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COURSE INFORMATION 

 

The present self learning material “Calculus” has been designed 

for B.Sc. (First Semester) learners of Uttarkhand Open University, 

Haldwani. This self learning material is writing for increase learner 

access to high-quality learning materials. This course is divided into 15 

units of study. The whole course is divided into four blocks. The first 

block is related basics of calculus,  limit, continuity, differentiability 

and mean value theorems. In second block explain about Successive 

Differentiation, Expansion of a function, Indeterminate forms, Maxima 

and Minima for one variable and Integrals. In third block contained the                                                                                                                                                                                                                                                                      

Asymptotes, Double and Triple Integrals.  The last block is related to 

function of several variables. In this block the topics partial 

differentiation, Expansion of function in two variables and Jacobian 

are explained in simple manner. This material also used for 

competitive examinations. The basic principles and theory have been 

explained in a simple, concise and lucid manner. Adequate number of 

illustrative examples and exercises have also been included to enable 

the leaner’s to  grasp the subject easily.  
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UNIT–1:-REAL NUMBERS AND 

SEQUENCE OF REAL NUMBERS 

 

CONTENTS:- 

 
1.1 Introduction 

1.2 Objective 

1.3 Basics of Calculus 

1.3.1 Sets 

1.3.2 Interval 

1.3.3 Ordered Pairs 

1.3.4 Relation 

1.3.5 Function 

1.3.6 Variable 

1.4  Real Numbers 

1.4.1 Properties of Real Numbers 

1.4.2 Definition. 

1.4.3Distance between two points 

1.4.4 Absolute value.  

1.4.5 Completeness Property of Real Number System: 

1.4.6Archimedean Property 

1.5 Sequence of Real Numbers 

1.6  Examples 

1.7  Summary  

1.8  Glossary  

1.9  References 

1.10  Suggested reading  

1.11  Terminal questions 

1.12  Answers 

 

1.1 INTRODUCTION: 
  

 This is a course on Calculus. Present unit will be help the 

learners to learn the topic. We will be talking about the real line on 

which we have the functions. We will be doing something with the 

functions in this unit. Calculus is a branch of mathematics that studies 

change.  It focuses on limits, functions, derivatives, integrals and 

infinite series.  In this unit we are discussing mostly about basics of 

sequence and series. The sequence and series are depends on Set.  In 

this unit we are also defined the set, relation, function. 
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1.2 OBJECTIVES: 
 

The objective of this topic is to at the end of this topic learner 

will be able to:  

i. Explain the Sets, interval, relation and function 

ii. Describe the real number system and its properties. 

iii. Memorize the basic concepts of sequence and properties 

 

1.3 BASICS OF CALCULUS: 
  

 The concept of set theory and function theory is an important 

part of calculus. After that the topic of differentiation and integration 

defined by the mathematicians. Some concepts, like continuity, 

exponents, are the foundation of advanced calculus. 

 

1.3.1 SETS: 
 

Any well-defined collection of objects or numbers are referred 

to as a set. The number, letter or any other object contained in a set are 

called elements of the set. The sets are denoted by capital letters e.g. 

𝑋, 𝑌, 𝑍or . The elements are denoted by lower case letters a, b, c, …., x, 

y, z. To indicate that ‘a’ is an element of the set X we use the notation

Xa . This read as “a is in X” or “a belongs to X”. For example

 .20,17,13,11,7,5,3,1A  
 

 

1.3.2 INTERVAL: 
 

An open interval does not contain its endpoints, and is 

indicated with parentheses. (𝑎, 𝑏) =]𝑎, 𝑏[= {𝑥𝜖ℝ: 𝑎 < 𝑥 <
𝑏}. A closed interval is an interval which contain all its limit points, 

and is expressed with square brackets. [𝑎, 𝑏] = [𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 ≤ 𝑥 ≤
𝑏}. A half-open interval includes only one of its endpoints, and is 

expressed by mixing the notations for open and closed 

intervals.(𝑎, 𝑏] =]𝑎, 𝑏] = {𝑥𝜖ℝ: 𝑎 < 𝑥 ≤ 𝑏}. [𝑎, 𝑏) = [𝑎, 𝑏[=
{𝑥𝜖ℝ: 𝑎 ≤ 𝑥 < 𝑏}. 

 

1.3.3 ORDERED PAIRS: 
 

An ordered pair (a, b) is a set of two elements for which the 

order of the elements is of significance. Thus ),(),( abba  unless a = 

b. In this respect (a, b) differs from the set {a, b}.Again 

dbcadcba   and),(),( .If X and Y are two sets, then the set of 
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all ordered pairs (x, y), such that Xx and Yy is called Cartesian 

product of X and Y. It is denoted by YX  . 

 

1.3.4  RELATION: 
 

A subset R of YX   is called relation of X on Y. It gives a 

correspondence between the elements of X and Y. If (x, y) be an 

element of R, then y is called image of x. A relation in which each 

element of X has a single image is called a function. 

 

If 𝑋 = {1,2,3,4}and 𝑌 = {𝑎, 𝑏, 𝑐}then,  

)},4(),,3(),,2(),,1{(

)},4(),,4(),,4(),,3(),,3(),,3(),,2(),,2(),,2(),,1(),,1(),,1{(

1 bcbaR

cbacbacbacbaYX





𝑅1is a relation as well as a function while

)},3(),,2(),,2(),,1{(2 ccbaR  is a relation but not a function (since 2 

has two images). 

 

 

1.3.5 FUNCTION(MAPPING): 
 

The equation y = x2 gives a rule which determines for each 

number x, a corresponding number y. The set of all such pairs of 

numbers (x, y) determines a function. 

 

Definition. Let X and Y are two sets and suppose that to each element x 

of X corresponds, by some rule, a single element y of Y. Then the set of 

all ordered pairs (x, y) is called function. The set X is called the domain 

of the function. The element y, which corresponds to the element x is 

called the value of function at x. It is denoted by f (x), read as “f of x”. 

The set of all the values of the function is called the range of the 

function. The term mapping is also used for a function and we say that 

the set X maps into the set Y under the mapping  f. We write as 

YXf : and read as “ the function f which maps X into Y ”. We shall 

also use the notation )(: xfyf  to denote “the function f defined by 

the rule y = f (x)”. Basically function is a rule which binds one set X  to 

another set Y.The rule is that for all elements of X their should be 

unique image in Y. 

 

1.3.6 VARIABLE: 
 

A symbol such as x or y, used to represent an arbitrary element 

of a set is called a variable. For example y = f (x).The symbol x which 

represents an element in the domain is called the independent variable, 

and the symbol y which represent the element corresponding to x is 
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called the dependent variable. This is based on the fact that value of x 

can be arbitrary chosen, then y has a value which depends upon the 

chosen value of x. 

 

1.4 REAL NUMBERS: 
  

 Numbers initiate with Natural Numbers. The natural numbers 

are the standard numbers, 1, 2, 3, .. . with which humans count. Natural 

numbers were discovered by Pythagoras (582– 500 𝐵𝐶) and 

Archimedes (287–212 𝐵𝐶) (both are Greek philosophers and 

mathematicians).  After Natural Number the integer was introduced in 

the year 1563 when Arbermouth Holst was busy with his bunnies and 

elephants experiment. He stored count of the amount of bunnies in the 

cage and after 6 months he saw that the amount of bunnies increased. 

Then he concludes the addition and multiplication of a number system 

then rational number is defined. In arithmetic, a number that can be 

considered as the quotient 𝑝/𝑞 of two integers such that 𝑞 ≠  0. In 

addition to all the fractions, the set of rational numbers added all the 

integers, each of which can be written as a quotient with the integer as 

the numerator and 1 as the denominator.   Rational numbers were 

discovered in the sixth century BCE by Pythagoras. Later this 

Irrational numbers are the numbers that cannot be considered as a 

simple fraction. It cannot be considered in the form of a ratio, such as 

p/q, where p and q are integers, q≠0. It is a contradiction of rational 

numbers. The Greek mathematician  Hippasus of Metapontum is the 

person who invented irrational numbers in the 5th century B.C., 

according to an article from the University of 

Cambridge. Subsequently real number introduced in the 16th 

century, Simon Stevin designed the basis for modern decimal notation, 

and asserted that there is no difference between rational and irrational 

numbers in this regard. 

 
Richard Dedekind 

(6 October 1831 – 12 February 1916) 

Fig 1.4.1 

Ref:https://en.wikipedia.org/wiki/Richard_Dedekind#/media/Fi

le:Richard_Dedekind_1900s.jpg 

https://byjus.com/maths/rational-numbers/
https://byjus.com/maths/rational-numbers/
https://en.wikipedia.org/wiki/Richard_Dedekind#/media/File:Richard_Dedekind_1900s.jpg
https://en.wikipedia.org/wiki/Richard_Dedekind#/media/File:Richard_Dedekind_1900s.jpg
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 In the 17th century, Descartes invented the term "real" to 

describe roots of a polynomial, distinguishing them from "imaginary" 

ones. Mathematician Richard Dedekind quarried these problems 159 

years ago at ETH Zurich, and became the first person to characterize 

the real numbers.  Bob sinclar defined the whole numbers in 1968. 

Whole Numbers is the subset of the number system that includes of all 

positive integers contained zero. In mathematics, a real number is a 

value of a continuous amount that can act for a distance along a line (or 

alternatively, a number that can be summarised as an infinite decimal 

expansion. The set of real numbers is expressed using the 

symbol R or ℝ. Real numbers can be consider of as points on an 

infinitely long line called the number line or real line, where the points 

interrelated to integers are equally spaced. Any real number can be 

resolved by a possibly infinite decimal representation. We can write 

the set of real numbers in the form of rational and irrational number   

as, ℝ = ℚ ∪ ℚ.̅̅̅ 

 
Fig 1.4.2 

Ref: https://en.wikipedia.org/wiki/Real_number 

 

The above points show that real numbers incorporate natural 

numbers, whole numbers, integers, rational numbers, and irrational 

numbers. √2, 𝑒, 𝜋 are irrational numbers.   

 

1.4 1 PROPERTIES OF REAL NUMBERS: 
 

The main properties of real numbers are as follows: 

 

i. Closure Property:   If𝑎, 𝑏𝜖ℝ, 𝑎 + 𝑏𝜖ℝ  and 𝑎𝑏𝜖ℝ. It shows 

that sum and product of two real numbers is always a real 

number. 

ii. Associative Property:  If𝑎, 𝑏, 𝑐𝜖ℝ, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 

and 𝑎 × (𝑏 × 𝑐) = (𝑎 × 𝑏) × 𝑐. It follows that sum or product 

of any three real numbers remains the same even when the 

grouping of numbers is changed. 

iii. Commutative Property: If𝑎, 𝑏𝜖ℝ, 𝑎 + 𝑏 = 𝑏 + 𝑎  and 𝑎 ×
𝑏 = 𝑏 × 𝑎. It means that the sum and the product of two real 

numbers remain the same even after interchanging the order of 

the numbers 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Decimal_expansion
https://en.wikipedia.org/wiki/Decimal_expansion
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Number_line
https://en.wikipedia.org/wiki/Real_line
https://en.wikipedia.org/wiki/Decimal_representation
https://en.wikipedia.org/wiki/Real_number
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iv. Distributive Property: Real numbers satisfy the distributive 

property. If𝑎, 𝑏, 𝑐𝜖ℝ. 
 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)is the distributive 

property of  multiplication over addition. 

 𝑎 × (𝑏 − 𝑐) = (𝑎 × 𝑏) − (𝑎 × 𝑐)is the distributive 

property of multiplication over subtraction.  

 

 
 

https://en.wikipedia.org/wiki/Real_number#/media/File:Number-

systems.svg 

 

 

1.4.2 DEFINITION: 
 

If 𝑎 and 𝑏 are real numbers, we say that  

 

(i) 𝑎 > 𝑏 if 𝑎 − 𝑏 is a positive number, 

(ii) 𝑎 < 𝑏if𝑎 − 𝑏 is a negative number. 

A relation involving> or < is known as an inequality. The 

following useful laws of inequalities can be easily obtained 

from the definition. 

(i) If 𝑎 > 𝑏, then 𝑏 < 𝑎. 
(ii) If 𝑎 > 𝑏 and 𝑏 > 𝑐, then 𝑎 > 𝑐. 
(iii) If 𝑎 > 𝑏and 𝑐 > 𝑑, then 𝑎 + 𝑐 > 𝑏 + 𝑑. (addition of 

inequalities). 

(iv) If 𝑎 > 𝑏, then  𝑎 + 𝑐 > 𝑏 + 𝑐. 
(v) If 𝑎 > 𝑏 and  𝑐 is a positive number, 𝑎𝑐 > 𝑏𝑐. 
(vi) If 𝑎 > 𝑏 and  𝑐 is a negative number, 𝑎𝑐 < 𝑏𝑐. 
(vii) If 𝑎 + 𝑐 > 𝑏, then  𝑎 > 𝑏-c (transposition of a term). A 

particular case of transposition is: 

If  𝑎 > 𝑏, then −𝑏 > −𝑎. 
 

 

 

https://www.cuemath.com/numbers/multiplication/
https://www.cuemath.com/numbers/addition/
https://www.cuemath.com/numbers/subtraction/
https://en.wikipedia.org/wiki/Real_number#/media/File:Number-systems.svg
https://en.wikipedia.org/wiki/Real_number#/media/File:Number-systems.svg
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1.4.3 DISTANCE BETWEEN TWO POINTS: 
 

The distance between two points 𝑥 and 𝑎 on the real line is 

denoted by |𝑥 − 𝑎|, and define as follows : 
|𝑥 − 𝑎| = 𝑥 − 𝑎if𝑥 ≥ 𝑎, 
|𝑥 − 𝑎| = 𝑥 − 𝑎if𝑥 < 𝑎. 

It is the numerical difference between the numbers 𝑥 and 𝑎. 
 

1.4.4 ABSOLUTE VALUE: 
 

The absolute value|𝑥| of a real number 𝑥 is defined by 

i. |𝑥| = 𝑥 if 𝑥 ≥ 0. 

ii. |𝑥| = −𝑥 if 𝑥 < 0. 

 In particular, (−∞,+∞) denotes the set of all ordinary 

real numbers. 

 |𝑥| ≥ 0. 
 |−𝑥| = |𝑥|. 
 |𝑥| =max(𝑥, −𝑥). 
 −|𝑥| =min(𝑥, −𝑥). 
 If 𝑥, 𝑦 ∈ ℝ, then (i) |𝑥|2 = 𝑥2 = |−𝑥|2.(ii) |𝑥𝑦| =

|𝑥|. |𝑦| (iii) |
𝑥

𝑦
| =

|𝑥|

|𝑦|
 provided 𝑦 ≠ 0. 

Let 𝐴 be a nonempty subset of ℝ. 
 

(i) The set is said to be bounded above if three exists a 

number 𝑢𝜖ℝ such that 𝑠 ≤ 𝑢 for all 𝑠 ∈ 𝑆. Each such 

number 𝑢 is called an upper bound of 𝑆. 
(ii) The set is said to be bounded below if three exists a 

number 𝑤𝜖ℝ such that 𝑤 ≤ 𝑠 for all 𝑠 ∈ 𝑆. Each such 

number 𝑤 is called an lower bound of 𝑆. 
(iii) A set is said to be bounded if it is both bounded above 

and bounded below. A set is said to be unbounded if it 

is not bounded. 

(iv) If 𝐴 is bounded above, then a number  𝑢 is said to be 

supremum (or a least upper bound) of  𝐴  if it satisfies 

the conditions: 

(a) 𝑢 is an upper bound of 𝐴, and 

(b) If 𝑣 is any upper bound of 𝐴, then 𝑢 ≤ 𝑣. 
(v) If 𝐴 is bounded below, then a number  𝑤 is said to be 

infimum (or a greatest lower bound) of  𝐴  if it satisfies 

the conditions: 

(c) 𝑤 is an upper bound of 𝐴, and 

(d) If 𝑡 is any upper bound of 𝐴, then 𝑡 ≤ 𝑤. 
 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 9 
 
 
 

 The least upper bound or the greatest lower bound may 

not belong to the set A.1 is least upper bound of the sets 

{𝑥: 0 < 𝑥 < 1}, {𝑥: 0 ≤ 𝑥 ≤ 1} and {1 −
1

𝑛
: 𝑛 ∈ ℕ}. 

 

1.4.5 COMPLETENESS PROPERTY OF REAL 

NUMBER SYSTEM: 
 

 Every nonempty set of real numbers that has an 

upper bound also has a supremum in ℝ. 
 

1.4.6 ARCHIMEDEAN PROPERTY: 
 

If 𝑥, 𝑦 ∈ ℝand 𝑥 > 0, then there is a positive integer 𝑛 such that 𝑛𝑥 >
𝑦. 

 

Proof : Let us assume that 𝑛𝑥 ≤ 𝑦  for every positive integer 𝑛 . 

Then 𝑦 is an upper bound of the set 𝑆 = {𝑛𝑥: 𝑛 ∈ ℕ}. By the least 

upper bound property, let 𝑢be a l.u.b. of 𝐴. Since 𝑛 ∈ ℕ it implies 

+1 ∈ ℕ . So (𝑛 + 1)𝑥 ∈ 𝑆. Then (𝑛 + 1)𝑥 ≤ 𝑢 for all 𝑛 and so 𝑛𝑥 ≤
𝑢 − 𝑥 < 𝑢 for all 𝑛 i.e. 𝑢 − 𝑥 is also an upper bound of set 𝑆 which is 

smaller than 𝑢. Since 𝑢 be a l.u.b. of 𝑆.  Then it is impossible 𝑢 − 𝑥 is 

also an upper bound of set 𝑆 . It contradicts the assumption 𝑛𝑥 ≤ 𝑦  . It 

means that 𝑛𝑥 > 𝑦. 

 

Another form 

 

If 𝑥 ∈ ℝ  then there exists  𝑛 ∈ ℕ such that 𝑥 < 𝑛. 
 

Proof: Consider that 𝑛 ≤ 𝑥 for all  𝑛 ∈ ℕ; therefore, 𝑥 is an upper 

bound of             ℕ. By the Completeness Property, the nonempty set 

ℕ has a supremum 𝑢 ∈ ℝ. Subtracting 1 from 𝑢 gives a number 𝑢 − 1 

which is smaller than the supremum𝑢  of   ℕ. Therefore 𝑢 − 1 is not an 

upper bound of ℕ, so there exists 𝑚 ∈ ℕ with     𝑢 − 1 < 𝑚.Adding1  

gives 𝑢 < 𝑚 + 1, and since  𝑚 + 1 ∈ ℕ, this inequality    Contradicts 

the fact that 𝑢  is an upper bound of ℕ. 

 If 𝑆 = {
1

𝑛
: 𝑛 ∈ ℕ}, then inf 𝑆 = 0. 

 If 𝑡 > 0, there exists 𝑛 ∈ ℕ such that 0 <
1

𝑛
< 𝑡. 

 If 𝑦 > 0, there exists 𝑛 ∈ ℕ such that 𝑛 − 1 ≤ 𝑦 < 𝑛. 
 Let 𝐴 = {𝑟𝜖𝑄: 𝑟 > 0, 𝑟2 < 2} this is a non-empty and 

bounded subset ofℚ. The set 𝐴 does not have l.u.b. inℚ. 

This shows that ℚ does not have the least upper bound 

property. 

 If 𝑥, 𝑦 ∈ ℝ and 𝑥 < 𝑦 then there exists 𝑝𝜖ℚ such that 

𝑥 < 𝑝 < 𝑦. 
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Proof: By Archimedean property 𝑥, 𝑦 ∈ ℝ, 𝑥 > 0 then there exists ∈
ℕ, 𝑛𝑥 > 𝑦,  𝑦 − 𝑥 > 0. As 𝑥 < 𝑦 ⟹ 𝑦 − 𝑥 > 0.  For 𝑦 − 𝑥, 1 ∈ ℝ and 

𝑦 − 𝑥 > 0.Then there exists 𝑛 ∈ ℕ, 𝑛(𝑦 − 𝑥) > 1, 𝑛𝑦 − 𝑛𝑥 > 1, 𝑛𝑦 >
1 + 𝑛𝑥,  

1 + 𝑛𝑥 < 𝑛𝑦……………………………..(1.4.6.1) 

Now we are searching such type of integer which is greater then 𝑛𝑥 

and smaller then 𝑛𝑦. Let 𝐴 = {𝑚:𝑚𝜖Ζ,   𝑛𝑥 < 𝑚}.Since any subset 

𝐴 ⊆ ℤ, 𝐴 ≠ ∅,𝐴 has lower bound then 𝐴 is bounded below.For 𝑛𝑥, 1 ∈
ℝ and 1 > 0 by Archimedean property  there exists 𝑛0𝜖ℕ such that  

𝑛0 > 𝑛𝑥 ⇒ 𝑛𝑥 < 𝑛0 it implies 𝑛0𝜖ℕ it implies 𝑛0𝜖ℤ. Now 𝑛0𝜖ℤ. and 

𝑛𝑥 < 𝑛0 it implies 𝑛0𝜖𝐴. It shows that 𝐴 ≠ ∅. It  implies𝑛𝑥 is a lower 

bound of 𝐴.As 𝐴 ≠ ∅, 𝐴 ⊂ ℤ and 𝐴 has a lower bound it implies 𝐴 has 

a minimal element.Since we are taking 𝐴 =  {𝑚: 𝑚𝜖Ζ,   𝑛𝑥 < 𝑚}. Say 

𝑚1 ∈ 𝐴 is its minimal element 𝑚1 − 1 ∉ 𝐴𝑚1 − 1 ≤ nx. 

𝑚1 ≤1+nx.𝑚1 <ny,𝑚1 ∈ 𝐴, 𝑚1>nx , 𝑛𝑥 < 𝑚1 < 𝑛𝑦,𝑥 <
𝑚1

𝑛
< 𝑦,It 

implies that 𝑥 < 𝑃 < 𝑦  when 𝑃 = 
𝑚1

𝑛
∈ ℚ. 

 

1.5 SEQUENCE OF REAL NUMBERS: 
 

A set of numbers 𝑎1, 𝑎2, 𝑎3……… . , 𝑎𝑛 , …… .. in a definite order of 

occurrence is called a sequence. It is denoted briefly by {𝑎𝑛}. A 

sequence is really a function of the natural number 𝑛, written down in 

the natural order.A sequence {𝑎𝑛} is said to be bounded above if 
{𝑎𝑛} ≤ 𝑎 for every 𝑛,Where 𝑎 is some fixed number. Similarly A 

sequence {𝑎𝑛} is said to be bounded below if {𝑎𝑛} ≥ 𝑏for every 𝑛, 
where 𝑏 is a fixed number.A sequence which is bounded both above 

and below is called a bounded sequence.For such a sequence𝑎 ≤
{𝑎𝑛} ≤ 𝑏 for every 𝑛, where 𝑎 and 𝑏 are fixed numbers.We can easily 

rewrite this relation as |𝑠𝑛| < 𝑐 for every 𝑛, where 𝑐 is a fixed positive 

number.A sequence {𝑎𝑛} is said to be monotonically increasing if  

𝑎𝑛 ≤ 𝑎𝑛+1 for every 𝑛.A sequence {𝑎𝑛} is said to be monotonically 

decreasing if  𝑎𝑛 ≥ 𝑎𝑛+1 for every 𝑛. 
 

 The sequence 1,
1

2
,
1

3
,
1

4
, ……… .. is a monotonically decreasing 

sequence, while 1, 2,3,4……… ..is a monotonically increasing 

sequence. 

 

1.6  EXAMPLES: 
 

Problem 1: Show that there is no rational number whose square is 2. 
Solution. Let, if possible, there exist a rational number 𝑝 𝑞⁄ , where 

𝑞 ≠ 0 and 𝑝, 𝑞 are integers prime to each other (i.e. having no common 

factor) whose square is equal to 2, 
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i.e., (𝑝 𝑞⁄ )2 = 2 or 𝑝2 = 2𝑞2…………………… . (𝟏. 𝟔. 𝟏) 
Now 𝑞 is an integer and so is 2𝑞2. Thus,  𝑝2 is an integer divisible by 

2. As such 𝑝 must be divisible by 2, for otherwise 𝑝2 would not be 

divisible by 2. Let 𝑝 = 2𝑚, where 𝑚 is an integer. Then from (1.6.1), 
2𝑚2 = 𝑞2…………………… . (𝟏. 𝟔. 𝟐) 

Thus, it follows that 𝑞 is also divisible by 2. Hence, 𝑝 and 𝑞 are both 

divisible by 2 which contradicts the hypothesis that 𝑝 and 𝑞 have no 

common factor. Thus, there exists no rational number whose square is 

2. 

Problem 2:Show that √8 is not a rational number. 

Solution. Let, if possible √8 be the rational number 𝑝 𝑞⁄ , where 𝑞 ≠ 0 

and where  𝑝, 𝑞 are positive integers prime to each other, so that 

√8 = 𝑝 𝑞.⁄   But 2 < √8 < 3, 2 <  𝑝 𝑞⁄ < 3 ⇒ 2𝑞 < 𝑝 < 3𝑞 or 0 <
𝑝 − 2𝑞 < 𝑞. Thus, 𝑝 − 2𝑞 is a positive integer less than 𝑞, so that 

√8(𝑝 − 2𝑞) or  𝑝 𝑞⁄ (𝑝 − 2𝑞) is not an integer. But √8(𝑝 − 2𝑞) = 

 𝑝 𝑞⁄ (𝑝 − 2𝑞) =
𝑝2

𝑞
− 2𝑝 it implies that 

𝑝2

𝑞2
𝑞 − 2𝑝 = 8𝑞 − 2𝑝, which 

is an integer it shows that √8(𝑝 − 2𝑞) is an integer. This is a 

contradiction. Hence,√8 is not a rational number. 

Problem 3: Prove that the greatest member of a set, if it exists, is the 

supremum (l.u.b) of the set. 

Solution. Let 𝐺 be the greatest member of the set 𝑆. Clearly 𝑥 ≤
𝐺∀𝑥 ∈ 𝑆. So that 𝐺 is an upper bound of 𝑆. Again no number less than 

𝐺 can be an upper bound of 𝑆, for if 𝑦 be any number less than 𝐺, there 

exists at least one member 𝑔 of 𝑆 which is greater than 𝑦. Thus,𝐺 is the 

least of all the upper bound of 𝑆, i.e., 𝐺 is the supremum of 𝑆. 
Problem 4: For all real numbers 𝑥, 𝑦 show that 

i |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, and 

ii |𝑥 + 𝑦| ≥ ||𝑥| − |𝑦||, 

Solution: i.|𝑥 + 𝑦|2 = (𝑥 + 𝑦)2 = 𝑥2 + 𝑦2 + 2𝑥𝑦 

                             ≤ |𝑥|2 + |𝑦|2 + 2|𝑥|. |𝑦|[∵ 𝑥𝑦 ≤ |𝑥𝑦| = |𝑥|. |𝑦|] 
                             = (|𝑥| + |𝑦|)2. 
Since |𝑥 + 𝑦| and |𝑥| + |𝑦| are both non-negative, therefore taking 

positive square roots on both sides, we have |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|. 
ii.|𝑥 − 𝑦|2 = (𝑥 − 𝑦)2 = 𝑥2 + 𝑦2 − 2𝑥𝑦 

                ≥ |𝑥|2 + |𝑦|2 − 2|𝑥|. |𝑦|[∵ −(𝑥𝑦) ≥ |𝑥𝑦| = −|𝑥|. |𝑦|] 

           = (|𝑥| − |𝑦|)2 = ||𝑥| − |𝑦||
2
. 

Since |𝑥 − 𝑦| and ||𝑥| − |𝑦|| are both non-negative, therefore taking 

positive square roots on both sides, we have |𝑥 + 𝑦| ≥ ||𝑥| − |𝑦||. 
 

Problem 5: For real numbers 𝑥, 𝑎, ℰ > 0 show that 

a) |𝑥| < 𝐸 ⇔ −𝐸 < 𝑥 < 𝐸, 
b) |𝑥 − 𝑎| < 𝐸 ⇔ 𝑎 − ℰ < 𝑥 < 𝑎 + ℰ. 

Solution: a) |𝑥| = max (𝑥, −𝑥) < 𝐸 ⇔ 𝑥 < 𝐸 ∧ −𝑥 < 𝐸 

⇔ −ℰ < 𝑥 < 𝐸 
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𝒃) |𝑥 − 𝑎| = max {(𝑥 − 𝑎),−(𝑥 − 𝑎)} < 𝐸 

⇔ (𝑥 − 𝑎) < 𝐸 ∧ −(𝑥 − 𝑎) < 𝐸 

⇔ 𝑥 < 𝑎 +  ℰ ∧ 𝑎 −  ℰ < 𝑥 

⇔ 𝑎 − ℰ < 𝑥 < 𝑎 +  ℰ. 

Problem 6: Show that a set 𝑆 of real numbers is bounded if there 

exists a real number 𝐺 > 0 such that |𝑥| ≤ 𝐺, ∀𝑆. 
Solution. Suppose that𝑆 is bounded, therefore it is bounded both above 

and below. Let 𝐾 be an upper bound and 𝑘, a lower bound for 𝑆. On 

taking a real number 𝐺 = max (|𝐾|, |𝑘| + 1), we have, 𝐾 ≤ |𝐾| ≤ 𝐺 

and −𝑘 ≤ |𝑘| ≤ |𝑘| + 1 ≤ 𝐺, 𝑖. 𝑒. , 𝑘 > −𝐺. This implies −𝐺 < 𝑘 ≤
𝑥 ≤ 𝐾 ≤ 𝐺,∀ 𝑥 ∈ 𝑆. Hence |𝑥| ≤ 𝐺, ∀𝑆. 
Problem 7: If𝑎, 𝑏 ∈ ℝ such that 𝑎 < 𝑏 + ℰ for each ℰ > 0, then 𝑎 ≤
𝑏. 
Solution. Suppose 𝑎 > 𝑏. Then 𝑎 − 𝑏 > 0, so that 𝑎 < 𝑏 + (𝑎 − 𝑏)(by 

taking ℰ = 𝑎 − 𝑏) and so 𝑎 < 𝑎.This is a contradiction. Hence our 

assumption 𝑎 > 𝑏 must be false. Therefore 𝑎 ≤ 𝑏. 

Problem 8: If𝑎, 𝑏 ∈ ℝ such that 𝑎 ≤ 𝑏 +
1

𝑛
, for all 𝑛 ∈ ℕ, then 𝑎 ≤ 𝑏. 

Solution. Assume 𝑎 ≤ 𝑏 +
1

𝑛
, for all 𝑛 ∈ ℕ, and 𝑎 > 𝑏. Then 𝑎 − 𝑏 >

0 and by the Archimedean property, we have, 𝑛0(𝑎 − 𝑏) > 1, for some 

𝑛0 ∈ ℕ. Then 𝑎 > 𝑏 +
1

𝑛0
, contrary to our assumption. 

Problem 9: If for any ℰ > 0, |𝑏 − 𝑎| < 𝐸, then 𝑏 = 𝑎. 

Solution.We have for anyℰ > 0, 𝑏 < 𝑎 + ℰ and 𝑎 − ℰ < 𝑏.Since𝑏 <
𝑎 + ℰ for any ℰ > 0 this implies 𝑎 ≤ 𝑏. Hence 𝑏 = 𝑎. 
Problem 10: If 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑐 for each 𝑐 > 𝑏, then 𝑎 ≤ 𝑏. 
Solution. Assume that𝑎 and 𝑏 satisfy the hypothesis but not the 

conclusion. Then 𝑎 > 𝑏, and so there is 𝑎, 𝑐 ∈ ℝ such that 𝑎 > 𝑐 > 𝑏. 
Now 𝑐 > 𝑏 ⇒ 𝑎 < 𝑐 in contradiction to 𝑎 > 𝑐. 

 

CHECK YOUR PROGRESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1: For what values of 𝑥 is √(2𝑥 + 3) a real number? 

2: Find the union and intersection of sets 𝐴 and 𝐵: 

𝐴 = {𝑥|𝑥=rational number} 

𝐵 = {𝑥|𝑥=irrational number} 

3: A function 𝑓 is defined by 𝑓(𝑥) = 𝑥2 − 3𝑥 + 4. Find the value of 

the function at 𝑥 = 1,2 and 3. Also find  

𝑓(𝑥+ℎ)−𝑓(𝑥)

𝑥
  (ℎ ≠ 0). 
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1.7. SUMMARY: 
 

In this unit we are explaining Sets, interval, relation and 

function. In this unit our main focus is properties of real number 

system. We are explaining Archimedean property and its proof in 

simple form.  

 

1.8. GLOSSARY: 
 

i. Set. 

ii. Relation and Function. 

iii. Number System and its properties. 

iv.  Basics of sequence. 

 

1.9. REFERENCES: 
 

i. Tom M. Apostol (1996). Mathematical Analysis (2nd edition), 

 Narosa Book Distributors Pvt Ltd-New Delhi. 

ii. Gorakh Prasad (2016). Differential Calculus (19th edition). 

PothishalaPvt. Ltd. 

iii. Walter Rudin. (2017). Principles of Mathematical Analysis (3rd 

edition). McGraw Hill Education . 

iv. R.G. Bartley and D.R. Sherbert (2000) Introduction of real 

analysis, John Wiley and Sons (Asia) P. Ltd., Inc. 

v. Gilbert Strang (1991). Calculus. Wellesley-Cambridge Press. 

 

 

1.10.SUGGESTED READINGS: 
 

i. Howard Anton, I. Bivens and Stephan Davis (2016). Calculus 

(10th edition). Wiley India. 

ii. George B. Thomas Jr, Ross L.Finney (1998),  Calculus and 

Analytical Geometry, Adison Wiley Publishing Company. 

iii. James Stewart (2012). Multivariable Calculus (7th edition). 

Brooks/Cole. Cengage. 

iv. S.C. Malik and SavitaArora (2021). Mathematical Analysis 

(6th edition). New Age International Private Limited.  

 

1.11.TERMINAL QUESTIONS: 
 

TQ1.If𝑎, 𝑏 ∈ ℝ then show that max (𝑎, 𝑏) =  
𝑎+𝑏+|𝑎−𝑏|

2
 and min 

(𝑎, 𝑏) =  
𝑎+𝑏−|𝑎−𝑏|

2
. 

TQ2. State and proof Archimedean property?. 
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TQ3. Prove that |𝑥 + 𝑦| = |𝑥| + |𝑦|iff𝑥𝑦 ≥ 0. 
TQ4.Prove that |𝑥 + 𝑦| < |𝑥| + |𝑦|iff𝑥𝑦 < 0. 
TQ5.In a group of 60 people, 27 like cold drinks and 42 like hot drinks 

and each person likes at least one of the two drinks. How many like 

both coffee and tea? 

TQ6.There are 35 learner in art class and 57 learners in dance class. 

Find the number of learners who are either in art class or in dance 

class? 

 When two classes meet at different hours and 12 learners are 

enrolled in both activities? 

 When two classes meet at the same hour? 

 

1.12.ANSWERS: 
 

ANSWER OF CHEK YOUR PROGESS: 

SCQ1:(−
3

2
, ∞). 

SCQ2:(−∞,∞), ∅. 

SCQ3:   2,2,4; 2𝑥 − 3 + ℎ 

 

ANSWER OF TERMINAL QUESTIONS: 

TQ4: 9 

TQ5: (i) 80 (ii) 92. 
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UNIT–2:- LIMIT AND CONTINUITY 

 

CONTENTS:- 

 
2.1      Introduction  

2.2      Objectives 

2.3      Limit of a function 

2.4      Algebra of limits 

2.4.1 Right hand and left hand limits 

2.4.2 Limits as 𝑥 → +∞(−∞) 
2.4.3 Infinite limits 

2.5      The four functional limits at a point 

2.6      Continuity 

2.6.1 Cauchy’s definition of continuity 

2.6.2 Geometrical interpretation of continuity 

2.6.3 Heine’s definition of continuity 

2.6.4 Alternative definition of continuity of a function at a point 

2.6.5 Polynomial function 

2.6.6 Continuity from left and continuity from right 

2.7       Discontinuity 

2.7.1 Types of Discontinuity 

2.7.2 Jump of a function at a point 

2.8       Intermediate value theorem 

2.9       Uniform Continuity 

2.10 Summary  

2.11 Glossary  

2.12 References  

2.13 Suggested readings  

2.14 Terminal questions  

2.15 Answers   

 

2.1. INTRODUCTION 
 

Grégoire de Saint-Vincent gave the first definition of limit 

(terminus) of a geometric series.The modern definition of a limit goes 

back to Bernard Bolzano who, in 1817, developed the basics of 

the epsilon-delta technique to define continuous functions. However, 

his work remained unknown to other mathematicians until thirty years 

after his death. Augustin-Louis Cauchy in 1821, followed by Karl 

Weierstrass, formalized the definition of the limit of a function which 

became known as the (𝜀, 𝛿)-definition of limit. The modern notation of 

placing the arrow below the limit symbol is due to G. H. Hardy. 

In mathematics, a continuous function is a function such that 

https://en.wikipedia.org/wiki/Gr%C3%A9goire_de_Saint-Vincent
https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Bernard_Bolzano
https://en.wikipedia.org/wiki/Epsilon-delta
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
https://en.wikipedia.org/wiki/Karl_Weierstrass
https://en.wikipedia.org/wiki/Karl_Weierstrass
https://en.wikipedia.org/wiki/(%CE%B5,_%CE%B4)-definition_of_limit
https://en.wikipedia.org/wiki/G._H._Hardy
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)


CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 16 
 
 
 

a continuous variation (that is a change without jump) of 

the argument induces a continuous variation of the value of the 

function. This means that there are no abrupt changes in value, known 

as discontinuities. More precisely, a function is continuous if 

arbitrarily small changes in its value can be assured by restricting to 

sufficiently small changes of its argument. In previous unit we have 

discussed about basics of Calculus.Now in this unit we have explained 

about limit and continuity. 

 

2.2. OBJECTIVES  
 

The objective of this topic is to at the end of this topic learner will 

be able to:  

i. Explained the concept of limit of a function. 

ii. Describe the meaning of continuity and discontinuity. 

iii. Defined the Uniform Continuity. 

 

2.3 LIMIT OF A FUNCTION 
 

Definition. Let f be a function given by the rule y = f (x). Choose any 

set of positive numbers ....,,....,,,, 321 nhhhh which continuously 

decreases i.e.,  

)1........(..........0........321  nhhhh  

and can be made as small as we want by taking n large enough. Then 

the values )2(..........),(....,),(),(),( 321 nhafhafhafhaf   

of the function continuously approach a number A as hn gets smaller 

and smaller. This number A is called the “Limit of f (x) at a” or “the 

limit of f (x) as x → a”. We write AxfLimit
ax




)( . Here x → a is read 

as “x tends to a”.In fact A is the limit on the right, since we have 

considered only the value of x greater than a i.e., on the right of a. If 

we consider the value of the function  

 ...),(...,),(),(),( 321 nhafhafhafhaf   

And find that they are continuously approach a number B as hn 

gets smaller and smaller, we call B the limit of f (x) on the left. When 

A= B, we call A the limit of f (x) at a. The limits on the right and left 

are respectively denoted by  )(xfLimit
ax 

and )(xfLimit
ax 

.If the 

numbers ....,....,,,, 321 nhhhh considered above from a sequence, having 

the limit zero. Similarly the numbers 

.....),(....,),(),(),( 321 nhafhafhafhaf  form another 

sequence. It should be noted that for the limit to exist, )( nhaf   

should approach A for every sequence of type (1). 

 

 

 

 

https://en.wikipedia.org/wiki/Argument_of_a_function
https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Classification_of_discontinuities
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ANOTHER DEFINITION OF LIMIT 
 

A number l is said to be the limit of function f (x) at x=a if for 

arbitrary 0,0   (positive real number) such that, whenever 

 ax0  we have  lxf )(  

or we write lxfLimit
ax




)(  if given 0,0    such that 

  lxfax )( . 

2.4. ALGEBRA OF LIMITS 
 

Theorem 1. If 0)( 


lxfLimit
ax

then   a number 0 and0  k

such that kxf )( whenever  ax0 . Also then 

.
1

)(

1

lxf
Limit

ax



 

Proof. Let l
2

1
 then 0 because 0l . Since lxfLimit

ax



)( , 

therefore given 0,0   such that  

 lxf )( whenever )1........(....................0  ax
 

  
Now )()( xfxfll  )()( xfxfl 

 
)(xf  whenever  ax0  (from 

(1)) 

This implies that whenever  ax0

 

)2........(..........0
2

1

2

1
)(  llllxf 

 

                                            
Taking 0

2

1
 kl we get  

kxf )(  whenever  ax0  

Now to prove
lxf

Limit
ax

1

)(

1



. We have 

 

)3.......(....................
)(

)(

)(.

)(

)(.

)(1

)(

1

xfl

xfl

xfl

xfl

xfl

xfl

lxf










 
Now from the first part  0 and0 1  k such that whenever 

10  ax
 

)4....(................................................................................)( kxf 
                                       

Let  0'  be given. Since lxfLimit
ax




)( , therefore given 

0,0 2

'   such that  
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')(  lxf whenever )5.....(..............................0 2 ax
 

                                     
 

Let },min{ 21   then from (3), (4) and (5) we get 

lkkllxf .

1
..

11

)(

1 '
' 

  whenever  ax0  

If we take 0.||.'   lk then we have 





lk

lk

lxf .

..1

)(

1
 whenever  ax0  

Hence .
1

)(

1

lxf
Limit

ax



 

 

Theorem 2. The limit of a sum is equal to the sum of limits. 

 

Proof. Let lxfLimit
ax




)(  and mxgLimit
ax




)( .  

To show that mlxgfLimit
ax




)]()[( . 

Let  0 be given. Since lxfLimit
ax




)( , therefore , 01  such that  

.
2

1
)(  lxf whenever 10  ax

 

And mxgLimit
ax




)( , therefore,  02  such that  

.
2

1
)( mxg whenever 20  ax

 

If we take },min{ 21   , then for  ax0 both 

10  ax  and 20  ax  holds. And so whenever 

 ax0 then both .
2

1
)(  lxf  and .

2

1
)( mxg  are 

true. 

Now if  ax0  then 

 





.
2

1
.

2

1

))(())((

))(())(()()()(

mxglxf

mxglxfmlxgf

 

Thus   )()()( mlxgf whenever  ax0 .  

Hence mlxgfLimit
ax




)]()[( .  

Similarly we can show that mlxgfLimit
ax




)]()[( . 
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Theorem 3. The limit of product is equal to the product of limits. 

 

Proof. Let lxfLimit
ax




)(  and mxgLimit
ax




)( . To show that 

mlxfgLimit
ax

.)]()[( 


. 

Now 

)1.....(..........|)(||||)(||)(|

).)(.||)(.)().(

).)(.)(.)().(

).)().().()()(

mxgllxfxg

mlxglxglxgxf

mlxglxglxgxf

mlxgxfmlxfg









 
 

Since mxgLimit
ax




)( , therefore g(x) is bounded in some deleted 

neighbourhood of x =a. Hence  0 and0 1  k such that whenever 

10  ax then kxg )(  .   

Now let 0 be given. Since lxfLimit
ax




)( , therefore , 02  such 

that  

.
2

1
)(  lxf whenever .0 2 ax

 

And mxgLimit
ax




)( , therefore, 03  such that  

.
2

1
)( mxg whenever 30  ax

 

If we take },,min{ 321   , then from (1) whenever  ax0  

we get 













22

|)(|2
.|

2)1|(|2
.||

2
.).()()(

l
l

l
l

k
kmlxfg

 

Thus for 0  we have 0 such that  

 ).()()( mlxfg whenever  ax0 . 

Hence mlxgxfLimitxfgLimit
axax

.)().()]()[( 


.  

Similarly we can show that the limit of quotient is equal to the 

quotient of the limits provided that the limit of denominator is not zero. 

 

2.4.1. RIGHT HAND AND LEFT HAND LIMITS 
 

A. A function f (x) is said to approach l as x→a from right if for 

given 0 there exists 0 such that  

 lxf )( whenever  axa  
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It is written as laflxfLimit
ax




)0(or)(
0

. 

“Put a+h for x in f (x), where h> 0 and very small and make h approach 

zero” i.e., ).()0(
0

hafLimitaf
h




 

B. A function f (x) is said to approach l as x→a from left if for 

given 0 there exists 0 such that  

 lxf )( whenever axa   

It is written as laflxfLimit
ax




)0(or)(
0

.“Put a - h for x in f (x), 

where h> 0 and very small and make h approach zero” i.e.,

).()0(
0

hafLimitaf
h




 

Note.If both Right Hand Limit and Left Hand Limit of f (x) as x→a are 

equal in value, their common value will be the limit of f (x) as x→a. If 

either or both of these limits do not exist, then the limit of f (x) as x→a 

does not exist. Even if both of these limit exists but are not equal in 

value then also the limit of f (x) as x→a does not exist. 

 

2.4.2. LIMITS AS x → + ∞ (- ∞) 
 

A. A function f (x) is said to approach l as x → + ∞, if for given

0 there exists 0 such that  

 lxf )( whenever x  

Then we write .as)(or)( 


xlxflxfLimit
x

 

B. A function f (x) is said to approach l as x → - ∞, if for given

0 there exists 0 such that  

 lxf )( whenever x  

Then we write .as)(or)( 


xlxflxfLimit
x

 

2.4.3. INFINITE LIMITS 
 

A function f (x) is said to approach + ∞ or - ∞ as x → a, if for given

0 there exists 0 such that  

  )(or)( xfxf whenever  ||0 ax . 

Then in other words,  .)(or)( 


xfLimitxfLimit
axax

 

Illustrative examples 

Example 1. Find .
sin

0 x

x
Limit

x
 

Solution. Let 
x

x
xf

sin
)(  Here 

h

h
LimithfLimithfLimitf

hhh

sin
)()0()00(

000 
  
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h

hhhh

Limit
h

....
!7!5!3

753

0






 

1....
!7!5!3

1
642

0




hhhLimit
h

 

And 
h

h
LimithfLimithfLimitf

hhh 






)(sin
)()0()00(

000
 

1
)(sin

0


 h

h
Limit

h
.Since f (0+0)= f(0-0)= 1 and hence 1

sin

0


 x

x
Limit

h
. 

Example 2. Find .
sin

x

x
Limit

x 
 

Solution. Let 
x

x
xf

sin
)(  . Put x = 1/y so as x →∞, y→ 0. Then  











 y
yLimit

y

y
Limit

x

x
Limit

yyx

1
sin

/1

)/1(sinsin

00
 

Let 









y
yyg

1
sin)( . Then, right hand limit is

















h
hLimit

hgLimithgLimitg

h

hh

1
sin

)()0()00(

0

00

 

    0 finite quantity which lies between -1 and 

+1 

   0  

and the left hand limit is 

0
1

sin

)()0()00(

0

00

















h
hLimit

hgLimithgLimitg

h

hh

 

Since g (0 + 0) = g (0 - 0) = 0 therefore 0
1

sin
0










 y
yLimit

y
and hence 

.0
sin


 x

x
Limit

x
 

Example 3. Find 








 x
Limit

x

1
sin . 

Solution. Let 









x
xf

1
sin)( . Here  











 h
LimithfLimithfLimitf

hhh

1
sin)()0()00(

000
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As h → 0, the value of 








h

1
sin oscillates between -1 and +1 passing 

through zero. Hence there is no definite number l to which 








h

1
sin  

tends to as h → 0. Therefore right hand limit does not exist.Similarly 

left hand limit f (0 – 0) also does not exists. 

 Thus 








 x
Limit

x

1
sin does not exist. 

Example 4. Find   x

x
xLimit

1

0
1


. 

Solution. Let   x

x
xLimitxf

1

0
1)( 


. Now right hand limit is 

  h

hhh
hLimithfLimithfLimitf

1

000
1)()0()00( 


 























































.....
!3

2
1

1
11

.
!2

1
11

.
1

1 32

0
h

hhh
h

hh
h

h
Limit

h

 

    

















....

!3

211.1

!2

1.1

!1

1
1

0

hhh
Limit

h
 

e ....
!3

1

!2

1

!1

1
1  

Similarly, the left hand limit is 

  ehLimithfLimithfLimitf h

hhh






1

000
1)()0()00(  

Thus both f (0 + 0) and f (0 – 0) exists and equal to e. Hence 

  exLimit x

x




1

0
1 . 

Example 5. Show that 
)2(

2

2 



 x

x
Limit

x
does not exist. 

Solution. Let 
)2(

2
)(

2 




 x

x
Limitxf

x
. Now right hand limit is 

1
)(

)22(

22
)2()02(

00

00












h

h
Limit

h

h
Limit

h

h
LimithfLimitf

hh

hh

 

and the left hand limit is  
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1
)(

)22(

22
)2()02(

00

00



















h

h
Limit

h

h
Limit

h

h
LimithfLimitf

hh

hh

 

Since f (2 + 0) ≠ f (2 – 0). Hence 
)2(

2

2 



 x

x
Limit

x
does not exist. 

Example 6. Find x

x
e

x
Limit

1

0

1


. 

Solution. Let x

x
e

x
Limitxf

1

0

1
)(


 . Then 

h

hhh
e

h
LimithfLimithfLimitf

1

000

1
)()0()00(


  

 (since 
h

1
and he

1

as h→ 0) 

and  

hh

h

hhh

he
Limit

e
h

LimithfLimithfLimitf

10

1

000

1

1
)()0()00(











 

0

....
1

!3

11

!2

11
1

1

32

0

















hhh
h

Limit
h

 

Since f (0 + 0) ≠ f (0 – 0).  

Hence x

x
e

x
Limit

1

0

1


does not exist. 

 

2.16 THE FOUR FUNCTIONAL LIMITS AT A 

POINT 
 

Let a function f (x) be defined in (a, b). let ),( bac and h> 0. We give 

to  

h a sequence of diminishing value <hn> with .0


n
n

hLimit  

A. Consider the right hand neighbourhood (c, c+h) of the point c. let 

M (hn) be supremum of f (x) in (c, c+hn) and m(hn) be the infimum 

of f (x) in (c, c+hn), then  

.....)()()( 111  hMhMhM  

.....)()()( 111  hmhmhm  

This means that the sequences < )( nhM > and < )( nhm > are 

monotonically non-increasing and non-decreasing respectively. 

Hence )( n
n

hMLimit


and )( n
n

hmLimit


exists. We write 
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)()0( n
n

hMLimitcf


  and )()0( n
n

hMLimitcf


  

These limits are respectively called the upper and lower limits of f (x) 

at x = c on the right. 

 

B. Next we consider the left hand neighbourhood (c-h, c) of the point 

c. let M’(hn) be supremum of f (x) in (c, c+hn) and m’(hn) be the 

infimum of f (x) in (c-hn, c). Arguing as above, we find that 

)(' n
n

hMLimit


and )('

n
n

hmLimit


exists and we write 

)()0( n
n

hMLimitcf


  and )()0( n
n

hMLimitcf


  

These limits are called the upper and lower limits of f (x) at x = c on 

the left respectively. 

 

2.6. CONTINUITY 
 

The intuitive concept of continuity is derived from geometrical 

consideration. If the graph of the function y = f (x) is a continuous 

curve, then it is to call the function continuous.  

 

2.6.1. CAUCHY’S DEFINITION OF CONTINUITY. 
 

A real valued function f (x) defined on an interval I is said to be 

continuous at Iax  if and only if for any arbitrarily chosen positive 

number , however small, we can find a corresponding number 0

such that  

 )()( afxf  whenever . ax  

We say that f (x) is continuous if it is continuous at every .Ix  

or 

f (x) is continuous at x = a is given 0 , we can find a 0  such 

that 

.)()(   afxfax
 

 

2.6.2. GEOMETRICAL INTERPRETATION OF 

CONTINUITY. 
 

The geometrical interpretation of the above definition is that, 

corresponding to any pre-assigned positive number , we can 

determine an interval of width 2 about the point x = a such that for 

any point x lying in the interval ),(   aa , f (x) is confirmed to lie 

between )(af and )(af .  

 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 25 
 
 
 

 
A. For a function f (x) to be a continuous at x = a, it is necessary that 

)(afLimit
ax

must exist. 

B.   )()()()()( afxfafafxf  i.e., f (x) lies 

between  
)(af and )(af and   axaax i.e., x 

lies between a  and a . 

C. The function must be defined at the point of continuity. 

D. The value of  depends upon the value of   and a. 

 

2.6.3. HEINE’S DEFINITION OF CONTINUITY 
 

A function f (x) is said to be continuous at x = a, if and only if 

every convergent sequence  nx of real numbers such that 

axLimit n
n




, the sequence  )( nxf converges to f (a) i.e., f  is 

continuous at x = a if and only if )()( afxfLimitaxLimit n
n

n
n




. 

 

2.6.4. ALTERNATIVE DEFINITION OF 

CONTINUITY OF A FUNCTION AT A POINT 
 

A function f (x) defined on an interval I is said to be continuous 

at Iax  iff )(xfLimit
ax

exists, is finite and equal to f (a). Otherwise, 

the function is discontinuous at ax  . Thus a function f (x) is said to be 

continuous at ax   if f (a + 0) = f (a + 0) = f (a). This is also the 

working rule for testing the continuity of a function at a given point. 

 

 

 

 

𝑎 − 𝛿 𝑎 + 𝛿 𝑥 = 𝑎 

2 ∈ 

𝑂 

𝑓(𝑎)−∈ 

𝑓(𝑎) 

𝑓(𝑎)+∈ 

𝑿 

Fig 2.6.2.1 

y 
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2.6.5. POLYNOMIAL FUNCTION 

 

Theorem. A polynomial function is always a continuous function. 

 

Proof. If 
n

n xaxaxaaxf  ....)( 2

210  is a polynomial of 

degree n in x, then we are to show that f (x) is continuous for all Rx . 

For this, let Rc , then  

 n

n
cxcx

xaxaxaaLimitxfLimit 


....)( 2

210  

                         

n

n
cxcxcxcx

xaLimitxaLimitxaLimitaLimit


 ....2

210  

)(

....2

210

cf

cacacaa n

n




 

Since )()( cfxfLimit
cx




, therefore f(x) is continuous at x = c. 

Note. The polynomial function f (x) is always continuous at each 

points of its domain. 

 

2.6.6. CONTINUITY FROM LEFT AND CONTINUITY 

FROM RIGHT 
 

A function f(x) is said to be continuous from left at x = a if 

)(
0

xfLimit
ax 

exists and equal to f (a) i.e., ).()(
0

afhafLimit
h




 

Similarly, f(x) is said to be continuous from right at x = a if )(
0

xfLimit
ax 

exists and equal to f (a) i.e., )()(
0

afhafLimit
h




 

and f(x) is continuous at x = a iff 

)()()(
00

afxfLimitxfLimit
axax




 

)()()(
00

afhafLimithafLimit
hh


  
 

2.7. DISCONTINUITY 
 

If a function is not continuous at a point, then it is said to be 

discontinuous at that point and the point is called a point of 

discontinuity of the function.e. g. The function 
ax

xf



1

)( does not 

exists at x = a so f (x) is not continuous at x = a. 
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2.7.1. TYPES OF DISCONTINUITY 

 

A. Removable discontinuity 

 

A function f (x) is said to have a removable discontinuity at a point 

x = a if )(xfLimit
ax

exist but is not equal to f (a) i.e., if 

)()0()0( afafaf  .The function can be made continuous by 

defining it in such a way that )()( afxfLimit
ax




. 

B. Discontinuity of first kind (Ordinary discontinuity) 

 

A function f (x) is said to have a discontinuity of the first kind or 

ordinary discontinuity at x = a if f (a + 0) and f (a – 0) both exist but 

not equal. The point x = a is said to be a point of discontinuity from the 

left or right according as  

)0()()0(  afafaf or )0()()0(  afafaf . 

 

C. Discontinuity of second kind 

 

A function f (x) is said to have a discontinuity of the second kind at x = 

a if none of the limits       f (a + 0) and f (a – 0) exist. The point x = a is 

said to be a point of discontinuity of second kind from the left or right 

according as )0( af or )0( af does not exist. 

 

D. Mixed discontinuity 

 

A function f (x) is said to have a mixed discontinuity at x = a if it has a 

discontinuity of second kind on one side of a and on the other side a 

discontinuity of first kind or may be continuous. 

 

E. Infinite discontinuity 

 

A function f (x) is said to have an infinite discontinuity at x = a iff (a + 

0) or f (a – 0) is + ∞ or - ∞ i.e., if f (x) is discontinuous at x = a and f 

(x) is unbounded in every neighbourhood of x = a. 

 

2.7.2 JUMP OF A FUNCTION AT A POINT 

 

If both f (a + 0) and f (a – 0) exists, then the jump in the function at x = 

a is defined as the non-negative difference )0(~)0(  afaf . A 

function having a finite number of jumps in a given interval is called 

piecewise continuous. 
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Illustrative Examples 
Example 1. Test the continuity of f (x) at x = 1 when 

















13

112

12

)(

2

xif

xifx

xifx

xf  

Solution. Here 311.2)1( f  

.11as3221

2)1()1()01(

2

0

2

00









hhhLimit

hLimithfLimitf

h

hh
 

.11as3221

2)1()1()01(

2

0

2

00









hhhLimit

hLimithfLimitf

h

hh
 

So )01()01()1(  fff .Hence f (x) is continuous at x = 1. 

 

Example 2. Discuss the continuity of the function 
xe

xf
1

1

1
)(






when x ≠ 0 and 0)0( f for all values of x. 

Solution. Test the continuity at x = 0 

1
1

1

)()0()00(

10

00












hh

hh

e
Limit

hfLimithfLimitf

 

0
1

1

)()0()00(

10

00












hh

hh

e
Limit

hfLimithfLimitf

 

Thus we have f(0 + 0) ≠ f (0 – 0) = f (0). So f (x) is not continuous at x 

= 0 and it is a discontinuity of first kind i.e., f (x) is continuous on the 

left and has a discontinuity of first kind on right at x = 0. 

Now test the continuity at x = a ≠ 0 

ae
af

1

1

1
)(




  

)(
1

1

1

1
)()0(

1

100

af
e

e

LimithafLimitaf

a

hahh















 

)(
1

1

1

1
)()0(

1

100

af
e

e

LimithafLimitaf

a

hahh














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Thus we have f(a + 0) = f (a – 0) = f (a). Hence f (x) is continuous at 

every point except x = 0. 

 

Example 3. Test the continuity of the function  














00

0
1

sin
)(

xif

xif
x

x
xf  

Solution. Here   

0
1

sin

0),()0()00(

0

00









h
hLimit

hhfLimithfLimitf

h

hh

 

0
1

sin
1

sin)(

0),()0()00(

00

00

















h
hLimit

h
hLimit

hhfLimithfLimitf

hh

hh

 

Thus we have f(0 + 0) = f (0 – 0) = f (0). Hence f (x) is continuous at x 

= 0. 

 

Note. 1. If we check the continuity at x = c ≠ 0 of the above function, 

then we see that 

)(
1

sin

1
sin)(

cf
c

c

x
xLimitxfLimit

cxcx






 

So f (x) is continuous at x = c. Thus f (x) is continuous for all Rx i.e., 

f (x) is continuous on the whole real line. 

 

Note 2. If we take f (0) = 2, in the above function, then f(0 + 0) = f (0 – 

0) ≠ f (0). The function becomes discontinuities at x = 0 and has a 

removable discontinuity at x= 0. 

 

Example 4. If a function f (x) is defined by  ,)( xxxf  where x is a 

positive variable and [x] denotes the integral part of x. Show that it is 

discontinuous for integral values of x and continuous for all others. 

Draw the graph. 

 

Solution. From the definition of the function f (x) we have 

















integeraniswhere1

0

1)1(

)(

nnxnfornx

nxfor

nxnfornx

xf  

First we test the continuity of f (x) at x = n. We have f (n) = 0. 

nhnLimithnfLimitnf
hh




)()()0(
00

 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 30 
 
 
 

0
0




hLimit
h

  [as n <n + h<n+1] 

1)()()0(
00




nhnLimithnfLimitnf
hh

 

11
0




hLimit
h

  [ as n-1 <n-h<n] 

Since f (n – 0) ≠ f (n + 0), so the function f (x) is discontinuous at x = n. 

Thus f (x) is discontinuous for all integral values of x. it is obviously 

continuous for all other values of x. Since x is a positive variable 

putting = 1, 2, 3, 4, 5, ….,we see that graph of the function consists of 

the following straight lines. 

 





































50

433

30

322

20

211

10

10

)(

xwhen

xwhenx

xwhen

xwhenx

xwhen

xwhenx

xwhen

xwhenx

xfy  

and so on. 

 
It is clear from the graph that  

 

(1) The function is discontinuous for all integral values of x but 

continuous for other values of x. 

(2) The function is bounded between 0 and 1 in every domain 

which includes an integer. 

(3) The lower bound 0 is attained but upper bound 1 is not attained 

since f (x) ≠ 1 for any value of x. 

 

𝑦 = 1 

𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 

𝑌 

𝑋 

Fig. 2.7.2.1 
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Example 5. Show that the function f (x) = [x] + [-x] has a removable 

discontinuity for integral values of x. 

 

Solution. We see that f (x) = 0 when x is an integer and f (x) = -1 when 

x is not an integer. Hence if n is an integer then 

f (n – 0) = f (n + 0) = -1 and f (n) = 0. 

So the function f (x) has a removable discontinuity at x = n, where n is 

an integer. 

 

Example 6. Show that the function f (x) defined on R by 








irrationalisxwhen

rationalisxwhen
xf

1

,1
)(  

is discontinuous at every point of R. 

 

Solution. Let us suppose first that x is rational. Then f (x) = 1. For each 

positive integer n, let xn be an irrational number such that |xn– x| < 1/n. 

Then the sequence <xn> converges to x. Now by the definition f (xn) =1 

for all n. So )(1)( xfxfLimit n
n




Hence f(x) is discontinuous at 

each rational point. Now suppose that x is an irrational number then f 

(x) = - 1. For each positive integer n, let xn be an rational number such 

that |xn– x| < 1/ n, then the sequence <xn> converges to x. Now by the 

definition f (xn) = -1 for all n, so that )(1)( xfxfLimit n
n


 .

Hence f(x) 

is discontinuous at each irrational point. Therefore f (x) is 

discontinuous at every point of R. 

Example 7. Prove that the function 
x

x
xf )(  for x ≠ 0 and f (0) = 0, 

is continuous at all the points except x = 0. 

Solution. If x> 0 then, 1)( 
x

x
xf and if x< 0 then, 1)( 




x

x
xf . 

Therefore the given function can define as: 

















0,1

0,0

0,1

)(

xif

xif

xif

xf  

If x< 0, then f (x) = -1 i.e., f (x) is a constant function and a constant 

function is always continuous at each point of its domain. This implies 

that f (x) is continuous for all x< 0. Similarly, we can show that f (x) is 

continuous for all x> 0. Now we see the continuity at x = 0. 

11

0),()0()00(

0

00









h

hh

Limit

hhfLimithfLimitf

 

11

0),()0()00(

0

00









h

hh

Limit

hhfLimithfLimitf
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Here )00( f ≠ )00( f ≠ )0(f .  

Hence f (x) is not continuous at x = 0. 

 

Example 8. Show that the function   defined as 






























11

1
2

1

2

3

2

1

2

1

2

1
0

2

1

00

)(

xfor

xforx

xfor

xforx

xfor

x  

has three points of discontinuity which you are required to find. Also 

draw the graph of the function. 

 

Solution. Here the domain of the function )(x  is a closed interval [0, 

1]. When 
2

1
0  x , xx 

2

1
)( , which is a polynomial of degree 

one in x. we know that a polynomial function is continuous at each 

point of its domain and so )(x is continuous at each point of the open 

interval 








2

1
,0 . Again when 1

2

1
 x , xx 

2

3
)( , which is also a 

polynomial in x and so )(x is continuous at each point of the open 

interval 







1,

2

1
. Now we will test the continuity of the function )(x  

at the points 1,
2

1
,0x , 

(a) At 0x  We have 0)0(   and 

2

1

2

1

0),()0()00(

0

00









hLimit

hhLimithLimit

h

hh


 

Since )00()0(  , so the function )(x  is discontinuous at x = 0 

and the discontinuity is ordinary. 

(b) At 
2

1
x We have

2

1

2

1









  and 











































2

1
11

0,
2

1

2

3

2

1
0

2

1

0

00





hLimit

hhLimithLimit

h

hh
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









































2

1
0

0,
2

1

2

1

2

1
0

2

1

0

00





hLimit

hhLimithLimit

h

hh

 

Since 



























2

1
0

2

1
0

2

1
 , so the function )(x  is 

discontinuous at 
2

1
x and )(x is discontinuous from left as well as 

from right. 

(c) At .1x We have   11   and 

     

 1
2

1

2

1

0,1
2

3
101

0

00













hLimit

hhLimithLimit

h

hh
 

 
  Since    101   , so the function )(x  is discontinuous at 

1x and the discontinuity is ordinary. Hence the function )(x has 

three points of discontinuity at 1,
2

1
,0x . The graph of the function 

consist of the point (0, 0); the line xy 
2

1
for 









2

1
,0 , the point 










2

1
,

2

1
; and the line segment xy 

2

3
for 








1,

2

1
and the point(1, 1). 

 

 

 

 

 

 

𝑂(0,0) 
𝑥 =

1

2
 𝑥 = 1 

𝑌 

𝑋 

Fig. 2.7.2.1 

𝑦 =
1

2
− 𝑥 

𝑦 =
3

2
− 𝑥 

(1,1) 

(
1

2
,
1

2
) 
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Example 9. Discuss the discontinuity of the function defined by 

















2,

22,4

2,

)(

2

2

xifx

xif

xifx

xf  

 

Solution. Here we shall check the continuity for f (x) at x = -2 and x = 

2. 

At x = -2: 

 

We have f (-2) = 4. 

4

0,4)2()02(
00






hLimithfLimitf
hh

 

4

0,)2()2()02( 2

00






hhLimithfLimitf
hh

 
Hence f (x) is continuous at x = -2. 

 

Atx = 2: 

 

We have f (2) = 4. 

4

0,)2()2()02( 2

00






hhLimithfLimitf
hh

 

4

0,4)2()02(
00






hLimithfLimitf
hh

 
Hence f (x) is continuous atx = 2. 

 

Example 9. Let y = E (x) denotes the integral parts of x. Prove that the 

function is discontinuous where x has an integral value. Also draw the 

graph.  

 

Solution. From the definition of E (x) we have 

















21,1

1,

1,1

)(

nxnforn

nxnforn

nxnforn

xE  

and so on where n is an integer.We consider x = n,

nnEnnEnnE  )0(,1)0(,)(  

Since )0()0(  nEnE . Hence the function E (x) is discontinuous at 

x = n, where x has an integral value. 

 

Evidently it is continuous for all other values of x. To draw the graph, 

we put n = ….-4, -3, -2, -1, 0, 1, 2, 3, 4,….  
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Example 

09. Discuss the kind of discontinuity, if any, of the function 
















0,2

0,
)(

xif

xif
x

xx

xf  

Solution. The function is continuous at all points except possible at the 

origin. Now at x = 0, 

0

0),()0()00(

0

00












h

hh
Limit

hhfLimithfLimitf

h

hh

 

2

0),()0()00(

0

00












h

hh
Limit

hhfLimithfLimitf

h

hh

 

Also 2)0( f .  So )00()0()00(  fff . Hence the given 

function f (x) is discontinuous at x = 0 and this is discontinuity of first 

kind. 

 

 

 

𝑂 𝑥 = 1 
𝑋 

Fig. 2.7.2.2 

𝑥 = 2 𝑥 = 3 

1 

𝑥 = −1 𝑥 = −2 𝑥 = −3 𝑥 = −4 𝑥 = 4 

2 

3 

4 

−1 

−2 

−3 

−4 









































on so and544

433

322

211

100

011

122

233

344

)(

xwhen

xwhen

xwhen

xwhen

xwhen

xwhen

xwhen

xwhen

xwhen

xEy
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2.8. INTERMEDIATE VALUE THEOREM 
 

Statement. Let f (x) be a function, continuous on the closed and 

bounded interval [a, b]. If k be any real number between f (a) and f (b) 

i.e., (f (a)<k<f (b)), then  a real number c between a and bi.e., (a<c<b) 

such that f(c) = k. 

 

Proof. Let us suppose that  

f (a)<k<f (b)..................(1) 

Define a function g (x) such that  
],[;)()( baxkxfxg  ..........................(2) 

Now since f (x) is continuous on [a, b] and k is constant, so  

g (x) is also continuous on [a, b].........................(3) 

 

Now from (1) and (2), we have 

 

0)()(

0)()(





kbfbg

kafag
0)(.)(  bgag .........................................(4) 

Now from (3) and (4)  a real number c between a and bi.e., (a<c<b) 

such that g (c) = 0. 

kcf

kcfcg





)(

0)()(
 

Hence there exists a point ),( bac such that kcf )( . 

 

Note. The converse of the above theorem is not necessarily true. For 

example, Let f (x) be a function defined by  














00

0
1

sin
)(

xif

xif
xxf  

𝑐 𝑏 𝑎 𝑂 

𝑓(𝑎) 

𝑓(𝑐) = 𝑘 

𝑓(𝑏) 

𝑋 

Fig 2.8.1 

Y 
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Then, in the interval 











2
,

2
this function takes all values between 












2
f and 











2
f i.e., between -1 and +1. But this function is not 

continuous in 











2
,

2
as it is discontinuous at x = 0. 

 

2.9. UNIFORM CONTINUITY 
 

Definition.A real valued function f (x) defined on an interval I is said 

to be uniformly  

continuous in 𝐼, if for each 0 a positive number 0  (depending 

upon but independent of Ix ) such that 

 )()( 21 xfxf  whenever  21 xx where ., 21 Ixx   

 

Theorem. If a function f (x) is uniformly continuous on an interval [a, 

b] = I, then it is continuous on I. 

 

Proof.  Let us suppose that f (x) is uniformly continuous on I then for 

given 0 a positive number 0  (depending upon but 

independent of Ix ) such that 

 )()( 21 xfxf  whenever  21 xx where ., 21 Ixx   

Let IxxIx  21 , then we have 

 )()( 1xfxf  whenever  1xx  

 f (x) is continuous at Ix 1 . 

Since 1x  is arbitrary, consequently f (x) is continuous on I.  

 

Note. The converse of the above theorem is not true, can be seen in the 

given example. 

 

Example 1. Let RRf : given by Rxxxf  2)( which is 

continuous Rx . Now we will show that f (x) is not uniformly 

continuous. 

 

Solution.Let 0 be given. The function f (x) will be uniformly 

continuous if we find 0  such that 

Rxx 21, ,   )()( 2121 xfxfxx
 

                                                                           .................................(1)
 

The function f (x) will not be uniformly continuous on R if we find 

some 0 for which no   works. So here we shall show that for some 

given 0  there exists no 0  which satisfy (1). 
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By the axioms of Archimedes for any 0  there exists a positive 

integer n such that 

 2n ..........................................................(2) 

If we take nx 1
 and 

2
2


 nx then  





2
21 xx  

But 2121

2

2

2

121 )()( xxxxxxxfxf   




















42
2

2

2
2nn  [by (2)] 

Hence for those two points Rxx 21, we always have  

 )()( 21 xfxf whenever 0 . 

This contradicts (1). Hence f (x) is not uniformly continuous on R. 

 

Example 2. Show that the function ]1,1[3)( 2  xxxxf is 

uniformly continuous in ]1,1[ . 

 

Solution.  Let 0 be given. Let ]1,1[, 21 xx then 

 

21

2121

2121

21

2

2

2

1

2

2

21

2

1

2

2

21

2

121

5

3

)3()(

)(3

33

33)()(

xx

xxxx

xxxx

xxxx

xxxx

xxxxxfxf













 

[Since 1,1]1,1[, 2121  xxxx ] 

 )()( 21 xfxf for
5

21


 xx . 

Thus for any 0
5

0 


 such that  )()( 21 xfxf

whenever  21 xx ]1,1[ x . Hence f (x) is uniformly continuous 

in ]1,1[ . 

 

Example 3. Show that the function ]2,2[)( 3  xxxf is uniformly 

continuous in ]2,2[ . 

Solution.Let 0 be given. Let ]2,2[, 21 xx then 
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 
21

21

2

2

2

121

21

2

2

2

121

21

2

2

2

121

3

2

3

121

12

)()(

)()(

xx

xxxxxx

xxxxxx

xxxxxx

xxxfxf











 

[Since 2,2]2,2[, 2121  xxxx ] 

 )()( 21 xfxf for
12

21


 xx . 

Thus for any 0
12

0 


 such that 

 )()( 21 xfxf
 
whenever  21 xx ]2,2[ x . 

Hence f (x) is uniformly continuous in ]2,2[ . 

 

2.10. SUMMARY 
 

In this unit following definition of limit , continuity, 

Type of discontinuity and regarding uniform continuity. These 

concepts will be helpful for learner to understand the concept of 

calculus. 

 

1. A number l is said to be the limit of function f (x) at x= a if for 

arbitrary 0,0   (positive real number) such that, 

whenever 

 ax0 we have  ax0
 

2. A function f (x) is said to be continuous at x = a is given 0 , 

we can find a 0  such that 

.)()(   afxfax
 

3. A function  f (x) is continuous at x = a iff 

)()()(
00

afxfLimitxfLimit
axax


  

)()()(
00

afhafLimithafLimit
hh


  

4. The polynomial function f (x) is always continuous at each points 

of its domain. 
5. The removable discontinuity at a point x = aexists if 

)()0()0( afafaf 
 

6. An Ordinary discontinuity at a point x = aexists if 

)0()()0(  afafaf or )0()()0(  afafaf . 

7. Discontinuity of the second kind at x = a, exists if f (a + 0) or f (a – 

0) or both does not exist. 
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8. A real valued function f (x) defined on an interval I is said to be 

uniformly continuous in I if for each 0 a positive number 

0 (depending upon but independent of Ix ) such that 

 )()( 21 xfxf whenever  21 xx  where ., 21 Ixx   
 

2.11. GLOSSARY 
 

i. Sets-Well defined collection of objects 

ii. Continuous-sketch its curve on a graph without lifting your pen 

even once. 

iii. Discontinuity-lack of continuity 

CHECK YOUR PROGRESS 

 

 
1. A polynomial function is always ………………... 

2.             




 x

a
Limit

x

x

1

0 ..................... 

3. A function is said to have .................... .......if f (a + 0) = f (a – 

0) ≠ f (a). 

4. The value of  f (a + 0) ~ f (a – 0) is known as ..................... 

5. Every uniformly continuous function is ..................... 

6. 

1
3sin

0


 x

x
Limit

x . True/False 

7. 

1
3

3

0






 x

x
Limit

x . True/False 

8 .Every continuous function in closed interval is bounded. 

True\False 

9. The function must be defined at the point of continuity. 

True\False 

10. If f (x) is uniformly continuous on closed interval I, then it is  

continuous on I. True/False 
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2.13. SUGGESTED READINGS: 
 

i. Howard Anton, I. Bivens and Stephan Davis (2016). Calculus 

(10th edition). Wiley India. 

ii. George B. Thomas Jr, Ross L.Finney (1998),  Calculus and 

Analytical Geometry, Adison Wiley Publishing Company. 

iii. James Stewart (2012). Multivariable Calculus (7th edition). 

Brooks/Cole. Cengage. 

iv. S.C. Malik and SavitaArora (2021). Mathematical Analysis 

(6th edition). New Age International Private Limited.  

 

2.14. TERMINAL QUESTIONS 
 

1. Test the continuity at x = 0 if 










0,0

0,log
)(

x

xxx
xf  

2. Show that the function 
1

1
)(

2






x

x
xf is continuous for all values of 

x except x = 1. 

3. Discuss the continuity of the following function at x = 0: 














0,0

0,
5sin

2sin

)(

x

x
x

x

xf

 
4. Discuss the continuity of the following function 























3,28

32,12

21,13

1,4

)(
2

2

xx

xxx

xxx

xx

xf  

5. Determine the constants 𝑎  and 𝑏 so that the following functions 

are continuous everywhere. 

i. 























3,28

32,12

21,13

1,4

)(
2

2

xx

xxx

xxx

xx

xf  
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ii. 
















5,7

53,

3,1

)(

x

xbax

x

xf  

6. The value of the x

x
Limit

x

sin

0 is 

             (a) 1                          (b) 0                  (c) ∞                           

(d) does not exist. 

7. The value of k for which 













0,0

0,
3

5sin

)(

x

x
kx

x

xf is continuous at  

x = 0 

  (a) 1/3                          (b) 3/5                  (c) 0                           (d) 5/3    

 

8. x
Limit

x

1
sin

0 is 

  (a) 1(b) 0                (c) ∞                           (d) does not exists 

 

 

  9.A function f (x) is said to be continuous at x = a if 

(a) 
)(xfLimit

ax exists   (b) 𝑓(𝑎)   exists   

(c) )()( afxfLimit
ax




 (d) None of these 

  

10. The function 
xxf )(

 is 

(a) Continuous for all x(b)Discontinuous at x = 0 only 

(c) Continuous at x = 0 only                               (d) None 

of these 

 

2.15. ANSWERS 
 

CHECK YOUR PROGRESS 

 

SCQ1:Continuous 

SCQ2: aelog
 

SCQ3:Removable discontinuity 

SCQ4: Jump                        

 SCQ5:Continuous 

SCQ6:F                                           

SCQ7:F 

SCQ8:T  

SCQ9:T 

SCQ10:T 
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TERMINAL QUESTIONS 

 

(TQ-1) Continuous at x = 0 

(TQ-3)Removable Discontinuity at  x = 0 

(TQ-4) Continuous at x = 1, 2, 3 

(TQ-5)    (i) a = 2, b = 1       (ii) a = 3, b = -8 

 (TQ-6)(a)                                       

 (TQ-7)(d)                                

(TQ-8)(c)  

(TQ-9)(c)                                      

(TQ-10)(a)     
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UNIT–3:-DIFFERENTIABILITY 

 

CONTENTS:- 
 

3.1      Introduction 

3.2      Objectives 

3.3      Derivative at a point 

3.4      Progressive and Regressive derivatives 

3.5      Differentiability in an interval 

3.6      Algebra of derivatives 

3.7      The chain rule of Differentiablity 

3.8      Derivative of inverse function 

3.9      Darboux theorem 

3.10   Summary  

3.11   Glossary  

3.12   References  

3.13  Suggested readings  

3.14  Terminal questions  

3.15  Answers                                    

 

3.1 INTRODUCTION 
 

We observe several phenomena where changes are taking 

place. The motion of the planet around the Sun, the speed of a car and 

temperature at a fixed point of a place are some examples. Some 

question arises here: 

 

i. The speed at which it is move at any time. 

ii. Instantaneous direction. 

iii. The position of planet relative to the Sun after some time. 

 

The answer of such questions is responsible for the origin and 

development of the derivative. Sir Issac Newton and G.W. Leibniz get 

the credit of development of differentiability.  
 

A function is differentiable at a point when there's a defined 

derivative at that point. The meaning is  that the slope of the tangent line 

of the points from the left is approaching the same value as the slope of 

the tangent of the points from the right. 
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Sir Issac Newton                                   G.W. Leibniz 
(25  December 1642 –20 March 1726/27)        (1 July 1646– 14 November 1716)  
 

 

Ref:https://www.neh.gov/human

ities/2011/januaryfebruary/featur

e/newton-the-last-magician 
Fig 3.1 
 

Ref: https://iep.utm.edu/leib-met/ 

 

 

 

3.2 OBJECTIVES 
 

After completion of this unit the learner will be able to  

i. The meaning of term ‘Derivative at a point’. 

ii. Differentiability in an interval. 

iii. Algebra of derivatives. 

iv. Darboux Theorem. 

 

3.3. DERIVATIVE AT A POINT 

  
A function 𝑓: (𝑎, 𝑏) → 𝑅 is said to be differentiable or derivable at 𝑐 ∈
(𝑎, 𝑏) if and only if 

𝑙𝑖𝑚
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
𝑖. 𝑒.  𝑙𝑖𝑚

𝑥→𝑐

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
 

 exists (finitely). 

 

This limit, known as the derivative of f(x) at x=c, is denoted by 𝑓′(𝑐) 

or 𝐷𝑓(𝑐) or [
𝑑

𝑑𝑥
𝑓(𝑥)]

𝑥=𝑐
. The process of evaluating 𝑓′(𝑐) is called 

differentiation. 

 

 

 

 

 

https://www.neh.gov/humanities/2011/januaryfebruary/feature/newton-the-last-magician
https://www.neh.gov/humanities/2011/januaryfebruary/feature/newton-the-last-magician
https://www.neh.gov/humanities/2011/januaryfebruary/feature/newton-the-last-magician
https://iep.utm.edu/leib-met/
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3.4. PROGRESSIVE AND REGRESSIVE 

DERIVATIVES:- 

 
The progressive derivative (or the Right hand derivative) of 𝑓(𝑥) at 𝑥 =
𝑐 is denoted by 𝑅𝑓′(𝑐) or 𝑓′(𝑐 + 0) and is defined as 

𝑅𝑓 ′(𝑐) = 𝑓 ′(𝑐 + 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 , ℎ > 0 

  The regressive derivative (or Left hand derivative) of 𝑓(𝑥) at 

𝑥 = 𝑐 is denoted by 𝐿𝑓′(𝑐) or 𝑓′(𝑐 − 0)and is defined as 

𝐿𝑓 ′(𝑐) = 𝑓 ′(𝑐 − 0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑐 − ℎ) − 𝑓(𝑐)

−ℎ
 , ℎ > 0 

Note:-𝑓′(𝑐) exists if and only if 

   (i) 𝐿𝑓′(𝑐) and 𝑅𝑓′(𝑐) both exists and 

   (ii) 𝐿𝑓′(𝑐) = 𝑅𝑓′(𝑐) 
 

Examples 1.The function f defined by 

 

𝑓(𝑥) = {
0, 𝑥 is rational

           𝑥,               𝑥 is irrational
 

is continuous only at 𝑥 = 0 and not differentiable at any point because 

𝑓 ′(ℎ) =
𝑓(ℎ) − 𝑓(0)

ℎ− 0
=
𝑓(ℎ)

ℎ
. 

So that 𝑓 ′(ℎ) = 0 if h is rational and 𝑓 ′(ℎ) = 1 if ℎ is irrational. 

Therefore 𝑙𝑖𝑚
ℎ→0

𝑓 ′(𝑥) does not exists. 

 

Examples 2.The function 𝑓(𝑥) defined by 𝑓(𝑥) = |𝑥| is continuous for 

all 𝑥 ∈ 𝑅 and differentiable for all 𝑥 ∈ 𝑅 except 𝑥 = 0. For 

differentiability at 𝑥 = 0 we see that 

𝑓 ′(ℎ) =
𝑓(ℎ) − 𝑓(0)

ℎ − 0
=
|ℎ|

ℎ
 

so 𝑓 ′(ℎ) = 1 if ℎ > 0 and 𝑓 ′(ℎ) = −1 if ℎ < 0. Therefore 𝑅𝑓 ′(0) = 1 

and 𝐿𝑓 ′(0) = −1 so 𝑓 ′(0) does not exists, for 𝑥 > 0, 𝑓 ′(𝑥) = 1 and for 

𝑥 < 0, 𝑓 ′(𝑥) = 1. 

 

Note:- If 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2+………………… + 𝑎𝑛𝑥

𝑛 is a polynomial 

in 𝑥 of degree 𝑛, then 𝑓(𝑥) is differentiable at every point 𝑥 ∈ 𝑅. 

 

3.5. DIFFERENTIABILITY IN AN INTERVAL:- 
 

(i) Open interval (a,b) :- A function 𝑓: (𝑎, 𝑏) → 𝑅 is said to be 

differentiable in (𝑎, 𝑏) iff it is differentiable at every point of (𝑎, 𝑏). 
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(ii) Closed interval [a,b] :- A function 𝑓: [𝑎, 𝑏] → 𝑅 is said to be 

differentiable in [a,b] iff 𝑅𝑓 ′(𝑎), 𝐿𝑓 ′(𝑏) exists and 𝑓 is differentiable in 

(𝑎, 𝑏). 
 

Alternative definition of differentiability:- 

Let 𝑓(𝑥) be a function defined on a interval 𝐼 and let 𝑐 be an interior 

point of 𝐼.Then by the definition of derivative, assuming that 𝑓 ′(𝑐) 
exists we have 

𝑓 ′(𝑐) = lim
𝑥→𝑐

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
 

i.e. 𝑓 ′(𝑐) exists if for given ∈> 0, ∃𝛿 > 0 such that 

|
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
− 𝑓 ′(𝑐)| <∈ whenever 0 < |𝑥 − 𝑐| < 𝛿 

or 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) ⇒ 𝑓 ′(𝑐)−∈<
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
< 𝑓 ′(𝑐)+∈ 

 

Geometrical Meaning of Derivative:- 

 

Let we take two neighbouring point 𝑃[𝑎, 𝑓(𝑎)] and 𝑄[𝑎 +
ℎ, 𝑓(𝑎 + ℎ)] on the curve 𝑦 = 𝑓(𝑥). Let the chord 𝑃𝑄 and the tangent 

at 𝑃 meet the 𝑥-axis at 𝐿 and 𝑇 respectively. Let ∠𝑄𝐿𝑋 = ∝ and 

∠𝑃𝑇𝑋 =  𝜑. Draw PN and 𝑄𝑀 ⊥ to 𝑥-axis and  𝑃𝐻 ⊥ 𝑄𝑀. 
 

 
 

Then  𝑃𝐻 =  𝑁𝑀 =  𝑂𝑀–𝑂𝑁 =  𝑎 +  ℎ– 𝑎 =  ℎ 

𝑄𝐻 = 𝑀𝑄 −𝑀𝐻 = 𝑀𝑄 − 𝑃𝑁 = 𝑓(𝑎 + ℎ) − 𝑓(𝑎) 

  tan 𝛼 =
𝑄𝐻

𝑃𝐻
=

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
  .......................(i) 

As ℎ → 0 , the point 𝑄 moving along the curve approaches to 𝑃 and 

chord 𝑃𝑄 → Tangent at 𝑃, i.e. 𝑇𝑃 and → 𝜑. Taking ℎ → 0 in (i) we get 

𝑇 
𝑂 𝐿 𝑁 𝑀 

𝐻 

 

(𝑎, 𝑓(𝑎) 

𝜑 𝛼 

𝛼 

Fig. 3.5.1 

𝑄(𝑎 + ℎ, 𝑓(𝑎 + ℎ)) 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) 
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tan 𝜑 = 𝑓 ′(𝑎) 
Hence that derivative of 𝑓(𝑥) at a point ′𝑎′ is the tangent of the angle 

which the tangent line to the curve 𝑦 = 𝑓(𝑥) at the point 𝑥 = 𝑎 makes 

with 𝑥-axis. 

 

Meaning of the sign of derivatives :- 

  Let 𝑓 ′(𝑐) > 0 where 𝑐 is an interior point of the domain 

of the function  ; then 

lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
= 𝑓 ′(𝑐) > 0 . 

 

If ∈> 0 be any number < 𝑓 ′(𝑐),∃𝛿 > 0 s.t. 

|𝑥 − 𝑐| < 𝛿 ⇒ |
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
− 𝑓 ′(𝑐)| <∈......................(i) 

i.e. 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿), 𝑥 ≠ 𝑐 ⇒
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
∈ ( 𝑓 ′(𝑐)−∈, 𝑓 ′(𝑐)+∈) Since 

∈ is chosen smaller than 𝑓 ′(𝑐); we conclude from (i) 
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
> 0 

when ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) , 𝑥 ≠ 𝑐.Then we have𝑓(𝑥) − 𝑓(𝑐) > 0 when 

𝑐 < 𝑥 < 𝑐 + 𝛿 and   𝑓(𝑥) − 𝑓(𝑐) < 0 when 𝑐 − 𝛿 < 𝑥 < 𝑐.Thus we 

conclude that if 𝑓 ′(𝑐) > 0, ∃ a neighbourhood [𝑐 − 𝛿, 𝑐 + 𝛿] of 𝑐 such 

that 𝑓(𝑥) > 𝑓(𝑐), ∀𝑥 ∈ (𝑐, 𝑐 + 𝛿) and 𝑓(𝑥) < 𝑓(𝑐), , ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐). 
If 𝑓 ′(𝑐) < 0, it is similarly shown that ∃ a neighbourhood [𝑐 − 𝛿, 𝑐 +
𝛿] of 𝑐 such that𝑓(𝑥) > 𝑓(𝑐)∀𝑥 ∈ (𝑐 − 𝛿, 𝑐) and 𝑓(𝑥) < 𝑓(𝑐)∀𝑥 ∈
(𝑐, 𝑐 + 𝛿). 
 

A Necessary condition for the existence of a Finite derivative:- 

 

Theorem 1. Continuity is a necessary but not a sufficient condition for 

the existence of a finite derivative at a point 

 

Proof :Ist Part- 

Let 𝑓(𝑥) have a finite derivative at 𝑥 = 𝑐. 

Then 𝑅𝑓 ′(𝑐) = 𝐿𝑓 ′(𝑐)...............................(i) 

To prove that 𝑓(𝑥) is continuous at 𝑥 = 𝑐, we have from (i) 

𝑓 ′(𝑐) = lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
𝑎𝑛𝑑 

𝑓 ′(𝑐) = lim
ℎ→0

𝑓(𝑐 − ℎ) − 𝑓(𝑐)

−ℎ
 

Therefore𝑓 ′(𝑐) =
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
+∈ and 𝑓 ′(𝑐) =

𝑓(𝑐−ℎ)−𝑓(𝑐)

−ℎ
+∈ ′ 

 where ∈, ∈ ′ → 0 as ℎ → 0. i.e. ℎ𝑓 ′(𝑐) = 𝑓(𝑐 + ℎ) − 𝑓(𝑐) + ℎ ∈ 

and −ℎ𝑓 ′(𝑐) = 𝑓(𝑐 − ℎ) − 𝑓(𝑐) − ℎ ∈′.Taking ℎ → 0 we get 0 =
lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐), 0 = lim
ℎ→0

𝑓(𝑐 − ℎ) − 𝑓(𝑐). i.e.   lim
ℎ→0

𝑓(𝑐 + ℎ) =

lim
ℎ→0

𝑓(𝑐 − ℎ)  = 𝑓(𝑐) . 

Hence 𝑓(𝑥) is continuous at 𝑥 = 𝑐. 

 

2nd Part –  
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The converse of the first part is not true i.e. if 𝑓(𝑥) is continuous at 

𝑥 = 𝑐, then 𝑓(𝑥) may or may not be differentiable at 𝑥 = 𝑐. We put an 

example in favour of this statement. Consider 𝑓(𝑥) = 𝑥 sin(1/𝑥) for 

𝑥 ≠ 0 and 𝑓(0) = 0, Then 𝑓(0 + ℎ) = ℎ sin (
1

ℎ
) , 𝑓(0 − ℎ) =

−ℎ sin (−
1

ℎ
) = ℎ sin (

1

ℎ
) so that lim

ℎ→0
𝑓(0 + ℎ) = lim

ℎ→0
𝑓(0 −

ℎ) =𝑓(0) = 0. Thus 𝑓(𝑥) is continuous at 𝑥 = 0. But 𝑅𝑓 ′(0) =

lim
ℎ→0

𝑓(0+ℎ)−𝑓(0)

ℎ
= lim

ℎ→0

ℎ sin(
1

ℎ
)−0

ℎ
= lim

ℎ→0
sin (

1

ℎ
) which does not exist. 

Hence 𝑓(𝑥) is not differentiable at 𝑥 = 0. 

 

3.6. ALGEBRA OF DERIVATIVES 
 

Theorem 1. If a function 𝑓(𝑥) is differentiable at a point 𝑥0 and 𝑐 is 

any real number, then the function cf(x) is also differentiable at 𝑥0 and 

(𝑐𝑓)′𝑥0 = 𝑐𝑓
′(𝑥0). 

 

Proof :- Since the function 𝑓(𝑥) is differentiable at a point 𝑥0 then by 

the definition 

𝑓 ′(𝑥0) = lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

Now,                         (𝑐𝑓)′𝑥0 = lim
𝑥→𝑥0

(𝑐𝑓)(𝑥)−(𝑐𝑓)(𝑥0)

𝑥−𝑥0
 

 

= lim
𝑥→𝑥0

𝑐𝑓(𝑥) − 𝑐𝑓(𝑥0)

𝑥 − 𝑥0
 

 

= lim
𝑥→𝑥0

{
𝑐[𝑓(𝑥) − 𝑓(𝑥0)]

𝑥 − 𝑥0
} 

 

= 𝑐 lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

 

= 𝑐𝑓 ′(𝑥0) exists. 

Hence𝑓(𝑥) is differentiable at 𝑥0 and (𝑐𝑓)′(𝑥0) = 𝑐𝑓
′(𝑥0). 

 

Theorem 2. Let the functions 𝑓(𝑥) and 𝑔(𝑥) are defined in an interval 

𝐼. If 𝑓 and 𝑔 are differentiable at 𝑥 = 𝑥0 ∈ 𝐼, then so also 𝑓 + 𝑔 and 

(𝑓 + 𝑔)′(𝑥0) = 𝑓
′(𝑥0) + 𝑔(𝑥0). 

 

Proof :- Since 𝑓(𝑥) and 𝑔(𝑥) are differentiable at 𝑥 = 𝑥0, Therefore, 

lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓 ′(𝑥0).....................(i) 

and lim
𝑥→𝑥0

𝑔(𝑥)−𝑔(𝑥0)

𝑥−𝑥0
= 𝑔′(𝑥0).....................(ii) 
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Now,  (𝑓 + 𝑔)′(𝑥0) = lim
𝑥→𝑥0

(𝑓+𝑔)𝑥−(𝑓+𝑔)𝑥0

𝑥−𝑥0
=

lim
𝑥→𝑥0

[𝑓(𝑥)+𝑔(𝑥)]−[𝑓(𝑥0)+𝑔(𝑥0)]

𝑥−𝑥0
 

 

= lim
𝑥→𝑥0

[
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
+
𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
] 

 

= lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
+ lim
𝑥→𝑥0

𝑔(𝑥)−𝑔(𝑥0)

𝑥−𝑥0
  

[as the limit of the sum is equal to sum of the limits] 

= 𝑓 ′(𝑥0) + 𝑔
′(𝑥0) exists.             [using (i) and (ii)] 

Hence f+g is differentiable at 𝑥0 and 

           (𝑓 + 𝑔)′(𝑥0) = 𝑓
′(𝑥0) + 𝑔(𝑥0). 

 

Theorem 3. Let 𝑓(𝑥) and 𝑔(𝑥) be defined on an interval 𝐼. If 𝑓 and 𝑔 

are differentiable at 𝑥 = 𝑥0 ∈ 𝐼, then so also is fg and  (𝑓𝑔)′(𝑥0) =
𝑓 ′(𝑥0)𝑔(𝑥0) + 𝑓(𝑥0)𝑔

′(𝑥0). 
 

Proof :- Since the  𝑓(𝑥) and 𝑔(𝑥) are differentiable at 𝑥0, we have 

 

lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓 ′(𝑥0)....................(i) 

 

and lim
𝑥→𝑥0

𝑔(𝑥)−𝑔(𝑥0)

𝑥−𝑥0
= 𝑔′(𝑥0)......................(ii) 

Now,       (𝑓𝑔)′(𝑥0) = lim
𝑥→𝑥0

(𝑓𝑔)𝑥−(𝑓𝑔)𝑥0

𝑥−𝑥0
 

 

 = lim
𝑥→𝑥0

𝑓(𝑥)𝑔(𝑥)−𝑓(𝑥0)𝑔(𝑥0)

𝑥−𝑥0
 

= lim
𝑥→𝑥0

𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑥0)𝑔(𝑥) + 𝑓(𝑥0)𝑔(𝑥) − 𝑓(𝑥0)𝑔(𝑥0)

𝑥 − 𝑥0
 

= lim
𝑥→𝑥0

[
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
. 𝑔(𝑥) + 𝑓(𝑥0).

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
] 

= lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
. lim
𝑥→𝑥0

𝑔(𝑥) + lim
𝑥→𝑥0

𝑔(𝑥) − 𝑔(𝑥0)

𝑥 − 𝑥0
. 𝑓(𝑥0) 

= 𝑓 ′(𝑥0)𝑔(𝑥0) + 𝑓(𝑥0)𝑔
′(𝑥0) exists. 

 [using (i) and (ii) and lim
𝑥→𝑥0

𝑔(𝑥) = 𝑔(𝑥0)] 

[ Since 𝑔(𝑥) is differentiable at 𝑥0 ⇒ 𝑔(𝑥) is continuous at 𝑥0] 
Hence fg is differentiable at 𝑥0 and (𝑓𝑔)′(𝑥0) = 𝑓

′(𝑥0)𝑔(𝑥0) +
𝑓(𝑥0)𝑔

′(𝑥0). 
 

Theorem 4. If f(x) is differentiable at 𝑥 = 𝑥0 and 𝑓(𝑥0) ≠ 0 then the 

function 
1

𝑓(𝑥)
 is differentiable at 𝑥0and (

1

𝑓
)
′

(𝑥0) = −
𝑓′(𝑥0)

[𝑓(𝑥0)]
2 

Proof :- Since  𝑓(𝑥) is differentiable at 𝑥 = 𝑥0, therefore 
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lim
𝑥→0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓 ′(𝑥0)........................(i) 

and 𝑓(𝑥) is also continuous at 𝑥 = 𝑥0 
lim
𝑥→0
𝑓(𝑥) = 𝑓(𝑥0) ≠ 0................(ii)     

 (every differentiable  function is continuous at very point in its 

domain) 

Also 𝑓(𝑥0) ≠ 0, hence 𝑓(𝑥0) ≠ 0 in some neighbourhood 𝑁 of 𝑥0. 

Now we have for 𝑥 ∈ 𝑁, (
1

𝑓
)
′

(𝑥0) = lim
𝑥→𝑥0

1

𝑓(𝑥)
−

1

𝑓(𝑥0)

𝑥−𝑥0
 

= lim
𝑥→𝑥0

[−
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
.
1

𝑓(𝑥)
.
1

𝑓(𝑥0)
] 

= − lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
. lim
𝑥→𝑥0

1

𝑓(𝑥)
.
1

𝑓(𝑥0)
 

= −𝑓 ′(𝑥0).
1

𝑓(𝑥0)𝑓(𝑥0)
      [using (i) and (ii)] 

                         = −
𝑓′(𝑥0)

[𝑓(𝑥0)]
2 exists. 

Hence 
1

𝑓(𝑥)
 is differentiable at 𝑥0 and (

1

𝑓
)
′

(𝑥0) = −
𝑓′(𝑥0)

[𝑓(𝑥0)]
2 

 

Note :- Let f and g be defined on I. If f and g are differentiable at 𝑥 =

𝑥0 ∈ 𝐼 and 𝑔(𝑥0) ≠ 0, then the function 
𝑓

𝑔
 is differentiable at 𝑥0 and 

using the theorem ③ and ④ we can prove 

(
𝑓

𝑔
)
′

(𝑥0) =
[𝑔(𝑥0)𝑓

′(𝑥0) − 𝑓(𝑥0)𝑔
′(𝑥0)]

[𝑔(𝑥0)]2
 

 

3.7. THE CHAIN RULE OF 

DIFFERENTIABILITY 

 
Theorem – Let 𝑓(𝑥) and 𝑔(𝑥) are two function such that the range of 

𝑓(𝑥) is contained in the domain of 𝑔(𝑥). If 𝑓(𝑥) is differentiable at (𝑥0) 
and 𝑔(𝑥) is differentiable at 𝑓(𝑥0), then 𝑔𝑜𝑓 is differentiable at 𝑥0 and 

(𝑔𝑜𝑓)′(𝑥0) = 𝑔
′(𝑓(𝑥0))𝑓

′(𝑥0) 
 

Proof :- Let 𝑦 = 𝑓(𝑥) and 𝑦0 = 𝑓(𝑥0) 
Since f(x) is differentiable at 𝑥0, we have 

lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑓 ′(𝑥0) 

or 𝑓(𝑥) − 𝑓(𝑥0) = (𝑥 − 𝑥0)[𝑓
′(𝑥0) + 𝜆(𝑥)]............(i) 

where 𝜆(𝑥) → 0 as 𝑥 → 𝑥0 
Since 𝑔(𝑥) is differentiable at 𝑦0, we have 

lim
𝑦→𝑦0

𝑔(𝑦) − 𝑔(𝑦0)

𝑦 − 𝑦0
= 𝑔′(𝑦0) 

or 𝑔(𝑦) − 𝑔(𝑦0) = (𝑦 − 𝑦0)[𝑔
′(𝑦0) + 𝜇(𝑦)].............(ii) 
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where 𝜇(𝑦) → 0 as 𝑦 → 𝑦0 

Now,(𝑔𝑜𝑓)(𝑥) − (𝑔𝑜𝑓)𝑥0 = 𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0)) = 𝑔(𝑦) − 𝑔(𝑦0) 

                           = (𝑦 − 𝑦0)[𝑔
′(𝑦0) + 𝜇(𝑦)]....... from (ii) 

= [𝑓(𝑥) − 𝑓(𝑥0)][𝑔
′(𝑦0) + 𝜇(𝑦)] 

                                      = (𝑥 − 𝑥0)[𝑓
′(𝑥0) + 𝜆(𝑥)][𝑔

′(𝑦0) +
𝜇(𝑦)].......from(i) 

Thus if 𝑥 ≠ 𝑥0 then  
(𝑔𝑜𝑓)𝑥−(𝑔𝑜𝑓)𝑥0

𝑥−𝑥0
= [𝑔′(𝑦0) + 𝜇(𝑦)][𝑓

′(𝑥0) + 𝜆(𝑥)].........(iii) 

Since f is differentiable at 𝑥0 so f is continuous at 𝑥0 
i.e. 𝑥 → 𝑥0 ⇒ 𝑓(𝑥) ⟶ 𝑓(𝑥0) i.e. 𝑦 → 𝑦0 

and 𝜇(𝑦) ⟶ 0 as 𝑥 → 𝑥0 and 𝜆(𝑥) ⟶ 0 as 𝑥 → 𝑥0 
taking the limit 𝑥 → 𝑥0 we get from (iii) 

lim
𝑥→𝑥0

(𝑔𝑜𝑓)(𝑥) − (𝑔𝑜𝑓)(𝑥0)

𝑥 − 𝑥0
= 𝑔′(𝑦0)𝑓

′(𝑥0) 

= 𝑔′(𝑓(𝑥0)). 𝑓
′(𝑥0) 

Hence the function (gof) is differentiable at 𝑥0 and 

(𝑔𝑜𝑓)′(𝑥0) = 𝑔
′(𝑓(𝑥0))𝑓

′(𝑥0) 
 

3.8. DERIVATIVE OF THE INVERSE 

FUNCTION 
 

Theorem – If 𝑓(𝑥) be a continuous one-one onto function defined on a 

interval. Let 𝑓(𝑥) is differentiable at 𝑥 = 𝑥0, with 𝑓 ′(𝑥0) ≠ 0, then 

inverse of the function 𝑓(𝑥) is differentiable at 𝑓(𝑥0) and its derivative 

at 𝑓(𝑥0) is 
1

𝑓′(𝑥0)
. 

 

Proof :- We know that if the domain of 𝑓 be 𝑋 and its range be 𝑌, then 

inverse function 𝑔 of 𝑓 is denoted by 𝑓−1. 𝑓−1 is a function with 

domain 𝑌 and range 𝑋 such that 

𝑓(𝑥) = 𝑦 ⇔ 𝑔(𝑦) = 𝑥, also g exists if 𝑓 is one-one onto. 

Let 𝑦 = 𝑓(𝑥) and 𝑦0 = 𝑓(𝑥0) 
Since f is differentiable at 𝑥0, then we have 

lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑓 ′(𝑥0) 

⇒ 𝑓(𝑥) − 𝑓(𝑥0) = (𝑥 − 𝑥0)[𝑓
′(𝑥0) + 𝜆(𝑥)]...............(i) 

where 𝜆(𝑥) ⟶ 0 as 𝑥 → 𝑥0. 
Further   𝑔(𝑦) − 𝑔(𝑦0) = 𝑥 − 𝑥0.........(by definition of 𝑔) 

⇒
𝑔(𝑦) − 𝑔(𝑦0)

𝑦 − 𝑦0
=
𝑥 − 𝑥0
𝑦 − 𝑦0

=
𝑥 − 𝑥0

𝑓(𝑥) − 𝑓(𝑥0)
 

                                                    = 
1

[𝑓′(𝑥0)+𝜆(𝑥)]
...............by (i) 

Since f is continuous at 𝑥 = 𝑥0 ⇒ 𝑔 = 𝑓−1 is continuous at 𝑓(𝑥0) =
𝑦0 and so 𝑔(𝑦) → 𝑔(𝑦0) as 𝑦 → 𝑦0 

Hence 
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lim
𝑦→𝑦0

𝑔(𝑦) − 𝑔(𝑦0)

𝑦 − 𝑦0
= lim
𝑦→𝑦0

1

𝑓 ′(𝑥0) + 𝜆(𝑥)
=

1

𝑓 ′(𝑥0)
 

⇒ 𝑔′(𝑦0) =
1

𝑓′(𝑥0)
or 𝑔′(𝑓(𝑥0)) =

1

𝑓′(𝑥0)
 

3.9. DARBOUX THEOREM 
 

Theorem. If 𝑓(𝑥) is differentiable in [𝑎, 𝑏] and 𝑓 ′(𝑎),𝑓 ′(𝑏) have 

opposite signs, then ∃ at least one point 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 0. 

 

Proof :- For definiteness, let 𝑓 ′(𝑎) > 0 and 𝑓 ′(𝑏) < 0 then there are 

intervals (𝑎, 𝑎 + ℎ] and [𝑏 − ℎ, 𝑏), ℎ > 0 such that 

𝑓(𝑥) > 𝑓(𝑎), ∀𝑥 ∈ (𝑎, 𝑎 + ℎ] 
and 𝑓(𝑥) > 𝑓(𝑏), ∀𝑥 ∈ [𝑏 − ℎ, 𝑏) 

By the assumption, f is differentiable in [𝑎, 𝑏] so f is continuous in 
[𝑎, 𝑏]. Consequently f attains its Supremum and Infimum in [𝑎, 𝑏]. 
Let 𝑆𝑢𝑝𝑓 = 𝑀 then ∃𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑀. 

Then by the definition of Supremum 

𝑓(𝑥) ≤ 𝑀 i.e. 𝑓(𝑥) ≤ 𝑓(𝑐), , ∀𝑥 ∈ [𝑎, 𝑏] ................(i) 
 

To prove : 𝑓 ′(𝑐) = 0. Suppose it is not true. Then either 𝑓 ′(𝑐) > 0 or 

𝑓 ′(𝑐) < 0.If 𝑓 ′(𝑐) > 0, ∃. (𝑐, 𝑐+∈], ∈> 0 such that 𝑓(𝑥) > 𝑓(𝑐),∀𝑥 ∈
(𝑐, 𝑐+∈].This is contrary to (i).If 𝑓 ′(𝑐) < 0, ∃[𝑐−∈, 𝑐) such that 

𝑓(𝑥) > 𝑓(𝑐), , ∀𝑥 ∈ [𝑐−∈, 𝑐) .Again we get contradiction to (i).Hence 

𝑓 ′(𝑐) = 0.But 𝑓 ′(𝑎) > 0 and 𝑓 ′(𝑏) < 0, therefore 𝑐 ≠ 𝑎 and 𝑐 ≠ 𝑏 i.e. 

𝑐 ∈ (𝑎, 𝑏). 
 

Corollary 1. If 𝑓 is differentiable in [𝑎, 𝑏] and 𝑓 ′(𝑎) ≠ 𝑓 ′(𝑏), then 

𝑓 ′(𝑥) takes all the values between 𝑓 ′(𝑎) and 𝑓 ′(𝑏) at least once in 
(𝑎, 𝑏). 
 

Proof :- Assume that 𝑓 ′(𝑎) < 𝑓 ′(𝑏), let 𝑓 ′(𝑎) < 𝑘 < 𝑓 ′(𝑏) 
To show that ∃𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 𝑘. 

write 𝐹(𝑥) = 𝑓(𝑥) − 𝑘𝑥 

⇒ 𝐹 ′(𝑥) = 𝑓 ′(𝑥) − 𝑘, Now we have 

𝐹 ′(𝑎) = 𝑓 ′(𝑎) − 𝑘 < 0, as 𝑓 ′(𝑎) < 𝑘 

and  𝐹 ′(𝑏) = 𝑓 ′(𝑏) − 𝑘 > 0, as 𝑓 ′(𝑏) > 𝑘. 

Thus  𝐹 ′(𝑎) < 0 and 𝐹 ′(𝑏) > 0. Hence by Darboux theorem, 

∃𝑐 ∈ (𝑎, 𝑏) s.t. 𝐹′(𝑐) = 0 

⇒ 𝑓′(𝑐) − 𝑘 = 0 ⇒ 𝑓′(𝑐) = 𝑘. 

Similarly we can show another case when 𝑓 ′(𝑎) > 𝑓 ′(𝑏). 
 

Corollary 2. If 𝑓(𝑥) ≠ 0, , ∀𝑥 ∈ (𝑎, 𝑏) then 𝑓 ′(𝑥) retains the same sign, 

positive or negative in (𝑎, 𝑏). 
 

Proof :- If possible, let 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑥1) and 𝑓 ′(𝑥2) have 

opposite signs, where 𝑥1 < 𝑥2, then by Darboux theorem, 
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∃𝑐 ∈ (𝑥1, 𝑥2) ⊂ (𝑎, 𝑏) suct that 𝑓 ′(𝑐) = 0. 

which is contrary to the hypothesis. Hence 𝑓 ′(𝑥) retains the same sign. 

 
Illustrative Examples 

 

Example 1.Prove that the function 𝑓(𝑥) = |𝑥| is continuous at 𝑥 = 0, 

but not differentiable at 𝑥 = 0. 

 

Solution. Firstly, we see the continuity of the function 𝑓(𝑥) at 𝑥 = 0 

We have 𝑓(0) = |0| = 0 

𝑓(0 + 0) = lim
ℎ→0

𝑓(0 + ℎ) = lim
ℎ→0
𝑓(ℎ) = lim

ℎ→0
|ℎ| 

= lim
ℎ→0

ℎ = 0 

 

𝑓(0 − 0) = lim
ℎ→0

𝑓(0 − ℎ) = lim
ℎ→0
𝑓(−ℎ) = lim

ℎ→0
|−ℎ| 

= lim
ℎ→0

ℎ = 0 

Hence 𝑓(0 + 0) = 𝑓(0) = 𝑓(0 − 0).So 𝑓(𝑥) is continuous at 

𝑥 = 0.Now we see the differentiability of 𝑓(𝑥) at 𝑥 = 0. We have 

𝑅𝑓 ′(0) = lim
ℎ→0

𝑓(0+ℎ)−𝑓(0)

ℎ
= lim

ℎ→0

𝑓(ℎ)−0

−ℎ
= 1 and 𝐿𝑓 ′(0) =

lim
ℎ→0

𝑓(0−ℎ)−𝑓(0)

−ℎ
= lim

ℎ→0

𝑓(−ℎ)−0

−ℎ
= lim

ℎ→0

|−ℎ|−0

−ℎ
= lim

ℎ→0

ℎ

−ℎ
= −1 ⇒ 𝑅𝑓 ′(0) ≠

𝐿𝑓 ′(0) 
Hence 𝑓(𝑥) is not differentiable at 𝑥 = 0. 

 

Example 2.Prove that the function 𝑓(𝑥) = |𝑥| + |𝑥 − 1| is not 

differentiable at 𝑥 = 0 and 𝑥 = 1. 

 

Solution.Here we see that 

      (i) |𝑥| = −𝑥 and |𝑥 − 1| = 1 − 𝑥 when 𝑥 < 0 

                 (ii) |𝑥| = 𝑥 and |𝑥 − 1| = 1 − 𝑥 when 0 ≤ 𝑥 ≤ 1 

                (iii) |𝑥| = 𝑥 and |𝑥 − 1| = 𝑥 − 1 when 𝑥 > 1 

Hence, the given function can be written as 

𝑓(𝑥) = −𝑥 + 1 − 𝑥 = 1 − 2𝑥, 𝑥 < 0 

     = 𝑥 + 1 − 𝑥 = 1, 0 ≤ 𝑥 ≤ 1 

= 𝑥 + 𝑥 − 1 = 2𝑥 − 1, 𝑥 > 1 

Now first we see the differentiability 𝑓(𝑥) at 𝑥 = 0 

We have 

𝑅𝑓 ′(0) = lim
ℎ→0

𝑓(0 + ℎ) − 𝑓(0)

ℎ
= lim

ℎ→0

𝑓(ℎ) − 𝑓(0)

ℎ
 

= lim
ℎ→0

1 − 1

ℎ
= 0 

𝐿𝑓 ′(0) = lim
ℎ→0

𝑓(0 − ℎ) − 𝑓(0)

−ℎ
= lim

ℎ→0

𝑓(−ℎ) − 𝑓(0)

−ℎ
 

 

= lim
ℎ→0

1 − 2(−ℎ) − 1

−ℎ
= lim

ℎ→0

2ℎ

−ℎ
= −2 
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Thus 𝑅𝑓 ′(0) ≠ 𝐿𝑓 ′(0). Therefore the given function is not differentiable 

at 𝑥 = 0. Now we see the differentiability of 𝑓(𝑥) at 𝑥 = 1. 

We have            𝑅𝑓 ′(1) = lim
ℎ→0

𝑓(1+ℎ)−𝑓(1)

ℎ
 

= lim
ℎ→0

[2(1+ℎ)−1]−1

ℎ
= lim

ℎ→0

2+2ℎ−2

ℎ
= 2 and 𝐿𝑓 ′(1) =

lim
ℎ→0

𝑓(1−ℎ)−𝑓(1)

−ℎ
= lim

ℎ→0

1−1

−ℎ
= 0 

Thus 𝑅𝑓 ′(1) ≠ 𝐿𝑓 ′(1). Therefore the given function is not differentiable 

at 𝑥 = 1. 

 

Example 3. Show that the function 

𝑓(𝑥) = {𝑥 tan
−1 (

1

𝑥
) , 𝑥 ≠ 0

0                  , 𝑥 = 0
} 

is not differentiable at 𝑥 = 0. 

 

Solution.Here we have 

𝑅𝑓 ′(0) = lim
ℎ→0

𝑓(0 + ℎ) − 𝑓(0)

ℎ
 

= lim
ℎ→0

𝑓(ℎ) − 𝑓(0)

ℎ
= lim

ℎ→0

ℎ tan−1 (
1
ℎ
)

ℎ
 

 

 = lim
ℎ→0

tan−1 (
1

ℎ
) = tan−1 ∞ =

𝜋

2
 

and                             𝐿𝑓 ′(0) = lim
ℎ→0

𝑓(0−ℎ)−𝑓(0)

−ℎ
 

                                            = lim
ℎ→0

𝑓(−ℎ) − 𝑓(0)

−ℎ
= lim

ℎ→0

−ℎ tan−1 (−
1
ℎ
)

−ℎ
 

                                        = lim
ℎ→0

tan−1 (−
1

ℎ
) =−tan−1∞ = −

𝜋

2
 

 

⇒ 𝑅𝑓 ′(0) ≠ 𝐿𝑓 ′(0) 
Hence f(x) is not differentiable at 𝑥 = 0. 

 

Example 4.If ∅(𝑥) = 𝑥2 sin
1

𝑥
 when 𝑥 ≠ 0 and ∅(0) = 0. Show that 

∅′(𝑥) exists for all values of x but ∅′(𝑥) is discontinuous at 𝑥 = 0 and 

∅"(𝑥) does not exists at origin. 

 

Solution.∅(𝑥) = 𝑥2 sin (
1

𝑥
) , 𝑥 ≠ 0....................(i) 

∅(0) = 0 

So                 ∅′(𝑥) = 2𝑥 sin (
1

𝑥
) − cos (

1

𝑥
) , 𝑥 ≠ 0 ..................(ii) 

First Part – To show that ∅′(𝑥) exists ∀𝑥 

𝑅∅′(0) = lim
ℎ→0

∅(ℎ) − ∅(0)

ℎ
 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 56 
 
 
 

= lim
ℎ→0

∅(ℎ) − 0

ℎ
= lim

ℎ→0

ℎ
2 sin (

1
ℎ
)

ℎ
 

= lim 
ℎ→0

ℎ sin (
1

ℎ
) = 0 

and                              𝐿∅′(0) = lim
ℎ→0

∅(0−ℎ)−∅(0)

−ℎ
 

                          = lim
ℎ→0

∅(−ℎ) − ∅(0)

−ℎ
= lim

ℎ→0

−ℎ2 sin (
1
ℎ
) − 0

−ℎ
 

= lim 
ℎ→0

ℎ sin (
1

ℎ
) = 0 

Thus                       𝑅∅′(0) = 𝐿∅′(0) = 0 ⇒ ∅′(0) = 0 

⇒ ∅′(𝑥) exists at 𝑥 = 0 

But ∅′(𝑥) exists ∀𝑥 s.t. 𝑥 ≠ 0...............   by (ii) 

⇒ ∅′(𝑥) exists ∀𝑥. 

 

Second Part. To show that ∅′(𝑥) is discontinuous at 𝑥 = 0 

Here ∅′(0 + ℎ) = 2ℎ sin (
1

ℎ
) − cos (

1

ℎ
).............by (ii) 

⇒ lim 
ℎ→0

∅′(0 + ℎ) does not exists for lim 
ℎ→0

cos (
1

ℎ
) does not exists. 

Hence ∅′(𝑥) is discontinuous at 𝑥 = 0. 

 

Third Part. If a function is discontinuous at 𝑥 = 0 then it will not be 

differentiable at 𝑥 = 0. From the second part ∅′(𝑥) is discontinuous at 

𝑥 = 0. So ∅′(𝑥) is not differentiable at 𝑥 = 0 i.e. ∅"(𝑥) does not exists 

at 𝑥 = 0. 

Example 5. Draw the graph of 𝑦 = |𝑥 − 1| + |𝑥 − 2| in the interval 
[0,3] and discuss the continuity and differentiability of the function in 

this interval. 

 

Solution.   Let 𝑦 = 𝑓(𝑥) then 

(i)     𝑦 = 𝑓(𝑥) = 1 − 𝑥 + 2 − 𝑥 = 3 − 2𝑥 when 0 ≤ 𝑥 ≤ 1 

(ii)𝑦 = 𝑓(𝑥) = 𝑥 − 1 + 2 − 𝑥 = 1 when 1 ≤ 𝑥 ≤ 2 

(iii) 𝑦 = 𝑓(𝑥) = 𝑥 − 1 + 𝑥 − 2 = 2𝑥 − 3 when 2 ≤ 𝑥 ≤ 3 

Hence the graph of the function consists of three straight line segments 

𝑦 = 3 − 2𝑥, 𝑦 = 1, 𝑦 = 2𝑥 − 3 in the three intervals [0,1], [1,2], [2,3] 
respectively. 
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From the graph of the function it is clear that the function is continuous 

throughout [0,3] but it is not differentiable at 𝑥 = 1, 2. 

To test at 𝑥 = 1 

𝑅𝑓 ′(1) = lim
ℎ→0

𝑓(1 + ℎ) − 𝑓(1)

ℎ
= lim

ℎ→0

1 − 1

ℎ
= 0 

𝐿𝑓 ′(1) = lim
ℎ→0

𝑓(1 − ℎ) − 𝑓(1)

−ℎ
= lim

ℎ→0

[3 − 2(1 − ℎ)] − 1

−ℎ
 

= lim
ℎ→0

2ℎ

−ℎ
= −2 

Thus 𝑅𝑓 ′(1) ≠ 𝐿𝑓 ′(1) so 𝑓 is not differentiable at 𝑥 = 1. 

To test at 𝑥 = 2 

𝑅𝑓 ′(2) = lim
ℎ→0

𝑓(2 + ℎ) − 𝑓(2)

ℎ
= lim

ℎ→0

[2(2 + ℎ) − 3] − 1

ℎ
= lim

ℎ→0

2ℎ

ℎ
= 2 

𝐿𝑓 ′(2) = lim
ℎ→0

𝑓(2 − ℎ) − 𝑓(2)

−ℎ
= lim

ℎ→0

1 − 1

−ℎ
= 0 

Thus 𝑅𝑓 ′(2) ≠ 𝐿𝑓 ′(2) so 𝑓 is not differentiable at 𝑥 = 2.         

 

Example 6. Let 𝑓(𝑥) = 𝑥.
𝑒𝑦𝑥−𝑒−𝑦𝑥

𝑒𝑦𝑥+𝑒−𝑦𝑥
  , 𝑥 ≠ 0 

𝑓(0) = 0. 

Show that 𝑓(𝑥) is continuous but not differentiable at 𝑥 = 0. 

 

Solution. It is given that 𝑓(0) = 0; Now 𝑓(0 + 0) = lim
ℎ→0
𝑓(0 + ℎ) =

lim
ℎ→0
𝑓(ℎ) 

= lim
ℎ→0

ℎ.
𝑒𝑦ℎ − 𝑒−𝑦ℎ

𝑒𝑦ℎ + 𝑒−𝑦ℎ
 

                                = lim 
ℎ→0

ℎ.
1−𝑒−2ℎ

1+𝑒−2ℎ
  [dividing the numerator and 

denominator by 𝑒𝑦ℎ]  

= 0 ×
1−0

1+0
= 0 × 1 = 0; 

𝑂 

𝑋 

𝑌 
1 2 3 

1 

2 

3 

Fig. 3.9.1 
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and       𝑓(0 − ℎ) = lim
ℎ→0

𝑓(0 − ℎ) = lim
ℎ→0
𝑓(−ℎ) 

= lim
ℎ→0

− ℎ.
𝑒−𝑦ℎ − 𝑒+𝑦ℎ

𝑒−𝑦ℎ + 𝑒+𝑦ℎ
= lim

ℎ→0
− ℎ.

𝑒−2ℎ − 1

𝑒−2ℎ + 1
= 0 

Since             𝑓(0 + 0) = 𝑓(0 − 0) = 𝑓(0). Hence the function is 

continuous at 𝑥 = 0. 

Now 𝑅𝑓 ′(0) = lim
ℎ→0

𝑓(0+ℎ)−𝑓(0)

ℎ
= lim

ℎ→0

𝑓(ℎ)−𝑓(0)

ℎ
 

 

= lim
ℎ→0

[ℎ.
𝑒𝑦ℎ − 𝑒−𝑦ℎ

𝑒𝑦ℎ + 𝑒−𝑦ℎ
] /ℎ 

 

= lim
ℎ→0

1 − 𝑒−2ℎ

1 + 𝑒−2ℎ
=
1 − 0

1 + 0
= 1 

And  𝐿𝑓 ′(0) = lim
ℎ→0

𝑓(0−ℎ)−𝑓(0)

−ℎ
= lim

ℎ→0

𝑓(−ℎ)

−ℎ
 

 

= lim
ℎ→0

[−ℎ.
𝑒−𝑦ℎ − 𝑒𝑦ℎ

𝑒−𝑦ℎ + 𝑒𝑦ℎ
] /(−ℎ) 

= lim
ℎ→0

𝑒−2ℎ − 1

𝑒−2ℎ + 1
= −1 

Since 𝑅𝑓 ′(0) ≠ 𝐿𝑓 ′(0), the function is not differentiable at 𝑥 = 0. 

 

Example 7.  A function 𝑓 is defined by 

𝑓(𝑥) = 𝑥𝑝 cos (
1

𝑥
) , 𝑥 ≠ 0; 𝑓(0) = 0 

what conditions should be imposed on 𝑝 so that 𝑓 may be  

      (i) continuous at 𝑥 = 0. 

      (ii) differentiable at 𝑥 = 0. 

 

Solution. We have 

𝑓(0 + 0) = lim
ℎ→0
𝑓(0 + ℎ) = lim

ℎ→0
[(0 + ℎ)𝑝 cos

1

(0 + ℎ)
] 

= lim
ℎ→0

ℎ
𝑝 cos (

1

ℎ
)......................(i) 

𝑓(0 − 0) = lim
ℎ→0
𝑓(0 − ℎ) = lim

ℎ→0
[(0 − ℎ)𝑝 cos

1

(0 − ℎ)
] 

= lim
ℎ→0
 (−ℎ)𝑝 cos (

1

ℎ
)......................(ii) 

Now if 𝑓(𝑥) is continuous at 𝑥 = 0, then 

i.e. the limits given by (i) and (ii) must both tend to zero. This is 

possible only if 𝑝 > 0, which is the required condition. 

Now           𝑅𝑓 ′(0) = lim
ℎ→0

𝑓(0+ℎ)−𝑓(0)

ℎ
= lim

ℎ→0

𝑓(ℎ)−𝑓(0)

ℎ
 

 

= lim
ℎ→0

ℎ
𝑝 cos(

1

ℎ
)−0

ℎ
= lim

ℎ→0
ℎ
𝑝−1 cos (

1

ℎ
)...................(iii) 
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and   𝐿𝑓 ′(0) = lim
ℎ→0

𝑓(0−ℎ)−𝑓(0)

−ℎ
= lim

ℎ→0

 (−ℎ)𝑝 cos(
1

ℎ
)−0

−ℎ
 

= lim
ℎ→0
−(−1)𝑝ℎ𝑝−1 cos (

1

ℎ
) 

Now if 𝑓 ′(𝑥) exists at 𝑥 = 0 then we must have 

𝑅𝑓 ′(0) =  𝐿𝑓 ′(0) and this possible only if 𝑝 − 1 > 0 

i.e. 𝑝 > 1 which gives 𝑅𝑓 ′(0) =  𝐿𝑓 ′(0) = 0. 

Hence in order that 𝑓 is differentiable at 𝑥 = 0, 𝑝 must be greater than 1. 

 

Example 8. Let 𝑓(𝑥) be an even function. If 𝑓 ′(0) exists, find its value. 

 

Solution. Since 𝑓(𝑥) is an even function, 

                  so 𝑓(−𝑥) = 𝑓(𝑥)∀𝑥 

𝑓 ′(0) exists ⇒ 𝑅𝑓 ′(0) = 𝐿𝑓 ′(0) = 𝑓 ′(0) 

Now 𝑓 ′(0) = 𝑅𝑓 ′(0) = lim
ℎ→0

𝑓(ℎ)−𝑓(0)

ℎ
, ℎ > 0 

= lim
ℎ→0

𝑓(−ℎ)−𝑓(0)

ℎ
       [Since 𝑓(−𝑥) = 𝑓(𝑥)] 

                      = −lim
ℎ→0

𝑓(−ℎ) − 𝑓(0)

−ℎ
 

                      = −𝐿𝑓 ′(0) = −𝑓 ′(0) 
⇒ 2𝑓 ′(0) = 0 ⇒ 𝑓 ′(0) = 0 

Thus we conclude that if 𝑓(𝑥) is an even function and 𝑓 ′(0) exists then 

𝑓 ′(0) = 0. 

 

3.10. SUMMARY 
 

In this unit we have defined the concept of Derivative at a point, 

Progressive and Regressive derivatives, Differentiability in an interval, 

Algebra of derivatives, The chain rule of Differentiablity, Derivative of 

inverse function and Darboux theorem. 

 

 A function 𝑓(𝑥) is said to be differentiable at the point 𝑥 = 𝑐 ∈
(𝑎, 𝑏) iff 

 lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 i.e. lim

𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 exists finitely. 

 Right hand derivative of 𝑓(𝑥) at 𝑥 = 𝑐 is denoted by 𝑅𝑓 ′(𝑐) =

𝑓 ′(𝑐 + 0) = lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
, ℎ > 0 

 Left hand derivative of 𝑓(𝑥) at 𝑥 = 𝑐 is denoted by 𝐿𝑓 ′(𝑐) =

𝑓 ′(𝑐 − 0) = lim
ℎ→0

𝑓(𝑐−ℎ)−𝑓(𝑐)

−ℎ
, ℎ > 0 

 and 𝑓 ′(𝑐) exists iff  

o 𝐿𝑓 ′(𝑐) and 𝑅𝑓 ′(𝑐) both exists, and  

o 𝐿𝑓 ′(𝑐) =  𝑅𝑓 ′(𝑐) 
 𝑓(𝑥) is said to be differentiable at 𝑥 = 𝑐 
 If given ∈> 0 ∃𝛿 > 0 s.t. 
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 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) ⇒ 𝑓 ′(𝑐)−∈<
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
< 𝑓 ′(𝑐)+∈ 

 The derivative of a function 𝑓(𝑥) at 𝑥 = 𝑎 is the tangent of the 

angle which the tangent line to the curve 𝑦 = 𝑓(𝑥) at the point 𝑥 =
𝑎, makes with 𝑥-axis 

[
𝑑

𝑑𝑥
𝑓(𝑥)]

𝑥=𝑎
= tan𝜓 

 Continuity is necessary but not a sufficient condition for 

differentiablilty 

 e.g. 𝑦 = |𝑥| is continuous at 𝑥 = 0 but not differentiable at 𝑥 = 0. 

 

3.11. GLOSSARY 
 

i. Sets-Well defined collection of objects. 

ii. Continuous-sketch its curve on a graph without lifting your pen 

even once. 

iii. Discontinuity-lack of continuity. 

 

CHECK YOUR PROGRESS 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The function 𝑦 = |𝑥| is differentiable at every point of 𝑅. T/F 

2.  If a function 𝑓(𝑥) is continuous at 𝑥 = 𝑎, it must also be  

differentiable at 𝑥 = 𝑎. T/F 

3. If a function 𝑓(𝑥) is differentiable at 𝑥 = 𝑎, it must be 

continuous at 𝑥 = 𝑎. T/F 

4. If a function 𝑓(𝑥) is differentiable at 𝑥 = 𝑎, it may or may not 

be continuous at 𝑥 = 𝑎. T/F 

5. The function 𝑦 = |𝑥 − 1|is continuous at every point of 𝑅.T/F 

6. The function 𝑓(𝑥) is said to be differentiable at 𝑥 = 𝑎 if 

 lim
𝑥→𝑎

𝑓(𝑥)−⋯…..

𝑥−𝑎
 exists.T/F 

7. If 𝑓(𝑥) = sin 𝑥, then 

8. lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
= ................ 

9. The function 𝑓(𝑥) = |𝑥| is differentiable at every point of 𝑅 

except at 𝑥 =................... 

10. Continuity is a necessary but not a .................... condition for the 

existence of a finite derivative. 

11. The right hand derivate of 𝑓(𝑥) at 𝑥 = 𝑎 is given by 

                      lim
ℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

…………
 , ℎ > 0 

 
 

https://www.toppr.com/guides/maths/application-of-integrals/area-under-simple-curves/
https://www.toppr.com/guides/quantitative-aptitude/data-interpretation/bar-graph/
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3.14. TERMINAL QUESTIONS 
 

1. A function 𝜙 is defined as follows : 

𝜙(𝑥) = −𝑥 for 𝑥 ≤ 0,𝜙(𝑥) = 𝑥for 𝑥 ≥ 0. 

Test the character of the function at 𝑥 = 0 as regards 

continuity and differentiability. 

2. If 𝑓(𝑥) =
𝑥

1+𝑒𝑦𝑥
 , 𝑥 ≠ 0, 𝑓(0) = 0, show that 𝑓 is continuous at 

𝑥 = 0 but 𝑓 ′(0) does not exist. 

3. A function 𝜙 is defined as : 

𝜙(𝑥) = 1 + 𝑥 if 𝑥 ≤ 2, 

𝜙(𝑥) = 5 − 𝑥 if 𝑥 > 2 

Test the continuity and differentiability of the function at 

𝑥 = 2. 

4. Discuss the continuity and differentiability of the following 

function : 

𝑓(𝑥) = 𝑥2 for 𝑥 < −2 

𝑓(𝑥) = 4   for −2 ≤ 𝑥 < 2 

𝑓(𝑥) = 𝑥2 for 𝑥 > 2. 

5. Examine the following curve continuity and differentiability 

𝑦 = 𝑥2 for 𝑥 ≤ 0 

𝑦 = 1    for 0 < 𝑥 ≤ 1 

𝑦 =
1

𝑥
    for 𝑥 > 0 
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6 Show that 𝑓(𝑥) = |𝑥 − 1|, 0 ≤ 𝑥 ≤ 2 is not differentiable at 

𝑥 = 1. It is continuous in [0,2]. 
7 The function 𝑓(𝑥) = |𝑥 − 1| is not differentiable at 

i) 𝑥 = 0 ii) 𝑥 = −1 iii) 𝑥 = 1 iv) 𝑥 = 2 

8 The function 𝑓(𝑥) = |𝑥 + 3| is not differentiable at 

i) 𝑥 = 3 ii) 𝑥 = −3 iii) 𝑥 = 0 iv) 𝑥 = 1 

9 The function 𝑓(𝑥) = 𝑥 sin (
1

𝑥
) , 𝑥 ≠ 0 and (0) = 0 , at 𝑥 = 0 is 

i)Continuous and differentiable ii) Continuous but not 

differentiable iii) Discontinuous and not differentiable iv) 

None of these 

10 A function 𝑓(𝑥) is differentiable at 𝑥 = 𝑎 if i) 𝑅𝑓 ′(𝑎) =
𝐿𝑓 ′(𝑎) ii) 𝑅𝑓 ′(𝑎) = 0 iii) 𝐿𝑓 ′(𝑎) = 0 iv) 𝑅𝑓 ′(𝑎) ≠ 𝐿𝑓 ′(𝑎) 

 

11 The function 𝑓(𝑥) = {
2 + 𝑥 , 𝑥 ≥ 0
2 − 𝑥 , 𝑥 < 0

   is i) Discontinuous at 𝑥 =

0 ii) Continuous but not differentiable at 𝑥 = 0 iii) Continuous 

and differentiable at 𝑥 = 0 iv) None of these 

 

3.15. ANSWERS 
 

  ANSWER CHECK YOUR PROGRESS 

 

SCQ1. F     

SCQ2. F                                       

SCQ3. T 

SCQ4.  F                                 

SCQ5.  F  

SCQ6. 𝑓(𝑎)  
SCQ7. 𝑐𝑜𝑠 𝑥                                 

SCQ8. 𝑥 = 0 

 SCQ9.  𝑓′(𝑥)        
 SCQ10. Sufficient                           

 

ANSWER TO TERMINAL QUESTIONS 

 

(TQ-1) Continuous at 𝑥 = 0 but not differentiable at 𝑥 = 0. 

(TQ-3) Continuous but not differentiable at 𝑥 = 2. 

(TQ-4) Continuous but not differentiable at 𝑥 = −2, 2. 

(TQ-5) Discontinuous and non differentiable at 𝑥 = 0, continuous and 

non differentiable at 𝑥 = 1. 

(TQ-6) Yes 

 (TQ-7) h 

(TQ-8) (iii) 

(TQ-9) (ii)                               

(TQ-10) (ii) 

(TQ-11) (i)     
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UNIT–4:- MEAN VALUE THEOREMS 

 

CONTENTS:- 

 
4.1      Objectives 

4.2      Introduction 

4.3       Rolle’s theorem 

4.3.1 Geometrical representation of Rolle’s theorem 

4.3.2 Algebric reprtesentation of Rolle’s theorem 

4.4       Lagrange’s mean value theorem 

4.4.1 Geometrical interpretation of  Lagrange mean value 

theorem 

4.5       Cauchy’s Mean value theorem 

4.5.1 Another form of Cauchy’s mean value theorem 

4.5.2 Geometrical interpretation of Cauchy mean value 

theorem 

4.6       Taylor’s theorem with Lagrange’s form of remainder 

4.7       Taylor’s theorem with Cauchy’s form of remainder 

4.8       Summary  

4.9       Glossary 

4.10  References  

4.11  Suggested readings  

4.12  Terminal questions 

4.13     Answers 

 

4.1 INTRODUCTION  
 

The mean value theorem makes the geometrically possible 

claim that a differentiable function 𝑓 on an interval [𝑎, 𝑏] will at some 

point attain at some point attain a slope equal to the slope of the line 

through the end points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)). More, precisely, 

𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. For at least one point 𝑐 ∈ (𝑎, 𝑏). This theorem is 

used to prove statements about a function on an interval starting from 

local hypotheses about derivatives at points of the interval. The mean 

value theorem in its modern form was stated and proved by Augustin 

Louis Cauchy in 1823. Many variations of this theorem have been 

proved since then.  Later in 1691, Michel Rolle proved a special case 

of mean value theorem So it was named after him, Rolle's mean value 

theorem. In this unit we have explained the Rolle’s theorem, 

Lagrange’s theorem, Cauchy mean value theorem, Taylor theorem 

with Lagrange’s form of remainder, Taylor’s theorem with Cauchy’s 

https://en.wikipedia.org/wiki/Interval_(mathematics)
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form of remainder. We have also described the geometrical and 

algebraic interpretation of Mean value theorems. 

 

4.2 OBJECTIVES  
 

After completion of this unit the learner will be able to understand: 

 

i. Rolle’s theorem and its geometrical interpretation. 

ii. Lagrange’s mean value theorem. 

iii. Cauchy’s theorem. 

iv. Mean value theorems of higher derivatives.  

 

 

4.3 ROLLE’S THEOREM 
 

If f (x) is a real valued function defined in the closed interval [a, b] 

such that 

(i) f (x) is continuous in the closed interval [a, b]. 

(ii) f (x) is differentiable in the open interval (a, b). 

(iii) f (a) = f (b), then there exists at least one value of x say c 

where a<c<b, such that f‘(c) = 0. 

 

Proof. Continuity of f (x) in [a, b] implies that f (x) is bounded in [a, b] 

and attains its bound at least once in [a, b]. Let Mxf )(sup and 

mxf )(inf , and let Mcfmcf  )(,)( 21 where ],[, 21 bacc  . 

Evidently, mM  . 

Now two different cases arise: 

 

Case I.  When M = m. Then 

],[0)(

],[0)(

constant)()()(

'

'

21

baccf

baxxf

xfcfcf







 

 

Case II.  When M>m. In this case at least one of the bounds is 

different from f (a) = f (b). we suppose first that M ≠ f (a) = f (b), i.e., 

)()()( 2 bfafcf  . This means that 2c is different from a and b, i.e., 

],[2 bac   or bca  2 . 

Now 

],[)()()(sup)( 22 baxcfxfxfcfM                               

(1) 

Therefore  ],[,0)()( 222 bahchcfhcf   

0
)()( 22 




h

cfhcf
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It follows that 

0)(.,.0
)()(

2

'22

0





cfRei

h

cfhcf
Limit

h
                        (2) 

Again (1) implies that  

],[,0)()( 222 bahchcfhcf   

Therefore, 0)()( 22  cfhcf  

0
)()( 22 






h

cfhcf
 

It follows that  

0)(.,.0
)()(

2

'22

0







cfLei

h

cfhcf
Limit

h
                       (3) 

But if f is differentiable in (a, b) and ],[2 bac  so that f is differentiable 

at x = 
2c i. e., 

)()()( 2

'

2

'

2

' cfcfRcfL                                                       (4) 

Using (4) in (2) and (3) we find that  

0)( 2

' cf and 0)(0)( 2

'

2

'  cfcf  

 

Similarly if we suppose that m ≠ f (a) = f (b) then by making parallel 

arguments, we can prove that 0)( 1

' cf . Replacing 1c and 2c by c, we 

have the result. 

 

 

Note1. There may be more than one point like c at which 0)(' xf . 

Note 2. Rolle’s theorem does not hold good if 

(i) f (x) is discontinuous in the closed interval [a, b]. 

(ii) f (x) does not exists at some point in (a, b). 

(iii) f (a) ≠ f (b). 
Note 3.The hypothesis of Rolle’s theorem can not be weakened. 

 

Example.If ,11,1)(  xxxf then 0)1()1(  ff and f is 

continuous on [-1, 1]. Also )(' xf exist )1,1( x except x =0. Thus f 

satisfies all the condition of Rolle’s theorem except that f is not 

differentiable at x = 0. For this f (x), there is no c in (-1, 1) for which

0)(' cf . 
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4.3.1 GEOMETRICAL  REPRESENTATION OF 

ROLLE’S THEOREM 

 
Geometrically Rolle’s theorem means that is the curve y = f (x) is 

continuous from x = a to x = b; has a definite tangent at each point of 

(a, b) and the ordinates at the extremities are equal then there exists at 

least one point between a and b at which the tangent is parallel to x- 

axis. 

 

4.3.2 ALGEBRAIC  REPRESENTATION OF 

ROLLE’S THEOREM 

 

Rolle’s theorem leads to a very important result in the theory of 

equations. Algebraically, Rolle’s theorem means that if f (x) is a 

polynomial function in x and x = a and x = b are two roots of the 

equation f (x) = 0, then there is at least one root of the equation f‘(x) = 0 

which lies between a and b. 

 

4.4. LAGRANGE’S MEAN VALUE THEOREM 
 

If a real valued function f (x) defined on [a, b] such that 

(i) f (x) is continuous on [a, b]. 

(ii) f (x) is differentiable in (a, b). 

Then there exists a point ),( bac such that 

)(
)()( ' cf

ab

afbf





 

 

Proof. Let us define a function f (x) defined by 

xAxfxF .)()(                                        (1) 

Where A is a constant to be determined such that F (a) = F (b). 

𝑌 

𝑂 

𝑓 ,(𝑐) = 0 

𝐵 𝐴 

𝑥 = 𝑐 

𝑐 𝑎 𝑏 
Fig. 4.3.1 
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Now 

(i) Since f (x) is continuous on [a, b] and Ax is continuous on 

[a, b], therefore F (x) is also continuous on [a, b]. (Since 

sum of two continuous functions is again continuous). 

(ii) Similarly F (x) is differentiable in (a, b). 

(iii) bAbfaAafbFaF .)(.)()()(   

ab

afbf
A






)()(
       (2) 

Hence F (x) satisfy all the conditions of Rolle’s theorem on [a, b] and 

consequently there exists ),( bac such that f‘(x) = 0, this gives 

 0)()( '' AcfcF )(' cfA                     (3) 

Now from (2) and (3), we have 

ab

afbf
cf






)()(
)('  

Lagrange’s mean value theorem is also known as first mean value 

theorem. 

 

Note 1. Another form (alternative form) of Lagrange’s mean value 

theorem.Let hachab  , , then h> 0 and a<c<b and this 

implies that 100   hhhahaa . 

Now 
ab

afbf
cf






)()(
)(' becomes 

h

afhaf
haf

)()(
)('


 i.e., 

10),()()( '   hafhafhaf . 

Note 2. The hypothesis of the Lagrange’s mean value theorem can not 

be weakened as 

Example.Let 21,)(  xxxf . Here f is continuous [-1, 2] and 

differentiable at all the points of (-1, 2) except x = 0 (so that second 

condition is violated). Now  










201

01,1
)('

x

x
xf  

Also 
)1(2

)1()2(
)('






ff
xf  for any )2,1(x . 
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4.4.1 GEOMETRICAL INTERPRETATION OF 

LAGRANGE’S MEAN VALUE THEOREM 

 
Fig.4.4.1. 

If the curve y = f (x) is continuous from x = a to x = b and has a 

definite tangent at each point on the curve between x = a and x = b. 

Then, geometrically the first mean value theorem means that there is at 

least one point between x = a and x = b on the curve where the tangent 

to the curve parallel to the chord joining the points (a, f (a)) and (b, f 

(b)). 

Let AB be the graph of the function y = f (x) then the co-

ordinate of the points A and B are given by (a, f (a)) and (b, f (b)). If 

the chord AB makes an angle  with x – axis, then 

)(
)()(

tan ' cf
ab

afbf





 where a<c<b. 

Corollary 1.If f’(x) = 0 ),( bax  , then f (x) is constant in [a, b]. 

Thus if a function has differential coefficient which vanishes for all 

values of x in [a, b], then the function is constant. 

 

Proof. Given that f ’(x) = 0 ],[ bax  . Let a+h be any point of [a, b]. 

Then by first mean value theorem, 

,10),()()( '   hafhafhaf  

 ],[,0)(00 ' bahahafash    

Thus  

],[)()( bahaafhaf   

i.e., ],[constant)( baxxf   

 

Corollary 2.If two functions f (x) and g (x) be differentiable in (a, b) 

and if f ’(x) = g’(x), ],[ bax  , then f (x) - g (x) is constant. 

𝑌 

𝑂 

𝐴 

𝑋 

𝐵 

𝐶 

𝑓(𝑎) 

𝑎 

𝑓(𝑏) 

𝑐 

F 

𝑏 

𝜃 
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Proof. It is given that  

f ’(x) = g’(x)  ],[ bax                                  (1) 

To prove that f (x) - g (x) is constant. 

Let G (x) = f (x) - g (x) then G’ (x) = f‘(x) - g‘(x) = 0 [by (1)]. This 

implies that  

G’ (x) = 0, ],[ bax                          (2) 

 Let a + h be any point of (a, b). Then, by first mean value theorem 

,10),()()( '   haGhaGhaG  

   0  [by (2)] 

],[)()( bahaaGhaG   

],[constant)( baxxG   

],[constant)()( baxxgxf  . 

Note 1. The result ),()()()( ' cfabafbf  is also known as 

formula for finite increment. 

 

Note 2. For )()( afbf  , the Lagrange’s mean value theorem yields 

Rolle’s theorem 

 

4.5 CAUCHY’S MEAN VALUE THEOREM 
 

Let f (x) and g (x) be two functions defined on [a, b] such that  

(i) f (x) and g (x) are continuous on [a, b] 

(ii) f (x) and g (x) are differentiable on (a, b) and  

(iii) ),,(,0)(' baxxg   

Then there exists a point ),,( bac such that 

)(

)(

)()(

)()(
'

'

cg

cf

agbg

afbf





. 

 

Proof.  We observed that )()()( bgagiii  . 

For, if g (a) = g (b), then g (x) satisfies all the conditions of Rolle’s 

theorem and hence g‘(x) = 0 for some ),( bax , which is contrary to 

(iii). Let us define a function on [a, b] by 

)(.)()( xgAxfxF                                                          (1) 

Where A is a constant to be determined such that  

)()( bFaF                                                                         (2) 

Now the function F (x) is the sum of two continuous and differentiable 

functions, therefore 

(i) F (x) is continuous in [a, b]. 

(ii) F (x) is differentiable in (a, b). 

(iii) F (a) = F (b). 

Then by Rolle’s theorem  some ),,( bac  such that F ’(c) = 0. Here 

)(.)()( ''' xgAxfxF   
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0)(.)(0)( '''  cgAcfcF  

                  )(

)(
'

'

cg

cf
A                                          (3) 

Now  )(.)()(.)()()( bgAbfagAafbFaF   

)()(

)()(

agbg

afbf
A




                                    (4) 

From (3) and (4) we get  

)(

)(

)()(

)()(
'

'

cg

cf

agbg

afbf





. 

 

4.5.1 ANOTHER FORM OF CAUCHY’S MEAN 

VALUE THEOREM 
 

If we put b = a + h, then c can be written as ha  where

10such that   R , then Cauchy’s mean value theorem can be put 

in the form – 

If f (x) and g (x) are continuous in [a, a + h] and are differentiable in 

(a, a + h) and ,0)(' xg ),,( bax  then ,10:   R such that 

10,
)(

)(

)()(

)()(
'

'
















hag

haf

aghag

afhaf
. 

 
Note. If g (x) = x, then Cauchy’s mean value theorem reduces to 

Lagrange’s mean value theorem. 

 

4.5.2 GEOMETRICAL INTERPRETATION OF 

CAUCHY’S MEAN VALUE THEOREM 

 

Cauchy’s mean value theorem can be interpreted geometrically to 

mean that the tangents to the curve y = f (x) and y = kg (x) where

)()(

)()(

agbg

afbf
k




 , at a certain point ),( bac are parallel. 

 

4.6 TAYLOR’S THEOREM WITH LAGRANGE’S 

FORM OF REMAINDER 
 

If f (x) is a single real valued function defined on [a, a + h] of xsuch 

that 

 

(i) All the derivatives of f (x) up to (n – 1)th order are 

continuous in [a, a + h]. 

(ii) f  n (x) exists in (a, a + h), then 
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)(
!

)(
!1

....)(
!2

)()()( 1
1

''
2

' haf
n

h
af

n

h
af

h
afhafhaf n

n
n

n




 


, where 10  . 

 

Proof. Consider the function F (x) defined by 

)1.....(..........
!

)(

)(
!1

)(
....)(

!2

)(
)()()()( 1

1
''

2
'

A
n

xha

xf
n

xha
xf

xha
xfxhaxfxF

n

n
n










 



     

Where A is a constant to be determined such that 

F (a + h) = F (a) 

Subjecting (1) to this condition we get 

A
n

h
af

n

h
af

h
afhafaF

n
n

n

!
)(

!1
....)(

!2
)()()( 1

1
''

2
' 


 



 

and )()( hafhaF  then we have 

)2(..........
!

)(
!1

....)(
!2

)()()( 1
1

''
2

' A
n

h
af

n

h
af

h
afhafhaf

n
n

n




 


               

Now by assumption, all the functions 1''' ....,,,, nffff are continuous 

in closed interval            [a, a + h] and differentiable in (a, a + h). Also 

(a + h – x), 
!2

)( 2xha 
,....,

!1

)( 1



 

n

xha n

,
!

)(

n

xha n
all being 

polynomials are continuous in [a, a + h] and differentiable in (a, a + 

h). Also A is constant. 

This means F (x) is continuous in [a, a + h] and differentiable in (a, a 

+ h). Now differentiating (1) with respect to x. 

A
n

xhan
xf

n

xhan
xf

n

xha

xf
xha

xf
xha

xfxfxhaxfxF

n
n

n
n

n

!

).(
)(

!1

))(1(
)(

!1

)(
....

)(.
!2

).(2
)(

!2

)(
)]()()[()()(

1
1

21

'''''
2

'''''




 



























 





 

Simplifying, we get 

 Axf
n

xha

A
n

xhan
xf

n

xha
xF

n
n

n
n

n



















)(
!1

)(

!

).(
)(

!1

)(
)(

1

11
'

 

Since F (x) satisfies all the conditions of Rolle’s theorem in [a, a + h], 

we have 

0)('  haF  where 10  , therefore 
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 

)(

0)(
!1

)( 1

hafA

Ahaf
n

haha

n

n
n











 

 

Putting the value of A in equation (2) we get 

)(
!

)(
!1

....)(
!2

)()()()( 1
1

''
2

' haf
n

h
af

n

h
af

h
afhafhaf n

n
n

n




 


  

where 10  . 

Here (n + 1)th term on the right i.e., )(
!

haf
n

h n
n

 is called the 

Lagrange’s remainder after n terms in Taylor’s expression f (a + h) in 

the ascending powers of h. 

 

4.7 TAYLOR’S THEOREM WITH CAUCHY’S 

FORM OF REMAINDER 
 

If f (x) is a single real valued function defined on [a, a + h] of xsuch 

that 

(i) All the derivatives of f (x) up to (n – 1)th order are 

continuous in [a, a + h]. 

(ii) f  n (x) exists in (a, a + h), then 

),()1(
!1

)(
!1

....)(
!2

)()()( 11
1

''
2

' haf
n

h
af

n

h
af

h
afhafhaf nn

n
n

n

 





 


10  . 

 

Proof. Consider the function F (x) defined by 

)1......(..........)(

)(
!1

)(
....)(

!2

)(
)()()()( 1

1
''

2
'

Axha

xf
n

xha
xf

xha
xfxhaxfxF n

n









 



  

Where A is a constant to be determined such that 

F (a + h) = F (a) 

Subjecting (1) to this condition we get 

Ahaf
n

h
af

h
afhafaF n

n




 


)(
!1

....)(
!2

)()()( 1
1

''
2

'
 

and )()( hafhaF  then we have 

)2.........()(
!1

....)(
!2

)()()( 1
1

''
2

' Ahaf
n

h
af

h
afhafhaf n

n




 


               

Now by assumption, all the functions
1''' ....,,,, nffff are continuous 

in closed interval            [a, a + h] and differentiable in (a, a + h). Also 

(a + h – x), 
!2

)( 2xha 
,....,

!1

)( 1



 

n

xha n

,
!

)(

n

xha n
all being 
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polynomials are continuous in [a, a + h] and differentiable in (a, a + 

h). Also A is constant. 

This means F (x) is continuous in [a, a + h] and differentiable in (a, a 

+ h). Now differentiating (1) with respect to x. 

Axf
n

xhan
xf

n

xha

xf
xha

xf
xha

xfxfxhaxfxF

n
n

n
n



























 








)(
!1

))(1(
)(

!1

)(
....

)(.
!2

).(2
)(

!2
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)]()()[()()(

1
21

'''''
2

'''''

 

Simplifying, we get 

Axf
n

xha
xF n

n









)(
!1

)(
)(

1
'

 

Since F (x) satisfies all the conditions of Rolle’s theorem in [a, a + h], 

we have 

0)('  haF  where 10  , therefore 

)(
!1

)1(

0)(
!1

)(

11

1

haf
n

h
A

Ahaf
n

haha

n
nn

n
n






















 

Putting the value of A in equation (2) we get 

)(
!1

)1(
)(

!1
....)(

!2
)()()()(

1
1

1
''

2
' haf

n

h
af

n

h
af

h
afhafhaf n

nn
n

n


















 

where 10  . 

Here (n + 1)th term on the right i.e., )(
!1

)1( 1

haf
n

h n
nn







 

is called 

the Cauchy’s remainder after n terms in Taylor’s expression f (a + h) in 

the ascending powers of h. 

 

Corollary 1.If we take the interval [0, x] instead of [a, a + h], so 

change a = 0 and h = x in Taylor’s theorem with Lagrange’s form of 

remainder we get 

)(
!

)0(
!1

....)0(
!2

)()0()( 1
1

''
2

' xf
n

x
f

n

x
f

x
xfxfxf n

n
n

n




 


 

which is known as Maclaurin’s theorem or Maclaurin’s development 

of f (x) in [0, x] with Lagrange’s form of remainder )(
!

xf
n

x n
n

 after n 

terms. 

 

Corollary 2.If we change a = 0 and h = x in Taylor’s theorem with 

Cauchy’s form of remainder we get 

)(
!1

)1(
)0(

!1
....)0(

!2
)()0()(

1
1

1
''

2
' xf

n

x
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n
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x
xfxfxf n
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






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which is known as Maclaurin’s theorem or Maclaurin’s development 

with Cauchy’s form of remainder. The (n + 1)thterm

)(
!1

)1( 1

xf
n

x n
nn






 

is known as remainder. 

Illustrative Examples 
 

Example 1. Discuss the applicability of Rolle’s theorem for 

3
2

)1(2)(  xxf in [0, 2]. 

Solution. We have 3
2

)1(2)(  xxf . Here f (0) = 3 and f (2) = 3. It 

shows that the third condition of Rolle’s theorem is satisfied.Since f (x) 

is an algebraic function of x, so it is continuous in [0, 2]. Thus the first 

condition of Rolle’s theorem is also satisfied. Now 

3
1

'

)1(

1

3

2
)(




x
xf  

We see that at x = 1, )(' xf  does not exists and )2,0(1x . So the 

second condition of Rolle’s theorem is not satisfied. Hence the Rolle’s 

theorem is not applicable in the given function. 

 

Example 2. Verify Rolle’s theorem for the function

6116)( 23  xxxxf . 

 

Solution. We have 6116)( 23  xxxxf , which is polynomial in x 

of degree 3 and so it is continuous and differentiable for all real values 

of x. Now f (x) = 0 gives 

06116 23  xxx  

06655 223  xxxxx  

0)1(6)1(5)1(2  xxxxx  

0)65()1( 2  xxx  

0)2)(3()1(  xxx  

3,2,1 x  

0)3(,0)2(,0)1(  fff  

If we take [1, 3], then all the three conditions of Rolle’s theorem are 

satisfied. So there exists at least one vale of x in (1, 3) for which 

0)(' xf .Now 

0111230)( 2'  xxxf  

3

1
2

6

13214412



x  

)3,1(
3

1
2,

3

1
2 x . 

Hence Rolle’s theorem is verified. 
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If we take [1, 2]then, the point )2,1(
3

1
2 x and 0)(' xf at this 

point. And if we take[2, 3], then )3,2(
3

1
2 x for which 0)(' xf

at this point. 

 

Example 3. Verify Rolle’s theorem in the case of functions: 

(i) ],0[,sin)(  xxxf  

(ii) ,)()()( nm bxaxxf  where m and n are positive 

integers and ],[ bax . 

(iii) ]0,3[,)3()( 2 


xexxxf
x

 

 

Solution. 

(i) The function xxf sin)(   is continuous in ],0[  and also 

differentiable in ),0(  . Also  

                   0)()0(  ff .  

Thus all the three conditions of Rolle’s theorem are satisfied. Hence at 

least one value of x in ),0(   such that 0)(' xf . Now 

....,
2

5
,

2

3
,

2
0cos0)('


 xxxf  

Since ),0(
2



 . Hence Rolle’s theorem is verified. 

(ii) We have ,)()()( nm bxaxxf   where m and n are 

positive integers. Here f (x) is a 

polynomial in x of degree m + n. So f (x) is continuous in [a, b] and is 

differentiable in (a, b). Also f (a) = f (b) = 0. 

Thus all the three conditions of Rolle’s theorem are satisfied so there 

exists at least one point x in (a, b) such that 0)(' xf . Now 

0)()().()()( 11'   nmnm bxaxmbxnaxxf  

0)}()({)()( 11   bxmaxnbxax nm
 

0})({)()( 11   xnmmbanbxax nm
 

)(
,,

nm

namb
xbxax




  

We see that ),(
)(

ba
nm

namb
x 




 which divide the interval in the ratio 

of m : n. Hence Rolle’s theorem is verified. 

(iii) Here 2)3()(
x

exxxf


 . So 
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22

222'

)6(
2

1

)32(
2

1
.)3()(

x

xx

exx

exexxxf

























 

which exist for every value in [-3, 0]. Hence f (x) is differentiable in (-

3, 0) and so it is continuous in [-3, 0]. Also f (-3) = f (0) = 0. Hence all 

the conditions of Rolle’s theorem are satisfied. So, there exist at least 

one point in (-3, 0) for which 0)(' xf . Now 

0)6(
2

1
0)( 22' 










 x

exxxf  

0)6( 2  xx  

2,30)2()3(  xxx  

The value )0,3(2 x for which 0)(' xf . Hence Rolle’s theorem 

is verified. 

 

Example 4.If Rf  ]1,2[: is defined by xxf )( , examine the 

validity of Lagrange’s mean value theorem. 

 

Solution. Here a = -2, b = 1 and xxf )( . So 

(i) f (x) is continuous in [ -2, 1] 

(ii) f is not differentiable in (-2, 1), for f is not differentiable at x 

= 0. 

Hence the conditions of Lagrange’s mean value theorem are not 

satisfied. Now 

3

1

21

21

)2(1

)2()1()()(














 ff

ab

afbf
 

To search )1,2(c such that
3

1
)(' cf . We have 










]1,0[,

]0,2[,
)()(

xifx

xifx
xfxxf  










]1,0[,1

]0,2[,1
)('

xif

xif
xf  

Hence in either case, 
3

1
)(' xf  for any )1,2(x . Thus neither the 

hypothesis nor the conclusion is valid. 

 

Example 5. If )3()2()1()(  xxxxf and a = 0, b = 4, find ‘c’ 

using Lagrange’s mean value theorem. 

 

Solution. The function

6116)3()2()1()( 23  xxxxxxxf , so 
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6)0()(  faf  

6)4()(  fbf  

3
4

12

04

)6(6)()(












ab

afbf
 

Also 11123)( 2'  xxxf gives 11123)( 2'  cccf . Putting 

these values in Lagrange’s mean value theorem we get 

bcacf
ab

afbf





),(

)()( '  

111233 2  cc  

08123 2  cc  

6

9614412 
 c

3

32
2  c  

as both the values of c lies in (0, 4), so both of these values of c are the 

required values of c. 

 

Example 6.Compute the value of in the first mean value theorem 

cxbxaxfifhxfhxfhxf  2' )(),()()(   

 

Solution. Here the function cxbxaxf  2)( , so 

chxbhxahxf  )()()( 2
and 

bhxahxfbxaxf  )(2)(2)( ''  . Substituting all these 

values in )()()( ' hxfhxfhxf   

])(2[)()( 22 bhxahcxbxachxbhxa              (A) 

The relation (A) is true for all values of x. Hence when x → 0 we get 

]2[2 bhahcchbha    
22 2 haha   

2

1
  

Hence 
2

1
 . 

Example 7. Verify Cauchy’s mean value theorem for the functions 2x

and 3x in [1, 2]. 

 

Solution.Let
2)( xxf  and ,)( 3xxg  then )(xf and )(xg are 

continuous in [1, 2] and differentiable in (1, 2). Also 03)( 2'  xxg

for any ).2,1(x Hence by Cauchy’s mean value theorem there exists 

at least one )2,1(c such that 

)(

)(

)1()2(

)1()2(
'

'

cg

cf

gg

ff





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cc

c

cg

cf

3

2

3

2

)(

)(

18

14
2'

'







c3

2

7

3
  

).2,1(
9

14
149  cc  

Example 8. If in the Cauchy’s mean value theorem, we write 

(i) xxf )( and ,
1

)(
x

xg  then c is the geometric mean of 

a and b. And if 

(ii) 
x

xf
1

)(  and ,
1

)(
2x

xg  then c is the harmonic mean of a 

and b. 

Solution. 

(i)  Cauchy’s mean value theorem states 

)(

)(

)()(

)()(
'

'

cg

cf

agbg

afbf





                                 (1) 

Given xxf )( and ,
1

)(
x

xg   so that 
x

xf
2

1
)('  and

.
.2

1
)(

2
3

x
xg  Putting these values in (1) we get 

c
c

c

c

c

ab

ab










2
1

2
3

2
3

.2

1

2

1

11
 

baccba  . Therefore c is the geometric mean of a and b. 

(ii) Given 
x

xf
1

)(  and ,
1

)(
2x

xg  so that 
2

' 1
)(

x
xf  and

.
2

)(
3x

xg  Putting these 

values in (1) we get 

22

1

11

11

3

2

22

c

c

c

ab

ab 











 

2)(

c

ba

ab



 

)(

2

ba

ab
c


 . 

 

Therefore c is the harmonic mean of a and b. 
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4.8 SUMMARY  
 

In this unit we have explain the  Rolle’s theorem Lagrange’s mean 

value theorem,Cauchy’s theorem,and its geometrical interpretation. In 

this unit also discussed Mean value theorems of higher derivatives.  

 

1. Rolle’s theorem: 

 

If f (x) is a real valued function defined in the closed interval [a, b] 

such that 

(i) f (x) is continuous in the closed interval [a, b]. 

(ii) f (x) is differentiable in the open interval (a, b). 

(iii) f (a) = f (b), then there exists at least one value of x say c 

where a<c<b, such that f‘(c) = 0. 

 

2. Lagrange’s mean value theorem 

 

If a real valued function f (x) defined on [a, b] such that 

(i) f (x) is continuous on [a, b]. 

(ii) f (x) is differentiable in (a, b). 

Then there exists a point ),( bac such that 

)(
)()( ' cf

ab

afbf





 

3. Cauchy’s mean value theorem 

 

Let f (x) and g (x) be two functions defined on [a, b] such that  

(i) f (x) and g (x) are continuous on [a, b] 

(ii) f (x) and g (x) are differentiable on (a, b) and  

(iii) ),,(,0)(' baxxg   

Then there exists a point ),,( bac such that 

)(

)(

)()(

)()(
'

'

cg

cf

agbg

afbf






 

 

4.9 GLOSSARY 
 

i. Sets-Well defined collection of objects 

ii. Continuous-sketch its curve on a graph without lifting your pen 

even once 

iii. Discontinuity-lack of continuity 

 

 

 

 

 

https://www.toppr.com/guides/maths/application-of-integrals/area-under-simple-curves/
https://www.toppr.com/guides/quantitative-aptitude/data-interpretation/bar-graph/
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CHECK YOUR PROGRESS 

 

1. Rolle’s theorem is applicable for xxf sin)(   in  2,0 .T/F 

2. Rolle’s theorem is applicable for xxf )(  in  1,1 .T/F 

3. Lagrange’s mean value theorem is applicable for xxf )(  in  

              1,1 .T/F 

4. Rolle’s theorem is not applicable for 2)2()(
x

exxxf


  in 

              0,2 .T/F 

5. The value of ‘c’ of Lagrange’s mean value theorem for the  

              function 432)( 2  xxxf  in  2,1 is
4

5c .T/F 

 

 

 

4.12 TERMINAL QUESTIONS  
 

(TQ-1) Verify Lagrange’s mean value theorem for the function 

Rf  ]1,1[: given by 
3)( xxf  . 
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(TQ-2) Verify Rolle’s theorem for the following functions: 

(i) 45 )3()4()(  xxxf  in [3, 4] 

(ii) 4)( 3  xxf  in [-2, 2] 

(iii) ]cos[sin)( xxexf x   in [ 








4

5
,

4


 

(iv) 210)( xxxf   in [0, 10] 

(TQ-3) Discuss the applicability of Rolle’s theorem for the 

function 










21,3

10,4
)(

3

xifx

xifx
xf  

(TQ-4) Verify the truth of the Rolle’s theorem for the function

2)(  xxf  in [1, 3]. Justify your answer with correct 

reason. 

(TQ-5) If
x

xf
1

)(  in [-1, 1], will the Lagrange’s mean value 

theorem be applicable to f (x)? 

(TQ-6) Find c of the Lagrange’s mean value theorem if

2

1
,0);2()1()(  baxxxxf . 

(TQ-7) Find c of the Lagrange’s mean value theorem when 

(i) 23)( 3  xxxf  in [-2, 3] 

(ii) 432)( 2  xxxf  in [1, 2] 

(iii) )1()(  xxxf  in [1, 2] 

(TQ-8) If ),(
!2

)0()0()( ''
2

' xf
x

fxfxf  find the value of   

as x →1,f(x) being 2
5

)1( x . 

(TQ-9) If ),(
!2

)()()( ''
2

' hxf
h

xfhxfhxf  find the 

value of   as x → a, f (x) being 2
5

)( ax  . 

(TQ-10) Verify Rolle’s theorem for 2)3()(
x

exxxf


  in [-3, ∞]. 

 

FILL IN THE BLANKS 

 
(TQ-11) In Rolle’s theorem if f (x) is continuous in [a, b], 

differentiable in (a, b) and f (a) = f (b) then 

.................................. 

(TQ-12) In Lagrange’s mean value theorem if f (x) is continuous 

in [a, b], differentiable in (a, b) then there exists ),( bac

such that ................................ 
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(TQ-13) In Cauchy’s mean value theorem if f (x) and g (x) are 

continuous in [a, b], differentiable in (a, b) and 

),(0)(' baxxg  then ),( bac such that 

............................... 

(TQ-14) The remainder term in the Taylor’s theorem with 

Lagrange’s form of remainder is ............................... 

(TQ-15) The remainder term in the Taylor’s theorem with 

Cauchy’s form of remainder is ............................... 

 

 

MULTIPLE CHOICE QUESTIONS 

 
(TQ-16) The value of  ‘c’ of Rolle’s theorem for the function 

xexf x sin)(   in ],0[  is given by 

𝒂) 4

3
c  

𝒃) 4


c  

𝒄) 2


c  

𝒅) 6

5
c  

 

(TQ-17) The value of  ‘c’ of Lagrange’s mean value theorem for 

the function )1()(  xxxf  in ]2,1[ is given by 

𝒂) 4

5
c  

b) 2

3
c  

c) 4

7
c  

d) 6

11
c  

 
(TQ-18) The function xxf sin)(   is increasing in the interval 

𝒂) 
 ,0  

𝒃) 









2
,0


 

𝒄) 









4

3
,

4


 

𝒅) 











,

2
 

 

(TQ-19) Out of the following functions, tell the function for which 

the conditions of Rolle’s theorem are satisfied. 

𝒂) xxf )( in [-1, 1] 𝒃) 
2)( xxf  in [2, 3] 

𝒄) xxf sin)(  in  ,0  𝒅) xxf tan)(  in  ,0  

 

(TQ-20) In Taylor’s theorem with Cauchy’s form of remainder, the 

remainder term is 

𝒂) 
)()1(

!

)(1 haf
n

h nn
n

  
 

𝒃) 
)()1(

!1

)1(1 haf
n

h nn
n

 




 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 83 
 
 
 

𝒄) 
)()1(

!1

)( haf
n

h nn
n

 


 
𝒅) 

)()1(
!1

)(1 haf
n

h nn
n

 




 

 

4.13 ANSWERS 
 

 

CHECK YOUR PROGRESS 

 

SCQ1. T 

SCQ2. F 

SCQ3. F 

SCQ4. F       

SCQ5. F 

 

TERMINAL QUESTIONS 

 

(TQ-1) Lagrange’s mean value theorem is truly verified. 

(TQ-2) Rolle’s theorem is verified in each case. 

(TQ-3) The given function is not differentiable at x = 1 and so 

Rolle’s theorem is not applicable to the given function in 

[0, 2]. 

(TQ-4) The function does not satisfy the second condition of the 

Rolle’s theorem that f (x) must be differentiable in (1, 3). 

(TQ-5) Not applicable. 

(TQ-6) 
6

21
1c . 

(TQ-7) (i) 
3

7  (ii) 
2

3  (iii) 
2

3 . 

(TQ-8) 
25

9
 . 

(TQ-9) 
225

64
 . 

(TQ-10) Rolle’s theorem is verified. 

 (TQ-16)     ),( bac such that 0)(' cf  

(TQ-17)     )(
)()( ' cf

ab

afbf





 

(TQ-18)    
)('

)()()( '

cg

cf

ab

afbf






 

(TQ-19)    )(
!

)( haf
n

h n
n



 

(TQ-20)   )()1(
!1

)(1 haf
n

h nn
n

 



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(TQ-21)     (a)                          

(TQ-22)     (b)               

(TQ-23)     (b) 

(TQ-24)      (c)                          

(TQ-25)       (d) 
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BLOCK – II 

EXPANSION OF FUNCTIONS AND 

INDETERMINATE FORMAND 

INTEGRALS 
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UNIT-5:- INDETERMINATE  FORMS 

 

CONTENTS:- 

 
5.1 Objectives 

5.2 Introduction 

5.3 The evaluating procedures of limit of different  

            Indeterminate forms 

5.4 L’Hospital’s Rule 

5.5 Other Indeterminate forms 

5.6 The forms 00, 1∞ and ∞0 

5.7 Evaluation of exponential limits of the form 1∞ 

5.8 Summary 

5.9 Glossary 

5.10 References 

5.11 Suggested readings 

5.12 Terminal questions 

5.13 Answers 
 

5.1 INTRODUCTION 

 
Indeterminate Forms is found in English as a chapter title in 

1841 in An Elementary Treatise on Curves, Functions, and Forces by 

Benjamin Pierce. Forms such as 
0

0
 are called singular values and 

singular forms in in 1849 in An Introduction to the Differential and 

Integral Calculus, 2nd ed., by James Thomson. In this unit we shall 

study some unusual forms. Generally, these are undefined forms, so 

are called “Indeterminate forms”. We cannot find their actual value, 

but we try to find their limiting value with different methods.  

There are seven standard indeterminate forms: 

 
0

0
, 
∞

∞
, 0 × ∞ , ∞−∞,00,∞0 and 1∞ 

 

Let us discuss the case of 
𝟎

𝟎
 

 

Suppose we have  
𝑥

𝑥
, 𝑥 ∈ ℝ.. We generally say that  

𝑥

𝑥
= 1                                                            … (1) 

0

𝑥
= 0                                                            … (2) 

 𝑥

0
= ±∞ , depending upon the sign of 𝑥.      …(3) 

If we put 𝑥 = 0 in equation (1), (2) and (3), we get  
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0

0
= 1 

0

0
= 0 

0

0
= +∞ 𝑜𝑟 − ∞ 

 

You might have confused what is happening!  

Actually division by ‘0’ is not permissible. It means it is impossible to 

define the case
0

0
 ! 

Again we know that  

12 = 1 × 1 = 1 

13 = 1 × 1 × 1 = 1 

… 

… 

1𝑛 = 1 × 1 × …× 1⏟        
𝑛  𝑡𝑖𝑚𝑒𝑠

= 1 

Generally we say that if we multiply 1 with itself any number of times, 

it will be 1. But it is true only for finite 𝑛. We shall discuss ahead that 

the limiting value of 1∞ goes towards exponential (𝑒) ! 
 Also we can discuss another three possible cases as (𝑥 > 0) 
   𝑥 − 𝑥 = 0                             …(4) 

   ∞ − 𝑥 = +∞                        …(5) 

    𝑥 − ∞ = −∞                       …(6) 

But when we take 𝑥 = ∞ in the equation (4), (5) and (6), we get the 

absurd results, 

∞−∞ = 0 

∞−∞ = +∞ 

∞−∞ = −∞ 
So, we have discussed some of the cases, which justify that why these 

forms are indeterminate! 

 

 

5.2 OBJECTIVES 
 

After complition of this unit, we shall understand  

 

i. The nature of indeterminate forms. 

ii. Standard indeterminate forms: 
0

0
 , 

∞

∞
, 0 × ∞ , ∞−∞,00,∞0, 

and 1∞. 

iii. The evaluating procedures of limits of different indeterminate 

forms by Algebraic Methods and L’Hospital’s Rule. 

iv. L’Hospital’s Rule for 
0

0
and  

∞

∞
. 

v. Exponential forms. 

vi. Limits of other indeterminate forms. 
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5.3 THE EVALUATING PROCEDURES OF 

LIMITS OF DIFFERENT 

INDETERMINATE FORMS 
 

Algebraic Methods 
In cases where the expansion of functions involved are known, or some 

of the limits are known, algebraic method may be used to solve the 

problems. The following expansions should be remembered: 

 

 𝑒𝑥 = 1+ 𝑥 +
𝑥2

2!
+
𝑥3

3!
+⋯∞ 

 log(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
−
𝑥4

4
+⋯∞, |𝑥| < 1  

 log(1 − 𝑥) = −(𝑥 +
𝑥2

2
+
𝑥3

3
+
𝑥4

4
+⋯∞) , |𝑥| < 1 

 𝑠𝑖𝑛 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+⋯∞ 

 cos 𝑥 = 1 − 
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+⋯∞ 

 tan 𝑥 =𝑥 +
𝑥3

3
+
2𝑥5

15
+⋯∞ 

 (𝑥 + 𝑎)𝑛 =nC0 x
n + nC1 x

n-1 𝑎 + nC2 x
n-2𝑎2 + … + nCrx

n-r𝑎𝑟 + … 

+ nCn𝑎𝑛 

 (1 + 𝑥)𝑛 = 1+ 𝑛𝑥 +
𝑛(𝑛−1)

2!
𝑥2 +

𝑛(𝑛−1)(𝑛−2)

3!
𝑥3 +⋯ . 

 (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ , |𝑥| < 1 

 𝑎𝑥 = 1 + 𝑥 log𝑎 +
𝑥2

2!
(log𝑎)2 +

𝑥3

3!
(log𝑎)3 +⋯ 

 

5.4 L’HOSPITAL’S RULE 
 

We shall discuss Taylor’s series in the Block II inspired by this 

result, the famous French mathematicians De L’Hospital devised a 

method to find the values of 
)(

)(
lim

xg

xf

ax
in the forms 

0

0
and 




. 

 

Case I:  Let us see how it works, with the help of Taylor’s 

series. We take the form 
0

0
. 

Let us take 
)(

)(
lim

xg

xf

ax
 where 𝑓(𝑎) = 0, 𝑔(𝑎) = 0 and both 

functions are indefinitely differentiable at 𝑥 = 𝑎. 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓(𝑎 + (𝑥 − 𝑎))

𝑔(𝑎 + (𝑥 − 𝑎))
[
0

0
 𝑓𝑜𝑟𝑚] 
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= lim
𝑥→𝑎

{
𝑓(𝑎) +

(𝑥 − 𝑎)
1! 𝑓′(𝑎) +

(𝑥 − 𝑎)2

2! 𝑓′′(𝑎) +⋯

𝑔(𝑎) +
(𝑥 − 𝑎)
1! 𝑔′(𝑎) +

(𝑥 − 𝑎)2

2! 𝑔′′(𝑎) +⋯
} 

= lim
𝑥→𝑎

{

(𝑥 − 𝑎)
1! 𝑓′(𝑎) +

(𝑥 − 𝑎)2

2! 𝑓′′(𝑎) + ⋯

(𝑥 − 𝑎)
1! 𝑔′(𝑎) +

(𝑥 − 𝑎)2

2! 𝑔′′(𝑎) + ⋯
}    𝑎𝑠  𝑓(𝑎) = 0

= 𝑔(𝑎) 

= lim
𝑥→𝑎

{
(𝑥 − 𝑎)𝑓′(𝑎) +

(𝑥 − 𝑎)2

2! 𝑓′′(𝑎) + ⋯

(𝑥 − 𝑎)𝑔′(𝑎) +
(𝑥 − 𝑎)2

2! 𝑔′′(𝑎) + ⋯
} 

Taking (𝑥 − 𝑎) as common factor, we get 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)

=  lim
𝑥→𝑎

{
𝑓′(𝑎) +

(𝑥 − 𝑎)1

2! 𝑓′′(𝑎) + ⋯

𝑔′(𝑎) +
(𝑥 − 𝑎)1

2! 𝑔′′(𝑎) + ⋯
}                                             (1)                          

   =
𝑓′(𝑎)

𝑔′(𝑎)
 , provided both𝑓′(𝑎)and𝑔′(𝑎)are simultaneously not zero. 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
                                                                            (2) 

If 𝑓′(𝑎) = 0 = 𝑔′(𝑎), then again from equation (1), we have  

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=  lim

𝑥→𝑎
{

(𝑥 − 𝑎)1

2! 𝑓′′(𝑎) +
(𝑥 − 𝑎)2

3! 𝑓′′′(𝑎) + ⋯

(𝑥 − 𝑎)1

2! 𝑔′′(𝑎) +
(𝑥 − 𝑎)2

3! 𝑔′′′(𝑎) +⋯
} 

=  lim
𝑥→𝑎

{

(𝑥 − 𝑎)1

2!
[𝑓′′(𝑎) +

(𝑥 − 𝑎)2

3
𝑓′′′(𝑎) + ⋯ ]

(𝑥 − 𝑎)1

2! [𝑔′′(𝑎) +
(𝑥 − 𝑎)2

3 𝑔′′′(𝑎) +⋯ ]
} 

=  lim
𝑥→𝑎

{
[𝑓′′(𝑎) +

(𝑥 − 𝑎)2

3 𝑓′′′(𝑎) +⋯]

[𝑔′′(𝑎) +
(𝑥 − 𝑎)2

3 𝑔′′′(𝑎) +⋯]
} 

=
𝑓′′(𝑎)

𝑔′′(𝑎)
, provided both𝑓′′(𝑎)and 𝑔′′(𝑎)are simutaneously not zero. 

⇒ lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′′(𝑥)

𝑔′′(𝑥)
 

Continuing in this way, we can get 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓(𝑛)(𝑥)

𝑔(𝑛)(𝑥)
. 

Similarly, we can find the same expression in case of 
∞

∞
. 
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Note:(1) L’Hospital’s rule is totally different from the quotient law of 

differentiation. There is a solid logical base that why we only 

differentiate numerator and denominator directly, instead of using 

quotient law of differentiation. 

 

(2) It must be clearly remembered that L’Hospital’s method be used 

only in the situations of 
0

0
 and 




not in other cases. 

(3) In L’Hospital’s rule, numerator f(x) and denominator g(x) are to be 

differentiated separately. 

(4)It may be helpful for learners that 

0,1,log,0log,01log 0  eeeee , .e  

 

Ex.1 Evaluate 
x

x

x

sin
lim

0
 

Sol. Clearly, 
x

x

x

sin
lim

0
 is a 

0

0
form. 

Algebraic Method:  

lim
𝑥→0

sin 𝑥

𝑥
 =  lim

𝑥→0

[𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+⋯∞]

𝑥
 

                    =  lim
𝑥→0

𝑥 [1 −
𝑥2

3! +
𝑥4

5! −
𝑥6

7! + ⋯∞
]

𝑥
 

                 = lim
𝑥→0

[1 −
𝑥2

3!
+
𝑥4

5!
−
𝑥6

7!
+ ⋯∞] 

=   1.                                    
L’Hospital’sRule:  

lim
𝑥→0

sin𝑥

𝑥
= lim

𝑥→0

(sin 𝑥)′

(𝑥)′
=  lim

𝑥→0

cos 𝑥

1
=  1. 

Note: In second method, dash ( ′ ) above sin𝑥 and 𝑥 represents the first 

derivative with respect to 𝑥 (variable with respect to the limit has been 

taken). 

Ex.2 Evaluate 
1

log
lim

0  x

x

x
 

Sol. Clearly, 
1

log
lim

0  x

x

x
 is a 









0

0
form. 

 

 

Algebraic Method:  

lim
𝑥→1

log 𝑥

𝑥 –  1
= lim
𝑥→1

log(1 + (𝑥 − 1))

(𝑥 –  1)
 

= lim
𝑥→1

{(𝑥 − 1) −
(𝑥 − 1)2

2 +
(𝑥 − 1)3

3 −
(𝑥 − 1)4

4 + ⋯}

(𝑥 − 1)
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= lim
𝑥→1

(𝑥 − 1) {1 −
(𝑥 − 1)1

2 +
(𝑥 − 1)2

3 −
(𝑥 − 1)3

4 +⋯}

(𝑥 − 1)
 

= lim
𝑥→1

{1 −
(𝑥 − 1)1

2
+
(𝑥 − 1)2

3
−
(𝑥 − 1)3

4
+⋯} 

= 1 
L’Hospital’s Rule:  

lim
𝑥→1

log 𝑥

𝑥 –  1
=  lim

𝑥→1

(log 𝑥)′

(𝑥 –  1)′
= lim
𝑥→1

(
1
𝑥
)

1
= 1. 

Ex.3 Find 
20

sin
lim

x

xx

x




 

Sol.      Algebraic Method: 

lim
𝑥→0

(𝑥 − sin 𝑥)

𝑥3
= lim
𝑥→0

{𝑥 − (𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+⋯∞)}

𝑥3
 

 ( 
𝟎

𝟎
 form) 

= lim
𝑥→0

{
𝑥3

3!
−
𝑥5

5!
+
𝑥7

7!
− ⋯∞}

𝑥3
 

 

= lim
𝑥→0

𝑥3 {
1
3! −

𝑥2

5! +
𝑥4

7! − ⋯∞
}

𝑥3
 

 

= lim
𝑥→0
{
1

3!
−
𝑥2

5!
+
𝑥4

7!
− ⋯∞} 

 

=
1

3!
=  
1

6
 . 

 

L’Hospital’s Rule:  

lim
𝑥→0

(𝑥 − sin 𝑥)

𝑥3
= lim
𝑥→0

(𝑥 − sin 𝑥)′

(𝑥3)′
 

= lim
𝑥→0

(1 − cos 𝑥)

3𝑥2
 

= lim
𝑥→0

(1 − cos 𝑥)′

(3𝑥2)′
 

= lim
𝑥→0

{−(− sin 𝑥)}

6𝑥
 

= lim
𝑥→0

(sin 𝑥)′

(6𝑥)′
 

= lim
𝑥→0

(cos 𝑥)

6
 

=
1

6
 . 

Ex.4 Find 
x

e x

x

1
lim

0




 

Sol.     Algebraic Method: 

lim
𝑥→0

𝑒𝑥 − 1

𝑥
= lim
𝑥→0

{1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯ } − 1

𝑥
 

( 
𝟎

𝟎
 form) 
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= lim
𝑥→0

{𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯ }

𝑥
 

 

= lim
𝑥→0

𝑥 {1 +
𝑥1

2!
+
𝑥2

3!
+ ⋯ }

𝑥
 

 

= lim
𝑥→0

{1 +
𝑥1

2!
+
𝑥2

3!
+ ⋯ } 

 

= 1.  

 

L’Hospital’s Method:  

lim
𝑥→0

𝑒𝑥 − 1

𝑥
= lim

𝑥→0

(𝑒𝑥 − 1)′

(𝑥)′
=  lim

𝑥→0

𝑒𝑥

1
=  1. 

Ex.5 Evaluate 
20

)1log(cos
lim

x

xxx

x




 

Sol.     Algebraic Method: 

lim
𝑥→0

𝑥𝑐𝑜𝑠 𝑥 − log(1 + 𝑥)

𝑥2
 

 
𝟎

𝟎
 

form 

 = lim
𝑥→0

𝑥 (1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+ ⋯ ) − (𝑥 −

𝑥2

2
+
𝑥3

3
−
𝑥4

4
+ ⋯ )

𝑥2
 

 

= lim
𝑥→0

(𝑥 −
𝑥3

2!
+
𝑥5

4!
−
𝑥7

6!
+ ⋯ ) − (𝑥 −

𝑥2

2
+
𝑥3

3
−
𝑥4

4
+ ⋯ )

𝑥2
 

 

= lim
𝑥→0

𝑥2

2
− (

1
2!
+
1
3
) 𝑥3 + 𝑡𝑒𝑟𝑚𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔ℎ𝑖𝑔ℎ𝑒𝑟𝑝𝑜𝑤𝑒𝑟𝑠𝑜𝑓𝑥

𝑥2
 

 

= lim
𝑥→0

𝑥2 {
1
2 −

5
6 𝑥 + 𝑡𝑒𝑟𝑚𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑥

}

𝑥2
 

 

= lim
𝑥→0

{
1

2
−
5

6
𝑥 + 𝑡𝑒𝑟𝑚𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥} 

 

=
1

2
 . 

 

L’Hospital’s Rule:  

lim
𝑥→0

𝑥𝑐𝑜𝑠 𝑥 − log(1 + 𝑥)

𝑥2
  

𝟎

𝟎
  form 

= lim
𝑥→0

{𝑥𝑐𝑜𝑠 𝑥 − log(1 + 𝑥)}′

(𝑥2)′
 

 

= lim
𝑥→0

1. cos 𝑥 − 𝑥(sin 𝑥) −
1

(1 + 𝑥)

2𝑥
 

 
𝟎

𝟎
 form) 

= lim
𝑥→0

(cos 𝑥 − 𝑥 sin 𝑥 −
1

(1 + 𝑥)
)′

(2𝑥)′
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=  lim
𝑥→0

−sin 𝑥 − (1. sin 𝑥 + 𝑥. cos 𝑥) +
1

(1 + 𝑥)2

2
 

 

= lim
𝑥→0

−2sin 𝑥 − 𝑥. cos 𝑥 +
1

(1 + 𝑥)2

2
 

 

=
1

2
 . 

 

 

Note: Observe that L’Hospital’s rule is sometimes easier than the 

algebraic method. We will explain next examples only by L’Hospital’s 

rule. 

 

Ex.6 Evaluate
x

x

x coslog

)1log(
lim

2

0




 

Sol.  𝑙𝑖𝑚
𝑥→0

𝑙𝑜𝑔(1−𝑥2)

𝑙𝑜𝑔 𝑐𝑜𝑠 𝑥
  

𝟎

𝟎
 

form 

= lim
𝑥→0

{log(1 − 𝑥2)}′

(log cos 𝑥)′
 

 

= lim
𝑥→0

{
−2𝑥

(1 − 𝑥2)
}

{
− sin 𝑥
cos 𝑥

}
 

 

= lim
𝑥→0

2𝑥 cos 𝑥

(1 − 𝑥2) sin 𝑥
 

 

= lim
𝑥→0

2(1. cos 𝑥 − 𝑥. sin 𝑥)

(−2𝑥). sin 𝑥 + (1 − 𝑥2). cos 𝑥
 

 

= lim
𝑥→0

2 cos 𝑥 − 2𝑥 sin 𝑥

−2𝑥 sin 𝑥 + cos 𝑥 − 𝑥2 cos 𝑥
 

 

= 
2

1
= 2  

 

Ex.7 Find 
x

x n

x

1)1(
lim

0




 

Sol.      lim
𝑥→0

(1+𝑥)𝑛−1

𝑥
= lim

𝑥→0

{(1+𝑥)𝑛−1}′

{𝑥}′
 

= lim
𝑥→0

𝑛(1 + 𝑥)𝑛−1

1
 

= 𝑛 

Ex.8 Evaluate 
ax

ax

x ax

xa





0
lim  

Sol.      lim
𝑥→𝑎

𝑎𝑥−𝑥𝑎

𝑥𝑥 −𝑎𝑎
= lim
𝑥→𝑎

(𝑎𝑥−𝑥𝑎)′

(𝑥𝑥 −𝑎𝑎)′
= lim
𝑥→𝑎

𝑎𝑥 log 𝑎−𝑎.𝑥𝑎−1

𝑥𝑥 (log 𝑥+1)
 

 

=
𝑎𝑎 log𝑎 − 𝑎. 𝑎𝑛−1

𝑎𝑎 log𝑎 +𝑎𝑎
=
𝑎𝑎(log𝑎 − 1)

𝑎𝑎(log𝑎 + 1)
=  
log𝑎 − 1

log𝑎 + 1
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Note: The first derivate of 𝑥𝑥 in above example calculated as follows: 

𝑦 = 𝑥𝑥 
Taking logarithms 

log𝑦 = 𝑥 log𝑥 

Now differentiating both sides with respect to 𝑥 
1

𝑦
(
𝑑𝑦

𝑑𝑥
) = log𝑥 + 1 

(
𝑑𝑦

𝑑𝑥
) = y(log𝑥 + 1) = 𝑥𝑥(log𝑥 + 1). 

Ex.9 Evaluate 
xx

xxx

x 



 tan

3sin32sin7sin5
lim

0
 

Sol.      lim
𝑥→0

5sin 𝑥−7sin 2𝑥+3sin 3𝑥

tan 𝑥
 

= lim
𝑥→0

(5 sin 𝑥 − 7 sin 2𝑥 + 3 sin 3𝑥)′

(tan 𝑥 − 𝑥)′
 

= lim
𝑥→0

5 cos 𝑥 − 7 × 2 cos 2𝑥 + 3 × 3 cos3𝑥

𝑠𝑒𝑐 2 𝑥 − 1 
 

= lim
𝑥→0

(5 cos 𝑥 − 14 cos2𝑥 + 9 cos3𝑥)′

(𝑠𝑒𝑐 2 𝑥 − 1)′ 
 

= lim
𝑥→0

−5 sin 𝑥 + 14. 2 sin 2𝑥 − 9.3 sin 3𝑥

2 sec 𝑥 tan 𝑥
 

= lim
𝑥→0

−5 cos𝑥 + 28. 2 cos2𝑥 − 27. 3 cos3𝑥

2(sec 𝑥 𝑠𝑒𝑐2𝑥 + sec 𝑥 tan 𝑥 tan 𝑥)
 

=
−5+ 56 − 81

2
=  
−30

2
=  −15 . 

Ex.10 Evaluate 
xx

ee xx

x sin
lim

sin

0 




 

Sol.      lim
𝑥→0

𝑒𝑥−𝑒sin 𝑥

𝑥−sin 𝑥
= lim

𝑥→0

(𝑒𝑥−𝑒sin 𝑥)′

(𝑥−sin 𝑥)′
 

 

= lim
𝑥→0

𝑒𝑥 − cos𝑥 . 𝑒sin 𝑥

1 − cos𝑥
 

= lim
𝑥→0

(𝑒𝑥 − cos𝑥 . 𝑒sin 𝑥)′

(1 − cos𝑥)′
 

= lim
𝑥→0

𝑒𝑥 − {cos 𝑥 . cos 𝑥. 𝑒sin 𝑥 + (−sin 𝑥). 𝑒sin 𝑥}

sin 𝑥
 

= lim
𝑥→0

{𝑒𝑥 − cos2 𝑥 . 𝑒sin 𝑥 + sin 𝑥. 𝑒sin 𝑥}′

(sin 𝑥)′
 

= lim
𝑥→0

𝑒𝑥 − {2 cos 𝑥 . (−sin 𝑥). 𝑒sin 𝑥 + cos3 𝑥 . 𝑒sin 𝑥} + {cos 𝑥.  𝑒sin 𝑥 + sin 𝑥 cos 𝑥. 𝑒sin 𝑥}

cos 𝑥
 

= lim
𝑥→0

𝑒𝑥 + 3 sin 𝑥 cos 𝑥.  𝑒sin 𝑥 − cos3 𝑥 . 𝑒sin 𝑥 + cos 𝑥.  𝑒sin 𝑥

cos 𝑥
 

=
1− 1 + 1

1
= 1. 
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Case II: Form 
∞

∞
 

Ex.11 Evaluate 
34

5
lim

2

2





 nn

n

n
 

Sol.      Clearly, 
34

5
lim

2

2





 nn

n

n
is a 




form.  

Algebraic Method: 

𝑙𝑖𝑚
𝑛→∞

𝑛2 + 5

𝑛2 + 4𝑛 + 3
=  𝑙𝑖𝑚

𝑛→∞

𝑛2 (1 +
5
𝑛2
)

𝑛2 (1 +
4
𝑛
+
3
𝑛2
)
=  𝑙𝑖𝑚

𝑛→∞

(1 +
5
𝑛2
)

(1 +
4
𝑛
+
3
𝑛2
)
=1 . 

L’Hospital’s Method: 

 

𝑙𝑖𝑚
𝑛→∞

𝑛2 + 5

𝑛2 + 4𝑛 + 3
 

 

=  𝑙𝑖𝑚
𝑛→∞

(𝑛2 + 5)′

(𝑛2 + 4𝑛 + 3)′
 

 

= 𝑙𝑖𝑚
𝑛→∞

2𝑛

2𝑛 + 4
 

(Again 
∞

∞
 

form) 

 = 𝑙𝑖𝑚
𝑛→∞

(2𝑛)′

(2𝑛 + 4)′
 

 

= 𝑙𝑖𝑚
𝑛→∞

2

2
 

 

= 1 .  

Ex.12 Evaluate 
x

x

x cot

log
lim

0
 

Sol.      This is of the form 
∞

∞
.  We have therefore,  

lim
𝑥→0

𝑙𝑜𝑔 𝑥

𝑐𝑜𝑡 𝑥
=  lim

𝑥→0

(𝑙𝑜𝑔 𝑥)′

(𝑐𝑜𝑡 𝑥)′
= lim
𝑥→0

(
1
𝑥
)

−𝑐𝑜𝑠𝑒𝑐2𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚)

=  lim
𝑥→0

− 𝑠𝑖𝑛2𝑥

𝑥
(
0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

−2𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥

1
= 0. 

Ex.13 Find 
x

x

x tan

)
2

log(

lim

2









 

Sol. 
x

x

x tan

)
2

log(

lim

2









is a 
∞

∞
 form. 

We have,  
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lim
𝑥→

𝜋
2

log (𝑥 −
𝜋
2)

tan 𝑥
=  lim

𝑥→
𝜋
2

[log (𝑥 −
𝜋
2)]′ 

(tan 𝑥)′
= lim
𝑥→

𝜋
2

(
1

(𝑥 −
𝜋
2)
)

𝑠𝑒𝑐2𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→

𝜋
2

𝑐𝑜𝑠2𝑥

(𝑥 −
𝜋
2)
 (
0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→

𝜋
2

(𝑐𝑜𝑠2𝑥)′

(𝑥 −
𝜋
2) ′

 

= lim
𝑥→

𝜋
2

−2 cos𝑥 sin 𝑥

1
 

= 0. 

Ex.14 Evaluate 
)log(

)log(
lim

axax ee

ax






 

Sol.      lim
𝑥→𝑎

log(𝑥−𝑎)

log(𝑒𝑥−𝑒𝑎)
(
∞

∞
 𝑓𝑜𝑟𝑚) =  lim

𝑥→𝑎

(log(𝑥−𝑎))′

(log(𝑒𝑥−𝑒𝑎))′
 

= lim
𝑥→𝑎

(
1

𝑥 − 𝑎)

(
1

𝑒𝑥 − 𝑒𝑎) 𝑒
𝑥
 

=  lim
𝑥→𝑎

𝑒𝑥 − 𝑒𝑎

(𝑥 − 𝑎)𝑒𝑥
(
0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→𝑎

(𝑒𝑥 − 𝑒𝑎)′

[(𝑥 − 𝑎)𝑒𝑥]′
 

= lim
𝑥→𝑎

𝑒𝑥

(𝑥 − 𝑎)𝑒𝑥 + 𝑒𝑥
 

= lim
𝑥→𝑎

𝑒𝑥

[(𝑥 − 𝑎) + 1]𝑒𝑥
 

= lim
𝑥→𝑎

1

[(𝑥 − 𝑎) + 1]
 

= 1 

Ex.15 Find 
xe

xe
x

x

x 44

3
lim

3






 

Sol. lim
𝑛→∞

𝑒𝑥+3𝑥3

4𝑒𝑥+4𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑛→∞

(𝑒𝑥 + 3𝑥3)′

(4𝑒𝑥 + 4𝑥)′
 

=  lim
𝑛→∞

𝑒𝑥 + 9𝑥2

4𝑒𝑥 + 4
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑛→∞

(𝑒𝑥 + 9𝑥2)′

(4𝑒𝑥 + 4)′
 

= lim
𝑛→∞

𝑒𝑥 + 18𝑥1

4𝑒𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 
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= lim
𝑛→∞

(𝑒𝑥 + 18𝑥1)′

(4𝑒𝑥)′
 

= lim
𝑛→∞

(𝑒𝑥 + 18)

4𝑒𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑛→∞

𝑒𝑥

4𝑒𝑥
 

=
1

4
. 

Ex.16 Evaluate 
)log(tan

)2log(tan
lim

2

2

0 x

x

x
 

Sol.      We have,  

lim
𝑥→0

log(𝑡𝑎𝑛22𝑥)

log(𝑡𝑎𝑛2𝑥)
(
∞

∞
𝑓𝑜𝑟𝑚) = lim

𝑥→0

2 log(tan 2𝑥)

2 log(tan 𝑥)
(
∞

∞
𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

(log(tan 2𝑥))′

(log(tan 𝑥))′
=  lim

𝑥→0

(
1

tan 2𝑥) . 2 𝑠𝑒𝑐
22𝑥

(
1

tan 𝑥
).  𝑠𝑒𝑐2𝑥

 

= lim
𝑥→0

2 tan 𝑥 𝑐𝑜𝑠2𝑥

tan 2𝑥 𝑐𝑜𝑠22𝑥
= lim

𝑥→0

2 sin 𝑥 cos 𝑥

sin 2𝑥 cos2𝑥
 

= lim
𝑥→0

sin 2𝑥

sin 2𝑥 cos2𝑥
=  lim

𝑥→0

1

cos2𝑥
=
1

1
= 1. 

 

Ex.17 Evaluate
x

x

x cot

)log(sin
lim

0
 

Sol.     We have,  

lim
𝑥→0

log (sin 𝑥)

cot 𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) =  lim

𝑥→0

(log(sin 𝑥))′ ′

(cot 𝑥)′
 

= lim
𝑥→0

1
sin 𝑥 . cos 𝑥

−𝑐𝑜𝑠𝑒𝑐2𝑥
=  lim

𝑥→0
(−
cos 𝑥

sin 𝑥
. 𝑠𝑖𝑛2𝑥) 

= lim
𝑥→0
(−cos 𝑥. sin 𝑥) = 0. 

Ex.18 Find 
x

n

n e

x


lim , where 𝑛 is a positive integer. 

Sol.      We have, 

lim
𝑥→∞

𝑥𝑛

𝑒𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) = lim

𝑥→∞

(𝑥𝑛)′

(𝑒𝑥)′
= lim

𝑥→∞

𝑛𝑥𝑛−1

𝑒𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→∞

(𝑛𝑥𝑛−1)′

(𝑒𝑥)′
= lim
𝑛→∞

𝑛(𝑛 − 1)𝑥𝑛−2

𝑒𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑛→∞

(𝑛(𝑛 − 1)𝑥𝑛−2)′

(𝑒𝑥)′

= lim
𝑛→∞

𝑛(𝑛 − 1)(𝑛 − 2)𝑥𝑛−3

𝑒𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

Repeating this process, we get 

= lim
𝑛→∞

(𝑛(𝑛 − 1)(𝑛 − 2)…𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)

𝑒𝑥
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= lim
𝑛→∞

𝑛!

𝑒𝑥
= 
𝑛!

𝑒∞
=
𝑛!

∞
= 0. 

Ex.19 Find 
x

x

x sinlog

2sinlog
lim

0
 

Sol.      We have,  

lim
𝑥→0

log sin 2𝑥

log sin 𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

(log sin 2𝑥)′

(log sin 𝑥)′
 

=  lim
𝑥→0

(
2

sin 2𝑥 . cos 2𝑥)

(
1
sin 𝑥 . cos 𝑥)

 

= lim
𝑥→0

2 cot 2𝑥

cot 𝑥
(
∞

∞
𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

(2 cot2𝑥)′

(cot 𝑥)′
 

= lim
𝑥→0

−4 𝑐𝑜𝑠𝑒𝑐2 2𝑥

−𝑐𝑜𝑠𝑒𝑐2 𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

4 𝑠𝑖𝑛2𝑥

𝑠𝑖𝑛22𝑥
 

= lim
𝑥→0

4 𝑠𝑖𝑛2𝑥

(2 sin 𝑥 cos 𝑥)2
 

= lim
𝑥→0

1

𝑐𝑜𝑠2𝑥
= 1. 

Ex.20 Find 1,
log

lim 


a
a

x
xx

. 

Sol.     We have,  

lim
𝑥→∞

log𝑥

𝑎𝑥
(
∞

∞
 𝑓𝑜𝑟𝑚) = lim

𝑥→∞

(log𝑥)′

(𝑎𝑥)′
 

= lim
𝑥→∞

(
1
𝑥)

𝑎𝑥 log𝑎
 

= 
1

log 𝑎
lim
𝑥→∞

1

𝑥 𝑎𝑥
 

=
1

log𝑎
× 0 = 0.  

5.5 OTHER INDETERMINATE FORMS  
 

Forms 𝟎 ×∞ and ∞−∞ 

These forms can easily be reduced either to the form 
0

0
or




, and then 

apply previous method. 
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(I) Consider )().(lim xgxf
ax

, when 0)(lim 


xf
ax

 and 




)(lim xg
ax

, then 

lim
𝑥→𝑎

𝑓(𝑥).𝑔(𝑥) (0 × ∞ 𝑓𝑜𝑟𝑚) = lim
𝑥→𝑎

𝑓(𝑥)

(
1
𝑔(𝑥)

)
(
0

0
 𝑓𝑜𝑟𝑚) 

Or 

lim
𝑥→𝑎

𝑓(𝑥). 𝑔(𝑥) (0 × ∞ 𝑓𝑜𝑟𝑚) = lim
𝑥→𝑎

𝑔(𝑥)

(
1
𝑓(𝑥)

)
(
∞

∞
 𝑓𝑜𝑟𝑚). 

Consider lim
𝑥→𝑎

𝑓(𝑥) − 𝑔(𝑥), 

when lim
𝑥→𝑎

𝑓(𝑥) = ∞, and lim
𝑥→𝑎

𝑔(𝑥) = ∞, then 

lim
𝑥→𝑎

𝑓(𝑥) − 𝑔(𝑥) (∞ −∞ 𝑓𝑜𝑟𝑚) 

=  lim
𝑥→𝑎

𝑓(𝑥). 𝑔(𝑥)[𝑓(𝑥) − 𝑔(𝑥)]

𝑓(𝑥). 𝑔(𝑥)
 

= lim
𝑥→𝑎

(
𝑓(𝑥) − 𝑔(𝑥)
𝑓(𝑥).𝑔(𝑥)

)

(
1

𝑓(𝑥).𝑔(𝑥)
)

 

= lim
𝑥→𝑎

(
𝑓(𝑥)

𝑓(𝑥). 𝑔(𝑥)
−

𝑔(𝑥)
𝑓(𝑥). 𝑔(𝑥)

)

(
1

𝑓(𝑥). 𝑔(𝑥)
)

 

= lim
𝑥→𝑎

(
1
𝑔(𝑥)

−
1
𝑓(𝑥)

)

(
1

𝑓(𝑥).𝑔(𝑥)
)
(
0

0
 𝑓𝑜𝑟𝑚) 

Ex.21 Evaluate 0loglim
0




xx
x

. 

Sol.      We have,  

= )0(loglim
0

formxx
x




 

= 




















form

x

x

x 1

log
lim

0
= lim
𝑥→0

(log 𝑥)′

(
1

𝑥
)′

 

= lim
𝑥→0

(
1
𝑥)

− (
1
𝑥)

2 

= lim
𝑥→0
(−𝑥) =0. 

Ex.22.  Evaluate ).tan(seclim

2

xx
x





 

Sol.We have, 
















 




form
x

x
formxx

xx 0

0

cos

sin1
lim)()tan(seclim

22


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= lim
𝑥→
𝜋
2

(1 − sin 𝑥)′

(cos 𝑥)′
 

= lim
𝑥→

𝜋
2

−cos𝑥

− sin 𝑥
= 0. 

 

5.6 THE FORMS 𝟎𝟎, 𝟏∞ AND ∞𝟎 
 

These indeterminate forms can be made to depend upon one of the 

previous forms. 

Consider, 𝑦 = 𝑓(𝑥)𝑔(𝑥), taking logarithm 

log𝑦 = 𝑔(𝑥) log 𝑓(𝑥) 
In any of the above forms, log𝑦 takes the form 0 × ∞.  

Ex.23 Evaluate 

.1lim

x

x x

a











 

Sol.       Let (1 +
𝑎

𝑥
)
𝑥

(1∞𝑓𝑜𝑟𝑚) = 𝐿 

log 𝐿 =  lim
𝑥→∞

{𝑥 log (1 +
𝑎

𝑥
)} (0 × ∞ 𝑓𝑜𝑟𝑚) 

=  lim
𝑥→∞

log (1 +
𝑎
𝑥)

(
1
𝑥)

(
0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→∞

(1 +
𝑎
𝑥)
−1 . (−𝑎 𝑥−2)

−𝑥−2
 

= lim
𝑥→∞

𝑎 (1 +
𝑎

𝑥
)
−1

= 𝑎. 

Therefore, log𝐿 = 𝑎  ⟹ 𝐿 = 𝑒𝑎 . 

Ex.24 Evaluate )()(coslim 0log

1

0
formecx x

x



 

Sol.     Let 𝑦 = lim
𝑥→0
(𝑐𝑜𝑠𝑒𝑐 𝑥)

1

log𝑥                     (∞0 𝑓𝑜𝑟𝑚) 

log𝑦 = lim
𝑥→0

1

log𝑥
(log 𝑐𝑜𝑠𝑒𝑐 𝑥)            (

∞

∞
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

(
1

𝑐𝑜𝑠𝑒𝑐 𝑥
)(−𝑐𝑜𝑠𝑒𝑐 𝑥 cot 𝑥)

1
𝑥

 

= lim
𝑥→0

−𝑥

tan 𝑥
(
0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

−(𝑥)′

(tan 𝑥)′
 

= lim
𝑥→0

−1

𝑠𝑒𝑐2𝑥
 

= −1. 

Therefore, 𝑦 =  𝑒−1 =
1

𝑒
. 
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Ex.25 Evaluate 
2

1

0
)(coslim x

x
x


 

Sol.      Let  lim
𝑥→0
(cos 𝑥)

1

𝑥2 (1∞ 𝑓𝑜𝑟𝑚) = 𝑦. 

log𝑦 = lim
𝑥→0

log cos 𝑥

𝑥2
(
0

0
 𝑓𝑜𝑟𝑚) 

= lim
𝑥→0

− tan 𝑥

2𝑥
 

= −
1

2
lim
𝑥→0

tan 𝑥

𝑥
=
−1

2
. 

Hence, 𝑦 = 𝑒
−1

2 . 
 

5.7 EVALUATION OF EXPONENTIAL LIMITS 

OF THE FORM 𝟏∞ 
 

To evaluate the exponential form 1∞, we use the following procedures: 

If 0)(lim)(lim 


xgxf
axax

, then 

  )(

)(
lim

)(

1

)(1lim xg

xf

xg
ax

ax

exf





                                                                   

………..(7) 

                    Or, 

When 1)(lim 


xf
ax

and 


)(lim xg
ax

then  

lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) = lim
𝑥→𝑎

(1 + 𝑓(𝑥) − 1)𝑔(𝑥) =

 𝑒
lim
𝑥→𝑎

(𝑓(𝑥)−1)𝑔(𝑥)
...............(8) 

Ex.26 Evaluate .)1(lim

1

0

x

x
x


 

Sol.      Here, 𝑓(𝑥) = 𝑥, and 𝑔(𝑥) = 𝑥. 
Clearly,  lim

𝑥→𝑎
𝑓(𝑥) = 0, lim

𝑥→𝑎
𝑔(𝑥) = 0 

Hence, lim
𝑥→0
(1 + 𝑥)

1

𝑥 = 𝑒
lim
𝑥→0

𝑥

𝑥{using equation (7)} 

= 𝑒. 

Ex.27 Find lim
𝑥→∞

(1 +
1

𝑥
)
𝑥

. 

Sol.      Here, 𝑓(𝑥) =
1

𝑥
, and 𝑔(𝑥) =

1

𝑥
. lim
𝑥→∞

𝑓(𝑥) = lim
𝑥→∞

1

𝑥
=

                0 and lim
𝑥→∞

𝑔(𝑥) = lim
𝑥→∞

1

𝑥
= 0.Hence,  

lim
𝑥→∞

(1 +
 1

𝑥
)
𝑥

= 𝑒
lim
𝑥→∞

𝑓(𝑥)
𝑔(𝑥) = 𝑒

lim
𝑥→∞

𝑥
𝑥 = 𝑒. 

Ex.28 Find lim
𝑥→0
(1 + 𝜆𝑥)

1

𝑥. 

Sol.      Here, 𝑓(𝑥) = 1 + 𝜆𝑥, and 𝑔(𝑥) =
1

𝑥
. 

lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0
(1+ 𝜆𝑥) = 1,and lim

𝑥→0
𝑔(𝑥) = lim

𝑥→0

1

𝑥
= ∞. 
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Hence, lim
𝑥→0
(1 + 𝜆𝑥)

1

𝑥 = 𝑒
lim
𝑥→0

𝜆𝑥

𝑥 = 𝑒𝜆 . 

Ex.29 Find lim
𝑥→∞

(1 +
𝜆

𝑥
)
𝑥

. 

Sol.      We have, 

𝑓(𝑥) =  1 +
𝜆

𝑥
and 𝑔(𝑥) = 𝑥. 

lim
𝑥→∞

𝑓(𝑥) = lim
𝑥→∞

(1+ 
𝜆

𝑥
) = 1 and lim

𝑥→∞
𝑔(𝑥) = lim

𝑥→∞
𝑥 = ∞. 

Hence, lim
𝑥→∞

(1 +
𝜆

𝑥
)
𝑥

= 𝑒
lim
𝑥→𝑎

𝜆

𝑥
.  𝑥
=  𝑒𝜆. 

Ex.30 Evaluate: lim
𝑥→∞

(1 +
2

𝑥
)
𝑥

 

Sol.      We have, lim
𝑥→∞

(1 +
2

𝑥
)
𝑥

= 𝑒
lim
𝑥→∞

2

𝑥
.𝑥
= 𝑒2. 

Ex.31 Evaluate: lim
𝑥→∞

(
𝑥+6

𝑥+1
)
𝑥+4

 

Sol.     As 𝑥 → ∞, lim
𝑥→∞

𝑥+6

𝑥+1
= 1 and (𝑥 + 4) → ∞ 

lim
𝑥→∞

(
𝑥 + 6

𝑥 + 1
)
𝑥+4

= lim
𝑥→∞

(1 + (
𝑥 + 6

𝑥 + 1
− 1))

𝑥+4

= lim
𝑥→∞

(1 +
5

𝑥 + 1
)

𝑥+4

 

= 𝑒
lim
𝑥→∞

(
5
𝑥+1

)(𝑥+4)
 

= 𝑒
lim
𝑥→∞

5.(
𝑥+4
𝑥+1

)
 

= 𝑒
5 lim
𝑥→∞

(
𝑥+4
𝑥+1

)
 

Consider, lim
𝑥→∞

(
𝑥+4

𝑥+1
) (

∞

∞
𝑓𝑜𝑟𝑚) 

= lim
𝑥→∞

(𝑥 + 4)′

(𝑥 + 1)′
= lim
𝑥→∞

1

1
= 1. 

Now,  𝑒
5 lim
𝑥→∞

(
𝑥+4

𝑥+1
)
= 𝑒5.(1) = 𝑒5. 

Ex.32 Evaluate: lim
𝑥→∞

(
𝑥−3

𝑥+2
)
𝑥

 

Sol.      lim
𝑥→∞

(
𝑥−3

𝑥+2
)
𝑥

= lim
𝑥→∞

(1 + (
𝑥−3

𝑥+2
− 1))

𝑥

 

= lim
𝑥→∞

(1 +
−5

𝑥 + 2
)

𝑥

 

= 𝑒
lim
𝑥→∞

(
−5
𝑥+2

)𝑥
 

= 𝑒
−5 lim

𝑥→∞

𝑥
𝑥+2 

Consider, lim
𝑥→∞

𝑥

𝑥+2
(
∞

∞
 𝑓𝑜𝑟𝑚) = lim

𝑥→∞

(𝑥)′

(𝑥+2)′
= lim
𝑥→∞

1

1
= 1. 

Now,  𝑒
−5 lim

𝑥→∞

𝑥

𝑥+2 = 𝑒−5. 
Ex.33 Evaluate: lim

𝑥→1
(log3 3𝑥)

log𝑥 3 

Sol.      lim
𝑥→1
(log3 3𝑥)

log𝑥 3 = lim
𝑥→1
(log3 3 + log3 𝑥)

log𝑥 3 
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= lim
𝑥→1
(1 + log3 𝑥)

1
log3𝑥  

= 𝑒
lim
𝑥→1

log3 𝑥 ×
1

log3 𝑥 = 𝑒1. 
 

5.8 SUMMARY  
 

In this unit, we are familiar with the seven standard 

indeterminate forms. We studied the limit of 
𝑓(𝑥)

𝑔(𝑥)
 as 𝑥 → 𝑎, in general, 

equal to the limit of the numerator divided by the limit of the 

denominator. But when these two limits are both zero, this limit 

reduces to 
0

0
 (meaningless). This does not imply that lim

𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
 is 

meaningless or it does not exist.  Now, According to our plan we 

understood the concept of limit (in previous unit) and evaluation of 

limits of different forms and then the existence of limits. After 

understanding this unit, we summarize the results to problems of 

evaluation of limits as follows: 

 

(1) Algebraic Limits: Limits of algebraic forms are further sub-

classified as 

(i) 
𝟎

𝟎
 𝒇𝒐𝒓𝒎 : These form are based on 

(a) Factorization Method: In this method numerators 

and denominators are factorized. The common 

factors are cancelled and the rest output is result. 

(b) Rationalization Method: When we have fractional 

powers on expressions in numerator or denominator 

or in both, rationalize it. After rationalization the 

terms are factorized which on cancellation gives the 

result. 

(c) Standard Formula:  

lim
𝑥→𝑎

𝑥𝑛−𝑎𝑛

𝑥−𝑎
=

𝑛𝑎𝑛−1, 𝑤ℎ𝑒𝑟𝑒  𝑛 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 . 
(d) L’Hospital’s Rule: 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
, provided the later limit exists. 

But, if it again take form 
0

0
, then 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim

𝑥→𝑎

𝑓′′(𝑥)

𝑔′′(𝑥)
and this process is 

continued till 
0

0
 form is removed. 

(ii) 
∞

∞
 𝒇𝒐𝒓𝒎 :  

(a) These types of problems are solved by taking the 

highest power of the terms tending to infinity as 

common numerator and denominator. After that 

they are cancelled and the rest output is the result. 
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(b) L’Hospital’s Rule: 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
, provided the later limit exists. 

But, if it again takes
∞

∞
, formthen 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim

𝑥→𝑎

𝑓′′(𝑥)

𝑔′′(𝑥)
and this process is 

continued till 
∞

∞
 form is removed. 

(iii) ∞−∞ 𝒇𝒐𝒓𝒎  :  

(a) Such problems are simplified (rationalization etc.) 

first, thereafter they generally acquire 
0

0 
 or 

∞

∞
 form. 

(2) Trigonometric Limits:  

(i) To evaluate trigonometric limits the following 

results are very important. 

(a) lim
𝑥→0

𝑠𝑖𝑛 𝑥

𝑥
= 1 

(b) lim
𝑥→0

𝑡𝑎𝑛 𝑥

𝑥
= 1 

(c) lim
𝑥→0

cos 𝑥 = 1 

(d) lim
𝑥→0

1−𝑐𝑜𝑠 𝑥

𝑥
= 0. 

(ii) Expansion Method: Sometimes following 

expansions are useful for evaluating the 

trigonometric limits. 

𝑠𝑖𝑛 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+ ⋯∞. 

cos 𝑥 = 1 − 
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+ ⋯∞. 

tan 𝑥 =𝑥 +
𝑥3

3
+
2𝑥5

15
+ ⋯∞. 

sin−1 𝑥 = 𝑥 +
𝑥3

6
+ 
3𝑥5

40
+⋯∞. 

sin ℎ𝑥 = 𝑥 +
𝑥3

3!
+
𝑥5

5!
+
𝑥7

7!
+⋯∞. 

cosℎ𝑥 = 1 +
𝑥2

2!
+
𝑥4

4!
+
𝑥6

6!
+⋯∞. 

 

(iii) If  
0

0 
 or 

∞

∞
 form, then apply L’Hospital’s Rule. 

(3) Logarithmic Limits:  

(i) Expansion Method: To evaluate logarithmic 

limit the following expansions are useful. 

log(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
−
𝑥4

4
+⋯∞,

|𝑥| < 1.  

log(1 − 𝑥) = −(𝑥 +
𝑥2

2
+
𝑥3

3
+
𝑥4

4
+ ⋯∞) ,

|𝑥| < 1. 
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(ii) If  
0

0 
 or 

∞

∞
 form, then apply L’Hospital’s Rule. 

 

(4) Exponential Limits:  

(i) Expansion Method:  

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+⋯∞. 

 

(ii) Standard Formula: Sometimes we use the 

following results. 

(a) lim
𝑥→0

𝑒𝑥−1

𝑥
= 1. 

(b) lim
𝑥→0

𝑎𝑥−1

𝑥
= 1. 

(iii) 𝟏∞ 𝒇𝒐𝒓𝒎:If lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

𝑔(𝑥) = 0, then  

lim
𝑥→𝑎

{1 + 𝑓(𝑥)}
1

𝑔(𝑥) = 𝑒
lim   
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥) 

                                Or, When lim
𝑥→𝑎

𝑓(𝑥) = 1,and lim
𝑥→𝑎

𝑔(𝑥) = ∞, then  

lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) = lim
𝑥→𝑎

(1 + 𝑓(𝑥) − 1)𝑔(𝑥) = 𝑒
lim
𝑥→𝑎

(𝑓(𝑥)−1)𝑔(𝑥)
. 

(iv) L’Hospital’s Rule. 

 

(5) Some Important limits: 

(i) lim
𝑥→∞

𝑎𝑥 = {

∞,          𝑖𝑓 𝑎 > 1
1,          𝑖𝑓 𝑎 = 1
0,   𝑖𝑓 0 ≤ 𝑎 < 1 

 

(ii) If  m and n are positive integers and 𝑎0, 𝑏0are 

non-zero real numbers, then 

 

 

lim
𝑥→∞

𝑎0𝑥
𝑚 + 𝑎1𝑥

𝑚−1 +⋯+ 𝑎𝑚−1𝑥 + 𝑎𝑚
𝑏0𝑥𝑛 + 𝑏1𝑥𝑛−1 +⋯+ 𝑏𝑛−1𝑥 + 𝑏𝑛

 

 

=

{
 
 

 
 
0,                                    𝑚 < 𝑛

𝑎0
𝑏0
,                                  𝑚 = 𝑛      

∞,     𝑚 > 𝑛 𝑤ℎ𝑒𝑛 𝑎0𝑏0 > 0
−∞,     𝑚 > 𝑛 𝑤ℎ𝑒𝑛 𝑎0𝑏0 < 0

 

 

(iii) Sometimes taking logarithm of both sides is 

useful in case of the form00, 1∞ 𝑎𝑛𝑑 ∞0 (see 

Example 24). In this case log𝑦 generally acquire 

the form 0 × ∞, which on simplifying gives the 
0

0
 or

∞

∞
 form. 
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5.9 GLOSSARY 
 

Exponential:We know that 

(1 + 𝑥)𝑛 = 1+ 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 +⋯ . 

Replacing𝑥 by 
1

𝑛
, we get  

(1 +
1

𝑛
)
𝑛

= 1+ 𝑛
1

𝑛
+
𝑛(𝑛−1)

2!
(
1

𝑛
)
2

+
𝑛(𝑛−1)(𝑛−2)

3!
(
1

𝑛
)
3

+⋯ . 

Taking limit as → ∞ , we have exponential 𝑒 as  

𝑒 = 1 +
1

1!
+

1

2!
+

1

3!
+⋯ . The value of 𝑒 is lies between 2 and 3(𝑒 ≈

2.718). 
 

Indeterminate form: When the function involves the independent 

variable in such a manner that for a certain assigned value of that 

variable its value cannot be found by simple substituting that value of 

the variable, the function is said to take an indeterminate form. 

 

L’Hospital, Guillaume François Antoine, Marquis de(1661–1704) 

French mathematician who in 1696 producedthe first textbook on 

differential calculus. This, and asubsequent book on analytical 

geometry, were standard textsfor much of the eighteenth century. The 

first containsL’Hospital’s rule, known to be due to Johann Bernoulli, 

who isthought to have agreed to keep the Marquis de 

L’Hôpitalinformed of his discoveries in return for financial support. 

 

 

CHECK YOUR PROGRESS 
 

1. 00 is an Indeterminate Form. True\False 

2.   lim
𝑥⟶∞

ln 𝑥

𝑥
= 1 True\False 

3. lim
𝑥⟶0

[
1−𝑐𝑜𝑠𝑥

𝑥2
] =

1

2
 True\False 

4. lim
𝑥⟶0+

𝑥𝑠𝑖𝑛𝑥   = 1, where 𝐼 = (0,∞) True\False 

5.  Let 𝑓 be a differentiable on (0,∞) and suppose that 

lim
𝑥⟶∞

(𝑓(𝑥) + 𝑓′(𝑥)) = 𝐿 then lim
𝑥⟶∞

𝑓(𝑥) = 𝐿. True/False 
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5.12 TERMINAL QUESTIONS 

 
Choose only one correct option. 

 

(TQ-1) lim
𝑥→∞

(0.752)𝑥 

(i) 0 . 

(ii) +∞. 

(iii) −∞ 
(iv) None of the above.   

(v)       

 

(TQ-2) lim
𝑥→0
(𝑐𝑜𝑡 𝑥 )𝑠𝑖𝑛 𝑥 

(i) 0 . 

(ii) + 1. 

(iii) −1. 
(iv)  None of the above.      

   

 

(TQ-3) lim
𝑛→𝑥

𝑥

𝑥 
, 𝑥 ≠ 0 

(i) 0 

(ii) 1 

(iii) is an indeterminate form. 

(iv) Cannot be found.      

  



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 108 
 
 
 

(TQ-4) Rational function 
𝑓(𝑥)

𝑔(𝑥)
, 𝑔(𝑥) ≠ 0 is 

(i) Always an indeterminate form as 𝑥 tends to ∞. 

(ii) Always a determinate form as 𝑥 tends to ∞. 

(iii) May be determinate or indeterminate form as 𝑥 

tends to ∞. 

(iv) Nothing can be said.    

   

(TQ-5) lim
𝑥→0

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→0

𝑓′(𝑥)

𝑔′(𝑥)
 , limit on R.H.S exists; is 

(i) True in case 𝑓(𝑎) = 𝑔(𝑎) = ∞, 𝑎 ≠ 0. 
(ii) False 

(iii) True 

(iv) True when 𝑓(0) = 𝑔(0) = 0.                                       

 

(TQ-6) lim
𝑥→0

𝑥−1𝑠𝑖𝑛 𝑥 

(i) 1 

(ii) 0 

(iii) Does not exist. 

(iv) Not finite.      

   

(TQ-7) lim
𝑥→0

𝑎𝑥2+9

𝑏𝑥2+ 8
 

(i) 
9

8
 

(ii) 
𝑎

𝑏
. 

(iii)  Depending on 𝑎 not 𝑏. 

(iv) Is an indeterminate form.       

 

(TQ-8) lim
𝑥→0

𝑎𝑥2+9𝑥

𝑏𝑥2+ 8𝑥
 

(i) 
9

8
 

(ii) 
𝑎

𝑏
. 

(iii)  Depending on 𝑎 not 𝑏. 

(iv) Is an indeterminate form.       

(TQ-9) lim
𝑥→0

𝑎𝑥2

𝑏𝑥2
, 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0,  is 

(i) 
9

8
 

(ii) 
𝑎

𝑏
. 

(iii)  Depending on 𝑎 and 𝑏. 

(iv) Is an indeterminate form.  

      

(TQ-10) lim
𝑥→0

𝑥𝑥 

(i) 0 

(ii) – 1 

(iii) +1 

(iv) ∞.                                                                           
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(TQ-11) Which are indeterminate forms?........................................ 

..................................................................................................................

.................................................................................................................. 

(TQ-12) How do you solve indeterminate forms of limits? 

........................................................................................................ 

...................................................................................................... .....................

.......................................................................................................................... 

 

 

5.13 ANSWERS:-  
 

CHECK YOUR PROGRESS 

 

SCQ1. True 

SCQ2. False 

SCQ3. True 

SCQ4. True 

SCQ5. True 

 

TERMINAL QUESTIONS (TQ’S) 

(TQ-1)  (i) 

(TQ-2)  (ii) 

(TQ-3) (ii) 

(TQ-4) (iii) 

(TQ-5)  (iv) 

(TQ-6)  (i) 

(TQ-7)  (i) 

(TQ-8)  (i) 

(TQ-9)  (ii) 

(TQ-10) (iii) 
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UNIT-6:- SUCCESSIVE 

DIFFERENTIATION 

 

CONTENTS 
6.1      Introduction 

6.2      Objectives 

6.3      Succesive differential coefficient 

6.4      Standard Results 

6.5      Succesive derivative with the help of partial fraction 

6.6       Leibnitz’s theorem 

6.7       Summary 

6.8       Glossary 

6.9       Terminal questions 

6.10 References 

6.11 Suggested readings 

6.12  Answers 

 

6.1 INTRODUCTION 
 

Generally we differentiate a function 𝑦 = 𝑓(𝑥) one or two 

times. But sometimes we need 𝑛𝑡ℎ derivative of that function. In this 

chapter we shall try to find some general expressions of some standard 

functions. Besides this, the evaluation of the 𝑛𝑡ℎderivative of product 

of two functions is one of the targets of this chapter. Dutch 

mathematician Leibnitz developed a method for product, which we 

shall explore here. Actually, British mathematician Newton and Dutch 

(Netherland’s citizen) Leibnitz were contemporary and both were 

instrumental in the development of calculus. But Newton got almost all 

the credit and is considered as ‘Father of Calculus’. Leibnitz could not 

get due credit in mathematical fraternity. Here we shall learn one of the 

famous works of Leibnitz. 

 

6.2 OBJECTIVES: 
 

After completion of  this unit, we shall understand  

 

i. nth Differential coefficient of y(dependent variable) with 

respect to x(independent variable). 

ii. The evaluating procedures of  nthderivative of a function . 

iii. Some standard results on nth differential coefficient. 
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iv. Successive derivatives with the help of partial fractions. 

v. Leibnitz’s theorem for nthderivative of product of two 

functions. 

6.3 SUCCESSIVE DIFFERENTIATION 
 

Let 𝑦 = 𝑓(𝑥) be a differentiable function. Then its first 

derivative with respect to 𝑥 is written as 
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥)Similarly, second 

derivative with respect to 𝑥 is
𝑑2𝑦

𝑑𝑥2
= 𝑓′′(𝑥).In general, 𝑛 𝑡ℎ derivative 

with respect to 𝑥 is
𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝑓(𝑛)(𝑥). 

Let us write
𝑑𝑦

𝑑𝑥
= 𝐷𝑦 = 𝑦1,

𝑑2𝑦

𝑑𝑥2
= 𝐷2𝑦 = 𝑦2, 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

So in general we can write 
𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝐷𝑛𝑦 = 𝑦𝑛 . 

The expression 𝐷𝑛𝑦 also follows the laws of indices i.e. 

𝐷𝑛𝑦𝑟 = 𝑦𝑛+𝑟;  𝑟 = 0, 1, 2, 3, …  . 
In particular 𝐷3𝑦2 = 𝑦3+2 = 𝑦5 = 

fifth derivative of y with respect to x. 
Let us calculate derivatives of some simple functions. We shall 

find first, second, third, … , 𝑛 𝑡ℎorder derivatives to justify the name 

“successive derivative”. 

 

Ex.1 Find all the possible derivatives of the function 𝒇(𝒙) =
𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅. 

Sol.     Here, 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑. 

Therefore, 𝑓′(𝑥) = 3𝑎𝑥2 + 2𝑏𝑥1 + 𝑐; 
𝑓′′(𝑥) = 6𝑎𝑥1 + 2𝑏; 

𝑓′′′(𝑥) = 6𝑎; 

𝑓𝑖𝑣(𝑥) = 0; and all higher derivatives are evidently zero. 

 

Ex.2 Find the nth derivative of the function 𝒇(𝒙) = 𝒙𝒏. 

Sol.     Here, 𝑓(𝑥) = 𝑥𝑛. 

First derivative 𝑓′(𝑥) = 𝑛𝑥𝑛−1; 

Second derivative 𝑓′′(𝑥) = 𝑛(𝑛 − 1)𝑥𝑛−2; 
Third derivative 𝑓′′′(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)𝑥𝑛−3; 
Fourth derivative 𝑓𝑖𝑣(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑥𝑛−4; 
In general, nth derivative  

𝑓(𝑛)(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛

− 3)… (𝑛 − (𝑛 − 2))(𝑛 − (𝑛 − 1))𝑥𝑛−𝑛 

= 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)…2.1 

= 𝑛! 
All higher derivatives are evidently zero. 

 

Ex.3 Find the nth derivative of the function 𝒇(𝒙) = 𝒆𝒙 . 

Sol.      Here, 𝑓(𝑥) = 𝑒𝑥; 

First derivative 𝑓′(𝑥) = 𝑒𝑥; 
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Second derivative 𝑓′′(𝑥) = 𝑒𝑥; 

In general, nth derivative 𝑓𝑛(𝑥) = 𝑒𝑥. 

In this example, no higher derivativeis zero. 

 

Ex.4 Find the nth derivative of the function 𝒇(𝒙) = 𝐬𝐢𝐧 𝒙. 

Sol.      Here, 𝑓(𝑥) = sin 𝑥; 

First derivative 𝑓′(𝑥) = cos 𝑥 = sin (
𝜋

2
+ 𝑥) ; 

Second derivative 𝑓′′(𝑥) =  − sin 𝑥 = sin (2.
𝜋

2
+ 𝑥); 

Third derivative 𝑓′′′(𝑥) = − cos𝑥 = sin (3.
𝜋

2
+ 𝑥); 

Fourth derivative 𝑓𝑖𝑣(𝑥) = sin 𝑥 = sin (4.
𝜋

2
+ 𝑥); 

In general, nth derivative 𝑓𝑛(𝑥) = sin (𝑛.
𝜋

2
+ 𝑥). 

 

Ex.5 Find the nth derivative of the function 𝒇(𝒙) = 𝐥𝐨𝐠 𝒙. 

Sol.      Here,  𝑓(𝑥) = log𝑥; 

First derivative 𝑓′(𝑥) =
1

𝑥
; 

Second derivative 𝑓′′(𝑥) = (−1).
1

𝑥2
; 

Third derivative 𝑓′′′(𝑥) = (−1)(−2).
1

𝑥3
= (−1)2 1. 2.

1

𝑥3
; 

Fourth derivative 𝑓𝑖𝑣(𝑥) = (−1)(−2)(−3).
1

𝑥4
=

(−1)3 1. 2. 3.
1

𝑥4
; 

So, nth derivative 𝑓𝑛(𝑥) = (−1)𝑛−1 1.2.3.4… . (𝑛 − 1).
1

𝑥𝑛
=

(−1)𝑛−1(𝑛 − 1)!.
1

𝑥𝑛
. 

Motivated by the above example, we here find some standard 

results on nth derivatives. 

 

6.4 STANDARD RESULTS 
 

(1) The 𝒏𝒕𝒉 derivative of 
𝟏

𝒂𝒙+𝒃
 

Let𝑦 =
1

𝑎𝑥+𝑏
= (𝑎𝑥 + 𝑏)−1. Then 

𝑦1 = (−1). 𝑎. (𝑎𝑥 + 𝑏)
−2, 

𝑦2 = (−1)(−2)𝑎
2(𝑎𝑥 + 𝑏)−3 = (−1)2 1.2. 𝑎2(𝑎𝑥 + 𝑏)−3, 

𝑦3 = (−1)(−2)(−3)𝑎
3(𝑎𝑥 + 𝑏)−4 = (−1)31.2.3. 𝑎3(𝑎𝑥 +

𝑏)−4; 
In general, 𝑦𝑛 = (−1)

𝑛1.2.3… . 𝑛 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛−1 =
(−𝟏)𝒏 𝒏! 𝒂𝒏(𝒂𝒙 + 𝒃)−𝒏−𝟏. 

. 

 

(2) The 𝒏𝒕𝒉 derivative of (𝒂𝒙 + 𝒃)𝒎 

Let 𝑦 = (𝑎𝑥 + 𝑏)𝑚. Then 

𝑦1 = 𝑚.𝑎. (𝑎𝑥 + 𝑏)
𝑚−1, 
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𝑦2 = 𝑚. (𝑚 − 1). 𝑎
2. (𝑎𝑥 + 𝑏)𝑚−2, 

𝑦3 = 𝑚. (𝑚 − 1). (𝑚 − 2). 𝑎
3. (𝑎𝑥 + 𝑏)𝑚−3, 

So,  

𝒚𝒏 = 𝒎(𝒎− 𝟏)(𝒎− 𝟐)… (𝒎 − (𝒏 − 𝟏))𝒂𝒏(𝒂𝒙 + 𝒃)𝒎−𝒏 

 

Note:In particular, if 𝑚 = −1, then  

𝑦𝑛 = −1(−2)(−3)… (−𝑛)𝑎
𝑛(𝑎𝑥 + 𝑏)−1−𝑛 = (−1)𝑛𝑛! 𝑎𝑛(𝑎𝑥 +

𝑏)−1−𝑛,gives standard result (1). So, Standard result (1) is particular 

form of standard result (2). 

 

(3) The 𝒏𝒕𝒉 derivative of 𝒆𝒂𝒙+𝒃 

Let 𝑦 = 𝑒𝑎𝑥+𝑏. Then 

𝑦1 = 𝑎. 𝑒
𝑎𝑥+𝑏, 

𝑦2 = 𝑎
2. 𝑒𝑎𝑥+𝑏, 

𝑦3 = 𝑎
3. 𝑒𝑎𝑥+𝑏, 

            So, 𝒚𝒏 = 𝒂
𝒏. 𝒆𝒂𝒙+𝒃 

 

Note: In particular, 𝒏𝒕𝒉 derivative of 𝒆𝒂𝒙 = 𝒂𝒏𝒆𝒂𝒙. 

(4) The 𝒏𝒕𝒉 derivative of 𝒂𝒙 

Let 𝑦 = 𝑎𝑥. Then 

𝑦1 = 𝑎
𝑥 . log𝑎, 

𝑦2 = 𝑎
𝑥 . (log𝑎)2, 

𝑦3 = 𝑎
𝑥 . (log𝑎)3, 

So, 𝒚𝒏 = 𝒂
𝒙. (𝐥𝐨𝐠𝒂)𝒏. 

 

(5) The 𝒏𝒕𝒉 derivative of 𝐥𝐨𝐠(𝒂𝒙 + 𝒃) 
Let 𝑦 = log(𝑎𝑥 + 𝑏). Then  

𝑦1 = 𝑎. (𝑎𝑥 + 𝑏)
−1, 

𝑦2 = (−1)𝑎
2. (𝑎𝑥 + 𝑏)−2, 

𝑦3 = (−1)(−2)𝑎
3. (𝑎𝑥 + 𝑏)−3 = (−1)21.2. 𝑎3. (𝑎𝑥 + 𝑏)−3,  

Therefore, 𝑦𝑛 = (−1)
𝑛−1 1.2.3… . (𝑛 − 1). 𝑎𝑛 . (𝑎𝑥 + 𝑏)−𝑛 

𝒚𝒏 = (−𝟏)
𝒏−𝟏(𝒏 − 𝟏)! 𝒂𝒏(𝒂𝒙 + 𝒃)−𝒏. 

 

Note: In particular, 

 

 𝒏𝒕𝒉 derivative of 𝐥𝐨𝐠 𝒙 = (−𝟏)𝒏−𝟏(𝒏 − 𝟏)! (𝒙)−𝒏. 

 

(6) The 𝒏𝒕𝒉 derivative of 𝐬𝐢𝐧(𝒂𝒙 + 𝒃) 
Let 𝑦 = sin(𝑎𝑥 + 𝑏). Then 

𝑦1 = 𝑎 cos(𝑎𝑥 + 𝑏) = 𝑎 sin (𝑎𝑥 + 𝑏 +
𝜋

2
),  

𝑦2 = −𝑎
2 sin(𝑎𝑥 + 𝑏) = 𝑎2 sin (𝑎𝑥 + 𝑏 + 2.

𝜋

2
), 

𝑦3 = −𝑎
3 cos(𝑎𝑥 + 𝑏) = 𝑎3 sin (𝑎𝑥 + 𝑏 + 3.

𝜋

2
), 

            So, 𝒚𝒏 = 𝒂
𝒏 𝐬𝐢𝐧 (𝒂𝒙 + 𝒃 + 𝒏 .

𝝅

𝟐
). 
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(7) The 𝒏𝒕𝒉derivative of 𝐜𝐨𝐬(𝒂𝒙 + 𝒃) 
Let 𝑦 = cos(𝑎𝑥 + 𝑏). Then 

𝑦1 = −𝑎 sin(𝑎𝑥 + 𝑏) = 𝑎 cos (𝑎𝑥 + 𝑏 +
𝜋

2
), 

𝑦2 = −𝑎
2 cos(𝑎𝑥 + 𝑏) = 𝑎2 cos (𝑎𝑥 + 𝑏 + 2.

𝜋

2
), 

𝑦3 = 𝑎
3 sin(𝑎𝑥 + 𝑏) = 𝑎3 cos (𝑎𝑥 + 𝑏 + 3.

𝜋

2
), 

            So, 𝒚𝒏 = 𝒂
𝒏 𝐜𝐨𝐬 (𝒂𝒙 + 𝒃 + 𝒏 .

𝝅

𝟐
). 

 

(8) The 𝒏𝒕𝒉 derivative of 𝒆𝒂𝒙 𝐬𝐢𝐧(𝒃𝒙 + 𝒄) 
Let 𝑦 = 𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐). Then 

𝑦1 = 𝑎. 𝑒
𝑎𝑥 sin(𝑏𝑥 + 𝑐) + 𝑏𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐) 

=  𝑒𝑎𝑥(𝑎 sin(𝑏𝑥 + 𝑐) +  𝑏 cos(𝑏𝑥 + 𝑐)) 
Putting 𝑎 = 𝑟 cos𝜙 and 𝑏 = 𝑟 sin𝜙, we get  

𝑦1 = 𝑒
𝑎𝑥(𝑟 cos𝜙 sin(𝑏𝑥 + 𝑐) + 𝑟 sin 𝜙 cos(𝑏𝑥 + 𝑐)) 

𝑦1 =   𝑟 𝑒
𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 𝜙), 𝑤ℎ𝑒𝑟𝑒 𝑟 = √𝑎2 + 𝑏2 𝑎𝑛𝑑 𝜙 =

tan−1
𝑏

𝑎
. 

Similarly 

𝑦2 = 𝑟
2𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 2𝜙), 

𝑦3 = 𝑟
3𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 3𝜙), 

            So,  

𝑦𝑛 = 𝑟
𝑛𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 𝑛 𝜙),𝑤ℎ𝑒𝑟𝑒  𝑟 = √𝑎2 + 𝑏2 𝑎𝑛𝑑 𝜙 =

tan−1
𝑏

𝑎
. 

(9) The 𝒏𝒕𝒉 derivative of 𝒆𝒂𝒙 𝐜𝐨𝐬(𝒃𝒙 + 𝒄) 
 

𝑦𝑛 = 𝑟
𝑛𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐 + 𝑛 𝜙), 𝑤ℎ𝑒𝑟𝑒  𝑟 =

√𝑎2 + 𝑏2 𝑎𝑛𝑑 𝜙 = tan−1
𝑏

𝑎
. 

 

Now we will see the importance of standard results in the 

evaluation of 𝑛𝑡ℎ differential coefficient. 

 

Ex.6 Find the 𝒏𝒕𝒉 differential coefficient of 𝐥𝐨𝐠[(𝒂𝒙 + 𝒃)(𝒄𝒙 +
𝒅)]. 

Sol.      Let 𝑦 = log[(𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑)]. Then  

𝑦 = log(𝑎𝑥 + 𝑏) + log(𝑐𝑥 + 𝑑) 
Then 𝐷𝑛𝑦 = 𝐷𝑛[log(𝑎𝑥 + 𝑏)] + 𝐷𝑛[log(𝑐𝑥 + 𝑑)] 
By using Standard Result (5), we have 

𝐷𝑛[log(𝑎𝑥 + 𝑏)] = (−1)𝑛−1(𝑛 − 1)! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛 

Hence, 𝐷𝑛𝑦 =  (−1)𝑛−1(𝑛 − 1)! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛 +
(−1)𝑛−1(𝑛 − 1)! 𝑐𝑛(𝑐𝑥 + 𝑑)−𝑛 

=  (−1)𝑛−1(𝑛 − 1)! [
𝑎𝑛

(𝑎𝑥 + 𝑏)𝑛
+

𝑐𝑛

(𝑐𝑥 + 𝑑)𝑛
]. 

 

Ex.7 Find the 𝒏𝒕𝒉 differential coefficient of 𝒚 = 𝐬𝐢𝐧 𝟒𝒙 𝒄𝒐𝒔 𝟐𝒙. 
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Sol.      Let 𝑦 = sin 4𝑥 cos 2𝑥 =
1

2
[sin 6𝑥 + sin 2𝑥] 

Then 𝐷𝑛𝑦 =  
1

2
[ 𝐷𝑛(sin6𝑥) + 𝐷𝑛(sin 2𝑥)] 

By using standard result (6), we have 𝐷𝑛(sin(𝑎𝑥 + 𝑏)) =

𝑎𝑛 sin (𝑎𝑥 + 𝑏 + 𝑛 .
𝜋

2
) 

Therefore, 𝐷𝑛𝑦 =  6𝑛 sin (6𝑥 + 𝑛 .
𝜋

2
) + 2𝑛 sin (2𝑥 + 𝑛 .

𝜋

2
). 

 

Ex.8 Find the 𝑛𝑡ℎ differential coefficient of 𝑦 = sin3 𝑥. 

Sol.      Let 𝑦 = sin3 𝑥. 

We know that sin 3𝑥 = 3 sin 𝑥 − 4 sin3 𝑥 

4 sin3 𝑥 = 3 sin 𝑥 − sin 3𝑥, 

y = sin3 𝑥 =
1

4
[3 sin 𝑥 − sin 3𝑥], 

Then 𝐷𝑛𝑦 =  
1

4
[3 𝐷𝑛(sin𝑥) − 𝐷𝑛(sin 3𝑥)] 

Using Standard Result (6), 

 𝐷𝑛(sin(𝑎𝑥 + 𝑏)) = 𝑎𝑛 sin (𝑎𝑥 + 𝑏 + 𝑛 .
𝜋

2
) 

𝐷𝑛𝑦 =  
1

4
[3. sin (𝑥 + 𝑛.

𝜋

2
) − 3𝑛 sin (3𝑥 + 𝑛.

𝜋

2
)]. 

 

Ex.9 Find the 𝒏𝒕𝒉 differential coefficient of 𝒚 = 
𝟏

(𝟓𝒙+𝟒)
. 

Sol.      Let 𝑦 =  
1

(5𝑥+4)
= (5𝑥 + 4)−1. 

Standard result  

(1), 𝐷𝑛[(𝑎𝑥 + 𝑏)−1] =  (−1)𝑛 𝑛! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛−1. 

Here, 𝑎 = 5, 𝑎𝑛𝑑 𝑏 = 4. 

Hence, 𝐷𝑛𝑦 = (−1)𝑛 𝑛! 5𝑛(5𝑥 + 4)−𝑛−1. 

 

Ex.10 Find the 𝒏𝒕𝒉 differential coefficient of 𝒚 =
𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔 𝟐𝒙 𝒄𝒐𝒔 𝟑𝒙. 

Sol.      Let 𝑦 = cos 𝑥 cos 2𝑥 cos3𝑥 =
1

2
cos 𝑥 (2 cos2𝑥 cos 3𝑥) 

=
1

2
cos 𝑥 (cos5𝑥 + cos 𝑥) 

=
1

4
[2 cos 𝑥 cos 5𝑥 + 2 cos2 𝑥] 

𝑦 =
1

4
[cos6𝑥 + cos 4𝑥 + cos2𝑥 + 1] 

Hence, 𝑦𝑛 = 𝐷
𝑛𝑦 =  

1

4
[𝐷𝑛(cos6𝑥) + 𝐷𝑛(cos4𝑥) +

𝐷𝑛(cos2𝑥) + 𝐷𝑛(1)].By using standard result (7), 

𝐷𝑛(cos(𝑎𝑥 + 𝑏)) = 𝑎𝑛 cos (𝑎𝑥 + 𝑏 + 𝑛 .
𝜋

2
).So, 𝑦𝑛 =

 
1

4
[6𝑛 cos (6𝑥 + 𝑛.

𝜋

2
) + 4𝑛 cos (4𝑥 + 𝑛.

𝜋

2
) + 2𝑛 cos (2𝑥 +

𝑛.
𝜋

2
) + 0]. 
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𝑦𝑛 = 
1

4
[6𝑛 cos (6𝑥 + 𝑛.

𝜋

2
) + 4𝑛 cos (4𝑥 + 𝑛.

𝜋

2
) +

2𝑛 cos (2𝑥 + 𝑛.
𝜋

2
)]. 

 

Ex.11 Find the 𝒏𝒕𝒉 differential coefficient of 𝒚 = 𝐬𝐢𝐧𝒎𝒙 + 𝐬𝐢𝐧 𝒏𝒙. 

Sol.      Since, 𝑦 = sin𝑚𝑥 + sin 𝑛𝑥, 

So, 𝑦𝑛 = 𝐷
𝑛𝑦 = 𝐷𝑛(sin𝑚𝑥) + Dn(sin 𝑛𝑥) 

Using Standard result (6),  

 𝐷𝑛(sin(𝑎𝑥 + 𝑏)) = 𝑎𝑛 sin (𝑎𝑥 + 𝑏 + 𝑛 .
𝜋

2
). 

𝑦𝑛 = 𝑚
𝑛 sin (𝑚𝑥 + 𝑛 .

𝜋

2
) + 𝑛𝑛 sin (𝑛𝑥 + 𝑛 .

𝜋

2
) 

 

Ex.12 Find the 𝑛𝑡ℎ differential coefficient of 𝑦 = sin𝑚𝑥 + cos𝑚𝑥. 

Sol.      Since, 𝑦 = sin𝑚𝑥 + cos𝑚𝑥 , 
Then 𝑦𝑛 = 𝐷

𝑛𝑦 = 𝐷𝑛(sin𝑚𝑥) + 𝐷𝑛(cos𝑚𝑥). 
Using standard results (6) and (7),  

𝐷𝑛(sin(𝑎𝑥 + 𝑏)) = 𝑎𝑛 sin (𝑎𝑥 + 𝑏 + 𝑛 .
𝜋

2
)and 

𝐷𝑛(cos (𝑎𝑥 + 𝑏)) = 𝑎𝑛 cos (𝑎𝑥 + 𝑏 + 𝑛 .
𝜋

2
). 

Hence,𝑦𝑛 = 𝑚
𝑛 sin (𝑚𝑥 + 𝑛.

𝜋

2
) +𝑚𝑛 cos (𝑚𝑥 + 𝑛.

𝜋

2
) . 

𝑦𝑛 = 𝑚
𝑛 [sin (𝑚𝑥 + 𝑛.

𝜋

2
) + cos (𝑚𝑥 + 𝑛.

𝜋

2
)], 

𝑦𝑛 = 𝑚
𝑛 [(sin (𝑚𝑥 + 𝑛.

𝜋

2
) + cos (𝑚𝑥 + 𝑛.

𝜋

2
))
2

]

1

2

, 

𝑦𝑛 = 𝑚
𝑛 [1 + 2 sin (𝑚𝑥 + 𝑛.

𝜋

2
) cos (𝑚𝑥 + 𝑛.

𝜋

2
)]

1

2
, 

𝑦𝑛 = 𝑚
𝑛 [1 +  sin 2 (𝑚𝑥 + 𝑛.

𝜋

2
)]

1

2
, 

𝑦𝑛 = 𝑚
𝑛[1 + sin(2𝑚𝑥 + 𝑛. 𝜋)]

1

2, 

𝑦𝑛 = 𝑚
𝑛[1 + sin 2𝑚𝑥 cos 𝑛𝜋 + cos2𝑚𝑥 sin 𝑛𝜋]

1

2, 

𝑦𝑛 = 𝑚
𝑛[1 + (−1)𝑛 sin 2𝑚𝑥 + 0. cos 2𝑚𝑥]

1

2,   

since cos 𝑛𝜋 = (−1)𝑛 𝑎𝑛𝑑 sin 𝑛𝜋 = 0. 

𝑦𝑛 = 𝑚
𝑛[1 + (−1)𝑛 sin 2𝑚𝑥]

1

2. 

 

 

Ex.13 Find the 𝒏𝒕𝒉 derivative of 𝒚 = 𝒆𝒙 𝐜𝐨𝐬𝟑 𝒙. 

Sol.       Here = 𝑒𝑥 cos3 𝑥 . 

Now, cos 3𝑥 = 4 cos3 𝑥 − 3 cos𝑥 

4 cos3 𝑥 = cos3𝑥 + 3 cos 𝑥, 

⟹ cos3 𝑥 =
1

4
[cos 3𝑥 + 3 cos𝑥], 

Hence, 𝑦 =
1

4
𝑒𝑥 cos 3𝑥 +

3

4
𝑒𝑥 cos 𝑥, 

⇒ 𝑦𝑛 = 𝐷
𝑛𝑦 =

1

4
𝐷𝑛(𝑒𝑥 cos 3𝑥) +

3

4
𝐷𝑛(𝑒𝑥 cos 𝑥), 

Using standard formula (9),  
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𝐷𝑛(𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐)) = 𝑟𝑛𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐 + 𝑛𝜙), 𝑟 =

√𝑎2 + 𝑏2and 𝜙 = tan−1
𝑏

𝑎
. 

Now, 𝐷𝑛(𝑒𝑥 cos3𝑥) = 𝑟𝑛𝑒𝑥 cos(3𝑥 + 𝑛𝜙), 𝑟 = √12 + 32 . 

and  𝜙 = tan−1
3

1
(√10)

𝑛
𝑒𝑥 cos(3𝑥 + 𝑛 tan−1 3). 

Similarly,𝐷𝑛(𝑒𝑥 cos 𝑥) = 𝑟𝑛𝑒𝑥 cos(𝑥 + 𝑛𝜙), 

𝑟 = √12 + 12  and  𝜙 = tan−1
1

1
=
𝜋 

4
 

Therefore 𝐷𝑛(𝑒𝑥 cos 𝑥) = (√2)
𝑛
𝑒𝑥 cos (𝑥 + 𝑛.

𝜋

4
). 

Therefore  

𝑦𝑛 =
1

4
(√10)

𝑛
𝑒𝑥 cos(3𝑥 + 𝑛 tan−1 3)

+
3

4
(√2)

𝑛
𝑒𝑥 cos (𝑥 + 𝑛.

𝜋

4
). 

 

6.5 SUCCESSIVE DERIVATIVES WITH THE 

HELP OF PARTIAL FRACTIONS 
 

Sometimes, expressions are given in the form of quotient of 

polynomials i.e, in rational  function forms. We use the method of 

partial fractions to separate those terms and then we can find relatively 

easily the 𝑛𝑡ℎ derivative. 

 

Case (I): Let 𝑦 =
𝑥

(𝑥−2)(𝑥−3)
 

In denominator, each bracket contains linear expression. You know 

that the degree of remainder is always less than that of divisor. So we 

have 

(1) 
𝑥

(𝑥−2)(𝑥−3)
=

𝐴

(𝑥−2)
+

𝐵

(𝑥−3)
 

Taking LCM of RHS, we get  
𝑥

(𝑥 − 2)(𝑥 − 3)
=
𝐴(𝑥 − 3) + 𝐵(𝑥 − 2)

(𝑥 − 2)(𝑥 − 3)
 

⇒ 𝑥 = 𝐴(𝑥 − 3) + 𝐵(𝑥 − 2) 
(2) 𝑥 = 𝐴(𝑥 − 3) + 𝐵(𝑥 − 2) 

Now we may have two methods to solve equation (2). 

 

Method 1. (General Method): 

𝑥 = 𝐴𝑥 − 3𝐴 + 𝐵𝑥 − 2𝐵 

= 𝑥(𝐴 + 𝐵) + (−3𝐴 − 2𝐵) 
equating  the corresponding coefficients, we get 

𝐴 + 𝐵 = 1 𝑎𝑛𝑑 − 3𝐴 − 2𝐵 = 0. 
On solving, we get, 𝐴 = −2, 𝑎𝑛𝑑 𝐵 = 3. 
Putting the values of 𝐴 and 𝐵 in equation (1), we have 

𝑦 =
−2

(𝑥 − 3)
+

3

(𝑥 − 2)
. 

Now we can find 𝑛𝑡ℎ derivative easily by using Standard Results. 
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Method 2. Putting 𝑥 = 3 in equation (2) we get 

3 = 0 + 𝐵 ⇒ 𝐵 = 3. 
Now Putting 𝑥 = 2 in equation (2) we get 

2 = −𝐴 + 0 ⇒ 𝐴 = −2. 
Substituting the value of 𝐴 and 𝐵 in equation (2), we get 

𝑦 =
−2

(𝑥 − 3)
+

3

(𝑥 − 2)
. 

Case (II):If 𝑦 =
𝒙𝟐

(𝒙−𝟐)(𝒙−𝟑)
 

If we multiply the factors of denominators, we get a polynomial 

of degree two. Now we know that for a proper rational 

function, degree of numerator must be less than that of the 

denominator. 

So, (𝑥 − 2)(𝑥 − 3) = 𝑥2 − 5𝑥 + 6 

Now  

(4) 𝑦 =
𝑥2

𝑥2+5𝑥+6
= 1 +

5𝑥−6

𝑥2−5𝑥+6
 

Now take  

(5) 
5𝑥−6

𝑥2−5𝑥+6
=

𝐴

𝑥−2
+

𝐵

𝑥−3
 

Now solve as in case (I). 

 

Case (III): If 𝑦 =
(𝑥+2)

(𝑥−2)(𝑥−3)2
 

Now the partial fractions  

(6) 
(𝑥+2)

(𝑥−2)(𝑥−3)2
=

𝐴

(𝑥−2)
+

𝐵

(𝑥−3)
+

𝐶

(𝑥−3)2
 

 

The following table gives us an idea of the types of partial 

fractions to be taken for different types of proper rational algebraic 

functions: 

 

Type of proper rational function Type of partial fractions 

 
𝑝𝑥 + 𝑞

(𝑥 − 𝑎)(𝑥 − 𝑏)
, 𝑎 ≠ 𝑏 

 
𝐴

𝑥 − 𝑎
+

𝐵

𝑥 − 𝑏
 

 

 

𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)
, 𝑎 ≠ 𝑏 ≠ 𝑐 

 

 
𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑏)
+

𝐶

(𝑥 − 𝑐)
 

 
𝑝𝑥 + 𝑞

(𝑥 − 𝑎)2
 

 

 
𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑎)2
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𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)2(𝑥 − 𝑏)
, 𝑎 ≠ 𝑏 

 

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 − 𝑎)2
+

𝐶

(𝑥 − 𝑏)
 

 

𝑝𝑥2 + 𝑞𝑥 + 𝑟

(𝑥 − 𝑎)(𝑥2 + 𝑏𝑥 + 𝑐)
 

When 𝑥2 + 𝑏𝑥 + 𝑐  cannot be 

factorized. 

 
𝐴

(𝑥 − 𝑎)
+

𝐵𝑥 + 𝐶

𝑥2 + 𝑏𝑥 + 𝑐
 

 

𝑝𝑥3 + 𝑞𝑥2 + 𝑟𝑥 + 𝑠

(𝑥2 + 𝑎𝑥 + 𝑏 )(𝑥2 + 𝑐𝑥 + 𝑑)
 

When 𝑥2 + 𝑎𝑥 + 𝑏, 𝑥2 + 𝑐𝑥 + 𝑑 

cannot ne factorized. 

 
𝐴𝑥 + 𝐵

𝑥2 + 𝑎𝑥 + 𝑏
+

𝐶𝑥 + 𝐷

𝑥2 + 𝑐𝑥 + 𝑑
 

 

Ex.14 Find the 𝒏𝒕𝒉 differential coefficient of 𝒚 =
𝒙𝟑

𝒙𝟐−𝟑𝒙+𝟐
. 

Sol.            Here, the given function is improper function. 

 Since,  degree of denominator<degree of numerator. 

Therefore,  

𝑦 =
𝑥3

𝑥2 − 3𝑥 + 2
= 𝑥 + 3 +

7𝑥 − 6

(𝑥 − 1)(𝑥 − 2)
. 

7𝑥 − 6

(𝑥 − 1)(𝑥 − 2)
=

𝐴

(𝑥 − 1)
+

𝐵

(𝑥 − 2)
. 

⇒ 7𝑥 − 6 = 𝐴(𝑥 − 2) + 𝐵(𝑥 − 1). 
⇒ 7𝑥 − 6 = 𝑥(𝐴 + 𝐵) − 2𝐴 − 𝐵 

Comparing the corresponding coefficients, we get 

𝐴 + 𝐵 = 7 and−2𝐴 − 𝐵 = −6. 
On solving, we get 𝐴 =  −1, 𝑎𝑛𝑑 𝐵 = 8. 
Hence,  

7𝑥 − 6

(𝑥 − 1)(𝑥 − 2)
=

−1

(𝑥 − 1)
+

8

(𝑥 − 2)
 

Now,  

𝑦 = 𝑥 + 3 −
1

(𝑥 − 1)
+

8

(𝑥 − 2)
 

𝑦𝑛 = 𝐷
𝑛𝑦 = 𝐷𝑛𝑥 + 𝐷𝑛(3) − 𝐷𝑛[(𝑥 − 1)−1] + 8𝐷𝑛[(𝑥 − 2)−1], 
If 𝑛 > 1, then 

𝑦𝑛 = 𝐷
𝑛𝑦 = 0 + 0 − (−1)𝑛𝑛! (𝑥 − 1)−𝑛−1 + 8(−1)𝑛𝑛! (𝑥 − 2)−𝑛−1. 

{by using standard result (1),   𝐷𝑛[(𝑎𝑥 + 𝑏)−1] =
(−1)𝑛 𝑛! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛−1} 

Hence,  

𝑦𝑛 = (−1)
𝑛𝑛! [

−1

(𝑥 − 1)𝑛+1
+

8

(𝑥 − 2)𝑛+1
]. 

Ex.15 Find the 𝒏𝒕𝒉 derivative of 𝒚 =
𝟏

𝒂𝟐−𝒙𝟐
. 

Sol.         Here, 𝑦 =
1

𝑎2−𝑥2
=

1

(𝑎+𝑥)(𝑎−𝑥)
. 
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𝑦 =
1

(𝑎 + 𝑥)(𝑎 − 𝑥)
=

𝐴

(𝑎 + 𝑥)
+

𝐵

(𝑎 − 𝑥)
 

⇒ 1 = 𝐴(𝑎 − 𝑥) + 𝐵(𝑎 + 𝑥) 
Putting 𝑥 = 𝑎, we get  

1 = 𝐵(2𝑎) ⇒ 𝐵 =
1

2𝑎
. 

Putting 𝑥 = −𝑎, we get  

1 = 𝐴(2𝑎) ⇒ 𝐴 =
1

2𝑎
. 

Hence,  

𝑦 =
1

2𝑎
[

1

(𝑎 + 𝑥)
+

1

(𝑎 − 𝑥)
] 

=
1

2𝑎
[

1

(𝑥 + 𝑎)
−

1

(𝑥 − 𝑎)
] 

Then 𝑦𝑛 = 𝐷
𝑛𝑦 =  

1

2𝑎
[𝐷𝑛[(𝑥 + 𝑎)−1] − 𝐷𝑛[(𝑥 − 𝑎)−1]]. 

by using standard result (1), 

  𝐷𝑛[(𝑎𝑥 + 𝑏)−1] = (−1)𝑛 𝑛! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛−1 

𝑦𝑛 =
1

2𝑎
[(−1)𝑛𝑛! (𝑥 + 𝑎)−𝑛−1—(−1)𝑛𝑛! (𝑥 − 𝑎)−𝑛−1] . 

𝑦𝑛 = 
(−1)𝑛𝑛!

2𝑎
[

1

(𝑥 + 𝑎)𝑛+1
−

1

(𝑥 − 𝑎)𝑛+1
]. 

Ex.16 Find the 𝒏𝒕𝒉 derivative of  
𝒙𝟐+𝟒𝒙+𝟏

𝒙𝟑+𝟐𝒙𝟐−𝒙−𝟐
. 

Sol.      Let 𝑦 =
𝑥2+4𝑥+1

𝑥3+2𝑥2−𝑥−2
. 

𝑦 =
𝑥2 + 4𝑥 + 1

𝑥3 + 2𝑥2 − 𝑥 − 2
= 

𝑥2 + 4𝑥 + 1

(𝑥 − 1)(𝑥 + 1)(𝑥 + 2)
, 

𝑥2 + 4𝑥 + 1

(𝑥 − 1)(𝑥 + 1)(𝑥 + 2)
=

𝐴

(𝑥 − 1)
+

𝐵

(𝑥 + 1)
+

𝐶

(𝑥 + 2)
, 

⇒ 𝑥2 + 4𝑥 + 1
= 𝐴(𝑥 + 1)(𝑥 + 2) + 𝐵(𝑥 − 1)(𝑥 + 2)
+ 𝐶(𝑥 − 1)(𝑥 + 1) 

Putting 𝑥 = −1, we get  

(−1)2 − 4 + 1 = 0 + 𝐵(−2)(1) + 0 ⇒ 𝐵 = 1. 
Putting 𝑥 = 1, we get 

12 + 4 + 1 = 𝐴(2)(3) + 0 + 0 ⇒ 𝐴 = 1. 
Putting 𝑥 = −2, we get  

(−2)2 − 8 + 1 = 0 + 0 + 𝐶(−3)(−1) ⇒ 𝐶 = −1. 
Substituting the value of 𝐴,𝐵 𝑎𝑛𝑑 𝐶, we obtain  

𝑦 =
1

(𝑥 − 1)
+

1

(𝑥 + 1)
−

1

(𝑥 + 2)
. 

Then  

𝑦𝑛 = 𝐷
𝑛𝑦 = 𝐷𝑛[(𝑥 − 1)−1] + 𝐷𝑛[(𝑥 + 1)−1]

− 𝐷𝑛[(𝑥 + 2)−1]. 
𝑦𝑛 = (−1)

𝑛𝑛! (𝑥 − 1)−𝑛−1 + (−1)𝑛𝑛! (𝑥 + 1)−𝑛−1

− (−1)𝑛𝑛! (𝑥 + 2)−𝑛−1, 
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𝑦𝑛 = (−1)
𝑛𝑛! [

1

(𝑥 − 1)𝑛+1
+

1

(𝑥 + 1)𝑛+1
−

1

(𝑥 + 2)𝑛+1
]. 

 

Use of De Moivre’s Theorem in Partial fractions: 

 

When we cannot break up the denominator of a given algebraic 

function into real linear factors, the partial fraction method can be used 

after resolving the denominator into its linear factors, real or 

imaginary. 

The following example illustrates the use of De Moivre’s theorem in 

evaluating 𝑛𝑡ℎ differential coefficient. 

 

Ex.17 Find the 𝒏𝒕𝒉 differential coefficient of 
𝟏

𝒙𝟐+𝒂𝟐
. 

Sol.      Let 𝑦 =
1

𝑥2+𝑎2
=

1

(𝑥+𝑖𝑎)(𝑥−𝑖𝑎)
 , 

1

(𝑥 + 𝑖𝑎)(𝑥 − 𝑖𝑎)
=

𝐴

(𝑥 + 𝑖𝑎)
+

𝐵

(𝑥 − 𝑖𝑎)
 

⇒ 1 = 𝐴(𝑥 − 𝑖𝑎) + 𝐵(𝑥 + 𝑖𝑎) 

Putting 𝑥 = 𝑖𝑎, we get    1 = 𝐵(2𝑖𝑎) ⇒ 𝐵 =
1

2𝑖𝑎
. 

Putting 𝑥 = −𝑖𝑎, we get 1 = 𝐴(−2𝑖𝑎) ⇒ 𝐴 =
−1

2𝑖𝑎
. 

Now we have  

𝑦 =
1

2𝑖𝑎
[

1

(𝑥 − 𝑖𝑎)
−

1

(𝑥 + 𝑖𝑎)
] 

𝑦𝑛 = 𝐷
𝑛𝑦 =  

1

2𝑖𝑎
[𝐷𝑛[(𝑥 − 𝑖𝑎)−1] − 𝐷𝑛[(𝑥 + 𝑖𝑎)−1]] 

=
1

2𝑖𝑎
[(−1)𝑛𝑛! (𝑥 − 𝑖𝑎)−𝑛−1 − (−1)𝑛𝑛! (𝑥 + 𝑖𝑎)−𝑛−1] 

𝑦𝑛 =
(−1)𝑛𝑛!

2𝑖𝑎
[(𝑥 − 𝑖𝑎)−𝑛−1 − (𝑥 + 𝑖𝑎)−𝑛−1]. 

Let 𝑥 = 𝑟𝑐𝑜𝑠 𝜙 𝑎𝑛𝑑 𝑎 = 𝑟𝑠𝑖𝑛 𝜙, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝜙 = tan−1
𝑎

𝑥
. 

Then  

𝑦𝑛 = 
(−1)𝑛𝑛!

2𝑖𝑎
[(𝑟𝑐𝑜𝑠𝜙 − 𝑖. 𝑟𝑠𝑖𝑛𝜙)−𝑛−1

− (𝑟𝑐𝑜𝑠𝜙 + 𝑖. 𝑟𝑠𝑖𝑛𝜙)−𝑛−1] 

𝑦𝑛 = 
(−1)𝑛𝑛!

2𝑖𝑎 𝑟𝑛+1
[(𝑐𝑜𝑠𝜙 − 𝑖𝑠𝑖𝑛 𝜙)−(𝑛+1)

− (𝑐𝑜𝑠𝜙 + 𝑖 sin𝜙)−(𝑛+1)] 

𝑦𝑛 =
(−1)𝑛𝑛!

2𝑖𝑎 𝑟𝑛+1
[{cos(𝑛 + 1)𝜙 + 𝑖 sin(𝑛 + 1)𝜙}

− {cos(𝑛 + 1)𝜙 − 𝑖 sin(𝑛 + 1)𝜙}]  

𝑦𝑛 =
(−1)𝑛𝑛!

2𝑖𝑎 𝑟𝑛+1
[2𝑖 sin(𝑛 + 1)𝜙] 

{By using De Moivre’s theorem: (cos𝜃 + 𝑖 sin 𝜃)𝑛 =
(cos𝑛𝜃 + 𝑖 sin 𝑛𝜃)} 

Putting 𝑟 =
𝑎

sin 𝜙
, we get  
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𝑦𝑛 =
(−1)𝑛𝑛!

2𝑎. 𝑎𝑛+1
. sin(𝑛 + 1)𝜙 . sin𝑛+1 𝜙 

⇒ 𝑦𝑛 =
(−1)𝑛𝑛!

2 𝑎𝑛+2
. sin(𝑛 + 1)𝜙 . sin𝑛+1 𝜙 , 𝑤ℎ𝑒𝑟𝑒 𝜙

= tan−1
𝑎

𝑥
. 

 

6.6 LEIBNITZ’S THEOREM 
 

This theorem is useful for finding the 𝑛𝑡ℎ differential coefficient of a 

product. 

 

Theorem 1. If u and v are any two functions of x such that all their 

desired differential coefficient exists, then the nthdifferential 

coefficient of their product is given by 

 

Dn(uv) = (Dnu). v + nC1Dn−1u. Dv + nC2Dn−2u. D2v + ⋯ 

+nCrDn−ru.Drv………   …+ u Dnv. 
or 




 
n

r

rrnr

n

nn

n

n

n

n

n

n

n

n

n

vuCuvCvuCvuCvuCuv
dx

d

0

2221110 .....)(  

 

Proof.  We shall prove this theorem by the principle of mathematical 

induction.We know that first derivative of the product of two function 

is given by 𝐷(𝑢𝑣) = 𝐷𝑢. 𝑣 + 𝑢. 𝐷𝑣. 
Thus the theorem is true for 𝑛 = 1. 
Suppose that the theorem is true for 𝑛. Then, 

 

𝐷𝑛(𝑢𝑣) = (𝐷𝑛𝑢). 𝑣 + nC1𝐷𝑛−1𝑢. 𝐷𝑣 + nC2𝐷𝑛−2𝑢. 𝐷2𝑣 + ⋯+        

                       ....+  nCr𝐷𝑛−𝑟𝑢.𝐷𝑟𝑣    …+ 𝑢 𝐷𝑛𝑣. 
 

Differentiating with respect to𝑥, we get 

𝐷𝑛+1(𝑢𝑣) = 𝐷[(𝐷𝑛𝑢). 𝑣] + nC1𝐷[𝐷𝑛−1𝑢. 𝐷𝑣] + nC2𝐷[𝐷𝑛−2𝑢. 𝐷2𝑣] +
                     …+ nCr𝐷[𝐷𝑛−𝑟𝑢.𝐷𝑟𝑣] +⋯+ 𝐷[𝑢. 𝐷𝑛𝑣]. 

                            = {𝐷𝑛+1𝑢. 𝑣 + 𝐷𝑛𝑢. 𝐷𝑣} +nC1{𝐷𝑛𝑢. 𝐷𝑣 + 𝐷𝑛−1𝑢. 𝐷2𝑣} +
                       …+nCr{𝐷𝑛−𝑟+1𝑢.𝐷𝑟𝑣 + 𝐷𝑛−𝑟𝑢.𝐷𝑟+1𝑣} +⋯+
                         {𝐷𝑢. 𝐷𝑛𝑣 + 𝑢.𝐷𝑛+1𝑣]. 
 

Rearranging the terms, we get 

𝐷𝑛+1(𝑢𝑣) =  𝐷𝑛+1𝑢. 𝑣 + (1 +nC1)𝐷𝑛𝑢.𝐷𝑣 +⋯+ (nCr+
       

                                 nCr+1)𝐷𝑛−𝑟𝑢.𝐷𝑟+1𝑣 + ⋯+ 𝑢. 𝐷𝑛+1𝑣. 
 

We know that nCr+
 nCr+1 =

 n+1Cr+1. 

Hence 𝐷𝑛+1(𝑢𝑣) =  𝐷𝑛+1𝑢. 𝑣 + n+1C1 𝐷𝑛𝑢. 𝐷𝑣 + ⋯+ n+1Cr+1 

                                        𝐷𝑛−𝑟𝑢.𝐷𝑟+1𝑣 + ⋯+ 𝑢. 𝐷𝑛+1𝑣. 
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Thus, if the theorem is true for any value of 𝑛 it is also true for 

the next value (𝑛 + 1). But we have already seen that theorem is true 

for 𝑛 = 1. Hence it must be true for 𝑛 = 2 and so for 𝑛 = 3, and so on. 

Thus the theorem is true for all positive integral values of 𝑛. 

 

Note: While applying Leibnitz’s theorem if we observe that one of the 

two functions is such that all its differential coefficients after a certain 

stage become zero, then we should take the function as the second 

function. 

 

Ex.18 Find the 𝒏𝒕𝒉 differential coefficient of 𝒙 𝒄𝒐𝒔 𝒙. 

Sol.     Observe that the second and higher derivatives of 𝑥 are all zero, 

therefore for the sake of convenience we shall take 𝑥 as the 

second function. 

By Leibnitz’s theorem 

𝐷𝑛(𝑢𝑣) = (𝐷𝑛𝑢). 𝑣 + nC1𝐷𝑛−1𝑢. 𝐷𝑣 + nC2𝐷𝑛−2𝑢. 𝐷2𝑣 + ⋯+ 

nCr𝐷𝑛−𝑟𝑢. 𝐷𝑟𝑣 +          …+ 𝑢 𝐷𝑛𝑣. 
⇒ 𝐷𝑛(cos 𝑥 . 𝑥) = (𝐷𝑛 cos 𝑥). 𝑥 

= cos (𝑥 + 𝑛.
𝜋

2
)𝑥. 

Ex.19 If 𝑦 = 𝑥𝑛 log 𝑥, show that 𝑦𝑛+1 =
𝑛!

𝑥
. 

Sol.      We have 𝑦 = 𝑥𝑛 log𝑥. 

𝑦1 = 𝑥
𝑛
1

𝑥
+ 𝑛 𝑥𝑛−1 log 𝑥 

𝑥𝑦1 = 𝑥
𝑛 + 𝑛 𝑥𝑛 log 𝑥 

𝑥𝑦1 = 𝑥
𝑛 + 𝑛𝑦. 

Now differentiating 𝑛 times with respect to 𝑥, and using 

Leibnitz’s theorem, we get 

𝐷𝑛(𝑦1𝑥) = 𝐷
𝑛𝑥𝑛 + 𝑛 𝐷𝑛𝑦. 

(𝐷𝑛𝑦1). 𝑥 + 
nC1(𝐷𝑛−1𝑦1). (𝐷𝑥) = 𝑛! + 𝑛𝑦𝑛 , 

𝑦𝑛+1. 𝑥 + 𝑛 𝑦𝑛 . 1 = 𝑛! + 𝑛𝑦𝑛, 

⇒ 𝑦𝑛+1 =
𝑛!

𝑥
. 

Ex.20 Find the 𝒏𝒕𝒉 differential coefficient of  𝒙𝟑𝒆𝒂𝒙. 

Sol.      Choosing for the sake of convenience, 𝑥3 to be the second 

function. 

𝐷𝑛(𝑥3𝑒𝑎𝑥) = 𝑎𝑛𝑒𝑎𝑥 . 𝑥3 +nC1 𝑎𝑛−1𝑒𝑎𝑥 . 3𝑥2 + nC2 

𝑎𝑛−2𝑒𝑎𝑥 . 6𝑥 +nC3 𝑎𝑛−1𝑒𝑎𝑥 . 6. 

= 𝑎𝑛𝑥3𝑒𝑎𝑥 + 3 nC1 𝑎𝑛−1𝑥2𝑒𝑎𝑥 +  6 nC2 𝑎𝑛−2𝑥𝑒𝑎𝑥 + 6nC3 

𝑎𝑛−1𝑒𝑎𝑥 . 

 

Ex.21 If 𝒚 = 𝒆𝒂 𝒔𝒊𝒏
−𝟏𝒙, prove that  

(𝟏 − 𝒙𝟐)𝒚𝒏+𝟐 − (𝟐𝒏 + 𝟏)𝒙𝒚𝒏+𝟏 − (𝒏
𝟐 + 𝒂𝟐)𝒚𝒏 = 𝟎. 

Sol.    Since, 𝑦 = 𝑒𝑎 𝑠𝑖𝑛
−1𝑥 , 

We have𝑦1 = 𝑒
𝑎 𝑠𝑖𝑛−1𝑥 .

𝑎

√1−𝑥2
 

Or   (1 − 𝑥2)𝑦1
2 = 𝑎2𝑦2 
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Differentiating with respect to  𝑥, we get 

(1 − 𝑥2)2𝑦1𝑦2 − 2𝑥𝑦1
2 = 2𝑎2𝑦 𝑦1 

Or (1 − 𝑥2)𝑦2 − 𝑥𝑦1 = 𝑎
2𝑦 

Applying Leibnitz’s theorem, we get  

(1 − 𝑥2)𝑦𝑛+2 − 2𝑛𝑥𝑦𝑛+1 − 𝑛(𝑛 − 1)𝑦𝑛 − 𝑥𝑦𝑛+1 − 𝑛𝑦𝑛 = 𝑎
2𝑦𝑛 . 

(1 − 𝑥2)𝑦𝑛+2 − (2𝑛 + 1)𝑥𝑦𝑛+1 − (𝑛
2 + 𝑎2)𝑦𝑛 = 0. 

 

Ex.22 If 𝒚
𝟏

𝒎 + 𝒚−
𝟏

𝒎 = 𝟐𝒙, then prove that 

(𝒙𝟐 − 𝟏)𝒚𝒏+𝟐 + (𝟐𝒏 + 𝟏)𝒙𝒚𝒏 + (𝒏
𝟐 −𝒎𝟐)𝒚𝒏 = 𝟎. 

Sol.      𝑦
1

𝑚 + 𝑦−
1

𝑚 = 2𝑥 ⇒ 𝑦
2

𝑚 + 1 = 2𝑥 𝑦
1

𝑚 

⇒ 𝑦
2
𝑚 − 2𝑥 𝑦

1
𝑚 + 1 = 0. 

Therefore, 𝑦
1

𝑚 =
2𝑥±√4𝑥2−4𝑥

2
= (𝑥 ± √𝑥2 − 1) 

⇒ 𝑦 = (𝑥 ± √𝑥2 − 1)
𝑚

. 

Case (I): Taking positive sign, 𝑦 =  (𝑥 + √𝑥2 − 1)
𝑚

 

Differentiating it with respect to 𝑥, 

𝑦1 = 𝑚 (𝑥 + √𝑥2 − 1)
𝑚−1

[1 +
1

2
.

1

√𝑥2 − 1
. 2𝑥] 

= 𝑚(𝑥 + √𝑥2 − 1)
𝑚−1

[1 +
𝑥

√𝑥2 − 1
] 

= 𝑚(𝑥 + √𝑥2 − 1)
𝑚−1

[
√𝑥2 − 1 + 𝑥

√𝑥2 − 1
] 

= 𝑚(𝑥 + √𝑥2 − 1)
𝑚

[
1

√𝑥2 − 1
] 

⇒ √𝑥2 − 1 . 𝑦1 = 𝑚(𝑥 + √𝑥2 − 1)
𝑚

 

⇒ √𝑥2 − 1 . 𝑦1 = 𝑚𝑦 

⇒ (𝑥2 − 1)𝑦1
2 = 𝑚2𝑦2 

Case (II): Taking negative sign, 𝑦 =  (𝑥 − √𝑥2 − 1)
𝑚

 

Differentiating it with respect to 𝑥, 

𝑦1 = 𝑚 (𝑥 − √𝑥2 − 1)
𝑚−1

[1 −
1

2
.

1

√𝑥2 − 1
. 2𝑥] 

= 𝑚(𝑥 − √𝑥2 − 1)
𝑚−1

[1 −
𝑥

√𝑥2 − 1
] 

= 𝑚(𝑥 − √𝑥2 − 1)
𝑚−1

[
√𝑥2 − 1 − 𝑥

√𝑥2 − 1
] 

= −𝑚(𝑥 − √𝑥2 − 1)
𝑚

[
1

√𝑥2 − 1
] 

√𝑥2 − 1𝑦1 = −𝑚 (𝑥 − √𝑥2 − 1)
𝑚

 

⇒ √𝑥2 − 1𝑦1 = −𝑚𝑦  
⇒ (𝑥2 − 1)𝑦1

2 = 𝑚2𝑦2 . 
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Thus, we get the same value of 𝑦1 for positive and negative 

signs of (1), thus,(𝑥2 − 1)𝑦1
2 = 𝑚2𝑦2. 

Differentiating it again with respect to 𝑥, 

(𝑥2 − 1)2𝑦1𝑦2 + 2𝑥𝑦1
2 = 𝑚22𝑦𝑦1 

⇒ (𝑥2 − 1)𝑦2 + 𝑥𝑦1 −𝑚
2𝑦 = 0. 

 

Ex.23 If 𝑦 = 𝑎 cos(log𝑥) + 𝑏 sin(log𝑥), show that  

𝑥2𝑦𝑛+2 + (2𝑛 + 1)𝑥 𝑦𝑛+1 + (𝑛
2 + 1)𝑦𝑛 = 0. 

Sol.      We have 𝑦1 =
−𝑎

𝑥
sin(log𝑥) +

𝑏

𝑥
cos(log𝑥). 

⇒ 𝑥𝑦1 = −𝑎 sin(log𝑥) + 𝑏 cos(log 𝑥). 
Differentiating again, we have  

𝑥𝑦2 + 𝑦1 =
−𝑎

𝑥
cos(log𝑥) −

𝑏

𝑥
sin(log𝑥) 

𝑥2𝑦2 + 𝑥𝑦1 = −{𝑎 cos(log𝑥) + 𝑏 sin(log𝑥)} = −𝑦  
Therefore, 𝑥2𝑦2 + 𝑥𝑦1 + 𝑦 = 0. 
Applying Leibnitz’s Theorem, we have  

𝐷𝑛(𝑥2𝑦2) + 𝐷
𝑛(𝑥𝑦1) + 𝐷(𝑦) = 0. 

[𝑥2𝑦𝑛+2 + 
nC1 2𝑥. 𝑦𝑛+1 +

nC2𝑦𝑛 .2] + 2 [𝑦𝑛+1. 𝑥 +
nC1 𝑦𝑛 . 1] =

0. 

(1 + 𝑥2)𝑦𝑛+2 + 2𝑛𝑥. 𝑦𝑛+1 + 𝑛(𝑛 − 1)𝑦𝑛 + 2𝑥 𝑦𝑛+1 +
2𝑛 𝑦𝑛 = 0. 

or  

(1 + 𝑥2)𝑦𝑛+2 + 2(𝑛 + 1)𝑥 𝑦𝑛+1 + 𝑛(𝑛 + 1)𝑦𝑛 = 0. 
 

Ex.24 If 𝒚 = 𝒕𝒂𝒏−𝟏𝒙, find (𝒚𝒏)𝟎. 

 

Sol.     We have  

(1) 𝑦 = 𝑡𝑎𝑛−1𝑥. 

(2) 𝑦1 =
1

(1+𝑥2)
 

(3) (1 + 𝑥2)𝑦1 − 1 = 0. 
Differentiating (3), we get 

(4) (1 + 𝑥2)𝑦2 + 2𝑥𝑦1 = 0. 
Differentiating 𝑛 times by Leibnitz’s theorem, we get 

𝐷𝑛[(1 + 𝑥2)𝑦2] + 2𝐷
𝑛[𝑥𝑦1] = 0. 

𝐷𝑛𝑦2. (1 + 𝑥
2) + 𝑛.𝐷𝑛−1𝑦2. 2𝑥 +

𝑛(𝑛 − 1)

2!
. 𝐷𝑛−2𝑦2. 2 

+ 2[𝐷𝑛𝑦1. 𝑥 + 𝑛.𝐷
𝑛−1𝑦1. 𝐷𝑥] = 0 

          ⇒ 𝑦𝑛+2. (1 + 𝑥
2) + 2𝑛. 𝑦𝑛+1𝑥 + 𝑛(𝑛 − 1)𝑦𝑛 + 2𝑦𝑛+1. 𝑥 +

             2𝑛. 𝑦𝑛 . 1 = 0 

(5) (1 + 𝑥2)𝑦𝑛+2 + 2(𝑛 + 1)𝑥𝑦𝑛+1 + 𝑛(𝑛 + 1)𝑦𝑛 = 0. 
Putting 𝑥 = 0 in (1), (2) and (4), we get  

(𝑦)0 = 0,   (𝑦1)0 = 1, 𝑎𝑛𝑑 (𝑦2)0 = 0. 
Also putting𝑥 = 0 in equation (5), we get  

(1 + 0)(𝑦𝑛+2)0 + 0 + 𝑛(𝑛 + 1)(𝑦𝑛)0 = 0 

(6) (𝑦𝑛+2)0 = −𝑛(𝑛 + 1)(𝑦𝑛)0. 
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Putting 𝑛 − 2 in place of 𝑛  in equation (6), we get 
(𝑦𝑛)0 = −(𝑛 − 2)(𝑛 − 1)(𝑦𝑛−2)0 

Since, from equation (6), we have  

(𝑦𝑛−2)0 = −(𝑛 − 3)(𝑛 − 4)(𝑦𝑛−4)0 
So,  

(𝑦𝑛)0 = [−(𝑛 − 2)(𝑛 − 1)][−(𝑛 − 3)(𝑛 − 4)](𝑦𝑛−4)0. 
Now there are two cases: 

Case (I). When 𝑛  is even, we have 
(𝑦𝑛)0 = [−(𝑛 − 2)(𝑛 − 1)][−(𝑛 − 3)(𝑛 − 4)]… [−3.2](𝑦2)0 = 0. 

Case (II). When 𝑛  is odd, we have 

(𝑦𝑛)0 = [−(𝑛 − 2)(𝑛 − 1)][−(𝑛 − 3)(𝑛 − 4)]… [−4.3][−2.1](𝑦1)0 

(𝑦𝑛)0 = (−1)
𝑛−1
2 (𝑛 − 1)!, 𝑠𝑖𝑛𝑐𝑒 (𝑦1)0 = 1. 

Suppose we have to find (𝑦7)0 
So 𝑛 = 7, an odd number. From case (II), we get  

(𝑦7)0 = (−1)
3(7 − 1)! = −6!. 

Now we are in a stage to conclude this unit here. 

6.7 SUMMARY  
In this unit, we studied the 𝑛𝑡ℎ differential coefficient of a 

function, i.e., actual meaning of the successive differentiation. We 

have seen some standard results on 𝑛𝑡ℎdifferential coefficient are very 

useful for evaluating 𝑛𝑡ℎ derivative of various families of functions. 

Basic trigonometric identities play an important role for finding 𝑛𝑡ℎ 

differential coefficient of the trigonometric functions.We also studied 

the use of partial fraction in the successive differentiation of algebraic 

functions such as rational functions. When denominator can be 

factorized into real linear factors, then we get partial fractions form 

easily. But when denominator cannot be factorized into real linear 

factors, then factorize the denominator into linear factors, real or 

imaginary. De Moivre’s theorem plays an important task in such types 

of problems.We have studied the famous work of Leibnitz (Leibnitz’s 

theorem). This theorem provides  us a general method for finding the 

𝑛𝑡ℎ derivative of the product of two functions. 

 

6.8 GLOSSARY  
 

i. Function:A function f from S to T, where S and T are non-

empty sets, is a rule that associates with each element of S (the 

domain) a unique element of T (the codomain). 

ii. Factorial: For a positive integer n, the notation n! (read as ‘n 

factorial’) is used for the product n(n – 1)(n – 2) … × 2 × 

1.Thus 4! = 4 × 3 × 2 × 1 = 24. 

iii. De Moivre, Abraham(1667–1754) Prolific mathematician, 

born in France, who later settled  in England. In De Moivre’s 

Theorem, he is remembered for his use of complex numbers in 

trigonometry. But he was also the author of two notable early 
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works on probability. His Doctrine of Chances of 1718, 

examines numerous problems and develops a number of 

principles, such as the notion of independent events and the 

product law. Later work contains the result known as Stirling’s 

formula and probably the first use of the normal frequency 

curve. 

iv. De Moivre’s theorem: From the definition of multiplication (of 

a complex number), it follows that (cos θ1 + i sin θ1)(cos θ2 + i 

sin θ2) = cos (θ1 + θ2) + i sin (θ1 + θ2). This leads to the 

following result known as De Moivre’s Theorem, which is 

crucial to any consideration of the powers 𝑧𝑛of a complex 

number z:Forall positive integers n,(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛 𝜃)𝑛 =
cos𝑛𝜃 + 𝑖 𝑠𝑖𝑛 𝑛𝜃 = 𝑒𝑖𝑛𝜃. 

v. Leibnitz, Gottfried Wilhelm(1646–1716) A great 

mathematician, philosopher, scientist and writer on a wide 

range of subjects, who was, with Newton, the founder of the 

calculus. Newton’s discovery of differential calculus was 

perhaps ten years earlier than Leibniz’s, but Leibniz was the 

first to publish his account, written independently of Newton, 

in 1684. Soon after, he published an exposition of integral 

calculus that included the Fundamental Theorem of Calculus. 

He also wrote on other branches of mathematics, making 

significant contributions to the development of symbolic logic, 

a lead which was not followed up until the end of the 

nineteenth century. 

CHECK YOUR PROGRESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. 𝐷2(𝑥4𝑒5𝑥) 
(i) 𝑒5𝑥(25𝑥4 + 40𝑥3 + 12𝑥2). . 
(ii) 4𝑥3𝑒5𝑥 + 5𝑒5𝑥𝑥4. 
(iii) 4𝑥3𝑒5𝑥 + 20𝑥2𝑒5𝑥 
(iv) None of the above.     

  

2. 10𝑡ℎ differential coefficient of 𝑒𝑥 

(i) 10𝑒𝑥 . 

(ii) 10! 𝑒𝑥 

(iii) 0. 
(iv) 𝑒𝑥.         

3. 𝐷𝑛[(5𝑥 + 12)−1] 
(i) (−1)𝑛−1𝑛! (5𝑥 + 12)𝑛+1 

(ii) (−1)𝑛𝑛! 5𝑛(5𝑥 + 12)−𝑛−1. 
(iii) (−1)𝑛𝑛! 12𝑛(5𝑥 + 12)−𝑛−1. 
(iv) (−1)𝑛𝑛! 5𝑛(5𝑥 + 12)−𝑛+1.    

  

4. 𝐷250[sin 𝑝𝑥] 

(i) sin(𝑝𝑥 + 𝑛.
𝜋

2
). 

(ii) sin(𝑛𝑥 + 𝑝.
𝜋

2
). 

(iii) sin(𝑝𝑥 + 250.
𝜋

2
). 

(iv) Nothing can be said. 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 128 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

5. 𝐷𝑛[log 𝑥] 
(i) (−1)𝑛𝑛! 𝑥−𝑛 . 
(ii) (−1)𝑛−1(𝑛 − 1)! 𝑥−𝑛 

(iii) (−1)𝑛−1(𝑛 − 1)! 𝑥𝑛 

(iv) (−1)𝑛(𝑛 − 1)! 𝑥−𝑛.                                                  

  

6. 𝐷𝑛 [
1

𝑥2−𝑎2
] 

(i) 
1

2𝑎
(−1)𝑛𝑛! {(𝑥 + 𝑎)−(𝑛+1) + (𝑥 − 𝑎)−(𝑛+1))} 

(ii) 0 

(iii) 
1

2𝑎
(−1)𝑛𝑛! {(𝑥 − 𝑎)−(𝑛+1) + (𝑥 + 𝑎)−(𝑛+1))} 

(iv) 
1

2𝑎
(−1)𝑛𝑛! {(𝑥 − 𝑎)−(𝑛+1) − (𝑥 + 𝑎)−(𝑛+1))}  

  

7. 𝐼𝑓 𝑦 = A sin𝑚𝑥 + 𝐵𝑐𝑜𝑠 𝑚𝑥,  then  

(i) 𝑦2 −𝑚𝑦 = 0. 
(ii)𝑦2 +𝑚

2𝑦 = 0. 

(iii)  𝑦2 −𝑚
2𝑦 = 0. 

(iv) 𝑦2 +𝑚𝑦 = 0.       

  

8. 𝐼𝑓 𝑥 = 𝑎(cos 𝜃 + 𝜃 sin 𝜃),   𝑦 = 𝑎(sin 𝜃 − 𝜃 cos𝜃), then 𝑦1is  

(i) cos 𝜃 

(ii) sin 𝜃 

(iii) tan 𝜃 

(iv) cot  𝜃      

9. 𝐷𝑛[sin 2𝑥 sin 3𝑥],  is 

(i) 
1

2
[cos (𝑥 + 𝑛.

𝜋

2
) − 5𝑛 cos (5𝑥 + 𝑛.

𝜋

2
)] 

(ii) 
1

2
[cos (𝑥 +

𝜋

2
) − 5𝑛 cos (5𝑥 + 𝑛.

𝜋

2
)] 

(iii)  
1

2
[cos (𝑥 + 𝑛.

𝜋

2
) + 5𝑛 cos (5𝑥 + 𝑛.

𝜋

2
)] 

(iv) 
1

2
[cos (𝑥 + 𝑛.

𝜋

2
) − 5𝑛 cos (5𝑥 +

𝜋

2
)].   

  

10. 𝐷4(𝑥3 log 𝑥) 
(i) 0 

(ii) 
6

𝑥
 

(iii) 
−6

𝑥
 

(iv) 1 
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6.11 TERMINAL QUESTIONS 
                                                                                       

 

1. If 𝑝2 = 𝑎2 cos 𝜃 +𝑏2 sin2 𝜃, prove that  

𝑝 + 𝑝2 =
𝑎2𝑏2

𝑝3
. 

2. Find the 𝑛𝑡ℎ differential coefficient of 𝑒𝑎𝑥 sin 𝑏𝑥  and deduce 

the 𝑛𝑡ℎ differential coefficient of sin 𝑥 sin 𝑏𝑥. 
3. If 𝑦 = sin−1 𝑥, prove that(1 + 𝑥2)𝑦2 − 𝑥𝑦1 = 0. 

         Also prove that (1 − 𝑥2)𝑦𝑛+2 − (2𝑛 + 1)𝑥𝑦𝑛+1 − 𝑛
2𝑦𝑛 = 0. 

4. If 𝑦 = 𝑥2𝑒𝑥, show that 

𝑦𝑛 =
1

2
. 𝑛. (𝑛 − 1)𝑦2 − 𝑛(𝑛 − 2)𝑦1 +

1

2
(𝑛 − 1)(𝑛 − 2)𝑦. 

5. If 𝑦 = cos (log𝑥), prove that 

𝑥2𝑦𝑛+2 + (2𝑛 + 1)𝑥𝑦𝑛+1 + (𝑛
2 + 1)𝑦𝑛 = 0. 

6. If cos−1(
𝑦

𝑏
) = log(

𝑥

𝑛 
)
𝑛

, prove that  

𝑥2𝑦𝑛+2 + (2𝑛 + 1)𝑥𝑦𝑛+1 + 2𝑛
2𝑦𝑛 = 0. 

7. If 𝑦 = 𝐴𝑒−𝑘𝑡 cos(𝑝𝑡 + 𝑐), show that  
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𝑦2 + 2𝑘𝑦 + 𝑛
2𝑦 = 0, 

where 𝑛2 = 𝑝2 + 𝑘2. 

8. Prove that the value of the 𝑛𝑡ℎ differential coefficient of 
𝑥3

𝑥2−1
 

for 𝑥 = 0 is zero if 𝑛 is even, and is −𝑛! if n is odd and greater 

than 1. 

9. Find the nth derivative of xx sin2

at 0x . 

10. Find thenth derivative of following functions: 

(i) 
xx ee 22  . (ii) xx 3sin2sin . 

 

6.12 ANSWERS 
 

ANSWER CHECK YOUR PROGRESS 

SCQ1. (i) 

SCQ2. (iv) 

SCQ3 (ii) 

SCQ4 (iii) 

SCQ5 (ii) 

SCQ6 (iv) 

SCQ7 (ii) 

SCQ8 (iii) 

SCQ9 (i) 

SCQ10 (ii) 

ANSWER OF TERMINAL QUESTIONS 

TQ9 At 0x ,   

2
sin)(

2
)2(sin)1()sin( 22  n

nnnnnxx
dx

d
n

n











 

 

TQ10 (i) ])1([2 22 xnxn ee 
   

(ii) 



















2
5cos5

2

1

2
cos

2

1  n
x

n
x n

.
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UNIT 7:- EXPANSION OF FUNCTION OF 

ONE VARIABLE 
 

CONTENTS:- 
 

7.1 Introduction 

7.2 Objectives 
7.3 Maclaurin’s Theorem 

7.4 Taylor’s Theorem 

7.5  Solved Examples 

7.6 Summary 

7.7 Glossary 

7.8 References 

7.9 Suggested Readings 

7.10 Terminal Question 

7.11 Answers 
 

7.1  INTRODUCTION 

A Scottish mathematician Colin Maclaurin (1698-1746) was 

the first person in the history of mathematics, who equaled an 

indefinitely differentiable function with a convergent series at the 

origin. A series is called convergent if its sum is finite and unique. 

Almost all the expansions of functions which we know are actually the 

expansions at the origin.After that a British mathematician Brook 

Taylor raised the question: 

“If we have an indefinitely differentiable function 𝒚 = 𝒇(𝒙), 
differentiable at 𝒙 = 𝒂, 𝒂 ∈ ℝ, Can we have a similar expression at 

that point?” 

The answer to this question is ‘Yes’ and we know this expression as 

Taylor’s series. Actually Taylor’s series is generalization of 

Maclaurin’s series.  

7.2 OBJECTIVES 

After completion of this unit learner will be able to understand  

i. Expansion of a function in an infinite power-series. 

ii. Maclaurin’s Theorem 

iii. Taylor’s Theorem 

iv. Maclaurin’s Theorem 
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7.3 MACLAURIN’S THEOREM 

Theorem: Let f(x) be a function of x which possesses continuous 

derivatives of all orders in the interval [0, x] and can be expanded as an 

infinite series in x, then 

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +⋯+

xn

n!
fn(0) + ⋯. 

Proof: Suppose  

(1) 𝑓(𝑥) = 𝐴0 + 𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 +⋯. 

Since, 𝑓(𝑥) is differentiable term by term any number of times, then 

by successive differentiation, we have  

𝑓′(𝑥) = 𝐴1 + 2𝐴2𝑥 + 3𝐴3𝑥
2 + 4𝐴4𝑥

3 +⋯ 

𝑓′′(𝑥) = 2.1. 𝐴2 + 3.2. 𝐴3𝑥 + 4.3 𝐴4𝑥
2 +⋯ 

𝑓′′′(𝑥) = 3.2.1. 𝐴3 + 4.3.2 𝐴4𝑥 +⋯ 

Putting 𝑥 = 0, we get  

𝑓(0) = 𝐴0, 𝑓′(0) = 𝐴1, 𝑓′′(0) = 2!𝐴2, 𝑓′′′(0) = 3! 𝐴3,
… 

⇒ 𝐴0 = 𝑓(0), 𝐴1 = 𝑓
′(0), 𝐴2 =

𝑓′′(0)

2!
, 𝐴3 =

𝑓′′′(𝑥)

3!
,

… 

Substituting all these values in (1), we get  

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0) +⋯ 

Note: Maclaurin’s expansion of 𝑓(𝑥) fails if any of the functions 

𝑓(𝑥), 𝑓′(𝑥), 𝑓′′(𝑥),… becomes infinite or discontinuous at any point of 

the interval [0, 𝑥]. 

7.4 TAYLOR’S THEOREM 

Theorem:Let 𝑓(𝑥) be a function of 𝑥 which possesses continuous 

derivatives of all orders in the interval [𝑎, 𝑎 + ℎ], assuming that 𝑓(𝑎 +
ℎ) can be expanded as an infinite power series in ℎ, we have 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑎)

+⋯. 
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Proof :Suppose  

(1) 𝑓(𝑎 + ℎ ) = 𝐴0 + 𝐴1ℎ + 𝐴2ℎ
2 + 𝐴3ℎ

3 +⋯. 

Since, the expansion (1) be differentiable term by term any number of 

times with respect to ℎ. Then by successive differentiation with respect 

to ℎ, we have 

𝑓′(𝑎 + ℎ) = 𝐴1 + 2𝐴2ℎ + 3𝐴3ℎ
2 + 4𝐴4ℎ

3 +⋯. 

𝑓′′(𝑎 + ℎ) = 2.1 𝐴2 + 3.2. 𝐴3ℎ + 4.3𝐴4ℎ
2 +⋯. 

𝑓′′′(𝑎 + ℎ) = 3.2.1 𝐴3 + 4.3.2. 𝐴4ℎ + ⋯,  

𝑓𝑖𝑣(𝑎 + ℎ) = 4.3.2.1 𝐴4 +⋯ , 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

Putting ℎ = 0 in each of the above relations, we get  

𝑓(𝑎) = 𝐴0, 𝑓′(𝑎) = 𝐴1,
𝑓′′(𝑎) = 2! 𝐴2,       𝑓

′′′(𝑎) = 3! 𝐴3,       𝑓
𝑖𝑣(𝑎) = 4!𝐴4 

In general, 𝑓𝑛 = 𝑛! 𝐴𝑛. 

⇒ 𝐴0 = 𝑓(𝑎),   𝐴1 = 𝑓
′(𝑎), 𝐴2 =

1

2!
𝑓′′(𝑎),   𝐴3 =

1

3!
𝑓′′′(𝑎),

…   , 𝐴𝑛 =
1

𝑛!
𝑓𝑛(𝑎), 𝑎𝑛𝑑  𝑠𝑜 𝑜𝑛. 

Substituting these values of 𝐴0, 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ,… in (1), we get 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑎)

+⋯. 

This is Taylor’s theorem. 

Remark: (I)Another useful form of Taylor’s theorem is obtained on 

replacing ℎ by (𝑥 − 𝑎). Thus 

𝑓(𝑥) = 𝑓(𝑎 + (𝑥 − 𝑎)) 

⇒ 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) 𝑓′(𝑎) +
(𝑥 − 𝑎)2

2!
𝑓′′(𝑎)

+
(𝑥 − 𝑎)3

3!
𝑓′′′(𝑎) +⋯+

(𝑥 − 𝑎)𝑛

𝑛!
𝑓𝑛(𝑎) +⋯. 

which is an expansion of 𝑓(𝑥) as power series in (𝑥 − 𝑎). 

(II) Since, Taylor’s theorem is given by 
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𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) 𝑓′(𝑎) +
(𝑥 − 𝑎)2

2!
𝑓′′(𝑎) +⋯

+
(𝑥 − 𝑎)𝑛

𝑛!
𝑓𝑛(𝑎) + ⋯. 

If we put 𝑎 = 0, we get 

𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓′(0) +
(𝑥)2

2!
𝑓′′(0) + ⋯+

(𝑥)𝑛

𝑛!
𝑓𝑛(0) +⋯. 

which is Maclaurin’s theorem. 

In this unit we observed that Binomial, Exponential, 

Logarithmic and other well known expansions are all particular cases 

of one general theorem, i.e., Taylor’s Theorem. But in many cases it is 

not possible to find such an expansion for a function. 

In this unit, we obtained formal expansion of a function 

𝒇(𝒙) without giving any idea of ranges of values of 𝒙 for which the 

expansion is valid. In general,  

Taylor’s Infinite Series: If a function  𝑓(𝑥) possesses derivatives of 

all orders in the interval [𝑎, 𝑎 + ℎ]. Then for every positive integer 𝑛, 

we have  

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯

+
ℎ𝑛−1

(𝑛 − 1)!
𝑓𝑛−1(𝑎) + 𝑅𝑛 . 

Where 𝑅𝑛 =
ℎ𝑛

𝑛!
𝑓𝑛(𝑎 + 𝜃ℎ), (0 < 𝜃 < 1). 

𝑓(𝑎 + ℎ) = 𝑆𝑛 + 𝑅𝑛 . 

Wher𝑆𝑛 = 𝑓(𝑎) + ℎ 𝑓
′(𝑎) +

ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛−1

(𝑛−1)!
𝑓𝑛−1(𝑎). 

Let us suppose 𝑅𝑛 → 0 as 𝑛 → ∞, then lim
𝑛→∞

𝑆𝑛 = 𝑓(𝑎 + ℎ) 

⇒ 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯

+
ℎ𝑛−1

(𝑛 − 1)!
𝑓𝑛−1(𝑎) +⋯. 

If 𝑅𝑛 does not tends to zero as 𝑛 → ∞, then lim
𝑛→∞

𝑆𝑛 ≠ 𝑓(𝑎 + ℎ). 

Now consider, Maclaurin’s series 
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“If a function  𝑓(𝑥) possesses derivatives of all orders in the interval 

[0, 𝑥]. Then for every positive integer 𝑛, we have  

𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) + ⋯

+
𝑥𝑛−1

(𝑛 − 1)!
𝑓𝑛−1(0) + 𝑅𝑛 . 

Where 𝑅𝑛 =
ℎ𝑛

𝑛!
𝑓𝑛(𝜃𝑥), (0 < 𝜃 < 1). 

𝑓(𝑥) = 𝑆𝑛 + 𝑅𝑛 . 

Where 𝑆𝑛 = 𝑓(0) + 𝑥 𝑓
′(0) +

𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑛−1

(𝑛−1)!
𝑓𝑛−1(0). 

Let us suppose 𝑅𝑛 → 0 as 𝑛 → ∞, then lim
𝑛→∞

𝑆𝑛 = 𝑓(𝑥) 

⇒ 𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯

+
𝑥𝑛−1

(𝑛 − 1)!
𝑓𝑛−1(0) + ⋯. 

If 𝑅𝑛 does not tends to zero as 𝑛 → ∞, then lim
𝑛→∞

𝑆𝑛 ≠ 𝑓(𝑥).” 

 From the above discussion, we can conclude if any of the 

function 𝑓(𝑥), 𝑓′(𝑥), 𝑓′′(𝑥),… becomes infinite or does not exists for 

any value of  𝑥 in the given interval or if 𝑅𝑛 does not tends to zero as 

𝑛 → ∞. Then Taylor’s theorem or Maclaurin’s theorem fails to expand 

𝑓(𝑎 + ℎ) in an infinite power series. Thus, before expand a given 

function as an infinite Taylor’s theorem, it is essential to examine the 

behavior of 𝑅𝑛 as 𝑛 → ∞, which is not a simple task. Therefore we 

obtained the expansion by assuming the possibility of expanding it in 

an infinite series (i.e., by assuming 𝑅𝑛 → 0 as 𝑛 → ∞). 

Sometimes, we want only few terms of an expansion, then it is 

more convenient to use the Binomial, Exponential or the Logarithmic 

theorems, or the well-known expansions of sin 𝑥 and cos 𝑥. 

Occasionally it is very easy to derive an expansion by differentiating a 

known series. 
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7.5. SOLVED EXAMPLE 

Example 1. Expand sin 𝑥 by Maclaurin’s theorem. 

Solution: Let 𝑓(𝑥) = sin 𝑥. 

By Maclaurin’s theorem, we expand 𝑓(𝑥) as 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0)

+⋯ 

Now, we have to find 𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑛(0),… 

Since 𝑓(𝑥) = sin 𝑥  ⇒ 𝑓(0) = sin 0 = 0. 

𝑓′(𝑥) = cos𝑥 ⇒ 𝑓′(0) = 1. 

𝑓′′(𝑥) = −sin 𝑥 ⇒ 𝑓′′(0) = 0. 

𝑓′′′(𝑥) = − cos𝑥 ⇒ 𝑓′′′(0) = −1.etc. 

𝑓𝑛(𝑥) = sin (𝑥 + 𝑛.
𝜋

2
)       ⇒       𝑓𝑛(0) =

 {
0         𝑖𝑓 𝑛 = 2𝑚

(−1)𝑚          𝑖𝑓 𝑛 = 2𝑚 + 1
. 

Substituting the values of 𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑛(0),… 

sin 𝑥 = 0 + 𝑥. 1 +
𝑥2

2!
. 0 +

𝑥3

3!
. (−1) +

𝑥4

4!
. 0 +

𝑥5

5!
. (−1)2 +⋯

+ (−1)𝑚
𝑥2𝑚+1

(2𝑚 + 1)!
+ ⋯ 

⇒ sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
− ⋯+ (−1)𝑚

𝑥2𝑚+1

(2𝑚 + 1)!
+⋯. 

Example 2. Expand 𝑓(𝑥) = 𝑒𝑥 by Maclaurin’s theorem. 

Solution: Let 𝑓(𝑥) = 𝑒𝑥 . 

By Maclaurin’s theorem, we expand 𝑓(𝑥) as 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0)

+⋯ 

Now, we have to find 𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑛(0),… 

Since 𝑓(𝑥) = 𝑒𝑥 ⇒ 𝑓(0) = 𝑒0 = 1. 
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𝑓′(𝑥) = 𝑒𝑥 ⇒ 𝑓′(0) = 1. 

𝑓′′(𝑥) = 𝑒𝑥 ⇒ 𝑓′′(0) = 1. 

𝑓′′′(𝑥) = 𝑒𝑥 ⇒ 𝑓′′′(0) = 1. 

etc. In general  

𝑓𝑛(𝑥) = 𝑒𝑥 ⇒ 𝑓𝑛(0) = 1. 

Substituting the values of  𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑛(0),…. We 

have 𝑒𝑥 = 1+ 𝑥. 1 +
𝑥2

2!
. 1 +

𝑥3

3!
. 1 + ⋯+ 

𝑥𝑛

𝑛!
. 1 + ⋯. 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯+

𝑥𝑛

𝑛!
+ ⋯. 

Example 3. Expand cos 𝑥by Maclaurin’s theorem. 

Solution: Let 𝑓(𝑥) = cos𝑥. 

By Maclaurin’s theorem, we expand 𝑓(𝑥) as 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0)

+⋯ 

Now, we have to find 𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑛(0),… 

Since 𝑓(𝑥) = cos 𝑥  ⇒ 𝑓(0) = cos 0 = 1. 

𝑓′(𝑥) = − sin 𝑥 ⇒ 𝑓′(0) = 0. 

𝑓′′(𝑥) = −cos 𝑥 ⇒ 𝑓′′(0) = −1. 

𝑓′′′(𝑥) = sin 𝑥 ⇒ 𝑓′′′(0) = 1. 

etc. In general,  

𝑓𝑛(𝑥) = cos (𝑥 + 𝑛.
𝜋

2
)       ⇒       𝑓𝑛(0) =  {

(−1)𝑚         𝑖𝑓 𝑛 = 2𝑚
0           𝑖𝑓 𝑛 = 2𝑚 + 1

. 

Substituting the values of 𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑛(0),… 

cos 𝑥 = 1 + 𝑥. 0 +
𝑥2

2!
. (−1) +

𝑥3

3!
. 0 +

𝑥4

4!
. (−1)2 +

𝑥5

5!
. 0 + ⋯

+ (−1)𝑚
𝑥2𝑚

(2𝑚)!
+⋯ 

⇒ cos𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−⋯+ (−1)𝑚

𝑥2𝑚

(2𝑚)!
+ ⋯. 
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Example 4. Expand (𝟏 + 𝒙)𝒏. 

Solution: Let 𝑓(𝑥) = (1 + 𝑥)𝑛. Since,  

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑚

𝑚!
𝑓𝑚(0)

+ ⋯. 

{Observe that we made distinction between 𝑛𝑡ℎ term of the 

Maclaurin’s series (by replacing 𝑛 by 𝑚)  and 𝑛 used in question} 

Now, we have to find 𝑓(0), 𝑓′(0), 𝑓′′(0), 𝑓′′′(0),… , 𝑓𝑚(0),… 

𝑓(𝑥) = (1 + 𝑥)𝑛  ⇒  𝑓(0) = 1 . 

𝑓′(𝑥) = 𝑛(1 + 𝑥)𝑛−1 ⇒ 𝑓′(0) = 𝑛. 

𝑓′′(𝑥) = 𝑛(𝑛 − 1)(1 + 𝑥)𝑛−2 ⇒ 𝑓′′(0) = 𝑛(𝑛 − 1). 

…. 

In general, 𝑓𝑚(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑚 + 1)(1 + 𝑥)(𝑛−𝑚) 

⇒ 𝑓𝑚(0) = 𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 −𝑚 + 1). 

Substituting the suitable values in Maclaurin’s series, we get 

(1 + 𝑥)𝑛 = 1+ 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +⋯

+
𝑛(𝑛 − 1)… (𝑛 −𝑚 + 1)

𝑚!
𝑥𝑚 +⋯. 

This is known as Binomial series. 

Example 5. Expand 𝒍𝒐𝒈 (𝟏 + 𝒙). 

Solution:Let 𝑓(𝑥) = log(1 + 𝑥). Since,  

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑚

𝑚!
𝑓𝑚(0)

+ ⋯. 

Now, 𝑓(𝑥) = log(1 + 𝑥) ⇒ 𝑓(0) = log1 = 0. 

𝑓′(𝑥) =
1

(1+𝑥)
⇒ 𝑓′(0) = 1. 

𝑓′′(𝑥) =
(−1)

(𝑥+1)2
⇒ 𝑓′′(0) = −1!. 

𝑓′′′(𝑥) =
(−1)22.1

(𝑥+1)3
⇒ 𝑓′′′(𝑥) = 2!. 
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and so on. In general 𝑓𝑛(𝑥) =
(−1)(𝑛−1)(𝑛−1)!

(𝑥+1)𝑛
⇒ 𝑓𝑛(0) = (−1)𝑛−1(𝑛 −

1)!.Substituting the suitable values  

log(1 + 𝑥) = 0 + 𝑥. 1 +
𝑥2

2!
. (−1!) +

𝑥3

3!
. (2!) + ⋯

+
𝑥𝑛

𝑛!
(−1)𝑛−1(𝑛 − 1)! +⋯. 

⇒ log(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
− ⋯+ (−1)𝑛−1

𝑥𝑛

𝑛
+ ⋯. 

Example 6. Expand 𝑎𝑥. 

Solution. Let 𝑓(𝑥) = 𝑎𝑥 . Then 𝑓(0) = 1. 

𝑓′(𝑥) = 𝑎𝑥 log𝑎 ⇒ 𝑓′(0) = log𝑎. 

𝑓′′(𝑥) = 𝑎𝑥(𝑙𝑜𝑔 𝑎)2 ⇒ 𝑓′′(0) = (log𝑎)2. 

𝑓′′′(𝑥) = 𝑎𝑥(log𝑎)3 ⇒ 𝑓′′′(0) = (log𝑎)3. 

And, so on. In general,  

𝑓𝑛(𝑥) = 𝑎𝑥(log𝑎)𝑛 ⇒ 𝑓𝑛(0) = (log𝑎)𝑛 . 

Now by Maclaurin’s theorem, we have 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑚

𝑚!
𝑓𝑚(0)

+ ⋯. 

So,  

𝑎𝑥 = 1 + 𝑥(log𝑎) +
𝑥2

2!
(log𝑎)2 +

𝑥3

3!
(log𝑎)3 +⋯+

𝑥𝑛

𝑛!
(log𝑎)𝑛

+⋯. 

Example 7.Expand tan 𝑥. 

Solution: Let 𝑦 = tan 𝑥. Then (𝑦)0 = 0. 

𝑦1 = sec
2 𝑥 = 1 + tan2 𝑥 = 1 + (𝑦)2 ⇒ (𝑦1)0 = 1 + (𝑦)0

2 = 1 + 0
= 1, 

𝑦2 = 2𝑦𝑦1 ⇒ (𝑦2)0 = 2(𝑦)0(𝑦1)0 = 2.0.1 = 0, 

𝑦3 = 2𝑦1𝑦1 + 2𝑦𝑦2 ⇒ (𝑦3)0 = 2(𝑦1)0
2 + 2(𝑦)0. (𝑦2)0

= 2. (1)2 + 2.0.0 = 2, 

Similarly (𝑦4)0 = 0, 𝑎𝑛𝑑 (𝑦5)0 = 16, and so on. 
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Using Maclaurin’s series 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0)

+⋯ 

We get,  

𝑓(𝑥) = 0 + 𝑥. 1 +
𝑥2

2!
. 0 +

𝑥3

3!
. 2 +

𝑥4

4!
. 0 +

𝑥5

5!
. 16 +⋯. 

⇒ tan 𝑥 = 𝑥 +
1

3
𝑥3 +

2

15
𝑥5 +⋯. 

Example 8. Expand sin−1 𝑥. 

Solution: Let 𝑦 = sin−1 𝑥. Then 𝑦1 =
1

√1−𝑥2
 

(1 − 𝑥2)𝑦1
2 − 1 = 0. 

Differentiating again, we have 

(1 − 𝑥2)2𝑦1𝑦2 − 2𝑥𝑦1
2 = 0. 

(1 − 𝑥2)𝑦2 − 𝑥𝑦1 = 0. 

{Note: Here 2𝑦1 ≠ 0.} 

Now differentiating n- times by Leibnitz’s rule, we get  

(1 − 𝑥2)𝑦𝑛+2 − (2𝑛 + 1)𝑥𝑦1 − 𝑛
2𝑦𝑛 = 0. 

Putting 𝑥 = 0 in the above relations, we get 

(𝑦)0 = 0, (𝑦1)0 = 1, (𝑦2)0 = 0,   𝑎𝑛𝑑 (𝑦𝑛+2)0 = 𝑛
2(𝑦𝑛)0.  

Putting 𝑛 = 1, 2, 3,…, we have (𝑦3)0 = 1
2, (𝑦4)0 = 2

2. 0 =
0 , (𝑦5)0 = 3

2. 12, (𝑦6)0 = 0, (𝑦7)0 = 5
2. 32. 12, 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

Now by Maclaurin’s theorem 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0)

+⋯ 

⇒ sin−1 𝑥 = 0 + 𝑥. 1 +
𝑥2

2!
. 0 +

𝑥3

3!
. 12 +

𝑥4

4!
. 0 +

𝑥5

5!
. 32. 12 +

𝑥6

6!
. 0

+
𝑥7

7!
. 52. 32. 12 +⋯. 

⇒ sin−1 𝑥 = 𝑥 +
𝑥3

3!
. 12 +

𝑥5

5!
. 32. 12 +

𝑥7

7!
. 52. 32. 12 +⋯. 
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⇒ sin−1 𝑥 = 𝑥 +
1

2
.
𝑥3

3
+
1

2
.
3

4
.
𝑥5

5
+
1

2
.
3

4
.
5

6
.
𝑥7

7!
+⋯. 

Example 9.Show that the first five terms in the power series for 

log(1 + sin 𝑥) are  

𝑥 −
𝑥2

2
+
𝑥3

6
−
𝑥4

12
+
𝑥5

24
. 

Solution: Let 𝑦 = log(1 + sin 𝑥). Then (𝑦)0 = log1 = 0. 

𝑦1 =
cos 𝑥

(1+sin 𝑥)
⇒ (𝑦1)0 = 1, 

𝑦2 = 
−1

1+sin 𝑥
⇒ (𝑦2)0 = −1, 

𝑦3 =
cos 𝑥

(1+sin 𝑥)
.

1

(1+sin 𝑥)
= −𝑦1𝑦2 ⇒ (𝑦3)0 =  1. 

𝑦4 = −𝑦1𝑦3 − 𝑦2
2 ⇒ (𝑦4)0 = −1. (1) − (−1)

2 = −2. 

𝑦5 = −𝑦1𝑦4 − 𝑦2𝑦3 − 2𝑦2𝑦3 = −𝑦1𝑦4 − 3𝑦2𝑦3 ⇒ (𝑦5)0 = 5. 

By using Maclaurin’s series, we have  

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0) +⋯ 

Substituting the values, we get 

log(1 + sin 𝑥) = 0 + 𝑥. 1 +
𝑥2

2!
. (−1) +

𝑥3

3!
. 1 +

𝑥4

4!
. (−2) +

𝑥5

5!
. (5)

+⋯. 

log(1 + sin 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

6
−
𝑥4

12
+
𝑥5

24
−⋯. 

Therefore, the first five terms in the power series for log(1 + sin 𝑥) are  

𝑥 −
𝑥2

2
+
𝑥3

6
−
𝑥4

12
+
𝑥5

24
. 

Example 10.Expand sec 𝑥. 

Solution: Let 𝑦 = sec 𝑥. Then (𝑦)0 = 1. 

𝑦1 = sec 𝑥 tan 𝑥 ⇒ (𝑦1)0 = 0. 

𝑦2 = sec 𝑥 . sec
2 𝑥 + sec 𝑥 . tan 𝑥 . tan 𝑥
= sec3 𝑥 + sec 𝑥 . (sec2 𝑥 − 1) = 2 sec3 𝑥 − sec 𝑥 

⇒ 𝑦2 = 2𝑦
3 − 𝑦 ⇒ (𝑦2)0 = 2.1

3 − 1 = 1. 
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𝑦3 = 6𝑦
2𝑦1 − 𝑦1 ⇒ (𝑦3)0 = 6.1

2. 0 − 0 = 0. 

𝑦4 = 6𝑦
2𝑦2 + 12𝑦𝑦1 − 𝑦2 ⇒ (𝑦4)0 = 6.1

2. 1 + 12 .1.0 − 1
= 5, 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

By using Maclaurin’s series, we have  

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) +

𝑥3

3!
𝑓′′′(0) +⋯+

𝑥𝑛

𝑛!
𝑓𝑛(0) +⋯ 

sec 𝑥 = 1 + 𝑥. 0 +
𝑥2

2!
. 1 +

𝑥3

3!
. 0 +

𝑥4

4!
. 5 +⋯. 

sec 𝑥 = 1 +
𝑥2

2!
+
5𝑥4

4!
+ ⋯. 

Example 11. Expand log sec 𝑥. 

Solution: Let 𝑦 = log sec 𝑥. Then (𝑦)0 = 0. 

𝑦1 = tan 𝑥 ⇒ (𝑦1)0 = 0. 

𝑦2 = sec
2 𝑥 = 1 + tan2 𝑥 = 1 + 𝑦1

2 ⇒ (𝑦2)0 = 1 + 0
2 = 1. 

𝑦3 = 2𝑦1𝑦2 ⇒ (𝑦3)0 = 0. 

𝑦4 = 2𝑦1𝑦3 + 2𝑦2
2 ⇒ (𝑦4)0 = 2.  

𝑦5 = 2𝑦1𝑦4 + 2𝑦2𝑦3 + 4𝑦2𝑦3 ⇒ 𝑦5 = 2𝑦1𝑦4 + 6𝑦2𝑦3 ⇒ (𝑦5)0 = 0. 

𝑦6 = 2𝑦1𝑦5 + 2𝑦2𝑦4 + 6𝑦2𝑦4 + 6𝑦3
2 = 2𝑦1𝑦5 + 8𝑦2𝑦4 + 6𝑦3

2

⇒ (𝑦6)0 = 8.1.2 = 16. 

Now by Maclaurin’s theorem  

𝑦 = (𝑦)0 + 𝑥. (𝑦1)0 +
𝑥2

2!
. (𝑦2)0 +

𝑥3

3!
. (𝑦3)0 +⋯+

𝑥𝑛

𝑛!
. (𝑦𝑛)0 +⋯. 

log(sec 𝑥) = 0 + 𝑥. 0 +
𝑥2

2!
. 1 +

𝑥3

3!
. 0 +

𝑥4

4!
. 2 +

𝑥5

5!
. 0 +

𝑥6

6!
. 16 + ⋯. 

log(sec 𝑥) =
𝑥2

2
+
𝑥4

12
+
𝑥6

45
+ ⋯. 

Example 12.Expand 𝑒𝑥 sec 𝑥, 

Solution: Let 𝑦 = 𝑒𝑥 sec 𝑥 . Then (𝑦)0 = 1. 

𝑦1 = 𝑒
𝑥 sec 𝑥 + 𝑒𝑥 sec 𝑥 . tan 𝑥 = 𝑦 + 𝑦 tan 𝑥 ⇒ (𝑦1)0 = 1, 

𝑦2 = 𝑦1 + 𝑦1 tan 𝑥 + 𝑦. sec
2 𝑥 ⇒ (𝑦2)0 = 2. 
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𝑦3 = 𝑦2 + 𝑦2 tan 𝑥 + 2𝑦1 sec
2 𝑥 + 2𝑦 sec2 𝑥 . tan 𝑥 ⇒ (𝑦3)0 = 2 + 2

= 4,  

And so on. 

Substituting these values in Maclaurin’s theorem 

𝑦 = (𝑦)0 + 𝑥. (𝑦1)0 +
𝑥2

2!
. (𝑦2)0 +

𝑥3

3!
. (𝑦3)0 +⋯+

𝑥𝑛

𝑛!
. (𝑦𝑛)0 +⋯. 

We get,  

𝑒𝑥 sec 𝑥 = 1 + 𝑥 +
2𝑥2

2!
+
4𝑥3

3!
+ ⋯. 

In the above examples, we expanded following functions: 

i. sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯+ (−1)𝑚

𝑥2𝑚+1

(2𝑚+1)!
+⋯. 

ii. 𝑒𝑥 = 1+ 𝑥 +
𝑥2

2!
+
𝑥3

3!
+⋯+

𝑥𝑛

𝑛!
+⋯. 

iii. cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−⋯+ (−1)𝑚

𝑥2𝑚

(2𝑚)!
+⋯. 

iv. (1 + 𝑥)𝑛 = 1+ 𝑛𝑥 +
𝑛(𝑛−1)

2!
𝑥2 +⋯+

𝑛(𝑛−1)…(𝑛−𝑚+1)

𝑚!
𝑥𝑚 +

⋯. 

v. log(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
−⋯+ (−1)𝑛−1

𝑥𝑛

𝑛
+⋯. 

vi. 𝑎𝑥 = 1 + 𝑥(log𝑎) +
𝑥2

2!
(log𝑎)2 +

𝑥3

3!
(log𝑎)3 +⋯+

𝑥𝑛

𝑛!
(log𝑎)𝑛 +⋯. 

vii. tan 𝑥 = 𝑥 +
1

3
𝑥3 +

2

15
𝑥5 +⋯. 

viii. sin−1 𝑥 = 𝑥 +
1

2
.
𝑥3

3
+
1

2
.
3

4
.
𝑥5

5
+
1

2
.
3

4
.
5

6
.
𝑥7

7!
+⋯. 

These expansions are very useful for finding the limit of 

indeterminate forms (see unit- Indeterminate Forms).  

Example 13. Expand log sin(𝑥 + ℎ) in powers of ℎ  by Taylor’s 

theorem. 

Solution:Let 𝑓(𝑥 + ℎ) = log sin(𝑥 + ℎ) 

⇒ 𝑓(𝑥) = log sin 𝑥, 

𝑓′(𝑥) =
1

sin 𝑥
. cos 𝑥 = cot𝑥, 

𝑓′′(𝑥) = −𝑐𝑜𝑠𝑒𝑐2𝑥, 

𝑓′′′(𝑥) = 2𝑐𝑜𝑠𝑒𝑐 𝑥. 𝑐𝑜𝑠𝑒𝑐 𝑥 cot 𝑥, 

……… 
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Now by Taylor’s theorem, we have 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ 𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) +

ℎ3

3!
𝑓′′′(𝑥) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑥)

+⋯. 

Substituting the values of 𝑓(𝑥), 𝑓′(𝑥), 𝑓′′(𝑥), 𝑓′′′(𝑥),… 

⇒ log sin(𝑥 + ℎ)

= log sin 𝑥 + ℎ cot 𝑥 −
ℎ2

2
𝑐𝑜𝑠𝑒𝑐2𝑥

+
ℎ3

3
𝑐𝑜𝑠𝑒𝑐2𝑥 𝑐𝑜𝑡 𝑥 + ⋯. 

Example 14.Expand sin 𝑥 in powers of (𝑥 −
𝜋

2
) by using Taylor’s 

series. 

Solution: Let 𝑓(𝑥) = sin 𝑥. Then 𝑓(𝑥) = 𝑓 [
𝜋

2
+ (𝑥 −

𝜋

2
)] 

Now, expanding 𝑓 [
𝜋

2
+ (𝑥 −

𝜋

2
)] by Taylor’s theorem in powers of 

(𝑥 −
𝜋

2
), we get 

𝑓(𝑥) = 𝑓 [
𝜋

2
+ (𝑥 −

𝜋

2
)]

= 𝑓 (
𝜋

2
)+ (𝑥 −

𝜋

2
) 𝑓′ (

𝜋

2
) +

1

2!
(𝑥 −

𝜋

2
)
2

𝑓′′ (
𝜋

2
)

+
1

3!
(𝑥 −

𝜋

2
)
3

𝑓′′′ (
𝜋

2
) +⋯. 

Now, 𝑓(𝑥) = sin 𝑥 ⇒ 𝑓 (
𝜋

2
) = sin (

𝜋

2
) = 1. 

𝑓′(𝑥) = cos𝑥 ⇒ 𝑓′ (
𝜋

2
) = cos (

𝜋

2
) = 0. 

𝑓′′(𝑥) = − sin 𝑥 ⇒ 𝑓′′ (
𝜋

2
) = − sin (

𝜋

2
) = −1. 

𝑓′′′(𝑥) = − cos𝑥 ⇒ 𝑓′′′ (
𝜋

2
) = − cos (

𝜋

2
) = 0. 

𝑓𝑖𝑣(𝑥) = sin 𝑥 ⇒ 𝑓𝑖𝑣 (
𝜋

2
) = sin (

𝜋

2
) = 1. 

Putting all these values in (1), we get 

sin 𝑥 = 1 − (𝑥 −
𝜋

2
) . 0 −

1

2!
(𝑥 −

𝜋

2
)
2

+
1

3!
(𝑥 −

𝜋

2
)
3

. 0 +
1

4!
(𝑥 −

𝜋

2
)
4

−⋯. 
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⇒ sin 𝑥 = 1 −
1

2!
(𝑥 −

𝜋

2
)
2

+
1

4!
(𝑥 −

𝜋

2
)
4

+⋯. 

Example 15. If 𝑓(𝑥) = 𝑥3 + 8𝑥2 + 15𝑥 − 24, calculate the value of 

𝑓 (
11

10
) by Taylor’s series. 

 

Solution:Let 𝑓(𝑥) = 𝑥3 + 8𝑥2 + 15𝑥 − 24. Since 𝑓 (
11

10
) =

𝑓 (1 + 
1

10
) 

So, 𝑓(1) = 0. 𝑓′(𝑥) = 3𝑥2 + 16𝑥 + 15 ⇒ 𝑓′(1) = 34. 

𝑓′′(𝑥) = 6𝑥 + 16 ⇒ 𝑓′′(1) = 22. 

𝑓′′′(𝑥) = 6 ⇒ 𝑓′′′(1) = 6. 

𝑓𝑖𝑣(𝑥) = 0 ⇒ 𝑓𝑖𝑣(1) = 0. 

By Taylor’s theorem,  

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎) 𝑓′(𝑎) +
(𝑥 − 𝑎)2

2!
𝑓′′(𝑎) +

(𝑥 − 𝑎)3

3!
𝑓′′′(𝑎)

+⋯+
(𝑥 − 𝑎)𝑛

𝑛!
𝑓𝑛(𝑎) + ⋯. 

Put 𝑥 =
11

10
, 𝑎 =

1

10
 

𝑓 (
11

10
) = 𝑓 (1 +

1

10
)

= 𝑓(1) +
1

10
𝑓′(1) +

1

102
.
1

2!
𝑓′′(1) +

1

103
.
1

3!
. 𝑓′′′(1)

+⋯. 

⇒ 𝑓 (
11

10
) = 0 +

1

10
. 34 +

1

102
.
1

2
. 22 +

1

103
.
1

6
. 6

= 3.4 + 0.11 + 0.001 = 3.511. 

Example 16. Prove that  

sin(𝑥 + ℎ) = sin 𝑥 + ℎ cos𝑥 −
ℎ2

2!
sin 𝑥 − ⋯. 

Solution: First we observe that we are expand sin(𝑥 + ℎ)in powers of 

ℎ. 

So, let 𝑓(𝑥) = sin 𝑥. Then 𝑓(𝑥 + ℎ) = sin(𝑥 + ℎ). 

By using Taylor’s theorem 
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𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ 𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) +

ℎ3

3!
𝑓′′′(𝑥) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑥)

+⋯. 

Since 𝑓(𝑥) = sin 𝑥 

⇒ 𝑓′(𝑥) = cos𝑥 , 𝑓′′(𝑥) = −sin 𝑥 ,
𝑓′′′(𝑥) = − cos𝑥 ,… , 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

Substituting these values in Taylor’s theorem, we get  

sin(𝑥 + ℎ) = sin 𝑥 + ℎ. cos 𝑥 +
ℎ2

2!
. (− sin 𝑥) +

ℎ3

3!
. (− cos 𝑥) +⋯. 

⇒ sin(𝑥 + ℎ) = sin 𝑥 + ℎ. cos 𝑥 −
ℎ2

2!
sin 𝑥 −

ℎ3

3!
cos 𝑥 +⋯. 

Example 17. Expand 𝟐𝒙𝟑 + 𝟕𝒙𝟐 + 𝒙 − 𝟏 in powers of (𝒙 − 𝟐). 

Solution: Let 𝑓(𝑥) = 2𝑥3 + 7𝑥2 + 𝑥 − 1. 

We have 𝑓(𝑥) = 𝑓[2 + (𝑥 − 2)]. 

𝑓(𝑥) = 2𝑥3 + 7𝑥2 + 𝑥 − 1 ⇒ 𝑓(2) = 45. 

𝑓′(𝑥) = 6𝑥2 + 14𝑥 + 1 ⇒ 𝑓′(2) = 53. 

𝑓′′(𝑥) = 12𝑥 + 14 ⇒ 𝑓′′(2) = 38. 

𝑓′′′(𝑥) = 12 ⇒ 𝑓′′′(2) = 12. 

In general, 𝑓𝑛(𝑥) = 0, 𝑤ℎ𝑒𝑛 𝑛 ≥ 4 ⇒ 𝑓𝑛(2) = 0,𝑤ℎ𝑒𝑛 𝑛 ≥ 4. 

Using Taylor’s theorem 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ 𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) +

ℎ3

3!
𝑓′′′(𝑥) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑥)

+⋯. 

⇒ 𝑓(𝑥) = 𝑓[2 + (𝑥 − 2)]

= 𝑓(2) + (𝑥 − 2)𝑓′(2) +
(𝑥 − 2)2

2!
𝑓′′(2)

+
(𝑥 − 2)3

3!
𝑓′′′(2) 

Substituting the values of 𝑓(2), 𝑓′(2), 𝑓′′(2), 𝑎𝑛𝑑 𝑓′′′(2) 

[Notice that 𝑓𝑛(2) = 0, 𝑤ℎ𝑒𝑛 𝑛 ≥ 4] 

𝑓(𝑥) = 45 + (𝑥 − 2). 53 +
(𝑥 − 2)2

2!
. 38 +

(𝑥 − 2)3

3!
. 12 
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⇒ 𝑓(𝑥) = 45 + 53(𝑥 − 2) + 19(𝑥 − 2)2 + 2(𝑥 − 2)3. 

Example 18. Find √17 to four decimal places by using Taylor’s 

theorem. 

Solution.  Let𝑓(𝑥) = √𝑥. 

Now we have to find 𝑓(17) 

Since 𝑓(17) = 𝑓(16 + 1) 

Consider Taylor’s theorem 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑎)

+⋯. 

𝑓(17) = 𝑓(16 + 1)

= 𝑓(16) + 1. 𝑓′(16) +
12

2!
. 𝑓′′(16) +

13

3!
𝑓′′′(16)

+
14

4!
𝑓𝑖𝑣(16) + ⋯. 

Since 𝑓(𝑥) = √𝑥 ⇒ 𝑓(16) = 4. 

𝑓′(𝑥) =
1

2√𝑥
⇒ 𝑓′(16) =

1

8
. 

𝑓′′(𝑥) =
1

2
.
−1

2
. (𝑥)

−3

2 =
−1

4
(𝑥)

−3

2  ⇒ 𝑓′′(16) =
−1

4.(43)
=
−1

44
. 

𝑓′′′(𝑥) =  
1

2
.
−1

2
.
−3

2
. (𝑥)

−5

2  ⇒ 𝑓′′′(16) =
3

8.(45)
. 

Substituting the values, we get  

√17 = 4 + 1.
1

8
+
1

2!
.
−1

44
+
1

3!
.

3

8. (45)
. 

⇒ √17 = 4 + 0.125 − 0.00195 + 0.00002 

√17 = 4.12307 ≈ 4.123. 

Note: In this example we have 𝑓(𝑥) = √𝑥, and we take 𝑓(17) =
𝑓(16 + 1), and we expand it by Taylor’s theorem in powers of ℎ = 1 

and derivatives are taken at 𝑎 = 16for the sake of convenience. 

Because we can find the exact value of the function and its derivative 

at 𝑎 = 16. Suppose if we take 𝑓(17) = 𝑓(15 + 2), it will be very 

difficult to find the value of the function and its derivative at 𝑥 = 15. 
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Example 19. Expand 𝒆𝒙 in powers of (𝒙 − 𝟏). 

Solution: Let 𝑓(𝑥) = 𝑒𝑥. We are to expand 𝑓(𝑥) in powers of (𝑥 −
1). 

Hence, 𝑓(𝑥) = 𝑓[1 + (𝑥 − 1)] 

We know that  

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑎)

+⋯. 

⇒ 𝑓(𝑥) = 𝑓[1 + (𝑥 − 1)]

= 𝑓(1) + (𝑥 − 1) 𝑓′(1) +
(𝑥 − 1)2

2!
𝑓′′(1)

+
(𝑥 − 1)3

3!
𝑓′′′(1) +⋯+

(𝑥 − 1)𝑛

𝑛!
𝑓𝑛(1) +⋯. 

Now we are to find 𝑓(1), 𝑓′(1), 𝑓′′(1), 𝑓′′′(1),… , 𝑓𝑛(1),…. For this  

𝑓(𝑥) = 𝑒𝑥 ⇒ 𝑓(1) = 𝑒. 

𝑓′(𝑥) = 𝑒𝑥 ⇒ 𝑓′(1) = 𝑒. 

𝑓′′(𝑥) = 𝑒𝑥 ⇒ 𝑓′′(1) = 𝑒. 

𝑓′′′(𝑥) = 𝑒𝑥 ⇒ 𝑓′′′(1) = 𝑒. 

In general, 𝑓𝑛(𝑥) = 𝑒𝑥 ⇒ 𝑓𝑛(1) = 𝑒. 

Substituting these values in above expansion, we get 

𝑒𝑥 = 𝑒 + (𝑥 − 1)𝑒 +
(𝑥 − 1)2

2!
𝑒 +

(𝑥 − 1)3

3!
 𝑒 +⋯+

(𝑥 − 1)𝑛

𝑛!
 𝑒

+ ⋯. 

⇒ 𝑒𝑥 = 𝑒 [1 + (𝑥 − 1) +
(𝑥 − 1)2

2!
+
(𝑥 − 1)3

3!
+⋯+

(𝑥 − 1)𝑛

𝑛!

+⋯]. 

Example 20. Show that 𝒍𝒐𝒈 (𝒙 + 𝒉) = 𝒍𝒐𝒈 𝒉 +
𝒙

𝒉
−

𝒙𝟐

𝟐𝒉𝟐
+

𝒙𝟑

𝟑𝒉𝟑
−⋯. 

Solution: Firstly observe that we are to expand log(𝑥 + ℎ) in 

ascending powers of 𝑥. 

So, let 𝑓(ℎ) = log ℎ. 

Then 𝑓(ℎ + 𝑥) = log(ℎ + 𝑥). 
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By Taylor’s theorem 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑎)

+⋯. 

Now we have,  

𝑓(ℎ + 𝑥) = 𝑓(ℎ) + 𝑥 𝑓′(ℎ) +
𝑥2

2!
𝑓′′(ℎ) +

𝑥3

3!
𝑓′′′(ℎ) +⋯+

𝑥𝑛

𝑛!
𝑓𝑛(ℎ)

+⋯. 

Where 𝑓(ℎ) = logℎ. 

𝑓′(ℎ) =
1

ℎ
;  𝑓′′(ℎ) =

(−1)

ℎ2
;   𝑓′′′(ℎ) =

2

ℎ3
;   𝑒𝑡𝑐. 

Substituting these values in Taylor’s expansion, we get 

𝑙𝑜𝑔 (𝑥 + ℎ) = 𝑙𝑜𝑔 ℎ +
𝑥

ℎ
−
𝑥2

2ℎ2
+
𝑥3

3ℎ3
−⋯. 

Example 21. Prove that 𝒇(𝒎𝒙) = 𝒇(𝒙) + (𝒎− 𝟏)𝒙𝒇′(𝒙) +
𝟏

𝟐!
(𝒎 − 𝟏)𝟐𝒙𝟐𝒇′′(𝒙) + ⋯. 

Solution: Since, we are to expand 𝑓(𝑚𝑥) in powers of (𝑚 − 1)𝑥. 

So, 𝑓(𝑚𝑥) = 𝑓[𝑥 + (𝑚 − 1)𝑥] 

By Taylor’s Theorem 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯+

ℎ𝑛

𝑛!
𝑓𝑛(𝑎)

+⋯. 

⇒ 𝑓(𝑚𝑥) = 𝑓[𝑥 + (𝑚 − 1)𝑥]

= 𝑓(𝑥) + (𝑚 − 1). 𝑥. 𝑓′(𝑥) +
1

2!
(𝑚 − 1)2. 𝑥2𝑓′′(𝑥)

+⋯. 

Example 22. Expand 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 in powers of (𝒙 − 𝒂). 

Solution: Now we are to expand 𝑓(𝑥) in powers of (𝑥 − 𝑎). For this,  

𝑓(𝑥) = 𝑓[𝑎 + (𝑥 − 𝑎)] 

By Taylor’s theorem, 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎) +
ℎ2

2!
𝑓′′(𝑎) +

ℎ3

3!
𝑓′′′(𝑎) +⋯. 
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⇒ 𝑓(𝑥) = 𝑓[𝑎 + (𝑥 − 𝑎)]

= 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥 − 𝑎)2

2!
𝑓′′(𝑎)

+
(𝑥 − 𝑎)3

3!
𝑓′′′(𝑎) +⋯. 

Since  𝑓(𝑥) = log sin 𝑥 ⇒ 𝑓(𝑎) = log sin 𝑎. 

𝑓′(𝑥) =
1

sin 𝑥
. cos 𝑥 = cot 𝑥 ⇒ 𝑓′(𝑎) = cot 𝑎. 

𝑓′′(𝑥) = −𝑐𝑜𝑠𝑒𝑐2𝑥 ⇒ 𝑓′′(𝑎) = −𝑐𝑜𝑠𝑒𝑐2𝑎, 

𝑓′′′(𝑥) = 2𝑐𝑜𝑠𝑒𝑐 𝑥. 𝑐𝑜𝑠𝑒𝑐 𝑥 cot 𝑥 ⇒ 𝑓′′′(𝑎) = 2𝑐𝑜𝑠𝑒𝑐2𝑎 cot𝑎. 

Substituting these values in Taylor’s theorem, we get 

log sin 𝑥 = log sin 𝑎 + (𝑥 − 𝑎) cot𝑎 +
(𝑥 − 𝑎)2

2!
(−𝑐𝑜𝑠𝑒𝑐2𝑎)

+
(𝑥 − 𝑎)3

3!
 (2𝑐𝑜𝑠𝑒𝑐2𝑎 cot 𝑎) + ⋯. 

⇒ log sin 𝑥 = log sin 𝑎 + (𝑥 − 𝑎) cot 𝑎 −
(𝑥 − 𝑎)2

2!
(𝑐𝑜𝑠𝑒𝑐2𝑎)

+
(𝑥 − 𝑎)3

3!
 (2𝑐𝑜𝑠𝑒𝑐2𝑎 cot𝑎) + ⋯. 

Example 23.Expand cos3 𝑥 in powers of 𝑥. 

Solution: Let 𝑓(𝑥) = cos3 𝑥 =
1

4
[cos 3𝑥 + 3 cos𝑥] 

We know that  cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−⋯+ (−1)𝑚

𝑥2𝑚

(2𝑚)!
+⋯. 

𝑓(𝑥) =
1

4
[cos3𝑥 + 3 cos𝑥]

=
1

4
{[1 −

32𝑥2

2!
+
34𝑥4

4!
− ⋯+ (−1)𝑚

32𝑚𝑥2𝑚

(2𝑚)!
+⋯]

+ 3 [1 −
𝑥2

2!
+
𝑥4

4!
−⋯+ (−1)𝑚

𝑥2𝑚

(2𝑚)!
+ ⋯]} 

⇒ cos3 𝑥 =
1

4
{[(1 + 3) − (32 + 3)

𝑥2

2!
+ (34 + 3)

𝑥4

4!
−⋯+

(−1)𝑚(32𝑚 + 3)
𝑥2𝑚

(2𝑚)!
+⋯ ]}. 

Example 24. Expand 𝑒sin 𝑥 as far as the term containing 𝑥4. 

Solution: We have sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯+ (−1)𝑚

𝑥2𝑚+1

(2𝑚+1)!
+⋯ 
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⇒ sin 𝑥 = 𝑥 −
𝑥3

6
+
𝑥5

120
− ⋯. 

 

𝑒sin 𝑥 = 𝑒
(𝑥−

𝑥3

6
+⋯ )

= 1 + (𝑥 −
𝑥3

6
+ ⋯)+

1

2
(𝑥 −

𝑥3

6
+ ⋯)

2

+
1

6
(𝑥 −

𝑥3

6
+ ⋯)

3

+
1

24
(𝑥 −

𝑥3

6
+⋯)

4

+⋯ 

⇒ 𝑒sin 𝑥 = 1 + 𝑥 −
𝑥3

6
+ ⋯+

1

2
(𝑥2 −

1

3
𝑥4 +⋯) +

1

6
(𝑥3 +⋯)

+
1

24
(𝑥4 +⋯) +⋯ 

⇒ 𝑒sin 𝑥 = 1 + 𝑥 +
1

2
𝑥2 −

1

8
𝑥4 +⋯. 

Example 25. Expand tan 𝑥 in powers of 𝑥 as far as term involving 𝑥5. 

Solution: We know that  

tan 𝑥 =
sin 𝑥

cos 𝑥 
. 

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
− ⋯ ;    cos 𝑥 = 1 −

𝑥2

2!
+
𝑥4

4!
−⋯ ; 

⇒ tan 𝑥 =
sin 𝑥

cos 𝑥 
=
𝑥 −

𝑥3

3!
+
𝑥5

5!
− ⋯

1 −
𝑥2

2! +
𝑥4

4! − ⋯
 

By actual division, we get  

tan 𝑥 = 𝑥 +
1

3
𝑥3 +

2

15
𝑥5 +⋯. 

Example 26.Expand 𝒔𝒆𝒄𝟐 𝒙. 

Solution:We know thattan 𝑥 = 𝑥 +
1

3
𝑥3 +

2

15
𝑥5 +⋯. 

Differentiating with respect to 𝑥 

sec2 𝑥 = 1 +
1

3
. 3𝑥2 +

2

15
. 5𝑥4 +⋯. 

⇒ sec2 𝑥 = 1 + 𝑥2 +
2

3
𝑥4 +⋯. 
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Example 27. Expand (1 + 𝑥)−1. 

Solution: We know that  

log(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
−⋯+ (−1)𝑛−1

𝑥𝑛

𝑛
+⋯. 

Differentiating with respect to 𝑥 

1

(1 + 𝑥)
= 1 −

2 𝑥

2
+
3𝑥2

3
−⋯+ (−1)𝑛

𝑛𝑥𝑛−1

𝑛
+ ⋯. 

⇒ (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 −⋯+ (−1)𝑛−1𝑥𝑛−1 +⋯. 

7.6 SUMMARY  

In this unit, we studied the expansion of an indefinitely 

differentiable function 𝑓(𝑥) in an infinite power series by Maclaurin’s 

and Taylor’s Theorems. We have seen that such an expansion is not 

always possible. It is necessary that 𝑹𝒏 → 𝟎 as → ∞ , but to examine 

the nature of 𝑅𝑛 as 𝑛 → ∞  is difficult. So, we obtained the formal 

proofs of Maclaurin’s and Taylor’s theorems without bothering about 

the nature of  𝑅𝑛 as 𝑛 → ∞.  In this unit, we obtained the expansion by 

assuming the possibility of expanding it in an infinite series (i.e., by 

assuming 𝑅𝑛 → 0 as 𝑛 → ∞).  

 We also studied that if any of the function 

𝑓(𝑥), 𝑓′(𝑥), 𝑓′′(𝑥),… becomes infinite or do not exist for any value of 

𝑥 in the given interval, then Taylor’s and as well as Maclaurin’s 

theorems fail to expand the function. For example: The function log 𝑥 

does not possesses Maclaurin’s expansion because it is not defined at 

𝑥 = 0. Another such function is cot 𝑥.  

 We also found that the well- known expansions such as 

Binomial, Exponential, Logarithmic and Trigonometric expansions are 

special cases to Taylor’s Theorem.We have seen some expansions of 

functions in power series which are easily calculated by using these 

well-known expansions or by differentiating or integrating the well- 

known expansion. These expansions are also very useful for evaluating 

the indeterminate forms. 

7.7 GLOSSARY  
 

i. Function:A function f from S to T, where S and T are 

non-empty sets, is a rule that associates with each 

element of S (the domain) a unique element of T (the 

codomain). 

ii. Power series:A series 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 +⋯+
𝑎𝑛𝑥

𝑛 +⋯ inascending powers of x, with coefficients 
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𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 , …  is apower series in x. For example, 

the geometric series 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯+ 𝑥𝑛 +⋯ is 

a power series. 

iii. Maclaurin, Colin(1698–1746) Scottish mathematician 

whowas the outstanding British mathematician of the 

generationfollowing Newton’s. He developed and 

extended the subjectcalculus. His textbook on the 

subject contains important original results, but the 

Maclaurin series, which appears in it, is just a special 

case of the Taylor series known considerablyearlier. He 

also obtained notable results in geometry andwrote a 

popular textbook on algebra. 

iv. Taylor, Brook(1685–1731) English mathematician 

whocontributed to the development of calculus. His text 

of 1715contains what has become known as the Taylor 

series. 

 

CHECK YOUR PROGRESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Choose only one correct option. 

1.       (1 + x)−1 
(v) 1 − 𝑥 + 𝑥2 −⋯+ (−1)𝑛−1𝑥𝑛−1 +⋯. . 
(vi) 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1 +⋯.. 
(vii) 𝑥 + 𝑥2 −⋯+ (−1)𝑛−1𝑥𝑛−1 +⋯. 
(viii) None of the above.       

2. If 𝑓(𝑥) = 𝑎𝑥, then 𝑓𝑛(0) 
(v) 0. . 
(vi) 𝑎𝑥 log 𝑎. 
(vii) (log𝑎)𝑛 

(viii) 1.  

3. The coefficient of 𝑥3 in the expansion of sin−1 𝑥 is 

(v) 0. 

(vi) 
1

6
. 

(vii) 
1

2
. 

(viii) 1.           

4. Coefficient of (𝑥 − 1)2 in the expansion of 3𝑥2 − 6𝑥 + 3 is 

(v) 0. 

(vi) 1. 

(vii) 3. 

(viii) Nothing can be said. 
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5. Let 𝑦 = 𝑒𝑎𝑥 sin 𝑏𝑥. Then (𝑦2)0 is  

(v) 𝑏3. 
(vi) 𝑒𝑎𝑥 sin 2𝑏𝑥. 
(vii) 0. 

(viii) 2𝑎𝑏.                                                      

6. The coefficient of 𝑛𝑡ℎ term in the expansion of 𝑒𝑚𝑥Maclaurin’s 

series 

(v) 
𝑚𝑛

𝑛!
 

(vi) 0 

(vii) 
1

𝑛!
 

(viii) 𝑒𝑥 .        
       

7. If 𝑦 =  sin𝑚𝑥 ,  then (𝑦𝑛) 

(i)  cos𝑚𝑥. 

(ii) sin(𝑚 + 𝑛)𝑥. 

(iii) sin(𝑚𝑥 + 𝑛.
𝜋

2
). 

(iv) 0.             

8.If 𝑦 = log(1 + 𝑥). Then  coefficient of 𝑥𝑛in Maclaurin’s theorem is 

(i) 
1

𝑛
. 

(ii) 
(−1)𝑛

𝑛
. 

(iii)  
1

𝑛!
. 

(iv) 
(−1)𝑛

𝑛!
. 

9. In the expansion of cos 𝑥, coefficient of 𝑥3 is 

(i) 0. 

(ii) 
1

3
. 

(iii)  
1

3!
 

(iv) 1..       

   

10.  𝐷4(𝑥3) 
(v) 0 

(vi) 1. 

(vii) 
−6

𝑥
 

(viii) ∞.                                                                                                  
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iii. Calculus by R. Kumar. 

iv. Krishna’s Text Book on Calculus by A. R. Vasistha. 

v. 12th class Mathematics Book by R. D. Sharma. 

vi. Pragati’s Calculus by Sudhir K. Pundir. 

vii. Lectures on Basic Courses (1-2) on NPTEL website. 

viii. Leibnitz’s work on Wikipedia. 

 

 

7.10 TERMINAL QUESTIONS: 

 
(1) Prove the following 

(a) 𝑒𝑥+ℎ = 𝑒𝑥 + ℎ𝑒𝑥 +
ℎ2

2!
𝑒𝑥 +

ℎ3

3!
𝑒𝑥 +⋯. 

(b) (𝑥 + ℎ)−1 =
1

𝑥
[1 −

ℎ

𝑥
+
ℎ2

𝑥2
−
ℎ3

𝑥3
+⋯]. 

(c) log cos(𝑥 + ℎ) = log cos 𝑥 − ℎ𝑡𝑎𝑛 𝑥 −
ℎ2

2
sec2 𝑥 −

ℎ3

3
sec2 𝑥 tan 𝑥 +⋯. 

(d) tan(𝑥 + ℎ) = tan 𝑥 + ℎ. sec2 𝑥 + ℎ2 sec2 𝑥 tan 𝑥 +⋯. 

(e) tan−1(𝑥 + ℎ) = tan−1 𝑥 +
ℎ

(1+𝑥2)
−

𝑥ℎ2

(1+𝑥2)2
+⋯. 

(2) Prove that: 𝑒(sin 𝑥) = 1 + 𝑥 +
𝑥2

2
−
𝑥4

8
+⋯. 

(3) Prove that : log(1 + sin 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

6
−
𝑥4

12
+⋯. 

(4) Prove that : log(sec 𝑥 + tan 𝑥) = 𝑥 +
𝑥3

6
+
𝑥5

24
+⋯. 

(5) Find the Maclaurin’s theorem with Lagrange’s form of 

remainder for .cos)( xxf   

(6) Assuming the validity of expansion, expand xelog  in powers 

of (x-1) and hence find an approximate value of 1.1log e . 
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7.11 ANSWERS: 

 

Answer of Check your progress: 

CHQ1: (i) 

CHQ2: (iii) 

CHQ3: (ii) 

CHQ4: (iii) 

CHQ5: (iv) 

CHQ6:  (i) 

CHQ7:  (iii) 

CHQ8:  (ii) 

CHQ9:  (i) 

CHQ10: (ii) 

 

Answer of Terminal questions: 

TQ5:  )[sin()1()sin(cos)sin(
2

sin 1 xxnxn n 


 







 ] 

TQ6:     095305.0......
4

1.0

3

1.0

2

1.0
1.0)1.1(

432

f  . 
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UNIT 8- MAXIMA AND MINIMA  
 

CONTENTS 
 

8.1 Introduction 

8.2 Objectives 

8.3 Stationary Points 

8.4 Absolute Maxima and Absolute Minima 

8.5 Maximum and Minimum Values of a Function 

8.6 Local maxima and Local minima 

8.7 Examples 

8.8 Summary 

8.9 Glossary 

8.10References 

8.11Suggested Readings 

8.12Terminal Question 

8.13Answers 

 

8.1 OBJECTIVES 
 

After reading this unit learners will be able  

 

i. To understand the concept of maxima and minima 

ii. To find the maximum and minimum points 

iii. To find maximum and minimum values of the function 

iv. How to use derivative to find maxima minima 

v. To work out simple problems on maxima and minima 

 

8.2 INTRODUCTION 
 

In this unit we will study about the stationary points and its 

types. Concept of maxima and minima has been explained. It will be 

shown how differentiation can be used to find maxima and minima. 

Behaviour of gradient for maximum points and minimum points has 

been explained with the help of graph. Maxima and minima hold 

importance in practical life also. A manufacturer will think of 

increasing his profit similarly he wants to minimize his loss. So in this 

unit we have tried to explain the important properties of maxima and 

minima including important related theorems and examples. 
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8.3 STATIONARY POINTS 
 

Let y=f(x) be a given function. Then dy/dx of the function is 

called the gradient of the given function and the points of the function 

at which dy/dx=0 are called stationary points and the tangent at these 

points is parallel to X-axis. In the Fig 8.1, A, B, C are the points having 

tangent parallel to X- axis, so their gradient i.e. dy/dx=0.Consequently 

these are the stationary points. 

 

TYPES OF STATIONARY POINTS 

Stationary points are of three types  

i. Maximum points 

ii. Minimum points 

iii. Points of inflection 

Definitions of these points are given on the next page. Fig 8.1 is 

showing three points A, B, C which are maximum, point of inflection 

and minimum points respectively. 

 

 
 

Fig 8.3.1 

Maximum Points- 

Let us see the behavior of gradient for maximum 

points.Gradient is positive before the maximum point, zero at the 

maximum point and negative after the maximum point. Analyze it, we 

will see that value of gradient i.e. dy/dx is decreasing with respect to x. 

Meaning of this statement is that d/dx(dy/dx)= d2y/dx2 is negative i.e. 

rate of change of dy/dx with respect to x is negative. See the Fig 8.3.2 

to understand above mentioned facts. 

 

 KEY POINT: if dy/dx=0 at a point and d2y/dx2<0 there ,then that point 

must be maximum 

 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 159 
 
 
 

 
Fig 8.3.2 

Minimum Point- 

In minimum point just before minimum point gradient is negative , at 

minimum point gradient is zero and after minimum point gradient is 

positive. Here we can analyze that gradient i.e. dy/dx is increasing with 

respect to x.  So the rate of change of dy/dx is positive i.e. d2y/dx2 is 

positive. 

 

 

 

  

 

 
Fig 8.3.3 

Point of Inflection- 

These are the points where dy/dx= 0 and d2y/dx2=0 and d3y/dx3≠0. 

Two figures are given below to clear the concept of points of inflection 

 

 

 

 

 

 

Key point: If dy/dx=0 at a point and d2y/dx2>0 there, then that point must 

be minimum 

 

   Key point:  If dy/dx=0 and d2y/dx2=0 and d3y/dx3≠0 , then the point is point of 

inflection 
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Fig 8.3.4 

 

For points of inflection we can also use points of inflexion. Both the 

spellings are correct. 

 

8.4 ABSOLUTE MAXIMA AND MINIMA 
 

The function f has an absolute maximum or global maximum at 

a point c if f(c) ≥f(x) for all x in D .Here D is the neighbourhood of c 

and f(c) will be called the maximum value of f on the neighbourhood 

D. The function f has an absolute minimum or global minimum at c if 

f(c) ≤f(x) for all x in D.Here D is neighbourhood of D and f(c) is called 

the minimum value of f on the neighbourhood D. Maximum and 

minimum values of f on D are called extreme values of f. 

 

 

 

 

 

 

 

8.5 MAXIMUM AND MINIMUM VALUES OF 

A FUNCTION 
 

When we see the graph of a continuous function, it increases 

and decreases alternatively. In a continuous function if value of a 

function increases to a certain point and then it begins to decrease, we 

call that a point of maximum and the value of function at that point is 

called the maximum value. 

Neighbourhood:  Let x be a point on the number line. Then the interval 

(x-a,x+a) is called the neighbourhood of x. 
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Similarly, when value of a continuous function decreases to a 

certain and then decreases the point is called minimum point and the 

value of the function at this point is called minimum value.. 

 
 

Fig 8.5.1 

 

8.6 LOCAL MAXIMA AND LOCAL MINIMA 
 

Have you noticed the previous page fig 8.4. From the fig. we 

can notice that a function may have more than one maximum or 

minimum value. So, in case of continuous function we have minimum 

(maximum) value in an interval and these values are not absolute or 

global minimum (maximum) of the function. This is the reason that 

sometimes we call the values as local maxima or minima. 

 

Properties of maxima and minima 

 Between two equal values of a function there must lie at least 

one maximum and minimum 

 If dy/dx changes from +ve to –ve as x passes through a point a, 

then function y=f(x) is a maximum at the point a 

 If dy/dx changes from –ve to +ve as x passes through a point a, 

then function y=f(x) is a minimum at the point a 

 If sign of dy/dx does not change when x passes through a point 

a, then point a is neither maximum nor minimum at x=a 

 

Method to find Maxima and Minima 

Step 1: Firstly find dy/dx 

Step 2: Put dy/dx=0 and find the value of x.These x will be stationary 

points. 

Step 3: Now find d2y/dx2. 

Step 4: To check whether the stationary points from step 1 are maxima 

or minima put these points one by one in d2y/dx2.If value of d2y/dx2  is 

negative then the point is maxima and if d2y/dx2 is positive then the 

point is minima. 

Step 5: Suppose d2y/dx2= 0 and d3y/dx3≠ 0 then x is a point of 

inflection. 
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Step 6: If d2y/dx2= and d3y/dx3=0 then d4y/dx4,  if its negative then x is 

maximum point and if its positive then x is a minimum point. 

Step 7: If d4y/dx4=0 then find d5y/dx5 and so on. 

Step 8: Repeat the above steps for each root of the equation dy/dx=0 

i.e. f’(x)=0. 

 

8.7 EXAMPLES 
 

Ex.1 Find the maxima and minima for the function 𝑦 =  4𝑥 – 𝑥2. 
Sol.Firstly let us find 𝑑𝑦/𝑑𝑥 =  4 − 2𝑥 

Now for stationary points 𝑑𝑦/𝑑𝑥 = 0 

i.e. 4 − 2𝑥 = 0…………………..(1) 

⇒ 2𝑥 = 4 

 ⇒ 𝑥 = 2 
Differentiating 𝑑𝑦/𝑑𝑥 =  4 − 2𝑥 once again we get, 𝑑2𝑦/
𝑑𝑥2 = −2 
This is negative which is suggesting a maximum point 

Now substitute 𝑥 =  2 into𝑦 =  4𝑥 – 𝑥2, we get 

𝑦 =  8 –  4 =  4 
So,maximum point is (2,4). 

Ex.2 Find maxima and minima for 𝑦 =  2 +  3𝑥2 – 𝑥3 
 

Sol.Firstly 𝑑𝑦/𝑑𝑥 =  6𝑥 –  3𝑥2 ………….(1) 

For stationary points 

𝑑𝑦/𝑑𝑥 = 0 
6𝑥–  3𝑥2  =  0 

 After factorizing,3𝑥 (2 –  𝑥)  =  0 

𝑥 =  0 or 𝑥 =  2. 

Differentiating (1) we get, 𝑑2𝑦/𝑑𝑥2 =  6 –  6𝑥, 

whose value ispositive when 𝑥 =  0 and when 𝑥 =  2 value is 

negative. 

Substituting the values of x into 𝑦 =  2 +  3𝑥2 – 𝑥3 
We get, 𝑥 = 0 gives 𝑦 = 2 and 𝑥 = 2 gives 𝑦 = 6. 

So,Minimum point is (0, 2)and maximum point is (2, 6). 
 

Ex.3 Find the maximum (local maximum) and minimum (local 

minimum) points of the function 𝑓(𝑥) = 𝑥3 − 3𝑥2 − 9𝑥. 

Sol.𝑓(𝑥) = 𝑥3 − 3𝑥2 − 9𝑥. 

            Differentiate w.r.t. 𝑥, we get 

                𝑓’(𝑥) =  3𝑥2 − 6𝑥 − 9 
                           = 3(𝑥2 − 2𝑥 − 3) 

⇒ 𝑓’( 𝑥) = 0 
 ⇒ 3(𝑥2 − 2𝑥 − 3) = 0 
 ⇒  𝑥2 − 2𝑥 − 3 = 0 

 ⇒  ( 𝑥 − 3) (𝑥 + 1) = 0 
 𝑥 = 3,−1 
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 𝑥 = 3, 𝑥 =  −1 

Now,  𝑓’(𝑥) = 3𝑥2 − 6𝑥 − 9 

 Differentiating w.r.t. 𝑥, we get 
𝑓’’(𝑥) =  6𝑥 − 6 
=  6(𝑥 − 1) 

To check 𝑥 = 3 
𝑓’’(3) = 6(3 − 1) = 6(2) = 12 =positive value 

Therefore 𝑥 = 3 is a minimum point 

  and minimum value is 𝑓(3) = 33 − 3(3)2 − 9(3) 
 = 27 − 3(9) − 27 

= −27 
To check 𝑥 =  −1 
𝑓’’(−1) = 6(−1 − 1) = 6(−2) = −12 = negative value 

Therefore,𝑥 = −1 is a maximum point. 

  and maximum value is 𝑓(−1) =  (−1)3 − 3(−1)2 − 9(−1) 
= −1 − 3 + 9 
=  −4 + 9 = 5 

Ex.4 Find all local maxima and minima of the function 𝑓(𝑥)  =
 2𝑥3 − 3𝑥2 − 12𝑥 + 8. 

Sol. Here 𝑓(𝑥)  =  2𝑥3 − 3𝑥2 − 12𝑥 + 8.  

𝑓’(𝑥)  =  6𝑥2 − 6𝑥 − 12 
 =  6(𝑥 + 1)(𝑥 − 2) 

Now, put 𝑓’(𝑥) =  6(𝑥 + 1)(𝑥 − 2) = 0 

So we get, 𝑥 = −1 and 𝑥 = 2 
 In the next step we will check the value of f’’(x) for each 𝑥 =
−1 and 𝑥 = 2. 

𝑓’’(𝑥) =  12𝑥 − 6 
=  6(6𝑥 − 1) 

At 𝑥 = −1,    𝑓’’(−1) =  6(6(−1) − 1) 
=  6(−6 − 1) = (6)(−7) = −42, 

which is a negative value so point x=-1  is a  point where local 

maximum exists 

At 𝑥 = 2, 𝑓’’(2) =  6(6(2) − 1) = 6(12 − 1) = 6(11) =
66, which is a positive value so point 𝑥 = 2 is a point where 

local minimum exists 

 

Ex.5 Find the maximum and minimum value of the function 

𝑓(𝑥)  =  𝑥5 − 5𝑥4 + 5𝑥3 − 10 

Sol.To find maxima and minima let us put 𝑓′(𝑥) = 0,  then by solving 

𝑓′(𝑥)  =  5𝑥4 − 20𝑥3 + 15𝑥2 =  0, we get 𝑥= 3, 1 and 0 as stationary 

points. 

 

Now 𝑓′′(𝑥)  =  20𝑥3 −  60𝑥2 +  30𝑥 and 𝑓′′(1) = −10.  

Hence 𝑓(𝑥)has a maximum value at 𝑥 =  1. 

 

Similarly the value of  𝑓′′(3)  =  −90. Hence 𝑓(𝑥) has a 

maximum value at 𝑥 =  3. 
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Now at 𝑥 = 0,  𝑓′′(0)  =  0, and  𝑓′′′0 ≠  0. So at 𝑥 =  0. 

Function 𝑓(𝑥) has neither maximum nor a minimum, it’s a 

point of inflection. 

 

Ex.6 Find all the points of local maxima and local minima of the 

function 

𝑓(𝑥) =  2𝑥3 − 6𝑥2 + 6𝑥 + 5. 
Sol.Firstly,𝑓’(𝑥) =  6𝑥2 − 12𝑥 + 6 

Now after putting this value equal to zero,we get, f’(x)=0 

⇒6(𝑥2 − 2𝑥 + 1) =  0 
⇒6(𝑥 − 1)(𝑥 − 1) = 0 
There is only one stationary point 𝑥 = 1. 

 Now finding 𝑓’’(𝑥) = 12(𝑥 − 1) 
Put 𝑥 = 1, we get𝑓’’(1) = 0 and 𝑓’’’(𝑥) =  12,  

so 𝑓’’’(1) = 12 ≠ 0, so,𝑥 = 1 is a point of inflexion. 
 

Ex.7 Find the local minimum value of the function 𝑓(𝑥) =  3 +

│𝑥│, where 𝑥 is a real number. 

 

Sol. Value of │x│≥0 

So minimum value of │x│=0 

 Minimum value of  𝑓(𝑥) =  3 + minimum value of │𝑥│ 

=  3 + 0 = 3 
 So, minimum value of 𝑓(𝑥) = 3 
We cannot find any maximum value. 

  

8.8 SUMMARY  
 

In this unit we studied about the stationary points.There are 

three types of stationary points maxima, minima and inflection points. 

The method we studied here to find these points is called second 

derivative  test.In second derivative test firstly we find stationary 

points by putting dy/dx=0.Then if second derivative at the point is 

negative then point is maxima and if second derivative is positive at 

the stationary point,the point is minima. Gradient is positive before the 

maximum point, zero at the maximum point and negative after the 

maximum point. In minimum point just before minimum point gradient 

is negative , at minimum point gradient is zero and after minimum 

point gradient is positive. Alsoif dy/dx=0 at a point and d2y/dx2<0 

there ,then that point must be maximum.If dy/dx=0 at a point and 

d2y/dx2>0 there, then that point must be minimum. To explain all the 

concepts graphs have been used and examples have been used. 

Remark- Extreme points are the stationary points at which the 

function attains either local maximum or local 

minimumvalues.Extreme values are both local maximum and local 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 165 
 
 
 

minimum values of the function f(x). So, a function attains an extreme 

value at point  x=a if f (a) is either 

a local minimum or a local maximum. 

 

8.9  GLOSSARY  
 

i. Stationary point. 

ii. Maxima. 

iii. Minima. 

iv. Inflection point. 

v. Extreme point. 

vi. Extreme Values. 

vii. Derivative. 

viii. Function. 
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8.12 TERMINAL QUESTIONS  

CHECK YOUR PROGRESS 

 

i. The critical point of the function 𝑦 = 𝑥2 is.................... 

ii. The points of maxima and minima of a function:y = 2x3 - 3x2 + 6........ 

iii. The function x2 logx in the interval (1, e) has a point of maximum or 

minimum. True/False 

iv. There can be any number of absolute maxima and absolute minima for a 

function within the entire domain. True/False 

v. The function𝑓(𝑥) = 𝑥−𝑥, attains a maximum value at 𝑥 =
1

𝑒
.   True/False 

 

 

http://www.nuffieldfoundation.org/sites/default/files/.../FSMQ%20Stationary%20points.pdf
http://www.nuffieldfoundation.org/sites/default/files/.../FSMQ%20Stationary%20points.pdf
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-maxmin-2009-1.pdf
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-maxmin-2009-1.pdf
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TQ1. Find all local maximum and minimum points for the function 

𝑓(𝑥) = 𝑥3 − 𝑥 

TQ2. Find all local maximum and minimum points for  𝑓(𝑥) =
𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥. 

TQ3. find all local maximum and minimum points (𝑥, 𝑦), 

𝑓(𝑥) = {

𝑥 − 3, 𝑥 < 3

𝑥3, 3 ≤ 𝑥 ≤ 5
1 𝑥⁄ , 𝑥 > 5

 

TQ4. Find the local extrema of 𝑓(𝑥) = |𝑥| + |𝑥 − 1|. 
TQ5. Explain why the function 𝑓(𝑥) = 1 𝑥⁄  has no local maxima or  

Minima? 

..................................................................................................................

.................................................................................................................. 

 

8.13 ANSWER 
 

CHECK YOUR PROGRESS: 

 

CYQ1.Maxima. 

CYQ2.𝑥 = 1. 
CYQ3.False. 

CYQ4.False. 

CYQ5.True. 

 

 

TERMINAL QUESTIONS: 

 

TQ1. local minimum at 𝑥 = √3 3⁄ , local maximum at 𝑥 = −√3 3⁄  

TQ2. local maximum when 𝑥 =
𝜋

4
 and also when 𝑥 =

𝜋

4
±
𝜋

4
. local 

minima     

         at 𝑥 = 5
𝜋

4
+ 2𝑘𝜋 for every integer 𝑘. 

TQ3. Local maximum at 𝑥 = 5. 
TQ4. Local min of 1 at every point of [0,1], local max of 1 at every   

          point of (0,1). 
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UNIT 9:- INTEGRAL 

CONTENTS 

 
9.1 Introduction 

9.2 Objectives 

9.3 Antiderivatives 

9.4 Definite integral and its properties properties of integral 

9.5 Definite integral as limit of a sum   

9.6 Summation of series with the help of definite integral 

9.7 Summary 

9.8 Glossary 

9.9 Suggested Readings 

9.10 References 

9.11 Terminal Questions 

9.12 Answers 

 

9.1 INTRODUCTION 
In the previous unit we studied absolute minima, maximum and 

minimum values of a function, local maxima and local minima.The given 
unit is about the idea of integration, and also about the technique of 

integration.  We explain how it is done in principle, and then how it is done 

in practice. Integration is a problem of adding up infinitely many things, 
each of which is infinitesimally small. Doing the addition is not 

recommended. The whole point of calculus is to offer a better way. 

The problem of integration is to find a limit of sums. The key is to 

work backward from a limit of differences (which is the derivative). 

 We can integrate 𝑔(𝑥) if it turns up as the derivative of another 

function 𝑓(𝑥). The integral of 𝑔(𝑥) = cos 𝑥is 𝑓 = sin𝑥. The integral of 

𝑔(𝑥)  =  𝑥is 𝑓 =
1

2
𝑥2. Basically, 𝑓(𝑥) is an "antiderivative".If we don't 

find a suitable 𝑓(𝑥), numerical integration can still give an excellent answer.  

We could go directly to the formulas for integrals, which allow 

learners  to compute areas under the most amazing curves.  
 

 

November 23, 1616- 

October 28, 1703. 
Fig. John Wallis 

 (Reference: 

https://www.britannica.com/biography/J

ohn-Wallis) 

 

Fig 9.1.1 
 

 

 

 

https://www.britannica.com/biography/John-Wallis
https://www.britannica.com/biography/John-Wallis
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9.2 OBJECTIVES 
 

In this Unit, learners will able to Antiderivatives 

 

i. Analyze Definite Integrals 

ii. Define Properties of Integral,  

iii. Construct Fundamental theorem 
 

9.3 ANTIDERIVATIVES 
 

The symbol of integration∫,was inventedLeibnizto represent 

the integral.It is a stretched-out𝑆, from the Latin word for sum. This 

symbol is a powerful reminder of the wholeconstruction: Sum 

approaches integral, 𝑆 approaches ∫, and rectangular areaapproaches 

curved area. 

𝑐𝑢𝑟𝑣𝑒𝑑 𝑎𝑟𝑒𝑎 = ∫𝑔(𝑥)𝑑𝑥 = ∫√𝑥𝑑𝑥 

The rectangles of base ∆𝑥 lead to this limit-the integral of √𝑥.The "𝑑𝑥" 
indicatesthat ∆𝑥 approaches zero. The heights 𝑔𝑗 of the rectangles are 

the heights 𝑔(𝑥) of thecurve. The sum of 𝑔𝑗 times ∆𝑥 approaches 

"𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑓 𝑜𝑓 𝑥 𝑑𝑥. "You can imaginean infinitely thin 

rectangle above every point, instead of ordinary rectangles 

abovespecial points. 

We now find the area under the square root curve. The "limits of 

integration" are0and9. The lower limit is 𝑥 =  0, where the area 

begins.  

The upper limit is 𝑥 =  9, since we stop after Nine.The area of the 

rectangles is a sum of base ∆𝑥times heights √𝑥.The curved area is the 

limit of this sum. i.e. limit is the integral of √𝑥 from 0 to 9 

= lim
𝑥→0
[√∆𝑥(∆𝑥) + √2∆𝑥(∆𝑥) +⋯+ √9∆𝑥(∆𝑥)] = ∫ √𝑥

𝑥=9

𝑥=0
𝑑𝑥 ..(2) 

What is 𝑓(𝑥)? Instead of the derivative of √𝑥,we need its 

"antiderivative." We haveto find a function 𝑓(𝑥) whose derivative is 

√𝑥.The derivative of 𝑥𝑛 is 𝑛𝑥𝑛−1-'-now we need theantiderivative. 

Since the derivative lowers the exponent, the antiderivative raises it. 

Wego from 𝑥
1

2 to 𝑥
1

3. But then the derivative is 
3

2
𝑥
1

2. It contains an 

unwantedfactor 
3

2
 To cancel that factor, put 

2

3
into the 

antiderivative:𝑓(𝑥) =
2

3
𝑥
3

2has the required derivative𝑔(𝑋) =  𝑥
1

2  =

 √𝑥. 
 

ExampleThe antiderivative of 𝑥2is 
1

3
𝑥3. This is the area under the 

parabola 𝑔(𝑥)  =  𝑥2. The area out to 𝑥 =  2 is 
1

3
(2)3 =

8

3
. 
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Indefinite Integrals and definite Integrals: Now we will discuss two 

different kinds of integrals. They both use the antiderivative 𝑓(𝑥). The 

definite one involves the limits 𝑎and 𝑏, the indefinite one doesn't: 

The indefinite integral of a function 𝑥2 is a function 𝑓(𝑥) =
𝑥3

3
 

The definite integral of a function 𝑥2from x = 0 to x = 9 is the number 

𝑓(9) − 𝑓(0) =
93

3
− 0 = 243. 

The definite integral must be 243. But the indefinite integral is not 

necessarily
𝑥3

3
 

We can change 𝑓(𝑥) by a constant without changing its derivative  

 The following functions are also antiderivatives: 

𝑓(𝑥) =
𝑥3

3
+ 1, 𝑓(𝑥) =

𝑥3

3
+ 2,or in general 𝑓(𝑥) =

𝑥3

3
+ 𝐶, where 𝐶 is 

arbitrary constant 

 The indefinite integral isthe most general antiderivative (with no 

limits): 

Example: Find an antiderivatives 𝒇(𝒙) for 𝒈(𝒙) of following. Ten 

compute the definite integral ∫ 𝒈(𝒙)𝒅𝒙
𝟏

𝟎
= 𝒇(𝟏) − 𝒇(𝟎) 

(i) 𝟓𝒙𝟒 + 𝟒𝒙𝟑        (ii) 𝒙 + 𝟏𝟐𝒙𝟐        (iii) 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧 𝟐𝒙      (iv) 

𝐬𝐞𝐜𝟐 𝒙 + 𝟏 

Proof (i) The antiderivative of 5𝑥4 + 4𝑥3 is ∫ 5𝑥4 + 4𝑥3𝑑𝑥 = 𝑥5 +
12𝑥2. 

∫ 𝑔(𝑥)𝑑𝑥
1

0

= 𝑓(1) − 𝑓(0) = (5(1)4 + 4(1)3) − (5(0)4 + 4(0)3)

= 9 

(ii) The antiderivative of 𝑥 + 12𝑥2 is ∫𝑥 + 12𝑥2𝑑𝑥 =
𝑥2

2
+
12𝑥3

3
=

𝑥2

2
+ 4𝑥3. 

∫ 𝑔(𝑥)𝑑𝑥
1

0

= 𝑓(1) − 𝑓(0) = (
12

2
+ 4(1)3) − (

0

2
+ 4(0)3) =

9

2
 

(iii) The antiderivative ofsin 𝑥 + sin 2𝑥 is ∫ sin 𝑥 + sin 2𝑥 𝑑𝑥 =

− cos𝑥 −
cos 2𝑥

2
. 

∫ 𝑔(𝑥)𝑑𝑥
1

0

= 𝑓(1) − 𝑓(0)

= (−cos(−1) −
cos(2(−1))

2
)

− (cos0 −
cos(2(0))

2
) 

= (−cos 1 +
cos2

2
− (1 −

1

2
)) = −cos 1 +

cos2

2
−
1

2
 

(iv) The antiderivative ofsec2 𝑥 + 1 is ∫(sec2 𝑥 + 1)𝑑𝑥 = tan 𝑥 . 

∫ 𝑔(𝑥)𝑑𝑥
1

0

= 𝑓(1) − 𝑓(0) = tan 1 − tan 0 = tan 1 
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9.4 DEFINITE INTEGRAL AND ITS 

PROPERTIES 
 

Sometimes in geometrical and other applicationof integral 

calculus it becomes necessary to find the difference in the values of an 

integral of a function f(x) for two given values of the variable x, say a 

and b. The difference is called the definite integral of f(x) from a to b 

or between the limits a and b. 

This definite integral is denoted by ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 and is read as “the 

integral of f(x) w.r.t. to x between a and b.” 

It is often written as ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= [𝐹(𝑥)]𝑎

𝑏 = 𝐹(𝑏) − 𝐹(𝑎) 

Where F(x) is an integral of f(x), F(b) is the value of F(x) at x=-b, F(a) 

is the value of F(x) at x=a and a and b are lower and upper limit of 

integration respectively. 

 

Fundamental Theorem of integral Calculus: 

Let f is integrable over the interval [a,b] and 𝜑 be a differentiable 

function on interval [a,b] such that 𝜑′(𝑥) = 𝑓(𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 [𝑎, 𝑏]. 
Then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝜑(𝑏) − 𝜑(𝑎) 

Fundamental Properties of definite integrals 

Property 1:∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑡)𝑑𝑡

𝑏

𝑎
 i.e value of definite integral doe 

not change with change in variable. 

Proof. Let ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑥). 

Then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑏) − 𝜑(𝑎)  ……………………………….(1) 

and 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
= 𝜑(𝑏) − 𝜑(𝑎)  ……………………………….(2) 

From equation (1) and (2), we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

 

Property 2: ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
= −∫ 𝒇(𝒙)𝒅𝒙

𝒂

𝒃
 

Proof. Let ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑥). 

Then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑏) − 𝜑(𝑎)  ……………………………….(1) 

Also 

−∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

= −(𝜑(𝑎) − 𝜑(𝑏)) 

⇒ −∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
= 𝜑(𝑏) − 𝜑(𝑎)  ……………………………….(2) 

From equation (1) and (2), we get 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= −∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

 

Property 3: ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
= ∫ 𝒇(𝒙)𝒅𝒙

𝒄

𝒂
+ ∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒄
 𝒘𝒉𝒆𝒓𝒆 𝒂 < 𝑐 <

𝑏 

Proof. Let ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑥). 

Then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑏) − 𝜑(𝑎)  ……………………………….(1) 

Now 

∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

+ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐

= 𝜑(𝑏) − 𝜑(𝑐) + 𝜑(𝑐) − 𝜑(𝑎) 

⇒ ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

+∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐

= 𝜑(𝑏) − 𝜑(𝑎) 

From equation (1) and (2), we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

+∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑐

 

Property 4: ∫ 𝒇(𝒙)𝒅𝒙
𝒂

𝟎
= ∫ 𝒇(𝒂 − 𝒙)𝒅𝒙

𝒂

𝟎
 

Proof. Let 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0
 

Let 𝑥 = 𝑎 − 𝑡 ⇒ 𝑑𝑥 = −𝑑𝑡 
We can see that when 𝑥 = 0 then 𝑡 = 𝑎 and 𝑥 = 𝑎 then 𝑡 = 0. 
Therefore 

𝐼 = ∫ 𝑓(𝑎 − 𝑡)(−𝑑𝑡)
0

𝑎

= −∫ 𝑓(𝑎 − 𝑡)𝑑𝑡
0

𝑎

 

Using Property 2, we get 

𝐼 = ∫ 𝑓(𝑎 − 𝑡)𝑑𝑡
𝑎

0

 

Again using Property 1, we get 

𝐼 = ∫ 𝑓(𝑎 − 𝑥)𝑑𝑥
𝑎

0

 

Thus, ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0
= ∫ 𝑓(𝑎 − 𝑥)𝑑𝑥

𝑎

0
 

Odd function: A function 𝑓(𝑥) is said to be odd function of x if 

𝑓(−𝑥) = −𝑓(𝑥). 
Even function: A function 𝑓(𝑥) is said to be even function of x if 

𝑓(−𝑥) = 𝑓(𝑥). 

Property 5: (i)∫ 𝒇(𝒙)𝒅𝒙
𝒂

−𝒂
= 𝟐∫ 𝒇(𝒙)𝒅𝒙

𝒂

𝟎
 if 𝒇 is even function. 

                     (ii) ∫ 𝒇(𝒙)𝒅𝒙
𝒂

−𝒂
= 𝟎if𝒇 is odd function. 

Proof. Let 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
 

From Property 4, we can write given definite integral as 

∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

0

−𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
 ………………………..(1) 

Let  

𝐼1 = ∫ 𝑓(𝑥)𝑑𝑥
0

−𝑎
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Put 𝑥 = −𝑡 ⇒ 𝑑𝑥 = −𝑑𝑡 
We can see that when 𝑥 = −𝑎 then 𝑡 = 𝑎 and 𝑥 = 0 then 𝑡 = 0. 
Therefore 

𝐼1 = ∫ 𝑓(−𝑡)(−𝑑𝑡)
0

𝑎

 

Thus 𝐼1 = −∫ 𝑓(−𝑡)(𝑑𝑡)
0

𝑎
 

Using Property 2, we get 

𝐼1 = ∫ 𝑓(−𝑡)(𝑑𝑡)
𝑎

0
 …………………………………..(2) 

(i) If 𝑓 is even function then 𝑓(−𝑡) = 𝑓(𝑡), hence  

𝐼1 = ∫ 𝑓(𝑡)𝑑𝑡
𝑎

0

 

      Using Property 1, we get 

𝐼1 = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

 

Therefore∫ 𝑓(𝑥)𝑑𝑥
0

−𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
………………………….(3) 

From equation (1) and (3), we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

 

= 2∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

 

Hence ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
= 2∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
 

If 𝑓 is odd function then 𝑓(−𝑡) = −𝑓(𝑡), hence  

𝐼1 = ∫ −𝑓(𝑡)𝑑𝑡
𝑎

0

 

      Using Property 1, we get 

𝐼1 = −∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

 

Therefore∫ 𝑓(𝑥)𝑑𝑥
0

−𝑎
= −∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
………………………….(4) 

From equation (1) and (4), we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

−∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

 

= 0 

Hence ∫ 𝑓(𝑥)𝑑𝑥
𝑎

−𝑎
= 0. 

Property 6: (𝒊) ∫ 𝒇(𝒙)𝒅𝒙
𝟐𝒂

𝟎
= 𝟐∫ 𝒇(𝒙)𝒅𝒙

𝒂

𝟎
𝐢𝐟 𝒇(𝟐𝒂 − 𝒙) = 𝒇(𝒙) 

(𝒊𝒊)∫ 𝒇(𝒙)𝒅𝒙
𝟐𝒂

𝟎

= 𝟐∫ 𝒇(𝒙)𝒅𝒙
𝒂

𝟎

𝐢𝐟 𝒇(𝟐𝒂 − 𝒙) = −𝒇(𝒙) 

Proof. Using Property 3, we get 

∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(𝑥)𝑑𝑥
2𝑎

𝑎

 

Putting 𝑥 = 2𝑎 − 𝑡 ⇒ 𝑑𝑥 = −𝑑𝑡 in the second integral and changing 

the limit, we get 
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∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(2𝑎 − 𝑡)(−𝑑𝑡)
0

𝑎

 

Using Property 2, we get 

∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(2𝑎 − 𝑡)𝑑𝑡
𝑎

0

 

Using Property 1 in the second integral, we get 

∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0
= ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
+ ∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥

𝑎

0
 …………..(1) 

(i) 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥) 
Hence, 

∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

= 2∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

 

(ii) 𝑓(2𝑎 − 𝑥) = −𝑓(𝑥) 
Hence, 

∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0
= ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
− ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0
= 0 . 

NOTE: 

∫ 𝑓(𝑥)𝑑𝑥
2𝑎

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(2𝑎 − 𝑥)𝑑𝑥
𝑎

0

 

 

Ex 9.1. Solve ∫
𝑥

𝛼2 𝑐𝑜𝑠2𝑥+𝛽2𝑠𝑖𝑛2𝑥
𝑑𝑥

𝜋

0
 

Sol. Let 𝐼 = ∫
𝑥

𝛼2  𝑐𝑜𝑠2𝑥+𝛽2𝑠𝑖𝑛2𝑥
𝑑𝑥

𝜋

0
……………………….(1) 

Using property 4,   we get 

𝐼 = ∫
𝜋 − 𝑥

𝛼2 𝑐𝑜𝑠2(𝜋 − 𝑥) + 𝛽2𝑠𝑖𝑛2(𝜋 − 𝑥)
𝑑𝑥

𝜋

0

 

  ⇒  𝑰 = ∫
𝜋−𝑥

𝛼2 𝑐𝑜𝑠2𝑥+𝛽2𝑠𝑖𝑛2𝑥
𝑑𝑥

𝜋

0
 ………………………….(2) 

Adding equation (1) and (2), we get 

2𝐼 = ∫
𝑥

𝛼2 𝑐𝑜𝑠2𝑥 + 𝛽2𝑠𝑖𝑛2𝑥
𝑑𝑥

𝜋

0

+∫
𝜋 − 𝑥

𝛼2 𝑐𝑜𝑠2(𝜋 − 𝑥) + 𝛽2𝑠𝑖𝑛2(𝜋 − 𝑥)
𝑑𝑥

𝜋

0

 

= ∫
𝑥 + 𝜋 − 𝑥

𝛼2 𝑐𝑜𝑠2(𝜋 − 𝑥) + 𝛽2𝑠𝑖𝑛2(𝜋 − 𝑥)
𝑑𝑥

𝜋

0

 

Therefore 

2𝐼 = 𝜋 ∫
1

𝛼2  𝑐𝑜𝑠2𝑥+𝛽2𝑠𝑖𝑛2𝑥
𝑑𝑥

𝜋

0
……………………….(3) 

If 𝑓(𝑥) =
1

𝛼2 𝑐𝑜𝑠2𝑥+𝛽2𝑠𝑖𝑛2𝑥
 

then𝑓(𝜋 − 𝑥) =
1

𝛼2  𝑐𝑜𝑠2(𝜋−𝑥)+𝛽2𝑠𝑖𝑛2(𝜋−𝑥)
 

⇒ 𝑓(𝜋 − 𝑥) =
1

𝛼2 𝑐𝑜𝑠2𝑥 + 𝛽2𝑠𝑖𝑛2𝑥
 

Hence 𝑓(𝑥) = 𝑓(𝜋 − 𝑥) 
Using Property 6 in equation (3), we get 
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2𝐼 = 2𝜋∫
1

𝛼2 𝑐𝑜𝑠2𝑥 + 𝛽2𝑠𝑖𝑛2𝑥
𝑑𝑥

𝜋/2

0

 

Now dividing the numerator and denominator by 𝑐𝑜𝑠2𝑥, we get 

𝐼 = 𝜋∫
1/ cos2 𝑥

𝛼2 𝑐𝑜𝑠2𝑥
cos2 𝑥

+
𝛽2𝑠𝑖𝑛2𝑥
cos2 𝑥

𝑑𝑥
𝜋/2

0

 

= 𝜋∫
sec2 𝑥

𝛼2 + 𝛽2 tan2 𝑥
𝑑𝑥

𝜋/2

0

 

Putting 𝛽 tan 𝑥 = 𝑡 ⇒ 𝛽 sec2 𝑥 𝑑𝑥 = 𝑑𝑡, changing the limit, we get 

𝐼 =
𝜋

𝛽
∫

𝑑𝑡

𝛼2 + 𝑡2

∞

0

=
𝜋

𝛽

1

𝛼
[tan−1

𝑡

𝑎
]
0

∞

 

   =
𝜋

𝛽

1

𝛼
[tan−1∞− tan−1 0] 

   =
𝜋

𝛽

1

𝛼

𝜋

2
=
𝜋2

2𝛼𝛽
 

 

Ex 9.2. Solve ∫
𝑥 sin 𝑥

1+cos2 𝑥
𝑑𝑥

𝜋

0
 

Sol. Let 𝐼 = ∫
𝑥 sin 𝑥

1+cos2 𝑥
𝑑𝑥

𝜋

0
……………………….(1) 

Using property 4,   we get 

𝐼 = ∫
(𝜋 − 𝑥) sin(𝜋 − 𝑥)

1 + cos2(𝜋 − 𝑥)
𝑑𝑥

𝜋

0

 

  ⇒  𝐼 = ∫
(𝜋−𝑥) sin 𝑥

1+cos2 𝑥
𝑑𝑥

𝜋

0
 ………………………….(2) 

Adding equation (1) and (2), we get 

2𝐼 = ∫
𝑥 sin 𝑥

1 + cos2 𝑥
𝑑𝑥

𝜋

0

+∫
(𝜋 − 𝑥) sin 𝑥

1 + cos2 𝑥
𝑑𝑥

𝜋

0

 

= ∫
(𝑥 + 𝜋 − 𝑥) sin 𝑥

1 + cos2 𝑥
𝑑𝑥

𝜋

0

 

Therefore 

2𝐼 = 𝜋 ∫
sin 𝑥

1+cos2 𝑥
𝑑𝑥

𝜋

0
 ……………………….(3) 

If 𝑓(𝑥) =
sin 𝑥

1+cos2 𝑥
 

then𝑓(𝜋 − 𝑥) =
sin(𝜋−𝑥)

1+cos2(𝜋−𝑥)
 

⇒ 𝑓(𝜋 − 𝑥) =
sin 𝑥

1 + cos2 𝑥
 

Hence 𝑓(𝑥) = 𝑓(𝜋 − 𝑥) 
Using Property 6 in equation (3), we get 

2𝐼 = 2𝜋∫
sin 𝑥

1 + cos2 𝑥
𝑑𝑥

𝜋/2

0

 

Putting cos 𝑥 = 𝑡 ⇒ −sin 𝑥 𝑑𝑥 = 𝑑𝑡, changing the limit, we get 

𝐼 = −𝜋∫
𝑑𝑡

1 + 𝑡2

0

1

= −𝜋[tan−1 𝑡]1
0 

   = −𝜋[tan−1 0 − tan−1 1] 
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   =
𝜋2

4
 

 

Ex 9.3. Prove that ∫
𝑥 sin 𝑥

1+sin 𝑥
𝑑𝑥

𝜋

0
= 𝜋 (

𝜋

2
− 1) 

Sol. Let 𝐼 = ∫
𝑥 sin 𝑥

1+sin 𝑥
𝑑𝑥

𝜋

0
……………………….(1) 

Using property 4,   we get 

𝐼 = ∫
(𝜋 − 𝑥) sin(𝜋 − 𝑥)

1 + sin(𝜋 − 𝑥)
𝑑𝑥

𝜋

0

 

  ⇒  𝐼 = ∫
(𝜋−𝑥) sin 𝑥

1+sin 𝑥
𝑑𝑥

𝜋

0
 ………………………….(2) 

Adding equation (1) and (2), we get 

2𝐼 = ∫
𝑥 sin 𝑥

1 + sin 𝑥
𝑑𝑥

𝜋

0

+∫
(𝜋 − 𝑥) sin 𝑥

1 + sin 𝑥
𝑑𝑥

𝜋

0

 

= ∫
(𝑥 + 𝜋 − 𝑥) sin 𝑥

1 + sin 𝑥
𝑑𝑥

𝜋

0

 

Therefore 

2𝐼 = 𝜋 ∫
sin 𝑥

1+sin 𝑥
𝑑𝑥

𝜋

0
 ……………………….(3) 

Now multiplying the numerator and denominator by (1 − sin 𝑥), we 

get 

𝐼 =
𝜋

2
∫

sin 𝑥 (1 − sin 𝑥),

(1 + sin 𝑥)(1 − sin 𝑥)
𝑑𝑥

𝜋

0

 

=
𝜋

2
∫
sin 𝑥 − sin2 𝑥

1 − sin2 𝑥
𝑑𝑥

𝜋

0

 

=
𝜋

2
∫
sin 𝑥 − sin2 𝑥

cos2 𝑥
𝑑𝑥

𝜋

0

 

=
𝜋

2
[∫

sin 𝑥

cos2 𝑥
𝑑𝑥

𝜋

0

−∫
sin2 𝑥

cos2 𝑥
𝑑𝑥

𝜋
2

0

] 

=
𝜋

2
[∫ tan 𝑥 sec 𝑥 𝑑𝑥

𝜋

0

−∫ tan2 𝑥 𝑑𝑥

𝜋
2

0

] 

=
𝜋

2
[∫ tan 𝑥 sec 𝑥 𝑑𝑥

𝜋

0

−∫ (sec2 𝑥 − 1)𝑑𝑥

𝜋
2

0

] 

=
𝜋

2
[[sec 𝑥]0

𝜋 − [tan 𝑥 − 𝑥]0
𝜋] 

=
𝜋

2
[(−1 − 1) − [0 − 0 − (𝜋 − 0)]0

𝜋
2] 

=
𝜋

2
(−2 + 𝜋) = 𝜋 (

𝜋2

2
− 1) 

 

Ex 9.4. Prove that ∫ 𝐥𝐨𝐠(𝐭𝐚𝐧 𝒙) 𝒅𝒙
𝝅/𝟐

𝟎
= 𝟎 

Proof. Let 𝐼 = ∫ log(tan 𝑥) 𝑑𝑥
𝜋/2

0
……………………….(1) 

Using property 4,   we get 
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𝐼 = ∫ log tan(
𝜋

2
− 𝑥) 𝑑𝑥

𝜋/2

0

 

  ⇒  𝐼 = ∫ log cot 𝑥 𝑑𝑥
𝜋

2
0

……………………….(2) 

Adding equation (1) and (2), we get 

2𝐼 = ∫ log tan 𝑥  𝑑𝑥
𝜋/2

0

+∫ log cot 𝑥 𝑑𝑥

𝜋
2

0

 

= ∫ (log tan 𝑥 + log cot 𝑥)𝑑𝑥
𝜋

0

 

Therefore 

2𝐼 = ∫ (log (tan 𝑥 . cot 𝑥)𝑑𝑥
𝜋

0
 ……………………….(3) 

2𝐼 = ∫ log1
𝜋

0
𝑑𝑥 ……………………….(3) 

2𝐼 = 0 ⇒ 𝐼 = 0 

Hence ∫ log(tan 𝑥) 𝑑𝑥
𝜋/2

0
= 0 

 

9.5 DEFINITE INTEGRAL AS THE LIMIT OF 

A SUM 
 

Let 𝑓(𝑥) be a single valued continuous function defined in the 

interval (a,b) and let the interval (𝑎, 𝑏) be divided into n equal parts 

each of length ℎ such that 𝑛ℎ = 𝑏 − 𝑎, then we define 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

= 𝑙𝑖𝑚𝑛→∞ℎ→0
ℎ[𝑓(𝑎) + 𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ) +⋯+ 𝑓(𝑎 + (𝑛 − 1)ℎ] 

where 𝑛ℎ → 𝑏 − 𝑎 

or we can say 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
= lim
ℎ→0

ℎ∑ 𝑓(𝑎+ 𝑘ℎ)𝑛−1
𝑘=0 where 𝑛ℎ → 𝑏 − 𝑎 

 

Ex 9.5. Find by summation ∫ 𝐬𝐢𝐧 𝒙 𝒅𝒙
𝒃

𝒂
 

Proof. We can see that 𝑓(𝑥) = sin 𝑥 

⇒ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

= 𝑙𝑖𝑚𝑛→∞ℎ→0ℎ[sin(𝑎) + sin(𝑎 + ℎ) + sin(𝑎 + 2ℎ) + ⋯+ sin(𝑎
+ (𝑛 − 1)ℎ] 

= 𝑙𝑖𝑚𝑛→∞ℎ→0ℎ [
sin (

1

2
𝑛ℎ)

sin (
h

2
)
. sin (𝑎+

1

2
(𝑛 − 1)ℎ)]   (from trigonometric 

identities)= 𝑙𝑖𝑚𝑛→∞ℎ→0ℎ [
sin (

1

2
𝑛ℎ)

sin (
h

2
)
. sin (𝑎+

1

2
(𝑛 − 1)ℎ)] 

Now 𝑛ℎ = 𝑏 − 𝑎 

Hence ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = 𝑙𝑖𝑚𝑛→∞ℎ→0ℎ [

sin
𝑏−𝑎

2

sin (
h

2
)
. sin (𝑎 +

1

2
(𝑏 − 𝑎 − ℎ))] 
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= 𝑙𝑖𝑚𝑛→∞ℎ→0ℎ

[
 
 
 
 sin (𝑎 +

1
2
(𝑏 − 𝑎 − ℎ))

sin (
h
2) ]

 
 
 
 

 

= sin
𝑏 − 𝑎

2
 𝑙𝑖𝑚𝑛→∞ℎ→0

2. ℎ/2

sin ℎ/2 
sin (𝑎 +

1

2
(𝑏 − 𝑎 − ℎ)). 

= sin
𝑏 − 𝑎

2
 2. sin (𝑎 +

1

2
(𝑏 − 𝑎)) 

= 2 sin
𝑏 − 𝑎

2
sin (

𝑎 + 𝑏

2
) 

= 𝑐𝑜𝑠 𝑎 − 𝑐𝑜𝑠 𝑏  
 

9.6 SUMMATION OF SERIES WITH THE 

HELP OF DEFINITE INTEGRAL 
 

The definition of a definite integral as the limit of a sum helps 

us to evaluate the limit of the sums of some special type of series.  

As we know that  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= lim
ℎ→0

ℎ[𝑓(𝑎) + 𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ) + ⋯+ 𝑓(𝑎 + (𝑛 − 1)ℎ] 

= lim
ℎ→0

ℎ∑ 𝑓(𝑎 + 𝑘ℎ)𝑛−1
𝑘=0 where𝑛ℎ = 𝑏 − 𝑎 

Putting 𝑎 = 0 and 𝑏 = 1, therefore ℎ =
1

𝑛
, we get 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= lim
𝑛→∞

1
𝑛
∑ 𝑓(

𝑘
𝑛
)

𝑛−1

𝑘=0

 

 

Ex 9.6.Prove that the limit of the sum 
𝟏

𝒏
+

𝟏

𝒏+𝟏
+

𝟏

𝒏+𝟐
+⋯+

𝟏

𝟑𝒏
 

where 𝒏is indifinetly increased is log 3. 

Sol. Here we can see that 

General term of the series is 
1

𝑛+𝑘
 and 𝑘 varies 0to 2𝑛. 

Now  

lim
𝑛→∞

∑
𝟏

𝒏+𝒌

2𝑛

𝑘=0

= lim
𝑛→∞

∑
𝟏

𝒏 (𝟏+ 𝒌𝒏)

2𝑛

𝑘=0

 

Taking 
1

𝑛
 outside the sign of summation, we have 

lim
𝑛→∞

∑
1

𝑛+𝑘

2𝑛

𝑘=0

= lim
𝑛→∞

1

𝑛
∑

𝟏

(𝟏+ 𝒌𝒏)

2𝑛

𝑘=0

 

= lim
𝑛→∞

1

𝑛
∑ 𝒇 (

𝒌

𝒏
)2𝑛

𝑘=0 where𝒇(
𝒌

𝒏
) =

𝟏

(𝟏+
𝒌

𝒏
)
 

We can see that when 𝑘 = 0 then 
𝑘

𝑛
= 0 and 𝑘 = 2𝑛 then 

𝑘

𝑛
=
2𝑛

𝑛
= 2. 

Thus when 𝑛 → ∞ then 
𝑘

𝑛
 tends to 0 and 2 respectively. 
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By replacing 
𝑘

𝑛
 with 𝑥, 1/𝑛with 𝑑𝑥 and lim

𝑛→∞
∑𝑏𝑦 the sign of 

integration∫, also taking limit of 𝑥 from 0 to 2, we get 

lim
𝑛→∞

1

𝑛
∑

𝟏

(𝟏+𝒌𝒏)

2𝑛

𝑘=0

= ∫
1

1+ 𝑥
𝑑𝑥

2

0
 

= |log(1 + 𝑥)|0
2 

= log3 − log1 = log3 

Ex 9.7.Prove that the limit of the sum 
𝟏

𝒏𝒃
+

𝟏

𝒏𝒃+𝟏
+

𝟏

𝒏𝒃+𝟐
+⋯+

𝟏

𝒏𝒎
 

where 𝒏is indifinetly increased is 𝐥𝐨𝐠
𝒎

𝒃
. 

Sol. Here we can see that 

General term of the series is 
1

𝑛𝑏+𝑘
 and 𝑘 varies 0to (𝑚 − 𝑏)𝑛. 

Now  

lim
𝑛→∞

∑
1

𝑛𝑏+𝑘

(𝑚−𝑏)𝑛

𝑘=0

= lim
𝑛→∞

∑
1

𝑛(𝑏+𝑘𝑛)

(𝑚−𝑏)𝑛

𝑘=0

 

Taking 
1

𝑛
 outside the sign of summation, we have 

lim
𝑛→∞

∑
1

𝑛(𝑏+𝑘𝑛)

(𝑚−𝑏)𝑛

𝑘=0

= lim
𝑛→∞

1

𝑛
∑

1

(𝑏+𝑘𝑛)

(𝑚−𝑏)𝑛

𝑘=0

 

= lim
𝑛→∞

1

𝑛
∑ 𝑓 (

𝑘

𝑛
)

(𝑚−𝑏)𝑛
𝑘=0 where𝑓 (

𝑘

𝑛
) =

1

(𝑏+
𝑘

𝑛
)
 

We can see that when 𝑘 = 0 then 
𝑘

𝑛
= 0 and 𝑘 = (𝑚 − 𝑏)𝑛 then 

𝑘

𝑛
=

(𝑚−𝑏)𝑛

𝑛
= 𝑚 − 𝑏. 

Thus when 𝑛 → ∞ then 
𝑘

𝑛
 tends to 0 and 𝑚 − 𝑏respectively. 

By replacing 
𝑘

𝑛
 with 𝑥, 1/𝑛 with 𝑑𝑥 and lim

𝑛→∞
∑𝑏𝑦 the sign of 

integration∫, also taking limit of 𝑥 from 0 to 𝑚− 𝑏, we get 

lim
𝑛→∞

1

𝑛
∑

1

(𝑏+ 𝑘𝑛)

(𝑚−𝑏)𝑛

𝑘=0

= ∫
1

𝑏+ 𝑥
𝑑𝑥

𝑚−𝑏

0
 

= |log(𝑏 + 𝑥)|0
𝑚−𝑏 

= log𝑚 − log𝑏 = log
𝑚

𝑏
 

Ex 9.8.  Find the limit of {
𝒏!

𝒏𝒏
}

𝟏

𝒏
 where 𝒏 tends to ∞. 

Sol. Let 𝑀 = lim
𝑛→∞

{
𝒏!

𝒏𝒏
}

𝟏

𝒏
 

                    = lim
𝑛→∞

{
𝟏. 𝟐. 𝟑……𝒏

𝒏.𝒏…… . 𝒏(𝒏 𝐭𝐢𝐦𝐞𝐬)
}

𝟏
𝒏
 

                   = lim
𝑛→∞

{
𝟏

𝒏
.
𝟐

𝒏
.
𝟑

𝒏
……

𝒏

𝒏
}

𝟏
𝒏

 

Now taking log ion both side we get 
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log𝑀 = lim
𝑛→∞

𝟏

𝒏
[log

𝟏

𝒏
+ log

2

𝑛
+ log

3

𝑛
+⋯+ log

𝑛

𝑛
]  

           = lim
𝑛→∞

1

𝑛
∑log

𝒌

𝒏

𝑛

𝑘=0

 

          = lim
𝑛→∞

1

𝑛
∑ 𝒇 (

𝒌

𝒏
)𝑛

𝑘=0 where𝒇(
𝒌

𝒏
) = log

𝒌

𝒏
 

We can see that when 𝑘 = 0 then 
𝑘

𝑛
= 0 and 𝑘 = 𝑛 then 

𝑘

𝑛
=
𝑛

𝑛
= 1. 

Thus when 𝑛 → ∞ then 
𝑘

𝑛
 tends to 0 and 1 respectively. 

By replacing 
𝑘

𝑛
 with 𝑥, 1/𝑛 with 𝑑𝑥 and lim

𝑛→∞
∑𝑏𝑦 the sign of 

integration∫, also taking limit of 𝑥 from 0 to 1, we get 

log𝑀 = ∫ log𝑥 𝑑𝑥
1

0

 

|𝑥𝑙𝑜𝑔 𝑥|0
1 −∫ 𝑥.

1

𝑥
 𝑑𝑥

1

0

 

= 0 − |𝑥|0
1 

= −1 

Hence log𝑀 = −1 

⇒𝑀 = 𝑒−1 =
1

𝑒
 i.e. lim

𝑛→∞
{
𝒏!

𝒏𝒏
}

𝟏

𝒏
=
1

𝑒
. 

Ex 9.9.Find 𝐥𝐢𝐦
𝒏→∞

[(𝟏 +
𝟏

𝒏𝟐
) (𝟏 +

𝟐𝟐

𝒏𝟐
) (𝟏 +

𝟑𝟐

𝒏𝟐
)… . (𝟏 +

𝒏𝟐

𝒏𝟐
)]

𝟏

𝒏
 

Sol..Let 𝑀 = lim
𝑛→∞

[(1 +
1

𝑛2
) (1 +

22

𝑛2
) (1 +

32

𝑛2
)… . (1 +

𝑛2

𝑛2
)]

1

𝑛
 

Now taking log ion both side we get  

log𝑀 = lim
𝑛→∞

𝟏

𝒏
[log (1+

1

𝑛2
) + log (1 +

22

𝑛2
)+ log (1 +

32

𝑛2
) +⋯+ log (1 +

𝑛2

𝑛2
)]  

           = lim
𝑛→∞

1

𝑛
∑ log (1 +

𝑘2

𝑛2
)

𝑛

𝑘=0

 

          = lim
𝑛→∞

1

𝑛
∑ 𝒇 (

𝒌

𝒏
)𝑛

𝑘=0 where𝒇(
𝒌

𝒏
) = log (1 +

𝑘2

𝑛2
) 

We can see that when 𝑘 = 0 then 
𝑘

𝑛
= 0 and 𝑘 = 𝑛 then 

𝑘

𝑛
=
𝑛

𝑛
= 1. 

Thus when 𝑛 → ∞ then 
𝑘

𝑛
 tends to 0 and 1 respectively. 

By replacing 
𝑘

𝑛
 with 𝑥, 1/𝑛 with 𝑑𝑥 and lim

𝑛→∞
∑𝑏𝑦 the sign of 

integration∫, also taking limit of 𝑥 from 0 to 1, we get 

log𝑀 = ∫ log(1 + 𝑥2) 𝑑𝑥
1

0

 

|𝑥 log(1 + 𝑥2)|0
1 −∫ 𝑥.

2𝑥

1 + 𝑥2
 𝑑𝑥

1

0

 

= log2 − 2∫
𝑥2

1 + 𝑥2
 𝑑𝑥

1

0

 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 180 
 
 
 

= log2 − 2 [∫
1 + 𝑥2

1 + 𝑥2
 𝑑𝑥

1

0

−∫
1

1 + 𝑥2
 𝑑𝑥

1

0

] 

= log2 − 2[|𝑥|0
1 − |tan−1 𝑥|0

1] 

= log2 − 2 [1 −
𝜋

4
] 

= log2 − log𝑒2[1−
𝜋
4
]
 

= log
2

𝑒2[1−
𝜋
4
]
 

Hence log𝑀 = log2𝑒
𝜋

2
−2

 

⇒𝑀 = 2𝑒
𝜋

2
−2 

i.e. lim
𝑛→∞

[(1 +
1

𝑛2
) (1 +

22

𝑛2
) (1 +

32

𝑛2
)… . (1 +

𝑛2

𝑛2
)]

1

𝑛
= 2𝑒

𝜋

2
−2. 

 
 

CHECK YOUR PROGRESS 

(CQ 1) If 𝑓(−𝑥) = 𝑓(𝑥) then ∫ 𝑓(𝑥)𝑑𝑥 = ________________
1

−1
 

(CQ 2) If 𝑓(2𝑎 − 𝑥) = −𝑓(𝑥) then ∫ 𝑓(𝑥)𝑑𝑥 = ________________
2𝑎

𝑎
 

(CQ 3) If 𝑓(−𝑥) = −𝑓(𝑥), then ∫ 𝑓(𝑥)𝑑𝑥 = ________________
1

−1
 

(CQ 4) ∫
sin 𝑥

sin 𝑥+cos 𝑥
𝑑𝑥 = ________________

𝜋/2

0
 

(CQ 5) lim
𝑛→∞

1

𝑛
∑

1

1+(
𝑟

𝑛
)

𝑛
𝑟=1 = log2 (T/F) 

(CQ 6) ∫ cos3 𝑥 𝑑𝑥 = 0
𝜋/2

−𝜋/2
 (T/F)  

(CQ 7) Let 𝑓 is integrable over the interval [𝑎, 𝑏] and 𝜑 be a 

differentiable function on interval [a,b] such that 𝜑′(𝑥) =
𝑓(𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 [𝑎, 𝑏]. Then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜑(𝑏) − 𝜑(𝑎)(T/F) 

 

 
 

9.7 SUMMARY 
 

In this unit we studied antiderivatives, definite integrals, 

properties of integral, fundamental theorem and summation of series 

with the help of definite integral. 

 

9.8 GLOSSARY 
 

i. Set- a well defined collection of elements 

ii. Integral-express the area under the curve of a graph of the 

function 
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9.11 TERMINAL QUESTION 
 

Long Answer Questions 

(TQ 1) Evaluate lim
𝑛→∞

[
1

𝑛+1
+

1

𝑛+2
+⋯ .+

1

2𝑛
] 

(TQ 2) Evaluate lim
𝑛→∞

[
1

𝑛+𝑚
+

1

𝑛+2𝑚
+⋯ .+

1

𝑛+𝑛𝑚
] 

(TQ 3)   Show that ∫ (cot−1 𝑥)2𝑑𝑥
∞

0
= π log2 

(TQ 4) Show that∫
1

1+tan 𝑥
𝑑𝑥

𝜋/2

0
=
π

4
 

(TQ 5) Show that∫ 𝑥 sin3 𝑥 𝑑𝑥
𝜋

0
=
2π

3
 

 

.Fill in the blanks 

(TQ 6)   ∫
𝑑𝑥

1+√tan𝑥

𝜋

2
0

is ____________________. 

(TQ 7)   lim
𝑛→∞

∑
1

𝑛+𝑟

2𝑛
𝑟=0 = _____________. 

 

9.12 ANSWERS 
 

 

(CQ 1) 2∫ 𝑓(𝑥)𝑑𝑥
1

0
 (CQ 2) 0 (CQ 3) 0 

(CQ 4)𝜋/4 (CQ 5) T (CQ 6) F 

(CQ 7) T   

(TQ 6)  
π

4
 (TQ 7)  ∫

1

1+𝑥
𝑑𝑥

1

0
  

https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
https://fl01000126.schoolwires.net/cms/lib/FL01000126/Centricity/Domain/261/FDWK_3ed_Ch05_pp262-319.pdf
https://fl01000126.schoolwires.net/cms/lib/FL01000126/Centricity/Domain/261/FDWK_3ed_Ch05_pp262-319.pdf
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BLOCK III  

ASYMPTOTES AND DOUBLE  

AND TRIPLE INTREGRALS 
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UNIT 10:-ASYMPTOTES 
 

CONTENTS: 

 
10.1. Inroduction 

10.2. Objective 

10.3. Determination of Asymptotes 

10.4. Asymptote Parallel to 𝑌 −Axis 

10.5. Asymptote Parallel to 𝑋 −Axis 

10.6. Asymptotes of the General Algebraic Curve 

10.7. Asymptote Might Not Exist 

10.8. Two Parallel Asymptotes 

10.9. Total Number of Asymptotes 

10.10. Intersection of a Curve and its Asymptotes 

10.11. Asymptotes by Expansion 

10.12. A Useful Method of finding Asymptotes of Algebraic Curves 

10.13. Asymptotes by Inspection 

10.14. Position of a Curve with respect to an Asymptote 

10.15. Asymptotes to Non-Algebraic Curves 

10.16. Asymptotes in Polar Co-Ordinates 

10.17. Miscellaneous Examples 

10.18. Summary 

10.19. Glossary 

10.20. References 

10.21. Suggested Readings 

10.22. Terminal Question 

10.23. Answers 
 

10.1 INTRODUCTION 
 

This word is derived from the Greek word ‘asumptotos’, 

which means “not following together”.Some curves are limited in 

extent (e.g. circle, ellipse etc.). For such curves, every tangent has a 

usual meaning when 𝑥 tends to some finite value. 

There is another family of curves which extend up to infinity e.g. 

hyperbola, parabola, exponential curve etc. see the case of 𝑦 =
1

𝑥
. 

You can observe the tangent at 𝑃1. 
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Fig.10.1.1 

Similarly tangents at 𝑃2, 𝑃3, … .These tangents are slowly becoming 

parallel to 𝑥 −axis. Now think, when 𝑛 → ∞, which line can be 

considered as the tangent at 𝑃𝑛 on  𝑦 =
1

𝑥
?.You might have observed 

that for such curves:  

 

Tangents are tending to a fixed line which is at a finite distance (here 

zero) from the origin. This forms the basic concept of asymptote. 

 

Now we can formally define asymptote: 

 

“A straight line at a finite distance from the origin to which a tangent 

to a curve tends, as the distance from the origin of the point of contact 

tends to infinity, is called an asymptote of the curve.” 

 

Here we shall study vertical, horizontal and oblique asymptotes, 

depending on their orientations. 

 

Vertical Asymptote: The line 𝑥 = 𝑎 is a vertical asymptote of the 

curve 𝑦 = 𝑓(𝑥) if at least one of the following is true: 

(i) lim
𝑥→𝑎−

𝑓(𝑥) = ±∞ 

(ii) lim
𝑥→𝑎+

𝑓(𝑥) = ±∞. 

Example 1:𝑓(𝑥) =
𝑥

𝑥−𝑎
 has a vertical asymptote 𝑥 = 𝜆 ! 

Note:(1) The function 𝑓(𝑥) may or may not be defined at 𝑥 = 𝑎i.e. 

functional value 𝑓(𝑎) does not affect the asymptote, i.e, functional 

value 𝑓(𝑎)does not affect the asymptote.  

Example 2:𝑓(𝑥) = {
1

𝑥
,   𝑥 > 0

2 ,    𝑥 ≤ 0
   has a limit of +∞ as 𝑥 → 0+. 𝑓(𝑥) 

has the vertical asymptote 𝑥 = 0, though 𝑓(0) = 2. The graph of this 

function intersects the vertical asymptote once at (0,2). 
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Fig. 10.1.2 

 

(2)  It is impossible for the graph of a function to intersect a vertical 

asymptote (actually any vertical line) in more than one point. 

(3) If the graph of a function 𝑦 = 𝑓(𝑥) is continuous then it is 

impossible that its graph intersects any vertical asymptote. 

(4) A common example of a vertical asymptote is the case of a rational 

function at a point 𝑥 such that the denominator is zero and numerator is 

non-zero. 

Example 3: 𝑓(𝑥) =
2𝑥

(𝑥−1)(𝑥−2)(𝑥−3)
 

Here 𝑥 = 1, 𝑥 = 2, 𝑥 = 3  are vertical asymptotes. 

(5)Rational function: It is the quotient of two polynomials. For 

example:𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
  or 𝑓(𝑥) =

2𝑥+3

(𝑥+1)(𝑥−2)
 etc. 

 

Horizontal Asymptote: These are horizontal lines which approach the 

graph of the function 𝑦 = 𝑓(𝑥) when 𝑥 → ±∞. 
 

Example 4:  

 
Fig.10.1.3 
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Here 𝑥 = ±
𝜋

2
 are asymptotes of 𝑦 = tan−1 𝑥, when 𝑥 → ±∞. The 

horizontal line 𝑦 = 𝑎 is a horizontal asymptote of the function 𝑦 =
𝑓(𝑥) if either lim

𝑥→−∞
𝑓(𝑥) = 𝑐 or lim

𝑥→+∞
𝑓(𝑥) = 𝑐. 

 

Oblique Asymptote: A linear asymptote (or simply asymptote) is 

called oblique if it is neither parallel to 𝑥 −axis nor 𝑦 −axis. So 𝑦 =
𝑚𝑥 + 𝑐, 𝑚 ≠ 0 may be an oblique asymptote.  

 
Fig. 10.1.4 

 

 

Horizontal and Oblique Asymptote for Rational Functions 

 

 

deg(𝑵𝒓) −de

g(𝑫𝒓) 
Asymptotes in general Example  Asympto

te for 

example 

< 0 𝑦 = 0 f(x)

=
1

x2 + 1
 

𝑦 = 0 

= 0 𝑦
= 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

𝑓(𝑥)

=
2𝑥2 + 7

3𝑥2 + 𝑥 + 12
 

𝑦 =
2

3
 

= 1 𝑦
= 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛  
𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 𝑏𝑦 

 𝑡ℎ𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟. 

𝑓(𝑥)

=
𝑥2 + 𝑥 + 1

𝑥
 

𝑦
= 𝑥 + 1 

> 1 𝑛𝑜𝑛𝑒 𝑓(𝑥)

=
2𝑥4

3𝑥2 + 1
 

𝑛𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 
 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒  

 

Transformation of Known Functions: If a known function has an 

asymptote (e.g. 𝑦 = 0 for 𝑦 = 𝑒𝑥), then the translations of it also have 

an asymptote→ 

(i) If 𝑥 = 𝑎 is a vertical asymptote of 𝑓(𝑥), then 𝑥 = 𝑎 + ℎ is a 

vertical asymptote of 𝑓(𝑥 − ℎ). 
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(ii) If 𝑦 = 𝑐 is a horizontal asymptote of (𝑥) , then 𝑦 = 𝑐 + 𝑘 is an 

horizontal asymptote of 𝑓(𝑥) + 𝑘. 

(iii) If 𝑦 = 𝑚𝑥 + 𝑐 is an asymptote of 𝑓(𝑥), then 𝑦 = 𝜆𝑚𝑥 + 𝜆𝑐 is 

an asymptote of 𝜆𝑓(𝑥)(𝜆 ∈ 𝑅). 

 

10.2 OBJECTIVES 
 

In this unit, we will understand: 

i. The meaning of the term “Asymptotes”. 

ii. Existence of Asymptotes. 

iii. Non-existence of Asymptotes. 

iv. Procedures for finding the Asymptotes in various cases. 

v. Intersection of a curve with its asymptotes. 

 

10.3 DETERMINATION OF ASYMPTOTES 
 

The equation of a line which is neither parallel to 𝑥 −axis nor 

to 𝑦 −axis is  𝑦 = 𝑚𝑥 + 𝑐,       𝑚 ≠ 0. 
 

 
Fig. 10.3.1 

Let 𝐴(𝑥, 𝑦) be a point on an infinite branch of the curve 𝑓(𝑥, 𝑦) = 0. 

Let 𝑝 = 𝐴𝑁 be the perpendicular distance of any point 𝐴(𝑥, 𝑦) on the 

infinite branch of a given curve. Then  

𝑝 =
|𝑦 −𝑚𝑥 − 𝑐|

√1 + 𝑚2
 

If 𝑦 = 𝑚𝑥 + 𝑐 is an asymptote, then 𝐴𝑁 → 0  as 𝐴 → ∞ along the 

curve i.e. when 𝑥 → ∞. 
So, we have 

lim
𝑥→∞

(𝑦 −𝑚𝑥 − 𝑐) =0 ⇒ lim
𝑥→∞

(𝑦 −𝑚𝑥) = 𝑐  

…………………………………….(1) 

We can write,  
𝑦

𝑥
−𝑚 = (𝑦 − 𝑚𝑥)(

1

𝑥
) 
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⇒ lim
𝑥→∞

(
𝑦

𝑥
− 𝑚) = lim

𝑥→∞
[(𝑦 − 𝑚𝑥)(

1

𝑥
)] 

                              = lim
𝑥→∞

(𝑦 −𝑚𝑥) lim
𝑥→∞

(
1

𝑥
) 

                                (as product of limits is equal to limit of products.)  

 = 𝑐 (0) = 0 

⇒ lim
𝑥→∞

(
𝑦

𝑥
) =𝑚  ………………………………………….(2) 

So from equations (1) and (2), we conclude that for an oblique 

asymptote→ 

(i) lim
𝑥→∞

(
𝑦

𝑥
) in 𝑓(𝑥, 𝑦) = 0 represents the slope 𝑚. 

(ii) lim
𝑥→∞

(𝑦 −𝑚𝑥) represents ′𝑐′ in 𝑦 = 𝑚𝑥 + 𝑐.  

   (A) 

Note:  

(1) The values of 𝑦 for different branches of the curve 𝑓(𝑥, 𝑦) = 0 

will be different for a given value of 𝑥. So we may obtain 

various different values of ′𝑚′ and correspondingly several 

different values of lim
𝑥→∞

(𝑦 −𝑚𝑥). 

 Thus a curve may have more than one asymptote. 

(2) This method can determine all the asymptotes except those 

which are parallel to 𝑦 −axis. To determine those asymptote, 

we start with the equation 𝑥 = 𝑚𝑦 + 𝑑 which can represent 

every straight line not parallel to 𝑥 −axis and so that when 𝑦 →

∞, 𝑚 = lim
𝑦→∞

(
𝑥

𝑦
)  and  𝑑 =  lim

𝑦→∞
(𝑥 −𝑚𝑦). 

(3)  The asymptotes not parallel to any axis can be obtained either 

way. 

 

Example 5: Examine the Folium 𝑥3 + 𝑦3 − 3𝑎𝑥𝑦 = 0 for asymptotes. 

Solution: The given equation is of third degree 

(1) 𝑥3 + 𝑦3 − 3𝑎𝑥𝑦 = 0 

Dividing both sides by 𝑥3, we get 

1 + (
𝑦

𝑥
)
3

− 3𝑎 (
𝑦

𝑥
) (
1

𝑥
) = 0 

Let 𝑥 → ∞. Then by reminding lim
𝑥→∞

(
𝑦

𝑥
) = 𝑚, we get  

1 +𝑚3 − 0 = 0 ⇒ (𝑚 + 1)(𝑚2 −𝑚 + 1) = 0. 

So the only real value of 𝑚 = −1. 

Put 𝑚 = −1 in 𝑦 = 𝑚𝑥 + 𝑝 where 𝑝 → 𝑐 when 𝑥 → ∞. 
⇒ 𝑦 = 𝑝 − 𝑥. 

Putting 𝑦 = 𝑝 − 𝑥 in equation (1), we get  

𝑥3 + (𝑝 − 𝑥)3 − 3𝑎𝑥 (𝑝 − 𝑥) = 0 

⇒ 3(𝑝 + 𝑎)𝑥2 − 3(𝑝2 + 𝑎𝑝)𝑥 + 𝑝3 = 0, which is of the second 

degree in 𝑥. 

Dividing by 𝑥2, we get  

3(𝑝 + 𝑎) − 3(𝑝2 + 𝑎𝑝)
1

𝑥
+ 𝑝3.

1

𝑥2
= 0. 
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When 𝑥 → ∞,𝑝 → 𝑐. So we get 3(𝑐 + 𝑎) = 0 ⇒ 𝑐 = −𝑎. 
Hence 𝑦 + 𝑥 + 𝑎 = 0 is the only asymptote of this curve. 

 

Branches of a curve: If 𝑦 has two or more values for every value of 𝑥, 

it is usually possible to suppose that this is a case where two or more 

distinct are given. 

 

But it is generally more convenient to regard the curves corresponding 

to these distinct functions, not as different curves, but as different 

branches of one curve. In general, each branch has its own asymptote. 

 

Example 6: If 𝑦2 − 2𝑥𝑦 − 1 = 0, then 𝑦 = 𝑥 ± √𝑥2 + 1. 

So we obtain 𝑦 = 𝑥 + √𝑥2 + 1 and 𝑦 = 𝑥 − √𝑥2 + 1 as two branches 

of the curve 𝑦2 − 2𝑥𝑦 − 1 = 0, and each branch will have an 

asymptote. 

 

 

10.4 ASYMPTOTES PARALLEL TO Y-AXIS 
 

The asymptote parallel to 𝑦 −axis are obtained by equating to zero the 

real linear factors in the coefficient of the highest power of ′𝑦′, in the 

equation of the curve. 

 
Fig. 10.4.1 

Proof: Let 𝑥 = 𝑘  be an asymptote of the curve. 

 Here only 𝑦 → ∞ as a point 𝐴(𝑥, 𝑦) recedes to infinity along 

the curve. 

The distance AN of any point 𝐴(𝑥, 𝑦) on the curve is equal to 𝑥 − 𝑘. 

lim
𝑦→∞

(𝑥 − 𝑘) =0 ⇒ lim
𝑦→∞

𝑥 = 𝑘, which provides the value of 𝑘. 

Arranging the equation of the curve in descending powers of 𝑦, so that 

it takes the form  

(1) 𝑦𝑚𝜙(𝑥) + 𝑦𝑚−1𝜙1(𝑥) + 𝑦
𝑚−2𝜙2(𝑥) +⋯ = 0 

Where 𝜙(𝑥),𝜙1(𝑥), 𝜙2(𝑥),… etc are polynomials in 𝑥. 

Dividing the equation (1) by 𝑦𝑚, we get  
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(2)                                             𝜙(𝑥) +
1

𝑦
𝜙1(𝑥) +

1

𝑦2
𝜙2(𝑥) +⋯ = 0 

Let 𝑦 → ∞. 

Let us write lim
𝑦→∞

𝑥 = 𝑘. The equation (2) gives, 𝜙(𝑘) = 0, so that 𝑘 is 

a root of the equation 𝜙(𝑥) = 0. 

  Let 𝑘1, 𝑘2 be the roots of 𝜙(𝑥) = 0. Then the asymptotes 

parallel  to 𝑌 −axis are 𝑥 = 𝑘1,     𝑥 = 𝑘2 etc. 

We know that (𝑥 − 𝑘1), (𝑥 − 𝑘2) etc. are the factors of 𝜙(𝑥) which is 

the coefficient of the heighest power 𝑦𝑚 of 𝑦 in the given equation. 

 

 

10.5 ASYMPTOTE PARALLEL TO 𝑿 −AXIS 
 

In the same way, the asymptotes, parallel to 𝑋 −axis, are obtained by 

equating zero the real line factors in the coefficient of the highest 

power of 𝑥, in the equation of the curve. 

 

Example 7: Find the asymptotes of the curve 𝑥2𝑦2 = 9𝑥2 + 4𝑦2 
parallel to the axes. 

 

Solution: We have  

(1) 𝑥2𝑦2 = 9𝑥2 + 4𝑦2 
⇒ 𝑥2(𝑦2 − 9) − 4𝑦2 = 0 

So asymptotes parallel to 𝑥 −axis are given by, 𝑦2 − 9 = 0 

⇒ 𝑦 = ±3. 

Similarly from equation (1), 𝑦2(𝑥2 − 4) − 9𝑥2 = 0. 

So asymptotes parallel to 𝑌 −axis are given by 𝑥2 − 4 = 0 

⇒ 𝑥 = ±2. 

 

 

10.6 ASYMPTOTES OF THE GENERAL 

ALGEBRAIC CURVE 
 

Suppose equation of the curve be  

(1) {𝑎0𝑦
𝑛 + 𝑎1𝑦

𝑛−1𝑥 + 𝑎2𝑦
𝑛−2𝑥2 +⋯+ 𝑎𝑛−1𝑦𝑥

𝑛−1 + 𝑎𝑛𝑥
𝑛} +

              {𝑏1𝑦
𝑛−1 + 𝑏2𝑦

𝑛−2𝑥 +⋯+ 𝑏𝑛−1𝑦𝑥
𝑛−2 + 𝑏𝑛𝑥

𝑛−1} +
{ 𝑐𝑦𝑛−2 +⋯} +⋯ = 0 

(2) 𝑥𝑛𝜙𝑛 (
𝑦

𝑥
) + 𝑥𝑛−1𝜙𝑛−1 (

𝑦

𝑥
) + ⋯ = 0 

Where 𝜙𝑟 (
𝑦

𝑥
) is an expression of the 𝑟𝑡ℎ  degree in (

𝑦

𝑥
). 

Determination of "𝑚" 
Dividing by 𝑥𝑛, we can write  

(3) 𝜙𝑛 (
𝑦

𝑥
) +

1

𝑥
𝜙𝑛−1 (

𝑦

𝑥
) +

1

𝑥2
𝜙𝑛−2 (

𝑦

𝑥
) + ⋯ = 0 
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Now taking limit 𝑥 → ∞, (and excluding the case of asymptotes 

parallel to the 𝑌 −axis i.e. the case in which lim
𝑥→∞

(
𝑦

𝑥
) → ∞); we get  

(4) 𝜙𝑛(𝑚) = 0 

Where 𝑚 = lim
𝑥→∞

(
𝑦

𝑥
). 

On solving equation (4), we select only real values of “𝑚”, which give 

slopes of asymptotes 𝑦 = 𝑚𝑥 + 𝑐.  
 

Determination of "𝒄": Now differentiating equation (3) with respect to 

𝑥, we obtain  

{𝜙𝑛
′ (

𝑦

𝑥
) +

1

𝑥
𝜙𝑛−1 (

𝑦

𝑥
) + ⋯} (

𝑥𝑦′−𝑦

𝑥2
) −

1

𝑥2
𝜙𝑛−1 (

𝑦

𝑥
) −

2

𝑥3
𝜙𝑛−2 (

𝑦

𝑥
) −

⋯ = 0. 

Multiplying by 𝑥2, we get, 

{𝜙𝑛
′ (

𝑦

𝑥
) +

1

𝑥
𝜙𝑛−1 (

𝑦

𝑥
) + ⋯} (𝑥𝑦′ − 𝑦) − 𝜙𝑛−1 (

𝑦

𝑥
) −

2

𝑥
𝜙𝑛−2 (

𝑦

𝑥
) −

⋯ = 0. 

Now taking 𝑥 → ∞ and using equation (A), we get 

(5)                                                 𝑐𝜙𝑛
′ (𝑚) + 𝜙𝑛−1(𝑚) = 0. 

This equation determines one value of 𝑐 for each value of 𝑚 found 

from equation (4). 

Hence the asymptotes are 𝑦 = 𝑚𝑥 + 𝑐. 

 

Alternative Method: (1) If we substitute 𝑦 = 𝑚𝑥 + 𝑐 in equation (2) 

of the last article and solve, we get 

(1) 𝑥𝑛 {𝜙𝑛(𝑚) +
𝑐

𝑥
𝜙𝑛
′ (𝑚) +

𝑐2

2!𝑥2
𝜙𝑛
′′(𝑚) + ⋯} +

                                                                          𝑥𝑛−1 {𝜙𝑛−1(𝑚) +
𝑐

𝑥
𝜙𝑛−1
′ 𝑚 +⋯} + ⋯ = 0 

Now, if we equate to zero the coefficients of the two highest powers of 

𝑥, we get equations (4) and (5) of the last article. Hence we have the 

following rule for determining the asymptotes:  

(i) Put 𝑦 = 𝑚𝑥 + 𝑐 in the equation. 

(ii) Equate to zero the coefficient of the two highest powers of 

𝑥 and determine 𝑚 and 𝑐 from these. 

(iii) If (𝑚1, 𝑐1), (𝑚2, 𝑐2), … are the values of 𝑚 and 𝑐 thus 

obtained, the asymptotes are 𝑦 = 𝑚1𝑥 + 𝑐1;          𝑦 =
𝑚2𝑥 + 𝑐2,  etc. 

(2) We observe that 𝜙𝑛(𝑚) can be obtained at once by putting 𝑥 =
1 and 𝑦 = 𝑚 in the highest degree terms of the equation of the 

curve. Similarly 𝜙𝑛−1(𝑚) can be obtained by putting 𝑥 = 1 

and 𝑦 = 𝑚 in the (𝑛 − 1)𝑡ℎ degree terms. Hence we get the 

asymptotes  more quickly. 

 

Example 8: Find the asymptotes of  

𝑦3 − 𝑥2𝑦 − 2𝑥𝑦2 + 2𝑥3 − 7𝑥𝑦 + 3𝑦2 + 2𝑥2 + 2𝑥 + 2𝑦 + 1 = 0. 
 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 192 
 
 
 

Solution: Putting 𝑦 = 𝑚𝑥 + 𝑐 in the above expression, we get 

(𝑚𝑥 + 𝑐)3 − 𝑥2(𝑚𝑥 + 𝑐) − 2𝑥(𝑚𝑥 + 𝑐)2 + 2𝑥3 − 7𝑥(𝑚𝑥 + 𝑐)
+ 3(𝑚𝑥 + 𝑐)2 + 2𝑥2 + 2𝑥 + 2(𝑚𝑥 + 𝑐) + 1 = 0. 

Or 𝑥3(𝑚3 −𝑚 − 2𝑚2 + 2) + 𝑥2(3𝑚2𝑐 − 𝑐 − 4𝑚𝑐 − 7𝑚 + 3𝑚2 +
2) +⋯ = 0. 

Therefore ′𝑚′ and ′𝑐′ are given by 

𝜙𝑛(𝑚) = 𝑚
3 −𝑚 − 2𝑚2 + 2 = 0 and  

𝜙𝑛−1(𝑚) = 𝑐(3𝑚
2 − 4𝑚 − 1) + 3𝑚2 − 7𝑚 + 2 = 0. 

From 𝜙𝑛(𝑚) = 0, we get (𝑚 − 1)(𝑚 + 1)(𝑚 − 2) = 0 ⇒ 𝑚 =
1,−1, 2. 

From 𝜙(𝑛−1)(𝑚) = 0, we get 𝑐 = −
(3𝑚2−7𝑚+2)

(3𝑚2−4𝑚−1)
. 

If 𝑚 = 1, 𝑐 = −1;   𝑚 = −1, 𝑐 = −2,𝑚 = 2, 𝑐 = 0. 

Hence the asymptotes are 

𝑦 = 𝑥 − 1; 𝑦 = −𝑥 − 2; 𝑦 = 2𝑥. 

 

Method(II): Putting 𝑥 = 1 and 𝑦 = 𝑚 in the third degree terms and 

equating to zero, we get  

𝜙𝑛 (𝑚) = 𝑚
3 − 2𝑚2 −𝑚 + 2 = 0 

and 𝜙𝑛(𝑚) = 𝑐(3𝑚
2 − 4𝑚− 1) + (3𝑚2 − 7𝑚 + 2) = 0. 

Now solve as usual. 

 

10.7 ASYMPTOTE MIGHT NOT EXIST 
 

If one or more values of 𝑚, found from 𝜙𝑛(𝑚) = 0, make 𝜙𝑛
′ (𝑚) =

0 , but 𝜙𝑛−1(𝑚) ≠ 0; the equation for determining the corresponding 

value of 𝑐 becomes  

(1)                                                                     0. 𝑐 + 𝜙𝑛−1(𝑚) = 0. 
We can calculate ′𝑐′ only if its coefficient is non-zero. i.e, the equation 

in ′𝑐′ was 𝐹𝑐 + 𝐺 = 0, where lim
x→∞

𝐹 = 0 and lim
x→∞

𝐺 = 𝜙𝑛−1(𝑚). 

Hence lim
x→∞

𝑐 = +∞, or −∞, and this corresponds to the case when the 

tangent goes further and further away as 𝑥 → ∞. (See the definition of 

asymptote). 

Example 9: Find the asymptote of the curve 𝑦2 = 4𝑎𝑥; 𝑎 ≠ 0. 

Solution: Putting 𝑦 = 𝑚𝑥 + 𝑐, we get 

(𝑚𝑥 + 𝑐)2 − 4𝑎𝑥 = 0 

𝑚2𝑥2 + 2𝑚𝑐𝑥 + 𝑐2 − 4𝑎𝑥 = 0 

𝑚2𝑥2 + 2𝑥(𝑚𝑐 − 4𝑎) + 𝑐2 = 0 

Putting the coefficient of 𝑥2 and 𝑥 to zero, we get  

𝜙𝑛(𝑚) = 𝑚
2 = 0 ⇒ 𝑚 = 0, 

And 𝜙𝑛−1(𝑚) = 𝑚𝑐 − 4𝑎 = 0 ⇒ 0. 𝑐 − 4. 𝑎 = 0, which is impossible 

as 𝑎 ≠ 0. 

Hence 𝑦2 = 4𝑎𝑥 has no asymptote. 
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10.8 TWO PARALLEL ASYMPTOTES 
 

 If any value of 𝑚, found from 𝜙𝑛(𝑚) = 0, has repeated values i.e., 

say 𝑚 = 𝛼,𝛼, then there may be two parallel asymptotes. Then by  

theory of equations,  

𝜙𝑛(𝛼) = 0 = 𝜙𝑛
′ (𝛼). Generally to find ′𝑐′, we use  

𝑐𝜙𝑛
′ (𝑚) + 𝜙𝑛−1(𝑚) = 0. 

Here, we shall get 0. 𝑐 + 𝜙𝑛−1(𝑚) = 0 

For the finite ′𝑐′, we consider 𝜙𝑛−1(𝑚) = 0. 

Now we differentiate equation (3) twice with respect  to 𝑥(of the 

article, “asymptotes of the general algebraic curves) and solving 

similarly, we get 

(1)
1

2
𝑐2𝜙𝑛

′′(𝑚) + 𝑐𝜙𝑛−1
′ (𝑚) + 𝜙𝑛−2(𝑚) = 0. 

On solving above expression, we shall obtain two different ′𝑐′ for one 

𝑚 i.e. parallel asymptotes. 

Note: If we get 𝑚 = 𝛼,𝛼, 𝛼, then 𝑐 will be obtained from  

𝑐3

3!
𝜙𝑛
′′′(𝑚) +

𝑐2

2!
𝜙𝑛−1
′′ (𝑚) + 𝑐𝜙𝑛−2

′ (𝑚) + 𝜙𝑛−3(𝑚) = 0. 

You can now generalize it. 

 

Example 10: Find the asymptotes of  

𝑥3 − 𝑥2𝑦 − 𝑥𝑦2 + 𝑦3 + 2𝑥2 − 4𝑦2 + 2𝑥𝑦 + 𝑥 + 𝑦 + 1 = 0. 
Solution: Putting 𝑥 = 1, 𝑦 = 𝑚 in 3rd degree terms, we get  

𝜙3(𝑚) = 1 − 𝑚−𝑚
2 +𝑚3 = 0 

⇒ 𝑚 = −1, 1, 1. 
Also 𝜙2(𝑚) = 2 − 4𝑚

2 + 2𝑚. 

To determine 𝑐, we have 𝑐𝜙3
′ (𝑚) + 𝜙2(𝑚) = 0 

⇒ 𝑐(−1 − 2𝑚 + 3𝑚2) + (2 − 4𝑚2 + 2𝑚) = 0. 

For 𝑚 = −1, we get 𝑐 = 1. 

So 𝑦 = −𝑥 + 1 or 𝑦 + 𝑥 − 1 = 0 is an asymptote. 

For 𝑚 = 1, 1, we use the equation 

(
𝑐2

2
)𝜙3

′′(𝑚) + 𝑐𝜙2
′ (𝑚) + 𝜙1(𝑚) = 0 

⇒ (
𝑐2

2
) (−2 + 6𝑚) + 𝑐(2 − 8𝑚) + (1 +𝑚) = 0. 

Putting 𝑚 = 1 and solving, we get  

𝑐2 − 3𝑐 + 1 = 0 ⇒ 𝑐 =
3 ± √5

2
. 

Hence 𝑦 = 𝑥 +
3+√5

2
  and 𝑦 = 𝑥 +

3−√5

2
  are two other asymptotes. 
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10.9 TOTAL NUMBER OF ASYMPTOTES 
 

As the equation for determining 𝑚, viz 𝜙𝑛(𝑚) = 0, is of degree 𝑛, and 

so by ‘Fundamental theorem of algebra’ it has 𝑛  roots (whether real or 

imaginary). 

So ‘a curve of degree 𝑛 has at most 𝑛 asymptotes’. It may have less 

than 𝑛 asymptotes (even no asymptote), but not more than 𝑛 

asymptotes. 

 

Note: (i) If some of the roots of 𝜙𝑛(𝑚) = 0 are complex, 

corresponding to those values of 𝑚, there will be no real asymptote. 

(ii) There might be no asymptote corresponding to even a real root e.g. 

𝑦2 = 4𝑎𝑥 (Observe it)! 

 

Historical Note: The meaning of the word ‘asymptote’ has changed a 

couple of times.When Appolonius first used it (2200 Years ago), it 

meant any straight line that did not meet a given curve. With that 

meaning, a hyperbola has two asymptotes.That definition was used 

until the 19th centuary. The concept of asymptote required a curve to 

get closer to the asymptotic straight line but never cross it as it 

approached it. (It could cross it somewhere else). 

 

 

Fig. 10.9.1 

 

As you go further along the curve, the curve gets closer and 

closer to the asymptote. In fact, if you gofar enough, the distance to the 

asymptote will be halved.This concept of halving the distance defined 

limits as used by Euclid and others until the modern era. Then, a 

broader definition of limits, the 𝜖 − 𝛿 definition was developed.With 

the mew definition, a curve could be asymptotic to a line even if it 

crossed it just so long as you can keep the curve as close as you like to 
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the line if you can go far enough.Thus the curve below has the same 

two asymptotes as the hyperbola above. 

 
Fig. 10.9.2 

 

10.10 INTERSECTION OF A CURVE AND ITS 

ASYMPTOTES 
 

Theorem: Any asymptote of a curve of the 𝑛𝑡ℎdegree cuts the curve in 

(𝑛 − 2) points. 

 

Proof: Let 𝑦 = 𝑚𝑥 + 𝑐 be an asymptote of a rational algebraic curve 

of degree ′𝑛′ whose equation is  

𝑥𝑛𝜙𝑛 (
𝑦

𝑥
) + 𝑥𝑛−1𝜙𝑛−1 (

𝑦

𝑥
) + 𝑥𝑛−2𝜙𝑛−2 (

𝑦

𝑥
) +⋯ = 0. 

To find the points of intersection, we have to solve the two equations 

simultaneously. 

(1)        ⇒ 𝑥𝑛𝜙𝑛 (𝑚 +
𝑐

𝑥
) + 𝑥𝑛−1𝜙𝑛−1 (𝑚 +

𝑐

𝑥
) + 𝑥𝑛−2𝜙𝑛−2 (𝑚 +

𝑐

𝑥
) + ⋯ = 0 

Expanding each term by Taylor’s theorem and arranging in descending 

powers of 𝑥, we have  

(2) [𝜙𝑚(𝑚)]𝑥
𝑛 + [𝑐𝜙𝑛

′ (𝑚) + 𝜙𝑛−1(𝑚)]𝑥
𝑛−1 + [

1

2
𝑐2𝜙𝑛

′′(𝑚) +

𝑐𝜙𝑛−1
′ (𝑚) + 𝜙𝑛−2(𝑚)] 𝑥

𝑛−2 +⋯ = 0. 

Since 𝑦 = 𝑚𝑥 + 𝑐 is an asymptote, therefore 

𝜙𝑛(𝑚) = 0   and     𝑐𝜙𝑛
′ (𝑚) + 𝜙𝑛−1(𝑚) = 0. 

So equation (2) reduces to 

[
1

2
𝑐2𝜙𝑛

′′(𝑚) + 𝑐𝜙𝑛−1
′ (𝑚) + 𝜙𝑛−2(𝑚)] 𝑥

𝑛−2 +⋯ = 0; 

which is of the (𝑛 − 2) degree and therefore gives (𝑛 − 2) values of 

𝑥and consequently, the asymptote cuts the curve in (𝑛 − 2) points. 

 

Geometric Explanation: A straight line cuts another line at most at 

one point. A straight line cuts a quadratic curve 𝑦 = 𝑎𝑥2 + 𝑏𝑥 +
𝑐, 𝑎 ≠ 0 at most two points. 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 196 
 
 
 

Similarly, in general, a straight line cuts a curve of degree 𝑛 at most in 

𝑛  points. 

As one of these points of intersection is kept fixed (say, B), and 

another point of intersection is made to tend to it (i.e. A → B), the 

straight line AB tends to the tangent at the B. 

Hence a tangent (and therefore, as a particular case, an asymptote will, 

in general, cut the curve in (𝑛 − 2) points. 

 

Corollaries: (1) Thus 𝑛 asymptotes will cut the curve in 𝑛(𝑛 − 2) 
points.  

(2) If the equation of a curve of the 𝑛𝑡ℎ degree can be put in the form 

𝐹𝑛 + 𝐹𝑛−2 = 0 

Where  𝐹𝑛−2 is of degree (𝑛 − 2) at most and 𝐹𝑛 consists of 𝑛, non-

repeated linear factors, then the 𝑛(𝑛 − 2) points of intersection of the 

curve and its asymptotes lie on the curve, 𝐹𝑛−2 = 0. 
 This follows from the fact that the joint equation of the 

asymptotes is 𝐹𝑛 = 0. So that the points of intersection satisfy the 

equations 𝐹𝑛 = 0 and 𝐹𝑛 + 𝐹𝑛−2 = 0 and consequently they satisfy the 

equation the equation 𝐹𝑛−2 = 0. 

(3) For a cubic curve, 𝑛 = 3. Therefore asymptotes cut the curve in 

3(3 − 2) = 3 points which lie on a curve of degree 3 − 2 = 1, 

i.e. the three points of intersection of a cube curve and its 

asymptotes lie on a straight line. 

(4) For a bi-quadratic (or quartic) curve, 𝑛 = 4. So asymptotes cut 

the curve in 4(4 − 2) = 8 points, which lie on a curve of 

degree 4 − 2 = 2 i.e. the eight points of intersection of a 

quartic curve and its asymptote lie on a conic. 

 

Example 11: Prove that the points of intersection of the curve 

2𝑦3 − 2𝑥2𝑦 − 4𝑥𝑦2 + 4𝑥3 − 14𝑥𝑦 + 6𝑦2 + 4𝑥2 + 6𝑦 + 1 = 0, and 

its asymptotes lie on the straight line 8𝑥 + 2𝑦 + 1 = 0. 

Solution: Given curve is 

(1)                   2𝑦3 − 2𝑥2𝑦 − 4𝑥𝑦2 + 4𝑥3 − 14𝑥𝑦 + 6𝑦2 + 4𝑥2 +
6𝑦 + 1 = 0 

You can easily find the three asymptotes 𝑦 − 𝑥 + 1 = 0;    𝑦 + 𝑥 −
2 = 0;   𝑦 − 2𝑥 = 0. 

Combined equation of asymptotes is  

(𝑦 − 𝑥 + 1)(𝑦 + 𝑥 + 2)(𝑦 − 2𝑥) = 0 

(2)                       ⇒ 𝑦3 − 𝑥2𝑦 − 2𝑥𝑦2 + 2𝑥3 − 7𝑥𝑦 + 3𝑦2 + 2𝑥2 +
2𝑦 − 4𝑥 = 0. 

Multiplying this by ′2′ and subtracting from equation (1), we get 8𝑥 +
2𝑦 + 1 = 0,  on which the points of intersection must lie. 
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10.11 ASYMPTOTES BY EXPANSION 
 

Theorem: If a curve can be written as 

𝑦 = 𝑚𝑥 + 𝑐 +
𝐴

𝑥
+
𝐵

𝑥2
+⋯, 

then 𝑦 = 𝑚𝑥 + 𝑐  is an asymptote. 

 

Proof: Let us consider the equation of curve as  

(1)                                                        𝑦 = 𝑚𝑥 + 𝑐 +
𝐴

𝑥
+

𝐵

𝑥2
+⋯ 

Where the series 
𝐴

𝑥
+

𝐵

𝑥2
+⋯ is convergent for sufficiently large values 

of 𝑥. 

Differentiating equation (1) with respect to 𝑥, we get 
𝑑𝑦

𝑑𝑥
= 𝑚−

𝐴

𝑥2
−⋯. 

So the tangent at (𝑥, 𝑦) is 

𝑌 − 𝑦 =
𝑑𝑦

𝑑𝑥
(𝑋 − 𝑥) 

Or 𝑌 − (𝑚𝑥 +
𝐴

𝑥
+

𝐵

𝑥2
+⋯) = (𝑚 −

𝐴

𝑥2
−
2𝐵

𝑥3
−⋯)(𝑋 − 𝑥) 

(2)                                     ⇒ 𝑌 = (𝑚 −
𝐴

𝑥2
−
2𝐵

𝑥3
−⋯)𝑋 + 𝑐 +

2𝐴

𝑥
+

3𝐵

𝑥2
+⋯  

Let 𝑥 → ∞, then from (2), we have  

𝑌 = 𝑚𝑋 + 𝑐 

On generalizing, we get the asymptote     𝑦 = 𝑚𝑥 + 𝑐. 
Ex. 12Find the asymptotes of the hyperbola 

𝑥2

𝑎2
−
𝑦2

𝑏2
= 1. 

Solution: 

𝑦2

𝑏2
=
𝑥2

𝑎2
− 1 ⇒ 𝑦 = ±

𝑏

𝑎
√𝑥2 − 𝑎2 

𝑦 = ±
𝑏𝑥

𝑎
(1 −

𝑎2

𝑥2
)

1
2

 

So for large 𝑥, 1 >
𝑎2

𝑥2
. 

Now using the Binomial expansion formula 

(1 + 𝑥)𝑛 = 1+ 𝑛𝑥 +
𝑛(𝑛 − 1)

2!
𝑥2 +

𝑛(𝑛 − 1)(𝑛 − 2)

3!
𝑥3 +⋯,  

Where |𝑥| < 1, 𝑛 ∈ 𝑅, we get  

𝑦 = ±
𝑏𝑥

𝑎
[1 −

1

2
.
𝑎2

𝑥2
−
1

8
.
𝑎4

𝑥4
+⋯] 

𝑦 = ± [
𝑏𝑥

𝑎
−
𝑎𝑏

2𝑥
−
1

8
.
𝑎3𝑏

𝑥3
−⋯] 
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When 𝑥 → ∞, we have 𝑦 = ±
𝑏𝑥

𝑎
. 

Hence asymptotes are 𝑦 = ±
𝑏𝑎

𝑥
. 

 

10.12 A USEFUL METHOD OF FINDING 

ASYMPTOTES OF ALGEBRAIC CURVES 
 

Suppose the equation of the curve of degree 𝑛, be  

𝑥𝑛𝜙𝑛 (
𝑦

𝑥
) + 𝑥𝑛−1𝜙𝑛−1 (

𝑦

𝑥
) +⋯ = 0. 

Case (I):Let (𝑦 − 𝑎𝑥) be a non-repeated factor of the 𝑛𝑡ℎ degree terms 

of the equation to the curve. Then the equation to the curve can be 

written as  

(1) (𝑦 − 𝑎𝑥)𝐹𝑛−1 + 𝑃𝑛−1 = 0. 
Where 𝐹𝑛−1 contains only terms of degree (𝑛 − 1), and 𝑃𝑛−1 contains 

terms of various degrees, none of which is of a degree higher than 

(𝑛 − 1). 

Writing (1) as  𝑦 − 𝑎𝑥 +
𝑃𝑛−1

𝐹𝑛−1
= 0. 

Taking the limit of 
𝑃𝑛−1

𝐹𝑛−1
 as 𝑥 → ∞, we shall get the equation of the 

asymptote, since the curve approaches the asymptote when 𝑥 → ∞. 

 This limit can be easily found if we remember that lim
𝑥→∞

(
𝑦

𝑥
) =

𝑎. 
Hence the asymptote corresponding to the factor (𝑦 − 𝑎𝑥) is  

𝑦 − 𝑎𝑥 + lim
𝑥→∞,

𝑦
𝑥
→𝑎
(
𝑃𝑛−1
𝐹𝑛−1

) = 0. 

Example 13: Find the asymptotes of the curve given by  

𝑦3 − 𝑥2𝑦 − 2𝑥𝑦2 + 2𝑥3 − 7𝑥𝑦 + 3𝑦2 + 2𝑥2 + 2𝑥 + 2𝑦 + 1 = 0. 
Solution: Factorizing the third degree terms, the equation to the curve 

can be written as  

(𝑦 − 𝑥)(𝑦 + 𝑥)(𝑦 − 2𝑥) − 7𝑥𝑦 + 3𝑦2 + 2𝑥2 + 2𝑥 + 2𝑦 + 1 = 0. 
Hence one asymptote is  

𝑦 − 𝑥 = lim
𝑥→∞,

𝑦
𝑥
→1

(7𝑥𝑦 − 3𝑦2 − 2𝑥2) + 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒

(𝑦 + 𝑥)(𝑦 − 2𝑥)
 

= lim
𝑥→∞,

𝑦
𝑥
→1

(7
𝑦
𝑥 − 3

𝑦2

𝑥2
− 2) + 𝑡𝑒𝑟𝑚𝑠 𝑤ℎ𝑖𝑐ℎ 𝑡𝑒𝑛𝑑 𝑡𝑜 𝑧𝑒𝑟𝑜

(
𝑦
𝑥 + 1) (

𝑦
𝑥 − 2)

 

=
7 − 3 − 2

(1 + 1)(1 − 2)
= −1. 

So one asymptote is 𝑦 − 𝑥 + 1 = 0. 
Similarly, a second asymptote is  

𝑦 + 𝑥 = lim
𝑥→∞,

𝑦
𝑥
→−1

7 (
𝑦
𝑥) − 3 (

𝑦
𝑥)

2

− 2

(
𝑦
𝑥 − 1) (

𝑦
𝑥 − 2)

= −2 
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or 𝑦 + 𝑥 + 2 = 0. 
Similarly third asymptote can easily be calculated. 

Case (II):  Let the terms of the 𝑛𝑡ℎ degree in the equation to the curve 

contain (𝑦 − 𝑎𝑥)2 as a factor, and suppose (𝑦 − 𝑎𝑥) is not a factor of 

the (𝑛 − 1)𝑡ℎ  degree terms. 

Then proceeding as in case (I) , we find that lim
𝑥→∞,

𝑦

𝑥
→𝑎
(𝑦 − 𝑎𝑥)2 →

+∞ 𝑜𝑟 −∞. 
Hence there is no asymptote in this case. 

Case (III): Let the equation to the curve be of the form  

(𝑦 − 𝑎𝑥)2𝐹𝑛−2 + (𝑦 − 𝑎𝑥)𝐺𝑛−2 + 𝑃𝑛−2 = 0, 
Where 𝐹𝑛−2 and 𝐺𝑛−2 contain only terms of degree (𝑛 − 2), and  𝑃𝑛−2 

contain terms none of which is of a higher degree than (𝑛 − 2). 

 Dividing by 𝐹𝑛−2 and taking limits as 𝑥 → ∞ and 
𝑦

𝑥
→ 𝑎, we 

get an equation of the form  

(𝑦 − 𝑎𝑥)2 + 𝐵(𝑦 − 𝑎𝑥) + 𝐶 = 0, 
Which, on solving for (𝑦 − 𝑎𝑥), gives us two asymptotes of the form 

𝑦 − 𝑎𝑥 = 𝑐1, and 𝑦 − 𝑎𝑥 = 𝑐2. 

Case (IV): We can proceed in the same way if the 𝑛𝑡ℎ degree terms 

contain (𝑦 − 𝑎𝑥)3, or a higher power of (𝑦 − 𝑎𝑥), as a factor. 

Note: If the equation to the curve is of the form  

(2) (𝑎𝑥 + 𝑏𝑦 + 𝑐)𝑃𝑛−1 +𝑄𝑛−1 = 0 

Where 𝑃𝑛−1 and 𝑄𝑛−1 contain terms none of which is of a higher 

degree than (𝑛 − 1), and 𝑃𝑛−1 contains at least one term of degree 𝑛 −
1(to ensure that the equation of the curve is of degree 𝑛), a little 

consideration (or working out a few examples) will show that the 

asymptote corresponding to the factor (𝑎𝑥 + 𝑏𝑦 + 𝑐) is  

(𝑎𝑥 + 𝑏𝑦 + 𝑐) + lim
𝑥→∞,

𝑦
𝑥
→(
−𝑎
𝑏
)

𝑄𝑛−1
𝑃𝑛−1

= 0, 

and that a similar modification can be made in the other cases. 

Thus we need not transform an equation of the form (2) into an 

equation of the form (1) as a preliminary to finding out the asymptotes. 

Example 14: Find the asymptotes of  

𝑦3 + 𝑥2𝑦 + 2𝑥𝑦2 − 𝑦 + 1 = 0. 
Solution: By factorizing the terms of degree 3, the equation to the 

curve can be written as  

𝑦(𝑦 + 𝑥)2 − 𝑦 + 1 = 0. 
The asymptotes corresponding to the factor (𝑦 + 𝑥)2 are  

(𝑦 + 𝑥)2 + lim
𝑥→∞,

𝑦
𝑥
→−1

(
−𝑦 + 1

𝑦
) = 0, 

(𝑦 + 𝑥)2 = − lim
𝑥→∞,

𝑦
𝑥
→−1

(
−𝑦
𝑥
+
1
𝑥
)

(
𝑦
𝑥)

=
1 + 0

1
= 1 

⇒ 𝑦 + 𝑥 = ±1. 
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So asymptotes are 𝑦 + 𝑥 − 1 = 0 and 𝑦 + 𝑥 + 1 = 0. The third 

asymptote can easily be calculated as 𝑦 = 0.  

 

Example 15: Find the asymptotes of  

(𝑥 − 𝑦 − 1)2(𝑥2 + 𝑦2 + 2) + 6(𝑥 − 𝑦 − 1)(𝑥𝑦 + 7) − 8𝑥2 − 2𝑥 − 1
= 0. 

Solution: Dividing by the coefficient of (𝑥 − 𝑦 − 1)2, and taking 

limits we see that the asymptotes parallel to (𝑥 − 𝑦 − 1 = 0) are  

(𝑥 − 𝑦 − 1)2 + 6(𝑥 − 𝑦 − 1) lim
𝑥→∞,

𝑦
𝑥
→1
(

𝑥𝑦 + 7

𝑥2 + 𝑦2 + 2
)

+ lim
𝑥→∞,

𝑦
𝑥
→1
(
−8𝑥2 − 2𝑥 − 1

𝑥2 + 𝑦2 + 2
) = 0, 

 

(𝑥 − 𝑦 − 1)2 + 6(𝑥 − 𝑦 − 1) lim
𝑥→∞,

𝑦
𝑥
→1
(

𝑦
𝑥 +

7
𝑥2

1 + (
𝑦
𝑥)

2

+
2
𝑥2

)

+ lim
𝑥→∞,

𝑦
𝑥
→1
(
−8 −

2
𝑥 −

1
𝑥2

1 + (
𝑦
𝑥)

2

+
2
𝑥2

) = 0. 

⇒ (𝑥 − 𝑦 − 1)2 + 6(𝑥 − 𝑦 − 1).
1

2
− 4 = 0 

(𝑥 − 𝑦 − 1)2 + 3(𝑥 − 𝑦 − 1) − 4 = 0 

⇒ 𝑥 − 𝑦 − 1 =
−3± √9 + 16

2
= 1, −4. 

Hence two asymptotes are 𝑥 − 𝑦 − 2 = 0  and 𝑥 − 𝑦 + 3 = 0. 

The other two asymptotes are imaginary since the remaining linear 

factors of the fourth degree terms in the equation to the curve are 

imaginary. 

 

10.13 ASYMPTOTES BY INSPECTION 
 

Theorem: If the equation of a curve of the 𝑛𝑡ℎ degree can be put in the 

form 𝐹𝑛 + 𝐹𝑛−2 = 0; where 𝐹𝑛−2  is of degree (𝑛 − 2) at the most, 

then every linear factor of 𝐹𝑛, when equated to zero will give an 

asymptote, provided that, no straight line obtained by equating to zero 

any other linear factor of 𝐹𝑛 is parallel to it or coincident with it. 

 

Proof: Let 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, be a non-repeated factor of 𝐹𝑛. We write 

𝐹𝑛 = (𝑎𝑥 + 𝑏𝑦 + 𝑐)𝐹𝑛−1, where 𝐹𝑛−1 is of degree (𝑛 − 1). The 

asymptote, parallel to 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is (𝑎𝑥 + 𝑏𝑦 + 𝑐) + lim
𝐹𝑛−2

𝐹𝑛−1
=

0, where 𝑥 → ∞ and
𝑦

𝑥
→ 

−𝑎

𝑏
. For the determination of the limit (

𝐹𝑛−2

𝐹𝑛−1
), 

we divide the numerator as well as the denominator by 𝑥𝑛−1, 
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lim
𝑥,𝑦→∞,

𝑦
𝑥
→
−𝑎
𝑏

(
−𝐹𝑛−2
𝐹𝑛−1

) = lim [
1

𝑥
−
(
𝐹𝑛−2
𝑥𝑛−2

)

(
𝐹𝑛−1
𝑥𝑛−1

)
] = 0. 

Since lim(
1

𝑥
) = 0, lim (

𝐹𝑛−2

𝑥𝑛−2
) exists and is finite and lim(

𝐹𝑛−1

𝑥𝑛−1
)exists 

and is finite and non-zero. 

Therefore, 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is an asymptote. 

Example 16: Find the asymptotes of 
𝑥2

𝑎2
−
𝑦2

𝑏2
= 1. 

Solution:  By the above proposition, the asymptotes must be  

𝑥2

𝑎2
−
𝑦2

𝑏2
= 0 ⇒ 𝑦 = ±

𝑏

𝑎
𝑥. 

 

10.14  POSITION OF A CURVE WITH RESPECT 

TO AN ASYMPTOTE 
 

Theorem (i) The curve 𝑦 = 𝑚𝑥 + 𝑐 +
𝐴

𝑥
+

𝐵

𝑥2
+⋯ lies above or below 

the asymptote 𝑦 = 𝑚𝑥 + 𝑐 in the right half of the plane according as 

𝐴 > 0 or 𝐴 < 0. 

(ii) In the left half of the plane, it lies above or below the asymptote 

𝑦 = 𝑚𝑥 + 𝑐 according as 𝐴 < 0 or 𝐴 > 0. 

(iii) If 𝐴 = 0, the curve lies above or below the asymptote according as 

𝐵 > 0 or 𝐵 < 0. 

 

Proof: (i) Let 𝑦1 and 𝑦2denote the ordinates of the curve and the 

asymptote respectively, for a given value of 𝑥. 

Then 𝑦1 = 𝑚𝑥 + 𝑐 +
𝐴

𝑥
+

𝐵

𝑥2
+⋯.  

𝑦2 = 𝑚𝑥 + 𝑐. 

(1)                                                  ⇒ 𝑦1 − 𝑦2 =
𝐴

𝑥
+

𝐵

𝑥2
+⋯. 

For large values of 𝑥, the term on the right hand side is 
𝐴

𝑥
  and 

determines the sign of 𝑦1 − 𝑦2. 

𝑦1 − 𝑦2 > 0 or < 0 according as 
𝐴

𝑥
> 0 or < 0. 

(i) In the right half of the plane, 𝑥 > 0, So that 𝑦1 − 𝑦2 > 0 or 

< 0 according as 𝐴 > 0 or 𝐴 < 0. 

⇒ the curve is above or below the asymptote according as 

𝐴 > 0 or 𝐴 < 0. 

(ii) In the left half-plane, 𝑥 < 0. 
So 𝑦1 − 𝑦2 > 0 or < 0, according as 𝐴 < 0 or 𝐴 > 0. 

(iii) If 𝐴 = 0, the predominant term on the RHS of (1) is 
𝐵

𝑥2
 so 

that for all 𝑥, other than zero. 𝑦1 − 𝑦2 > 0 𝑜𝑟 < 0, 

according as 𝐵 > 0 or 𝐵 < 0. 
Note:Above discussion is very useful in curve tracing. 
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Note: The method of substituting 𝑦 = 𝑚𝑥 + 𝑐 and equating to zero the 

coefficients of the two highest powers of 𝑥 applies only to algebraic 

curves. 

 

10.15  ASYMPTOTES TO NON-ALGEBRAIC 

CURVES 
  

In the case of non-algebraic curves, asymptotes can be found in 

simple cases by applying the definition, or by the expansion of 𝑦 in 

negative powers of 𝑥. 

 

Example 17: Find the asymptotes of 𝑦 = tan 𝑥. 

Solution: Here 𝑦 = tan 𝑥 ⇒ 
𝑑𝑦

𝑑𝑥
= sec2 𝑥. 

Hence the tangent at (𝑥, 𝑦) is  

𝑌 − tan 𝑥 = (𝑋 − 𝑥) sec2 𝑥 

(1)                                                 ⇒ 𝑌𝑐𝑜𝑠2𝑥 − sin 𝑥 cos 𝑥 = 𝑋 − 𝑥 

Now as 𝑥 →
𝜋

2
 from the left, 𝑦 → ∞ and the distance of (𝑥, 𝑦) from the 

origin tend to infinity. 

Hence, to obtain the asymptote, we must take the limit of (1) as 𝑥 →
𝜋

2
. 

⇒ 𝑌. 0 − 0 = 𝑋 −
𝜋

2
, 

⇒ 𝑋 = 
𝜋 

2
is one asymptote. 

Since 𝑦 = tan 𝑥 is a periodic function with period 𝜋. So other 

asymptotes are 𝑋 = −
𝜋

2
, ± 

3𝜋

2
, ±

5𝜋

2
, ….  

 

 

10.16  ASYMPTOTES IN POLAR CO-

ORDINATES 
 

Theorem: The polar equation of any line is 𝑝 = 𝑟𝑐𝑜𝑠 (𝜃 − 𝛼), where, 

𝑝 is the length of the perpendicular from the pole to the line and ′𝛼′ is 

the angle which this perpendicular makes with the initial line. 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 203 
 
 
 

 
Fig. 10.16.1 

Proof: Let ON be the perpendicular on the given line. 

Given, ON = 𝑝, < 𝑋𝑂𝑁 = 𝛼. 

If 𝑃(𝑟, 𝜃) be any point on the given line, we have < 𝑁𝑂𝑃 = 𝜃 − 𝛼. 

Now 
𝑂𝑁

𝑂𝑃
= cos(𝜃 − 𝛼) ⇒  

𝑝

𝑟
= cos(𝜃 − 𝛼) 

⇒ 𝑝 = 𝑟𝑐𝑜𝑠(𝜃 − 𝛼). 
Determination of the asymptote of the curve 𝒓 = 𝒇(𝜽): 
 

 
Fig. 10.16.2 

Let 𝑃(𝑟, 𝜃) be any point on 𝑟 = 𝑓(𝜃). We draw ON, perpendicular to 

the line 𝑝 = 𝑟𝑐𝑜𝑠 (𝜃 − 𝛼). 
Now we draw 𝑃𝐿 ⊥ 𝑂𝑁 and 𝑃𝑀 ⊥  to the given line.  

So 𝑃𝑀 = 𝐿𝑁 = 𝑂𝑁 − 𝑂𝐿 = 𝑝 − 𝑂𝑃 cos(𝜃 − 𝛼) 
(1)                                                         ⇒ 𝑃𝑀 = 𝑝 − 𝑟𝑐𝑜𝑠 (𝜃 − 𝛼) 

Let us put 𝑟 =
1

𝑢
 

when 𝑟 → ∞, we have 𝑢 → 0. 
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Also we suppose, when 𝑟 → ∞ (or 𝑢 → 0), 𝜃 → 𝜃1. 

So, we have 𝑃𝑀 → 0. 

From equation (1)  

0 = 𝑝 − lim
𝜃→𝜃1

[
cos(𝜃 − 𝛼)

𝑢
] 

𝑝 = lim
𝜃→𝜃1

[
− sin(𝜃 − 𝛼)

𝑑𝑢
𝑑𝜃

] , 𝑢𝑠𝑖𝑛𝑔 𝐿′ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑅𝑢𝑙𝑒 

𝑝 =
+sin(𝜃1 − 𝛼)

lim
𝜃→𝜃1

(−
𝑑𝑢
𝑑𝜃)

. 

From polar co-ordinate geometry, in this situation 𝜃1 − 𝛼 =
𝜋

2
.  So  

𝑝 =  
sin (

𝜋
2)

lim
𝜃→𝜃1

(−
𝑑𝑢
𝑑𝜃)

 

(2)                                                   ⇒ 𝑝 = lim
𝜃→𝜃1

(−
𝑑𝜃

𝑑𝑢
) 

 

So the equation of asymptote is  

𝑝 = 𝑟𝑐𝑜𝑠 (𝜃 − 𝛼) ⇒ lim
𝜃→𝜃1

(−
𝑑𝜃

𝑑𝑢
) = 𝑟 cos(𝜃 − 𝛼) 

= 𝑟𝑐𝑜𝑠 [𝜃 − (𝜃1 −
𝜋

2
)] = 𝑟 cos [

𝜋

2
− (𝜃1 − 𝜃)] 

(3) lim
𝜃→𝜃1

(−
𝑑𝜃

𝑑𝑢
) = 𝑟 sin(𝜃1 − 𝜃)  

Working Rule:  

(i)  Substitute 𝑟 =
1

𝑢
 in the equation of the curve. 

(ii)  Solve the equation for 𝜃 when 𝑢 → 0. 
(iii) Let 𝜃 = 𝜃1 be such a value. 

(iv) Find 𝑝 = lim
𝜃→𝜃1

(−
𝑑𝜃

𝑑𝑢
). 

(v) Now desired equation is 𝑝 = 𝑟𝑠𝑖𝑛 (𝜃1 − 𝜃). 

Example 18: Find the asymptote of the curve  𝑟 =
𝑎

(
1

2
−cos𝜃)

. 

Solution: Let 𝑢 =
1

𝑟
. 

(1)                                                    ⇒ 𝑢 =
1

𝑎
(
1

2
− cos𝜃) 

When 𝑢 → 0, we have 
1

2
− cos𝜃 → 0 

⇒ cos𝜃 →  
1

2
 

𝜃 → ±
𝜋

2
. 

Suppose 𝜃1 = ±
𝜋

3
. 

Now   
𝑑𝑢

𝑑𝜃
=

1

𝑎
sin 𝜃 ⇒  −

𝑑𝜃

𝑑𝑢
= −

𝑎

sin 𝜃
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Case (i): When 𝜃1 →
𝜋

3
, lim
𝜃→

𝜋

3

(−
𝑑𝜃

𝑑𝑢
) = lim

𝜃→
𝜋

3

(−
𝑎

sin 𝜃
) = −

2𝑎

√3
 

So, asymptotes will be  

−
2𝑎

√3
= 𝑟 sin (

𝜋

3
− 𝜃) or 4𝑎 = 𝑟(√3sin 𝜃 − 3 cos 𝜃). 

Case (ii): when 𝜃 → −
𝜋

3
, lim
𝜃→−

𝜋

3

(−
𝑑𝜃

𝑑𝑢
) = lim

𝜃→−
𝜋

3

(−
𝑎

sin 𝜃
) = +

2𝑎

√3
 

So asymptote will be  
2𝑎

√3
= 𝑟 sin (−

𝜋

3
− 𝜃) 

4𝑎 = 𝑟(√3sin 𝜃 + 3 cos 𝜃) . 

Example 19: Find the asymptote of 𝑟 =
𝑎𝜃2

𝜃−1
. 

Solution: Putting 𝑟 =
1

𝑢
 in the equation, we get  

𝑢 =
𝜃 − 1

𝑎 𝜃2
 

When 𝑢 → 0, we have 𝜃 → 1. Let 𝜃1 = 1. Also 

𝑑𝑢

𝑑𝜃
=
(𝑎𝜃2)1 − (𝜃 − 1)2𝑎𝜃

(𝑎𝜃2)2
=
𝑎𝜃2 − 2𝑎𝜃2 + 2𝑎𝜃

𝑎2𝜃4
=
2𝑎𝜃 − 𝑎𝜃2

𝑎2𝜃4

=
2 − 𝜃

𝑎 𝜃3
 

So  

𝑑𝜃

𝑑𝑢
=
𝑎𝜃3

2 − 𝜃
 

Hence,𝑝 = lim
𝜃→𝜃1

(−
𝑑𝜃

𝑑𝑢
) = lim

𝜃→1
(
𝑎𝜃3

𝜃−2
) = −𝑎. 

Now the equation of the asymptote is 𝑝 = 𝑟 sin(𝜃1 − 𝜃) 
⇒ −𝑎 = 𝑟 sin(1 − 𝜃) 
𝑎 = 𝑟 sin(𝜃 − 1). 

 

10.17.MISCELLANEOUS EXAMPLES 
 

Example 20: Find the equation of the cubic which has the same 

asymptotes as the curve 

𝑥3 − 6𝑥2𝑦 + 11𝑥𝑦2 − 6𝑦3 + 𝑥 + 𝑦 + 1 = 0 

And which passes through the points (0,0), (1, 0) and (0,1). 
 

Solution: We write 𝐹3 = 𝑥
3 − 6𝑥2𝑦 + 11𝑥𝑦2 − 6𝑦3 

𝐹3 = (𝑥 − 𝑦)(𝑥 − 2𝑦)(𝑥 − 3𝑦) 
and,                                               𝐹1 = 𝑥 + 𝑦 + 1. 

So the equation of the curve can be written in the form  

𝐹3 + 𝐹1 = 0, 
Where 𝐹3 has non-repeated linear factors. 

Thus 𝐹3 = 0 is the joint equation of the asymptotes of the cubic. 

The general equation of that cubic will be  

𝐹3 + 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 
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(1)                              ⇒ (𝑥 − 𝑦)(𝑥 − 2𝑦)(𝑥 − 3𝑦) + 𝑎𝑥 + 𝑏𝑦 + 𝑐 =
0. 

This curve passes through (0,0), (1,0) and (0,1). 
So we have 0 + 0 + 𝑐 = 0 ⇒ 𝑐 = 0 
(1) + 𝑎 = 0 ⇒ 𝑎 = −1. 

−6 + 𝑏 = 0 ⇒ 𝑏 = 6. 

Hence the required cubic is 𝑥3 − 6𝑥2𝑦 + 11𝑥𝑦2 − 6𝑦3 − 𝑥 + 6𝑦 = 0. 

 

Example 21: Find the asymptotes of the curve  

𝑦2 =
𝑥(𝑥 − 𝑎)(𝑥 − 2𝑎)

(𝑥 + 3𝑎)
 

and determine on which side of the asymptotes, the curve lies. 

 

Solution: We have 

𝑦 = ±√
𝑥(𝑥 − 𝑎)(𝑥 − 2𝑎)

(𝑥 + 3𝑎)
 

𝑦 = ± 𝑥 (1 −
𝑎

𝑥
)

1
2
(1 −

2𝑎

𝑥
)

1
2
(1 +

3𝑎

𝑥
)
−
1
2
 

𝑦 =  ± 𝑥 [1 −
𝑎

2𝑥
+⋯ ] [1 −

𝑎

𝑥
+⋯] [1 −

3𝑎

2𝑥
+⋯] 

𝑦 = ± 𝑥 [1 −
𝑎

𝑥
−
𝑎

2𝑥
+
𝑎2

2𝑥2
+⋯] [1 −

3𝑎

2𝑥
+⋯] 

𝑦 = ±𝑥 [1 −
3𝑎

2𝑥
−
3𝑎

2𝑥
+
9𝑎2

4𝑥2
+
𝑎2

2𝑥2
−
3𝑎3

4𝑥3
+⋯] 

𝑦 =  ± 𝑥 [1 −
3𝑎

𝑥
−
11𝑎2

2𝑥2
+⋯] 

𝑦 =  ± [𝑥 − 3𝑎 −
11𝑎2

2𝑥
+⋯]. 

When 𝑥 → ∞, we have two asymptotes 

𝑦 =  ±(𝑥 − 3𝑎) i.e. 𝑦 − 𝑥 + 3𝑎 = 0, 𝑦 + 𝑥 − 3𝑎 = 0. 

 

Discussion: The difference between the ordinate of the curve and that 

of the asymptote  

𝑦 = 𝑥 − 3𝑎 being 
11𝑎2

2𝑥
…. We see that the curve lies above the 

asymptote when 𝑥 > 0 and below it when 𝑥 < 0.Similarly, it may be 

seen that the curve lies below the second asymptote when 𝑥 > 0 and 

above it when < 0. 
 

Example 22: Find the oblique asymptotes of the curve 𝑥3 − 𝑥𝑦2 +
𝑦2 = 0 and find the position of the curve relative to them. 

 

Solution:𝑥3 = (𝑥 − 1)𝑦2 ⇒ 𝑦 = ±√
𝑥3

𝑥−1
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𝑦 =  ±𝑥 (1 −
1

𝑥
)
−
1
2
 

= ±𝑥 [1 +
1

2𝑥
+

3

8𝑥2
+⋯] 

𝑦 =  ± [𝑥 +
1

2
+
3

8𝑥
+⋯]. 

Thus the curve has two branches whose equations can be written as  

(1) 𝑦 = 𝑥 +
1

2
+

3

8𝑥
+⋯, and  

(2) 𝑦 = −𝑥 −
1

2
−

3

8𝑥
−⋯. 

From (1), we find that 𝑦 = 𝑥 +
1

2
is an asymptote to this branch (say A). 

From (2), we find that 𝑦 = −𝑥 −
1

2
 is an asymptote to this branch (say 

B).For branch A, 𝑦1 − 𝑦2 =
3

8𝑥
+⋯. So the curve is above the 

asymptote when 𝑥 > 0 and below the asymptote when 𝑥 < 0. 

For the branch B, 𝑦1 − 𝑦2 = −
3

8𝑥
−⋯. So the curve is below the 

asymptote when 𝑥 > 0  above the asymptote when 𝑥 < 0. 
 

Example 23: Show that the four asymptotes of the quadratic curve 

(𝑥2 − 𝑦2)(𝑥2 − 4𝑦2) + 2𝑥3 − 3𝑥2𝑦 − 5𝑥𝑦2 + 6𝑦3 + 𝑦2 − 3𝑥𝑦 + 1
= 0 

cut the curve in points which lie on a circle of unit radius. 

 

Solution: The asymptotes of the curve 

(𝑥2 − 𝑦2)(𝑥2 − 4𝑦2) + 2𝑥3 − 3𝑥2𝑦 − 5𝑥𝑦2 + 6𝑦3 + 𝑦2 − 3𝑥𝑦 +
1 = 0, are  

𝑥 − 𝑦 = 0 

𝑥 + 𝑦 + 1 = 0 

𝑥 − 2𝑦 = 0 

𝑥 + 2𝑦 + 1 = 0. 
The joint equation of the asymptotes is  

𝐹4 = (𝑥 − 𝑦)(𝑥 + 𝑦 + 1)(𝑥 − 2𝑦)(𝑥 + 2𝑦 + 1) 
𝐹4 = (𝑥

2 − 𝑦2)(𝑥2 − 4𝑦2) + 2𝑥3 − 3𝑥2𝑦 − 5𝑥𝑦2 + 6𝑦3 + 𝑥2 − 3𝑥𝑦
+ 2𝑦2 = 0. 

The equation of the curve can be re-arranged and written as  

𝐹4 − (𝑥
2 + 𝑦2 − 1) = 0. 

The eight points of the intersection of 𝐹4 = 0, and 𝐹4 − (𝑥
2 + 𝑦2 −

1) = 0 lie on the unit circle, 𝑥2 + 𝑦2 − 1 = 0. 

 

10.18  SUMMARY  
 

In this unit, we studied asymptote to a curve as a straight line at 

a finite distance from origin, which cuts a curve in two points at 

infinite distances from origin and yet is not itself wholly at infinity. 

Historically, some sources include the requirement that the curve may 
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not cross the line infinitely often, but this is unusual for modern 

authors. We also studied about the three kinds of asymptotes: 

horizontal, vertical and oblique asymptotes. We understood the 

calculating procedures for finding the asymptotes in various cases and 

found that  “Asymptotes convey information about the behavior of 

curves in the large, and determining the asymptotes of a function is an 

important step in sketching its graph”. 

 

10.19 GLOSSARY 
 

i. Infinity: A value greater than any fixed bound, denoted by ∞. 

ii. Tangent (to a curve): Let P be a point on a (plane) curve. Then 

the tangent to the curve at P is the line through P that touches the 

curve at P. 

iii. Normal (to a curve):Let P be a point on a curve in the plane. 

Then the normal at P is the line through P perpendicular to the 

tangent at P. 

iv. Homogeneous Polynomial: An algebraic expression in x and y, 

in which sum of powers of x and y in each term is same, is called 

a homogeneous. e.g.𝑓(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 𝑜𝑟   𝑎𝑥2 + 2ℎ𝑥𝑦 + 𝑏𝑦2;   
𝑎, ℎ, 𝑏 ∈ 𝑅 etc. 

We can write it as 𝑓(𝑥, 𝑦) = 𝑥2 [𝑎 + 2ℎ (
𝑦

𝑥
) + 𝑏 (

𝑦

𝑥
)
2

] = 𝑥2 𝜙 (
𝑦

𝑥
) 

Where 𝜙(𝑡) = 𝑎 + 2ℎ𝑡 + 𝑏𝑡2. Similarly, we can write a homogeneous 

expression as 𝑓(𝑥. 𝑦) = 𝑥𝑛𝜙(
𝑦

𝑥
)  with degree 𝑛. 

 

CHEECK YOUR PROGRESS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The 𝑛 asymptotes of a curve of the 𝑛𝑡ℎ degree  cut it in 

(a) 2 points. 

(b) 𝑛  points. 

(c) 𝑛(𝑛 − 2) points. 

(d) (𝑛 − 1) points.  

2. The asymptote of 𝑥𝑦2 = 4𝑎2(2𝑎 − 𝑥) is  

(a) 𝑥 = 0. 
(b) 𝑦 = 0. 
(c) 𝑥 + 𝑦 = 0. 
(d) 𝑥 − 𝑦 = 0.  

3. The number of asymptotes of a curve of the 𝑛𝑡ℎ degree can-not exceed: 

(a) (𝑛 − 1). 
(b) 𝑛. 
(c) (𝑛 − 2). 
(d) (𝑛 + 1).         

4. The asymptotes for the curve 𝑦 =
𝑥2+1

𝑥−3
 is  

(a) 𝑥 = 1. 
(b) 𝑥 + 3 = 0. 
(c) 𝑥 = 3. 
(d) None of these.      

5. The number of asymptotes of the curve 
𝑎2

𝑥2
−
𝑏2

𝑦2
= 1 is  

(a) 2. 
(b) 3. 
(c) 4. 
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6. The curve 𝑦2 = 𝑥 has 

(a) 1 asymptote. 

(b) 2 asymptotes. 

(c) 3 asymptotes. 

No asymptotes.        

7.  The asymptotes, parallel to the axes for the curve 𝑥2𝑦2 = 𝑎2(𝑥2 + 𝑦2) are 

(a) 𝑥 = ±𝑎;   𝑦 = ±𝑎. 
(b) 𝑥 = 𝑎;    𝑥 = −𝑎. 
(c) 𝑦 = 𝑎;    𝑦 = −𝑎. 
(d) 𝑥 = ±𝑎. 
8. A closed curve has 

(a) No asymptote 

(b) One asymptote 

(c) Infinitely many asymptotes 

(d) 𝑛 −asymptotes. 

9. The number of asymptotes of a curve of 𝑛𝑡ℎ degree is at most 𝑛. True\False. 

10.  The parabola 𝑦2 = 4𝑎𝑥 possesses real asymptote. True\False.  
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10.22 TERMINAL QUESTIONS 
 

TQ1: Find the asymptotes of the curve 𝑥2(𝑥 − 𝑦) + 𝑎𝑦2 = 0. 

TQ2: Find the asymptotes of the curve 𝑦2𝑥 − 𝑎2(𝑥 − 𝑎) = 0. 

TQ3: Find the Asymptotes of the curve 𝑥𝑦(𝑥 + 𝑦) = 𝑎(𝑥2 − 𝑎2). 
TQ4: Show that the asymptotes of the cubic 𝑥3 − 𝑥𝑦2 − 2𝑥𝑦 + 2𝑥 −
𝑦 =   0 cut the curve again in points which lie on the line. 

TQ5:  Find the asymptotes of the curve and their postion with regard 

to   the curve 𝑥3 + 𝑦3 =  3𝑎𝑥2 .  
 

10.23 ANSWERS 

 

CHECK YOUR PROGRESS 

 

CYQ1. c 

CYQ2. a 

CYQ3. b 

CYQ4. c 

CYQ5. c 

CYQ6. d 

CYQ7. a 

CYQ8. a 

CYQ9. True. 

CYQ10. False. 

 

  

TERMINAL QUESTIONS 
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TQ1: 𝑥 − 𝑦 + 𝑎 = 0. 
TQ2: 𝑥 = 0. 𝑦 = ±𝑎. 
TQ3: 𝑦 = 𝑎, 𝑥 = 0, 𝑥 + 𝑦 + 𝑎 = 0. 
TQ5: 𝑥 + 𝑦 = 𝑎. The curve lies above or below the asymptote 

according  as 𝑥 is positive or negative. 
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UNIT:-11-ENVELOPE AND EVOLUTE 

 

CONTENTS 
 

11.1Objectives 

11.2 Introduction 

11.3 Envelope 

11.4 Method of finding the envelope 

11.5 Elimination in the case of quadratic 

11.6 Geometrical significance of the envelope 

11.7 Equivalence of two definition of envelope 

11.8 Evolute of curve 

11.9 Evolute as the envelope of the normals 

11.10 Involutes 

11.11 Summary 

11.12 Glossary 

11.13 Terminal questions 

11.14 Answers 

11.15 References 

11.16 Suggested readings 

 

11.1 INTRODUCTION 
 

We will first discuss the basic information about tangents, normals and 

curvature of a curve at a point. 

 

A brief survey of tangents and normals: 
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Let us consider a curve 𝑦 = 𝑓(𝑥) and 𝑃 and 𝑄 be two distinct 

points on it. Let point 𝑃 slides on the curve towards 𝑄. When it reaches 

at 𝑅, chord 𝑃𝑄 becomes 𝑅𝑄. Finally when 𝑃 → 𝑄, chord 𝑃𝑄 →
  tangent 𝑀𝑁 at 𝑄. The slope of tangent 𝑀𝑁 at 𝑄 is defined as  

(
𝑑𝑦

𝑑𝑥
)
𝑄
= tan𝜓 = [𝑓′(𝑥)]𝑎𝑡  𝑄 . 

Now equation of tangent at a point 𝐴(𝛼, 𝛽) is  

y − β = (
dy

dx
)
(α,β)

(x − α). 

 

 
Fig. 11.1.1 

Note:  

(1) If equation of curve is given in parametric form i.e. 𝑥 = 𝑥(𝑡), 𝑦 =
𝑦(𝑡), then 

𝑑𝑦

𝑑𝑥
=
(
𝑑𝑦
𝑑𝑡
)

(
𝑑𝑥
𝑑𝑡
)
. 

(2) If the equation of curve is given in implicit form i.e. you can 

separate 𝑥 and 𝑦 i.e. 𝑓(𝑥, 𝑦) = 0, then  

𝑑𝑦

𝑑𝑥
=
(−
𝜕𝑓
𝜕𝑥)

(
𝜕𝑓
𝜕𝑦
)
. 

Angle of Intersection: 
 

Let two curves 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑔(𝑥) intersect at point 𝑃. By 

solving both equations, find the coordinates of 𝑃. Now draw tangents 

to both curves. Let 𝑚1 and 𝑚2 be their slopes. Then  

angle between curves=angle between tangents at 𝑃 

tan 𝜃 = |
𝑚1 −𝑚2

1 +𝑚1𝑚2
|. 
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Fig. 11.1.2 

 

 

 

Normal: 

 
Fig. 11.1.3 

The normal to a curve at any point is the straight line which passes 

through that point and is at right angles to the tangent to the curve at 

that point. 

Slope of normal =  
−1

slope of corresponding tangent 
=

−1 

(
dy
dx)

P

. 
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Polar Coordinates:  

 
Fig. 11.1.4 

By the property of triangle,            𝜓 = 𝜃 + 𝜙 

Also,  

(i) tan 𝜙 =  
𝑟𝑑𝜃

𝑑𝑟
 

(ii) sin 𝜙 =
𝑟𝑑𝜃

𝑑𝑠
 

(iii) cos𝜙 =  
𝑑𝑟

𝑑𝑠
 

(iv) Length of perpendicular from the pole on tangent = 𝑂𝑁 =
𝑝 = 𝑟𝑠𝑖𝑛 𝜙. 

(v) 
1

𝑝2
=

1

𝑟2
+

1

𝑟4
(
𝑑𝑟

𝑑𝜃
)
2

 

(vi) 
𝑑𝑠

𝑑𝑥
= √1+ (

𝑑𝑦

𝑑𝑥
)
2

 

(vii) 
𝑑𝑠 

𝑑𝜃
= √𝑟2 + (

𝑑𝑟

𝑑𝜃
)
2

 

(viii) 
𝑑𝑠

𝑑𝑡 
= √(

𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

 

Pedal Equations:  The relation between 𝑝 and 𝑟 for a given curve is 

called its pedal equation i.e. 𝑝 = 𝑓(𝑟) or  𝑟 = 𝑔(𝑝). 
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A Brief Survey of Curvature 

 
Fig. 11.1.5 

Here we have shown two curves 𝑃 and 𝑄. Curve 𝑃 bends more sharply 

than the other i.e. curve 𝑃 has a greater curvature than the other. But in 

order to get a quantitative estimate of curvature. We define it. 

 

Definition: Let 𝑃 be a given point on a given curve, and 𝑄 any other 

point on it. Let the normals at 𝑃 and 𝑄 intersect at 𝑁. If  𝑁 tends to a 

definite position 𝑐 as 𝑄 → 𝑃, then 𝑐 is called the centre of curvature of 

the curve at 𝑃. 

 
Fig. 11.1.6 

Here 𝑁 must tend to ′𝑐′  whether 𝑄 → 𝑃 from the right or from 

the left. The reciprocal of the distance 𝐶𝑃 is called the curvature of the 

curve at 𝑃. The circle with its centre at 𝑐 and radius 𝐶𝑃 is called the 

circle of curvature of the curve at 𝑃. The distance ′𝐶𝑃′ is called the 

‘radius of curvature’ of the curve at 𝑃, denoted by 𝜌.Any chord, drawn 

through 𝑃, of the circle of curvature at 𝑃, is called a chord of curvature. 
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Formulae for radius of curvature: 

𝜌 =
𝑑𝑠

𝑑𝜓
             (intrinsic form) 

𝜌 =  

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

𝑑2𝑦
𝑑𝑥2

(Cartesian form) 

𝜌 =  

[𝑟2 + (
𝑑𝑟
𝑑𝜃
)
2

]

3
2

𝑟2 + 2 (
𝑑𝑟
𝑑𝜃
)
2

− 𝑟
𝑑2𝑟
𝑑𝜃2

(Polar form) 

 

 

Centre of Curvature:  
Let 𝐶(𝛼, 𝛽) be centre of the circle at 𝑃 on the curve 𝑦 = 𝑓(𝑥). Then  

 

𝜌 = 𝑟
𝑑𝑟

𝑑𝑝
(𝑝𝑒𝑑𝑎𝑙 𝑓𝑜𝑟𝑚) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.1.7 
 

α = x − 

dy
dx {1 + (

dy
dx)

2

}

d2y
dx2

 

β = y + 

{1 + (
dy
dx)

2

}

d2y
dx2
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11.2 OBJECTIVES 
 

In this unit, we will understand  

 

i. The meaning of terms ‘Envelope’ and ‘Evolute’. 

ii.  Method of finding the Envelope. 

iii. Geometrical significance of the Envelope. 

iv. The relation between Envelope and Evolute of a Curve. 

 

 

11.3 ENVELOPES 
 

Family of Curves: Let us consider 𝑥2 + 𝑦2 = 𝜆2, 𝜆 ∈ 𝑅. It 

represents a family of concentric circles with varying radii. For a 

particular circle, 𝜆 has a fixed value, which is called ‘parameter’. 

 
Fig. 11.3.1 

Similarly 𝑦 = 𝑚𝑥 +
1

𝑥
 , 𝑚 ≠ 0  also represents a family of 

straight lines.In general, if 𝐹(𝑥, 𝑦, 𝛼) is an expression involving 𝑥, 𝑦 

and 𝛼, the curves corresponding to the equation 𝐹(𝑥, 𝑦, 𝛼) = 0 

constitute a family of curves. 

Envelope: A curve (i) which touches each member of a family of 

curves, and (ii) at each point is touched by some member of the family, 

is called the envelope of that family of curves. 

 

Example:From Co-ordinate geometry, we know that all straight lines 

whose equation is of the form 𝑦 = 𝑚𝑥 +
𝑎

𝑚
 touch the parabola 𝑦2 =

4𝑎𝑥. 

Also this parabola 𝑦2 = 4𝑎𝑥 has at every point a tangent which is of 

the form 𝑦 = 𝑚𝑥 +
𝑎

𝑚
. 

Hence, we infer that the envelope of the family of straight lines 𝑦 =

𝑚𝑥 +
𝑎

𝑚
 is the parabola 𝑦2 = 4𝑎𝑥. 
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Fig. 11.3.2 

Another Definition: If 𝐹(𝑥, 𝑦, 𝛼) = 0 represents a family of curves 

whose parameter is ′𝛼′, and if the curves 𝐹(𝑥, 𝑦, 𝛼) = 0 and 

𝐹(𝑥, 𝑦, 𝛼 + ℎ) = 0 cut in a point which tends to a definite point 𝑃 as 

ℎ → 0, the locus of 𝑃 (for varying values of 𝛼) is called the envelope 

of the family. 

 

11.4 METHOD OF FINDING THE ENVELOPE 
 

Let the given family of curves be  

(1)                                                       𝑓(𝑥, 𝑦, 𝛼) = 0 

Suppose ′𝛼′ have a particular value, then above equation represents 

one member of the family. 

 Suppose another member of the family be  

(2)                                                          𝑓(𝑥, 𝑦, 𝛼 + ℎ) = 0 

The coordinates of the point of intersection, say 𝑃1  of (1) and (2) will 

satisfy the equation 

𝑓(𝑥, 𝑦, 𝛼 + ℎ) − 𝑓(𝑥, 𝑦, 𝛼) = 0. 
Dividing by ℎ, we get  

𝑓(𝑥, 𝑦, 𝛼 + ℎ) − 𝑓(𝑥, 𝑦, 𝛼)

ℎ
= 0. 

Taking limit as ℎ → 0, we see that coordinates of the point 𝑃 to which 

𝑃1 tends as ℎ → 0, satisfy the equation  

(3) 
𝜕𝑓(𝑥,𝑦,𝛼)

𝜕𝛼
= 0. 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 220 
 
 
 

Also the coordinates of 𝑃 must satisfy (1), because 𝑃 is a point on (1). 

If we now eliminate ′𝛼′   between (1) and (3), we shall get an equation 

which the coordinates of 𝑃 will satisfy for all values of ′𝛼′ i.e. the 

result of eliminating ′𝛼′ between (1) and (3) will be the locus of 𝑃.  

 

Working Method: The equation of the envelope of the family of 

curves 𝑓(𝑥, 𝑦, 𝛼) = 0; where 𝛼 is the parameter, is obtained by 

eliminating 𝛼 between the equations  

𝑓(𝑥, 𝑦, 𝛼) = 0 and    
𝜕𝑓(𝑥,𝑦,𝛼)

𝜕𝛼
= 0. 

 

Ex.1 Find the envelope of the straight lines (
𝒙

𝒂
) 𝐜𝐨𝐬𝜽 +

(
𝒚

𝒃
) 𝐬𝐢𝐧𝜽 = 𝟏, the parameter being ′𝜽′ and interpret the 

result geometrically. 

Sol.     The equation of the given family of straight lines is  

(
𝑥

𝑎
) cos 𝜃 + (

𝑦

𝑏
) sin 𝜃 = 1……………………………….(1) 

Differentiating partially with respect to parameter ′𝜃′, we get  

(−
𝑥

𝑎
) sin 𝜃 + (

𝑦

𝑏
) cos 𝜃 = 0……………………………(2)   

By eliminating 𝜃 between equations (1) and (2), we will get the     

envelope of the family of straight lines (1).So squaring and adding   

equation (1) and (2), we get  

𝑥2

𝑎2
(cos2 𝜃 + sin2 𝜃) +

𝑦2

𝑏2
(sin2 𝜃 + cos2 𝜃) = 1 

⇒
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

which is the required envelope. 

 

Geometrical Interpretation: The equation (3) represents an ellipse 

whose centre is origin. Whatever may be the value of 𝜃, (i) the straight 

line (1) always touches the ellipse (3) and (ii) the ellipse (3) is also 

touched at each point by some straight line belonging to the family (1). 

 

Ex.2 Find the envelope of the family of straight lines 𝒂𝒙 𝐬𝐞𝐜 𝜽 −
𝒃𝒚 𝒄𝒐𝒔𝒆𝒄 𝜽 = 𝒂𝟐 − 𝒃𝟐, where parameter is 𝜽. 

Sol.     The equation of the given family of straight lines is  
𝑎𝑥

cos𝜃
−

𝑏𝑦

sin 𝜃
= 𝑎2 − 𝑏2…………………………….(1) 

Differentiating (1) partially with respect to 𝜃, we get  
𝑎𝑥 sin 𝜃

cos2 𝜃
+
𝑏𝑦 cos𝜃

sin2 𝜃
= 0…………………………………(2) 

By eliminating 𝜃 between (1) and (2), we get the required 

envelope. 

From (2) , tan3 𝜃 = − (
𝑏𝑦

𝑎𝑥
) ⇒ tan𝜃 = −(

𝑏𝑦

𝑎𝑥
)

1

3
 

So, sin 𝜃 =  
(𝑏𝑦)

1
3

√(𝑎𝑥)
2
3+(𝑏𝑦)

2
3

,    cos 𝜃 =  −
(𝑎𝑥)

1
3

√(𝑎𝑥)
2
3+(𝑏𝑦)

2
3
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Substituting these values in (1), we get  

± [(𝑎𝑥)
2

3 + (𝑏𝑦)
2

3] [(𝑎𝑥)
2

3 + (𝑏𝑦)
2

3]

1

2
= 𝑎2 − 𝑏2, 

⇒ [(𝑎𝑥)
2

3 + (𝑏𝑦)
2

3]

3

2
= 𝑎2 − 𝑏2, 

⇒ (𝑎𝑥)
2

3 + (𝑏𝑦)
2

3 = (𝑎2 − 𝑏2)
2

3,  which is the equation of the 

required envelope. 

 

11.5 ELIMINATION IN THE CASE OF A 

QUADRATIC 
 

In case the equation 𝑓(𝑥, 𝑦, 𝛼) = 0 is a quadratic in parameter 𝛼, 

say  

𝐴𝛼2 + 𝐵𝛼 + 𝐶 = 0, 
where 𝐴,𝐵 and 𝐶 are functions of 𝑥 and 𝑦, the result of differentiation 

partially with respect to 𝛼 is  

2𝐴 𝛼 + 𝐵 = 0. 

Putting 𝛼 = −
𝐵

2𝐴
 in the equation (1), we get  

𝐴 (−
𝐵

2𝐴
)
2

+ 𝐵 (−
𝐵

2𝐴
) + 𝐶 = 0 

𝐵2

4𝐴 
−
𝐵2

2𝐴
+ 𝐶 = 0 ⇒ −

𝐵2

2𝐴
+ 𝐶 = 0 

⇒ 𝐵2 − 4𝐴𝐶 = 0. 
This is the required envelope. 

Ex.3 Find the envelope of the family of straight lines  𝒚 = 𝒎𝒙 +
𝒂

𝒎
. 

Sol.      Equation can be written as  

𝑚2𝑥 −𝑚𝑦 + 𝑎 = 0 ………………………………………………..(1) 

Here 𝑚 is parameter. 

Using the discriminant relation ′𝐵2 − 4𝐴𝐶 = 0′, we get  

(−𝑦)2 − 4𝑥𝑎 = 0 

Or                                  𝑦2 = 4𝑎𝑥. 
Second Method:  

Differentiating equation (1) partially with respect to 𝑚, we get  

0 = 𝑥 −
𝑎

𝑚2
⇒ 𝑚 = √

𝑎

𝑥
 

Putting 𝑚 in equation (1), we get  

𝑦 = 𝑥√
𝑎

𝑥
+ 𝑎√

𝑥

𝑎
 

⇒ 𝑦 = √𝑎𝑥 + √𝑎𝑥 

𝑦 = 2√𝑎𝑥 

𝑌2 = 4𝑎𝑥. 
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Note: The method using ′𝐵2 − 4𝐴𝐶 = 0′ is used only when we have a 

quadratic equation in parameter. For other cases, we shall use 

general method. 

Ex.4 Find the envelope of the family of circles (𝑥 − 𝑐)2 + 𝑦2 = 𝑅2, 

where 𝑐 is parameter. 

Sol.      The given family of circles is  
(𝑥 − 𝑐)2 + 𝑦2 = 𝑅2………………………….(1)  

Differentiating equation (1) partially with respect to ′𝑐′, we get  

−2(𝑥 − 𝑐) = 0  
(𝑥 − 𝑐) = 0……………………………………………..(2) 

Eliminating 𝑐 between equations (1) and (2), we get the 

envelope of the family (1). 

So by putting 𝑥 − 𝑐 = 0 in equation (1), we get  

𝑦2 = 𝑅2            or          𝑦 = ±𝑅. 
 Hence the envelope of the family (1) consists of the straight 

lines 𝑦 = ±𝑅. 

Ex.5 Find the envelope of the family of straight lines 𝑦 = 𝑚𝑥 +

√𝑎2𝑚2 + 𝑏2 , where parameter is ‘𝑚’. 

Sol.     The equation of the given family of straight lines is  

𝑦 − 𝑚𝑥 = √𝑎2𝑚2 + 𝑏2 
⇒ (𝑦 − 𝑚𝑥)2 = 𝑎2𝑚2 + 𝑏2 

 ⇒ (𝑥2 − 𝑎2)𝑚2 − (2𝑥𝑦)𝑚 + (𝑦2 − 𝑏2) = 0. 
……………………………….(1) 

This is a quadratic equation in the parameter ′𝑚′.  
So the required envelope is obtained by equating to zero the 

discriminant of (1). So, 

(−2𝑥𝑦)2 − 4(𝑥2 − 𝑎2)(𝑦2 − 𝑏2) = 0 

⇒ 𝑥2𝑏2 + 𝑦2𝑎2 = 𝑎2𝑏2 

⇒
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1, which is an ellipse. 

Ex.6 Find the envelope of the family of straight lines 
𝑥

𝑎
+
𝑦

𝑏
= 1, 

where the two parameters 𝑎, 𝑏 are connected by the relation 

𝑎𝑏 = 𝑐2, 𝑐 being a constant. 

Sol.      We shall eliminate one parameter, say 𝑏. 

𝑏 =
𝑐2

𝑎
………………………………………………..………(1) 

The equation of the given family of straight lines is  
𝑥

𝑎
+
𝑦

𝑏
= 1 

(1) ⇒
𝑥

𝑎
+
𝑎𝑦

𝑐2
= 1 

⇒ 𝑐2𝑥 + 𝑎2𝑦 = 𝑎𝑐2 

⇒ (𝑦)𝑎2 + (−𝑐2)𝑎 + (𝑥𝑐2) = 0. 
This is a quadratic equation in the parameter 𝑎. So envelope 

will be  

(−𝑐2)2 − 4𝑦(𝑥𝑐2) = 0. 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 223 
 
 
 

⇒ 𝑐2 = 4𝑥𝑦             𝑜𝑟              𝑥𝑦 =
𝑐2

4
. 

It is a rectangular hyperbola. 

11.6 GEOMETRICAL SIGNIFICANCE OF 

THE ENVELOPE: 
 

Theorem 1 The envelope of a family of curves touches each 

member of the family. 

 

Proof.    Let any member of the family be  

 𝑓(𝑥, 𝑦, 𝛼) = 0…………………………………(1) 

Where 𝛼 is constant and equal to 𝛼1, say. 

The equation of the envelope is the result of eliminating 𝛼 between  

 𝑓(𝑥, 𝑦, 𝛼) = 0         𝑎𝑛𝑑                  
𝜕𝑓(𝑥,𝑦,𝛼)

𝜕𝛼
= 0.  ……(2) 

Thus the equation of the envelope may be regarded as (1) 

𝑓(𝑥, 𝑦, 𝛼) = 0 …………………………………………..(3) 

in which 𝛼 is not a constant, but a function of 𝑥 and 𝑦 given by  
𝜕𝑓(𝑥,𝑦,𝛼)

𝜕𝛼
= 0……………………………………………(4) 

Consider now the point 𝑃 on (1), where 𝑃 is the limiting position to 

which the intersection of 𝑓(𝑥, 𝑦, 𝛼1) = 0, and 𝑓(𝑥, 𝑦, 𝛼1 + ℎ) = 0, 
tends as ℎ → 0. This point 𝑃 lies on the curve (1) and also on the 

envelope (2). 

The tangent at 𝑃 to the curve (1) has the gradient 
𝑑𝑦

𝑑𝑥
 , given by  

𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦
.
𝑑𝑦

𝑑𝑥
= 0 ………………………………………….(5) 

Where, in the differentiation, 𝛼 is kept constant and equal to 𝛼1. 

But the tangent at 𝑃 to the envelope has the gradient 
𝑑𝑦

𝑑𝑥
 given by  

𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦
.
𝑑𝑦

𝑑𝑥
+ {

𝜕𝑓

𝜕𝛼
.
𝑑𝛼

𝑑𝑥
}
𝛼=𝛼1

= 0  …………………………..(6) 

because 𝛼 is not constant for the envelope. 

But in virtue of equation (4), which is satisfied at every point of the 

envelope, (6) reduces to (5); i.e., the gradients of the tangents to the 

curve and the envelope at the common point 𝑃 are the same. 

⇒ the curve and the envelope have the same tangent at 𝑃. 
⇒ they touch each other at 𝑃. 
 

Note: 

(1) If  
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 are both zero, the value of 

𝑑𝑦

𝑑𝑥
 cannot be found 

from equation (5) or (6), and the above argument would break 

down. 

So the preposition might not be true for such points. If 
𝜕𝑓

𝜕𝑥
=

0 =
𝜕𝑓

𝜕𝑦
at some point, then there is a singular point. 
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(2) If the given family of curves is a family of straight lines or a 

family of conics, we have no singular points. 

 

Hence the envelope of a family of straight lines or of conics touches 

each member of the family at all their common points without 

exception. 

 

11.7 EQUIVALENCE OF TWO DEFINITIONS 

OF ENVELOPE 
 

The propositions of the last article enables us to infer at once that 

in general the two definitions of an envelope would give us the same 

curve, with the exception that second definition might in certain cases 

give us a curve the whole or a part of which is not an envelope in the 

sense of the first definition. 

For example, if the curve 𝑓(𝑥, 𝑦, 𝛼) = 0 is the curve 𝐶1 (which has 

a cusp at 𝑃) and 𝐶2 is the curve 𝑓(𝑥, 𝑦, 𝛼 + ℎ) = 0 , it is evident that as 

ℎ → 0, 𝑃1 → 𝑃. 

 

 
Fig. 11.7.1 

 

Hence the result of eliminating 𝛼 between 𝑓 = 0 and 
𝜕𝑓

𝜕𝛼
= 0 will be, or 

will at least include, the locus of cusps.But from the figure it is evident 

that the loci of the cusps will not touch 𝐶1 and 𝐶2 or the other members 

of the family.  

There are other loci (besides the locus of the cusps) which are 

sometimes obtained in the process of finding the envelope by 

eliminating 𝛼 between 𝑓 = 0 and 
𝜕𝑓

𝜕𝛼
= 0. 

 

Note: If the equation to a family of curves is not given, but the law is 

given in accordance with which any member of the family can 

be obtained, the equation to the family must first be found in a 

suitable form. 

 

Ex.7 Find the envelope of the circles drawn upon the radii 

vectors of the ellipse 
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(
𝒙

𝒂
)
𝟐

+ (
𝒚

𝒃
)
𝟐

= 𝟏 as diameter. 

Sol.     From geometry, any point on the ellipse is 𝑃(a cos 𝜃 , 𝑏 sin 𝜃). 

 
Fig. 11.7.2 

Now we know that if (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are end points of a 

diameter of a circle, then the equation of that circle is  

(𝑥 − 𝑥1)(𝑥 − 𝑥2) + (𝑦 − 𝑦1)(𝑦 − 𝑦2) = 0. 
So equation of a circle whose diameter is 𝑂𝑃, will be  

(𝑥 − 0)(𝑥 − 𝑎 cos𝜃) + (𝑦 − 0)(𝑦 − 𝑏 sin 𝜃) = 0 

 ⇒ 𝑥2 + 𝑦2 − 𝑎𝑥 cos𝜃 − 𝑏𝑦 sin 𝜃 = 0.  …………(1)  

This is the family of circles drawn upon the radii vectors of 

given ellipse. Here 𝜃 is the parameter. 
So differentiating equation (1) partially with respect to 𝜃, we get 

𝑎𝑥 sin 𝜃 − 𝑏𝑦 cos 𝜃 = 0/…………………………………….(2) 

To get the required envelope, we have to eliminate 𝜃 from the 

equations (1) and (2). 
From (1)  

𝑎𝑥 cos 𝜃 + 𝑏𝑦 sin 𝜃 = 𝑥2 + 𝑦2 ……………………………(3) 

Squaring and adding equation (2) and (3), we get 

𝑎2𝑥2 + 𝑏2𝑦2 = (𝑥2 + 𝑦2)2 . 
Ex.8 Obtain the envelope of the family of the curves given by  

𝒙𝟐

𝜶𝟐
+

𝒚𝟐

𝒌𝟐 − 𝜶𝟐
= 𝟏, 

where 𝜶 is the parameter. 

Sol.     On solving the given equation,  

(𝛼2)2 + (𝑦2 − 𝑥2 − 𝑘2)𝛼2 + 𝑥2𝑘2 = 0. 
This is a quadratic equation in 𝛼2. So its envelope will be 

(𝑦2 − 𝑥2 − 𝑘2)2 − 4𝑥2𝑘2 = 0. 
⇒ 𝑦2 − 𝑥2 − 𝑘2 = ±2𝑘𝑥. 

Ex.9 Find the envelope of the family of straight lines 𝒙 𝐜𝐨𝐬 𝜶 +
𝒚𝐬𝐢𝐧 𝜶 = 𝒂,  the parameter being 𝜶. 

Sol.      The equation of the given family of straight lines is  

  𝑥 cos 𝛼 + 𝑦 sin 𝛼 = 𝑎 …………(1) 

Differentiating partially with respect to 𝛼, we get  

−𝑥 cos𝛼 +  𝑦 cos 𝛼 = 0 ………(2) 

Squaring and adding equations (1) and (2), we get  

𝑥2 + 𝑦2 = 𝑎2  
which is the required envelope. 
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Geometrical Interpretation: 

𝑥2 + 𝑦2 = 𝑎2 is the equation of a circle whose centre is (0,0) and 

radius 𝑎. This circle is the envelope of the family of straight lines 

𝑥 𝑐𝑜𝑠 𝛼 + 𝑦 𝑠𝑖𝑛 𝛼 = 𝑎. So for each value of 𝛼, the straight line 

𝑥 𝑐𝑜𝑠 𝛼 + 𝑦 𝑠𝑖𝑛 𝛼 = 𝑎 touches the circle 𝑥2 + 𝑦2 = 𝑎2. 

 
Fig. 11.7.3 

Conversely, the circle 𝑥2 + 𝑦2 = 𝑎2 is touched at each point by some 

straight line belonging to the family 𝑥 cos𝛼 + 𝑦 sin 𝛼 = 𝑎. 
 

Ex.10 Show that the envelope of the straight line joining the 

extremities of a pair of conjugate diameters of an ellipse is a 

similar ellipse. 

Sol.       

 
Fig. 11.7.4 

Let the equation of the given ellipse be  

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1. 

Let 𝑃(𝑎 cos𝜃 , 𝑏 sin 𝜃) and 𝑄 (𝑎 cos (
𝜋

2
+ 𝜃) , 𝑏 sin (

𝜋

2
+ 𝜃)) 

i.e. 𝑄 (−𝑎 sin 𝜃 , 𝑏 cos𝜃) be end points of conjugate diameters 

of ellipse. 

Now equation of 𝑃𝑄 line is  
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𝑦 − 𝑏 sin 𝜃 =
𝑏(sin 𝜃 − cos𝜃)

𝑎(cos𝜃 + sin 𝜃)
(𝑥 − 𝑎 cos 𝜃) 

⇒ (𝑎𝑦 + 𝑏𝑥) cos 𝜃 + (𝑎𝑦 − 𝑏𝑥) sin 𝜃 = 𝑎𝑏. ………….(1) 

Here 𝜃 is the parameter. 

Differentiating equation (1) partially with respect to 𝜃, we get  

−(𝑎𝑦 + 𝑏𝑥) cos𝜃 + (𝑎𝑦 − 𝑏𝑥) cos 𝜃 = 0. ……………(2) 

Squaring and adding equation (1) and (2), we get  

(𝑎𝑦 + 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑥)2 = 𝑎2𝑏2 
2𝑥2

𝑎2
+
2𝑦2

𝑏2
= 1 

𝑜𝑟        
𝑥2

(
𝑎

√2
)
2 +

𝑦2

(
𝑏

√2
)
2 = 1, 

which is the required envelope and is a similar ellipse. 

Ex.11 Find the envelope of the circles drawn on the radii vectors 

of the parabola 𝒚𝟐 = 𝟒𝒂𝒙 as diameter. 

Sol.      Any point on the parabola 𝑦2 = 4𝑎𝑥 is (𝑎𝑡2, 2𝑎𝑡). 

 
Fig. 11.7.5  

 Now equation of circle considering 𝑂𝑃 as diameter is  

(𝑥 − 0)(𝑥 − 𝑎𝑡2) + (𝑦 − 0)(𝑦 − 2𝑎𝑡) = 0 

𝑥2 − 𝑎𝑥𝑡2 + 𝑦2 − 2𝑎𝑦𝑡 = 0…………………………(1) 

We have to find the envelope of the family of circles (1), where 

′𝑡′ is the parameter. 

⇒ (−𝑎𝑥)𝑡2 + (−2𝑎𝑦)𝑡 + (𝑥2 + 𝑦2) = 0. 
This is a quadratic equation in 𝑡. So, envelope is  

(−2𝑎𝑦2) − 4(−𝑎𝑥)(𝑥2 + 𝑦2) = 0. 
⇒ 𝑎𝑦2 + 𝑥(𝑥2 + 𝑦2) = 0. 

 

Ex.12 Show that the radius of curvature of the envelope of the 

family of  lines 𝒙 𝐜𝐨𝐬 𝜶 + 𝒚𝐬𝐢𝐧𝜶 = 𝒇(𝜶),  is 𝒇(𝜶) + 𝒇′′(𝜶). 
Sol.      The given equation of the family of lines is  

 𝑥 cos 𝛼 + 𝑦 sin 𝛼 = 𝑓(𝛼) ……………………(1) 

Where 𝛼 is the parameter. 

Differentiating equation (1) partially with respect to 𝛼,  we 

get  

−𝑥 sin 𝛼 + 𝑦 cos𝛼 = 𝑓′(𝛼). ……………….(2) 
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To find the radius of curvature of the envelope of the given 

family of lines, we solve equation (1) and (2) to obtain 

 𝑥 = 𝑓(𝑦) cos𝛼 − 𝑓′(𝛼) sin 𝛼……………(3) 

𝑦 = 𝑓(𝛼) sin 𝛼 + 𝑓′(𝛼) cos𝛼. ……………..(4) 

So,  
𝑑𝑥

𝑑𝛼
= 𝑓′(𝛼) cos 𝛼 − 𝑓(𝛼) sin 𝛼 − 𝑓′′(𝛼) sin 𝛼 − 𝑓′(𝛼) cos 𝛼 

= −[𝑓(𝛼) + 𝑓′′(𝛼)] sin 𝛼. 
𝑑𝑦

𝑑𝛼
= 𝑓′(𝛼) sin 𝛼 + 𝑓(𝛼) cos 𝛼 + 𝑓′′(𝛼) cos𝛼 − 𝑓′(𝑎) sin 𝛼 

= [𝑓(𝛼) + 𝑓′′(𝛼)] cos𝛼. 
Since,  

𝑑𝑦

𝑑𝑥
=
(
𝑑𝑦
𝑑𝛼)

(
𝑑𝑥
𝑑𝛼)

= − cot𝛼. 

𝑑2𝑦

𝑑𝑥2
=
𝑑

𝑑𝑥
(− cot𝛼) = −

𝑑

𝑑𝛼
(− cot 𝛼).

𝑑𝛼

𝑑𝑥
 

=
𝑐𝑜𝑠𝑒𝑐2 𝛼

(
𝑑𝑥
𝑑𝛼)

=
𝑐𝑜𝑠𝑒𝑐2𝛼

−[𝑓(𝛼) + 𝑓′′(𝛼)] sin 𝛼
. 

So, radius of curvature will be  

𝜌 =

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

3
2

𝑑2𝑦
𝑑𝑥2

= −
[1 + cot 𝛼]

3
2

𝑐𝑜𝑠𝑒𝑐3𝛼
[𝑓(𝛼) + 𝑓′′(𝛼)] 

𝜌 = −[𝑓(𝛼) + 𝑓′′(𝛼)]. 
Since radius of curvature is distance only, so neglecting 

negative sign, we have 

𝜌 = 𝑓(𝛼) + 𝑓′′(𝛼). 
 

Ex.13 Find the envelope of the straight lines  
𝑥

𝑎
+
𝑦

𝑏
= 1,……………………………………………(1) 

 where the parameters 𝑎  and 𝑏 are related by the equation  

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛,…………………………………………(2)  

𝑐 being a constant. 

 

Sol.      Let us consider 𝑎 and 𝑏 as functions of some other parameter 𝑡.  
Differentiating (1) and (2) with respect to 𝑡, considering 𝑥 and 

𝑦 as constant, we get 
𝑥

𝑎2
.
𝑑𝑎

𝑑𝑡
+

𝑦

𝑏2
.
𝑑𝑏

𝑑𝑡
= 0               and 𝑎𝑛−1.

𝑑𝑎

𝑑𝑡
+ 𝑏𝑛−1.

𝑑𝑏

𝑑𝑡
= 0. 

Equating the values of 
(
𝑑𝑎

𝑑𝑡
)

(
𝑑𝑏

𝑑𝑡
)
 from both equations, we get 

(
𝑥
𝑎2
)

𝑎𝑛−1
=
(
𝑦
𝑏2
)

𝑏𝑛−1
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⇒
(
𝑥
𝑎)

𝑎𝑛
=
(
𝑦
𝑏)

𝑏𝑛
=

𝑥
𝑎 +

𝑦
𝑏

𝑎𝑛 + 𝑏𝑛
=
1

𝑐𝑛
 

( Since 
𝑎

𝑏
=

𝑐

𝑑
⇒

𝑎

𝑏
=

𝑐

𝑑
=

𝑎+𝑐

𝑏+𝑑
 )  

⇒
𝑥

𝑎𝑛+1
=

𝑦

𝑏𝑛+1
=
1

𝑐𝑛
⇒ 𝑎𝑛+1 = 𝑥. 𝑐𝑛; 𝑏𝑛+1 = 𝑦. 𝑐𝑛 . 

Putting these values in equations (2), we get 

(𝑐𝑛𝑥)
𝑛
𝑛+1 + (𝑐𝑛𝑦)

𝑛
𝑛+1 = 𝑐𝑛 

⇒ 𝑥
𝑛
𝑛+1 + 𝑦

𝑛
𝑛+1 = 𝑐

𝑛
𝑛+1 

which is the required envelope. 

 

11.8 EVOLUTE OF A CURVE 
 

Let us consider a curve  𝑦 = 𝑓(𝑥). We take some points 

𝑃1, 𝑃2, 𝑃3, … etc on the curve and draw corresponding circle of 

curvatures with respective centres 𝐶1, 𝐶2, 𝐶3 etc. 

 

 

 
Fig. 11.8.1 

Now generalize this concept i.e. if we draw circles of curvatures at 

every point of curvature, and join their centres, we shall get the locus 

of centre of curvature at an arbitrary point of 𝑦 = 𝑓(𝑥). This locus is 

called evolute. 

 

11.9 EVOLUTE AS THE ENVELOPE OF THE 

NORMALS 
The centre of curvature of a curve for a given point 𝑃 (on it) is the 

limiting position of the intersection of the normal at 𝑃 with the normal 

at any other consecutive point 𝑄 as 𝑄 → 𝑃. 

So by the definition of envelope, the envelope of the normals to a 

curve is the evolute of that definition. 
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Fig. 11.9.1 

Definition (II): The evolute of a curve is the envelope of the normals 

to that curve. 

Theorem: The normal at any point of a curve is a tangent to its evolute 

touching at the corresponding centre of curvature 

Proof: The coordinates (𝛼, 𝛽) of the centre of curvature for any point 

𝑃(𝑥, 𝑦) on the given curve are given by 𝛼 = 𝑥 −
𝜌 sin 𝜓 ;    𝛽 = 𝑦 + 𝜌 cos𝜓. 

 

 
Fig. 11.9.2 

Differentiating these with respect to 𝑥, we get  
𝑑𝛼

𝑑𝑥
= 1 − 𝜌 cos𝜓 .

𝑑𝜓

𝑑𝑥
− sin 𝜓 .

𝑑𝜌

𝑑𝑥
 

                      = 1 −
𝑑𝑠

𝑑𝜓
.
𝑑𝑥

𝑑𝑠
.
𝑑𝜓

𝑑𝑥
− sin 𝜓 .

𝑑𝜌

𝑑𝑥
 

⇒
𝑑𝛼

𝑑𝑥
= −sin 𝜓 .

𝑑𝜌

𝑑𝑥
 ……………………(1) 

Also, 
𝑑𝛽

𝑑𝑥
=

𝑑𝑦

𝑑𝑥
− 𝜌 sin 𝜓 .

𝑑𝜓

𝑑𝑥
+ cos𝜓 .

𝑑𝜌

𝑑𝑥
 

=
𝑑𝑦

𝑑𝑥
−
𝑑𝑠

𝑑𝜓
.
𝑑𝑦

𝑑𝑠
.
𝑑𝜓

𝑑𝑥
+ cos𝜓 .

𝑑𝜌

𝑑𝑥
 

⇒
𝑑𝛽

𝑑𝑥
= cos𝜓 .

𝑑𝜌

𝑑𝑥
 ………………………………(2) 

From equation (1) and (2), we have  
𝑑𝛽

𝑑𝛼
= −cot𝜓…………………………………(3) 

But 
𝑑𝛽

𝑑𝛼
 is the slope of the tangent at 𝑄 to the evolute and −cot𝜓 is the 

slope of the normal 𝑃𝑄 at 𝑃 to the given curve. 

These two slopes are equal and 𝑄 is a common point on both the lines. 

Hence the tangent at 𝑄 to the evolute and −cot𝜓 is the slope of the 

normal 𝑃𝑄 at 𝑃 to the given curve. 
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These two slopes are equal and 𝑄 is a common point on both the lines. 

Hence the tangent at 𝑄 to the envelope and the normal at 𝑃 to the given 

curve touches its evolute at the corresponding point. 

 

Ex.14 Find the evolute of the parabola𝒚𝟐 = 𝟒𝒂𝒙. 
Sol.    From Co-ordinate geometry, we know that equation of normal at 

(
𝑎

𝑚2 , −
2𝑎

𝑚
) to the curve 𝑦2 = 4𝑎𝑥  is  

𝑦 = 𝑚𝑥 − 2𝑎𝑚 − 𝑎𝑚3 …………………………….(1) 

where, 𝑚 is the parameter. 

Now envelope of (1) is the evolute of 𝑦2 = 4𝑎𝑥. Differentiating 

equation (1) partially with respect to 𝑚, we get 

0 = 𝑥 − 2𝑎 − 3𝑎𝑚2 

⇒ 𝑚 = √(
𝑥 − 2𝑎

3
) 

Substituting this value in equation (1) and solving, we get 27 𝑎𝑦2 =
4(𝑥 − 2𝑎)3, which is the required evolute. 

Second Method: Curve is 𝑦2 = 4𝑎𝑥 

Differentiating with respect to 𝑥, we get  

2𝑦 (
𝑑𝑦

𝑑𝑥
) = 4𝑎        𝑜𝑟        

𝑑𝑦

𝑑𝑥
=
2𝑎

𝑦
 

𝑑𝑦

𝑑𝑥
=

2𝑎

√4𝑎𝑥
=
√𝑎

√𝑥
 

𝑑2𝑦

𝑑𝑥2
= −

1

2
𝑎
1
2𝑥−

3
2 = −

√𝑎

2𝑥√𝑥
 

Suppose (𝛼, 𝛽) be the centre of curvature for the point (𝑥, 𝑦). Then 

𝛼 = 𝑥 −

(
𝑑𝑦
𝑑𝑥
[1 + (

𝑑𝑦
𝑑𝑥)

2

])

𝑑2𝑦
𝑑𝑥2

= 𝑥 −

(√
𝑎

√𝑥
[1 +

𝑎
𝑥
])

(−
1
2 .
√𝑎

𝑥√𝑥
)

 

𝛼 = 3𝑥 + 2𝑎 ……………………………………………(2) 

Also 

𝛽 = 𝑦 +

[1 + (
𝑑𝑦
𝑑𝑥
)
2

]

𝑑2𝑦
𝑑𝑥2

= 𝑦 +
[1 +

𝑎
𝑥
]

−
1
2𝑥 . √

𝑎
𝑥

 

⇒ 𝛽 = −2𝑎−
1

2𝑥
3

2. ……………………………………..(3) 

If we eliminate ′𝑥′ from the expressions of 𝛼 and 𝛽, we will get an 

expression only in 𝛼 and 𝛽. So putting 𝑥 =
𝛼−2𝑎

3
 in equation (3), we 

get  

𝛽 = −
2

√𝑎
(
𝛼 − 2𝑎

3
)

3
2
. 

On squaring, 
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𝛽2 =
4

𝑎
(
𝛼 − 2𝑎

3
)
3

 

⇒ 27 𝑎 𝛽2 = 4 (𝛼 − 2𝑎)3. 
Hence locus of centre of curvature is 27𝑎𝑦2 = 4(𝑥 − 2𝑎)3, which is 

the required evolute. 

Ex.15 Find the evolute of the ellipse  

 
𝒙𝟐

𝒂𝟐
+
𝒚𝟐

𝒃𝟐
= 𝟏. 

Sol.   The given ellipse in parametric form is 𝑥 = 𝑎 cos 𝜃 , 𝑦 =
𝑏 sin 𝜃, where 𝜃 is the parameter. 

𝑑𝑥

𝑑𝜃
= −𝑎 sin 𝜃 ,

𝑑𝑦

𝑑𝜃
= 𝑏𝑐𝑜𝑠 𝜃 

𝑑𝑦

𝑑𝑥
=
(
𝑑𝑦
𝑑𝜃)

(
𝑑𝑥
𝑑𝜃)

=
𝑏𝑐𝑜𝑠 𝜃

−𝑎 sin 𝜃
=
−𝑏

𝑎
cot 𝜃. 

So, slope of the normal to given ellipse at the point 

(𝑎 cos 𝜃 , 𝑏 sin 𝜃) =
𝑎 sin 𝜃

𝑏 cos𝜃
. 

Hence equation of the normal to the given ellipse at the point 

(𝑎 cos 𝜃 , 𝑏 sin 𝜃) is  

𝑦 − 𝑏𝑠𝑖𝑛 𝜃 =
𝑎 sin 𝜃

𝑏 cos𝜃
(𝑥 − 𝑎 cos𝜃) 

⇒
𝑎𝑥

cos𝜃
−
𝑏𝑦

sin 𝜃
= 𝑎2 − 𝑏2 

Now the evolute of the given ellipse is the envelope of the 

family given by equation (1). We have done it in envelope 

section, which is   (𝑎𝑥)
2

3 + (𝑏𝑦)
2

3 = (𝑎2 − 𝑏2)
2

3. 

 

Length of arc of an evolute: 
Theorem: The difference between the radii of curvature at any two 

points of a curve is equal to the length of the arc of the 

evolute between the two corresponding points. 

Proof.       Let 𝑠 be the length of the arc of the given curve measured 

from some fixed point 𝐴 on the curve up to  𝑃(𝑥, 𝑦) and 𝜎 

the length of the arc of the evolute measured from some 

fixed point on it up to 𝐶(𝛼, 𝛽). 
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Fig. 11.9.2 

 It is obvious that if 𝐶(𝛼, 𝛽) is the centre of curvature, 

corresponding to 𝑃(𝑥, 𝑦), then  

𝛼 = 𝑥 − 𝜌 sin 𝜓 ,          𝛽 = 𝑦 + 𝜌 cos𝜓 ………………(1) 
𝑑𝛼

𝑑𝑠
=
𝑑𝑥

𝑑𝑠
− 𝜌 cos𝜓 (

𝑑𝜓

𝑑𝑠
) − sin 𝜓 (

𝑑𝜌

𝑑𝑠
) 

𝑑𝛼

𝑑𝑠
=
𝑑𝑥

𝑑𝑠
−
𝑑𝑠

𝑑𝜓
.
𝑑𝑥

𝑑𝑠
.
𝑑𝜓

𝑑𝑠
− sin 𝜓 (

𝑑𝜌

𝑑𝑠
) 

=
𝑑𝑥

𝑑𝑠
−
𝑑𝑥

𝑑𝑠
− sin 𝜓 (

𝑑𝜌

𝑑𝑠
) 

⇒
𝑑𝛼

𝑑𝑠
= − sin 𝜓 (

𝑑𝜌

𝑑𝑠
). 

Now 
𝑑𝛽

𝑑𝑠
=
𝑑𝑦

𝑑𝑠
− 𝜌 sin 𝜓 (

𝑑𝜓

𝑑𝑠
) + cos𝜓 (

𝑑𝜌

𝑑𝑠
) 

=
𝑑𝑦

𝑑𝑠
−
𝑑𝑠

𝑑𝜓
.
𝑑𝑦

𝑑𝑠
.
𝑑𝜓

𝑑𝑠
+ cos𝜓 (

𝑑𝜌

𝑑𝑠
) 

𝑑𝛽

𝑑𝑠
= cos𝜓 (

𝑑𝜌

𝑑𝑠
). 

Since we know that  

𝑑𝜌

𝑑𝑠
= √(

𝑑𝛼

𝑑𝑠
)
2

+ (
𝑑𝛽

𝑑𝑠
)
2

= √1 + (
𝑑𝛽

𝑑𝛼
)
2

 .  
𝑑𝛼

𝑑𝑠
=
𝑑𝜎

𝑑𝛼
.
𝑑𝛼

𝑑𝑠
=
𝑑𝜎

𝑑𝑠
. 

⇒
𝑑𝜌

𝑑𝜎
= 1     𝑜𝑟      𝑑𝜌 = 𝑑𝜎 

⇒ 𝑑(𝜌 − 𝜎) = 0. 
⇒  𝜌 − 𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑐, 𝑠𝑎𝑦. 

Hence 𝜌2 − 𝜌1 = 𝜎2 − 𝜎1, where 𝜌1 and 𝜌2 are the values of 𝜌 

for any two points 𝑃1 and 𝑃2 on the curve and 𝜎1 and 𝜎2 are the 

corresponding values of 𝜎. 
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11.10 INVOLUTES 
 

If one curve is the evolute of another, then the latter is called an 

involute of the former. Thus if the curve 𝐶1𝐶2𝐶3 is the evolute of the 

curve 𝑃1𝑃2𝑃3, then 𝑃1𝑃2𝑃3 is an involute of 𝐶1𝐶2𝐶3.  

 
 

Fig. 11.10.1 

Theorem: Every curve has an infinite number of involutes. 

Proof:    Let 𝐶1 and 𝐶2 be the centres of curvature of the curve 𝑃1𝑃2𝑃3 
at 𝑃1 and 𝑃2 respectively, then by the last article  

𝐶1𝑃1 + 𝑎𝑟𝑐 𝐶2𝐶1 = 𝐶2𝑃2. 
Hence, if a thread were wrapped round the curve 𝐶3𝐶2𝐶1 and were 

presented from slipping, it is evident that when the thread is 

unwrapped, (being kept taut all the time) the point on the thread which 

was at 𝑃1 to begin with will describe the curve 𝑃1𝑃2𝑃3. 
This explains why the curve 𝐶1𝐶2𝐶3 is called the evolute of the curve 

𝑃1𝑃2𝑃3.   
Obviously, any point on the thread will describe an involute of the 

curve 𝐶1𝐶2𝐶3. 

Thus every curve has an infinite number of Involutes. 

Parallel Curves: If the curves 𝑃1𝑃2𝑃3  and 𝑃1
′𝑃2
′𝑃3′ are both involutes 

of the same curve, then they are called parallel curves; because the 

distance between them measured along their common normal is 

constant. 

 

11.11  SUMMARY 
 

We studied that an envelope of a family of curves in the plane 

is a curve that is tangent to each member of the family at some point, 

and these points of tangency together form the whole envelope. 

Classically, a point on the envelope can be thought of as the 

intersection of two "infinitesimally adjacent" curves, meaning the limit 

of intersections of nearby curves.We also noticed thatthe evolute of 
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a curve is the locus of all its centers of curvature. That is to say that 

when the center of curvature of each point on a curve is drawn, the 

resultant shape will be the evolute of that curve. The evolute of a circle 

is therefore a single point at its center. Equivalently, an evolute is 

the envelope of the normals to a curve.Evolutes are closely connected 

to involutes: A curve is the evolute of any of its involutes. 

 

11.12 GLOSSARY  
 

i. Parameter: A variable that is to takedifferent values, thereby 

giving different values to certain other variables. 

 

ii. Quadratic Equation:A quadratic equation in the unknown x is 

an equation of the form 𝑎𝑥2  +  𝑏𝑥 +  𝑐 =  0, where a, b and c 

are given real numbers, with a≠0. 

 

CHECK YOUR PROGRESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

Choose the correct answer for each question: 

 

1. Curvature of circle of radius 𝑟 is 

(a) 0. 
(b) 𝑟. 

(c) 
1

𝑟
. 

(d) 2𝑟.      

2. If 𝑠 = 𝑐 sec 𝜓then 𝜌 is 

(a) 𝑐 sec 𝜓 

(b) 𝑐 sec2 𝜓 tan𝜓 

(c) 𝑐 sec 𝜓 tan𝜓 
(d) None 

3. The locus of the centre of curvature for a curve is: 

(a) Envelope 

(b) Evolute  

(c) Radius of curvature 

(d) None of these.  
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4. The envelope of the normals to the curve is  

a) Evolute. 

b) Curvature. 

c) Envelope.  

d) None of these.       

5. Envelope of the family of circles (𝑥 − 𝑐)2 + 𝑦2 = 𝑟2, where the 

parameter being 𝑐, is  

(a) 𝑦 = ±𝑟. 
(b) 𝑦 = 0. 
(c) 𝑥 = 0. 
(d) 𝑥𝑦 = 0. 

6. The equation of the evolute of the parabola 𝑦2 = 2𝑎𝑥 is 

(a) 𝑦 =  ±𝑎. 
(b) 𝑦 = 0. 
(c) 𝑥 = 0. 
(d) 27𝑎 𝑦2 = 8(𝑥 − 𝑎)3. 

7. Envelope of the family of curves of the form 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0is      

(a) 𝐴𝜆 + 𝐵 = 0. 
(b) 𝐵2 − 4𝐴𝐶 = 0. 

  (c) 𝐵 − 𝐶 = 0. 
(d) None of these. 

8. The centre of curvature at (1, 2) for the curve 𝑦2 = 4𝑥  is  

(a) (2, 5) 
(b)  (2,−5) 
(c) (5,−2) 
(d) (−5,−2) 

9.The envelope of the family of curves 

(a) Touches each member of the family.  

(b) Intersects each member of the family. 

(c) Touch one member and intersects each member of the family. 

(d) None of these.      

  

10. Envelope of the family of straight line 𝑦 = 𝑚𝑥 + 𝑎 𝑚⁄  is: 

(a) 𝑦2 = 2𝑎𝑥 

(b) 𝑥2 = 4𝑎𝑦 

(c) 𝑥𝑦 = 8(𝑥 − 𝑎)3 
(d) None of the above 
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11.15  TERMINAL QUESTIONS 
 

TQ1: Find the evolute of the hyperbola 
𝑥2

𝑎2
−
𝑦2

𝑏2
= 1. 

TQ2: Show that the chord of curvature through the pole of the  

         cardioid 𝑟 = 𝑎(1 − 𝑐𝑜𝑠𝜃) is 
4

3
𝑟. 

TQ3. Find the envelope of the curve (
𝑥

𝑎
)
𝑚

+ (
𝑦

𝑏
)
𝑚

= 1  

          when 𝑎𝑛 + 𝑏𝑛 =   𝑐𝑛. 

TQ4. Define the envelope, evolute and radius of  curvature 

         

..................................................................................................................

.................................................................................................................. 

TQ5. Find the envelope of the circles which pass through the origin 

and  whose centres lie on 𝑥2 − 𝑦2 =   𝑎2. 
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11.16 ANSWERS 
 
 

CHECK YOUR PROGRESS 

 

CYQ1.   (c) 

CYQ2.   (c) 

CYQ3.    (b) 

CYQ4.    (c)  

CYQ5.    (a) 

CYQ6.    (d) 

CYQ7.    (b) 

CYQ8.    (c) 

CYQ9.    (a) 

CYQ10.  (b) 

 
TERMINAL QUESTIONS 

 

TQ1. Evolute (
𝒂

𝒙
)

𝟐

𝟑
− (

𝒃

𝒚
)

𝟐

𝟑
= (𝒂𝟐 + 𝒃𝟐)

𝟐

𝟑. 

TQ3. (𝒙)
𝒎𝒏

(𝒎+𝒏) + 𝒚
𝒎𝒏

(𝒎+𝒏) = 𝒄
𝒎𝒏

(𝒎+𝒏). 
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UNIT-:12 INTEGRATION AND VOLUME 

AND SURFACE OF SOLID OF 

REVOLUTION 
 

CONTENTS:- 

 
12.1 Inroduction 

12.2 Objectives 

12.3 Volume of solid of revolution 

          12.3.1   Volume of solid of revolution (B-Parametric form) 

          12.3.2    Volume of a solid of revolution (Polar Forms) 

12.4  Volume of a solid by double integration 

12.5  Surface of Revolution (Cartesian form) 

 12.5.1   When the axis of revolution is the x-axis 

 12.5.2   When the axis of revolution is the y-axis 

 12.5.3  When the axis of revolution is any straight line 

12.6      Surface revolution (Parametric Form) 

12.7      Surface revolution (Polar Form) 

12.8      Area of the surface by double integration 

12.9      Theorems Pappus (or Guldin) 

              12.9.1    The theorem of Pappus for the volume 

              12.9.2     The theorem of Pappus for the surface 

12.10     Summary 

12.11     Glossary 

12.12     References 

12.13     Suggested readings 

12.14     Terminal questions 

12.15    Answers  

 

12.1 INTRODUCTION 
 

The solid generated by revolving an area about a fixed straight 

line lying in its plane is known as a solid of revolution.  

 

Volume of revolution:- The volume generated by revolving an area 

about a fixed straight line in its plane is known as a volume of 

revolution.  

Surface of revolution:-The surface generated by revolving an arc 

about a fixed straight line lying in its plane is known a surface of 

revolution.  

 

Axis of revolution:- The fixed straight line about which an area or an 

arc revolves is known as axis of revolution.  
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In this unit we are defined about Volume of solid of revolution, 

Volume of a solid by double integration, Surface of Revolution, 

Surface revolution (Parametric Form), Surface revolution (Polar 

Form),  Area of the surface by double integration, and Theorems 

Pappus (or Guldin). 

          

 

12.2 OBJECTIVES 
 
The objective of this topic is to at the end of this topic learner will be able to 

 

i. Volume of solid of revolution. 

ii. Surface of revolution. 

iii. Cartesian, parameteric and polar in form of volume and surface 

of revolution. 

iv. Area of surface by double integration. 

v. Pappus theorem of volume and surface of revolution. 

 

12.3 VOLUME OF A SOLID OF REVOLUTION  

 

Case I: When the axis of revolution is the x-axis  
 

The volume of the solid generated by the revolution of the area 

bounded by the curve y = f(x)the x-axis and the two ordinates x = a 

and x = b axis is given by𝑉 = 𝜋 ∫ 𝑦2𝑑𝑥
𝑏

𝑎
= 𝜋 ∫ 𝑦[𝑓(𝑥)]2𝑑𝑥

𝑏

𝑎
 . 

 

Proof:- Let the Cartesian equation of the curve is 𝑦 = 𝑓(𝑥) and let 𝐴𝐶 

and 𝐵𝐷 be the two ordinates 𝑥 = 𝑎 and 𝑥 = 𝑏 respectively. 

 

Let 𝑃(𝑥, 𝑦) and 𝑄(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) be any two neighbouring points on 

the curve. From 𝑃 and 𝑄 draw 𝑃𝑀 and 𝑄𝑁 Perpendicular and the x-

axis. Further from 𝑃 and 𝑄draw 𝑃𝑆 and 𝑄𝑅 perpendiculars to 𝑄𝑁 and 

PM produced respectively. 
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Let the volume of the solids generated by the revolution of 

areas 𝐴𝐶𝑀𝑃𝐴 and 𝐴𝐶𝑁𝑄𝐴 about the 𝑥 −axis be 𝑣 and 𝑉 +
𝛿𝑉respectively.  

So 𝛿𝑉 is the volume of the solid generated by the revolution of 

the elementary area  about the 𝑥 − axis and it lies between the 

volumes generated by the revolution of the rectangles 𝑀𝑁𝑆𝑃and 

𝑀𝑁𝑄𝑅 about the 𝑥 − axis . 

Now, . 

The volume generated by revolving the area 𝑀𝑁𝑆𝑃 is = 𝜋𝑦2𝛿𝑥 and  

The volume generated by revolving the area MNQR is 

 

Since the volume   i.e. the volume generated by revolving the area 

 lies between the volume generated by the areas MNSP and 

MNQR Therefore . 

 
In the limiting case when 

 

 

 
Integrating this with respect to  between the limits 

 

Fig 12.3.1 
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i.e. The volume of the solid generated by the revolution of the area 

between, arc AB, the x-axis and the ordinates x-a,x-b about the x-axis 

is given by  

 
 

Case II When the axis of revolution is the y-axis.  

 

Proceeding exactly as in Case I above, we can prove the following: 

the y-axis and the abscissa y=c and y=d is  

 
 

Case III: When the axis of revolution is any straight line: 

 

Let the axis of revolution is any straight line AB (different from x and 

y-axis) and CD be the arc of the curve.  

 
 

 

Let 𝑃𝑀 be the length of the perpendicular drawn from any point 𝑃 on 

the arc 𝐶𝐷to the axis of revolution AB and O is the fixed point on the 

axis AB. Then the volume generated is given by 

 

Illustrative Examples 
Ex.1 Find the volume of the solid generated by revolving the 

ellipse  

Or 

Find the volume of Prolate spheroid.  

Fig 12.3.2 
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Sol.    The solid generated by revolving the ellipse about the major axis 

i.e. the x-axis, is called a prolate spheroid.  

The equation of the ellipse  

 
 

 

 

 

The solid generated by revolving the area 𝐴𝐵𝐴’𝑂𝐴 about the 

𝑥 −axis. Let us take an elementary strip PQRS perpendicular to 

x-axis. Since the ellipse is symmetrical about the 𝑦 −axis, 

therefore for the portion of the ellipse lying in the first 

quadrant, 𝑥 varies from o to a.  

Hence, the required volume 

 

 

 

 
Hence volume of prolate spheroid is  

 

Ex.2 Find the volume of the solid generated by the revolution of 

the ellipse about the y-axis.  

Or 

Find the volume of the oblate spheroid.  

Fig. 12.3.3 
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Sol.   The solid generated by revolving the ellipse  about 

the minor axis i.e. y-axis is called the oblate spheroid.  

The given equation of the ellipse 

 

 
 

 

The solid generated by the area 𝐵𝐴𝐵’𝑂𝐵 about 𝑦 −axis.  

Since the ellipse is symmetrical about the y-axis, therefore the 

portion of the ellipse lying in the first quadrant, y varies from o 

to b.  

Hence the required volume  

 

 

 

 

 
Hence the volume of the oblate spheroid is  

 
 

Ex.3 Prove that the volume of solid generated by the revolution 

of an ellipse 
𝒙𝟐

𝒂𝟐
+
𝒚𝟐

𝒃𝟐
= 𝟏minor axis is the geometric mean 

Fig. 12.3.4 
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ofthose generated by the revolution of an ellipse and of the 

auxiliary circle about the major axis. 

Sol.     The equation of the ellipse is 
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

The volume of the solid formed by the revolution of the ellipse 

about the major axis (prolate spheroid) is- 

 
The volume of the solid generated by the revolution of the 

ellipse about the minor axis (oblate spheroid) is  

 
The equation of the auxillary circle of the ellipse  

 

 is  

The volume of the solid generated by the revolution of the 

auxiliary circle about major axis is  

 

 

 
Hence geometric mean of  

 

 
Hence  

 

Ex.4 Show that the volume of a sphere of radius a is  

Sol.      A sphere is generated by the revolution of a semicircular area 

about its bounding diameter. Equation of a circle with radius a, whose 

centre is at origin is 𝑥2 + 𝑦2 = 𝑎2 
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Let  be the bounding diameter about which the semicircle revolves.  

Since the circle is symmetrical about y axis so we will take the area of 

revolution of only in positive quadrant and twice it.  Take the 

elementary strip PSRQ. Where P(x, y) and 

 

Now volume of the elementary disc formed by revolving the strip 

PMNQ about the diameter AA’ is  

 

 
Hence the required volume of the sphere is  

 

=  

=  

 
Ex.5 The Area between a parabola and its latus rectum revolves 

about it’s directrix. Find the ration of the volume of the 

ring thus obtained to the volume of the sphere whose 

diameter is the latus rectum.  

 

Sol.      Let the equation of the parabola is  

Fig. 12.3.5 
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Then the directrix is the line 𝑥 = −𝑎. Let 𝐿𝐿’ be the letus 

rectum. The area 𝐿𝑂𝐿’𝑆𝐿 is revolved about the directrix. The 

volume of the ring thus obtained  where  is 

the volume of the cylinder formed by the revolution of the 

rectangle 𝐿𝐿’𝑅’𝑅 about directrix and  is the volume of the 

red formed by the revolution of the arc 𝐿𝑂𝐿’ about directrix. 

Now volume  

=  

=  

 
To find the volume 𝑣2 of the reel consider an elementary strip 

𝑃𝑀𝑁𝑄 where 𝑃(𝑥, 𝑦) and 𝑄(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) are two 

neighbouring points on the arc 𝑂𝐿 and 𝑃𝑀,𝑄𝑁 are 

perpendiculars from 𝑃 and 𝑄 on directrix. 
Now, we have  

Hence, volume  

=  

=  

=  

=  

Fig. 12.3.6 
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Hence volume of the ring =  

 

 
Now volume of the sphere whose diameter is the letus rectum 

i.e. 4a i.e. radius of sphere is 2a.  

 
Hence the required ratio =  

 
Ex.6 Find the volume of the solid generated by revolution of the 

loop 𝒚𝟐(𝒂 + 𝒙) = 𝒙𝟐(𝟑𝒂 − 𝒙) about the 𝒙 −axis. 

Sol.       Equation of the curve is  

 
 

The given curve is symmetrical about x-axis.  

Putting 𝑦 = 0,we get 

𝑥2(3𝑎 − 𝑥) = 0 ⇒ 𝑥 = 0 and 𝑥 = 3𝑎. Hence the loop is 

formed between 𝑥 = 0 and 𝑥 = 3𝑎. 

Asymptote parallel to y-axis is 𝑥 = −𝑎. 

 Since the curve is symmetrical about 𝑥 −axis. So the volume 

generated by the revolution of the whole loop about the axis is 

Fig. 12.3.7 
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the same as the volume generated by the revolution of the 

upper half loop about x-axis.  

Take the elementary strip 𝑀𝑁𝑄 where 𝑃 is the point and 𝑄 is 

the point  

Then, we have 𝑃𝑀 = 𝑦 and 𝑀𝑁 = 𝛿𝑥. 

Now the volume of the elementary disc formed by revolving 

the elementary strip 𝑃𝑀𝑁𝑄 about the 𝑥 −axis is 

𝜋(𝑃𝑀)2𝑀𝑁 = 𝜋𝑦2𝛿𝑥. 

Hence the volume generated by the loop is 𝜋 ∫ 𝑦2𝑑𝑥
3𝑎

0
. 

= 𝜋∫
𝑥2(3𝑎 − 𝑥)

𝑎 + 𝑥
𝑑𝑥

3𝑎

0

 

= 𝜋∫ [−𝑥2 + 4𝑎𝑥 − 4𝑎2 +
4𝑎3

𝑎 + 𝑥
]𝑑𝑥

3𝑎

0

 

= 𝜋 [
−𝑥3

3
+ 2𝑎𝑥2 − 4𝑎2𝑥 + 4𝑎3 log(𝑎 + 𝑥)] 

= 𝜋[−(9𝑎3 − 0) + (18𝑎3 − 0) − 4𝑎2𝑥 + 4𝑎3 log(𝑎 + 𝑥)] 

=  

=  

 
=  

=  

=  

 
 

Ex7.Find the volume of the solid generated by the revolution of the 

cissoid  

Sol.  The curve 𝑦2(2𝑎 − 𝑥) = 𝑥3 is symmetric about 𝑥 −axis. Putting 

𝑥 = 0, 𝑦 = 0, we find the curve passes  through the origin. 

Tangent at origin y=0, Hence origin is cusp. Asymptote 

parallel to y-axis is x=2a. 
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Take an elementary strip 𝑃𝑀𝑁𝑄 to the asymptote 𝑥 = 2𝑎. 

Where p is the point (𝑥, 𝑦) and 𝑄 is the point (

) 

We have 𝑃𝑀 = 2𝑎 − 𝑥, 𝑀𝑁 =  

Now volume of the elementary disc formed by the revolution 

of the strip about the line 𝑥 = 2𝑎 is.  

 
Hence required volume 

 

 

 
Differentiating with respect to x we get 

 

 

 

 
Also when y=0, x=0 and when  

Hence  

 

=  

Now put  also 

when  

Therefore  

Fig. 12.3.8 
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=  

=  

 

=  

V=2  

 

12.3.1 VOLUME OF A SOLID OF REVOLUTION (B-

PARAMETRIC FORM) 

 

Let the curve is given by parametric equations  

 

(a) The volume of the solid generated by revolving the area 

bounded by the curve, the x-axis and the ordinates 

 about the axis of x is given by  

 

 
 

(b) The volume of the solid generated by revolving the area 

bounded by the curve 𝑥 = 𝑓(𝑦) the ordinates, the 𝑦 −axis and 

the abscissa 𝑦 = 𝑐 to 𝑦 = 𝑑 about the axis of y is 

 
where 

 

Ex.8.Show that the volume of the solid generated by the revolution 

of the curve (𝒂 − 𝒙)𝒚𝟐 = 𝒂𝟐𝒙 about its asymptote is 
𝟏

𝟐
𝝅𝟐𝒂𝟑. 

 

 

Sol.    The curve (𝑎 − 𝑥)𝑦2 = 𝑎2𝑥 
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is symmetrical about 𝑥 −axis. It passes through origin and 

tangent at origin is 𝑥 = 0 i.e. 𝑦-axis 

The asymptote of the curve is 𝑥 = 𝑎. 

Let 𝑃(𝑥, 𝑦) be any point on the curve  

Draw perpendicular PM from p to the asymptote.  

 
Hence the required volume  

                                           

  [Since ] 

 

 

 

 

 
Required volume  

 

 

 

 

Fig. 12.3.8 
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Hence the required volume is V= /2 

 

Illustrative Examples of parametric curves 

 

Ex. 9. Find the volume of the solid generated by the revolution of 

the curve  abou the 𝒙 −axis 

OR 

Find the volume of the spindle shaped solid generated by 

revolving the astorid  

Sol.   

 
 

 

 
The volume of the solid generated by revolving the area 

ABA’OA about the x-axis i.e. 

 

 

 

Hence  

=  

=  

 

𝐵′(0,−𝑎)) 

𝐵(0, 𝑎)) 

𝐴′(0,−𝑎)) 𝐵(0, 𝑎)) 𝑋 

𝑌 

Fig. 12.4.1 
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Ex.10. Find the volume of the solid generated by the revolution of 

the curve about its asymptote.  

 

Sol. Eliminating t between x and y we get the equation of curve 

 which is a cissoid. The curve is symmetrical about 

x-axis and x=2a is the asymptote of the curve.  

Hence  

=  

 

 

 

Also when y=0  

 

 

 

=  

 

=  
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Ex.11  Prove that the volume of the reel formed by the revolution 

of the cycloid  
 

 

Sol.The given cycloid is symmetrical about y-axis, and the 

tangent at the vertex is the x-axis. The reel is formed by 

revolving the area BOACD about the x-axis. The vertex is the 

origin and 

 
 

Hence the required volume  

 
=  

=  

=  

 

 

 

 

 

 
 

12.3.2 VOLUME OF A SOLID OF REVOLUTION 

(POLAR FORMS) 
 

Let the equation of the curve in polar form is  

 

(a) 
 

 

Fig. 12.4.2 
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Where 

 

 

 
(c) If the portion of the curve lying between the points 

 

 

 
Alternative method 

The volume of the solid generated by the revolution of the area 

bounded by the curve 

 

(i) About the initial line  

 
(ii) About the line  

 
Illustrative Examples 

 

Ex.12.The cardiod𝒓 = 𝒂(𝟏 + 𝒄𝒐𝒔𝜽) revolves about the initial line. 

Find the volume of solid generated 

Sol.The curve  is symmetrical about the initial line. 

 
 

 
Fig. 12.5.1 
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And  

So for the curve  

Hence volume of the solid generated by revolving the area 

ABOA about the initial line is  

 

 

 

 

 

 

 

 

 
Ex.13Prove that volume of the solid generated by revolving the 

curve lemniscates  

Sol.The curve  is symmetrical about the initial line and 

the pole.  

Put  

Hence  are tangents at pole. 

 
 

 

𝑋 

𝑌 

𝜽 =
𝝅

𝟒
 

𝜽 =
𝝅

𝟐
 

𝜽 = 𝟎 
𝜽 = 𝟎 

(−𝒂,𝟎) 

𝜽 =
−𝝅

𝟒
 

(𝒂,𝟎) 𝑶 

Fig. 12.5.2 
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Hence for the upper half of loop  

Hence the required volume (revolving about  

 

 
Put  

 

V       =  

 

=  

=  

Thus            

12.4 VOLUME OF A SOLID BY DOUBLE 

INTEGRATION 
 

Let the area  Through the 

each point on the boundary of this small area, draw lines parallel to x-

axis and thus construct a small cylinder whose base is the area  

and generators parallel to x-axis.  

 

This volume of the cylinder  

Hence, Volume of the solid =  

Considering area  

 
(3) In a similar way considering area on the plane y=0 and 

construct cylinder as above by drawing lines parallel to y-axis. 
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Ex.14Find the volume of the sphere  

Sol.      Equation of the sphere is  

 
Projection of the sphere on 

 

In the positive octant y varies from o to a and z varies from o to 

 

Hence volume of the solid varies lies in positive octant 

 

Hence total volume of the sphere is  

 

Hence total volume of the sphere is  

=  

=  

 

 

=  

 

 

Ex.15Find the volume of the ellipsoid  

Sol.        Equation of the ellipsoid is  

 
Projection of the curve on the xy- plane (i.e. z=0) 

Is  

Or  
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Hence limits of y varies from o to  in the positive 

octant.  

X varies from 0 to a.  

Hence volume of the ellipsoid lying in the positive octant is 

 

Since the ellipsoid is symmetrical in all eight octants. Hence 

total volume of the ellipsoid is  

 

 

 

 

 

 

 
 

12.5 SURFACE OF REVOLUTION 

(CARTESIAN FORM) 
 

 

12.5.1 WHEN THE AXIS OF REVOLUTION IS THE X-

AXIS:-  
 

The area of the surface generated by revolving an area bounded by the 

curve 

 

 
Where s is the length of the arc measured from a fixe point to any point 

(x,y) on the curve.  
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Hence  

 

 

Proof:- Let the equation of the curve in Cartesian form is 

ordinates 

 be any two 

neighbouring points on the curve.  

From P and Q draw PM and QN perpendiculars to x-axis. Further, 

from P and Q draw PS and QR perpendiculars to PM and QN 

respectively.  

 

-  

Fig 12.5.1 

 

(a being a 

fixed point).Let the area of the surface of a solid generated by 

revolving the arc AP and AQ about x-axis be A and  then  is the 

area of the surface of the solid generated by the revolution of the arc 

PQ about x-axis. While revolving about x-axis, the line PS and QR 

generates cylinders. Let suppose that the area of curved surface of 

these cylinders are2𝜋𝑦𝛿𝑥and 2𝜋(𝑦 + 𝛿𝑦)𝛿𝑠repectively and assume 

that 𝑃𝑆 = 𝐴𝑅 = 𝑎𝑟𝑐 𝑃𝑄. Since 𝑃 and 𝑄 are neighbouring points.So, 

the surface generated by revolving the arc PQ about x-axis lies 

between these two surfaces.  

 

 

In limiting case when  
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Integrating between the limits  

 

 

i.e, Area of the surface generated by the curve AB.  

 

 

 

 

 

 

12.5.2 WHEN THE AXIS OF REVOLUTION IS THE Y-

AXIS:- 

 

Proceeding in the same manner we can show that:  

The area of the surface of a solid generated by revolving the curve 

 the y-axis and the abscis   
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12.5.3 WHEN THE AXIS OF REVOLUTION IS ANY 

STRAIGHT LINE  
 

Let the axis of revolution is any straight line AB (which is not 

x-axis or y-axis) and CD be the arc of the curve. Let PM be the length 

of the perpendicular drawn from A any point P on the arc Cd to the 

axis of revolution AB.  

 

The area of the surface generated by revolving the curve CD about AB 

is  

 
Ex. 16  Find the surface area of a sphere of radius a.  

 

Sol.      The sphere is generated by revolving a semi-circle or radius a 

about is bounding diameter  

Equation of the semicircle  

 
Differentiating with respect to x 

 

 

 

 
X varies from –a to +a for the semi-circle  

Hence the required surface area is  

 
=  

 

Ex. 17 Prove that the surface of the prolate spheroid formed by 

revolution of the ellipse of eccentricity e about its major axis is 

equal to  

 
 

Sol.       Let the equation of the ellipse be  
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Differentiating (1) with respect to x we get 

 

 

 

=  

=  

 
Since ellipse is symmetrical about both the axes and for upper 

half of the ellipse, x varies from –a to a  

Hence the surface area generated is  

 
=

 

=

 

 

 

 

 

Thus               

Since we know that area of the ellipse (1) is  
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Thus   

 

12.6 SURFACE REVOLUTION (PARAMETRIC 

FORM) 
 

Let the parametric equation of the curve be  

 
(A) If the area bounded by the curve, the x-axis and the ordinates at 

the points where is revolved about x-axis, 

then the surface area of the solid formed is given by  

 

 

 

 
(B) Similarly, If the area bounded by the curve, the and the abscissa 

at the points where t=a and t=b is revolved about y-axis, then 

the surface area the solid formed is  

 

 

 
 

Illustrative Examples. 

Ex. 18 Find the surface of the solid generated by the revolution of the 

astroid 𝑥 = 𝑎 𝑐𝑜𝑠3𝑡, 𝑦 = 𝑎 𝑠𝑖𝑛3𝑡 or 𝑥
2
3⁄ + 𝑦

2
3⁄ = 𝑎

2
3⁄  about 

𝑥 −axis. 

Sol.       The parametric equations of the curve arc 

𝑥 = 𝑎 cos3 𝑡 , 𝑦 = 𝑎 sin3 𝑡, so 
𝑑𝑥

𝑑𝑡
= −3𝑎 cos2 t sin t and 

𝑑𝑦

𝑑𝑡
= 3𝑎 sin2 t cos t 

Now,  

= √9𝑎2 cos4 𝑡 sin2 𝑡 + 9𝑎2 sin4 𝑡 cos2 𝑡 
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= √9𝑎2 cos2 𝑡 sin2 𝑡 (cos2 𝑡 + sin2 𝑡) 
= 3a cos 𝑡 sin 𝑡 

The given curve is symmetrical about both the axes. Also the 

curve in the first quadrant, 𝑡 varies from  

 

 

= 4𝜋∫ 𝑎 sin3 𝑡

𝜋
2⁄

0

. 3 a cos 𝑡 sin 𝑡 

= 12𝜋𝑎2∫ sin4 𝑡

𝜋
2⁄

0

cos 𝑡  𝑑𝑡 

=  

=  

=  

Thus        

 

Ex. 19  If an ellipse of eccentricity e and semi-major axis  revolve 

about its minor-axis. Show that the surface of the spheroid 

thus generated is  

 
 

Sol.       The parametric equations of the ellipse be  

𝑥 = 𝑎 cos 𝑡 ……………………………………….(1) 

𝑥 = 𝑏 sin 𝑡 ………………………………………..(2) 

 
Now differentiating (1) and (2) with respect to t, we get  
𝑑𝑥

𝑑𝑡
= −𝑎 sin 𝑡 and 

𝑑𝑦

𝑑𝑡
= 𝑏 cos 𝑡 

Since, 
𝑑𝑠

𝑑𝑡
= √(

𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

 

                  = √𝑎2 sin2 𝑡 + 𝑏2 cos2 𝑡 

                  = √𝑎2 sin2 𝑡 + 𝑎2 (1 − 𝑒2)cos2 𝑡          [since 𝑏2 =
𝑎2(1 − 𝑒2)] 

 
𝑑𝑠

𝑑𝑡
= 𝑎√1 − 𝑒2cos2 𝑡 

Hence surface area of the (prolate spheroid) by revolving the 

ellipse about minor axis is 
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= 2 × 2𝜋∫ 𝑥 𝑑𝑠

𝜋
2⁄

0

 

= 2 × 2𝜋∫ 𝑥 
𝑑𝑠

𝑑𝑡

𝜋
2⁄

0

𝑑𝑡 

= 4𝜋∫ 𝑎 cos 𝑡  𝑎√1 − 𝑒2cos2 𝑡

𝜋
2⁄

0

𝑑𝑡 

= 4𝜋∫ 𝑎 cos 𝑡  𝑎√1 − 𝑒2(1 − sin2 𝑡)

𝜋
2⁄

0

𝑑𝑡 

= 4𝜋∫ 𝑎 cos 𝑡  𝑎√(1 − 𝑒2) + 𝑒2 sin2 𝑡)

𝜋
2⁄

0

𝑑𝑡 

Let 𝑒 sin t = 𝑢 ⇒ 𝑒 cos 𝑡  𝑑𝑡 = 𝑑𝑢 

Also when  

Then we have 

 

 

 

 

 

 

 
Ex. 20 Find the surface of the solid formed by the revolution about x-

axis of the loop of the curve  

Sol.      The parametric equations of the curve are  

so 

 

Hence  

=  
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Hence the loop is formed between t=0 and t=  

Hence required surface area  

 

=  

=  

 

 

 
Hence the required surface area is 3  

 

12.7 SURFACE OF REVOLUTION ( POLAR 

FORM) 
 

Let the polar equation of the given curve be  then the surface 

generated by the revolution of the arc of the curve between the raddi 

vector  about the initial line is given by  

 

Where  

 

Illustrative Examples 

Ex 21  Find the surface of the solid formed by the revolution of the 

cardioid  about the initial line.  

Sol.      The equation of the cardioids is  

Differentiating with respect to  

 

 
=  

=  

=  
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Thus   

The cardioid is symmetrical about the initial line. Also, for the 

upper half of the curve,  varies from  

Hence the required surface is  

 

 

 

 

 
Also, when  

Hence  

 

=  

=  

Thus  

 

Ex. 22 Find the surface of the solid generated by the revolution of the 

lemniscates  about a tangent at the pole.  

Sol.        The given equation of the lemniscates 

 
 

 
 

                 Fig.12.7.1 
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Also  

 

 

=  

 
Also for the curve 𝑟2 = 𝑎2 cos 2𝜃 

 

Tangent at the poles are given by 𝑟 = 0 socos 2𝜃 = 0, 2𝜃 =

±
𝜋

2
, 2𝜃 = ±

𝜋

4
 

Let 𝑃(𝑟, 𝜃) be any point on the curve and let 𝑂𝐶 be one of the 

tangent’s at the pole and ∠𝐴𝑂𝐶 =
𝜋

4
. 

From 𝑃 draw 𝑃𝑀, perpendicular to the tangent 𝑂𝐶. Then,  

∠𝑃𝑂𝑀 = ∠𝑃𝑂𝐴 + ∠𝐴𝑂𝐶 = 𝜃 +
𝜋

4
 

𝑃𝑀

𝑂𝑃
= ∠𝑃𝑂𝑀 

𝑃𝑀 = 𝑂𝑃 sin ∠𝑃𝑂𝑀 = 𝑟 𝑠𝑖𝑛  

Since  are the tangents at pole. Therefore for the loop 

 

Hence the required surface is  
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=  

=  

 

= 2√2𝜋𝑎2 [∫ sin 𝜃

𝜋
4⁄

−𝜋 4⁄

 𝑑𝜃 +∫ cos 𝜃

𝜋
4⁄

−𝜋 4⁄

 𝑑𝜃] 

= 4√2𝜋𝑎2 ∫ cos𝜃
𝜋
4⁄

0
 𝑑𝜃=4√2𝜋𝑎2

1

√2
 

[as ∫ 𝑓(𝑥)
𝑎

−𝑎
 𝑑𝑥 = 0 if 𝑓(−𝑥) = −𝑓(𝑥) 

and ∫ 𝑓(𝑥)
𝑎

−𝑎
 𝑑𝑥 = 2 ∫ 𝑓(𝑥)

𝑎

0
𝑖𝑓 𝑓(−𝑥) = 𝑓(𝑥)] 

Therefore, 𝑆 = 4𝜋𝑎2. 
 

12.8 AREA OF THE SURFACE BY DOUBLE 

INTEGRATION  
 

Let the equation of the surface is .Consider a point 

 on the surface surrounding the point. Consider an element of 

area  of the surface. 

Let  be the projection of the area  on 𝑥𝑦 plane. Then  

𝛿𝑥 𝛿𝑦 = 𝛿𝑠 cos 𝛾 

where  is the angle between tangent plane to the given surface at 

𝑃(𝑥, 𝑦, 𝑧) and 𝑥𝑦 plane (𝑧 = 0). 
Then  

 
From (1) 

 

= 𝛿𝑥𝛿𝑦√[1 + (
𝜕𝑧

𝜕𝑥
)
2

+ (
𝜕𝑧

𝜕𝑦
)
2

] 

Hence the required surface is  

 
Where the limits of 𝑥 and 𝑦 are to be taken from the region of 

projection of the given surface on the plane 𝑧 = 0. 
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Illustrative Exampless 

Ex. 23.Find the area of the surface of the sphere  

included between the cylinder  

Sol.          Equation of the sphere is  surface is 

 

 

 
Also the projection of the given surface on the plane z=0 is 

 

Hence the required area of the surface  

 

 
Over half of the circle  

 

 
Over half of the circle  

 

 

 

 

 

 

Hence the required surface is S =  



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 273 
 
 
 

Ex. 24    Find the surface of  that lies inside the 

cyclinder  

Sol.The equation of the surface is  so we have  

2𝑧
𝜕𝑧

𝜕𝑥
= −2𝑥   or  

𝜕𝑧

𝜕𝑥
= −

𝑥

𝑧
  , also 

𝜕𝑧

𝜕𝑦
= 0 

Also the projection of the given surface on the plane𝑧 = 0 is 

𝑥2 = 𝑎2 so 𝑥 = ±𝑎 

Hence limits of 𝑥 is first octant are from 0 to a.  

Also for the cylinder𝑥2 + 𝑦2 = 𝑎2, we have𝑦2 = 𝑎2 − 𝑥2 
Hence the required surface is  

 

=  

=  

=  

=  

 
 

 

 

 
Hence the required surface is  

 

12.9 THEORMES PAPPUS (OR GULDIN) 
 

Pappus, a great mathematician given his theorems of volumes 

and surfaces of solid of revolution in the end of third century. These 

theorems was discovered by P guldin over one thousand year later.  

 

 

12.9.1 THE THEOREM OF PAPPUS FOR THE 

VOLUME 
 

“If a plane closed curve revolves through any angle about an 

axis in its plane which the curve does not intersect, then the volume 
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generated is equal to the product of the area of the close curve and the 

length of the path of its centroid.” 

Proof.  

 
 

 

Let 𝑂𝑋 be the axis of rotation, and 𝐶 be the plane closed curve of Area 

A. Take a point  on the curve and an elementary area  of the 

curve surrounding the point. If the curve revolves about OX through an 

angle  the volume generated by element is Hence the 

volume generated by the whole area A is  

Where the integration is taken over the whole area A.  where  

is the distance of the centroid of the area inclosed by C from 𝑂𝑋.  

𝑉 =length of the path of the centroid × area enclosed by the curve. 

 

12.9.2 THE THEOREM OF PAPPUS FOR THE 

SURFACE 
 

If a plane arc revolves through any angle about an axis in its 

plane which the arc does not intersect, then the area of the surface 

generated is equal to the product of the length of arc and the length of 

path of its centroid.  

Proof:-  

 

Let 𝑂𝑋 be the axis of rotation and 𝐴𝐵 be an arc of lengths of the given 

curve.  

Let 𝑃(𝑥, 𝑦) and 𝑄( be any two neighbouring points 

the curve. Let arc  

If the arc AB revolves about OX through an angle then the area of 

the surface generated by the element PZ is  of the surface  

Hence the area of the surface generated by the whole arc AB  

 

 
where the integration is taken over the arc AB.  

 where  is the distance of the centroid of the arc 𝐴𝐵 from 𝑂𝑋.  

Fig. 10.11.1 
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∫ 𝑆 = length of the path of the centroid × length of arc 𝐴𝐵 

Note. The closed curves or arc in these theorems should not cross the 

axis of revolution.  

 

Illustrative Examples 

 

Ex. 24   Find the volume and surface area of the anchor ring generated 

by the revolving of a circle of radius a about an axis in its 

own plane distance b from the centre  

Sol.         The centroid of the area of a circle and its circumference are 

both    

               at the centre c. By the theorem of Pappus for the volume, the   

                required volume of the anchor ring  

= Area of Circle × length of the path of its centroid  

𝑉 = (𝜋𝑎2). 2𝜋𝑏 

i.e. 𝑉 = 2𝜋2𝑎2𝑏 

Further, by the theorem of Pappus for the surface, the 

required surface area of the anchor ring. 

= (circumference of the circle ×length of the path of its 

centroid) 

 

 
Ex. 25Find the volume of the ring generated by the revolution of the 

cardioid  about the line 

, given that the centroid of the cardioids is 

at a distance  from the pole.  

Sol.      We known that are of the cardioids is  

The given line of revolution is  i.e, 

 

Let G be the centoid of the area of the cardioids.  

It is given that Thus the length of the 

perpendicular from the G on the line of revolution is  

 
The circumference of the circle  

 
Hence the required volume is  

𝑉 = (Area of the cardioids) × (circumference of the circle 

generated by its centroid) 
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12.10 SUMMARY 
 

In this unit following topic were discussed: 

 

1. The volume of the solid generated by the revolution of the arc 

bounded by the curve  the axis and the ordinates 𝑥 =

𝑎 and 𝑥 = 𝑏 is  

 
2. The volume of the solid generated by the revolution of area 

bounded by the curve the and the 

abscissa𝑦 = 𝑎 and 𝑦 = 𝑏 is 

 
3. The volume of the solid generated by the revolution of the area 

bounded by the curve  and the radiivectors𝜃 = 𝛼and 

𝜃 = 𝛽. 

(a) About the initial line 𝜃 = 0 is 𝑉 =
2

3
𝜋 ∫ 𝑟3

𝛽

𝛼
sin 𝜃 𝑑𝜃 

(ii) About the line 𝜃 =
𝜋

2
 is 𝑉 =

2

3
𝜋 ∫ 𝑟3

𝛽

𝛼
cos𝜃 𝑑𝜃 

4. The area of the surface generated by revolving about the x-axis 

an area bounded by the curve 𝑦 = 𝑓(𝑥), the 𝑥 − axis  and the 

line 𝑥 = 𝑎 and 𝑥 = 𝑏 is 

𝑠 = 2𝜋 ∫ 𝑦 𝑑𝑠
𝑏

𝑥=𝑎
= 2𝜋 ∫ 𝑦 

𝑑𝑠

𝑑𝑥

𝑏

𝑥=𝑎
𝑑𝑥, where 

𝑑𝑠

𝑑𝑥
= √1+ (

𝑑𝑦

𝑑𝑥
)
2

 

 

5. The area of the surface generated by revolving about the y-axis 

an area bounded by the curve𝑥 = 𝑓(𝑦), the 𝑦 −axis and the 

two abscissa 𝑦 = 𝑎 and 𝑦 = 𝑏 is  

 

 
6. For the polar curves The surface generated by the 

revolution about the initial line of the arc intercepted between 

the radii vectors  is  

 

where  
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7. If a plane closed curve revolves through any angle about an 

axis in its plane which the curve does not intersect, then the 

volume generated is equal to the product of the area of the 

closed curve and the length of the path of its centroid.(pappus 

theorem for volume) 

8. If a plane arc revolves through any angle about an axis in its 

plane which the arc does not intersect, then the area of the 

surface generated is equal to the product of the length of the arc 

and the length of the path of its centroid. 

 

12.11 GLOSSARY 
 

i. Circumference-the perimeter of a circle or ellipse 

ii. Volume-quantity of three-dimensional space enclosed by a closed 
surface. 

iii. Cardioid- a plane curve traced by a point on the perimeter of a 

circle that is rolling around a fixed circle of the same radius 
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CHECK YOUR PROGRESS 

 

Fill in the blanks in the following:  

1. The volume of the solid generated by the revolution of the area 

bounded by the curve  x-axis and the ordinates 

 about x-axis is  

2. The volume of a hemisphere of radius b is…………….. 

3. The curved surface of a hemisphere of radius a is………………. 

4. The area of the surface of revolution formed by revolving the 

asteroid  is (…………….)  
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12.13SUGGESTED READINGS 
 

i. Differential Calculus for Beginners by Joseph Edwards. 

ii. Text-Book on Differential Calculus by Gorakh Prasad. 

iii. Calculus by R. Kumar. 

iv. Krishna’s Text Book on Calculus by A. R. Vasistha. 

v. Pragati’s Calculus by Sudhir K. Pundir. 

 

12.14TERMINAL QUESTIONS 

 

EXERCISE 
1. Find the volume of a hemisphere of radius ‘a’. 

2. Find the volume of the right circular cone of height h and 

base of radius a.  

3. Find the volume of the solid generated by the revolution 

of the curve  about its asymptote.  

4. Find the volume of the solid obtained by revolving the 

loop of the curve  about the 

axis.  

5. Find the volume of the solid formed by revolving one 

loop of the curve  about the initial line.  

6. Find the surface area of the solid by the revolution of the 

ellipse  about its major axis.  

7. Find the surface area of the solid generated by revolving 

the cycloid  about 

the x-axis.  

8. The area of the cardioids inclueded 

between- , is rotated about the line . 

Find the area of surface generated.  

9. The loop of the curve  revolves 

about the straight line find the volume of the 

solid generated.  

10. Find the curved surface of a hemisphere of radius a.  

 

OBJECTIVE TYPE QUESTIONS 

 

Multiple choice type questions:  

11. Curved surface of a hemisphere of radius a is  

a)𝜋𝑎2b)2𝜋𝑎2c)
4

3
𝜋𝑎2d)5𝜋𝑎2 

12. The volume of the solid generated by revolving the 

cardioids  about the initial line is  

a)
8

3
𝜋𝑎2 b)

4

3
𝜋𝑎2           c)

2

3
𝜋𝑎2d ) none of these 
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13. The area of the surface of revolution formed by 

revolving the curve  about the initial line is 

a)    8𝜋𝑎2              b)    6𝜋𝑎2               c)    4𝜋𝑎2              
d)   2𝜋𝑎2 

14. The surface of the solid generated by the revolution 

about 𝑥 −axis of the area between the curve 𝑦 = 𝑓(𝑥), 
the 𝑥 −axis and the ordinates 𝑥 = 𝑎 and 𝑥 = 𝑏 is 

a) ∫ 2𝜋𝑦𝑑𝑠
𝑏

𝑥=0
        b) ∫ 2𝜋𝑦𝑑𝑥

𝑏

𝑥=𝑎
c) ∫ 2𝜋𝑥𝑑𝑠

𝑏

𝑥=𝑎
      d) 

∫ 𝑑𝑠
𝑏

𝑥=0
 

15. The volume of the solid generated by the revolution of 

the loop of the curve𝑦2 = 𝑥2(2 − 𝑥) about 𝑥 −axis 

a)  
8𝜋

3
                    b)  2𝜋                    d)  

4𝜋

3
               d)  

2𝜋

3
 

True or false type questions 

 

Write “T” or “F” according as the following statement is True or 

false:  

16. The volume generated by the revolution of the area lying 

between the curve  the𝑦 −axis and the line𝑦 =

𝑎and 𝑦 = 𝑏about 𝑦 −axis is given by  

17. The oblate spheroid is generated by revolving the ellipse 

 about its major axis.  

18. The surface area of the segment of a sphere of radius a and 

height h is  

19. The area of the surface of the solid formed by the revolution 

of the cardioid  about the initial line is 

 

 

 

12.15ANSWERS 
 

Check your Problem: 

 

CHQ1. 𝑦2              

CHQ2.  
2

3
𝜋𝑏3                  

CHQ3. 2𝜋𝑎2 

CHQ4.  
12

5
 

 

Terminal questions: 

 

(TQ-1)  
2

3
𝜋𝑎3  

(TQ-2)  
1

3
𝜋2ℎ  
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(TQ-3)  
1

2
𝜋2𝑎3 

(TQ-4)  
23

60
𝜋𝑎3 

(TQ-5)  
√2

24
𝜋𝑎3{3 log(1 + √2) − √2}              

 (TQ-6)  32𝜋{1 + log(2 + √3)} 

(TQ-7)  
64

3
𝜋𝑎2            

(TQ-8)  
48√2

5
𝜋𝑎2            

(TQ-9)  
8√2

15
𝜋𝑎3              

(TQ-10)  2𝜋𝑎2 
(TQ-11)  b             

(TQ-12)  a                     

(TQ-13)  c                      

(TQ-14)  a 

(TQ-15)  c                 

(TQ-16)  T                      

(TQ-17)  F                         

(TQ-18)  F 

(TQ-19)  F                   
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UNIT:-13 BETA AND GAMMA 

FUNCTIONS 

  

CONTENTS 
 

13.1 Introduction 

13.2 Objective 

13.3 Symmetric Property of Beta function 

13.4 Evaluation of Beta function 

13.5 Another form of Beta Function 

13.6 Properties of Gamma Function 

13.7 Another Forms of Gamma Function. 

13.8 Relation Between Beta and Gamma Functions. 

13.9 Some Important results from Beta and Gamma Functions 

13.10  Summary  

13.11 Glossary 

13.12 References 

13.13 Suggested Readings 

13.14 Terminal questions 

13.15  Answers 

 
 

13.1 INTRODUCTION 
 

As introduced by the Swiss mathematician Leonhard Euler in18th 

century, gamma function is the extension of factorial function to real 

numbers. Beta function (also known as Euler's integral of the first 

kind) is closely connected to gamma function; which itself is a 

generalization of the factorial function. 

 

The definite Integral ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥 
1

0
for  𝑚, 𝑛 > 0…....(11.1.1) 

is known as Beta function and denoted by𝐵(𝑚, 𝑛) [read as “Beta 

𝑚,𝑛”] 

where𝑚 and 𝑛 are positive integer or fraction. The Beta function is 

also known as Eularian integral of first kind. The integral is convergent 

if and only if 𝑚, 𝑛 > 0 

Thus 𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥, 𝑓𝑜𝑟 𝑚, 𝑛 > 0
1

0
 

The improper integral   ∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥
∞

0
for𝑛 > 0……….(11.1.2) 

where n is a positive real number, is known as Gamma function, and 

denoted by Γn (Read as ‘Gamma n”).The gamma function is also 

known as Eulerian integral of second kind. The integral is convergent 

for 𝑛 > 0.Thus,𝛤𝑛 = ∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥, 𝑛 > 0
∞

0
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13.2 OBJECTIVES 
 

In this unit, we shall understand 

 

i. Beta functions and its properties 

ii. Gamma functions and its properties 

iii. Relation between Beta and Gamma functions 

iv. Important results from Beta and Gamma functions 

 

13.3 SYMMETRICAL PROPERTY OF BETA 

FUNCTION 
 

Theorem 1.To show that 𝑩(𝒎, 𝒏) = 𝑩(𝒏,𝒎) 
 

Proof:  

We know that 𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
 for 𝑚, 𝑛 >

0…(11.3.1) 

= ∫ (1 − 𝑥)(1− 𝑥)𝑚−1[1 − (1 − 𝑥)]𝑛−1𝑑𝑥
1

0
    

[Since ∫ 𝑓(𝑥𝑑𝑥) = ∫ 𝑓
𝑎

0
(𝑎 − 𝑥)𝑑𝑥

𝑎

0
] 

= ∫ (1 − 𝑥)𝑚−1𝑥𝑛−1𝑑𝑥
1

0

 

= ∫ 𝑥𝑛−1(1 − 𝑥)𝑚−1𝑑𝑥
1

0

 

= 𝐵(𝑛 , 𝑚)[By the definition of Beta function] 

 This shows that Beta function is symmetrical in 𝑚and 𝑛.  

 

13.4 EVALUATION OF BETA FUNCTION 
 

We know that  

𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
 for 𝑚, 𝑛 > 0………………(11.3.1) 

Then the three following cases arises:  

Case 1. When 𝑛 is a positive integer. 

Integrating by parts, taking (1 − 𝑥)𝑛−1 as the first function, 

we have  

𝐵(𝑚, 𝑛) = ∫ (1 − 𝑥)𝑛−1𝑥𝑚−1𝑑𝑥
1

0

 

= [(1 − 𝑥)𝑛−1.
𝑥𝑚

𝑚
]
0

1

 − ∫ (𝑛 − 1)(1 − 𝑥)𝑛−2(−1)
𝑥𝑚

𝑚
𝑑𝑥

1

0

 

= 0 +
(𝑛 − 1)

𝑚
∫ 𝑥𝑚(1 − 𝑥)𝑛−2𝑑𝑥
1

0

 

Again integrating by parts,  
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𝐵(𝑚, 𝑛) =
(𝑛 − 1)(𝑛 − 2)

𝑚(𝑚 + 1)
∫ 𝑥𝑚+1(1 − 𝑥)𝑛−3𝑑𝑥
1

0

 

Repeating this process again and again, we get  

𝐵(𝑚, 𝑛) =
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)……3.2.1

𝑚(𝑚 + 1)(𝑚 + 2)…… . (𝑚 + 𝑛 − 2)
∫ 𝑥𝑚+𝑛−2𝑑𝑥
1

0

 

𝐵(𝑚, 𝑛) =
(𝑛 − 1)(𝑛 − 2)…………3.2.1

𝑚(𝑚 + 1)………… . . (𝑚 + 𝑛 − 2)
[
𝑥𝑚+𝑛−1

𝑚 + 𝑛 − 1
]
0

1

 

𝐵(𝑚, 𝑛) =
(𝑛 − 1)(𝑛 − 2)… .3.2.1)

𝑚(𝑚 + 1)…………(𝑚 + 𝑛 − 1)
. 1 

𝐵(𝑚, 𝑛) =
Γ(n − 1)

m(m+ 1)… . . (m + n − 1)
 

Case 2.When m is a positive integer. 

Since Beta function is symmetrical in 𝑚 and 𝑛 i.e.𝐵(𝑚, 𝑛) = 𝐵(𝑛,𝑚). 

we have 𝐵(𝑚, 𝑛) =
Γ(m−1)

𝑛(𝑛+1)(𝑛+2)….(𝑛+𝑚−1)
 

(by interchanging m and n in equation ) 

 

Case 3.When both m and n are positive integers. 

Let us take of case I 

𝐵(𝑚, 𝑛) =
Γ(n − 1)

m(m+ 1)… . . (m + n − 1)
 

Multiplying the numerator and denominator byΓ(m− 1) 

𝐵(𝑚, 𝑛) =
Γ(n − 1) Γ(m− 1)

Γm− 1 .m(m+ 1)………(m + n − 1)
 

Therefore,𝐵(𝑚, 𝑛) =
Γ(m−1) Γ(n−1)

Γ(m+n−1)
 

 

13.5 ANOTHER FORM OF BETA FUNCTION 
 

Form 1:Show that 

𝑩(𝒎,𝒏) = ∫
𝒙𝒎−𝟏

(𝟏 + 𝒙)𝒎+𝒏
𝒅𝒙

∞

𝟎

= ∫
𝒙𝒏−𝟏

(𝟏 + 𝒙)𝒎+𝒏
𝒅𝒙

∞

𝟎

    𝒎,𝒏 > 0 

 

Proof.We know that, 

𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
 ……………….(13.5.1) 

Put 𝑥 =
1

1+𝑦
⇒ 1 − 𝑥 = 1 −

1

1+𝑦
=

𝑦

1+𝑦
and 

𝑑𝑥 = −
1

(1+𝑦)2
𝑑𝑦When 𝑥 = 0 ⇒

1

1+𝑦
= 0 ⇒ 1 + 𝑦 = ∞ ⇒

𝑦 = ∞ 𝑎𝑛𝑑  

When 𝑥 = 1 ⇒
1

1+𝑦
= 1 ⇒ 1 + 𝑦 = 1 ⇒ 𝑦 = 0 

Putting all these value in (11.4.1), we get  

𝐵(𝑚, 𝑛) = ∫ (
1

1 + 𝑦
)
𝑚−10

∞

(
𝑦

1 + 𝑦
)
𝑛−1

(−
1

(1 + 𝑦)2
) 𝑑𝑦 
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⇒ 𝐵(𝑚, 𝑛) = −∫
𝑦𝑛−1

(1 + 𝑦)𝑚 + 𝑛
𝑑𝑦

0

∞

 

⇒ 𝐵(𝑚, 𝑛) = ∫
𝑦𝑛−1

(1 + 𝑦)𝑚+𝑛
𝑑𝑦

∞

0

[∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= −∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

] 

⇒ 𝐵(𝑚, 𝑛) = ∫
𝑥𝑛−1

(1 + 𝑥)𝑚+𝑛
𝑑𝑥

∞

0

               𝐴𝑠 [∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑡)𝑑𝑡
𝑎

𝑏

] 

⇒ 𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛
𝑑𝑥                                

∞

0
[As 𝐵(𝑚, 𝑛) =

𝐵(𝑛,𝑚)] 
 

Form 2.Show that 

𝑩(𝒎, 𝒏) = ∫
𝒙𝒎−𝟏 + 𝒙𝒏−𝟏

(𝟏 + 𝒙)𝒎+𝒏
𝒅𝒙

𝟏

𝟎

 

Proof.We know that  

𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

∞

0
𝑑𝑥                                          [From 

Form1] 

By using the property of definite integral 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎

𝑏

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥; 𝑎 ≤ 𝑐 ≤ 𝑏

𝑏

𝑐
, we get 

𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

1

0
𝑑𝑥 + ∫

𝑥𝑚−1

(1+𝑥) 𝑚+𝑛 𝑑𝑥
∞

1
 ……(11.4.2) 

Now solving ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

∞

1
𝑑𝑥……………………(11.4.3) 

Put 𝑥 =
1

𝑡
 ⇒ 𝑑𝑥 = −

1

𝑡2
𝑑𝑡 

When 𝑥 → 1 then 𝑡 → 1 and 𝑥 → ∞ then 𝑡 → 0 

Putting these values in (11.4.3), we get  

∫
𝑥𝑚−1

(1 + 𝑥)𝑚+𝑛

∞

1

𝑑𝑥 = ∫
(
1
𝑡)
𝑚−1

(1 +
1
𝑡)
𝑚+𝑛 (−

1

𝑡2
)

0

1

𝑑𝑡 

                              = ∫ −
𝑡𝑚+𝑛

(1 + 𝑡)𝑚+𝑛 . 𝑡𝑚+1

1

0

𝑑𝑡 

                              = ∫
𝑡𝑛−1

(1 + 𝑡)𝑚+𝑛
𝑑𝑡

1

0

 

∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

∞

1
𝑑𝑥 = ∫

𝑥𝑛−1

(1+𝑥)𝑚+𝑛

1

0
    𝑑𝑥                     [Because 

∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
] 

Now putting the value of ∫
𝑥𝑚−1

(1+𝑥)𝑚+𝑛

∞

1
 in equation (11.4.2), we 

get 

𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1𝑑𝑥

(1 + 𝑥)𝑚+𝑛

1

0

𝑑𝑥 +∫
𝑥𝑛−1

(1 + 𝑥)𝑚+𝑛
𝑑𝑥

1

0
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⇒ 𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1 + 𝑥𝑛−1

(1 + 𝑥)𝑚+𝑛
𝑑𝑥

1

0

 

Hence, 𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1+𝑥𝑛−1

(1+𝑥)𝑚+𝑛
𝑑𝑥

1

0
 

Form 3. Show that  

𝑩(𝒎,𝒏) = 𝒂𝒎𝒃𝒏∫
𝒙𝒎−𝟏𝒅𝒙

(𝒂𝒙 + 𝒃)𝒎+𝒏

∞

𝟎

 

Proof.    We know that,  

𝐵(𝑚, 𝑛) = ∫
𝑦𝑚−1

(1 + 𝑦)𝑚+𝑛

∞

0

𝑑𝑦 

Putting 𝑦 =
𝑎𝑥

𝑏
⇒  𝑑𝑦 =

𝑎

𝑏
𝑑𝑥 

When 𝑦 → 0then 𝑥 → 0and 𝑦 → ∞ then 𝑥 → ∞, we get 

𝐵(𝑚, 𝑛) = ∫
(
𝑎
𝑏 𝑥)

𝑚−1

(1 +
𝑎𝑥
𝑏 )

𝑚+𝑛

∞

0

𝑑𝑥 

                = 𝑎𝑚𝑏𝑛∫
𝑥𝑚−1

(𝑎𝑥 + 𝑏)𝑚+𝑛

∞

0

𝑑𝑥 

Form 4. Show that.  

∫ (𝒙 − 𝒃)𝒎−𝟏(𝒂 − 𝒙)𝒏−𝟏𝒅𝒙
𝒂

𝒃

= (𝒂 − 𝒃)𝒎+𝒏−𝟏𝑩(𝒎,𝒏) 

 

Proof.    We know that 

𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
………………………(11.4.4) 

Putting 𝑥 =
𝑦−𝑏

𝑎−𝑏
⇒  𝑑𝑥 =

𝑑𝑦

𝑎−𝑏
 

When 𝑥 → 0 then𝑦 → 𝑏   and 𝑥 → 1 then 𝑦 → 𝑎 

Substituting these values in equation 11.4.4 we get.  

𝐵(𝑚, 𝑛) = ∫ (
𝑦 − 𝑏

𝑎 − 𝑏
)
𝑚−1

(
𝑎 − 𝑦

𝑎 − 𝑏
) 𝑛−1.

𝑑𝑦

𝑎 − 𝑏

1

0

 

                =
1

(𝑎 − 𝑏)𝑚+𝑛−1
∫ (𝑦 − 𝑏)𝑚−1
𝑎

𝑏

(𝑎 − 𝑦)𝑛−1𝑑𝑦 

=
1

(𝑎 − 𝑏)𝑚+𝑛−1
∫ (𝑥 − 𝑏)𝑚−1
𝑎

𝑏

(𝑎 − 𝑥)𝑛−1𝑑𝑥                [∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

] 

Hence, ∫ (𝑥 − 𝑏)𝑚−1
𝑎

𝑏
(𝑎 − 𝑥)𝑛−1𝑑𝑥 = (𝑎 − 𝑏)𝑚+𝑛−1 𝐵(𝑚, 𝑛) 
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13.6 PROPERTIES OF GAMMA FUNCTION 
 

Show that  

i) 𝜞(𝒏+ 𝟏) = 𝒏 𝜞(𝒏 )when𝒏 > 0 

ii) 𝜞(𝒏) = (𝒏 − 𝟏)! where 𝐧 is a positive integer. 

 

Proof. (i) We know that 

𝛤𝑛 =

∫ 𝑒−𝑥 . 𝑒𝑛−1𝑑𝑥
∞

0
, 𝑛…………………………………………

……..…(11.5.1) 

𝛤( 𝑛 + 1) = ∫ 𝑒−𝑥 . 𝑥(𝑛+1)−1𝑑𝑥
∞

0

 

⇒ 𝛤(𝑛 + 1) = ∫ 𝑒−𝑥𝑥𝑛𝑑𝑥
∞

0

 

Integrating by parts takingxnas first function we get 

𝛤𝑛 + 1 = [𝑥𝑛(−𝑒𝑥)]0
∞ −

∫ 𝑛𝑥𝑛−1(−𝑒−𝑥)𝑑𝑥
∞

0
……………………..……(11.5.2) 

Now, lim 
𝑥→∞

[𝑒−𝑥𝑥𝑛] = lim 
𝑥→∞

𝑥𝑛

𝑒𝑥
= 𝑙𝑖𝑚
𝑥→∞

𝑥𝑛

1+𝑥+
𝑥2

2!
+⋯+

𝑥𝑟

𝑟!
+⋯

𝑥𝑛

𝑛!
+⋯

 

Dividing numerator and denominator with xn,we get 

lim 
𝑥→∞

[𝑒−𝑥𝑥𝑛] = lim
𝑥→∞

1
1

𝑥𝑛
+

1

𝑥𝑛−1
+

1

𝑥𝑛−22!
+⋯+

1

𝑥𝑛−𝑟𝑟!
+⋯+

1

𝑛!
+

𝑥

𝑛+1!
+⋯
=

0……(11.5.3) 

Using value of equation (11.5.3) in equation (11.5.2), we 

get 

𝛤𝑛 + 1 = 0 + 𝑛∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥
∞

0

 

𝛤𝑛 + 1 = 𝑛𝛤𝑛which proves the result (i)  

This relation is known as reduction formula.   

(ii) We know that 𝛤𝑛 + 1 = 𝑛𝛤𝑛 

Replacing𝑛by𝑛 − 1, we get 

𝛤𝑛 = (𝑛 − 1)𝛤𝑛 − 1 

Similarly,𝛤𝑛 − 1 = (𝑛 − 2)𝛤𝑛 − 2, 𝛤𝑛 − 2 =
(𝑛 − 3)𝛤𝑛 − 3etc. 

Hence if n is a positive integer, then proceeding as above, 

we get 

𝛤𝑛 = (𝑛 − 1)(𝑛 − 2)(𝑛 − 3)… .3.2.1. 𝛤1 

NowΓ1 = ∫ e−xx1−1dx = ∫ e−xdx
∞

0
= [−e−x]0

∞∞

0
= 1 

Hence 𝛤𝑛 = (𝑛 − 1)(𝑛 − 2)(𝑛 − 3)… . .3.2.1 = (𝑛 − 1)! 
It may be remember that 𝛤0 = ∞and 𝛤(−𝑛) = ∞where n 

is a positive integer.  

 

13.7 ANOTHER FORMS OF GAMMA 

FUNCTION. 
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Form 1.Show that 
𝜞𝒏

𝒄𝒏
= ∫ 𝒆−𝒄𝒚𝒚𝒏−𝟏𝒅𝒚

∞

𝟎

 

Proof.We have𝛤𝑛 =

∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥
∞

0
………………………………………………(13.7.1) 

Put 𝑥 = 𝑐𝑦 so that𝑑𝑥 = 𝑐𝑑𝑦; when 𝑥 = 0 then 𝑦 = 0and 

when 𝑥 = ∞ then 𝑦 = ∞ 

𝛤𝑛 = ∫ 𝑒−𝑐𝑦(𝑐𝑦)𝑛−1𝑐𝑑𝑦
∞

0

 

= ∫ e−cycnyn−1dy
∞

0

 

Hence, ∫ 𝑒−𝑐𝑦𝑦𝑛−1𝑑𝑦 =
𝛤𝑛

𝑐𝑛

∞

0
 

Form 2.Show that 

     𝜞𝒏 = ∫ [𝒍𝒐𝒈 (
𝟏

𝒚
)]
𝒏−𝟏

𝒅𝒚
𝟏

𝟎

 

Proof.We know that Γn =

∫ e−xxn−1dx
∞

0
…………………………………………..(13.7.2) 

Put e−x = y ⇒ x = log
1

y
 

Differentiate both side w.r.t. x, we get 

 −e−xdx = dy;  when x = 0 then y = 1 and when x =
∞ theny = 0 

Substitute these values in equation (11.6.2), we get 

Γn = ∫ − [log(
1

y
)]
n−1

dy
0

1

 

Hence,Γn = ∫ [log (
1

y
)]
n−1

dy
1

0
 

 

Form 3.Show that 

∫ 𝐞−(𝐲)
𝟏
𝐧⁄ 𝐝𝐲 = 𝚪𝐧 + 𝟏

∞

𝟎

 

Proof.We know that  

Γn = ∫ e−xxn−1dx
∞

0

 

Put xn = y ⇒  x = y
1
𝑛 

Differentiate both side w.r.t. x, we get 

nxn−1dx = dy; when x = 0 then y = 0 and when x =
∞ theny = ∞, we get 

Γn = ∫ e−y
1
𝑛
dy

n

∞

0

 

⇒ nΓn = ∫ e−y
1
𝑛dy

∞

0
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⇒ Γn + 1 = ∫ e−y
1
𝑛dy

∞

0

 

 

13.8 RELATION BETWEEN BETA AND 

GAMMA FUNCTIONS. 
 

1. Show that 

 𝐁(𝐦,𝐧) =
𝚪𝐦 𝚪𝐧

𝚪(𝐦+ 𝐧)
,𝐦 > 0, 𝑛 > 0 

Proof. We know that from the transformation of Gamma function  

Γm = zm ∫ e−zxxm−1dx
∞

0
 

………………………………(13.8.1) 

        = ∫ zme−zxxm−1dx
∞

0

 

Multiplying both the sides bye−zzn−1, we get 

Γm e−zzn−1 = ∫ e−z(1+x)zm+n−1xm−1dx
∞

0
 ……………(13.8.2) 

Now integrating both the sides of equation (13.8.2) with respect 

to 𝑧 from 0 to ∞,we get 

Γm∫ e−zzn−1dx = ∫ [∫ e−z(1+x)zm+n−1dz
∞

0

] xm−1dx
∞

0

∞

0

 

            ⇒ Γm Γn = ∫
Γ(m+n)

(1+x)m+n
xm−1dx

∞

0
(from transformation of 

Gamma function) 

                = Γ(m+ n)∫
xm−1

(1 + x)m+n

∞

0

 

⇒ Γm Γn = Γ(m + n) B(m,n)   (fromTransormation of Beta 

function) 

Hence, B(m, n) =
Γm Γn

Γ(m+n)
 

 

2. Show that  

∫ 𝐬𝐢𝐧𝟐𝐧−𝟏𝐜𝐨𝐬𝟐𝐧−𝟏𝛉 𝐝𝛉 =
𝚪𝐦 𝚪𝐧

𝚪𝐦 + 𝚪𝐧
,𝐦 > 0,𝒏 > 0

𝛑
𝟐⁄

𝟎

 

Proof. We know that  

B(m, n) = ∫ xm−1(1 − x)n−1dx
1

0
 ……………………(13.8.3) 

B(m, n) =
ΓmΓn

Γm+n
 …………………………….(13.8.4) 

From equations (13.8.3) and (11.8.4), we get 

∫ xm−1(1 − x)n−1dx =
1

0
Γm Γn

Γ(m+n)
…………………………(13.8.5) 

 

Let x = sin2θ so that dx = 2 sin θ cos θ dθ 

When x → 0 then θ → 0 and when x → 1 then θ →
π

2
 

Therefore,  
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∫ xm−1(1 − x)n−1dx
1

0

= ∫ sin2m−2θ(1 − sin2θ)n−12 sin θ cosθ dθ

π
2⁄

0

 

                                         =

2 ∫ sin2m−1θcos2n−1θdθ
π
2⁄

0
……………………….(13.8.6) 

From equation(13.8.5) and equation(13.8.6) , we get 

2∫ sin2m−1θcos2n−1θdθ =
Γm Γn

2 Γ(m + n)

π
2⁄

0

 

Substituting 2𝑚 − 1 = 𝑝and 2𝑛 − 1 = 𝑞, the result can also be 

put in the form. ∫ sinpθcosqθdθ =
Γ(
p+1

2
) Γ(

q+1

2
)

2 Γ(
p+q+2

2
)

π
2⁄

0
 

 

13.9 SOME IMPORTANT RESULTS FROM 

BETA AND GAMMA FUNCTIONS 
 

 

1. Show that𝚪(𝐧) 𝚪(𝟏 − 𝐧) =
𝛑

𝐬𝐢𝐧𝐧𝛑
, 𝐰𝐡𝐞𝐫𝐞 𝟎 < 𝑛 < 1 

Proof. We have B(m, n) =

∫
xm−1

(1+x)m+n
dx

∞

0
……………………….………………………(13.9.1) 

andB(m, n) =
Γ(m) Γ(n)

Γ(m+n)
, m > 0, 𝑛 > 0 …………….(13.9.2) 

Now, from equations (11.9.1) and (11.9.2), we get 
Γ(m) Γ(n)

Γ(m+n)
= ∫

xm−1

(1+x)m+n
dx

∞

0
 …………...…………….(13.9.3) 

Putting m + n = 1 or m = 1 − n in (13.9.3), we get 

Γ(1 − n)Γ(n)

Γ1
= ∫

xn−1

1 + x
dx where 0 < 𝑛 < 1

∞

0

 

But we know thatΓ1 = 1 and∫
xn−1

1+x
dx =

π

sinnπ

∞

0
where 0 < 𝑛 <

1 

HenceΓ(n) Γ(n − 1) =
π

sinnπ
, 0 < 𝑛 < 1 

2. Show that𝚪
𝟏

𝟐
= √𝛑 

Proof. We know that B(m,n)=∫ xm−1(1 − x)n−1dx
1

0
…(13.9.4) 

B(m, n) =
ΓmΓn

Γm+n
…………………………(13.9.5) 

Now, from equations (13.9.4) and (13.9.5), we get 
Γ(m) Γ(n)

Γ(m+n)
= ∫ xm−1(1 − x)n−1dx

1

0
 …….(13.9.6) 

Putting m = n =
1

2
in (13.9.5), we get 

B (
1

2
,
1

2
) =

Γ
1

2
Γ
1

2

Γ1
= (Γ

1

2
)
2

      (because Γ1 = 1).........(13.8.7) 

Now, Putting m = n =
1

2
in (13.8.4), we get 
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B (
1

2
,
1

2
) = ∫ x

1
2⁄ −1(1 − x)

1
2⁄ −1 dx

1

0

 

⇒ ∫ x−
1
2⁄ (1 − x)−

1
2⁄  dx

1

0

 

Now, put x = sin2θ so dx = 2 sin θ cos θ dθ 

Also when x → 0 then θ → 0 and when x → 1, θ →
π

2
, we get 

B (
1

2
,
1

2
) = ∫

1

sinθ
.
1

cosθ
2 sin θ cosθ dθ

π
2⁄

0

 

⇒ B(
1

2
,
1

2
) = 2∫ dθ = π

π
2⁄

0

 

Substituting the value of B (
1

2
,
1

2
)in equation (13.8.7), we get 

(Γ
1

2
)
2

= π 

Hence,   Γ
1

2
= √π 

3. Showthat  

∫ 𝒆−𝒙
𝟐
𝒅𝒙 =

√𝝅

𝟐

∞

𝟎

 

Proof.Let 𝐴 = ∫ 𝑒−𝑥
2
𝑑𝑥

∞

0
 

Let𝑥2 = 𝑡 ⇒  2𝑥𝑑𝑥 = 𝑑𝑡 ⇒ 𝑑𝑥 =
1

2𝑥 
𝑑𝑡 =

1

2
𝑡−
1
2⁄ 𝑑𝑡…(13.8.8) 

Also when 𝑥 → 0 then 𝑡 → 0 and when 𝑥 → ∞ then 𝑡 → ∞ 

Putting these values in equation (13.8.8), we get 

𝐴 = ∫ 𝑒−𝑡
1

2
𝑡−
1
2⁄ 𝑑𝑡

∞

0

 

   =
1

2
∫ 𝑒−𝑡𝑡

1
2⁄ −1𝑑𝑡

∞

0

 

   =
1

2
 Γ
1

2
=
√π

2
 

Hence, ∫ 𝑒−𝑥
2
𝑑𝑥 =

1

2
√𝜋

∞

0
 

4. Show that 

𝐁(𝐧, 𝐧) =
√𝛑 𝚪𝐧

𝟐𝟐𝐧−𝟏 𝚪𝐧 +
𝟏
𝟐

 

Proof.We know that 𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
…(13.8.9) 

Also, 𝐵(𝑛, 𝑛) = ∫ 𝑥𝑛−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
 ………(13.8.10) 

Let  𝑥 = 𝑠𝑖𝑛2𝜃 ⇒ 𝑑𝑥 = 2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑑𝜃  

When 𝑥 → 0 then 𝜃 → 0 and when 𝑥 → 1 then 𝜃 →
𝜋

2
 

Using these values in equation (13.8.10), we get  

𝐵(𝑛,𝑚) = ∫ 2. 𝑠𝑖𝑛2𝑛−1𝜃 𝑐𝑜𝑠2𝑛−1𝜃 𝑑𝜃

𝜋
2⁄

0

 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 291 
 
 
 

 = ∫
2(2𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃)2𝑛−1

22𝑛−1

𝜋
2 ⁄

0

𝑑𝜃 

=
1

22𝑛−2
∫ (𝑠𝑖𝑛 2𝜃)2𝑛−1𝑑𝜃
𝜋
2⁄

0
………………(13.8.11) 

Let 2𝜃 = 𝑡 ⇒  𝑑𝜃 =
𝑑𝑡

2
,also when 𝜃 → 0then𝑡 → 0and 

when 𝜃 →
𝜋

2
then𝑡 → 𝜋. Using these values in equation 

(13.8.11), we get when 

𝐵(𝑛, 𝑛) =
1

22𝑛−1
∫ 𝑠𝑖𝑛2𝑛−1𝑡𝑑𝑡
𝜋

0

 

  =
2

22𝑛−1
∫ 𝑠𝑖𝑛2𝑛−1𝑡𝑑𝑡     

𝜋
2⁄

0

 

{∵ ∫ 𝑓(𝑥)𝑑𝑥 = 2∫ 𝑓(𝑥)𝑑𝑥 )
𝑎

0

2𝑎

0
when𝑓(2𝑎 − 𝑥) = 𝑓(𝑥)} 

=
2

22n−1
.
 Γ(n) Γ (

1
2)

2 Γ (n +
1
2
)
[∵ ∫ sinpθcosqθ dθ

π
2⁄

0

=
Γ (
p + 1
2 )  Γ (

q + 1
2 )

2 Γ (
p + q + 2

2 )
] 

Hence,𝐵(𝑛, 𝑛) =  
 𝛤(𝑛) 𝛤(

1

2
)

22𝑛−1 𝛤(𝑛+
1

2
)
 

 

5. Legendre-Duplication formula 

 

Show that 

𝜞(𝒏)𝜞 (𝒏 +
𝟏

𝟐
) =

√𝝅

𝟐𝟐𝒏−𝟏
𝜞(𝟐𝒏), 𝒏 > 0 

Proof. From the above article, we have  

𝐵(𝑛, 𝑛) =  
 𝛤(𝑛) 𝛤 (

1
2)

22𝑛−1 𝛤 (𝑛 +
1
2)

 

               =
√𝜋

22𝑛−1
 𝛤(𝑛)

 𝛤(𝑛+
1

2
)
 (∵ 𝛤 (

1

2
) = √𝜋 )…………(13.8.12) 

and𝐵(𝑛, 𝑛) =
 𝛤(𝑛) 𝛤(𝑛)

2 𝛤(𝑛+𝑛)
[𝐵(𝑚, 𝑛) =

 𝛤(𝑛) 𝛤(𝑚)

 𝛤(𝑚+𝑛)
]……...(13.8.13) 

From (13.8.12) and (13.8.13) we have 

 𝛤𝑛 𝛤𝑛

 𝛤2𝑛
=

√𝜋

22𝑛−1
 𝛤𝑛

 𝛤𝑛 +
1
2

 

Hence 𝛤𝑛 𝛤𝑛 +
1

2
=

√𝜋

22𝑛−1
 𝛤2𝑛 

 

 

6. Show that 
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𝜞(
𝟏

𝒏
)𝜞 (

𝟐

𝒏
) 𝜞 (

𝟑

𝒏
)………… . . 𝜞 (

𝒏−𝟏

𝒏
) =

𝟐
𝒏−𝟏
𝟐 𝝅

𝒏−𝟏
𝟐

𝒏 
𝟏
𝟐

, where 𝒏 is a 

positive integer.  

Proof. Let 𝐴 = 𝛤 (
1

𝑛
)𝛤 (

2

𝑛
)𝛤 (

3

𝑛
)………… . . 𝛤 (

𝑛−2

𝑛
) 𝛤 (

𝑛−1

𝑛
) 

           = 𝛤 (
1

𝑛
)𝛤 (

2

𝑛
)𝛤 (

3

𝑛
)………… .𝛤 (1 −

2

𝑛
) 𝛤 (1 −

1

𝑛
)…….(13.8.14) 

Writing in the reverse order we get.  

𝐴 = 𝛤 (1 −
1

𝑛
) 𝛤 (1 −

2

𝑛
)……… . 𝛤 (

2

𝑛
)𝛤 (

1

𝑛
)…………(13.8.15) 

Multiplying (11.8.14) and (11.8.15), we get  

𝐴2 = [𝛤 (
1

𝑛
)  𝛤 (1 −

1

𝑛
)] ⌈𝛤 (

2

𝑛
)𝛤 (1 −

2

𝑛
)⌉……… [𝛤 (1

−
2

𝑛
)𝛤 (

2

𝑛
)] [𝛤 (1 −

1

𝑛
)𝛤 (

1

𝑛
)] 

      =
𝜋

𝑠𝑖𝑛
𝜋
𝑛

.
𝜋

𝑠𝑖𝑛
2𝜋
𝑛

…………
𝜋

sin
(𝑛 − 2)𝜋

𝑛

.
𝜋

sin
(𝑛 − 1)𝜋

𝑛

 

[∵ 𝛤(𝑛) 𝛤(1 − 𝑛) =
𝜋

sin 𝑛𝜋
for 0 < 𝑛 < 1] 

Therefore, 𝐴2 =
𝜋𝑛−1

𝑠𝑖𝑛
𝜋

𝑛
sin

2𝜋

𝑛
……… sin

(𝑛−2)𝜋

𝑛
sin

(𝑛−1)𝜋

𝑛

………………(13.8.16) 

Now we use the following trigonometric identity  
sin 𝑛𝜃

sin𝜃
= 2𝑛−1 sin (𝜃 +

𝜋

𝑛
) sin (𝜃 +

2𝜋

𝑛
)…………….(13.8.17) 

Taking limit as 𝜃 → 0in equation (11.8.17), we get 

lim
𝜃→0

sin 𝑛𝜃

sin 𝜃
= lim
𝜃→0

{2𝑛−1 sin (𝜃 +
𝜋

𝑛
) sin (𝜃

+
2𝜋

𝑛
)……… . . sin (𝜃 + (

𝑛 − 1

𝑛
)𝜋)} 

⇒ lim
𝜃→0

sin 𝑛𝜃

sin 𝜃
= lim
𝜃→0

{2𝑛−1 sin
𝜋

𝑛
sin
2𝜋

𝑛
……… . . sin (

𝑛 − 1

𝑛
)𝜋} 

lim
𝜃→0

{2𝑛−1 sin
𝜋

𝑛
sin
2𝜋

𝑛
……… . . sin (

𝑛 − 1

𝑛
)𝜋} = lim ⇒

sin 𝑛𝜃

sin 𝜃

= lim
𝜃→0

 𝑛

sin 𝑛𝜃
𝑛𝜃
sin 𝜃
𝜃

 

                                                                                           

= 𝑛
lim
𝜃→0

sin 𝑛𝜃
𝑛𝜃

lim
𝜃→0

sin 𝜃
𝜃

= 𝑛 

Therefore, sin
𝜋

𝑛
sin

2𝜋

𝑛
……… . . sin (

𝑛−1

𝑛
) 𝜋 =

𝑛

2𝑛−1
 ….(13.8.18) 

Using equation (13.8.18) in equation (13.8.16), we get 
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𝐴2 =
𝜋𝑛−1

𝑛

2𝑛−1

=
2𝑛−1𝜋𝑛−1

𝑛
⇒𝐴 =

2
𝑛−1
2 𝜋

𝑛−1
2

𝑛
1
2

 

 
7. Show that  

(a) ∫ 𝒆−𝒂𝒙𝒄𝒐𝒔 𝒃𝒙. 𝒙𝒎−𝟏𝒅𝒙 =
𝚪𝒎

(𝒂𝟐+𝒃𝟐)
𝒎
𝟐⁄
𝒄𝒐𝒔 𝒎𝜽

∞

𝟎
 

(b) ∫ 𝒆−𝒂𝒙𝒔𝒊𝒏𝒃𝒙. 𝒙𝒎−𝟏𝒅𝒙 =
𝚪𝒎

(𝒂𝟐+𝒃𝟐)
𝒎
𝟐⁄

∞

𝟎
𝒔𝒊𝒏 𝒎𝜽 

Proof. We know that 

∫ 𝑒−𝑝𝑥𝑥𝑚−1𝑑𝑥 =
𝛤(𝑚)

𝑝𝑚
                 𝑚 > 0, 𝑝 > 0

∞

0

 

put p = a − ib, we get 

∫ e−(a−ib)x. xm−1dx =
Γm

(a − ib)m

∞

0

 

or ∫ e−axeibxxm−1dx =
Γm[a + ib]m

[(a − ib)(a + ib)]m

∞

0

 

or ∫ e−ax. eibxxm−1dx =
Γm(a + ib)m

(a2 + b2)m

∞

0

…………… . . (2) 

[eix = cosθ + i sinθ] 
Let a + ib = r(cosθ + i sin θ) 
Equating real and imaginary parts we get  

r cos θ = a……… . (3) 
r sin θ = b……… . (4) 

Squaring and adding (3) and (4), we get 

r2 = a2 + b2 ⇒ r ± (a2 + b2)
1
2⁄ …………………(5) 

Dividing (4)by (3),we get 

tan θ = b a⁄ ⇒ θ = tan−1(b a⁄ ) ………………(6) 

Now (a + ib)m = [r(cos θ + i sin θ)]m 

rm[cos mθ + i sin mθ]………… … . [By De′Moirer′s theorem] 
Substituting these values in equation (2) 

∫ e−ax[cos bx + i sin bx]xm−1dx =
Γmrm[cosmθ + isin mθ]

(a2 + b2)m

∞

0

 

Equating real and imaginary parts on both the sides.  

∫ e−ax cos bx . xm−1dx =
Γm. rmcos mθ

(a2 + b2)m

∞

0

 

∫ e−axsinbx. xm−1dx =
Γm. rmsinmθ

(a2 + b2)m

∞

0

 

∫ e−ax cos bx . xm−1dx =
Γm(a2 + b2)

m
2⁄ sinmθ

(a2 + b2)m

∞

0

 

∫ e−ax sin bx . xm−1dx = Γm.
(a2 + b2)

m
2⁄ sinmθ

(a2 + b2)m

∞

0

 

Hence.∫ e−ax cos bx . xm−1dx =
Γmcos mθ

(a2 + b2)
m
2⁄

∞

0

…………(7) 
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∫ e−ax sin bx . xm−1dx =
Γmsinmθ

(a2 + b2)
m
2⁄
……………(8)

∞

0

 

Where θ = tan−1(b a⁄ ) 

Deduction (i)Let a = 0, then from (5)and (6 )we get 

r = b and θ = tan−1
b

0
= tan−∞ = π 2⁄  

∫ xm−1cosbxdx =
Γm

bm
cos

mπ

2
… . (9)

∞

0

 

∫ xm−1sinbxdx =
Γm

bm
 sin

mπ

2
…………(10)

∞

0

 

(ii)Let m = 1, then Γm = Γn = 1, then from (7)and (8)we get.  

∫ e−axcosbxdx =
cosθ

(a2 + b2)
1
2⁄
…… . . (11)

∞

0

 

and ∫ e−axsinbxdx =
sinθ

(a2 + b2)
1
2⁄
… . (12)

∞

0

 

But tanθ = b a⁄  so sinθ =
b

√a2+b2
 and cosθ =

a

√a2+b2
 

Then from (11) and (12) we get 

∫ e−axcosbxdx =
a

a2 + b2

∞

0

 

∫ e−axsinbxdx =
b

a2 + b2

∞

0

 

 

8. To show that  

∫ (𝐱 − 𝐚)𝐩(𝐛 − 𝐱)𝐪𝐝𝐱 = (𝐛 − 𝐚)𝐩+𝐪+𝟏
𝐛

𝐚

𝐩!𝐪!

(𝐩 + 𝐪 + 𝟏)!
 

where 𝒑 and 𝒒 are positive integers. 

Proof:- Let A = ∫ (x − a)p(b − x)qdx
b

a
 

Putting x = acos2θ + bsin2θ so that 
dx = 2acosθ(−sinθ) dθ + 2bsinθcosθdθ 

      = 2(b − a) sin θ cosθ dθ 

when x = a then a = acos2θ + bsin2θ 

 ⇒ a − acos2θ = bsin2θ 

⇒  a − acos2θ = bsin2θ 

asin2θ − bsin2θ = 0 
(a − b)sin2θ = 0 

sin2θ = 0 ⇒ θ = 0 

When 𝑥 = 𝑏 then  

b = acos2θ + bsin2θ 

b(1 − sin2θ) = acos2θ 
(b − a)cos2θ = 0 

cos2θ = 0 ⇒ θ = π 2⁄  

and x − a = acos2θ + bsin2θ − a 
= bsin2θ − a(1 − cos2θ) 
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= bsin2θ − asin2θ 

= (b − a)sin2θ 

b − x = b − acos2θ − bsin2θ 

           = b(1 − sin2θ) − acos2θ 

          = bcos2θ − acos2θ 

          = (b − a)cos2θ 

Putting all these values in equation (1) we get 

A = ∫ (b − a)psin2pθ(b − a)qθ sin2qθ 2(b − a)sinθcosθ

π
2⁄

0

 

= 2(b− a)p+q+1∫ sin2p+1θcos2q+1θdθ

π
2⁄

0

 

= 2(b − a)p+q+1.
p! q!

(p + q + 1)!
[from ∫ sinmθcosnθdθ

π
2⁄

0

=
Γ
m + 1
2 Γ

n + 1
2

2Γ
m + n + 2

2

] 

= (b − a)p+q+1
p! q!

(p + q + 1)!
, if p + 1 > 0 𝑎𝑛𝑑 𝑞 + 1 > 0 

[Since Γn + 1 = n!] 

= (b − a)p+q+1
p! q!

(p + q + 1)!
,                 p ≥ 1and q ≥ 1  

which is true[𝑝 and 𝑞 are positive integers] 

Hence∫ (x − a)b(b − x)qdx = (b − a)p+q+1
ΓpΓq

Γp+q+1

b

a
where 

𝑝 and 𝑞 are positive integers. 

 

Illustrative Examples 

 

Ex. 1.Evaluate the integrals 

(i)∫
𝑥𝑑𝑥

1+𝑥6

∞

0
𝑑𝑥(ii)∫

𝑥4(1+𝑥5)

(1+𝑥)15

∞

0
 

Sol. (i):- Let I= ∫
𝑥𝑑𝑥

1+𝑥6

∞

0
 

𝑃𝑢𝑡 𝑥6 = 𝑦 ⇒ 𝑥 = 𝑦
1
6⁄ so that 𝑑𝑥 =

1

6
𝑦−

5
6⁄ 𝑑𝑦 

𝐼 =
1

6
∫

𝑦
1
6⁄ 𝑦−

5
6⁄

1 + 𝑦

∞

0

𝑑𝑦 

=
1

6
∫

𝑦

(1+𝑦)

−2 3⁄ 𝑑𝑦
∞

0
 

=
1

6
∫

𝑦−
2
3⁄

(1 + 𝑦)
𝑑𝑦

∞

0

 

=
1

6
∫

𝑦
1
3
−1

1 + 𝑦
𝑑𝑦 =

1

6
∫

𝑦
1
3
−1

(1 + 𝑦)
1
3⁄ +
2
3⁄
𝑑𝑦

∞

0

∞

0

 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 296 
 
 
 

=
1

6
𝐵 (

1

3
,
2

3
)                                                 [𝐵(𝑚, 𝑛) =

𝛤𝑚𝛤𝑛

𝛤𝑚+𝑛
] 

=
1

6

𝛤
1

2
𝛤
2

3

𝛤
1

3
+
2

3

=
1

6

𝛤
1

3
𝛤
2

3

𝛤1
 

=
1

6
𝛤
1

3
𝛤1 −

1

3
[𝛤𝑛𝛤1 − 𝑛 =

𝜋

𝑠𝑖𝑛𝑛𝜋
] 

=
1

6

𝜋

√3 2⁄

 

=
𝜋

3√3
 

Let 𝐼 = ∫
𝑥4(1+𝑥5)

(1+𝑥) 15 𝑑𝑥
∞

0
 

= ∫
𝑥4

(1 + 𝑥)15
𝑑𝑥 + ∫

𝑥9

(1 + 𝑥)15
𝑑𝑥

∞

0

∞

0

 

=∫
𝑥5−1

(1+𝑥)5+10

∞

0
𝑑𝑥 + ∫

𝑥9

(1+𝑥)15
𝑑𝑥

∞

0
 

=𝐵(5,10 + 𝐵(10,5) 
=2𝐵(5,10)[𝐴𝑠 𝐵(𝑚, 𝑛) = 𝐵(𝑛,𝑚)] 

=2
Γ5Γ10

Γ15
= 2.

4.3.2.1Γ10

14.13.14.11.Γ10
 

=
1

5005
 

Ex. 2.Evaluate ∫ 𝑥2𝑒−𝑥
2
𝑑𝑥

∞

0
 

Sol.         𝐼 = ∫ 𝑥2𝑒−𝑥
2
𝑑𝑥

∞

0
 

Let𝑥2 = 𝑡 ⇒ 𝑥 = 𝑡
1
2⁄ ⇒ 𝑑𝑥 =

1

2
𝑡
1
2⁄ −1𝑑𝑥 

When 𝑥 = 0, 𝑡 = 0 and 𝑥 = ∞, 𝑡 = ∞, we have 

𝐼 = ∫ 𝑥2𝑒−𝑥
2
𝑑𝑥 =

1

2
∫ 𝑡𝑒−𝑡𝑡−

1
2⁄ 𝑑𝑡

∞

0

∞

0

 

=
1

2
∫ 𝑒−𝑡𝑡

3

2
−1𝑑𝑡

∞

0
 

=
1

2
𝛤
3

2
=
1

2

1

2
𝛤
1

2
 

=
√𝜋

4
 

Ex. 3.Prove that ∫
1

(𝑎𝑛−𝑥𝑛)
1
𝑛⁄
𝑑𝑥

𝑎

0
=
𝜋

𝑛
𝑐𝑜𝑠𝑒𝑐

𝜋

𝑛
 

Sol.        Let 𝐼 = ∫
𝑑𝑥

(𝑎𝑛−𝑥𝑛)
1
𝑛⁄

𝑎

0
 

Now putting𝑥𝑛 = 𝑎𝑛𝑡 𝑜𝑟 𝑥 = 𝑎𝑡
1
𝑛⁄ so that 𝑑𝑥 =

1

𝑛
𝑎𝑡

1
𝑛⁄ −1𝑑𝑡 

when 𝑥 = 0, 𝑡 = 0, when 𝑥 = 𝑎, 𝑡 = 1 we have 

𝐼 = ∫
1

(𝑎𝑛 − 𝑎𝑛𝑡)
1
𝑛⁄
.
1

𝑛
𝑎𝑡

1
𝑛−1⁄ 𝑑𝑡

1

0

 

=
1

𝑛
. 𝑎.

1

𝑎
∫ (1 − 𝑡)1−

1
𝑛⁄

𝑎

0
 𝑡
1
𝑛⁄ −1𝑑𝑡 

=
1

𝑛
∫ 𝑡

1
𝑛
−1(1 − 𝑡)1−

1
𝑛

𝑎

0

𝑑𝑡 

=
1

𝑛
𝐵 (

1

𝑛
, 1 −

1

𝑛
)[By definition of 𝐵(𝑚, 𝑛)] 
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=
1

𝑛

𝛤
1

𝑛
𝛤1−

1

𝑛

𝛤
1

𝑛
+1−

1

𝑛

[𝑠𝑖𝑛𝑐𝑒 𝐵(𝑚, 𝑛) =
𝛤𝑚𝛤𝑛

𝛤𝑚+𝑛
]and

1

𝑛
𝛤
1

𝑛
𝛤1 −

1

𝑛
[𝛤1 = 1] 

=
1

𝑛

𝜋

𝑆𝑖𝑛 
𝜋
𝑛

[Γ𝑛 Γ1 − 𝑛 =
𝜋

𝑆𝑖𝑛𝑛𝜋
          0 < 𝑛 < 1] 

=
𝜋

𝑛
𝑐𝑜𝑠𝑒𝑐

𝜋

𝑛
 

Ex. 4. Evaluate ∫ 𝑥(8 − 𝑥3)
1
3⁄ 𝑑𝑥

2

0
 

Sol. Let 𝐼 = ∫ 𝑥(8 − 𝑥3)
1
3⁄ 𝑑𝑥

2

0
 

Let𝑥3 = 8𝑡 𝑜𝑟 𝑥 = 2𝑡
1
3⁄  

so that 𝑑𝑥 =
2

3
𝑡
1
3⁄ −1𝑑𝑡 

when 𝑥 = 0, 𝑡 = 0 and when 𝑥 = 2, 𝑡 = 1 

then we have   

𝐼 = ∫ 2𝑡
1
3⁄ (8 − 8𝑡)

1
3⁄
2

3
𝑡
1
3⁄ −1𝑑𝑡

1

0

 

=
8

3
∫ 𝑡

2
3⁄ −1(1 − 𝑡)

4
3⁄ −1𝑑𝑡

1

0
 

=
8

3
𝐵 (
2

3
,
4

3
) 

=
8

3

Γ
2

3
Γ4 3⁄

Γ2 3⁄ +
4
3⁄
 

=
8

3

Γ2 3⁄ Γ
4
3⁄

Γ2
=

8

3

Γ2 3⁄ Γ
4
3⁄

1Γ1
 

=
8

3
Γ
2

3

1

3
Γ
1

3
[Γ𝑛 = 𝑛 − 1Γ𝑛 − 1] 

=
8

9
Γ1 −

1

3
Γ
1

3
 

=
8

9

𝜋

𝑠𝑖𝑛𝜋 3⁄
=
8

9

𝜋

√3 2⁄

[Γ𝑛 Γ1 − 𝑛 =
𝜋

𝑆𝑖𝑛𝑛𝜋
 𝑓𝑜𝑟 0 < 𝑛 < 1] 

=
16

9

𝜋

√3
 

Ex. 5.ExpressΓ1 6⁄  in terms ofΓ
1

3
 

Sol.      We know that Γ𝑛 Γ𝑛 +
1

2
=

√𝜋

2𝑛−1
Γ2𝑛…………(1)  

  [duplication formula] 

Γ𝑛 Γ1 − 𝑛 = 𝜋 sin𝑛𝜋⁄  0 < 𝑛 < 1…………………… . .… (2) 

Putting 𝑛 =
1

6
in(1), we get 

Γ
1

6
Γ
1

6
+
1

2
=

√𝜋

2
2.
1
6
−1

Γ2
1

6
 

⇒ Γ
1

6
Γ2 3⁄ =

√𝜋

2−
2
3⁄
Γ
1

3
 

Now putting 𝑛 =
1

3
in(3) we get 

Γ
1

3
Γ1 −

1

3
=

√𝜋

2−
2
3⁄
=

𝜋

√3 2⁄
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⇒  𝛤
1

3
𝛤
2

3
=
2𝜋

√3
 

⇒ 
𝛤2

3
=

2𝜋

√3. 𝛤
1
3

 

Substituting the value of 𝛤
2

3
in (3) we have  

⇒ Γ
1

6
=

√𝜋

2−
2
3⁄

Γ
1
3
2𝜋

√3 Γ
1
3

 

⇒ Γ
1

6
=
√3

2
1
3⁄

[Γ
1
3
]

√𝜋

2

 

 

Ex. 6.Find the value ofΓ
1

9
Γ
2

9
Γ
3

9
………… . Γ

8

9
 

Sol.      We known that  

Γ
1

𝑛
Γ
2

𝑛
…Γ

𝑛 − 1

𝑛
=
(2𝜋)

(𝑛−1)
2

𝑛
1
2⁄

 

Putting 𝑛 = 9 

Γ
1

9
Γ
2

9
Γ
3

9
………… . Γ

8

9
=
(2𝜋)

9
1
2⁄

4

=
16𝜋4

3
 

Ex. 7.Show thatΓ (
3

2
− 𝑥)Γ (

3

2
+ 𝑥) = (

1

4
− 𝑥2) 𝜋 sec 𝜋𝑥 ,    − 1 <

2𝑥 < 1 

Sol.Γ (
3

2
− 𝑥)Γ (

3

2
+ 𝑥) = (

1

2
− 𝑥)  Γ (

1

2
− 𝑥) . (

1

2
+ 𝑥)Γ (

1

2
+ 𝑥) 

=(
1

4
− 𝑥2) Γ (

1

2
− 𝑥)Γ (

1

2
+ 𝑥) 

=(
1

4
− 𝑥2) Γ (

1

2
+ 𝑥)Γ(1 − (

1

2
+ 𝑥)) 

=(
1

4
− 𝑥2) .

𝜋

sin 𝜋(
1

2
+𝑥)
[Γ𝑛 Γ(1 − 𝑛) =

𝜋

sin 𝑛𝜋
,    0 < 𝑛 < 1] 

= (
1

4
− 𝑥2)

𝜋

sin 𝜋 (
𝜋
2 + 𝑥𝜋)

 

=(
1

4
− 𝑥2)

𝜋

cos𝜋𝑥
 

=(
1

4
− 𝑥2) 𝜋 sec 𝜋𝑥 

HenceΓ (
3

2
− 𝑥)Γ (

3

2
+ 𝑥) = (

1

4
− 𝑥2) 𝜋 sec 𝜋𝑥 

 

Ex. 8. Show that ∫ cos (𝑏𝑧
1

𝑛)𝑑𝑧
∞

0
=

1

𝑏𝑛
cos

𝑛𝜋

2
Γ(𝑛 + 1) 

Sol.    Let 𝐼 = ∫ cos (𝑏𝑧
1

𝑛)𝑑𝑧
∞

0
 

Put𝑧
1

𝑛 = 𝑥 𝑖. 𝑒. 𝑧 = 𝑥𝑛,so that 𝑑𝑧 = 𝑛𝑥𝑛−1𝑑𝑥 when 𝑧 = 0, 𝑥 =
0 and when 𝑧 = ∞, 𝑥 = ∞,  then 
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𝐼 = ∫ cos𝑏𝑥𝑛 . 𝑥𝑛−1𝑑𝑥
∞

0

 

= 𝑛∫ 𝑥𝑛−1 cos 𝑏𝑥 𝑑𝑥
∞

0

 

= 𝑛.
𝛤𝑛

𝑏𝑛
𝑐𝑜𝑠

𝑛𝜋

2
                 [∫ 𝑥𝑚−1𝑐𝑜𝑠𝑏𝑥𝑑𝑥 =

𝛤𝑚

𝑏𝑚
𝑐𝑜𝑠

𝑚𝜋

2

∞

0

] 

⇒ ∫ cos (𝑏𝑧
1
𝑛)𝑑𝑧

∞

0

=
1

𝑏𝑛
cos

𝑛𝜋

2
Γ(𝑛 + 1) 

 

Ex. 9.Prove that ∫
𝑥𝑐𝑑𝑥

𝑐𝑥

∞

0
=

Γ(𝑐+1)

(log 𝑐)𝑐+1
,   𝑐 > 1 

Sol.     We know that 

𝑐𝑥 = 𝑒log 𝑐
𝑥
  = 𝑒𝑥 log 𝑐  

Now we have∫
𝑥𝑐

𝑐𝑥
𝑑𝑥

∞

0
= ∫

𝑥𝑐

𝑒𝑥log 𝑐
𝑑𝑥

∞

0
 

                                              = ∫ 𝑥𝑐 . 𝑒−𝑥 log 𝑐𝑑𝑥
∞

0

 

Putting 𝑥 log 𝑐 = 𝑡 ⇒ 𝑥 =
𝑡

log 𝑐
⇒ 𝑑𝑥 =

𝑑𝑡

log 𝑐,
 

when 𝑥 = 0, 𝑡 = 0  and  when  𝑥 = ∞, 𝑡 = ∞,  then 

∫
𝑥𝑐

𝑐𝑥
𝑑𝑥

∞

0

= ∫ (
𝑡

log 𝑐
)
𝑐

𝑒−𝑡
𝑑𝑡

log 𝑐

∞

0

 

=
1

(log 𝑐)𝑐+1
∫ 𝑒−𝑡𝑡𝑐𝑑𝑡
∞

0

 

=
1

(log 𝑐)𝑐+1
∫ 𝑒−𝑡𝑡𝑐+1−1𝑑𝑡
∞

0

 

=
Γ(𝑐+1)

(log 𝑐)𝑐+1
 [Since(Γ𝑛 = ∫ 𝑒−𝑥𝑥𝑛−1𝑑𝑥

∞

0
)] 

Therefore, ∫
𝑥𝑐𝑑𝑥

𝑐𝑥

∞

0
=

Γ(𝑐+1)

(log 𝑐)𝑐+1
 

 

13.10 SUMMARY 
 

In this we have explained the following topic: 

1. Beta Function 𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥.     𝑚, 𝑛 > 0
1

0
 

and is symmetrical in m and n.  

2. Gamma Function Γn = ∫ e−xxn−1dx,           n > 0
∞

0
 

3. Γ1 = 1, Γ
1

2
= √π 

4. 𝐵(𝑚, 𝑛) =
𝛤𝑚𝛤𝑛

𝛤𝑚+𝑛
 

5. ∫ 𝑠𝑖𝑛𝑝𝜃
∞

0
𝑐𝑜𝑠𝑞𝜃 𝑑𝜃 =

Γ
𝑝+1

2
Γ
𝑞+1

2

2Γ
𝑝+𝑞+2

2

 

6. Γn = cn ∫ e−cxxn−1dx 
∞

0
(other forms of Gamma function) 

7. 𝐵(𝑚, 𝑛) = ∫
𝑥𝑚−1

(1+𝑥)𝑚+1
𝑑𝑥

∞

0
= ∫

𝑥𝑛−1

(1+𝑥)𝑚+𝑛

∞

0
(other form of Beta 

function) 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 300 
 
 
 

8. Γn Γ1 − n =
π

Sinnπ
, 0 < 𝑛 < 1 

9. Legendre-Duplication formula 

ΓnΓn +
1

2
=

√π

22n−1
Γ2n 

10. If n is an integer then  

Γ
1

n
. Γ
2

n
. Γ
3

n
…………Γ

n − 2

n
Γ
n − 1

n
=
(2π)

(n−1)
2

n
1
2⁄

 

11. ∫ 𝑒−𝑎𝑥 cos(𝑏𝑥) 𝑥𝑚−1𝑑𝑥
∞

0
=

𝛤𝑚

(𝑎2+𝑏2)
𝑚
2⁄
cos𝑚𝜃 

12. ∫ 𝑒−𝑎𝑥 sin(𝑏𝑥)𝑥𝑚−1𝑑𝑥
∞

0
=

𝛤𝑚

(𝑎2+𝑏2)
𝑚
2⁄
cos𝑚𝜃 

 

 

13.11 GLOSSARY 
i. Set. 

ii. Function. 

iii. Beta Function. 

iv. Gamma Function. 

 

 

Check your Progress 
 

 

Fill in the blanks  

1. For 𝑚, 𝑛 > 0, ∫
𝑥𝑚−1−𝑥𝑛−1

(1+𝑥)𝑚+𝑛
= _________

∞

0
 

2.If 𝑛 ispositive integer thenΓ𝑛 =____ 

3.For 𝑎 > 0, 𝑛 > 0, ∫ 𝑒−𝑎𝑥𝑥𝑛−1𝑑𝑥
∞

0
=
Γ𝑛

𝑎n
 

4.𝐵(𝑚, 𝑛) =
Γ𝑚 Γ𝑛

________
 

Write “T” for true and ‘F’ for false statements.  

5.Γ5 = 120 

6.𝛤
1

4
𝛤
3

4
= 𝜋√2 

7.∫ 𝑒−𝑥𝑥
1
2⁄ 𝑑𝑥 = Γ

1

2

∞

0
 

8.∫
𝑥8(1−𝑥6)

(1+𝑥)24
= 1

∞

0
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iii. Calculus by R. Kumar. 

iv. Krishna’s Text Book on Calculus by A. R. Vasistha. 
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13.14 TERMINAL QUESTIONS 
 

(TQ-1) Evaluate ∫ 𝑥8 (
𝑥8(1−𝑥6)

(1+𝑥)24

∞

0
𝑑𝑥 

(TQ-2) Prove that∫ 𝑥2𝑛−1𝑒−𝑎𝑥
2
𝑑𝑥 =

𝛤𝑛

2𝑎𝑛

0

∞
 

(TQ-3) Evaluate ∫ 𝑒−𝛾𝑥
2
𝑑𝑥, 𝛾 > 0

∞

0
 

(TQ-4)  Prove that ∫
1

√1−𝑥𝑛
𝑑𝑥

1

0
=

𝛤1 𝑛⁄

𝛤
1

2
+
1

𝑛

,
√𝜋

𝑛
 

(TQ-5) Prove that  

∫ 𝑡𝑎𝑛𝑛𝑥𝑑𝑥 =
𝜋

2
𝑠𝑒𝑥

𝑛𝜋

2

𝜋
2⁄

0

, −1 < 𝑛 < 1 

(TQ-6) Prove that  

∫
𝑥2

√1 − 𝑥4
𝑑𝑥 × ∫

1

√1 + 𝑥4

1

0

𝑑𝑥 =
𝜋

4√2

1

0

 

(TQ-7) Evaluate ∫ 𝑐𝑜𝑠(𝑐2𝑥2)
∞

0
𝑑𝑥 

(TQ-8) Prove that∫ 𝑐𝑜𝑠 (
𝜋

2
𝑥2)𝑑𝑥 = 1

∞

−∞
 

(TQ-9) Prove that∫ log𝛤(𝑥)   𝑑𝑥 =
1

2
𝑙𝑜𝑔2𝜋

1

0
 

(TQ-10) Prove that ∫
𝑠𝑖𝑛𝑏𝑧

𝑧

∞

0
𝑑𝑧 =

𝜋

2
 

 

13.15 ANSWERS 
 

 

CHECK YOUR PROGRESS 

 

CYQ1- 0             

CYQ2-(𝑛 − 1)!          
CYQ3-  𝑎𝑛                    

CYQ4-Γ(𝑚 + 𝑛) 
CYQ5- F                 
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CYQ6- T                        

CYQ7-  F                         

CYQ-8  F 

 

TERMINAL QUESTIONS 

 

 (TQ-1)  0                  

(TQ-3)  
1

2√𝛾
Γ (

1

2
)             

(TQ-7)  
1

2𝑐
√𝜋 2⁄  
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BLOCK-IV 

FUNCTIONS OF SEVERAL 

VARIABLES 
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UNIT14:- 

PARTIAL DIFFERENTIATION 

 

CONTENTS 

 
14.1  Introduction  

14.2  Objective 

14.3  Function of Two Variables 

14.3.1  Limit 

14.3.2  Partial derivative 

14.4  Partial Derivatives 

14.5  Homogeneous Function 

14.5.1 Euler’s Theorem     

14.5.2 Examples  

14.6  Composite function  

14.6.1 Differentiation of Composite functions 

14.7 Change of Variables 

14.7.1 Change of independent into dependent variable 

14.7.2  Change of independent variable x into  t  

14.8  Summary  

14.9  Glossary 

14.10  References  

14.11  Suggested reading  

14.12  Terminal questions 

14.13  Answer 

 

14.1 INTRODUCTION: 

In mathematics, the partial derivative of any function having 

several variables is its derivative with respect to one of those variables 

where the others are held constant. Partial derivatives are useful in 

analyzing surfaces for maximum and minimum points and give rise to 

partial differential equations. The modern partial derivative notation 

was created by Adrien-Marie Legendre (1786), although he later 

abandoned it; Carl Gustav Jacob Jacobi reintroduced the symbol in 

1841.In mathematics, differential calculus is a subfield of calculus that 

studies the rates at which quantities change. It is one of the two 

traditional divisions of calculus, the other being integral calculus the 

study of the area beneath a curve. The primary objects of study in 

differential calculus are the derivative of a function, related notions 

such as the differential, and their applications. The derivative of a 

function at a chosen input value describes the rate of change of the 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Integral_calculus
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Differential_of_a_function
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function near that input value. The process of finding a derivative is 

called differentiation. in this topic we have covered Function of two 

variables and Homogeneous function. 

 

Adrien-Marie Legendre,  

( September 18, 1752- 

January 10, 1833) 

Fig.14.1. 

Ref: 

https://www.bridgemanimage

s.com/en/noartistknown/adrie

n-marie-legendre-french-

revolution/nomedium/asset/2

596140 

  

 

 

14.2 OBJECTIVES: 

At the end of this topic student will be able to understand:  

 

(i) Limit and continuity of two variable function. 

(ii) Partial Derivatives 

(iii) Definition ofHomogeneous function. 

(iv) Euler’s Theorem and application of Euler’s Theorem. 

(v) Composite Function and Change of variables 

 

 

14.3 FUNCTION OF TWO VARIABLES: 

If to each point (x , y) of a certain of xy – plane, there is assigned a real 

number z, then z is known to be a function of two variable x and y.  

Examples: f(x , y) = 3x + 5y +3 , g(x , y) = x2 + y2 are the function of 

two variables.and h(x) = 4x5 – 7x2 +9 , j(y) = 11x are the function of 

one variables. 

14.3.1 LIMIT OF A FUNCTION OF TWO 

VARIABLES: 

Recall from The Limit of a Function the definition of a limit of a 

function of one variable:  

Let  be defined for all  in an open interval containing a. We 

say that the function  has a limit l at a, if for every , there 

https://www.bridgemanimages.com/en/noartistknown/adrien-marie-legendre-french-revolution/nomedium/asset/2596140
https://www.bridgemanimages.com/en/noartistknown/adrien-marie-legendre-french-revolution/nomedium/asset/2596140
https://www.bridgemanimages.com/en/noartistknown/adrien-marie-legendre-french-revolution/nomedium/asset/2596140
https://www.bridgemanimages.com/en/noartistknown/adrien-marie-legendre-french-revolution/nomedium/asset/2596140
https://www.bridgemanimages.com/en/noartistknown/adrien-marie-legendre-french-revolution/nomedium/asset/2596140
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exists a  depending on , such that if  for all x in 

the domain of f, then . In symbol, we write .  

 Geometrically, the definition says that for any  (as small 

as we want), there is a  (sufficiently small) such that any point 

inside the interval is mapped to a point inside the interval 

. 

 A similar definition extends to functions in two variables: We 

say that L is the limit of a function  at the point (a, b), written 

, if  is as close to L as we please whenever 

the distance from the point (x, y) to the point (a, b) is sufficiently 

small, but not zero. Using  definition we say that L is the limit of 

 as (x, y) approaches (a, b) if and only if for every given 

we can find a  such that for any point (x, y) where 

we have  i.e., to say that L 

is the limit of  as  means that for any given 

, we can find an open punctured disk (i.e., without the center and 

the boundary) centered at (a, b) such that for any point (x, y) inside the 

disk the difference is within , i.e., 

. Below figure illustrates this. 

 

 

As in the case of functions of one variable, limits of functions of two 

variables possess the following properties: 

1. The limit, if it exists, is unique. 
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2. The limit of a sum, difference, product, is the sum, difference, 

product of limits. 

3. The limit of a quotient is the quotient of limits provided that the 

limit in the denominator is not zero. 

 

NOTE: In the case of functions of one variable, if a function f(x) has a 

limit l at x = a then the limit of f(x) as x approaches a from either the 

left or right must be l. Similar situation occurs for a function f(x, y) of 

two variables with the difference that the point (x, y) can approach (a, 

b) in infinite directions. Hence, if we can find two directions toward (a, 

b) with two different limits then the function has no limit as 

. 

14.3.2 CONTINUITY OF A FUNCTION OF TWO     

         VARIABLES: 

We can now define the continuityof a function of two variables in 

terms of limit. Intuitively, we expect our definition to support the idea 

that there are no breaks or gaps in the function if it is continuous. The 

continuity of functions of two variables is defined in the same way as 

for functions of one variable: 

A function  is continuous at the point (a, b) if the following 

two conditions are satisfied: 

1. Both  and  exist; and 

2. . 

 A function is continuous on a region R in the xy-plane if it is 

continuous at each point in R. A function that is not continuous at (a, 

b) is said to be discontinuous at (a, b).  

 Like the case of functions of one variable, the following results 

are true for multivariable functions: 

1. The sums, products, quotients (where denominator function is not 

zero), and compositions of continuous functions are also 

continuous.  

2. Polynomial functions are continuous.  

3. Rational functions are continuous in their domain. 
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NOTE:  

1.  is said to be continuous at (a, b) if 

 irrespective of the path along with 

. 

2. It should not be assumed that the path along which the point (x, y) 

tends to (a, b) is immaterial, because  is not 

always equal to . 

 

ILLSTRATIVE EXAMPLES 

Example 1. Let . Is  

Solution. Let . Is there  such that all the points (x, y) 

inside the open disk with radius  and centered at (1, 1) satisfy  

 or equivalently ?  Clearly, any 

such open disk will share points with the open disk centered at (1, 1) 

and with radius 0.2. But any point (x, y) in this disk satisfies 

 or . Since 0.8 <x< 

1.2 and 0.8 <y< 1.2, we find 3.2 < 2(x + y) < 4.8. This implies that 

. Hence any point in the 

disk centered at (1, 1) and radius 0.2 will fall outside the interval (2.9, 

3.1). In particular, this is true for any point in the disk centered at (1, 1) 

and radius . We conclude that . 

Alternatively,  

  

Example 2.Find . 

Solution.  

Example 3. Find . 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 309 
 
 
 

Solution. Here, we can not put the limit directly as we get 0 in the 

denominator. Therefore, we try to rewrite the fraction to simplify it. 

So, 

 

 

Example4.Show that   is continuous 

at (0,0). 

 

Solution. The given function is clearly continuous everywhere except 

at (possibly) (0, 0). Let's check its continuity at (0, 0). Let . Can 

we find a  such that if , then . 

Using the fact that , i.e. . Therefore, we have 

 

Hence,  is continuous at (0, 0). 

Alternatively, 

. 

And, , i.e. 

limit is same as (x, y) approaches (0, 0) either first along y=0 then 

along with x=0 or first along x=0 then along with y=0, which shows 

that limit does not depend upon the path by which (x, y) approaches to 

(0, 0). Also, . Therefore,  is 

continuous at (0, 0). 

Example 4.Show that  does not exist. 
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Solution.Here, let us calculate the limit when (x, y) approach (0, 0) 

along different paths: 

(i). along the x-axis, i.e.y = 0: 

 

(ii). along the y-axis, i.e., x = 0: 

. 

(iii). along the line straight line path y = mx: 

, 

which is different for different value of mi.e. limit depends upon the 

path. 

Further, we obtained a different limit. So,  does not 

exist. 

Example 5.Show that   is 

discontinuous at (0,0). 

Solution.The given function is clearly continuous everywhere except 

at (possibly) (0, 0). Now let's look at the limit of  as (x, y) 

approaches (0, 0) along two different paths. First, let's approach (0, 0) 

along the x-axis, i.e., y = 0: 

. 

Now, let's approach (0, 0) along the y-axis, i.e., x = 0: 

. 

Since the limit is not the same along the two different directions, we 

conclude that f(x, y) is discontinuous at (0, 0). 
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CHECK YOUR PROGRESS  

True or false Questions 

Problem 1: lim
(𝑥 ,𝑦)→(0 ,0)

( 𝑥 + 𝑦) = 0 

Problem 2: if a function f(x , y) is continuous at (a , b) then 

lim
(𝑥 ,𝑦)→(𝑎 ,𝑏)

 does not exist. 

Problem 3: Every rational function is continuous in their 

domain. 

 

 

14.4 PARTIAL DERIVATIVE: 

Let z = f(x , y) be a function of two independent variables x and y. 

Then the partial derivative z with respect to x is the ordinary derivative 

of z with respect to x when y regarded as a constant and is denoted by 

fx     or     
𝜕𝑧

𝜕𝑥
      or         

𝜕𝑓

𝜕𝑥
 

Thus if lim
ℎ →0

f(𝑎+ℎ ,𝑏)−f(𝑎 ,   𝑏)

ℎ
  exist, then this limit is called the partial 

derivative of f(x , y) with respect to x at (a , b) and is denoted by  

fx(a , b)      or (
𝜕𝑧

𝜕𝑥
)(a , b)     or    (

𝜕f

𝜕𝑥
)(a , b) 

Similarly, if lim
𝑘 →0

f(𝑎 ,𝑏+𝑘)−f(𝑎 ,   𝑏)

𝑘
  exist, then this limit is called the 

partial derivative of f(x , y) with respect to y at (a , b) and is denoted 

by  

fy(a , b)      or (
𝜕𝑧

𝜕𝑦
)(a , b)     or    (

𝜕f

𝜕𝑦
)(a , b) 

Let f:X → ℝ and X ⊆ ℝ2. If the function f has partial derivatives at 

each point of X then f is partially differentiable on X. 

Note:We have by definition 

fx (a , b) = lim
ℎ →0

f(𝑎 + ℎ ,𝑏) − f(𝑎 ,   𝑏)

ℎ
 = lim

𝑥 →𝑎

f(𝑥 ,𝑏) − f(𝑎 ,   𝑏)

𝑥−𝑎
 

fy (a , b) = lim
𝑘 → 0

f(𝑎 ,   𝑏 + 𝑘) − f(𝑎 ,   𝑏)

𝑘
 = lim

𝑦 → 𝑏

f(𝑎 ,𝑦) − f(𝑎 ,   𝑏)

𝑦−𝑎
 

Example 1: Find 
𝜕f

𝜕𝑥
 , 
𝜕f

𝜕𝑦
 at (1 , 2) if f(x , y) = 2x2 – xy + 2y2. 

Solution: We have (
𝜕f

𝜕𝑥
)(1 , 2) =   lim

ℎ →0

f(1 + ℎ ,2) − f(1 ,2)

ℎ
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                                               = lim
ℎ →0

{2(1+ℎ)2−(1+ℎ).2+2.22}− {2.12−1.2+2.22}

ℎ
 

                                               = lim
ℎ →0

2ℎ2+2ℎ

ℎ
 = lim

ℎ →0
(2ℎ + 2) = 2 

and (
𝜕f

𝜕𝑦
)(1 , 2) =   lim

𝑘 →0

f(1  ,2 + 𝑘) − f(1 ,2)

𝑘
 

                      =  lim
𝑘 →0

{2−(2+𝑘)+2 (2+𝑘)2}− {2−2 + 8}

𝑘
 

                      = lim
𝑘 →0

2 𝑘2+7𝑘

𝑘
 = lim

𝑘 →0
(2𝑘 + 7) = 7. 

Example 2: find fx (0 , 0) and fy (0 , 0) if 

 

𝑓(𝑥) = {
(
𝑥2  −  𝑥𝑦

𝑥 +  𝑦
) , (𝑥 , 𝑦) ≠ (0 , 0)

0    , (𝑥 , 𝑦) = (0 , 0)

 

 

Solution: we have  

fx (0 , 0) = lim
ℎ →0

f(0 + ℎ ,0) – f(0 ,   0)

ℎ
 = lim

ℎ →0

ℎ2− ℎ.0

ℎ + 0
 – 0

ℎ
 = lim

ℎ →0
 1 = 1 

 

fy (0 , 0) = lim
𝑘 →0

f(0  ,0 + 𝑘) – f(0 ,   0)

𝑘
 = lim

𝑘 →0

0 – 0

𝑘
 = lim

ℎ →0
 0 = 0. 

 

Example 3. Find the first order partial derivatives of . 

Solution: We have, . 

Now differentiating u with respect to x, we get 
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. 

Now differentiating u with respect to y, we get 

 

 

 

. 

Example 4. If , show that . 

Solution: We have,     ….(1) 

Now differentiating (1) partially with respect to x, we get 

 

   ….(2) 

Now differentiating (1) partially with respect to y, we get 
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   ….(3) 

Adding equations (2) and (3), we get 

 

. 

Example 5. If , prove that . 

(Laplace Equation) 

Solution: Differentiating u partially with respect to x, we get 

 

. 

Again differentiating partially with respect to x, we get 

 

 

. 

Similarly,  and 

 

Hence, 

 

. 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 315 
 
 
 

Example 6. If , show that at . 

Solution: Given , which defines z as a function of x and y. 

Taking logarithmic on both sides, we get 

 

Differentiating partially with respect to y, we get 

. 

      ….(1) 

                   ….(2) 

Similarly, .                   ….(3) 

Now differentiating equation (1) partially with respect to x, we get 

 

.        ….(4) 

At , from equations (2) and (3), we get  

 and . 

From equation (4), at , we have  

 

. 
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Example 7. If , show that 

.  

Solution: Differentiating u partially with respect to x, we get 

 

. 

Similarly, we find  and 

. 

Adding,  

. 

Now,  

 

 

 

. 
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14.5 HOMOGENEOUS FUNCTION: 

In mathematics, a homogeneous function is one with multiplicative 

scaling behaviour i.e. if all its arguments are multiplied by a factor, 

then its value is multiplied by some power of this factor. For example, 

a homogeneous real-valued function of two variables x and y is a real-

valued function that satisfies the condition ),(),( yxfrryrxf k  for 

some constant k and all real numbers r. The constant k is called the 

degree of homogeneity. 

 Alternatively, a real valued function ),( yxf  is said to be 

homogeneous of degree (or order) k in the variables x and y if it can be 

expressed in the form 








x

y
x k or 









y

x
y k . 

 Let consider a function 
yx

yx
yxf




),( , then 

1. 
yx

yx
r

ryrx

ryrx
ryrxf









 2

1

),( ),(.),( 2
1

yxfrryrxf  , 

which implies that 
yx

yx
yxf




),(  is a homogeneous function of 

degree 
2

1
 in variables x and y. 

2. 



































x

y
x

x

y
x

x

y
x

yx

yx
yxf 2

1

1

1

),( , which indicates that 

yx

yx
yxf




),(  is a homogeneous function of degree 

2

1
 in 

variables x and y. 

3. 



































y

x
y

y

x
y

y

x
y

yx

yx
yxf 2

1

1

1

),( , which clarifies that 

yx

yx
yxf




),(  is a homogeneous function of degree 

2

1
 in 

variables x and y. 
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 Similarly, a function ),,( zyxf  is said to be homogeneous of 

degree (or order) k in the variables x, y and z if it can be expressed in 

the form 








x

z

x

y
x k ,  or 









y

z

y

x
y k , or 









z

y

z

x
z k , . Alternative test for 

this is ),,(),,( zyxfrrzryrxf k . 

 

Note: A homogeneous function is not necessarily continuous as shown 

by this example 

function f defined by xyxf ),(  if 0xy and 0),( yxf if 0xy . 

This function is homogeneous of degree 1.  

i.e. ),(),( yxrfryrxf   

for any real numbers r, x, y. It is discontinuous at y = 0, x≠0. 

 

14.5.1 EULER’S THEOREM ON HOMOGENEOUS 

FUNCTIONS: 

Statement: If u is a homogeneous function of degree n in variables x 

and y, then nu
y

u
y

x

u
x 









. 

Proof: Since u is a homogeneous function of degree n in x and y, it 

can be written as  











x

y
xu n  
































 

2

1 '
x

y

x

y
x

x

y
nx

x

u nn  and






























 

x

y
x

xx

y
x

y

u nn '
1

' 1  























 

x

y
yx

x

y
nx

x

u
x nn '1  and 












 

x

y
yx

y

u
y n '1   

nu
x

y
nx

y

u
y

x

u
x n 


















  . 
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 Euler’s theorem can be extended to a homogeneous function of 

any number of variables. Therefore, if u is be homogeneous function of 

degree n in variables x, y and z, then statement of Euler’s theorem is 

nu
z

u
z

y

u
y

x

u
x 














. 

14.5.2 EXAMPLES BASED ON HOMOGENEOUS 

FUNCTION: 

Example1. Verify Euler’s theorem for the function 

x

y

y

x
u 11 tansin   . 

Solution.Given
x

y

y

x
yxu 11 tansin),(   , then 

),(tansin),( 0110 yxur
x

y

y

x
rryrxu 








  ,  

Therefore, u is a homogeneous function of degree 0 in x and y, and as 

per Euler’s theorem we have to verify: 00 








u

y

u
y

x

u
x . 

Now 
22222

2

2

2

2

1

1

11
.

1

1

yx

y

xyx

y

x

yy

y

xx

u


























 

2222 yx

xy

xy

x

x

u
x










  

And 
2222

2

22

2

2

1

1

1
.

1

1

yx

x

xyy

x

x

x

yy

x

y

xy

u

































 

2222 yx

xy

xy

x

y

u
y










  

Thus, 0









y

u
y

x

u
x , which verified Euler’s theorem. 
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Example2. If u is a homogeneous function of degree n in x and y, 

then show that  unn
y

u
y

yx

u
xy

x

u
x )1(2

2

2
2

2

2

2
2 














. 

Solution. Since u is homogeneous function of degree n in x and y, 

then by Euler’s theorem, we have 

nu
y

u
y

x

u
x 









…..(1) 

Differentiate (1) partially w.r.t.x, we get 

x

u
n

yx

u
y

x

u
x

x

u


















 2

2

2

..1 …..(2) 

Differentiate (1) partially w.r.t.y,  we get 

y

u
n

y

u
y

y

u

xy

u
x



















2

22

..1 …..(3) 

Multiplying (2) by x, (3) by y, adding and then using the result 

xy

u

yx

u








 22

, we get 




















































y

u
y

x

u
xn

y

u
y

x

u
x

y

u
y

yx

u
xy

x

u
x

2

2
2

2

2

2
2 2  

nunun
y

u
y

yx

u
xy

x

u
x 














 .2

2

2
2

2

2

2
2

 

unn
y

u
y

yx

u
xy

x

u
x )1(2

2

2
2

2

2

2
2 














 . 

Example3.If ),()( yxVuF  , where V is a homogeneous function of 

degree n in x and y, then show that: 

(i) 
)('

)(

uF

uF
n

y

u
y

x

u
x 









, and  

(ii) ]1)(')[(2
2

2
2

2

2

2
2 














uu

y

u
y

yx

u
xy

x

u
x  ,  
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where 
)('

)(
)(

uF

uF
nu  . 

Solution. Since )(uFV   is a homogeneous function of degree n, then 

by Euler’s theorem, we have 

)()]([)]([ unFuF
y

yuF
x

x 








 

)()(')(' unF
y

uyF
x

u
uxF 









  

)('

)(

uF

uF
n

y

u
y

x

u
x 









  

Let )(
)('

)(
u

uF

uF
n  , then 

)(u
y

u
y

x

u
x 









…..(1) 

Differentiate (1) partially w.r.t.x, we get 

x

u
u

yx

u
y

x

u
x

x

u



















)('

2

2

2

  

x

u
u

yx

u
y

x

u
x














]1)('[

2

2

2

 …..(2) 

Differentiate (1) partially w.r.t.y,  we get 

y

u
un

y

u
y

y

u

xy

u
x



















)('

2

22

  

y

u
u

xy

u
x

y

u
y














 ]1)('[

2

2

2

 …..(3) 

Multiplying (2) by x, (3) by y and then adding, we get 


































y

u
y

x

u
xu

y

u
y

yx

u
xy

x

u
x ]1)('[2

2

2
2

2

2

2
2   

Using (1), we have 
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]1)(')[(2
2

2
2

2

2

2
2 














 uu

y

u
y

yx

u
xy

x

u
x  . 

Example4.If
yx

yx
u




 

33
1tan , then show that: 

(i) u
y

u
y

x

u
x 2sin









, and  

(ii) uu
y

u
y

yx

u
xy

x

u
x 2sin4sin2

2

2
2

2

2

2
2 














. 

Solution. (i). Here, 
yx

yx
u




 

33
1tan  is not a homogeneous function 

but if we take ),(tan
33

yxV
yx

yx
u 




 , then uuF tan)(   is 

homogeneous of degree 2 as ).,(),( 2 yxVrryrxV   Thus by Euler’s 

theorem 

uu
y

yu
x

x tan2][tan][tan 








 

u
y

u
uy

x

u
ux tan2secsec 22 









  

uu
uu

u

y

u
y

x

u
x cossin2

sec

1
.

cos

sin
2

2










  

u
y

u
y

x

u
x 2sin









 . 

(ii). Now using the result as proved in previous example, we have 

]1)(')[(2
2

2
2

2

2

2
2 














uu

y

u
y

yx

u
xy

x

u
x  , where 

)('

)(
)(

uF

uF
nu  . 

Here, u
u

u
u 2sin

sec

tan
2)(

2
 and uu 2cos2)('  , then 

]12cos2[2sin2
2

2
2

2

2

2
2 














uu

y

u
y

yx

u
xy

x

u
x  
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uuu
y

u
y

yx

u
xy

x

u
x 2sin22cos2sin22

2

2
2

2

2

2
2 














  

uu
y

u
y

yx

u
xy

x

u
x 2sin24sin2

2

2
2

2

2

2
2 














 . 

Example5.If 













yx

yx
u e

44

log , then show that: 3









y

u
y

x

u
x . 

Solution. Here, u is not a homogeneous function. Let 
yx

yx
eu






44

, 

which is homogeneous function of degree 3. Thus by Euler’s theorem 

uuu ee
y

ye
x

x 3][][ 








 

uuu e
y

u
ye

x

u
xe 3









  

3










y

u
y

x

u
x . 

Example6.If

















 

888

1 32
sin

zyx

zyx
u , then show that: 

0tan3 













u

z

u
z

y

u
y

x

u
x . 

Solution. Here, u is not a homogeneous function. But, let 

),,(
32

sin
888

zyxV
zyx

zyx
u 




 , then 

),,(.
)32(

),,( 3

8884
zyxVr

zyxr

zyxr
rzryrxV 




  

Therefore, uuF sin)(   is a homogeneous function of degree -3 in 

variables x, y and z. Thus by Euler’s theorem, we have 

uu
z

zu
y

yu
x

x sin3][sin][sin][sin 













 



CALCULUS                                                       MT(N) 101                                                                                                    

Department of Mathematics 
Uttarakhand Open University Page 324 
 
 
 

u
z

u
uz

y

u
uy

x

u
ux sin3coscoscos 














  

0tan3 













 u

z

u
z

x

u
y

x

u
x . 

CHECK YOUR PROGRESS  

 

True or false Questions 

Problem 4: 
𝜕𝑦

𝜕𝑥
 is called second order Partial derivative. 

Problem 5: 
𝜕

𝜕𝑥
(
𝜕𝑦

𝜕𝑥
) = 

𝜕2𝑦

𝜕𝑥2
 . 

Problem 6: 
yx

yx
yxf




),(  is a homogeneous function of 

degree 1 in variables  

                    x and y.   

Problem 7. If f (x , y) = 2y, then 
𝜕𝑓

𝜕𝑥
 = 0. 

 

 

14.6 COMPOSITE FUNCTION: 

(i) if u = f(x , y) , where x = 𝜑 (t) , y = Ψ (t) , then u is called a 

composite function of the single variable t and we can find 
𝑑𝑢

𝑑𝑡
. 

(ii) if z = f(x , y) , where x = 𝜑 (u , v) , then z is called a 

composite function of two variables u and v so that we can find 
𝜕𝑧

𝜕𝑢
 𝑎𝑛𝑑  

𝜕𝑧

𝜕𝑣
 . 

14.6.1 DIFFERENTIATION OF COMPOSITE 

FUNCTIONS: 

 
If u is composite function of t, defined by the relations u = f(x , y) ; x = 

𝜑 (t) ,y = Ψ (t) , then  
𝐝𝐮

𝐝𝐭
=  
𝛛𝐮

𝛛𝐱
 .
𝐝𝐱

𝐝𝐭
+ 
𝛛𝐮

𝛛𝐲
 .
𝐝𝐲

𝐝𝐭
 

 

 

Proof. Here, u = f(x , y)                     …(1) 

let 𝛿𝑡 be an increment in t and 𝛿𝑥 , 𝛿𝑦 , 𝛿𝑢 the corresponding 

increments in x, y and u respectively. then , we have  
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u + 𝛿u =  f (x + 𝛿x , y + 𝛿y)               …(2) 

subtracting (1) from (2) , we get 

𝛿u = f(x + 𝛿x , y + 𝛿y) – f(x , y) 

                 = f(x + 𝛿x , y + 𝛿y) – f(x , y + 𝛿𝑦) + f(x , y + 𝛿𝑦) - f(x , y) 
𝛿𝑢

𝛿𝑡
 = 

f(x + 𝛿x ,y + 𝛿y) – f(x ,y + 𝛿𝑦) 

𝛿t
 + 

f(x ,y + 𝛿𝑦) − f(x ,y)

𝛿t
 

 

                 = 
f(x + 𝛿x ,y + 𝛿y) – f(x ,y + 𝛿𝑦) 

𝛿x
 . 
𝛿x

𝛿t
+ 
f(x ,y + 𝛿𝑦) − f(x ,y)

𝛿y
 . 
𝛿y

𝛿t
…(3) 

as 𝛿t → 0, 𝛿x and 𝛿y both → 0, so that 

lim
𝛿t→0

𝛿u

𝛿t
 = 

𝑑𝑢

𝑑𝑡
 , lim
𝛿t→0

𝛿x

𝛿t
 = 

𝑑𝑥

𝑑𝑡
 , lim
𝛿t→0

𝛿y

𝛿t
 = 

𝑑𝑦

𝑑𝑡
 

 

lim
𝛿t→0

f(x + 𝛿x ,y + 𝛿y) – f(x ,y + 𝛿𝑦) 

𝛿x
   =  

∂f

∂x
    = 

∂u

∂x
 

 

and        lim
𝛿t→0

f(x  ,y + 𝛿y) – f(x ,y ) 

𝛿y
   =  

∂f

∂y
    = 

∂u

∂y
 

 

∴ from (1), 
𝑑𝑢

𝑑𝑡
 = 

∂u

∂x
 .
dx

dt
+ 

∂u

∂y
 .
dy

dt
 

𝑑𝑢

𝑑𝑡
 is called the total derivative of u to distinguish it form the partial 

derivatives 
∂u

∂x
 and 

∂u

∂x
 . 

 

 

Cor.1. if u = f(x , y , z) and x , y , z are function of t ,then u is a 

composite function of t and  

 
𝑑𝑢

𝑑𝑡
 = 

∂u

∂x
 .
dx

dt
+ 

∂u

∂y
 .
dy

dt
 + 

∂u

∂z
 .
dz

dt
 

 

Cor.2. if z = f(x , y) and x , y are function of u and v , then 

 
𝜕𝑧

𝜕𝑢
 = 

∂z

∂x
 .
∂x

∂u
+ 

∂z

∂y
 .
∂y

∂t
  ; 

𝜕𝑧

𝜕𝑣
 = 

∂z

∂x
 .
∂x

∂v
+ 

∂z

∂y
 .
∂y

∂v
 . 

 

Cor.3. if u = f(x , y), where y =  𝜑(𝑥), then since x = Ψ(x) , u is a 

composite function of x. 

 
𝑑𝑢

𝑑𝑥
 = 

∂u

∂x
 .
dx

dx
+ 

∂u

∂y
 .
dy

dx
⟹

𝑑𝑢

𝑑𝑥
 = 

∂u

∂x
 +  

∂u

∂y
 .
dy

dx
 

 

Cor.4. if we are given an implicit function f(x , y) = c , then u = f(x , y) 

, where u = c using cor.3 , we have  
𝑑𝑢

𝑑𝑥
 = 

∂u

∂x
 +  

∂u

∂y
 .
dy

dx
 

But      
𝑑𝑢

𝑑𝑥
 = 0       ∴

∂u

∂x
 +  

∂u

∂y
 .
dy

dx
 = 0    or   

∂f

∂x
 +  

∂f

∂y
 .
dy

dx
 = 0 
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𝑑𝑦

𝑑𝑥
 = − 

∂f

∂x
∂f

∂y

 = −
𝑓𝑥

𝑓𝑦
 

 

ILLUSTRATIVE EXAMPLES 

 

Example 1. If u =sin−1(𝑥 − 𝑦) , x = 3t , y = 4t3 , show that 
𝑑𝑢

𝑑𝑡
 = 

3

√1− 𝑡2
 

. 

Solution: The given equations define u as a composite function of t. 

∴
𝑑𝑢

𝑑𝑡
 = 

∂u

∂x
 .
dx

dt
+ 

∂u

∂y
 .
dy

dt
 

                           = 
1

√1− (𝑥−𝑦)2
 .3 + 

1

√1− (𝑥−𝑦)2
 (-1) . 12 𝑡2 

                           = 
3(1−4𝑡2)

√1− (3𝑡−4𝑡3)2
 = 

3(1−4𝑡2)

√1−9𝑡2+24𝑡4−16𝑡6
 

                           = 
3(1−4𝑡2)

√(1− 𝑡2)(1−8𝑡2+16𝑡4)
 = 

3(1−4𝑡2)

√(1− 𝑡2)(1−4𝑡2)2
 = 

3

√1− 𝑡2
 

Example 2. If u = 𝑥2 − 𝑦2 + sin 𝑦𝑧 , where y = 𝑒𝑥  𝑎𝑛𝑑 𝑧 =

 log𝑥  ; find 
𝑑𝑢

𝑑𝑥
 . 

Solution:
𝑑𝑢

𝑑𝑥
 = 

∂u

∂y
 .
dy

dx
+ 

∂u

∂z
 .
dz

dx
+
∂u

∂x
 

                     = ( − 2y + z cos yz )𝑒𝑥 + ( y cos yz ) 
1

𝑥
+ 2x 

                     = {−2𝑒𝑥 + log𝑥 cos (𝑒𝑥 log𝑥)} 𝑒𝑥 + {𝑒𝑥cos (𝑒𝑥 log𝑥)
1

𝑥
} 

+ 2x 

                     = 2(x - 𝑒2𝑥) + 𝑒𝑥cos(𝑒𝑥 log𝑥)( log 𝑥 + 
1

𝑥
 ). 

Example 3. If u = f(r , s) and r = x + y, s = x – y ; Show that 
∂u

∂x
 + 

∂u

∂y
 = 

2 
∂u

∂r
 . 

Solution: 
∂u

∂x
 = 

∂u

∂r
 . 
∂r

∂x
 + 

∂u

∂s
 .
∂s

∂x
 

 

    =
∂u

∂r
 + 

∂u

∂s
…(1)             ( ∵

∂r

∂x
 = 

∂s

∂x
 = 1) 

 
∂u

∂y
 = 

∂u

∂r
 . 
∂r

∂y
 + 

∂u

∂s
 .
∂s

∂y
 

                          = 
∂u

∂r
−
∂u

∂s
…(2)      ( ∵

∂r

∂y
 = 1,  

∂s

∂y
 = −1)      

                    Adding (1) and (2) , we get 
 
∂u

∂x
 + 

∂u

∂y
 = 2 

∂u

∂r
 

 

14.7 CHANGE OF VARIABLES: 

The difference between the dependent and independent 

variables is well known to us. Sometimes, it is desirable, particularly 

dealing with the solutions of the differential equations, to change the 
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independent variable into the dependent variable or into another 

variable which it is connected by a relation. 

 

14.7.1 CHANGE OF INDEPENDENT VARIABLE 

INTO DEPENDENT VARIABLE: 

Let y = f(x). Then 

𝑑𝑦

𝑑𝑥
 = 

1
𝑑𝑥

𝑑𝑦

 = (
𝑑𝑥

𝑑𝑦
)
−1

…(1) 

𝑑2𝑦

𝑑𝑥2
 = 

𝑑

𝑑𝑥
(
𝑑𝑦

𝑑𝑥
) = 

𝑑

𝑑𝑥
(
𝑑𝑥

𝑑𝑦
)
−1

 

 

                                           = 
𝑑

𝑑𝑦
(
𝑑𝑥

𝑑𝑦
)
−1 𝑑𝑦

𝑑𝑥
 

                                           = −(
𝑑𝑥

𝑑𝑦
)
−2 𝑑2𝑥

𝑑𝑦2
𝑑𝑦

𝑑𝑥
 

                                           = −(
𝑑𝑥

𝑑𝑦
)
−2 𝑑2𝑥

𝑑𝑦2
(
𝑑𝑥

𝑑𝑦
)
−1

= −(
𝑑𝑥

𝑑𝑦
)
−3 𝑑2𝑥

𝑑𝑦2
…(2)  

 

 
𝑑3𝑦

𝑑𝑥3
 = 

𝑑

𝑑𝑥
(
𝑑2𝑦

𝑑𝑥2
) = 

𝑑

𝑑𝑥
[−(

𝑑𝑥

𝑑𝑦
)
−3 𝑑2𝑥

𝑑𝑦2
] =−

𝑑

𝑑𝑦
[(
𝑑𝑥

𝑑𝑦
)
−3 𝑑2𝑥

𝑑𝑦2
]
𝑑𝑦

𝑑𝑥
 

                           = [− (
𝑑𝑥

𝑑𝑦
)
−3 𝑑3𝑥

𝑑𝑦3
  − 3 (

𝑑𝑥

𝑑𝑦
)
−4

(
𝑑2𝑥

𝑑𝑦2
)
2

] (
𝑑𝑥

𝑑𝑦
)
−1

 

                           = −(
𝑑𝑥

𝑑𝑦
)
−4 𝑑3𝑥

𝑑𝑦3
 + 3 (

𝑑𝑥

𝑑𝑦
)
−5

(
𝑑2𝑥

𝑑𝑦2
)
2

                            … 

(3)  

           And so on. 

 

 

 

14.7.2 TO CHANGE OF INDEPENDENT VARIABLE x 

INTO ANOTHER VARIABLE t WHERE x = f(t): 

 

dy

dx
 = 

dy

dt
 . 
dt

dx
 = 

dy

dt
(
dx

dt
)
−1

= (
dx

dt
)
−1 dy

dt
…(1) 

⟹          
d

dx
≡ (

dx

dt
)
−1 d

dt
 

d2y

dx2
 = 

d

dx
(
dy

dx
) = (

dx

dt
)
−1 d

dt
[− (

dx

dt
)
−1 dy

dt
] 

                 = (
dx

dt
)
−1

[− (
dx

dt
)
−1 d2y

dt2
+  (

dy

dt
) (−1) (

dx

dt
)
−2 d2x

dt2
] 

= (
dx

dt
)
−3

[
dx

dt

d2y

dt2
− 

d2x

dt2
dy

dt
] 
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d3y

dx3
 = 

d

dx
(
d2y

dx2
) = (

dx

dt
)
−1 d

dt
[
dx

dt

d2y

dt2
− 
d2x

dt2
dy

dt

(
dx

dt
)
3 ] 

=
(
dx

dt
)
3
[
dx

dt

d3y

dt3
− 
d3x

dt3
dy

dt
]− [

dx

dt

d2y

dt2
 −  

d2x

dt2
dy

dt
] 3(

dx

dt
)
2d2x

dt2

(
dx

dt
)(
dx

dt
)
6  

                = (
dx

dt
)
−5

[(
dx

dt

d3y

dt3
− 

d3x

dt3
dy

dt
)
dx

dt
−  3 (

dx

dt

d2y

dt2
− 

d2x

dt2
dy

dt
)
d2y

dx2
]    

…(3) 

And so on. 

 

ILLUSTRATIVE EXAMPLES 

Example1. Show that equation 
d2y

dx2
 = a, may be written as in the form  

d2x

dy2
+ a (

dx

dy
)
3

= 0. 

Solution:
d2y

dx2
 = a 

⟹ (
dx

dt
)
−3 d2x

dy2
 = a 

 

⟹−

d2x

dy2

(
dx

dy
)
3  = a 

 

⟹
d2x

dy2
 + a (

dx

dy
)
3

= 0. 

Example 2. Change the independent variable from x to y in 𝜌 = 

{1+ (
dy

dx
)
2
}
3/2

d2y

dx2

 . 

Solution:𝜌 = 
{1+ (

dx

dy
)
−2
}
3/2

(
dx

dy
)
−3d2x

dy2

 

 

 

𝜌 = 
{1+ (

dx

 dy
)
2
}
3/2

−  (
dx

dy
)
3
(
dx

dy
)
−3d2x

dy2

 =−
{1+ (

dx

 dy
)
2
}
3/2

d2x

dy2

. 

 

Example 3. Transform the equation 
d2y

dx2
 + cot 𝑥

𝑑𝑦

𝑑𝑥
 + 4𝑦 𝑐𝑜𝑠𝑒𝑐2𝑥 = 0 

by substitution z = 2log tan(x/2) . 

Solution:    z = 2log tan(x/2) 

         ∴
dz

dx
 = 

2

tan(x/2)
 sec2 x

2
. 
1

2
 = 

2

sinx
 

 

∴
dy

dx
 = 

dy

dz

dz

dx
 = 

2

sinx

dy

dz
 

⟹
d

dx
 = 

2

sinx

d

dz
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d2y

dx2
 = 

d

dx
(
dy

dx
) = 

2

sinx

d

dz
[
2

sinx

dy

dz
] 

 

                         = 
2

sinx
[
2

sinx

d2y

dz2
− 

2 𝑐𝑜𝑠𝑥

𝑠𝑖𝑛2𝑥

𝑠𝑖𝑛𝑥

2

dx

dz

dy

dz
] 

 

                         = 
2

sinx
[
2

sinx

d2y

dz2
− 

2 𝑐𝑜𝑠𝑥

𝑠𝑖𝑛2𝑥

𝑠𝑖𝑛𝑥

2
.
dy

dz
] 

 

                        = 
4

𝑠𝑖𝑛2𝑥

d2y

dz2
−
2 𝑐𝑜𝑠𝑥

𝑠𝑖𝑛2𝑥

dy

dz
 

 

        Substituting these values in the given equation, we get 
4

𝑠𝑖𝑛2𝑥

d2y

dz2
−
2 𝑐𝑜𝑠𝑥

𝑠𝑖𝑛2𝑥

dy

dz
+cot 𝑥. 

2

sinx

dy

dz
 + 4𝑦 𝑐𝑜𝑠𝑒𝑐2𝑥 = 0 

   ⟹ 4 𝑐𝑜𝑠𝑒𝑐2𝑥
d2y

dz2
 + 4𝑦 𝑐𝑜𝑠𝑒𝑐2𝑥 = 0 

⟹
d2y

dz2
 + y = 0 . 

 

14.7.3 CHANGE OF BOTH DEPENDENT AND 

INDEPENDENT VARIABLES: 

The relations between Cartesian co-ordinates (x , y) and polar 

coordinates (r , 𝜃) of any point are x = r cos 𝜃  , 𝑦 = 𝑟 sin 𝜃 

∴ We have 
dy

dx
  = 

𝑑𝑦/𝑑𝜃

𝑑𝑥/𝑑𝜃
 = 

(
𝑑𝑟

𝑑𝜃
) sin 𝜃 + r  cos 𝜃

(
𝑑𝑟

𝑑𝜃
)  cos 𝜃 − r sin 𝜃

 

                        = 
d2y

dx2
 = 

d

dx
(
dy

dx
)= 

d

dθ
(
dy

dx
)
𝑑𝜃

𝑑𝑥
 = 

d

dθ
(
dy

dx
)

𝑑𝑥

𝑑𝜃

 

                         = 

d

dθ
(
(
𝑑𝑟
𝑑𝜃
)sin 𝜃 + r  cos 𝜃

(
𝑑𝑟
𝑑𝜃
)  cos𝜃 − r sin 𝜃

)

𝑑𝑥

𝑑𝜃

 

                          = 
𝑟2+2(

𝑑𝑟

𝑑𝜃
)
2
−𝑟 

d2r

dθ2

( cos 𝜃
𝑑𝑟

𝑑𝜃
 − 𝑟 sin 𝜃)

3 

Example 4. To show that, (
dx

dt
)
2

+ (
dy

dt
)
2

= (
dr

dt
)
2

+ 𝑟2 (
dθ

dt
)
2

. 

Solution:x2 + y2 = r2 

 

⟹2x 
𝑑𝑥

𝑑𝑡
 + 2y 

dy

dt
 = 2r 

dr

dt
 

⟹    x 
𝑑𝑥

𝑑𝑡
 + y 

dy

dt
 = r 

dr

dt
…(1) 
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𝑦

𝑥
 = tan 𝜃 

 

⟹
x 
𝑑𝑦

𝑑𝑡
 − y 

dx

dt

𝑥2
 = 𝑠𝑒𝑐2𝜃

dθ

dt
 

⟹ x 
𝑑𝑦

𝑑𝑡
 −  y 

dx

dt
 = x2𝑠𝑒𝑐2𝜃

dθ

dt
 = r2𝑐𝑜𝑠2𝜃𝑠𝑒𝑐2𝜃

dθ

dt
 

=  r2dθ

dt
              …(2)  

Squaring and adding (1) and (2) , we get 

(
dx

dt
)
2

+ (
dy

dt
)
2

= (
dr

dt
)
2

+ 𝑟2 (
dθ

dt
)
2

. 

 

Example 5. Transform to polars the formula p = 
𝑥 
𝑑𝑦

𝑑𝑥
−𝑦

√1+ (
𝑑𝑦

𝑑𝑥
)
2
. 

Solution: Given  p = 
𝑥 
𝑑𝑦

𝑑𝑥
−𝑦

√1+ (
𝑑𝑦

𝑑𝑥
)
2
 

                Multiplying the Nr and Dr by dx/dt 

          = 
𝑥 
𝑑𝑦

𝑑𝑡
 − 𝑦 

𝑑𝑥

𝑑𝑡

√(
𝑑𝑥

𝑑𝑡
)
2
+ (

𝑑𝑦

𝑑𝑡
)
2
 = 

𝑟2
𝑑𝜃

𝑑𝑡

√(
𝑑𝑟2

𝑑𝑡
)+ 𝑟2(

𝑑𝜃

𝑑𝑡
)
2
 

∴
1

𝑝2
 = 

(
𝑑𝑟2

𝑑𝑡
)+ 𝑟2(

𝑑𝜃

𝑑𝑡
)
2

(𝑟2
𝑑𝜃

𝑑𝑡
)
2 ⟹

1

𝑝2
=

1

𝑟2
+

1

𝑟4
(
𝑑𝑟

𝑑𝜃
)
2

. 

 

CHECK YOUR PROGRESS  

 True or false Questions 

 Problem 8: If u is composite function of t, defined by the 

relations u = f (x , y) ;                  

                     x = 𝜑 (t) ,  y = Ψ (t) , then 
𝐝𝐮

𝐝𝐭
= 

𝛛𝐮

𝛛𝐱
 .
𝐝𝐱

𝐝𝐭
+ 

𝛛𝐮

𝛛𝐲
 .
𝐝𝐲

𝐝𝐭
 

 Problem 9:  If u = f(r , s) and r = x + y, s = x – y ; then  
∂u

∂x
 + 

∂u

∂y
 

= 2 
∂u

∂r
 . 

 Problem 10: If u =sin−1(𝑥 − 𝑦) , x = 3t , y = 4t3 , then  
𝑑𝑢

𝑑𝑡
 = 

8

√1− 𝑡2
 .   

 

 

14.8 SUMMARY: 
 

A partial derivative is the derivative of a multi-variable 

function with respect to a single variable. The other variables in the 

function are treated as constants. Partial derivatives give the rate of 

change of the function as one variable changes.Limit, Continuity, 
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partial derivatives and Homogeneous Functions are the main topic of 

Differential Calculus. This topics covered definition and examples.   

 

14.9 GLOSSARY: 
 

i. Sets 

ii. Function 

iii. Limit 

iv. Continuity 

v. Partial Differentiation 

vi. Homogeneous Function 

vii. Euler’s theorem 
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14.12 TERMINAL QUESTIONS: 

Q 1.If 

















 

yx

yx
u 1sin , prove that: 

(i) u
y

u
y

x

u
x tan

2

1










and 
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(ii) 
u

uu

y

u
y

yx

u
xy

x

u
x

32

2
2

2

2

2
2

cos4

2cossin
2 














. 

Q 2. If 













yx

yx
u

43
log

33

, then show that: uu
y

u
y

x

u
x log2









. 

Q3. If 















 

y

x
y

x

y
xu 1212 tantan , prove that:

u
y

u
y

yx

u
xy

x

u
x 22

2

2
2

2

2

2
2 














. 

Q 4.Show that the function 

𝑓(𝑥) = {
(
𝑥 −  𝑦

𝑥 +  𝑦
) , (𝑥 , 𝑦) ≠ (0 , 0)

0    , (𝑥 , 𝑦) = (0 , 0)
 

 

is discontinuous at the origin. 

Q 5. If z = 𝑒𝑎𝑥+𝑏𝑦f(ax – by) , Show that b
𝜕𝑧

𝜕𝑥
+ 𝑎

𝜕𝑧

𝜕𝑦
 = 2abz. 

Q 6. Find the first order partial derivatives of the following functions: 

        (i) u = 𝑦𝑥   (ii) u = log(𝑥2 + 𝑦2) 

Q 7. If z = u2 + v2, u = = r cos 𝜃  , 𝑣 = 𝑟 sin 𝜃 , find 
𝜕𝑧

𝜕𝑟
 𝑎𝑛𝑑 

𝜕𝑦

𝜕𝜃
 .  

Q 8.  Transform the equation 𝑥2
d2y

dx2
 + x 

𝑑𝑦

𝑑𝑥
 + y = 0 by the substitution of x = 

𝑒𝑥 . 

Q 9.If z is a function of x and y, where x = 𝑒𝑢 + 𝑒−𝑣 and y = 𝑒−𝑢 - 𝑒𝑣 , show 

that  
𝜕𝑧

𝜕𝑢
− 

𝜕𝑧

𝜕𝑣
 = 𝑥 

𝜕𝑧

𝜕𝑥
− 𝑦

𝜕𝑧

𝜕𝑦
 . 

Q 10. If u = 𝑥2𝑦 + 𝑦2𝑧 + 𝑧2𝑥 , show that 𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧 =

 (𝑥 + 𝑦 + 𝑧)2. 
 

 

14.13ANSWERS: 
   

CHECK YOUR PROGRESS 

 

CYQ1.True           

CYQ2. False          

CYQ3. True          

CYQ4False         

 CYQ5True  

CYQ6False         

CYQ7True            

CYQ8. True          
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CYQ9True          

CYQ10. False  

 

TERMINAL QUESTIONS 

 

TQ 6. (i) 𝑦𝑥 log𝑦             (ii) x𝑦𝑥 −1 

TQ 7. 2r , 0 

TQ 8.
d2y

dx2
 + y = 0 
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UNIT 15:- EXPANSION OF FUNCTION 

IN TWO VARIABLES AND JACOBIAN 

 

CONTENTS:- 

 
15.1 Introduction 

15.2 Objective 

15.3 Taylor’s theorem for a function of two variables 

15.4 Jacobians 

15.5Summary 

15.6Glossary 

15.8 References 

15.9 Suggested reading 

15.10 Terminal questions 

15.11 Answer 

 

15.1 INTRODUCTION: 
 

In this section we want to go over some of the basic ideas about 

the expansion of functions of two variables, the expansion of functions 

of two variables by Taylor’s theorem. The origins of Taylor series 

expansion can be traced back to the 18th century, when English 

mathematician Brook Taylor first introduced the concept in his 1715 

book "Methodus Incrementorum Directa et Inversa" (Direct and 

Inverse Methods of Incrementation).Jacobian is a functional 

determinant, useful in transformation of variables from cartesian to 

polar, cylindrical and spherical polar co-ordinates in multiple integrals. 

Jacobian is named after the German mathematician Carl Gustav Jacob 

Jacobi (1804 – 1851) who made significant contributions to 

Mechanics, partial differential equations, astronomy, elliptic functions 

and the calculus of variations.  

 

Carl Gustav Jacob Jacobi 

(German Mathematician 

1804 – 1851) 
Fig 15.1 

Ref: 
https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jac

obi 

 

 

 

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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15.2 OBJECTIVES: 
 

At the end of this topic learner will be able to understand:  

 

(i) Taylor’s theorem for a function of two variables. 

(ii) Maclaurin’s series 

(iii) Jacobians. 

 

15.3 TAYLOR’S THEOREM FOR A 

FUNCTION OF TWO VARIABLES: 

 

The Taylor series formula is a representation of a function as 

an infinite sum of terms that are calculated from the values of the 

function’s derivatives at a single point. The concept of a Taylor series 

was formulated by the Scottish mathematician James Gregory and 

formally introduced by the English mathematician Brook Taylor in 

1715.A function can be approximated by using a finite number of 

terms of its Taylor series. Taylor’s theorem gives quantitative 

estimates on the error introduced by the use of such an approximation. 

The polynomial formed by taking some initial terms of the Taylor 

series is called a Taylor polynomial.The Taylor series of a function is 

the limit of that function’s Taylor polynomials as the degree increases, 

provided that the limit exists. A function may not be equal to its Taylor 

series, even if its Taylor series converges at every point. A function 

that is equal to its Taylor series in an open interval (or a disc in the 

complex plane) is known as an analytic function in that interval. 

Using Taylor’s theorem for a function f(x) of single variable x, we have 

  

Now let  be a function of two variables x and y. If y is kept as 

constant, then  reduces in a function of single variable x. 

Therefore, using Taylor’s theorem, we have 

 
….(1) 

Now keeping x as constant and applying Taylor’s theorem for a 

function of single variable y, we have 
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….(2) 

Using equation (2), we can write equation (1) as 

 

 

 
 

 
or 
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NOTE:  

 

1. Replacing x by a and y by b, we get 

 
And, now putting h = x-a and k = y-b, we get 

 
or 

 
which is called the Taylor’s series expansion of f(x, y) about (a, b). 

This form of Taylor’s series is practically applicable to find the 

expansion of given two variables functions. This form of Taylor’s 

series is sometimes called Taylor’s series expansion of f(x, y) in 

powers of (x–a) and (y–b). 

 

2. Putting a = 0 and b = 0 in above equation, we get 

 
or 

 
 

 This is called Maclaurin’s series expansion of f(x, y), which is 

a special case of Taylor’s series. 
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ILLSTRATIVE EXAMPLES 

 

Example 1. Find the Taylor’s series expansion of f(x, y) = tan−1
𝑦

𝑥
 

about (1, 1) upto and inclusive of seconddegree terms. Hence compute 

f(1.1, 0.9) approximately. 

Solution: Given  

 

 

 

 

. 

Similarly,  

, ,  and . 

Using Taylor’s series expansion of f(x, y) about (1, 1), we have 

 

 

 
Now 
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                      (Approximately) 

Example 2. Expand  in powers of x and y upto 

third order partial derivative terms. 

Solution: Given  

 

 

 

 

 

 

 

 

 
Now Maclaurin’s series expansion of f(x, y) gives 

 

 

 

Example 3. Expand  in powers of (x-1) and (y+2) using 

Taylor’s theorem 
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Solution: Let  and we know expansion of 

 in powers of (x-a) and (y-b) using Taylor’s theorem is given 

by  

 

Here  and , then 

 

 

 

 

 

 

 

 

 

 and all higher order partial derivatives 

vanish. 

Substituting these values, we get the required Taylor’s series 

 

. 

Example 4. Expand 𝒆𝒂𝒙+𝒃𝒚 by using Maclaurin's Theorem upto the 

third term. 

 

Solution: Since the expansion required in power of x, y the point (a,b) 

associated with (0,0) and the expansion of f (x,y) about (0,0) is given 

by; 
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The function and its partial derivatives evaluated at (0,0) is as follows: 

     

Substitute these value in the expansion of f (x,y), we get; 

 

Example 5. Expand 
(𝑥 + ℎ)(𝑦 + 𝑘)

𝑥+ℎ+𝑦+𝑘
 in power of h, k up to end inclusive of 

the second degree terms. 

 

Solution: Here      f(x + h, y + k) = 
(𝑥 + ℎ)(𝑦 + 𝑘)

𝑥+ℎ+𝑦+𝑘
 

                 Putting h = k = 0, we have f(x , y) = 
𝑥𝑦

𝑥+𝑦
 

fx = 
(𝑥 + ℎ).𝑦 − 𝑥𝑦 .1

(𝑥+𝑦)2
 = 

𝑦2

(𝑥+𝑦)2
 , fy = 

𝑦2

(𝑥+𝑦)2
 , by Symmetry 

                 fxx = −
2𝑦2

(𝑥+𝑦)3
, fxx = −

2𝑥2

(𝑥+𝑦)3
 ,  

fxy = 
(𝑥+𝑦)2 .2𝑥− 𝑥2 .2(𝑥+𝑦)

(𝑥+𝑦)4
 = 

2𝑥𝑦

(𝑥+𝑦)3
 

∴
(𝑥 + ℎ)(𝑦 + 𝑘)

𝑥+ℎ+𝑦+𝑘
 = f(x + h, y + k) = f(x, y) + [hfx + kfy] + 

1

2!
[h2 fxx + 2hk 

fxy + k2 fyy] + …. 

          = 
𝑥𝑦

𝑥+𝑦
 + [ℎ.

𝑦2

(𝑥+𝑦)2
+ 𝑘.

𝑥2

(𝑥+𝑦)2
] + 

1

2
[ℎ2 .

−2𝑦2

(𝑥+𝑦)3
+ 2ℎ𝑘 

2𝑥𝑦

(𝑥+𝑦)3
+

𝑘2 . −
2𝑥2

(𝑥+𝑦)3
]+ … 

         = 
𝑥𝑦

𝑥+𝑦
 + 

𝑦2

(𝑥+𝑦)2
 . h + 

𝑥2

(𝑥+𝑦)2
 .k - 

𝑦2

(𝑥+𝑦)3
 . ℎ

2
 + 

2𝑥𝑦

(𝑥+𝑦)3
.hk  - 

𝑥2

(𝑥+𝑦)3
 . 𝑘2 

+ …. 
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CHECK YOUR PROGRESS 
. 

True or false Questions 

Problem 1: We can not expand 𝑒𝑥 sin 𝑦 in power of x and y 

using Taylor’s theorem as far as terms of third degree. 

Problem 2: If f(x , y) = 𝑒𝑥 log(1 + 𝑦) then 𝑓𝑦𝑦  (0 , 0) = -1. 

Problem 3:The expansion of function of two variables by     

Taylor’s theorem is unique. 

 

 

 

15.4 JACOBIAN: 
 

The Jacobian matrix contains information about the local 

behaviour of a function. The Jacobian matrix can be seen as a 

representation of some local factor of change. It consists of first order 

partial derivatives. If we take the partial derivatives from the first order 

partial derivatives, we get the second order partial derivatives, which 

are used in the Hessian matrix. The Hessian matrix is used for 

the Second Partial DerivativeTest with which we can test, whether a 

point x is a local maximum, minimum or a so called saddle point . 

 

With the Jacobian matrix we can convert from one coordinate system 

into another. The Jacobian determinant is used when making a change 

of variables when evaluating a multiple integral of a function over a 

region within its domain. To accommodate for the change of 

coordinates the magnitude of the Jacobian determinant arises as a 

multiplicative factor within the integral. The Jacobian matrix was 

developed by Carl Gustav Jacob Jacobi (1804–1851), a German Jewish 

mathematician. 

 

If u1 , u2 , … , un are function of n independent variables x1 , x2 , … , x 

n then the determinant 

 

 

                                  
𝜕𝑢1 

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2
   …   …   …   

𝜕𝑢1

𝜕𝑥𝑛
 

 

   
  𝜕𝑢2 

  𝜕𝑥1

𝜕𝑢2

𝜕𝑥2
   …   …   …   

𝜕𝑢2

𝜕𝑥𝑛
 

         

                             …     …    …   …   …   … 

                             
𝜕𝑢𝑛 

𝜕𝑥1

𝜕𝑢𝑛

𝜕𝑥2
   …   …   …   

𝜕𝑢𝑛

𝜕𝑥𝑛
 

 

https://en.wikipedia.org/wiki/Second_partial_derivative_test
https://en.wikipedia.org/wiki/Saddle_point
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Is called the Jacobian of u1 , u2 , … , un with respect to x1 , x2 , … , x n  

and is denoted either by 
𝜕 ( 𝑢1 ,𝑢2 … 𝑢𝑛) 

𝜕 ( 𝑥1 ,𝑥2 … 𝑥𝑛) 
 or by J (𝑢1 , 𝑢2  … 𝑢𝑛). Thus if 

u and v are functions of two independent variables x and y, we have  

𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 = |

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

| = J (u , v) 

Similarly if u, v and w are functions of three independent variables x, y 

and z, we have 

𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 =
|
|

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

|
|
 = J (u , v , w). 

Properties of Jacobians (Chain Rules) 

 

1. If u, v are functions of r, s where r, s are functions of x, y then 
𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 = 

𝜕(𝑢 ,𝑣)

𝜕(𝑟 ,𝑠)
×
𝜕(𝑟 ,𝑠)

𝜕(𝑥 ,𝑣)
 . 

 

Proof: Since u, v are composite functions of x, y 

∴
𝜕𝑢

𝜕𝑥
=
𝜕𝑢

𝜕𝑟
.
𝜕𝑟

𝜕𝑥
+
𝜕𝑢

𝜕𝑠
.
𝜕𝑠

𝜕𝑥
= 𝑢𝑟𝑟𝑥 + 𝑢𝑠𝑠𝑥 

𝜕𝑢

𝜕𝑦
=

𝜕𝑢

𝜕𝑟
.
𝜕𝑟

𝜕𝑦
+
𝜕𝑢

𝜕𝑠
.
𝜕𝑠

𝜕𝑦
= 𝑢𝑟𝑟𝑦 + 𝑢𝑠𝑠𝑦 … (1) 

𝜕𝑣

𝜕𝑥
=
𝜕𝑣

𝜕𝑟
.
𝜕𝑟

𝜕𝑥
+
𝜕𝑣

𝜕𝑠
.
𝜕𝑠

𝜕𝑥
= 𝑣𝑟𝑟𝑥 + 𝑣𝑠𝑠𝑥 

𝜕𝑣

𝜕𝑦
=
𝜕𝑣

𝜕𝑟
.
𝜕𝑟

𝜕𝑦
+
𝜕𝑣

𝜕𝑠
.
𝜕𝑠

𝜕𝑦
= 𝑣𝑟𝑟𝑥 + 𝑣𝑠𝑠𝑥 

 

 

Now ,
𝜕(𝑢 ,𝑣)

𝜕(𝑟 ,𝑠)
×
𝜕(𝑟 ,𝑠)

𝜕(𝑥 ,𝑦)
= |
𝑢𝑟 𝑢𝑠
𝑣𝑟 𝑣𝑠

| .  |
𝑟𝑥 𝑟𝑦
𝑠𝑥 𝑠𝑦

| 

                                    = |
𝑢𝑟𝑟𝑥 + 𝑢𝑠𝑠𝑥 𝑢𝑟𝑟𝑦 + 𝑢𝑠𝑠𝑦
𝑣𝑟𝑟𝑥 + 𝑣𝑠𝑠𝑥 𝑣𝑟𝑟𝑥 + 𝑣𝑠𝑠𝑥

| 

                                    = |

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

|   [ using (1) ] 

                                    = 
𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 . 

 

Note:if u1 , u2 , u3 are functions of y1 , y2 , y3 are functions 

of x1 , x2 , x3 then   
𝜕(𝑢1 ,𝑢2 ,𝑢3)

𝜕(𝑥1 ,𝑥2 ,𝑥3)
= 
𝜕(𝑢1 ,𝑢2 ,𝑢3)

𝜕(𝑦1 ,𝑦2 ,𝑦3)
 .  
𝜕(𝑦1 ,𝑦2 ,𝑦3)

𝜕(𝑥1 ,𝑥2 ,𝑥3)
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2. If J1 is the Jacobian of u , v with respect to x, y and J2 is the 

Jacobian of x, y with respect to u, v then J1J2 = 1 , i.e., 
𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 . 

𝜕(𝑥 ,𝑦)

𝜕(𝑢 ,𝑣)
 = 1. 

 

Proof: Let u = u(x , y) and v = v(x , y) so that u and v are functions of 

x,  

           y. 

Differentiating partially w.r.t. u and v, we get  

1 = 
𝜕𝑢

𝜕𝑥
 . 
𝜕𝑥

𝜕𝑢
 + 

𝜕𝑢

𝜕𝑦
 . 
𝜕𝑦

𝜕𝑢
 = ux xu + uyyu 

0 = 
𝜕𝑢

𝜕𝑥
 . 
𝜕𝑥

𝜕𝑣
 + 

𝜕𝑢

𝜕𝑦
 . 
𝜕𝑦

𝜕𝑣
 = ux xv + uyyv…(1) 

0 = 
𝜕𝑣

𝜕𝑥
 . 
𝜕𝑥

𝜕𝑢
 + 

𝜕𝑣

𝜕𝑦
 . 
𝜕𝑦

𝜕𝑢
 = vx xu + vyyu 

1 = 
𝜕𝑣

𝜕𝑥
 . 
𝜕𝑥

𝜕𝑣
 + 

𝜕𝑣

𝜕𝑦
 . 
𝜕𝑦

𝜕𝑣
 = vx xv + vyyv 

Now 
𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 . 
𝜕(𝑥 ,𝑦)

𝜕(𝑢 ,𝑣)
 = |
𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦

| .  |
𝑥𝑢 𝑥𝑣
𝑦𝑢 𝑦𝑣

| 

                                = |
𝑢𝑥𝑥𝑢 + 𝑢𝑦𝑦𝑢 𝑢𝑥𝑥𝑣 + 𝑢𝑦𝑦𝑣
𝑣𝑥𝑥𝑢 + 𝑣𝑦𝑦𝑢 𝑣𝑥𝑥𝑣 + 𝑣𝑦𝑦𝑣

| 

                                    = |
1 0
0 1

| = 1. 

 

Note: It can be extended to three variables as  
𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 . 
𝜕(𝑥 ,𝑦 ,𝑧)

𝜕(𝑢 ,𝑣 ,𝑤)
 = 1. 

 

3. If functions u, v, w of three independent variables x, y, z are not 

independent then the Jacobian of u, v, w with respect to x, y, z 

vanishes. 

 

Proof: It is given that theu, v and ware not independent variables, then 

there will be a relation F(u, v, w) = 0, which will connect these 

independent variables. 

 

Differentiating this relation with respect to x, y and z, we get 
𝜕𝐹

𝜕𝑢
 .
𝜕𝑢

𝜕𝑥
+
𝜕𝐹

𝜕𝑣
.
𝜕𝑣

𝜕𝑥
+
𝜕𝐹

𝜕𝑤
 .
𝜕𝑤

𝜕𝑥
 = 0                    …. (1) 

𝜕𝐹

𝜕𝑢
 .
𝜕𝑢

𝜕𝑦
+
𝜕𝐹

𝜕𝑣
.
𝜕𝑣

𝜕𝑦
+
𝜕𝐹

𝜕𝑤
 .
𝜕𝑤

𝜕𝑦
 = 0                  …. (2) 

𝜕𝐹

𝜕𝑢
 .
𝜕𝑢

𝜕𝑧
+
𝜕𝐹

𝜕𝑣
.
𝜕𝑣

𝜕𝑧
+
𝜕𝐹

𝜕𝑤
 .
𝜕𝑤

𝜕𝑧
 = 0                    …. (3) 

Eliminating 
𝜕𝐹

𝜕𝑢
, 
𝜕𝐹

𝜕𝑣
 and 

𝜕𝐹

𝜕𝑤
from (1) , (2) and (3) , we get 

|
|

∂u

∂x

∂v

∂x

∂w

∂x
∂u

∂y

∂v

∂y

∂w

∂y

∂u

∂z

∂v

∂z

∂w

∂z

|
|
= 0 
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⟹
𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 = 0 . 

 

ILLSTRATIVE EXAMPLES 

 

Example 1. If x = r sin𝜃 Cos𝜑, y = r sin𝜃 Sin𝜑 ,  show that  
𝜕(𝑥 ,𝑦 ,𝑧)

𝜕(𝑟 ,𝜃 ,𝜑)
 = r2 Sin𝜃. 

Solution: We have  

 

 

𝜕(𝑥 ,𝑦 ,𝑧)

𝜕(𝑟 ,𝜃 ,𝜑)
 = 
|
|

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

𝜕𝑦

𝜕𝜑

𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃

𝜕𝑧

𝜕𝜑

|
|
 

                 = |
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝑟 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 −𝑟𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 𝑟 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑
cos𝜃 −𝑟 sin 𝜃 0

| 

                 = cos 𝜃 ( r2 sin 𝜃 cos𝜃 cos2𝜑 + r2 sin 𝜃 cos𝜃 sin2𝜑 )              

+ r sin 𝜃( r sin2𝜃 cos2𝜑 + r sin2𝜃 sin2𝜑 ) , expanding the determinant 

along the third row 

                 = r2 sin 𝜃 cos2𝜃 + r2 sin3𝜃 = r2 sin 𝜃( cos2𝜃 + sin2𝜃 ) 

=  r2 sin 𝜃. 

 

Example 2.If u = 
𝑥2+ 𝑦2+ 𝑧2

𝑥
 , v = 

𝑥2+ 𝑦2+ 𝑧2

𝑦
 , w = 

𝑥2+ 𝑦2+ 𝑧2

𝑧
 find 

𝜕(𝑥 ,𝑦 ,𝑧)

𝜕(𝑢 ,𝑣 ,𝑤)
 . 

 

Solution: 

𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
= 
|
|

1 − 
𝑦2+𝑧2

𝑥2
2𝑦

𝑥

2𝑧

𝑥

2𝑥

𝑦
1 − 

𝑥2+ 𝑧2

𝑦2
2𝑧

𝑦

2𝑥

𝑧

2𝑦

𝑧
1 − 

𝑥2+ 𝑦2

𝑧2

|
|
 

Applying C1→ 
𝑦

𝑥
 C2 + 

𝑍

𝑋
 C3 

 

𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 = 
|
|

𝑥2+𝑦2+𝑧2

𝑥2
2𝑦

𝑥

2𝑧

𝑥

𝑥2+𝑦2+𝑧2

𝑥𝑦
1 − 

𝑥2+ 𝑧2

𝑦2
2𝑧

𝑦

𝑥2+𝑦2+𝑧2

𝑥𝑧

2𝑦

𝑧
1 − 

𝑥2+ 𝑦2

𝑧2

|
|
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              = 
𝑥2+ 𝑦2+ 𝑧2

𝑥2.  𝑥𝑦 .𝑥𝑧 |
|

 1 2𝑥𝑦 2𝑥𝑧

 1 𝑥𝑦 − 
𝑥(𝑥2+ 𝑧2)

𝑦
2𝑥𝑧

1 2𝑥𝑦 𝑥𝑧 − 
𝑥(𝑥2+ 𝑦2)

𝑧

|| 

 

 

 

                       = 
𝑥2+ 𝑦2+ 𝑧2

𝑥2  𝑦𝑧 ||

 1 2𝑥𝑦 2𝑥𝑧

 0 −
𝑥(𝑥2+𝑦2+ 𝑧2)

𝑦
2𝑥𝑧

0 2𝑥𝑦 −
𝑥(𝑥2+𝑦2+ 𝑧2)

𝑧

|| 

                       = 
(𝑥2+ 𝑦2+ 𝑧2)3

𝑥2𝑦2𝑧2
 

∴
𝜕(𝑥 ,𝑦 ,𝑧)

𝜕(𝑢 ,𝑣 ,𝑤)
   = 

𝑥2𝑦2𝑧2

(𝑥2+ 𝑦2+ 𝑧2)3
 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑. If x = r sin𝜃, y = r sin𝜃  then find  
𝜕(𝑥 ,𝑦)

𝜕(𝑟 ,𝜃)
 and  

𝜕(𝑟 ,𝜃)

𝜕(𝑥 ,𝑦)
 . also 

prove that JJ’ = 1 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:
𝜕(𝑥 ,𝑦)

𝜕(𝑟 ,𝜃)
 = |

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

| = |
cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 r cos 𝜃

| 

= r (𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 ) = r 

Now,               r = √𝑥2 + 𝑦2 and 𝜃 = tan−1
𝑦

𝑥
 

𝜕(𝑟 ,𝜃)

𝜕(𝑥 ,𝑦)
 = |

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦

| |

𝑥

√𝑥2+𝑦2

𝑦

√𝑥2+𝑦2

−𝑦

𝑥2+𝑦2
𝑥

𝑥2+𝑦2

| = 
1

√𝑥2+𝑦2
 = 

1

𝑟
 

Hence, 
𝜕(𝑥 ,𝑦)

𝜕(𝑟 ,𝜃)
 . 
𝜕(𝑟 ,𝜃)

𝜕(𝑥 ,𝑦)
 = r. 

1

𝑟
 = 1 

⟹ JJ’ = 1. 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟒.Calculate the Jacobian 
𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 of the following: 

                      u = xyz, v = xy + yz + zx , w = x + y + z 

Solution: 
𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 = 
|
|

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

|
|
 = |

yz zx xy
y + z z + x x + y
1 1 1

| 

(By C2⟶ C2 – C1 And C3⟶ C3 – C1 ) then 

=  |
yz z(x − y) y(x − z)
y + z x − y x − z
1 0 0

| 

                              =  |
z(x − y) y(x − z)
x − y x − z

| 

= (x − y)(x − z) |
z y
1 1

| 

                              = (x − y)(z − y)(x − z) 
                              = (x − y)(y − z)(z − x) . 
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Example 5:Let x(u, v) = u2 – v2, y(u, v) = 2 uv. Therefore, find the 

Jacobian J (u, v). 

 

Solution:Given thatx (u, v) = u2 – v2 and y (u, v) = 2 uv 

                 We know that,  

J (x, y) =  
𝜕(𝑥 ,𝑦)

𝜕(𝑢 ,𝑣)
 = |

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

|= |
2𝑢 −2𝑣
2𝑣    2𝑢

| = 4u2 + 4v2. 

Example 6: Findthe Jacobian of p, q, r with respect to x, y, z given p = 

x + y + z, q = y + z, r = z. 

 

Solution: We have to find 

 J = 
𝜕(𝑝 ,𝑞,   𝑟)

𝜕(𝑥,   𝑦,   𝑧)
= 
|
|

∂p

∂x

∂p

∂y

∂p

∂z

∂q

∂x

∂q

∂y

∂q

∂z

∂r

∂x

∂r

∂y

∂r

∂z

|
|
 

∴
∂p

∂x
 = 1, 

∂p

∂y
 = 1, 

∂p

∂z
 = 1, 

∂q

∂x
 = 0, 

∂q

∂y
 = 1, 

∂q

∂z
 = 1, 

∂r

∂x
 = 0, 

∂r

∂y
 = 0, 

∂r

∂z
 = 1 , then we get 

= |
1 1 1
0 1 1
0 0 1

| 

                                      On expanding we get  

                 J = 1(1 – 0) = 1. 

 

CHECK YOUR PROGRESS  

 
True or false Questions 

Problem 4: 
𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 = |

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑦

𝜕𝑣

|. 

Problem 5: If x = r sin𝜃 Cos𝜑, y = r sin𝜃 Sin𝜑 , then  
𝜕(𝑥 ,𝑦 ,𝑧)

𝜕(𝑟 ,𝜃 ,𝜑)
 = r2√(1 − 𝑐𝑜𝑠2𝜃). 

𝐏𝐫𝐨𝐛𝐥𝐞𝐦 𝟔:The Jacobian 
𝜕(𝑢 ,𝑣 ,𝑤)

𝜕(𝑥 ,𝑦 ,𝑧)
 of the following: 

        u = x + 2y + z , v = x + 2y + 3z , w = 2x + 3y + 5z is 2. 

Problem 7: ifu = 𝑥2 − 𝑦2 , v = 2xy and x = r cos𝜃 , y = r 

sin𝜃 then  
𝜕(𝑢 ,𝑣)

𝜕(𝑟 ,𝜃)
= 4𝑟3. 

Problem 8: Jacobian of u1 , u2 , … , un with respect to 

variables x1 , x2 , … , xn is denotedby
𝜕 ( 𝑢1 ,𝑢2 … 𝑢𝑛) 

𝜕 ( 𝑥1 ,𝑥2 … 𝑥𝑛) 
 or by J 

(𝑢1 , 𝑢2  … 𝑢𝑛). 
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Problem 9: If functions u, v, w of three independent variables 

x, y, z are not independent then the Jacobian of u, v, w with 

respect to x, y, z vanishes. 

Problem 10: 
𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑦)
 . 
𝜕(𝑥 ,𝑦)

𝜕(𝑢 ,𝑣)
 = 0 

 

 

 

 

 

15.5 SUMMARY: 
 

The Taylor series or Taylor expansion of a function is an 

infinite sum of terms that are expressed in terms of the function's 

derivatives at a single point. For most common functions, the function 

and the sum of its Taylor series are equal near this point.It is 

extensively used for the elaboration of mathematical series. A function 

can be approximated by using a finite number of terms of its Taylor 

series. Taylor's theorem provides quantitative estimations on the error 

which were introduced by the usage of such an approximation.Jacobian 

is the determinant of the Jacobian matrix. The matrix will contain all 

partial derivatives of a vector function. The main use of Jacobian is 

found in the transformation of coordinates. It deals with the concept of 

differentiation with coordinate transformation. 

 

15.6 GLOSSARY: 
 

i. Function of two variables 

ii. Partial Derivatives 

iii. Determinant  

iv. Trigonometric functions 

v. Functions  

vi. Taylor’s Theorem 

vii. Jacobian 
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15.9  TERMINAL QUESTIONS: 
 

Q 1.Find the first six terms of the expansions of the function 

𝑒𝑥 log(1 + 𝑦) in a Taylor series in the neighbourhood of the point (0, 

0). 

Q 2. Expand 𝑒𝑥𝑦 at (1, 1). 

Q 3. Expand 𝑒𝑥 sin 𝑥 in powers of x and y as far as terms of the third 

degree. 

Q 4. If x = uv , y = 
𝑢+𝑣

𝑢−𝑣
 , find 

𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑣)
 . 

Q 5. If u = 
𝑦−𝑥

1+𝑥𝑦
 and v = tan−1 𝑦 − tan−1 𝑥, find 

𝜕(𝑢 ,𝑣)

𝜕(𝑥 ,𝑣)
 . 

Q 6. If 𝑦1 = 
𝑥2𝑥3

𝑥1
 , 𝑦2 = 

𝑥1𝑥3

𝑥2
 , 𝑦3 = 

𝑥1𝑥2

𝑥3
 , then show that 

𝜕(𝑦1 , 𝑦2  ,𝑦3  )

𝜕(𝑥1 , 𝑥2 ,   𝑥3 )
 = 

4. 

Q 7. If x = 𝑒𝑣 sec 𝑢 , 𝑦 =  𝑒𝑣tan 𝑢 , then evaluate 
𝜕(𝑥 ,𝑦)

𝜕(𝑢 ,𝑣)
 . 

Q 8.If u = x + 2y + z, v = x – 2y + 3z and w = 2xy – xz + 4yz – 2z2 

,they are not independent. Also find the relation between u, v and w . 

Q 9.Find the Jacobian of the functions y1 = (x1 – x2) (x2 + x3) 

y2 = (x1 + x2) (x2- x3), y3 = x3(x1 – x3) , hence show that the functions are 

not independent. Find the relation between them. 

Q 10. Use The Jacobian To Prove That The Functions u = x + y – z, v 

= x – y + z and w = x2 + y2 + z2 – 2yz Are Not Independent Of One 

Another. Find The Relation Between Them. 
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15.10 ANSWERS  
 

CHECK YOUR PROGRESS 

 

CYQ1. False 

CYQ2. True 

CYQ3. True          

CYQ 4. False 

 CYQ 5. True  

CYQ 6. False 

CYQ 7.   True           

 CYQ 8. True          

 CYQ 9. True         

CYQ 10. False 

 
Terminal Questions: 

TQ 1. y + xy - 
1

2
y2+ 

1

2
x2y - 

1

2
xy2 + 

1

3
y3 + … 

TQ 2.e {1 + (x − 1) + (y − 1) + 
1

2!
((x − 1)2 + 4(x − 1)(y − 1) +

 (y − 1)2) + ⋯} 

TQ 3.y + xy + 
1

2
x2y - 

1

6
y3 + … 

TQ 4. 
(u−v)2

4uv
 

TQ 5. 0 

TQ 7. - 𝑒2𝑣 sec 𝑢 

TQ 8.u2 – v2 = 4w. 

TQ 9.y1 + y2 – 2y3 = 0 

TQ 10.(𝑢 + 𝑣)2 + (𝑢 − 𝑣)2 = 4w. 
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