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COURSE INFORMATION 

The present self-learning material “Real Analysis” has been 

designed for B.Sc. (Third Semester) learners of Uttarakhand Open 

University, Haldwani. This course is divided into 14 units of study.  This 

Self Learning Material is a mixture of Four Block.  

First block is Real Numbers, Sequence and Series, in this block Sets 

and functions, Real Numbers, Limit points, open and closed sets, Real 

sequences, Infinite Series defined Clearly. 

Second block is Functions Single Variable, in this block Limits of 

function, continuous function, Properties of Continuous function, Uniform 

Continuity, Monotone and Inverse function. Derivative, Mean Value 

theorem, L Hospital rule defined clearly.  

Third block is Riemann Integration, Uniform convergence and 

Improper integral, in this block Riemann integral, Integrability of 

continuous and monotonic functions, Fundamental theorem of integral 

calculus, First mean value theorem, Pointwise and uniform convergence of 

sequence and series of functions, Weierstrass’s  M-test, Dirichlet test and 

Abel’s test for uniform convergence, Uniform convergence and continuity, 

Uniform convergence and differentiability, Improper integrals, Dirichlet and 

Abel’s tests for improper integrals are defined. 

Adequate number of illustrative examples and exercises have also been 

included to enable the leaners to grasp the subject easily. 
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1.1 INTRODUCTION 

 

Set theory, branch of mathematics that deals with the properties 

of well-defined collections of objects, which may or may not be of a 

mathematical nature, such as numbers or functions. The theory is less 

valuable in direct application to ordinary experience than as a basis for 

precise and adaptable terminology for the definition of complex and 

sophisticated mathematical concepts. 

Between the years 1874 and 1897, the German mathematician and 

logician Georg Cantor created a theory of abstract sets of entities and 

made it into a mathematical discipline. This theory grew out of his 

investigations of some concrete problems regarding certain types 

of infinite sets of real numbers. A set, wrote Cantor, is a collection of 

definite, distinguishable objects of perception or thought conceived as a 

whole. The objects are called elements or members of the set. 

 

 

1.2 OBJECTIVES 

After studying this unit, learner will be able to  

i. To analyze and predict the behavior of these systems over time. 

ii. To provide solutions to problems that cannot be solved using other 

mathematical techniques. 

iii. To understand the definition of differential equation. 

 

1.3 SETS 

A set is a well - defined collection of distinct objects. 

By a ‘well – defined’ collection of objects we mean that there is a rule by 

means of which it is possible to say, without ambiguity, whether a 

particular object belongs to the collection or not. The objects in a set are 

‘distinct’ means we do not repeat an object over and over again in a set. 

https://www.britannica.com/science/mathematics
https://www.britannica.com/science/numeral
https://www.britannica.com/science/function-mathematics
https://www.britannica.com/biography/Georg-Ferdinand-Ludwig-Philipp-Cantor
https://www.britannica.com/topic/set-mathematics-and-logic
https://www.merriam-webster.com/dictionary/discipline
https://www.merriam-webster.com/dictionary/infinite
https://www.britannica.com/science/real-number
https://www.britannica.com/science/element-mathematics
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Each object belonging to a set is called an element of the set. Sets are 

usually denoted by capital letters A, B, N, Q, S etc. and the elements by 

lower case letters a, b, c, x etc. 

The symbol ∈ is used to indicate ‘belongs to’. Thus x ∈ A ⟹ x is an 

element of the set A. 

The symbol ∉ is used to indicate ‘does not belong to’. Thus x ∉ A ⟹ x is 

not an element of the set A. 

Example: Let A = {1, 2, 3, 4, 5} be a set then we say 1∈ 𝐴 , 2∈ A, 3∈ 𝐴, 

4∈ 𝐴, 5∈ 𝐴 but 6∉ A, 7∉ A, 8∉ A. 

 

1.4 METHODS OF DESCRIBING A SET 

              There are two methods of describing a set. 

(1) Roster Method.  

In this method, a set is described by listing all its element, separating by 

commas and enclosing within curly brackets. 

For Example. (i) If A is the set of odd natural numbers less than 10, 

then in roster form. 

                            A = {1, 3, 5, 7, 9} 

(ii) if B is the set of letters of the world FOLLOW, then in roster form. 

                            B = {F, O, L, W} 

(2) Set Builder Method. 

Listing the element of a set is sometimes difficult and sometimes 

impossible. We do not have a roster form of the set or rational number or 

the set of real numbers. In set builder method, a set is described by 

means of some property which is shared by all the element of the set. 

For Example. (i) If P is the set of all prime numbers, then 

                                  P = {x : x is a prime number} 

(ii) if A is the set of all natural numbers between 5 and 50, then  

                                 A = {x : x ∈ 𝑁 and 5 < x < 50}  

 

1.5 TYPES OF SETS 
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(i) Finite set. A set is said to be finite if the number of its elements is   

     Finite i.e. its elements can be counted, by one by one, with counting   

     coming to end. 

For Example. (a) the set of letters in the English alphabet is finite set 

since it has 26 elements. 

(b) Set of all multiples of 10 less than 10000 is a finite set. 

 

(ii) Infinite set. A set is said to be infinite if the number of its elements 

is infinite i.e. we count its elements, one by one, the counting never 

comes to an end.  

For Example. (a) the set of all points in a straight line is an infinite set. 

(b) the sets ℕ, ℤ, ℚ, ℝ all are infinite sets. 

 

(iii) Null Set. A set having no element is known as a null set or void set 

or an empty set and is denoted by ∅ or {}. 

For Example. (a) {x : x is an integer and 𝑥2 = 3} = ∅, because there is 

no integer whose square is 3. 

(iv) Singleton Set. A set having only one element is called a singleton 

set. 

For Example. (a) {a} is a singleton set. 

(b) {x: 𝑥3 + 1 = 0 and x∈ ℝ} = { -1 } is a singleton set. 

 

1.6 SUBSET, SUPERSET AND POWER SET 

Set A is said to be a subset of Set B if all the elements of Set A are also 

present in Set B. In other words, set A is contained inside Set B. 

Example: If set A has {X, Y} and set B has {X, Y, Z}, then A is the 

subset of B because elements of A are also present in set B. 

Subset Symbol 

In set theory, a subset is denoted by the symbol ⊆ and read as ‘is a 

subset of’. 

Using this symbol we can express subsets as follows: 
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A ⊆ B; which means Set A is a subset of Set B. 

Note: A subset can be equal to the set. That is, a subset can contain all 

the elements that are present in the set. 

 

 

All Subsets of a Set 

The subsets of any set consists of all possible sets including its elements 

and the null set. Let us understand with the help of an example. 

Example: Find all the subsets of set A = {1,2,3,4} 

Solution: Given, A = {1,2,3,4} 

Subsets are {},{1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, 

{3,4},{1,2,3}, {2,3,4}, {1,3,4}, {1,2,4},{1,2,3,4}. 

Superset Definition 

In set theory, set A is considered as the superset of B, if all the elements 

of set B are the elements of set A. For example, if set A = {1, 2, 3, 4} 

and set B = {1, 3, 4}, we can say that set A is the superset of B. As the 

elements of B [(i.e.,)1, 3, 4] are in set A. We can also say that B is not a 

superset of A. 

Superset Symbol 

The superset relationship is represented using the symbol “⊃”. For 

instance, the set A is the superset of set B, and it is symbolically 

represented by A ⊃ B. 

Consider another example, 

X = {set of polygons}, Y = {set of irregular polygons} 

Then X is the superset of Y (X⊃Y). In other words, we can say that Y is 

a subset of X (Y⊂X). 

https://byjus.com/maths/subsets/
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Proper Superset 

The proper superset is also known as a strict superset. The set B is the 

proper superset of set A, then all the elements of set A are in B, but set B 

must contain at least one element which is not present in set A. 

For example, let us take four sets. 

A = {a, b, c}, B = {a, b, c, d}, C = (a, b, c}, D = {a, b, e} 

From the sets given above, 

B is the proper superset of A, as B is not equal to A 

C is a superset of set A, but the set C is not a proper superset of set A, as 

C = A 

D is not a superset of A, as the set D does not contain the element “c” 

which is present in set A.  

Power Set 

The set of all subsets of a set A is called the power set of A and denoted 

by P(A). 

i.e. P(A) = {S: S ⊂ 𝐴 }. 

For Example. (i) if A = {a}, then P(A) = {∅, A} 

 (ii) If B = {1, 2} then P{B} = {∅,{1}, {2}, B} 

 

Theorem 1. Every set a subset of itself. 

Proof. Let A is any set. Since x ∈ A ⟹ x ∈ A, therefore A ⊂ 𝐴. 

Theorem 2. Empty set is a subset of every set. 

Proof. Given two sets A and B, let A=∅. 

By definition, A is a subset of B if and only if every element in A is also 

in B. 

This means that A would not be a subset of B if there exists an element 

in A that is not in B. 
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However, there are no elements in A. This means there cannot exist an 

element in A that is not in B. Thus, A is a subset of B. 

Since A = ∅ and B is an arbitrary set, the ∅ must be a subset of all sets. 

 

Theorem 3. The empty set is unique. 

Proof. Let ∅1𝑎𝑛𝑑 ∅2 be two empty sets. 

Since empty set is a subset of every set . 

Therefore ∅1 ⊂ ∅2 and ∅2 ⊂ ∅1 

⟹ ∅1 = ∅2 that proves the uniqueness of ∅. 

Note: if a set has n elements, then the number of subsets is 2𝑛 . 

 

1.7 OPERATIONS ON A SETS 

1. Union of Sets. The union of two sets X and Y is equal to the set of 

elements that are present in set X, in set Y, or in both the sets X and Y. 

This operation can be represented as; 

X ∪ Y = {a: a ∈ X or a ∈ Y} 

Let us consider an example, say; set A = {1, 3, 5} and set B = {1, 2, 4}  

Then A ∪ B = {1, 2, 3, 4, 5} 

Properties of Union of Sets 

(i) For any two Sets A and B, A ⊂ 𝐴 ∪ 𝐵 or B ⊂ 𝐴 ∪ 𝐵 

Proof. Let x be any element of A. then  

                     x ∈ A   ⟹ x ∈ 𝐴 ∪ 𝐵 

therefore      A ⊂ 𝐴 ∪ 𝐵 

similarly, we can prove B ⊂ 𝐴 ∪ 𝐵 

(ii) For any set A, 𝐴 ∪ ∅ = A. 

Proof. 𝐴 ∪ ∅ = {x: x ∈ 𝐴 or x ∈ ∅ } 

                      = {x: x ∈ 𝐴 }            [∵ ∅ has no element] 

                      = A 

(iii) Union of sets is idempotent i.e. foe any set A, A∪ 𝐴 = A. 

Proof. A ∪ 𝐴 = {x: x ∈ 𝐴 or x ∈ A} 

                       = {x: x ∈ 𝐴 }  

                       = A  

(iv) Union of sets is commutative. 

Proof.  A ∪ 𝐵 = {x: x ∈ 𝐴 or x ∈ B} 
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                       = {x: x ∈ B or x ∈ 𝐴 }  

                          = B ∪ 𝐴 

Note: Union of sets is Associative. 

 

2. Intersection of Sets. The intersection of two sets X and Y is the set of 

all elements which belong to both X and Y. This operation can be 

represented as; 

X ∩ Y = {a: a ∈ X and a ∈ Y} 

Let us consider an example, say; set A = {1, 3, 5} and set B = {1, 2, 4}  

Then A ∩ B = {1} 

Properties of Intersection of Sets 

(i) For any two sets A and B, A ∩ B ⊂ 𝐴 and A ∩ B ⊂ 𝐵. 

Proof. Let x be any element of A ∩ B. then  

              x ∈ A ∩  B ⟹ x ∈ A and x ∈ B  

                                 ⟹ x ∈ A (in particular) 

 

Therefore     A ∩ B ⊂ 𝐴  

Similarly, we can prove A ∩ B ⊂ 𝐵. 

(ii) Intersection of sets is idempotent i.e. foe any set A, A ∩ 𝐴 = A. 

Proof. A ∩ 𝐴 = {x: x ∈ 𝐴 and x ∈ A} 

                       = {x: x ∈ 𝐴 }  

                       = A  

(iii) Intersection of sets is commutative. 

Proof.  A ∩ 𝐵 = {x: x ∈ 𝐴 and x ∈ B} 

                       = {x: x ∈ B and x ∈ 𝐴 }  

                          = B ∩ 𝐴 

Note: Intersection of sets is Associative. 

 

3. Difference of Sets. The difference of two sets A and B is the set of all 

elements which are in A but not in B.  

The difference of sets A and B is denoted by A – B. 

i.e. A – B = {x: x ∈ 𝐴 and x ∉ B} 

For example. (i) if A = {1, 2, 3, 4, 5} and B {2, 4, 6, 8}, then A – B = 

{1, 3, 5}, B – A = {6, 8}. 

Clearly,      A – B ≠ B - A  

Note. The difference of sets is not commutative. 
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4. Complement of a Set. Let U be the universal set and A ⊂ U. then 

complement of A is the set of those elements of U which are not in A. 

the complement of A is denoted by 𝐴𝑐. 

Symbolically, 𝐴𝑐 = U – A = {x:  x ∈ U and x ∉ A} = {x: x ∉ A} 

For example. If U is the set of all natural numbers and A is the set of 

even natural numbers, then  

                    𝐴𝑐 = U – A 

                         = the set of those natural numbers which are not even 

                         = the set of odd natural numbers. 

5. Symmetric Difference of Sets. If A and B are any two sets, then the 

sets (A – B) ∪ (B − A) is called the symmetric difference of A and B. 

The symmetric difference of A and B is denoted by A ∆ B and read as ‘A 

symmetric difference B’. 

For Example. If A = {a, b, c, d, e} and B = {c, d, e, f, g}, then 

 A – B = {a, b}, B – A = {f, g}  

Therefore A ∆ B = (A – B) ∪ (B − A) 

                               = {a, b} ∪ {f, g} = {a, b, f, g}. 

 

1.8 DE MORGAN’S LAWS 

For any two sets A and B, prove that 

(a) (𝐀 ∪ 𝐁)𝐜 = 𝐀𝐜 ∩ 𝐁𝐜        (b) (𝐀 ∩ 𝐁)𝐜 = 𝐀𝐜 ∪ 𝐁𝐜 

Proof. (a) We need to prove, (A ∪ B)c = Ac ∩ Bc 

Let X = (A ∪ B)c and Y = Ac ∩ Bc 

Let p be any element of X, then p ∈ X ⇒ p ∈ (A ∪ B)c 

⇒ p ∉ (A ∪ B) 

⇒ p ∉ A or p ∉ B 

⇒ p ∈ A’ and p ∈ B’ 

⇒ p ∈ A’ ∩ B’ 

⇒ p ∈ Y 

∴ X ⊂ Y              . . . (i) 

Again, let q be any element of Y, then q ∈ Y ⇒ q ∈ A’ ∩ B’ 

⇒ q ∈ Ac and q ∈ Bc 
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⇒ q ∉ A or q ∉ B 

⇒ q ∉ (A ∪ B) 

⇒ q ∈ (A ∪ B)c 

⇒ q ∈ X 

∴ Y ⊂ X              . . . (ii) 

From (i) and (ii) X = Y 

(A ∪ B)c = Ac ∩ Bc 

(b) We need to prove,  (A ∩ B)c = Ac ∪ Bc 

Let X = (A ∩ B)c and Y = Ac ∪ Bc 

Let p be any element of X, then p ∈ X ⇒ p ∈ (A ∩ B)c 

⇒ p ∉ (A ∩ B) 

⇒ p ∉ A and p ∉ B 

⇒ p ∈ Ac or p ∈ Bc 

⇒ p ∈ Ac ∪ Bc⇒ p ∈ Y 

∴ X ⊂ Y ————–(i) 

Again, let q be any element of Y, then q ∈ Y ⇒ q ∈ Ac ∪ Bc 

⇒ q ∈ Ac or q ∈ Bc 

⇒ q ∉ A and q ∉ B 

⇒ q ∉ (A ∩ B) 

⇒ q ∈ (A ∩ B)c 

⇒ q ∈ X 

∴ Y ⊂ X ————–(ii) 

From (i) and (ii) X = Y 

(A ∩ B)c= Ac ∪ Bc 

 

1.9 CARTESIAN PRODUCT OF TWO SETS 

Given two non-empty sets A and B. The Cartesian product A × B is the 

set of all ordered pairs of elements from A and B,  

i.e., A × B = {(p, q): p ∈ A, q ∈ B} 

If either P or Q is the null set, then A × B will also be an empty set, 

 i.e., A × B = φ 

https://byjus.com/maths/empty-set/
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For Example: if A = {1, 2} and B = {3, 4, 5}, then the Cartesian 

Product of A and B is A × B = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}. 

 

 Cardinality of Cartesian Product? 

The cardinality of Cartesian products of sets A and B will be the total 

number of ordered pairs in the A × B. 

Let p be the number of elements of A and q be the number of elements in 

B. 

So, the number of elements in the Cartesian product of A and B is pq. 

i.e. if n(A) = p,           n(B) = q,         then n(A × B) = pq. 

 

1.10 FUNCTIONS OR MAPPINGS 

  A function can be visualized as an input/output device.  

 

 

 

 

Let A & B be any two non-empty sets. If there exists a rule ‘f ’ which 

associates to every element x ∈ A, a unique element y ∈ B, then such 

rule ‘f ’ is called a function or mapping from the A to the set A to the  

set B. 

We write f: A ⟶ 𝐵 read ‘f ’ is a function from X to Y. 

The set A is called the domain of f and the set B is called the Co-domain 

of f. 

Range of f = f(A) = {f(x): x ∈ A} , clearly f(A) ⊂ B.  

 

1.11 KINDS OF FUNCTIONS  

(1) Equal Functions. Let A and B be sets and f: A ⟶ 𝐵 and f: B ⟶
𝐴 be functions. We say that f and g are equal and write f = g if f(a) = 

g(b) for all a ∈ A. If f and g are not equal, we write f ≠ 𝑔. 
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(2) One – One Function (Injective Function). A function f is one-

to-one if every element of the range of g corresponds to exactly one 

element of the domain of f. One-to-one is also written as 1-1.  

Formally, it is stated as, if f(x) = f(y) implies x=y, then f is one-to-one 

mapped, or f is 1-1. 

 

Example. Show that f: R→ R defined as f(a) = 3a3 – 4 is one to one 

function? 

Solution: Let f ( a1 ) = f ( a2 ) for all a1 , a2 ∈ R 

so 3a1
3 – 4 = 3a2

3 – 4 

a1
3 = a2

3  

a1
3 – a2

3 = 0 

(a1 – a2) (a1 + a1a2 + a2
2) = 0 

a1 = a2 and (a1
2 + a1a2 + a2

2) = 0  

(a1
2 + a1a2 + a2

2) = 0 is not considered because there are no real values of 

a1 and a2. 

Therefore, the given function f is one-one. 

 

(3) Onto Function (Surjective Function). Onto function could be 

explained by considering two sets, Set A and Set B, which consist of 

elements. If for every element of B, there is at least one or more than one 

element matching with A, then the function is said to be onto 

function or surjective function. 

 

Note: To show that a function f is an onto function, put y = f(x), and 

show that we can express x in terms of y for any y ∈ B. 

 

Example 1. Let A = {1, 5, 8, 9) and B {2, 4} And f ={(1, 2), (5, 4), (8, 

2), (9, 4)}. Then prove f is a onto function. 

Solution: From the question itself we get, 

A={1, 5, 8, 9),  B = {2, 4} & f={(1, 2), (5, 4), (8, 2), (9, 4)} 

So, all the element on B has a domain element on A or we can say 

element 1 and 8 & 5 and 9 has same range 2 & 4 respectively. 
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Therefore, f: A → B is a surjective function. 

Example 2.  How to tell if this function is an onto function? g: R → R 

defined by g(x) = 1 + x2 

Solution: Given the function g(x) = 1 + x2. 

For real numbers, we know that x2 > 0. So 1 + x2 > 1. g(x) > 1 and hence 

the range of the function is (1, ∞). Whereas, the second set is R (Real 

Numbers). So the range is not equal to codomain and hence the function 

is not onto. 

 

Example 3. If f: R → R defined as f(x) = 2x. 

Solution. Let y = 2x then x = 
𝑦

2
 

Thus, for every y R, we have x = 
𝑦

2
 ∈ R such that f(x) = y.  

Thus, f is onto. 

Example 4.  Consider the function f: R → R defined as f(x)= x2.  

Solution. Let y = x2 therefore x = ± √𝑦 

The square of any real number is non-negative. 

It means that y ≥ 0. 

Thus, for y ≤ 0, we cannot find an element x such that f(x) = y. 

Thus, the range of f(x) is the set of non-negative real numbers and the 

negative real numbers are not in the image of f(x).  

As a result, f(x) is not onto. 

Note: If you restrict the co-domain to ℝ+∪ {0}, which is the set of  

          non-negative real numbers, the function becomes onto. 
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1.12 INVERSE FUNCTION 

 

Let f: A → B be a one – one and onto function. Then the function  

g: B → A which associates to each element b ∈ 𝐵 the unique element 

 a ∈ 𝐴 such that f(a) = b is called the inverse function of f. the inverse 

function of f is denoted by 𝑓−1. 

Note: every function does not have an inverse. A function f: A → B has 

inverse iff f is one – one and onto. If f has inverse, then f is said to be 

invertible and 𝑓−1: B → A. also if a ∈ 𝐴, then f(a) = b where b ∈ 𝐵  

⟹ a = 𝑓−1(𝑏). 
 

1.13 COMPOSITE OF FUNCTION 

 

Let f : A → B and g : B → C be two functions. Then the composition of 

f and g, denoted by g ∘ f, is defined as the function g ∘ f : A → C given 

by g ∘ f (x) = g(f (x)), ∀ x ∈ A. 

Domain: f(g(x)) is read as f of g of x. In the composition of (f o g) (x) 

the domain of function f becomes g(x). The domain is a set of all values 

which go into the function. 

Example: If f(x) = 3x+1 and g(x) = x2, then f of g of x,  

                  f(g(x)) = f(x2) = 3x2+1. 

If we reverse the function operation, such as f of f of x,  

g(f(x)) = g(3x+1) = (3x+1)2 

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. function f: R→ R, then f(x) = 2x is injective. 

Problem 2. function f: R→ R, then f(x) = 2x+1 is not injective. 

Problem 3. The onto function is also called the surjective function.              

Problem 4. function f: R→ R, f(x) = |x| is an onto function.  

Problem 5. In the surjective function, the range of the function “f” is 

equal to the codomain. 
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1.14 SUMMARY 

 

1. A set is a well - defined collection of distinct objects. 

2. A ⊆ B; which means Set A is a subset of Set B. 

3. For any two sets A and B, A ∩ B ⊂ 𝐴 and A ∩ B ⊂ 𝐵. 

4. (a) (A ∪ B)c = Ac ∩ Bc      (b) (A ∩ B)c = Ac ∪ Bc 

5. Let f: A → B and g: B → C be two functions. Then the composition 

of f and g, denoted by g ∘ f, is defined as the function g ∘ f: A → C given 

by g ∘ f (x) = g(f (x)), ∀ x ∈ A. 

 

1.15 GLOSSARY  
 

Numbers  

letters  

Collections of objects 
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1.18 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that the function f:ℕ ⟶ ℕ  is given by f(x) = 𝑥2 is one – one 

function. 

Q 2. Prove that the function f:ℕ ⟶ ℕ  is given by f(x) = 𝑥2 is not onto 

function. 

Q 3.  Let A = [– 1, 1]. Then, discuss whether the following functions 

defined on A are one-one, onto or bijective. 

(a) f(x) = 
𝑥

2
.             (b) f(x) = 𝑥2 

Q 4.  If f(x) = 3x2, then find ( f ∘ f )(x). 

Q 5. If f (x) = 2x and g(x) = x+1, then find ( f ∘ g )(x) if x = 1. 

 

1.19 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. False 

        CYQ 5. True 

TERMINAL QUESTIONS 
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         TQ 3. (a) One - One but not Onto. 

                    (b) Not One - One and not Onto. 

         TQ 4. 27 𝑋2 

         TQ 5. 4 
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2.1 INTRODUCTION 

 

The modern study of set theory was initiated by the German 

mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, 

Georg Cantor is commonly considered the founder of set theory. The non-

formalized systems investigated during this early stage go  

 

2.2 OBJECTIVES 

After studying this unit, learner will be able to  

(i)     Real numbers 

(ii)    Algebraic properties of ℝ 

(iii)    Order properties of ℝ 

(iv)     Completeness property of ℝ 

(v)      Supremum and Infimum property of ℝ 

(vi)     Archimedean property of ℝ 

 

2.3 REAL NUMBERS 

A set containing all rational as well as irrational numbers is called the set 

of all real numbers. The set of real number is denoted by ℝ. 

We now describe some fundamental properties of the set ℝ. 

1. Algebraic properties of ℝ. 

2. Order properties of ℝ. 

3. Completeness property of ℝ. 

4. Archimedean property of ℝ. 
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2.4 ALGEBRAIC PROPERTIES OF ℝ 

Addition and multiplication are defined on the set ℝ satisfying the 

following properties: 

A1.  a + b ∈ ℝ for all a, b in ℝ. 

A2.  (a + b) + c = a + (b + c) for all a, b, c in ℝ. 

              A3.  There exists an element 0 in ℝ (called zero element) such that 

        a + 0 = a for all a in ℝ. 

A4.  For each a in ℝ there exists an element – a in ℝ such that 

         a + (-a) = 0. 

A5.  a + b = b + a for all a, b in ℝ. 

M1.  a . b ∈ ℝ for all a, b in ℝ. 

M2.  (a . b) . c = a . (b . c) for all a, b, c in ℝ. 

M3.  There exists an element 1 in ℝ (called unity element) such that 

          a .1 = a for all a in ℝ. 

M4.  For each element a ≠ 0 in ℝ there exists an element  
1

𝑎
  in ℝ such     

         that a . (
1

𝑎
) = 1. 

M5.  a . b = b . a for all a, b in ℝ. 

D.  a . (b + c) = a . b + a . c for all a, b in ℝ. 

 

Theorem 2.4.1 Let a, b, c ∈ ℝ. Then  

(i)   a + b = a + c implies b = c (cancellation law for addition). 

(ii) a ≠ 0 and a . b = a . c implies b = c (cancellation law for 

multiplication).  

Proof. (i) since a + b =  a + c 

                            -a ∈ ℝ, since 𝑎 ∈ ℝ. Therefore -a + (a + b) = -a + (a + c) 

                    Or     (-a + a) + b = (-a + a) + c, by A2 

                    Or       0 + b = 0 + c, by A4 

                     Or       b = c. 
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               (ii) since a.b = a.c 

                     
1

𝑎
∈ ℝ, since 𝑎 ≠ 0. Therefore (

1

𝑎
) (𝑎. 𝑏) = (

1

𝑎
) (𝑎. 𝑐) 

                  Or, (
1

𝑎
. 𝑎) . 𝑏 = (

1

𝑎
. 𝑎) . 𝑐, by M2 

                  Or,  1. 𝑏 = 1. 𝑐, by M4 

                  Or,      𝑏 = 𝑐. 

Theorem 2.4.2 Let 𝑎, 𝑏, 𝑐 ∈ ℝ. Then 𝑎. 𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0. 

Proof. Let 𝑎 ≠ 0 then 
1

𝑎
∈ ℝ and 

1

𝑎
. 𝑎 = 1. 

𝑎. 𝑏 = 0 ⟹ 
1

𝑎
. (𝑎. 𝑏) =

1

𝑎
. 0 ⟹ (

1

𝑎
. 𝑎) . 𝑏 = 0 ⟹ 𝑏 = 0. 

Therefore 𝑎 ≠ 0 ⟹ 𝑏 = 0. Contrapositively, 𝑏 ≠ 0 ⟹ 𝑎 = 0. 

Therefore either 𝑎 = 0 or 𝑏 = 0. 

 

2.5 ORDER PROPERTIES OF ℝ 

On the set of ℝ, a linear order relation < is defined by “𝑎 < 𝑏 if 𝑎 ∈ ℝ, 

𝑏 ∈ ℝ and 𝑎 is less than 𝑏” and it satisfies the following conditions: 

O1. If 𝑎, 𝑏 ∈ ℝ, then exactly one of the following statements holds –  

       𝑎 < 𝑏, or 𝑎 = 𝑏, or 𝑏 < 𝑎 (law of trichotomy); 

O2. 𝑎 < 𝑏 and 𝑏 < 𝑐 ⟹ 𝑎 < 𝑐 for 𝑎, 𝑏, 𝑐 ∈ ℝ (transitivity); 

O3. 𝑎 < 𝑏 and 𝑎 + 𝑐 < 𝑏 + 𝑐 for 𝑎, 𝑏, 𝑐 ∈ ℝ; 

O4. 𝑎 < 𝑏 and 0 < 𝑐 ⟹ 𝑎𝑐 < 𝑏𝑐 for 𝑎, 𝑏, 𝑐 ∈ ℝ. 

Note: 1. The field ℝ together with the order relation defined on ℝ 

satisfying O1 – O4 becomes an ordered field. 

Note: 2. n > 0 for all 𝑛 ∈ ℕ 

Note: 3. For all 𝑛 ∈ ℕ,
1

𝑛
> 0. 

Theorem 2.5.1 Let 𝑎, 𝑏 ∈ ℝ. Then 𝑎 < 𝑏 ⟹ 𝑎 <
𝑎+𝑏

2
< 𝑏. 

Proof. 𝑎 < 𝑏 ⟹ 𝑎 + 𝑎 < 𝑎 + 𝑏 

                      ⟹ 2𝑎 < 𝑎 + 𝑏 

                      ⟹ 
1

2
. 2𝑎 <

1

2
(𝑎 + 𝑏), since 

1

2
 ∈ ℝ and 

1

2
> 0 
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                      ⟹ 𝑎 <
𝑎+𝑏

2
 . 

Also 𝑎 < 𝑏 ⟹ 𝑎 + 𝑏 < 𝑏 + 𝑏 

                   ⟹  𝑎 + 𝑏 < 2𝑏 

                   ⟹  
1

2
(𝑎 + 𝑏) <

1

2
. 2𝑏, since 

1

2
 ∈ ℝ and 

1

2
> 0 

                   ⟹  
𝑎+𝑏

2
< 𝑏. 

Therefore 𝑎 <
𝑎+𝑏

2
< 𝑏. 

Corollary. There is no least positive real number. 

If possible, let 𝑎 be the least positive real number. Then 𝑎 > 0. 

0 < 𝑎 ⟹ 0 <
1

2
𝑎 < 𝑎 by theorem. 

This shows that 
1

2
𝑎 is a positive real number and 

1

2
𝑎 < 𝑎 indicates that a 

is not the least positive real number. 

It follows that there is no least positive real number. 

 

2.6 ABSOLUTE VALUE 

Let 𝑎 ∈ ℝ. The absolute value of 𝑎, denoted by |𝑎|, is defined by  

|𝑎| = {

𝑎,   𝑖𝑓 𝑎 > 0
0, 𝑖𝑓 𝑎 = 0
−𝑎, 𝑖𝑓 𝑎 < 0

 

For example, |4| = 4, |−10| = 10, |0| = 0. 

It follows from definition that |𝑎| is a non-negative real number. |𝑎| = 0 

if and only if 𝑎 = 0. 

Theorem 2.6.1 Prove that  

(i) |−𝑎| = |𝑎| for all 𝑎 ∈ ℝ. 

(ii) |𝑎𝑏| = |𝑎||𝑏| for all 𝑎, 𝑏 ∈ ℝ. 

(iii) if 𝑎, 𝑐 ∈ ℝ  𝑐 > 0,  then |𝑎| < 𝑐 ⟺ −𝑐 < 𝑎 < 𝑐. 

Proof. (i) Let 𝑎 > 0 then −𝑎 < 0 and |−𝑎| =  −(−𝑎) = 𝑎 = |𝑎|. 
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Now let 𝑎 < 0 then −𝑎 > 0 and |−𝑎| = −𝑎 = |𝑎|. 

Let 𝑎 = 0 then −𝑎 = 0 and |−𝑎| = 0 = |𝑎|. 

Combining the cases, we have |−𝑎| = |𝑎| for all 𝑎 ∈ ℝ. 

(ii) Let one or both of  𝑎, 𝑏 be 0. Then 𝑎𝑏 = 0. 

In this case |𝑎𝑏| = 0 and |𝑎||𝑏| = 0. Therefore |𝑎𝑏| = |𝑎||𝑏|. 

Now let 𝑎 > 0, 𝑏 > 0 then 𝑎𝑏 > 0 and |𝑎𝑏| = 𝑎𝑏, |𝑎| = 𝑎, |𝑏| = 𝑏  

Therefore |𝑎𝑏| = |𝑎||𝑏|. 

Now let 𝑎 < 0, 𝑏 > 0 then 𝑎𝑏 < 0 and |𝑎𝑏| = −𝑎𝑏, |𝑎| = −𝑎, |𝑏| = 𝑏  

Therefore |𝑎𝑏| = |𝑎||𝑏|. 

Now let 𝑎 < 0, 𝑏 > 0 then proof is similar. 

Now let 𝑎 < 0, 𝑏 < 0 then 𝑎𝑏 > 0 and |𝑎𝑏| = −𝑎𝑏, |𝑎| = −𝑎, |𝑏| = −𝑏  

Therefore |𝑎𝑏| = |𝑎||𝑏|. 

Combining the cases, we have |𝑎𝑏| = |𝑎||𝑏| for all 𝑎, 𝑏 ∈ ℝ. 

(iii) let |𝑎| < 𝑐 then if 𝑎 ≥ 0, 𝑎 < 𝑐 and if 𝑎 < 0, −𝑎 < 𝑐  

       this implies that 

 −𝑐 < 𝑎. Therefore |𝑎| < 𝑐  ⟹ −𝑐 < 𝑎 < 𝑐. 

Conversely, let 𝑐 > 0 and −𝑐 < 𝑎 < 𝑐 

Then we have 𝑎 < 𝑐, 0 < 𝑐 and −𝑎 < 𝑐. 

Combining, we have |𝑎| < 𝑐. 

 

2.7 TRIANGLE INEQUALITY 

For all 𝑎, 𝑏 ∈ ℝ, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| 

Proof. We have −|𝑎| ≤ 𝑎 ≤ |𝑎| and −|𝑏| ≤ 𝑏 ≤ |𝑏|. 

Then −(|𝑎| + |𝑏|) ≤ 𝑎 + 𝑏 ≤ |𝑎| + |𝑏|. 



Real Analysis                                                                                                                                      MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                       25 
 

This implies |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| for all 𝑎, 𝑏 ∈ ℝ. 

Corollary 1. |𝑎 − 𝑏| ≤ |𝑎| + |𝑏| for all 𝑎, 𝑏 ∈ ℝ. 

Proof. Replacing 𝑏 by −𝑏 in triangle inequality we get the inequality. 

Corollary 2. ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|. 

Proof. |𝑎| = |𝑎 − 𝑏 + 𝑏| ≤ |𝑎 − 𝑏|+≤ |𝑏| 

Or       |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|. 

Again |𝑏| = |𝑏 − 𝑎 + 𝑎| ≤ |𝑏 − 𝑎| + |𝑎| 

Or  |𝑏| − |𝑎| ≤ |𝑏 − 𝑎| = |𝑎 − 𝑏| 

So we have −|𝑎 − 𝑏| ≤ |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|. 

This implies ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|, since −𝑐 ≤ 𝑎 ≤ 𝑐 ⟹ |𝑎| ≤ 𝑐. 

Corollary 3. Let 𝑎1, 𝑎2, . . . . , 𝑎𝑛  ∈ ℝ then  

 |𝑎1 + 𝑎2+ . . . . + 𝑎𝑛| ≤ |𝑎1| + |𝑎2| + ⋯ + |𝑎𝑛|. 

Example. Solve the equation |
x+2

2x−1
| = 3. 

Solution. Given |
x + 2

2x − 1
| = 3 ⟹ 

x+2

2x−1
= ±3. 

If 
x + 2

2x − 1
= 3 ⟹ 𝑥 + 2 = 6𝑥 − 3 ⟹ 𝑥 = 1 

If 
x + 2

2x − 1
= −3 ⟹ 𝑥 + 2 = −6𝑥 − 3 ⟹ 𝑥 =

1

7
 

Therefore     𝑥 =
1

7
 , 1 . 

 

2.8 COMPLETENESS PROPERTY OF ℝ 

 

Let P be a Subset of ℝ. A real number 𝑢 is said to be an upper bound of 

P if 𝑥 ∈ 𝑃 ⟹ 𝑥 ≤ 𝑢. A real number 𝑙 is said to be a lower bound of P of 

𝑥 ∈ 𝑃 ⟹ 𝑥 ≥ 𝑙.  
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Let P be a subset of ℝ. P is said to be bounded above if P has an upper 

bound. P is said to be bounded below if P has lower bound.  

 P is said to be bounded set if P be bounded above as well as bounded 

below. 

Example 1. Let P = {1,
1

2
,

1

3
, … }. P is bounded above, 1 being an upper 

bound. P is bounded below, 0 being a lower bound. 

Example 2.  Let P = {𝑥 ∈ 𝑃: 1 < x < 2} . P is bounded above, 2 being 

an upper bound. P is bounded below, 1 being a lower bound. 

Example 3. Let P = ∅. Every real number 𝑥 is an upper bound of the set 

P. Every real number is a lower bound of the set P. therefore P is 

bounded set. 

 

2.9 SUPREMUM AND INFIMUM PROPERTY  

OF ℝ 

            Let P be a subset of ℝ. If P is bounded above, then an upper bound 

of P is said to be the supremum of P (or least upper bound of P) if it is 

less than every other upper bound of P.  

If P is bounded below then a lower bound of P is said to be the infimum 

of P (or the greatest lower bound of P) if it is greater than every other 

lower bound of S.  

Note: 1.  Every non-empty subset of ℝ that is bounded above has a least 

upper bound or supremum. 

2.  Every non-empty subset of ℝ that is bounded below has a greatest 

lower bound or infimum. 

Properties of the supremum and the infimum. 

Let P be a non-empty subset of ℝ, which is bounded above. Then 

supremum of P exists, Let M = sup P. then 𝑀 ∈ ℝ and M satisfies the 

following conditions: 

(i) 𝑥 ∈ P  ⟹ 𝑥 ≤ M, and 

(ii) for each 𝜖 > 0, there exist an element 𝑦 (depends on 𝜖) in P such that 

M − 𝜖 < 𝑦 ≤ M. 
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Let P be a non-empty subset of ℝ, which is bounded below. Then infimum 

of P exists, Let 𝑚 = inf P. then 𝑚 ∈ ℝ and 𝑚 satisfies the following 

conditions: 

(i) 𝑥 ∈ P  ⟹ 𝑥 ≥ 𝑚, and 

(ii) for each 𝜖 > 0, there exist an element 𝑦 (depends on 𝜖) in P such that 

𝑚 < 𝑦 ≤ 𝑚 +  𝜖. 

Question 1. Prove that the set of natural number (ℕ) is not bounded 

above. 

Solution: The set ℕ is a non – empty subset of ℝ, since 1 ∈ ℕ. Let ℕ be 

bounded above. Then ℕ being a non – empty subset of ℝ, sup ℕ exist by 
supremum property of ℝ. Let u = sup ℕ. Then 

 (i) 𝑥 ∈ ℕ   ⟹ 𝑥 ≤ u, and 

(ii) for each 𝜖 > 0, there exist an element 𝑦 (depends on 𝜖) in ℕ such that  

𝑢 −  𝜖 < 𝑦 ≤ u. 

Let us choose 𝜖 = 1. Then there exists an element 𝑘 in ℕ such that 

  𝑢 −  1 < 𝑘 ≤ u. then 𝑢 −  1 < 𝑘 ⟹ 𝑢 < 𝑘 + 1. 

Since 𝑘 is a natural number, 𝑘 + 1 is also a natural number. 𝑘 + 1 > 𝑢 

implies that 𝑢 is not an upper bound of the set ℕ. Thus we arrive a 

contradiction. So aur assumption was wrong. Hence the set of natural 

number (ℕ) is not bounded above. 

Question 2. Let P be a non – empty subset of ℝ which is bounded above 

and T = {−𝑥 ∶ 𝑥 ∈ 𝑃}. Prove that the set T is bounded below and        

𝑖𝑛𝑓𝑇 = −𝑠𝑢𝑝𝑃. 

Solution: since P is bounded above therefore 𝑠𝑢𝑝𝑃 exists. Let 𝑢 = 𝑠𝑢𝑝 𝑃. 

Then 𝑥 ∈ 𝑃 ⟹ 𝑥 ≤ 𝑢. let 𝑦 ∈ 𝑇 then −𝑦 ∈ 𝑃 and therefore −𝑦 ≤ 𝑢, i.e. 

𝑦 ≥ −𝑢. This implies that −𝑢 is a lower bound of T. therefore the set T is 

bounded below. 

Let us choose 𝜖 > 0. Since 𝑢 = 𝑠𝑢𝑝𝑃, there exists an element p in P such 

that 𝑢 −  𝜖 < 𝑝 ≤ 𝑢. Therefore −𝑢 ≤ −𝑝 < −𝑢 +  𝜖.    ……(i) 

Let 𝑞 = −𝑝. Then 𝑞 ∈ 𝑇. 

(i) shows that for a pre-assigned positive 𝜖 there exists an element 𝑞 in T 

such that −𝑢 ≤ 𝑞 < −𝑢 +  𝜖. 

This proves that −𝑢 = 𝑖𝑛𝑓𝑇. Therefore 𝑖𝑛𝑓𝑇 = − 𝑠𝑢𝑝𝑃.   
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Question 3. Let P be a non – empty bounded subset of ℝ with 𝑠𝑢𝑝𝑃 = 𝑀 

and 𝑖𝑛𝑓𝑃 = 𝑚. Prove that the set T = {|𝑥 − 𝑦|: 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 } is bounded 

above and 𝑠𝑢𝑝𝑇 = 𝑀 − 𝑚. 

Solution: 𝑥 ∈ 𝑃 ⟹ 𝑚 ≤ 𝑥 ≤ 𝑀, 𝑦 ∈ 𝑃 ⟹ 𝑚 ≤ 𝑦 ≤ 𝑀.  

 Therefore  𝑚 − 𝑀 ≤ 𝑥 − 𝑦 ≤ 𝑀 − 𝑚 i.e. |𝑥 − 𝑦| ≤ 𝑀 − 𝑚.  

This shows that T is bounded above, 𝑀 − 𝑚 being an upper bound.  

Let 𝑎 ∈ 𝑃. Then |𝑎 − 𝑎| ∈ 𝑇 showing that T is non-empty. By the 

supremum property of ℝ, 𝑠𝑢𝑝𝑇 exists.  

We prove that no real number less than 𝑀 − 𝑚 is an upper bound of T.      

if possible, let 𝑝 < 𝑀 − 𝑚 be an upper bound of T.  

Let (𝑀 − 𝑚) − 𝑝 = 2𝜖. Then 𝜖 > 0 and 𝑝 + 𝜖 = 𝑀 − 𝑚 − 𝜖. 

Since 𝑠𝑢𝑝𝑃 = 𝑀, there exist an element 𝑥 ∈ 𝑃 such that  

                    𝑀 −
𝜖

2
< 𝑥 ≤ 𝑀 

Since 𝑖𝑛𝑚𝑃 = 𝑀, there exist an element 𝑦 ∈ 𝑃 such that  

                    𝑚 < 𝑥 ≤ 𝑚 +
𝜖

2
. 

Now 𝑥 − 𝑦 > 𝑀 − 𝑚 −  𝜖  i.e. 𝑥 − 𝑦 < 𝑝 +  𝜖. 

This shows that 𝑝 is not an upper bound of T. 

Therefore, no real number less than 𝑀 − 𝑚 is an upper bound of T.  

Hence 𝑠𝑢𝑝𝑇 = 𝑀 − 𝑚. 

 

Note: Let 𝐴, 𝐵 be bounded subset of ℝ such that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ⟹ 𝑥 ≤ 𝑦. 

Then 𝑠𝑢𝑝𝐴 ≤ 𝑖𝑛𝑓𝐵. 

 

2.10 ARCHIMEDEAN PROPERTY OF ℝ 

If 𝑥, 𝑦 ∈ ℝ and 𝑥 > 0, 𝑦 > 0, then there exists a natural number 𝑛 such 

that 𝑛𝑦 > 𝑥. 

Proof: If possible, let there exist no natural number n for which 𝑛𝑦 > 𝑥.  

Then for every natural number 𝑘, 𝑘𝑦 ≤ 𝑥. 

Thus, the set S =  {𝑘𝑦: 𝑘 ∈ ℕ} is bounded above, 𝑥 being an upper bound. 

S is non-empty because 𝑦 ∈ 𝑆. 
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By the supremum property of ℝ, 𝑠𝑢𝑝𝑆 exists. Let 𝑠𝑢𝑝𝑆 = b. then 𝑘𝑦 ≤ 𝑏 

for all 𝑘 ∈ ℕ. 

𝑏 − 𝑦 < 𝑏 since 𝑦 > 0. This shows that 𝑏 − 𝑦 is not an upper bound of 𝑆 

and therefore there exists a natural number 𝑝 such that  

𝑏 − 𝑦 < 𝑝𝑦 ≤ 𝑏. This implies (𝑝 + 1)𝑦 > 𝑏   …….. (i) 

But 𝑝 ∈ ℕ ⟹ 𝑝 + 1 ∈ ℕ and therefore (𝑝 + 1)𝑦 ∈ 𝑆. 

(i) shows that 𝑏 is not the supremum of S, a contradiction. 

Therefore, our assumption is wrong and the existence of a natural number 

𝑛 satisfying 𝑛𝑦 > 𝑥 is proved. 

 

Note: (1) If 𝑥 ∈ ℝ, then there exists a natural number n such that 𝑛 > 𝑥. 

Case (i). If 𝒙 > 𝟎.  

               Taking 𝑦 = 1, by Archimedean property of ℝ there exists a 

natural number 𝑛 such that 𝑛. 1 > 𝑥 and hence existence is proved. 

Case (ii). If 𝒙 ≤ 𝟎. Then 𝒏 = 𝟏. 

(2). If 𝑥 ∈ ℝ and 𝑥 > 0, then there exists a natural number 𝑛 such that 

 0 <
1

𝑛
< 𝑥. 

Taking 𝑦 = 1, by Archimedean property of ℝ there exists a natural 

number 𝑛 such that 𝑛𝑥 > 1. 

Since 𝑛 is a natural number, 𝑛 > 0 and therefore 
1

𝑛
> 0 and also 

1

𝑛
< 𝑥. 

Therefore, we have 0 <
1

𝑛
< 𝑥. 

(3). If 𝑥 ∈ ℝ and 𝑥 > 0, then there exists a natural number 𝑚 such that 

 𝑚 − 1 ≤ 𝑥 < 𝑚. 

Taking 𝑦 = 1 and 𝑥 > 0, by Archimedean property of ℝ there exist a 

natural number 𝑛 such that 𝑛. 1 > 𝑥, i.e. 𝑛 > 𝑥. 

Let 𝑆 = {𝑘 ∈ ℕ: 𝑘 > 𝑥}. Then 𝑆 is non-empty subset of ℕ, since 𝑛 ∈ 𝑆. By 

well ordering property of the set ℕ, 𝑆 has a least element, say 𝑚. Since 

𝑚 ∈ 𝑆, 𝑚 > 𝑥. 

As 𝑚 is least element of 𝑆. 𝑚 − 1 ≯ 𝑥. i.e. 𝑚 − 1 ≤ 𝑥. 

Hence 𝑚 − 1 ≤ 𝑥 < 𝑚. 
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2.11 EXTENDED SET OF REAL NUMBER 

 

It is often convenient to extend the set ℝ by the addition of two elements 

∞ and −∞. This enlarged set is called the extended set of real numbers 

and is often denoted by ℝ∗. 

In the extended set ℝ∗ we define – 

For all 𝑥 ∈ ℝ, 𝑥 + ∞ = ∞ + 𝑥 = ∞ 

                       𝑥 + (−∞) = (−∞) + 𝑥 = −∞. 

For all 𝑥 > 0, 𝑥. ∞ = ∞. 𝑥 = ∞ and  

                        𝑥. (−∞) = (−∞). 𝑥 = −∞. 

              For all 𝑥 < 0, 𝑥. ∞ = ∞. 𝑥 = −∞ and  

                        𝑥. (−∞) = −∞. 𝑥 = ∞. 

Now     ∞ + ∞ = ∞, (−∞) + (−∞) = −∞  

                       ∞. ∞ = ∞, (-∞). ∞ = −∞, (-∞). (−∞) = ∞. 

              And ∞ + (−∞), (-∞) + ∞, 0. ∞, ∞. 0, 0 − ∞, −∞. 0 are not defined.  

Now, if 𝑆 be a non-empty subset of ℝ having no upper bound, we define      

               𝑠𝑢𝑝𝑆 = ∞. If 𝑆 be a non-empty subset of ℝ having no longer bound, we  

               define 𝑖𝑛𝑓𝑆 = −∞.  

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The set of real number is not bounded above. 

Problem 2. The set of natural number is bounded below. 

Problem 3. Let 𝑎, 𝑏 ∈ ℝ. Then 𝑎 < 𝑏 ⟹ 𝑎 <
𝑎+𝑏

2
< 𝑏. 

Problem 4. |𝑎𝑏| = |𝑎||𝑏| for all 𝑎, 𝑏 ∈ ℝ. 

Problem 5. The supremum of the interval (1, 3) is 4.  
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2.12 SUMMARY 

 

1. A set containing all rational as well as irrational numbers is called the 

set of all real numbers. The set of real number is denoted by ℝ. 

2. There is no least positive real number. 

3. Every non-empty subset of ℝ that is bounded above has a least upper 

bound or supremum. 

 4. If 𝑥, 𝑦 ∈ ℝ and 𝑥 > 0, 𝑦 > 0, then there exists a natural number 𝑛 

such that 𝑛𝑦 > 𝑥 is called Archimedean property of ℝ. 

5. The set of natural number (ℕ) is not bounded above. 

 

2.13 GLOSSARY  
 

Numbers  

Sets 

Intervals 

Modulus 
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2.16 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that the set of natural number ℕ is not bounded above. 

Q 2. Prove that the set {1, 2, 3, …, 10} is not bounded above. 

Q 3.  Find the Supremum and infimum of {
1

𝑛
: 𝑛 ∈ ℕ}. 

Q 4.  Prove that the set T = {|𝑥 − 𝑦|: 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 } is bounded above. 

              Q 5. Solve the equation |
x+3

2x−6
| ≤ 1. 

 

2.17 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 

        CYQ 5. False 

TERMINAL QUESTIONS 

         TQ 3. 1, 0 

         TQ 5. Solution set is {𝑥 ∈ ℝ: 𝑥 ≥ 9} ∪ {𝑥 ∈ ℝ: 𝑥 ≤ 1}. 
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UNIT 3:  LIMIT POINT, OPEN SET AND 

CLOSED SETS 

 

CONTENTS: 

       3.1       Introduction 

       3.2      Objectives 

       3.3      Neighbourhood  

       3.4      Interior point 

       3.5       Open set 

       3.6       Limit point 

       3.7       Closed set 

       3.8      Summary 

       3.9      Glossary 

       3.10     References 

       3.11     Suggested Reading 

       3.12     Terminal questions  

       3.13     Answers  
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3.1 INTRODUCTION 

 

A point is called a limit point of a set in the Euclidean plane if 

there is no minimum distance from that point to members of the set; for 

example, the set of all numbers less than 1 has 1 as a limit point. A set is 

not connected if it can be divided into two parts such that a point of one 

part is never a limit point of the other part. The set is connected if it cannot 

be so divided. For example, if a point is removed from an arc, any 

remaining points on either side of the break will not be limit points of the 

other side, so the resulting set is disconnected. If a single point is removed 

from a simple closed curve such as a circle or polygon, on the other hand, 

it remains connected; if any two points are removed, it becomes 

disconnected. A figure-eight curve does not have this property because 

one point can be removed from each loop and the figure will remain 

connected.  

 

3.2 OBJECTIVES 

After studying this unit, learner will be able to  

(i) Neighbourhood 

             (ii) Interior point 

              (iii) Open set 

              (iv) Limit point 

                  

 

3.3 NEIGHBOURHOOD  

Let 𝑐 ∈  ℝ. A subset 𝑆 ⊂ ℝ is said to be neighbourhood of 𝑐 if there 

exist an open interval (𝑎, 𝑏) such that 𝑐 ∈ (𝑎, 𝑏) ⊂ 𝑆. 
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Clearly an open bounded interval containing the point 𝑐 is a 

neighbourhood of 𝑐. Such a neighbourhood of 𝑐 is denoted by 

𝑁(𝑐). 

A closed bounded interval containing the point 𝑐 may not be a 

neighbourhood of 𝑐.  

For example: 1 ∈ [1, 5] is not a neighbourhood of 1. 

 

Theorem 3.3.1. Let 𝑐 ∈  ℝ. The union of two neighbourhoods of 𝑐 

is a neighbourhood of 𝑐. 

Proof. Let 𝑆1 ⊂ ℝ, 𝑆2 ⊂ ℝ be two neighbourhoods of 𝑐. Then there 

exists open interval (𝑎1, 𝑏1), (𝑎2, 𝑏2) such that 𝑐 ∈ (𝑎1, 𝑏1) ⊂ 𝑆1 and 

𝑐 ∈ (𝑎2, 𝑏2) ⊂ 𝑆2. 

Then 𝑎1 < 𝑏1, 𝑎2 < 𝑏1 and 𝑎1 < 𝑏2, 𝑎2 < 𝑏2. Let 𝑎3 = min{𝑎1, 𝑎2}, 

 𝑏3 = max{𝑏1, 𝑏2}. Then (𝑎1, 𝑏1) ∪ (𝑎2, 𝑏2) = (𝑎3, 𝑏3) and 𝑐 ∈ (𝑎2, 𝑏2). 

(𝑎1, 𝑏1) ⊂ 𝑆1 ∪ 𝑆2 and (𝑎2, 𝑏2) ⊂ 𝑆1 ∪ 𝑆2  

⟹ (𝑎3, 𝑏3) = (𝑎1, 𝑏1) ∪ (𝑎2, 𝑏2) ⊂ 𝑆1 ∪ 𝑆2. 

              Thus 𝑐 ∈ (𝑎3, 𝑏3) ⊂ 𝑆1 ∪ 𝑆2.  

              This prove that 𝑆1 ∪ 𝑆2 is a neighbourhood of 𝑐. 

Note: The union of finite number of neighbourhoods of 𝑐 is a 

neighbourhood of 𝑐.  

 

Theorem 3.3.2. Let 𝑐 ∈  ℝ. The intersection of two 

neighbourhoods of 𝑐 is a neighbourhood of 𝑐. 

Proof. Let 𝑆1 ⊂ ℝ, 𝑆2 ⊂ ℝ be two neighbourhoods of 𝑐. Then there 

exists open interval (𝑎1, 𝑏1), (𝑎2, 𝑏2) such that 𝑐 ∈ (𝑎1, 𝑏1) ⊂ 𝑆1 and 

𝑐 ∈ (𝑎2, 𝑏2) ⊂ 𝑆2. 

Then 𝑎1 < 𝑏1, 𝑎2 < 𝑏1 and 𝑎1 < 𝑏2, 𝑎2 < 𝑏2. Let 𝑎3 = max{𝑎1, 𝑎2}, 

 𝑏3 = min{𝑏1, 𝑏2}. Then (𝑎1, 𝑏1) ∩ (𝑎2, 𝑏2) = (𝑎3, 𝑏3) and 𝑐 ∈ (𝑎2, 𝑏2). 

(𝑎3, 𝑏3) = (𝑎1, 𝑏1) ∩ (𝑎2, 𝑏2) ⊂ (𝑎1, 𝑏1) ⊂ 𝑆1 and (𝑎3, 𝑏3) =

(𝑎1, 𝑏1) ∩ (𝑎2, 𝑏2) ⊂ (𝑎2, 𝑏2) ⊂ 𝑆2  

⟹ (𝑎3, 𝑏3) ⊂ 𝑆1 ∩ 𝑆2. 
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              Thus 𝑐 ∈ (𝑎3, 𝑏3) ⊂ 𝑆1 ∩ 𝑆2.  

              This prove that 𝑆1 ∩ 𝑆2 is a neighbourhood of 𝑐. 

 

Note: The intersection of finite number of neighbourhoods of 𝑐 is a 

neighbourhood of 𝑐.  

Note: The intersection of infinite number of neighbourhoods of 𝑐 may or 

may not be neighbourhood of 𝑐.  

Example: for every 𝑛 ∈  ℕ, (−
1

𝑛
,

1

𝑛
) is neighbourhood of 0. 

⋂ (−
1

𝑛
,

1

𝑛
) = {0}.∞

𝑛=1  This is not a neighbourhood of 0. 

 

3.4 INTERIOR POINT 

Let 𝑆 be a subset of ℝ. A point 𝑥 in 𝑆 is said to be an interior point 

of 𝑆 if there exists a neighbourhood 𝑁(𝑥) of 𝑥 such that 

 𝑁(𝑥)  ⊂ 𝑆.  

The set of all interior points of 𝑆 is said to be interior of 𝑆 and denoted 

by int S or by 𝑆0. 

From definition it follows that 𝑆0 ⊂ 𝑆 for any set 𝑆 ⊂ ℝ. 

 

Examples 1. Let 𝑆 = {1,
1

2
,

1

3
, … }. 

Let 𝑥 ∈  𝑆, every neighbourhood of 𝑥 contain some points not in 𝑆. 

So 𝑥 can not be an interior point of 𝑆. Therefore, int S = ∅. 

Examples 2. Let 𝑆 = ℕ. 

Let 𝑥 ∈  𝑆, every neighbourhood of 𝑥 contain some points not in 𝑆. 

So 𝑥 can not be an interior point of 𝑆. Therefore, int S = ∅. 

Examples 3. Let 𝑆 = ℚ. 

Let 𝑥 ∈  𝑆, every neighbourhood of 𝑥 contain some points not in 𝑆. 

So 𝑥 can not be an interior point of 𝑆. Therefore, 𝑆0 = ∅. 

Examples 4. Let 𝑆 = { 𝑥 ∈  ℝ: 1 < 𝑥 < 3}. Each point of 𝑆 is an 

interior point of 𝑆. so interior of 𝑆 = 𝑆. 
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Examples 5. Let 𝑆 = ℝ. Each point of 𝑆 is an interior point of 𝑆. so 

interior of 𝑆0 = 𝑆. 

 

3.5 OPEN SET 

Let 𝑆 be a subset of ℝ. 𝑆 is said to be open set if each point of 𝑆 is 

an interior point of 𝑆.  

Examples 1. Let 𝑆 = {1,
1

2
,

1

3
, … }. no point of 𝑆 is an interior point 

of 𝑆. therefore, 𝑆 is not an open set. 

Examples 2. Let 𝑆 = ℤ. 

no point of 𝑆 is an interior point of 𝑆. therefore, 𝑆 is not an open 

set. 

Examples 3. Let 𝑆 = ℚ. 

no point of 𝑆 is an interior point of 𝑆. therefore, 𝑆 is not an open 

set. 

Examples 4. Let 𝑆 = { 𝑥 ∈  ℝ: 1 < 𝑥 < 3}. Each point of 𝑆 is an 

interior point of 𝑆. therefore, 𝑆 is an open set. 

 

Examples 5. Let 𝑆 = ℝ. Each point of 𝑆 is an interior point of 𝑆. 

therefore, 𝑆 is an open set. 

 

Theorem 3.5.1. Let 𝑆 ⊂ ℝ. then 𝑆 is an open set if and only if 

 𝑆 = 𝑖𝑛𝑡 𝑆. 

 Proof. Observe in general that 𝑖𝑛𝑡 𝑆.  ⊆ 𝑆. Now suppose that S is open. 

Then for every 𝑥 ∈ 𝑆, there is 𝜖 > 0 so that 𝑁(𝑥, 𝜖 ) ⊆ 𝑆 and this just says 

𝑥 ∈ 𝑖𝑛𝑡 𝑆 and since 𝑥 was arbitrary we have shown that 𝑆 ⊆ 𝑖𝑛𝑡 𝑆 or 

equivalently 𝑆 = 𝑖𝑛𝑡 𝑆.  

Conversely suppose the 𝑖𝑛𝑡 𝑆= 𝑆. The if 𝑥 ∈ S then 𝑥 is an interior point 

and there is an 𝜖 > 0 so that 𝑁(𝑥, 𝜖 ) ⊆ 𝑆. But this says S is open. 
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Theorem 3.5.2. The union of two open sets in ℝ is an open set.  

Proof. Let 𝐺1 and 𝐺1 be two open Sets in ℝ. 

Let 𝑥 ∈ 𝐺1 ∪ 𝐺2. Then 𝑥 ∈ 𝐺1 or 𝑥 ∈ 𝐺2. 

Let 𝑥 ∈ 𝐺1. Since 𝐺1 is an open set and 𝑥 ∈ 𝐺1, 𝑥 is an interior point of 

 𝐺1. Therefore, there exists a neighbourhood 𝑁(𝑥) of 𝑥 such that 

𝑁(𝑥) ⊂   𝐺1 ⟹ 𝑁(𝑥) ⊂  𝐺1 ∪ 𝐺2.  

This shows that 𝑥 is an interior point of  𝐺1 ∪ 𝐺2. 

Since 𝑥 is arbitrary, every point of  𝐺1 ∪ 𝐺2 is an interior point of 

 𝐺1 ∪ 𝐺2. Therefore  𝐺1 ∪ 𝐺2 is an open set. 

If however, 𝑥 ∈ 𝐺2, we can prove in similar manner that   𝐺1 ∪ 𝐺2 is 

an open set. This completes the proof. 

 

Theorem 3.5.3. The intersection of two open sets in ℝ is an open 

set.  

Proof. Let 𝐺1 and 𝐺1 be two open Sets in ℝ. 

Case 1.  𝐺1 ∩ 𝐺2 = ∅. Since ∅ is an open set, 𝐺1 ∩ 𝐺2 is an open set. 

Case 2.  𝐺1 ∩ 𝐺2 ≠ ∅. Let 𝑥 ∈ 𝐺1 ∩ 𝐺2. Then 𝑥 ∈ 𝐺1 and 𝑥 ∈ 𝐺2.  

Since  𝐺1 is an open set and 𝑥 ∈ 𝐺1, 𝑥 is an interior point of  𝐺1. 

Hence there exists a positive 𝛿1 such that the neighbourhood 

𝑁(𝑥, 𝛿1) ⊂   𝐺1. 

Since  𝐺2 is an open set and 𝑥 ∈ 𝐺2, 𝑥 is an interior point of  𝐺2. 

Hence there exists a positive 𝛿2 such that the neighbourhood 

𝑁(𝑥, 𝛿2) ⊂   𝐺1. 

Let 𝛿 = min {𝛿1, 𝛿2}. Then 𝛿. 

𝑁(𝑥, 𝛿) ⊂  𝑁(𝑥, 𝛿1) ⊂   𝐺1 and 𝑁(𝑥, 𝛿) ⊂  𝑁(𝑥, 𝛿2) ⊂   𝐺2. 

Consequently,  𝑁(𝑥, 𝛿) ⊂  𝐺1 ∩ 𝐺2. 

This shows that 𝑥 is an interior point of  𝐺1 ∩ 𝐺2. Since x is arbitrary, 

 𝐺1 ∩ 𝐺2 is an open set and this completes the proof. 

 

Theorem 3.5.4. The union of an arbitrary collection of open sets in    

ℝ is an open set.  
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Proof. Let {𝐺𝛼: 𝛼 ∈ ∧}, ∧ being the index set, be an arbitrary 

collection of open sets in ℝ. Let G = ⋃ 𝐺𝛼𝛼∈ ∧ . 

𝑥 ∈ G. then 𝑥 belongs to at least one open set of the collection, say 

𝐺𝜆, (𝜆 ∈ ∧). 

Since 𝐺𝜆 is an open set and 𝑥 ∈ 𝐺𝜆, 𝑥 is an interior point of 𝐺𝜆. 

Therefore, there exists a neighbourhood 𝑁(𝑥) of 𝑥 such that 𝑁(𝑥) ⊂ 

𝐺𝜆. 𝑁(𝑥) ⊂ 𝐺𝜆 ⟹ 𝑁(𝑥) ⊂ G. 

This shows that 𝑥 is an interior point of G. Since x is arbitrary, G is an 

open set and this completes the proof. 

 

Note: The intersection of an infinite number of open sets in ℝ is not 

necessarily an open set. 

Let us consider the sets 𝐺𝑖 Where 

𝐺1 = {𝑥 ∈ ℝ: − 1 < 𝑥 < 1} 

𝐺2 = {𝑥 ∈ ℝ: −
1

2
< 𝑥 <

1

2
} 

…       …     …     …      …  

𝐺𝑛 = {𝑥 ∈ ℝ: −
1

𝑛
< 𝑥 <

1

𝑛
} 

  …      …      …     …      … 

Each 𝐺𝑖 is an open set. ⋂ 𝐺𝑖 = {0}.∞
𝑖=1  This is not an open set. 

Let us consider the sets 𝐺𝑖 Where 

𝐺1 = {𝑥 ∈ ℝ: − 1 < 𝑥 < 1} 

𝐺2 = {𝑥 ∈ ℝ: − 2 < 𝑥 < 2} 

…       …     …     …      …  

𝐺𝑛 = {𝑥 ∈ ℝ: − 𝑛 < 𝑥 < 𝑛} 

   …     …    …    …   … 

             Each 𝐺𝑖 is an open set. ⋂ 𝐺𝑖 = 𝐺1.∞
𝑖=1  This is an open set. 

             From these two examples we conclude that the intersection of an       

             infinite number of open sets in ℝ is not necessarily an open set.  

 

              Note: Every open interval is open set. 

 

             Theorem 3.5.5. Let 𝑆 is a subset of ℝ then 𝑖𝑛𝑡 𝑆 is an open set.  
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             Proof.  

             Case 1. 𝑖𝑛𝑡 𝑆 = ∅. Since ∅ is an open set, 𝑖𝑛𝑡 𝑆 is an open set.  

             Case 2. 𝑖𝑛𝑡 𝑆 ≠ ∅. let 𝑥 ∈  𝑖𝑛𝑡 𝑆. then 𝑥 is an interior point of 𝑆.    

             therefore, there exist a neighbourhood 𝑁(𝑥) of 𝑥 such that 𝑁(𝑥) ⊂ 𝑆. 

let 𝑥 ∈ 𝑁(𝑥). Then 𝑁(𝑥) is neighbourhood of 𝑦 also and since 

              𝑁(𝑥) ⊂ 𝑆, 𝑦 is an interior point of 𝑆.  

Thus 𝑦 ∈ 𝑁(𝑥). Then  𝑁(𝑥) ⟹ 𝑦 ∈ 𝑖𝑛𝑡 𝑆. therefore 𝑁(𝑥) ) ⊂ 𝑖𝑛𝑡 𝑆. 

This shows that 𝑥 is an interior point of 𝑖𝑛𝑡 𝑆.  

Thus 𝑥 ∈ 𝑖𝑛𝑡 𝑆 ⟹ 𝑥 is an interior point of 𝑖𝑛𝑡 𝑆. 

Therefore 𝑖𝑛𝑡 𝑆 is an open set. This completes the proof.  

 

 

 

3.6 LIMIT POINT 

A point 𝑥 ∈  ℝ is said to be limit point of a subset of 𝑆 of ℝ if every 

neighbourhood of 𝑥 has a point of 𝑆 other that 𝑥.  

In symbols, a point 𝑥 ∈  ℝ is said to be limit point of a subset 𝑆 of  ℝ if 

for each neighbourhood 𝑁 of 𝑥,        

                                            (𝑁 ∩ 𝑆) − {𝑝} ≠ ∅. 

Note: 1. Limit point of set is also called a limiting point or a cluster 

point or a condensation point or an accumulation point of the set.  

Note: 2. A finite set has no limit point. 

Note: 3. A limit point of 𝑆 may or may not belongs to 𝑆.  

Note: 4.  ISOLATED POINT. 

A point 𝑥 ∈ 𝑆 is called an isolated point of 𝑆 if 𝑥 is not a limit point of 𝑆.  

Note:5. Set of all limit points of 𝑆 is called the derived set of 𝑆 and is 

denoted by 𝑆′. thus       

                  𝑆′ = {𝑥: 𝑥 𝑖𝑠 𝑎 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑆}.  

 

Example: 1. Prove that 0 is the limit point of the set 

                      𝑆 = {
1

𝑛
: 𝑛 ∈  ℕ}. 



Real Analysis                                                                                                                                         MT(N)-201 
 

Department of Mathematics 
Uttarakhand Open University                                                                                                                            41 
 

Solution: for each 𝜖 > 0, (−𝜖, 𝜖) is neighbourhood of 0. 

By Archimedean property of reals, for each 𝜖 > 0, ∃ 𝑛 ∈  ℕ  

such that 𝑛 >
1

𝜖
 

⟹       
1

𝑛
<  𝜖         ⟹      −𝜖 < 0 < 

1

𝑛
<  𝜖         ⟹     

1

𝑛
  ∈ (−𝜖, 𝜖) 

Thus, every neighbourhood of 0 contains a point of 𝑆, namely 
1

𝑛
. 

⟹ 0 is limit point of 𝑆. 

 

Example: 2. Find the derived set of each of the following: 

(i) (1, ∞)                                 (ii) (−∞, −1) 

Solution:1. Let 𝑥 be any real number. 

If 𝑥 < 1, then for 0 < 𝜖 < 1 − 𝑥, (𝑥 − 𝜖, 𝑥 + 𝜖) ∩ (1, ∞) = ∅. 

⟹ Any real number < 1 is not a limit point of (1, ∞). 

If 𝑥 ∈ [1, ∞), then for every 𝜖 > 0, (𝑥 − 𝜖, 𝑥 + 𝜖) contains infinitely 

many points of (1, ∞) to the right of 1.  

⟹ Every element of [1, ∞) is a limit point of (1, ∞). 

∴                 (1, ∞)′ = [1, ∞). 

(ii) Please try yourself.             Answer: (−∞, −1) 

 

Example: 3. Find the derived set of each of the following: 

                     𝑆 = {
1+(−1)𝑛

𝑛
: 𝑛 ∈ ℕ}. 

Solution: Let 𝑆 = {
1+(−1)𝑛

𝑛
: 𝑛 ∈ ℕ} 

When 𝑛 is odd,         
1+(−1)𝑛

𝑛
=

1−1

𝑛
= 0 

When 𝑛 is even,        
1+(−1)𝑛

𝑛
= 

1+1

𝑛
=

2

𝑛
  

Therefore,          𝑆 = {0} ∪ {
1

𝑛
: 𝑛 ∈  ℕ} 

⟹                          𝑆′ = {0} . 

 

Example: 4. Give one example of each of the following: 

(i) an infinite set having no limit point. 

(ii) an infinite set having one limit point. 

(iii) a set having two limit point. 
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(iv) a set having an infinite number of limit points. 

(v) a set every point of which is a limit point. 

(vi) a set with only √2 is a limit point. 

Solution: 

 (i) The set of all natural numbers is an infinite set having no limit point 

set. 

(ii) The set {
1

𝑛
: 𝑛 ∈  ℕ} is an infinite set having only one limit point, 

namely 0. 

(iii) The set {
1

𝑛
: 𝑛 ∈  ℕ} ∪ {1 −

1

𝑛
: 𝑛 ∈  ℕ} has two limit points, namely 

0 and 1. 

(iv) The sets ℚ, ℝ and (1, 2) have an infinite number of limit points. 

(v) Every point of a closed interval [1, 2] is a limit point. 

(vi) The set {√2 +
1

𝑛
: 𝑛 ∈  ℕ} has only √2 as a limit point. 

Example: 5. Give one example of each of the following: 

(i) an unbounded set having limit points. 

(ii) a bounded set having limit points. 

(iii) an unbounded set having no limit point. 

Solution: 

 (i) The set of all rational numbers is an unbounded set and derived set of 

ℚ is ℝ. 

(ii) The set [1, 2] is bounded and  [1, 2]′ =  [1, 2]. 

(iii) The set ℤ is unbounded and ℤ′ =  ∅. 

 

Example: 6. Prove that a finite set has no limit point. 

Solution: Let 𝑆 = {𝑝1, 𝑝2, … … , 𝑝𝑛} be a finite subset of ℝ. Let p be any 

real number. 

If we choose 𝜖 = min.{|𝑝 − 𝑝1|, |𝑝 − 𝑝2|, … … , |𝑝 − 𝑝𝑛| }, then (𝑝 −

𝜖, 𝑝 + 𝜖) is a neighbourhood of p which contains no element of 𝑆, i.e. 

(𝑝 − 𝜖, 𝑝 + 𝜖) ∩ 𝑆 = ∅ 

Therefore, p is not a limit point of 𝑆. 

Since p is arbitrary, therefore 𝑆 has no limit point. 
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Some important theorem: 

Theorem 1. (Bolzano – Weierstrass Theorem) 

Every infinite and bounded subset of ℝ has a limit point. 

Proof: Let 𝑆 be an infinite bounded subset of ℝ. 

(i) if  𝑆 is bounded ⟹ ∃  real number 𝑘 and K such that  𝑘 ≤ 𝑠 ≤ 𝐾 ∀ 

𝑠 ∈ 𝑆. 

(ii) Let a set T be defined as follows 

                        T = {𝑡: 𝑡 > finitely many elements of 𝑆} 

(iii) To prove that T ≠ ∅. 

        𝑘 ≤ 𝑠 ∀ 𝑠 ∈ 𝑆 ⟹ k is greater than no elements of 𝑆     

        ⟹ 𝑘 ∈ T    ⟹ T ≠ ∅. 

(iv) To prove that T is bounded above. 

        For any 𝜖 > 0,  𝐾 + 𝜖 > 𝐾 ≥ 𝑠     ∀ 𝑠 ∈ 𝑆    ⟹ 𝐾 +  𝜖 ∉ T, 𝐾 ∉ T 

⟹              ∀ 𝑡 ∈ 𝑇,    𝑡 < 𝐾    ⟹ T is bounded above. 

∵        T is a non-empty bounded subset of ℝ 

∴        T has a least upper bound say 𝑢. 

(v) To prove that 𝑢 is a limit point of 𝑆. 

Let (𝑢 − 𝜖, 𝑢 + 𝜖) be any neighbourhood of 𝑢. 

𝑢 is least upper bound of T ⟹ ∃ some 𝑡 ∈ T such that  𝑡 >  𝑢 − 𝜖, 𝜖 >

0. 

Now 𝑡 ∈ T ⟹ 𝑡 > finitely many elements of 𝑆  

      ⟹ 𝑢 − 𝜖 >  finitely many elements of 𝑆 

      ⟹ finitely many elements of 𝑆 lie to the left of 𝑢 − 𝜖 

      ⟹ infinitely many elements of S lie to right of 𝑢 − 𝜖     ……. (1) 

Also        𝑢 = 𝑙. 𝑢. 𝑏 𝑜𝑓 𝑇    ⟹ 𝑢 + 𝜖 ∉ T 

⟹ 𝑢 + 𝜖 >  infinitely many elements of S 

⟹ infinitely many elements of S lie to left of 𝑢 + 𝜖            ……. (2) 
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               Combining (1) and (2), (𝑢 − 𝜖, 𝑢 + 𝜖) has infinitely many 

elements of S. but (𝑢 − 𝜖, 𝑢 + 𝜖) is any neighbourhood of 𝑢. 

Therefore, every neighbourhood of 𝑢 has infinitely many elements of S. 

Hence 𝑢 is a limit point of S. 

 

Theorem 2. If S is an infinite bounded above subset of ℝ and 

 𝑢 = 𝑙. 𝑢. 𝑏 𝑜𝑓 S such that 𝑢 ∉ S, then 𝑢 ∈ 𝑆′, i.e. 𝑢 is limit point of S. 

Proof: For each 𝜖 > 0, (𝑢 − 𝜖, 𝑢 + 𝜖) is neighbourhood of 𝑢. 

Since 𝑢 = 𝑙. 𝑢. 𝑏. of S, 𝑢 − 𝜖 is not an upper bound od S. 

Therefore ∃ some 𝑥 ∈ S such that       𝑥 >  𝑢 − 𝜖 

Also                                                      𝑥 < 𝑢 <  𝑢 + 𝜖 

Therefore                                              𝑢 − 𝜖 < 𝑥 <  𝑢 + 𝜖 

⟹ (𝑢 − 𝜖, 𝑢 + 𝜖) ∩ S −{𝑢} contains at least one point 𝑥 of S. 

⟹ 𝑢 is a limit point of S. 

 

Note: The derived set of an infinite bounded subset of ℝ is bounded. 

 

3.7 CLOSED SET 

 

Let 𝐴 be a subset of ℝ then 𝐴 is said to be closed set if its complement 

𝐴𝑐 = ℝ − 𝐴 is an open set. 

i.e. a set is closed if its complements is open. 

For example. (i) ℝ𝑐 = ℝ − ℝ = ∅ which is open ⟹ ℝ is closed. 

(ii) ∅𝑐 = ℝ − ∅ = ℝ which is open ⟹ ∅ is closed. 

Note: ℝ and ∅ are only two sets which are both open and closed. 

(iii)  [𝑎, 𝑏]𝑐 = (−∞, 𝑎) ∪ (𝑏, ∞) being the union of two open sets is 

itself open ⟹ every closed interval [a, b] is a closed set. 

 

Question. Prove that the set ℤ of all integer is a closed set. 

Solution. ℤ will be the closed set if ℤ𝑐  is open an open set. 

Let 𝑥 ∈ ℤ𝑐 then 𝑥 ∉  ℤ i.e. 𝑥 is not an integer. 
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If 𝑛 is an integer nearest to 𝑥, then ∃ 𝜖 =
|𝑥−𝑛|

2
> 0 such that 

 (𝑥 − 𝜖, 𝑥 + 𝜖) does not contain any integer 

Therefore,  (𝑥 − 𝜖, 𝑥 + 𝜖) ⊂ ℤ𝑐   ⟹ ℤ𝑐 is neighbourhood of 𝑥. 

But 𝑥 is any point of ℤ𝑐. 

Therefore, ℤ𝑐 is neighbourhood of each of its points. 

⟹ ℤ𝑐 is open       ⟹ ℤ is closed. 

Similarly, the set ℕ of all natural numbers is a closed set. 

 

Question. The set of all rational number is not a closed set. 

Solution. Let 𝑥 be any element of ℚ𝑐 = ℝ − ℚ, the set of irrational 

numbers. 

For every 𝜖 > 0, (𝑥 − 𝜖, 𝑥 + 𝜖) contains infinitely many rational 

numbers. 

Therefore, ∃ no open interval such that 𝑥 ∈ 𝐼 ⊂ ℚ𝑐 

⟹ ℚ𝑐 is not a neighbourhood of 𝑥 

⟹ ℚ𝑐 is not an open set. 

⟹ ℚ is not a closed set. 

 

Theorem 3.7.1. The union of two closed sets is a closed set. 

Proof: Let A and B be two set closed seats. 

⟹ 𝐴𝑐 and 𝐵𝑐 are open sets. 

⟹ 𝐴𝑐 ∩ 𝐵𝑐 is an open set. 

⟹ (𝐴 ∪ 𝐵)𝑐 is an open set.            

                                  [since 𝐴𝑐 ∩ 𝐵𝑐 = (𝐴 ∪ 𝐵)𝑐 De Morgan’s Law] 

⟹ 𝐴 ∪ 𝐵 is an open set.  

Theorem 3.7.2. The union of a finite number of closed sets is a closed 

set. 

Proof: Let 𝐴1, 𝐴2, …, 𝐴𝑛 be 𝑛 closed sets and S = ⋃ 𝐴𝑖 
𝑛
𝑖=1  

⟹ 𝐴𝑐
1, 𝐴𝑐

2,…, 𝐴𝑐
𝑛 are 𝑛 open sets. 

⟹ ⋃ 𝐴𝑐
𝑖 

𝑛
𝑖=1 is an open set. 

   [ since the intersection of a finite collection of open sets is an open set] 

⟹ (⋃ 𝐴𝑖 
𝑛
𝑖=1 )𝑐  is an open set. 

⟹ ⋃ 𝐴𝑖 
𝑛
𝑖=1 is a closed set. 
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Theorem 3.7.3. The union of an infinite family of closed sets need not 

be a closed set. 

Proof: Let 𝐴𝑛 = [
1

𝑛
, 1] ∀ 𝑛 ∈  ℕ, then {𝐴𝑛}𝑛 ∈ ℕ is an infinite family of 

closed sets. 

𝐴1 = {1},  𝐴2 = [
1

2
, 1], 𝐴3 = [

1

3
, 1], … 

Therefore, ⋃ 𝐴𝑛 = {1} ∪ ∞
𝑛=1 [

1

2
, 1] ∪ [

1

3
, 1] ∪ … = (0, 1] which is not 

closed. 

Theorem 3.7.4. The intersection of two closed sets is a closed set. 

Proof: Let A and B be two set closed seats. 

⟹ 𝐴𝑐 and 𝐵𝑐 are open sets. 

⟹ 𝐴𝑐 ∪ 𝐵𝑐 is an open set. 

⟹ (𝐴 ∩ 𝐵)𝑐 is an open set.            

                                  [since 𝐴𝑐 ∪ 𝐵𝑐 = (𝐴 ∩ 𝐵)𝑐 De Morgan’s Law] 

⟹ 𝐴 ∪ 𝐵 is closed set.  

 

Note: The intersection of an arbitrary family of closed set is closed. 

Note: A set S is said to be perfect if 𝑆 = 𝑆′. 

Example: The set of all real number is perfect but the set of all rational 

number is not a perfect set. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The set {𝑥: 0 ≤ 𝑥 ≤ 1} 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡. 

Problem 2. The set of natural number is open set. 

Problem 3. The set of rational number is closed set. 

Problem 4. The set {𝑥: 0 ≤ 𝑥 ≤ 1} is neighbourhood of each of its  

                     point. 

Problem 5. The set {𝑥: 0 ≤ 𝑥 ≤ 1} has limit point 0. 

 

 



Real Analysis                                                                                                                                         MT(N)-201 
 

Department of Mathematics 
Uttarakhand Open University                                                                                                                            47 
 

 

3.8 SUMMARY 

 

1. Let 𝑐 ∈  ℝ. A subset 𝑆 ⊂ ℝ is said to be neighbourhood of 𝑐 if 

there exist an open interval (𝑎, 𝑏) such that 𝑐 ∈ (𝑎, 𝑏) ⊂ 𝑆. 

Clearly an open bounded interval containing the point 𝑐 is a 

neighbourhood of 𝑐.  

2. Let 𝑆 be a subset of ℝ. 𝑆 is said to be open set if each point of 𝑆 

is an interior point of 𝑆.  

3. A set is closed if its complements is open. 

              4. Bolzano – Weierstrass Theorem: 

 Every infinite and bounded subset of ℝ has a limit point. 

 

 

3.9 GLOSSARY  
 

Numbers  

Intervals   

Sets 

Functions 
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3.12 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that the set of natural number ℕ  is closed set.  

Q 2. Prove that the set of rational number ℚ is not closed set.  

Q 3.  The set {𝑥: 4 ≤ 𝑥 < 8} is neither open nor closed. 

Q 4.  Prove that intersection of an arbitrary family of closed sets is a closed  

         set. 

Q 5. With the help of examples, prove that intersection of an infinite 

family of open sets may or may not be an open set. 

 

3.13 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. False 

        CYQ 4. True 

        CYQ 5. True          
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4.1 INTRODUCTION 

              

 So far, we have introduced sets as well as the number systems that 

we will use in this text. Next, we will study sequences of numbers. 

Sequences are, basically, countably many numbers arranged in an order 

that may or may not exhibit certain patterns. Here is the formal definition 

of a sequence: 

 

4.2 OBJECTIVES 

After studying this unit, learner will be able to  

(i)     Neighborhoods 

             (ii)    Interior point 

              (iii)   Open set 

              (iv)    Limit point 

                  

 

4.3 SEQUENCE  

A real sequence is a function whose domain is the set ℕ of all natural 

numbers and range is a subset of the set ℝ of real numbers. 

Symbolically 𝑓: ℕ ⟶ ℝ , {𝑥𝑛}, {𝑎𝑛}, 〈𝑏𝑛〉 etc. 

Example: 〈
1

𝑛
〉 , 〈2𝑛〉, (−1)𝑛 etc. 

 

Range of sequence: The set of all distinct terms of a sequence is called 

its range. 

 

Note: In a sequence {𝑥𝑛}, since 𝑛 ∈ ℕ and ℕ is an infinite set, the 

number of terms of a sequence is always infinite. The range of the 

sequence may be a finite set. 

Example: if 𝑥𝑛 = (−1)𝑛, then {𝑥𝑛} = {−1, 1, −1, 1, … }, the range 

of this sequence {𝑥𝑛} = {−1, 1} which is a finite set. 
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Type of Sequence: 

 

1. Constant sequence: A sequence {𝑥𝑛} defined by 𝑥𝑛 = 𝑐 ∈ ℝ ∀ 

𝑛 ∈ ℕ is called a constant sequence. 

Thus {𝑥𝑛} = {𝑐, 𝑐, 𝑐 … … . . } is a constant sequence with range = {𝑐}, a 

singletion.   

2. Bounded above sequence: A sequence {𝑥𝑛} is said to be 

bounded above if ∃ a real number 𝐾 such that  

                                                       𝑥𝑛 ≤ 𝐾  ∀ 𝑛 ∈ ℕ  
i.e. if range of the sequence is bounded above. 

 

3. Bounded Below sequence: A sequence {𝑥𝑛} is said to be 

bounded below if ∃ a real number 𝑘 such that  

                                                       𝑥𝑛 ≥ 𝑘  ∀ 𝑛 ∈ ℕ  
i.e. if range of the sequence is bounded below. 

 

4. Bounded sequence: A sequence {𝑥𝑛} is said to be bounded if it 

is bounded above as well as bounded below. 

Thus, a sequence {𝑥𝑛} is said to be bounded if ∃ a real numbers 𝑘 and 𝐾, 

such that  

                                                       𝑘 ≤ 𝑥𝑛 ≤ 𝐾  ∀ 𝑛 ∈ ℕ  

i.e. if range of the sequence is bounded. 

 

5. Unbounded sequence: A sequence {𝑥𝑛} is said to be unbonded 

if it is not bounded. 

 

6. Unbounded above sequence: A sequence {𝑥𝑛} is said to be 

unbounded above if it not bounded above. 

i.e. for every real number 𝐾, ∃ 𝑚 ∈ ℕ such that 𝑥𝑚 > 𝐾. 

 

7. Unbounded below sequence: A sequence {𝑥𝑛} is said to be 

unbounded below if it not bounded below. 

i.e. for every real number 𝑘, ∃ 𝑚 ∈ ℕ such that 𝑥𝑚 < 𝑘. 

 

Example (i) The sequence {𝑥𝑛} defined by 𝑥𝑛 =
1

𝑛
 is bounded,  

                      since 0 < 𝑥𝑛 ≤ 1. 

(ii) The sequence {𝑥𝑛} defined by 𝑥𝑛 = 𝑛 is bounded below,  

       because 𝑥𝑛 ≥ 1 ∀ 𝑛 ∈ ℕ. 

(iii) The sequence {𝑥𝑛} defined by 𝑥𝑛 = (−1)𝑛 is bounded,  

        since 1 ≤ 𝑥𝑛 ≤ 1. 

(iv) every constant sequence is bounded. 

(v) The sequence {𝑥𝑛} defined by 𝑥𝑛 = (−1)𝑛 . 𝑛 is neither bounded 

below nor bounded above.  
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Theorem 4.3.1. A sequence {𝑥𝑛} is bounded iff ∃ a positive real number 

𝑀 such that |𝑥𝑛| ≤ 𝑀 ∀ 𝑛 ∈ ℕ. 

Proof: Necessary part 

Let {𝑥𝑛} be bounded. Then ∃ two real number ℎ and 𝑘 such that  

                ℎ ≤ 𝑥𝑛 ≤ 𝑘 ∀ 𝑛 ∈ ℕ         ……. (1) 

Let 𝑀 =Max.{|ℎ|, |𝑘|}, then  |ℎ| ≤ 𝑀 and |𝑘| ≤ 𝑀 

⟹                 −𝑀 ≤ ℎ ≤ 𝑀  and −𝑀 ≤ 𝑘 ≤ 𝑀          …… (2)  

From (1) and (2), we have        −𝑀 ≤ ℎ ≤ 𝑥𝑛 ≤ 𝑘 ≤  𝑀  ∀ 𝑛 ∈ ℕ        

⟹                                             −𝑀 ≤ 𝑥𝑛 ≤ 𝑀   ∀ 𝑛 ∈ ℕ  

⟹                                                 |𝑥𝑛| ≤ 𝑀  ∀ 𝑛 ∈ ℕ 

 

Sufficient part     

Let 𝑀 be a positive real number such that  

                                                       |𝑥𝑛| ≤ 𝑀  ∀ 𝑛 ∈ ℕ 

Then                                             −𝑀 ≤ 𝑥𝑛 ≤ 𝑀   ∀ 𝑛 ∈ ℕ 

⟹  {𝑥𝑛} is bounded. 

 

Note: The above theorem is used as a definition of a bounded sequence 

and should be committed to memory.    

 

4.4 LIMIT OF A SEQUENCE  

 

 Let {𝑥𝑛} be a sequence and 𝑙 ∈ ℝ. The real number 𝑙 is said to be limit 

of the sequence {𝑥𝑛} it to each 𝜖 > 0, ∃  𝑚 ∈ ℕ (𝑚 depending on 𝜖) 

such that |𝑥𝑛 − 𝑙| < 𝜖  ∀  𝑛 ≥ 𝑚. 

If 𝑙 is the limit of the sequence {𝑥𝑛}, then we write 𝑥𝑛 ⟶ 𝑙 as 𝑛 ⟶ ∞ or 

lim
𝑛⟶∞

𝑥𝑛 = 𝑙. 

 

Note:          if |𝑥𝑛 − 𝑙| < 𝜖               ∀  𝑛 ≥ 𝑚  

Then              𝑙 − 𝜖 < 𝑥𝑛 < 𝑙 + 𝜖    ∀  𝑛 ≥ 𝑚 

Then              𝑥𝑛 ∈ (𝑙 − 𝜖, 𝑙 + 𝜖)     ∀  𝑛 ≥ 𝑚. 

 

     

  4.5 CONVERGENT SEQUENCE  

If lim
𝑛⟶∞

𝑥𝑛 = 𝑙, then we say that the sequence {𝑥𝑛} converges to 𝑙. 

       

 

Theorem 4.5.1. Every convergent sequence has a unique limit. 

                                                     Or  

                          A sequence cannot converge to more than one limit. 
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Proof: if possible, let a sequence {𝑥𝑛} converse to two distinct real 

numbers 𝑙 and 𝑙′. 

Let 𝜖 = |𝑙 − 𝑙′|. Since 𝑙 ≠ 𝑙′, |𝑙 − 𝑙′| > 0 so that 𝜖 > 0. 

Now the sequence {𝑥𝑛} converges to 𝑙 

⟹ given 𝜖 > 0, ∃ a positive integer 𝑚1 such that 

        |𝑥𝑛 − 𝑙| <
𝜖

2
  ∀  𝑛 ≥ 𝑚1 

Also, the sequence {𝑥𝑛} converges to 𝑙′ 

⟹ given 𝜖 > 0, ∃ a positive integer 𝑚2 such that 

        |𝑥𝑛 − 𝑙′| <
𝜖

2
  ∀  𝑛 ≥ 𝑚2  

Let     𝑚 = 𝑚𝑎𝑥. {𝑚1, 𝑚2} 

Then    |𝑥𝑛 − 𝑙| <
𝜖

2
    and    |𝑥𝑛 − 𝑙′| <

𝜖

2
     ∀ 𝑛 ≥ 𝑚       ……. (1) 

Now      |𝑙 − 𝑙′| = |(𝑙 − 𝑥𝑛) + (𝑥𝑛 − 𝑙′)| ≤ |𝑙 − 𝑥𝑛| + |𝑥𝑛 − 𝑙′|   

                           = |𝑥𝑛 − 𝑙| + |𝑥𝑛 − 𝑙′|          (∵  |−𝑥| = |𝑥| ) 

                           <  
𝜖

2
+

𝜖

2
= 𝜖     ∀ 𝑛 ≥ 𝑚        

∴           |𝑙 − 𝑙′| < 𝜖  ∀ 𝑛 ≥ 𝑚        

Which contradicts the assumption that 𝜖 =
1

2
|𝑙 − 𝑙′| 

⟹      Our assumption was wrong. Hence 𝑙 = 𝑙′. 

 

  4.6 DIVERGENT SEQUENCE  

             (i) A sequence  {𝑥𝑛} is said to be diverge to +∞ if given any 

positive real number 𝐾, however large there exists a positive integer  

𝑚 (depending on 𝐾) such that 𝑥𝑛 > 𝐾 ∀ 𝑛 ≥ 𝑚 

And we write    lim
𝑛⟶∞

𝑥𝑛 = ∞  or   𝑥𝑛 ⟶ ∞ as 𝑛 ⟶ ∞   

(ii) A sequence  {𝑥𝑛} is said to be diverge to −∞ if given any positive 

real number 𝐾, however large there exists a positive integer 

𝑚 (depending on 𝐾) such that 𝑥𝑛 < −𝐾 ∀ 𝑛 ≥ 𝑚 

And we write    lim
𝑛⟶∞

𝑥𝑛 = −∞  or   𝑥𝑛 ⟶ ∞ as 𝑛 ⟶ ∞   

(iii) A sequence  {𝑥𝑛} is said to be divergent sequence if it diverse to 

+∞ or −∞. 

i.e. if  𝑥𝑛 ⟶ ∞ or 𝑥𝑛 ⟶ −∞ as 𝑛 ⟶ ∞. 
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Example. The sequence {𝑛} and {𝑛2} diverge to +∞. Whereas the 

sequences {−𝑛} and {−𝑛2} diverge to −∞.  

 

4.7 OSCILLATORY SEQUENCE  

If a sequence {𝑥𝑛} neither converges to a finite number nor diverges to 

+∞ or −∞, it is called an oscillatory sequence. Oscillatory sequences 

are of two types: 

(i) A bounded sequence which do not converse is said to be oscillate 

finitely. 

For example: Consider a bounded sequence {(−1)𝑛}. 

Here 𝑥𝑛 = (−1)𝑛 

Then   lim
𝑛⟶∞

𝑥2𝑛 = lim
𝑛⟶∞

(−1)2𝑛 = 1 and  

          lim
𝑛⟶∞

𝑥2𝑛+1 = lim
𝑛⟶∞

(−1)2𝑛+1 = −1. 

Thus lim
𝑛⟶∞

𝑥𝑛 does not exist  

⟹ the sequence does not converse. 

Hence this sequence oscillates finitely. 

(ii) An unbounded sequence which do not diverge is said to be oscillate 

infinitely. 

For example: Consider a bounded sequence {(−1)𝑛 . 𝑛}. 

Here 𝑥𝑛 = (−1)𝑛 . 𝑛 

Then   lim
𝑛⟶∞

𝑥2𝑛 = lim
𝑛⟶∞

(−1)2𝑛 . 2𝑛 = +∞ and  

          lim
𝑛⟶∞

𝑥2𝑛+1 = lim
𝑛⟶∞

(−1)2𝑛+1. (2𝑛 + 1) = −∞. 

Thus, the sequence does not diverge. 

⟹ this sequence oscillates infinitely. 

 

Note: When we say lim
𝑛⟶∞

𝑥𝑛 = 𝑙, it means lim
𝑛⟶∞

𝑥2𝑛 = lim
𝑛⟶∞

𝑥2𝑛+1 = 𝑙 

Similarly, lim
𝑛⟶∞

𝑥𝑛 = +∞, it means lim
𝑛⟶∞

𝑥2𝑛 = lim
𝑛⟶∞

𝑥2𝑛+1 = +∞ 

 

4.8 NULL SEQUENCE  
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A sequence {𝑥𝑛} is said to be null sequence if it converges to zero 

 i.e. if lim
𝑛⟶∞

𝑥𝑛 = 0. 

For example:  The sequence {
1

𝑛
}, {

1

𝑛2
}, {

1

2𝑛
} and {

(−1)𝑛−1

𝑛
} are null 

sequences. 

 

4.9 MONOTONIC SEQUENCE  

 

(i) A sequence {𝑥𝑛} is said to be monotonically increasing. 

If                   𝑥𝑛+1 ≥ 𝑥𝑛   ∀ 𝑛 ∈ ℕ  

i.e. if            𝑥1 ≤ 𝑥2 ≤ 𝑥3 ≤ ⋯ ≤ 𝑥𝑛 ≤ 𝑥𝑛+1 ≤ ⋯ 

(ii) A sequence {𝑥𝑛} is said to be monotonically decreasing. 

If                   𝑥𝑛+1 ≤ 𝑥𝑛   ∀ 𝑛 ∈ ℕ  

i.e. if            𝑥1 ≥ 𝑥2 ≥ 𝑥3 ≥ ⋯ ≥ 𝑥𝑛 ≥ 𝑥𝑛+1 ≥ ⋯ 

(iii) A sequence {𝑥𝑛} is said to be monotonic if it is either monotonically 

increasing or monotonically decreasing. 

(iv) A sequence {𝑥𝑛} is said to be strictly monotonically increasing. 

If                   𝑥𝑛+1 > 𝑥𝑛   ∀ 𝑛 ∈ ℕ  

(v) A sequence {𝑥𝑛} is said to be strictly monotonically decreasing. 

If                   𝑥𝑛+1 < 𝑥𝑛   ∀ 𝑛 ∈ ℕ  

(vi) A sequence {𝑥𝑛} is said to be strictly monotonic if it is either 

strictly monotonically increasing or strictly monotonically decreasing. 

      

Theorem 4.9.1. Every convergent sequence is bounded. 

Proof: Let {𝑥𝑛} be a convergent sequence, converging to 𝑙. 

For 𝜖 = 1, there exists a positive integer 𝑚 such that  

                             |𝑥𝑛 − 𝑙| < 1                    ∀ 𝑛 ≥ 𝑚 

⟹                     𝑙 − 1 < 𝑥𝑛 < 𝑙 + 1      ∀ 𝑛 ≥ 𝑚  

Let 𝑘 = min.{𝑥1, 𝑥2, … , 𝑥𝑚−1, 𝑙 − 1} and 

      𝐾 = mix.{𝑥1, 𝑥2, … , 𝑥𝑚−1, 𝑙 + 1} 

Then          𝑘 ≤ 𝑥𝑛 ≤ 𝐾            ∀ 𝑛 ≥ 𝑚 
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⟹ The sequence {𝑥𝑛} is a bounded sequence. 

 

 

Monotone convergence theorem. 

Theorem 4.9.2. Every monotonically increasing sequence which is 

bounded above converge to its least upper bound. 

Proof: Let {𝑥𝑛} be a monotonically increasing sequence which is 

bounded above. Let 𝑢 be the 𝑙. 𝑢. 𝑏. of the sequence {𝑥𝑛}. 

We shall show that {𝑥𝑛} converges to 𝑢. 

Let 𝜖 > 0 be given. 

Since 𝑢 − 𝜖 < 𝑢, therefore, 𝑢 − 𝜖 is not an upper bound of {𝑥𝑛} 

⟹ ∃ a positive integer 𝑚 such that 𝑥𝑛 >  𝑢 − 𝜖 

Since {𝑥𝑛} is monotonically increasing. 

Therefore       𝑥𝑛 ≥ 𝑥𝑚 > 𝑢 − 𝜖       ∀ 𝑛 ≥ 𝑚      ……. (i) 

Then               𝑥𝑛 > 𝑢 − 𝜖                 ∀ 𝑛 ≥ 𝑚       

Also, 𝑢 is the 𝑙. 𝑢. 𝑏. of the sequence {𝑥𝑛} 

⟹                 𝑥𝑛 ≤ 𝑢 + 𝜖                   ∀ 𝑛 ∈ ℕ      

⟹                 𝑥𝑛 < 𝑢 + 𝜖                   ∀ 𝑛 ∈ ℕ        ……. (ii)  

              From (1) and (2), 𝑢 − 𝜖 < 𝑥𝑛 < 𝑢 + 𝜖      ∀ 𝑛 ≥ 𝑚   

              ⟹    |𝑥𝑛 − 𝑢| <  𝜖       ∀ 𝑛 ≥ 𝑚   

              ⟹      lim
𝑛⟶∞

𝑥𝑛 = 𝑢 

              ⟹ {𝑥𝑛} converges to 𝑢. 

Theorem 4.9.3. Every monotonically decreasing sequence which is 

bounded below converges to its greatest lower bound. 

Proof: Similar as Theorem 4.9.2. 

 

Note: Every monotonically increasing sequence which is not bounded 

above diverges to ∞. 

Note: Every monotonically decreasing sequence which is not bounded 

below diverges to −∞. 

Note: Every monotonic sequence either converges or diverges.  

 

Examples 4.9.1. By definition show that  
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(i) The sequence {
1

𝑛
} converges to 0. 

(ii) The sequence {
1

𝑛2
} converges to 0. 

(iii) The sequence {
1

3𝑛
} converges to 0. 

(iv) The sequence {√𝑛 + 1 − √𝑛} is a null sequence. 

Sol. (i) let 𝑎𝑛 =
1

𝑛
 . let 𝜖 > 0 be given. 

Now          |𝑎𝑛 − 0| = |
1

𝑛
− 0| = |

1

𝑛
| =

1

n
< 𝜖 if 𝑛 >

1

𝜖
 

If 𝑚 is a positive integer >
1

𝜖
 , then  |𝑎𝑛 − 0| < 𝜖  ∀ 𝑛 ≥ 𝑚       

              ⟹ lim
𝑛⟶∞

𝑎𝑛 = 0 

              ⟹ i.e. sequence {
1

𝑛
} converges to 0. 

 (ii) let 𝑎𝑛 =
1

𝑛2 . let 𝜖 > 0 be given. 

Now          |𝑎𝑛 − 0| = |
1

𝑛2 − 0| = |
1

𝑛2
| =

1

𝑛2 < 𝜖 if 𝑛2 >
1

𝜖
 

If 𝑚 is a positive integer >
1

√𝜖
 , then  |𝑎𝑛 − 0| < 𝜖  ∀ 𝑛 ≥ 𝑚       

              ⟹ lim
𝑛⟶∞

𝑎𝑛 = 0 

              ⟹ i.e. sequence {
1

𝑛2
} converges to 0. 

(iii) let 𝑎𝑛 =
1

3𝑛 . let 𝜖 > 0 be given. 

Now          |𝑎𝑛 − 0| = |
1

3𝑛 − 0| = |
1

3𝑛
| =

1

3𝑛 < 𝜖 if 3𝑛 >
1

𝜖
 

i.e. if 𝑛 𝑙𝑜𝑔𝑛 > 𝑙𝑜𝑔 (
1

𝜖
) 

i.e.  if 𝑛 >
𝑙𝑜𝑔(

1

𝜖
)

𝑙𝑜𝑔(3)
                        [since 𝑙𝑜𝑔(3) > 0] 

If 𝑚 is a positive integer >
𝑙𝑜𝑔(

1

𝜖
)

𝑙𝑜𝑔(3)
 , then  |𝑎𝑛 − 0| < 𝜖  ∀ 𝑛 ≥ 𝑚       

              ⟹ lim
𝑛⟶∞

𝑎𝑛 = 0 

              ⟹ i.e. sequence {
1

3𝑛
} converges to 0. 

(iv) let 𝑎𝑛 = √𝑛 + 1 − √𝑛  

                 =
(√𝑛−1−√𝑛)(√𝑛+1+√𝑛)

√𝑛+1+√𝑛
=

(n+1)−n

√𝑛+1+√𝑛
=

1

√𝑛+1+√𝑛
  

let 𝜖 > 0 be given. 
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Now    |𝑎𝑛 − 0| = |
1

√𝑛+1+√𝑛
− 0| = |

1

√𝑛+1+√𝑛
| =

1

√𝑛+√𝑛
<

1

2√𝑛
<

1

√𝑛
< 𝜖 

if √𝑛 >
1

𝜖
      i.e. if 𝑛 >

1

𝜖2 

If 𝑚 is a positive integer >
1

𝜖2 , then  |𝑎𝑛 − 0| < 𝜖  ∀ 𝑛 ≥ 𝑚       

              ⟹ lim
𝑛⟶∞

𝑎𝑛 = 0 

              ⟹ The given sequence {√𝑛 + 1 − √𝑛} is a null sequence. 

 

4.10 LIMIT POINT OF A SEQUENCE  

A real number 𝑙 is said to be a limit point of a sequence {𝑎𝑛} if 

every neighbourhood of 𝑙 contains infinitely many terms of the sequence. 

Note: If 𝑎𝑛 = 𝑙 for infinitely many values of 𝑛 then 𝑙 is a limit point of 

{𝑎𝑛}. 

Note: Limit of a sequence is a limit point but limit point need not be a 

limit of sequence. 

Note: Limit point of a sequence need not be a term of the sequence. 

For example: Sequence {
1

𝑛
} has 0 as a limit point but no term of  {

1

𝑛
} is 0. 

 Example 4.10.1. Prove that 0 is a limit point of the Sequence {
1

𝑛
}. 

Sol. For 𝜖 > 0, ∃ 𝑚 ∈ ℕ   such that   
1

𝑚
<  𝜖 

Therefore, for 𝑛 ≥ 𝑚,         0 <
1

𝑛
≤

1

𝑚
< 𝜖 

⟹                                       −𝜖 < 0 <
1

𝑛
< 𝜖  ∀ 𝑛 ≥ 𝑚   

⟹                                           
1

𝑛
∈ (−𝜖, 𝜖)       ∀ 𝑛 ≥ 𝑚  

⟹ Every neighbourhood of 0 contains infinitely many terms of the 

sequence {
1

𝑛
}. 

⟹ 0 is a limit point of the sequence {
1

𝑛
}. 

Example 4.10.2. The sequence {(−1)𝑛} has two limit points. 

Sol. Let 𝑎𝑛 = (−1)𝑛, then 𝑎𝑛 = −1 when 𝑛 is odd and 𝑎𝑛 = 1 when 𝑛  

        is even. 

Thus, every neighbourhood of −1 contains all the odd terms of  

 the sequence. 
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Therefore, −1 is a limit point. 

Also, every neighbourhood of 1 contains all the even terms of the 

sequence. 

Therefore, 1 is a limit point. 

Therefore, the given sequence has only two limit points. 

 

Example 4.10.3. The sequence {𝑛} has no limit points. 

Sol. Let 𝑙 be any real number, then the neighbourhood (𝑙 −
1

4
, 𝑙 +

1

4
) of 𝑙 

contains at most one term of the sequence {𝑛}. 

⟹ 𝑙 is not a limit point of the sequence {𝑛}. 

 

Theorem 4.10.1. If 𝑙 is a limit point of the range of a sequence {𝑎𝑛} , then 

𝑙 is a limit point of the sequence {𝑎𝑛}. 

Proof: Let S = range of the sequence {𝑎𝑛}. 

Since 𝑙 is a limit point of S, every neighbourhood of 𝑙 contains infinitely 

many elements of S. 

But each element of S is a term of the sequence {𝑎𝑛}. 

∴ Every neighbourhood of 𝑙 contains infinitely many terms of the 

sequence {𝑎𝑛}. 

⟹ 𝑙 is a limit point of the sequence {𝑎𝑛}. 

Note: The converse of above theorem may not be true. 

Consider    𝑎𝑛 = 1 + (−1)𝑛 = {
0,    𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑
2,   𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

Therefore, 0, 2 are the limit points of the sequence {𝑎𝑛}. 

But the range of the sequence = {0, 2} is a finite set. 

Since the finite set has no limit point, the range of {𝑎𝑛} has no limit point. 

Note: If the terms of the sequence are different the limit points of the 

sequence are the limit points of the range set. 

 

4.11 BOLZANO – WEIERSTRASS THEOREM 

FOR SEQUENCES 
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Every Bounded sequence has at least one limit point. 

Proof: Let {𝑎𝑛} be a bounded sequence and S be its range, 

 i.e. S = {𝑎𝑛: 𝑛 ∈ ℕ}  

since {𝑎𝑛} is bounded, then S is bounded. 

Case 1. Let S be a finite set. 

Then ∃ a real number 𝑙 such that 𝑎𝑛 = 𝑙 for an infinite number of values 

of n ∈ ℕ.  

⟹ Given 𝜖 > 0, 𝑎𝑛 ∈ (𝑙 −  𝜖, 𝑙 + 𝜖) for an infinite number of values of 

n ∈ ℕ.  

⟹ Every neighbourhood of 𝑙 contains infinitely many terms of the 

sequence {𝑎𝑛}. 

Therefore 𝑙 is limit point of the sequence {𝑎𝑛}. 

Case 2. Let S be an infinite set. 

Since S is an infinite bounded set, by Bolzano-Weierstrass theorem, S has 

at least one limit point, say 𝑙. 

Now, 𝑙 is limit point of S. 

⟹ Every neighbourhood of 𝑙 contains infinitely many numbers of the 

elements of S. 

But each element of S is a term of the sequence {𝑎𝑛}. 

∴ every neighbourhood of 𝑙 contains an infinite number of terms of the 

sequence {𝑎𝑛}. 

Therefore 𝑙 is a limit point of the sequence {𝑎𝑛}. 

 

Corollary: If S is a closed and bounded set, then every sequence in S has 

a limit point in S. 

Corollary: The set of the limit point of the bounded sequence is bounded. 

Corollary: The set of the limit points of a sequence is a closed set. 

              Corollary: The set of limit points of an unbounded sequence may or may     

                                  not be unbounded. 

For example.  (i) The sequence {1,
1

2
, 2,

1

3
, 3, … } is unbounded but the 

set of its limit points is {0}, which is bounded. 
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(i) The sequence {2, 1 +
1

2
, 2 +

1

2
, 1 +

1

3
, 2 +

1

3
, 3 +

1

3
, … … } is 

unbounded but the set of its limit points is ℕ, which is unbounded. 

 

4.12 LIMIT SUPERIOR AND LIMIT INFERIOR 

OF A SEQUENCES 

Let {𝑎𝑛} be a bounded sequence, then the sequence has the least and 

greatest limit points. 

The least limit point of {𝑎𝑛} is called the limit inferior of {𝑎𝑛} and is 

denoted by lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛. 

The greatest limit point of {𝑎𝑛} is called the limit superior of {𝑎𝑛} and is 

denoted by lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛. 

Note 1. If {𝑎𝑛} is unbounded above then lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛 = ∞. 

And    If {𝑎𝑛} is unbounded below then lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛 = −∞. 

Note 2. Since the greatest limit point of the sequence {𝑎𝑛} ≥ least limit 

point. 

Therefore, lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛 ≥ lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛. 

 

Example 4.12.1. Find lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛 and lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛 for the sequence 

{𝑎𝑛} = {(−1)𝑛}.  

Sol. Since the sequence {(−1)𝑛} has only two limit points −1 and 1. 

Therefore, the set of limit points = {−1, 1} which is bounded. 

Therefore, lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛 = −1 and lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛 = 1. 

Example 4.12.2. Find lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛 and lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛 for the sequence 

{𝑎𝑛} = {(−1)𝑛 . 𝑛}.  

Sol. Since the sequence {(−1)𝑛 . 𝑛} is unbounded above and unbounded 

below both. 

Therefore, lim
𝑛⟶∞

𝑖𝑛𝑓. 𝑎𝑛 = −∞ and lim
𝑛⟶∞

𝑠𝑢𝑝. 𝑎𝑛 = ∞. 

4.13 SUBSEQUENCE 
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Let {𝑎𝑛} be a sequence of real numbers, and 

 let 𝑛1 < 𝑛2 < · · · < 𝑛𝑘 < · · ·  

be a strictly increasing sequence of natural numbers.  

Then {𝑎𝑛1
, 𝑎𝑛2

 , · · · , 𝑎𝑛𝑘
 , · · ·} is called a subsequence of {𝑎𝑛} and is 

denoted by {𝑎𝑛𝑘
 }.  

Note: A subsequence is formed from a sequence by selecting certain terms 

from the sequence in order. 

For Example. (i) {𝑎2𝑛}, {𝑎2𝑛−1}, {𝑎𝑛2} are all subsequence of {𝑎𝑛}. 

(ii) {2, 4, 6, ….}, {1, 3, 5, …}, {1, 4, 9, 16, …} are all subsequences of 

the sequence {n}. 

Note: Every sequence is a subsequence of itself. 

 

Theorem 4.13.1. If a sequence {𝑎𝑛} converges to 𝑙, then every 

subsequence of {𝑎𝑛} also converges to 𝑙. 

Proof: Let {𝑎𝑛𝑘
 } be a subsequence of {𝑎𝑛}. 

Since {𝑎𝑛}converges to 𝑙. 

Therefore, given 𝜖 > 0, ∃ a positive integer 𝑚  

such that |𝑎𝑛 − 𝑙| <  𝜖 ∀ 𝑛 ≥ 𝑚      ……. (i)  

We can find a natural number 𝑛𝑘0
≥ 𝑚  

If 𝑛𝑘 ≥ 𝑛𝑘0
, then 𝑛𝑘 ≥ 𝑚. 

Therefore, from (i), we have |𝑎𝑛𝑘
− 𝑙| <  𝜖 ∀ 𝑛𝑘 ≥ 𝑚       

Hence {𝑎𝑛𝑘
 }converges to 𝑙. 

 

4.14 CAUCHY SEQUENCES 

A sequence {𝑎𝑛} is said to be a Cauchy sequence if given 𝜖 > 0, however 

small, there exists a positive integer 𝑚 (depending on 𝜖) such that 

|𝑎𝑛 − 𝑎𝑚| <  𝜖 ∀ 𝑛 ≥ 𝑚. 

 

Theorem 4.14.1. Every Cauchy sequence is bounded.  

Proof: Let {𝑎𝑛} be a Cauchy sequence. 
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Taking 𝜖 = 1, by definition, there exists a positive integer 𝑚 such that 

                  |𝑎𝑛 − 𝑎𝑚| <  1                      ∀ 𝑛 ≥ 𝑚 

⟹                  𝑎𝑚 − 1 < 𝑎𝑛 < 𝑎𝑚 + 1    ∀ 𝑛 ≥ 𝑚 

Let              𝑘 = 𝑚𝑖𝑛. { 𝑎1, 𝑎2, … , 𝑎𝑚−1, 𝑎𝑚 − 1}    

And            𝐾 = 𝑚𝑎𝑥. { 𝑎1, 𝑎2, … , 𝑎𝑚−1, 𝑎𝑚 + 1}    

Then            𝑘 ≤ 𝑎𝑛 ≤ 𝐾     ∀ 𝑛 

Hence the sequence {𝑎𝑛} is bounded. 

Note: The converse of above theorem is not true, i.e. every bounded 

sequence need not be a Cauchy sequence. 

For Example. The sequence  {(−1)𝑛} is bounded but it is not a Cauchy 

sequence. 

 

Theorem 4.14.2. (Cauchy’s convergence criterion) 

A sequence is convergent if and only if it is a Cauchy sequence. 

Proof: First, let {𝑎𝑛} be a convergent sequence, converging to 𝑙. 

We shall show that it is a Cauchy sequence. 

Let 𝜖 > 0 be given. Then there exists a positive integer m such that 

             |𝑎𝑛 − 𝑙| <
𝜖

2
                       ∀ 𝑛 ≥ 𝑚     ….. (i) 

In particular, for 𝑛 = 𝑚, we have |𝑎𝑛 − 𝑙| <
𝜖

2
    …… (ii) 

Now,   |𝑎𝑛 − 𝑎𝑚| = |(𝑎𝑛 − 𝑙) − (𝑎𝑚 − 𝑙)| ≤ |(𝑎𝑛 − 𝑙)| + |(𝑎𝑚 − 𝑙)|        

                              <
𝜖

2
+

𝜖

2
= 𝜖.     ∀ 𝑛 ≥ 𝑚 [using (i) and (ii)] 

Thus      |𝑎𝑛 − 𝑎𝑚| < 𝜖   ∀ 𝑛 ≥ 𝑚     

⟹ {𝑎𝑛} is a Cauchy sequence. 

Conversely: Let {𝑎𝑛} is a Cauchy sequence. 

Since Every Cauchy sequence is bounded, therefore {𝑎𝑛} is bounded. 

Since every bounded sequence has a limit point, {𝑎𝑛} has limit point 𝑙 

(say). 

We shall show that {𝑎𝑛} converges to 𝑙. 

Let 𝜖 > 0 be given. Since {𝑎𝑛} is Cauchy sequence, ∃ a positive integer 

𝑚 such that        |𝑎𝑛 − 𝑎𝑚| <
𝜖

3
   ∀ 𝑛 ≥ 𝑚            …… (iii)  

Since 𝑙 is limit point of {𝑎𝑛}, every neighbourhood of 𝑙 contains 

infinitely many terms of {𝑎𝑛}. 
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⟹ 𝑎𝑛 ∈ (𝑙 −
𝜖

3
, 𝑙 +

𝜖

3
) for infinitely many values of 𝑛. 

In particular, we can find a positive integer 𝑘 > 𝑚 such that  

             𝑎𝑘 ∈ (𝑙 −
𝜖

3
, 𝑙 +

𝜖

3
)           ….... (iv) 

i.e.         |𝑎𝑘 − 𝑙| <
𝜖

3
                      ……. (v) 

Also, since 𝑘 > 𝑚, therefore, we have |𝑎𝑛 − 𝑎𝑚| <
𝜖

3
      …… (vi) 

Now,      |𝑎𝑛 − 𝑙| = |(𝑎𝑛 − 𝑎𝑚) + (𝑎𝑚 − 𝑎𝑘) + (𝑎𝑘 − 𝑙)| 

                             ≤ |𝑎𝑛 − 𝑎𝑚| + |𝑎𝑚 − 𝑎𝑘| + |𝑎𝑘 − 𝑙| 

                              = |𝑎𝑛 − 𝑎𝑚| + |𝑎𝑘 − 𝑎𝑚| + |𝑎𝑘 − 𝑙| 

                               <
𝜖

3
+

𝜖

3
+

𝜖

3
= 𝜖  

Thus,         |𝑎𝑛 − 𝑙| <  𝜖     ∀ 𝑛 ≥ 𝑚  

⟹             {𝑎𝑛} converges to 𝑙. 

 

Example. 4.14.1. Prove that the sequence whose nth terms are given 

below are Cauchy sequence. 

(i) 
1

𝑛
                           (ii) 

𝑛

𝑛+1
                            (iii) 

(−1)𝑛

𝑛
 

Sol. (i) Here        𝑎𝑛 =
1

𝑛
 

𝜖 > 0 be given and let 𝑛 > 𝑚. 

Now       |𝑎𝑛 − 𝑎𝑚| = |
1

𝑛
−

1

𝑚
| =

1

𝑚
−

1

𝑛
 

                                <
1

𝑚
< 𝜖 whenever 𝑚 >

1

𝜖
  

∴ For each 𝜖 > 0, ∃ a +𝑣𝑒 integer 𝑚 such that |𝑎𝑛 − 𝑎𝑚| < 𝜖 ∀ 𝑛 > 𝑚. 

⟹ {𝑎𝑛} is a Cauchy sequence. 

(ii) Here        𝑎𝑛 =
𝑛

𝑛+1
 

𝜖 > 0 be given and let 𝑛 > 𝑚. 

Now       |𝑎𝑛 − 𝑎𝑚| = |
𝑛

𝑛+1
−

𝑚

𝑚+1
| = |(1 −

1

𝑛+1
) − (1 −

1

𝑚+1
)| 

                                               = |
1

𝑛+1
−

1

𝑚+1
| = 

1

𝑚+1
−

1

𝑛+1
 

                                <
1

𝑚+1
<

1

𝑚
< 𝜖 whenever 𝑚 >

1

𝜖
  

∴ For each 𝜖 > 0, ∃ a +𝑣𝑒 integer 𝑚 such that |𝑎𝑛 − 𝑎𝑚| < 𝜖 ∀ 𝑛 > 𝑚. 

⟹ {𝑎𝑛} is a Cauchy sequence. 
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(iii) Here        𝑎𝑛 =
(−1)𝑛

𝑛
 

𝜖 > 0 be given and let 𝑛 > 𝑚. 

Now       |𝑎𝑛 − 𝑎𝑚| = |
(−1)𝑛

𝑛
−

(−1)𝑚

𝑚
| ≤ |

(−1)𝑛

𝑛
| + |

(−1)𝑚

𝑚
| 

                                               = 
1

𝑛
+

1

𝑚
 

                                <
1

𝑚
+

1

𝑚
<

2

𝑚
< 𝜖 whenever 𝑚 >

2

𝜖
  

∴ For each 𝜖 > 0, ∃ a +𝑣𝑒 integer 𝑚 such that |𝑎𝑛 − 𝑎𝑚| < 𝜖 ∀ 𝑛 > 𝑚. 

⟹ {𝑎𝑛} is a Cauchy sequence. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Limit superior and inferior are equal for sequence {
1

𝑛
}.  

Problem 2. The limit point of the sequence {10 +
1

𝑛
} is 10.  

Problem 3. The sequence {1 + sin 𝑛} is unbounded. 

Problem 4. The set of all limit point of a sequence is open set. 

Problem 5. The Sequence 1 +
1

1!
+

1

2!
+

1

3!
+ ⋯ +

1

𝑛!
 is convergent. 

 

 

 

4.15 SUMMARY 

 

1. Range of sequence: The set of all distinct terms of a sequence is 

called its range. 

2. The sequence {𝑛} has no limit points. 

3. A sequence {𝑥𝑛} is said to be null sequence if it converges to zero 

 i.e. if lim
𝑛⟶∞

𝑥𝑛 = 0. 

4. A sequence is convergent if and only if it is a Cauchy sequence. 

              5. Bolzano – Weierstrass Theorem for a sequence: 

    Every Bounded sequence has at least one limit point. 
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4.16 GLOSSARY  
 

Numbers  

Intervals   

Limit points 

Functions 

Bounded, Unbounded sets 
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4.19 TERMINAL AND MODEL QUESTIONS 
 

Q1. Prove that the sequence (1 +
1

𝑛
)

𝑛+1

is convergent. 

Q2. Prove that the sequence {
1

𝑛+1
+

1

𝑛+2
+

1

𝑛+3
+ ⋯ +

1

2𝑛
} is 

monotonically increasing. 

Q3. If {𝑎𝑛} and {𝑏𝑛} are null sequences, show that {𝑎𝑛 + 𝑏𝑛} is also null 

sequence. 
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Q4. If {𝑎𝑛} and {𝑏𝑛} are null sequences, show that {𝑎𝑛 . 𝑏𝑛} is also null 

sequence. 

Q5. States and prove Bolzano – Weierstrass Theorem for a sequence. 

 

 

 

4.20 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. True 

        CYQ 3. False 

        CYQ 4. False 

        CYQ 5. True 
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5.5       Comparison test 

5.6       D’Alembert’s ratio test 

5.7       Cauchy’s roots test 

5.8       Alternating Series 

5.9       Absolute and Conditional Convergence 

5.10     Summary 

5.11     Glossary 
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5.1    INTRODUCTION 

In mathematics, a series is, roughly speaking, the operation 

of adding infinitely many quantities, one after the other, to a given starting 

quantity. The study of series is a major part of calculus and its 

generalization, mathematical analysis. Series are used in most areas of 

mathematics, even for studying finite structures (such as in combinatorics) 

through generating functions. In addition to their ubiquity in mathematics, 

infinite series are also widely used in other quantitative disciplines such 

as physics, computer science, statistics and finance. 

For a long time, the idea that such a potentially infinite summation could 

produce a finite result was considered paradoxical. This paradox was resolved 

using the concept of a limit during the 17th century. Zeno's 

paradox of Achilles and the tortoise illustrates this counterintuitive property 

of infinite sums: Achilles runs after a tortoise, but when he reaches the 

position of the tortoise at the beginning of the race, the tortoise has reached a 

second position; when he reaches this second position, the tortoise is at a third 

position, and so on. Zeno concluded that Achilles could never reach the 

tortoise, and thus that movement does not exist. Zeno divided the race into 

infinitely many sub-races, each requiring a finite amount of time, so that the 

total time for Achilles to catch the tortoise is given by a series. The resolution 

of the paradox is that, although the series has an infinite number of terms, it 

has a finite sum, which gives the time necessary for Achilles to catch up with 

the tortoise. 

A brief introduction to Infinite series and some results in infinite series will 

be discussed.  

 

5.2     OBJECTIVES 

 

After reading this unit learners will be able to 

 infinite series  

 positive term series 

 

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Generating_function
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Finance
https://en.wikipedia.org/wiki/Potential_infinity
https://en.wikipedia.org/wiki/Summation
https://en.wikipedia.org/wiki/Paradox
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Zeno%27s_paradox
https://en.wikipedia.org/wiki/Zeno%27s_paradox
https://en.wikipedia.org/wiki/Achilles_and_the_tortoise
https://en.wikipedia.org/wiki/Zeno_of_Elea
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5.3   SERIES 

The sum of the terms of a sequence is said to be a series. Thus if 

𝑦1, 𝑦2, 𝑦3, ….is a sequence then the sum 𝑦1 + 𝑦2 + 𝑦3 +⋯ of all the terms is 

called an infinite series and is expressed by ∑ 𝑦𝑛
∞
𝑛=1  or ∑𝑦𝑛. 

Evidently, we cannot just add up all the infinite number of terms of the series 

in ordinary way and in fact it is not obvious that this kind of sum has any 

meaning. Therefore, we start by associating with the given series, a sequence 

{𝑆𝑛}, where 𝑆𝑛  denotes the sum of the first 𝑛 terms of the series. 

Hence 𝑆𝑛 = 𝑦1 + 𝑦2 +⋯ .+𝑦𝑛          ∀𝑛 

And this sequence {𝑆𝑛} is said to be the sequence of partial sums of the series. 

The partial sums 

𝑺𝟏 = 𝒚𝟏;   𝑺𝟐 = 𝒚𝟏 + 𝒚𝟐;   𝑺𝟑 = 𝒚𝟏 + 𝒚𝟐 + 𝒚𝟑 +⋯ ..   and so on. 

The series is convergent if the sequence {𝑆𝑛} of partial sums converges and 

lim 𝑆𝑛  is called the sum of the series. 

If {𝑆𝑛} does not tend to a limit then the sum of the infinite series does not exist 

or we can say that the series does not converges. 

An infinite series is converge, diverge or oscillate according as its sequence 

of partial sums {𝑆𝑛} converges, diverges and oscillates.  

Necessary condition of convergences of an infinite series 

Theorem: A Necessary condition of convergences of an infinite series 

∑𝒚𝒏 is lim
𝑛→∞

𝑦𝑛 = 0. 

Proof. Let 𝑆𝑛 = 𝑦1 + 𝑦2 +⋯…… .+𝑦𝑛 , so that {𝑆𝑛} is the sequence of 

partial sums. 

It is given that series is converges 

Thus, the sequence {𝑆𝑛} is also converges.  

Let lim
𝑛→∞

𝑆𝑛 = 𝑡. Now 𝑦𝑛 = 𝑆𝑛 − 𝑆𝑛−1,       𝑛 > 1. 

Therefore, lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

(𝑆𝑛 − 𝑆𝑛−1) = lim
𝑛→∞

𝑆𝑛 − lim
𝑛→∞

𝑆𝑛−1 = 𝑡 − 𝑡 = 0 
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Thus lim
𝑛→∞

𝑦𝑛 = 0 

NOTE: 

A series cannot converge if 𝑛𝑡ℎ  term does not tend to zero. 

Cauchy’s General Principle of Convergence for Series 

Theorem: A necessary and sufficient condition for the convergence of an 

infinite series ∑𝒚𝒏 is that the sequence of its partial sums {𝑺𝒏} is 

convergent 

Or 

An infinite series ∑𝒚𝒏 converges iff for every 𝜺 > 𝟎 there exists a positive 

integer M such that |𝒚𝟏 + 𝒚𝟐 + 𝒀𝟑 +⋯…+ 𝒚𝒏| < 𝜺 whenever 

 𝒎 ≥ 𝒏 ≥ 𝑴  

Proof. Let 𝑆𝑛 = ∑𝑦𝑛 = 𝑦1 + 𝑦2 + 𝑦3 +⋯…+ 𝑦𝑛 and 𝑆𝑚 = ∑𝑦𝑚 = 𝑦1 +

𝑦2 + 𝑦3 +⋯…+ 𝑦𝑚 be the 𝑛𝑡ℎ and 𝑚𝑡ℎ partial sum of series respectively, 

where 𝑚 ≥ 𝑛. 

⇒ |𝑆𝑚 − 𝑆𝑛| = |(𝑦1 + 𝑦2 + 𝑦3 +⋯+ 𝑦𝑚) − (𝑦1 + 𝑦2 + 𝑦3 +⋯+ 𝑦𝑛)|  

= |𝑦𝑚+1 + 𝑦𝑚+2 +⋯+ 𝑦𝑛| . 

Let 𝜀 > 0 and for every 𝜀 the series ∑𝑦𝑛 converges iff the sequence of partial 

sums {Sn} converges 

⇔|𝑆𝑚 − 𝑆𝑛| < 𝜀     ∀ 𝑚 ≥ 𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑀 ∈ ℕ 

⇔|𝑦𝑚+1 + 𝑦𝑚+2 +⋯+ 𝑦𝑛| < 𝜀      ∀ 𝑚 ≥ 𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑀 ∈ ℕ 

Example: Prove that ∑
1

𝑛
  does not converge. 

Proof. Let the given series be converges. 

Therefore, for any given 𝜀 > 0, there exists a positive integer 𝑚 such that  

|
1

𝑛+1
+

1

𝑛+2
+⋯+

1

𝑛+𝑝
| <  𝜀      ∀ 𝑛 ≥ 𝑚  𝑎𝑛𝑑 𝑝 ≥ 1.  

 If 𝑛 = 𝑚 and 𝑝 = 𝑚, we get 

1

𝑛 + 1
+

1

𝑛 + 2
+ ⋯+

1

𝑛 + 𝑝
=

1

𝑚 + 1
+

1

𝑚 + 2
+⋯+

1

𝑚 +𝑚
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=
1

𝑚 + 1
+

1

𝑚 + 2
+ ⋯+

1

2𝑚
 

                                                        > 𝑚.
1

2𝑚
>
1

2
> 𝜀  

i.e. 
1

𝑛+1
+

1

𝑛+2
+⋯+

1

𝑛+𝑝
> 𝜀, a contradiction. 

Therefore ∑
1

𝑛
  does not converge 

NOTE: 

We can see that 𝒍𝒊𝒎𝒏→∞ (
𝒊

𝒏
) = 𝟎 but ∑

𝟏

𝒏
  does not converge 

 If ∑𝑦𝑛 = 𝑦  then ∑𝑐𝑦𝑛 = 𝑐𝑦 independent of n. 

Example: If 𝑦𝑛 > 0 and ∑𝑦𝑛 is convergent with the sum 𝑆, then prove that 
𝑦𝑛

𝑦1+𝑦2+⋯+𝑦𝑛
<
2𝑦𝑛

𝑆
, when 𝑛 is sufficiently large. Also prove that 

∑
𝑦𝑛

𝑦1+𝑦2+⋯+𝑦𝑛
 is convergent. 

Proof. It is given that ∑𝑦𝑛 is convergent with the sum S. 

Hence for  𝜀 > 0   ∃ 𝑚 ∈ ℤ+ 

|𝑆𝑛 − 𝑆| < 𝜀 ∀ 𝑛 ≥ 𝑚  where 𝑆𝑛 = 𝑦1 + 𝑦2 +⋯+ 𝑦𝑛 , 

or 𝜀 < 𝑆𝑛 − 𝑆 < 𝜀 ⇒ 𝑆 − 𝜀 < 𝑆𝑛 < 𝑆 + 𝜀, ∀ 𝑛 ≥ 𝑚     

For 𝜀 =
1

2
𝑆 > 0 

𝑆 −
1

2
𝑆 < 𝑆𝑛 < 𝑆 +

1

2
𝑆 ⇒

𝑆

2
< 𝑆𝑛 <

3𝑆

2
⇒ 

2

𝑆
>

1

𝑆𝑛
>

2

3𝑆
  , ∀ 𝑛 ≥ 𝑚      

or    
2

𝑆
>

1

𝑆𝑛
, ∀ 𝑛 ≥ 𝑚 ⇒

2𝑦𝑛

𝑆
>
𝑦𝑛

𝑆𝑛
, ∀ 𝑛 ≥ 𝑚 . 

Now 
𝒚𝒏+𝟏 

𝑺𝒏+𝟏 
+
𝒚𝒏+𝟐 

𝑺𝒏+𝟐 
+
𝒚𝒏+𝟑 

𝑺𝒏+𝟑 
+⋯+

𝒚𝒏+𝒑 

𝑺𝒏+𝒑 
 

                        <
𝟐

𝑺
(𝒚𝒏+𝟏 + 𝒚𝒏+𝟐 + 𝒚𝒏+𝟑 +⋯+ 𝒚𝒏+𝒑  ), ∀ 𝑛 ≥ 𝑚, 𝑝 ≥ 1  

⇒ 
𝒚𝒏+𝟏 

𝑺𝒏+𝟏 
+
𝒚𝒏+𝟐 

𝑺𝒏+𝟐 
+
𝒚𝒏+𝟑 

𝑺𝒏+𝟑 
+⋯+

𝒚𝒏+𝒑 

𝑺𝒏+𝒑 
<
𝟐

𝑺
(𝑺𝒏+𝒑 − 𝑺𝒏), ∀ 𝑛 ≥ 𝑚, 𝑝 ≥ 1. 

As ∑𝑦𝑛 is convergent, then given 𝜀 > 0,   there exists a positive integer 𝑚1, 

such that  
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𝑺𝒏+𝒑 − 𝑺𝒏 <
𝜀𝑆

2
, ∀ 𝑛 ≥ 𝑚1  

Therefore, 

𝒚𝒏+𝟏 

𝑺𝒏+𝟏 
+
𝒚𝒏+𝟐 

𝑺𝒏+𝟐 
+
𝒚𝒏+𝟑 

𝑺𝒏+𝟑 
+⋯+

𝒚𝒏+𝒑 

𝑺𝒏+𝒑 
<
𝟐

𝑺

𝜀𝑆

2
< 𝜀, ∀ 𝑛 ≥ max(𝑚1, 𝑚) , 𝑝 ≥ 1  

Therefore, by Cauchy’s General Principle of convergence,  ∑
𝑦𝑛

𝑦1+𝑦2+⋯+𝑦𝑛
 is 

convergent. 

 

5.4    POSITIVE TERM SERIES 

Let ∑𝑦𝑛 be an infinite series of positive term series of positive terms (𝑦𝑛 ≥

   0) and {𝑆𝑛} be the sequence of its partial sums such that  

𝑆𝑛 = 𝑦1 + 𝑦2 +⋯+ 𝑦𝑛 ≥ 0,           ∀ 𝑛  

⇒ 𝑆𝑛 − 𝑆𝑛−1 = 𝑦𝑛 ≥ 0 ⇒ 𝑆𝑛 ≥ 𝑆𝑛−1, ∀ 𝑛 > 1       

Therefore, the sequence {𝑆𝑛} of partial sums of a series of positive terms is a 

monotonic increasing sequence. 

Hence {𝑆𝑛} can either converge or diverge to +∞. 

 

Theorem: A positive term series converges if and only if the sequence of its 

partial sums is bounded above. 

Proof. Let ∑𝑦𝑛 and  {𝑆𝑛} be positive term series and a sequence of its partial 

sums respectively. 

⇒ {𝑆𝑛}  be a monotonic increasing sequence. 

As we know that monotonic increasing sequence converges iff it is bounded 

above. 

Hence {𝑆𝑛} converges if and only if the sequence of its partial sums is 

bounded above. 
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Necessary Conditions for convergence of positive term series 

Theorem:(Pringsheim’s theorem) If a series ∑𝑦𝑛 of positive monotonic 

decreasing terms converges then 𝑦𝑛 → 0 and also lim
𝑛→∞

𝑛𝑦𝑛 = 0. 

Proof. Let ∑𝑦𝑛 be the convergent series of positive monotonic decreasing 

terms. 

By the definition of convergent series, for any 𝜀 > 0, there exists a positive 

integer 𝑀 such that 

|𝑦𝑚+1 + y𝑚+2 +⋯+ y𝑚+𝑝| <
𝜀

2
,   ∀𝑚 ≥ 𝑀, 𝑝 ≥ 1   

Let 𝑚 + 𝑝 = 𝑛 > 2𝑀 and  

𝑚 = [
𝑛

2
]  𝒊. 𝒆.𝒎 = 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑜𝑡 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛

 𝑛

2
. 

Hence  

𝑦𝑚+1 + y𝑚+2 +⋯+ y𝑛 <
𝜀

2
  

But ∑𝑦𝑛 is  positive monotonic decreasing. 

i.e. 𝑦𝑚+1 > y𝑚+2 > ⋯ > y𝑛 ⇒ 𝑦𝑚+1 + y𝑚+2 +⋯+ y𝑛 >

 𝑦𝑛 + 𝑦𝑛 +⋯ . .+𝑦𝑛 ⏟            
(𝑛−𝑚)𝑡𝑖𝑚𝑒𝑠

 

⇒ 𝑦𝑚+1 + y𝑚+2 +⋯+ y𝑛 > (𝑛 −𝑚)𝑦𝑛  

Therefore (𝑛 − 𝑚)𝑦𝑛 < 𝑦𝑚+1 + y𝑚+2 +⋯+ y𝑛 <
𝜀

2
 

(𝑛 −
𝑛

2
)𝑦𝑛 <

𝜀

2
           𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑚 = [

𝑛

2
]  

⇒
𝑛

2
<
𝜀

2
 ⇒  𝑛𝑦𝑛 < 𝜀      

Hence lim
𝑛→∞

𝑛𝑦𝑛 = 0 
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NOTE:  

lim
𝑛→∞

𝑛𝑦𝑛 = 0 is only necessary not sufficient condition. If lim
𝑛→∞

𝑛𝑦𝑛 ≠ 0 then 

the series ∑𝑦𝑛 is obviously divergent..Example ∑
1

𝑛
  diverges because 

lim
𝑛→∞

𝑛𝑦𝑛 = 1 ≠ 0 and positive monotonic decreasing terms.\ 

Theorem Let ∑
𝟏

𝒏𝒑
  be positive term series then it is convergent iff 𝒑 > 𝟏. 

Proof. Let 𝑆𝑛 =
1

1𝑝
+

1

2𝑝
+⋯+

1

𝑛𝑝
  

Case 1. When 𝑝 > 1 

Now  

1

1𝑝
= 1           …………(1) 

1

2𝑝
+

1

3𝑝
<

1

2𝑝
+

1

2𝑝
<

2

2𝑝
=

1

2𝑝−1
                    ………(2) 

1

4𝑝
+

1

5𝑝
+

1

6𝑝
+

1

7𝑝
<

1

4𝑝
+

1

4𝑝
+

1

4𝑝
+

1

4𝑝
<

4

4𝑝
=

1

4𝑝−1
= (

1

2𝑝−1
)
2

 ..…..(3) 

 
1

8𝑝
+

1

9𝑝
+⋯+

1

15𝑝
<

1

8𝑝
+

1

8𝑝
+⋯+

1

8𝑝⏟          
8 𝑡𝑖𝑚𝑒𝑠

<
8

8𝑝
=

1

8𝑝−1
= (

1

2𝑝−1
)
3

..…..(4) 

……… ……………………… ……… ………………………  

 ……… ……………………… ……… ………………………  

……… ……………………… ……… ………………………  

1

(2𝑛)𝑝
+

1

(2𝑛+1)𝑝
+⋯+

1

(2𝑛+1−1)𝑝
<

1

(2𝑛)𝑝
+

1

(2𝑛)𝑝
+⋯+

1

(2𝑛)𝑝⏟              
2𝑛  𝑡𝑖𝑚𝑒𝑠

    

  =
2𝑛

(2𝑛)𝑝
= (

1

2𝑝−1
)
𝑛

 ..(n) 

Adding (1), (2),…..,(n), we get  

1

1𝑝
+

1

2𝑝
+⋯+

1

(2𝑛+1−1)𝑝
= 𝑆2𝑛+1−1 < 1 + (

1

2
)
𝑝−1

+⋯+ (
1

2𝑝−1
)
𝑛

  

=
1(1−((

1

2
)
𝑝−1

)
𝑛+1

)

1−(
1

2
)
𝑝−1 =

2𝑝−1(1−(
1

2𝑝−1
)
𝑛+1

) 

2𝑝−1−1
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Therefore  

𝑆2𝑛+1−1 <
2𝑝−1 

2𝑝−1−1
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛  

As we know that when 𝑛  is any positive integer. 

2𝑛+1 − 1 > 2𝑛 > 𝑛  

Therefore 

𝑆𝑛 < 𝑆2𝑛 < 𝑆2𝑛+1−1 <
2𝑝−1 

2𝑝−1−1
  

Since for a given 𝑝, 
2𝑝−1 

2𝑝−1−1
 is a fixed number. 

Hence, the sequence {𝑆𝑛} of partial sums of given positive term series is 

bounded above. 

Therefore, the series converges for 𝑝 > 1. 

Case II: When 𝑝 ≤ 1 

As we know, if n is any positive integer and 𝑝 ≤ 1 then  

𝑛𝑝 ≤ 𝑛 implies 
1

𝑛𝑝
≥

1

𝑛
 

Therefore 

1 +
1

2𝑝
≥ 1+

1

2
>

1

2
                                 ……….(1’) 

1

3𝑝
+

1

4𝑝
≥
1

3
+
1

4
>

2

4
=
1

2
                         …………. (2’) 

1

5𝑝
+

1

6𝑝
+

1

7𝑝
+

1

8𝑝
≥

1

5
+
1

6
+
1

7
+
1

8
>

4

8
=
1

2
                 ………… (3’) 

1

9𝑝
+

1

10𝑝
+⋯+

1

16𝑝
≥
1

9
+
1

10
+ ⋯+

1

16
 

                                                            ≥
1

16
+

1

16
+⋯+

1

16⏟          
8 𝑡𝑖𝑚𝑒𝑠

=
8

16
=
1

2
      ….. (4’) 

……… ……………………… ……… ………………………  

 ……… ……………………… ……… ………………………  

……… ……………………… ……… ………………………  



Real Analysis  MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                              77 
 

1

(2𝑚−1 + 1)𝑝
+

1

(2𝑚−1 + 2)𝑝
+⋯+

1

(2𝑚)𝑝
 

≥
1

2𝑚−1+1
+

1

2𝑚−1+2
+. . +

1

2𝑚
>

1

2𝑚
+

1

2𝑚
+⋯+

1

2𝑚⏟          
2𝑚−1 𝑡𝑖𝑚𝑒𝑠

  

                                                                          =
2𝑚−1

2𝑚
=

1

2
                                  …….(m’) 

Adding (1’), (2’),…and (m’), we get 

1

1𝑝
+

1

2𝑝
+⋯+

1

(2𝑚)𝑝
= 𝑆2𝑚 >

1

2
+
1

2
+⋯… .+

1

2⏟          
𝑚 𝑡𝑖𝑚𝑒𝑠

 =
𝑚

2
  

i.e. 𝑆2𝑚 >
𝑚

2
. 

Now we try to prove that {𝑆𝑛} is not bounded above. 

Let 𝐾 be any number and there exists 𝑚′ ∈ ℕ such that 
𝑚′

2
> 𝐾 

Let 𝑛 > 2𝑚
′
 

Hence 𝑆𝑛 > 𝑆2𝑚′ > 𝐾 

Therefore, we conclude that the sequence of partial sums {𝑆𝑛} of given series  

is not bounded above. 

Thus, the series diverges for 𝑝 ≤ 1. 

Therefore, ∑
1

𝑛𝑝
  converges if 𝑝 > 1. 

 

5.5      COPARISION TEST 

Test 1. If ∑𝑢𝑛 and ∑𝑣𝑛  are series of positive terms and ∑𝑣𝑛 is convergent 

and there is a positive constant k such that 𝑢𝑛 ≤ 𝑘𝑣𝑛 , ∀ 𝑛, then ∑𝑢𝑛 is also 

convergent. 

Test 2. If ∑𝑢𝑛 and ∑𝑣𝑛  are series of positive terms and ∑𝑣𝑛 is divergent and 

there is a positive constant k such that 𝑢𝑛 ≥ 𝑘𝑣𝑛 , ∀ 𝑛, then ∑𝑢𝑛 is also 

divergent. 

Test 3. If ∑𝑢𝑛 and ∑𝑣𝑛  are series of positive terms and 
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(i) if lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= 1(finite and non-zero), then ∑𝑢𝑛 and ∑𝑣𝑛 both converge or 

diverge together. 

(ii) if lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= 0 and ∑𝑣𝑛 converges, then  ∑𝑢𝑛 is also converges. 

(iii) if lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= ∞ and ∑𝑣𝑛 diverges, then  ∑𝑢𝑛 is also diverges. 

 

5.6      D’ALEMBERT’S RATION TEST 

If  ∑𝑢𝑛 is a series of positive terms such that lim
𝑛⟶∞

𝑢𝑛

𝑢𝑛 +1
= 𝑙, then  

(i) ∑𝑢𝑛 is convergent if 𝑙 > 1. 

(ii) ∑𝑢𝑛 is divergent if 𝑙 < 1. 

(iii) ∑𝑢𝑛 may converge or diverge if 𝑙 = 1.(i.e. the test fails if 𝑙 = 1). 

And if lim
𝑛⟶∞

𝑢𝑛

𝑢𝑛 +1
= ∞, then ∑𝑢𝑛 is convergent. 

 

5.7      CAUCHY’S ROOT TEST 

 

If  ∑𝑢𝑛 is a series of positive terms such that lim
𝑛⟶∞

(𝑢𝑛)
1/𝑛 = 𝑙, then  

(i) ∑𝑢𝑛 is convergent if 𝑙 < 1. 

(ii) ∑𝑢𝑛 is divergent if 𝑙 > 1. 

(iii) ∑𝑢𝑛 may converge or diverge if 𝑙 = 1.(i.e. the test fails if 𝑙 = 1). 

And if lim
𝑛⟶∞

(𝑢𝑛)
1/𝑛 = ∞, then ∑𝑢𝑛 is divergent. 
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5.8      ALTERNATING SERIES 

 

A series with terms alternately positive and negative is called an alternating 

series. 

Thus, the series 𝑢1 − 𝑢2 + 𝑢3 − 𝑢4…  where 𝑢𝑛 > 0. 

For each n, is an alternating series and is briefly written as ∑(−1)𝑛−1𝑢𝑛. 

Leibnitz’s test on alternating series 

The alternating series ∑(−1)𝑛−1 𝑢𝑛 = 𝑢1 − 𝑢2 + 𝑢3 − 𝑢4…  where 𝑢𝑛 >

0 ∀ 𝑛 converges if  

(i) 𝑢𝑛 ≥ 𝑢𝑛+1∀ 𝑛    and       (ii) lim
𝑛⟶∞

𝑢𝑛 = 0. 

 

5.9      ABSOLUTE AND CONDITIONAL 

CONVERGENCE 

Definition 1. A series ∑ 𝑢𝑛
∞
𝑛=1  is said to be absolute convergent if the  

                       series ∑ |𝑢𝑛|
∞
𝑛=1  is convergent. 

Definition 2. If ∑ 𝑢𝑛
∞
𝑛=1  converges but not absolutely then the series ∑ 𝑢𝑛

∞
𝑛=1   

                       is called conditionally convergent. 

 

Theorem: Every absolutely convergent series is convergent. 

Proof. Let ∑ 𝑢𝑛
∞
𝑛=1  be absolutely convergent series, then ∑ |𝑢𝑛|

∞
𝑛=1  is 

convergent. 

Therefore, By Cauchy’s general principle of convergence, given 𝜖 > 0, ∃ a 

positive integer m such that ||𝑢𝑚+1| + |𝑢𝑚+2| + ⋯+ |𝑢𝑛|| < 𝜖     ∀ 𝑛 > 𝑚 

i.e. |𝑢𝑚+1| + |𝑢𝑚+2| + ⋯+ |𝑢𝑛| < 𝜖     ∀ 𝑛 > 𝑚               ……. (1) 

now, by triangle inequality, we have  

            |𝑢𝑚+1 + 𝑢𝑚+2 +⋯+ 𝑢𝑛| ≤ |𝑢𝑚+1| + |𝑢𝑚+2| + ⋯+ |𝑢𝑛| 
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                                                               < 𝜖     ∀ 𝑛 > 𝑚    

Therefore, By Cauchy’s general principle of convergence, the series  ∑ 𝑢𝑛
∞
𝑛=1  

is convergent. 

Hence  ∑ |𝑢𝑛|
∞
𝑛=1   is convergent ⟹  𝑢𝑛 is convergent. 

Note 1. Absolute convergence    ⟹   convergent, but convergence need not 

imply absolute convergence i.e. the convergence of above theorem need not 

be true. 

For Example: Consider the series   

                                    ∑
(−1)𝑛−1

𝑛
= 1 −

1

2
+
1

3
−
1

4
+⋯∞

𝑛=1   

It is an alternating series. Here 𝑢𝑛 =
1

𝑛
. Clearly 𝑢𝑛 > 0 ∀ 𝑛 

Since 
1

𝑛
>

1

𝑛+1
 , 𝑢𝑛 > 𝑢𝑛+1∀ 𝑛 

Also      lim
𝑛⟶∞

𝑢𝑛 = lim
𝑛⟶∞

1

𝑛
= 0 

Therefore, by Leibnitz’s test ∑
(−1)𝑛−1

𝑛

∞
𝑛=1  is convergent. 

Note: If ∑ 𝑢𝑛
∞
𝑛=1  is an absolutely convergent series, then the series of its 

positive terms and the series of its negative terms are both convergent. 

Note: If ∑ 𝑢𝑛
∞
𝑛=1  is conditionally convergent, then the series of its positive 

terms and the series of its negative terms are both divergent. 

Note: A series with mixed signs cannot converge if the series of its positive 

terms is convergent (divergent) and the series of its negative terms is 

divergent (convergent). 

 

Example 1. Test the convergence of the series 

                     (i) ∑ sin
1

𝑛

∞
𝑛=1                           (ii) ∑

1

𝑛
 sin

1

𝑛

∞
𝑛=1  

Sol. (i) Here 𝑢𝑛 = sin
1

𝑛
  

                           = 
1

𝑛
−

1

3!
 .
1

𝑛3
+

1

5!
 .
1

𝑛5
−⋯  
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                           = 
1

𝑛
[1 −

1

3!
 .
1

𝑛2
+

1

5!
 .
1

𝑛4
−⋯ ] 

Take 𝑣𝑛 =
1

𝑛
  

    lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= lim
𝑛⟶∞

[1 −
1

3!
 .
1

𝑛2
+

1

5!
 .
1

𝑛4
−⋯] = 1 which is finite and ≠ 0. 

Therefore,  ∑ 𝑢𝑛
∞
𝑛=1  and ∑ 𝑣𝑛

∞
𝑛=1  converges and diverges together. 

Since ∑ 𝑣𝑛
∞
𝑛=1 = ∑

1

𝑛

∞
𝑛=1  is of the form ∑

1

𝑛𝑝
∞
𝑛=1  with p = 1. 

Therefore, ∑ 𝑣𝑛
∞
𝑛=1  is divergent ⟹ ∑ 𝑢𝑛

∞
𝑛=1  is divergent. 

(ii) Here 𝑢𝑛 =
1

𝑛
sin

1

𝑛
  

                           = 
1

𝑛
[
1

𝑛
−

1

3!
 .
1

𝑛3
+

1

5!
 .
1

𝑛5
−⋯]  

                           = 
1

𝑛2
[1 −

1

3!
 .
1

𝑛2
+

1

5!
 .
1

𝑛4
−⋯ ] 

Take 𝑣𝑛 =
1

𝑛2
  

      lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= lim
𝑛⟶∞

[1 −
1

3!
 .
1

𝑛2
+

1

5!
 .
1

𝑛4
−⋯] = 1 which is finite and ≠ 0. 

Therefore,  ∑ 𝑢𝑛
∞
𝑛=1  and ∑ 𝑣𝑛

∞
𝑛=1  converges and diverges together. 

Since ∑ 𝑣𝑛
∞
𝑛=1 = ∑

1

𝑛2
∞
𝑛=1  is of the form ∑

1

𝑛𝑝
∞
𝑛=1  with p = 2. 

Therefore, ∑ 𝑣𝑛
∞
𝑛=1  is convergent ⟹ ∑ 𝑢𝑛

∞
𝑛=1  is convergent. 

 

Example 2. Discuss the convergence or divergence of the following series: 

                    (i) ∑
𝑛2

𝑛!

∞
𝑛=1                          

Sol. Here, 𝑢𝑛 =
𝑛2

𝑛!
  

Therefore, 𝑢𝑛+1 =
(𝑛+1)2

(𝑛+1)!
=

(𝑛+1)2

(𝑛+1)𝑛!
=
𝑛+1

𝑛!
 

Therefore, 
𝑢𝑛

𝑢𝑛+1
=

𝑛2

𝑛+1
=

1
1

𝑛
 + 

1

𝑛2
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Therefore, lim
𝑛⟶∞

𝑢𝑛

𝑢𝑛+1
= lim
𝑛⟶∞

1
1

𝑛
 + 

1

𝑛2

=
1

0
= ∞ 

Therefore, by D’Alembert’s Ration test, ∑ 𝑢𝑛
∞
𝑛=1  is convergent. 

Example 3. Test the convergence of the following series: 

                     ∑ (
𝑛

𝑛+1
)
𝑛2

∞
𝑛=1 . 

Sol. Here, 𝑢𝑛 = (
𝑛

𝑛+1
)
𝑛2

 

Therefore, (𝑢𝑛)
1/𝑛 = [(

𝑛

𝑛+1
)
𝑛2

]

1/𝑛

= (
𝑛

𝑛+1
)
𝑛

= (
𝑛+1

𝑛
)
−𝑛

 

                                = [(1 +
1

𝑛
)
𝑛

]
−1

 

Therefore, lim
𝑛⟶∞

(𝑢𝑛)
1/𝑛 = lim

𝑛⟶∞
[(1 +

1

𝑛
)
𝑛

]
−1

= 𝑒−1 =
1

𝑒
< 1 

Therefore, by Cauchy’s Root Test, the given series ∑ 𝑢𝑛
∞
𝑛=1  is convergent. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Every absolutely convergent series is convergent. 

Problem 2. Every convergent series is absolutely convergent. 

Problem 3. The series ∑ (1 +
1

𝑛
)
−𝑛2

∞
𝑛=1  is convergent. 

Problem 4. A positive term series converges if and only if the 

sequence of its partial    

                    sums is bounded above. 

Problem 5. The series ∑ 𝑛∞
𝑛=1  is convergent. 

 

 

 

5.10 SUMMARY 
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1. If ∑ 𝑢𝑛
∞
𝑛=1  is an absolutely convergent series, then the series of its positive 

terms and the series of its negative terms are both convergent. 

2. If ∑ 𝑢𝑛
∞
𝑛=1  is conditionally convergent, then the series of its positive terms 

and the series of its negative terms are both divergent. 

3. A series with mixed signs cannot converge if the series of its positive terms 

is convergent (divergent) and the series of its negative terms is divergent 

(convergent). 

4. Test 1. If ∑𝑢𝑛 and ∑𝑣𝑛  are series of positive terms and ∑𝑣𝑛 is convergent 

and there is a positive constant k such that 𝑢𝑛 ≤ 𝑘𝑣𝑛 , ∀ 𝑛, then ∑𝑢𝑛 is also 

convergent. 

Test 2. If ∑𝑢𝑛 and ∑𝑣𝑛  are series of positive terms and ∑𝑣𝑛 is divergent and 

there is a positive constant k such that 𝑢𝑛 ≥ 𝑘𝑣𝑛 , ∀ 𝑛, then ∑𝑢𝑛 is also 

divergent. 

Test 3. If ∑𝑢𝑛 and ∑𝑣𝑛  are series of positive terms and 

(i) if lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= 1(finite and non-zero), then ∑𝑢𝑛 and ∑𝑣𝑛 both converge or 

diverge together. 

(ii) if lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= 0 and ∑𝑣𝑛 converges, then  ∑𝑢𝑛 is also converges. 

(iii) if lim
𝑛⟶∞

𝑢𝑛

𝑣𝑛
= ∞ and ∑𝑣𝑛 diverges, then  ∑𝑢𝑛 is also diverges. 

 

 

5.11 GLOSSARY  
 

sequence  

limit  
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5.14 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Examine the convergence of the series ∑
2𝑛 .  𝑛!

𝑛𝑛
∞
𝑛=1 .    

Q 2. Examine the convergence of the series ∑
1

𝑛!

∞
𝑛=1  . 

Q 3.  Examine the convergence of the series ∑
1

(𝑙𝑜𝑔𝑛)𝑛
∞
𝑛=1  . 

Q 4. Define Cauchy’s Roots Test.     

Q 5. Test the convergence and absolutely convergence of the series 

          ∑
(−1)𝑛−1𝑛

𝑛+2

∞
𝑛=1  . 

 

5.15 ANSWERS 

TQ1. Convergent. 
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TQ2. Convergent. 

TQ3. Convergent. 

TQ5. Not convergent 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. True 

        CYQ 5. False 
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UNIT 6:  LIMITS 
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6.1 INTRODUCTION 

 

In Mathematics, the limit of a function is a fundamental concept 

in calculus and analysis concerning the behaviour of that function near a 

particular input which may or may not be in the domain of the function. 

In previous unit we discussed about sequence and series. In this unit we 

will be discussed about limit of one variable function. 

The limit of a function is defined as the unique real number that the 

functions take when the variable of the function approaches a particular 

point. For any given function f(x), and a real number ‘c’, the limit of the 

function is defined as, 

                                            𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = L  

This is read as, “limit of f(x), as x approaches a equals L” 

 

 

 

6.2 OBJECTIVES 

After studying this unit, learner will be able to  

(i) Neighborhood 

             (ii) Interior point 

             (iii) Open set 

             (iv) Limit point 

                  

 

 

 

6.3 LIMIT 

∎(𝜺, 𝜹) definition of Limit. 

Let 𝐴 ⊆  𝑅, and let 𝑐 be a cluster point of A. For a function 𝑓 ∶  𝐴 →  ℝ, a 

real number 𝑙 is said to be a limit of 𝑓 at 𝑐 if, given any 휀 >  0, there exists 

a 𝛿 >  0 such that 

if 𝑥 ∈  𝐴 and 0 < |𝑥 − 𝑐| <  𝑑, then |𝑓(𝑥) − 𝑙| < 휀. 
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Note: If 𝑓 ∶  𝐴 →  ℝ and if 𝑐 is a cluster point of 𝐴, then 𝑓 can have only 

one limit at 𝑐. 

Proof: Let 𝑙 and 𝑙’ be the limits of function 𝑓. 

For any 휀 > 0, there exists 𝛿1 (
𝜀

2
) > 0 such that if 𝑥 ∈ 𝐴 and 

 0 < |𝑥 − 𝑐| <  𝛿1 (
𝜀

2
), then |𝑓(𝑥) − 𝑙| <

𝜀

2
.   

and there exists 𝛿2 (
𝜀

2
) > 0 such that if 𝑥 ∈ 𝐴 and 0 < |𝑥 − 𝑐| <  𝛿2 (

𝜀

2
), 

then |𝑓(𝑥) − 𝑙′| <
𝜀

2
.  

Let 𝛿 = inf {𝛿1 (
𝜀

2
) , 𝛿2 (

𝜀

2
)}.  Then if 𝑥 ∈ 𝐴 and 0 < |𝑥 − 𝑐| <  𝛿. 

The Triangle Inequality implies that 

|𝑙 − 𝑙′| = |𝑙 + (−𝑓(𝑥) + 𝑓(𝑥)) − 𝑙′| ≤ |𝑙 − 𝑓(𝑥)| + |𝑓(𝑥) − 𝑙′|  

<
𝜀

2
+

𝜀

2
< 휀.   

Because 휀 > 0 is arbitrary. Therefore, 𝑙 − 𝑙′ = 0 ⇒ 𝑙 = 𝑙′. 

 

Example 6.3.1. Prove that 𝐥𝐢𝐦
𝒙→𝒂

𝒄 = 𝒄 

 

Sol. Let 𝑓(𝑥) = 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ . 

Now we will try to prove that lim
𝑥→𝑎

𝑓(𝑥) = 𝑐. 

Let 휀 > 0 and 𝛿 = 1. 

Then if 0 < |𝑥 − 𝑎| < 1, we have 

|𝑓(𝑥) − 𝑐| = |𝑐 − 𝑐| = 0 < 휀.  

As 휀 > 0 is arbitrary, by definition of limit we get 

lim
𝑥→𝑎

𝑓(𝑥) = 𝑐 . 

 

Example 6.3.2. Prove that 𝐥𝐢𝐦
𝒙→𝒃

𝒙𝟐 = 𝒃𝟐 

 

Sol. Let 𝑓(𝑥) = 𝒙𝟐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ . 

Now we will try to prove that lim
𝑥→𝑎

𝑓(𝑥) = 𝑏2. 

Now we try to prove that |𝑓(𝑥) − 𝑏2| = |𝑥2 − 𝑏2| less than a 

 preassigned 휀 > 0 by taking x sufficiently close to 𝑏. 

Now 

 𝑥2 − 𝑏2 = (𝑥 − 𝑏)(𝑥 + 𝑏). 

If | 𝑥 − 𝑏| < 1, then 

|𝑥| < |𝑏| + 1  

Hence |𝑥 + 𝑏| ≤ |𝑥| + |𝑏| < |𝑏| + 1 + |𝑏| < 2|𝑏| + 1  

Thus, if   |𝑥 − 𝑏| < 1 then 

 |𝑥2 − 𝑏2| ≤ |𝑥 − 𝑏||𝑥 + 𝑏| < (2|𝑏| + 1)|𝑥 − 𝑏|           ……(1) 

Let |𝑥 − 𝑏| <
𝜀

2|𝑐|+1
 and we choose 𝛿(휀) = inf {1,

𝜀

2|𝑐|+1
},  
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Then if 0 < |𝑥 − 𝑏| < 𝛿(휀),  

Now if |𝑥 − 𝑏| < 1, then equation (1) is valid. 

If |𝑥 − 𝑏| <
𝜀

2|𝑏|+1
 then  

 |𝑥2 − 𝑏2| < (2|𝑏| + 1)|𝑥 − 𝑏| < (2|𝑏| + 1).
𝜀

2|𝑐|+1
<  휀 

As we have choice to choose  𝛿(휀) > 0 for an arbitrary choice of 휀 > 0. 

We deduce that lim
𝑥→𝑏

𝑥2 = 𝑏2 

 

Example 6.3.3. Prove that 𝐥𝐢𝐦
𝒙→𝒃

 
𝟏

𝒙
=

𝟏

𝒃
 𝒊𝒇 𝒃 > 𝟎 

 

Proof. Let 𝑓(𝑥) =
𝟏

𝒙
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0  and assume 𝒃 > 𝟎 

Now we will try to prove that lim
𝑥→𝑎

𝑓(𝑥) =
1

𝑏
. 

Therefore, we will try to prove that the difference |𝑓(𝑥) −
1

𝑏
| = |

1

𝑥
−

1

𝑏
| 

less than a preassigned 휀 > 0 by taking x sufficiently close to 𝑏 > 0. 

Now 

 |
1

𝑥
−

1

𝑏
| = |

1

𝑏𝑥
(𝑏 − 𝑥)| =

1

𝑏𝑥
|𝑥 − 𝑏|   𝑓𝑜𝑟  𝑥 > 0. 

Now if | 𝑥 − 𝑏| <
1

2
𝑏 then 

 −
1

2
𝑏 < 𝑥 − 𝑏 <

1

2
𝑏 ⇒

1

2
𝑏 < 𝑥 <

3

2
𝑏 ⇒

1

2
𝑏2 < 𝑏𝑥 ⇒

2

𝑏2 >
1

𝑏𝑥
. 

Therefore 

0 <
1

𝑏𝑥
<

2

𝑏2  for | 𝑥 − 𝑏| <
1

2
𝑏 

Hence, for these values of 𝑥 we have 

|𝑓(𝑥) −
1

𝑏
| <

2

𝑏2
|𝑥 − 𝑏|                             ………(1) 

In order to make this last term less than 휀 it suffices to take 

 |𝑥 − 𝑏| <
1

2
𝑏2휀. Consequently, if we choose 𝛿(휀) = inf {

1

2
𝑏,

1

2
𝑏2휀},  

Then if 0 < |𝑥 − 𝑏| < 𝛿(휀),  

Now if |𝑥 − 𝑏| <
1

2
𝑏, then equation (1) is valid. 

Therefore, since |𝑥 − 𝑏| <
1

2
𝑏2휀, that  

|𝑓(𝑥) −
1

𝑏
 | = |

1

𝑥
−

1

𝑏
| < 휀  

Since we have a way of choosing 𝛿(휀) > 0 for an arbitrary choice of 휀 >

0, we conclude that 

lim
𝑥→𝑏

 
1

𝑥
=

1

𝑏
 𝑖𝑓 𝑏 > 0.  

 

Theorem 6.3.1.  Let 𝑋 ⊆ ℝ and 𝑓, 𝑔: 𝑋 → ℝ and let 𝑏 ∈ ℝ be a cluster 

point of 𝑋 and ∈ ℝ .  

(a) If lim
𝑥→𝑏

𝑓 = 𝑙1 and lim
𝑥→𝑏

𝑔 = 𝑙2,  then 

 (i)  lim
𝑥→𝑏

𝑓 + 𝑔 = 𝑙1 + 𝑙2   (ii)  lim
𝑥→𝑏

𝑓 − 𝑔 = 𝑙1 − 𝑙2 
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(iii) lim
𝑥→𝑏

𝑓𝑔 = 𝑙1𝑙2             

(b) If ℎ: 𝑋 → ℝ and ℎ(𝑥) ≠ 0 for all 𝑥 ∈ 𝑋, if lim
𝑥→𝑏

ℎ = 𝑙3 ≠ 0, then 

lim
𝑥→𝑏

𝑓

ℎ
=

𝑙1

𝑙3
 

 

Proof. (a) It is given that lim
𝑥→𝑏

𝑓 = 𝑙1 and lim
𝑥→𝑏

𝑔 = 𝑙2, Hence for any 

 휀 > 0 there exists a positive number 𝛿1 and 𝛿2 such that  

|𝑓(𝑥) − 𝑙1| <
𝜀

2
 when 0 < |𝑥 − 𝑏| < 𝛿1 and |𝑔(𝑥) − 𝑙2| <

𝜀

2
 when 

 0 < |𝑥 − 𝑏| < 𝛿2 

Let 𝛿 = min(𝛿1, 𝛿2), then 

|𝑓(𝑥) − 𝑙1| <
𝜀

2
 when 0 < |𝑥 − 𝑏| < 𝛿                             ………(1)  

  and 

|𝑔(𝑥) − 𝑙2| <
𝜀

2
 when 0 < |𝑥 − 𝑏| < 𝛿                             ………(2) 

Now, when 0 < |𝑥 − 𝑏| < 𝛿 

|(𝑓 + 𝑔)(𝑥) − (𝑙1 + 𝑙2)|  = |𝑓(𝑥) − 𝑙1 + 𝑔(𝑥) − 𝑙2|  

                                             ≤ |𝑓(𝑥) − 𝑙1|  + |𝑔(𝑥) − 𝑙2|  

                                           <
𝜀

2
+

𝜀

2
= 휀  

Therefore 

|(𝑓 + 𝑔)(𝑥) − (𝑙1 + 𝑙2)| < 휀 when 0 < |𝑥 − 𝑏| < 𝛿 

Thus,  lim
𝑥→𝑏

𝑓 + 𝑔 = 𝑙1 + 𝑙2 

(ii)  When 0 < |𝑥 − 𝑏| < 𝛿 

|(𝑓 − 𝑔)(𝑥) − (𝑙1 − 𝑙2)|  = |𝑓(𝑥) − 𝑙1 + 𝑔(𝑥) − 𝑙2|  

                                             ≤ |𝑓(𝑥) − 𝑙1|  + |𝑙2 − 𝑔(𝑥)|  

                                             = |𝑓(𝑥) − 𝑙1|  + |𝑔(𝑥) − 𝑙2| <
𝜀

2
+

𝜀

2
= 휀    

(From (1) and (2)) 

 |(𝑓 − 𝑔)(𝑥) − (𝑙1 − 𝑙2)| < 휀 when 0 < |𝑥 − 𝑏| < 𝛿 

Thus,  lim
𝑥→𝑏

𝑓 − 𝑔 = 𝑙1 − 𝑙2 

(iii) |(𝑓𝑔)(𝑥) − (𝑙1𝑙2)|  = |𝑓(𝑥)𝑔(𝑥) − 𝑙1𝑙2| 

                                              = |𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑙2 + 𝑓(𝑥)𝑙2 − 𝑙1𝑙2|  

                                              = |𝑓(𝑥)(𝑔(𝑥) − 𝑙2) + 𝑙2(𝑓(𝑥) − 𝑙1)|  

                                         ≤ |𝑓(𝑥)||𝑔(𝑥) − 𝑙2|  + |𝑙2||𝑓(𝑥) − 𝑙1|       .….(3) 

As we know that lim
𝑥→𝑏

𝑓 = 𝑙1 . Hence for any 휀 = 1 there exists a positive 

number 𝛿′1 such that  

|𝑓(𝑥) − 𝑙1| < 1 when 0 < |𝑥 − 𝑏| < 𝛿′1. 

Now 

|𝑓(𝑥)| = |𝑓(𝑥) − 𝑙1 + 𝑙1| ≤ |𝑓(𝑥) − 𝑙1| + |𝑙1|  

              < 1 + |𝑙1| ,       when 0 < |𝑥 − 𝑏| < 𝛿′1              …….(4) 

lim
𝑥→𝑏

𝑔 = 𝑙2 , there exists a positive number 𝛿′2 such that  

|𝑔(𝑥) − 𝑙2| <
𝜀

2

1+|𝑙1|
 when 0 < |𝑥 − 𝑏| < 𝛿′2                   …….(5) 
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Again lim
𝑥→𝑏

𝑓 = 𝑙1, there exists a positive number 𝛿′3 such that  

|𝑓(𝑥) − 𝑙1| <
𝜀

2

|𝑙2|
 when 0 < |𝑥 − 𝑏| < 𝛿′3                         …...(6) 

Let 𝛿′ = min{𝛿1
′ , 𝛿2

′ , 𝛿3
′ }. Then from (3), (4), (5) and (6),  

when 0 < |𝑥 − 𝑏| < 𝛿′ 

|(𝑓𝑔)(𝑥) − (𝑙1𝑙2)| < (1 + |𝑙1|)
𝜀

2

1+|𝑙1|
 + |𝑙2|

𝜀

2

|𝑙2|
< 휀. 

Hence lim
𝑥→𝑏

𝑓𝑔 = 𝑙1𝑙2. 

(b) lim
𝑥→𝑏

ℎ = 𝑙3 ≠ 0 therefore for 휀 =
|𝑚|

2
> 0 there exists 𝛿3 > 0 such that 

|ℎ(𝑥) − 𝑙3| <
|𝑚|

2
          when 0 < |𝑥 − 𝑏| < 𝛿3 

Now 

|𝑙3| = |𝑙3 − ℎ(𝑥) + ℎ(𝑥)| ≤ |𝑙3 − ℎ(𝑥)| + |ℎ(𝑥)| = |ℎ(𝑥) − 𝑙3| +

|ℎ(𝑥)| or 

or |𝑙3| <
|𝑙3|

2
+ |ℎ(𝑥)| ⇒ |ℎ(𝑥)| > |𝑙3| −

|𝑙3|

2
=

|𝑙3|

2
. 𝑜𝑟  

1

|ℎ(𝑥)|
<

2

|𝑙3|
   

It implies that there exists a deleted neighbourhood of 𝑏 on which ℎ(𝑥) 

does not vanish. 

Now, when 0 < |𝑥 − 𝑏| < 𝛿3 

|(
𝑓

ℎ
) (𝑥) −

𝑙1

𝑙3
| = |

𝑓(𝑥)

ℎ(𝑥)
−

𝑙1

𝑙3

| = |
𝑓(𝑥)𝑙3 − ℎ(𝑥)𝑙1

ℎ(𝑥)𝑙3 
|

= |
𝑓(𝑥)𝑙3 − 𝑙1𝑙3 + 𝑙1𝑙3 − ℎ(𝑥)𝑙1

ℎ(𝑥)𝑙3 
| 

                                                = |
𝑙3(𝑓(𝑥)−𝑙1)+𝑙1(𝑙3−ℎ(𝑥)) 

ℎ(𝑥)𝑙3 
|   

                          ≤
1

|ℎ(𝑥)|
|𝑓(𝑥) − 𝑙1| +

|𝑙1|

|𝑙3||ℎ(𝑥)|
|ℎ(𝑥) − 𝑙3|  

 <
2

|𝑙3|
 . |𝑓(𝑥) − 𝑙1| +

2

|𝑙3|

|𝑙1|

|𝑙3|
|ℎ(𝑥) − 𝑙3| 

                         =
2

|𝑙3|
 . |𝑓(𝑥) − 𝑙1| +

2|𝑙1|

|𝑙3|2
|ℎ(𝑥) − 𝑙3|                   ............(7) 

Let 휀 > 0 be given. 

It is given that lim
𝑥→𝑏

 𝑓 = 𝑙1 and  lim
𝑥→𝑏

ℎ = 𝑙3, hence there exists positive 

numbers 𝛿1
" and 𝛿2

"  such that 

|𝑓(𝑥) − 𝑙1| <
1

4
휀|𝑙3|,  when 0 < |𝑥 − 𝑏| < 𝛿1

"                …….(8) 

|ℎ(𝑥) − 𝑙3| <
1

4
휀 

 |𝑙3|2

|𝑙1|
 ,  when 0 < |𝑥 − 𝑏| < 𝛿2

"                 .….(9) 

Let 𝛿" = min  {𝛿3, 𝛿1
" , 𝛿2

"} . Then from (7), (8) and (9), we get 

|(
𝑓

ℎ
) (𝑥) −

𝑙1

𝑙3
| <

2

|𝑙3|
 .

1

4
휀|𝑙3| +

2|𝑙1|

|𝑙3|2  .
1

4
휀 

 |𝑙3|2

|𝑙1|
=

𝜀

2
+

𝜀

2
= 휀 when  

0 < |𝑥 − 𝑏| < 𝛿"  

Therefore  |(
𝑓

ℎ
) (𝑥) −

𝑙1

𝑙3
| < 휀 when 0 < |𝑥 − 𝑏| < 𝛿" 

Hence lim
𝑥→𝑏

𝑓

ℎ
=

𝑙1

𝑙3
 

Ex.6.3.4.   Find 𝐥𝐢𝐦𝐱→𝟎  
√𝟒+𝒙−𝟐

𝒙
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Proof. It is given that 𝑙𝑖𝑚𝑥→0  
√4+𝑥−2

𝑥
 

𝑙𝑖𝑚𝑥→0  
√4+𝑥−2

𝑥
= 𝑙𝑖𝑚𝑥→0  

√4+𝑥−2

𝑥
.

√4+𝑥+2

√4+𝑥−2
= 𝑙𝑖𝑚𝑥→0 .

4+𝑥−4

√4+𝑥+2
=

𝑙𝑖𝑚𝑥→0  
𝑥

√4+𝑥+2
=

1

4
 . 

 

 

6.4 VARIABLE 

A symbol such as x or y, used to represent an arbitrary element of a set is 

called a variable. For example y = f (x). 

The symbol x which represents an element in the domain is called the 

independent variable, and the symbol y which represent the element 

corresponding to x is called the dependent variable. This is based on the 

fact that value of x can be arbitrary chosen, then y has a value which 

depends upon the chosen value of x. 

 

 

6.5 LIMIT 

 

∎ Definition of Limit. 

f(x) is said to tend to a limit as 𝑥 tends to ‘𝑎’ if both the left and right  

hand limits exist and equal, and their common value is called the limit of 

the function. 

lim
𝑥→𝑎−

𝑓(𝑥) = lim
ℎ→0

𝑓(𝑎 − ℎ) where, ℎ > 0 is called left hand limit (L.H.L.) 

And  

lim
𝑥→𝑎+

𝑓(𝑥) = lim
ℎ→0

𝑓(𝑎 + ℎ) where, ℎ > 0 is called right hand limit 

(R.H.L.) 

 

If L.H.L. = R.H.L. then lim
𝑥→𝑎

𝑓(𝑥) exist. 

And if L.H.L. ≠ R.H.L. then lim
𝑥→𝑎

𝑓(𝑥) does not exist. 

 

Example 6.5.1. Do the following limits exists? if yes, find them. 

(i) lim
𝑥→1

sin
1

𝑥−1
                           

(ii) lim
𝑥→0

𝑥 sin
1

𝑥
           

(iii) lim
𝑥→1

2 
1

𝑥−1 



Real Analysis  MT(N)-102 

Department of Mathematics 
Uttarakhand Open University                                                                                                                          94 
 

(iv) lim
𝑥→0

𝑒1/𝑥

𝑒1/𝑥+1
                           

 

Sol. (i)    L.H.L. = lim
𝑥→1−

𝑓(𝑥) = lim
ℎ→0

𝑓(1 − ℎ) 

                           = lim
ℎ→0

sin
1

1−ℎ−1
 = −lim

ℎ→0
sin

1

ℎ
 . 

Now as ℎ → 0, sin
1

ℎ
 is finite and oscillates between −1 and 1, so it does 

not tend to any unique and definite value as ℎ → 0. Hence L.H.L. does not 

exist. 

Similarly, the right-hand limit also does not exist as 𝑥 → 1. 

Thus lim
𝑥→1

sin
1

𝑥−1
  does not exist. 

(ii)               L.H.L. = lim
𝑥→0−

𝑓(𝑥) = lim
ℎ→0

𝑓(0 − ℎ) 

                           = lim
ℎ→0

(0 − ℎ) sin
1

0−ℎ
 = lim

ℎ→0
h sin

1

ℎ
  

                           = 0 × a finite quantity between −1 and 1 

                           = 0. 

Similarly,   R.H.L. = lim
𝑥→0+

𝑓(𝑥) = lim
ℎ→0

𝑓(0 + ℎ) 

                           = lim
ℎ→0

(0 + ℎ) sin
1

0+ℎ
 = lim

ℎ→0
h sin

1

ℎ
  

                           = 0 × a finite quantity between −1 and 1 

                           = 0. 

Thus L.H.L. and R.H.L. both exist and are equal, and hence lim
𝑥→0

𝑥 sin
1

𝑥
 

exists and is equal to zero. 

∴                lim
𝑥→0

𝑥 sin
1

𝑥
= 0. 

 

(iii)    L.H.L. = lim
𝑥→1−

𝑓(𝑥) = lim
ℎ→0

𝑓(1 − ℎ) 

                      = lim
ℎ→0

2 
1

1−ℎ−1 = lim
ℎ→0

2 
1

−ℎ = 2−∞ =
1

2∞ =
1

∞
= 0. 

           R.H.L. = lim
𝑥→1+

𝑓(𝑥) = lim
ℎ→0

𝑓(1 + ℎ) 

                      = lim
ℎ→0

2 
1

1+ℎ−1 = lim
ℎ→0

2 
1

ℎ = 2∞ = ∞. 

Since     L.H.L.≠ R.H.L.  

∴               lim
𝑥→1

2 
1

𝑥−1 does not exist. 

(iv)    L.H.L. = lim
𝑥→0−

𝑓(𝑥) = lim
ℎ→0

𝑓(0 − ℎ) 

                      = lim
ℎ→0

𝑒
1

0−ℎ

𝑒
1

0−ℎ + 1

= lim
ℎ→0

𝑒
− 

1
ℎ

𝑒
− 

1
ℎ + 1

 = 
0

0+1
= 0 

R.H.L. = lim
𝑥→0+

𝑓(𝑥) = lim
ℎ→0

𝑓(0 + ℎ) 

                      = lim
ℎ→0

𝑒
1

0 + ℎ

𝑒
1

0 + ℎ + 1

= lim
ℎ→0

𝑒
 
1
ℎ

𝑒
  

1
ℎ + 1

 = lim
ℎ→0

1

1 − 𝑒
− 

1
ℎ 

 

                      = 
1

1 + 𝑒−∞ =
1

1 +0
= 1. 
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Since     L.H.L.≠ R.H.L.  

∴               lim
𝑥→0

𝑒1/𝑥

𝑒1/𝑥+1
 does not exist. 

 

Example 6.5.2. Find lim
𝑥→0

𝑓(𝑥) where 𝑓(𝑥) = {

𝑥2

𝑎
− 𝑎    𝑓𝑜𝑟 0 < 𝑥 < 𝑎

𝑎 −
𝑎3 

𝑥2            𝑓𝑜𝑟 𝑥 > 𝑎
 . 

 

 

Sol.     L.H.L. = lim
𝑥→𝑎−

𝑓(𝑥) = lim
ℎ→0

𝑓(𝑎 − ℎ) 

                       = lim
ℎ→0

[
(𝑎−ℎ)2

𝑎
− 𝑎] = 

𝑎2

𝑎
− 𝑎 = 𝑎 − 𝑎 = 0 

            R.H.L. = lim
𝑥→𝑎+

𝑓(𝑥) = lim
ℎ→0

𝑓(𝑎 + ℎ) 

                      = lim
ℎ→0

[𝑎 −
𝑎3

(𝑎+ℎ)2
] = 𝑎 −

𝑎3

𝑎2 = 𝑎 − 𝑎 = 0. 

Therefore, L.H.L. and R.H.L. both exist and each equal to 0. 

 ∴               lim
𝑥→0

𝑓(𝑥) = 0. 

 

6.6 INFINITE LIMITS 

A function f (x) is said to approach + ∞ or - ∞ as x → a, if for given 0

there exists 0 such that  

  )(or)( xfxf whenever  ||0 ax . 

Then in other words,  .)(or)( 


xfLimitxfLimit
axax  

Example 6.6.1. Find .
sin

0 x

x
Limit

x
 

Solution. Let 
x

x
xf

sin
)(  Here 

h

h
LimithfLimithfLimitf

hhh

sin
)()0()00(

000 
  

h

hhhh

Limit
h

....
!7!5!3

753

0






 

1....
!7!5!3

1
642

0




hhhLimit
h
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And 

h

h
LimithfLimithfLimitf

hhh 






)(sin
)()0()00(

000
 

                                                        1
)(sin

0


 h

h
Limit

h
. 

Since f (0 + 0) = f (0 - 0) = 1 and hence 1
sin

0


 x

x
Limit

h
. 

Example 6.6.2.. Find .
sin

x

x
Limit

x 
 

Solution. Let 
x

x
xf

sin
)(  . Put x = 1/y so as x →∞, y→ 0. Then  











 y
yLimit

y

y
Limit

x

x
Limit

yyx

1
sin

/1

)/1(sinsin

00
 

Let 









y
yyg

1
sin)( . Then, right hand limit is 

















h
hLimit

hgLimithgLimitg

h

hh

1
sin

)()0()00(

0

00

 

        0 finite quantity which lies between -1 and +1 

                 0  

and the left hand limit is 

0
1

sin

)()0()00(

0

00

















h
hLimit

hgLimithgLimitg

h

hh

 

Since g (0 + 0) = g (0 - 0) = 0 therefore 0
1

sin
0










 y
yLimit

y
and hence 

.0
sin


 x

x
Limit

x
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Example 6.6.3. Find lim
𝑥⟶∞

sin (
1

𝑥
). 

Solution. Let 









x
xf

1
sin)( . Here  











 h
LimithfLimithfLimitf

hhh

1
sin)()0()00(

000
 

As h → 0, the value of 








h

1
sin oscillates between -1 and +1 passing 

through zero. Hence there is no definite number l to which 








h

1
sin  tends 

to as h → 0. Therefore right hand limit does not exist. Similarly left hand 

limit f (0 – 0) also does not exists. 

 Thus lim
𝑥⟶∞

sin (
1

𝑥
) does not exist. 

Example 6.6.4. Find   x

x
xLimit

1

0
1


. 

Solution. Let   x

x
xLimitxf

1

0
1)( 


. Now right hand limit is 

  h

hhh
hLimithfLimithfLimitf

1

000
1)()0()00( 


 























































.....
!3

2
1

1
11

.
!2

1
11

.
1

1 32

0
h

hhh
h

hh
h

h
Limit

h
 

              
    


















....

!3

211.1

!2

1.1

!1

1
1

0

hhh
Limit

h
 

e ....
!3

1

!2

1

!1

1
1  

Similarly, the left hand limit is 

  ehLimithfLimithfLimitf h

hhh






1

000
1)()0()00(  
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Thus both f (0 + 0) and f (0 – 0) exists and equal to e. Hence 

  exLimit x

x




1

0
1 . 

Example 6.6.5. Show that 
)2(

2

2 



 x

x
Limit

x
does not exist. 

Solution. Let 
)2(

2
)(

2 




 x

x
Limitxf

x
. Now right hand limit is 

1
)(

)22(

22
)2()02(

00

00












h

h
Limit

h

h
Limit

h

h
LimithfLimitf

hh

hh

 

and the left hand limit is  

1
)(

)22(

22
)2()02(

00

00



















h

h
Limit

h

h
Limit

h

h
LimithfLimitf

hh

hh

 

Since f (2 + 0) ≠ f (2 – 0). Hence 
)2(

2

2 



 x

x
Limit

x
does not exist. 

Example 6.6.6. Find x

x
e

x
Limit

1

0

1


. 

Solution. Let x

x
e

x
Limitxf

1

0

1
)(


 . Then 

h

hhh
e

h
LimithfLimithfLimitf

1

000

1
)()0()00(


  

 (since 
h

1
and he

1

as h → 0) 

and   
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hh

h

hhh

he
Limit

e
h

LimithfLimithfLimitf

10

1

000

1

1
)()0()00(











 

0

....
1

!3

11

!2

11
1

1

32

0

















hhh
h

Limit
h

 

Since f (0 + 0) ≠ f (0 – 0). Hence x

x
e

x
Limit

1

0

1


does not exist. 

 

6.7 L HOSPITAL RULE 

 

 L’Hospital’s rule is totally different from the quotient law of 

differentiation. There is a solid logical base that why we only differentiate 

numerator and denominator directly, instead of using quotient law of 

differentiation. 

(2) It must be clearly remembered that L’Hospital’s method be used only 

in the situations of 
0

0
 and 




not in other cases. 

(3) In L’Hospital’s rule, numerator f(x) and denominator g(x) are to be 

differentiated separately. 

(4) It may be helpful for students that 

0,1,log,0log,01log 0  eeeee , .e  

Example 6.7.1. Evaluate lim
𝑥⟶0

sin 𝑥

𝑥
.  

     Sol.      Clearly, 
x

x

x

sin
lim

0
 is a 

0

0
form. 

               L’Hospital’sRule:  

lim
𝑥→0

sin 𝑥

𝑥
=  lim

𝑥→0

(sin 𝑥)′

(𝑥)′
=  lim

𝑥→0

cos 𝑥

1
=  1.  

Note: In second method, dash ( ′ ) above sin 𝑥 and 𝑥 represents the first 

derivative with respect to 𝑥 (variable with respect to the limit has been 

taken). 
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Example 6.7.2. Evaluate lim
𝑥⟶0

log 𝑥

𝑥−1
 . 

Sol.      Clearly, 
1

log
lim

0  x

x

x
 is a 









0

0
form. 

L’Hospital’s Rule:  

lim
𝑥→1

log 𝑥

𝑥 – 1
=  lim

𝑥→1

(log 𝑥)′

(𝑥 – 1)′
= lim

𝑥→1

(
1

𝑥
)

1
= 1.  

Example 6.7.3. Find 
20

sin
lim

x

xx

x




 

Sol.      L’Hospital’s Rule:  

lim
𝑥→0

(𝑥−sin 𝑥)

𝑥3 = lim
𝑥→0

(𝑥−sin 𝑥)′

(𝑥3)′
  

= lim
𝑥→0

(1−cos 𝑥)

3𝑥2   

= lim
𝑥→0

(1−cos 𝑥)′

(3𝑥2)′
  

= lim
𝑥→0

{−(− sin 𝑥)}

6𝑥
  

= lim
𝑥→0

(sin 𝑥)′

(6𝑥)′   

=  lim
𝑥→0

(cos 𝑥)

6
  

=
1

6
 .  

Example 6.7.4. Find x

e x

x

1
lim

0



  

Sol.     L’Hospital’s Method:  

lim
𝑥→0

𝑒𝑥−1

𝑥
=  lim

𝑥→0

(𝑒𝑥−1)′

(𝑥)′
=  lim

𝑥→0

𝑒𝑥

1
=  1.  

Example 6.7.5. Evaluate 
20

)1log(cos
lim

x

xxx

x



  

Sol.     L’Hospital’s Rule:  

lim
𝑥→0

𝑥𝑐𝑜𝑠 𝑥−log(1+𝑥)

𝑥2   (
𝟎

𝟎
form)  

= lim
𝑥→0

{𝑥𝑐𝑜𝑠 𝑥−log(1+𝑥)}′

(𝑥2)′
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= lim
𝑥→0

1.cos 𝑥−𝑥(sin 𝑥)−
1

(1+𝑥)

2𝑥
  

(
𝟎

𝟎
form)  

= lim
𝑥→0

(cos 𝑥−𝑥 sin 𝑥−
1

(1+𝑥)
)′

(2𝑥)′
  

 

=  lim
𝑥→0

− sin 𝑥−(1.sin 𝑥+𝑥.cos 𝑥)+
1

(1+𝑥)2

2
  

 

= lim
𝑥→0

− 2sin 𝑥−𝑥.cos 𝑥+
1

(1+𝑥)2

2
  

 

=
1

2
 .   

Note: Observe that L’Hospital’s rule is sometimes easier than the 

algebraic method. We will explain next examples only by L’Hospital’s 

rule. 

Example 6.7.6. Find x

x n

x

1)1(
lim

0



  

Sol.      lim
𝑥→0

(1+𝑥)𝑛−1

𝑥
= lim

𝑥→0

{(1+𝑥)𝑛−1}′

{𝑥}′   

= lim
𝑥→0

𝑛(1+𝑥)𝑛−1

1
  

= 𝑛  

Example 6.7.7. Evaluate 
ax

ax

x ax

xa





0
lim

 

Sol.      lim
𝑥→𝑎

𝑎𝑥−𝑥𝑎

𝑥𝑥 −𝑎𝑎 = lim
𝑥→𝑎

(𝑎𝑥−𝑥𝑎)′

(𝑥𝑥 −𝑎𝑎)′
= lim

𝑥→𝑎

𝑎𝑥 log 𝑎−𝑎.𝑥𝑎−1

𝑥𝑥 (log 𝑥+1)
 

 

=
𝑎𝑎 log 𝑎−𝑎.𝑎𝑛−1

𝑎𝑎 log 𝑎+𝑎𝑎 =
𝑎𝑎(log 𝑎−1)

𝑎𝑎(log 𝑎+1)
=  

log 𝑎−1

log 𝑎+1
   

Note: The first derivate of 𝑥𝑥 in above example calculated as follows: 

𝑦 = 𝑥𝑥  

Taking logarithms 

log 𝑦 = 𝑥 log 𝑥  

Now differentiating both sides with respect to 𝑥  
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1

𝑦
(

𝑑𝑦

𝑑𝑥
) = log 𝑥 + 1  

(
𝑑𝑦

𝑑𝑥
) = y(log 𝑥 + 1) = 𝑥𝑥(log 𝑥 + 1).  

Example 6.7.8. Evaluate xx

xxx

x 



 tan

3sin32sin7sin5
lim

0  

Sol.      lim
𝑥→0

5 sin 𝑥−7 sin 2𝑥+3 sin 3𝑥

tan 𝑥
  

=  lim
𝑥→0

(5 sin 𝑥−7 sin 2𝑥+3 sin 3𝑥)′

(tan 𝑥−𝑥)′
  

= lim
𝑥→0

5 cos 𝑥−7×2 cos 2𝑥+3×3 cos 3𝑥

𝑠𝑒𝑐 2 𝑥−1 
  

= lim
𝑥→0

(5 cos 𝑥−14 cos 2𝑥+9 cos 3𝑥)′

(𝑠𝑒𝑐 2 𝑥−1)′ 
  

= lim
𝑥→0

−5 sin 𝑥+14.2 sin 2𝑥−9.3 sin 3𝑥

2 sec 𝑥 tan 𝑥
  

= lim
𝑥→0

−5 cos 𝑥+28.2 cos 2𝑥−27.3 cos 3𝑥

2(sec 𝑥 𝑠𝑒𝑐2𝑥+sec 𝑥 tan 𝑥 tan 𝑥)
  

=
−5+56−81

2
=  

−30

2
=  −15 .  

Example 6.7.9. Evaluate xx

ee xx

x sin
lim

sin

0 



  

Sol.      lim
𝑥→0

𝑒𝑥−𝑒sin 𝑥

𝑥−sin 𝑥
=  lim

𝑥→0

(𝑒𝑥−𝑒sin 𝑥)′

(𝑥−sin 𝑥)′
 

 

= lim
𝑥→0

𝑒𝑥−cos 𝑥.𝑒sin 𝑥

1−cos 𝑥
  

= lim
𝑥→0

(𝑒𝑥−cos 𝑥.𝑒sin 𝑥)′

(1−cos 𝑥)′
  

= lim
𝑥→0

𝑒𝑥−{cos 𝑥.cos 𝑥.𝑒sin 𝑥+(− sin 𝑥).𝑒sin 𝑥}

sin 𝑥
  

= lim
𝑥→0

{𝑒𝑥−cos2 𝑥.𝑒sin 𝑥+sin 𝑥.𝑒sin 𝑥}′

(sin 𝑥)′
  

= lim
𝑥→0

𝑒𝑥 − {2 cos 𝑥 . (−sin 𝑥). 𝑒sin 𝑥 + cos3 𝑥 . 𝑒sin 𝑥} + {cos 𝑥.  𝑒sin 𝑥 + sin 𝑥 cos 𝑥. 𝑒sin 𝑥}

cos 𝑥
 

= lim
𝑥→0

𝑒𝑥+3 sin 𝑥 cos 𝑥.  𝑒sin 𝑥−cos3 𝑥.𝑒sin 𝑥+cos 𝑥.  𝑒sin 𝑥

cos 𝑥
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=
1−1+1

1
  

= 1.  

Case II: Form 
∞

∞
 

Example 6.7.10. Evaluate 𝑙𝑖𝑚𝑥→0  
𝑛2+5

𝑛2+4𝑛+3
. 

Sol.      Clearly, 
34

5
lim

2

2





 nn

n

n
is a 




form.  

Algebraic Method: 

𝑙𝑖𝑚
𝑛→∞

𝑛2+5

𝑛2+4𝑛+3
=  𝑙𝑖𝑚

𝑛→∞

𝑛2(1+
5

𝑛2)

𝑛2(1+
4

𝑛
+

3

𝑛2)
=  𝑙𝑖𝑚

𝑛→∞

(1+
5

𝑛2)

(1+
4

𝑛
+

3

𝑛2)
= 1 .  

L’Hospital’s Method: 

𝑙𝑖𝑚
𝑛→∞

𝑛2+5

𝑛2+4𝑛+3
   

(Again 
∞

∞
 form)  

 = 𝑙𝑖𝑚
𝑛→∞

(2𝑛)′

(2𝑛+4)′
            

= 𝑙𝑖𝑚
𝑛→∞

2

2
   

= 1 .   

Example 6.7.11. Evaluate x

x

x cot

log
lim

0  

Sol.      This is of the form 
∞

∞
.  We have therefore,  

lim
𝑥→0

𝑙𝑜𝑔 𝑥

𝑐𝑜𝑡 𝑥
=  lim

𝑥→0

(𝑙𝑜𝑔 𝑥)′

(𝑐𝑜𝑡 𝑥)′
= lim

𝑥→0

(
1
𝑥)

−𝑐𝑜𝑠𝑒𝑐2𝑥
(

∞

∞
 𝑓𝑜𝑟𝑚)

=  lim
𝑥→0

− 𝑠𝑖𝑛2𝑥

𝑥
(

0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

−2𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥

1
= 0.  

Example 6.7.12. Find 
x

x

x tan

)
2

log(

lim

2
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Sol.     
x

x

x tan

)
2

log(

lim

2









is a  
∞

∞
 form. 

We have,  

lim
𝑥→

𝜋

2

log(𝑥−
𝜋

2
)

tan 𝑥
=  lim

𝑥→
𝜋

2

[log(𝑥−
𝜋

2
)]′ 

(tan 𝑥)′
=

lim
𝑥→

𝜋

2

(
1

(𝑥−
𝜋
2

)
)      

𝑠𝑒𝑐2𝑥
                          (

∞

∞
 𝑓𝑜𝑟𝑚)  

= lim
𝑥→

𝜋

2

𝑐𝑜𝑠2𝑥

(𝑥−
𝜋

2
)
 (

0

0
 𝑓𝑜𝑟𝑚)  

=  lim
𝑥→

𝜋

2

(𝑐𝑜𝑠2𝑥)′

(𝑥−
𝜋

2
)′

  

= lim
𝑥→

𝜋

2

−2 cos 𝑥 sin 𝑥

1
  

= 0.  

Example 6.7.13. Evaluate 
)log(

)log(
lim

axax ee

ax







 

Sol.      lim
𝑥→𝑎

log(𝑥−𝑎)

log(𝑒𝑥−𝑒𝑎)
(

∞

∞
 𝑓𝑜𝑟𝑚) =  lim

𝑥→𝑎

(log(𝑥−𝑎))′

(log(𝑒𝑥−𝑒𝑎))′
  

=  lim
𝑥→𝑎

(
1

𝑥−𝑎
)

(
1

𝑒𝑥−𝑒𝑎)𝑒𝑥
  

=  lim
𝑥→𝑎

𝑒𝑥−𝑒𝑎

(𝑥−𝑎)𝑒𝑥 (
0

0
 𝑓𝑜𝑟𝑚)  

=  lim
𝑥→𝑎

(𝑒𝑥−𝑒𝑎)′

[(𝑥−𝑎)𝑒𝑥]′
  

=  lim
𝑥→𝑎

𝑒𝑥

(𝑥−𝑎)𝑒𝑥+𝑒𝑥  

= lim
𝑥→𝑎

𝑒𝑥

[(𝑥−𝑎)+1]𝑒𝑥  

= lim
𝑥→𝑎

1

[(𝑥−𝑎)+1]
  

= 1 

Example 6.7.14. Find xe

xe
x

x

x 44

3
lim

3
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Sol. 

lim
𝑛→∞

𝑒𝑥+3𝑥3

4𝑒𝑥+4𝑥
                                             (

∞

∞
 𝑓𝑜𝑟𝑚)                                                                        

 

=  lim
𝑛→∞

(𝑒𝑥+3𝑥3)
′

(4𝑒𝑥+4𝑥)′  

=  lim
𝑛→∞

𝑒𝑥+9𝑥2

4𝑒𝑥+4
                                      (

∞

∞
 𝑓𝑜𝑟𝑚)  

= lim
𝑛→∞

(𝑒𝑥+9𝑥2)′

(4𝑒𝑥+4)′
  

=  lim
𝑛→∞

𝑒𝑥+18𝑥1

4𝑒𝑥                                     (
∞

∞
 𝑓𝑜𝑟𝑚)  

=  lim
𝑛→∞

(𝑒𝑥+18𝑥1)′

(4𝑒𝑥)′   

= lim
𝑛→∞

(𝑒𝑥+18)

4𝑒𝑥                                       (
∞

∞
 𝑓𝑜𝑟𝑚)  

= lim
𝑛→∞

𝑒𝑥

4𝑒𝑥  

=
1

4
.  

Example 6.7.15. Evaluate )log(tan

)2log(tan
lim

2

2

0 x

x

x

 

Sol.      We have,  

lim
𝑥→0

log(𝑡𝑎𝑛22𝑥)

log(𝑡𝑎𝑛2𝑥)
     (

∞

∞
𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

2 log(tan 2𝑥)

2 log(tan 𝑥)
                                      (

∞

∞
𝑓𝑜𝑟𝑚)  

=  lim
𝑥→0

(log(tan 2𝑥))′

(log(tan 𝑥))′
=  lim

𝑥→0

(
1

tan 2𝑥
).2 𝑠𝑒𝑐22𝑥

(
1

tan 𝑥
).  𝑠𝑒𝑐2𝑥

  

= lim
𝑥→0

2 tan 𝑥 𝑐𝑜𝑠2𝑥

tan 2𝑥 𝑐𝑜𝑠22𝑥
= lim

𝑥→0

2 sin 𝑥 cos 𝑥

sin 2𝑥 cos 2𝑥
  

= lim
𝑥→0

sin 2𝑥

sin 2𝑥 cos 2𝑥
=  lim

𝑥→0

1

cos 2𝑥
=

1

1
= 1.  

Example 6.7.16. Evaluate x

x

x cot

)log(sin
lim

0  

Sol.     We have,  
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lim
𝑥→0

log (sin 𝑥)

cot 𝑥
(

∞

∞
 𝑓𝑜𝑟𝑚) =  lim

𝑥→0

(log(sin 𝑥))′′

(cot 𝑥)′
  

= lim
𝑥→0

1

sin 𝑥
.cos 𝑥

−𝑐𝑜𝑠𝑒𝑐2𝑥
=  lim

𝑥→0
(−

cos 𝑥

sin 𝑥
. 𝑠𝑖𝑛2𝑥)  

= lim
𝑥→0

(− cos 𝑥. sin 𝑥) = 0.  

Example 6.7.17. Find 
x

n

n e

x


lim , where 𝑛 is a positive integer. 

Sol.      We have, 

lim
𝑥→∞

𝑥𝑛

𝑒𝑥 (
∞

∞
 𝑓𝑜𝑟𝑚) = lim

𝑥→∞

(𝑥𝑛)′

(𝑒𝑥)′ = lim
𝑥→∞

𝑛𝑥𝑛−1

𝑒𝑥 (
∞

∞
 𝑓𝑜𝑟𝑚)  

= lim
𝑥→∞

(𝑛𝑥𝑛−1)
′

(𝑒𝑥)′
= lim

𝑛→∞

𝑛(𝑛−1)𝑥𝑛−2

𝑒𝑥 (
∞

∞
 𝑓𝑜𝑟𝑚)  

= lim
𝑛→∞

(𝑛(𝑛−1)𝑥𝑛−2)
′

(𝑒𝑥)′
= lim

𝑛→∞

𝑛(𝑛−1)(𝑛−2)𝑥𝑛−3

𝑒𝑥 (
∞

∞
 𝑓𝑜𝑟𝑚)  

Repeating this process, we get 

= lim
𝑛→∞

(𝑛(𝑛−1)(𝑛−2)…𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)

𝑒𝑥   

= lim
𝑛→∞

𝑛!

𝑒𝑥 =  
𝑛!

𝑒∞ =
𝑛!

∞
= 0.  

Example 6.7.18. Find 
x

x

x sinlog

2sinlog
lim

0
 

Sol.      We have,  

lim
𝑥→0

log sin 2𝑥

log sin 𝑥
                                                            (

∞

∞
 𝑓𝑜𝑟𝑚)  

=  lim
𝑥→0

(log sin 2𝑥)′

(log sin 𝑥)′
  

=  lim
𝑥→0

(
2

sin 2𝑥
.cos 2𝑥)

(
1

sin 𝑥
.cos 𝑥)

  

= lim
𝑥→0

2 cot 2𝑥

cot 𝑥
                                                         (

∞

∞
𝑓𝑜𝑟𝑚)  

=  lim
𝑥→0

(2 cot 2𝑥)′

(cot 𝑥)′
  

= lim
𝑥→0

−4 𝑐𝑜𝑠𝑒𝑐2 2𝑥

−𝑐𝑜𝑠𝑒𝑐2 𝑥
                                                (

∞

∞
 𝑓𝑜𝑟𝑚)  
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= lim
𝑥→0

4 𝑠𝑖𝑛2𝑥

𝑠𝑖𝑛22𝑥
  

=  lim
𝑥→0

4 𝑠𝑖𝑛2𝑥

(2 sin 𝑥 cos 𝑥)2  

= lim
𝑥→0

1

𝑐𝑜𝑠2𝑥
= 1.  

Example 6.7.19. Find lim
𝑥⟶∞

log 𝑥

𝑎𝑥 ,  𝑎 > 1. 

Sol.     We have,  

lim
𝑥→∞

log 𝑥

𝑎𝑥 (
∞

∞
 𝑓𝑜𝑟𝑚) = lim

𝑥→∞

(log 𝑥)′

(𝑎𝑥)′   

= lim
𝑥→∞

(
1

𝑥
)

𝑎𝑥 log 𝑎
  

=  
1

log 𝑎
lim
𝑥→∞

1

𝑥 𝑎𝑥  

=
1

log 𝑎
× 0 = 0.   

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. lim
𝑥⟶0

sin 𝑥

𝑥
 is 0. 

Problem 2. lim
𝑥⟶0

log 𝑥

𝑥−1
 is 1.  

Problem 3. lim
𝑥⟶∞

sin (
1

𝑥
) does not exist. 

Problem 4. 𝑙𝑖𝑚𝑥→0  
√4+𝑥−2

𝑥
 is 1. 

Problem 5. 𝑙𝑖𝑚𝑥→0  
𝑛2+5

𝑛2+4𝑛+3
 is 1. 

 

 

 

6.8 SUMMARY 
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1. 𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = L  

    This is read as, “limit of f(x), as x approaches a equals L”. 

 

2. A symbol such as x or y, used to represent an arbitrary element of a set        

    is called a variable. For example y = f (x). 

3. L’Hospital’s method be used only in the situations of 
0

0
 and 




not in     

     other cases. 

 

 

6.9 GLOSSARY  
 

Numbers  

Intervals   

Limit points 

Functions 

Bounded, Unbounded sets 
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6.12 TERMINAL AND MODEL QUESTIONS 
 

Q1. Prove that 𝑙𝑖𝑚𝑥→0  
5𝑛2−5

𝑛2+4𝑛+3
 is 5. 

 

Q2. Prove that 𝑙𝑖𝑚𝑥→0  sin (
1

𝑥2) does not exist. 

Q3. Prove that 𝑙𝑖𝑚𝑥→0 𝑥2 sin (
1

𝑥2) exist and equal to 0. 

Q4. Prove that lim
𝑥→1

9 
1

𝑥−1 does not exist. 

Q5. Prove that lim
𝑥⟶∞

15 log 𝑥

𝑎𝑥 ,  𝑎 > 1 is 0. 

 

 

 

6.13 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. False 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. False 

        CYQ 5. True         
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UNIT 7: CONTINUITY 

 

CONTENTS: 

       7.1       Introduction 

       7.2      Objectives 

       7.3     Continuity (휀, 𝛿) definition 

      7.4     Continuity (by L.H.L. and R.H.L.) 

       7.5      Discontinuity 

       7.6      Type of Discontinuity 

       7.7      Uniformly continuity 

       7.8      Summary 

       7.9      Glossary 

       7.10    References 

       7.11     Suggested Reading 

       7.12     Terminal questions  

       7.13     Answers  
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7.1 INTRODUCTION 

 

In mathematics, a continuous function is a function such that a 

small variation of the argument induces a small variation of the value of 

the function. This implies there are no abrupt changes in value, known 

as discontinuities. More precisely, a function is continuous if arbitrarily 

small changes in its value can be assured by restricting to sufficiently 

small changes of its argument. A discontinuous function is a function 

that is not continuous. Until the 19th century, mathematicians largely 

relied on intuitive notions of continuity and considered only continuous 

functions. 

Continuity is one of the core concepts of calculus and mathematical 

analysis, where arguments and values of functions 

are real and complex numbers. 

 

7.2 OBJECTIVES 

After studying this unit, learner will be able to  

(i) Continuity 

(ii) Discontinuity  

(iii) Type of Discontinuity 

             (iv) Uniformly continuous 

 

             

                  

 

 

 

 

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Argument_of_a_function
https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Classification_of_discontinuities
https://en.wikipedia.org/wiki/Intuition
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
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7.3 CONTINUITY (𝝐, 𝜹) DEFINITION 

Definition 1. A real valued function f (x) defined on an interval I is said to 

be continuous at Iax  if and only if for any arbitrarily chosen positive 

number , however small, we can find a corresponding number 0 such 

that 

 )()( afxf  whenever . ax  

We say that f (x) is continuous if it is continuous at every .Ix  

Or 

f (x) is continuous at x = a is given 0 , we can find a 0  such that 

.)()(   afxfax
 

7.4 CONTINUITY FROM LEFT AND 

CONTINUITY FROM RIGHT 

A function f (x) is said to be continuous from left at x = a if )(
0

xfLimit
ax 

exists and equal to f (a) i.e., 

)()(
0

afhafLimit
h




 

Similarly, f (x) is said to be continuous from right at x = a if )(
0

xfLimit
ax 

exists and equal to f (a) i.e., 

)()(
0

afhafLimit
h




 

and f (x) is continuous at x = a iff 

)()()(
00

afxfLimitxfLimit
axax




 

)()()(
00

afhafLimithafLimit
hh
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7.5 DISCONTINUITY 

If a function is not continuous at a point, then it is said to be 

discontinuous at that point and the point is called a point of discontinuity 

of the function. 

e. g. The function 
ax

xf



1

)( does not exists at x = a so f (x) is not 

continuous at x = a. 

 

7.6 TYPES OF DISCONTINUITY 

(1) Removable discontinuity: 

A function f (x) is said to have a removable discontinuity at a point x = a 

if )(xfLimit
ax

exist but is not equal to f (a) i.e., if 

)()0()0( afafaf   

The function can be made continuous by defining it in such a way that 

)()( afxfLimit
ax




. 

(2) Discontinuity of the first kind: 

A function f (x) is said to have a discontinuity of the first kind or ordinary 

discontinuity at x = a if f (a + 0) and f (a – 0) both exist but not equal. The 

point x = a is said to be a point of discontinuity from the left or right 

according as 

)0()()0(  afafaf or )0()()0(  afafaf . 

(3) Discontinuity of the second kind: 

A function f (x) is said to have a discontinuity of the second kind at x = a 

if none of the limits f (a + 0) and f (a – 0) exist. The point x = a is said to 

be a point of discontinuity of second kind from the left or right according 

as )0( af or )0( af does not exist. 
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(4) Mixed discontinuity: 

If a function f has a mixed discontinuity at ‘𝑎’if either  

(i) lim
𝑥⟶𝑎−

𝑓(𝑥) does not exist and lim
𝑥⟶𝑎+

𝑓(𝑥) exists, however lim
𝑥⟶𝑎+

𝑓(𝑥) 

may or may not equal to 𝑓(𝑎). 

(ii) lim
𝑥⟶𝑎+

𝑓(𝑥) does not exist and lim
𝑥⟶𝑎−

𝑓(𝑥) exists, however lim
𝑥⟶𝑎−

𝑓(𝑥) 

may or may not equal to 𝑓(𝑎). 

(5) infinite discontinuity: 

A function f (x) is said to have an infinite discontinuity at x = a if f (a + 0) 

or f (a – 0) is + ∞ or - ∞ i.e., if f (x) is discontinuous at x = a and f (x) is 

unbounded in every neighbourhood of x = a. 

(6) Piecewise continuous function: 

A function 𝑓: 𝐴 ⟶ ℝ is said to be piecewise continuous on 𝐴 if 𝐴 can be 

divided into a finite number of parts so that 𝑓 is continuous on each part. 

Clearly, in such a case, 𝑓 has a finite number of discontinuities and the set 

𝐴 is divided at the points of discontinuities.  

             Note: Jump of a function at a point. 

If both f (a + 0) and f (a – 0) exists, then the jump in the function at x = a 

is defined as the non-negative difference )0(~)0(  afaf .  

A function having a finite number of jumps in a given interval is called 

piecewise continuous. 

Illustrative Examples 

Example 1. Test the continuity of f (x) at x = 1 when 

















13

112

12

)(

2

xif

xifx

xifx

xf  
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Solution. Here 311.2)1( f  

.11as3221

2)1()1()01(

2

0

2

00









hhhLimit

hLimithfLimitf

h

hh
 

.11as3221

2)1()1()01(

2

0

2

00









hhhLimit

hLimithfLimitf

h

hh
 

So )01()01()1(  fff .Hence f (x) is continuous at x = 1. 

Example 2. Discuss the continuity of the function 
xe

xf
1

1

1
)(




 when 

x ≠ 0 and 0)0( f for all values of x. 

Solution. Test the continuity at x = 0 

1
1

1

)()0()00(

10

00












hh

hh

e
Limit

hfLimithfLimitf

 

0
1

1

)()0()00(

10

00












hh

hh

e
Limit

hfLimithfLimitf

 

Thus we have f (0 + 0) ≠ f (0 – 0) = f (0). So f (x) is not continuous at x = 

0 and it is a discontinuity of first kind i.e., f (x) is continuous on the left 

and has a discontinuity of first kind on right at x = 0. 

Now test the continuity at x = a ≠ 0 

ae
af

1

1

1
)(




  

)(
1

1

1

1
)()0(

1

100

af
e

e

LimithafLimitaf

a

hahh
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)(
1

1

1

1
)()0(

1

100

af
e

e

LimithafLimitaf

a

hahh















 

Thus we have f (a + 0) = f (a – 0) = f (a). Hence f (x) is continuous at 

every point except x = 0. 

Example 3. Test the continuity of the function  














00

0
1

sin
)(

xif

xif
x

x
xf  

Solution. Here   

0
1

sin

0),()0()00(

0

00









h
hLimit

hhfLimithfLimitf

h

hh

 

0
1

sin
1

sin)(

0),()0()00(

00

00

















h
hLimit

h
hLimit

hhfLimithfLimitf

hh

hh

 

Thus we have f (0 + 0) = f (0 – 0) = f (0). Hence f (x) is continuous at x = 

0. 

Note. 1. If we check the continuity at x = c ≠ 0 of the above function, 

then we see that 

)(
1

sin

1
sin)(

cf
c

c

x
xLimitxfLimit

cxcx






 

So f (x) is continuous at x = c. Thus f (x) is continuous for all Rx i.e., f 

(x) is continuous on the whole real line. 

Note 2. If we take f (0) = 2, in the above function, then f (0 + 0) = f (0 – 

0) ≠ f (0). The function becomes discontinuities at x = 0 and has a 

removable discontinuity at x = 0. 
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Example 4. If a function f (x) is defined by  ,)( xxxf  where x is a 

positive variable and [x] denotes the integral part of x. Show that it is 

discontinuous for integral values of x and continuous for all others. Draw 

the graph. 

Solution. From the definition of the function f (x) we have 

















integeraniswhere1

0

1)1(

)(

nnxnfornx

nxfor

nxnfornx

xf  

First we test the continuity of f (x) at x = n. We have f (n) = 0. 

nhnLimithnfLimitnf
hh




)()()0(
00

 

0
0




hLimit
h

  [as n < n + h < n+1] 

1)()()0(
00




nhnLimithnfLimitnf
hh

 

11
0




hLimit
h

  [ as n-1 < n-h <  n] 

Since f (n – 0) ≠ f (n + 0), so the function f (x) is discontinuous at x = n. 

Thus f (x) is discontinuous for all integral values of x. it is obviously 

continuous for all other values of x. 

Since x is a positive variable putting = 1, 2, 3, 4, 5, …., we see that graph 

of the function consists of the following straight lines. 





































50

433

30

322

20

211

10

10

)(

xwhen

xwhenx

xwhen

xwhenx

xwhen

xwhenx

xwhen

xwhenx

xfy  

and so on.  
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It is clear from the graph that  

(1) The function is discontinuous for all integral values of x but 

continuous for other values of x. 

(2) The function is bounded between 0 and 1 in every domain which 

includes an integer. 

(3) The lower bound 0 is attained but upper bound 1 is not attained since 

f (x) ≠ 1 for any value of x. 

Example 5. Show that the function f (x) = [x] + [-x] has a removable 

discontinuity for integral values of x. 

Solution. We see that f (x) = 0 when x is an integer and f (x) = -1 when x 

is not an integer. Hence if n is an integer then 

f (n – 0) = f (n + 0) = -1 and f (n) = 0. 

So the function f (x) has a removable discontinuity at x = n, where n is an 

integer. 

Example 6. Prove that the function 
x

x
xf )(  for x ≠ 0 and f (0) = 0, is 

continuous at all the points except x = 0. 

Solution. If x > 0 then, 1)( 
x

x
xf and if x < 0 then, 1)( 




x

x
xf . 

Therefore the given function can define as: 

𝑦 = 1 

𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 

𝑌 

𝑋 
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0,1

0,0

0,1

)(

xif

xif

xif

xf  

If x < 0, then f (x) = -1 i.e., f (x) is a constant function and a constant 

function is always continuous at each point of its domain. This implies 

that f (x) is continuous for all x < 0. 

Similarly, we can show that f (x) is continuous for all x > 0. Now we see 

the continuity at x = 0. 

11

0),()0()00(

0

00









h

hh

Limit

hhfLimithfLimitf

 

11

0),()0()00(

0

00









h

hh

Limit

hhfLimithfLimitf

 

Here )00( f ≠ )00( f ≠ )0(f . Hence f (x) is not continuous at x = 0. 

Example 7. Discuss the continuity of the following functions at 𝑥 = 0 of 

the function 𝑓(𝑥) = {
𝑥2 sin

1

𝑥
, 𝑥 ≠ 0

0        , 𝑥 = 0
 . 

Sol.  

          

 

 

7.7 UNIFORM CONTINUITY 

A function f: X → Y is said to be uniformly continuous on A ⊆ X if for 

every ε > 0, there exists δ > 0 such that x, y ∈ A, |𝑥 − 𝑦| < δ implies 

|𝑓(𝑥) − 𝑓(𝑦)| <  ε. 

Note: Uniform continuity is domain base property i.e. Uniform continuity 

is defined on a set. 
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Example 7.6.1 Prove that the function f (x) = 3x + 1 is uniformly 

continuous on ℝ.  

Solution: Since |f (x) − f (y)| = |(3x + 1) − (3y + 1)| = 3|x − y| 

so, given ε > 0, we choose δ = ε / 3. Then, |x − c| < δ implies 

 |f (x) − f (c)| = 3|x − c| < 3(ε / 3) = ε.  

Hence the function f (x) = 3x + 1 is uniformly continuous on ℝ. 

 

Example 7.6.2 Prove that the function f (x) = 𝑥2 is not uniformly 

continuous on ℝ. 

Solution: for any ϵ  > 0and for any x, y ∈ ℝ we have a δ 

 such that |x−y| < δ ⟹ |f(x)−f(y)| < ϵ. Our claim here is now 

 |𝑥2−𝑦2| < ϵ. That is the distance between 𝑥2 and 𝑦2 is at 

most ϵ everywhere on the vertical axis as long as we keep 𝑥 and 𝑦 at 

most δ away from each other. The problem arises if we let 𝑥 and 𝑦 getting 

larger and larger. 

So for the given ϵ we have fixed δ and we may play with 𝑥 and 𝑦 values. 

Let's make them large enough to satisfy 
δ

2
 < | 𝑥 − y | < δ and 𝑥 > 

ϵ

δ
, y > 

ϵ

δ
 . 

 Then      | 𝑥 − y |< δ 

But           |𝑥2−𝑦2| = | 𝑥 − y || 𝑥 + y | > 
δ

2
 
2ϵ

δ
       ⟹ |𝑥2−𝑦2| > δ 

which is a contraction with the definition which is assumed true at the 

beginning. Therefore f (x) = 𝑥2 can not be uniformly continuous. 

 

Note: Every Uniformly continuous function is continuous function. 
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CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The function 𝑓(𝑥) =  sin
1

𝑥
 at 𝑥 = 0 has a discontinuity of  

                      second kind. 

Problem 2. The function 𝑓(𝑥) = 𝑒𝑥 is not continuous at 𝑥 = 0. 

Problem 3. Every uniformly continuous function is continuous 

function. 

Problem 4. Every polynomial function is uniformly continuous on ℝ. 

Problem 5. Every continuous function uniformly continuous. 

 

 

7.8 SUMMARY 

 

1. If )()()(
00

afhafLimithafLimit
hh




 then function f(x) is 

continuous at 𝑥 = 𝑎.
 

2. A function f: X → Y is said to be uniformly continuous on A ⊆ X if 

for every ε > 0, there exists δ > 0 such that x, y ∈ A, |𝑥 − 𝑦| < δ implies 

|𝑓(𝑥) − 𝑓(𝑦)| <  ε. 

 

 

7.9 GLOSSARY  
 

Numbers  

Intervals   

Sets 

Functions 

Limits 

 

7.10    REFERENCES 
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7.12 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that every uniform continuous function is continuous.  

Q 2. Prove that every polynomial function is continuous.  

Q 3. Prove that 𝑓(𝑥) =
1

𝑥
 is not uniformly continuous in (0, 1). 

Q 4. Prove that 𝑓(𝑥) =  𝑥2 is uniformly continuous on [-2, 2]. 

Q 5. Prove that 𝑓(𝑥) =  21/𝑥 is not continuous at 0. 

 

7.13 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. False 

        CYQ 5. False 
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8.1 INTRODUCTION 

 

                 In previous unit we discussed about limit and continuity. In this 

unit we will discussed about Differentiability and Mean Value theorem. 

Prior to the seventeenth century, a curve was generally described as a 

locus of points satisfying some geometric condition, and tangent lines 

were obtained through geometric construction. This viewpoint changed 

dramatically with the creation of analytic geometry in the 1630s by Rene 

Descartes (1596–1650) and Pierre de Fermat (1601–1665).  

In this new setting geometric problems were recast in terms of algebraic 

expressions, and new classes of curves were defined by algebraic rather 

than geometric conditions. The concept of derivative evolved in this new 

context. The problem of finding tangent lines and the seemingly unrelated 

problem of finding maximum or minimum values were first seen to have 

a connection by Fermat in the 1630s. And the relation between tangent 

lines to curves and the velocity of a moving particle was discovered in the 

late 1660s by Isaac Newton. Newton’s theory of ‘‘fluxions,’’ which was 

based on an intuitive idea of limit, would be familiar to any modern 

student of differential calculus once some changes in terminology and 

notation were made. 

But the vital observation, made by Newton and, independently, by 

Gottfried Leibniz in the 1680s, was that areas under curves could be 

calculated by reversing the differentiation 

process. This exciting technique, one that solved previously difficult area 

problems with ease, sparked enormous interest among the mathematicians 

of the era and led to a coherent theory 

that became known as the differential and integral calculus. 

In this Unit we will develop the theory of differentiation. Integration 

theory, including the fundamental theorem that relates differentiation and 

integration, will be the 

subject of the next chapter. Consequently, we will concentrate on the 

mathematical aspects of the derivative and not go into its applications in 

geometry, physics, economics, and so on. 

 

 

8.2 OBJECTIVES 

In this Unit, we will Discussed about 

 Improper integral 

 Test of convergence 

 Absolute integral  
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8.3 DERIVATIVE 

We begin with the definition of the derivative of a function. 

Derivative:  Let I ⊆ ℝ be an interval, f: (x, y) → ℝ and b ∈ I. Then l ∈ ℝ 

is said to be derivative of f at b if for any given ε > 0 there exists δ(ε) 

such that if x ∈ I then  

|
f(x)−f(b)

x−b
− l| < ε     whenever 0 < |x − b| < δ. 

We can also say that f is differentiable at b, and we write f ′(c) 

                                                 Or 

The derivative of f at b is given by f ′(c) = lim 
h→0

f(x)−f(b)

x−h
   provided this 

limit exists.  

 

 

Note: We now show that continuity of f at a point b is a necessary 

 (but not sufficient) condition for the existence of the derivative at b. 

 

Theorem: If f ∶  𝐼 →  ℝ has a derivative at 𝑏 ∈  𝐼, then 𝑓 is continuous 

at 𝑏. 

Proof.    We have 

f(x) − f(b) = (
f(x)−f(b)

x−b
) (x − b)              For all x ∈  I; x ≠ b 

Because f ′(b) exists, Therefore 

lim
x→b

(f(x) − f(b)) = lim
x→b

((
f(x) − f(b)

x − b
) (x − b)) 

                                                      = lim
x→b

(
f(x)−f(b)

x−b
) lim

x→b
(x − b)  

                                                      = f ′(b). 0 = 0  

Therefore, lim
x→b

(f(x) − f(b)) = 0 ⇒ lim
x→b

f(x) − lim
x→b

f(b) ⇒ lim
x→b

f(x) = f(b) 
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Hence f is continuous at b.                  

 NOTE: The continuity of f ∶  I →  ℝ at a point does not promise the 

existence of the derivative at that point. 

 

Theorem: Let I ⊆ ℝ be an Interval and f, g: X → ℝ be functions that are 

differentiable at b ∈  ℝ Then 

(i) If α ∈ ℝ, then the function αf is differentiable at b and  

           (αf)′(b) = αf ′(b)  

(ii) The function f+g is differentiable at b and 

            (f + g)′(b) = f ′(b) + g′(b)  

(iii) The function f and g is differentiable at b and 

           (fg)′(b) = f ′(b)g(b) + f(b)g′(b)  

(iv) If g(b) ≠ 0, then the function f and g is differentiable at b and 

            (
f

g
)

′
(b) =

f′(b)g(b)−f(b)g′(b)

(g(b))
2   

Proof.  (i) Let h1 = αf, then for  x ∈ I and x ≠ b, we have 

h1(x)−h1(b)

x−b
=

(αf)(x)−(αf)(b)

x−b
= α

f(x)−f(b)

x−b
  

Since f is differentiable at b implies f ′(b) exists. Therefore 

lim
x→b

h1(x)−h1(b)

x−b
= lim

x→b
α

f(x)−f(b)

x−b
= αlim

x→b
 
f(x)−f(b)

x−b
= αf ′(c)  

Hence (αf)′(b) = αf ′(b)  

(ii) Let h2 = f + g, then for  x ∈ I and x ≠ b, we have 

h2(x)−h2(b)

x−b
=

(f+g)(x)−(f+g)(b)

x−b
=

f(x)+g(x)−f(b)−g(b)

x−b
=

f(x)−f(b)+g(x)−g(b)

x−b
  

                 =
f(x)−f(b)

x−b
+

g(x)−g(b)

x−b
  

Since f and g are differentiable at b implies f ′(b) and g′(b) exists. 

Therefore 

lim
x→b

h2(x)−h2(b)

x−b
= lim

x→b

f(x)−f(b)

x−b
+ lim

x→b

g(x)−g(b)

x−b
= f ′(b) + g′(b)   

Hence (f + g)′(b) = f ′(b) + g′(b)  
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(iii) Let h3 = fg, then for  x ∈ I and x ≠ b, we have 

h3(x) − h3(b)

x − b
=

(fg)(x) − (fg)(b)

x − b
=

f(x)g(x) − f(b)g(b)

x − b

=
f(x)g(x) − f(b)g(x) + f(b)g(x) − f(b)g(b)

x − b
 

=
g(x)(f(x)−f(b))+f(b)(g(x)−g(b))

x−b
= g(x)

f(x)−f(b)

x−b
+ f(b)

g(x)−g(b)

x−b
 . 

It is given that f and g is differentiable at b and  

g is differentiable at b ⇒  g is continuous  i.e. lim
x→b

g(x) = g(b)       (by 

previous theorem) 

Therefore 

lim
x→b

h3(x)−h3(b)

x−b
= lim

x→b
{g(x)

f(x)−f(b)

x−b
+ f(b)

g(x)−g(b)

x−b
}  

= lim
x→b

g(x)
f(x)−f(b)

x−b
+ lim

x→b
f(b)

g(x)−g(b)

x−b
= lim

x→b
g(x) lim

x→b

f(x)−f(b)

x−b
+

f(b) lim
x→b

g(x)−g(b)

x−b
= f ′(b)g(b) + f(b)g′(b)  

 Hence (fg)′(b) = f ′(b)g(b) + f(b)g′(b) 

(iv) Let h4 =
f

g
, since g is differentiable at b ⇒ since g is continuous at b. 

It is given that g(b) ≠ 0, therefore there exists an interval I1 ⊆ I with 

b ∈ I1 such that 

 g(x) ≠ 0  for all x ∈ I1. 

Now for x ∈ I1, x ≠ b, we get 

h4(x) − h4(b)

x − b
=

f
g

(x)  −
f
g

(b)

x − b
=

f(x)
g(x)  −

f(b)
g(b)

x − b
=

f(x)g(b) − f(b)g(x)

g(b)g(b)(x − b)
 

=
f(x)g(b) − f(b)g(x)

g(b)g(b)(x − b)
=

f(x)g(b) − f(b)g(b) + f(b)g(b) − f(b)g(x)

g(b)g(b)(x − b)
 

(f(x)−f(b))g(b)−f(b)(g(x)−g(b))

g(x)g(b)(x−b)
=

1

g(x)g(b)
[

f(x)−f(b)

x−b
. g(b) − f(b).

g(x)−g(b)

x−b
]  

Therefore 

lim
x→b

h4(x)−h4(b)

x−b
= lim

x→b

1

g(x)g(b)
[

f(x)−f(b)

x−b
. g(b) − f(b).

g(x)−g(b)

x−b
]  
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                                  = lim
x→b

1

g(x)g(b)
[lim

x→b
(

f(x)−f(b)

x−b
) . g(b) −

f(b). lim
x→b

(
g(x)−g(b)

x−b
)]   

                                 =
1

g′2
(b)

. [f ′(b)g(b) − f(b)g′(b)]    

Hence 

(
f

g
)

′
(b) =

f′(b)g(b)−f(b)g′(b)

(g(b))
2   

 

8.4 MEAN VALUE THEOREM 

 

The Mean Value Theorem, which relates the values of a function to 

values of its derivative, 

is one of the most useful results in real analysis 

We begin by looking at the relationship between the relative extrema of 

a function and 

the values of its derivative.  

Relative Maximum: The function f ∶  I →  ℝ  is said to have a 

relative maximum at b ∈ I if there exists a neighborhood V = Vδ(b) of b 

such that f(x) ≤ f(b), for all x in V ∩  I.  

Relative Minimum: The function f ∶  I →  ℝ  is said to have a 

relative minimum at b ∈ I if there exists a neighborhood V′ = V′ δ′ (b) 

of b such that f(x) ≥ f(b), for all x in V′  ∩  I.  

Relative Extremum: f has a relative extremum at b ∈ I if it has 

either a relative maximum or a relative minimum at b. 

Interior Extremum Theorem  

Theorem: Let b be an interior point of the interval I at which 

 f ∶  I →  R has a relative extremum. If the derivative of f at b exists, then 

 f ′(b) = 0. 
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Proof. If f ’ (b) > 0, Then there exists a neighborhood V ⊆ I of b such 

that 

 
f(x)−f(b)

x−b
> 0 for x ∈ V, x ≠ b 

If  x ∈ V, x > b, then we get 

f(x) − f(b) = (x − b).
f(x)−f(b)

x−b
> 0  

But this contradicts the hypothesis that f has a relative maximum at b.  

Hence, we cannot have f ’ (b) > 0. 

Similarly, we cannot have f ’ (b) < 0. 

Therefore, f ’ (b) = 0. 

 

Rolle’s Theorem 

Theorem: Consider that f is continuous on a closed interval I = [a, b]  

and 

the derivative f ′(0) exists at every point of the open interval (a, b), and 

f(a) = f(b) = 0. 

Then there exists at least one point c in (a, b) such that f ′(c) = 0 

Proof. If f(x) = 0  for all x in I or vanishes identically on I, then any c 

in (a, b) will satisfy the result of the theorem. 

 Hence Let f does not vanish identically or f ≠ 0. 

Now replacing f by (−f)  and consider f assumes some positive values.  

So by the Maximum Minimum Theorem, 

The function f attains the value sup{f(x): x ∈ I} > 0 at some point c in I. 

 Since f(a) = f(b) = 0. the point c must lie in (a, b).  

Hence f ′(c) exists. 

Since f has a relative maximum at c.  

By the Interior Extremum Theorem, we get 

f ′(c) = 0  
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Geometrical Representation of Rolle’s theorem 

 

In the given graph, the curve y =  f(x) is continuous between x =  a 

and x =  b and 

 at every point, within the interval, it is possible to draw a tangent and 

ordinates corresponding to the abscissa and are equal then there exists at 

least one tangent to the curve which is parallel to the x-axis.  

Algebraically, this theorem tells us that if f (x) is representing a 

polynomial function in x and the two roots of the equation f(x)  =  0 are 

x = a and x =  b, then there exists at least one root of the equation 

f′(x)  =  0 lying between these values.  

The converse of Rolle’s theorem is not true and it is also possible that 

there exists more than one value of x, for which the theorem holds good 

but there is a definite chance of the existence of one such value. 

 

NOTE:  

 Rolle’s theorem does not hold good if 

(i) f (x) is discontinuous in the closed interval [a, b]. 

(ii) f (x) does not exist at some point in (a, b). 

(iii) f (a) ≠ f (b). 

Example: Rolle’s Theorem can be used for the location of roots of a 

function. 

 

 

 

  

 

   
Fig.  
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For, if a function g can be identified as the derivative of a function f, 

then between any two roots of f there is at least one root of g.  

For example: let g(x) = cos x then g is known to be 

the derivative of f(x) = sin x. Hence, between any two roots of sin x 

there is at least one 

root of cos x .  

On the other hand, g′(x) = −sinx = −f(x) . 

 Another application of Rolle’s Theorem informed us that between any 

two roots of cos there is at least one root of sin.Therefore, we conclude 

that the roots of sin and cos interlace each other 

 

Mean Value Theorem: 

Suppose that f is continuous on a closed interval I = [a, b]and f has a derivative 

in the open interval (a, b). Then there exists atleast one point c in (a, b) such 

that f(b) − f(a) = f ′(c)(b − a) 

Proof. Assume the function Φ defined on I such that 

Φ(x) = f(x) − f(a) −
f(b)−f(a)

b−a
(x − a)  

We can easily see that The Conditions of Rolle’s Theorem are satisfied by Φ 

since Φ is continuous on [a, b], differentiable on (a, b), and Φ(a) = Φ(b). 

Therefore, there exists a point b in (a, b) such that  

0 = Φ′(c) = f ′(c) −
f(b)−f(a)

b−a
 . 

Therefore f ′(c) =
f(b)−f(a)

b−a
⇒ f(b) − f(a) = f ′(c)(b − a) 

Geometrical Interpretation 
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The geometric view of the Mean Value Theorem is that there is some 

point on the curve y = f(x) at which the tangent line is parallel to the 

line segment through the points (a, f (a)) and (b, f (b)). Thus it is easy to 

remember the statement of the Mean Value 

Theorem by drawing appropriate diagrams. While this should not be 

discouraged, it tends to suggest that its importance is geometrical in 

nature, which is quite misleading. In fact the 

Mean Value Theorem is a wolf in sheep’s clothing and is the 

Fundamental Theorem of Differential Calculus.  

Cauchy Mean Value Theorem: 

Theorem: Let f and g be continuous on [a, b] and differentiable on 

(a, b), and assume that g(x) ≠ 0 for all x in (a, b). Then there exists c in 

(a, b) such that 

f(b)−f(a)

g(b)−g(a)
=

f′(c)

g′(c)
  

Proof. Since g′(x) ≠ 0 for all x in (a, b), therefore  

Using Rolle’s Theorem, we get  

g(a) ≠ g(b). 

For x in [a, b], now new define 

φ(x) =
f(b)−f(a)

g(b)−g(a)
(g(x) − g(a)) − (f(x) − f(a))  

Then h is continuous on [a, b], differentiable on (a, b), and 
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 φ(a) = φ(b) = 0 . 

Therefore, According, to Rolle’s Theorem  

there exists a point c in (a, b) such that 

0 = φ′(c) =
f(b)−f(a)

g(b)−g(a)
g′(c) − f ′(c)  

As we know g′(c) ≠ 0 , we obtain required result that is  

f′(c)

g′(c)
=

f(b)−f(a)

g(b)−g(a)
  

Strictly Increasing: A function f is said to be strictly increasing on 

an interval I if for any points x1and x2 in I such that x1  <  x2, we have 

(x1)  < f( x2) . 

Strictly decreasing: A function f is said to be strictly increasing on 

an interval I if for any points x1and x2 in I such that x1  <  x2, we have 

f(x1)  < f( x2). 

Derivatives can be used to determine whether a function is increasing, 

decreasing or constant on an interval:  

f(x) is increasing if derivative f ′ (x) > 0,  

f(x) is decreasing if derivative f ′ (x) < 0,  

f(x) is constant if derivative f ′ (x) = 0.  

A critical number, c, is one where f ′ (c) = 0 or f ′ (c) does not exist; a 

critical point is (c, f(c)).  

After locating the critical number(s), choose test values in each interval 

between these critical numbers, then calculate the derivatives at the test 

values to decide whether the function is increasing or decreasing in each 

given interval. 

 (In general, identify values of the function which are discontinuous, so, 

in addition to critical numbers, also watch for values of the function 

which are not defined, at vertical asymptotes or singularities (“holes”).)  

 

 

 

8.5 TAYLOR’S THEOREM 



Real Analysis  MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                       134 
 

 

 

 

 

 

 

 

 



Real Analysis  MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                       135 
 

 

 

 

 

 



Real Analysis  MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                       136 
 

 

Example 1. Find the first 4 terms of the Taylor series for the following 

functions: 

 (a) 𝑓(𝑥) = 𝑙𝑜𝑔𝑥  centered at 𝑎 = 1. 

(b) 𝑓(𝑥) =
1

𝑥
 centered at 𝑎 = 1.  

(c) 𝑓(𝑥) = 𝑠𝑖𝑛𝑥  centered at 𝑎 =
𝜋

4
 . 

Sol. (i) 

 

 

(ii) 

 

 

(iii) 
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Example 2. 

 

Sol. 

 

 

Example 3. 

 

Sol. 
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CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. The derivatives of 𝑓(𝑥) =  sin 𝑥 is 1 at 𝑥 = 0. 

Problem 2. The derivatives 𝑓(𝑥) = 𝑒𝑥 is 1 at 𝑥 = 0. 

Problem 3. Every Differentiable function is continuous function. 

Problem 4. Rolle’s Theorem can be used for the location of roots of a 

function. 

Problem 5. Every continuous function is Differentiable. 
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8.6 SUMMARY 

 

1. Theorem: Let b be an interior point of the interval I at which 

 f ∶  I →  R has a relative extremum. If the derivative of f at b exists, then 

 f ′(b) = 0. 

2. Rolle’s Theorem 

Theorem: Consider that f is continuous on a closed interval I = [a, b]  

and the derivative f ′(0) exists at every point of the open interval (a, b), 

and f(a) = f(b) = 0. Then there exists at least one point c in (a, b) such 

that f ′(c) = 0 

 

 

8.7 GLOSSARY  
 

Numbers  

Intervals   

Continuity function 

Functions 

Limits 
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8.10 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Using Taylor’s theorem, show that 𝑐𝑜𝑠𝑥 ≥ 1 −
𝑥2

2
∀ 𝑥 ∈ ℝ.  

Q 2. Using Taylor’s theorem, show that 𝑥 −
𝑥3

3!
< 𝑠𝑖𝑛𝑥 < 𝑥, 𝑥 > 0. 

Q 3. Prove that 𝑓(𝑥) =
1

𝑥
 is not differentiable at 0. 

Q 4. Prove that 𝑓(𝑥) =  𝑥2 is differentiable. 

 

8.11 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 

        CYQ 5. False 
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9.1 INTRODUCTION 

 

                   In the branch of mathematics known as real analysis, 

the Riemann integral, created by Bernhard Riemann, was the first rigorous 

definition of the integral of a function on an interval. It was presented to 

the faculty at the University of Göttingen in 1854, but not published in a 

journal until 1868.[1] For many functions and practical applications, the 

Riemann integral can be evaluated by the fundamental theorem of 

calculus or approximated by numerical integration, or simulated 

using Monte Carlo integration. 

 

9.2 OBJECTIVES 

In this Unit, we will Discussed about 

 Upper Riemann Sums 

 Lower Riemann Sums 

 Riemann Integral 

 Construct mean value theorem of calculus 

 

 

 

 

9.3 RIEMANN INTEGRAL 

 

Now we will discuss the definition of Riemann integral of a function 𝑓 on 

an interval [𝑎, 𝑏].  

We first define some basic terms that will be frequently used. 

Partition of 𝑰:  If 𝐼 = [𝑎, 𝑏] is a closed bounded interval in ℝ, then a 

partition of 𝐼 is a finite, ordered set 𝑃 = (𝑥0, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛) of points in 

𝐼 such that 

 𝑎 = 𝑥0  <  𝑥1  < ⋯  <  𝑥𝑛−1  < 𝑥𝑛 = 𝑏.  

The points of 𝑃 are used to divide 𝐼 = [𝑎, 𝑏] into non-overlapping 

subintervals 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Real_analysis
https://en.wikipedia.org/wiki/Bernhard_Riemann
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/University_of_G%C3%B6ttingen
https://en.wikipedia.org/wiki/Riemann_integral#cite_note-1
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Monte_Carlo_integration


Real Analysis  MT(N)-201 

Department Of Mathematics 
Uttarakhand Open University                                                                                                                         144 
 

 𝐼1 = [𝑥0, 𝑥1], 𝐼2 = [𝑥1, 𝑥2], … , 𝐼𝑛 = [𝑥𝑛−1, 𝑥𝑛] 

 
Let 𝑓 be a bounded real function on [𝑎, 𝑏]. Obviously f is bounded on each 

sub-interval corresponding to each partition P. Let 𝑀𝑖  and 𝑚𝑖  be the 

supremum and infimum respectively of 𝑓 in ∆𝑥𝑖. Then 

  

Upper Darboux Sums: 

                  𝑼(𝑷, 𝒇) = 𝑴𝟏∆𝒙𝟏 + 𝑴𝟐∆𝒙𝟐 + ⋯ + 𝑴𝒏∆𝒙𝒏 = ∑ 𝑴𝒊
𝒏
𝒊=𝟏 ∆𝑥𝑖 

is called Upper Darboux Sums of 𝑓 corresponding to the partition 𝑃. 

 

Lower Darboux Sums: 

                   𝑳(𝑷, 𝒇) = 𝒎𝟏∆𝒙𝟏 + 𝒎𝟐∆𝒙𝟐 + ⋯ + 𝒎𝒏∆𝒙𝒏 = ∑ 𝒎𝒊
𝒏
𝒊=𝟏 ∆𝑥𝑖 

is called Lower Darboux Sums of 𝑓 corresponding to the partition 𝑃. 

 

Note: Let M and m are the bounds of f in [a, b]. Then 

m ≤ mi ≤ Mi ≤ M ⇒ m∆xi ≤ mi∆xi ≤ Mi∆xi ≤ M∆xi  

⇒∑ m∆xi
n
i=1 ≤ ∑ mi∆xi

n
i=1 ≤ ∑ Mi∆xi

n
i=1 ≤ ∑ M∆xi

n
i=1  

⇒ m ∑ ∆xi
n
i=1 ≤ ∑ mi∆xi

n
i=1 ≤ ∑ Mi∆xi

n
i=1 ≤ M ∑ ∆xi

n
i=1   

⇒ 𝐦(𝐚 − 𝐛) ≤ 𝐋(𝐏, 𝐟) ≤ 𝐔(𝐏, 𝐟) ≤ 𝐌(𝐚 − 𝐛)  

Note:  

 

 

Therefore U(P, f) is increasing L(P, f) is decreasing function. 

 

𝑥0 = 𝑎 𝑥𝑛 = 𝑏 𝑥1 𝑥2 𝑥𝑛 

Fig. Partition of 𝑰 = [𝒂, 𝒃] 



Real Analysis  MT(N)-201 

Department Of Mathematics 
Uttarakhand Open University                                                                                                                         145 
 

Example 1. Compute L(P, f) and U(P, f) if 𝑓(𝑥) = 𝑥 For  𝑥 ∈ [0, 3] and 

let 𝑃 = {0, 1, 2, 3} be the partition of [0, 3]. 

Solution: Partition P divides the interval [0, 3] into sub-intervals 

𝐼1 =[0, 1],  𝐼2 =[1, 2],  𝐼3 =[2, 3] 

The length of these intervals are given by 

𝛿1 = 1 − 0 = 1, 𝛿2 = 2 − 1 = 1, 𝛿3 = 3 − 2 = 1. 

Also, if 𝑀𝑟and 𝑚𝑟 be respectively the l.u.b. and g.l.b. of the function 𝑓 in 

[𝑥𝑟−1, 𝑥𝑟], then here we get 

𝑀1 = 1, 𝑚1 = 0, 𝑀2 = 2, 𝑚2 = 1 and 𝑀3 = 3, 𝑚3 = 2 

Therefore, U(P, f) = ∑ 𝑀𝑟𝛿𝑟
3
𝑟=1  = 𝑀1𝛿1 + 𝑀2𝛿2 + 𝑀3𝛿3 

                              = 1.1 + 2.1 + 3.1 = 6. 

And           L(P, f) = ∑ 𝑚𝑟𝛿𝑟
3
𝑟=1  = 𝑚1𝛿1 + 𝑚2𝛿2 + 𝑚3𝛿3 

                              = 0.1 + 1.1 + 2.1 = 3. 

 

 

Upper Integral: The infimum of the set of upper sums is called Upper 

Integral.  

i.e. ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
=  inf 𝑈 = inf  {𝑈(𝑃, 𝑓): 𝑃 is a partition of [𝑎, 𝑏]} 

 

Lower Integral: The supremum of the set of lower sums is called Lower 

Integral. 

i.e. ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
= sup 𝐿 = sup  {𝐿(𝑃, 𝑓): 𝑃 is a partition of [𝑎, 𝑏]} 

 

Darboux’s condition of integrability:  

 

When Upper integral and lower integral are equal then 𝑓 is said to be 

Riemann Integral over [ 𝑎, 𝑏]. 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓 𝑑𝑥

−𝑏

𝑎
= ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
  

 

Another definition of Riemann Integrable: A function 𝑓 ∶ [ 𝑎, 𝑏] →  ℝ 

is said to be Riemann integrable on [𝑎, 𝑏] if there exists a number 𝐿 ∈ ℝ 

such that for every 휀 >  0 there exists 𝛿 >  0 such that if 𝑃′ is any tagged 

partition of [𝑎, 𝑏] with ||𝑃′|| > 0, then |𝑆(𝑓, 𝑃′) − 𝐿| < 휀  

The set of all Riemann integrable functions on [𝑎, 𝑏] will be denoted by 

𝑅[𝑎, 𝑏]. 

Example 2.  Show that a constant function 𝛼 is integrable and 

 ∫ 𝑑𝑥
𝑏

𝑎
= 𝛼(𝑏 − 𝑎). 

Proof. Let P be any partiion of the interval [a,b], then 
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𝐿(𝑃, 𝑓) = 𝛼∆𝑥1 + 𝛼∆𝑥2 + ⋯ + 𝛼∆𝑥𝑛  

             = 𝛼 (∆𝑥1 + ∆𝑥2 + ⋯ + ∆𝑥𝑛) = 𝛼(𝑏 − 𝑎)  

Similarly, 𝑈(𝑃, 𝑓) = 𝛼∆𝑥1 + 𝛼∆𝑥2 + ⋯ + 𝛼∆𝑥𝑛 = 𝛼(𝑏 − 𝑎)  

Therefore 

∫ 𝛼𝑑𝑥
𝑏

−𝑎
= sup 𝐿(𝑃, 𝑓) = 𝛼(𝑏 − 𝑎)  and 

∫ 𝛼𝑑𝑥
𝑏

−𝑎
= inf 𝑈(𝑃, 𝑓) = 𝛼(𝑏 − 𝑎)   

⇒∫ 𝛼𝑑𝑥
𝑏

−𝑎
= ∫ 𝛼𝑑𝑥

𝑏

−𝑎
= 𝛼(𝑏 − 𝑎)  

Therefore, the constant function is R-integrable and ∫ 𝛼𝑑𝑥
𝑏

𝑎
= 𝛼(𝑏 − 𝑎). 

Example 3.  Prove that function 𝑓 defines as 

𝑓(𝑥) = {
0, when  𝑥 is rational

     1, when  𝑥 𝑖s irrational
 is not integrable on any interval. 

Proof. Let P be any partiion of the interval [a,b], then 

𝐿(𝑃, 𝑓) = ∑ 𝑚𝑖
𝑛
𝑖=1 ∆𝑥𝑖 = 0∆𝑥1 + 0∆𝑥2 + ⋯ + 0∆𝑥𝑛 = 0  

Similarly, 𝑈(𝑃, 𝑓) = ∑ 𝑀𝑖
𝑛
𝑖=1 ∆𝑥𝑖 = 1∆𝑥1 + 1∆𝑥2 + ⋯ + 1∆𝑥𝑛 = 𝑏 − 𝑎 

Therefore 

∫ 𝛼𝑑𝑥
𝑏

−𝑎
= sup 𝐿(𝑃, 𝑓) = 0  and 

∫ 𝛼𝑑𝑥
𝑏

−𝑎
= inf 𝑈(𝑃, 𝑓) = 𝑏 − 𝑎  

⇒∫ 𝛼𝑑𝑥
𝑏

−𝑎
≠ ∫ 𝛼𝑑𝑥

𝑏

−𝑎
 

Therefore, the given function is not R-integrable on any interval. 

Example 4. Show that function 𝑓(𝑥) = 𝑥3 is integrable on any interval 

[0, 𝑏]. 

Proof. Let 𝑃 be any partiion of the interval [0, 𝑏] obtained by dividing 

interval into 𝑛 −equal parts. i.e. 𝑃 = [
0

𝑛
= 0,

𝑏

𝑛
,

2𝑏

𝑛
,

3𝑏

𝑛
, … ,

𝑛𝑏

𝑛
= 𝑏] 

Let lower bounds of function in ∆𝑥𝑖 = (
(𝑖−1)𝑘

𝑛
)

3

 and Upper bounds of 

function in ∆𝑥𝑖 = (
𝑖𝑘

𝑛
)

3

 

Therefore 
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𝐿(𝑃, 𝑓) = ∑ 𝑚𝑖
𝑛
𝑖=1 ∆𝑥𝑖 = 𝑚1∆𝑥1 + 𝑚2∆𝑥2 + ⋯ + 𝑚𝑛∆𝑥𝑛  

              = 0.
𝑏

𝑛
+ (

𝑏

𝑛
)

3

.
𝑏

𝑛
+ (

2𝑏

𝑛
)

3

.
𝑏

𝑛
+ ⋯ + (

𝑏(𝑛−1)

𝑛
)

3

.
𝑏

𝑛
=

𝑏4

𝑛4
[13 + 23 +

⋯ + (𝑛 − 1)3]  

              =  
𝑏4(𝑛−1)2𝑛2

4𝑛4 =
𝑏4

4
(1 −

1

𝑛
)

2

    

Similarly 

 𝑈(𝑃, 𝑓) = ∑ 𝑀𝑖
𝑛
𝑖=1 ∆𝑥𝑖 = 𝑀1∆𝑥1 + 𝑀2∆𝑥2 + ⋯ + 𝑀𝑛∆𝑥𝑛  

              = (
𝑏

𝑛
)

3

.
𝑏

𝑛
+ (

2𝑏

𝑛
)

3

.
𝑏

𝑛
+ (

2𝑏

𝑛
)

3

.
𝑏

𝑛
+ ⋯ + (

𝑏𝑛

𝑛
)

3

.
𝑏

𝑛
=

𝑏4

𝑛4
[13 +

23 + ⋯ + 𝑛3]  

              =  
𝑏4𝑛2(𝑛+1)2

4𝑛4 =
𝑏4

4
(1 +

1

𝑛
)

2

    

Therefore 

∫ 𝛼𝑑𝑥
𝑏

−0
= sup 𝐿(𝑃, 𝑓) =

𝑏4

4
  and 

∫ 𝛼𝑑𝑥
𝑏

−0
= inf 𝑈(𝑃, 𝑓) =

𝑏4

4
   

⇒∫ 𝛼𝑑𝑥
𝑏

−0
= ∫ 𝛼𝑑𝑥

𝑏

−0
=

𝑏4

4
 

Therefore, the given function is R-integrable and ∫ 𝛼𝑑𝑥
𝑏

0
=

𝑏4

4
. 

Example 5. Show that the function 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is integrable in [0,
𝜋

2
] and 

∫ 𝑠𝑖𝑛𝑥 𝑑𝑥 = 1
𝜋

2
0

. 

Solution: Let any partition of [0,
𝜋

2
] be  

                P = {0 =
0𝜋

2𝑛
,

𝜋

2𝑛
,

2𝜋

2𝑛
, … ,

𝑟𝜋

2𝑛
, … ,

𝑛𝜋

2𝑛
=

𝜋

2
 } 

Which dissects [0,
𝜋

2
] into 𝑛 equal parts. 

The length of each subinterval = 
𝜋

2𝑛
 and the 𝑟𝑡ℎ sub - interval is 

        𝐼𝑟 = [
(𝑟−1)𝜋

2𝑛
,

𝑟𝜋

2𝑛
]. 

As 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is increasing in [0,
𝜋

2
], so we have 
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𝑚𝑟 = 
𝑠𝑖𝑛(𝑟−1)𝜋

2𝑛
 and 𝑀𝑟 = 

𝑠𝑖𝑛𝑟𝜋

2𝑛
, 𝑟 = 1,2,3, … , 𝑛 

Therefore, 𝑈(𝑃, 𝑓) = ∑ 𝑀𝑖
𝑛
𝑖=1 ∆𝑥𝑖 = ∑ (𝑠𝑖𝑛

𝑟𝜋

2𝑛
) .𝑛

𝑖=1
𝜋

2𝑛
 

                                = 
𝜋

2𝑛
[ 𝑠𝑖𝑛

𝜋

2𝑛
+ 𝑠𝑖𝑛

2𝜋

2𝑛
+ ⋯ + 𝑠𝑖𝑛

𝑛𝜋

2𝑛
 ] 

                                = 
𝜋

2𝑛
[

sin(
𝜋

2𝑛
+

𝑛−1

𝑛
.

𝜋

2𝑛
) 𝑠𝑖𝑛

𝑛𝜋

4𝑛

𝑠𝑖𝑛
𝜋

4𝑛

] 

∵  sin 𝑎 + sin(𝑎 + 𝑑) + ⋯ + sin[𝑎 + (𝑛 − 1)𝑑] 

                                 = 
sin(𝑎+

𝑛−1

2
.𝑑 ) 𝑠𝑖𝑛

𝑛𝑑

2

sin(𝑑/2)
 

Or 𝑈(𝑃, 𝑓) =
𝜋

2𝑛
[{sin

(𝑛+1)𝜋

4𝑛
sin (

𝜋

4
)} / sin (

𝜋

4𝑛
)] 

                    = 
𝜋

2𝑛
[{sin(

𝜋

4
+

𝜋

4𝑛
)

1

√2
} / sin (

𝜋

4𝑛
)] 

                     = 
𝜋

2√2𝑛
[{sin

𝜋

4
𝑐𝑜𝑠

𝜋

4𝑛
+ cos

𝜋

4
𝑠𝑖𝑛

𝜋

4𝑛
} / sin (

𝜋

4𝑛
)] 

                      = 
𝜋

4𝑛
(cot

𝜋

4𝑛
+ 1) 

Similarly, 𝐿(𝑃, 𝑓) =
𝜋

4𝑛
(cot

𝜋

4𝑛
− 1) 

Now, Riemann lower integral = lim
𝑛⟶∞

𝐿(𝑃, 𝑓) = lim
𝑛⟶∞

𝜋

4𝑛
(cot

𝜋

4𝑛
− 1) 

                                                 = lim
𝑛⟶∞

𝜋/4𝑛

tan (
𝜋

4𝑛
)

− lim
𝑛⟶∞

𝜋

4𝑛
 

                                                  = 1 – 0 = 1         …… (1) 

And Riemann upper integral = lim
𝑛⟶∞

𝑈(𝑃, 𝑓) = lim
𝑛⟶∞

𝜋

4𝑛
(cot

𝜋

4𝑛
+ 1) 

                                                 = 1                      ……. (2) 

From equation (1) and (2) we get  

𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is integrable in [0,
𝜋

2
] and ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥 = 1

𝜋

2
0

. 

 

 

 

                 



Real Analysis  MT(N)-201 

Department Of Mathematics 
Uttarakhand Open University                                                                                                                         149 
 

 

9.4 INEQUALITIES FOR INTEGRALS 

We already prove that  

𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎) 𝑤ℎ𝑒𝑛 𝑏 ≥ 𝑎 …………………..(I) 

If 𝑏 < 𝑎, so that 𝑎 > 𝑏 and   

𝑚(𝑎 − 𝑏) ≤ ∫ 𝑓 𝑑𝑥
𝑎

𝑏
≤ 𝑀(𝑎 − 𝑏) ⇒−𝑚(𝑎 − 𝑏) ≤ − ∫ 𝑓 𝑑𝑥

𝑎

𝑏
≤

−𝑀(𝑎 − 𝑏) 

⇒ 𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎)  when 𝑏 < 𝑎………………(II) 

Deduction 1: If 𝑓 is bounded and integrable on [𝑎, 𝑏], then there exists a 

number 𝑘 lying between bounds of 𝑓 such that ∫ 𝑓 𝑑𝑥
𝑎

𝑏
= 𝑘(𝑏 − 𝑎) 

Deduction 2: If 𝑓 is continuous and integrable on [𝑎, 𝑏], then there exists 

a number 𝑐 lying between 𝑎 and 𝑏 such that ∫ 𝑓 𝑑𝑥
𝑎

𝑏
= 𝑓(𝑐)(𝑏 − 𝑎) 

Deduction 3: If 𝑓 is bounded and integrable on [𝑎, 𝑏], and 𝛼 > 0 is a 

number such that |𝑓(𝑥)| ≤ 𝛼  for all 𝑥 ∈ [𝑎, 𝑏], then 

  |∫ 𝑓 𝑑𝑥
𝑎

𝑏
| ≤ 𝛼|𝑏 − 𝑎|. 

Proof. Let 𝑀 and 𝑚 be the upper bounds and lower bounds of 𝑓(𝑥) 

respectively. 

Let 𝛼 > 0 is a number such that |𝑓(𝑥)| ≤ 𝛼  for all 𝑥 ∈ [𝑎, 𝑏] 

Hence for 𝑏 > 𝑎, −𝛼 ≤ 𝑓(𝑥) ≤ 𝛼  

⇒ −𝛼 ≤ 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 ≤ 𝛼   

⇒ −𝛼(𝑏 − 𝑎) ≤ 𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎) ≤ 𝛼(𝑏 − 𝑎)   

⇒ |∫ 𝑓(𝑥)
𝑏

𝑎
| ≤ 𝛼(𝑏 − 𝑎)   

If 𝑎 > 𝑏, we have 

|∫ 𝑓(𝑥)
𝑏

𝑎
| ≤ 𝛼(𝑎 − 𝑏)   

Therefore |∫ 𝑓(𝑥)
𝑏

𝑎
| ≤ 𝛼|𝑏 − 𝑎|.  

The result is trivial for 𝑎 = 𝑏. 
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Deduction 4: If 𝑓 is bounded and integrable on [𝑎, 𝑏] and 𝑓(𝑥) ≥ 0 for 

all 𝑥 ∈ [𝑎, 𝑏], then 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
≥ 0  when 𝑏 ≥ 𝑎   and ∫ 𝑓 𝑑𝑥

𝑏

𝑎
≤ 0  when 𝑏 ≤ 𝑎   

Proof. Because 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ [𝑎, 𝑏], then the lower bound of 

𝑓(𝑥) 𝑖. 𝑒. 𝑚 ≥ 0 

From Inequality (I) and (II) , we get  

∫ 𝑓 𝑑𝑥
𝑏

𝑎
≥ 0  when 𝑏 ≥ 𝑎   and ∫ 𝑓 𝑑𝑥

𝑏

𝑎
≤ 0  when 𝑏 ≤ 𝑎   

Deduction 5 : If 𝑓 and 𝑔 are bounded and integrable on [𝑎, 𝑏], such that 

𝑓(𝑥) ≥ 𝑔(𝑥)., for all 𝑥 ∈ [𝑎, 𝑏].then 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑔 𝑑𝑥

𝑏

𝑎
  when 𝑏 ≥ 𝑎   and ∫ 𝑓 𝑑𝑥

𝑏

𝑎
≤ ∫ 𝑓 𝑑𝑥

𝑏

𝑎
  when 𝑏 ≤ 𝑎    

Proof. It is given that 𝑓 ≥ 𝑔  then 𝑓 − 𝑔 ≥ 0  for all 𝑥 ∈ [𝑎, 𝑏]. 

Using deduction 4, we have 

∫ (𝑓 − 𝑔)𝑑𝑥
𝑏

𝑎
≥ 0  𝑖𝑓 𝑏 ≥ 𝑎  

⇒∫ 𝑓𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑔𝑑𝑥

𝑏

𝑎
  𝑖𝑓 𝑏 ≥ 𝑎  

Similarly 

∫ 𝑓𝑑𝑥
𝑏

𝑎
≤ ∫ 𝑔𝑑𝑥

𝑏

𝑎
  𝑖𝑓 𝑏 ≤ 𝑎  

 

 

9.5 REFINEMENT OF PARTITIONS AND 

TAGGED PARTITIONS 

Norm: The norm (or mesh) of 𝑃 to be the number 

 𝜇(𝑃) = max  {𝑥1 − 𝑥0, 𝑥2 − 𝑥1, … , 𝑥𝑛 − 𝑥𝑛−1}  

                                   OR 

the norm of a partition is merely the length of the largest subinterval into 

which the partition divides [𝑎, 𝑏]. 

Refinement: A partition 𝑃∗ is said to be a refinement of 𝑃 if 𝑃∗ ⊇ 𝑃 i.e. 

every point of P is a point of 𝑃∗. 
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Or we can say that 𝑃∗ refines 𝑃 or  𝑃∗ is finer than 𝑃. 

If 𝑃1 and 𝑃2 are two partitions, then 𝑃∗ = 𝑃1 ∪ 𝑃2. 

Theorem 9.5.1. Suppose that 𝑓 ∶  [𝑎, 𝑏]  →  𝑅 is bounded and 𝑃 and 𝑃∗  

be partitions of [a, b] and refinement of 𝑃 respectively. Then  

              (i) 𝐿(𝑃, 𝑓)  ≤  𝐿(𝑃∗ , 𝑓) 

              (ii) 𝑈(𝑃∗, 𝑓)  ≤  𝑈(𝑃, 𝑓)  

Proof. Let 𝑃 be partition of [𝑎, 𝑏] and 𝑷∗ contains just one more point ′𝛼′  

than 𝑃. 

Let 𝛼 ∈ ∆𝑥𝑖 𝑖. 𝑒 𝑥𝑖−1 < 𝛼 <  𝑥𝑖. 

It is given that the function 𝑓 is  bounded over the interval [𝑎, 𝑏]. 

⇒ It is bounded in every subinterval ∆𝑥𝑖. 

Let 𝛽1, 𝛽2 and 𝑚𝑖 be the infimum of f in the interval [𝑥𝑖−1, 𝛼], [𝛼, 𝑥𝑖] and 

[𝑥𝑖−1, 𝑥𝑖] respectively. 

Obviously  𝑚𝑖 ≤ 𝛽1 and  𝑚𝑖 ≤ 𝛽2. 

Hence 

 𝐿(𝑃∗ , 𝑓) − 𝐿(𝑃, 𝑓) = 𝑚1∆𝑥1 + 𝑚2∆𝑥2 + ⋯ + 𝛽1(𝛼 − 𝑥𝑖−1) + 𝛽1(𝑥𝑖 −

𝛼) + 𝑚𝑖+1∆𝑥𝑖+1 + ⋯ + 𝑚𝑛∆𝑥𝑛 − (𝑚1∆𝑥1 + 𝑚2∆𝑥2 + ⋯ + 𝑚𝑖∆𝑥𝑛 +

𝑚𝑛∆𝑥𝑛) 

                                      = 𝛽1(𝛼 − 𝑥𝑖−1) + 𝛽2(𝑥𝑖 − 𝛼) − 𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1)  

                                     = 𝛽1𝛼 − 𝛽1𝑥𝑖−1   + 𝛽2𝑥𝑖 − 𝛽2𝛼 − 𝑚𝑖𝑥𝑖 + 𝑚𝑖𝑥𝑖−1   

                                  = 𝛽1𝛼 − 𝛽1𝑥𝑖−1 − 𝑚𝑖𝛼 + 𝑚𝑖  𝛼 + 𝛽2𝑥𝑖 − 𝛽2𝛼 −

𝑚𝑖𝑥𝑖 + 𝑚𝑖𝑥𝑖−1  

                                      = 𝛼(𝛽1 − 𝑚𝑖) − 𝑥𝑖−1(𝛽1 − 𝑚𝑖) − 𝑚𝑖  (𝑥𝑖 − 𝛼) +

𝛽2(𝑥𝑖 − 𝛼)    

                                      = (𝛼 − 𝑥𝑖−1)(𝛽1 − 𝑚𝑖) + (𝛽2 − 𝑚𝑖) (𝑥𝑖 − 𝛼)  

𝑥𝑖 > 𝛼 > 𝑥𝑖−1  and 𝛽1, 𝛽2 ≥ 𝑚𝑖 ⇒(𝛼 − 𝑥𝑖−1),   (𝑥𝑖 − 𝛼), (𝛽1 − 𝑚𝑖) and 

(𝛽2 − 𝑚𝑖) are positive. 

Therefore, 𝐿(𝑃∗, 𝑓) − 𝐿(𝑃, 𝑓) ≥ 0 

If 𝑃∗ contains 𝑝 points more than 𝑃, we repeat the above reasoning 𝑝 times 

and conclude that  
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𝐿(𝑃∗, 𝑓) ≥ 𝐿(𝑃, 𝑓)  

Similarly, we can prove that 𝑈(𝑃∗, 𝑓)  ≤  𝑈(𝑃, 𝑓) 

Corollary If a refinement 𝑷∗ of 𝑷 contains k points more than 𝑷 and 

|𝒇(𝒙)| ≤ 𝑲, for all 𝒙 ∈ [𝒂, 𝒃],  then 

(i) 𝐿(𝑃, 𝑓) ≤ 𝐿(𝑃∗, 𝑓) ≤ 𝐿(𝑃, 𝑓) + 2𝑘𝐾𝜇 

(ii) 𝑈(𝑃, 𝑓) ≥ 𝑈(𝑃∗, 𝑓) ≥ 𝑈(𝑃, 𝑓) − 2𝑘𝐾𝜇 

Proof. . Let 𝑃 be partition of [𝑎, 𝑏] and 𝑷∗ contains just one more point 

′𝛼′  than 𝑃. 

Let 𝛼 ∈ ∆𝑥𝑖 𝑖. 𝑒 𝑥𝑖−1 < 𝛼 <  𝑥𝑖. 

It is given that the function 𝑓 is  bounded over the interval [𝑎, 𝑏]. 

⇒ It is bounded in every subinterval ∆𝑥𝑖. 

Let 𝛽1, 𝛽2 and 𝑚𝑖 be the infimum of 𝑓 in the interval [𝑥𝑖−1, 𝛼], [𝛼, 𝑥𝑖] and 

[𝑥𝑖−1, 𝑥𝑖] respectively. 

Obviously  𝑚𝑖 ≤ 𝛽1 and  𝑚𝑖 ≤ 𝛽2. 

Hence 

 𝐿(𝑃∗ , 𝑓) − 𝐿(𝑃, 𝑓) = 𝑚1∆𝑥1 + 𝑚2∆𝑥2 + ⋯ + 𝛽1(𝛼 − 𝑥𝑖−1) + 

𝛽1(𝑥𝑖 − 𝛼) + 𝑚𝑖+1∆𝑥𝑖+1 + ⋯ + 𝑚𝑛∆𝑥𝑛 − (𝑚1∆𝑥1 + 𝑚2∆𝑥2 + ⋯

+ 𝑚𝑖∆𝑥𝑛 + 𝑚𝑛∆𝑥𝑛) 

                                      = 𝛽1(𝛼 − 𝑥𝑖−1) + 𝛽2(𝑥𝑖 − 𝛼) − 𝑚𝑖(𝑥𝑖 − 𝑥𝑖−1)  

                                     = 𝛽1𝛼 − 𝛽1𝑥𝑖−1   + 𝛽2𝑥𝑖 − 𝛽2𝛼 − 𝑚𝑖𝑥𝑖 + 𝑚𝑖𝑥𝑖−1   

            = 𝛽1𝛼 − 𝛽1𝑥𝑖−1 − 𝑚𝑖𝛼 + 𝑚𝑖  𝛼 + 𝛽2𝑥𝑖 − 𝛽2𝛼 − 𝑚𝑖𝑥𝑖 + 𝑚𝑖𝑥𝑖−1  

              = 𝛼(𝛽1 − 𝑚𝑖) − 𝑥𝑖−1(𝛽1 − 𝑚𝑖) − 𝑚𝑖  (𝑥𝑖 − 𝛼) + 𝛽2(𝑥𝑖 − 𝛼)    

                                      = (𝛼 − 𝑥𝑖−1)(𝛽1 − 𝑚𝑖) + (𝛽2 − 𝑚𝑖) (𝑥𝑖 − 𝛼)  

It us given that |𝑓(𝑥)| ≤ 𝐾 for all 𝑥 ∈ [𝑎, 𝑏],  therefore 

−𝐾 ≤ 𝑚𝑖 ≤ 𝛽1 ≤ 𝐾 ⇒   𝐾 ≥ −𝑚𝑖  and 𝐾 ≥ 𝛽1⇒   2𝐾 ≥ 𝛽1 − 𝑚𝑖 or 

2𝐾 ≥ 𝛽1 − 𝑚𝑖 ≥ 0 

Similarly 

2𝐾 ≥ 𝛽2 − 𝑚𝑖 ≥ 0  
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Therefore 

𝐿(𝑃∗, 𝑓) − 𝐿(𝑃, 𝑓) ≤ 2𝐾(𝛼 − 𝑥𝑖−1) + 2𝐾 (𝑥𝑖 − 𝛼) = 2𝐾(𝛼 − 𝑥𝑖−1 +

𝑥𝑖 − 𝛼) = 2𝐾(𝑥𝑖 − 𝑥𝑖−1)  

Therefore 

𝐿(𝑃∗, 𝑓) − 𝐿(𝑃, 𝑓) ≤ 2𝐾∆𝑥𝑖  

Let 𝜇 be the norm of 𝑃, hence 

𝐿(𝑃∗, 𝑓) − 𝐿(𝑃, 𝑓) ≤ 2𝐾𝜇  

Let each additional point is introduced one by one, by repeating the 

above reasoning 𝒌 times, we get 

𝐿(𝑃∗, 𝑓) − 𝐿(𝑃, 𝑓) ≤ 2𝐾𝑘𝜇 ⇒𝐿(𝑃∗ , 𝑓) ≤ 𝐿(𝑃, 𝑓) + 2𝐾𝑘𝜇 

Also, 𝐿(𝑃, 𝑓) ≤ 𝐿(𝑃∗ , 𝑓)  

Hence 𝐿(𝑃, 𝑓) ≤ 𝐿(𝑃, 𝑓) + 2𝐾𝑘𝜇 

Similarly, we can prove that 𝑈(𝑃, 𝑓) ≥ 𝑈(𝑃∗, 𝑓) ≥ 𝑈(𝑃, 𝑓) − 2𝑘𝐾𝜇 

 

CHECK YOUR PROGRESS  

True or false/MCQ Questions 

Problem 1. The function 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is integrable in [0,
𝜋

2
] and 

∫ 𝑠𝑖𝑛𝑥 𝑑𝑥 = 1
𝜋

2
0

. 

Problem 2. If the function 𝑓: ℝ ⟶ ℝ is defined as 𝑓(𝑥) = [𝑥] where, 

[. ] represent the greatest integer function then  

(a) 𝑓(𝑥) is continuous function on ℝ. 

(b) 𝑓(𝑥) is Differential function on ℝ. 

(c) 𝑓(𝑥) is Riemann integrable. 

(d) 𝑓(𝑥) is not Riemann integrable. 

Problem 3. Every Riemann integrable function is continuous function. 
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Problem 4. Every polynomial function is Riemann integrable on ℝ. 

Problem 5. U(P, f) is increasing L(P, f) is decreasing function. 

 

 

 

 

 

9.6 SUMMARY 

 

1. If )()()(
00

afhafLimithafLimit
hh




 then function f(x) is 

continuous at 𝑥 = 𝑎.
 

2. A function f: X → Y is said to be uniformly continuous on A ⊆ X if 

for every ε > 0, there exists δ > 0 such that x, y ∈ A, |𝑥 − 𝑦| < δ implies 

|𝑓(𝑥) − 𝑓(𝑦)| <  ε. 

 

 

9.7 GLOSSARY  
 

integration 

continuity   

Functions 

Limits 
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9.10 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that every constant function is Reimann integrable.  

Q 2. Prove that every polynomial function is Riemann integrable.  

Q 3. Show that the function 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is integrable in [0,
𝜋

2
] 

Q 4. Using Riemann integration prove ∫ 𝑥 𝑑𝑥 =
1

2
.

1

0
 

Q 5. Define upper and lower Riemann sums. 

 

 

9.11 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. (c) 

        CYQ 3. False 

        CYQ 4. True  

        CYQ 5. True 
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UNIT 10: RIEMANN INTEGRAL II 
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10.1   INTRODUCTION 

During a century and a half of development and refinement of techniques, 

calculus consisted of these paired operations and their applications, 

primarily to physical problems. 

In the 1850s, Bernhard Riemann adopted a new and different viewpoint. 

He separated the concept of integration from its companion, 

differentiation, and examined the motivating summation and limit process 

of finding areas by itself. He broadened the scope by considering all 

functions on an interval for which this process of ‘‘integration’’ could be 

defined: the class of ‘‘integrable’’ functions. The Fundamental Theorem 

of Calculus became a result that held only for a restricted set of integrable 

functions. The viewpoint of Riemann led others to invent other integration 

theories, the most significant being Lebesgue’s theory of integration. But 

there have been some advances made in more recent times that extend 

even the Lebesgue theory to a considerable extent. 

 

10.2   OBJECTIVES 

In this Unit, we will 

 Discussed about Riemann Integral 

 Construct mean value theorem of calculus 

 

10.3    DARBOUX THEOREM 

Darboux Theorem 

Theorem 10.3.1. If 𝒇 is bounded function on [𝒂, 𝒃] then to every 

 𝜺 > 𝟎,  there corresponds 𝜹 > 𝟎 such that  

(i) 𝑼(𝑷, 𝒇) < ∫ 𝒇 𝒅𝒙
−𝒃

𝒂
+  𝜺 

(ii) 𝑳(𝑷, 𝒇) > ∫ 𝒇 𝒅𝒙
𝒃

−𝒂
−  𝜺 

For every partition 𝑷 of [𝒂, 𝒃] with norm 𝝁(𝑷) < 𝜹 
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Proof. It is given that 𝑓 is bounded on [𝑎, 𝑏]. Hence there exists 𝛼 > 0 

such that 

𝑓(𝑥) ≤ 𝛼   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏]   

Now 

∫ 𝑓 𝑑𝑥
−𝑏

𝑎
= inf 𝑈 = inf  {𝑈(𝑃, 𝑓): 𝑃 is a partition of [𝑎, 𝑏]}  

Hence for every 휀 > 0 there exists a partition 𝑃′ = {𝑥0, 𝑥1, 𝑥3, … , 𝑥𝑘} of 

[𝑎, 𝑏] such that  

𝑈(𝑃1, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀 ………………………..(1) 

Also partition 𝑃′ contains 𝑘 − 1 points other than 𝑎 and 𝑏. 

Let 𝛿 be a positive number such that  

2(𝑘 − 1)𝛼𝛿 =
1

2
휀 ………………………………….(2). 

Let 𝑃 be any partition such that 𝑃 = {𝑥0, 𝑥1, 𝑥3, … , 𝑥𝑛} with norm 

 𝜇(𝑃) < 𝛿. 

Assume 𝑃∗ be a refinement of 𝑃 and 𝑃’ such that 𝑃∗ = 𝑃 ∪ 𝑃′ 

𝑃∗ be a refinement of 𝑃⇒ 𝑃∗ have 𝑝 − 1 more point than 𝑃 and also 

𝑓(𝑥) ≤ 𝛼    

Therefore 

𝑈(𝑃, 𝑓) ≥ 𝑈(𝑃∗, 𝑓) ≥ 𝑈(𝑃, 𝑓) − 2(𝑝 − 1)𝛼𝛿  (Using previous corollary) 

⇒ 𝑈(𝑃, 𝑓) − 2(𝑝 − 1)𝛼𝛿 ≤ 𝑈(𝑃∗, 𝑓) 

                                   ≤ 𝑈(𝑃′, 𝑓)  

                                  < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀   (Using eq (1)) 

Therefore 

𝑈(𝑃, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀 + 2(𝑝 − 1)𝛼𝛿   

Using equation (2), we get 

𝑈(𝑃, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀 +

1

2
휀 < ∫ 𝑓 𝑑𝑥

−𝑏

𝑎
+ 휀    

Similarly, we can prove that 𝐿(𝑃, 𝑓) > ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
−  휀 
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Note: 

 Tags: If a point 𝑡𝑖 has been selected from each subinterval 𝐼𝑖 = [𝑥𝑖−1, 𝑥𝑖] 

for 𝑖 = 1,2, . . , 𝑛, then the points are called tags of the subintervals 𝐼𝑖.  

 Tagged Partition of 𝑰: A set of ordered 𝑃 = {([𝑥𝑖−1, 𝑥𝑖], 𝑡𝑖); 𝑖 =

1,2, … , 𝑛} of subintervals and corresponding tags is called a tagged 

partition of 𝐼. 

 

10.4 CONDITION OF INTEGRABILITY AND 

SOME PROPERTIES OF INTEGRABLE 

FUNCTIONS 

We already discussed that the bounded function is integrable if upper and 

lower integral are equal. Now we try to study the necessary and sufficient 

condition for integrability of a function. 

FIRST FORM 

Theorem 10.4.1. The necessary and sufficient condition for 

integrability of a bounded function f is for every 𝜺 > 𝟎 there exists 

𝜹 > 𝟎 such that for every partition 𝑷 of [𝒂, 𝒃]with norm 𝝁(𝑷) < 𝜹 and 

𝑼(𝑷, 𝒇) − 𝑳(𝑷, 𝒇) < 𝜺 

Proof. Necessary condition  

Let 𝑓 be a bounded function and integrable over interval [𝑎, 𝑏],  

Hence ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
= ∫ 𝑓 𝑑𝑥

−𝑏

𝑎
= ∫ 𝑓 𝑑𝑥

𝑏

𝑎
 

Let  휀 > 0  be any positive number.  

By Darbaux’s Theorem there exists a positive number 𝛿 such that foe 

every partition 𝑃 with norm 𝜇(𝑃) < 𝛿 

𝑈(𝑃, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀 …………………..(1) 

𝐿(𝑃, 𝑓) > ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
−

1

2
 휀 ……………………(2) 

⇒ −𝐿(𝑃, 𝑓) < − ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
+

1

2
 휀………………………………….(3) 

By adding inequality (1) and (3), we get 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀 − ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
+

1

2
 휀 = 휀  
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Hence for every partition 𝑃 of [𝑎, 𝑏]with norm 𝜇(𝑃) < 𝛿   

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀  

Sufficient Condition 

Assume for every partition 𝑃 of [𝑎, 𝑏]with norm 𝜇(𝑃) < 𝛿 and 

 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀…………………………………………..(4) 

for any partition 𝑃 of [𝑎, 𝑏], we have 

𝑈(𝑃, 𝑓) ≥ ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
 ⇒∫ 𝑓 𝑑𝑥

−𝑏

𝑎
≤ 𝑈(𝑃, 𝑓)…………………………..(5) 

𝐿(𝑃, 𝑓) ≤ ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
 ⇒− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
≤ −𝐿(𝑃, 𝑓)………………………..(6) 

Adding inequality (5) and (6), we get 

∫ 𝑓 𝑑𝑥
−𝑏

𝑎
− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
≤ 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓)  

Using inequality (4), we get 

∫ 𝑓 𝑑𝑥
−𝑏

𝑎
− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
< 휀  

Because 휀 is any arbitrary positive number and also we know that a non 

negative number is less than every positive number. 

Therefore it should be equal to 0. 

i.e. ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
< 휀 = 0  

Therefore ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
= ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
 which implies that 𝑓 is integrable over 

interval [𝑎, 𝑏]. 

SECOND FORM 

Theorem 10.4.2. A bounded function 𝒇 is integrable on [𝒂, 𝒃] iff for 

every 𝜺 > 𝟎 there exists a partition 𝑷 of [𝒂, 𝒃] such that 𝑼(𝑷, 𝒇) −

𝑳(𝑷, 𝒇) < 𝜺 

Proof. Necessary condition  

Let 𝑓 be a bounded function and integrable over interval [𝑎, 𝑏],  

Hence ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
= ∫ 𝑓 𝑑𝑥

−𝑏

𝑎
= ∫ 𝑓 𝑑𝑥

𝑏

𝑎
 

Let  휀 > 0  be any positive number.  

As we know that the  
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∫ 𝑓 𝑑𝑥
𝑏

−𝑎
=supremum of lower sums and ∫ 𝑓 𝑑𝑥

−𝑏

𝑎
= infimum of upper 

sums 

Hence there exists a partition 𝑃′ and 𝑃′′ such that 

𝑈(𝑃′, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+

1

2
휀  

⇒ 𝑈(𝑃′, 𝑓) < ∫ 𝑓 𝑑𝑥
𝑏

𝑎
+

1

2
휀                    …………..(1) 

𝐿(𝑃′′, 𝑓) > ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
−

1

2
 휀  

⇒ 𝐿(𝑃′′, 𝑓) > ∫ 𝑓 𝑑𝑥
𝑏

𝑎
−

1

2
 휀  

⇒ ∫ 𝑓 𝑑𝑥
𝑏

𝑎
< 𝐿(𝑃′′, 𝑓) +

1

2
 휀                    …………(2) 

Assume 𝑃 be the commom refinement of partitions 𝑃′ and 𝑃′′ i.e. 

 𝑃 = 𝑃′ ∪ 𝑃′′ 

Therefore 

𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃′, 𝑓) < ∫ 𝑓 𝑑𝑥
𝑏

𝑎
+

1

2
휀     (using inequality (1)) 

⇒ 𝑈(𝑃, 𝑓) < 𝐿(𝑃′′, 𝑓) +
1

2
 휀 +

1

2
 휀 = 𝐿(𝑃′′, 𝑓) + 휀  

Therefore, 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀  for a partition 𝑃. 

Sufficient Condition 

Assume 휀 < 0 be any positive number. Consider 𝑃 be a partitions such 

that 

 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀…………………………………………..(3) 

Now for any partition 𝑃 of [𝑎, 𝑏], we have 

𝑈(𝑃, 𝑓) ≥ ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
 ⇒∫ 𝑓 𝑑𝑥

−𝑏

𝑎
≤ 𝑈(𝑃, 𝑓)…………………………..(4) 

𝐿(𝑃, 𝑓) ≤ ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
 ⇒− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
≤ −𝐿(𝑃, 𝑓)………………………..(5) 

Adding inequality (4) and (5), we get 

∫ 𝑓 𝑑𝑥
−𝑏

𝑎
− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
≤ 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓)  

Using inequality (4), we get 
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∫ 𝑓 𝑑𝑥
−𝑏

𝑎
− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
< 휀  

Because 휀 is any arbitrary positive number and also we know that a non 

negative number is less than every positive number. 

Therefore, it should be equal to 0. 

i.e. ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
− ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
< 휀 = 0  

Therefore ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
= ∫ 𝑓 𝑑𝑥

𝑏

−𝑎
 which implies that 𝑓 is integrable over 

interval [𝑎, 𝑏]. 

Integrability of the sum and difference of Integrable functions 

Theorem 10.4.3. Let  𝒇𝟏 and 𝒇𝟐 are two bounded and integrable 

function on [𝒂, 𝒃] then 𝒇 = 𝒇𝟏 + 𝒇𝟐 is also integrable on [𝒂, 𝒃] and 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+ ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
 

Proof. Let  𝑓1 and 𝑓2 are two bounded ⇒ 𝑓 = 𝑓1 + 𝑓2 is bounded on [𝑎, 𝑏]. 

Let 𝑃 be any partition 𝑃 of [𝑎, 𝑏] such that 

 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏}. 

Let 𝑀𝑖
′ and 𝑚𝑖

′ are the upper and lower bound of  𝑓1 respectively  and  𝑀𝑖
′′ 

and 𝑚𝑖
′′ are the upper and lower bound of  𝑓2 respectively in ∆𝑥𝑖. 

Assume 𝑀𝑖 and 𝑚𝑖 are the upper and lower bound of  𝑓 respectively  in 

∆𝑥𝑖. 

Therefore 

 𝑚𝑖
′ + 𝑚𝑖

′′ ≤ 𝑚𝑖 ≤ 𝑀𝑖 ≤ 𝑀𝑖
′ +  𝑀𝑖

′′       ……………(1) 

Multiplying inequality (1) by ∆𝑥𝑖, we get 

(𝑚𝑖
′ + 𝑚𝑖

′′)∆𝑥𝑖 ≤ 𝑚𝑖∆𝑥𝑖 ≤ 𝑀𝑖∆𝑥𝑖 ≤ (𝑀𝑖
′ +  𝑀𝑖

′′)∆𝑥𝑖  

Adding all these inequalities for 𝑖 = 1,2,3, … , 𝑛, we get 

∑(𝑚𝑖
′ + 𝑚𝑖

′′)∆𝑥𝑖

𝑛

𝑖=1

≤ ∑ 𝑚𝑖∆𝑥𝑖

𝑛

1=1

≤ ∑ 𝑀𝑖∆𝑥𝑖

𝑛

1=1

 

                                                             ≤ ∑ (𝑀𝑖
′ +  𝑀𝑖

′′)∆𝑥𝑖
𝑛
1=1   

⇒ 𝐿(𝑃, 𝑓1) + 𝐿(𝑃, 𝑓2) ≤ 𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) + 𝑈(𝑃, 𝑓2)  

𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) + 𝑈(𝑃, 𝑓2)                                  ……….(2) 
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𝐿(𝑃, 𝑓1) + 𝐿(𝑃, 𝑓2) ≤ 𝐿(𝑃, 𝑓)  

−𝐿(𝑃, 𝑓) ≤ −(𝐿(𝑃, 𝑓1) + 𝐿(𝑃, 𝑓2))                            ………….(3) 

Let 휀 > 0 be any positive number. 

It is given that  𝑓1 and 𝑓2 are integrable. Hence for any partition 𝑃 there 

exists 𝛿 > 0 such that the norm 𝜇(𝑃) < 𝛿, we have 

 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓1) <
1

2
휀………………………….(4) 

𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓2) <
1

2
휀…………………………...(5) 

From (2),(3),(4) and (5), we get 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) + 𝑈(𝑃, 𝑓2) − (𝐿(𝑃, 𝑓1) + 𝐿(𝑃, 𝑓2))  

                                  = 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓1) + 𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓2) <
1

2
휀 +

1

2
휀 

Therefore 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀 . 

Hence the function 𝑓 is integrable. 

𝑓1 and 𝑓2 are integrable and 휀 > 0 is any positive number. 

Using Darboux’s theorem, there exists 𝛿 > 0 such that for all partitions 𝑃 

whose norm 𝜇(𝑃) < 𝛿, we have 

𝑈(𝑃, 𝑓1) < ∫ 𝑓1 𝑑𝑥
𝑏

𝑎
+

1

2
휀    ……………(6) 

  And 

 𝑈(𝑃, 𝑓2) < ∫ 𝑓2 𝑑𝑥
𝑏

𝑎
+

1

2
휀      ……………(7) 

Using inequality (2), we get 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ 𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) + 𝑈(𝑃, 𝑓2)  

Using inequalities (6) and (7), we get 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
< ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+

1

2
휀 + ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
+

1

2
휀 = ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+ ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
+ 휀  

As we know 휀 is arbitrary, therefore 
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∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+ ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
                          ……………..(8) 

Now replacing 𝑓1 and 𝑓2  with (−𝑓1) and (−𝑓2) respectively, we get 

∫ (−𝑓) 𝑑𝑥
𝑏

𝑎
≤ ∫ (−𝑓1) 𝑑𝑥

𝑏

𝑎
+ ∫ (−𝑓2) 𝑑𝑥

𝑏

𝑎
  

i.e. ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+ ∫ 𝑓2  𝑑𝑥

𝑏

𝑎
                  …………..(9) 

From inequality (8) and (9), we get 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+ ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
  

Theorem 10.4.4.  Let  𝒇𝟏 and 𝒇𝟐 are two bounded and integrable 

function on [𝒂, 𝒃] then 𝒇 = 𝒇𝟏 − 𝒇𝟐 is also integrable on [𝒂, 𝒃] and 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
− ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
 

Proof. Let  𝑓1 and 𝑓2 are two bounded ⇒ 𝑓 = 𝑓1 + (−𝑓2) is bounded on 

[𝑎, 𝑏]. 

Let 𝑃 be any partition 𝑃 of [𝑎, 𝑏] such that 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 =

𝑏}. 

Let 𝑀𝑖
′ and 𝑚𝑖

′ are the upper and lower bound of  𝑓1 respectively  and  𝑀𝑖
′′ 

and 𝑚𝑖
′′ are the upper and lower bound of  𝑓2 respectively in ∆𝑥𝑖. 

⇒ −𝑀𝑖
′′ and −𝑚𝑖

′′ are the upper and lower bound of  (−𝑓2) respectively 

in ∆𝑥𝑖. 

Assume 𝑀𝑖 and 𝑚𝑖 are the upper and lower bound of  𝑓 respectively  in 

∆𝑥𝑖. 

Therefore 

mi
′ + (−mi

′′) ≤ mi ≤ Mi ≤ Mi
′ + (− Mi

′′)  

⇒ mi
′ − Mi

′ ≤ mi ≤ Mi ≤ Mi
′′ −  mi

′′                   …………(1) 

Multiplying inequality (1) by ∆xi, we get 

(mi
′ − Mi

′′)∆xi ≤ mi∆xi ≤ Mi∆xi ≤ (Mi
′ −  mi

′′)∆xi  

Adding all these inequalities for i = 1,2,3, … , n, we get 

∑(𝑚𝑖
′ − 𝑀𝑖

′)∆𝑥𝑖

𝑛

𝑖=1

≤ 

                               ∑ 𝑚𝑖∆𝑥𝑖
𝑛
1=1 ≤ ∑ 𝑀𝑖∆𝑥𝑖

𝑛
1=1 ≤ ∑ (𝑀𝑖

′ −  𝑚𝑖
′′)∆𝑥𝑖

𝑛
1=1   
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⇒ 𝐿(𝑃, 𝑓1) − 𝑈(𝑃, 𝑓2) ≤ 𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓2)  

𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓2)                            ………….(2) 

𝐿(𝑃, 𝑓1) − 𝑈(𝑃, 𝑓2) ≤ 𝐿(𝑃, 𝑓)  

−𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓1)                        …………….(3) 

Let 휀 > 0 be any positive number. 

It is given that  𝑓1 and 𝑓2 are integrable. Hence for any partition 𝑃 there 

exists 𝛿 > 0 such that the norm 𝜇(𝑃) < 𝛿, we have 

 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓1) <
1

2
휀                           ……………….(4) 

𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓2) <
1

2
휀                            ………………...(5) 

From (2), (3), (4) and (5), we get 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓2) +  𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓1)  

                                  = 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓1) + 𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓2) 

                                       < 
1

2
휀 +

1

2
휀 

Therefore 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀 . 

Hence the function 𝑓 is integrable. 

𝑓1 and 𝑓2 are integrable and 휀 > 0 is any positive number. 

Using Darboux’s theorem, there exists 𝛿 > 0 such that for all partitions 𝑃 

whose norm 𝜇(𝑃) < 𝛿, we have 

𝑈(𝑃, 𝑓1) < ∫ 𝑓1 𝑑𝑥
𝑏

𝑎
+

1

2
휀    ……………(6) 

  And 

 𝐿(𝑃, 𝑓2) > ∫ 𝑓2 𝑑𝑥
𝑏

𝑎
+

1

2
휀       

⇒ −𝐿(𝑃, 𝑓2) < − ∫ 𝑓2 𝑑𝑥
𝑏

𝑎
+

1

2
휀      ……………(7) 

Using inequality (2), we get 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ 𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓1) − 𝐿(𝑃, 𝑓2)  

Using inequalities (6) and (7), we get 
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∫ 𝑓 𝑑𝑥
𝑏

𝑎
< ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
+

1

2
휀 − ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
+

1

2
휀 = ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
− ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
+ 휀  

As we know 휀 is arbitrary, therefore 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
− ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
 …………………………..(8) 

Now replacing 𝑓1 and 𝑓2  with (−𝑓1) and (−𝑓2) respectively, we get 

∫ (−𝑓) 𝑑𝑥
𝑏

𝑎
≤ ∫ (−𝑓1) 𝑑𝑥

𝑏

𝑎
− ∫ (−𝑓2) 𝑑𝑥

𝑏

𝑎
  

i.e. ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
− ∫ 𝑓2  𝑑𝑥

𝑏

𝑎
…………………………..(9) 

From inequality (8) and (9), we get 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓1 𝑑𝑥

𝑏

𝑎
− ∫ 𝑓2 𝑑𝑥

𝑏

𝑎
 . 

Oscillation: The oscillation of a bounded function f on an interval 

[𝒂, 𝒃] is the supremum of the set {|𝒇(𝒙𝟏) − 𝒇(𝒙𝟐)|: 𝒙𝟏, 𝒙𝟐 ∈ [𝒂, 𝒃]} of 

numbers. 

Let 𝑀 and 𝑚 be the upper and lower bounds of 𝑓 on [𝑎, 𝑏] respectively. 

⇒𝑚 ≤ 𝑓(𝑥1) ≤ 𝑀 and 𝑚 ≤ 𝑓(𝑥2) ≤ 𝑀   for all 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] 

⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝑀 − 𝑚   for all 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]         ………..(1) 

⇒ 𝑀 − 𝑚   is an upper bound of {𝑓(𝑥1) − 𝑓(𝑥2) , for all 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]}  

Let 휀 > 0 be any positive number, because 𝑀 is supremum of 𝑓. 

Therefore, there exists 𝑦 ∈ [𝑎, 𝑏] such that  

𝑓(𝑦) > 𝑀 −
1

2
휀                                                     …………(2) 

Similarly, there exists 𝑧 ∈ [𝑎, 𝑏] such that  

𝑓(𝑧) > 𝑚 +
1

2
휀                                                       …………(3) 

From inequalities (2) and (3), we conclude that there exist 𝑥, 𝑦 ∈ [𝑎, 𝑏] 

such that 

𝑓(𝑦) − 𝑓(𝑧) > 𝑀 −
1

2
휀 − 𝑚 −

1

2
휀 = 𝑀 − 𝑚 − 휀  

Or |𝑓(𝑦) − 𝑓(𝑧)| > 𝑀 − 𝑚 − 휀                                   …………(4) 

From inequalities (1) and (4), we conclude that 
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𝑀 − 𝑚 is an upper bound and also number less than 𝑀 − 𝑚 cannot be 

upper bound of given set. 

              Hence 𝑀 − 𝑚 = sup{ |𝑓(𝑦) − 𝑓(𝑧)|: 𝑦, 𝑧 ∈ [𝑎, 𝑏]}            .......(A) 

 

 

10.5       SOME IMPORTANT THEOREM 

 

Theorem 10.5.1.  If 𝒇 and 𝒈 are two bounded and integrable functions 

on [𝒂, 𝒃] then the product 𝒇𝒈 is also bounded and integrable on [𝒂, 𝒃]. 

Proof. It is given that 𝑓 and 𝑔 are two bounded therefore there exists 𝛼 

such tha 

|𝑓(𝑥)| ≤ 𝛼  and |𝑔(𝑥)| ≤ 𝛼  for all 𝑥 ∈ [𝑎, 𝑏]  

⇒ |𝑓𝑔(𝑥)| = |𝑓(𝑥)||𝑔(𝑥)| ≤ 𝛼. 𝛼 ≤ 𝛼2  

It implies that 𝑓𝑔 is bounded on [𝑎, 𝑏]. 

Let 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏} be any partition of [𝑎, 𝑏]. 

Let 𝑀𝑖
′ and 𝑚𝑖

′ are the upper and lower bound of  𝑓 respectively  and  𝑀𝑖
′′ 

and 𝑚𝑖
′′ are the upper and lower bound of  𝑔 respectively in ∆𝑥𝑖. 

Assume 𝑀𝑖 and 𝑚𝑖 are the upper and lower bound of  𝑓𝑔 respectively  in 

∆𝑥𝑖. 

Now for all 𝑥, 𝑥′ ∈ ∆𝑥𝑖, 

(𝑓𝑔)(𝑥′) − (𝑓𝑔)(𝑥) = 𝑓(𝑥′)𝑔(𝑥′) − 𝑓(𝑥)𝑔(𝑥)  

                              = 𝑓(𝑥′)𝑔(𝑥′) − 𝑓(𝑥)𝑔(𝑥′) + 𝑓(𝑥)𝑔(𝑥′) − 𝑓(𝑥)𝑔(𝑥)  

                               = 𝑔(𝑥′)(𝑓(𝑥′) − 𝑓(𝑥)) + 𝑓(𝑥)(𝑔(𝑥′) − 𝑔(𝑥))  

It implies that 

|(𝑓𝑔)(𝑥′) − (𝑓𝑔)(𝑥)| = |𝑔(𝑥′)(𝑓(𝑥′) − 𝑓(𝑥)) + 𝑓(𝑥)(𝑔(𝑥′) − 𝑔(𝑥))|  

                                        ≤ |𝑔(𝑥′)||𝑓(𝑥′) − 𝑓(𝑥)| + |𝑓(𝑥)|| 𝑔(𝑥′) − 𝑔(𝑥)|  

Hence, From inequality (A), we get 

𝑀 − 𝑚 ≤ 𝛼(𝑀′ − 𝑚′) + 𝛼(𝑀′′ − 𝑚′′) ……………………(1) 
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Let 휀 > 0 be given number and it is given that 𝑓 and 𝑔 integrable on 

interval [𝑎, 𝑏]. 

Therefore there exists a positive number 𝛿 > 0 such that for any partition 

𝑃 with norm 𝜇(𝑃) < 𝛿 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) ≤
𝜀

2𝛼
 …………………………………..(2)  and 

𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔) ≤
𝜀

2𝛼
 …………………………………..(3) 

Now multiply inequality (1) with ∆𝑥𝑖, we get 

(𝑀 − 𝑚)∆𝑥𝑖  ≤ 𝛼(𝑀′ − 𝑚′)∆𝑥𝑖 + 𝛼(𝑀′′ − 𝑚′′)∆𝑥𝑖  

Adding all these inequalities for 𝑖 = 1,2,3, … , 𝑛, we get 

∑ (𝑀 − 𝑚)∆𝑥𝑖
𝑛
1=1  ≤ ∑ 𝛼(𝑀′ − 𝑚′)∆𝑥𝑖

𝑛
1=1 + ∑ 𝛼(𝑀′′ − 𝑚′′)∆𝑥𝑖

𝑛
1=1   

⇒ ∑ 𝑀∆𝑥𝑖
𝑛
1=1 − ∑ 𝑚∆𝑥𝑖

𝑛
1=1 ≤ 𝛼(∑ 𝑀′∆𝑥𝑖

𝑛
1=1 − ∑ 𝑚′∆𝑥𝑖

𝑛
1=1 )  +

𝛼(∑ 𝑀′′∆𝑥𝑖
𝑛
1=1 − ∑ 𝑚′′∆𝑥𝑖

𝑛
1=1 )    

⇒ 𝑈(𝑃, 𝑓𝑔) − 𝐿(𝑃, 𝑓𝑔) ≤ 𝛼(𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓))  + 

                                                                                 𝛼(𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔))  

                                            ≤ 𝛼
𝜀

2𝛼
+ 𝛼

𝜀

2𝛼
    

Therefore 𝑈(𝑃, 𝑓𝑔) − 𝐿(𝑃, 𝑓𝑔) ≤ 휀  

Hence, we conclude that 𝑓𝑔 is integrable on [𝑎, 𝑏]. 

Theorem 10.5.2.  If 𝒇 and 𝒈 are two bounded and integrable functions 

on [𝒂, 𝒃] and there exists a positive number 𝒌 such that |𝒈| ≥

𝒌 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ∈ [𝒂, 𝒃] then the 𝒇/𝒈 is also bounded and integrable on 

[𝒂, 𝒃]. 

Proof. It is given that 𝑓 and 𝑔 are two bounded therefore there exists 𝛼 

such that 

|𝑓(𝑥)| ≤ 𝛼  and 𝑘 ≤ |𝑔(𝑥)| ≤ 𝛼 ⇒
1

𝑘
≥

1

|𝑔(𝑥)|
≥

1

𝛼
  for all 𝑥 ∈ [𝑎, 𝑏]  

⇒ |(𝑓/𝑔)(𝑥)| = |𝑓(𝑥)|/|𝑔(𝑥)| ≤ 𝛼.
1

𝑘
≤

𝛼

𝑘
  

It implies that 𝑓𝑔 is bounded on [𝑎, 𝑏]. 

Let 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏} be any partition of [𝑎, 𝑏]. 
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Let 𝑀𝑖
′ and 𝑚𝑖

′ are the upper and lower bound of  𝑓 respectively  and  𝑀𝑖
′′ 

and 𝑚𝑖
′′ are the upper and lower bound of  𝑔 respectively in ∆𝑥𝑖. 

Assume 𝑀𝑖 and 𝑚𝑖 are the upper and lower bound of  𝑓/𝑔 respectively  in 

∆𝑥𝑖. 

Now for all 𝑥, 𝑥′ ∈ ∆𝑥𝑖, 

|(
𝑓

𝑔
) (𝑥′) − (

𝑓

𝑔
) (𝑥)| = |

𝑓(𝑥′)

𝑔(𝑥′)
−

𝑓(𝑥)

𝑔(𝑥)
|   = |

𝑓(𝑥′)𝑔(𝑥)−𝑓(𝑥)𝑔(𝑥′)

𝑔(𝑥)𝑔(𝑥′)
|  

                        

                                    = |
𝑓(𝑥′)𝑔(𝑥)−𝑓(𝑥)𝑔(𝑥)+𝑓(𝑥)𝑔(𝑥)−𝑓(𝑥)𝑔(𝑥′)

𝑔(𝑥)𝑔(𝑥′)
|   

                                     = |
𝑔(𝑥)(𝑓(𝑥′)−𝑓(𝑥))−𝑓(𝑥)(𝑔(𝑥′)−𝑔(𝑥))

𝑔(𝑥)𝑔(𝑥′)
|   

                                   ≤ 𝛼
|𝑓(𝑥′)−𝑓(𝑥)|

|𝑔(𝑥)𝑔(𝑥′)|
+ 𝛼

|𝑔(𝑥′)−𝑔(𝑥)|

|𝑔(𝑥)𝑔(𝑥′)|
  

Hence, From inequality (A), we get 

𝑀 − 𝑚 ≤ 𝛼. (𝑀′ − 𝑚′).
1

𝑘2 + 𝛼. (𝑀′′ − 𝑚′′).
1

𝑘2  

Hence  

𝑀 − 𝑚 ≤
𝛼

𝑘2
(𝑀′ − 𝑚′) +

𝛼

𝑘2
(𝑀′′ − 𝑚′′)                   ………(1) 

Let 휀 > 0 be given number and it is given that 𝑓 and 𝑔 integrable on 

interval [𝑎, 𝑏]. 

Therefore, there exists a positive number 𝛿 > 0 such that for any partition 

𝑃 with norm 

 𝜇(𝑃) < 𝛿 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) ≤
𝜀𝑘2

2𝛼
                                              ……..(2)  and 

𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔) ≤
𝜀𝑘2

2𝛼
                                              ………..(3) 

Now multiply inequality (1) with ∆𝑥𝑖, we get 

(𝑀 − 𝑚)∆𝑥𝑖  ≤
𝛼

𝑘2
(𝑀′ − 𝑚′)∆𝑥𝑖 +

𝛼

𝑘2
(𝑀′′ − 𝑚′′)∆𝑥𝑖  

Adding all these inequalities for 𝑖 = 1,2,3, … , 𝑛, we get 

∑ (𝑀 − 𝑚)∆𝑥𝑖
𝑛
1=1  ≤ ∑

𝛼

𝑘2
(𝑀′ − 𝑚′)∆𝑥𝑖

𝑛
1=1 + ∑ 𝛼(𝑀′′ − 𝑚′′)∆𝑥𝑖

𝑛
1=1   
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⇒ ∑ 𝑀∆𝑥𝑖
𝑛
1=1 − ∑ 𝑚∆𝑥𝑖

𝑛
1=1 ≤

𝛼

𝑘2
(∑ 𝑀′∆𝑥𝑖

𝑛
1=1 − ∑ 𝑚′∆𝑥𝑖

𝑛
1=1 )  +

𝛼

𝑘2
(∑ 𝑀′′∆𝑥𝑖

𝑛
1=1 − ∑ 𝑚′′∆𝑥𝑖

𝑛
1=1 )    

⇒ 𝑈(𝑃, 𝑓𝑔) − 𝐿(𝑃, 𝑓𝑔) ≤
𝛼

𝑘2
(𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓))  +

𝛼

𝑘2
(𝑈(𝑃, 𝑔) −

𝐿(𝑃, 𝑔))  

                                            ≤
𝛼

𝑘2

𝜀𝑘2

2𝛼
+

𝛼

𝑘2

𝜀𝑘2

2𝛼
    

Therefore 𝑈(𝑃, 𝑓𝑔) − 𝐿(𝑃, 𝑓𝑔) ≤ 휀  

Hence we conclude that 𝑓/𝑔 is integrable on [𝑎, 𝑏]. 

Theorem 10.5.3. If 𝒇 ís bounded and integrable functions on [𝒂, 𝒃] 

then |𝒇| is also bounded and integrable on [𝒂, 𝒃] and also |∫ 𝒇 𝒅𝒙
𝒃

𝒂
| ≤

∫ |𝒇| 𝒅𝒙
𝒃

𝒂
. 

Proof. It is given that 𝑓 is bounded therefore there exists 𝛼 such that 

|𝑓(𝑥)| ≤ 𝛼   for all 𝑥 ∈ [𝑎, 𝑏]  

It implies that the function |𝑓| is bounded. 

Since 𝑓 is integrable, for a given positive number 휀 > 0 there exists a 

partition 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏} of [𝑎, 𝑏] and such that  

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀 …………………..(1) 

Let  𝑀𝑖 and 𝑚𝑖 are the upper and lower bound of  𝑓 respectively  and  𝑀𝑖
′ 

and 𝑚𝑖
′ are the upper and lower bound of  𝑔 respectively in ∆𝑥𝑖. 

Now for all 𝑥, 𝑥′ ∈ ∆𝑥𝑖, 

||𝑓|(𝑥) − |𝑓|(𝑦)|  = ||𝑓(𝑥)| − |𝑓(𝑦)|| ≤ |𝑓(𝑥) − 𝑓(𝑦)|  

⇒ 𝑀𝑖
′ − 𝑚𝑖

′ ≤ 𝑀 − 𝑚………………………..(2) 

Now multiply inequality (2) with ∆𝑥𝑖, we get 

(𝑀𝑖
′ − 𝑚𝑖

′)∆𝑥𝑖  ≤ (𝑀𝑖 − 𝑚𝑖)∆𝑥𝑖  

Adding all these inequalities for 𝑖 = 1,2,3, … , 𝑛, we get 

∑ (𝑀𝑖
′ − 𝑚𝑖

′)∆𝑥𝑖
𝑛
1=1  ≤ ∑ (𝑀𝑖 − 𝑚𝑖)∆𝑥𝑖

𝑛
1=1   

⇒ ∑ 𝑀𝑖
′∆𝑥𝑖

𝑛
1=1 − ∑ 𝑚𝑖

′∆𝑥𝑖
𝑛
1=1 ≤ ∑ 𝑀𝑖  ∆𝑥𝑖

𝑛
1=1 − ∑ 𝑚𝑖∆𝑥𝑖

𝑛
1=1   

⇒ 𝑈(𝑃, |𝑓|) − 𝐿(𝑃, |𝑓|) ≤ 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓)  
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Using inequality (1), we get 

𝑈(𝑃, |𝑓|) − 𝐿(𝑃, |𝑓|) < 휀 . Hence |𝑓| is integrable on [𝑎, 𝑏]. 

We Know that if  𝑓 and 𝑔 are bounded and integrable on [𝑎, 𝑏] such that 

𝑓 ≥ 𝑔 then 

 ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ ∫ 𝑔 𝑑𝑥

𝑏

𝑎
 when 𝑏 ≤ 𝑎      

Hence ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ ∫ |𝑓| 𝑑𝑥

𝑏

𝑎
  

and − ∫ 𝑓 𝑑𝑥
𝑏

𝑎
= ∫ (−𝑓) 𝑑𝑥

𝑏

𝑎
≤ ∫ |𝑓| 𝑑𝑥

𝑏

𝑎
 

⇒ |∫ 𝑓 𝑑𝑥
𝑏

𝑎
| ≤ ∫ |𝑓| 𝑑𝑥

𝑏

𝑎
 

Note: The Converse of the above theorem is not true. For example, the 

function 

𝑓(𝑥) = {
1, 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 

−1, 𝑤ℎ𝑒𝑛 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
  

Here ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
= 𝑏 − 𝑎 but ∫ 𝑓 𝑑𝑥

−𝑏

𝑎
= 𝑎 − 𝑏 

It implies that 𝑓 is not integrable. 

But |𝑓(𝑥)| = 1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, therefore ∫ |𝑓| 𝑑𝑥
𝑏

𝑎
 exists and equal to 𝑏 − 𝑎. 

Here we observe that |𝑓| is integrable. 

Theorem 10.5.4. Every Monotonic function 𝑓 is Riemann integrable. 

Proof: Let us suppose that the function 𝑓 is monotonically increasing 

function on [𝑎, 𝑏]. 

Now for a given positive number 휀, there exists a partition P = 

{𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏} of  

[𝑎, 𝑏] such that the length of each sub – interval < 
𝜀

[𝑓(𝑎)−𝑓(𝑏)+1]
 

i.e.          (𝑥𝑟 − 𝑥𝑟−1) <
𝜀

[𝑓(𝑎)−𝑓(𝑏)+1]
 for 𝑟 = 1, 2, … , 𝑛       ……. (1) 

Again, the function 𝑓being monotonically increasing on [𝑎, 𝑏], it is 

bounded and monotonically increasing on each sub – interval [𝑥𝑟−1, 𝑥𝑟]. 

Let the bounds of function f on the sun – interval [𝑥𝑟−1, 𝑥𝑟] be 𝑀𝑟 and 𝑚𝑟, 

then  
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          𝑀𝑟 = 𝑓(𝑥𝑟) and 𝑚𝑟 = 𝑓(𝑥𝑟−1)           ……. (2) 

Therefore, for this partition P, we find that  

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) = ∑ (𝑀𝑟 − 𝑚𝑟)(𝑥𝑟 − 𝑥𝑟−1)𝑛
𝑖=1  

                              < 
𝜀

[𝑓(𝑎)−𝑓(𝑏)+1]
∑ [𝑓(𝑥𝑟) − 𝑓(𝑥𝑟−1)]𝑛

𝑖=1  

Therefore, 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) <  
𝜀

[𝑓(𝑎)−𝑓(𝑏)+1]
∑ [𝑓(𝑥𝑛) − 𝑓(𝑥0)]𝑛

𝑖=1  

Therefore, 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 
𝜀

[𝑓(𝑎)−𝑓(𝑏)+1]
∑ [𝑓(𝑏) − 𝑓(𝑎)]𝑛

𝑖=1  

Therefore,  𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 휀 

Therefore, Every Monotonically increasing function 𝑓 is Riemann 

integrable. 

Similarly, we can prove that Every Monotonically decreasing function 

𝑓 is Riemann integrable. 

Therefore, every monotonic function is Riemann integrable.  

 

 

10.6 RIEMANN SUM 

Riemann Sum: Let 𝑃′ is the tagged partition then the Riemann sum of a 

function 𝑓 ∶ [𝑎, 𝑏] →  ℝ corresponding to 𝑃′ can be defined as 

𝑆(𝑓, 𝑃′) = ∑ 𝑓(𝑡𝑖)𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑖−1)  

If the function 𝑓 is positive on [𝑎, 𝑏], then the Riemann Sum is the sum of 

the areas of 𝑛 rectangles whose bases are the subintervlas 𝐼1 = [𝑥𝑖−1, 𝑥𝑖] 

and whose heights are 𝑓(𝑡𝑖). See Fig 5.1. 
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Theorem.  If 𝑓: [𝑎, 𝑏] → ℝ is continuous, then 𝑓  is Riemann integrable. 

Proof. Let 휀 > 0 be given.  

Now 𝑓  is continuous on [𝑎, 𝑏] ⇒ It is also uniformly continuous. 

Therefore, there exists a  𝛿 > 0  such that |𝑓(𝑥) − 𝑓(𝑦)| <
𝜀

𝑏−𝑎
 whenever 

|𝑥 − 𝑦| < 𝛿. 

For any large integer 𝑁 we assume an equally spaced partition 

 𝑥𝑘 = 𝑎 + 𝑘ℎ, with ℎ =
𝑏−𝑎

𝑁
  and 𝑘 = 0,1, … , 𝑁. We choose 𝑁  so large 

that 
𝑏−𝑎

𝑁
< 𝛿. 

Now function 𝑓 is continuous on any of the intervals [𝑥𝑘−1, 𝑥𝑘],  

Hence there must exist points 𝑐𝑘 , 𝑑𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘]  where 𝑓 attains its 

minimum and maximum, respectively, i.e.   

𝑓(𝑐𝑘) ≤ 𝑓(𝑥) ≤ 𝑓(𝑑𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘].   

            Let  𝑠, 𝑡: [𝑎, 𝑏] → ℝ are two step functions such that on each interval 

[𝑥𝑘−1, 𝑥𝑘) 

            𝑠(𝑥) = 𝑓(𝑐𝑘)  and 𝑡(𝑥) = 𝑓(𝑑𝑘). 

            Therefore, we conclude that 𝑠(𝑥) ≤ 𝑓(𝑥) ≤ 𝑡(𝑥) for some   

            𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘)  

            Since |𝑐𝑘 − 𝑑𝑘| ≤
𝑏−𝑎

𝑁
< 𝛿  then for any 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘) 

            𝑡(𝑥) − 𝑠(𝑥) = 𝑓(𝑑𝑘) − 𝑓(𝑐𝑘) <
𝜀

𝑏−𝑎
.  

This also holds for each interval [𝑥𝑘−1, 𝑥𝑘)    (𝑘 = 1,2, … , 𝑁)  

𝑥0 = 𝑎 𝑥𝑛 = 𝑏 𝑥1 𝑥2 𝑥3 𝑥𝑛−1 𝑡1 𝑡3 𝑡𝑛 𝑡2 

Fig 5.1. A Riemann Sum 
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Hence we shown that  0 ≤ 𝑡(𝑥) − 𝑠(𝑥) <
𝜀

𝑏−𝑎
  for all 𝑥 ∈ [𝑎, 𝑏] 

Now compare the integrals of 𝑡  and 𝑠 and since 𝑡 ≤ 𝑠 +
𝜀

𝑏−𝑎
 

Then  ∫ 𝑡(𝑥)𝑑𝑥
𝑏

𝑎
≤ ∫ (𝑠(𝑥) +

𝜀

𝑏−𝑎
) 𝑑𝑥

𝑏

𝑎
= ∫ 𝑠𝑑𝑥

𝑏

𝑎
+ 휀. 

 

Fundamental Theorem of Calculus 

Theorem.  A function 𝒇 is bounded and integrable on [𝒂, 𝒃] and there 

exists a function F such that 𝑭′ = 𝒇 on [𝒂, 𝒃], then ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
=

𝑭(𝒃) − 𝑭(𝒂)  

Proof. It is given that 𝐹′ = 𝑓 is bounded and integrable on [𝑎, 𝑏]. 

Therefore, for every given 휀 > 0 there exists a positive number 𝛿 such 

that for every partition 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏}, with norm 

𝜇(𝑃) < 𝛿. 

|∑ 𝑓(𝑡𝑖)
𝑛
𝑖=1 ∆𝑥𝑖 − ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
| < 휀 …………………….(1) 

For every choice of points 𝑡𝑖 in ∆𝑥𝑖. 

Because we have freedom in the selection of points 𝑡𝑖 in ∆𝑥𝑖., we choose 

them in a particular way as follows: 

By Lagrange Mean value theorem, we have 

𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1) = 𝐹′(𝑡𝑖)∆𝑥𝑖                   (𝑖 = 1,2, … , 𝑛) 

Hence 𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1) = 𝑓(𝑡𝑖)∆𝑥𝑖 

It implies that ∑ 𝑓(𝑡𝑖)𝑛
𝑖=1 ∆𝑥𝑖 = ∑ (𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1))𝑛

𝑖=1 = 𝐹(𝑏) − 𝐹(𝑎). 

From inequality (1), we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎)  

This theorem is also known as the Second Fundamental theorem of 

Integral Calculus. 

First Mean Value theorem 

Theorem.  A function 𝑓 is continuous on [𝑎, 𝑏], then there exists a number 

𝑘 in [𝑎, 𝑏] uch that ∫ 𝑓 𝑑𝑥
𝑏

𝑎
= 𝑓(𝑘)(𝑏 − 𝑎). 

Proof. It is given that 𝑓 is continuous on [𝑎, 𝑏], therefore f is Riemann 

Integrable on [𝑎, 𝑏]. 

Let  𝑀 and 𝑚 are the upper and lower bound of  𝑓 on [𝑎, 𝑏] respectively. 
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As we know that 

𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓 𝑑𝑥
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎)  

Hence there exists a real number 𝛾 ∈ [𝑚, 𝑀] such that 

∫ 𝑓 𝑑𝑥
𝑏

𝑎
= 𝛾(𝑏 − 𝑎)  

Because 𝑓 is continuous on [𝑎, 𝑏], it attains every value between m and 

M. 

Hence, there exists a number 𝑘 ∈ [𝑎, 𝑏] such that 𝑓(𝑘) = 𝛾. 

Therefore, ∫ 𝑓 𝑑𝑥
𝑏

𝑎
= 𝑓(𝑘)(𝑏 − 𝑎)  

 

 

CHECK YOUR PROGRESS  

True or false/MCQ Questions 

Problem 1. 

 

then  

(a)  

(b)  

(c) . 

(d) None of the above. 

Problem 2. Every continuous function on closed interval is not 

Riemann integrable. 

Problem 3. Every continuous function on closed interval is Riemann 

integrable. 
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Problem 4. For every polynomial function Riemann upper integral is 

equal to Riemann lower integral. 

Problem 5. U(P, f) is decreasing, L(P, f) is decreasing function. 

 

 

10.7 SUMMARY 

 

1. Darboux Theorem 

 If 𝑓 is bounded function on [𝑎, 𝑏] then to every 

 휀 > 0,  there corresponds 𝛿 > 0 such that  

(i) 𝑈(𝑃, 𝑓) < ∫ 𝑓 𝑑𝑥
−𝑏

𝑎
+  휀 

(ii) 𝐿(𝑃, 𝑓) > ∫ 𝑓 𝑑𝑥
𝑏

−𝑎
−  휀 

For every partition 𝑃 of [𝑎, 𝑏] with norm 𝜇(𝑃) < 𝛿 

2. Every Monotonic function 𝑓 is Riemann integrable. 

3. If 𝑓: [𝑎, 𝑏] → ℝ is continuous, then 𝑓  is Riemann integrable. 

 

10.8 GLOSSARY  
 

integration 

continuity   

Functions 

Limits 
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10.11 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that every constant function is Reimann integrable.  

Q 2. Prove that every polynomial function is Riemann integrable.  

Q 3. Show that the function 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is integrable in [0,
𝜋

2
] 

Q 4. Using Riemann integration prove ∫ 𝑥 𝑑𝑥 =
1

2
.

1

0
 

Q 5. Define upper and lower Riemann sums. 

 

 

10.12 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. (c) 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. True  

        CYQ 5. False 
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11.1 INTRODUCTION 

                Mathematics allows us to create sequences and series not only 

for real numbers but also for functions. This article will give you a deeper 

understanding of how to construct sequences and series for real-valued 

functions. We will also delve into the concept of convergence in 

sequences and series of functions. To solidify these concepts, we will 

include some solved problems on sequences and series of functions. 

 

11.2 OBJECTIVES 

In this Unit, we will Discussed about 

 Sequence of functions 

 Series of functions 

 Abel’s test  

 Dirichlet’s test 

 

11.3 SEQUENCE OF FUNCTION 

Let 𝑓𝑛 be a real – valued function defined on an interval I and for each 𝑛 ∈

ℕ. Then  

< 𝑓1 , 𝑓2, 𝑓3, …, 𝑓𝑛 , … > is called a sequence of real valued function. 

Denoted by {𝑓𝑛} 𝑜𝑟 〈𝑓𝑛〉. 

Example:  {𝑓𝑛} = {𝑥𝑛 , 0 ≤ 𝑥 ≤ 1} and {
𝑠𝑖𝑛𝑛𝑥

𝑛
, 0 ≤ 𝑥 ≤ 1 } are sequence 

of functions. 

 

11.4 POINTWISE CONVERGENCE 

 

For each 𝑛 ∈ N, let 𝑓𝑛: 𝐴 → R be a real-valued function on 𝐴. The 

sequence ( 𝑓𝑛) of functions converges pointwise on 𝐴 to a function 𝑓 if, 

for all 𝑥 ∈ 𝐴, the sequence of real numbers (𝑓𝑛(𝑥)) converges to the real 

number 𝑓(𝑥).  

We often write lim 𝑛→∞ 𝑓𝑛 (𝑥) = 𝑓 (𝑥) or lim 𝑛→∞ 𝑓𝑛 = 𝑓 
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Example 1.     𝑓𝑛 (𝑥) = 
𝑥2 + 𝑛𝑥

𝑛
 = 

𝑥2 

𝑛
+ 𝑥  

                        lim
n→∞

(
𝑥2 

𝑛
+ 𝑥) = 0 + 𝑥 = 𝑥. 

 If 𝑓 (𝑥) = 𝑥, then 𝑓𝑛 → 𝑓 as 𝑛 → ∞. In this case, the functions 𝑓𝑛 are 

everywhere continuous and differentiable, and the limit function is also 

everywhere continuous and differentiable. 

Example 2. Let 𝑓𝑛 (𝑥) = 𝑥𝑛 on the set [0, 1]. 

 lim
n→∞

 𝑓𝑛 (𝑥) = lim
n→∞

𝑥𝑛 = f(𝑥) = {
0,           0 ≤  x <  1
1,                      𝑥 = 1

.  

In this case, the functions 𝑓𝑛 (𝑥) are continuous on [0, 1], but the limit 

function f(𝑥) is not continuous at every point of [0, 1]. 

Note: Suppose 𝑓 (𝑥) = lim
n→∞

𝑓𝑛 (𝑥) for all 𝑥 ∈ 𝐴. then 

(i) If each 𝑓𝑛 is continuous on 𝐴, then 𝑓 is continuous on 𝐴.  

(ii) if each 𝑓𝑛 is differentiable on 𝐴, then 𝑓 is differentiable on 𝐴. 

 

11.5 UNIFORM CONVERGENCE 

Let ( 𝑓𝑛) be a sequence of functions defined on 𝐴 ⊆ R. We say that (𝑓𝑛) 

converges uniformly on 𝐴 to the limit function 𝑓 defined on 𝐴 if for 

every 𝜖 > 0 there exists an N ∈ ℕ such that |𝑓𝑛 (x)  −  f (x)| <  ϵ  

for all 𝑥 ∈ 𝐴, whenever 𝑛 ≥ 𝑁. 

Note: In the definition, the value of 𝑁 is independent of 𝑥. 

Example1: 𝑓𝑛 (𝑥) = √𝑥2 +
1

𝑛2  

Therefore, lim
n→∞

 𝑓𝑛 (𝑥) = lim
n→∞

 √𝑥2 +
1

𝑛2 = |𝑥|.  

So, 𝑓𝑛 (𝑥) → 𝑓 (𝑥) = |𝑥| pointwise.  

Let 𝜖 > 0 be given. Choose 𝑁 ∈ N large enough such that 1 𝑁 < 𝜖. Then 

for any 𝑥 ∈ R and 𝑛 ≥ 𝑁 we have 

 | 𝑓𝑛 (𝑥) − 𝑓 (𝑥)| = |√𝑥2 +
1

𝑛2 − |x|| = |√𝑥2 +
1

𝑛2 − |x|| (
|√𝑥2+

1

𝑛2 + |x||

|√𝑥2+
1

𝑛2 + |x||

) 
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                           = 

1

𝑛2

|√𝑥2+
1

𝑛2 + |x||

 ≤ 

1

𝑛2

|√0 + 
1

𝑛2 + 0|

 = 
1

𝑛
 < 𝜖 

This shows that (𝑓𝑛) → 𝑓 uniformly on R. Note that each 𝑓𝑛 (𝑥) is both 

continuous and differentiable on R, but 𝑓 (𝑥) = |𝑥| is continuous on R and 

not differentiable at 𝑥 = 0. 

Example2: 𝑓𝑛(𝑥) = {

𝑛𝑥          𝑖𝑓 0 ≤  𝑥 ≤  1 
1

𝑛

2 −  𝑛𝑥    𝑖𝑓 
1

𝑛
 ≤  𝑥 ≤  

2

𝑛

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       

Therefore,         lim
n→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) = 0 

If f(𝑥) = 0, then (𝑓𝑛) → 𝑔 pointwise. 

Let 𝜖 =1/2 and 𝑥𝑛 = 
1

𝑛
 then 

| 𝑓𝑛 (𝑥𝑛) − 𝑓 (𝑥𝑛)| =    | 1− 0| = 1 > 𝜖 =1/2. 

So, it is not true that for all 𝜖 > 0, there exist an 𝑁 ∈ ℕ large enough such 

that 𝑛 ≥ 𝑁 implies | 𝑓𝑛 (𝑥𝑛) − 𝑓 (𝑥𝑛)| < for all  𝑥. 

So 𝑓𝑛(𝑥) does not converge to 𝑓(𝑥) uniformly. 

 

11.6 CAUCHY CRITERION FOR UNIFORM 

CONVERGENCE 

A sequence of functions ( 𝑓𝑛) defined on a set 𝐴 ⊆ R converges 

uniformly on 𝐴 if and only if for every 𝜖 > 0 there exists an 𝑁 ∈ ℕ such 

that | 𝑓𝑛 (𝑥) − 𝑓𝑚  (𝑥)| < 𝜖 whenever 𝑚, 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝐴. 

Proof: (⇒) Assume the sequence ( 𝑓𝑛) converges uniformly on 𝐴 to a 

limit function 𝑓. Let 𝜖 > 0 be given. Then there exists an 𝑁 ∈ ℕ such that 

| 𝑓𝑛 (𝑥) − 𝑓 (𝑥)| < 
ϵ

2
 , 

whenever 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝐴. Then if 𝑛, 𝑚 ≥ 𝑁 and 𝑥 ∈ 𝐴, we have 

 | 𝑓𝑛 (𝑥) − 𝑓𝑚  (𝑥)| = | 𝑓𝑛 (𝑥) – 𝑓 (𝑥) + 𝑓 (𝑥) -  𝑓𝑚  (𝑥)| 

                             ≤ | 𝑓𝑛 (𝑥) − 𝑓 (𝑥)| + | 𝑓𝑚  (𝑥) − 𝑓 (𝑥)| 

                             < 
ϵ

2
+

ϵ

2
 = 𝜖 
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(⇐) Conversely, assume that for every 𝜖 > 0 there exists an 𝑁 ∈ N such 

that   | 𝑓𝑛 (𝑥) − 𝑓𝑚  (𝑥)| < 𝜖 whenever 𝑚, 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝐴. This 

hypothesis implies that, for each 𝑥 ∈ 𝐴, ( 𝑓𝑛  (𝑥)) is a Cauchy sequence. 

By Cauchy’s Criterion, this sequence converges to a point, which we 

will call 𝑓 (𝑥). So, the uniformly Cauchy sequence converges pointwise 

to the function 𝑓 (𝑥). We must show that the convergence is also 

uniform. For the value of 𝜖 given above, we use the corresponding 𝑁. 

Then for 𝑛, 𝑚 ≥ 𝑁 and all 𝑥 ∈ 𝐴, 

| 𝑓𝑛 (𝑥) − 𝑓𝑚  (𝑥)| < 𝜖  

Taking the limit as 𝑚 → ∞ gives 

| 𝑓𝑛 (𝑥) − 𝑓𝑚  (𝑥)| ≤ 𝜖 for all 𝑥 ∈ 𝐴, which shows that ( 𝑓𝑛) converges 

uniformly to 𝑓 on 𝐴.  

This completes the proof. 

 

11.7 CONTINUOUS LIMIT THEOREM 

 

Let ( 𝑓𝑛) be a sequence of functions defined on 𝐴 ⊆ R that converges 

uniformly on 𝐴 to a function 𝑓. If each 𝑓𝑛 is continuous at 𝑐 ∈ 𝐴, then 𝑓 

is continuous at 𝑐. 

Proof. Let 𝜖 > 0 be given. Fix 𝑐 ∈ 𝐴. Since 𝑓𝑛 → 𝑓 uniformly, there 

exists an 𝑁 ∈ ℕ such that 

| 𝑓𝑁 (𝑥) − 𝑓 (𝑥) | < 
ϵ

3
 for all 𝑥 ∈ 𝐴.  

Since 𝑓𝑁 is continuous at 𝑐, there exists 𝛿 > 0 such that 

| 𝑓𝑁 (𝑥) − 𝑓𝑁 (c) | < 
ϵ

3
  whenever |𝑥 − 𝑐| < 𝛿.  

If |𝑥 − 𝑐| < 𝛿, then 

| 𝑓 (𝑥) − 𝑓 (c) | = | 𝑓 (𝑥) + 𝑓𝑁  (𝑥) −𝑓𝑁  (𝑥)  − 𝑓𝑁  (c) + 𝑓𝑁 (c)    − 𝑓 (c) |  

                         ≤ | 𝑓 (𝑥) − 𝑓𝑁 (c) | + | 𝑓𝑁 (𝑥) − 𝑓𝑁 (c) | + | 𝑓𝑁 (c) - 𝑓 (c) |  

                         < 
ϵ

3
 + 

ϵ

3
 + 

ϵ

3
 = ϵ  

The first and third 𝜖/3 are due to uniform convergence and the choice of 

𝑁. The second 𝜖/3 is due to the choice of 𝛿. This shows that 𝑓 is 

continuous at 𝑐, as desired.  
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11.8 UNIFORM CONVERGENCE AND 

DIFFERENTIATION 

 Differentiable Limit Theorem 

Let (𝑓𝑛) → 𝑓 pointwise on the closed interval [𝑎, 𝑏] and 

assume each 𝑓𝑛 is differentiable. If (𝑓𝑛
′) → 𝑔 uniformly on 

 [𝑎, 𝑏], then 𝑓 is differentiable and 𝑓 ′ = 𝑔. 

Proof: Fix 𝑐 ∈ [𝑎, 𝑏] and let 𝜖 > 0. We’ll show there exists 𝛿 > 0 such 

that 

               

whenever 0 < |𝑥 − 𝑐| < 𝛿 and 𝑥 ∈ [𝑎, 𝑏]. 

For 𝑥 ≠ 𝑐, consider the following: 

 

 

From Cauchy’s Criterion for uniform convergence, since the sequence ( 

𝑓′𝑛 ) converges uniformly to 𝑔, there exists an 𝑁2 ∈ ℕ  such that 

    

whenever 𝑚, 𝑛 ≥ 𝑁2 and 𝑥 ∈ [𝑎, 𝑏]. Set 𝑁 = max{𝑁1, 𝑁2} 
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11.9 SERIES OF FUNCTION 

Let {𝑓𝑛} is a sequence of real valued functions on an interval I,  

then 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛 + ⋯ is called a series of real valued function 

defined on I. 

this series is denoted by ∑ 𝑓𝑛
∞
𝑛=1  . 

Examples: 𝑓 (𝑥) =  ∑
𝑥𝑛

𝑛!

∞
𝑛=1   (This equals 𝑒 𝑥 for all 𝑥 ∈ R.) 

Note: Let 𝑓 and 𝑓𝑛 for 𝑛 ∈ N be functions defined on a set 𝐴 ⊆ R.  
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(a) The infinite series ∑︁𝑓𝑛(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥) + · · · converges 

pointwise on 𝑨 to 𝒇 (𝒙) if the sequence of partial sums 

 𝑠𝑘(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥) + · · · +𝑓𝑘(𝑥)  converges pointwise to 𝑓 

(𝑥) on 𝐴.  

(b) The infinite series converges uniformly on 𝑨 to 𝒇 (𝒙) if the sequence 

of partial sums converges uniformly on 𝐴 to 𝑓 (𝑥). 

Note: Since an infinite series of functions is defined in terms of the limit 

of a sequence of partial sums, everything we already know about 

sequences applies to series. For the sum ∑ 𝑓𝑛(𝑥)∞
𝑛=1 , we merely restate 

all of the previous theorems for the sequence of 𝑘th partial sums 𝑠𝑘(𝑥) = 

𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥) + · · · +𝑓𝑘(𝑥). 

Note: Let 𝑓𝑛 be continuous functions defined on a set 𝐴 ⊆ R, and assume 

∑ 𝑓𝑛(𝑥) ∞
𝑛=1 converges uniformly on 𝐴 to a function 𝑓. Then 𝑓 is 

continuous on 𝐴. 

Note: Term-by-term Differentiability Theorem 

Suppose the following three statements:  

(i) Let 𝑓𝑛 be differentiable functions defined on an interval 𝐴 = [𝑎, 𝑏].  

(ii) Assume ∑ 𝑓𝑛
′(𝑥)∞

𝑛=1  converges uniformly to a limit 𝑔(𝑥) on 𝐴. 

(iii) There exists a point 𝑥0  ∈ [𝑎, 𝑏] where ∑ 𝑓𝑛(𝑥0) ∞
𝑛=1 converges. Then 

the series ∑ 𝑓𝑛(𝑥) ∞
𝑛=1  converges uniformly to a differentiable function 𝑓 

(𝑥) satisfying 𝑓 ′ (𝑥) = 𝑔(𝑥) on 𝐴. In other words, 

   𝑓 (𝑥) = ∑ 𝑓𝑛(𝑥) ∞
𝑛=1       and 𝑓 ′ (𝑥) = ∑ 𝑓𝑛

′(𝑥)∞
𝑛=1 . 

 

11.10 CRITERION FOR UNIFORM 

CONVERGENCE OF SERIES 

1. Cauchy Criterion for Uniform Convergence of Series:  

A series ∑ 𝑓𝑛(𝑥) ∞
𝑛=1  converges uniformly on 𝐴 ⊆ R if and only if for 

every 𝜖 > 0 there exists an 𝑁 ∈ ℕ such that  

|𝑓𝑚+1(𝑥) + 𝑓𝑚+2(𝑥) + ⋯ + 𝑓𝑛(𝑥)| < 𝜖 whenever 𝑛 > 𝑚 ≥ 𝑁 and 𝑥 ∈ A. 

2. Weierstrass 𝑀-Test:  
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For each 𝑛 ∈ ℕ, let 𝑓𝑛 be a function defined on a set 𝐴 ⊆ R, and let 𝑀𝑛 > 

0 be a real number satisfying |𝑓𝑛(x)|  < 𝑀𝑛 for all 𝑥 ∈ 𝐴. If ∑ 𝑀𝑛 ∞
𝑛=1  

converges, then ∑ 𝑓𝑛(𝑥) ∞
𝑛=1  converges uniformly on 𝐴. 

Examples 1. The continuous functions 
cos 2𝑛𝑥

2𝑛  for 𝑛 ∈ {0, 1, 2, 3, . . .} 

satisfy 

                      |
cos 2𝑛𝑥

2𝑛
| ≤ 𝑀𝑛 =

1

2𝑛 

for all 𝑥 ∈ R and 𝑛 ∈ {0, 1, 2, 3, . . .}. Since 

∑ 𝑀𝑛  ∞
𝑛=0  = ∑

1

2𝑛 ∞
𝑛=0 = 

1

1−(
1

2
)

= 2 < ∞, 

by the Weierstrass 𝑀-test, the series ∑
cos 2𝑛𝑥

2𝑛  ∞
𝑛=0  converges uniformly to 

a continuous function  

                                 g(x) =∑
cos 2𝑛𝑥

2𝑛  ∞
𝑛=0 . 

Examples 2. Define 𝑓 (𝑥) = ∑
𝑥2𝑛

1+𝑥2𝑛 ∞
𝑛=0 . Find the values of 𝑥 where the 

series converges and show that we get a continuous function on this set. 

Sol. If |𝑥| < 1, then by the Comparison Test, the series converges as 

follows:  

 

If |𝑥| ≥ 1, then the series diverges by the Divergence Test since 

 

Now let 0 < 𝐾 < 1. Then on the interval [−𝐾, 𝐾] we have 

 

Since  
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the series converges uniformly on [−𝐾, 𝐾] to a continuous function. 

Since 𝐾 was arbitrary, the series 

 

is a continuous function on (−1, 1).  

What about the derivative? Consider 

 

For 0 < 𝐾 < 1, we apply the Weierstrass 𝑀-test on the interval [−𝐾, 𝐾]. 

For 𝑥 ∈ [−𝐾, 𝐾], 

 

The sum ∑ 𝑁𝑛 ∞
𝑛=0 = ∑ 𝑛𝐾2𝑛−1 ∞

𝑛=0  converges and by the Weierstrass 𝑀-

test the series of derivatives converges uniformly on the interval [−𝐾, 𝐾]. 

By the Differentiable Limit Theorem, 𝑓 ′ (𝑥) = 𝑔(𝑥) for 𝑥 ∈ [−𝐾, 𝐾]. 

Since 𝐾 was arbitrary, 𝑓 ′ (𝑥) = 𝑔(𝑥) for 𝑥 ∈ (−1, 1). That is, 

 

 

11.11 ABEL’S TEST 

Let (i) the series of functions ∑ 𝑓𝑛(𝑥) ∞
𝑛=1 be uniformly convergent  

           on [𝑎, 𝑏] 

And (ii) The sequence of functions (𝑔𝑛(𝑥)) be monotonic for every 𝑥 ∈ 

                [𝑎, 𝑏] and uniformly bounded on [𝑎, 𝑏]. 

Then the series ∑ 𝑓𝑛(𝑥)𝑔𝑛(𝑥) ∞
𝑛=1 is uniformly convergent on [𝑎, 𝑏]. 

Example: Prove that the series ∑
(−1)𝑛−1𝑥𝑛

𝑛(1+𝑥𝑛)
 ∞

𝑛=1 is uniformly convergent 

on [0, 1]. 
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Sol. Let 𝑔𝑛(𝑥) =
𝑥𝑛

(1+𝑥𝑛)
 , 𝑥 ∈ [0, 1] 

Then 𝑔𝑛+1 − 𝑔𝑛 =
𝑥𝑛(𝑥−1)

(1+𝑥𝑛)(1+𝑥𝑛+1)
 ≤ 0 for all 𝑥 ∈ [0, 1]. 

For each 𝑥 ∈ [0, 1], the sequence (𝑔𝑛) is monotonic and for all 𝑥 ∈

[0, 1], |𝑔𝑛| < 1 for all 𝑛 ∈ ℕ. 

The series ∑
(−1)𝑛−1

𝑛 
 ∞

𝑛=1 is convergent series of real numbers and 

therefore it is uniformly convergent on [0, 1]. 

By Abel’s test, the series ∑
(−1)𝑛−1𝑥𝑛

𝑛(1+𝑥𝑛)
 ∞

𝑛=1 is uniformly convergent on 

[0, 1]. 

 

11.12 DIRICHLET’S TEST  

 

Let (i) the sequence of partial sums (𝑠𝑛) of the series of functions 

∑ 𝑓𝑛(𝑥) ∞
𝑛=1 be uniformly bounded on [𝑎, 𝑏]. 

(ii) The sequence of functions (𝑔𝑛(𝑥)) be monotonic for every 𝑥 ∈ 

        [𝑎, 𝑏] And 

(iii) The sequence of functions (𝑔𝑛(𝑥)) is uniformly convergent 

        to 0 on  [𝑎, 𝑏]. 

Then Then the series ∑ 𝑓𝑛(𝑥)𝑔𝑛(𝑥) ∞
𝑛=1 is uniformly convergent on 

[𝑎, 𝑏]. 

 Example: Prove that the series ∑
(−1)𝑛 (𝑥2+𝑛)

𝑛2  ∞
𝑛=1 is uniformly 

convergent in any closed and bounded interval [0, 1]. 

Sol. Let 𝑓𝑛(𝑥) = (−1)𝑛 , 𝑔𝑛(𝑥) =
 (𝑥2+𝑛)

𝑛2 ,  𝑥 ∈ [𝑎, 𝑏] . 

Let 𝑠𝑛 = 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛 . Then the sequence (𝑠𝑛) is bounded. 

Then 𝑔𝑛+1 − 𝑔𝑛 =
𝑥2+𝑛+1

(𝑛+1)2 −
𝑥2+𝑛

𝑛2  < 0 for all 𝑥 ∈ [𝑎, 𝑏]. 

This shows that (𝑔𝑛) is a monotone decreasing sequence for each 𝑥 in 

[𝑎, 𝑏].  
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lim
𝑛⟶∞

𝑔𝑛(𝑥) = 0 each 𝑥 in [𝑎, 𝑏].  

Thus, the sequence of functions (𝑔𝑛) is such that each 𝑔𝑛 is continuous 

on [𝑎, 𝑏], the sequence converges to a continuous function on [𝑎, 𝑏] and 

(𝑔𝑛) is monotone decreasing sequence on [𝑎, 𝑏]. 

Therefore, by Dirichlet’s test ∑
(−1)𝑛 (𝑥2+𝑛)

𝑛2  ∞
𝑛=1  is uniformly convergent. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Every pointwise convergent is uniform convergent. 

Problem 2. Every uniform convergent is pointwise convergent. 

Problem 3. The series ∑
𝑥𝑛 

𝑛
 ∞

𝑛=1 , 0 ≤ 𝑥 ≤ 1 is pointwise convergent  

                     to 0. 

Problem 4. The series ∑
𝑥𝑛 

𝑛
 ∞

𝑛=1 , 0 ≤ 𝑥 ≤ 1 is uniformly convergent      

                     to 0. 

 

11.13 SUMMARY 

 

1. A sequence of functions ( 𝑓𝑛) defined on a set 𝐴 ⊆ R converges 

uniformly on 𝐴 if and only if for every 𝜖 > 0 there exists an 𝑁 ∈ ℕ such 

that | 𝑓𝑛 (𝑥) − 𝑓𝑚  (𝑥)| < 𝜖 whenever 𝑚, 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝐴.  

2. Let (i) the series of functions ∑ 𝑓𝑛(𝑥) ∞
𝑛=1 be uniformly convergent  

           on [𝑎, 𝑏] 

And (ii) The sequence of functions (𝑔𝑛(𝑥)) be monotonic for every 𝑥 ∈ 

                [𝑎, 𝑏] and uniformly bounded on [𝑎, 𝑏]. 

Then the series ∑ 𝑓𝑛(𝑥)𝑔𝑛(𝑥) ∞
𝑛=1 is uniformly convergent on [𝑎, 𝑏]. 
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11.14 GLOSSARY  
 

sequence  

series  
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11.17 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Prove that the 𝑥 = 0 is a point of non – uniform convergence of the 

sequence of functions 〈𝑓𝑛〉 Where, 𝑓𝑛(𝑥) = 
𝑛𝑥

1+𝑛2𝑥2 . 

Q 2. Prove that the sequence of functions 〈𝑓𝑛〉 Where, 𝑓𝑛(𝑥) = 
𝑛2𝑥

1+𝑛2𝑥2 is 

non-uniformly convergent on [0, 1]. 

Q 3.  Prove that the sequence of functions 〈𝑓𝑛〉 Where, 𝑓𝑛(𝑥) = 
𝑛𝑥

1+𝑛2𝑥2 is 

uniformly convergent on [a, b], a > 0 but is only pointwise convergent on 

[0, b]. 
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11.18 ANSWERS 

CHECK YOUR PROGRESS 

        CYQ 1. False 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 
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12.1 INTRODUCTION 

                 In mathematical analysis, an improper integral is an extension 

of the notion of a definite integral to cases that violate the usual 

assumptions for that kind of integral. In the context of Riemann 

integrals (or, equivalently, Darboux integrals), this typically involves 

unboundedness, either of the set over which the integral is taken or of the 

integrand (the function being integrated), or both. It may also involve 

bounded but not closed sets or bounded but not continuous functions. 

While an improper integral is typically written symbolically just like a 

standard definite integral, it actually represents a limit of a definite 

integral or a sum of such limits; thus improper integrals are said to 

converge or diverge. If a regular definite integral (which 

may metonymically be called a proper integral) is worked out as if it is 

improper, the same answer will result. The concept of Riemann integrals 

as developed in previous chapter requires that the range of integration is 

finite and the integrand remains bounded on that domain. if either (or both) 

of these assumptions is not satisfied it is necessary to attach a new 

interpretation to the integral. 

 

12.2 OBJECTIVES 

In this Unit, we will Discussed about 

 Improper integral 

 Proper integral 

 Type of improper integral  

 

 

12.3 PROPER INTEGRAL 

The definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called a proper integral if 

(i) the interval of integration [𝑎, 𝑏] is finite or bounded. 

(ii) the integrand 𝑓 is bounded on [𝑎, 𝑏]. 

If F(x) is an indefinite integral of 𝑓(𝑥), then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎). 

 

 

https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Darboux_integral
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Retronym
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12.4 IMPROPER INTEGRAL 

The definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called a improper integral if either or 

both the above conditions are not satisfied. Thus ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is an 

improper integral if either the interval of integration [𝑎, 𝑏] is not finite or 

𝑓 is not bounded on [𝑎, 𝑏] or neither the interval [𝑎, 𝑏] is finite nor 𝑓 is 

bounded over it. 

(i) In the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, if either 𝑎 or 𝑏 or both 𝑎 and 𝑏 are 

infinite so that the interval of integration is unbounded but 𝑓 is bounded, 

then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called an improper integral of the first kind.  

For example: ∫
𝑑𝑥

√𝑥

∞

1
 , ∫ 𝑒2𝑥𝑑𝑥

0

−∞
 are improper integral of the first kind. 

(ii) In the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, if both 𝑎 and 𝑏 are finite so that 

the interval of integration is finite but  𝑓 has one or more point of infinite 

discontinuity i.e. 𝑓 is not bounded on [𝑎, 𝑏], then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called an 

improper integral of the second kind.  

For example: ∫
1

𝑥2 𝑑𝑥
2

1
, ∫

1

2 − 𝑥
𝑑𝑥

2

1
 are improper integral of second kind. 

(iii) In the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, if the interval of integration is 

unbounded and 𝑓 is also unbounded,  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called an improper 

integral of the third kind. 

For example: ∫
𝑒−𝑥

√𝑥
𝑑𝑥

∞

0
 is an improper integral of third kind. 

 

12.5 IMPROPER ITEGRAL AS THE LIMIT OF 

A PROPER INTEGRAL 

(a) When the improper integral is of the first kind, either 𝑎 or 𝑏 or both 𝑎 

and 𝑏 are infinite but 𝑓 is bounded. We define  

(i) ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 = lim

𝑡⟶∞
∫ 𝑓(𝑥)𝑑𝑥,   (𝑡 > 𝑎)

𝑡

𝑎
 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 is said to be convergent if the limit 

of right-hand side exists finitely and the integral is said to be divergent 

if the limit is +∞ or −∞. 



Real Analysis  MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                        195 
 

If the integral is neither convergent or divergent, then it is said to be 

oscillating. 

(ii) ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 = lim

𝑡⟶−∞
∫ 𝑓(𝑥)𝑑𝑥,   (𝑡 < 𝑏)

𝑎

𝑡
 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 is said to be convergent if the limit 

of right-hand side exists finitely and the integral is said to be divergent 

if the limit is +∞ or −∞. 

(iii) ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 =∫ 𝑓(𝑥)𝑑𝑥 +

𝑐

−∞
 ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑐
 where c is any real number 

                            = lim
𝑡1⟶−∞

∫ 𝑓(𝑥)𝑑𝑥 +
𝑐

𝑡1
lim

𝑡2⟶∞
∫ 𝑓(𝑥)𝑑𝑥

𝑡2

𝑐
 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 is said to be convergent if both the 

limits on the right-hand side exist finitely and independent of each other, 

otherwise it is said to be divergent. 

Note: ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
≠ lim

𝑡⟶∞
[ ∫ 𝑓(𝑥)𝑑𝑥 +

𝑐

−𝑡
∫ 𝑓(𝑥)𝑑𝑥

𝑡

𝑐
]. 

(b) When the improper integral is second kind, both 𝑎 and 𝑏 are finite 

but 𝑓 has one points of infinite discontinuity on [𝑎, 𝑏]. 

(i) If 𝑓(𝑥) becomes infinite at 𝑥 = 𝑏 only, we define 

     ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = lim

𝜖⟶0+
∫ 𝑓(𝑥)𝑑𝑥

𝑏−𝜖

𝑎
. 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is said to be convergent if the limit on 

the right- hand side exists finitely and the interval is said to be divergent 

if the limit is +∞ or −∞. 

(ii) If 𝑓(𝑥) becomes infinite at 𝑥 = 𝑎 only, we define 

       ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = lim

𝜖⟶0+
∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎+𝜖
. 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is said to be convergent if the limit on 

the right- hand side exists finitely, otherwise it is said to be divergent. 

(iii) If 𝑓(𝑥) becomes infinite at 𝑥 = 𝑐 only where 𝑎 < 𝑐 < 𝑏, we define 

       ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐

𝑐

𝑎
  

                         = lim
𝜖1⟶0+

∫ 𝑓(𝑥)𝑑𝑥
𝑐−𝜖1

𝑎
 + lim

𝜖2⟶0+
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐+𝜖2
. 
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The improper integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is said to be convergent if both the 

limits on the right- hand side exist finitely and independent of each 

other, otherwise it is said to be divergent. 

Note: (1) if 𝑓(𝑥) has finite discontinuity at the end point of the interval 

of integration, then the point of discontinuity is approached from within 

the interval. 

Thus, if the interval of integration is [𝑎, 𝑏] and  

(i) 𝑓 has infinite discontinuity at ′𝑎′, we consider [𝑎 + 𝜖, 𝑏] as 𝜖 ⟶ 0 +. 

(ii) 𝑓 has infinite discontinuity at ′𝑏′, we consider [𝑎, 𝑏 − 𝜖] as 𝜖 ⟶ 0 +. 

Note: (2) A proper integral is always convergent. 

Note: (3) If ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is convergent, then 

(i) ∫ 𝑘𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is convergent, 𝑘 ∈ ℝ, 

(ii) ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
 where 𝑎 < 𝑐 < 𝑏 and each 

interval or right-hand side is convergent. 

Note: (4) For any 𝑐 between 𝑎 and 𝑏, 𝑖. 𝑒. 𝑎 < 𝑐 < 𝑏, we have  

                 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
 

If ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐
 is a proper integral, then the two integrals ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 and 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 converges or diverge together.  

Thus, while testing the interval ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 convergence at 𝑎 it may be 

replaced by ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 for any convenient 𝑐 such that 𝑎 < 𝑐 < 𝑏. 

ILLUSTRATIVE EXAMPLES 

Example 1. Examine the convergence of the following improper 

integrals: 

(i) ∫
1

𝑥
𝑑𝑥

∞

0
         (ii) ∫

1

√𝑥
𝑑𝑥

∞

1
       (iii) ∫

1

𝑥3/2 𝑑𝑥
∞

1
     (iv) ∫

1

1+𝑥2 𝑑𝑥
∞

0
 

Sol. (i) By definition, ∫
1

𝑥
𝑑𝑥

∞

0
= lim

𝑡⟶∞
∫

1

𝑥
𝑑𝑥

𝑡

0
 

                                                   = lim
𝑡⟶∞

[𝑙𝑜𝑔𝑥]1
𝑡 = lim

𝑡⟶∞
𝑙𝑜𝑔𝑡 = ∞ 

Therefore, ∫
1

𝑥
𝑑𝑥

∞

0
 is divergent. 
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(ii) By definition, ∫
1

√𝑥
𝑑𝑥

∞

1
= lim

𝑡⟶∞
∫

1

√𝑥
𝑑𝑥

𝑡

1
 = lim

𝑡⟶∞
∫ 𝑥−1/2𝑑𝑥

𝑡

1
 

                                                   = lim
𝑡⟶∞

[2√𝑥]1
𝑡 = lim

𝑡⟶∞
(2√𝑡 − 2) = ∞ 

Therefore, ∫
1

√𝑥
𝑑𝑥

∞

0
 is divergent. 

(iii) By definition, ∫
1

𝑥3/2 𝑑𝑥
∞

1
 = lim

𝑡⟶∞
∫ 𝑥−3/2𝑑𝑥

𝑡

1
 

                                                 = lim
𝑡⟶∞

[
𝑥−1/2

−1/2
]

1

𝑡

 = lim
𝑡⟶∞

[
−2

√𝑥
]

1

𝑡

 

                                      = lim
𝑡⟶∞

(
−2

√𝑡
+ 2) = 0 + 2 = 2, which is finite. 

Therefore, ∫
1

𝑥3/2 𝑑𝑥
∞

1
 is convergent and its value is 2. 

(iv) By definition, ∫
1

1+𝑥2 𝑑𝑥
∞

0
 = lim

𝑡⟶∞
∫

1

1+𝑥2 𝑑𝑥
𝑡

0
 

                                                  = lim
𝑡⟶∞

(tan−1 𝑡)0
𝑡  

                                                  = lim
𝑡⟶∞

(tan−1 𝑡 − tan−1 0) 

                                                  = 
𝜋

2
 which is finite. 

Therefore, ∫
1

1+𝑥2 𝑑𝑥
∞

0
 is convergent and its value is 

𝜋

2
. 

Example 2. Examine the convergence of the following improper 

integrals: 

(i) ∫ 𝑒−𝑚𝑥𝑑𝑥   (𝑚 > 0)
∞

0
         (ii) ∫

𝑥

1+𝑥2 𝑑𝑥
∞

𝑎
       (iii) ∫

1

(1+𝑥)3 𝑑𝑥
∞

0
     

(iv) ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥
∞

0
 

Sol. (i) By definition, ∫ 𝑒−𝑚𝑥𝑑𝑥
∞

0
= lim

𝑡⟶∞
∫ 𝑒−𝑚𝑥𝑑𝑥

𝑡

0
 

                                                        = lim
𝑡⟶∞

−
1

𝑚
 (𝑒−𝑚𝑡 − 1) 

                                                         = −
1

𝑚
 (0 − 1) =

1

𝑚
 which is finite. 

⟹ ∫ 𝑒−𝑚𝑥𝑑𝑥
∞

0
 is convergent and its value is 

1

𝑚
. 

(ii) By definition, ∫
𝑥

1+𝑥2 𝑑𝑥
∞

𝑎
= lim

𝑡⟶∞
∫

𝑥

1+𝑥2 𝑑𝑥
𝑡

0
 

                                                 =  lim
𝑡⟶∞

∫
1

2
(

2𝑥

1+𝑥2)𝑑𝑥
𝑡

0
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                                                 = lim
𝑡⟶∞

(
1

2
log (1 + 𝑥2))

𝑎

𝑡

 

                                        = lim
𝑡⟶∞

1

2
[log(1 + 𝑡2) − log(1 + 𝑎2)] = ∞ 

Therefore, ∫
𝑥

1+𝑥2 𝑑𝑥
∞

𝑎
 is divergent. 

(iii) By definition, ∫
1

(1+𝑥)3 𝑑𝑥
∞

0
= lim

𝑡⟶∞
∫ (1 + 𝑥)−3𝑑𝑥

𝑡

0
 

                                                 =  lim
𝑡⟶∞

[
(1+𝑥)−2

−2
]

0

𝑡

 

                       = lim
𝑡⟶∞

−
1

2
[

1

(1+𝑡)2 − 1] = −
1

2
(0 − 1) =

1

2
 which is finite. 

Therefore, ∫
1

(1+𝑥)3 𝑑𝑥
∞

0
 is convergent and its value is 

1

2
. 

(iv) By definition, ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥
∞

0
= lim

𝑡⟶∞
∫ 𝑠𝑖𝑛𝑥 𝑑𝑥

𝑡

0
= lim

𝑡⟶∞
[−𝑐𝑜𝑠 𝑥]0

𝑡  

                                                  = lim
𝑡⟶∞

(1 − 𝑐𝑜𝑠𝑡) 

Which does not exist uniquely since cost oscillates between -1 and +1 

when 𝑡 ⟶ ∞. 

Therefore, ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥
∞

0
 oscillates. 

Example 3. Examine for convergence the integrals: 

(i) ∫ 𝑥𝑒−𝑥  𝑑𝑥
∞

1
         (ii) ∫ 𝑥2𝑒−𝑥  𝑑𝑥

∞

0
 

Sol. (i) ∫ 𝑥𝑒−𝑥  𝑑𝑥
∞

1
= lim

𝑡⟶∞
∫ 𝑥𝑒−𝑥  𝑑𝑥

𝑡

1
 

                           = lim
𝑡⟶∞

[−𝑥𝑒−𝑥 − 𝑒−𝑥]1
𝑡  

                            = lim
𝑡⟶∞

[−𝑡𝑒−𝑡 − 𝑒−𝑡 + 𝑒−1 + 𝑒−1] 

      = lim
𝑡⟶∞

(
−𝑡

𝑒𝑡 ) − lim
𝑡⟶∞

(𝑒−𝑡) +
2

𝑒
 (applying L’ Hospital rule to first limit) 

      = lim
𝑡⟶∞

(
−1

𝑒𝑡 ) − 0 +
2

𝑒
= 0 +

2

𝑒
=

2

𝑒
 which is finite. 

Therefore, ∫ 𝑥𝑒−𝑥  𝑑𝑥
∞

1
 is convergent and its value is 

2

𝑒
. 

(ii) ∫ 𝑥2𝑒−𝑥  𝑑𝑥
∞

0
= lim

𝑡⟶∞
∫ 𝑥2𝑒−𝑥  𝑑𝑥

𝑡

0
 

                           = lim
𝑡⟶∞

[−𝑥2𝑒−𝑥 − 2𝑥𝑒−𝑥 − 2𝑒−𝑥]0
𝑡  
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                            = lim
𝑡⟶∞

[−𝑡2𝑒−𝑡 − 2𝑡𝑒−𝑡 − 2𝑒−1 + 2] 

               = lim
𝑡⟶∞

(
−𝑡2

𝑒𝑡 ) − 2 lim
𝑡⟶∞

(
𝑡

𝑒𝑡) − 0 + 2 (Applying L’ Hospital rule) 

           = lim
𝑡⟶∞

(
−2𝑡

𝑒𝑡 ) − 2 lim
𝑡⟶∞

(
𝑡

𝑒𝑡) + 2  

          (Again, applying L’ Hospital rule) 

           = lim
𝑡⟶∞

(
−2

𝑒𝑡 ) −2× 0 + 2 = 0 + 2 = 2 which is finite. 

Therefore, ∫ 𝑥2𝑒−𝑥  𝑑𝑥
∞

0
 is convergent and its value is 2. 

Example 4. Examine for convergence of the integrals: 

(i) ∫ 𝑒2𝑥  𝑑𝑥
0

−∞
         (ii) ∫

1

𝑝2+𝑞2𝑥2  𝑑𝑥
0

−∞
 

Sol. (i) ∫ 𝑒2𝑥  𝑑𝑥
0

−∞
= lim

𝑡⟶−∞
∫ 𝑒2𝑥  𝑑𝑥

0

𝑡
 

         = lim
𝑡⟶−∞

[
𝑒2𝑥

2
]

𝑡

0

= lim
𝑡⟶−∞

 
1

2
(1 − 𝑒2𝑡) =

1

2
(1 − 0) =

1

2
 which is finite. 

Therefore, ∫ 𝑒2𝑥  𝑑𝑥
0

−∞
 is convergent and its value is 

1

2
.  

(ii) ∫
1

𝑝2+𝑞2𝑥2  𝑑𝑥
0

−∞
= lim

𝑡⟶−∞
∫

1

𝑝2+𝑞2𝑥2  𝑑𝑥
0

𝑡
 

                                = lim
𝑡⟶−∞

∫
1

𝑞2( 
𝑝2

𝑞2 +𝑥2 )
 𝑑𝑥

0

𝑡
 

                 = lim
𝑡⟶−∞

[
1

𝑞2 .
1

𝑝/𝑞
tan−1 𝑥

𝑝/𝑞
]

𝑡

0

 

                 = lim
𝑡⟶−∞

1

𝑝𝑞
[0 − tan−1 𝑞𝑡

𝑝
] = −

1

𝑝𝑞
(−

𝜋

2
) =

𝜋

2𝑝𝑞
 which is finite. 

Therefore, ∫
1

𝑝2+𝑞2𝑥2  𝑑𝑥
0

−∞
 is convergent and its value is 

𝜋

2𝑝𝑞
. 

Example 5. Examine for convergence of the integrals: 

(i) ∫ 𝑒−𝑥  𝑑𝑥
∞

−∞
         (ii) ∫

1

1+𝑥2  𝑑𝑥
∞

−∞
 

Sol. (i) ∫ 𝑒−𝑥  𝑑𝑥
∞

−∞
= ∫ 𝑒−𝑥  𝑑𝑥

0

−∞
+ ∫ 𝑒−𝑥  𝑑𝑥

∞

0
 

                                = lim
𝑡1⟶−∞

∫ 𝑒−𝑥  𝑑𝑥
0

𝑡1
 + lim

𝑡2⟶∞
∫ 𝑒−𝑥  𝑑𝑥

𝑡2

0
 

                                = lim
𝑡1⟶−∞

[−𝑒−𝑥]𝑡1

0 + lim
𝑡2⟶−∞

[−𝑒−𝑥]0
𝑡2 
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                               = lim
𝑡1⟶−∞

(−1 + 𝑒−𝑡1) + lim
𝑡2⟶−∞

(−𝑒−𝑡2 + 1)  

                               = (-1 + ∞) + (0 + 1) = ∞ 

Therefore, ∫ 𝑒−𝑥  𝑑𝑥
∞

−∞
 is divergent to ∞. 

(ii) ∫
1

1+𝑥2  𝑑𝑥
∞

−∞
= ∫

1

1+𝑥2  𝑑𝑥
0

−∞
+ ∫

1

1+𝑥2  𝑑𝑥
∞

0
 

                            = lim
𝑡1⟶−∞

∫
1

1+𝑥2  𝑑𝑥
0

𝑡1
 + lim

𝑡2⟶∞
∫

1

1+𝑥2  𝑑𝑥
𝑡2

0
 

                            = lim
𝑡1⟶−∞

[tan−1 𝑥]𝑡1

0 + lim
𝑡2⟶−∞

[tan−1 𝑥]0
𝑡2 

                             = lim
𝑡1⟶−∞

[−tan−1 𝑡1] + lim
𝑡2⟶∞

[−tan−1 𝑡2] 

                             = − (−
𝜋

2
) +

𝜋

2
= 𝜋 which is finite. 

Therefore, ∫
1

1+𝑥2  𝑑𝑥
∞

−∞
 is convergent and its value is 𝜋. 

Example 6. Examine for convergence of the integrals: 

(i) ∫ 𝑙𝑜𝑔𝑥 𝑑𝑥
1

0
         (ii) ∫

1

𝑥(𝑙𝑜𝑔𝑥)2  𝑑𝑥
1/𝑒

0
 

Sol. (i) 0 is only point of infinite discontinuity of the integrand on [𝑎, 𝑏]. 

Therefore,  ∫ 𝑙𝑜𝑔𝑥 𝑑𝑥
1

0
= lim

𝜖⟶0+
∫ (𝑙𝑜𝑔𝑥). 1𝑑𝑥

1

0+𝜖
 

Integration by parts 

               = lim
𝜖⟶0+

[𝑥 𝑙𝑜𝑔𝑥 − 𝑥]𝜖
1 =  lim

𝜖⟶0+
(−1 − 𝜖 log 𝜖 + 𝜖) 

               = −1 which is finite.      [𝑠𝑖𝑛𝑐𝑒 lim
𝜖⟶0

𝑥𝑛𝑙𝑜𝑔𝑥 = 0, 𝑛 > 0 ] 

Therefore, ∫ 𝑙𝑜𝑔𝑥 𝑑𝑥
1

0
 is convergent and its value is −1. 

(ii) since lim
𝑥⟶0

𝑥(𝑙𝑜𝑔𝑥)𝑛 = 0, 𝑛 > 0, therefore, 0 is the only point of 

infinite discontinuity of the integrand on [0,
1

𝑒
 ]. 

Therefore, ∫
1

𝑥(𝑙𝑜𝑔𝑥)2  𝑑𝑥
1/𝑒

0
= lim

𝜖⟶0+
∫ (𝑙𝑜𝑔𝑥)−2 1

𝑥
 𝑑𝑥

1/𝑒

0+𝜖
 

                                             = lim
𝜖⟶0+

[
(𝑙𝑜𝑔𝑥)−1

−1
]

𝜖

1/𝑒
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                                              = lim
𝜖⟶0+

[
1

log
1

𝑒

−
1

log 𝜖
] = −[−1 − 0] = 1 

which is finite. 

Therefore, ∫
1

𝑥(𝑙𝑜𝑔𝑥)2  𝑑𝑥
1/𝑒

0
 is convergent and its value is 1. 

 

 

 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Every proper integral is always convergent. 

Problem 2. ∫
1

𝑥2  𝑑𝑥
1

0
 is convergent. 

Problem 3. ∫
1

𝑥2  𝑑𝑥
1

0
 is divergent to +∞. 

Problem 4. ∫
1

𝑥(𝑙𝑜𝑔𝑥)3  𝑑𝑥
𝑒

0
 is convergent to −

1

2
. 

Problem 5. ∫
1

𝑥(𝑙𝑜𝑔𝑥)3  𝑑𝑥
2

1
 is divergent to +∞. 

 

 

 

 

12.6 SUMMARY 

 

1. In the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, if either 𝑎 or 𝑏 or both 𝑎 and 𝑏 are 

infinite so that the interval of integration is unbounded but 𝑓 is bounded, 

then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called an improper integral of the first kind.   

2. In the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, if both 𝑎 and 𝑏 are finite so that the 

interval of integration is finite but  𝑓 has one or more point of infinite 

discontinuity i.e. 𝑓 is not bounded on [𝑎, 𝑏], then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called an 

improper integral of the second kind.  
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3. In the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, if the interval of integration is 

unbounded and 𝑓 is also unbounded,  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called an improper 

integral of the third kind. 

4. (i) ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 = lim

𝑡⟶∞
∫ 𝑓(𝑥)𝑑𝑥,   (𝑡 > 𝑎)

𝑡

𝑎
 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 is said to be convergent if the limit 

of right-hand side exists finitely and the integral is said to be divergent 

if the limit is +∞ or −∞. 

If the integral is neither convergent or divergent, then it is said to be 

oscillating. 

(ii) ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 = lim

𝑡⟶−∞
∫ 𝑓(𝑥)𝑑𝑥,   (𝑡 < 𝑏)

𝑎

𝑡
 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 is said to be convergent if the limit 

of right-hand side exists finitely and the integral is said to be divergent 

if the limit is +∞ or −∞. 

(iii) ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 =∫ 𝑓(𝑥)𝑑𝑥 +

𝑐

−∞
 ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑐
 where c is any real number 

                            = lim
𝑡1⟶−∞

∫ 𝑓(𝑥)𝑑𝑥 +
𝑐

𝑡1
lim

𝑡2⟶∞
∫ 𝑓(𝑥)𝑑𝑥

𝑡2

𝑐
 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 is said to be convergent if both the 

limits on the right-hand side exist finitely and independent of each other, 

otherwise it is said to be divergent. 

5. For any 𝑐 between 𝑎 and 𝑏, 𝑖. 𝑒. 𝑎 < 𝑐 < 𝑏, we have  

                 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
 

If ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐
 is a proper integral, then the two integrals ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 and 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 converges or diverge together.  

Thus, while testing the interval ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 convergence at 𝑎 it may be 

replaced by ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
 for any convenient 𝑐 such that 𝑎 < 𝑐 < 𝑏. 

 

12.7 GLOSSARY  
 

sequence  

series  
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12.10 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Examine for convergence of the integral ∫
1

𝑒𝑥 + 𝑒−𝑥  𝑑𝑥
∞

−∞
.     

Q 2. Examine for convergence of the integral ∫
1

𝑥2 + 2𝑥+2
 𝑑𝑥

∞

−∞
.     

Q 3.  Examine for convergence of the integral ∫
1

𝑥2−3𝑥+2
 𝑑𝑥

1

0
.     

Q 4. Examine for convergence of the integral ∫
1

𝑠𝑖𝑛𝑥
 𝑑𝑥

𝜋

0
.     

Q 5. Examine for convergence of the integral ∫
1

1+𝑐𝑜𝑠𝑥
 𝑑𝑥

𝜋

0
.    
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12.11 ANSWERS 

TQ1. Convergent to 
𝜋

2
. 

TQ2. Convergent to 𝜋. 

TQ3. Divergent to ∞. 

TQ4. Divergent to ∞. 

TQ5. Divergent to ∞. 

CHECK YOUR PROGRESS 

        CYQ 1. True 

        CYQ 2. False 

        CYQ 3. True 

        CYQ 4. True 

        CYQ 5. True 
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UNIT 13: IMPROPER INTEGRAL II 
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13.1 INTRODUCTION 

 

                 In mathematical analysis, an improper integral is an extension 

of the notion of a definite integral to cases that violate the usual 

assumptions for that kind of integral. In this unit we discussed 

tests for convergence of ∫ f(𝑥)d𝑥
b

a
 at ‘𝑎’, general test for convergence and 

absolute convergence of some functions, also tests for convergence of 

∫ f(𝑥)d𝑥
b

a
 at ‘∞’. 

  

13.2 OBJECTIVES 

In this Unit, we will Discussed about 

 Improper integral 

 Test of convergence 

 Absolute integral  

 

 

13.3 TEST FOR CONVERGENCE OF ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
 

AT 𝒂 

Let a be the only point of infinite discontinuity of 𝑓(𝑥) on [𝑎, 𝑏]. The 

case when 𝑏 is the only point of infinite discontinuity can be dealt with 

in the same way. 

Without any loss of generality, we assume that 𝑓(𝑥) is positive (or non-

negative) on [𝑎, 𝑏]. 

In case 𝑓(𝑥) is negative, we can replace it by (−𝑓) for testing the 

convergence of ∫ f(𝑥)d𝑥
b

a
. 

https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Definite_integral
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Theorem: A necessary and sufficient condition for the convergence of 

the improper integral ∫ f(𝑥)d𝑥
b

𝑎
 at ‘𝑎′ where f is positive on (𝑎, 𝑏], is 

that there exists a positive number M, independent of 𝜖 > 0 such that  

         ∫ f(𝑥)d𝑥 < 𝑀
b

𝑎+𝜖
 ∀ 𝜖 in (0, 𝑏 − 𝑎) 

Proof: Since 𝑎 is the only point of infinite discontinuity of 𝑓 on [𝑎, 𝑏], 

therefore, 𝑓 is continuous on (𝑎, 𝑏]. 

Also 𝑓 is positive on (𝑎, 𝑏]. 

⟹ For 𝑎 < 𝑎 + 𝜖 < 𝑏 i.e. for 0 < 𝜖 < 𝑏 − 𝑎, 𝑓 is positive and 

continuous on [𝑎 + 𝜖, 𝑏]. 

⟹ ∫ f(𝑥)d𝑥 = 𝐴(
b

𝑎+𝜖
𝜖) represents the area bounded by 𝑓 on [𝑎 + 𝜖, 𝑏] 

and 𝑥 −axis. 

⟹ As 𝜖 ⟶ 0 +, i.e. as 𝜖 decrease, 𝐴(𝜖) increases since the length of the 

interval increases. 

⟹ lim
𝜖⟶0+

𝐴(𝜖) = lim
𝜖⟶0+

∫ f(𝑥)d𝑥
b

𝑎+𝜖
 will exist finitely iff 𝐴(𝜖) is bounded 

above. 

⟹ ∫ f(𝑥)d𝑥
b

𝑎
 will converge iff ∃ a real number M > 0 and independent 

of 𝜖 such that 𝐴(𝜖) < 𝑀 

⟹ ∫ f(𝑥)d𝑥
b

𝑎
 converges iff ∫ f(𝑥)d𝑥 < 𝑀

b

𝑎+𝜖
 ∀ 𝜖 in (0, b - 𝑎). 

Note: If for every M > 0 and some 𝜖 in (0, b - 𝑎). 𝐴(𝜖) > 𝑀, then 

∫ f(𝑥)d𝑥
b

𝑎+𝜖
 is not bounded above. 

Therefore, ∫ f(𝑥)d𝑥
b

𝑎+𝜖
 tend to +∞ as 𝜖 tend to 0+ and hence, the 

improper integral ∫ f(𝑥)d𝑥
b

𝑎
 diverges to +∞. 

 

13.4 COMPARISION TEST I 

If f and 𝑔 are two positive functions with f(𝑥) ≤ 𝑔(𝑥) for all 𝑥 in (𝑎, 𝑏] 

and 𝑎 is only point of infinite discontinuity on [𝑎, 𝑏], then 

(i) ∫ g(𝑥)d𝑥
b

𝑎
 is convergent          ⟹ ∫ f(𝑥)d𝑥

b

𝑎
 is convergent 

(ii) ∫ f(𝑥)d𝑥
b

𝑎
 is divergent             ⟹ ∫ g(𝑥)d𝑥

b

𝑎
 is divergent. 
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13.5 COMPARISION TEST II (LIMIT FORM) 

If f and 𝑔 are two positive functions on (𝑎, 𝑏], a being the only point of 

infinity discontinuity, and lim
𝑥⟶𝑎+

𝑓(𝑥)

𝑔(𝑥)
= 1 where 𝑙 is non-zero finite 

number, then two  ∫ f(𝑥)d𝑥
b

𝑎
 and ∫ g(𝑥)d𝑥

b

𝑎
 converge or diverge 

together. 

Note: let f and 𝑔 be two positive functions on (𝑎, 𝑏], 𝑎 being the only 

point of infinite discontinuity. Then  

(i) lim
𝑥⟶𝑎+

𝑓(𝑥)

𝑔(𝑥)
= 0 and ∫ g(𝑥)d𝑥

b

𝑎
 converges  ⟹ ∫ f(𝑥)d𝑥

b

𝑎
 is converges 

(ii) lim
𝑥⟶𝑎+

𝑓(𝑥)

𝑔(𝑥)
= ∞ and ∫ g(𝑥)d𝑥

b

𝑎
 diverges  ⟹ ∫ f(𝑥)d𝑥

b

𝑎
 is diverges. 

Note:  

(i) The improper integral ∫
1

(𝑥−𝑎)𝑛 d𝑥
b

𝑎
 is convergent 

      if and only if 𝑛 < 1. 

(ii) The improper integral ∫
1

(𝑏−𝑥)𝑛 d𝑥
b

𝑎
 is convergent 

       if and only if 𝑛 < 1. 

Note:  

(i) if 𝑎 is the only point of infinite discontinuity of 𝑓 on [𝑎, 𝑏] and 

lim
𝑥⟶𝑎+

(𝑥 − 𝑎)𝜇𝑓(𝑥) exists and non-zero finite, then  ∫ 𝑓(𝑥)d𝑥
b

𝑎
 

converges if and only if 𝜇 < 1. 

(ii) if 𝑏 is the only point of infinite discontinuity of 𝑓 on [𝑎, 𝑏] and 

lim
𝑥⟶𝑏+

(𝑏 − 𝑥)𝜇𝑓(𝑥) exists and non-zero finite, then  ∫ 𝑓(𝑥)d𝑥
b

𝑎
 

converges if and only if 𝜇 < 1. 

 

 

 ILLUSTRATIVE EXAMPLES: 

Example 1: Examine the convergence of the integrals. 
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(i) ∫
1

√𝑥2 + 𝑥
d𝑥

1

0
              (ii) ∫

1

(1+𝑥)√2− 𝑥
d𝑥

2

1
 

Sol. (i) Here     𝑓(𝑥) =
1

√𝑥2 + 𝑥
=

1

√  𝑥 √𝑥 + 𝑥
 

0 is the point of infinite discontinuity of 𝑓 on [0, 1]. 

Take 𝑔(𝑥) =
1

√ 𝑥
 , then lim

𝑥⟶0+

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶0+

1

√ 𝑥+1
= 1 which is 

 non-zero and finite. 

Therefore, By comparison test, ∫ 𝑓(𝑥)d𝑥
1

0
 and ∫ 𝑔(𝑥)d𝑥

1

0
 converge 

or diverge together. 

But   ∫ 𝑔(𝑥)d𝑥
1

0
= ∫

1

√ 𝑥
d𝑥

1

0
  

                                (From, ∫
1

(𝑥−𝑎)𝑛 d𝑥
b

𝑎
 with a = 0 converges. 

                                                         since n = ½ < 1) 

Therefore, ∫ 𝑓(𝑥)d𝑥
1

0
= ∫

1

√ 𝑥+1
d𝑥

1

0
 is convergent. 

(ii)      Here 𝑓(𝑥) =
1

(1+𝑥)√2− 𝑥
 

2 is the point of infinite discontinuity of f on [1, 2]. 

Take 𝑔(𝑥) =
1

√ 2 − 𝑥
 , then lim

𝑥⟶2−

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶2−

1

𝑥+1
=

1

3
 which is 

 non-zero and finite. 

Therefore, by comparison test, ∫ 𝑓(𝑥)d𝑥
2

1
 and ∫ 𝑔(𝑥)d𝑥

2

1
 converge 

or diverge together. 

But   ∫ 𝑔(𝑥)d𝑥
2

1
= ∫

1

√ 2 − 𝑥
d𝑥

2

1
  

                           (From, ∫
1

(𝑏−𝑥)𝑛 d𝑥
b

𝑎
 with b = 2 converges.)  

                                      since n = ½ < 1) 

Therefore, ∫ 𝑓(𝑥)d𝑥
2

1
= ∫

1

(1+𝑥)√2− 𝑥
d𝑥

1

0
 is convergent. 

Example 2: Examine the convergence of the integral. 

                     ∫
1

𝑥3( 2+ 𝑥2)5 
d𝑥

1

0
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Sol. Here 𝑓(𝑥) =
1

𝑥3( 2+ 𝑥2)5 
 

0 is the point of infinite discontinuity of f on [0, 1]. 

Take 𝑔(𝑥) =
1

𝑥3 , then lim
𝑥⟶0+

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶0+

1

( 2+ 𝑥2)5 =
1

32
 which is 

 non-zero and finite. 

Therefore, by comparison test, ∫ 𝑓(𝑥)d𝑥
1

0
 and ∫ 𝑔(𝑥)d𝑥

1

0
 converge 

or diverge together. 

But   ∫ 𝑔(𝑥)d𝑥
1

0
= ∫

1

𝑥3 d𝑥
1

0
  

                 (From, ∫
1

(𝑥−𝑎)𝑛 d𝑥
b

𝑎
 with 𝑎 = 0 diverges. 

                                                         since n = 3 > 1) 

Therefore, ∫ 𝑓(𝑥)d𝑥
1

0
= ∫

1

𝑥3( 2+ 𝑥2)5 
d𝑥

1

0
 is divergent. 

Example 3: Examine the convergence of the integral. 

                     ∫
𝑙𝑜𝑔𝑥

1 + 𝑥 
d𝑥

1

0
      

Sol. Since 
𝑙𝑜𝑔𝑥

1 + 𝑥 
 is negative on (0, 1], we take 𝑓(𝑥) = −

𝑙𝑜𝑔𝑥

1 + 𝑥 
 

0 is the point of infinite discontinuity of f on [0, 1]. 

Take 𝑔(𝑥) =
1

𝑥𝑛 , then lim
𝑥⟶0+

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶0+
−

𝑥𝑛𝑙𝑜𝑔𝑥

1 + 𝑥
= 0 if 𝑛 > 0. 

Taking n between o and 1, the integral ∫ 𝑔(𝑥)d𝑥
1

0
 is convergent. 

Therefore, by comparison test, ∫ 𝑓(𝑥)d𝑥
1

0
 is convergent. 

 

Example 4: Examine the convergence of the integral. 

                     ∫
sin 𝑥

𝑥𝑝 
d𝑥

π/2

0
      

Sol. If p is negative or zero, the given integral is a proper integral and 

hence convergent when 𝑝 ≤ 0. 

When p > 0, the only point of discontinuity is 0. 

Let    𝑓(𝑥) =
sin 𝑥

𝑥𝑝 
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Take 𝑓(𝑥) =
1

𝑥𝜇 
  then 

lim
𝑥⟶0+

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶0+
𝑥𝜇−𝑝𝑠𝑖𝑛𝑥 = lim

𝑥⟶0+
𝑥𝜇−𝑝+1(

𝑠𝑖𝑛𝑥

𝑥
) 

                 = 1 if 𝜇 − 𝑝 + 1 = 0 

                 = 0 if 𝜇 − 𝑝 + 1 > 0 

                 = ∞ if 𝜇 − 𝑝 + 1 < 0 

By taking 0 < 𝜇 < 1 and also 𝜇 = 𝑝 − 1 so that 

 0 < 𝑝 − 1 < 1 i.e. 1 < 𝑝 < 2. 

Therefore, ∫ 𝑔(𝑥)d𝑥
π/2

0
 is convergent and hence ∫ 𝑓(𝑥)d𝑥

π/2

0
 is 

convergent. 

By taking 0 < 𝜇 < 1 and also 𝜇 > 𝑝 − 1 so that 

 −1 < 𝑝 − 1 < 𝜇 < 1 i.e. 0 < 𝑝 < 2. 

Therefore, ∫ 𝑔(𝑥)d𝑥
π/2

0
 is convergent and hence ∫ 𝑓(𝑥)d𝑥

π/2

0
 is 

convergent. 

Hence ∫
sin 𝑥

𝑥𝑝 
d𝑥

π/2

0
 is convergent if 𝑝 < 2 and divergent if 𝑝 ≥ 2. 

Example 5: Show that ∫
𝑠𝑖𝑛𝑚𝑥

𝑥𝑛 

π/2

0
𝑑𝑥 exists if and only if 𝑛 < 𝑚 + 1. 

Sol. Here     𝑓(𝑥) =
𝑠𝑖𝑛𝑚𝑥

𝑥𝑛 
= (

𝑠𝑖𝑛𝑥

𝑥
)

𝑛

.
1

𝑥𝑛−𝑚   

lim
𝑥⟶0+

𝑓(𝑥) = {

0 𝑖𝑓 𝑛 − 𝑚 < 0
1 𝑖𝑓 𝑛 − 𝑚 = 0
∞ 𝑖𝑓 𝑛 − 𝑚 > 0

 

Therefore, the given integral is proper integral if 𝑛 − 𝑚 ≤ 0 𝑖. 𝑒. 

 𝑛 ≤ 𝑚  and an improper integral if 𝑛 − 𝑚 > 0; 0 is only the point of 

infinite discontinuity of 𝑓 on [0,
𝜋

2
 ]. 

When 𝑛 − 𝑚 > 0, take 𝑔(𝑥) =
1

𝑥𝑛−𝑚 
 

Therefore, lim
𝑥⟶0+

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶0+
(

𝑠𝑖𝑛𝑥

𝑥
)

𝑛

= 1 which is non zero and 

finite. 
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Also  ∫ 𝑔(𝑥)
π/2

0
𝑑𝑥 = ∫

1

𝑥𝑛−𝑚

π/2

0
𝑑𝑥 is convergent iff 𝑛 − 𝑚 < 1 i.e. 

𝑛 < 𝑚 + 1. 

Therefore, by comparison test, the given interval is convergent iff 

𝑛 − 𝑚 < 1.  

 

13.6 GENERAL TEST FOR CONVERGENCE 

This test for convergence of an improper integral (finite limits of 

integration but discontinuous integrand) holds whether or not the 

integrand keeps the same sign. 

 Cauchy’s test. The improper integral ∫ 𝑓(𝑥)
b

𝑎
𝑑𝑥, 𝑎 being the 

only point of infinite discontinuity, converges at 𝑎 if and only if 

to each 𝜖 > 0, there corresponds a 𝛿 > 0 such that  

    |∫ 𝑓(𝑥)𝑑𝑥
𝑎+𝜆2

𝑎+𝜆1
| < 𝜖 for all 0 < 𝜆1, 𝜆2 < 𝛿. 

 

13.7 ABSOLUTE CONVERGENCE 

Definition: The improper integral ∫ 𝑓(𝑥)
b

𝑎
𝑑𝑥 is said to be absolutely 

convergent if ∫ |𝑓(𝑥)|
b

𝑎
𝑑𝑥 is convergent.  

Theorem: Every absolutely convergent integral is convergent. 

                 or         ∫ |𝑓(𝑥)|
b

𝑎
𝑑𝑥 exits ⟹ ∫ 𝑓(𝑥)

b

𝑎
𝑑𝑥 exists. 

Proof. Since ∫ |𝑓(𝑥)|
b

𝑎
𝑑𝑥 exists, therefore by Cauchy’s test , for every 

휀 > 0, there corresponds  a 𝛿 > 0 such that. 

                                   

               |∫ |𝑓(𝑥)|𝑑𝑥
𝑎+𝜆2

𝑎+𝜆1
| < 휀, ∀ 0 < 𝜆1, 𝜆2 < 𝛿   ….. (1) 

     Also, we know that      |∫ 𝑓(𝑥)𝑑𝑥
𝑎+𝜆2

𝑎+𝜆1
| ≤ |∫ |𝑓(𝑥)|𝑑𝑥

𝑎+𝜆2

𝑎+𝜆1
|    …… (2) 

          From (1) and (2), we have  |∫ 𝑓(𝑥)𝑑𝑥
𝑎+𝜆2

𝑎+𝜆1
| < 휀, , ∀0 < 𝜆1, 𝜆2 < 𝛿 

            ∴  By Cauchy’s test ∫ 𝑓(𝑥)
b

𝑎
𝑑𝑥 is exists. 

    Note: Since |𝑓(𝑥)| is always positive, the comparison tests can be 

applied for             examining the convergence of ∫ |𝑓(𝑥)|
b

𝑎
𝑑𝑥, i.e., 

absolute convergence ∫ 𝑓(𝑥)
b

𝑎
𝑑𝑥.  
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     Note 2: The converse of the above theorem is not true. Every 

convergent integral is not absolutely convergent. A convergent integral 

which is not absolutely convergent is called a conditionally Convergent 

Integral. 

Example 1. Test the convergence of ∫
sin 

1

𝑥

√𝑥
𝑑𝑥

1  

0
.  

Sol. Let     f(x) = 
sin

1

𝑥

√𝑥
 

Clearly, 𝑓 does not keep the same sign in a neighborhood of 0. 

Now              |𝑓(𝑥)| =    | sin 
1

𝑥

√𝑥
| = 

| sin 1
𝑥

 |

|√𝑥 |
 ≤ 

1

√𝑥
 , ∀ 𝑥 ∈ (0, 1]   

But ∫
1

√𝑥
𝑑𝑥

1  

0
 is convergent at 0.        (Since 𝑛 =

1

2
< 1) 

Therefore, by comparison test, ∫ |𝑓(𝑥)|𝑑𝑥
1  

0
 is convergent at 0. 

Since absolute convergence ⟹ convergence. 

Therefore, ∫
sin 

1

𝑥

√𝑥
𝑑𝑥

1  

0
 is convergent. 

Example 2. Show that ∫
sin

1

𝑥

𝑥𝑝 𝑑𝑥
1  

0
, p > 0, converges absolutely for p < 1. 

Sol. Let  𝑓(𝑥) =
sin 

1

𝑥

𝑥𝑝   p > 0 

Clearly, 𝑓 does not keep the same sign in a neighborhood of 0. 

Now,  |𝑓(𝑥)| = |
sin 

1

𝑥

𝑥𝑝
| = 

| sin 
1
𝑥

 |

|𝑥𝑝 |
 ≤ 

1

𝑥𝑝 , ∀ 𝑥 ∈ (0, 1]   

Also  ∫
1

𝑥𝑝 𝑑𝑥
1  

0
 is convergent iff p < 1. 

Therefore, by convergent test, ∫ |𝑓(𝑥)|𝑑𝑥
1  

0
 converges if p < 1. 

Hence ∫ 𝑓(𝑥)𝑑𝑥
1  

0
 converges absolutely for p < 1.  

 

13.8 CONVERGENT AT ∞ 
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Theorem: A necessary and sufficient condition for convergence of 

∫ 𝑓(𝑥)𝑑𝑥
∞  

𝑎
, where 𝑓(𝑥) > 0 ∀ 𝑥 ∈ [𝑥, 𝑡], is that there exists a positive 

number M, independent of t, such ∫ 𝑓(𝑥)𝑑𝑥
𝑡  

𝑎
< M ∀ 𝑡 ≥ 𝑎. 

Proof. Let    F(t) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡  

𝑎
 

Since 𝑓 is positive in [𝑎, 𝑡], the function F(t) monotonically increases 

with 𝑡 and will therefore, tend to a finite limit if and only if it is bounded 

above, i.e. there exists a positive number M, independent of 𝑡, such that 

𝐹(𝑡) < M ∀ 𝑡 ≥ 𝑎 

⟹ ∫ 𝑓(𝑥)𝑑𝑥
𝑡  

𝑎
< 𝑀 ∀ 𝑡 ≥ 𝑎 

Note: if no such number M exists, then the monotonic increasing 

function F(t) is unbounded above and therefore tends to ∞ as 𝑡 ⟶ ∞. 

Therefore, ∫ 𝑓(𝑥)𝑑𝑥
𝑡  

𝑎
 diverges to ∞. 

 Comparison test I. 

If 𝑓 and 𝑔 are two functions such that 

 0 < 𝑓(𝑥) ≤ 𝑔(𝑥) ∀ 𝑥 ∈ [𝑎, ∞), then  

(i)   ∫ 𝑔(𝑥)𝑑𝑥
∞  

𝑎
 is convergent           ⟹ ∫ 𝑓(𝑥)𝑑𝑥

∞  

𝑎
 is 

convergent     

(ii) ∫ 𝑓(𝑥)𝑑𝑥
∞  

𝑎
 is divergent               ⟹ ∫ 𝑔(𝑥)𝑑𝑥

∞  

𝑎
 is 

divergent. 

 

 Comparison test II. 

If 𝑓 and 𝑔 are two positive functions on [𝑎, ∞) and lim
𝑥⟶∞

𝑓(𝑥)

𝑔(𝑥)
= 𝑙 

then (i) if 𝑙 is non-zero finite, the two integrals 

             ∫ 𝑓(𝑥)𝑑𝑥
∞  

𝑎
 and ∫ 𝑔(𝑥)𝑑𝑥

∞  

𝑎
 converges or diverges 

together. 

(ii) if 𝑙 = 0 and ∫ 𝑔(𝑥)𝑑𝑥
∞  

𝑎
 converges, then ∫ 𝑓(𝑥)𝑑𝑥

∞  

𝑎
 

converges. 

(iii) if 𝑙 = ∞ and ∫ 𝑔(𝑥)𝑑𝑥
∞  

𝑎
 diverges, then ∫ 𝑓(𝑥)𝑑𝑥

∞  

𝑎
 

diverges. 

Note: A useful comparison integral. 

          The improper integral ∫
1

𝑥𝑛 𝑑𝑥 (𝑎 > 0)
∞  

𝑎
 convergent if and only if 

𝑛 > 1. 

Example 1. Examine the convergence of the following integral 
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(i) ∫
𝑥3

(1+𝑥)5 𝑑𝑥
∞  

1
             (ii) ∫

1

(2+𝑥)√𝑥
𝑑𝑥

∞  

1
 

Sol. (i) Let f(x) =
𝑥3

(1+𝑥)5 = 
𝑥3

𝑥5(1+
1

𝑥
)

5 =  
1

𝑥2(1+
1

𝑥
)

5 

Take g(x) =
1

𝑥2 

Therefore, lim
𝑥⟶∞

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶∞

1

(1+
1

𝑥
)

5 =1 which is non-zero and finite. 

By comparison test, the two integrals ∫ 𝑓(𝑥)𝑑𝑥
∞  

1
 and ∫ 𝑔(𝑥)𝑑𝑥

∞  

1
 

converge or diverge together. 

But      ∫ 𝑔(𝑥)𝑑𝑥
∞  

1
= ∫

1

𝑥2 𝑑𝑥
∞  

1
 is convergent     (since n = 2 >1) 

Therefore, ∫ 𝑓(𝑥)𝑑𝑥
∞  

1
 = ∫

𝑥3

(1+𝑥)5 𝑑𝑥
∞  

1
 is convergent. 

(ii) Let f(x) =
1

(2+𝑥)√𝑥
 =  

1

𝑥
3
2(1+

2

𝑥
)

 

Take  g(x) =
1

𝑥3/2 

Therefore, lim
𝑥⟶∞

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶∞

1

1+
2

𝑥

=1 which is non-zero and finite. 

By comparison test, the two integrals ∫ 𝑓(𝑥)𝑑𝑥
∞  

1
 and ∫ 𝑔(𝑥)𝑑𝑥

∞  

1
 

converge or diverge together. 

But      ∫ 𝑔(𝑥)𝑑𝑥
∞  

1
= ∫

1

𝑥3/2 𝑑𝑥
∞  

1
 is convergent     (since n = 

3

2
> 1) 

Therefore, ∫ 𝑓(𝑥)𝑑𝑥
∞  

1
= ∫

1

(2+𝑥)√𝑥
𝑑𝑥

∞  

1
 is convergent. 

Example 2. Examine the convergence of the following integral 

                     ∫
𝑥2𝑚

1 + 𝑥2𝑛 𝑑𝑥
∞  

0
         𝑚, 𝑛 > 0     

Sol.    ∫
𝑥2𝑚

1 + 𝑥2𝑛 𝑑𝑥
∞  

0
= ∫

𝑥2𝑚

 1 + 𝑥2𝑛 𝑑𝑥
𝑎  

0
+ ∫

𝑥2𝑚

1 + 𝑥2𝑛 𝑑𝑥
∞  

𝑎
 where, 𝑎 > 0 

The first integral on the right is a proper integral and therefore, 

convergent. The given integral will be convergent or divergent according 

as ∫
𝑥2𝑚

1 + 𝑥2𝑛 𝑑𝑥
∞  

𝑎
 is convergent or divergent.  

Let 𝑓(𝑥) =
𝑥2𝑚

1 + 𝑥2𝑛 = 
𝑥2𝑚

 𝑥2𝑛(1+
1

𝑥2𝑛)
=

1

 𝑥2𝑛−2𝑚 (1+
1

𝑥2𝑛)
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Take 𝑔(𝑥) =
1

 𝑥2𝑛−2𝑚    

lim
𝑥⟶∞

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶∞

1

1 + 
1

𝑥2𝑛

= 1      (Since n > 0) 

Which is non-zero and finite. 

Therefore, by comparison test, ∫ 𝑓(𝑥)𝑑𝑥
∞  

𝑎
 and ∫ 𝑔(𝑥)𝑑𝑥

∞  

𝑎
 converge or 

diverge together. 

But ∫ 𝑔(𝑥)𝑑𝑥 = ∫
1

 𝑥2𝑛 − 2𝑚 𝑑𝑥
∞  

0

∞  

0
 converges if and only if 2𝑛 −  2𝑚 >

1  i.e. 𝑛 − 𝑚 >
1

2
 . 

Therefore, ∫ 𝑓(𝑥)𝑑𝑥
∞  

𝑎
 converges if and only if 𝑛 − 𝑚 >

1

2
. Hence the 

given integral converges if and only if 𝑛 − 𝑚 >
1

2
. 

 

CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Every improper integral is always convergent. 

Problem 2. ∫
1

𝑥𝑛  𝑑𝑥
∞

𝑎
 (a > 0) is convergent if n > 1. 

Problem 3. ∫
1

√𝑥2−1
 𝑑𝑥

∞

2
 is divergent. 

Problem 4. ∫
𝑙𝑜𝑔𝑥

𝑥2  𝑑𝑥
∞

1
 is convergent. 

Problem 5. Every absolute convergent is convergent. 

 

 

13.9 SUMMARY 

 

1. A necessary and sufficient condition for the convergence of the 

improper integral ∫ f(𝑥)d𝑥
b

𝑎
 at ‘𝑎′ where f is positive on (𝑎, 𝑏], is that 

there exists a positive number M, independent of 𝜖 > 0 such that  

         ∫ f(𝑥)d𝑥 < 𝑀
b

𝑎+𝜖
 ∀ 𝜖 in (0, 𝑏 − 𝑎). 

2. Comparison test: If f and 𝑔 are two positive functions with 
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 f(𝑥) ≤ 𝑔(𝑥) for all 𝑥 in (𝑎, 𝑏] and 𝑎 is only point of infinite 

discontinuity on [𝑎, 𝑏], then 

(i) ∫ g(𝑥)d𝑥
b

𝑎
 is convergent          ⟹ ∫ f(𝑥)d𝑥

b

𝑎
 is convergent 

(ii) ∫ f(𝑥)d𝑥
b

𝑎
 is divergent             ⟹ ∫ g(𝑥)d𝑥

b

𝑎
 is divergent. 

3. if 𝑎 is the only point of infinite discontinuity of 𝑓 on [𝑎, 𝑏] and 

lim
𝑥⟶𝑎+

(𝑥 − 𝑎)𝜇𝑓(𝑥) exists and non-zero finite, then  ∫ 𝑓(𝑥)d𝑥
b

𝑎
 

converges if and only if 𝜇 < 1. 

 

13.10 GLOSSARY  
 

sequence  

series  
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13.13 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Examine for convergence of the integral ∫
𝑥𝑝−1

1 + 𝑥
 𝑑𝑥

∞

0
.    



Real Analysis  MT(N)-201 

Department of Mathematics 
Uttarakhand Open University                                                                                                                    218 
 

Q 2. Prove that every absolute convergent integral is convergent. 

Q 3.  Examine for convergence of the integral ∫
𝑥3+1

𝑥4  𝑑𝑥
∞

0
.     

Q 4. Examine for convergence of the integral ∫
𝑐𝑜𝑠𝑥

1+𝑥2  𝑑𝑥
∞

0
.     

Q 5. Examine for convergence of the integral ∫
1

𝑥(𝑙𝑜𝑔𝑥)𝑛+1  𝑑𝑥
∞

𝑒
.     

 

13.14 ANSWERS 

TQ1. Convergent if 0 < 𝑝 < 1 and divergent if 𝑝 ≥ 1. 

TQ3. Convergent. 

TQ4. Convergent. 

TQ5. Divergent if 𝑛 ≤ 0, convergent if n < 0. 

CHECK YOUR PROGRESS 

        CYQ 1. False 

        CYQ 2. True 

        CYQ 3. True 

        CYQ 4. True 

        CYQ 5. True 
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UNIT 14: DIRICHLET AND ABEL’S TEST FOR 

IMPROPER INTEGRALS 
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14.1 INTRODUCTION 

 

                 In mathematics, Abel's test (also known as Abel's criterion) is 

a method of testing for the convergence of an infinite series. The test is 

named after mathematician Niels Henrik Abel, who proved it in 

1826.[1] There are two slightly different versions of Abel's test – one is 

used with series of real numbers, and the other is used with power 

series in complex analysis. Abel's uniform convergence test is a criterion 

for the uniform convergence of a series of functions dependent 

on parameters.  

In mathematics, there are several integrals known as the Dirichlet 

integral, after the German mathematician Peter Gustav Lejeune Dirichlet, 

one of which is the improper integral of the sine function over the positive 

real line. 

 

14.2 OBJECTIVES 

In this Unit, we will Discussed about 

 Improper integral 

 Abel’s Test 

 Dirichlet’s Test  

 

 

14.3 ABEL’S TEST 

If ∫ f(𝑥)d𝑥
∞

a
 is convergent at ∞ and 𝑔(𝑥) is bounded and monotonic for 

𝑥 ≥ 𝑎, then ∫ f(𝑥)𝑔(𝑥)d𝑥
∞

a
 is convergent at ∞. 

                                                               Or 

An infinite integral which converges (not necessarily absolutely) will 

remain convergent after the insertion of a factor which is bounded and 

monotonic. 

Proof: Since 𝑔 is monotonic on [𝑎, ∞), it is integrable on [𝑎, 𝑡], for all     

            𝑡 ≥ 𝑎.  

Also, since 𝑓 is integrable on [𝑎, 𝑡], we have by second mean value 

theorem.  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Convergent_series
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Niels_Henrik_Abel
https://en.wikipedia.org/wiki/Abel%27s_test#cite_note-1
https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Parameter#Mathematical_analysis
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://en.wikipedia.org/wiki/Improper_integral
https://en.wikipedia.org/wiki/Sinc_function
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∫ f(𝑥)g(𝑥)d𝑥 = 𝑔(
𝑡2

𝑡1
𝑡1) ∫ f(𝑥)d𝑥 = 𝑔(𝑡2) ∫ f(𝑥)d𝑥

𝑡2

𝑝

p

𝑡1
           ………. (1) 

Where            𝑎 < 𝑡1 ≤ 𝑝 ≤ 𝑡2  

Since 𝑔 is bounded on [𝑎, ∞), there exists a positive number 𝑘 such that  

|𝑔(𝑥)| ≤ 𝑘 ∀ 𝑥 ≥ 𝑎 

In particular |𝑔(𝑡1)| ≤ 𝑘,     |𝑔(𝑡2)| ≤ 𝑘                         ………. (2) 

Let ∈ > 0 be given,  

Since  ∫ f(𝑥)d𝑥
∞

a
 is convergent, there exists a number 𝑡0 such that  

  

|∫ f(𝑥)d𝑥
𝑡2

𝑡1
| ≤

𝜖

2𝑘
  ∀ 𝑡1, 𝑡2 ≥ 𝑡0                          ……… (3) 

Let the number 𝑡1, 𝑡2 in (1) be ≥ 𝑡0 so that the number 𝑝 which lies 

between 𝑡1 and 𝑡2, is also  ≥ 𝑡0. Hence from (3),  

            |∫ f(𝑥)d𝑥
p

𝑡1
| ≤

𝜖

2𝑘
 , |∫ f(𝑥)d𝑥

𝑡2

p
| ≤

𝜖

2𝑘
          ……… (4) 

From (1), (2) and (4), it follows that a positive number 𝑡0 exists such 

that for all 𝑡1, 𝑡2 ≥ 𝑡0. 

|∫ f(𝑥)g(𝑥)d𝑥
𝑡2

𝑡1
|  = |𝑔(𝑡1) ∫ f(𝑥)d𝑥

p

𝑡1
+ 𝑔(𝑡2) ∫ f(𝑥)d𝑥

𝑡2

p
| 

     ≤ |𝑔(𝑡1)| |∫ f(𝑥)d𝑥
p

𝑡1
| + |𝑔(𝑡2)| |∫ f(𝑥)d𝑥

𝑡2

𝑝
| < 𝑘.

𝜖

2𝑘
+ 𝑘.

𝜖

2𝑘
=  𝜖 

Hence, by Cauchy’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

a
 is convergent at ∞. 

 

14.4 DRICHLET’S TEST 

If ∫ f(𝑥)d𝑥
t

a
 is bounded for all 𝑡 ≥ 𝑎 and 𝑔(𝑥) is a bounded and 

monotonic function for 𝑥 ≥ 𝑎, tending to 0 as 𝑥 ⟶ ∞, then  

∫ f(𝑥)g(𝑥)d𝑥
∞

a
 is convergent at ∞. 

                                                        Or 

An infinite integral which oscillates finitely becomes convergent after 

the insertion of a monotonic factor which tends to zero as limit. 

Proof. Since g is monotonic on [𝑎, ∞), it is integrable on [𝑎, 𝑡], for all     
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             𝑡 ≥ 𝑎.  

Also, since 𝑓 is integrable on [𝑎, 𝑡], we have by second mean values 

theorem, 

  ∫ f(𝑥)g(𝑥)d𝑥 = 𝑔(
𝑡2

𝑡1
𝑡1) ∫ f(𝑥)d𝑥 = 𝑔(𝑡2) ∫ f(𝑥)d𝑥

𝑡2

𝑝

p

𝑡1
           ………. (1) 

Where            𝑎 < 𝑡1 ≤ 𝑝 ≤ 𝑡2  

Since ∫ f(𝑥)d𝑥
t

a
 is bounded for all 𝑡 ≥ 𝑎, there exists a positive number 

𝑘 such that  

                                  |∫ f(𝑥)d𝑥
p

𝑡1
| ≤ 𝑘 ∀ 𝑡 ≥ 𝑎       ……… (2) 

Now,                   |∫ f(𝑥)d𝑥
p

𝑡1
| = |∫ f(𝑥)d𝑥 + ∫ f(𝑥)d𝑥

p

a

a

𝑡2
| 

                                                   = |∫ f(𝑥)d𝑥
p

a
− ∫ f(𝑥)d𝑥

𝑡1

a
| 

                                                   ≤ |∫ f(𝑥)d𝑥
p

a
| + |∫ f(𝑥)d𝑥

𝑡1

a
| 

                                                    ≤ 𝑘 + 𝑘 = 2𝑘   ∀ 𝑡1, 𝑝 ≥ 𝑎   …….. (3) 

Similarly,           |∫ f(𝑥)d𝑥
𝑡2

𝑝
| ≤ 2𝑘  ∀ 𝑡2, 𝑝 ≥ 𝑎       …….. (4) 

Let 𝜖 > 0 be given  

Since lim
𝑥⟶∞

𝑔(𝑥) = 0, there exists a number 𝑡0 such that 

 |𝑔(𝑥)| <
𝜖

4𝑘
∀ 𝑥 ≥ 𝑡0 

Let the number 𝑡1, 𝑡2 in (1) be ≥ 𝑡0, then 

 |𝑔(𝑡1)| <
𝜖

4𝑘
 and |𝑔(𝑡2)| <

𝜖

4𝑘
   ……… (5) 

From (1), (3), (4) and (5) it follows that a positive number 𝑡0 exists such 

that for all 𝑡1, 𝑡2 ≥ 𝑡0 

|∫ f(𝑥)g(𝑥)d𝑥
𝑡2

𝑡1
|  = |𝑔(𝑡1) ∫ f(𝑥)d𝑥

p

𝑡1
+ 𝑔(𝑡2) ∫ f(𝑥)d𝑥

𝑡2

p
| 

     ≤ |𝑔(𝑡1)| |∫ f(𝑥)d𝑥
p

𝑡1
| + |𝑔(𝑡2)| |∫ f(𝑥)d𝑥

𝑡2

𝑝
| <

𝜖

4𝑘
. 2𝑘 +

𝜖

4𝑘
. 2𝑘 =  𝜖 

Hence, by Cauchy’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

a
 is convergent at ∞. 

Examples 1. Examine the convergence of the integrals: 
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                       (i)  ∫
𝑠𝑖𝑛𝑥

𝑥
d𝑥

∞

0
              (ii) ∫

𝑠𝑖𝑛𝑥

√𝑥
d𝑥

∞

0
      (iii) ∫

𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
∞

0
  

                      (iv) ∫
𝑠𝑖𝑛𝑥

𝑥𝑚 d𝑥
∞

a
 where a and m both are positive. 

Sol. (i) Since lim
𝑥⟶∞

𝑠𝑖𝑛𝑥

𝑥
= 1, therefore 0 is not a point of infinite    

             discontinuity. 

Now, ∫
𝑠𝑖𝑛𝑥

𝑥
d𝑥 = ∫

𝑠𝑖𝑛𝑥

𝑥
d𝑥 + ∫

𝑠𝑖𝑛𝑥

𝑥
d𝑥

∞

1

1

0

∞

0
 

Also ∫
𝑠𝑖𝑛𝑥

𝑥
d𝑥

1

0
 is a proper integral. Let us examine the convergence of 

∫
𝑠𝑖𝑛𝑥

𝑥
d𝑥

∞

1
 at ∞. 

Let 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 and 𝑔(𝑥) =
1

𝑥
  

Since     |∫ f(𝑥)d𝑥
t

1
| = |∫ sin 𝑥 d𝑥

t

1
| 

              = |𝑐𝑜𝑠1 − 𝑐𝑜𝑠𝑡| ≤ |𝑐𝑜𝑠1| + |𝑐𝑜𝑠𝑡| ≤ 2 

Therefore, ∫ f(𝑥)d𝑥
t

1
 is bounded for all 𝑡 ≥ 1. 

Also 𝑔(𝑥) is bounded and monotonically decreasing function tending to 

0 as 𝑥 ⟶ ∞ . 

By Dirichlet’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

1
 = ∫

𝑠𝑖𝑛𝑥

𝑥
d𝑥

∞

1
 is convergent. 

Hence, from (1), ∫
𝑠𝑖𝑛𝑥

𝑥
d𝑥

∞

0
 is convergent. 

(ii) Since lim
𝑥⟶∞

𝑠𝑖𝑛𝑥

√𝑥
= lim

𝑥⟶∞

𝑠𝑖𝑛𝑥

𝑥
. √𝑥 = 1 × 0 = 0. 

Therefore, 0 is not a point of infinite discontinuity. 

Now     ∫
𝑠𝑖𝑛𝑥

√𝑥
d𝑥 =

∞

0
 ∫

𝑠𝑖𝑛𝑥

√𝑥
d𝑥

1

0
+  ∫

𝑠𝑖𝑛𝑥

√𝑥
d𝑥

∞

1
          …….. (1) 

Also ∫
𝑠𝑖𝑛𝑥

√𝑥
d𝑥

1

0
 is a proper integral. So, let us examine the convergence 

of ∫
𝑠𝑖𝑛𝑥

√𝑥
d𝑥

∞

1
 at ∞.  

Let    𝑓(𝑥) = 𝑠𝑖𝑛𝑥 and 𝑔(𝑥) =
1

√𝑥
 

Since |∫ f(𝑥)d𝑥
t

1
| ≤ 2            [see part (i)] 

Therefore, ∫ f(𝑥)d𝑥
t

1
 is bounded for all 𝑡 ≥ 1. 
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Also 𝑔(𝑥) is a bounded and monotonically decreasing function tending 

to 0 as 𝑥 ⟶ ∞ . 

By Dirichlet’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

1
 = ∫

𝑠𝑖𝑛𝑥

√𝑥
d𝑥

∞

1
 is convergent. 

Hence, from (1), ∫
𝑠𝑖𝑛𝑥

√𝑥
d𝑥

∞

0
 is convergent. 

(iii) ∫
𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
∞

0
= ∫

𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥 + ∫
𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
∞

1

1

0
            ……… (1) 

For the integral ∫
𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
1

0
, 0 is a point of infinite discontinuity. 

Let      𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑥3/2 =
𝑠𝑖𝑛𝑥

𝑥
.

1

√𝑥
  

Take 𝑔(𝑥) =
1

√𝑥
 

Therefore, lim
𝑥⟶0+

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥⟶0+

𝑠𝑖𝑛𝑥

𝑥
= 1 which is non-zero and finite. 

Since ∫ 𝑔(𝑥)d𝑥 = ∫
1

√𝑥
d𝑥

1

0

1

0
 is convergent. 

∴    By comparison test, ∫ 𝑓(𝑥)d𝑥 = ∫
𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
1

0

1

0
 is convergent. 

Convergence of ∫
𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
∞

1
 at ∞. 

Let 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 and 𝑔(𝑥) =
1

𝑥3/2 

Since    |∫ f(𝑥)d𝑥
t

1
| ≤ 2            [see part (i)] 

∴  ∫ f(𝑥)d𝑥
t

1
 is bounded for all 𝑡 ≥ 1. 

Also 𝑔(𝑥) is a bounded and monotonically decreasing function tending 

to 0 as 𝑥 ⟶ ∞ . 

By Dirichlet’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

1
 = ∫

𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
∞

1
 is convergent. 

Hence, from (1), ∫
𝑠𝑖𝑛𝑥

𝑥3/2 d𝑥
∞

0
 is convergent. 

 

(iv) Let 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 and 𝑔(𝑥) =
1

𝑥𝑚 , m > 0 

Since |∫ f(𝑥)d𝑥
t

𝑎
| = |∫ sin 𝑥 d𝑥

t

𝑎
| 

         =  |cos 𝑎 − cos 𝑡| ≤ |cos 𝑎| + |cos 𝑡| ≤ 2 



Real Analysis  MT(N)-201 

Department of Mathematics  
Uttarakhand Open University                                                                                                                    225 
 

∴  ∫ f(𝑥)d𝑥
t

𝑎
 is bounded for all 𝑡 ≥ 1. 

Also 𝑔(𝑥) is a bounded and monotonically decreasing function tending 

to 0 as 𝑥 ⟶ ∞ for m > 0. 

By Dirichlet’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

𝑎
 = ∫

𝑠𝑖𝑛𝑥

𝑥𝑚 d𝑥
∞

a
 where m and a are both 

positive, is convergent. 

 

Examples 2. Examine the convergence of the integrals: 

                       (i)  ∫ sin 𝑥2 d𝑥
∞

0
              (ii) ∫

𝑥

1+𝑥2 sin 𝑥 d𝑥
∞

0
       

Sol. (i) We have     ∫ sin 𝑥2 d𝑥
∞

0
= ∫ sin 𝑥2 d𝑥

1

0
+ ∫ sin 𝑥2 d𝑥

∞

1
   …… (1) 

But ∫ sin 𝑥2 d𝑥
1

0
 is a proper integral and therefore convergent. 

Convergence of ∫ 𝐬𝐢𝐧 𝒙𝟐 𝐝𝒙
∞

𝟏
 at ∞. 

∫ sin 𝑥2 d𝑥
∞

1
  = ∫ (2𝑥 sin 𝑥2).

1

2𝑥
d𝑥

∞

1
  

Let 𝑓(𝑥) = 2𝑥 sin 𝑥2 and 𝑔(𝑥) =
1

2𝑥
  

Since, |∫ f(𝑥)d𝑥
t

1
| = |∫ 2𝑥 sin 𝑥2 d𝑥

t

1
| = |{− cos 𝑥2}1

𝑡 | 

         =  |cos 𝑎 − cos 𝑡2| ≤ |cos 𝑎| + |cos 𝑡2| ≤ 2 

∴  ∫ f(𝑥)d𝑥
t

1
 is bounded for all 𝑡 ≥ 1. 

Also 𝑔(𝑥) is a bounded and monotonically decreasing function tending 

to 0 as 𝑥 ⟶ ∞. 

By Dirichlet’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

1
 = ∫ sin 𝑥2 d𝑥

∞

1
 is convergent. 

Hence, from (1) ∫ sin 𝑥2 d𝑥
∞

0
 is convergent.  

 

 

(ii) We have  

  ∫
𝑥

1+𝑥2 sin 𝑥 d𝑥
∞

0
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= ∫
𝑥

1+𝑥2 sin 𝑥 d𝑥
1

0
+ ∫

𝑥

1+𝑥2 sin 𝑥 d𝑥
∞

1
   …… (1) 

But ∫
𝑥

1+𝑥2 sin 𝑥 d𝑥
1

0
 is a proper integral and therefore convergent. 

Convergence of ∫
𝒙

𝟏+𝒙𝟐 𝐬𝐢𝐧 𝒙 𝐝𝒙
∞

𝟏
∞. 

Let     𝑓(𝑥) = 𝑠𝑖𝑛 𝑥 and 𝑔(𝑥) =
𝑥

1+𝑥2 

Since  |∫ f(𝑥)d𝑥
t

1
| ≤ 2 

∴  ∫ f(𝑥)d𝑥
t

1
 is bounded for all 𝑡 ≥ 1. 

Also, lim
𝑥⟶∞

𝑔(𝑥) = lim
𝑥⟶∞

𝑥

1+𝑥2 = 0 

 𝑔(𝑥) is a bounded and monotonically decreasing function tending to 0 

as 𝑥 ⟶ ∞. 

By Dirichlet’s test, ∫ f(𝑥)g(𝑥)d𝑥
∞

1
 = ∫

𝑥

1+𝑥2 sin 𝑥 d𝑥
∞

1
 is convergent. 

Hence, from (1) 
𝑥

1+𝑥2 sin 𝑥 is convergent.  

Examples 3. Examine the convergence of the integrals: 

                       (i)  ∫ 𝑒−𝑎𝑥 𝑠𝑖𝑛𝑥

𝑥
d𝑥, 𝑎 ≥ 0

∞

0
       (ii) ∫ 𝑒−𝑥  

𝑠𝑖𝑛𝑥

𝑥2 d𝑥, 𝑎 > 0
∞

 𝑎
       

Sol. (i) Let      𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑥
 and     𝑔(𝑥) = 𝑒−𝑎𝑥 , 𝑎 ≥ 0. 

Since ∫ 𝑓(𝑥)d𝑥
∞

0
 is convergent and 𝑔(𝑥) is bounded and monotonically 

decreasing function of 𝑥 for 𝑥 > 0. 

∴ By Abel’s test, ∫ 𝑓(𝑥)𝑔(𝑥)d𝑥 =
∞

0
∫ 𝑒−𝑎𝑥 𝑠𝑖𝑛𝑥

𝑥
d𝑥

∞

0
 is convergent. 

(ii) Let 𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑥2  and     𝑔(𝑥) = 𝑒−𝑥 

Since |𝑓(𝑥)| = |
𝒔𝒊𝒏 𝒙

𝑥2
| ≤

1

𝑥2  and  ∫
1

𝑥2 d𝑥
∞

a
 is convergent. 

Therefore, ∫ 𝑓(𝑥)d𝑥
∞

a
 is also convergent. 

Again 𝑔(𝑥) is monotonic decreasing and bounded function for 𝑥 > 𝑎. 

Therefore, by Abel’s test, ∫ 𝑓(𝑥) g(𝑥)d𝑥
∞

𝑎
 = ∫ 𝑒−𝑥  

𝑠𝑖𝑛𝑥

𝑥2 d𝑥, 𝑎 > 0
∞

 𝑎
 is 

convergent. 
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CHECK YOUR PROGRESS  

True or false Questions 

Problem 1. Improper integral is not convergent. 

Problem 2. If ∫ f(𝑥)d𝑥
∞

a
 is convergent at ∞ and 𝑔(𝑥) is bounded and 

monotonic for 𝑥 ≥ 𝑎, then ∫ f(𝑥)𝑔(𝑥)d𝑥
∞

a
 is convergent at ∞. 

Problem 3. ∫ cos 𝑥3  𝑑𝑥
∞

0
 is divergent. 

Problem 4. ∫
𝑙𝑜𝑔𝑥

𝑥2  𝑑𝑥
∞

1
 is convergent. 

Problem 5. Every absolute convergent need not be convergent. 

 

 

 

14.5 SUMMARY 

 

1. If ∫ f(𝑥)d𝑥
∞

a
 is convergent at ∞ and 𝑔(𝑥) is bounded and monotonic 

for 𝑥 ≥ 𝑎, then ∫ f(𝑥)𝑔(𝑥)d𝑥
∞

a
 is convergent at ∞. (This is Abel’s Test). 

2. If ∫ f(𝑥)d𝑥
t

a
 is bounded for all 𝑡 ≥ 𝑎 and 𝑔(𝑥) is a bounded and 

monotonic function for 𝑥 ≥ 𝑎, tending to 0 as 𝑥 ⟶ ∞, then  

∫ f(𝑥)g(𝑥)d𝑥
∞

a
 is convergent at ∞. (This is Dirichlet’s Test). 

 

14.6 GLOSSARY  
 

Proper integral  

Improper integral  
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14.9 TERMINAL AND MODEL QUESTIONS 
 

Q 1. Test the convergence of the integral ∫
cos 𝑥

√𝑥+𝑥2
 𝑑𝑥

∞

0
.    

Q 2. Define Abel’s Test with example. 

Q 3.  Examine for convergence of the integral ∫
log 𝑥 sin 𝑥

𝑥
 𝑑𝑥

∞

𝑒
.     

Q 4. Test the convergence of the integral ∫ (1 − 𝑒−𝑥).
𝑐𝑜𝑠𝑥

𝑥2  𝑑𝑥
∞

𝑎
 , 𝑎 > 0. 

Q 5. Define Dirichlet’s Test with example. 

 

14.10 ANSWERS 

TQ1. Convergent. 

TQ3. Convergent. 

TQ4. Convergent. 

CHECK YOUR PROGRESS 
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        CYQ 1. False 

        CYQ 2. True 

        CYQ 3. False 

        CYQ 4. True 

        CYQ 5. False 
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