and only one  of 
  DaDaa ,,0 , holds (principle of trichotomy).  

The elements of D  are called the positive elements D , all other non-zero elements of D are 

called negative elements of D. 

Theorem 5: Let D be an integral domain with unity element 1. If D  is an ordered integral 

domain show that 1 is a positive element of D . 

Proof: Let D  be an ordered integral domain with unity element 1. Let D  denote the set of 

positive element of D. Suppose 
D1 . 

Now, 01 . Since 
D1  therefore by the definition of an ordered integral domain, 

 D1   [
D  is closed with respect to multiplication] 

 D1 , which is a contradiction. 

Hence 
D1 i.e., 1 is a positive element of D.  

Definition: Let D  be an ordered integral domain and D be the set of positive elements of 

D . Then we defines ‘less than’ (<) ‘greater than’ (>) relations in D as follows: 

For all Dba , , we have 

(i) ba   when 
 Dba  

(ii) ba   when 
 Dab  
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Obviously ba   iff ab   

Theorem 6: The order relation in an ordered integral domain is transitive i.e.,  cbba ,  

ca  . 

Proof: Let D  be an ordered integral domain and let D  be the set of positive element of D.  

We have 
 Dbaba  

and 
 Dcbcb  

Now D  is closed with respect to addition. 

  DcbbaDcbDba )()(,  

caDba  
 

Check your progress 

Problem 1: Check that the set 5Z is integral domain or not? 

Problem 2: Check that the set 
12Z is integral domain or not? 

Problem 3: Check that the set 25
Z is integral domain or not? 

 

11.5 SUMMARY 

This unit, Integral Domain explores a special class of rings that are commutative, 

have a multiplicative identity (1 ≠ 0), and contain no zero divisors. This ensures that the 

cancellation law holds, making integral domains fundamental in algebra. Key examples 

include ℤ (integers), ℚ (rational numbers), ℝ (real numbers), and polynomial rings ℤ[x]. The 

chapter also distinguishes integral domains from general rings and fields, noting that every 

field is an integral domain, but not every integral domain is a field. It also covers important 

results like every finite integral domain is a field and explores applications in number theory, 

cryptography, and algebraic structures. 

11.6 GLOSSARY 

 Integral Domain 

 Ordered integral domain 

 Without zero divisor 
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11.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Define an integral domain. Explain its properties with examples. 

2. Give an example of a commutative ring that is not an integral domain. Explain why it 

fails to be an integral domain. 

3. Explain the cancellation law in an integral domain and prove that it holds. 

4. Discuss the difference between an integral domain and a field, providing examples of 

each. 

5. Explain why the ring of integers modulo n (ℤ/nℤ) is an integral domain if and only if 

n is a prime number. 

6. Show that the set of 2 × 2 matrices over ℤ is not an integral domain. 

7. Prove that the polynomial ring ℤ[x] is an integral domain. 

8. Explain why ℤ/4ℤ is not an integral domain, using the concept of zero divisors. 

9. If R is an integral domain, prove that its polynomial ring R[x] is also an integral 

domain. 

Short Answer Type Question: 

1. Define an integral domain. 

2. Give an example of an integral domain that is not a field. 

3. What is the main difference between an integral domain and a field? 

4. State the cancellation law in an integral domain. 

5. Why is ℤ/6ℤ not an integral domain? 
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6. Does every integral domain have a multiplicative inverse for every element? Why or  

 

why not? 

7. Is the set of all 2 × 2 matrices over ℤ an integral domain? Why? 

8. What is a zero divisor? Does an integral domain have zero divisors? 

9. Give an example of a commutative ring that is not an integral domain. 

10. Why is ℤ[x] (polynomials with integer coefficients) an integral domain? 

 

Objective type questions 

1.  Which of the following is an essential property of an integral domain? 

a)  It has zero divisors 

b)  It is not commutative under multiplication 

c)  It is a commutative ring with unity and no zero divisors 

d)  Every element has a multiplicative inverse 

2.  Which of the following is an example of an integral domain? 

a)  The set of all integers (ℤ) 

b)  The set of all n × n matrices under matrix multiplication 

c)  The set of integers modulo 6 (ℤ₆) 

d)  The set of rational numbers modulo 4 (ℚ₄) 

3.  If D is an integral domain, which of the following statements is always true? 

a)  D is a field 

b)  D is a commutative ring with identity 

c)  Every element in D has an inverse 

d)  D contains zero divisors 

4.  Which of the following rings is NOT an integral domain? 

a)  ℤ (Integers) 

b)  ℚ (Rational Numbers) 

c)  ℤ₆ (Integers modulo 6) 

d)  ℝ (Real Numbers) 

5.  If R is an integral domain, and a, b are elements of R such that ab = 0, what can  

be concluded? 

a)  Either a = 0 or b = 0 

b)  Both a and b are nonzero 

c)  R contains zero divisors 

d)  R is not commutative 
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6. Which of the following is true for every integral domain D? 

a)  Every nonzero element has a multiplicative inverse 

b)  Every nonzero element is a unit 

c)  If a, b, c ∈ D and a ≠ 0, then ab = ac implies b = c 

d)  Every element has an additive inverse and a multiplicative inverse 

7.  Which of the following rings is an integral domain? 

a)  The set of all n × n matrices under addition and multiplication 

b) The ring ℤ/8ℤ (integers modulo 8) 

c)  The ring ℤ[x] (polynomials with integer coefficients) 

d)  The ring of even integers under normal addition and multiplication 

8.  Let R be an integral domain. Which of the following statements is false? 

a)  R contains no zero divisors 

b)  The product of two nonzero elements in R is always nonzero 

c)  Every nonzero element in R has a multiplicative inverse 

d)  The ring of integers ℤ is an integral domain 

9.  Which of the following is not an integral domain? 

a)  ℤ (Integers) 

b)  ℚ (Rational numbers) 

c)  ℤ/4ℤ (Integers modulo 4) 

d)  ℤ[x] (Polynomials with integer coefficients) 

10.  The field of real numbers ℝ is an integral domain. Which additional property  

makes it a field? 

a)  It has no zero divisors 

b)  It has an identity element for multiplication 

c)  Every nonzero element has a multiplicative inverse 

d)  It satisfies the associative property of multiplication 

Fill in the blanks: 

1. An integral domain is a __________ ring with identity and no zero divisors. 

2. The ring of integers ℤ is an example of an __________ domain. 

3. If a ring contains zero divisors, then it is __________ an integral domain. 

4. In an integral domain, the __________ law holds: If a ≠ 0 and ab = ac, then b = c. 

5. Every field  is an __________, but not every integral domain is a __________. 

6. The set of polynomials ℤ[x] with integer coefficients is an example of an  

__________. 

7. The ring ℤ/6ℤ is __________ an integral domain because it has zero divisors. 

8. A ring R is an integral domain if it has no __________ divisors. 
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9. Every finite integral domain is a __________. 

10. The ring of real numbers ℝ is an example of both a __________ and a field. 

True and False questions: 

1.  Every integral domain is a commutative ring with unity. 

2. Every integral domain is a field. 

3. The set of all n × n matrices over ℤ forms an integral domain. 

4. If R is an integral domain and a, b ∈ R such that ab = 0, then either a = 0 or b = 0. 

5. The set of all even integers forms an integral domain under normal addition and 

 multiplication. 

6. The set ℤ/6ℤ (integers modulo 6) is an integral domain. 

7. The ring of polynomials ℤ[x] (polynomials with integer coefficients) is an integral 

 domain. 

8. Every finite integral domain is a field. 

9. The real numbers ℝ form an integral domain. 

10. If R is an integral domain, then it must have a unique multiplicative inverse for every  

element. 

11. The ring of integers ℤ is an integral domain. 

12. The ring ℤ/8ℤ (integers modulo 8) is an integral domain. 

13. If R is an integral domain, then R[x] (the ring of polynomials over R) is also an  

integral domain. 

14. In an integral domain, the cancellation law holds: if a ≠ 0 and ab = ac, then b = c. 

15. A commutative ring with identity is always an integral domain. 

16.  If R is an integral domain, then every nonzero element of R must be invertible. 

17. The set of rational numbers ℚ forms an integral domain. 

18. The set of complex numbers ℂ is an integral domain. 

19. Every subring of an integral domain is also an integral domain. 

20. The ring of 2 × 2 matrices over ℤ forms an integral domain. 

 

11.10 ANSWERS 

Answer of self cheque question: 

1. Yes 2. No 3. No 

 

Answer of objective type question 

1.  c  2. a  3. b  4. c 

5.  a  6. c  7. c  8. c 

9.  c  10. c 
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Answer of fill in the blanks: 

1.    commutative  2. integral 3. not 4. cancellation 

5.    integral domain, field   6.    Integral domain   

7. not      8. Zero   

9. field      10.    Integral domain 

Answer of true and false: 

1.    True   2. False  3. False  4. True 

5.    False   6. False  7. True  8. True 

9.    True   10. False  11. True  12. False 

13.    True   14. True  15. False  16. False 

17.    True   18. True  19. False  20. False 
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Unit-12: IDEALS AND FACTOR RING 

CONTENTS: 
 

12.1      Introduction 

12.2      Objectives 

12.3     Ideal. 

12.4     Improper and Proper ideal 

12.5     Principal ideal  

12.6     Principal ideal ring 

12.7     Prime ideal 

12.8    Quotient ring/ Factor ring 

12.9     Summary 

12.10    Glossary 

12.11    References 

12.12    Suggested Reading 

12.13    Terminal questions  

12.14    Answers 

12.1 INTRODUCTION 

An ideal of a ring in mathematics, and more specifically in ring theory, is a unique 

subset of its constituent parts. Certain subsets of the integers, such as the even numbers or the 

multiples of 3, are generalized by ideals. The defining characteristics of an ideal are closure 

and absorption: adding and subtracting even numbers maintains evenness, and multiplication 

an even number by any integer (even or odd) yields an even number. Similar to how a normal 

subgroup may be used to create a quotient group in group theory, an ideal can be used to 

create a quotient ring. 

The ideals are the non-negative integers that correspond one-to-one with the integers; 

each ideal in this ring is a main ideal made up of multiples of a single non-negative number. 
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However, in other rings, the ideals might not exactly match the ring components, and when 

certain integer qualities are generalized to rings, they tend to attach to the ideals rather than 

the ring components more naturally. For instance, the Chinese remainder theorem may be 

used to ideals and the prime ideals of a ring are comparable to prime integers. The ideals of a 

Dedekind domain, a significant type of ring in number theory, have a variant of unique prime 

factorization.  

In ring theory, ideals and factor rings play a fundamental role in understanding the 

structure of rings and their algebraic properties. An ideal is a special subset of a ring that is 

closed under addition and multiplication by any element of the ring, allowing the construction 

of quotient structures. Given a ring R and an ideal I, the factor ring (or quotient ring) R/I is 

formed by partitioning R into cosets of I, where elements are grouped based on their 

equivalence modulo I. This new ring inherits properties from R but may have a simpler or 

more useful structure. Factor rings help in studying homomorphisms, constructing new rings, 

and understanding fundamental concepts like ring isomorphisms and kernel characterization 

in algebra. 

12.2 OBJECTIVES 

The main objectives of this unit are as follows: 

 Understand the Concept of Ideals: 

1. Define left, right, and two-sided ideals in a ring. 

2. Identify and differentiate between principal, prime, and maximal ideals. 

3. Understand the role of ideals in ring theory and their relationship with subrings. 

 Learn Properties of Ideals: 

1. Determine whether a given subset of a ring is an ideal. 

2. Understand how ideals behave under addition and multiplication. 

3. Explore the role of the zero ideal and the entire ring as trivial ideals. 

 Explore Factor (Quotient) Rings: 

1. Define the quotient ring R/I and understand its construction. 

2. Understand the fundamental homomorphism theorem for rings. 

3. Analyze how the properties of R/I depend on the nature of I (e.g., when R/I is a field 

or an integral domain). 

12.3 IDEALS 

A non-empty Subset S of a ring R is called a left ideal of R if:  
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(i) S is additive Subgroup of R. 

(ii) RrSrs   and Ss  

A non-empty subset S of a ring R is called a right ideal of R if: 

(i) S is additive subgroup of R. 

(ii) RrSsr   and Ss . 

A non-empty subset of a ring R is called an ideal or two sides ideal if it is both left ideal and 

right ideal, i.e. if: 

(i) S is additive Subgroup of R. 

(ii) Ssr  and Srs Rr  Ss . 

Example: 

(i) The subring of even integers is an ideal of ring integers. 

(ii) The set *      + is an ideal of the ring of integers. M being any fixed integer. 

(iii) If R is a ring, then the set *        + is a right ideal of R. a being any fixed 

element of R. 

(iv) If R is a ring, then the set *        + is a left ideal of R.  a being any fixed 

element of R. 

Note 1: If we have to prove that a non-empty subset S of a ring R is an ideal of R, then it is 

sufficient to prove  

(i) Sa , SbaSb   

(ii) Ssr  and Srs Rr  and Ss . 

2: Every ring R always possesses two important ideal: One R itself and the other consisting 

of 0 only. These are respectively known as unit ideal and the null ideal.  

Theorem 1: The intersection of any two left ideals/ right ideals of a ring is again a left 

ideal/right ideal of the ring. 

Proof: We will consider 
1I  and 2I  are two left ideals of a ring R. Then we have to prove that 

21 II  is also an left ideal of the ring R. 

As 
1I  and 2I  are two left ideals of a ring R then obviously 

1I  and 2I  are also the additive 

subgroup of R. Since we know that intersection of two subgroups is again a subgroup. Thus, 

we can say that 
21 II  is also a subgroup of R with respect to the operation addition. 
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Now, we have only to prove that 
21 II   is left ideal of R. For it, we have to show 

2121, IIrsIIsRr  . 

Let 
121 IsIIs   and 

2Is  

Since 
1I is ideal of R then

11, IrsRrIs   

Similarly, 2I is ideal of R then
22 , IrsRrIs   

Now, 
1Irs  and 

212 IIrsIrs   

Hence, 
21 II   is left ideal of R.  

Similarly we can prove that if 
1I  and 2I  are two right ideals of a ring R then

21 II   is also an 

right an ideal of R.  

Theorem 2: The arbitrary intersection of any two left ideals/ right ideals of a ring is again a 

left ideals/ right ideals of the ring. 

Proof: Let R be a ring and let }:{ TtSt   be any family of left ideals of R. Here T is an index 

set and is such that Tt , tS  is left ideal of R. Let 
Tt

t TtSxRxSS


 },:{  be 

the intersection of this family of left ideals of R. Then to prove that S is also a left ideal of R.  

Obviously, S , since at least 0 is in tS Tt . 

Now let ba, any elements of S. Then 

TtSbaSba t  ,,  

TtSba t   

SbaSba
Tt

t 


  

Now let a  be any element of S and r be any element of R. 

We have TtSaSaSa t

Tt

t 


  

TtSra t   

SraSra
Tt

t 


  

Thus, SbaSba , and SraSaRr  ,  

S is left ideal of R. 

Similarly we can prove that arbitrary intersection of right ideals of a ring R is also an right an 

ideal of R.  
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Smallest left ideal containing a given subset 

Definition: Let M be a non-empty subset of a ring R. Then a left ideal I of R is called the 

smallest left ideal of R containing M, if I contains M and if I is contained is every left ideal of 

R containing M.  

The smallest left ideal of R containing M is called left ideal generated by M and will be 

denoted by (M). 

It can be easily seen that the intersection of the family of left ideals containing M is the left 

ideal generated by M.  

Note: A similar definition can be given for the right ideal generated by M as well as for the 

ideal generated by M. For this purpose simply replace the word ‘left ideal’ by ‘right ideal’or 

by ‘ideal’. 

Theorem 3: The left ideal generated by the union 
21 II   of two left ideals is the set 

21 II 

consisting of the elements of R obtained by adding any elements of 
1I  to any elements of 2I . 

Proof: Let 
21 aa  , 

2121 IIbb  . 

Then 
111, Iba   and 

222 , Iba  . 

Since 
21, II  are left ideals of R, therefore they are subgroups of the additive group of R. 

Therefore 

111111, IbaIba   and 
222222 , IbaIba  . 

Consequently, 
2122112121 )()()()( IIbababbaa   

Therefore, 
21 II  is a subgroup of the additive group of R.  

Now let Rr  and 
2121 )( IIaa  . Then 

2211 , IaIa  . We have, 

212121 )( IIraraaar   

[ 1I  is left ideal implies 
11 Ira   and similarly 

22 Ira  ] 

21 II   is a left ideal of R. 

Since 
20 I , therefore 

11 Ia   can be written as 01 a . Thus, 
21111 IIaIa   

211 III  . 

Similarly, 
212 III  . 

2121 IIII   

Thus 
21 II   is a left ideal containing

21 II  . Also if any left ideal contains
21 II  , then it 

must contain
21 II  .  
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21 II   is the smallest left ideal containing 
21 II  .  

 21 II  The left ideal generated by containing )( 2121 IIII  .  

Note: A similar result can be proved for right ideals as well as for ideals.  

Example 1: The set N of all 22  matrices of the form 








0

0

b

a
 for ba,  integers is a left ideal 

but not a right ideal in the ring R of all 22  matrices with the elements as integer. Here N is 

the subset of R consisting of those elements whose second column contains only zeros. 

Solution: Let 









0

0

b

a
A , 










0

0

d

c
B  be any two elements of .N  Then, 

N
db

ca

d

c

b

a
BA 
































0

0

0

0

0

0
 

N  is a subgroup of R under addition. 

Now let 









zy

xw
U  be any element of R and 










0

0

b

a
A  be any element of N.  

Then N
zbya

xbwa

b

a

zy

xw
UA 































0

0

0

0
 

Therefore N is a left ideal of R. It is not a right ideal, since  

N








01

01
, R









10

21
 

And the product 

























21

21

10

21

01

01
, which is not an element of N.  

Example 2: If U is an ideal of a ring R with unity U1 prove that RU  . 

Solution: We have RU  since U is an ideal of R. Let x  be any element of R . Since U  is 

an ideal of R, therefore 

UxUxRxU  1,1  

UR   

RU   

Example 3: Prove that the subset S of all matrices of the form 








b

a

0

0
 with a and b integers, 

forms a subring of the ring R of all 22  matrices having elements as integers. Prove that 

further S is neither a right ideal nor a left in R.  
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Solution: Let 


















d

c
B

b

a
A

0

0
,

0

0
 be any two elements of S. Then 

S
db

ca
BA 














0

0
 

Also, S
bd

ac

d

c

b

a
AB 



























0

0

0

0

0

0
 

S  is a subring of R. 

Further RS 

















12

43
,

10

01
 and the product 

S

























12

43

10

01

12

43
. Therefore S is not a left ideal. 

Again, S

























12

43

12

43

10

01
. Therefore S is not a right ideal. 

12.4 IMPROPER AND PROPER IDEALS 

Let (     ) be a ring. The ideal R and * + are called improper or trivial ideals of R. Any 

ideal other than these two ideals is called a proper (or non trivial) ideal of R. 

12.5  PRINCIPAL IDEAL 

A left ideal generated by single element a  R is also called principal left ideal of R. The set 

                                    *             + 

is a principal left ideal of R.  a being fixed element of R.  

If R is a ring with unity element e, and a  R, then Ra is principal left ideal of R. 

A right ideal generated by single element a  R is also called right principal ideal of R. The 

set 

*             + 

is a principal right ideal of R.  a being fixed element of R. 

If R is a ring with unity element e, then aR is defined as right ideal generated by an element a 

 R.  aR is also defined as principal right ideal of R. 

An ideal of a ring R is called principal ideal of R, if it is generated by single element of R. 

That is to say, the set 

*                    + 
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is a principal ideal of R, generated by single element a  R. This set is also called ideal 

generated by an  element a  R. The expression for principal ideal can be simplified if R is a 

ring with unity element e. 

In this case 

                                       (  ).       For       

                                                , where          

                                       = (    )     

                                       =      , where          . 

Hence a principal ideal of R is the set *             + if   is a ring with unity element  . 

More about principal ideal: 

Definition: Any ideal of a ring will be called principal ideal if there exist an element 

s.t. any ideal of that contain also contains i.e.,  

Therefore, the principal ideal is an ideal generated by a single element in itself. 

 In a ring  if , then the ideal generated by 1 is whole ring i.e., , since 

each element of can be expressed as . Ring itself is referred to be the unit ideal for this 

reason. The null ideal is the ideal produced by the zero element of R, or (0), which only 

contains the zero element. Every ring R has (0) as at least one of its primary ideals. Every 

ring with unity has two primary ideals at a minimum, namely (0) and (1). 

Theorem 4: If  is an element in a commutative ring with unity, then the set 

 is a principal ideal of generated by the element i.e., . 

Proof: First we have to prove that . Since is ring with unit element 1, therefore 

. 

We must now demonstrate that S is an ideal of R. Therefore, we must first demonstrate that S 

is a subgroup of R under addition. Let the two element of are . Then for 

some . 

We have . Since . 

Since  is a subgroup of under addition. 

Now we have to prove that and . But is a commutating ring 

then, 

 and thus we have only to prove that . 

We have .  

S R

Sa T R a S ).(aS 

)(R R1 R)1(

R 1r

a R

 RrraS  R a )(aS 

Sa R

Saa 1

S vu, arvaru 21 , 

Rrr 21,

Sarrararvu  )( 2121 Rrr  21

S R

SxuSuRx  , Sux R

uxxu  Sxu

Saxrarxxu  )()( 11
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As we know  

is an ideal of and  

Now to prove that is an ideal which is generated by the element , We have only to show 

that if is an ideal of and , then . 

Let then . If is an ideal of s.t.  then . Thus 

. 

Hence is principal ideal of s.t. . 

Example 4: To find the principal ideal in the ring of integer generated by 5. 

Solution: Since we know ring of integer  is a commutative ring with unity.  

Since  

Thus, principal ideal of generated by 5 is  

 

and obviously,  

12.6  PRINCIPAL IDEAL RING 

A commutative ring with unity for which every ideal is a principal ideal is said to be a 

principal ideal ring. 

12.7  PRIME IDEAL 

Let R be a commutative ring. An ideal S of ring R is said to be a prime ideal of R if  

                                      S or    . 

If an ideal S of a ring R is generated by an element   , then we write 

                                         ( ). 

Similarly if an ideal S of a ring R is generated by elements      , then we write 

                                      (*   +). 

Example 5: The ideal   *      + is prime. 

Solution: Let   *      + is prime ideal of R generated by 3 and we also write   ( )  

Here                              .  Also 3 is prime 

                                              and     

                                              or     

                                            is prime 

Rxr 1

S R .Sa

S a

T R Ta TS 

Sra Rr T R Ta TraTaRr  ,

TS 

S R )(aS 

)(R

)(I

 Irr  |5)5(

R

 ...,10,5,0,5,10...,)5( 

)5()5( 
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12.8   QUOTIENT RING/ FACTOR RING 

Let R be a ring and S be an ideal of R. Let     denote the family of cosets of S in R, i.e.,  

 

 
 *       +  

Let          be arbitrary elements of    . Define the operations of addition and 

multiplication on      as follows:  

(   )  (   )    (   ) 

                                                     (   )(   )      . 

Then R/S is a ring w.r.t. these operations. This ring (       ) is called quotient ring or 

factor ring. 

Theorem 5: If S is an ideal of a  ring R, then the set  

}:{/ RaaSSR  , i.e.,  the collection of all residue classes of S in R. 

The composition in SR / is defined as follows: 

Addition: (   )  (   )    (   ) 

Multiplication: (   )(   )      . 

Prove that SR /  forms a ring. 

Proof: Since   (   ) and      are also the residue classes of S in R, therefore we can 

say that SR / is closed with respect to addition and multiplication of residue classes. Initially, 

we have to prove that both addition and multiplication in SR /  are well defined. For this we 

have to show that if 'aSaS   and 'bSbS  , then 

)()()()( '' bSaSbSaS   

And ))(())(( '' bSaSbSaS   

We have aSaaSaS  '')()(  

And bSbbSbS  '' )()(  

Therefore there exist S,  such that bbaa   '' ,  

Now )()()()(''   bababa . 

Sbaba  )()( ''  

)()( '' baSbaS   

)()()()( '' bSaSbSaS   

Thus addition in SR /  is well defined. 
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Again ababbaba   ))((''  

abab    

Sabababba  ''    [Since S is an ideal therefore S,  and 

SbSSaRba   ,,,  and finally Sba   ] 

Now since Sabba '' , therefore abSbaS  ''  

))(())(( '' bSaSbSaS   

Hence multiplication in SR / is also well defined. 

Associativity: We have, 

)]([)()]()[()( cbSaScSbSaS   

)()]([])[()]([ cSbaScbaScbaS   

)()]()[( cSbSaS   

Commutativity: We have, 

)()()()()()( aSbSabSbaSbSaS   

Existence of identity: We have SRSS /0 . If SRaS / , then  

aSaSaSS  )0()()0(  

S is a additive identity. 

Existence of inverse: Let SRaS / , then 

SRaS /)(  , also we have  

SSaaSaSaS  0])[(][)]([  

aSORaS  )(  is the additive inverse of aS  . 

Associativity of multiplication: We have  

cabScSabScSbSaS )())(())]()([(   

)].)()[(())(()( cSbSaSbcSaSbcaS   

Distributive of multiplication with respect to addition: We have  

)()]()[()]())[(( cbaScbSaScSbSaS   

)()()( acSabSacabS   

))(())(( cSaSbSaS   

In a similar way, we can prove that 

))(())(())](()[( aScSaSbSaScSbS  . 
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Hence we can say that SR / is a ring with respect to the composition addition and 

multiplication and the residue class 0S  or S is the zero element of this ring. 

Example 6: If SR / is a ring of residue classes of S in R. Prove that 

(i) If R is coomutative so also is SR /  

(ii) If R has a unity element 1 so also has SR / , namely 1S  

Solution (i): Suppose R is a commutative ring. Let bSaS  ,  be two elements in SR / . 

Then Rba ,  and baab   

We have ))(())(( aSbSbaSabSbSaS   

(ii): Suppose R is a ring with unit element 1. Then SRS /1 . If aS   is any element of 

SR / , then we have 

aSaSaSS  )1())(1(  

And aSaSSaS  )1()1)((  

1S  is the unit element of SR / . 

 Check your progress 

Problem 1: Check that the Z4 is ideal of the ring of integers? 

Problem 2: Check that the Z7 is prime ideal of the ring of integers? 

Problem 3: Is Z4  is prime ideal of the ring of integers? 

 

12.9 SUMMARY 

This unit on ideals and factor rings explores the concept of ideals, which are special subsets 

of rings that are closed under addition and multiplication by ring elements. Ideals play a 

crucial role in constructing quotient rings (factor rings), denoted as R/I, where I is an ideal 

of R. The chapter classifies ideals into principal, prime, and maximal ideals, with prime 

ideals ensuring that R/I is an integral domain and maximal ideals ensuring that R/I is a field. 

We will further discusses in next units the First Isomorphism Theorem, showing how ideals 

correspond to kernels of ring homomorphisms. Quotient rings simplify ring structures, 

leading to applications in modular arithmetic, algebraic number theory, and 

cryptography. This unit helps to understanding ideals and factor rings helps in analyzing 

ring properties and constructing new algebraic systems. 

12.10 GLOSSARY 
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 Ideal. 

 Improper and Proper ideal 

 Principal ideal  

 Principal ideal ring 

 Prime ideal 

 Quotient ring/ Factor ring 
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12.13 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. The set of all multiples of a fixed integer n forms an ideal in the ring of integers Z, 

and it is denoted by nZ. 

2. Prove that an ideal I of a commutative ring R is called a maximal ideal if the only 

ideals containing I are I and R. 

3. Prove that the quotient ring R/I is a field if and only if I is a maximal ideal of R. 

4. Prove that an ideal I of R is called a prime ideal if whenever Iab  then either Ia

or Ib . 
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5. Prove that the factor ring R/I is an integral domain if and only if I is a prime ideal of 

R. 

6. Prove that the sum of two ideals I and J in a ring R is also an ideal of R. 

Short Answer Type Question: 

1. Prove that intersection of two ideal of a ring is also an ideal of ring. 

2. Define the ring and subring with example. 

3. Define the ideal, prime ideal and principal ideal with example. 

4. Define proper and improper ideal with example. 

5. Let   and   be arbitrary elements of a ring R whose characteristic is two and    
  . Then prove that, 

(   )        (   )  

 

Objective type question: 

1. Which of the following is always an ideal in a ring R? 

a)  The set of all even integers in Z 

b)  The set of all prime numbers in Z 

c)  The set of all units in R 

d)  The set of all zero divisors in R 

2. If I is an ideal of a ring R, what is the structure of the factor ring R/I? 

a)  Always a field 

b)  Always an integral domain 

c)  Always a ring 

d)  Always a group 

3. For an ideal I of R, the factor ring R/I is a field if and only if: 

a)  I is a maximal ideal 

b)  I is a prime ideal 

c)  I contains all nilpotent elements 

d)  I is the zero ideal 

4. Which of the following is a necessary and sufficient condition for a subset I of R 

to be an ideal? 

a)  I is closed under addition 

b)  I is closed under multiplication 

c)  I is closed under both addition and multiplication by elements of R 

d)  I contains the multiplicative identity of R 

5. If R is a commutative ring with identity and P is a prime ideal of R, then R/P is 

always: 

a)  A ring with unity 

b)  An integral domain 
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c)  A field 

d)  A division ring 

6. Which of the following is NOT necessarily an ideal of a ring R? 

a)  The zero ideal {0} 

b)  The set of all nilpotent elements in R 

c)  The whole ring R 

d)  The set of all elements divisible by a fixed element in R 

7. If I is a proper ideal of a commutative ring R, then R/I is a field if and only if I is: 

a)  A prime ideal 

b)  A maximal ideal 

c)  A principal ideal 

d)  A nil ideal 

8. Which of the following is true for every ideal I of a ring R? 

a)  I is always a subring of R 

b) I is always a subgroup of (R, +) 

c)  I always contains the multiplicative identity if R has one 

d)  I is always a field if R is a field 

9. Let R be a commutative ring with unity. The quotient ring R/I is an integral 

domain if and only if I is: 

a)  A maximal ideal 

b)  A prime ideal 

c)  A principal ideal 

d)  A radical ideal 

10. In the ring Z, the ideal 5Z is: 

a)  A prime ideal 

b)  A maximal ideal 

c)  Both prime and maximal 

d)  Neither prime nor maximal 

11. If R is a commutative ring and P is a prime ideal, then which of the following is 

true for R/P? 

a)  It is always a field 

b)  It is always an integral domain 

c)  It is always a division ring 

d)  It is always a local ring 

12. An ideal I in a ring R is said to be a maximal ideal if and only if: 

a)  I is the largest ideal in R 

b)  I is not contained in any other ideal 

c)  The only ideals containing I are I and R 

d)  R/I is an integral domain 

13. If R is a commutative ring and I is a nil ideal, then every element in I is: 

a)  A unit 

b)  Nilpotent 
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c)  Idempotent 

d)  Invertible 

14. If I and J are ideals of a commutative ring R, then I+J is: 

a)  An ideal of R 

b) A subring but not necessarily an ideal 

c)  A prime ideal 

d)  A maximal ideal 

True and False questions: 

1. Every ideal of a ring is a subring. (T/F) 

2. Every subring of a ring is an ideal. (T/F) 

3. The zero ideal {0} and the whole ring R are always ideals of R. (T/F) 

4. A maximal ideal is always a prime ideal. (T/F) 

5. A prime ideal is always a maximal ideal. (T/F) 

6. If I is an ideal of a ring R, then the factor ring R/I is always a commutative ring. (T/F) 

7. Every field has exactly two ideals: the zero ideal and the whole field. (T/F) 

8. If I is an ideal of a ring R, then R/I is always an integral domain. (T/F) 

9. The set of all even integers forms an ideal in Z. (T/F) 

10. The sum of two ideals in a ring is always an ideal. (T/F) 

11. If I is a maximal ideal of R, then R/I is a field. (T/F) 

12. If I is a prime ideal of R, then R/I is a field. (T/F) 

13. An ideal that contains a unit of the ring must be the entire ring. (T/F) 

14. In a commutative ring R, every prime ideal is also a maximal ideal. (T/F) 

Fill in the blanks: 

1. The set of all multiples of a fixed integer n forms an ideal in Z, denoted by ………. 

2. An ideal I of a commutative ring R is called a ______ if the only ideals containing I 

are I and R. 

3. The factor ring R/I is a ______ if and only if I is a maximal ideal. 

4. The ideal I of R is called a ______ ideal if whenever ab I, then either a I or b I. 

5. The factor ring R/I is an ______ if and only if I is a prime ideal. 

6. The sum of two ideals I and J in a ring R is always an ______ of R. 

7. A ring R is a ______ if and only if it has exactly two ideals: {0} and R. 

8. If R is a commutative ring with unity, then the quotient ring R/I is a field if and only if 

I is a ______ ideal. 

9. The quotient ring Z/6Z has exactly ______ elements. 

10. In any ring R, the set {0} is always an ______ of R. 

11. If an ideal I contains a unit of the ring R, then I must be ______. 

12. The set of all even integers forms an ideal in Z, and it is denoted by ______. 

13. A two-sided ideal in a ring R is a subset that is closed under addition and closed under 

multiplication by ______. 
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14. If R is a commutative ring with identity and P is a prime ideal of R, then R/P is always 

an ______. 

12.14 ANSWERS 

Answer of self cheque question: 

1. Yes 2. Yes 3. No 

Answer of objective type question: 

1: a   2: c  3: a  4: c 

5: b   6: b  7: b  8: b 

9: b   10: a  11: b  12: c 

13: b   14: a   

Answer on True and False: 

1. False   2: False   3: True   4: True  

5: False   6: False   7: True   8: False  

9: True   10: True   11: True   12:  False  

13:  True   14: False  

Answer of fill in the blanks: 

1.   nZ   2. Maximal ideal   3. Field 

4.  prime  5. Integral Domain  6. Ideal 

7.  Field  8. Maximal   9. 6 

10.  Ideal  11. The whole ring of R  12. 2Z 

13.  any element of R     14. Integral domain 
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Unit-13: RING HOMOMORPHISM 

 

CONTENT: 

13.1  Introduction 

13.2  Objectives 

13.3  Homomorphism of rings 

13.4  Kernel of ring homomorphism 

13.5 Image of ring homomorphism 

13.6  Isomorphism of rings 

13.7 Summary 

13.8  Glossary  

13.9   References 

13.10  Suggested Readings 

13.11  Terminal Questions 

13.12 Answers 

13.1 INTRODUCTION 

A ring homomorphism is a fundamental concept in abstract algebra that describes a 

structure-preserving function between two rings. A function SRf :  is called a ring 

homomorphism if it satisfies two key properties: )()()( bfafbaf   and 

)().().( bfafbaf  for all elements ba,  in R. If the rings have a multiplicative identity, the 

homomorphism may also preserve unity, meaning SRf 1)1(  . The kernel of a ring 

homomorphism, defined as }0)(|{ker  rfRrf , is always an ideal of R, which plays a 

crucial role in constructing quotient rings. Ring homomorphisms help in understanding the 

relationships between different algebraic structures, leading to key results like the First 

Isomorphism Theorem. They are essential in various areas of mathematics, including number 

theory, algebraic geometry, and functional analysis. 
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13.2 OBJECTIVES 

After reading this unit learners will be able to  

1. Understand the Concept – To define and explain what a ring homomorphism is 

and how it preserves ring operations (addition and multiplication). 

2. Explore Properties – To study the key properties of ring homomorphisms, including 

the preservation of the additive identity (0) and, in some cases, the multiplicative 

identity (1). 

3. Kernel and Image – To understand the kernel and image of a ring homomorphism 

and their roles in the structure of rings. 

4. Ideal and Subring Relations – To learn that the kernel of a ring homomorphism is 

always an ideal, and the image is always a subring of the codomain. 

5. Types of Homomorphisms – To differentiate between injective, surjective, and 

bijective ring homomorphisms and their significance in algebraic structures. 

6. Isomorphisms and Quotient Rings – To explore the First Isomorphism Theorem, 

which connects homomorphisms to quotient rings and helps in classifying ring 

structures. 

7. Applications – To apply ring homomorphism concepts in abstract algebra, number 

theory, linear algebra, and other mathematical disciplines. 

13.3 HOMOMORPHISM OF RINGS 

Definitions: (Homomorphism into) A mapping f from a ring R  into a ring 'R is said to be 

homomorphism of R into 'R  if, 

(i) Rbabfafbaf  ,)()()(  

(ii) Rbabfafabf  ,)()()(  

Homomorphism onto: A mapping f from a ring R  onto a ring 'R is said to be 

homomorphism of R onto 'R  if, 

(i) Rbabfafbaf  ,)()()(  

(ii) Rbabfafabf  ,)()()(  

Note: 
'R is said to be a homomorphic image of R . 
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Examples 1: Trivial Homomorphism: The function RSf : given by 0)( af  for all 

Ra  is always a ring homomorphism. 

2. Natural Inclusion: If R is a subring of S, the inclusion map SRf :  defined by 

aaf )( , is a ring homomorphism. 

3. Mod n Map: The function nZZf : given by naaf mod)(   is a ring 

homomorphism. 

Example 4: Consider the determinant function RRMf )(: 2
given by: 

)det()( AAf   

Where, )(2 RM  is the ring of 2×2 real matrices. 

This is a multiplicative ring homomorphism since: 

)det().det()det( BAAB   

but not an additive homomorphism because: 

)det()det()det( BABA   

Therefore, this is not a full ring homomorphism, only a semigroup homomorphism. 

Theorem 1: If f is a homomorphism of a ring R into a ring 'R , then 

(i) '0)0( f , where 0 is the zero element of a ring R  and '0 is the zero element of 'R . 

(ii) Raafaf  )()(  

Proof: (i) Let Ra  then 
')( Raf  . We have 

)0()()0()(0)( ' fafafafaf     [ '0 is the additive identity of 'R ] 

Now 'R is a group with respect to addition. Therefore, 

)0()(0)( ' fafaf   

)0(0' f        [By left cancellation law] 

(ii) Let a be any element of R. Then Ra . 

We have )()()]([)0(0' afafaaff   
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)( af   is the additive inverse of )(af  in the ring 'R . Thus )()( afaf  . 

Theorem 2: Let   be a homomrphic mapping of a ring R into a ring 'R . Let 'S be the 

homomorphic image of R into 'R . Then 'S is a subring of 'R . 

Proof: Since under the mapping  , 'S is the image of R in 'R therefore, 

'')( RSR  . 

Let '' ,ba be any two element of 'S . Since )(' RS  , therefore there exist element Rba ,  

such that '' )(,)( bbaa   . 

We have )()()('' bababa        [Since   is a homomorphism] 

Now Rba  is such that )('' baba   . Therefore, 

''' Sba   

Further, ''' )()()( Sabbaba   , Since Rab  

Thus, '''''' , SbaSba   and ''' Sba   

Hence by subring test, 'S is subring of 'R . 

13.4 KERNEL OF RINGS HOMOMORPHISM 

The kernel of a ring homomorphism is the set of elements in the domain that are mapped to 

the zero element in the codomain. 

Definition: If f is a homomorphism of a ring R into a ring S , The kernel of f, denoted as 

ker(f), is defined as: }0)(|{)ker( SafRaf   

Where S0 is the additive identity (zero element) in S. 

Example 5: Consider the ring homomorphism 6: ZZf   given by: 

6mod)( nnf   

The kernel consists of all integers Zn  such that 6mod)( nnf  , meaning: 

ZnZnfKer 6}6mod0|{)(   
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which is the ideal generated by 6, written as (6). 

Example 6: Consider the ring homomorphism from the ring of 2×2 matrices over R: 

RRMf )(: 2
 such that )det()( AAf   

The kernel consists of all 2×2 matrices with determinant zero: 

}0)det(|)({)( 2  ARMAfKer  

This is the set of singular matrices, which is not an ideal (since it is not closed under matrix 

addition). 

However, it is a nontrivial subring of )(2 RM . 

Theorem 3: If f is a homomorphism of a ring R  into a ring 'R with kernel S , then S  is an 

ideal of R . 

Proof: Let f  be a homomorphism of a ring R into a ring 'R . Let '0,0 be the zero elements of 

R , 'R  respectively. Let S be the kernel of f . Then }0)(|{ ' xfRxS . 

Since '0)0( f , therefore at least S0 . Thus S is not empty. 

Let Sba , . Then '' 0)(,0)(  bfaf  

We have ')()()]([)( bfafbafbaf   

'' 00)()(  bfaf                           [ Sba  ] 

If r  be any element of R , then 

'' 0)(0)()()(  rfrfafarf  

And '' 00)()()()(  rfafrfraf  

SraSar  , . 

Thus SraSarSbaRrSba  ,,)(,,  

S is an ideal of R.  
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Theorem 4: The homomorphism   of a ring R into a ring 'R is an isomorphism of R into a 

'R if and only if )0()( I , where )(I  denotes the kernel of .  

Proof: Let   be a homomorphism of a ring R into a ring 'R . Let '0,0 be the zero elements of 

R, 'R respectively. Let )(IS   be the kernel of  . Then S is an ideal of R and 

}0)(|{ ' aRaS   

Suppose   is an isomorphism of R into a ring 'R . Then   is one-one. Let Sa , then 

'0)( a     [By definition of kernel] 

)0()(   a     [ '0)0(  ] 

0 a       [   is one-one] 

Thus 0 aSa . In other word 0 is the only element of R which belong to S. Therefore 

)0(S . 

Conversely, suppose that )0(S . Then to prove that   is an isomorphism of R into 'R i.e., to 

prove that   is one-one. 

If )()(,, baRba    

'0)()(  ba           [ )(),( ba   are in the ring 'R ] 

'0)(  ba   [   is a homomorphism] 

Sba                    [By definition of kernel] 

0 ba    [ )0(S ] 

ba   

  is one-one. Hence   is an isomorphism of R into 'R . 

Theorem 5: Suppose R  is a ring, S an ideal of R. Let f  be a mapping from R to R/S defined 

by RaaSaf )( . Then f is a homomorphism of R onto R/S. 

Proof: Consider the mapping SRRf /:   such that, 
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RaaSaf )( . 

Let xS   be any element to SR / . Then Rx . 

We have xSxf )( . Therefore the mapping f is onto SR / . Let Rba , . Then 

)()()()()()( bfafbSaSbaSbaf   

Also, )()())(()( bfafbSaSabSabf  . 

f is a homomorphism of R onto SR / . 

Hence, we can say that every quotient ring is a homomorphic image of the rings.  

Example 7: Show that every homomorphic image of a commutative ring is commutative. 

Solution: Let R be a commutative ring. Let f  be a homomorphic mapping of R onto a ring 

'R . Then 'R is a homomorphic image of R. 

Let '' ,ba  be any two elements of 'R . Then '' )(,)( bbfaaf   for some Rba , because f is 

onto 'R . We have 

'''' )()()()()()( abafbfbafabfbfafba   

'R  is a commutative ring. 

Example 8: If R is a ring with unit element 1 and   is a homomorphism of R onto 'R  prove 

that )1(  is the unit element of 'R . 

Solution: Since   is a homomorphism of R  onto 'R , therefore 'R  is a homomorphism 

image of R. If 1 is the unity element of R, then ')1( R . Let 'a  be any element of 'R . Then 

)(' aa   for some Ra  since   is onto 'R . We have, 

'' )()1()()1()1( aaaaa    

And '' )()1()1()()1( aaaaa    

)1(  is the unity element of 'R  
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Example 9: If R is a ring with unit element 1 and   is a homomorphism of R into an integral 

domain 'R  such that kernel of   i.e., RI )( , then prove that )1(  is the unit element of 'R . 

Solution:   is a homomorphism of a ring R  into an integral domain 'R . Then kernel of  , 

RxxI  :{)( and }0)( 'Rx  . 

Since RI )( , therefore there exist an element Ra  such that '0)( Ra  . 

We have )()1()()1( aaa    

Now let 'b be any element of 'R . We have  

'' )()( baba    

'' )()()1( baba     [ )]()()1( aa    

'' )(])1()[( baba     [ ')(),1( Ra  which being an integral domain, is a 

commutative ring] 

0)(])1()[( ''  baba   

0])1()[( ''  bba   

0)1( ''  bb    [ 0)( a  and 'R is without zero divisor] 

)1()1( '''  bbb    [ 'R  is commutative ring] 

Thus ''''' )1()1( Rbbbb   . 

Thus )1(  is the unit element of 'R . 

13.5 IMAGE OF RINGS HOMOMORPHISM 

The image of a ring homomorphism SRf : is the set of all elements in S that have a 

preimage in R. Mathematically, it is defined as: 

}|)({)Im( Rrrff   
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Example 10: Consider the ring homomorphism ZZZf 6/:   given by: 

6mod)( nnf   

So, the image of f is {0, 1, 2, 3, 4, 5}, which also forms a subring of ZZ 6/ . 

Theorem 6: Let SRf :  be a ring homomorphism. Then, the image }|)({)Im( Rrrff 

is a subring of S. 

Proof: To show )Im( f is a subring, we need to verify closure under addition, multiplication, 

and the presence of S0 . 

Since f is a homomorphism, for any Rba ,  then,  

(i) )Im()()()( fbafbfaf       [By the property of homomorphism] 

(ii) )Im()()().( fabfbfaf             [By the property of homomorphism] 

(iii) )Im()0()0( fff SR   

Thus, Im(f) is a subring of S. 

Example 10: Let SRf :  be a ring homomorphism. The image )Im( f is not necessarily 

an ideal of S, unless S satisfies additional conditions. 

Solution: Consider the inclusion map QZ  , where nnf )( . The image of f is Z, which is 

a subring of Q, but not an ideal since Z1.
2

1
. 

Theorem 7: (Fundamental theorem on homomorphism of rings) Every homomorphic 

image of a ring R is isomorphic to some residue class ring (quotient ring) thereof.  

Proof: Let 'R be the homomorphic image of a ring R and f be the corresponding 

homomorphism. Then f is a homomorphism of R  onto 'R . Let S be the kernel of this 

homomorphism. Then S is an ideal of R. Therefore SR /  is a ring residue classes of R 

relative to S. We shall prove that '/ RSR  . 

If Ra , then SRaS / and 
')( Raf  . Consider the mapping 

'/: RSR  such that 

RaafaS  )()( . 

First we shall show that the mapping   is well defined i.e., if Rba ,  and ,bSaS  then 

)()( bSaS   . 
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We have bSaS   

Sba   

'0)(  baf  

''' 0)()(0)()(0)([  bfafbfafbaf  

)()()()( bSaSbfaf    

  is well defined. 

  is one-one: We have )()( bSaS    

'0)()()()(  bfafbfaf  

'' 0)(0)()(  bafbfaf  

Sba      [ S  is kernel of f ] 

bSaS   

  is one-one. 

  is onto 'R : Let y  be any element of 'R . Then )(afy   for some Ra  because f is onto 

'R . Now SRaS / and we have yafaS  )()( . Therefore   is onto 'R . 

Finally we have  

)()()()]([)]()[( bfafbafbaSbSaS    

)()( bSaS    

Also, )()()()()]()[( bfafabfabSbSaS   )]()][([ bSaS    

  is an isomorphism of SR /  onto 'R  

Hence, we can say that SR / 'R . 

Corollary 1: If SRf :  is a ring homomorphism. Then )Im()ker(/ ffR   

Where }0)(|{)ker( SrfRrf   is the kernel of f. 
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Proof: Define the map: 

)Im(: fR  , )()( rfr   

Step 1:   is a Surjective Homomorphism 

 Since every element of )Im( f  is of the form )(rf , it follows that   is surjective. 

 Since f is a ring homomorphism, ϕ\phiϕ is also a ring homomorphism. 

Step 2: Kernel of   is )ker( f  

By definition, )ker(}0)(|{}0)(|{)ker( frfRrrRr SS    

Thus, )ker()ker( f  

Step 3: Use the First Isomorphism Theorem 

The First Isomorphism Theorem for rings states that: 

)Im()ker(/  R  

Since )ker()ker( f and )Im()Im( f , we get: 

)Im()ker(/ ffR   

Corollary 2:  If SRf :  is a surjective ring homomorphism, then Sf )Im( , and  f  is an 

isomorphism if and only if f is also injective. 

Proof: 

 Since f is surjective, every element of S is in the image of f, so Sf )Im( . 

 If f  is also injective, then }0{)ker( Rf  , meaning RfR )ker(/  

 By the First Isomorphism Theorem, 

SffR  )Im()ker(/  

 Since )ker( f is trivial, we get SR  , meaning f is an isomorphism. 

Thus, f is an isomorphism if and only if it is both surjective and injective. 

13.6 ISOMORPHISM OF RINGS 

Definition: Any ring  is said to be isomorphic to other ring if there exists a one-one and 

onto mapping from to such that 

R 'R

f R 'R
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(i)  

(ii) . 

Also such a mapping is said to be an isomorphism of onto . Symbolically it is denoted 

as , also is said to be isomorphic image of .  

Note: The compositions in the two rings have been represented by the identical symbols in 

the aforementioned definition of ring isomorphism. The constituent parts of any composition 

are revealed to us by the elements. For example, . When we write  then the 

respective compositions are addition and multiplication of . Again . When 

we write  then the respective compositions are addition and 

multiplication of  

Relation of isomorphism in the set of all rings. 

We can demonstrate that the relation of isomorphism in the set of all rings is an equivalence 

relation, as we have done in groups. In order to ensure that rings of the same class are all 

isomorphic to one another and rings of other classes are not, the set of all rings will be 

divided into disjoint equivalence classes. One can say that any two rings in the same 

equivalence class are abstractly similar. 

Properties of isomorphism of rings:  

Theorem 8: If is an isomorphism of a ring onto a ring , then 

(i) The image of  is  i.e., the additive identity element of ring map into 

additive identity of the ring . 

(ii) The negative of the image of an element of is that element's image of its negative 

i.e.,  . 

(iii) If  is the commutative ring, then is also a commutative a commutative ring. 

(iv) If is without zero divisors, then is also without zero divisors. 

(v) If is with unit element, then is also with unit element. 

(vi) If is field, then is also a field. 

(vii) If is skew field, then is also a skew field.  

Proof (i): Let . Then . Let denote the zero element of . To prove that 

. 

)()()( bfafbaf 

Rbabfafabf  ,)()()(

f R 'R

'RR  R 'R

Rba , abba ,

R ')(),( Rbfaf 

)()(),()( bfafbfaf 

'R

f R 'R

R0
'0 R R

'R

R

Raafaf  )()(

R 'R

R 'R

R 'R

R 'R

R 'R

Ra
')( Raf 

'0 'R

'0)0( f



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 243 
 

We have  By cancellation law for addition in , 

we get from the result that  

(ii) We have  

is the additive inverse inverse of in . Thus  

(iii) Let and  be any two elements of . Then  

We have          [ is commutative ] 

                               . 

is also commutative. 

(iv) We have . Also is one-one. Therefore 0 is the only element of whose -

image is . 

(v) Let 1 be the unit element of . Then . If  is any element of , we have  

 and  

 is the unit element of . 

(vi)  is commutative with unity if  is a field, and each non-zero element of will have a 

multiplicative inverse. Now that this has been shown in (iii) and (v), will be commutative 

and possess the unit element i.e., . 

Let  be any non-zero element of . Then 

 exists. 

Now and we have 

 and  

 is the multiplicative inverse of  

Hence is a field. 

(vii) As shown in (v) will be with unit element i.e.,  as shown in (vi) each non-zero 

element of will be inversible. Therefore is a skew-field.  

Imbedding of a ring: A ring is said to be imbedded in a ring  if there is a subring of 

s.t.  is isomorphic to .  

).0()()0()(0)( ' fafafafaf  'R

),0()(0)( ' fafaf  ).0(0 ' f

'0)0()]([)()(  faafafaf

)( af  )(af 'R )()( afaf 

)(af )(bf 'R Rba ,

)()()()( bafabfbfaf  R baab 

)()( afbf

'R

'0)0( f f R f

'0

R ')1( Rf  )(af 'R

)()1()()1( afafaff  ).()1()1()( afaffaf 

)1(f 'R

R R R

'R

)1(f

)(af 'R

 '0)(af
10  aa

'1)( Raf 

)1()()()( 11 faafafaf   ).1()()()( 11 faafafaf  

)( 1 af ).(af

'R

'R )1(f

'R 'R

R 'R
'S

'R R 'S
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Any ring is imbedded to other ring if there exists a one-one and onto mapping from 

to such that,  

. 

Theorem 8: Any ring without a unity element may be imbedded in a ring that contains a 

unity element.  

Proof: Let be any ring without unity element. Let is the ring of integers and 

. 

When appropriate binary operations have been specified in , then it becomes a ring with 

a unity element containing a subring, isomorphic to . 

If  and  are any two elements of , then we define addition in by the 

equation 

                                                                         …(1) 

And multiplication in  by the equation 

                                                                   … (2) 

Since  and , therefore . Thus is closed w. r. to 

addition. Further, . Also . Therefore 

and is closed w. r. to. multiplication.  

 Now let be any element of . Then we observe: 

Associativity in addition: We have 

 

 

 

Commutativity in addition: We have 

 

                                               [ Commutativity holds in addition] 

                      . 

Existence of identity: We have . Here the first is the zero element of and 

the second is the zero integer. 

Since,  

 is the additive identity. 

R 'R f

R 'R

Rbabfafabfbfafbaf  ,)()()(),()()(

R

R Z

},:),{(' ZmRamaZRR 

ZR

R

),( ma ),( nb ZR ZR

),(),(),( nmbanbma 

ZR

),(),)(,( mnmbnaabnbma 

Rba  Znm  ZRnmba  ),( ZR

RmbnaabRmbnaab ,, Zmn

ZRmnmbnaab  ),( ZR

),(),,(),,( pcnbma ZR

),(),(),()],(),[( pcnmbapcnbma 

])[],[()][,]([ pnmcbapnmcba 

)],(),[(),(),(),( pcnbmapncbma 

),(),(),( nmbanbma 

),( mnab  

),(),( manb 

ZR)0,0( 0 R

0

),()0,0(),()0,0( mamama 

)0,0(
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Existence of inverse: If , then 

 and we have 

. 

 is additive inverse of  

Associativity of multiplication: We have  

 

 

 

Also  

 

 

 

 

We see that,  

Distributive law: We have  

 

 

 

 

In a similar manner, we may demonstrate that the other distributive law is equally valid. 

In light of the operations described on it,  is a ring. 

Existence of identity: We have 

. If , then 

 

Also . 

is the multiplicative identity. So,  is a ring with unity element (0, 1). 

Now consider the subset of which consists of all pairs of the form . 

We shall show that is a subring of . Let be any two elements of 

. 

Then  

ZRma ),(

ZRma  ),(

)0,0(),(),(),(  mmaamama

),( ma  ),( ma

),)(,(),)](,)(,[( pcmnmbnaabpcnbma 

))(,)()()(( pmncmnmbnaabpcmbnaab 

))(,)()()()()()(( pmncmrbpmapnabpbcmacnabc 

),)(,()],)(,)[(,( npncpbbcmapcnbma 

))(),()()(( npmncpbbcmanpncpbbca 

))(),()()()()()(( pmnncmpbmbcmanpncapbaabc 

))(),()()()()()(( pmnncmpbmbcmanpncapbaabc 

).)(,)()()()()()(( pmncmnbmpbcmanpacnabpabc 

)],)(,)[(,(),)](,)[(,( pcnbmapcnbma 

),)(,()],(),)[(,( pncbmapcnbma 

))(),()()(( pnmcbmapncba 

),( mpmnmcmbpanaacab 

),)(,(),)(,( pcmanbma 

ZR

ZR)1,0( ZRma ),(

),(),00()1,100(),()1,0( mamamamama 

),(),00()1,010()1,0)(,( mamammaama 

)1,0( ZR

}0{'  RS ZR )0,(a

}0{R ZR )0,(),0,( ba

}0{R

}.0{)0,()0,()0,()0,()0,(  Rbababa
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Also, . 

is a subring of . 

Finally we have to show that . Let  be a mapping from to defined as 

.  

 is one-one: For it, let  is one-one. 

 is onto: Let . Then and we have . Therefore  is onto. 

 preserves addition and multiplication: If , then 

. 

Hence  preserve the composition. i.e., . 

Check your progress 

Problem 1: If SRf :  is a ring homomorphism, what can you say about )0(f ? 

Problem 2: Let 6: ZZf  be defined by 6mod)( nnf  then find fker ? 

Problem 3: Let 6: ZZf  be defined by 6mod)( nnf  then find fIm ? 

 

13.7 SUMMARY 

The Ring Homomorphism chapter explores the structure-preserving functions between 

rings, ensuring that addition and multiplication operations remain intact. A function 

SRf :  is a ring homomorphism if it satisfies )()()( bfafbaf  and 

)().().( bfafbaf   for all elements ba,  in R. Key concepts include the kernel (an ideal of 

R) and the image (a subring of S), which help analyze ring structures. The chapter also covers 

different types of homomorphisms, such as injective, surjective, and isomorphic maps, and 

introduces the First Isomorphism Theorem, which connects homomorphisms to quotient 

rings. Understanding ring homomorphisms is essential in abstract algebra, as they aid in 

classifying rings, constructing new algebraic systems, and finding applications in number 

theory and algebraic geometry. 

13.8 GLOSSARY 

 Homomorphism of Ring. 

 Kernel of ring homomorphism 

 Image of ring homomorphism 

}0{)0,()0,00()00,00()0,)(0,(  Rababbaabba

}0{R ZR

}0{ RR  R }0{R

Raaa  )0,()(

   bababa )0,()0,()()(

 }0{)0,( Ra Ra )0,()( aa  

 Rba ,

)()()0,()0,()0,()( babababa  

 }0{ RR
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 Isomorphism of rings 
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13.11 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Define a ring homomorphism. State and prove that the kernel of a ring 

homomorphism is an ideal of the domain. 

2. Explain the properties of a ring homomorphism. How does a ring homomorphism 

preserve the structure of a ring? Provide examples. 

3. What is the First Isomorphism Theorem for rings? State and prove the theorem with a 

suitable example. 

4. Differentiate between injective, surjective, and bijective ring homomorphisms. Give 

an example of each and explain their significance in algebra. 

5. Let SRf :  be a ring homomorphism. Show that the image of f is always a subring 

of S. Explain why it may not necessarily be an ideal. 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 248 
 

6. Discuss the role of ring homomorphisms in constructing quotient rings. How does the 

kernel of a ring homomorphism determine the quotient structure? Provide an example. 

7. Prove that the composition of two ring homomorphisms is also a ring homomorphism. 

Give an example to illustrate your proof. 

8. Consider the ring homomorphism nZZf : given by nxxf mod)(  . Determine 

the kernel and image of f, and discuss its implications in modular arithmetic. 

9. Explain how ring homomorphisms are used in field theory. Can a nonzero ring 

homomorphism from a field to a ring ever have a nontrivial kernel? Justify your 

answer 

Short Answer Type Question: 

1. Define a ring homomorphism. 

2. What are the two main properties that a ring homomorphism must satisfy? 

3. What is the kernel of a ring homomorphism? 

4. What is the image of a ring homomorphism? 

5. What is an injective ring homomorphism? 

6. What is a surjective ring homomorphism? 

7. When is a ring homomorphism called an isomorphism? 

8. State the First Isomorphism Theorem for rings. 

9. Give an example of a ring homomorphism. 

10. If SRf :  is a ring homomorphism, what can you say about )0(f ? 

11. Is the kernel of a ring homomorphism always an ideal? Why? 

12. Is the image of a ring homomorphism always an ideal? Explain. 

13. What is the trivial ring homomorphism? 

14. Give an example of a non-trivial ring homomorphism. 

 

Objective type question: 

1. Which of the following is true for a ring homomorphism SRf : ? 

a)  SRf 0)0(   

b)  SRf 1)1(   always holds 

c)  f is always injective 

d)  f is always surjective 

2. Let SRf :  be a ring homomorphism. What is the kernel of f? 

a)  }0)(|{ SxfRx   

b)  }1)(|{ SxfRx   
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c)  })(|{ xxfRx   

d)  })(|{ xxfRx   

3. If ZZZf 6/:   is the natural ring homomorphism given by 6mod)( nnf  , what 

is )ker( f ? 

a)  Z6  

b)  Z 

c) {0,1,2,3,4,5} 

d)  {0} 

4. A ring homomorphism SRf :  is called an isomorphism if: 

a)  It is injective 

b)  It is surjective 

c)  It is both injective and surjective 

d)  It is neither injective nor surjective 

5. The image of a ring homomorphism SRf :  is always: 

a)  A subring of S 

b)  An ideal of S 

c)  A subfield of S 

d)  A subset but not necessarily a subring of S 

6. A function SRf :  is called a ring homomorphism if for all Rba , , which of the  

following holds? 

a)  )()()( bfafbaf   

b)  )().().( bfafbaf   

c)  SRf 1)1(   (if R, S are rings with identity) 

d)  All of the above 

7. If SRf :  is a ring homomorphism, then the kernel of f , fKer , is: 

a)  A subring of R 

b)  An ideal of R 

c)  A subgroup of *R  

d)  None of the above 

8. The image of a ring homomorphism SRf :  is always: 

a)  A subring of S 

b) An ideal of S 
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c)  A normal subgroup of *S  

d)  None of the above 

9. The trivial ring homomorphism is defined as: 

a)  xxf )( for all Rx  

b)  0)( xf for all Rx  

c)  1)( xf for all Rx  

d)  None of the above 

10. A ring homomorphism is said to be injective if: 

a)  Rf ker  

b)  }0{ker f  

c)  0)0( f  

d)  None of the above 

11. If R and S are commutative rings with unity and SRf :  is a ring homomorphism, 

then )1(f  must be: 

a)  0 

b)  1 

c)  Either 0 or 1 

d)  None of the above 

12. If RZf :  is a ring homomorphism, then )(nf  is given by: 

a)  )1(.)( fnnf   

b)  nfnf )1()(   

c)  )1(.)( 2 fnnf   

d)  )1()( fnnf   

13. The fundamental theorem of ring homomorphism states that if SRf :  is a  

surjective  ring homomorphism with kernel K, then: 

a)  KRS /  

b)  KR /  is a subring of S 

c)  K is a maximal ideal 

d)  KR / is a prime ideal 

14. A ring homomorphism between two integral domains is always: 

a)  Injective 

b)  Surjective 

c)  A monomorphism 

d)  None of the above 
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15. The identity map RRid :  defined by xxid )(  is: 

a)  A ring homomorphism 

b)  An isomorphism 

c)  Both (a) and (b) 

d)  None of the above 

True (T) and False (F) questions: 

1. Every ring homomorphism preserves both addition and multiplication.  

2. The kernel of a ring homomorphism is always a subring of the domain. 

3. If a ring homomorphism is injective, then its kernel contains only the zero element. 

4. A ring homomorphism always maps the identity of the domain to the identity of the 

codomain. 

5. The composition of two ring homomorphisms is always a ring homomorphism. 

6. A ring homomorphism from a field to a ring is always injective. 

7. If SRf : is a ring homomorphism, then the image of f is always an ideal of S. 

8. The identity map on a ring R is always a ring homomorphism. 

9. Every surjective ring homomorphism is also injective. 

10. If R and S are rings, and SRf :  is a homomorphism, then )0(f  must be 0.  

Fill in the blanks: 

1. A function SRf :  is called a ring homomorphism if it preserves both __________ 

and __________ operations. 

2. The kernel of a ring homomorphism SRf : , denoted as fker , is always an 

__________ of R. 

3. A ring homomorphism is said to be injective if and only if its kernel contains only the 

element __________. 

4. The image of a ring homomorphism is always a __________ of the codomain ring. 

5. If R is a field and SRf :  is a ring homomorphism, then f is always __________. 

6. The trivial ring homomorphism is the map )(xf  __________ for all Rx . 

7. If RZf :  is a ring homomorphism, then )(nf  __________  

8. The First Isomorphism Theorem states that if SRf :  is a surjective ring 

homomorphism, then S  __________. 

9. The identity function RRid : , given by xxid )( , is always a __________ and 

__________ ring homomorphism. 

10. If SRf :  is a ring homomorphism, then )0(f  must be __________. 

13.12 ANSWERS 

Answer of self cheque question: 
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1. A ring homomorphism always maps the additive identity (0) of R to the additive 

identity (0) of S, i.e., 0)0( f  

2. Z6 ?     3. }5,4,3,2,1,0{Im f  

Answer of objective type question: 

1. a)  2. a)  3. a)  4. c) 

5. a)  6. d)  7. b)  8. a) 

9. b)  10. b)  11. c)  12. a) 

13. a)  14. a)  15. c) 

Answer on True and False: 

1. T  2. F  3. T  4. F 

5. T  6. T  7. F  8. T 

9. F  10. T 

Answer of fill in the blanks: 

1.   Addition, Multiplication  2. Ideal   

3.  0 or the additive identity  4. Subring   

5.  Injective    6. 0 

7.  n.f(1)     8. (R / Ker f)    

9.  Bijective,  Isomorphic)  10. 0 or the additive identity of S 

 

 



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 253 
 

Unit-14: FIELD 

CONTENT: 

 
14.1 Introduction  

14.2   Objectives 

14.3  Field 

 14.3.1 Subfield 

14.4 Division ring or skew-field 

14.5 Summary 

14.6  Glossary  

14.7  References 

14.8  Suggested Readings 

14.9  Terminal Questions 

14.10 Answers 

14.1 INTRODUCTION 

Field theory is a fundamental area of abstract algebra that explores the properties and 

structures of fields, which are algebraic systems where addition, subtraction, multiplication, 

and division (except by zero) are well-defined and obey specific axioms. Fields provide a 

natural framework for studying polynomial equations, arithmetic in number systems, and 

algebraic extensions. Classical examples include the rational numbers (Q), real numbers (R), 

complex numbers (C), and finite fields used in cryptography and coding theory. One of the 

most significant developments in field theory is Galois theory, which establishes a deep 

connection between field extensions and group theory, helping to determine the solvability of 

polynomial equations by radicals. Field theory plays a crucial role in many areas of 

mathematics, including algebraic geometry, number theory, and theoretical physics. 

The idea of a field extension expresses the relationship between two fields. The goal 

of the Galois theory, which Évariste Galois founded in the 1830s, is to comprehend the 

symmetries of field extensions. This theory demonstrates, among other things, that it is 
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impossible to square a circle and trisect an angle with a compass and straightedge. 

Additionally, it demonstrates that quintic equations are typically algebraically intractable. 

In many areas of mathematics, fields are fundamental concepts. This comprises many 

mathematical analysis disciplines that are based on fields with extra structure. Analysis's 

fundamental theorems rely on the real numbers' structural characteristics. What's more, any 

field may be utilised as the scalars for a vector space, which is the usual generic setting for 

linear algebra. In-depth research is done on number fields, the siblings of the subject of 

rational numbers. Geometric object attributes may be described with the use of function 

fields. 

14.2 OBJECTIVES 

The main objectives of the Field Theory chapter at the entry level are: 

1. Understanding the Concept of Fields – Introduce the definition of a field, its 

axioms, and fundamental properties. 

2. Recognizing Examples of Fields – Explore common examples like Q (rational 

numbers), R (real numbers), C (complex numbers), and finite fields. 

3. Exploring Field Operations – Study addition, multiplication, and the existence of 

inverses in fields. 

4. Introduction to Finite Fields – Understand the construction and properties of fields 

with a finite number of elements 

14.3 FIELD 

Definition: A ring  with at least two elements is called a field  if it satisfies following 

conditions, 

(i) It should be commutative 

(ii) It has unity 

(iii) Each non-zero element possess multiplicative inverse. 

For example, ring of rational numbers  is a field because it satisfies aforementioned 

following conditions. Similarly, rings of real numbers  and complex numbers

are also common example of fields.  

is an example of finite fields 

If are elements of a finite field then we shall often write 

. In a field , we have 

)(R )(F

.),,( Q

.),,( R .),,( C

),},4,3,2,1,0({ 55 

ba 0, ,F

ab
b

a
ab 11   F
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[Because in the field ( ) multiplication is commutative] 

Also . 

14.3.1  SUBFIELDS 

Definition: A non-empty subset of a field is said to be subfield if is closed w.r.to. 

operation addition and multiplication in and itself is a field for these operation.  

Conditions for a subfield: The necessary and sufficient condition for a non-empty subset 

of field to be subfield are 

(i)  

(ii)  

Proof: Necessary condition: Let the subset  of field is itself a field.  

is a group w.r.to. addition i.e. for each   

Now each non-zero element of possesses multiplicative inverse. Therefore 

 

Hence condition is necessary. 

Sufficient condition: Suppose is non-empty subset of and satisfying the condition (i) 

and (ii). As similar we have proved in case of subring that  is abelian group, in similar 

we will prove (i) that  is abelian group.  

Now let be any non-zero element of . Then from (ii) we have 

 

Now , therefore again from (ii), we have  

. 

Each non-zero element of possesses multiplicative inverse. 

Now let and . Then . From (ii), we have 

 

Also if then  and  

)]())[()(()()( 11111   cdabbdbdcdab
d

c

b

a

bd

bcad
bcadbdcdbdbdabbdbd


  ))(()])()(())()[(( 11111

F

bd

ac
bdacdbaccdab

d

c

b

a
  11111 ))(())(())((

K F K

F K

K

F

KbaKbKa  ,

KabKbKa  10,

K F

K KbaKba ,

K

KabKbKa  10,

K F

),( K

),( K

a K

KKaaKaKa   10, 1

K1

KaKaKaK   1110,1

 K

Ka Kb0 Kb 1

KabKbaKbKa   111 )(0,

,0b 0ab K0
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Associativity of multiplication and distributivity of multiplication over addition must hold in 

since they hold in  

14.4 DIVISION RING AND SKEW FIELD 

Definition: A ring  with at least two elements is called a division ring or a skew field if is 

satisfies following conditions 

(i) Has unity 

(ii) Each non-zero element possesses its multiplicative inverse. 

Thus a commutative division ring is a field.  

A division ring is a field if it is also commutative but every field is also a division ring.  

Theorem 1: Every field is an integral domain. 

Proof: As we know that a field is a commutative ring with unity, therefore to prove that 

every field is an integral domain we have only to prove that a field has no zero divisors. 

Let  be elements of with such that  

Since  exists and we have 

 

  

                                                            [ ] 

                                                             [ ] 

Similarly, let  and  

Since  exists and we have 

 

  

Hence in a field  or . Since field has no zero divisors therefore every 

field is an integral domain.  

The converse of this theorem is not true i.e., every integral domain is not a field. For 

example, ring of integer is an integral domain while it is not a field because only inversible 

element in the ring of integer are 1 and -1.  

KbaKab  ,

K F

)(R

)(F

ba, F 0a 0ab

1,0  aa

0)(0 11   aabaab

0)( 1   baa

01  b 11  aa

0 b bab 

0ab 0b

1,0  bb

11 0)(0   bbabab

0010)( 1   aabba

00  aab 0b
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Note: In the field unity and zero are different elements i.e., . Let be any non-zero 

element of a field. Then exists and is also non-zero. For, 

 

This is a contradiction. Now, field has no zero divisors. Therefore, . 

Remarks: As we know field has no zero divisors. Therefore in the field product of two non-

zero elements will again a non-zero element. Also each non-zero element and unit element 

possesses non-zero multiplicative inverse. Since multiplication is commutative as well as 

associative, therefore the non-zero elements of a field form abelian group w.r.to. 

multiplication.  

Theorem 2: A skew field has no zero divisors. 

Proof: Let be a skew-field. Then is a ring with unit element  and each non-zero 

element of possesses multiplicative inverse. 

Let  be elements of with s.t.  

Since exists and we have 

 

              

Similarly, let  with  

Since  exists and we have 

 

               

Hence a skew field has no zero divisors. 

Theorem 3: Every finite integral domain is a field ‘OR’ A finite commutative ring without 

zero divisor is a field. 

Proof: Let be a finite commutative ring without zero divisor having elements 

. In order to prove that is a field, we must produce an element such that 

. Also we should show that for every element there exist an element 

such that .  

Let . Consider the products . 

All these are element of . Also they are all distinct. For suppose that for . 

Then                                                      … (1) 

01 a

1a

0010100 11   aaaaaaa

01 1   aa

)(D

D D 1

D

ba, D 0a 0ab

1,0  aa

0)(0 11   aabaab

0010)( 1   bbbaa

0ab 0b

1,0  bb

11 0)(0   bbabab

0010)( 1   aabba

D n

naaa ,...,,, 21
D D1

Daaa 1 Da  0

Db 1ba

Da  0 n naaaaaaaa ,...,,, 321

D ji aaaa  ji 

0)(  ji aaa
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Since is without zero divisors and therefore (1) implies  

, contradicting . 

are all distinct elements of placed in some order. So one of these 

elements will be equal to . Thus there exists an element, say, such that 

       [ is commutative] 

We shall show that this element 1 is the multiplicative identity of . Let be any element of 

. Then from the above discussion for some , we shall have  

Now,       [ ] 

 

       [ ] 

       [ ] 

       [ is commutative] 

Thus . Therefore is the unit element of the ring  

Now . Therefore from the above discussion one of the  products 

will be equal to 1. Thus there exists an element, say  such that 

 

 is the multiplicative inverse of the non-zero element . Thus every non-zero 

element of is inversible. 

is a field.  

Definition: In a ring any element is said to be idempotent if . Any ring will be 

called Boolean Ring if and only if all of its elements are idempotent i.e., if . 

Example 1: In the ring of set of matrices over the field of real number with respect 

to matrix addition and multiplication evaluate the following: 

(i) Is it a commutating ring with unity elements? 

(ii) Find the zero elements. 

(iii) Does this ring possess zero divisors? 

Solution: Let . Then  and . Therefore is closed with respect 

addition and multiplication of matrices. 

As we know that both addition and multiplication of matrices are associative composition. 

 

D ,0a

jiji aaaa  0 ji 


naaaaaaaa ,...,,, 321 n D

a D1

aaa 11  D

D y

D Dx xayax 

)(11 axy  yax 

xa)1(

ax aa 1

y yax 

1y D

Dyyyy  ,11 1 .D

D1 n naaaaaaaa ,...,,, 321

Db

baab 1

b Da

D

D

R a aa 2 R

Raaa 2

M 22

MBA , MBA  MAB M

MCBACBACBA  ,,)()(
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and  

Commutative property holds in addition of matrices. Hence, , we have 

. 

If be the null matrix of the type , then and . 

Further multiplication of matrices is distributes w.r.to. addition. 

 

and  

 is a ring with respect to the given compositions. 

Multiplication of matrices is not in general a commutative composition. For example, if 

 

Then,  and  

Thus and so the ring is a non-commutative ring 

If be the unit matrix of the type  i.e.,  then . Also we have 

 

 is the multiplicative identity.  

Thus the ring possesses the unit element and we have  (the unit element of the ring) 

The ring possesses zero divisors. For example if 

then  

Thus the product of two non-zero elements of the ring is equal to the zero element of the ring. 

Example 2: DO the following sets from integral domains w.r.to. ordinary addition and 

multiplication? If so state if they are fields. 

(i) The set of numbers of the form  with rational. 

(ii) The set of even integers. 

(iii) The set of positive integers. 

Solution (i): Let . 

MCBACABBCA  ,,)()(

MBA  ,

ABBA 

O 22 MO MAAAO 

ACABCBA  )(

MCBACABAACB  ,,)(

M




















10

21
,

53

42
BA











113

82
AB 










53

148
BA

BAAB 

I 22 









10

01
I MI 

MAIAAAI 

I

1I

,
00

32
,

10

10

















 BA 










00

00
AB

2b b

 QbbA  :2
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We have  and . Then . Now 30 can not be put in the form 

where is rational number. Therefore . Thus is not closed with respect to 

multiplication. Therefore the question of becoming a ring does not arises. 

(ii): Let  be set of all even integers. Then is a ring with respect to addition and 

multiplication of integers. Additionally, the composition of multiplication is commutative. 

Since the product of two non-zero even integers cannot equal zero, which is the zero element 

of this ring, R has no zero divisors. Since the integer  therefore is a ring without 

unity. If the presence of the unit clement is not a requirement for an integral domain, then R 

will be one. However, since the multiplicative identity does not exist, R is not a field. 

(iii): should be the collection of positive integers. The additive identity does not exist 

since the number .  won't be a ring, then. 

Example 3: Show that collection of numbers of the form , with and as rational 

numbers is a field.  

Solution: Let  

Let  and  where  

We have . Since  

Also .  

Since  

Thus is closed w.r.to. addition and multiplication. 

We know that addition and multiplication are both associative and commutative compositions 

in the set of real numbers since all the components of R are real numbers. 

Further we have since . 

If , then 

 

is the additive identity. 

Now again if , then and we have 

 

 each element of  posses its own additive inverse. 

Since multiplication is distributive w.r.to. addition in the set of real number. 

A23 A25    302523 

2b b A30 A

A

R R

,1 R R

N

N0 N

2ba  a b

 QbabaR  ,:2

Rba  211 Rba  222 Qbaba 2211 ,,,

      Rbbaababa  2)(22 21212211     Qbbaa  2121 ,

 211 ba        Rbababbaaba  222 1221212122

Qbababbaa  12212121 ,2

R

R 200 Q0

Rba  2

    22)0(02200 bababa 

200 

Rba  2 Rba  2)()(

200]2[]2)()[(  baba

 R
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Again and we have 

 

So,  is the multiplicative identity. Thus is commutative ring with unity and the 

zero element of the ring is  and  is the unit element. If each non-zero element 

of has a multiplicative inverse, then  will now be a field. 

Let  be any element of this ring i.e., one of the element and  is not 

zero. 

Then  

 

Now if , are rational numbers, then we can have  only if . As we 

know that at least one of the rational numbers and is not . There we cannot have 

i.e., . 

Both numbers and are rational number and not both of them are zero. 

is non-zero multiplicative inverse of . Hence the 

given system is a field.  

Example 4: Give an example of an infinite commutative ring without zero divisors which is 

not a field. 

Solution: Let be the set of integers. Then  is an infinite commutating ring without 

zero divisors and is not a field.  

Example 5: If be a ring with  elements, with no zero divisors, show that is 

a division ring. 

Solution: Let be a finite consisting of elements, where s.t., has no divisor of 

zero. 

To prove that is a division ring we have enough to prove that. 

(i)  has a unit element 1. 

(ii) Every non-zero element of has multiplicative inverse in . 

(i) Prove of  (i) is the part of Theorem 3.  

R 201

      Rbababa  201222201

 201 R

200  201

R R

2002  ba a b

22 2

2

)2)(2(

2

2

1

ba

ba

baba

ba

ba 











2
22 2222 























ba

b

ba

a

a b
22 2ba  0,0  ba

a b 0

22 2ba  02 22  ba


22 2ba

a

 22 2ba

b




2
22 2222 























ba

b

ba

a
2ba 

Z .),,( Z

.),,( R n 2n R

R n 2n R

R

R

R R



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 262 
 

(ii)  s.t.  

 is left inverse of in . 

But left inverse = Right inverse. 

is the multiplicative inverse of in  

Theorem 4: In the ordered integral domain , the unity element is a positive element of . 

Proof: Let be the collection of positive elements of integral domain . We have to prove 

that , for it we assume that . 

Since ,    [By definition of ] 

 

, which is a contradiction. 

Hence the unity element is positive element of . 

Theorem 5: The field  is not ordered, where and prime. 

Proof: To prove  is not ordered. 

Suppose the contrary. Then  is ordered. Let be the set of positive element of 

. Since additive identity of is . By definition of  

only one of the following is true: 

or additive inverse of . 

Evidently . Hence  or additive inverse of . Since is closed w.r.to . 

 

Repeating this process, we find that , i.e.,  

additive inverse of  belongs to . Which is a contradiction.  

For both the possibilities cannot holds simultaneously.  

Here our initial assumption is wrong. 

Therefore the required result follows. 

Theorem 6: The set of complex number is not ordered integral domain. 

Proof: Let be the set of complex numbers. We know that is an integral domain. Let 

be the set of positive element of . Evidently and .  

Hence either . 
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, by definition of  

 For . 

A contradiction . For , by theorem 4. 

. 

Again, . 

Again we get a contradiction, . 

Thus i.e., any one of the following: 

 

does not hold. Hence is not an ordered integral domain. 

Theorem 7: The characteristic of a ring with unity is zero or  according as the unity 

element regarded as a member of additive group of of order or . 

OR 

If is any ring with identity , shows that has positive characteristic  is the least 

positive integer for which being additive identity of . 

Proof: Let be a ring with unity element   

Characteristic of is 0. 

Suppose finite number so that is the least positive integer s.t. . Let  

be any element of . Then 

1For  

 

Thus is the least positive integer s.t. . Hence the characteristics of is . 

Theorem 8: Every finite integral domain is of finite characteristics. 

Proof: Let be a finite integral domain so that is a finite abelian group. We 

also known that characteristic of is the order of unity element  of . 

 is finite group  finite. 

 Characteristic of is finite. 

Theorem 9(a): The characteristic of an integral domain is either 0 or a prime number 

according as the unity element e regarded as a member of the additive group of integral 

domain is of order 0 or a prime number. 
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Proof: (i) Let be an integral domain. Then we prove that characteristic of is either 0 or 

.                                                                                                [Proved in theorem 8] 

(ii) If the characteristic is zero, the proof is complete. 

Let the characteristic be . We have to show that is a prime number. 

Suppose is not prime. Then is composite integer. So we can write : where 

. 

Characteristic of is order of of the group is .      [ is unity element of ] 

 

 

 

                                              [For  has no zero divisor] 

Characteristic of is either  or  

. A contradiction. 

Hence is not composite. 

Therefore is prime.  

Theorem 9(b): The characteristic of an integral domain is 0 or  according as the order 

of any non-zero element regarded as member of the additive group of the integral is either 0 

or .  

Proof: Let be an integral domain and and  and or  regarded 

as a member of . 

Then                                                                                         

...(1) 

Aim: Characteristic of is 0 or . 

For this have to show that . 

If , then (1)  

      

      

as is free from zero divisors. Hence is the least positive integer, according to 

(1). 
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Example 6: If there exist a positive integer such that , then show that is 

a prime. What is this integer? being a field.  

Answer: Let be a field and be arbitrary. Also let  

                                                                                                 

…(1) 

where is a positive integer. Let  be the multiple identity of .  

Then     

(1)   

in particular                                                                                                     …(2) 

For has no divisor of zero 

is field is integral domain s.t. (2) holds. 

It means that is the characteristic of . To prove that is prime.  

Now write proof of theorem 9a.  

Theorem 10: Each non-zero element of an integral domain , regarded as an element of the 

additive group , is of the same order.  

Proof: Let  be arbitrary non-zero elements of an integral domain  s.t. . 

Let , where  are regarded as element of  so that 

, 

is an integral domain  has no zero divisors. 

   cancellation law hold in . 

 

 

 

 

, by cancellation law 

For  

 

 

 

m Fama  0 m

F

F Fa

0ma

m e F

0 eaae

000))((0)(  aormeameeam

 0me

F

F F

m F m

D

D

ba, D ba 

mbOnaO  )(,)( ba, ),( D 0,0  mbna

D D

 D

0...0  termsnuptoaana

  00....  btermsnuptoaab

0...  termsnuptobaba

aanbaanbban 0)(00)(0)( 

0nb

.)( nmnbO  mbO )(

0...0  termsnuptobbmb

  00....  atermsnuptobba

0...  termsnuptoabab



Abstract Algebra  MT(N)-202 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY Page 266 
 

 

. Also  

, By cancellation law 

. For  

Thus we have shown that .  

 i.e., . 

When considered as members of an additive group, any two non-zero components of have 

the same order. 

Therefore, when considered a member of , every non-zero element of is of the same 

order.  

Example 7: Give an example of skew-field which is not field.  

Solution: Let  be a set of matrices of the form, 

    

Where  and are complex numbers. 

Let    , 

    be any two member of . Then 

    

    

If we take , then we have  

     

     

(i) is an abelian group. 
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Closure axiom: (already proved) 

Commutativity: .  

This flows from the fact that  

Existence of identity:  

is additive identity s.t.  

Associative law:  

It follows from the fact that 

  

Existence of inverse:  

is inverse of s.t.  

(ii)  is a group 

Closure axioms: (already proved) 

Existence of identity: is  identity s.t. . 

Associative law:  

For    

Existence of inverse: If , then 

 

is inverse of s.t.  

Commutative law:  is not satisfied here. 

For  

, by (1) 

Or  

(iii) Distributive law:  
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It is true in general in case of matrices. 

These fact show that  is askew field but not field.  

Example 8: Prove that the set  forms a field w.r.t. addition and 

multiplication modulo 7.  

Solution: Let . 

Let  

We define  

Where is remainder when  is divided by 7, 

 

Evidently,  

(i) First, we have to prove that  is an abelian group. 

Closure axioms:  (already proved) 

Existence of identity: , called additive identity s.t. 

   

Commutative law: . 

This follow from the fact that,  

Associative law:  

Since  

Therefore each side leaves the same remainder when divided by 7. 

 

Or   

Existence of inverse: its inverse 

 (if ) s.t. 

. 

Inverse of 0 is 0 itself. 
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(ii) Write . 

Let . Define  

  

Where is the remainder when is divisible by 7. 

 

 is divisible by 7. 

But 7 has divisor  or is divisible by 7 

  . 

A contradiction as . 

Consequently . 

This  

Aim: Now we have to prove that is an abelian group. 

Closure axioms:   (already proved) 

Commutative law:  

Associative law: . 

Since  

Existence of identity:  is identity element s.t. 

            . 

Existence of inverse: , we have its inverse  s.t. 

           . 

For the equation  has a solution  if  is prime. 

[Inverse of 1, 2, 3, 4, 5, 6 are respectively 1, 4, 5, 2, 3, 6] 

Thus  is an abelian group. 

(iii) Distributive law:  
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This follows from the fact that  

 and  

Above arguments lead to the fact that is a field. 

Similar example 9: Let be a positive prime number. Prove that the set  

forms a field w.r.t. addition and multiplication modulo p ’OR’Ring of integers modulo a 

prime number , is a field. 

Example 10: If  then prove that  is a field, where and  

respectively denote addition and multiplication modulo 5. 

Answer: The composition tables for two operations are given below: 

(i) Closure axiom: From the two composition tables it is quite clear that all the entries in 

both composition tables belong to . Hence is closed w.r.to. both operation 

(ii) Commutative law: The entries in the 1
st
, 2

nd
, 3

rd
, 4

th
 rows are coincident with the 

corresponding element of the 1
st
, 2

nd
, 3

rd
, 4

th 
columns respectively relative to the both 

operations. Hence  and  both are commutative in . 

(iii) Associative law: It is easy to verify that the associative law holds for , 

i.e., . 

Similarly,  

 

 
 

  

 

 
 

  

 

 (iv) 0 is the additive identity and 1 is the multiplicative identity for . 

For    

 s.t.   

This follows from the composition tables. 

(v) Existence of inverse: The additive inverse of 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively. 

The multiplicative inverses of non-zero elements 1, 2, 3, 4 are 1, 3, 2, 4 respectively. 

(vi) Distributive law: Multiplication is distributive over addition, i.e.,  
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For For  

                                least positive remainder when is divided by 5. 

                                least positive remainder when  is divided by 5. 

                                 

                                 . For  

In similar way, we can prove other distributive law. 

Hence  is a field. 

Example 10: The set of all residue classes modulo a positive integer is an integral domain 

iff is prime. 

Solution:  Let denote the set of all residue classes modulo a positive integer so that 

 

Then we know that is a commutative ring with unity element [1], [0] being the zero 

element of . Let be arbitrary so that 

 

will be an integral domain iff it is free from zero divisors, i.e., iff 

 

So we have to show that is prime iff 

 

(i) is prime, is prime,  

or  

or  

(ii) Conversely supplies, 

 

Now we have to prove that is prime. For it let is of composite order. 

If is of composite order is expressible as, where  
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                                               For  

                                                by assumption. 

Which is a contradiction. 

For                                          and  

Which shows our assumption is wrong. Therefore  is prime. 

Similar problem 11: The set of all integers modulo a positive integer is an integral 

domain iff is prime. 

Hint:  is integral domain, where . 

Check your progress 

Problem 1: Check  is field or not? 

Problem 2: Check that the set }1,0{ form a field? 

Problem 2: Check that the singleton set }0{  form a field and why? 

 

14.5 SUMMARY 

In this unit, we have studied about the field, subfield and division ring or skew field in a ring. 

Throughout the all units we have learned about the basic definitions and their related 

theorems and examples on these major topics. In many areas of mathematics, fields are 

fundamental concepts. This comprises many mathematical analysis disciplines that are based 

on fields with extra structure. Analysis's fundamental theorems rely on the real numbers' 

structural characteristics. What's more, any field may be utilised as the scalars for a vector 

space, which is the usual generic setting for linear algebra. In-depth research is done on 

number fields, the siblings of the subject of rational numbers. Geometric object attributes 

may be described with the use of function fields. The overall summarization of this units are 

as follows:  

 Every field is an integral domain. 

 Every finite integral domain is field. 

 The set of all integers modulo a positive integer is an integral domain iff is prime 

]0[][],0[][],.[][ 2121  ppppp

].0[].[ 21  pp ]0[][ p

],0[][0][ 21  porp

0][ 1 p ].0[][ 2 p

p

p

p

),,( pppI  }1...,,3,2,1,0{  pI p

}3,2,1,0{4 I

p p
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14.6 GLOSSARY 

 Field: A commutative ring with unity having each non-zero element possess its 

multiplicative inverse is called field. 

 Sub-field: A subset of field which is itself a filed called subfield.  

 Division ring: A ring with unity having each non-zero element possess its 

multiplicative inverse is called division ring. 
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14.9 TERMINAL QUESTIONS 

Long Answer Type Question: 

1. Show that in an integral domain all non-zero elements generate additive cyclic groups 

of the same order which is equal to the characteristic of the integral domain. 

2. Give without proof, an example of an integral domain which contains only five 

elements. Is this an ordered integral domain? Give reason? 
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3. Show that the matrices , a, b real, forms a field. 

4. Prove that a non-zero finite integral domain is a field. 

5. Prove that  is a field, where and  respectively denote addition and 

multiplication modulo 5. 

6. Give an example of skew-field which is not field. 

7. Show that collection of numbers of the form , with and as rational 

numbers is a field 

Short Answer Type Question: 

8. If is a non-zero integral domain, then characteristic of is either zero or a prime 

number. 

9. The set of complex number is not ordered integral domain 

10. Prove that a skew field has no zero divisor. 

11. Write the definition of following with suitable example. 

 (i) Field 

 (ii) Integral domain 

 (iii) Skew-field 

12. A commutative ring is an integral domain iff  

  

 

Objective type questions 

1. Which of the following is NOT a field? 
a)  Q (Rational Numbers) 

b)  Z (Integers) 

c)  R (Real Numbers) 

d)  C (Complex Numbers) 

2. In a field, which of the following properties must hold for multiplication? 
a)  Commutativity 

b)  Associativity 

c)  Existence of Multiplicative Inverse (except for zero) 

d)  All of the above 

3. Which of the following is a finite field? 
a)  Z6 

b)  Z5 

c)  Q 

d)  R 










 ab

ba

),,( 777 I 7 7

2ba  a b

D D

R )0(,,  aRcba

cbacab 
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4. The smallest field containing only two elements is known as: 
a)  Q 

b)  F2 

c)  R 

d)  Z2 

5. Which of the following is true for every field F? 
a)  F must have an infinite number of elements. 

b)  Every element in F has an additive and multiplicative inverse (except zero). 

c)  The set of natural numbers forms a field. 

d)  Fields always contain only real numbers. 

6. Which of the following operations is NOT necessarily defined in a field? 
a)  Addition 

b)  Subtraction 

c)  Multiplication 

d)  Division by zero 

7. A field must contain at least how many elements? 
a)  1 

b)  2 

c)  3 

d)  0 

8. Which of the following is an example of a finite field? 
a)  Q (Rational Numbers) 

b) Z7 

c)  R (Real Numbers) 

d)  C (Complex Numbers) 

9. If F is a field, which of the following must be true? 
a)  F has at least one element with no additive inverse. 

b)  Every element in F has a unique additive inverse. 

c)  Multiplication is not necessarily associative. 

d)  F contains at least one zero divisor. 

10. The characteristic of a finite field Fp is always: 
a)  0 

b)  1 

c)  A prime number 

d)  Composite 

11. Which of the following sets is a field under usual addition and multiplication? 
a)  The set of natural numbers N 

b)  The set of integers Z 

c)  The set of rational numbers Q 

d)  The set of even integers 

12. If F is a field, then which of the following is true? 
a)  F must be an infinite set. 

b)  The sum of any two elements in F is always in F. 

c)  F contains at least one element without a multiplicative inverse. 

d)  The set of all positive integers is a field. 

13. If p is a prime number, then the order of the field Zp is: 
a)  p−1 

b)  p  
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c)  p+1 

d)  2p 

14. Which of the following is always true for a field F? 
a)  F is closed under addition and multiplication. 

b)  Every element in F has a multiplicative inverse, including zero. 

c)  F must have infinitely many elements. 

d)  The characteristic of F is always zero. 

15. In which of the following fields does the equation x
2
+1=0 have a solution? 

a)  R (Real numbers) 

b)  C (Complex numbers) 

c)  Q (Rational numbers) 

d)  Z5 

Fill in the blanks: 

1. A commutative is an integral domain iff ……………………. 

2. Every field is an …………….. 

3. A skew field has no …………………. 

4. Every finite integral domain is ……… 

5. The set of all residue classes modulo a positive integer is an integral domain iff is 

……………….. 

True and False question: 

1. Every field is a ring, but not every ring is a field. (True / False) 

2. The set of integers Z is a field. (True / False) 

3. In a finite field, the number of elements must always be a prime number. (True / 

False) 

4. The set of all even integers forms a field under normal addition and multiplication. 

(True / False) 

5. Every finite field has order p
n
 for some prime p and integer n. (True / False) 

6. Every field is an integral domain. (True / False) 

7. In a finite field, the sum of all elements is always zero. (True / False) 

8. The order of a finite field must be a prime number. (True / False) 

9. The characteristic of a field is always either 0 or a prime number. (True / False) 

10. Every subring of a field is a field. (True / False) 

11. The set of complex numbers C forms a field under usual addition and multiplication. 

(True / False) 

12. In any field, the element 0 always has a multiplicative inverse. (True / False) 

13. Every field is closed under addition, multiplication, and division (except by zero). 

(True / False) 

14. If a field contains a finite number of elements, it is called a finite field. (True / False) 

15. A finite field always has an even number of elements. (True / False) 

14.10 ANSWERS 

R

p p
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Answer of check your progress: 

1. No 2. Yes 3. No, because it does not contain unity element 

Answer of objective type question: 

1.  b  2. d  3. b  4. b 

5.  b  6. d  7. b  8. b 

9.  b  10. c  11. c  12. b 

13.  b  14. a  15. b   

Answer of true and false: 

1.  True   2. False   3. False 

4.  False   5. True   6. True 

7.  True   8. False   9. True 

10.  False   11. True   12. False 

13.  True   14. True   15. False 

Answer of fill in the blanks: 

1. Cancellation law holds 2. Integral domain 3. Zero divisor  

4. Field    5. Prime    
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