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COURSE INFORMATION

The present self learning material “Calculus” has been designed
for B.Sc. (First Semester) learners of Uttarkhand Open University,
Haldwani. This self learning material is writing for increase learner
access to high-quality learning materials. This course is divided into 15
units of study. The whole course is divided into four blocks. The first
block is related basics of calculus, limit, continuity, differentiability
and mean value theorems. In second block explain about Successive
Differentiation, Expansion of a function, Indeterminate forms, Maxima
and Minima for one variable and Integrals. In third block contained the
Asymptotes, Double and Triple Integrals. The last block is related to
function of several variables. In this block the topics partial
differentiation, Expansion of function in two variables and Jacobian
are explained in simple manner. This material also used for
competitive examinations. The basic principles and theory have been
explained in a simple, concise and lucid manner. Adequate number of
illustrative examples and exercises have also been included to enable

the leaner’s to grasp the subject easily.
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BLOCK-I
SEQUENCES, CONTINUITY AND
DIFFERENTIABILITY
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UNIT-1:-REAL NUMBERS AND
SEQUENCE OF REAL NUMBERS

CONTENTS:-

1.1  Introduction
1.2  Objective
1.3 Basics of Calculus
1.3.1 Sets
1.3.2 Interval
1.3.3 Ordered Pairs
1.3.4 Relation
1.3.5 Function
1.3.6 Variable
1.4 Real Numbers
1.4.1 Properties of Real Numbers
1.4.2 Definition.
1.4.3Distance between two points
1.4.4 Absolute value.
1.4.5 Completeness Property of Real Number System:
1.4.6Archimedean Property
1.5  Sequence of Real Numbers
1.6 Examples
1.7  Summary
1.8  Glossary
1.9  References
1.10 Suggested reading
1.11 Terminal questions
1.12  Answers

1.1 INTRODUCTION:

This is a course on Calculus. Present unit will be help the
learners to learn the topic. We will be talking about the real line on
which we have the functions. We will be doing something with the
functions in this unit. Calculus is a branch of mathematics that studies
change. It focuses on limits, functions, derivatives, integrals and
infinite series. In this unit we are discussing mostly about basics of
sequence and series. The sequence and series are depends on Set. In
this unit we are also defined the set, relation, function.
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1.2 OBJECTIVES:

The objective of this topic is to at the end of this topic learner
will be able to:
I. Explain the Sets, interval, relation and function
ii. Describe the real number system and its properties.
iii. Memorize the basic concepts of sequence and properties

1.3 BASICS OF CALCULUS:

The concept of set theory and function theory is an important
part of calculus. After that the topic of differentiation and integration
defined by the mathematicians. Some concepts, like continuity,
exponents, are the foundation of advanced calculus.

1.3.1 SETS:

Any well-defined collection of objects or numbers are referred
to as a set. The number, letter or any other object contained in a set are
called elements of the set. The sets are denoted by capital letters e.g.
X,Y,Zor . The elements are denoted by lower case letters a, b, c, ...., X,
Yy, z. To indicate that ‘a’ is an element of the set X we use the notation
ae X . This read as “a is in X” or “a belongs to X”. For example

A={,35,7,11,1317,20}

1.3.2 INTERVAL.:

Anopen interval does not contain its endpoints, and is
indicated with parentheses. (a,b) =]a,b[= {xeR:a < x <
b}. A closed interval is an interval which contain all its limit points,
and is expressed with square brackets. [a, b] = [a,b] = {xeR:a < x <
b}. A half-open interval includes only one of its endpoints, and is
expressed by mixing the notations for open and closed
intervals. (a, b] =]a, b] = {xeR:a < x < b}.[a,b) = [a,b[=
{xeR:a < x < b}.

1.3.3 ORDERED PAIRS:

An ordered pair (a, b) is a set of two elements for which the
order of the elements is of significance. Thus (a,b) = (b,a) unless a =
b. In this respect (a, b) differs from the set {a, b}.Again
(a,b)=(c,d) < a=candb=d.If Xand Y are two sets, then the set of

Department of Mathematics
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all ordered pairs (X, y), such that xe Xand y eY is called Cartesian
product of X and Y. It is denoted by X xY .

1.3.4 RELATION:

A subset R of X xY is called relation of X on Y. It gives a
correspondence between the elements of X and Y. If (X, y) be an
element of R, then y is called image of x. A relation in which each
element of X has a single image is called a function.

If X = {1,2,3,4}and Y = {a, b, c}then,

XxY ={(1,a),(4,b),(c),(2,a),(2,b),(2c), (3 a),(3Db),(30c),(4a)4Db)4c)}
R, ={(1a),(2,b),(3,¢),(4,b)}

R;is a relation as well as a function  while
R, ={(1a),(2,b),(2,c), (3,c)}is a relation but not a function (since 2
has two images).

1.3.5 FUNCTION(MAPPING):

The equation y = x? gives a rule which determines for each
number x, a corresponding number y. The set of all such pairs of
numbers (x, y) determines a function.

Definition. Let X and Y are two sets and suppose that to each element x
of X corresponds, by some rule, a single element y of Y. Then the set of
all ordered pairs (x, y) is called function. The set X is called the domain
of the function. The element y, which corresponds to the element x is
called the value of function at x. It is denoted by f (), read as “f of x”.
The set of all the values of the function is called the range of the
function. The term mapping is also used for a function and we say that
the set X maps into the set Y under the mapping f. We write as
f :X —Y and read as “ the function f which maps X into Y ”’. We shall

also use the notation f :y = f (x) to denote “the function f defined by

the rule y = f (x)”. Basically function is a rule which binds one set X to
another set Y.The rule is that for all elements of X their should be
unique image in Y.

1.3.6 VARIABLE:

A symbol such as x or y, used to represent an arbitrary element
of a set is called a variable. For example y = f (x).The symbol x which
represents an element in the domain is called the independent variable,
and the symbol y which represent the element corresponding to X is
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called the dependent variable. This is based on the fact that value of x
can be arbitrary chosen, then y has a value which depends upon the
chosen value of x.

1.4 REAL NUMBERS:

Numbers initiate with Natural Numbers. The natural numbers
are the standard numbers, 1, 2, 3,.. . with which humans count. Natural
numbers were discovered by Pythagoras (582-500 BC) and
Archimedes (287-212 BC) (both are Greek philosophers and
mathematicians). After Natural Number the integer was introduced in
the year 1563 when Arbermouth Holst was busy with his bunnies and
elephants experiment. He stored count of the amount of bunnies in the
cage and after 6 months he saw that the amount of bunnies increased.
Then he concludes the addition and multiplication of a number system
then rational number is defined. In arithmetic, a number that can be
considered as the quotient p/q of two integers such that ¢ # 0. In
addition to all the fractions, the set of rational numbers added all the
integers, each of which can be written as a quotient with the integer as
the numerator and 1 as the denominator. Rational numbers were
discovered in the sixth century BCE by Pythagoras. Later this
Irrational numbers are the numbers that cannot be considered as a
simple fraction. It cannot be considered in the form of a ratio, such as
p/q, where p and q are integers, q#0. It is a contradiction of rational
numbers. The Greek mathematician Hippasus of Metapontum is the
person who invented irrational numbers in the 5th century B.C.,
according to an article  from the  University  of
Cambridge. Subsequently real number introduced in the 16th
century, Simon Stevin designed the basis for modern decimal notation,
and asserted that there is no difference between rational and irrational
numbers in this regard.

Richard Dedekind
(6 October 1831 — 12 February 1916)
Fig 1.4.1
Ref:https://en.wikipedia.org/wiki/Richard Dedekind#/media/Fi

le:Richard Dedekind 1900s.jpg
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In the 17th century, Descartes invented the term "real” to
describe roots of a polynomial, distinguishing them from "imaginary"
ones. Mathematician Richard Dedekind quarried these problems 159
years ago at ETH Zurich, and became the first person to characterize
the real numbers. Bob sinclar defined the whole numbers in 1968.
Whole Numbers is the subset of the number system that includes of all
positive integers contained zero. In mathematics, areal number is a
value of a continuous amount that can act for a distance along a line (or
alternatively, a number that can be summarised as an infinite decimal
expansion. The set of real numbers is expressed using the
symbol R or R. Real numbers can be consider of as points on an
infinitely long line called the number line or real line, where the points
interrelated to integers are equally spaced. Any real number can be
resolved by a possibly infinite decimal representation. We can write
the set of real numbers in the form of rational and irrational number
as, R=QuUQ.

T T " 7T 17 " 7T 1 T "I
3 -2 -1 0 1| 2 |3

Fig 1.4.2
Ref: https://en.wikipedia.org/wiki/Real number

The above points show that real numbers incorporate natural
numbers, whole numbers, integers, rational numbers, and irrational
numbers. v/2, e, are irrational numbers.

1.41 PROPERTIES OF REAL NUMBERS:

The main properties of real numbers are as follows:

i.  Closure Property: Ifa, beR,a + beR and abeR. It shows
that sum and product of two real numbers is always a real
number.

ii.  Associative Property: Ifa,b,ceR,a+ (b+c)=(a+b)+c
and a X (b X c¢) = (a x b) X c. It follows that sum or product
of any three real numbers remains the same even when the
grouping of numbers is changed.

iii.  Commutative Property: Ifa,beR,a+b=b+a and a X
b = b X a. It means that the sum and the product of two real
numbers remain the same even after interchanging the order of
the numbers
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iv.  Distributive Property: Real numbers satisfy the distributive
property. Ifa, b, ceR.
e ax(b+c)=(axb)+ (axc)is the distributive
property of multiplication over addition.
e ax(b—c)=(axb)—(axc)is the distributive
property of multiplication over subtraction.

N >zZ)Q) R

https://en.wikipedia.org/wiki/Real number#/media/File:Number-
systems.svg

1.4.2 DEFINITION:

If a and b are real numbers, we say that

0] a > b if a — b is a positive number,

(i)  a < bifa — b is a negative number.

A relation involving> or < is known as an inequality. The

following useful laws of inequalities can be easily obtained

from the definition.

0] If a > b, then b < a.

(i) Ifa>bandb > c,thena > c.

(iii)  If a>band c > d, then a+c > b + d. (addition of
inequalities).

(iv) Ifa>b,then a+c>b+c.

(V) If a > b and c is a positive number, ac > bc.

(vi) Ifa>band cisanegative number, ac < bc.

(vii) Ifa+c> b, then a > b-c (transposition of a term). A
particular case of transposition is:
If a > b,then —b > —a.
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1.4.3 DISTANCE BETWEEN TWO POINTS:

The distance between two points x and a on the real line is
denoted by |x — a|, and define as follows :

|x —al = x — aifx > q,

|x — al = x — aifx < a.
It is the numerical difference between the numbers x and a.

1.4.4 ABSOLUTE VALUE:

The absolute value|x| of a real number x is defined by
. |x|=xifx>0.
i.  |x|=—-xifx<O.
e In particular, (—oo, +00) denotes the set of all ordinary
real numbers.
|x] = 0.
|—x| = |x|.
[x| =max(x, —x).
—|x] =min(x, —x).
If x,y €R, then (i) |x|? =x2? =|—x|%(ii) |xy|=

IxI.1y] i) |§| = % provided y # 0.

Let A be a nonempty subset of R.

(1 The set is said to be bounded above if three exists a
number ueR such that s < u for all s € S. Each such
number u is called an upper bound of S.

(i)  The set is said to be bounded below if three exists a
number weR such that w < s for all s € S. Each such
number w is called an lower bound of S.

(i) A set is said to be bounded if it is both bounded above
and bounded below. A set is said to be unbounded if it
is not bounded.

(iv)  If A is bounded above, then a number w is said to be
supremum (or a least upper bound) of A if it satisfies
the conditions:

(a) u is an upper bound of 4, and
(b) If v is any upper bound of 4, then u < v.

(V) If A is bounded below, then a number w is said to be
infimum (or a greatest lower bound) of A if it satisfies
the conditions:

(c) w is an upper bound of 4, and
(d) If t is any upper bound of A4, then t < w.

Department of Mathematics
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e The least upper bound or the greatest lower bound may
not belong to the set A.1 is least upper bound of the sets

{x:O<x<1},{x:0SxS1}and{1—%:n€N}.

1.4.5 COMPLETENESS PROPERTY OF REAL
NUMBER SYSTEM:

e Every nonempty set of real numbers that has an
upper bound also has a supremum in R.

1.4.6 ARCHIMEDEAN PROPERTY::

If x,y € Rand x > 0, then there is a positive integer n such that nx >
y.

Proof : Let us assume that nx <y for every positive integer n .
Theny is an upper bound of the set S = {nx:n € N}. By the least
upper bound property, let ube a l.u.b. of A. Since n € N it implies
+1eN.So(n+1)x € S.Then (n+ 1)x < u for all n and so nx <
u—x <uforall nie u—xisalso an upper bound of set S which is
smaller than u. Since u be a l.u.b. of S. Then it is impossible u — x is
also an upper bound of set S . It contradicts the assumption nx <y . It
means that nx > y.

Another form
If x € R then there exists n € N such that x < n.

Proof: Consider that n < x for all n € N; therefore, x is an upper
bound of N. By the Completeness Property, the nonempty set
N has a supremum u € R. Subtracting 1 from u gives a number u — 1
which is smaller than the supremumu of N. Therefore u — 1 is not an
upper bound of N, so there exists m € N with u — 1 < m.Adding1
givesu <m+ 1, and since m + 1 € N, this inequality  Contradicts
the fact that u is an upper bound of N.

. |f5={%:neN},then infS = 0.
e |Ift > 0,there exists n € N such that 0 <%< t.

e Ify>0,thereexistsn € Nsuchthatn—1<y<n.

e Let A= {reQ:r > 0,r? < 2} this is a non-empty and
bounded subset ofQ. The set A does not have l.u.b. inQ.
This shows that Q does not have the least upper bound
property.

e If x,y € R and x <y then there exists peQ such that
x<p<y.
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Proof: By Archimedean property x,y € R, x > 0 then there exists €
Nnx>y, y—x>0Asx<y=y—x>0. Fory—x,1€ Rand
y —x > 0.Then there exists n € N,n(y —x) > 1,ny —nx > 1,ny >
1+ nx,
I o (5 A 7 (1.4.6.1)

Now we are searching such type of integer which is greater then nx
and smaller then ny.Let A = {m:meZ, nx < m}.Since any subset
ACZ,A+ @, A has lower bound then A is bounded below.For nx, 1 €
R and 1 > 0 by Archimedean property there exists nyeN such that
ny > nx = nx < ng it implies nyeN it implies nyeZ. Now nyeZ. and
nx < ng it implies nyeA. It shows that A + @. It impliesnx is a lower
bound of A.As A # @, A c Z and A has a lower bound it implies A has
a minimal element.Since we are taking A = {m: meZ, nx < m}. Say
m; €A is its minimal element m; —-1¢€Am; —1< nx
my; <l+nx.m; <ny,m; € A, my>nx , nx <my; < ny,x < % <y,lt

impliesthat x < P <y when P = % € Q.

1.5 SEQUENCE OF REAL NUMBERS:

A set of numbers ay,a,,as ... ... ....,ay,, ... ..... in a definite order of
occurrence is called a sequence. It is denoted briefly by {a,}. A
sequence is really a function of the natural number n, written down in
the natural order.A sequence {a,} is said to be bounded above if
{a,} < a for every n,Where a is some fixed number. Similarly A
sequence {a,} is said to be bounded below if {a,} = bfor every n,
where b is a fixed number.A sequence which is bounded both above
and below is called a bounded sequence.For such a sequencea <
{a,} < b for every n, where a and b are fixed numbers.We can easily
rewrite this relation as |s,,| < c for every n, where c is a fixed positive
number.A sequence {a,} is said to be monotonically increasing if
a, < a,,, for every n.A sequence {a,} is said to be monotonically
decreasing if a,, = a, 4 for every n.

e The sequence 1,

sequence, while
sequence.

) )

11 . . .
Sy 192 monotonically decreasing
2,3

1
2 - - - -
1,2,3,4 ...........is @ monotonically increasing

1.6 EXAMPLES:

Problem 1: Show that there is no rational number whose square is 2.
Solution. Let, if possible, there exist a rational number p/q, where
q # 0 and p, q are integers prime to each other (i.e. having no common
factor) whose square is equal to 2,
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ie, (p/q)?* =20rp?> =2q% . i (1.6.1)
Now g is an integer and so is 2q2. Thus, p? is an integer divisible by

2. As such p must be divisible by 2, for otherwise p? would not be
divisible by 2. Let p = 2m, where misan integer Then from (1.6.1),
2m? = ¢2 ..(1.6.2)

Thus, it follows that q is also dIVISIb|e by 2 Hence p and q are both

divisible by 2 which contradicts the hypothesis that p and g have no

common factor. Thus, there exists no rational number whose square is

2.

Problem 2:Show that /8 is not a rational number.

Solution. Let, if possible v/8 be the rational number p/q, where q # 0

and where p, q are positive integers prime to each other, so that
=p/q. But 2<+8<3,2< p/q<3=>2q<p<3qor0<

p—2q <q. Thus, p — 2q is a positive integer less than g, so that

V8(p —2q) or p/q(p—2q) is not an integer. But v8(p — 2q) =

p/q(p—2q) = pq—z— 2p it implies that Z—ﬁq — 2p = 8q — 2p, which

is an integer it shows that v/8(p —2q) is an integer. This is a
contradiction. Hence,+/8 is not a rational number.
Problem 3: Prove that the greatest member of a set, if it exists, is the
supremum (l.u.b) of the set.
Solution. Let G be the greatest member of the set S. Clearly x <
GVx € S. So that G is an upper bound of S. Again no number less than
G can be an upper bound of S, for if y be any number less than G, there
exists at least one member g of S which is greater than y. Thus,G is the
least of all the upper bound of S, i.e., G is the supremum of S.
Problem 4: For all real numbers x, y show that

i |x+yl <|x|+|y],and

i x4yl =|lxl = Iyl
Solution: i.|x + y|? = (x + ¥)? = x2 + y? + 2xy

< lxl? + [yl? + 2[x]. [y|[+ xy < |xy| = |x].|yl]

= (lx| + lyD>.
Since |x + y| and |x| + |y| are both non-negative, therefore taking
positive square roots on both sides, we have |x + y| < |x| + |y].
ii.]x —yl?=(x—-y)2=x%+y?—2xy

> x]|* + [yl? = 2|x|. |y|[+ —=(xy) = |xy| = —|x].|yl]

2
= (Ixl = lyD? = [Ix] = IyI|".
Since |x — y| and ||x| — |y|| are both non-negative, therefore taking
positive square roots on both sides, we have |x + y| > ||x| — |y||.

Problem 5: For real numbers x, a, € > 0 show that
a) |x|<Ee —-E<x<E,
b) x—a|l<Eoa-E<x<a+é.
Solution: a) |[x| =max (x,—x) < E ©x<EA—x<E
&S —E<K<x<E
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b)|x —al=max{(x —a),—(x —a)} <E
okx—a)<EAN—-(x—a)<E
ox<a+ EANa— E<Lx
Sa—-E&E<x<a+ €&

Problem 6: Show that a set S of real numbers is bounded if there

exists a real number G > 0 such that |x| < G, VS.

Solution. Suppose thatS is bounded, therefore it is bounded both above

and below. Let K be an upper bound and k, a lower bound for S. On

taking a real number G = max (|K|,|k| + 1), we have, K < |K| <G

and —k < |k| <|k|+1<G,i.e.,k>—G. This implies —G < k <

x <K <G,V xe€S.Hence |x| <G,VS.

Problem 7: Ifa, b € R such that a < b + &€ for each € > 0, then a <

b.

Solution. Suppose a > b. Thena — b > 0,so that a < b + (a — b)(by

taking € =a —b) and so a < a.This is a contradiction. Hence our

assumption a > b must be false. Therefore a < b.

Problem 8: Ifa,b € Rsuchthata < b + % foralln € N, then a < b.

Solution. Assume a < b +%, foralln e N, and a > b. Thena — b >
0 and by the Archimedean property, we have, ny(a — b) > 1, for some
ny € N.Thena > b + — contrary to our assumption.

Problem 9: If for any£ > 0,|b —al < E, then b = a.

Solution.We have for any€ > 0,b <a+ € and a — € < b.Sinceb <
a + & for any € > 0 this implies a < b. Hence b = a.

Problem 10: If a,b € R and a < c for each ¢ > b, thena < b.
Solution. Assume thata and b satisfy the hypothesis but not the
conclusion. Then a > b, and so there is a,c € R such that a > ¢ > b.
Now ¢ > b = a < c in contradiction to a > c.

CHECK YOUR PROGRESS

1: For what values of x is \/(2x + 3) a real number?

2: Find the union and intersection of sets A and B:

A = {x|x=rational number}

B = {x|x=irrational number}

3: A function f is defined by f(x) = x? — 3x + 4. Find the value of

the function at x = 1,2 and 3. Also find
f(x+h3_f(x) (h 7,: 0).
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1.7. SUMMARY:

In this unit we are explaining Sets, interval, relation and
function. In this unit our main focus is properties of real number
system. We are explaining Archimedean property and its proof in
simple form.

1.8. GLOSSARY:

i.  Set.

i.  Relation and Function.

iii.  Number System and its properties.
iv. Basics of sequence.

1.9. REFERENCES:

i.  Tom M. Apostol (1996). Mathematical Analysis (2nd edition),

Narosa Book Distributors Pvt Ltd-New Delhi.

ii. Gorakh Prasad (2016). Differential Calculus (19th edition).
PothishalaPvt. Ltd.

iii.  Walter Rudin. (2017). Principles of Mathematical Analysis (3rd
edition). McGraw Hill Education .

iv. R.G. Bartley and D.R. Sherbert (2000) Introduction of real
analysis, John Wiley and Sons (Asia) P. Ltd., Inc.

v.  Gilbert Strang (1991). Calculus. Wellesley-Cambridge Press.

1.10.SUGGESTED READINGS:

i.  Howard Anton, I. Bivens and Stephan Davis (2016). Calculus
(10th edition). Wiley India.

ii. George B. Thomas Jr, Ross L.Finney (1998), Calculus and
Analytical Geometry, Adison Wiley Publishing Company.

iii.  James Stewart (2012). Multivariable Calculus (7th edition).
Brooks/Cole. Cengage.

iv. S.C. Malik and SavitaArora (2021). Mathematical Analysis
(6th edition). New Age International Private Limited.

1.11. TERMINAL QUESTIONS:

a+b+|a—b|

TQLl.Ifa,b € R then show that max (a,b) =
(a b) _ a+b—|a-b|

2
TQ2. State and proof Archimedean property?.

and min
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TQS3. Prove that |x + y| = |x| + |yliffxy = 0.
TQA4.Prove that |x + y| < |x| + |yliffxy < 0.
TQ5.In a group of 60 people, 27 like cold drinks and 42 like hot drinks
and each person likes at least one of the two drinks. How many like
both coffee and tea?
TQ6.There are 35 learner in art class and 57 learners in dance class.
Find the number of learners who are either in art class or in dance
class?

e When two classes meet at different hours and 12 learners are

enrolled in both activities?
¢ When two classes meet at the same hour?

1.12. ANSWERS:

ANSWER OF CHEK YOUR PROGESS:
SCQl:(—g, oo).

SCQ2:(—00,00), Q.

SCQ3: 224;2x—3+h

ANSWER OF TERMINAL QUESTIONS:
TQ4:9
TQ5: (i) 80 (ii) 92.
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UNIT-2:- LIMIT AND CONTINUITY

CONTENTS:-

2.1  Introduction

2.2  Obijectives

2.3 Limit of a function

2.4 Algebra of limits

2.4.1 Right hand and left hand limits

2.4.2 Limits as x > +oo(—00)

2.4.3 Infinite limits

2.5  The four functional limits at a point

2.6  Continuity

2.6.1 Cauchy’s definition of continuity

2.6.2 Geometrical interpretation of continuity
2.6.3 Heine’s definition of continuity

2.6.4 Alternative definition of continuity of a function at a point
2.6.5 Polynomial function

2.6.6 Continuity from left and continuity from right
2.7 Discontinuity

2.7.1 Types of Discontinuity

2.7.2 Jump of a function at a point

2.8 Intermediate value theorem

2.9  Uniform Continuity

2.10 Summary

2.11 Glossary

2.12 References

2.13 Suggested readings

2.14 Terminal questions

2.15 Answers

2.1. INTRODUCTION

Grégoire de Saint-Vincent gave the first definition of limit
(terminus) of a geometric series.The modern definition of a limit goes
back to Bernard Bolzano who, in 1817, developed the basics of
the epsilon-delta technique to define continuous functions. However,
his work remained unknown to other mathematicians until thirty years
after his death. Augustin-Louis Cauchy in 1821, followed by Karl
Weierstrass, formalized the definition of the limit of a function which
became known as the (&, §)-definition of limit. The modern notation of
placing the arrow below the limit symbol is due to G. H. Hardy.
In mathematics, a continuous functionis a function such that
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a continuous variation (that is a change without jump) of
the argument induces a continuous variation of the value of the
function. This means that there are no abrupt changes in value, known
as discontinuities. More precisely, a function is continuous if
arbitrarily small changes in its value can be assured by restricting to
sufficiently small changes of its argument. In previous unit we have
discussed about basics of Calculus.Now in this unit we have explained
about limit and continuity.

2.2. OBJECTIVES

The objective of this topic is to at the end of this topic learner will
be able to:
i.  Explained the concept of limit of a function.
ii.  Describe the meaning of continuity and discontinuity.
iii.  Defined the Uniform Continuity.

2.3 LIMIT OF AFUNCTION

Definition. Let f be a function given by the rule y = f (x). Choose any
set of positive numbers h;, h,,h,,.....h .., which continuously

decreases i.e.,
h,>h, >h, >..>h >..>0.............. ()

and can be made as small as we want by taking n large enough. Then
the values f(a+h,), f(a+h,), f(a+h,),..,f@+h) ... (2)

of the function continuously approach a number A as h, gets smaller
and smaller. This number A is called the “Limit of f (x) at a” or “the
limit of f (x) as x — a”. We write Limit f (xX) = A. Here x — a is read

X—a

as “X tends to a”.In fact A is the limit on the right cinre e hqye
considered only the value of x greater than a i.e., on f
we consider the value of the function

f(a—h), f(a—h,), f(a—h;),.., f(a-h,),..

And find that they are continuously approach a nhumber B as hn
gets smaller and smaller, we call B the limit of f (x) on the left. When
A= B, we call A the limit of f (x) at a. The limits on the right and left
are respectively denoted by  Limit f (x)and Limit f (x).If the

numbers h;,h,,h,,.....h,....considered above from a sequence, having
the limit zero. Similarly the numbers
f(a+h), f(a+h,), f(a+h,),.., f(a+h)),... form another

sequence. It should be noted that for the limit to exist, f(a+h,)
should approach A for every sequence of type (1).
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ANOTHER DEFINITION OF LIMIT

A number | is said to be the limit of function f (x) at x=a if for
arbitrary &> 0,36 > 0 (positive real number) such that, whenever

0<|x—a|<s wehave |f(x)-l|<e
or we write Limit f (x) =1 if given £>0,36> 0 such that

X—a

|x—a|<s=|f(x)-I|<e.

2.4. ALGEBRA OF LIMITS

Theorem 1. If Limit f (x)=1=0then 3 a number k>O0and 6>0

such  that |f(x)|>kwhenever ~ O<|x-a|<&. Also then

Limitizl.
x>a f(x) |

Proof. Let g=%|l|then &> 0because | =0. Since Limit f (x)=1,

therefore given ¢> 0,36 > 0such that
| f(X)—1|< ewhenever0 <| X—a|< S, )
Now [1]=[1—f(x)+ F(x)| <[I-F()|+| F (|
<e&+| f(x)|whenever 0<|x—a|<& (from

1)

This implies that whenever 0 <|x—a|<&

|f(x)|>|||—g=|||—%|||=%|l|>0 .................. @

Taking %| I|=k > 0we get

| £(X)|> k whenever 0<|x—a|<&

Now to prove Limit = ! . We have
oa f(x) |

‘L_z‘_ll—uxn_ll—f(x»_|I—f<x>|
fO0 1) [LEe | Jfe)  [Nf
Now from the first part 3 k> 0and &, > 0such that whenever
0<|x-al<s,

Let ¢ >0be given. Since Limit f (x) =1, therefore given

& >0,36, > 0such that

Department of Mathematics
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| £(X)—1| <& whenever 0<|X—al<d,.cmiriiinriiianniens (5)

Let 6 =min{ o,,0,}then from (3), (4) and (5) we get

11 <i.g'.£=g—whenever O0<|x-a|<s
Fo0 N kK]l
If we take & =K.|I|.& > 0then we have
N g'k'|||<g whenever 0<|x—a|< &
f0 1] Kk
Hence Limit 1 =}.
oa f(x) |

Theorem 2. The limit of a sum is equal to the sum of limits.

Proof. Let Limit f (x)=1 and Limitg(x)=m.
To show that Limit [(f +g) (xX)]=1+m.

Let &> Obe given. Since Limit f (x) =1, therefore , 35, > Osuch that

|f(x)—||<%.gwhenever 0<|x—al|<s,

And Limit g (x) =m, therefore, 35, > 0such that

|g(x)—m|<%.gwhenever 0<|x-a|<é,
If we take & =min{ 5,,5,}, then for 0 <|x—a|< &both
0<|x—a|<d, and 0<|x—a|< &, holds. And so whenever
0<|x—a|< &then both |f(x)—||<%.g and |g(x)—m|<%.g are

true.
Now if O<|x—a|<5 then

(f +9) ()= +m)|=[(f ) =1) +(g (x) —m)|
<|(FO)=D)]+[(g () —m)|
1 1
<§.8+§.8:8
Thus |(f +9)(X)—(1+m)|<&whenever 0<|x—al<§.
Hence Limit [(f +g) ()] =1+m.

Similarly we can show that Limit [(f —g) (X)]=1-m.
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Theorem 3. The limit of product is equal to the product of limits.

Proof. Let Limit f(x)=1 and Limitg(x)=m. To show that

inTait [(fg) (x)]H:aI.m.

Now

|(fg) () = (1.m) |=[f (x).g () =1.m)|
= F(¥).9(x)=1.g() +1.g(x) ~1.m) |
<|F00.9()=1.g(x) [+[1.g(x) ~1.m)|
g FE) =+ gx) =m] e, @)

Since Limitg(x) =m, therefore g(x) is bounded in some deleted
neighbourhood of x =a. Hence 3 k>0and ¢, > 0Osuch that whenever
0<|x—a|<d then [g(x)|<k .

Now let &> 0be given. Since Limit f (x) =1, therefore , 35, > 0such
that

[f(x)-I |<%.gwhenever 0<|x-a|<d,.

And Limit g (x) =m, therefore, 35, > Osuch that

|g(x)—m|<%.gwhenever 0<|x-a|<d,

If we take & = min{ 5,,5,,6,}, then from (1) whenever 0 <|x—a|< &
we get
&

£ 2 &
(76) (0 = (m) <kl i <5+l 5
& &

<= +—=¢
2 2

Thus for £> 0 we have 6> 0such that
|(fg) (x) — (1.m) | < £ whenever 0<|x—a|<§.
Hence Limit [(fg) (x)] =Limit f(x).g (x) =l.m.

Similarly we can show that the limit of quotient is equal to the
quotient of the limits provided that the limit of denominator is not zero.

2.4.1. RIGHT HAND AND LEFT HAND LIMITS

A. A function f (x) is said to approach | as x—a from right if for
given & > Othere exists &> 0such that

|f(x)—1|<ewhenever a<x<a+s

Department of Mathematics
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It is written as Limit f (x)=lor f (a+0) =1.

x—a+0

“Put a+h for x in f (x), where h> 0 and very small and make h approach
zero” i.e., f (a+0) = Lhimoit f (a+h).

B. A function f (x) is said to approach | as x—a from left if for
given ¢ > Othere exists &> 0such that

| f(x)—1|<ewhenever a—5 <x<a
It is written as Limig f(x)=lor f(a—0)=1.“Put a - h for x in f (x),

where h> 0 and very small and make h approach zero” i.e.,
f(a-0)= Lrimoit f (a—nh).

Note.If both Right Hand Limit and Left Hand Limit of f (x) as x—a are
equal in value, their common value will be the limit of f (x) as x—a. If
either or both of these limits do not exist, then the limit of f (x) as x—a
does not exist. Even if both of these limit exists but are not equal in
value then also the limit of f (x) as x—a does not exist.

24.2. LIMITS AS X — + o (- )

A. A function f (x) is said to approach | as x — + oo, if for given
&> Othere exists &> 0such that

| f(x)—1|< ewhenever &5 < x
Then we write Limit f (x) =lor f (X) > lasx— .

B. A function f (x) is said to approach | as x — - oo, if for given
&> Othere exists &> 0such that

| f(x)—1|< ewhenever x< -5
Then we write Limit f (xX) =lor f (x) > lasx——oo.

2.4.3. INFINITE LIMITS

A function f (x) is said to approach + o or - o as X — a, if for given
&> Othere exists 6 > 0such that

f (X)>eor f (X)<—&whenever 0<|x—a|< .
Then in other words, Limit f (X) =coor Limit f (x) = —co.

llustrative examples
Example 1. Find Limoitw.
X—> X

Solution. Let f (x)= M X Here
X

- . ...sinh
f(0+0)= LJLth f(0+h)= LJLth f(h) = LhILnoltT
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h— h%,+ h%,— h%+....
= Limit ; ; i

h—0

h
i h2/ L ht/ he _
= Limit1-h7/ + A! A+...._1

And f(0-0) = Limit f (0 h) = Limit  (~h) = Limit " C")
h—0 h—0 h—0 h

_ Limit 3 ()

h—0 h

sin x
X

=1.

=1.Since f (0+0)= f(0-0)= 1 and hence Lhimoit

Example 2. Find Limit 22X

X—>o00 X
. sin X
Solution. Let f (x)= ——. Put x = 1/y so as x —o0, y— 0. Then
X

Limit 37X — Limit YY) it ysin | £
x—o X y—0 1/ y y—0 y

Let g(y)=ysin [EJ . Then, right hand limit is
y
g(0+0) = Lhimoit g(0+h)= Lhimoit g (h)
= Limit hsin (EJ
h—0 h
= 0 xfinite quantity which lies between -1 and
+1
=0
and the left hand limit is
g(0-0) = Lhimoit g(0-h)= Lhimoit g(=h)
(1
= Limit hsin (—j =0
h—0 h
Since g (0 +0) =g (0 - 0) = 0 therefore Limoit ysin [EJ =0and hence
y—> Yy

Limit =% _ 0.

X—> 0 X

X—>00 X

Example 3. Find Limit sin (lj
. . (1
Solution. Let f (x)=sin (;j Here

f(0+0)= thinolt f(0+h)= thgwolt f(h)= erino't sin (Ej
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As h — 0, the value of sin (%j oscillates between -1 and +1 passing

through zero. Hence there is no definite number | to which sin (%)

tends to as h — 0. Therefore right hand limit does not exist.Similarly
left hand limit f (O — 0) also does not exists.

Thus Limit sin (lj does not exist.
X

Example 4. Find Limit (L+x)%.
Solution. Let f(x) = Limit (L+x)* . Now right hand limit is
£(0+0) = Limit f (0+h) = Limit f (h) = Limit (L+h)
O W
.h? + h?

= Limit|1+=.h+
h—0 h 21 3!

= Limit 1+1+ l'(l_ h) + 1'(1_ h)(l_Zh)+...1
h—0 11 21 3!
1 1 1
=l+—+—-+—-+...0=¢
r 21 31

Similarly, the left hand limit is

f(0-0) = Limit f (0—h) = Limit f (~h) = Limit (L—hy' =

Thus both f (0 + 0) and f (0 — 0) exists and equal to e. Hence
Limit (1+x)" =e.

X—2
Example 5. Show that Limit | | does not exist.

X2 (x -2)

Solution. Let f(x) = L|m|t . Now right hand limit is

2+h-2|
f(2+0)= L|m|t f (2+h)=Limit ——
h—>0 (2+h-2)

= Limit ﬂ = Limit E =1

h—0 (h) h—0 h
and the left hand limit is

Department of Mathematics
Uttarakhand Open University Page 22

+ .



CALCULUS MT(N) 101

. _|2-h-2|
f(2—-0) = Limit f (2—h) = Limit ———
h—0 h—0 (2-h-2)

_=h . h
=Limit — =Limit —=-1
h—0 (_h) h—»0 — h

[x-2]
(x-2)

Since f (2+0) #f (2—-0). Hence Limzit does not exist.
Example 6. Find Limoit 1e%.
X—> X
. .1 v

Solution. Let f(x)= L|m0|t —e’*. Then

X— X
f(0+0) = Limit f (0+h) = Limit f (h) = Limit le}/h

h—0 h—0 h—»0 h
o1 Y
=00 (since ﬁ — ooand e’" —>owash->0)

_ Limit £ (0—h) = Limit f (=) = Limit - Lo
f(O—O)—LJLnOItf(O h)_LJLno'tf( h)_erLno't he

and
=Limit —
h—0 he h
= Limit ~1 =0
h—0 1 11 11
hil+ —+—=—+—-—+..0
h 21h? 3Ih®

Since f (0 +0) #f (0-0).

Hence Limit le%does not exist.

x=>0 X

2.16 THE FOUR FUNCTIONAL LIMITS AT A
POINT

Let a function f (x) be defined in (a, b). let ¢ € (a,b) and h> 0. We give
to
h a sequence of diminishing value <hp,> with Limith, = 0.

A. Consider the right hand neighbourhood (c, c+h) of the point c. let
M (hn) be supremum of f (x) in (c, c+h,) and m(h,) be the infimum
of f (x) in (c, c+hy), then

M(h)=>M(h)=>M(h)>.....
m(h) <m(h) <m(h) <.....
This means that the sequences <M(h,)> and <m(h,)> are

monotonically non-increasing and non-decreasing respectively.
Hence Limit M (h,)and Limit m(h,)exists. We write

nN—o0 n—oo
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f(c+0)=LimitM(h,) and f(c+0)=LimitM (h,)

These limits are respectively called the upper and lower limits of f (x)
at x = c on the right.

B. Next we consider the left hand neighbourhood (c-h, c) of the point
c. let M'(hy) be supremum of f (x) in (c, c+hy) and m'(hn) be the
infimum of f (x) in (c-hn, c). Arguing as above, we find that
Limit M (h )and Limitm (h,)exists and we write

f(c—0)=LimitM(h ) and f(c—0)= Limit M (h,)

These limits are called the upper and lower limits of f (x) at x =c on
the left respectively.

2.6. CONTINUITY

The intuitive concept of continuity is derived from geometrical
consideration. If the graph of the function y = f (x) is a continuous
curve, then it is to call the function continuous.

2.6.1. CAUCHY’S DEFINITION OF CONTINUITY.

A real valued function f (x) defined on an interval | is said to be
continuous at x = a e | if and only if for any arbitrarily chosen positive
number &, however small, we can find a corresponding number & >0
such that
| (x)— f(a)] <& whenever | x-a|< 4.
We say that f (x) is continuous if it is continuous at every x e I.

or

f (x) is continuous at x = a is given& > 0, we can find a & > 0 such
that

|x—a|<s=|f(x)-f(a) <e.

2.6.2. GEOMETRICAL INTERPRETATION OF
CONTINUITY.

The geometrical interpretation of the above definition is that,
corresponding to any pre-assigned positive number &,we can

determine an interval of width 26 about the point x = a such that for
any point x lying in the interval (a—o,a+ 9), f (x) is confirmed to lie
between f(a)—cand f(a)+¢.

Department of Mathematics
Uttarakhand Open University Page 24



CALCULUS MT(N) 101

Ay
fla)+€

2€

f@

fla)—€

v

0 a-6 x=a a+s

Fig 2.6.2.1

A. For a function f (x) to be a continuous at x = a, it is necessary that
Limit f (a) must exist.

B. |f(x)—f(a)|<g:>f(a)—g<f(x)<f(a)+g e, f (x) lies
between

f(a)—e fa)+e

and and |[x—-a|<sd=a-S<x<a+die, x

lies between a—o6 and a+6.
C. The function must be defined at the point of continuity.
D. The value of § depends upon the value of ¢ and a.

2.6.3. HEINE’S DEFINITION OF CONTINUITY

A function f (x) is said to be continuous at x = a, if and only if
every convergent sequence < X, >of real numbers such that

Limit x, =a, the sequence < f(x,)>converges to f (a) i.e, f is

n—oo

continuous at x = a if and only if Limitx, =a =Limit f(x )= f(a).

n—oo n

2.6.4. ALTERNATIVE DEFINITION OF
CONTINUITY OF A FUNCTION AT APOINT

A function f (x) defined on an interval | is said to be continuous
at x =a e | iff Limit f (x) exists, is finite and equal to f (a). Otherwise,

the function is discontinuous at x = a. Thus a function f (x) is said to be
continuous at x=a if f (a+ 0) =f (a + 0) =f (a). This is also the
working rule for testing the continuity of a function at a given point.
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2.6.5. POLYNOMIAL FUNCTION

Theorem. A polynomial function is always a continuous function.

Proof. If f(x)=a,+a, x+a,x*+...+a,Xx" is a polynomial of
degree n in X, then we are to show that f (x) is continuous for all x e R .
For this, letc € R, then
Limit f (x) =Limit [ao +a, X+a, X* +..+a, x”]
X—>C X—>C
=Limit a, +Limit a, x+Limit a, x* +....+Limit a, x"

X—>C X—>¢ X—>C x—>¢
=a,+a,c+a,c’ +..+a, c"
= f(c)

Since Ljincit f (x) = f(c), therefore f(x) is continuous at x = c.

Note. The polynomial function f (x) is always continuous at each
points of its domain.

2.6.6. CONTINUITY FROM LEFT AND CONTINUITY
FROM RIGHT

A function f(x) is said to be continuous from left at x = a if
Limit f (x) exists and equal to f (a) i.e., Lhimoit f(a—h)=f(a).

x—a—-0

Similarly, f(x) is said to be continuous from right at x = a if Limit f (x)

x—>a+0

exists and equal to f (a) i.e., Lhimoit f(a+h)="f(a)

and f(x) is continuous at x = a iff
Limjg f(x) =Limict) f(x)=1(a)

Limit f (a—h) = Limit f (a-+h) = f (2)

2.7. DISCONTINUITY

If a function is not continuous at a point, then it is said to be
discontinuous at that point and the point is called a point of

discontinuity of the function.e. g. The function f (x) =Ldoes not

exists at x = a so f (x) is not continuous at x = a.
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2.7.1. TYPES OF DISCONTINUITY

A. Removable discontinuity

A function f (x) is said to have a removable discontinuity at a point
x =aif Limit f(x)exist but is not equal to f (a) i.e., if

X—a

f(a—0)= f(a+0)= f(a) The function can be made continuous by
defining it in such a way that Limit f (x) = f (a).

B. Discontinuity of first kind (Ordinary discontinuity)

A function f (x) is said to have a discontinuity of the first kind or
ordinary discontinuity at x = a if f (a + 0) and f (a — 0) both exist but
not equal. The point x = a is said to be a point of discontinuity from the
left or right according as

f(a—0)= f(a)= f(a+0)orf(a—0)= f(a)= f(a+0).

C. Discontinuity of second kind

A function f (x) is said to have a discontinuity of the second kind at x =
aif none of the limits  f (a+0) and f (a —0) exist. The point x = a is
said to be a point of discontinuity of second kind from the left or right
according as f (a—0)or f (a + 0)does not exist.

D. Mixed discontinuity

A function f (x) is said to have a mixed discontinuity at x = a if it has a
discontinuity of second kind on one side of a and on the other side a
discontinuity of first kind or may be continuous.

E. Infinite discontinuity

A function f (x) is said to have an infinite discontinuity at x = a iff (a +
0)orf(a—0)is +wor-owi.e., if f (x) is discontinuous at x = a and f
(x) is unbounded in every neighbourhood of x = a.

2.7.2 JUMP OF A FUNCTION AT A POINT

If both f (a + 0) and f (a — 0) exists, then the jump in the function at x =
a is defined as the non-negative difference f(a—0)~f(a+0). A
function having a finite number of jumps in a given interval is called
piecewise continuous.
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Illustrative Examples
Example 1. Test the continuity of f (x) at x = 1 when

X +2 if x>1
f(x)=<2x+1 if x=1
3 if x<1

Solution. Here f (1) =2.1+1=3
f (1+0) :LhiToit f (L+h) :LhiToit (1+h)* +2
=Limit 1+h?+2h+2=3asl+h>1.
f (1-0) =LhiTOit f (L-h) =LhiTOit 1-h)*>+2
=Limit 1+h*-2h+2=3asl-h <1,
So f (@) =f@+0)="f(@-0).Hence f (x) is continuous at x = 1.

1
1-e %

Example 2. Discuss the continuity of the function f (X) =

when x # 0 and f (0) =0 for all values of x.
Solution. Test the continuity at x =0
f(0+0)= Lhimoit f(0+h)= Lhimoit f(h)
=Limit =1
h—0 1_6*%
f(0-0)= Lhimoit f(0-h)= Lhimoit f(—h)

thingt . e% 0
Thus we have f(0 + 0) #f (0 —0) =f (0). So f (x) is not continuous at x
= 0 and it is a discontinuity of first kind i.e., f (x) is continuous on the
left and has a discontinuity of first kind on right at x = 0.

Now test the continuity at x=a # 0

f (a+0) =Limit f (a+h) =Limit
( ) h—0 ( ) h—0 1—e_%+h

1
1-¢

f(a-0) :thTolt f(a—h) :thingt

1
1—e_%“h
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Thus we have f(a+ 0) =f (a— 0) =f (a). Hence f (x) is continuous at
every point except x = 0.

Example 3. Test the continuity of the function
.1 :
X sin — if x=0
f(x) = X
0 if x=0
Solution. Here
f(0+0) =Lhim0it f (0+h) =Lhim0it f(h), h>0

=Limit h sin%:O

h—0

f(0-0) =Lhim0it f (0-h) =Lhim0it f(-h),h>0
I : 1 - .1
=Limit (—h)sin [— —]: Limit hsin—=0
h—0 h h—0 h

Thus we have f(0 + 0) =f (0 —0) = (0). Hence f (x) is continuous at x
=0.

Note. 1. If we check the continuity at x = ¢ # 0 of the above function,
then we see that

Limit f (x) =Limit X sin 1
X

:csinl:f(c)
c

So f (x) is continuous at x = ¢. Thus f (x) is continuous for all xeRi.e.,
f (x) is continuous on the whole real line.

Note 2. If we take f (0) = 2, in the above function, then f(0 + 0) =f (0 -
0) # f (0). The function becomes discontinuities at x = 0 and has a
removable discontinuity at x= 0.

Example 4. If a function f (x) is defined by f(x) :x—[x], where X is a

positive variable and [x] denotes the integral part of x. Show that it is
discontinuous for integral values of x and continuous for all others.
Draw the graph.

Solution. From the definition of the function f (x) we have
Xx—(n-1) forn-1<x<n
f(x)=<0 forx=n
X—n forn<x<n+1 where n is an integer

First we test the continuity of f (x) at x = n. We have f (n) = 0.
f(n+0)= Lhimoit f(n+h)= Lhimoit (n+h)—n
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= Lhimoit h=0 [asn<n+h<n+l]

f(n-0)= Lhimoit f(n-h)= |_him0it (n—h) —n-1
= Lhimoit 1-h=1 [asn-1<n-h<n]

Since f (n—0) #f (n + 0), so the function f (x) is discontinuous at x = n.
Thus f (x) is discontinuous for all integral values of x. it is obviously
continuous for all other values of x. Since X is a positive variable
putting = 1, 2, 3, 4, 5, ....,we see that graph of the function consists of
the following straight lines.

when O < x <1
when x =1
whenl< X < 2

|
=

y £ (%) when X =2
= = <

|
N

when 2 < x < 3
when x =3
when 3 < x < 4

O X O X O X O X
|
w

when x =5

and so on.

Fig. 2.7.2.1

It is clear from the graph that

(1) The function is discontinuous for all integral values of x but
continuous for other values of x.

(2) The function is bounded between 0 and 1 in every domain
which includes an integer.

(3) The lower bound 0 is attained but upper bound 1 is not attained
since f (x) # 1 for any value of x.
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Example 5. Show that the function f (x) = [X] + [-X] has a removable
discontinuity for integral values of x.

Solution. We see that f (x) = 0 when x is an integer and f (x) = -1 when

X IS not an integer. Hence if n is an integer then
f(n-0)=f(n+0)=-1andf(n)=0.

So the function f (x) has a removable discontinuity at x = n, where n is

an integer.

Example 6. Show that the function f (x) defined on R by
1 whenx is rational
f(x)= e
-1 whenx is irrational
is discontinuous at every point of R.

Solution. Let us suppose first that x is rational. Then f (x) = 1. For each
positive integer n, let x, be an irrational number such that |x— x| < 1/n.
Then the sequence <x,> converges to x. Now by the definition f (x,) =1
for all n. So Lnimit f(x,)=—1= f(x)Hence f(x) is discontinuous at

each rational point. Now suppose that x is an irrational number then f
(x) = - 1. For each positive integer n, let x» be an rational number such
that |[xn— X| < 1/ n, then the sequence <x»> converges to x. Now by the
definition f (xn) = -1 for all n, so that Lnimit f(x,) =1 f (x) Hence f(x)

is discontinuous at each irrational point. Therefore f (x) is
discontinuous at every point of R.

X
Example 7. Prove that the function f(x)= % for x #0 and f (0) =0,

is continuous at all the points except x = 0.
Solution. If x> 0 then, f (x) =~ =1and if x< O then, f(x) = —> =—1.
X X

Therefore the given function can define as:

-1, if x<0
f(x)=40, if x=0
1, if x>0

If x< 0, then f (x) = -1 i.e., f (X) is a constant function and a constant
function is always continuous at each point of its domain. This implies
that f (x) is continuous for all x< 0. Similarly, we can show that f (X) is
continuous for all x> 0. Now we see the continuity at x = 0.

f(0+0)= LhiLngt f (0+h) =LhiT0it f(h), h>0

=Limit 1=1
f (0-0) =Limit f (0—h) =Limit f(-h), h >0
= Limit —-1=-1

h—0
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Here f (0+0)# f (0-0)# f (0).
Hence f (x) is not continuous at x = 0.

Example 8. Show that the function ¢ defined as

0 for x=0
1—x for0<x<l
2 2
1 1
X) == forx==
P(x) 5 5
§—x for1< x<1
2
1 forx=1

has three points of discontinuity which you are required to find. Also
draw the graph of the function.

Solution. Here the domain of the function #(x) is a closed interval [0,
1]. When 0< x<%, #(X) =%—x, which is a polynomial of degree

one in x. we know that a polynomial function is continuous at each
point of its domain and so ¢(x) is continuous at each point of the open

interval (O, %j Again When% <x<1, ¢(x) :g—x, which is also a
polynomial in x and so ¢(x) is continuous at each point of the open

interval (% 1). Now we will test the continuity of the function ¢(x)

at the points x=0, % 1,
(a) At x=0 We have ¢(0) =0 and
$(0+0)= Lhimoit¢(0+h) = Lhimoit ¢(h),h>0

=Limit l—hzl
h-»0 2 2

Since ¢(0) #¢(0+0), so the function ¢(x) is discontinuous at x = 0
and the discontinuity is ordinary.

(b) At x= lWe have ¢(£j _1 and
2 2) 2

¢(1+Oj=Limit¢(l+hj=Limit E_(£+h) h>0
2 h—0 2 h—»0 2 2

—Limit 1-h=1% ¢(1j
h—0 2
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1 . 1 .01 (1
¢(E—OJ —thinolt¢[5—hj _LhITOIt E—(E—h), h>0
:Lhimoith:O;tqﬁ(%J
Since ¢6+0)¢¢[%—0)¢¢(%), so the function ¢(x) is

discontinuous at x= %and #(x) is discontinuous from left as well as

from right.
(c) At x=1.We have ¢(1)=1 and

i .3
¢(1—0):Lh|T0|t¢(1—h):thingt E—(l—h), h>0

o1 1
=Limit —+h===¢(1
imit >+ 2¢¢()

h—0

0(0,0)

Fig. 2.7.2.1

Since #(1-0) = ¢(1), so the function ¢(x) is discontinuous at
x=1and the discontinuity is ordinary. Hence the function ¢(x) has

three points of discontinuity at x=0, % 1. The graph of the function
consist of the point (0, 0); the line yzg— xfor(O,%j, the point

(%%J ; and the line segment y:g— x for (%,1jand the point(1, 1).
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Example 9. Discuss the discontinuity of the function defined by

x?, if x<-2
f(x)=44, if—-2<x<2
X2, ifx>2

Solution. Here we shall check the continuity for f (x) at x =-2 and x =
2.
At x =-2:

We have f (-2) = 4.
f(-2+0)= Lhimoit f(-2+h) = Lhimoit 4,h>0

=4

f(-2-0)= Lhimoit f(-2-h)= Lhimoit (-2-h)*>,h>0
=4

Hence f (x) is continuous at x = -2.

Atx = 2:

We have f (2) = 4.
f(2+0) =Lhimoit f(2+h) =Lhimoit (2+h)*, h>0
=4
f(2-0) =Lhim0it f(2-h) =Lhim0it 4,h>0
=4
Hence f (x) is continuous atx = 2.

Example 9. Let y = E (x) denotes the integral parts of x. Prove that the
function is discontinuous where x has an integral value. Also draw the
graph.

Solution. From the definition of E (x) we have

n-1, forn-1<x<n
E(xX)=+n, forn<x<n+1
n+1, forn+l<x<n+2
and so on where n is an integer.We consider X = n,

E(n)=n, E(n-0)=n-1, E(M+0)=n
Since E(n+0)=E(n—0). Hence the function E (x) is discontinuous at
X = n, where x has an integral value.

Evidently it is continuous for all other values of x. To draw the graph,
weputn=....-4,-3,-2,-1,0,1,2,3,4,....
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Fig.2.7.2.2
-4 when —4 < x<-3
-3 when -3 < x<-2
-2 when -2 < x <-1
-1 when —1< x <0
y=E(X) = when 0 < x <1

0

1 whenl1l< x <2

2 when 2 < x <3

3 when 3 < x <4

4 when 4 < x <5 and so on

Example
09. Discuss the kind of discontinuity, if any, of the function
M i k0
f)=< x '
2, if x=0

Solution. The function is continuous at all points except possible at the
origin. Now at x =0,

f (0+0) =Limit f (0-+h) =Limit f (), h >0

_h=]n|
=Limit ——=0
h

h—0

f (0-0) =Limit f (0~h) =Limit f(h), h>0

_—h-|-h

=Limit ——— =2
h—0 h

Also f (0)=2. Sof(0-0)=f(0)= f(0+0). Hence the given

function f (x) is discontinuous at x = 0 and this is discontinuity of first
kind.
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2.8. INTERMEDIATE VALUE THEOREM

Statement. Let f (X) be a function, continuous on the closed and
bounded interval [a, b]. If k be any real number between f (a) and f (b)
i.e., (f (a)<k<f (b)), then Ja real number ¢ between a and bi.e., (a<c<b)
such that f(c) = k.

Proof. Let us suppose that

f (a)<k<f (D)..ccvrvrernne (1)
Define a function g (x) such that
g()=T0)-ki vxelabl .. )
Now since f (x) is continuous on [a, b] and k is constant, so
g (x) is also continuous on [a, b].......cccccoerinrnne. (3)

A

Ty

f(b)
fle) =k

0 a c b

Fig 2.8.1

Now from (1) and (2), we have

g(@)="f(a)-k<0
g(b):f(b)_k>0:g(a).g(b)<0 ......................................... (4)

Now from (3) and (4) Ja real number c between a and bi.e., (a<c<b)
such that g (c) = 0.

=g(c)="f(c)-k=0

= f (c)=k
Hence there exists a point ce(a,b) such that f (c)=Kk.

Note. The converse of the above theorem is not necessarily true. For
example, Let f (x) be a function defined by

.1 ]
sin = if x£0
f(x)= X

0 if x=0
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Then, in the interval {— E,E} this function takes all values between
T T

f(— Ej and f[gj i.e., between -1 and +1. But this function is not
T T

continuous in {— g,g} as it is discontinuous at x = 0.
T T

2.9. UNIFORM CONTINUITY

Definition.A real valued function f (x) defined on an interval | is said
to be uniformly
continuous in I, if for each & >0 Ja positive number § >0 (depending

upon ¢ but independent of xe ) such that
| f(x,)— f(x,)] <& whenever | x, —X, | < S where X, X, €l.

Theorem. If a function f (x) is uniformly continuous on an interval [a,
b] =1, then it is continuous on I.

Proof. Let us suppose that f (x) is uniformly continuous on I then for
giveng >0 3a positive number & >0 (depending upone but

independent of xe ) such that
| f(x,)— f(x,)] <& whenever | x, —x, | < Swhere x;,x, €l.
Let x, €l,X, =xel then we have
| (x) - f(x,)| <& whenever | x—x,|<&
=f (x) is continuous at x, €1 .
Since x, is arbitrary, consequently f (x) is continuous on |.

Note. The converse of the above theorem is not true, can be seen in the
given example.

Example 1. Let f:R—Rgiven by f(x)=x*VxeRwhich is
continuous vV xeR. Now we will show that f (x) is not uniformly
continuous.

Solution.Let & >0be given. The function f (x) will be uniformly
continuous if we find ¢ > 0 such that
X, % €R, [ X =X, <8 =|f(x)—f(x,)<¢

The function f (x) will not be uniformly continuous on R if we find
some ¢ >0 for which no & works. So here we shall show that for some

given & >0 there exists no 6 > 0 which satisfy (1).
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By the axioms of Archimedes for any ¢ >0 there exists a positive
integer n such that

2
no: >¢ (2)

If we take X, =n¢ and x2:n5+éthen
o
|xl—x2|=5<5

But [ f(x,) — f(x,)| =‘xl2 —xzz‘ =[%, = X,|[%, + X,

5 S 52
=212n6+2 |=ns?+2 >¢ oy (2
2( +2j 2 ¢ [by (2)]

Hence for those two points x,, X, € Rwe always have
| f (%) — f(x,)|>&whenever 5> 0.
This contradicts (1). Hence f (x) is not uniformly continuous on R.

Example 2. Show that the function f(x)=x*+3x Vxe[-11]is
uniformly continuous in[-1,1].

Solution. Let ¢ >0be given. Let x;, X, €[-1,1] then

X +3% — X, +3X,

|f(X1)_ f(X2)|=

= ‘xlz +3X, - X, —3X2‘

=‘X12 _Xz2 +3(X, — X,)
=](%, = %,) + (X, + X, +3)|
<[x, = X, |[x, + X, +3

< 5%, — X, |

[Since x,, X, e[-11] = || <1,|x,| <1]

=[F(x)— f (%) <gf0r|x1—x2|<§.
Thus for any &£>03 5=§ >0such that = |f(x)—f(x,)|<e
Whenever|x1—x2|< 0 V xe[-11]. Hence f (x) is uniformly continuous

in[-1,1].

Example 3. Show that the function f(x) = x® ¥ xe[-2,2]is uniformly
continuous in[-2,2] .
Solution.Let £ >0be given. Let x,, X, €[-2,2] then
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[£00) = 0] =[x* =%,
= ‘(xl —X,) + (X, X, + xlxz)‘
<|x, - x2|‘xl2 +X, + xlxz‘
s|xl—x2|“ x12‘+‘ x22‘+| x1x2|]
<12[x, = X, |
[Since x,, X, €[-2,2] = |x,| < 2,|x,| < 2]

= [ (%)~ f(%,)| <sfor|x, - x,|< %
Thus for any ¢ >0 3 5=% >0 such that

=|f(x,) - f(x,)| <& whenever|x, — x,|< & Vxe[-2,2].
Hence f (x) is uniformly continuous in[-2,2] .

2.10. SUMMARY

In this unit following definition of limit , continuity,
Type of discontinuity and regarding uniform continuity. These
concepts will be helpful for learner to understand the concept of

calculus.

1. A number | is said to be the limit of function f (x) at x= a if for
arbitrary &>0,36> 0(positive real number) such that,
whenever

0<|x—a|<SwehaveO<|x—a|<d
2. A function f (x) is said to be continuous at x = a is giveng >0,
we can find a 6 > 0 such that
|x—a|<s=|f(x)-f(a) <e.
3. A function f (x) is continuous at x = a iff
Limit 10 =Limit £ =12

Lhimoit f(a—h)= Lhimoit f(a+h)=f(a)

4. The polynomial function f (x) is always continuous at each points
of its domain.
5. The removable discontinuity at a point x = aexists if
f(a—0)= f(a+0) = f(a)
6. An Ordinary discontinuity at a point x = aexists if
f(a—0)= f(a)= f(a+0)orf(a—-0)= f(a)= f(a+0).
7. Discontinuity of the second kind at x = a, exists if f (a + 0) or f (a—
0) or both does not exist.
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8. A real valued function f (x) defined on an interval | is said to be
uniformly continuous inl if for each & >0 3Ja positive number

o > 0(depending upon ¢ but independent of xe|l ) such that
| f (%) — f(x,)| < ewhenever| x, —x, | < § where x;,x, €l.

2.11. GLOSSARY

i.  Sets-Well defined collection of objects
ii.  Continuous-sketch its curve on a graph without lifting your pen
even once.
iii.  Discontinuity-lack of continuity

CHECK YOUR PROGRESS

1. A polynomial function is always .....................
Limit& =2 -
2. 20X,
3. A function is said to have .........cc.ccoceer v iff(@a+0)=f(a—
0) #1 (a).
4. The value of f(a+0)~f(a—0)isknownas.................
5. Every uniformly continuous function is .....................
Limit SM3% g
20X . True/False
6.
o |x=3)
Limit——=1
x>0 X=3  True/False
7.
8 .Every continuous function in closed interval is bounded.
True\False
9. The function must be defined at the point of continuity.
True\False
10. If f (X) is uniformly continuous on closed interval I, then it is

continuous on |. True/False

2.12.REFERENCES:

i.  Tom M. Apostol (1996). Mathematical Analysis (2nd edition),
Narosa Book Distributors Pvt Ltd-New Delhi.
ii. Gorakh Prasad (2016). Differential Calculus (19th edition).
PothishalaPvt. Ltd.
iii.  Walter Rudin. (2017). Principles of Mathematical Analysis (3rd
edition). McGraw Hill Education .

Department of Mathematics
Uttarakhand Open University Page 40



https://www.toppr.com/guides/maths/application-of-integrals/area-under-simple-curves/
https://www.toppr.com/guides/quantitative-aptitude/data-interpretation/bar-graph/

CALCULUS MT(N) 101

iv. R.G. Bartley and D.R. Sherbert (2000) Introduction of real
analysis, John Wiley and Sons (Asia) P. Ltd., Inc.
v.  Gilbert Strang (1991). Calculus. Wellesley-Cambridge Press.

2.13. SUGGESTED READINGS:

i.  Howard Anton, I. Bivens and Stephan Davis (2016). Calculus
(10th edition). Wiley India.

ii. George B. Thomas Jr, Ross L.Finney (1998), Calculus and
Analytical Geometry, Adison Wiley Publishing Company.

iii. James Stewart (2012). Multivariable Calculus (7th edition).
Brooks/Cole. Cengage.

iv. S.C. Malik and SavitaArora (2021). Mathematical Analysis
(6th edition). New Age International Private Limited.

2.14. TERMINAL QUESTIONS

1. Test the continuity at x = 0 if

£ (0 = xlog x, x>0
0, x=0

2

2. Show that the function f (x) = -1 is continuous for all values of
x except x = 1.
3. Discuss the continuity of the following function at x = 0:
s!n 2x' <0
f (x) =4sin5x
0, x=0
4. Discuss the continuity of the following function
X+4, x<1
x*+3x+1,  1<x<2
f(x)=
2X% +X+1, 2<x<3
8x -2, X>3

5. Determine the constants a and b so that the following functions
are continuous everywhere.

X+ 4, x<1
) X% +3Xx+1, 1< x<2
i f(x)=

22 + X +1, 2 <x<3

8x -2, X>3
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1 X<3
il. f (x) =qax+bh, 3<x<5
7, X=5
Limit 21X
6. The value ofthe *2° X s
@1 (b) 0 (c) oo
(d) does not exist.
sin 5x 0
7. The value of k for which f (x) =4 3kx ' is continuous at
0, x=0
x=0
(@ 1/3 (b) 3/5 (©0 (d) 5/3
Limit sin 1
8. 0 Xis
@ 1(b)0o (c) © (d) does not exists

9.A function f (X) is said to be continuous at x = a if
Limit f (x) _

(@) *—2 exists (b) f(a) exists

(c) Limit f (x)= f(a) (d) None of these

10. The function F () =I is

(a) Continuous for all x(b)Discontinuous at x = 0 only
(c) Continuous at x = 0 only (d) None
of these

2.15. ANSWERS

CHECK YOUR PROGRESS

SCQ1:Continuous

SCQ2:log, a
SCQ3:Removable discontinuity
SCQ4: Jump
SCQ5:Continuous

SCQ6:F

SCQ7:F

SCQ8:T

SCQ9:T

SCQ10:T
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TERMINAL QUESTIONS

(TQ-1) Continuous at x =0
(TQ-3)Removable Discontinuity at x =0
(TQ-4) Continuousatx=1, 2,3

(TQ-5) ()a=2,b=1 (ii)a=3,b=-8
(TQ-6)(a)

(TQ-7)(d)

(TQ-8)(c)

(TQ-9)(c)

(TQ-10)(a)
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UNIT-3:-DIFFERENTIABILITY

CONTENTS:-

3.1 Introduction

3.2  Objectives

3.3  Derivative at a point

3.4 Progressive and Regressive derivatives
3.5 Differentiability in an interval
3.6 Algebra of derivatives

3.7 The chain rule of Differentiablity
3.8  Derivative of inverse function
3.9 Darboux theorem

3.10 Summary

3.11 Glossary

3.12 References

3.13 Suggested readings

3.14 Terminal questions

3.15 Answers

3.1 INTRODUCTION

We observe several phenomena where changes are taking
place. The motion of the planet around the Sun, the speed of a car and
temperature at a fixed point of a place are some examples. Some
question arises here:

i.  The speed at which it is move at any time.
ii.  Instantaneous direction.
iii.  The position of planet relative to the Sun after some time.

The answer of such questions is responsible for the origin and
development of the derivative. Sir Issac Newton and G.W. Leibniz get
the credit of development of differentiability.

A function is differentiable at a point when there's a defined
derivative at that point. The meaning is that the slope of the tangent line
of the points from the left is approaching the same value as the slope of
the tangent of the points from the right.
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Sir Issac Newton G.W. Leibniz
(25 December 1642 —20 March 1726/27) (1 July 1646— 14 November 1716)

Ref:https://www.neh.gov/human Ref: https://iep.utm.edu/leib-met/
ities/2011/januaryfebruary/featur

e/newton-the-last-magician

Fig 3.1

3.2 OBJECTIVES

After completion of this unit the learner will be able to
i.  The meaning of term ‘Derivative at a point’.
ii.  Differentiability in an interval.
iii.  Algebra of derivatives.
iv.  Darboux Theorem.

3.3. DERIVATIVE AT A POINT

A function f: (a, b) — R is said to be differentiable or derivable at ¢ €
(a,b) if and only if
- fle+m—fl@. . fl)—f(0)
lim i.e. lim————=
h—=0 x-c X —cC
exists (finitely).

This limit, known as the derivative of f(x) at x=c, is denoted by f'(c)
or Df(c) or [:—xf(x)] . The process of evaluating f'(c) is called
c

xX=

differentiation.
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3.4. PROGRESSIVE AND REGRESSIVE
DERIVATIVES:-

The progressive derivative (or the Right hand derivative) of f(x) at x =
c isdenoted by Rf'(c) or f'(c + 0) and is defined as

Rf'(c)=f'(c+0)= ii_%lf(“' h})l G >0
The regressive derivative (or Left hand derivative) of f(x) at
x = c is denoted by Lf'(c) or f'(c — 0)and is defined as
, , —h) —
Lf(c)=f(c—0)=£irr01f(c )=/ © s

—h
Note:-f'(c) exists if and only if
(1) Lf'(c) and Rf'(c) both exists and
(i) Lf'(c) = Rf'(c)

Examples 1.The function f defined by

_ 0, x is rational
fl) = { X, x is irrational
is continuous only at x = 0 and not differentiable at any point because
: f) =) f)
f)= o =
So that f'(h) =0 if h is rational and f'(h) =1 if h is irrational.
Therefore ;Linéf '(x) does not exists.

Examples 2.The function f(x) defined by f(x) = |x| is continuous for
all x e R and differentiable for all x € R except x =0. For
differentiability at x = 0 we see that
, (h) — f(0) Al

oy =THTO 1
so f'(h)=1ifh>0and f'(h) =—1if h<0. Therefore Rf'(0) =1
and Lf'(0) = —1 so f'(0) does not exists, for x > 0, f'(x) = 1 and for
x <0, f(x)=1.

Note:- If f(x) = ag+ arx +axx®+ ____  +a,x" is a polynomial
in x of degree n, then f(x) is differentiable at every point x € R.

3.5. DIFFERENTIABILITY IN AN INTERVAL.:-

(i) Open interval (a,b) :- A function f:(a,b) = R is said to be
differentiable in (a, b) iff it is differentiable at every point of (a, b).
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(i)  Closed interval [a,b] :- A function f:[a, b] — R is said to be
differentiable in [a,b] iff Rf (a), Lf (b) exists and f is differentiable in
(a,b).

Alternative definition of differentiability:-
Let f(x) be a function defined on a interval I and let ¢ be an interior
point of I.Then by the definition of derivative, assuming that f'(c)
exists we have

f (x ) f (c)

file)=
i.e. f'(c) exists if for given €> 0 36 > 0 such that
LDZFE _ ¢ (c)| <€ whenever 0 < |x —c| < &

x—c
F)—f(c)
x—c

orx € (c—86,c+6)> f(c)—€< < f'(c)+€

Geometrical Meaning of Derivative:-

Let we take two neighbouring point P[a, f(a)] and Q[a +
h, f(a + h)] on the curve y = f(x). Let the chord PQ and the tangent
at P meet the x-axis at L and T respectively. Let 2QLX = « and
2PTX = ¢@.Draw PN and QM L1 to x-axisand PH L QM.

Q(aA h,f(a+h))

fla+h) - f@
>

a, a
(a,f(a) »
0 L N M g
Fig. 3.5.1

Then PH = NM = OM-ON = a + h-a = h
QH = MQ — MH = MQ — PN = f(a+ h) — f(a)
QH _ fla+h)~f(a)

tana = = = 0]

As h — 0, the point Q moving along the curve approaches to P and
chord PQ — Tangent at P, i.e. TP and — ¢. Taking 2 — 0 in (i) we get
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tang = f'(a)
Hence that derivative of f(x) at a point ‘a’ is the tangent of the angle
which the tangent line to the curve y = f(x) at the point x = a makes
with x-axis.

Meaning of the sign of derivatives :-
Let f'(c) > 0 where c is an interior point of the domain
of the function ;then

X—)C

If €> 0 be any number < f'(c),36 > 0 s.t.
x—cl<§= |29 fo)| <€ (i)

iexe(c—68c+8),x+c= M € (f'(c)—€,f'(c)+€) Since

€ is chosen smaller than f'(c); we conclude from (i) f(x) f(c) >0

when € (¢ —8,c+6) , x # c.Then we havef(x) — f(c) > 0 when
c<x<c+dband f(x)—f(c)<0when c—6<x<c.Thus we
conclude that if £'(c) > 0, 3 a neighbourhood [c — &, ¢ + §] of ¢ such
that f(x) > f(c),Vx € (c,c+6) and f(x) < f(c),,Vx € (c —§,¢).
If £'(c) <0, it is similarly shown that 3 a neighbourhood [c — &, ¢ +
8] of ¢ such thatf(x) > f(c)Vx € (c—8,¢) and f(x) < f(c)vx €
(c,c +9).

A Necessary condition for the existence of a Finite derivative:-

Theorem 1. Continuity is a necessary but not a sufficient condition for
the existence of a finite derivative at a point

Proof :1st Part-
Let f(x) have a finite derivative at x = c.

ThenRF'(c) = LF(C)eevrvvneeeeeeeeeena. (i)

To prove that f(x) is continuous at x = c, we have from (i)
, +h) —
f )= %irr&f(c })z 1© and
’ - h -
F©) = in €7D =1
Thereforef '(c) = W+e and f'(c) = UG (ONWY

—h
—h

where €,€ "> 0ash - 0.ie. hf (c) = f(c+h)—f(c)+hE
and —hf'(c)=f(c—h)—f(c)—h€ . Taking h—>0 we get 0=
%ijr(}f(c+h)—f(6), 0=}1i§(}f(c—h)—f(c)- I.e. }Lngf(c+h)=
}lij%f(c—h) =f(o).

Hence f(x) is continuous at x = c.

2" Part —
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The converse of the first part is not true i.e. if f(x) is continuous at
x = c, then f(x) may or may not be differentiable at x = c. We put an
example in favour of this statement. Consider f(x) = x sin(1/x) for

x#0 and f(0)=0, Then f(0+h)=hsin(5),f(0—h)=
—hsin(-1) =hsin(;) so  that lim £(0 + A) =1im £(0 —
h) =f(0) =0. Thus f(x) is continuous at x = 0. But Rf'(0) =

FO+R=F0) _ 4. hsin(3)-0

. . . . 1 . .
limX>=—/———— = lim b = lim sin (—) which does not exist.
h—0 h h—0 h—0 h

Hence f(x) is not differentiable at x = 0.

3.6. ALGEBRA OF DERIVATIVES

Theorem 1. If a function f(x) is differentiable at a point x, and c is
any real number, then the function cf(x) is also differentiable at x, and

(cf)'xo = cf (xo).

Proof :- Since the function f(x) is differentiable at a point x, then by
the definition

' (x) = f(x

f (XO) = lim w
X=Xo X — Xp

NOW, (Cf) ,xO = lim W
X—=Xo X—=Xo

_cf (x) = cf (xo)
m

X—Xg X — xo

{C[f(x) - f(xo)]}

X — X

= lim

) = f(x)
=c lim ———

X—=Xg X — Xp

= cf (x,) exists.
Hencef (x) is differentiable at x, and (cf)'(xo) = cf (x,).

Theorem 2. Let the functions f(x) and g(x) are defined in an interval
1. If f and g are differentiable at x = x, € I, then so also f + g and

(f + g)'(xo) = f’(xo) + g(xo)-

Proof :- Since f(x) and g(x) are differentiable at x = x,, Therefore,
lim LOITCD) /()i (i)
—Xg 0

and lim 982-9G0) _
X-Xg X—Xo
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Now, (F +9)(xo) = Jim L2200
lim [f (1) +g ()]—[f (x0)+g (x0)]
X—Xo X=X
— lim f(x) = f(x0) N g(x) — g(xo)
X—X( X — xO X — xo
X—Xq X—Xo X—X0 X—Xo
[as the limit of the sum is equal to sum of the limits]
= f'(xo) + g (x,) exists. [using (i) and (ii)]

Hence f+g is differentiable at x, and

(f + 9)'(x0) = f'(x0) + g (x0).

Theorem 3. Let f(x) and g(x) be defined on an interval /. If f and g
are differentiable at x = x, € I, then so also is fg and (fg)'(x,) =

f(x0)g(xo) + £ (x0) g (x0).

Proof :- Since the f(x) and g(x) are differentiable at x,, we have

lim Z97LE0) — £y (i)

X—Xq X—Xo

and lim g)—g(xo) _
XX X—Xo

Now,  (fg)'(xo) = Jim U9)x-(f9)x

X—Xo

F(X)g®)—f (x0)g(Xo0)

= lim
_ f(x)g(x) f(xo)g(x) + f(x0)g(x) — f(x0y9(x0)
x—>x0 X — x
= sim [FE2LE ) 4 e S22 0
L - f(xo) g(x) — g(xo)
- xll»rarclo X — Xp x—>x0 (x) + x1—>x0 X — f( 0)

= f'(x0)g(xo) + f(x0) g (x,) exists.

[using (i) and (ii) and leI;rcl g(x) = g(xo)]

[ Since g(x) is differentiable at x, = g(x) is continuous at x|

Hence fg is differentiable at x, and (fg)'(xo) = f '(x¢)g(x,) +
f(x0)g (x0).

Theorem 4. If f(x) is differentiable at x = x, and f(x,) # 0 then the

_ f(xo)
PP
Proof :- Since f(x) is differentiable at x = x,, therefore

. 1 . . .
function o s differentiable at x,and ( ) (xo) =
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lim 2827100 — ' Y (i)

x—>0 X—Xo

and f(x) is also continuous at x = x,
}Ci_r)r(l)f(x) = f(xg) # 0rererrrne, (ii)

(every differentiable function is continuous at very point in its
domain)
Also f(xy) # 0, hence f(x,) # 0 in some nelghbourhood N of x,.

Now we have for x € N, ( ) (xo) = lim M

X-Xxg X—Xo

L l fE~fo) 11
x—=xo  f(x) f(x0)
— _lm flx)— f(xo) 1 1
x-xXo X — Xo x—’xo f(x) f(x0)

—f'(x0)- 7=  [using (i) and (ii)]

X—Xg

f(xo )f( 0)
f'(x0)
— Xists.
[f (x0)]? exists ,
1o : 1 f'(x0)
Hence — is differentiable at x, and (= = —
@) o (f) (o) = =108

Note :- Let f and g be defined on I. If f and g are differentiable at x =
Xo € I and g(x,) # 0, then the function 5 is differentiable at x, and
using the theorem (3) and @) we can prove

(£>'(x ) = [g(xo)f (x0) — f(x0)g (x0)]
0 [g(x0)]?

3.7. THE CHAIN RULE OF
DIFFERENTIABILITY

Theorem — Let f(x) and g(x) are two function such that the range of
f(x) is contained in the domain of g(x). If f(x) is differentiable at (x,)
and g(x) is differentiable at f (x,), then gof is differentiable at x, and

(gOf)'(xo) = g,(f(xo))f’(xo)

Proof :- Lety = f(x) and y, = f(xo)
Since f(x) is differentiable at x,, we have

i O =1G0)

X—>Xo X — xO
or f(x) — fxg) = (x — xo)[f (x0) + 20 (i)
where A(x) - 0 asx — x,
Since g(x) is differentiable at y,, we have

lim IO —9Go) _ o)
Y=Yo Y — Yo g Yo
or g = go) = (v = ¥o)lg o) + uO].vvvvvveee. (ii)
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where u(y) - 0asy - y,
Now,(gof)(x) — (gof)xo = g(f ) — g(f(x0)) = 9&) — 9(¥0)
= —yo)lg 0o) + u®)]....... from (ii)
= [f(x) = fFx)]lg (vo) + n()]
= (x — x0)[f (%) + 2(x)][g'(yo) +

uM].......from(i)
Thus if x # x, then

(gof)x—(gofixe _ [g' (Vo) + nODIIf (xo) + A(0)]......... (i)

X—Xg
Since f is differentiable at x, so f is continuous at x,,
Le.x = xp = f(x) = f(xp) 1.e.y =y,

and u(y) = 0asx — xpand A(x) — 0asx — x,
taking the limit x — x, we get from (iii)

. (gof)(x) — (gof)(xy)
m =

| N
Jim X xg 9 vo)f (xo)

= g’(f(xo))-f’(xo)

Hence the function (gof) is differentiable at x, and

(gof) (xo) = g'(f (xe))f (x0)

3.8. DERIVATIVE OF THE INVERSE
FUNCTION

Theorem — If f(x) be a continuous one-one onto function defined on a
interval. Let f(x) is differentiable at x = x,, with f'(x,) # 0, then
inverse of the function f(x) is differentiable at f(x,) and its derivative

- 1
at is ——.
f(x0) 18 o=

Proof :- We know that if the domain of f be X and its range be Y, then
inverse function g of f is denoted by f~1. f~1 is a function with
domain Y and range X such that

f(x) =y e g(y) = x, also g exists if f is one-one onto.

Lety = f(x) and yo = £ (xo)

Since f is differentiable at x,, then we have

tim LSOO _ o
= f(x) = fxg) = (x — x0)[f (xg) + A0 ] (i)

where A(x) — 0 as x — x,.
Further g(v) —g(yo) = x — Xgeeeeenns (by definition of g)
ig(Y)—g(YO):x_xo: X — Xo
Y = Yo Y = Yo f(x)—fl(xo)
[ ro+am)]
Since f is continuous at x = x, = g = f~1 is continuous at f(x,) =

Yo and so g(¥) = g(¥o) asy — ¥,
Hence
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i I =900 _ 1 __1

Y=Yo Y —Yo Y=Yo f'(xo) + /1(36) f/(xO)
’ _ 1 ’ _ 1

=900 = 7650r9 (F60)) = 76

3.9. DARBOUX THEOREM

Theorem. If f(x) is differentiable in [a,b] and f'(a),f'(b) have
opposite signs, then 3 at least one point ¢ € (a, b) such that f'(c) = 0.

Proof :- For definiteness, let f'(a) > 0 and f'(b) < 0 then there are
intervals (a,a + k] and [b — A, b), h > 0 such that
f(x) > f(a),vx € (a,a + A

and f(x) > f(b),Vx € [b — h,b)
By the assumption, f is differentiable in [a, b] so f is continuous in
[a, b]. Consequently f attains its Supremum and Infimum in [a, b].
Let Supf = M then 3c € [a, b] such that f(c) = M.
Then by the definition of Supremum

fx)<Mie f(x) < f(c),,Vx €[a,b] .cccceerrrrnnns (i)

To prove : f'(c) = 0. Suppose it is not true. Then either f'(c¢) > 0 or
f'(c)<0.f f'(c) >0,3.(c,c+€],€> 0 such that f(x) > f(c),Vx €
(c,c+€].This is contrary to (i).If f'(c) <0,3[c—€,c) such that
f(x) > f(c),,Vx € [c—€,c) .Again we get contradiction to (i).Hence
f'(c)=0.But f'(a) > 0and f'(b) <0, therefore c #a and ¢ # b i.e.
¢ € (a,b).

Corollary 1._If f is differentiable in [a,b] and f'(a) # f'(b), then
f'(x) takes all the values between f'(a) and f'(b) at least once in
(a, b).

Proof :- Assume that f'(a) < f'(b), let f'(a) < k < f'(b)
To show that 3¢ € (a, b) such that f'(c) = k.

write F(x) = f(x) — kx

= F'(x) = f'(x) — k, Now we have
Fa)=f'(a)—k<0,asf'(a) <k

and F'(b) = f'(b) —k > 0,as f'(b) > k.

Thus F'(a) < 0and F'(b) > 0. Hence by Darboux theorem,
dc € (a,b)st. F'(c) =0

=>f'(c)—k=0=f'(c) =k.

Similarly we can show another case when f'(a) > f'(b).

Corollary 2. If f(x) # 0,,Vx € (a, b) then f'(x) retains the same sign,
positive or negative in (a, b).

Proof :- If possible, let x;,x, € (a,b) such that f'(x;) and f'(x,) have
opposite signs, where x; < x,, then by Darboux theorem,
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3¢ € (x4,x,) < (a,b) suct that £'(c) = 0.
which is contrary to the hypothesis. Hence f'(x) retains the same sign.

Hlustrative Examples

Example 1.Prove that the function f(x) = |x| is continuous at x = 0,
but not differentiable at x = 0.

Solution. Firstly, we see the continuity of the function f(x) atx = 0
We have f(0) = |0] =0
fO0+0) = lim£(0+ ) =limf(n) = lim|A]

=limh=0
h—0

f(0=0) = lim £(0 ) =limf(=h) = lim| |
= }lirr(}h =0
Hence f(0+0) = f(0) = f(0 — 0).So f(x) is continuous at
x = 0.Now we see the differentiability of f(x) at x = 0. We have

RF'(0) = }lirr&m = m@ =1 and LF'(0) =
L FO=M=f(0) _ i f(M=0 _ o A0 b ,
e L L T L A
Lf (0)

Hence f (x) is not differentiable at x = 0.

Example 2.Prove that the function f(x)=|x|+|x—1| is not
differentiable at x = 0 and x = 1.

Solution.Here we see that
() |x|=—xand |x —1|=1—-xwhenx <0
(i)|x] =xand |[x —1|=1—xwhen0<x <1
(i) [x] =xand |[x —1| =x —1whenx > 1
Hence, the given function can be written as
fW)=—x+1-x=1-2x,x<0
=x+1—-x=1,0<x<1
=x+x—-1=2x—-1,x>1
Now first we see the differentiability f(x) at x = 0

We have
R0 = i D= SO _ FB 1O
11
=lm— =0
b = g OB SO, D=/
:}13%1_2(—_:)_1:/1333%: -2
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Thus Rf'(0) = Lf'(0). Therefore the given function is not differentiable
at x = 0. Now we see the differentiability of f(x) at x = 1.

We have Rf’(l) = }}n{}%
— 1111})13[2(1%& = lim 2+2h=2 _ oo L) -
h=0 —  —h h>0 —h

Thus Rf'(1) # Lf'(1). Therefore the given function is not differentiable
atx = 1.

Example 3. Show that the function

Flx) = {xtan‘1 (%),x * 0}

0 ,x=20
is not differentiable at x = 0.

Solution.Here we have
o fQO+h)—f(0)
Rf (0) = Jim h
e
fw—f@)  htan(g)
= lim = lim
h—0 h h—0 h

NI

1
= limtan?! (—) =tan 1w =
h—0 h
and Lf'(0) = lim AL A0 (O_h_)h_f ©

1

) — —htan(—+
=limf—( " f(0)=lim an ( h)
h—0 —h h—0 —h

. _ 1 _ T
= limtan™?! (——) =—tan loo=—=
h—0 h 2

= Rf'(0) # Lf'(0)

Hence f(x) is not differentiable at x = 0.

Example 4.If ¢(x) = x? sin% when x # 0 and @(0) = 0. Show that

@'(x) exists for all values of x but @'(x) is discontinuous at x = 0 and
@"(x) does not exists at origin.

Solution.@(x) = x?sin (3), % # 0..ocovvcr (i)
9(0) =
So @'(x) = 2x sin G) — cos (%),x =2 | B (ii)

First Part —To show that @'(x) exists Vx

R0 @) = i 2000
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. (1

o) -0 _ h? sin (E)

=lim—— = lim———*
h—0 h h—0 h

1
= lim 4 sin (—) =0
h—-0 h

s 1e B(0—h)—(0)
and LY (0) = }113(} — 1
 @(—h)—@(0)  —h’sin (E) —0
=lim————— = =1lim
h—0 —h " h—0 —h
= lim 4 sin (—) =0
h—-0 h
Thus RP(0)=Lp'(0)=0=>0(0)=0
= @'(x)existsatx = 0
But @'(x) exists Vx s.t. x # O............... by (i)

= @'(x) exists Vx.

Second Part._To show that @ (x) is discontinuous at x = 0

Here 9'(0 + k) = 2hsin (1) = cos (3)..co.e by (ii)

= ]111rr& ®'(0 + &) does not exists for }lir% cos (%) does not exists.
Hence @'(x) is discontinuous at x = 0.

Third Part. If a function is discontinuous at x = 0 then it will not be
differentiable at x = 0. From the second part @'(x) is discontinuous at
x = 0. So @'(x) is not differentiable at x = 0 i.e. @"(x) does not exists
atx = 0.

Example 5. Draw the graph of y = |x — 1| + |x — 2| in the interval
[0,3] and discuss the continuity and differentiability of the function in
this interval.

Solution. Lety = f(x) then

) y=f(x)=1—-x+2—-x=3—-2xwhen0<x<1
(i)y=fx)=x—-1+2—-x=1when1<x<2
(ii)y=f(x)=x—-1+x—-2=2x—3when2<x <3

Hence the graph of the function consists of three straight line segments
y=3-—2x,y=1,y=2x—3 in the three intervals [0,1],[1,2],[2,3]
respectively.
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0 1 2 3

Fig. 3.9.1

From the graph of the function it is clear that the function is continuous
throughout [0,3] but it is not differentiable at x = 1, 2.
Totestatx =1

: CfA+h-f1) . 1-1
Rf(l)z}g% 7 =}lg%—h =0
Lf'(1) = ;g%f(l — h_)h‘ f_ lim [3 - 2(1_; m]—1
2h

h=0 —h

Thus Rf'(1) # Lf (1) so f is not differentiable at x = 1.
Totestatx =2

: . fQ+mn—-f2) . [2Q+hm-3]-1_  2h
Rf (2) = Jim h = h = m =2
Ly @) = g O T

Thus Rf'(2) # Lf'(2) so f is not differentiable at x = 2.

eYX—e=Yx
rireyx ' X =0

F(0) = 0.

Show that f(x) is continuous but not differentiable at x = 0.

Example 6._Let f(x) = x.

Solution._It is given that f(0) = 0; Now f(0+0) = ]lqingf(o +h) =

limf ()
limp S =€
TS0 eYh 4 g Vh
_p—2h
= lim h.le—_Zh [dividing the numerator and
h—0 1+e
denominator by e?"]
=0Xx2=0x1=0;

1+0
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and  f(0—A) =1imf(0 —£) = limf(=h)

. e Yh — gtyh . e 2h 1
B R PG
Since f(0O+0)=f(0—-0)=f(0). Hence the function is

continuous at x = 0.

' — 1 JO+R)=F(0) _ .. f(W)—f(0)
Now Rf (0) = /l}_I)I&—h = }ll_r)r(}—h

_ eYh — =k
= Jim [h' eyh + e‘yhl /h

i 1—e™? 1-0
T T1te? 140

' _ 1:... fF(0=R)—f(0) — i f(=h)
And Lf (0) = },1_{%——}, },l—r}(}_—h

1

_ e~ Vh — g¥h
= Jing [—h- ml /R
e 2h —1

“ema1 !

Since Rf'(0) = Lf'(0), the function is not differentiable at x = 0.

Example 7. A function f is defined by
1
f(x) = xP cos (;) ,Xx#0;f(0)=0

what conditions should be imposed on p so that f may be
(i) continuous at x = 0.
(ii) differentiable at x = 0.

Solution. We have

£(0+0) = limf(0 + A) = lim [(o +A)P cos g Jlr B
= lim#” cos () I— (i)
£(0—0) = limf (0 — ) = lim| (0 = &) cos G L B
= lim (~/)? cos () F— (ii)

Now if f(x) is continuous at x = 0, then
i.e. the limits given by (i) and (ii) must both tend to zero. This is
possible only if p > 0, which is the required condition.

Now RF'(0) = lim L& =LO) _ jjp, L=/ (O)
e lim ==
hp l —O - -
i @0 i cos 6 J— i)
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o e FO=R)=F(©) _ . (=P cos(3)-0
and Lf(0) = 1111_r)r3 — = }II_I)T(} —

— 1 p-1 1
= }ll_r)r(}—(—l)ph cos (Z)
Now if f'(x) exists at x = 0 then we must have
Rf'(0) = Lf'(0) and this possible only if p —1 > 0
i.e. p > 1 which gives Rf'(0) = Lf'(0) = 0.
Hence in order that f is differentiable at x = 0, p must be greater than 1.

Example 8. Let f(x) be an even function. If £'(0) exists, find its value.

Solution. Since f(x) is an even function,
0 f(—x) = f(x)vx

f'(0) exists = Rf'(0) = Lf'(0) = £ (0)

Now £'(0) = Rf'(0) = m@,h >0

= 1im 22O ISince f(—x) = £(x)]

h—0 h
. f(=h)—£(0)
= —-lim———=
h—0 —h
=—Lf(0) = —f'(0)

= Zf'(O) =0 =>f'(0) =0
Thus we conclude that if £(x) is an even function and f'(0) exists then

£(0) = 0.

3.10. SUMMARY

In this unit we have defined the concept of Derivative at a point,
Progressive and Regressive derivatives, Differentiability in an interval,
Algebra of derivatives, The chain rule of Differentiablity, Derivative of
inverse function and Darboux theorem.

e A function f(x) is said to be differentiable at the point x = c €
(a,b) iff

lim £ @ 5 limL_’:(c) exists finitely.

h—0 x-c x—
e Right hand derivative of f(x) at x = c is denoted by Rf'(c) =
flc+0)= }}r%—f(”hz‘f“),h >0
e Left hand derivative of f(x) at x = c is denoted by Lf'(c) =
' — 1 Fe=R)—f(c)
f(c—0) —%1%_—h,h >0
e and f'(c) exists iff
o Lf'(c)and Rf '(c) both exists, and
o Lf'(c)= Rf'(c)
e f(x) issaid to be differentiable at x = ¢
e Ifgivene> 036 > 0s.t.
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e x€(c—6,c+6)=f(c)-€e<

[OTO < f(c)+e

e The derivative of a function f(x) at x = a is the tangent of the
angle which the tangent line to the curve y = f(x) at the point x =
a, makes with x-axis

[re] =y

e Continuity is necessary but not a sufficient condition for
differentiablilty
e e.g.y = |x]| is continuous at x = 0 but not differentiable at x = 0.

3.11. GLOSSARY

Sets-Well defined collection of objects.

Continuous-sketch its curve on a graph without lifting your pen
even once.

Discontinuity-lack of continuity.

CHECK YOUR PROGRESS

=

" RS0 h

The function y = |x| is differentiable at every point of R. T/F

If a function f(x) is continuous at x = a, it must also be
differentiable at x = a. T/F

If a function f(x) is differentiable at x = a, it must be
continuous at x = a. T/F

If a function f(x) is differentiable at x = a, it may or may not
be continuous at x = a. T/F

The function y = |x — 1]is continuous at every point of R.T/F
The function f(x) is said to be differentiable at x =a if

lim £~ ayists. T/F
xXx—-a —-a

If f(x) = sinx, then
i LEHD=F@) _

9. The function f(x) = |x]| is differentiable at every point of R

10.

11.

exceptat X =.....ccoovvvrnnn.

Continuity is a necessary but nota ................... condition for the

existence of a finite derivative.

The right hand derivate of f(x) at x =a is given by
- lim L& -1 (@) h>0
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3.14. TERMINAL QUESTIONS

1. A function ¢ is defined as follows :
¢(x) = —xforx <0,¢(x) = xforx > 0.
Test the character of the function at x = 0 as regards
continuity and differentiability.

2. If f(x) = X x# 0, £(0) = 0, show that f is continuous at

1+e¥* !
x = 0 but £ (0) does not exist.
3. A function ¢ is defined as :
p(x)=1+xifx <2,
p(x)=5—xifx>2
Test the continuity and differentiability of the function at
x = 2.
4. Discuss the continuity and differentiability of the following
function :
f(x) =x?forx < -2
fx)=4 for-2<x<2
f(x) = x? forx > 2.
5. Examine the following curve continuity and differentiability
y=x2forx <0
y=1 for0<x<1
y = i forx >0
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6 Show that f(x) =|x—1|,0 <x <2 is not differentiable at
x = 1. Itis continuous in [0,2].
7 The function f(x) = |x — 1] is not differentiable at
i) x=0i)x=—-1lii)x=1iv)x =2
8 The function f(x) = |x + 3] is not differentiable at
i) x=3i)x==-3ii)x=0iv)x =1
9 The function f(x) = xSinG)’x #z0and (0) =0,atx=0is
i)Continuous and differentiable ii) Continuous but not
differentiable iii) Discontinuous and not differentiable iv)
None of these
10 A function f(x) is differentiable at x =a if i) Rf (a) =
Lf'(a) i) Rf'(a) = 0iii) Lf (a) = 0iv) Rf (a) # Lf (a)
. 2+x,x=0
11 The function f(x) = {2 X x<0
0 i1) Continuous but not differentiable at x = 0 iii) Continuous
and differentiable at x = 0 iv) None of these

is i) Discontinuous at x =

3.15. ANSWERS

ANSWER CHECK YOUR PROGRESS

SCQL. F

SCQ2. F

SCQ3. T

SCQ4. F

SCQ5. F

SCQ6. f(a)
SCQ7. cos x
SCQ8.x=0
SCQOI. f'(x)
SCQ10. Sufficient

ANSWER TO TERMINAL QUESTIONS

(TQ-1) Continuous at x = 0 but not differentiable at x = 0.

(TQ-3) Continuous but not differentiable at x = 2.

(TQ-4) Continuous but not differentiable at x = —2, 2.

(TQ-5) Discontinuous and non differentiable at x = 0, continuous and
non differentiable at x = 1.

(TQ-6) Yes

(TQ-7)h

(TQ-8) (iii)

(TQ-9) (ii)

(TQ-10) (ii)

(TQ-11) (i)
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UNIT-4:- MEAN VALUE THEOREMS

CONTENTS:-

4.1  Objectives

4.2  Introduction

4.3  Rolle’s theorem
4.3.1 Geometrical representation of Rolle’s theorem
4.3.2 Algebric reprtesentation of Rolle’s theorem

4.4  Lagrange’s mean value theorem
4.4.1 Geometrical interpretation of Lagrange mean value

theorem

4.5  Cauchy’s Mean value theorem
4.5.1 Another form of Cauchy’s mean value theorem
4.5.2 Geometrical interpretation of Cauchy mean value

theorem

4.6  Taylor’s theorem with Lagrange’s form of remainder

4.7  Taylor’s theorem with Cauchy’s form of remainder

4.8  Summary

4.9  Glossary

4.10 References

4.11 Suggested readings

4.12  Terminal questions

413  Answers

4.1 INTRODUCTION

The mean value theorem makes the geometrically possible
claim that a differentiable function f on an interval [a, b] will at some
point attain at some point attain a slope equal to the slope of the line
through the end points (a, f(a)) and (b, f(b)). More, precisely,

f'(c) = W. For at least one point ¢ € (a,b). This theorem is
used to prove statements about a function on an interval starting from
local hypotheses about derivatives at points of the interval. The mean
value theorem in its modern form was stated and proved by Augustin
Louis Cauchy in 1823. Many variations of this theorem have been
proved since then. Later in 1691, Michel Rolle proved a special case
of mean value theorem So it was named after him, Rolle's mean value
theorem. In this unit we have explained the Rolle’s theorem,
Lagrange’s theorem, Cauchy mean value theorem, Taylor theorem
with Lagrange’s form of remainder, Taylor’s theorem with Cauchy’s
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form of remainder. We have also described the geometrical and
algebraic interpretation of Mean value theorems.

4.2 OBJECTIVES

After completion of this unit the learner will be able to understand:

i.  Rolle’s theorem and its geometrical interpretation.
ii. Lagrange’s mean value theorem.
iii.  Cauchy’s theorem.
iv.  Mean value theorems of higher derivatives.

4.3 ROLLE’S THEOREM

If f (x) is a real valued function defined in the closed interval [a, b]
such that
() f (x) is continuous in the closed interval [a, b].
(i)  f(x) is differentiable in the open interval (a, b).
(iii)  f (a) =f (b), then there exists at least one value of x say ¢
where a<c<b, such that f(c) = 0.

Proof. Continuity of f (x) in [a, b] implies that f (x) is bounded in [a, b]
and attains its bound at least once in [a, b]. Let sup f (x) =M and
inf f(x)=m, and let f(c)=mf(c,)=Mwhere c,c,e[a,b].
Evidently, M > m.

Now two different cases arise:

Case I. When M =m. Then

f (c,)="f(c,)= f(x)=constant
= f (x)=0 Vxe[a, b]
=f (c)=0 ce[a, b]

Case Il. When M>m. In this case at least one of the bounds is
different from f (a) = f (b). we suppose first that M # f (a) = f (b), i.e.,
f (c,) = f(a)= f(b). This means that c, is different fromaand b, i.e.,
c,€la, b]jora<c,<b.
Now
M=1f(c,)=sup f(x)= f(x)< f(c,) Vxe[a b]
1
Therefore f(c,+h)<f(c,) Yh>0,c,+h¢e[a, b]

N f(c, +hr)]— f(c,) <0
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It follows that

Limit fc, ”2_ %) <pie, Rt'(c,)<0 o)
Again (1) implies that

f(c,-h)<f(c,) vh>0,c,—he[a, b]

Therefore, f(c, —h)—-f(c,)<0

= f(C2+h)_f(C2) >0

It follows that

Limit (& =M=
h—0 —

But if f is differentiable in (a, b) and c, €[a, b]so that f is differentiable

atx=c,i. e,

Lf'(cz):Rf‘(Cz):f'(Cz) (4)

Using (4) in (2) and (3) we find that

f'(c,)<0and f (c,)>0=f (c,)=0

1) S pie, LT '(c,)=0 3)

Similarly if we suppose that m # f (a) = f (b) then by making parallel
arguments, we can prove that f (c,)=0. Replacing c,and c,by c, we
have the result.

Notel. There may be more than one point like ¢ at which f (x)=0.

Note 2. Rolle’s theorem does not hold good if
Q) f (x) is discontinuous in the closed interval [a, b].
(i) T (x) does not exists at some point in (a, b).

(i)  f(a)#f (b).

Note 3.The hypothesis of Rolle’s theorem can not be weakened.

Example.If f (x)=1—|x|, —1<x<lLthen f(@)=f(-1)=0and f is

continuous on [-1, 1]. Also f (x)exist ¥ xe (-1, 1) except x =0. Thus f

satisfies all the condition of Rolle’s theorem except that f is not
differentiable at x = 0. For this f (x), there is no ¢ in (-1, 1) for which

f'(c)=0.
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4.3.1 GEOMETRICAL REPRESENTATION OF
ROLLE’S THEOREM

f)=0

“Y X =cC

0 b

Fia. 431

Geometrically Rolle’s theorem means that is the curve y = f (x) is
continuous from x = a to x = b; has a definite tangent at each point of
(a, b) and the ordinates at the extremities are equal then there exists at
least one point between a and b at which the tangent is parallel to x-
axis.

4.3.2 ALGEBRAIC REPRESENTATION OF
ROLLE’S THEOREM

Rolle’s theorem leads to a very important result in the theory of
equations. Algebraically, Rolle’s theorem means that if f (X) is a
polynomial function in x and x = a and x = b are two roots of the
equation f (x) = 0, then there is at least one root of the equation f'(x) =0
which lies between a and b.

4.4. LAGRANGE’S MEAN VALUE THEOREM

If a real valued function f (x) defined on [a, b] such that
Q) f (x) is continuous on [a, b].
(i)  f(x) is differentiable in (a, b).

Then there exists a point ce(a, b) such that

f(b)—f(a) .
“boa O

Proof. Let us define a function f (x) defined by
F(x)=f(x)+A.x (1)
Where A is a constant to be determined such that F (a) = F (b).
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Now
Q) Since f (x) is continuous on [a, b] and Ax is continuous on
[a, b], therefore F (x) is also continuous on [a, b]. (Since
sum of two continuous functions is again continuous).
(i) Similarly F (x) is differentiable in (a, b).
(i)  F@)=F@0O)= f(a)+A.a=f(b)+A.b
— A= f (b) —f (a) (2)
b—a
Hence F (x) satisfy all the conditions of Rolle’s theorem on [a, b] and
consequently there exists ce(a, b)such that f(x) = 0, this gives

F)=f (c)+A=0=-A=1f(c) (3)
Now from (2) and (3), we have

Lagrange’s mean value theorem is also known as first mean value
theorem.

Note 1. Another form (alternative form) of Lagrange’s mean value
theorem.Let b—a=h, c=a+6&h, then h> 0 and a<c<b and this

impliesthata<a+60h<a+h=0<6h <h=0<6 <1.

T®) = 1) pecomes f'(a+0h) = fla+h)-1(3) ie.,
b—a h

f@a+h)=f(@+hf (a+6h), 0<O<1.
Note 2. The hypothesis of the Lagrange’s mean value theorem can not
be weakened as
Example.Let f (x)=|x, —1<x<2. Here f is continuous [-1, 2] and
differentiable at all the points of (-1, 2) except x = 0 (so that second
condition is violated). Now
f'(x):{_l’ —1<x<0

+1 0<x<2

f(2)-f(-1)
2_—(_1) forany xe(-1,2).

Now f'(c) =

Also f (x) =
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441 GEOMETRICAL INTERPRETATION OF
LAGRANGE’S MEAN VALUE THEOREM

AY
B
A
C_ <0
f(a) f (b)
0 a c b
Fig.4.4.1.

If the curve y = f (x) is continuous from x = a to x = b and has a
definite tangent at each point on the curve between x = a and x = b.
Then, geometrically the first mean value theorem means that there is at
least one point between x = a and x = b on the curve where the tangent
to the curve parallel to the chord joining the points (a, f (a)) and (b, f

(b)).

Let AB be the graph of the function y = f (x) then the co-
ordinate of the points A and B are given by (a, f (a)) and (b, f (b)). If
the chord AB makes an angle @ with x — axis, then

f(b)-f(a)
a

tan @ = = f '(c) where a<c<b.

Corollary 1.1f f(x) = 0V x € (a, b), then f (X) is constant in [a, b].
Thus if a function has differential coefficient which vanishes for all
values of x in [a, b], then the function is constant.

Proof. Given that f (xX) =0V x < [a, b]. Let a+h be any point of [a, b].
Then by first mean value theorem,
f(a+h)—f(@a)=hf (a+6h), 0<6<1,
=hx0=0asf (a+6h)=0, a+6he[a,b]
Thus
f(a+h)=f(a) Va+he[a,b]
i.e., f(x)=constant Vxe[a,b]

Corollary 2.1f two functions f (x) and g (x) be differentiable in (a, b)
and if f (xX) =g (x), V x € [a, b], then f (X) - g (X) is constant.
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Proof. It is given that
fx)=9() vxelab] (1)
To prove that f (x) - g (x) is constant.
Let G (x) =f (X) - g (X) then G (x) = f(X) - g(x) = 0 [by (1)]. This
implies that
G (x)=0, V xe[a, b] (2)
Let a + h be any point of (a, b). Then, by first mean value theorem
G(a+h)-G(a)=hG (a+6h), 0<8<1,
=0 [by (2)]

= G(a+h)=G(a) Va+he[a,b]

= G(x) =constant Vxela,b]

= f(x)—g(x) =constant Vxela,b].
Note 1. The result f(b)—f(a)=(b—a)f (c),is also known as
formula for finite increment.

Note 2. For f(b)— f(a), the Lagrange’s mean value theorem yields
Rolle’s theorem

4.5 CAUCHY’S MEAN VALUE THEOREM

Let f (x) and g (x) be two functions defined on [a, b] such that
Q) f (x) and g (x) are continuous on [a, b]
(i)  f(x)and g (x) are differentiable on (a, b) and
(i) g (x)=0, V xe(ab),

Then there exists a point ¢ € (a,b), such that

f(b)-f(@ _f(c)
gb)-g(@ g'(c)

Proof. We observed that (iii)=g(a)=g (b) .

For, if g (a) = g (b), then g (x) satisfies all the conditions of Rolle’s
theorem and hence g'(x) = 0 for some x € (a,b), which is contrary to

(iii). Let us define a function on [a, b] by

FX)=f(X)+Ag(x) (1)
Where A is a constant to be determined such that
F (@) =F(b) 2)

Now the function F (x) is the sum of two continuous and differentiable
functions, therefore

Q) F (x) is continuous in [a, b].

(i) F (x) is differentiable in (a, b).

(i)  F(a) =F(b).
Then by Rolle’s theorem Jsome ¢ e (a,b), such that F (c) = 0. Here

F ()= (x)+Ag (x
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F@)=0=f (c)+Ag (c)=0

f'(c)
—A=— 3
T )
Now F(a)=F(b)=f(a)+Ag()=f (b)+Ag(b)
A f®O)-f(@) @)
g(b)-g(a)

From (3) and (4) we get
f(b)-f(a)_f ()
g(b)-g(@ g'(c)

451 ANOTHER FORM OF CAUCHY’S MEAN
VALUE THEOREM

If we put b = a + h, then ¢ can be written as a+6&h where
0 € Rsuchthat 0<f8<1, then Cauchy’s mean value theorem can be put

in the form —
If f (x) and g (x) are continuous in [a, a + h] and are differentiable in

(a,a+h)and g (x) %0, V xe(a,b), then 36eR: 0 <6<1, such that
fa+h)—f(a) f (a+oh)

=— , 0<O<1.
g(@+h)-g(a) g (a+oh)

Note. If g (X) = X, then Cauchy’s mean value theorem reduces to
Lagrange’s mean value theorem.

45.2 GEOMETRICAL INTERPRETATION OF
CAUCHY’S MEAN VALUE THEOREM

Cauchy’s mean value theorem can be interpreted geometrically to
mean that the tangents to the curve y = f (x) and y = kg (x) where

LI OERIC)

= , at a certain point ce(a,b) are parallel.
g(b)-9(a)

4.6 TAYLOR’S THEOREM WITH LAGRANGE’S
FORM OF REMAINDER

If f (X) is a single real valued function defined on [a, a + h] of xsuch
that

(N All the derivatives of f (x) up to (n — 1)" order are
continuous in [a, a + h].
(i)  f "(x)exists in (a, a + h), then
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2 n-1

, h? .. h
f(a+h)=f(a)+hf (a)+5f (a)+....+n_1!

f"‘l(a)+% f"(a+6h)
, where 0 <@<1.

Proof. Consider the function F (x) defined by

FO)=f(x)+@+h-x) f-(x)+(a+2—'—x)2 f "(x)+....+_(al +nh__1)'()nl £71(x)
B0y o)
n!

Where A is a constant to be determined such that
F(@+h)=F(a)
Subjecting (1) to this condition we get

F(a)=f(a)+h f'(a)+Ef"(a)+....+ h f”‘l(a)+EA
2! n-1! n!

n-1

and F(a+h) = f(a+ h)then we have

n-1 n
™ "(a) LN (2)
n-1! n!

f(a+h)= f(a)+hf'(a)+h2—2|f"(a)+....+

Now by assumption, all the functions f, ", f",...., f "*are continuous
in closed interval [a, a + h] and differentiable in (a, a + h). Also
@+h_x (a+h-x)? (@a+h—x)"* | (@+h-x)"
2! n-1! n!
polynomials are continuous in [a, a + h] and differentiable in (a, a +
h). Also A is constant.

This means F (X) is continuous in [a, a + h] and differentiable in (a, a
+ h). Now differentiating (1) with respect to x.

F'(x) = f'(x)+[(a+h—x)f"(x)—f'(x)]{(“g'_x)z f"(x)—z'(az?_x).f"(X)}

all being

+..,,+|:(a+h_x)nl f7(x) - (n-Y(a+h-x"? f n1(X)}_n.(a+h—X)nlA

n-1! n-1! n!
Simplifying, we get
n-1 n-1
F.(X):(a+h—x) fn(X)_n.(a+h—x) A
n-1! n!
_(@+h=-x)""r,,
= T[f () -Al

Since F (X) satisfies all the conditions of Rolle’s theorem in [a, a + h],
we have

F (a+6h) =0where 0 <0 <1, therefore
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(a+h-a-gn)"!
-1

= A=f"(a+6h)

Putting the value of A in equation (2) we get

n-1

[f"(a+6oh)— A]=0

f(a+h)= f(a)+(h)f'(a)+%f"(a)+....+ h

fr i@+ 7t on)
n—1! n!

where 0 <6<1.
Here (n + 1)" term on the right i.e., %f"(a+0h) is called the

Lagrange’s remainder after n terms in Taylor’s expression f (a + h) in
the ascending powers of h.

4.7 TAYLOR’S THEOREM WITH CAUCHY’S
FORM OF REMAINDER

If f (X) is a single real valued function defined on [a, a + h] of xsuch
that
(i)  All the derivatives of f (x) up to (n — 1) order are
continuous in [a, a + h].
(i)  f "(x)existsin (a, a + h), then
f(a+h):f(a)+hf'(a)+h2—2|f"(a)+....+ h™” f"(a)+ h”

1-)"* f"(a+6h),
n-1! n—l!( ) ( )

0 <f<1.

Proof. Consider the function F (x) defined by
L (a+h- x)"*

f n-1
n-1! (9

F(x) = f(x)+(@+h-x) f'(x)+(a+27'_x)2f"(x)+,_,,

+@+h=X)A.e @
Where A is a constant to be determined such that
F@+h)=F()
Subjecting (1) to this condition we get

2 n-1

F(a)=f(a)+hf (a)+ ' (a)+..t 1 f"(a)+hA

2! n-1!
and F(a+h) = f(a+ h)then we have

2 n-1

f(a+h)=f(@)+hf '(a)+% f@+..+ nh T f" @) +hA.. (2)
Now by assumption, all the functions f, f", f",...., f ""are continuous
in closed interval [a, a + h] and differentiable in (a, a + h). Also

_ 2 _ n-1 _ n
@+ h_y @fh=x" @+h=9" @+h=X"  Leing

2! n-1! n!
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polynomials are continuous in [a, a + h] and differentiable in (a, a +
h). Also A is constant.

This means F (x) is continuous in [a, a + h] and differentiable in (a, a
+ h). Now differentiating (1) with respect to x.

F'(x) = f'(x)+[(a+h—x)f"(x)—f'(x)]{(“g'_x)z f"(x)—z'(aj_x).f"(X)}

{(a+h 0™ fn gy (1=D@h=x" f“(x)}—A

n-1! n-1!
Simplifying, we get
n-1
F'(X) Mf () A
n-11

Since F (x) satisfies all the conditions of Rolle’s theorem in [a, a + h],
we have

F (a+6h) =0where 0 <0 <1, therefore
(a+h—a-6h)"*
n-1!
1-6)""*h"t
n-1!
Putting the value of A in equation (2) we get

f"(a+6h)— A=0

- A= f"(a+6h)

h" (1 9)“

f(a+h):f(a)+(h)f'(a)+h2—zlf"(a)+... e TRGE f"(a+@h)

where 0 <@<1.
(1 H)n -1

Here (n + 1)™ term on the right i.e., f"(a+@h)is called

the Cauchy’s remainder after n terms in Taylor’s expression f (a + h) in
the ascending powers of h.

Corollary 1.If we take the interval [0, x] instead of [a, a + h], so
change a = 0 and h = x in Taylor’s theorem with Lagrange’s form of

remainder we get
2 n-1

f(x)= f(0)+xf (x)+—f () +... +nX f“‘1(0)+—f @)

which is known as Maclaurin’s theorem or Maclaurin’s development
n

of f (x) in [0, x] with Lagrange’s form of remainder % f " (0 x)after n
terms.

Corollary 2.1f we change a = 0 and h = x in Taylor’s theorem with
Cauchy’s form of remainder we get
X (1 ot

' X2 ! n-1
1) =T +xf 0+ O+t —— 7O+ =— —

f7(0x)
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which is known as Maclaurin’s theorem or Maclaurin’s development
with Cauchy’s form of remainder. The (n + 1)"term

Xr‘l (1_ 9) n-1
n-1!
Ilustrative Examples

f " (6 x) is known as remainder.

Example 1. Discuss the applicability of Rolle’s theorem for
F(x) =2+ (x=1)%in [0, 2].

Solution. We have f(x)=2+ (x—l)%. Heref (0) =3 and f (2) = 3. It
shows that the third condition of Rolle’s theorem is satisfied.Since f (X)

is an algebraic function of x, so it is continuous in [0, 2]. Thus the first
condition of Rolle’s theorem is also satisfied. Now

- 2 1
f (x)==
3 (X—l)%

We see that at x = 1, f (x) does not exists and x =1< (0,2). So the

second condition of Rolle’s theorem is not satisfied. Hence the Rolle’s
theorem is not applicable in the given function.

Example 2. Verify Rolle’s theorem for the function
f(x)=x>-6x"+11x—6.

Solution. We have f (x) =x* —6x* +11x—6, which is polynomial in x
of degree 3 and so it is continuous and differentiable for all real values
of x. Now f (x) = 0 gives

x> —6x*+11x-6=0

=x®—x*-5x* +5x+6x-6=0

=x*(x-1)-5x(x-1)+6 (x-1) =0

=(x-1)(x*-5x+6)=0

=>x-D)(x-3)(x—2)=0

=x=12,3

=f@)=0,f(2)=0,f(3)=0

If we take [1, 3], then all the three conditions of Rolle’s theorem are
satisfied. So there exists at least one vale of x in (1, 3) for which
f'(x) =0.Now

f'(X)=0=3x*-12x+11=0

12 + /144 -132 1

X= =2+
6

&l

1 1
—2+E, Z—EE(].,B)

Hence Rolle’s theorem is verified.

X

Department of Mathematics
Uttarakhand Open University Page 74



CALCULUS MT(N) 101

If we take [1, 2]then, the point x = 2—i e, 2)and f (x)=0at this

V3
point. And if we take[2, 3], thenx =2 +% € (2,3) for which f (x) =0
at this point.

Example 3. Verify Rolle’s theorem in the case of functions:
() f(x)=sinx, xel0,7r]
(i) f(x)=(x—a)"(x—b)",where m and n are positive
integers and x €[a,b].

(i)  f()=x(x+3)e 2, xe[-3.0]

Solution.
0] The function f (x) =sin x is continuous in [0,7z]and also
differentiable in (0, 7) . Also
f(0)=f(r)=0.
Thus all the three conditions of Rolle’s theorem are satisfied. Hence at
least one value of x in (0, ) such that f (x) =0. Now
3z + 5z

f'(x)=0=cosx=0=> x=22 +% 4%
2 2 2

Since % € (0, 7) . Hence Rolle’s theorem is verified.

(i)  We have f(x)=(x—a)"(x—b)", where m and n are
positive integers. Here f (x) is a

polynomial in x of degree m + n. So f (x) is continuous in [a, b] and is
differentiable in (a, b). Also f (a) =f (b) = 0.
Thus all the three conditions of Rolle’s theorem are satisfied so there
exists at least one point x in (a, b) such that f (x) =0. Now
f'(xX)=(x-a)"n(x—b)""+m(x-a)"*(x-b)"=0
=(x—a)"(x—=b)"{n(x—a)+m(x-b)}=0
=(x-a)""(x—-b)"*{-na-mb+(m+n)x}=0

mb + na
=X=a, X=b, x=
(m+n)
We see that x = Tr:Jr Ea € (a,b) which divide the interval in the ratio
+

of m : n. Hence Rolle’s theorem is verified.
(iii)  Here f(x)= x(x+3)e% . So
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Fr ) =(x"+ 3x)e%.(— %) L (2x+3)e 2

:[-%}(xz —x—6)e_%

which exist for every value in [-3, 0]. Hence f (x) is differentiable in (-
3, 0) and so it is continuous in [-3, 0]. Also f (-3) = f (0) = 0. Hence all
the conditions of Rolle’s theorem are satisfied. So, there exist at least
one point in (-3, 0) for which f (x) =0. Now

f'(x)=0:>(—%j(x2 _x-6)e 2 =0

=(x*-x-6)=0
=>XxX-3)(x+2)=0=>x=3,-2
The value x = -2 (-3,0) for which f (x) =0. Hence Rolle’s theorem
is verified.

Example 4.1f f:[-2,1]>Ris defined by f(x)=|x|, examine the
validity of Lagrange’s mean value theorem.

Solution. Herea=-2,b=1and f(x) =|x. So

() f (x) is continuous in [ -2, 1]
(i)  fis not differentiable in (-2, 1), for f is not differentiable at x
=0.
Hence the conditions of Lagrange’s mean value theorem are not
satisfied. Now
fb)y-f(d fO-f(-2) 1-2 1

b-a 1-(-2) 1+2 3
To search ce(—2,1)such that f (c) = —% . We have

—x, if -2,0
== 10| e
:>f'(X)={_l’ S

1, if xe[0,1]

Hence in either case, f (x) # —% for any xe(-2,1). Thus neither the

hypothesis nor the conclusion is valid.

Example 5. If f(x)=(x-1)(x-2)(x—3)and a =0, b =4, find ‘¢’
using Lagrange’s mean value theorem.

Solution. The function
f(X)=(x-1)(x-2)(x—-3)=x*-6x*+11x—6, s0
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f(a)=f(0)=-6
f(by=1(4)=6
N f(b)-f(a) _6-(-6) 12
b—a 4-0 4
Also  f (x)=3x*-12x+11 gives f (c) =3c*-12¢c+11. Putting
these values in Lagrange’s mean value theorem we get

sz'(c), a<c<b
b-a

3=3c?-12c+11
=3c?-12¢c+8=0

12 + /144 - 96 2.3
Cc= 6 :CZZiT

as both the values of c lies in (0, 4), so both of these values of c are the
required values of c.

-3

Example 6.Compute the value of #in the first mean value theorem
f(x+h)=f(X)+hf (x+0h),if f(x)=ax*+bx+c

Solution. Here the function f(x) =ax® +bx+c, o)
f(x+h)=a(x+h)*> +b(x+h)+cand
f'(X)=2ax+b=f (x+6h)=2a(x+6h)+b. Substituting all these
valuesin f(x+h)=f(x)+hf (x+8&h)
a(x+h)? +b(x+h)+c=ax’+bx+c+h[2a(x+6&h)+b] (A)
The relation (A) is true for all values of x. Hence when x — 0 we get
ah? +bh+c=c+h[2aéh+Db]

= ah® =2aéh?

1

=0==
2

Hence 9:3_
2

Example 7. Verify Cauchy’s mean value theorem for the functions x>
and x%in[1, 2].

Solution.Let f (x) = x*and g(x) = x*, then f (x) and g(x)are
continuous in [1, 2] and differentiable in (1, 2). Also g (x) =3x* #0
for any x €(, 2).Hence by Cauchy’s mean value theorem there exists
at least one ¢ (1, 2)such that

f@)-f@ _ f (o)

9(2)-9@® g (c)
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-1_f()_2c_2
81 g (c) -3¢ 3¢

3_2
73

:>9c=l4:>c=1§e @ 2).
Example 8. If in the Cauchy’s mean Value theorem, we write
(i)  f(x)=+/xandg(x)=
\/—
aand b. And if

,then c is the geometric mean of

(i) f(x) =1and g(x) =i2,then c is the harmonic mean of a
X X

and b.
Solution.
0] Cauchy’s mean value theorem states
f(b)-f(a) _ f(c) (1)
gb)-g(@ g ()
. 1
Given f()=vxXandg(x)=——, so that f (x)=—and
(x) 9(x) x (x) = 2 /x
g(x) = —Lg. Putting these values in (1) we get
2.x4
1
Jb-+a B 2+c _c% _ ¢
111k

—+Jab=-c=>c=+ab. Therefore c is the geometric mean of a and b.

(i)  Given f(x)=1andg(x)=i2,so that f (x)= ——and
X X

g(x) = —%. Putting these
X

values in (1) we get

111
b a _ ¢ _¢
1 1 2 2
b? a? ¢
ab ¢
(a+b) 2
_2ab
(a+b)’

Therefore c is the harmonic mean of a and b.
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4.8 SUMMARY

In this unit we have explain the Rolle’s theorem Lagrange’s mean
value theorem,Cauchy’s theorem,and its geometrical interpretation. In
this unit also discussed Mean value theorems of higher derivatives.

1. Rolle’s theorem:

If f (x) is a real valued function defined in the closed interval [a, b]

such that
(i)
(i)
(iii)

f (x) is continuous in the closed interval [a, b].

f (x) is differentiable in the open interval (a, b).

f (a) = f (b), then there exists at least one value of x say c
where a<c<b, such that f°(c) = 0.

2. Lagrange’s mean value theorem

If a real valued function f (x) defined on [a, b] such that

(i)
(if)

f (x) is continuous on [a, b].
f (x) is differentiable in (a, b).

Then there exists a point ce(a, b) such that

f(b)-f(a) _

b-a

=1 ()

3. Cauchy’s mean value theorem

Let f (x) and g (x) be two functions defined on [a, b] such that

(1)
(i)
(i)

f (x) and g (x) are continuous on [a, b]
f (x) and g (x) are differentiable on (a, b) and

g (x)#0, Vxe(ab),

Then there exists a point ¢ € (a,b), such that

fl)-f(@) _ ()

g)-g@ g

4.9 GLOSSARY

i.  Sets-Well defined collection of objects
ii.  Continuous-sketch its curve on a graph without lifting your pen
even once
iii.  Discontinuity-lack of continuity
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CHECK YOUR PROGRESS

1. Rolle’s theorem is applicable for f(x) =sin x in [O, 27[].T/F
2. Rolle’s theorem is applicable for f (x) =| x| in[-1, 1].T/F

3. Lagrange’s mean value theorem is applicable for f (X) :| X| in

[-1 1].T/F
4. Rolle’s theorem is not applicable for f(x) = x(x+2) ef% in
[-2,0].T/F

5. The value of ‘c’ of Lagrange’s mean value theorem for the
function f (x) = 2x* +3x+4 in[L, 2]isc = % TIF

4.12 TERMINAL QUESTIONS

(TQ-1) Verify Lagrange’s mean value theorem for the function
f :[-1 1] —» Rgiven by f(x)=x°.
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(TQ-2)

(TQ-3)

(TQ-4)

(TQ-5)

(TQ-6)

(TQ-7)

(TQ-8)

(TQ-9)

(TQ-10)

Verify Rolle’s theorem for the following functions:

(i) f(x)=(x—4)°(x-3)* in[3, 4]

(i) f(x)=x*-4in[-2, 2]

(i) f(x)=e"[sin x—cosx] in [[5,5—”}
4 4

(iv)  f(x)=10x—-x” in [0, 10]

Discuss the applicability of Rolle’s theorem for the

function

x*—4, if 0<x<1
f(x) = )

3—-x, if 1<x<£2
Verify the truth of the Rolle’s theorem for the function
f(x)=[x—2 in [1, 3]. Justify your answer with correct
reason.

Iff(x):lin [-1, 1], will the Lagrange’s mean value
X

theorem be applicable to f (x)?
Find ¢ of the Lagrange’s mean value theorem if

f(X)=x(x-D)(x-2);a=0,b =%.

Find c of the Lagrange’s mean value theorem when
(i) f(x)=x>-3x-2in[-2, 3]

(ii) f(x)=2x*+3x+4in[1, 2]

(iii) f(x)=x(x-1) in[1, 2]

2
If £(x) = £(0)+x f '(0)+% £(0x), find the value of @

1 p— %
as x —1,f(x) being (x-1)"2.
2

Iff(x+h)=f(x)+hf'(x)+%f"(x+0h),find the

value of @ as x — a, f (x) being (x — a)% :
Verify Rolle’s theorem for f (x) = X (x+3)e 2 in [-3, o],

FILL IN THE BLANKS

(TQ-11)

(TQ-12)

In Rolle’s theorem if f (x) is continuous in [a, b],
differentiable in (a, b) and f (@ = f (b) then
In Lagrange’s mean value theorem if f (x) is continuous
in [a, b], differentiable in (a, b) then there exists ce(a, b)
such that .........coccovvieiincinnn
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(TQ-13) In Cauchy’s mean value theorem if f (x) and g (x) are
continuous in [a, b], differentiable in (a, b) and

g (x)=0 Vxe(a, b) then Jce(a, b) such that

(TQ-14) The remainder term in the Taylor’s theorem with
Lagrange’s form of remainder is ...........ccccevvverenene

(TQ-15) The remainder term in the Taylor’s theorem with
Cauchy’s form of remainder is ...........cceeeveeeveenenenes

MULTIPLE CHOICE QUESTIONS

(TQ-16)  The value of ‘c’ of Rolle’s theorem for the function
f(x) =e*sin x in [0, x]is given by

3z T

C=—— C=—

a) 4 b) 4
T 5x
C=— C=—

c) 2 d) 6

(TQ-17) The value of ‘¢’ of Lagrange’s mean value theorem for
the function f(x) =x(x-1) in [1, 2]is given by

5 3

c=— c=—

a) 4 b) 2

7 11

c=— c==—"

C) 4 d) 6
(TQ-18) The function f(x) =sin x is increasing in the interval

T

O, T l:oa _j|

o [0, 7] by %2
b 5l
T — T

c) L4 4 d L2

(TQ-19) Out of the following functions, tell the function for which
the conditions of Rolle’s theorem are satisfied.

a) fO)=[x[in[-1,1] by f()=x%n[2 3]
c) f(x)=sin xin[O, 7z] d) f(x)=tanx in[O, 72']

(TQ-20) In Taylor’s theorem with Cauchy’s form of remainder, the
remainder term is

hrl

: (L-6)"" 1" (a+oh)
@) h—l(l—e)”‘lf(”)(a+9h) by n-u
n:
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hrl
n 1—0n_lf(n) a+a&h
c) h 1-60)"f ™ (a+6h) d) n—1!( ) ( )
n-11

4.13 ANSWERS
CHECK YOUR PROGRESS
SCQL. T
SCQ2. F
SCQ3. F
SCQ4. F
SCQ5. F
TERMINAL QUESTIONS
(TQ-1) Lagrange’s mean value theorem is truly verified.

(TQ-2) Rolle’s theorem is verified in each case.

(TQ-3) The given function is not differentiable at x = 1 and so
Rolle’s theorem is not applicable to the given function in
[0, 2].

(TQ-4) The function does not satisfy the second condition of the
Rolle’s theorem that f (x) must be differentiable in (1, 3).

(TQ-5) Not applicable.

(TQ-6) c=1- % :

(TQ-7) () £ % (i) 35 (i) 3.
(TQ8) 0= % .

(TQ-9) - % .

(TQ-10)  Rolle’s theorem is verified.
(TQ-16) 3ce(a, b)suchthat f (c)=0

117y TO=T@_ ¢
b—a
fb)-f(a) f(c)

T e "5

(TQ-19) % f™(a+6h)

hrl

T -0 f™(@+on)

(TQ-20)
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(TQ-21)  (a)
(TQ-22) (b)
(TQ-23) (b)
(TQ-24) ()
(TQ-25)  (d)
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UNIT-5:- INDETERMINATE FORMS

CONTENTS:-

5.1  Objectives

5.2 Introduction

5.3  The evaluating procedures of limit of different
Indeterminate forms

5.4  L’Hospital’s Rule

5.5  Other Indeterminate forms

5.6  The forms 0°, 1% and oo

5.7  Evaluation of exponential limits of the form 1*

5.8  Summary

5.9 Glossary

5.10 References

5.11 Suggested readings

5.12 Terminal questions

5.13 Answers

5.1 INTRODUCTION

Indeterminate Forms is found in English as a chapter title in
1841 in An Elementary Treatise on Curves, Functions, and Forces by

. . . 0 .
Benjamin Pierce. Forms such as —are called singular values and

singular forms in in 1849 in An Introduction to the Differential and
Integral Calculus, 2nd ed., by James Thomson. In this unit we shall
study some unusual forms. Generally, these are undefined forms, so
are called “Indeterminate forms”. We cannot find their actual value,
but we try to find their limiting value with different methods.

There are seven standard indeterminate forms:

,0 X 00,00 —00,0%000and 1®

olo

818

Let us discuss the case ofg

Suppose we have g x € R.. We generally say that

X

= 1 .. (1)
gz 0 . (2
% = too, depending upon the signof x.  ...(3)

If we put x = 0 in equation (1), (2) and (3), we get
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Il
Uy

= 400 0or —

olocoloo|o
I
o

You might have confused what is happening!
Actually division by ‘0’ is not permissible. It means it is impossible to

define the case% !

Again we know that
12=1x1=1
1B¥P=1x1x1=1

1I"=1x1x..x1=1
n times

Generally we say that if we multiply 1 with itself any number of times,
it will be 1. But it is true only for finite n. We shall discuss ahead that
the limiting value of 1* goes towards exponential (e) !

Also we can discuss another three possible cases as (x > 0)

x—x=0 ...(4)
0 —x =+ ...(5)
X— 0 =-0m ...(6)

But when we take x = oo in the equation (4), (5) and (6), we get the
absurd results,
oco—o00=1(
0 — 00 = 400
o0 — 00 = —00
So, we have discussed some of the cases, which justify that why these
forms are indeterminate!

5.2 OBJECTIVES

After complition of this unit, we shall understand

i.  The nature of indeterminate forms.

ii. Standard indeterminate forms: % , % 0 X oo, 00o—00,0200°,

and 1.
iii.  The evaluating procedures of limits of different indeterminate
forms by Algebraic Methods and L Hospital’s Rule.

iv.  L’Hospital’s Rule for %and %
v.  Exponential forms.
vi.  Limits of other indeterminate forms.
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53 THE EVALUATING PROCEDURES OF
LIMITS OF DIFFERENT
INDETERMINATE FORMS

Algebraic Methods

In cases where the expansion of functions involved are known, or some
of the limits are known, algebraic method may be used to solve the
problems. The following expansions should be remembered:

2 3
2t 3l
2 3 4
. log(1+x)=x—x?+x?—x:+---oo, x| <1

2 3 4
. log(l—x)=—(x+x?+x?+x:+---oo), x| <1

. x3 x5 X7

* SImx=x—+tg oyt ®
x®

o cosx—l——+—'——+ * 0

. tanx=x+—+—+---
3 15

e (x+a)"="Cox"+"Ci1x"ta+"Cox"%a%+ ... +"Cx""a” + ...
+ "Cha™

e (I1+x)"=1+nx+ ( )x +n(n_13)l(n_2)x3+---.

e (1—x) 1—1+x+x +x +oe, lxl <1

. x=1+xloga+;(loga)2 ;(loga)3+

54 L’HOSPITAL’S RULE

We shall discuss Taylor’s series in the Block Il inspired by this
result, the famous French mathematicians De L’Hospital devised a

method to find the values of lim —=~ () in the forms 9 and =2
X—>a g(x) 0 oo

Case I: Let us see how it works, with the help of Taylor’s

series. We take the form % .

Let us take lim gé ; where f(a) =0, g(a) =0 and both
x—a X

functions are indefinitely differentiable at x = a.

f) . fla+x-a)0
9lcl—>a g(x) 3161—1}21 g(a + (x — a)) [6 form]
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f@+ %D i) + B2 gy 4
(a)+(" %;(H% "(a) + -

e )+( D fra)+ -

= lim

= lim as f(a) =0
x-a (x a) '(CL)+( 51 a)? gn(a)+
=g(a)
(- a)f' (@) +E5 D (e +-
= e (x — a)
(x - a)g'(a) + g"(a) + -
Taking (x — a) as common factor, we get
llmM
x—>ag(x)
i f'@+ 8 (@) + - "
= l1im
g (@) + (x — a) g"(a) +-
f ( ) , provided bothf (a)andg’(a)are simultaneously not zero.
y @ f(x)
im = lim (2)

xsag(x) x-ag (x)
If f'(a) = 0 = g'(a), then again from equation (1), we have

NG o @ ) + EZ D prr(g) 4
m-—-= 1llm
wag®)  xea| (o) a) g"(a) + & 30 =)k g"(a)+ -

(x—a) [f!l( )+ ) f”'(a)+ ]
TG =
x—a X a //(a)_l_— "'(a)+---]

2! 3
[+ E54 @)+ -

- chl_r)r(ll [g”(a)+( 3a) gm(a)_|_...]

= _g : : Eg provided bothf” (a)and g” (a)are simutaneously not zero.

f&) f"'(x)
= 3lcl—>a g(x) 3lc—>a g'(x)
Continuing in this way, we can get
fe) ™M)
lim = lim ———.
xsag(x)  xa g™ (x)

Similarly, we can find the same expression in case of g
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Note:(1) L’Hospital’s rule is totally different from the quotient law of
differentiation. There is a solid logical base that why we only
differentiate numerator and denominator directly, instead of using
quotient law of differentiation.

(2) It must be clearly remembered that L’Hospital’s method be used
only in the situations of % and 2 not in other cases.

o0
(3) In L’Hospital’s rule, numerator f(x) and denominator g(x) are to be
differentiated separately.
M1t may be helpful for learners that
log,1=0,log, 0 =—o0,log, oo =+0,e’ =1,6™ =0, e” =,

. Sin X
Ex.1 Evaluate lim —=
x—0 X
. SinXx . 0
Sol. Clearly, lim —= isa — form.
x>0 ¥ 0

Algebraic Method:

sin x

lim = lim '
x-0 X x—0 ) Jg 6
x4 x* x
XP—§+§—ﬁ+ 4
= lim
x—0 X
x? x* x®
=!3£%[1—§+§7+ ]
= 1.
L’Hospital’sRule:
_ sinx _ (sinx)’  cosx
lim —— = lim — = lim =
x-0 X x>0 (x) x-0 1

Note: In second method, dash (') above sinx and x represents the first
derivative with respect to x (variable with respect to the limit has been
taken).

Ex.2 Evaluate lim log x
x—>0 x —1
Sol. Clearly, lim log x isa (gj form.
x>0 x —1 0

Algebraic Method:

i logx i log(1+ (x — 1))

xl—rgx—l_xl—rg (x-1)

_1\2 _1)3 _1\4
| (x—l)—(x 21) +(x 31) _(x 41) +}
= lim G-1
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(x—1){1—(x_1)1+(x_1)2—(x_1)3+--~}

= lim 2 & ki
 x-1 (x—1)
: (-1 -1? x-1)°
_}clinl{l_ 2 T3 T
=1
L’Hospital’s Rule:

logx . (logx)" I (%)

o1 MGy amy =t
Ex3 Find im 231X
x—0 X

Sol.  Algebraic Method:
3 5 7

x3 x° x 0
L Gosinn b-(-Sts—mtoe))  Glom
im——— = = lim

x—0 x3 x—0 x3
x3 x> x7
{W BT T °°}
= lim 3
x—0 X
(1 x%  x*
YEITE T T
= lim 3
x—0 X
_ 1 x* x*
B ETR T TR
1 1
ET
L’Hospital’s Rule:
. (x—sinx) (x—sinx)’
lim = = A
x—0 X x—0 (x3)
— (1 —cosx)
- xllr(l) 3x2
i (1 —cosx)’
B xl—r>r(l) (3x2)'
_ {=(=sinx)}
= lim ——
x—0 6x
i (sinx)’
= 250 (6x)
~ i (cos x)
B xl—r>r(1) 6
1
=z
T - |
Ex.4 Find lim
x—0 X
Sol.  Algebraic Method:
2 3 0
ot 1 {1+x+%+%+---}—1 (g form)
lim = lim —
x—0 X x—0 X
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x2 23
_ {x +ortgt }
= lim
x—0 X
xt x?
. X {1 + o7 + 37 + }
= lim
x—0 X
Xl 52
L’Hospital’s Method:
eX —1 o (e*=1) e~
lim = lim — = lim—= 1
x—0 X x—0 (x) x—0
Ex.5 Evaluate Iim0 XCosX— Ig)g(1+ X)
X—> X
Sol.  Algebraic Method:
. xcos x —log(1 + x) 0
lim > 0
x—0 X form
x? xt «f x2 a3 xt
. "(1 IR TR ) - (x—7+?—z+ )
= lim >
x—0 X
P T I 2 3
_ (x— 21 +m—§+'“) - (x—7+?—z+ )
= lim >
x—0 X
211
5~ (? + §) x3 + termscontaininghigherpowersofx
= lim : >
x—0 X
x? {% - %x + termscontainingx}
= lim >
x—0 X
= li {1 > +t taini }
= lim {5 — Zx + terms containing x
1
>
L’Hospital’s Rule:
xcos x —log(1 + x °
lim Zg( ) 5 form
x—0 X
. {xcosx —log(1 + x)}
= lim N
%0 @)
1 — x(si 1 2 form)
~ Lcosx x(sin x) T+ 0 o
= lim
x—0 2x
(cosx — xsinx — ﬁ)'
= lim -
x—0 (2x)
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—sinx — (1.sinx + x.cosx) + (1—:—x)2
= lim
x—0 2
) 1
_ — 2sinx — x.cosx +m
= lim
x—0 2

Note: Observe that L’Hospital’s rule is sometimes easier than the
algebraic method. We will explain next examples only by L Hospital’s
rule.

2
Ex.6 EvaluatelimM
x>0 |og cos x

2

Sol. limgd=x)

x—0 log cosx

Sole
=
3

{log(1 — x?)}’
~ x>0 (logcosx)’

)

(1—x2)

x>0 (—Sinx
{ COS X }
2X COS X

*50 (1 —x2)sinx
2(1.cosx — x.sinx)

Rt (=2x).sinx + (1 — x2).cosx
2cosx —2xsinx

= lim - )
x-0—2xsSinx + cosx — x 2cosx
= —-—== 2
1
e )" -1
Ex.7 Find lim L
x—0 X
. 1+x)"-1 . 1+x)"-1
Sol.  lim &2y (4D - ¥
x—0 x x=0 {x}
- on(l+x)"?
=lim———
x—-0
=n
.oat=x?
Ex.8 Evaluate lim
x—0 XX _ aa
.a¥—x% .. (a®-x%)r .. a*loga-ax®!
Sol. - im e = Iim ey = M o logxen)

_a%loga —a. a™ ! _a%(loga—1) loga—1
~ a%loga+a®  a%(loga+1) loga+1
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Note: The first derivate of x* in above example calculated as follows:
y=x*
Taking logarithms
logy = xlogx
Now differentiating both sides with respect to x

1(dy)—1 +1
5\ qy) = losx

d
(%) =y(logx + 1) = x*(logx + 1).

Ex9 Evaluate fim 251 X = 7SI 2+ 3sin 3x

X0 tan x — x
Sol lim 5sin x—7 sin 2x+3 sin 3x
) X—0 tan x
~ (5sinx — 7sin2x + 3sin3x)’
= lim -
x—0 (tanx — x)
.. 5cosx—7Xx2cos2x+3x3cos3x
~ sec?x—1
~ (5cosx —14cos2x + 9cos3x)’
= lim y
x—0 (sec?x—1)
I —5sinx + 14.2sin 2x — 9.3 sin 3x
= lim
x—0 2secxtanx
I —5cosx + 28.2cos2x — 27.3 cos 3x
= lim
x-0 2(secx sec?x + sec x tan x tan x)
_ —5+56-81 -30 15
= 2 == .
. eX _esmx
Ex.10 Evaluate lm ——
x=0 X —8In X
Sol. lim&=t— = |im&=_Y
x—0 X—sinx x—0 (x—sinx)s

eX — cosx.eSinx

= lim
x=0 1—cosx
y (e* — cosx.eSnx)’

= lim
x>0 (1 —cosx)'

e* — {cosx.cosx.e’"™* + (—sinx).e%"*}

= lim :
x—0 ~ sinx .
. {e* —cos?x.eS™* + sin x. eSN*Y
= lim - y
x=0 (sinx)
y e — {2 cos x . (—sin x).eS"* + cos3 x.esm"} + {cosx. e¥'"* + sin x cos x. e5" ¥}
= lim
x—0 . COSX .
~ e*+ 3sinxcosx. eS"* — cos3 x.eSM* + cosx. eSIN¥
= lim
X0 cos x
1-1+1
1
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Case Il: Formz

2
Ex.11 Evaluate fm —" ">
o n® +4n+3

2

Sol.  Clearly, lim 2n—+5is a 2 form.

e n® +4n+3 0
Algebraic Method:
n*+5 n? (1

lim———= lim
S0 N2 —00
n-oon? +4n+ 3 n-w o (1

L’Hospital’s Method:

y n?+5
nlen? + 4n + 3
" (n? +5)’
o (n2 + 4n + 3)'
2n i o
— lim (Again
n-o 2n + 4 form)
_ 5 (2n)’
Tl (2n + 4)

2
= lim—
n—-oo
=1.
Ex.12 Evaluate lim Ioﬂ
x=>0 cot X

Sol.  This is of the form g We have therefore,

, 1

log x ~ (log x) ) (})
im—— = lim = lim —=—
x~0cotx  x-0(cotx)  x-0—cosec?x

~ —sin®x /0
= lim (— form)

(2 forn)

(0]

x>0 X 0
—2sin x cos x
=lim——— =0
x—0 1
log(x — %)
Ex.13 Find lim 2
L7 tanx
2
log(x — %)
Sol. lim — 2" is a = form.

ot tanx o

We have,
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Ex.14 Evaluate fim —0%X=28)_
Mog(e” —ef)

Sol. limm(f form) = lim -Jog&=a)r

xX—-a log(ex—ea) o) x—a (log(ex—ea))/

@ /0
= (e*—e?)
N xl—r};ll [(x_a)ex]’
ex

= lim
x~a (x —a)e* +e*

ex
=5 [(x — a) + 1]e*

) 1
Mo+ 1

=1

X 3

Ex.15 Find lim &%
e 4g* 4+ 4X

. e*43x3 (oo
Sol. lim (— form)
n-oo 4e*¥+4x \

. (e*+3x3)
= m e +
ex+_9x2(f form)
o0
= e v ay
e* +18x! ;0

= lim —(; form)
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(e +18xY)
e (4ex)’
(e*+18) o0
(S

2
Ex.16 Evaluate lim M
x>0 Jog(tan © x)

Sol.  We have,
log(tan?2x) o0 ~ 2log(tan 2x) ,o0
20 log(tan?x) (gform) B }cl—r>r(1) 2log(tan x) (gform)
1
— lim (log(tan 2x))’ o (—tan Zx) .2 sec?2x
x-0 (log(tanx))’  x-0 ( ) sec?x
tanx/°
2tan x cos’x . 2sinxcosx

=lim——————— = lim—
x—-0tan 2x cos?2x  x—0sin 2x cos 2x
sin 2x

=lim—— = lim =—=
x-0Sin 2x cos 2x x-0cos2x 1

Ex.17 Evaluate lim M
x>0 cot X
Sol.  We have,
~ log(sinx) ,o0 ~ (log(sinx))"’
lim ——— (— form) = lim———
x-0 cotx 00 x—0 (COt x)
———.CO0S X COS X
= limsmx—2 = lim (— - .sinzx)
x—0 —cosec?x x=0 sin x

= lim(—cosx.sinx) = 0.
x—0
n

Ex.18 Find lim X—X where n is a positive integer.

n%we
Sol.  We have,
' x™ ;00 ' x™)! ' nx™ 1 oo
lim = (55 form) = lim =55 = lim = (- form)
(mx™ 1) nan-1)x""? 0
= 1m—(5 form)

- 311—1;1;10 (ex), n—oo eX

- (n(n— Dx™2)
e (en)

= lim ~
n—->00 e
Repeating this process, we get
y (n(n—1)(n —2) ...n factors)
= lim

n—oo ex

nn—-—1)mn-2)x"3 (g form)
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n! n! nl
=lim—=—=—=0.
n—-oo ex eoo (0]

Ex.19 Find fim 10951 2X
x>0 log sin x
Sol.  We have,
log sin 2x (oo )

- form

im :

x-0 logsinx

(logsin 2x)’

= lim——F
x-0 (logsinx)

.COS 2x)

_ }Cl_r,% (sin12x
(

- . COS X)
sinx

— lim 2 cot2x (fform)

= lim—
x-0 (cotx)’
~ —4 cosec? 2x 0
= hm—z(— form)
x-0 —cosec?x \oo
4 sin®x
= lim —
x—-0 Sin%2x
4 sin’x

= lim
x-0 (2 sin x cos x)2

= lim > = 1
x-0C0S“X
Ex.20 Find fim 9% as1.

i)
x—o  gX

Sol.  We have,

lim log x (oo ) ~ (logx)

xX—o00 A

= i

xlj?oaxloga
B 1 Y 1
B logaxl—{?ox a*

x0=0.

B loga

5.5 OTHER INDETERMINATE FORMS

Forms 0 X oo and oo — oo

These forms can easily be reduced either to the form %ori, and then
o0

apply previous method.
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N Consider  lim f(x).g(x), when Ilm f(x)=0 and
Iim g(x) = oo, then

hmf(x) g(x) (0 x oo form) = 11m f&) ( form )
(g(x))
Or

hm f(x) g(x) (0 X o0 form) = 11m g(lx) ( form)
(f (x))

Consider liin flx)—g),
when Jlg?:}(ic) = oo, and )lcllr‘ll g(x) = oo, then
lim £ (x) = g(x) (0 — o form)
~ lim f&). g()[f (x) — g(x)]
x-a f(x). g(x)

(f(x) - g(x))
~ lim f(x).g(x)

o),
f) gl
(f(x)- gx)  fQo). g(X))

vere)

1
_ (m i f (x))( form)
f (X)-g(x)>

Ex.21 Evaluate Iim0 xlog x=0.

Sol.  We have,
= Iim xlog x (0 x oo form)

= lim 2= log X 2 form | = 1im 408X
x—0 (1) o0 x—>0 (;)’
X
1
= lim—(x)

x—0 1 2
-()
= lim(—x) =0.
x—0
Ex.22. Evaluate lim (sec x — tan x).

X—=
2

= lim

x—-a

Sol.We have,
lim (sec x — tan x) (oo — oo form) = lim (1_ il Xj (9 formj
s T\ COS X 0

2
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(1 —sinx)’
= lim————
x> (cosx)’
. —cosx
= lim - =
x_,% —sinx

56 THE FORMS 0% 1%° AND oo®

These indeterminate forms can be made to depend upon one of the
previous forms.
Consider, y = f(x)9®, taking logarithm

logy = g(x)log f(x)
In any of the above forms, log y takes the form 0 X co.

lim [1+—j .
Ex.23 Evaluate "\ X
a X
Sol.  Let(1+2) (1=form) =L
_ a
logL = J11_)r£}7 {x log(l + ;)} (0 X o form)

a
= lim M(g form)

X—00 1
g
@+ (max?)
= lim =
X—00 —X

= lim a (1 +g)_1 = a.

X—>00

Therefore, logL =a = L = e?.
1

Ex.24 Evaluate Iirrl) (cos ecx)@ (0° form)

1
Sol. Lety= lim(cosec x)logx (0 form)
x—

1 %
logy = }Cli%@ (logcosec x) (g form)

. (cosec x)(—cosec X cotx)
R 1

X

= 0
N }cl—% tan x (6 f/orm)
T €Ol

x-0 (tan x)’

) -1

= lim 5
x-0 sec2x
= —1.

Therefore, y = e ! = é
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1
w2

Ex.25 Evaluate Iimo(cos X)

Sol.  Let }Ci_r)r&(cos x)xiz (1* form) = y.
. logcosx (0
oy =1 (1 o)
—tanx
= lim
x-0 2X
1. tanx -1
B e
Hence,y =ez.
5.7 EVALUATION OF EXPONENTIAL LIMITS

OF THE FORM 1°

To evaluate the exponential form 1%, we use the following procedures:
If lim f(x)=Iim g(x) =0, then
X—a X—a

: 1
lim {1+ f (X)}o0 =€
X—a

fim1 ()

Or,

When lim f(x) =1and lim g(x) = oo then

xXx—-a

X—a X

lim f(x)9™ = lim (1 + f(x) - 1)9@ =

eU@DI® (8)

Ex.26 Evaluate lim (1+ X)*.

Sol.

Here, f(x) = x, and g(x) = x.
Clearly, lim f(x) =0,limg(x) =0
x—a x—a

1 . X
Hence, lirr&(l + x)x = ealcl%z{using equation (7)}
x—

= e.

Ex.27 Find lim

lim (1 + %)x

Sol.  Here, f(x) = %, and g(x) = %.Hm f(x) = lim i =
X—>00 X—>00

0and lim g(x) = lim 1 = 0.Hence,
X— 00 XxX—00 X

X— 00

x . f(x) L x
lim (1 + —) _ MGy - imT
X

1
Ex.28 Find lim(1 + Ax)=.
xX—

Sol.

1

Here, f(x) =1+ Ax,and g(x) = -

lim f(x) =lim(1+ Ax) = 1,and lim g(x) =lim 2= .
x—-0 x-0 x—-0 x-0X
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. 1 lim 2%
Hence, lim (1 + Ax)x = exsbx = e’
X—

Ex.29 Find lim (1+ %)x

X— 00

Sol.  We have,
fG) = 1+%and g(x) = x.
lim f(x) = lim (1 + &) = 1and lim g(x) = lim x = oo.
X—00 X—00 X—00

A
lim=. x 2
= ex—-ax = e,

Hence, lim (

X—00
X

Ex.30 Evaluate: lim

(
(1

+
Sol.  We have, lim +

X—00

) lim E.x 2
= @Xx—>0X = e-.
+

X— 00
+6
Sol. Asx — oo, lim x—1

x—oo X+

X+6 x+4
lim( )
x>0 \X + 1

x+6 ke 5\
(1 () (1)
x>0 x+1 x—00 +1

= e}i’&(xﬂ)(’”“)

Ex.31 Evaluate: lim ( )
=1land (x +4) >

= oSim ()
+4 [ee)
Consider, ;l_{glo (x+1) (;form)
(x+4) 1

“ ey AR

. X+4
Now, eSJLr&(xH) = e3(1) = p5,
o X
Ex.32 Evaluate: lim (ﬁ)
xX+2

lim
sol.  Jim (52)" = Jim (14 (52 -1))

-5
= lim (1 + )
x—00 X+ 2

X

. /-5
_ pdim (a)r
X
= e sggl—pgox+2
. . x [ x)! .1
Consider, lim —(— form) = lim - - = lim - = 1.
x>0 X+2 \ oo x—o00 (x+2) x—>oo 1

-5 lim —— g
Now, e ~“x-wx+z = 7>,

Ex.33 Evaluate: lirq(logg 3x)lo8x3
X—
Sol. lirri(log3 3x)lo8x3 = lin}(logg 3 +log; x)'o8x3
X— X—
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1
= lim(1 + logs x)lo8sx
x—-1
)lcl_l)rilog3x

1
=e Xlog3x = el_

5.8 SUMMARY

In this unit, we are familiar with the seven standard
indeterminate forms. We studied the limit of % as x — a, in general,

equal to the limit of the numerator divided by the limit of the
denominator. But when these two limits are both zero, this limit
reduces to % (meaningless). This does not imply that lim% IS
x—a
meaningless or it does not exist. Now, According to our plan we
understood the concept of limit (in previous unit) and evaluation of
limits of different forms and then the existence of limits. After
understanding this unit, we summarize the results to problems of

evaluation of limits as follows:

(1)  Algebraic Limits: Limits of algebraic forms are further sub-
classified as

M % form : These form are based on

(a) Factorization Method: In this method numerators
and denominators are factorized. The common
factors are cancelled and the rest output is result.

(b) Rationalization Method: When we have fractional
powers on expressions in numerator or denominator
or in both, rationalize it. After rationalization the
terms are factorized which on cancellation gives the
result.

(c) Standard Formula:

limZ— =
x->a X—a
na™ 1, where nis rational number .
(d) L’Hospital’s Rule:
@) e fr)
lim e = m ey

But, if it again take form % then

lim Z2 = 1im 22 = 1im 22 Wang this process is
x»agd(x) x-ag'(x) x-agx)

. . 0 .
continued till 5 form is removed.

provided the later limit exists.

(i) = form:

(a) These types of problems are solved by taking the
highest power of the terms tending to infinity as
common numerator and denominator. After that
they are cancelled and the rest output is the result.
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(b) L’Hospital’s Rule:
lim £ = |jm £ (x), provided the later limit exists.
x-agx) x-ag'(
But, if it again takes; formthen
lim £ = Jjm 22 = iy L2
x-a g(x) x—»gog’(x) x—a g'(x)
continued till —form is removed.

(ili) oo —oo form :

(a) Such problems are simplified (rationalization etc.)

first, thereafter they generally acquire 03 or E form.

2 Trigonometric Limits:
(1 To evaluate trigonometric limits the following

results are very important.
sin x

—=and this process is

(a) li }Hotx =1
anx __
© i = 1

(©) llr% cosx =1

(d)l 1COSX_0.

x—>0 X
(i) Expansion  Method:  Sometimes  following
expansions are useful for evaluating the
trigonometric limits.
x3 x5 x7
sin x —x—§+§—?+
B x? x* x©
cosx =1-— §+$_a+
tanx =x + x + 2 +-
anx =x 3 15
+ X + 3 + -
= —_ _— - 00,
sin™ x X 6 40
x3 x5 X7
sinhx=x+——-+—+—-+"

3! 5! 7!
x? xt xS
coshx = 1+7+E+5+

(i) If 02 or g form, then apply L’Hospital’s Rule.
3 Logarithmic Limits:
Q) Expansion Method: To evaluate logarithmic

limit the following expansions are useful.
2 3 4

log(1 + x) +2 -y
BT EXT T Ty ’
|x] < 1.

x? x3 x*
log(l—x)=—<x+7+?+z+-~oo>,
|x] < 1.
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iy If 03 or = form, then apply L’Hospital’s Rule.

(4)  Exponential Limits:

Q) Expansion Method:
x? x3
e* = 14‘X'+'§?+'§T'F'“00

(i)  Standard Formula: Sometimes we use the
following results.

. e*-1
(@) }CI_I)% —=1

(b) lim =2 = 1.
x-0 X
(i) 1% form:If lim f(x) =lim g(x) = 0, then
x—a x—a

1 lim £

lim{1 + f(x)}9*) = ex-ag(®)

xX—a

Or, When lim f(x) = 1,and lim g(x) = oo, then
x—a x—a

li 9 = lim(1 —1)9®) = imF)-1g(x)
A SO = J(l + 700~ I = e

(iv)  L’Hospital’s Rule.

5) Some Important limits:

00, ifa>1
Q) lima* =1 1, ifa=1
e 0, if0<a<1

(i) If m and n are positive integers and a,, byare
non-zero real numbers, then

’ agx™ + a;x™ ot a1 x + apn,
im
x>0 box™+ b x" 14+ b, _1x+b,

0, m<n
Qg
—, m=n

0
©, m>nwhenayb, >0

—00, m>nwhenayb, <0

Il
_/\__\\

—_—

(iii)  Sometimes taking logarithm of both sides is
useful in case of the form0°,1* and «° (see
Example 24). In this case logy generally acquire
the form 0 x oo, which on simplifying gives the

0 %)
= or— form.
0 [o%e)
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5.9 GLOSSARY

Exponential:We know that
nn—-1) , nn-1)n-2) ,
x? + x3 4

1+x)"=1+nx+ T 3

Replacingx by % we get

(1+42) =14nl+ M(1)2 ) G (3)3 oo
n

] o ; 2! n ] 3! n
Taking limit as — oo , we have exponential e as

e=1 +%+%+%+ ---. The value of e is lies between 2 and 3(e =
2.718).

Indeterminate form: When the function involves the independent
variable in such a manner that for a certain assigned value of that
variable its value cannot be found by simple substituting that value of
the variable, the function is said to take an indeterminate form.

L’Hospital, Guillaume Francois Antoine, Marquis de(1661-1704)
French mathematician who in 1696 producedthe first textbook on
differential calculus. This, and asubsequent book on analytical
geometry, were standard textsfor much of the eighteenth century. The
first containsL’Hospital’s rule, known to be due to Johann Bernoulli,
who isthought to have agreed to keep the Marquis de
L’Hopitalinformed of his discoveries in return for financial support.

CHECK YOUR PROGRESS

1. 0°is an Indeterminate Form. True\False
Inx

2. lim — = 1 True\False
X—00
3. lim [1_03”] = = True\False
x—0 x 2
4, lir51+ x5"* =1 where I = (0, 00) True\False
X—

5. Let f be a differentiable on (0,00) and suppose that
lim (f(x) + f'(x)) = L then lim f(x) = L. True/False
X—00 X—00
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5.12 TERMINAL QUESTIONS

Choose only one correct option.

(TQ-1)  lim (0.752)*

(i 0.
(i)  +oo.
(il) —oo
(iv)  None of the above.
(v)
(TQ-2) }Ciiré(cot x )Sinx
(i) 0.
(i) + 1.
(iii) —1.

(iv) None of the above.

. X
(TQ-3) 7lll_r)r)lcg,x 0

(i 0

(i) 1

(i) is an indeterminate form.
(iv) Cannot be found.
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(TQ-4) Rational functlon I ),g(x) #0is

Q) Always an mdetermlnate form as x tends to oo.

(1) Always a determinate form as x tends to oo.

(i) May be determinate or indeterminate form as x
tends to oo.

(iv) Nothing can be said.

) . f) f1(x)
(TQ-5) }}E}, 76 }Cl_r)l(l) o , limit on R.H.S exists; is

(i) True in case f(a) = g(a) = »,a # 0.
(ii) False

(iii) True

(iv) True when £(0) = g(0) = 0.

(TQ-6) limx~lsinx
x—0

(i) 1
(ii) 0
(iii) Does not exist.
(iv) Not finite.

(1Q7)  lim

OF

(ii) g.

(iii) Depending on a not b.
(iv) Is an indeterminate form.

. ax?+9x
(TQ-8) }CIL% bx2+ 8x
N 9
O3,
(i) -

(iii) Depending on a not b.
(iv) Isan indeterminate form.

(TQ-9) llmF,a #=0and b # 0, is
- 9

()3

(ii) g.

(iii) Depending on a and b.

(iv) Is an indeterminate form.

(TQ-10) limx*
x—0

(1) 0

i) -1
(i) +1
(iv) oo,
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(TQ-11) Which are indeterminate forms?...........cccoceevviienieninnnnnns

5.13 ANSWERS:-

CHECK YOUR PROGRESS

SCQ1. True
SCQ2. False
SCQ3. True
SCQ4. True
SCQ5. True

TERMINAL QUESTIONS (TQ’S)
(TQ-1) (i)
(TQ-2)  (ii)
(TQ-3) (i)
(TQ-4) (i)
(TQ-5)  (iv)
(TQ-6) (i)
(TQ-7) (i)
(TQ-8) (i)
(TQ-9) (i)
(TQ-10) (i)
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UNIT-6:- SUCCESSIVE
DIFFERENTIATION

CONTENTS

6.1 Introduction

6.2  Objectives

6.3  Succesive differential coefficient
6.4  Standard Results

6.5  Succesive derivative with the help of partial fraction
6.6 Leibnitz’s theorem

6.7 Summary

6.8  Glossary

6.9  Terminal questions

6.10 References

6.11 Suggested readings

6.12  Answers

6.1 INTRODUCTION

Generally we differentiate a function y = f(x) one or two
times. But sometimes we need n'" derivative of that function. In this
chapter we shall try to find some general expressions of some standard
functions. Besides this, the evaluation of the n*derivative of product
of two functions is one of the targets of this chapter. Dutch
mathematician Leibnitz developed a method for product, which we
shall explore here. Actually, British mathematician Newton and Dutch
(Netherland’s citizen) Leibnitz were contemporary and both were
instrumental in the development of calculus. But Newton got almost all
the credit and is considered as ‘Father of Calculus’. Leibnitz could not
get due credit in mathematical fraternity. Here we shall learn one of the
famous works of Leibnitz.

6.2 OBJECTIVES:

After completion of this unit, we shall understand

i. n'" Differential coefficient of y(dependent variable) with
respect to x(independent variable).
ii.  The evaluating procedures of nt™hderivative of a function .
iii.  Some standard results on nt" differential coefficient.
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iv.  Successive derivatives with the help of partial fractions.
V. Leibnitz’s theorem for n™derivative of product of two
functions.

6.3 SUCCESSIVE DIFFERENTIATION

Let y=f(x) be a differentiable function. Then its first
derivative with respect to x is written as Z—i’ = f'(x)Similarly, second

2
derivative with respect to x is% = f"(x).In general, n th derivative

with respect to x is% = fM™(x).
Let us write = Dy = y, cy D?y = y,,and so on.
dx ! d,’fz !
So in general we can write % = D"y = y,.
The expression D™y also follows the laws of indices i.e.
D", =y,.r; v=0,1,2,3,....
In particular D3y, = y3,, = ys =
fifth derivative of y with respect to x.
Let us calculate derivatives of some simple functions. We shall
find first, second, third, ... , n thorder derivatives to justify the name
“successive derivative”.

Ex.1 Find all the possible derivatives of the function f(x) =
ax3 +bx’>+cx+d.
Sol. Here, f(x) = ax3 + bx? + cx + d.
Therefore, f'(x) = 3ax? + 2bx* + c;
f"(x) = 6ax* + 2b;
f'"(x) = 6a;

f®(x) = 0; and all higher derivatives are evidently zero.

Ex.2 Find the n™ derivative of the function f(x) = x™.
Sol.  Here, f(x) = x™
First derivative f'(x) = nx™"1;
Second derivative f"'(x) = n(n — 1)x™"?;
Third derivative f""'(x) = n(n — 1)(n — 2)x™3;
Fourth derivative f%(x) = n(n — 1)(n — 2)(n — 3)x™%;
In general, n'™ derivative
f™@) =nn-1Dn-2)n
-3).. (n —(n—- 2))(n —(n—- 1))x"‘"
=nn—-1)(n—-2)(n-3)..2.1
=n!
All higher derivatives are evidently zero.

Ex.3 Find the n'" derivative of the function f(x) = e*.
Sol.  Here, f(x) =e*;
First derivative f'(x) = e*;
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Ex.4

Second derivative f"'(x) = e*;
In general, n derivative f™(x) = e*.
In this example, no higher derivativeis zero.

Find the n'" derivative of the function f(x) = sin x.

Sol.  Here, f(x) = sinx;
First derivative f'(x) = cosx = sin (g + x);
Second derivative f"'(x) = —sinx = sin (2% + x);
Third derivative f'’(x) = — cosx = sin (3% + x);
Fourth derivative £ (x) = sin x = sin (4% + x);
In general, n' derivative f™(x) = sin (ng + x)
Ex.5 Find the n'" derivative of the function f(x) = log x.
Sol.  Here, f(x) =logx;
First derivative f'(x) = %;
Second derivative f"'(x) = (—1).%;
Third derivative £’ (x) = (-1)(=2).— = (-1)? 1.2.;
Fourth derivative f700) = (-1)(=2)(=3). =
1
(-1)31.2. 3.;;
So, n" derivative f*(x)=(-1)""11.234...(n— 1).xin =
(D" - DL
Motivated by the above example, we here find some standard
results on n™ derivatives.
6.4 STANDARD RESULTS

1

(1) The n** derivative of —

ax+b

Lety = ﬁ = (ax + b)~1. Then

yi = (=1).a. (ax + b)2,

y, = (=1)(=2)a?(ax + b)™3 = (—=1)? 1.2.a?%(ax + b) 3,

y3 = (=1)(=2)(—-3)a3(ax + b)~* = (—1)31.2.3.a3(ax +
b)™%,

In general, yp = (=D"1.23...na"(ax+b)™" 1 =
(-1)"*n!a™(ax + b) ™ L.

(2) The n* derivative of (ax + b)™

Let y = (ax + b)™. Then
y. = m.a.(ax + b)™ 1,
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y, =m.(m—1).a% (ax + b)™ 2,
y; =m.(m—1).(m — 2).a3. (ax + b)™ 3,
So,
Yp =m(m—1)(m-2)..(m - (n—-1))a"(ax + b)y™ ™

Note:In particular, if m = —1, then

V= —1(=2)(-3) ...(—n)a™(ax + b) "1™ = (—1)"n! a™(ax +
b)~1~™ gives standard result (1). So, Standard result (1) is particular
form of standard result (2).

(3) The n*" derivative of e®**+b
Lety = e®*P Then

y, = a_eax+b,

y, = a?. e®x+b
. 1

ys3 = a3_eax+b,

So, Vo = am. e?xtb

Note: In particular, n** derivative of e?* = a™e®*.
(4) The nt* derivative of a*
Let y = a*. Then
y; = a*.loga,
y, = a*.(loga)?,
y3 = a*.(loga)?,
So, y, = a*. (loga)™.

(5) The n* derivative of log(ax + b)
Let y = log(ax + b). Then
y, = a.(ax + b)™1,
y, = (=1a? (ax + b)72,
y3 = (=1)(=2)a3.(ax + b) 3 = (—1)?1.2.a3. (ax + b) 73,
Therefore, y,, = (—1)"11.23...(n —1).a™ (ax + b)™
Yo=(CD"1(n—-1'a"(ax + b)™.

Note: In particular,
nth derivative of logx = (-1)* 1(n — 1)! (x)™.

(6) The nt* derivative of sin(ax + b)
Let y = sin(ax + b). Then

y1 = acos(ax + b) = asin (ax +b+ g),

y, = —a?sin(ax + b) = a?sin (ax +b+ 2.%),
y3 = —a3cos(ax + b) = a3sin (ax +b+ 3.%),
S0, y, = a"sin (ax +b+n g)
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(7) The n**derivative of cos(ax + b)

Let y = cos(ax + b). Then
y, = —asin(ax + b) = acos (ax +b+ g)

y, = —a? cos(ax + b) = a? cos (ax +b+ 2%)
y; = a3sin(ax + b) = a3 cos (ax +b+ 3%)
So, y, = a™ cos (ax+ b +n.§).

(8) The n*! derivative of e** sin(bx + ¢)

Let y = e®* sin(bx + c). Then
y1 = a.e® sin(bx + ¢) + be® cos(bx + ¢)
= e (asin(bx + c) + b cos(bx + c))
Putting a = r cos ¢ and b = r sin ¢, we get
y1 = e (rcos ¢ sin(bx + ¢) + rsin ¢ cos(bx + ¢))
y1 = re**sin(bx + c+ ¢), wherer =va?+ b?and ¢ =

_1b
tan—1 -

a
Similarly
y, =r2e*sin(bx + ¢ + 2¢),
y; = r3e® sin(bx + ¢ + 3¢),
So,

VY =r"e®sin(bx + ¢ + n ¢),where r =va?+ b? and ¢ =

1 b
tan=1 -

(9) The nt* derivative of e** cos(bx + ¢)

Ex.6

Sol.

Ex.7

v, =1"e* cos(bx + ¢ + n¢),where r =

va? +b?and ¢ = tan‘ls.

Now we will see the importance of standard results in the
evaluation of nt" differential coefficient.

Find the n** differential coefficient of log[(ax + b)(cx +
d)].
Let y = log[(ax + b)(cx + d)]. Then
y = log(ax + b) + log(cx + d)
Then D™y = D™[log(ax + b)] + D™[log(cx + d)]
By using Standard Result (5), we have
D™[log(ax + b)] = (1) Y (n—1)!a™(ax + b)™

Hence, D"y = (—1D)"(n—D!a"(ax+ b)™ +
D" (n=-D!c™(cx+d)™
= (- (n - 1) °

(ax + b)™ + (cx + )l

Find the nt* differential coefficient of y = sin 4x cos 2x.
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Sol.

Lety = sin4x cos2x = %[sin 6x + sin 2x]
Then D™y = % [ D™ (sin 6x) + D™(sin 2x)]
By using standard result (6), we have D™(sin(ax + b)) =

a”sin(ax+b+n.§)

Ex.8
Sol.

Ex.9

Sol.

Ex.10

Sol.

Therefore, D™y = 6" sin (6x +n.%) + 2" sin (2x +n.%).

Find the nt" differential coefficient of y = sin3 x.
Let y = sin3 x.

We know that sin 3x = 3sinx — 4 sin3 x

4 sin® x = 3 sin x — sin 3x,

y =sindx = i [3sinx — sin 3x],

Then D"y = ~[3 D"(sinx) — D" (sin 3x)]
Using Standard Result (6),

D"(sin(ax + b)) = a™ sin (ax +b+n g)

D"y = i [3. sin (x +n. %) — 3™ sin (3x + ng)]

1
(5x+4)

Find the nt* differential coefficient of y =

R -1
Lety = e (5x + 4)71.

Standard result

(1), D*"[(ax + b)" ] = (=D nla™(ax + b) "1
Here,a = 5,and b = 4.

Hence, D"y = (—1)" n! 5"(5x + 4)~ "1,

Find the nt" differential coefficient of y=
COS x cOS 2x cos 3x.

Lety = cosx cos2xcos3x = %cos x (2 cos 2x cos 3x)

= 508X (cos 5x + cos x)

[2 cos x cos 5x + 2 cos? x]

RN

y =—[cos6x + cos4x + cos2x + 1]

Hence, y,, = D™y = i[D"(cos 6x) + D™"(cos4x) +
D™(cos 2x) + D™(1)].By using standard result (7),
D™(cos(ax + b)) = a™ cos (ax +b+n .g).SO, VYo =

i [6” cos <6x + ng) + 4™ cos (4x +n. g) + 2™ cos (Zx +
ng) + O].

ENJ
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Yn = i [6” cos (6x + ng) + 4" cos (4x + n. g) +
2" cos (Zx + ng)]

Ex.11 Find the nt® differential coefficient of y = sin mx + sin nx.
Sol.  Since, y = sin mx + sinnx,

S0, y, = D"y = D™(sinmx) + D" (sinnx)

Using Standard result (6),

D" (sin(ax + b)) = a" sin (ax +b+n g)

Yn =m"sin (mx+n.§)+n"sin(nx+n.g)

Ex.12 Find the n‘" differential coefficient of y = sin mx + cos mx.
Sol.  Since, y = sinmx + cosmx

Theny, = D™y = D"(sinmx) + D™(cos mx).

Using standard results (6) and (7),

D"(sin(ax + b)) = a" sin (ax +b+n .g)and

D" (cos (ax + b)) = a™ cos (ax +b+n g)
Hence,y, = m" sin (mx + ng) + m™ cos (mx + n. %) .
Yp =m" :sin (mx + ng) + cos (mx + ng)],
Yo =m" -(sin (mx + ng) + cos (mx + n.g))zr,

1

Vo =m" _1 + 2 sin (mx + ng) cos (mx + n. g)]z,
1
_al . T 2
Vo =m _1 + 51n2(mx+n.22] :
Yp = m"*[1+ sin(2mx + n.m)]z,
1
Yp = m"[1 + sin 2mx cos nm + cos 2mx sin nrn]z,

1
vy, = m"[1+ (—1)" sin 2mx + 0. cos 2mx]z,
since cosnm = (—1)" and sinnm = 0.

1
y, = m"[1+ (—1)"sin 2mx]=.

Ex.13 Find the nt" derivative of y = e* cos? x.
Sol. Here = e* cos3 x .

Now, cos 3x = 4 cos3x — 3 cosx

4 cos® x = cos 3x + 3 cosx,

= cos3x = i[cos 3x + 3 cosx],

Hence, y = ie" cos3x + %e" cos x,

=y, =D"y = iD”(ex cos 3x) + %D"(excosx),
Using standard formula (9),
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D™ (e cos(bx + c¢)) = r"e** cos(bx + ¢ + n¢),r =
Va2 + b%and ¢ = tan™! g.

Now, D™(e* cos 3x) = r"e* cos(3x + n¢),r = V12 + 32
and ¢ = tan~! % (V10)"e* cos(3x + ntan! 3),
Similarly,D™(e* cosx) = r"e* cos(x + n¢),

r=+12+12 and ¢>=tan‘1%=%
Therefore D™(e* cosx) = (\/f)nex cos (x + n%)

Therefore
1
=7 (\/10)nex cos(3x + ntan™' 3)

3 n T
+ 7 (v2) e* cos (x + n.Z).

6.5 SUCCESSIVE DERIVATIVES WITH THE
HELP OF PARTIAL FRACTIONS

Sometimes, expressions are given in the form of quotient of
polynomials i.e, in rational function forms. We use the method of
partial fractions to separate those terms and then we can find relatively
easily the nt" derivative.

Case (I): Lety = (x—z)xT—s)

In denominator, each bracket contains linear expression. You know
that the degree of remainder is always less than that of divisor. So we

have
X A B

(1) (x=2)(x—3) - (x—2) + (x—3)
Taking LCM of RHS, we get
X A(x—3)+B(x—2)
x-2)(x-3)  (x—2)(x—3)
=>x=Ax—-3)+B(x—2)
2 x=A(x-3)+B(x—-2)
Now we may have two methods to solve equation (2).

Method 1. (General Method):

x =Ax—3A+ Bx — 2B

=x(A+B)+ (—-34A-2B)
equating the corresponding coefficients, we get
A+B=1and —3A—-2B =0.
On solving, we get, A = —2,and B = 3.
Putting the values of A and B in equation (1), we have
-2 3

RO RN

Now we can find nt" derivative easily by using Standard Results.
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Method 2. Putting x = 3 in equation (2) we get
3=0+B=B=3.
Now Putting x = 2 in equation (2) we get
2=—A+0=>A4A=-2.
Substituting the value of A and B in equation (2), we get
-2 3
RN )
xZ
Case (l |) If y = m
If we multiply the factors of denominators, we get a polynomial
of degree two. Now we know that for a proper rational
function, degree of numerator must be less than that of the
denominator.
So,(x—2)(x—3)=x?>—-5x+6

Now

x2 5x—6
(4) Y= x2+5x+6 1+ x2-5x+6
Now take
(5) Sx6 _ A, B

x2-5x+6 x-2  x-3
Now solve as in case (1).

. _ (x+2)
Case (II): Ify = EESTeEey
Now the partial fractions
©6) (x+2) _ A B C

(x-2)(x=3)2 ~ (x=2) (x-3) (x-3)2

The following table gives us an idea of the types of partial
fractions to be taken for different types of proper rational algebraic
functions:

Type of proper rational function Type of partial fractions
px +q A B
,a+b
(x—a)(x—b)a x—a+x—b
pxt+qx +r A B C
+ +
(x—a)(x—b)(x—c)'aibic x—a) (x—-b) (x—c)
px +q A 4 B
(x — a)? (x—a) (x—a)?
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x>+ qx+r A B ¢
P 1 ,a#b + >t
(x —a)2(x — b) (x—a) (x—a)® (x—Db)
px?+qx+r A 4 Bx+C
(x —a)(x?+ bx +¢) (x—a) x%*+bx+c
When x?+bx+c cannot be
factorized.
px3+qx?+rx+s Ax + B N Cx+D
(x2+ax+Db)(x?+cx+4d) x?+ax+b x*+cx+d
When x’+ax+b,x*+cx+d
cannot ne factorized.
3
Ex14  Find the n' differential coefficient of y = ——.
Sol. Here, the given function is improper function.
Since, degree of denominator<degree of numerator.
Therefore,
3 x3 i34 7x — 6
Y 2 3x+2 G—Dx—2)
7x — 6 A B

G-DG-2 -1 x-2)
=>7x—6=A(x—2)+ B(x —1).
>7x—6=x(A+B)—2A—B
Comparing the corresponding coefficients, we get

A+ B =7and—2A - B = —6.
Onsolving, we get A = —1,and B = 8.
Hence,
7x — 6 -1 8
G-Dx-2 G-D x-2)
Now,

1 8
G-D (-2

y=x+3-—

Yo =D"y =D"x +D"(3) = D*[(x — 7] + 8D™[(x — 2)7'],

Ifn > 1, then

Yo=D"y=0+4+0—-(—-D"n!(x— 1)1+ 8(-1)"n! (x —2) L

{by using standard result (1), D"[(ax+ b)71]=
(—D"*nla(ax + b) "1}
Hence,
-1 8
yYp = (=1)"n!

Ex.15
Sol.

1
x2  (a+x)(a-x)"

1
Here, y = ——

(x — 1)n+1 + (x — 2)n+1 '
Find the n** derivative of y =

aZ—x2'
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1 A B

=(a+x)(a—x)=(a+x)+(a—x)
=>1=A4(a—x)+B(a+x)
Putting x = a, we get

1
1=BQRa)>B =—.
2a
Putting x = —a, we get
1
1=A4Q2a)>A=—.
2a

y

Hence,

1 1 1
y=%[(a+x)+(a—x)]

1 1 1
=2_a[(x+a)_(x—a)]

Then y, = D™y = —[D"[(x + @)™ = D"[(x — a)71]].
by using standard result (1),

D™ (ax+ b) '] = (-1)"n!a™(ax + b)~ "1

Vp = % (D" (x 4+ a) " 1— (-1D)"n! (x —a) ™ 1].
(—1)"n! 1 1
= "4 [(x + )t (x — a)"“]'

. L. 244x+1
Ex.16 Find the nt" derivative of ——
x34+2x2—x-2

x%+4x+1
Sol. Lety—m.
3 x> +4x+1 3 x*>+4x+1
y_x3+2x2—x—2_(x—1)(x+1)(x+2)'
x> +4x+1 A N B N C
x—Dx+Dx+2) -1 (x+1) (x+2)
>x?+4x+1

=Alx+1Dx+2)+Blx—1)(x+2)

+Clx—1D(x+1)
Putting x = —1, we get

(-1)?=-4+1=0+B(-2)(1)+0=>B =1.
Putting x = 1, we get
124+4+1=42)3)+0+0=>4=1.
Putting x = —2, we get
(-2)2-841=04+0+C(-3)(-1)=>C = —1.
Substituting the value of A, B and C, we obtain
1 1 1

YEe D T Gt

Then
Ypn=D"y =D"[(x = D]+ D"[(x + 1)7]
— D™ (x+ 2)71].
v, =Dl (x— )™ 1+ (—1)"n! (x + 1)1
— (D™ (x +2)™"1,
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1 4 1 1
(X — 1)n+1 (X + 1)n+1 (X + 2)n+1 '

Yn = (=1D)"n!

Use of De Moivre’s Theorem in Partial fractions:

When we cannot break up the denominator of a given algebraic
function into real linear factors, the partial fraction method can be used
after resolving the denominator into its linear factors, real or
imaginary.

The following example illustrates the use of De Moivre’s theorem in
evaluating n‘" differential coefficient.

Ex.17 Find the n‘* differential coefficient of ———
Sol. Lety= :

x2+a2  (x+ia)(x—ia)’

A B
GrioG-ia) G+ G-
= 1=A(x—ia) + B(x + ia)
Putting x = ia, we get 1 = B(2ia) = B = ﬁ

Putting x = —ia, we get 1 = A(—2ia) = A = —.
Now we have

2ia [(x —ia) (x+ ia)]
Yo = Dy = 5 [P~ ia) ] ~ D*[(x + i)

y:

L [(=D™n! (x —ia) ™! — (=1D)"n! (x + ia) ™ 1]

~ 2ia (1)
= _—n —ing)Nn—-1 _ r \—n-—1
Yn ia [(x —ia) (x +ia)™" 1.
Let x = rcos ¢ and a = rsin ¢, so that ¢ = tan™? %
Then
1)™*n!
VY = %[(rcosd) —i.rsing) ™1
— (rcos¢ + i.rsing) "]
(=1D)"n! N
Yn = o [(cos¢ isin ¢)~(+ 1)
— (cos¢ + i sin )"+ D]
(—=1)"n!

[{cos(n + 1)¢ + isin(n + 1)¢}
—{cos(n+1)¢p —isin(n+ 1)¢}]

1mn!
Vn = gla )n+1 [2isin(n + 1)¢]

{By using De Moivre’s theorem: (cosf +isinf)" =
(cosnb + isinnb)}

Putting r = we get

Yn = 2ia rnt1

_a_
sin ¢’
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(—=1D)™n!
Yn = 2a.antl

D™l N
=y, = W.sm(‘n + 1)¢.sin™* ¢ ,where ¢
a
1

=tan " —.
X

.sin(n + 1)¢.sin™*1 ¢

6.6 LEIBNITZ’S THEOREM

This theorem is useful for finding the nt" differential coefficient of a
product.

Theorem 1. If u and v are any two functions of x such that all their
desired differential coefficient exists, then the n'differential
coefficient of their product is given by

D"(uv) = (D™u).v + "C:D"1u.Dv + "C,D"?u. D?v + ---
+"C,D* Tu.D'v ... ... ... ..+ uD".
or

dn
(Uv)="Cou,v+"Cu, v, +"C,u, ,V, +...+"C uv, => "C.u, Vv

n

Proof. We shall prove this theorem by the principle of mathematical
induction.We know that first derivative of the product of two function
is given by D(uv) = Du.v + u. Dv.

Thus the theorem is true for n = 1.

Suppose that the theorem is true for n. Then,

D™(uv) = (D™u).v + "C1D™ *u.Dv + "CoD™ ?u. D?v + --- +
=+ "CD""u.D"v ...+ uD"v.

Differentiating with respect tox, we get
D™*(uv) = D[(D™u).v] + "C1D[D™ *u. Dv] + "CoD[D™ 2u. D?v] +
.+ "C:D[D™"u.D"v] + -+ + D[u. D™v].
= {D™""u.v + D™u. Dv} +"C1{D"u.Dv + D" *u.D?v} +
e +"CADT T . D"y + DU D™ v} + -+
{Du.D™v + u.D"*1v].

Rearranging the terms, we get
D"*1(uv) = D" lu. v+ (1 +"C))D™u.Dv + -+ + ("C+
"Cr+1) D™ Tu. D1y + oo+ . DLy,

We know that "Ci+ "Cr+1 ="1Cps1.
Hence D™*'(wv) = D"*'uw.v+ ™CiD™w.Dv+--+ ™Cum
D" "u.D"ly + .. 4+ u. D1y,
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Thus, if the theorem is true for any value of n it is also true for
the next value (n + 1). But we have already seen that theorem is true
for n = 1. Hence it must be true for n = 2 and so for n = 3, and so on.
Thus the theorem is true for all positive integral values of n.

Note: While applying Leibnitz’s theorem if we observe that one of the
two functions is such that all its differential coefficients after a certain
stage become zero, then we should take the function as the second
function.

Ex.18 Find the nt* differential coefficient of x cos x.

Sol.  Observe that the second and higher derivatives of x are all zero,
therefore for the sake of convenience we shall take x as the
second function.

By Leibnitz’s theorem
D™(uv) = (D™u).v + "C1D" *u.Dv + "CoD™ ?u. D?v + --- +
"C:D*" "u.D"v + .+ u D™ .
= D™(cosx.x) = (D™ cosx).x
= CosS (x + nz) X.
2

n!

Ex.19 If y = x™logx, show that y,,,; = =
Sol.  Wehave y =x"logx.

1
Yy = x”;+ nx"1logx

xy; =x"+nx"logx
xy; = x" + ny.
Now differentiating n times with respect to x, and using
Leibnitz’s theorem, we get
D™(y;x) = D"x™ + n D"y.
(D™y,).x + "C1(D™ 1y,).(Dx) = n! + ny,,
Vns1- X Ty, 1 =nl +ny,,

n!
= Yn+1 = -

X
Ex.20 Find the nt" differential coefficient of x3e®*.
Sol. Choosing for the sake of convenience, x3 to be the second
function.
D™ (x3e%) = a"e*.x3 +"Cy a" e 3x% +"C;
a%e 6x +"Cza" le, 6.
=a"x3e™ +3"C; a"x%e®™ + 6"C; a"?*xe*™ + 6"C3
an—leax.

Ex.21 Ify = e25in"'x prove that
(1 - xz)yn+2. - (211, + 1)xyn+1 - (nZ + az)yn =0.
Sol. Since, y = easin"'x,
_ pasinTlx _ @
We havey, = e N
Or (1—x?)y?=a?y?
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Differentiating with respect to x, we get
(1—x*)2y1y;, — 2xyf = 2a%y y;

Or (1 — x*)y, — xy; = a’y

Applying Leibnitz’s theorem, we get

(1- xz)yn+2 — 2NXYp41 — n(n — 1)yn — XYn+1 — NMYp = azyn-
(1 = x*)Yns2 — @n+ Dy — (0 + a?)y, = 0.

1

1
Ex.22 If ym + y m = 2x, then prove that
(x? = Dynyz2 + 2n + Dxy, + (n* —m?)y, = 0.
1 1 2 1

Sol. ym+y m=2x=>ym+1=2xym
2 1
>ym—2xym+1=0.

1 —_—
Therefore, ym = W =(x+Vx2-1)

m
>y = (xi x2—1) .
Case (I): Taking positive sign, y = (x +Vx2 — 1)m
Differentiating it with respect to x,

y1=m(x+ x? — [1+ h
=m(x+ x2—1 [1+ =
m1h+x

=m(x+ x2—1) l

=m(x+ x2—1)m[m
= x2—1.y1=m(x+ xz—l)m

=>x?2—-1.y;, =my

= (x* — Dyf = m?y?
Case (I1): Taking negative sign, y = (x —VxZ —1)
Differentiating it with respect to x,

yr=m (x—\/x2 - 1)m_1 [1—%.\/};__1.24
—m(x-Va2-1) x

—m(x—\/x2 1 " 1[ _1—x

=—m(x— [\/xz—
\/—Y1: ( x?— 1)
=>Jx2 -1y, = —my

= (x? — 1)y? = m?y?2.
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Thus, we get the same value of y; for positive and negative
signs of (1), thus,(x? — 1)y? = m2y?2.
Differentiating it again with respect to x,
(x? = 1)2y1y, + 2xy7 = m*2yy,
= (x%2 -1y, + xy; —m?y = 0.

Ex.23 If y = acos(logx) + b sin(logx), show that
xzyn+2 + (2n+ 1)x Yn+1 T (nz + 1)yn = 0.
Sol.  Wehave y, = _Tasin(logx) + gcos(logx).
= xy, = —asin(logx) + b cos(log x).
Differentiating again, we have

Xy, +y; = Tacos(logx) - gsin(logx)
x2y, + xy; = —{acos(logx) + bsin(logx)} = —y
Therefore, x%y, + xy, +y = 0.
Applying Leibnitz’s Theorem, we have
D"™(x*y,) + D™(xy;) + D(y) = 0.
[xzyn+2 +"C1 2x. yp41 +"Coyy 2]+ 2 [yni1-x +"C1 Yn. 1] =

0.

(1 + x*)Yn42 + 20X Yy + 10— Dyp + 2% ypyqg +
2ny, = 0.

or

1+ x3)yp4p + 20+ Dxype +n(n+ 1)y, = 0.
Ex.24 If y = tan 1x, find (y,,)o.

Sol.  We have
(1) y = tan1x.

1
@ =1m
B) (1+x3)y, —1=0.
Differentiating (3), we get
4) (1 +x®)y, + 2xy, = 0.
Differentiating n times by Leibnitz’s theorem, we get
D™[(1 + x?)y,] + 2D"[xy,] = 0.
D"y,.(14+x2)+n.D" 1y, 2x + #.D"‘Z
+ 2[D"y;.x + n.D™" 1y,.Dx] =0
S Ynao- (1 +x2) + 20y x +n(n— Dy, + 2Yp40.X +
2n.y,.1=0
(5) M+ xH)yn42 + 2+ Dxynyq + nln + Dy, = 0.
Putting x = 0 in (1), (2) and (4), we get
(3o =0, (y1)o =1,and (y,)o = 0.
Also puttingx = 0 in equation (5), we get
(14+0)nps2)o +0+nn+ 1) () =0
(6) On+2)o = —n(n+ 1) (o

V,.2
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Putting n — 2 in place of n in equation (6), we get
(Yn)o = —(Tl - 2)(7’1 - 1)()’n—2)0
Since, from equation (6), we have
Wn-2)o = —(m—=3)(n — 4)(Yp-4)o

o = [-(n = 2)(n — D][-(n = 3)(n — D)](Yp-4a)o-

Now there are two cases:
Case (). When n is even, we have

o = [-(n=2)(n— D][-(n = 3)(n — 4)] ... [-3.2](yz)o = 0.
Case (I1). When n is odd, we have

o =[-(n—2)(n - 1)]_[1—(n =3)(n— D] ...[-43][-2.1](r1)

Vo = (1) 2 (n— 1), since (y1), = 1.

Suppose we have to find (y;),
Son = 7, an odd number. From case (II), we get

(y7)o = (=1)3(7 = 1! = -6\
Now we are in a stage to conclude this unit here.

So,

6.7 SUMMARY

In this unit, we studied the nt" differential coefficient of a
function, i.e., actual meaning of the successive differentiation. We
have seen some standard results on nt*differential coefficient are very
useful for evaluating nt* derivative of various families of functions.
Basic trigonometric identities play an important role for finding nt*
differential coefficient of the trigopnometric functions.We also studied
the use of partial fraction in the successive differentiation of algebraic
functions such as rational functions. When denominator can be
factorized into real linear factors, then we get partial fractions form
easily. But when denominator cannot be factorized into real linear
factors, then factorize the denominator into linear factors, real or
imaginary. De Moivre’s theorem plays an important task in such types
of problems.We have studied the famous work of Leibnitz (Leibnitz’s
theorem). This theorem provides us a general method for finding the
nt" derivative of the product of two functions.

6.8 GLOSSARY

i.  Function:A function f from S to T, where S and T are non-
empty sets, is a rule that associates with each element of S (the
domain) a unique element of T (the codomain).

ii.  Factorial: For a positive integer n, the notation n! (read as ‘n
factorial’) is used for the product n(n — 1)(n — 2) ... x 2 x
1.Thus 4! =4 x3x 2 x1=24,

iii. De_Moivre, Abraham(1667-1754) Prolific mathematician,
born in France, who later settled in England. In De Moivre’s
Theorem, he is remembered for his use of complex numbers in
trigonometry. But he was also the author of two notable early
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works on probability. His Doctrine of Chances of 1718,
examines numerous problems and develops a number of
principles, such as the notion of independent events and the
product law. Later work contains the result known as Stirling’s
formula and probably the first use of the normal frequency
curve.
De Moivre’s theorem: From the definition of multiplication (of
a complex number), it follows that (cos #1 + i sin 81)(cos 62 + i
sin 62) = cos (A1 + 62) + i sin (A1 + 62). This leads to the
following result known as De Moivre’s Theorem, which is
crucial to any consideration of the powers z"of a complex
number z:Forall positive integers n,(cosf +isin0)" =
cosné +isinnh = e?.
Leibnitz, Gottfried  Wilhelm(1646-1716) A  great
mathematician, philosopher, scientist and writer on a wide
range of subjects, who was, with Newton, the founder of the
calculus. Newton’s discovery of differential calculus was
perhaps ten years earlier than Leibniz’s, but Leibniz was the
first to publish his account, written independently of Newton,
in 1684. Soon after, he published an exposition of integral
calculus that included the Fundamental Theorem of Calculus.
He also wrote on other branches of mathematics, making
significant contributions to the development of symbolic logic,
a lead which was not followed up until the end of the
nineteenth century.

CHECK YOUR PROGRESS

DZ(x4eSx)
(i) e5*(25x* + 40x3 + 12x2). .
(i)  4x3e> + 5e>*x*,
(iii)  4x3e> + 20x2e5*
(iv)  None of the above.

10t" differential coefficient of e*

(i) 10e* .

(ii) 10! e*

(iii) 0.

(iv)e*.
D™ (5x + 12)71]

(i) (=)™ n! (5x + 12)"+1

(ii) (=1)™n!5"(5x + 12) "1,
(i) (=Dl 12"(5x + 12) ™ 1.
(iv) (—1)™n!5"(5x + 12) "t

D?5[sin px]
() sin(px + n. g).
(i) sin(nx + p.g).
(iii) snmpx4-25a§)
(iv)  Nothing can be said.
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5. D"[logx]
(i) (—1D)"™nlx™™.
(i) ED"In-Dxm
Giiiy (—D"(n—-1Dx"
(iv), (D"(n—-1Ix™

6. D* [xziaz]
() =DM +a) ™D + (x — )"+ D)}
(i) o0

(iii) i (D™ {(x — a)~ "D + (x + a)~*V)}
(IV) i (—1)”71' {(x — a)_(n+1) — (X + a)—(n+1))}

7. If y = Asinmx + Bcos mx, then
() y, —my = 0.
(ii)yy, + m?y = 0.
(i) y, —m2y =0.
(iv) y, + my = 0.

8. If x =a(cos@ + Osinf), y =a(sinf — O cos ), then y,is
() cos@
(i) sin@
(iii) tan @
(iv) cot 6
9. D™[sin 2x sin 3x], is

(1 % [cos (x + ng) — 5™ cos (Sx + n. g)]
(i) %[cos (x + g) — 5™ cos (Sx + n. g)]
(iii) % [cos (x + n. g) + 5™ cos (Sx + ng)]
(iv) % [cos (x + ng) — 5™ cos (Sx + g)]

10.  D*(x3logx)

(i 0
(i) 2
(iii) ‘76
(iv) 1
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6.11 TERMINAL QUESTIONS

1. If p2 = a? cos @ + b? sin? G, prove that
a’b?
p+pr=—i
2 p3

2. Find the nt" differential coefficient of e%* sin bx and deduce
the nt" differential coefficient of sin x sin bx.
3. Ify =sin"!x, prove that(1 + x?)y, — xy,; = 0.
Also prove that (1 — x2)y,., — 2n + 1)xy, .1 — n?y, = 0.
4. If y = x%e*, show that

1 1
Yn =751 (n— Dy, —n(n—2)y, +§(n - 1D - 2)y.

5. If y = cos (logx), prove that
xzyn+2 + (2n+ Dxypss + (n* + Dy, = 0.
n
6. Ifcos™(}) = log (%) , prove that

X*Ynpz + 20+ Dxypiq + 202y, = 0.
7. Ify = Ae * cos(pt + c), show that
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y, + 2ky + n?y =0,
where n? = p? + k2.

x3

8. Prove that the value of the n*" differential coefficient of ——

for x = 0 is zero if n is even, and is —n! if n is odd and greater
than 1.

9. Find the n' derivative of X sin xat Xx=0,
10. Find then'" derivative of following functions:
(i) e” +e™™ (jj) sin 2xsin 3x

6.12 ANSWERS

ANSWER CHECK YOUR PROGRESS
SCQL. (i)
SCQ2. (iv)
SCQ3 (ii)
SCQ4 (iii)
SCQS5 (i)
SCQ6 (iv)
SCQ7 (i)
SCQS8 (i)
SCQ9 (i)
SCQ10 (ii)
ANSWER OF TERMINAL QUESTIONS
TQY At x=0,

n (x*sin xX) =n(n —1)sin((n — 2)%) =(n—n?)sin n?”

dx"

TQlO (I) 2n[e2x + (_1)n e—ZX]
1 ( n;rj 1_, ( nnj
—cos| X+ — |—=5"cos| 5x + —
(ii) 2 2 2 2
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UNIT 7:- EXPANSION OF FUNCTION OF
ONE VARIABLE

CONTENTS:-

7.1  Introduction

7.2 Objectives

7.3 Maclaurin’s Theorem
7.4  Taylor’s Theorem
7.5  Solved Examples
7.6 Summary

7.7  Glossary

7.8  References

7.9  Suggested Readings
7.10 Terminal Question
7.11  Answers

7.1 INTRODUCTION

A Scottish mathematician Colin Maclaurin (1698-1746) was
the first person in the history of mathematics, who equaled an
indefinitely differentiable function with a convergent series at the
origin. A series is called convergent if its sum is finite and unique.
Almost all the expansions of functions which we know are actually the
expansions at the origin.After that a British mathematician Brook
Taylor raised the question:

“If we have an indefinitely differentiable function y = f(x),
differentiable at x = a, a € R, Can we have a similar expression at
that point?”

The answer to this question is ‘Yes’ and we know this expression as
Taylor’s series. Actually Taylor’s series is generalization of
Maclaurin’s series.

7.2 OBJECTIVES

After completion of this unit learner will be able to understand

i.  Expansion of a function in an infinite power-series.
ii.  Maclaurin’s Theorem
iii.  Taylor’s Theorem
iv.  Maclaurin’s Theorem
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7.3 MACLAURIN’S THEOREM

Theorem: Let f(x) be a function of x which possesses continuous
derivatives of all orders in the interval [0,x] and can be expanded as an
infinite series in x, then

2

f(x) = £(0) + x£'(0) + o £7(0) 4 -+ %fﬂ(O) T

!
Proof: Suppose
(1) f(X) =Ay+Ax +A2X2 +A3x3 + .-

Since, f(x) is differentiable term by term any number of times, then
by successive differentiation, we have

f1(x) = Ay + 24,x 4 3452 + 4A,x3 + -
f"(x) =21.4, +3.2. A3x + 4.3 Ayx? + -
f"(x) =321.A3+432A,x + -
Putting x = 0, we get
fO =45, [ =45, fr0)=214; f"(0) =34,
f"(0) 0

= A, = f(0), A, = f'(0), A, = = A = TR

Substituting all these values in (1), we get

2 3 n
FG) = F(O) +xf'(0) + 57 £ (0) 4 57 £7(0) + 4 2 f1(0) -+

Note: Maclaurin’s expansion of f(x) fails if any of the functions
F(x), f'(x), f"(x), ... becomes infinite or discontinuous at any point of
the interval [0, x].

(4 TAYLOR’S THEOREM

Theorem:Let f(x) be a function of x which possesses continuous
derivatives of all orders in the interval [a, a + h], assuming that f(a +
h) can be expanded as an infinite power series in h, we have

h? h3 h
f(a + h) = f(a) + hf’(a) +Ef”(a) +§f”’(a) 4+ e 4 an(a)
+ .-,
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Proof :Suppose
Q) fla+h)=A4,+Ah+ A,h? + Azh3 +

Since, the expansion (1) be differentiable term by term any number of
times with respect to h. Then by successive differentiation with respect
to h, we have

f'(a+h) =A, + 24,h + 34A3h% + 44,03 +
f"(a+h) =214, +3.2.Ash + 4.34,h% +
f'(a+h) =3214;+432.4h+
f¥(a+h) =4321A4,+,and so on.

Putting h = 0 in each of the above relations, we get

f(a) = AO' f,(a) = Al' .
f'"(a) =2'4,, f"'(a)=3!45, f%(a) =4'4,

In general, f™* =n!A,.

A= @, A =@, A= @, A =5 @),

. LA, =Ff"(a),and so on.

Substituting these values of 4y, A1, 4,, A5, ..., Ay, ... In (1), we get

h? h3 h"
fl@a+h)=f(a)+hf'(a)+ Ef”(a) +§f”’(a) + -t Ef"(a)

This is Taylor’s theorem.

Remark: (1)Another useful form of Taylor’s theorem is obtained on
replacing h by (x — a). Thus

f&) =fla+(x—a))

=>f(X)=f(a)+(x—a)f’(a)+( )f”()

O +( — D @)+

which is an expansion of f(x) as power series in (x — a).

(1) Since, Taylor’s theorem is given by
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(x — a)?

f(x)=f(a)+ (x—a) f'(a) +Tf”(a) 4
(x—a)"
If we put a = 0, we get

fQ) = £(0) +x f'(0) + %f”m) - (’7‘3

F20) + -

which is Maclaurin’s theorem.

In this unit we observed that Binomial, Exponential,
Logarithmic and other well known expansions are all particular cases
of one general theorem, i.e., Taylor’s Theorem. But in many cases it is
not possible to find such an expansion for a function.

In this unit, we obtained formal expansion of a function
f(x) without giving any idea of ranges of values of x for which the
expansion is valid. In general,

Taylor’s Infinite Series: If a function f(x) possesses derivatives of
all orders in the interval [a,a + h]. Then for every positive integer n,
we have

h? h3
fla+h)=f(@+hf'(a)+ Zf”(a) + af”’(a) + -
hn—l
(n—1)!

+ f*(a) +R,.

Where R, = f"(a + 6h), (0 < 8 < 1).
n
f(a+h)=S,+R,.

WherS,, = f(a) + h f'(a) + ’;—Tf"(a) + ’;—Tf"'(a) +oot
hn—l _ . .
fn 1(a).

(n—-1)!

Let us suppose R,, » 0 asn — oo, then lim S,, = f(a + h)
n—-oo

h? h3
S fla+h) = F@)+h @)+ f"(@+5 f(@) +-
hn—l
(n—1)!

- frt(a) + -

If R,, does not tends to zero as n — oo, then lim S,, # f(a + h).
n—-oo

Now consider, Maclaurin’s series
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“If a function f(x) possesses derivatives of all orders in the interval
[0, x]. Then for every positive integer n, we have

f(x)—f(0)+Xf(0)+ f”(0)+ f”’(0)+

+(xn iyf" 1(0)+R
Where R,, = f*(6x),(0 < 8 < 1).
f(x) =S, +R,.
Where Su = FO) +x f1(0) +2 F(0) +2 F(0) 4+
2 (0),

Let us suppose R,, » 0 asn — oo, then lim S,, = f(x)
n—->oo

2 3
= () = £(0)+x f'(0) + %f”(m + %f’”(@ 4o

e 1),f“ 1(0) + -

If R,, does not tends to zero as n — oo, then lim S,, # f(x).”
n—-oo

From the above discussion, we can conclude if any of the
function f(x), f'(x), f" (x), ... becomes infinite or does not exists for
any value of x in the given interval or if R, does not tends to zero as
n — oo, Then Taylor’s theorem or Maclaurin’s theorem fails to expand
f(a+ h) in an infinite power series. Thus, before expand a given
function as an infinite Taylor’s theorem, it is essential to examine the
behavior of R, as n — oo, which is not a simple task. Therefore we
obtained the expansion by assuming the possibility of expanding it in
an infinite series (i.e., by assuming R,, - 0 asn — o).

Sometimes, we want only few terms of an expansion, then it is
more convenient to use the Binomial, Exponential or the Logarithmic
theorems, or the well-known expansions of sinx and cosx.
Occasionally it is very easy to derive an expansion by differentiating a
known series.
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7.5. SOLVED EXAMPLE

Example 1. Expand sin x by Maclaurin’s theorem.
Solution: Let f(x) = sinx.

By Maclaurin’s theorem, we expand f(x) as

2 3 n
FG) = F(O) +xf'(0) + 2o f7(0) 4 2 " (0) + 4 2 f(0)

Now, we have to find £(0), f'(0), " (0), f"'(0), ..., f*(0), ...
Since f(x) =sinx = f(0) =sin0 = 0.

f'(x) =cosx = f'(0) = 1.

f"(x) = —sinx = f"(0) = 0.

f""(x) = —cosx = f""(0) = —1.etc.
fr@=sin(x+n2) = f1(0)=

{ 0 ifn=2m
(—1)m ifn=2m+1

Substituting the values of £(0), f'(0), f”(0), f""(0), ..., f™(0), ...

2 3 4 5

o x X b X 5
smx—0+x.1+§.0+§.(—1)+Z.0+§.(—1) + -
2m+1
)M+ ...

+(=D (2m+1)!+
x3 5 2m+1
:>smx=x—§+a—---+(—1)m(2m—+1)!+..._

Example 2. Expand f(x) = e* by Maclaurin’s theorem.
Solution: Let f(x) = e*.

By Maclaurin’s theorem, we expand f(x) as

FOO) = F(0) + xf(0) + %f"(()) + %f”’(o) +oe %f"(o)
+ cee

Now, we have to find £(0), f'(0), f" (0), f"'(0), ..., f*(0), ...
Since f(x) =e* = f(0) =e® = 1.
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fl)=e*=f'(0) =1.
f'&x)=e*=f"(0) =1
") =e*= f7(0) = 1.
etc. In general

ff(x) =e*= f*(0) = 1.

Substituting the values of f(O) f'(0), f”(O) f"'(0),..., f*(0),.... We
have e* =1+ x. 1+— 1+— T4+ =.1+-
2 43 X
=ldx+ortgtt ot
Example 3. Expand cos xby Maclaurin’s theorem.
Solution: Let f(x) = cosx.

By Maclaurin’s theorem, we expand f(x) as

2 3 n
FGO) = F(0) +xf'(0) + 5 £(0) + 57 £ (0) + -+ £7(0)

Now, we have to find £(0), f'(0), " (0), f"'(0), ..., f*(0), ...
Since f(x) = cosx = f(0) =cos0 = 1.

f'(x) =—sinx = f'(0) = 0.

f"(x) = —cosx = f"(0) = —

f"'(x) =sinx = f""(0) =1

etc. In general,

rsernd) = ro= (7,000

Substituting the values of £(0), f'(0), f"(0), f"(0), ..., f™(0), ...

2 3 4 5

cosx =1+x. O+— (— 1)+x— 0+x_ (— 1)2+§ 0+
me
+ (D" 2m)] +
2 4 2m
:>cosx—1—?+z— + (-1 )m(z ),
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Example 4. Expand (1 + x)™.

Solution: Let f(x) = (1 + x)™. Since,

2 3 m
f(x) = f(O) +Xf’(0) +%f”(0) +%f”'(0) + ...+%fm(0)
+ e

{Observe that we made distinction between n‘* term of the
Maclaurin’s series (by replacing n by m) and n used in question}

Now, we have to find £(0), f'(0), " (0), f"'(0), ..., f™(0), ...
fG=@0Q+x)" = f(0)=1.

f'(x) =n(1+x)"*=f'(0) =n.
f')=nn-DA+x)"?=f"(0)=n(n-1).

Ingeneral, f™(x) =n(n—1)(n—-2).(n—m+1)(1 +x)*™
> ffMmM0)=nn—-1)Mn-2)..(n—m+ 1).

Substituting the suitable values in Maclaurin’s series, we get

nn-1
(1+x)”=1+nx+%x2+---
nn-1 ....n—m+1
1) )om s
m!

This is known as Binomial series.
Example 5. Expand log (1 + x).
Solution:Let f(x) = log(1 + x). Since,

2 3 m
£ = F(0) + xf(0) + %f"(()) + %f’”(o) bt %fmm)
+ -

Now, f(x) =log(1 + x) = f(0) =log1 = 0.
f'(x) =

1
(1+x)

= £/(0) = 1.

Fre) = = £7(0) = — 11,

(x+1)2

(-1)321
(x+1)3

flll (x) —

= F(x) = 21,
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(=)D (p—1)
(x+1)"

= f1(0) = (- (n -

and so on. In general f™(x) =
1)!.Substituting the suitable values

2 3

. (—1!)+%.(2!)+

E.
n

T RV
n.

log(l+x)=0+x.1+

2 3 n

X X
=1 1+ -y —— — — ... -1 n-1-__
og( x)=x ) + 3 +(-1) n +

Example 6. Expand a”*.
Solution. Let f(x) = a*. Then f(0) = 1.
f'(x) = a*loga = f'(0) = loga.
f"(x) = a*(log a)* = f"(0) = (loga)*.
f"" () = a*(loga)® = f"'(0) = (loga)®.
And, so on. In general,
f*(x) = a*(loga)™ = f™(0) = (loga)™

Now by Maclaurin’s theorem, we have

2 3 m
FG) = F(O) +xf'(0) + 57 £ (0) 4 57 £(0) + -+ = £7(0)

+ cee,
So,
x? x3 x™"
a* =1+ x(loga) + i(loga)2 + ;(loga)3 + -+ F(loga)"
+ cee

Example 7.Expand tan x.
Solution: Let y = tan x. Then (y), = 0.

yp=sec’x=1+tan’x =14+ @)?*=>)o=1+@)§i=1+0
=1,

Y2 = 2yy; = (¥2)0 = 2(3)o(y1)o = 2.0.1 = 0,

V3 = 2y1Y1 + 2yy, = (¥3)o = 2(3’1)% +2()o- 2D
=2.(1)?+2.0.0=2,

Similarly (y,)o =0, and (ys), = 16, and so on.
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Using Maclaurin’s series

f(X)—f(0)+Xf(0)+ f”(0)+ f”’(0)+ +—f"(0)

+ e
We get,
2 X3 X4 x5
fx)=0+x. 1+§ 0+§ 2+— 0+§ 16 + -
=>tanx—x+1x +ix + -
3 15

Example 8. Expand sin™? x.

o 1 1
Solution: Let y = sin™' x. Theny; = —

1—-x¥)y2—-1=0.
Differentiating again, we have
(1 = x*)2y1y, — 2xyf = 0.
(1 —x»y, —xy; = 0.
{Note: Here 2y, # 0.}
Now differentiating n- times by Leibnitz’s rule, we get
(1 = x3) Y4, — 2n+ Dxy, —n?y, = 0.
Putting x = 0 in the above relations, we get
() =0, (y1)o =1, (¥2)o = 0, and (Yn42)0 = n*(n)o.

Putting n=1,2,3,.., we have (y3)o=12% (1) =220=
0,(s)o = 32%.12,(y5)o = 0, (v;)o = 52.32.12, and so on.

Now by Maclaurin’s theorem

f(X)=f(0)+xf(0)+ f”(0)+ f”’(0)+ +—f"(0)

+ ..
= sin~ x—0+x1+x—2 0+x—3 12+x—40+x5 32,12 + x60
7 2! 3! 4! 5! 6!
+5.5%3% 10 +
= sin~ x—x+§—? 12+);—T 32.1%2 + );j.52.32.12+
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L ainla = +1 x3+1

sin “x =X 23 2

Example 9.Show that the first five terms in the power series for
log(1 + sinx) are

5 135 x7

236 7] + e

Solution: Let y = log(1 + sinx). Then (y), = log1 = 0.

Cosx

1= (1+sin x) = (yl)o =1,
-1
Y2 = 1+sin x = (yZ)o =-1
1
V3 = — ==y1¥, = (¥3)o = 1.

(1+sinx) " (1+sinx)
Ya=—Y1¥3— Y5 = (a)o = —1.(1) — (-1)* = -2,
Vs = —YV1YVs — Y2¥3 — 2Y2¥3 = —Y1¥Va — 3¥2Y3 = (¥5)o = 5.

By using Maclaurin’s series, we have

2 3 n
FG) = F(O) +xf'(0) + 2o f(0) 4 7 (0) + 4 2 f1(0) -+

Substituting the values, we get

_ x? x3 x* x5
log(1 +sinx) =0+ x.1 +§.(—1) +§.1 +Z.(—2) +§.(5)

xz x3 xt x°
log(1+smx)=x—7+z—ﬁ+ﬁ—---

Therefore, the first five terms in the power series for log(1 + sin x) are

x% x3 x* x°
x—7+€—ﬁ+ﬁ.

Example 10.Expand sec x.
Solution: Let y = secx. Then (y), = 1.
y; =secxtanx = (y;), = 0.

y, = secx.sec’x + secx.tan x.tanx
=sec3x +secx.(sec?x —1) = 2sec3 x —secx

5v,=2y3—-y=>0(,)=213-1=1.
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y3 = 6y*y; —y1 = (¥3)p = 6.12.0 -0 = 0.

Vo = 6Y2y, + 12yy, — v, = (y4)o = 6.12.1+12.1.0 -1
= 5,and so on.

By using Maclaurin’s series, we have

2 3 n
FG) = FO) +xf/(0) + 2 F(0) + 2 f(0) 4 -+ 2 f7(0) + -

2 x3 x4

X
secx = 1+X0+?1+§0+55+
3 x? 5x*
secx = 1+E+T+m

Example 11. Expand log sec x.
Solution: Let y = logsec x. Then (y), = 0.
y1 =tanx = (y;)o = 0.
y,=sec’x=1+tan’x=1+y?= (y,)o =1+ 0% =1,
Y3 = 2y1Y2 = (¥3)o = 0.
Ya = 2y1y3 +2y5 = (V4)o = 2.
Vs = 2V1Ya + 2Y2¥3 + 4Y2Y3 = Vs = 2¥1Ys + 6y2¥3 = (¥5)0 = 0.

Ve = 2Y1Ys + 2Y2Y4 + 6Y2Ys + 6y5 = 2y,y5 + 8y,y, + 6y3
= (¥5), = 8.1.2 = 16.

Now by Maclaurin’s theorem

2 3 xn

y =)o +x (o +%-()’2)0 +%-()’3)0 + "'+H-(3’n)o +
x? x3 x* x5 x©
log(secx)=0+x.0+i.1+§.O+Z.2+§.O+a.16+---.
x? x* x®
log(secx)=7+ﬁ+g+-~-.

Example 12.Expand e”* sec x,
Solution: Let y = e*secx . Then (y), = 1.
y1 =e*secx+e*secx.tanx =y +ytanx = (y;)o = 1,

Y, =y, + y;tanx + y.sec? x = (y,), = 2.
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ys =y, + Y, tanx + 2y, sec? x + 2y sec’ x.tanx = (y3)o = 2 + 2
=4,

And so on.

Substituting these values in Maclaurin’s theorem

2 3 xn

X X
y=)o+x.(y1)o+ o (72)o +§- (73)o + -+ e o + .
We get,
. B 2x?%  4x3
e*secx = 1+X+7+?+

In the above examples, we expanded following functions:

. . _ _x_3 x_5_ _1\ym x2m+1
I sinx =x— + 5 + (1) T + e
2 3 n
ii. eX=14+x+ 4+ 4.4 4.
2! 3! n!
S I SPTIY GH CS apri
.  cosx=1 YRy +(-1) G +

(n-m+1) x™ 4
m!

iV. (1+_X)n= 1+nx+n(r;_l_1)x2+_._+n(n_1)-

. 2 3 n
v. log(1+x)=x-— x? + x?— e (_1)71—1"74_
2 3
vii a*=1+x(oga) +Z—|(loga)2 + J;—,(loga)?’ 4ot
J;—T(loga)” + -

. 1 2
Vil. tanx=x+§x3+gx5+..._
- 1 x3 13 x% 135 x7
viii. sinlx=x+-.—4+-.>.=—4+-.= 2. =+
2°3 ' 2'4"5 27467

These expansions are very useful for finding the limit of
indeterminate forms (see unit- Indeterminate Forms).

Example 13. Expand logsin(x + h) in powers of h by Taylor’s
theorem.

Solution:Let f(x + h) = logsin(x + h)

= f(x) = logsinx,

f'x) =

——.Ccosx = cotx,
sin x

f"(x) = —cosec?x,

f""(x) = 2cosec x. cosec x cotx,
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Now by Taylor’s theorem, we have

! hz n h3 nr hn
G+ ) = FG)+hFIG) 427 f1 G0+ 507G+ 4 ()
Substituting the values of f(x), f'(x), f" (x), f"" (x), ...

= logsin(x + h)
h2
=logsinx + hcotx — —cosec?x

2
h3
+ ?cosec 2x cot x + -

Example 14.Expand sinx in powers of (x ——) by using Taylor’s
series.

Solution: Let f(x) = sinx. Then f(x) = f E + (x - E)]

2

Now, expanding f E (x ——)] by Taylor’s theorem in powers of
(x - —) we get

0= r [+ (x-3)
1
=@+ (- @+zl-3) Q)
1 T\ (T
+3(x-2) 13
Now, f(x)—smx:>f( )—sin(g)z 1.

f'(x) =cosx = f' (g) = cos (g) = 0.

T
2
f"'(x) = —cosx = f" (—) = —cos (g) =0.

f%(x) = sinx = f¥ (g

N——
I
5

VN

g

N——
I

Putting all these values in (1), we get

3

1 2 1 1
sinx =1-(x=3).0-5(x=3) +3;(x-3) -0+5(x-3)

4

Department of Mathematics
Uttarakhand Open University Page 144



CALCULUS MT(N) 101

= sinx = 1_%(x_§)2+%(x_§)4+”'

Example 15. If f(x) = x® 4+ 8x2 + 15x — 24, calculate the value of
f (i—;) by Taylor’s series.

Solution:Let  f(x) = x3+8x2+ 15x —24.  Since f (%) =
£+ %)
So, f(1) =0.f"(x) =3x?+16x+ 15> f'(1) = 34.
f'x)=6x+16=f"(1) = 22.
[ =6=f"(1)=6.
fPe)=0=f"()=0.
By Taylor’s theorem,

2 _ 3
£ = f@+ =) @) + S D pray + B2 oo
L )nf”( )+
Putx=%,a=%
11 1
f(55)=f(1+15)
:f(l)-l— f (1)+102 2|f”(1) 103 3' f///(l)
+...
:>f(11>—0+i 34— Lopp L 1
10 10 102°2° 103°6°

=34+ 0.11+0.001 = 3.511.

Example 16. Prove that

h2
sin(x + h) = sinx + hcosx —isinx — e

Solution: First we observe that we are expand sin(x + h)in powers of
h.

So, let f(x) = sinx. Then f(x + h) = sin(x + h).

By using Taylor’s theorem
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hZ h3 hn
fx+h)=fx)+hf'(x) +Ef”(x) +§f”’(x) + ---+Hf"(x)

Since f(x) = sinx

= f'(x) = cosx, f"(x) = —sinx,
f""(x) = —cosx,...,and so on.

Substituting these values in Taylor’s theorem, we get

hZ 3
sin(x + h) = sinx + h.cosx +§.(— sin x) +§.(— CoSx) + .

h? h3
= sin(x + h) = sinx + h.cosx —ﬁsinx — g eosx + -

Example 17. Expand 2x3 + 7x% + x — 1 in powers of (x — 2).
Solution: Let f(x) = 2x3 + 7x% + x — 1.
We have f(x) = f[2 + (x — 2)].
fx)=2x3+7x2+x— 1= f(2) = 45.
fl(x) =6x2+14x+ 1> f'(2) = 53.
F(x) =12x + 14 = f"(2) = 38.
() =12 = f(2) = 12.
In general, f*(x) = 0,whenn =>4 = f"(2) = 0,whenn > 4.

Using Taylor’s theorem

h? h3 h™
fx+h) =f)+hf'(x)+ if"(x) +§f"'(x) +oeet ﬁf"(X)
+....
= f(x) =fl2+ (x - 2)]
=f@+&-2f @)+

(x_2)3 rnr
@)

Substituting the values of £(2), f'(2), f"(2),and "' (2)

(x = 2)?
2!

f"(2)

[Notice that f™(2) = 0,whenn = 4]

(36_2)2.38+(x_2)3

2! 3! 12

f(x) =45+ (x —2).53 +
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= f(x) =45+ 53(x—2) +19(x — 2)% + 2(x — 2)3.

Example 18. Find V17 to four decimal places by using Taylor’s
theorem.

Solution. Letf(x) = v/x.
Now we have to find f(17)
Since f(17) = f(16 + 1)

Consider Taylor’s theorem

h? h3 h"
fl@a+h)=f(@+hf'(a)+ Ef”(a) +§f”’(a) + et Ef"(a)
+ ..,

faa7)=f16+1)
2 3
= f(16)+1.f'(16) + %.f”(16) + %f”’(m)

1
+ 3 F2(16) + -

Since f(x) = Vx = f(16) = 4.

[0 =5z f(16) =

f/r(x)zg_%l,(x)?z%(x)_??’ =>f”(16)=_—1 -1

4.(43) = 44

_3
8.(45)’

" 1 -1 -3 _—5 nr
f"(x) = 5-7-7-(96)2 = f"'(16) =
Substituting the values, we get

1 1 -1 1 3
V17 =4+1l.c+.—F+5.
* 8+2! 44 +3! 8.(4%)

=17 = 4 + 0.125 — 0.00195 + 0.00002
V17 = 412307 ~ 4.123.

Note: In this example we have f(x) =+/x, and we take f(17) =
f(16 + 1), and we expand it by Taylor’s theorem in powers of h = 1
and derivatives are taken at a = 16for the sake of convenience.
Because we can find the exact value of the function and its derivative
at a = 16. Suppose if we take f(17) = f(15+ 2), it will be very
difficult to find the value of the function and its derivative at x = 15.
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Example 19. Expand e* in powers of (x — 1).

Solution: Let f(x) = e*. We are to expand f(x) in powers of (x —

1).
Hence, f(x) = f[1 + (x — 1)]
We know that

h? h3 h"
fla+h)=f(a)+hf'(a)+ Ef”(a) +§f”’(a) + et an(“)

= f00) = fI1+ (= 1)] 2
= F + - D O+ o

(x—=1)3 (x — i)"
+—3! @)+ -+ oy

Now we are to find £(1), f'(1), f" (1), f"' (1), ..., f*(1), .... For this
f)=e*=f(1) =e.
ffx)=e*=>f'(1) =e.
f'x)=e*=f"(1) =e.
f")=e*= (1) =e.
In general, f*(x) = e* = f"(1) =e.

R+

Substituting these values in above expansion, we get

x-1% (x—-1)3 (x—1"
o et T ettt

e*=e+(x—1e+
+...

e

x—1%* (x—1)3 (x — 1"
2 T Tt

:>ex=el1+(x—1)+

Example 20. Show that log (x + h) = log h +5 — —5 + =5 — -+~

Solution: Firstly observe that we are to expand log(x + h) in
ascending powers of x.

So, let f(h) = logh.
Then f(h + x) = log(h + x).
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By Taylor’s theorem

h? h3 h"
fla+m) =@ +hf(@+751"@+5 @+ +— (@

Now we have,

2 3 n
Flh+2) = F() + % f(R) + 5 () + 50 £ (B) + v - ()

Where f(h) = logh.

-1
h2 '’

b =15 F0) = s ) = s ete.

Substituting these values in Taylor’s expansion, we get

x x? N x3

h 2h?  3h3

Example 21. Prove that f(mx)=f(x)+ (m—-1xf'(x)+
—(m = D2 (2) + -

log (x+h) =logh+

Solution: Since, we are to expand f(mx) in powers of (m — 1)x.
So, f(mx) = f[x + (m — 1)x]

By Taylor’s Theorem

h? h3 h"
fl@a+h)=f(a)+hf'(a)+ Ef”(a) +§f”’(a) + -t mf"(a)
+ eee,

= f(mx) = flx + (m — 1)x]

=f)+m—-1).x.f'(x)+ %(m —1)2.x2f"(x)
+ cee

Example 22. Expand log sin x in powers of (x — a).

Solution: Now we are to expand f(x) in powers of (x — a). For this,
f&) = fla+ (x—a)]

By Taylor’s theorem,

h? h3
fla+h)=f(a)+hf'(a) +§f”(a) +§f”’(a) + -
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= f(x) = fla+ (x —a)]
(x —a)?

=f(a)+(x—a)f'(a) + Tf”(a)
(x_ ) flll( )+

Since f(x) =logsinx = f(a) = logsina.
1
f'(x) =——.cosx = cotx = f'(a) = cota.
sin x

f"(x) = —cosec?x = f"(a) = —cosec?a,

nr

""" (x) = 2cosec x.cosec x cotx = f""(a) = 2cosec?a cota.

Substituting these values in Taylor’s theorem, we get

2
(—cosec?a)

logsin x =logsina + (x — a) cota + T
(x —a)®

30 (2cosec?acota) + -

2
xX—a
= logsinx = logsina + (x — a) cota — %(cosecza)

(x —a)?

30 (2cosec?acota) + .

Example 23.Expand cos? x in powers of x.

Solution: Let f(x) = cos3x = =[cos3x + 3 cos x]

B

x
(2m)!

2 4
We know that cosx = 1—%+’i—'— 4 (=)™

[cos3x + 3 cosx]

1 32x2 34-x4- m32mx2m
— T + T _..._|_(_1) .

fx) =

RN

4

xZ x4 2m
— — — — e — m eee
+3I1 TIRT + (-1 it l}

:>cos3x——{[(1+3)—(32+3) T G ) EaRpt
(D" @ +3) ot |,

Example 24. Expand eS"* as far as the term containing x*.

x2m+1

2m+1)!

3 5
Solution: We have sinx = x — ’;—' + ’;—' — e (D)™
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6 120

. x3 1 1 1
= eSinx — 1+X—E+"'+§(X2—§X4+"')+g(x3+"')

1
— (x4 + ...
+o )+

= eSinx — 1 +x+lx2 _lx4+..._
2 8

Example 25. Expand tan x in powers of x as far as term involving x°.

Solution: We know that

sin x
tanx =
COS X
: x3  x® X2 x4
smx—x—§+a—---, cosx_1—§+z_...’
3 5
X X
sinx X—37tET
= tanx = = 2 m
COS X 1 X X
T2t
By actual division, we get
t il sy
anx =x+-x>+—x
3 15

Example 26.Expand sec? x.
Solution:We know thattan x = x + §x3 + 12—5x5 + .o

Differentiating with respect to x

1 2
2, — _ 2 44 ...
sec x 1+3.3x +15.5x +

2
= sec’x = 1+x2+§x4+-~-.
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Example 27. Expand (1 + x)~1.

Solution: We know that

2 3 n

X x
log(1 =x——+——" 1)1 — 4 ...
og(l+x)=x 5 + 3 +(-1) - +

Differentiating with respect to x

1 _ 1 2x_|_3x2 i 1)nnx"‘1
(1+x) 2 3 n

+ -

>Q+0)t=1-x+x*—+ (DX 4

7.6 SUMMARY

In this unit, we studied the expansion of an indefinitely
differentiable function f(x) in an infinite power series by Maclaurin’s
and Taylor’s Theorems. We have seen that such an expansion is not
always possible. It is necessary that R,, - 0 as — oo, but to examine
the nature of R,, as n — oo s difficult. So, we obtained the formal
proofs of Maclaurin’s and Taylor’s theorems without bothering about
the nature of R,, asn — oco. In this unit, we obtained the expansion by
assuming the possibility of expanding it in an infinite series (i.e., by
assuming R,, » 0 asn — o).

We also studied that if any of the function
f), f'(x), f"(x), ... becomes infinite or do not exist for any value of
x in the given interval, then Taylor’s and as well as Maclaurin’s
theorems fail to expand the function. For example: The function log x
does not possesses Maclaurin’s expansion because it is not defined at
x = 0. Another such function is cot x.

We also found that the well- known expansions such as
Binomial, Exponential, Logarithmic and Trigonometric expansions are
special cases to Taylor’s Theorem.We have seen some expansions of
functions in power series which are easily calculated by using these
well-known expansions or by differentiating or integrating the well-
known expansion. These expansions are also very useful for evaluating
the indeterminate forms.

7.7 GLOSSARY

i.  Function:A function f from S to T, where S and T are
non-empty sets, is a rule that associates with each
element of S (the domain) a unique element of T (the
codomain).

ii. Power series:A series a, + a;x + a,x* + azx3 + - +
a,x™ + --- inascending powers of x, with coefficients
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ag, A1, Ay, ..., Ay, ... 1S APOWeEr series in x. For example,
the geometric series 1+ x + x2 + x>+ -+ x™ + -+ is
a power series.

Maclaurin, Colin(1698-1746) Scottish mathematician
whowas the outstanding British mathematician of the
generationfollowing Newton’s. He developed and
extended the subjectcalculus. His textbook on the
subject contains important original results, but the
Maclaurin series, which appears in it, is just a special
case of the Taylor series known considerablyearlier. He
also obtained notable results in geometry andwrote a
popular textbook on algebra.

Taylor, Brook(1685-1731) English mathematician
whocontributed to the development of calculus. His text
of 1715contains what has become known as the Taylor
series.

CHECK YOUR PROGRESS

1.

Choose only one correct option.

(1+x)?!

(V) 1—x+x2—+ (=DM "4
(Vi) THx+x24-+xmT 4

(i) x4+ x% -+ (DI 4
(viii)  None of the above.

2. If f(x) = a*, then f™(0)

(v) 0..

(vi)a* log a.

(vii) (loga)™
(viii) 1.

3. The coefficient of x3 in the expansion of sin™! x is

4. Coefficient of (x — 1)? in the expansion of 3x2? — 6x + 3 is

(v) 0.
wi) =
(vii) .
(viii) 1
(v) 0.
(vi) 1.
(vii) 3.

(viii)  Nothing can be said.
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5. Lety = e sin bx. Then (y,), is

(v) b3

(vi) e*sin2bx.
(vii) 0.

(viii) 2ab.

6. The coefficient of nt* term in the expansion of e™*Maclaurin’s
series

v) mj
(vi) 0
(vii)
(viii) e*.

7. 1fy = sinmx, then (y,)
(i) cosma.

(ii) sin(m + n)x.

(iii) sin(mx +n.2).

(iv) 0.

8.If y = log(1 + x). Then coefficient of x™in Maclaurin’s theorem is

M

(i) &=

(iii) —.

(iv) &E.

9. In the expansion of cos x, coefficient of x3 is
(i) 0.
(ii) =
(iii) =
(iv) 1.

10. D*(x3)
(v) 0
(vi) 1
(vii) =2
(viii)  oo.
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7.10 TERMINAL QUESTIONS:

(1) Prove the following
(a) ex+h = ¥ 4+ he* _|_h_2ex _|_h_3€x + ...,
(b) Cx+h)~t =2[1 —ﬁ+"—2—"—3+---].
(© log cos(x + h) = logcosx — htan x —

2

h? h3
—SEC x——sec xtanx + -

(d) tan(x + h) =tanx + h.sec? x + h? sec? x tanx + -+

(e) tan"'(x + h) =tan"lx + h___xh
(1+x2)  (1+x?2)?

. 2 4
(2) Prove that: eSIn®) = 1 + x + > — 2+ -
2 3 4
(3) Prove that : log(1 + sinx) = x _% + % — ’16—2 + -
3 5
(4) Prove that : log(secx + tanx) =x + % + 2—4 + -

(5) Find the Maclaurin’s theorem with Lagrange’s form of
remainder for f(x)=cosx.

(6) Assuming the validity of expansion, expand log, X in powers

of (x-1) and hence find an approximate value of log,1.1.
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7.11 ANSWERS:

Answer of Check your progress:

CHQ1: (i)
CHQ2: (iii)
CHQ3: (i)
CHQA4: (iii)
CHQ5: (iv)
CHQ6: (i)
CHQ7: (iii)
CHQ8: (ii)
CHQO9: (i)
CHQZ10: (i)

Answer of Terminal questions:
TQ5: —sin (nn + %)sin( 0x) =—cosnzsin(@x) = (=) [sin(9x)]

01 01° 01
TQ6: f(1.1)=0.1- + -
Q @D 2 3 4

+......20.095305 .
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UNIT 8- MAXIMA AND MINIMA

CONTENTS

8.1 Introduction

8.2 Objectives

8.3 Stationary Points

8.4 Absolute Maxima and Absolute Minima
8.5 Maximum and Minimum Values of a Function
8.6 Local maxima and Local minima

8.7 Examples

8.8 Summary

8.9 Glossary

8.10References

8.11Suggested Readings

8.12Terminal Question

8.13Answers

8.1 OBJECTIVES

After reading this unit learners will be able

i.  To understand the concept of maxima and minima
ii.  To find the maximum and minimum points
iii.  To find maximum and minimum values of the function
iv.  How to use derivative to find maxima minima
v.  To work out simple problems on maxima and minima

8.2 INTRODUCTION

In this unit we will study about the stationary points and its
types. Concept of maxima and minima has been explained. It will be
shown how differentiation can be used to find maxima and minima.
Behaviour of gradient for maximum points and minimum points has
been explained with the help of graph. Maxima and minima hold
importance in practical life also. A manufacturer will think of
increasing his profit similarly he wants to minimize his loss. So in this
unit we have tried to explain the important properties of maxima and
minima including important related theorems and examples.
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8.3 STATIONARY POINTS

Let y=f(x) be a given function. Then dy/dx of the function is
called the gradient of the given function and the points of the function
at which dy/dx=0 are called stationary points and the tangent at these
points is parallel to X-axis. In the Fig 8.1, A, B, C are the points having
tangent parallel to X- axis, so their gradient i.e. dy/dx=0.Consequently
these are the stationary points.

TYPES OF STATIONARY POINTS
Stationary points are of three types
i.  Maximum points
ii.  Minimum points
iii.  Points of inflection
Definitions of these points are given on the next page. Fig 8.1 is
showing three points A, B, C which are maximum, point of inflection
and minimum points respectively.

Fig 8.3.1

Maximum Points-

Let us see the behavior of gradient for maximum
points.Gradient is positive before the maximum point, zero at the
maximum point and negative after the maximum point. Analyze it, we
will see that value of gradient i.e. dy/dx is decreasing with respect to x.
Meaning of this statement is that d/dx(dy/dx)= d?y/dx? is negative i.e.
rate of change of dy/dx with respect to X is negative. See the Fig 8.3.2
to understand above mentioned facts.

KEY POINT: if dy/dx=0 at a point and d?y/dx?<0 there ,then that point
must be maximum
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Fig 8.3.2
Minimum Point-
In minimum point just before minimum point gradient is negative , at
minimum point gradient is zero and after minimum point gradient is
positive. Here we can analyze that gradient i.e. dy/dx is increasing with
respect to x. So the rate of change of dy/dx is positive i.e. d2y/dx? is
positive.

Key point: If dy/dx=0 at a point and d?y/dx?>0 there, then that point must
be minimum

Fig 8.3.3
Point of Inflection-
These are the points where dy/dx= 0 and d?y/dx?=0 and d®y/dx®#0.
Two figures are given below to clear the concept of points of inflection

Key point: If dy/dx=0 and d?y/dx?=0 and d3y/dx3z0, then the point is point of

inflection
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Fig 8.3.4

For points of inflection we can also use points of inflexion. Both the
spellings are correct.

8.4 ABSOLUTE MAXIMA AND MINIMA

The function f has an absolute maximum or global maximum at
a point c if f(c) >f(x) for all x in D .Here D is the neighbourhood of c
and f(c) will be called the maximum value of f on the neighbourhood
D. The function f has an absolute minimum or global minimum at c if
f(c) <f(x) for all x in D.Here D is neighbourhood of D and f(c) is called
the minimum value of f on the neighbourhood D. Maximum and
minimum values of f on D are called extreme values of f.

Neighbourhood: Let x be a point on the number line. Then the interval
(x-a,x+a) is called the neighbourhood of x.

8.5 MAXIMUM AND MINIMUM VALUES OF
A FUNCTION

When we see the graph of a continuous function, it increases
and decreases alternatively. In a continuous function if value of a
function increases to a certain point and then it begins to decrease, we
call that a point of maximum and the value of function at that point is
called the maximum value.
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Similarly, when value of a continuous function decreases to a
certain and then decreases the point is called minimum point and the
value of the function at this point is called minimum value..

Fig 8.5.1

8.6 LOCAL MAXIMA AND LOCAL MINIMA

Have you noticed the previous page fig 8.4. From the fig. we
can notice that a function may have more than one maximum or
minimum value. So, in case of continuous function we have minimum
(maximum) value in an interval and these values are not absolute or
global minimum (maximum) of the function. This is the reason that
sometimes we call the values as local maxima or minima.

Properties of maxima and minima

e Between two equal values of a function there must lie at least
one maximum and minimum

e If dy/dx changes from +ve to —ve as x passes through a point a,
then function y=f(x) is a maximum at the point a

e If dy/dx changes from —ve to +ve as x passes through a point a,
then function y=f(x) is a minimum at the point a

e If sign of dy/dx does not change when x passes through a point
a, then point a is neither maximum nor minimum at x=a

Method to find Maxima and Minima

Step 1: Firstly find dy/dx

Step 2: Put dy/dx=0 and find the value of x.These x will be stationary
points.

Step 3: Now find d2y/dx?.

Step 4: To check whether the stationary points from step 1 are maxima
or minima put these points one by one in d?y/dx?If value of d?y/dx? is
negative then the point is maxima and if d?y/dx? is positive then the
point is minima.

Step 5: Suppose d?y/dx?= 0 and dy/dx3# 0 then x is a point of
inflection.

Department of Mathematics
Uttarakhand Open University Page 161



CALCULUS MT(N) 101

Step 6: If d?y/dx?= and d3y/dx3=0 then d*y/dx* if its negative then x is
maximum point and if its positive then x is a minimum point.

Step 7: If d*y/dx*=0 then find d°y/dx® and so on.

Step 8: Repeat the above steps for each root of the equation dy/dx=0
i.e. £(x)=0.

8.7 EXAMPLES

Ex.1 Find the maxima and minima for the function y = 4x - x2.
Sol.Firstly let us find dy/dx = 4 — 2x
Now for stationary points dy/dx = 0

8.4 —=2X=0.eoreeeeeieeeeee, (1)

=>2x =4

>x=2
Differentiating dy/dx = 4 — 2x once again we get, d?y/
dx? = -2

This is negative which is suggesting a maximum point
Now substitute x = 2 intoy = 4x - x2, we get
y =8-4 =4
So,maximum point is (2,4).
Ex.2 Find maxima and minimafory = 2 + 3x? - x3

Sol.Firstly dy/dx = 6x-3x% ............. (1)
For stationary points
dy/dx =0
6x- 3x2 = 0
After factorizing,3x (2-x) = 0
x=0o0rx= 2.
Differentiating (1) we get, d?y/dx? = 6 - 6x,
whose value ispositive when x = 0 and when x = 2 value is
negative.
Substituting the values of x intoy = 2 + 3x2 - x3
We get, x = 0 givesy = 2 and x = 2 gives y = 6.
So,Minimum point is (0, 2)and maximum point is (2, 6).

Ex.3  Find the maximum (local maximum) and minimum (local
minimum) points of the function f(x) = x> — 3x% — 9x.
Sol.f (x) = x3 — 3x% — 9x.
Differentiate w.r.t. x, we get
f'(x)= 3x*—6x—9
=3(x%—-2x—-3)
= f(x)=0
=3(x?*—-2x—-3)=0
> x2-2x—-3=0
> (x=3)(x+1)=0
x=3,-1
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x=3,x= —1
Now, f’(x) = 3x% —6x —9
Differentiating w.r.t. x, we get
f’(x)= 6x—6
= 6(x—1)
To check x = 3
f’(3) =6(3—1) =6(2) =12 =positive value
Therefore x = 3 is a minimum point
and minimum value is f(3) = 33 —3(3)?2 —9(3)
=27 —3(9) — 27
= =27
Tocheck x = —1
f’(=1) =6(—-1—-1) = 6(—2) = —12 = negative value
Therefore,x = —1 is a maximum point.
and maximum value is f(—1) = (-1)3 —3(—1)2 - 9(-1)
=-1-3+9
= —-449=5
Ex.4  Find all local maxima and minima of the function f(x) =
2x3 —3x%—12x + 8.
Sol. Here f(x) = 2x3 —3x%2 —12x + 8.
f'(x) = 6x2—6x—12
= 6(x+1)(x—2)
Now, put f'(x) = 6(x+ 1)(x —2) =0
Soweget,x =—1and x =2
In the next step we will check the value of f’(x) for each x =
—1land x = 2.
f’(x) = 12x—6
= 6(6x—1)
Atx =-1, f’(-1)= 6(6(-1)—-1)
= 6(-6—1) = (6)(=7) = —42,
which is a negative value so point x=-1 isa point where local
maximum exists
Atx =2, f’(2) = 6(6(2)—1)=6(12—-1) = 6(11) =
66, which is a positive value so point x = 2 is a point where
local minimum exists

Ex.5 Find the maximum and minimum value of the function

f(x) = x>—5x*+5x3-10
Sol.To find maxima and minima let us put f’(x) =0, then by solving
f'(x) = 5x*—20x3+ 15x2 = 0, we get x= 3, 1 and 0 as stationary
points.

Now f"(x) = 20x® — 60x? + 30x and f"'(1) = -10.
Hence f(x)has a maximum value at x = 1.

Similarly the value of f"(3) = —90. Hence f(x) has a
maximum value at x = 3.
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Nowatx =0, f/(0) = 0,and f"'0# 0.Soatx = 0.
Function f(x) has neither maximum nor a minimum, it’s a
point of inflection.

Ex.6  Find all the points of local maxima and local minima of the

function

f(x) = 2x3—6x%+ 6x + 5.

Sol.Firstly,f’(x) = 6x? —12x + 6

Now after putting this value equal to zero,we get, £’(x)=0

=26(x?—-2x+1)=0

=26(x—1Dx-1)=0

There is only one stationary point x = 1.

Now finding f”(x) = 12(x — 1)
Putx =1, we getf”(1) = 0and f”’(x) = 12,
so f’(1) = 12 # 0, so,x = 1 is a point of inflexion.

Ex.7  Find the local minimum value of the function f(x) = 3 +
| X | , Where x is a real number.

Sol. Value of | X | >0
So minimum value of | X | =0
Minimum value of f(x) = 3 + minimum value of |x|
=34+0=3
So, minimum value of f(x) = 3
We cannot find any maximum value.

8.8 SUMMARY

In this unit we studied about the stationary points.There are
three types of stationary points maxima, minima and inflection points.
The method we studied here to find these points is called second
derivative test.In second derivative test firstly we find stationary
points by putting dy/dx=0.Then if second derivative at the point is
negative then point is maxima and if second derivative is positive at
the stationary point,the point is minima. Gradient is positive before the
maximum point, zero at the maximum point and negative after the
maximum point. In minimum point just before minimum point gradient
is negative , at minimum point gradient is zero and after minimum
point gradient is positive. Alsoif dy/dx=0 at a point and d?y/dx?<0
there ,then that point must be maximum.If dy/dx=0 at a point and
d?y/dx?>0 there, then that point must be minimum. To explain all the
concepts graphs have been used and examples have been used.
Remark- Extreme points are the stationary points at which the
function attains either local maximum or local
minimumvalues.Extreme values are both local maximum and local
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minimum values of the function f(x). So, a function attains an extreme
value at point x=a if f (a) is either
a local minimum or a local maximum.

8.9 GLOSSARY

i.  Stationary point.
ii.  Maxima.
iii.  Minima.
iv.  Inflection point.
v.  Extreme point.
vi.  Extreme Values.
vii.  Derivative.
viii.  Function.

CHECK YOUR PROGRESS

i.  The critical point of the function y = x2 is.........cccuc......
ii.  The points of maxima and minima of a function:y = 2x® - 3x? + 6........
iii.  The function x?logx in the interval (1, e) has a point of maximum or
minimum. True/False
iv.  There can be any number of absolute maxima and absolute minima for a
function within the entire domain. True/False

v.  The functionf (x) = x™*, attains a maximum value at x = 3 True/False

8.10 REFERENCES

(i) www.nuffieldfoundation.org/sites/default/files/.../[FSMQ%20Statio
nary%20points.pdf.

(ii) download.nos.org/srsec311new/L.No.25.pdf

(il)www.mathcentre.ac.uk/resources/uploaded/mc-ty-maxmin-2009-
1.pdf

(iv)www.maths.usyd.edu.au » Teaching program > Junior »
MATHI1011 > Quizzes

8.11 SUGGESTED READING

0] Mathematical Analysis by S.C. Malik and Savita Arora.
(i) Real Analysis by Krishan Prakashan.

(i)  Real Analysis by Gupta and Goyal

(iv)  Theory of maxima and minima by Harris Hancock

8.12 TERMINAL QUESTIONS
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TQL. Find all local maximum and minimum points for the function
f(x)=x3—x
TQ2. Find all local maximum and minimum points for f(x) =
sinx + cosx.
TQ3. find all local maximum and minimum points (x, y),
x—3,x<3
flx)=4x3,3<x<5
1/x,x >5
TQA4. Find the local extrema of f(x) = |x| + |x — 1].
TQ5. Explain why the function f(x) = 1/x has no local maxima or
Minima?

8.13 ANSWER

CHECK YOUR PROGRESS:

CYQ1.Maxima.
CYQ2x =1.
CYQ3.False.
CYQ4.False.
CYQ5.True.

TERMINAL QUESTIONS:

TQ1. local minimum at x = v/3/3, local maximum at
TQ2. local maximum when x = %and also when x =
minima

atx = 5% + 2km for every integer k.
TQ3. Local maximum at x = 5.

TQA4. Local min of 1 at every point of [0,1], local max of 1 at every
point of (0,1).
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UNIT 9:- INTEGRAL

CONTENTS

9.1 Introduction

9.2  Objectives

9.3  Antiderivatives

9.4  Definite integral and its properties properties of integral
9.5  Definite integral as limit of a sum

9.6  Summation of series with the help of definite integral
9.7 Summary

9.8  Glossary

9.9  Suggested Readings

9.10 References

9.11 Terminal Questions

9.12  Answers

9.1 INTRODUCTION

In the previous unit we studied absolute minima, maximum and
minimum values of a function, local maxima and local minima.The given
unit is about the idea of integration, and also about the technique of
integration. We explain how it is done in principle, and then how it is done
in practice. Integration is a problem of adding up infinitely many things,
each of which is infinitesimally small. Doing the addition is not
recommended. The whole point of calculus is to offer a better way.

The problem of integration is to find a limit of sums. The key is to
work backward from a limit of differences (which is the derivative).

We can integrate g(x) if it turns up as the derivative of another
function f(x). The integral of g(x) = cosxis f = sinx. The integral of

gx) = xis f :%xz. Basically, f(x) is an "antiderivative".If we don't
find a suitable f(x), numerical integration can still give an excellent answer.

We could go directly to the formulas for integrals, which allow
learners to compute areas under the most amazing curves.

November 23, 1616-
October 28, 1703.

Fig. John Wallis
(Reference:
https://www.britannica.com/biography/J
ohn-Wallis)

Fig 9.1.1
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9.2 OBJECTIVES

In this Unit, learners will able to Antiderivatives

i.  Analyze Definite Integrals
ii.  Define Properties of Integral,
iii.  Construct Fundamental theorem

9.3 ANTIDERIVATIVES

The symbol of integration f,was inventedLeibnizto represent
the integral.lt is a stretched-outS, from the Latin word for sum. This
symbol is a powerful reminder of the wholeconstruction: Sum
approaches integral, S approaches [, and rectangular areaapproaches
curved area.

curved area = jg(x)dx = jx/a?dx

The rectangles of base Ax lead to this limit-the integral of v/x.The "dx"
indicatesthat Ax approaches zero. The heights g; of the rectangles are
the heights g(x) of thecurve. The sum of g; times Ax approaches
"the integral of f of x dx."You can imaginean infinitely thin
rectangle above every point, instead of ordinary rectangles
abovespecial points.

We now find the area under the square root curve. The "limits of
integration” are0and9. The lower limit is x = 0, where the area
begins.

The upper limit is x = 9, since we stop after Nine.The area of the
rectangles is a sum of base Axtimes heights v/x.The curved area is the
limit of this sum. i.e. limit is the integral of v/x from 0 to 9

= }Ci_r)r(l)[\/H(Ax) +V2Ax(Ax) + -+ + V9Ax(Ax)] = f;:ogx/}dx .(2)

What is f(x)? Instead of the derivative of +/x,we need its
"antiderivative."” We haveto find a function f(x) whose derivative is

vx.The derivative of x™ is nx™ 1--now we need theantiderivative.

Since the derivative lowers the exponent, the antiderivative raises it.
1 1 1

Wego from xz to x3. But then the derivative is %xi. It contains an

unwantedfactor To cancel that factor, put %into the

1
2 =

3
z 3
antiderivative: f (x) = gxihas the required derivativeg(X) = x

Vx.

ExampleThe antiderivative of xZis §x3. This is the area under the
8

parabola g(x) = x?. Theareaouttox = 2 isé(z)3 =3
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Indefinite Integrals and definite Integrals: Now we will discuss two
different kinds of integrals. They both use the antiderivative f(x). The
definite one involves the limits aand b, the indefinite one doesn't:

3
The indefinite integral of a function x? is a function f(x) = x?

The definite integral of a function x?from x = 0 to x = 9 is the number
3

f(9) - £(0) == — 0 =243,
The definite integral must be 243. But the indefinite integral is not

3
necessarilyx?
We can change f(x) by a constant without changing its derivative
The following functions are also antiderivatives:

3 3 3

f(x) = x? +1,f(x) = x? + 2,0r in general f(x) = x? + C, where C is
arbitrary constant
The indefinite integral isthe most general antiderivative (with no
limits):
Example: Find an antiderivatives f(x) for g(x) of following. Ten
compute the definite integral folg(x)dx =f(1) - f(0)
(i) 5x* + 4x3 (i) x + 12x2 (iii) sinx + sin 2x (iv)
sec’x+1
Proof (i) The antiderivative of 5x* + 4x3 is [ 5x* + 4x3dx = x> +
12x2.

f g()dx = f(1) — £(0) = (5(D* + 4(1)*) — (5(0)* + 4(0)*)
0
=9

2 3
(i) The antiderivative of x +12x2 is [x + 12x2dx = x? + 127" =
2
T+ 4x3.
2
2

[ gax= =70 = (5 + 407 - (3 + 407) -

9
2
(iii) The antiderivative ofsinx +sin2x is [sinx + sin2xdx =
Cos 2x

— COSX —

2
[ gax = -5

- (e £

- (cos 0— —cos(g(O))>
_ cos 2 1\\ cos2 1
= (—cosl+ > —(1—§>>— —cos1l+ > 32

(iv) The antiderivative ofsec? x + 1 is [(sec? x + 1)dx = tanx .

f gx)dx = f(1)—f(0) =tan1 —tan0 =tan 1
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9.4 DEFINITE INTEGRAL AND ITS
PROPERTIES

Sometimes in geometrical and other applicationof integral
calculus it becomes necessary to find the difference in the values of an
integral of a function f(x) for two given values of the variable x, say a
and b. The difference is called the definite integral of f(x) froma to b
or between the limits a and b.

This definite integral is denoted by fabf(x)dx and is read as “the
integral of f(x) w.r.t. to x between a and b.”

It is often written as fff(x)dx = [F(x)]2 = F(b) — F(a)

Where F(x) is an integral of f(x), F(b) is the value of F(x) at x=-b, F(a)
is the value of F(x) at x=a and a and b are lower and upper limit of
integration respectively.

Fundamental Theorem of integral Calculus:

Let f is integrable over the interval [a,b] and ¢ be a differentiable
function on interval [a,b] such that ¢'(x) = f(x)for all x in [a, b].
Then

b
[ £eax = o) - 9@
a
Fundamental Properties of definite integrals
Property 1:fab flx)dx = f:f(t)dt i.e value of definite integral doe

not change with change in variable.
Proof. Let f;f(x)dx = @(x).

Then

f;f(x)dx = @) — @A) i (1)
and

[ F@dt = p(b) = @(@) ovovvvierieiieieee )

From equation (1) and (2), we get
b b
f FO)dx = f Fo)dt

Property 2: f:f(x)dx =— fbaf(x)dx
Proof. Let f:f(x)dx = @ (x).
Then
L) FOOdx = @(B) = (@) oo (1)
Also

- [ feax = ~(p@ - o)

b

= — [ f)dx = @(B) = P(@) .ovoviveiieieie 2)
From equation (1) and (2), we get

Department of Mathematics
Uttarakhand Open University Page 170



CALCULUS MT(N) 101

Lbf(x)dx = —fbaf(x)dx

Property 3: f:f(x)dx = fac f(x)dx + fcb f(x)dx wherea < c <
b

Proof. Let f; f)dx = p(x).

Then

fff(x)dx = @) —@(A) oo, (1)

Now

c b
[ reax+ [ r@ax = o) - 0@+ 00 - 0@
a c C b
> [ f@dx+ [ far= o) - p(@

From equation (1) and (2), we get

fbf(x)dx = fcf(x)dx + fbf(x)dx

Property 4: foa f(x)dx = foaf(a —x)dx

Proof. Let [ = foa f(x)dx

Letx =a—t=>dx =—-dt

We can see that when x = Othent = aand x = athent = 0.
Therefore

0 0
I = f fla—t)(—dt) = —f fla—t)dt
Using Property 2, Wcé.‘ get ‘

a
I = f fla—t)dt
0
Again using Property 1, we get

I = j;af(a—x)dx

Thus, foaf(x)dx = foaf(a — x)dx
Odd function: A function f(x) is said to be odd function of x if
f(=x) = —f ().

Even function: A function f(x) is said to be even function of x if
[0 =f@. )
Property 5: (i)J_ f(x)dx = 2 [ f(x)dx if f is even function.

(ii) [ f(x)dx = 0iff is odd function.
Proof. Let ] = f_aaf(x)dx
From Property 4, we can write given definite integral as

[ FQdx = [0 FO)dx + [} FO)AX oot (1)
Let

I, = f_of(x)dx

Department of Mathematics
Uttarakhand Open University Page 171



CALCULUS MT(N) 101

Putx = —t = dx = —dt
We can see that when x = —athent = aand x = O thent = 0.
Therefore

L= [ reoean

Thus I = — [ f(~t)(dt)
Using Property 2, we get

I = fy F(=t)(dE) oo )
(i) If £ is even function then f(—t) = f(t), hence

I = f f(t)dt
0
Using Property 1, we get
L =f flx)dx
0

Therefore f_oa FOdx = [ FOAx. ..o, (3)
From equation (1) and (3), we get

f:f(x)dx = joaf(x)dx + joaf(x)dx

=2 jaf(x)dx
0
Hence f_aaf(x)dx =2 foaf(x)dx
If £ is odd function then f(—t) = —f(t), hence
I, = f —f(t)dt
0
Using Property 1, we get
I = —f f(x)dx
0

Therefore f_oa f(x)dx = — foa €L 4)
From equation (1) and (4), we get

dx = dx — d

ﬁj&)x_Lﬂmx Lf&)x
=0

Hence f_aaf(x)dx =0.

Property 6: (i) [, f(x)dx = 2 [ f(x)dxif f(2a — x) = f(x)
2a a
(ii)f fx)dx = Zf fx)dxif f(2a—x) = —f(x)
0 0
Proof. Using Property 3, we get
f f(x)dx = f f(x)dx +f f(x)dx

Putting x = 2a — t = dx = —dt in the second integral and changing
the limit, we get
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f FO)dx = f Fo)dx + f £(2a - £)(~dt)
Using Property 2, we get ’

jozaf(x)dx - foaf(x)dx + foaf(Za _ tdt

Using Property 1 in the second integral, we get

fozaf(x)dx = foaf(x)dx + foaf(Za —x)dXx ... (1)
() fQRa-x)=fx)
Hence,

j FOo)dx = f Fo)dx + j F)dx = 2 j F)dx
0 0 0 0
(i) fQRa—-x)=—-f(x)

Hence,

[ f@odx = [} fGdx = [} f()dx = 0.
NOTE:

f:af(x)dx = joaf(x)dx + joaf(Za — x)dx

X

T
Ex9.1. Solve [ — P T p—
Sol. Letl = [ -

0 a? cos?x+f?%sin?x

Using property 4, we get
T

T—X
I = d
,j; a? cos?(m — x) + B?sin?(mr — x) *
A mT—X
> 1=

0 a2 cos?x+f2%sin2x

Adding equation (1) and (2), we get
A

x
2l = dx
,’; a? cos?x + fZsin?x

+fﬂ T d
x
o @?cos?(m —x) + B2sin?(mw — x)

T xX+m—x
= 2 o2 2oin2 dx
o a?cos*(m—x)+ f%sin?(mw — x)

Therefore
20=mnf;
1

Iff(x) - a? cos?x+f2%sin2x

thenf (m — x) =

1
a? cos?x+p2sin%x

1
a? cos?(m—x)+B2%sin?(m—x)

=>f(r—x)=

Hence f(x) = f(r — x)
Using Property 6 in equation (3), we get

a? cos?x + B2sin’x
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/2 1
21 =2 dx
ﬂj;) a? cos?x + fZsin?x

Now dividing the numerator and denominator by cos?x, we get
; f”/z 1/cos? x
=7 . X
o @a%cos*x  PB%sin®x
cos? x cos? x

/2 sec? x
=T 2 + B2 tan?
0 a® + B*tan® x

Putting ftanx =t = f8 sec? x dx = dt, changing the limit, we get

g
,[)’ a +t2 Ba an al,
Ea[tan Lo —tan~1 0]

mlm  w?
“Ba2 2ap

Ex9.2. Solve [ xs“;"x

A
Sol. Let I = | 120‘;’; ............................ )

Using property 4, we get
[ = J”(n—x)sin(n—x)
~Jy 14 cos?(r—x)

T (m—x) sinx
> 1=] ———
J-0 1+cos? x

Adding equation (1) and (2), we get
T x sinx T(m—x)sinx
TR L E S LT
0 0

1+ cos?x 1+ cos?x
j’”(x+7t—x)sinx
= > dx
0 1+ cos®x
Therefore
T sinx
21 = ﬂfo m ............................ (3)
sSin x
Iff(x) = 1+cos? x
sin(m—x)
thenf(n B x) - 1+cos2(m—x)
sin x
= flr—x) = 1+ cos?x

Hence f(x) = f(r — x)
Using Property 6 in equation (3), we get
m/2  sinx

el= Zn_]; 1+cos?x

Putting cosx = t = —sinx dx = dt, changing the limit, we get
0
I = —nfl T jdl_ttz = —m[tan™1 t]?
= —m[tan™' 0 —tan™' 1]
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4
Ex 9.3. Prove that [J' === dx = (5~ 1)

1+sinx

SOl Let I = [T 2 ool (1)

0 1+sinx

Using property 4, we get
f” (m — x) sin(mr — x)
I = -
o 1+sin(m—x)

- [ = fn (r—x) sinx

0 1+sinx

Adding equation (1) and (2), we get
T x sinx T(m—x)sinx
21=f —dx+j —dx
0 0

1+ sinx 1+sinx
f”(x+7r—x)sinx
= - dx
0 1+ sinx
Therefore
20 =70 [ 2 (3)

0 1+sinx
Now multiplying the numerator and denominator by (1 — sinx), we
get

m (™ sinx(1-—sinx),

2Jy (1+sinx)(1—sinx) x

nj’”sinx—sinzx
0

I =

2 1 —sin?x
nj’”sinx—sinzx
0

dx

2 cos? x

T
T j’” sin x 4 j‘isinzxd
== X — x
2|J, cos?x o COSZx

T

| ™ 2
=— f tanxsecxdx—f tan? x dx
21Jy 0
T
| (™ 2
== f tanxsecxdx—f (sec? x — 1)dx
21Jy 0

[[secx]T — [tanx — x]7]

dx

T

1A T
ZE[(_l_l)_[O_O_(n_O)]‘Z’l

T T
:E(—2+T[):7T<7—1>

Ex 9.4. Prove that [T* log(tan x) dx = 0
Proof. Let I = [/ 10g(tan ) dX........cvvveeveeeren.. (1)

0
Using property 4, we get
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/2 T
I = f logtan(z — x) dx
0 2
= I = [?logcotxdx...........oooiiii, ()
Adding equation (1) and (2), we get

A

21 =f logtanx dx +f log cotx dx
0 0

s
=f (logtan x + log cotx)dx
0

Therefore
21 = f:(log (tanx .cot X)dx ......oooviueiiiiiinn.., )
21 = [ 1og1dx coovoviiiieii, (3)

2 =0=>1=0
Hence f:/z log(tanx) dx = 0

9.5 DEFINITE INTEGRAL AS THE LIMIT OF
A SUM

Let f(x) be a single valued continuous function defined in the
interval (a,b) and let the interval (a, b) be divided into n equal parts
each of length h such that nh = b — a, then we define

b
J f)dx = limy o, hlf(@) +fla+h) +fla+2h)+ -+ f(a+ (n—1Dh]
where nh - b —a
or we can say
2 FQx) dx = lim R 3125 f (a + kh)where nh — b — a

Ex 9.5. Find by summation f: sin x dx
Proof. We can see that f(x) = sin x
> f; f(x)dx
= limpe0,_,oh[sin(a) + sin(a + h) + sin(a + 2h) + -+ + sin(a
+ (n— 1)h]

. sin (lnh) . 1 ; ;
= llmnﬁmh_)ohli Sin"’(g) .sin (a + E(n — 1)h)] (from trigonometric

; . . sin (lnh) . 1
identities)= llmn_mh_)oh[ Sinz(g) .sin (a + E(n — 1)h)]

nb=a
Hence f: f)dx = limp_e,_h [Sm—fl sin (a + %(b —a— h))]

sin (E)

Nownh=b—a
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[sin <a rab—a- h)>]|
= iMooy 4| I

| oG

. b—a 2.h/2
= sin 5 llm”*“’h*osnh/z sin <a+ (b—a—h)>
. b—a
= sin— 2.sin <a+§(b—a)>
~b—a ja+b
= 2 sin > sm( > )

=cosa—cosb

9.6 SUMMATION OF SERIES WITH THE
HELP OF DEFINITE INTEGRAL

The definition of a definite integral as the limit of a sum helps
us to evaluate the limit of the sums of some special type of series.
As we know that

f f(x)dx = llm hif(a)+ fla+h)+ f(a+2hR) + -+ f(a+ (n — 1)h]
= hm h Y28 f(a+ kh)wherenh = b — a
Puttlng a = 0and b = 1, therefore h = % we get

n—1
b 1 k
[ reoas = ma;f(ﬁ)

Ex 9.6.Prove that the limit of the sum +—+—+ +—

n+2
where nis indifinetly increased is log 3.
Sol. Here we can see that
General term of the series is ﬁ and k varies 0to 2n.

Now
2n 2n

lim ——— = lim

megnthk e k=0n<1 + %)

Taking % outside the sign of summation, we have
2n 2n

_ 11 1
’l‘m;;)"+k_im"k:o<1+%)

= tim "7 f () wheref (1) = oom
_,lll_{?onzkzo (n wheref - —(1+§)
2n

We can see that when k = 0 thensz 0 and k = 2n then S =—= 2.

Thus when n — oo then S tends to 0 and 2 respectively.

Department of Mathematics
Uttarakhand Open University Page 177



CALCULUS MT(N) 101

By replacing S with x,1/nwith dx and lim ¥ by the sign of
integration [, also taking limit of x from 0 to 2, we get
2n

i L 1 fz 1 da

im — — <= | T
n—>wnk=0(1+%> 0 1+x

= |log(1 + x)|3
=log3 —logl =log3

Ex 9.7.Prove that the limit of the sum $+
where nis indifinetly increased is log .
Sol. Here we can see that
General term of the series is ﬁ and k varies 0to (m — b)n.
Now

1 1
nb+1 nb+2

P
nm

(m—b)n 1 (m—b)n

lim = lim

e g mb ko now n(b+%)

Taking % outside the sign of summation, we have

(m—b)n (m—b)n
_ 1 1 1
Him, =lme > K
=0 n(b+3) =0 (b+3)
. ly(m=b)n . (k Ky _ 1
- rlll_{?onzkﬂ f(n)wheref (n) - (b+§)

We can see that when k = 0 then S =0 and k = (m — b)n then Sz
b — m — b.

Thus when n — oo then % tends to 0 and m — brespectively.

By replacing % with x,1/n with dx and %mﬁby the sign of
integration [, also taking limit of x from 0 to m — b, we get

(m—b)n
1 1 m=b 1
Jim > Z k :j b+xdx
=GR N

= |log(b + x)|m?
m
=logm —logh = logz

1

Ex 9.8. Find the limit of {%}’_1 where n tends to oo.
1

Sol. Let M = lim {l’}’_l

n-oo \n

=TI

1.2.3..... n
= lim { - }
n.n......n(ntimes)
1

123 n)n
im(t23..0
n-ooM N nNn n

Now taking log ion both side we get
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1 1 2 3
logM—hm [log + log— +10gr_1+ +log]

1 ! | k
= lim — og—
n-on gn

k=0

- 0 (e (£) = o
n

We can see that when k = 0then;= 0and k =nthen§=;= 1.
Thus when n — oo then S tends to 0 and 1 respectively.

By replacing S with x,1/n with dx and iijlgoZby the sign of
integration [, also taking limit of x frcl)m 0to 1, we get

logM=f logx dx
0

1
1
leogxlé—f x.— dx
o X

=0 - |xlg
=-1
Hence logM = —1

>M =e” 1——1e lim {n'}lzé

n—oo n"
1
n

Ex9.9Findlim [(1+2) (1+5) (1+%) .. (1+3))]
1

sol Lot = i [(1+2)(1+2) (1+2) . (1+ 2]
Now taking Iog ion both side we get

1 22 32 n?
logM—llm [log<1+ )+log 1+ + log 1+ﬁ + -+ log 1+;]

n 2
1 k
= lim — log{1+—
n—-o N n
k=0

= lim - of( )Wheref( ) log (1 +:—z)

n—ooon
n

We can see that when k = Othengz Oand k = nthen§= -=1
Thus when n — oo then % tends to 0 and 1 respectively.

By replacing % with x,1/n with dx and rlli_r)r;oZby the sign of
integration [, also taking limit of x from 0 to 1, we get

1
logM =f log(1 + x%) dx
0

Lo 2x
e [
[xlog(1 + x*) [ 0x1+x2 X
1 x2
=log2—2 d
08 f01+x2 X
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— log2 zlexzd f L4
-8 o 1+x? X o 1+x2 X

=log2 — 2[|x[§ — |tan™* x|§]
=log2-2[1-7]
2

s
=log2 — logez[l_ﬂ
2
= log———
ez[l_%
Hence logM = log2e2?

L)
>M = 2ez
1

ie. lim [(1 + n_12) (1 + 12?2) (1 + f’l—z) (1 + Z—z)]" = 2e372,

CHECK YOUR PROGRESS
(CQ 1) If f(—x) = f(x) then [ f(x)dx = _

(CQ2)If f(2a—x) = —f(x) then [“ f(x)dx = ____

(CQ3) If f(—x) = —f(x), then [, f(x)dx = -
(CQ 4) fn/z sin x dx =

0 sinx+cosx

(CQ5) lim -3y 7 = log2 (T/F)

cQe) [ 7, cos® x dx = 0 (T/F)

(CQ 7) Let fis integrable over the interval [a,b] and ¢ be a
differentiable function on interval [a,b] such that ¢'(x)=

f(x)for all x in [a, b]. Then
2 fGdx = p(b) - ¢(a)(TIF)

9.7 SUMMARY

In this unit we studied antiderivatives, definite integrals,
properties of integral, fundamental theorem and summation of series
with the help of definite integral.

9.8 GLOSSARY

i Set- a well defined collection of elements
ii. Integral-express the area under the curve of a graph of the
function
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9.11 TERMINAL QUESTION

Long Answer Questions
(TQ 1) Evaluate lim [— + X 4.5 i]

n+1 n+2 2n
1 1

(TQ2) Evaluate lim [n+m —— 44 n+nm]
TQ 3) Show that (cot 1x)2dx = tlog?2
( 8

71'/2 1 _T
(TQ 4) Show that anx dx =
(TQ 5) Show thatf x sind x dx = ?ﬁ

Fill in the blanks

(TQ6).%1hﬁﬁg
(TQ7) 11m y:2n =

r0+r

9.12 ANSWERS

CQ12f flx)dx (CQ20 (CQ3)0
(CQHAm/4 (CQHT (CQ6)F
cQnT

(TQ6) (TQ7) Jy —
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UNIT 10:-ASYMPTOTES

CONTENTS:

10.1. Inroduction

10.2. Objective

10.3. Determination of Asymptotes

10.4. Asymptote Parallel to Y —Axis

10.5. Asymptote Parallel to X —Axis

10.6. Asymptotes of the General Algebraic Curve
10.7. Asymptote Might Not Exist

10.8. Two Parallel Asymptotes

10.9. Total Number of Asymptotes

10.10. Intersection of a Curve and its Asymptotes
10.11. Asymptotes by Expansion

10.12. A Useful Method of finding Asymptotes of Algebraic Curves
10.13. Asymptotes by Inspection

10.14. Position of a Curve with respect to an Asymptote
10.15. Asymptotes to Non-Algebraic Curves
10.16. Asymptotes in Polar Co-Ordinates

10.17. Miscellaneous Examples

10.18. Summary

10.19. Glossary

10.20. References

10.21. Suggested Readings

10.22. Terminal Question

10.23. Answers

10.1 INTRODUCTION

This word is derived from the Greek word ‘asumptotos’,
which means “not following together”.Some curves are limited in
extent (e.g. circle, ellipse etc.). For such curves, every tangent has a
usual meaning when x tends to some finite value.

There is another family of curves which extend up to infinity e.g.

hyperbola, parabola, exponential curve etc. see the case of y = i
You can observe the tangent at P; .
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>~

Py

Fig.10.1.1
Similarly tangents at P,, Ps, ... .These tangents are slowly becoming
parallel to x —axis. Now think, when n — oo, which line can be
considered as the tangent at B, on y = i?.You might have observed

that for such curves:

Tangents are tending to a fixed line which is at a finite distance (here
zero) from the origin. This forms the basic concept of asymptote.

Now we can formally define asymptote:

“A straight line at a finite distance from the origin to which a tangent
to a curve tends, as the distance from the origin of the point of contact
tends to infinity, is called an asymptote of the curve.”

Here we shall study vertical, horizontal and oblique asymptotes,
depending on their orientations.

Vertical Asymptote: The line x = a is a vertical asymptote of the
curve y = f(x) if at least one of the following is true:

(1) lim f(x) = £oo
xXx—a
(i) lim_f(x) = too.
x—a
Example 1:f(x) = xxTa has a vertical asymptote x = A !

Note:(1) The function f(x) may or may not be defined at x = ai.e.
functional value f(a) does not affect the asymptote, i.e, functional
value f (a)does not affect the asymptote.

1
Example 2:f(x):{§' x>0 has a limit of +o0 as x —» 0. f(x)

2, x<0
has the vertical asymptote x = 0, though f(0) = 2. The graph of this
function intersects the vertical asymptote once at (0,2).
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F 3

v

Fig. 10.1.2

(2) It is impossible for the graph of a function to intersect a vertical
asymptote (actually any vertical line) in more than one point.
(3) If the graph of a function y = f(x) is continuous then it is
impossible that its graph intersects any vertical asymptote.
(4) A common example of a vertical asymptote is the case of a rational
function at a point x such that the denominator is zero and numerator is
non-zero.

2x

Example 3: f(x) = =505

Here x = 1,x = 2, x = 3 are vertical asymptotes.

(5)Rational function: It is the quotient of two polynomials. For

) _9x) _ 2x+3
example: f(x) = o) or f(x) = TiDeD etc.

Horizontal Asymptote: These are horizontal lines which approach the
graph of the function y = f(x) when x — too.

Example 4:

A

s

r A

| :

Fig.10.1.3
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Here x = ig are asymptotes of y =tan™!x, when x - +o. The

horizontal line y = a is a horizontal asymptote of the function y =
f(x) ifeither lim f(x)=cor lirP f(x) =c.
X——00 X—+00

Obligue Asymptote: A linear asymptote (or simply asymptote) is
called oblique if it is neither parallel to x —axis nor y —axis. So y =
mx + ¢, m # 0 may be an oblique asymptote.

v = fi(x)

Fig. 10.1.4

Horizontal and Obligue Asymptote for Rational Functions

deg(N,) —de | Asymptotes in general Example Asympto
a(D,) te  for
example
<0 y=0 f(x) y=0
1
_x2+4+1
=0 y f(x) 2
= the ratio of leading coe| 2x2+7 773
_ 3x2+x+
=1 y f ) y
= quotient of the euclidea x*+x+1 =x+1
division of the numerator| =~ , |
the denominator.
>1 none f(x) no linear
2x* asymptoi
_ 3x2+1

Transformation of Known Functions: If a known function has an

asymptote (e.g. y = 0 for y = e¥), then the translations of it also have

an asymptote—

(i) If x = a is a vertical asymptote of f(x), then x =a+ h is a
vertical asymptote of f(x — h).
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(1) If y = c is a horizontal asymptote of (x) ,then y = c + k is an
horizontal asymptote of f(x) + k.

(i)  If y = mx + c is an asymptote of f(x), then y = Amx + Ac is
an asymptote of Af(x)(1 € R).

10.2 OBJECTIVES

In this unit, we will understand:
i.  The meaning of the term “Asymptotes”.
ii.  Existence of Asymptotes.
iii.  Non-existence of Asymptotes.
iv.  Procedures for finding the Asymptotes in various cases.
v. Intersection of a curve with its asymptotes.

10.3 DETERMINATION OF ASYMPTOTES

The equation of a line which is neither parallel to x —axis nor
toy —axisis y=mx+c¢, m=#0.

Alx,y

Fig. 10.3.1

Let A(x, y) be a point on an infinite branch of the curve f(x,y) = 0.
Let p = AN be the perpendicular distance of any point A(x,y) on the
infinite branch of a given curve. Then

|y —mx —c|

Vitm?

If y =mx 4+ c is an asymptote, then AN - 0 as A — oo along the
curve i.e. when x — oo.
So, we have
;i_g)lo(y—mx—c) =0 :ii_r)‘g(y—mx) =c

. y _ _ l
We can write, ——m= (y — mx) (x)
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1
- tip (G- m) =t [y o ()
- Iy =m0 lim ()
(as product of limits is equal to limit of products.)
=c(0)=0
= lim (Z) Tl e (2)

X—00

So from equations (1) and (2), we conclude that for an oblique
asymptote—

(i) lim G) in £(x,y) = 0 represents the slope m.
X— 00

(i) lim (y — mx) represents ‘¢’ iny = mx + c.
X— 00

(A)
Note:

(1) The values of y for different branches of the curve f(x,y) =0
will be different for a given value of x. So we may obtain
various different values of ‘m’ and correspondingly several
different values of 911—1;1;10 (y — mx).

Thus a curve may have more than one asymptote.

(2) This method can determine all the asymptotes except those
which are parallel to y —axis. To determine those asymptote,
we start with the equation x = my + d which can represent
every straight line not parallel to x —axis and so that when y —
o, m = lim (E) and d = lim (x — my).

y—o00 \Y y— 00 ] . .

(3) The asymptotes not parallel to any axis can be obtained either

way.

Example 5: Examine the Folium x3 + y3 — 3axy = 0 for asymptotes.
Solution: The given equation is of third degree
(1) x3+y3—3axy =0

Dividing both sides by x3, we get
3

1+ () -5 )) =0

Let x - co. Then by reminding lim (%) = m, we get

X—00
1+m3*—0=0=>(m+1)(m?*?-m+1)=0.
So the only real value of m = —1.
Putm = —1iny = mx + p where p - ¢ when x — oo.

Sy=p—2x.
Putting y = p — x in equation (1), we get
3+ (p@—-x)¥—-3ax(p—x)=0

= 3(p + a)x? — 3(p? + ap)x + p® = 0, which is of the second
degree in x.
Dividing by x2, we get

1 1
3 — 3(p? Z+p3.—==0.
(p+a)—3(@ +ap)x+p 72
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When x - co,p > c.Soweget3(c+a)=0=c¢c = —a.
Hence y + x + a = 0 is the only asymptote of this curve.

Branches of a curve: If y has two or more values for every value of x,
it is usually possible to suppose that this is a case where two or more
distinct are given.

But it is generally more convenient to regard the curves corresponding
to these distinct functions, not as different curves, but as different
branches of one curve. In general, each branch has its own asymptote.

Example 6: If y2 — 2xy — 1 =0, theny = x + Vx2 + 1.

So we obtain y = x ++vVx?2+1and y = x —Vx? + 1 as two branches
of the curve y? —2xy—1=0, and each branch will have an
asymptote.

10.4 ASYMPTOTES PARALLEL TO Y-AXIS

The asymptote parallel to y —axis are obtained by equating to zero the
real linear factors in the coefficient of the highest power of 'y’, in the
equation of the curve.

A4
I's

N Alx,y)

Fig. 10.4.1
Proof: Let x = k be an asymptote of the curve.
Here only y — oo as a point A(x,y) recedes to infinity along
the curve.
The distance AN of any point A(x, y) on the curve is equal to x — k.
lim (x — k) =0 = lim x = k, which provides the value of k.

y— 00 y—00
Arranging the equation of the curve in descending powers of y, so that
it takes the form

D) y™p(x) +y™ 1 () + y™ 2 (x) + - =0
Where ¢ (x), p,(x), ¢,(x), ... etc are polynomials in x.
Dividing the equation (1) by y™, we get
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) $(X) + 36100 +5¢2(x) + - = 0
Lety — co.
Let us write lim x = k. The equation (2) gives, ¢(k) = 0, so that k is
y—)OO

a root of the equation ¢(x) = 0.

Let ki, k, be the roots of ¢p(x) = 0. Then the asymptotes
parallel toY —axisare x = k;, x =k, etc.
We know that (x — k;), (x — k) etc. are the factors of ¢(x) which is
the coefficient of the heighest power y™ of y in the given equation.

10.5 ASYMPTOTE PARALLEL TO X —AXIS

In the same way, the asymptotes, parallel to X —axis, are obtained by
equating zero the real line factors in the coefficient of the highest
power of x, in the equation of the curve.

Example 7: Find the asymptotes of the curve x2y? = 9x2 + 4y2
parallel to the axes.

Solution: We have
(1) x%y? = 9x? + 4y?
= x%(y2—-9)—4y2 =0
So asymptotes parallel to x —axis are given by, y2 —9 =0
=>y=43.
Similarly from equation (1), y?(x? —4) — 9x2? = 0.
So asymptotes parallel to Y —axis are given by x2 — 4 =0
=>x=x2.

10.6 ASYMPTOTES OF THE GENERAL
ALGEBRAIC CURVE

Suppose equation of the curve be
(D) {agy™ + a;y" Ix + ay" 2 x%2 + -+ ap yx™t + a,x™} +
{byy™ 1+ byy" 2x+ -+ by_1yx"" % + b,x"" 1} +
{Cyn_z + ...} + cee — 0
@ x"n (%) + 2" s (2) + - = 0
Where ¢, (%) is an expression of the rt" degree in (i—’)
Determination of "m"
Dividing by x™, we can write

3 ¢n (D) + 201 (2) + Zbuz (2) + =0
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Now taking limit x — oo, (and excluding the case of asymptotes
parallel to the Y —axis i.e. the case in which lim (X) — 0); We get

(4) ¢ (m) = 0 e
Where m = lim (X)

xX—00 \X

On solving equation (4), we select only real values of “m”, which give
slopes of asymptotes y = mx + c.

Determination of "c": Now differentiating equation (3) with respect to
x, we obtain

1 (Y 1 y xy'-y 1 y 2 y
{00 2) + 2000 )+ (5F) 5 00a ) - 5002 () -
.= 0.
Multiplying by x?2, we get,

(20 (0) #2000 (2) + =} G =30 = 90 (2) = S92 () -

.= 0.
Now taking x — oo and using equation (A), we get
(5) cpp(m) + ¢,-1(m) = 0.

This equation determines one value of ¢ for each value of m found
from equation (4).
Hence the asymptotes are y = mx + c.

Alternative Method: (1) If we substitute y = mx + c in equation (2)
of the last article and solve, we get
2
(2) 2" {$u(m) + S i (m) + -5 i (m) + -} +
x"1 {¢n—1(m) +
§¢7’1_1m + } +...=0

Now, if we equate to zero the coefficients of the two highest powers of
x, we get equations (4) and (5) of the last article. Hence we have the
following rule for determining the asymptotes:

() Put y = mx + c in the equation.

(i) Equate to zero the coefficient of the two highest powers of
x and determine m and c from these.

(i)  If (my,cy),(my, cy),...are the values of m and ¢ thus
obtained, the asymptotes are y = m;x+ c;; y=
myx + c,, etc.

(2) We observe that ¢,,(m) can be obtained at once by putting x =

1 and y = m in the highest degree terms of the equation of the
curve. Similarly ¢,_,(m) can be obtained by putting x =1

and y=m in the (n—1)*" degree terms. Hence we get the
asymptotes more quickly.

Example 8: Find the asymptotes of
y3 —x%y —2xy? + 2x3 —7xy + 3y? + 2x> 4+ 2x + 2y + 1 = 0.
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Solution: Putting y = mx + c in the above expression, we get

(mx + ¢)3 — x2(mx + ¢) — 2x(mx + ¢)? + 2x3 — 7x(mx + ¢)

+3(mx+c)?+2x2+2x+2(mx+c)+1=0.
Oor x3(m3®—-—m-2m?+2)+x2(3m?c—c—4mc—7m+3m? +
2)+--=0.
Therefore ‘'m’ and ‘¢’ are given by
¢,(m) =m3 —m—2m?+2 =0 and
¢p_1(m) =c(Bm? —4m —-1)+3m? —=7m+ 2 = 0.
From ¢,(m)=0, we get (m—-1)(m+1)(m—-2)=0=>m=
1,—-1,2.
2

From ¢n_1)(m) = 0, we get ¢ = ——SZZ_ZZZ;
fm=1c=-1, m=—-1,c=-2m=2,c=0.
Hence the asymptotes are
y=x—1y=—-x—2;y = 2x.

Method(ll): Putting x =1 and y = m in the third degree terms and
equating to zero, we get
$po(m)=m3—-2m?—-m+2=0
and ¢,(m) =c(3m?—4m—1)+ B3m? —7m+2) = 0.
Now solve as usual.

10.7 ASYMPTOTE MIGHT NOT EXIST

If one or more values of m, found from ¢,,(m) = 0, make ¢, (m) =
0, but ¢p,,_,(m) # 0; the equation for determining the corresponding
value of ¢ becomes

1) 0.c+ ¢p_,(m)=0.
We can calculate ‘¢’ only if its coefficient is non-zero. i.e, the equation
in'c’"was Fc + G = 0, where lim F = 0 and il_)rg G = pp_1(m).

X—00

Hence lim ¢ = 400, or —oo, and this corresponds to the case when the

X—00
tangent goes further and further away as x — oo. (See the definition of
asymptote).
Example 9: Find the asymptote of the curve y? = 4ax; a # 0.
Solution: Putting y = mx + ¢, we get
(mx+c¢)2—4ax=0

m2x? + 2mex + c? —4ax =0

m2x? + 2x(mc—4a) +c?> =0
Putting the coefficient of x2? and x to zero, we get
¢p,(m)=m? =0=>m =0,
And ¢,,_;(m) =mc —4a =0 = 0.c — 4.a = 0, which is impossible
asa # 0.
Hence y? = 4ax has no asymptote.
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10.8 TWO PARALLEL ASYMPTOTES

If any value of m, found from ¢,,(m) = 0, has repeated values i.e.,
say m = a, «, then there may be two parallel asymptotes. Then by
theory of equations,
¢n(a) =0 = ¢, (a). Generally to find ‘c’, we use
cpn(m) + ¢y (m) = 0.
Here, we shall get 0.¢ + ¢p,,_;(m) =0
For the finite 'c¢’, we consider ¢,,_,(m) = 0.
Now we differentiate equation (3) twice with respect to x(of the
article, “asymptotes of the general algebraic curves) and solving
similarly, we get

(1) 2 (M) + cpp_y (M) + ¢y, (m) = 0.
On solving above expression, we shall obtain two different ‘¢’ for one

m i.e. parallel asymptotes.
Note: If we get m = «, a, a, then ¢ will be obtained from

3 c?
Ed’ﬁ”(m) + Z‘P;{ﬂ(m) + cpp_o(m) + ¢pp_3(m) = 0.
You can now generalize it.

Example 10: Find the asymptotes of
x3—x?y—xy?+y3+2x2—4y?+2xy+x+y+1=0.
Solution: Putting x = 1,y = m in 3" degree terms, we get
Pps(m)=1-m—-m?+m3=0
>m=-1,1,1.
Also ¢, (m) = 2 — 4m? + 2m.
To determine ¢, we have c¢;(m) + ¢p,(m) =0
>c(-1-2m+3m?) + (2—-4m? +2m) = 0.
Form = —1,weqgetc = 1.
Soy=—x+1ory+x—1=0isanasymptote.
Form = 1,1, we use the equation
CZ
(7) {(m) + e (m) + ¢, (m) = 0
CZ
= <7>(—2+6m)+c(2—8m)+(1+m) = 0.
Putting m = 1 and solving, we get

3++/5

c?—=3c+1=0=>c= :

2
3+2\/§ andy = x + % are two other asymptotes.

Hence y = x +
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10.9 TOTAL NUMBER OF ASYMPTOTES

As the equation for determining m, viz ¢,(m) = 0, is of degree n, and
so by ‘Fundamental theorem of algebra’ it has n roots (whether real or
imaginary).
So ‘a curve of degree n has at most n asymptotes’. It may have less
than n asymptotes (even no asymptote), but not more than n
asymptotes.

Note: (i) If some of the roots of ¢,(m)=0 are complex,
corresponding to those values of m, there will be no real asymptote.

(i) There might be no asymptote corresponding to even a real root e.g.
y? = 4ax (Observe it)!

Historical Note: The meaning of the word ‘asymptote’ has changed a
couple of times.When Appolonius first used it (2200 Years ago), it
meant any straight line that did not meet a given curve. With that
meaning, a hyperbola has two asymptotes.That definition was used
until the 19" centuary. The concept of asymptote required a curve to
get closer to the asymptotic straight line but never cross it as it
approached it. (It could cross it somewhere else).

aY

Y

r

¥

Fig. 10.9.1

As you go further along the curve, the curve gets closer and
closer to the asymptote. In fact, if you gofar enough, the distance to the
asymptote will be halved.This concept of halving the distance defined
limits as used by Euclid and others until the modern era. Then, a
broader definition of limits, the e — § definition was developed.With
the mew definition, a curve could be asymptotic to a line even if it
crossed it just so long as you can keep the curve as close as you like to
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the line if you can go far enough.Thus the curve below has the same
two asymptotes as the hyperbola above.

R

Fig. 10.9.2

10.10 INTERSECTION OF A CURVE AND ITS
ASYMPTOTES

Theorem: Any asymptote of a curve of the nt"degree cuts the curve in
(n — 2) points.

Proof: Let y = mx + ¢ be an asymptote of a rational algebraic curve
of degree 'n’ whose equation is
y y

y
n 7 n—-1 i n-—2 . ces =
x"pn (x) +x" 1 (x) +x"Pp_2 (x) + 0.

To find the points of intersection, we have to solve the two equations
simultaneously.

1) =>x"¢, (m + i) +x" g (m + i) +x" 2Py, (m +
Expanding each term by Taylor’s theorem and arranging in descending
powers of x, we have

(2) [fm GIX™ + e () + by (MI]x™ + |22y (m) +

Chp_1(m) + (bn—z(m)] x4 = 0.
Since y = mx + c is an asymptote, therefore
¢,(m)=0 and c¢;(m)+ ¢,,_,(m) = 0.
So equation (2) reduces to
1
5201 (m) + e (m) + ¢n_2(m)] X2 e = 0

which is of the (n — 2) degree and therefore gives (n — 2) values of
xand consequently, the asymptote cuts the curve in (n — 2) points.

Geometric Explanation: A straight line cuts another line at most at
one point. A straight line cuts a quadratic curve y = ax? + bx +
c,a # 0 at most two points.
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Similarly, in general, a straight line cuts a curve of degree n at most in
n points.

As one of these points of intersection is kept fixed (say, B), and
another point of intersection is made to tend to it (i.e. A = B), the
straight line AB tends to the tangent at the B.

Hence a tangent (and therefore, as a particular case, an asymptote will,
in general, cut the curve in (n — 2) points.

Corollaries: (1) Thus n asymptotes will cut the curve in n(n — 2)

points.

(2) If the equation of a curve of the n'"* degree can be put in the form
E,+F,,=0

Where F,_, is of degree (n — 2) at most and F, consists of n, non-

repeated linear factors, then the n(n — 2) points of intersection of the

curve and its asymptotes lie on the curve, F,,_, = 0.

This follows from the fact that the joint equation of the
asymptotes is F, = 0. So that the points of intersection satisfy the
equations F, = 0 and F, + F,_, = 0 and consequently they satisfy the
equation the equation F,,_, = 0.

(3) For a cubic curve, n = 3. Therefore asymptotes cut the curve in
3(3 — 2) = 3 points which lie on a curve of degree 3 —2 =1,
i.e. the three points of intersection of a cube curve and its
asymptotes lie on a straight line.

(4) For a bi-quadratic (or quartic) curve, n = 4. So asymptotes cut
the curve in 4(4 —2) = 8 points, which lie on a curve of
degree 4 —2 =2 i.e. the eight points of intersection of a
quartic curve and its asymptote lie on a conic.

Example 11: Prove that the points of intersection of the curve
2y3 — 2x%y — 4xy? + 4x3 — 14xy + 6y? + 4x2 + 6y + 1 =0, and
its asymptotes lie on the straight line 8x + 2y + 1 = 0.
Solution: Given curve is
(1) 2y3 — 2x%y — 4xy? + 4x3 — 14xy + 6y% + 4x% +
6y+1=0
You can easily find the three asymptotesy —x+1=0; y+ x —
2=0;, y—2x=0.
Combined equation of asymptotes is
—x+DWy+x+2)(y—2x)=0
(2) = y3 —x%y — 2xy? + 2x3 — 7xy + 3y% + 2x% +
2y —4x = 0.
Multiplying this by ‘2" and subtracting from equation (1), we get 8x +
2y + 1 = 0, on which the points of intersection must lie.
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10.11 ASYMPTOTES BY EXPANSION

Theorem: If a curve can be written as
+ +A + 5 +
=mx+c+—+—+-,
_ Y x  x?
then y = mx + ¢ is an asymptote.

Proof: Let us consider the equation of curve as
A B
(1) o y=mx+c+_-+—5+-
Where the series Sttt is convergent for sufficiently large values

of x.
Differentiating equation (1) with respect to x, we get
dy A

—_— m — — —
Cdx x?
So the tangent at (x, y) is

d
Y—y=—"(X-
y=&-x
B A 2B
oy —(mx+2+ 54 )=m-5-%--)(X-x)
A 2B 2A
(2)33 ﬂY—(m—P—F—"')Xﬁ' +7+
X
Let x — oo, then from (2), we have
Y=mX+c
On generalizing, we get the asymptote y = mx + c.
Ex. 12Find the asymptotes of the hyperbola
XZ y2
—2—— = 1.
a? b?
Solution:
yZ xZ b - -
ﬁzg—lﬁy:iavx —a
1
B +bx . a?\2
y=23 x?
So for large x, 1 > a—z
X
Now using the Binomial expansion formula
nn-—1 nn—1)n-2
1+x)"=14+nx+ ( )x2+ ( ) )x3+--~,

2! 3!
Where |x| < 1,n € R, we get
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When x — oo, we have y = i%x.

Hence asymptotes are y = + bx—“

10.12A USEFUL METHOD OF FINDING
ASYMPTOTES OF ALGEBRAIC CURVES

Suppose the equation of the curve of degree n, be
y y
n - n—-1 —_ cee —
X"y (Z) +x" s (7) + - = 0.

Case (I):Let (y — ax) be a non-repeated factor of the nt" degree terms
of the equation to the curve. Then the equation to the curve can be
written as

(1) (y - ax)Fn—l + Pn—l = 0.
Where F,,_; contains only terms of degree (n — 1), and P,_, contains
terms of various degrees, none of which is of a degree higher than
(n—1).
Writing (1) as y — ax + I;”_l = 0.

n-—1
Taking the limit of % as x — oo, we shall get the equation of the
n-—1
asymptote, since the curve approaches the asymptote when x — oo,
This limit can be easily found if we remember that lim (%) =

X—00

a.
Hence the asymptote corresponding to the factor (y — ax) is
y—ax+ lim (Pn_1> = 0.
x—>00,3€—/—>a Fn—l
Example 13: Find the asymptotes of the curve given by
y3 —x%y — 2xy? +2x3 = 7xy + 3y? 4+ 2x2 + 2x+ 2y + 1 = 0.
Solution: Factorizing the third degree terms, the equation to the curve
can be written as
y—x)y+x)(y—2x) —7xy+3y?+2x2+2x+ 2y +1=0.
Hence one asymptote is
(7xy — 3y? — 2x?) + terms of lower degree

y—x= lim

x—e0 X1 v +x)(y - 2x)
2
(7% -3 % — 2) + terms which tend to zero
= lim
AN Y Y _
xooosmt (x+1)(x 2)
B 7—3-2 B
A+ -2)

So one asymptoteisy —x + 1 = 0.
Similarly, a second asymptote is

RO
)
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ory+x+2=0.
Similarly third asymptote can easily be calculated.
Case (I1): Let the terms of the n®" degree in the equation to the curve
contain (y — ax)? as a factor, and suppose (y — ax) is not a factor of
the (n — 1)*" degree terms.
Then proceeding as in case (I) , we find that lim (y —ax)? -

x—>00,;—>a
400 or — o0,
Hence there is no asymptote in this case.
Case (I11): Let the equation to the curve be of the form
(y - ax)an—Z + (y - ax)Gn—Z + Py =0,
Where F,,_, and G,,_, contain only terms of degree (n — 2), and P, _,
contain terms none of which is of a higher degree than (n — 2).
Dividing by F,,_, and taking limits as x — o and > - a, we
get an equation of the form
(y—ax)?+B(y—ax)+C =0,
Which, on solving for (y — ax), gives us two asymptotes of the form
y—ax =c;,and y —ax = c,.
Case (IV): We can proceed in the same way if the nt" degree terms
contain (y — ax)3, or a higher power of (y — ax), as a factor.
Note: If the equation to the curve is of the form
(2) (ax + by + C)Pn—l + Qn—l =0
Where P,_, and Q,_; contain terms none of which is of a higher
degree than (n — 1), and P,,_, contains at least one term of degree n —
1(to ensure that the equation of the curve is of degree n), a little
consideration (or working out a few examples) will show that the
asymptote corresponding to the factor (ax + by +c) is
(ax+by+c)+ lim Qn_l:
o () Pt
and that a similar modification can be made in the other cases.
Thus we need not transform an equation of the form (2) into an
equation of the form (1) as a preliminary to finding out the asymptotes.
Example 14: Find the asymptotes of
y3+x%2y +2xy2—y+1=0.
Solution: By factorizing the terms of degree 3, the equation to the
curve can be written as
y(y+x)2—y+1=0.
The asymptotes corresponding to the factor (y + x)? are
) -y+1
(y+x)*+ lim ( >=0,

x—»oo,§—>—1 y

)

-y, 1
(y+x)? = _x—>oloi,gl—>—1( x(%-; x) _1 1_ 0_
>y+x==1.
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So asymptotes are y+x—1=0 and y+x+1=0. The third
asymptote can easily be calculated as y = 0.

Example 15: Find the asymptotes of

(x—y—12x2+y?+2)+6(x—y—1D(xy+7)—8x?>—2x—1
= 0.

Solution: Dividing by the coefficient of (x —y — 1)2, and taking

limits we see that the asymptotes parallelto (x —y —1 = 0) are

x—y—-12+6(x—y—1) lim (ﬂ)

R —8x?—-2x—1 “o
v, 7
x—y—-12+6(x—-y—-1) lirg} X ;C 5
x=on=1 1+(X) +—
X X
+ lirgll N 2 =0
xX—00,=—1 pa el

1
=>(x—y—1)2+6(x—y—1).§—4=0

(x—y—-1)2+3x—y—1)—4=0

-3+v9+16 1
> )

Hence two asymptotesarex —y —2=0 andx —y + 3 = 0.

The other two asymptotes are imaginary since the remaining linear

factors of the fourth degree terms in the equation to the curve are

imaginary.

>x—y—1=

10.13 ASYMPTOTES BY INSPECTION

Theorem: If the equation of a curve of the nt"* degree can be put in the
form E, + F,,_, = 0; where F,,_, is of degree (n —2) at the most,
then every linear factor of E,, when equated to zero will give an
asymptote, provided that, no straight line obtained by equating to zero
any other linear factor of F, is parallel to it or coincident with it.

Proof: Let ax + by + ¢ = 0, be a non-repeated factor of F,,. We write

E, = (ax + by + ¢)F,_;, Where F,_, is of degree (n—1). The

asymptote, parallel to ax + by + ¢ =0 is (ax + by + ¢) + lim:Z"—‘2 =
n—-1

0, where x — oo and> — ~=. For the determination of the limit (F”—‘z)

n-1

we divide the numerator as well as the denominator by x™1,
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lirgll a <_FFn_2> = lim 1 - (3?—:%) =0.
ok e ) ()

2
2

. . 1 .
Slnc_e hm (;) =0, hm(
and is finite and non-zero.

Therefore, ax + by + ¢ = 0 is an asymptote.
2 2
Example 16: Find the asymptotes of% — Z—Z = 1.
Solution: By the above proposition, the asymptotes must be

Fp_
xn

- ) exists and is finite and lim (%)exists

x2 y2
F_ﬁ=0 :»y=iax
10.14 POSITION OF A CURVE WITH RESPECT
TO AN ASYMPTOTE

Theorem (i) The curve y = mx + ¢ + % + % + --- lies above or below

the asymptote y = mx + c in the right half of the plane according as
A>00rA<O.

(ii) In the left half of the plane, it lies above or below the asymptote
y = mx + c accordingas A < 0or A > 0.

(iii) If A = 0, the curve lies above or below the asymptote according as
B>0o0rB<O.

Proof: (i) Let y; and y,denote the ordinates of the curve and the
asymptote respectively, for a given value of x.
A B
Then y, =mx+c+_+—+-
Yy, = mx +c.
A B
1 PNV =T
For large values of x, the term on the right hand side is % and
determines the sign of y; — y,.
v, —y, > 0 or < 0 according as§> 0or<O.
Q) In the right half of the plane, x > 0, So that y; —y, > 0 or
< 0 accordingas A > 0or A < 0.
= the curve is above or below the asymptote according as
A>00rd<0.

(i) In the left half-plane, x < 0.
Soy, —y, >00r<0,accordingas A < 0orA > 0.

(iii)  If A =0, the predominant term on the RHS of (1) is % SO
that for all x, other than zero. y, —y, >00r <0,

accordingas B > 0 or B < 0.
Note:Above discussion is very useful in curve tracing.
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Note: The method of substituting y = mx + ¢ and equating to zero the
coefficients of the two highest powers of x applies only to algebraic
curves.

10.15 ASYMPTOTES TO NON-ALGEBRAIC
CURVES

In the case of non-algebraic curves, asymptotes can be found in
simple cases by applying the definition, or by the expansion of y in
negative powers of x.

Example 17: Find the asymptotes of y = tan x.
Solution: Here y = tanx = Z—i’ = sec? x.
Hence the tangent at (x,y) Is
Y —tanx = (X — x) sec®x

Q) = Ycos?x —sinxcosx =X — x
Now as x — g from the left, y — oo and the distance of (x,y) from the
origin tend to infinity.
Hence, to obtain the asymptote, we must take the limit of (1) as x — %
>Y.0-0=X-7,
>X= %is one asymptote.
Since y =tanx is a periodic function with period m. So other

3 5
asymptotes are X = —g,i 771_771

) neen

10.16 ASYMPTOTES IN POLAR CO-
ORDINATES

Theorem: The polar equation of any line is p = rcos (8 — a), where,
p is the length of the perpendicular from the pole to the line and 'a’ is
the angle which this perpendicular makes with the initial line.
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P(r, &)
N
e
g
o >
Fig. 10.16.1

Proof: Let ON be the perpendicular on the given line.

Given, ON =p, < XON = a.

If P(r,6) be any point on the given line, we have < NOP = 6 — a.
NOWZ—IZ =cos(f —a) = g = cos(6 — a)

= p =rcos(f — a).

Determination of the asymptote of the curve r = £(8):

=rcos(f —a)

L J

Fig. 10.16.2

Let P(r,8) be any point on r = f(6). We draw ON, perpendicular to
the line p = rcos (68 — ).
Now we draw PL L ON and PM L to the given line.
SoPM =LN =0ON —OL =p— 0P cos(6 —a)

1) = PM =p—rcos (0 —a)
Letus putr = %
when r — oo, we have u - 0.
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Also we suppose, when r — oo (or u = 0), 6 — 6,.
So, we have PM — 0.
From equation (1)

. [cos(8 —a)
0=p— lim —]
9—’91 u
_ iy [ZS0 = @) ing L'hospital Rul
p= gl_)ngll T , using L'hospital Rule
do
_ +sin(6; —a)
. duy
Jim (~35)

From polar co-ordinate geometry, in this situation 6, — a = % So

sin (%)
p= ) du
Jim (~5)
@ =p = Jlim (-57)

So the equation of asymptote is
= rcos (60— ) = lim (~22) = r cos(6 — a)
p=rcos(0 —a)= eirgl(_du) =rcos(f —«a
T T
= rcos [9 — (91 — E)] = 1 COS [E — (6, — 9)]

: a\ . _
3 ell)rgl1 (_E) = rsin(6; — 0)
Working Rule:
Q) Substitute r = % in the equation of the curve.

(i) Solve the equation for & when u — 0.
(iii)  Let & = 6, be such a value.

. . _ e [ d6
(iv)  Findp = glirgl ( du).
(v) Now desired equation is p = rsin (6, — 0).
Example 18: Find the asymptote of the curve r = ﬁ

-—Cos
2

Solution: Letu = %
_1(1
(1) Su= - (2 cos@)

Whenu—>0,wehave%—cos(9 -0

p 1
= cosf - =
2
9> +2
-+ —
- -2
Suppose 6, = i;.
Now d—uzlsin0:> _40 _ _ _a
dé a du sin 6
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N T lim (= %2) = lim (- -%) = - 2
Case(l).WhenelﬁB,}glinE( du)—gf&( sin@)_ V3
3 3

So, asymptotes will be
~2 = rsin(g— 9) or 4a = r(v3sin 6 — 3 cos 9).

V3
ey T _ﬁ T __a _ 2a
Case (ii): when 8 — 3 ehm"( du) = hmn( sinG) = +¢§

——= 0->—=
3 3

So asymptote will be
2a ] s
—_—= rsm(——— 0)

4a = r(v/3sin 0 + 3 cos ).

2
Example 19: Find the asymptote of r = ;;:.
Solution: Putting r = % in the equation, we get
_6-1
AP

When u — 0, we have 8 — 1. Let 6, = 1. Also
du (ab?)1 — (6 —1)2a0 B ab? — 2a0? + 2a0 _ 2a0 — ab?

de (aB?)? B az0+ T a?e*
2-8
Y E
So
do a6?
duZZ—H
— Tim (=Y —1im (292 = _
Hence,p = Jirg (~5;) =lim (5) = —o-

Now the equation of the asymptote is p = r sin(6; — 0)
= —a =rsin(1 —-0)
a=rsin(@ —1).

10.17.MISCELLANEOUS EXAMPLES

Example 20: Find the equation of the cubic which has the same
asymptotes as the curve

x3—6x?y+11xy?—6y3+x+y+1=0
And which passes through the points (0,0), (1,0) and (0,1).

Solution: We write F; = x3 — 6x2%y + 11xy? — 6y3
F3=(x—y)(x—2y)(x —3y)

and, Fi=x+y+1.
So the equation of the curve can be written in the form
F3 + Fl = 0,

Where F; has non-repeated linear factors.

Thus F; = 0 is the joint equation of the asymptotes of the cubic.

The general equation of that cubic will be
F;+ax+by+c=0
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Q) > x—-—y)x—-2y)(x—3y)+ax+by+c=
0.
This curve passes through (0,0), (1,0) and (0,1).
Sowehave 0+0+c=0=>c=0
MD+a=0>a=-1.
—-6+b=0=>b=06.
Hence the required cubic is x3 — 6x2y + 11xy? — 6y3 —x + 6y = 0.

Example 21: Find the asymptotes of the curve

_x(x —a)(x — 2a)

B (x + 3a)

and determine on which side of the asymptotes, the curve lies.

2

Solution: We have

_ . x(x —a)(x — 2a)
Y=< (x + 3a)

1
a\z 2a\2 3a\ 2
o= (-2 (142
X X X
a a

a a? 32
y=+xl1———ﬂ+ﬁ+ l[l—Z‘F ]
3¢ 3a 9a®> a* 3ad
y=ixl1—ﬂ—2x w2 2 me l
y=+x[ _3a_ 11a? l
- x  2x?
y=+[x—3a—11a2+ l
- 2x

When x — oo, we have two asymptotes
y=t+(x—-3a)ieey—x+3a=0, y+x—3a=0.

Discussion: The difference between the ordinate of the curve and that
of the asymptote

2
y =x — 3a being 1;—2 We see that the curve lies above the

asymptote when x > 0 and below it when x < 0.Similarly, it may be
seen that the curve lies below the second asymptote when x > 0 and
above it when < 0.

Example 22: Find the oblique asymptotes of the curve x3 — xy? +
y? = 0 and find the position of the curve relative to them.

Solution:x® = (x —1)y? 2>y =+ /ﬁ

x—1
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=+ [ + 1 + 3 + ]
YEEPFETI e T _
Thus the curve has two branches whose equations can be written as

(1) y =x+5+—+- and
R i —
Qy=—x-35—— 1
From (1), we find that y = x + Eis an asymptote to this branch (say A).

From (2), we find that y = —x —% is an asymptote to this branch (say

B).For branch A, y, —y, = % + ---.S0 the curve is above the
asymptote when x > 0 and below the asymptote when x < 0.

For the branch B, y, —y, = —%— ---.S0 the curve is below the
asymptote when x > 0 above the asymptote when x < 0.

Example 23: Show that the four asymptotes of the quadratic curve
(x?2 —y2)(x? —4y2) + 2x3 — 3x%y — 5xy? + 6y3 + y?2 —3xy + 1
=0
cut the curve in points which lie on a circle of unit radius.

Solution: The asymptotes of the curve
(x? —y2)(x? — 4y?) + 2x3 — 3x%y — 5xy? + 6y3 + y? — 3xy +
1=0,are
x—y=0
x+y+1=0
x—2y=0
x+2y+1=0.
The joint equation of the asymptotes is
Fob=(—-y)x+y+Dx—-2y)x+2y+1)
F, = (x? —y?)(x? — 4y?) + 2x3 — 3x%y — 5xy? + 6y3 + x2 — 3xy
+ 2y? =
The equation of the curve can be re-arranged and written as
F,— (x?24+y%2—-1)=0.
The eight points of the intersection of F, =0, and F, — (x? + y? —
1) = 0 lie on the unit circle, x? + y2 — 1 = 0.

10.18 SUMMARY

In this unit, we studied asymptote to a curve as a straight line at
a finite distance from origin, which cuts a curve in two points at
infinite distances from origin and yet is not itself wholly at infinity.
Historically, some sources include the requirement that the curve may
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not cross the line infinitely often, but this is unusual for modern
authors. We also studied about the three kinds of asymptotes:
horizontal, vertical and oblique asymptotes. ~We  understood the
calculating procedures for finding the asymptotes in various cases and
found that “Asymptotes convey information about the behavior of
curves in the large, and determining the asymptotes of a function is an
important step in sketching its graph”.

10.19 GLOSSARY

i.  Infinity: A value greater than any fixed bound, denoted by co.

ii.  Tangent (to a curve): Let P be a point on a (plane) curve. Then
the tangent to the curve at P is the line through P that touches the
curve at P.

iii.  Normal (to a curve):Let P be a point on a curve in the plane.
Then the normal at P is the line through P perpendicular to the
tangent at P.

iv.  Homogeneous Polynomial: An algebraic expression in x and y,
in which sum of powers of x and y in each term is same, is called
a homogeneous. e.g.f (x,y) = ax + by or ax? + 2hxy + by?;
a,h,b € R etc.

2
We can write it as f (x,y) = x? [a + 2h (%) +b (i—/) ] =x%¢ (%)
Where ¢(t) = a + 2ht + bt2. Similarly, we can write a homogeneous
expression as f(x.y) = x"¢ (i—’) with degree n.

CHEECK YOUR PROGRESS

1. The n asymptotes of a curve of the nt" degree cut it in
(@ 2 points.
(b) n points.
(c) n(n— 2) points.
(d (n—1) points.
2. The asymptote of xy? = 4a?(2a — x) is

@ x=0.
(b) y=0.
(c) x+y=0.
d x—y=0.

3. The number of asymptotes of a curve of the nt* degree can-not exceed:
@ (m-1.

(b) n

© (-2).

(d) (n+ 1).

4. The asymptotes for the curve y = ’;_31 is
@ x=1.
(b) x +3=0.
(c) x =3.
(d) None of these.
5. The number of asymptotes of the curve z—z — z—z =1is
(@) 2.
(b) 3.
(c) 4.,

2
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6. The curve y2 = x has
@ 1 asymptote.
(b) 2 asymptotes.
(© 3 asymptotes.
No asymptotes.
7. The asymptotes, parallel to the axes for the curve x2y? = a?(x? + y?) are
€)) x==a; y=+*a.

(b) X=a x=-—a.
© vy=a y=-a
(d) x = ta.

8. A closed curve has

(a) No asymptote

(b) One asymptote

(c) Infinitely many asymptotes

(d) n —asymptotes.

9. The number of asymptotes of a curve of nt" degree is at most n. True\False.
10. The parabola y? = 4ax possesses real asymptote. True\False.
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10.22TERMINAL QUESTIONS

TQ1: Find the asymptotes of the curve x?(x — y) + ay? = 0.

TQ2: Find the asymptotes of the curve y2x — a?(x — a) = 0.

TQ3: Find the Asymptotes of the curve xy(x + y) = a(x? — a?).
TQ4: Show that the asymptotes of the cubic x3 — xy? — 2xy + 2x —
y = 0 cut the curve again in points which lie on the line.

TQ5:
to the

Find the asymptotes of the curve and their postion with regard
curve x3 + y3 = 3ax?.

10.23ANSWERS

CHECK YOUR PROGRESS

CYQL
CYQ2.
CYQ3.
CYQ4.
CYQ5.
CYQS.
CYQ?7.
CYQS.
CYQOo.

D YO OO T DL®”O

True.

CYQ10. False.

TERMINAL QUESTIONS
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TQl:x—y+a=0.

TQ2:x =0.y = ta.

TQ3:y=a,x=0,x+y+a=0.

TQ5: x +y = a. The curve lies above or below the asymptote
according as x is positive or negative.
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UNIT:-11-ENVELOPE AND EVOLUTE

CONTENTS

11.10bjectives

11.2 Introduction

11.3 Envelope

11.4 Method of finding the envelope

11.5 Elimination in the case of quadratic

11.6 Geometrical significance of the envelope
11.7 Equivalence of two definition of envelope
11.8 Evolute of curve

11.9 Evolute as the envelope of the normals
11.10 Involutes

11.11 Summary

11.12 Glossary

11.13 Terminal questions

11.14 Answers

11.15 References

11.16 Suggested readings

11.1 INTRODUCTION

We will first discuss the basic information about tangents, normals and
curvature of a curve at a point.

A brief survey of tangents and normals:
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Let us consider a curve y = f(x) and P and Q be two distinct
points on it. Let point P slides on the curve towards Q. When it reaches
at R, chord PQ becomes RQ. Finally when P — Q,chord PQ —

tangent M N at Q. The slope of tangent M N at Q is defined as
dy ,
( dx)Q = tany = [f'@lac o
Now equation of tangent at a point A(a, B) is

y—B= (g)w) (x - a).

L 4

0 N X

Fig. 11.1.1
Note:
(1) If equation of curve is given in parametric form_i.e. x = x(t), y =

y(t), then
)

dy _ (dt

dx  (dx\

(@)

(2) If the equation of curve is given in implicit form i.e. you can
separate x and y i.e. f(x,y) = 0, then

dy_(‘%)
“H

Angle of Intersection:

Let two curves y = f(x) and y = g(x) intersect at point P. By
solving both equations, find the coordinates of P. Now draw tangents
to both curves. Let m; and m, be their slopes. Then

angle between curves=angle between tangents at P
mp; —m,
tan@ =

1+mym,
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y = #0)

Fig. 11.1.2

Normal:

Mormal

Tangent

Fig. 11.1.3
The normal to a curve at any point is the straight line which passes
through that point and is at right angles to the tangent to the curve at

that point.

-1 -1
Slope of l= N '
ope of norma slope of corresponding tangent (ﬂ)

dx
P
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Polar Coordinates:

@] X
N
Fig. 11.1.4
B)I/ the property of triangle, Y=0+¢
Also,
() tang=""
.. . rdf
(i) sin¢g = o
(ii)) cosgp ==
(iv)  Length of perpendicular from the pole on tangent = ON =
p =rsin ¢. ,
1 1 1 (dr
0 =5t

vy Z= 1+(Z—§)2
(vi) == Ir2 +(j—;)2
i) 2= (&) + (L)

Pedal Equations: The relation between p and r for a given curve is
called its pedal equation i.e. p = f(r) or r = g(p).
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A Brief Survey of Curvature

Fig. 11.1.5
Here we have shown two curves P and Q. Curve P bends more sharply
than the other i.e. curve P has a greater curvature than the other. But in
order to get a quantitative estimate of curvature. We define it.

Definition: Let P be a given point on a given curve, and Q any other
point on it. Let the normals at P and Q intersect at N. If N tends to a
definite position ¢ as Q — P, then c is called the centre of curvature of
the curve at P.

Y

-

Fig. 11.1.6
Here N must tend to ‘¢’ whether Q — P from the right or from
the left. The reciprocal of the distance CP is called the curvature of the
curve at P. The circle with its centre at ¢ and radius CP is called the
circle of curvature of the curve at P. The distance 'CP’ is called the
‘radius of curvature’ of the curve at P, denoted by p.Any chord, drawn
through P, of the circle of curvature at P, is called a chord of curvature.
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Formulae for radius of curvature:

p= @ (intrinsic form)

(Polar form)
2 dr\> _ d?r
242 (q) ~r g

Centre of Curvature:
Let C(a, B) be centre of the circle at P on the curve y = f(x). Then

_ dr( dal )
p—rdp pedal form

y=rflx

Fig. 11.1.7

dy dy\’
i (@)
d?y
dx? ,
dy
{1 + (&) }
B=y+ BT

dx?

aA=X—-
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11.2 OBJECTIVES

In this unit, we will understand

I.  The meaning of terms ‘Envelope’ and ‘Evolute’.
ii. Method of finding the Envelope.
iii.  Geometrical significance of the Envelope.
iv.  The relation between Envelope and Evolute of a Curve.

11.3 ENVELOPES

Family of Curves: Let us consider x?+y2=24% A1€R. It
represents a family of concentric circles with varying radii. For a
particular circle, A has a fixed value, which is called ‘parameter’.

Fig. 11.3.1
Similarly y = mx +§, m # 0 also represents a family of
straight lines.In general, if F(x,y,a) is an expression involving x,y

and «a, the curves corresponding to the equation F(x,y,a) =0
constitute a family of curves.

Envelope: A curve (i) which touches each member of a family of
curves, and (ii) at each point is touched by some member of the family,
is called the envelope of that family of curves.

Example:From Co-ordinate geometry, we know that all straight lines
whose equation is of the form y = mx + % touch the parabola y? =
4ax.

Also this parabola y? = 4ax has at every point a tangent which is of
the form y = mx + %

Hence, we infer that the envelope of the family of straight lines y =
mx + % is the parabola y2 = 4ax.
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¥
>

F 3

S

v

Fig. 11.3.2
Another Definition: If F(x,y,a) = 0 represents a family of curves
whose parameter is ‘a’, and if the curves F(x,y,a) =0 and
F(x,y,a + h) =0 cut in a point which tends to a definite point P as
h — 0, the locus of P (for varying values of «) is called the envelope

of the family.

11.4 METHOD OF FINDING THE ENVELOPE

Let the given family of curves be
1) fGxy,a) =0
Suppose ‘a’ have a particular value, then above equation represents
one member of the family.
Suppose another member of the family be
) fOoy,a+h)=0
The coordinates of the point of intersection, say P, of (1) and (2) will
satisfy the equation
f(x'y'a + h) - f(x»% Of) = 0.
Dividing by h, we get
f(x'y'a + h) - f(x»% Of)
N =0.
Taking limit as h — 0, we see that coordinates of the point P to which
P, tends as h — 0, satisfy the equation

3) %: 0.

Department of Mathematics
Uttarakhand Open University Page 219



CALCULUS MT(N) 101

Also the coordinates of P must satisfy (1), because P is a point on (1).
If we now eliminate ‘a’ between (1) and (3), we shall get an equation
which the coordinates of P will satisfy for all values of ‘a’ i.e. the
result of eliminating 'a’ between (1) and (3) will be the locus of P.

Working Method: The equation of the envelope of the family of
curves f(x,y,a) =0; where a is the parameter, is obtained by
eliminating a between the equations

(x,y,a) = 0and Uy _ g
f,y Py

Ex.1 Find the envelope of the straight lines (E)cos0+

(%) sin @ = 1,the parameter being '@

result geometrically.
Sol.  The equation of the given family of straight lines is

14

and interpret the

(E) cos @ + (%) SINO = 1., (1)
Differentiating partially with respect to parameter ‘9, we get
(—g) sin 8 + (%) oSO =0..cooiiiiiiii (2)

By eliminating 8 between equations (1) and (2), we will get the
envelope of the family of straight lines (1).So squaring and adding
equation (1) and (2), we get

2

2
X
prs (cos? 0 + sin?0) + Z—Z (sin? @ + cos?0) =1
xZ y2
:a_z + b_z =1
which is the required envelope.
Geometrical Interpretation: The equation (3) represents an ellipse
whose centre is origin. Whatever may be the value of 8, (i) the straight

line (1) always touches the ellipse (3) and (ii) the ellipse (3) is also
touched at each point by some straight line belonging to the family (1).

Ex.2 Find the envelope of the family of straight lines ax sec 8 —
by cosec 8 = a* — b?, where parameter is 6.
Sol.  The equation of the given family of straight lines is

W DY 2 h2 (1)

cosf@ sin 6

Differentiating (1) partially with respect to 8, we get

ax sin 6 by cos@ __ 0 2
g g = U (2)

By eliminating 6 between (1) and (2), we get the required
envelope.

1

From (2) ,tan® 8 = — (Z—Z) = tanf = — (b—y)g

ax

(S

1
3

. _ (by) _ (ax)
So, sinf = > =, cosfO = -
(ax)3+(by)3 \ (ax)3+(by)3
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Substituting these values in (1), we get
+ |(ax)s + (bys| | (ax)s + (by)3 | = a* - b2,
= [(ax)§ + (by)g]E = a? — b?,

= (ax)3 + (by)3 = (a® — b?)3, which is the equation of the
required envelope.

11.5 ELIMINATION IN THE CASE OF A
QUADRATIC

In case the equation f(x,y,a) = 0 is a quadratic in parameter «a,
say
Aa? +Ba+C =0,
where A, B and C are functions of x and y, the result of differentiation
partially with respect to « is
2Aa+ B =0.

Putting a = —% in the equation (1), we get

A B)ZB( AP
24 2A N
B2 B2 B2

m—ﬁ+C=0:> _ﬁ-l_C:O

= B? —4AC = 0.
This is the required envelope.
Ex.3 Find the envelope of the family of straight lines y = mx +
a

m
Sol.  Equation can be written as
M2X —MY + A =0 .o, (1)
Here m is parameter.
Using the discriminant relation 'B? — 4AC = 0', we get
(—y)2—4xa=0
Or y? = 4ax.
Second Method:
Differentiating equation (1) partially with respect to m, we get

a a
O=x——=>m= |-
m X

Putting m in equation (1), we get

-x5* o
y_xxaa

= y=+ax +Vax
y = 2Jax
Y? = 4ax.
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Note: The method using ‘B% — 4AC = 0" is used only when we have a
quadratic equation in parameter. For other cases, we shall use
general method.

Ex.4 Find the envelope of the family of circles (x — ¢)? + y2 = R?,

where c is parameter.

Sol.  The given family of circles is

(x—C)2+y2=R%. ... (1)
Differentiating equation (1) partially with respect to ‘c’, we get
—2(x—¢c)=0

(=€) = 0 )

Eliminating ¢ between equations (1) and (2), we get the
envelope of the family (1).
So by putting x — ¢ = 0 in equation (1), we get

y? = R? or y = *R.
Hence the envelope of the family (1) consists of the straight
lines y = +R.

Ex.5 Find the envelope of the family of straight lines y = mx +
va?m? + b2, where parameter is ‘m’.
Sol.  The equation of the given family of straight lines is
y —mx = Ja@m? + b?
= (y —mx)? = a’*m? + b?
= (x%2 —a®>)m? — 2xy)m+ (y?> —b?) = 0.

This is a quadratic equation in the parameter 'm’.
So the required envelope is obtained by equating to zero the
discriminant of (1). So,
(—2xy)? —4(x* —a®)(y?> = b*) =0
= x2b? + y%a? = a’b?
x%  y? L. .
>t = 1, which is an ellipse.
Ex.6 Find the envelope of the family of straight lines §+%= 1,

where the two parameters a,b are connected by the relation
ab = c?, ¢ being a constant.

Sol.  We shall eliminate one parameter, say b.
2

b= % ................................................................. (1)
The equation of the given family of straight lines is
XY _
b ay
(1) = E + ? =1

= c%x + a’y = ac?
= (y)a? + (—cHa + (xc?) = 0.
This is a quadratic equation in the parameter a. So envelope
will be
(—c?)? — 4y(xc?) = 0.
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CZ
= % = 4xy or Xy =
It is a rectangular hyperbola.

11.6 GEOMETRICAL SIGNIFICANCE OF
THE ENVELOPE:

Theorem 1 The envelope of a family of curves touches each
member of the family.

Proof. Let any member of the family be
fOLY, @) =00 (1)
Where « is constant and equal to a,, say.
The equation of the envelope is the result of eliminating a between

fx,y,a) =0 and YL@ g .. (2)

oa
Thus the equation of the envelope may be regarded as (1)

FOOLY, @) =0 (3)

in which « is not a constant, but a function of x and y given by
TEPE) 2 0 e (4)

Consider now the point P on (1), where P is the limiting position to

which the intersection of f(x,y,a;) =0, and f(x,y,a; + h) =0,
tendsas h = 0. This point P lies on the curve (1) and also on the
envelope (2).
The tangent at P to the curve (1) has the gradient Z—i’ , given by

of L of dy _

a + 5 . E e (5)
Where, in the differentiation, « is kept constant and equal to «;.

But the tangent at P to the envelope has the gradient % given by

of ~ of dy of da
£+5.E+{£.E}a=a1:0 ................................ (6)
because «a is not constant for the envelope.

But in virtue of equation (4), which is satisfied at every point of the
envelope, (6) reduces to (5); i.e., the gradients of the tangents to the
curve and the envelope at the common point P are the same.

= the curve and the envelope have the same tangent at P.

= they touch each other at P.

Note:
@ If Z—i and Z—f/ are both zero, the value of Z—z cannot be found
from equation (5) or (6), and the above argument would break

down.
So the preposition might not be true for such points. If Z—ﬁ =

0= Z—f/at some point, then there is a singular point.
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(2) If the given family of curves is a family of straight lines or a
family of conics, we have no singular points.

Hence the envelope of a family of straight lines or of conics touches
each member of the family at all their common points without
exception.

11.7 EQUIVALENCE OF TWO DEFINITIONS
OF ENVELOPE

The propositions of the last article enables us to infer at once that
in general the two definitions of an envelope would give us the same
curve, with the exception that second definition might in certain cases
give us a curve the whole or a part of which is not an envelope in the
sense of the first definition.

For example, if the curve f(x,y,a) = 0 is the curve C; (which has
acusp at P) and C, is the curve f(x,y,a + h) = 0, it is evident that as
h—-0,P, - P.

Fig. 11.7.1

Hence the result of eliminating a between f = 0 and 2—2 = 0 will be, or

will at least include, the locus of cusps.But from the figure it is evident
that the loci of the cusps will not touch C; and C, or the other members
of the family.

There are other loci (besides the locus of the cusps) which are
sometimes obtained in the process of finding the envelope by

eliminating a between f = 0 and 2—2 = 0.

Note: If the equation to a family of curves is not given, but the law is
given in accordance with which any member of the family can
be obtained, the equation to the family must first be found in a
suitable form.

Ex.7 Find the envelope of the circles drawn upon the radii
vectors of the ellipse
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Sol.

Ex.8

Sol.

Ex.9

Sol.

(g)z + (%)2 = 1 as diameter.

From geometry, any point on the ellipse is P(a cos 8, b sin 6).

ILY

P{acos#,bsind)

N

v

Fig. 11.7.2
Now we know that if (x;,y,) and (x,,y,) are end points of a
diameter of a circle, then the equation of that circle is
(x—x)x—x)+ @ —y)y—y2)=0.
So equation of a circle whose diameter is OP, will be
(x—0)(x—acos8)+(y—0)(y—bsinf) =0
> x2+y2—axcosf —bysind=0. ............ (1)
This is the family of circles drawn upon the radii vectors of
given ellipse. Here 6 is the parameter.
So differentiating equation (1) partially with respect to 8, we get
axsin® —bycosO@ =0/.......ccccoiiiiiiiiiiiiiiii, 2
To get the required envelope, we have to eliminate 8 from the
equations (1) and (2).
From (1)
axcos®+bysin@ =x%+y% (3)
Squaring and adding equation (2) and (3), we get
a’x? + b%y? = (x? + y?)2.
Obtain the envelope of the family of the curves given by
x2 y?
o K—a?
where «a is the parameter.
On solving the given equation,
(a®)? + (y? —x? = k?)a? + x%k? = 0.
This is a quadratic equation in a?2. So its envelope will be
(y? —x? — k?)? —4x%k? = 0.
> y2 —x?2—k? = +2kx.
Find the envelope of the family of straight lines x cos a +
ysin a = a, the parameter being a.
The equation of the given family of straight lines is

1,

xcosa+ysina=a............ (1)
Differentiating partially with respect to a, we get
—xcosa+ ycosa=0......... (2)

Squaring and adding equations (1) and (2), we get
x2 +y?% = g2
which is the required envelope.
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Geometrical Interpretation:

x? + y? = a? is the equation of a circle whose centre is (0,0) and
radius a. This circle is the envelope of the family of straight lines
xcosa+ysina=a.So for each value of «, the straight line
x cos a + y sin a = a touches the circle x? + y? = a?.

-+

Fig. 11.7.3
Conversely, the circle x2 + y2 = a? is touched at each point by some
straight line belonging to the family x cosa + y sina = a.

Ex.10 Show that the envelope of the straight line joining the
extremities of a pair of conjugate diameters of an ellipse is a
similar ellipse.

Sol.

(acos(Z+6),p Sm%NOSSJbSmS)
L

Fig. 11.7.4
Let the equation of the given ellipse be
x2 y2

;-Fﬁ: 1.

Let P(acosO,bsin®@) and Q (a cos (g + 9) ,b sin (g + 9))
i.e. Q (—asin8,bcosB) be end points of conjugate diameters

of ellipse.
Now equation of PQ line is
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b(sin8 — cos 8)
a(cos 8 + sin 6)
= (ay + bx)cos6 + (ay — bx)sind = ab. ............. (1)
Here 0 is the parameter.
Differentiating equation (1) partially with respect to 8, we get
—(ay + bx) cos6 + (ay —bx)cosO =0. ............... (2)
Squaring and adding equation (1) and (2), we get
(ay + bx)? + (ay — bx)? = a?b?
2x?  2y?
? + b_z =1

xZ y2

+
) &
V2 V2
which is the required envelope and is a similar ellipse.
Ex.11 Find the envelope of the circles drawn on the radii vectors

of the parabola y? = 4ax as diameter.
Sol.  Any point on the parabola y? = 4ax is (at?, 2at).

v
FY

y —bsinf = (x —acos0)

)

Plat?, 2at)

l

Fig. 11.7.5

Now equation of circle considering OP as diameter is

x—0)(x—at’ )+ (y—0)(y—2at) =0
x2—axt?+y2—2ayt =0 eoeiiiiiii (1)
We have to find the envelope of the family of circles (1), where
't" is the parameter.

= (—ax)t? + (—2ay)t + (x?2 + y?) = 0.
This is a quadratic equation in t. So, envelope is

(—2ay?) — 4(—ax)(x? + y?) = 0.
= ay? + x(x? +y?) = 0.

Ex.12 Show that the radius of curvature of the envelope of the
family of lines xcosa + ysina = f(a), is f(a) + f"' (a).
Sol.  The given equation of the family of lines is
xcosa+ysina=f(a) ...cc.eeeeiiiiiiiii. (1)
Where «a is the parameter.
Differentiating equation (1) partially with respect to a, we
get
—xsina+ycosa = f'(@).................... (2)
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To find the radius of curvature of the envelope of the given
family of lines, we solve equation (1) and (2) to obtain

x=f(y)cosa—f'(a)sina............... (3)
y=f(a)sina+ f'(a)cosa.................. 4)
So,
Z—z = f'(a)cosa — f(a)sina — f"(a) sina — f'(a) cosa
= —[f(a) + f"(a)] sin a.
Z—Z = f'(a)sina + f(a)cosa + f""(a) cosa — f'(a) sina
= [f(a) + f"(a)] cosa.
Since,
d
dy _ (%) _
g—(d_x)——COta’.
, da
% = %(— cota) = _dd_a(_ cota).;l—z
B cosec? a B cosec’a
(d_x) ~ =lf(@ + f(@]sina’
da
So, radius of curvature will be
3
dy 212
B ll + (ﬁ) l B [1+ cota]% .,
P =gy = eoseia @@
dx?

p=—lf(a) + f"(a)].
Since radius of curvature is distance only, so neglecting
negative sign, we have

p=f(a)+f"(a).

Ex.13 Find the envelope of the straight lines

g + % = L (1)
where the parameters a and b are related by the equation
A D™ = CT 2)

¢ being a constant.

Sol.  Letus consider a and b as functions of some other parameter t.
Differentiating (1) and (2) with respect to t, considering x and
y as constant, we get

X da, y db_ n-19a 4 pn-1
2T =0 and @™ — 4+ b" .
(i)

dt
db

dt

@) _ ()

qn-1 - pn-1

ab
dat

0.

Equating the values of from both equations, we get
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@_()_ats _1

= = =

am b a™+b" "
c a+c

= = — = )

= - n+l — n. yn+l — n
a”“_b”“_c”:a x.c™: b y.c™

Putting these values in equations (2), we get
n n
(c™x)ntt 4 (c"y)nit = ™
n n n
= xn+1 + yn+l = cn+l
which is the required envelope.

11.8 EVOLUTE OF A CURVE

Let us consider a curve y = f(x). We take some points
P;,P,,P;,... etc on the curve and draw corresponding circle of
curvatures with respective centres C;, C,, C5 etc.

¥y =Fi) P

Fig. 11.8.1
Now generalize this concept i.e. if we draw circles of curvatures at
every point of curvature, and join their centres, we shall get the locus
of centre of curvature at an arbitrary point of y = f(x). This locus is
called evolute.

11.9 EVOLUTE AS THE ENVELOPE OF THE
NORMALS

The centre of curvature of a curve for a given point P (on it) is the
limiting position of the intersection of the normal at P with the normal
at any other consecutive point Q as Q — P.

So by the definition of envelope, the envelope of the normals to a
curve is the evolute of that definition.
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¥ = FixD

Fig. 11.9.1
Definition (11): The evolute of a curve is the envelope of the normals
to that curve.
Theorem: The normal at any point of a curve is a tangent to its evolute
touching at the corresponding centre of curvature
Proof: The coordinates (a, ) of the centre of curvature for any point
P(x,y) on the given curve are given by a=x-—

psiny; [ =y+ pcosy.

I i
Fig. 11.9.2
Differentiating these with respect to x, we get
da 1 dy dp
T pcosd).dx smlp.dx
ds dx dy dp
dy ds dx d
dp
— = —siny S TRTRPPPSIRPPPRRP (1)
ag _ dy _ w ap
AISO’E = psiny. T cosd).dx
_dy ds dy dy N dp
“dx dpds dx T OV i
= d—ﬁ = cosy .Z—z .................................... (2)
From equation (1) and (2), we have
4B _ COLY i, (3)

But % is the slope of the tangent at Q to the evolute and — coty is the

slope of the normal PQ at P to the given curve.

These two slopes are equal and Q is a common point on both the lines.
Hence the tangent at Q to the evolute and — coty is the slope of the
normal PQ at P to the given curve.
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These two slopes are equal and @ is a common point on both the lines.
Hence the tangent at Q to the envelope and the normal at P to the given
curve touches its evolute at the corresponding point.

Ex.14 Find the evolute of the parabolay? = 4ax.
Sol.  From Co-ordinate geometry, we know that equation of normal at

(% — in—“) to the curve y2 = 4ax is
y=mx—2am—am3 ... (1)
where, m is the parameter.
Now envelope of (1) is the evolute of y? = 4ax. Differentiating
equation (1) partially with respect to m, we get
0 = x — 2a — 3am?

3

Substituting this value in equation (1) and solving, we get 27 ay? =
4(x — 2a)3, which is the required evolute.

Second Method: Curve is y? = 4ax

Differentiating with respect to x, we get

= (x—Za)

dy dy 2a
2y(==) =4 =
y(dx) @ o dx vy
dy 2a _ Va
dx  dax +x
d’y 11 3 Va
—_— = ——Qa2x 2 = -
dx? 2 2xv/x

Suppose (a, B) be the centre of curvature for the point (x,y). Then

(@@ (B

d?y (L1 Ve
dx 2" xx
A =3XF 20 i (2)
Also
dy 2
@] e
+ +
B=y aZy y T o
dx? T 2x Al x
_1 3
DB = 20 X2 i (3)

If we eliminate ‘x’ from the expressions of a and S, we will get an
expression only in @ and . So putting x = “_32‘1 in equation (3), we
get

3
2

g=— 2 (a—32a>.

Bl

On squaring,
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4 (a —2a\°
#=2(5)
a 3
= 27apf?=4(a—2a).
Hence locus of centre of curvature is 27ay? = 4(x — 2a)3, which is
the required evolute.

Ex.15 Find the evolute of the ellipse

xZ 2
— + y— = 1.
a
Sol.  The given ellipse in parametric form is x =acos@, y =
b sin 8, where 6 is the parameter.

o asing Y — bcos 6

18- asin@, 0= cos
dy

dy_ do B bcos 6 —-b

dx (dx) T “asing 7cot9.

do
So, slope of the normal to given ellipse at the point

. a sin @
(a cos@,bsinf) = :
bcos@

Hence equation of the normal to the given ellipse at the point
(acosB,bsinB) is

bsin § = a sinH( 0)
y—bsinf = b o5 X — acos
ax by

_ — a2 _ b2
cosf sinf )
Now the evolute of the given ellipse is the envelope of the

family given by equation (1). We have done it in envelope
2 2 2
section, which is (ax)3 + (by)3 = (a? — b?)s.

Length of arc of an evolute:

Theorem: The difference between the radii of curvature at any two
points of a curve is equal to the length of the arc of the
evolute between the two corresponding points.

Proof. Let s be the length of the arc of the given curve measured
from some fixed point A on the curve upto P(x,y) and o
the length of the arc of the evolute measured from some
fixed point on it up to C(a, B).
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Fig. 11.9.2

It is obvious that if C(a,B) is the centre of curvature,
corresponding to P(x, y), then

a=x-—psiny,
da dx

- b (5)
4 ds dpdsds Sh¥igs
_dx dx (dp)
~ds ds siny ds
_ da da ( )
Is = siny
Now

ag _dy ay dp
E—g—psmlp( >+cos¢($)
_dy ds dy dl/) dp
ot 2 ey ()
~ds dyds’ds ds
d,[i’ (dp)
ds = cosy ds
Since we know that

FCRCRNCE ===

ds da'ds ds’

L9y dp =d
To = or dp=do
=>d(p—o0)=0.

= p — o0 = constant = ¢, say.

— p; = 0, — gy, Where p; and p, are the values of p
for any two points P, and P, on the curve and o; and o, are the
corresponding values of o.

Hence p,
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11.10 INVOLUTES

If one curve is the evolute of another, then the latter is called an
involute of the former. Thus if the curve C,C,C5 is the evolute of the
curve P, P,P;, then P, P,P; is an involute of C;C,Cs5.

Fig. 11.10.1

Theorem: Every curve has an infinite number of involutes.
Proof: Let C; and C, be the centres of curvature of the curve P;P,P;

at P; and P, respectively, then by the last article

C1P; + arc C,C; = C,P;.

Hence, if a thread were wrapped round the curve C;C,C; and were
presented from slipping, it is evident that when the thread is
unwrapped, (being kept taut all the time) the point on the thread which
was at P; to begin with will describe the curve P, P, P;.
This explains why the curve C,C,C5 is called the evolute of the curve
P,P,P;.
Obviously, any point on the thread will describe an involute of the
curve C;C,C5.
Thus every curve has an infinite number of Involutes.
Parallel Curves: If the curves P;P,P; and P;P,P;" are both involutes
of the same curve, then they are called parallel curves; because the
distance between them measured along their common normal is
constant.

11.11 SUMMARY

We studied that an envelope of a family of curves in the plane
is a curve that is tangent to each member of the family at some point,
and these points of tangency together form the whole envelope.
Classically, a point on the envelope can be thought of as the
intersection of two "infinitesimally adjacent” curves, meaning the limit
of intersections of nearby curves.We also noticed thatthe evolute of
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acurve is the locus of all its centers of curvature. That is to say that
when the center of curvature of each point on a curve is drawn, the
resultant shape will be the evolute of that curve. The evolute of a circle
is therefore a single point at its center. Equivalently, an evolute is
the envelope of the normals to a curve.Evolutes are closely connected
to involutes: A curve is the evolute of any of its involutes.

11.12GLOSSARY

i.  Parameter: A variable that is to takedifferent values, thereby
giving different values to certain other variables.

ii.  Quadratic Equation:A quadratic equation in the unknown x is

an equation of the form ax? + bx + ¢ = 0, wherea,bandc
are given real numbers, with a£0.

CHECK YOUR PROGRESS

Choose the correct answer for each question:

1. Curvature of circle of radius r is

@ o.
(b) .
© -
(d) 2r.
2. If s =csecythenpis
(@) csecy

(b) csec? P tanyp

(c) csecytanyp

(d) None

3. The locus of the centre of curvature for a curve is:

(@) Envelope
(b) Evolute
(¢) Radius of curvature
(d) None of these.
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oo

The envelope of the normals to the curve is

a) Evolute.

b) Curvature.

c) Envelope.

d) None of these.
Envelope of the family of circles (x — ¢)? + y? = r2, where the
parameter being c, is

() y = &r.

(b) y = 0.

(c) x=0.

(d) xy = 0.

The equation of the evolute of the parabola y? = 2ax is
(@ y = ta.

(b) y = 0.

(c) x=0.

(d) 27a y? = 8(x — a)3.
Envelope of the family of curves of the form AA2 + BA + C = 0is
(@ AA+B =0.
(b) B — 4AC = 0.
()B—C =0.
(d) None of these.

. The centre of curvature at (1, 2) for the curve y? = 4x is

(@) (2,5)
(b) (2,-5)
(©) (5,-2)
(d) (=5,-2)

9.The envelope of the family of curves

(a) Touches each member of the family.

(b) Intersects each member of the family.

(c) Touch one member and intersects each member of the family.
(d) None of these.

10. Envelope of the family of straight line y = mx + a/mis:

(@) y? = 2ax

(b) x? = 4ay

(c) xy = 8(x — a)3
(d) None of the above
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11.15 TERMINAL QUESTIONS

TQL1: Find the evolute of the hyperbola Z—z — Z—z =1.
TQ2: Show that the chord of curvature through the pole of the
cardioid r = a(1 — cos8) is gr.

. 0\ y m _

TQ3. Find the envelope of the curve (Z) + (g) =1
when a™ + b™ = ¢c™.

TQA4. Define the envelope, evolute and radius of curvature

TQ5. Find the envelope of the circles which pass through the origin
and whose centres lie on x2 —y2 = a2
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11.16ANSWERS

CHECK YOUR PROGRESS

CYQL. (¢
CYQ2. (c)

CYQ3.
CYQ4.
CYQ5.
CYQS.
CYQ?7.
CYQS.
CYQO.
CYQ10.

TERMINAL QUESTIONS

TQL Evolute (2)° — (

mn mn
TQ3. (x)m+n) 4 ymtn) = clm+n),
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(a)
(d)
(b)
()
(a)
(b)

3 2
) = (a? + b?)s.
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UNIT-:12 INTEGRATION AND VOLUME
AND SURFACE OF SOLID OF
REVOLUTION

CONTENTS:-

12.1 Inroduction
12.2 Objectives
12.3 Volume of solid of revolution
12.3.1 Volume of solid of revolution (B-Parametric form)
12.3.2 Volume of a solid of revolution (Polar Forms)
12.4 Volume of a solid by double integration
12.5 Surface of Revolution (Cartesian form)
12.5.1 When the axis of revolution is the x-axis
12.5.2 When the axis of revolution is the y-axis
12.5.3 When the axis of revolution is any straight line
12.6  Surface revolution (Parametric Form)
12.7  Surface revolution (Polar Form)
12.8  Area of the surface by double integration
12.9  Theorems Pappus (or Guldin)
12.9.1 The theorem of Pappus for the volume
12.9.2  The theorem of Pappus for the surface
12.10  Summary
12.11 Glossary
12.12  References
12.13  Suggested readings
12.14  Terminal questions
12.15  Answers

12.1 INTRODUCTION

The solid generated by revolving an area about a fixed straight
line lying in its plane is known as a solid of revolution.

Volume of revolution:- The volume generated by revolving an area
about a fixed straight line in its plane is known as a volume of
revolution.
Surface of revolution:-The surface generated by revolving an arc
about a fixed straight line lying in its plane is known a surface of
revolution.

Axis of revolution:- The fixed straight line about which an area or an
arc revolves is known as axis of revolution.
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In this unit we are defined about Volume of solid of revolution,
Volume of a solid by double integration, Surface of Revolution,
Surface revolution (Parametric Form), Surface revolution (Polar
Form), Area of the surface by double integration, and Theorems
Pappus (or Guldin).

12.2 OBJECTIVES

The objective of this topic is to at the end of this topic learner will be able to

i.  Volume of solid of revolution.
ii.  Surface of revolution.
iii.  Cartesian, parameteric and polar in form of volume and surface
of revolution.
iv.  Area of surface by double integration.
v.  Pappus theorem of volume and surface of revolution.

12.3 VOLUME OF A SOLID OF REVOLUTION

Case |: When the axis of revolution is the x-axis

The volume of the solid generated by the revolution of the area
bounded by the curve y = f(x)the x-axis and the two ordinates x = a

and x = b axis is given byV = nf: y2dx = nffy[f(x)]zdx :

Proof:- Let the Cartesian equation of the curve is y = f(x) and let AC
and BD be the two ordinates x = a and x = b respectively.

Let P(x,y) and Q(x + &x,y + 8y) be any two neighbouring points on
the curve. From P and Q draw PM and QN Perpendicular and the x-
axis. Further from P and Qdraw PS and QR perpendiculars to QN and
PM produced respectively.
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VA | I.l

b Aand X vie b

—_ Y

(} ( * ” J"\r D

Fig 12.3.1

Let the volume of the sohds generated by the revolution of
areas ACMPA and ACNQA about the x —axis be v and V +
dVrespectively.

So 8V is the volume of the solid generated by the revolution of
the elementary area PMN@P about the x — axis and it lies between the
volumes generated by the revolution of the rectangles MNSPand
MNQR about the x — axis .

Now, PM = y,QN = y+ dy and MN = {x.

The volume generated by revolving the area MNSP is = my25x and
The volume generated by revolving the area MNQR is
=n(y + 6y)*8x

Since the volume &v i.e. the volume generated by revolving the area
PMNQP lies between the volume generated by the areas MNSP and

MNQR Therefore wy26x < v < w(y + 8v)%/x.

i 2 < o < + 8y)*
I.e.mTy" — =Ty v)©
y? <5 <n(y+8y)

In the limiting case when
Q — P,6x — 0 and 6y — 0 If follows that

dv

dx

i.e.dv =myidx
Integrating this with respect to x between the limits
x=aand x =bwe get
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b b
J dv = J Ty <dx
= ]

b
(value of vatx = b) — (value of vatx = a) = J. myidx

i.e. The volume of the solid generated by the revolution of the area
between, arc AB, the x-axis and the ordinates x-a,x-b about the x-axis
is given by

v=n jdx - nf[f(xjfdx

Case Il When the axis of revolution is the y-axis.

Proceeding exactly as in Case | above, we can prove the following:
x = f(y),the y-axis and the abscissa y=c and y=d is

v = f “edy = f "o 2dy

Case I11: When the axis of revolution is any straight line:

Let the axis of revolution is any straight line AB (different from x and
y-axis) and CD be the arc of the curve.

D
P Q/
{"___’_//
O MON : " B
Fig 12.3.2

Let PM be the length of the perpendi point P on
the arc CDto the axis of revolution AB and O is the fixed point on the
axis AB. Then the volume (generated is given by

V=n[ [ (PM) *d(OM)

Ilustrative Examples

Ex.1 Find the volume of the solid generated by revolving the
ellipse :—: +J;—; = 1 about x — axis.

Or
Find the volume of Prolate spheroid.
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Sol. The solid generated by revolving the ellipse about the major axis
I.e. the x-axis, is called a prolate spheroid.
x?. }_z
. . oSt =1
The equation of the ellipse =° &

Y4

B (0, b) G (x+ &,y + d)

. ok w)
A’ 0 RS Ja 4
(a, (]
B
l
Fig. 12.3.3

The solid generated by revolving the area ABA’OA about the
x —axis. Let us take an elementary strip PQRS perpendicular to
x-axis. Since the ellipse is symmetrical about the y —axis,
therefore for the portion of the ellipse lying in the first
quadrant, x varies from o to a.

Hence, the required volume

a rzbﬂ
=2.T’EJ }dex=2TIJ- —(a® —x%)dx
o o @°
b! @
= ET'E—HJ. (a® —x%)dx
a” Jy

BE[ | x3 2mh? a a’
=2r—|a‘x—— =—(a"——)
- 3

as 3
4 -
= —mab“

Hence volume of prolate spheroid is V = g?m:b:

Ex.2 Find the volume of the solid generated by the revolution of
the ellipse = + 25 = 1 about the y-axis.

Or
Find the volume of the oblate spheroid.
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Sol. The solid generated by revolving the ellipse Z—+>b— = 1 about

the minor axis i.e. y-axis is called the oblate spheroid.
The given equation of the ellipse

-
r '|,,:"‘

Y
a? + b2
R 3
Bl by _ :
R Q f iz o+ Ell', ¥ + 3}' ’i
h) oY)
A { A ml
(a, 0}
B!
Fig. 12.3.4

The solid generated by the area BAB 'OB about y —axis.
Since the ellipse is symmetrical about the y-axis, therefore the

portion of the ellipse lying in the first quadrant, y varies from o
to b.

Hence the required volume

b
= E.T'EJ. xidy
0

a®
= Zﬁf — (b* — y7)dy
o b‘

al b i )
= Eﬂ—ﬂf (b= —y°)dy
b* o
_, aﬂ |:b2 }:3:| 5 a: bg bﬂ
) A Ay
4
V=—mwa"h
3
Hence the volume of the oblate spheroid is

4
V=—mwa“b
3

Ex.3 Prove that the volume of solid generated by the revolution
2 2

of an ellipse = + 2 = 1minor axis is the geometric mean
a b
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Sol.

Ex.4
Sol.

ofthose generated by the revolution of an ellipse and of the
auxiliary circle about the major axis.

2 2
The equation of the ellipse is — + 75 = 1

The volume of the solid formed by the revolution of the ellipse
about the major axis (prolate spheroid) is-

v, =—mh-a
3

The volume of the solid generated by the revolution of the

ellipse about the minor axis (oblate spheroid) is

+
v, = —ma“b
-3

The equation of the auxillary circle of the ellipse

z z
= ¥ e w24 2 g2
—+:;=1|Sx +y =a
il

The volume of the solid generated by the revolution of the
auxiliary circle about major axis is

rd (]
vy =271’J- }rzdx=2?rj (a® — x%)dx
0 0

. x3]° 2
=2r|a’x ——| =2m.—a?
3 3
0
4

v, = —ma’
3

Hence geometric mean of v, and v4
—
|4 . 4
= |§‘R’b‘ﬂ,.—?€ﬂ3
N
+
=—ma“b = v,
3 ~

—  aq a1
Hence v, = /v, v,

Show that the volume of a sphere of radius a is S’ﬂ-’aa

A sphere is generated by the revolution of a semicircular area

about its bounding diameter. Equation of a circle with radius a, whose
centre is at origin is x? + y? = a2
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—

B8RO, f”{? (v + v, ¥ + OV}
Pixoxy)

AT {a, ) < RS A ta 0}

Fig. 12.3.5

Let AA' be the bounding diameter about which the semicircle revolves.

Since the circle is symmetrical about y axis so we will take the area of
revolution of only in positive quadrant and twice it. Take the
elementary strip PSRQ. Where P(X, y) and
Q(x+ 8x,v+ 8y)we have PS = y and RS = §x
Now volume of the elementary disc formed by revolving the strip
PMNQ about the diameter AA’ is

w(PS)?RS = wy*8x

=mn(a® —x%)6x

Hence the required volume of the sphere is

Eﬂf (a® — x%)dx
0

- _1'5 e

=2 [a‘x ——]
g

:ZTI.§QE

4

V =—ma®
3

Ex.5 The Area between a parabola and its latus rectum revolves
about it’s directrix. Find the ration of the volume of the
ring thus obtained to the volume of the sphere whose
diameter is the latus rectum.

Sol.  Let the equation of the parabola is ¥* = 4ax
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AN
£ (o)
Ny o
SH| L ouY)
M
(a,20)
el

Fig. 12.3.6

Then the directrix is the line x = —a. Let LL’ be the letus
rectum. The area LOL’SL is revolved about the directrix. The
volume of the ring thus obtained (v) = v, — v, where v, is

the volume of the cylinder formed by the revolution of the
rectangle LL’R’R about directrix and 1w, is the volume of the

red formed by the revolution of the arc LOL’ about directrix.
Now volume V; of the cylender = nr*h

=m(LR)*LL'

=m(2a)’.4a

= 16ma’

To find the volume v, of the reel consider an elementary strip
PMNQ where P(x,y) and Q(x+ dx,y +dy) are two
neighbouring points on the arc OL and PM,QN are

perpendiculars from P and Q on directrix.
Now, we have PM = a + x and MN = 4y

Hence, volume V; = Zf;“n(a+xj 2dy
:Efsﬂﬂ[a2+2ax+x2]d}r
_o (2% 1,2 ¥ 4 (PN e
_ZfD n[a +2a.4ﬂ+(4ﬂ) ]dy
P z r
Cor (28 po2y ¥ 3 g
=2n [ " nla T+ = Idy

. 1}_5 y 5 2z
=2am [r:r,‘ yv+-—+4—
y+ 32 + 16a?s |,
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Ex.6

Sol.

2a’
5
, 56 1127nd®
v, = 2a't— =
- 15 15
Hence volume of the ring = v, — v,

112ma’

15
128mwa’

15
Now volume of the sphere whose diameter is the letus rectum
i.e. 4a i.e. radius of sphere is 2a.

4 4 32ma’
v' =—nr? =—-m(2a) -
3 3 3
Hence the required ratio ==

v

4
= 2% lzaﬁ' +§a3 +

16ma’ —

'L']:

3
128ma [,

- 32ma Hf 3

4
5

Find the volume of the solid generated by revolution of the
loop y%(a + x) = x*(3a — x) about the x —axis.
Equation of the curve is

Fig. 12.3.7

The given curve is symmetrical about x-axis.

Putting y = 0,we get

x?(Ba—x)=0=>x=0 and x = 3a. Hence the loop is
formed between x = 0 and x = 3a.

Asymptote parallel to y-axis is x = —a.

Since the curve is symmetrical about x —axis. So the volume
generated by the revolution of the whole loop about the axis is
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the same as the volume generated by the revolution of the
upper half loop about x-axis.

Take the elementary strip MNQ where P is the point and Q is
the point

Then, we have PM =y and MN = éx.

Now the volume of the elementary disc formed by revolving
the elementary strip PMNQ about the x —axis is
n(PM)?MN = my?5x.

Hence the volume generated by the loop is f03a y2dx.

f:‘lxz(Sa —x)

a+x

dx

3
dx

3a
=T[f l—x2+4ax—4a2+
0

a+x
— 3

=Tl + 2ax? — 4a’x + 4a®log(a + x)

= n[—(9a® — 0) + (18a® — 0) — 4a’x + 4a®log(a + x)]

3 7 7 aa®
:?r_rﬁﬂ [—x + 4ax — 4a -I-Eix]rix
3 2 2 aa®
:ﬂfﬂﬂ [—x + 4ax — 4a +Eix]dx

e a 3a
:']"E.'J. l—?+ 2M2—4a2x+4ﬂaiﬂgtﬂ+xj]
. 0

=m[—9a® + 18a® — 12a® + 4a® (log4a — loga)]
=nw[—3a® + 4a’log4]

=ma’[8log2 — 3]

V = 4a®[8log2— 3]

Ex7.Find the volume of the solid generated by the revolution of the
cissoid ¥*(2a — x) = x* about its asymptote.

Sol. The curve y2(2a — x) = x3 is symmetric about x —axis. Putting
x =0, y=0, we find the curve passes through the origin.
Tangent at origin y=0, Hence origin is cusp. Asymptote
parallel to y-axis is x=2a.
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B o gl -
e =+ Sac. » + Sy)
T
=2 N
L N B F.> 3 L=
= s DexF —— o
]
]
- 2 X (Zex, O» =
Zex
| —_— \

Fig. 12.3.8

Take an elementary strip PMNQ [to the asymptote x = 2a.
Where p is the point (x,y) and Q is the point (
x +dx,y+ 4y)

We have PM = 2a — x, MN = &y

Now volume of the elementary disc formed by the revolution
of the strip about the line x = 2a is.

TPM*MN = n(2a — x)*8y

Hence required volume

V= EJ m(2a— x)*dy
o

The curve is y*(2a — x) = x°

xEI

We have yv-=
2a—x

Differentiating with respect to x we get

5 dy (2a—x)3x* —x%(—1) _ 2(3a—x)x?
Yz (Za— x)?  (2a—x)?

dy (3a —x)x?

dx  (2a— x)? ?
(3a —x)x*(2a —x) ¥
B (2a — x)? x Ef'rz
(3a—x)x*x ¥ dx
(2a —x]af'rf
Also when y=0, x=0 and when ¥ — o,x — 2a
Hence

2o
V= ETIJ. (2a—x)?
0

dy =

(3a— x)x x ¥ dx

(Za— x]af'ri

=21 f:ﬂ (Za— x]}'zx s (3a—x)dx

Now put x=2asin *# so dx = 4asinfcosfdf also
when x =0,8 =0 and when x = 2a,8 =

T

"
s

Therefore
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S
2

2 . . ; .
V=2m J- (2a — 2asin  26) Yz (2asin®d) Y (3a — 2asin®f) 4asinfcosfdb
o

_ ST EYR S W g
—Eﬂfu 8a“cos Osin“0[3 — 2sin~ 0] df
Ty a a a
=16ma’ _Irﬁ '2[35in*Bcos*l — 2sin*Bcos*8)] dB
s.rir® arird
2ra  2r4

= 16ma’

12.3.1VOLUME OF A SOLID OF REVOLUTION (B-
PARAMETRIC FORM)

Let the curve is given by parametric equations x = @(t)and y = @(t)

@ The volume of the solid generated by revolving the area
bounded by the curve, the x-axis and the ordinates
x = a, v = b about the axis of x is given by

z

5 ¢
5 , dx
v =T‘EJ vidx =T’EJ [q::(t]]‘adt
I} t

where t, and t, are the values of t corresponding to x = a and x = b resectively.

(b) The volume of the solid generated by revolving the area
bounded by the curve x = f(y) the ordinates, the y —axis and
the abscissa y = ¢ to y = d about the axis of y is

dy

g £y
V=T'EJ xzd}r=?rj f@(t)} *—dt
£ £y

dt
where

t, and t, are the values of t corresponding to y = c and y = d respectively.

Ex.8.Show that the volume of the solid generated by the revolution
of the curve (a—x)y* = a?x about its asymptote is

1
—m?ad.
2

Sol. The curve (a — x)y? = a®x
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Fig. 12.3.8

IS symmetrical about x —axis. It passes through origin and
tangent at origin is x = 0 i.e. y-axis

The asymptote of the curve is x = a.

Let P(x,y) be any point on the curve

Draw perpendicular PM from p to the asymptote.
PM=0a—oc=a—x,MN = 4y

Hence the required volume

= [T _w(PM) *d(AM)

[Since (a — x)y* = a’x]

50,x =

0 aFZ 2 =] EIE
:ET'EJ. la— l dy = 2w ———— dy
0

a® + y?
Put y = tanf so that dy = sec*8d@

T
Then we have,whereyv=0 =0 andwheny = =60 = >

Required volume

. "2 asec?Bd6
V =2Z2ra YT
0 a*sec*f

Iy

{2
= 2ma’ J cos’8de
)

Irir

32 2

2.1

1

= 2ma

1, 3
V=—ma
2

Department of Mathematics
Uttarakhand Open University Page 252



CALCULUS MT(N) 101

Hence the required volume is V=m*a?*/2

Hlustrative Examples of parametric curves

Ex. 9. Find the volume of the solid generated by the revolution of
the curve x = acos®t, v = asin®t abou the x —axis

OR
Find the volume of the spindle shaped solid generated by

revolving the astorid x /3 + y/3 = a’/2 about the x axis.
Sol.

AY

/ B(O’a))
< A,(O‘\ B(0,a)) X

v

B'(0,—a))
Fig. 12.4.1
Since x = acos’t
—=3 2t(—sint
o acas”t(—sint)
The volume of the solid generated by revolving the area
ABA’OA about the x-axis ie.

2 X volume of the solid generated by revolving the area ABOA about the x — axis.
@z

Hence the required volume v = J. Ty dx
x=0

Whenx=0 =cos’t=0=t = ﬁfz and

Whenx=a=cos’t=1=t=20

o 7 d
Hence V=2 [_., y*—"dt
h

=]

B3 g

=2, . , (asin®t) ?*3acos*t(—sint)dt
/2

my -
=6ma® [ '?sin’ tcos®tdt
3
JT4r>/,

ar2

= ana

Department of Mathematics
Uttarakhand Open University Page 253



CALCULUS MT(N) 101

nnnnn
;;;;;

Ex.10. Find the volume of the solid generated by the revolution of

B
the curve x = 2asin’t,y = 2a Z=—Labout its asymptote.

i
cost

Sol. Eliminating t between x and y we get the equation of curve
v#(2a — x) = x* which is a cissoid. The curve is symmetrical about

x-axis and x=2a is the asymptote of the curve.
Hence V=2 (2a—x) Zdy
y=0

:2_r (2a — x) zgdt

- 203
Here y = 2Zasin™t XCﬂEt

dt
[351’?12 tcos®t 4+ sin® tl
a

roset

dy cost3sin’ tcost — sin’ t(—sint)
- 2a _
cos<t

sintt

Also when y=0 = 2a =0=sint=0=t=0

cost

sin®t

Wheny =00 = 2a =m=}cost=ﬂ=}t=ﬂf2

cost
dy
Putting the values of x, v N in (A)we get
_

{2 . . (ESL'TEE tcos’t + sin® t)
V=2 m(2a— 2asin“t) “2a dt
o

cosit

"T"’q - . - .
=2n fu "28a3cos®t(3sintcos’t + sin*t)dt

Ty Ty
= 16ma’ [J-
0

/12 2
Isin®tcos*tdt + J. sin*tcos®tdt]
0
ardrif,  ririg,
T4 T4
1 —31 5 31 —1 —
L6mad |2 Y 22V, 25 VTRV
= léma
2321 2321

=16ma’ [

V =2m%a®
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Ex.11 Prove that the volume of the reel formed by the revolution
of the cycloid

x = a(f + sinf),y = a(l — cos@)about the tangent at the vertex is w-a®

Sol.The given cycloid is symmetrical about y-axis, and the
tangent at the vertex is the x-axis. The reel is formed by
revolving the area BOACD about the x-axis. The vertex is the
origin  and & varies from 0 to w for the area OACO.

L "

£2 L
/N= 3
£ - L) e *
F . AT
Fig. 12.4.2

Hence the required volume
T
V= EJ- myldx
o

g dx

=2_|"[;T?r}r -5 ax [x=a[5+sinﬁ]:—:;= a(l + cosd)]
=2r [ a’(1—cosf) Za(1+ cosf)d6

=2na’ fu (2sin® Efzj *cos? H/}Z df

Put '9,’2 =@

d6 = 2d0 when6 =0 =>s0=0when8=n=0 =9/,

™y
i

V = 32mwa’ J. ‘sin‘}@cus:@d@

0

12.32VOLUME OF A SOLID OF REVOLUTION
(POLAR FORMS)

Let the equation of the curve in polar form is
r = f(6,)then

Ifthe portion of the curve lving between the points x = a and x =

@) b and the curve revolves about x — axis i. e., the initial line.

The volume of the solid generated is
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b B dx
V=J H}?Zfix=ﬂ'f yi—
x=a 8=y df

Where
y and f are the values of 8 at the points x = a and x = b respectively.

But x = rcos8, vy = rsinf.so

g d
V=mn j [rSind] EE (rcosf).dd
¥

(c) If the portion of the curve lying between the points
v =cand v = d,and the curve revolves about v —axisi.e., the line 8 =

?, (line| to the initial line.)Then the volume of the solid generated is

d B day
v =J mxldy = ?rf x*—df

¥=c &=y df
F _d(rsinf)dé
V=m J [rcosf] *————
a=y df

Alternative method
The volume of the solid generated by the revolution of the area
bounded by the curve
r = f(@)and the radii vectors @ =y and 8 =
(i) About the initial line 8 = 0 (i.e, x — axis)
2 g
V= g?’m‘:j rd sinfdf
¥
(i)  Aboutthe line 8 == (i.e, ¥ — axis)
2 g
V= E?’E r? cosfdB

¥

Ilustrative Examples

Ex.12.The cardiodr = a(1 + cos@) revolves about the initial line.
Find the volume of solid generated
Sol.The curve » = a(1 + cos#) is symmetrical about the initial line.

O =
< Q=0

I

Fig. 12.5.1
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And5'=IJ=>T=2a,5=ﬂf2=>r=aandﬁ=ﬂ=>r=ﬂ

So for the curve & = 0 to 8 = w,above the initial line.

Hence volume of the solid generated by revolving the area
ABOA about the initial line is

2 T 2
V=—m| r°sinfdf
3 L

2 T
= ETTJ a®(1+ cos@) ‘3*sinfdf [r = a(cosd + 1)]
0

3

T 3 . B 78
_ 33_211-[ a” sin ,’2 cos ,’2 dg
o

2 T
= —EIET'!.'J. a’ (1 + 2cos ° EXE - 1) 3 2sin EXE cos Efz de
o

Put B/g =0 s0 df = 2dPand when 6 = 0,0 = 0 and when§ =m,0 =T/,

my

64 iz
V= ??m:a f sinBcos 040
0

64  I'1l4

Ta
3 2rs

64  I'ir4
=—nmna
3 24.T4

8
V=—-—ma
3

3

Ex.13Prove that volume of the solid generated by revolving the

T

curve lemniscates+* = acos28 about the line 8 ==

"

Sol.The curve r* = a”cos28 is symmetrical about the initial line and
the pole.
Put r = 0,cos28 = 0= 28 iﬂfz =0 = iﬂh

Hence 8 = ig are tangents at pole.

Fig. 12.5.2
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When8 =0, =a’=r+a
Hence for the upper half of loop € varies from0to ™/,
Hence the required volume (revolving about & =T /5)

2 4
=2 xX—-7 J. r3cosfde
3 U

3
Put v 2sinf = sin® so \2cosfdf = dd
Also when 8= 0,0 = 0 and when 8 = TI//4,EI = Hfz

4 "/ 3
=—q a’ (cos28) /2cosfdf
o

4 320 i 3,
S5 J, M1 —sin*@)  2c050d0

V =

4 "2
= —ma’ cos *0dD
32 .
5/ rly
=% g3z
342 rs3

a =
- _ﬂ_aﬁ z2

'\-"E

t | Al

Thus =

124 VOLUME OF A SOLID BY DOUBLE
INTEGRATION

Let the area dydz on the yz plane (i.e.x = 0). Through the

each point on the boundary of this small area, draw lines parallel to x-
axis and thus construct a small cylinder whose base is the area dydz

and generators parallel to x-axis.

This volume of the cylinder = xdydz

Hence, Volume of the solid = [ xdydz

Considering area

z =

0 and constructing cylender as above by drawing lines parallel to z —
axis we can have the volume of solids

V=J. dxdy

(3) In a similar way considering area dvdzon the plane y=0 and
construct cylinder as above by drawing lines parallel to y-axis.

Volume of the solid V = JI ydxdz
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Ex.14Find the volume of the spherex® + y* + z* =
Sol.  Equation of the sphere is

x*+yi+z?=a’

Projection of the sphere on
vz plane (i.e,x = 0)is the circle x> + y* + z% = a?

In the positive octant y varies from o to a and z varies from o to

e —

Vas—y°
Hence volume of the solid varies lies in positive octant
— f f xdvr:iz

Hence total volume of the sphere IS
IE —:’_

enff

- a pyfa ="
Hence total volume of the sphereis v =8 [ " [*_ 7 xdydz

P —-3
=8 7 [J° 7 Ja® —y? —z%dydz
'IE i | }'1 31
=Ba_|";~ru1f 1}(1—&—5)—;::1}&2

,,
z | -
put -= |1—
N

e y 2 ,
V = 8a"- J J- (1 - )cas‘ﬁd}rdﬁ
0 Je=o a

=8a’ [° {1 — z—z) cos*@dyd6

o Iz

, f° v\ 11
= Ba“ 1——|=-—mdy
0 a- 22

, ol R S
=2wa® |y ———| = -mwa
3a“ 0 3

—sinf,we get
a&

Ex.15Find the volume of the eII|p50|d - —|— —|— = =

Sol. Equatlon of the ellipsoid is
x? + v‘ 4 z? —q
T+t ==
PrOJectlon of the curve on the xy- plane (i.e. z=0)
ISI—5+:;—5= 1ory®* == (a* — x*
Or y = +2/te =1
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—x)

. . b {fﬂz LY e
Hence limits of y varies from o to —_—in the positive

octant.

X varies from 0 to a.

Hence volume of the ellipsoid lying in the positive octant is
I zdxdy

Since the ellipsoid is symmetrical in all eight octants. Hence
total volume of the ellipsoid is

I Y N
Lr==gf J‘ dedF
x=0 ¥=0
b .El:aﬂ'._x:'.:l | - 7
o L | x- F‘
_3 J' J’ = o l[1 - | == dxdy
= | a? b2
o Yo N
v 2
Put = = || 1 —— sin#d
b as

my

v=sff ‘cbl1—x—:]casfﬂdxda
o o a

12.5 SURFACE OF REVOLUTION
(CARTESIAN FORM)

12.5.1 WHEN THE AXIS OF REVOLUTION IS THE X-
AXIS:-

The area of the surface generated by revolving an area bounded by the
curve
¥ = f(x, )the x — axis and the ordinates x = a and x = b, about the x — axis is

dx

Where s is the length of the arc measured from a fixe point to any point
(x,y) on the curve.

b ] ds
SZETIJ. yds i.e.s=2?rJ. v—dx
x=a x=a
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dx

Hence = = *J'I[l +(2) 2]

Proof:- Let the equation of the curve in Cartesian form is
v = f(x)and let AC and BD are given ordinates

x=aand x =b.Let P(x,y)and Q(x+ dx,y + §y) be any two
neighbouring points on the curve.

From P and Q draw PM and QN perpendiculars to x-axis. Further,
from P and Q draw PS and QR perpendiculars to PM and QN
respectively.

Fig 12.5.1

Let AP = s and arc AQ = 5+ dx so that arc P@Q = ds(a being a

fixed point).Let the area of the surface of a solid generated by
revolving the arc AP and AQ about x-axis be A and &4 then &4 is the
area of the surface of the solid generated by the revolution of the arc
PQ about x-axis. While revolving about x-axis, the line PS and QR
generates cylinders. Let suppose that the area of curved surface of
these cylinders are2mydxand 2m(y + Sy)dsrepectively and assume
that PS = AR = arc PQ. Since P and Q are neighbouring points.So,
the surface generated by revolving the arc PQ about x-axis lies
between these two surfaces.

i.e.,2nydx < da < 2w (y + dy)ds
da

2y < — < 2m(v + 8y)
ds

In limiting case when 8 — P,we have §y — 0,ds — 0 we get
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dA—E
s
d4 = 2mvds

Integrating between the limits x = a and x = b we get

b b
J dﬁl=J 2myds

b
i.e [A]*ZE = J 2mwyds

x—a

i.e, Area of the surface generated by the curve AB.

b
= J- 2mydsi.e.
rd

§5=2 Jb dsr:ix
= 2w I:E}r.dx

DN R I P CAY
S—ETIL:E vw|1+(£) .dx

b | d}T
5=2T’EJ }r.|1+(—) dx
x=a '

12.5.2WHEN THE AXIS OF REVOLUTION IS THE Y-
AXIS:-

Proceeding in the same manner we can show that:
The area of the surface of a solid generated by revolving the curve
x = f(¥), the y-axis and the abscis v =candy =d is

d d ds
5= ET'EJ. xds = ETIJ. xd—d}r i.e.

¥y=€ ¥y=c ¥

d | dx 2
5=2T’EJ Fflv) |1+(—) dy
c=E ' d}r
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12.5.3WHEN THE AXIS OF REVOLUTION IS ANY
STRAIGHT LINE

Let the axis of revolution is any straight line AB (which is not
x-axis or y-axis) and CD be the arc of the curve. Let PM be the length
of the perpendicular drawn from A any point P on the arc Cd to the
axis of revolution AB.

The area of the surface generated by revolving the curve CD about AB
is

5= Zﬂfb(F‘M]d[ﬁlBj

Ex. 16 Find the surface area of a sphere of radius a.

Sol. The sphere is generated by revolving a semi-circle or radius a
about is bounding diameter
Equation of the semicircle
xt+yi=a
Differentiating with respect to x

axt 2y =0

dy

gz—xz’}r

B s dy

T mawll-F(a)

| & | 2 -

J Y N| y? y y

X varies from —a to +a for the semi-circle
Hence the required surface area is
Z lird
()
Zﬂf yds = Eﬁj v—dx
v
-a -2

.,

:Eﬂa_lr_ﬂﬂ dx = 4ma®

Ex. 17 Prove that the surface of the prolate spheroid formed by
revolution of the ellipse of eccentricity e about its major axis is
equal to

— 1
= 2 X (Area of the ellipse) (1,.* 1—e?+ —Sin_le)
e

Sol. Let the equation of the ellipse be

x° v

&

a2+bz

=1

Department of Mathematics
Uttarakhand Open University Page 263



CALCULUS
Differentiating (1) with respect to x we get
2x+ 2ydy 0 dy —b*x
2 brdx  "Tdx & v
ds |1+(d}?)2 |1+b4x:
S0 dx .\‘l dx/) | a* y?
! b*x?
= |1+—;
‘\Il a*— (a? —x?%)
—  ,z.z
_ b x
_d\ll 1 22(a?—x2)
= 1 M[Smceb: =a’(1—e?)]
d\ll 2%z —x%)
ds 2 2,2
ds _ [a?—ex? 2)
dx . a? —x?

A

MT(N) 101

Since ellipse is symmetrical about both the axes and for upper

half of the ellipse, x varies from -a to a
Hence the surface area generated is

S—ZJ_E ds = 2 JE dsdx
= 2% F_E}r = 2m _E}F'dx'

dmhe [ [ray? .
= (5) —x2dx
a Jo e
4?Ibex|rx2 . lazl_lx
= = (—} —x°+ -—5in (a_)
i 2 | e 2e“ ;l'lre
| R
2 2
2mbe| |a . a -4
= a|——a*+—5Sin""(e)
e et e’
B
2mbela’*V1l—e? a?
= +75iﬂ_1(3]l
a | e g’
Thus

[using (1)and (2)]

[f_ﬂﬂf(x]dx =2 f; f(x)dx if f(x)is even function.]

5 = 2mab [‘w’l— e+ ESiﬂ“l(e]]

Since we know that area of the ellipse (1) is mab
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— 1
5 =2xArea of the ellipse [«,,.f 1—e?+-Sin™?t (EJ]
Thus €

12.6 SURFACE REVOLUTION (PARAMETRIC
FORM)

Let the parametric equation of the curve be

x = @(t)and y = @(t)

(A)  Ifthe area bounded by the curve, the x-axis and the ordinates at
the points where t =aandt =bis revolved about x-axis,

then the surface area of the solid formed is given by

b t=b ds
5=2T’EJ }rd.'s:E?rJ y—dt
= = dt

= r=a

5=2 rzb (1) ll(dx)z + (d}r)z dt
= Fis g] JE—
_ w| dt dt

=a

s 000 (2)"+ (22)

AN
s dt | \dt dt
(B)  Similarly, If the area bounded by the curve, the and the abscissa

at the points where t=a and t=b is revolved about y-axis, then
the surface area the solid formed is

I

b

s—znf xdx = 2w @(rj
=

ICRCE
I 2
N e

Ilustrative Examples.
Ex. 18 Find the surface of the solid generated by the revolution of the

astroid x = a cos3t,y = a sin3t or x/3 + y2/3 = a’/3 about

x —axis.
Sol.  The parametric equations of the curve arc
x=acos’t, y=asin3t, so

dx
dt

' Z 2
Now, 2= (%) +(5)

= \/9a2 cos* tsin? t 4+ 9a? sin* t cos? t

) d )
= —3a cos? tsint and d—jt/ = 3a sin®tcost
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= \/9a? cos? t sin? t (cos?t + sin? t)
= 3acostsint
The given curve is symmetrical about both the axes. Also the
curve in the first quadrant, t varies from 0 to ™ ;2

Hence the required surface area is
T

2 d=
5=2>(251J yv—dt
0 dt

/s
=47Tf asin®t.3acostsint
0

/s
= 127Tazj sin*tcost dt
0

B " 'r.-. .
=12ma® ~ru- '2Sin*tCostdt

S
L reir1
=12ma® —=
ar’y,

T

b1 | m

=12mwa’

| m|t

-
rs

Thus 5

k|

=T
v

5}

1z 2

—ma
5

Ex. 19 If an ellipse of eccentricity e and semi-major axis revolve
about its minor-axis. Show that the surface of the spheroid
thus generated is

. 1—e? 1+e
2ma“ ll—l— log( )l

2e 1—ege
Sol.  The parametric equations of the ellipse be
X = ACOSTE coiiniiie e (1)
X=DSINE .o, 2)

where b? = a? (1 —e?)

Now differentiating (1) and (2) with respect to t, we get

d ) d
2= _gsintand 2 = bcost
dt dt

Since, £ = \/(d—x)z + (d—y)z
dt dt dt
= \/a2 sin? t + b? cos?t
= Ja?sin?t + a2 (1 — e2)cos?t [since b? =
a*(1-e?)]

In the first guadrant we have wheny = 0,8 = 0wheny=b,8 = "T//E]

ds_ 1 ZeosZt
dt—a\/ e2cos

Hence surface area of the (prolate spheroid) by revolving the
ellipse about minor axis is
§ = 2 X Surface area generated by reveolving the arc of the ellipse in first quadrant revolve
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T/

2

=2 ><27rf x ds
71:0

2 ds
=2 XZTL'f x —dt
0 dt

T/,
= 47Tf acost ay1 —e?cos?tdt
0

/2
=47Tf acost a\/1—e?(1—sin2 t)dt
0

/2
=4Tl’f acost a\/(1—e?) +e?sin? t)dt
0

Letesint =u=ecost dt =du
Also when t=l]=}u=|:landwhent=ﬁf2#u=e

Then we have

. [ ffdu
S=4na* | (1—e?)+u?
0 e

dma©

e

J V(1—e?) +uldu
0

ama’ [u | . . 1 , ————F
. -Ewl[l—e]—I-u +£[1—e]log[u—kﬁ,*[l—e]—i-u]ﬂl
Ama’te 1 . 1 . —
—+—(1—e‘]iﬂg(e—|—1]——(1—e‘]lagﬁ1—e‘]
e L2 2 2
dma’e 1 1+e
e =)
A PRI L W
. (1—e?) (1+e
2ma” |1+ —Flog
= 1 —e
N
., 1—e® 1+
5= 2nma* [1+( © ]log el
2e 1—e

Ex. 20 Find the surface of the solid formed by the revolution about x-
axis of the loop of the curve x = t%,y =t — §t3

Sol.  The parametric equations of the curve are
7 1
x=tiy=t _Eta’ S0

= 2t dd}r—l t2
e T T

Hence E = N||(d—x}2 + (E)z = /4t + (1 —1t2)2

gt dt

73

= (1+t2)2=1++¢?

1, 1 .
Puty=0=t——t =ﬂ=}t[1——t‘]=0
3 3
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t=0=t=4/3

Hence the loop is formed between t=0 and t=+/3
Hence required surface area

V3 VI s
5=ZTIJ. }Ffi.5'=2ﬂ.'f y—dt
t=0 0 dt

:2nfn“'§(t —%tﬂj (1+ t3)dt

=Z [P (3t + 2t — t9)dt

_2nl3r2+1t4 £5]"2
3 2 2 '5[,,
_2 9 9 9
=37)3+373]

= 3n

Hence the required surface area is 3

12.7 SURFACE OF REVOLUTION ( POLAR
FORM)

Let the polar equation of the given curve be f(#) = r then the surface

generated by the revolution of the arc of the curve between the raddi
vector 8 = a and 8 = [5 about the initial line is given by

6=p g ds
5=2T’EJ }rd.'s:E?rJ (rsinf)—df
g o df

=o

[ a2
Where :—; = Jrt + (d—rj

Illustrative Examples
Ex 21 Find the surface of the solid formed by the revolution of the

cardioid * = a(1 + cos#) about the initial line.
Sol.  The equation of the cardioids is » = a(1 + cos#f)
Differentiating with respect to &

far B -
d[-;l_ 1 51n

. ds | :+(dr)2
Brnce d:g_wlr d:g

=,/ a?(1+ cos8)? + a’sin 26
—av1+cos 26 + 2cosf +sin 26

_
=ay/ 24'2(?0.5‘2 '5',’2
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ds _ g
Thus 2 2acos f

-

The cardioid is symmetrical about the initial line. Also, for the
upper half of the curve, & varies from 0 to «
Hence the required surface is
T T d.S
5= Zﬂf vds = ZTIJ_ (rsin)—df[y = r sin d]
0 0 de

Eﬂf a(l+ cosf).sin 8 .2acos '9,’2 df
o
ET’EJ Eaza[l + cos 2 9,’2 — 1).25111 EZ}Z . COS EKE o5 EZ}Z dg
0 T
lﬁnazL sin 5/’2 .cos ¢ 6/, df
8, = @ so db = 240

Also, when 8 = 0,0 = 0 and when8 =m0 =T/,

e T['rﬂ
Hence s = 16ma® [ '2Sin@cos *@.2d0

T
12

S = EEHEEJ- Sin@cos *0.d0
0

=+ 5"'
=32ma" —

L1
—_ 23 3
=32ma’. <5

3z 7
Thuss = < ma

Ex. 22 Find the surface of the solid generated by the revolution of the
lemniscates v = a”cos28 about a tangent at the pole.

Sol. The given equation of the lemniscates
r? = a’cos26

A
\
\ v
N\ /
\\ //
\Y
-
Lo
// L
\
/ N
7 \
Fig.12.7.1
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2r Lo 2a?sin 26
' dﬂ = @~ 51n

dr B a’Sin2#@

g r

Also

ds |ﬂ+(d‘1‘)2
a0 J T \as

|| ) a*sin 2260
= |a‘caszﬁ' +—
N m

[
= |I a’cos28 +
N
ds B Q@
df  +/cos28
Also for the curve r? = a? cos 26

a*gin 28
z

a’cos 28

Tangent at the poles are given by r = 0 socos 26 = 0,260 =
+7,20 = + %

Let P(r, 8) be any point on the curve and let OC be one of the
tangent’s at the pole and £AO0C = %.

From P draw PM, perpendicular to the tangent OC. Then,

s
£POM = £POA + £AOC =6 + z

PM
0P " 4POM
PM = OPsin £POM =r sin(6 +7/,)
Since 6 if are the tangents at pole. Therefore for the loop
g varies from —E to E
Hence the requﬂired surface is

S=2x2 J-"Pmdsda
- ™) e

[

"

3 ds
5= 411-[ wrsin[ﬂj.ﬁdﬂ

5=4?rj

'hl.'-i.t.l-

avcos28sin (6 + g] dé

=]

vVeos28

&
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=4ma’® [*; sin (6 + 5)de

4

=4ma® _]':‘4: sin (6 + 7)d6

T

4ma® =
=— J- (sinf + cos8)do
V2 J_E

. .
=2\/§na2[f 4sin@ d9+f *
~T/4 ~T/4

= 4/2ma? fon/“ cos 6 df=4\2ma? %

[as [© f(x) dx = 0if f(=x) = —f (x)
and [ f(x) dx =2 [ f()if f(=x) = f(x)]

Therefore, S = 4ma?.

cos @ d@]

12.8 AREA OF THE SURFACE BY DOUBLE
INTEGRATION

Let the equation of the surface is z = f(x,v).Consider a point
P(x,v,z) on the surface surrounding the point. Consider an element of
area 4s of the surface.

Let &x.8y be the projection of the area és on xy plane. Then

6x 8y = 8scosy
where ¥ is the angle between tangent plane to the given surface at

P(x,y,z) and xy plane (z = 0).

Then

B || - (:E?z)2 . (:EJ‘z)2
secy = wa [ In 2y ]
From (1)

g5 = dx.0y.5ecy

= outy [|1+(Z) +(Z)
- oxoy 0x dy
Hence the required surface is
ﬂ ||[1+ (32)2 +(az)2] dxd
= = —— | |-d=dy
1‘| dx dy
Where the limits of x and y are to be taken from the region of
projection of the given surface on the plane z = 0.
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Ilustrative Exampless
Ex. 23.Find the area of the surface of the sphere x* + ¥* + 2% = a®

included between the cylinder x> + y2 = a =x

Sol. Equation of the sphere is x* + y* + z* = a* surface is
Zz = ﬂ,z - xz - _‘_}"250,
bz Sz X
Zza— —Zx or a = _E
bz bz v
225_}; = —2y or w2

Also the projection of the given surface on the plane z=0 is
xz + _}'z _I_ ZZ — az

Hence the required area of the surface

1+ ﬂx +(az)2 dxd
ﬂ’ ﬂc dy Y

g/

Over half of the circle x* + ¥* = ax

24,24 2
J‘J’ [x=+ ¥y +z
=4 ————dxdy
NIES

a
5=4ﬂ % dxdy
Mfﬂ-‘_x‘_}ri

Over half of the circle
x*+yi=axorr*=arcosf i.e,r = acosf changing to polars.

aoosd rdBdr
5=4J J_ ,:
o =D ‘vﬂ —TF"
=—4af

= —4q fz[asinﬁ — a)dé
o

| x?  y2
1+—+=
| z2  z2

N

I’-.'l

df

|.—ﬂ|‘_'ﬂ-s£|
[Vaz =77,

= 4a’[8 + Cﬂsﬂ]a’lz

=4a2[7—z—1]
2

Hence the required surface is S = 4a? [— - 1]

r
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Ex. 24 Find the surface of x* + z* = a® that lies inside the
cyclinder x* + y* = a?
Sol.The equation of the surface is z2 = a® — x* so we have

X

d
222 =2x or Z=-2% also—— 0
ox x z

Also the projection of the given surface on the planez = 0 is
x?=a%*s0ox =+a

Hence limits of x is first octant are from 0 to a.

Also for the cylinderx? + y? = a?, we havey? = a? — x?

Hence the required surface is

! 2
d d
5= Bﬂ |1 + [ z) + (—E) dxdy [Total surface = 8 X surface in first octant]
1‘| dx dy

-8 2 [ Jl + (<2) o] axay

'_I_
—S_rx DJ.-'»ED x*

—Erx_lr g.-rw a dedv

x+z

dxdy

—Sr:r,_l" D_I"w —dxdv

Jat-x*
x=0J0 Va* —x*

=BaLEma — = [v]

=Sa:j dx
o

5 = 8a®
Hence the required surface is 8a*

12.9 THEORMES PAPPUS (OR GULDIN)

Pappus, a great mathematician given his theorems of volumes
and surfaces of solid of revolution in the end of third century. These
theorems was discovered by P guldin over one thousand year later.

129.1THE THEOREM OF PAPPUS FOR THE
VOLUME

“If a plane closed curve revolves through any angle about an
axis in its plane which the curve does not intersect, then the volume
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generated is equal to the product of the area of the close curve and the
length of the path of its centroid.”
Proof.

A

b ot et =

Fig. 10.11.1

Let OX be the axis of rotation, and C be the plane closed curve of Area
A. Take a point P(x,y) on the curve and an elementary area 64 of the

curve surrounding the point. If the curve revolves about OX through an
angle «, the volume generated by element dé4is y.ydAHence the

| ¥4

volume generated by the whole area A is | y¥864 =1y [ 64

[ &4
Where the integration is taken over the whole area A. = y¥A, where ¥

is the distance of the centroid of the area inclosed by C from 0X.
I =length of the path of the centroid x area enclosed by the curve.

129.2THE THEOREM OF PAPPUS FOR THE
SURFACE

If a plane arc revolves through any angle about an axis in its
plane which the arc does not intersect, then the area of the surface
generated is equal to the product of the length of arc and the length of
path of its centroid.

Proof:-

Let OX be the axis of rotation and AB be an arc of lengths of the given
curve.

Let P(x,y) and Q( x + éx,y + 8y) be any two neighbouring points
the curve. Let arc PQ = és.

If the arc AB revolves about OX through an angle ythen the area of
the surface generated by the element PZ is ¥y dx of the surface

Hence the area of the surface generated by the whole arc AB

= f Yyés

fyd5f e

¥- fds
where the integration is taken over the arc AB.
= y.¥s where ¥ is the distance of the centroid of the arc AB from 0X.
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[ S = length of the path of the centroid x length of arc AB
Note. The closed curves or arc in these theorems should not cross the
axis of revolution.

Hlustrative Examples

Ex. 24 Find the volume and surface area of the anchor ring generated
by the revolving of a circle of radius a about an axis in its
own plane distance b from the centre (b > a)
Sol. The centroid of the area of a circle and its circumference are
both
at the centre c. By the theorem of Pappus for the volume, the
required volume of the anchor ring
= Area of Circle x length of the path of its centroid
V = (ma?).2nh
ie.V =2m%a?b
Further, by the theorem of Pappus for the surface, the
required surface area of the anchor ring.
= (circumference of the circle xlength of the path of its

centroid)
= 2ma.2nh = 4m*ab
= 4m’ab
Ex. 25Find the volume of the ring generated by the revolution of the
cardioid r = a(l+ cosB) about the line

rcos 8 + a = 0, given that the centroid of the cardioids is
at a distance ? from the pole.

Sol.  We known that are of the cardioids is %'ﬂ:az
The given line of revolution is rcos@+a=0 ie,
x+a=0orx=—a
Let G be the centoid of the area of the cardioids.
It is given that 0G = %a.Thus the length of the

perpendicular from the G on the line of revolution is

5 11
GN=a+—-a=—a
6 6
The circumference of the circle = ZmGN
11 11

=2W X —a =—Tda
6 3

Hence the required volume is
V' = (Area of the cardioids) x (circumference of the circle

generated by its centroid)

3 2 11
= —7a” X —7Ta

2 3
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12.10 SUMMARY

In this unit following topic were discussed:

1. The volume of the solid generated by the revolution of the arc
bounded by the curve ¥ = f(x), the axis and the ordinates x =

aandx = b is
b
V=1rj yidx
xX=a

2. The volume of the solid generated by the revolution of area
bounded by the curve =x = f(y)the y — axisand the

abscissay = aandy = b is
]

I-"’=1rf x* dy

Y=o
3. The volume of the solid generated by the revolution of the area
bounded by the curve r = (@) and the radiivectorsd = aand

0 =p.

(2) Aboutthe initial line 6 = 0is V =2 [ sin 6 d6

(i)  Abouttheline 6 =ZisV =2 [7 13 cos6 de
4. The area of the surface generated by revolving about the x-axis

an area bounded by the curve y = f(x), the x — axis and the
linex=aandx =bis

s=2nf_,yds=2mn[_,y _—dx where_—= |1+ (E)
3. The area of the surface generated by revolving about the y-axis

an area bounded by the curvex = f(y), the y —axis and the
two abscissay = aandy = b is

s=2 f ds =2 FJ as 4 here &5 — |1+(dx)2
=2m Fux s=2mw }.:ux.d}’ v, where d}f_wl d}r

for the polar curvesr = f(&)
6. For the polar curves r = f(8)The surface generated by the

revolution about the initial line of the arc intercepted between
the radii vectors 8 =y and 8 = is

B E ds
5= ETIJ yds = ETIJ- (rsinfd)—d#f
a df

=y E:}.-

where :—; =+ (—)
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If a plane closed curve revolves through any angle about an
axis in its plane which the curve does not intersect, then the
volume generated is equal to the product of the area of the
closed curve and the length of the path of its centroid.(pappus
theorem for volume)

If a plane arc revolves through any angle about an axis in its
plane which the arc does not intersect, then the area of the
surface generated is equal to the product of the length of the arc
and the length of the path of its centroid.

12.11 GLOSSARY

Circumference-the perimeter of a circle or ellipse
VVolume-quantity of three-dimensional space enclosed by a closed
surface.

Cardioid- a plane curve traced by a point on the perimeter of a
circle that is rolling around a fixed circle of the same radius

wmn

CHECK YOUR PROGRESS

Fill in the blanks in the following:
1.

The volume of the solid generated by the revolution of the area

bounded by the curve ¥ = f(x), x-axis and the ordinates

x = a,x = b about x-axis is j: e A,

The volume of a hemisphere of radius b is.................

The curved surface of a hemisphere of radius ais...................

The area of the surface of revolution formed by revolving the
2 2

2
asteroid 23 + y3=a3 is(................ Vra®.
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12.13SUGGESTED READINGS

Differential Calculus for Beginners by Joseph Edwards.
Text-Book on Differential Calculus by Gorakh Prasad.
Calculus by R. Kumar.

Krishna’s Text Book on Calculus by A. R. Vasistha.
Pragati’s Calculus by Sudhir K. Pundir.

12.14TERMINAL QUESTIONS

EXERCISE

1. Find the volume of a hemisphere of radius ‘a’.

2. Find the volume of the right circular cone of height h and
base of radius a.

3. Find the volume of the solid generated by the revolution
of the curve y = ﬁ about its asymptote.

4. Find the volume of the solid obtained by revolving the
loop of the curve a*y* = x*(2Za — x)(a — x) about the
axis.

5. Find the volume of the solid formed by revolving one
loop of the curve r* = a®ces2@ about the initial line.

6. Find the surface area of the solid by the revolution of the
ellipse x* + 4y* = 16 about its major axis.

7. Find the surface area of the solid generated by revolving
the cycloid x = a(@ — sinf), ¥y = a(1 — cos8) about
the x-axis.

8. The area of the cardioids * = a(1 + cos8@)inclueded
between- %n =0 = %n, is rotated about the line 8 = g
Find the area of surface generated.

9. The loop of the curve Zay*=x(x—a) ?* revolves
about the straight line ¥ = a. find the volume of the
solid generated.

10. Find the curved surface of a hemisphere of radius a.

OBJECTIVE TYPE QUESTIONS

Multiple choice type questions:

11.

12.

Curved surface of a hemisphere of radius a is
a)nazb)Znazc)g ma?d)5ma?
The volume of the solid generated by revolving the
cardioids r = a(a + cos@) about the initial line is

a)g ma? b)g wa? c)g ma?d ) none of these

Department of Mathematics
Uttarakhand Open University Page 278



CALCULUS MT(N) 101

13.

14.

15.

True or false

The area of the surface of revolution formed by
revolving the curve r = Zacos8 about the initial line is
a) 8ma? b) 6ma? c) 4ma?
d) 2ma?

The surface of the solid generated by the revolution
about x —axis of the area between the curve y = f(x),
the x —axis and the ordinates x = aand x = b is

a) f:zo 2myds b) f:za 2mydxc) f:za 2mxds  d)
b

Jo_pds

The volume of the solid generated by the revolution of

the loop of the curvey? = x2(2 — x) about x —axis

a) = b) 27 d) = d) =
type questions

Write “T” or “F” according as the following statement is True or

false:

16. The volume generated by the revolution of the area lying
between the curve x = f(¥), they —axis and the liney =
aand y = babout y —axis is given by f: wxdy

17. The ozblatez spheroid is generated by revolving the ellipse
%5 +75 = 1 about its major axis.

18. The surface area of the segment of a sphere of radius a and

height his 2ma®h

19. The area of the surface of the solid formed by the revolution
of the cardioidr = a(1 + cos8) about the initial line is
32ma®

12.15ANSWERS

Check your Problem:

CHQL. y?

CHQ2. 27‘[[)3

CHQ3. 2ma?
CHQ4. =

Terminal questions:

(TQ-1) Zma?

(TQ-2) sm2h
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(TQ-3) >n2a’

(TQ-4) Zma?

(TQ-5) ra’(3log(1 + VZ) —V2}
(TQ-6) 327{1 +log(2 +v3)}
(TQ-7) % ma?

(TQ-8) 22 a2

(TQ-9) 22 g3

(TQ-10) 27a?

(TQ-11) b

(TQ-12) a

(TQ-13) ¢

(TQ-14) a

(TQ-15) ¢

(TQ-16) T

(TQ-17) F

(TQ-18) F

(TQ-19) F

MT(N) 101
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UNIT:-13 BETA AND GAMMA
FUNCTIONS

CONTENTS

13.1 Introduction

13.2 Objective

13.3 Symmetric Property of Beta function

13.4 Evaluation of Beta function

13.5 Another form of Beta Function

13.6 Properties of Gamma Function

13.7 Another Forms of Gamma Function.

13.8 Relation Between Beta and Gamma Functions.
13.9 Some Important results from Beta and Gamma Functions
13.10 Summary

13.11 Glossary

13.12 References

13.13 Suggested Readings

13.14 Terminal questions

13.15 Answers

13.1 INTRODUCTION

As introduced by the Swiss mathematician Leonhard Euler inl18th
century, gamma function is the extension of factorial function to real
numbers. Beta function (also known as Euler's integral of the first
kind) is closely connected to gamma function; which itself is a
generalization of the factorial function.

The definite Integral fol x™ (1 —x)" tdx for m,n>0.....(11.1.1)
is known as Beta function and denoted byB(m, n) [read as “Beta

m, n”]

wherem and n are positive integer or fraction. The Beta function is
also known as Eularian integral of first kind. The integral is convergent
ifand only if m,n > 0

Thus B(m,n) = fol x™ (1 — x)" tdx, form,n >0
The improper integral f0°° e *x" ldxforn > 0.......... (11.1.2)

where n is a positive real number, is known as Gamma function, and
denoted by I'n (Read as ‘Gamma n”).The gamma function is also
known as Eulerian integral of second kind. The integral is convergent

forn > 0.Thus,I'n = fooo e *x" dx,n>0
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13.2 OBJECTIVES

In this unit, we shall understand

I Beta functions and its properties
ii. Gamma functions and its properties
iii. Relation between Beta and Gamma functions
Iv. Important results from Beta and Gamma functions

13.3 SYMMETRICAL PROPERTY OF BETA
FUNCTION

Theorem 1.To show that B(m,n) = B(n, m)

Proof:
We know that B(m,n) = f01 x™ (1 — x)" tdx form,n >
0...(11.3.1)

= fol(l —x)(1=2x)""11—-(1-x)]" tdx

[Since foaf(xdx) = foaf (a — x)dx]

1
=j (1 —x)™ 1x" ldx
0
1

= f X1 —x)™ tdx

0
= B(n,m)[By the definition of Beta function]
This shows that Beta function is symmetrical in mand n.

13.4 EVALUATION OF BETA FUNCTION

We know that
B(mn) = [ x™ (1 —x)" tdx for m,n > 0...coooeovnns (11.3.1)

Then the three following cases arises:
Case 1. When n is a positive integer.

Integrating by parts, taking (1 — x)™"? as the first function,
we have

1
B(m,n) = f (1 —x)" 1x™ ldx
0

_ (1—x)”_1.%]0 —f (n - D1~ 2)"2(-1) " dx

n—-1)
m
Again integrating by parts,

=0+

1
f x™(1—x)" 2dx
0
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B(m,n) = (n‘r;(ir)l(-f 1_)2) XM (1 — x)"3dx

Repeating this process again and again, we get

n-1n-2)(n-3)....3.2.1 tno
B(m'n)=m(m+1)(m+2) ....(m+n—2)f X" dx
B(m,n) = n-1)n-2)........3.2.1 [ xmin-1
’ mm+1).......(m+n-2)|m+n-1f
(n—1n-2)..3.2.1)
Blmn) = mm+1) . .....im+n—-1)
B(m,n) = '(n—1)

m(m+1)....(m+n—-1)

Case 2.When m is a positive integer.

Since Beta function is symmetrical in m and n i.e.B(m,n) = B(n, m).
r'(m-1)

nn+1)(n+2)..(n+m-1)

(by interchanging m and n in equation )

we have B(m,n) =

Case 3.When both m and n are positive integers.
Let us take of case |
'(n—1)
m(m+1)....(m+n—-1)
Multiplying the numerator and denominator byl'(m — 1)
(m—1)T(m—-1)
'm—-1.m(m+1)...... (m+n—-1)

Therefore,B(m,n) = %

B(m,n) =

B(m,n) =

13.5 ANOTHER FORM OF BETA FUNCTION

Form 1:Show that

[e9) xm—l [e] xn—l
B(m,n) = ———dx = —d ,n>0
mn)= | Grommd®= ) Gyommd mn
Proof.We know that,
B(m,n) = flxm‘l(l X)X (13.5.1)
Putx =—=1-x=1-—=-2and
1+y 1+y 1+y
dx——(1+ )ZdyWhenx—0:>——0:>1+y 0 =
y = o and

Whenx=1:>$:1:>1+y=1:>y:0
Putting all these value in (11.4.1), we get

m-—1

s = (55) (55) Caz)o

Department of Mathematics
Uttarakhand Open University Page 283




CALCULUS MT(N) 101

yn—l

(1+y)m+ndy

= B(m,n) = —f:

n—-1 b a
ﬁB(m,n)=j; Wdy“a flx)dx = —fb f(x)dxl

o xn—l

b
= B(m,n) = . de As [L f(X)dX

= fbaf(t)dtl

> Bmn) = [ dx [As B(m,n) =

0 (1+x)mn
B(n,m)]

Form 2.Show that
1xm—1 + xn—l

B = _
(m,n) | A rom dx
Proof.We know that
o0 m—1
B(m,n) = | (1ix)m+n dx [From

Form1]
By using the property of definite integral
fabf(x)dx = facf(x)dx + fcb f(x)dx;a < c < b, we get

m—1

1 xm? o X
B(m,n) = [, o 4+ J; Ty o X s (11.4.2)

xm—l

Now solving J,” T

Putx =+ = dx = —dt
When x - 1thent - 1and x - oo thent = 0
Putting these values in (11.4.3), we get

m-—1

T ° (@) 1
T+ om0 = f NG (_ t_2> a
1 1

(1+3)

1 tm+n
=| - dt
j;) (1 + t)m+n_ tm+1

1 tn—l
= | /5 dt
o (1+pm+n
o xMm-1 1 xm1
fl (14x)m+n x = fo W dx [Because

[ F@®de = [ f(x)dx]
Now putting the value of [~

1 (1+x)m+n

xm—l

in equation (11.4.2), we

get
1 xm—ldx

1 xn—l
B(m,n) = . WdX‘FL de
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5 1 xm—l + xn—l d
= = -
(m' Tl) 0 (1 + x)m+n X

m—1+xn—1

1x
Hence, B(m,n) = |; <~
Form 3. Show that
B( ) = ampn ©  xm-ldx
= Ay (ax + pymn

Proof. We know that,
(o) ym—l
0 (1 + y)m+n
Putting y = % = dy = %dx
When y — Othen x — 0and y — oo then x — oo, we get

= (px)m

B(m,n) = dy

B(m, Tl) = j de
o (1+%)
Y xm—l
= a™p" ———dx

o (ax+ b)ym+n
Form 4. Show that.

f " — by"1(a — )" Ldx = (@ — b)™*"-1B(m,n)
b

Proof. We know that

B(m,n) = fol XA =) (11.4.4)
Putting x =22 = dx = -2
a-b a-b
Whenx —» Otheny - b andx —» 1theny — a
Substituting these values in equation 11.4.4 we get.

Liy—b\™" a—y o, dy
B(m,n)zj; (a—b) (a—b) 1'a—b
:Wﬁ oy =b)" " (a=y)"idy

a b
= (aT;*”"‘lf G =b)™ (@ —x)"dx [f f()dx
b a

=L7awﬂ

Hence, fba(x —b)™ 1 (a—x)"tdx = (a — b)™" ! B(m,n)
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13.6 PROPERTIES OF GAMMA FUNCTION

Show that
i) I'n+1)=nr(n)whenn >0
i) I'(n) = (n—1)!wherenis a positive integer.

Proof. (i) We know that
I'n =

[oe)

r(n+1)= f e ¥ x(MD-1qy

0
e’

=>I'(n+1)= f e *x"dx
0
Integrating by parts takingx"as first function we get

'm+1=[x"(—e*)]g —
fooo nx" I (—e™)dx . (11.5.2)

xn

. _ .xt .
Now, lim[e™*x™] = lim — = lim pr
X—00 X—o € X—00 1+x+?+...+ﬁ+...ﬁ+...

Dividing numerator and denominator with x",we get
1

limlfe™x"] = lim4+—F—F——5—5—F—=
xX—00 x>0 et Tt =2, T ettt T
0...... (11.5.3)

Using value of equation (11.5.3) in equation (11.5.2), we
get

[ee)

m+1= 0+nf e *x"1dx
0
I'n + 1 = nI'nwhich proves the result (i)

This relation is known as reduction formula.
(i) We know that 'n + 1 = nl'n
Replacingnbyn — 1, we get
In=(Mmn-1In-1
Similarly,fn—-1=Mn-2)n—2,I'n—2 =
(n — 3)I'n — 3etc.
Hence if n is a positive integer, then proceeding as above,
we get
In=n-1)Mn-2)(n-3)...3.21.I'1
Nowl'1l = fooo e *x1"1dx = fooo e ¥dx = [—e¥]P =1
Henceln=(mn—-1)(n—-2)(n—-3)....3.21=(n—1)!
It may be remember that '0 = ocand I'(—n) = cowhere n
is a positive integer.

13.7 ANOTHER FORMS OF GAMMA
FUNCTION.
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Form 1.Show that

Proof.We havel'n =

Sy @XM TN (13.7.1)

Put x = cy so thatdx = cdy; when x = 0 then y = 0and
when x = cotheny = oo

I'n =f e Y (cy)" tedy
0

— j e—cycnyn—l dy
0

HenCe, f()oo e_nyn_ldy = n

Cn
Form 2.Show that

1 1 n-1
rn= o () ">
0 Yy
Proof.We know that I'n =
fooo e XX T AR (13.7.2)
Pute*=y=>x= logi
Differentiate both side w.r.t. X, we get
—e *dx = dy; whenx = 0theny = 1 and when x =
oo theny = 0
Substitute these values in equation (11.6.2), we get

0 1 n-1
I'n = ']-1 — [log (;)] dy
Hence,I'n = fol [log (i)]n_l dy

Form 3.Show that
f e Wndy =Tn+1
0

Proof.We know that

I'n = f e *x"1dx
0
1
Putx"=y= x=yn
Differentiate both side w.r.t. x, we get

nx""1dx = dy; when x = 0 theny = 0 and when x =
oo theny = oo, we get
1

® _id
Fnzf ey Y
0 n

1

= nl'n =f e‘yﬁdy
0
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© 1
=>In+1= f e V"dy
0

13.8 RELATION BETWEEN BETA AND

GAMMA FUNCTIONS.
1. Show that
_ I'mTI'n
B(m,n) _—I‘(m+ n),m >0,n>0

Proof. We know that from the transformation of Gamma function
_ © -1
Im = z™ [~ e™x™ dx
.................................... (13.8.1)

©o
= f zMe~ZXxM-1dx
0

Multiplying both the sides bye=2z""1, we get

I'me %z ! = fooo e 210 zmin—lym=1qy ... (13.8.2)
Now integrating both the sides of equation (13.8.2) with respect
to z from 0 to oo, we get

me e‘ZZ“‘ldX:j U e‘z(”x)zm“““‘ldzl x™-1dx
0 o Lo

=>I'mTIn= foo—r(m+n)

0 rgmn x™~1dx(from transformation of

Gamma function)
-1

— ° Xm
_F(m+n)j; W

= I'mIn =T'(m + n) B(m,n) (fromTransormation of Beta
function)

I'mTIn
Hence,B(m,n) = T
2. Show that
/2 . I'mI'n
f sin?"1cos?"1gdo =——— m>0,n >0
0 I'm+I'n
Proof. We know that
B(m,n) = fol X1 =)™ dX e (13.8.3)
B(M,n) = o e, (13.8.4)

I'm+n

From equations (13.8.3) and (11.8.4), we get
fol XM 1(1 —x)"idx =

e (13.8.5)

Let x = sin?6 so that dx = 2 sin 6 cos 6 d6
Whenx—>0thene—>0andwhenx—>1then9—>g

Therefore,
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1
f x™1(1 — x)"1dx
0

TC
/2
= f sin?™~29(1 — sin?6)™ 12 sin 0 cos 0 dO
0

2 f;/z sin?™=10cos?™10d0. ..o (13.8.6)
From equation(13.8.5) and equation(13.8.6) , we get
T/ I'mT'n
Zj sin?™~1Qcos?""10d0 = ——
0 2T (m+ n)

Substituting 2m — 1 = pand 2n — 1 = q, the result can also be

P+1) p(a+1
put in the form. f(:T/Z sinPBcos10d6 = %
2

13.9 SOME [IMPORTANT RESULTS FROM
BETA AND GAMMA FUNCTIONS

1. Show thatF(n) I(1 — n) = ——, where 0 <n < 1
Proof. We have B(m,n) =

m-—1

fooo(li(mdx ....................................................... (1391)

andB(m, n) = %:S),m >0,1>0 .00, (13.9.2)

Now, from equations (11.9.1) and (11.9.2), we get
I(m)T(n) _ o xM™1
Fo Jo T BX o
Puttingm+n=1orm =1 —nin (13.9.3), we get
F(1—n)T(n) J‘°° x-1
r1 e 1+x

o -1
But we know thatl'l = 1and[;" "—dx = ——where 0 < n <

sinn

(13.9.3)

dxwhere0<n<1

Hencel'(n) '(n — 1) = Si:m, 0<n<l1

2. Show thatI‘% =Vm

Proof. We know that B(m,n):fo1 xM~1(1 —x)""1dx...(13.9.4)
B(m,n) = o e, (13.9.5)

I'm+

n
Now, from equations (13.9.4) and (13.9.5), we get

'm)T'(n) _ (1 -1 _n-1
Ty = Jy XTI =0 (13.9.6)

Puttingm = n = %in (13.9.5), we get

11 rirt 1\ 2
B( —) =-22= (F—) (because I'l = 1)......... (13.8.7)

2’2 ri 2
Now, Puttingm = n = %in (13.8.4), we get
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11 L
B(§,§> ='];)x1/2_1(1—x)1/2_1 dx

1
= f x_1/2(1 — X)_1/2 dx
0

Now, put x = sin?6 so dx = 2sin0 cos 0 d6
Also when x — 0 then & — 0 and when x — 1, 6 — 7, we get

11 21 1
B(—,—)=f ——.——2sinBcos6do
2'2) " ),

sinB " cosO
11 "/zcl
=B <§,§> =2 . 0=m

Substituting the value of B G%)m equation (13.8.7), we get

(r3) =

(o]
.2
j e ¥dx =
0

Proof.Let A = foooe‘xzdx

Hence, F% =T
3. Showthat

~|F

Letx? = t = 2xdx = dt = dx = —-dt =t~ /2dt...(13.8.8)

Also when x - 0thent — 0 and when x — oo thent — oo
Putting these values in equation (13.8.8), we get

1
A =f et —t~adt
0 2

= lf e~tt'271dt
2 0
_1.1_ v
. 2 2 2
Hence, [;” e™ dx = %\/E
4. Show that
nIl'n
s = VT
22n-1Tp + 7
Proof.We know that B(m,n) = folxm‘l(l —x)" 1dx...(13.8.9)
Also, B(n,n) = [} x™ (1 — )" tdx ......... (13.8.10)

Let x = sin® = dx = 2sinfcos0do
When x — 0 then & — 0 and when x — 1 then @ —>§
Using these values in equation (13.8.10), we get

T

2
B(n,m) = f 2.5in?™""10 cos?™10 do
0
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- 22n-1

"/2 2(2sin 6 cos )21
| i
0

= L[ (sin20)n1d6................ (13.8.11)

2271 2

Let20 =t = df = ?also when 6 — Othent — 0Oand
when 6 - %thent — 1. Using these values in equation
(13.8.11), we get when

B(n,n) = 1

s
5on=1 f sin®™ 1tdt
2 0

s

2 /2
= WL sin?™1tdt
s [ f(odx = 2 [ f(x)dx )whenf (2a — x) = f(x)}
2 rwrG)[
B 2 21 (n+3) o
() ()
2T (p +q+ 2)

2
rmyr(:
Hence,B(n,n) = Zzn:—r(gg)

sinPBcos96 do

5. Legendre-Duplication formula

Show that

F(n)F(n+;> 2;/:1 ri2n),n>0

Proof. From the above article, we have

1
rar(3)
B(n,n) = I
2211 (n+ 5)
_ Vm rm
= T )( T(3) =V ) (13.8.12)
r(n) r(n) r(n) r(m)
andB(n, n) = m[ ( ) = m] (13813)

From (13.8.12) and (13.8.13) we have
'nln oo I'm

T 92n-1
I'2n 24n I"n+%

VT

22n-1

Hence I'n I'n + ; = I'2n

6. Show that
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=

ln—
2

1 2 3 n-1 2
I‘(;)I‘(;)I‘(;)F(T) = % ,wherenisa
positive integer.
Proof.LetA=F(%)F(%)F() (n) ( )
1 2 3
=Y
2).....(13.8.14)
Writing in the reverse order we get.

a=r(1-2)r(1-

D e T ()T (3) (13.8.15)
Multiplying (11.8.14) and (11.8.15), we get

G (- G-
)T ()Hf(l--) )

T _ —
sin s SmZ_ﬂ (n 2)’ sin (n—rm
n n n

[“T(M)T'(1—n) =mf0r0 <n<1]
Therefore, A% =

n.n—l

N‘

2 (n Z)T[ . (n 1)1.‘: .................. (13 8 16)
sm—sm ......... sin——— 11’1—
Now We use the foIIowmg trigonometric identity
sinnf
=20 = 20 sin (0 + Z)sin (0 +2) ......... .. ..(13.8.17)

Taking limit as & — 0in equation (11.8.17), we get

sinnf T
lim = lim {2" Lsin (0 + )sin (9
6-0 sin@  6-0

+§ymmsm@+025ﬂ}

~ sinnf T 27‘[ o /m-=1
= lim— = lim {2” Isin—sin—... ... .....sin ( )n}
6-0 sin@ 6-0 n n n
T 27‘[ o /m-1 ) sinn6
11m {2” 1 sin —sin —. ..sm( )TL’} = lim >—
n n n sin 8
sinnf
T né
h }91—13(1) " Sing
[Z]
. sinn@
li
6-0 n9
n . =
lim sin @
-0 6
Therefore, sin“sin 2~ ... ... .....sin (n—_l) T=—...(13.8.18)
n n n 2

Using equation (13.8.18) in equation (13.8.16), we get
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Az . 7.L.Tl.—l . Zn—lnn—lﬁA . ZnT_lT[nT_l
Znn—l n n%
7. Show that
® —ax m-1 — I'm
(@) J, e “*cos bx.x™ 'dx = ) cos mo
X —ax g7 m-1 — I'm :
(b) [, e *sinbx.x™ 'dx = T sin mo@
Proof. We know that
@ r(m
j e PXym=1 1y — % m>0,p>0
0

put p = a — ib, we get
f e—(a—ib)x_xm—ldX — 'm
0

(a—ib)m
@ . I'm[a + ib]™
—ax ,ibx,m-1 —
or fo e = [ m i) + D™
” —ax ,ibx,,m-1 — Fm(a+ ib)m
or . (S .e7X dx —W(Z)
[e* = cosB + i sinB]
Leta + ib = r(cos 6 + isin 0)
Equating real and imaginary parts we get
rcosd=a.......(3)
rsin@=>b.........(4)
Squaring and adding (3) and (4), we get
r2=a2+b2=r+@+b2)"72 e (5)
Dividing (4)by (3),we get
tan@ =P/, =0 = tan‘l(b/a) SR ()
Now (a + ib)™ = [r(cos© + isin 8)|™
r™[cos m6 +isin m0] ... ... ... ... ....[By De’Moirer’s theorem]

Substituting these values in equation (2)

® . I'mr™[cos m6 + isin m6]
f e~ ¥*[cosbx + isin bx]|x™ 1dx =
0

(a2 + b2)m
Equating real and imaginary parts on both the sides.

f ~a% gos by ¥~ 1d 'm.r™cos m0O
e~ cosbx.x X=—F——
0 (a2 + b2)m

I'm.r™sinm®
I'm(a? + b?)"/2 sin m0
(a2 + b2)m
(a2 + b?)"/2 sin m@
(a2 + b2)m
'mcos mO
m sss sas sms

[ee]
f e~ sinbx. x™ 1dx =
0

[ee]
f e~ cosbx.x™ 1dx =
0

(o)
f e Xsinbx.x™ 1dx = 'm
0

(D)

(o)
Hence.f e~ cosbx.xM1dx =
0
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*® I'm sinm6
f e X sinbx. xM ldx=——5—...............(8)
0 (a% +b2)"/2
Where 6 = tan‘l(b/ a)
Deduction (i)Let a = 0, then from (5)and (6 )we get
b
r=band 0 = tan‘16 = tan"o0 =T/,
joo xMm~1cosbxdx = F—mcosE 9
0 _— bm 2 sew o
jmm—l'bd_r_m'm (10)
i XMlsinbrdx = ok Sin

(i)Let m = 1,then 'm = I'n = 1, then from (7)and (8)we get.

cos0
f e"cosbxdx = ——————........(11)
0 (a? + b2) /2
and f‘” e”sinbxdx = i (12)
) it b2)1/2
. b
But tan® = b/a 50 5inB = === and cos® = a23+b2
Then from (11) and (12) we get
@ a
Jo e~ ¥cosbxdx = Z1b?
Jo e~ *sinbxdx = 2112
8. To show that
fb( (b — 0)9dx = (b — ayprart P L
x—a)l(b—-x)4dx=(b—a)P" 1" ———
a (p +q+ 1)!

where p and q are positive integers.
Proof:- Let A = fab(x —a)P(b — x)9dx
Putting x = acos20 + bsin?0 so that
dx = 2acos0(—sin0) dO + 2bsinBcosOdO
= 2(b—a)sinBcosOd6
when x = athen a = acos?6 + bsin?0
= a — acos?0 = bsin?0
= a — acos?0 = bsin?H
asin®0 — bsin?0 = 0
(a—Db)sin’6 =0
sin’6=0=0=0
When x = b then
b = acos?0 + bsin?0
b(1 — sin?0) = acos?0
(b—a)cos?6 =0
cos?’0=0 =0 = 1T/2
and x — a = acos?0 + bsin?0 —a
= bsin?0 — a(1 — cos?0)
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= bsin?0 — asin?0
= (b — a)sin?0
b —x =b — acos?0 — bsin?0
= b(1 — sin?0) — acos?0
= bcos?0 — acos?0
= (b — a)cos?0
Putting all these values in equation (1) we get

T
2
A= j (b — a)Psin?PO(b — a)90 sin?90 2(b — a)sinBcosO
0
i

/2
=2(b- a)p‘“q*lj sin?P*10c0s29%19do
0

plq! /2
= 2(b—a)P*tatl ——— Ifrom J sin™Bcos"0do
(p+q+1)! 0
m+1_n+1
I
orm +£1 +2
rari__ PO e S 0andq4+15>0
= — P - - -
(b—a) (p+q+1)!'1p and q
[SinceI'n+ 1 = n!]
+q+1 p! q! d
= (b—a)P —_ >1 >1
(b=a) (p+q+ 1) p = tandq
which is true[p and q are positive integers]
Hencef (x — a)P(b — x)ddx = (b — a)P+a+1 L — +1Where

p and q are positive integers.

Ilustrative Examples

Ex. 1.Evaluate the integrals
-« 00 xdx 0 x (1+x5)
(I)fo 14x6 d ( )f (1+x)15

Sol. (i):- Let 1= [~ X%

0 1+4x6 L .
Putx®=y=>x=y /6so that dx = %y‘ /6dy

1 °°y1/6y_5/6
L[,
6, 1+y

_lr®_y -%/3
670 (1+y)

dy

f (1+y) dy

i1

_1f°°3’3 g _f y3 p
6 o 1+y Y= 0 (1_|_y)1/3+2/3 Y
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2o st = 2

1 1.2
_1I5r3 11505

“6riy2 T 6 11
3 3

el 3 [rmrt ” |
6 3 "3l T
_1 T
S —
f3/2
_ T
" 3V3
oo x*(14x°)
Let! = T T
—fm A +f°° *
o @ ) s
oo x571
_fo (1+x)5+10 dx + fo (1+ )15 dx

=B(5,10 + B(10,5)

=2B(5,10)[As B(m,n) = B(n,m)]
_,Isr10 _ 4.3.2.1T10
% ris T “'14.13.14.11.T10

~ 5005
Ex. 2.Evaluate foooxze‘xzdx

Sol. I= foooxze‘xzdx
letx2=t=>x=t/2=dx = %tl/z‘ldx
When x = 0,t = 0and x = oo, t = oo, we have
(o] 1 (o]
I=f x2e~*’dx = —f te~tt="2dt
0 2,
1

3
= [“e~ttz"'dt
270

1p3_11451
272 22 2
_Vr
4
Ex. 3.Prove that fo ——~dx = Zcosec™
(at—x™)/n n n
dx
Sol. Let] = fO W

Now puttingx™ = a™t or x = at /nso that dx = %atl/n‘ldt
whenx = 0,t = 0, when x = a,t = 1 we have
1 1 1 1
I = f ————————.—at /n-1dt
(a" — ant)/n n
_1 1ca 1-1 1/ 4
=.a[1-10) In t'n=1qdt

=%f (1 - )t

= %B (% 1-— %)[By definition of B(m,n)]
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rirp-t
= %FLI_E [since B(m,n) = %}and%l“%rl —%[m =1]
1 = T
= ,T[l“nl“l—nz . 0<n<1]
nSin — Sinnm
I s
= —cosec—

Ex. 4. Evaluate [} x(8 — x*) /3dx
Sol. Let I = [ x(8 — x*) /3dx
Letx® = 8t or x = 2t /3
so that dx = gtl/?»‘ldt
whenx = 0,t = 0andwhenx =2,t =1
then we have
I = flzt1/3(8 - 8t)1/3§t1/3_1dt
0

=T (-0 dt

_ 8B (2 4)
- 37\3’3
_8 I3/
3T2/5+4/,
_8T%/3r%/3  8I?/3r%/;
3 rz2 3 1r
—8F21F1[F = 1r 1]
33z oztntTRo AR
_ 8 r1 1 r 1
-9 3°3
8 T _8 7 ey = _"
=S = 9\/%[Fn MM-n=_— for0<n< 1]
_ 16
=55
Ex. 5.Expressl“1/6 in terms ofl%
Sol. We know that I'nT'n + ; = z;/i [2n ... (1)
[duplication formula]
MmIMl-n="T/; 0 0<n<T.oi e (2)
Puttingn = iin(l), we get
rirt 4= Tl
6 6 2 2z.g—l 6
1r2/ — V1
=>T-T%/3 R
Now putting n = gin(3) we get
rir1-i=-Y ==

3 m:ﬁ
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F1F 2T
ﬁ —_— —_—
33 43
r2 2T
= — = 1
3 \/Er§
Substituting the value of I’ %in (3) we have
1
1 Vo T3
N W ye—
6 2~ /3 2m
\/3_I‘%
1 2
13y
6 23 \m
Ex. 6.Find the value ofl“él“%l“% e e e Fg
Sol.  We known that
(n-1)
1.2 n—-1 (@n) 2
r-r—..r =—=
nn n n /2
Puttingn =9
1.2 3 8 (@m* 16n*
[=T—T=. ..o =—2 =
9°9° 9 9 9'% 3

Ex. 7.Show thatT’ G — x) r (g + x) = G — xz) msecmx, —1<
2x <1

Sol.T(3—x)r(3+x) =

) () o))

(
=(;-2*)r(3-2)r(;+x)
=(;-22)r(G+x)ra-(;+x)
:G—xz).m[m rl-m)=-—"—, 0<n< 1]

(g
o smn(7+xn)
_(4 x)cosnx
:G—xz)rrsecnx

Hencel' G - x) r G + x) = G - xz) T SeC X

o0 1
Ex. 8. Show that [~ cos (bZn) dz = icos%n[‘(n +1)

Sol.

pn
Let 11= fooo cos (bzi) dz

Putzn = xi.e.z = x™so that dz = nx" " 'dx whenz = 0,x =
0 and when z = o0, x = oo, then

Department of Mathematics
Uttarakhand Open University Page 298



CALCULUS MT(N) 101

I =f cos bxn.x™ 1dx
0

[oe)
= nf x™ 1 cos bx dx
0

I'n nm « 1 'm mm
=n. b—ncos— [ x™ *cosbxdx = b—mcos —]
1
=>j cos bzn dz —b—ncos—F(n+ 1)
x%dx _ T(c+1)
Ex. 9.Prove that [~ = Gogge €1
Sol.  We know that
Cx_elogc" = eXlogc
o x€
Now we have " —dx = Jy mogcdx

=f xC. e~*logc gy
0

dt
logc,
whenx =0, t =0 and when x = oo,t = oo, then

@ x€ Pt N\, dt
f C—xdx=j (logc) ¢ logc
0 0
S fooe‘ftcdt
(logc)”‘l 0

1 [o2]
=Wj; e ttC+1 1dt

= (et [Since(Tn = f,” e *x" 'dx)]

( )C+1

. t
Putting x logc = t:x—@:dx—

xfdx _ T(c+1)

Therefore, f° = Gogyer

13.10 SUMMARY

In this we have explained the following topic:

1. Beta Function B(m,n) = fol x™ (1 —-x)"Ydx. mn>0
and is symmetrical in m and n.
Gamma Function I'n = f0°° e *x"1dx, n>0
M=1r>=r
4, B(m,n) = [mln
'm+n
P+1.g+1
5. f sin?6 cos16 df = iy
2
6. 'n = cnf e~ *x n‘1dx (other forms of Gamma function)
7. B(m,n) = [~ (1+ s X = N W(other form of Beta

function)
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8. TImlfMl-n=——,0<n<1
Sinnm
9. Legendre-Duplication formula
1 Vm
I'nl'n + E = WFZn
10. If n is an integer then
(n—-1)
1 2 3 n—2 n—1 (2m) 2
[=T=T= r =
n" n n n n n/2
® _—ax m-1 —
1. J, e ™ cos(bx) x™ 'dx = o7 €08 mo
® —ax o m-1 —
12. [, e ®sin(bx) x™ 'dx = LA mo

13.11 GLOSSARY

i. Set.
ii.  Function.
iii.  Beta Function.
iv. ~ Gamma Function.

Check your Progress

Fill in the blanks
00 xM—1_,n-1

1.Form,n>0,[ =———=

0 (4xymtn = ———
2.1f n ispositive integer thenl'n =

3.Fora >0,n>0, fooo e~ xn1dx = Z—:
4.B(m,n) = fm T

Write “T” for true and ‘F’ for false statements.
5I'5 =120

6.0~ =my2
7.Jy e x'2dx =T

g. [ X 0=x") _ 4

0 (1+x)24
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13.13 SUGGESTED READINGS

Differential Calculus for Beginners by Joseph Edwards.
Text-Book on Differential Calculus by Gorakh Prasad.
Calculus by R. Kumar.

Krishna’s Text Book on Calculus by A. R. Vasistha.
Pragati’s Calculus by Sudhir K. Pundir.

13.14 TERMINAL QUESTIONS

x8(1-x%)
(1+x)24

(TQ-1) Evaluate [ x® (

(TQ-2) Prove thatfo?7 x2n=lg=ax®gy = 2%1
(TQ-3) Evaluate f,” e™* dx,y > 0

11 Iy Vm
(TQ-4) Prove that fO mdx = ?%,7

(TQ-5) Prove that
"/ T nm
f tan”xdx=§sex—,—1 <n<l1
0

2
(TQ-6) Prove that
T

12 14
| =), =

(TQ-7) Evaluate fooo cos(c?x?) dx

(TQ-8) Prove thatf_oooo cos (gxz) dx =1

(TQ-9) Prove thatfo1 logl'(x) dx = %loan

(TQ-10)  Provethat [~ 282 gz =2

0 z 2

13.15 ANSWERS

CHECK YOUR PROGRESS

CYQ1-0
CYQ2-(n — 1)!
CYQ3- am
CYQ4-T'(m + n)
CYQ5-F
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CYQ6-T
CYQ7- F
CYQ-8 F

TERMINAL QUESTIONS

(TQ-1) 0
(TQ-3) 7=1(3)

QD £ [y

MT(N) 101

Department of Mathematics
Uttarakhand Open University

Page 302



CALCULUS MT(N) 101

BLOCK-IV
FUNCTIONS OF SEVERAL
VARIABLES
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UNIT14:-
PARTIAL DIFFERENTIATION

CONTENTS

14.1 Introduction

14.2 Objective

14.3 Function of Two Variables

14.3.1 Limit

14.3.2 Partial derivative

14.4 Partial Derivatives

14.5 Homogeneous Function

14.5.1 Euler’s Theorem

14.5.2 Examples

14.6 Composite function

14.6.1 Differentiation of Composite functions
14.7 Change of Variables

14.7.1 Change of independent into dependent variable
14.7.2 Change of independent variable x into t
14.8 Summary

14.9 Glossary

14.10 References

14.11 Suggested reading

14.12 Terminal questions

14.13 Answer

14.1 INTRODUCTION:

In mathematics, the partial derivative of any function having
several variables is its derivative with respect to one of those variables
where the others are held constant. Partial derivatives are useful in
analyzing surfaces for maximum and minimum points and give rise to
partial differential equations. The modern partial derivative notation
was created by Adrien-Marie Legendre (1786), although he later
abandoned it; Carl Gustav Jacob Jacobi reintroduced the symbol in
1841.1n mathematics, differential calculus is a subfield of calculus that
studies the rates at which quantities change. It is one of the two
traditional divisions of calculus, the other being integral calculus the
study of the area beneath a curve. The primary objects of study in
differential calculus are the derivative of a function, related notions
such as the differential, and their applications. The derivative of a
function at a chosen input value describes the rate of change of the
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function near that input value. The process of finding a derivative is
called differentiation. in this topic we have covered Function of two
variables and Homogeneous function.

Adrien-Marie Legendre,

( September 18, 1752-
January 10, 1833)

Fig.14.1.

Ref:
https://www.bridgemanimage
s.com/en/noartistknown/adrie
n-marie-legendre-french-
revolution/nomedium/asset/2
596140

14.2 OBJECTIVES:

At the end of this topic student will be able to understand:

(1 Limit and continuity of two variable function.

(i) Partial Derivatives

(iii)  Definition ofHomogeneous function.

(iv)  Euler’s Theorem and application of Euler’s Theorem.
(v) Composite Function and Change of variables

14.3 FUNCTION OF TWO VARIABLES:

If to each point (x, y) of a certain of xy — plane, there is assigned a real
number z, then z is known to be a function of two variable x and y.

Examples: f(x , y) = 3x + 5y +3, g(x , y) = x* + y* are the function of
two variables.and h(x) = 4x> — 7x2 +9 , j(y) = 11x are the function of
one variables.

143.1 LIMIT OF A FUNCTION OF TWO
VARIABLES:

Recall from The Limit of a Function the definition of a limit of a
function of one variable:

Let /(%) be defined for all X# @ inan open interval containing a. We
say that the function F(¥) has a limit 1 at a, if for every € = 0 there
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O<h—ﬂ<5

existsa ¢ >0 depending on &, such that if for all x in
lim f(x) =1

the domain of f, then [/ ) =2 < 1n symbol, we write

Geometrically, the definition says that for any € >0 (as small
as we want), there is a 6>0 (sufficiently small) such that any point

inside the interval (¢ —9-@+8)jg mapped to a point inside the interval
(I-el+e)

A similar definition extends to functions in two variables: We

say that L is the limit of a function J(2) gt the point (a, b), written

lim f(x,y)=L
(xp)=lab) , if J(%.) is as close to L as we please whenever

the distance from the point (x, y) to the point (a, b) is sufficiently
small, but not zero. Using &6 definition we say that L is the limit of

VACRD PN (x, y) approaches (a, b) if and only if for every given € >0
we can find a >0 such that for any point (x, y) where

2 2
0<‘\/(x_a) +(y-b) <8We have ’f(x,y)—L‘<8 i.e., to say that L

is the limit of /(%Y) as (%:3) = (a.0) meang that for any given

€ >0 we can find an open punctured disk (i.e., without the center and
the boundary) centered at (a, b) such that for any point (x, y) inside the

disk the difference /%)~ Liswithin ¢ je., L=&<f(Ly)<Ll+&
. Below figure illustrates this.

fix.y)

All point in the circle
map to the interval, if L

o is the limit. < (

N’
v

L-g

As in the case of functions of one variable, limits of functions of two
variables possess the following properties:

1. The limit, if it exists, is unique.
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2. The limit of a sum, difference, product, is the sum, difference,
product of limits.

3. The limit of a quotient is the quotient of limits provided that the
limit in the denominator is not zero.

NOTE: In the case of functions of one variable, if a function f(x) has a
limit | at x = a then the limit of f(x) as x approaches a from either the
left or right must be I. Similar situation occurs for a function f(x, y) of
two variables with the difference that the point (X, y) can approach (a,
b) in infinite directions. Hence, if we can find two directions toward (a,
b) with two different limits then the function has no limit as
(x,) > (a,b)

14.3.2 CONTINUITY OF A FUNCTION OF TWO
VARIABLES:

We can now define the continuityof a function of two variables in
terms of limit. Intuitively, we expect our definition to support the idea
that there are no breaks or gaps in the function if it is continuous. The
continuity of functions of two variables is defined in the same way as
for functions of one variable:

A function /(-3 is continuous at the point (a, b) if the following
two conditions are satisfied:

lim f(x,y)
1. Both /(@0) gnd iah) exist; and

lim f(x,y)= f(a,b)

2. ()b

A function is continuous on a region R in the xy-plane if it is
continuous at each point in R. A function that is not continuous at (a,
b) is said to be discontinuous at (a, b).

Like the case of functions of one variable, the following results
are true for multivariable functions:

1. The sums, products, quotients (where denominator function is not
zero), and compositions of continuous functions are also
continuous.

Polynomial functions are continuous.

3. Rational functions are continuous in their domain.

N
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NOTE:

1. Sxy) is said to be continuous at (a, b) if

lim f(x,y)=f(a,b)

ry)ab) irrespective of the path along with
x—=>a,y—o>b

2. It should not be assumed that the path along which the point (x, y)

. _ lim{lim /'(x, )}
tends to (a, b) is immaterial, because >« y~ IS not

lim {lim f(x, y)}
always equal to 7=« *=«

ILLSTRATIVE EXAMPLES

li 37

Example 1. Let /(%) =x" 4y () fioy)=

Solution. Let € =01 |s there 6 >0 such that all the points (X, Y)
inside the open disk with radius 8 and centered at (1, 1) satisfy
¥ 4yt =3 <01

2 2
or equivalently 27 <¥ +¥" <319 Clearly, any
such open disk will share points with the open disk centered at (1, 1)
and with radius 0.2. But any point (x, y) in this disk satisfies
(x=D+(y-1*=02" 5 x"+y" -2(x+»)=0.04 girce 0.8 <x<
1.2 and 0.8 <y< 1.2, we find 3.2 < 2(x + y) < 4.8. This implies that
2 2 2 2
Sy =x"+y" <(1.2)"+(1.2)" =288<29 Loce any point in the

disk centered at (1, 1) and radius 0.2 will fall outside the interval (2.9,
3.1). In particular, this is true for any point in the disk centered at (1, 1)
Sl y) =3

and radius © . We conclude that MH(‘ D

lim f(xy)— lim xt+y?
Alternatively, =D W= (L)

—hm[hm(x +y )]—hm(x +1)=2=#3.

x—=l y-l

2
xry
(x,)—>(1,2) x4 + yz

Example 2.Find

2 2
lim *ry _ 122=%.
=02 x4y 144275

Solution.

3 3
. X -
lim 4
(x,¥)=(0.0) yx— y

Example 3. Find
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Solution. Here, we can not put the limit directly as we get 0 in the
denominator. Therefore, we try to rewrite the fraction to simplify it.
So,
3.3 . 2 2
im XY oy Gty +yT)
(x.)=>(0,0) x — y (x,1)—(0,0) x—=y

= lim (X +xy+y°)=0

(x,1)—40,0)

f(xy) = {ﬁ (%, ) = (0,0)
Example4.Show that 0 1) =009 js continuous

at (0,0).

Solution. The given function is clearly continuous everywhere except

at (possibly) (0, 0). Let's check its continuity at (0, 0). Let ¢ ~ 0. can
2 2

we finda 8 >0 such that if O <V¥ 7Y <0 jhen |f(x’y)_0|<8.

2
X

<1
. Therefore, we have

’y<\fx +y° <5——

x+y‘

2 2 2 2 2
Using the fact that ¥ <% +J° je ¥ *7

Lﬂnﬁ—q=|xy
2]

Hence, J(%,¥) is continuous at (0, 0).

Alternatively,

2 2
. X T X
lim f(x,y)= lm — y2:11m lim— yz =0
(x,¥)—>(0,0) (. 3)=>(0,0) x* 4+ y x=200 y=2>0 x° 4 y

2 2 2 O
(x,»)—>(0,0) (x,7)—>(0,0) x +y y=0{ x>0 x _|_y

And, , e
limit is same as (x, y) approaches (0, 0) either first along y=0 then
along with x=0 or first along x=0 then along with y=0, which shows
that limit does not depend upon the path by which (x, y) approaches to

lim = f(x.y)= /(0.0 oy
(0, 0). Also, =00 . Therefore, S s
continuous at (0, 0).

2 2
lim f(x,y)= lim —2 :nm[lim *y ]

lim ald

Example 4.Show that """ X+ 17 oes not exist.
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Solution.Here, let us calculate the limit when (X, y) approach (0, 0)
along different paths:

(1). along the x-axis, i.e.y = 0:

im —% = gim —0
@00 ¥ 47 @000 x* 40
(ii). along the y-axis, i.e., x = 0:

lim —2 lim —Y g

(x)=(0,0) x? + y2 - (0)-(0.0) () + y2
(iii). along the line straight line path y = mx:

. Xy .
lim ; 4 - = lim
(x,)(0,0) x° + y (x,y)=(0,0) x

xy xX.mx m

2 =llm 2 2 = 2
+y =0 x% +(mx)"  l+mx

2
y=inx

which is different for different value of mi.e. limit depends upon the
path.

( l)im 2xy 2
. . . . x, 10,0
Further, we obtained a different limit. So, *>~"”* ¥¥" does not
exist.
2
(6,3 2(00)
fx,y)= x* 4y ’ !

Example 5.Show that 0 (%) =00
discontinuous at (0,0).

Solution.The given function is clearly continuous everywhere except

at (possibly) (0, 0). Now let's look at the limit of VACH QRPN (%, y)
approaches (0, 0) along two different paths. First, let's approach (0, 0)
along the x-axis, i.e., y =0:

2

=1

lim x,y)= Ilim
(x,y)—)(U,O)f( ’y) (x,0)=(0.0) x> 40

Now, let's approach (0, 0) along the y-axis, i.e., x = 0:

=0

lim f(x,y)= lim ~
(,1)—(0,0)" (0.)—(0.0) ) + -

Since the limit is not the same along the two different directions, we
conclude that f(x, y) is discontinuous at (0, 0).
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CHECK YOUR PROGRESS

True or false Questions
Problem 1: ( hm ( x+y)=0
X,

Problem 2: if a functlon f(x , y) is continuous at (a , b) then

lim does not exist.
(x,¥)-(a ,b)

Problem 3: Every rational function is continuous in their
domain.

14.4 PARTIAL DERIVATIVE:

Let z = f(x, y) be a function of two independent variables x and y.

Then the partial derivative z with respect to x is the ordinary derivative
of z with respect to x when y regarded as a constant and is denoted by

2z or
fx or 5 Or ™
Thus if lim Hathb)=fa, b) exist, then this limit is called the partial

derlvatlve of f(x , y) with respect to x at (a, b) and is denoted by

fx(a, b) or( )(a by Or (%)(a,b)

f(a ,b+k)—f(a, b)

Similarly, if Il{irr}) exist, then this limit is called the

partial derivative of f(x , y) with respect to y at (a , b) and is denoted
by

of
fa,b) or(Z )(a b Or (5)(”)

Let X —» R and X € R?. If the function f has partial derivatives at
each point of X then f is partially differentiable on X.

Note:We have by definition

f(a+h,b)—f(a, b) _ ;.  f(x,b)—f(a, b)
h - il_lg x—a

f(a, b) = lim

f(a, b+k)—f(a, b): lim f(a,y) —f(a, b)
y—b y—a

fy(a, b) = lim

Example 1: Find % : 2—; at (1,2)iff(x, y) = 2x* — xy + 2y*.

f(1+h,2) - f(1,2)
h

Solution: We have( )(1 2) = illin})
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im {2(1+h)2-(1+n).2+2.22}- {2.12-1.242.22}

=li
h -0 h
2
= lim 2222 = lim 2k + 2) = 2
h -0 h -0
of . f(1 2+ k) -f(1,2)
and (5)(1,2) = il_l}}) P
_ 2)_ (o
- lim {2-(2+Kk)+2 (2+k)?}- {2-2 + 8}
k -0 k
2
= lim 227 = lim 2k +7) = 7.
k -0 k -0

Example 2: find fx (0, 0) and fy (0, 0) if

x? — xy

F) = (Ty> Gy 7 (0.0)
0, (x,»=(0,0

Solution; we have

h?- h.0
- -0

f (0, 0) = lim O =K0: O iy h¥o " = iy 1 =1

h -0 h h -0 h h =0
f,(0, 0) = lim X2+ =10 O _ 3, 220~ }im 0 = 0.

k-0 k k-0 k h -0

iw=tan X +y
Example 3. Find the first order partial derivatives of x+y,
2 2
U= ta‘n_lu

Solution: We have, x+y,

Now differentiating u with respect to x, we get

ou _ | 8[x2+y2J

o 2.2\ axl x+y

1+[x +y J
x+y
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(x+y);c(x2+y2>—<x2 +y2)§x(x+y)

_ (x+»)
(x+3) +(x7+ ) (x+y)
- 1 (x+y)2x—(x2 +y2)]
(x+y)2+(x2+y2)2' 1
x+2xy -y

Ty ()

Now differentiating u with respect to y, we get

u 1 o (x"+)

6)’7 22V ol xty

1+[x +yJ
xX+y

(x+y)§(x2 ) -+ (xty)
y oy

B (x+ )
(x+ ) +(x"+)7) (x+y)
7 1 (x+y)2y—(x2+y2)l
(x+y)2+(x2+y2)2' 1
P+ 2xy—x°

TG+ ()

ba—z+ aa—z =2abz

™ fax—by) . show that ox 0y

X

Example 4. If < =e

ax+hy
Solution: We have, Z=¢" " flax=by) (1)
Now differentiating (1) partially with respect to x, we get

2—2 =e“™ f'(ax —by).a+ e af (ax — by)
b

= b = abe" VL (ax—by) + fax—by)]
o -(2)

Now differentiating (1) partially with respect to y, we get

o

5 e ™ £'(ax — by).(=b) + e bf (ax — by)
V
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. agZ _ abeawby[_fv(ax _ by) + f(ax - by)]
y

...(3)
Adding equations (2) and (3), we get
ba—z + a% = abe™ ™ [2 f(ax — by)]
ox Oy
= b% + a% =2ab:z
ox oy
'u o' O
I e n2+az+azzo
Example 5. If “=&7 Y +27)77 hrove that & 7 0z
(Laplace Equation)
Solution: Differentiating u partially with respect to x, we get
ou 1 2 2 24-3/2 0 2 2 2
—=—=("+y + — (T +y+
o 2(x y+zo) ax(x yo+zo)
=—x(x+y +z)7"7 _
Again differentiating partially with respect to x, we get
87{2{ = —E(Jc).(x2 +y?+27)7 xg()c2 +y* +27)7"
ox ox ox
=—1.(x*+)y*+2°)7" = x(— ;](xz +y + 27 2x
— (xz +y2 + ZZ)—S/Z(zxz _yz _ZZ) l
2
a_lzf _ (xz n yz L Zz)—sﬁz(zyz 2 722)
Similarly, ay and
5—12! :(xz +y2 _}_22)75/2(222 _ 32 _yz)
Hence,
O'u  'u  Ou

et
o’ oy o7

2
u u ou

0
oxt ot oz
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2

xX=y=z, 0z = —(xlogex)™
oy

Example 6. If ¥ 72 =¢  show that at o

Solution: Given ¥ 2 =¢  which defines z as a function of x and y.
Taking logarithmic on both sides, we get

xlogx+ ylogy+zlogz =logc

Differentiating partially with respect to y, we get
yl—k l.logy+ zl% + logz% =0

y z dy Ay

:>1+10gy+(l+10gz)2z—0
v

(D
_ 0z _ _l+logy
ay I+logz (2)
oz _ l+logx
Similarly, &  1+logz .3

Now differentiating equation (1) partially with respect to x, we get

2 .
(1+logz)-2Z +(l@jﬁ_o

oxdy \zaox)oy
2z 1 0z Oz
= == A Ay
oxy  z(ltlogz)dxdy (4

At * =Y =2 from equations (2) and (3), we get

& =-1 oz _ -1
5y and aox
From equation (4), at * =7 =% we have
0’ 1 1
== (DD =
oxoy x(1+logx) x(loge +logx)

1 o
=——— =—(xloge
x(logex) (xlogex)
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_ 3 3 3
Example 7. If #=logl+y +27 =302  gow  that
¢ ¢ 0 9
—t U=
ox oy oz (x+y+2) .
Solution: Differentiating u partially with respect to x, we get

a1 @
ox X +y 42 —3xyz ox

(x> +y +2° = 3xy2)

B 3x’ —3yz
X+ 4+ =3xyz _

ou 3y* —3xz

3 3 3
Similarly, we find Oy X +y +z -3z and
ou 32" =3xp

g_x3+y3+z3—3xyz_

5_u+6_u+8_u:3(x2+y2+zz—xy—yz—xz)
Adding, ox dy Oz X+ 42 =3xz

3T+ y 4z —xy—yz—x2) 3 3

=(x+y+z)(x2+y2+22—xy—yz—xz)_x+y+z.
o o oY (o o oo 8 o
—t—t— |u=| = —+— | —+=—+—u
dx oy oz ox oy dz)\ox 0Oy Oz
0 0@ & |0Ou 0Ju oOu
= —+=—+—= ——
ox oy ozN\odx oy Oz

0 o0 0 3
= —— = ——
ox 0Oy Oz ) \x+y+z
3 3 B 3 B 3
()c+y+z)2 (Jc—o—y+z)2 (x+y+z)2

8 o aY 9
=t —+t—|u=—"-5
ox oy oz (x+y+2)
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14.5 HOMOGENEOUS FUNCTION:

In mathematics, a homogeneous function is one with multiplicative
scaling behaviour i.e. if all its arguments are multiplied by a factor,
then its value is multiplied by some power of this factor. For example,
a homogeneous real-valued function of two variables x and y is a real-

valued function that satisfies the condition f(rx,ry)=r*f(x,y) for

some constant k and all real numbers r. The constant k is called the
degree of homogeneity.

Alternatively, a real valued function f(x,y) is said to be
homogeneous of degree (or order) k in the variables x and y if it can be

expressed in the form x%(%)or yk¢[§j.
y

Let consider a function f(x,y)= X+y , then

VXTY

rX+ry :r% Xty :f(rx,ry):r%.f(X,y),

1. f(rx, =
)= oy | Jxay
x+y

VX+Y

degree % in variables x and y.

which implies that f(x,y) =

is a homogeneous function of

x(1+yj
2. f(x,y)= Al X :x%qﬁ(%j, which indicates that

(X, y):\/)% is a homogeneous function of degree % in

variables x and y.

B
3. f(xy)= Xty _ y = y%ﬁ(%}, which clarifies that

e

(X, y):\/)% is a homogeneous function of degree % in

variables x and y.
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Similarly, a function f(x,y,z) is said to be homogeneous of
degree (or order) k in the variables x, y and z if it can be expressed in

the form x%(z,zj ory ¢(— —j orz ¢( j Alternative test for
X X yy z

thisis f(rx,ry,rz)=r"f(x,v,z).

Note: A homogeneous function is not necessarily continuous as shown
by this example

function f defined by f(x,y)=x if xy>0and f(x,y)=0if xy<0.
This function is homogeneous of degree 1.

i.e. f(rx,ry) =rf(x,y)

for any real numbers r, x, y. It is discontinuous at y = 0, x#0.

14.5.1 EULER’S THEOREM ON HOMOGENEOUS
FUNCTIONS:

Statement: If u is a homogeneous function of degree n in variables x

and y, then xa—u+ ya—u =nu.
OX

oy

Proof: Since u is a homogeneous function of degree n in x and v, it
can be written as

o

Sl
et ol

a_U_ n X _yh-1 -X a_U: n-1 -X
:>xax_nx ('}{xj X y¢(XJandy8y X y¢(xj

:>xa—u+ya—u nx ¢( J—nu
ox oy X '
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Euler’s theorem can be extended to a homogeneous function of
any number of variables. Therefore, if u is be homogeneous function of
degree n in variables x, y and z, then statement of Euler’s theorem is

ou ou _ou
X— + +
OX oy oz

145.2 EXAMPLES BASED ON HOMOGENEOUS
FUNCTION:

Examplel.  Verify Euler’s theorem for the function

X itantY.
y X

u=sin?

Solution.Givenu(x, y) =sin * X + tan* Y, then
Yy X

u(rx,ry) = ro(sin 1%than1 %) =ru(x,y),

Therefore, u is a homogeneous function of degree 0 in x and y, and as

. u
per Euler’s theorem we have to verify: Xg—u + y% =0xu=0.
X

ou 1 1 1 1
y* X
:Xa_u: X Xy

ou 1 X 1 1 X X
And_:———2 +—2 — || = + > 5
oy x2 LY 1+Y72 X yJyZ—x% X +y

y’? X
T S
y  Jyrl-xz xXP+y’
ou ou

Thus, x—+ y— =0, which verified Euler’s theorem.
OX oy
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Example2. If u is a homogeneous function of degree n in x and vy,
2 2 2
,0U o°u y26 —n(n-1)u.
OXoy oy?

Solution. Since u is homogeneous function of degree n in x and vy,
then by Euler’s theorem, we have

au 6u_
ax yg— (D)

Differentiate (1) partially w.r.t.x, we get

ou 0% o%u ou
. —t =n— ...
oxox Taxay  ox

-(2)

Differentiate (1) partially w.r.t.y, we get

2 2
OU M, 0 _ (M

Xayaayayay

Multiplying (2) by x, (3) by y, adding and then using the result
ou o
oxoy  oyox

282 oy, 0% (au auj (au auj
+2xy +y —+ y nX—+y—

OX? oxoy oy? ox "oy ox "oy
, 0%U o’u  , 0%
= X" —5 +2Xy +y"— =nnu-nu
OX OXoy oy
2 2
:>x28 lj+2xy8 u +y28 ! =n(n-1)u.
OX OXoy oy?

Example3.If F(u) =V (x,y), where V is a homogeneous function of
degree n in x and y, then show that:

ou ou F(u)

Q) x&+y5—nF(u) and
.. ,0% o%u 28u
(i) x 5X2+2Xyax ay > =)' (u) -1,
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Fl)
F'(u)

Solution. Since V = F(u) is a homogeneous function of degree n, then

where ¢(u) =n

by Euler’s theorem, we have

0 0
X&[F(U)]+ YE[F(U)] =nF(u)

= xF'(u)Z—l)J(+ yF'(u)% =nF(u)

ou ou F(u)
> X—+y—=n——=

ox oy F'(u)

F(u) _
Let n F(u) =¢(u), then

xZ—”+y5—¢(u)

Differentiate (1) partially w.r.t.x, we get

ou 62u 82

oX 8x2

—¢( )—

o%u ’u o 0U
oy WU

Differentiate (1) partially w.r.t.y, we get

X o'u +8_u+ y@:mﬁ'(u)a—u
oyox oy oy oy
o’u ol
:>y$+ oyox =[¢'(u) - 1]—.....(3)

Multiplying (2) by x, (3) by y and then adding, we get

62 o%u
o2 8y

au 0u
~ 2= 1 x=+v=
=[¢'(u) - ](X Y J

Using (1), we have
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2 2 2
= x* T8 oy Ty T i) -1,
ox xoy ) oy
A x3ry?
Exampled.Ify = tan*=—2, then show that:
X—y
Q) xa—u+ ya— =sin 2u, and
OX oy
2 2 2
(i) x? 2 +2xy6 ! y28 lZJ:sin 4u —sin 2u.
o’ oxoy oy
. . . X3 + y3 . .
Solution. (i). Here, u=tan™=—2— is not a homogeneous function
X—y
3 3

but if we take tanu=>_Y =V(X,y), then F(u)=tanu is

homogeneous of degree 2 as V(rx,ry)=r?V(x,y). Thus by Euler’s
theorem

0 0
Xx— [tanu]+ y—I[tanu]=2tanu
Sanul+yZfranul

= xsec’ ua—u+ ysec’ ua—u =2tanu
OX oy

ou aou sinu 1
>X—+y—=2——-.
OX

>—=2sinucosu
oy COSU sec-u

ou ou .
=>X—+Yy—=sih2u.
ox "oy

(ii). Now using the result as proved in previous example, we have

, 0%U 82u a__ F(u)
v axay ay $(u)[¢'(u) 1], where ¢(u) =n— = Fu)

tanzu =sin 2uand ¢'(u) =2cos2u, then
u

2 0°U ou  , o
o’ oxoy

X

> = sin 2u[2cos 2u —1]
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2 2 2
:ng 12J+2Xy§x;y+y2 gylj = 25sin 2ucos2u — 2sin 2u
X
2 2 2
X
4 4
Examp|95.|fuzloge(x +y J,then show that: Xa—u+ ya_u:3
Ty "y
x* +y*

Solution. Here, u is not a homogeneous function. Let " = —7—,
X+Y

which is homogeneous function of degree 3. Thus by Euler’s theorem

a u a uy _ u
x&[e ]+y5[e 1=3e

u Uau u
= Xe'—+ye —=3e
oy
ou ou
=>X—+y—=3
OX oy

X+2y+3z
xE+yt 428
ou ou ou

X—+y—+z—+3tanu=0.
OX oz

Example6.Ifu =sin 1{ J : then show that:

Solution. Here, u is not a homogeneous function. But, let

sinu :M:V(x, y,z), then
Xt +yt 428
V (rx,ry,rz) = r(x+2y+3z) _ r3Vv(x,y,z)

rtyx®+y®+z°

Therefore, F(u)=sinu is a homogeneous function of degree -3 in
variables x, y and z. Thus by Euler’s theorem, we have

0 .. 0. . 0. . )
X—I[sin u]+ y—IJsin u]+z—([sin u]=-3sinu
xS ul+y lsinul+ 2 fsinul
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ou ou ou ]
= XCOSU— + Yy COSU—+ ZCOSU— =—-3sin u
OX oy 0z

:>xa—u+ ya—u+ za—u+3tanu:0.
OX OX

CHECK YOUR PROGRESS

True or false Questions
Jvy . . . .
Problem 4: ﬁ is called second order Partial derivative.

.2 a_y) =%y
Problem 5: —~ (ax =53

Problem 6: f(x,y)= X*+y is a homogeneous function of
JX+Y
degree 1 in variables
x and y.

Problem 7. If f (x, ) = 2y, then 2 = 0.

14.6 COMPOSITE FUNCTION:

(M ifu="f(x,y),wherex=¢ (t),y=W¥ (t), then u is called a

composite function of the single variable t and we can find Z—Lt‘.

(i) if z=1(x,y), where x = ¢ (u, V), then z is called a

composite function of two variables u and v so that we can find
0z dz
a and 5 .

14.6.1 DIFFERENTIATION OF COMPOSITE
FUNCTIONS:

If u is composite function of t, defined by the relations u = f(x , y) ; x =
@ (t),y=" (), then
du Qu dx Ou dy

dat  axdt T 9y at

Proof. Here, u =f(x , y) ..(1)
let 6t be an increment intand 6x , 8y , du the corresponding
increments in x, y and u respectively. then , we have
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u+du= f(x+4éx,y+dy) ...(2)
subtracting (1) from (2) , we get
Su="f(x+dx,y+d8y)—f(x,y)
=f(x + 6x,y+ 8y) —f(x, y+ 6y) + f(x, y + 6y) - f(x, y)
Su - f(x + 6x,y + 8y) - f(x,y + 8y) + f(x,y + 6y) —f(x.y)
5t 5t 8t

—fx+oxy+68y)-fxy+6y) ox, fxy+6y)—fxy) 8y 3)
8x St 8y TstTT
as 6t —» 0, 6x and &y both — 0, so that
Su _ du . 6x _dx oy _ dy
im—=—, lim—=—, lim =-=—
St—0 ot dt ~ §t-0 ot dt * §t—0 6t dt

lim fx+dx,y+éy)-f(xy+dy) _ of _du
S5t—0 ()4 ax ax
. f(x )y +6y) - f(x, of 0
and lim Gy +oy-fxy) _ of  _du
5t-0 8y dy dy

. du _ou dx  ou dy
~ from (1), a "oxah ay " dt
% is called the total derivative of u to distinguish it form the partial

9 P
derivatives = and < .
ox [5):4

Cor.l.ifu=1(x,y,z)and x, y, z are function of t ,then u is a
composite function of t and

du_gu dx . du dy ou de
dt dx "dt a9y ‘dt 9z "dt

Cor.2. ifz=1(x, y) and x, y are function of u and v, then

0z 0z ox | 0z dy .0z _0z 0x 9z Oy

du_ ox "ou dy "ot 'dv  9x ‘dv = dy av '

Cor.3. ifu=1(x,y), where y = ¢(x), then since x=¥(x), uis a
composite function of x.

du _ du dx du dy du _ Ou du dy
dx 0x "dx dy " dx dx 0x dy "dx

Cor.4. if we are given an implicit function f(x ,y) =c, thenu =f(x, y)

, Where u = c using cor.3 , we have
du _0u , Ou dy
dx  0x dy "dx
du _ LOou | du dy of , of dy _
But dx_o ”6x+6y'dx 0 or 6x+0y'dx
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=
=

dy _
dx

_Ix
fy

|
E

)
<

ILLUSTRATIVE EXAMPLES

3
1-t2

Example 1. If u =sin™!(x — y) , x = 3t, y = 4t*, show that Z_I; =

Solution: The given equations define u as a composite function of t.
o du _du dx du dy
“ar Tox "dt | gy “dt

— 1 2

“Tear T (x 7 (1) 12t

3(1-4t%) _ 3(1- 4t )
~ J1- (3t—4t3)2  V1-9t%+24t%—16t6
3(1-4t?) _ 3(1-4t?) _ 3

T J-t)(1-8t2+16t%) J(1- tD)(1-4tD)2  V1-t2

Example 2. Ifu=x2? — y2 +sinyz ,wherey = e* and z =

logx ; find d—u

du 6u dy ou dz
Solutlon =3 e dX+

-(—2y+zcosyz)e + (ycosyz)i+ 2X
={—2e* + logxcos(e*logx)}e* + {excos(ex logx) %}
+ 2X

=2(x - e?*) + e*cos(e* logx)(logx + l)

Example 3. Ifu=f(r,s)andr=x+y,s=x-Vy; Showthat—+g_;_
2—.

du _0u Or , Ou 0s
—_— -t — —
Solution: 0x Or 0x O0s 0x

ar ds

—g‘l'— (1) (“5%=n=-D
du _0u O0r , du O0s
oy ~or"ay  9s oy
du or ds
—;—g (2 (v5=L5="D
Adding (1) and (2) , we get
g: 6y 2_
14.7 CHANGE OF VARIABLES:

The difference between the dependent and independent
variables is well known to us. Sometimes, it is desirable, particularly
dealing with the solutions of the differential equations, to change the
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independent variable into the dependent variable or into another
variable which it is connected by a relation.

14.7.1 CHANGE OF INDEPENDENT VARIABLE
INTO DEPENDENT VARIABLE:

Let y = f(x). Then
LSS -(d—")_l...(l)

dx Z_; dy
@y _ d (ay)_d (ax\7!
dx?  dx (dx) T dx (dy)
_d (dx\ Lay
_E(dy) E
_ dx\ "2 d?x dy
B (dy) d_yza
_ (P @x T e\ TPl
- (dy) dy? (dy) - (dy) dyz"'( )
Sy _a @y _al_(ax\TPaix| __ a[(ax) &x)ay
dx3  dx (dx) dx (dy) dy? - dy (dy) dyz] dx
o (P g ax)TH @) (ax) 7
B [_ (dy) dy3 - (dy) (dyz) ](dy)
() () ()
dy/ dy? dy dy?

And so on.

©)

14.7.2 TO CHANGE OF INDEPENDENT VARIABLE x
INTO ANOTHER VARIABLE t WHERE x = f(t):

-1 —1
=(%) ()
d dxy 7t d
dx (dt) dt
d?y _ d dx Ta
dxz_dx - E dt| dt

() @) = (“y)< N
=(3) [ - E

dy _dy dt_dy (dx

dx dt dx dt (dt)

dt dt2 dt? dt
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dtdt?2 _ dt2dt

a3 y_d (dzy) _ (dx) g
dx3 ~ dx \dx? dt dt (dX)
dt
(dx dxd3y d3xdy] [dxd?y d%xdy (dx)zﬁ
_ dt dtdt3 dt3dt dt dt2 dt? dt dt/) dt2

66D

_ (g)‘s [(ELy_ Sxdyydx_ 5 (dxdly  dhedy) dy)
dt dt dt3 dt3 dt/ dt dt dt? dt2 dt/ dx?

..(3)

[dxdzy dzxdy

I—I

And so on.

ILLUSTRATIVE EXAMPLES
2
Examplel. Show that equation % = a, may be written as in the form

d?x dx\3
5,y (@Yoo
dy? dy

P
Solution:—— = a

(dx)_3 d2x
- —_ —_=
dt dy?

2.3/2

i+ @]

d%y

dx? »

14 ()7
Solution:p = {(;‘1)3’*)3;
dy dy?
@ e

p= )= )

-G @) 8 2

. d? a
Example 3. Transform the equation d—XZ + cotx % + 4y cosec’x =0

by substitution z = 2log tan(x/2) .
Solution: z = 2log tan(x/2)

L dz _ 2 2x1 2

Tax tan(x/2) 2"2  sinx

L dy _ dydz 2 dy

dx  dzdx smxdz
d 2 d

dx sinxdz

Department of Mathematics
Uttarakhand Open University Page 328



CALCULUS MT(N) 101

d?y _ d(dy)_ 2 df 2 dy]
dx2 ~ dx \dx/ ~ sinx dz lsinx dz

sinx Lsinx dz2 sin?x 2 dzdz

2 [ 2 d?y  2cosxsinx gd_y]

sinx Lsinx dz2 sin?2x 2 ‘dz

2 [ 2 d?y  2cosxsinx ﬂ]

4 ﬂ_2cosxﬂ

sin2x dz2 sin2x dz

Substituting these values in the given equation, we get
4 ﬂ __ 2cosx ﬂ_l_

2 dy 2
otx. ——=+4ycosec’x =0
sin?x dz2 sin?x (122 sinx dz y

d
=4 coseczxd—zz + 4y cosec’x =0

d?y
= —+y=0.
dz2 y 0

14.7.3 CHANGE OF BOTH DEPENDENT AND
INDEPENDENT VARIABLES:

The relations between Cartesian co-ordinates (x , y) and polar
coordinates (r, 8) of any pointare X =rcosf ,y = rsin 6

dr
dy _ dy/ae _ (3

~ We have = = =
dx dx/dé (ﬂ) cos@ —rsin @

)sin6+r cos 6

dae
d (dy
Sy d () 4 (aye aola)
dx?  dx \dx/ de \dx/ dx ax
ae
d (%)sin9+r cos @
_ a8 (%) cos6 —rsin 6
= ax
dae

dar\?2 d?r

2 2T 2
__" +2(30) " a2
dr . 3
(coseﬁ—rsme)

Example 4. To show that, (%)2 + (%)2 = (%)2 + r? (%)2.

Solution:x? + y? = r?

dx dy dr
=X — + — = —
2X dt 2y dt 2r dt

dx dy dr
= X—ty—==r—..
th ydt r.dt (1)
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2 =tano
X
dy _ %
a —secze—
y a de de
dy _ 2
=X = —y—=X —=r
dedt y n sec?6 n cos?fsec? — n
= r2 ..(2)

Squarlng and adding (1) and (2) , we get

)+ @) = @)+ (@)

dy dx 2d9

CHECK YOUR PROGRESS

True or false Questions
Problem 8: If u is composite function of t, defined by the
relationsu =1 (x,y);

ou dx ou dy

— — du _ du dx
X=¢@{), y=¥ (1), then _ax'dt+ay &

— — — Jdu
Problem 9: Ifu="f(r,s)andr=x+y,s=x-y; then&+0_y

du
=2—.
or
u

Problem 10: Ifu =sin"!(x — y) ,x = 3t, y = 43, then &=

dt
8

Vi-t2 '’

14.8 SUMMARY:

A partial derivative isthe derivative of a multi-variable
function with respect to a single variable. The other variables in the
function are treated as constants. Partial derivatives give the rate of
change of the function as one variable changes.Limit, Continuity,
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partial derivatives and Homogeneous Functions are the main topic of
Differential Calculus. This topics covered definition and examples.

14.9 GLOSSARY:

i. Sets
ii.  Function
iii.  Limit
iv.  Continuity
v. Partial Differentiation
vi.  Homogeneous Function
vii.  Euler’s theorem
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14.12 TERMINAL QUESTIONS:

L[ x+y .
Q L.If u=sin {— , prove that:
Ix+4Jy

(N xa—u+ ya—u = ltanu and
OX oy 2
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.., 0% o’y ,0%  sinucos2u
(if) X*—+2xy +Y == 3
OX OXoy oy 4cos’u

3

3
Q2. Iflogu= X *y , then show that: xa—u+ ya—u:2u logu.
3x ox "oy

+4y
Q3. If u=x’tan ‘{XJ —y?tan ‘1[EJ : prove that:
X y
2 2 2
X — +2Xy ou +y28—u_2u

Q 4.Show that the function

fGo) = (i;;) (x,y) #(0,0)

0, (x,y)=(0,0)

is discontinuous at the origin.
0z

Q5. Ifz = e®*P¥f(ax — by) , Show that bo- + aj—; = 2abz.

Q 6. Find the first order partial derivatives of the following functions:
() u=y* (ii)u=log(x?+ y?)

Q7.1fz=u?+v>, u==rcosh ,v =rsin9,find% and Z—Z.

dzy

Q 8. Transform the equation x? "

X

+ xZ—z +y = 0 by the substitution of x =
e,
Q 9.1f zis a function of x and y, where x = e* + e Vandy = e % - eV , show
that

0z dz _ 0z 0z

ou ov Yox Yoy

Q10. Ifu=x2y + y?z + z%x , show that u, + u, + u, =

(x +y+ 2)2

14.13ANSWERS:

CHECK YOUR PROGRESS

CYQ1.True
CYQ?2. False
CYQ3. True
CYQ4False
CYQ5True
CYQG6False
CYQ7True
CYQS8. True
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CYQO9True
CYQ10. False

TERMINAL QUESTIONS

TQG6. (i) y*logy (i) xy* 1
TQ7.2r,0
TQ8 ¥ +y=0

dx?
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UNIT 15:- EXPANSION OF FUNCTION
IN TWO VARIABLES AND JACOBIAN

CONTENTS:-

15.1Introduction

15.20bjective

15.3 Taylor’s theorem for a function of two variables
15.4 Jacobians

15.5Summary

15.6Glossary

15.8 References

15.9 Suggested reading

15.10 Terminal questions

15.11 Answer

15.1 INTRODUCTION:

In this section we want to go over some of the basic ideas about
the expansion of functions of two variables, the expansion of functions
of two variables by Taylor’s theorem. The origins of Taylor series
expansion can be traced back to the 18th century, when English
mathematician Brook Taylor first introduced the concept in his 1715
book "Methodus Incrementorum Directa et Inversa” (Direct and
Inverse Methods of Incrementation).Jacobian is a functional
determinant, useful in transformation of variables from cartesian to
polar, cylindrical and spherical polar co-ordinates in multiple integrals.
Jacobian is named after the German mathematician Carl Gustav Jacob
Jacobi (1804 - 1851) who made significant contributions to
Mechanics, partial differential equations, astronomy, elliptic functions
and the calculus of variations.

Carl Gustav Jacob Jacobi
(German Mathematician
1804 — 1851)

Fig 15.1

Ref:
https://en.wikipedia.org/wiki/Carl Gustav Jacob Jac
obi
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15.2 OBJECTIVES:

At the end of this topic learner will be able to understand:

() Taylor’s theorem for a function of two variables.
(i)  Maclaurin’s series
(iii)  Jacobians.

15.3 TAYLOR’S THEOREM FOR A
FUNCTION OF TWO VARIABLES:

The Taylor series formula is a representation of a function as
an infinite sum of terms that are calculated from the values of the
function’s derivatives at a single point. The concept of a Taylor series
was formulated by the Scottish mathematician James Gregory and
formally introduced by the English mathematician Brook Taylor in
1715.A function can be approximated by using a finite number of
terms of its Taylor series. Taylor’s theorem gives quantitative
estimates on the error introduced by the use of such an approximation.
The polynomial formed by taking some initial terms of the Taylor
series is called a Taylor polynomial. The Taylor series of a function is
the limit of that function’s Taylor polynomials as the degree increases,
provided that the limit exists. A function may not be equal to its Taylor
series, even if its Taylor series converges at every point. A function
that is equal to its Taylor series in an open interval (or a disc in the

complex plane) is known as an analytic function in that interval.
Using Taylor’s theorem for a function f(x) of single variable x, we have

J(x+h)=f(x)+hf'(x) +%f"(x)+%f’”(x)+....

Now let /(*-¥) pe a function of two variables x and y. If y is kept as

constant, then /(¥:%) reduces in a function of single variable x.
Therefore, using Taylor’s theorem, we have

Farhy+k) = feoy+k)+hl fay+ 0+ ey +k)+ O ey + k)
ox 21 ax 3o

(D

Now keeping x as constant and applying Taylor’s theorem for a
function of single variable y, we have

f(x,y+k)=f(x,y)+k§)f(x,y)+};!;};f(x,yﬂl;;f(x,y)+-.-.
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...(2)
Using equation (2), we can write equation (1) as
2 —-2 3

Sx+hy+k)= {f(xy)”f f(xy)+k——f( y)+

> |6y ) e — f( V) + o

2 3

{ﬂxm+k§ynuo s gasf(yﬁm}
h2 o° 2 52 k3

2' ox”
n o 0 kK o B o
?a_g[f(x y)+k&yf(x y)+aa)—f( )+ ;gf( )’)*--1

[f( 09+ ks, y)+—62f(xy) T gy
oy oy 3’6

) 2 ~2 k3 3
f(x+hy+k)= {f(x }’)+k— 210 W)+ 3l 81/3 Sl y)+.. }
h h 2 3 hk3 4
|: f(iJ’)"‘ 21882f( ) 568}3](()59)’)""--}
h* l"i2 o} hk* o h2 Koo
{ 2f( »+ 2N azayf(x»y)"‘z! 1 o 6‘}2f( )+ BN 3'6263f( X, p)+.. }
W & h o Wk* & Wk o8
L"agf( ,,V)Jr—' mf( y)+;5636v S+ 3130 o P —— Sy +. }

_ F A\ (rEf, O f KIS
f(x+h,y+k)—f(xsy“(ha_*"‘g] [21 oyt 2'8y]

3 A3 2 3 2 3
+[h_af LY S} kﬁf]+

+ +
31 20 axddy  2laxdy” 3oy

—f(xy)+[ "i+kafj 2{hlaf + 2hk—— o'f kzazfj

dy ox® oxoy oy’
3 3
[h;af ek O 2 O a0 f]
" ox’ ox*oy oxoy” oy’
or
2
f(x+h,y+k):f(xﬂy)+[hg+k§]f+l!(h§+k%] f
1 h£+ki f+— h£+k— f+..
3! ox oy 4 ox oy
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NOTE:
1. Replacing x by a and y by b, we get

| 0 o’ 0’ E a’
f(a+h,b+k)=f(a,b)+[ a—+k Jf(ab) 2![ P 2hk ay ]f(ab)

3 3 3
3'[}1‘5 kO iy O

3
+k 0 f(a.b)+..
ox’ ox*dy oxoy’ oy’

And, now putting h = x-a and k = y-b, we get
)= f<a,b)+[(x—a>i +(y —b)ijf(a,b) .
ox y

[(x ay —+2(x a)y-b) ay Jf(a b)
+i (x— a) & +3(x— a) (y— b) o +3(x—a)y- b) & +(y—b)3 o fla,b)+..
3! ox’ ay oxoy’ oy° B
or
i NI DO | NI DN A |
f(x,y)—f(a,b)+{(x a)ax+(y b)ay]f(a,sz!((x a)ax+(y b)ayj f(a.b)

1 5 2\
+§((xa)§+(yb)@J fla,b)+....

which is called the Taylor’s series expansion of f(X, y) about (a, b).
This form of Taylor’s series is practically applicable to find the
expansion of given two variables functions. This form of Taylor’s
series is sometimes called Taylor’s series expansion of f(x, y) in
powers of (x—a) and (y-b).

2. Putting a = 0 and b = 0 in above equation, we get

E 1( 6 oY
fx.y)= f(00)+[x§+yany( 0)+— [xaﬂfg] f(0,0)

21
1( &
+§[ §+y8y] (0,0)+....
or
0 0 1,0 ol , 07
f(x,y)—f(0,0)+(xa+yan(O,O)+E[x 6x2+2 oxdy ayzjf((),())
e o' : & 52
+a1( PV +3x7 ya ay+3xy 8x8y2 ay Jf(00)+

This is called Maclaurin’s series expansion of f(x, y), which is
a special case of Taylor’s series.
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ILLSTRATIVE EXAMPLES

Example 1. Find the Taylor’s series expansion of f(x, y) = tan

about (1, 1) upto and inclusive of seconddegree terms. Hence compute
(1.1, 0.9) approximately.

f(x,y)=tan™ RN f@Q)=tan"'1= %
X

_1X
X

Solution: Given

X 1
fx(x!y)z yz (%jzxz_):yz jfr(lal)zé
]+x—2
9= [1] oo hD=g
2
o 2x _ 2xy :l
fxx(xby) - y( 1) ()C2 + y2)2 (xz + yz)z = f.‘u(lsl) 2
_(x2+y2).l—x.2x_ v —x B
Fol5.)= @ +y7) (@) = o (b =0
o 2y 2xy __ 1
f;;y(xay)_x( 1)(x2+y2)2 - ( + 2 jf;n(l 1) .
Similarly,
£l 1)——% folh==3 £, 00> fw(lal)—%
and

Using Taylor’s series expans1on of f(X, y) about (1,1), we ha\l/e
F(x, )= FAD+[(x =D LD+ (¥ =D 7 (LD]+

LG DD 206D =, (D + (=, (L)
bl D WD+ 3= D2 =D (L4 3= D= 10 £, (D + (=10 £, (LD .

SN N B S TN |
= tan . 4+[(x 1)( 2]+(y 1)[2]]+

*[<x 1)[ ]+2<x—1)(y 1).0+(y—1)2(—1]]

—[(x—l) [—%}3@—1) (y—n[—ljw(x—l)(y—n[ ]+(y—1)[ ]1
-1Z____ B L 1o 2__ _-z__ 13

= tan by 2()6 ])+2(y 1)+4(x 1) 4(y 1) ]z(x 1)

1 2 1 2 1 3
@D D DD (D

Now
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_r 1 1 1 D NN 3
F0.109) =7 =20+ (0.1 +2- (0.1 = (=017 = —(0.1)
7 OD 0D +2 (0017 + (0.1 .

=0.6857 (Approximately)

Example 2. Expand / (X:3)=€"108(1+ ) jn nowers of x and y upto
third order partial derivative terms.

Solution: Given /() =€’ logll+y)= f(0,0)=0
f(x,y)=¢ log(1+y) = f.(0,0)=0

S ()=
folx,y)=¢€ 102(1 +y)= f,(0,0)=0

X

. €
f,xy(xﬂy) = .l
+

=1

= £,(0,0)=1
y

\‘

[ y)=————7=f,(0,0)=
(4 )

S ¥) = 10g(1 + )= [ (0,0)=0

Sy (X:3) = —y = [ (0.0)=

Sy (X:3) == = [, (0,0) =

ex
(1+y)°

X

Fory) =2 = £ (00)=2
(1+y)

Now Maclaurin’s series expansion of f(X, y) gives

_ | 2
S, py= £(0.0) +[x/.(0.0) + »/,(0.0)] + Elx J(0,0) + 2x7,,(0.0) + »° 1, (0.0)]
+ %[x? fo(0.0)+3x° 31, (0,0) + 3x* £, ,(0.0) + 3 £, (0.0)] + ..
=e'log(l+y)=0+[x.0+ y.1]+ %[xz.() +2xy.1+ y*(-1)]

+ %[x3.0 +3x% v 1+ 3x0° (=) + ' 2]+

J.

RS Y S S e S I
S N T AR S AR

2
Example 3. Expand * ¥ t3Y =2 in powers of (x-1) and (y+2) using
Taylor’s theorem
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. 2
Solution: Let /(xX)=xV+3¥=2 404 we know expansion of
S ¥) in powers of (x-a) and (y-b) using Taylor’s theorem is given
by

Sxp)=fa.b)+[(x-a)f(a,b)+(v=b)] (a,b)]+ % [(x—a)* f.(a,b) +

2Ax-a)y-b)f, (a.b)+(y-b) f, (a.b)]+ % [(x—a) f,..(a.b) +

3(x—a) (y-b)f,,(a.b)+3(x—a)y-b) f, (a.b)+(y=b) f,, (a.D)]+....
Here @=Lb=-2 anq f(x,))=x"y+3y=2 ypon
£(1,-2) =1(=2) +3(~2) =2 = 10
S y)=2xy= f(1,-2)=—4
[y =x+3= f,(1,-2)=4
foley)=2y= f.(1,-2)=—4
S y)=2x= f (1,-2)=2
fﬂ, (x,y)=0=> f)l (1,-2)=0
S0, 0)=0=7_(1,-2)=0
S (x3)=0= 7 (1-2)=0
Sl p)=2= [, (1,-2)=2
Sop(x,0)=0=f (1,-2)=0

vanish.
Substituting these values, we get the required Taylor s series

Xy +3y-2=-10+[(x—1)(~ 4)+(y+2)(4)]+—[(x 1)’ (—4) +

and all higher order partial derivatives

2(x =Dy +2)(2) + (¥ +2)* (0] +— [(x -D’(0)+

3x =D (y+2)2)+3(x—D(y+2)*(0)+ (¥ +2)'(0)]
= xy+3y-2==10-4x-D+4(y+2)=2(x=1)" +2(x =Dy +2)+ (x=1)*(y +2)

Example 4. Expand e®**bY by using Maclaurin's Theorem upto the
third term.

Solution: Since the expansion required in power of X, y the point (a,b)
associated with (0,0) and the expansion of f (x,y) about (0,0) is given

by;
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fxy = f(o. ();+[.¢ fo (0.0)+y £, (0.0)]+ %[.t:fu((). 0)
- Lir: 4
+2xy ., (0,0)+ ¥2f,, (0.0)]+3—![.\"fm(0. 0)

+3x2y foo (0.0)+ 30y £, (0.0)+ v £ (0. ())] +
The function and its partial derivatives evaluated at (0,0) is as follows:

fony = e&* i . |
[ = ae™* by - a
/‘ = bhe™ * B - b
fo.=a*? o &
fo = abe™* ™ — ab
f“ = h'("“ + by —_ bZ
Ly = &0 o W
fu“ = et 5 4
Loy = ab’¢** "™ —  ab’
[, = abe**® - &b
Substitute these value in the expansion of f (x y), we get;
flxy) = 1+[ﬂ.r+b1':|++m+b” [‘“"b‘ii N
| 2! 3!

Example 5. Expand &3H20 26 ;
x+h+y+k

the second degree terms.

in power of h, k up to end inclusive of

(x+h)(y+k)
x+h+y+k

Putting h = k = 0, we have f(x y) =—

Solution: Here  f(x+h, y + k) =

+y
(x+hy-xy1_ y?
fx = G: G VTG +y)2 , by Symmetry
f = _Z—yZ f = _L
XX ( +y)3, (x+y)3 ]
£ _ (x+y)? 2x—x?% 2(x+y) _  2xy
v (x+y)* T (x+y)3
L (x+)(y+k) _ _ 1
e f(x + h, y + k) = f(x, y) + [hfx + kfy] + Z[hz fux + 2hk
fuy + szyy] +...
—ﬂ+[ y? x? ] 1[2 -2y*® 2xy n
T ox+y Tz T T ezl 2 ey (x+)3
kz _ sz ]
T (x+y)3
=X 4 y? + x | 2 2xy o 2
Txty (4?0 ()2 (ay)3 (x+y)3° (x+y)3
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CHECK YOUR PROGRESS

True or false Questions

Problem 1: We can not expand e* siny in power of x and y
using Taylor’s theorem as far as terms of third degree.
Problem 2: If f(x, y) = e*log(1 + y) then f,,, (0, 0) =-1.
Problem 3:The expansion of function of two variables by
Taylor’s theorem is unique.

15.4 JACOBIAN:

The Jacobian matrix contains information about the local
behaviour of a function. The Jacobian matrix can be seen as a
representation of some local factor of change. It consists of first order
partial derivatives. If we take the partial derivatives from the first order
partial derivatives, we get the second order partial derivatives, which
are used in the Hessian matrix. The Hessian matrix is used for
the Second Partial DerivativeTest with which we can test, whether a
point x is a local maximum, minimum or a so called saddle point .

With the Jacobian matrix we can convert from one coordinate system
into another. The Jacobian determinant is used when making a change
of variables when evaluating a multiple integral of a function over a
region within its domain. To accommodate for the change of
coordinates the magnitude of the Jacobian determinant arises as a
multiplicative factor within the integral. The Jacobian matrix was
developed by Carl Gustav Jacob Jacobi (1804-1851), a German Jewish
mathematician.

Ifuy, uz, ..., unare function of n independent variables X1 , X2, ..., x
n then the determinant

aul aul aul
axl axz cee eee e axn
auz auz Buz
axl axz cee eee e axn
ou, dup, oun
axl axz cee  see ees axn
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Is called the Jacobian of uy , Uz, ..., un with respect to X , X2, ..., Xn

and is denoted either by W orbyJ (uy, uy ... u,). Thus if

142 - 4An

u and v are functions of two independent variables x and y, we have

du OJdu

o(u,v) _ a 5

o(xy) [ov ov

dx 0dy

Similarly if u, v and w are functions of three independent variables x, y
and z, we have

du OJu Odu

ox oy oz

duyw) _|ov ov  0dv

a(x,y.z) | ox dy 0z

ow Jdw Ow

ox dy o0z

Properties of Jacobians (Chain Rules)

=J(u,v)

=J(u,Vv,w).

1. Ifu, vare functions of r, s where r, s are functions of x, y then
d(uyw) _ow,w) _ d(r.,s)
ax,y) a@r,s) axw)

Proof: Since u, v are composite functions of x, y
_Ou Ou Or Ou 0s

SS—=———F—.—=Uu,r,+uUs
s aaax or dx ds 0x xS
u u T u N
o = or 3y g,a_urry+ussy...(l)
v 0dv 6r+6v ds 4
—_—=—— -— . = D..T, V.S
dx Or ' dx ads'dx X 5%
v 0v dr Ov 0Os
= = VUply + UsSy

ay ~or'oy " os°dy

Uy Ug 1£% Ty
4% Vs Sx Sy
UyTy + UGSy urry + ussy
U1y + VUsSy U1y + VsSy

d(uyw) , o(r,s)_

NOW Zs X o)

ou u
_|ox oy .
=lov av [using (1) ]
dx Jdy
:a(u,v)

a(x,y)

Note:if us , uz,uz are functions of y1 , y2 , ys are functions
O(uqg up,uz)_ 0(ug,uz uz) 9(1,y2.,y3)

of X1, X2, X3 then = .

0(xq,%2,X3)  0(y1.,¥2,¥3)  9(x1,X3,X3)
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2. IfJy is the Jacobian of u, v with respect to x, y and Jo is the

Jacobian of x, y with respect to u, vthen JiJo =1, i.e.,

9(x.y) _
a(u,v)

o(u,v)
a(x.y)

Proof: Let u=u(x,y) and v =v(x, y) so that u and v are functions of

X,
- y. - - -
leferentlatlng partially w.r.t. u and v, we get
dx . du 0dy
= + — = +
1= ax'au ay “ou W XuT U
dx Ou Jdy
= +—=. == +
0= ax'av 3y 37 = Ux Xv + UyYv...(1)
6x dv Jdy
=— +— ., == +
0= 6x " ou dy " ou Vi Xu + VyYu
dx oOv OJdy
: —_—\V—+—.,—== +
1 ox " dov 9y ov Ve Xv ¥+ VyYv
No d(u,v) a(x,y) _ Uy uy| Xu Xy
a(x'y) ) a(u'v) vx Yu YV
_UxXy + UyYy  UxXy + Uy Yy
VX, + VyVu  UxXy + Uy Yy
_ 1 0 ~1
0 1
Note: It can be extended to three variables as
d(uv,w) 0(x,y.2) _
a(x,y,z) duyw)

3. If functions u, v, w of three independent variables X, y, z are not
independent then the Jacobian of u, v, w with respect to x, y, z

vanishes.

Proof: It is given that theu, v and ware not independent variables, then
there will be a relation F(u, v, w) = 0, which will connect these

independent variables.

Differentiating this relation with respect to X, y and z, we get

OF ou  OF ov  OF ow
ou "9x Ov 9x ow Ox
JOF a_u a_F a_v aF ow
ou "9y | ov'ay | ow "ay
OF du  9F 9v | OF 0w _

ou "dz | ov' oz az
F 6F

(1)
. (2)
. (3)

Ellmlnatlng —, — and —from (1), (2) and (3) , we get

[ou v f’_W|
Jdx O0x 0x
du O0v ow
oy oy oy
du O0v ow
9z 0z 0z
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o(u,v,w) _
axy.z)

ILLSTRATIVE EXAMPLES

Example 1. If x =r sin@ Cos¢, y = r sin@ Sing , show that

a(x'y 'Z) — 2 C:
—a(r’g’(p)—r Sing.
Solution: We have

dx Ox Ox

or 90 dg
oxy.z _|9% 9y 9y
ar,0.p) |or 96 e

dz 0z 0z

or a0 dg

sinf cosq 1 cosO cosp —rsinb sing
= |sinf sing 1 cosO sing 1 sinf cose
cos 6 —7rsin @ 0

=cos @ (r?sin @ cosf cos’p + r? sin 6 cosh sin’g )
+ 1 sin @( r sin?0 cos?gp + r sin’ sin’e ) , expanding the determinant
along the third row

=12 sin A cos?8 + r? sin®@ = r? sin 6( cos?d + sin’6 )

= r’sin 6.
x2+ y2+ 72 x2+ y2+ 72 x2+y%+ 22 .
Example 2.1f u =+,v:+,wzy—f|nd
a(x,y,2)
o(u,vw)’
Solution:
1— y2+z? 2y 2z
x2 x x
o(u,v w)_ 2x 1— x2%+ z?2 2z
a(x,y .z) y y? y
2x 2y x%+ y?
- = 1 —
z z z2

Applying C1— % Ca+ ; Cs

|xz+yz+z2 2y 2z
— = 2z
d(u v w) _ |x®+y?+z? 1— X%+ z? 2z
axy.z) | xy y? y
x%+y?+z2 2y 1— x%+ y?
xz z z2
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1 2xy 2xz
x(x?%+ z?
:x2+y2+22 1 xy-— x(x+z%) %z
x2. xy .xz s
1 2xy xz — XEHYD)
z
1 2xy 2xz
x(x2+y?+ z2
:x2+y2+22 0 — ( y ) Ixz
x2 yz y
0 2xy _ xX(xPty?+ z?)
z
_(x%+ y24 22)3
- x2y272
L Oxy.z) _ xPy?z?

Tomuyw)  (x2+y2%+2z2)3
Example 3. Ifx = rsing, y=rsing then find 222 gng 209

30 9) 3y also

prove that JJ’ = 1
dox Ox
ax.y) _lor a0 _|C059 —7rsin@
or.) |9y 9y| lIsin® rcos6
or 06
=1 (cos?8 +sin?0 ) =r

= [x2 2 = -1
Now, r=yx%+y%and 6 = tan "

Solution:

or or||l_x_ _
a(r,0) _|ox ay||Jx2+y? JxZ+y2| _ 1 1
axy) (08 98] _=¥ x JxZ+y? v

ax oyl | x2+y?  x2+y2

dy) o) _ 1_
Hence, 30 6) " 3 7) r- 1
=] =1
. o(u,v,w) o
Example 4.Calculate the Jacobian 3y 2) of the following:
U=XYZ,V=XYy+YyzZ+2ZX,W=X+y+2Z
Ou du  0Ou
N AL
iop: Qv w) _ fav ov avf
Solution: oy |ox oy a2l y-{z z-;x x-;y‘

ow Jow Jw

0x 6_y 0z

(By Co— C2—C1 And C3— C3 — Cy) then

yz z(x—y) y(x—1z)
y +z X—y X—7Z

1 0

0
[y ¥
X—y X—Z
=x-yE-2)|; 7
= (x— )z - y)(x—2)
=(x-N-2)z—x) .
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Example 5:Let x(u, v) = u? - V2, y(u, v) = 2 uv. Therefore, find the
Jacobian J (u, v).

Solution:Given thatx (u, v) =u?—v?and y (u, v) = 2 uv
We know that,
ox 0x
_ 0y _lou oav|_|2u —2v
Iy = dww) [0y [ 120 2u
du OJv
Example 6: Findthe Jacobian of p, g, r with respect to x, y, z given p =
X+y+z,q=y+zr=z

| = 4U% + 4v°.

Solution: We have to find
9p dp 9p

dx 0y 0z
_9(mg n_|%9 99 39
d(x, y, z) |0x 09y 0z

o o or
dx 0y 0z
’6—p: 6_[): 6_[): %: %: @: g: g:
" oox oy 1’62 1’6x O’ay 1'62 16x " dy 0,
ar _
a-l,thenweget
1 1 1
=10 1 1
0 0 1

On expanding we get
J=11-0)=1

CHECK YOUR PROGRESS

True or false Questions
du OJv

o(u,w) _ a 5
a(xy)  |ouw oyl
dx Odv
Problem 5: If x =r sind Cosg, y =r sinf Sing , then

0x,y.2) _ 2 [(1 = cos?0)
300 9 ry/ (1 — cos?8).

Problem 6:The Jacobian 2%2)
o(x,y,2)

U=X+2y+2z,v=Xx+2y+3z,w=2x+3y+5zis2.
Problem 7: ifu=x2 — y2 ,v=2xyand x=rcosf ,y=r

Problem 4:

of the following:

sin@ then

d(u,v)_ 3

o 4r=,

Problem 8: Jacobian of us , Uz, ..., un with respect to
variables X1 , Xz , ... , xn is denotedby> a2z = n) o pyy, g

0 (x1,X ... Xpn)
Uy, Uy ... Uy).
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Problem 9: If functions u, v, w of three independent variables
X, Y, Z are not independent then the Jacobian of u, v, w with
respect to x, y, z vanishes.

a(u V) 0xy) _
Problem 10: )

15.5 SUMMARY:

The Taylor series or Taylor expansion of a function is an
infinite sum of terms that are expressed in terms of the function's
derivatives at a single point. For most common functions, the function
and the sum of its Taylor series are equal near this point.lt is
extensively used for the elaboration of mathematical series. A function
can be approximated by using a finite number of terms of its Taylor
series. Taylor's theorem provides quantitative estimations on the error
which were introduced by the usage of such an approximation.Jacobian
is the determinant of the Jacobian matrix. The matrix will contain all
partial derivatives of a vector function. The main use of Jacobian is
found in the transformation of coordinates. It deals with the concept of
differentiation with coordinate transformation.

15.6 GLOSSARY:

i Function of two variables
ii. Partial Derivatives

iii. Determinant

iv. Trigonometric functions

V. Functions
Vi. Taylor’s Theorem
Vii. Jacobian
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15.9 TERMINAL QUESTIONS:

Q 1.Find the first six terms of the expansions of the function
e*log(1 + y) in a Taylor series in the neighbourhood of the point (0,
0).

Q 2. Expand e* at (1, 1).

Q 3. Expand e* sin x in powers of x and y as far as terms of the third
degree.

_ _utv o d(u,v)
Q4. Ifx=uv,y=—,find 3
Q5. Ifu= % andv=tan~'y — tan™!x, find % .
_ X2X3 _ X1X3 _ X1X O0(y1,Y2 Y3) _
Q6. Ify, = o Y2 T Vs T , then show that Torrze 2

4.

Q7.1fx=e”secu,y = e’tanu, then evaluate 22>

o(u,v)’
Q8Ifu=x+2y+z,v=x-2y+3zand w = 2xy — Xz + 4yz — 27°
,they are not independent. Also find the relation between u, vand w .

Q 9.Find the Jacobian of the functions y1 = (X1— X2) (X2 + X3)

Y2 = (X1 + X2) (X2- X3), Y3=X3(X1— X3) , hence show that the functions are
not independent. Find the relation between them.

Q 10. Use The Jacobian To Prove That The Functionsu=x+y -2z, v
=x—-y+zandw=x?+y? + z2— 2yz Are Not Independent Of One
Another. Find The Relation Between Them.
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15.10 ANSWERS

CHECK YOUR PROGRESS

CYQL. False
CYQ?2. True
CYQ3. True
CYQ 4. False
CYQ 5. True
CYQ 6. False
CYQ7. True
CYQ 8. True
CYQ 9. True
CYQ 10. False

Terminal Questions:
TQLy+Xy-2y?+-x?y-—xy? +-y3 + ..
TQ2e{l+Gx-D+F-D+ 2 (x- 12 +4Gx-1Dy—-1+

(y— 12+

TQ3y+xy+ %Xzy -%y3 +...
(u—v)?

TQ 4. Sy

TQ5.0

TQ7.-e?secu

TQ 8.u? —Vv? = 4w.
TQOy1+y.—2y3=0

TQ 10.(u + v)? + (u — v)? = 4w.
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