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COURSE INFORMATION

The present self-learning material “Real Analysis” has been

designed for B.Sc. (Third Semester) learners of Uttarakhand Open
University, Haldwani. This course is divided into 14 units of study. This
Self Learning Material is a mixture of Four Block.

First block is Real Numbers, Sequence and Series, in this block Sets
and functions, Real Numbers, Limit points, open and closed sets, Real
sequences, Infinite Series defined Clearly.

Second block is Functions Single Variable, in this block Limits of
function, continuous function, Properties of Continuous function, Uniform
Continuity, Monotone and Inverse function. Derivative, Mean Value
theorem, L Hospital rule defined clearly.

Third block is Riemann Integration, Uniform convergence and
Improper integral, in this block Riemann integral, Integrability of
continuous and monotonic functions, Fundamental theorem of integral
calculus, First mean value theorem, Pointwise and uniform convergence of
sequence and series of functions, Weierstrass’s M-test, Dirichlet test and
Abel’s test for uniform convergence, Uniform convergence and continuity,

Uniform convergence and differentiability, Improper integrals, Dirichlet and

Abel’s tests for improper integrals are defined.

Adequate number of illustrative examples and exercises have also been

included to enable the leaners to grasp the subject easily.
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1.1 INTRODUCTION

Set theory, branch of mathematics that deals with the properties
of well-defined collections of objects, which may or may not be of a
mathematical nature, such as numbers or functions. The theory is less
valuable in direct application to ordinary experience than as a basis for
precise and adaptable terminology for the definition of complex and
sophisticated mathematical concepts.
Between the years 1874 and 1897, the German mathematician and
logician Georg Cantor created a theory of abstract sets of entities and
made it into a mathematical discipline. This theory grew out of his
investigations of some concrete problems regarding certain types
of infinite sets of real numbers. A set, wrote Cantor, is a collection of
definite, distinguishable objects of perception or thought conceived as a

whole. The objects are called elements or members of the set.

1.2 OBJECTIVES

After studying this unit, learner will be able to

To analyze and predict the behavior of these systems over time.

To provide solutions to problems that cannot be solved using other

mathematical techniques.

To understand the definition of differential equation.

1.3 SETS

A set is a well - defined collection of distinct objects.

By a ‘well — defined’ collection of objects we mean that there is a rule by
means of which it is possible to say, without ambiguity, whether a
particular object belongs to the collection or not. The objects in a set are
‘distinct’ means we do not repeat an object over and over again in a set.
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Each object belonging to a set is called an element of the set. Sets are
usually denoted by capital letters A, B, N, Q, S etc. and the elements by
lower case letters a, b, ¢, X etc.

The symbol € is used to indicate ‘belongs to’. Thus x € A = X is an
element of the set A.

The symbol € is used to indicate ‘does not belong to’. Thus x € A = X is
not an element of the set A.

Example: Let A ={1, 2, 3, 4, 5} be a set then we say 1€ A , 2€ A, 3€ 4,
4e A,5€ Abut6¢ A, 7¢ A, 8¢ A.

1.4 METHODS OF DESCRIBING A SET

There are two methods of describing a set.
(1) Roster Method.

In this method, a set is described by listing all its element, separating by
commas and enclosing within curly brackets.

For Example. (i) If A is the set of odd natural numbers less than 10,
then in roster form.

A={1,3,57,9}

(ii) if B is the set of letters of the world FOLLOW, then in roster form.
B={F O,L, W}

(2) Set Builder Method.

Listing the element of a set is sometimes difficult and sometimes
impossible. We do not have a roster form of the set or rational number or
the set of real numbers. In set builder method, a set is described by
means of some property which is shared by all the element of the set.

For Example. (i) If P is the set of all prime numbers, then

P ={x: xis aprime number}

(i) if A is the set of all natural numbers between 5 and 50, then

A={x:x€e Nand5<x<50}

1.5 TYPES OF SETS
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(1) Finite set. A set is said to be finite if the number of its elements is
Finite i.e. its elements can be counted, by one by one, with counting
coming to end.

For Example. (a) the set of letters in the English alphabet is finite set
since it has 26 elements.

(b) Set of all multiples of 10 less than 10000 is a finite set.

(i) Infinite set. A set is said to be infinite if the number of its elements
is infinite i.e. we count its elements, one by one, the counting never
comes to an end.

For Example. (a) the set of all points in a straight line is an infinite set.

(b) the sets N, Z, Q, R all are infinite sets.

(iii) Null Set. A set having no element is known as a null set or void set
or an empty set and is denoted by @ or {}.

For Example. (a) {x : x is an integer and x? = 3} = @, because there is
no integer whose square is 3.

(iv) Singleton Set. A set having only one element is called a singleton
set.

For Example. (a) {a} is a singleton set.

(b) {x: x3+ 1 = 0 and xe R} = { -1 } is a singleton set.

1.6 SUBSET, SUPERSET AND POWER SET

Set A is said to be a subset of Set B if all the elements of Set A are also
present in Set B. In other words, set A is contained inside Set B.
Example: If set A has {X, Y} and set B has {X, Y, Z}, then A is the
subset of B because elements of A are also present in set B.

Subset Symbol

In set theory, a subset is denoted by the symbol € and read as ‘is a

subset of”.

Using this symbol we can express subsets as follows:
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A € B; which means Set A is a subset of Set B.

Note: A subset can be equal to the set. That is, a subset can contain all
the elements that are present in the set.

All Subsets of a Set

The subsets of any set consists of all possible sets including its elements
and the null set. Let us understand with the help of an example.

Example: Find all the subsets of set A = {1,2,3,4}
Solution: Given, A ={1,2,3,4}

Subsets are {},{1}, {2}, {3}, {4}, {1.2}, {1,3}, {1,4}, {2,3}, {2,4},
{3,4},{1,2,3}, {2,3,4}, {1,3,4}, {1,2,4}{1,2,3,4}.

Superset Definition

In set theory, set A is considered as the superset of B, if all the elements
of set B are the elements of set A. For example, if set A ={1, 2, 3, 4}
and set B = {1, 3, 4}, we can say that set A is the superset of B. As the
elements of B [(i.e.,)1, 3, 4] are in set A. We can also say that B is not a
superset of A.

Superset Symbol

The superset relationship is represented using the symbol “>”. For
instance, the set A is the superset of set B, and it is symbolically
represented by A o B.

Consider another example,
X = {set of polygons}, Y = {set of irregular polygons}

Then X is the superset of Y (X2Y). In other words, we can say that Y is
a subset of X (YcX).

Department of Mathematics
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Proper Superset

The proper superset is also known as a strict superset. The set B is the
proper superset of set A, then all the elements of set A are in B, but set B
must contain at least one element which is not present in set A.

For example, let us take four sets.

A={a b, c}, B={ab,c,d}, C=(ab,c}, D={a b, e}
From the sets given above,

B is the proper superset of A, as B is not equal to A

C is a superset of set A, but the set C is not a proper superset of set A, as
C=A

D is not a superset of A, as the set D does not contain the element “c”
which is present in set A.

Power Set

The set of all subsets of a set A is called the power set of A and denoted
by P(A).

ie. P(A)={S:Sc A}

For Example. (i) if A = {a}, then P(A) = {0, A}

(ii) If B = {1, 2} then P{B} = {9.{1}, {2}, B}

Theorem 1. Every set a subset of itself.
Proof. Let A is any set. Since X € A = X € A, therefore A c A.

Theorem 2. Empty set is a subset of every set.

Proof. Given two sets A and B, let A=@.

By definition, A is a subset of B if and only if every element in A is also
in B.

This means that A would not be a subset of B if there exists an element
in A that is not in B.
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However, there are no elements in A. This means there cannot exist an
element in A that is not in B. Thus, A is a subset of B.
Since A = @ and B is an arbitrary set, the @ must be a subset of all sets.

Theorem 3. The empty set is unique.
Proof. Let @;and @, be two empty sets.

Since empty set is a subset of every set .
Therefore @, c @, and @, c @,
= @, = @, that proves the uniqueness of @.

Note: if a set has n elements, then the number of subsets is 2™.

1.7 OPERATIONS ON A SETS

1. Union of Sets. The union of two sets X and Y is equal to the set of
elements that are present in set X, in set Y, or in both the sets X and .
This operation can be represented as;
XuY={aa€eXora€Y}
Let us consider an example, say; set A ={1, 3,5} and set B = {1, 2, 4}
ThenAuB={1,2, 34,5}
Properties of Union of Sets
(i) For any two Sets Aand B, Ac AUBorBc AUB
Proof. Let x be any element of A. then

XEA = X€EAUB
therefore A cCc AUB
similarly, we can prove Bc AU B
(ii) Forany set A, AU @ = A.
Proof Aug={x:xeAorxe@}

={x:x€A} [- @ has no element]

=A
(iii) Union of sets is idempotent i.e. foe any set A, AU A = A.
Proof AUA={x:x€e Aorx e A}

={x:XeA}
=A

(iv) Union of sets is commutative.

Proof. AUB={x:xe AorxeB}
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={xxxeBorxeAd}
=BuUud
Note: Union of sets is Associative.

2. Intersection of Sets. The intersection of two sets X and Y is the set of
all elements which belong to both X and Y. This operation can be
represented as;
XnY={a:ae Xanda€ Y}
Let us consider an example, say; set A = {1, 3, 5} and set B = {1, 2, 4}
ThenAn B ={1}
Properties of Intersection of Sets
(i) Foranytwo sets Aand B, AnBc Aand AnB c B.
Proof. Let x be any element of A n B. then
XEANB=x€eAandx€B
= X € A (in particular)

Therefore ANBcA
Similarly, we can prove AN B c B.

(i) Intersection of sets is idempotent i.e. foe any set A, AN A = A.
Proof. AnA={x:x€e Aand x € A}

={x:xXeA}

=A
(iii) Intersection of sets is commutative.
Proof. AnNB ={x:x€ A and x € B}

={x:xeBandxe A}

=BNnA

Note: Intersection of sets is Associative.

3. Difference of Sets. The difference of two sets A and B is the set of all
elements which are in A but not in B.

The difference of sets A and B is denoted by A — B.

ie. A-B={x:x€e Aand x ¢ B}

For example. (i) if A={1, 2, 3,4,5}and B {2, 4, 6, 8},then A-B =
{1, 3,5}, B-A={6, 8}

Clearlyy, A-B#B-A

Note. The difference of sets is not commutative.
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4. Complement of a Set. Let U be the universal set and A < U. then
complement of A is the set of those elements of U which are not in A.
the complement of A is denoted by A°.
Symbolically, A =U-A={x: xeUand x ¢ A} = {x: x ¢ A}
For example. If U is the set of all natural numbers and A is the set of
even natural numbers, then
A°=U-A

= the set of those natural numbers which are not even

= the set of odd natural numbers.
5. Symmetric Difference of Sets. If A and B are any two sets, then the
sets (A—B) U (B — A) is called the symmetric difference of A and B.
The symmetric difference of A and B is denoted by A A B and read as ‘A
symmetric difference B’.
For Example. IfA={a, b, c,d, e} and B ={c, d, ¢, f, g}, then
A-B={a b}, B-A={f g}
Therefore AAB=(A-B)U (B—A)

={a,b}u{f g} ={a b f g}

1.8 DE MORGAN"’S LAWS

For any two sets A and B, prove that

(@ (AUB)*=A°NB¢  (b) (ANB) = A°UB°®

Proof. (a) We need to prove, (AU B)¢ = A° n B¢

Let X=(AuB)®and Y = A° n B¢

Let p be any element of X, thenp € X = p € (AU B)¢
>pé&(AUB)

>p¢AorpgB

>peEA’andp€EDB’

SpPEA NB

>peY

“XcY ()

Again, let q be any element of Y, thenge Y=g A’ N B’
= (g€ A®and q € B¢
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=>q¢Aorq¢B
=q€&(AUB)
=g € (AUB)©

=>qg€eX

~YcX (1))

From (i) and (if) X =Y

(AUB) =A°NnB°

(b) We need to prove, (AN B)¢ = A°uUB¢
Let X=(ANnB)“and Y = A° U B¢
Let p be any element of X, thenp € X = p € (AN B)¢
=>p¢(ANB)

>p¢Aandp¢B

=>peA®orpeB°
=>peEAUB=peY
aXacY—i)

Again, let q be any element of Y, thenq € Y = g € A° U B¢
= (g €A®orqe B

=>q¢Aandq¢B

=q¢(ANB)

=g € (AnB)¢

=>geX

2Y o X—(ii)

From (i) and (ii)) X =Y

(AN B)‘= A°uU B¢

1.9 CARTESIAN PRODUCT OF TWO SETS

Given two non-empty sets A and B. The Cartesian product A x B is the
set of all ordered pairs of elements from A and B,

e, AxB={(p,q):p€A gqeB}

If either P or Q is the null set, then A x B will also be an empty set,

e, AxB=g¢o

Department of Mathematics
Uttarakhand Open University



https://byjus.com/maths/empty-set/

Real Analysis MT(N) - 201

For Example: if A= {1, 2} and B = {3, 4, 5}, then the Cartesian
Productof Aand B is Ax B ={(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}.

Cardinality of Cartesian Product?

The cardinality of Cartesian products of sets A and B will be the total
number of ordered pairs in the A x B.

Let p be the number of elements of A and q be the number of elements in
B.

So, the number of elements in the Cartesian product of A and B is pg.

i.e. if n(A) = p, n(B) =q, then n(A x B) = pqg.

1.10 FUNCTIONS OR MAPPINGS

A function can be visualized as an input/output device.

Function

Range

Let A & B be any two non-empty sets. If there exists a rule ‘f > which
associates to every element x € A, a unique element y € B, then such
rule ‘f’ is called a function or mapping from the A to the set A to the
set B.

We write f: A — B read ‘f’ is a function from X to Y.

The set A is called the domain of f and the set B is called the Co-domain
of f.

Range of f = f(A) = {f(x): x € A}, clearly f(A) c B.

1.11 KINDS OF FUNCTIONS

(1) Equal Functions. Let Aand Bbe setsand f: A— Band f: B —
A be functions. We say that f and g are equal and write f =g if f(a) =
g(b) for alla € A. If fand g are not equal, we write f # g.
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(2) One — One Function (Injective Function). A function f is one-
to-one if every element of the range of g corresponds to exactly one
element of the domain of f. One-to-one is also written as 1-1.

Formally, it is stated as, if f(x) = f(y) implies x=y, then f is one-to-one
mapped, or fis 1-1.

Example. Show that f: R— R defined as f(a) = 3a3 — 4 is one to one
function?

Solution: Letf(a:)=f(a.) foralla:, 2€R
S0 3a*—4 =332 -4

a® = a?

at-a2=0

(n—a) (+taat+a?)=0

aa=aand (a2 + aid + a2 =0

(a2 + @@ + &%) = 0 is not considered because there are no real values of
a and a..

Therefore, the given function f is one-one.

(3) Onto Function (Surjective Function). Onto function could be
explained by considering two sets, Set A and Set B, which consist of
elements. If for every element of B, there is at least one or more than one
element matching with A, then the function is said to be onto

function or surjective function.

Note: To show that a function f is an onto function, put y = f(x), and
show that we can express x in terms of y for any y € B.

Example 1. Let A= {1, 5, 8, 9) and B {2, 4} And f ={(1, 2), (5, 4), (8,
2), (9, 4)}. Then prove f is a onto function.

Solution: From the question itself we get,

A={1,5,8,9), B={2 4} &f={(1, 2), (5 4), (8, 2), (9, 4)}

So, all the element on B has a domain element on A or we can say
element 1 and 8 & 5 and 9 has same range 2 & 4 respectively.
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Therefore, f: A — B is a surjective function.

Example 2. How to tell if this function is an onto function? g: R — R
defined by g(x) =1 + x?

Solution: Given the function g(x) = 1 + x.

For real numbers, we know that x? > 0. So 1 + x? > 1. g(x) > 1 and hence
the range of the function is (1, o). Whereas, the second set is R (Real
Numbers). So the range is not equal to codomain and hence the function

is not onto.

Example 3. If f: R — R defined as f(x) = 2x.

Solution. Let y = 2x then x = %

Thus, for every y R, we have x = % € R such that f(x) =y.

Thus, f is onto.

Example 4. Consider the function f: R — R defined as f(x)= x°.

Solution. Let y = x? therefore x = ++/y

The square of any real number is non-negative.

It means that y > 0.

Thus, for y <0, we cannot find an element x such that f(x) = y.

Thus, the range of f(x) is the set of non-negative real numbers and the
negative real numbers are not in the image of f(x).

As a result, f(x) is not onto.

Note: If you restrict the co-domain to R*u {0}, which is the set of
non-negative real numbers, the function becomes onto.
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1.12 INVERSE FUNCTION

Let f: A — B be a one — one and onto function. Then the function

g: B — A which associates to each element b € B the unique element

a € A such that f(a) = b is called the inverse function of f. the inverse
function of f is denoted by f~1.

Note: every function does not have an inverse. A function f: A — B has
inverse iff f is one — one and onto. If f has inverse, then f is said to be
invertible and f~1: B — A. also if a € 4, then f(a) = b where b € B

= a=f"1(b).

1.13 COMPOSITE OF FUNCTION

Let f: A— Band g: B — C be two functions. Then the composition of
fand g, denoted by g o f, is defined as the function g o f: A — C given
by g e f(x) =g(f (X)), VX € A.

Domain: f(g(x)) is read as f of g of x. In the composition of (f o g) (X)
the domain of function f becomes g(x). The domain is a set of all values

which go into the function.

Example: If f(x) = 3x+1 and g(x) = x?, then f of g of x,

f(g(x)) = f(x?) = 3x?+1.
If we reverse the function operation, such as f of f of x,

9(f(9) = g(3x+1) = (3x+1)*

CHECK YOUR PROGRESS

True or false Questions

Problem 1. function f: R— R, then f(x) = 2x is injective.

Problem 2. function f: R— R, then f(x) = 2x+1 is not injective.
Problem 3. The onto function is also called the surjective function.

Problem 4. function f: R— R, f(x) = |x| is an onto function.

Problem 5. In the surjective function, the range of the function “f” is

equal to the codomain.
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1.14 SUMMARY

1. A set is a well - defined collection of distinct objects.

2. A € B; which means Set A is a subset of Set B.

3. Foranytwosets Aand B,AnBc Aand An B c B.

4. (@ (AuB)*=A°NnB® (b)) (ANnB)=A°UB®

5. Let f: A— B and g: B — C be two functions. Then the composition

of fand g, denoted by g o f, is defined as the function g o f: A — C given
bygo f(x)=g(f(x)), VXEA.

1.15 GLOSSARY

Numbers
letters

Collections of objects
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S. Chand and Co., 2005.
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6. K. A. Ross, Elementary Analysis, The Theory of Calculus (2™
edition), Springer, 2013.

1.18 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that the function f:N — N s given by f(x) = x2 is one — one

function.

Q 2. Prove that the function f:N — N is given by f(x) = x? is not onto

function.

Q 3. Let A =[-1, 1]. Then, discuss whether the following functions

defined on A are one-one, onto or bijective.

(a) f(x) = g. (b) f(x) = x2

Q 4. Iff(x) = 3x?, then find (f o f)(X).

Q5. Iff(x) =2x and g(x) = x+1, then find (fo g )(x) if x = 1.

1.19 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. False
CYQ 3. True
CYQ 4. False
CYQ 5. True

TERMINAL QUESTIONS
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TQ 3. (a) One - One but not Onto.

(b) Not One - One and not Onto.

TQ 4.27 X2

TQ5. 4
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2.1 INTRODUCTION

The modern study of set theory was initiated by the German
mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular,
Georg Cantor is commonly considered the founder of set theory. The non-

formalized systems investigated during this early stage go

2.2 OBJECTIVES

After studying this unit, learner will be able to

(i) Real numbers

(i) Algebraic properties of R
(iii) Order properties of R

(iv) Completeness property of R

(v)  Supremum and Infimum property of R

(vi)  Archimedean property of R

2.3 REAL NUMBERS

A set containing all rational as well as irrational numbers is called the set
of all real numbers. The set of real number is denoted by R.

We now describe some fundamental properties of the set R.
1. Algebraic properties of R.

2. Order properties of R.

3. Completeness property of R.

4. Archimedean property of R.
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2.4 ALGEBRAIC PROPERTIES OF R

Addition and multiplication are defined on the set R satisfying the
following properties:

Al. a+beRforalla binR.

A2. (a+b)+c=a+(b+c)foralla b, cinR.

A3. There exists an element 0 in R (called zero element) such that
a+t0=aforallainR.

. For each a in R there exists an element — a in R such that

a+(-a)=0.

A5. a+b=Db+aforalla binR.

M1. a.be Rforalla, binR.

M2. (a.b).c=a.(b.c)foralla, b, cinR.

M3. There exists an element 1 in R (called unity element) such that

a.l=aforallainR.

M4. For each element a # 0 in R there exists an element % in R such

1 -—
thata.(z)-l.
M5. a.b=b.aforalla binR.

D.a.(b+c)=a.b+a.cforalla binR.

Theorem 2.4.1 Leta, b, c € R. Then
(i) a+b=a+cimpliesb = c (cancellation law for addition).

(i) a+0and a . b =a . c implies b = c (cancellation law for
multiplication).

Proof. (i)sincea+b=a+c
-a € R, since a € R. Therefore-a+ (a+b)=-a+ (a+c)
Or (-at+a)+b=(-a+a)+c, byA2
Or 0+b=0+c, byAd
Or b=c.
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(if) sincea.b =a.c
% € R, since a # 0. Therefore (%) (a.b) = G) (a.c)
Or, (i.a).b = (%.a).c, by M2
Or, 1.bh = 1.c, by M4

Or, b=c.
Theorem 2.4.2 Leta,b,c € R. Thena.b = 0impliesa =0o0rb =0,

Proof. Let a # Othen%e ]R{and%.a =1.

1 1 1
a.b—O=>z.(a.b)—Z.O=>(z.a).b—0=»b—0.

Therefore a # 0 = b = 0. Contrapositively, b # 0 = a = 0.

Therefore eithera = 0 or b = 0.

2.5 ORDER PROPERTIES OF R

On the set of R, a linear order relation < is defined by “a < b if a € R,
b € Rand a is less than b” and it satisfies the following conditions:

O1. If a, b € R, then exactly one of the following statements holds —
a < b,ora=b,orb < a (law of trichotomy);

O2.a<band b < c= a < cfora,b,c € R (transitivity);

O3.a<banda+c<b+cfora,b,c€R,;

O4.a<band 0 < c= ac < bcfora,b,c €R.

Note: 1. The field R together with the order relation defined on R
satisfying O1 — O4 becomes an ordered field.

Note: 2.n > 0 foralln e N

Note: 3. Forall n € N,% > 0.

Theorem25.1Leta,h e R. Thena<b=a < % < b.

Proof, a<b=a+a<a+b

=2a<a+b

:>%.2a<%(a+b),since%eRand%>0
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a+b
=>a<T.

Alsoa<b=a+b<b+b
= a+b<?2b
1 1 . 1 1
= 5(a+b)<5.2b,smceze]R%and5>0

b
= %<b.

b
Therefore a < % < b.

Corollary. There is no least positive real number.

If possible, let a be the least positive real number. Then a > 0.

0<a=0 <%a<abytheorem.

This shows that %a is a positive real number and %a < a indicates that a
is not the least positive real number.

It follows that there is no least positive real number.

2.6 ABSOLUTE VALUE

Let a € R. The absolute value of a, denoted by |a|, is defined by
a, ifa>0
la]=40, ifa=0
—a,ifa<0

For example, |4]| = 4,|—10| = 10,|0| = 0.

It follows from definition that |a| is a non-negative real number. |a| =0
if and only if a = 0.

Theorem 2.6.1 Prove that

(i) |—a| = |a| forall a € R.

(ii) |ab| = |a||b]| forall a,b € R.

(ii)ifa,ceR ¢c>0, then|a| < ce= —-c<a<c.

Proof. (i) Leta > 0 then —a < 0 and |—a| = —(—a) =a =|a|.
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Now let a < 0 then —a > 0 and |—a| = —a = |a].
Leta = 0then —a =0and |[—a| =0 = |a|.
Combining the cases, we have |—a| = |a| for all a € R.
(ii) Let one or both of a, b be 0. Then ab = 0.
In this case |ab| = 0 and |a||b| = 0. Therefore |ab| = |a||b].
Now leta > 0, b > 0thenab > 0 and |ab| = ab, |a| = a,|b| = b
Therefore |ab| = |a]|b].
Now leta < 0, b > 0thenab < 0 and |ab| = —ab, |a| = —a, |b| = b
Therefore |ab| = |al|b].
Now let a < 0, b > 0 then proof is similar.
Now leta < 0, b < 0thenab > 0 and |ab| = —ab, |a| = —a, |b| = —b
Therefore |ab| = |a||b].
Combining the cases, we have |ab| = |a||b| forall a,b € R.
(iii) let la] < cthenifa>=0,a<candifa<0,—a<c
this implies that
—c < a.Therefore |a| <¢c = —-c<a<ec.
Conversely, letc > 0and —c <a <c
Thenwe havea < ¢, 0 < cand —a < c.

Combining, we have |a| < c.

2.7 TRIANGLE INEQUALITY

Forall a,b € R, |a + b| < |a| + |b]|
Proof. We have —|a| < a < |al and —|b| < b < |b]|.
Then —(la| + |b]) < a+ b < |a| + |b].
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This implies |a + b| < |a| + |b]| forall a,b € R.

Corollary 1. |a — b| < |a| + |b]| forall a,b € R.

Proof. Replacing b by —b in triangle inequality we get the inequality.
Corollary 2. ||a| — ||| < la — bI.

Proof. |a| = |la— b + b| < |a — b|+=< |b]

Or |a|l—|b| < |a—-b|.

Again |b|=|b—a+al <|b—al|+|a]

Or |b| —la| < |b—al| =|a—b|

So we have —|a — b| < |a| — |b| < |a — b].

This implies |la] — |b]| < |a — b|, since —c < a < c=|a|] < c.
Corollary 3. Let aq,a,,....,a, € Rthen

la; + a,+....+ ay| < |aq| + |az] + -+ |a,].

Example. Solve the equation |ﬁ| = 3.

= 13.
2x-1

Solution. Given |

x+—2| _
2x -1l
X+ 2

If =3=x+2=6x—-3=>x=1
2x—1

f X2 = 3= x+2=—6x—-3=x=-
2x -1 7

Therefore x==,1.

2.8 COMPLETENESS PROPERTY OF R

Let P be a Subset of R. A real number u is said to be an upper bound of
Pifx € P = x < u. Areal number [ is said to be a lower bound of P of
xEP=x>1.
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Let P be a subset of R. P is said to be bounded above if P has an upper
bound. P is said to be bounded below if P has lower bound.

P is said to be bounded set if P be bounded above as well as bounded
below.

Example 1. LetP = {1, § } P is bounded above, 1 being an upper
bound. P is bounded below, 0 being a lower bound.

Example 2. LetP ={x € P:1 < x < 2}. P is bounded above, 2 being
an upper bound. P is bounded below, 1 being a lower bound.

Example 3. Let P = @. Every real number x is an upper bound of the set
P. Every real number is a lower bound of the set P. therefore P is
bounded set.

2.9 SUPREMUM AND INFIMUM PROPERTY
OF R

Let P be a subset of R. If P is bounded above, then an upper bound

of P is said to be the supremum of P (or least upper bound of P) if it is
less than every other upper bound of P.

If P is bounded below then a lower bound of P is said to be the infimum
of P (or the greatest lower bound of P) if it is greater than every other
lower bound of S.

Note: 1. Every non-empty subset of R that is bounded above has a least
upper bound or supremum.

2. Every non-empty subset of R that is bounded below has a greatest
lower bound or infimum.

Properties of the supremum and the infimum.

Let P be a non-empty subset of R, which is bounded above. Then
supremum of P exists, Let M = sup P. then M € R and M satisfies the
following conditions:

()xeP = x <M,and

(ii) for each € > 0, there exist an element y (depends on €) in P such that
M—-e<y <M.
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Let P be a non-empty subset of R, which is bounded below. Then infimum
of P exists, Let m = inf P. then m € R and m satisfies the following
conditions:

(i) xeP = x>m,and

(ii) for each € > 0, there exist an element y (depends on €) in P such that
m<ysm + €.

Question 1. Prove that the set of natural number (N) is not bounded
above.

Solution: The set N is a non — empty subset of R, since 1 € N. Let N be
bounded above. Then N being a non — empty subset of R, sup N exist by
supremum property of R. Let u = sup N. Then

()xeN = x <u,and

(ii) for each € > 0, there exist an element y (depends on €) in N such that
u—e<y=su

Let us choose € = 1. Then there exists an element k in N such that
u— 1<k<uthenu— 1<k=u<k+1.

Since k is a natural number, k + 1 is also a natural number. k+1 > u
implies that u is not an upper bound of the set N. Thus we arrive a
contradiction. So aur assumption was wrong. Hence the set of natural
number (N) is not bounded above.

Question 2. Let P be a non — empty subset of R which is bounded above
and T = {—x:x € P}. Prove that the set T is bounded below and
infT = —supP.

Solution: since P is bounded above therefore supP exists. Let u = sup P.

Thenx € P = x < u. let y € T then —y € P and therefore —y < u, i.e.

y = —u. This implies that —u is a lower bound of T. therefore the set T is

bounded below.

Let us choose € > 0. Since u = supP, there exists an element p in P such
thatu — € <p < u. Therefore —u < —p < —-u + €.

Letgq =—p. Thenqg €T.

(i) shows that for a pre-assigned positive e there exists an element g in T
suchthat —u < g < —u+ e.

This proves that —u = infT. Therefore infT = — supP.
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Question 3. Let P be a non — empty bounded subset of R with supP = M
and infP = m. Prove thatthe set T = {|x — y|:x € P,y € P } is bounded
above and supT = M — m.
Solution:xeP=>m<x<M,yeP=m<y<M.

Therefore m—M <x—y<M-mie |[x—y|<M-m.

This shows that T is bounded above, M — m being an upper bound.

Let a € P. Then |a —al| € T showing that T is non-empty. By the
supremum property of R, supT exists.

We prove that no real number less than M — m is an upper bound of T.
if possible, let p < M — m be an upper bound of T.

Let(M —m)—p =2e.Thene>0andp+e =M —m —e.

Since supP = M, there exist an element x € P such that

M—§<xSM

Since inmP = M, there exist an element y € P such that

€
m<x£m+5.

Nowx —y>M-m—¢€ ie.x—y<p+ €.
This shows that p is not an upper bound of T.
Therefore, no real number less than M — m is an upper bound of T.

Hence supT = M — m.

Note: Let 4, B be bounded subset of R suchthat x € A,y € B = x < y.
Then supA < infB.

2.10 ARCHIMEDEAN PROPERTY OF R

If x, y € Rand x > 0,y > 0, then there exists a natural number n such
that ny > x.

Proof: If possible, let there exist no natural number n for which ny > x.
Then for every natural number k, ky < x.

Thus, the set S = {ky: k € N} is bounded above, x being an upper bound.
S is non-empty because y € S.
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By the supremum property of R, supS exists. Let supS =b. then ky < b
forall k € N.

b —y < b since y > 0. This shows that b — y is not an upper bound of S
and therefore there exists a natural number p such that
b—y<py<b.Thisimplies(p + 1)y > b

Butp € N= p + 1 € N and therefore (p + 1)y € S.

(i) shows that b is not the supremum of S, a contradiction.

Therefore, our assumption is wrong and the existence of a natural number

n satisfying ny > x is proved.

Note: (1) If x € R, then there exists a natural number n such that n > x.
Case (i). If x > 0.

Taking y = 1, by Archimedean property of R there exists a
natural number n such that n.1 > x and hence existence is proved.
Case (ii). If x < 0. Thenn = 1.
(2). If x € Rand x > 0, then there exists a natural number n such that
0<-<x.
Taking y = 1, by Archimedean property of R there exists a natural

number n such that nx > 1.

. . 1 1
Since n is a natural number, n > 0 and therefore - > (0 and also - < x.

Therefore, we have 0 < % < x.

(3). If x € Rand x > 0, then there exists a natural number m such that
m—1<x<m.

Taking y = 1 and x > 0, by Archimedean property of R there exist a
natural number n such thatn.1 > x, i.e. n > x.

Let S ={k € N: k > x}. Then S is non-empty subset of N, since n € S. By
well ordering property of the set N, S has a least element, say m. Since
mesS, m>x.

Asm s leastelementof S m—1»x.ie.m—1<x.

Hencem — 1 < x < m.
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2.11 EXTENDED SET OF REAL NUMBER

It is often convenient to extend the set R by the addition of two elements
oo and —oo. This enlarged set is called the extended set of real numbers
and is often denoted by R*.
In the extended set R* we define —
Forallx e R, x + 0o =0+ x =

X+ (=) = (=) + x = —oo,
Forall x > 0, x.00 = 00.x = o0 and

x.(—0) = (—0).x = —oo0,
Forall x < 0, x.00 = c0.x = —o0 and

x.(—00) = —o00.x = co.
Now oo+ o0 =00, (=) + (—00) = —o0

00,00 = 00, (-00), 00 = —00, (-00). (—00) = oo,
And o + (—00), (-00) 4 00, 0. 0, 00.0, 0 — 00, —00. 0 are not defined.
Now, if S be a non-empty subset of R having no upper bound, we define
supS = oco. If S be a non-empty subset of R having no longer bound, we

define infS = —oo.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The set of real number is not bounded above.

Problem 2. The set of natural number is bounded below.

Problem 3. Leta, b e]R.Thena<b=>a<asz<b.

Problem 4. |ab| = |a||b]| forall a, b € R.

Problem 5. The supremum of the interval (1, 3) is 4.
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2.12 SUMMARY

1. A set containing all rational as well as irrational numbers is called the
set of all real numbers. The set of real number is denoted by R.

2. There is no least positive real number.

3. Every non-empty subset of R that is bounded above has a least upper
bound or supremum.

4.1f x,y € Rand x > 0,y > 0, then there exists a natural number n
such that ny > x is called Archimedean property of R.

5. The set of natural number (N) is not bounded above.

2.13 GLOSSARY

Numbers
Sets

Intervals
Modulus
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2.16 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that the set of natural number N is not bounded above.

Q 2. Prove that the set {1, 2, 3, ..., 10} is not bounded above.

Q 3. Find the Supremum and infimum of {%:n € N}.

Q4. Provethattheset T ={|x —y|:x € P,y € P } is bounded above.

Q 5. Solve the equation |%_36| <1

2.17 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True

CYQ 2. True

CYQ 3. True

CYQ 4. True

CYQ 5. False

TERMINAL QUESTIONS

TQ3.1,0

TQ 5. Solution setis{x e Rix =29} U {x € R:x < 1}.
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UNIT 3: LIMIT POINT, OPEN SET AND
CLOSED SETS

CONTENTS:

Introduction
Objectives
Neighbourhood
Interior point
Open set
Limit point
Closed set

Summary
Glossary
References
Suggested Reading
Terminal questions

Answers
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3.1 INTRODUCTION

A point is called a limit point of a set in the Euclidean plane if
there is no minimum distance from that point to members of the set; for
example, the set of all numbers less than 1 has 1 as a limit point. A set is
not connected if it can be divided into two parts such that a point of one
part is never a limit point of the other part. The set is connected if it cannot
be so divided. For example, if a point is removed from an arc, any
remaining points on either side of the break will not be limit points of the
other side, so the resulting set is disconnected. If a single point is removed
froma simple closed curve such as a circle or polygon, on the other hand,
it remains connected; if any two points are removed, it becomes
disconnected. A figure-eight curve does not have this property because
one point can be removed from each loop and the figure will remain

connected.

3.2 OBJECTIVES

After studying this unit, learner will be able to

(i) Neighbourhood
(i1) Interior point
(iii) Open set

(iv) Limit point

3.3 NEIGHBOURHOOD

Letc € R. Asubset S c R is said to be neighbourhood of c if there

exist an open interval (a, b) such that ¢ € (a,b) C S.
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Clearly an open bounded interval containing the point c is a
neighbourhood of c. Such a neighbourhood of ¢ is denoted by
N(c).

A closed bounded interval containing the point ¢ may not be a
neighbourhood of c.

For example: 1 € [1, 5] is not a neighbourhood of 1.

Theorem 3.3.1. Let ¢ € R. The union of two neighbourhoods of ¢
is a neighbourhood of c.

Proof. Let S; € R, S, < R be two neighbourhoods of c¢. Then there
exists open interval (a4, b,), (a,, b,) such that ¢ € (a;, b,) € S; and

c € (a,, b,) CS,.

Then a; < by, a, < b; and a; < b,, a, < b,. Let a; = min{a,, a,},

b; = max{b,, b,}. Then (ay, b;) U (a,, b,) = (a3, bs) and c € (a,, b,).
(ay, b)) © S;US,and (ay,, b)) € S;US,

= (a3, b3) = (ay, b;) U (az by) € S1US,.

Thus ¢ € (as, b3) € S1US,.

This prove that S; U S, is a neighbourhood of c.

Note: The union of finite number of neighbourhoods of c is a

neighbourhood of c.

Theorem 3.3.2. Let c € R. The intersection of two
neighbourhoods of ¢ is a neighbourhood of c.

Proof. Let S; € R, S, c R be two neighbourhoods of c. Then there
exists open interval (a4, b,), (a,, b,) such that ¢ € (a;,b;) € S; and

c € (a, by) C S,.

Then a, < by, a, < b; and a; < b,, a, < b,. Let a; = max{a,, a,},

b; = min{b,, b,}. Then (a,, b;) N (a,, b,) = (as, b3) and ¢ € (a,, b,).
(as, b3) = (a;, by) N (az,by) € (aq, b)) € S; and (as, bs) =

(ay, b)) N (a,, by) € (a, b,) C S,

= (a3, b3) € S;NS,.
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Thus ¢ € (as, b3) € S1NS,.

This prove that S; n S, is a neighbourhood of c.

Note: The intersection of finite number of neighbourhoods of c is a
neighbourhood of c.
Note: The intersection of infinite number of neighbourhoods of ¢ may or

may not be neighbourhood of c.

Example: for everyn € N, (_%%) is neighbourhood of 0.

Npe1q (—%,1) = {0}. This is not a neighbourhood of 0.

3.4 INTERIOR POINT

Let S be a subset of R. A point x in S is said to be an interior point
of S if there exists a neighbourhood N (x) of x such that

N(x) cS.

The set of all interior points of S is said to be interior of S and denoted
by int S or by S°.

From definition it follows that S° c S for any set S c R.

Examples 1. Let S = {1, )=y e }

Let x € S, every neighbourhood of x contain some points not in S.
So x can not be an interior point of S. Therefore, int S = @.
Examples 2. Let S = N.

Let x € S, every neighbourhood of x contain some points not in S.
So x can not be an interior point of S. Therefore, int S = @.
Examples 3. Let S = Q.

Let x € S, every neighbourhood of x contain some points not in S.
So x can not be an interior point of S. Therefore, S° = @.
Examples 4. Let S ={x € R:1 < x < 3}. Each point of S is an
interior point of S. so interior of S = S.
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Examples 5. Let S = R. Each point of S is an interior point of S. so

interior of S° = S.

3.5 OPEN SET

Let S be a subset of R. S is said to be open set if each point of S is

an interior point of S.

Examples 1. Let S = {1%§ } no point of S is an interior point

of S. therefore, S is not an open set.

Examples 2. Let S = Z.

no point of S is an interior point of S. therefore, S is not an open
set.

Examples 3. Let S = Q.

no point of S is an interior point of S. therefore, S is not an open
set.

Examples 4. Let S ={x € R:1 < x < 3}. Each point of S is an

interior point of S. therefore, S is an open set.

Examples 5. Let S = R. Each point of S is an interior point of S.

therefore, S is an open set.

Theorem 3.5.1. Let S c R. then S is an open set if and only if

S=ints§.

Proof. Observe in general that int S. < S. Now suppose that S is open.
Then for every x € S, there is € > 0 so that N(x, e ) S S and this just says
x € int S and since x was arbitrary we have shown that S € int S or
equivalently S =int S.

Conversely suppose the int S= S. The if x € S then x is an interior point

and there isan € > 0 so that N(x,e ) € S. But this says S is open.
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Theorem 3.5.2. The union of two open sets in R is an open set.
Proof. Let G, and G, be two open Sets in R.

Let x €G, U G,. Then x € G, or x € G,.

Let x € G;. Since G, is an open set and x € G4, x is an interior point of
G;. Therefore, there exists a neighbourhood N(x) of x such that
N(x)c G,=N(x) C G, U G,.

This shows that x is an interior point of G; U G,.

Since x is arbitrary, every point of G; U G, is an interior point of

G, U G,. Therefore G, U G, is an open set.

If however, x € G,, we can prove in similar manner that G; U G, is

an open set. This completes the proof.

Theorem 3.5.3. The intersection of two open sets in R is an open

set.

Proof. Let G, and G, be two open Sets in R.

Case 1. G, n G, = @. Since @ is an open set, G; N G, is an open set.
Case 2. GyNG, # 0. Letx € G; N G,. Thenx € G, and x € G,.
Since G, is an open set and x € G4, x is an interior point of G;.
Hence there exists a positive §; such that the neighbourhood
N(x,6,) © G;.

Since G, is an open set and x € G,, x is an interior point of G,.
Hence there exists a positive §, such that the neighbourhood
N(x,6;) € G;.

Let § = min{é&;, 5,}. Then 6.

N(x,6) c N(x,6,)c Gyand N(x,6) € N(x,6,) c G,.
Consequently, N(x,6) € G, N G,.

This shows that x is an interior point of G; N G,. Since x is arbitrary,

G, N G, is an open set and this completes the proof.

Theorem 3.5.4. The union of an arbitrary collection of open sets in

R is an open set.
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Proof. Let {G,: @ € A}, A being the index set, be an arbitrary
collection of open sets in R. Let G = Uge p Gy

x € G. then x belongs to at least one open set of the collection, say
Gy, (L EN).

Since G, is an open setand x € G, x is an interior point of G;.
Therefore, there exists a neighbourhood N (x) of x such that N(x) c
G;. N(x) c G; = N(x) cG.

This shows that x is an interior point of G. Since x is arbitrary, G is an

open set and this completes the proof.

Note: The intersection of an infinite number of open sets in R is not
necessarily an open set.

Let us consider the sets G; Where

Gi={xeR: —1<x<1}

GZ={xE]R: —%<x<%}

Gn={xE]R: —%<x<%}

Each G; is an open set. N;2, G; = {0}. This is not an open set.
Let us consider the sets G; Where

Gi={xeR —1<x<1}

G,={x€eR: —2<x<2}

Go,={xeR —n<x<n}

Each G; is an open set. N{2; G; = G;. This is an open set.

From these two examples we conclude that the intersection of an
infinite number of open sets in R is not necessarily an open set.

Note: Every open interval is open set.

Theorem 3.5.5. Let S is a subset of R then int S is an open set.
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Proof.

Case 1. int S = @. Since @ is an open set, int S is an open set.

Case 2. int S # 0. let x € int S. then x is an interior point of S.
therefore, there exist a neighbourhood N (x) of x such that N(x) c S.
let x € N(x). Then N(x) is neighbourhood of y also and since

N(x) c S, y is an interior point of S.

Thusy € N(x). Then N(x) = y € int S. therefore N(x) ) c int S.
This shows that x is an interior point of int S.

Thus x € int S = x is an interior point of int S.

Therefore int S is an open set. This completes the proof.

3.6 LIMIT POINT

A point x € R is said to be limit point of a subset of S of R if every
neighbourhood of x has a point of S other that x.
In symbols, a point x € R is said to be limit point of a subset S of R if
for each neighbourhood N of x,
(NNS)—{p}+0.

Note: 1. Limit point of set is also called a limiting point or a cluster
point or a condensation point or an accumulation point of the set.
Note: 2. A finite set has no limit point.
Note: 3. A limit point of S may or may not belongs to S.
Note: 4. ISOLATED POINT.
A point x € S is called an isolated point of S if x is not a limit point of S.
Note:5. Set of all limit points of S is called the derived set of S and is
denoted by S’. thus

S" = {x:x is a limit point of S}.

Example: 1. Prove that 0 is the limit point of the set

Sz{%:ne N}.
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Solution: for each € > 0, (—¢, €) is neighbourhood of 0.

By Archimedean property of reals, foreache > 0,3ne N

such that n > =
1 1 1

= =-<e€ = —e<0<=-<c€ = - €(—€,€)
n n n

Thus, every neighbourhood of 0 contains a point of S, namely %

= 0 is limit point of S.

Example: 2. Find the derived set of each of the following:
() (1,00) (i) (=0, —1)
Solution:1. Let x be any real number.
Ifx<1,thenfor0<e<1—x,(x—€x+¢€)N(1,0)=0.
= Any real number < 1 is not a limit point of (1, o).
If x € [1,0), then for every € > 0, (x — €, x + €) contains infinitely
many points of (1, «o) to the right of 1.
= Every element of [1, o) is a limit point of (1, ).
(1,00)" = [1, ).

(ii) Please try yourself. Answer: (—oo, —1)

Example: 3. Find the derived set of each of the following:
§ = {HED" e n)

Solution: Let S = {H(n;l)n:n € N}

When n is odd, H(n;l)nzﬂzo

n

. 1+(-1)" 1+1
When n is even, % ===

2
n
1
Therefore, S={0}u {;:n € N}

- S = {0}.

Example: 4. Give one example of each of the following:
(1) an infinite set having no limit point.

(i) an infinite set having one limit point.

(iii) a set having two limit point.
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(iv) a set having an infinite number of limit points.

(v) a set every point of which is a limit point.

(vi) a set with only /2 is a limit point.

Solution:

(i) The set of all natural numbers is an infinite set having no limit point

set.

(i) The set {%n € N} is an infinite set having only one limit point,

namely 0.

(iii) The set {l:n € N} U {1 ~lne N} has two limit points, namely
n n

0and 1.

(iv) The sets Q, R and (1, 2) have an infinite number of limit points.
(v) Every point of a closed interval [1, 2] is a limit point.

(vi) The set {2 + 2:n € N} has only v2 as a limit point.

Example: 5. Give one example of each of the following:

(1) an unbounded set having limit points.

(i) a bounded set having limit points.

(iii) an unbounded set having no limit point.

Solution:

(i) The set of all rational numbers is an unbounded set and derived set of
QisR.

(ii) The set [1, 2] is bounded and [1,2]" = [1,2].

(iii) The set Z is unbounded and Z' = @.

Example: 6. Prove that a finite set has no limit point.

Solution: Let S = {p,, p,, , PnJ be a finite subset of R. Let p be any
real number.

If we choose € = min.{|p — p1|, |p — p2|, ... .., [P — Pnl }, then (p —
€,p + €) is a neighbourhood of p which contains no element of S, i.e.
p—ep+e)NS=0

Therefore, p is not a limit point of S.

Since p is arbitrary, therefore S has no limit point.
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Some important theorem:

Theorem 1. (Bolzano — Weierstrass Theorem)

Every infinite and bounded subset of R has a limit point.
Proof: Let S be an infinite bounded subset of R.
(1) if S is bounded = 3 real number k and K suchthat k <s < KV
S ES.
(i) Let a set T be defined as follows
T = {¢t: t > finitely many elements of S}
(iii) To prove that T = @.
k < sV s eS = kisgreater than no elements of S
=>keT =T=+0Q.
(iv) To prove that T is bounded above.
Foranye >0, K+e>K>s VseS =K+ e¢T,K¢gT
VteT, t<K = Tisbounded above.
T is a non-empty bounded subset of R
T has a least upper bound say wu.
(v) To prove that u is a limit point of S.
Let (u — €,u + €) be any neighbourhood of u.
u is least upper bound of T= 3 somet € Tsuchthat t > u—e¢€,€e >
0.
Now t € T = t > finitely many elements of S
= u — € > finitely many elements of S
= finitely many elements of S lie to the left of u — €
= infinitely many elements of S lie to right of u — €
Also u=LubofT =u+e¢T
= u + € > infinitely many elements of S

= infinitely many elements of S lie to left of u + €
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Combining (1) and (2), (u — €, u + €) has infinitely many
elements of S. but (u — €, u + €) is any neighbourhood of wu.
Therefore, every neighbourhood of u has infinitely many elements of S.

Hence u is a limit point of S.

Theorem 2. If S is an infinite bounded above subset of R and
u=Lubof Ssuchthatu & S, then u € S’, i.e. u is limit point of S.
Proof: For each € > 0, (u — €, u + €) is neighbourhood of u.

Since u = l.u.b. of S, u — € is not an upper bound od S.

Therefore 3 some x € Ssuchthat x> u—e€

Also x<u< u+te

Therefore u—e<x< u+e

= (u—€,u + €) NS —{u} contains at least one point x of S.

= u is a limit point of S.

Note: The derived set of an infinite bounded subset of R is bounded.

3.7 CLOSED SET

Let A be a subset of R then A is said to be closed set if its complement
A° =R — A is an open set.

i.e. a set is closed if its complements is open.

For example. (i) R = R — R = @ which is open = R is closed.

(il) @€ =R — @ = R which is open = @ is closed.

Note: R and @ are only two sets which are both open and closed.

(iii) [a, b]¢ = (—o0,a) U (b, ) being the union of two open sets is

itself open = every closed interval [a, b] is a closed set.

Question. Prove that the set Z of all integer is a closed set.
Solution. Z will be the closed set if Z€ is open an open set.

Let x € Z¢ then x ¢ Z i.e. x is not an integer.
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|x—n|

If n is an integer nearest to x, then 3 € = — > 0 such that

(x — €, x + €) does not contain any integer

Therefore, (x —€,x +€) c Z¢ = Z° is neighbourhood of x.
But x is any point of Z€.

Therefore, Z° is neighbourhood of each of its points.

= Zisopen = Zis closed.

Similarly, the set N of all natural numbers is a closed set.

Question. The set of all rational number is not a closed set.
Solution. Let x be any element of Q¢ = R — Q, the set of irrational
numbers.

For every € > 0, (x — €, x + €) contains infinitely many rational
numbers.

Therefore, 3 no open interval such that x € I c Q¢

= Q° is not a neighbourhood of x

= Q° is not an open set.

= Q is not a closed set.

Theorem 3.7.1. The union of two closed sets is a closed set.
Proof: Let A and B be two set closed seats.
= A€ and B¢ are open sets.
= A° N B€ is an open set.
= (A U B)° is an open set.
[since A° N B¢ = (A U B)¢ De Morgan’s Law]

= A U B is an open set.
Theorem 3.7.2. The union of a finite number of closed sets is a closed
set.
Proof: Let A, A,, ..., A, be n closed setsand S = Uj-, 4;
= A, A¢,,..., A€, are n open sets.
= UL, A; is an open set.

[ since the intersection of a finite collection of open sets is an open set]

= (U™, 4;)° isan open set.

= UL, 4; is a closed set.
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Theorem 3.7.3. The union of an infinite family of closed sets need not
be a closed set.

Proof: Let 4,, = E 1] v n € N, then {4,},, ¢y is an infinite family of

closed sets.

Ay={1), A =5 1] 4 =5 1]

Therefore, Up—; 4, = {1} U E 1] U E 1] U ... = (0, 1] which is not
closed.
Theorem 3.7.4. The intersection of two closed sets is a closed set.
Proof: Let A and B be two set closed seats.
= A€ and B¢ are open sets.
= A° U B¢ is an open set.
= (A N B)* is an open Set.
[since A° U B¢ = (A N B)¢ De Morgan’s Law]

= A U B is closed set.

Note: The intersection of an arbitrary family of closed set is closed.
Note: A set S is said to be perfect if S = S'.
Example: The set of all real number is perfect but the set of all rational

number is not a perfect set.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. The set {x:0 < x < 1} is a closed set.

Problem 2. The set of natural number is open set.
Problem 3. The set of rational number is closed set.

Problem 4. The set {x: 0 < x < 1} is neighbourhood of each of its
point.

Problem 5. The set {x: 0 < x < 1} has limit point 0.
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3.8 SUMMARY

1. Letc € R. Asubset S c R is said to be neighbourhood of c if
there exist an open interval (a, b) such that c € (a,b) c S.

Clearly an open bounded interval containing the point c is a
neighbourhood of c.

2. Let S be asubset of R. S is said to be open set if each point of S
is an interior point of S.

3. A set is closed if its complements is open.

4. Bolzano — Weierstrass Theorem:

Every infinite and bounded subset of R has a limit point.

3.9 GLOSSARY

Numbers
Intervals
Sets

Functions
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3.12 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that the set of natural number N is closed set.

Q 2. Prove that the set of rational number @ is not closed set.

Q 3. The set {x: 4 < x < 8} is neither open nor closed.

Q 4. Prove that intersection of an arbitrary family of closed sets is a closed
set.

Q 5. With the help of examples, prove that intersection of an infinite

family of open sets may or may not be an open set.

3.13 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True
CYQ 2. False
CYQ 3. False
CYQ 4. True

CYQ 5. True
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4.1 INTRODUCTION

So far, we have introduced sets as well as the number systems that
we will use in this text. Next, we will study sequences of numbers.
Sequences are, basically, countably many numbers arranged in an order
that may or may not exhibit certain patterns. Here is the formal definition

of a sequence:

4.2 OBJECTIVES

After studying this unit, learner will be able to

(i) Neighborhoods
(if) Interior point
(iif) Open set

(iv) Limit point

4.3 SEQUENCE

A real sequence is a function whose domain is the set N of all natural
numbers and range is a subset of the set R of real numbers.
Symbolically f: N — R, {x,}, {a,}, (b,) etc.

Example: (%) ,(2™), (—1)™ etc.

Range of sequence: The set of all distinct terms of a sequence is called
its range.

Note: In a sequence {x,}, since n € N and N is an infinite set, the
number of terms of a sequence is always infinite. The range of the
sequence may be a finite set.

Example: if x, = (-1, then {x,,} = {-1, 1,—1, 1, ...}, the range
of this sequence {x,,} = {—1, 1} which is a finite set.
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Type of Sequence:

1. Constant sequence: A sequence {x,} defined by x, =c € RV
n € N is called a constant sequence.
Thus {x,} = {c,c,c ........ } is a constant sequence with range = {c}, a
singletion.
2. Bounded above sequence: A sequence {x,,} is said to be
bounded above if 3 a real number K such that

X, <KVneN
i.e. if range of the sequence is bounded above.

3. Bounded Below sequence: A sequence {x,} is said to be
bounded below if 3 a real number k such that

X, =2k VneN
i.e. if range of the sequence is bounded below.

4. Bounded sequence: A sequence {x,} is said to be bounded if it
is bounded above as well as bounded below.
Thus, a sequence {x,,} is said to be bounded if 3 a real numbers k and K,
such that

k<x,<KVneN
i.e. if range of the sequence is bounded.

5. Unbounded sequence: A sequence {x,} is said to be unbonded
if it is not bounded.

6. Unbounded above sequence: A sequence {x,} is said to be
unbounded above if it not bounded above.
i.e. for every real number K, 3 m € N such that x,,, > K.

7. Unbounded below sequence: A sequence {x,,} is said to be
unbounded below if it not bounded below.
i.e. for every real number k, 3 m € N such that x,,, < k.

Example (i) The sequence {x,,} defined by x,, = % is bounded,

since 0 < x, <1.
(ii) The sequence {x,,} defined by x,, = n is bounded below,
because x, > 1V n € N.
(iii) The sequence {x,,} defined by x,, = (—1)" is bounded,
sincel <x, <1.
(iv) every constant sequence is bounded.
(V) The sequence {x,,} defined by x,, = (—1)™.n is neither bounded

below nor bounded above.
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Theorem 4.3.1. A sequence {x,,} is bounded iff 3 a positive real number

M such that |x,| < M Vn € N.

Proof: Necessary part

Let {x,,} be bounded. Then 3 two real number h and k such that
h<x,<kVne€N

Let M =Max.{|h|, |k|}, then |h| < M and |k| < M

= —-M<h<Mand-M<k<M

From (1) and (2), we have —-M<h<x,<k<MVneN

= ~-M<x, <M VneN

= |x,] <M VneN

Sufficient part
Let M be a positive real number such that

lx, <M VneN
Then —-M<x,<M VneN
= {x,,} is bounded.

Note: The above theorem is used as a definition of a bounded sequence
and should be committed to memory.

4.4 LIMIT OF A SEQUENCE

Let {x,,} be a sequence and [ € R. The real number [ is said to be limit
of the sequence {x,,} it to each e > 0,3 m € N (m depending on ¢€)
suchthat |x, —l|<e V n=>m.

If [ is the limit of the sequence {x,,}, then we write x,, — [ asn — oo or
lim x, = L
n—ooo
Note: if lx,—1l|<e Vn=>m
Then l—e<x,<l+€e Vn=m
Then X €E(l—¢€l+€e) Vn=m.

4.5 CONVERGENT SEQUENCE

If lim x,, = [, then we say that the sequence {x,,} converges to L.

n—oo

Theorem 4.5.1. Every convergent sequence has a unique limit.
Or

A sequence cannot converge to more than one limit.
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Proof: if possible, let a sequence {x,} converse to two distinct real
numbers [ and ['.
Lete =|l—=1'|.Sincel = ', |l —1'| > 0sothate > 0.
Now the sequence {x,,} converges to [
= given € > 0, 3 a positive integer m, such that
|, — 1] <§ Vn=m
Also, the sequence {x,,} converges to [’
= given € > 0, 3 a positive integer m, such that
Ixn—l’|<§ V n=m,
Let m = max.{m,;,m,}
Then |x, — | <§ and |x, —l'| <§ vn=>m
Now [l—U|=[U=2xp)+ O = I < [l = xpl + |3, = U
= = U+ |xn = Ul ¢ |=xl = lx|)
< §+§ =€ Vn=m

[l-lU|<eVn=>m

Which contradicts the assumption that € = % |1 =1

=  Our assumption was wrong. Hence [ = [’

4.6 DIVERGENT SEQUENCE

(i) A sequence {x,} is said to be diverge to +o if given any
positive real number K, however large there exists a positive integer
m (depending on K) suchthat x, > Kvn>m

And we write  lim x,, = o or x, — casn — o

n—oo

(ii) A sequence {x,} is said to be diverge to —oo if given any positive
real number K, however large there exists a positive integer

m (depending on K) suchthat x, < —KVn>m

And we write  lim x,, = —oco0 or x, — c0asn —

n—oo

(iii) A sequence {x,} is said to be divergent sequence if it diverse to
400 Or —oo,
iLe.if x, — woorx, — —coasn — oo,
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Example. The sequence {n} and {n?} diverge to +oco. Whereas the

sequences {—n} and {—n?} diverge to —oo.

4.7 OSCILLATORY SEQUENCE

If a sequence {x,,} neither converges to a finite number nor diverges to
+00 or —oo, it is called an oscillatory sequence. Oscillatory sequences
are of two types:
(i) A bounded sequence which do not converse is said to be oscillate
finitely.
For example: Consider a bounded sequence {(—1)"}.
Here x,, = (—1)"
Then nlgrio Xop = nli_r)r})o(—l)zn =1and

lim x,,,; = lim (—1)?"*1 = —1,

n—oo n—oo

Thus lim x,, does not exist

n—oo
= the sequence does not converse.

Hence this sequence oscillates finitely.

(i1) An unbounded sequence which do not diverge is said to be oscillate
infinitely.

For example: Consider a bounded sequence {(—1)".n}.

Here x, = (—1)™".n

Then lim x,, = lim (—1)?".2n = + and
n—oo n—ooo

lim x4, = lim (—1)2*1. (2n+ 1) = —o.
n—ooo n—oo
Thus, the sequence does not diverge.

= this sequence oscillates infinitely.

Note: When we say lim x, =1, it means lim x,, = lim x,,,; =1
n—oo

n—oo n—oo

Similarly, lim x,, = 4+oo, it means lim x,, = lim x,,,; = +®©
n—oo n—ooo n—ooo

4.8 NULL SEQUENCE

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

A sequence {x,} is said to be null sequence if it converges to zero

Le.if lim x, = 0.

n—oo

For example: The sequence {%} {%} {zin} and {(_131—71_1} are null

sequences.

4.9 MONOTONIC SEQUENCE

(i) A sequence {x,} is said to be monotonically increasing.

If Xpn41 =X, VNEN

ie. if X1 S Xy SX3 < S X S Xpyq S0

(i) A sequence {x,} is said to be monotonically decreasing.

If Xps1 <x, VNEN

ie. if X1 Xy 2 X3 = 2 Xp = Xpyq =

(iii) A sequence {x,} is said to be monotonic if it is either monotonically
increasing or monotonically decreasing.

(iv) A sequence {x,,} is said to be strictly monotonically increasing.
If Xp41 > X, VNEN

(v) A sequence {x,,} is said to be strictly monotonically decreasing.
If Xpe1 <X, VNEN

(vi) A sequence {x,,} is said to be strictly monotonic if it is either

strictly monotonically increasing or strictly monotonically decreasing.

Theorem 4.9.1. Every convergent sequence is bounded.
Proof: Let {x,} be a convergent sequence, converging to .
For e = 1, there exists a positive integer m such that
lx, =1l <1 vn=m
= [-1<x,<l+1 Vn=m
Let k = min.{x{, x5, ..., x,,_1,l — 1} and
K = mix.{xy, x5, ., Xp_1, | + 1}

Then k<x,<K vn=m
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= The sequence {x,,} is a bounded sequence.

Monotone convergence theorem.
Theorem 4.9.2. Every monotonically increasing sequence which is
bounded above converge to its least upper bound.

Proof: Let {x,} be a monotonically increasing sequence which is

bounded above. Let u be the L. u. b. of the sequence {x,,}.
We shall show that {x,,} converges to u.

Let € > 0 be given.

Since u — € < u, therefore, u — € is not an upper bound of {x,, }
= 3 a positive integer m such that x,, > u — €

Since {x,,} is monotonically increasing.

Therefore x,=>2x, >u—c¢€

Then Xp>U—E€E Vvn=>m

Also, u is the . u. b. of the sequence {x,,}

= XpSu+te VneN

= Xp<u+te VneN
From(l)and (2),u —e<x,<u+€e Vn=m

= |x,—ul<e vn=>m

= lim x, =u

n—oo

= {x,} converges to u.
Theorem 4.9.3. Every monotonically decreasing sequence which is
bounded below converges to its greatest lower bound.

Proof: Similar as Theorem 4.9.2.

Note: Every monotonically increasing sequence which is not bounded
above diverges to oo.

Note: Every monotonically decreasing sequence which is not bounded
below diverges to —oo.

Note: Every monotonic sequence either converges or diverges.

Examples 4.9.1. By definition show that
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(1) The sequence { } converges to 0.
(i1) The sequence { } converges to 0.

(iii) The sequence { } converges to 0.

(iv) The sequence {¥/'n + 1 — v/n} is a null sequence.

Sol. (i) let a, =~ let € > 0 be given.
Now Ian—OI=|1—0|=|1|=1<6ifn>l
n n n €
If m is a positive integer >§,then la, — 0| <e Vn=m

= lim a, =0

n—oo

= i.e. sequence { } converges to 0.

(ii) let a,, = ; . let € > 0 be given.

INE I ET e o1
Now Ian—OI——2—0|—n——F<elfn >E

2

If m is a positive integer > —, then |a, — 0| <e Vn=>=m

\/_ 1

= lim a, =0

n—oo

= i.e. sequence { } converges to 0.

(iii) let a,, = 3—n. let e > 0 be given.
Now Ian—0|=3in—0|=

i.e.if nlogn > log (i)

tog Q)

if >
"= 193

[since log(3) > 0]

tog ()

Ifmisa positive integer > 10g(3)

,then |a, — 0| <e Vn=m

= lim a, =0

n—ooo

= i.e. sequence { } converges to 0.

(iv)leta, =vVn+1—+/n

(\/ 1-vn)(WVn+1+yn) _ (n+1)-n 1
Vn+i+yn © VnHl+Vn  Vndl+dn

let € > 0 be given.
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1 1 1

— < =<eE€

Now |a,—0| =

1 1
JnFievn 0| - |\r+1+ﬁ| = Yn+vn < 2n S Vn

ifvn>= ieifn>—
€ €
If m is a positive integer > 12 ,then |la, — 0| <e Vn=m
€
= lim a, =0
n—oo

=> The given sequence {v/n + 1 — v/n} is a null sequence.

4.10 LIMIT POINT OF A SEQUENCE

A real number [ is said to be a limit point of a sequence {a,} if
every neighbourhood of [ contains infinitely many terms of the sequence.
Note: If a,, = [ for infinitely many values of n then [ is a limit point of
{an}.

Note: Limit of a sequence is a limit point but limit point need not be a
limit of sequence.

Note: Limit point of a sequence need not be a term of the sequence.

For example: Sequence {%} has 0 as a limit point but no term of {%} is 0.
Example 4.10.1. Prove that 0 is a limit point of the Sequence {%}

Sol. Fore > 0,3m € N such that %< €

Therefore, for n > m, 0< % < % <e€

= —6<0<%<6Vn2m

= % € (—€,€) Vn=zm

= Every neighbourhood of 0 contains infinitely many terms of the

1
sequence {;}

= 0 is a limit point of the sequence {%}

Example 4.10.2. The sequence {(—1)"} has two limit points.

Sol. Let a,, = (—1)", then a,, = —1 when n is odd and a,, = 1 when n
is even.

Thus, every neighbourhood of —1 contains all the odd terms of

the sequence.
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Therefore, —1 is a limit point.

Also, every neighbourhood of 1 contains all the even terms of the
sequence.

Therefore, 1 is a limit point.

Therefore, the given sequence has only two limit points.

Example 4.10.3. The sequence {n} has no limit points.
Sol. Let [ be any real number, then the neighbourhood (l - i [+ i) of [

contains at most one term of the sequence {n}.

= [ is not a limit point of the sequence {n}.

Theorem 4.10.1. If L is a limit point of the range of a sequence {a,,} , then
L is a limit point of the sequence {a,,}.

Proof: Let S = range of the sequence {a,}.

Since L is a limit point of S, every neighbourhood of [ contains infinitely
many elements of S.

But each element of S is a term of the sequence {a,, }.

. Every neighbourhood of [ contains infinitely many terms of the
sequence {a,,}.

= [ is a limit point of the sequence {a,}.

Note: The converse of above theorem may not be true.

0, whennisodd
2, whennis even

Consider a, =1+ (-D)" = {

Therefore, 0, 2 are the limit points of the sequence {a,,}.

But the range of the sequence = {0, 2} is a finite set.

Since the finite set has no limit point, the range of {a, } has no limit point.
Note: If the terms of the sequence are different the limit points of the

sequence are the limit points of the range set.

4.11 BOLZANO — WEIERSTRASS THEOREM
FOR SEQUENCES
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Every Bounded sequence has at least one limit point.

Proof: Let {a,,} be a bounded sequence and S be its range,

ie.S={a,:n € N}

since {a,,} is bounded, then S is bounded.

Case 1. Let S be a finite set.

Then 3 a real number [ such that a,, = [ for an infinite number of values
ofne N.

= Given € > 0, a, € (I — €1+ ¢€) for an infinite number of values of
n e N.

= Every neighbourhood of [ contains infinitely many terms of the
sequence {a,}.

Therefore [ is limit point of the sequence {a,,}.

Case 2. Let S be an infinite set.

Since S is an infinite bounded set, by Bolzano-Weierstrass theorem, S has
at least one limit point, say L.

Now, [ is limit point of S.

= Every neighbourhood of [ contains infinitely many numbers of the
elements of S.

But each element of S is a term of the sequence {a,, }.

=~ every neighbourhood of [ contains an infinite number of terms of the
sequence {a,, }.

Therefore [ is a limit point of the sequence {a,, }.

Corollary: If Sis a closed and bounded set, then every sequence in S has
a limit point in S.

Corollary: The set of the limit point of the bounded sequence is bounded.
Corollary: The set of the limit points of a sequence is a closed set.
Corollary: The set of limit points of an unbounded sequence may or may

not be unbounded.

For example. (i) The sequence {1, % 2, é 3, } is unbounded but the

set of its limit points is {0}, which is bounded.
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(1) The sequence {2, 1+1, 2+3, 1+3, 2+1,
2 2 3 3

unbounded but the set of its limit points is N, which is unbounded.

4.12 LIMIT SUPERIOR AND LIMIT INFERIOR
OF A SEQUENCES

Let {a,} be a bounded sequence, then the sequence has the least and
greatest limit points.
The least limit point of {a,} is called the limit inferior of {a,} and is

denoted by lim inf.a,.
n—oo

The greatest limit point of {a,,} is called the limit superior of {a,} and is

denoted by lim sup.a,.
n—oo

Note 1. If {a,,} is unbounded above then lim sup.a, = oo.

n—oo

And If {a,} is unbounded below then lim inf.a, = —co.

n—oo

Note 2. Since the greatest limit point of the sequence {a,} > least limit
point.

Therefore, lim sup.a, = lim inf.a,.
n—oo

n—oo

Example 4.12.1. Find lim sup.a, and lim inf.a, for the sequence
n—ooo

n—oo
{a.} ={(-D"}
Sol. Since the sequence {(—1)"} has only two limit points —1 and 1.
Therefore, the set of limit points = {—1, 1} which is bounded.

Therefore, lim inf.a, = —1and lim sup.a, = 1.
n—oo

n—oo

Example 4.12.2. Find lim sup.a, and lim inf.a, for the sequence
n—oo

n—oo
{an} ={(-1)".n}
Sol. Since the sequence {(—1)"™.n} is unbounded above and unbounded

below both.

Therefore, lim inf.a, = —c and lim sup.a, = .

n—oo n—oo

4.13 SUBSEQUENCE
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Let {a,} be a sequence of real numbers, and

letn, <n,<---<np<---

be a strictly increasing sequence of natural numbers.

Then{ay,, an, , - - -, ay, , - - -} is called a subsequence of {a,} and is
denoted by {a,, }.

Note: A subsequence is formed from a sequence by selecting certain terms
from the sequence in order.

For Example. (i) {a,,}, {azn-1}, {a,2} are all subsequence of {a,,}.
@i {2,4,6, ...} {1,3,5, ...} {1,4,9, 16, ...} are all subsequences of
the sequence {n}.

Note: Every sequence is a subsequence of itself.

Theorem 4.13.1. If a sequence {a,} converges to [, then every
subsequence of {a, } also converges to L.

Proof: Let {a,, } be asubsequence of {a, }.

Since {a, }converges to L.

Therefore, given € > 0, 3 a positive integer m

suchthat |a, —l|< eVn>=m

We can find a natural number n,, = m

If ny = ny,, thenn, = m.

Therefore, from (i), we have |a,, — | < eV n, = m

Hence {a,, }converges to L.

4.14 CAUCHY SEQUENCES

A sequence {a, } is said to be a Cauchy sequence if given € > 0, however
small, there exists a positive integer m (depending on €) such that

la, —a,| < eVvn=m.

Theorem 4.14.1. Every Cauchy sequence is bounded.

Proof: Let {a, } be a Cauchy sequence.
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Taking € = 1, by definition, there exists a positive integer m such that
la, —a,| < 1 vn=>m

= ap—1<a,<a,+1 Vnz=m

Let k =min.{aq,ay, ...,am_1, a0, — 1}

And K =max.{a;,a;, ..., 4p_1,am + 1}

Then k<a,<K Vn

Hence the sequence {a, } is bounded.

Note: The converse of above theorem is not true, i.e. every bounded

sequence need not be a Cauchy sequence.

For Example. The sequence {(—1)"} is bounded but it is not a Cauchy

sequence.

Theorem 4.14.2. (Cauchy’s convergence criterion)

A sequence is convergent if and only if it is a Cauchy sequence.
Proof: First, let {a,, } be a convergent sequence, converging to L.
We shall show that it is a Cauchy sequence.

Let € > 0 be given. Then there exists a positive integer m such that
la, — 1] < g vn=>m

In particular, for n = m, we have |a, — [| < %

Now, [a, —anl = [(an =) = (amn — DI < [(an = DI + [(am = DI

< g + g =¢e.  Vn>=musing (i) and (ii)]

Thus la, —anl<e Vvn=m

= {a,} is a Cauchy sequence.

Conversely: Let {a, } is a Cauchy sequence.

Since Every Cauchy sequence is bounded, therefore {a, } is bounded.

Since every bounded sequence has a limit point, {a,} has limit point [

(say).

We shall show that {a,,} converges to L.

Let € > 0 be given. Since {a, } is Cauchy sequence, 3 a positive integer

m such that Ian—am|<§ Vvn=>m

Since [ is limit point of {a,, }, every neighbourhood of [ contains
infinitely many terms of {a, }.
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=a, € (l - § [+ g) for infinitely many values of n.
In particular, we can find a positive integer k > m such that
€ € -
ace(1-5 1+5) e (V)
ie. la, — 1] <=
3
Also, since k > m, therefore, we have |a,, — a,,| < g
NOW, |an_l|=|(an_am)+(am_ak)+(ak_l)|
< |an_am|+ |am_ak| + |ak_l|
= |an _aml + |ak _aml + |ak - ll
<S+i4i=¢
3 3 3
la, —ll< € Vn=m

{a,} convergesto [.

Example. 4.14.1. Prove that the sequence whose nth terms are given

below are Cauchy sequence.

(i) 2 (i) = (iii) &2

n+1
Sol. (i) Here a, = %
€ > 0 be given and let n > m.

Now |a, —anl= |l—l| =

1 1
n m m n

1 1
< — < e whenever m > =
m €

=~ For each € > 0, 3 a +ve integer m such that |a,, — a,,| < eV n >m.

= {a,} is a Cauchy sequence.

- n
(ii) Here ap = —

€ > 0 be given and let n > m.

n m

Now |a, —a,| = |———| = |(1 1 )l

n+1 m+1

m+1 m+1 n+1

1 1 1
< — < — < e whenever m > -
m+1 m €

=~ For each € > 0, 3 a +ve integer m such that |a,, — a,,| < eV n >m.

= {a, } is a Cauchy sequence.
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_1)71
n

(iii) Here  a, ="

€ > 0 be givenand let n > m.
_ |t =™ (G =npm
. | < [SH + 15

Now

1

<1412 cwheneverm >2
m m m €

=~ For each € > 0, 3 a +ve integer m such that |a,, — a,,| < eV n >m.

= {a,} is a Cauchy sequence.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Limit superior and inferior are equal for sequence {%}

Problem 2. The limit point of the sequence {10 + %} is 10.

Problem 3. The sequence {1 + sinn} is unbounded.
Problem 4. The set of all limit point of a sequence is open set.

Problem 5. The Sequence 1 + % + % + % + 4 ni IS convergent.

4.15 SUMMARY

1. Range of sequence: The set of all distinct terms of a sequence is
called its range.

2. The sequence {n} has no limit points.

3. A sequence {x,,} is said to be null sequence if it converges to zero

ie.if lim x, = 0.

n—ooo

4. A sequence is convergent if and only if it is a Cauchy sequence.
5. Bolzano — Weierstrass Theorem for a sequence:

Every Bounded sequence has at least one limit point.
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4.16 GLOSSARY

Numbers
Intervals
Limit points
Functions

Bounded, Unbounded sets
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4.19 TERMINAL AND MODEL QUESTIONS

1\
QL. Prove that the sequence (1 + Z) Is convergent.

Q2. Prove that the sequence {i bttt i} is
n+1 n+2 n+3 2n

monotonically increasing.

Q3. If {a,,} and {b,,} are null sequences, show that {a,, + b,,} is also null

sequence.
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Q4. If {a,} and {b,} are null sequences, show that {a,.b,} is also null

sequence.

Q5. States and prove Bolzano — Weierstrass Theorem for a sequence.

4.20 ANSWERS

CHECK YOUR PROGRESS

CYQ 1. True

CYQ 2. True

CYQ 3. False

CYQ 4. False

CYQ 5. True
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5.1 INTRODUCTION

In mathematics, aseriesis, roughly speaking, the operation
of adding infinitely many quantities, one after the other, to a given starting
quantity. The study of series is a major part ofcalculusand its
generalization, mathematical analysis. Series are used in most areas of
mathematics, even for studying finite structures (such as in combinatorics)
through generating functions. In addition to their ubiquity in mathematics,
infinite series are also widely used in other quantitative disciplines such
as physics, computer science, statistics and finance.

For a long time, the idea that such a potentially infinite summation could
produce a finite result was considered paradoxical. This paradox was resolved
using the concept of alimitduring the 17th century. Zeno's
paradox of Achilles and the tortoise illustrates this counterintuitive property
of infinite sums: Achilles runs after a tortoise, but when he reaches the
position of the tortoise at the beginning of the race, the tortoise has reached a
second position; when he reaches this second position, the tortoise is at a third
position, and so on. Zeno concluded that Achilles could never reach the
tortoise, and thus that movement does not exist. Zeno divided the race into
infinitely many sub-races, each requiring a finite amount of time, so that the
total time for Achilles to catch the tortoise is given by a series. The resolution
of the paradox is that, although the series has an infinite number of terms, it
has a finite sum, which gives the time necessary for Achilles to catch up with
the tortoise.

A brief introduction to Infinite series and some results in infinite series will
be discussed.

5.2 OBJECTIVES

After reading this unit learners will be able to

infinite series
positive term series
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5.3 SERIES

The sum of the terms of a sequence is said to be a series. Thus if
Y1, Y2, V3, ---IS @ sequence then the sum y; + y, + y; + --- of all the terms is
called an infinite series and is expressed by Y., v, OF X, y,.

Evidently, we cannot just add up all the infinite number of terms of the series
in ordinary way and in fact it is not obvious that this kind of sum has any
meaning. Therefore, we start by associating with the given series, a sequence
{S,}, where S,, denotes the sum of the first n terms of the series.

Hence S, = y; +y, + . +y, vn

And this sequence {S,, } is said to be the sequence of partial sums of the series.
The partial sums

S1=Y1 $2=y1+Yy2; S3=y1+y, +y3+--.. andsoon.

The series is convergent if the sequence {S,,} of partial sums converges and
lim S,, is called the sum of the series.

I {S,,} does not tend to a limit then the sum of the infinite series does not exist
or we can say that the series does not converges.

An infinite series is converge, diverge or oscillate according as its sequence
of partial sums {S,,} converges, diverges and oscillates.

Necessary condition of convergences of an infinite series
Theorem: A Necessary condition of convergences of an infinite series

Y. Y, is lim y, = 0.
n—-oo

Proof. Let S, =y, +y, + = ....... +y,, S0 that {S,} is the sequence of
partial sums.

It is given that series is converges
Thus, the sequence {S,,} is also converges.

Let lim S, =t.Nowy, =S5, —S,-1, n>1

n—oo

Therefore, limy, = lim(S,, — S,,_;) = limS,, — limS,,_;, =t—t=0
n—-oo n—oo n—-oo n—-oo
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Thus lim y, =0
n—oo
NOTE:
A series cannot converge if n* term does not tend to zero.

Cauchy’s General Principle of Convergence for Series

Theorem: A necessary and sufficient condition for the convergence of an
infinite series )y, is that the sequence of its partial sums {S,} is
convergent

Or

An infinite series ), y,, converges iff for every € > 0 there exists a positive
integer M such that |y, + y, + Y3 + -+ ... + y,| < € whenever

m==n=M

Proof. Let S, =Xy, =y1+ Y2 +ys+ -ty and Sy =Xy =y, +
Yo + Y3 + -+ ... + y,, be the nt™ and mt" partial sum of series respectively,
where m > n.

=SSy = Sul =1 +y2tys+ -+ ) =1ty +y3 + -+ )l

= |Ym+1 + Ymaz + -+ 0l

Let £ > 0 and for every ¢ the series }; y,, converges iff the sequence of partial
sums {Sn} converges

S|S, — Syl <e Vvm=nforsomeME€eN

S|Yms1 T Vmaz + o+l <e Vm=nforsomeME€EN

Example: Prove thatZ% does not converge.

Proof. Let the given series be converges.

Therefore, for any given & > 0, there exists a positive integer m such that

2+t |<e Vn=mandp>1.
n+l  n+2 n+p

If n =mand p = m, we get

1 1 1 1 1 1
+ +...+ = -|— +...+
n+l n+2 n+p m+1 m+2 m+m
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_1 1
T m+4+1 m+2

+- .o +.____
m
Sm—>i>¢
2m 2

- 1 1 1 ..
ie.—+—+ .-+ — > g, a contradiction.
n+1 n+2 n+p

Therefore Z% does not converge
NOTE:
We can see that lim,,_,, (i) = 0 but Z% does not converge

If Y.y, =y then ) cy, = cy independent of n.

Example: If y, > 0 and ). y,, is convergent with the sum S, then prove that

2 . ..
y—<ﬁ, when n is sufficiently large. Also prove that
yitya++yn

In

is convergent
Y1ty t-+yn

Proof. It is given that ), y,, is convergent with the sum S.
Hence for e >0 Im e Z*
IS, — S| <evVn=m whereS, =y, + v, + -+ y,,

re<s,—S<e=>5—-e<§5,<S+¢vVn=2m

Fore=%5>0

S——S<S <S+2 S:> <S, <= :>S>—>31 vn>m

1 2
or >—,Vn2m:>ﬁ>y—“,‘v’n2m.
Sn S Sn

Yn+1 Yn+2 Yn+3 - Yn+p

Now
Sn+1 Sn+2 Sn+3 Sn+p

2
<§(yn+1 T Yoz T VYns3 +'°'+yn+p ),Van,pZ 1

y
= Yn+1 + Yn+2 + Yn+3 o T2 Ynip <z (Sn+p _ Sn),‘v’n > mp > 1.
Sn+1 Sn+2 Sn+3 Sn+p

As ).y, is convergent, then given € > 0, there exists a positive integer m,,
such that
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S
Snip — Sn <%,Vn2m1

Therefore,

2¢&S
Yuid | Yni2 4 Ynid g Imie 28 oo v > max(my,m),p =1
Sn+1 Sn+2 Sn+3 Sn+p S 2

Yn

Therefor hy’ 1 Principle of —_—
erefore, by Cauchy’s General Principle of convergence, ZJ’1+3’2+"'+3’n

convergent.

54 POSITIVE TERM SERIES

Let ). y,, be an infinite series of positive term series of positive terms (y, =
0) and {S,,} be the sequence of its partial sums such that

Sn=y1+y2+“'+yn20, vn
iSn_Sn—lzynZO:SnZSn—ll vn>1

Therefore, the sequence {S,,} of partial sums of a series of positive terms is a
monotonic increasing sequence.

Hence {S,,} can either converge or diverge to +co.

Theorem: A positive term series converges if and only if the sequence of its
partial sums is bounded above.

Proof. Let ) y, and {S,} be positive term series and a sequence of its partial
sums respectively.

= {S,} be a monotonic increasing sequence.

As we know that monotonic increasing sequence converges iff it is bounded
above.

Hence {S,} converges if and only if the sequence of its partial sums is
bounded above.
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Necessary Conditions for convergence of positive term series

Theorem:(Pringsheim’s theorem) If a series ), y, of positive monotonic
decreasing terms converges then y,, — 0 and also lim ny, = 0.
n—oo

Proof. Let )y, be the convergent series of positive monotonic decreasing
terms.

By the definition of convergent series, for any € > 0, there exists a positive
integer M such that

|ym+1 t Ym+z2 T "'+Ym+p| <§; vm=2M,p=1
Letm+p=n>2Mand

m= E] i.e.m = greatest integer not greater than ;n

Hence
&
Ym+1 T Ymez T+ yn < 5
But ), y,, is positive monotonic decreasing.

i.e. Ym+1 = Ym+2 = " > Yn = Ym+1 T Yma2 T
YntYnt Y,

(n—m)times

= Vm+1 T Ymaz Tty > (n _m))/n

Therefore (n — m)y, < Yms1 + Ymsz + -+ ¥n <>

(n - %) Vn < 2 becausem = [%]

n &
:>E<E:> ny, <ée

Hence lim ny, =0

n—oo
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NOTE:

lim ny, = 0 is only necessary not sufficient condition. If lim ny, # 0 then
n—-oo

n—oo

the series ).y, is obviously divergent..Example Z% diverges because
lim ny,, = 1 # 0 and positive monotonic decreasing terms.\
n—oo

Theorem Let Zﬁ be positive term series then it is convergent iff p > 1.
1 1 1
Proof. LetS, = 5+ 5+ +—

Case 1. Whenp > 1

1
2p-1

1

1 1 1 2
w» e <t <w"

1 1 1 1 1 1 1 1 4
_p+5_p+6_p+7_p<4_p+4_p+4_p+4_p<4_p_

I S

1 1 1 8
<—d—tot—<—
gp 9P 15P gp 8P 8P 8P

8 times

1 1 1 1 1 1
@ T awr T ey S Taw T T e

2™ times

- (22:)10 - (zpl—l)n -(n)

Adding (1), (2),.....,(n), we get

1
(2n+1_1)p

1)p-1>n+1> B Zp-1<1—(2p1—1)n+1)

- 2P—1-1

11 1\P
Sttt = Son+1_; < 1+(5)

2
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Therefore

2p—1
Szn+1_1 < T_l,fOT alln

2D
As we know that when n is any positive integer.
2l —1>2">n

Therefore

2p-1

Sp < Sn < Sonvi_g < P11

Since for a given p, is a fixed number.

2
2p-1-1

Hence, the sequence {S,} of partial sums of given positive term series is
bounded above.

Therefore, the series converges for p > 1.
Case Il: Whenp <1

As we know, if n is any positive integer and p < 1 then

. . 1
14 —
n Snllllp'leS P >

Therefore

S T IR S E U B
+10p+ +16p_9+10+ +

1 1 1
>—+—+t—
16 16 16

8 times
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1 1 1
@riv i @rivop T

1 1 1 1 1 1
- 2m—1+1+2m—1+2 +"+2_m>2_m+2_m+ ..._|_2_m

2Mm—1 times

2m—1

1
2m 2

Adding (1), (2°),...and (m’), we get

b — =S >4 4=
2 2 2

m
1P 2p (2myp 2

m times
. m

Now we try to prove that {S, } is not bounded above.

Let K be any number and there exists m’ € N such that m7 > K

Letn > 2™

Hence S,, > S,m' > K

Therefore, we conclude that the sequence of partial sums {S,,} of given series
is not bounded above.

Thus, the series diverges for p < 1.

Therefore, Znip converges if p > 1.

5.5 COPARISION TEST

Test 1. If Y u,, and ), v, are series of positive terms and ; v,, is convergent
and there is a positive constant k such that u,, < kv,, V n, then ), u,, is also
convergent.

Test 2. If ), u, and ) v,, are series of positive terms and ; v,, is divergent and
there is a positive constant k such that u, > kv,, ¥ n, then X u, is also
divergent.

Test 3. If ), u,, and ), v,, are series of positive terms and
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@) if nlgrio % = 1(finite and non-zero), then }; u,, and Y, v,, both converge or

diverge together.

(i) if lim = = 0 and ¥ v, converges, then ¥ u, is also converges.
n—oo Un

(iii) if lim Z—" = oo and Y v, diverges, then Y u, is also diverges.
n—oo Vn

5.6 D’ALEMBERT’S RATION TEST

If ¥ u, isa series of positive terms such that lim —2- = [, then

n—oo Un +1

(i) X uy, is convergent if [ > 1.
(i) X u, is divergent if [ < 1.
(iii) )} u,, may converge or diverge if [ = 1.(i.e. the test fails if [ = 1).

And if lim —2 = oo, then ¥ u,, is convergent.

n—oo Un +1

5.7 CAUCHY’S ROOT TEST

If Y u, is a series of positive terms such that Jilr})o(un)l/" = [, then
(i) X u, isconvergent if [ < 1.

(ii) X u,, isdivergent if [ > 1.

(iii) X, u,, may converge or diverge if [ = 1.(i.e. the test fails if [ = 1).

And if lim (u,)'/™ = o, then Y u,, is divergent.
n—oo
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5.8 ALTERNATING SERIES

A series with terms alternately positive and negative is called an alternating
series.

Thus, the series u; — u, + uz — uy ... where u,, > 0.
For each n, is an alternating series and is briefly written as Y, (—1)" u,,.
Leibnitz’s test on alternating series

The alternating series Y>(—=1)" 1 u, = u; — u, + us — uy ... where u,, >
0 V n converges if

M u, =up,vn and (i) lim u, = 0.
n—oo

5.9 ABSOLUTE AND CONDITIONAL
CONVERGENCE

Definition 1. A series .., u, is said to be absolute convergent if the
series Yo—,|uy, | is convergent.
Definition 2. If }.;°_; u,, converges but not absolutely then the series .>°_; u,

is called conditionally convergent.

Theorem: Every absolutely convergent series is convergent.

Proof. Let Y._,u, be absolutely convergent series, then Y., |u,| is
convergent.

Therefore, By Cauchy’s general principle of convergence, given € > 0,3 a
positive integer m such that ||y 41| + Uzl + -+ lugl| <€ vn>m

e [Umer| + Ul + -+ |uyl <e Va>m
now, by triangle inequality, we have
[ U1 + Umaz + o F Uy | S Jtpia | + sz + -+ Uyl
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<€e Vn>m

Therefore, By Cauchy’s general principle of convergence, the series Yo u,
is convergent.

Hence }»_,lu,| is convergent = u,, is convergent.

Note 1. Absolute convergence = convergent, but convergence need not
imply absolute convergence i.e. the convergence of above theorem need not
be true.

For Example: Consider the series

w (DMt _ . 1,1 1
n=1 5 =1 2+3 4+

It is an alternating series. Here u,, = % Clearlyu, >0VvVn

. 1 1
Since - > o Un > UpV N

Also  lim u, = lim 1-0

n—oo n—ooon

(=pnt
n

Therefore, by Leibnitz’s test X", is convergent.

Note: If X~ u,, is an absolutely convergent series, then the series of its
positive terms and the series of its negative terms are both convergent.

Note: If X7°_; u, is conditionally convergent, then the series of its positive
terms and the series of its negative terms are both divergent.

Note: A series with mixed signs cannot converge if the series of its positive
terms is convergent (divergent) and the series of its negative terms is
divergent (convergent).

Example 1. Test the convergence of the series

. .1 .- 1 . 1
(i) Y=y sin— (if) Xr=y - sin~

Sol. (i) Here u,, = sin%

1 1 1

n .. ..TLS
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1
Take v, = -

lim 22 = lim [1-2 .2 4+2 2 — ] =1which s finite and # 0.
Therefore, >.>°_, u, and Y>>, v, converges and diverges together.
since Y, v, = Y7y - is of the form X7, — with p = 1.
Therefore, Y-, v, is divergent = Y.>_; u,, is divergent.

. 1.1
(if) Hereu,, = —sin~

1
Take v, = Z

2

lim 2 = lim [1-2 .2 +2 2 —..| = 1whichis finite and # 0.
n—oo Un n—oo 3 'n 5! n
Therefore, X.,_; u, and Y., v, converges and diverges together.

Since Yoo v, = 7°1°=1% is of the form Z,‘;"zlnip with p = 2.

Therefore, Yo7, v, is convergent = ),>°_; u,, is convergent.

Example 2. Discuss the convergence or divergence of the following series:

i) Zo

nZ
Sol. Here, u,, = ~

+1)2 +1)? +1
Therefore, u,,,, = & = (FD° _ ntl

(n+1)! - (n+1)n! n!

2 1
Therefore, =2 = *— = "

1
Un+1 n+1 P
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Therefore, lim —=

n—oo Un+1

Therefore, by D’ Alembert’s Ration test, Y., u,, iS convergent.

Example 3. Test the convergence of the following series:

2
()
n=1\n+1 )

Sol. Here, u,, = ( = )nz

n+1

n2 1/n
Therefore, (u,)¥" = I(L) l

n+1

[+

Therefore, TQIeréo(un)l/” = nlggo [(1 + %)n] =el=1<1

e

-1

Therefore, by Cauchy’s Root Test, the given series Y u,, is convergent.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Every absolutely convergent series is convergent.
Problem 2. Every convergent series is absolutely convergent.

—n2?
Problem 3. The series .o, (1 + %) Is convergent.

Problem 4. A positive term series converges if and only if the
sequence of its partial

sums is bounded above.
Problem 5. The series ).,;7_; n is convergent.

5.10 SUMMARY

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

1. If ;-1 u,, is an absolutely convergent series, then the series of its positive
terms and the series of its negative terms are both convergent.

2. If 2~ u, is conditionally convergent, then the series of its positive terms
and the series of its negative terms are both divergent.

3. A series with mixed signs cannot converge if the series of its positive terms
is convergent (divergent) and the series of its negative terms is divergent
(convergent).

4. Test 1. If ), u,, and ), v,, are series of positive terms and Y; v,, is convergent
and there is a positive constant k such that u,, < kv, V n, then Y, u,, is also
convergent.

Test 2. If ), u,, and Y. v, are series of positive terms and ) v, is divergent and
there is a positive constant k such that u, = kv,,Vn, then Y u, is also
divergent.

Test 3. If ), u, and Y} v, are series of positive terms and

n

(i) if nlgrio :— = 1(finite and non-zero), then }; u,, and Y, v,, both converge or

diverge together.

(i) if lim =* = 0 and ¥ v, converges, then ¥ u, is also converges.

n—oo Upn

(iii) if lim =* = oo and ¥, v,, diverges, then Y. u,, is also diverges.

n—oo Up

5.11 GLOSSARY

sequence

limit
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5.14 TERMINAL AND MODEL QUESTIONS

n!

Q 1. Examine the convergence of the series Z;’f:l&

nn -’

Q 2. Examine the convergence of the series Z;’f:l% :

o 1
n=1 ogn)n "

Q 3. Examine the convergence of the series ),
Q 4. Define Cauchy’s Roots Test.

Q 5. Test the convergence and absolutely convergence of the series

o (D" 'n

n=1l 542

5.15 ANSWERS

TQ1. Convergent.
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TQZ2. Convergent.

TQ3. Convergent.

TQ5. Not convergent
CHECK YOUR PROGRESS

CYQ 1. True

CYQ 2. False

CYQ 3. True
CYQ 4. True

CYQ 5. False
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6.1 INTRODUCTION

In Mathematics, the limit of a function is a fundamental concept
in calculus and analysis concerning the behaviour of that function near a
particular input which may or may not be in the domain of the function.

In previous unit we discussed about sequence and series. In this unit we
will be discussed about limit of one variable function.
The limit of a function is defined as the unique real number that the
functions take when the variable of the function approaches a particular
point. For any given function f(x), and a real number ‘c’, the limit of the
function is defined as,

lim f(x) = L
This is read as, “limit of f(x), as x approaches a equals L”

6.2 OBJECTIVES

After studying this unit, learner will be able to

(i) Neighborhood
(ii) Interior point
(iii) Open set

(iv) Limit point

6.3 LIMIT

m (&, 6) definition of Limit.

Let A € R, and let c be a cluster point of A. Forafunctionf : A - R, a
real number [ is said to be a limit of f at c if, givenany ¢ > 0, there exists
ad > 0 such that

ifx € Aand 0 < |x —c| < d,then |f(x) — | < e.
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Note: If f : A — R and if c is a cluster point of A, then f can have only
one limit at c.
Proof: Let [ and I’ be the limits of function f.

For any € > 0, there exists §; G) > 0 such that if x € 4 and
0<lx—cl< & (3) thenlf(x) -1 <=
and there exists &, G) >0suchthatifxedand 0 < |x—c| < &, (E)

then |f(x) = I'| <=.

2
Let § = inf {5, ).6. (g)} Thenifx € Aand 0 < |x — ¢| < 6.
The Triangle Inequality implies that
L=l = 1+ (=f )+ fQ) =] < 1= fFQI+IfG) = V|
<it+ice
2 2
Because € > 0 is arbitrary. Therefore, [ —1l'=0=>1=1".

Example 6.3.1. Prove that limc = ¢

x—a

Sol. Let f(x) =c forallx ER.
Now we will try to prove that lim f(x) = c.
xX—a

Lete >0and 6§ = 1.

Thenif 0 < |x —al| < 1, we have
lf(x)—c|l=|lc—c|=0<e.

As & > 0 is arbitrary, by definition of limit we get
lim f(x) =c.

xXx—-a

Example 6.3.2. Prove that lim x? = b?
X—

Sol. Let f(x) = x? forallx ER.
Now we will try to prove that lim f(x) = b2,
x—a

Now we try to prove that |f(x) — b?| = |x? — b?| less than a
preassigned € > 0 by taking x sufficiently close to b.

Now

x?>—=b?=(x—Db)(x +b).

If| x — b| < 1, then

|x| < |b|l+1

Hence |x + b| < |x|+ |b| < |b| + 1 + |b| < 2|b| + 1

Thus, if |x — b] < 1 then

|x? — b?| < |x — bl|x + b|] < (2|b] + 1)|x — b

Let |x — b| < —— and we choose &(¢) = inf{l
2|c|+1

—
’2|c|+1)’
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Then if 0 < |x — b| < 6(¢),
Now if |x — b| < 1, then equation (1) is valid.

If |x — b| < —— then
2|b|+1

|x2 = b2 < 2|l + D|x=b| < Q||+ 1).——< ¢

2|c|+1
As we have choice to choose §(e) > 0 for an arbitrary choice of € > 0.
We deduce that ling x?% = b?
X

Example 6.3.3. Prove that linl} i = % ifb>0
X—

Proof. Let f(x) = i forall x > 0 and assume b > 0
1

Now we will try to prove that lim f(x) = .
xX—a

Therefore, we will try to prove that the difference |f(x) - %| = E - %|

less than a preassigned € > 0 by taking x sufficiently close to b > 0.
Now

1 1 1 1
;_E| = |E(b—x)| —alx—bl for x > 0.
Now if | x — b| <%bthen
—lb<x-b<-b>-b<x<>b=>:bh2<bx=—>—
2 2 2 2 2 b bx

Therefore

1 2 1
0<—=<= for|x—b|<:zb

bx b 2
Hence, for these values of x we have
|FG0) =3 < Z1x = bl
In order to make this last term less than ¢ it suffices to take
|x —b| < %bzs. Consequently, if we choose §(¢) = inf{% b,%bzs},
Then if 0 < |x — b| < 6(¢),
Now if [x — b| < %b, then equation (1) is valid.
Therefore, since |x — b| < %bzs, that

1 1 1

reo—5| =3 <e
Since we have a way of choosing §(e) > 0 for an arbitrary choice of € >
0, we conclude that
.11,
)lcl_rg;—b if b>0.

Theorem 6.3.1. Let XS R and f,g:X — R and let b € R be a cluster
pointof Xand € R .
(@) If lim f = [; and lim g = [,, then

X-b x—b

X—-b X-b
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(b) If h:X - R and h(x) # 0 for all x € X, if lin%hz l; # 0, then

Proof. (a) It is given that }Ci_r)r})f = [, and }Ci_l)llijg = [,, Hence for any
& > 0 there exists a positive number §, and §, such that
If(x) — 1, < %when 0<|x—b|l<éd and|glx) =1, < gwhen
0<|x—b| <6,
Let § = min(&;, &,), then
If(x) =Ll < when0 < |x—b| <&
and
lg(x) — L,] <§When 0<|x—b|<é
Now, when 0 < |x — b| < &
I+ -+ L) =1fG) =1 +g(x) — L

<|f) =4l +1gx) —1,]

<£+£=€
2 2

Therefore
I((f+9)(x)— (L + )| <ewhen0<|x—b|<§
Thus, chi_r)rgf +g=L+L
(i) When0 < [x —b| < &
I(f —9) () = (L= 1) =1f(x) =1 + g(x) — L]

<IfG) =Ll + 1l — gl

=1f@) — Ll +1g@) — LI <S+i=¢
(From (1) and (2))
If—g)x)— (- 1) <ewhen0< |x—b|<§
Thus, Jlci_r)réf —-g=L-1
(i) 1(fg) () — (L) = f (g — Lyl

=f()g(x) — fFIL + fFO), — L]

= f () — L) + L(f(x) — 1)

< |flgl) = LI +I1LIfG) =Ll ....(3)
As we know that )lcilr})f = [, . Hence for any € = 1 there exists a positive
number &', such that
|f(x) — 1] < 1when0 < |x —b| <&
Now
lFCOI=1fC) =L+ LI <1fC) = LI+ 4]
<1+4|l], whenO<|x—b|<é,

chi_I)TII)g = [, , there exists a positive number 6', such that

&

lg(x) — I,] <—2—when 0 < |x — b| < &',
1+]|14|

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-102

Again limf = ,, there exists a positive number §’; such that

S

|f(x) — 11|< when0<|x—b|<6’ N ()]
Let§' = m1n{61, 83, 63}. Then from (3), (4), (5) and (6),
when 0 < |x —b| < 6§’
Fg) () — (LD < A+ LD F~
Hence lim fg = [;1,.

x—-b

£

+ |l 2 < e

1+|l | L]

(b) lim h = 153 # 0 therefore for ¢ = % > 0 there exists §; > 0 such that

Ih() =Ll <= when0 < |x— bl <&,
Now
I3 = |l — h(x) + h()| < |I; — h(O[ + [h()] = [h(x) — 3] +
|h(x)| or
1

|z3| 13l _ sl 2
or [ls] <2+ 1RGO = RG] > [l = = o7 s < 1

It implies that there exists a deleted neighbourhood of b on which h(x)
does not vanish.
Now, when 0 < [x — b| < &5
f Ly _ f) L _ f&)ls — ()]

(s il e el pareon
fOl; = Ll + Lils — h(x)l

h(x)l;
L3(f(x)=11)+l (I3—h(x)) |

h(x)l3

If (x )— o l';,;g )|| ()—13

2 1Ll
VG = Ll + ) -

|h(x) — L]

Ih(x)l

”3
|z| AfG) =Ll + 73

Let € > 0 be given.
It is given that lirré f =1 and lirré h = 13, hence there exists positive
X— X—

2|14 |
1312

numbers &, and &, such that
f () = Lyl < zells], when 0 < |x — b| < &

Ih(0) — L] <1e 'll;'lz, when 0 < |x — b| < &,
1

Let 6" = min {63, 51, 65} Then from (7), (8) and (9), we get
20 1 |3l* _ £ € _
|( )(x) ”3' L€ | + =— .—sll—ll— +2—8When

1312 2

0<|x— b| < s
Therefore |<£) (x) —i—l b| < 6"
3

. l
Hence hm r_h
bh I3

Ex.6.3.4. Findlim,_, 22
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Proof. It is given that lim,_, "2

Va+x—2 Va+x—-2 a4+x+2
x '\/4+x—2

A+x—-4

VEtx+2

= llmx_)o = limx_>0

1

X
Vatx+2 4

lim,_,

lim,_,

6.4 VARIABLE

A symbol such as x or y, used to represent an arbitrary element of a set is

called a variable. For example y = f (x).

The symbol x which represents an element in the domain is called the
independent variable, and the symbol y which represent the element
corresponding to x is called the dependent variable. This is based on the
fact that value of x can be arbitrary chosen, then y has a value which

depends upon the chosen value of x.

6.5 LIMIT

m Definition of Limit.

f(x) is said to tend to a limit as x tends to ‘a’ if both the left and right
hand limits exist and equal, and their common value is called the limit of
the function.

xlircrll_f(x) = }Li_rf(l) f(a — h) where, h > 0 is called left hand limit (L.H.L.)

And
lim+f(x) = }lirré f(a+ h) where, h >0 is called right hand limit
x-=a -

(R.H.L.)

If L.H.L. = R.H.L. then lim f(x) exist.
x—>a
And if L.H.L. # R.H.L. then lim f(x) does not exist.
x—a

Example 6.5.1. Do the following limits exists? if yes, find them.
T . 1
0] }Cl_rg sin—

fey 7. .1
(i) }CI_I)TCI) X sin

1
(1ii) lim2 x-1
x—1
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Sol. (i) L.H.L.= lir{l_f(x) = }lin(l) f(1—nh)
X— -
= lim sin 1 - —lim sinl )
h—-0 1-h-1 h—0 h
Now as h — 0, sin% is finite and oscillates between —1 and 1, so it does

not tend to any unique and definite value as h — 0. Hence L.H.L. does not
exist.
Similarly, the right-hand limit also does not exist as x — 1.

Thus lim sin — does not exist.
x-1 x—1
(i) LH.L. = lim f(x) = lim f(0 — h)
x—0" h—0

= 1im(0 — k) sin— = lim h sin~

h—0 0-h  h-0 h
= 0 X a finite quantity between —1 and 1
=0.

Similarly, R.H.L. = lim f(x) = lim f(0 + h)
x—07% h—0
. o1 .1
= }g%(o + h) sin e }ll_r)ré h sin ;
= 0 X a finite quantity between —1 and 1
=0.
Thus L.H.L. and R.H.L. both exist and are equal, and hence lirr%xsini
xX—
exists and is equal to zero.
lim x sin~ = 0.
x-0 X
(i) LH.L.=1lim f(x) =1lim f(1 —h)
x-1" h—-0
1

1

R T 1

=lim21-r-1=lim2-h=2"" = —==—=0.
h—-0 h—0 2 00

RH.L. = ler{Lf(x) = }ll_r)réf(l + h)

1 1
=]lim21+h-1 =]lim2r = 2% = o0,
h—-0 h—-0

Since L.H.L.#R.H.L.

1
lirr}Z x-1 does not exist.
x>
(iv) LH.L.=lim f(x)=limf(0—h)
x—>0" h-0

1 1

. e0-h . e h
=lim — = lim
h=0go-h+1 h20e R4

RH.L. = xlirggrf(x) = }11_1}(1)]‘(0 + h)

1
. e0+h
=lim —
h=0 0557 + 1
1 1

T 14e ®  1+0

:-lL-: 0

0+1
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Since L.H.L.#=R.H.L.

. el/x }
lim ———— does not exist.

x—0 el/xyq

- a for0<x<a
Example 6.5.2. Find liné f(x) where f(x) =1 © »
X—

a—-— forx >a

Sol. L.H.L.= lim f(x)=1limf(a—h)
x-a h-0

(a—h)? _ a] _a?

:1im[ =——-a=a—-a=0
a a

RH.L. = lim+f(x) = lim f(a + h)
x-a h-0

. a3 a3
:hm[a— 2]=a——2=a—a=0.
h—-0 (a+h) a

Therefore, L.H.L. and R.H.L. both exist and each equal to 0.
lirr(l) f(x)=0.
X—

6.6 INFINITE LIMITS

A function f (x) is said to approach + oo or - c as X — a, if for given&> 0

there exists & > 0such that

f (x)>eor f (X)<—&whenever 0<|x—al<§.
Then in other words, Limit f (X) =ocoor Limit f (X) = —o0.

Example 6.6.1. Find Limit 22~

x—0 X
. sin
Solution. Let f (x)= X Here
X

o - . ..sinh
f(0+0) = thinolt f(0+h)= thTolt f(h)= LJTJtT
= Limit

3 5 7
h—hA!JrhA!—h%!-k....
h—0 h

_ 1 imit1_h? h*/ _hS _
_LJTO'U 3!+ A! A+...._1
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And

. . ... sin (=h)
f(0-0) = LJTJt f(0-h)= thm)lt f (—h) = LJLth—h

sin (h) _

= Limit
h—0

1.

sin X
X

Since f(0+0) =f(0-0) =1 and hence Lhimoit =1.

Example 6.6.2.. Find Limitsm—x.

X—> 0 X

Solution. Let f (x)= mx Put x = 1/y s0 as X —o0, y— 0. Then
X

Limit 3% — Limit V&Y _ it ysin (EJ
y

x—o X y—0 1/ y y—0
Let g(y)=ysin (lj . Then, right hand limit is
y

g(0+0) = Lrjinoit g(0+h)= Lrjinoit g (h)
-~ Limit hsin (%J
= 0 xfinite quantity which lies between -1 and +1
=0
and the left hand limit is

g(0-0) = Lhimoit g(0-h)= Lhimoit g(=h)

_ Limit hsin (lj ~0
h—0 h

Since g (0 +0) =g (0 - 0) = 0 therefore Limoit ysin [lj = 0and hence
y—> Yy

Limit > X — 0.

X—> 00 X

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-102

Example 6.6.3. Find lim sin G)

X— 00

Solution. Let f (x)=sin (Ej Here
X
f(0+0) = thinolt f(0+h)= thgwolt f(h) = thgwolt sin (ﬁj
As h — 0, the value of sin (%) oscillates between -1 and +1 passing

through zero. Hence there is no definite number | to which sin (%j tends

to as h — 0. Therefore right hand limit does not exist. Similarly left hand

limit f (O — 0) also does not exists.

Thus lim sin (i) does not exist.

X— 00

Example 6.6.4. Find Limit L+ %)%
Solution. Let f(x) = Limit (1+x)% . Now right hand limit is

f(0+0) = Limit f (0 h) = Limit f (h) = Limit 1+ h)’h

T e I )
= Limit|1+=.h+ h? + .h

h—0 h 2! 3!

1.1-h) 1.(1-h)1-2h)
TR T 3! ’

h—0

= Limit {1+£+

1 1 1
=l+—+—+—+..00=¢
11 21 31

Similarly, the left hand limit is

f(0—0) = Limit f (0—h) = Limit f (h) = Limit (L- h)/ =e
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Thus both f (0 + 0) and f (0O — 0) exists and equal to e. Hence
Limit (1+x)x =e.

-2
Example 6.6.5. Show that Limit | | does not exist.

=2 (x-2)

X—2
Solution. Let f(x) =Limit | 2| Now right hand limit is

xX—2 (X —

2+h-2

f(2+0)= L|m|t f(2+h)= L|m|t m

= Limit ﬂ = Limit E =1

h—0 (h) h—0 h

and the left hand limit is

[2-h-2
f(2- O)_leltf(2 h)_lelt 2-h_2)

= Limit |_ | = Limit L=—1

h-0  (—h) h—»0 —h

X—2
Since f (2 + 0) #f (2 - 0). Hence Limzit % does not exist.
X— X_

Example 6.6.6. Find Limoit 1eyx.
X—> X
: 1y
Solution. Let f(x) = leolt —e’*. Then
X— X
f(0+0) = Limit f (0+h) = Limit f (h) = Limit le%
h—0 h—0 h—»0 h

=oo (Since %—)ooand e% —ooas h — 0)
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Limit £ (0— ) = Limit f (—h) = Limit — <o
f(O—O)_thwoltf(O h)_LhILnOItf( h)_Lr!TOIt he

=Limit —
h—0 he%
-1

11 11
I+ —+ - —+_-—+..0
h 2'h® 3lh

=0

Since f (0 + 0) #f (0 - 0). Hence Limoit 1e%does not exist.
X—> X

6.7 L HOSPITAL RULE

L’Hospital’s rule is totally different from the quotient law of
differentiation. There is a solid logical base that why we only differentiate
numerator and denominator directly, instead of using quotient law of
differentiation.

(2) 1t must be clearly remembered that L.’Hospital’s method be used only

in the situations of 9 and inot in other cases.
o0

(3) In L’Hospital’s rule, numerator f(x) and denominator g(x) are to be
differentiated separately.

()] It may be helpful for students that
log,1=0,log, 0 = —o0,log, © = +w,e® =1,e™ =0, e” = oo,

Example 6.7.1. Evaluate lim 2%,

x—0 X
.sinx . 0
Sol.  Clearly, lim —— isa — form.
x->0 X 0

L’Hospital’sRule:

lim sinx __ lim (sinx)r im cosx __ 1

x50 x x50 (X1 x-0 10

Note: In second method, dash (') above sinx and x represents the first
derivative with respect to x (variable with respect to the limit has been
taken).
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Example 6.7.2. Evaluate lim 28X

x—0 X—

Sol.  Clearly, Iim log x isa (%Jform.

x—0 X —1
L’Hospital’s Rule:

(log )1 ()
= lim—= = lim* = 1.
x-1(x-1)  x-1 1

X —sin x
2

Example 6.7.3. Find lim

x—0 X

Sol. L’Hospital’s Rule:

li (x—sinx) _ (x—sin x)r

lim
x—-0  x3 x—0 (x3)

. 1—-cosx
= ljm {2220 > )
x—0 3x

_ 1. (1=cosx)r

x—0 (3x2)r

x—0 6x

. (sinx)r
x—0 (6x)’

lim (cosx)

x->0 6

1
6"

jim &1
Example 6.7.4. Find *?° X

Sol. L’Hospital’s Method:

. e*-1 . e*—1)r .
lim = llm( Y _ lim
x>0 X x—0 (X)) x—0

= 1.

ex
1

lim

xcos X — log(1+ x)

Example 6.7.5. Evaluate *° x?

Sol. L’Hospital’s Rule:

. xcosx—log(1+x
llm¢

x—0 x?

{xcos x—log(1+x)}

= lim 2y
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1.cos x—x(sin x) _(1—J1rx)

= lim
x-0 2x

. 1
- 1y
(cosx—xsinx (1+x))

lim
(2x)7

—sin x—(1.sin x+x.cos x)+;
) ) (1+x)?2

2

—2sinx—Xx.COSX+———>
(1+x)

lim
x—0 2

1
2

Note: Observe that L’Hospital’s rule is sometimes easier than the
algebraic method. We will explain next examples only by L’Hospital’s
rule.

m L+x)" -1
Example 6.7.6. Find *° X

Sol.  lim &1 _ im w
x—0 x x-0 {x}

— lim n(1+x)"1

x—0
n

X a

lim & —%
Example 6.7.7. Evaluate *>° X" —a*

a¥—x% lim (a*-x*)r .. a*loga—ax®?
T xsa(x*-a%r x5a  x* (logx+1)

__a%loga—a.a™?!  a%loga-1) _ loga-1

a%loga+a®  a%(loga+l)  loga+1l
Note: The first derivate of x* in above example calculated as follows:
y=x*
Taking logarithms
logy = xlogx
Now differentiating both sides with respect to x
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d
() = y(logx + 1) = x*(logx + 1).

5sin x —7sin 2x + 3sin 3x

lim
Example 6.7.8. Evaluate *° tan x — x

. 5sinx—7sin 2x+3 sin 3x
lim

Sol.

x—-0 tan x

. (5sinx—7sin 2x+3 sin 3x)/
lim
x—0 (tan x—x)/

. 5c0sx—7X2cos2x+3%X3cos3x
lim

x—0 sec? x—1

lim (5cosx—14 cos 2x+9 cos 3x)/

x—0 (sec? x—1)r

. —5sinx+14.2sin 2x—9.3 sin 3x
lim
x—0 2secxtanx

—5c0sx+28.2 cos2x—27.3cos 3x

x—0 2(secx sec?x+sec x tan x tan x)

-5+56-81 _ —30 _

= —15.
2

ex _ esinx
lim ——
Example 6.7.9. Evaluate *”° X—SIn X

. ex_esinx . ex_esinx '
Sol. lim —_— = lim Q
x—0 X—sinx x—0 (x—sinx)s

. e*—cosx.eSm~x
= lim
x—0 1-cosx

— lim (e¥—cos x.eSin¥xy,
- (1—cos x)’

eX—{cos x.cos x.e SN ¥4 (— sin x).eSin X}

= lim ,
x—0 sin x

{e*—cos? x.eS!" ¥ +sin x.eSM ¥}/

= lim
x—-0 (sin x)s

MT(N)-102

e* — {2 cosx.(—sinx).es"* + cos® x.e5"*} + {cosx. e5"¥ + sin x cos x. eSI"*}

= lim
x=0 Ccos X

e*+3sinx cosx. eSIN¥_cos3 x.eSIN¥4cosx. eSINX

= lim
x—0 CosS Xx
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Case I1: Formg

n2+5

Example 6.7.10. Evaluate lim,,_,, s

2

. n“+5 . o
Sol.  Clearly, im ————isa —form.
=N +4n+3 0

Algebraic Method:

) n? ) n2(1+n

lim — = o

n-oo n?+4n+3 n-oo n2(1+—+—2
n n

L’Hospital’s Method:

lim n?+s5
n-oo n2+4n+3

(Again = form)

(2n)
n-ooo (2n+4)r

fim 129 X

Example 6.7.11. Evaluate *~° COtX

Sol.  This is of the form z We have therefore,

, 1
log x . (log x) ) (})

= lim——= = lim—=~—
x>0cotx x-0(cotx) x-0—cosec?x

. —sin®x /0
= llm—(— form)

lim (f f orm)

(0]

0

x—0 X

. —2sinxcosx
= lim——————==0.
x—0 1

T
log(x — E)

tan x

lim
Example 6.7.12. Find = 2
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—2cosxsinx

lim
1

x>
= 0.
m log( >X< — az
Example 6.7.13. Evaluate *~* 109(&” —€%)

Sol. lil’l’lM (S fOT'm) = ]imM

o x—a (log(e*—e%))r

x—aq log(e*—e?)
()
chl_r}(ll (e’EeZ)ex

lim 5——=%" (O form)
x—a (x—a)e* \0

lim (&=
x—a [(x—a)eX]
. e*
lim e
x—a (x—a)e*+e
b

N 3161_)rr611 [(x—a)+1]e*

x—a [(x—a)+1]

=1
e* +3x3

|
Example 6.7.14. Find *>= 4e” + 4X
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Sol.
eX+3x3

n—oo 4eX+4x

’
. (e*+3x3)
n-ooo (4e*+4x)’

eX+9x?
n—ooo 4e*+4

. (eX¥+9x?)r
n—oo (4€x+4)l

. e*+18x!
llm —_—

n-oo  4e*

lim (e*+18x1)s

n-ooo  (4e%)’

X
lim (e*+18)

n-ooco 4e*
e¥

lim —
n-oo 4e*

1
-
log(tan * 2x)

X—> 2
Example 6.7.15. Evaluate ™" log(tan * x)

Sol.  We have,

log(tan?2x) (oo )

im—————— (—form
x-0 log(tan?x) oof

2log(tan 2x) 00
— —form
x—0 2log(tanx) o0

1 2
. (log(tan2x))r _ lim (tan 2x)'2 sec“2x

x—0 (log(tanx))r x50 (ﬁ) sec?x

2tanx cos?x T 2sinx cosx

im—————=Ilim—=
x—0 tan 2x cos?2x x—0 Sin 2x cos 2x

= lim —_— = m
x—0 Sin 2x cos 2x x—0 COS 2X 1

sin 2x . 1 1
=1 =-=1.

i log(sin x)

li
Example 6.7.16. Evaluate *>° COtX

Sol.  We have,
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. log(sinx) oo . (log(sinx))"r
lim 28&mx) )(— form) = jm L8’ g(sin x))
x—0 cotx © x—0 (cotx)r

1

. mx COSX . cosx

= lim$*—— = lim (— _
x—0 —cosec?x x—0

= lim(—cos x.sinx) = 0.
x—0

n

Example 6.7.17. Find lim X—X , Where n is a positive integer.

n—o e

Sol.  We have,

nxn—l

" (o TR €10
(Oo form) = 9}1_{210 oy lim

(g f orm)

!
nx™1 . nn-1)x""2 (e
m & _ i L(— form)
x—oo (eX)r n-oo ex co

_1y.n—2)
= lim (n(n-—1x""2) = lim
n—oo (eX)r n-co e*

n(n-1)(n-2)x""3 (g form)

Repeating this process, we get

. (n(n-1)(n-2)..n factors)

Example 6.7.18. Find lim M
x>0 log sin x

Sol.  We have,

log sin 2x
x—0 logsinx

. (logsin2x)r

x—0 (logsinx)r

— llm (sinsz'COS Zx)
x-0 (m.COS X)

. 2 cot2x
= lim
x—0 cotx

. (2cot2x)r
x—0 (cotx)s

. —4cosec? 2x
= lim ————
x>0 -—cosec?x
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4 sin®x

x—0 sin?2x
i 4 sin%x
x—0 (2 sin x cos x)2

lim 1 - 1.

x>0 cos2x

log x
a* ’

Example 6.7.19. Find lim a>1.

X—00

Sol.  We have,

. logx foo . (logx)r
lim (— orm) = lim
X—00 a* o f X—00 (a")’

x—o0 a*loga

1

loga x—oo x a*

=1t x0=0.

- loga

CHECK YOUR PROGRESS

True or false Questions

Problem 1. lim 3% is 0.

x—0 X

. logx .
Problem 2. lim &% s 1.
x—0 x—1

Problem 3. lim sin (%) does not exist.

X—00

Va+x-2 .

Problem 4. lim,,_,, is 1.

Problem 5. lim, ., -~ is 1
X200 n244an43

6.8 SUMMARY
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1.1lim f(x)=L

xX—a

This is read as, “limit of f(x), as x approaches a equals L”.
2. A symbol such as x or y, used to represent an arbitrary element of a set

is called a variable. For example y = f (x).

3. L’Hospital’s method be used only in the situations of % and 2 not in
o0

other cases.

6.9 GLOSSARY

Numbers
Intervals
Limit points
Functions

Bounded, Unbounded sets
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6.12 TERMINAL AND MODEL QUESTIONS

5n2-5

Q1. Prove that lim,_,o ————

Q2. Prove that lim,_,, sin (iz) does not exist.

Q3. Prove that lim,_,, x? sin ( 12) exist and equal to 0.

X

1
Q4. Prove that lirq9 x-1 does not exist.
X—

Q5. Prove that lim 21%8%

X— 00

,a>1is0.

6.13 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. False
CYQ 2. True
CYQ 3. True
CYQ 4. False

CYQ 5. True

Department of Mathematics
Uttarakhand Open University




Real Analysis

UNIT 7: CONTINUITY
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7.1 INTRODUCTION

In mathematics, a continuous function is a function such that a
small variation of the argument induces a small variation of the value of
the function. This implies there are no abrupt changes in value, known
as discontinuities. More precisely, a function is continuous if arbitrarily
small changes in its value can be assured by restricting to sufficiently
small changes of its argument. A discontinuous function is a function
that is not continuous. Until the 19th century, mathematicians largely
relied on intuitive notions of continuity and considered only continuous

functions.

Continuity is one of the core concepts of calculus and mathematical
analysis, where  arguments  and values of  functions

are real and complex numbers.

7.2 OBJECTIVES

After studying this unit, learner will be able to

(i) Continuity

(ii) Discontinuity
(iii) Type of Discontinuity

(iv) Uniformly continuous
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7.3 CONTINUITY (¢,6) DEFINITION

Definition 1. A real valued function f (x) defined on an interval | is said to

be continuous at x = a e I ifand only if for any arbitrarily chosen positive
number &, however small, we can find a corresponding number ¢ > Osuch

that
|f(x)— f(a)| <& whenever |x—a|<§.
We say that f (x) is continuous if it is continuous at every X € I.

Or

f (x) is continuous at x = a is given& > 0, we can find a 6 > 0 such that

[x-a|<s=[f()-f(@@)<e

7.4  CONTINUITY FROM LEFT  AND
CONTINUITY FROM RIGHT

A function f (x) is said to be continuous from left at x = a if Limit f (x)

x—a-0

exists and equal to f (a) i.e.,

Limit f (a—h) = f (a)

Similarly, f (x) is said to be continuous from right at x = a if Limit f(x)

x—a+0

existsand equal to f (a) i.e.,
Lhimoit f(a+h)="1(a)
and f (x) is continuous at x = a iff

Limit f () =Limit f (x) =  (a)

x—>a-0

Limit f (a—h) = Limit f (a-+h) = f (a)
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7.5 DISCONTINUITY

If a function is not continuous at a point, then it is said to be
discontinuous at that point and the point is called a point of discontinuity

of the function.

e. g. The function f (x) =Ldoes not exists at x = a so f (x) is not

continuous at x = a.

7.6 TYPES OF DISCONTINUITY

(1) Removable discontinuity:

A function f (x) is said to have a removable discontinuity at a point x = a

if Limit f (x)exist butis not equal to f (a) i.e., if

f(a-0)= f(a+0)= f(a)
The function can be made continuous by defining it in such a way that

Limit f () = f (a).

(2) Discontinuity of the first kind:

A function f (x) is said to have a discontinuity of the first kind or ordinary
discontinuity at x =a if f (a + 0) and f (a — 0) both exist but not equal. The
point x = a is said to be a point of discontinuity from the left or right

according as
f(a-0)= f(a)= f(a+0)or f(a—0)= f(a)= f(a+0).
(3) Discontinuity of the second kind:

A function f (x) is said to have a discontinuity of the second kind at x = a
if none of the limits f (a + 0) and f (a — 0) exist. The point x = a is said to
be a point of discontinuity of second kind from the left or right according

as f (a—0)or f (a+0)does not exist.
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(4) Mixed discontinuity:

If a function f has a mixed discontinuity at ‘a’if either

(1) lim f(x) does not exist and lim f(x) exists, however lim f(x)
x—a~ x—at x—at

may or may not equal to f(a).

(i) lim f(x) does not exist and lim f(x) exists, however lim f(x)
x—at x—a~ x—a~

may or may not equal to f(a).
(5) infinite discontinuity:

A function f (x) is said to have an infinite discontinuity at x = a if f (a + 0)
orf(a—0)is+ oo or-oie., iff(x) isdiscontinuous at x = a and f (x) is

unbounded in every neighbourhood of x = a.
(6) Piecewise continuous function:

A function f: A — R is said to be piecewise continuous on A if A can be

divided into a finite number of parts so that f is continuous on each part.

Clearly, in such a case, f has a finite number of discontinuities and the set

A is divided at the points of discontinuities.
Note: Jump of a function at a point.

If both f (a + 0) and f (a — 0) exists, then the jump in the functionat x = a

is defined as the non-negative difference f (a—0) ~ f (a+0).

A function having a finite number of jJumps in a given interval is called

piecewise continuous.

llustrative Examples

Example 1. Test the continuity of f (x) at x = 1 when

X2 +2 if x>1
f(x)=42x+1 if x=1
3 if x<1
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Solution. Here f (1) =2.1+1=3

f (L+0) =Limit f (1+h) =Limit (1+h)? +2

=Lhim0it 1+h?+2h+2=3asl+h>1.

f (L-0) =Limit f (1—h) =Limit (1—h)* +2

:Lhimoit1+h2—2h+2=3asl—h <1
So f (@) =f@+0)=f(@-0).Hence f (x) is continuous at x = 1.

Example 2. Discuss the continuity of the function f (X) =

X # 0 and f (0) =0 for all values of x.
Solution. Test the continuity at x = 0
f(0+0)= Lhimoit f(0+h) = Lhimoit f(h)

=Limit 1 =1
h—0 1—87%

f (0-0) =Limit f (0—h) =Limit f(-h)

=Limit 1 =0
h—0 1—6%

Thus we have f (0 + 0) #f (0 —0) =f (0). So f (x) is not continuous at x =
0 and it is a discontinuity of first kind i.e., f (x) is continuous on the left

and has a discontinuity of first kind on right at x = 0.

Now test the continuityat x=a #0

f(a+0) =Lh|T0|t f (a+h) :thgolt

1
1—e7%‘+h

1
= = f (a)
1-¢ /2
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f(a-0) :LhITOI'[ f (a—h) :LhITOIt

I
l—ef%"h

Thus we have f (a + 0) = f (a— 0) = f (a). Hence f (x) is continuous at

every point except x = 0.

Example 3. Test the continuity of the function

.1 .
X sin = if x£0
f(x)= X

0 if x=0
Solution. Here
f(0+0) = Lhimoit f(0+h)= Lhimoit f(h), h>0

_Limit hsin £ =0
h—0 h

f(0-0) =Lhim0it f (0-h) =Lhimoit f(-h),h>0
. . 1 . 1
=Limit (—h)sm(——j:lelt hsin==0
h—>0 h h—0 h

Thus we have f (0 + 0) = f (0 — 0) = f (0). Hence f () is continuous at x =
0.

Note. 1. If we check the continuity at x = ¢ # 0 of the above function,
then we see that

Limit f (x) =Limit x sin 1
X

X—>C X—>C

:csinlzf(c)
c

So f (x) is continuous at x = ¢. Thus f (x) is continuous for all xeRi.e., f

(x) is continuous on the whole real line.

Note 2. If we take f (0) = 2, in the above function, then f (0 + 0) = f (0 —
0) # f (0). The function becomes discontinuities at x = 0 and has a

removable discontinuity at x = 0.
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Example 4. If a function f (x) is defined by f(x) :x—[x], where X is a

positive variable and [x] denotes the integral part of x. Show that it is
discontinuous for integral values of x and continuous for all others. Draw

the graph.
Solution. From the definition of the function f (x) we have

x—(n-1) forn-1l<x<n
f(x)=40 forx=n
X—n forn<x<n+1 where n is an integer

First we test the continuity of f (x) at x = n. We have f (n) = 0.

f(n+0) :Lhimoit f(n+h)= Lhimoit (n+h)—n

=Lhim0it h=0 [asn<n+h<n+l]

f(n—0) =Limit f (n—h) =Limit (n—h) —n-1

=Lhim0it 1-h=1 [asn-1<n-h< n]

Since f (n—0) #f (n + 0), so the function f (x) is discontinuous at x = n.
Thus f (x) is discontinuous for all integral values of x. it is obviously

continuous for all other values of x.

Since x is a positive variable putting =1, 2, 3, 4, 5, ...., we see that graph

of the function consists of the following straight lines.

when 0 < x <1
when x=1

|
[N

whenl< x <2
when x =2
when 2 < x < 3

|
N

when x =3

|
w

when 3 < x< 4

O X O X O X O X

when x =5

and so on.
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Itis clear from the graph that

(1) The function is discontinuous for all integral values of x but
continuous for other values of x.

(2) The function is bounded between 0 and 1 in every domain which
includes an integer.

(3) The lower bound 0 is attained but upper bound 1 is not attained since

f (xX) #1 for any value of x.

Example 5. Show that the function f (x) = [x] + [-X] has a removable

discontinuity for integral values of x.

Solution. We see that f (x) = 0 when x is an integer and f (X) = -1 when X

is not an integer. Hence if n is an integer then
f(h-0)=f(n+0)=-1landf(n)=0.

So the function f (x) has a removable discontinuity at x = n, where n isan

integer.

[X]

Example 6. Prove that the function f(x) = forx #0 and f (0) =0, is

X
continuous at all the points except x = 0.

Solution. If x > 0 then, f(x) =2 =1and if x < 0 then, f(x)=— =1,
X X

Therefore the given function can define as:
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-1, if x<0
f(x)=40, if x=0
1, if x>0

If x <0, then f (x) = -1 i.e., f (x) is a constant function and a constant
function is always continuous at each point of its domain. This implies

that f (x) is continuous for all x < 0.

Similarly, we can show that f (x) is continuous for all x > 0. Now we see

the continuity at x = 0.

f (0+0) =Limit f (0+h) =Limit f(h), h >0
—Limit 1=1

h—0

f (0—0) =Limit f (0—h) =Limit f(-h), h >0
= Limit —~1=-1

h—0
Here f (0+0)# f (0—0)# f (0).Hence f(x) is not continuous at x = 0.

Example 7. Discuss the continuity of the following functions at x = 0 of

o1
xzsm;, x#0
0 , x=0

the function f(x) = {

Sol.

7.7 UNIFORM CONTINUITY

A function f: X — Y is said to be uniformly continuous on A € X if for

every € > 0, there exists 8 > 0 such that x, y € A, |x — y| < & implies

If() —fI< e

Note: Uniform continuity is domain base property i.e. Uniform continuity

is defined on a set.
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Example 7.6.1 Prove that the function f (x) = 3x + 1 is uniformly

continuous on R.

Solution: Since |f (x) — f(y)|=|3x+1)— By + 1)|=3x—y|
so, given € > 0, we choose & = € / 3. Then, |[x — ¢| < implies
If(x) —f(c)|=3x—c|<3(e/3)=¢.

Hence the function f (x) = 3x + 1 is uniformly continuous on R.

Example 7.6.2 Prove that the function f (x) = x2 is not uniformly

continuous on R.

Solution: for any e > 0and for any X, y € R we have a 6

such that [x—y| < 8 = [f(X)—f(y)| < €. Our claim here is now

|x?>—y?| < e That is the distance between x?and y?is at
most € everywhere on the vertical axis as long as we keep x and y at
most & away from each other. The problem arises if we let x and y getting
larger and larger.

So for the given e we have fixed 6 and we may play with x and y values.

Let's make them large enough to satisfy g <|x—-y|<dandx > %, y > % .

Then |x-y[3d

8 2e
But b2y =lx—yllx+y|>55 = x*y%>3

which is a contraction with the definition which is assumed true at the

beginning. Therefore f (x) = x2 can not be uniformly continuous.

Note: Every Uniformly continuous function is continuous function.
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CHECK YOUR PROGRESS

True or false Questions

Problem 1. The function f(x) = sin % at x = 0 has a discontinuity of

second kind.
Problem 2. The function f(x) = e* is not continuous at x = 0.

Problem 3. Every uniformly continuous function is continuous
function.
Problem 4. Every polynomial function is uniformly continuous on R.

Problem 5. Every continuous function uniformly continuous.

7.8 SUMMARY

1. If Lhimoit f(a—h)= Lhimoit f(a+h) = f(a) then function f(x) is
continuous at x = a.

2. A function f: X — Y is said to be uniformly continuous on A € X if

for every € > 0, there exists 8 > 0 such that x, y € A, [x — y| < & implies

If () —fI< e

7.9 GLOSSARY

Numbers
Intervals
Sets
Functions

Limits
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7.12 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that every uniform continuous function is continuous.

Q 2. Prove that every polynomial function is continuous.

Q 3. Prove that f(x) = % is not uniformly continuousin (0, 1).

Q 4. Prove that f(x) = x?2 isuniformly continuous on [-2, 2].

Q 5. Prove that £ (x) = 2'/*is not continuous at 0.

7.13 ANSWERS

CHECK YOUR PROGRESS
CYQ1. True
CYQ 2. False
CYQ 3. True
CYQ 4. False

CYQ5. False
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Real Analysis

8.1 INTRODUCTION

In previous unit we discussed about limit and continuity. In this
unit we will discussed about Differentiability and Mean Value theorem.
Prior to the seventeenth century, a curve was generally described as a
locus of points satisfying some geometric condition, and tangent lines
were obtained through geometric construction. This viewpoint changed
dramatically with the creation of analytic geometry in the 1630s by Rene
Descartes (1596-1650) and Pierre de Fermat (1601-1665).

In this new setting geometric problems were recast in terms of algebraic
expressions, and new classes of curves were defined by algebraic rather
than geometric conditions. The concept of derivative evolved in this new
context. The problem of finding tangent lines and the seemingly unrelated
problem of finding maximum or minimum values were first seen to have
a connection by Fermat in the 1630s. And the relation between tangent
lines to curves and the velocity of a moving particle was discovered in the
late 1660s by Isaac Newton. Newton’s theory of ‘‘fluxions,”” which was
based on an intuitive idea of limit, would be familiar to any modern
student of differential calculus once some changes in terminology and
notation were made.

But the vital observation, made by Newton and, independently, by
Gottfried Leibniz in the 1680s, was that areas under curves could be
calculated by reversing the differentiation

process. This exciting technique, one that solved previously difficult area
problems with ease, sparked enormous interest among the mathematicians
of the era and led to a coherent theory

that became known as the differential and integral calculus.

In this Unit we will develop the theory of differentiation. Integration
theory, including the fundamental theorem that relates differentiation and
integration, will be the

subject of the next chapter. Consequently, we will concentrate on the
mathematical aspects of the derivative and not go into its applications in
geometry, physics, economics, and so on.

8.2 OBJECTIVES

In this Unit, we will Discussed about

Improper integral
Test of convergence
Absolute integral
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8.3 DERIVATIVE

We begin with the definition of the derivative of a function.

Derivative: Letl € R beaninterval, f: (x,y) > Randb € . Thenl € R
is said to be derivative of fat b if for any given € > 0 there exists 6(€)
such that if x € I then

w—q <& whenever 0 < |x —b| <8.
We can also say that f is differentiable at b, and we write f'(c)

Or

provided this

The derivative of fat b is given by f'(c) = lim —f(xi:}fl(b)

limit exists.

Note: We now show that continuity of f at a point b is a necessary

(but not sufficient) condition for the existence of the derivative at b.

Theorem: If f: I - R has a derivative at b € I, then f is continuous
atb.

Proof. We have

f(x) — f(b) = (%) (x —b) Forallx € I'x £ b

Because f'(b) exists, Therefore

f(x) — f(b
}(i_l;%(f(x) — f(b)) = Ll_r}% ((%) (x — b))

f(x)—f(b)

X—

=lim(

x—b

)Li_r)rtl)(x —b)

=f'(b).0=0

Therefore, lim (f(x) — f(b)) = 0 = limf(x) — limf(b) = limf(x) = f(b)
x—b x—b x—b x—b

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

Hence f is continuous at b.

NOTE: The continuity of f: I —» R ata point does not promise the
existence of the derivative at that point.

Theorem: Let I € R be an Interval and f, g: X — R be functions that are
differentiable atb € R Then

(1 If a € R, then the function af is differentiable at b and
(af)'(b) = af’(b)
(i) The function f+g is differentiable at b and
(f+g)'(b) = f'(b) + g'(b)
The function f and g is differentiable at b and
(fg)'(b) = f'(b)g(b) + f(b)g’ (b)

If g(b) # 0, then the function fand g is differentiable at b and

£\’ f'(b)g(b)—f(b)g' (b
(é) (b) = (b)g(b)—f(b)g’ (b)

(5’

Proof. (i) Let h; = af, then for x € [ and x # b, we have

hi(x)-hy(b) _ (ahx)—(ah)(b) _ O(f(X)—f(b)
xX-b - x—b - X—b

Since fis differentiable at b implies f'(b) exists. Therefore

lig PO ®) RO OO
x—-b x—b x-b X— x-b X—

Hence (af)’'(b) = af’(b)
(i) Let h, = f+ g, then for x €  and x # b, we have

h;(x)—hy(b) _ (F+g)x)—(f+g)(b) _ fx)+g(x)—f(b)—-g(b) _ f(x)—f(b)+g(x)—g(b)
X—b - Xx—b - xX—b - x—b

_ fx)—f(b) n g(x)—g(b)
T x-b x—b

Since fand g are differentiable at b implies f'(b) and g’ (b) exists.
Therefore

lim 22007he®) _ y; FOT®) | ;) 80O-ED0) _ gy 4 ot (1)

x—b x-b x—b X-b x—b x-b

Hence (f+ g)'(b) = f'(b) + g’ (b)

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

(iii) Let h; = fg, then for x € [ and x # b, we have

hs(x) —hz(b)  (f9)(x) — (fg)(b) _ f(x)g(x) — f(b)g(b)
x—Db B Xx—Db B Xx—Db
_ f(x)g(x) — f(b)g(x) + f(b)g(x) — f(b)g(b)
Xx—Db

g ()~ f(b)))(+1gb)(g(X) gb) _ g(x )f(X) f(b) + f(b) EX-8D) g(X) g(b)

Itis given that fand g is differentiable at b and

g is differentiable at b = g is continuous i.e. lirré g(x) =g(b) (by
X—

previous theorem)

Therefore

lim h3(x)-hs(b) _ i { (x )f(X) f(b)_l_f(b) gx) - g(b)}

x—b x-b

= llm g(x) 11 —f(x) £(b) +

— llm a(x )f(X) f(b) lim f(b) g(X):g(b) -

f(b) lim M = '(b)g(b) + f(b)g’ (b)

Hence (fg)'(b) = '(b)g(b) + f(b)g' (b)

(iv) Let h, = é, since g is differentiable at b = since g is continuous at b.

Itis given that g(b) # 0, therefore there exists an interval I; < I with
b € I such that

g(x) # 0 forallx € I;.

Now for x € I,x # b, we get

T fay QW)
hy(x) —hy(b) g™ 7g' () " gb)  f()gb) - f(b)g(x)

x—b ~ x=b  x-b gz (x—b)

_ f)gh) —f(b)g(x)  f(x)g(b) — f(b)g(b) + f(b)g(b) — f(b)g(x)
~ ggb)x—b) g(b)g(b)(x —b)

(O ~£(b))g(b)—~£(b) (8()-g(b)) _ [
g(x)g(b)(x—b) g(X)g(b)

f(x)—f(b —-g(b

Therefore

. ha()—ha(b)
Im=== - xebg(X)g(b)[

f(x)—f(b —g(b
- ( ) g(b) — f(b)'g(xi—ﬁ( )]
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= lim o i (57 &) -
(o). lim (2257)]

g(x)g(b) X=b

_ 1
O

[f'(b)g(b) — f(b)g’ (b)]

Hence

£\ 1y _ f0)gbd)-fb)g' (b)
(g) (b) = (g0)?

8.4 MEAN VALUE THEOREM

The Mean Value Theorem, which relates the values of a function to
values of its derivative,

is one of the most useful results in real analysis

We begin by looking at the relationship between the relative extrema of
a function and

the values of its derivative.

Relative Maximum: The functionf: I - R issaid to have a
relative maximum at b € I if there exists a neighborhood V = Vg(b) of b
such that f(x) < f(b), forall xinV N 1.

Relative Minimum: The function f: I — R is said to have a
relative minimum at b € I if there exists a neighborhood V' = V' & (b)
of b such that f(x) > f(b), forall xin V' n 1.

Relative Extremum: f has a relative extremum at b € I if it has
either a relative maximum or a relative minimum at b.

Interior Extremum Theorem
Theorem: Let b be an interior point of the interval I at which

f: I - Rhasarelative extremum. If the derivative of fat b exists, then

f'(b) = 0.
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Proof. If f' (b) > 0, Then there exists a neighborhood V < I of b such
that

fO-®) S 0 forx e V,x £ b
x—b
If x € V,x > b, then we get

f(x)—f(b)

b >0

f(x) — f(b) = (x — b).
But this contradicts the hypothesis that f has a relative maximum at b.

Hence, we cannot have f (b) > 0.

Similarly, we cannot have f (b) < 0.

Therefore, f (b) = 0.

Rolle’s Theorem

Theorem: Consider that f is continuous on a closed interval I = [a, b]
and

the derivative f'(0) exists at every point of the open interval (a, b), and
f(a) = f(b) = 0.

Then there exists at least one point c in (a,b) such that f'(c) = 0

Proof. If f(x) = 0 for all xin I or vanishes identically on I, then any c
in (a,b) will satisfy the result of the theorem.

Hence Let f does not vanish identically or f = 0.

Now replacing f by (—f) and consider f assumes some positive values.
So by the Maximum Minimum Theorem,

The function f attains the value sup{f(x): x € I} > 0 at some point c in L.
Since f(a) = f(b) = 0. the point ¢ must lie in (a,b).

Hence f'(c) exists.

Since f has a relative maximum at c.

By the Interior Extremum Theorem, we get

f'(c) =0
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Geometrical Representation of Rolle’s theorem

filcd=0

£

c

Fig.

In the given graph, the curve y = f(x) is continuous between x =
and x = band

at every point, within the interval, it is possible to draw a tangent and
ordinates corresponding to the abscissa and are equal then there exists at
least one tangent to the curve which is parallel to the x-axis.

Algebraically, this theorem tells us that if f (x) is representing a
polynomial function in x and the two roots of the equation f(x) = 0 are
x =aand x = b, then there exists at least one root of the equation
f'(x) = 0 lying between these values.

The converse of Rolle’s theorem is not true and it is also possible that
there exists more than one value of x, for which the theorem holds good
but there is a definite chance of the existence of one such value.

NOTE:

Rolle’s theorem does not hold good if

(i)  f(x) isdiscontinuous in the closed interval [a, b].
(if) T (x) does not exist at some point in (a, b).
(iii) f(a)#f(b).

Example: Rolle’s Theorem can be used for the location of roots of a
function.
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For, if a function g can be identified as the derivative of a function f,
then between any two roots of f there is at least one root of g.
For example: let g(x) = cosx then g is known to be

the derivative of f(x) = sin x. Hence, between any two roots of sin x
there is at least one

root of cosx.
On the other hand, g'(x) = —sinx = —f(x) .

Another application of Rolle’s Theorem informed us that between any
two roots of cos there is at least one root of sin.Therefore, we conclude
that the roots of sin and cos interlace each other

Mean Value Theorem:

Suppose that f is continuous on a closed interval I = [a, b]and f has a derivative
in the open interval (a, b). Then there exists atleast one point c in (a, b) such
that f(b) — f(a) = f'(c)(b — a)

Proof. Assume the function @ defined on I such that

®(x) = f(x) — f(a) — % (x — )

We can easily see that The Conditions of Rolle’s Theorem are satisfied by @
since & is continuous on [a, b], differentiable on (a, b), and ®(a) = ®(b).

Therefore, there exists a point b in (a, b) such that
0 ='(c) =f'(c) - =2

f(b) f(a)

Therefore f'(c) = = f(b) — f(a) = f'(c)(b—a)

Geometrical Interpretation
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The geometric view of the Mean Value Theorem is that there is some
point on the curve y = f(x) at which the tangent line is parallel to the
line segment through the points (a, f (a)) and (b, f (b)). Thus it is easy to
remember the statement of the Mean Value

Theorem by drawing appropriate diagrams. While this should not be
discouraged, it tends to suggest that its importance is geometrical in
nature, which is quite misleading. In fact the

Mean Value Theorem is a wolf in sheep’s clothing and is the
Fundamental Theorem of Differential Calculus.

Cauchy Mean Value Theorem:

Theorem: Let fand g be continuous on [a, b] and differentiable on
(a, b), and assume that g(x) # 0 for all x in (a, b). Then there exists c in
(a, b) such that

f(b)-f(a) _ f(c)
gb)-g@)  g'(c)

Proof. Since g'(x) # 0 for all x in (a,b), therefore

Using Rolle’s Theorem, we get

g(a) # g(b).
For x in [a, b], now new define

_ f(b)—f(a)
T gb)-g@)

(%) (8 —g@) — (fx) — f(a))

Then h is continuous on [a, b], differentiable on (a, b), and
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@) =o@b)=0.
Therefore, According, to Rolle’s Theorem

there exists a point c in (a,b) such that

o _ f(b)-f(a) , g
0=¢'(@=—m8©@-f©

As we know g’ (c) # 0, we obtain required result that is

f(c) _ f(b)-f(a)
g'(© gb)-g@

Strictly Increasing: A function fis said to be strictly increasing on
an interval I if for any points x;and x, in | such that x; < x,, we have

(x1) <f(x3).

Strictly decreasing: A function f is said to be strictly increasing on
an interval I if for any points x;and x, in I such that x; < x,, we have

f(x1) < f(x,).

Derivatives can be used to determine whether a function is increasing,
decreasing or constant on an interval:

f(x) is increasing if derivative ' (x) > 0,
f(x) is decreasing if derivative f' (x) <0,
f(x) is constant if derivative f' (x) = 0.

A critical number, c, is one where f' (c) =0 or ' (c) does not exist; a
critical point is (c, f(c)).

After locating the critical number(s), choose test values in each interval

between these critical numbers, then calculate the derivatives at the test

values to decide whether the function is increasing or decreasing in each
given interval.

(In general, identify values of the function which are discontinuous, so,
in addition to critical numbers, also watch for values of the function
which are not defined, at vertical asymptotes or singularities (“holes™).)

8.5 TAYLOR’S THEOREM
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Theorem 1 (Taylor’s Theorem) Let a < b, n € NU{0}, and f : [a.b] = R. Assume
that ™) exists and is continuous on [a,b] and f™Y) exists on (a,b). Let a € [a,b] and

define the Taylor polynomial of degree n with expansion point « to be

Then, for all z € [a,b],
flz) = Po(z) + R, (a, x)

where the error term R, (o, ) is given by

(a) (integral form) R,(a,z) = [~ # (m+1(¢) (2 — )™ dt, if £ is integrable.

(b) (Lagrange form) R,(a,z) =
and x.

(¢) (Cauchy form) R, (o, z) = L f+(c) (z — )" (z — ) for some c strictly between o
and x.

(d) Ifr € N, then R,,(a,z) = =5 f" V) (¢) (z—¢)" T (z—a)" for some c strictly between

a and .

(¢) Rula,z) = %Q™ (a)(x — a)™*" where

HO=F@) g
Q(1) {f’(ﬂ-’) ift=x

n+1 Ut (e)(z — o)L for some ¢ strictly between a

Proof: Fix any evaluation and expansion points z,« € [a,b]. Define the function S(t)
by
f@)=fO)+ @@=t + 3@ - 'O+ + g -)"f B+ 8@t (1)

Observe that substituting ¢ = a into (l) gives f(z) = P,(z) + S(a). So we wish to find
R, (v, x) = S(a)

The function S(¢) is determined by its derivative and its value at one point. Finding a
value of S(t) for one value of t is easy. Substitute £ = x into (1) to yield S(z) = 0. To find
S'(t), apply ff; to both sides of (1). Recalling that z is just a constant parameter,

0=f(O)+[=FO)+@-f" )] + [ - (= t)f"(t) + 3(z — )2 fP(t)]
oot [ = e = 0" @) + @ -9V @] + 5'(0)
f)nf (n+1) (f) + qf( )
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so that
S;(ﬁ] — _%f(n+1] (f} (“IJ _ ﬁ}ﬂ

(a) By the fundamental theorem of calculus

S(a) = —[S(z) — S(a)] = - /I S'(t) dt = /I L) (z — )™ dt

of X e

(c) By the mean value theorem, there is a ¢ strictly between « and x such that

S(a) = S(a) — S(z)=S"(c) (a —z) = —;l!f{”H}'(c} (z — )" — )

LF () (@ - o) (z - a)

(b) By the generalized mean value theorem (see the notes entitled “The Mean Value

Theorem”) with g(t) = (x — t)"*!, there is a ¢ strictly between a and x such that
S(a) = S(a) - S(z) = S (g(a) — g(x))
_ﬁf(n-l—l)(c) (’}‘3 _ C)nm [:.i" _ (_'t)

= mf[u_'_”(c)(if _ 0_)11-{—1

Don’t forget, when computing ¢’(¢), that g is a function of ¢ with z just a fixed parameter.

n+1

(d) By the generalized mean value theorem with g(t) = (z—t)", there is a ¢ strictly between

« and x such that

S(a) = S(a) - S(z) = S (g(a) - g(z))

g'(c)
_ﬁf(ﬂ-i-l) (¢) (z — )" _T(I_lc)r_ (z—a)

A - o) T @ - )

(e) We'll only consider the case that = # a. For z = «, the error R, (a,z) is obviously
zero and we'll just take it as a convention that ?ITQ(”] (a)(x —a)™! = 0 even if Q) (a) is
not defined. Since f is n times differentiable, so is Q(t), at least for all ¢ # z. In particular
Q(t) is n times differentiable at t = . From the definition of Q we have that

= fla) = f(z) = (z — ) Q(a)
= f@)=Q(a) - (z-a)Q'(a)
= [P(a) =2Q'(a) - (z — a) Q¥(a)

F®(a) = kQ* "V (a) - (z - a) Q¥ (a)
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for k <n. So

T

- P(z) = f(z) = f(a) = ) #fP(a) (z — a)"
k=1
= (z - )Q(@) - 3 { Q" V(a) (2 - »)* ~ Q™ (a) (z — )"}

k=1

The sum telescopes leaving
f(?} — P{r} — ﬁQ[")(‘}'} (__1. _ (1)”+1
as desired.

Example 1. Find the first 4 terms of the Taylor series for the following
functions:

(@) f(x) = logx centeredat a = 1.
() f(x) = icentered ata = 1.
(c) f(x) = sinx centered at a = % .

sol. (i)
F()=Tnx. So fOR)= L, fOm)=-, )= =,
X X X

X(_I}Jr{.r;l) (x—1)*

Inx=Inl+x-1)x1+ X (2)+ 2 X(—6)+..

(x—1)’
2|

(=1, @=D'_(x=D'

—(x—1)—
(=== 3 4

(i)
f0==.80 [ == fU) =S fO00) = and so
X X X
v+ Y )+ D eyt
X 2! 3!
=1-(x-D+x=1Y=(x=1)"—---
(iii)

f(x)=sinx. So f"(x)=cosx, f?(x)=-sinx, f”'(x)=—cosx and so
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Example 2.

Find the Taylor series for the function x* + x—2 centered at a=1.

Sol.
f=x'+x-2. fOx)=4x"+1, fP(x)=12x", fP(x)=24x, [P (x)=24 and all
other derivatives are zero. Thus

-

(x—1)" (x-1)°
21

4!

X 24 + X 24

3
w124+ '1)

X +x-2=0+(x-1Dx5+
=5(x-D+6(x-1) +4(x-D"+(x-1)"

Example 3.

Find the first 4 terms in the Taylor series for (x —1)e* near x=1.

Sol.

Either find the Taylor series for ¢ and then multiply by (x—1):
Jx)=e = f()=e

fP=e=f"=e

fPm=e' = P =e

fP=e ==

so that

(x=1e" =(x— l)(€+ (x—De+ (x ;IU_ e+ (x ;l)- e)

(-r—1)36+(x—1)4€
2 6

=(x=De+(x=1) e+
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or with a bit more work,
f)=(x-De = f(1)=0
fPx)=@=-De"+e" = fP()=e
fP)=(x=-De" +2¢" = fP(1)=2e
) =(x=De" +3e" = fP1)=3e
fPx)=(x-De" +4e" = f Y1) =4e

so that

(r=D)e" =0+ (x=De+ TV 9, =D 5

14
e+ -1

2! 3! 4!
3 4
(=D =1
2 6

=(x=De+(x=1D'e+

CHECK YOUR PROGRESS

True or false Questions

MT(N)-201

de

Problem 1. The derivatives of f(x) = sinxislatx = 0.
Problem 2. The derivatives f(x) = e*islat x = 0.

Problem 3. Every Differentiable function is continuous function.

Problem 4. Rolle’s Theorem can be used for the location of roots of a
function.

Problem 5. Every continuous function is Differentiable.

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

8.6 SUMMARY

1. Theorem: Let b be an interior point of the interval I at which

f: I - Rhasarelative extremum. If the derivative of fat b exists, then
f'(b) = 0.

2. Rolle’s Theorem

Theorem: Consider that f is continuous on a closed interval I = [a, b]
and the derivative f'(0) exists at every point of the open interval (a, b),
and f(a) = f(b) = 0. Then there exists at least one point c in (a,b) such
that f'(c) = 0

8.7 GLOSSARY

Numbers

Intervals
Continuity function
Functions

Limits
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8.10 TERMINAL AND MODEL QUESTIONS

2
1. Using Taylor’s theorem, show that cosx = 1 — TvxeR.
Q g Tay .

3
Q 2. Using Taylor’s theorem, show that x — % <sinx <x,x > 0.

Q 3. Prove that f(x) = % is not differentiable at O.

Q 4. Prove that f(x) = x?2 is differentiable.

8.11 ANSWERS

CHECK YOUR PROGRESS

CYQ1. True

CYQ2. True

CYQ 3. True

CYQ4. True

CYQH5. False
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9.1 INTRODUCTION

In the branch of mathematics known asreal analysis,
the Riemann integral, created by Bernhard Riemann, was the first rigorous
definition of the integral of a function on an interval. It was presented to
the faculty at the University of Gottingen in 1854, but not published in a
journal until 1868.1 For many functions and practical applications, the
Riemann integral can be evaluated by the fundamental theorem of
calculus or approximated by numerical integration, or simulated
using Monte Carlo integration.

9.2 OBJECTIVES

In this Unit, we will Discussed about

Upper Riemann Sums

Lower Riemann Sums

Riemann Integral

Construct mean value theorem of calculus

9.3 RIEMANN INTEGRAL

Now we will discuss the definition of Riemann integral of a function f on
an interval [a, b].
We first define some basic terms that will be frequently used.

Partition of I: If I = [a, b] is a closed bounded interval in R, then a
partition of I is a finite, ordered set P = (x,, x4, ..., Xn—1, X ) Of points in
I such that

a=x) < x1 < < Xpq <Xp,=D>b.

The points of P are used to divide I = [a, b] into non-overlapping
subintervals
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Fig. Partition of I = [a, b]
Let f be a bounded real function on [a, b]. Obviously f is bounded on each

sub-interval corresponding to each partition P. Let M; and m; be the
supremum and infimum respectively of f in Ax;. Then

Upper Darboux Sums:
U(P,f) = Mlel + Mzsz + -+ MnAxn = Z?lel-Axi
is called Upper Darboux Sums of f corresponding to the partition P.

Lower Darboux Sums:
L(P,f) = mAxy + myAx, + -+ myAx, = Y, m; Ax;
is called Lower Darboux Sums of f corresponding to the partition P.

Note: Let M and m are the bounds of f in [a, b]. Then

m < m; < M; <M = mAx; < mjAx; < M;Ax; < MAx;

=)L, mAx; < XL miAx; < XL MjAx; < YL, MAx;
> mYL, Ax; < XL, miAx; < XL, MjAx; < M YL, Ax

= m(a—b) < L(P,f) < U(P,f) < M(a—b)

Note:

Therefore U(P, f) is increasing L(P, f) is decreasing function.
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Example 1. Compute L(P,f) and U(P,f) if f(x) = x For x € [0,3] and

let P = {0, 1, 2, 3} be the partition of [0, 3].

Solution: Partition P divides the interval [0, 3] into sub-intervals

L =[0,1], I, =[1, 2], I =[2, 3]

The length of these intervals are given by

5,=1-0=1,6,=2-1=1,6=3-2=1.

Also, if M,.and m, be respectively the l.u.b. and g.1.b. of the function f in

[x,-—1, x,], then here we get

My=1m; =0,M,=2m,=1and My =3, m; =2

Therefore, U(P,f) = X3_, M, 5, = M 6, + M5, + M35,
=11+21+31=6.

And L(P,f) =¥3_,m, 8, =m8; + my5, + m36;
=01+11+21=3.

Upper Integral: The infimum of the set of upper sums is called Upper
Integral.

i.e. fa_bf dx = infU = inf {U(P, f): P is a partition of [a, b]}

Lower Integral: The supremum of the set of lower sums is called Lower
Integral.

ie. f_baf dx = sup L = sup {L(P, f): P is a partition of [a, b]}
Darboux’s condition of integrability:

When Upper integral and lower integral are equal then f is said to be
Riemann Integral over [ a, b].

[ fdx=["fdx=[" fdx

Another definition of Riemann Integrable: A function f : [ a,b] » R
is said to be Riemann integrable on [a, b] if there exists a number L € R
such that for every ¢ > 0 there exists § > 0 suchthat if P’ is any tagged

partition of [a, b] with ||P’|| > 0, then |S(f,P") — L| < ¢

The set of all Riemann integrable functions on [a, b] will be denoted by
R[a, b].

Example 2. Show that a constant function « is integrable and
b

J, dx = a(b - a).

Proof. Let P be any partiion of the interval [a,b], then
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L(P,f) = alx; + alx; + -+ + alx,
=a (Ax; + Axy, + -+ Axy) = a(b —a)
Similarly, U(P, f) = alAx, + aAx, + -+ alx, = a(b — a)
Therefore
f_ba adx = supL(P,f) = a(b—a) and
[0 adx = infU(P, f) = a(b - a)
=>f_ba adx = f_ba adx = a(b — a)
Therefore, the constant function is R-integrable and f: adx = a(b — a).

Example 3. Prove that function f defines as

Flx) = { 0, when x is rational
N 1, when x isirrational

Is not integrable on any interval.
Proof. Let P be any partiion of the interval [a,b], then

L(P,f) =X, m; Ax; = 0Ax; + 0Ax, + -+ 0Ax, =0

Similarly, U(P, f) = X1 M; Ax; = 1Ax; + 1Ax, + -+ 1Ax, = b —a
Therefore

f_ba adx = supL(P,f) = 0 and

f_ba adx = infU(P,f) =b—a

:>f_ba adx # f_ba adx

Therefore, the given function is not R-integrable on any interval.

Example 4. Show that function f(x) = x3 is integrable on any interval
[0, b].

Proof. Let P be any partiion of the interval [0, b] obtained by dividing

. . . 0 b 2b 3b b
interval into n —equal parts. i.e. P = [- = 0,2,2,2=, ...,22 = b]
n n n n n

Let lower bounds of function in Ax; = ((i_nl)k

3
) and Upper bounds of

N 3
function in Ax; = (%)
Therefore
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L(P,f) =X, m; Ax; = myAx; + myAx, + - + myAx,
b (B\ b, (2b\3 b bn-D\3 b bt 3 o3
=02+ (3) 2+ (B) 2+ () S=mr 24
4+ (n—1)3]

_ b*(n-1)%n% _ b* (
- 4n* -

Similarly
U(P,f) = ?:1 Mi Axl' = MIAXI + Mzsz + -+ MnAxn
\3 b, (20\3 b | (2b\3 b bn\3 b b* .3
) 2+ () 2+ (&) 2 () 2=
n3]
__ b*n?’(n+1)? _ b* 1\2
4an* _T(1+;)

Therefore

f_bo adx = sup L(P, f) = bf and

f_bo adx = infU(P, f) = l;—4
=>f_bo adx = f_bo adx = l;—4

Therefore, the given function is R-integrable and fob adx = 2—4.

Example 5. Show that the function f(x) = sinx is integrable in [0%] and

Jgsinxdx = 1.

Solution: Let any partition of [O, g] be

omr m 21 rT nmw T
pofo=,xm o mn_n)

2n’2n’2n’ "2n’ " 2n 2
Which dissects [O, g] into n equal parts.

The length of each subinterval = % and the rt" sub - interval is

[ = (r-1m r_n]
r 2n 2nl’

As f(x) = sinx is increasing in [0, g] so we have
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sin(r-1m sinrm
m, === and M, = =5 r = 1,2,3,..,n

Therefore, U(P, f) = ¥, M; Ax; = ¥, (SinE) =

2n/ "2n

T . T . 2T . nm
=—[sin—+sin—+ -+ sin—|
2n 2n 2n 2n

sin(n+n_1 7T)S'
L 2n__n 2n

- . T
2n sin—
an

v sina +sin(a+d) + .-+ sinfa + (n — 1)d]

. n-1 . nd
_ sm(a+—2 .d ) sin—

S
Orup, f) = 2= |{sin ™% sin (5)} /sin ()|

= l{sinGG + 3 75}/ sin ()]

= om (50§ co5 5 + cossin g}/ sin (1)

imi =T I _
Similarly, L(P, f) = (C0t4n 1)

4n

. . _ 1 — i T o
Now, Riemann lower integral = nlgr})o L(P,f) = nlgnoo o (C0t4n 1)

1. m/4n . T
= 7 — lim —
n—oo tan(a) n—oo 4n

=1

From equation (1) and (2) we get

f(x) = sinx is integrable in [O, g] and [z sinx dx = 1,
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9.4 INEQUALITIES FOR INTEGRALS

We already prove that
m(b — a) Sf:fdeM(b—a)wheana
If b <a,sothata > b and

m(a—b) < [, f dx <M(a—b) s-m(a—b) < - [, fdx <
—M(a —b)

sm(b—a)< [ fdx<M(b-a) whenb <a

Deduction 1: If f is bounded and integrable on [a, b], then there exists a
number k lying between bounds of f such that [, f dx = k(b — a)

Deduction 2: If f is continuous and integrable on [a, b], then there exists
anumber c lying between a and b such that [* f dx = f(c)(b — a)

Deduction 3: If f is bounded and integrable on [a,b], and « > 0 is a
number such that |f(x)| < a forall x € [a, b], then

|f, f dx| < alb - al.

Proof. Let M and m be the upper bounds and lower bounds of f(x)
respectively.

Let @ > 0 is a number such that |f(x)| < a forall x € [a, b]
Hence forb > a, —a < f(x) < a

>—as<m<fx)<M<a

=>—a(b—a)<mb-a)< [ f(x) <Mb—-a) < a(b - a)

| @] < et -a)

If a > b, we have

b
| f@)| < ata - b)
Therefore |f:f(x)| < al|b—al.

The result is trivial for a = b.
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Deduction 4: If f is bounded and integrable on [a, b] and f(x) = 0 for
all x € [a, b], then

[/ fdx>0 whenb>a and [, fdx <0 whenb<a

Proof. Because f(x) = 0 for all x € [a,b], then the lower bound of
f(x)iem=0

From Inequality (1) and (1) , we get

[/ fdx>0 whenb>a and [, fdx<0 whenb<a

Deduction 5 : If f and g are bounded and integrable on [a, b], such that
f(x) = g(x)., forall x € [a, b].then

[ fdx>[ gdx whenb>a and [/ fdx <[ fdx whenb<a

Proof. Itis giventhat f > g then f — g > 0 forall x € [a, b].

Using deduction 4, we have
[ (f-g)dx=0ifb>a
”f;fdxzfabgdx if b>a
Similarly

f:fdxsfabgdx ifb<a

9.5 REFINEMENT OF PARTITIONS AND
TAGGED PARTITIONS

Norm: The norm (or mesh) of P to be the number
u(P) = max {x; — X, X3 = X1, 0, Xy — Xp_1}
OR

the norm of a partition is merely the length of the largest subinterval into
which the partition divides [a, b].

Refinement: A partition P* is said to be a refinement of P if P* 2 P l.e.
every point of P is a point of P*.
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Or we can say that P* refines P or P* is finer than P.
If P, and P, are two partitions, then P* = P; U P,.

Theorem 9.5.1. Suppose that f : [a,b] — R is bounded and P and P*
be partitions of [a, b] and refinement of P respectively. Then

() L(P,f) = L(P",f)
(i) U, f) < UP,f)

Proof. Let P be partition of [a, b] and P* contains just one more point 'a’
than P.

Leta € Ax;i.ex;_q < a < x;.
It is given that the function f is bounded over the interval [a, b].
= It is bounded in every subinterval Ax;.

Let B;, B, and m; be the infimum of f in the interval [x;_,, @], [a, x;] and
[x;_1, x;] respectively.

Obviously m; < B, and m; < f3,.

Hence

L(P*,f) - L(P,f) = mlel + mzsz + -+ ﬁl(af - xl‘_l) + Bl(Xi -
a) +my 1 Ax;yq + o+ myAx, — (M Axy + myAx, + - + mAx, +
m,Ax,)

= Bi(a—xi—1) + Bo(x; — a) — m;(x; — x;_1)
= pra — P1xi—1 + Box; — Bra — myx; + myx;_q

= 1 — B1xi—1 —mua + m; a + frx; — fra —
mix; + m;Xx;_4

=a(fy —my) —xi1(fr—m) —m; (x; —a) +

Bo(x; — a)
= (a—xi—)(Br—m) + (B —my) (x; — a)

x;>a>x_, and By, By, =m; >(a—x;_,), (x; —a),(f; —m,;)and
(B2 —m,) are positive.

Therefore, L(P*, f) — L(P,f) =0

If P* contains p points more than P, we repeat the above reasoning p times
and conclude that
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L(P*,f) = L(P,f)
Similarly, we can prove that U(P*, f) < U(P,f)

Corollary If a refinement P* of P contains k points more than P and
|f(x)| < K, forall x € [a, b], then

() L(P,f) <L(Pf) <L(P,f) + 2kKpu
(i) U, f) = U(P*,f) = U(P,f) — 2kKpu

Proof. . Let P be partition of [a, b] and P* contains just one more point
‘a’ than P.

Leta € Ax;i.ex;_q < a < x;.
It is given that the function f is bounded over the interval [a, b].
= It is bounded in every subinterval Ax;.

Let B,, B, and m; be the infimum of f in the interval [x;_;, a], [@, x;] and
[x;_1, x;] respectively.

Obviously m; < B, and m; < f3,.

Hence

L(P*,f) —L(P,f) = mAx; + myAx, + -+ B(a —x;_1) +

B1(x; — a) + mj 1 Axipq + - + myAx,, — (myAx; + myAx, + -+
+ m;Ax,, + m,Ax,)

=Bi(a—xi_1) + Bo(x; —a) — m;(x; — x;_1)
= pra = Pixi1 + Boxi — Poa — myx; + myx;_4
= fia — Pixiq —mia + m; a + fox; — fra — myx; + mix;_4
=a(By —my) —x;i1(fr —my) —m; (x; — a) + Bo(x; — )
= (@ —x;-)(Br —my) + (B2 —my) (x; — a)
It us given that |f(x)| < K for all x € [a, b], therefore

—-K<m;<p <K =>K=>=-m; and K== 2K>p,—m; or
2K2,31—m120

Similarly

2K > B, —m; =0
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Therefore

L(P*,f)—L(P,f) <2K(a —x;_1) + 2K (x; — a) = 2K(a — x;_; +
x; —a)=2K(x; —x;_1)

Therefore

L(P*,f) — L(P,f) < 2KAx;
Let u be the norm of P, hence
L(P",f) — L(P,f) < 2Kp

Let each additional point is introduced one by one, by repeating the
above reasoning k times, we get

L(P*,f) —L(P,f) < 2Kku=L(P*,f) < L(P,f) + 2Kku
Also, L(P, f) < L(P*, f)
Hence L(P, f) < L(P,f) + 2Kku

Similarly, we can prove that U(P, f) = U(P*,f) = U(P, f) — 2kKu

CHECK YOUR PROGRESS

True or false/MCQ Questions

Problem 1. The function f(x) = sinx is integrable in [0%] and

JZsinx dx = 1.

Problem 2. If the function f: R — R is defined as f (x) = [x] where,

[.] represent the greatest integer function then
(@) f(x) is continuous function on R.

(b) f(x) is Differential function on R.

(c) f(x) is Riemann integrable.

(d) f(x) is not Riemann integrable.

Problem 3. Every Riemann integrable function is continuous function.
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Problem 4. Every polynomial function is Riemann integrable on R.

Problem 5. U(P, f) is increasing L(P, f) is decreasing function.

9.6 SUMMARY

1. 1f Lhimoit f(a—h)= Lhimoit f(a+h) = f(a) then function f(x) is

continuous at x = a.

2. A function f: X — Y is said to be uniformly continuous on A € X if

for every € > 0, there exists & > 0 such that x, y € A, |x — y| < & implies

lfG) —fI< e

9.7 GLOSSARY

integration
continuity
Functions

Limits
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9.10 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that every constant function is Reimann integrable.
Q 2. Prove that every polynomial function is Riemann integrable.

Q 3. Show that the function f(x) = sinx is integrable in [0, g]

Q 4. Using Riemann integration prove folx dx = %

Q 5. Define upper and lower Riemann sums.

9.11 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. True

CYQ 2. (c)

CYQ 3. False

CYQ 4. True

CYQ 5. True
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10.1 INTRODUCTION

During a century and a half of development and refinement of techniques,
calculus consisted of these paired operations and their applications,
primarily to physical problems.

In the 1850s, Bernhard Riemann adopted a new and different viewpoint.
He separated the concept of integration from its companion,
differentiation, and examined the motivating summation and limit process
of finding areas by itself. He broadened the scope by considering all
functions on an interval for which this process of ‘integration’’ could be
defined: the class of ‘‘integrable’’ functions. The Fundamental Theorem
of Calculus became a result that held only for a restricted set of integrable
functions. The viewpoint of Riemann led others to invent other integration
theories, the most significant being Lebesgue’s theory of integration. But
there have been some advances made in more recent times that extend
even the Lebesgue theory to a considerable extent.

10.2 OBJECTIVES

In this Unit, we will

Discussed about Riemann Integral
Construct mean value theorem of calculus

10.3 DARBOUX THEOREM

Darboux Theorem
Theorem 10.3.1. If f is bounded function on [a, b] then to every

&£ > 0, there corresponds & > 0 such that

WUPH<["fdx+ e

(i) LP,f) > [ fdx— &

For every partition P of [a, b] with norm u(P) < é
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Proof. It is given that f is bounded on [a, b]. Hence there exists a > 0
such that
f(x) <a forallx € [a,b]
Now
fa_bf dx = infU = inf {U(P, f): P is a partition of [a, b]}

Hence for every € > 0 there exists a partition P’ = {x,, x4, X3, ..., X} } Of
[a, b] such that

UPLf) <, fdx+3e
Also partition P’ contains k — 1 points other than a and b.

Let § be a positive number such that

Let P be any partition such that P = {x,, x4, x3, ..., X, } With norm
u(P) < 6.
Assume P* be a refinement of P and P’ such that P* = P U P’

P* be a refinement of P= P* have p — 1 more point than P and also

fx) <a
Therefore
U(P,f) =U(P*,f) =U(P,f) — 2(p — 1)ad (Using previous corollary)
= U(P,f) —2(p — Das < U(P*,f)
<U(P,f)
<" fdx+3e (Using eq (1))

Therefore

UP,f) <[ fdx+ie+2(p—1as

Using equation (2), we get

-b 1 1 -b
U, f) </, fdx+se+-e< J, fdx+e
Similarly, we can prove that L(P, f) > f_baf dx — ¢
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Note:

Tags: If a point t; has been selected from each subinterval I; = [x;_1, x;]
fori = 1,2,..,n, then the points are called tags of the subintervals I;.
Tagged Partition of I: A set of ordered P = {([x;_q,x;],t;);i =
1,2, ...,n} of subintervals and corresponding tags is called a tagged
partition of 1.

10.4 CONDITION OF INTEGRABILITY AND
SOME PROPERTIES OF INTEGRABLE
FUNCTIONS

We already discussed that the bounded function is integrable if upper and
lower integral are equal. Now we try to study the necessary and sufficient
condition for integrability of a function.

FIRST FORM

Theorem 10.4.1. The necessary and sufficient condition for
integrability of a bounded function f is for every & > 0 there exists
& > 0such that for every partition P of [a, b]with norm u(P) < & and

U(P,f)—L(P,f) <&

Proof. Necessary condition

Let f be a bounded function and integrable over interval [a, b],
Hence ffaf dx = fa_bf dx = f;f dx

Let € > 0 be any positive number.

By Darbaux’s Theorem there exists a positive number § such that foe
every partition P with norm u(P) < &

UP,f) <[, fdx+ie

L) > [ fdx—1e

=-L(P,f) <—[  fdx+3e
By adding inequality (1) and (3), we get

U, —LP.A< [ fdx+se—[" fdr+ e=¢
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Hence for every partition P of [a, b]with norm u(P) < §

Sufficient Condition

Assume for every partition P of [a, b]with norm u(P) < § and

U(P'f)_L(P'f)<E

for any partition P of [a, b], we have

UP.f) = [ fdx=["fdx <UP,f)
LP,f) < [° fdx=>—[" fdx<-L(P,f)
Adding inequality (5) and (6), we get

[ fdx— [ fdx <UPf) - LP,f)
Using inequality (4), we get

[ fde— [ fdx<e

Because ¢ is any arbitrary positive number and also we know that a non
negative number is less than every positive number.

Therefore it should be equal to 0.

i.e.fa_bfdx—f_bafdx<e=0

Therefore fa_bf dx = f_baf dx which implies that f is integrable over
interval [a, b].

SECOND FORM

Theorem 10.4.2. A bounded function f is integrable on [a, b] iff for
every € > 0 there exists a partition P of [a, b] such that U(P, f) —
L(P,f)<e&

Proof. Necessary condition

Let f be a bounded function and integrable over interval [a, b],
b -b b

Hence [ fdx=[ "fdx=[ fdx

Let € > 0 be any positive number.

As we know that the
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f_baf dx =supremum of lower sums and fa_bf dx = infimum of upper
sums

Hence there exists a partition P’ and P’ such that
, -b 1
UP,f <[, fdx+e
= U(P,f) < f:f dx +%e
L(P",f) > fb fdx—=¢
—a >

= L(P",f) >f;fdx—% £

:f;fdx<L(P”,f)+% £

Assume P be the commom refinement of partitions P’ and P" i.e.
P=Pup”

Therefore

UP,f)<UPP,f) < f:f dx +§e (using inequality (1))
SUPPf) <LP".f)+5 e+ e=L(P".f)+e

Therefore, U(P, f) — L(P, f) < € for a partition P.
Sufficient Condition

Assume & < 0 be any positive number. Consider P be a partitions such
that

UP,f) —L(P,f) <e

Now for any partition P of [a, b], we have
UP,f) = [, fdx =" fdx <UP )
LP,f) < [° fdx=—[" fdx<—L(P,f)
Adding inequality (4) and (5), we get

7" fdx—[° fdx <UP,f)— L)
Using inequality (4), we get
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fa_bfdx—f_bafdx<s

Because ¢ is any arbitrary positive number and also we know that a non
negative number is less than every positive number.

Therefore, it should be equal to 0.

ie. ["fdc— [ fdx<e=0

Therefore fa_b fdx = f_ba f dx which implies that f is integrable over
interval [a, b].

Integrability of the sum and difference of Integrable functions

Theorem 10.4.3. Let f; and f, are two bounded and integrable
function on [a, b] then f = f{ + f, is also integrable on [a, b] and

[} fdx=[fidx+ [ f,dx

Proof. Let f; and f, are two bounded = f = f; + f, is bounded on [a, b].
Let P be any partition P of [a, b] such that

P ={a = xq,x,%3 ..., X, = b}.

Let M; and m; are the upper and lower bound of f; respectively and M;’
and m;" are the upper and lower bound of f, respectively in Ax;.

Assume M; and m; are the upper and lower bound of f respectively in
Axl-.

Therefore

m;+m{ <m; <M; <M+ M/

Multiplying inequality (1) by Ax;, we get

(m; + m{"H)Ax; < mAx; < M;Ax; < (M + M[")Ax;

Adding all these inequalities for i = 1,2,3, ..., n, we get

n n n
Z(m{ + m;")Ax; < z m;Ax; < z M;Ax;

< X1 (M; + M;)Ax;
= L(P'fl) +L(P'f2) S L(P'f) S U(P,f) S U(Pifl) + U(P'fZ)

U(P'f) < U(P'fl) + U(P'fz)
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L(P'fl) + L(P'fz) < L(P'f)
Let € > 0 be any positive number.

It is given that f; and f, are integrable. Hence for any partition P there
exists & > 0 such that the norm u(P) < &, we have

UP,f) —L(P,fi) < 3¢

UP,f) = L(P, f,) <&
From (2),(3),(4) and (5), we get
UP,f)—L(P,f)<UP,£)+UP,f)— (LP,f) + L(P. f))

= U, ) —L(P. ) +UP,f) —L(P,f)  <se+

58

Therefore

UPPf)—-L(PP,f)<e.

Hence the function f is integrable.

f1 and f, are integrable and £ > 0 is any positive number.

Using Darboux’s theorem, there exists § > 0 such that for all partitions P
whose norm u(P) < &, we have

UPf) < [} fi dx +-¢
And
U, ) <[} frdx +2e
Using inequality (2), we get
[} fdx <UP,f) <UP,f) + U, f,)

Using inequalities (6) and (7), we get

b b b b b
[ fdx<[ fidc+e+ [ frdx+-e=[ fidx+ [ fydx+e

As we know ¢ is arbitrary, therefore
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[ fdx< [ fidx+ [ f,dx

Now replacing f; and f, with (—f;) and (—£,) respectively, we get
[J(=f) dx < [ (~f,) dx + [ (=f,) dx

ie. [ fdx> [ fidc+ [ f,dx

From inequality (8) and (9), we get

[ fdx=[fidx+ [ f,dx

Theorem 10.4.4. Let f; and f, are two bounded and integrable
function on [a, b] then f = f{ — f, is also integrable on [a, b] and

[} fdx=[ fidx—[ f,dx

Proof. Let f; and f, are two bounded = f = f; + (—f3) is bounded on
[a,b].

Let P be any partition P of [a, b] such that P = {a = x¢,xq, X3, ..., Xp =
b}.

Let M; and m; are the upper and lower bound of f; respectively and M;’
and m;" are the upper and lower bound of f, respectively in Ax;.

= —M;’ and —m;’ are the upper and lower bound of (—f,) respectively
in Axl-.

Assume M; and m; are the upper and lower bound of f respectively in
Axl-.

Therefore

m) + (-m}) <m; < M; < M| + (—M/)
>m{-M <m; <M; <M/ — m/
Multiplying inequality (1) by Ax;, we get

(m; — M{DAx; < miAx; < Mjdx; < (Mj — mi)Ax;

Adding all these inequalities fori = 1,2,3, ..., n, we get

n
> (mj - MDA, <
i=1

TogmiAx; < Yoy MiAx; < YT (M — m;")Ax;
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= L(P,f1) —UP,f) <L(P,f) <UP,f) <UP, f) - L(P,f)
up,f) <UP, f1) — L, f2)

L(P,f1) = U, f2) <L(P,f)

—L(P,f) <UP,f;) —L(P, f1)

Let € > 0 be any positive number.

It is given that f; and f, are integrable. Hence for any partition P there
exists & > 0 such that the norm u(P) < &, we have

UP,f) —L(P,fi) < 3¢

UP,f) = L(P, f,) <&

From (2), (3), (4) and (5), we get

u,f)—LP,f)<UP, f1) —LP, )+ UP, f) — L(P, f1)
=U(P,f1) —L(P, /1) + U(P,f) — L(P, f2)
<Ze+2e

Therefore

u,f)—LP,f)<e.

Hence the function f is integrable.

f1 and £, are integrable and € > 0 is any positive number.

Using Darboux’s theorem, there exists § > 0 such that for all partitions P
whose norm u(P) < &, we have

UP,f) < [} fidx+3e
And

LP,f) > [ frdx +2e

= —L(P,f;) <— [, fdx+3e

Using inequality (2), we get

[P fdx<U@,f) <UP,f)—LP,f)

Using inequalities (6) and (7), we get
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f:fdx<f;f1dx+%e—fff2dx+%e=fff1dx—f;f2dx+e

As we know ¢ is arbitrary, therefore

[} fdx <[] fidx—[ f,dx

Now replacing f; and £, with (—f;) and (—£,) respectively, we get
[J(=f) dx < f(~f,) dx = [} (~f,) dx

ie. [ fdx> [ fidx— [ f, dx

From inequality (8) and (9), we get

[Pfdc=[fidx—[ f,dx.

Oscillation: The oscillation of a bounded function f on an interval
[a, b] is the supremum of the set {|f(x;) — f(x2)|: x4, X, € [a, b]} Of
numbers.

Let M and m be the upper and lower bounds of f on [a, b] respectively.
>m< f(x;) <Mandm < f(x,) <M forall x,,x, € [a, b]

= |f(x) — f(xx)| <M —m forall xq,x, € [a,b]

= M —m isanupper bound of {f(x;) — f(x,), forall x;,x, € [a, b]}
Let € > 0 be any positive number, because M is supremum of f.

Therefore, there exists y € [a, b] such that
f)>M— % £
Similarly, there exists z € [a, b] such that
f(z)>m+ %e

From inequalities (2) and (3), we conclude that there exist x,y € [a, b]
such that

FO) ~f@>M~te—m-te=M-m-e

orlf@ —-f@DI>M-m-—¢

From inequalities (1) and (4), we conclude that
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M —m is an upper bound and also number less than M — m cannot be
upper bound of given set.

Hence M — m = sup{ |f(y) — f(2)|:y,z € [a, b]}

10.5 SOME IMPORTANT THEOREM

Theorem 10.5.1. If f and g are two bounded and integrable functions
on [a, b] then the product fg is also bounded and integrable on [a, b].

Proof. It is given that f and g are two bounded therefore there exists a
such tha

|f(x)| < a and |g(x)| < a forall x € [a, b]
= fgl = 1f)g)| < a.a < a?
It implies that fg is bounded on [a, b].

Let P = {a = xq, X1, X3, ..., X, = b} be any partition of [a, b].

Let M; and m; are the upper and lower bound of f respectively and M;’
and m;" are the upper and lower bound of g respectively in Ax;.

Assume M; and m; are the upper and lower bound of fg respectively in
Axl-.

Now for all x, x" € Ax;,
(fP ) = (Fg)(x) = fxDgx") — fx)g(x)
=fxD)g(x") — fFgx) + fx)g(x") — fF(x)g(x)
=g = f) + fFO)(g(x') — g(x))
It implies that
1FPED) ~ FP@I = 1gGD (&) = () + F (g — g ()
< lgGDNf &) = fFEI+ IfF GOl gix") — g ()l

Hence, From inequality (A), we get

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

Let € > 0 be given number and it is given that f and g integrable on
interval [a, b].

Therefore there exists a positive number § > 0 such that for any partition
P with norm u(P) < §

UP,f)~L(P,f) <o

UP,g) ~L(P.g) <5
Now multiply inequality (1) with Ax;, we get
(M —m)Ax; < a(M' —m')Ax; + a(M" —m'")Ax;
Adding all these inequalities for i = 1,2,3, ..., n, we get
(M —m)Ax; < ¥T_ja(M’' —m")Ax; + X7, a(M" —m")Ax;

> Y MAx; — Yo mAx; < a(QTo M Ax; — Y-, m'Ax;) +
aQio M Ax; — Y-, m" Ax;)

= U(P,fg) — L(P,fg) < a(U(P,f) = L(P,f)) +

a(U(P,g) — L(P,g))

& &
<a—+a—
2a

Therefore U(P, fg) — L(P,fg) < ¢
Hence, we conclude that fg is integrable on [a, b].

Theorem 10.5.2. If f and g are two bounded and integrable functions
on [a,b] and there exists a positive number k such that [g| >
k for all x € [a, b] then the f/g is also bounded and integrable on
[a,b].

Proof. It is given that f and g are two bounded therefore there exists a
such that

1> _>1 forallx € [a b]

lf)|<a andk < |gx)| < «a rirrer

=> 1 /91 = 1fI/1gt)] < a.p <%

It implies that fg is bounded on [a, b].

Let P = {a = xq, X1, X3, ..., X, = b} be any partition of [a, b].
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Let M; and m; are the upper and lower bound of f respectively and M;’
and m;" are the upper and lower bound of g respectively in Ax;.

Assume M; and m; are the upper and lower bound of f/g respectively in
Axi.

Now for all x, x" € Ax;,

gix g gx)g(x"

| (g) (x') — (g) (x)| _rGD) _r@) |f(x’)g(x)—f(x)g(x’)|

F(x")g(x)—f () g(x)+f(x)g(x)—f () g(x") |
gx)gxh

9@ (F(x)-f))-F ) (g(x")-g(x0))
g9(x)g(x"

If (x")—f ()] Py lg(x")—g ()]
= 7 Jg()g(xN| lg(x)g(x)]

Hence, From inequality (A), we get

M—-m<a (M — m’).k—12+ a.(M" — m”).k—l2

Hence
a ’ ’ a " "
M-m <=M -m)+5(M" —m")

Let € > 0 be given number and it is given that f and g integrable on
interval [a, b].

Therefore, there exists a positive number & > 0 such that for any partition
P with norm

u(P) <6

U, f) - L, f) s L

U(P,g) - L(P,g) < %

Now multiply inequality (1) with Ax;, we get

a

(M —m)Ax; < = (M" —m")Ax; + % (M" —m'")Ax;

Adding all these inequalities for i = 1,2,3, ..., n, we get

a

Ta(M = m)Ax, S By (M= mDAx, + oy a(M” = m")Ax,
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= Yi=1 MAx; — Y11 mAx; < %(2111=1 M'Ax; — Y1, m'Ax;) +

a
(T M Ax; — B m"Ax;)

= U(P,fg) — LP,fg) < (U, /) = L(P, ) +5(UP, g) ~
L(P,g))

a ek? a ek?
~ k% 2a k2 2a

Therefore U(P, fg) — L(P,fg) < ¢
Hence we conclude that f /g is integrable on [a, b].

Theorem 10.5.3. If f is bounded and integrable functions on [a, b]

then |f]| is also bounded and integrable on [a, b] and also |f:f dx| <

[JIf1 dx.

Proof. It is given that f is bounded therefore there exists a such that
lf(x)| < a forall x € [a,b]

It implies that the function |f| is bounded.

Since f is integrable, for a given positive number & > 0 there exists a
partition P = {a = x,, x4, x5, ..., X, = b} 0of [a, b] and such that

U(P)f)_L(P'f)<£

Let M; and m; are the upper and lower bound of f respectively and M;
and m; are the upper and lower bound of g respectively in Ax;.

Now for all x, x" € Ax;,

[1F10) = IF1D] = [IF G = If D] < If () = FO)

>M—m;<M-m

Now multiply inequality (2) with Ax;, we get

(M; —mj)Ax; < (M; —m;)Ax;

Adding all these inequalities for i = 1,2,3, ..., n, we get
T=1(M; —mp)Ax; < Xi_(M; —my)Ax;

= X1o1 MiAx; — XT_ymilAx; < Y14 M; Ax; — X7-; mAx;

= U, If) =L, IfD <UP,f)—L(P,f)
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Using inequality (1), we get
UCP,|fl) — L(P,|f]) < e.Hence |f] is integrable on [a, b].

We Know that if f and g are bounded and integrable on [a, b] such that
f = g then

[[fdx <[ gdxwhenb<a

Hence [7 f dx < [ |f] dx

and - [, f dx = [ (=f) dx < [ If] dx

= |[) f dx| < [ If| dx

Note: The Converse of the above theorem is not true. For example, the
function

£( )_{ 1, when x is rational
~ (-1, when x is irrational

Here [ " fdx=b—abut[ " fdx=a—b
It implies that f is not integrable.
But |f(x)| =1 for all x, therefore f: |f| dx exists and equal to b — a.

Here we observe that |f] is integrable.
Theorem 10.5.4. Every Monotonic function f is Riemann integrable.

Proof: Let us suppose that the function f is monotonically increasing
function on [a, b].

Now for a given positive number &, there exists a partition P =
{a = xy, x4, %5, ..., x, = b} of

&

[a, b] such that the length of each sub — interval < @+l

ie. (X, —x,_1) < £ ] forr=1,2,...,n

[f(@)—f(b)+1

Again, the function fbeing monotonically increasing on [a,b], it is
bounded and monotonically increasing on each sub — interval [x,_4, x,].

Let the bounds of function f on the sun — interval [x,_;, x,-] be M,. and m,.,
then
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M, = f(x;)and m, = f(xr_1)

Therefore, for this partition P, we find that
U(P'f) - L(P'f) = ?zl(Mr - mr)(xr - xr—l)

< S [ () = £ (1))

Therefore, U(P, f) — L(P, f) < i=1[f (xn) — f(x0)]

[f(a@)- f(b)+1

Therefore, U(P, f) — L(P, f) < i=1lf (b) = f(a)]

&
[f(a)—f(b)+1]

Therefore, U(P,f) — L(P,f) <&

Therefore, Every Monotonically increasing function fis Riemann
integrable.

Similarly, we can prove that Every Monotonically decreasing function
f is Riemann integrable.

Therefore, every monotonic function is Riemann integrable.

10.6 RIEMANN SUM

Riemann Sum: Let P’ is the tagged partition then the Riemann sum of a
function f : [a, b] > R corresponding to P’ can be defined as

S, P') = Xiey () O — xi-1)

If the function f is positive on [a, b], then the Riemann Sum is the sum of
the areas of n rectangles whose bases are the subintervlas I; = [x;_4, x;]
and whose heights are f(t;). See Fig 5.1.
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Y=a 6 mi, %6 %
Fig 5.1. A Riemann Sum
Theorem. If f:[a, b] = R is continuous, then f is Riemann integrable.
Proof. Let € > 0 be given.

Now f is continuous on [a, b] = It is also uniformly continuous.

Therefore, there existsa § > 0 such that [f(x) — f(¥)| < ﬁwhenever
lx —y| < 6.
For any large integer N we assume an equally spaced partition

a

Xk = a+ kh, with h = % and k = 0,1, ..., N. We choose N so large

that =% < 6.
N

Now function £ is continuous on any of the intervals [x,_, xx],

Hence there must exist points ci,d, € [xx_1, Xx] Where f attains its
minimum and maximum, respectively, i.e.

flex) < f(x) < f(dy) for all x € [xp—q, X ].

Let s,t:[a,b] » R are two step functions such that on each interval
[xk—1, X1)

s(x) = f(cr) and t(x) = f(dy).

Therefore, we conclude that s(x) < f(x) < t(x) for some

X € [Xp—1,%x)

Since ¢, — dj| < bN;a < & then forany x € [x,_q, X))
t(x) —s(x) = f(di) — flcr) < ﬁ-
This also holds for each interval [x,_,,x,) (k=1,2,..,N)
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Hence we shown that 0 < t(x) — s(x) < ﬁ for all x € [a, b]

Now compare the integrals of ¢ and s and since ¢ < s + —

Then f; t(x)dx < f; (s(x) + ﬁ) dx = f: sdx + €.

Fundamental Theorem of Calculus
Theorem. A function f is bounded and integrable on [a, b] and there
exists a function F such that F' = f on [a, b], then f:f(x)dx=
F(b) - F(a)
Proof. It is given that F' = f is bounded and integrable on [a, b].
Therefore, for every given € > 0 there exists a positive number § such
that for every partition P = {a = x,, xq, X5, ..., x, = b}, with norm
u(P) < 6.

I f ) Ax— [, Fn)dx| < e
For every choice of points t; in Ax;.
Because we have freedom in the selection of points t; in Ax;., we choose
them in a particular way as follows:
By Lagrange Mean value theorem, we have
F(x;) — F(xi—1) = F'(t)Ax; (
Hence F(x;) — F(x;—1) = f(t)Ax;
It implies that Y7, f(¢;) Ax; = X1 (F(x;) — F(x;_1)) = F(b) — F(a).

From inequality (1), we get

[P FG)dx = F(b) - F(a)

This theorem is also known as the Second Fundamental theorem of
Integral Calculus.

First Mean Value theorem

Theorem. A function f is continuous on [a, b], then there exists a number
kin [a,b] uchthat [ f dx = f(k)(b — a).

Proof. It is given that f is continuous on [a, b], therefore f is Riemann
Integrable on [a, b].

Let M and m are the upper and lower bound of f on [a, b] respectively.
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As we know that

m(b — a) Sf;fdeM(b—a)

Hence there exists a real number y € [m, M] such that
[ fdx=y(b-a)

Because f is continuous on [a, b], it attains every value between m and
M.

Hence, there exists a number k € [a, b] such that f(k) = y.

Therefore, [, f dx = f(k)(b — a)

CHECK YOUR PROGRESS

True or false/MCQ Questions

MT(N)-201

Problem 1.

z?, x is rational

3

e . , X € [0, 1]
x”, x is irrational

Let f(x) is defined by f(x) = {

then

() f is Riemann integrable on [0, 1] and fﬂa f(z)dz =1/3

f is Riemann integrable on [0, 1] and foa f(z)dx = 1/4
(b)

f is not Riemann integrable on [0, 1]

(c)
(d) None of the above.

Problem 2. Every continuous function on closed interval is not

Riemann integrable.

Problem 3. Every continuous function on closed interval is Riemann

integrable.
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Problem 4. For every polynomial function Riemann upper integral is

equal to Riemann lower integral.

Problem 5. U(P, ) is decreasing, L(P, f) is decreasing function.

10.7 SUMMARY

1. Darboux Theorem
If £ is bounded function on [a, b] then to every

€ > 0, there corresponds § > 0 such that

UP <[ fdx+e

(i) LP, ) > [0 fdx— ¢

For every partition P of [a, b] with norm u(P) < §
2. Every Monotonic function f is Riemann integrable.

3. If f:[a, b] = R is continuous, then f is Riemann integrable.

10.8 GLOSSARY

integration
continuity
Functions

Limits
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10.11 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that every constant function is Reimann integrable.
Q 2. Prove that every polynomial function is Riemann integrable.

Q 3. Show that the function f(x) = sinx is integrable in [0, g]

Q 4. Using Riemann integration prove folx dx = %

Q 5. Define upper and lower Riemann sums.

10.12 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. (c)

CYQ 2. False

CYQ 3. True

CYQ 4. True

CYQ 5. False
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11.1 INTRODUCTION

Mathematics allows us to create sequences and series not only
for real numbers but also for functions. This article will give you a deeper
understanding of how to construct sequences and series for real-valued
functions. We will also delve into the concept of convergence in
sequences and series of functions. To solidify these concepts, we will
include some solved problems on sequences and series of functions.

11.2 OBJECTIVES

In this Unit, we will Discussed about

Sequence of functions
Series of functions
Abel’s test
Dirichlet’s test

11.3 SEQUENCE OF FUNCTION

Let £, be areal — valued function defined on an interval | and for each n €
N. Then
<fi,fa fzs---» fn, . > is called a sequence of real valued function.

Denoted by {f,,} or (f,).
Example: {f,} ={x",0<x <1} and {
of functions.

sinnx

,0<x <1 } are sequence

n

11.4 POINTWISE CONVERGENCE

Foreachn € N, let f,,: A — R be a real-valued function on A. The
sequence ( f,,) of functions converges pointwise on A to a function f if,
for all x € A, the sequence of real numbers (£, (x)) converges to the real
number f(x).

We often write lim n—o fn (x) = f (x) or imn—ow f, = f
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2 2
Example 1. f, (x) == ;"x:7+x

lim (§+x)20+x:x.

n—oo

If f (x) = x, then f,, — f asn — oo. In this case, the functions f,, are
everywhere continuous and differentiable, and the limit function is also
everywhere continuous and differentiable.

Example 2. Let f;, (x) = x™ on the set [0, 1].

0 0 <x<1
Jim fo (0 = Jim x" = £ = {7 x=1

In this case, the functions £, (x) are continuous on [0, 1], but the limit
function f(x) is not continuous at every point of [0, 1].

Note: Suppose f (x) = lim f,, (x) for all x € A. then

() If each f;, is continuous on A4, then £ is continuous on A.

(ii) if each f, is differentiable on A, then f is differentiable on A.

11.5 UNIFORM CONVERGENCE

Let ( f,,) be a sequence of functions defined on A € R. We say that (f;,)
converges uniformly on A to the limit function f defined on A if for
every € > 0 there exists an N € N such that |f,, (x) — f(X)| < €

for all x € A, whenever n > N.

Note: In the definition, the value of N is independent of x.

Examplel: f,, (x) = [x?+ n—lz

Therefore, lim f, (x) = lim /xz + iz = |x|.
n—-oo n—oo n

So, fn (x) — f (x) = |x| pointwise.

Let € > 0 be given. Choose N € N large enough such that 1 N < €. Then
for any x € R and n > N we have

x+—2+|x|
o = £ (= | 22+ 5= x| = |/ 24— Ix |‘ e

Department of Mathematics
Uttarakhand Open University




Real Analysis MT(N)-201

1

1
W w1
,2 1 - ’ 1 n
x+?+|x| ‘ 0+n—2+0

This shows that (f,,) — f uniformly on R. Note that each f;, (x) is both
continuous and differentiable on R, but f (x) = |x| is continuous on R and
not differentiable at x = 0.

nx
Example2: f,(x) =<7 _ if
0 therwise

Therefore, lim f,,(x) = f(x) =0

If f(x) = 0, then (f,,) — g pointwise.

Let e =1/2 and x,, =%then

| fro O0cn) = f ()l = [1-0[=1>e=1/2.

So, it is not true that for all € > 0, there exist an N € N large enough such
that n > N implies | f,, (x,,) — f (x,)| < for all x.

So f,, (x) does not converge to f(x) uniformly.

11.6 CAUCHY CRITERION FOR UNIFORM
CONVERGENCE

A sequence of functions ( f,) defined on a set A € R converges
uniformly on A if and only if for every € > 0 there exists an N € N such
that | f;, (x) — fin (x)| < € whenever m, n> N and x € A.

Proof: (=) Assume the sequence ( f;,) converges uniformly on A to a
limit function f. Let € > 0 be given. Then there exists an N € N such that

o)~ f @I <E,
whenever n> N and x € A. Then if n, m > N and x € A4, we have
| fo () = fon =1 fo () = f (%) + (%) - forn ()]
S| fa ()= f @)+ fn (0) = f ()]
<“+-=e
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(&) Conversely, assume that for every € > 0 there exists an N € N such
that | £, (x) — fim (x)| < € whenever m, n> N and x € A. This
hypothesis implies that, for each x € A4, (f,, (x)) is a Cauchy sequence.
By Cauchy’s Criterion, this sequence converges to a point, which we
will call £ (x). So, the uniformly Cauchy sequence converges pointwise
to the function f (x). We must show that the convergence is also
uniform. For the value of e given above, we use the corresponding N.
Then for n, m> N and all x € A4,

|fn (X) _fm (X)l <€
Taking the limit as m — oo gives

| frn () — fin (x)| < € forall x € A, which shows that ( f,,) converges
uniformly to f on A.

This completes the proof.

11.7 CONTINUOUS LIMIT THEOREM

Let ( f,,) be a sequence of functions defined on A € R that converges
uniformly on A to a function f. If each f,, is continuous at ¢ € A4, then f
IS continuous at c.

Proof. Let € > 0 be given. Fix c € A. Since f,, — f uniformly, there
exists an N € N such that

| fu ()= f ()| < forallx € A,

Since f is continuous at c, there exists 8 > 0 such that

| fv (®) = fiv () | << whenever |x —c| <.

I |x — c| < &, then

I f)=f@QI=If)+fx @) —fux) =fu(@Q+fx() —fO]
S| f@-fn @I+ fa @) —fv @[+ fv(©-f()]

<cf4f4f-¢
3 3 3
The first and third €/3 are due to uniform convergence and the choice of
N. The second €/3 is due to the choice of §. This shows that f is
continuous at c, as desired.
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11.8 UNIFORM CONVERGENCE AND
DIFFERENTIATION

e Differentiable Limit Theorem
Let (f,,) — f pointwise on the closed interval [a, b] and
assume each f,, is differentiable. If (f,,) — g uniformly on
[a, b], then f is differentiable and f ' = g.

Proof: Fix ¢ € [a, b] and let € > 0. We’ll show there exists § > 0 such
that

f(x) = f(e)

X—=cC

—g(o)| <,

whenever 0 < |x —c|< § and x € [a, b].

For x # ¢, consider the following:

—g(co)

|f(X) — f(c)

< ’f(-r) —fle)  fulx) = fule)

X—cC X —=cC X—cC

(iii)
R (%)
+ ’M — fie)|+|fie) - g0
X —C —_—
(i)

(ii)
Since lim, ., f,(c) = g(c), there exists Ny € N such that
, €
fale) = g(o)| < 3
for all n > Nj.

From Cauchy’s Criterion for uniform convergence, since the sequence (
f'n ) converges uniformly to g, there exists an N, € N such that

|20 = fr@)] < 5

whenever m, n> N, and x € [a, b]. Set N = max{N;, N,}
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The function fy is differentiable at c. So there exists & > 0 such that

fn(x) = fa(c)

, €
- .'C <_
xX—-c f;\() 3

whenever 0 < |x — ¢| < § and x € [a, b]. We’ll show this ¢ will suffice.

Suppose 0 < [x —¢| < 6 and m > N. By the Mean Value Theorem applied to
fin — fnv on the interval [c,x] (if x < ¢ the argument is the same) there exists
a € (¢, x) such that

[ fn(x) = fn(X)] = [ fin(c) = fn(c)] .

X—c

fml@) = fy(e) =

By our choice of N,
’ ’ €
|fm[‘f) - fN((}')l < §

and so

[fm (x) — Iy (X)] - [ﬁﬂ({’} - ff\’(c)] < E
xX—c 3
Since fi, — f as m — oo, by the Algebraic Order Limit Theorem,

) = fle) ) = ()| _

X—c X—=c 3

€

(iii)

Combining inequalities (), (i), (ii), and (iii), we obtain for 0 < |x — ¢| < é and
x € |a,b]

(¢) <E+E+E—e
& 37373 7€

This proves that f = lim, .« fy is differentiable and that /' = g = lim,~ f,. O

f(x) - f(c)
X—cC

11.9 SERIES OF FUNCTION

Let {f,,} is a sequence of real valued functions on an interval I,

then f; + f, + -« + f,, + --- is called a series of real valued function
defined on I.

this series is denoted by Y.7_; f;, -

xn

Examples: f (x) = §=1F (This equals e x for all x € R.)

Note: Let f and f,, for n € N be functions defined onaset A C R.
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(a) The infinite series Y f,, (x) = fi(x) + fo(x) + f3(x) + - - - converges
pointwise on A to f (x) if the sequence of partial sums

(X)) =f1(x) + fL(x) + f5(x) +- - - +fi.(x) converges pointwise to f
(x) on A.

(b) The infinite series converges uniformly on A to f (x) if the sequence
of partial sums converges uniformly on A to f (x).

Note: Since an infinite series of functions is defined in terms of the limit
of a sequence of partial sums, everything we already know about
sequences applies to series. For the sum }.>°_; f,, (x), we merely restate
all of the previous theorems for the sequence of k™ partial sums s, (x) =

A+ L)+ f5(0) + - - +Hfie(x).

Note: Let f,, be continuous functions defined on a set A € R, and assume
o1 fn(x) converges uniformly on A to a function f. Then f is
continuous on A.

Note: Term-by-term Differentiability Theorem
Suppose the following three statements:
() Let f,, be differentiable functions defined on an interval A = [a, b].

(i) Assume X7, fn (x) converges uniformly to a limit g(x) on A.

(iii) There exists a point x, € [a, b] where X.o°_; f,, (x,) converges. Then
the series Y-, fn(x) converges uniformly to a differentiable function f
(x) satisfying f ' (x) = g(x) on A. In other words,

f)=Zrafa(x)  and ' (x) = Loy fo ().

11.10 CRITERION FOR UNIFORM
CONVERGENCE OF SERIES

1. Cauchy Criterion for Uniform Convergence of Series:

A series Yo fn(x) converges uniformly on A € R if and only if for
every € > 0 there exists an N € N such that

| frne1(X) + fins2(x) + -+ f,(x)| < e whenever n >m > N and x € A.

2. Weierstrass M-Test:
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For eachn € N, let f,, be a function defined onaset A € R, and let M,, >
0 be a real number satisfying |f,,(x)| <M, forall x € A. If }X;7_; M,,
converges, then Y>>, f.(x) converges uniformly on A.

cos 2™x

Examples 1. The continuous functions —=

satisfy

forne{0,1,23,...}

cos2™x

1
2n <M1’l=_

271

forallx e Randn € {0, 1, 2, 3, .. .}. Since

1

1
[ee] _ECX) —_
n=0 MTl — an=0 2n - 1_(1) - 2 < 0,
2

cos2™x

by the Weierstrass M-test, the series }..°_, Sn converges uniformly to

a continuous function

cos 2™x
2n

9(x) =Xn=o

Examples 2. Define f (x) = Z?’f:o% . Find the values of x where the

series converges and show that we get a continuous function on this set.

Sol. If |x| < 1, then by the Comparison Test, the series converges as
follows:

2n 1
X = 3 < 00,
] —x

If |x| > 1, then the series diverges by the Divergence Test since

|

) X 5

lim 5= 2
n—soo ] 4 x 1 1 if x| > 1.

Now let 0 < K < 1. Then on the interval [-K, K] we have

xZn
——— | <x" < M, =K.
1 + x2n

Since

iM,, = iﬁ"’*“ = 3 _1K2 < oo,

n=0 n=0
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the series converges uniformly on [—K, K] to a continuous function.
Since K was arbitrary, the series

o 2n

. X
@)= T

n=0
is a continuous function on (-1, 1).

What about the derivative? Consider

&0 d xlre oo nx2n— 1
§(x) = Z{; dx (l +x3“) - Z (1 +x2m)2
n= n=1

For 0 < K <1, we apply the Weierstrass M-test on the interval [-K, K].
For x € [-K, K],

”xﬁn—l
(] + _1:2.!1)2

< x| < N, = nk?",

The sum Xo_y N, = X0, nK?"~1 converges and by the Weierstrass M-
test the series of derivatives converges uniformly on the interval [-K, K].
By the Differentiable Limit Theorem, f ' (x) = g(x) for x € [-K, K].
Since K was arbitrary, f ' (x) = g(x) for x € (-1, 1). That is,

) 2n 2n

d w— x2 = d X
— E = E — forx € (—=1,1).
dx & 1 +x2n £ dx (l +x2“) ( )

11.11 ABEL’S TEST

Let (i) the series of functions Y.,°_; f,, (x) be uniformly convergent
on[a,b]
And (ii) The sequence of functions (g, (x)) be monotonic for every x €
[a, b] and uniformly bounded on [a, b].

Then the series Yo, f,, (x) g, (x) is uniformly convergent on [a, b].

_q\n—-1,n
Example: Prove that the series X.»"_; —(n2+x:)

on [0, 1].

is uniformly convergent
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sl
Sol. Let gn(.X') = (1+7

),xE[O,l]

x™(x—1)
Then In+1 — 9Gn = m <Oforall x € [0,1]

For each x € [0, 1], the sequence (g,,) is monotonic and for all x €
[0,1], |g,| <1 foralln € N.

)

The series Yy—1 Is convergent series of real numbers and

therefore it is uniformly convergent on [0, 1].

_l)n—lxn

By Abel’s test, the series Yo, (n R
[0,1].

is uniformly convergent on

11.12 DIRICHLET’S TEST

Let (i) the sequence of partial sums (s,,) of the series of functions
1 [ (x) be uniformly bounded on [a, b].

(ii) The sequence of functions (g,, (x)) be monotonic for every x €
[a, b] And

(iii) The sequence of functions (g, (x)) is uniformly convergent
toOon [a,b].

Then Then the series Y-, fr, (x) g, (x) is uniformly convergent on
[a,b].

Example: Prove that the series Yo is uniformly

(D" (x*+n)
n2

convergent in any closed and bounded interval [0, 1].

(x%+n)
n2

Sol. Let f,(x) = (—D", g,(x) = , X € [a,b] .

Lets, =f; + fo + -+ f,. Then the sequence (s,,) is bounded.

x%+n+1  x%4n
Then gny1 — 9n = e S 0 for all x € [a, b].
This shows that (g,,) is a monotone decreasing sequence for each x in

[a,b].
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lim g, (x) = 0eachxin[a,b].
n—oo

Thus, the sequence of functions (g,,) is such that each g,, is continuous
on [a, b], the sequence converges to a continuous function on [a, b] and
(gn) is monotone decreasing sequence on [a, b].

- n 2 - -
Therefore, by Dirichlet’s test Yo, (1)71# is uniformly convergent.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Every pointwise convergent is uniform convergent.
Problem 2. Every uniform convergent is pointwise convergent.

n
Problem 3. The series Z;’{;l% , 0 < x < 1 is pointwise convergent
to 0.
Problem 4. The series Z;’l":l% , 0 < x < 1 isuniformly convergent
to 0.

11.13 SUMMARY

1. A sequence of functions ( f,,) defined on a set A < R converges
uniformly on A if and only if for every € > 0 there exists an N € N such
that | f;, (x) — fi (x)| < € whenever m, n> N and x € A.

2. Let (i) the series of functions };>_; f,, (x) be uniformly convergent
on[a,b]
And (ii) The sequence of functions (g, (x)) be monotonic for every x €
[a, b] and uniformly bounded on [a, b].

Then the series Yo, f,, (x) g, (x) is uniformly convergent on [a, b].
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11.14 GLOSSARY

sequence

series
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11.17 TERMINAL AND MODEL QUESTIONS

Q 1. Prove that the x = 0 is a point of non — uniform convergence of the

nx

sequence of functions (f,,) Where, f,(x) = e

n?x
14+n2x2

Q 2. Prove that the sequence of functions (f,,) Where, f,, (x) =

non-uniformly convergent on [0, 1].

Q 3. Prove that the sequence of functions {f,,) Where, f,(x) = —=— is

1+n2x2
uniformly convergent on [a, b], a > 0 but is only pointwise convergent on
[0, b].
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11.18 ANSWERS

CHECK YOUR PROGRESS
CYQ 1. False
CYQ 2. True
CYQ 3. True

CYQ 4. True
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12.1 INTRODUCTION

In mathematical analysis, an improper integral is an extension
of the notion of adefinite integral to cases that violate the usual
assumptions for that kind of integral. In the context of Riemann
integrals (or, equivalently, Darboux integrals), this typically involves
unboundedness, either of the set over which the integral is taken or of the
integrand (the function being integrated), or both. It may also involve
bounded but not closed sets or bounded but not continuous functions.
While an improper integral is typically written symbolically just like a
standard definite integral, it actually represents a limit of a definite
integral or a sum of such limits; thus improper integrals are said to
converge or diverge. If a regular definite integral (which
may metonymically be called a proper integral) is worked out as if it is
improper, the same answer will result. The concept of Riemann integrals
as developed in previous chapter requires that the range of integration is
finite and the integrand remains bounded on that domain. if either (or both)
of these assumptions is not satisfied it is necessary to attach a new
interpretation to the integral.

12.2 OBJECTIVES

In this Unit, we will Discussed about

Improper integral
Proper integral
Type of improper integral

12.3 PROPER INTEGRAL

The definite integral f: f(x)dx is called a proper integral if

(i) the interval of integration [a, b] is finite or bounded.

(ii) the integrand f is bounded on [a, b].

If F(x) is an indefinite integral of f(x), then f;f(x)dx = F(b) — F(a).

Department of Mathematics
Uttarakhand Open University



https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Darboux_integral
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Retronym

Real Analysis MT(N)-201

12.4 IMPROPER INTEGRAL

The definite integral f: f(x)dx is called a improper integral if either or

both the above conditions are not satisfied. Thus fab f(x)dx is an

improper integral if either the interval of integration [a, b] is not finite or
f is not bounded on [a, b] or neither the interval [a, b] is finite nor f is
bounded over it.

(i) In the definite integral ff f(x)dx, if either a or b or both a and b are
infinite so that the interval of integration is unbounded but f is bounded,

then f; f(x)dx is called an improper integral of the first kind.

For example: [~ % f_ooo e?*dx are improper integral of the first kind.

1 Jx'

(i) In the definite integral f: f(x)dx, if both a and b are finite so that
the interval of integration is finite but f has one or more point of infinite
discontinuity i.e. f is not bounded on [a, b], then fff(x)dx is called an
improper integral of the second kind.

For example: flz xizdx, flz jdx are improper integral of second kind.

(iii) In the definite integral f:f(x)dx, if the interval of integration is

unbounded and f is also unbounded, f: f(x)dx is called an improper
integral of the third kind.

For example: fow%dx is an improper integral of third kind.

12.5 IMPROPER ITEGRAL AS THE LIMIT OF
A PROPER INTEGRAL

(a) When the improper integral is of the first kind, either a or b or both a
and b are infinite but f is bounded. We define

(i) faoof(x)dx = tli_% f;f(x)dx, (t>a)

The improper integral faoof(x)dx is said to be convergent if the limit

of right-hand side exists finitely and the integral is said to be divergent
if the limit is 400 or —oo.
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If the integral is neither convergent or divergent, then it is said to be
oscillating.

i) [° fGdx = Jim [ FGdx, (¢ <b)

The improper integral f_bm f(x)dx is said to be convergent if the limit

of right-hand side exists finitely and the integral is said to be divergent
if the limit is 4o or —oo.

(iii) 7, fGdx =[°_ fG)dx + [ f(x)dx where ¢ is any real number
= lim [ fGOdx+ lim [ f(0)dx

The improper integral f_czo f(x)dx is said to be convergent if both the

limits on the right-hand side exist finitely and independent of each other,
otherwise it is said to be divergent.

Note: fjooof(x)dx * tli_)rrolo[f_ctf(x)dx + fct f () dx].

(b) When the improper integral is second kind, both a and b are finite
but f has one points of infinite discontinuity on [a, b].

(i) If f(x) becomes infinite at x = b only, we define
b . b—e
fa fo)dx = €ll)rgl+ fa f(x)dx.

The improper integral f;f(x)dx is said to be convergent if the limit on

the right- hand side exists finitely and the interval is said to be divergent
if the limit is 4+-c0 or —oo.

(ii) If f(x) becomes infinite at x = a only, we define
b . c
Jo fGOdx = lim [ _f(x)dx.

The improper integral f;f(x)dx is said to be convergent if the limit on
the right- hand side exists finitely, otherwise it is said to be divergent.

(iii) If f(x) becomes infinite at x = c only where a < ¢ < b, we define

f: fGdx = [ f(x)dx + fcb f(x)dx

R c—€q . b
= 6111_1}6+ fa fx)dx + ezlg%+ fc+62 f(x)dx.
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The improper integral ff f(x)dx is said to be convergent if both the

limits on the right- hand side exist finitely and independent of each
other, otherwise it is said to be divergent.

Note: (1) if f(x) has finite discontinuity at the end point of the interval
of integration, then the point of discontinuity is approached from within
the interval.

Thus, if the interval of integration is [a, b] and
(i) f has infinite discontinuity at ‘a’, we consider [a + €, b] as € — 0 +.
(ii) f has infinite discontinuity at 'b’, we consider [a,b — €] ase — 0 +.

Note: (2) A proper integral is always convergent.

Note: (3) If f: f(x)dx is convergent, then
0] ff kf (x)dx is convergent, k € R,

(i) f:f(x)dx = facf(x)dx + fcbf(x)dx where a < ¢ < b and each
interval or right-hand side is convergent.

Note: (4) For any c between a and b,i.e.a < ¢ < b, we have
fabf(x)dx = facf(x)dx + fcbf(x)dx

If fcb f (x)dx is a proper integral, then the two integrals f:f(x)dx and

fac f(x)dx converges or diverge together.

Thus, while testing the interval f; f(x)dx convergence at a it may be

replaced by facf(x)dx for any convenient ¢ such that a < ¢ < b.

ILLUSTRATIVE EXAMPLES

Example 1. Examine the convergence of the following improper
integrals:

(i) Jy zdx (i) ff‘%dx (iii) ;" = dx (V) f; —dx

1+x2

Sol. (i) By definition, [~ dx = Jim [y zdx

= lim [logx]} = Jim logt = oo
Therefore, fooo i dx is divergent.
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et
(ii) By definition, f dx = lim f dx = lim J, x712dx
= lim [2Vx]¢ = Jim (2Vt—2) =
oo 1 . .
Therefore, | 7 du s divergent.

(iii) By definition, [;” 7 dx = lim J{ x73/2dx

—1/2qt _
o [, = m [

= lim (_Tj n 2) = 0 4+ 2 = 2, which is finite.

t—o0

3/2

Therefore, f dx is convergent and its value is 2.

3/2
. - [} 1
(iv) By definition, ——dx
tlim (tan~1¢)§
tlim (tan~'t —tan~10)
T . . —
=3 which is finite.
|s -

Example 2. Examine the convergence of the following improper
integrals:

. o _ . © x 0 1

(i) J, e™dx (m>0) (i) J, =dx (i) [ T X

(iv) fooo sinx dx

Sol. (i) By definition, [~ e ™*dx = Jim [y e ™ dx

= —2(0 — 1) = = which is finite.
m m
= [ e"™*dx is convergent and its value is =
0 m

(ii) By definition, [~ —d
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t
a

—1: 1 2
- iy (gt +59)
= tlim %[log(l +t2) —log(1 4+ a?)] =

Therefore, " —— dx is divergent.

(iii) By definition, [~ —

— Ti t -3
0 T dx = tll_)ngo Jo (1 +x)3dx

—2qt
= lim [&]
t—oo -2 0

— LY I P R 2 ST N SR
_tlgﬂlo_z[(ut)z 1]— 2(0 1)—2wh|ch|sf|n|te.

1

Therefore, [, T

s dx is convergent and its value is %
(iv) By definition, fooo sinx dx = lim fotsinx dx = tli_)rgo[—cos x]§
= tlim (1 — cost)

Which does not exist uniquely since cost oscillates between -1 and +1
when t — oo,

Therefore, f0°° sinx dx oscillates.
Example 3. Examine for convergence the integrals:
() [ xe™™dx (i) [, x2e~* dx
Sol. (i) floo xe™ dx = lim fltxe‘x dx
= tlim [—xe™ — e™*]¢

= lim[-tet—et+el+e71]

t—oo
—t) . —t\ , 2 . , . .
1 ()~ tli)rglo (e™®) + - (applying L’ Hospital rule to first limit)
() = 0+2=0+2=2which is finite.
e e e e
Therefore, [ 1°° xe ™™ dx is convergent and its value is z
(ii) foooxze"‘ dx = lim fotxze"‘ dx

= lim [-x%e™* — 2xe™ — 2e~*]}

t—o0
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= lim [—t%e~t — 2te”t — 2e71 + 2]

t—oo

— i (2t : t . , :
= lim (?) — 2 lim (;) — 0 + 2 (Applying L’ Hospital rule)

t—oo t—o0

. -2t . t
Jim (5%) - 2lim (Ge) + 2
(Again, applying L’ Hospital rule)

= lim (57) —2x 0 +2 = 0 + 2 = 2 which is finite.
e

t—oo

Therefore, f0°° x%e™ dx is convergent and its value is 2.

Example 4. Examine for convergence of the integrals:

Q[ exadx (i) [°

© p? +qu2

Sol. (i) [°_e?* dx = Jim [ e?* dx

_ 1 e2x1° . 1 2ty _ 1 Ll e
= lim [T]t tg@wE(l_e )—2(1—0)—2WhICh is finite.

t——o0

0 . . .1
Therefore, [ e?* dx is convergent and its value is >

(i) J° dx = lim ft

°°p2+ sz p2+q x

o 1
= lim [ — dx
t——oo Z(q_2+x2

0
. 1 1 -1 X
im [—2.—t n 1—]

t——o lg* p/q p/al,

= lim i[o - tan‘lq—t] - —i(—E) — ™ which is finite.
t—s—o0 Dq P pq 2 2pq

Therefore, f dx is convergent and its value is —q

[o') 2+q2 2
Example 5. Examine for convergence of the integrals:

() [5 e*dx (i) [,

00 1+x2

Sol. (i) [ e~ dx = f_ooo e ™ dx + fooo e ™ dx

lim f e *dx+ lim f2 ~* dx

ti——o0 t,—0o
; -x10 ; —x1t2
lim [-e ]} + lim [—e™];
ti——o0 t,——o0
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lim (—1+e %)+ lim (—e t2+1)
t1——00 ty——o0
(-1+OO)+(O+1):00
Therefore, [ e~ dx is divergent to .

(i) [0, de = [ = dx + [ = dx

1+x2 1+4x2

. 0 1 . t 1
= lim [ ——dx+ lim [*——
t;——o0 "1 1+x t,—00 0 1+x

dx

= lim [tan™'x]g, + lim [tan—! x]¢?

t1——00 ty——00

= lim [~tan™'¢;] + lim [—tan™'¢,]
ty—oo

t{——00

- _ (_E) +Z — 7 which is finite.
2 2

1

Therefore, [~ —

dx is convergent and its value is 7.

Example 6. Examine for convergence of the integrals:

() f; logxdx (i) ;"=

x(logx)?

Sol. (i) 0 is only point of infinite discontinuity of the integrand on [a, b].
1 . 1

Therefore, [ logx dx = Jim. Jos(logx). 1dx

Integration by parts

— —all= Tim (—1 —
—€ll)r51+[xlogx x]e Ell)n&r( 1—ecloge+¢)

= —1 which is finite. [sincelin})x"logx =0,n> 0]
€e—

Therefore, fol logx dx is convergent and its value is —1.

(i) since lirr})x(logx)” = 0,n > 0, therefore, 0 is the only point of
xXx—

infinite discontinuity of the integrand on [Oé ].

1

1/e
Therefore, [~ Togn)?

T 1/e —23
dx = El_l)r([)l_l_ Jor(logx) ~ dx

[(zogx)-l]l/ e

= lim
e—0+
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im T
e—0+ [log loge

which is finite.

Therefore, fol/ ex(Tlgx)z dx is convergent and its value is 1.

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Every proper integral is always convergent.
Problem 2. folx—lz dx is convergent.

Problem 3. folxiz dx is divergent to +co.

Problem 4. foe

1

x(logx)3
1

x(logx)3

. 1
dx Is convergent to — P

Problem 5. flz dx is divergent to +oo.

12.6 SUMMARY

1. In the definite integral f; f(x)dx, if either a or b or both a and b are
infinite so that the interval of integration is unbounded but f is bounded,

then f: f(x)dx is called an improper integral of the first kind.

2. In the definite integral f; f(x)dx, if both a and b are finite so that the
interval of integration is finite but f has one or more point of infinite

discontinuity i.e. f is not bounded on [a, b], then f:f(x)dx is called an
improper integral of the second kind.
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3. In the definite integral f:f(x)dx, if the interval of integration is

unbounded and f is also unbounded, ff f(x)dx is called an improper
integral of the third kind.

4.() J, f()dx = lim [ fdx, (t>a)

The improper integral faoof(x)dx is said to be convergent if the limit

of right-hand side exists finitely and the integral is said to be divergent
if the limit is 4+-co or —oo.

If the integral is neither convergent or divergent, then it is said to be
oscillating.

(i) [°_ f(x)dx = dim [ fGdx, (¢ <b)

The improper integral f_boo f(x)dx is said to be convergent if the limit

of right-hand side exists finitely and the integral is said to be divergent
if the limit is +oc0 or —oo.

(iii) ffooof(x)dx =f_coof(x)dx + fcoof(x)dx where ¢ is any real number

= lim ftc f(x)dx + lim ftzf(x)dx
ty——o0 "l t,—o0 ~C

The improper integral ffooo f(x)dx is said to be convergent if both the

limits on the right-hand side exist finitely and independent of each other,
otherwise it is said to be divergent.

5. For any ¢ between a and b,i.e.a < c < b, we have
f:f(x)dx = facf(x)dx + fcb f(x)dx

If fcb f(x)dx is a proper integral, then the two integrals fff(x)dx and

fac f (x)dx converges or diverge together.

Thus, while testing the interval f; f (x)dx convergence at a it may be

replaced by facf(x)dx for any convenient ¢ such that a < ¢ < b.

12.7 GLOSSARY

sequence

series
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12.10 TERMINAL AND MODEL QUESTIONS

Q 1. Examine for convergence of the integral f_°° L dx.

© eX 4 e™X

Q 2. Examine for convergence of the integral f_°° ! dx.

0 x2Z + 2x+2

1
x2-3x+2

Q 3. Examine for convergence of the integral fol dx.

Q 4. Examine for convergence of the integral f:ﬁ dx.

1

Q 5. Examine for convergence of the integral fon Py
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12.11 ANSWERS

TQL. Convergent to ~.

TQ?2. Convergent to .

TQ3. Divergent to oo.

TQA4. Divergent to co.

TQ5. Divergent to oo.
CHECK YOUR PROGRESS
CYQ 1. True

CYQ 2. False

CYQ 3. True

CYQ 4. True

CYQ 5. True
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13.1 INTRODUCTION

In mathematical analysis, an improper integral is an extension
of the notion of adefinite integral to cases that violate the usual
assumptions for that kind of integral. In this unit we discussed

b
tests for convergence of fa f(x)dx at ‘a’, general test for convergence and

absolute convergence of some functions, also tests for convergence of

fab f(x)dx at ‘o0’.

13.2 OBJECTIVES

In this Unit, we will Discussed about

Improper integral
Test of convergence
Absolute integral

13.3 TEST FOR CONVERGENCE OF f:f(x)dx
AT a

Let a be the only point of infinite discontinuity of f(x) on [a, b]. The
case when b is the only point of infinite discontinuity can be dealt with
in the same way.

Without any loss of generality, we assume that f (x) is positive (or non-
negative) on [a, b].

In case f(x) is negative, we can replace it by (—f) for testing the

convergence of fab f(x)dx.

Department of Mathematics
Uttarakhand Open University



https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Definite_integral

Real Analysis MT(N)-201

Theorem: A necessary and sufficient condition for the convergence of
the improper integral f; f(x)dx at ‘a’ where f is positive on (a, b], is
that there exists a positive number M, independent of € > 0 such that

[P f()dx <M Vein (0,b—a)

+€

Proof: Since a is the only point of infinite discontinuity of f on [a, b],
therefore, f is continuous on (a, b].

Also f is positive on (a, b].

= Fora<a+e<biefor0<e<b—a,f ispositive and
continuous on [a + €, b].

= [P f(x)dx = A(€) represents the area bounded by f on [a + €, b]

a+e
and x —axis.

= As e — 0 +, i.e. as € decrease, A(¢€) increases since the length of the
interval increases.

. o b T .
= Ell)r(r)l_’_ A(e) = ell)rgl_’_ fa+€ f(x)dx will exist finitely iff A(e) is bounded

above.

= f; f(x)dx will converge iff 3 a real number M > 0 and independent
of e such that A(e) < M

= f; f(x)dx converges iff f;+e f(x)dx <MV ein (0, b - a).

Note: If for every M > 0 and some € in (0, b - a). A(e) > M, then

f;+€ f(x)dx is not bounded above.

Therefore, f;+e f(x)dx tend to +oo as e tend to 0+ and hence, the

improper integral f; f(x)dx diverges to +oo.

13.4 COMPARISION TEST |

If fand g are two positive functions with f(x) < g(x) for all x in (a, b]
and a is only point of infinite discontinuity on [a, b], then

(i) f; g(x)dx is convergent = f; f(x)dx is convergent

(i) f; f(x)dx is divergent = f; g(x)dx is divergent.
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13.5 COMPARISION TEST II (LIMIT FORM)

If f and g are two positive functions on (a, b], a being the only point of

infinity discontinuity, and lim % = 1 where [ is non-zero finite

x—a+ g(x
number, then two fa f(x)dx and f; g(x)dx converge or diverge
together.

Note: let f and g be two positive functions on (a, b], a being the only
point of infinite discontinuity. Then

(i) lirn E = 0 and f g(x)dx converges = f f(x)dx is converges

(x) b . b . .
(ii) xll%m oo and [ g(x)dx diverges = [ f(x)dx is diverges.
Note:

(i) The improper integral f dx Is convergent

ifand only if n < 1.

(i1) The improper integral f —dx is convergent

ifand only if n < 1.
Note:

(i) if a is the only point of infinite discontinuity of f on [a, b] and

lim+(x — a)*f(x) exists and non-zero finite, then f; f(x)dx
Xx—a

converges ifand only if u < 1.

(ii) if b is the only point of infinite discontinuity of f on [a, b] and
lir{}+ (b — x)*f (x) exists and non-zero finite, then f; f(x)dx
X—

converges ifand only if u < 1.

e ILLUSTRATIVE EXAMPLES:

Example 1: Examine the convergence of the integrals.
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. 1 1 .- 2 1
(I) fO \/ﬁdx (II) fl M—Zmdx

1 1
ViZ+x vV axvx+x

Sol. (i) Here  f(x) =

0 is the point of infinite discontinuity of f on [0, 1].

N & _ 1 _ ioh i
Take g(x) = —, then hr&g(x) xll)n&_ = 1 which is

non-zero and finite.

Therefore, By comparison test, fol f(x)dx and fol g (x)dx converge
or diverge together.

1 11
But [, g(x)dx = [, =d
b 1 o
(From, [ o dx with a = 0 converges.
sincen=%<1)
Therefore flf(x)dx =12
Jo 0 VxFi
. _ 1
(i)  Here f(x) = T
2 is the point of infinite discontinuity of fon [1, 2].
f(x) . 1

1 . .
Take g(x) = \/: then ,}Egl o= xl‘é‘_ 13 which is

non-zero and finite.

Therefore, by comparison test, | 12 f(x)dx and | 12 g(x)dx converge
or diverge together.

But fg(x)dx— 1\/_

(From, f; (b_lx)" dx with b = 2 converges.)

sincen=%<1)

Therefore, f fodx = [0

o (Hx)\/_ —————dx is convergent.

Example 2: Examine the convergence of the integral.
1 1
fo x3( 2+ x2)5 dx
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_ 1
Sol. Here f(x) = B
0 is the point of infinite discontinuity of fon [0, 1].

& _
+9(x) x>0+ (2+x?)°

Take g(x) = =, then hm = 312 which is
non-zero and finite.

Therefore, by comparison test, fol f(x)dx and fol g(x)dx converge
or diverge together.

But folg(x)dx = folédx

(From, f; (x—la)n dx with a = 0 diverges.

sincen=3>1)

Therefore, f f(x)dx = f

o mdx is divergent.

Example 3: Examine the convergence of the integral.

fl logx dx

01+x

logx

Sol. Slnce is negative on (0, 1], we take f(x) = o

0 is the point of infinite discontinuity of f on [0, 1].

Take g(x) = =, then 11m IO _ i — X109 _ g ifpn > 0.

—0+9(x) x—0+ 1+x

Taking n between o and 1, the integral fol g(x)dx is convergent.

Therefore, by comparison test, fol f(x)dx is convergent.

Example 4: Examine the convergence of the integral.

fn/z sin x dox

0 xP

Sol. If p is negative or zero, the given integral is a proper integral and
hence convergent when p < 0.

When p > 0, the only point of discontinuity is 0.
sin x
Let f(x)= >
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Take f(x) = xi# then

X . —p s . — sinx
L9 — im x#Psinx = lim x* P+l (=)
x—0+9(x)  x—0+ x—0+ x

=1lifu—p+1=0
=0ifu—p+1>0
—oifu—p+1<0

By taking 0 < u < 1and also u = p — 1 so that

0O<p-1l<liel<p<2

Therefore, f(;T/z g(x)dx is convergent and hence f:/zf(x)dx is
convergent.

By taking 0 < u < 1 and also u > p — 1 so that

-1<p-1<u<lie0<p<2

Therefore, f;/z g(x)dx is convergent and hence f;/zf(x)dx is
convergent.

/2 si
Hence [T/ X

o 7 dx is convergent if p < 2 and divergent if p > 2.

Example 5: Show that [ 5™ g exists if and only if n < m + 1.

0 xn

1

n-m

. m . n
Sol. Here  f(x) = Sl::n X = (Smx) -

X

0Oifn—-m<0
lirgl f(x)=41ifn—m=20
X oifn—m>0

Therefore, the given integral is proper integral if n —m < 0 i.e.
n < m and an improper integral if n —m > 0; 0 is only the point of
infinite discontinuity of f on [O,g].

Whenn —m > 0, take g(x) =

1
xn—m

Therefore, lim ACI . lim (
x—0+9(x)  x—0+

o\n
%) = 1 which is non zero and

finite.

Department of Mathematics
Uttarakhand Open University

MT(N)-201




Real Analysis MT(N)-201

Also fon/zg(x) dx = f;/z
n<m+1.

dx is convergent iff n —m < 1 i.e.

xn—m

Therefore, by comparison test, the given interval is convergent iff
n—-m<1.

13.6 GENERAL TEST FOR CONVERGENCE

This test for convergence of an improper integral (finite limits of
integration but discontinuous integrand) holds whether or not the
integrand keeps the same sign.

e Cauchy’s test. The improper integral f: f(x) dx, a being the
only point of infinite discontinuity, converges at a if and only if
to each € > 0, there corresponds a § > 0 such that

[ fGodx| < e forall 0 < Ay, 2, < 6.

a+/11

13.7 ABSOLUTE CONVERGENCE

Definition: The improper integral f:f(x) dx is said to be absolutely

convergent if f;l f(x)| dx is convergent.
Theorem: Every absolutely convergent integral is convergent.

or fablf(x)l dx exits = f;f(x) dx exists.

Proof. Since f;l f(x)| dx exists, therefore by Cauchy’s test , for every
€ > 0, there corresponds a § > 0 such that.

[EIfoldx| < V0 <23,2, <6 (D)

a+/11

Also, we know that |72 f(x)dae| < | [ 1 £ () ldx| @)

a+/11 a+21

From (1) and (2), we have faa: ;1 ’

fO)dx| <e,v0< 23,1, <6

~ By Cauchy’s test f;f(x) dx is exists.

Note: Since |f (x)] is always positive, the comparison tests can be
applied for examining the convergence of f;lf(x)l dx, i.e.,

absolute convergence f; f(x)dx.
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Note 2: The converse of the above theorem is not true. Every
convergent integral is not absolutely convergent. A convergent integral
which is not absolutely convergent is called a conditionally Convergent
Integral.

1
Example 1. Test the convergence of fol S?"

sinl
Sol. Let  f(x) = —=*

Clearly, f does not keep the same sign in a neighborhood of 0.

Now  IfGol= |

1 1 - . 1
But |, 7 dox s convergent at 0. (Since n =~ < 1)
Therefore, by comparison test, fol | f (x)|dx is convergent at 0.

Since absolute convergence = convergence.

Therefore, f " dx is convergent.
Example 2. Show that f B dx p > 0, converges absolutely for p < 1.

Sol. Let f(x) =

Clearly, f does not keep the same sign in a neighborhood of 0.

‘ sin = ‘
|xP |

Now, |f(x)| = = <=.Vx €(01]

Also fol xipdx is convergent iff p < 1.
Therefore, by convergent test, fol |f (x)|dx converges if p < 1.

Hence fol f (x)dx converges absolutely for p < 1.

13.8 CONVERGENT AT oo
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Theorem: A necessary and sufficient condition for convergence of
J.” f()dx, where f(x) > 0V x € [x,t], is that there exists a positive

number M, independent of t, such fat fxX)dx<MVt=a.
Proof. Let F(t) = [ f(x)dx

Since f is positive in [a, t], the function F(t) monotonically increases
with t and will therefore, tend to a finite limit if and only if it is bounded
above, i.e. there exists a positive number M, independent of ¢, such that
FO)<MVt>a

:fatf(x)dx<MVt2a

Note: if no such number M exists, then the monotonic increasing
function F(t) is unbounded above and therefore tends to oo as t — oo,

Therefore, fat f(x)dx diverges to co.

e Comparison test I.
If f and g are two functions such that
0<f(x)<g(x)VxE€|[a »),then
(i) J." gC)dx is convergent = [7 f(x)dx is
convergent
(i) [T° f(x)dx is divergent = [ g()dxis
divergent.

Comparison test I1.

If f and g are two positive functions on [a, o) and lim % =1
X—00

then (i) if [ is non-zero finite, the two integrals

fa°° f(x)dx and faoo g(x)dx converges or diverges
together.
(i) if L = 0 and fa°° g(x)dx converges, then faoo f(x)dx
converges.
(iii) if L = o and [~ g(x)dx diverges, then [ f(x)dx
diverges.

Note: A useful comparison integral.

The improper integral faoo xindx (a > 0) convergent if and only if

n > 1.

Example 1. Examine the convergence of the following integral
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(i) fl (1+ (14%)5 dx (I)fl (2+x)\/—d

Sol. (i) Let f(x) =

x3
(1+x)5

Take g(x) = x—12

f) _ = lim ——

Therefore, lim = =1 which is non-zero and finite.

x—o0 g(x ) X— 0o (1+;)

By comparison test, the two integrals [ f(x)dx and f;” g(x)dx
converge or diverge together.

But f g(x)dx = f —dx is convergent  (since n = 2 >1)

Therefore, [ f()dx = [, dx is convergent.

X3
(1+x)5

(ii) Let f(x) =

1 —
Q+x)Vx
Take g(x) = x%

Therefore, lim I _ im —z =1 which is non-zero and finite.
x—o0 g(x X—00 1+—

By comparison test, the two integrals | 1°° f(x)dx and | 1°° g(x)dx

converge or diverge together.

e o 1 . . 3
But fl g(x)dx = fl de is convergent  (since n = 5> 1)

Therefore, f1°° f)dx = [

L i N_dx is convergent.

Example 2. Examine the convergence of the following integral

2m

fooo S mn>0

1+ x2n

sol. [~ = dx + [ ndx where, a > 0

1+ xZn - f 14 x2n
The first integral on the right is a proper integral and therefore,
convergent The given integral will be convergent or divergent according

as f ——-dx is convergent or divergent.

Let f(x) = 2o =¥ _ L

m 2n 2n-2m 1
1+x x (1+x2") x (1+x2")
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Take g(x) =

271 2m

IO — im —— =1 (Since n>0)

x—00 g(x) x—oo 1+ 22
Which is non-zero and finite.

Therefore, by comparison test, fam f(x)dx and faoo g(x)dx converge or
diverge together.

But ;" g(x)dx = [ xzn — dx converges if and only if 2n — 2m >

1 i.e.n—m>%.

Therefore, fa°° f(x)dx converges if and only if n —m > % Hence the

given integral converges if and only if n — m > %

CHECK YOUR PROGRESS

True or false Questions

Problem 1. Every improper integral is always convergent.
Problem 2. fooi dx (a>0) is convergent if n > 1.

Problem 3. f = dx is divergent.

Problem 4. [;* logx dx is convergent.
Problem 5. Every absolute convergent is convergent.

13.9 SUMMARY

1. A necessary and sufficient condition for the convergence of the

improper integral f; f(x)dx at ‘a’ where f is positive on (a, b], is that
there exists a positive number M, independent of € > 0 such that

fa+ef(x)dx <MVein(0,b—a).

2. Comparison test: If f and g are two positive functions with
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f(x) < g(x) for all x in (a, b] and a is only point of infinite
discontinuity on [a, b], then

(i) fab g(x)dx is convergent = f; f(x)dx is convergent

(ii) f; f(x)dx is divergent = fab g(x)dx is divergent.

3. if a is the only point of infinite discontinuity of f on [a, b] and

lim+(x — a)*f(x) exists and non-zero finite, then f; f(x)dx
x—a

converges ifand only if u < 1.

13.10 GLOSSARY

sequence

series
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13.13 TERMINAL AND MODEL QUESTIONS

. . oo xP~1
Q 1. Examine for convergence of the integral fo ’16: dx.
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Q 2. Prove that every absolute convergent integral is convergent.

o y3
Q 3. Examine for convergence of the integral fo 1 dx.

x4

cosx
1+x2

dx.

Q 4. Examine for convergence of the integral f0°°

Q 5. Examine for convergence of the integral f°° !

e x(logx)nt1l

13.14 ANSWERS

TQL. Convergent if 0 < p < 1 and divergent if p > 1.
TQ3. Convergent.

TQA4. Convergent.

TQ5. Divergent if n < 0, convergent if n <0.
CHECK YOUR PROGRESS

CYQ 1. False

CYQ 2. True

CYQ 3. True

CYQ 4. True

CYQ 5. True
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14.1 INTRODUCTION

In mathematics, Abel's test (also known as Abel's criterion) is
a method of testing for the convergence of an infinite series. The test is
named after mathematician Niels Henrik Abel, who proved it in
1826.11 There are two slightly different versions of Abel's test — one is
used with series of real numbers, and the other is used with power
series in complex analysis. Abel's uniform convergence test is a criterion
for  theuniform  convergence of  a series of functions dependent
on parameters.
In mathematics, there are several integrals known as the Dirichlet
integral, after the German mathematician Peter Gustav Lejeune Dirichlet,
one of which is the improper integral of the sine function over the positive
real line.

14.2 OBJECTIVES

In this Unit, we will Discussed about

Improper integral
Abel’s Test
Dirichlet’s Test

14.3 ABEL’S TEST

If faoo f(x)dx is convergent at co and g(x) is bounded and monotonic for

X = a, then faoo f(x)g(x)dx is convergent at o.

Or

An infinite integral which converges (not necessarily absolutely) will
remain convergent after the insertion of a factor which is bounded and
monotonic.

Proof: Since g is monotonic on [a, ©), it is integrable on [a, t], for all
t=a.

Also, since f is integrable on [a, t], we have by second mean value
theorem.
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[ f)gGdx = g(t) [ ) dx = (&) [, fG0)dx

Where a<ti<p<t,

Since g is bounded on [a, @), there exists a positive number k such that
lgx)| <kVx=a

In particular |g(t)| <k, |g(t)| <k

Let € > 0 be given,

Since faoo f(x)dx is convergent, there exists a number t, such that

tz €
|ft1 f(x)dx| < Vit 2t

Let the number t4, t, in (1) be > t, so that the number p which lies
between t; and t,, is also > t,. Hence from (3),

|ftli f(x)dx| < i, |fptz f(x)dx| < i

From (1), (2) and (4), it follows that a positive number t, exists such
that forall t;,t, = ¢,.

|ftt12 f(x)g(X)dx| = |g(t1) ftli f(x)dx + g(t,) fptz f(X)dx|

< o[ e el [ ] < vk = e

Hence, by Cauchy’s test, faoo f(x)g(x)dx is convergent at oo.

14.4 DRICHLET’S TEST

If fat f(x)dx is bounded for all t > a and g(x) is a bounded and
monotonic function for x = a, tending to 0 as x — oo, then

faoo f(x)g(x)dx is convergent at o,
Or

An infinite integral which oscillates finitely becomes convergent after
the insertion of a monotonic factor which tends to zero as limit.

Proof. Since g is monotonic on [a, @), it is integrable on [q, t], for all
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t=a.

Also, since f is integrable on [a, t], we have by second mean values
theorem,

Ji; (008 dx = g(1,) [ f)dx = g(t,) [, fx)dx
Where a<t;<p<t,

Since fat f(x)dx is bounded for all t > a, there exists a positive number
k such that

|f:1) f(x)dx| <kVt=>a
|ftli f(x)dx| = f; f(x)dx + fap f(x)dx|
= |fap f(x)dx — fatl f(x)dx|
< |fap f(x)dx| + |fat1 f(x)dx|
<k+k=2k Vt,p=a . (3)
Similarly, |fptz f(x)dx| <2k Vt,p=a ....(4)

Let € > 0 be given

Since lim g(x) = 0, there exists a number t, such that
X—00
€
g < -Vx =t
Let the number t;, t, in (1) be = t,, then
€ €
lg ()] < 2 and lg(t)] < "

From (1), (3), (4) and (5) it follows that a positive number t, exists such
thatforall t{, t, = ¢,

|17 10gdx] = |9 (e [ fGdx + g(6) [ ) dx|

p t € €
< lg(t)! |[7 fCo)dx| + 1g(t)1 | fdx| < = .2k + =2k = €
Hence, by Cauchy’s test, faoo f(x)g(x)dx is convergent at co.
Examples 1. Examine the convergence of the integrals:
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(W) f, =-dx (i) f,° S‘j; dx (i) f, 5‘3’72‘
(iv) faoo S;’:f dx where a and m both are positive.
Sol. (i) Since lim % = 1, therefore 0 is not a point of infinite

X— 00

discontinuity.

0o smx 1 sinx 00 sinx
Now, [, de = [ ——dx+ [ —/dx

1 sinx . . .
Also f ——dx is a proper integral. Let us examine the convergence of

f”ﬂd

Let f(x) = sinx and g(x) = i

Since |f1tf(x)dx| = |f1tsinxdx|

= |cos1 — cost| < |cos1| + |cost| < 2
Therefore, fltf(x)dx is bounded for all t > 1.

Also g(x) is bounded and monotonically decreasing function tending to
Oasx — o,

By Dirichlet’s test, floo f(x)g(x)dx = floo % dx is convergent.

Hence, from (1), f ﬂdx is convergent.

(ii) Since llm —x— lim S'iﬂ x=1x0=0.

xX—oo X

Therefore, 0 is not a point of infinite discontinuity.

Now f smx flsmxd _|_f smx e (1)

f dx is a proper integral. So, let us examine the convergence

of floo S\l/rlxd x at oo,

Let f(x) =sinxand g(x) = \/i_
Since |f1t f(x)dx| <2 [see part (i)]

Therefore, flt f(x)dx is bounded forall t > 1.
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Also g(x) is a bounded and monotonically decreasing function tending
to0asx — .

sinx

By Dirichlet’s test, f f(x)g(x)dx = f = dx is convergent.

sinx

Hence, from (1), f dx is convergent.

(lll)f smx — foliinxd +f00$mx

3/2 3/2 x3/2

For the integral f dx 0 is a point of infinite discontinuity.

sinx sinx 1
Let f(X)=m=Tﬁ

Take g(x) = %

Therefore, llm ACI . lim sinx _ 1 which is non-zero and finite.
+9(x)  x—0+ Xx

Since folg(x)dx = f:%dx is convergent.

1 sinx
3/2

By comparison test, folf(x)dx = [, 55z dx is convergent.
Convergence of [;"> 3/2 =2 dx at oo,

Let f(x) = sinx and g(x) = x3—1/2

Since |f1t f(x)dx| <2 [see part (i)]

- fltf(x)dx is bounded forall t > 1.

Also g(x) is a bounded and monotonically decreasing function tending
to0asx — .

By Dirichlet’s test, floo f(x)g(x)dx = [ 30

1 732 dx is convergent.

Hence, from (1), f 3/2 == dux is convergent.

(iv) Let f(x) = sinx and g(x) = xim, m>0

Since |f: f(x)dx| |f; sin x dx|

|cosa — cost| < |cosal + |cost]| < 2
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» [ f(x)dx is bounded for all t > 1.

Also g(x) is a bounded and monotonically decreasing function tending
to0as x — ooform>0.

foo sinx
a xm

By Dirichlet’s test, faoo f(x)g(x)dx = dx where m and a are both

positive, is convergent.

Examples 2. Examine the convergence of the integrals:
. co 2 . © X .
(i) J, sinx?dx (ii) [, —sinxdx
Sol. (i) We have [ sinx2dx = [ sinx?dx + [~ sinx2 dx
: 0 0 1
1 . . .
But fo sin x? dx is a proper integral and therefore convergent.
Convergence of floo sin x? dx at oo.

© 2 _[® . 2 1
J; sinx?dx = [ (2xsinx?).—dx

Let f(x) = 2xsinx? and g(x) = %

Since, |f1tf(x)dx| = |f1t 2x sin x? dx| = |{— cosx?}!|

= |cosa — cost?| < |cosal + |cost?| < 2
fltf(x)dx is bounded for all t > 1.

Also g(x) is a bounded and monotonically decreasing function tending
toOas x — oo,

By Dirichlet’s test, floo f(x)g(x)dx = floo sin x2 dx is convergent.

Hence, from (1) fooo sin x? dx is convergent.

(ii) We have

[ sinx dx
0 1+x2
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Convergence of f

Let f(x)=sinxandg(x)= =

Since |f1tf(x)dx| <2

fltf(x)dx is bounded forall t > 1.

Also, llrn gx) = llm ==

oo 1+x2

g(x) is a bounded and monotonically decreasing function tending to 0

as x — 00,

By Dirichlet’s test, floo f(x)g(x)dx = floo 1:;2

Examples 3. Examine the convergence of the integrals:

—-x sinx

() fy e Edx,a20 (i) [ e rdx,a>0

sinx

Sol. (i) Let  f(x) = —and glx)=e** ,a=0.

Since fooof(x)dx is convergent and g(x) is bounded and monotonically

decreasing function of x for x > 0.

= By Abel’s test, fooo fx)g()dx = fooo e % dx is convergent.

(i) Let f(x) = % and gx)=e*

sinx 1

Since |f(x)| = < - and faooédx is convergent.

Therefore, faoo f(x)dx is also convergent.

Again g(x) is monotonic decreasing and bounded function for x > a.

—x sinx

Therefore, by Abel’s test, faoof(x) g(x)dx = on —-dx,a>0is

convergent.
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CHECK YOUR PROGRESS

True or false Questions

Problem 1. Improper integral is not convergent.
Problem 2. If faoo f(x)dx is convergent at oo and g(x) is bounded and

monotonic for x > a, then fam f(x)g(x)dx is convergent at .

Problem 3. f,” cosx® dx is divergent.

Problem 4. [ =7
Problem 5. Every absolute convergent need not be convergent.

l .
9% dx is convergent.

14.5 SUMMARY

1. If faoo f(x)dx is convergent at oo and g(x) is bounded and monotonic

for x > a, then faoo f(x)g(x)dx is convergent at co. (This is Abel’s Test).

2. If fat f(x)dx is bounded for all t > a and g(x) is a bounded and

monotonic function for x = a, tending to 0 as x — oo, then

faoo f(x)g(x)dx is convergent at . (This is Dirichlet’s Test).

14.6 GLOSSARY

Proper integral

Improper integral
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14.9 TERMINAL AND MODEL QUESTIONS

Cos x

Nl

Q 1. Test the convergence of the integral fooo
Q 2. Define Abel’s Test with example.

log x sinx
28XSRY dx.

Q 3. Examine for convergence of the integral f:o

cosx

Q 4. Test the convergence of the integral faoo(l — e"‘).x—2 dx,a > 0.

Q 5. Define Dirichlet’s Test with example.

14.10 ANSWERS

TQ1. Convergent.

TQ3. Convergent.

TQ4. Convergent.

CHECK YOUR PROGRESS
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CYQ 1. False
CYQ 2. True
CYQ 3. False
CYQ 4. True

CYQ 5. False
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