
MSCPH522

1

 MSCPH522

 M. Sc. III SEMESTER

MEMORY DEVICE AND

MICROPROCESSOR

 DEPARTMENT OF PHYSICS

 SCHOOL OF SCIENCES

UTTARAKHAND OPEN UNIVERSITY

MSCPH522

2

Board of Studies

Editing
Dr. Rajesh Mathpal

Department of Physics

School of Sciences, Uttarakhand Open
University

Writing

1. Dr. Rajesh Mathpal

Department of Physics

School of Sciences, Uttarakhand Open University

2. Dr. Abhishek Tomar
Department of Electronics and Communication

G B Pant University of Ag. And Tech. Pantnagar

US Nagar, Uttarakhand

3. Dr. Hrishitosh Bisht

Department of Electronics and Communication

Engineering, College of Technology

G B Pant University of Ag. And Tech. Pantnagar

US Nagar Uttarakhand

MSCPH502

Prof. P. D. Pant

Director School of Sciences
Uttarakhand Open University, Haldwani

Prof. P. S. Bisht,

SSJ Campus, Kumaun University, Almora.
Dr. Kamal Devlal

Department of Physics

School of Sciences, Uttarakhand Open University

Pogramme Coordinator : Dr. Kamal Devlal

Prof. S.R. Jha,

 School of Sciences, I.G.N.O.U.,

Maidan Garhi, New Delhi
Prof. R. C. Shrivastva,
Professor and Head, Department of

Physics, CBSH, G.B.P.U.A.&T.

Pantnagar, India

Department of Physics (School of Sciences)
Dr. Kamal Devlal, Assistant Professor & Pogramme coordinator
Dr. Vishal Sharma, Assistant Professor Dr. Gauri Negi, Assistant Professor

Dr. Meenakshi Rana, Assistant Professor (AC) Dr. Rajesh Mathpal, Assistant Professor(AC)

Unit writing and Editing

Course Title and Code : Memory Device and Microprocessor (MSCPH522)

ISBN :

Copyright : Uttarakhand Open University

Edition : 2022

Published By : Uttarakhand Open University, Haldwani, Nainital- 263139

Printed By :

MSCPH522

3

Memory Device and Microprocessor

DEPARTMENT OF PHYSICS

SCHOOL OF SCIENCES

UTTARAKHAND OPEN UNIVERSITY

Phone No. 05946-261122, 261123

Toll free No. 18001804025

Fax No. 05946-264232, E. mail info@uou.ac.in

htpp://uou.ac.in

mailto:info@uou.ac.in

MSCPH522

4

Contents

Course 13: Digital Electronics and Communication System Course code: MSCPH522

 Credit: 3

Unit

number

Block and Unit title Page

Number
 BLOCK – I Logic families and memories

1 Logic families 5-35

2 Memory organization and expansion 36-71

BLOCK – II Microprocessor hardware and Interface

3 Microprocessor architecture and Microcomputer system 72-96

4 8085 Microprocessor and memory interfaces 97-126

5 Interfacing I/O device 127-151

BLOCK – III 8085 Microprocessor programming

6 8085 Microprocessors Programming 152-172

7 Assembly language Programming 173-188

8 Counters time delay, Stack and code conversion 189-211

9 Advanced microprocessor 212-245

MSCPH522

5

UNIT- 1 LOGIC FAMILIES

STRUCTURE

1.1. Introduction to Logic Families

1.2. Objectives

1.3. Saturated and unsaturated logic circuits

1.4. Performance Characteristics

1.5. Resistance- Transistor Logic circuits

1.6. Transistor- Transistor Logic circuits

1.7. Integrated Injection Logic

1.8. Emitter Coupled Logic

1.9. MOSFET, CMOS, and Tri-state Logic

1.10. Logic families and their performance characteristics

 Summary

 Glossary

 References

 Questions

 Answers

MSCPH522

6

1.1 INTRODUCTION TO LOGIC FAMILIES

 The semiconductor devices are of two types: bipolar and unipolar. Based on these

two, digital integrated circuits are available using these bipolar and unipolar technologies in the

fabrication process. A group of ICs with the same logic levels and supply voltages for performing

various logic functions have been fabricated using a specific circuit configuration known as alogic

family.Logic circuits can be interconnected without additional circuitry. The output of one logic

circuit can be used as input to another logic circuit.This presents the electronic circuits in each IC

digital logic family and helps to analyze its electrical operation. The digital logic families are as

follows:

 RTL Resistor-transistor logic

DTL Diode-transistor logic

TTL Transistor-transistor logic

ECL Emitter-coupled logic

MOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

 The RTL and DTL logic families have historical significance and are rarely used

nowadays for designing digital circuits. RTL was one among the logic family used widely. RTL

is admitted as a part of your syllabus because it forms a good starting point to explain the basic

operations of digital gates. TTL has now replaced DTL, as the operation of TTL is easy to

understand.The TTL logic family is derived from the DTL logic family. TTL, ECL, and CMOS

have a large number of small-scale integrated (SSI) circuits, as well as medium-scale integrated

(MSI), large-scale integrated (LSI), and very large-scale integrated (VLSI) components. MOS is

extensively used for LSI and VLSI components.

 The primary circuit used in each IC digital logic family is either a NAND gate or

a NOR gate. These are also called universal gates because they can be used to build any other

complicated digitalcircuits. NAND and NOR gates are usually defined by the Boolean functions

that they implement in terms of binary variables. When analyzing them as electronic circuits, it is

necessary to investigate their input-output relationships in terms of two voltage levels: a high level

designated by H and a low level designated by L. Table 1.1 and Table 1.2 represent the truth

tablesof a positive logic NAND and NOR gates, respectively.

 Fig.1.1: NAND gate

 Table1.1: Positive logic NAND gate

Inputs Output

X Y Z

L L H

L H H

H L H

H H L

MSCPH522

7

 Table1.2: Positive logic NOR gate Fig.1.2: NOR gate

Figures1.1 and 1.2 are the symbols of NAND and NOR gates. In a positive logic system, we

assigna binary 1 to H and 0 to L,whereas in a negative logic system, we assign a binary 1 to L and

0 to H.

The logic family can be categorized into two heads: The bipolar logic family and the unipolar logic

family. A bipolar junction transistor (BJT)can be of npn or pnp, i.e., a semiconductor of one type

(either n or p) is sandwiched between semiconductors of the other type (p or n respectively), thus

resulting in two pnjunctions.In BJT, the total current flowing is due to both the charge carriers,i.e.,

electrons and holes. Thus, we saythat the BJT is a bipolar device. In contrast, a Field-effect

transistor (FET) is a unipolar device. In a unipolar device,the resulting current is due to only the

flow of one type ofcharge carrier, which can be either electron (n-channel) or holes (p-

channel).RTL, DTL, TTL, and ECL are based on bipolar transistors, whereas MOS and CMOS

are unipolar devices.CMOS devices are constructed using metal-oxide-semiconductor field-effect

transistors(MOSFET or MOS).

 In this chapter, you will first study the difference between saturated and

unsaturated logic families and the various performance characteristics to compare these logic

families. Then we will learn aboutthe bipolar and unipolar logic families and analyzehow the basic

gates can be constructed using them. We will also study the performance characteristics of these

logic families.

1.2. OBJECTIVES

After studying this unit, you should be able to-

 Learn about saturated and unsaturated logic circuits

 Familiarize with unipolar and bipolar devices of logic families

 Understand the various performance characteristic parameters

 Understand the working of different logic families such as RTL, TTL, I2L, ECL,

MOSFETs, and CMOS

 Compare all logic families with their performance characteristics

 Solve problems based on the above logic families.

1.3. SATURATED AND UNSATURATED LOGIC FAMILIES

Inputs Output

X Y Z

L L H

L H L

H L L

H H L

MSCPH522

8

We can classify bipolar logic familiesinto two categories:

I. Saturated logic family, and

II. Unsaturated logic families.

Those logic circuits in which transistors are driven into saturation are called saturation logic. In

saturated logic, the transistor switches between the off and saturation regions. Those circuits that

avoid saturation of their transistors are designated as non-saturated logic; in non-saturated logic,

the transistor is switched between the off and active regions. Saturated logic families are slower

because of the additional delay in bringing the transistor out of saturation. The switching device is

always an npn transistor, with pnp transistors used as loads or current sources. The saturated logic

families are RTL, DCTL, DTL, HTL, TTL, I2L.The non-saturated logic families are ECL and

Schottky TTL.

UNIPOLAR LOGIC FAMILIES:

Unipolar devices include metal-oxide-semiconductor (MOS) devices, and the MOS logic function

is being implemented in MOSFETs only.MOSFET logic family can be categorized as the

following:

I. PMOS

II. NMOS

III. CMOS

It is to be noted that in PMOS, only p-channel MOSFETs can be used, whereas, in NMOS, only

n-channel MOSFETs can be used. In CMOS, both p- and n-channel MOSFETs can be used.

Example 1:Which type of unipolar logic family exhibits its usability for the applications requiring

low power consumption?

a) PMOS

b) NMOS

c) CMOS

d) All of the above

Answer: CMOS

Example 2: Which among the bipolar logic families is adopted explicitly for high-speed

application?

a) DTL

b) TTL

c) ECL

d) I2L

Answer:ECL

MSCPH522

9

1.4. PERFORMANCE CHARACTERISTICS

The wide use of IC in the digital world and the development of variousIC fabrication technologies

have made it important to know the characteristics of IC logic families. Classification of digital

ICs is based on the number of components fabricated on the chip.

IC Classification Basic gates Number of Components

Small scale integration (SSI) Less than 12 Up to 99

Medium scale integration (MSI) 12-99 100-999

Large-scale integration (LSI) 100-999 1,000-9,999

Very-large-scale integration (VLSI) Above 1,000 Above 10,000

Table1.3: Classification of Digital ICs

The performance characteristics of IC digital logic families are generally compared by analyzing

the basic gate circuit in each family. The various characteristics of digital ICs used to compare

their performances are:

1) Speed of operation,

2) Power dissipation,

3) Figure of merit,

4) Fanout,

5) Current and Voltage parameters,

6) Noise immunity,

7) Operating temperature range,

8) Power supply requirements, and

9) Flexibilities available.

First, you will understand the basic definitions of the above terms and their properties. This will

help you compare different performance characteristics of the IC logic families, which will, in

turn, be beneficial in selecting a logic family for a particular application.

1) Speed of Operation

Speed of operation is also referred to as propagation delay time.The propagation delay is

defined as the signal propagating from input to output with an average transition delay time

when the signal alters its binary value. A definite amount of time is needed to propagate

the signal from input to output.This definite amount of time is said to be a propagation

delay of the gate.It is specified in nanoseconds (ns),(1 ns = 10-9 of a second). The signal

traveling from the input to the output passes through a series of gates that are connected

MSCPH522

10

together. The total delay of the circuit can be calculated by adding all the propagation

delays through gates.When each gate has a short propagation delay, the speed of the

operation becomes important. Therefore, there should be a certain minimum number of

gates between the input and output terminals of the circuit.When the output signal goes

from high level to low level,then the propagation delay time is represented as tPHL.

Similarly, whenever the output alters its state again from the low to the high level, the

transition delay is represented as tPLH. The average propagation delay time can therefore be

calculated by taking the average of the two delays.

The average of both the delays, i.e.,tPHLand tPHLis called average propagation delay time.

Fig.1.3: Measurement of propagation delay

For example, let the gate delaysbe tPHL= 9 ns and tPLH = 9 ns with a load resistance of 200

Ω and a load capacitance =30 pF. Then the average propagation delay of the gate will be

equal to (9+9)/2 = 9 ns.

Sometimes it is necessary to know the maximum delay time of a gate instead of the average

value under certain conditions.Also, it is necessary to consider the maximum delay to

ensure proper operation if the speed of operation is critical.

2) Power Dissipation

A certain amount of power is required to operate any electronic circuit. The power

dissipation can be specified in milliwatts (mW) and tells the power requirement by the gate.

Power dissipation represents the power delivered tothe gate from the power supply anddoes

not include the power supplied by any other gate.Taking an IC consisting of four gates will

require power from its supply which is four times the power dissipatedateach gate.The

calculation for the power dissipation can be done as follows:

The amount of power dissipated at the gate can be calculated from the supply voltage Vcc

and the current Icc drawn by the circuit. The power dissipation is the product of the supply

voltage, i.e., Vcc, and the current drawn by the circuit, i.e., Icc. So, the average current is:

MSCPH522

11

Icc(avg) =
ICCH + ICCL

2

Average power dissipation, therefore, can be calculated using the formula given below:

𝑃𝐷(𝑎𝑣𝑔) = Icc(avg) ∗ VCC

3) Figure of Merit (FoM)

It is defined as the product of speed and power. It is specified in pico Joules (ns×mW =

pJ).

Figure of Merit= Propagation delay time (ns) × power (mW)

The low value of FoM is desirable. If high speed is demanded, i.e., low propagation

delay, then there is an increase in power dissipation.

4) Fanout

Fan-out, defined by a number, is the maximum number of inputs that can be connected to

a gate's output without degrading the normal operation of the gate. We definea standard

load as the total amount of current required by the input of another gate in the same logic

family. Many times,the term fanout is used rather than loading.The term loading refers to

the fact that the output of a gate can supply a certain amount of limited current. Above this

current value, the gate cannot operate properly and is said to be overloaded. We specify

loading rules for a digital circuit family. Using these loading rules, we can calculate the

maximum loading amount for each circuit's output in the logic family.

To calculate the Fanout, we use the net current available in the output of the gate and the

amount of current needed in each gate input. As shown in Figures 1.4 (a) and (b), several

gates are connected to the output of one gate.The output of the gate in Figure 1.4 (a)

represents a high voltage level and behaves like the current source IOH to all the other gate

inputs connected to it. Each gate input requires a current IIH for proper operation. In the

same way, theoutput of the gate in Figure 1.4 (b) represents a low voltage level. It behaves

like a current sink IOL for all the gate inputs connected to it. Each gate input supplies a

current IIL. The ratio IOH/IIH or IOL/IILis used to calculatethe Fanout of a gate. We take the

smaller value of the ratio.

Example 3: The standard gate has the following values for the currents:

IOH =400 µA

IIH = 40 µA

IOL= 16 mA

IIL= 1.6 mA

The two ratios give the same number in this case:

MSCPH522

12

400 µA

40 µA
=

16 mA

1.6 mA
= 10

Therefore,the Fanoutof the standard gate given in the example is 10.It implies that the

output of this standard gate cannot be connected to the inputs of more than 10 other gates

in the same logic family. If we connect more than ten gates in this case, then this standard

gate may not be able to drive or sink the amount of current needed from the connected

inputs.

Fig1.4 (a): High-level output Fig1.4 (b): Low-level output

Example 4: Which of the following has the maximum Fanout?

a) CMOS, b)PMOS, c)ECL, and d)I2L

Answer: CMOS

Example 5: If a logic circuit has a fan out of 4, then the circuit

a) Has 4 inputs

b) Has 4 outputs

c) Can drive a maximum of 4 inputs

d) Gives output 4 times the input

Answer:Gives output 4 times the input.

Example 6:Calculate the Fanout of a TTL circuit with the following specifications:

IOL(max)=32mA, IIL(max)=1.6mA, IOH(max)=400µA, IIH(max)=10µA

Answer:Fan-out (high)= 400/10=40

 Fan-out (low)= 32/1.6=20

MSCPH522

13

As mentioned in theory, a smaller fanout value is desirable.So Fanout for this case is 20.

Self Assessment Question (SAQ) 1:For an open-collector, the specifications are:

VOH=2.4V

VIH=0.4V

IOH=250µA

IIL=16mA

IIH=40µA

IIL=-1.6mA

Calculate Rc for open collector gate. Assume VCC= 5V, fan-out=8.

5) Current and Voltage Parameters

The following current and voltages are specified, which are very useful in the design of

digital circuits.

The high-level input voltage, VIH: This is the minimum input voltage recognized by the gate

as logic 1.

The low-level input voltage, VIL: This is the maximum input voltage recognized by the gate

as logic 0.

The high-level output voltage, VOH: This is the minimum output voltage recognized by the

gate as logic 1.

The low-level output voltage, VOL: This is the maximum output voltage recognized by the

gate as logic 0.

High-level input current, IIH: This is the minimum current that must be supplied by a

driving source corresponding to 1-level voltage.

Low-level input current, IIL: This is the minimum current that must be supplied by a driving

source corresponding to 0-level voltage.

High-level output current, IOH: This is the maximum current that the gate can sink in 1

level.

Low-level output current, IOL: This is the maximum current that the gate can sink in 0 level.

High-level supply current, ICC(1): This is the supply current when the output of the logic

gate is at logic 1.

Low-level supply current, ICC(0): This is the supply current when the output of the logic

gate is at logic 0.

Fig.1.5: A Gate with current directions marked

6) Noise Margin

MSCPH522

14

Various electrical signals from industrial and other similar sources can give unwanted

voltage to the connecting wires between logic circuits. These undesirable unwanted signal

obtained is termed noise. Here, two types of noise are considered, DC noise and AC noise.

DC noise is generally because of the drift in the voltage levels of a signal. In contrast, AC

noise is a random pulse that some other switching signals may create. So, noise is termed

as an unwanted signal which is superimposed upon the normal operating signal.

Noise Margin is defined as the maximum noise voltage added to an input signal of a digital

circuit that does not cause an undesirable change in the circuit output. It is desired in most

applications to operate the circuits reliably in a noisy environment. Therefore, the Noise

margin (NM) represents the maximum noise signal tolerated by the gate and is usually

expressed in volts.

Fig.1.6: Noise Margin

 The noise margin calculation requires information on the output voltage signal

and the input voltage signal of the gate. The different signals that are required in the

calculation of the noise margin are given in Figure 1.6. Output gate voltages between VCC

and VOHare considered the high-level state, and the output gate voltage between 0 and VOL

is considered the low-level state. Voltages between VOL and VOH are called indeterminate

voltages. They usually do not appear under normal operating conditions except during

transition between the two levels. To compensate for any noise signal, the circuit must be

designed so that VIL is greater than VOL and VIH is less than VOH. The noise margin is

thedifference (whichever is smaller) between VOH - VIHor VIL - VOL.

7) Operating Temperature

MSCPH522

15

The operating temperature range must be very well known for the proper functioning of an

IC.The following temperature range is accepted:

 For consumer and industrial applications: 0 to +70˚C and

 For military applications: -55˚C to +125˚C

8) Power Supply Requirements

Two important characteristics of choosing the proper power supply are (1) supply

voltage(s) and (2) the amount of power required by the IC.

9) Flexibilities Available

Several IC logic families have certain flexibilities. Some of these flexibilities available are

described in the following points:

 The breadth of the series: types of logic functions available in the series

 Popularity of the series: If a series becomes more popular, then it can be

manufactured in bulk, reducing the cost of the manufacturing and thus making it

readily available because of multiple sources.

 Wired-logic capability: Additional logic can be created by connecting the outputs

together. This will also not require any extra hardware.

 Availability of complement outputs: The requirement for additional inverters is

eliminated.

 Type of output: Active pull-up, passive pull-up, open-collector/drain, and tristate.

1.5. RESISTANCE –TRANSISTOR LOGIC CIRCUIT

The resistor-transistor logic (RTL) was one of the widely and most popular used logic circuits

before the introduction of ICs. It merely consisted of resisters and transistors and was the first logic

family to be integrated. Although it is not being used nowadays, studying it will introduce some

important concepts that may be used in analyzing all types of gates.

The basic circuit of an RTL digital logic family is the NOR gate,as shown in Figure 1.7.Each input

is associated with one resistor and one transistor. The collector terminals of the transistors are tied

together at the output. The voltage levels for the given circuit are 0.2 V for the low level, and the

voltage range from 1 to 3.6 V for the high level.

The analysis of the RTL gate is straightforward. If any input of the RTL gate is high, the

corresponding transistor is driven into saturation which causes the output to go low, irrespective

of the state of other transistors. All the transistors are cut off when all inputs are at a low voltage

of 0.2 V. The reason isthatat this low voltage,VBE˂0.6 V, meaning that the transistor is driven into

cutoff mode.Due to this, the output of the circuit is high, approaching the supply voltage VCC. All

this implies the conditions for the NOR gate. It should be noted that the noise margin for low signal

input is 0.6 - 0.2 = 0.4 V.

MSCPH522

16

The Fanout of the RTL gate is limited by the output voltage value when it is high. As the output is

loaded with a number of inputs, more current is consumed by the load. This current must flow

through the 640 Ω resistor. It can be shown that if the current gain of the transistor hFE reduces to

20, then for a fanout of 5, the output voltage reduces to 1V.And hence, if any output voltage gets

below 1V, then it may not drive the next transistor into saturation as required. The power

dissipation (PD) of the RTL gate is nearly 12 mW, and the average propagation delay is 25 ns.

Fig.1.7: RTL basic NOR gate

Example 6:A RTL consists ofwhich of the elements?

Answer:RTL consists of resistors and transistors.

1.6. TRANSISTOR –TRANSISTOR LOGIC CIRCUIT

The basic circuit in the TTL digital logic family is aslight improvement over the DTL gate. With

time, TTL technology progressed and added improvements to the point that this logic family

became the most widely used family in the digital design system. There are seven subfamilies or

series of the TTL technology. The names and the characteristics of the seven TTL series appear in

Table 1.4. Fanout, power dissipation, and propagation delay are also mentioned in the table. The

speed-power product is an essential parameter for comparing various TTL series. This product of

propagation delay and power dissipation is measured in picojoules (pJ). A low value of this

product is desirable as it implies that a given propagation delay can be achieved without excessive

power dissipation and vice versa.TTL ICs have a number designation that starts with 74 and

follows with a suffix that identifies the series type. Examples are 7404, 74S86, and 74ALS161.

The first version of the TTL gate family was the standard TTL gate. Then it was redesigned with

different resistor values to produce gates with lower power dissipation or higher speed. The

propagation delay of a transistor circuit that goes into saturation depends mostly on storage time

and RC time constants. Decreasing storage time decreases propagation delay. Decreasing resistor

values in the circuit decreases RC time constants and reduce propagation delay.But, decreasing the

MSCPH522

17

value of the resistor gives higher power dissipation, as a lower resistance draws more current from

the power supply. The speed of the gate is inversely proportional to the propagation delay.

In low-power TTL, the resistance value is kept more than what is used in standard TTL to reduce

power dissipation. But this increases the propagation delay.In high-speed TTL, the resistance

values are lowered to decrease the propagation delay at the expense of an increase in power

dissipation. The next improvement in technology was the use of Schottky TTL, which used

Schottky transistors to remove the storage time delay by preventing the transistors from going into

saturation. This resulted in an increased circuit operation speed without an excessive increase in

power dissipation. The low-power Schottky TTL reduces power dissipation by sacrificing some

speed. Further work on the Schottky series led to the development of Advanced Schottky TTL

with improved performance in terms of lower propagation delay and power dissipation. The

Advanced Schottky TTL is the best in the TTL series providing the least power-speed product.

The TTL series are available in small-scale integration (SSI) and in more complex forms such as

MSI and LSI components. The main difference in the TTL family series is the internal construction

of the basic NAND gate, not the digital logic they perform.

TTL Series Name Prefix Fanout Power

dissipation

(mW)

Propagation

Delay

(ns)

Speed-

Power

product

(pJ)

Standard 74 10 10 9 90

Low-power 74L 20 1 33 33

High-speed

74H 10 22 6 132

Schottky 74S 10 19 3 57

Low-power Schottky 74LS 20 2 9.5 19

Advanced Schottky 74AS 40 10 1.5 15

Advanced low-power

Schottky

74ALS 20 1 4 4

Table 1.4: TTL Series and their characteristic

In any of the TTL series mentioned above, the output comes in three different types of

configurations :

1. Open-collector output

2. Totem-pole output

3. Three-state (or tristate) output

1. Open-Collector Output Gate:

MSCPH522

18

The basic DTL NAND gate and TTL NAND gate are shown in Figure 1.8.The TTL NAND

gate is the modified circuit of the DTL NAND gate. In TTL, the input is connected to the

multiple emitters in transistor Q1. These emitters behave as the diode in the DTL gate as

they make a pn junction with a common base. The base-collector junction of Q1 acts as

another pn junction diode corresponding to D1 in the DTL gate. Transistor Q2 replaces the

second diode, D2, in the DTL gate.The output of the TTL gate is taken from the open

collector of Q3. A resistor RL must be connected to VCC external to the IC package for

output to "pull up" to the high voltage level when Q3 is off. If this resistor is not connected

to the output terminal, then the output behaves like an open circuit. The basic circuit is a

NAND gate.

(a) (b)

Fig.1.8: (a) Basic DTL NAND gate (b)Open collector TTL NAND gate [1]

In TTL, we consider the two voltage levels: 0.2V for Low level and voltages in the range

2.4V to 5V for high level. If any input is low, the corresponding base-emitter junction in

Q1 is forward-biased. Vbase of Q1 = input voltage (= 0.2V) + Vbe(= 0.7V or 0.9V).For Q3to

conduct, the path from Q1 and Q3 must overcome a potential of one diode drop in the base-

collector pn junction of Q1 and two VBE drops in Q2 and Q3.Therefore, the required voltage

drop to make transistor Q3 conduct is 3x0.6V = 1.8V. Since the base of Q1 is maintained at

0.9V (0.2V+0.7V) by the input signal, the output transistor cannot conduct and is cut

off.The output level will be high if an external resistor RL is connected between the output

and VCC.

If all the inputs are high,transistors Q2and Q3 conduct and saturate. Vbase of Q1= Vbc +

Vbeof Q2+ Vbe of Q3 ≈ 3x0.7V = 2.1V.Since all inputs are considered high(i.e., > 2.4V),

the VBE junctions of Q1 are all reversed-biased. When the output transistor Q3 saturates, the

output voltage reduces to 0.2 V. That is a NAND operation.

When the TTL has to be connected to the input of other gates, in that case, the open-

collector TTL gate operates without an external resistor.However, this is not recommended

due to the low noise immunity. Open-collector gates can be used in three major applications

MSCPH522

19

in day-to-day life: driving a lamp or relay, performing wired logic, and constructing a

common bus system. Open collector output can drive a lamp placed in its output through a

limiting resistor.When the output is low, then saturated transistor Q3 forms a path for the

current that turns the lamp on,whereas when the transistor is off, the lamp turns off as there

is no path for current.

A wired-AND logic is performed if the outputs of various open-collector TTL gates are

tied together with a single external resistor. The wired logic performed with open-collector

TTL logic gates is shown in Figure1.9. The AND operation performed by connecting the

two outputs of the NAND gates using a wire is called a wired-AND connection. The

Boolean function obtained from the circuit is the AND operation between the outputs of

the two NAND gates.

 Y= (AB)'. (CD)' = (AB+CD)'

Fig.1.9: Wired-AND logic physical connection(Y= (AB)'. (CD)' = (AB+CD)')

Self Assessment Question (SAQ) 2: Explain how open-collector gates can be used as a

common bus.

2. Totem-Pole Output Gate:

The output impedance of a gate is usually a combination of resistive and capacitive loads.

The capacitive load consists of the output transistor's capacitance, fanout gates'

capacitance, and any stray wiring capacitance.When the output transitions from low to high

state, the gate's output transistoralso transitions from the saturation state to the cutoff

state,with the total load capacitance, C, charging exponentially from the low to the high

voltage level with a time constant equal to RC. For the open-collector gate, R is the external

resistor marked RL.

For a typical value of the capacitive load, C = 15pF and RL = 4KΩ, the propagation delay

of the open-collector TTL gate during the time it is in the turn-off position will be 35ns. If

the passive pull-up resistor RLis replaced with an active pull-up circuit, the propagation

MSCPH522

20

delay decreases to 10ns. The above-described configuration is shown in Figure 1.10,and it

is known as a totem-pole output sincethe transistor Q4"sits" upon transistor Q3.Totem-pole

output along with the TTL gate is equivalent to the open-collector gate, except for output

transistor Q4 anddiode D1.Transistors Q2 andQ3 go into the cutoff region when the output

transitions to a high state because one of the inputs falls to a low state. However, the output

will remain in the low state for a moment sincethe voltage across the load capacitance

cannot change instantly (an inherent property of the capacitor).

Fig.1.10: TTL gate with totem pole output [2]

Whentransistor Q2 turns off, Q4 starts to conductbecause VCC is connected to its base

through a 1.6kΩ resistor. Thecurrent required for charging the load capacitance causes the

transistor Q4 to saturate instantly, and the output voltage increases with the value of time

constant RC.But the value of R (= 130Ω) + saturation resistance of Q4 + diode resistance

≈ 150Ωis much smaller than the passive pull-up resistance used in the open-collector

circuit. As a result, the time taken to transition from a low to a high level is much faster.

With totem pole output circuits, the wired logic connection is prohibited. When we wire

together the two totem poles, with the two gates having a high and a low output, an

excessive amount of current is drawn that can produce sufficient heat, which can damage

the transistors.

3. Three-state (or tristate) output:

As seen above, with totem-pole structures, the output of the two TTL gates cannot be

connected just like in open-collector outputs.However, aspecial type of totempole gate is

available that allows the wired connection of the outputsto design a common-bus

MSCPH522

21

system.When a totem pole output TTL gate has this property,it is then known as a three-

state (or tristate) gate. The three state gates have three states of the outputs:

I. a low-level state when the lower transistor in the totempole is on and the upper

transistor is off,

II. a high-level state when the upper transistor in the totempole is on and the lower

transistor is off,

III. a third state when both transistors of a totempole are off.

This third state results in an open circuit or high impedance, connecting many outputs

directly to a common line. Thus, the threestate gates eliminate the requirement for open-

collector gates in a bus configuration.Figure 1.11 (a) shows the symbol of a three-state

buffer gate. If the control signal C is high, the gate is enabled and acts like a buffer with

output the same as binary input; if the control signal is low, the gate is an open circuit with

very high impedance.Figure 1.11 (b) shows the symbol of a three-state inverter gate. It

produces a high impedance state when the control input is high. In the Figure, there are two

small circles, one for the inverter output and the other for the control signal to indicate that

the gate is enabled for a LOW value at C.

Fig.1.11 (a): Three-state buffer gate

Fig.1.11 (b): Three-state inverter gate

1.7. INTEGRATED INJECTION LOGIC

The direct-coupled transistor logic (DCTL) circuit suffers from the difficulty of current hogging,

making it very unsuitable.A new logic, integrated injection logic (I2L), is developed that is based

on the DCTL. I2L uses a very small silicon chip area, consumes small power, and needs only four

masks and two diffusions (compared to five masks and three diffusions for BJT). Therefore,

overall we can say that I2L is cost-effective and easy to fabricate.All the advantages mentioned

aboveenable them to be widely used for MSI and LSI applications. It is not used in SSI and

therefore is the only saturated bipolar logic used for LSI.The basic idea of the origin of I2L

MSCPH522

22

technology is to merge the components by integrating one region of the semiconductor such that

it is a part of one or more devices. Since the main idea is based on merging the components, it is

also known as merged-transistor logic (MTL).A significant amount of silicon chip area is saved in

this process.

A. I2L Inverter

InFigure 1.12,the basic operation of I2L is illustrated using an inverter circuit. The transistor T1 is

off when the input Viis at a LOW level (therefore, IB1=0). We can thus say that the input source

will act as a sink for the current I1. So, current I2 will flow through the base of transistor T2 and

drives it to saturation. When transistors T1 is OFF, and T2 is ON, then Vbe2 = Vce1≈ 0.8 V.On the

other hand, when the input Vi is at a HIGH level, then the base current IB1 = I1+ the current due

to source Vi. This current is sufficient enough to drive the transistor T1into saturation. The value

of Vce1 = Vce,sat ≈ 0.2Vdriving the transistor T2 into cutoff. Transistor T1 behaves like a sink to the

current source I2. Thus, the output voltage logic level is shown to complement the input voltage

level, i.e.,the transistor T1behaves as an inverter here. The logic swing is about 0.8V-0.2V = 0.6V.

Fig.1.12: An I2L Inverter directly coupled to the following stage [1]

In Figure 1.13, we generate the output logic 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ ,𝐴̅ + 𝐵̅̅ ̅̅ ̅̅ ̅̅ , 𝐴 + 𝐵̅̅̅ ̅̅ ̅̅ ̅̅ and 𝐴̅ + 𝐵̅̅̅ ̅̅ ̅̅ ̅̅ . Here, the base of the

transistors T1, T2, and T4 are tied together, and the emitters are also connected to the ground.

Therefore, we can replace the transistors T1, T2, and T4in Figure 1.13 with a single transistor T1'

in Figure 1.14, havingthree collectors, one emitter, and one base. In the same way, other transistors

with common bases can also be replaced with a single transistor (transistors T2',T3', andT4' in

Figure 1.14) having multiple collectors. Hence, we can redraw Figure 1.13 to Figure 1.14.

As seen in Figure 1.12, we require a method for supplying the base currents. To obtain these base

currents for supply, the collector resistors of driving gates, shown by the dotted transistors in

Figure 1.13, are treated as the base resistors of multiple-collector transistors T2',T3', shown in

Figure 1.14. Likewise, the collector resistor of transistors T1 and T10behaves like the base resistors

for T2' and T4',respectively (as shown in Figure 1.14).VBB indicates the supply voltages. The circuit

drawn in the dashed box in figure 1.14 is either a part of other gates driven by the outputs or is

omitted. It indicates that the I2L circuit has an open collector output, which either runs another I2L

MSCPH522

23

circuit or will be connectedso that the connection is through resistors to the supply voltage.

Appropriate supply voltage and resistance values are used for getting appropriate output voltage

levels for driving other gates, such as TTL.

Fig.1.13:A DCTL Gate structure for generating functions of two logical variables [1]

MSCPH522

24

Fig.1.14: Fig.1.12 Redrawn with multiple-collector transistors [1]

1.8. EMITTER COUPLED LOGIC (ECL)

One of the fastest logic in all logic families is the Emitter-coupled logic (ECL). ECL comes under

the non-saturated logic family. ECL is used in applications that demand very high-speed

operationbecause,in ECL,we can achievea propagation delay of 2 ns and even less than it.

However, power dissipation and noise immunity are the worst in ECL among all the logic families.

The main reason for very high speed is the difference amplifier configuration of the transistors,

where the transistors never go into saturation, thereby eliminating the charge storage time. Since

in ECL, a saturation of the transistors is eliminated, the transistors are switched between the active

and the cutoff regions instead of switching between the ON and OFF states. The speed of operation

of less than1ns for each gate is possible in ECL.

An ECL can be realized with the help of a difference amplifier with the emitters of the two

transistors connected, and because of this, the logic is also called emitter-coupled logic.The basic

circuit of ECL is shown in Figure 1.15.We can achieve both OR and NOR functions from the ECL

output. Every input is connected to the base of atransistor. We use a HIGH voltage level of -0.8

V, and -1.8 V is considered a LOW voltage level. The ECL circuit shown in Figure 1.15comprises

a differential amplifier, a temperature and voltage compensated bias network, and an emitter

follower output. The emitter outputs need a pull-down resistor for current to flow, and this is

achievedby using an input resistor RPconnected to a negative voltage supply. The reference voltage

is supplied by the internal temperature and the voltage-compensated bias circuit. The bias voltage

is fixed at the mid-point of the signal logic swing. VBB= -1.3 V.In the circuit, a constant value of

MSCPH522

25

VBB is maintained even when there is a change in supply voltage or temperatures, with the help of

the transistor Q6 and the two diodes of the voltage divider circuit. Any power supply can be used

for the ground. However, to achieve the best noise immunity, we use VCC= ground and VEE = -

5.2V.

When any input is high, the respective transistor is on, and Q5 is off. The transistor starts

conducting whenthe input is – 0.8V, and -1.6V appears on the emitters of all transistors. Since

VBB= -1.3 V, Vbase of Q5 =0.3V +Vemitterof Q5. Thus, the transistor Q5 will be at cutoff since the

VBE voltage of Q5 is less than 0.6V. The current flows through the resistance Rc2 into the base of

Q8.This current across Rc2is so small that the voltage drop across Rc2 can be ignored. Therefore,

the OR output of the gate is 0 – Vbe = -0.8V, which is the high state. The current flowing through

the resistance Rc1and the conducting transistor causes a voltage drop of about 1V below ground.

Therefore, the NOR output is -1V - 0.8V = -1.8V, which is the low state.

In the same way,all the input transistors are in the off state, and only the transistor Q5 conducts if

all inputs are maintained at a low level. The collector-emitter junction voltage of the transistor

is Vce = VBB – Vbe = -1.3V – 0.8V = -2.1V. Since the base of each input is at a low voltage level (-

1.8V), each base-emitter junction voltage Vbe =0.3V with all input transistors in cutoff mode. Rc2

draws current throughQ5,resulting in a 1V drop and thereby making OR output voltage = -1V-Vbe

= -1.8V, or a low level. The current flowing through resistance Rc1isminimal and hence can be

ignored. The NOR output voltage = ground voltage - Vbe = 0-0.8V = -0.8V, which is a high state.

This verifies the OR and the NOR operations of the circuit.

Fig.1.15: ECL basic gate [2]

MSCPH522

26

1.9. MOSFET (PMOS, CMOS) AND TRI-STATE LOGIC

A field-effect transistor (FET) is a unipolar device, meaning that the current flowing in MOSFET

is due to only one carrier.Junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET)

are the two types of FET. JFET is used in linear circuits, whereas MOSFET is used in digital

circuits. MOS transistors can be fabricated in less area compared to the BJTs. Here in this chapter,

you will study about MOSFET.

MOSFET's basic structure is shown in Figure 1.16.The p-channel MOS has a lightly doped

substrate of n-type silicon material. Two regionsare heavily doped by diffusion with a p-type

impurity to make source and drain. The region between this source and drain is called a

channel.Gate is separated from the channel by an insulated dielectric of SiO2.The negative voltage

at the gate inducesan electric field in the channel, which attracts holes from the substrate. As the

magnitude of thisnegative voltage increases (keeping a sufficient voltage between the source and

drain), more holes will start to accumulate below the gate, thereby increasing the conductivity and

the amount of current flowing from the source to the drain.

Fig.1.16 (a): p-channel Fig.1.16 (b): n-channel

MOSFETs have high fabrication density and very low power dissipation. Due to these two

features, the MOSFETs are becoming more popular in digital logic circuits. Circuits using only p-

channel and n-channel devices are called PMOS and NMOS logic, respectively. If we fabricate

both the p-channel and n-channel devices on the same chip, then it is called complementary-

MOSFETS, and the logic based on these devices is known as CMOS logic. CMOS is being very

popular because of its extremely low power dissipation. Fabrication of MOS digital ICs is usually

done with the help of MOSFETs, and even the components like resistors can be formed using

MOSFETs.

As you know, the fabrication of resistors needs a large area inthe chip. Hence, if we use only

MOSFETs in the ICs, then the size of the IC can be reduced, and, therefore, a very high fabrication

packing density, or in other words,a higher number of components per unit of chip area, can be

manufactured. Therefore, with the help of the MOS logic family, we can have a large-scale and

MSCPH522

27

very large-scale integration. MOS is used to manufacture microprocessors, memories, and

peripheral devices.

MOS Inverter:The basic MOS gate is an inverter,as shownin Figure 1.17. Here T1 is the

enhancement MOSFET acting as a driver, and T2 can be an enhancement or depletion MOSFET

acting as a load resistor. In the MOS circuits, as shown in Figure 1.17,the logic voltage

levelsareV(0)≈0 and V(1)≈VDD.

Fig.1.17: A MOS Inverter with (a) Enhancement load, (b) Depletion Load

The current hogging issue in the DCTL is not present in MOS logic circuits, despite both DCTL

and MOS logic circuits having identical configurations.

PMOS and NMOS Logic: P-channelMetal-oxide-semiconductor (PMOS) is based on p-channel

enhancement mode MOSFET. During the 1960s to 1970s, PMOS logic was widely used for LSI.

Later it got replaced by NMOS and CMOS devices. PMOS transistors operate by creating an

inverse layer in the n-type transistor body. This inversion layer is known as the p-channel. Just like

MOSFETs, PMOS transistors have four modes: cutoff, triode, saturation, and velocity saturation.

PMOS gates have the same arrangement as NMOS gates if the voltages are reversed.

CMOS Logic: A complementary MOSFET (CMOS) is the series connection of p-channel and n-

channel MOSFETs with drains connected and output taken from the common drain. The two gates

of p and -channel MOSFETs are connected, and the input is applied to this common gate. The

fabrication of CMOS is a complicated process as both the p-channel and n-channel enhancement

MOS devices are fabricated on the same chip. However, this reduces the packing density. But

since the power dissipation in CMOS is negligible, it makes them more suitable for battery-

MSCPH522

28

operated systems. Figure 1.18 shows the basic CMOS logic circuit operating as an inverter. The

logic levels for this circuit are 0V (logic 0) and VDD (logic 1).

Fig.1.18: CMOS Inverter

VDD is the source terminal of the p-channel, whereas the source terminal of the n-channel is at the

ground.VDD= 3V to 18V. To understand the basic operation of CMOS, you need to review the

inverter operation:

1) N-channel MOS conducts when its gate-to-source voltage is positive.

2) P-channel MOS conducts when the gate-to-source voltage is negative.

3) Either device turns off when the gate to the source voltage is zero.

When the input is low, then the voltage at both gates is 0. The input voltage is at -VDD with respect

to the source of the p-channel device and is at 0V with respect to the source of the n-channel.As a

result, the p-channeldevice turns ON, and the n-channel device turnsOFF. This forms a low

impedance path between VDDand the output and a high impedance path between the output andthe

ground. Hence under normal operating conditions, the output approaches high-level VDD. When

the input is high, both gates are at VDD, and the situation gets reversed,i.e.,the P-channel device

isOFF,and the n-channel is ON. The output approaches a low-level stateof 0V. This corresponds

to the NOT logic operation.

The substrate capacitance limits the speed of CMOS. The latest technology, Silicon on sapphire

(SOS), is being used to fabricate the microprocessor to decrease the effect of substrate

capacitances. In MSI and LSI applications, CMOS is widely popular. CMOS is the only logic used

for the VLSI devices fabrication.

Tri-state Logic: Generally, any logic circuit has two output states, LOW and HIGH. A HIGH

state means the output is not in the low state. Similarly, a LOW state means the output is not in the

high state. In microcomputers, microprocessors, and other digital systems, we require a common

line called a bus to connect the outputs of several different gates to drive several gate inputs. This

connection may lead to many problems, which are listed below:

1) To avoid huge current drain from power supply, the outputs of the totempole for TTL or

active pull-up/down outputs for CMOS should not be connected together. Otherwise, ICs

will get damaged.

MSCPH522

29

2) Common-collector (or drain) and Open-collector (or drain) outputs may be connected

together, and the resistor may be connected externally to the circuit. This raises loading

problems. It also affects the speed of operation.

To solve these problems, an advanced circuit is used where a third state is developed at the output

state, known as the third state or high impedance state, besides LOW and HIGH states. This type

of advanced circuit is called TRI-STATE, tri-state logic (TSL), or three-state logic. TRI-STATE

has been registered as the trademark of National Semiconductor Corporation of the USA.One

functional difference between the TSL and wired-ORis: In wired-OR:Y=Y1+Y2, whereas in TSL,

the output does not operate the Boolean function; instead, it has the ability to multiply many

functions.

1.10. LOGIC FAMILIES AND THEIR PERFORMANCE

CHARACTERISTICS
In the previous sections, you have studied different digital logic families. You are now familiar

with the performance characteristics parameters and their significance in digital logic families. In

this section,we will compare the different logic families with their performance characteristics

such as Fanout, noise-margin, propagation delay time, power dissipation, current and voltage

parameters, operating temperature range, flexibilities etc.

Logic Families

Parameters

RTL TTL I2L ECL

MOS

CMOS

Basic gate NOR NAND NOR OR-NOR NAND NOR or

NAND

Power

dissipation (mW)

12 ˂10 6nW-

70µW

40-55 20 50

Noise immunity Nominal

Very

good
Poor

Poor

Good Very good

Propagation

delay (ns)

12 ˂10 25-250 0.75 300 10-70

Figure of

merit(pJ)

144 4-100 ˂1 40 60 0.24-0.7

Scale functions High Very

high

LSI only High Low High

Table 1.5: Comparison of different digital logic families with their performance characteristics

MSCPH522

30

SUMMARY

Essential features of all the logic families have been explained, and the following important

conclusions can be listed:

1. RTL and DTL circuits are rarely used nowadays because of low speed, more power

dissipation, and low Fanout.

2. TTL has become one of the popular logic and is now available in various series with a

wide range of operating speeds, power dissipation, and Fanout.

3. TTL has a large number of functions in SSI and MSI.

4. TTL ICs are available with totem-pole output (decreases the speed power product),

open collector output (wired-AND operation and bus operation is possible using this),

and tri-stateoutputs (TSL are ideal for bus connections).

5. TTL ICs with totem-pole outputs cannot be used for wired-OR or bus operation.

6. Unused inputs of TTL should not be left unconnected or floating.

7. ECL is the fastest among all logic families having a low noise margin and high power

dissipation as its main disadvantage.

8. I2L is the only saturated bipolar logic used in LSI primary due to the following two

properties: less silicon chip area required and low power consumption.

9. Since MOS devices occupy very small Silicon chip areas compared to their counterpart

bipolar devices, they are the most popular logic for LSI. The major drawback of MOS

devices is their low speed.

10. PMOS is not used so often.

11. CMOS is a widely used logic circuit because: (1) It has the lowest speed-power product,

(2) it requires very little power to operate, (3) It has led to VLSI technology, and (4)

Many large numbers of functions can be very quickly created using CMOS.

12. Active pull-up/down, open drain output and tristate (TSL) outputs are available in

CMOS ICs.

13. Better noise immunity can be achieved in CMOS logic if Schmitt trigger inputs are

used at the inputs of the CMOS ICs.

14. Active pull-up and pull-down devices cannot be connected together with the outputs of

the CMOS for bus operations and wired-OR logic.

GLOSSARY

Active pull-up A circuit with active devices is used to pull up the output voltage of a logic circuit

from LOW to HIGH.

Bipolar Logic circuits using bipolar junction semiconductor devices.

Bus A group of conductors carrying a related set of signals.

CMOS (Complementary metal-oxide-semiconductor)A MOS device that uses one p-channel and

one n-channel device to make an inverter circuit.

MSCPH522

31

ECL (Emitter coupled logic) A form of bipolar logic circuit that uses an emitter-coupled

configuration.

Fanout Maximum number of similar logic gates which a logic gate can drive.

Figure of merit (FoM) Product of propagation delay time and power dissipation.

I2L (Integrated injection logic)Bipolar logic circuit uses only bipolar transistors.

LSIAn IC chip having 100 to 1000 gates or 1000-10,000 transistors

MSIAn IC chip having 13 to 99 gates or 100-1000 transistors.

Noise immunityA circuit's ability to withstand noise.

Noise Margin Measure of the noise that can be tolerated by a logic circuit.

Open collector output An output of an IC at the collector terminal of a BJT not connected to any

other component inside the IC.

Pull-up resistor A resistor connected between output and supply voltage.

SSI An IC chip having up to12 gates or 100 transistors.

Three state gate (tristate gate) Gate having a 1, 0, or high impedance outputs states.

Totem-pole outputis the same as an active pull-up.

TSL (tristate logic)is the Same as tristate output.

Unipolar logic Logic circuits that have only MOS devices.

VLSI An IC chip having above 1000 gates or above 10,000 transistors.

REFERENCES

1. Modern Digital Electronics, R P Jain, Fourth Edition

2. Digital Logic and Computer Design, M Morris Mano

3. TTL Data Book. Dallas: Texas Instruments, 1988

4. CMOS Logic Data Book. Texas Instruments, 1984

QUESTIONS

(Should be divided into Short Answer Type, Long Answer Type and MCQs)

Short Answer type

1. A logic family using BJTs is known a ……….logic family.

2. A unipolar logic family uses only…..devices.

3. Figure of merit of a digital IC is given by…………..

4. Outputs of TTL gates with active pull-up must ………….connected together.

5. The input terminal of a CMOS circuit must……………

6. The states of a TSL are…………..

7. . …………. is the fastest logic family.

8. TTL compatible CMOS logic families are…….

9. Logic family that combines the best features of CMOS and bipolar logic is……

10. The state of a tristate output is ……………

MSCPH522

32

Long Answer type

1) Is it possible to use TTL to ECL translator for CMOS to ECL interfacing? Justify your

answer.

2) Write a brief note on RTL, TTL, I2L, and ECL, and then compare all these.

3) Explain MOSFET. What are its types?

4) Write a short note on CMOS.

5) Write notes on:

i. Power dissipation

ii. Propagation Delay

iii. Fanout

iv. Current and voltage parameters

v. Noise margin and noise immunity

vi. Figure of merit

vii. Flexibility

MCQs

1) The full form of the abbreviations TTL and CMOS in reference to logic families are

a) Triple Transistor Logic and Chip metal oxide semiconductor

b) Tristate Transistor Logic and Chip metal oxide semiconductor

c) Transistor-Transistor Logic and Complementary metal oxide semiconductor

d) Transistor-Transistor Logic and Complementary metal oxide semiconductor

2) The output of 74 series of TTL gates is taken from a BJT in

a) Totem-pole and common collector configuration

b) Either totem-pole or common collector configuration

c) Common base configuration

d) Common collector configuration

3) Commercially available ECL gates use two ground lines and one negative supply in order to

a) Reduce power dissipation

b) Reduce loading effect

c) Increase Fanout

d) Eliminate the effect of power line glitches or the biasing circuit

4) Among the digital IC families, ECL, TTL, and CMOS

a) ECL has the least propagation delay

b) TTL has the largest Fanout

c) CMOS has the biggest noise margin

d) TTL has the lowest power consumption

MSCPH522

33

5) In standard TTL, the 'totem pole' stage refers to

a) The multi-emitter input stage

b) The phase splitter

c) The output filter

d) Open collector output stage

6) Given that for a logic family,

 The high-level input voltage, VIH

 The low-level input voltage, VIL

 The high-level output voltage, VOH

 The low-level output voltage, VOL

The correct relationship is:

a) VIH>VOH>VIL>VOL

b) VOH> VIH> VIL> VOL

c) VIH> VOH> VOL> VIL

d) VOH> VIH> VOL> VIL

7) The ICs used in watches and calculators are of

a) TTL

b) ECL

c) MOS

d) CMOS

8) The Figure shows the circuit of a gate in the RTL family. The circuit represents a

a) NAND

b) NOR

c) AND

d) OR

9) The logic functionality realized by the circuit shown below is

MSCPH522

34

a) OR

b) XOR

c) NAND

d) AND

Answers:

Answers to Self-Assessment Questions:

SAQ.1)

Rc(max) =
𝑉𝐶𝐶 − 𝑉𝑂𝐻

𝐼𝑂𝐻 + 8𝐼𝐼𝐻
=

(5 − 2.4) × 1000

250 + 8 × 40
𝐾Ω = 4.56 𝐾Ω

Rc(min) =
𝑉𝐶𝐶 − 𝑉𝑂𝐿

𝐼𝑂𝐿 + 8𝐼𝐼𝐿
=

(5 − 0.4)

16 − 8 × 1.6
𝐾Ω = 1.44 𝐾Ω

Therefore, 1.44 𝐾Ω ˂ Rc ˂ 4.56KΩ

SAQ. 2)

We can use the Open collector gates as a common bus by tying them together. At any time, we

should maintain all the outputs of the gate connected to the bus, except one, as high.If we want to

transmit 1 or 0 on the bus, the corresponding gate must bein a high or low state. We must use a

control circuit to select the particular gate that drives the bus at any given time.

The Figure below shows the connection of the 4 sources connected to the common bus line. Each

of the 4 inputs drives each open collector inverter. The inverters' outputs are tied together to form

a common bus line. From the Figure, we can see that 3 inputs are set at 0, producing an output of

1 at the common bus line. The fourth input, I4, can thus now transmit the information through the

common bus line to inverter gate 5. Using the wired-AND logic, the input to the inverter gate 5

will be the wired-AND functions of the outputs of all the inverter gates 1,2,3 and 4, to which the

inputs I1, I2, I3, and I4 are connected, i.e., input to inverter 5 = 1*1*1*𝐼4̅= 𝐼4̅. Therefore the output

of the inverter gate 5 = 𝐼4̿=I4. Hence, we successfully transmitted the information at I4 through the

common bus line.

MSCPH522

35

Short type answers:

1. Bipolar logic family

2. FETs (MOS)

3. Product of propagation delay time and power dissipation

4. Must not be connected

5. Should be either connected to the ground or supply voltage

6. Logic 1, logic 0, and high impedance state.

7. ECL

8. CMOS logic family

9. Bipolar CMOS logic

10. Logic 1, logic 0, and high impedance

MCQs Answers:

1) C

2) B

3) D

4) A

5) C

6) B

7) D

8) D

9) D

MSCPH522

36

UNIT 2 MEMORY ORGANISATION AND

EXPANSION

STRUCTURE

2.1 Introduction

2.2 Objectives

2.3 Basic terms and ideas

2.4 Classification and Characteristics of memories

2.4.1 Principle of Operation

2.4.2 Physical Characteristics

2.4.3 Mode of Access

2.4.4 Fabrication Technology

2.5 Memory organization and expansion

2.5.1 Expanding memory size

2.5.1.1 Expanding word size

2.5.1.2 Expanding word capacity

2.6 Storage Devices

2.7 Memory Addressing

2.8 Sequential programmable logic devices

2.9 Content addressable memory

Summary

Glossary

References

Terminal Questions

Answers

MSCPH522

37

2.1 INTRODUCTION

There is a need to storedigital information in the digital processing system.This information

comprises a binary form of the coded instructions, data to be processed, and intermediate and final

results.The part of the digital system with storage capability is called memory. Semiconductor

memory, also called MOS memory, is a semiconductor device storing data within the MOS

memory cells on a Silicon integrated circuit memory chip. Earlier, magnetic tapes were commonly

used as storage devices. As semiconductor technology has advanced, it is now become possible to

make different types and sizes of semiconductor memories. Semiconductor memory is the main

memory component of a microcomputer-based system to store programs, information, and other

data. Semiconductor memory is immediately available to the microprocessor. Memories are

becoming more popular because of their compact size, high speed, low cost, ease of expansion,

and high reliability.Engineers designing digital processors should therefore know the working and

limitations of the semiconductor memories thoroughly.

Semiconductor memories are usually constructed with the property of Random access, which

means that the same amount of time is required to access information from any location in the

memory. This property allows accessing the data efficiently in any random order. This is in sharp

contrast to the data storage devices such as hard disks, CDs, pen drives etc., where we read and

write data consecutively so that it can be accessed in the same order as it was written. There are

many types of semiconductor memories depending on the semiconductor technology used. The

two most common and widely used Random Access Memory (RAM) are (1) Static RAM (SRAM)-

many MOS transistors per memory cell are used in this, and (2) Dynamic RAM (DRAM)- many

MOS transistors and MOS capacitors per memory cell are used in this. In non-volatile memories

such as EPROM, EEPROM, and flash memory, floating gate memory cells consisting of a single

floating gate MOS transistor per cell are used.

Memory is a group or collection of cells that are used for the storage of data. A memory cell stores

a word, and a wordhas binary information in groups of bits. A word memory is a collection of ‘1s’

and ‘0s’. Following are the common terminologies used-

Bit-Binary digit is logical 0 and 1

Nibble- Combination of 4 bits

Byte- Collection of 8 bits

Word- set of bits treated as a unit.

A computer stores the data in words. The following are terminologies used for the higher order:

Kilobyte or KB (1 KB) = 1024 bytes

Megabytes or MB (1MB) = 1024 KB

Gigabytes or GB (1GB) = 1024 MB

Terabytes or TB (1TB) = 1024 GB

MSCPH522

38

The memory capacity determineshow much total number ofbytes it can store. The capacity of

semiconductor memory can be increased. The memory size is specified in terms of the number of

words or bits in the word. Memory size can be increased by increasing the number of words or

word size with the help of multiple chips.

In this unit, you will familiarizeyourself with semiconductor memory types, characteristics of

memory based on their operation, and fabrication technology. You will learn the memory

organization and its expansion. Various storage devices will also be discussed briefly.

2.2 OBJECTIVES

After studying this unit, you should be able to-

 Learn about semiconductor memories and their classification based on their operation

 Be familiar with different other types of memories

 Utilize the memory organization and its expansion.

 Know the different storage devices with their applications

 Know about the memory address

 Solve problems based on the memory size, number of address lines, etc.

2.3 BASIC TERMS AND IDEAS

In any digital processing system, it is always required to store and retrieve digital data whenever

it is required. In the early days, magnetic tapes/ discs were used early for this purpose. Nowadays,

semiconductor devices are used to build these memory devices as they are easy to use, smaller in

size, reliable, have a high speed of operation, and are easy to expand.

Memories can be constructed using Flip-Flops. In such a memory, the data can be written into

memory and randomly read from memory. This is also known as random access memory. Figure

1 shows the basic 1-bit memory element with reading and writing operations. Memory integrated

circuits are built using such basic 1-bit memory elements.

The main component of this 1-bit memory cell is D-flip-flop. The output ‘Q’ of the D flip-flop is

the input’D,’ as long as the CK is at logic 1. When the signal at CK terminals transitions to logic

0, the output at terminals’Q’ does not change. It still outputs the value present on ‘Q’ before the

CK terminal transitioned to logic 0. Figure 1, shown below, has 3 inputs, namely, Di (data input),

R/𝑊̅ (Read/Write control), An (address select) and one output D0 (data output). An = 1 will select

the memory cell for reading and writing operations. R/𝑊̅ = 1, enables the reading operation from

the cell, whereas R/𝑊̅ = 0 enables the writing into the cell operation. As long as An = 0, the memory

element is in hold mode, and all the read and write operations are blocked, thereby protecting its

hold output till required.

The read operation is non-destructive, meaning the stored bit can be read as often as required

without disturbing the information. Since the stored information is protected as long as the power

is on, this type of memory is also called volatile memory. It is not required to clear the cell before

MSCPH522

39

writing into it. The earlier bit/information will get automatically destroyed when something is

written onto the cell.

Fig.2.1: A basic 1-bit read/write memory cell

2.4 CLASSIFICATION AND CHARACTERISTICS OF

MEMORIES

We can classify the different memory devices based on the principle of operation, physical

characteristics, mode of access, and fabrication technology.

2.4.1 Principle of operation

Based on the principle of operation, semiconductor memories can be divided into two types of

memories:

1. Random Access Memories (RAM)

2. Read Only Memories (ROM)

 Random Access Memories (RAM)

Random Access Memory is constructed with the property of Random access, which means that

the same amount of time is required to access information from any location in the memory. This

property allows accessing the data efficiently in any random order. The data can be stored and read

to and from this memory many times. RAM is a volatile memory,i.e.,the data is saved in RAM till

the power supply is ON. When the supply is turned off, all the data stored in RAM will be lost.

Therefore, this memory can be easily programmed, erased, and reprogrammed by the user. RAM

is also called read-and-write Memory, main Memory, orprimary Memory. RAM further can

be divided into:

i. Static RAM (SRAM)

ii. Dynamic RAM (DRAM)

i. Static RAM (SRAM)

MSCPH522

40

SRAM consists of flip-flops as storage elements. Here, static means the memory will hold its

content until the time supply is ON.Therefore, SRAM is also called volatile memory. The

fabrication of SRAM can be done using either BJT or MOSFET; hence, SRAMsare comparatively

faster. SRAM can be either synchronous or asynchronous. The operations in an SRAM are

synchronized with the system clock, whereas in an asynchronous SRAM, the operations are not

synchronized with the system clock. Usually, synchronous SRAMs are equipped with a burst

feature, which allows a single address to read and write at up to four locations in the memory. The

Mod-4 counter, which is a component of the burst logic circuit, produces a series of 4 internal

addresses using the two lowest order address bits as 00, 01, 10, and 11 on succeeding clock pulses.

The base address, or the external address applied, always comes first in the sequence.

ii. Dynamic RAM (DRAM)

DRAM stores the data in the form of charges in the capacitor and transistor pair available in the

memory cell. Hence, it requires periodic refreshing and is slower than SRAMs. DRAMs can be

fabricated using only MOSFETs and can store much more data than SRAM for a given size and

cost. Different types of DRAM are:

 Fast Page Mode DRAM (FPM DRAM)

 Extended Data Out DRAM (EDO DRAM)

 Burst EDO DRAM (BEDO DRAM)

 Synchronous DRAM (SDRAM)

A comparison between SRAM and DRAM is given in Table 1.

Table1:Comparison between SRAM and DRAM

 Read Only Memories (ROM)

The form of memory where the dataare once written cannot be changed even if the power supply

goes off.The Read Only Memory (ROM), as its name suggests, is mostly used for reading

memories. It does not necessarily follow that data cannot be written into it, either, since reading

from memory is pointless unless data can also be written to and stored in the memory. Writing to

Properties SRAM DRAM

Speed faster Less

Cost More less

Storage Less More

Fabrication By bipolar devices Only by unipolar

devices

Power

consumption

More less

Applications CPU’s speed-sensitive

cache

Larger system RAM

space

MSCPH522

41

ROM requires a more involved process than writing to RAM, and it is often done outside of the

system where ROM is used. ROM is used where permanent memory is needed. In other words, it

is used to store information that is fixed, such as tables for various functions, fixed data, and

instructions. Low cost, high speed, permanent memory features, and flexibility in the designing

system have made ROM popular among other memories. ROM is utilized for the LSI

manufacturing process.

Only at the time of manufacturing, as the final step of fabrication, is read-only memory

programmed with the data provided by the user.After the fabrication process is completed, the

stored data can not be erased. When the information is written in ROM, it is known as

programming the ROM. ROM, further, can be divided into two types:

i. Programmable ROM (PROM)

ii. Mask ROM (MROM)

i. Programmable ROM (PROM)

Programmable Read-Only Memory is referred to as a PROM. This sort of ROM is programmed

by the user using a special circuit known as a PROM programmer. When a PROM is programmed,

its data is stored in this ROM permanently. This kind of ROM is appropriate for the storage of data

that is of a permanent nature.

The data is stored as a charge on a capacitor in it. Each cell has a charge storage capacitor. PROM

comprises an array of fusible links. Due to a leak in charge, the data tends to be lost. Again, PROM

is divided into the following:

 Erasable PROM (EPROM)

 Electrically Erasable PROM (EEPROM)

 Flash memory

 PCM

Erasable PROM (EPROM)

Erasable Programmable Read Only Memory is abbreviated as EPROM. This type of ROM can be

reprogrammed again and again. The process of erasing the data can be done using two methods:

(1) By exposing the silicon chip to ultraviolet light and (2) By using electricity. If UV radiation is

used for erasing purposes, then the ROM is called EPROM, whereas when electricity is used to

erase the contents, then it’s called EEPROM. There is a window in EPROM to enable the light to

reach the silicon of the chip.

Electrically Erasable PROM (EEPROM)

Electrically Erasable Programmable Read Only Memory is abbreviated as EEPROM. Applying a

higher-than-normal electrical voltage will allow you to delete and reprogram (write to) the device

repeatedly. EEPROMs are non-volatile ROMS that allow for the erasure and reprogramming of

single bytes of data. Because of this, EEPROM chips are sometimes known as byte erasable chips.

In computing and other electronic devices, EEPROM is typically used to store small amounts of

data.Memory cells of EEPROM are made up of floating-gate MOSFETs.

MSCPH522

42

EEPROMwas created by scientists at Hughes Aircraft and Intel in the late 1970s and early 1980s

to replace EPROM and PROM Memory. The EPROM technology was widely utilized before

EEPROM. If EPROM memory chips were exposed to UV light, they could be programmed and

then erased.However, the chips could not be erased electrically. Moreover, the EPROM erasing

procedure took upwards of an hour, which was adequate for the development conditions of the

time but provided no flexibility for potentially faster environments in the future.

EEPROM technology was developed to meet these difficulties. EEPROM can be erased and

programmed electrically based on the current EPROM structure. The typical lifespan of an

EEPROM chip is 10,000–100,000 write cycles, which is significantly longer than the write cycles

of an EPROM chip.

Flash memory

Flash memory is a type of non-volatile memory that can be erased and reprogrammed electrically.

In contrast to EEPROM, which is erased and reprogrammed at the byte level, it is a type of

EEPROM that is erased and programmed in the circuit in large blocks. The size of blocks can be

in the range of hundreds to thousands of bits. These memories are based on floating-gate

transistors, and floating-gate transistors are used to store bit information. It is easier to update flash

memory because it can be written to memory in blocks rather than byte size. However, flash

memory is less useful than RAM because RAM must be addressable at the byte level rather than

the block level. It is also known as‘non-volatile RAM.’Flash memory got its name from the fact

that a large block of memory could be erased at once, i.e., in a single action or ‘flash.’

Flash memory is used in consumer storage devices such as mobile phones, digital cameras, and

computer memory sticks.Flash memory is also called Flash Storage.Flash memories can be of two

types:

i. NAND Flash memory- In a NAND flash cell, which is smaller and has fewer bit lines,

floating gate transistors are connected together to increase storage density. NAND memory

stores data in pages, which are larger than bytes but smaller than blocks.

ii. NOR Flash memory- NOR flash connects different memory cells in parallel without

sharing components, enabling random access to data. Data can be quickly read from the

NOR flash. However, writing and erasingdata is much slower than NAND flash memory.

In NOR flash, information is saved at the byte level.

Some advantages of flash memories are listed below:

a) Flash memory has high-speed transfer rates.

b) Flash memories are compact in size.

c) Due to their stability, flash memories are recommended for use on mobile devices.

d) Flash storage does not require any physical components to function. As a result, it requires

very little energy to operate, and no noise is produced.

e) Flash memories are highly portable.

MSCPH522

43

However, there are some limitations of Flash memory:

a) It can not delete the data bit by bit, byte, or word. It can delete only block by block.

b) Flash memory is always more expensive per gigabyte when compared to traditional hard

disc drives.

c) Although flash memory is more durable than hard disc drives, it does not have an infinite

lifespan.

d) Bit Flipping problems occur in NAND memory compared to NOR memory.

e) Less reliability due to bad block. Bad blocks can’t be used for storage systems.

f) The usage of NOR and NAND memory is different.

g) Many NAND flash memory devices use a process called program/erase to store data

quickly, but this process eventually wears out and destroys flash drives. Therefore, heavy

write loads cannot be supported by flash storage.

Phase Change Memory (PCM)

PCM stands for Phase Change Random Access Memory (P-RAM or just a Phase Change

Memory). It is a non-volatile computer memory (NVRAM) type and is sometimes referred to as

“perfect RAM” because of its exceptional performance features. Different industrial/academic

groups also refer to them as phase change memory as PCM and PCRAM.

PCM is a cutting-edge form of memory technology with numerous promising storage application

use cases. Fast RAM speeds are promised by PCM, but they can also be utilized to store data with

less power consumption.Though its widespread commercial use in storage has been minimal, PCM

is a technology that has been in various phases of study and development since the late 1960s.

Nevertheless, many industries are investing in this technology, which has a promising future.

One of the main benefits of NVRAM is that information may be stored in PCM, unlike DRAM,

even when the system is switched down.The non-volatile storage is made possible by the use of

unique alloys, such as Germanium Antimony Tellurium (GST), in phase change memory. The

alloy may be heated to change into one of two “phases” (crystalline or amorphous), which is how

data is stored in the alloy.When compared to other memory storage technologies, such as NAND

Flash Memory, PCM offers several advantages such as:

 Faster Write Cycles: PCM offers the possibility of much faster write cycles than NAND

flash.

 Faster Access Time: Access times under 5s can be achieved with PCM, according to

research.

 Endurance: Vendors and researchers estimate that PCM can handle more write cycles than

NAND memory because it doesn’t have to delete data first.

 Reduced Energy Consumption:PCM promises to use less power than its NAND

competitors.

 Executable PCM. It can store data like NAND and execute code likethe current DRAM.

ii. Mask ROM (MROM)

MSCPH522

44

The contents of a mask ROM (MROM) are programmed by the IC manufacturer (rather than by

the user). The term mask comes from the field of IC fabrication, where regions of a chip are masked

off during the photolithography process.When working on a project, it’s customary to employ

rewritable non-volatile memory (such asEPROM or EEPROM) and switch to mask ROM once the

code is complete. For instance, Atmel microcontrollers are available in EEPROM and mask ROM

formats.

The affordability of mask ROM is its biggest advantage. Mask ROM is the most compact form of

semiconductor memory per bit. Mask ROM is much less expensive than any other type of

semiconductor memory because the cost of an IC heavily relies on its size.However, there is a

considerable turnaround time from the design to the production phase and a considerable one-time

masking cost. Design flaws are expensive; if a data or code fault is discovered, the mask ROM

must be replaced to update the code or data.Some ICs simply include mask ROM. Other ICs

include mask ROM in addition to many other components. Many microprocessors, in particular,

have mask ROM to store their microcode. Some microcontrollers have mask ROM to store the

bootloader or all of their firmware.

2.4.2 Physical Characteristics

Semiconductor memories, further, are categorized into their physical characteristics, such as:

1. Erasable or non-erasable, and

2. Volatile or non-volatile.

Erasable or non-erasable memories

Erasable memories are those in which the old data can be erased anytime, and new data can be

written and stored. In contrast, if the digital information can not be erased, it is called non-erasable

memory. For example, RAM is erasable memory, and ROM is non-erasable memory. Erase

operation can be done electrically orwith ultraviolet radiation.

Volatile or non-volatile memories

If the digitally stored information in memory is lost when the power supply goes off, thismemory

is known as volatile memory. In contrast, non-volatile memoriesare those in which the data remains

intact until it is altered knowingly. For example, RAM is volatile memory, and all ROMs are non-

volatile.

2.4.3 Mode of Access
The mode of access describes how data is read from or written to a memory location.Only reading

is possible in ROMs.Mode of Access can be categorized as follows:

1. Sequential access, and

2. Random access

Sequentially accessed memories are also called sequential memories. However, RAM, and ROM,

fall under the category ofrandom-accessmemories. The access time for each memory location in

MSCPH522

45

random-access memories is the same. However, in sequentially accessed memory, the access time

varies depending on the location.

2.4.4 Fabrication Technology

Based on the fabrication technology, semiconductor memories can be divided into two types:

1. Bipolar, and

2. Unipolar.

Bipolar technology (TTL, ECL, etc.)or MOS technology is used in fabricatingStatic RAM, ROM,

and PROM, whereas only unipolar technology (MOSFETs) is used in the fabrication of DRAM,

EPROM, EEPROM, and flash memories. Figure 2 summarizes the classification of different

semiconductors memory technologies studied above.

Fig.2.2: Classification of semiconductor memory technologies

2.5 MEMORY ORGANISATION AND EXPANSION

The semiconductor memory is a group of cells; each cell has its unique number known as address.

To access the instruction, a memory request is made by the CPU. When the CPU has to read or

write, a control signal is generated, such as ‘read’ or ‘write.’The requirement fortransferring

instruction from memory to the CPU arises when the CPU executes the program.

MSCPH522

46

Memory Request

Memory request has both an address and control signal. For example, when data is inserted into a

stack, memory is consumed by each block. The memory chip capacity determines the number of

memory cells.

Example1:Find the total number of cells in a 64k*8 memory chip.

Solution:Each cell size =8

Number of bytes in 64k = 26 * 210

So, the total number of cells = 216

Word Size

Word size tells the maximum number of bits a CPU can process at a time. Word size depends upon

the type of processor.As shown in Figure 3, there can be different word sizes depending on the

processor type. Word size is used in addresses, registers, floating-point numbers,and fixed-point

numbers.

 Fig.2.3: Different processors with their word and byte size

Figure 4 shows the block diagram of a memory device. The memory size is expressed with the

help of two numbers, M and N,givenbyM×N bits. M expresses the number of locations, and the

number of bits at each location is expressed by N. To put it another way, it suggests that the

memory can accommodate M words, each of which can hold N bits.The most common number of

words perchip are 64, 256, 512, 1024, 2048, 4096, etc., and the word sizesused are 1, 4,8, 16,

etc.Since each of the Memory’s M locations is identified by a different address, P inputs are

necessary to access any of the M locations, where2P=M.These sets of lines are called

theaddress inputs or address buses.In reality, the address input is applied to a PxM decoder circuit,

which, depending on the address, activates one of its M outputs and therefore selects the desired

MSCPH522

47

memory location.The address is defined in binary format. However, Octal and hexadecimal

formats are frequently employed.

Fig.2.4: Block Diagram of a Memory Device

N inputs are necessary for any memory location to store or read data. Data inputs and outputs are

two sets of N lines each, where inputs are needed to store data in the memory and outputs are

needed to read data alreadystored there.A bus is a group of conductors carrying a common set of

signals. As a result, the input data bus is the set of lines intended for data inputs, while the output

data bus is intended for data outputs. Input and output data buses are unidirectional, meaning data

can only flow in one direction.Most memory chips use the same lines for data input and output,

referred to as a bidirectional bus. To achieve this, the time multiplexing of the data bus is done.

As shown in Figure 5, dependingonwhether the control input is Read/Write, the data bus is used

as an input bus for a specific time and an output bus for some other time.

For the device to receive instructions to carry out the specified action, several control inputs are

required.For instance, a command signal is needed to inform the memory whether a read or write

operation (R/𝑊̅in Figure 2.5) is intended.Whenthe R/𝑊̅signal isLOW, the data bus acts as an

input bus, allowing data to enter the memory, whereas when the R/𝑊̅signal is HIGH,the data bus

acts as an output bus and reads the data frommemory. Inputs for other commands include chip

enable (CE),chip select (CS), etc. A

minimumoftwopinsareneededforthepowersupplyandgroundinadditiontothefunctionalpinsmention

edabove. Figure6illustratestheinternallayoutofa 16x4 memory chip. Read and write operations are

explained below.

MSCPH522

48

Fig.2.5: Block Diagram of Memory with Bidirectional Data Bus

Write Operation

It can be seen from Fig. 6 that to write a word into the designated memory location, a logic 1

voltage must be provided to the CS (chip select) and Write (WR) inputs, and a logic 0 voltage must

be applied to the Read (RD) input. Because of this input combination, the outputs of AND gates

A1 and A2 are 1 and 0, respectively. The value 1 at the output of A1 activates the input buffers,

causing the 4-bit word applied to the data inputs to be loaded (entered) into the designated

(addressed) memorylocation. The outputs are set to Hi-impedance.

MSCPH522

49

Fig.2.6: Internal Organization of a 16 ×4 Memory Chip [3]

Figure 7 depicts the numerous waveforms that occur during the writing procedure. The following

are the essential properties of the write cycle:

 Write Cycle Time (tWC): This is the minimum time required between successive write

operations.

 Write Pulse Time (tW): This is the minimum length of the write pulse.

 Write Release Time (tWR): This is the minimum amount of time for which the address must

be valid after the write pulse ends.

 Data Set Up Time (tDW): This is the minimum amount of time for which the data must be

valid before the write pulse ends.

 Data Hold Time (tDH): This is the minimum amount of time for which the data must be

valid after the write pulse ends.

Read Operation

Again from Fig. 6, it can be seen that to read the contents of a selected memory location, both

Read (RD) and Chip Select (CS) inputs must be at logic 1, and Write (WR) must be at logic 0

levels. Because of this input combination, the outputs of AND gates A1 and A2 are 0 and 1,

respectively. The value 1 at the output of A2 activates the output buffers, thereby allowing the

contents of the selected (addressed) memory location to appear at the data outputs. RD=1 tristate

the input buffers so that data input does not affect the memory during a read operation.

MSCPH522

50

Fig.2.7: Write-Cycle Waveforms [3]

Fig. 8 shows several waveforms during the read operation. Some of the timing characteristics of

the read cycle are:

 Read Cycle Time (tRC)- This is the minimum time required between successive read

operations.

 Access Time (tA)- Maximum time from the start of the valid address of read cycle to the

time when the valid data is available at the data outputs.

 Read To Output Valid Time (tRD)- Maximum time delay between the start of read pulse

and the availability of valid data at the data outputs.

 Read To Output Active Time (tRDX)- The minimum time delay between the beginning of

read pulse and the output buffers coming to an active state.

 Chip-select To Output Valid Time (tCO)- Maximum time delay between the beginning of

chip-select pulse and availability of valid data at the data outputs.

 Chip-select To Output Active Time (tCX)-Minimum time delay between the beginning of

chip-select and output buffers coming to an active state.

 Output Tristate From Read (tOTD)- Maximum time delay between the end of read pulse and

output buffers going to high impedance state.

MSCPH522

51

 Data Hold Time (tOHA)- Minimum time for which the valid data is available at data outputs

after the address ends.

Fig.2.8: Read-Cycle Waveforms [3]

2.5.1 Expanding Memory size

A single memory IC chip cannot accommodate the number of words and/or word sizes needed for

many memory applications.Therefore, several similar chips must be appropriately combined to

produce thislarge number of words and/or word size.

2.5.1.1 Expanding Word Size

If the available memory has a word size of N, and we require memory to have a word size of n (n

> N), then we will have to combine several similar memory ICs to obtain the desired word size.

The number of IC chips needed must be an integer, i.e., the least integer function of n/N.These

chips are to be connected in the following manner:

1. First, connect the corresponding address lines of each chip separately, i.e.,connect the A0

of each chip together, thereby making it the A0 of overall Memory. Similarly, connect all

other address lines together.

MSCPH522

52

2. Then connect the read terminal (RD) of all the ICs, making it the read terminal for the

overall memory. Similarly, write (WR), and chip-select (CS) inputs connect.

The product of the number of chips and the word size of each chip is equal to the number of data

input/output lines.

Example 2:Obtain a 16×8 memory using 16×4 Memory ICs.

Answer:Required word size n = 8

The word size of the available IC is N=4.

Therefore, the number of chips required to obtain the desired memory is n/N = 2.

Since each chip can store 16 4-bit words and it must store 16 8-bit words, each chip must store

half of each word. The connections are depicted in Figure 9. Memory M1 contains the higher order

four bits D7, D6, D5, and D4 of each 8-bit word, whereas memory M0 contains the lower order

four bits D3, D2, D1, and D0.

Fig. 2.9: 16×8 memory Obtained by Combining Two 16×4 Memory Chips.

MSCPH522

53

2.5.2.2 Expanding Word Capacity

We can produce a memory with the desired number of locations by combining several memory

chips. To obtain a memory of capacity m words, using the memory chips with M words each, the

number of chips required is an integer value m/M, i.e., the least integer function of m/M. These

chips should be connected in the following manner:

1. All the corresponding address line of each chip is connected separately.

2. RD terminal of each chip is connected. In the same way, the WR terminals of each chip

are also connected.

3. A proper size decoder is used, and then its output is connected to one of the CS terminals

of memory chips.

Example 3: Obtain a 2048×8 memory using 256×8 memory chips.

Answer:Number of chips needed = 2048/256=8

Only one of the 2048 locations is to be accessed at any time, which will be in one of the eight

chips, i.e., only one of the 8 chips should be selected at a time. The number of address lines to

select any of the 2014 locations is 11 (211= 2048). The lower eight bits of address A7 – A0 shall be

the same for each chip. The higher order three bits of address A10 – A8 should select one out of

eight chips. So, a 3-line-to-8-line decoder is needed. Figure 10 shows this memory connection. For

read and write (R/𝑊̅), a common terminal is taken here. Logic 1 is for reading operation, and logic

0 is for writing operation. Chip select input is taken as active-low. Table 2 has the chip addresses.

MSCPH522

54

Fig. 2.10: A 2048×8 Memory Obtained by Combining Eight 256×8 Memory chips [3]

Memory Chip Addresses (Hexadecimal)

M0 000-0FF

M1 100-1FF

M2 200-2FF

M3 300-3FF

M4 400-4FF

M5 500-5FF

M6 600-6FF

M7 700-7FF

Table2: Addresses of the memory Chips

Memory Hierarchy

All of the storage components used in a computer system—from the slow but high capacity

auxiliary memory to the comparatively quicker main memory to the even smaller and faster cache

memory accessible to the high-speed processor logic—are collectively referred to as the memory

hierarchy system.

 Auxiliary Memory - It is at the bottom of the hierarchy and has an access time of 1000

times that of the main memory. Auxiliary Memory provides backup memory for storage,

e.g., Magnetic disks and tapes.

 Main Memory – It has a central position in the hierarchy and is equipped with a CPU and

auxiliary memory through an input/output processor (I/O).

 Cache memory – Program segments presently being run by the CPU are stored in the cache

memory.The approximate access time ratio between cache and main memory is about 1 to

7 ~ 10. Whenever the CPU needs to access memory, it first checks the cache memory. If

data is not found on cache memory, then the CPU movesto the main memory.

MSCPH522

55

Fig.2.11: Memory Hierarchy

Hit Ratio

The hit ratio measures the performance of cache memory. When the CPU refers to memory and

finds the word in the cache, it is said to produce a hit. If the word is not found in the cache, it is in

the main memory.It is then called a miss. The ratio of the number of hits to the total CPU references

to memory is called the hit ratio.

𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐻𝑖𝑡

(𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠)

Associate Memory

Associate Memory is also called content addressable Memory (CAM). Each bit position is

comparable in this memory chip. Associate Memory has less storage capacity compared to other

memory chips. Rather than allowing straightforward, direct access to the data based on the address,

this particular memory is specialized for executing searches over data.

Associative memory is a type of ordinary semiconductor memory (often RAM) with additional

comparison circuitry attached to it so that a search operation may be finished in a single clock

cycle. It is a hardware search engine, a unique kind of computer memory utilized in high-searching

applications.

2.6 STORAGE DEVICES

A storage device is essential computer hardware that stores information or data to process

computational work. A computer couldnot operate or even start-up without a storage device, or we

MSCPH522

56

may define a storage device as hardware that is used to store, transfer, or extract data files.

Additionally, it has the capacity to permanently and temporarily store information and data. There

are two categories of computer storage:

 Primary Storage Devices: It is sometimes referred to as main Memory and internal

Memory. The program instructions, input data, and intermediate results are kept in this

CPU section. Its size is often smaller. Examples of primary storage include RAMand ROM.

 Secondary Storage Devices: An externally located memory is called secondary storage.

Programs and data are mainly stored there permanently and for a very long time. Secondary

storage includes Hard Disk, CD, DVD, Pen/Flash drive, SSD, etc.

These primary and secondary storage devices have unique specifications and purposes. Several of

the frequently used storage devices include:

1. Primary Storage Devices:

Common examples of primary storage devices are RAM (SRAM, synchronous SRAM,

asynchronous SRAM, DRAM, Fast Page Mode DRAM (FPM DRAM), Extended Data Out

DRAM (EDO DRAM), Burst EDO DRAM (BEDO DRAM), Synchronous DRAM

(SDRAM)), ROM (Programmable ROM (PROM), Mask ROM (MROM), Erasable

PROM (EPROM), Electrically Erasable PROM (EEPROM), Flash memory, PCM). We

have already studied these memory devices inSection 2.4.1.

2. Magnetic Storage Devices:

Magnetic storage devices are very frequently used devices. In these devices, data storage

is done by the magnetized medium. Various patterns of magnetization are used to store the

data.Magnetic storage is divided into three types as follows:

 Disk Drive

 Diskette Drive

 Magnetic Tape

Disk Drive

Magnetic storage devices are mainly made up of disks. An example of a Disk drive is a

hard disk drive (HDD). HDD has one or more disks and runs at a very high speed with a

magnetizable coating medium. HDD has disks with a READ/WRITE head which reads

and writes data from and to the disk.

Diskette Drives

Diskette drivesare also known as floppy drives. Diskette drive comes under removable

disk drives. A Floppy disk drive can be removed from the drive, known as Floppy Disk

Drive or FDD, but a hard disk drive can not be removed from the drive. Floppy disks have

a small storage capacity and are supposed to be utilized as portable storage, transferable

from one machine to another. FDD can read and write data from and to the floppy disk.

The Floppy disk has a plastic cover to remove dust.

MSCPH522

57

Magnetic Tape

The reels of Magnetic tapes are coated with magnetizable elements for holding and server

written on them. Tape drives have a huge storage capacity. It is used through servers,

personal computers, etc. Tapes are used to achieve hundreds of terabytes (TB) of data. (1

terabyte =1 trillion bytes = 240 bytes).

3. Optical Storage Devices:

Optical storage uses recording data with the help of light. Optical storage devices can be

used as removable disks. Optical storage is done with the help of drives. This type of

storage has a system that is based on lasers that can be used to read or write to the disk.

Examples of optical storage devices are compact disks (CD), Digital Versatile

discs(DVD), and Blu-ray discs.

i. Compact Disk: The CD stands for Compact Disc. On its surface, it has tracks and

sectors for storing data. It has a round form and is composed of polycarbonate

plastic. A CD may hold up to 700MB of data. It comes in two variations:

 CD-R is an abbreviation for compact disc read-only. Once written, the data

on this kind of CD cannot be removed. You can only read it.

 Compact Disc read/write is abbreviated as CD-RW. This type of CD makes

it simple to write to or delete data repeatedly.

ii. Digital Versatile Disc: It is abbreviated as DVD. DVDs are flat, circular optical

discs and can store data. It comes in two sizes, one being 4.7GB single-layer discs

and the other being 8.5GB double-layer discs. Although DVDs resemble CDs,

they have a larger storage capacity. There are two varieties:

 Digital Versatile Disc read-only is known by the acronym DVD-R. The

data on this kind of DVD cannot be removed after it has been written. It is

purely read-only. Films and other media are typically written using it.

 Digital Versatile Disc read/write is known by the acronym DVD-RW.

Writing to and deleting data several times on this kind of DVD is simple.

iii. Blu-ray Disc: Blu-ray discs are similar to CDs and DVDs but with a storage

capacity of up to 25GB. A separate Blu-ray reader is required to play a Blu-ray

disc. This Blu-ray technology reads a disc from a blue-violet laser, which allows

for better density and more extended wavelength information storage.

4. Cloudand Virtual Storage:

Virtual or cloud storage systems have replaced secondary memory nowadays. The data is

saved on the cloud for as long as we continue to pay for the cloud storage, and we may put

our files and other items there. The major cloud service providers include Google, Amazon,

Microsoft, and many others. We can afford the rent and yet receive all the advantages for

the space we require. Despite the fact that it is physically being kept in a device in the

service provider’s data centers, the user is not involved in the device’s upkeep.

MSCPH522

58

5. Flash Memory Devices:

It is a more affordable, transportable storage option. Since it is more dependable and

effective than other storage devices, it is the most widely utilized device for data storage.

Some of the most popular flash memory gadgets include:

 Pen Drive: A USB flash drive with flash memory and an integrated USB interface

is also referred to as a pen drive. We can read and write data into these devices

considerably more quickly and effectively by connecting them directly to our PCs

and laptops. These gadgets are quite portable. Typically, it runs from 1GB to

256GB.

 SSD: Solid State Drive, or SSD, is a mass storage device like HDDs. Since it does

not have internal optical discs like hard drives, it is more durable. It is lighter than

hard discs, consumes less power, and has read and write speeds 10 times faster than

hard discs. However, these are also pricey. Although they perform the same purpose

as hard discs, SSDs’ internal parts are very different. Solid-state drives (SSDs) are

hard drives without any moving parts, thus the name. SSDs use non-volatile storage

to store data instead of magnetic discs. SSDs don’t need to “spin up” since they

don’t have any moving components. It varies from 150GB to several TB and

beyond.

 SD Card: A secure digital card is called an SD Card. It typically stores more data

using electronic devices like phones, digital cameras, etc. It is portable, and the SD

card is compact, making it simple to insert into electronic devices. It comes in

various capacities, including 2GB, 4GB, 8GB, 16GB, 32GB, 64GB, 128GB,

256GB etc.

 Multimedia Card: Another name for it is MMC. It is an integrated circuit frequently

found in digital cameras, automobile radios, and other devices. It is an external tool

for data/information storage.

2.7 MEMORY ADDRESSING

A memory address is a unique identifier used by a device or CPU for data tracking. This binary

address is defined by an ordered and finite sequence allowing the CPU to track the location of each

memory byte. Memory addressing can also be understood as a specific assigned location in RAM

to track the stored information. Nowadays, computers are addressed by bytes which are allocated

to memory addresses. Before the CPUs do the processing, programs and data should be stored in

unique memory address locations. More than one-byte data is sequentially segmented into multiple

bytes with a range of corresponding addresses. Hardware devices and CPUs trace stored data by

accessing memory addresses via data buses.

2.8 SEQUENTIAL PROGRAMMABLE LOGIC DEVICES

MSCPH522

59

The most fundamental PLD devices are designed with programmable array logic (PAL) and

programmable logic array (PLA). These devices are examples of logic devices known as sequential

(simple) programmable logic devices (SPLDs). PLA device designs are built on the creation of

two logic gate array structures. When combined, these arrays may be utilized to generate a sum of

products that implement the proper Boolean logic equations. Input and output blocks, as well as a

few customizable internal signal routing channels that can offer feedback on the output signal, are

included in these devices.

In contrast to PLA devices, which allow programming of both the AND and OR planes, PAL

devices have a fixed OR plane. In the two architectures, speed over logic flexibility is a trade-off.

Nevertheless, both device topologies are relatively quick, with propagation delays (Tpd) in the

nanosecond range.

The pin counts of PAL and PLA devices range from 16 to 28, while the range of logic cells is 8 to

24. These devices use EPROM and EEPROM technologies.The 22V10 is an example of PAL

architecture. Figure 12shows a typical SPLD connected in an IC. The sequential PLD is sometimes

described as a simple PLD to differentiate it from the complex PLD. Flip-flops are a component

of the SPLD IC chip in addition to the AND-OR array, as shown in Figure 13. A PAL or PLA is

modified by incorporating a register made up of several flip-flops. The outputs of the circuit can

come from the OR gates or the outputs of the flip-flops.The flip-flop outputs are included in the

AND array’s product terms via extra programmable connections. The flip-flops could be of the D

or JK kind. The most common SPLD setup is the combinational PAL with D flip-flops. A PAL

with flip-flops is referred to as a registered PAL since it has flip-flops in addition to the AND-OR

array.

A microcell, shown in Figure 14, is a circuit that includes a sum of products combinational logic

functions and an optional flip-flop in each segment of an SPLD.The combinational PAL and AND-

OR arrays are identical.The output is driven by an edge-triggered D flip-flop connected to a

common clock input, which changes state on a clock edge. As illustrated in Figure 14, a three-state

buffer (or inverter) is connected to the flip-flop and is controlled by an output-enable OE. The flip-

flop’s output is routed back into one of the gates of programmable AND gates inputs to provide

the current state condition for the sequential circuit. A typical SPLDhas 8 to 10 macrocells within

a single IC package. The common CLK input is shared by all three state buffers, as are the flip-

flops.

MSCPH522

60

Fig.2.12: SPLDs

Fig.2.13: Sequential Programmable Logic Device

Fig.2.14: Basic Macrocell

MSCPH522

61

Applications:

1. Machine control and automation,

2. Cybersecurity,

3. Medical Instrumentation,

4. Utility operation monitoring and control.

2.9 CONTENT ADDRESSABLE MEMORY

The Content Addressable Memory (CAM) comes under a special purpose random access memory

device. CAM can be assessed by searching for data content.CAM is used in very high-speed

searching applications. CAM is a storage device that stores memory in cells. It is sometimes known

as associative memory or associative storage. CAM is being used widely in networking devices

which speeds up forwarding information base and routing table operations. CAM is also used in

cache memory.CAMs are made up with the help of MOS, CMOS, or bipolar technologies.

A CAM is quite different from the typical memory organization. The location address of memory

organization is independent of memory content, whereas a CAM can search out or interrogate

stored data based on its data contents. Therefore, CAM has become a powerful popular asset for

many applications. For example, suppose a list containing several people, including their names,

ages, professions, and nationality stored in a CAM. With the help of CAM, it is possible to find

engineers from the list.

Operation of CAM

CAM performs read, write and associate operations, all three basic operations. The Block diagram

of CAM is shown in Figure 14. The storage capacity of CAM is represented by M×N bits with M

words of N bits each. It has N data input and N data output lines. Data input lines are I0 to IN-1.

Data input is to be written into memory and for the keyword in case of associate operation. And

data can be read out at D0 through DN-1.

MSCPH522

62

Fig.2.14: Block Diagram of CAM

Lines Y0 to YM-1areoutput lines. Output Y lines are bidirectional. These lines can be utilized to

select the storage function when there is a read or write operation. For each word, one address is

there in CAM. (Y0 is the address line for memory location 0, Y1 is the address line for memory

location 1, and so on). It is to be noted that in CAMs, linear selection addressing is utilized instead

of coincident selection addressing.Output Y lines can be used to serve for match output, one for

each memory location whenthere is a need to perform an association operation. (For example, a

word stored in memory locations 5 and 8 has to match with the keyword, lines Y5 and Y8 will

become HIGH to indicate the match condition). The mode control inputs select required

operations. A CAM’s read and write operationsarethe same as that of RAM. Input data will appear

at the data outputs during the write operations. It is noted that the reading of data is not destructible.

Features of CAM:

a) It is utilized in the database management system.

b) It is more costly than RAM.

c) It is suitable for parallel search.

d) It returns the list of data word address that was located.

Advantages:

a) Accurate,

b) Very high speed,

c) Input is associated with their memory contents.

d) CAM can be cascaded whenever the lookup table size is to be increased.

e) New entries can be added to the table.

Disadvantages:

a) Costly,

MSCPH522

63

b) More power consumption,

c) Frequently lookup requests,

d) It Requires large footprints,

SUMMARY
Semiconductor memories are a necessary part of the digital system. Memory devices use memory

cells to store digital data stored in binary form, i.e., logic 1 or logic 0. Various sizes are available

for memory ICs. The memory size is specified in terms of the number of words and the number of

bits in the word. Memory size can be increased by increasing the number of words or word size

with the help of multiple chips. Broadly, memories can be categorized into RAM and ROM. RAM

is a volatile memory, i.e., temporary memory, whereas ROM is a non-volatile memory, i.e.,

permanent memory. RAM, further, is divided into DRAM and SRAM. Dynamic RAM has less

power consumption and more storage capacity than Static RAM. ROM can be divided into PROM

and MROM. Again, PROM has two types EPROM and EEPROM. Flash memory is non-volatile

memory, specifically EEPROM.

Glossary

Access time Time required for reading or writing a memory location.

Address The binary code of a memory location.

Address bus A parallel array of conductors is used for accessing a memory location.

Bidirectional bus A bus capable of transmitting data in both directions.

Cache memory A high-speed memory that stores the most recently used instructions or data from

the slower man memory.

CAM (Content addressable memory) A special purpose RAM device thatits contents can access.

Chip A piece of silicon or other semiconductor material on which an IC is fabricated.

Chip Enable An input control signal that, when activated, enables the chip.

Chip select An input control signal that allows the chip to be selected.

Cycle Time The minimum time between successive read or write cycles in memory.

Data bus A bus is used for carrying data.

DRAM Dynamic RAM

EEPROM Electrically Erasable Programmable Read Only Memory

EPROM Erasable Programmable Read Only Memory.

Erasable memory The memory which can be erased.

Flash Memory A specific type of EEPROM, non-volatile Memory, which allows in-circuit writing

Non-erasable memory The memory which can not be erased.

Non-volatile memory The memory is permanent even after the power supply goes off.

PROM Programmable Read Only Memory

MSCPH522

64

RAMA Read-and-write semiconductor memory in which any memory location can be accessed

for reading and writing at random.

ROM Read Only Memory A semiconductor memory in which data can be read.

Semiconductor Memory A memory fabricated using semiconductor material.

Static RAM A Random Access Memory in which read out and write into are not clocked.

Volatile memory A memory that loses its contents when power is turned off.

References

1. Stallings, William. Computer organization and architecture: designing for performance.

Pearson Education India, 2003.
2. Mano, Morris M. “Computer systems architecture.” (2006).
3. Jain, R. P. Modern digital electronics. Vol. 1, no. 10. Tata McGraw-Hill Education, New

Delhi, 2003.

MSCPH522

65

Questions

Short type questions

1) Information in a memory chip is stored in ………………form.

2) The maximum number of bytes which can be stored in a memory of size 1024×8 is…………

3) The number of address lines required in memory of 128k×8 is……..

4) An EPROM is a …………access memory.

5) An EPROM is erased by…………

6) CAM stands for…………..

7) A dynamic RAM is fabricated using………..technology.

8) The number of IC chips of memory size 1024 ×4 required to have 16k×8 memory

willbe………

9) An SRAM with two ports is known as…………SRAM.

10) While specifying the memory size, the letter k stands for…………

11) How many address inputs are required to access 256 Bytes memory?

12) The storage capacity of a pendrive is 16GB. What is meant by 16GB?

13) Consider a memory size of 16 words. Find the binary address of each location.

Long type questions
1) For a memory with M words storage, find the number of pins required for addressing and

the address range in binary format for each of the following cases:

a) M=4

b) M=16

c) M=64

d) M=256

2) Express the address range for each of the cases of question1).

a) Hexadecimal format.

b) Octal format.

3) The Block diagram of a 1k×4 bit static RAM is shown in the figure below. Find the number

of RAM chips and other ICs required, if any, to obtain

MSCPH522

66

Block Diagram of a 1k ×4 SRAM

a) 4096× 4bit RAM

b) 1024 ×8bit RAM

4) Explain the following:

a) CAM

b) Flash Memory

c) Difference between SRAM and DRAM.

d) Memory Organisation.

5) The access time and cycle time for a set of memories are given in table. Determine the

maximum tare which data can be accessed in each case.

Memory Access time (ns) Cycle time (ns)

A 1500 1500

B 300 580

C 450 450

D 200 200

E 60 60

F 800 800

6) Addressing of a 32K×16 memory is realized using a single decoder. What is the minimum

number of AND gates required for the decoder?

7) For the memory timing of the table given below, find the maximum rate (words/sec) at

which

a) Data can be stored, and

b) Data can be read.

Parameter Time (ns)

𝑡𝑊𝐶 200

MSCPH522

67

𝑡𝑊 120

𝑡𝑊𝑅 0

𝑡𝐷𝑊 120

𝑡𝐷𝐻 0

𝑡𝑅𝐶 200

𝑡𝐴 200

𝑡𝑅𝐷 70

𝑡𝑅𝐷𝑋 20

𝑡𝐶𝑂 70

𝑡𝐶𝑋 20

𝑡𝑂𝑇𝐷 60

𝑡𝑂𝐻𝐴 50

Multiple type questions
1) A dynamic RAM consists of

a) 6 transistors

b) 2 transistors and 2 capacitors

c) 1 transistor and 1 capacitor

d) 2 capacitors only

2) The minimum number of MOS transistors required to make a dynamic RAM cell is

a) 1

b) 2

c) 3

d) 4

3) Each cell of a static RAM contains

a) 6 MOS transistors

b) MOS transistors and 2 capacitors

c) 2 MOS transistors and 4 capacitors

d) 1 MOS transistor and 1 capacitor

4) In a DRAM

a) Periodic refreshing is not required

b) Information is stored in a capacitor

c) Information is stored in a latch

d) Both read and write operations can be performed simultaneously

5) The access time of a bipolar RAM is of the order of

a) 20nsec

b) 20µsec

c) 20msec

d) 20sec

6) The access time of MOS RAM is of the order of

MSCPH522

68

a) 1nsec

b) 1µsec

c) 1msec

d) 1sec

7) RAM is also known as

a) RWM

b) PROM

c) EAROM

d) EPROM

8) The density of DRAM is

a) More than that of SRAM

b) Equal to that of SRAM

c) less than that of SRAM

d) Zero

9) PROM is available in

a) Bipolar version only

b) MOS version only

c) Both bipolar and MOS version

d) None of the above

10) Which of the following memories can be programmed once by the user and then can not be

erased and programmed?

a) ROM

b) PROM

c) EPROM

d) EEPROM

Answers

Short type
1) Memory cell

2) 10

3) 17

4) Random access memory

5) UV light

6) Content Addressable Memory

7) MOS Technology

8) 32

9) Two port SRAM

10) Kilo

11) memory size = 256 bytes, Thus, 2k = 256 will give, K = 8

MSCPH522

69

12) 16GB = 1024MB

13) Since M=16, therefore, 2P=M gives P=4, i.e., for selecting one out of 16 words, a 4-bit

address is required. The address is specified as A3 A2 A1 A0, where A3 represents the

MSB and A0 represents LSB. The table below shows the address.

Word

number

Binary address address

A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Table: Memory Addresses

Long Type
1) The number of pins P is given by 2P= M

a) P=2

Address range: A1A0=00 to 11

b) P=4

Address range: A3A2A1A0 =0000 to 1111

c) P=6

Address range: =A5A4A3A2 A1A0=000000 to 111111

d) P=8

Address range: =A7A6A5A4A3A2 A1A0=00000000 to 11111111

2) a) 0 to 3; 0 to F; 00 to 3F; 00 to FF

MSCPH522

70

b) 0 to 3; 0 to 17; 00 to 77; 000 to 377

3) a) 4 chips of 2142 and one 1-out of 4 decoder IC will be required, b)2 chips of 2142.

4) Read this unit to find answers

5) The maximum access rate = 1/ cycle time;

Gives the maximum rate for each memory. It is given for each Memory.

Memory Maximum rate

A 1 × 109

1500
= 666666/𝑠

B 1 × 109

580
= 1724137/𝑠

C 1 × 109

450
= 2222222/𝑠

D 1 × 109

200
= 5000000/𝑠

E 1 × 109

60
= 16666666/𝑠

F 1 × 109

800
= 1250000/𝑠

6) Memory size = 2K×m where K= address line, m= data line. Since 32K×16 memory = 215×

16, thereforeK = 15. Therefore, the number of AND gates required = 215

7) The maximum rate at which data can be stored is:

1

𝑡𝑊𝐶
=

1

200 × 10−9
= 5 × 106𝑤𝑜𝑟𝑑𝑠/𝑠

The maximum rate at which data can be read is:

1

𝑡𝑅𝐶
=

1

200 × 10−9
= 5 × 106𝑤𝑜𝑟𝑑𝑠/𝑠

Multiple types
1) C

2) A

3) A

4) B

5) A

6) B

7) A

MSCPH522

71

8) A

9) C

10) B

MSCPH522

72

UNIT 3 MICROPROCESSOR ARCHITECTURE

AND MICROCOMPUTER SYSTEM

Structure

3.1. Introduction

3.2. Objective

3.3. Microprocessor

3.3.1. Basic Terms Used In Microprocessor

3.3.2. Features Of Microprocessor

3.4. Evolution of Micro Processors

3.5. Micro Processor Organization

3.5.1. Microprocessor Architecture and its Operations

3.5.2. Microprocessor-Initiated Operations and 8085 Bus Organization

 3.5.3. The 8085 Bus Structure

 3.5.4 Internal Data Operations and The 8085 Registers

3.5.5. The 8085 Programmable Registers

3.5.6. Peripheral or Externally Initiated Operations

3.6. Microprocessor Instruction Set and Computer Languages

3.7. Machine Language

3.7.1. Writing And Executing An Assembly Language Program

3.8. High-Level Languages

MSCPH522

73

3.9. Operating System

3.9.1. Types of Operating Systems

3.10 Summary

3.11 Glossary

3.12 References

3.13 Suggested Readings

3.14 Terminal Questions

 3.14.1 Short Answer Type

MSCPH522

74

3.1. INTRODUCTION

Computer's Central Processing Unit (CPU) built on a single Integrated Circuit (IC) is called a

microprocessor. A digital computer with one microprocessor which acts as a CPU is called

microcomputer.

A microprocessor is a computer processor where the data processing logic and control is included

on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains

the arithmetic, logic, and control circuitry required to perform the functions of a computer's central

processing unit.

A microcomputer system consists of three components-the microprocessor, memory, and I/O

(input/output)-as discussed in the previous chapter. The microprocessor manipulates data, controls

the timing of various operations, and communicates with such peripherals (devices) as memory

and I/O.

The data bus is a group of eight lines used for data flow .These lines are bidirectional-data flow in

both directions between the MPU and memory and peripheral devices.

The data bus is a group of eight lines used for data flow .These lines are bidirectional-data flow in

both directions between the MPU and memory and peripheral devices. The control bus is

comprised of various single lines that carry synchronization signals.

The microprocessor uses this register to sequence the execution of instructions. The function of

the program counter is to point to the memory address from which the next byte is to be fetched.

The number of bits in a word for a given machine is fixed, and words are formed through various

'combinations of these bits. For example a machine with a word length of eight bit scan has 756 a

combination of eight bits-thus a language of 256 words.

Programming languages that are intended to be machine-independent are called high-level

languages. The list includes such languages as C, FORTRAN, BASIC, PASCAL, and COBOL.

Thus, assembly language programs are compact and require less memory space; they are more

efficient than the high-level language programs.

An operating system (OS) is system software that manages computer hardware, software

resources, and provides common services for computer programs.

For hardware functions such as input and output and memory allocation, the operating system acts

as an intermediary between programs and the computer hardware, although the application code

is usually executed directly by the hardware and frequently makes system calls to an OS function

or is interrupted by it.

MSCPH522

75

3.2. OBJECTIVE

After studying this unit, you will learn about-

 Microprocessor

 Evolution of Micro Processors

 Micro Processor Organization

 8085 Bus Structure

 8085 Programmable Registers

 Machine Language

 High-Level Languages

3.3. MICROPROCESSOR

Computer's Central Processing Unit (CPU) built on a single Integrated Circuit (IC) is called a

microprocessor. A digital computer with one microprocessor which acts as a CPU is called

microcomputer. It is a programmable, clock driven, multipurpose, register-based electronic device

that reads binary instructions from a storage device called memory, accepts binary data as input

and processes data according to those instructions and provides results as output. The

microprocessor contains millions of tiny components like transistors, registers, and diodes that

work together.

A microprocessor is a computer processor where the data processing logic and control is included

on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains

the arithmetic, logic, and control circuitry required to perform the functions of a computer's central

processing unit. The integrated circuit is capable of interpreting and executing program

instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-

driven, register-based, digital integrated circuit that accepts binary data as input, processes it

according to instructions stored in its memory, and provides results (also in binary form) as output.

Microprocessors contain both combinational logic and sequential digital logic, and operate on

numbers and symbols represented in the binary number system.

The integration of a whole CPU onto a single or a few integrated circuits using Very Large Scale

Integration (VLSI) greatly reduced the cost of processing power. Integrated circuit processors are

produced in large numbers by highly automated metal oxide semiconductor (MOS) fabrication

MSCPH522

76

processes, resulting in a relatively low unit price. Single chip processors increase reliability

because there are much fewer electrical connections that could fail. As microprocessor designs

improve, the cost of manufacturing a chip (with smaller components built on a semiconductor chip

the same size) generally stays the same according to Rock's law.

Before microprocessors, small computers had been built using racks of circuit boards with many

medium and small scale integrated circuits, typically of TTL type. Microprocessors combined this

into one or a few large-scale ICs. The first commercially available microprocessor was the Intel

4004 introduced in 1971.

Continued increases in microprocessor capacity have since rendered other forms of computers

almost completely obsolete, with one or more microprocessors used in everything from the

smallest embedded systems and handheld devices to the largest mainframes and supercomputers.

A microcomputer system consists of three components-the microprocessor, memory, and I/O

(input/output). The microprocessor manipulates data, controls the timing of various operations,

and communicates with such peripherals (devices) as memory and I/O. The internal logic design

of the microprocessor, called its architecture, determines how and when various operations are

performed by the microprocessor. The system bus provides paths for the flow of binary

information (data and instructions).

3.3.1. BASIC TERMS USED IN MICROPROCESSOR

Instruction Set - The group of commands that the microprocessor can understand is called

Instruction set. It is an interface between hardware and software.

Bus - Set of conductors intended to transmit data, address or control information to different

elements in a microprocessor. A microprocessor will have three types of buses, i.e., data bus,

address bus, and control bus.

IPC (Instructions per Cycle) - It is a measure of how many instructions a CPU is capable of

executing in a single clock.

Clock Speed - It is the number of operations per second the processor can perform. It can be

expressed in megahertz (MHz) or gigahertz (GHz). It is also called the Clock Rate.

MSCPH522

77

Bandwidth - The number of bits processed in a single instruction is called Bandwidth.

Word Length - The number of bits the processor can process at a time is called the word length

of the processor. 8-bit Microprocessor may process 8 -bit data at a time. The range of word length

is from 4 bits to 64 bits depending upon the type of the microcomputer.

Data Types - The microprocessor supports multiple data type formats like binary, ASCII, signed

and unsigned numbers.

3.3.2. FEATURES OF MICROPROCESSOR

Low Cost - Due to integrated circuit technology microprocessors are available at very low cost. It

will reduce the cost of a computer system.

High Speed - Due to the technology involved in it, the microprocessor can work at very high

speed. It can execute millions of instructions per second.

Small Size - A microprocessor is fabricated in a very less footprint due to very large scale and

ultra large scale integration technology. Because of this, the size of the computer system is reduced.

Versatile - The same chip can be used for several applications, therefore, microprocessors are

versatile.

Low Power Consumption - Microprocessors are using metal oxide semiconductor technology,

which consumes less power.

Less Heat Generation - Microprocessors uses semiconductor technology which will not emit

much heat as compared to vacuum tube devices.

Reliable - Since microprocessors use semiconductor technology, therefore, the failure rate is very

less. Hence it is very reliable.

Portable - Due to the small size and low power consumption microprocessors are portable.

MSCPH522

78

3.4. EVOLUTION OF MICRO PROCESSORS

The advent of low cost computers on integrated circuits has transformed modern society. General-

purpose microprocessors in personal computers are used for computation, text editing, multimedia

display, and communication over the Internet. Many more microprocessors are part of embedded

systems, providing digital control over myriad objects from appliances to automobiles to cellular

phones and industrial process control. Microprocessors perform binary operations based on

Boolean logic, named after George Boole. The ability to operate computer systems using Boolean

Logic was first proven in a 1938 thesis by master's student Claude Shannon, who later went on to

become a professor. Shannon is considered "The Father of Information Theory".

Following the development of MOS integrated circuit chips in the early 1960s, MOS chips reached

higher transistor density and lower manufacturing costs than bipolar integrated circuits by 1964.

MOS chips further increased in complexity at a rate predicted by Moore's law, leading to large-

scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. The

application of MOS LSI chips to computing was the basis for the first microprocessors, as

engineers began recognizing that a complete computer processor could be contained on several

MOS LSI chips. Designers in the late 1960s were striving to integrate the central processing unit

(CPU) functions of a computer onto a handful of MOS LSI chips, called microprocessor unit

(MPU) chipsets.

The first commercially produced microprocessor was the Intel 4004, released as a single MOS LSI

chip in 1971. The single-chip microprocessor was made possible with the development of MOS

silicon-gate technology (SGT). The earliest MOS transistors had aluminium metal gates, which

Italian physicist Federico Faggin replaced with silicon self-aligned gates to develop the first

silicon-gate MOS chip at Fairchild Semiconductor in 1968. Faggin later joined Intel and used his

silicon-gate MOS technology to develop the 4004, along with Marcian Hoff, Stanley Mazor and

Masatoshi Shima in 1971. The 4004 was designed for Busicom, which had earlier proposed a

multi-chip design in 1969, before Faggin's team at Intel changed it into a new single-chip design.

Intel introduced the first commercial microprocessor, the 4-bit Intel 4004, in 1971. It was soon

followed by the 8-bit microprocessor Intel 8008 in 1972.

MSCPH522

79

Other embedded uses of 4-bit and 8-bit microprocessors, such as terminals, printers, various kinds

of automation etc., followed soon after. Affordable 8-bit microprocessors with 16-bit addressing

also led to the first general-purpose microcomputers from the mid-1970s on.

The first use of the term "microprocessor" is attributed to Viatron Computer Systems describing

the custom integrated circuit used in their System 21 small computer system announced in 1968.

Since the early 1970s, the increase in capacity of microprocessors has followed Moore's law; this

originally suggested that the number of components that can be fitted onto a chip doubles every

year. With present technology, it is actually every two years, and as a result Moore later changed

the period to two years.

TABLE 3.1:

Microprocessor Year of

Invention

Word

length

Memory

addressing

Capacity

Pins Clock Remark

4004 1971 4-bit 1 KB 16 750

KHz

First

Microprocessor

8085 1976 8-bit 64 KB 40 3-6

MHz

Popular 8-bit

Microprocessor

8086 1978 16-bit 1 MB 40 5-8

MHz

Widely used in

PC/XT

80286 1982 16-bit 16MB real,

4 GB

virtual

68 6-12.5

MHz

Widely used in

PC/AT

80386 1985 32-bit 4GB real,

64TB

virtual

132

14X14

PGA

20-33

MHz

Contains MMU

on chip

80486 1989 32-bit 4GB real,

64TB

virtual

168

17X17

PGA

25-100

MHz

Contains

MMU, cache

and FPU, 1.2

MSCPH522

80

million

transistors

Pentium 1993 32-bit 4GB

real,32-bit

address,64-

bit data bus

237

PGA

60-200

MHz

Contains 2

ALUs,2

Caches, FPU,

3.3 Million

transistors, 3.3

V, 7.5 million

transistors

Pentium Pro 1995 32-bit 64GB real,

36-bit

address bus

387

PGA

150-200

MHz

It is a data flow

processor. It

contains

second level

cache also,3.3

V

Pentium II 1997 32-bit 233-400

MHz

All features

Pentium pro

plus MMX

technology,3.3

V, 7.5 million

transistors

Pentium III 1999 32-bit 64GB 370

PGA

600-1.3

MHz

Improved

version of

Pentium II; 70

new SIMD

instructions

Pentium 4 2000 32-bit 64GB 423

PGA

600-1.3

GHz

Improved

version of

Pentium III

MSCPH522

81

Itanium 2001 64-bit 64 address

lines

423

PGA

733

MHz –

1.3 GHz

64-bit EPIC

Processor

3.5. MICRO PROCESSOR ORGANIZATION

3.5.1. MICROPROCESSOR ARCHITECTURE AND ITS OPERATIONS

The microprocessor is a programmable digital device, designed with registers, flip-flops, and

timing elements. The microprocessor has set instructions, designed internally, to manipulate data

and communicate with peripherals. This process of data manipulation and communication is

determined by the logic design of the microprocessor, called the architecture.

 The microprocessor can be programmed to perform functions on given data by selecting

necessary instructions from its set. These instructions are given to the microprocessor by writing

them into its memory. Writing (or entering) instructions and data is done through an input device

such as a keyboard. The microprocessor reads or transfers one instruction at a time, matches it

with its instruction set, and performs the data manipulation indicated by the instruction. The result

can be stored in memory or sent to such output devices as LEDs or a CRT terminal. In addition,

the microprocessor can respond to external signals. It can be interrupted, reset, or asked to wait to

synchronize with slower peripherals. All the various functions performed by the microprocessor

can be classified in three general categories:

 Microprocessor-initiated operations

 Internal operations

 Peripheral (or externally initiated) operations

To perform these functions, the microprocessor requires a group of logic circuits and a set of

signals called control signals. However, early processors did not have the necessary circuitry on

one chip; complete units were made up of more than one chip. Therefore, the term microprocessing

unit (MPU) is defined here as a group of devices that can perform these functions with the

MSCPH522

82

necessary set of control signals. This term is similar to the term central processing unit (CPU).

However, later microprocessors include most of the necessary circuitry to perform these operations

on a single chip. Therefore, the terms MPU and microprocessor often are used synonymously.

The microprocessor functions listed above are explained here in relation to the 8085 MPU but

without the details of the MPUs. However, the general concepts discussed here are applicable to

any microprocessor. The devices necessary to make up the 8085 MPUs will be discussed in the

next chapter.

3.5.2. MICROPROCESSOR INITIATED OPERATIONS AND 8085 BUS

ORGANIZATION

The MPU performs primarily four operations:

1. Memory Read: Reads data (or instructions) from memory.

2. Memory Write: Writes data (or instructions) into memory.

3. I/O Read: Accepts data from input devices.

4. I/O Write: Sends data to output devices.

 All these operations are part of the communication process between the MPU and peripheral

devices (including memory). To communicate with a peripheral (or a memory location), the MPU

needs to perform the following steps:

Step 1: Identify the peripheral or the memory location (with its address).

Step 2: Transfer binary information (data and instructions).

Step 3: Provide timing or synchronization signals.

 The 8085 MPU performs these functions using three sets of communication lines called

buses: the address bus, the data bus, and the control bus.

MSCPH522

83

ADDRESS BUS

The address bus is a group of 16 lines generally identified as A0 to A15. The address bus is

unidirectional bits flow in one direction-from the MPU to peripheral devices. The MPU uses the

address bus to perform the first function: identifying a peripheral or a memory location.

 Fig. 3.1: Address Bus

3.5.3. THE 8085 BUS STRUCTURE

In a computer system, each peripheral or memory location is identified by a binary number, called

an address, and the address bus is used to carry a 16-bit address. This is similar to the postal address

of a house. A house can be identified by various number schemes. For example, the forty-fifth

house in a lane can be identified by the two-digit number 45 or by the four-digit number 0045. The

two-digit numbering scheme can identify only a hundred houses, from 00 to 99. On the other hand,

the four-digit scheme can identify ten thousand houses, from 0000 to 9999. Similarly, the number

of address lines of the MPU determines its capacity to identify different memory locations (or

peripherals). The 8085 MPU with its 16 address lines is capable of addressing 216 = 65,536

(generally known as 64K) memory locations. As we know that, 1K memory is determined by

MSCPH522

84

rounding off 1024 to the nearest thousand; similarly, 65,536 is rounded off to 64,000 as a multiple

of 1K.

Most 8-bit microprocessors have 16 address lines. This may explain why microcomputer systems

based on 8-bit microprocessors have 64K memory. However, not every microcomputer system has

64K memory. In fact, most single-board microcomputers have less than 4K of memory, even if

MPU is capable of addressing 64K memory. The number of address lines is arbitrary; it is

determined by the designer of a microprocessor based on such considerations as availability of

pins and intended applications of the processor. For example, the Intel 8088 processor has 20 and

the Pentium processor has 32 address lines.

DATA BUS

The data bus is a group of eight lines used for data flow .These lines are bidirectional-data flow in

both directions between the MPU and memory and peripheral devices. The MPU uses the data bus

to perform the second function: transferring binary information.

The eight data lines enable the MPU to manipulate 8-bit data ranging from 00 to FF (28 = 256

numbers). The largest number that can appear on the data bus is 11111111 (25510). The 8085 is

known as an 8-bit microprocessor. Microprocessors such as the Intel 8086, Zilog Z8000, and

Motorola 68000 have 16 data lines; thus they are known as 16-bit microprocessors. The Intel

80386/486 have 32 data lines; thus they are classified as 32-bit microprocessors.

CONTROL BUS

The control bus is comprised of various single lines that carry synchronization signals. The MPU

uses such lines to perform the third function: providing timing signals.

The term bus, in relation to the control signals, is somewhat confusing. These are not groups of

lines like address or data buses, but individual lines that provide a pulse to indicate an MPU

operation. The MPU generates specific control signals for every operation (such as Memory Read

or I/O Write) it performs. These signals are used to identify a device type with which the MPU

intends to communicate.

MSCPH522

85

To communicate with a memory-for example, to read an instruction from a memory location-the

MPU places the 16-bit address on the address bus. The address on the bus is decoded by an external

logic circuit, which will be explained later, and the memory location is identified. The MPU sends

a pulse called Memory Read as the control signal. The pulse activates the memory chip, and the

contents of the memory location (8-bit data) are placed on the data bus and brought inside the

microprocessor.

3.5.4 INTERNAL DATA OPERATIONS AND THE 8085 REGISTERS

The internal architecture of the 8085 microprocessor determines how and what operations can be

performed with the data. These operations are:

1. Store 8-bit data.

2. Perform arithmetic and logical operations.

3. Test for conditions.

4. Sequence the execution of instructions.

5. Store data temporarily during execution in the defined R/W memory locations called the

stack.

To perform these operations, the microprocessor requires registers, arithmetic/logic unit

(ALU) and control logic, and

internal buses (paths for

information flow). Figure 3.2 is

a simplified representation of

the 8085 internal architecture;

it shows only those registers

that are programmable,

meaning those registers that

can be used for data

manipulation by writing

instructions.

MSCPH522

86

Fig. 3.2: Memory Read Operation

 Fig. 3.3

3.5.5. THE 8085 PROGRAMMABLE REGISTERS

These registers are described in reference to the five operations previously listed.

RESISTERS

The 8085 has six general-purpose resisters to perform the first operation listed above; that is, to

store 8-bit data during program execution. These registers are identified as B, C, D, E, H and L.

They can be combined as register pairs-BC, DE and HL-to perform some 16-bit operations.

MSCPH522

87

These registers are programmable, meaning that a programmer can use them to load or copy data

from the registers bu using instructions. For example, the instruction MOV B,C copies the data

from register C to register B. Conceptually, the registers can be viewed as memory locations,

except they are built inside the microprocessor and identified by specific letters for user

convenience. Some microprocessors do not have these types of registers; instead, they use memory

space as their registers.

ACCUMULATOR

The accumulator is an 8-bit register that is part of the arithmetic/logic unit (ALU). This register is

used to store 8-bit data and to perform arithmetic and logical operations. The result of an operation

is stored in the accumulator. The accumulator is also identified as register A.

FLAGS

The ALU includes five flip-flops that are set or reset according to the result of an operation. The

microprocessor uses them to perform the third operation; namely, testing for data conditions.

For example, after an addition of two numbers, if the sum in the accumulator is larger than eight

bits, the flip-flop that is used to indicate a carry, called the Carry (CY) flag, is set to one. When

an arithmetic operation results in zero, the flip-flop called the Zero (Z) flag is set to one. The 8085

has five flags to indicate five different types of results or data conditions. They are Zero (Z), Carry

(CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. The most commonly used flags are

Sign, Zero and Carry; the others will be explained as necessary.An 8-bit register shown in fig.

called the flag register, adjacent to the accumulator. It is not used as an 8-bit register; five bit

positions, out of eight, are used to store the outputs of the five flip-flops. The flags are stored in

the 8-bit register so that the programmer can examine these flags (data conditions) by accessing

the register through an instruction. In the instruction set, the term PSW (Program Status Word)

refers to the accumulator and the flag register.

These flags have critical importance in the decision-making process of the microprocessor. The

conditions (set or reset) of the flags are tested through software instructions. For example, the

instruction JC (Jump On Carry) is implemented to change the sequence of a program when the CY

MSCPH522

88

flag is set. The importance of the flags cannot be emphasized enough; they will be discussed again

in applications of conditional jump instructions.

PROGRAM COUNTER (PC)

This 16-bit register deals with the fourth operation, sequencing the execution of instructions. This

register is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a

16-bit register.

The microprocessor uses this register to sequence the execution of instructions. The function of

the program counter is to point to the memory address from which the next byte is to be fetched.

When a byte (machine code) is being fetched, the program counter is incremented by one to point

to the next memory location.

STACK POINTER (SP)

The stack pointer is also a 16-bit register used as a memory pointer; initially, it will be called the

stack pointe register to emphasize that is a register. It points to a memory location in R/W memory,

called the stack. The beginning of the stack is defined by loading a 16-bit address in the stack

pointer (register).

3.5.6. PERIPHERAL OR EXTERNALLY INITIATED OPERATIONS

External devices (or signals can initiate the following operations, for which individual pins on the

microprocessor chip are assigned: Reset, Interrupt, Ready, Hold.

Reset: When the reset pin is activated by an external key (also called a reset key), all internal

operations are suspended and the program counter is cleared (it holds 0000H). Now the program

execution can again begin at the zero memory address.

Interrupt: The microprocessor can be interrupted from the normal execution of instructions and

asked to execute some other instructions called a service routine (for example, emergency

procedures). The microprocessor resumes its operation after completing the service routine.

MSCPH522

89

Ready: The 8085 has a pin called READY. If the signal at this READY pin is low, the

microprocessor enters into a Wait state. This signal is used primarily to synchronize slower

peripherals with the microprocessor.

Hold: When the HOLD pin is activated by an external signal, the microprocessor relinquishes

control of buses and allows the external peripheral to use them. For example, the HOLD signal is

used in Direct Memory Access (DMA) data transfer.

3.6. MICROPROCESSOR INSTRUCTION SET AND

COMPUTER LANGUAGES

Microprocessors recognize and operate in binary numbers. However, each micro­processor has its

own binary words, instructions, meanings, and language. The words are formed by combining a

number of bits for a given machine. The word (or word length), as defined earlier, is the number

of bits the microprocessor recognizes and processes at a time. The word length ranges from 4 bits

for small, microprocessor-based computers, to 32 bits for such large computers as the IBM ES

9000 series. Another term commonly used to express word length is byte. The byte is defined as a

group of eight bits. For example, a l6-bit microprocessor has a word length equal to two bytes. The

term "nibble," which stands for a group of four bits, is also found in popular computer magazines

and books. (A byte has two nibbles.)

The instruction is defined as a complete task (such as Add) the microprocessor can perform it can

be made up of one or more words. Each machine has its own set of instructions based on the design

of its CPU or its microprocessor. To be intelligible to the microprocessor, instructions must be

written in binary lan­guage, also known as machine language. However, it is difficult for human

beings to write programs in sets of Os and Is. Therefore, microprocessor manufacturers have

devised English-like words to represent the binary instructions of a machine, and programmers

can write programs using these words. These are called assem­bly language programs. Because an

assembly language is specific to a given ma­chine programs written in assembly language are not

transferable from one ma­chine to another. To circumvent this limitation, such general-purpose

languages as BASIC, FORTRAN, PASCAL, and C have been devised so that a program written

in these languages can be machine-independent. These languages are called high-level languages

(HLL). This section deals with various aspects of these three types of languages: machine,

MSCPH522

90

assembly, and high-level. The machine and assembly languages are discussed in the context of the

280 microprocessor.

3.7. MACHINE LANGUAGE

The number of bits in a word for a given machine is fixed, and words are formed through various

'combinations of these bits. For example a machine with a word length of eight bit scan has 756 a

combination of eight bits-thus a language of 256 words. However, not all of these words need to

be used in the machine. The microprocessor design engineer selects combinations of bit patterns

and gives a specific meaning to each combination by using electronic logic circuits; this is called

an instruction .The set of instructions designed into the machine makes up what is called the

machine language, a binary language composed of Os and Is. Its words, its instructions, and their

meanings are specific to each computer.

3.7.1. WRITING AND EXECUTING AN ASSEMBLY LANGUAGE

PROGRAM

To write and execute an assembly lan­guage program manually on a single-board computer, with

a Hex keyboard for input and LEOs (or seven-segment LEOs) for output, the following steps are

necessary:

1. Write the instructions in mnemonics obtained from the instruction set supplied by the

manufacturer.

2. Find the hexadecimal machine code for each instruction by searching through the set of

instructions.

3. Enter (load) the program in the user memory in a sequential order by using the Hex keyboard

as the input device.

4. Execute the program by pressing the Execute key. The answer will be displayed by the LEOs.

When the user program is entered by the keys, each entry is interpreted and converted into its

binary equivalent by the monitor program and the machine code is stored as eight bits in each

memory location in a sequence. When the Execute command is given, the microprocessor fetches

MSCPH522

91

each instruction, decodes it and executes it in a sequence until the end of the program. The manual

assembly procedure is commonly used in single-board micro­computers and is suited for small

programs. However, the steps of looking up the machine codes and entering the program, which

are tedious and object to errors, can be avoided by using an assembler on a microcomputer system.

The assembler is a program that translates the mnemonics entered by the ASCII keyboard into the

corresponding binary machine codes of the micropro­cessor. Each microprocessor has its own

assembler because the mnemonics and machine codes are specific to the microprocessor being

used, and each assembler has certain rules that must be learned by the programmer. Assemblers

are dis­cussed in detail new topic.

3.8. HIGH-LEVEL LANGUAGES

Programming languages that are intended to be machine-independent are called high-level

languages. The list includes such languages as C, FORTRAN, BASIC, PASCAL, and COBOL.

These languages have certain sets of rules and draw on symbols and conventions from English.

Instructions written in these languages are known as statements rather than mnemonics .A program

written in BASIC for a microcomputer with the Z80 microprocessor can generally run on another

microcomputer with a different microprocessor.

Now the question is: How do words in English get converted into the binary languages of different

microprocessors? The answer lies with another program called either a compiler or an interpreter.

These programs accept English-like statements as their input, called the source code. The compiler

or interpreter hen translates the source code into the machine language compatible with the

micro­processor being used in the system. This translation into the machine language is called the

object code. Each microprocessor needs its own compiler or interpreter for each high-level

language. The primary difference between a compiler and an interpreter is in the process of

generating machine code. The compiler reads the entire program first and then generates the object

code, while the interpreter reads one instruction at a time, produces its object code, and ex­ecutes

the instruction before reading the next instruction. Compiled programs are executed much faster

than interpreted programs. M-Basic is a common example of an interpreter for the BASIC

language. Compilers are generally used in such languages as C, FORTRAN, and PASCAL.

MSCPH522

92

Compilers and interpreters require large memory space because each in­struction in English

requires several machine codes to translate that instruction into binary. On the other hand, there is

a one-to-one correspondence between the assembly language mnemonics and the machine code.

Thus, assembly language programs are compact and require less memory space; they are more

efficient than the high-level language programs. The primary advantage of high-level lan­guages

is in troubleshooting programs, also known as debugging. It is much easier to find errors in a

program written in a high-level language than to find them in a program written in assembly

language.

In certain applications such as traffic control and appliance control, where programs are small and

compact, assembly language is suitable. Similarly, in such real-time applications as converting a

high-frequency waveform into digital data, program efficiency is critical. In real-time applications,

events and time should closely match with each other without significant delay. Therefore,

assembly lan­guage is highly desirable in these applications.

3.9. OPERATING SYSTEM

An operating system (OS) is system software that manages computer hardware, software

resources, and provides common services for computer programs. Time sharing operating systems

schedule tasks for efficient use of the system and may also include accounting software for cost

allocation of processor time, mass storage, printing, and other resources.

For hardware functions such as input and output and memory allocation, the operating system acts

as an intermediary between programs and the computer hardware, although the application code

is usually executed directly by the hardware and frequently makes system calls to an OS function

or is interrupted by it. Operating systems are found on many devices that contain a computer from

cellular phones and video game consoles to web servers and supercomputers.

The dominant general-purpose personal computer operating system is Microsoft Windows with a

market share of around 76.45%. macOS by Apple Inc. is in second place (17.72%), and the

varieties of Linux are collectively in third place (1.73%). In the mobile sector (including

smartphones and tablets), Android's share is up to 72% in the year 2020. According to third quarter

2016 data, Android's share on smartphones is dominant with 87.5 percent with a growth rate of

MSCPH522

93

10.3 % per year, followed by Apple's iOS with 12.1% with per year decrease in market share of

5.2 %, while other operating systems amount to just 0.3 percent. Linux distributions are dominant

in the server and supercomputing sectors. Other specialized classes of operating systems (special-

purpose operating systems), such as embedded and real-time systems, exist for many applications.

Security-focused operating systems also exist. Some operating systems have low system

requirements (e.g. light-weight Linux distribution). Others may have higher system requirements.

Some operating systems require installation or may come pre-installed with purchased computers

(OEM-installation), whereas others may run directly from media (i.e. live CD) or flash memory.

3.9.1. TYPES OF OPERATING SYSTEMS

Single-tasking and multi-tasking

A single-tasking system can only run one program at a time, while a multi-tasking operating system

allows more than one program to be running concurrently. This is achieved by time sharing, where

the available processor time is divided between multiple processes. These processes are each

interrupted repeatedly in time slices by a task-scheduling subsystem of the operating system.

Multi-tasking may be characterized in pre-emptive and cooperative types. In pre-emptive

multitasking, the operating system slices the CPU time and dedicates a slot to each of the programs.

UNIX like operating systems, such as Linux as well as non-Unix-like, such as Amiga OS support

pre-emptive multitasking. Cooperative multitasking is achieved by relying on each process to

provide time to the other processes in a defined manner. 16-bit versions of Microsoft Windows

used cooperative multi-tasking; 32-bit versions of both Windows NT and Win9x used pre-emptive

multi-tasking.

Single and multi user

Single-user operating systems have no facilities to distinguish users but may allow multiple

programs to run in tandem. A multi-user operating system extends the basic concept of multi-

tasking with facilities that identify processes and resources, such as disk space, belonging to

multiple users, and the system permits multiple users to interact with the system at the same time.

Time-sharing operating systems schedule tasks for efficient use of the system and may also include

MSCPH522

94

accounting software for cost allocation of processor time, mass storage, printing, and other

resources to multiple users.

Distributed

A distributed operating system manages a group of distinct, networked computers and makes them

appear to be a single computer, as all computations are distributed (divided amongst the constituent

computers).

Embedded

Embedded operating systems are designed to be used in embedded computer systems. They are

designed to operate on small machines with less autonomy (e.g. PDAs). They are very compact

and extremely efficient by design and are able to operate with a limited amount of resources.

Windows CE and Minix 3 are some examples of embedded operating systems.

Real-time

A real-time operating system is an operating system that guarantees to process events or data by a

specific moment in time. A real time operating system may be single or multi-tasking, but when

multitasking, it uses specialized scheduling algorithms so that a deterministic nature of behaviour

is achieved. Such an event driven system switches between tasks based on their priorities or

external events, whereas time sharing operating systems switch tasks based on clock interrupts.

Library

A library operating system is one in which the services that a typical operating system provides,

such as networking, are provided in the form of libraries and composed with the application and

configuration code to construct a unikernel a specialized, single address space, machine image that

can be deployed to cloud or embedded environments

3.10 SUMMARY

In this unit, you have studied about microprocessor 8085 and its Pin diagram. You learnt in detail

working and application of 8085. You have learnt about evolution of micro processors. You learnt

through table about microprocessor, year of invention and in diagram. You learn about machine

language also.

MSCPH522

95

3.11 GLOSSARY

PGA - Pin Grid Array

MMX - MultiMedia eXtensions

EPIC - Explicitly Parallel Instruction Computing

SIMD - Single Instruction Multiple Data

ALU - Arithmetic and Logic Unit

MMU - Memory Management Unit

FPU - Floating Point Unit

3.12 REFERENCES

1. Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh

Gaonkar

2. Microprocessor and Microcontroller System By A. P. Godse

3. The 8085 Microprocessor: Architecture, Programming and Interfacing by B. S. Umashankar

and K. Udaya Kumar.

4. Advanced Microprocessors and Peripherals by A. K. Ray

5. Online sources

3.13 SUGGESTED READINGS

1. Digital Fundamentals,10th Ed, Floyd T L, Prentice Hall, 2009.

2. NPTL

3. You Tube

4. Online tutorial

5. Byju’s online study material

MSCPH522

96

3.15 TERMINAL QUESTIONS

3.14.1 Short Answer type

1. Draw pin diagram of 8085.

2. Draw architecture 8085.

3. What do you understand by ALU?

4. Discuss control and timing unit.

MSCPH522

97

UNIT 4 8085 MICROPROCESSOR

 AND MEMORY INTERFACES

Structure

4.1 Introduction

4.2 Objectives

4.3. 8085 Microprocessor Architecture And Memory Interfacing

4.3.1. Architecture Of 8085 Microprocessor

4.3.2. Operations Of Microprocessor

4.3.2.1. The 8085 Instruction Format

4.3.3. The 8085 Addressing Modes

4.4. 8085 Instruction Set

4.5. Address Bus

4.5.1. Multiplexed Address/Data Bus

 4.5.2. Control And Status Signals

4.5.3. Power Supply And Clock Prequency

4.6. Externally Initiated Signals, Including Interrupts

 4.6.1. Serial I/O Ports

4.7 Microprocessor Communication And Bus Timings

 4.7.1. Demultiplexing The Bus Ad1-Ad0

MSCPH522

98

4.8. Generating Control Signals

4.9. A Detailed Look At The 8085 Mpu And Its Architecture

 4.9.1. The Alu

 4.9.2. Timing And Control Unit

 4.9.3. Instruction Register And Decoder

 4.9.4. Register Array

4.10. Interrupts Of 8085

 4.10.1. Hardware And Software Interrupts

 4.10.2. Vectored And Non-Vectored Interrupts

 4.10.3. Maskable And Non-Maskable Interrupts

 4.10.4. Priority Of Interrupts

 4.10.5. Instruction For Interrupts

4.11. Timing Diagrams

4.12 Summary

4.13 Glossary

4.14 References

4.15 Suggested Readings

4.16 Terminal Questions

 4.16.1 Short Answer Type

MSCPH522

99

4.1 INTRODUCTION

The 8085 microprocessor is a much improved version of its predecessor, the 8080A. The 8085

includes on its chip most of the logic circuitry for performing computing tasks and for

communicating with peripherals. The architecture of 8085 consists of three main sections, ALU

(Arithmetic and Logical Unit), timing and control unit and Registers. ALU performs all logical

operations such as addition, subtraction etc. The data flow is controlled by timing and control unit.

An instruction is a command to the microprocessor to perform a given task on a specified data.

Each instruction has two parts, one is task to be performed, called the operation code (opcode),

and the second is the data to be operated on called the operand. An instruction is a binary pattern

designed inside a microprocessor to perform a specific function. Each instruction is represented

by 8 bit binary value. The 8085 has five interrupt signals that can be used to interrupt a program

execution.

The timing and control unit synchronizes all the microprocessor operations with the clock and

generates the control signals necessary for communication between the microprocessor and

peripherals.

4.2 OBJECTIVES

After studying this unit, you will learn about-

 Microprocessor 8085

 Pin diagram 8085

 Interrupts

 Timing diagram

4.3. 8085 MICROPROCESSOR ARCHITECTURE AND MEMORY

INTERFACING

The 8085 microprocessor is a much improved version of its predecessor, the 8080A. The 8085

includes on its chip most of the logic circuitry for performing computing tasks and for

MSCPH522

100

communicating with peripherals. However, eight of its bus lines are multiplexed; that is, they are

time-shared by the low-order address and data. This chapter discusses the 8085 architecture in

detail and illustrates techniques for demultiplexing the bus and generating the necessary control

signals.

It has 8 bit data bus and 16 bit address bus, thus it is capable of addressing 64 KB of memory.

1. It has 8 bit ALU 8 bit ALU that can perform 8 bit operations.

2. Lower order address bus is multiplexed with data bus to minimize the chip size.

3. The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package (shown the

figure below) and uses +5 V for power. It can run at a maximum frequency of 3 MHz.

4. The 8085 has extensions to support new interrupts, with three maskable interrupts (RST

7.5, RST 6.5 and RST 5.5), one non-maskable interrupt (TRAP), and one externally

serviced interrupt (INTR).

5. Three control signals are available on chip: (i) RD : it is a active low signal. Which indicate

that the selected IO or Memory device is to be read and data is available on the data bus.

(ii) WR : it is a active low signal which indicate that the data on the data bus are to be

written into a selected memory or IO location. (iii) ALE : it is a +ve going pulse generated

every time the 8085 begins an operation (machine cycle), which indicate that the bits on

AD7-AD0 are address bits.

6. Three status signals are available on chip: (i) IO/M : this is a status signal used to

differentiate between IO and Memory operations. If it is high then IO operation and If it is

low then Memory operation. (ii) S1 and S0: status signals similar to IO/M, can identify

various operations that are rarely used in the systems.

MSCPH522

101

 Fig. 4.1 A: PIN DIAGRAM of 8085

MSCPH522

102

 Fig. 4.1 B: PIN DIAGRAM of 8085

 4.3.1. ARCHITECTURE OF 8085 MICROPROCESSOR

The architecture of 8085 consists of three main sections, ALU (Arithmetic and Logical Unit),

timing and control unit and Registers (shown in the following figure).

MSCPH522

103

 Fig. 4.2 ARCITACTURE of 8085

ARITHMETIC AND LOGIC UNIT (ALU): The ALU performs the actual numerical and

logical operations.

1. The ALU performs the following arithmetic and logical operations.

2. Addition, Subtraction

3. Logical AND, Logical OR, Logical Ex - OR

4. Complement (logical NOT)

5. Increment, Decrement

6. Left shift, Right shift

MSCPH522

104

7. Clear, etc.

ALU includes the accumulator, the temporary register, the arithmetic and logic circuits and flags.

It always stores result of operations in Accumulator.

TIMING & CONTROL UNIT: It generates timing and control signals, which are necessary for

the execution of instructions.

 It controls data flow between CPU and peripherals (including memory).

 It provides status, control and timing signals, which are required for the operation of

memory and I/O devices.

8085 SYSTEM BUS: Microprocessor communicates with memory and other devices (input and

output) using three buses: Address Bus, Data Bus and Control Bus.

ADDRESS BUS: The Address bus consists of 16 wires. The size of the address bus determines

the size of memory, which can be used. To communicate with memory the microprocessor sends

an address on the address bus to the memory. Address bus is unidirectional, i.e., numbers only sent

from microprocessor to memory.

DATA BUS: Bus is bidirectional. Size of the data bus determines what arithmetic can be done.

Data bus also carries instructions from memory to the microprocessor.

Memory size = 2A x D where, A denotes the address lines, and D denotes the data lines.

CONTROL BUS: Control bus are various lines which have specific functions for coordinating

and controlling μP operations. The control bus carries control signals partly unidirectional, partly

bidirectional. Control signals are things like read or write.

REGISTERS: 8085 has six general-purpose registers to store 8 bit data, these are identified as

B, C, D, E, H and L . They can be combined as register pairs BC, DE and HL to perform some 16

bit operations.

MSCPH522

105

ACCUMULATOR: The accumulator is an 8 bit register included as a part of Arithmetic Logic

Unit (ALU). This register is used to store 8 bit data and to perform arithmetic and logical

operations. The result of an operation is stored in the accumulator.

FLAG REGISTER: The ALU includes five flip-flops. They are called Zero (Z), Carry (CY),

Sign (S), Parity (P) and Auxiliary Carry (AC) flags. The microprocessor uses these flags to test

data conditions. The conditions (set or reset) of the flags are tested through the software

instructions. The combination of the flag register and the accumulator is called Program Status

Word (PSW) and PSW is the 16-bit unit for stack operation.

PROGRAM COUNTER (PC): This 16 bit register deals with sequencing the execution of

instruction. The microprocessor uses this register to sequence the execution of the instructions.

The function of the program counter is to point to the memory address from which the next byte

is to be fetched.

STACK POINTER (SP): The stack pointer is also a 16 bit register used as a memory pointer. It

points to a memory location in read-write memory, called the stack.

INSTRUCTION REGISTER/DECODER: Temporary store for the current instructions of a

program. Latest instruction sent here from memory prior to execution. Decoder then takes

instruction and decodes or interprets the instruction. Decoded instruction then passed to next stage.

MEMORY ADDRESS REGISTER: Holds address, received from PC of next program

instruction.

CONTROL GENERATOR: It generates signal within μP to carry out the instructions which

have been decoded.

REGISTER SELECTOR: This block controls the use of the register stack.

GENERAL PURPOSE REGISTERS: μP requires extra registers for versatility. It can be used

to store additional data during a program.

4.3.2. OPERATIONS OF MICROPROCESSOR

MSCPH522

106

The microprocessor performs the following four operations using address bus, data bus, and

control bus:

Memory Read: Reads data (or instruction) from memory.

Memory Write: Writes data (or instruction) into memory.

I/O Read: Accepts data from input device.

I/O Write: Sends data to output device.

4.3.2.1. THE 8085 INSTRUCTION FORMAT

An instruction is a command to the microprocessor to perform a given task on a specified data.

Each instruction has two parts, one is task to be performed, called the operation code (opcode),

and the second is the data to be operated on called the operand. The 8085 instruction set is

classified according to word size.

ONE-BYTE INSTRUCTIONS: A 1-byte instruction includes the opcode and operand in the

same byte. Operands are internal registers and are coded into the instruction.

TWO-BYTE INSTRUCTIONS: In a two-byte instruction, the first byte specifies the operation

code and the second byte specifies the operand. Source operand is a data byte immediately

following the opcode.

THREE-BYTE INSTRUCTIONS: In a three byte instruction, the first byte specifies the opcode

and the following two bytes specify the 16-bit address. Note that, the second byte is the low-order

address and the third byte is the high-order address.

4.3.3. THE 8085 ADDRESSING MODES

The various formats for specifying operands are called the addressing modes. For 8085, they are

IMMEDIATE ADDRESSING: Data is provided in the instruction. Load the immediate data to

the destination provided.

MSCPH522

107

REGISTER ADDRESSING: Data is provided through the registers.

DIRECT ADDRESSING: Used to accept data from outside devices to store in the accumulator

or send the data stored in the accumulator to the outside device.

INDIRECT ADDRESSING: Effective address is calculated by the processor and the contents of

the address are used to form a second address. The second address is where the data is stored.

IMPLICIT ADDRESSING: In this addressing mode the data itself specifies the data to be

operated upon.

4.4. 8085 INSTRUCTION SET

An instruction is a binary pattern designed inside a microprocessor to perform a specific function.

Each instruction is represented by 8 bit binary value. Instruction set can be categorized into 5 types:

DATA TRANSFER INSTRUCTIONS: These instructions are used to transfer data from one

register to another register, from memory to register or register to memory. When an instruction

of data transfer group is executed, data is transferred from the source to the destination without

altering the contents of the source.

ARITHMETIC INSTRUCTIONS: These instructions are used to perform arithmetic operations

such as addition, subtraction, increment or decrement of the content of a register or memory.

LOGICAL INSTRUCTIONS: These instructions are used to perform logical operations such as

AND, OR, compare, rotate etc.

BRANCHING INSTRUCTIONS: These instructions are used to perform conditional and

unconditional jump, subroutine call and return, and restart.

MACHINE CONTROL INSTRUCTIONS: These instructions control machine functions such

as Halt, Interrupt, or do nothing. The microprocessor operations related to data manipulation can

be summarized in four functions: copying data, performing arithmetic operations, performing

logical operations, testing for a given condition and alerting the program sequence.

MSCPH522

108

4.5. ADDRESS BUS

The 8085 has eight signal lines A1 – A8, which are unidirectional and used as the high order

address bus.

4.5.1. MULTIPLEXED ADDRESS/DATA BUS

The signal lines AD-AD0 are bidirectional: they serve a dual purpose. They are used the

low-order address bus as well as the data bus. In executing an instruction, during Part of

the cycle, these lines are used as the low-order address bus. During the later part of the

cycle these lines are used as the data bus. (This is also known as multiplexing the bus.

However, the low-order address bus can be separated from these signals by using a latch .

4.5.2. CONTROL AND STATUS SIGNALS

The group of signals includes two control signals (RD̅̅ ̅̅ and WR̅̅ ̅̅ ̅), three status signals

(IO/M̅. S1and S0) to identify the nature of the operation, and one special signal (ALE to

indicate the beginning of the operation. These signals are as follows:

 ALE- Address Latch Enable: This is a positive going pulse generated every time the

8085 begins an operation (machine cycle); it indicates that the bits on AD-AD0 are

address bits. This signal is used primarily to latch the low-order address from the

multiplexed bus and generate a separate set of eight address lines, A1-AD0.

 𝐑𝐃̅̅ ̅̅ -Read: This is a Read control signal (active low). This signal indicates that the

selected I/O or memory device is to be read and data are available on the data bus.

 𝐖𝐑̅̅ ̅̅ ̅-Write: This is a Write control signal (active lo). This signal indicates that the

data on the data bus are to be written into a selected memory or I/O location.

 𝐈𝐎/𝐌̅: This is a status signal used to differentiate between I/O and memory

operations. When it is high, it indicates an I/O operation; when is low, it indicates a

memory operation. This signal is combined with 𝐑𝐃̅̅ ̅̅ (Read) and 𝐖𝐑̅̅ ̅̅ ̅ (Write) to

generate I/O and memory control signals.

MSCPH522

109

 S1 AND S0: These status signals, similar to IO/M̅, can identify various operations, but

they are namely used in small system. (All the operations and their associated status

signals are listed in Table 3.1 for reference.)

4.5.3. POWER SUPPLY AND CLOCK PREQUENCY

The power supply and frequency signals are as follows:

 Vcc: +5 V power supply

 VSS: Ground References

 X1, X2: A crystal (or RC, LC network) is connected at these two pins. The frequency

is internally divided by two; therefore, to operate a system at 3 MHz, the crystal

should have a frequency of 6 MHz.

 CLK (OUT)-Clock Output: This signal can be used as the system clock for other

devices.

4.6. EXTERNALLY INITIATED SIGNALS, INCLUDING

INTERRUPTS

The 8085 has five interrupt signals that can be used to interrupt a program execution. One

of the signals, INTR (Interrupt Request), is identical to the 8080A microprocessor interrupt

signal (INT); the others are enhancements to the 8080A. The microprocessor acknowledges

an interrupt request by the INTA (Interrupt Acknowledge) signal.

 In addition to the interrupts, three pins-RESET, HOLD and READY-accept the

externally initiated signals as inputs. To respond to the HOLD request, the 8085 has one

signal called HLDA (Hold Acknowledge).

RESET IN: When the signal on this pin goes low, the program counter is set to zero, the

buses are tri-stated, and the MPU is reset.

MSCPH522

110

 RESET OUT: This signal indicates that the MPU is being reset. The signal can be

used to reset other devices.

4.6.1. SERIAL I/O PORTS

The 8085 has two signals to implement the serial transmission: SID (Serial Input Data) and

SOD (Serial Output Data). They will be discussed in Chapter 16 on serial I/O.

 In this chapter, we will focus on the first three groups of signals; others will be

discussed in later chapters.

4.7 MICROPROCESSOR COMMUNICATION AND BUS

TIMINGS

Bus: A bus is a group of wires (lines) that carry similar information.

System Bus: A system bus is a group of wires used for communication between the

microprocessor and peripherals.

Address Bus: It carries the address, which is a unique binary pattern used to identify a memory

location or an I/O port.

Data Bus: The data bus is used to transfer data between memory and processor or between I/O

device and processor.

Control Bus: The control bus carries control signals, which consist of signals for selection of

memory or I/O device from the given address, direction of data transfer, and synchronization of

data transfer in case of slow devices.

To understand the functions of various signals of the 8085, we should examine the process of

communication (reading from and writing into memory) between the microprocessor and memory

and the timings of these signals in relating to the system clock. The first step in the communication

process is reading from memory or fetching an instruction. This can be easily understood using an

analogy of how a package is picked up from your house by a shipping company such as Federal

Express. The steps are as follows:

MSCPH522

111

1. A courier gets the address from the office; he or she drives the pickup van, finds the street,

and looks for your house number.

2. The courier rings the bell.

3. Somebody in the house opens the door and gives the package to the courier, and the courier

returns to the office with the package.

4. The internal office staff disposes the package according to the instructions given by the

customer.

Now let us examine the steps in the following example of how the microprocessor fetches or gets

a machine code from memory.

4.7.1. DEMULTIPLEXING THE BUS AD1-AD0

The need for demultiplexing the bus AD1-AD0 becomes easier to understand after

examining Figure 4.3. A This figure shows that the address on the high-order bus (20H)

remains on the bus for three clock periods. However, the low-order address (05H) is lost

after the first clock period. This address needs to be latched and used for identifying the

memory address. If the bus AD7-AD0 is used to identify the memory location (2005H), the

address will change to 204FH after the first clock period.

 Figure 4.3 B shows a schematic that uses a latch and the ALE signal to demultiplex

the bus. The bus AD7-AD0 is connected us the input to the latch 74LS373. The ALE signal

is connected to the Enable (G) pin of the latch, and the Output control (OC̅̅̅̅) signal of the

latch is grounded.

 Figure 4.3A shows that the ALE goes high during T1. When the ALE is high, the latch

is transparent; this means that the output changes according to input data. During T1, the

output of the latch is 05H. When the ALE goes low, the data byte 05H is latched until the

next ALE, and the output of the latch represents the low-order address bus A7-A0 after the

latching operation.

MSCPH522

112

FIG 4.3. A: SCHEMATIC OF LATCHING LOW-ORDER ADDRESS BUS

FIG 4.3. B: SCHEMATIC OF LATCHING LOW-ORDER ADDRESS BUS

MSCPH522

113

Intel has circumvented the problem of demultiplexing the low-order bus by special devices

such as the 8155 (256 bytes of R/W memory I/O which is potable with the 8085

multiplexed bus. These devices internally demultiplex the bus the ALE signal.

We can make the following observations:

1. The machine code 4FH (0100 1000) is a one-byte instruction that copies the of the

accumulator into register C.

2. The 8085 microprocessor requires one external operation-fetching a machine from

memory location 2005H.

3. The entire operation-fetching, decoding, and executing-requires four clock periods.

Now we can define three terms-instruction cycle, machine cycle and T-state. We use these

terms later for examining timings of various 8085 operations

Instruction cycle is defined as the time required to complete the execution of an

instruction. The 8085 instruction cycle consists of one to six machine cycles or one to many

operations.

Machine cycle is defined as the time required completing one operation of accessing

memory. I/O, or acknowledging an external request. This cycle may consist of three to six

T-states. In Figure 3.3, the instruction cycle and the machine cycle are the same.

T-state is defined as one subdivision of the operation performed in one clock period. These

subdivisions are internal states synchronized with the system clock, and each T-state is

precisely equal to one clock period. The terms T-state and clock period are often used

synonymously.

4.8. GENERATING CONTROL SIGNALS

MSCPH522

114

Figure 4.4 shows the RD̅̅ ̅̅ (Read) as a control signal. Because this signal is used both for

reading memory and for reading an input device, it is necessary to generate two different

Read signals; one for memory and another for input. Similarly, two separate Write signals

must be generated.

 Figure 4.5 shows that four different control signals are generated by combining the

signals RD̅̅ ̅̅ , WR̅̅ ̅̅ ̅ and IO/M̅. The signal IO/M̅ goes low for the memory operation. This signal

is ANDed with RD̅̅ ̅̅ and WR̅̅ ̅̅ ̅ signals by using the 74LS32 quadruple two-input OR gates, as

shown in Figure 4.4. The OR gates are functionally connected as negative NAND gates.

When both input signals go low, the outputs of the gates go low and generate MEMR̅̅ ̅̅ ̅̅ ̅̅ ̅

(Memory Read) and MEMW̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (Memory Write) control signals. When the IO/M̅ signal goes

high, it indicates the peripheral I/O operation. Figure 4.4 shows that this signal is

complemented using the Hex inverter 74LS04 and ANDed with the RD̅̅ ̅̅ and WR̅̅ ̅̅ ̅ signals to

generate IOR̅̅ ̅̅ ̅ (I/O Read) and IOW̅̅ ̅̅ ̅̅ (I/O Write) control signals.

MSCPH522

115

FIG. 4.4 SCHEMATIC TO GENERATE READ/WRITE CONTROL SIGNALS FOR

MEMORY AND I/O.

MSCPH522

116

FIG. 4.5: - 8085 DEMULTIPLEXED ADDRESS AND DATA BUS WITH CONTROL

SIGNALS

To demultiplex the bus and to generate the necessary control signals, the 8085

microprocessor requires a latch and logic gates to build the MPU. This MPU can be

interfaced with any memory or I/O.

4.9. A DETAILED LOOK AT THE 8085 MPU AND ITS

ARCHITECTURE

8085 includes the ALU (Arithmetic/Logic Unit), Timing and Control Unit, Instruction

Register and Decoder, Register Array. Interrupt Control and Serial I/O Control.

4.9.1. THE ALU

MSCPH522

117

The arithmetic/logic unit performs the computing functions; is includes the accumulator,

the temporary register, the arithmetic and logic circuits and five flags. The temporary

register is used to hold data during an arithmetic/logic operation. The result is stored in the

accumulator, and the flags (flip-flops) are set or reset according to the result of the

operation.

The flags are affected by the arithmetic and logic operations in the ALU. In most of these

operations, the result is stored in the accumulator. Therefore, the flags generally reflect

data conditions in the accumulator-with some exceptions. The descriptions and conditions

of the flags are as follows:

 S-Sign flag: After the execution of an arithmetic or logic operation, if bit D7 of the

result (usually in the accumulator) is 1, the Sign flag is set. This flag is used with

signed numbers. In a given byte, if D7 is 1, the number will be viewed as a negative

number, if it is 0, the number will be considered positive. In arithmetic operations

with signed numbers, bit D7 is reserved for indicating the sign, and the remaining

seven bits are used to represent the magnitude of a number. See Appendix A2 for a

discussion of signed numbers.)

 Z-Zero flag: The Zero flag is set if the ALU operation results in 0, and the flag is

reset if the result is not 0. This flag is modified by the results in the accumulator as

well as in the other registers.

 AC-Auxiliary Carry flag: In an arithmetic operation, when a carry is generated by

digit D3 and passed on to digit D4, the AC flag is set. The flag is used only internally

for BCD (binary-coded decimal) operations and is not available for the programmer

to change the sequence of a program with a jump instruction.

 P-Parity flag: After an arithmetic or logical operation, if the result has an even

number of 1s, the flag is set. If it has an odd number of 1s, the flag is reset.(For

example, the data byte 0000 0011 has even parity even if the magnitude of the number

is odd.)

 CY-Carry flag: If an arithmetic operation results in a carry, the Carry flag is set;

otherwise it is reset. The Carry flag also serves as a borrow flag for subtraction.

MSCPH522

118

 The bit positions reserved for these flags in the flag register are as follows:

D7 D6 D5 D4 D3 D2 D1 D0

S Z AC P CY

 Among the five flags, the AC flag is used internally for BCD arithmetic; the

instruction set does not include any conditional jump instructions based on the AC flag. Of

the remaining four flags, the Z and CY flags are those most commonly used.

4.9.2. TIMING AND CONTROL UNIT

This unit synchronizes all the microprocessor operations with the clock and generates the

control signals necessary for communication between the microprocessor and peripherals.

 The control signals are similar to a sync pulse in an oscilloscope. The RD̅̅ ̅̅ and WR̅̅ ̅̅ ̅

signals are sync pulse indicating the availability of data on the data bus.

4.9.3. INSTRUCTION REGISTER AND DECODER

The instruction register and the decoder are part of the ALU. When an instruction is fetched

from memory, it is loaded in the instruction register. The decoder decodes the instruction

and establishes the sequence of events to follow. The instruction register is not

programmable and cannot be accessed through any instruction.

4.9.4. REGISTER ARRAY

The programmable registers were discussed in the last chapter. Two additional registers,

called temporary registers W and Z, are included in the register array. These registers are

used to hold 8-bit data during the execution of some instructions. However, because they

are used internally, they are not available to the programmer.

MSCPH522

119

4.10. INTERRUPTS OF 8085

When microprocessor receives any interrupt signal from peripheral(s) which are requesting

its services, it stops its current execution and program control is transferred to a sub-routine

by generating CALL signal and after executing sub-routine by generating RET signal again

program control is transferred to main program from where it had stopped.

When microprocessor receives interrupt signals, it sends an acknowledgement (INTA) to

the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different parameters:

4.10.1. HARDWARE AND SOFTWARE INTERRUPTS

When microprocessors receive interrupt signals through pins (hardware) of microprocessor, they

are known as Hardware Interrupts. There are 5 Hardware Interrupts in 8085 microprocessor. They

are – INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

Software Interrupts are those which are inserted in between the program which means these are

mnemonics of microprocessor. There are 8 software interrupts in 8085 microprocessor. They are

– RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6, RST 7.

4.10.2. VECTORED AND NON-VECTORED INTERRUPTS

Non-Vectored Interrupts are those in which vector address is not predefined. The interrupting

device gives the address of sub-routine for these interrupts. INTR is the only non-vectored interrupt

in 8085 microprocessor.

4.10.3. MASKABLE AND NON-MASKABLE INTERRUPTS

Maskable Interrupts are those which can be disabled or ignored by the microprocessor. These

interrupts are either edge-triggered or level-triggered, so they can be disabled. INTR, RST 7.5,

RST 6.5, RST 5.5 are maskable interrupts in 8085 microprocessor.

MSCPH522

120

Non-Maskable Interrupts are those which cannot be disabled or ignored by

microprocessor. TRAP is a non-maskable interrupt. It consists of both level as well as edge

triggering and is used in critical power failure conditions.

4.10.4. PRIORITY OF INTERRUPTS

When microprocessor receives multiple interrupt requests simultaneously, it will execute the

interrupt service request (ISR) according to the priority of the interrupts.

4.10.5. INSTRUCTION FOR INTERRUPTS

ENABLE INTERRUPT (EI) – The interrupt enable flip-flop is set and all interrupts are

enabled following the execution of next instruction followed by EI. No flags are affected. After

a system reset, the interrupt enable flip-flop is reset, thus disabling the interrupts. This

instruction is necessary to enable the interrupts again (except TRAP).

DISABLE INTERRUPT (DI) – This instruction is used to reset the value of enable flip-flop

hence disabling all the interrupts. No flags are affected by this instruction.

SET INTERRUPT MASK (SIM) – It is used to implement the hardware interrupts (RST 7.5,

RST 6.5, RST 5.5) by setting various bits to form masks or generate output data via the Serial

Output Data (SOD) line. First the required value is loaded in accumulator then SIM will take

the bit pattern from it.

READ INTERRUPT MASK (RIM) – This instruction is used to read the status of the

hardware interrupts (RST 7.5, RST 6.5, RST 5.5) by loading into the A register a byte which

defines the condition of the mask bits for the interrupts. It also reads the condition of SID (Serial

Input Data) bit on the microprocessor.

4.11. TIMING DIAGRAMS

Timing Diagram is a graphical representation. It represents the execution time taken by each

instruction in a graphical format. The execution time is represented in T-states.

INSTRUCTION CYCLE: The time required to execute an instruction is called instruction cycle.

MSCPH522

121

MACHINE CYCLE: The time required to access the memory or input/output devices is called

machine cycle.

T-STATE: The machine cycle and instruction cycle takes multiple clock periods. A portion of an

operation carried out in one system clock period is called as T-state.

MACHINE CYCLES OF 8085

The 8085 microprocessor has 5 basic machine cycles. They are

Opcode fetch cycle (4T)

Memory read cycle (3 T)

Memory write cycle (3 T)

I/O read cycle (3 T)

 I/O write cycle (3 T)

 FIG 4.6: CLOCK SIGNAL

Signal 1.Opcode fetch machine cycle of 8085:

MSCPH522

122

 FIG 4.7: OPCODE FATCH CYCLE

Each instruction of the processor has one byte opcode. The opcodes are stored in memory. So, the

processor executes the opcode fetch machine cycle to fetch the opcode from memory. Hence, every

instruction starts with opcode fetch machine cycle. The time taken by the processor to execute the

opcode fetch cycle is 4T. In this time, the first, 3 T-states are used for fetching the opcode from

memory and the remaining T-states are used for internal operations by the processor.

Memory Read Machine Cycle of 8085: The memory read machine cycle is executed by the

processor to read a data byte from memory. The processor takes 3T states to execute this cycle.

The instructions which have more than one byte word size will use the machine cycle after the

opcode fetch machine cycle.

MSCPH522

123

 FIG 4.8: MEMORY READ MACHINE CYCLE

 Cycle 3. Memory Write Machine Cycle of 8085

MSCPH522

124

 FIG 4.9: MEMORY WRITE MACHINE CYCLE

The memory write machine cycle is executed by the processor to write a data byte in a memory

location. The processor takes, 3T states to execute this machine cycle.

I/O Read Cycle of 8085

The I/O Read cycle is executed by the processor to read a data byte from I/O port or from the

peripheral, which is I/O, mapped in the system. The processor takes 3T states to execute this

machine cycle. The IN instruction uses this machine cycle during the execution.

MSCPH522

125

 FIG 4.10: I/O READ CYCLE

4.12 SUMMARY

In this unit, you have studied about microprocessor 8085 and its Pin diagram. You learnt in detail

working and application of 8085.

4.13 GLOSSARY

Base of a number system: - The number of distinct symbols (digits) used in a number system.

Bits: - Digits in binary number system are called bits.

Byte: - A group of eight bits.

Code: - A system of representation of numeric, alphabets or special characters in a binary form

for processing and transmission using digital techniques.

ALU: Arithmetic Logic Unit

MSCPH522

126

4.14 REFERENCES

1. Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh

Gaonkar

2. Microprocessor and Microcontroller System By A. P. Godse

3. The 8085 Microprocessor: Architecture, Programming and Interfacing by B. S. Umashankar

and K. Udaya Kumar.

4. Advanced Microprocessors and Peripherals by A. K. Ray

5. Online sources

4.15 SUGGESTED READINGS

1. Digital Fundamentals,10th Ed, Floyd T L, Prentice Hall, 2009.

2. NPTL

3. You Tube

4. Online tutorial

5. Byju’s online study material

4.16 TERMINAL QUESTIONS

4.16.1 Short Answer type

1. Draw pin diagram of 8085.

2. Draw architecture 8085.

3. What do you understand by ALU?

4. Discuss control and timing unit.

MSCPH522

127

UNIT 5 INTERFACING I/O DEVICE

Structure

5.1. Introduction

5.2. Objective

5.3. Basic Interface Concept

5.3.1. Interface

5.3.1.1. Hardware Interfaces

5.3.1.2. Software Interfaces

5.4. Interfacing Output Display

5.4.1. Input Output Interfacing 8085 Microprocessor

5.4.1.1. Input Port

5.4.1.2. Output Port

5.5 Input Output Interfacing Techniques

5.5.1. I/O Device Selection

5.5.2. Interfacing Input Device

5.5.3. Memory Mapped I/O

5.5.3.1. Interfacing Of I/O Port With Memory Mapped I/O

5.6. Comparison Between Memory Mapped I/O And I/O Mapped I/O

5.7. Input Output Transfer Techniques

5.8. Isolated I/O

5.9. Direct Memory Access (Dma)

5.10. Modes Of Operation

5.10.1. Burst Mode

5.10.2. Cycle Stealing Mode

MSCPH522

128

5.10.3. Transparent Mode

5.11. I/O Interface (Interrupt And Dma Mode)

5.11.1. Mode Of Transfer

5.12. Direct Memory Access

5.13. 8253 Programmable Interval Timer

5.13.1. Pin Diagram Of 8253

5.14 Summary

5.15 Glossary

5.16 References

5.17 Suggested Readings

5.18 Terminal Questions

 5.18.1 Short Answer Type

MSCPH522

129

5.1. INTRODUCTION

In computing, an interface is a shared boundary across which two or more separate components of

computer system exchange information. A standard interface, such as SCSI, decouples the design

and introduction of computing hardware, such as I/O devices, from the design and introduction of

other components of a computing system, thereby allowing users and manufacturers great

flexibility in the implementation of computing systems. Any application of a microprocessor based

system requires the transfer of data between external circuitry to the microprocessor and

microprocessor to the external circuitry. The most of the microprocessors support isolated I/O

system. It partitions memory from I/O, via software, by having instructions that specifically access

(address) memory, and others that specifically access I/O.

As a CPU needs to communicate with the various memory and input-output devices (I/O) as we

know data between the processor and these devices flow with the help of the system bus.

The 8253 Programmable Interval Timer/counter specifically designed for use in real-time

application for timing and counting function such as binary counting, generation of accurate time

delay, generation of square wave, rate generation, hardware/software triggered strobe signal, one-

shot signal of desired width, etc.

5.2. OBJECTIVES

After studying this unit, you should be able to-

 Learn about semiconductor memories and their classification based on their operation

 Be familiar with different other types of memories

 Utilize the memory organization and its expansion.

 Know the different storage devices with their applications

 Know about the memory address

 Solve problems based on the memory size, number of address lines, etc.

5.3. BASIC INTERFACE CONCEPT

5.3.1. INTERFACE

In computing, an interface is a shared boundary across which two or more separate components of

computer system exchange information. The exchange can be between software, computer

MSCPH522

130

hardware, peripheral devices, humans, and combinations of these. Some computer hardware

devices, such as a touch screen, can both send and receive data through the interface, while others

such as a mouse or microphone may only provide an interface to send data to a given system.

5.3.1.1. HARDWARE INTERFACES

Hardware interfaces exist in many components, such as the various buses, storage devices, other

I/O devices, etc. A hardware interface is described by the mechanical, electrical, and logical signals

at the interface and the protocol for sequencing them (sometimes called signaling). A standard

interface, such as SCSI, decouples the design and introduction of computing hardware, such as I/O

devices, from the design and introduction of other components of a computing system, thereby

allowing users and manufacturer’s great flexibility in the implementation of computing systems.

Hardware interfaces can be parallel with several electrical connections carrying parts of the data

simultaneously or serial where data are sent one bit at a time.

5.3.1.2. SOFTWARE INTERFACES

A software interface may refer to a wide range of different types of interface at different "levels":

an operating system may interface with pieces of hardware. Applications or programs running on

the operating system may need to interact via data streams, filters, and pipelines and in object

oriented programs; objects within an application may need to interact via methods.

5.4. INTERFACING OUTPUT DISPLAY

5.4.1. INPUT OUTPUT INTERFACING 8085 MICROPROCESSOR

Any application of a microprocessor based system requires the transfer of data between external

circuitry to the microprocessor and microprocessor to the external circuitry. User can give

information to the microprocessor using keyboard and user can see the result or output information

from the microprocessor with the help of display device. The transfer of data between keyboard

and microprocessor, and microprocessor and display device is called Input Output Interfacing 8085

Microprocessor or I/O data transfer. This data transfer is done with the help of I/O ports.

5.4.1.1. INPUT PORT

MSCPH522

131

It is used to read data from the input device such as keyboard. The simplest form of input port is a

buffer. The input device is connected to the microprocessor through buffer as shown in the Fig. 1.

This buffer is a tri-state buffer and its output is available only when enable signal is active.

When microprocessor wants to read data from the input device (keyboard), the control signals

from the microprocessor activates the buffer by asserting enable input of the buffer. Once the

buffer is enabled, data from the input device is available on the data bus. Microprocessor reads

this data by initiating read command.

 Fig. 5.1.

5.4.1.2. OUTPUT PORT

It is used to send data to the output device such as display from the microprocessor. The simplest

form of output port is a latch. The output device is connected to the microprocessor through latch

as shown in the Fig.5. 2.

MSCPH522

132

 Fig.5.2

When microprocessor wants to send data to the output device, it puts the data on the data bus and

activates the clock signal of the latch, latching the data from the data bus at the output of latch. It

is then available at the output of latch for the output device.

5.5 INPUT OUTPUT INTERFACING TECHNIQUES

The most of the microprocessors support isolated I/O system. It partitions memory from I/O, via

software, by having instructions that specifically access (address) memory, and others that

specifically access I/O. When these instructions are decoded by the microprocessor, an appropriate

control signal is generated to activate either memory or I/O operation. In 8085, IO/M signal is used

for this purpose. The 8085 outputs a logic ‘1’ on the IO/M line for an I/O operation and a logic ‘0’

for memory, operation. In 8085, it is possible to connect 64 Kbyte memory and 256 I/O ports in

the system since 8085 sends 16 bit address for memory and 8 bit address for I/O. I/O devices can

be Input Output Interfacing Techniques to an 8085A system in two ways:

I/O Mapped I/O

Memory mapped I/O

In I/O mapped I/O, the 8085 uses IO/M signal to distinguish between I/O read/write and memory

read/write operations. The 8085 has separate instructions IN and OUT for I/O data transfer. When

8085 executes IN or OUT instruction, it places device address (port number) on the demultiplexed

https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-1.jpg
https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-1.jpg

MSCPH522

133

low order address bus as well as the high order address bus. In other words, we can say that higher

order address bus duplicates the contents of demultiplexed low-order address bus, when 8085

microprocessor executes an IN or OUT instruction. For example, if the device address is 60H then

the contents on A15 to A0 will be as follows:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

Here, A8 follows A0, A9 follows A1 and so on, as shown below.

A7 A6 A5 A4 A3 A2 A1 A0 Device

Address
A15 A14 A13 A12 A11 A10 A9 A8

0 1 1 0 0 0 0 0 60H

The instruction IN inputs data from an input device (such as keyboard) into the accumulator and

the instruction OUT send the contents of the accumulator to an output device such as LED display.

These are two byte instructions. The second byte of the instruction specifies the address or the port

number of an I/O device. As it is a byte, the address or port number can be any of the 256

combinations of eight bits, from 00H to FFH. Therefore, the 8085 can communicate with 256

different I/O devices. When we want to Input Output Interfacing Techniques, it is necessary to

assign a device address or a port number.

5.5.1. I/O Device Selection

As mentioned earlier, the 8085 gives 8 bit I/O address. This means it can select one of the 256 I/O

ports. To select an appropriate I/O device, it is necessary to do following things.

MSCPH522

134

1. Decode the address to generate unique signal corresponding to the device address on the

bus.

2. When device address signal and control signal (IOR or IOW) both are low, generate

device select signal.

3. Use device select signal to activate the Input Output Interfacing Techniques.

 Fig.5.3: Absolute decoding circuit for I/O Devices

5.5.2. INTERFACING INPUT DEVICE

The microprocessor 8085 accepts 8 bit data from the input device such as keyboard, sensors,

transducers etc. Fig. 4 shows the circuit diagram to Input Output Interfacing Techniques (buffer)

which is used to read the status of 8 switches. The address for this input device is 80H as device

select signal goes low when address is 80H.

https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-7.jpg
https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-7.jpg

MSCPH522

135

 Fig.5.4: Circuit Diagram to Interface Input Port

5.5.3. MEMORY MAPPED I/O

In memory mapped I/O, the I/O devices are assigned and identified by 16 bit addresses. The

memory related instructions transfer the data between an I/O device and the microprocessor, as

long as I/O port is assigned to the memory address space rather than to the I/O address space. The

register associated with the I/O port is simply treated as a memory location. Thus I/O device

becomes a part of the system’s memory map and hence its name. In memory-mapped I/O every

instruction that refers to a memory location can control I/O. The source and destination of the

data is limited with I/O mapped I/O, since for an IN instruction the destination register is always

the accumulator, and for the OUT instruction the source register is always the accumulator.

However, for memory mapped I/O there are number of sources and destinations.

MSCPH522

136

5.5.3.1. Interfacing of I/O port with memory mapped I/O

In memory mapped I/O, MEMR (memory read) and MEMW (memory write) control signals are

required to control the data transfer between I/O device and microprocessor. As 8085 gives 16 bit

memory address, it is necessary to decode 16 bit memory address to generate device select signal

in case of memory mapped I/O.

 Fig.5.5: Interfacing of I/O port with memory mapped I/O

MSCPH522

137

5.6. Comparison between Memory Mapped I/O and I/O Mapped

I/O

Memory mapped I/O and mapped i/o have following differences:

Memory mapped I/O I/O mapped I/O

Maximum number of I/O devices are 65536 Maximum number of I/O devices are 256

Decoding 16 bit address may require more

hardware

Decoding 8 bit address will require less

hardware

Execution speed is 13 T state Execution speed is 10 T state

Data transfer is between any register and I/O

device.

Data transfer is between accumulator and I/O

device.

5.7. Input Output Transfer Techniques

In Input Output Transfer Techniques, the system requires the transfer of data between external

circuitry and the microprocessor. In this section, we will discuss different ways of I/O transfer.

1. Program controlled I/O or Polling control .

2. Interrupt program controlled I/O or interrupt driven I/O.

3. Hardware controlled I/O.

4. I/O controlled by Handshake signals.

5. I/O controlled by ready signal.

1. Program controlled I/O or Polling control:

In program controlled I/O, the transfer of data is completely under the control of the

microprocessor program. This means that the data transfer takes place only when an input output

transfer techniques instructions executed. In most of the cases it is necessary to check whether the

MSCPH522

138

device is ready for data transfer or not. To check this, microprocessor polls the status bit associated

with the I/O device.

2. Interrupt program controlled I/O or Interrupt driven I/O:

In interrupt program controlled approach, when a peripheral is ready to transfer data, it sends an

interrupt signal to the microprocessor. This indicates that the Input Output Transfer Techniques is

initiated by the external I/O device. When interrupted, the microprocessor stops the execution of

the program and transfers the program control to an interrupt service routine. This interrupt service

routine performs the data transfer. After the data transfer, it returns control to the main program at

the point it was interrupted.

3. Hardware controlled I/O:

To increase the speed of data transfer between memory and I/O, the hardware controlled I/O is

used. It is commonly referred to as direct memory access (DMA). The hardware which controls

this data transfer is commonly known as DMA controller. The DMA controller sends a HOLD

signal, to the microprocessor to initiate data transfer. In response to HOLD signal microprocessor

releases its data, address and control buses to the DMA controller. Then the data transfer is

controlled at high speed by the DMA controller without the intervention of the microprocessor.

After data transfer, DMA controller sends low on the HOLD pin, which gives the control of data,

address, and control buses back to the microprocessor. This type of data transfer is used for large

data transfers. This technique is explained in more details in chapter 8.

4. I/O Control by handshake signals:

The handshake signals are used to ensure the readiness of the I/O device and to synchronize the

timing of the data transfer. In this data transfer, the status of handshaking signals is checked

between the microprocessor and an I/O device and when both are ready, the actual data is

transferred.

5. I/O control by READY signal:

MSCPH522

139

This technique is used to transfer data between slower I/O device and the microprocessor. In some

applications, speed of I/O system is not compatible with the microprocessor’s timings. This means

that it takes longer time to read/write data. In such situations, the microprocessor has to confirm

whether a peripheral is ready to transfer data or not. If READY pin is high, the peripheral is ready

otherwise 8085 enters WAIT State or WAIT States. These WAIT states elongate the read/write

cycle timings and prepare 8085 microprocessor to communicate with slower I/O devices

5.8. ISOLATED I/O

As a CPU needs to communicate with the various memory and input-output devices (I/O) as we

know data between the processor and these devices flow with the help of the system bus. There

are three ways in which system bus can be allotted to them:

1. Separate set of address, control and data bus to I/O and memory.

2. Have common bus (data and address) for I/O and memory but separate control lines.

3. Have common bus (data, address, and control) for I/O and memory.

In first case it is simple because both have different set of address space and instruction but

require more buses.

Isolated I/O –

Then we have Isolated I/O in which we Have common bus (data and address) for I/O and

memory but separate read and write control lines for I/O. So when CPU decode instruction then

if data is for I/O then it places the address on the address line and set I/O read or write control

line on due to which data transfer occurs between CPU and I/O. As the address space of memory

and I/O is isolated and the name is so. The address for I/O here is called ports. Here we have

different read-write instruction for both I/O and memory.

MSCPH522

140

 Fig.5.6: Isolated I/O

5.9. DIRECT MEMORY ACCESS (DMA)

Direct memory access (DMA) is a feature of computer systems and allows certain hardware

subsystems to access main system memory independently of the central processing unit (CPU).

Without DMA, when the CPU is using programmed input/output, it is typically fully occupied for

the entire duration of the read or write operation, and is thus unavailable to perform other work.

With DMA, the CPU first initiates the transfer, then it does other operations while the transfer is

in progress, and it finally receives an interrupt from the DMA controller (DMAC) when the

operation is done.[citation needed] This feature is useful at any time that the CPU cannot keep up

with the rate of data transfer, or when the CPU needs to perform work while waiting for a relatively

slow I/O data transfer. Many hardware systems use DMA, including disk drive controllers,

graphics cards, network cards and sound cards. DMA is also used for intra-chip data transfer in

multi-core processors. Computers that have DMA channels can transfer data to and from devices

with much less CPU overhead than computers without DMA channels. Similarly, a processing

https://www.eeeguide.com/#facebook
https://www.eeeguide.com/#facebook

MSCPH522

141

circuitry inside a multi-core processor can transfer data to and from its local memory without

occupying its processor time, allowing computation and data transfer to proceed in parallel.

DMA can also be used for "memory to memory" copying or moving of data within memory. DMA

can offload expensive memory operations, such as large copies or scatter gather operations, from

the CPU to a dedicated DMA engine. An implementation example is the I/O Acceleration

Technology. DMA is of interest in network-on-chip and in-memory computing architectures.

Standard DMA, also called third-party DMA, uses a DMA controller. A DMA controller can

generate memory addresses and initiate memory read or write cycles. It contains several hardware

registers that can be written and read by the CPU. These include a memory address register, a byte

count register, and one or more control registers. Depending on what features the DMA controller

provides, these control registers might specify some combination of the source, the destination,

the direction of the transfer (reading from the I/O device or writing to the I/O device), the size of

the transfer unit, and/or the number of bytes to transfer in one burst

5.10. MODES OF OPERATION

5.10.1. BURST MODE

In burst mode, an entire block of data is transferred in one contiguous sequence. Once the DMA

controller is granted access to the system bus by the CPU, it transfers all bytes of data in the data

block before releasing control of the system buses back to the CPU, but renders the CPU inactive

for relatively long periods of time. The mode is also called "Block Transfer Mode".

5.10.2. CYCLE STEALING MODE

The cycle stealing mode is used in systems in which the CPU should not be disabled for the length

of time needed for burst transfer modes. In the cycle stealing mode, the DMA controller obtains

access to the system bus the same way as in burst mode, using BR (Bus Request) and BG (Bus

Grant) signals, which are the two signals controlling the interface between the CPU and the DMA

controller. However, in cycle stealing mode, after one unit (e.g. byte) of data transfer, the control

of the system bus is deasserted to the CPU via BG. It is then continually requested again via BR,

transferring one unit (e.g. byte) of data per request, until the entire block of data has been

MSCPH522

142

transferred. By continually obtaining and releasing the control of the system bus, the DMA

controller essentially interleaves instruction and data transfers. The CPU processes an instruction,

then the DMA controller transfers one data value, and so on. Data is not transferred as quickly, but

CPU is not idled for as long as in burst mode. Cycle stealing mode is useful for controllers that

monitor data in real time.

5.10.3. TRANSPARENT MODE

Transparent mode takes the most time to transfer a block of data, yet it is also the most efficient

mode in terms of overall system performance. In transparent mode, the DMA controller transfers

data only when the CPU is performing operations that do not use the system buses. The primary

advantage of transparent mode is that the CPU never stops executing its programs and the DMA

transfer is free in terms of time, while the disadvantage is that the hardware needs to determine

when the CPU is not using the system buses, which can be complex. This is also called "Hidden

DMA data transfer mode".

5.11. I/O Interface (Interrupt and DMA Mode)

The method that is used to transfer information between internal storage and external I/O devices

is known as I/O interface. The CPU is interfaced using special communication links by the

peripherals connected to any computer system. These communication links are used to resolve the

differences between CPU and peripheral. There exists special hardware components between CPU

and peripherals to supervise and synchronize all the input and output transfers that are called

interface units.

5.11.1. MODE OF TRANSFER

The binary information that is received from an external device is usually stored in the memory

unit. The information that is transferred from the CPU to the external device is originated from the

memory unit. CPU merely processes the information but the source and target is always the

memory unit. Data transfer between CPU and the I/O devices may be done in different modes.

Data transfer to and from the peripherals may be done in any of the three possible ways

1. Programmed I/O.

MSCPH522

143

2. Interrupt- initiated I/O.

3. Direct memory access (DMA).

Now let’s discuss each mode one by one.

Programmed I/O: It is due to the result of the I/O instructions that are written in the computer

program. Each data item transfer is initiated by an instruction in the program. Usually the transfer

is from a CPU register and memory. In this case it requires constant monitoring by the CPU of the

peripheral devices.

Example of Programmed I/O: In this case, the I/O device does not have direct access to the memory

unit. A transfer from I/O device to memory requires the execution of several instructions by the

CPU, including an input instruction to transfer the data from device to the CPU and store

instruction to transfer the data from CPU to memory. In programmed I/O, the CPU stays in the

program loop until the I/O unit indicates that it is ready for data transfer. This is a time consuming

process since it needlessly keeps the CPU busy. This situation can be avoided by using an interrupt

facility. This is discussed below.

Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy unnecessarily.

This situation can very well be avoided by using an interrupt driven method for data transfer. By

using interrupt facility and special commands to inform the interface to issue an interrupt request

signal whenever data is available from any device. In the meantime the CPU can proceed for any

other program execution. The interface meanwhile keeps monitoring the device. Whenever it is

determined that the device is ready for data transfer it initiates an interrupt request signal to the

computer. Upon detection of an external interrupt signal the CPU stops momentarily the task that

it was already performing, branches to the service program to process the I/O transfer, and then

return to the task it was originally performing.

5.12. DIRECT MEMORY ACCESS

The data transfer between a fast storage media such as magnetic disk and memory unit is limited

by the speed of the CPU. Thus we can allow the peripherals directly communicate with each

other using the memory buses, removing the intervention of the CPU. This type of data transfer

technique is known as DMA or direct memory access. During DMA the CPU is idle and it has

MSCPH522

144

no control over the memory buses. The DMA controller takes over the buses to manage the

transfer directly between the I/O devices and the memory unit.

 Fig.5.7: CPU Bus Signals for DMA Transfer

Bus Request: It is used by the DMA controller to request the CPU to relinquish the control of

the buses.

Bus Grant: It is activated by the CPU to Inform the external DMA controller that the buses are

in high impedance state and the requesting DMA can take control of the buses. Once the DMA

has taken the control of the buses it transfers the data. This transfer can take place in many

ways.

5.13. 8253 PROGRAMMABLE INTERVAL TIMER

 In the process control system or automation industry, a number of operations are generally

performed sequen­tially. Between two operations, a fixed time delay is specified. In a

microprocessor-based system, time delay can be generated using software. Sequences of

operations are also performed based on software. Therefore time delay, sequence and counting can

be done under the control of a microprocessor. These most common problems can be solved using

the 8253 in any microcomputer system.

The 8253 Programmable Interval Timer/counter specifically designed for use in real-time

application for timing and counting function such as binary counting, generation of accurate time

delay, generation of square wave, rate generation, hardware/software triggered strobe signal, one-

MSCPH522

145

shot signal of desired width, etc. The function of 8253 timer is that of a general purpose, multi-

timing element which can be treated as an array of I/O ports in the system software.

The generation of accurate time delay using software control or writing instruction is possible. But

instead of writing instructions for time delay loop, the 8253 timer may be used for this. The

programmer con­figures the 8253 as per requirements. When the counters of the 8253 are

initializing with the desired control word, the counter operates as per requirement. Then a

command is given to the 8253 to count out the delay and interrupt the CPU. At the instant it has

completed its tasks, the output will be obtained from the output terminal. Multiple delays can easily

be implemented by assignment of priority levels in the microprocessor.

The counter/timer can also used for non-delay in nature such as Programmable Rate Generator,

Event Counter, Binary Rate Multiplier, Real Time Clock, Digital One-Shot, and Complex Motor

Controller. The 8253 operates in the frequency range of dc to 2.6 MHz while the 8253 use NMOS

technology. The 8253 is compatible to the 8085 microprocessor. Generally, 8253 Programmable

Interval Timer can be operating in the following modes.

 Mode 0 Interrupt on terminal count

 Mode 1 Programmable one-shot

 Mode 2 Rate generator

 Mode 3 Square-wave generator

 Mode 4 Software triggered mode

 Mode 5 Hardware triggered mode

5.13.1. PIN DIAGRAM OF 8253

MSCPH522

146

 Fig.5.8: Schematic block diagram of Intel 8253 timer/counter

The 8253 timer is a 24-pin IC and operates at +5 V dc. It consists of three independent

programmable 16-bit counters: Counter 0, Counter 1, and Counter 2. Each counter operates as a

16-bit down counter and each counter consists of clock input, gate input and output as depicted in

Fig. 8. The schematic block diagram is given in Fig. 8. The gate input is used to enable the counting

process. Therefore the starting of counting may be controlled by external input pulse in gate

terminal. After gate triggered, the counter starts count down. When the counter has completed

counting, output signal would be available at the out terminal.

MSCPH522

147

 Fig.5.9: Pin diagram of 8253

The programmer can program 8253 using software in any one of the six operating modes: Mode

0, Mode 1, Mode 2, Mode 3, Mode 4, and Mode 5. The pin diagram of 8253 Programmable Interval

Timer is shown in Fig 5. 9 and Fig. 10. The functional descriptions of pins are as follows:

MSCPH522

148

 Fig.5.10: Pin diagram of 8253

R̅D̅ (Read) When this pin is low, the CPU is inputting data in the counter.

W̅R̅ (Write) When this is low, the CPU is outputting data in the form of mode information or

loading of counters.

A0, A1 These pins are normally connected to the address bus. The function of these pins is used to

select one of the three counters to be operated and to address the control word registers for mode

selection as given below:

A1 A0 Selection of Counters and Control word register

0 0 Counter 0

0 1 Counter 1

1 0 Counter 1

1 1 Control Word Register

https://www.eeeguide.com/wp-content/uploads/2022/06/8253-Programmable-Interval-Timer-004.jpg
https://www.eeeguide.com/wp-content/uploads/2022/06/8253-Programmable-Interval-Timer-004.jpg

MSCPH522

149

C̅S̅ Chip select A ‘low’ on C̅S̅ input enables the 8253. No reading or writing operation will be

performed until the device is selected. The C̅S̅ input signal is not used to control the actual

operation of the counters.

Data Bus Buffer The 3-state, bi-directional, 8-bit buffers exist in 8253. These buffers are used to

interface the 8253 to the systems data bus D0-D7 lines. Data can be transmitted or received by the

buffer upon execution of input and output CPU instructions. The data bus buffer has three basic

functions, namely, programming the Modes of the 8253, loading the count registers and reading

the count values.

D0-D7 Bi-directional Data Bus There are eight data lines through which the control word will be

written in the control word register of 8253 counter/timer during programming. The counter will

be written and read through the data bus.

Read/Write Logic The read/write Logic accepts inputs from the system bus and in turn Gate

generates control signals for operation of 8253. This is enabled by C̅S̅. Therefore, no operation can

take place to change the function unless the device has been selected by the system logic. Table

shows the various functions of 8253 Programmable Interval Timer based on the status of pins

associated with read/write logic.

Function of 8253

𝐶𝑆̅̅̅̅ 𝑅𝐷̅̅ ̅̅ 𝑊𝑅̅̅ ̅̅ ̅

A1 A0 Function

0 1 0 0 0 Load Counter 0

0 1 0 0 1 Load Counter 1

0 1 0 1 0 Load Counter 2

0 1 0 1 1 Write Mode
word

0 0 1 0 0 Read Counter 0

0 0 1 0 1 Read Counter 1

0 0 1 1 0 Read Counter 2

0 0 1 1 1 No operation 3
State

1 X X X X Disable 3 State

0 1 1 X X No operation 3
State

MSCPH522

150

CLK0, CLK1, CLK2 CLK0, CLK1 and CLK2 are clock for Counter 0, Counter 1 and Counter 2

respectively. The countdown of the counter takes place on each high to low transition of clock

input.

GATE0, GATE1, GATE2 GATE0, GATE1 and GATE2 are gate terminals of Counter 0, Counter

1 and Counter 2 respectively. The function of the GATE in different modes is illustrated in Table

Different mode of operation corresponding to gate signal

Single status mode Low of going law Rising High

0 Disable counting - Enable counting

1 - Initiating counting -

2 Disable counting Initiating counting Enable counting

3 Disable counting Initiating counting Enable counting

4 Disable counting - Enable counting

5 - Initiating counting -

OUT0, OUT1, OUT2 OUT0, OUT1, OUT2 are output terminals of Counter 0, Counter 1 and

Counter 2 respectively. The output of the 8253 timer depends Upon the mode of operation.

5.14 SUMMARY

In this unit, you have studied about microprocessor 8085 and its Pin diagram. You learnt in detail

working and application of 8085.

5.15 GLOSSARY

I/O: - Input/Outut

IC: Integrated Circuit

5.16 REFERENCES

1. Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh

Gaonkar

https://www.eeeguide.com/wp-content/uploads/2022/06/8253-Programmable-Interval-Timer-006.jpg
https://www.eeeguide.com/wp-content/uploads/2022/06/8253-Programmable-Interval-Timer-006.jpg

MSCPH522

151

2. Microprocessor and Microcontroller System By A. P. Godse

3. The 8085 Microprocessor: Architecture, Programming and Interfacing by B. S. Umashankar

and K. Udaya Kumar.

4. Advanced Microprocessors and Peripherals by A. K. Ray

5. Online sources

5.17 SUGGESTED READINGS

1. Digital Fundamentals,10th Ed, Floyd T L, Prentice Hall, 2009.

2. NPTL

3. You Tube

4. Online tutorial

5. Byju’s online study material

5.18 TERMINAL QUESTIONS

5.18.1 Short Answer type

1. Compare between Memory Mapped I/O And I/O Mapped I/O?

2. What do you understand by Input Output Transfer Techniques?

3. What do understand by Modes Of Operation? Discuss about Burst Mode, Cycle Stealing Mode

and Transparent Mode?

4, What do you understand Direct Memory Access?

5. Draw Pin Diagram of 8253.

MSCPH522

152

UNIT 6: 8085 MICROPROCESSORS PROGRAMMING

6.1 Introduction

6.2 Objectives

6.3 The 8085 Programming Model

 6.3.1. General Purpose Registers

 6.3.2. Specific Purpose Registers

 6.3.3 Memory Registers

6.4. Instruction Set Classification

 6.4.1 Data Transfer Operation

 6.4.2. Arithmetic Operations

 6.4.3. Logical Operations

 6.4.4. Branching Operations

 6.3.5. Machine Control Operations

6.5. Instruction Format

 6.5.1 How an Instruction Is Formed

 6.5.2 Instruction Word Size

6.6. Introduction To Addressing Modes

 6.6.1 Immediate Addressing

 6.6.2. Register Addressing

 6.6.3. Direct Addressing

 6.6.4. Register Indirect Addressing

MSCPH522

153

 6.6.5. Implicit Addressing

6.7. Instruction Set

6.8. Example

6.9. Summery

6.10. Questions

MSCPH522

154

6.1 INTRODUCTION

A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device

that reads binary instructions from a storage device called memory accepts binary data as input

and processes data according to those instructions and provides results as output. The input and

output of microprocessor is either memory or any input-output device.

Microprocessor can be described with its internal architecture and programming model.Internal

architecture specifies the hardware structure which has been studied in the previous units. The

programming model is writing an assembly language program using mnemonics for a specific

task. An assembly language program is a set of instructions. To write a program, we must be

familiar with the instructions set available with the microprocessor and hardware parts which can

be accessed. This unit describes the programming model for 8085.

6.2 OBJECTIVES

After studying this unit, you should be able to

 Explain the function of the registers in 8085 programming model

 Description of flags and their role

 Define and explain the addressing mode

 Describe instruction and instruction set

 Classification of instruction set

 Explain the functions of Data transfer instructions

 Describe the functions of Machine control instructions

 To write some program in assembly language

6.3 THE 8085 PROGRAMMING MODEL

The 8085-programming model includes six registers, one accumulator, and one flag register.

In addition, it also includes two 16-bit registers: the stack pointer and the program counter. They

are described briefly as follows:

MSCPH522

155

Figure 6.1: Programming Model of 8085

6.3.1 GENERAL PURPOSE REGISTERS

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D,

E, H, and L.They can be combined as register pairs - BC, DE, and HL - to perform some 16-

bit operations.These registers are used to store or copy temporary data, by using instructions,

during the execution of the program.

6.3.2 SPECIFIC PURPOSE REGISTERS

Accumulator:

The accumulator is an 8-bit register (can store 8-bit data) that is the part of the arithmetic and

logical unit (ALU). After performing arithmetical or logical operations, the result is stored in

accumulator. Accumulator is also defined as register A.

Flag register:

MSCPH522

156

Figure 6.2: Flag register

The flag register in ALU is 8 bit register whose only 5 bit positions are used. These bits are

set (1) or reset (0) after an arithmetic and logical operation performed in ALU, according to

data conditions of the result in the accumulator and other registers.

They are called Zero (Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags;

their bit positions in the flag register are shown in Figure 2.

The most commonly used flags are Zero, Carry, and Sign. This flag is used internally for

BCD (Binary-Coded decimal Number) operations. The microprocessor uses these flags to

test data conditions.

6.3.3 MEMORY REGISTERS

There are two 16-bit registers used to hold memory addresses. The size of these registers is 16

bits because the memory addresses are 16 bits. They are:-

Program Counter: This register is used to sequence the execution of the instructions. The

function of the program counter is to point to the memory address from which the next byte is

to be fetched. When a byte (machine code) is being fetched, the program counter is

incremented by one to point to the next memory location.

Stack Pointer:The stack pointer is also a 16-bit register used as a memory pointer. It points to

a memory location in read/write memory, called the stackThe beginning of the stack is defined

by loading 16-bit address in the stack pointer.

Carry Flag (CY)

Bit position B0

: It is set to 1, if an arithmetic operation results in a Carry/ Borrow

otherwise reset.

Parity Flag (P)

Bit position B2

: It is set to 1, if the result has an even number of 1s, otherwise it is

reset

Auxiliary Carry

Flag (AC)

Bit position B4

: It is set to 1, if a carry is generated by digit D3 and is passed to digit

D4. Used only to perform BCD operations

Zero Flag (Z)

Bit position B6

: It is set to 1 when the result is zero, otherwise it is reset. It helps in

determining, if two numbers are equal or not.

Sign Flag (S)

Bit position B7

: It is set to 1, if bit D7 of the result is 1 (the stored number is

negative), otherwise it is reset. S flags signify the sign (Positive/

Negative) of stored number.

MSCPH522

157

6.4 INSTRUCTION SET CLASSIFICATION

The 8085 Instruction classification can be categorized into five different groups based on the

nature of function of the instructions.

 Data transfer operations;

 Arithmetic operations;

 Logical operations;

 Branching operations; and

 Machine-control operations.

6.4.1 DATA TRANSFER OPERATION

The data transfer instructions, copies data from a location called a source to another location called

a destination. These location are either register or memorylocation. The content of source remains

same. These instructions do not affect the flag register of the processor. These operations can be

broadly classified in four types:

Types Example

Register to Register MOV H, L; copies the contents of Reg L to Reg H

Specific data to Register /

Memory location

MVI B, 55H; copies data 55H to Reg B

Between Register to

Memory Location

MOV B, M; copies the contents of Memory location by SP to

Reg B

Between an I/O Device and

the Accumulator

IN 04H, copies the data at port 04H to accumulator

6.4.2 ARITHMETIC OPERATIONS

The arithmetic instructions perform mathematical operations such as addition, subtraction,

increment, and decrement on the data in registers or memory.

 Addition: Any 8-bit number, or the contents of a register, or the contents of a memory

location can be added to the contents of the accumulator and the resulted sum is stored in

the accumulator.

In 8085, no two other registers can be added directly, i.e. the contents of B and C registers

cannot be added directly. To add two 16-bit numbers the 8085 provides DAD instruction.

It adds the data within the register pair to the contents of the HL register pair and resulted

sum is stored in the HL register pair.

 Subtraction: Any 8-bit number, or the contents of a register, or the contents of a memory

location can be subtracted from the contents of the accumulator and the result is stored in

the accumulator. The resulted borrow bit is stored in the carry flag:

MSCPH522

158

 Increment/Decrement : The 8085 has the increment and decrement instructions to

increment and decrement the contents of any register, memory location or register pair by

1.

6.4.3 LOGICAL OPERATIONS

The logical instructions provided by 8085 perform logical, rotate, compare and complement

operations with the contents of the accumulator.

 Logical - Any 8-bit number, or the contents of a register, or ofa memory location can be

logically ANDed, Ored, or Exclusive-ORed with thecontents of the accumulator. The

results are stored in the accumulator.

 Rotate- Each bit in the accumulator can be shifted either left or right to the next position.

 Compare- Any 8-bit number, or the contents of a register, or a memory location can be

compared for equality, greater than, or less than, with the contents of the accumulator.

 Complement - The contents of the accumulator can be complemented. All 0s are replaced

by 1s and all 1s are replaced by 0s.

6.4.4. Branching Operations

This group of instructions alters the sequence of the program execution, either unconditionally or

under certain test conditions. These instructions include branch instructions, subroutine call and

return instructions and restart instructions.

Jump - Conditional jumps are an important aspect of the decision-making process in the

programming. These instructions test for a certain conditions (e.g., Zero or Carry flag) and alter

the program sequence when the condition is met. In addition, the instruction set includes an

instruction called unconditional jump.

Call, Return, and Restart - These instructions change the sequence of a program either by calling

a subroutine or returning from a subroutine. The conditional Call and Return instructions also can

test condition flags.

6.4.5. Machine Control Operations

These instructions control machine functions such as Halt, Interrupt, or do nothing.

6.5. INSTRUCTION FORMAT

MSCPH522

159

An instruction is a command to the microprocessor to perform a given task on a specified data.

Each instruction has two parts: opcodeand operand

Opcode : The operation code (OPCODE) field in the instruction specifies the operation to be

performed. This is a specified binary code.

Operand:The data on which operation isto be performed,called the operand.The operand is

specified in various ways. It may include 8-bit (or 16-bit) data, an internal register, a memory

location, or 8-bit (or 16-bit) address. In some instructions, the operand is implicit.

Internal Registers, Memory Location, and Register pair have their specific code. The Codes are as

follows:

Code Register Code Register pair

000 B 00 BC

001 C 01 DE

010 D 10 HL

011 E 11 AF

100 H

101 L

111 A

110 Memory

6.5.1 How an instruction is formed

 Task: perform the addition of data stored in Register B with Accumulator and result in

Accumulator.

Here, Opcode is Addition and Operand areReg B and A.Opcode assigned for Addition in 8085 is

10000. This is first part of Instruction.

Operand is B and A which have codes 000 and 111, respectively. In 8085, to perform most of

Arithmetic and Logical operations, Accumulator is set as default register. So, operand for A will

be implicit and code of B is operand.

Combine Opcode (10000) and Operand (000) which is 1000 0000 (80H in hexadecimal).

Instruction formed to Addition is ADD B (Hex Code 80H.)

MSCPH522

160

6.5.2 Instruction word size

The Instruction Format of 8085 is classified on the basis of instruction length as of one,

two and three byte instructions. First part of instruction is opcode which can be from

one bit to one byte length. The 8085 instruction set, according to word size are listed

below

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

*In the 8085, "byte" and "word" are synonymous because it is an 8-bit microprocessor. However,

instructions are commonly referred to in terms of bytes rather than words.

 One-Byte Instructions

A 1-byte instruction share opcode and operand in same one byte. Operand(s) are

internal register or memory and are coded into the instruction. For example:

Task Opcode

(binary

code)

Operand

(binary code)

Instruction in Binary

Add the contents of register B

to the contents of the

accumulator. (ADD B)

ADD

(10000)

Register B (000),

A is implicit

10000 000, Hex code 80H

Add the contents of register B

to the contents of the

accumulator. ADD M

ADD

(10000)

Memory M

(110)

Memory address

is implicit

10000 110, Hex code 86H

Copy the contents of the

Register E in the Register D.

MOV D, E

MOV

(01)

Reg D (010),

E(011)

01 010 011, Hex code 53H

Invert (compliment) each bit

in the accumulator
CMA Implicit 0010 1111, Hex

code2FH

 Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte specifies

the operand. Source operand is an8 bit data byte immediately following the opcode. For example:

Task

Opcode Operand Hex Code

Load an 8-bit data byte in the MVI 8 bit data 3E First Byte

MSCPH522

161

accumulator Data Second

Byte

Add an 8-bit data byte with to

contents of accumulator.

ADI

8 bit data

C6

Data

First Byte

Second

Byte

Perform ANDing an 8-bit

data byte with the

accumulator

ANI 8 bit data

E6

Data

First Byte

Second

Byte

 Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes specify

the 16-bit address. Note that the second byte is the low-order address and the third byte is the high-

order address. For Example:

Task

Opcode Operand Hex Code

Transfer the program

sequence to the memory

location 2085H.

JMP 2085H

memory

address

C3

85

20

First byte

Second Byte

Third Byte

Load an 16-bit data byte in

the

Register pair (LXI B)

LXI Register

pair,16-bit data

01

Data

Data

First byte

Second Byte

Third Byte

MSCPH522

162

 6.6. INTRODUCTION TO ADDRESSING MODES

Every instruction consists of two parts. That is what the operation is to be performed (called

operation code or opcode), and on what this operation is to be performed (called operands).

For example, in case of A + B, the sign is the opcode, and A & B are the operands.

Each instruction performs an operation on the particular data called operand. An operand

should be specified for an instruction to be executed. The operand may be in the general

purpose register, accumulator or in a memory location. The way in which the operand is

specified in an instruction is called addressing mode. The microprocessor 8085 uses

following type of addressing modes:

 Immediate addressing

 Register addressing

 Direct addressing

 Register indirect addressing

 Implicit addressing

6.6.1 Immediate Addressing

In immediate addressing mode, the operands are specified in the instruction itself. The instruction

format of instructions with immediate addressing mode is given in the figure below:-

Opcode

1-byte

8- bit data

1-byte

 Opcode

1-byte

Upper 8 bit data

1-byte

Lower 8 Bit data

1-byte

 2 - byte 3- byte

Figure 6.3: Instruction format of the instruction with immediate addressing modes

Examples of immediate addressing mode are –

 MVI A, 05H: Move 05H in the accumulator.

 ADI 06: Add 06H to the contents of the accumulator.

 LXI H, 2500H: Load HL pair with 2500H

https://www.brighthubengineering.com/diy-electronics-devices/52162-addressing-modes-of-8085-microprocessors/
https://electronicslesson.com/

MSCPH522

163

6.6.2. Register Addressing

In register addressing mode, the operands are in the general purpose registers. The registers are

specified in the instructions. The format of instructions with register addressing mode is given in

the figure below:-

Opcode Source Register Destination Register

1 byte

Figure 6.4: Instruction format of the instruction with register addressing mode

Most of the instructions that uses register to register addressing deal with 8-bit values. However,

some of these instructions deal with 16-bit register pairs. For example, the SPHL instruction moves

the contents of the H and L registers to SP.

Examples of register addressing mode are as follows:-

 MOV A, B: This instruction moves the contents of register B to register A or accumulator.

 ADD B: Add the contents of B register to accumulator.

6.6.3. Direct Addressing

In this addressing mode one of the operand is data stored in the memory. The memory address of

the data is directly given in the instruction itself. The instruction format of direct addressing mode

is in Figure 6.5below.

1st byte 2nd byte 3rd byte

Opcode Lower byte of Address Upper byte of Address

3 byte

Figure 6.5: Instruction format of the instruction with direct addressing mode

Instructions that include a direct address require three-bytes of storage. The first one for the

instruction code, and next two for the 16-bit address in case of memory related operations.

Examples of direct addressing mode are as follows:-

 STA 2500H: Store the content of the accumulator to memory location 2500H.

 IN 02H: Input the data from input port 02H in accumulator.

MSCPH522

164

6.6.4. Register Indirect Addressing

This addressing mode is used only in concern with memory. In register indirect addressing mode,

the address of the operand (data) is specified by a register pair. The instruction format of direct

addressing mode is given, in the figure 6.6 below:-

Opcode

1 byte

Figure 6.6: Instruction format of the instruction with register indirect addressing mode

Example of indirect addressing mode is as follows:

 LXI H. 2500H: Load HL pair with 2500H.

 MOV A, M: Move the contents of memory to the accumulator.

 HLT: Stop the program.

6.6.5. Implicit Addressing

There are certain instructions which operate on the content or the accumulator directly; these

instructions do not require specifying the operands. The instruction format of implicit addressing

mode is given in the figure 6.7 below.

Opcode

1 byte

Figure 6.7 : Instruction format of the instruction with implicit addressing mode

Examples of implicit addressing mode are as follows:

 CMA: Compliment the contents of the accumulator.

 RAR: Rotate the contents of the accumulator to the right by one bit.

 RAL: Rotate the contents of the accumulator to the left by one bit.

6.7. INSTRUCTION SET

 Data Transfer (Copy) Instructions

MSCPH522

165

Opcode Operand operation Explanation

MOV Rd, Sc

M, Sc

Dt, M

Copy from the source

(Sc) to the destination

(Dt)

This instruction copies the contents of the

source register into the destination register

without any alteration.

Example − MOV H, L

MVI Rd, data

M, data

Move immediate 8-bit

data

The 8-bit data is stored in the destination

register or memory.

Example − MVI B, 55H

LDA 16-bit

address

Load the accumulator

from memory

The contents of a memory location,

specified by a 16-bit address in the

operand, are copied to the Accumulator.

Example − LDA 2034H

STA 16-bit

address

copy the accumulator

data to memory

The contents of the Accumulator are

copied into the memory location specified

by the operand.

This is a 3-Byte instruction, the second

Byte specifies the low-order address and

the third Byte specifies the high-order

address.

Example − STA AB00H

OUT 8-bit port

address

Output the data from the

Accumulator to a port

with 8 bit address

The contents of the Accumulator are

copied into the I/O port specified by the

operand.

Example − OUT 01H

IN 8-bit port

address

Input data to

Accumulator from a port

with 8-bit address

The contents of the input port designated in

the operand are read and loaded into the

Accumulator.

Example − IN 04H

 Arithmetic Instructions

ADD R

M

Add register or memory,

to the Accumulator

The contents of the register or memory are

added to the contents of the Accumulator

and the result is stored in the

Accumulator.

Example − ADD B.

ADC R

M

Add register to the

Accumulator with carry

The contents of the register or memory &

the Carry flag are added to the contents of

the Accumulator and the result is stored in

the Accumulator.

Example − ADC B

ADI 8-bit data Add the immediate to

the Accumulator

The 8-bit data is added to the contents of

the Accumulator and the result is stored in

the Accumulator.

Example − ADI 55H

MSCPH522

166

Opcode Operand operation Explanation

ACI 8-bit data Add the immediate to

the Accumulator with

carry

The 8-bit data and the Carry flag are

added to the contents of the Accumulator

and the result is stored in the

Accumulator.

Example −ACI 55H

SUB R

M

Subtract the register or

the memory from the

Accumulator

The contents of the register or the memory

are subtracted from the contents of the

Accumulator, and the result is stored in

the Accumulator.

Example − SUB B

SBB R

M

Subtract the source and

borrow from the

Accumulator

The contents of the register or the memory

&the Borrow flag are subtracted from the

contents of the Accumulator and the result

is placed in the Accumulator.

Example − SBB B

SUI 8-bit data Subtract the immediate

from the Accumulator

The 8-bit data is subtracted from the

contents of the Accumulator & the result

is stored in the Accumulator.

Example −SUI 55H

SBI 8-bit data Subtract the immediate

from the Accumulator

with borrow

The 8-bit data is subtracted to the contents

of the Accumulator and the result is stored

in the Accumulator.

Example −SBI 55H

INR R

M

Increment the register or

the memory by 1

The contents of the designated register or

the memory are incremented by 1 and

their result is stored at the same place.

Example − INR B

DCR R

M

Decrement the register

or the memory by 1

The contents of the designated register or

memory are decremented by 1 and their

result is stored at the same place.

Example − DCR B

 Logic Instructions

ANA R

M

Logical AND register or

memory with the

Accumulator

The contents of the Accumulator are

logically AND with the contents of the

register or memory, and the result is

placed in the Accumulator.

ANI 8-bit data Logical AND immediate

with the Accumulator

The contents of the Accumulator are

logically AND with the 8-bit data and the

result is placed in the Accumulator.

XRA R

M

Exclusive OR register or

memory with the

Accumulator

The contents of the Accumulator are

Exclusive OR with the contents of the

register or memory, and the result is

placed in the Accumulator.

MSCPH522

167

Opcode Operand operation Explanation

XRI 8-bit data Exclusive OR

immediate with the

Accumulator

The contents of the Accumulator are

Exclusive OR with the 8-bit data and the

result is placed in the Accumulator.

ORA R

M

Logical OR register or

memory with the

Accumulator

The contents of the Accumulator are

logically OR with the contents of the

register or memory, and result is placed in

the Accumulator.

ORI 8-bit data Logical OR immediate

with the Accumulator

The contents of the Accumulator are

logically OR with the 8-bit data and the

result is placed in the Accumulator.

CMA None Complement

Accumulator

The contents of the Accumulator are

complemented. No flags are affected.

CMC None Complement carry The Carry flag is complemented. No other

flags are affected.

STC None Set Carry Set Carry

 JUMP Instructions

JMP 16-bit

address

Jump unconditionally The program sequence is transferred to the

memory address given in the operand.

JC 16-bit

address

Jump on Carry flag, If

CY=1

The program sequence is transferred to the

memory address given in the operand

based on the Carry flag of the PSW. JNC 16-bit

address

Jump on no Carry, If

CY=0

JP 16-bit

address

Jump on Sign Flag, if

S=0

The program sequence is transferred to the

memory address given in the operand

based on the Sign flag of the PSW. JM 16-bit

address

Jump on No Sign Flag,

if S=1

JZ 16-bit

address

Jump on zero flag, if

Z=1

The program sequence is transferred to the

memory address given in the operand if

zero flag status is satisfied. JNZ 16-bit

address

Jump on no zero

flagZ=0

JPE 16-bit

address

Jump on parity even,

ifP=1

The program sequence is transferred to the

memory address given in the operand if

Parity flagcondition is satisfied. JPO 16-bit

address

Jump on parity odd, if

P=0

 Machine control instructions

NOP None No operation No operation is performed, i.e., the

instruction is fetched and decoded only.

HLT None Halt and enter wait state The CPU finishes executing the current

instruction and stops further execution.

An interrupt or reset is necessary to exit

from the halt state.

MSCPH522

168

6.8. EXAMPLES:

Example 1: It is desired to clear the accumulator contents of 8085 Microprocessor.Explain

the possible instructions for this purpose.

Solution:To clear the accumulator contents, the possible instructions are:

(i) MVI A, 00 H: Two byte instruction and no flag gets affected.

(ii) XRA A: One byte instruction, CY flag will be reset and all other flags will be modified as per

the result.

(iii) ANI 00 H Two byte instruction, CY flag will be reset and all other flags will be modified as

per the result.

(iv) SUB A One byte instruction and all flags will be affected as per the result.

Example 2: Write an assembly program to add two numbers

Program: Using Register

MVI D, 8BH ; Load 83H data in register D

MVI C, 6FH ; Load 6FH data in register C

MOV A, C ; Copy data from Register C into Accumulator

ADD D ; Add contents of D to contents A

OUT PORT1 ; Display result at port1

HLT ; End of Program

Program : without using Register

MVI A, 03H ; Load Data 03 to A

ADI 02H ; Add 02H data to A

STA 2200H ; Store the data at memory location 2200H

 HLT ; End of Program

MSCPH522

169

Example 3: Addition of Two Numbers Stored at Two Memory Locations (2100H & 2101H)

in the RAM

Program:

LDA 2100H Load the contents of memory location 2100H to the accumulator

MOV B,A Copy the contents of accumulator into register B

LDA 2101H Load the contents of memory location 2101H to the accumulator

ADD B Add the contents of register B to the contents of accumulator and

store the result in accumulator itself

STA 2200H Store the contents of accumulator to the memory location 2200H in

the RAM

HLT Halt (Stop executing)

Example 4: Write a program in mask off theleast significant 4 bits of a given hexadecimal

number in 8085. The answer should be stored in memory location 2200 H. Let the given

number is B3 H.

Solution.The binary equivalent of B3 H is 1011 0011. The masking of the 4 LSB 0011 means to

make 0011 to 0000. However, the four most significant bits should not be changed.This can be

done if the given number is ANDed with F0 H (1111 0000). In doing so when 4 most significant

bits are ANDed with 1111 no change will be there, but4 least significant bits will be 0000 as

required.

MVI A, B3 H Loads the number B3H to accumulator

ANI F0 H ANDs the accumulator with F0H and answer is loaded to

accumulator.

STA 2200 H Store the contents of accumulator to the memory location 2200H in

the RAM

MSCPH522

170

HLT Halt (Stop executing)

Example 5: Write a program to interchange (swap) the contents of two memory locations 2100

H and 2101 H.

Solution.

LDA 2100H Loads the content of Memory location 2100H intoaccumulator.

MOV B, A Moves the content of Accumulator toRegister B

LDA 2101 H Loads the content of Memory location 2101H intoaccumulator.

STA 2100 H Store the content of Accumulator toMemory location 2100 H.

MOV A, B Moves the content of Register B toAccumulator

STA 2101 H Store the content of Accumulator toMemory location

HLT

6.9. SUMMARY

The important concept in this chapter can be summarized as follows:

 The 8085-programming model includes six 8 bit registers, one accumulator, and one

flag register. In addition, it also includes two 16-bit registers: the stack pointer and

the program counter.

 8085 microprocessors operations are classified into five groups: data transfer,

arithmetic, logical, branch and machine control.

 An instruction is a command to the microprocessor to perform a given task on a

specified data. Each instruction has two parts: opcode and operand. Opcode and

operand specifies operation to be performed and data on which operation is

performed, respectively.

 The 8085 instruction set, according to word size can be classified as 1-byte , 2-byte ,

and 3-byte instructions

MSCPH522

171

 The way operand is accessed to execute an instruction is called, addressing mode.

8085 have five addressing mode: Immediate, Register, Direct, Register indirect, and

Implicit addressing.

 The instruction set of simple instructions is introduced in this chapter.

6.10. QUESTIONS

1. Identify the addressing mode (8085) for the following instructions:

a. MVI A, 23H

b. ADD B

c. IDA 2000 H

2. Specify the contents of the registers and the flag status as the following instructions are

executed.

MVI A, 00H

MVI B, F8H

MOV C, A

MOV D, B

HLT

3. Specify the output of the PORT 17 H if the following instructions are executed and specify the

contents of the register before and after execution.

MVI B, 02H

MOV A, B

MOV C, A

MVI D, 17H

OUT PORT

HLT

4. Write an instruction to load 00H in the accumulator, then decrement the accumulator and

display the answer on the output port 01H.

5. Write a instructions to perform each operation

a. clear the accumulator

b. Add 48H

c. Subtract 93H

d. Add 68 H

e. Display the result in register B

MSCPH522

172

6. write the mnemonic of aninstruction that will set bit 6 of the accumulator without changing any of

the otherbits in the register. (Ans.: ORI 40 H)

7. What will be contents of accumulator and flags (CY, S, P and Z), after theexecution of ADD D

instruction; if A = C3 H and D = 3D H

8. What will be contents of accumulator and flags (CY, S, P and Z), after theexecution of SUB D

instruction; if A = C3 H and D = 3D H.

9. What will be contents of memory location 2500 H and flags (CY, S, P and Z),after the execution

of the following program:

MVI C, C8 H

MVI A, 11 H

ADD C

STA 2500 H

HLT

10. Write a program to load anumber 79 H in register B and mask off all bits except A5 andA2 bits.

The result is to betransferred to register C.

********End of chapter******

MSCPH522

173

Unit 7: Assembly Language Programming

7.1. Introduction

7.2. Objectives

7.3. Assembly Language Programming

7.4. Flow Chart

7.5. Writing an Assembly Language Program

7.6. Programming Techniques

 7.6.1. Continuous Loop

 7.6.2. Conditional Loop

7.7. Additional Instructions Of 8085

7.8. Questions

MSCPH522

174

7.1 INTRODUCTION

Microprocessor programming is to write a set of instructions arranged in the specific sequence to

complete the specific task. It tells the microprocessor what it has to do. To do this, the programmer

must write the instructions in a language which processor understands. All processor understands

only machine language which is written in binary numbers.

Machine language and Hex code instructions are very difficult to understand for the programmer.

Hence for programmer, the instructions of microprocessor are made in the form of English

abbreviation (short form). These instructions are name as Assembly Language instructions or

mnemonics. The combinations of different mnemonics are known as Assembly Language Program

and it is a low level language. In this unit, we will discuss some assembly language program and

how to write assembly language program (ALP). Also, additional instructions from instruction set

will be introduced.

7.2 OBJECTIVES

After studying this unit, you should be able to-

1. Describe the assembly language programming and coding rules.

2. Description of flow chart and its importance

3. Steps to write an assembly language program

4. Explanation of programming techniques as looping, counting , and indexing

5. Additional instructions of 8085 instruction set

6. To write complex program in assembly language

7.3. ASSEMBLY LANGUAGE PROGRAMMING

Just as the English language has its rules of grammar, assembly language has certain coding rules.

The source line is the assembly language equivalent of a sentence. And a complete program is like

a story.

The programming of the problem in any microprocessor is written in assembly language. The assembly

language is written in mnemonics. The mnemonics are the initials or short form of the English word

of the operation to be performed by the instruction. Assembly language statements are written in

standard format as given below:

MSCPH522

175

0Label Mnemonic Operand Comment

Label A label is a symbol name or group of symbols whose value is the location where the

instruction is assembled. The label can be one to six alphanumeric characters, alphabetic or the

special characters "?' or '@'.Following are the acceptable labels. NEXT, BACK, DELAY,

LOOP20etc. Labels are always optional.

Mnemonic Short form of the operation to be performed or instruction code

Operand Operand is the data on which the operation is performed. It can bea data, memory address,

register or port address.

CommentIt is written to explain the program to the user. Although it is optional yet you should use

them liberally since it is easier to debug and maintain a well-documented program.The comment

statement is started with the semicolon

Machine language program are written in hexa-decimal numbers only, or in other words instructions,

data, memory locations are represented by Hexa decimal / binary numbers which is very difficult to

understand by user. The comments are not the part ofthe machine language program.

Machine language is difficult to understand by user but necessary for processor. Conversion of hex

code to mnemonics makes it simple to user. This is shown through following example 7.1.

Example 7.1:Write assembly language and Machine language program using the instructions of 8085

microprocessor of the following statement.

Load the contents of memory locations 2100 H and 2101 H in B-register and C register,

respectively. The content of memory locations 2100 H and 2101H are 16 H and 19 H

respectively.

Assembly Language Program Machine language program

Label Mnemonic Operand Comment Memory

Address

Content

 LDA 2100H Loads the content of Memory

location 2100 H into

accumulator

2000 H

2001 H

2002 H

3A H

00 H

21 H

 MOV B, A Copy the content of accumulator

to B-register

2003 H 47 H

 LDA 2101H Loads the content of Memory

location 2101 H into

accumulator.

2004 H

2005 H

2006 H

3A H

01 H

21 H

MSCPH522

176

 MOV C, A Copy the content of accumulator

to C-register

2007 H 4F H

 HLT 2008 H 76 H

 2100 H 16 H

 2101 H 19 H

From the above example, the difference between Assembly language and Machine language it is

clear that chances of error is higher as it contains only hexa decimal numbers. Therefore, ALP is

preferred for writing programs.

7.4. FLOW CHART

A flowchart is simply a graphical representation of flow of data to complete the solution of a

problem. It shows steps in sequential order and is widely used in presenting the flow of

algorithms or processes. Typically, a flowchart shows the steps as boxes of various kinds, and

their order by connecting them with arrows. The commonly used symbols used in flow chart

are given below:

Oval : It indicates start or stop operation.

Arrow : It indicates flow with direction.

Parallelogram: It indicates input/output

operation.

Rectangle: It indicates process operation.

Diamond: It indicates decision making operation.

Circle with alphabet: It indicates continuation.

A: Any alphabet

Double sided Rectangle: It indicates execution of

pre-defined process (subroutine).

A

MSCPH522

177

7.5. WRITING AN ASSEMBLY LANGUAGE PROGRAM

Like any other coding language, an assembly language also follows almost same steps to write

a program. An Assembly Language Program iswritten by using the following steps:

1. Analyze the problem: This means in the programming is to find out which task is to

be performed and what will be expected outcome. This is also called as specifying the

problem.

2. Develop program Logic: in this step, programmer develop logic to perform the

specified task.

3. Write an Algorithm:Algorithm defines step-by-step rules/instructions for logic to

complete the specified task in order to get the expected results.

4. Make a Flowchart:It is basically the graphical representation of various actions

which are to be performed to complete the specified task in order to get the expected

results.

5. Coding:it is implementation of various actions by writing step by step instruction

available with the microprocessor.

6. Debugging:Once the program or a part of program is coded, the next step is debugging

the code. Debugging is the process of testing the code to see if it does the given task.

If program is not working properly, debugging process helps in finding and correcting

errors.

Example 7.2 :Here, an example have been taken to explain the above steps in assembly language

programming.

 Write a program in 8085 Assembly language to add two 8- bit numbersand save carry to

register, if generated.

1. Analyze the

problem

Result of addition of two 8-bit numbers can be 9-bit

 1001 1000 (98H)

 + 1001 1001 (99H)

Sum 1 0011 0001 (131H)

The 9th bit in the result is called CARRY bit.

Here the task is addition and outcome is 8 or 9 bit binary

number.

https://www.eeeonline.org/

MSCPH522

178

2. Program Logic

How 8085 does it?

 1001 1000 8 bit data is stored in Register E

 1001 1001 8 bit data is stored in Register D

Cy=1 0011 0001 Sum is stored in A and Sets CY flag

 3 1 H

Two registers are required to store SUM, if Carry is

generated.

3. Algorithm
1. Load two numbers in registers D, E

2. Add them

3. Store 8 bit result in C

4. Check CARRY flag

5. If CARRY flag is SET , Store CARRY in register B

If not, then move to stop

6. Stop

4. Flow Chart

Fig.7.1.: Flow chart of Addition of two number with carry

5. Assembly

Language Program

1. Load registers D, E

MVI D, 02H

MVI E, 03H

2. Copy register D to A MOV A, D

3. Add register E to A ADD E

4. Copy A to register C MOC C,A

5. Check: if Carry generated: No JNC : LAST

6. Yes: Clear Register B and

Increment by 1

MVI B, 00H

INR B

7. Stop processing LAST: HLT

6. Debugging If the program does not give the expected result, then its output is

checked by step by step to find bug. Generally, it is performed for

MSCPH522

179

very large program. Mostly the Error in program appears when hex

codes of machine languages are entered into hardware.

7.6 PROGRAMMING TECHNIQUES

In earlier programming examples, programming was simple and non- repetitive type. However, in

copying thousands of data bytes from one memory location to another location or addition of data

stored in 50 memory locations require repeating of instructions.

To remove this repetition in a program, a programming technique called looping is incorporated

in 8085. Looping is used to instruct the microprocessor to repeat tasks. This task is accomplished

by using jump instructions.

Loops can be classified as:

1. Continuous loop

2. Unconditional loop

7.6.1 Continuous Loop

A continuous loop repeats a task continuously. This is set up by using the unconditional jump

instruction. A program with a continuous loop does not stop repeating the tasks until the system is

reset. Typical examples are electronics watches, temperature recording of a cityetc

Fig.7.2 Flow chart of Continuous Loop

7.6.2 Conditional Loop

A conditional loop repeats the task until specific condition is met. This is set up by using a

conditional jump instruction. The specific condition is set by flags(Z,CY,P,and S) in 8085. These

loops include counting and indexing.

Go back and

Repeat

Perform Task

Start

MSCPH522

180

Fig.7.3 flow chart of Conditional Loop

Conditional Loop and Counter:

Sometimes, aconditional loop can not be established using arithmetic or logical operation. For

example, addition of ten numbers. In executing this program, it is very difficult to find condition

whether addition is completed or not? To perform such task, counter and flags are used to form

conditional loop which is called counting.

Counting is performed as follows:

a. Counter is set up by loading an appropriate count in a register.

b. Counting is performed by either increment or decrement the counter.

c. Loop is set up by a conditional jump instruction.

d. End of counting is indicated by a flag.

Conditional Loop, Counter and Indexing:

MSCPH522

181

This is another type of loop which includes counter and indexing.Indexing is pointing of

referencing objects with sequential numbers.Data bytes are stored in memory locations and those

data bytes are referred to by their memory locations.

7.7 ADDITIONAL INSTRUCTIONS OF 8085

All five types of simple instructions for Data transfer operations, Arithmetic operations, Logical

operations, Branching operations, and Machine-control operations are introduced in previous unit.

Some instructions are developed in 8085 microprocessor to solve more complex problems. These

additional instructions for 16 bit operations are included in this section.

a. Data transfer instructions

Instructions Description

LDA 16-bit address Load the Accumulator Direct with contents of memory location

specified by a 16-bit address

Example − LDA 2050H

The contents of a memory location2050, are copied to the Accumulator.

LDAX Register pair

(B/D)

Load the Accumulator indirect with the memory location specified by

Register pair B/D

Example − LDAX B

The contents of memory location pointed by the register pair B, are copied

to the Accumulator

LXI Reg. pair,

 16-bit data

Load the register pair immediate with 16 bit data

Example − LXI B, 3225H

The instruction loads data 3225H in the designated register pair B. Here,

32 and 25 load in Reg. B and C, respectively

STA 16-bit address Store the Accumulator Direct to the memory location specified by a 16-

bit address

Example − STA 2050H

The contents of Accumulator are copied to the memory location 2050.

STAX Register pair

(B/D)

Store Accumulator indirect with the memory location specified by

Register pair B/D

Example − STAX D

The contents of accumulator are copied to the memory location pointed

by the register pair B.

MSCPH522

182

LHLD 16-bit

address

Load H and L registers direct

The instruction copies the contents of the memory location pointed out by

the address into register L and copies the contents of the next memory

location into register H.

Example − LHLD 2000H

Contents of memory location 2000H and 2001H are copied to register L

and H, respectively.

SHLD 16-bit

address

Store H and L registers direct

The contents of register L are stored into the memory location specified

by the 16-bit address and the contents of H register are stored into the next

memory location. The contents of registers HL are not altered.

Example − SHLD 2000H

Contents of Register L and H are copied to memory location 2000H and

2001H, respectively.

XCHG

Exchange H and L with D and E

The contents of register H are exchanged with the contents of register D,

and the contents of register L are exchanged with the contents of register

E.

SPHL

Copy H and L registers to the stack pointer

The instruction loads the contents of the H and L registers into the stack

pointer register, the contents of the H register provide the high-order

address and the contents of the L register provide the low-order address.

The contents of the H and L registers are not altered.

XTHL Exchange H and L with top of stack

The contents of the L register are exchanged with the stack location

pointed out by the contents of the stack pointer register.

The contents of the H register are exchanged with the next stack location

(SP+1).

b. Arithmetic instructions

Instructions Description

DADRegister pair Add the register pair to H and L registers

The 16-bit contents of the specified register pair are added to the contents

of the HL register and the sum is stored in the HL register. The contents

of the source register pair are not altered. If the result is larger than 16

bits, the CY flag is set. No other flags are affected.

Example: DAD B

INX Register pair

Increment register pair by 1

The contents of the designated register pair are incremented by 1 and

their result is stored at the same place.

Example − INX B

DCX Register pair

Decrement the register pair by 1

The contents of the designated register pair are decremented by 1 and

their result is stored at the same place.

Example − DCX D

MSCPH522

183

DAA

Decimal adjust Accumulator

The contents of the Accumulator are changed from a binary value to two

4-bit BCD digits.

 If the value of the low-order 4-bits in the Accumulator is greater

than 9 or if AC flag is set, the instruction adds 6 to the low-order

four bits.

 If the value of the high-order 4-bits in the Accumulator is greater

than 9 or if the Carry flag is set, the instruction adds 6 to the high-

order four bits.

Example 7.3:What will be the value of accumulator, CY and AC flags after the execution of the

following program?

MVI A, 38 H

ADI 87 H

DAA

HLT

Solution.

MVI A, 38 H; copy 38H to A A = 38 H 0 0 1 1 1 0 0 0

ADI 87 H; directly add 87H 87 H 1 0 0 0 0 1 1 1

DAA

 1 0 1 1 1 1 1 1; Lower nibble is more than 9 so, AC = 1

 0 0 0 0 0 1 1 0; add 6 to lower bit

 1 1 0 0 0 1 0 1; Upper nibble is more than 9, so, CY=1

 0 1 1 0 0 0 0 0; add 6 to lower bit

 CY= 1 0 0 1 0 0 1 0 1; so answer is 125(IN DECIMAL) with Carry

and Auxiliary Carry flag SET

c. Logical instructions

CMP R/M Compare the register or memory with the Accumulator

The contents of the operand (register or memory) are compared with

the contents of the accumulator. Both contents are preserved. The result

of the comparison is shown by setting the flags of the PSW as follows:

if (A) < (R/M): carry flag is set

if (A) = (R/M): zero flag is set

if (A) > (R/M): carry and zero flags are reset

Example: CMP B or CMP M

MSCPH522

184

CPI8-bit data

Compare immediate with the Accumulator

The second byte (8-bit data) is compared with the contents of the

accumulator. The values being compared remain unchanged. The result

of the comparison is shown by setting the flags of the PSW as follows:

if (A) < data: carry flag is set

if (A) = data: zero flag is set

if (A) > data: carry and zero flags are reset

Example: CPI 75H

RLC Rotate Accumulator left

Each binary bit of the Accumulator is rotated left by one position. Bit

D7 is placed in the position of D0 as well as in the Carry flag. CY is

modified according to bit D7.

Example 7.4: Illustrate the execution of instructions RLC, assume that Accumulator have data

AA H and carry flag is reset.

Before the instruction CY

 0

D7 D6 D5 D4 D3 D2 D1 D0

1 0 1 0 1 0 1 0

RLC executed CY

 1

D7 D6 D5 D4 D3 D2 D1 D0

0 1 0 1 0 1 0 1

Fig. 7.4, Illustration of the execution of instruction RLC

After the execution of RLC, the data in Accumulator is 55H and Carry flag is SET.

RAL

Rotate the Accumulator left through carry

Each binary bit of the Accumulator is rotated left by one position

through the Carry flag. Bit D7 is placed in the Carry flag, and the Carry

flag is placed in the least significant position D0. CY is modified

according to bit D7.

MSCPH522

185

Example 7.5: Illustrate the execution of instructions RLC, assume that Accumulator have data

AA H and carry flag is reset.

Before the instruction CY

 0

D7 D6 D5 D4 D3 D2 D1 D0

1 0 1 0 1 0 1 0

RAL executed CY

 1

D7 D6 D5 D4 D3 D2 D1 D0

0 1 0 1 0 1 0 0

Fig.7.5: Illustration of the execution of instruction RAL

After the execution of RAL, the data in Accumulator is 54H and Carry flag is SET.

RAR

Rotate the Accumulator right through carry

Each binary bit of the Accumulator is rotated right by one position

through the Carry flag. Bit D0 is placed in the Carry flag, and the Carry

flag is placed in the most significant position D7. CY is modified

according to bit D0.

RRC

Rotate the Accumulator right

Each binary bit of the Accumulator is rotated right by one position. Bit

D0 is placed in the position of D7 as well as in the Carry flag. CY is

modified according to bit D0.

Example 7.6:Write a program in assembly language for8085 Microprocessor to find the sum of a

series 1+2+3+……+10. (or sum of first 10 natural numbers).

Solution.

Label Instructions Comments

MVI B, 01H ;Loadthe first number of series toregister B.

MVI C, 00 H ;Clears register C.

MSCPH522

186

LOOP MOV A, C ; Saves the contents of Cregisterto accumulator.

ADD B ; Add the contents of Bregister with the contents of accumulator.

MOV C, A ; Save the partial sum to Cregister.

INR B ; increment the contents ofB-register.

CPI 0B H ; Compare with naturalnumber 11.

JNZ LOOP ; ifless than 11 go back to LOOP.

MOV A, C ; Copy the answer toaccumulator.

STA 2500 H ; Store the answer tomemory location.

 HLT

Example 7.7:Write a program for the multiplication of two numbers stored at memory locations

2100H and 2101H. Store the result at 2200H. Assume that the result does not overflow.

Solution :

 LDA 2100H ; Load the contents of memory location 2100H (multiplicand) to A

 MOV B, A ; Copy the contents of accumulator into register B

 LDA 2101H ; Load the contents of memory location 2101H (multiplier) to A

 MOV C, A ; Copy the contents of accumulator into register C

 XRA A ; Clear the accumulator

NEXT: ADD B ; Add the contents of register B to the contents of A

 DCR C ; Decrease the contents of register C by one

 JNZ NEXT ; If zero flag is not set, then jump to the label NEXT

 STA 2200H ; Store the contents of A to the memory location 2200H in RAM

 HLT ; Halt (Stop executing)

MSCPH522

187

Example 7.8:Write a program to sort given 10 numbers from memory location 2200H in the

ascending order.

Solution:

 MVI B, 09 ;Load Register B to initialize counter 1

START LXI H, 2200H ; Initialize memory pointer by HL pair

MVI C, 09H ;Load Register C to initialize counter 2

BACK: MOV A, M ; Copy the contents of memory location pointed by HL to A

INX H ; Increment HL pair by 1

CMP M ; Compare number with next number

JC SKIP ; If less, don't interchange

JZ SKIP ; if equal, don't interchange

MOV D, M ;Copy the contents of memory location pointed by HL to D

MOV M, A ; Copy the contents of A to memory location pointed by HL

DCX H ; Decrement HL pair by 1

MOV M, D ;Copy the contents of Reg D to memory location pointed by HL

INX H ;Increment HL pair by 1

SKIP: DCR C ; Decrement counter 2

JNZ BACK ; If not zero, repeat

DCR B ; Decrement counter 1

JNZ START ; Jump if not zero to start

 HLT ; Terminate program execution

7.8. QUESTIONS

MSCPH522

188

1. Write a program that adds the three numbers in locations 2500 H, 2501 H and 2502 H, and puts

the sum in 2503 H.

2. Write a program to count the number of 1’s in a given 8-bit data.

3. Write a program that interchanges the values in locations 2500H and 2501 H.

4. Write an assembly language program of 8085 to fill the RAM area from 2500 H to 25FF H with

a byte 33 H.

5. Write a program that computes the sum 1 + 2 + 3 +... + n, where n is the value in Register

H. The sum should be placed in 2500 H onwards.

6. Write a program to add a series of 10 numbers. These numbers are stored in consecutive memory

locations. The result should be stored in the memory locations following the input data. What

should be the size of the result location? What if you were to add a series of 1000 numbers? How

much result storage space would be sufficient? Write a report.

7. What will be contents of accumulator and flag register, after the execution of following program:

MVI A, 47 H

MVI B, 37 H

ADD B

DAA

HLT

8. Sixteen bytes of data are stored in memory locations 2001 H to 2010 H. Write an assembly

language program of 8085 to transfer this block of data to 2006 H to 2015 H.

(Hint: In this case data will be transferred in the reverse order otherwise some of the data will

coincide.)

9. Write an ALP for 8085 to find the smallest of the three numbers stored in memorylocations

starting at 2301 H. Store he smallest number in 2304 H.

10. Write an ALP for 8085 to find the smallest number among a series of 16 numbersstored in the

memory locations starting at 2301 H. The number 16 (10 H) is storedin 2300 H. The smallest

number should be should be stored in 2401 H.

11. Write an ALP to find 13 terms of Fibonacci series. The terms of the series are to bestored in

the memory locations starting at 2501 H.

12. Write an ALP for 8085 to shift an 8-bit number left by two bits. The number isstored in memory

location 2501 H and the result is to be stored in 2502 H memorylocation.(Hint: Keep the

number in accumulator and use ADD A instruction twice.)

13. Write an ALP for 8085 to shift a 16-bit number left by two bits. The number isstored in

memory locations 2501 H and 2502 H. The result is to be stored in 2503 H and 2504 H memory

locations.

MSCPH522

189

Unit 8- Counters time delay, Stack and code conversion

8.1 Introduction

8.2 Objectives

8.3. Counters And Time Delay

 8.3.1 Time Delay Using One Register

 8.3.2. Time Delay Using A Register Pair

 8.3.3 Time Delay Using A Loop Within A Loop Technique

 8.3.4 Additional Techniques For Time Delay

 8.3.5 Hexadecimal Counter

8.4. Stack

8.5. Subroutine

8.6. Binary To Ascii Code Conversion

8.7. Bcd To Binary Code Conversion

8.8. Bcd To Binary Code Conversion

MSCPH522

190

8.1 INTRODUCTION

Counters are needed to perform an event at a specific time.They are commonly used in applications

such as traffic light signals, digital clocks, timing alerts, serial data transfer and other event driven

functions. These counters and time delays are designed using microprocessor programming.

Basically looping and counting techniques are used to design counters and time delays. A counter

is designed by loading a count in a register. This count is decided by delay required and clock

frequency. Then, a loop is set up either to decrement or increment the count for a down/up-counter.

The stack and the subroutine offer a great deal of flexibility in writing programs. A stack is a

particular group of memory locations in the Read and Write memory that is used for temporary

storage of data during the execution of a program. The starting memory location of the stack is

defined in the main program, and this space is reserved at an isolated part of memory. A subroutine

is a group of instructions that performs a part of main program which can be used repeatedly (e.g.,

time delay or arithmetic operation). The subroutine is written as a separate unit, apart from the

main program, and the microprocessor transfers the program execution from the main program to

the subroutine whenever it is called to perform the task. After the completion of the subroutine

task, the microprocessor returns to the main program. The subroutine technique eliminates the

need to write a subtask repeatedly; thus, it uses memory more efficiently

8.2 OBJECTIVES:

After studying this unit, you should be able to-

1. Describe the counters and timing delays

2. Write programs for implementing counter and timing delay using loop and counting

techniques

3. Calculate the time delay in a given loop

4. Write program to turn on/off specific bits for different functions at a given interval.

5. Define the stack, the stack pointer (register), and the program counter, and their uses

MSCPH522

191

6. Illustrate the concepts of subroutines in Assembly Language Program

7. Concept of various code conversions used in microprocessor programming

8.3. COUNTERS AND TIME DELAY

Counters are used primarily to keep track of events in any module which are used to start/ stop

or execute actions and time delays are important in setting up reasonably accurate timing between

two events. The process of designing counters and time delays using microprocessor instructions

is much more flexible and require less time in implementation than its hardware implementation.

In microprocessor, counters are designed by loading an appropriate number into a register or

register pair, depending on the time delay required. Then, this register or pair is decremented or

incremented by one, until it reaches to final value by setting up a loop with a conditional jump

instruction using flag status. The flow chart of a counter is shown in fig.8.1.

Fig. 8.1: Flowchart of Time Delay

Time Delay is the certain delay interval which is created by executing instructions (Software

programs) to keep a track between events. Time delay can be designed through executing group

of instructions number of times. Flow chart as an example of time delay is shown in Fig. (8.2)

MSCPH522

192

Fig. 8.2:Flowchart of Time Delay

Calculating Time Delay.

Each instruction passes through different combinations of Opcode Fetch, Memory Read, and

Memory Write cycles. Knowing the combinations of cycles, we can calculate the time required to

complete an instruction. The formula for calculating the time delay is given by:-

Time Delay = No. of T-states * Clock Period

For example, “MVI A, 23H” instruction uses 7 T-States and if Microprocessor is operating at 2

MHz frequency. So, time delay to execute this instruction will be:

Time delay = 7* 0.5 µs= 3.5 µs.

Time delay has two components 1. Time delay created due to instructions execution not in the loop

(TNL) and 2. Time delay created due to execution of instructions in the loop (TL).

So, total time delay = TNL+ TL

Instructions are added outside the loop to make minor variation in time delay. For Large delay

requirement instructions are added in loop.

Time delay in microprocessor can be implemented using following techniques:

d. Time Delay Using One Register

e. Time Delay Using a Register Pair

MSCPH522

193

f. Time Delay Using a Loop within a Loop Technique

g. Additional techniques

8.3.1 Time Delay Using One Register

 In this type of counter, the time delay is created by storing data in a single register.

Example: for a clock frequency of 4MHz of 8085 microprocessor, calculate the time delay of the

following program?

 MVI B, FF H

 Loop: DCR B

 JNZ Loop

Solution:

Clock frequency of the system f = 4 MHz

Clock period T = 1/f = 1/4 x 10-6 = 0.25 µs

Instructions No of T-States

required

No of times

executed

Part of

loop

Execution time

MVI B, FF H 7 01 No 7*1*0.25 = 1.75 µs

DCR B 4 FF H (255 in Decimal) Yes 4*255*0.25 = 255.00 µs

JNZ 10/7 FF H (255 in Decimal) Yes (10*254+7*1)*0.25= 636.75µs

Total execution time = 1.75+255.00+636.75 = 893.50µs

In above example, Instructions MVI B, FFH is not a part of Loop and hence executed

once.Instructions DCR B and JNZ are part of loop. So, these are executed 255 times. Also,

Instructions JNZ have 10/7 execution states which means that if condition is False, then it is

executed in 10 T and if condition is true then executed in 7 T states. So, JNZ instructions took 10

T States 254 times and 7 T states in last time execution.

8.3.2. Time Delay Using a Register Pair

The data in single register is restricted to 8-bit only and time delay is limited to small value. The

time delay can be considerably increased by setting a loop and using a register pair which can store

a 16-bit number (maximum FFFFH). But, the register pair instructions does not set zero flag and

MSCPH522

194

without setting the flags, Jump instructions cannot take check the required conditions. Therefore,

additional instructions are used to set Zero flag.

Example: for a clock frequency of 2MHz of 8085 microprocessor, calculate the time delay of the

following program?

 LXI D, 4567H

 Loop: DCXD

 MOV A, E

 ADD D

 JNZ Loop

Solution:

Clock frequency of the system f = 2 MHz

Clock period T = 1/f = 1/2 x 10-6 = 0.5µs

Instructions T-States

required

No of times

executed

Part of

loop

Execution time

LXI D, 4567H 10 01 No 10*1*0.5 5.0

DCXD 6 17767 Yes 6*17767*0.5

MOV A, E 4 17767

ADD D 4 17767

JNZ 10/7 17767 Yes (10*254+7*1)*0.25=

636.75µs

Total execution time = 1.75+255.00+636.75 = 893.50µs

In this example, Instructions LXI D, 4567H is not a part of Loop and hence executed once.

Instructions DCXD, MOV A,E , and ADD D are part of loop. So, these are executed 17767 times.

Instructions JNZ is also in loop but it is executed 17766 times with 10 T states and one time with

7 T states.

8.3.3 Time Delay Using a Loop within a Loop Technique

A larger time delay can also be can also be achieved by using two loops; one loop inside the other

loop, as shown in Figure 8.3(a). Inthis method, first register is usedin the inner loop (LOOP1) and

MSCPH522

195

Second register is used for the outer loop (LOOP2). The delay count will be the multiplication of

data in these two registers. The following example illustrates the delay in this method.

Example: for a clock frequency of 2MHz of 8085 microprocessor, calculate the time delay of the

following program?

DELAY CALCULATIONS

MVI B,38H

LOOP2: MVI C,FFH

LOOP1: DCR C

JNZ LOOP1

DCRB

JNZ LOOP2

Instructions T-States

required

Part of loop No of times

executed

Total T States used

MVI B, 38H 7 No 01 7.0

MVI C, 38H 7 Yes Loop2 38 H= (56)10 56*7= 392

DCR C 4 Yes,Loop2

and Loop1

38H * FFH=

56*255=

 57120

JNZ 10/7 Yes Loop2

and Loop1

38H * FFH 14120

142744

DCR C 4 Yes,Loop2 38H 56*4= 224

JNZ 10/7 Yes,Loop2 38H 56= 55*10+7=557

The total delay should include the execution time of the first instruction (MVI B,7T);

however, the delay outside these loops is insignificant. The time delay can be increased

considerably by using register pairs in the above example.

Similarly,

The desired time delay can be obtained

by using any or all available registers.

MSCPH522

196

8.3.4 Additional Techniques for Time Delay

 Addition of NOP Instruction in the loop: the time delay within a loop can be increased by

using NOP (No Operation) instruction that will not affect the program. NOP is executed in

fourT-states and will add four T-States in the delay loopto increase the delay.

 Using register pair in both loops: for getting large delay 16 bit data in both loops using

register pairs can be obtained.

Generation of counters or time delay using software programming have the following

disadvantage:

a. Underutilization of microprocessor as it is used to generate clock or time delay instead of

performing computation.

b. Exact calculation of time delay is tedious and difficult to achieve.

c. Poor accuracy in real time applications

8.3.5 HEXADECIMAL COUNTER

Hexadecimal counters in 8085 counts in binary and displaysthe result in hexadecimal form to

external display through Input-Output ports. It has two different parts (i) main counting part and

(ii) the delay part. A delay subroutine is used to generate delay between each number while

counting. The functioning of the hexadecimal counter is explained with the help of the following

program.

Example 7.1:Write a program to count continuously in hexadecimal from FFH to 00H in a system

with a 0.5µsclock period. Set up a one millisecond (ms) delay between each count and display the

numbers at one of the output portswith port address 40H.

The example has two parts; the first is to set up down counter to display count from FFH to 00H,

and the second is to design a one millisecond delay between two counts.

The first part is implemented using the hexadecimal counter in outer loop. One register, Say B is

set up by loading 00H as starting number which will not be part of loop. whicha register with an

appropriate starting number and decrementing it until it becomes zero (shown by the outer loop in

the flowchart, Figure 8.2). After zero count, the register goes back to FF because decrementing

zero results in a (-1), which is FF in 2's complement.

The one millisecond (ms) delay between each count is set up by using the procedure explained

previously in Section 8.1.1- Time Delay Using One Register. Figure 8.2 is identical with the inner

loop of the flowchart shown in Figure 8.6. The delay calculations are shown later.

MVI B,00H

NEXT: DCR B

MSCPH522

197

MVI C,COUNT

DELAY:DCR C

JNZ DELAY

MOV A,B

OUT PORT#

JMP NEXT

 Fig. 8.3

8.4. STACK

The stack in 8085 mocroprocessoris a reserved area of memory to store temporary data during the

execution of a program. The highest address of the stack is stored in 16 bit register called as the

MSCPH522

198

stack pointer (SP). Instructions LXI,SP 16 bit address is used to load 16-bit memory address in the

stack pointer register. Thedifference between the stack and the stack pointer is that the stack is an

area of memory; the stack pointer is the address of the last value pushed onto the stack. Usually,

the stack is used for storing data when subroutines are called. The stack is a last-in-first-out, i.e.,

LIFO structure so the last thing stored in the stack is the first thing retrieved.

In 8085, following three instructions are used

1. LXI SP 16 bit memory address: Load Stack Pointer

2. PUSH Register pair; Store Register Pair on Stack

3. POP Ragister Pair; Retrieve Register Pair from Stack

1. LXI SP 16 bit memory address

This instruction loads a 16-bit memory address in the stack pointer register of the

microprocessor.This is a 3-byte data transfer instruction. Therefore, does not affect the flags.

For example,LXI SP,2099H, loads the stack pointer register with the memory address 2099H,

and thestoring of data bytes begins at 2098H and continues in reversed numerical order (decreasing

memory addresses such as 2098H, 2097H, etc.). Therefore, as a general practice, the stack is

initialized at the highest available memory location to prevent the overlapping of program and

temporary data storage which can destroy the program.

2. PUSH Register pair (B/D/H/PSW)

 It copies the contents of the specified register pair on the stack

 This is a 1-byte instruction

 The operands B, D, and H represent register pairs BC,DE, and HL, respectively

 The operand PSW represents Program Status Word,meaning the contents of the

accumulator and the flags.

Instruction Execution

PUSH B :a. Decrement the contents of Stack pointer (SP) by 1

b. Copy the contents of register B to the memory location pointed to by SP

c. Again, decrement the contents of SP by 1

d. Copy the contents of register C to the memory location pointed to by SP

In Fig.xx execution of instruction PUSH B is illustrated. Initially, Stack pointer is pointing to memory

address FFFF H. In execution of PUSH B, SP is decremented by 1 and becomes FFFE H. The

contents of register B, 12H is copied to memory location FFFEH. Then, SP is decremented by one

and becomes FFFD H. Now,The contents of register C, F3H is copied to memory location FFFDH.

MSCPH522

199

Fig.8.4. Illustates the operation of Instruction PUSH B

3. POP Register pair (B/D/H/PSW)

 It retrieve data to Register Pair from Stack

 This is a 1-byte instruction

 The operands B, D, and H represent register pairs BC,DE, and HL, respectively

 The operand PSW represents Program Status Word,meaning the contents of the

accumulator and the flags.

Instruction Execution

POP D : a. Copy the contents ofthe memory location pointed to by SP to register E

b. Increment the contents of Stack pointer (SP) by 1

c.Copy the contents ofthe memory location pointed to by SP to register D

d. Increment the contents of Stack pointer (SP) by 1.

In Fig.xx execution of instruction POP D is illustrated. Initially, Stack pointer is pointing to memory

address FFFD H. In execution of POP D, The contents of memory location FFFD H which is F3H is

copied to register E. The contents of Stack pointer (SP) is incremented by 1 and becomes FFFE H.

Now, The contents of memory location FFFE H which is 12H is copied to register D. Then, The

contents of Stack pointer (SP) is incremented by 1 and becomes FFFFH

MSCPH522

200

Fig.8.5. Illustates the operation of Instruction POPD

Example:Write a program to complete the following operation:

a. Initialize the stack pointer register at FFA0H.

b.Load register pairs B, D, and H with data 0237H, 1242H, and 4087H, respectively.

d. Push the contents of the register pairs B, D, and H on the stack.

e. POP the contents of Register pairs B, D, and H from the stack.

Solution:

Program SP Memory

location

 B C D E H L

LXI SP, FFA0H FFA0 - - - - - - -

LXI B, 0237H FFA0 - 02H 37H - - - -

LXI D, 1242H FFA0 - 02H 37H 12H 42H - -

LXI H, 4087H FFA0 - 02H 37H 12H 42H 40H 87H

PUSH B FF9E FF9F:02H

FF9E:37H

02H 37H 12H 42H 40H 87H

PUSH D FF9C FF9D: 12H 02H 37H 12H 42H 40H 87H

MSCPH522

201

FF9C: 42H

PUSH H FF9A FF9A: 40H

FF9B: 87H

02H 37H 12H 42H 40H 87H

POP B FF9C 40H 87H 12H 42H 40H 87H

POP D FF9E 40H 87H 12H 42H 40H 87H

POP H FFA0 40H 87H 12H 42H 02H 37H

Explaination:

LXI SP, FFA0H Initiliase the SP to FFA0

LXI B, 0237H Load the Rp (B&C) with B=02H and C= 37H

LXI D, 1242H Load the Rp (D&E) with B=12H and C= 42H

LXI H, 4087H Load the Rp (H&L) with B=40H and C= 87H

PUSH B Copy the contents of B to M(FF9F):02H and C to M(FF9E):37H

PUSH D Copy the contents of D to M(FF9D):12H and E to M(FF9C):42H

PUSH H Copy the contents of H to M(FF9B):40H and Lto M(FF9A):87H

POP B Copy the contents of M(FF9A) to C: 87H and M(FF9B) to B:40H

POP D Copy the contents of M(FF9C) to E: 42H and M(FF9D) to B:12H

POP H Copy the contents of M(FF9E) to L: 37H and M(FF9F) to H:02H

8.5. SUBROUTINE

A subroutine is a program written to perform a specific function that is repeatedly used during

the execution of main program. This program can be written to implement delays, data transfer,

data sorting and other applications. Subroutines programs are written once, avoid repetition of the

same instructions, separately from the main program, and are called by the main program when

needed. Hence, save the memory space.

In 8085, following two instructions are used to implement subroutines:

1. CALL : call a subroutine

2. RET (return to main program from a subroutine)

CALL 16 bit memory address

 It calls subroutines unconditionally that transfers the program sequence to a subroutine

address

 This is a 3-byte instruction

 Saves the contents of the Program Counter (the addressof the next instruction which

will be executed after return to main program) on the stack

 Decrements the stack pointer register by two to store 16 bit address in program Counter

 This instruction is accompanied by a return instruction in the subroutine

MSCPH522

202

RET

 It return from Subroutine Unconditionally to the next address of the main program

 This is a 1-byte instruction

 Inserts the two bytes from the top of the stack into the program counter and increments

the stack pointer register by two

These call and return functions are classified into two categories:

a. unconditional Call

b. conditional Call

c. unconditional Return

d. conditional return

(a) Unconditional Call instruction is executed without checking the status of flags in the

main program. CALL 16 bit memory address is the format for unconditional call

instruction. After execution of this instruction, value of Program counter is updated with

subroutine address and executes the subroutine. The value of the PC (Program Counter) is

transferred to the memory stack and the value of SP (Stack Pointer) is decremented by two.

(b) Conditional Call instructions transfer theprogram control to the subroutine and the value

of PC is pushed into stack only if the condition is satisfied.

(c) Unconditional Return instruction:RET is the instruction used to mark the end of the sub-

routine. It has no parameter. After execution of this instruction program control is transferred back

to the main program from where it had stopped. The value of the PC (Program Counter) is retrieved

from the memory stack and the value of SP (Stack Pointer) is incremented by 2.

(d) Conditional Return instruction:By these instructions program control is transferred back to

the main program and the value of PC is popped from the stack only, if the condition is satisfied.

Different types of subroutine instructions are:-

INSTRUCTION COMMENT

CC16-bit address Call at address, if CY (carry flag) = 1

CNC16-bit address Call at address, if CY (carry flag) = 0

CZ16-bit address Call at address, if ZF (zero flag) = 1

CNZ16-bit address Call at address, if ZF (zero flag) = 0

MSCPH522

203

INSTRUCTION COMMENT

CPE16-bit address Call at address, if PF (parity flag) = 1

CPO16-bit address Call at address, if PF (parity flag) = 0

CN16-bit address Call at address, if SF (signed flag) = 1

CP16-bit address Call at address, if SF (signed flag) = 0

RC Return from subroutine if cy (carry flag) = 1

RNC Return from subroutine if cy (carry flag) = 0

RZ Return from subroutine if ZF (zero flag) = 1

RNZ Return from subroutine if ZF (zero flag) = 0

RPE Return from subroutine if PF (parity flag) = 1

RPO Return from subroutine if PF (parity flag) = 0

RN Return from subroutine if SF (signed flag) = 1

RP Return from subroutine if SF (signed flag) = 0

8.6. BINARY TO ASCII CODE CONVERSION

Alphanumeric codes: A computer is a binary machine, to communicate with the computer in

alphanumeric letters and decimal numbers, translation codes are necessary. The commonly used

MSCPH522

204

code is Known as ASCII (American Standard Codes for Information Interchange). It is a 7-bit

code with 128 combinations and each combination from 01H to 7FH is organized to represent the

26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various

punctuation marks or machine command. For example.30H to 39H represents 0 to 9 in decimal ,

41H to 5AH represents A to Z, 21H to 2FH represents various symbols and 61H to 7AH represents

a to z.

Conversion of Binary number to ASCII Code

Step 1: Convert bit binary number into Hexadecimal equivalent

Step2: Find the ASCII Code from table

Example: find the ASCII text conversion of the following string of binary numbers:

01110111 01101111 01110010 01100100

Step 1: make the group of eight binary digits :01110111, 01101111, 01110010, 01100100

Step 2: Look up the Hexadecimal numbers 77H, 6FH, 72H, and 64H in the ASCII table.

77H, 6FH, 72H, and 64Hrepresent w, o, r, and d, respectively. Therefore, the ASCII text

for the given binary number is “word”.

8.7. BCD to binary code conversion

The users of the most microprocessor-based products demand the output display in decimal

numbers. The decimal output is simple to understand and do not need any conversion. The data

processing inside the microprocessor is performed in binary. Therefore, it is necessary toconvert

the binary results into their equivalent Binary Coded Decimal numbers before they are displayed.

Convert Binary number 11011010 into BCD Number

1. Convert the binary

number1101 1010 into

decimal number

=1*27+1*26 + 0*25+ 1*24+ 1*23+ 0*22+ 1*21+ 0*20

=128 + 64 +0 +16 +8 +0 + 2 +0

= 218

2. Identify the digit of

decimal number

218

First digit 2,

second digit 1,

third digit 8

The conversion can be performed as follows:

Step 1: If the number is less than 100, go to

Step 2; otherwise, divide by 100 or subtract

MSCPH522

205

3. Conversion of each digit

into 4 bit binary number

2= 0010

1=0001

8=1000

100 repeatedly until the remainder is less than

100.The quotient is the MSB of BCD digit

Step 2: If the number is less than 10, go to Step

3;otherwise, divide by 10 repeatedly until the

remainderis less than 10. The quotient is Step

3: The remainder from Step 2 is ones digit in

binary.

4. BCD number is (0010 0001 1000)

Example: Write a main program and a conversion subroutine to convert the binary number stored

at memory address 6000H into its equivalent BCD number. Store the result from memory location

6100H onwards.

Source Program:

 LDA 6000H : Get the binary number in accumulator

 CALL SUBROUTINE : Call subroutine

 HLT : Terminate program execution

Subroutine to convert binary number into its equivalent BCD number:

SUBROUTINE:

 MVI B, 64H : Load divisor decimal 100 in B register

 MVI C, 0AH : Load divisor decimal 10 in C register

 MVI D, 00H : Initialize Digit 1 MSB Of BCD

 MVI E, 00H : Initialize Digit 2; BCD2

STEP1: CMP B : Check if number < Decimal 100

 JC STEP 2 : if yes go to step 2

 SUB B : Subtract decimal 100

 INR E : update quotient

 JMP STEP 1 : go to step 1

STEP2: CMP C : Check if number < Decimal 10

MSCPH522

206

 JC STEP 3 : if yes go to step 3

 SUB C : Subtract decimal 10

 INR D : Update quotient

 JMP STEP 2 : Continue division by 10

STEP3: STA 6100H : Store Digit 0

 MOV A, D : Get Digit 1

 STA 6101H : Store Digit 1

 MOV A, E : Get Digit 2

 STA 6102H : Store Digit 2

8.8. BCD to binary code conversion

The Seven segment display is mostly used for the digital display in calculators, digital

counters, digital clocks, measuring instruments, etc.to display both the numbers and characters.

When a BCD number is to be displayed by a seven-segment LED, it is necessary to convert the

BCD number to its seven-segment code. The code is determined by hardware considerations such

as common-cathode or common-anode LED; the code has no direct relationship to binary numbers.

Therefore, to display a BCD digit at a seven-segment LED, the table look-up technique is used.

In the table look-up technique, the codes of the digits to be displayed are stored sequentially in

memory. The conversion program locates the code of a digit based on its

A set of data having time in 24 hours format and room temperature for a day are stored in

memory locations starting at 8000H, respectively. For example, at 1A.M., temperature is 20C.

The lookup tables for 0 to 9 digits for a common-cathode LED are stored in memory locations

starting at 7000H, andthe Output-Buffer memory is reserved at 9000H. Write a program to display

time and temperature. Data stored in memory is in BCD format and of 2 digit number.

Program:

LXI H, 7000 H: Initialize lookup table pointer

https://www.elprocus.com/types-of-7-segment-displays-and-controlling-ways/

MSCPH522

207

LXI D, 8000 H: Initialize source memory pointer

LXI B, 9000 H: Initialize destination memory pointer

BACK: LDAX D: data is copied from memory location pointed by reg pair D,E to accumulator

ANI F0 H

RRC

RRC

RRC

RRC

MOV L, A: A point to the 7-segment code

MOV A, M: Get the 7-segment code

STAX B: Store the result at destination memory location

INX B

LDAX D

ANI 0F H

MOV L, A: A point to the 7-segment code

MOV A, M: Get the 7-segment code

STAX B: Store the result at destination memory location

INX D: Increment source memory pointer

INX B: Increment destination memory pointer

MOV A, C

CPI 30H: Check for last number

JNZ BACK: If not repeat

HLT: End of program

BCD Addition and Subtraction:

MSCPH522

208

In 8085, input/output data are displayed in decimal numbers. If , this data requires addition or

subtraction then it is beneficial to perform arithmetic operation directly in BCD codes. Theaddition

of two BCD numbersmay not represent an appropriate BCD value. So, if value is greater than 9,

then add 6 to get the correct BCD digit.

Example, perform the addition of (34)BCD and(36)BCD

 By Human By Processor

carry 0 1 1 0 1 0 0 0

Ist number (34)BCD 0 0 1 1 0 1 0 0

IInd Number (36)BCD 0 0 1 1 0 1 1 0

Sum (70)BCD 0 1 1 0 1 0 1 0

 6 A

The microprocessor cannot differentiate between BCD and Binary numbers because both are string

of zeroes and onesand it adds numbers in binary.So, there is difference in answer.(70) BCD by

human and 6AH by processor. In BCD addition, any number larger than 9 (from A to F) is invalid

and needs to be adjustedby adding 6 in binary.

The Hex number A can be adjusted as a BCD number by adding 6 in binary.

The BCD adjustment in an 8-bit binary register can be shown as follows:

A = 0000 1010

+6 = 0000 0110

Sum = 0001 0000

This carry is added to 2nd BCD digit and answer become (70) BCD.

In this example, the carry is generated after the adjustment of the least significant four bits for the

BCD digit and is again added to the adjustment of the most significant four bits.

A special instruction called DAA (Decimal Adjust Accumulator) performs the function of

adjusting a BCD sum in the 8085 instruction set. This instruction uses the Auxiliary Carry flip flop

(AC) to sense that the value of the least four bits is larger than 9 and adjusts the bits to the BCD

value. Similarly, it uses the Carry flag (CY) to adjust the most significant four bits. However, the

AC flag is used internally by the microprocessor; this flag is not available to the programmer

through any Jump instruction.

INSTRUCTION

DAA: Decimal Adjust Accumulator

MSCPH522

209

 This is a 1-byte instruction

 It adjusts an 8-bit numberBCD sum.

 It uses the AC and the CY flags to perform the adjustment and all flags are affected

 It must be emphasized that instruction DAA

 It works only with addition when BCD numbers are used; does not work with subtraction.

BCD subtraction:

The subtraction is performed using by adding the 99’s complement in BCD numbers. Hence,

A – B = A + [99’s complement ofB]

Following procedure is followed:

a. IF RESULT > 9, Add 0110 to make valid BCD number

b. If MOST SIGNIFICANT CARRY is produced then the result is positive and the end around

carry must be added.

c. IF MOST SIGNIFICANT CARRY is 0 [i.e. NO CARRY] then the result is negative and we

get the 9’s comp. of the result.

Example:

(a) 8 – 3 = 8 + [9’s COMP. OF 3] = 8 + 6

Ist number: 8 1000

9’s complement of: 3 0110

Sum with invalid BCD 1110 > 1001 so add 0110 invalid BCD

 1 0100 End around carry, add

carry to number

Result 0101

(a) 38 – 93 = 8 + [9’s COMP. OF 3] = 8 + 6

Ist number: 38 0011 1000

9’s complement of 93 :

06

 0000 0110

Sum with invalid BCD 0011 1110

 0110

invalid BCDso add 0110

 0 0100 0100 No carry, take 9’s

complement

MSCPH522

210

Result 0 0101 0101

QUESTIONS:

1. Specify the number of times the following loops are executed.

a. MVI A,17H

LOOP: ORAA

RAL

JNC LOOP

b.MVIA, l7H

LOOP: RAL

ORAA

JNC LOOP

c.LXI B,lOOOH

LOOP: DCX B

NOP

JNZ LOOP

2. Calculate the COUNT to obtain a 100 µs loop delay, and express the value in Hex.(Use the

clock frequency of 4MHz.)

MVI B,COUNT

LOOP: NOP 4

NOP 4

DCRB 4

JNZ LOOP 10/7

3. Design an up-down counter to count from 0 to 9 and 9 to 0 continuously with a1.5-second

delay between each count, and display the count at one of the outputports. Draw a flowchart

and show the delay calculations.

4. Write a program to turn a light on and off every 5 seconds. Use data bit D7 to operate the light.

5. Write a main program and a conversion subroutine to convert the binary number stored at

Register H into its equivalent BCD number. Store the result from memory location in

6000Hand 6001H.

6. Explain the functions of the following routines:

a. LXI SP,209FH b. LXI SP,STACK

MVI C,00H PUSH B

PUSH B PUSH D

POP PSW POP B

RET POP D

RET

MSCPH522

211

7. A set of ASCII Hex digits is stored in the Input-Buffer memory. Write a programto convert

these numbers into binary. Add these numbers in binary, and store theresult in the Output-

Buffer memory.

8. A set of ten BCD readings is stored in the Input Buffer. Convert the numbers intobinary and

add the numbers. Store the sum in the Output Buffer; the sum can belarger than FFH.

9. Write a program to add 2-BCD numbers where starting address is 2000 and the numbers is

stored at 2500 and 2501 memory addresses and store sum into 2502 and carry

into 2503 memory address.

********End of chapter******

UNIT 9 ADVANCED MICROPROCESSOR

Structure

9.1 Introduction

MSCPH522

212

9.2. Objectives

9.3. Intel 8255

9.3.1. Applications

9.3.2. Function

9.3.3. Operational Modes Of 8255

9.3.3.1. Bit Set/Reset (Bsr) Mode

9.3.3.1.2. Mode 0 - Simple I/O

9.3.3.1.3. Mode 0 – Input Mode

9.3.3.1.4. Mode 0 - Output Mode

9.3.1.5. Mode 1 - Strobed Input/Output Mode

9.3.1.6. Input Handshaking Signals

9.3.1.7. Output Handshaking Signals

9.3.1.8. Mode 2 - Strobed Bidirectional Input/Output Mode

9.3.2. Internal Block Diagram Of 8255

9.3.3. Pins & Signals Of 8255

9.4. Intel 8259

9.4.1. Functional Description

9.4.2. Programming Considerations Dos And Windows

9.5. Intel 8086

9.5.1. The First X86 Design

9.6. Intel 80286

9.6.1. Architecture

9.6.1.1. Protected Mode

MSCPH522

213

9.6.1.2. Support Components

9.7. Intel 80386 (I386)

9.7.1. Architecture

9.7.2. Data Types

9.8. Architecture Of 80486 Microprocessor

9.9. Pentium

9.9.1. Pentium-Branded Processors

9.9.1.1. P5 Microarchitecture Based

9.9.1.2. P6 Microarchitecture Based

9.9.1.3. Pentium Pro

9.9.1.4. Pentium Ii

9.9.1.5. Pentium Iii

9.9.1.6. Pentium 4

9.10 Summary

9.11 Glossary

9.12 References

9.13 Suggested Readings

9.14 Terminal Questions

 9.14.1 Short Answer Type

9.1. INTRODUCTION

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip was developed and

manufactured by Intel in the first half of the 1970s for the Intel 8080 microprocessor.

MSCPH522

214

The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and Intel

8086 microprocessors. The initial part was 8259, a later A suffix version was upward compatible

and usable with the 8086 or 8088 processor.

The 8259 may be configured to work with an 8080/8085 or an 8086/8088. On the 8086/8088, the

interrupt controller will provide an interrupt number on the data bus when an interrupt occurs. The

interrupt cycle of the 8080/8085 will issue three bytes on the data bus (corresponding to a CALL

instruction in the 8080/8085 instruction set).

The 8086 was sequenced using a mixture of random logic and microcode and was implemented

using depletion-load nMOS circuitry with approximately 20,000 active transistor (29,000 counting

all ROM and PLA sites). It was soon moved to a new refined nMOS manufacturing process called

HMOS (for High performance MOS) that Intel originally developed for manufacturing of fast

static RAM products. This was followed by HMOS-II, HMOS-III versions, and, eventually, a fully

static CMOS version for battery powered devices, manufactured using Intel's CHMOS processes.

The original chip measured 33 mm² and The performance increase of the 80286 over the 8086 (or

8088) could be more than 100% per clock cycle in many programs (i.e., a doubled performance at

the same clock speed).minimum feature size was 3.2 μm.

Pentium is a brand used for a series of x86 architecture compatible microprocessors produced

by Intel. The original Pentium was released in 1993. After that, the Pentium II and Pentium III

were released. In the case of Atom architectures, Pentiums are the highest performance

implementations of the architecture. Pentium processors with Core architectures prior to 2017 were

distinguished from the faster, higher-end i-series processors by lower clock rates and disabling

some features, such as hyper threading, virtualization and sometimes L3 cache.

9.2. OBJECTIVES

After studying this unit, you will learn about-

 Intel 8255

 Operational Modes Of 8255

MSCPH522

215

 Intel 8259

 Intel 80286

 Intel 80386 (I386)

 Pentium

9.3. INTEL 8255

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip was developed and

manufactured by Intel in the first half of the 1970s for the Intel 8080 microprocessor. The 8255

provides 24 parallel input/output lines with a variety of programmable operating modes.

The 8255 is a member of the MCS -85 Family of chips, designed by Intel for use with their

8085 and 8086 microprocessors and their descendants. It was first available in a 40-pin DIP and

later a 44-pin PLCC packages. It found wide applicability in digital processing systems and was

later cloned by other manufacturers. The 82C55 is a CMOS version for higher speed and lower

current consumption.

The functionality of the 8255 is now mostly embedded in larger VLSI processing chips as a sub-

function. A CMOS version of the 8255 is still being made by Renesas but mostly used to expand

the I/O of microcontrollers.

MSCPH522

216

 FIG. 9.1: PINOUT OF I8255

9.3.1. APPLICATIONS

The 8255 was widely used in many microcomputer/microcontroller systems and home

computers such as the SV-328 and all MSX models. The 8255 was used in the original IBM -

PC, PC/XT, PC/jr and clones, along with numerous homebuilt computers such as the N8VEM.

9.3.2. FUNCTION

The 8255 gives a CPU or digital system access to programmable parallel I/O. The 8255 has 24

input/output pins. These are divided into three 8-bit ports (A, B, C). Port A and port B can be used

as 8-bit input/output ports. Port C can be used as an 8-bit input/output port or as two 4-bit

input/output ports or to produce handshake signals for ports A and B.

MSCPH522

217

The three ports are further grouped as follows:

1. Group A consisting of port A and upper part of port C.

2. Group B consisting of port B and lower part of port C.

Eight data lines (D0–D7) are available (with an 8-bit data buffer) to read/write data into the ports

or control register under the status of the RD (pin 5) and WR (pin 36), which are active-low

signals for read and write operations respectively. Address lines A1 and A0 allow to access a data

register for each port or a control register, as listed below:

A1 A0 Port selected

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control Register

The control signal chip select CS (pin 6) is used to enable the 8255 chip. It is an active-low signal,

i.e., when CS = 0, the 8255 is enabled. The RESET input (pin 35) is connected to the RESET line

of system like 8085, 8086, etc., so that when the system is reset, all the ports are initialized as input

lines. This is done to prevent 8255 and/or any peripheral connected to it from being destroyed due

to mismatch of port direction settings. As an example, consider an input device connected to 8255

at port A. If from the previous operation, port A is initialized as an output port and if 8255 is not

reset before using the current configuration, then there is a possibility of damage of either the input

device connected or 8255 or both, since both 8255 and the device connected will be sending out

data.

MSCPH522

218

The control register (or the control logic, or the command word register) is an 8-bit register used

to select the modes of operation and input/output designation of the ports.

9.3.3. OPERATIONAL MODES OF 8255

There are two basic operational modes of 8255

 Bit Set/Reset mode (BSR mode).

 Input/Output mode (I/O mode).

The two modes are selected on the basis of the value present at the D7 bit of the control word

register. When D7 = 1, 8255 operates in I/O mode, and when D7 = 0, it operates in the BSR mode.

9.3.3.1. BIT SET/RESET (BSR) MODE

The Bit Set/Reset (BSR) mode is available on port C only. Each line of port C (PC7 - PC0) can be

set or reset by writing a suitable value to the control word register. BSR mode and I/O mode are

independent and selection of BSR mode does not affect the operation of other ports in I/O mode.

 D7 bit is always 0 for BSR mode.

 Bits D6, D5 and D4 are don't care bits.

 Bits D3, D2 and D1 are used to select the pin of Port C.

 Bit D0 is used to set/reset the selected pin of Port C.

Selection of port C pin is determined as follows:

D3 D2 D1 Bit/pin of port C

selecte

0 0 0 PC

0 0 1 PC1

0 1 0 PC2

0 1 1 PC3

MSCPH522

219

1 1 0 PC6

1 1 1 PC7

As an example, if it is needed that PC5 be set, then in the control word,

1. Since it is BSR mode, D7 = '0'.

2. Since D4, D5, D6 are not used, assume them to be '0'.

3. PC5 has to be selected, hence, D3 = '1', D2 = '0', D1 = '1'.

4. PC5 has to be set, hence, D0 = '1'.

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 0 1 1

MSCPH522

220

 FIG. 9.2: 8255 control word for I/O MODE

9.3.3.1.2. MODE 0 - SIMPLE I/O

 In this mode, the ports can be used for simple I/O operations without handshaking signals. Port

A, port B provide simple I/O operation. The two halves of port C can be either used together as an

additional 8-bit port, or they can be used as individual 4-bit ports. Since the two halves of port C

are independent, they may be used such that one-half is initialized as an input port while the other

half is initialized as an output port.

The input/output features in mode 0 are as follows:

MSCPH522

221

1. Output ports are latched.

2. Input ports are buffered, not latched.

3. Ports do not have handshake or interrupt capability.

4. With 4 ports, 16 different combinations of I/O are possible.

'Latched' means the bits are put into a storage register (array of flip-flops) which holds its output

constant even if the inputs change after being latched.

The 8255's outputs are latched to hold the last data written to them. This is required because the

data only stays on the bus for one cycle. So, without latching, the outputs would become invalid

as soon as the write cycle finishes.

The inputs are not latched because the CPU only has to read their current values, then store the

data in a CPU register or memory if it needs to be referenced at a later time. If an input changes

while the port is being read then the result may be indeterminate.

9.3.3.1.3. MODE 0 – INPUT MODE

 In the input mode, the 8255 gets data from the external peripheral ports and the CPU reads the

received data via its data bus.

 The CPU first selects the 8255 chip by making CS low. Then it selects the desired port using

A0 and A1 lines.

 The CPU then issues an RD signal to read the data from the external peripheral device via the

system data bus.

9.3.3.1.4. MODE 0 - OUTPUT MODE

 In the output mode, the CPU sends data to 8255 via system data bus and then the external peripheral

ports receive this data via 8255 port.

 CPU first selects the 8255 chip by making CS low. It then selects the desired port using A0 and

A1 lines.

 CPU then issues a WR signal to write data to the selected port via the system data bus. This data

is then received by the external peripheral device connected to the selected port.

MSCPH522

222

9.3.1.5. MODE 1 - STROBED INPUT/OUTPUT MODE

When we wish to use port A or port B for handshake (strobed) input or output operation, we

initialize that port in mode 1 (port A and port B can be initialized to operate in different modes,

i.e., for e.g., port A can operate in mode 0 and port B in mode 1). Some of the pins of port C

function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or output port), PC0,

PC1 and PC2 pins function as handshake lines.

If port A is initialized as mode 1 input port, then, PC3, PC4 and PC5 function as handshake signals.

Pins PC6 and PC7 are available for use as input/output lines.

The mode 1 which supports handshaking has following features:

1. Two ports i.e. port A and B can be used as 8-bit i/o ports.

2. Each port uses three lines of port c as handshake signal and remaining two signals can be

used as I/O ports.

3. Interrupt logic is supported.

4. Input and Output data are latched.

9.3.1.6. INPUT HANDSHAKING SIGNALS

1. IBF (Input Buffer Full) - It is an output indicating that the input latch contains information.

2. STB (Strobed Input) - The strobe input loads data into the port latch, which holds the information

until it is input to the microprocessor via the IN instruction.

3. INTR (Interrupt request) - It is an output that requests can interrupt. The INTR pin becomes

logic 1 when the STB input returns to a logic 1, and is cleared when the data are input from the

port by the microprocessor.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit programmed

via the port PC4 (port A) or PC2 (port B) bit position.

MSCPH522

223

9.3.1.7. OUTPUT HANDSHAKING SIGNALS

1. OBF (Output Buffer Full) - It is an output that goes low whenever data are output(OUT) to the

port A or port B latch. This signal is set to logic 1 whenever the ACK pulse returns from the

external device.

2. ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The ACK signal is a

response from an external device, indicating that it has received the data from the 82C55A port.

3. INTR (Interrupt request) - It is a signal that often interrupts the microprocessor when the external

device receives the data via the signal. this pin is qualified by the internal INTE(interrupt enable)

bit.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal bit programmed to

enable or disable the INTR pin. The INTE A bit is programmed using the PC6 bit and INTE B is

programmed using the PC2 bit.

9.3.1.8. MODE 2 - STROBED BIDIRECTIONAL INPUT/OUTPUT MODE

Only port A can be initialized in this mode. Port A can be used for bidirectional handshake data

transfer. This means that data can be input or output on the same eight lines (PA0 - PA7). Pins

PC3 - PC7 are used as handshake lines for port A. The remaining pins of port C (PC0 - PC2) can

be used as input/output lines if group B is initialized in mode 0 or as handshaking for port B if

group B is initialized in mode 1. In this mode, the 8255 may be used to extend the system bus to a

slave microprocessor or to transfer data bytes to and from a floppy disk controller.

Acknowledgement and handshaking signals are provided to maintain proper data flow and

synchronisation between the data transmitter and receiver.

9.3.2. INTERNAL BLOCK DIAGRAM OF 8255

The ports are grouped as Group A and Group B. The group A has port A, port C upper and its

control circuit. The group B has port B, port C lower and its control circuit. The Read/Write control

logic requires six control signals. These signals are given below.

MSCPH522

224

 FIG. 9.3: INTERNAL BLOCK DIAGRAM

RD (Read): This control signal enables the read operation. When this signal is LOW, the

microprocessor reads data from a selected I/O port of the 8255A.

RD (Read): This control signal enables the read operation. When this signal is LOW, the

microprocessor reads data from a selected I/O port of the 8255A.

https://3.bp.blogspot.com/-ovp5aGS4_R0/ULTNa0R9lsI/AAAAAAAAG1Y/5Ji5ZzQSgBU/s1600/1.jpg

MSCPH522

225

WR (Write): This control signal enables the write operation. When this signal goes LOW, the

microprocessor writes into a selected I/O port or the control register.

RESET: This is an active HIGH signal. It clears the control register and set all ports in the input

mode.

CS, A0 and A1: These are device select signals. The CS is connected to the decoder in the system.

A0 and A1 are generally connected to A0 and A1 of the processor. (Alternatively, A0 and A1 can

be connected to any two-address lines of the processor). 8255 can be either Memory mapped or

I/O mapped in the system. A0 and A1 address lines can be made to select any one of the following

four internal devices as shown on right side.

INTERNAL ADDRESS DEVICE SELECTED

A1 A0

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control Register

9.3.3. PINS & SIGNALS OF 8255

The pin description of 8255 is shown in figure below. It has 40 pins and requires a single +5V

supply.

MSCPH522

226

 FIG. 9.4: PIN AND SIGNAL DIAGRAM

9.4. INTEL 8259

The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and Intel

8086 microprocessors. The initial part was 8259, a later A suffix version was upward compatible

and usable with the 8086 or 8088 processor. The 8259 combines multiple interrupt input sources

into a single interrupt output to the host microprocessor, extending the interrupt levels available in

a system beyond the one or two levels found on the processor chip. The 8259A was the interrupt

controller for the ISA bus in the original IBM PC and IBM PC AT.

The 8259 was introduced as part of Intel's MCS 85 family in 1976. The 8259A was included in

the original PC introduced in 1981 and maintained by the PC/XT when introduced in 1983. A

second 8259A was added with the introduction of the PC/AT. The 8259 has coexisted with the

Intel APIC Architecture since its introduction in Symmetric Multi – Processor PCs. Modern PCs

have begun to phase out the 8259A in favor of the Intel APIC Architecture. However, while not

https://3.bp.blogspot.com/-lhfxg3DcQqE/ULTJzdOGZMI/AAAAAAAAG1I/98niLEw6rnU/s1600/2.jpg

MSCPH522

227

anymore a separate chip, the 8259A interface is still provided by the Platform Controller Hub or

Southbridge chipset on modern x86 motherboards.

 FIG. 9.5: PINOUT

9.4.1. FUNCTIONAL DESCRIPTION

The main signal pins on an 8259 are as follows: eight interrupt input request lines named IRQ0

through IRQ7, an interrupt request output line named INTR, interrupt acknowledgment line named

INTA, D0 through D7 for communicating the interrupt level or vector offset. Other connections

include CAS0 through CAS2 for cascading between 8259s.

Up to eight slave 8259s may be cascaded to a master 8259 to provide up to 64 IRQs. 8259s are

cascaded by connecting the INT line of one slave 8259 to the IRQ line of one master 8259.

 End of interrupt (EOI) operations support specific EOI, non-specific EOI, and auto-EOI. A

specific EOI specifies the IRQ level it is acknowledging in the ISR. A non-specific EOI resets the

IRQ level in the ISR. Auto-EOI resets the IRQ level in the ISR immediately after the interrupt is

acknowledged.

Edge and level interrupt trigger modes are supported by the 8259A. Fixed priority and rotating

priority modes are supported.

MSCPH522

228

The 8259 may be configured to work with an 8080/8085 or an 8086/8088. On the 8086/8088, the

interrupt controller will provide an interrupt number on the data bus when an interrupt occurs. The

interrupt cycle of the 8080/8085 will issue three bytes on the data bus (corresponding to a CALL

instruction in the 8080/8085 instruction set).

The 8259A provides additional functionality compared to the 8259 (in particular buffered mode

and level-triggered mode) and is upward compatible with it.

9.4.2. PROGRAMMING CONSIDERATIONS DOS AND WINDOWS

Programming an 8259 in conjunction with DOS and Microsoft Windows has introduced a number

of confusing issues for the sake of backwards compatibility, which extends as far back as the

original PC introduced in 1981.

The first issue is more or less the root of the second issue. DOS device drivers are expected to send

a non-specific EOI to the 8259s when they finish servicing their device. This prevents the use of

any of the 8259's other EOI modes in DOS, and excludes the differentiation between device

interrupts rerouted from the master 8259 to the slave 8259.

The second issue deals with the use of IRQ2 and IRQ9 from the introduction of a slave 8259 in

the PC/AT. The slave 8259's INT output is connected to the master's IR2. The IRQ2 line of the

ISA bus, originally connected to this IR2, was rerouted to IR1 of the slave. Thus the old IRQ2 line

now generates IRQ9 in the CPU. To allow backwards compatibility with DOS device drivers that

still set up for IRQ2, a handler is installed by the BIOS for IRQ9 that redirects interrupts to the

original IRQ2 handler.

On the PC, the BIOS (and thus also DOS) traditionally maps the master 8259 interrupt requests

(IRQ0-IRQ7) to interrupt vector offset 8 (INT08-INT0F) and the slave 8259 (in PC/AT and later)

interrupt requests (IRQ8-IRQ15) to interrupt vector offset 112 (INT70-INT77). This was done

despite the first 32 (INT00-INT1F) interrupt vectors being reserved by the processor for internal

exceptions (this was ignored for the design of the PC for some reason). Because of the reserved

vectors for exceptions most other operating systems map (at least the master) 8259 IRQs (if used

on a platform) to another interrupt vector base offset.

MSCPH522

229

9.5. INTEL 8086

The 8086 (also called iAPX 86) is a 16- bit microprocessor chip designed by Intel between early

1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly

modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer

supporting ICs), and is notable as the processor used in the original IBM PC design.

The 8086 gave rise to the x86 architecture, which eventually became Intel's most successful line

of processors. On June 5, 2018, Intel released a limited-edition CPU celebrating the 40th

anniversary of the Intel 8086, called the Intel Core i7-8086K.

In 1972, Intel launched the 8008, the first 8-bit microprocessor. It implemented an instruction

set designed by Dtapoint Corporation with programmable CRT terminals in mind, which also

proved to be fairly general-purpose. The device needed several additional ICs to produce a

functional computer, in part due to it being packaged in a small 18-pin "memory package", which

ruled out the use of a separate address bus (Intel was primarily a DRAM manufacturer at the time).

Two years later, Intel launched the 8080, employing the new 40-pin DIL packages originally

developed for calculator ICs to enable a separate address bus. It has an extended instruction set

that is source- compatible with the 8008 and also includes some 16- bit instructions to make

programming easier. The 8080 device was eventually replaced by the depletion- load

based 8085 (1977), which sufficed with a single +5 V power supply instead of the three different

operating voltages of earlier chips. Other well known 8-bit microprocessors that emerged during

these years are Motorola 6800 (1974), General Instruction PIC 16X (1975), MOS Technology

6502 (1975),Ziliog Z80 (1976), and Motorola 6809 (1978).

9.5.1. THE FIRST X86 DESIGN

The 8086 project started in May 1976 and was originally intended as a temporary substitute for

the ambitious and delayed iAPX 432 project. It was an attempt to draw attention from the less-

delayed 16-bit and 32- bit processors of other manufacturers Motorola, Zilog and National

Semiconductor.

Whereas the 8086 was a 16-bit microprocessor, it used the same micro architecture as Intel's 8-bit

microprocessors (8008, 8080, and 8085). This allowed assembly language programs written in 8-

MSCPH522

230

bit to seamlessly migrate. New instructions and features such as signed integers, base offset

addressing, and self-repeating operations were added. Instructions were added to assist source code

compilation of nested functions in the ALGOL family of languages, including Pascal and PL/M.

According to principal architect this was a result of a more software-centric approach. Other

enhancements included microcode instructions for the multiply and divide assembly language

instructions. Designers also anticipated coprocessors, such as 8087 and 8089, so the bus structure

was designed to be flexible.

The first revision of the instruction set and high level architecture was ready after about three

months, and as almost no CAD tools were used, four engineers and 12 layout people were

simultaneously working on the chip. The 8086 took a little more than two years from idea to

working product, which was considered rather fast for a complex design in 1976–1978.

The 8086 was sequenced using a mixture of random logic and microcode and was implemented

using depletion-load nMOS circuitry with approximately 20,000 active transistor (29,000 counting

all ROM and PLA sites). It was soon moved to a new refined nMOS manufacturing process called

HMOS (for High performance MOS) that Intel originally developed for manufacturing of fast

static RAM products. This was followed by HMOS-II, HMOS-III versions, and, eventually, a fully

static CMOS version for battery powered devices, manufactured using Intel's CHMOS processes.

The original chip measured 33 mm² and minimum feature size was 3.2 μm.

MSCPH522

231

 FIG. 9.6: THE 8086 PIN

9.6. INTEL 80286

The Intel 80286 (also marketed as the iAPX 286 and often called Intel 286) is a 16- bit

microprocessor that was introduced on February 1, 1982. It was the first 8086-based CPU with

separate, non multiplexed address and data buses and also the first with memory management and

wide protection abilities. The 80286 used approximately 134,000 transistors in its original nMOS

incarnation and, just like the contemporary 80186, it could correctly execute most software written

for the earlier Intel 8086 and 8088 processors.

The 80286 was employed for the IBM PC/AT, introduced in 1984, and then widely used in most

PC/AT compatible computers until the early 1990s.

MSCPH522

232

9.6.1. ARCHITECTURE

Intel did not expect personal computers to use the 286. The CPU was designed for multi

user systems with multi asking applications, including communications (such as automated PBXS)

and real time control. It had 134,000 transistors and consisted of four independent units: the

address unit, bus unit, instruction unit, and execution unit, organized into a loosely

coupled (buffered) pipeline, just as in the 8086. It was produced in a 68-pin package, including

PLCC (plastic leaded chip carrier), LCC (leadless chip carrier) and PGA (pin grid array) packages.

The performance increase of the 80286 over the 8086 (or 8088) could be more than 100% per

clock cycle in many programs (i.e., a doubled performance at the same clock speed). This was a

large increase, fully comparable to the speed improvements seven years later when the i486 (1989)

or the original Pentium (1993) were introduced. This was partly due to the non-multiplexed

address and data buses, but mainly to the fact that address calculations were less expensive. They

were performed by a dedicated unit in the 80286, while the older 8086 had to do effective address

computation using its general ALU, consuming several extra clock cycles in many cases. Also, the

80286 was more efficient in the pre fetch of instructions, buffering, execution of jumps, and in

complex micro coded numerical operations such as MUL/DIV than its predecessor.

The 80286 included, in addition to all of the 8086 instructions, all of the new instructions of the

80186: ENTER, LEAVE, BOUND, INS, OUTS, PUSHA, POPA, PUSH immediate, IMUL

immediate, and immediate shifts and rotates. The 80286 also added new instructions for protected

mode: ARPL, CLTS, LAR, LGDT, LIDT, LLDT, LMSW, LSL, LTR, SGDT, SIDT, SLDT,

SMSW, STR, VERR, and VERW. Some of the instructions for protected mode can (or must) be

used in real mode to set up and switch to protected mode, and a few (such as SMSW and LMSW)

are useful for real mode itself.

The Intel 80286 had a 24-bit address bus and as such had a 16 MB physical address space,

compared to the 1 MB address space of prior x86 processors. It was the first x86 processor to

support virtual memory supporting up to 1 GB via segmentation. However, memory cost and the

initial rarity of software using the memory above 1 MB meant that until late in its production

80286 computers rarely shipped with more than one megabyte of RAM. Additionally, there was a

performance penalty involved in accessing extended memory from real mode as noted below.

MSCPH522

233

9.6.1.1. PROTECTED MODE

The 286 was the first of the x 86 CPU families to support protected virtual-address mode,

commonly called "protected mode". In addition, it was the first commercially available

microprocessor with on-chip MMU capabilities (systems using the contemporaneous Motorola

68010 and NS320xx could be equipped with an optional MMU controller). This would allow IBM

compatibles to have advanced multitasking OSes for the first time and compete in the Unix

dominated server/ workstation market. Several additional instructions were introduced in the

protected mode of 80286, which are helpful for multitasking operating systems.

 FIG.9.7: INTERNAL BLOCK DIAGRAM OF 80286 MICROPROCESSOR

Another important feature of 80286 is the prevention of unauthorized access. This is achieved by:

 Forming different segments for data, code, and stack, and preventing their overlapping.

 Assigning privilege levels to each segment. Segments with lower privilege levels cannot

access segments with higher privilege levels.

MSCPH522

234

In 80286 (and in its co-processor Intel 80287), arithmetic operations can be performed on the

following different types of numbers:

 Unsigned packed decimal

 unsigned binary,

 unsigned unpacked decimal,

 signed binary,

 floting point number

By design, the 286 could not revert from protected mode to the basic 8086-compatible real address

mode without a hardware-initiated reset. In the PC/AT introduced in 1984, IBM added external

circuitry, as well as specialized code in the ROM BIOS and the 8042 peripheral microcontroller

to enable software to cause the reset, allowing real-mode reentry while retaining active memory

and returning control to the program that initiated the reset. (The BIOS is necessarily involved

because it obtains control directly whenever the CPU resets.) Though it worked correctly, the

method imposed a huge performance penalty.

In theory, real-mode applications could be directly executed in 16- bit protected mode if certain

rules (newly proposed with the introduction of the 80286) were followed; however, as many DOS

programs did not conform to those rules, protected mode was not widely used until the appearance

of its successor, the 32 –bit Intel 80386, which was designed to go back and forth between modes

easily and to provide an emulation of real mode within protected mode. When Intel designed the

286, it was not designed to be able to multitask real-mode applications; real mode was intended to

be a simple way for a bootstrap loader to prepare the system and then switch to protected mode;

essentially, in protected mode the 80286 was designed to be a new processor with many similarities

to its predecessors, while real mode on the 80286 was offered for smaller-scale systems that could

benefit from a more advanced version of the 80186 CPU core, with advantages such as higher

clock rates, faster instruction execution (measured in clock cycles), and unmultiplexed buses, but

not the 24-bit (16 MB) memory space.

To support protected mode, new instructions have been added: ARPL, VERR, VERW, LAR, LSL,

SMSW, SGDT, SIDT, SLDT, STR, LMSW, LGDT, LIDT, LLDT, LTR, CLTS. There are also

new exceptions (internal interrupts): invalid opcode, coprocessor not available, double fault,

MSCPH522

235

coprocessor segment overrun, stack fault, segment overrun/general protection fault, and others

only for protected mode.

9.6.1.2. SUPPORT COMPONENTS

This list of bus interface components that connect to Intel 80286 microprocessor.

 82258 Advanced Direct Memory Access Controller – Transfer rate of 8MB per second,

supports up to 32 sub channels, mask and compare, verify, translation, and

assembly/disassembly operation that are being processed simultaneously. It also support

16MB addressing range.

 82C284 Clock Generator and Driver - Intel second sourced this 82284 version to Fujitsu

Limited around 1985. The Intel branded chipset was available in 20-pin PLCC in sampling at

first quarter 1986.

 82288 Bus Controller

 82289 Bus Arbiter

9.7. INTEL 80386 (i386)

The Intel 386, originally released as 80386 and later renamed i386, is a 32-bit

microprocessor introduced in 1985. The first versions had 275,000 transistors and were the

CPU of many workstations and high-end personal computers of the time. As the original

implementation of the 32- bit extension of the 80286 architecture, the i386 instruction set,

programming model, and binary encodings are still the common denominator for all 32-bit

x86 processors, which is termed the i386-architecture, x86, or IA -32 , depending on context.

The 32-bit i386 can correctly execute most code intended for the earlier 16-bit processors such as

8086 and 80286 that were ubiquitous in early PCs. (Following the same tradition, modern 64-bit

x86 processors are able to run most programs written for older x86 CPUs, all the way back to the

original 16-bit 8086 of 1978.) Over the years, successively newer implementations of the same

architecture have become several hundreds of times faster than the original 80386 (and thousands

of times faster than the 8086). A 33 MHz 80386 was reportedly measured to operate at about 11.4

MIPS.

MSCPH522

236

Development of i386 technology began in 1982 under the internal name of P3. The tape out of the

80386 development was finalized on July 1985. The 80386 was introduced as pre-production

samples for software development workstation in October 1985. Manufacturing of the chips in

significant quantities commenced in June 1986, along with the first plug-in device that allowed

existing 80286-based computers to be upgraded to the 386, the Translator 386 by American

Computer and Peripheral. Main boards for 80386-based computer systems were cumbersome and

expensive at first, but manufacturing was justified upon the 80386's mainstream adoption. In May

2006, Intel announced that i386 production would stop at the end of September 2007. Although it

had long been obsolete as a personal computer CPU, Intel and others had continued making the

chip for embedded systems. Such systems using an i386 or one of many derivatives are common

in aerospace technology and electronic musical instruments, among others. Some mobile phones

also used (later fully static CMOS variants of) the i386 processor, such as y 950 and Nokia 9000

communicator. Linux continued to support i386 processors until December 11, 2012; when the

kernel cut 386-specific instructions in version 3.8.

9.7.1. ARCHITECTURE

The processor was a significant evolution in the x86 architecture, and extended a long line of

processors that stretched back to the Intel 8008. The predecessor of the 80386 was the Intel 80286,

a 16-bit processor with a segment-based memory management and protection system. The 80386

added a three-stage instruction pipeline which it brings up to total of 6-stage instruction pipeline,

extended the architecture from 16-bit t0 32- bit, and added an on-chip memory management

unit. This paging translation unit made it much easier to implement operating systems that used

virtual memory. It also offered support for register debugging.

The 80386 featured three operating modes: real mode, protected mode and virtual mode. The

protected mode, which debuted in the 286, was extended to allow the 386 to address up to 4 GB of

memory. With the addition of segmented addressing system, it can expand up to 64 terabytes of

virtual memory. The all new virtual 8086 mode (or VM86) made it possible to run one or more

real mode programs in a protected environment, although some programs were not compatible. It

features scaled indexing and 64-bit barrel shifter.

The ability for a 386 to be set up to act like it had a flat memory model in protected mode despite

the fact that it uses a segmented memory model in all modes was arguably the most important

MSCPH522

237

feature change for the x86 processor family until AMD released x86. Several new instructions

have been added to 386: BSF, BSR, BT, BTS, BTR, BTC, CDQ, CWDE, LFS, LGS, LSS,

MOVSX, MOVZX, SETcc, SHLD, SHRD.

Two new segment registers have been added (FS and GS) for general-purpose programs, single

Machine Status Word of 286 grew into eight control registers CR0–CR7. Debug registers DR0–

DR7 were added for hardware breakpoints. New forms of MOV instruction are used to access

them.

 FIG. 9.8: ARCHITECTURE

9.7.2. DATA TYPES

MSCPH522

238

The following data types are directly supported and thus implemented by one or more i386 machine

instructions ; these data types are briefly described here.

 Bit (Boolean value), bit field (group of up to 32 bits) and bit string (up to 4 Gbit in length).

 8-bit integer (byte), either signed (range −128..127) or unsigned (range 0..255).

 16-bit integer, either signed (range −32,768..32,767) or unsigned (range 0..65,535).

 32-bit integer, either signed (range −231..231−1) or unsigned (range 0..232−1).

 Offset, a 16- or 32-bit displacement referring to a memory location (using any addressing mode).

 Pointer, a 16-bit selector together with a 16- or 32-bit offset.

 Character (8-bit character code).

 String, a sequence of 8-, 16- or 32-bit words (up to 4 Gbit in length).

 BCD, decimal digits (0..9) represented by unpacked bytes.

 Packed BCD, two BCD digits in one byte (range 0..99).

9.8. ARCHITECTURE OF 80486 MICROPROCESSOR

The 80486DX is a 32-bit processor. Figure 11.46 shows the simplified block diagram of 80486

and the internal architecture of 80486 Microprocessor is depicted in Fig. 11.47.

 FIG. 9.9: SIMPLIFIED BLOCK DIAGRAM OF 80486

MSCPH522

239

The architecture of Intel’s 80486 can be divided into three different sections such as

 Bus interface unit (BIU),

 Execution and control unit (EU), and

 Floating-point unit (FU).

 FIG. 9.10: INTERNAL ARCHITECTURE OF 80486 MICROPROCESSOR

Bus Interface Unit (BIU) The bus interface unit is used to organize all the bus activities of the

processor. The address driver is connected with the internal 32-bit address output of the cache and

the system bus. The data bus trans receivers are interconnected between the internal 32-bit data

bus and system bus. The write data buffer is a queue of four 80-bit registers and is able to hold the

80-bit data which will he written to the memory. Due to pipelined execution of the write operation,

data must be available in advance. To control the bus access and operations, the following bus

control and request sequencer signals A̅D̅S̅, W/R̅, D/C̅, M/I̅O̅, PCD, PWT, R̅D̅Y̅, L̅O̅C̅K̅, P̅L̅O̅C̅K̅,

B̅O̅F̅F̅, A̅2̅0̅M̅, BREQ, HOLD, HLDA, RESET, INTR, NMI, F̅E̅R̅R̅ and I̅G̅N̅N̅E̅ are used.

MSCPH522

240

Execution Unit (EU) and Control Unit (CU) The burst control signal updates the processor that

the burst is ready. This signal works as a ready signal in the burst cycle. The B̅L̅A̅S̅T̅ output shows

that the previous burst cycle is over. The bus size control signals B̅S̅1̅6̅ and B̅S̅8̅ indicates dynamic

bus sizing. The cache control signals K̅E̅N̅, FLUSH, AHOLD and E̅A̅D̅S̅ are used to control the

cache control unit.

The parity generation and control unit generates the parity and carries out the checking during the

processor operation. The boundary scan control unit of the processor performs boundary scan tests

operation to ensure the correct operation of all components of the circuit on the mother board.

The pre fetcher unit fetches the codes from the memory and arranges them in a 32-byte code queue.

The function of the instruction decoder is to receive the code from the code queue and then decodes

the instruction code sequentially. The output of the decoder is fed to the control unit to derive the

control signals, which are used for execution of the decoded instructions. Before execution, the

protection unit should check all protection norms. If there is in any violation, an appropriate

exception is generated.

The control ROM stores a microprogram to generate control signals for execution of instructions.

The register hank and ALU are used for their usual operation just like they perform in 80286. The

barrel shifter is used to perform the shift and rotate algorithms. The segmentation unit, descriptor

registers, paging unit, translation look aside buffer and limit and attribute PLA are worked together

for the virtual memory management. These units also provide protection to the op-codes or

operand in the physical memory.

Floating point unit (FPU) The floating-point unit and register banks or FPU communicate with

the bus interface unit (BIU) under the control of memory management unit (MMU), through a 64-

bit internal data bus. Generally, the FPU is used for mathematical data processing at very high

speed as compared to the ALU.

9.9. PENTIUM

MSCPH522

241

Pentium is a brand used for a series of x86 architecture compatible microprocessors produced

by Intel. The original Pentium was released in 1993. After that, the Pentium II and Pentium III

were released.

In their form as of March 2022, Pentium processors are considered entry-level products that Intel

rates as "two stars", meaning that they are above the low-end Atom and Celeron series, but below

the faster Intel core lineup, and workstation/server Xenon series.

As of 2017, Pentium processors have little more than their name in common with earlier Pentiums,

which were Intel's flagship processor for over a decade until the introduction of the Intel Core line

in 2006. They are based on both the architecture used in Atom and that of Core processors. In the

case of Atom architectures, Pentiums are the highest performance implementations of the

architecture. Pentium processors with Core architectures prior to 2017 were distinguished from the

faster, higher-end i-series processors by lower clock rates and disabling some features, such as

hyper threading, virtualization and sometimes L3 cache.

9.9.1. PENTIUM-BRANDED PROCESSORS

9.9.1.1. P5 MICROARCHITECTURE BASED

The original Intel P5 or Pentium and Pentium MMX processors were the superscalar follow-on to

the 80486 processor and were marketed from 1993 to 1999. Some versions of these were available

as Pentium over drive that would fit into older CPU sockets.

Core p Process Clock

rates

L1 cache FSB Socket Release

date

P5 0.8 μm 60–66 MHz 16 KB 60–66 MHz Socket 4 Mach 1993

P54C 0.6 μm 75–

120 MHz

16 KB 50–66 MHz Socket 5 October

1994

P54CS 0.35 μm 133–

200 MHz

16 KB 60–66 MHz Socket 7 June 1995

P55C 0.35 μm 120–

233 MHz

32 KB 60–66 MHz Socket 7 January

1997

Tillamook 0.25 μm 166–

300 MHz

32 KB 66 MHz Socket 7 August

1997

https://en.wikipedia.org/wiki/Photolithography
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket

MSCPH522

242

9.9.1.2. P6 MICROARCHITECTURE BASED

In parallel with the P5 microarchitecture, Intel developed the P6 micro architecture and started

marketing it as the Pentium Pro for the high-end market in 1995. It introduced out of order

execution and an integrated second-level cache on dual-chip processor package. The second P6

generation replaced the original P5 with the Pentium II and rebranded the high-end version as

Pentium II Xeon. It was followed by a third version named the Pentium III and Pentium III

xeon respectively. The Pentium II line added the MMX instructions that were also present in the

Pentium MMX.

Versions of these processors for the laptop market were initially named Mobile Pentium

II and Mobile Pentium III, later versions were named Pentium III-M. Starting with the Pentium II,

the Celeron brand was used for low-end versions of most Pentium processors with a reduced

feature set such as a smaller cache or missing power management features.

9.9.1.3. PENTIUM PRO

Core Process Clock

rates

L2 cache FSB Socket Release

date

P6 0.5 μm 150 MHz 256 KB 60–66 MHz Socket 8 November

1995

P6 0.35 μm 166–

200 MHz

256 -1024

KB

60–66 MHz Socket 8

9.9.1.4. PENTIUM II

Core Process Clock

rates

L2 cache FSB Socket Release

date

https://en.wikipedia.org/wiki/Photolithography
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/Photolithography
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/CPU_socket

MSCPH522

243

Klamath 0.35 μm 233- 300

MHz

512 KB 66 MHz Slot 1 May 1997

Deshutes 0.25 μm 266–

450 MHz

512 KB 60–

100 MHz

Slot 1 January

1998

Tonga 0.25 μm 233- 300

MHz

512 KB 66 MHz MMC-2 April 1998

Dixon 0.25 μm 266- 366

MHz

256 KB 66 MHz MMC-2 January

1999

9.9.1.5. PENTIUM III

Core Process Clock

rates

L2 cache FSB Socket Release

date

Katmai 0.25 μm 450- 600

MHz

512 KB 100-

133 MHz

Slot 1 February

1999

Coppermine 0.18 μm 400–

1.13 GHz

256 KB 100–

133 MHz

Slot 1,

Socket 370,

BGA2,

μPGA2

October

1999

Tualatin 0.13 μm 700- 1.4

GHz

512 KB 100-

133 MHz

Socket 370,

BGA2,

μPGA2

April 1998

9.9.1.6. PENTIUM 4

Core Process Clock

rates

L2 cache FSB Socket Release

date

Willamette 180 nm 1.3–

2.0 GHz

256 KB 400 MT/s Socket 423,

Socket 478

November

2000

Northwood 130 nm 1.6–3.4

GHz

512 KB 400 MT/s–

800 MT/s

Socket 478 January

2002

https://en.wikipedia.org/wiki/Photolithography
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/Photolithography
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/CPU_socket

MSCPH522

244

Gallatin 130 nm 3.2–

3.46 GHz

800–

1066 MT/s

800–

1066 MT/s

Socket 478,

LGA 775

November

2003

Prescott 90 nm 2.4–

3.8 GHz

1 MB 533 MT/s–

800 MT/s

Socket 478,

LGA 775

February

2004

Prescott-

2M

90 nm 2.8–

3.8 GHz

2 MB 800–

1066 MT/s

LGA 775 February

2005

Cedar Mill 65 nm 3 GHz 2 MB 800 MT/s LGA 775 January

2006

9.10 SUMMARY

In this unit you learnt about The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI)

chip, Programmable Interrupt Controller (PIC) designed for the Intel 8085 and Intel 8086

microprocessors. In this unit you have lernt also Operational Modes Of 8255, Intel 8259, Intel

80286, Intel 80286, Intel 80286 and Pentium.

9.11 GLOSSARY

Bus interface unit (BIU),

Execution and control unit (EU)

Floating point unit (FU).

9.12 REFERENCES

1. Advanced 80386 programming techniques by James L Turley

2. Microprocessor and Microcontroller System By A. P. Godse

3. The 8085 Microprocessor: Architecture, Programming and Interfacing by B. S. Umashankar

and K. Udaya Kumar.

4. Advanced Microprocessors and Peripherals by A. K. Ray

MSCPH522

245

5. Online sources

6. Electronics desk

9.13 SUGGESTED READINGS

1. Digital Fundamentals,10th Ed, Floyd T L, Prentice Hall, 2009.

2. NPTL

3. You Tube

4. Online tutorial

5. Byju’s online study material

9.14 TERMINAL QUESTIONS

9.14.1 Short Answer type

1. Draw pin diagram of 80286.

2. Draw architecture 80386.

3. Draw pin diagram of 80486.

	MSCPH502
	Memory Device and Microprocessor
	DEPARTMENT OF PHYSICS
	SCHOOL OF SCIENCES
	UTTARAKHAND OPEN UNIVERSITY
	Phone No. 05946-261122, 261123
	Toll free No. 18001804025
	Fax No. 05946-264232, E. mail info@uou.ac.in
	htpp://uou.ac.in
	Contents
	3.1. Introduction
	3.6. Microprocessor Instruction Set and Computer Languages
	3.6. MICROPROCESSOR INSTRUCTION SET AND COMPUTER LANGUAGES

	4. Advanced Microprocessors and Peripherals by A. K. Ray
	4.3.2. Operations Of Microprocessor
	4.3.2.1. The 8085 Instruction Format
	4.3.3. The 8085 Addressing Modes
	4.4. 8085 Instruction Set
	4.5. Address Bus
	4.3.2. OPERATIONS OF MICROPROCESSOR
	4.3.2.1. THE 8085 INSTRUCTION FORMAT
	4.3.3. THE 8085 ADDRESSING MODES
	4.4. 8085 INSTRUCTION SET
	An instruction is a binary pattern designed inside a microprocessor to perform a specific function. Each instruction is represented by 8 bit binary value. Instruction set can be categorized into 5 types:
	4. Advanced Microprocessors and Peripherals by A. K. Ray (1)
	5.4.1.1. Input Port
	5.5.2. Interfacing Input Device
	5.4.1. INPUT OUTPUT INTERFACING 8085 MICROPROCESSOR
	Any application of a microprocessor based system requires the transfer of data between external circuitry to the microprocessor and microprocessor to the external circuitry. User can give information to the microprocessor using keyboard and user can s...
	5.4.1.1. INPUT PORT
	It is used to read data from the input device such as keyboard. The simplest form of input port is a buffer. The input device is connected to the microprocessor through buffer as shown in the Fig. 1. This buffer is a tri-state buffer and its output is...
	When microprocessor wants to read data from the input device (keyboard), the control signals from the microprocessor activates the buffer by asserting enable input of the buffer. Once the buffer is enabled, data from the input device is available on t...
	Fig. 5.1.
	5.4.1.2. OUTPUT PORT
	Fig.5.2
	When microprocessor wants to send data to the output device, it puts the data on the data bus and activates the clock signal of the latch, latching the data from the data bus at the output of latch. It is then available at the output of latch for the ...
	5.5.1. I/O Device Selection
	5.5.2. INTERFACING INPUT DEVICE
	The microprocessor 8085 accepts 8 bit data from the input device such as keyboard, sensors, transducers etc. Fig. 4 shows the circuit diagram to Input Output Interfacing Techniques (buffer) which is used to read the status of 8 switches. The address f...
	1. Program controlled I/O or Polling control .
	2. Interrupt program controlled I/O or interrupt driven I/O.
	3. Hardware controlled I/O.
	4. I/O controlled by Handshake signals.
	5. I/O controlled by ready signal.

	1. Program controlled I/O or Polling control:
	2. Interrupt program controlled I/O or Interrupt driven I/O:
	3. Hardware controlled I/O:
	4. I/O Control by handshake signals:
	5. I/O control by READY signal:
	Isolated I/O –

	4. Advanced Microprocessors and Peripherals by A. K. Ray (2)
	6.3 The 8085 Programming Model

	6.4. Instruction Set Classification
	6.4.1 Data Transfer Operation
	6.5. Instruction Format
	6.6.4. Register Indirect Addressing
	6.6.5. Implicit Addressing
	6.3 THE 8085 PROGRAMMING MODEL

	6.4 INSTRUCTION SET CLASSIFICATION
	The arithmetic instructions perform mathematical operations such as addition, subtraction, increment, and decrement on the data in registers or memory.
	 Addition: Any 8-bit number, or the contents of a register, or the contents of a memory location can be added to the contents of the accumulator and the resulted sum is stored in the accumulator.
	In 8085, no two other registers can be added directly, i.e. the contents of B and C registers cannot be added directly. To add two 16-bit numbers the 8085 provides DAD instruction. It adds the data within the register pair to the contents of the HL re...
	6.4.3 LOGICAL OPERATIONS
	6.5. INSTRUCTION FORMAT
	The Instruction Format of 8085 is classified on the basis of instruction length as of one, two and three byte instructions. First part of instruction is opcode which can be from one bit to one byte length. The 8085 instruction set, according to word ...
	 One-Byte Instructions
	A 1-byte instruction share opcode and operand in same one byte. Operand(s) are internal register or memory and are coded into the instruction. For example:

	6.6. INTRODUCTION TO ADDRESSING MODES
	Every instruction consists of two parts. That is what the operation is to be performed (called operation code or opcode), and on what this operation is to be performed (called operands). For example, in case of A + B, the sign is the opcode, and A & B...
	Each instruction performs an operation on the particular data called operand. An operand should be specified for an instruction to be executed. The operand may be in the general purpose register, accumulator or in a memory location. The way in which t...
	 Immediate addressing
	 Register addressing
	 Direct addressing
	 Register indirect addressing
	 Implicit addressing
	6.6.1 Immediate Addressing
	6.6.2. Register Addressing
	6.6.3. Direct Addressing
	6.6.4. Register Indirect Addressing
	6.6.5. Implicit Addressing
	Conversion of Binary number to ASCII Code
	Example: find the ASCII text conversion of the following string of binary numbers: 01110111 01101111 01110010 01100100

	9.3.3.1. Bit Set/Reset (Bsr) Mode
	9.3.3.1.2. Mode 0 - Simple I/O
	9.3.3.1.3. Mode 0 – Input Mode
	9.3.3.1.4. Mode 0 - Output Mode
	9.3.1.7. Output Handshaking Signals
	9.6.1. Architecture
	9.9.1.1. P5 Microarchitecture Based
	9.9.1.2. P6 Microarchitecture Based
	9.9.1.3. Pentium Pro
	9.9.1.4. Pentium Ii
	9.9.1.5. Pentium Iii
	9.9.1.6. Pentium 4

	9.3.3.1.2. MODE 0 - SIMPLE I/O
	In this mode, the ports can be used for simple I/O operations without handshaking signals. Port A, port B provide simple I/O operation. The two halves of port C can be either used together as an additional 8-bit port, or they can be used as individua...
	9.3.3.1.3. MODE 0 – INPUT MODE
	9.3.1.5. MODE 1 - STROBED INPUT/OUTPUT MODE
	When we wish to use port A or port B for handshake (strobed) input or output operation, we initialize that port in mode 1 (port A and port B can be initialized to operate in different modes, i.e., for e.g., port A can operate in mode 0 and port B in m...
	9.3.1.8. MODE 2 - STROBED BIDIRECTIONAL INPUT/OUTPUT MODE
	Only port A can be initialized in this mode. Port A can be used for bidirectional handshake data transfer. This means that data can be input or output on the same eight lines (PA0 - PA7). Pins PC3 - PC7 are used as handshake lines for port A. The rema...
	9.5.1. THE FIRST X86 DESIGN
	9.6.1.1. PROTECTED MODE
	FIG.9.7: INTERNAL BLOCK DIAGRAM OF 80286 MICROPROCESSOR
	9.9.1.1. P5 MICROARCHITECTURE BASED
	9.9.1.2. P6 MICROARCHITECTURE BASED
	9.9.1.3. PENTIUM PRO
	9.9.1.4. PENTIUM II
	9.9.1.5. PENTIUM III
	9.9.1.6. PENTIUM 4

	4. Advanced Microprocessors and Peripherals by A. K. Ray

