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COURSE INFORMATION

The present self-learning material “Abstract Algebra” has been designed for
B.Sc. (Fourth Semester) learners of Uttarkhand Open University, Haldwani. This self
learning material is writing for increase learner access to high-quality learning materials.
This course is divided into 14 units of study. The first six units are devoted to basic
concepts of set, group, different types of group, subgroup and various applications of
groups to solve the real life problem. Unit 7 and Unit 8 are focussed on the topic of group
homomorphism and isomorphism. The aim of Unit 9 to introduce the various application
of group in terms of class equations. Unit 10 to 11 explain the further extension of group
theory in terms of ring theory and integral domain. Unit 12 and Unit 13 explain the most
essential too in abstract algebra name as ideal, factor ring and ring homomorphism. Unit
14 will explain the theory of field which is very useful to understand the primary concept
of linear algebra. This material also used for competitive examinations. The basic
principles and theory have been explained in a simple, concise and lucid manner.
Adequate number of illustrative examples and exercises have also been included to

enable the leaners to grasp the subject easily.
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UNIT 1: BASIC CONCEPTS OF SETS
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1.1 INTRODUCTION
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Set theory, branch of mathematics that deals with the properties of well-defined collections of
objects, which may or may not be of a mathematical nature, such as numbers or functions.
The theory is less valuable in direct application to ordinary experience than as a basis for
precise and adaptable terminology for the definition of complex and sophisticated
mathematical concepts.

Between the years 1874 and 1897, the German mathematician and logician Georg
Cantor created a theory of abstract sets of entities and made it into a mathematical discipline.
This theory grew out of his investigations of some concrete problems regarding certain types
of infinite sets of real numbers. A set, wrote Cantor, is a collection of definite, distinguishable
objects of perception or thought conceived as a whole. The objects are called elements or
members of the set.

1.2 OBJECTIVES

After studying this unit, learner will be able to

To analyze and predict the behavior of these systems over time.

To provide solutions to problems that cannot be solved using other mathematical
techniques.

To understand the definition of differential equation.

1.3 SETS

A set is a well - defined collection of distinct objects.

By a ‘well — defined’ collection of objects we mean that there is a rule by means of which it is
possible to say, without ambiguity, whether a particular object belongs to the collection or
not. The objects in a set are ‘distinct means we do not repeat an object over and over again
in a set.

Each object belonging to a set is called an element of the set. Sets are usually denoted by
capital letters A, B, N, Q, S etc. and the elements by lower case letters a, b, c, x etc.

The symbol € is used to indicate ‘belongs to’. Thus x € A = X is an element of the set A.

The symbol € is used to indicate ‘does not belong to’. Thus x € A = X is not an element of
the set A.

Example: Let A = {1, 2, 3, 4, 5} be a set then we say 1€ A, 2€ A, 3€ A, 4€ A, 5€ A but 6¢
A, T¢ A, 8¢ A.

1.4 METHODS OF DESCRIBING A SET

There are two methods of describing a set.

(1) Roster Method.

DEPARTMENT OF MATHEMATICS
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In this method, a set is described by listing all its element, separating by commas and
enclosing within curly brackets.

For Example. (i) If A is the set of odd natural numbers less than 10, then in roster form.
A={13,57 9}

(ii) if B is the set of letters of the world FOLLOW, then in roster form.
B={F, O,L W}

(2) Set Builder Method.

Listing the element of a set is sometimes difficult and sometimes impossible. We do not have
a roster form of the set or rational number or the set of real numbers. In set builder
method, a set is described by means of some property which is shared by all the
element of the set.

For Example. (i) If P is the set of all prime numbers, then
P = {x:xisaprime number}
(ii) if A'is the set of all natural numbers between 5 and 50, then

A={x:x€e Nand5<x<50}

1.5 TYPES OF SETS

(1) Finite set. A set is said to be finite if the number of its elements is
Finite i.e. its elements can be counted, by one by one, with counting
coming to end.

For Example. (a) the set of letters in the English alphabet is finite set since it has 26
elements.

(b) Set of all multiples of 10 less than 10000 is a finite set.

(it) Infinite set. A set is said to be infinite if the number of its elements is infinite i.e. we
count its elements, one by one, the counting never comes to an end.

For Example. (a) the set of all points in a straight line is an infinite set.
(b) the sets N, Z, Q, R all are infinite sets.

(ii1) Null Set. A set having no element is known as a null set or void set or an empty set and is
denoted by @ or {}.

For Example. (a) {x : x is an integer and x? = 3} = @, because there is no integer whose
square is 3.

(iv) Singleton Set. A set having only one element is called a singleton set.

DEPARTMENT OF MATHEMATICS
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For Example. (a) {a} is a singleton set.

(b) {x: x3 + 1 = 0 and xe R} = { -1 } is a singleton set.

1.6 SUBSET, SUPERSET AND POWER SET

Set A is said to be a subset of Set B if all the elements of Set A are also present in Set B. In
other words, set A is contained inside Set B. Example: If set A has {X, Y} and set B has {X,
Y, Z}, then A is the subset of B because elements of A are also present in set B.

Subset Symbol

In set theory, a subset is denoted by the symbol € and read as ‘is a subset of”.
Using this symbol we can express subsets as follows:

A € B; which means Set A is a subset of Set B.

Note: A subset can be equal to the set. That is, a subset can contain all the elements that are
present in the set.

All Subsets of a Set

The subsets of any set consists of all possible sets including its elements and the null set. Let
us understand with the help of an example.

Example: Find all the subsets of set A = {1,2,3,4}
Solution: Given, A ={1,2,3,4}

Subsets are {}.{1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}{1,2,3}, {2,3,4},
{1,3,4}, {1,2,4},{1,2,3,4}.
Superset Definition

In set theory, set A is considered as the superset of B, if all the elements of set B are the
elements of set A. For example, if set A = {1, 2, 3, 4} and set B = {1, 3, 4}, we can say that
set A is the superset of B. As the elements of B [(i.e.,)1, 3, 4] are in set A. We can also say
that B is not a superset of A.

Superset Symbol

The superset relationship is represented using the symbol “>”. For instance, the set A is the
superset of set B, and it is symbolically represented by A > B.

Consider another example,

DEPARTMENT OF MATHEMATICS
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X = {set of polygons}, Y = {set of irregular polygons}

Then X is the superset of Y (X2Y). In other words, we can say that Y is asubset of X
(YcX).

Proper Superset

The proper superset is also known as a strict superset. The set B is the proper superset of set
A, then all the elements of set A are in B, but set B must contain at least one element which is
not present in set A.

For example, let us take four sets.

A={ab,c},B={ab,cd},C=(ab,c}, D={a b, e}

From the sets given above,

B is the proper superset of A, as B is not equal to A

C is a superset of set A, but the set C is not a proper superset of set A,asC = A

D is not a superset of A, as the set D does not contain the element “c” which is present in set
A

Power Set

The set of all subsets of a set A is called the power set of A and denoted by P(A).

ie.P(A)={S:Sc A}

For Example. (i) if A = {a}, then P(A) = {9, A}

(ii) If B = {1, 2} then P{B} = {0,{1}, {2}, B}

Theorem 1. Every set a subset of itself.

Proof. Let A is any set. Since X € A = X € A, therefore A c A.
Theorem 2. Empty set is a subset of every set.

Proof. Given two sets A and B, let A=@.

By definition, A is a subset of B if and only if every element in A is also in B.

This means that A would not be a subset of B if there exists an element in A that is not in B.
However, there are no elements in A. This means there cannot exist an element in A that is
not in B. Thus, A is a subset of B.

Since A = @ and B is an arbitrary set, the @ must be a subset of all sets.

DEPARTMENT OF MATHEMATICS
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Theorem 3. The empty set is unique.
Proof. Let @,and @, be two empty sets.

Since empty set is a subset of every set .
Therefore @, c @, and @, c @,
= @, = @, that proves the uniqueness of @.

Note: if a set has n elements, then the number of subsets is 2™.

1.7 OPERATIONS ON A SETS

1. Union of Sets. The union of two sets X and Y is equal to the set of elements that are
present in set X, in set Y, or in both the sets X and Y. This operation can be represented as;
XUY={a:aeXora€Y}
Let us consider an example, say; set A= {1, 3,5} and set B ={1, 2, 4}
ThenAuB=4{1,2,3,4,5}
Properties of Union of Sets
(i) Forany two Sets AandB,Ac AUBorBc AUB
Proof. Let x be any element of A. then
XEA = X€EAUB
therefore A cCAUB
similarly, we can prove Bc AU B
(ii) Forany set A, AU @ = A.
Proof. Au@={x:xeAorxegp}
={x:xeAd} [+ @ has no element]
=A
(iii) Union of sets is idempotent i.e. foe any set A, AU A = A.
Proof. AUA={x:xe Aorx e A}
={x:x€eA}
=A
(iv) Union of sets is commutative.
Proof. AUB={x:x€ Aorx € B}
={x:XxXeBorxeA}
=BuUA
Note: Union of sets is Associative.

2. Intersection of Sets. The intersection of two sets X and Y is the set of all elements which

belong to both X and Y. This operation can be represented as;
XnY={azaeXanda€Y}

Let us consider an example, say; set A={1, 3,5} and set B = {1, 2, 4}

Then AnB={1}

DEPARTMENT OF MATHEMATICS
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Properties of Intersection of Sets
(i) Foranytwosets Aand B, AnBc Aand AnB c B.
Proof. Let x be any element of A n B. then
XEANB=xeAandx€B
= X € A (in particular)

Therefore ANBcA
Similarly, we can prove AN B c B.

(ii) Intersection of sets is idempotent i.e. foe any set A, AN A = A.
Proof AnA={x:xe€ Aandx € A}

={x:xeA}

=A
(iii) Intersection of sets is commutative.
Proof. AnB ={x:x€ Aandx € B}

={x:xeBandx € A}

=BnA

Note: Intersection of sets is Associative.

3. Difference of Sets. The difference of two sets A and B is the set of all elements which are
in A but not in B.

The difference of sets A and B is denoted by A — B.

e, A-B={x:xeAdandx ¢ B}

For example. (i) if A={1, 2, 3,4,5}and B {2, 4, 6, 8}, then A—-B ={1, 3,5}, B-A={6,
8}.

Clearly, A-B+#B-A

Note. The difference of sets is not commutative.

4. Complement of a Set. Let U be the universal set and A c U. then complement of A is the
set of those elements of U which are not in A. the complement of A is denoted by A°€.
Symbolically, A =U-A={x: xeUandx & A} ={x: x ¢ A}
For example. If U is the set of all natural numbers and A is the set of even natural numbers,
then
A°=U-A
= the set of those natural numbers which are not even
= the set of odd natural numbers.
5. Symmetric Difference of Sets. If A and B are any two sets, then the sets (A — B)
U (B — A) is called the symmetric difference of A and B.
The symmetric difference of A and B is denoted by A A B and read as ‘A symmetric
difference B’.
For Example. IfA={a, b, c,d, e} and B ={c, d, e, f, g}, then
A-B={a b}, B-A={f g}
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Therefore AAB=(A-B)U (B—A)

={a,b}u{f g}={ab,f g}

1.8 DE MORGAN"’S LAWS

For any two sets A and B, prove that

(@) (AUB)=A°NnB¢ (b) (ANB)¢=A°UB¢®
Proof. (a) We need to prove, (A U B)¢ = A° n B¢
Let X=(AUB)®and Y = A° n B¢

Let p be any element of X, thenp € X = p € (AU B)¢
=>pé&(AUB)

>pg&AorpgB

>peEAandp€EB’

SpEA NB’

>peY

“XcY (1)

Again, let g be any elementof Y, thenge Y =>q€ A’ N B’
=>(q€A“and g € B°

>q¢AorqgéB

=>q¢(AUB)

= g€ (AUB)©

=>qgeX

~YcX . (i)

From (i) and (ii)) X =Y

(AUB)¢=A°n B¢

(b) We need to prove, (AN B)¢ = AU B¢

Let X=(AnB)¢and Y = A° U B¢

Let p be any element of X, thenp € X = p € (AN B)¢
=>p&(ANB)

DEPARTMENT OF MATHEMATICS
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>pé&Aandp&B
=>peAorpeB
=>pEAUBpeY
aXc¥Y —(i)
Again, let q be any element of Y, thenq € Y = g € A° U B¢
= g€AorqeB*
>q¢Aandq¢B
=>0€&(ANB)

=> g€ (AnB)¢
=>qeX

2Y o X—(ii)
From (i) and (i) X =Y

(AN B)¢= A°uU B¢

1.9 CARTESIAN PRODUCT OF TWO SETS

Given two non-empty sets A and B. The Cartesian product A x B is the set of all ordered pairs
of elements from A and B,

e, AxB={(p,q):p€A gqgeB}

If either P or Q is the null set, then A x B will also be an empty set,

e, AxB=¢

For Example: if A={1, 2} and B = {3, 4, 5}, then the Cartesian Product of A and B is A x B
={(1,3),(1,4),(1,5),(2,3),(2,4), (2,5}

Cardinality of Cartesian Product?

The cardinality of Cartesian products of sets A and B will be the total number of ordered pairs
in the A x B.

Let p be the number of elements of A and g be the number of elements in B.

So, the number of elements in the Cartesian product of A and B is pg.

i.e.if n(A) =p, n(B) =q, then n(A x B) = pg.

1.10 FUNCTIONS OR MAPPINGS

A function can be visualized as an input/output device.
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Output
(0

8

Domain Range

Function —_—

Let A & B be any two non-empty sets. If there exists a rule ‘f > which associates to every
element x € A, a unique element y € B, then such rule ‘f’ is called a function or mapping
from the A to the set A to the

set B.

We write f: A — B read ‘f’ is a function from X to Y.

The set A is called the domain of f and the set B is called the Co-domain of f.

Range of f = f(A) = {f(x): x € A}, clearly f(A) c B.

1.11 KINDS OF FUNCTIONS

(1) Equal Functions. Let A and B be setsand f: A — B and f: B — A be functions. We say
that f and g are equal and write f = g if f(a) = g(b) for all a € A. If f and g are not equal, we
write f # g.

(2) One — One Function (Injective Function). A function f is one-to-one if every
element of the range of g corresponds to exactly one element of the domain of f. One-to-one
is also written as 1-1.

Formally, it is stated as, if f(x) = f(y) implies x=y, then f is one-to-one mapped, or f is 1-1.

Example. Show that f: R— R defined as f(a) = 3a® — 4 is one to one function?
Solution: Letf(a,)=f(a,)foralla,,a,€R

so3a’-4=3a°-4

a’=a’

a°—a°=0

a—-a)(@+taa+a?)=0

a,=a,and (a2 +a,a,+a?)=0

DEPARTMENT OF MATHEMATICS
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(a®> + a;a, + a,%) = 0 is not considered because there are no real values of a, and a,.
Therefore, the given function f is one-one.

(3) Onto Function (Surjective Function). Onto function could be explained by considering
two sets, Set A and Set B, which consist of elements. If for every element of B, there is at
least one or more than one element matching with A, then the function is said to be onto
function or surjective function.

Note: To show that a function f is an onto function, put y = f(x), and show that we can
express x in terms of y for any y € B.

Example 1. Let A= {1, 5, 8,9) and B {2, 4} And f ={(1, 2), (5, 4), (8, 2), (9, 4)}. Then prove
f is a onto function.

Solution: From the question itself we get,
A={1,5,8,9), B={2,4} & ={(1, 2), (5, 4), (8, 2), (9, 4)}

So, all the element on B has a domain element on A or we can say element 1 and 8 & 5 and 9
has same range 2 & 4 respectively.

Therefore, f: A — B is a surjective function.

Example 2. How to tell if this function is an onto function? g: R — R defined by g(x) =1+
X2

Solution: Given the function g(x) = 1 + x%

For real numbers, we know that x*> > 0. So 1 + x*> > 1. g(x) > 1 and hence the range of the
function is (1, o). Whereas, the second set is R (Real Numbers). So the range is not equal to
codomain and hence the function is not onto.

Example 3. If f: R — R defined as f(x) = 2x.

Solution. Let y = 2x then x :%

Thus, for every y R, we have x = 2 € R such that f(x) = y.

Thus, f is onto.

Example 4. Consider the function f: R — R defined as f(x)= x°.
Solution. Let y = x? therefore x = ++/y
The square of any real number is non-negative.

DEPARTMENT OF MATHEMATICS
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It means that y > 0.
Thus, for y <0, we cannot find an element x such that f(x) =y.

Thus, the range of f(x) is the set of non-negative real numbers and the negative real numbers
are not in the image of f(x).

As a result, f(x) is not onto.

Note: If you restrict the co-domain to R*uU {0}, which is the set of non-negative real
numbers, the function becomes onto.

1.12 INVERSE FUNCTION

Let f: A — B be a one — one and onto function. Then the function

g: B — A which associates to each element b € B the unique element

a € A such that f(a) = b is called the inverse function of f. the inverse function of f is denoted
by 1.

Note: every function does not have an inverse. A function f: A — B has inverse iff f is one —
one and onto. If f has inverse, then f is said to be invertible and f~1: B — A. also if a € 4,
then f(a) = b whereb € B

=a=f"1(b).

1.13 COMPOSITE OF FUNCTION

Letf: A— Band g: B — C be two functions. Then the composition of f and g, denoted by g
o f, is defined as the function g o f: A — C given by g o f (X) = g(f (X)), V X € A.

Domain: f(g(x)) is read as f of g of x. In the composition of (f o g) (x) the domain of function
f becomes g(x). The domain is a set of all values which go into the function.

Example: If f(x) = 3x+1 and g(x) = x?, then f of g of x,
f(g(x)) = f(x?) = 3x>+1.

If we reverse the function operation, such as f of f of x,

g(f(x)) = g(3x+1) = (3x+1)°

Check your progress

True or false Questions

Problem 1. function f: R— R, then f(x) = 2x is injective.
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Problem 2. function f: R— R, then f(x) = 2x+1 is not injective.

Problem 3. The onto function is also called the surjective function.
Problem 4. function f: R— R, f(x) = |x| is an onto function.
Problem 5. In the surjective function, the range of the function “f” is equal to the codomain.

1.14 SUMMARY

A set is a well - defined collection of distinct objects.
A c B; which means Set A is a subset of Set B.
Foranytwosets Aand B,AnBc Aand An B c B.

@) (AUB)S = AN B (b) (AN B)° = A° U BC

Let f: A — B and g: B — C be two functions. Then the composition of f and g,
denoted by g o f, is defined as the function g o f: A — C given by g o f (X) = g(f (X)), V
X EA.

1.15 GLOSSARY

Numbers
letters
Collections of objects
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1.18 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that the function f:N — N is given by f(x) = x? is one — one function.
Q 2. Prove that the function f:N — N is given by f(x) = x? is not onto function.

Q 3. Let A=[-1, 1]. Then, discuss whether the following functions defined on A are one-
one, onto or bijective.

(a) f(x) = g. (b) f(x) = x2
Q4. Iff(x) = 3% then find ( f o f )(X).
Q5. If f (x) = 2x and g(x) = x+1, then find (feo g )(x) if x = 1.

1.19 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. False
CYQ 3. True
CYQ 4. False
CYQ 5. True
TERMINAL QUESTIONS
TQ 3. (a) One - One but not Onto.
(b) Not One - One and not Onto.
TQ 4. 27 X2

TQ5. 4
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Unit-2: GROUPS

CONTENT:

2.1 Introduction

2.2  Objectives

2.3 Binary Operation
2.4  Group

2.5  Some general properties of group
2.6  Special group

2.7  Order of a group
2.8 Summary

2.9 Glossary

2.10 References

2.11 Suggested Readings

2.12 Terminal Questions
2.13 Answers

2.1 INTRODUCTION

The founder of group theory is generally considered to be Evariste Galois (1811
1832), a French mathematician who developed the foundational concepts of the theory in the
early 19th century. Galois introduced the idea of a group as a way to study the symmetries of
the roots of polynomial equations, leading to what is now called Galois theory. This work
laid the groundwork for understanding the solvability of polynomials and provided a deep
connection between algebra and geometry.

Although Galois is credited with formalizing group theory, earlier contributions to the
concept of groups were made by mathematicians such as Joseph-Louis Lagrange, who
studied permutations in his work on equations, and Carl Friedrich Gauss, who considered
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groups in the context of number theory. However, it was Galois who first explicitly defined
and used the structure of a group as we understand it today.

Group theory is a fundamental branch of abstract algebra that studies algebraic
structures known as groups, which consist of a set of elements combined with an operation
that satisfies four core properties: closure, associativity, the existence of an identity element,
and the existence of inverses. Groups serve as a unifying framework to explore and formalize
the concept of symmetry in mathematics, science, and engineering, appearing naturally in
diverse contexts such as geometry, number theory, and physics. They describe
transformations that preserve structure, like rotations, reflections, or permutations, and
provide a systematic way to study these transformations. Groups are categorized into
different types, such as finite and infinite groups, abelian (commutative) and non-abelian
(non-commutative) groups, and specific subtypes like cyclic, dihedral, and permutation
groups. The study of group theory has profound applications, ranging from solving
polynomial equations and analyzing crystal symmetries in chemistry to underpinning
quantum mechanics, cryptography, and coding theory. Its abstract nature and wide
applicability make group theory a cornerstone of modern mathematics.

2.2 OBJECTIVES

The main objectives of studying group theory are tailored to provide students with a
foundational understanding of the subject and prepare them for advanced studies or
applications. These objectives include:

1. Understand the Basics of Group Theory: Introduce students to the fundamental
concepts of groups, including their definitions, properties, and examples, such as
cyclic groups, permutation groups, and symmetry groups.

Develop Problem-Solving Skills: Teach students how to apply group-theoretic
methods to solve mathematical problems, such as verifying group properties,
analyzing subgroups, and working with cyclic and normal subgroups.

Explore Group Structure: Familiarize students with the structural aspects of groups,
including Lagrange’s theorem, order of elements, cosets, and the concept of normality
and quotient groups.

Connect with Other Areas of Mathematics: Establish connections between group
theory and other areas, such as linear algebra, number theory, and abstract algebra, to
demonstrate its interdisciplinary nature.

Develop Logical and Abstract Thinking: Enhance students’ ability to think logically
and abstractly by analyzing and proving theorems within the framework of group
theory.

These objectives align with the goal of equipping learners with both theoretical understanding
and practical tools to analyze and apply permutation groups in various mathematical contexts.
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By achieving these objectives, students in a B.Sc. course gain a strong foundation in group
theory, which is essential for pursuing higher studies in mathematics or applying the concepts
in related scientific fields.

2.3 BINARY OPERATION

A binary operation is an operation that combines two elements (operands) from a set to
produce another element of the same set. Formally, if S is a set, a binary operation on S is a
function:

*:SxS —>8S

Here, * is the binary operation, and for any a,b € S,a*b S . Here, we can also say that S is
closed with respect to the binary operation *.

Examples 1: Addition on integers (Z): Let Z denotes the set of integers then "+" denote
binary operation if,

+:ZxZ >Z

i.e., forall a,beZ we should have a+beZ. Then we called "+" is the binary operation on
Z.

eg.,if35eZ then3+5=38

Example 2: Multiplication on real numbers (R): Let R denotes the set of real numbers then

X" or "."denote binary operation if,
x:RxR—>R

i.e., forall a,b e R we should have axb e R. Then we called "." is the binary operation on
R.

e.g.,2:3=6

Note 1: Throughout the book we will use multiplication by ".".

Note 2: If | A|=n, then | Ax A|=n?. Hence, the number of elements from Ax Ato A are

(m".
Note 3: In general, we will say, * is the binary operation on any set X if and only
a*be X, forall a,be X.
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Remarks 1: Every function from Ax A to A defines a binary operation on A and

conversely.

Remarks 2:  Binary operation is always a function.
Some more examples on binary operation:

Q) On the set of natural number (N):
(1) a*b=min{a, b}

(i) a*b =max{a, b}

(iii) ax*b=LCM(a,b)

(iv) a*b=GCD(a,b)

(v) axb=a"

All, from (i) to (v) are binary operation on the set of natural numbers.

(B)  On the set of real number (R):
(viy axb=a+b

(vii) a=xb=a.b

(viii) axb=a+b+a.b

(i) a*b:aT”’

(x) axb=a"

All, from (vi) to (ix) are binary operation on the set of real numbers (R) except (x) because
(-)"* ¢R

(C)  On the set of positive real number (R*): As we know that set of positive real
number is R* ={x e R| x> (0}

(xi)y axb=a+b

(xii) a=xb=a.b

(xiii) axb=a"%"

(xiv) a*b= ""T*b

(xv) axb=a’

All, from (xi) to (xv) are binary operation on the set of positive real numbers.

(D)  On the set of power set of natural number P(N): As we know that power set of
natural number is the collection of all the subset of natural number i.e.,
P(N)={X | X < N}.

(xvi) X =Y =XUY

(xvii) X =Y =XnNY

(xviii) X =Y =X =Y
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(xix) X=Y=(X=-Y)u(Y-X)

All, from (xvi) to (xix) are binary operation on the set of power set of natural number.

2.4 GROUP

To define the group we first need to focus some other important definitions and concepts
related to group which will helpful to understand the concept of group more easily.

Algebraic Structure: A set equipped with one or more binary operation on it is called an
algebraic structure.

e.g., (R,+,.) is an algebraic structure because set of real number (R) is closed with respect to
both the operation addition and multiplication.

Groupoid: A set equipped with one binary operation is defined as a groupoid.

e.g., (N, +), (N, ), R, ), (R, .), (Z, +), (Z, .) are groupoid because these are closed with
respect to their mentioned operation.

Semi-group: A groupoid with associative binary operation is called semi-group.

i.e.,, A set G along with the binary operation * is called semi-group if it satisfies the
following conditions.

Q) Forall a,beG, a*beG. [Name as closed property]
(i) Forall a,b,ceG, a*(b*c)=(a*xb)*c [Name as associative property]
Example 3: (R, +) is semi group because for each a,b,c € R, we always get

0) a+beR
(i) a+(+c)=(a+b)+c

Fore.g., 1,% € R then 1+§ = g , Which is also an element of R i.e, ge R.

i.e, a*xbeRVabeR
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So, we can say that 1+ @ + (_TSD = (

i.e, ax(bxc)=(a*b)*c Vab,ceR
Similarly, we can check for any other elements of R.
Hence, we can say that (R, +) is semi group.

Monoid: A semi group (G, =) is called monoid if there exist an element e € G such that for
all acG, axe=a=e=a. Such element (e) in a group G is called the identity element.

i.e., A set G along with the binary operation * is called monoid if it satisfies the following
conditions.

Q) Forall a,beG, a*beG. [Name as closed property]
(i) Forall a,b,ceG, a*(b*c)=(a*b)=*c [Name as associative property]

(iii) For all aeG,3eeGsuch that a*e=a=e=*a [Name as existence of identity
property]

Example 4: (R, +) is monid because for each a,b,c € R, we always get

(i a+beR
(i) a+((b+c)=(a+b)+c
(iii))  InR,thereexist 0eR suchthat a+0=a=0+a forall aeR

We can understand (i) and (ii) from example 3.

For (ii1), we know that in a set of real number the element “0” is such element which on
addition with any real number always give the same element.

For eg, 1+0=1=0+1, (-)+0=-1=0+(-1), J2+0=v2=0++2,
(—v2)+0=—2 =0+ (-/2)

Similarly, we can check these three properties for any other elements of R.
Hence, we can say that (R, +) is monoid.

Group: A monoid (G, *) is called group if and only if each element of G possess its inverse
with respect to the operation *.

i.e., A set G along with the binary operation * is called group if it satisfies the following
conditions.
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Q) Forall a,beG, a*xbeG. [Name as closed property]
(i)  Forall a,b,ceG, a*(b*c)=(a*xb)*c [Name as associative property]

(i)  For all aeG,3eeGsuch that a*xe=a=e=xa [Name as existence of identity

property]
(iv) For all aeG,3beGsuch that ax*b=e=b=*a [Name as existence of inverse

property]
Here such element b is called the inverse of a ‘OR’ Most of the time, we denote inverse of

the element aas a™* (notation).
Note: If we say a is the inverse of b then we can also say that b is the inverse of a.

Example 5: (R, +) is group because for each a,b,c € R, we always get

(i) a+beR

(i) a+(+c)=(a+b)+c

(iii)  InR, there exist 0eR suchthat a+0=a=0+a forall aeR

(iv)  InR,foreach aeR wealways get —a e Rsuchthat a+(-a)=0=(-a)+a

Fore.g., 1+(-1)=0=(-1)+1=Inverseof Lis-lie 1" =-1

Similarly, V2 +(=V2)=0=(—/2) + V2 = Inverse of /2 is—+/2 i.e. (v/2) 1 =-+/2

So, we can say that every element a € R, we can always find —a e R such that on operation
we get the identity element.

ie., a+(-a)=(-a)+a=0
Hence, we can say that (R, +) is group.

Abelian group: A group (G,=) is called abelian group if it satisfies the commutative
property.

i.e., A group (G,=) is called abelian group if Va,beG, a*b=b=*a.

e.g., (R, +) is abelian group, (Z, +) is abelian group

Note 1: Similarly, we can prove that (Z,+),(Q,+),(C,+) are abelian group.

2: If the group is not abelian then we referred it as non-abelian group.

Note: Throughout this book, whenever we say G’ it means the set without zero element.

ie, G =G-{0}.
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e, R"=R—-{0}, Q" =Q {0}, C" =C —{0} etc.

Here, we can easily check that (R",.),(Q",.),(C",.) are form group.

Example 6: Show that set of natural number N is not group with respect to addition.
Solution: As we know that set of natural number is closed with respect to addition i.e.,
addition of any two natural number is again a natural number. But in the set of natural we did

not get any number e € N such that a+e=a=e+a,Vae N. Generally, for addition O is the
identity element because a+0=a=0+a,Vae N but 0¢N.

Hence (N, +) does not satisfies the existence of identity property that why N is not group with
respect to addition.

Example 7: Show that the set G={.—3m,—2m,—m,0,m,2m,3m,.....}of multiples of
integers by a fixed integer m is a group with respect to addition.

Solution: We can also define G as, G ={mz | mis fixedand z € Z}

We will said the given set G is group with respect to the operation addition if it satisfies the
following properties.

Closure property: Let a,b e G =a=rm,b=smwhere, r,seZ.

Then a+b=rm+sm=(r+s)m

As we know that, (Z,+) is group with respect to addition then Vr,seZ =>r+s=1eZ
So, a+b=(r+s)m=ImeG

Hence, G is closed with respect to addition.

Associative property: Since the element of G are all integers and we know that the (Z,+) is
group. Hence it will also satisfy the associative property.

Existence of identity: 0 G and we have 0+a=a=a+0,vVaeG.

Existence of inverse: Let rm be any arbitrary element of G, where r € Z . Since Z is closed
with respect to addition then —re Z .

Then (-r)m+rm=(-r+r)m=0m=0eG
Similarly, rm+(-rm=(r—-r)m=0m=0eG
Hence, —rm is the additive inverse of rm.
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Thus every element of G possesses additive inverse of rm.
Hence G is a group with respect to addition.

Example 8: Show that the set of all positive rational numbers forms an abelian group under

the composition defined by, a*b = %b

Solution: Let Q, denote the set of all positive rational number. If we define the operation *

suchas a*b = a?b , then we have to prove that pair (Q,,*) is a group.

Closure Property: As we know that in the set of positive rational number, Va,beQ,, we

ab . . :
have always > € Q, . Hence Q, is closed with respect to the operation .

Associative property: Let a,b,c €Q, then,

(a*b)*c=(%bj*c:(%bj%:%(%jza*(b*c)

Existence of identity: Let us consider e be the identity element of Q,then VaeQ,, we

. ae
have a*e=a i.e., ?:a:ezz.

- . ea
Similarly we can prove, e*a=a i.e, ?:a:e:Z.

So, a*e=a=a*eVaeQ,, here obviously we get e=2. Since2 € Q, , thus we can say that
(Q,,*) possess the identity element.

Existence of inverse: Let us consider a be the arbitrary element of Q, . We say the element

b be the inverse of a then we have a*b=e i.e, a?b:ezzzbzg. Now, aeQ,, then

%e Q. such that (4/a)xa=2=a=*(4/a). As a is the arbitrary element then we can say

that each element of Q, possess its inverse element.
Hence, (Q,,*) is a group.

Commutativity: Let a,beQ, . Then, a*b= a?b = b—; =b=*a.

Hence, (Q,,*) is an abelian group.
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2.5 SOME GENERAL PROPERTIES OF GROUP

Let us consider a non-empty subset equipped with a binary operation denoted by
multiplication. Throughout this book, we assume the operation of multiplication (.) unless
specified otherwise. The theorems and corollaries that hold true for the operation of
multiplication will also be valid for other operations. Therefore, learners should not be
confused by statements and theorems with respect to the operations.

Theorem 1: (Uniqueness of identity): The identity element in a group is unique.

Proof: To prove that identity element is unique we have to first consider the group G has two
identity elements e and e'. Since G is group, then obviously ee € G (by closure property).

If e is the identity then, ee’ =e (D
If e is the identity then, ee =e .. (2

But ee is the unique element of G.

Therefore by (1) and (2) ee =e and ee =¢

—e =e
Hence, we now confirmed that identity element will be unique.
Theorem 2: (Uniqueness of inverse): The inverse of each element in a group is unique.

Proof: To prove that inverse of each element is unique we have to first consider the element
‘a’ of'a group G has two inverse elements b and c. Let e is the identity element of G.

If b isthe inverse of athen ab=e=ba .. (D
If c isthe inverse of athen ac=e=ca .. (2)
Now, from (1) and (2)
b(ac) =b(e) =be=b [As e is the identity element then, be=b]
Also, (ba)c=(e)c=ec=c [Aseis the identity element then, ec=c]

As G is group so it will be satisfy associative property with respect to composition
multiplication.
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Therefore, (ba)c=b(ac)=b=c
Hence inverse is unique.
Theorem 3: If the inverse of a is a™, thenthe inverse of a™is a i.e, (a')'=a

Proof: Let G be the group and e be the identity element of the group. Also we have assumed
that a™ is the inverse element of any arbitrary element a. Then for any arbitrary element of
acG.aa'=¢e [By the concept of inverse in G]

=@M)@"H) t=(@")"e

=af@a)ta']l=(@™")* [Group always satisfies the associative property]
=ae)=(@"™*

Hence, (a ™)' =a

Note 1: The inverse of identity element is itself i.e., ee ' =e=¢ee.

2: In the additive group inverse of any arbitrary element ae G is —a.
3: Generally in the additive group 0 is the identity element.

4: Generally in the multiplicative group 1 is the identity element.
“1,-1

Example 9: In a group G, show that Va,beG,(ab)*=b™a™.

Solution: Let a,b G and a™,b™ are their inverse respectively. Then,

and bb™ =e=b""b
Now, (ab)(b™a™) =[(ab)b']a™ [composition is associative]
=[a(bb™)Ja™

=(ae)a™
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Also, (b™a*)(ab) =b™'[a™*(ab)]
=b*[(@'a)b] =b*[(@ a)b]=b'b=e
Thus we have, (b™"a™")(ab) =e = (ab)(b'a™)
Hence we have, (ab)™*=b™a™.
Note 1: In additive notation the statement of this theorem will be, —(a+b) = (-b) + (-a).
Note 2: It can be generalized by induction as follows:
(abc...i.j k) =k j i atbtet
Theorem 4: (Cancellation laws hold good in a group) If a,b,c are elements of G, then
ab=ac=b=c (Left cancellation law)

and ba=ca=b=c (Right cancellation law)

Proof: Let G be a group and acG =a ' eGsuch that aa™ =e=a"a, where e is the
identity element.

Now, ab=ac=a"(ab)=a"(ac) [Multiplying both sides on the left by a™]
= (a'a)b=(a"a)c

—=eb=ec

=b=c

Also, ba=ca=> (ba)a" =(ca)a™

=b(aa™*)=c(aa’) =>be=ce=b=c

Note 1: In additive notation these results can be writtenas a+b=a+c=b=c

Example 10: If a,b,c are any two elements of a group G, then the equation ax=b and
ya=Db have unique solutions in G.

Solution: Let G be a group and a€G = a ' € Gsuch that aa™ =e=a"a, where e is the
identity element.

Since, acG,beG=a'eG,beG
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=a'beG [By closure property]

Now, substitute a™b for x in the left hand side of the equationax = b, we have

a(@a'b)=(aa)b=eb=Db
Thus, x =a'b is a solution in G of the equationax =b.

Now, we have to show that the solution is unique. For it suppose that x = x, and x=x, are
two solution of the equation ax=b.

Then, ax, =b and ax, =b

= ax, = ax, , then by left cancellation law,
=X =X,

Therefore, the solution is unique.

Similarly, we can prove that the equation ya="b have unique solutions in G.

2.6 SPECIAL GROUP

In this section we will define some special types of group which are more roughly used in
many units and are more useful to understand the similarities and dissimilarities of many
groups.

Addition modulo n: We shall now define a new type of addition known as ‘addition modulo
m’ and written as a+, b , where a and b are any integer and m is a fixed positive integer.

Thus by definition we have, a+_ b=r,0<r <m.

Where r is the least non-negative remainder when a+b is divided by m. Which is read as “a
is congruent to b modulo m”

eg., 5+,2=1, since 5+2=7=2(3)+1 and when we divide (5+2) by 2 we get the
remainder 1. Thus, we say5+, 2 =1.

e.g., 15+,3=2, since 15+3=18=4(4)+2 and when we divide (15+3) by 4 we get the

remainder 2. Thus, 15+, 3=2.
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Note1: a+,b=b+_ a

2: When a and b are two integer such that (a—Db) is divisible by a fixed positive integer m,
then we write a = b (mod m). Which is read as “a is congruent to b modulo m”.

3:a+,(b+,c)=a+, (b+c)
eg., 15+, 3+,1)=3=15+, (3+1)

Multiplication modulo n: Now define a new type of multiplication known as ‘multiplication
modulo m’ and written as ax, b , where a and b are any integer and m is a fixed positive

integer.
Thus by definition we have, ax_ b=r,0<r<m.
Where r is the least non-negative remainder when axb is divided by m.

e.g., 5x,2=0, since 5x2=10=2(5)+0 and when we divide (5x2) by 2 we get the
remainder 0. Thus, we say5x, 2=0.

e.g., 15x,3=1, since 15x3=45=4(11) +1 and when we divide (15x3) by 4 we get the

remainder 1. Thus, 15x, 3=1
Note 1: ax, b=Dbx_a
2: ax, (bx, c)=ax, (bxc)

Example 11: (Additive group of integers modulo m) The set G ={0,1,2,...,m—1} of first
m non-negative integer is a group, the composition being addition reduced modulo m.

Proof: Closed property: As we know by definition of addition modulo m.

a+,b=r where, 0<r<m-1. Therefore for all a,beG we get(a+,b)eG. Hence G is
closed with respect to the operation addition modulo m.

Associative property: Let a,b,c € G and m is fixed positive integer.
Then, a+, (b+,c)=a+, (b+c)

= The least non-negative remainder when a+ (b +c) is divided by m
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= The least non-negative remainder when (a+b) +c is divided by m
=(a+b)+,¢c

=(a+,b)+,¢c

Thus, a+, (b+,c)=(a+,b)+,¢C

Existence of identity: We have 0 € G, also if we have any a G then, 0+ ,a=a=a+,0.
Therefore, 0 is the identity element of G.

Existence of inverse: As 0 is the identity element so inverse of 0 is O itself. Also if a is any
non-identity element of G then m—a is also an element of G .

Now, a+, (m—a)=0. Hence we can say that every non-identity element of G has inverse
in G.

Commutative: a+, b = The least non-negative remainder when a+b is divided by m
= The least non-negative remainder when b+ a is divided by m

=b+_ a

m
ie, a+,b=b+_ a

Hence, (G, +,,) is abelian group.

Note: In general, we denote Z_ ={0,1,2,...m-1} and say Z, is abelian group with respect

to the operation (w.r.t.) addition modulo mi.e., (Z,,+,,) is abelian group.

e.0., (Zg+s), (Z,,+,), (Z5,+;) etc. are the abelian group.

U(n): We will define an important group most commonly used in this book. Here, U(n) is the
collection of all natural number less than n and relatively prime tonii.e.,

Un)={xeN|x<nand gcd(x,n) =1}
e.0. U@ ={xeN|x<4and gcd(x,4) =1} ={1, 3}

e.g., UG)={L23 4}
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e.g., U(8) ={1,357}

Example 12: U(n) is always an abelian group with respect to the operation multiplication
modulon (x,) forall ne N .

Solution: As we know, U(n)={xe N |x<n and gcd(x,n) =1}.
Here, obviously if a,b eU(n) then gcd(ab,n) =1

= ax, beU(n) orin general we can say abeU(n). Thus, U(n) is closed w.r.t. operation

X

As multiplication modulo n is associative and commutative both hence U (n) will also.
Since, 1eU(n)Vne N then 1 will be the identity of U(n) i.e.,, VaeU(n),
1x,a=ax,1=a

Now consider, U (n) ={a,,a,,...,a,} forany ne N

Let aeU(n) then, {aa,, aa,,...,aa } are also element of U(n) as it is closed and none of the
two elements of {aa,aa,,..,aa } are same (Here it should be remember always that

aa, =ax, a).

Ifitisthen, ax, a =ax, a; or aa =aa,
— aa, =aa; (modn)
=n|(aa —aa;) =>nla(a —a;)

Since, aeU(n) and gcd(a,n)=1=n}a

=n|(a —a;) =>a —a;=0(modn)

= a, =a; (modn)

Hence all {aa,, aa,,...,aa, } are distnict.
—da, eU(n) suchthat ax, a =1=a, x, a
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Which means a, is the inverse of a. So, we can say every element of U(n) has its inverse in
U(n) . Thus, U(n) is abelian group with respect to the operation multiplication modulo n.

Quaternion group (Qg): An another important non-abelian group name as quaternion group
and denoted by Q, and defined as,

Q ={L-Li,—1, j,— J,k,—k}, which satisfies the rule,
ij=kand ji=—k; jk=iand kj=—i; ki= jand ik =—]
Also, i’ = j> =k® =-1and kj =i

Note: Qg is non-abelian group with respect to the operation multiplication.

2.7 ORDER OF A GROUP

The order of a group is the number of elements it contains, denoted by |G|. Sometime we
name it as the cardinality of the group. A group may have finite element, countable element
or uncountable elements. If any group G has finite element say n then we say group of order
n otherwise we called group of infinite order.

e.g., (R, +) is infinite group.
Euler ¢ —function: A function from natural number (N) to natural number (N) such that

¢(n) = Collection of all natural number less than n and relatively prime to n. The mean of
relatively prime is that whose g.c.d with n is 1.

If n is any natural number and n = p," p,™...p,™ is the prime factorisation of n, then

() =(p," = p," )P, = P, ) (P = BT

e.0., #(24) = $(2°3) = (2° - 22)(3-1) = 4.2 =8
Example 13: Find the order of the group U (2°).
Answer: Since order of U(2°%)is ¢(2°%).

We know that, ¢(2°)=2°-2"'=32-16=16
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Note: If p is prime then, ¢(p)=p-1

Check your progress

If Z, ={0,1,2,3,4} and the operation +,then find the following problems.
Problem 1: Is (Z,,+;) a group?

Problem 2: Find the order of the group (Z;,+;).

Problem 3: Find the identity element of (Z,,+)

Problem 4: Find the inverse element of the element of 4 in (Z,,+;).

2.8 SUMMARY

This unit on group theory introduces the concept of a group, a fundamental structure in
abstract algebra defined by a set and a binary operation satisfying closure, associativity,
identity, and inverse properties. Key topics include examples of groups such as integers under
addition and symmetric groups, classifications like Abelian and non-Abelian groups. On the
basic of this we further study Subgroups, Lagrange's theorem (relating subgroup order to
group order), normal subgroups, and quotient groups in upcoming units. The chapter explores
the applications of group theory in understanding symmetry, transformations, and
mathematical structures in various domains, providing tools for solving problems in
geometry, physics, and beyond. Group theory has applications in diverse fields such as
geometry, number theory, physics, and cryptography, making it a cornerstone of modern

mathematics.

2.9 GLOSSARY

Binary operation.
Algebraic structure.
Group.

Semi group.

Monoid.
Abelian group.
Order of the group.

YV V. V V VVYVY

Euler ¢ —function.
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>
>

Addition modulo n.

Multiplication modulo n.
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2.12 TERMINAL QUESTIONS

Long Answer Type Question:

1.

Show that the set of all positive rational numbers forms an abelian group under the

a+b+ab
—

composition defined by, a*b =
Show that set of all matrices of order nxn with respect to the operation
multiplication is form non-abelian group when n > 3.

Show that power set of natural number is form group with respect to the operation *
defined by, X *Y =(X =Y)uU(Y — X) where X,Y € P(N).

Show that set of natural number is form group with respect to the operation *
defined by, a*b =GCD(a,b)wherea,be N .

Show that set of natural number is form group with respect to the operation *
defined by, a*b =LCM (a,b)wherea,be N
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Prove that Z_ is form group with respect to the operation addition modulo n.

Short Answer Type Question:

1. Prove that the Quaternion group Qq is group with respect to operation multiplication.

Find the order of the group U (5%).
Prove that U (8) is a group with respect to the operation multiplication modulo 8.
Prove that Z, is a group with respect to the operation addition modulo 5.

Prove that cancellation laws hold good in a group.

Is set of natural number forms a group with respect to operation addition? If No, then
why?

Fill in the blanks:

A group G is a set equipped with a binary operation that satisfies four properties:

closure, associativity, the presence of an element, and the existence of
for each element.

A group G is called if ab=baVvabeG.

The identity element e of a group G satisfies the property

In any group G, the inverse of an element a is denoted by a*and satisfies
IS a non-empty set G with a binary operation that satisfies closure,
associativity, identity, and inverse properties.
of a group G is the total number of elements in G.

Inagroup G, (ab)™ =

Objective type questions:

1. Which of the following is a necessary property of a group?
a) Associativity
b) Commutativity
c) Distributivity
d) Reflexivity

A group G is called Abelian if:
a) G is finite

b) G has an identity element

¢) G is commutative

d) Gis cyclic
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The identity element of a group G:

a) Is unique

b) Has no inverse

c) May not exist

d) Is not required to satisfy associativity

Which of the following is not a group under the usual operation?
a) The set of integers under addition

b) The set of rational numbers under multiplication

c) The set of natural numbers under addition

d) The set of real numbers under addition

A group with a finite number of elements is called:
a) Infinite group

b) Cyclic group

c) Finite group

d) Symmetric group

Which of the following groups is cyclic?

a) The set of integers under addition

b) The set of rational numbers under multiplication
c) The set of even integers under addition

d) The set of real numbers under multiplication

If G is a group, and a, b € G, then (ab)™" equals:

a) ab™
b) b'a™
ca'h?
d) ba

In a group G, the identity element e satisfies:
a) e’ =e

b)eg=9g=0evgeG

ce'l=e

d) All of the above

True and False questions:

NGO~ E

Every group has a unique identity element.

In a group, every element has a unique inverse.

The set of natural numbers under addition forms a group.

A group G is called Abelian if ab = ba for all a,b €G.

If G is a group, then the equation ax = b always has a unique solution for x in G.
The identity element of a group G is always equal to 1.

The set of all even integers under addition forms a group.

A finite group cannot have an infinite subgroup.
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9. The set of real numbers under multiplication forms a group.
10.  The set of matrices under matrix multiplication always forms a group.

11. IfGisagroupand acG,then (@) ™" =a.

2.13 ANSWERS

Answer of check your progress:
Problem 1: Yes

Problem 2: 5

Problem 3: 0

Problem 4: 1

Answer of short answer type question:
4x5%

Set of natural number is not form a group with respect to operation addition because
additive identity O ¢ N .

Answer of the objective type question:

Answer of the fill in the blanks:

Identity, Inverses . Abelian . ea=ae=aVvaeG

Group . Order

Answer of True and False:
1. True 2:
5: True 6:

9: False
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Unit-3: SUBGROUP

CONTENT:

3.1 Introduction

3.2 Objectives

3.3 Subgroup

3.4  One-step subgroup test
3.5 Two-step subgroup test
3.6  Algebra of complexes of a group
3.7  Properties of subgroups
3.8  Summary

3.9 Glossary

3.10 References

3.11 Suggested Readings

3.12 Terminal Questions

3.13 Answers

3.1 INTRODUCTION

The concept of subgroups emerged as a part of the development of group theory in the
19th century. Group theory originated from the study of algebraic equations, particularly the
work of Evariste Galois in the early 1830s. Galois introduced the idea of groups to analyze
the solvability of polynomial equations, leading to what is now known as Galois theory. His
work hinted at the importance of subsets of groups that retain group structure, laying the
groundwork for subgroups.

Later, Arthur Cayley in the mid-1800s formalized the concept of groups and
explored their properties systematically. Subgroups became an essential tool in understanding
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the structure of larger groups. Camille Jordan and Sophus Lie further advanced the study of
subgroups in the context of finite groups and continuous transformation groups, respectively.

By the late 19th and early 20th centuries, mathematicians like Emmy Noether and Elie
Cartan expanded the application of subgroups to abstract algebra and geometry. The study of
subgroups has since become a cornerstone of modern algebra, with applications in number
theory, geometry, cryptography, and physics.

By studying subgroups, mathematicians gain a deeper understanding of the structure
and behavior of groups, enabling them to explore more advanced concepts in abstract algebra
and its applications.

3.2 OBJECTIVES

The objectives of studying subgroups in group theory are as follows:

Understand Structural Hierarchies: To analyze how a smaller subset of a group
inherits the group properties and interacts with the larger group.

Identify Symmetries: Subgroups help in identifying specific symmetries or
transformations within a group that hold unique significance.

Simplify Problem-Solving: By focusing on subgroups, problems involving complex
groups can often be reduced to simpler components.

Explore Properties: To study properties like closure, associativity, identity, and
inverses within smaller subsets and verify their subgroup status.

Classify Groups: Subgroups help in classifying groups by revealing internal
structures, such as normal subgroups, cyclic subgroups, or center subgroups.
Understand Generators: Subgroups often arise from generators of a group and help
in exploring cyclic structures.

Applications in Science and Engineering: Subgroups are used in symmetry analysis,
cryptography, quantum mechanics, and other fields to isolate specific behaviors or
properties of larger systems.

3.3 SUBGROUP

A subgroup is a subset of a group that itself forms a group under the same binary operation
as the parent group. To qualify as a subgroup, the subset must satisfy the group axioms:
closure, associativity, identity, and inverses. Subgroups are fundamental in understanding the
internal structure of groups and play a key role in simplifying and solving problems in group
theory. For example, the set of even integers is a subgroup of the integers under addition.
Subgroups are used to explore the symmetries of objects, simplify complex group operations,
and form the basis for advanced concepts like normal subgroups and quotient groups.
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Definition: Let (G,*) be a group and H — G, we say H is a subgroup of G if (H,*) is group
itself. Generally, we denoted itas H <G .

Throughout this book whenever we use the symbol H <G it always mean that H is subgroup
of G.

Note 1: The operation on group and its subgroup are always same. For e.g. as we know that
set of integer (Z)is group with respect to the operation addition and Z; ={0,1,2,3,4}is

subset of Z but Z, is not subgroup of Z because the operation used in Z. is addition
modulo 5 i.e., operation on Z, and Z are not same.

Some useful subgroup corresponds to their respective group
@ (RH<(ECH)
i)  Q+)<R+)<(CH)

@ MzZ+H)<ZAH)<Q+)<R+)<(CH)

(iv), (Q',)<(R",)<(C",)

Note 1: For any (G,*) the subset of i.e., {€e} and G itself are always subgroups of the group
(G,*). Here, {e} is called trivial subgroup of (G,*) and G itself called improper subgroup
of (G,*).

2: If H <G such that H = G then H is called proper subgroup of (G,*). So, we can say that
{e} is also a proper subgroup of (G,*).

Example 1: Find all the subgroup of the quaternion group (Q;) .

Solution: In the previous unit we have studied about the quaternion group form a non-abelian
group with respect to the operation multiplication. As we know that Q; ={£1 +i,+ j, £k},

which satisfies the rule.
ijj=kand ji=—k; jk=iand kj=—i; ki= jand ik =—]
Also, i’ = j?=k* =-1and kj =i

Now, we can easily check that the following subset of Q, like,

H, =1}
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H,={-1}

H, ={L-1i,—i}

H,={L-1].—- i}

H, ={,-1k,—k}

H, ={tL+i,+ j,=k}=Q,

Here, all H,,i=1to 6 are proper and improper subset of Q,and also these H,,i =1to 6are

form itself group with respect to the operation multiplication. Hence we can say these
H,,i=1to 6 are subgroup of Q,.

3.4 ONE-STEP SUBGROUP TEST (OST)

The one-step subgroup test is a straightforward technique used in group theory to check
whether a given subset H of a group G is a subgroup of G.

Theorem 1: If H G such that H # ¢ then H <G if and only if Va,beH,a*b™*eH.
Where * is the binary operation on G.

Proof: Let we assume that Va,be H,a*b™ e H.

Given H # ¢ = there existanelement ae H .

=a=*a " eH, since we know that a*a* =e, which means identity element e € H . So, we
can say existence of identity element in H.

If H ={e} only, then the theorem done because we know that {e} is always a subgroup of
any group called trivial subgroup of G.

But if H ={e} then there exist a (=€) € H then by definition,

a,ecH=-exa'=a"'eH, which means every non-identity element possesses its inverse

in H. Therefore we can say that if a<H then a™ e H . So, we can say existence of inverse
element in H.

Now, let a,b e H then obviously by definition a™,b™ e H
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Now again acH and b™* eH then a*(b™*)"eH ie, a*xbeH. So, we can say H is
closed with respect to the operation .

Since G is a group so it will satisfies the associativity property and hence its each subset will
also the satisfies the associative property with respect to the operation *.

Conversely, Let we assume that H — Gis a subgroup of (G,*). It means H itself is a group
with respect to the operation *. So, if any elements a,b € H then there inverse will also

belongs to the group i.e., a™,b™ e H. Now if a,b™ € H , then by closure property on group
a*b*eH,VabeH.

Note 1: If G is a group with respect to the operation multiplication and H < G such that
H = ¢ then H <G ifand only if va,beH,ab™ eH.

2: If G is a group with respect to the operation addition and H < G such that H # ¢ then
H <G ifandonlyif Va,beH,a+(-b)eH ie, a-beH.

Algorithm for OST: To claim H <G for given H = G.
Step 1: Show H # ¢
Hint: Think about the identity element e e H

Step 2: Choose arbitrary x,y € H and write the property of x &y as member of H.

Step 3: Evaluate x.y " and using step-2 show that x.y™* e H .

Example 2: Prove that set of integer is subgroup of set of real number with repsct to the
operation addition.

Solution: To prove that the set of integers Z is a subgroup of the set of real numbers R under
the operation of addition, we use the subgroup criteria. Specifically, we check that:

1. Z is non-empty.
Z is closed under addition.
Z is closed under taking inverses.

Step 1: Z is non-empty

The set of integers Z contains at least one element, e.g., 0eZ. Hence, Z is non-empty.
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Step 2: Closure under addition

If a,beZ, then their sum a+b is also an integer ie., (a+beZ). Since the integers are
closed under addition, this property holds.

eg., 1,-2eZ then1+(-2)=1-2=-1Z
Step 3: Closure under inverses

For any integera e Z, its additive inverse —a is also an integer (—a e Z ). Hence, Z is closed
under taking inversesi.e., a—(-a)=a+a=2aecZ as aeZ

eg.,lL-2eZ then1-(-2)=1+2=3€Z

3.5 TWO-STEP SUBGROUP TEST (TST)

The two-step subgroup test is a two-step based technique used in group theory to check
whether a given subset H of a group G is a subgroup of G.

Theorem 2: A non-empty subset H of a group G is a subgroup of G if and only if

Q) aeHbeH=abeH.

(i) aeH=a"eH where a™ isthe inverse of ain G.

Proof: If part: Let H be a subgroup of G then H must be closed with respect to the operation
multiplication i.e., the composition in G. Therefore ac H,beH =abeH.

Now, let ae H then a™ e H as H is subgroup hence group itself. It means each element of
H possesses its inverse in H.

Only if part: Since acH,beH =abeH, it means H is closed with respect to
multiplication.

Associativity: Since G is a group so it will satisfies the associativity property and hence its
each subset will also the satisfies the associative property with respect to the operation

multiplication.

Existence of identity: Since the identity of the subgroup is the same as the identity of the
group. Now, ae H =a* eH [According to the condition]

Further, acH,a'eH = aa’teH
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—eecH [From the given condition]

I.e., the identity e is an element of H.

Existence of inverse: Since acH =>a™" e H, it means each element of H possesses its
inverse. Hence H itself is a group for the composition in G. So H is a subgroup of G.

3.6 ALGEBRA OF COMPLEXES OF A GROUP

Any non-empty subset (H) of a group (G) is called the complexes of the group. IF H is
closed with respect to the given operation then we say that the complex H is stable for the
composition in the group G and that the composition in G has induced a composition in H. If
for this induced composition H itself is a group, then H is called a subgroup of the group.

If H and K are two complexes of the group G then multiplication of complexes defined as,

HK ={hk |h e H,k e K}.

Obviously, HK < G. Thus HK is a complex of G consisting of the elements of G obtained
on multiplying each member of H with each member of K.

Note: As we know that complex H is always a subset of the group G then the associativity
and commutativity will always hold on complex H.

Example 3: Multiplication (Addition) of complexes is associative.

Solution: We have to prove that (HK)L = H(KL).

Let h, k, | are arbitrary element of H, K and L respectively, so that (hk)l € (HK)L
But, (hk)I =h(kl) € H(KL)

= (HK)L c H(KL) .. (D)

Similarly, we can show that H(KL) < (HK)L ....(2)

Hence, by (1) and (2) we get (HK)L =H(KL).

Note: Whenever we sayHK =KH, then it does not mean that we should have
hk =khVvhe Hand Yk € K. What we require is that each element of the set HK should be

present in KH and each element of KH should be present in HK.
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Inverse of a complexes: Let H be any complex of G. Then we define,

H'={h™":heH}ie, H™' is the complexes of G consisting of the inverses of the element
of H.

Theorem 3: If H and K are any two complexes of a group G, then (HK)™ = K™*H™.
Proof: Let x be any arbitrary element of (HK)™. Then,

x=(hk),heH,keK

=x=k"h*eK'H™* [heH  kteK™]

S(HK) < K*H™ (1)
Again let y be any arbitrary element of K™*H™

Then y=k™*h™ keK,heH

y = (hk)™ € (HK)™

Hence, K'H™ < (HK)™

By, (1) and (2) we get, (HK)*=K™'H™*

Theorem 4: If H is any subgroup of a group G, then (H)™ = H . Also show that converse is
not true.

Proof: Let h™ be any arbitrary element of H™. Then he H .
Now H is a subgroup of G, therefore he H =>h™* eH.

Thus h* e H" =h" eH. Therefore H' c H

Again, he H=h"eH

— () teH™

=heH™

~HcH?
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Thus, we can say that H =H™

Note: If H is a complex of a group G and H =H ™, then it is not necessary that H is a
subgroup of G. For example, H ={-1} is a complex of the multiplicative group G ={1,-1}.

Also H™' ={-1}. Since -1 is the inverse of —1 in G. But H ={-1} is not a subgroup of G.
We have (-1)(-1) =1¢ H . Thus H is not closed with respect to the multiplication.

Theorem 5: If H is any subgroup of a group G, thenHH =H .

Proof: Let hh, be any element of HH where h, e H,h, e H. Since H is subgroup of G,
therefore h,h, e H =hh, e H

HH cH
Now let h be any element of H. Then we can write h =he, where e is the identity element of

G. Now, hee HH , since heH,eeH

Thus H c HH.

Hence, H = HH

3.7 PROPERTIES OF SUBGROUPS

Theorem 6: A necessary and sufficient condition for a non-empty subset H of a group G to
be a subgroup is that HH ™ < H .

Proof: The condition is necessary: It is given that H is a subgroup of G. Let ab™ be any
arbitrary element of HH ™. Then ae H,beH.

Since H itself is a group, therefore be H =>b™" e H .
Thus acH,b'eH =ab’'eH.

Hence, HH'c H .

The condition is sufficient: It is given that HH™' c H .

Let acH,beH=ab*eHH™. Since HH*cH, therefore ab*eHH* = ab*eH.
Thus acH,beH = ab™ e H . Since H is a subgroup of G.
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Corollary 1: : A necessary and sufficient condition for a non-empty subset H of a group G to
be a subgroup is that HH ™ = H .

Proof: The condition is necessary: Suppose H is a subgroup of G, then by theorem
HH'cH.

Now H is a subgroup of G. Therefore e e H. If h is any arbitrary element of H, then
h=he=he® eHH™ [“heH,eteH™]

~HoHH?

Hence, HH™" =H

The condition is sufficient: It is given that HH ™' =H .

~HH™"=H

Hence by theorem, H is subgroup of G.

Theorem 7: If H, K are two subgroup of a group G, then HK is a subgroup of G, iff
HK =KH .

Proof: Let us consider H, K are two subgroup of a group G and HK = KH then we have to
prove that HK is a subgroup of G. So, we have only to show that (HK)(HK)™ = HK (By
corollary 1)

We have, (HK)(HK)™ = (HK)(K*H )= H(KK)H™

=(HK)H™ [+ Kisasubgroup= KK =K]

=(KH)H" [HK=KH]

=K(HH™)

=KH [-His asubgroup=HH ' =H]
**HK = KH = HK is a subgroup of G.
Conversely, suppose that HK is a subgroup.

Then, (HK)™ =HK
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=K'H*=HK [-Kisasubgroup= K™ =K andsimilarly, > H" =H]
Note: If H, K are subgroups of an abelian group G, then HK is a subgroup of G.

Theorem 9: If H, and H, are two subgroup of a group G, then H, " H, is also a subgroup
of G.

Proof: Let H, and H, are two subgroup of a group G then we have to show that H, " H, is
also a subgroup of G. To prove this we will use the one step subgroup test.

For it let, a,b € H; m H, then we have only to show that ab™ e H, " H,.

Now if a,be H, nH, =>aeH, nH, and be H, nH,

—aeH,and aeH,, Similarly, be H, and be H,.

Further,aeH,,beH, =ab™" eH, [As H, is subgroup then by one step subgroup test]

Similarly, be H,,beH, = ab™ e H, [As H, is subgroup then by one step subgroup test]

So, we have ab™ eH, and ab™ e H, =>ab™" e H, nH,

Hence, we achieved that if a,beH, nH, then ab™ e H,nH,. So, we can claim that
H, " H, is also a subgroup of G if H, and H, are two subgroup of the group G.

Corollary 2: Arbitrary intersection of subgroups of a group is also a subgroup of the group.

Proof: Let G be a group and {H, [teT} be the family of subgroups H, of the group G,
where T be the indexed set. We have to show that H = ~{H, |t €T} is also the subgroup of
G.

Foritlet, a,be ~{H,|teT}=aeH, and be H, VteT

Now, a,beH,=ab™ eH, forall teT.As H, is arbitrary subgroup from the family of
subgroup {H, |t € T} hence we get,

a,ben{H, |teT}=ab" e{H, |teT} [Because H, are subgroups forall teT]

Thus, arbitrary intersection of subgroups of a group is also a subgroup of the group.
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Example 4: Show by suitable example that the union of two subgroup is not necessarily a
subgroup while intersection of subgroup is a subgroup.

Solution: As we know that set of integer (Z) is a group with respect to the operation addition.
Also, we know that mZ, mis fixed integer is a subgroup of Z. So, we can say that

22 ={0,+2,£4,£6,..}={...—-6,-4,-2,0,2,4,6,..}

And 3Z ={0,+3,+6+9,...}={...—9,-6,-3,0,3,6,9,...} are two subgroup of Z.

Now, 22 U3Z ={0,+2,+3,+4,+£6,£9...}.

Now, 2e€2ZuU3Z and 3€2ZU3Z but 3+2=5¢2Z0U3Z. Hence, 2ZU3Z is not

closed with respect to the operation addition. So, we can say that union of two subgroup is
not necessarily a subgroup.

27 ~3Z ={0,+6,£12,+18,..}

Theorem 10: Union of two subgroups is a subgroup if and only if one is contained in the
other.

Proof: Let H,,H, are two subgroups of a group G and also we consider that H, c H, or
H, < H,. Then obviously,

If H, < H, then H, UH, =H, = H, UH, issubgroup as H, is subgroup;
And if H, c H, then H, UH, =H, = H, UH, is subgroup as H, is subgroup.

Thus, if one subgroup is contained in the other subgroup then union of two subgroups is a
subgroup.

Conversely, suppose that H, UH, is subgroup whereH,,H, are two subgroups. So, we
have to prove that either H, c H, or H, c H,.

For it, let we suppose that H, is not subsetof H, =3JaecH, and ag¢H, ...(1)

And if, H, isnot subset of H, =3beH, and be H, .. (2

Now, from (1) and (2), we get ac H, UH, and be H, UH,.

Since we have H, U H, is subgroup, therefore ab =c (say) is also an element of H, UH, .
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Butab=ceH, UH,=ceH, or ceH,

Suppose ab=ceH, then b=a'ceH, [--H, is a subgroup, therefore

aeH,=>a"eH,]
But from (2), we have b ¢ H,. Thus we get a contradiction.

Again suppose ab=ceH, then a=cb*eH, [.H, is a subgroup, therefore
beH,=b"eH,]

But from (1), we have a ¢ H,. Thus here also we get a contradiction.
Hence either H, c H, or H, c H,.
Hence the theorem proved.

Example 5: Can an abelian group have a non-abelian subgroup?

Solution: Since every subgroup of an abelian group is abelian. If G is an abelian group and H
is a subgroup of G, then the operation on H is commutative because it is already commutative
in G and H is a subset of G. Hence an abelian group cannot have a non-abelian subgroup.

Example 6: Can a non-abelian group have a abelian subgroup?

Solution: A non-abelian group can have [an abelian subgroup]. For example the quaternian
group Q,is non-abelian while its subgroup H ={1,—1,i,—i} is abelian subgroup.

Example 7: Can a non-abelian group have a non-abelian subgroup?

Solution: A non-abelian group can have a non-abelian subgroup. For example, as we know
that every group G has G and {e} are its two ready-made subgroup. Similary, the quaternian

group Qghas Q, and {e}are two its subgroup where Q, is non-abelian. So we can say that a
non-abelian group have a non-abelian subgroup.

Check your progress

If Q, ={x1%i,£ j, £k} isagroup with respect to the operation multiplication then find the
following problems.

Problem 1: Is H, ={1,—1} a subgroup group of Q, ?
Problem 2: Is H, ={1 -1, j,— j} asubgroup group of Q,?
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Problem 3: Is H, ={1,—1 k,—k} a subgroup group of Q,?

Problem 4: Find the abelian and non-abelian subgroup of Q,?

3.8 SUMMARY

The unit on subgroups explores the concept and properties of subgroups within the context of
group theory. It begins by defining a subgroup as a subset of a group that itself satisfies the
group axioms: closure, associativity, the existence of an identity element, and inverses. The
unit introduces key criteria like the subgroup test, which states that a non-empty subset is a
subgroup if it is closed under the group operation and inverses. Examples of subgroups,
including trivial and improper subgroups, are discussed to illustrate the concept. The unit also
delves an important role to learn about Lagrange's Theorem, which relates the order of a
subgroup to the order of the parent group, and the concept of cyclic subgroups generated by a
single element, which we will learned later. Overall, this unit emphasizes the utility of

subgroups in analyzing the structure and symmetry of groups.

3.9 GLOSSARY

Subgroup.

One-step subgroup test.

Two-step subgroup test.
Complexes of the group.
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3.12 TERMINAL QUESTIONS

Long Answer Type Question:

1. Show that a necessary and sufficient condition for a non-empty subset H of a finite

group G to be a sub-group isthat acH,be H =>abeH.

If G is a group, the centre of G, Z(G) is defined by,
Z(G)={z G| zx=xzV x eG}. Prove that Z(G) is a subgroup of G.

If aeG we define N(a) ={xeG|xa=ax}. Prove that N(a) is a subgroup of G.
Let G be a group, H is a subgroup of G. Let for xe G, xHx" ={xhx™"|heH}.
Prove that xHx ™" is a subgroup of G.

Show that integral multiple of 5 form a subgroup of the additive group of integers.

Show that all those element of an abelian group G which satisfy the relation a® =e

constitute a subgroup of G.
Short Answer Type Question:
1. Let H be a subgroup of a group G and define T ={x € G :xH = Hx} then prove that T

is a subgroup of G.

Define a subgroup with examples. What is the difference between a complex and a
subgroup of a group.

Give an example of a non-abelian group G which has the property that every proper
subgroup of G is abelian.

4. Show that a group can never be expressed as the union of two of its proper subgroup.
Fill in the blanks:

1. A subset H of a group G is a subgroup if it is under the group operation
and contains the of G.
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The identity element of a subgroup H is the same as the element of the
parent group G.

A subgroup H is called a subgroup if it only contains the identity
element.

If a is an element of a group G, the set of all powers of a, {a" |neZ}, forms a

subgroup of G.
A non-empty subset H of a group G is a subgroup if a,b € H implies in

H,and a*eH.

The subgroup generated by an element g € Gis called the subgroup of
G.

The subgroup of any group G is G itself.

Objective type questions:

1. Which of the following is NOT a requirement for a subset H of a group G to be a
subgroup?
a) H is non-empty.
b) H is closed under the group operation.
c) H contains all elements of G.
d) H is closed under inverses.

The set of integers under addition forms a group. Which of the following subsets is a
subgroup?

a) The set of all odd integers.

b) The set of all even integers.

C) The set of all positive integers.

d) The set of all negative integers.

If H is a subgroup of a group G, then:

a) H must be finite.

b) H must contain at least two elements.
C) The identity element of G is in H.

d) H must be equal to G.

If H is a subgroup of G, which of the following must hold?
a) H is closed under addition.

b) H contains the identity element of G.

c) H is closed under multiplication.

d) H contains the inverse of each of its elements.

Which of the following is not a criterion for H — G to be a subgroup?
a) H=op

b) H is closed under the group operation

C) Forall a,beH,ab™ e H

d) H is commutative

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 52




Abstract Algebra

The intersection of two subgroups of a group G:
a) Is always a subgroup of G

b) Is never a subgroup of G

c) Depends on the group G

d) Is equal to G

If H and K are subgroups of a group G, then H " K
a) Is always a subgroup of G

b) Is a subgroup only if HcKor KcH

C) Is never a subgroup of G

d) Is asubgroupif HNK=¢

A subgroup H of G is called proper if:
a) H=G

b) H=G,H={e}

C) H=G

d) HcG

A nonempty subset H of a group G is a subgroup if and only if:
a) H is closed under the group operation

b) H is closed under inverses and the group operation

C) H is closed under scalar multiplication

d) H satisfies gh* e HV g,he H

If G is a finite group and H is a subgroup of G, then the order of H:
a) Divides the order of G

b) Equals the order of G

c) Must be prime

d) Is always odd

If H is a subgroup of G and g € G, gHg™:
a) Is always a subgroup of G

b) Is never a subgroup of G

c) Is equal to H

d) Is equal to G

A subgroup H of a group G is normal if and only if:
a) gH =Hgforall geG

b) H is abelian

c) H is cyclic

d) H is finite

True and False questions:

1.

2.

Every group has exactly one trivial subgroup.

MT(N)-202

The identity element of a group does not necessarily belong to its subgroups.
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The union of two subgroups is always a subgroup.

A non-empty subset of a group is a subgroup if it is closed under the group operation
and inverses.

If H is a subgroup of G, then H must also be a normal subgroup.

The center of a group G is always a normal subgroup of G.

If G is a finite group and H is a subgroup of G, then the order of H divides the order
of G.

The intersection of any two subgroups of a group is always a subgroup.

A group with no proper non-trivial subgroups is called a simple group.

The union of all subgroups of a group G forms a subgroup of G.

If H is a proper subgroup of G, then H must be finite.

3.13 ANSWERS

Answer of check your progress:
Solution 1:  Yes.
Solution 2:  Yes.
Solution 3:  Yes.

Solution 4:  The abelian subgroup of Q, are H, ={e}, H, ={L,-1,H, ={1,-1i,-1},
H,={-1j,-j} H. ={L-1Lk,—k}

The non-abelian subgroup of Q, are Q.

Answer of the objective type question:

C 2. b

d 6. a

d 10. a
Answer of the fill in the blanks:
1. Closed, Identity element . Identity : Trivial
4. Cyclic . ab . Cyclic
7. Improper

Answer of True and False:
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True 2. False . False . True
False 6. True ) True ) True

True 10. False 11. False
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Unit-4: CYCLIC GROUP AND LAGRANGE’S
THEOREM

CONTENT:

4.1  Introduction

4.2  Objectives

4.3  Order of group

4.4  Generation of element
4.5  Order of an element
4.6  Cyclic group

4.7 Lagrange’s theorem
4.8 Summary

4.9 Glossary

4.10 References

4.11 Suggested Readings

4.12 Terminal Questions

4.13 Answers

4.1 INTRODUCTION

Joseph-Louis Lagrange made significant contributions to abstract algebra,
particularly in group theory and permutation theory. His most famous result, Lagrange’s
Theorem, established that the order of a subgroup divides the order of a finite group, laying
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the groundwork for later developments in group theory. His work in permutation groups
influenced Evariste Galois, leading to the foundation of Galois theory, which connects group
theory with field theory and polynomial equations. Lagrange also studied resolvents in
algebraic equations, contributing to the understanding of polynomial roots and their
symmetries. His insights into number theory and modular arithmetic played a key role in the
development of modern algebraic structures, influencing later mathematicians like Cauchy
and Galois.

Joseph-Louis Lagrange (born Giuseppe Luigi
Lagrangia or Giuseppe Ludovico De la
Grange Tournier; 25 January 1736 — 10
April 1813), also reported as Giuseppe Luigi
Lagrange or Lagrangia, was an
Italian mathematician, physicist and astrono
mer, later naturalized French. He made
significant  contributions to the fields
of analysis, number theory, and

both classical and celestial mechanics. _
Joseph-Louis Lagrange

25 January 1736 — 10 April 1813

https://images.app.qoo.gl/Goewxm3NQYVF
whrP7

Lagrange’s theorem provides crucial insights into the possible sizes of subgroups
within a given group and serves as a foundational tool for further studies in algebra, such as
in the classification of groups and the study of cosets. However, it does not guarantee the
existence of subgroups of every divisor of |G|, only that such sizes are possible.

In this unit we will also learn about the cyclic group. The concept of cyclic groups
has its roots in the early development of group theory, which emerged in the 18th and 19th
centuries. The origins of cyclic groups can be traced back to the work of Joseph-Louis
Lagrange (1736-1813), who studied permutations and the structure of algebraic equations.
However, the formal definition and deeper exploration of cyclic groups came later with
Evariste Galois (1811-1832), whose work on Galois theory introduced the idea of groups
associated with polynomial equations.

In the 19th century, Augustin-Louis Cauchy (1789-1857) and Camille Jordan (1838-
1922) further developed group theory, formalizing concepts like group order, generators, and
cyclic subgroups. Cyclic groups were recognized as fundamental building blocks of finite
groups, playing a crucial role in modular arithmetic and number theory, as seen in the
works of Carl Friedrich Gauss (1777-1855). Over time, cyclic groups became central in
abstract algebra, influencing ring theory, field theory, and cryptography. Today, they are
one of the most basic and widely used algebraic structures in mathematics.
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4.2 OBJECTIVES

The objectives of studying the unit on cyclic groups and Lagrange’s theorem in abstract
algebra are as follows:

1. Understanding the Concept of Cyclic Groups — Define cyclic groups and explore
their properties, including generation by a single element.

2. Classification of Cyclic Groups — Differentiate between finite and infinite cyclic
groups and understand their structures.

3. Exploring Generators — Identify generators of cyclic groups and determine the
conditions under which an element can generate the entire group.

4. Subgroups of Cyclic Groups — Prove that every subgroup of a cyclic group is also
cyclic and characterize the subgroups of finite cyclic groups.

5. Order of Elements — Understand the relationship between the order of an element
and the order of the group, including how to compute element orders.

6. Lagrange’s theorem- Understand the concept of Lagrange’s theorem and its
implementation.

By the end of the chapter, students should have a strong foundational understanding of cyclic
groups and their significance in algebra and applied mathematics.

4.3 ORDER OF GROUP

Definition: Let (G,*) be a group then we say G is finite or infinite group, as number of
elements in G are finite or infinite.

When G is finite set say n, then we denote cardinality i.e., Card(G) = G |=The order of
G=0(G)=n.

Else, we say G is infinite group instead of saying G is infinite order group.

Fore.g., O(Q;) =8, O(Z;) =5, Card(U(8)) =Card({L,5,7,1)}x,}=4.

4.4 GENERATION OF ELEMENT

Let (G,*) be agroup then,if acG=a'eGand VmeN,a" €G,(a’)" G

e, a",a"eG

Note: We will write a° =e i.e.,, a"a"=e=a’=e

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERITY




Abstract Algebra MT(N)-202

Then define, S={a" |meZ}c=G

Then S is called the subset generated by a and denoted by <a >
ie, <a>=S={a" |meZ}
=VaeG,<a>=S={@a"|meZ}cG

eg., If G=Q, and a=i, then <i>={i,i%i%,i'}y={i,-1,-i,1}

e.g., If G=U(@5) ={14,5,7,8,11,1314} is a group with respect to the operation x,.. As
4 €U (15) then

<4>={4,4* 4% .3={41,41.3={14}

4.5 ORDER OF AN ELEMENT

Let G be a group and a € G, then the order of element a is defined as the cardinality of the
set S =<a> and denoted by O(a).

ie,foraeG, O(@a)g<a>HS|
if <a> is infinite set then we say ais an element of infinite order.
Observation: If ae G suchthat |S|H<a>=m

=<a>={a,a* a’,..a" =€}

n n+l

ie, aaad..,a"a",. . .e<a>

claimas, [<a>=m

2 3 m
<a>={a,a“,a’,..,a" =e}.
Let neZthen n=mg+r,0<r<m

a"=a"™" =a™a"' =(a")'a" =e*a"' =a" e{a,a’,a’,...a"}

Note: If ae G, then the smallest me N is said to be order of aif a™ =e and denoted by
O(G). If no such mexist, then a is of infinite order.

Result and properties:
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Q) For any G, the identity element is the only element of order 1 in Gi.e., O(e) =1
Hence, for any element ac G ,0(a)=1<a=¢e

(i)  Weknow that e™ =e i.e., we can say that e is the self-inverse element.
Moreover, if a=eeG suchthat a' =a

As axe=0(a) =1

As axa'=a=>axa=¢

=a’=e=0()=2

Hence, every element of order 2 is self-inverse.

(iii) A non-identity element is of order 2 iff it is self-inverse.

(iv) <a>={a"|mezZ}={@")™"|-meZ}
={@™")"|rez}

=<a>=<a >

=0(a)=0(a™)

Hence, we can say that order of any element in a group is same as its inverse ‘OR’ in any
group order of element is equal to the order of inverse element.

(v) Let aeG then VxeG, O(xax™) =0(a)
Proof: O(@a)=m=a" =e

azel<r<m

(xax™)? = (xax )(xax ™) = xa’x "

Then by induction, (xax™)" = xa"x™

If n=m then, (xax™*)" = xa"x*

If r <m then we say O(xax ') =r

Such that (xax )" =e
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=xa'x'=e

—a =x'ex=e

= a' =e, which is a contradiction because r <m
=0(xax)=mvVxeG&VaecG

Hence, O(xax™) = O(a)

Example 1: Find the order of each element of the group Q,?

Solution: As we know that Q; ={+1,+i,* j,+k}.

Since 1 is the identity element of Q; therefore O(1) =1.

Now, (-1)' =—1 and (-1)* = (-D)(-1) =1. So O(-1) = 2.

(' =i, ()* = @) =-1, ()* = OO =, ()" = D) =1. So O) = 4

(=) =i, (-1)* = (=i)(=0) = -1, (=)’ = (=I)(=) (=) =i, (=i)* = (=)(=i)(-i)(-1) =1. So
O(-i) = 4

(0" =1, (=) =-1, (1)’ =D ==]. ()*=(1(i)i)=1. S0 O(j) =4

D =0 G =EDED =L P =EDEDED =T
1) =CDENEDED =180 O(=j) =4

Similarly, we can evaluate that O(k) =4 = O(—k).
Hence in Q;, O(1) =1,0(-1) =2,0(i) =O(-1) =O(j) =O(—j) =O(k) =O(—k) = 4.
Example 2: Find the order of each element of the group Z,?

Solution: As we know that Z, ={0,1,2,3,4,5} is a group with respect to the operation
addition modulo 6.

Since 0 is the identity element of Z, therefore O(0) =1
Now, )" =1, (1)° =1+,1=2,(1)° =1+, 1+,1=3,()* =1+, 1+,1+,1=4,
D° =1+,1+,1+,1+,1=51)° =1+, 1+, 1+,1+,1+,1=0=0(1) =6.
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Again, (2)' =2,(2)? =2+, 2=4,(2)* =24, 24, 2= 0= 0(2) =3,
(3)'=3,(3)? =3+,3=0=0(3) = 2
(4)'=4,4)°=4+,4=2,(4)°=4+,4+,4=0=0(4) =3,

And, (5)' =5,(5) =5+, 5=4,(5)° =5+, 5+ 5=3,(5)* =5+ 5+, 5+,5=2,

(5)° =5+ 5445+, 5+,5=1(5)° =5+, 5445+, 5+,5+,5=0=>0(5) =6

Note 1: In the infinite multiplicative group of non-zero rational numbers, the order of every
element except the element 1 and -1 is infinite.

2: In the additive group of integers the order of every element except 0 is infinite.
3: In an infinite group elements may be of finite as well as of infinite order.

Theorem 1: The order of every element of a finite group is finite and less than or equal to the
order of the group.

Proof: Let us consider G be a finite group with respect to the operation multiplication. Let

a G then all positive integral powers of ai.e., a,a®,a’,.... All these are element of G, by
closure axioms. Since G has a finite number of elements, therefore all these integral power of
acannot be distinct element of G . Let us suppose that a" =a° (r > s).

-S

Now, a" =a*=a'a*=a°a

-where m=r-—s
Since r > s, therefore mis a positive integer. Thus there exists a positive integer m such that
a"=e.

Now we know that every set of positive integers has a least member. Therefore the set of all
those positive integers m such that a™ =e has least member, say n. Thus there exists a least
positive integer n such that a" =e. Therefore O(a) is finite.

Now to prove that O(a) < O(G).

n

Let O(a) =n where n>O(G). Since a € G, therefore by closure property a,a’,a’,...,a
are element of G and no two of these are same. If it is possible, let a" =a°®,1<s<r <n.
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Then a"* =e. Since 0<r—s<n, therefore a"* = e implies that the order of ais less than

n. This is a contradiction. Hence a,a?,a?,...,a" are n distinct elements of G. Since
n > 0O(G), therefore this is not possible. Hence we must have O(a) <O(G).

Theorem 2: The order of an element of a group is the same as that of its inverse a™.

Proof: Let n and m be the orders of aand a™ respectively. We have O(a)=n=a" =e
(Identity element)

— (an)—l — e—l — (a—l)n —e
=0@")<n=m<n
Also, O(@)=m=@")"=e

m

=@ '=e=>a"=e ["b'=e=b=¢]
=0@<m=n<m

Now, m<nand n<m=m=n.

If the order of a is infinite, then the order of a™ cannot be finite. Because
O(a™) =m= 0(a) is finite. Therefore, if the order of ais infinite, then the order of a™*
must also be infinite.

Theorem 3: The order of any integral power of an element a cannot exceed the order of a.

Proof: Let a* be any integral power of a. Let O(a) =n.
Now, O(a) =n = a" = e (identity element)

=@") =e*=a%=e

=@") =e=a%=e

= @)"=e=0(a")<n

Theorem 4: If the element a of a group G is of order n, then a™ =e iff n is a divisor of m.

Proof: Let n be a divisor of m. Then there exists an integer g such that nq=m.

Now, = a" =a™ =(a")? =e" =e.
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Conversely, let a™ =e.

Since mis an integer and n is a positive integer, therefore by division algorithm there exist
integers g and r such that

m=nq+r,where 0<r<n.

Now, a" =a™" =a™a"' =(a")%a" =e"a" =ea" =a"

Since 0<r <n, therefore a" =e = r must be equal to zero because otherwise O(a) will not

be equal to n. If O(a) = n, then there will exist no positive integer r <n such that a" =e.
..m=nq = n isadivisor of m.
Some properties of order of an elements:
1: If a,x are the elements of any group then a and x‘ax are the same.
Order of ab is the same as that of bawhere a and b are any elements of a group.

If a is an element of order n and pis prime to n, then a® is also of order n.
If a and b are any elements of a group G, then (bab™)" =ba"b™ for any integer n.

If G is an abelian group then, then for all a,b € G and all integers n, (ab)" =a"b".

For every element a inagroup G, a® =e, then G is an abelian group.

A group G is abelian if every element of G except the identity element is of order
two.

Every element of a group G is its own inverse then G is abelian.

If a,b are any two elements of a group G, then (ab)® = a’b? iff G is abelian.

10: If G is a group of even order then it has an element a = e satisfying a’ =e.
Example 3: Let G be a group and let a € G be of finite order n. Then for any integer k, we have

O(a) n

0(a") = =
ged(n, k)  ged(n, k)

, Where ng = Greatest common divisor.
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Solution: Let gcd(n, k) = m. Then obviously, N = pm,k = gm for some integers p and ( such that
ged(p, ) =1.

let O(@")=1=(a")' =e=a" =e

=n|k [*-O(a)=n;..a" =e=n|kI]
= pm|gml = p|ql

= pll

Again (@¥)"P =(@™)P =a"™ =a™ =(a")" =e’ =e

Therefore, O(a*) | p ie., || p

Now again, || p and p|l=1=0p.

n

0@)=p=

n__n_
m  gcd(n, k)

4.6 CYCLIC GROUP

Definition: A group G with respect to the operation multiplication is cyclic if there exists an
element g € Gsuch that every element in G can be written as:

G={g"|neZ}.

It means every element of the group G is of the form g" i.e., if a € G then a can be written

as a=g", where mis some integer.

The element g is called a generator of the group.

If the group is finite of order n, then:

G={0°.¢"9%...0""}

In terms of additive group the cyclic group G is definedas G ={ng| g € G,ne Z}

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERITY PAGE 65




Abstract Algebra MT(N)-202

Note: Any group G is said to be cyclic if there exist an element a e G which have order
equal to the order of that group. Such element 'a" will called the generator of that group.

Examples:

4. Integers under addition: Z=(1), because every integer is a multiple of 1 (i.e., Z =
{...,-2,-1,0,1,2,... })

Modulo arithmetic: Z, ={0,1,2,...,n—2L}under addition mod n is cyclic.
For example, Z, =<1>={0,1, 2, 3,4}.

Multiplicative group of units modulo n: The group Z,” ={1,2,3,4,5,6} under
multiplication mod 7 is cyclic since <3>={3"3?,3°3*,3°3°}={3,26,451} =7, .

Since, 3°=1,3"=3,3* =9(mod7) =2,3° =27(mod 7) =6,3* =81(mod 7) = 4
3°*=3"3(mod7)=4.3=5,3° =3°.3(mod 7) =5.3=1.

Set of cube root of unity i.e., {I, w, ®*} is form cyclic group with respect to operation
multiplication.

Key Properties:
. Every cyclic group is abelian (commutative).
Every subgroup of a cyclic group is also cyclic.
A cyclic group of order n has ¢(n) generators, where ¢ is Euler’s totient function.
Some properties of cyclic group:
Theorem 5: Every subgroup of a cyclic group is abelian group.

Proof: Let G be a cyclic group. Then there exists an element g € G such that:
G={g9"IneZ}

Take any two elements a,b € G. Since G is cyclic, there exist integers m and n such that:
a=g",b=g"

We want to show that ab =ba.

Now compute:
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n+m

ab=g".g"=g™". Similarly, ba=g".g" =g
Since addition of integers is commutative so, g™ = g"™"
Now, ab =ba

Therefore, G is abelian.

Theorem 6: If a is the generator of a cyclic group then its inverse is also an generator of the
group.

Proof: Let G be a cyclic group such that:

G=<a>={a"|neZ}

So every element of G is of the form a" for some integer n.

Now consider the element a™. We want to show that: <a™ >=G.
That is, the powers of a™ also generate all elements of G.

Take any element 8" € G. We can write: a" =(a™) ™"

Soevery a" eGisalsoin <a™ >.

Similarly, the powers of a*are of the form:

@' =a"

But a™ € G because G contains all powers of a, including negative ones.

So:<at>={@a")"=a"|nez}={a" |mezZ}=G

Example 7: Find the generator of Z,.
Solution: Step 1: Find a generator:
Check if 1 is a generator. We compute <1 > under addition mod 6:

1 mod 6=1; 1+1=2 mod 6=2; 1+1+1=3 mod 6=3
4,5, 0 (eventually you get all elements)
So, <1>={0,1,2,3,4,5}=2,

= 1is a generator.
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Step 2: Find the inverse of 1 mod 6

In Z,, the inverse of 1 (under addition) is 5 because:
1+5=0mod 6. S0,-1=5mod 6

Step 3: Check if 5 is also a generator

Now compute <5 > (adding 5 repeatedly mod 6):

S5mod 6=5;5+5=10mod 6=4;44+5=9mod 6=3;3+5=8mod 6=2;2+5=7mod 6=
1;1+5=6mod 6=0

So: (5) = {0,1,2,3,4,5}= Z¢

= 5 is also a generator.

4.7 LAGRANGE’S THEOREM

In group theory, one of the foundational results is Lagrange’s Theorem, named after the
mathematician Joseph-Louis Lagrange. It explores a beautiful relationship between a group
and its subgroups — specifically, how the size (or order) of a subgroup relates to the size of
the entire group.

In essence, Lagrange’s Theorem tells us that in a finite group, the number of elements in
any subgroup divides evenly into the number of elements in the group.

This result is powerful because:

It restricts the possible sizes of subgroups.

It helps us understand the structure of a group.

It leads to deeper results in algebra, such as Cauchy’s Theorem and the
classification of finite groups.

Theorem 7 (Statement of Lagrange’s theorem): The order of each subgroup of a finite
group is divisor of the order of that group.

Proof: Let we consider G be a finite group of order n and also H be any subgroup of G such
that order of H is m. Suppose h;, h,,...,h are the m members of H. Let a G. Then Haisa

right coset of H in G and we have, Ha ={ha, h,a,...,h a}.

Here, Ha has m distinct member members, since h;a = h;a = h; = h; (But we have given all

h's are different)
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Therefore each right coset of H in G has m distnict members. Any two distinct right cosets of
H in G are disjoint, it means they have no common element. Since G is a finite group then the
number of distinct right coset of H in G will be finite, say equal to k. The union of these k
distinct right coset of H in G is equal to G. Thus if, Ha,, Ha,,..., Ha, are the k distnict right

coset of H in G, then G = Ha, UHa, U...uUHa,

= The number of element of in G=The number of element in Ha, + The number of element
in Ha, +... + The number of element in Ha, (Because we know that two distinct right
cosets are mutually disjoint).

= 0(G) =km=n=km

n e
= k =— = m is divisor of n
m

= O(H) is adivisor of O(G).
Hence the theorem proved.

Note 1: Here k is called the index of H in G denoted by [G: H] or i; (H). We have here,
m=n/k. Thus k is divisor of n.

2: The index of every subgroup of a finite group is divisor of the order of the group.

3: If H is a subgroup of a finite group G, then the index of H in G=The number of distinct

right (or left) coset of H in G. Hence, [G: H] =i (H) = %

4: The converse of Lagrange’s theorem need not to be true. In later unit we get an important
example that 12 is divisor of the Alternating group A, but A, does not possesses any

subgroup of order 12.

Corollory 1: The order of every element of a finite group is a divisor of the order of the
group.

Proof: Let G be a finite group with |G| = n. Let a< G, with order m then <a> is the
subgroup generated by a. Then by Lagrange’s Theorem, the order of any subgroup of a
finite group divides the order of the group.

So, ka>Hm||Gl=n

Therefore, Orderof a|Orderof G.

Corollary 2: If G be a finite group of ordernand a G, then a" =e.
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Example 8: Group Z; ={0,1,2,3,4,5,6,7} under addition mod 8
The group order is |G|=8.
Possible orders of subgroups (by Lagrange): divisors of 8 — {1,2,4,8}

Let’s look at the element 2 € Z.
What is the order of 2?

2:1=2mod 8;2:2=4mod &;2-3=6mod 8;2:4=0mod 8

So order of 2 = 4, and it divides 8 = [ Lagrange’s Theorem holds.

Example 9: Multiplicative group Z, ={1,2,3,4,5,6}

This is the group of integers modulo 7 under multiplication (excluding 0).
IG|=6

Possible orders of subgroups: {1,2,3,6}

Check the order of 3¢ Z, :

3'=3(mod7); 3 =2(mod7);3*=6(mod7); 3* =4(mod7);3° =5(mod7);
3° =1(mod7)

So order of 3= 6, which divides 6 = [ Lagrange’s Theorem holds.
Theorem 8: Every group of prime order s cyclic.
Proof: Let G be a group and let |G| = p, where p is a prime number.

Let e be the identity element of G.

Take any element a € G suchthat a=e.

MT(N)-202

By Lagrange’s Theorem, the order of an element a € G divides the order of the group.

So the order of a, denoted order of a, divides p.

Since a # e, the only possible divisors of p are 1 and p, and it can't be 1 (that would mean

a=e).
Thus, order of ais p.

This means: <a>={e,a,a’,..,a""'}
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has p distnict elements = (a)=G
So, G is generated by a = G is cyclic.

Theorem 9 (Cauchy’s theorem): Let G be a finite group, and let p be a prime number that
divides the order of G. Then G contains an element of order p.

GOR’

If IGI=nand p|n, where pis prime, then 3a € G such that O(a) = p.

Proof: Let G be a finite abelian group, and let p| | G |, where p is prime. We proceed by

induction on |G].

If |G |= p, then G is a group of prime order = G is cyclic = Every non-identity element has

order p.

Now assume the theorem holds for all finite abelian groups of order less than n. Let |G|=n, and
suppose p | n. Let e be the identity in G

If every non-identity element has order not divisible by p, consider let ac G, a=e, and
let <a > be the cyclic subgroup generated by a. Then |< a >=mand since G is abelian, the

quotient group G/ < a > is also abelian.

Butnow [<a>=m<n|,andif p|nbut p|m then p||G/<a>|.

By induction G/ <a>, has an element of order p, which lifts to an element in G whose order
is a multiple of p, a contradiction.

Therefore, there exists an element in G whose order is divisible by p, and in fact we can find
one of order exactly p.

1 This completesthe theorem.

Theorem 10: Every finite group of composite order has a proper subgroup.

Proof: What does this mean?

A composite number is a positive integer greater than 1 that is not prime — i.e., it
has divisors other than 1 and itself.
A proper subgroup of a group G is a subgroup H < G such that H ={e} and

H=G

So the theorem says:
If G is a finite group and |G| is a composite number, then G has at least one nontrivial
proper subgroup.
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Now, let G be a finite group and let |G| = n, and suppose n is composite. So n=ab, where
l<a<nand 1<b<n. Inparticular, a|n

We want to show that G has a proper subgroup.
Step 1: Use Lagrange’s Theorem

Lagrange's Theorem says:
If H<G,then|H |||G|

Let a be a proper divisor of n (i.e. 1<a<n).
Then by Cauchy’s Theorem (or sometimes just structure of groups), in many
standard proofs, we can say:

There exists an element g € G such that O(g) =d, for some d | n, and then the cyclic
subgroup < g > has order d.

But even without invoking Cauchy’s Theorem, we can say:

e There must exist a cyclic subgroup of order d, where d |n, 1<d <n, due to the
structure of finite groups.

So G has a subgroup of order d, and since 1< d < n, this subgroup is:
— Nontrivial (more than identity)
— Proper (smaller than the whole group)

Conclusion:

Every finite group of composite order must have a proper nontrivial subgroup, because
the order of the group has at least one proper divisor, and Lagrange's Theorem ensures that
a subgroup of that order (or at least one dividing |G|) can exist.

Theorem 11: Every subgroup of a cyclic group is cyclic.
Proof: We’ll prove this for infinite cyclic group and finite cyclic group.

Case 1: Infinite Cyclic Group

Let G =<a >, and suppose G = Z (the integers under addition). Let H <G be any subgroup.
Every subgroup of Z is of the form mzZ ={mk | k € Z}, for some non-negative integer m.

So:
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H =<a™ >, where m is the smallest positive integer in H.
Therefore, H is cyclic, generated by a™.

Done for infinite cyclic groups.
Case 2: Finite Cyclic Group

n

Let G =<a > be a finite cyclic group of order n, so G ={e, a,a’,..,a"'},a" =e.
Let H <G be a subgroup. We want to show that H is also cyclic.

Step 1: Use element orders and divisors

Let H ={e}. Then H contains some powers of a, say:

H={a" a"%,.}

Let m be the smallest positive integer such that a" e H. We claim H =<a™ >
Step 2: Show that <a™ >c H
Since a™ € H and H is a subgroup, all powers of a™ are in H, so:

<a" >cH

Step 3: Show that every element of H is a power of a"

Let a* € H . Use the division algorithm k =mq+r ,where 0<k <m

Then a* =a™*" =(a%)"a"

Since a*,(a%)" € H , and H is a group = their product inverse:

a"=a“(a") " eH

But 0<r <m, and m was the smallest positive exponent such that a™ e H so:

If r> 0, it contradicts the minimality of m
Sor=0,and a“=(a™)"

Hence a* e<a™ >= H c<a™ >
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Step 4: Combine both inclusions
Since <a">cH and Hc<a" > H =<a" >

Thus, H is cyclic, generated by a™.

Hence the theorem proved that Every subgroup of a cyclic group (finite or infinite) is itself
cyclic.

Corollary 3: If G =<a > has order n, then for every divisor d | n, there exists exactly one
subgroup of order d- namely < a™? >.

Check your progress

Let G be a finite group of order 20. Answer the following problems with proper reasoning
and justification:

Problem 1: List all possible orders of subgroups of G. Justify your answer using Lagrange’s
Theorem.

Problem 2: Can G be a cyclic group? If yes, give an example and discuss the number of
generators.

Problem 3: If G is cyclic, find the number of elements of order 4 in G.

Problem 4: Let G =<a > be a cyclic group of order 20. Find the order of the elements

a®,a® and a%°.

4.8 SUMMARY

This unit on Cyclic Groups, Lagrange’s Theorem, and Order of an Element explores
fundamental concepts in group theory. A cyclic group is a group generated by a single
element, meaning every element in the group can be written as a power (or multiple) of that
generator. These groups are always abelian and can be finite or infinite. Lagrange’s
Theorem states that in a finite group, the order (number of elements) of any subgroup divides
the order of the group, leading to important consequences such as constraints on possible
subgroup sizes and element orders. The order of an element is the smallest positive integer n
such that a" =e, where e is the identity element. This order always divides the order of the
group. Together, these concepts help classify groups, analyze subgroup structure, and
understand the behavior of elements within algebraic systems.

4.9 GLOSSARY

> Order of group.
> Generation of an element.
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Order of an element.
Cyclic group.
Generating element
Index of a subgroup
Lagrange’s theorem
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4.12 TERMINAL QUESTIONS

Long Answer Type Question:

1. Define a cyclic group. Prove that every cyclic group is abelian. Also, give one
example each of a finite and an infinite cyclic group. Discuss whether every abelian
group is cyclic.

State and prove that every subgroup of a cyclic group is cyclic. Also, determine the

number of subgroups in a cyclic group of order 30 and list their orders.

State and prove Lagrange’s Theorem for finite groups.

Using the Lagrange’s theorem, explain why a group of order p, where p is a prime
number, must be cyclic and has no proper nontrivial subgroups.
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Define the order of an element in a group. Prove that the order of an element a € G is

equal to the order of the cyclic subgroup generated by a. Also, prove that if a" =e,
then the order of a divides n.

Let G be a finite group, and let a € G. Prove that the order of the element a divides
the order of the group G. Give an example to support your result.

Short Answer Type Question:

© oo Nk 0NhRE

-
o

11.
12.
13.

14.
15.

Define a cyclic group with an example.
What is the difference between a finite cyclic group and an infinite cyclic group?
List all the generators of Z.

Is every cyclic group abelian? Justify your answer.

How many subgroups does a cyclic group of order 15 have?

State Lagrange’s Theorem.

If a group has order 20, what are the possible orders of its subgroups?

Can a group of order 10 have a subgroup of order 3? Why or why not?

If G is a group of prime order, prove that it has no proper non-trivial subgroups.

Give an example of a group where not every divisor of the group order corresponds to
a subgroup.

Define the order of an element in a group.

What is the order of the element 3 in the group Z,?

Prove that the order of any element divides the order of the group.

If the order of an element a is 6, what is the order of a*?
In a cyclic group of order 10, how many elements are there of order 5?

Fill in the blanks:

A group G is called cyclic if there exists an element g € G such that every element of
G can be written as a of g.

The number of generators of a cyclic group of order n is equal to

Every subgroup of a cyclic group is

A cyclic group of order 6 has generators.

Lagrange’s Theorem states that the order of any subgroup of a finite group divides the
of the group.

If a group G has order 20, then the possible orders of its elements are the of

20.

In a finite group, the order of an element always the order of the group.

A group of prime order is always

The order of an element a € G is the smallest positive integer n such that a"
If the order of a group is 8, then no element can have order

In a cyclic group of order 10, the order of the element a’ is
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12.

The identity element of any group has order

Objective type questions:

1.

A)
B)
C)
D)

2.

A)
B)
C)
D)

3.

A)
B)
C)
D)

4.

A)
B)
C)
D)

S.

A)
B)
C)
D)

6.

A)
B)
C)
D)

7.
A)

Which of the following is always true for a cyclic group G?
G is always infinite

Every element of G has the same order

Every subgroup of G is cyclic

G has no proper subgroups

If a group G has order 20, what are the possible orders of its subgroups?
1,2,4,5,10, 20

1,2,3,4,5,10,20

1,5,10, 20

Any positive integer less than 20

In a group G, if an element a has order 5, what is the smallest positive integer n such

that a" =e (identity)?
0

1

5

10

How many generators does a cyclic group of order 7 have?
1

2
6
4

What is the order of the identity element in any group?
0

1

Depends on the group

Cannot be determined

If G =<a> isacyclic group of order 8, what is the order of the elementa®?
4

8
2
1

Let G be a group of order 15. What are the possible orders of elements in G?
1,3,515
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B)
C)
D)

8.

A)
B)
C)
D)

9.

A)
B)
C)
D)

10.

A)
B)
C)
D)

1,5,15
1,3,15
Any divisor of 15

How many subgroups does a cyclic group of order 10 have?
5

10

4

6

If an element a in a group has order 7, what is the order of a™?
1

7

6

Cannot be determined

A group G is cyclic if:

It has only one element

It has a finite number of elements

Every element is the identity

There exists an element g € G such that every element of G is a power of g

True and False questions:

Every cyclic group is abelian.

If a group has only one generator, then it must be cyclic.
Every abelian group is cyclic.

A cyclic group of order n has ¢(n) generators.

Lagrange’s Theorem states that the order of a subgroup divides the order of the group.
If an element a € G has order 6, then the order of G must be 6.

Every divisor of the group’s order corresponds to a subgroup.

If a group has order 9, then it cannot have an element of order 6.

The order of any element in a finite group divides the order of the group.

In a group of order 11, every non-identity element has order 11.

The identity element is the only element of order 1.

If a¥ =e, then the order of a is k.

4.13 ANSWERS

Answer of check your progress:
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Problem 1.  Possible orders of subgroups are the divisors of 20:
Divisors of 20 =1, 2, 4, 5, 10, 20
By Lagrange’s Theorem, the order of any subgroup must divide the order of the group.

Problem 2:  Yes, G can be cyclic.
Example: The group Z,, (integers modulo 20 under addition) is a cyclic group of order 20.

Number of generators = ¢(20) =8

Problem 3:  Ina cyclic group of order 20, the number of elements of order d is ¢(d) ifd
divides 20. Since 4 divides 20, the number of elements of order 4 = ¢(4) = 2.

Problem 4:  Use the formula, Order of a* = here n =20

_n
ged(n, k)’

Order of a? __ 0 2 =10
gcd(20,2) 2

Order of as=i §:4

gcd(205) 5

20 _2_,

Orderof ¥’ =— =~ =" _
gcd(20,10) 10

Answer of the fill in the blanks:
power 2. Euler’s totient function ¢(n)

2 (since ¢(6)=2\phi(6) = 2¢(6)=2)

divisors 7. divides 8.

identity element 10. 3 (because 3 does not divide 8)

5 (since 5) 12.

gcd(2.5)
Answer of the objective type question:
C
B
B
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Answer of True and False:
True . . 4, True
True . . 8. True

True ) ) 12. False
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Unit-5: NORMAL SUBGROUP

CONTENT:

5.1 Objectives

5.2  Introduction

5.3  Normal Subgroup
5.3.1 Simple group

5.4  Quotient group

55  Summary

56  Glossary

5.7  References

5.8  Suggested Readings

5.9  Terminal Questions
5.10 Answers

5.1 INTRODUCTION

Evariste Galois was a French mathematician born in
Bourg-la-Reine  who possessed a remarkable genius for
mathematics. Among his many contributions, Galois founded
abstract algebra and group theory, which are fundamental to

computer science, physics, coding theory and cryptography.

It is tribute to the genius of Galois that he recognized that
those subgroups for which the left and right cosets coincide are

distinguished ones. Very often in mathematics the crucial

. . ) Evariste Galois
problem is to recognize and to discover what the relevant

25 October 1811 — 31 May
1832

concepts are.
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In the previous sessions, we have already learned that how any set G can be formed a
group with respect to (w.r.t.) the given operation. We have also learned about various types
of groups and their properties. Some applications of group like subgroup, cyclic group, order
of the group, permutation group, homomorphism, isomorphism, center of the group, cosets
and Lagranges theorem are already studies in previous classes. In this unit we will learn about
the Normal subgroups and its use to construct the quotient group.

As we know that, in a group G, it is not always true that gH = Hg for all geG where,
H is a subgroup of a group G.

Example 1: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and
H ={l,(1 2)}is a subgroup of G. Since a=(2, 3) € G then the left coset of ain G i.e.,

aH ={(23)1,(23)12)}={(23),(132)}

And the right coset of ain G is,
Ha={1(23),(12)(23)}={(23),(123)}

Here clearly, we can see that aH = Ha

In other words, right cosets are not always the same as left cosets. Group theory
depends heavily on the subgroups for which this characteristic holds because they enable the
creation of a new class of groups known as factor or quotient groups. Homomorphisms, a

generalisation of isomorphisms, can be used to study factor groups.

5.2 OBJECTIVES

After reading this unit learners will be able to
e Understand the basic definition of normal subgroup and quotient group.
e Implement the application of theorems into various problem

e Construction of various types of quotient groups

5.3 NORMAL SUBGROUP

Definition: A subgroup H of a group G is normal in G if gH = Hg for all ge G. In other
words, the right and left cosets of a group G must be exactly the same for a subgroup H to be

considered normal subgroup.
If H is a normal subgroup of the group G then symbolically it is represented as H<G .
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Example 2: Let G be a permutation group of degree 3 on three symbol 1, 2, 3 and
H={l1,(123),(132)}is a subgroup of G. Since a=(, 2) G then the left coset of a in G

ie.,

aH ={(12)1,(12)(123),(12)(132)}={(2),(23),13)}

And the right coset of ain G is,

Ha={1(12),(123)(12),(132)12)}={(12),(13).(2 3)}

Similarly, we can see that aH =Ha VaeG

So, we can say that H is the normal subgroup of G.

Note 1: If we are saying that H is a normal subgroup of G i.e., gH = Hg for all g€ G then its
mean that there exist h e H such that gh is any element of gH which will be equal to any
element of hgwhere h' eH ie., gh=hg.

Inexample 2, 12)132)=(123)(12)

Proper subgroup:A subgroup H of a group G is called proper subgroup of G if H =G and it
is represented as H <G and it is read as “H is a proper subgroup of G”.

Since, G c Gi.e., G is subset of itself so G, is called improper subgroup of G.

A subgroup H which contains only identity element i.e., H ={e} is called the trivial

subgroup of G.

5.3.1 SIMPLE GROUP

Definition: If a group has no proper normal subgroup is called a simple group.

Theorem 1: If G be a group and H is the subgroup of G. Then the following statement are
equivalent.

1. The subgroup H is normal in G

2. Forall acG,aHa*cH

3. Forall aeG,aHa'=H
Proof: (1) = (2) . We have given H is the normal subgroup of G then aH =Ha VaeG. It
means for a given he H, aeG there exist h' € H such thatah=ha. Since acG and G is
the group then a™* eG.

= (ah)a™ = (ha)a™

—aha'=heH
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So, aHa* cH VaeG

(2) = (3) Let aeGand H is normal subgroup of G, then we have already prove that
aHa™ < H . Now we have only to show that H c aHa™ VaeG.

Since acG=a'teG

Therefore we have a*H(a™)" c H vaeG

—a'HacH VaeG

—ala*Hap ' caHa* VaeG

—ala*Hap? caHa* VaeG

—=HcaHa® VaeG

Now again foreach ac G, aHa™ < H and H caHa™

So, forallaeG, H =aHa™

(3) = (1) Suppose that H =aHa™ Va e G then we have to prove that H is normal in G.
Since, forall ac G, H=aHa™

— Ha=(aHa')a VaeG

= Ha=aH VaeG

= each left coset of H in G is a right coset of H in G.
= H is normal subgroup of G.
Theorem 2: A subgroup H of a group G is normal in G iff the product of two right or left
coset of H in G is again a right or left coset of H in G.
Proof: Suppose H is a normal subgroup in G and Ha, Hb are two right coset of H in G where,
a,beG. Then
(Ha)(Hb) =H(aH)b
= H(Ha)b [+~ Hisnormal = Ha=aH ]
= HHab [“HH=H]
= Hab [aeG,beG=abeCG]
Therefore, Hab is also a right coset of H in G.

Conversely, we will suppose that the product of two right cosets of H in G is again a right

coset of H in G. Let x be any arbitrary element of G then x*will also an element of G. So,
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Hx and Hx* are two distinct right cosets of H in G. Thus, HxHxis also a right coset of H

in G. Therefore we must have,

HxHx ' =H vxeG
=hxhx*eHVxeG and vh,heH

= h*(hxhx?)ehH vxeG and vh,heH

= xhx*eHVxeG and YvheH [+h ™ H=H ash ™ eH since h eH]

=H is a normal subgroup of G.

Theorem 3: Intersection of two normal subgroup of a group is also a normal subgroup of the
group.

Solution: Let G be a group and H, K are of its two normal subgroup of G. Now, we have to
prove that H n K is also a normal subgroup of G. Let a be any element of H " K i.e.,

XxeHNK=xeH and xeK
Since, H and K are both normal in G. Therefore, acG,heH = axa™ e H
Similarly, acG,xe K =>axa' eK

Now, again axa* e H,axa' e K > axa* e H nK
Hence H n K is a normal subgroup of G.
Corollary: Arbitrary collection of normal subgroup is also a normal subgroup of the group

i.e., let G be a group and let {Hn ‘ne /\} be the family of normal subgroup of G where A is

the index set then m H, is the arbitrary intersection of the family of normal subgroups which

is also a normal subgroup of G.
Solved Examples

Example 3: Show that each subgroup of the Abelian group G is a normal subgroup of the
group.
Solution: Let G be a Abelian group and H is a subgroup of the group. Suppose that he H
and xeG.
Now consider, xhx™ = x(x"'h)

= (xx1)h

=eh=heH

So, VxeG,he H,xhx* € H = H is a normal subgroup of G.
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Example 4: Prove that the alternating subgroup A, is the normal subgroup of the symmetric
group S,
Solution: Suppose that o €S, and e A,. As we know that A is collection of all even

permutation of S, so, S is a even permutation. Now, there are two cases arises,

Case |: If «is odd permutation then o™ is also an odd permutation. As we know that

product of odd and even permutation is odd permutation, it means «f is odd permutation.

-1

Similarly, product of two odd permutation is even permutation i.e., afia™ is even

permutation.

So,for ¢ €S,,BeA,,afa €A, Thus, A isnormal subgroup.

Case Il: If ois even permutation then o™

is also an even permutation. As we know that
product of two even permutation is even permutation, it means g is even permutation.

Similarly, product of two even permutation a8 and o™ is even permutation i.e., afa ™ is

even permutation.

So,for ¢ €S,,BeA,,afa €A, Thus, A is normal subgroup.

From the both cases we have conclude that A, is normal subgroup of S, .

Example 5: If H is a subgroup of index 2 in G then H is a normal subgroup of G.

Solution: If H is a subgroup of index 2 in G, it means, number of distinct right (left) coset of
H in G are 2. So, G can be written in the union of two of its distinct right (left) cosets i.e.,
G=HuUHx=H UxH, here x ¢ H because if itis xH = H = Hx.

As we know that no element common to H and xH therefore, we must have
XH =Hxvx e G

Hence H is normal subgroup of G.

e.g. Index of alternating subgroup A, in the symmetric group S, is 2. So, A, is the normal
subgroup in the symmetric group S, .
Example 6: If H is normal in G and K is a subgroup of G such thatH — K < G. Then, show
that H is also a normal subgroup of K.
Solution: We have given that H is normal in G so, H will also a subgroup of G. Since,
H < Kwhere, K is a subgroup of G. So we have only to show that H is also a normal

subgroup of K. Let x be any arbitrary element of K then x will also belong to G therefore we
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have Hx = xH . Since, H is a subgroup of G and Vvxe Kwe have Hx=xH. Thus, H is
normal subgroup of K.

Example 7: If N is normal in G and H is subgroup of G then show that H m N is normal
subgroup of H.

Solution: As we know that intersection of two subgroup of G is also a subgroup of G then
H ~ N will be subgroup of G. Similarly, since H "N < H so, H ~ N will also subgroup of
H. Now, only to prove that H m N is normal in H.

Let x be any element of H and a be any element of H ~ N then a will belong in both H and
N. Since, N is normal in G then axa™ € N . Again,

x,aecH=axa'eH

Thus, we can say thataxa™* € H nN

i.e., H N is normal subgroup of H.

Example 8: Prove that every complex is commutative with normal subgroup.

Solution: Let N is a normal subgroup and H is any complex of the group G. Then we have to
prove that NH = HN.

Let nh e NH wheren e N,h e H . We can rewrite nh=hh"nh =h(h™nh). Since, N is normal

subgroup therefore, h™'nh e N . Hence nh e HN which means, NH < HN .

Again, let hn e HN wherene N,he H . We can rewrite hn=hnh"h= (hnh‘l)h. Since, N is

normal subgroup therefore, hnh™ e N . Hence hne NH which means, HN < NH .
Hence NH = HN.
Example 9: If N is normal subgroup of G and H is subgroup of G, Prove the following
Q) HN is a subgroup of G
(i) N is a normal subgroup of HN.
Solution: As, we know by theorem that if H, K are subgroup of G, then HK is subgroup of G
iff HK = KH. Using the previous example, HN will also a subgroup because N and H both are
subgroup of G such that NH = HN.
Now HN is subgroup of G and N is normal subgroup of G alsoN < HN . Therefore, N is

subgroup of HN. We have only to prove that N is a normal in HN. Let hn, be arbitrary

element of HN and n be any element of N. Then h eH,n eNand we have
(hn)n(hn) ™" =h(nnn, " )h* e N. Since N is normal in G and nnn, " eN,h €G.
Therefore N is a normal subgroup of HN.
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Example 10: If N and M are two normal subgroups of G such that N WM = {e}. Then show
that each element of N commutes with each element of M.

Solution: Since N and M are two normal subgroups of G such thatN nM = {e}. Then to
prove that for any element ne N,me M

=nm=mnvm,n

Consider the elementnmn™m™. As we know mnm™ e N because N is normal and ne N
therefore, nmn™m™ e N.

Again, as we know nmn™ € M because M is normal and m € M therefore, nmn™m™ e M .
Now, nmn™m™*eN and nmn"m*eM =nmn™m*eNAM

=nmn'm™* ={e} [Because, N "M = {e}]

=>nm=mnVmeM,neN

i.e., every element of N commutes with every element of M.
Example 11: If in a group G, H is the only subgroup of finite order m then H is normal in G.

Solution: We have given H is subgroup of G such that O(H) = m. To prove this example,
first we consider the set xHx‘lz{xhx‘l:heH} and we will prove that this set is the
subgroup of G. As we know by the theorem that any set H will subgroup of G if
ab* eHVvabeH.Let h,h, eH then xhx™, xh,x™" e xHx™

Now consider, xhlx’l(xhzx’l)f1 = xhlx’l(xhz’lx’l): xhl(x’lx)hglx’1

= xh (e)h,"x* = x(hh, " )x* e xHx ™

= hh, ™ e xHx? Vh;, h, € xHx™. Hence, xHx* is subgroup of G.

Now we will prove that O(xHx™) =m. Let H ={h,h,,h,,...h } where all h,i=1tomare

‘l,xhsx‘l,...,thx‘l}. Here, no element in xHx™ are same

distinct then XHx ™" = {xhlx‘l, xh,x

because if it is,

xh;x™ = xh;x™ = h; = h, , which is not possible. So, O(xHx™) =m.

But we have H is the only such subgroup of order m. Therefore we must have,
xHx™" = H Vx eG. Thus, H is normal subgroup of G.

Example 12: By an example verify that if H is normal in G and K is normal in H then K may

not be normal in G.
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Solution: Let us consider the following subgroup of the group S, on the four symbols a, b, c,
d.

G ={l,(abc),(adch),(ab)(cd),(ac)(bd),(ad)(bc),(ac), (bd)}

H ={I,(ab)(cd),(ac)(bd),(ad)(bc)}

K ={I,(ab)(cd)}

As we can easily seen that H is a subgroup of G and K is a subgroup of H. Index of Hin G is
2ie,[G:H]=2,itmeans H is normal in G. Similarly, index of KinH is 2 i.e.,[H : K]=2,
it means K is normal in H. ["[G:H]=0(G)/O(H)=8/4=2]

Here, K is not normal in G because for the element (a,b,c,d)eG and the element
(a,b)(c,d) eK.

We have (abcd)(ab)(cd)(abcd)™ =(abcd)(ab)(cd)(dcba)=(ad)(bc) ¢ K

Thus, K is not normal subgroup of G.

Example 13: If H is subgroup of G, let N(H) = {x eG:xhx*=H } then show that

(1) N(H) is the largest subgroup of G in which H is normal.

(2) Hisnormal in G iff N(H)=G.
Solution 1: In example 11, we have already prove that N(H) is the subgroup of G which is
normal in G.
First we have to prove that H is a normal subgroup of N(H). Let h e H , therefore hHh™ = H
. Thus he N(H)i.e., H< N(H). So, H is subgroup of N(H). To show that H is normal in
N(H). Let xe N(H), then xHx" =H
= xH = HxVvx e N(H)

= His normal in N(H).
Now, we have to prove that N(H) is largest such subgroup in which H is normal. For it, let K

is a subgroup of G in which H is normal then we have only to prove that K < N(H).
Let k e K, since H is normal in K, therefore we have Hk =kH

=kHk" =H Vk eK

=k eN(H)

= K < N(H)

2: Let H is the normal subgroup of GandxeG. Then xH = HxVxeG

= xHx'=HVvxeG
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= x e N(H)therefore G < N(H) but we know N(H) < G.
Thus, G=N(H)

Conversely, let G=N(H) then xeG = xe N(H)

= XxHx'=HVWxeG

= XH =HxVvxeG

H is normal in G.

54 QUOTIENT GROUP

Definition: If H is a normal subgroup of a group G. Then the collection of all distinct cosets
of H in G denoted by G/H is a group with respect to the operation multiplication of cosets

defined as,

(aH)(bH) = abH ‘or’ (Ha)(Hb) = Hab Va,beG
Or
If H is a normal subgroup of a group G, then the set
G/H= {Ha: ae G} is always form a group under the composition multiplication of cosets
such that (Ha)(Hb) = Hab Va,beG
Note: If H is a normal subgroup of the additive group G. Then the set G/H is defined as

G/H ={H +a:aeG} with respect to the operation addition of cosets such that

(H+a)+(H+b)=H+(a+b)VabeG
Theorem 13: Set of all distinct cosets of normal subgroup of a group is a group with respect
to composition multiplication of cosets.
Proof: Let us consider collection of distinct right (left) cosets of normal subgroup H under G
is
G/H={Ha:acG}
and the composition multiplication of cosets is
(Ha)(Hb) =Hab Va,beG
Closure axioms: Let Ha, Hb e G/H where a,b € Gthen
(Ha)(Hb)=H(aH)b=H(Ha)b =HHab=HabeG/H
Since we know that if H is normal subgroup of G then
Q) Ha=aHVvaeG
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(ii) HH=H
And also if G is a group then it will satisfy closure property i.e., if a,beG=abeG
Associativity: Let Ha, Hb,Hc € G/ H where a,b,c G
Now consider, (Ha)[(Hb)(Hc)] = (Ha)[H (bH)c] = (Ha)[H (Hb)c] = (Ha)(Hbc)

= Ha(bc) = H(ab)c = H(ab)(Hc) = [(Ha)(Hb)](Hc)

[Because G is group so it will satisfy associative property]
Existence of identity: We know thatH = He e G/ H where e is the identity element of G,
then we have only to prove that H is the identity element of the groupG/H .
Let Hae G/H then (He)(Ha) = H(ea) = Ha
= H is the identity element of the group G/H .
Existence of inverse: LetHacG/H. Then Ha'eG/H[Because if aeGthen
ateG=>Ha'eG/H]
Now, (Ha)(Ha™")=H(aa™")=He=H
So, coset Hais the inverse of Ha™in G/H

Hence, collection of distinct right (left) of normal subgroup H in G is form a group with
respect to the operation product of cosets.

Example 14: The alternating group A, ={I,(123),(132)} is the normal subgroup of the

symmetric group S, =1{I,(12),(13),(23),(123),(132)} then S,/A, ={A,,(23)A}is the
quotient group.

Example 15: Consider the normal subgroup of 3Z of Z . The coset of 3Z in Z are,
0+3Z=1{..-6,-3,0,3,6,9,..}

1+32 ={..-5-2,1,4,7,10,...}

2+3Z={.,-4,-12,,5811...}

Here, Z=(0+3Z2)u(@+3Z2)u(2+32)

The composition table of the group Z /3Z is given below.

+ |0+3Z 1+3Z 2+3Z
0+3Z |0+3Z 1+3Z 2+3Z
1+3Z |1+3Z 2+3Z 0+3Z
2+3Z | 2+3Z 0+3Z 1+3Z

In general, the cosets of nZ in Z are
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Z=0+nZ)u@+nZ)u(2+nZ)u@B+nZ)uU..u((n—1)+nZ) then
G/nZ ={(0+nZ),(L+nZ),(2+nZ),(3+nZ),...,(n—1) +nZ)}
The sum of the cosets k+Zand | +Zisk +1+Z. Notice that we have written our cosets

additively, because the group operation is integer addition.

O(G)
O(H)

Solution: As we know that O[G/H]=Number of distinct right coset of H in G.

Example 16: If H is a normal subgroup of the finite group G then O[G/H] =

= O[G/H]=Index of Hin G.

Number of elementinG

= O[G/H]= -
Number of elementin H

:ommp%

Example 17: Prove that corresponding to every Abelian group its quotient group is Abelian
but their converses need not to be true.

Solution: Let G be a Abelian group and H is its normal subgroup. If elements a,b € G are
such that Ha, Hb are distinct right cosets of quotient group G/H .

Now, (Ha)(Hb) = H(ab) = H(ba) = (Hb)(Ha) [Since G is Abelian=ab=baVa,beG]
= G/ H is Abelian group.

But converse is need not be true. Since S,/ A, = {A,,(23)A,} is Abelian group because order
of O[S,/ A]=6/3=2which is prime and we know that every group of prime order is
Abelian while S, is not a Abelian group.

Example 18: If H is normal in G and a be any element of order n in G then order of the
element Ha in G/H is divisor of n.

Solution: As we know that the identity element of the quotient group G/H is H itself. We
have giveninagroup G, acGs.t. O(a)=nie. a" =e. LetusassumeO(Ha) =m.

Now consider,

(Ha)" = (Ha)(Ha)(Ha)....uptontimes = H(aaa...uptontimes) = Ha" = He = H

But we have already assume thatO(Ha) =mi.e., (Ha)" =H ..

= O(Ha)/O(a) [If order of any element a in a group G isnthena™ =e iff n|m]

Check your progress

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 93




Abstract Algebra MT(N)-202

Problem 1: What will be the order of the group O({l—l}j ?

Problem 2: Check the distinct right and left coset of S, ?

Problem 3: Check that A, is the normal subgroup of S.?

5.5 SUMMARY

In this unit, we have studied the basic definition of Normal subgroup, Simple group and
Quotient group. We have also learn about the above discussed group’s related theorems and
there implementation in various examples. The overall summarization of this units are as

follows:

> Right cosets are not always the same as left cosets

> Alternating subgroup A, is the normal subgroup of the symmetric group S,

> If a group has no proper normal subgroup is called a simple group.

» Quotient group always forms a group not a subgroup because identity element of
group and subgroup are always same while quotient group and group has always
different identity

GLOSSARY

H is a subgroup of the group G is represented symbolicallyasH <G.
» His anormal subgroup of the group G is represented symbolically as H<G .

» Group with no proper normal subgroup is called a simple group.
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5.9 TERMINAL QUESTIONS

Long Answer Type Question:
1. Prove that alternating group ( A, ) is the normal subgroup the symmetric group (S, ).
Prove that a factor group of a cyclic group is cyclic.

Suppose that a group G has a subgroup of ordern. Prove that the intersection of all

subgroups of G of order n is a normal subgroup of G .
Show that S, has a unique subgroup of order 12.

Suppose that H is a normal subgroup of a finite groupG . If G/ H has an element of

order n, show that G has an element of ordern.
Short Answer Type Question:

6. Give one example each of the following
A subgroup H of a group G which is not normal in G .
A non-abelian subgroup H of a non-abelian subgroup G which is normal in G .

If |G| =30, |H|=5then what will be [G/H].

Prove that each subgroup of cyclic group is normal.

Determine the coset decomposition of the subgroup H = {I : (12)}corresponding to the

symmetric group S,.
Fill in the blanks:

10. Product of two right coset in a group G is

11. Every subgroup Hof index 2 in H is
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12. If H is normal subgroup of G then G/H is called

Objective type questions:

Which of the following statements is true for a normal subgroup N of a group G?
A) N is always the center of G

B) For every geG, gN = Ng

C) N is always abelian

D) NcZ(G), where Z(G) is the center of G

If N is a normal subgroup of G, then the quotient group G/N:
A) Is always abelian

B) Has the same order as G

C) Has an order that divides the order of G

D) Has elements all conjugate to each other

A subgroup N of a group G is normal if and only if:

A) N is the center of G

B) G/N is cyclic

C) gN=Ng for every geG

D) N is abelian

If Gisagroup and N is a normal subgroup of G, then the elements of G/N are:

A) Cosets of N in G

B) Conjugates of elements in N

C) Elements of G fixed by N

D) None of the above

For a subgroup of G, N is normal in G if:
A) gNg—1=N for all geG
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B) NcZ(G)
C) N is abelian

D) G/N is cyclic

MT(N)-202

5.10 ANSWERS

Answer of self cheque question:
1. 4 2. 1,(12),(1,2,3)

Answer of terminal question:

7. IG/H|=6  10. Rightcoset 11.  Normal

Answer of objective questions:

1.  B)
3. ©
5. A)
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Unit-6: PERMUTATION GROUP

CONTENT:

6.1 Introduction

6.2 Objectives

6.3 Permutation

6.4  Similar Permutation
6.5 Group of Permutation
6.6 Evenand Odd Permutation
6.7 Alternating group A,
6.8  Order of Permutation
6.9 Summary

6.10 Glossary

6.11 References

6.12 Suggested Readings

6.13 Terminal Questions
6.14 Answers

6.1 INTRODUCTION

The concept of permutation groups lies at the heart of group theory, a key area of
abstract algebra that studies the symmetry and transformations of mathematical structures.
Permutation groups specifically focus on the set of all bijections (permutations) of a set,
closed under composition, and their properties. Their origins trace back to the late 18th
century when Joseph-Louis Lagrange explored permutations in the context of polynomial
equations. Paolo Ruffini made early attempts to link permutations to the solvability of
equations, but it was Evariste Galois in the early 19th century who laid the rigorous
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foundation. Galois's innovative work demonstrated how permutations could explain the
solvability of polynomials, giving rise to what is now known as Galois theory. Since then,
permutation groups have become a central tool in mathematics, influencing fields like
combinatorics, geometry, and cryptography, while also serving as a gateway to understanding
symmetry in nature and theoretical sciences.

6.2 OBJECTIVES

The main objectives of studying permutation groups include:

1. Introduction to Symmetry: Understanding how permutation groups describe and
formalize the concept of symmetry in mathematical structures.
Basic Properties: Learning the fundamental properties of permutation groups,
including closure, associativity, identity, and inverses.
Symmetric and Alternating Groups: Exploring key examples such as symmetric
groups S, and alternating groups A, , their orders, and their roles in group theory.

Transpositions and Cycles: Understanding how permutations can be expressed in
terms of disjoint cycles and transpositions, and using these representations to simplify
computations.

Group Actions: Introducing the concept of group actions and their applications in
studying orbits, stabilizers, and symmetry.

Applications to Polynomials: Connecting permutation groups to the roots of
polynomials and introducing the basics of Galois theory, highlighting the relationship
between group theory and equation solvability.

Problem-Solving: Developing problem-solving skills by working with examples and
exercises involving permutations, compositions, and decompositions.

Foundational Knowledge: Building a foundation for more advanced topics in
algebra, such as automorphisms, abstract groups, and field theory.

These objectives align with the goal of equipping learners with both theoretical understanding
and practical tools to analyze and apply permutation groups in various mathematical contexts.

6.3 PERMUTATION

Let X ={a,,a,,....,a,} is any finite set.

Define, S, ={f | f : X — X, such that f is one-one and on-to}
i.e., S, =The collection of all one-one and on-to map from X to X .

Then S, forms a group w.r.to. composition of maps as the binary operation given and
O(Sy)=n!
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Note 1: Since, f eS, = f: X > X
Defined as, f(a;) =b, such that f is one-one and on-to.
ie, f(a)=b, f(a,)=b,, f(a;)=h,,..., f(a,)=b,
where, b;'s are nothing but a,'s only in some different arrangement.

Then the permutation on X is defined as

[al a, a,
f(a) f(a,) f(a)

If we denote it by,

S a, a . 3 \_[&
flf@) f@) fa) . fa)) \b
Where b, = f(a,)

A permutation on X isa 2xn matrix where the first row is given by the elements of
X and second row is given by their image by some bijection on X. Infact, the second
row is an permutation of the first row.

If | X |=n then permutation is called of degree n.

Let X ={a,,a,,....,a} define S, = ( % % % o G jf €S,
fa) f(a) f(a) .. f(a,)

Then | S, |=n!
Where, S, =The set of all the permutation of degree n.

On any set X, a bijection is defined as a symmetry on X but if X is finite, it defines a
permutation on X of degree equal to cardinality of X i.e., Card (X).

Let f,g eS,, then aby two permutation are said to be equal if f(a,) =g(a,)Va, € X

1 2 3 4 1 2 3 4 .
eg., f= and g = are two permutation of degree 4,
2 4 1 3 4 3 21

. . . 1 2 3 4
then by interchanging columns we can write g =

2 41 3

Permutation does not affect by rearranging columns.
. (1 23 4) (2341 (1324
9972 413741327214 3
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a 4,

8: If degree is known or X is well-known is well-known and o = (
a‘2

Suchthat a, #b,; r=12

Then we can exclude a, & a, from the permutations

R N BT S
© 97 la a b .. b) b b b .. b

n

Identity Permutation: If | is a permutation of degree n such that | replaces each element by
the element itself, then I is called the identity permutation of degree n.

a a, a, .. a
a a, a, .. a
n and 9 respectively.

Thus, o =
1 2 3

. 12 3 .9 N .
j and ( 9) are identity permutation of degree

n

Product or composition of two permutation: The product or composite of two
permutations f €S, and g € S, of degree n denoted by fg, is obtained by second carrying
out the operation defined by g and then by f.

Letf:[bl Do Dy Ionjandg:[a1 %2 %

b b, b

a, a, a, a, j
foa(a,) fo(a,) fo(a,) ... fo(a,)

e, fg— a a, a, .. a,
cCC C C, .. C,

cC, C C .. C,

Then fg :(

Here, first g replace a, by b, i.e., g(a)=Db then after that f replace b, by c, i.e,
fo(a) = f(b) =c,.
Obviously fg €S, i.e. fg is also a permutation of degree n. Thus the product of two

permutation of degree n is also a permutation of degree n.

1 2 3 1 2 3 :
Example 1: Let f = and g = be two permutation of degree 3. Then
1 3 2 2 31

f_12312 1 2 3
9711 3 2)l2 3

1 2 3\(1 2
of =

oG

Clearly, fg= ¢f
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Note: Product of two permutations is not commutative.

a a a 4a,,.. a
a2 a3 al ar+1"' an

n

r-Cycle: If o = [

j then o is called r-cycle and written as,

o=(aa,a,..a). Where, remaining a;;i =r+1 ton, are unchanged.

12 3 45\ (3 45
eg., o= = =(345)
12 45 3 |45 3

Note: If oisr-cycleie., o =(a a,a,...a,) then we say o is of lengthr.

i.e., Length of cycle = No. of symbols used in that cycle.

e.g., o =(143) is 3-cycle and r=(12) is 2-cycle.

Transposition: A cycle of length two is called a transposition.

eg., 7, =012), 7, =(13)

Note 1: A cycle does not change by re-arranging symbols maintaining cyclic order.

e.g., 0 =(12345)=(23451) =(34512) =(45123) =(51234) but o =(12345) = (2435))
because here symbols does not maintain the cyclic order.

2: A permutation may not be a cycle.

(12345678
eg., o=

2341657 8}2(1234)(56)

by o is not cycle.

Disjoint permutation: Two permutations are said to be disjoint if they have no common
symbol. Since every permutation can be written in terms of r-cycle. Hence two cycles are
said to be disjoint if they have no common symbol.

e.g., (1234) &(56) are disjoint permutation because they have no common symbol.
Remarks 1: Every permutation can be written as product of two disjoint cycles.

(12345678
eg., o=

=(1234)(56
23416578j()()
Example 1: If f and g are disjoint cycles, then fg = gf .

Solution: Since the cycles f and g have no common symbols. Therefore the elements
permuted by f are left unchanged by g and also the elements permuted by g remain the same
under by f. Therefore we shall have fg = gf .

e.g., Let f =(123),9=(45)
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1 2 3 45 1 2 3 45

- f = ’g =
2 31 45 1 2 35 4

Thenf_1234512345
9712 31451 235 4

2 315 4

fo =
29(23154

1 2 3 45 .. 1 2 3 4 5
j and similarly, gf =[ J

Hence, fg=gf .

Observation: Let (12)(13)=(132) i.e. cycle (132) can be wriiten as product of
transposition.

Similarly, (12)(13)(14)=(1432) i.e., cycle (1432) can be wriiten as product of
transposition.

Similarly, every cycle can be written as product of transposition.

Hence, we can say that every permutation can be written as product of disjoint cycles and
every cycle can be written as product of transposition.

Hence, every permutation can be written as product of transposition.

[12345678
eg., o=

L1530 78 6J=(14352)(678) o (D)

Since, (14352) = (12)(15)(13)(14)and (678) = (68)(67)

Then by (i) we can write,

_(12345678

L1530 78 6J:(14352)(678):(12)(15)(13)(14)(68)(67)

Note 1: Every r-cycle can be expressed as product of (r-1) transposition.
2: Transposition of any cycle are not unique.
e.g., o0 =(12345)=(15)(14)(13)(12) .. (D)

and also, o =(12345)=(23451) (Because cycle does not affect by re-arranging symbols
maintaining cyclic order).

— o = (12345) = (23451) = (21)(25)(24)(23) Q)

By (1) and (2) we can say that transposition is not unique. Similarly we can find other
transposition

Cycle decomposition (CD): Let o € S, then we can write o as,
o =C,C,..C,, where C;'sare cycle of length n; (say) and C,'s;i =1tok, are disjoint.
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If > n, =n=The degree of &

Then the multiset, {n,,n,,...,n } is defined as the cycle decomposition of o .
Note: For unigueness in general we write CD as,

CDof o={n,n,,...,n}; n <n,,
e.g., o=1)(2)(34)(56) € S,

o=0(2)(34)(6)=C,C,C,C,

CDof o={,12,2}

Example 2: o =(123)(234)(453)(12) € S,,, then find the C.D. of &?

Answer: Here, o =(123)(234)(453)(12) € S,, and it is obvious that o is not disjoint.

(12345678910
°“l1 23546789 10

J = D(2)(3)(45)(6)(7")(®)(9)(10)

Then C.D. of 0 ={1,1,1,1,1,1,1,1,2}
Note: If o €S, then,

Q) If o isan r-cycle then C.D. of o ={1,1,...,2(n—r)times, r}
(i)  If oisatransposition then C.D. of o ={11,...,1(n—2)times, 2}

6.4 SIMILAR PERMUTATION

Similar Permutation: Two permutations are said to be similar permutation if they have the
same cycle decomposition.

e.g., If o0=(12)(34) €S, then C.D. of o0 ={2,2}
1 2 3 4

31 2 4
permutation o, z are not similar because their cycle decomposition is not unique.

If 7=(12)(13) €S, i.e, r=(

J:(132)(4) then C.D. of o={1,3}. Hence the

e.g., Permutations o =(135)eS,,7=(146)eS, are similar because their cycle
decomposition is {1, 1, 1, 3}.

De-arrangement: If o €S, s.t., C.D. of o ={n,,n,,..,n}, a permutation o is called de-
arrangement if n, #1Vi =1tok. Then o is called de-arrangement.

e.g.,, If C.D. of any o ={5} and if C.D. of any 7 ={2,3} then we called o & are de-
arrangement.
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6.5 GROUP OF PERMUTATION

In mathematics, a group of permutations is a collection of permutations (bijective
mappings) on a set that satisfies the axioms of a group. Here’s a breakdown of the concept.

Theorem 1: The set S, of all permutation on n symbols is a finite group of n! with respect

to composition of mapping as the operation. For n <2, this group is abelian for n> 2it is
always non-abelian.

Proof: Let X ={a,,a,,....,a,} is any finite set.
Define, S, ={f | f : X = X, such that f is one-one and on-to}
i.e., S, =The collection of all one-one and on-to map from X to X.

Clearly, we know that O(S, ) =n! and we have to show S, forms a group w.r.to. composition
of maps as the binary operation.

b, b, b b a a, .. a
CIosed:Letf:(l 2 ”jesnandg=(a1 2= ”jesn be any two

c, C, C .. C b, b, b, .. b,
permutation of degree n where b.'s,c,'s are some arrangement of a,'s. Then by product or
composition of two permutations, denoted multiplicatively, we have

a a .. 4a
fg — (al 2 3 HJ c Sn
¢, C C .. C,

n

Similarly v f,geS, we have fg € S,. Hence, S, is closed with respect to composition of
permutation.

Associativity: Permutations multiplication is associative in general i.e., V f,g,he S,

We have, (fg)h= f(gh).

a a, a, .. a,

Existence of Identity: | :(
a a a, .. a

je S, is the identity permutation because for

n

a, a, .. a
all f=|® % % "leS,, we havefl=If. Hence S, contains an identity
b b, b, .. b

permutation.

n

a a, a; .. a,
e S, be anelement of S, then
b, b, b, b

n

Existence of inverse: Let f :(

b, b, .. b a
Hf‘lz(bl 2 "]esn such that f‘lf:(ai ?
a a, a .. a a @,

n

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 105




Abstract Algebra MT(N)-202

Similarly we get ff ' =1

Hence we cansay that vV f €S, ,3f " eS suchthat ff *=1=f'f.

Hence, S, is group of order n!with respect to the product of permutations as compositions.

Now, If n=1, then the set has only one element and every group of order 1 is abelian. If
n=2, then the set S, has 2! i.e., 2 element and we know every group of order 2 is again
abelian group. Now, we have only to show every group of order n>2 is non-abelian by
giving a suitable example.

s
)
J(

Clearly, fg= gf

6.6 EVEN AND ODD PERMUTATION

In mathematics, an even permutation and an odd permutation are terms used to describe
permutations of a set, based on the number of transpositions (pairwise swaps) required to
achieve the permutation.

Even Permutation: A permutation is called even if it can be expressed as a product of an
even number of transpositions.

Odd Permutation: A permutation is called odd if it can be expressed as a product of an odd
number of transpositions.

e.g., Every transposition is an odd permutation.
Key Properties:

Every permutation is either even or odd, but not both.

The identity permutation (where no elements are swapped) is always even because it
requires zero transpositions.

The parity (even or odd nature) of a permutation does not change when multiplying
permutations. For example:

Example 3: The product of two even permutation is an even permutation.
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Answer: Suppose f and g are two even permutation. Further suppose that f can be expressed
as the product of r transposition and g can be expressed as the product of s transpositions.
Then r and s are both even as given f and g are even. Now fg can be expressed as the product
of r+s transpositions. Since r+s is even, therefore fg is an even permutation.

Hence we can say that, Even x Even = Even
Note: In a similar way we can prove the following:
1: The product of two odd permutation is an even permutation i.e., Odd x Odd = Even

The product of an even permutation and an odd permutation is an odd permutation
i.e, Even xOdd =0dd ‘OR’ Odd x Even = Odd

Example 4:  The inverse of an even permutation is an even permutation and the inverse of
an odd permutation is an odd permutation.

Answer: Let f is an even permutation and f ™ is the inverse of f such that ff * =1. As we
know that identity permutation is an even permutation and also product of two even
permutation is an even permutation. On combining these two concepts we assure that f
should be definitely an even permutation because,

Even (fis even) x f *(unkown permutation) = Even  [By the rule, Even x Even = Even]

This is possible only when, f ™ should be even.

. n! . n!
Theorem 2: Out of the n! permutations on n symbols, > are even permutations and E) are

odd permutations.

Proof: Out of n! permutations on n symbols let the even permutation let the even
permutations be e, e,,...,e, and the odd permutations be o,,0,,...,0, .

Since a permutation is either even permutation or an odd permutation but not both, therefore
m+k =n!

If S, isaset of all permutations of degree n, then

S, ={e,e,,....6,,,0,,0,,...,0,}. Let teS, and suppose t is a transposition. Since S, is a
group with respect to permutation multiplication, therefore te,te,,...,te,,to,,to,,...,to, are all
elements of S,. Obviously te,te,,...,te, are all odd permutations and to,,to,,...,to, are all
even permutations.
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Since, no two of the permutations te,, te,,...,te are equal because,

te, =te; > e =e; (By left cancellation law in the group p,). Therefore, e =e;, then

te, #te,.

Thus the m odd permutations te,te,,...,te, are distnict elements of S,. But we have

m
supposed that S, contains exactly k odd permutations. Therefore m cannot be greater than k.
Thus,

m<k .. (1)

Similarly, we can show that the k even permutations to,,to,,...,to, are distnict element of S .
Therefore, we must have

k<m )

|
From (1) and (2), it follows that m = k :%

6.7 ALTERNATING GROUP A,

The alternating group is a fundamental concept in group theory, a branch of abstract
algebra. It is closely related to the symmetric group and consists of all even permutations of
a finite set.

Definition: If A, is the set of all even permutation of S, of degree ni.e.,

A ={o €S, |o isaneven permutation}

I
Then obviously, cardinality of A, will be %

: n!
Theorem 3: The set of A, of all even permutation of degree n forms a group of order B
with respect to the permutation multiplication.
Proof: Let A, be the collection of all the even permutation of S . Also, we know that

product of two even permutation is an even permutation, which shows that A, is closed with
respect to the permutation multiplication. So, when we say f be any even permutation in S, .
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= feA [As A, is the collection of all even permutation]
Since, S, is associative with respect to the permutation multiplicationand A, 'S, .
= A, is also satisfies the associativity with respect to the permutation multiplication.

If 1'is an identity permutation of degree n then I is an even permutation. Therefore | € A, .
Now we have, If = f =fIV f € A,

.. | is an identity element.

Now, let f be any even permutation in S_. If f is the inverse of f in the group of all
permutation of degree n, then f™* is also an even permutation because
fif=1=f"VfecA.

Thus f e A = 3f*eA suchthat
frf=1="ff"

I.e., each element of A, possess inverse.

L n! - . nl
As we know that number of even permutation in S, are ER Hence, cardinality of A, is ER

Note: As we know that product of two odd permutation is even permutation. Hence, the set
of all odd permutation of S is not form group with respect to the permutation multiplication
as it is not closed.

Example 5: Show that the set S, of all permutation on three symbols {1,2,3} is a finite non-
abelian group of 3! order with respect to permutation multiplication.

Solution: We have S, ={l,(12),(13),(23),(123),(132)}. Where | is the identity permutation.
Let we rename elements of S,as,

f,=11,=012),f,=@13),f,=(23), f, =(123), f, =(132). Then we prepare the
composition table as,

Product of
permutation

f,
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Since all the elements in the composition table are also the elements of S,. Here, in the
composition table f =1, is the identity element of S, (because for each f,
ff,=1ff Vi=1to3)

Also from the composition table we can easily seen that,
The inverse of f, = f,
The inverse of f, = f,
The inverse of f, = f,
The inverse of f, = f,
The inverse of f, = f;

The inverse of f, = f,

So, inverse of each element of S, belongs in S,. Hence, S, forms a group.

Now, from table we can easily seen that, f,.f, = f; while f,.f, =f. ie., f,.f, = f,.f,. So,
we can say that S, is a non-abelian group.

Example 6: Show that the set S, of all permutation on three symbols {1,2,3,4} is a finite
non-abelian group of order 4!(= 24) with respect to permutation multiplication.

Solution: We have

s, ={1,(12),(13),(14),(23),(24),(34),(123),(132), (124), (142), (134), (143),
(234),(243), (12)(34), (23)(14), (23)(14), (31)(24), (1234), (1243), (132 4),
(1342),(1423), (1432)}.

Where, | is the identity permutation. Similarly, rename the elements of S,as in previous
example 5, we can prepare the composition table by which we can prove that S,is non-
abelian group.
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Example 7: Show that the set A, of all even permutation on three symbols {1,2,3,4} is a

. . 41 . . e
finite non-abelian group of order > (=12) with respect to permutation multiplication.

Solution: We have

s, ={1,(12),(13), (14),(23), (24),(34),(123),(132), (124), (14 2), (134), (143),
(234),(243),(12)(34), (23)(14), (23)(L4), (31)(24), (1234), (1243), (1324),
(1342),(1423), (1432)}.

Then the collection of all even permutation is,

A, ={1,(123),(132),(124),(142),(134),(143),(234),(243),(12)(34),(23)(14),
(23)(14),(31)(24)}.

Where, | is the identity permutation. Similarly, rename the elements of A, as in previous
example 5, we can prepare the composition table by which we can prove that A,is non-
abelian group.

Theorem 4: A, is a subgroup of S, .

Proof: Let 0,7 €S, such that o & are even permutation then obviously o,z € A,. Since
inverse of even permutation is also an even permutation. It means, ™" is even permutation.

1

Now, since o &7~ are even permutation and product of two even permutation is even

permutation. Then obviously, o.z™* is even permutation. Hence o.z™ € A .

Hence by one step subgroup test A, is a subgroup of S, Vne N .

6.8 ORDER OF PERMUTATION

The order of a permutation refers to the number of times the permutation must be applied to
return to the original arrangement of the elements.

Definition: Any permutation o is called the permutation of order k if o* =1, where k is the
least such natural number.

e.g., Let c=(123) then 6° = 5.0 =(123).(123) = (132)
then, ¢° =o°.0=(132).(123) = | . Hence order & is 3.

Note 1: Every cycle of length r is an element of order r.

2: In mathematical terms, the order of a permutation is the least common multiple (LCM) of
the lengths of its disjoint cycles.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 111




Abstract Algebra MT(N)-202

e.g., Consider the permutation ¢ = (1 3 5)(2 4) in cycle notation:

. It has two disjoint cycles: (1 3 5) of length 3, and (2 4) of length 2.
. The order of o is the LCM of the lengths of these cycles:

e.g., Order of 6 = LCM(3,2)=6.

2. Identity permutation € = ()

. Contains no cycles (or cycles of length 1).

. The order is 1 because applying it any number of times leaves the elements
unchanged.

Steps to Find the Order:

1. Write the permutation in disjoint cycle form.

2. Determine the length of each cycle.

3. Compute the LCM of these lengths.

Example 8: Find the order of the permutation ¢ = (1 3 5)(2 4).

Solution: Consider the permutation ¢ = (1 3 5)(2 4) in cycle notation:

. It has two disjoint cycles: (1 3 5) of length 3, and (2 4) of length 2.
. The order of ¢ is the LCM of the lengths of these cycles:

. . 1 23 456 78
Example 9: Find the order of the permutation o =
4 153 27 86

1 2 3 456 7 8
4 1 53 2 7 86

Solution: Consider the permutation, o =(

]=(14352)(678).

It has two disjoint cycles: ¢, = (14352) of length 5 and ¢, = (678) of length 2. Hence the
order of the cycle (14352) is 5 and order of the cycle (678) is 3.

Then order of o = LCM{O(c,),0(c,)}=LCM(5,3) =15.

Note: If the cycles are not disjoint then first make to them disjoint for finding the order of the
permutation.

Check your progress

1 23 456 7 8 9 10
If o=

then find the following problems.
321467 89510

Problem 1: Partition the given permutation into disjoint cycle including the length one.

Problem 2: Write the cycle decomposition of o
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Problem 3: Find the order of & .

Problem 4: Find the inverse of o .

6.9 SUMMARY

In this unit, we have studied, a group permutation is a mathematical concept involving the
set of all permutations (rearrangements) of a given set, typically represented as S,, the
symmetric group of degree n. This group contains all n! permutations of n elements and is
equipped with the operation of composition, where two permutations are combined by
performing one after the other. The identity permutation leaves all elements unchanged, and
every permutation has an inverse that restores the original arrangement. Permutations can be
expressed in cycle notation, which simplifies their analysis. The order of a permutation,
determined as the least common multiple (LCM) of the lengths of its disjoint cycles, indicates
how many times the permutation must be applied to return to the starting arrangement.
Symmetric groups are fundamental in abstract algebra, with applications in combinatorics,
geometry, and other fields of mathematics.

6.10 GLOSSARY

Permutation group S,,.
Alternating group A,
Cyclic permutation.

Cycle decomposition.
Transposition.
De-arrangement.

Similar permutation.

YV V.V V V V V V

Order of permutation.
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6.13 TERMINAL QUESTIONS

Long Answer Type Question:

1.

Define the symmetric group S,. Explain the concept of permutations and their
representation in cycle notation. Discuss the significance of disjoint cycles and how
they simplify the study of permutations. Provide examples to illustrate your
explanation.

What is the order of a permutation? Explain the steps to determine the order of a
permutation using disjoint cycle notation. Why is the least common multiple (LCM)

of cycle lengths significant in this context? Illustrate your answer with detailed
examples.

Discuss the algebraic structure of the symmetric group S,. Highlight its key
properties, such as closure, associativity, the identity element, and inverses. Explain
why S, is non-abelian for n > 3and provide examples to support your discussion.

Show that S, is a non-abelian group of order 24.

What is a cyclic permutation? Explain its properties and how it differs from a general
permutation. Discuss the role of cyclic permutations in the structure of S, and give

examples to illustrate your explanation.

Show that A, is a non-abelian group of order 12.

Short Answer Type Question:

1.
2.

Prove that S, is a finite abelian group.

Prove that A, is subgroup of S,
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Prove that number of even and odd permutations in S, are same.

. n!
Prove that the set A, of all even permutation of degree n forms a group of order —

with respect to the permutation multiplication

Prove that the inverse of an even permutation is an even permutation and the inverse
of an odd permutation is an odd permutation.

Prove that the product of two even permutation is an even permutation.

Show that multiplication of permutation is not commutative in general.

Fill in the blanks:

The symmetric group S, consists of all of n elements.
The alternating group A, is a subgroup of S, that contains all permutations.

A transposition is a permutation that swaps elements and leaves the rest
unchanged.

The order of the symmetric group Sy is

A permutation can be expressed as a product of

A k-cycle is a permutation that cyclically permutes

The sign of a permutation is +1 if the permutation is

The identity permutation in S, leaves every element

In S3, the total number of permutations is

The composition of two even permutations results in an permutation.

Objective type questions:

1. What is the order of the symmetric group S,?
a) n!
b) n’
C) n
d) 2"
Which of the following is true about a permutation group?
a) It is always abelian.
b) It is a subgroup of the symmetric group.
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C) It contains only even permutations.

d) It is infinite for n > 3.

The alternating group A, is defined as:

a) The set of all even permutations of S,,.

b) The set of all odd permutations of S,.

C) The group of all permutations of size n —1.

d) The subgroup of all transpositions in S;,.

What is the number of transpositions required to express a permutation in S,?
a) Exactly 1

b) Equal to the length of the permutation cycle

C) It depends on the permutation

d) Equal ton

The identity element in a permutation group S, is represented by:
a) The permutation that reverses all elements

b) The permutation that leaves all elements unchanged
C) The longest cycle in S,

d) The product of all transpositions in S,

What is the sign of a permutation if it is an odd permutation?
a) +1

b) -1

C) 0

d) Depends on n

If 6 and T are two permutations in Sp, what is ot?

a) The sum of ¢ and .

b) The product of ¢ and .

C) The composition of ¢ and t.

d) Always the identity element.

Which of the following is not a subgroup of S3?

a)  {e}

b) As

C) S3

d  {(12.13)}

In the permutation group S,, the total number of even permutations is:
a) 12

b) 24

C) 6

d) 8

A cycle of length k in a permutation group is called a:
a) Transposition

b) k-cycle

C) Simple permutation

d) Subgroup
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True and False questions:

Every permutation in S, can be expressed as a product of transpositions.

The identity permutation is the only even permutation in S,.

The order of a permutation is the smallest positive integer k such that the
permutation raised to the k-th power is the identity.

The alternating group A, is a normal subgroup of Sp.

The composition of two odd permutations is always an odd permutation.
In the symmetric group Ss, there are six elements, including the identity.

A transposition is an even permutation.

The alternating group A4 has 12 elements.

The symmetric group S, is abelian for n > 3.

Any subgroup of a symmetric group is itself a permutation group.

6.14 ANSWERS

Answer of check your progress:

Problem 1: @ = (1 3)(2)(4)(56789)(10)

Problem 2: Cycle decomposition of o ={1,11,2,5}
Problem 3: Order of o =10

Problem 4: o =(13)(98765)

Answer of objective question
a) 2.
b) 6.
a) 10.

Answer of fill in the blanks:

1. Permutation ) Even

4. 24 . Transposition
7. Even . Unchanged
10. Even

Answer of True and False

1. True 2. False
5. False 6. True
9. False 10. True
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Unit-7: GROUP HOMOMORPHISM

CONTENT:

7.1  Introduction

7.2 Objectives

7.3  Homomorphism
7.3.1 Image or range of a homomorphism
7.3.2 Kernel of homomorphism

7.4  Summary

7.5  Glossary

7.6 References

7.7  Suggested Readings

7.8  Terminal Questions

7.9  Answers

7.1 INTRODUCTION

The term "homomorphism™ appeared as early as 1892,
when it was attributed to the mathematician Felix
Klein (1849-1925).

Christian Felix Klein was a German mathematician and
mathematics educator, known for his work with group
theory, complex analysis, non-Euclidean geometry, and

on the associations between geometry and group theory.

His 1872 Erlangen program, classifying geometries by

Christian Felix Klein
their basic symmetry groups, was an influential synthesis

of much of the mathematics of the time. 25 April 1849 — 22 June 1925
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A homomorphism is a fundamental concept in algebra and mathematics, particularly in the
study of structures such as groups, rings, and vector spaces. It refers to a structure-preserving
map between two algebraic structures of the same type. Homomorphisms are essential in
understanding the relationships and transformations between these structures.

7.2 OBJECTIVES

After reading this unit learners will be able to

e Understand the concept of special types of mapping between two groups named as
homomorphism which will helpful to deal with isomorphism. It may be possible these
groups are under the different binary operations.

Know that under the homomorphism mapping how the properties of two groups are
relate.

Understand about the other type of mapping like endomorphism and automorphism.
Understand the basic properties of homomorphism and their related other theorems

and definitions.

HOMOMORPHISM

Definition: A mapping f from a group (G,*) into the group (G,.)is said to be a

homomorphism if it preserve the composition under f i.e.,

f(a*b)=f(a).f(b) Va,beG
Or
A mapping f :G — G is said to be homomorphism if,

f(a*b) = f(a).f(b) Va,beG

where, G and G are the groups under the operation '='and '." respectively.

Note 1: The range of f in G is called the homomorphic image of G .

2: In general, we take both the groups G and G under the same operation multiplication and
write f is a homomorphism between Gto G'if, f(ab)= f(a)f(b) Va,beG, without the

loose of generality.

Example 1: A mapping f :Z — E, from set of integer to the set of even integer such that
f(x)=2xVxeZ
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is a homomorphism.

Answer: We have given the mapping f :Z — E such that

f(X)=2xVxeZ

at first, we will check mapping is well defined as x =y = 2x =2y = f(x) = f(y)
Now, we will check mapping also preserve the composition for it for any x,y € Z
f(x+y)=2(x+y)=2x+2y=f(X)+ f(y)

= f preserve the composition.

Hence given mapping f is an homomorphism.

Example 2: Show that the Mapping f : Z — G, from set of integer under the operation

addition to the group G = {1,—1} under the operation multiplication defined as

F(0) = 1, i-f xi-seven
-1, if xisodd

is a homomorphism.

Answer: Case I: If X,y e Z both are even integers. It means f(x)=1, f(y)=1then their
sum will also an even integer i.e.,

f(x+y)=1=11=f(x)f(y) VXx,yeZ

Case IlI: If x,y eZ both are odd integers i.e., f(x) =-1, f(y) =—1 then their sum will be
even integer i.e.,

f(x+y)=1=(-D.(-)=f(x)f(y) Vx,yeZ

Case Ill: If Xx,yeZ are such that x is even integer and y is odd integer i.e.,
f(x) =1, f(y) =-1 then their sum will be odd integer then,
f(x+y)=-1=1.(-)=Ff(X)f(y) Vx,yeZ

Case IV: If x,yeZ are such that x is odd integer and y is even integer i.e.,
f (x) =-1, f(y) =1 then their sum will be odd integer then,
f(x+y)=-1=(-1).Q=f(x)f(y) Vx,yeZ

Hence the given mapping f is an homomorphism.

Example 3: Show that the Mapping f : R — R, from set of positive real numbers to the set
of real number defined as f(x) =log xV x € R"is an homomorphism.

Answer: As we know that set of positive real numbers (R*) is form group under the

operation multiplication and the group R is form group under the operation addition.
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Here, clearly the mapping is well-defined since, for

X=Yy

= logx=logy [Taking logarithm both side]

= f(X)=f(y)Vx,yeR"

Now, f(xy)=Ilog(xy)=logx+logy=f(xX)+ f(y) VXx,yeR"

Hence f is a homomorphism.

Homomorphism onto: A onto mapping from a group (G,*) into the group (G,.) is said to
be a homomorphism onto if it preserve the composition under f i.e.,

f(a*b)=f(a).f(b) Va,beG.

Endomorphism: A homomorphism from a group G to itself is called an endomorphism.
Example 4: If G be a group and a mapping such that, f :G — Gsuch that f(x)=x" be a

homomorphism then show that G is a Abelian group.

Proof: Since G be a group then for any elementsx,y € G, G will satisfies the closure

property i.e., Xy € G and for every element belongs to G there exist its inverse in G.

Now, xy = (y‘lx‘l)_l = fyx )= f(y‘l)f (x*)= yx
= G is Abelian group.

Theorem 1: If f :G — G be a homomorphism then,
(i) If e is the identity of G, then f(€) is the identity of G
(i)  Foranyelement acG, f(a™)=[f(a)]"

(iii)  If His subgroup of G then f(H)is subgroup of G

(iv) If K is subgroup of G, then f(K)= eG|f(k)eG| is a subgroup of G.

Furthermore, if K is normal in G then f *(K) is normal in G.
(v) If order of any element aeG is finite then the order of f(a) is divisor of the
order of aeG.
Proof (i): Let e and e are the identity elements of the group G and G'. Since f is the
mapping from G to G then f(e) will be the elements of G .
Now, e f(e) = f(e) = f (ee) = f(e) f (e), then by the right cancellation law
e =f(e)

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




Abstract Algebra MT(N)-202

i.e., f(e) isthe identity of G .
(ii): Let a be any element of G then a™ will be also in G because G itself a group. Since we

have, e = f(e) = f(aa™) = f(a)f(a™) (D

As we know that if ae G = f(a) e G and G'is also a group then [f (a)]* € G’

Now multiplying by [f (a)]™ both side in equation (1)

Then, [f@]"e =[f@]"[f@)f@@)]=(f @] f@)f @)=t (@)

So, [f(@)]" = f(a)

(iii): We have given H is subgroup of G then to prove that f(H) is subgroup of G'. If
X, yeH=xy"eH [By the subgroup test of any nonempty subset of G]
Since f is the homomorphism then there exist a,b e f(H) st. a= f(x),b= f(y)

Now consider, ab™ = f(x)[f (V)] = f)f(y™") = f(xy ™) e f(H)

Hence we have prove that if a,be f(H)then ab™ e f(H)

= f(H) is subgroup of G'.

(iv): Let K is subgroup of G and define H to be f *(K); that is H is the set of all g € Gsuch
that f(g)eK =G If abeH, then f(ab™)=f(a)f(b™)=f(a)f(b)] K. Since K is
subgroup of G'. Therefore, ab™ € H and H is the subgroup of G.

If K is normal in G then we have to show ghg e H for he H,g € G

But,

f(ghg) = (@) tM[F @] =[F @' (FM[f @D =(F @] f(@)f )= fMm)eK
Since K is normal in G therefore g *hg e H

= H is normal subgroup of G.

(v): Let aecG and O(@)=m i.e.,, a" =e

Taking f-image both side we get, f(a™)= f(e)

= f(a)f(a)f(a)....f(a) (mtimes)= f(e)

=[f@]" =¢

If order of f(a) in G'is n then o( f (a))|O(a)

7.3.1 IMAGE OR RANGE OF A HOMOMORPHISM
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Definition: If f :G — G’ is a homomorphism then range of homomorphism is defined as,

Range f = f(G)=1{g G| f(g)=g'}.

We can also say that f (G) = G . It is also called image of a homomorphism.

Theorem 2: If f :G — G  is a homomorphism then range of homomorphism is subgroup of
G.

Proof: Let we consider, x,y € f(G).

=3Ja,beG st, f(a)=x f(b)=y.Asweknow, f(G)c=G'.

Now, xy™ = f(@)(f (b)) ™" = f(a)[f (b)]"

=f(ab™)=f(c) [Since f is a homomorphism]
where c=ab™ eG. [By one step subgroup test]
=xy e f(G).

Hence range of homomorphism is a subgroup of co-domain.

Remarks 1: If f is onto homomorphism, then G = f (G).

2: If f is a homomorphism then we know that the range of homomorphism is a subgroup of

co-domain. So, by the Lagrange’s theorem O(f (G))|O(G)).

Theorem 3: If f :G — G’ is a homomorphism. If G is abelian then image of homomorphism

is also an abelian subgroup of G .

Proof: Let G is an abelian group and f :G —G' is an homomorphism. Let x,y € f(G) then

JabeGst, f(a)=xf(b)=y.
Now, xy = f(a)f(b) = f(ab) [Since f is an homomorphism]
=f(ba)=f(b)f(@)=yx [Sincea,beG and G is an abelian group i.e. ab=ba]

Hence f (G) is an abelian whenever G is abelian.
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Theorem 4: If f :G — G is a homomorphism. If G is cyclic then image of homomorphism

is also a cyclic subgroup of G .

Proof: Letf:G—G is an homomorphism, which means group operation must be

preserved. Let x,y € G and f(x) =x, f(y) =y, € f(G) be the respective images of x,y.
Now, f(xy)=f(Xx)f(y)=xYy, [Since f is an homomorphism].
Given G be a cyclic and let a be the generator.

G=<a>= {a” ‘ne Z}. Let us assume that f(G) is a cyclic. Group such that
f(G):<b>:{b' i eZ}. Let x=a", y=a", x, =b*and x, =b". It follows that:
f(aman) — bkbr = f(am+n) — bk+r

We can think we have to demonstrate that an element b may produce the elements in H that
are the pictures of G through the homomorphism ¢.

Since homomorphism transfers identity to identity, the identities may be produced using b by
using the same exponent operation to the generator a:
fe=a’=a"")=b""=p’=e,meZ

Inverse to inverse is sent by homomorphism:

fa™=b",mez

Therefore, as b can generate all the elements of f(G), f(G) is also cyclic.

7.3.2 KERNEL OF A HOMOMORPHISM

Definition: If f :G —G' is a homomorphism then kernel of homomorphism is the collection

of all elements of domain set which are mapped into the identity elements of range set.

OR

If f:G—G isahomomorphism then,

ker f ={xeG| f(x)=¢]

Where € is the identity element of G’

Theorem 5: If f :G — G is a homomorphism then ker f is the normal subgroup of G.
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Proof: Since we have given f :G — G is an homomorphism and we know that

ker f = {x eG|f(x)= e'} then first we will prove that ker f is a subgroup of G. for it let

x,yekerf = f(x)=¢e, f(y)=¢e

Now, f(xy™)=f()f(y™)=f[f(y)] =ele]l’=¢

= xy " eker f

Hence V X,y e ker f we have xy* e ker f it means ker f is the subgroup of G.
Now we have to prove that ker f is the normal subgroup of G. For it let g be any element of
G and k be any element of ker f . Then f (k) =¢’, we have

f(gkg™) = (@) F(K)f(g™)=f(a)ef(g™)=F(@If ()] =¢

= xgkg ™ e ker f

Hence, ker f is normal subgroup of G.

Theorem 6: A homomorphism f :G — G is one-one if and only if ker f ={e}.
Proof: We have given f :G — G is an homomorphism and let mapping is ono-one. If
x e ker f be any element

Then f(x)=eandalso f(e)=¢e

Since f isone-oneso, f(x)=f(e)=>x=eVxekerf

Hence, ker f ={e}.

Conversely, let ker f contains only the identity element.

Foritlet, f(x)= f(y)

then f(X)[f(y)]" =€

= f(xy D =¢

= xy ' eker f ={e}

= xy* ={e}

=>X=Yy

= f is one-one.

Check your progress

Problem 1: Is f :(Z,+) —> (Z,+) suchthat f(n)=k.n, where k is fixed, a homomorphism?
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Problem 2:Is f :(Z,+) —> (Z,,,+,) suchthat f(n)=n (modm), ahomomorphism?

Problem 3:Is f:(Z,+) > (G={,-1i,—i},.) suchthat f(n)=i" , ahomomorphism? Also

find this homomorphism is one-one?

7.4 SUMMARY

In this unit, we have studied about the mapping like homomorphism which help identify and
understand similarities between different algebraic structures by revealing how one structure
can be transformed into another while maintaining its core properties. They play a crucial
role in classification, simplification, and decomposing mathematical structures.
Homomorphisms are ubiquitous in mathematics and serve as the building blocks for more

complex concepts like isomorphisms, automorphisms and representations.

A homomorphism is a structure-preserving map between two algebraic structures of the
same type, such as groups, rings, or vector spaces. It ensures that the operations in one
structure correspond to the operations in the other, maintaining their algebraic properties. For
example, in a group homomorphism f, the relation f(axb) = f(a)*f(b) holds for all elements a
and b. Homomorphism’s are crucial for understanding relationships between mathematical
structures, as they reveal how one structure can be transformed into another while preserving
its essential characteristics. They are foundational for concepts like kernels, images,

isomorphism’s, and automorphisms, making them central to algebra and its applications.

7.5 GLOSSARY

Homomorphism

Kernel of homomorphism mapping f.
Range or Image of homomorphism
Endomorphism
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TERMINAL QUESTIONS

Long Answer Type Question:

1. Prove that if f :G—G is a homomorphism. If G is cyclic then image of

homomorphism is also a cyclic subgroup of G .

A homomorphism f : G — G is one-one if and only if ker f ={e}.

If f:G — G is an homomorphism then prove that the set A={XEG| f(x)=e'}

where e is the identity element of G is the normal subgroup of G .

Prove that if f :G — G'is an homomorphism then order of any element f(a) e G is

divisor of the order ofaeG.

If two subgroups H, K are normal in G such that H < K, then
G _G\H
K K\H

Short Answer Type Question:

1. Prove that if f :G—G is a homomorphism then range of homomorphism is

subgroup of G .
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Prove that if f :G — G'is an homomorphism and H is subgroup of G then f(H)is
subgroup of G .

If f is a homomorphism from f : G — G then prove that f is one-one if and only if
ker f ={e}.

An endomorphism f in a group G such that f (x) = x™* then G is abelian.

Prove that if f :G — G  is a homomorphism then ker f is the normal subgroup of G.

Fill in the blanks:

If f:G — G beahomomorphism then for any element ac G, f(a™)=

If f:G — G be a homomorphism and e is the identity element of G then identity

element of G will be
is the infinite cyclic group
A cyclic group of order 123456789 is isomorphic to

The kernel of a group homomorphism ¢:G —>Hisa subgroup of G.

homomorphism maps every element of G to the identity

element of H.
If ¢:G — H is a homomorphism, then ¢(g™) =

The image of a group homomorphism is a of the codomain.
Objective questions:

1. A function ¢:G — H is a group homomorphism if:

(A)  ¢(ab)=¢(a)+¢(b)

(B)  ¢(ab)=¢(a)4(b)

(C) ¢g(ab)=ab

(D)  d(ab)=4(b)¢(a)

2. If a function ¢:G — H is a group homomorphism, which of the following is always
true?

(A)  ¢#(e;) =e,, where eg, e, areidentity of G and H respectively.
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(B)
(©)
(D)
3.

(A)
(B)
(©)
(D)
4.

(A)
(B)
(©)
(D)
S.

(A)
(B)
(©)
(D)
6.

(A)
(B)
(©)
(D)
7.

(A)
(B)
(©)
(D)

#(8) # ey

#(e;) is undefined

None

The kernel of a group homomorphism ¢:G — H is defined as:

Ker(¢) ={g €G|4(9) =5}

Ker(¢) ={heH [¢(h) =e,}

Ker(¢) ={g €G|4(9) =e,}

Ker(¢) ={he H[g4(h) =e;}

If a function ¢:G — His a group homomorphism, which of the following is true
about the image of ¢ ?

It is a normal subgroup of H

It is a subgroup of H

It is a proper subgroup of H

None of these.

Which of the following is NOT preserved under a group homomorphism ¢:G — H ?
Identity element

Inverse

Group of individual elements

Closure under the group operation

A group homomorphism ¢:G — H maps an abelian group G to:

An Abelian group H

An non-abelian group H

Either an abelian or non-abelian group H

None

Let ¢:G — H be a homomorphism. The kernel of ¢:
Is a subgroup of G but not necessarily normal

Is a normal subgroup of G

Is a subgroup of H

May not be a subgroup of G

TRUE (T) and FALSE (F):
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A homomorphism ¢:G — H maps every subgroup of G to a subgroup of H.

If ¢:G — H is a surjective homomorphism and G is cyclic, then H is cyclic.

The image of a group homomorphism is always a normal subgroup of the codomain.

A homomorphism ¢:G — H is a homomorphism and ¢(G)#e, VgeG, then G

has no identity element.

7.9 ANSWERS

Answer of self cheque question:
1. Yes 2. Yes

Answer of fill in the blanks

[f@)]" . fe)

Normal 6. Trivial

Answer of objective type question:

1. (B) 2. (A
5. (C) 6. (C)

Answer of TRUE and FALSE:

1. F 2. T
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8.1 INTRODUCTION

Group isomorphism is a fundamental concept in abstract algebra that formalizes the idea of
two groups being structurally identical, even if their elements and operations appear different
on the surface. Specifically, an isomorphism between two groups is a bijective (one-to-one
and onto) function that preserves the group operation, meaning that the image of the product
of any two elements in the first group is equal to the product of their images in the second
group. This concept allows mathematicians to classify and study groups by their underlying
structure rather than their specific representations, facilitating the identification of groups that
are essentially the same in terms of their algebraic properties. Understanding group
isomorphism is crucial for exploring deeper relationships within group theory and its
applications across various areas of mathematics and science.

8.2 OBJECTIVES
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The objectives of this unit on isomorphism in group theory are typically focused on
understanding and applying the concept of structural equivalence between groups. The key
objectives include:

1. Understanding Isomorphism: To define group isomorphism formally and explain its
significance in identifying groups that are structurally identical, regardless of their
representation.

Recognizing Isomorphic Groups: To develop the ability to determine whether two
groups are isomorphic by verifying the properties of an isomorphism, such as
bijectiveness and preservation of the group operation.

Exploring Properties: To examine the properties of groups that are preserved under
isomorphism, such as order, group structure, and specific characteristics like
commutativity.

Classifying Groups: To use isomorphism as a tool for classifying groups into
equivalence classes, simplifying the study of group theory by focusing on group
structures rather than specific examples.

Applications of Isomorphism: To apply the concept of isomorphism in solving
problems in abstract algebra and understanding its implications in other mathematical
and scientific contexts.

Building Intuition: To provide illustrative examples and counterexamples that
deepen the conceptual understanding of group isomorphism.

By achieving these objectives, students gain a foundational grasp of isomorphism, enabling
them to explore deeper topics in algebra and related fields.

8.3 ISOMORPHISM

Two groups are isomorphic if there exists a one-to-one correspondence (bijection) between
their elements that preserves the group operation. In simpler terms, two groups are
isomorphic if they have the same structure, meaning they behave the same mathematically,
even if their elements or how they are represented might look different.

Definition: A mapping f from a group (G,*) into the group (G,.)is said to be

isomorphism if it satisfies the following condition,

Q) f isono-onei.e, f isinjective i.e., distinct element in G have distinct f- image in G

(i) fison-toi.e, f issurjective.
(i)  f(a*b)=f(a).f(b) Va,beGi.e., f preserve the composition i.e. the image of the

product is the product of the images.
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Key Properties of Isomorphic Groups:

1. Bijection: The mapping ¢ is both injective (one-to-one) and surjective (onto),
ensuring every element of H corresponds to exactly one element of G.

2. Preservation of Structure: The group operation is preserved, meaning the result of
combining two elements in G is mapped to the combination of their images in H.

Implications:

. If G and H are isomorphic, they are "essentially the same™ as groups. Their order
(number of elements), subgroup structure, and other group-theoretic properties are identical.

However, their specific representations or elements may differ.
Example:

1. The additive group of integers modulo 4 (Z4) and the cyclic group of order 4 are
isomorphic because both have the same structure: a single generator that cycles through four
elements.

2. The group of rotations of a square and Z, are not isomorphic, because the rotation
group includes reflections, making it non-cyclic, whereas Z, is cyclic.

Example 1: Show that the Mapping f : R* — R, from set of positive real numbers to the set

of real number defined as f(x) =logxV x € R"is an isomorphism.

Answer: In the previous example we have already proved that given mapping is a
homomorphism. Now, we are going only to show that mapping (f) is a bijective mapping

(i.e., fis one-one and on-to)

One-One: Let x,y e Rs.t., f(X)=f(y)
= logx=1logy

= " 9% = g"9Y

=X=Yy

= f is one-one mapping.

On-to: If y € Rbe any real number then clearly e’ € R*. It means for each y € Rwe have

e’ e R" suchthat f(e’)=log(e’)=yeR
= f is on-to mapping.

Hence, f is an isomorphism.
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Example 2: Show that there is no isomorphism from f :Q — Q —{0}where, Q is set of
rational number.
Answer: To prove this example let we assume that f : Q — Q—{0} is an isomorphism. Since

f is an isomorphism so f will also a on-to function i.e., for 2 Q —{0}3dx € Qs.t.,

X o - . :
= y? =2 where, y= f(zj, which is a contradiction because there is no rational number

which is the solution of quadratic equation x* —2=0. Hence our assumption is wrong. So,

there is no map f : Q — Q—{0} which is an isomorphism.
Some important properties of isomorphic mappings:

Let f be a isomorphic mapping of a group G into a group G then followings are some

properties to be noted.

(i) The f —image of the identity e of G is the identity of G i.e., f(e) is the identity of
G.

Proof: Let e be the identity of G and e be the identity of G . Let a any element of G. Then

f(a)eG .

Now, e f(a)=f(a) [ e istheidentity of G']

= f(ea) [-.- e is the identity of G ]

= f(e)f(a) [-.- f isanisomorphic mapping]

Now in the group G, we have

ef(a)="f(e)f(a)

=e = f(e) [by right cancellation law in G']

- T (e) is the identity of G
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(i)  The f —image of the inverse of an element a of G is the inverse of the f-image of a
e, f@™)=[f@]"

Proof: Suppose e is the identity of G and e’ is the identity of G . Then f(e) =e". Now let a

be any element of G. Then a™ € G and aa™ =e. We have

e =f(e)="f(aa")=f(a)f(a™) [+ fisacomposition preserving]

Therefore f(a™) is the inverse of f(a)inthe group G.Thus f(a™)=[f(a)]".

(iti)  The order of an element a of G is equal to the order of its image f(a).

Proof: Suppose e is the identity of G. Then f (e) is the identity of G . Let the order of a be

finite and let it be equal to n.

Then a"=e= f(a") = f(e)

= f(aaaaa.....ntimes) = f (e)

= f(a)f(a)f(a)...ntimes= f(e)

=[f(a)]" = f(e) =orderof f(a)<n.

If now the order of f(a) is m, then

[f(@)]" = f(e)

= f(a)f(a)f(a)..mtimes= f(e)

= f(aaaaa.....mtimes) = f(e) = f(a™) = f (e)

—=a"=e

=orderof a<m

Thus m<nand n<m=m=n

Remarks: If two groups G, and G, are isomorphic then following points we achieved.
G, is abelian < G, is abelian.
G, iscyclic < G, is cyclic.

G, is non-abelian <> G, is non-abelian.

G, is countable < G, is countable.
G, has m element of order k < G, has m element of order k.

G, has r subgroup of order n < G, has r subgroup of order n.

1
2
3
4. Order of G, is n < Order of G, is n.
5
6
7
8

G, and G, has the same class equation.
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9. 2(G)=2(G,).
10. No. of conjugate classes class in G, = No. of conjugate classes class in G,
Infact, G, and G, are the same group in two different notation for the elements and for the

binary operation.
Note 1: If O(a) is finite then, then O[ f (a)] can not be finite.

2: While forming such a mapping we should keep in mind the above three facts that an
isomorphic mapping must preserve identities, inverse and orders.

Theorem 1: Let N be a normal subgroup of a group G. A mapping f, f :G —> G/ N defined
as f(x)=NxVxeGthen fisahomomorphism of Gonto G/Nand ker f =N .

Proof: We have given the mapping f :G — G/N such that f(X) = NxV x e G. As we know
if xeGthen NxeG/N.

First we will check that f is a onto homomorphism from G to G/N . For it, let a,beG/N
then,

f (ab) = Nab = (Na)(Nb) = f(a) f (b) [N is normal subgroup of G]

= f isa homomorphism from Gto G/N .

Since for each element Nx € G/ N there exist an element x € G such that f (X) = NxVx e G.

Hence, f is on-to mapping.

Let ker f is the kernel of this homomorphism then, ker f = {x e G| f(x) = N}

Now, we have only to prove that ker f =N . Let x be any element of ker f . Then f(X)=N,
where N is the identity of G/N. But according to mapping f(x)=Nx=Ni.e,

NXx=N=xeN [Because if H is normal subgroup of G and Hx=H thenx € H ]

So, Xxeker f = xe N . Therefore ker f = N
Conversely, lety be any element of N . Then Ny =N
We have f(n)=Nn=N. Therefore neker f

Thus, ne N = neker f . Therefore N — ker f

Hence, ker f =N .

8.4 FUNDAMENTAL THEOREMS
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Theorem 2: Fundamental theorem on group homomorphism: If f:G—G is onto

homomorphism then% =G where K =ker f

OR
In other word, “Every homomorphic image of a group G is isomorphic to some quotient
group of G”.

Proof: We have given a on-to homomorphism f from GtoG . Let we define a map

¢:%—>G's.t. #(Ka) = f(a),aeG

First, we have to show that ¢ is an isomorphism. For it initially we shall show the mapping
¢ is well-defined by, Ka =kb

=ab™" eK =Kker f

= f(ab™) =¢

= f(a)f(b™) =¢e

= f(a)|f(b)] =¢

= f(a)=f(b)

= ¢(Ka) = ¢(Kb)

On retracing theses steps backwards, we will get that ¢ is one-one.
Again as ¢(KaKb) = ¢(Kab) = f (ab) = f (a) f (b) = ¢(Ka)gp(Kb)
=> ¢ is an homomorpshism.

Now we will check ¢ is onto, let g € G be any element. Since f :G — G is onto then there

exist g € G such that,
flg)=9
Now, ¢[Kg]=f(9)=g".

= ¢ison-to

.. ¢ is an isomorphism.
Hence, i<} ~G .
K

Theorem 3: (Second fundamental theorem of Isomorphism). If Hand Kare two

subgroups of the group G where H is normal subgroup of G then,
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HK K

H HNK
Proof: By the previous theorems in normal subgroups we can easily seen that H n K will be
normal  subgroup of KbecauseH"KcHandHNKcK. Similarly, as
H < HK < G, H will be normal in HK.

Now, we defineamap f:K — % s.t.,

f (k) = Hk

Then as k, =k, = Hk, = Hk, = f (k) = f(k,)
Which shows the mapping is well-defined.
Again, f(kk,)=Hkk, = HkHk, = f (k) f(k,)
= f is an homomorphism.

Obviously, the mapping is on-to also then by using the first fundamental theorem we find that

Since, k eker f < f(k)=H
< Hk=H
<keH [As H is normal subgroup of G]
okeHNK [k e Kasker f < K]

So, kerf =HNK

Hence the theorem is proved.

: . : K.
Lemma: Let in a groupG, if H,Kare normal in G such that H < K, then ﬁls a normal

G .
subgroup of I and converse of the theorem is also true.

Proof: E is a non empty subset of% , by definition.

Now, for any Hk,, Hk, e%

(Hkl)(sz)il = (Hkl)(sz_l) - Hklkz_l < %
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K .
= — s a subgroup.

H

. K G ,
Again for any Hk e m andHg € O we notice that

(Hg) *(HK)(Hg) = Hg *HkHg = Hg *kg < &

as g € G,k e K,K is normal in G gives g 'kg e K .
Conversely, let any element x e Gand k € K. In order to prove that K is normal inG we

must show that xkx™* e K .

We know that Hx e %Wherex eGand Hk e Ewherek € K. Since we have given % is a
G
normal subgroup of R therefore
a4 K
(HX)(HK)(HX)™ e m

= Hxkx™ € 5 [As H is normal in G]

= xkx* e K
: . K. : .
-.K'is normal subgroup of G . Also the quotient group ﬁlmplles that H is normal in G.

Therefore, K is normal subgroup of Gand H c K.

Theorem 4: (Third isomorphism theorem). If two subgroups H, K are normal in G such
that H < K, then

G _G\H

K~ K\H
Proof: By the above lemma we know that if H, K are normal in G such thatH < K, then

G\H

K is a normal subgroup of <l and, therefore, we can talk about
H H K\H

First, we will define a map f :% - %s.t.,

f(Ha)=Ka,aeG
Since, H is well defined as
Ha =Hb
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—ab'eHcK

= Ka=Kb

= f(Ha) = f (Hb)

Now, we will check f is a homomorphism as

f (HaHb) = f (Hab) = Kab = (Ka)(Kb) = f (Ha) f (HDb).

Here, ontoness of f is obvious.

Using first fundamental theorem of group homomorphism we can write that,

G _G/H

= , 50, we will claim that ker f :ﬁ.
K kerf H

A member of ker f will be some member of% .

Now, Haeker f < f(Ha)=K
< Ka=K
< aekK

<:,>Hae5
H

Hence we find 9 =~ G/—H
K K/H

Hence our result is proved. This theorem is also named as “Freshman’s Theorem”.

. K :
Remarks: In the above theorem, since we have put H- ker f because we have notice that

K. . G . G/H
ﬁls normal in ﬁand hence we are talking about KA Thus we do not need to prove

K. . G
separately that m is normal in R

Theorem 5: Let the mapping f :G — G be an onto homomorphism with ker f = K . Let the
subgroup H of the group G, define
H={xeG|f(x)eH|
Then
Q) H is subgroup of Gand K —c H..

(i) H'is normal in G iff Hisnormalin G .
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(iii)  H'isnormal in G then CH;—;%
(iv)  There exist a one to one association from the from the family S of all subgroup of
G onto the family S of all subgroup of G , that contain K.
Proof (i): Since, f(e)=e e H =eecH ,itmeans H = ¢.
Let x,yeH = f(x),f(y)eH
= f(x), f(y)eH
= fQ[f (] eH
= f(xy)eH
=xy " eH
Thus H is subgroup of G.
Since xekerf =K = f(x)=¢ eH
Hence for each xe Kwe have xeH =K cH.
(ii): Suppose H is normal subgroup of G . Let the elementsg € G ,h € H . Since the given
mapping isonto so 3g e G,heHst f(g)=g,f(h)=h.Since heH,h eH
Now,
g7hg =(f(9))" f(Mf(g)
=f(gH)f(h)f(g)=f(ghg)eH [Because H is normal subgroup in G means
g'hgeH]
Thus H'is normal in G .

Conversely, assume that H'is normal in G .

For any elements heH, geG,

flghg)=(f (@) f(N)F(g)eH

as f(hyeH, f(g)eG

as f(hyeH , f(g)eG [H is normal in G ]
=g*'hgeH

i.e., Hisnormal in G

(ili)  Let us defining a mapping ¢:G — %s.t.,
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#(9)=H 1(9)

Since ¢ is well defineas g, =9, = f(g,) = f(g,)

=H f(g,)=H (g,)

= ¢(9,) = #(g,) , which shows mapping is well defined.

Now, we will verify that the mapping ¢ preserve the composition as

#(8:9,) =H 1(9,9,) =H f(9)f(9,) =H f(g)H 1(9,) =#(9,)4(9,)

Again, forany H'g’ e%, since g eG'and fisonto 3geGst, f(g)=g

Or that ¢(g) = H f(g) = H g showing that ¢ is onto.

By using fundamental theorem then

G .6

H = kerg

Now, xekerg < ¢(x)=H

SHIf(X)=H

< f(X)eH < xeH

Hence ker¢g=H

(iv)  Define mapping :S — S, s.t.,

w(H)=H

Where H is {XEGl f(x) e H'} for any H'in S by (i) we know that it is subgroup of G,
containing K and thus a member of S. v is well defined mapping.

Letnow w(H)=w(T) where H,T €S’

Then H =T where

H={xeG|f(x)eH}

T={xeG|f(x)eT}

Now forany h' e H = G, since f :G — G is onto, we can find heG, s.t.,
f(hy=h'eH

But this shows he H =T

= f(h)eT

—heT =DH cT
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Similarly T < H

i.e.,, T =H or yis one-one.

We will show now that y is onto.

Let H e S be any member, H is a subgroup of GandK < H .
Consider f(H)={f(h)|heH}

Then f(H)2zgaseeH = f(e)=e e f(H)

Again, forany f(h), f(h,)e f(H),h,h, eH

And f(h)(f(h,))™" = f(hh, ") e f(H)

i.e., f(H)issubgroup of G .

We show f(H) = H is the required pre-image of H under

i.e., we show w(H)=H,

For it we have to show H ={X€G| f(x)eH'}

Let xeHthen f(x)e f(H)=H
—xe{xeG|f(x)eH '}

Orthat H < {xeG| f(x)eH'}
Again, if xe{xeG| f(x)eH |
Then f(xX)eH = f(H)

dheH,st f(x)=f(h)

= f(xh™") =¢

= xh™* eker f =K

—=xeKhcH [KcH]

Thus {xeG| f(x) e H' | H
Hence H :{XEGl f(x) e H'}

Or that w(H ) =H and so v is onto
Hence the theorem proved.
Example 3: Show that any infinite cyclic group is isomorphic to G =< Z,+ > the group of
integers.

Solution: Let G =<a > be any infinite cyclic group.
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Define, f :G > Z, st,,

f@)=iiez

Since G =<a > is of infinite order, a' eGforall icZand a' =a’forno i j

Thus a' =a’ =i=j= f(a') = f(a')or that f is well defined.

Again f(@)=f(a')=i=j=a =a' = fis1-1.
f@a)=f@")=i+j="f@)+f@)

Shows that f is a homomorphism.

f is obviously onto and hence the isomorphism is established.

Corollary: Every subgroup of an infinite cyclic group is an infinite cyclic group which is
isomorphic to the group itself.

Example 4: Any finite cyclic group of order n is isomorphic to Z the group of integers

addition modulo n.
Solution: Let G =< a >be a cyclic group s.t.,
O(G)=0(a)=n

then G = fe,a,a%,...,a"*}Z, ={0,1,2,...,n -1}

Define f:G—2Z_ st, f(a')=i

f is clearly well defined 1-1 onto mapping.

Again f(a'a’)=f@") =i+, j=f(@)+, f(a')
Thus f is a homomorphism and hence an isomorphism.

Remark: Any two cyclic groups of same order (finite) are isomorphic and each cyclic group
of infinite order is isomorphic to Z (set of integer).

Check your progress

Problem 1: Since Q, = Z, x Z,, then find whether the identity element 1 of Q, map in
Z,x72,?
Problem 2: Is Z, = Q, and why?

8.5 SUMMARY
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In this unit we have learned group isomorphism is a concept in abstract algebra that identifies
when two groups are structurally identical. Two groups are isomorphic if there exists a
bijective mapping between them that preserves the group operation, ensuring that the
algebraic structure of one group corresponds exactly to the other. This equivalence focuses on
the underlying structure rather than the specific elements or representations of the groups.
Isomorphic groups share properties like order, identity, inverses, and the results of operations,
making isomorphism a powerful tool for classifying and studying groups in a simplified and
generalized way. On the other manner we can say that if two groups are isomorphic in which
one group is completely given then on the basis of given group we can unfold the unknown
group completely even these groups are under the different binary operations. We have also
learned about the fundamental theorems of isomorphism which are helpful to solve out

various problems.

One of the important concept we have learned in this unit that every infinite cyclic

group is isomorphic to the set of integers (2).

8.6 GLOSSARY

G =G represents two groups G,G’ are isomorphic to each other.

» Fundamental theorem on isomorphism
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8.9 TERMINAL QUESTIONS

Long Answer Type Question:

1. Prove that every finite cyclic group of order n is isomorphic to the set of integer
under the operation addition modulo n.

Prove that every infinite cyclic group is isomorphicto Z .

Prove that there is no isomorphism from QtoQ" = Q —{0}.

If two subgroups H, K are normal in G such that H < K, then

G _G\H
K

K\H

Prove that relation of isomorphism is an equivalence relation.

State and prove the fundamental theorem on group homomorphism.
State and prove the second fundamental theorem of Isomorphism.
State and prove the third fundamental theorem of Isomorphism.

Short Answer Type Question:

1. If f:G — G is an homomorphism and H is subgroup of G then f(H)is subgroup of
G,
If f is a homomorphism from f : G — G then prove that f is one-one if and only if
ker f ={e}.
Prove that any finite cyclic group of order n is isomorphic to the quotient group
Z/N,where N=<n>

4. An endomorphism f in a group G such that f (x) = x™* then G is abelian.

Objective type question

1. What does it mean for two groups G and H to be isomorphic?
a) They have the same number of elements.
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b) They are structurally identical but may have different element labels.
c) Their multiplication tables are the same in layout.
d) They have the same generators.

Which of the following properties is preserved under group isomorphism?
a) Order of the group.

b) Order of an element.

¢) Commutativity of the group.

d) All of the above.

If two groups G and H are isomorphic, which of the following statements is true?
a) G and H have the same number of subgroups.

b) G and H have the same order.

c) G and H have the same group operation.

d) Both a) and b).

If G and H are isomorphic groups, which of the following is not necessarily true?
a) G and H have the same number of elements of each order.

b) G and H have the same subgroup lattice.

c) G and H are cyclic.

d) G and H have identical presentations.

Which of the following groups is isomorphic to Z,?

a) The Klein four-group V,

b) The group {1,i,—1,—1} under multiplication.

C) Z,xZ,.

d) The group of integers modulo 4 under addition.

If G is a group of order 35, then G:
a) Is cyclic.
b) Is isomorphicto Z,..

C) Has a unique group structure.
d) All of the above.

How many non-isomorphic groups are there of order 8?
a) 3

b) 5

C) 6

d) 8

Which of the following statements is true about isomorphic groups G and H?
a) G and H have the same order of elements.
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b) If G is cyclic, H must be cyclic.
C) If G is abelian, H must be abelian.
d) All of the above.

If G and H are isomorphic groups, then:

a) They have the same group operation.

b) They have the same multiplication table (up to relabeling).

C) Their elements are exactly the same.

d) They have the same generators but different subgroup structures.

Which of the following is a necessary condition for two groups to be isomorphic?
a) They have the same number of generators.

b) They have the same order.

C) They are both abelian or both non-abelian.

d) All of the above.

Two groups GGG and HHH are said to be isomorphic if:
a)  They have the same number of elements.

b)  They have the same algebraic structure.

c)  They have the same identity element.

d)  They have the same order of elements.

Which of the following is not preserved under an isomorphism?
a) Order of the group.

b) Commutativity of the group.

C) The specific symbols used for elements.

d) The group operation.

If G=H, which of the following statements is true?
a) G and H have the same number of subgroups.
b) G and H are both finite or both infinite.

C) G and H have the same order of elements.

d) All of the above.

Fill in the blanks:

If two groups G,G are isomorphic then O(G) =

If two groups G,G of finite order are isomorphic then number of elements of order n

in G are =
A cyclic group of order 123456789 is isomorphic to
If G=H and G has n generators, then H also has generators.
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Two groups G and H are isomorphic if there exists a mapping ¢:G — H that

is a bijective homomorphism.
If G and H are isomorphic, then they have the same of elements.

If G is a cyclic group of order n, then G is isomorphic to

Every group of prime order p is and isomorphic to Z .

If two groups are isomorphic, their subgroup are identical.
If two groups G and H are isomorphic, their center Z(G) is isomorphic to
11. If G and H are isomorphic, then G is abelian if and only if is abelian.

True and False question:

If two groups G and H are isomorphic, then they have identical multiplication tables
(up to relabeling).

Every group of order 4 is isomorphic to Z,

Every abelian group is isomorphic to a subgroup of Q, the group of rational numbers
under addition.

The group of real numbers R under addition is isomorphic to the group of positive
real numbers R* under multiplication.

If G and H are isomorphic groups, every automorphism of G corresponds to an
automorphism of H.

If G is a group of prime order, then G is isomorphic to Z,

Any two groups of the same order are isomorphic.

An infinite cyclic group is isomorphic to Z.

8.10 ANSWERS

Answer of objective question:
1. b) 2. d)
5. d) 6. d)
9. b) 10. d)

13.  d)

Answer of fill in the blanks:

1. O(G) 2. Number of elements of order nin G' . Z 153456789
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Bijective

Cyclic
10.  Z(H) 11. H
Answer of True and False:
1. True 2.

5. True 6.
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9.1 INTRODUCTION

British mathematician Arthur Cayley FRS, who lived
from 16 August 1821 to 26 January 1895, was very
active and focused primarily on algebra. He
contributed to establishing the current British school

of pure mathematics.

Cayley used to find it amusing to solve challenging
arithmetic problems as a kid. He enrolled in Trinity

College in Cambridge, where he excelled in
Arthur Cayley FRS

mathematics, Greek, French, German, and ltalian. He

https://en.wikipedia.org/wiki/Arthur _Cayley

Theorizing that every square matrix is a root of its own characteristic polynomial, he
established what is now known as the Cayley-Hamilton theorem for matrices of orders 2 and
3. He was the first to introduce the contemporary definition of a group as a set with a binary
operation that complies with certain rules. Mathematicians used to refer to permutation
groups when they used the term "groups.” In honour of Cayley, Cayley's theorem, Cayley

tables, and Cayley graphs all bear his name.

In this we will also learn about the conjugate element in a group is that to differentiate
any group into different conjugate classes by its property of satisfying the condition of
equivalence relation. After partition group into different conjugate classes we will learn about
the important definition of normalizer of any element in a group and centre of the group
which will help us to define the class equation. Various theorems of conjugate element,
normalizer and centre of the group and their related application to solve different types of

examples are also discussed in this unit.

9.2 OBJECTIVES

After reading this unit learners will be able to
e Understand the concept of conjugate element and equivalence relation in cojugacy.

e Understand the application of normalize of an element.
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Understand about the special type of normal subgroup name as center of the group.
Understand the concept that how we can define an isomorphism from any group to the
permutation group which is named as Cayley’s theorem.

Solve more examples on class equation.

Understand the basic properties of Cayley’s theorem and class equation and also their

related other theorems.

CONJUGATE ELEMENT

Definition: Two elements a and b in a group G are said to be conjugate to each other or b is
said to be conjugate to a if Ix e Gsit.
b=x"ax
Then b is called transform of a by x. Symbolically, it is denoted by b ~a and this relation in
G is called relation of conjugacy.
Theorem 1: Conjugacy relation is an equivalence relation on G.
Proof: Reflexivity: Let a be any arbitrary element of a group G and e is the identity of the
group. Then
a=e'ae=a~aVvaeG. Therefore the relation is reflexive.
Symmetry: We have to prove if a~bthen b~a. Let a~bthen IxeGst.
=a=X"bx
= xax ' = x(x‘lbx)x‘1 =xax'=b
As we know if x e Gthen x™* G

Transitivity: Let a~band b ~ cthen a=x"bx,b=y'cy for some x,y eG.

Again, a = x‘l(y‘lcy)x

= a=x"y " cyx=(yx)*c(yx) [Since G isagroup thenyx € G,(yx)" €G]

= a ~ cand thus, relation is transitive.

Hence, conjugacy is an equivalence relation.

Classes of conjugate elements: The differences between the classes are follows:
(1) Elements from the same classes will be conjugate.

(2) Different elements from different classes will be not conjugate.

The collection of all elements which are conjugate to a € G will be denoted by C(a) or a and
defined as:
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C(a) = {x eG|x ~a} or C(a) = {b e Glo = x"ax}

For the finite group G, number of distinct element in C(a) will be denoted by c,.

9.4 NORMALIZER OF AN ELEMENT OF A GROUP

Definition: If G is a group and a be any arbitrary element of a group then normalizer of a is
the collection of such elements in G which commutes with a. It is denoted by N(a) and

defined as:

N(a) = {x € Glax = xa|

Note 1: If e is the identity element of G then N(e) =G
2: If G is abelian group and a € G then N(a) =G

Theorem 2: The normalizer of a € G is the subgroup of G.

Proof: Since, N(a) = {x € G|ax = xa}. Let x, y are any element of G then ax=xa,ay =Yya.

First, we will show that, y ™ € G. Since, ye G = y ™ G because G is a group.
Now, y*(ay)y™ =y*(ya)y™ [Preand post multiply by y™ in ay = ya]
=ylalyy ) =(y'yay* [G satisfied the associativity]

= yae=eay ™" [e is the identity element of G]

—yla=ay"

=y eN(a)

Now we have to prove that xy ™ e N(a)

Consider, a(xy™) = (ax)y™

=a(xy ) =(xa)y" [ax = xa]

=a(xy™) =x(ay™) [G satisfied the associativity]
=a(xy")=x(ya) [y'a=ay"]

=a(xy ™) =(xya [G satisfied the associativity]

= xy ' e N(a)

Hence, normalizer of any element a e Gi.e., N(a) is the subgroup of G.

Theorem 3: Any two elements of a group give rise to same conjugate to a< G iff they

belong to the same right coset of normalizer of a in G.
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Proof: Let us consider, x,y € G then xe N(a)xandy e N(a)y. Since x, y are in the same
right coset of N(a) in G.

< N(a)x=N(a)y [If H is subgroup and x € H then Hx=H ]

< xy e N(a) [If H is a subgroup of G, then Ha=Hb <> ab™ e H ]

saxyt=xyla [By definition of normalizer of an element of G]
SN x‘l(axy‘l )y =x"! (xy‘la)y

< xax(yTy) = (x'x)yay

< X raxe =ey ay

< xlax=yay

<> X, Y give rise to same conjugate of a.

0(G)

Theorem 4: If G is a finite group then the number of distinct element in C(a) are m
a

O(G)

Then further prove that O(G) =Zo(N( )
a

, Where summation runs over one element of

each conjugate class.
Proof: By the previous theorem 6, we know that two elements of a group give rise to same
conjugate to a € G if they belong to the same right coset of normalizer of a in G. In the other
sense it means, different conjugate to a € G belongs to different right coset of N(a) in G.
Thus we get a “one-to-one correspondence between the conjugates of a € G and right cosets
of N(a) in G”.
Thus, ¢, = Number of distnict element in C(a)

= Number of distinct right coset of N(a) in G.

=The index of N(a) in G = 0()
O(N(a))

Further, If C(a,),C(a,),...,C(a,) are k distinct conjugate class in G, Then

G=C(a)uwC(a,)u..uC(a,)

= Number of element in G = Number of element in C(a,)+ Number of element in C(a,) +

...+ Number of element in C(a,)

=0(G) = an , where summation runs over one element of each conjugate class

0(G)
O(N(a))

=0(G) =)’
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Hence proof the result.

9.4.1 SELF CONJUGATE ELEMENT

Definition: An element a<G is said to be self conjugate if a=x"axVxeGi.e, C(a)
contains only singleton element {a}. In other manner, we can say those self conjugate
elements are those elements of G which commutes with every element of G. Sometimes self

conjugate element is also called invariant element of G.

9.5 CENTRE OF A GROUP

Definition: Collection of all self conjugate element of a group is called centre of group G. It
is denoted by Z(G) and defined as,

Z(G) = {x eG|xa=axvae G}
e.g.: The centre of the quaternion group Q, = {L,—1,i,i, j,—j, k,—k} is Z(Q,) = {L-1}.

Theorem 5: The centre of a group G, Z(G) is the normal subgroup of group.

Proof: First we will prove that Z(G) is subgroup of G. For it, let x,x, € Z(G) then be
definition x,a=axvaeG and x,a=ax,vaeG

Since we have, x,a=ax,vaeG = X, (x,a)x, " =X, (ax,)x, VaeG

= (X, 'X,)ax, - =X, ‘a(x,x, )VaecG

=eax, =X, aevaeG

=ax, =X, avaeG

=X, €Z(G)

Now consider, (xlxz‘l)a = x,(x, 'a)

=x,(ax, ") [x, " €Z(G)= x, ‘a=ax, ']
= (xa)X, [By associativity]
= (ax,)X, [x €Z(G) = xa=ax]
=a(xx, ) [By associativity]

= XX, - €Z(G)

Hence Z(G) is subgroup of G.
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Now we have only to prove that Z(G) is always normal in G. For it let x € Z(G),a € G then,
axa™' = (ax)a™

=(xa)a™

=x(aa™)

=x(e) =xeZ(G)
Thus, xe Z(G),aeG = axa™ € Z(G)

Hence, Z(G) is the normal subgroup of group of G.
Theorem 6: Any element, ae Z(G) iff N(a)=G.

Proof: Let ae Z(G)then xa=axvxeG
Also, N(a) = {x € G |[xa = axvx € G}
S0, aeZ(G) @ xa=axvxeG
< xeN@)VvxeG [By definition of N(a)]
< N(a)=G

Corollary: If Gis finitea € Z(G) iff O(N(a)) =O(G).
Theorem 7: If G be the finite group and Z(G) be the centre of the group G. Then class
equation of G can be written as,
0G)-0ZE+ ¥ =

aize) O[N ()]
Where, summation runs over one element a in each conjugate class containing more than one
element.

Proof: As we know by the previous theorem that class equation of G is

0(G) = Z o(ol\(lc(;))) , Where, summation runs over one element a in each conjugate class.
a

By corollary, we know that if G is finitea € Z(G) iff O(N(a)) =O(G).

0(G)

& aeZ(G)iff =
O(N(a))

<> Number of elements in conjugate class of a is one whenevera e Z(G).

Thus, order of Z(G) will be equal to the number of conjugate classes each having single
element which is itself. If we take a such element which belongs any of these conjugate

0(G)

classes, we have
O(N(a))

=1. Hence the class equation can be rewrite as,
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0(G) 0(G)
0(G) =
©= 2 5Ny .2 0N @)

Since, O(Z(G)) = Y| o?[\(lc(Ba)l))
acZ(G)

Hence, O(G)=0(Z(G)) + D O?l\(l((;;))
agZ(G)

Note: This equation (1) is called the class equation of any finite group G.

(1)

Example 1: Find the class equation for the group Ss.

Answer: We know the symmetric group (S;) on three symbols 1, 2, 3 is

S, =1{1,(12),(13),(23),(123), (132)}.

Then we have,

Z(S,;) = {e} and C(12) = {(12),(23),(13)} because (12)(13)(12)" =(23) shows that (2 3) is a
conjugate of (1 3).

Similarly we can find, C(123) = {(123),(132)}. Hence the class equation of S,is,

1S, =12(S;)| + [C(12)| +|C(123)] i.e., 31 =1+3+2.

Theorem 8: If O(G) =P", where P is a prime number, then Z(G) ={e}.

Proof: As we know for a finite group G the class equation of G is
0(G)

0(G)=0(Z @)+ > SING]
agZ (G)

where, summation runs over those conjugate class which

containing more than one element. We have given O(G) = P"so, the divisor of O(G)are
1, p, p?,..., P¥,..P" i.e., of the form P* wherel<k <n.

Since YaeGwe have N(a) is subgroup of G. By Lagrange’s theorem we know that
O(N(a))|O(G) .

Also we know that if a ¢ Z(G) < N(a) # G = O[N(a)] < O(G).

Thus if a¢ Z(G) then O[N(a)] will be of the form P* wherel<k <n.

Let us consider, O(Z(G)) =m, where m is a positive integer m < n. Now by class equation

Pn Pn
P'=m+ > —=m=P"—= Y — wherel<k<n ...(I)
agZ (G) agZ(G) P
Since P | P"so, P will divide each term of the right hand side of the equation (1)

=P|m
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Therefore centre of G must contain element other then identity. Therefore Z(G) ={e}.
Theorem 9: Every group of order P?is Abelian.

Proof: We have given order of the group is P? i.e., O(G) = P?. So, the positive divisors of
P? are 1, P, P?. By the previous theorem 11 we know that if O(G) = P", where P is a prime
number, then Z(G) ={e}. It means, O(Z(G)) >1. As we know that centre of the group is
subgroup of G and by Lagrange’s theorem “Order of every subgroup of a finite group is
divisor of the order of the group”. So either O(Z(G)) = P or O(Z(G)) = P*.

If O(Z(G)) = P*then we have nothing to prove.

Otherwise, if O(Z(G))=P —there exist an element xeG which is not in Z(G) i.e.,
xeZ(G).

Since N(x) is subgroup of G and x e N(x) . Also ae Z(G) = ax=xavx €G.

=aeN(X)

= Z(G) = N(x)

Since x ¢ Z(G) = O((N(x)) > P but O(N(x)) must be divisor of P?

= O((N(x)) must be equal to P?

=>NX) =G

= x e Z(G), thus we get a contradiction.

Hence, O(Z(G)) = P? = G is Abelian group because Z(G)is always Abelian group.

Example 2: Is a group of order 121 is Abelian?

Answer: Since, O(G) =121=11%, where 11 is a prime number. Hence G will be Abelian

group.
Example 3: Prove that corresponding to every cyclic group its quotient group is cyclic but

their converses need not to be true.

Solution: Let G be a cyclic group such that G = <a >i.e., a is the generator of G and H is its
subgroup. Then according to theorem every subgroup of G will be normal subgroup of G. If
elements a" € G then Ha" = (Ha)" will be element of quotient group G/H .

Therefore G/H is a cyclic group and Ha will be generator of it.
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But converse is need not be true. Since S,/ A, = {A,,(23)A,} is Abelian group because order
of O[S,/ A]=6/3=2which is prime and we know that every group of prime order is cyclic

while S, is not a Abelian group.

Theorem 10: If G/Z(G) is cyclic if and only if G is Abelian.

Proof: Let us consider G/Z(G) is cyclic. It means, if the element a is the generator of G
then Z(G)awill be generator of G/Z(G).

Let X,y e Gthen Z(G)x,Z(G)ye G/Z(G) = 3 positive integers m,n such that
Z(G)x=(Z(G)a)" =Z(G)a" &Z(G)y = (Z(G)a)" = Z(G)a"

—we have x=xa" where x, e Z(G)and y = y,a" where y, € Z(G)

Now, xy = (xa")(y,a") = % (a"y,)a") = x,(y,a")a" = (x,y,)a"a" = (y,x,)a"a"
=y x(@"a")=yxa"a" =ya"xa" =xy

= Gis abelian.

Conversely, assume that G is Abelian. If G is Abelian then Z(G) =G .

= G/ Z(G) ={e}i.e. trivial subgroup which is always cyclic.

Hence the theorem.

Example 4: If G be a non-Abelian group of order P®where P is prime then Z(G) has exactly

P element.

Proof: We have given be a non-Abelian group of order P®where P is prime. Then According
to Lagrange’s theorem possibilities of order of Z(G) is 1, P, P*, P°.

Case I°': We know by previous theorem if O(G)=P", where P is a prime number, then

Z(G) #{e} = O[Z(G)] > 1.

Case 11": Let O[Z(G)]=P?>=0(G/Z(G))=P*/P*=P

= G/Z(G)is cyclic and by theorem we can say that G is Abelian which is a contradiction.
So our assumption is wrong.

Case 111" Let O[Z(G)]=P*=0(G/Z(G))=P*/P* =1

= G/Z(G) ={e} is cyclic and by theorem we can say that G is Abelian which is again a

contradiction. So again our one of the assumption is wrong.
So, the only possibilities is left that O[Z(G)] =P i.e., Z(G) has exactly P element.

9.6 CAYLEY’S THEOREM
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Theorem 11: Every group G is isomorphic to a permutation group.

Proof: A(G) is the collection of all permutations of the set G, where G is the any group. Let

us defineamap f,:G — G such that

f,(x) =ax, where acG

First we will check the mapping is well defined as,

x=y=ax=ay= f,(x) = f.(y)

One-One: f, (x)=f,(y)

—ax=ay

=>X=Y [By cancellation rule in G]

= mapping is one-one

Onto: Forany y G, since f,(ay)=a(ay)=y. Here we can easily see that a™y is pre-
image of y or that f, is onto and hence permutation on G .

Thus, f, € A(G)

Assume that K be set of all such permutations. Now we will show that K is a subgroup of
A(G) . Since K is non-empty set because f, € K .

Let f,, f, eK

Then since f,0f . (x) = f,(f_.(x))= f,(bx) =b(b™x)

=ex= f (x) ¥x
We find f,, =(f,)" [Note f, =1, identity of A(G)]
Also as (f,o f, )(x) = f_(bx) = a(bx) = (@b)x = f,, (X) VX
We find f, =f, of,
So, f,o(f,)" =f,0 f.=f, €K
= K is subgroup of A(G).
Define mapping ¢:G — K, s.t,
#@) =1,
then ¢ is well defined as well as one-one map as,

a=>b

< ax =bx
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< f,(x)=f,(X) VX

< f, =1,

b =6

Obviously, ¢ is onto and

#(ab) = f, = f. 0 f, =¢(a) 4(b)

Hence, ¢ is a homomorphism and also an isomorphism which proves the result that every

group G is isomorphic to a permutation group.
Remarks: We can define other statement of Cayley’s theorems like “ If G is finite group of

order nthen G will be isomorphic to the subgroup of symmetric group S, .

Example 5: Using Cayley’s theorem find the permutation group which is isomorphic to the

group G ={2,4,6,8}under the operation multiplication modulo (x,) .

Answer: Let A be any permutation group such as defined in the Cayley’s theorem.

A={f, |aeG}, where f, isdefinedas f, =axst. a,xeG

So, f,(2)=4, f,(4)=8, f,(8)=6, f,(6)=2

f,(2 =8, f,(4) =6, f,8)=2, f,(6)=4

f;(2) =6, f,(4) =2, f,(8)=4, f;(6)=8

f(2) =2, f,(4)=4, f,(8)=8, f,(6)=6

Thus, f,=1land K={f,, f,, f,, f,=1}

If we identify f, with the permutation(1234), other permutations are (13)(24),(1432).
Hence A={(123),(13)(24),(1432),1} is required permutation group isomorphic to G .
Example 6: Using Cayley’s theorem find the permutation group which is isomorphic to the
D,.

Answer: As we know that the dihedral group (D, ) of order 8 is

D, = {a, a’,a’,a* ab,a’h,a’n,a’b|a’ =e=b’,ab= ba‘l}

Let the set defined in the Cayley’s theorem is given by K = {fX | XGG} where function
defined by, f,(y)=xyand D, =K by the theorem. Now we determine K, the required
permutation group as

f.(a)=a’ f (a*)=a’ f,(a’)=a’ =¢, f, (ab) =a’b

f.(@%)=b,f,(a’h)=b, f,(b)=ab, f,(e)=a
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Thus f, can be identified with the permutation (1234)(5678)
Again, f.(a)=a’,f.(a*)=e f.(a’)=a f.(ab)=2a’b
f.(@%)=b,f.(@%)=ab, f,(b)=a’,f.(e)=a’

Thus, f_. can be identified with (13)(24)(57) (68) .

In the continuation, we can say, fa3 =(1432)(5876)

Again, f,(a)=aba=Db, f (a’)=aba’ =a% etc., we get

f,o = (18)(27)(36)(45)

Similarly, f_. =(15)(28)(37)(46)

f . =(16)(25)(38)(47)

f, =(17)(26)(35)(48)

Therefore, K :{

(1234)(5678), (13)(24)(57)(68), (1432)(5876), 1, (18)(27)(36)(45),
(15)(28)(37)(46), (16)(25)(38)(47), (17)(26)(35)(48) }

Hence, K=D,

9.7 CLASS EQUATION

In the unit 2 we have already learned about some important theorems of class equations and
their proof which are as follows:

Theorem 12: If G be the finite group and Z(G) be the centre of the group G. Then class
equation of G can be written as

0G)=0[z@)+ ¥ —O([)h(lf;)]
agZ(G)

In this section we will learn applications part of class equation in different type of examples.
Example 7: If nis the index of Z(G)in a group G then the conjugate class has at most n

elements.

Answer: We have n = _9©) and O(cl(a)) = _0(6)
0(z(G)) O(N(a))

Since, Z(G) < N(a) always
O(2(G)) = O(N(a)) = O(N(a)) =kO(Z(G))
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O(G) _nO(Z(G) n
O(N(a)) kO(Z(G)) k

i.e.,, O(C(a)) =

Hence, maximum value of O(C(a)) is whenk =1.

Example 8: If P*be order of a non-abelian group then determine O(Z(G)) and also number
of conjugate classes of G.

Solution: We have given group (G) is non-abelian, 3a e G, s.t,, Z(G)g N (a)EG

Since we know that O(Z(G)) | O(G) = P?

So, the possibilities that O(Z(G)) will be 1, P, P?, P*

Similarly O(N(a)) =1, P, P?, P®

But by the previous theorems we know that O(Z(G)) #1. Since group is non-abelian then

O(Z(G)) # P*. So, the only possibilities will be O(Z(G)) = Por P.

Similarly, O(N(a)) = Por P?and as Z(G)c N(a)

So, we find O(Z(G)) = P, O(N(a)) = P*
Let we assume k be the total number of conjugate classes. Since
G=uC(a)

aeG

0(G)=>.0(C(a))= >, O(C(a)+ > O(C(a))

acG acZ (G) agZ(G)

p*=0(Z(G)+ D O(C(a))

agZ(G)
When a e Z(G) then number of conjugate classes is O(Z(G)) = p
[Since ae Z(G) < C(a) ={a}orO(C(a)) =1]
So, k— p are remaining classes and each have order given by

_0©) _p_
sy v P

Hence, p’=p+(k-p)p=k=p’+p-1

Example 9: Write the class equation of quaternion group Q, = {il,i [ k}

Solution: We have the quaternion groupQ, = {+1 +i,+ j, £k}.

First we determine the conjugate class of i. Since we know that in any group <a >c N(a)

[xe<a>=>x=a"andas aa™ =a".a,we find a" = N(a)]
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Thus, <i>c N(i) or {i,i%,i%,i* =1} < N(i)
Therefore, <i>c N(i) <Q, gives 4| O(N(i))|8

Since j & N(i) because ji#ij

And jeQ; = N(i)cQ,

Hence O(N(i))=4 or N(i) =<i>

O(G)

As we know that O(C(a)) = m

= 0(C®)) = OO(E\IQ(E:;) = % =

=C(i)={i,—i} [as ieC(i)and —i=kik™,—ieC(i)]

Similarly other conjugate classes are C(j) ={j,—j}C(k) = {k,—k {3 {1

Since we know that O(C(a)) =1<>a e Z(G) then as O(C(1)) =1,0(C(-1))=-1
= Z(Qy) = {11}

Now, we verify the class equation as

O(G)=0(Z(G))+ >, 0(C(a))

aeZ (G)
8=1+1+(2+2+2), which is the class equation of the group Q,.
Example 10: For a finite group G let number of conjugate class is 3. Then prove that either
group is cyclic or isomorphic to S,.
Solution: Since we have given that group G has number of conjugate classes are 3. If these
conjugate classes are of order 1, then O(G) =3, which is of order prime that means group

will be cyclic. If G has a class of order >1 then G is non-abelian because if G will abelian
then there does not exist any class of order >1.

Let three classes of G are C,,C,,C,.

Assume that O(C,) > 1.

If O(C,)=0(C,)=1=0(C;)=n-2 [If we have assume thatO(G) =n]
+O(C,;) =n—-2|0O(G) and also we have n—2|n—-2

=M-2)|n—-(h-2)=2

=n-2=1or2

=n=3o0r4
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= G s abelian. [Because we know every group of order por p? is abelian]
Now there is only one possibility left that inGone class is of length 1. Let
O(C,) =1,0(C,) >10(C,) >1. It meansO(Z(G)) =1.

By class equation, n=0(G) =0O(C,) + O(C,) + O(C;) =1+ O(C,) + O(C,)

But O(C,)| O(G) =n,0(C,) | O(C,)

= 0(C,)|n-0(C,)=1+0(C,)

= 0(C,)<1+0(C,)

Similarly, O(C,) <1+0(C,)

If O(C,) <1+0O(C,) and O(C,) <1+0O(C,)

Then O(C,) <0O(C,), O(C,) <0O(C,)

~.0(C,) =0(C,)

= 0(C)|1+0(C,) =0(Cy) |1=0(C,) =1

This is a contradiction

Thus either O(C,) =1+0(C,)

Or O(C,)=1+0(C,)

If O(C,)=1+0(C,)

Then O(G) =1+ 0O(C,) +1+0O(C,)

= 0(G)-20(C,) =2

But O(C,) | O(G),0(C,) | O(C,) = 0O(C,) | 20(C,)

. O(C,)|O(G)-20(C,) =2

- 0(C,)=2and O(C,)=3

Or that O(G) =6

Similarly, if O(C,) =1+0(C,), then O(G) =6

. G is non-abelian group of 6 which is isomorphicto S, i.e., G=S,.
Example 11: Let G be a group such that e=aeG, O(a) =finite. If G has only two

conjugate classes then prove that G is a group of order 2.

Answer: Let e #b e G. Since G has only 2 conjugate classes, namely {e}and C(a).

beC(a)..b=g'ag forsome geG.
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. O()=0(a) forall bze in G.
Suppose O(a) =mn,m>1n>1
Then O(@™)=m
Since order of all non identify elements in G is same, O(a™) =mn
~.n=mn=m=1; a contradiction
-.0(a) = p= prime
~O(b)=p=forallexbeG
Suppose p # 2
then a®> e = a’ e C(a)
-.a’> =g 'ag forsome geG
- (a%)*=(gag)’ =g a’g
-.(a%)* =(g7ag)* =g (9 'ag)g =g "ag’

In this way, we get a®° = g~"ag”

Since O(g) =0(a)=p

2P
a - =eae=a

—a’?t=e=0()=p|2"-1

By Fermat’s theorem, p|2° -2

~opl(2° -1 —(2° —2) =1, a contradiction
Lp=2

=0(@)=2.S0, O(b)=2 forallexbeG

= G is abelian.
So, each conjugate class in G is of length one. Since G has only two classes, which means
G is of order 2.
Note: There are infinite group having non-trivial element has finite order and group has only

2 conjugate classes. Therefore, it is necessary to assume that 3e = a € G s.t. O(a) =finite.

9.8 PARTITION OF AN INTEGER
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Let n be a positive integer. A sequence of positive integers n;,n,,...n, where
n, <n, <..<n, such that n=n, +n, +...4+n,is called a partition of nand n;,n,,...,n, are

called parts of partition.

For example, let n =3, then number of partition are 3 i.e.,

1+1+1
3=491+2
3

let n =4, then number of partition are 5 i.e.,

1+1+1+1
1+1+2
2+2
1+3

4

The number of partition of any integer n is denoted byP(n). For example, P(1) =1,
P(2) =1,P(3)=4,P(4) =5 e.tc.

Theorem 13: The number of conjugate classes in S, is P(n).

Proof: Let A=Collection of all conjugate classes in S, .

B =Collection of all partition of n.

Let C(o),0€S,.
Assume that o as product of disjoint cycles as (a, ..., )(b, ...b, ) where n, +...+n, =n.

the selection of cycles in a pattern such that n, <...<n,. This gives a partition

{n,,n,,..n.}of n.

Now we define f:A— Bsit,
f(C(0)) = {n, Ny, }

f is well defined as C(o) =C(7)
= o,ne€C(o)

= o, nare conjugate in S

= o,naresimilarin S,

o= (al anl)-'(bl’""b”k)
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n=(a, )01, )

= f(C(o)) ={n,n;,...n f= F(C))

Suppose C(o) = C(n)

So, o,n are not conjugate = o, 7 are not similar

= o,n have different cycle structure

—> Corresponding partitions are different

ie, {n,ny,.,n = {n'l,n'z,...,n'r} where, of course,

N=n+N,+..+N =N1+N2+..+N¢

= f(C(0)) = f(C())

= f is one-one

f is onto for, let {n,,n,,...,n } € Bbe a partition of n. Then n=n, +n, +...+n,
Define o = (ai,...,anl)..(bl,...,bnk)e S,

Then C(o) e A

And f(C(c))={n,n,,...n,}

.. fis both 1-1 and onto

So, O(A) =0(B) = P(n)

= number of conjugate classes in S is P(n)

Example 12: Verify the class equation in S, and also find its all conjugate classes.
Answer: By the theorem 4 we know that number of conjugate classes in S, are P(4) which

is 5. Also we know that two conjugate classes of any group are either disjoint or identical. In

other word we can say that two permutations are conjugate if and only they are similar. In S,

the base elements of conjugate classes are 1,(12),(123),(1234),(12)(34)

1
As we know that in the permutation group S, number of distinct r-cycle are ————

r(n- )'
in S, number of distinct cycle of length 2 are 1

2 (@-2)1

Similarly, in S, number of distinct cycle of length 3 are 1

3@-3)

Similarly, in S, number of distinct cycle of length 4 are 1 ;
4(4-a)
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in S, number of permutation of type (ab)(cd) are (12)(34),(13)(24),(14)(23)
so, O(C((12)(34)) =3

Since centre of S,contains only identity element so, O(Z(S,)) =1 i.e., O(C(l)) =1
Now the class equation of S, s,

O(S
0(5,)=0(Z(s,)+ Z()ﬁ ~0@(s)+ 0@

e, 24=1+6+8+6+3

Example 13: Find the class equation of a group of order 6.

Answer: Let G be a group of order 6. So, there are two cases arises that either group is
abelian or not.

Case I: Let group is abelian then we know that G will be isomorphic to Z, i.e,
Gz=ZsorG=2Z,x2Z,
Since G is abelian then O(Z(G)) =6

So, the class equation will be, 6 =1+1+1+1+1+1

Case I1: If group is non-abelian then we know that G will be isomorphic to S,or D, i.e,

G=S5,=D,

As we know that the permutation on group on the 3 symbol {1,2,3} is

S,={1,(12),(13),(23),(123), (132)}.

Initially we examine the conjugacy classes of S, for it first we will find center element of S, .
Since, (12)(13)=(132) = (123) = (13)(12) and (12)(23) =(123) = (132) =(23)(12) and so
12),(23),(13) £ Z(S,)

Further, (123)(12) = (13) # (23) = (12)(123) and (132)(12) = (23) = (13) = (12)(132).

So, (123),(132) ¢ Z(S,). So the only trivial conjugacy class is [(1)]={1} i.e., Z(S;)=1 or
O(Z(S,)) =1.

Now observe that for the element (12) we have that:

(12)12)(12) " = (12)(12)(21) = (12)

13)(12)13)™ = (13)(12)(31) = (23)

(23)(12)(23) ™ = (23)(12)(32) = (13)

(123)(12)(123) " = (123)(12)(321) = (23)
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(132)(12)(132) " = (132)(12)(231) = (13)

So, the conjugacy class of (12)is C((12)) = {(12),(13),(23)} and the conjugacy classes of
remaining elements are C((123)) = C((132)) = {(123), (132)}

So, the conjugacy classes of S,is,

S; =C(l)uC((12)) uC((123))

And the class equation is,

6=1+3+2

Hence,

G=Z,=7Z,xZ,

IF group
is Class equation is

Abelian

6=1+1+1+1+1+1

o(G)=6

G=S,=D,

IF group

is non- Class equation is
Abelian

6=1+3+2

Note: Two permutations in S are conjugates iff they have the same cycle type. Let o €S,
and also let m;,m,,..,m are the distinct integers which appear in a;,a,,..,a, times

respectively in the cycle type of o (including 1 cycles). Let a,be the number of cycles of

r
length m,,i =1tor, so that Y am, =n

i=1

n!
(ma,)(mia,!)...(m"a,!)

OR

then, number of conjugate of o =

n!
(ma,1)(m32a,)...(mfa,!)

Number of element commutes with o =

Example 14: Find the number of cycle which commute with o = (543)(26)(78910) € S,,
Solution: We first rewrite the given permutation as« = (1)(543)(26)(78910) € S, . Since all
cycles of permutations are disjoint so they are commutes i.e., & =(1)(26)(543)(78910) € S,,.

So, cycle type of « is,
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Cycle of length 1= (1)

Cycle of length 2= (26)

Cycle of length 3=(543)

Cycle of length 4= (78910)

i.e., cycle type ofx = (1,2,3,4), where 1+2+3+4=10

10! 10!

So, number of conjugate of ¢ = ————————— =
mEmEU@4n 234

Example 15: Find the number of cycle which commute with « =(596)(874)(12) € S,
Solution: We first re-write the given permutation asa =(12)(596)(874) €S,,. Since all
cycles of  permutations are disjoint so they are commutes i.e.,
a =(3)(4)10)ADA 2)(596)(874) € S,, . So, cycle type of « s,

Cycle of length 1=(3)(4)(10)(11)

Cycle of length 2=(1 2)

Cycle of length 3= (596)

Cycle of length 4= (87 4)

i.e., cycle type of o =(1111,2,33), where 1+1+1+1+2+2+3=11

11 _1
@) (322 412.9.2

So, number of conjugate of « =

Example 16: Evaluate all permutations in A, which commutes with
(i) o =(12345) (ii) £ =(123) (i)  y=0@12)(34)

Solutions (i): As we know that O(&)z@z%zm. Since o =(12345) € A.and

a,a’,a’,a’,a” =1 are distinct permutation in A, .

- O(N(a)) =5in A

. _ _O(A) _60_.,.
..O(C(a))——O(N(a)) =2 =12in A

As we know (12345) and (13245) break up into two conjugate classes each conjugate

classes are of length 12 in A, .
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(ii): Let @ eS,s.t. @ fixes 1, 2, 3. Then either & =(45)or &=1. Since B0, 5°0,0 are all
permutation in S, commuting with 3. Thus 3, #%,1 are only permutation in A, commuting
with g.

. O(N(B)) =3in A

. __O(A) _60_,.:
..O(C(,B))_—O(N(ﬂ))_ S =20in A

. C(p) has all cycles of length 3in S

(ii1): As we know that there are 8 permutations in S, commuting with » which are:

{I ,(12),(34), (12)(34), (13)(24), (14)(23), (1324), (1423)}. From this set only even permutation
{1,(12)(34),(13)(24),(14)(23)} e A,. All these permutations of A commuting with
y =(12)(34)

~O(N(y))=4in A

= O(C(y)) = OC()ISIA(S;/))) =% =15 in A, which is same like .. O(C(y)) in S;.

Hence conjugate class of y in A, and S, remains same.

Example 17: Find all the conjugate classes of A, and also show that A, is simple.

Answer: By using the previous examples we can verify that A has 5 conjugate classes and
these are:

c(hH={1}

C((123)) ={All 20 permutation commute with cycle (123) of length 3in S, .}

C((12)(34)) = {All 15 permutation commute with cycle (12)(34) in S,.}

C((12345)) = {12 cycles of length 5}

C((13245)) = {12 cycles of length 5}

These are the total 60 elements in A, .

Let H be any subgroup of A which is normal s.t H =#{l}, H ={A}. As His the union of
some conjugate classes in A,. Since | € H,O(H) cannot divide O(A,) =60 .

Hence, A issimple

Check your progress
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Problem 1: What will be the class equation of any group of order 3?
Problem 2: What will be the class equation of Klein group (Klein group: Any group of
order 4 such that each of its non-identity elements are self inverse, generally this group is
denoted by K, -group)?
Problem 3: Which of the following isomorphism relation is correct and why?

(i) D,z=Z, (i) D,=Z,xZ,
Problem 4: Find the finite number of distinct classes inQ, ={1—1,i,—i}?

Problem 5: Find the number of element in the centre of Q, ={1—1,i,—i}?

Problem 6: Find the class equation of Q, ={1,—1,i,—i}?

9.9 SUMMARY

In this unit, we have studied the definition and theorems related to conjugate of an
element, normalizer of an element and centre of the group and also learn their
implementation on various examples. We have also learn in this unit how these subgroup are
essentials in the formation of class equation which will further discussed briefly in the

upcoming units. The overall summarization of this units are as follows:

» Conjugacy relation is an equivalence relation on G.
O(G)

> 0(G)=0(Z(G
(G) =0(z( ))+anZ(G)O(N(a))

is known as class equation of any group.

> Every group of order p?is abelian group.

Also in this unit, we have studied about the Cayley’s theorem, various examples related to
the class equations and partition of an integer. After completions of this unit learners will be
able to characterized to any group into distinguish conjugacy classes and also by the class
equation of any group learners will be able to find the number of element in the centre,
number of different conjugate classes, number of element in the different conjugate class and
order of the group. In a simple way we can say that with the help of conjugate classes we can
get most of the information about the group without any prior knowledge.

9.10 GLOSSARY

> b~ a denotes two elements a,b of a group G are conjugate to each other.
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C(a) denotes collection of elements of group which are conjugate to a.
c, denotes number of elements in group which are conjugate to a.
Z(G) denotes centre of the group.

N(a) denotes the normalizer of a.

P(n) denotes the partition of any positive integer
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9.13 TERMINAL QUESTIONS

Long Answer Type Question:
1. Prove that any two conjugate classes of a group are either disjoint or identical.

2. If the order of a group G is prime ( p), then prove of G has exactly p elements.

3. If H is normal subgroup of G, having prime index p then prove that G/ N is cyclic.
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If G be a non-Abelian group of order O(G)=1331then prove that number of
elements in centre of group Z(G) are 11.

If G be a group of order O(G) =121then find the number of elements in its centre.
State and prove the class equation.

Prove that cojugacy is an equivalence relation.

State and prove the Cayley’s theorem.

Prove that dihedral group D, is isomorphic to the symmetric group S, .

Find number of conjugate classes in S .

Find the class equation of a non-abelian group of order 8.

Find the number of cycle which commute with o =(596)(874) €S,;.
Prove that A is simple.

Let G be a group such that e=aeG, O(a) =finite. If G has only two conjugate

classes then prove that G is a group of order 2.

15.  Prove that the number of conjugate classes in S, isP(n).

16. Find the conjugate class of iand -1 in Q, and also find the class equation of Q,.

Short Answer Type Question:

1. Find the number of elements of the in the centre of the group having order
O(G) =5,7,25,31,49
Prove that centre of the group is an abelian group
If G is anon-abelian of order 8then prove that Z(G) has exactly 2 element.
Find number of element which are conjugate to (12) € S, .
Prove that if G is finite,a € Z(G) iff O(N(a)) = O(G).
Write the class equation of non-abelian group of order 2°.
Write all the partition of 5 i.e., P(5).

Find the number of elements in the centre of the group having class equation
8=1+1+(2+2+2).
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Write the class equation of U(7)=1{,2,3,4,56} under the operation multiplication

modulo 7.
Fill in the blanks:

Two elements a and b in a group G are such that b=x"ax then b will called

to a.
Every group of order p? (p = prime) is
Centre of the group G is the subgroup of G.

If G is non-abelian group of order 125 then Z(G) has elements.

Number of conjugate classes in S, are

The class of non-abelian group of order 6 is

If the class equation of any group is 4=1+1+1+1 then group is

9.14 ANSWERS

Answer of self cheque question:

1. 1+1+1 2. 1+1+1+1

3. D, = Z, X Z, is correct because D, is abelian group not cyclic.

4. 4 5. 4 6. Q, = 1+1+1+1
Answer of long question:

11

121 _ir
(1°51)(32.21)

16. C() ={i,—i1},C(-1) ={-1} and class equation is 8=1+1+(2+2+2)

Answer of short question:
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5,7,25,31,49
Answer of fill in the blanks:
1. Conjugate 2. Abelian

5. Permutation group 6. Simple

Abelian
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Unit-10: INTRODUCTION TO RING

CONTENTS:

10.1  Introduction

10.2  Objectives

10.3  Ring. Definition

10.4  Ring with Unity. Definition
10.5 Commutative Ring. Definition
10.6  Boolean Ring. Definition

10.7  p-Rings. Definition

10.8  Zero divisor

10.9 Ring without zero divisors
10.10  Characteristics of a Ring. Definition
10.11  Subring

10.12  Improper and Proper Subring
10.13 Summary

10.14 Glossary

10.15 References

10.16 Suggested Reading

10.17 Terminal questions

10.18 Answers

10.1 INTRODUCTION

In algebra, the study of rings is known as ring theory. In rings, addition and
multiplication are defined and have characteristics in common with those of the operations
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specified for integers. Ring theory explores the structure of rings, their representations, or in
other words, modules, special classes of rings (such as group rings, division rings), as well as
a variety of properties that have proven useful both for the theory's own purposes and for its
practical applications, such as homological properties and polynomial identities. Rings that
are commutative are significantly easier to understand than those that are not.

Commutative ring theory, often known as commutative algebra, is a significant
branch of modern mathematics that has its roots in algebraic geometry and algebraic number
theory, which offer several natural instances of commutative rings. The relationship between
these three disciplines algebraic geometry, algebraic number theory, and commutative
algebra is so close that it is sometimes impossible to determine which discipline a given
result belongs to. A basic theorem for algebraic geometry is, for instance, Hilbert's
Nullstellensatz, which is formulated and proven in terms of commutative algebra.

Noncommutative rings have a very distinct character since they have a greater
potential for strange behaviour. Although the theory has grown on its own, a relatively recent
tendency has attempted to mirror the commutative growth by geometrically modelling the
theory of some classes of noncommutative rings as if they were rings of functions on
(inexistent) "noncommutative spaces.” With the advancement of noncommutative geometry
and the discovery of quantum groups, this movement began in the 1980s. Noncommutative

rings, particularly noncommutative Noetherian rings, have been better understood as a result.

10.2 OBJECTIVES

The study of rings is a deep and multifaceted field with applications in various areas of

mathematics and beyond, the importance of ideals in the study of rings and algebraic

structures. The Ring Theory unit aims to:

Introduce the Concept of Rings:

Define rings, subrings, and different types of rings (commutative, non-commutative,
rings with unity, etc.).

Provide examples like Z, Q, R and Mp(R) (matrix rings).

Understand Basic Properties and Operations in Rings:

Explain addition and multiplication in rings.

Discuss distributive, associative, and commutative properties.

Introduce zero divisors, units, boolean ring and polynomial ring.

10.3 RING
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Let R be a non-empty set then the algebraic structure (R,+,.) equipped with two binary

operations addition and multiplication is called a ring if the following conditions are satisfied:

(R, +) is an abelian group.
(R,.) is semi group.
Distributive laws holds, i.e.,
a.(b+c)=ab+ac Vabc€ER [Right distributive law]
(b+c)a=b.a+c.a Vab,ceR [Leftdistributive law]

Example 1: Show that the set R ={a + b3 | a,b € Q) is aring under the usual addition and

multiplication as binary compositions.

Solution: First we can easily prove that (R, +) is an abelian group and (R,.) is a semi group.
Let x:a+b\/§, y=c+d\/§ and z=e+ f/3eR

Then Xy = (a +b~/3)(c +d+/3) = (ac + 3bd) + (ad + bc)v/3 e R
Since ac+3bd €Q and ad +bceQ

Now, (xy)z ={(ac +3bd) + (ad + bc)v3}(e + f/3)

= (ace + 3bde + 3adf +3bcf ) + (acf + 3bdf + ade + bce)v/3
- (xy)z =x(y2)

Finally, X(y +2) = (a+by/3){(c +¢€) + (d + f)/3}

= (ac + ae + 3bd + 3bf ) + (ad + af + bc + be)+/3

={(ac +3bd) + (ad + bc)~/3} +{(ae + 3bf ) + (af +be)/3}

SX(Y+2)=xy+xz

Similarly, (X+Yy)z=Xxy+ yz.

Hence R is aring.

Example 2: A Gaussian integer Z[i] is a complex number defined as

Z[i]={a+ibla,beZ}. Show that Z[i] forms a ring under ordinary addition and
multiplication of complex numbers.

Solution: Let a+ib and c+id be any Gaussian integer then,
(@a+ib)+(c+id)=(a+c)+i(b+d)

And (a+ib)+(c+id)=(ac—bd) +i(ad + bc)
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These are again Gaussian integer because (a+c),(b+d),(ac—bd),(ad +bc) all are again
belongs to Z. Hence we can say that Z[i] is closed with respect to ordinary addition and
multiplication of complex numbers.

As we know that set is complex number is form abelian group with respect to addition and
hence Z[i] will be also associative and as well as commutative with respect to addition.

Since 0+i0e Z[i] is the additive identity of the Gaussian integer. The additive inverse of
a+ibis (-a)+i(-h).

Now, 1+10 e Z[i] is the multiplicative inverse of the Gaussian integer because Va,beZ
@+i10)(a+ib)=a+ib=(a+ib)@+1i0).

Also ZJi] satisfies the left and right distributive law. Hence we can say that the Gaussian
integer Z[i] formringi.e., (Z[i],+,.) is form ring.

10.4 RING WITH UNITY

In a ring R, if there exist an element 1leR (multiplicative identity) such that
l.a=a=a.lvVaeR, then R is called a ring with unit element. Here, the element 1R, is

called the unit element of the ring. Thus if a ring possesses multiplicative identity, then it is a
ring with unity.

10.5 COMMUTATIVE RING

If a ring R is commutative with respect to the operation multiplication then the ring (R,+,.) is
called commutative ring i.e., if we have a.b=b.a Va,b € R, then R is called a commutative
ring.
Note: In future we shall denote the multiplication composition in a ring R not by the symbol
"." but by multiplicative notation. Thus we shall write abin place of ab.
Example:
(Z,+,.) isaring. This ring is called ring of integers.
(mZ, +,.) is aring, m being fixed integer. This ring is Commutative ring.
(R,+,.) isaring. This ring is called ring of real numbers. This ring is a commutative
ring with unity element.

(Q,+,.) is acommutative ring. This ring is called ring of rational numbers.
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10.6 BOOLEAN RING

Aring (R, +,.) is called Boolean ring if all elements are indempotent i.e.,
a.a =a,i.e.,a’ = aVa € R.

e.g., Z, ={0,1} is the Boolean ring because 0* =0.0=0 and 1* =1.1=1

10.7 p- RING

Aring (R, +,.) is called p-ring if

a? = a and pa = 0Va € R.
Similarly we define 2-ring.

10.8 ZERO DIVISOR

The non zero elements a,b of a ring R are knows as proper divisors of zero or zero divisors if
ab =0or ba =0.

Example:
1. The ring has matrices has zero divisors, for example if

EH

00

Then
_[00]_
AB—[O 0 =0

Hence the ring R = {0,1,2,3,4,5,6,7} of matrices has zero divisors.
2. The rings of a number do not have zero divisors. For3 no two non-zero numbers such
that their product is zero.

10.9 RING WITHOUT ZERO DIVISORS

Aring is called without zero divisors if product of two non-zero elements of R is not zero if
ab =0wherea,b€R,a=00rb=0botha=0andb = 0.

If we say that R is aring with zero divisors {a # 0 b # 0 then ab = 0}

Some common examples on ring

As we have already discussed, in abstract algebra, a ring is a set equipped with two binary
operations (usually addition and multiplication) that generalize arithmetic properties. Here
are some common examples:
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Standard Number Rings

Integers (Z) — The set of all integers with usual addition and multiplication. This is a
commutative ring with identity 1.

Integers modulo n (Z,) — The set {0, 1,..., n—1} under modular arithmetic. This is a finite
ring.

Rational, Real, and Complex Numbers (Q, R, C) — These form fields, which are also
rings.

Gaussian Integers (Z[i]) — The set of complex numbers of the form a+ib, where
a,beZ.

Polynomial Rings

Polynomial Ring (Z[x], R[x], C[X]) — The set of polynomials with coefficients in a
given ring (e.g., integers or real numbers).
Modular Polynomial Ring (Z [x]) — Polynomials with coefficients in Z_ .

Matrix Rings

Ring of nxn Matrices (M (R)) — The set of all nxn matrices over a ring R, with usual

matrix addition and multiplication.
Upper Triangular Matrix Ring — Matrices where all entries below the diagonal are
zero.

Function Rings

Ring of Continuous Functions C(X,R)— The set of all continuous real-valued

functions on a space X , with pointwise addition and multiplication.
Laurent Series Ring (C((x))—- The ring of formal power series that allow negative
exponents.

Special Rings

Boolean Ring — A ring where x* =x forall x (e.g., Z,).

Quaternions (H) — A non-commutative ring that extends complex numbers.
Group Rings (Z[G]) — Rings constructed from a group G and a ring R.

Later in higher classes you will learn with deeper explanation of these.

Some proof of useful rings
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1. The Ring of Integers Z: The set of integers Z with standard addition and
multiplication forms a ring.

Proof: Closure: Sum and product of any two integers is an integer.

Associativity: Addition and multiplication are associative.

Additive Identity: 0OisinZand a+0=a

Additive Inverse: For every a e Z, there exists —a such that a+(-a) =0
Distributivity: a(b+c)=ab+ac

Commutativity of Addition: a+b=b+a

Since Z satisfies all the ring axioms, it is a commutative ring with identity 1.

2. The Ring of Integers Modulo n, Z: The set {0,1,..., n—1} with addition and
multiplication modulo n forms a ring.

Proof: Closure: If a,be Z, then (a+b)modnand (a.b)modn arein Z.

Associativity: Follows from associativity of integer addition and multiplication.
Additive Identity: O0modn is the identity.

Additive Inverse: Every a e Z, has an inverse —a modn.
Distributivity: a(b+c)=ab+ac(modn).

Thus, Z is a finite commutative ring with identity 1.

3. The Ring of Polynomials R[X]:

For any commutative ring R, the set of polynomials with coefficients in R forms a ring under
usual addition and multiplication.

Proof: Closure: The sum/product of two polynomials is still a polynomial.

Associativity: Follows from associativity of polynomial addition and multiplication.
Additive Identity: The zero polynomial 0 exists.

Additive Inverse: Given P[x] =a,x" +...+a,, the inverse is
-P[x]=—-(a,x"+...4+8,) =—-a,x" —...—q,
Distributivity: Polynomial multiplication distributes over addition.

Thus, R[x] is a commutative ring with identity 1 if R has identity.
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The Ring of nxn Matrices M (R)

The set of all nxn matrices with entries in a ring R, with matrix addition and multiplication,
forms a ring.

Proof: Closure: Sum and product of two nxn matrices remain in M (R).

Associativity: Follows from associativity of matrix addition and multiplication.
Additive Identity: The zero matrix 0 satisfies A+0=A=0+A
Additive Inverse: Each A has an inverse — A such that A+ (-A)=0=(-A)+ A

Distributivity: A(BB+C)=AB+ AC and (A+B)C = AC +BC.
This is a non-commutative ring if n > 1.
5. The Boolean Ring
A Boolean ring consists of elements {0, 1} with addition and multiplication defined as:

Addition: a+bis XOR: 0+0=0,0+1=11+0=11+1=0
Multiplication: a.bis AND: 0.0=0,0.1=0,1.0=0,1.1=1

Proof: Closure: XOR and AND are well-defined for {0, 1}.

Associativity: XOR and AND are associative.

Additive Identity: 0 is the identity for addition.

Additive Inverse: Each element is its own inverse since a+a=0
Distributivity: a.(b+c)=ab+ac.

Idempotence: a® = a, which is a special property of Boolean rings.
Y

This is a commutative ring without an identity.
6. The Ring of Continuous Functions C(X, R)

Let C(X, R) be the set of all real-valued continuous functions on a topological space X.
Addition and multiplication are defined pointwise:

(f+9)0) = () +9(x)
(f.9)(x) = T(x)9(x)

Proof: Closure: Sum and product of continuous functions remain continuous.

. Associativity: Follows from real number operations.
. Additive Identity: The zero function f(x)=0
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Additive Inverse: — f(x) is still continuous.
Distributivity: f.(g+h)= fg+ fh

This is a commutative ring with identity (the constant function 1).
7. The Quaternions H
The set of quaternions consists of numbers of the form:

a+bi+cj+dk,ab,c,d eR
where i’ = j>=k*=ijk=-1
Proof: Closure: Sum and product of quaternions remain gquaternions.

Associativity: Holds for quaternion addition and multiplication.
Additive Identity: 0+0i+0 j+0k

Additive Inverse: The inverse of a+bi+c j+dk is —a—-bi—cj—-dk
Distributivity: q(r +s)=qr+qgs

The Ring of p-adic Integers Z,
The p-adic integers form a ring where numbers are represented using an infinite sequence of

digits in base p. The set Z, consists of limits of sequences of integers modulo increasing
powers of p.

Proof: We have to prove that Z, is a Ring

Closure: Addition and multiplication are well-defined in Z,

Associativity: Inherited from integer operations.
Additive Identity: The element O (represented as 0, 0, 0, ...) isin Z .

Additive Inverse: Every element has an inverse in Z
Distributivity: Follows from modular arithmetic in powers of p.

Z, is a commutative ring with identity.

9. The Ring of Continuous Functions C(X, R)

The set of all continuous functions f : X — R forms a ring under point-wise addition and
multiplication.
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Proof: We have to prove that C(X, R) is a Ring

Closure: Sum and product of continuous functions remain continuous.
Associativity: Inherited from R.
Additive Identity: The zero function f(x) =0

Additive Inverse: If f(x) is continuous, so is — f (x)
Distributivity: f (xX)(g(x) +h(x)) = f(x)g(x) + f (x)h(x)

C(X, R) is a commutative ring with identity.

10.10 CHARACTERISTIC OF ARING

The characteristic of a ring R is explained as the smallest positive in integern. s.t. na =
OVa € R. If their exist no positive integer, then R is called characteristic zero. Therefore R is

of characteristic zero if na # 0Va € R and for any positive integern.

Theorem 1: (Elementary properties of ring) If a, b, c are arbitrary elements of a ring R,
then
Prove that.
I a0 =0a=0
Solution: Let 0+0=0
a(0+0)=a0 by left distribution law
a0+ a0 = a0
a0+a0=a0+0 asx+0=x
Now we get
a0 =0 (1)
Again
0+0=0
(0+0)a =0a by right distribution law
0a + 0a = 0a
0a+0a=0a+0
By cancellation law in (R,+), we obtain
0a=0 - (2)
ii. a(—b) = —(ab) = (—a)b
Solution: From (1) and (2) ,we obtain the results
a(—b + b) = a(—b) + ab For =b+b =0
a(0) =a(—b) +ab
0=a(-b)+ab
a(—b) = —(ab) ..(3)
Since the additive inverse of ab is aa(—b)
Similarly
(—a+a)b=b(—a)+ ba
(—a+a)=0and 0b =0
0= (—a)b+ ba
Since the additive inverse of ab is a(—a)b.

—(ab) = (—a)b . (4)
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From (3) and (4), we obtain
—(ab) = (—a)b = a(—b)
iii. (—a)(—=b) = ab
Solution: Let (—a)(—b) = —[a(—b)], by (ii)
= —[—(ab)] again by (ii)
=ab For-(—x) = x Vx €R.
iv.
Solution: a(b—c)=al[b+ (—c)]
=ab + a(—c)
= ab + [—ac]
=ab —ac
V.
Solution: (b—c)a=1[b+ (—0c)]a
= ba + (—c)a
= ba + [—cal]
= ba —ca
Theorem 2: If R is a ring with unity element 1, then
(-1a=—-a=a(-1) Va € Rand (-1)(—1) = 1.

Proof: (-1+1a=(-1a+1.a
0.a=(-1a+1.a
0=(-1a+a
Since (—1)a = —a, [Fora+x =0,a = —x]
Again a(-1+1)=a(-1)+a.1
a.0=a(-1)+a.l1
0=a(-1)+a
This implies a(—1) = —a Also (—1)a = —a
(-Da=—-a=a(-1)
Now taking a = —1in above equation
EDED=EDED =-(D
DED=-(-D=1
For —(—x) = x in additive group or (—1)(—1) = 1.

Theorem 3: A ring without zero divisors iff the cancellation laws hold in R.

Proof: Suppose R be a ring without zero divisors.
To prove that cancellation laws hold in R.
Sinceleta,b,c € R s.t.ab = acand a # 0.

Then ab=ac=>a(b—c)=0

Also a # 0 and R has no zero divisors.
Henceb—c=0=>b=c

Thus ab=ca,a#0=>b=c

Similarly we can show that ba = ca,a # 0= b =c

Conversely, LetR be aring s.t. cancellation laws hold in R.
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To prove that R has no zero divisors.

Suppose the contrary. Then R has zero divisors, then

Ja,b E Rs.t.ab=0anda,b # 0

ab =0,a # 0 = ab = a.0 fora.0=0 = b = 0. By left cancellation law
A Contradiction, for b # 0

Similarlyab = 0,b # 0 = a = 0. A Contradiction, for a # 0.

Theorem 4: If R is a Boolean ring then
Q) 2a=0Va€R
(i) ab = ba i.e.R is commutative.

Proof:
Q) Suppose 2a =a+a
= (a + a)?  Ris Booleanring, x2 = xV x € R
=(a+a)(a+a)
=a’+a?+a?+a?
5
= 4q?
2a = 4a a? = a (R is Boolean)
4a—-2a =0
2a=00ra+a=0.
Now

(a+b)>=a+b ** R is Boolean
(a+b)(a+b)=a+b
a(a+b)+ala+b)=a+b
(a>+ab) + (bha+b?) =a+b By distributive law
(a+ab)+ (ba+b)=a+b v a’=ab*=b
Finally, (a+ b) + (ab+ ba) =a+b
(a+b)+ (ab+ba)=a+b+0.
Left cancellation law of addition in R givesab + ba = 0.
Takingab = a’, ba = b’, we get
a+b' =0
a+b=0=ad+b'=0=a"+a
=a +b =a+ad

=b'=a, by left cancellation law
= ba = ab.
Theorem 5: If R is any ring with identity 1, show that R has positive characteristic n iff n is

the at least positive integer for whichn .1 = 0, 0 being additive identity of R.
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Proof: Let R be a ring with unity element e.
o(e) = 0 = characteristic of R is 0.
Suppose o(e) = n = a finite number so that n is at least positive integer s.t. ne = 0. Let a be
any element of R. Then

na = n(ea). For ea = a = ae.

(ne)a = 0a = 0.
Thus n is the least positive integer s.t. na = 0.
This proves that the characteristic of R is n.

SOLVED EXAMPLE

Example 3: Let a and b be arbitrary elements of a ring R whose characteristic is two and
ab = ba. Then prove that, (a + b)? = a? + b? = (a — b)?
Solution: Suppose ab = ba = x €ER
The characteristicof Ristwo = 2x = 0 Vx €R
=>x+x=0
(a+b)2=(@+b)la+b)=ala+b)+b(a+b)
=a’+ab+ba+b?>=a*+ (x+x)+b?=0a’+0+ b?
= a? + b?
(a—b)>=(a—b)(a—b)=ala—b) —b(a—D>b)
=a’—ab—ba+b?=a?—(x+x)+b?=0a?—-0+b?
=a? + b?
Hence, (a + b)? = a? + b?> = (a — b)?
Example 4: If any element a has the multiplicative inverse, then a cannot be a divisor of

zero, where the underlying set of a ring.

Solution: Suppose let R be aringand a € R s.t. a has the inverse a™* € Rsoa # 0

To prove that a is not zero divisor of zero. Suppose not then
a is divisor of zero so 3 the elementb € R s.t. b # 0 and ab = 0.
ab=0=a(ab) =a10
= (ata)b=0
=21b=0=>b=0

Contraryb # 0. Hence required the solution.

10.11 SUBRING
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Let R be a ring. A non empty subset s of the set R is said to be a subring of R if S is closed

under addition and multiplication in R and S itself is a ring for those operations.

iff S is closed for compositions in R
iffv abeS=a+b€eS,ab€eS.
Theorem 6: The necessary and sufficient conditions for a non empty subset S of a ring R to
be a subring of R are (i) a,b € S = a-bes. (i))abeS=abes.
Proof: Let S be a Subring of a ring R so that S itself is a ring.
To prove that
(i abeS=abes. (ii) a,b eS = ab €S.
Sisring = (S, +) is an abelian group.
Hence a,b €e S= a, -b € S [Each elemant of S has additive inverse in S]
= a+(-b)e S [S is closed w.r.t.(+)]
= a-b € S. Hence the condition (i)
Again S is ring =(S, -) is a semi group
= S is closed w.r.t. multiplication

=>abeS V a,beS. Hence the condition (i)

Conversely, let S is non empty subset of R s.t. the conditions (i) and (ii) hold.

To prove that S is a subring of R, it is enough to show that S is a ring.
The condition (i) says that
a,a€S = a-a €S =0e€S.

Again 0€ S, aeS = 0-a €S =-a€s.
ie. aES=-a€Ss.
Consequently, a, b €S =4, -b €S

=a-(-b) €S by condition (i)

= atb €S

a,be S= a,be R

=a+b= b+a. Fot (R, +) is a abelian group.
Similarly, we can show that
a+ (b+c) = (a+b)+c Vv a,b, c €S.
Hence the above facts prove that (S, +) is an abelian group. Associatively of multiplication
over

addition holds in S. Since they hold in R. Finally we have show that (S, +, - ) is a ring.
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Theorem 7: The intersection of two subring is again a subring.
Proof: Let S; and S, be two subring of ring R.
Since O€ S;and O€ S, at least 0 S;NS,. Therefore S; NS, is non-empty.
Let a,b € S;NS,, then

a€ $;NS, =ae §; and a€ S,
and be S;NS, =be S;and be S,.
But S; and S, are subring of R, therefore

a, be §; =a-be S, and abe S,
and a, be S, =a-be S, and abe S,.
Consequently, a,b € S;NS, =a-be S;NS, and ab € 5;NS,.
Hence S; NS, is a subring of R.

10.12 PROPER AND IMPROPER SUBRING

If R is any ring, then {0} and R are always subring of R. These are said to be improper
subrings. The subrings of R other than these two, if any, are said to be proper subrings of R.
Example:

Q) The ring of Gaussian integers is a subring of ring of complex numbers.

(i) The ring of rational numbers is a subring of ring of real numbers.

(iit)  The ring of integers is a subring of a ring of rational numbers.

Check your progress

Problem 1: Check that the singleton set {O}is ring or not?

Problem 2: Check that the singleton set contain the identity element form a ring?
Problem 3: Check that the set {0,1}is ring with unity or not?

10.13 SUMMARY

In this unit, we have studied the basic terminology used in ring theory. We have also read
about the basic idea of ring with some theorems and examples. We have defined

commutative and non commutative.

Ring theory is a fundamental branch of abstract algebra that studies algebraic

structures called rings, which consist of a set equipped with two binary operations: addition
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and multiplication. Rings generalize number systems like integers and polynomials, allowing
for diverse structures such as commutative rings, integral domains, division rings, and
fields. Key concepts include ideals, ring homomorphisms, quotient rings, and polynomial
rings, which play a crucial role in algebraic structures and applications in number theory,
geometry, and cryptography. The study of zero divisors, units, and prime/maximal ideals
helps in understanding factorization and divisibility in algebra. Ring theory provides a
foundation for advanced topics like module theory, field extensions, and algebraic
geometry. This unit is basic outlook of ring theory and concepts of this unit will be beneficial

for the learners in the upcoming units.

10.14 GLOSSARY

Ring

Gaussian integer
Subring

Boolean Ring
Characteristic of ring
Ring with unity

Ring with zero divisor

>
>
>
>
>
>
>
>

Ring without zero divisor
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10.17 TERMINAL QUESTIONS

Long Answer Type Question:

Prove that set of integers is a commutating ring ‘or’ (Z,+,.) is a commutative ring.

Prove that set of rational numbers is a commutative ring.

1.
2
3. Prove that ring without zero divisors iff the cancellation laws hold in R
4

State and prove the necessary and sufficient condition for any subset of ring to be a
subring.
Prove that set of rational numbers is a subring of set of real number.

Short Answer Type Question:

1. If R is any ring with identity 1, then prove that R has positive characteristic n iff n is
the at least positive integer for which n.1 = 0, 0 being additive identity of R.
In any ring (R) any element a has the multiplicative inverse, then prove that a cannot
be a divisor of zero.
Prove that intersection of two subring of a ring is also a subring.
Define the ring and subring with example.

Let a and b be arbitrary elements of a ring R whose characteristic is two and ab =
ba. Then prove that,
(a + b)? = a? + b? = (a — b)?

Objective type questions

1. Which of the following is NOT necessarily true for a ring (R, +, -)?

A) R is closed under addition and multiplication.
B) R has an additive identity.

C) R is commutative under multiplication.

D) R satisfies the distributive laws.
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2. Thering Z, is afield if and only if:

A) n is even.

B) n is prime.

C) n is a perfect square.
D) n is composite.

3. Which of the following is an example of a non-commutative ring?

A  Z
B) M, (R) (the set of 2x2 real matrices)

C) QIx
D) R

4. Aring R is called an integral domain if:

A) R is commutative and has no zero divisors.

B) Every nonzero element of R has a multiplicative inverse.
C) R contains no proper ideals.

D) R has characteristic 0.

5. Which of the following is NOT an ideal in Z?

A) 27
B) 3z
c z
D) Q

6. The characteristic of the ring Z/6Z is:

7. The set of all nxn upper triangular matrices over a field forms a:

A) Commutative ring

B) Non-commutative ring
C) Integral domain

D) Field

8. In a Boolean ring, which property always holds?

A) x> =x forall xeR

B) x> =x forall xeR
C) R is a field
D) R is an integral domain
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9. If R is a ring with unity, which of the following must be true?

A) Every element of R has a multiplicative inverse.
B) R must be commutative.

C) R contains a multiplicative identity.

D) R is a field.

10. The center of a ring R is defined as:

A) The set of units in R.

B) The set of all elements that commute with every element of R.
C) The set of all nilpotent elements.

D) The set of all zero divisors.

Fill in the blanks:

Intersection of two subring of any ring is also a
Intersection of two ideal of any ring is also an

Set of rational number is subring of set of

A ring (R) without zero divisors iff the cancellation laws

Set of integers is a ring with unity

True and False questions:
Every ring has a multiplicative identity.
Every field is an integral domain.

The set of all 2x2 real matrices forms a commutative ring under matrix addition and
multiplication.

The set Z of integers forms a field.

The characteristic of any finite field is always a prime number.

Every integral domain is a field.

If a ring is commutative and has no zero divisors, then it must be a field.
In a Boolean ring, every element is idempotent.

Every finite integral domain is a field.

If Risaring and ab =0 for some a,b e R, then either a=0 or b=0

10.18 ANSWERS

Answer of self cheque question:
1. Yes 2. Yes 3. Yes
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Answer of objective type question
C 2. B

D 6. B
C 10. B

Answer of fill in the blanks:
1. Subring 2. Ideal 3. Real 4. R 5. Commutative

Answer of true and false:
1. False

S.

9.
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Unit-11: INTEGRAL DOMAIN

CONTENTS:

11.1  Introduction

11.2  Objectives

11.3  Integral domain

11.4  Ordered integral domain
11.5 Summary

11.6 Glossary

11.7 References

11.8 Suggested Reading

11.9 Terminal questions

11.10 Answers

11.1 INTRODUCTION

The concept of an integral domain originates from the study of nhumber systems and
algebraic structures, particularly in the development of ring theory in the late 19th and early
20th centuries. Mathematicians such as Richard Dedekind and David Hilbert contributed
significantly to the formalization of rings and ideals, which laid the foundation for the study
of integral domains. The term “integral domain™ itself emerged as algebraists sought to
generalize the properties of integers to more abstract settings, particularly in algebraic
number theory and polynomial rings.

An integral domain is a commutative ring with unity (1 # 0) that has no zero divisors.
This means that for any two elements a,b in the ring, if ab =0, then either a=0 or b=0.
This property ensures that multiplication behaves similarly to that in the integers, preventing
the collapse of nonzero elements into zero. Integral domains generalize the arithmetic of
integers and appear naturally in many mathematical structures, including polynomial rings,
algebraic number fields, and function fields.

Historically, the study of integral domains led to further classifications, such as principal
ideal domains (PIDs), unique factorization domains (UFDs), and fields. The concept is
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fundamental in many areas of mathematics, including algebraic geometry, number theory,
and commutative algebra.

11.2 OBJECTIVES

The objectives of studying the integral domain unit are:

1. Understanding the Definition:
Learn what an integral domain is and how it differs from other algebraic structures.
Properties of Integral Domains:
Identify key properties such as commutativity, unity, and absence of zero divisors.
Understand the cancellation law in an integral domain.
Examples and Counterexamples:
Study examples of integral domains like Z (integers), Q (rationals), R (reals), and
polynomial rings.
Identify rings that are not integral domains due to the presence of zero divisors (e.g.,
ZI67).
Difference Between Integral Domains and Other Rings:
Compare integral domains with commutative rings, fields, and division rings.
Understand why every field is an integral domain, but not every integral domain is a
field.
Zero Divisors and Their Absence:
Learn how the absence of zero divisors affects calculations in an integral domain.
Applications in Algebra and Beyond:

Explore the role of integral domains in abstract algebra, number theory, and
cryptography.

11.3 INTEGRAL DOMAIN

Definition: Any ring (R) is called integral domain, if it satisfies the following conditions

Q) R should be commutative ring

(i) R has unit element

(iii)) R should be without zero divisors.

Some authors defining to integral domain in a different way that an integral domain is a
commutative ring without zero divisors. They do not demand that an integral domain have

the unit element without a doubt.
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Set of integer (1) is a most common example of a ring to be an integral domain. We know
that | is a commutative ring with unity and also | does not possess zero divisors. We know

that if a,bare integers such that ab =0, then either a orb must be zero.

The other rings which are examples of infinite integral domains are (C,+,.),(Q,+,.),(R,+,.)

and the example of finite integral domain is ({0,1,2,3,4},+.,%;).

Inversible elements in a ring with unity: In a ring (R) each element possess additive

inverse. Therefore when we talking about inversible of an element, we only asking about
invertiablity with respect to the operation multiplication. If Ris a ring with unity, then an
element aeR is called inversible, if there exist be R such that ab=1=ba. Then we
rewrite b=a.

Examples 1: In the ring of integers 1 and -1 are the only two inversible elements.

2: In the set of nxn non singular matrices with real numbers as elements are the only
inversible elements of the ring of all nxnmatrices with elements as real numbers.

Example 3: Prove that the set of integers Z with standard addition and multiplication is an
integral domain.

Solution: Z is a Commutative Ring with Unity

Addition and multiplication are associative and commutative.
The additive identity is 0 and the multiplicative identity is 1.
The distributive property holds: a(b+c)=ab+acforall a,b,ceZ

Every integer has an additive inverse (e.g., —ais the inverse of a).
No Zero Divisors

Suppose a,b € Z such that ab =0

This means ab =0

Since integers obey the fundamental property that the product of two nonzero integers
IS never zero, it follows that either a=0 or b=0

Hence, Z has no zero divisors.

Example 4: The set of all polynomials with integer coefficients, denoted as Z[x], forms an
integral domain.

Solution: Z[x] is a Commutative Ring with Unity

o Addition and multiplication of polynomials satisfy associativity and commutativity.
o The additive identity is O (the zero polynomial).
. The multiplicative identity is 1 (the constant polynomial 1).
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The distributive property holds.
No Zero Divisors

Suppose f(x),g(x) € Z[x] such that f(x).g(x)=0

This means the product of the two polynomials is the zero polynomial.

In polynomial rings over an integral domain (like Z), if the product is zero, then at
least one of the polynomials must be the zero polynomial.

Since Z is an integral domain, Z[x] inherits this property.

Thus, Z[x] is an integral domain.

Example 5: The set of rational numbers Q forms an integral domain under standard addition
and multiplication.

Solution: Q is a Commutative Ring with Unity

Rational numbers satisfy the properties of a ring (associativity, commutativity,
distributivity).

The additive identity is 0.

The multiplicative identity is 1.

Every element has an additive inverse.

No Zero Divisors

Suppose a,b € Q such that ab=0.
P Py _ PP,
0. 4, &0,

Since Q consists of fractions P (where p,qeZ, q#0), the product
q

P. P,
If =—==0,then p,p,=0
0,0, o

Since integers have no zero divisors, either p, =0 or p, =0, meaning either a=0 or
b=0

Thus, Q is an integral domain.

Example 6: Give an example of ring which is not an integral domain?

Solution: As we know that Z, is a ring for all ne N. But Z is not an integral domain for
all neN. Foreg., Z,={0,123,4,56,7} is aring but it is not an integral domain as Z, is
not without zero divisor.

Because 2#0,4#0eZ; and 24=0€e Z,.

Hence Z; is a ring but not an integral domain.
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Theorem 1: A commutative ring R is an integral domain iff Va,b,c e R(a=0)

ab=ac=b=c
Proof: Let Ris an integral domain.
Also let ab=ac (a=0)
Then ab—ac=0
=a(b-c)=0
—a=0orb-c=0
Since a=0,wegetb=c
Conversely, let the given condition holds good.
Let a,b € Rbe a arbitrary elements with a=0.
Suppose ab=0
Then ab=a.0
= b =0 using given condition
Hence ab=0=b =0 whenever a =0 or that R is an integral domain.
Remark: Any ring (R) is said to satisfy left cancellation law if Va,b,c € R(a = 0)
ab=ac=b=c
1. Similarly we can talk of right cancellation law. It is to notify that cancellation is of

only non zero elements.

Theorem 2: The characteristic of an integral domain is 0 or n >0 according as the order of

any non-zero element regarded as a member of the additive group of the integral domain is
either O or n.

Proof: Let D be an integral domain.

If a non-zero element of D is of order zero, then the characteristic of D is zero.

Let the order of the non-zero element a be finite and equal to n. Then na=0. Suppose b is
any other non-zero element of D.

We have na=0

= (na)b=0

= (a+a+a+.... uptonterms)b=0

= (ab+ab+ab+.... uptonterms) =0

= a(b+b+b+... uptonterms) =0
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= a(nb)=0

But D is without zero divisors. Therefore a =0 and a(nb) =0

=a(nb)=0

But the order of a is n=n is the least positive integer such that na=0. Also we have
n0=0. Thus n is the least positive integer such that nx=0vxe D. Hence D is of

characteristic n.
Theorem 3: Each non-zero element of an integral domain D, regarded as a member of the
additive group of D, is of the same order.

Proof: Let D be an integral domain. Suppose a is a non-zero element of D and O(a) is finite

and say, equal to n.

Suppose b is any other non-zero element of D and O(b) =m.

We have O(b)=n=na=0

=nb=0

=00b)<n=m<n.

Similarly, O(b)=m=mb=0=a(mb) =0

= a(b+b+...upto mtimes)=0

= (ab+ab+...upto m times)=0

= (ab+ab+...upto m times)=0

= (a+a+...upto mtimes)b=0

= (ma)b=0

=ma=0 [--b=0 and Dis without zero divisors]

=0(@<m=n<m

Now, m<n, n<m=m=n. Hence O(a) =0(b).

Theorem 4: The characteristic of an integral domain is either O or a prime number.

Proof: Suppose D is an integral domain. Let OzaeD. If O(a) is zero, then the
characteristic of D is 0. If O(a) is finite, let O(a) = p . Then the characteristic of D will be

p . We have to now prove that p must be prime.

Suppose p is not prime. Let p=p,p, where p, #1, p, 1 and p, < p also p, < p.

Since D is an integral domain, therefore the product of two non-zero element of D cannot be

equal to 0.
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~aaz0ie, ..a’#0
Now in an integral domain two non-zero elements are of the same order.

0@ =p=>0(@*)=p=pa*=0

= (p,p,)a’ =0 [ p=p,p,]

= (a®+a’+...upto p,p, terms) =0

= (p,a)(p,a) =0 terms) =0

= either pja=0or p,a=0 [-- D is without zero divisors]

But p<pand p,<p. Also p is the least positive integer such that pa=0. Hence p

must be prime.

11.4 ORDERED INTEGRAL DOMAINS

Definition: An integral domain (D,+,.) is said to be ordered if D contains a subset D, such
that

Q) D, is closed with respect to addition and multiplication as defined on D.
(i) Vae D,oneandonlyone of a=0,aeD,,—aeD,, holds (principle of trichotomy).
The elements of D, are called the positive elements D, all other non-zero elements of D are

called negative elements of D.
Theorem 5: Let D be an integral domain with unity element 1. If D is an ordered integral
domain show that 1 is a positive element of D.

Proof: Let D be an ordered integral domain with unity element 1. Let D, denote the set of
positive element of D. Suppose 1¢ D, .

Now, 1= 0. Since 1¢ D, therefore by the definition of an ordered integral domain,

-1¢ D, [-- D, is closed with respect to multiplication]

—=1e D, , which is a contradiction.

Hence 1€ D, i.e., 1 is a positive element of D.

Definition: Let D be an ordered integral domain and D, be the set of positive elements of

D. Then we defines ‘less than’ (<) ‘greater than’ (>) relations in D as follows:

For all a,b e D, we have
Q) a>b when a—beD,
(i) a<bwhen b-aeD,
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Obviously a>b iff b<a

Theorem 6: The order relation in an ordered integral domain is transitive i.e., a>b,b>c=
a>c.

Proof: Let D be an ordered integral domain and let D, be the set of positive element of D.
Wehave a>b=a-beD,

and b>c=b-ceD,

Now D, is closed with respect to addition.

~a-beD,b-ceD, =>(a-b)+(b-c)eD,

=a-beD, =>ax>c

Check your progress

Problem 1: Check that the set Z, is integral domain or not?
Problem 2: Check that the set Z, is integral domain or not?

Problem 3: Check that the set Z_, is integral domain or not?

11.5 SUMMARY

This unit, Integral Domain explores a special class of rings that are commutative,
have a multiplicative identity (1 # 0), and contain no zero divisors. This ensures that the
cancellation law holds, making integral domains fundamental in algebra. Key examples
include Z (integers), Q (rational numbers), R (real numbers), and polynomial rings Z[x]. The
chapter also distinguishes integral domains from general rings and fields, noting that every
field is an integral domain, but not every integral domain is a field. It also covers important
results like every finite integral domain is a field and explores applications in number theory,

cryptography, and algebraic structures.

11.6 GLOSSARY

Integral Domain
Ordered integral domain

Without zero divisor
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11.9 TERMINAL QUESTIONS

Long Answer Type Question:

Define an integral domain. Explain its properties with examples.

Give an example of a commutative ring that is not an integral domain. Explain why it
fails to be an integral domain.

Explain the cancellation law in an integral domain and prove that it holds.

Discuss the difference between an integral domain and a field, providing examples of
each.

Explain why the ring of integers modulo n (Z/nZ) is an integral domain if and only if
n is a prime number.

Show that the set of 2 x 2 matrices over Z is not an integral domain.

Prove that the polynomial ring Z[x] is an integral domain.

Explain why Z/47 is not an integral domain, using the concept of zero divisors.

If R is an integral domain, prove that its polynomial ring R[x] is also an integral
domain.

Short Answer Type Question:

Define an integral domain.

Give an example of an integral domain that is not a field.

What is the main difference between an integral domain and a field?
State the cancellation law in an integral domain.

Why is Z/6Z not an integral domain?
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Does every integral domain have a multiplicative inverse for every element? Why or

why not?

Is the set of all 2 x 2 matrices over Z an integral domain? Why?

What is a zero divisor? Does an integral domain have zero divisors?
Give an example of a commutative ring that is not an integral domain.
Why is Z[x] (polynomials with integer coefficients) an integral domain?

Objective type questions
1. Which of the following is an essential property of an integral domain?

It has zero divisors

It is not commutative under multiplication

It is a commutative ring with unity and no zero divisors
Every element has a multiplicative inverse

Which of the following is an example of an integral domain?

The set of all integers (7Z)

The set of all n x n matrices under matrix multiplication
The set of integers modulo 6 (Zs)

The set of rational numbers modulo 4 (Qa)

If D is an integral domain, which of the following statements is always true?

D is afield

D is a commutative ring with identity
Every element in D has an inverse

D contains zero divisors

Which of the following rings is NOT an integral domain?

Z (Integers)

Q (Rational Numbers)
Zs (Integers modulo 6)
R (Real Numbers)

If R is an integral domain, and a, b are elements of R such that ab = 0, what can

be concluded?

Eithera=0orb=0
Both a and b are nonzero
R contains zero divisors
R is not commutative
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Which of the following is true for every integral domain D?

Every nonzero element has a multiplicative inverse

Every nonzero element is a unit
Ifa,b,ceDanda#0,thenab=acimpliesb=c

Every element has an additive inverse and a multiplicative inverse

Which of the following rings is an integral domain?

The set of all n x n matrices under addition and multiplication

The ring Z/87Z (integers modulo 8)

The ring Z[x] (polynomials with integer coefficients)

The ring of even integers under normal addition and multiplication

Let R be an integral domain. Which of the following statements is false?

R contains no zero divisors

The product of two nonzero elements in R is always nonzero
Every nonzero element in R has a multiplicative inverse

The ring of integers Z is an integral domain

Which of the following is not an integral domain?

Z (Integers)

Q (Rational numbers)

Z/AZ (Integers modulo 4)

Z[x] (Polynomials with integer coefficients)

The field of real numbers R is an integral domain. Which additional property

makes it a field?

It has no zero divisors

It has an identity element for multiplication

Every nonzero element has a multiplicative inverse
It satisfies the associative property of multiplication

Fill in the blanks:

An integral domain is a ring with identity and no zero divisors.

The ring of integers Z is an example of an domain.

If a ring contains zero divisors, then it is an integral domain.

In an integral domain, the law holds: If a # 0 and ab = ac, then b =c.
Every field is an , but not every integral domain is a

The set of polynomials Z[x] with integer coefficients is an example of an

7. The ring Z/6Z is an integral domain because it has zero divisors.
8. A ring R is an integral domain if it has no divisors.
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9. Every finite integral domain is a
10.  The ring of real numbers R is an example of both a and a field.

True and False questions:

Every integral domain is a commutative ring with unity.

Every integral domain is a field.

The set of all n x n matrices over Z forms an integral domain.

If R is an integral domain and a, b € R such that ab = 0, then eithera=0or b = 0.
The set of all even integers forms an integral domain under normal addition and

multiplication.
The set Z/6Z (integers modulo 6) is an integral domain.
The ring of polynomials Z[x] (polynomials with integer coefficients) is an integral

domain.

Every finite integral domain is a field.

The real numbers R form an integral domain.

If R is an integral domain, then it must have a unique multiplicative inverse for every

element.

The ring of integers Z is an integral domain.

The ring Z/8Z (integers modulo 8) is an integral domain.

If R is an integral domain, then R[x] (the ring of polynomials over R) is also an

integral domain.
In an integral domain, the cancellation law holds: if a # 0 and ab = ac, then b = c.
A commutative ring with identity is always an integral domain.
If R is an integral domain, then every nonzero element of R must be invertible.
The set of rational numbers Q forms an integral domain.
The set of complex numbers C is an integral domain.
Every subring of an integral domain is also an integral domain.
The ring of 2 x 2 matrices over Z forms an integral domain.

11.10 ANSWERS

Answer of self cheque question:
1. Yes 2. No 3.

Answer of objective type question
c 2.

a 6.
c 10.
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Answer of fill in the blanks:
1. commutative 2. integral
integral domain, field

7. not
9. field

Answer of true and false:
1. True
5. False
9. True

13. True

True

3.

7.

11.

15.
19.

MT(N)-202

not 4, cancellation
Integral domain

Zero

Integral domain

False
True
True

False

False
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12.8 Quotient ring/ Factor ring
129 Summary

12.10 Glossary

12.11 References

12.12 Suggested Reading
12.13 Terminal questions

12.14 Answers

12.1 INTRODUCTION

An ideal of a ring in mathematics, and more specifically in ring theory, is a unique
subset of its constituent parts. Certain subsets of the integers, such as the even numbers or the
multiples of 3, are generalized by ideals. The defining characteristics of an ideal are closure
and absorption: adding and subtracting even numbers maintains evenness, and multiplication
an even number by any integer (even or odd) yields an even number. Similar to how a normal
subgroup may be used to create a quotient group in group theory, an ideal can be used to
create a quotient ring.

The ideals are the non-negative integers that correspond one-to-one with the integers;
each ideal in this ring is a main ideal made up of multiples of a single non-negative number.
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However, in other rings, the ideals might not exactly match the ring components, and when
certain integer qualities are generalized to rings, they tend to attach to the ideals rather than
the ring components more naturally. For instance, the Chinese remainder theorem may be
used to ideals and the prime ideals of a ring are comparable to prime integers. The ideals of a
Dedekind domain, a significant type of ring in number theory, have a variant of unique prime
factorization.

In ring theory, ideals and factor rings play a fundamental role in understanding the
structure of rings and their algebraic properties. An ideal is a special subset of a ring that is
closed under addition and multiplication by any element of the ring, allowing the construction
of quotient structures. Given a ring R and an ideal I, the factor ring (or quotient ring) R/l is
formed by partitioning R into cosets of I, where elements are grouped based on their
equivalence modulo I. This new ring inherits properties from R but may have a simpler or
more useful structure. Factor rings help in studying homomorphisms, constructing new rings,
and understanding fundamental concepts like ring isomorphisms and kernel characterization
in algebra.

12.2 OBJECTIVES

The main objectives of this unit are as follows:
Understand the Concept of Ideals:

Define left, right, and two-sided ideals in a ring.
Identify and differentiate between principal, prime, and maximal ideals.
Understand the role of ideals in ring theory and their relationship with subrings.

Learn Properties of Ideals:

Determine whether a given subset of a ring is an ideal.
Understand how ideals behave under addition and multiplication.
Explore the role of the zero ideal and the entire ring as trivial ideals.

Explore Factor (Quotient) Rings:

Define the quotient ring R/l and understand its construction.

Understand the fundamental homomorphism theorem for rings.

Analyze how the properties of R/l depend on the nature of I (e.g., when R/I is a field
or an integral domain).

12.3 IDEALS

A non-empty Subset S of a ring R is called a left ideal of R if:
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Q) S is additive Subgroup of R.

(i) rseSVreR and VseS

A non-empty subset S of a ring R is called a right ideal of R if:

Q) S is additive subgroup of R.

(i) sreSVreR and VseS.

A non-empty subset of a ring R is called an ideal or two sides ideal if it is both left ideal and

right ideal, i.e. if:

Q) S is additive Subgroup of R.

(i) sreSand rseS VreR VseS.

Example:

Q) The subring of even integers is an ideal of ring integers.

(i)  Theset {mx:x € Z} is an ideal of the ring of integers. M being any fixed integer.

(iii)  If R is a ring, then the set {x € R:ax = 0} is a right ideal of R. a being any fixed
element of R.

(iv)  If R is a ring, then the set {x € R:xa = 0} is a left ideal of R. a being any fixed

element of R.

Note 1: If we have to prove that a non-empty subset S of a ring R is an ideal of R, then it is
sufficient to prove

Q) aeS,beS=a-beS

(i) sreSand rseS VreR and VseS.

2: Every ring R always possesses two important ideal: One R itself and the other consisting
of 0 only. These are respectively known as unit ideal and the null ideal.

Theorem 1: The intersection of any two left ideals/ right ideals of a ring is again a left
ideal/right ideal of the ring.

Proof: We will consider 1, and 1, are two left ideals of a ring R. Then we have to prove that

I, 1, is also an left ideal of the ring R.

As |, and I, are two left ideals of a ring R then obviously I, and I, are also the additive

subgroup of R. Since we know that intersection of two subgroups is again a subgroup. Thus,

we can say that 1, " 1,is also a subgroup of R with respect to the operation addition.
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Now, we have only to prove that I, 1, is left ideal of R. For it, we have to show
VreRsel,nl,=rsel Nnl, .

Letsel,nl,=sel and sel,

Since I, isideal of RthenVsel,reR=rsel,

Similarly, 1, isideal of RthenVvsel,,reR=rsel,

Now, rsel, and rsel, = rsel N,
Hence, I, N1, is left ideal of R.

Similarly we can prove that if I, and 1, are two right ideals of a ring R thenl, "1, is also an

right an ideal of R.

Theorem 2: The arbitrary intersection of any two left ideals/ right ideals of a ring is again a
left ideals/ right ideals of the ring.
Proof: Let R be aring and let {S, :t € T} be any family of left ideals of R. Here T is an index

set and is such that vteT, S, is left ideal of R. Let S =ﬂst ={xeR:xeS,VteT} be

teT

the intersection of this family of left ideals of R. Then to prove that S is also a left ideal of R.

Obviously, S # ¢, sinceat leastOisin S, VteT .
Now let a,bany elements of S. Then
abeS=abeS VteT

=a-beS vteT

:>a—beﬂSt:>a—beS

teT

Now let a be any element of S and r be any element of R.

Wehave acS=ae()S,=>aeS VteT

teT

=raeS VteT

=rae()S,=rae$
teT

Thus, a,beS=a-beS and reR,aeS=raeS
.S is left ideal of R.
Similarly we can prove that arbitrary intersection of right ideals of a ring R is also an right an

ideal of R.
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Smallest left ideal containing a given subset

Definition: Let M be a non-empty subset of a ring R. Then a left ideal | of R is called the
smallest left ideal of R containing M, if | contains M and if | is contained is every left ideal of
R containing M.

The smallest left ideal of R containing M is called left ideal generated by M and will be
denoted by (M).

It can be easily seen that the intersection of the family of left ideals containing M is the left
ideal generated by M.

Note: A similar definition can be given for the right ideal generated by M as well as for the
ideal generated by M. For this purpose simply replace the word ‘left ideal’ by ‘right ideal’or
by ‘ideal’.

Theorem 3: The left ideal generated by the union 1, U I, of two left ideals is the set 1, +1,
consisting of the elements of R obtained by adding any elements of I, to any elements of 1, .
Proof: Let a, +a,, b, +b, el, +1,.

Then a,,b, €1, and a,,b, 1,.

Since 1,1, are left ideals of R, therefore they are subgroups of the additive group of R.
Therefore

a,bel,=a —-bel and a,,b,el,=a,-b, el,.

Consequently, (g, +a,)— (b, +b,)=(a,—-b)+(a,-b,) el +1,

Therefore, 1, + 1, is a subgroup of the additive group of R.

Nowlet reR and (a, +a,)el, +1,. Then a €1,,a, €l,. We have,

ra,+a,)=ra+ra,el, +1,

[~ 1, is left ideal implies ra, e I, and similarly ra, € 1,]

1, +1, isaleft ideal of R.

Since O e I,, therefore a, € I, can be writtenas a, +0. Thus, a, e, =>a, €1, +1,

Ll +1,.

Similarly, 1, < I, +1,.

Lol el +1,

Thus I, +1, is a left ideal containingl, U1,. Also if any left ideal contains |, U1,, then it

must contain 1, +1,.
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-1+ 1, is the smallest left ideal containing 1, U1,.
-1, +1, = The left ideal generated by containing |, U1, =(1, Ul,).

Note: A similar result can be proved for right ideals as well as for ideals.

a 0
Example 1: The set N of all 2x 2 matrices of the form [b 0} for a,b integers is a left ideal

but not a right ideal in the ring R of all 2x2 matrices with the elements as integer. Here N is
the subset of R consisting of those elements whose second column contains only zeros.

c

. a o0
Solution: Let A={ } B :[d

b 0

a o0 c O a-c 0
A-B= - = eN
[b O} {d O} {b—d 0}

..N is a subgroup of R under addition.

0
} be any two elements of N. Then,

X
y ¢

w xfa O wa+xb 0
Then UA = = e N
y z|b O ya+zb O
Therefore N is a left ideal of R. It is not a right ideal, since
10 1 2
eN, eR
oot

1 0|1 2| |1 2
And the product L }[ } = { 2}, which is not an element of N.

w
Now let U :[

a 0
} be any elementof Rand A= {b O} be any element of N.

0jo 1] |1
Example 2: If U is an ideal of a ring R with unity 1 U prove that U = R.
Solution: We have U < Rsince U is an ideal of R. Let x be any element of R. Since U is
an ideal of R, therefore
leU,xeR=1xeU = xeU
RcU
~U=R

a o0
Example 3: Prove that the subset S of all matrices of the form [0 b} with a and b integers,

forms a subring of the ring Rof all 2x2 matrices having elements as integers. Prove that

further S is neither a right ideal nor a left in R.
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) a o c O
Solution: Let A= ,B= be any two elements
0 b 0 d

a—c 0
A-B= eS
[ 0 b—d}

a Ofc O ac O
Also, AB = = eS
[0 b}{o d} { 0 bd}

.S isasubring of R.

10 3 4
Further €S, € R and the product
01 2 1

3 41 0] [3 4 ] )
= ¢ S. Therefore S is not a left ideal.
2 10 2 1

_[1 0]3 4 3 4 . o
Again, {0 5 J :[ } ¢ S. Therefore S is not a right ideal.

2 1

12.4 IMPROPER AND PROPER IDEALS

Let (R,+, -) be a ring. The ideal R and {0} are called improper or trivial ideals of R. Any

ideal other than these two ideals is called a proper (or non trivial) ideal of R.

12.5 PRINCIPAL IDEAL

A left ideal generated by single element a €R is also called principal left ideal of R. The set
{fra+ ma:re R,meZ}
is a principal left ideal of R. a being fixed element of R.
If R is a ring with unity element e, and a €R, then Ra is principal left ideal of R.
A right ideal generated by single element a €R is also called right principal ideal of R. The
set
{far + ma:r e R m € Z}
is a principal right ideal of R. a being fixed element of R.
If R is a ring with unity element e, then aR is defined as right ideal generated by an element a
€R. aR is also defined as principal right ideal of R.
An ideal of aring R is called principal ideal of R, if it is generated by single element of R.
That is to say, the set

{ra+as+ma:r,s ER,meZ}
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is a principal ideal of R, generated by single element a€ R. This set is also called ideal
generated by an element a€ R. The expression for principal ideal can be simplified if R is a
ring with unity element e.
In this case
ra + as +ma =ra + as + m(ea). Fora = ea

=ra+as+r'a, wherer' = me €R

=(r+ra+as

=s'a + as,wheres'=r+1r' €R.

Hence a principal ideal of R is the set {s'a + as:s,s’ € R} if R is a ring with unity element e.
More about principal ideal:

Definition: Any ideal Sof a ring Rwill be called principal ideal if there exist an element
a e S s.t. any ideal T of R that contain a also contains Si.e., S = ().
Therefore, the principal ideal is an ideal generated by a single element in itself.

In aring (R) if 1€ R, then the ideal generated by 1 is whole ring i.e., (1) =R, since
each element of R can be expressed as rl. Ring itself is referred to be the unit ideal for this
reason. The null ideal is the ideal produced by the zero element of R, or (0), which only
contains the zero element. Every ring R has (0) as at least one of its primary ideals. Every
ring with unity has two primary ideals at a minimum, namely (0) and (1).

Theorem 4: If a is an element in a commutative ring Rwith unity, then the set

S = {ra|r € R} is a principal ideal of R generated by the element ai.e., S =(a).

Proof: First we have to prove that aeS. Since Ris ring with unit element 1, therefore
la=aeSsS.

We must now demonstrate that S 1s an ideal of R. Therefore, we must first demonstrate that S
is a subgroup of R under addition. Let the two element of Sare u,v. Then u =ra,v=r,afor
some 1,1, € R.

Wehave u—v=ra-rna=(r—-r,)aeS.Sincer,—r,eR.

Since S is a subgroup of R under addition.

Now we have to prove that Xe R,ueS = xueSand uxeS. But Ris a commutating ring
then,

Xu = ux and thus we have only to prove that xue S .

We have xu=x(r,a) =(xr)aesS.

DEPARTMENT OF MATHEMATICS
UTTARAKHNAD OPEN UNIVERSITY




Abstract Algebra MT(N)-202

As we know xr, e R

.. Sis anideal of Rand a€S.

Now to prove that S is an ideal which is generated by the element a, We have only to show
that if T is an ideal of Rand aeT ,then ScT.

Let raeSthen reR. If Tis an ideal of Rstt. aeT then reR,aeT =raeT. Thus
ScT.

Hence S is principal ideal of Rs.t. S =(a).

Example 4: To find the principal ideal in the ring (R) of integer generated by 5.

Solution: Since we know ring of integer (I) is a commutative ring with unity.

Since (5)={r|rel}

Thus, principal ideal of R generated by 5 is
(5)=1{..,-10,-5,0,5,10,...}
and obviously, (-5) = (5)

12.6 PRINCIPAL IDEAL RING

A commutative ring with unity for which every ideal is a principal ideal is said to be a
principal ideal ring.

12.7 PRIME IDEAL

Let R be a commutative ring. An ideal S of ring R is said to be a prime ideal of R if

ab€eS=a€SorbeES.
If an ideal S of a ring R is generated by an elementa € R, then we write
S = (a).
Similarly if an ideal S of aring R is generated by elements a, b € R, then we write
S = ({a,b}).

Example 5: The ideal S = {3r:r € Z} is prime.
Solution: Let S = {3r:r € Z} is prime ideal of R generated by 3 and we also write S = (3).
Here ab € S = 3|ab. Also 3 is prime

= 3|a and 3|b

= a€eSorbes

= S is prime
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12.8 QUOTIENT RING/ FACTOR RING

Let R be aring and S be an ideal of R. Let R/S denote the family of cosets of Sin R, i.e.,

R
§={S+a:aER}.

Let S+a,S+b be arbitrary elements of R/S. Define the operations of addition and
multiplication on R/S as follows:
S+a)+(S+b)=S+(a+b)
S+a)(S+b)=S+ab.
Then R/S is a ring w.r.t. these operations. This ring (R/S,+,") is called quotient ring or
factor ring.
Theorem 5: If Sis an ideal of a ring R, then the set

R/S={S+a:aeR},i.e., the collection of all residue classes of S in R.

The composition in R/ S is defined as follows:

Addition: (S+a)+(S+b) =S+ (a+Db)

Multiplication: (S + a)(S+ b) =S + ab.

Prove that R/S formsaring.

Proof: Since S + (a + b) and S + ab are also the residue classes of S in R, therefore we can
say that R/ S is closed with respect to addition and multiplication of residue classes. Initially,

we have to prove that both addition and multiplication in R/S are well defined. For this we
have to show that if S+a=S+a and S+b=S+b’, then
(S+a)+(S+b)=(S+a)+(S+Db)

And (S+a)(S+b)=(S+a)(S+b)

Wehave (S+a)=(S+a)=a €S+a

And (S+b)=(S+b)=b eS+b

Therefore there exist a, €S suchthat a =a +a,b = +b
Now a +b =(a+a)+(B+b)=(a+b)+(a+p).
@+b)-(@a+b)=a+peS

~S+(@ +b)=S+(a+h)

= (S+a)+(S+b)=(S+a)+(S+b)

Thus addition in R/S is well defined.

DEPARTMENT OF MATHEMATICS
UTTARAKHNAD OPEN UNIVERSITY




Abstract Algebra MT(N)-202

Again a b =(a+a)(f+b)=af+ab+af+ab

=aff+ob+af+ab
ab —ab=aof+ab+af+abeS [Since S is an ideal therefore «,feS and
abeR=afeS,afcS,abeS andfinally af+aff+abeS]

Now since ab —abe S, therefore S+ab =S +ab

= (S+a)(S+b)=(S+a)S +b)

Hence multiplication in R/ S is also well defined.
Associativity: We have,
(S+a)+[(S+b)+(S+c)]=(S+a)+[S+(b+C)]
S+[a+(b+c)]=S+[(a+b)+c]=[S+(a+Db)]+(S+c)
=[(S+a)+(S+b)]+(S+c)

Commutativity: We have,
(S+a)+(S+b)=S+(@+b)=S+(b+a)=(S+b)+(S+a)
Existence of identity: Wehave S=S+0eR/S.If S+aeR/S, then
(S+0)+(S+a)=S+(0+a)=S+a

.. Sis a additive identity.

Existence of inverse: Let S+aeR/S, then

S+(-a) e R/S, also we have
[S+(-a)]+[S+a]=S[(-a)+a]=S+0=S

.S+ (—a) OR S —a is the additive inverse of S +a.
Associativity of multiplication: We have
[(S+a)(S+b)](S+c)=(S+ab)(S+c)=S +(ab)c
=S+a(bc) = (S +a)(S+bc) =(S+a)[(S+b)(S +c)].
Distributive of multiplication with respect to addition: We have
(S+a)[(S+b)+(S+c)]=(S+a)[S+(+c)]=S+a(b+c)
=S+ (ab+ac) =(S+ab)+(S+ac)
=(S+a)(S+b)+(S+a)(S+c)

In a similar way, we can prove that
[(S+b)+(S+0)](S+a)=(S+b)(S+a)+(S+c)(S+a).
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Hence we can say that R/Sis a ring with respect to the composition addition and
multiplication and the residue class S +0 or S is the zero element of this ring.

Example 6: If R/S is aring of residue classes of S in R. Prove that

Q) If R is coomutative so also is R/S

(i) If R has a unity element 1 so also has R/S , namely S +1

Solution (i): Suppose R is a commutative ring. Let S+a,S+b be two elements in R/S.
Then a,beR and ab=ba

We have (S+a)(S+b)=S+ab=S+ba=(S+b)(S+a)

(if): Suppose R is a ring with unit element 1. Then S+1eR/S. If S+a is any element of
R/S, then we have

(S+)(S+a)=S+(la)=S+a

And (S+a)(S+1)=S+(al)=S+a

.S +1is the unit element of R/S.

Check your progress

Problem 1: Check that the 4Z is ideal of the ring of integers?
Problem 2: Check that the 7Z is prime ideal of the ring of integers?

Problem 3: Is 4Z is prime ideal of the ring of integers?

12.9 SUMMARY

This unit on ideals and factor rings explores the concept of ideals, which are special subsets
of rings that are closed under addition and multiplication by ring elements. Ideals play a
crucial role in constructing quotient rings (factor rings), denoted as R/I, where | is an ideal
of R. The chapter classifies ideals into principal, prime, and maximal ideals, with prime
ideals ensuring that R/I is an integral domain and maximal ideals ensuring that R/I is a field.
We will further discusses in next units the First Isomorphism Theorem, showing how ideals
correspond to kernels of ring homomorphisms. Quotient rings simplify ring structures,
leading to applications in modular arithmetic, algebraic number theory, and
cryptography. This unit helps to understanding ideals and factor rings helps in analyzing

ring properties and constructing new algebraic systems.

12.10 GLOSSARY
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Ideal.

Improper and Proper ideal
Principal ideal

Principal ideal ring

Prime ideal

Quotient ring/ Factor ring
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12.13 TERMINAL QUESTIONS

Long Answer Type Question:

The set of all multiples of a fixed integer n forms an ideal in the ring of integers Z,
and it is denoted by nZ.

Prove that an ideal | of a commutative ring R is called a maximal ideal if the only
ideals containing | are | and R.

Prove that the quotient ring R/l is a field if and only if I is a maximal ideal of R.

Prove that an ideal | of R is called a prime ideal if whenever ab e | then either ae |
orbel.
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Prove that the factor ring R/l is an integral domain if and only if | is a prime ideal of
R.

Prove that the sum of two ideals | and J in a ring R is also an ideal of R.

Short Answer Type Question:

1.

2
3
4.
5

Prove that intersection of two ideal of a ring is also an ideal of ring.
Define the ring and subring with example.

Define the ideal, prime ideal and principal ideal with example.
Define proper and improper ideal with example.

Let a and b be arbitrary elements of a ring R whose characteristic is two and ab =
ba. Then prove that,
(a + b)? = a? + b? = (a — b)?

Objective type question:

Which of the following is always an ideal in a ring R?

a) The set of all even integers in Z

b) The set of all prime numbers in Z

C) The set of all units in R

d) The set of all zero divisors in R

If I is an ideal of a ring R, what is the structure of the factor ring R/1?
a) Always a field

b) Always an integral domain

c) Always a ring

d) Always a group

For an ideal | of R, the factor ring R/l is a field if and only if:

a) | is a maximal ideal

b) | is a prime ideal

C) | contains all nilpotent elements

d) | is the zero ideal

Which of the following is a necessary and sufficient condition for a subset I of R
to be an ideal?

a) I is closed under addition

b) | is closed under multiplication

C) I is closed under both addition and multiplication by elements of R
d) | contains the multiplicative identity of R

If R is a commutative ring with identity and P is a prime ideal of R, then R/P is
always:

a) A ring with unity

b) An integral domain
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C) A field

d) A division ring

Which of the following is NOT necessarily an ideal of a ring R?
a) The zero ideal {0}

b) The set of all nilpotent elements in R

C) The whole ring R

d) The set of all elements divisible by a fixed element in R

If I is a proper ideal of a commutative ring R, then R/l is a field if and only if I is:
a) A prime ideal

b) A maximal ideal

C) A principal ideal

d) A nil ideal

Which of the following is true for every ideal | of a ring R?

a) | is always a subring of R

b) | is always a subgroup of (R, +)

C) | always contains the multiplicative identity if R has one

d) | is always a field if R is a field

Let R be a commutative ring with unity. The quotient ring R/l is an integral
domain if and only if I is:

a) A maximal ideal

b) A prime ideal

c) A principal ideal

d) A radical ideal

In the ring Z, the ideal 5Z is:

a) A prime ideal

b) A maximal ideal

C) Both prime and maximal

d) Neither prime nor maximal

If R is a commutative ring and P is a prime ideal, then which of the following is
true for R/P?

a) It is always a field

b) It is always an integral domain

C) It is always a division ring

d) It is always a local ring

Anideal I in aring R is said to be a maximal ideal if and only if:
a) | is the largest ideal in R

b) | is not contained in any other ideal

C) The only ideals containing | are I and R

d) R/l is an integral domain

If R is a commutative ring and I is a nil ideal, then every element in I is:
a) A unit

b) Nilpotent
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C) Idempotent

d) Invertible

If I and J are ideals of a commutative ring R, then I+J is:
a) An ideal of R

b) A subring but not necessarily an ideal

C) A prime ideal

d) A maximal ideal

True and False questions:

©oN R WNE

Every ideal of a ring is a subring. (T/F)

Every subring of a ring is an ideal. (T/F)

The zero ideal {0} and the whole ring R are always ideals of R. (T/F)

A maximal ideal is always a prime ideal. (T/F)

A prime ideal is always a maximal ideal. (T/F)

If I is an ideal of a ring R, then the factor ring R/l is always a commutative ring. (T/F)
Every field has exactly two ideals: the zero ideal and the whole field. (T/F)
If I is an ideal of aring R, then R/ is always an integral domain. (T/F)
The set of all even integers forms an ideal in Z. (T/F)

The sum of two ideals in a ring is always an ideal. (T/F)

If I is a maximal ideal of R, then R/l is a field. (T/F)

If I is a prime ideal of R, then R/ is a field. (T/F)

An ideal that contains a unit of the ring must be the entire ring. (T/F)

In a commutative ring R, every prime ideal is also a maximal ideal. (T/F)

Fill in the blanks:

9.

10.
11.
12.
13.

The set of all multiples of a fixed integer n forms an ideal in Z, denoted by

An ideal | of a commutative ring R is called a if the only ideals containing |
are l and R.

The factor ring R/l is a if and only if I is a maximal ideal.

The ideal | of R is called a ideal if whenever abel, then either a€l or bel.

The factor ring R/l is an if and only if I is a prime ideal.

The sum of two ideals | and J in a ring R is always an of R.

AringRisa if and only if it has exactly two ideals: {0} and R.

If R is a commutative ring with unity, then the quotient ring R/I is a field if and only if
lisa ideal.

The quotient ring Z/6Z has exactly elements.

In any ring R, the set {0} is always an of R.

If an ideal | contains a unit of the ring R, then I must be

The set of all even integers forms an ideal in Z, and it is denoted by

A two-sided ideal in a ring R is a subset that is closed under addition and closed under
multiplication by
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14.  If R is a commutative ring with identity and P is a prime ideal of R, then R/P is always

an

12.14 ANSWERS

Answer of self cheque question:
1. Yes 2. Yes 3.
Answer of objective type question:

1: 2:
5: 6:
9: 10:
13: 14:

Answer on True and False:
1. False 2:

5: False 6:

9: True 10:

13:  True 14:
Answer of fill in the blanks:

nZ . Maximal ideal

prime . Integral Domain

Field : Maximal
Ideal 11.  The whole ring of R

any element of R
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Unit-13: RING HOMOMORPHISM

CONTENT:

13.1  Introduction

13.2 Obijectives

13.3 Homomorphism of rings

13.4 Kernel of ring homomorphism
13.5 Image of ring homomorphism
13.6 Isomorphism of rings

13.7 Summary

13.8 Glossary

13.9 References

13.10 Suggested Readings

13.11 Terminal Questions
13.12 Answers

13.1 INTRODUCTION

A ring homomorphism is a fundamental concept in abstract algebra that describes a
structure-preserving function between two rings. A function f:R—S is called a ring

homomorphism if it satisfies two key properties: f(a+b)=f(a)+ f(b) and
f(ab) = f(a).f (b) for all elements a,b in R. If the rings have a multiplicative identity, the
homomorphism may also preserve unity, meaning f(1;)=1;. The kernel of a ring
homomorphism, defined as ker f ={r e R| f(r) =0}, is always an ideal of R, which plays a

crucial role in constructing quotient rings. Ring homomorphisms help in understanding the
relationships between different algebraic structures, leading to key results like the First
Isomorphism Theorem. They are essential in various areas of mathematics, including number
theory, algebraic geometry, and functional analysis.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 231




Abstract Algebra MT(N)-202

13.2 OBJECTIVES

After reading this unit learners will be able to

1. Understand the Concept — To define and explain what a ring homomorphism is
and how it preserves ring operations (addition and multiplication).
Explore Properties — To study the key properties of ring homomorphisms, including
the preservation of the additive identity (0) and, in some cases, the multiplicative
identity (1).
Kernel and Image — To understand the kernel and image of a ring homomorphism
and their roles in the structure of rings.
Ideal and Subring Relations — To learn that the kernel of a ring homomorphism is
always an ideal, and the image is always a subring of the codomain.
Types of Homomorphisms — To differentiate between injective, surjective, and
bijective ring homomorphisms and their significance in algebraic structures.
Isomorphisms and Quotient Rings — To explore the First Isomorphism Theorem,
which connects homomorphisms to quotient rings and helps in classifying ring
structures.
Applications — To apply ring homomorphism concepts in abstract algebra, number
theory, linear algebra, and other mathematical disciplines.

13.3 HOMOMORPHISM OF RINGS

Definitions: (Homomorphism into) A mapping f from a ring R into a ring R is said to be

homomorphism of Rinto R if,
() f(a+b)=f(@)+ f()vabeR
(i) f(ab)=f(a)f(b)vabeR

Homomorphism onto: A mapping f from a ring R onto a ring Ris said to be

homomorphism of Ronto R if,
Q) f(@a+b)=f(@)+ f(b)va,beR
(i) f(ab)=f(a)f(b)Va,beR

Note: R is said to be a homomorphic image of R.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY




Abstract Algebra MT(N)-202

Examples 1: Trivial Homomorphism: The function f :S — Rgiven by f(a) =0 forall
a € R is always a ring homomorphism.

2. Natural Inclusion: If R is a subring of S, the inclusion map f : R — S defined by
f(a)=a, is a ring homomorphism.
Mod n Map: The function f:Z —Z given by f(a)=a modn is a ring
homomorphism.

Example 4: Consider the determinant function f : M,(R) — R given by:
f (A) = det(A)
Where, M, (R) is the ring of 2x2 real matrices.
This is a multiplicative ring homomorphism since:
det(AB) = det(A).det(B)
but not an additive homomorphism because:
det(A+ B) = det(A) + det(B)
Therefore, this is not a full ring homomorphism, only a semigroup homomorphism.

Theorem 1: If f is a homomorphism of aring Rinto aring R, then

(i) f(0) =0, where 0 is the zero element of aring R and 0 is the zero element of R'.

(i) f(-a)=-f(a)VaeR

Proof: (i) Let acR then f(a) e R'. We have

f(a)+0 =f(a)=f(a+0)=f(a)+ f(0) [ 0isthe additive identity of R']
Now R is a group with respect to addition. Therefore,

f(a)+0 = f(a)+ f(0)

=0 =1f(0) [By left cancellation law]

(i) Let abe any element of R. Then —a e R.

We have 0 = f(0) = f[a+(-a)]= f(a)+ f(-a)
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. f(~a) is the additive inverse of f (a) inthe ring R. Thus f(-a)=—f(a).

Theorem 2: Let ¢ be a homomrphic mapping of a ring R into a ring R. Let S be the

homomorphic image of R into R'. Then S is a subring of R .

Proof: Since under the mapping ¢, S is the image of R in R therefore,
#(R)=S cR.

Let a,b be any two element of S'. Since S = ¢(R), therefore there exist element a,b € R

such that g(a) =a,#(b) =b.

We have a —b =¢(a) —@(b) =g(a—b) [Since ¢ is a homomorphism]
Now a—b e Rissuchthat a —b = ¢(a—b). Therefore,

=a-beS

Further, ab = ¢(a)p(b) = #(ab) €S, Since ab e R

Thus, a,b €S =a —b S and ab €S

Hence by subring test, S is subring of R'.

13.4 KERNEL OF RINGS HOMOMORPHISM

The kernel of a ring homomorphism is the set of elements in the domain that are mapped to

the zero element in the codomain.
Definition: If f is a homomorphism of a ring Rinto a ring S, The kernel of f, denoted as
ker(f), is defined as: ker(f)={aeR| f(a) =04}

Where 0 is the additive identity (zero element) in S.

Example 5: Consider the ring homomorphism f :Z — Z, given by:
f(n)=n mod 6

The kernel consists of all integers n e Z such that f (n) =n mod 6, meaning:

Ker(f)={neZ|n=0 mod 6}=6Z
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which is the ideal generated by 6, written as (6).

Example 6: Consider the ring homomorphism from the ring of 2x2 matrices over R:
f :M,(R) > R suchthat f(A)=det(A)

The kernel consists of all 2x2 matrices with determinant zero:
Ker(f)={AeM,(R)|det(A) =0}

This is the set of singular matrices, which is not an ideal (since it is not closed under matrix
addition).

However, it is a nontrivial subring of M,(R).

Theorem 3: If f is a homomorphism of a ring R into a ring R with kernel S, then S is an
ideal of R.

Proof: Let f be a homomorphism of aring R into aring R. Let 0,0 be the zero elements of

R, R respectively. Let S be the kernel of f . Then S={xeR|f(x)=0}.

Since f (0) =0, therefore at least 0 S . Thus S is not empty.
Let a,beS.Then f(a)=0, f(b)=0

We have f(a—b)= fla+(-b)]=f(a)+ f(-b)
=f(@-f({)=0-0 [.a-beS]

If r be any element of R, then
f(ar)=f(@)f(r)=0f(r)=0

And f(ra)=f(r)f(a)=f(r)0 =0

sareS,raesS.

Thus a,beS,reR=(a-b)eS,areS,raeS

.. Sisanideal of R.
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Theorem 4: The homomorphism ¢ of a ring R into a ring R is an isomorphism of R into a
R'if and only if 1(¢) = (0), where 1(g) denotes the kernel of 4.

Proof: Let ¢ be a homomorphism of aring R into aring R'. Let 0,0 be the zero elements of

R, R respectively. LetS = I (¢) be the kernel of ¢. Then S is an ideal of R and
S={acR|¢(a)=0}

Suppose ¢ is an isomorphism of R into aring R". Then ¢ is one-one. Let a S , then
#(@)=0 [By definition of kernel]

=¢@)=¢(0) [ ¢(0)=0]

=a=0 [ ¢ isone-one]

Thus ae€ S = a=0. In other word 0 is the only element of R which belong to S. Therefore
S=(0).

Conversely, suppose that S = (0) . Then to prove that ¢ is an isomorphism of R into R'i.e., to

prove that ¢ is one-one.

If a,beR,d(a)=¢(D)

=¢@)—g(b)=0 [ é(a),#(b) areinthering R']

=¢(@a-b)=0 [~ ¢ is a homomorphism]
—=a-beS [By definition of kernel]
=a-bh=0 [-S=(0)]

=a=b

"~ ¢ is one-one. Hence ¢ is an isomorphism of R into R'.

Theorem 5: Suppose R isaring, S an ideal of R. Let f be a mapping from R to R/S defined
by f(a)=S+aVaeR. Then fisahomomorphism of R onto R/S.

Proof: Consider the mapping f : R — R/S such that,
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f(@=S+aVvaeR.

Let S+ x beanyelementto R/S. Then x e R.

We have f(x) =S + x. Therefore the mapping fisonto R/S. Let a,beR. Then
f(a+b)=S+(a+b)=(S+a)+(S+b)=f(a)+ f(b)

Also, f(ab)=S+ab=(S+a)(S+b)=f(a)f(b).

.. T is a homomorphism of Ronto R/S.

Hence, we can say that every quotient ring is a homomorphic image of the rings.
Example 7: Show that every homomorphic image of a commutative ring is commutative.

Solution: Let R be a commutative ring. Let f be a homomorphic mapping of R onto a ring

R. Then R is a homomorphic image of R.

Let a',b be any two elements of R". Then f(a)=a, f(b) =b for some a,b e R because f is

onto R . We have
ab = f(a)f(b) = f(ab) = f(ba) = f (b) f(a) =ba
. R is acommutative ring.

Example 8: If R is a ring with unit element 1 and ¢ is a homomorphism of R onto R prove

that ¢(1) is the unit element of R'.

Solution: Since ¢ is a homomorphism of R onto R, therefore R' is a homomorphism

image of R. If 1 is the unity element of R, then ¢(1) e R". Let a' be any element of R'. Then

a = ¢(a) for some a R since ¢ isonto R . We have,
gDa =p)p(a) = g(la) = f(a) = a
And ag(l) = p(a)¢(l) = p(al) = g(a) =a

. ¢(1) is the unity element of R

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 237




Abstract Algebra MT(N)-202

Example 9: If R is a ring with unit element 1 and ¢ is a homomorphism of R into an integral

domain R’ such that kernel of ¢ i.e., 1(¢) = R, then prove that ¢(1) is the unit element of R .
Solution: ¢ is a homomorphism of aring R into an integral domain R'. Then kernel of ¢,
I(g)={x:xeRand ¢(x)=0eR}.

Since 1(¢) = R, therefore there exist an element a € R such that ¢(a) #0eR'.

We have ¢(1)¢(a) = ¢(1a) = ¢(a)

Now let b'be any element of R . We have

#(@)b =¢(a)b

= ¢Dp(a)o = p(a)d [ ¢(e(a) = p(a)]

= ¢(@)[p()b'] = g(a)b [ #(1),4(a) e R'which being an integral domain, is a

commutative ring]

= ¢(@)[¢()b1-¢(@)b =0

= ¢(@)[¢(b ~b1=0

=¢Db —b' =0 [-- #(a) = 0 and R’ is without zero divisor]
= ¢Db =b =b¢() [-R’is commutative ring]

Thus g(Db =b =b¢(1) Vb eR'.

Thus ¢(1) is the unit element of R

13.5 IMAGE OF RINGS HOMOMORPHISM

The image of a ring homomorphism f : R — S is the set of all elements in S that have a
preimage in R. Mathematically, it is defined as:

Im(f) ={f(r)|r <R}
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Example 10: Consider the ring homomorphism f :Z — Z/6Z given by:
f(n)=n mod 6

So, the image of fis {0, 1, 2, 3, 4, 5}, which also forms a subring of Z/6Z .

Theorem 6: Let f :R— S be aring homomorphism. Then, the image Im(f) ={f(r) |[r e R}
is a subring of S.

Proof: To show Im(f) is a subring, we need to verify closure under addition, multiplication,
and the presence of Oy .

Since f is a homomorphism, for any a,b € R then,
Q) f(@+ f(b)="~f(a+b)elm(f) [By the property of homomorphism]
(i) f(a).f(b) = f(ab) e Im(f) [By the property of homomorphism]

(i)  f(0g)=f(05) eIm(f)
Thus, Im(f) is a subring of S.

Example 10: Let f :R — S be a ring homomorphism. The image Im(f) is not necessarily
an ideal of S, unless S satisfies additional conditions.

Solution: Consider the inclusion map Z — Q, where f(n)=n. The image of f is Z, which is

a subring of Q, but not an ideal since %.1 ¢Z.

Theorem 7: (Fundamental theorem on homomorphism of rings) Every homomorphic

image of a ring R is isomorphic to some residue class ring (quotient ring) thereof.

Proof: Let R be the homomorphic image of a ring R and f be the corresponding

homomorphism. Then f is a homomorphism of R onto R. Let S be the kernel of this

homomorphism. Then S is an ideal of R. Therefore R/S is a ring residue classes of R

relative to S. We shall prove that R/S =R .

If ac R, then S+aeR/Sand f(a)eR . Consider the mapping ¢:R/S — R such that
#(S+a)=f(a)vaeR.

First we shall show that the mapping ¢ is well defined i.e., if a,beR and S +a =S +b,then

#(S+a)=¢(S+Db).
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We have S+a=S+b

=a-beS

= f(a—b)=0

= fla+(-b)=0 = f(@)+ f(-b)=0 = f(a)— f(b)=0
= f(a)=f(b) = #(S +a) =¢(S +D)

. ¢ is well defined.

¢ is one-one: We have ¢(S +a) = ¢(S +b)

= f(a)=f(b)= f(a)- f(b)=0

= f(a)+ f(-b)=0 = f(a—-b)=0

—=a-beS [-.-S iskernel of f]
=S+a=S+b

. ¢ 1S One-one.

¢ isonto R': Let y be any element of R". Then y = f(a) for some a e R because f is onto

R .Now S+aeR/Sand we have ¢(S+a)= f(a)=y. Therefore ¢ isonto R .

Finally we have

H(S +a)+ (S +b)] =4S + (a+b)] = f(a+b) = f(a)+ f(b)

= §(S +a) + (S +b)

Also, #(S +a) + ¢(S +b)] = #(S +ab) = f (ab) =  (a) f (b) =[4(S +a)][4(S +b)]
. ¢ is an isomorphism of R/S onto R

Hence, we can say that R/S =R'.

Corollary 1: If f:R — S isaring homomorphism. Then R/ker(f) = Im(f)

Where ker(f) ={r e R| f(r) =0} is the kernel of f.
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Proof: Define the map:

¢:R—->1Im(f),d(r)=1(r)

Step 1: ¢ is a Surjective Homomorphism

. Since every element of Im(f) is of the form f (r), it follows that ¢ is surjective.
. Since f is a ring homomaorphism, ¢\phi¢ is also a ring homomorphism.

Step 2: Kernel of ¢ is ker(f)

By definition, ker(¢) ={r e R| ¢(r) =0} ={r e R| f(r) =0} = ker(f)
Thus, ker(¢) = ker(f)

Step 3: Use the First Isomorphism Theorem

The First Isomorphism Theorem for rings states that:

R/ker(g) = Im(p)

Since ker(p) = ker(f)and Im(¢) =Im(f), we get:

R/ker(f)=Im(f)

Corollary 2: If f:R — S isa surjective ring homomorphism, then Im(f)=S,and f isan
isomorphism if and only if f is also injective.

Proof:

Since f is surjective, every element of S is in the image of f, so Im(f)=S.
If f is also injective, then ker(f)={0;}, meaning R/ker(f)=R
By the First Isomorphism Theorem,

R/ker(f)=Im(f)=S
Since ker(f)is trivial, we get R= S, meaning f is an isomorphism.

Thus, f is an isomorphism if and only if it is both surjective and injective.

13.6 ISOMORPHISM OF RINGS

Definition: Any ring R is said to be isomorphic to other ring R if there exists a one-one and

onto mapping f from Rto R'such that
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(i) f(a+b)=f(a)+ f(b)
(i) f(ab)=f(a)f(b)va,beR.
Also such a mapping f is said to be an isomorphism of Ronto R". Symbolically it is denoted

as R= R, also Ris said to be isomorphic image of R'.
Note: The compositions in the two rings have been represented by the identical symbols in
the aforementioned definition of ring isomorphism. The constituent parts of any composition

are revealed to us by the elements. For example, a,b € R. When we write a+b, ab then the

respective compositions are addition and multiplication of R. Again f(a), f (b) e R". When

we write f(a)+ f(b), f(a)f(b) then the respective compositions are addition and

multiplication of R

Relation of isomorphism in the set of all rings.

We can demonstrate that the relation of isomorphism in the set of all rings is an equivalence
relation, as we have done in groups. In order to ensure that rings of the same class are all
isomorphic to one another and rings of other classes are not, the set of all rings will be
divided into disjoint equivalence classes. One can say that any two rings in the same
equivalence class are abstractly similar.

Properties of isomorphism of rings:

Theorem 8: If f is an isomorphism of aring Ronto aring R, then

Q) The image of 0eR is 0eR i.e., the additive identity element of ring R map into

additive identity of the ring R .

(i) The negative of the image of an element of R is that element's image of its negative
ie., f(-a)=-f(a)VaeR.

(iii)  If R isthe commutative ring, then R is also a commutative a commutative ring.

(iv)  If Ris without zero divisors, then R'is also without zero divisors.

(V) If R is with unit element, then R'is also with unit element.

(vi)  If Risfield, then R'is also a field.

(vii)  If Ris skew field, then R is also a skew field.

Proof (i): Let acR. Then f(a)e R . Let 0 denote the zero element of R". To prove that

f(0)=0"
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We have f(a)+0 = f(a)= f(a+0)= f(a)+ f(0). By cancellation law for addition in R,

we get from f(a)+0 = f(a)+ f(0), the result that 0" = f (0).
(i) We have f(a)+ f(-a) = f[a+(-a)]= f(0)=0
- f(-a) is the additive inverse inverse of f(a)in R . Thus f(a)=-f(-a)

(iii) Let f(a)and f(b) be any two elements of R. Then a,beR
We have f(a)f(b)= f(ab)= f(ba) [Ris commutative= ab =ba]

= f(b)f(a).
. R'is also commutative.
(iv) We have f(0)=0. Also f is one-one. Therefore 0 is the only element of Rwhose f -
image is 0.
(v) Let 1 be the unit element of R. Then f(1) e R. If f(a) is any element of R, we have
f(Of(a)=f(a)=f(a) and f(a)f (@)= f(al) = f(a).
. (@) is the unit element of R'.
(vi) R is commutative with unity if R is a field, and each non-zero element of R will have a
multiplicative inverse. Now that this has been shown in (iii) and (v), R will be commutative
and possess the unit element i.e., f(1).

Let f(a) be any non-zero element of R'. Then

f(a) =0 =>a=0=a™" exists.

Now f(a™)e R and we have

f@)f(@)=f(a'a)=f@) and f(a)f(a™) = f(aa™) = ().

. f(a™) is the multiplicative inverse of f(a).

Hence R'is a field.

(vii) As shown in (v) R will be with unit element i.e., f(1) as shown in (vi) each non-zero
element of R will be inversible. Therefore R is a skew-field.

Imbedding of a ring: A ring R is said to be imbedded in aring R’ if there is a subring S of

R's.t. R is isomorphicto S .
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Any ring Ris imbedded to other ring R'if there exists a one-one and onto mapping f from
Rto R such that,

f(a+b)=f(a)+ f(b), f(ab)=f(a)f(b)Va,beR.

Theorem 8: Any ring R without a unity element may be imbedded in a ring that contains a

unity element.

Proof: Let Rbe any ring without unity element. Let Zis the ring of integers and

R =RxZ={(a,m):aeR,meZ}.

When appropriate binary operations have been specified in Rx Z , then it becomes a ring with
a unity element containing a subring, isomorphic toR .
If (a,m) and (b,n) are any two elements of RxZ, then we define addition in RxZ by the
equation
(@a,m)+(b,n)=(a+b,m+n) (D
And multiplication in Rx Z by the equation
(a,m)(b,n) = (ab + na+ mb, mn) ... (2)
Since a+beR and m+neZ, therefore (a+b,m+n)eRxZ . Thus RxZis closed w. r. to
addition.  Further, ab,na,mbeR=ab+na+mbeR. Also mneZ. Therefore
(ab+na+mb,mn) e RxZ and RxZis closed w. r. to. multiplication.
Now let (a,m), (b, n),(c, p) be any element of RxZ . Then we observe:

Associativity in addition: We have
[(@,m)+(b,n)]+(c, p)=(@+b,m+n)+(c, p)
=([a+Db]+c,[m+n]+p)=(a+[b+c],m+[n+ p])
=(a,m)+(b+c,n+ p)=(a,m)+[(b,n)+(c, p)]
Commutativity in addition: We have
(@,m)+(b,n)=(a+b,m+n)

=(b+a,n+m) [~ Commutativity holds in addition]

=(b,n)+(a,m).
Existence of identity: We have (0,0) € Rx Z . Here the first 0 is the zero element of Rand
the second 0 is the zero integer.
Since, (0,0)+(a,m)=(0+a,0+m)=(a,m)
.. (0,0) is the additive identity.
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Existence of inverse: If (a,m) e RxZ , then

(-a,—m) e RxZ and we have
(-a,—m)+(a,m)=(-a+a,—m+m)=(0,0).

.. (—a,—m) is additive inverse of (a,m)
Associativity of multiplication: We have

[(a, m)(b, n)](c, p) = (ab + na+ mb, mn)(c, p)

= ((ab+na+mb)c + p(ab + na+ mb) + (mn)c, (mn) p)

= (abc + n(ac) + m(bc) + p(ab) + (pn)a+ (pm)b + (mr)c, (mn) p)
Also (a,m)[(b,n)(c, p)] = (a,m)(bc + pb + nc, np)

= (a(bc + pb+nc) + (np)a + m(bc + pb + nc), m(np))

= (abc + a(pb) + a(nc) + (np)a + m(bc) + m( pb) + m(nc), (mn) p)
= (abc + a(pb) + a(nc) + (np)a + m(bc) + m( pb) + m(nc), (mn) p)
= (abc + p(ab) + n(ac) + (np)a + m(bc) + (mp)b + (mn)c, (mn) p).
We see that, (a, m)[(b, n)](c, p) = (a, m)[(b, n)(c, p)]

Distributive law: We have

(a,m)[(b,n)+(c, p)]=(a,m)(b+c,n+p)

=(a(b+c)+(n+ p)a+m(b+c),m(n+ p))

= (ab+ac-+na+ pa+mb+mc, mn+ mp)

= (a,m)(b,n)+(a,m)(c, p)

In a similar manner, we may demonstrate that the other distributive law is equally valid.
In light of the operations described on it, Rx Z is a ring.
Existence of identity: We have

(0,))eRxZ.If (a,m)e RxZ, then
(0,D)(a,m)=(0a+m0+1a,1m)=(0+0+a,m)=(a,m)
Also (a,m)(0,))=(a0+1a+m0,ml)=(0+a+0,m)=(a,m).

.. (0,2) is the multiplicative identity. So, Rx Z is a ring with unity element (0, 1).

Now consider the subset S' = R x{0}of RxZ which consists of all pairs of the form (a,0).

We shall show that Rx{0}is a subring of RxZ. Let (a,0),(b,0) be any two elements of
R x{0}.
Then (a,0) —(b,0) =(a,0) + (-b,—0) = (a—b,0) € Rx{0}.
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Also, (a,0)(b,0) = (ab+ 0a-+0b,00) = (ab+0+0,0) =(ab,0) € Rx{0}.

. Rx{0}is a subring of RxZ .

Finally we have to show that R = Rx{0}. Let ¢ be a mapping from R to R x{0} defined as
#p(@)=(a,0)VvaeR.

¢ is one-one: For it, let ¢(a) = p(b) = (a,0) = (b,0) =a=b = ¢ is one-one.

¢ isonto: Let (a,0) e Rx{0}. Then a € Rand we have ¢(a)=(a,0). Therefore ¢ is onto.
¢ preserves addition and multiplication: If a,b € R, then
#(a+b)=(a+b,0)=(a,0)+(b,0) = ¢(a)¢(b).

Hence ¢ preserve the composition. i.e., R = Rx{0}.

Check your progress

Problem 1: If f :R— S is aring homomorphism, what can you say about f (0) ?
Problem 2: Let f :Z — Z,be defined by f(n)=n mod 6 then find ker f ?

Problem 3: Let f :Z — Z be defined by f(n)=n mod 6 then find Im f ?

13.7 SUMMARY

The Ring Homomorphism chapter explores the structure-preserving functions between
rings, ensuring that addition and multiplication operations remain intact. A function
f:R—>S is a ring homomorphism if it satisfies f(a+b)= f(a)+ f(b)and
f(ab) = f(a).f (b) for all elements a,b in R. Key concepts include the kernel (an ideal of

R) and the image (a subring of S), which help analyze ring structures. The chapter also covers
different types of homomorphisms, such as injective, surjective, and isomorphic maps, and
introduces the First Isomorphism Theorem, which connects homomorphisms to quotient
rings. Understanding ring homomorphisms is essential in abstract algebra, as they aid in
classifying rings, constructing new algebraic systems, and finding applications in number

theory and algebraic geometry.

13.8 GLOSSARY

> Homomorphism of Ring.

> Kernel of ring homomorphism

> Image of ring homomorphism
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> Isomorphism of rings
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13.11 TERMINAL QUESTIONS

Long Answer Type Question:

Define a ring homomorphism. State and prove that the kernel of a ring
homomorphism is an ideal of the domain.

Explain the properties of a ring homomorphism. How does a ring homomorphism
preserve the structure of a ring? Provide examples.

What is the First Isomorphism Theorem for rings? State and prove the theorem with a
suitable example.

Differentiate between injective, surjective, and bijective ring homomorphisms. Give
an example of each and explain their significance in algebra.

Let f:R— S be aring homomorphism. Show that the image of f is always a subring
of S. Explain why it may not necessarily be an ideal.
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Discuss the role of ring homomorphisms in constructing quotient rings. How does the
kernel of a ring homomorphism determine the quotient structure? Provide an example.

Prove that the composition of two ring homomorphisms is also a ring homomorphism.
Give an example to illustrate your proof.

Consider the ring homomorphism f :Z — Z_given by f(x)=x mod n. Determine
the kernel and image of f, and discuss its implications in modular arithmetic.

Explain how ring homomorphisms are used in field theory. Can a nonzero ring
homomorphism from a field to a ring ever have a nontrivial kernel? Justify your
answer

Short Answer Type Question:

Define a ring homomorphism.

What are the two main properties that a ring homomorphism must satisfy?
What is the kernel of a ring homomorphism?

What is the image of a ring homomorphism?

What is an injective ring homomorphism?

What is a surjective ring homomorphism?

When is a ring homomorphism called an isomorphism?

State the First Isomorphism Theorem for rings.

Give an example of a ring homomorphism.

If f:R—S isaring homomorphism, what can you say about f (0)?
Is the kernel of a ring homomorphism always an ideal? Why?

Is the image of a ring homomorphism always an ideal? Explain.
What is the trivial ring homomorphism?

Give an example of a non-trivial ring homomorphism.

1.
2.
3.
4.
S.
6.
7.
8.
9.

Objective type question:

1. Which of the following is true for a ring homomorphism f : R —S?

a) f(0z) =05
f (1;) =1 always holds
f is always injective
f is always surjective

Let f : R— S be aring homomorphism. What is the kernel of {?

) {xeR|f(0=0.}
b)  {xeR|f(0)=1}
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c)
d)

3.

a)
b)

{xeR| f(X)=x}
{xeR| f(xX)=—x}

If f:Z —Z/6Z isthe natural ring homomorphism given by f (n) =n mod 6, what
is ker(f)?

6Z
yA
{0,1,2,3,4,5}
{0}

A ring homomorphism f : R — S is called an isomorphism if:

It is injective

It is surjective

It is both injective and surjective

It is neither injective nor surjective

The image of a ring homomorphism f : R — S is always:

A subring of S

An ideal of S

A subfield of S

A subset but not necessarily a subring of S

A function f:R—S is called a ring homomorphism if for all a,b € R, which of the

following holds?
f(a+b)=f(a)+ f(b)
f(ab) = f(a).f (b)
f(1z) =1 (if R, S are rings with identity)
All of the above

If f:R—S isaring homomorphism, then the kernel of f , Ker f , is:

A subring of R
An ideal of R

A subgroup of R
None of the above

The image of a ring homomorphism f :R — S is always:

A subring of S
An ideal of S
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c) A normal subgroup of S~
d) None of the above

The trivial ring homomorphism is defined as:
f(x)=xforall xeR

f(x)=0forall xeR
f(x) =1forall xeR
None of the above

A ring homomorphism is said to be injective if:
kerf =R

ker f ={0}

f(0)=0

None of the above

If R and S are commutative rings with unity and f : R — S is a ring homomorphism,
then f (1) must be:
a) 0
b) 1
C) Either O or 1
d) None of the above

If f:Z — R isaring homomorphism, then f(n) is given by:
f(n)=n.f()

f(n)=f(@)"

f(n)=n’.fQ)

f(ny=n+f(Q)

The fundamental theorem of ring homomorphism states that if f :R—S isa

surjective ring homomorphism with kernel K, then:
a) S=zR/K
b) R/K isasubring of S
c) K is a maximal ideal
d) R/K s a prime ideal

14. A ring homomorphism between two integral domains is always:
a) Injective

b) Surjective

C) A monomorphism

d) None of the above
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15.  The identity map id : R — R defined by id(x) = x is:
a) A ring homomorphism

b) An isomorphism

C) Both (a) and (b)

d) None of the above

True (T) and False (F) questions:

Every ring homomorphism preserves both addition and multiplication.

The kernel of a ring homomorphism is always a subring of the domain.

If a ring homomorphism is injective, then its kernel contains only the zero element.
A ring homomorphism always maps the identity of the domain to the identity of the
codomain.

The composition of two ring homomorphisms is always a ring homomorphism.

A ring homomorphism from a field to a ring is always injective.

If f:R— Sisaring homomorphism, then the image of f is always an ideal of S.
The identity map on a ring R is always a ring homomorphism.

Every surjective ring homomorphism is also injective.

If Rand S arerings, and f:R— S is a homomorphism, then f (0) must be 0.

Fill in the blanks:

A function f:R —S iscalled a ring homomorphism if it preserves both

and operations.

The kernel of a ring homomorphism f :R— S, denoted as ker f , is always an
of R.

A ring homomaorphism is said to be injective if and only if its kernel contains only the

element

The image of a ring homomorphlsm is always a of the codomain ring.

If Risafieldand f:R—S isaring homomorphism, then f is always

The trivial ring homomorphism is the map f(x) = forall xeR.

If f:Z —R isaring homomorphism, then f(n)=

The First Isomorphism Theorem states that if f:R-—>S is a surjective ring

homomorphism, then S =

The identity function id : R — R, given by id(x) =x, is always a and
ring homomorphism.

If f:R—S isaring homomorphism, then f(0) must be

13.12 ANSWERS

Answer of self cheque question:
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A ring homomorphism always maps the additive identity (0) of R to the additive
identity (0) of S, i.e.,, f(0)=0

2. 6Z ? : Imf ={0,1,2,3,4,5}
Answer of objective type question:

2. a)

)

a) 14.
Answer on True and False:
2.
6.
10.
Answer of fill in the blanks:
Addition, Multiplication . Ideal
0 or the additive identity . Subring
Injective . 0

n.f(1) . (R /Kerf)

Bijective, Isomorphic) . 0or the additive identity of S
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Unit-14: FIELD

CONTENT:
14.1 Introduction
14.2  Objectives
14.3 Field
14.3.1 Subfield
14.4  Division ring or skew-field
145 Summary
14.6 Glossary
14.7 References
14.8 Suggested Readings

14.9 Terminal Questions
14.10 Answers

14.1 INTRODUCTION

Field theory is a fundamental area of abstract algebra that explores the properties and
structures of fields, which are algebraic systems where addition, subtraction, multiplication,
and division (except by zero) are well-defined and obey specific axioms. Fields provide a
natural framework for studying polynomial equations, arithmetic in number systems, and
algebraic extensions. Classical examples include the rational numbers (Q), real numbers (R),
complex numbers (C), and finite fields used in cryptography and coding theory. One of the
most significant developments in field theory is Galois theory, which establishes a deep
connection between field extensions and group theory, helping to determine the solvability of
polynomial equations by radicals. Field theory plays a crucial role in many areas of
mathematics, including algebraic geometry, number theory, and theoretical physics.

The idea of a field extension expresses the relationship between two fields. The goal
of the Galois theory, which Evariste Galois founded in the 1830s, is to comprehend the
symmetries of field extensions. This theory demonstrates, among other things, that it is
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impossible to square a circle and trisect an angle with a compass and straightedge.
Additionally, it demonstrates that quintic equations are typically algebraically intractable.

In many areas of mathematics, fields are fundamental concepts. This comprises many
mathematical analysis disciplines that are based on fields with extra structure. Analysis's
fundamental theorems rely on the real numbers' structural characteristics. What's more, any
field may be utilised as the scalars for a vector space, which is the usual generic setting for
linear algebra. In-depth research is done on number fields, the siblings of the subject of
rational numbers. Geometric object attributes may be described with the use of function
fields.

14.2 OBJECTIVES

The main objectives of the Field Theory chapter at the entry level are:

Understanding the Concept of Fields — Introduce the definition of a field, its
axioms, and fundamental properties.

Recognizing Examples of Fields — Explore common examples like Q (rational
numbers), R (real numbers), C (complex numbers), and finite fields.

Exploring Field Operations — Study addition, multiplication, and the existence of
inverses in fields.

Introduction to Finite Fields — Understand the construction and properties of fields
with a finite number of elements

14.3 FIELD

Definition: A ring (R) with at least two elements is called a field (F) if it satisfies following
conditions,

Q) It should be commutative

(i) It has unity

(ili)  Each non-zero element possess multiplicative inverse.

For example, ring of rational numbers (Q,+,.) is a field because it satisfies aforementioned
following conditions. Similarly, rings of real numbers (R,+,.) and complex numbers (C,+,.)
are also common example of fields.

({0,1,2,3,4},+, %) is an example of finite fields

If a,0 = bare elements of a finite field F, then we shall often write

ab™? = % =b™a. Inafield F, we have
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%+§ = (ab™) + (cd™) = (bd “)(bd)[(ab ™) + (cd )]

ad +bc

= (bd )[(bd)(ab ") + (bd *)(bd)(cd )] = (bd *)(ad +be) ===

[Because in the field ( F ) multiplication is commutative]

ac ) ay A1y 1 _ ac
Also Ba=(ab )(cd™) = (ac)(b™d ™) = (ac)(bd) “bd

143.1 SUBFIELDS

Definition: A non-empty subset K of a field F is said to be subfield if K is closed w.r.to.
operation addition and multiplication in F and K itself is a field for these operation.

Conditions for a subfield: The necessary and sufficient condition for a non-empty subset K
of field F to be subfield are

Q) aeK,beK=a-bekK

(i) acK,0zbeK=ab'eK

Proof: Necessary condition: Let the subset K of field F is itself a field.

= K is a group w.r.to. addition i.e. foreach a,be K =>a-beK

Now each non-zero element of K possesses multiplicative inverse. Therefore
acK,0zbeK=ab'ekK

Hence condition is necessary.
Sufficient condition: Suppose K is non-empty subset of F and satisfying the condition (i)

and (ii). As similar we have proved in case of subring that (K,+) is abelian group, in similar

we will prove (i) that (K,+) is abelian group.

Now let abe any non-zero element of K. Then from (ii) we have
acK,0zacK=aalteK=1leK

Now 1e K, therefore again from (ii), we have

leK,0zaeK=la'teK=a'eK.

..Each non-zero element of K possesses multiplicative inverse.

Now let ae Kand 0=b e K. Then b™ e K. From (ii), we have

acK,0zb’eK=ab"') " eK=abeK

Also if b=0, then ab=0and 0 e K
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abeKVabeK

Associativity of multiplication and distributivity of multiplication over addition must hold in

K since they hold in F

14.4 DIVISION RING AND SKEW FIELD

Definition: A ring (R) with at least two elements is called a division ring or a skew field if is

satisfies following conditions

Q) Has unity

(i) Each non-zero element possesses its multiplicative inverse.

Thus a commutative division ring is a field.

A division ring is a field if it is also commutative but every field is also a division ring.
Theorem 1: Every field is an integral domain.

Proof: As we know that a field (F) is a commutative ring with unity, therefore to prove that

every field is an integral domain we have only to prove that a field has no zero divisors.

Let a,b be elements of F with a = 0such thatab=0

Since a = 0,a™* exists and we have

ab=0=a'(ab)=a™"0

= (a'a)b=0
=1=0
=b=0
Similarly, let ab=0and b=0
Since b = 0,b™" exists and we have
ab=0=>(ab)b™* =0b™
=abb")=0=al=0=a=0
Hence in a field ab=0=a=0 or b=0. Since field has no zero divisors therefore every
field is an integral domain.
The converse of this theorem is not true i.e., every integral domain is not a field. For

example, ring of integer is an integral domain while it is not a field because only inversible

element in the ring of integer are 1 and -1.

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 256




Abstract Algebra MT(N)-202

Note: In the field unity and zero are different elements i.e., 1+0. Let abe any non-zero
element of a field. Then a'exists and is also  non-zero. For,
a'=0=2aa'=a0=1=0=al=a0=a=0

This is a contradiction. Now, field has no zero divisors. Therefore, 1=a'a#0.

Remarks: As we know field has no zero divisors. Therefore in the field product of two non-
zero elements will again a non-zero element. Also each non-zero element and unit element
possesses non-zero multiplicative inverse. Since multiplication is commutative as well as
associative, therefore the non-zero elements of a field form abelian group w.r.to.
multiplication.

Theorem 2: A skew field (D) has no zero divisors.

Proof: Let Dbe a skew-field. Then Dis a ring with unit element 1 and each non-zero
element of D possesses multiplicative inverse.

Let a,b be elements of Dwith a=0s.t. ab=0
Since a = 0,a ‘exists and we have
ab=0=a'(ab)=a'0

=@'ab=0=1b=0=b=0
Similarly, let ab=0 with b=0
Since b # 0,b™" exists and we have
ab=0=>(ab)b* =0b™

=abb)=0=al=0=a=0
Hence a skew field has no zero divisors.
Theorem 3: Every finite integral domain is a field ‘OR’ A finite commutative ring without
zero divisor is a field.
Proof: Let D be a finite commutative ring without zero divisor having n elements
a,a,,...,,a,.Inorder to prove that D is a field, we must produce an element 1 D such that
la=aVaeD. Also we should show that for every element a = 0 e D there exist an element
b € Dsuch that ba=1.

Let a=0e D. Consider the nproducts aa,, aa,, aa,...,aa, .

All these are element of D . Also they are all distinct. For suppose that aa, =aa; for i+ j.

Then a(a; —a;)=0 .. (D)
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Since D is without zero divisors and a = 0, therefore (1) implies
8, —a; =0=a, =a;, contradicting i # j.
.. aa,,aa,, aa,,...,aa, are all ndistinct elements of D placed in some order. So one of these
elements will be equal to a. Thus there exists an element, say, 1< D such that
al=a=1a [ Dis commutative]
We shall show that this element 1 is the multiplicative identity of D . Let y be any element of
D . Then from the above discussion for some x € D, we shall have ax =y = xa
Now, 1y =1(ax) [ax=Yy]
= (la)x
= ax [-la=a]
=Yy [~ax=Y]
=yl [-- Dis commutative]
Thus 1y =y =yl Vy e D. Therefore lis the unit element of the ring D.
Now 1e D. Therefore from the above discussion one of the n products aa,,aa,, aa,,...,aa,

will be equal to 1. Thus there exists an element, say b € D such that

ab=1=ba

..b is the multiplicative inverse of the non-zero element a € D . Thus every non-zero
element of D is inversible.

= Dis a field.

Definition: In aring Rany element a is said to be idempotent if a®> =a. Any ring R will be

called Boolean Ring if and only if all of its elements are idempotent i.e., if a> =aVacR.

Example 1: In the ring of set M of 2x 2 matrices over the field of real number with respect
to matrix addition and multiplication evaluate the following:

Q) Is it a commutating ring with unity elements?

(i) Find the zero elements.

(ili)  Does this ring possess zero divisors?

Solution: Let ABeM .Then A+BeM and AB € M. Therefore M is closed with respect
addition and multiplication of matrices.

As we know that both addition and multiplication of matrices are associative composition.
~A+(B+C)=(A+B)+CVAB,CeM
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and A(BC)=(AB)C VA B,CeM

Commutative property holds in addition of matrices. Hence, V A,B € M , we have
A+B=B+A.

If Obe the null matrix of the type 2x2,then OeMand O+ A=AVAecM.
Further multiplication of matrices is distributes w.r.to. addition.
~A(B+C)=AB+AC

and (B+C)A=BA+CAVAB,CeM

..M is a ring with respect to the given compositions.

Multiplication of matrices is not in general a commutative composition. For example, if

s sl

2 8 8 14
Then, AB = and BA=
3 11 3 5

Thus AB = BAand so the ring is a non-commutative ring

10
If | be the unit matrix of the type 2x2 i.e., | :{O J then 1 e M . Also we have

Al =A=I1AVAeM
.~ | is the multiplicative identity.

Thus the ring possesses the unit element and we have | =1 (the unit element of the ring)

The ring possesses zero divisors. For example if

01 2 3 00
A= ,B= ,then AB =
01 00 00

Thus the product of two non-zero elements of the ring is equal to the zero element of the ring.
Example 2: DO the following sets from integral domains w.r.to. ordinary addition and

multiplication? If so state if they are fields.

Q) The set of numbers of the form b~/2 with b rational.
(i)  The set of even integers.
(i) The set of positive integers.

Solution (i): Let A= {b\/f:beQ}.
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We have 32 € A and 5v2 e A. Then (3\/§X5\/§): 30 . Now 30 can not be put in the form

b/2 where b is rational number. Therefore 30 ¢ A. Thus Ais not closed with respect to
multiplication. Therefore the question of Abecoming a ring does not arises.

(i):  Let Rbe setof all even integers. Then R is a ring with respect to addition and
multiplication of integers. Additionally, the composition of multiplication is commutative.
Since the product of two non-zero even integers cannot equal zero, which is the zero element
of this ring, R has no zero divisors. Since the integer 1¢ R, therefore R is a ring without
unity. If the presence of the unit clement is not a requirement for an integral domain, then R
will be one. However, since the multiplicative identity does not exist, R is not a field.

(iii): N should be the collection of positive integers. The additive identity does not exist

since the number 0 ¢ N . N won't be a ring, then.

Example 3: Show that collection of numbers of the form a + bv/2 , with aand b as rational

numbers is a field.

Solution: Let R = {a+b\/§:a,b eQ}
Let 8, +b,v2 R and &, +b,v2 € R where a,,b,a,,b, €Q

We have (a1 +b1\/§)+(a2 +b2\/§)=(al+a2)+(bl +b,)vV2eR. Since (a,+a,) (b, +b,)eQ

Also (3, +1,v2) (g, +b,v2)= (a,a, + 20, )+ (a,b, + a,b, W2 < R.

Since a,a, +2bb,,ab, +ab, €Q
Thus Ris closed w.r.to. addition and multiplication.
We know that addition and multiplication are both associative and commutative compositions

in the set of real numbers since all the components of R are real numbers.

Further we have 0+0+/2 e Rsince 0€Q.

If a+by2 eR, then
O+O\/§+(a+b\/§):(0+a)+(0+b)\/§:a+b\/§

. 0+ 04/2 is the additive identity.

Now again if a+bv2 eR, then (-a) + (—b)\/§ € R and we have
[(=a) + (-b)v/2]+[a+b~/2] =0+ 02

.. each element of R posses its own additive inverse.

Since multiplication is distributive w.r.to. addition in the set of real number.
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Again 1+ 0+/2 € Rand we have
(1+ 0J§Xa+b\/§): a+by2 = (a+bﬁXl+ O\/E)e R

So, (1+ 0\/5) is the multiplicative identity. Thus R is commutative ring with unity and the

zero element of the ring is 0+ 0v/2 and 1+0+/2 is the unit element. If each non-zero element

of R has a multiplicative inverse, then R will now be a field.

Let a+bv2 =0+0v2 be any element of this ring i.e., one of the element aand b is not

Z€ero.

1 a—by2 _a-bv2
a+byv2 (a+bv2)(@a-bv2) a’-2b?

:(az —aszjJr(_ a’ —beZJﬁ

Now if a, b are rational numbers, then we can have a® = 2b® only if a=0,b0=0. As we

Then

know that at least one of the rational numbers aand b is not 0. There we cannot have

a® =2b%ie., a®-2b*=0.

a :
. Both numbers —; nd — are rational number and not both of them are zero.

———a
a’—2b’ a? —2b?

[az—;asz) + [— —ﬁjﬁ is non-zero multiplicative inverse of a+b+/2 . Hence the

given system is a field.

Example 4: Give an example of an infinite commutative ring without zero divisors which is
not a field.

Solution: Let Z be the set of integers. Then (Z,+,.) is an infinite commutating ring without
zero divisors and is not a field.

Example 5: If (R,+,.)be aring with n elements, n > 2 with no zero divisors, show that R is
a division ring.

Solution: Let R be a finite consisting of nelements, wheren > 2s.t., R has no divisor of
zero.

To prove that R is a division ring we have enough to prove that.

Q) R has a unit element 1.

(i) Every non-zero element of R has multiplicative inverse in R.

Q) Prove of (i) is the part of Theorem 3.
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(i) leR=3Jax;eRst ax;=11<j<n
= alis left inverse of X;in R.
But left inverse = Right inverse.
= a is the multiplicative inverse of X;in R
Theorem 4: In the ordered integral domain D, the unity element is a positive element of D .

Proof: Let P be the collection of positive elements of integral domain D . We have to prove
that 1€ P, for it we assume that 1¢ P .

Sincel¢ P,1-0= -1 P [By definition of P]
=)D eP

= 1e P, which is a contradiction.

Hence the unity element is positive element of D .

Theorem 5: The field (I,,+,,%,) is not ordered, where 1, ={0,1,2,..., p—1}and p =prime.

Proof: To prove (I,,+ ) is not ordered.

P’XP

Suppose the contrary. Then (I ,,+ ) is ordered. Let P be the set of positive element of |,

D’XD
. Since additive identity of | is '0'. By definition of P, 11,
= only one of the following is true:

1=0,1< P or additive inverse of 1 P.

Evidently 1+ 0. Hence 1 P or additive inverse of 1e P. Since Pis closed w.r.to +,,.

.'.1eP:>1+pleP:>2€P:>2+pleP:>3eP

Repeating this process, we find that 1le P= p—-1€P,i.e, 1eP

—>additive inverse of 1 belongs to P . Which is a contradiction.

For both the possibilities 1€ P, p —1 e P cannot holds simultaneously.
Here our initial assumption is wrong.

Therefore the required result follows.

Theorem 6: The set of complex number is not ordered integral domain.

Proof: Let C be the set of complex numbers. We know that (C,+,.) is an integral domain. Let
P be the set of positive element of C. Evidently ieCand i 0.

Hence either ie P or —ieP.
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i e P=i.ieP, by definition of P
=-1eP. For i*=-1.

A contradiction . For —1e P, by theorem 4.

SiegP.

Again,—ie P = (-i)(-i)eP=i’e P=-1eP.

Again we get a contradiction,—i ¢ P.

Thus i #0,i#P,—i¢ P,i.e., any one of the following:
i=0,ieP,-ieP,

does not hold. Hence C is not an ordered integral domain.

Theorem 7: The characteristic of a ring with unity is zero or n > 0 according as the unity
element regarded as a member of additive group of R of order Oor n.

OR

If Ris any ring with identity 1, shows that R has positive characteristic n iff n is the least
positive integer for which n.1= 0, 0being additive identity of R.

Proof: Let R be a ring with unity element e.

O(e) = 0 = Characteristic of Ris 0.

Suppose O(e) = n = afinite number so that n s the least positive integer s.t. ne=0. Let a
be any element of R. Then

na=n(ea).1For ea=a=ae

=(ne)a=0a=0

Thus nis the least positive integer s.t. na = 0. Hence the characteristics of Ris n.
Theorem 8: Every finite integral domain D is of finite characteristics.

Proof: Let (D, +,.) be a finite integral domain so that (D, +,.) is a finite abelian group. We
also known that characteristic of D is the order of unity element e of (D,+,.).

(D,+,.) is finite group =O(e) finite.
= Characteristic of D is finite.

Theorem 9(a): The characteristic of an integral domain is either O or a prime number
according as the unity element e regarded as a member of the additive group of integral
domain is of order 0 or a prime number.
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Proof: (i) Let D be an integral domain. Then we prove that characteristic of D is either 0 or
p>0. [Proved in theorem 8]

(i1) If the characteristic is zero, the proof is complete.

Let the characteristic be p > 0. We have to show that p is a prime number.

Suppose p is not prime. Then p is composite integer. So we can write p = p, p, : Where

1<p,p,<p.

Characteristic of D is p =>order of eof the group (D,+)is p. [eis unity element of D]
=o0(e)=p=pe=0

=pp,e=0=p,(p,e)=0

= (Pe)(P,e) =0

= pe=0orp,e=0 [For D has no zero divisor]

— Characteristic of D is either p, or p, <p

=Ch.D< p. A contradiction.

Hence p is not composite.

Therefore pis prime.

Theorem 9(b): The characteristic of an integral domain is 0 or n> 0 according as the order
of any non-zero element regarded as member of the additive group of the integral is either 0
orn.

Proof: Let (D,+,.) be an integral domainand ae Dand a= 0 and O(a) =0or n regarded
as a member of (D,+).

Then na=0,0a=0
(1)
Aim: Characteristicof DisOor n.

For this have to show that nx=0 ¥V xeD.

If xeD,then (1) =(na)x=0=(a+a+...+atonterms)x=0
=(ax+ax+...+atonterms)=0
=a(X+X+....tonterms) =0=a(nx) =0,a=0

=nx=0as Dis free from zero divisors. Hence nis the least positive integer, according to

(1).

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY PAGE 264




Abstract Algebra MT(N)-202

Example 6: If there exist a positive integer m such that ma =0V a e F, then show that m is
a prime. What is this integer? F being a field.

Answer: Let F be a field and a < F be arbitrary. Also let

ma=0

(D

where m is a positive integer. Let € be the multiple identity of F .
Then ae=ea=0

(1) = m(ea)=0=(me)(a)=0—=me=00ra=0

= in particular me =0

For F has no divisor of zero

F is field = Fis integral domain s.t. (2) holds.

It means that m is the characteristic of F . To prove that mis prime.
Now write proof of theorem 9a.

Theorem 10: Each non-zero element of an integral domain D, regarded as an element of the
additive group D, is of the same order.

Proof: Let a,b be arbitrary non-zero elements of an integral domainD s.t. a=b.

Let O(a) =n,0(b) =m, where a,b are regarded as element of (D,+) so that na=0,mb=0

D is an integral domain = D has no zero divisors.
= cancellation law hold in D.
na=0=a-+a+..uptonterms=0
=b(a+a+...uptonterms)=h.0=0
—=ba-+ba+..uptonterms=0
=n(ba) =0= (nb)a=0=0a= (nb)a=0a
=nb =0, by cancellation law
=0(()<n=m<n.For O(b)=m

mb=0=b+b+...uptonterms=0

=a(b+b+...uptonterms)=a.0=0

—ab-+ab+...uptonterms=0
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=m(ab)=0=0b

=(ma)b=0b. Also b#0

=ma =0, By cancellation law

=0(@)<m=n<m.For O(a)=n
Thus we have shown that n<m,m=>n.
~m=n, i.e.,, O(@)=0(b).

When considered as members of an additive group, any two non-zero components of D have
the same order.

Therefore, when considered a member of (D, +), every non-zero element of D is of the same
order.

Example 7: Give an example of skew-field which is not field.
Solution: Let R be a set of matrices of the form,
{ a b
A= - _
-b a
Where a and b are complex numbers.

c d

Let B=| © }
-d ¢

C= P E} be any two member of R. Then

-q p

[ a+c b+d}
A+B=

—(b+d a+c
AB - ac-bd  ad+hc
—(bc—ad —bd +ac
If wetake @ =a+c,8=b+d,y=ac—bd,s =ad +bc, then we have

A+B:{a_ qeR

_ﬁ a
5

AB:V_ }ER
—5 -y

(i) (R,+)is an abelian group.
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Closure axiom: A+ B € R (already proved)
Commutativity: A+B=B+A.

This flows from the fact that a+b=b+a

: : . 00
Existence of identity: O = 0 0 eR

is additive identity s.t. A+O=0+A=A
Associative law: A+(B+C)=(A+B)+C
It follows from the fact that

a+((b+c)=(a+b)+c

-a -¢
Existence of inverse: — A= { - _} eR
c -a

is inverse of As.t. A+(—-A)=0
(i) (R,.) isagroup
Closure axioms: AB € R (already proved)

10
Existence of identity: | :{O J e Ris identity s.t. Al =1A=A.

Associative law: (AB)C = A(BC)
For (ab)c =a(bc)

Existence of inverse: If A= O, then

ar_adiA_ 1 a_beR
|A| (aa+bb)|b a

isinverse of As.t. AA™* = A*A=|
Commutative law: AB = BA is not satisfied here.

[ c df a
For BA=| -
d

—ad —bc

_[ ac-bd  bc-ad

}tBA,by(l)
c

Or BA= AB
(iii) Distributive law: A(B+C) = AB + AC
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(B+C)A=BA+CA
It is true in general in case of matrices.

These fact show that (R,+,.) is askew field but not field.

Example 8: Prove that the set I,={0,12,..,6} forms a field w.r.t. addition and
multiplication modulo 7.

Solution: Let I, ={0,1,2,...,6}.
Let a,b,cel,

a+bif a+b<7
r if a+b>7

We define a+, b= {

Where ris remainder when a+b is divided by 7,

. 0<r<e6

Evidently, a+, bel,

(i) First, we have to prove that (1,,+,) is an abelian group.

Closure axioms: a+, b e |, (already proved)

Existence of identity: 30 € I, called additive identity s.t.

a+,0=0+,a=a

Commutative law: a+,b=b+; a.

This follow from the fact that, a+b=b+a

Associative law: (a+, b)+, c=a+, (b+, C)

Since (a+b)+c=a+(b+c)

Therefore each side leaves the same remainder when divided by 7.

- (@a+b)+,c=a+,(b+c)

Or - (@a+,b)+c=a+, (b+,c)

Existence of inverse: V a e l,,3 its inverse
(7—a)el, (if a=0)s.t.
(7-a)+,a=a+,(7—a)=0.

Inverse of 0 is O itself.
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(i)  Write 17 ={1,2,3,...,6} =1, —{0}.

Let a,b,c e . Define

ab if ab<7
ax, b= ]
s if ab>7

Where Sis the remainder when ab is divisible by 7.
0<s<6
s =0=> ab isdivisible by 7.
But 7 has divisor = a or b is divisible by 7
=a>7,b>7.
A contradiction as a,b< 7.
.. 8#0.Consequently 0<s<6.

This =sel, =ax,bel,

Aim: Now we have to prove that (I,,x.)is an abelian group.

Closure axioms: ax, be I, (already proved)

Commutative law: ax, b=bx, a

Associative law: (ax, b)x, c=ax, (bx, c).

Since (ab)c = a(bc)

Existence of identity: 1< I, is identity element s.t.
1x,a=ax,1=a.

Existence of inverse: Vae I, we have its inverse x e I, s.t.
ax, X=Xx,a=1.

For the equation ax=1 (mod p) has a solution X if p is prime.

[Inverse of 1, 2, 3, 4, 5, 6 are respectively 1, 4, 5, 2, 3, 6]

Thus (1,,x,) is an abelian group.

(iii)  Distributive law: ax, (b+, c) =(ax, b)+, (ax, c)

(b+,c)x, a=(bx, a)+, (cx, a)
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This follows from the fact that

a(b+c)=ab+ac and (b+c)a=ba+ca
Above arguments lead to the fact that (1,,+,, x,) is a field.

Similar example 9: Let p be a positive prime number. Prove that the set 1, ={0,1,..., p -1}

forms a field w.r.t. addition and multiplication modulo p’OR’Ring of integers modulo a
prime number p, is a field.

Example 10: If 1, ={0,1, 2,3, 4} then prove that (I, +,x%;) is a field, where +,and x,
respectively denote addition and multiplication modulo 5.
Answer: The composition tables for two operations are given below:

(i) Closure axiom: From the two composition tables it is quite clear that all the entries in
both composition tables belong to 1. Hence 1. is closed w.r.to. both operation

(i) Commutative law: The entries in the 1%, 2" 3 4™ rows are coincident with the
corresponding element of the 1%, 2" 3 4™ columns respectively relative to the both
operations. Hence +, and x. both are commutative in I, .

(iit) Associative law: It is easy to verify that the associative law holds for +;,
e, a+;(b+;c)=(a+;b)+;c Vab,cel..

Similarly, ax, (bx;c)=(ax;b)x;c Va,b,cel,

2 3
2 3
3 4
4 0
01

4 0 1 2
(iv) O is the additive identity and 1 is the multiplicative identity for I .

For O+;a=aVvVael,
1x;a=aVael; st. a=0

This follows from the composition tables.

(v) Existence of inverse: The additive inverse of 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively.
The multiplicative inverses of non-zero elements 1, 2, 3, 4 are 1, 3, 2, 4 respectively.

(vi) Distributive law: Multiplication is distributive over addition, i.e.,
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ax; (b+;c)=ax;b+,ax,c Vab,cel;
(b+,c)x;a=bx,a+;a+,cx;a Va,b,cel,
For ax, (b+,c)=ax, (b+c).For b+, c=b+c(mod5)
= least positive remainder when ax (b +c) is divided by 5.
= least positive remainder when ab + ac is divided by 5.
=ab+, ac
=axgb+5ax;c. For ax, b=axb(mod5)
In similar way, we can prove other distributive law.
Hence (l4,+,,%;) is a field.

Example 10: The set of all residue classes modulo a positive integer pis an integral domain
iff pis prime.

Solution: Let R denote the set of all residue classes modulo a positive integer p so that

R={[x]:x=0,12,3,...,p—1}

Then we know that Ris a commutative ring with unity element [1], [0] being the zero
element of R. Let [a],[b] € R be arbitrary so that

0<ab<p-1

R will be an integral domain iff it is free from zero divisors, i.e., iff
[a][b] = [0] = [a] =[0] or[b] =0

So we have to show that p is prime iff

[a][b] = [0] = [a] =[0] or[b] =0

(i) pisprime, [a][b]=[0]= pis prime, ab=0(mod p)

= a=0(mod p) or b=0(mod p)

=[a]=[0] or [b] =[0] or b=0(mod p)

(ii) Conversely supplies,

[a][b] = [0] = [a] =[0] or [b]=[O].

Now we have to prove that p is prime. For it let p is of composite order.

If pis of composite order = p is expressible as, p = p,p,, where 1< p,, p, < p
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=[pl=[p.-p.1.[p,]#[0].[p,]#[0]
=[p;-p,1=[0]. For [p]=[0]
=[p]=0or [p,]=[0], by assumption.

Which is a contradiction.

For [p,]=0 and [p,]=[0].

Which shows our assumption is wrong. Therefore p is prime.

Similar problem 11: The set of all integers modulo a positive integer pis an integral
domain iff pis prime.

Hint: (I ,,+ ) is integral domain, where 1, ={0,1,2,3,..., p—1}.

P’XP

Check your progress

Problem 1: Check 1, ={0,1,2,3} is field or not?
Problem 2: Check that the set {0,1}form a field?
Problem 2: Check that the singleton set {0} form a field and why?

14.5 SUMMARY

In this unit, we have studied about the field, subfield and division ring or skew field in a ring.
Throughout the all units we have learned about the basic definitions and their related
theorems and examples on these major topics. In many areas of mathematics, fields are
fundamental concepts. This comprises many mathematical analysis disciplines that are based
on fields with extra structure. Analysis's fundamental theorems rely on the real numbers'
structural characteristics. What's more, any field may be utilised as the scalars for a vector
space, which is the usual generic setting for linear algebra. In-depth research is done on
number fields, the siblings of the subject of rational numbers. Geometric object attributes
may be described with the use of function fields. The overall summarization of this units are

as follows:

> Every field is an integral domain.
> Every finite integral domain is field.

> The set of all integers modulo a positive integer p is an integral domain iff pis prime
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14.6 GLOSSARY

Field: A commutative ring with unity having each non-zero element possess its
multiplicative inverse is called field.

Sub-field: A subset of field which is itself a filed called subfield.

Division ring: A ring with unity having each non-zero element possess its

multiplicative inverse is called division ring.

REFERENCES

Joseph A Gallian, (1999), Contemporary Abstract Algebra (4™ Edition), Narosa,
1999.
N. Herstein,(1975), Topics in Algebra, Wiley Eastern Ltd., New Delhi.

V. K. Khanna and S. K. Bhambri (2021 ), A Course in Abstract Algebra (5™ Edition),
Vikas Publication House.

Vasishtha, A. R., & Vasishtha, A. K. (2006). Modern Algebra (Abstract Algebra).
Krishna Prakashan Media.

RamyjiLal, Algebra 1: Groups, Rings, Fields and Arithmetic, Springer, 2017.

SUGGESTED READING

P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul: Basic Abstract Algebra, Cambridge
Press, 1994.

David S. Dummit and Richard M. Foote: Abstract Algebra (3" Edition), Wiley, 2011.
Michael Artin: Algebra (2" edition), Pearson, 2014.

14.9 TERMINAL QUESTIONS

Long Answer Type Question:

1. Show that in an integral domain all non-zero elements generate additive cyclic groups
of the same order which is equal to the characteristic of the integral domain.
Give without proof, an example of an integral domain which contains only five

elements. Is this an ordered integral domain? Give reason?
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3. Show that the matrices { ab 2} , a, b real, forms a field.

Prove that a non-zero finite integral domain is a field.

Prove that (I,,+,,%,) is a field, where +,and x, respectively denote addition and

multiplication modulo 5.

Give an example of skew-field which is not field.

Show that collection of numbers of the form a-+b+/2, with aand b as rational
numbers is a field
Short Answer Type Question:
8. If Dis a non-zero integral domain, then characteristic of D is either zero or a prime
number.
The set of complex number is not ordered integral domain
Prove that a skew field has no zero divisor.
Write the definition of following with suitable example.
0] Field
(i) Integral domain
(iii)  Skew-field
A commutative ring R is an integral domain iff Va,b,ce R(a=0)

ab=ac—=>b=c

Objective type questions

Which of the following is NOT a field?

a) Q (Rational Numbers)

b) Z (Integers)

C) R (Real Numbers)

d) C (Complex Numbers)

In a field, which of the following properties must hold for multiplication?
a) Commutativity

b) Associativity

c) Existence of Multiplicative Inverse (except for zero)
d) All of the above

Which of the following is a finite field?

a) Zs

b) Zs

) Q

d) R
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The smallest field containing only two elements is known as:
a) Q

b) F2

c) R

d) Z;

Which of the following is true for every field F?

a) F must have an infinite number of elements.

b) Every element in F has an additive and multiplicative inverse (except zero).
C) The set of natural numbers forms a field.

d) Fields always contain only real numbers.

Which of the following operations is NOT necessarily defined in a field?
a) Addition

b) Subtraction

c) Multiplication

d) Division by zero

A field must contain at least how many elements?

a) 1

b) 2

C) 3

d) 0

Which of the following is an example of a finite field?

a) Q (Rational Numbers)

b) Z7

c) R (Real Numbers)

d) C (Complex Numbers)

If F is a field, which of the following must be true?

a) F has at least one element with no additive inverse.

b) Every element in F has a unique additive inverse.

C) Multiplication is not necessarily associative.

d) F contains at least one zero divisor.

The characteristic of a finite field F; is always:

a) 0

b) 1

c) A prime number

d) Composite

Which of the following sets is a field under usual addition and multiplication?
a) The set of natural numbers N

b) The set of integers Z

C) The set of rational numbers Q

d) The set of even integers

If F is a field, then which of the following is true?

a) F must be an infinite set.

b) The sum of any two elements in F is always in F.

C) F contains at least one element without a multiplicative inverse.
d) The set of all positive integers is a field.

If p is a prime number, then the order of the field Z;, is:

a) p—1

b) p
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c) p+1

d) 2p

Which of the following is always true for a field F?

a) F is closed under addition and multiplication.

b) Every element in F has a multiplicative inverse, including zero.
c) F must have infinitely many elements.

d) The characteristic of F is always zero.

In which of the following fields does the equation x*+1=0 have a solution?
a) R (Real numbers)

b) C (Complex numbers)

C) Q (Rational numbers)

d) Zs

Fill in the blanks:

A commutative R is an integral domain iff
Every field is an

A skew field has no
Every finite integral domain is

The set of all residue classes modulo a positive integer p is an integral domain iff p is

True and False question:

Every field is a ring, but not every ring is a field. (True / False)

The set of integers Z is a field. (True / False)

In a finite field, the number of elements must always be a prime number. (True /
False)

The set of all even integers forms a field under normal addition and multiplication.
(True / False)

Every finite field has order p" for some prime p and integer n. (True / False)

Every field is an integral domain. (True / False)

In a finite field, the sum of all elements is always zero. (True / False)

The order of a finite field must be a prime number. (True / False)

The characteristic of a field is always either 0 or a prime number. (True / False)
Every subring of a field is a field. (True / False)

The set of complex numbers C forms a field under usual addition and multiplication.
(True / False)

In any field, the element 0 always has a multiplicative inverse. (True / False)

Every field is closed under addition, multiplication, and division (except by zero).
(True / False)

If a field contains a finite number of elements, it is called a finite field. (True / False)
A finite field always has an even number of elements. (True / False)

14.10 ANSWERS
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Answer of check your progress:
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1. No 2. Yes 3. No, because it does not contain unity element

Answer of objective type question:

b 2.

Answer of true and false:
True
False
True
False
13. True

Answer of fill in the blanks:

1. Cancellation law holds . Integral domain

4. Field ) Prime

DEPARTMENT OF MATHEMATICS
UTTARAKHAND OPEN UNIVERSITY

Zero divisor

PAGE 277




o'

;O"!

Y \
Xy

UTTARAKHARD OPEN UNVERS

Teen Pani Bypass Road, Transport Nagar
Uttarakhand Open University,
Haldwani, Nainital-263139
Phone No. 05946-261122, 261123
Toll free No. 18001804025
Fax No. 05946-264232,

E-mail:info@uou.ac.in
Website: https://www.uou.ac.in/



mailto:info@uou.ac.in
https://www.uou.ac.in/

