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1.1 Introduction 

The conception that matter is composed of small indivisible particles is redundant now. 

However, it took lot of time and rigorous efforts to come up with modern day experiments.  

In late nineteenth century, most of the scientists were convinced that the matter is made up of 

atoms. In 1898, British scientist J.J. Thomson’s suggested plum pudding model which stated 

that atoms are like positively charged solid spheres of matter and electron is embedded on it. It 

also stated that electrons are negatively charged. Lendard in 1903, observed that the cathode 

rays passes mostly undeviated through materials of small thickness. He proposed that the atoms 

are composed of positive tiny particles and electrons. However, these models were not 

consistent with each other. This was solved by Ernest Rutherford from 1906 to 1911. He 

performed a series of experiments in alpha particle scattering.  

He bombarded the target (thin gold foil) with alpha particles and carefully studied their 

deflection patterns. He observed that most of the alpha particles passed undeviated/ small 

deviation through the gold foil. However, some of them showed large deflections and a very 

few completely rebounded back. Alpha particles completely reflect because it might have 

encountered very heavy mass on its path. However, most of them passed un-deflected. This 

was because the heavy mass occupied very less space and atom had lot of empty space in it.  

After analysing quantitatively, he also suggested that the heavy mass/particle due to which the 

alpha particle showed complete or large deflections was positively charged and almost all the 

mass of atom was concentrated in it. He also estimated the size of the particle to be ~    10-15 

m. On the basis of these observations, he suggested a nuclear model. In accordance with this 

model, an atom contains positively charged particle – nucleus, placed at the center of the atom. 

Almost all the mass of the atom is concentrated at the nucleus of the atom. Outside the nucleus, 

electrons with some separation move around it. The space between nucleus and the electrons 

in an atom is empty and determines the size of the atom. 

The amount of negative and positive charge is equal, thus explaining the charge neutrality of 

an atom. He also suggested that electrons are constantly in motion because the electrons at rest 

would experience coulombic attraction and fall into nucleus. However, the Rutherford couldn’t 

explain much about electron’s motion. It couldn’t explain the absorption and emission spectra 

obtained for hydrogen and hydrogen like atoms. 

Niel Bohr proposed an atomic model in 1913 which could explain the hydrogen spectral lines. 

He suggested that electrons would revolve around the nucleus in circular orbits under the 

coulombic attraction between positively changed nucleus and negatively charged electrons. His 

model is in accordance with classical laws of mechanics and as per classical laws, the electron 

orbit around the nucleus in fixed orbit. These electrons revolve with orbital angular momentum, 

�⃗�  having a magnitude of  
𝑛ℎ

2
 , where n is the orbit number 1, 2, ….. and h is the Planck’s 

constant. This introduced the concept of quantisation. He also postulated that the electrons 
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didn’t radiate electromagnetically in the fixed allowed orbits, inspite of being in acceleration 

motion. This showed that the electrons moved in stationery orbits without falling into nucleus. 

He further stated that the electrons moving in an orbit having energy 𝐸𝑖 when jumps to lower 

orbit having energy 𝐸𝑓 emits. Electromagnetic radiation with frequency  as  =

 
𝐸𝑓−𝐸𝑖

ℎ
 𝑜𝑟 𝐸 = ℎ . Further, electron could also absorb energy quanta of suitable frequency 

and hence jump to higher orbit. This explained the observed absorption and emissions spectra 

in hydrogen as well as atoms with higher atomic number. The observed line spectra for various 

atoms could be now explained with the help of Bohr theory. However, the Bohr’s theory 

couldn’t explain the ‘fine structure’ of hydrogen atom. When the line structure was being 

observed under high resolution it showed several components of one spectral line with close 

energy. Sommerfield in 1916 tried to explain the existence of these components by considering 

the Bohr’s circular orbits as elliptical. He evaluated total energy of the electron for a particular 

orbit. However, the introduction of elliptical orbit didn’t add any new energy levels and hence 

failed to explain ‘Fine Structure’. Therefore, he added relativistic corrections. This could 

explain the ‘Fine Structure’ to an extent.  

The discrepancies were further removed by considering the Dirac theory which accounted the 

spin-orbit coupling effect and quantum – mechanical relativistic corrections. The fine structure 

of hydrogen atom shall be discussed later in this unit. To understand the quantum mechanical 

approach, the Schrödinger’s treatment to hydrogen atom should be understood. 

 

1.2 Objectives 

After studying this unit, the learners should be able to: 

 Explain and apply Schrödinger’s Time-Independent Wave Equation 

 Understand and describe the fine Structure of Hydrogen 

 Apply Pauli’s Exclusion principle and exchange symmetry 

 State Hund’s Rule 

 Understand and explain the Helium Atom and it’s Spectrum 

 

1.3 Schrödinger’s Time-Independent Wave Equation 

With the development of de-Broglie idea of matter waves, Schröedinger presented his wave 

equation in 1926. This equation is known to be the fundamental equations in quantum 

mechanics as it represents a differential form of the de-Broglie waves associated with moving 

particles, similarly what Newton’s second law of motion was described in classical mechanics 

for bulky objects.  

A mathematical function ψ was introduced by Schrödinger. It is a complex function of variable 

space (the three axes) and time coordinates, associated with a moving particle. The 

mathematical representation of wave function ψ can be written as:  
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�̅� = �̅�(𝑥, 𝑦, 𝑧, 𝑡) 

where �̅� is called the wave function of the moving particle, being the characteristic of the 

associated de-Broglie wave. It is postulated that �̅� has the form of a solution of the classical 

wave equation. 

The differential equation that represents the 3-Dimensional wave motion is:  

𝜕2�̅�

𝜕𝑥2
+
𝜕2�̅�

𝜕𝑦2
+
𝜕2�̅�

𝜕𝑧2
=

1

𝑣2
𝜕2�̅�

𝜕𝑡2
   …(1) 

where v is known as the wave velocity. 

Now, the wavelength associated with a particle of mass ‘m’ moving with velocity ‘v’ is given 

by: 

       𝜆 =
ℎ

𝑚𝑣
 

Using Einstein’s postulate E = hνʹ relating the frequency νʹ of the de-Broglie waves with the 

total energy E of the particle, we have 

∴
1

𝑣2
=

1

𝜈′2𝜆2
=
𝑚2𝑣2

𝐸2
  

Making this replacement in equation (1), 

𝜕2�̅�

𝜕𝑥2
+
𝜕2�̅�

𝜕𝑦2
+
𝜕2�̅�

𝜕𝑧2
=
𝑚2𝑣2

𝐸2
𝜕2�̅�

𝜕𝑡2
  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) �̅� =

𝑚2𝑣2

𝐸2
𝜕2�̅�

𝜕𝑡2
  …(2) 

The result of the above equation is of the formula �̅� =  𝜓𝑒
−2𝜋𝑖𝐸𝑡

ℎ⁄    …(3) 

Where 𝜓 is the wave function of only space coordinates (here independent of time), i.e. 

      

�̅� =  𝜓(𝑥, 𝑦, 𝑧) 

On differentiating the equation (3) w.r.t time t, we get 

𝜕2𝜓

𝜕𝑡2
= 𝜓𝑒

−2𝜋𝑖𝐸𝑡
ℎ⁄ (−

2𝜋𝑖𝐸

ℎ
)
2

 

      

= −
4𝜋2𝐸2

ℎ2
𝜓𝑒

−2𝜋𝑖𝐸𝑡
ℎ⁄  

By substituting for �̅� and 
𝜕2𝜓

𝜕𝑡2
 in equation (2), we get 
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(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) �̅� = −

4𝜋2𝑚2𝑣2

ℎ2
�̅�  …(4)  

Considering this case for particle having non-relativistic motion, the particle’s kinetic energy 

K=1/2mv2. Thus, if V is the potential energy of the particle, then we can write,  

1

2
𝑚𝑣2 = 𝐾 = 𝐸 − 𝑉  

Or      𝑚2𝑣2 = 2𝑚(𝐸 − 𝑉)     

Making this substitution in equation (iv), we get 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) �̅� = −

8𝜋2𝑚(𝐸−𝑉)

ℎ2
�̅�  

Let us use the mathematical symbol called ‘Laplacian operator’ 

∇2𝜓 +
8𝜋2𝑚

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

Above equation is known as ‘Schrödinger’s time-independent wave equation’ for a particle 

with its time-independent ‘eigen function’ ψ as its solution.  

Since, you must be aware of the properties of eigen function (i.e. it must be finite everywhere, 

single-valued, continuous and should have continuous first derivative everywhere) during your 

graduation, let us now concentrate on the quantum mechanical interpretation for one electron 

atom (e.g. H-atom) being the simplest bounded system having a positively charged nucleus and 

negatively charged electron (-e), moving under Columbian attractive forces. 

Consider one-electron of an atom having mass ‘m’ and the nucleus of mass ‘M’ move about at 

the centre of mass which is assumed to be fixed. We may consider substituting this actual atom 

by an equivalent model of atom in which the nucleus is considered to be infinitely massive and 

the electron has reduced mass ‘µ’ given by 

𝜇 =
𝑀𝑚

(𝑀 +𝑚)
 

The electron with reduced-mass moves about the infinitely massive (hence, also considered to 

be stationary) nucleus with the equivalent electron-nucleus separation as in the actual atom.  

We consider an electron of reduced mass ‘µ’ moving under the three-dimensional Columbian 

potential defined as a function of (x, y, and z) such as: 

𝑉 = 𝑉(𝑥, 𝑦, 𝑧) = −
𝑍𝑒2

4𝜋𝜖𝑜√𝑥2 + 𝑦2 + 𝑧2
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 where x, y, z are the rectangular coordinates of the electron relative to the nucleus, which is 

fixed and taken as the origin. The term ‘radius vector’  𝑟 = √𝑥2 + 𝑦2 + 𝑧2 is the electron-

nucleus separation. 

You must be well aware till now about the Schröedinger equation as discussed previously. 

In Cartesian coordinates, we have 

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝜇

ℎ2
(𝐸 − 𝑉)𝜓 = 0 

Since this equation involves three coordinates of V and hence, three equations must be 

required, it is always easy to use spherical polar coordinates viz. r, θ, φ (as shown in Fig.1) 

 

 

Fig. 1 The correlation between Cartesian coordinates (x, y, z)  and Spherical polar coordinates 

(r, θ, φ) for a point P 

The relation between Cartesian coordinates (x, y, z) and the spherical polar coordinates (r, θ, 

φ) of  point P are:   

𝑥 = 𝑟. 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑, 𝑦 = 𝑟. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑 and 𝑧 = 𝑟. 𝑐𝑜𝑠𝜃 

And polar angle 𝜃 = 𝑐𝑜𝑠−1
𝑧

√𝑥2+𝑦2+𝑧2
 and azimuthal angle 𝜑 = 𝑡𝑎𝑛−1

𝑦

𝑥
 

In spherical polar coordinates, the Schröedinger equation comes out to be  

 

 





O 

x 

z 

y 

P 

r
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1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2𝜓

𝜕𝜙2
+
8𝜋2𝜇

ℎ2
(𝐸 − 𝑉)𝜓 = 0 …(5) 

 The potential energy V(r) can also be expressed as 𝑉(𝑟) = −
𝑍𝑒2

4𝜋𝜖𝑜𝑟
  …(6) 

Using the method of separation of variable, we first separate the radial component r and angular 

terms (θ, φ) assuming that 

     𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟). 𝑌(𝜃, 𝜑) 

where R(r) is the called as radial function depending upon the radius r alone, and Y(θ,φ) is 

known as angular function depending upon θ and φ. Thus, equation (1) can be rewritten as 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
)𝑌 +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌

𝜕𝜃
)𝑅 +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
𝑅 +

8𝜋2𝜇

ℎ2
(𝐸 − 𝑉(𝑟))𝑅𝑌 = 0  

Multiplying the entire equation by 
𝑟2

𝑅𝑌
 and rearranging, we get 

1

𝑅2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) 𝑌 +

8𝜋2𝜇𝑟2

ℎ2
(𝐸 − 𝑉(𝑟)) = −

1

𝑌
[
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
]  

The left side of this equation depends on the variable r, while the right side depends upon the 

other variables θ and φ. Hence, this equation can be correct only if both sides of it are equal to 

the same constant. Let this constant be l(l+1). Thus, we get a radial equation. 

1

𝑅2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) 𝑌 +

8𝜋2𝜇𝑟2

ℎ2
[𝐸 − 𝑉(𝑟)] = 𝑙(𝑙 + 1)  …(7) 

And angular equation 

−
1

𝑌
[
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜙2
] = 𝑙(𝑙 + 1) 

The last equation cab be further separated by substituting 

   𝜓(𝜃, 𝜑) = 𝛩(𝜃).𝛷(𝜑) 

This equation gives 

−
1

Θ
𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
(𝑠𝑖𝑛𝜃

𝑑Θ

𝑑𝜃
) + 𝑙(𝑙 + 1)𝑠𝑖𝑛2𝜃 = 𝑚𝑙

2 …(8) 

𝑎𝑛𝑑 −
1

Φ

𝑑2Φ

𝑑ϕ2
= 𝑚𝑙

2    …(9) 

Equation (6), (7), and (9)  can be written as  

     
𝑑2Φ

𝑑ϕ2
+𝑚𝑙

2Φ = 0   …(10) 
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1

𝑠𝑖𝑛𝜃

𝑑

𝑑𝜃
(𝑠𝑖𝑛𝜃

𝑑Θ

𝑑𝜃
) + [𝑙(𝑙 + 1) −

𝑚𝑙
2

𝑠𝑖𝑛2𝜃
] Θ = 0   …(11) 

𝑎𝑛𝑑 
1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) + [

8𝜋2µ

ℎ2
{𝐸 − 𝑉(𝑟)} −

𝑙(𝑙+1)

𝑟2
] 𝑅 = 0 …(12) 

Thus, we have fragmented the Schröedinger equation of Hydrogen atom into three ordinary 

differential equations, each having a single variable r, θ, φ, respectively. After finding the 

adequate solutions of these equations, we find the following quantum numbers:  

 

Solution of the equations: The appearance of quantum numbers is explained ahead as: 

1. The solution of Φ(φ) equation (10) is Φ𝑚𝑙(𝜑) = 𝐴𝑒
𝑖𝑚𝑙𝜙    …(13) 

where A is the known as the constant of integration. In order that it is an acceptable 

solution, the wave function Φ𝑚𝑙must be a single-valued function of position, that is, it 

must have a single value at a given point in space. It is evident that the azimuth angles 

φ and φ+2π are actually the same angle. Hence it must by true that  

     Φ𝑚𝑙(𝜑) =  Φ𝑚𝑙(𝜑 + 2𝜋) 

  or   𝐴𝑒𝑖𝑚𝑙𝜙 = 𝐴𝑒𝑖𝑚𝑙(𝜙+2𝜋) 

  or    1 =  𝑒𝑖𝑚𝑙(2𝜋)  

  or   1= cos(ml2π) + i sin(ml2π) 

This can only happen when ml is 0 or positive or negative integer, i.e.  

𝑚𝑙 = 0,±1,±2, ±3,… 

The constant ml is a quantum number of the atom. 

2. The solution of Θ(θ) equation (11) is known to be  

Θ𝑙.𝑚𝑙(𝜃) = 𝑁𝑙.𝑚𝑙𝑃𝑙
|𝑚𝑙|(𝑐𝑜𝑠𝜃)    …(14) 

where 𝑁𝑙.𝑚𝑙 is a constant and 𝑃𝑙
|𝑚𝑙| is ‘Associated Legendre Polynomial’ which has different 

forms or different values of l and |ml|, that is  

   l = |ml|, |ml|+1, |ml|+2, |ml|+3,… 

This requirement can be expressed as a condition on ml in the following form: 

𝑚𝑙 = 0,±1, ±2,±3,… ,±𝑙 

The constant l is another quantum number. 

3. For solving equation (12) we must specify V(r). In the present case  
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𝑉(𝑟) = −
𝑍𝑒2

4𝜋𝜀𝑜𝑟
   

Then, the solution of the equation is known to be  

𝑅𝑛,𝑙(𝑟) = 𝑁𝑛,𝑙𝑒
−𝑍𝑟 𝑛𝑎𝑜⁄ (

2𝑍𝑟

𝑛𝑎𝑜
)
𝑙

𝐿𝑛+1
2𝑙+1 (

2𝑍𝑟

𝑛𝑎𝑜
)  …(15) 

Where, 𝑁𝑛,𝑙 is a constant and 𝐿𝑛+1
2𝑙+1 is ‘Associated Laguerre Polynomial’ which has 

different forms for different values of n and l. The parameter ao is =
ℎ2𝜀𝑜

𝜋µ𝑒2
, which, in the old 

quantum theory, is the known as the smallest Bohr orbit of H-atom. 

The solution to above equation is acceptable and it remains finite if the constant E in equation 

(12) is positive, or has one of the negative values of En (which corresponds to bound states), 

given by  

𝐸𝑛 = −
µ𝑍2𝑒4

8𝜀𝑜
2ℎ2
(
1

𝑛2
)  

where n is an integer, which must be equal to or greater than l+1. That is,  

     n = l+1, l+2, l+3, … 

This requirement may be expressed as a condition on l in the form  

     l = 0, 1, 2, 3, … (n-1) 

Here, the constant n is also a quantum number 

The total eigen functions for one-electron atom can be written as: 

𝜓𝑛,𝑙,𝑚𝑙(𝑟, 𝜃, 𝜙) = 𝑅𝑛,𝑙(𝑟) Θ𝑙,𝑚𝑙 (𝜃) Φ𝑚𝑙(𝜙) 

where R, Θ, Φ are given by equations (xiv), (xv) and (xvi). The constants 𝑁𝑛,𝑙, 𝑁𝑙.𝑚𝑙, and A 

elaborated in these equations are so adjusted that each equation is normalized. The exact 

normalized eigen function for ground state (corresponding for n = 1, l = 0, ml = 0) of one 

electron atom is     𝜓100 =
1

√𝜋
(
𝑍

𝑎𝑜
)
3
2⁄

𝑒−𝑍𝑟 𝑎𝑜⁄  

Physical interpretation of various quantum numbers: The three quantum numbers originated 

from the solutions of Schroedinger equation are:  

n = 1, 2, 3,…  

l = 0, 1, 2, 3,… (n-1), 

𝑚𝑙 = 0,±1,±2,±3,… ,±𝑙  
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These quantum numbers can be explained as: 

Consider the case of one electron atom; we have the total energy of bound states atom obtained 

from Schröedinger Equation𝐸𝑛 = −
𝜇𝑍2𝑒4

8𝜀𝑜
2ℎ2
(
1

𝑛2
). Since, the energy eigen values depends only 

on quantum number n, they were in excellent agreement experimental values based on with old 

quantum theory of Bohr model. Hence, n is said to be known as “Total” or “Principal Quantum 

Number”. 

To understand the value of l, we have to consider the radial wave equation based on equation 

(12):    
1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) + [

8𝜋2µ

ℎ2
{𝐸 − 𝑉(𝑟)} −

𝑙(𝑙+1)

𝑟2
] 𝑅 = 0 

Here, the total energy of atom comprises of two components, viz. kinetic energy K and potential 

energy V (for its electrons). Further, kinetic energy is subdivided into radial components due 

to motion of electron round the nucleus and orbital component due to the nucleus itself. 

Therefore, we have  

𝐸 = 𝐾𝑟𝑎𝑑 + 𝐾𝑜𝑟𝑏 + 𝑉(𝑟) 

Using this substitution in the radial equation, we have 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) + [

8𝜋2µ

ℎ2
{𝐾𝑟𝑎𝑑 + 𝐾𝑜𝑟𝑏} −

𝑙(𝑙+1)

𝑟2
] 𝑅 = 0  

Since the radial component is basically originated due to electron motion, hence it is free from 

orbital counterpart. And this is only possible when the last two terms are equal to each other 

i.e.  

𝐾𝑜𝑟𝑏 =
ℎ2

8𝜋2µ

𝑙(𝑙+1)

𝑟2
  

If angular momentum is denoted by  
𝐿
→, then we know that 𝐿 = 𝜇𝑣𝑟 and therefore,  

𝐾𝑜𝑟𝑏 =
1

2
𝜇𝑣2 =

𝐿2

2µ𝑟2
 

     𝑂𝑟 
𝐿2

2µ𝑟2
=

ℎ2

8𝜋2µ

𝑙(𝑙+1)

𝑟2
 

Or      L= √(𝑙(𝑙 + 1)
ℎ

2𝜋
 

Since l varies from 0, 1, 2, 3,…(n-1), this proves that the electron can have discrete values of 

angular momentum. Finally, the total energy E is also quantized like the orbital angular 

momentum and it remains conserved. And this is just demonstrated by quantization of l. Hence, 

l is termed as the ‘orbital’ quantum number. The expression for angular momentum was 

obtained through the theory of Born-Sommerfield, where k was replaced by √(𝑙(𝑙 + 1). The 

method for denoting the state is writing the total angular quantum number along with the 
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various angular momentum states as letters {like: s (l=0), p(l=1), d(l=2), f(l=3), …}. For 

example, a state with n = 2 with l = 0 is shown as 2s state. Similarly, another state with n = 3 

and l=1 is written as 3p.  

The analysis of ml originates when the atom is placed in an external magnetic field. You can 

imagine that when an electron is revolving round the nucleus, it behaves like a small loop of 

current having magnetic dipole when placed in an external magnetic field. Its potential energy 

depends upon its magnetic moment and its orientation with respect to the field. But here, the 

magnitude and direction of the magnetic moment depends upon the magnitude and direction 

of angular momentum L⃗  of the electron. This also determines the magnetic potential energy. 

Since the direction of L is also quantized with respect to external magnetic field. If the field is 

along the z-axis, the component of L⃗  can be defined as  

𝐿𝑧 = 𝑚𝑙
ℎ

2𝜋
, where  𝑚𝑙 = 0,±1,±2,±3,… ,±𝑙. 

Since we can observe that ml describes the quantization of L⃗  in magnetic field (known as space 

quantization), and finally, the discretization of magnetic energy of the electron. Therefore, ml 

is known as magnetic quantum number.  

Therefore, n, l, and ml are the three quantum numbers used to specify each of the eigen 

functions of single electron atom here n specifies the total energy (the eigen value), l specifies 

the angular momentum and ml determines the z-component of the angular momentum of the 

electron. For a given value of n, there are different values of l and for every different value of 

l we have several values of ml. Hence, several different eigen functions resembles to exactly 

the same eigenvalue En. And this property of eigen functions is said to be ‘degenerate’ state. 

 In accordance with old quantum theory the quantum-mechanical interpretations of 

energy states of single electron system matches well with each other. The differences that are 

crucial to understand is that in quantum mechanics, the electron should not be considered as 

moving around the nucleus in definite orbits. Here it is necessary to consider the relative 

probabilities of finding the electron in volume elements at various locations rather than is 

specific orbits. For this consideration, we relook the wave-function of single-electron system 

i.e.  

𝜓𝑛,𝑙,𝑚𝑙(𝑟, 𝜃, 𝜙) = 𝑅𝑛,𝑙(𝑟) Θ𝑙,𝑚𝑙 (𝜃) Φ𝑚𝑙(𝜙) 

Where, the symbols have their usual meaning as specified above in equations (9), (10) and (11) 

respectively. We must know till now that the electron probability density, given by |𝜓|2 was 

mathematically formulated as:  

|𝜓|2 = |𝑅|2.  |Θ|2.  |Φ|2, where |𝜓|2 = 𝜓∗𝜓 

We observe that |Φ|2 = Φ∗Φ will result in A2 and since A is a constant; this shows that ψ is 

independent of Φ and does not directly determine probability density (|𝜓|2). This also dispels 

that the dependent factors were |𝑅|2.  |Θ|2. From the relation of radial probability density for 
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finding the electron between r and r+dr is given by |𝑅|2(4𝜋𝑟2𝑑𝑟). The value of probability 

density P(r) is maxima at ao and 4ao. These values of radii ao and 4ao corresponds to n=1 and 

n=2 Bohr’s orbit where the electrons is most likely to be found. In Bohr’s orbit at 4ao, the 

average distance of electron from the nucleus is given by  

�̅� = ∫ 𝑟
∞

0
𝑃(𝑟)𝑑𝑟 =

𝑛2𝑎𝑜

𝑍
[1 +

1

2
{1 −

𝑙(𝑙+1)

𝑛2
}]  

where, ao is the smallest Bohr orbit. This is same as for the Bohr-Sommerfeld elliptical orbit. 

Solved Example No 1:  

Question: Find the parity of N atom in ground state. 

Solution- It is known that the parity is even if the sum of l values (l) for all the electron 

is even; and it carries an odd parity if l is odd. 

The electronic configuration of N atom in ground state is given as: 

        1𝑠2 2𝑠2 2𝑝3  

The value of l = 0 for s – electron and l = 1 for p – electron. 

Therefore, l = 3 

Hence, the parity is odd. 

 

1.4 Fine Structure of Hydrogen 

For hydrogen atom, when an electron transmits from one energy level to another, spectral lines 

are observed in an emission spectrum. The wavelengths of these lines are in accordance with 

Rydberg’s formula. These are collectively known as Line spectra of hydrogen atom. When 

these spectral lines split due to spin - orbit coupling effect and quantum mechanical relativistic 

corrections, it gives rise to fine structure  

1.4.1 Effect due to electron’s spin and orbital motion 

The interaction due to internal magnetic field of an atom and electron’s spin magnetic dipole 

moment is partly responsible for the fine-structure of one electron atoms (excited state). It is 

well understood that the internal magnetic field of an atom arises due to the electron’s orbital 

motion. Therefore, this type of interaction is called as spin-orbit interaction. 

Let us consider electric field �⃗� , defined as a gradient of potential function V(r), where r 

represents the distance between nucleus and electron of an atom. 

�⃗� = 𝑔𝑟𝑎𝑑 𝑉(𝑟) 
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=
𝑑�⃗⃗� (𝑟)�̂�

𝑑𝑟
     …(16) 

where �̂� is the unit vector in which electric field �⃗�  is directed. The magnetic field caused due 

to the orbital motion of the associated electron moving with velocity v in electric field �⃗�  is: 

     �⃗� =
1

𝑐2
(�⃗� × 𝑣 ) 

=
1

𝑐2𝑟

𝑑𝑉(𝑟)

𝑑𝑟
(𝑟 × 𝑣 ) {∵ �̂� =

𝑟 

𝑟
 𝑓𝑟𝑜𝑚 (1)} …(17) 

The orbital motion of an electron causes angular momentum �⃗� , where �⃗�  is further defined as 

�⃗� = 𝑚𝑟 × 𝑣 , thus equation (17) may be written as  

     �⃗� =
1

𝑚𝑐2
1

𝑟

𝑑𝑉(𝑟)�⃗� 

𝑑𝑟
    …(18) 

The magnetic field �⃗�  orients the electron’s spin magnetic moment 𝜇𝑠 and hence the magnetic 

potential energy of orientation, Δ𝐸𝑙,𝑠. The expression of Δ𝐸𝑙,𝑠is given as 

Δ𝐸𝑙,𝑠 = −𝜇𝑠. �⃗�     …(19) 

But spin magnetic moment is ∗ 𝜇𝑠 = −𝑔𝑠 (
𝑒

2𝑚
) 𝑆 , where 𝑔𝑠 = 2 (for electrons) and 𝑆  is spin 

angular momentum. 

Thus, equation (19) can be written as: Δ𝐸𝑙,𝑠 = −
𝑒

𝑚
𝑆 . �⃗�     …(20) 

Substituting the value of �⃗�  from equation (18) into (20), we get 

Δ𝐸𝑙,𝑠 = −
𝑒

𝑚2𝑐2
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
𝑆 . �⃗�     …(21) 

In accordance with ‘Thomson precession’ when nucleus is considered to be in rest, Δ𝐸𝑙,𝑠is 

reduced by a factor of 2, i.e. 

    Δ𝐸𝑙,𝑠 = −
𝑒

2𝑚2𝑐2
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
𝑆 . �⃗�     …(22) 

Let us now express the equation (22) in terms of j, l and s quantum numbers.  

We know that   𝐽 = �⃗� + 𝑆       …(23) 

Taking self dot products of equation (23), we get 

    𝐽 . 𝐽 = (�⃗� + 𝑆 ). (�⃗� + 𝑆 ) 

 = (�⃗� . �⃗� + �⃗� . 𝑆 + 𝑆 . �⃗� + 𝑆 . 𝑆 ) 

= (�⃗� . �⃗� + 2 �⃗� . 𝑆 + 𝑆 . 𝑆 )  ( ∵ �⃗� . 𝑆 = 𝑆 . �⃗� )  
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∴ 𝑆 . �⃗� =
1

2
[𝐽 . 𝐽 − �⃗� . �⃗� − 𝑆 . 𝑆 ]  

=
1

2
[𝐽2 − 𝐿2 − 𝑆2]  

𝑆 . �⃗� =
1

2
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

ℎ2

4𝜋2
   …(24) 

∴ Δ𝐸𝑙,𝑠 = −
𝑒ℎ2

16𝜋2𝑚2𝑐2
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
  {from eq.22} (25) 

As electron is in motion the terms 
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
 is not fixed. Therefore, an average value during 

unperturbed motion must be considered. So, 

Δ𝐸𝑙,𝑠 = −
𝑒ℎ2

16𝜋2𝑚2𝑐2

⏞    

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟

[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
   …(26) 

To evaluate the average value of 
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
, the radial probability density of the required state and 

potential function V(r) is considered. The potential function V(r) for one-element atoms in 

Colombian field is: 

𝑉(𝑟) = −
1

4𝜋𝜖𝑜

𝑍𝑒

𝑟
 

𝑑𝑉(𝑟)

𝑑𝑟
= −

1

4𝜋𝜖𝑜

𝑍𝑒

𝑟2
    …(27) 

Substituting the value of 
𝑑𝑉(𝑟)

𝑑𝑟
 from (27) into (26), we get: 

Δ𝐸𝑙,𝑠 = −
𝑍𝑒2ℎ2

4𝜋𝜖𝑜(16𝜋2𝑚2𝑐2)
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

𝑇

𝑟3
    ....(28) 

Considering radial density function of H-Atom, the average value of 1/r3 can be evaluated as: 

𝑇

𝑟3
=

𝑍3

𝑎0
3𝑛3𝑙(𝑙+

1

2
)(𝑙+1)

, hen l > 0        …(29)a 

where 𝑎0 = (
4𝜋𝜖𝑜ℎ

2

4𝜋2𝑚𝑐2
)         …(29)b 

a0 is the radius of the smallest Bohr orbit for hydrogen atom. Substituting the value of 
𝑇

𝑟3
 from 

equation (29)a in (28), we get 

Δ𝐸𝑙,𝑠 = −
𝑍𝑒2ℎ2

4𝜋𝜖𝑜(16𝜋2𝑚2𝑐2)
.

𝑍3

𝑎0
3𝑛3𝑙(𝑙+

1

2
)(𝑙+1)

[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]  … (30) 

The above equation is simplified to the following equation:  

Δ𝐸𝑙,𝑠 = 
𝑅∞𝛼

2𝑍4ℎ𝑐

2𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]    …(31) 
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Where, 𝑅∞ =
𝑚𝑒4

8𝜖0ℎ3𝑐
 (Rydberg constant for infinitely heavy nucleus) and 𝛼 =

𝑒2

2𝜖0ℎ𝑐
 (Fine 

structure constant). 

Due to spin-orbit coupling effect, term shift ∆𝑇𝑙,𝑠 arises 

∆𝑇𝑙,𝑠 = −
∆𝐸𝑙,𝑠
ℎ𝑐

 

    =
𝑅∞𝛼

2𝑍4

2𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)] …(32) 

For one electron atom like hydrogen s=1/2 and 𝑗 = 𝑙 ± 𝑠 = 𝑙 ± 1 2⁄  

Solving the term [𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)] is l and –(l+1) for j = 𝑙 + 1 2⁄ and j = 𝑙 −

1
2⁄ , respectively . 

The term shift corresponding to j = 𝑙 + 1 2⁄  is 

∆𝑇𝑙,𝑠
′ = −

𝑅∞𝛼
2𝑍4

2𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

𝑙     …(33) 

The term shift corresponding to j = 𝑙 + 1 2⁄  is 

    ∆𝑇𝑙,𝑠
′′ = 

𝑅∞𝛼
2𝑍4

2𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

(𝑙 + 1)    …(34) 

Therefore, the coupling effect due to electron’s spin and orbital motion causes splitting of one 

energy level into two levels with different j’s for a given l. 

The difference in the energy levels is obtained by subtracting (33) from (34). 

    ∆𝑇𝑙,𝑠 = ∆𝑇𝑙,𝑠
′ − ∆𝑇𝑙,𝑠

′′  

=
𝑅∞𝛼

2𝑍4

2𝑛3𝑙 (𝑙 +
1
2)
(𝑙 + 1)

(2𝑙 + 1) 

    =
𝑅∞𝛼

2𝑍4

𝑛3𝑙(𝑙+1)
     …(35) 

Putting the values of R∞=1.097×107m-1 and α=1/137 for Hydrogen atom, due to spin-orbit 

interaction. 

∆𝑇′ = 584
𝑍4

𝑛3𝑙(𝑙+1)
𝑚−1 = 5.84

𝑍4

𝑛3𝑙(𝑙+1)
𝑐𝑚−1 …(36) 

From equation no. 36, it is clear that the splitting due to spin-orbit coupling increases with 

increasing atomic number (Z) and decreases with higher n and l.  
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1.4.2 Effect due to relativistic corrections 

Apart from spin-orbit interactions, the relativistic effect also contributes in the splitting of 

energy levels of hydrogen atom. In order to evaluate the shift due to relativistic corrections, 

relativistic Hamiltonian function H for an electron is considered.  

It is known that H=K+V where, k=(p2c2 +mo
2c4)1/2-moc

2 , is the relativistic kinetic energy, V is 

the relativistic potential energy, mo is the rest mass of electron and p its linear momentum. 

𝐻 = (𝑝2𝑐2 +𝑚𝑜
2𝑐4)

1
2⁄ −𝑚𝑜𝑐

2 + 𝑉   …(37) 

   = 𝑚𝑜𝑐
2 (1 +

𝑝2

𝑚𝑜
2𝑐2
)
1
2⁄

−𝑚𝑜𝑐
2 + 𝑉 

   = 𝑚𝑜𝑐
2 (1 +

𝑝2

2𝑚𝑜
2𝑐2
−

𝑝4

8𝑚𝑜
4𝑐4
+⋯) −𝑚𝑜𝑐

2 + 𝑉 

   =
𝑝2

2𝑚𝑜
−

𝑝4

8𝑚𝑜
3𝑐2
+⋯+ 𝑉    …(38) 

Neglecting the higher order terms, it is evident that the change in H due to relativistic correction 

is  

   −
𝑝4

8𝑚𝑜
3𝑐2

 since {𝐻 =
𝑝2

2𝑚𝑜
+ 𝑉}without relativisticcorrection 

Considering −
𝑝4

8𝑚𝑜
3𝑐2

 as perturbation term first order change in energy level can be evaluated. 

The operator p is −𝑖ℏ
𝜕

𝜕𝑞
.  

Therefore, −
𝑝4

8𝑚𝑜
3𝑐2

 becomes −
1

8𝑚𝑜
3𝑐2
(−𝑖ℏ

𝜕

𝜕𝑞
)
4

   

or −
1

8𝑚𝑜
3𝑐2
ℏ2∇4…(39) 

For hydrogen atom, let us consider 𝜓 as unperturbed wave function, then first order shift in 

energy due to perturbation term is given as  

    Δ𝐸𝑟 = −∫𝜓
∗ (

ℏ4

8𝑚𝑜
3𝑐2
)∇4𝜓𝑑𝜏   …(40) 

Evaluating the integral in equation no. 25 gives 

    Δ𝐸𝑟 = −
𝑅∞𝛼

2𝑍4ℎ𝑐

𝑛3
(
1

𝑙+
1

2

−
3

4𝑛
)    …(41) 

Where α is the fine structure constant and R∞ is the Rydberg’s Constant. 
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Hence, the term shift due to relativistic correction is  

   ∆𝑇𝑟=−
∆𝐸𝑟

ℎ𝑐
= −

𝑅∞𝛼
2𝑍4ℎ𝑐

𝑛3
(
1

𝑙+
1

2

−
3

4𝑛
)    …(42) 

To incorporate the combined effect of spin-orbit coupling and relativistic corrections in a H-

atom spectrum, let us add equations 32 and 42.  

1.4.3 Term shift 

∆𝑇 = −
𝑅∞𝛼

2𝑍4

2𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)] +
𝑅∞𝛼

2𝑍4

𝑛3
(
1

𝑙+
1

2

−
3

4𝑛
)  

=
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑙+
1

2

−
𝑗(𝑗+1)−𝑙(𝑙+1)−𝑠(𝑠+1)

2(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
]   …(43) 

Putting j=l+1/2 and s=1/2, we get 

=
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑙+
1

2

−
𝑙

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
] [

1

𝑙+
1

2

(1 −
1

2𝑙+2
) −

3

4𝑛
] [

1

𝑙+
1

2

(
2𝑙+2−1

2(𝑙+1)
) −

3

4𝑛
]  

 

=
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑙+1
−

3

4𝑛
]      …(44) 

For j=l-1/2, 

=
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑙+
1

2

−
(𝑙−

1

2
)(𝑙−

1

2
+1)−𝑙(𝑙+1)−

3

4

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
]  

=
𝑅∞𝛼

2𝑍4

𝑛3
[
2

2𝑙+1
−

(2𝑙−1)

2
(𝑙+

1

2
)−𝑙2−𝑙−

3

4

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
] 

=
𝑅∞𝛼

2𝑍4

𝑛3
[
2

2𝑙+1
−

(2𝑙−1)(2𝑙+1)

4
−𝑙2−𝑙−

3

4

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
]  

=
𝑅∞𝛼

2𝑍4

𝑛3
[
2

2𝑙+1
−

(4𝑙2−1)

4
−𝑙2−𝑙−

3

4

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
]  

=
𝑅∞𝛼

2𝑍4

𝑛3
[
2

2𝑙+1
−
𝑙2−

1

4
−𝑙2−𝑙−

3

4

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
]  

=
𝑅∞𝛼

2𝑍4

𝑛3
[
2

2𝑙+1
−

−(𝑙+1)

2𝑙(𝑙+
1

2
)(𝑙+1)

−
3

4𝑛
]  
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=
𝑅∞𝛼

2𝑍4

𝑛3
[
2

2𝑙+1
+

2

2𝑙(𝑙+
1

2
)
−

3

4𝑛
]  

=
𝑅∞𝛼

2𝑍4

𝑛3
(

2

2𝑙+1
) [1 +

1

2𝑙
−

3

4𝑛
]  

Δ𝑇 =
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑙
−

3

4𝑛
]      …(45) 

Equation 44 and 45 cab be replaced by one single equation. 

Δ𝑇 =
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑗+
1

2

−
3

4𝑛
]     …(46) 

Equation 46 is identical to equation of energy levels of hydrogen like atom given by 

Sommerfeld’s relativistic equation; as 

Δ𝑇 =
𝑅∞𝛼

2𝑍4

𝑛3
[
1

𝑘
−
3

4𝑛
] 

 

As seen above, the equation is similar to the equation number 31, where k is equal to 𝑗 +
1

2
 

This equation is known as Dirac Equation. 

By substituting the values of 𝑅∞= 1.097 × 107 m-1, α is Rydberg Constant where 𝛼 =  
1

137
 (fine 

structure constant) and Z = 1 for hydrogen atom, we get term shift 

Δ𝑇 =
584

𝑛3
[
1

𝑗+
1

2

−
3

4𝑛
] m-1 

 

or  Δ𝑇 =
5.84

𝑛3
[
1

𝑗+
1

2

−
3

4𝑛
] cm-1 

 

Using, the term shift values in cm-1, the fine structure of Hα line for n = 3 → n = 2 level is 

deduced as shown in Fig. 2 
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Fig. 2 The fine structure of Hα line for n = 3 → n = 2 level 

The selection rules for fine structure of hydrogen atom are 

Δl = ± 1 

Δj =0, ± 1 but j = 0 ↔ j=0 is not allowed 

The above selection rules allow five transitions as shown in the figure. However, only doublets 

are observed in general practise instead of these five components. This happens due to thermal 

motion of the molecules that results into Doppler broadening. When the Doppler broadening 

effect is reduced carefully, all the five components can be observed.  

Solved Example No 2:  

The 𝐻𝑒+ doublet splitting of first excited state (2𝑃1
2

 - 2𝑃3
2

) is 5.84 𝑐𝑚−1. Evaluate the 

corresponding splitting value of H. 

Solution- The doublet splitting separation due to spin-orbit interaction is given as: 

      T = 
𝑅
 2 𝑍

4

𝑛3  𝑙(+1)
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Where, 𝑅 is Rydberg’s constant,  is fine structure constant, Z is atomic number and 

n, l are constant for a given state. 

    T𝑍4 

For 𝐻𝑒+, Z = 2 and for H, Z = 1 

Therefore, 
𝑇𝐻𝑒

𝑇𝐻
 = (

24

14
 ) = 16 

 𝑇𝐻 = 
1

16
 𝑇𝐻𝑒+ = 

1

16
 * 5.84 = 0.365 𝑐𝑚−1 

1.5 Pauli’s Exclusion principle and exchange symmetry 

To study the spectra of multi-electron atoms, the quantum mechanical properties of identical 

particles should be considered. As per the quantum mechanical wave theory, the particles that 

can be described by the symmetric total wave functions are called as ‘Bosons’. Therefore,  

ψ (1, 2, 3…….. N) = +ψ (1, 2, 3…..N) 

From this it is inferred, that all the particles with the integral spins are known as Bosons. 

Examples are photons, gravitons, pions, etc.  

Opposite to it, the particles that can be completely described by the asymmetric total wave 

functions are known as ‘Fermions’. Therefore,  

ψ (1, 2, 3…….. N) = -ψ (1, 2, 3…..N) 

From this it can be inferred that all the particles with the half integral spins are Fermions. 

Examples are electrons, protons, neutrons, etc. 

Pauli in Year 1925, formulated basic principle that governs the electronic configuration of the 

atoms. Pauli’s Exclusion Principle states that “no two fermions can exist in the same quantum 

state”. This can be further extended that the existence of two electrons with same spin 

orientation in one atomic orbital is not possible. 

Let us consider two identical non – interacting particles 1 and 2 having quantum state, a and b, 

then the wave function of the system is 

ψ ab (1, 2) = ψa(1).ψb(2) 

Let us now consider particle to be in state b and particle 2 in state a, then the wave function 

would be 

ψ ba (1, 2) = ψb(1).ψa(2) 

As these particles are indistinguishable, ψ ab and ψ ba, both have equal likelihood. Therefore, 

the system can be described by linear combination of both. 
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𝜓(1, 2)  =
1

√2
[𝜓𝑎(1) 𝜓𝑏(2)  ± 𝜓𝑏(1) 𝜓𝑎(2)] 

Where, 
1

√2
 is the normalisation constant. 

For Bosons, where total wave function is symmetric, the above equation becomes 

𝜓𝐵𝑜𝑠𝑒(1, 2)  =
1

√2
[𝜓𝑎(1) 𝜓𝑏(2) + 𝜓𝑏(1) 𝜓𝑎(2)] 

And for Formions (Anti – symmetric Wave), 

𝜓𝐹𝑜𝑟𝑚𝑖(1, 2)  =
1

√2
[𝜓𝑎(1) 𝜓𝑏(2) − 𝜓𝑏(1) 𝜓𝑎(2)] 

If the quantum states a ≡ b, then 

𝜓𝐵𝑜𝑠𝑒(1, 2) ≠ 0 

𝜓𝐹𝑜𝑟𝑚𝑖(1, 2) ≠ 0 

Therefore, two Bosons can exist in the same quantum state whereas two Fermions cannot 

because because the wave function vanishes identically in case of fermions. This further 

indicates that fermions cannot be described by the same set of quantum numbers. 

Solved Example No 3: 

Consider a system comprising two Bose particles with same quantum number a construct 

normalised wave function. 

Solution- Let the two Bose particles be 1 and 2. The normalised wave function is given 

as:- 

 
𝑠
 (1, 2) = 

1

√2
[𝜓𝑎(1) 𝜓𝑏(2) + 𝜓𝑏(1) 𝜓𝑎(2)] 

where 
1

√2
  is normalisation factor. Both the Bose particles are associated with same 

quantum number ‘a’. Therefore, a = b. 

 
𝑠
 (1, 2) = 

1

√2
[𝜓𝑎(1) 𝜓𝑎(2) + 𝜓𝑎(1) 𝜓𝑎(2)] 

                          =  √2 𝑎 (1) 𝑎 (2) 

1.6 Hund’s Rule 

These rules are as follows:- 

1. The terms with largest multiplicity lie at the lowest. 
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2. The terms with largest L lie at the lowest for terms with same multiplicity. 

3. The levels with lowest value of J lies at the lowest for half – filled or lesser in outermost 

sub shell and for more than half – filled sub shell, the level with longest J has lowest in 

energy for terms of an atom. 

 

1.7 Helium Atom and it’s Spectrum 

1.7.1 He atom’s spectrum 

Two identical particles, when treated quantum mechanically act under the influence of 

exchange of forces. This force may be attractive or repulsive depending on the orientation of 

spin of the particles. If we consider two electrons, parallel spins repel, however the antiparallel 

spins attract. 

A system having two electrons in an atom such as He atom may exist in singlet or triplet state. 

The two electrons two and two have spin quantum numbers as 𝑠1 =
1

2
 and 𝑠2 =

1

2
 respectively. 

Thus, the 𝑆  (spin angular momentum) of the considered system is
ℎ

2
 √𝑆(𝑆 + 1). S can have all 

the values from (𝑠1 + 𝑠2) to (𝑠1 − 𝑠2) with a difference of one. Therefore, S = 1, 0. 

S = 1 corresponds to antiparallel spins and S = 0 to parallel spins: 

𝑠1 =
1

2
   and 𝑠2 =

1

2
   gives S = 1 

𝑠1 =
1

2
   and 𝑠2 =

1

2
   gives S = 0 

The Z component (𝑆𝑍) is given as 𝑆𝑍 = 𝑀𝑠ℎ/2, where 𝑀𝑠 has all the possible values from 

+S to –S. That is 

𝑀𝑠 = 1, 0, −1 for S = 1 

And 𝑀𝑠 = 0 for S = 0 

Therefore, there are three possible values of 𝑀𝑠for S = 1, resulting into three possible spin 

states known as ‘triplet states’ whereas, for S = 0 the value of 𝑀𝑠 = 0and thus singlet spin 

state arises due to parallel configuration and singlet state due to antiparallel configuration. 

The He atom’s emission spectrum for triplet and singlet states is shown in Fig. 3 below: 
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Fig. 3 The He atom’s emission spectrum for triplet and singlet states 

From the above figure, it may be inferred that for every single energy level of singlet state there 

corresponds a triplet state. The energy difference between the lowest excited state and state 1𝑆0 

is quite large. The triplet states don’t combine with the singlet states. 

This non combination of triplet state with singlet state indicates the existence of two forms of 

helium – orthohelium and parahelium. In orthohelium form, the electron spins are parallel 

giving rise to the triplet state while, in the parahelium form, the spins of the electrons is 

antiparallel giving rise to the singlet state.  In the process of collision, the orthohelium form 

may lose excitation energy and become parahelium. On the other hand, parahelium atom may 

gain this energy via collision to become orthohelium. Therefore, in general helium is found as 

the mixture of both. However, it is well understood that the splitting of He into two non-

combing systems arises from quantum mechanical treatment.   

1.7.2 Quantum Mechanical treatment of He atom 

Let us consider a system comprised of two electrons. Then the general form of the normalised 

wave function, in space domain for symmetric and antisymmetric conditions is given as: 

1

√2
[

𝑎
(1)

𝑏
(2) + 

𝑏
(1)

𝑎
(2)] Symmetric Wave function ......(47) 

1

√2
[

𝑎
(1)

𝑏
(2) − 

𝑏
(1)

𝑎
(2)] Antisymmetric Wave function......(48) 
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Where a and b represent space quantum numbers. 

The spin coordinate can have two orientations – spin up (+1/2) and spin down (-1/2). Thus 

there are only two possible wave functions - + and -. Thus, there are only two possible wave 

functions corresponding to spin up and spin down states. These lead to four possible ways in 

which spin wave function can exist. The normalised form of these spin wave functions are 

given below. 


1
+

2
+

  

1

√2
[
1
+

2
− + 

1
−

2
+]  


1
−

2
−

  

1

√2
[
1
+

2
− − 

1
−

2
+]  

The first three forms (eqn 49) are for parallel orientation of electrons giving rise to the triplet 

states and the last form (eqn 50) is due to antiparallel orientation that results into singlet state. 

It is also known that the total wave function may be written in terms of spin wave function and 

space wave function as: 


𝑡𝑜𝑡
=           ........(51) 

Therefore the total wave function for He atom may be written as: 

1

√2
[

𝑎
(1)

𝑏
(2) + 

𝑏
(1)

𝑎
(2)] 

1
+

2
+

  

1

√2
[

𝑎
(1)

𝑏
(2) + 

𝑏
(1)

𝑎
(2)]  

1

√2
[
1
+

2
− + 

1
−

2
+]  

1

√2
[

𝑎
(1)

𝑏
(2) + 

𝑏
(1)

𝑎
(2)] 

1
−

2
−

  

 These forms represent the parallel orientation (Triplet State) 

1

√2
[

𝑎
(1)

𝑏
(2) + 

𝑏
(1)

𝑎
(2)] 

1

√2
[
1
+

2
− − 

1
−

2
+]  

This form represents the antiparallel orientation (Singlet state) 

Due to first three forms of symmetric spin wave function (eqn 49), triplet state arises while the 

antisymmetric spin wave function (eqn 50) gives rise to singlet state. If we ignore the 

interaction due to coulomb field, all these four states are degenerate. However, if the coulomb 

interaction is considered, the exchange degeneracy gets removed and splits each state into 

singlet and three fold degenerate triplet state (Fig. 4). Therefore, splitting of He atom into 

Singlet – Triplet can be explained under coulomb effect.  

Symmetric (Triplet State).........(49) 

Antisymmetric (Singlet State)........ (50) 
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Fig. 4 Splitting of He atom into Singlet – Triplet can be explained under coulomb effect 

The electrons in the ground state have same quantum numbers, that is a = b = 1s and hence 

there exists single wave function in the space domain as 
1𝑠
(1)

1𝑠
(2). This space wave 

function is symmetric with respect to the exchange of electrons. In order to satisfy the pauli’s 

exclusion principle, the space wave function needs to be combined with antisymmetric spin 

wave function [
1

√2
(
1
+

2
− − 

1
−

2
+). Such a combination results into singlet state. This further 

indicates the absence of triplet state for the ground state. 

Except for this ground state, there exist triplet states with singlet states for higher energy levels. 

The energy due to coulomb interaction (
1

4𝑜

𝑒2

𝑟12
)between the two electrons is lesser in the triplet 

state compared to the singlet state. This is because the average distance (𝑟12) between the 

electrons is greater in triplet state compared to singlet state. Henceforth, the singlet states lie in 

the upper level compared to triplet states.   

It is also observed that the energy level of the ground state is much lower compared to other 

higher levels. The electrons of the ground state are strongly bounded by the nucleus compared 

to higher energy levels. The perturbation may be adopted to calculate the energy of ground and 

higher levels of He atom.  

Let us now consider He atom (Z = 2) having charge on nucleus (+Ze) and two electrons say 1 

and 2. Then the Hamiltonian operator (Ĥ) is given as:  

Ĥ =  −
ℎ2

82𝑚
(1

2 + 2
2) −

1

4𝑜

𝑍𝑒2

𝑟1
 −

1

4𝑜

𝑍𝑒2

𝑟2
+−

1

4𝑜

𝑒2

𝑟12
     ...........(52) 

Where 𝑟1 and 𝑟2 are the distances between the nucleus and electrons 1 and 2 respectively. 

While, 𝑟12 is the distance between the electrons 1 and 2. Due to the coulomb repulsive potential 
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energy between the two electrons, the term 
1

4𝑜

𝑒2

𝑟12
 is taken positive while all other forces are 

attractive. The motion of the nucleus and few interactions such as spin-spin and spin-orbit 

coupling are neglected in the present calculation as they are very weak compared to the 

coulomb interaction. The attractive potential energy between the nucleus and the electrons 

make the terms 
1

4𝑜

𝑍𝑒2

𝑟1
  and 

1

4𝑜

𝑍𝑒2

𝑟2
 make the terms negative. Hence the wave equation 

becomes: 

Ĥ = [−
ℎ2

82𝑚
(1

2 + 2
2) −

1

4𝑜

𝑍𝑒2

𝑟1
 −

1

4𝑜

𝑍𝑒2

𝑟2
+ −

1

4𝑜

𝑒2

𝑟12
]    ...........(53) 

And also,  Ĥ = 𝐸          ..........(54) 

The perturbation method is employed to solve eqn 53 and 
1

4𝑜

𝑒2

𝑟12
 is considered as the perturbing 

term. Here eqn 53 can be written as: 

(Ĥ˚ + Ĥ′) = 𝐸  

Where Ĥ˚ +  Ĥ′ = Ĥ 

Thus the wave equation (for ground state – 1s1s) for unperturbed part can be written as: 

Ĥ˚˚ = 𝐸˚˚                       ........(55) 

Where ˚ =  ˚1s(1)˚1s(2) 

And E˚ =  E˚1s(1)E˚1s(2) 

The unperturbed wave function is treated as the product of two wave functions of hydrogen 

like atoms in the ground state. The eigen value of ˚ is the sum of the individual eigen values 

of  ˚1s(1) and ˚1s(2) respectively. 

We also know that the wave function of the hydrogen like atoms in the ground state is 

˚1s = 
1

√
(Z ao⁄ )

3

2 exp (−𝑍𝑟 ao⁄ )        ........(57) 

And the eigen value of the ˚1s is E˚1s = −Z
2EH 

Here, 𝐸𝐻 = 
𝑚𝑒4

802ℎ2
= 13.6 eV        .........(58) 

Substituting the values from eqns 58 and 57 into 56, we get: 

˚ =  
1


(Z ao⁄ )3 exp (

−𝑍(𝑟1 + 𝑟2)
ao⁄ )  

E˚ =  −2Z2EH  

       .......(56) 

..........(59) 
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As for He atom Z = 2 

E˚ =  −8EH    

= - 8 × 13.6 eV 

= -108.8 eV 

However, the experimental results show that this value is -78.98 eV. This simply highlights the 

role of coulomb interaction between the two electrons play a key role in determining the energy 

state of He atom.  

Therefore, the introduction of perturbation term representing coulombic repulsion term is done. 

Now, for the evaluation of first order energy perturbation evaluation of first order energy 

perturbation, we will consider the following equation: 

E′ = ∫˚Ĥ′d  

𝐸′ =∬
1


(Z ao⁄ )

3
exp (

−𝑍(𝑟1 + 𝑟2)
ao⁄ ) (

1

4𝑜

𝑒2

𝑟12
) 
1


(Z ao⁄ )3exp (

−𝑍(𝑟1 + 𝑟2)
ao⁄ ) d1 d2 

= (
𝑒2

𝜋2
) (
𝑍

𝑎𝑜
)∫ ∫ ∫ ∫ ∫ ∫

𝑒
−2𝑍(𝑟1 + 𝑟2)

𝑎𝑜
4𝜋𝜀𝑜𝑟12

𝑟1
2𝑑𝑟1𝑠𝑖𝑛𝜃1𝑑𝜃1𝑑𝜑1

2𝜋

0

𝜋

0

∞

0

2𝜋

0

𝜋

0

∞

0

𝑟1
2𝑑𝑟2𝑠𝑖𝑛𝜃2𝑑𝜃2𝑑𝜑2 

Therefore, 𝐸′ =
5𝑍𝑒2

32𝜋𝑜ao
=
5

4
𝑍 (

𝑒2

8𝜋𝑜ao
) =

5

4
𝑍𝐸𝐻 =

5

4
× 2 × 13.6 = 34.0𝑒𝑉 

  

 The total energy becomes: E = Eo + E′ 

     = -108.8+34.0 

    = -74.8eV 

This value is almost equal to the experimental results with an error limit of ~5%. However, for 

higher precision and accuracy, the variation method may be employed. If we consider He like 

atoms that are heavier than the He atoms like Li+, Be++, B+++ and many more, the error gets 

reduced. This is because the nuclear charge increases and the interaction between the nucleus 

and the electron become more important rather than the electron interaction and hence the 

perturbation term becomes more accurate. 

1.6 Summary 

The Schröedinger treatment on hydrogen and like atoms gives rise to principal quantum 

number, angular quantum number and azimuthal quantum number which further coined the 

concept of discreteness and quantization of energy. These quantum numbers and their 

discreteness could explain the line spectra of the hydrogen and hydrogen like atoms. Further, 
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these discrete energy levels split due to electron’s orbital and spin motion. The relativistic 

corrections in addition to spin-orbit coupling effect give rise to term shift. This term shift 

determines the fine structure of hydrogen and hydrogen like atoms.  

For atoms with more than one electron, the Pauli’s exclusion principle and the exchange 

symmetry becomes important. The Pauli’s principle stated that no two fermions can exist in 

the same quantum state. Two particle systems like He atom have two identical particles. When 

such a system is treated quantum mechanically, they act under the influence of exchange of 

forces. This force may be attractive or repulsive depending on the orientation of spin of the 

particles. If we consider two electrons, parallel spins repel, however the antiparallel spins 

attract. Due to symmetric spin wave function, triplet state arises while the antisymmetric spin 

wave function gives rise to singlet state. If we ignore the interaction due to coulomb field, all 

these four states are degenerate. However, if the coulomb interaction is considered, the 

exchange degeneracy gets removed and splits each state into singlet and three fold degenerate 

triplet state. Therefore, splitting of He atom into Singlet - Triplet can be explained under 

coulomb effect. For every single energy level of singlet state there corresponds to a triplet state. 

The triplet states don’t combine with the singlet states. This non combination of triplet state 

with singlet state indicates the existence of two forms of helium – orthohelium and parahelium. 

In orthohelium form, the electron spins are parallel giving rise to the triplet state while, in the 

parahelium form, the spins of the electrons is antiparallel giving rise to the singlet state. In 

general helium is found as the mixture of both. 

The transitions taking place between the different energy states gives rise to spectral lines. By 

employing appropriate selection and intensity rules, these transitions between different energy 

levels are determined. In one electron atoms, all the states exist as doublets except the ground 

state. The fine structure is obtained due to the transitions between these doublets. However, the 

selection rules must be accounted for actually observable fine structure. A more complex fine 

structure is expected for more than one electron systems as these involve terms with higher 

multiplicities. However, the determination of these transitions is again governed by selection 

rules. Due to the closed shells in the atoms, the optical electrons available for transitions and 

hence spectra formation are few. Therefore, as the periodic number increases the complexity 

in the determination of fine structure of atoms doesn’t increase. Apart from this, the selection 

rules also reduce its complexity. Furthermore, the application of Pauli’s exclusion principle 

also reduces its complexity. 
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1.9 Terminal Descriptive type questions 

 

Q-1. Consider a two- electron system and write its spin function for anti symmetric and 

symmetric combinations. 

Q-2. Describe the helium atom with the help of energy - level diagram. State the conditions 

under which helium electrons transits into higher state. 

Q-3. Treat helium atom quantum mechanically and hence explain its spectrum. 

Q-4. Discuss the salient features of helium atom spectra. How does it differ from hydrogen 

spectra? 

Q-5. Discuss the helium spectra for parahelium and orthohelium states. 
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Q-6. Evaluate the energy for ground state of He atom. 

Q-7. Apply Pauli’s exclusion principle to prove that the He atom exists in singlet state only in 

ground state. 

Q-8. What do you understand by identical particles? Describe the exchange symmetry for 

identical particles wave function. 

Q-9. Differentiate between symmetric and anti symmetric wave functions. 

Q-10. State and discuss Pauli’s exclusion principle for symmetric and anti symmetric wave 

functions. 

Q-11. State the limitations of Bohr – Sommerfeld model. Discuss the quantum mechanical 

treatment on hydrogen atom. 

Q-12. Discuss hydrogen atom quantum mechanically and hence explain all the quantum 

numbers involved. 

Q-13. Obtain the energy levels and associated quantum numbers of a hydrogen by solving the 

radial part of the Schroedinger wave equation. 

Q-14. Discuss the physical significance of quantum numbers obtained from hydrogen atom’s 

Schroedinger equation. 

Q-15. Discuss fine structure of hydrogen atom in light of spin – orbit coupling and relativistic 

corrections. 

Q-16. Draw and explain the energy levels for fine structure of hydrogen atom. Elaborate the 

results from Dirac theory. 

Q-17. Deduce the expressions for spin – orbit interaction energy and relativistic correction 

energy terms hence evaluate the net term shift for hydrogen like atoms. 

Q-18. Consider hydrogen like atoms and apply first order perturbation theory to deduce the 

fine – structure splitting of n l due to spin – orbit interaction. 

Q-19. Using Dirac theory to show transitions from n = 3 to n = 2 states for a hydrogen atom. 

Q-20. Comment on the statement that the “the ground state of He atom lies much deeper 

compared to the H atom’s ground level, however, the excited states lie closely to each other.”  

 

1.10 Numerical type (Self Assessment questions) 

 

Q-1. The first order excited state (2𝑃1
2

 - 2𝑃3
2

 ) doublet splitting values is 0.365 𝑐𝑚−1 for a H 

atom. Evaluate the corresponding splitting separation value of He+ .  
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(Ans- 5.84 𝑐𝑚−1 ) 

Q-2. Find the parity of O atom in ground state. 

(Ans- Even Parity) 

Q-3. The first order state (2𝑃1
2

 - 2𝑃3
2

) doublet splitting value is 0.365 𝑐𝑚−1for a H atom. Evaluate 

the corresponding splitting separation for 𝐿𝑖++. 

(Ans- 29.6 𝑐𝑚−1 ) 

Q-4. Prove that the total number of electrons is 2𝑛2 for a closed shell ( n is principal quantum 

number) 

Q-5. Consider a wave function for two particles- 

                    
3
 ( 1, 2)  =  A [

𝑎
 (1) 

𝑏
 (2)  

𝑏
 (1)

𝑎
 (2)]. Evaluate the value of A. 

(Ans- 
1

√2
 ) 

Q-6. Write the exchange symmetric wave function for ground and excited state (1s 2s) of He 

atom. 
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2.1 Introduction 

The atomic models given by Rutherford, Bohr and Sommerfeld were incapable of explaining 

spectral lines due to fine structure splitting of simplest system (one electron atoms). Although, 

the Sommerfeld model could give some theoretical explanation to fine structure of spectral 

lines, it was partial success. The Sommerfeld model was incapable of predicting number of 

spectral lines correctly and the relative intensities among these spectral lines. Going forward, 

the findings of the relatively new experiments like Zeeman effect, Paschen - Back effect, Stark 

effect etc., could not get accommodated in the older atomic models.  Bohr model suffered from 

one more major objection. It was based on two fundamental theories that opposed each other. 

The frequencies corresponding to emission spectra was explained and understood on the basis 

of quantum theory, however the motion of electrons in the stationary orbits was as per the 

classical laws. Therefore, the older models had become insufficient to explain and interpret 

new ideas related to atomic structure. This finally resulted in evolution of vector atom model. 

The vector atom model inculcated the conception of space quantization and the electron spin. 

Before detailing the concepts of ‘quantization of space’, ‘spinning electron’ and various 

coupling schemes, we shall first discuss the concept of orbital magnetic dipole moment and 

Bohr Magneton.  

Let us consider one electron atom with orbital quantum number l that is orbiting around the 

nucleus. This orbiting electron serves as a tiny current loop and its movement produces 

magnetic field. An electron with electronic charge -e, mass m revolves around the nucleus in 

Bohr orbit of radius r with velocity v as illustrated in Fig.1 below. The current produced is 

given as: 

𝑖 = 𝑒/𝑇 (Magnitude only) 

Where T is the electron’s orbital time period 

𝑇 = (2𝑟)/𝑣  

Therefore,   𝑖 = 𝑒𝑣/2𝑟 

Also, we know that the magnetic dipole moment 
𝑙
⃗⃗  ⃗ in a 

current loop with area a and current i is given as: 


𝑙
⃗⃗  ⃗ = 𝑖𝐴  


𝑙
⃗⃗  ⃗ =

𝑒𝑣

2𝑟
𝑟2  


𝑙
⃗⃗  ⃗ =

𝑒𝑣𝑟

2
 .............(1) 

As electron is negatively charged, the direction of 
𝑙
⃗⃗  ⃗ is opposite to that of �⃗� . Also the magnitude 

of 𝐿 is given as: 

Fig. 1 Movement of electron in Bohr’s 

circular orbit 
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𝐿 = 𝑚𝑣𝑟 ......(2) 

Thus from (1) and (2) equations we get 

𝑙⃗⃗  ⃗

𝐿
= 

𝑒

2𝑚
 ......(3) 

The ratio 
𝑙⃗⃗  ⃗

𝐿
 is constant for an electron and is called as ‘gyromagnetic ratio’. 

The eqn 3 may be rewritten in vector form as:  


𝑙
⃗⃗  ⃗ =  −𝑔𝑙

𝑒

2𝑚
�⃗�  .......(4) 

Negative sign indicates that 
𝑙
⃗⃗  ⃗ and �⃗�  are oppositely directed.  


𝑙
⃗⃗  ⃗ =  −𝑔𝑙

𝑒

2𝑚
�⃗�  , where 𝑔𝑙 = 1 (orbital g factor) 

The magnitude values of �⃗�  (orbital angular momentum) and  
𝑙
⃗⃗  ⃗ (orbital magnetic momentum) 

are given as: 

�⃗� =  
ℎ

2
 √𝑙(𝑙 + 1)  


𝑙
⃗⃗  ⃗ =

𝑒ℎ

4𝑚
 √𝑙(𝑙 + 1)  

Where, l is orbital quantum number. 

The quantity 
𝑒ℎ

4𝑚
 is called Bohr magneton (

𝐵
⃗⃗ ⃗⃗  ) and has a value of 9.27 × 10−24𝐴𝑚2 for an 

electron. 


𝑙
⃗⃗  ⃗ = √𝑙(𝑙 + 1)𝐵  

The eqn number 4 can be written as 


𝑙
= −𝑔𝑙 (

2𝜋𝜇𝐵
h⁄ ) �⃗�
   

Solved Example 1: 

 Question: In terms of Bohr magneton, evaluate the spin dipole moment of an electron. 

Solution: The spin magnetic moment is given as: 


𝑠
⃗⃗⃗⃗ =  𝑔𝑠

𝑒

2𝑚
𝑆   

The magnitude of 
𝑠
 is given as; 


𝑠
 = 𝑔𝑠

𝑒

2𝑚
𝑆  
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For 𝑔𝑠 = 2 and 𝑠 =  √𝑠(𝑠 + 1)
ℎ

2
 

𝑠 =  √3/2 (
ℎ

2
) for S = 1/2 

Therefore, 
𝑠
⃗⃗⃗⃗ = 2

𝑒

2𝑚

√3

2

h

2
 

= √3
𝑒ℎ

4𝑚
  

But the Bohr magneton is 
𝐵
=

𝑒ℎ

4𝑚
 

Therefore, 
𝑠
= √3𝐵 

Quantisation of Space 

The quantisation of space was based on quantum theory. In the presence of magnetic field �⃗� , 

the electron precesses along the direction of the magnetic field. The orbital angular momentum 

�⃗�  traces a cone around�⃗� . The angle between �⃗�  and �⃗�  is  as shown in the fig. 2 below. 

 

The z component L is given as: 

𝐿𝑍 = 𝐿 𝐶𝑜𝑠𝜃  

𝐶𝑜𝑠𝜃 =  
𝐿𝑍

𝐿
  

The magnitude of orbital angular momentum �⃗�  and its Z 

component is given as: 

𝐿 =  
ℎ

2
 √𝑙(𝑙 + 1)  

𝐿𝑍 = 𝑚𝑙
ℎ

2𝜋
  

Where, l is orbital quantum number and 𝑚𝑙 is magnetic orbital 

quantum number. 

𝐶𝑜𝑠𝜃 =  
𝐿𝑍

𝐿
  

𝐶𝑜𝑠𝜃 =  
𝑚𝑙

√𝑙(𝑙+1)
  

𝑚𝑙 = (0,±1, ±2,……… . , ±𝑙) for a given l in 2l+1 

possible ways for a given l. These further states that ‘’ can 

have 2l+1 discrete values. These discrete orientations give 

rise to space quantization. 

Fig. 2 Representation of angle   

between orbital angular momentum 

vector L⃗   and external magnetic field B⃗⃗  
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The space quantization of orbital angular momentum �⃗�  corresponding to 𝑙 = 1 is shown in the 

fig. 3 below. 

𝑚𝑙 = 1, 0, −1  

𝐿𝑍 = 
ℎ

2𝜋
, 0, −

ℎ

2𝜋
  

The orientations given by ‘’ is given as: 

𝐶𝑜𝑠𝜃 =  
𝑚𝑙

√𝑙(𝑙+1)
  

𝐶𝑜𝑠𝜃 = 1
√2
⁄  (𝑓𝑜𝑟 𝑚𝑙 = 1)  

𝐶𝑜𝑠𝜃 = 0 (𝑓𝑜𝑟 𝑚𝑙 = 0)  

𝐶𝑜𝑠𝜃 = −1
√2
⁄  (𝑓𝑜𝑟 𝑚𝑙 = 1)  

Spinning Electron 

The relativistic corrections inculcated by sommerfeld 

atomic model could explain fine structure of hydrogen atom to an extent. This explanation 

failed in case of atoms other than hydrogen. Further this theory couldn’t explain the 

experimental results obtained by Zeeman Effect. In 1925, Goudsmit and Uhlenbeck introduced 

the conception of ‘Spinning Electrons’. They suggested that the electrons must be treated as 

charged particle that spins about its own axis. Thus the electron itself carries intrinsic spin 

angular momentum (𝑆 ) and magnetic spin dipole momentum (𝜇𝑠⃗⃗  ⃗). 

The magnitude values of 𝑆  given as: 

𝑆 =  
ℎ

2
 √𝑠(𝑠 + 1)  

Where, s is spin quantum number and has a value of 𝑠 =  
1

2
 

The z component S is given as: 

𝑆𝑍 = 𝑚𝑠
ℎ

2𝜋
  

Where, 𝑚𝑠 is called as the ‘spin magnetic quantum number’ and can have two possible values 

𝑚𝑠 = ±
1

2
  according to 2s +  1 =  2. This states that the electron spin can have only two 

possible orientations in up and down directions. 

Experimentally, it is been determined that the gyromagnetic ratio of the spinning electron (
𝜇𝑠

𝑆
) 

is two times the gyromagnetic ratio due to the corresponding orbital motion (
𝜇𝑙

𝐿
). 

Fig. 3 Discrete orientations of orbital 

angular momentum �⃗�  for l=1 
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Therefore, 𝜇𝑠⃗⃗  ⃗ =  −2
𝑒

2𝑚
𝑆   

Negative sign indicates that 
𝑆
⃗⃗⃗⃗  and 𝑆  are oppositely directed.  

𝜇𝑆⃗⃗⃗⃗ =  −𝑔𝑙
𝑒

2𝑚
𝑆  where 𝑔𝑙 = 2 (spin g factor) 

Vector Model of Atom 

The spin (𝑆 ) and orbital (�⃗� ) angular momentums are combined to determine the total angular 

momentum of the electrons. Since the 𝑆  and �⃗�  are vector quantities, the total angular 

momentum (𝐽 ) is also a vector quantity. 

The Orbital angular momentum (�⃗� )   

𝐿 =  
ℎ

2
 √𝑙(𝑙 + 1)  

𝐿𝑍 = 𝑚𝑙
ℎ

2𝜋
  (Z component) 

l is the orbital quantum number, 𝑚𝑙 is the orbital magnetic quantum number such that 𝑚𝑙 =

𝑙, 𝑙 − 1,……… . ,0, −𝑙 + 1,−𝑙 

The Spin angular momentum (𝑆 )   

𝑆 =  
ℎ

2
 √𝑠(𝑠 + 1)  

𝑆𝑍 = 𝑚𝑠
ℎ

2𝜋
  (Z component) 

s is the spin quantum number, 𝑚𝑠 is the magnetic spin quantum number such that 𝑚𝑠 = 𝑙, 𝑙 −

±1/2 

Therefore the total angular momentum 𝐽 , is given as: 

𝐽 =  �⃗� + 𝑆   

𝐽 =  
ℎ

2
 √𝑗(𝑗 + 1)  

𝐽𝑍 = 𝑚𝑗
ℎ

2𝜋
  (Z component) 

j is often called as inner quantum number, 𝑚𝑙 is the magnetic inner quantum number such that 

𝑚𝑗 = 𝑗, 𝑗 − 1,……… . ,0, −𝑗 + 1,−𝑗 

Also, 𝐽𝑧 = 𝐿𝑧 + 𝑆𝑧 

𝑚𝑧 = 𝑚𝑗 +𝑚𝑠  
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Since 𝑚𝑙 is the integral number and 𝑚𝑠 = ±1/2, therefore 𝑗 = 𝑙 ± 𝑠 is half integral number. 

The quantum numbers 𝐽 , �⃗�  and 𝑆  are quantised and the relative orientations correspond to 

𝑗 = 𝑙 − 𝑠  for J > L 

𝑗 = 𝑙 + 𝑠  for J < L 

In the vector model, the �⃗�  and 𝑆  precess around �⃗⃗� , as shown in fig. 4a; but when placed under 

the influence of external magnetic field �⃗� ,  �⃗⃗�  precesses around �⃗�  (Fig. 4b). 

 

 

 

 

 

 

 

 

 

 

 

 

Solved Example 2: 

Question: Corresponding to j = 
3

2
 , evaluate the number of possible orientations of total angular 

momentum J along with z- axis. 

Solution- The magnitude of J and its z axis component is given as : 

J = √𝑗(𝑗 + 1) 
ℎ

2
 

And 𝐽𝑧 = mj
ℎ

2
 

Now for j= 
3

2
  

 
 

Atom 

 

 

 

Atom 

 

Fig. 4a      Fig. 4b 

Fig. 4 Representation of Vector model of an atom 
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 mj = 
3

2 
 , 
1

2
 , 
−1

2
 , 
−3

2
 

Corresponding to mj and j, the angle  between J and z axis is determined. 

     cos  =  
𝐽𝑧

𝐽
 = 

𝑚𝑗

√𝑗(𝑗+1)
 

        √𝑗(𝑗 + 1) = √
3

2
 (
3

2
+ 1) = 

√15

2
  

                                                        Therefore, cos   = 
2𝑚𝑗

√15
  

For mj = 
3

2
 , 
1

2
 , 
−1

2
 , 
−3

2
 we have cos  as: 

                                     cos  = 0.775, 0.258, -0.258, -0.775 

Therefore,  = 39.2 , 75.0 , 105 , 140.8 

There are four possible orientations. 

2.2 Objectives 

After studying this unit, the learners should be able to: 

 Understand and explain the concepts of space quantisation, spinning electron and 

hence visualise vector model of an atom. 

 Define various spectroscopic terminology 

 Apply L-S coupling and j-j coupling schemes on the atoms and hence determine the 

spectroscopic terms 

 Discuss Lande’s interval rule and Normal and inverted multiplets  

 Apply selection rules while determining the transitions during L-S and j-j coupling 

2.3 Spectroscopic Terminology 

There are few spectroscopic terms associated with the atomic spectra. To understand the 

coupling criteria and mechanism, the acquaintance with following terms is necessary. 

1. State:  

It defines the overall motion of the electrons in atoms. Four quantum numbers 

associated with each electron defines the state of an atom. Ground state has lowest 

energy. States with same energies are denoted as degenerate states. 

 

2. Energy Level: 

It is defined as aggregation of states with same energy, provided external electric or 

magnetic fields are absent. It is specified by total angular momentum J. The energy 

level of ground state is minimal. 
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3. Sublevel: 

In the presence of external magnetic or electric field, the energy levels spit into 

sublevels. These sublevels are specified by different magnetic quantum numbers. 

 

4. Spectroscopic Term: 

It is defined as aggregation of levels specified by multiplicity and an orbital angular 

momentum. For example, ‘3P’ term is weighed mean of ‘3P0’, ‘
3P1’ and ‘3P2’. 

 

5. Configuration: 

The electronic configuration of an atom is characterized by quantum numbers n and l 

associated with the orbitals of the electrons. For example the electronic configuration 

of 5B is 1s2 2s2 2p1. 

 

6. Equivalent Orbitals: 

It is defined as orbital having same value of n and l. The electrons present in these 

orbitals are known as equivalent electrons. 

 

7. Statistical Weight:  

It is defined as the number of states present for a particular J. For a certain specific 

level, the statistical weight is calculated as 2J+1. 

 

8. Line Transition: 

It is defined as transition between two energy two energy levels. 

 

9. Component: 

It is defined as transition between two sublevels. 

 

10. Multiplet Transition: 

It is defined as aggregation of transitions associated with two terms. 

 

11. Resonance Line:  

The transition representing lowest frequency among all the transitions from ground to 

higher energy levels is known as resonance line. 

Let us now consider an atom with N multielectrons and atomic number Z such that N  Z. The 

nucleus acquires the charge +Ze. The multielectrons are distributed as completely filled 

subshells around the nucleus and some as partially filled. The electrons in the outermost shell 

are optically active, only if it is partially filled. Five following prominent energy terms should 

be present in the Hamiltonian of the considered atom: 

(a) The kinetic energy of the electrons 

(b) The electrostatic energy of the electrons 
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(c) The residual electrostatic energy of the electrons 

(d) The spin-spin correlation energy 

(e) The spin-orbit interaction energy 

In the heavier atoms, the spin-orbit energy term dominates over the other four energy terms 

and this type of atoms combine in accordance with j-j coupling. In the lighter atoms, the 

residual electrostatic energy of the electrons and the spin-spin correlation energy of electrons 

show dominance over the other terms and this type of atom combine in accordance with L-S 

coupling. Let us now discuss L-S and j-j couplings individually. 

2.4 L-S COUPLING 

Apart from the kinetic energy of the electrons and the electrostatic energy of the electrons, the 

perturbations due to residual electrostatic interaction, spin-spin correlation and spin-orbit 

correlations are involved in the Hamiltonian of an atom. As the spin-orbit correlations are much 

weaker compared to residual electrostatic interactions, spin-spin correlations for a lighter atom, 

the L-S coupling is followed by these atoms. Let us now discuss these two dominant effects 

independently. 

(i) Spin-spin Correlation Effect:  

As an effect of spin-spin interaction, a resultant spin angular momentum 𝑆  is obtained 

due to strong coupling of individual spin angular momentum vectors 𝑠  of individual 

optical electrons. The magnitude of 𝑆  is
ℎ

2
 √𝑆(𝑆 + 1) and can have values as 

 

𝑆 =  |𝑠1⃗⃗  ⃗ + 𝑠2⃗⃗  ⃗ +  𝑠3⃗⃗  ⃗ +  … . . . | min, |𝑠1⃗⃗  ⃗ + 𝑠2⃗⃗  ⃗ +  𝑠3⃗⃗  ⃗ +  … . . . | min+1,( 𝑠1⃗⃗  ⃗+𝑠2⃗⃗  ⃗ + 𝑠3⃗⃗  ⃗+....... ) 

 

The energies associated with different 𝑆  is also different. The state with lowest energy 

has highest values of 𝑆 . This further indicates that the spin-spin interaction between the 

individual electrons splits the principal energy level with different values of 𝑆  and 

multiplicity 2S + 1. 

 

For 1 electron atom: 

𝑆 = 𝑠 =   
1

2
    

Thus, 2S+1 = 2 (Doublet level) 

 

For 2 electron atom:  

𝑠1= 1 2⁄
  ;  𝑠2= 1 2⁄

 

S = |𝑠1 − 𝑠2| , |𝑠1 − 𝑠2| + 1, .....( 𝑠1 + 𝑠2) 

   = 0, 1 

Thus, 2S+1 = 1 and 3 (Singlet and triplet levels) 

 

For 3 electron atom:  
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𝑠1= 1 2⁄
  ;  𝑠2= 1 2⁄

 ; 𝑠3= 1 2⁄
 

For this evaluation, let us consider S as combination of two electrons and then couple 

with third electron (𝑠3= 1 2⁄
) individually. We know S = 0, 1 

 

For S = 0 in combination with 𝑠3= 1 2⁄
 give 𝑆 = 1/2. 

For S = 1 in combination with 𝑠3= 1 2⁄
 give 𝑆 =

1

2
,
3

2
. 

Therefore, we get S = 1/2, 1/2, 3/2, that is., two sets of doublets and one set of quartets 

are obtained for three electron atom. 

 

Let us generalize the possible values of S for N number of electrons: 

 

S = 0, 1, 2, ...... N (when N is even) 

S = 1/2, 3/2, 5/2, ......N/2 (when N is odd) 

 

Previously, it has been stated that the state with highest S has lowest energy. To 

understand this statement, an atom with two electrons is considered. We have seen that 

the spin-spin interaction effect splits the unperturbed energy level into singlet and triplet 

levels. As the total eigen function remains antisymmetric with respect to exchange of 

electrons, the distance between the two electrons is smaller for singlet state having 

antiparallel spins. This distance is larger for triplet state with parallel spins. Therefore, 

in the triplet state the electrostatic repulsion energy (positive) is less compared to singlet 

state and hence the triplet energy level lies deeper compared to singlet level. 

 

(ii) The residual electrostatic interaction effect: 

As an effect of residual electrostatic interaction, a resultant orbital angular momentum 

�⃗�   is obtained due to strong coupling of individual orbital angular momentum vectors 𝑙  

of individual optical electrons. The magnitude of �⃗�  is
ℎ

2
 √𝐿(𝐿 + 1) and can have values 

as: 

 

�⃗� =  |𝑙1⃗⃗  + 𝑙2⃗⃗⃗   +  𝑙3⃗⃗⃗  +  … . . . | min, |𝑙1⃗⃗  + 𝑙2⃗⃗⃗   +  𝑙3⃗⃗⃗  +  … . . . | min+1,( 𝑙1⃗⃗  +𝑙2⃗⃗⃗  + 𝑙3⃗⃗⃗  +....... ) 

 

The energies associated with different �⃗�  is also different such that the state associated 

with lowest energy has highest values of �⃗� . As discussed in the earlier section, the 

energy levels split due to spin-spin interaction. Similarly, the energy levels also split 

due to residual electrostatic interaction. However, the separation in the split energy 

levels due to residual electrostatic interaction is lesser compared to spin-spin 

interaction. Each splitted energy level carries different values of  �⃗�   . 

For �⃗�  = 0, 1, 2, 3, 4, ……. the associated levels are designated as S, P, D, F, G, ......  

 



             MSCPH507 

44 

 

 

Let us evaluate for: 

 

For 3p3d electrons:  

𝑙1 = 1  ;  𝑙2 = 2 

S = |𝑙1 − 𝑙2| , |𝑙1 − 𝑙2| + 1, ..... ( 𝑙1 + 𝑙2) 

   = 1, 2, 3 (For P, D and F states) 

 

For 2p3p4d electrons:  

For this evaluation, the two p electrons will be combined first (L) as they are not tightly 

bound. 

 

𝑙1 = 1  ;  𝑙2 = 2 

Thus L = 0, 1, 2 

 

Now let us combine with d electron (𝑙3 = 3) individually 

L = 0 ; 𝑙3 = 2 

Thus L = 2 (D state) 

L=1 ; 𝑙3 = 2 

Thus L = 1, 2, 3 (P, D and F states) 

L=2 ; 𝑙3 = 2 

Thus L = 0, 1, 2, 3, 4 (S, P, D F and G states) 

 

Therefore, overall we get one S, two P’s, three D’s, two F’s and one G state. 

 

Earlier in this section, it is been mentioned that the state with lowest energy has largest 

value of L. The coulomb repulsion between two electrons is minimal at maximum 

distance. Thus, the electrostatic repulsion is least when the electrons are present at the 

opposite ends of a diameter of an orbit. In this condition, electrons revolve in same 

direction around the nucleus and their individual orbital angular moments are in parallel 

direction. From exchange symmetry of wave functions, it is very well known that the 

antisymmetric eigen function corresponds to parallel direction of two electrons. Thus, 

state with higher L, is associated with antisymmetric total wave function carries lower 

energy. 

 

(iii) Spin- Orbit interaction effect: 

As the spin-orbit interactions is weaker compared spin-spin interaction and residual 

electrostatic interaction, the spin angular moments and orbital angular moments couple 

individually first to resultant 𝑆  and �⃗�  respectively. Thereafter, the resultant spin angular 

momentum 𝑆  and the resultant orbital angular moment �⃗�  combine with each other to 

form resultant total angular moment 𝐽  of the atom. 

𝐽 =  �⃗�  + 𝑆  
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The magnitude of 𝐽  is 
ℎ

2
 √𝐽(𝐽 + 1) and quantum number 𝐽  has values as: 

 

𝐽 =   |�⃗�  +  𝑆 |, |�⃗� − 𝑆 | + 1,…… . (�⃗�  +  𝑆 ) 

 

The number of J values are determined as (2S + 1) when L>S and (2L+1) when S>L. If 

S is integral value, J also has integral value and if S is half integral value, J also has half 

integral value. This further indicates that the splitting due to spin-orbit interaction is 

comparatively less spaced than splitting due to spin-spin interaction and residual 

interaction. These levels are characterised by quantum number J which has degeneracy 

(2J+1). The collection of these J levels form ‘fine structure multiplet’. Further, the 

spacing between these multiplets is defined by Lande Interval Rule.   

 

2.4.1 Lande Interval Rule 

 

The spin-orbit interaction energy for the atoms obeying L-S coupling is given by: 

 

𝐸𝑙,𝑠 = 𝑎(�⃗� + 𝑆  ), 

where ‘a’ is known as interaction energy constant. 

 

We know that 

𝐽 =  �⃗�  + 𝑆 , 

 

Let’s take self-scalar product of above equation 

 

 𝐽.⃗⃗ 𝐽 ⃗⃗ =  (𝐿⃗⃗  ⃗ + 𝑆 ).(�⃗� + 𝑆 ) 

𝐽.⃗⃗ 𝐽 ⃗⃗ =  𝐿.⃗⃗  𝐿 ⃗⃗⃗  + 𝑆.⃗⃗  𝑆 ⃗⃗⃗  +  2𝐿.⃗⃗  𝑆 ⃗⃗⃗   

2𝐿.⃗⃗  𝑆 ⃗⃗⃗  = [|𝐽 |
2
− |�⃗� |

2
− |𝑆 |

2
] 

𝐿.⃗⃗  𝑆 ⃗⃗⃗  =
1

2
[|𝐽 |

2
− |�⃗� |

2
− |𝑆 |

2
] 

 

Thus, 𝐸𝑙,𝑠 = 
𝑎

2
[|𝐽 |

2
− |�⃗� |

2
− |𝑆 |

2
]  

 

𝐸𝑙,𝑠 = 
𝑎

2
[𝐽(𝐽+1) – L(L+1) – S(S+1)] h2/42 

{ As 𝐽 =  √𝐽(𝐽 + 1)ℎ/2 ; �⃗� =  √𝐿(𝐿 + 1)ℎ/2 and 𝑆 =  √𝑆(𝑆 + 1)ℎ/2 } 

 

Thus, 𝐸𝑙,𝑠 =  𝐴[𝐽(𝐽+1) – L(L+1) – S(S+1)] 

where A= ah2/82 (another constant). 
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As L-S coupling multiplet has same values of L and S for fine structure levels and only differs 

in values of j. Therefore, the energy difference for the fine structure levels having J as one level 

and J+1 for another level is given as: 

 

𝐸𝐽+1 − 𝐸𝐽 =  𝐴[𝐽(𝐽+1)(J+2) – J(J+1)] 

 

𝐸𝐽+1 − 𝐸𝐽 =  2𝐴[J+1] 

 

This shows that the energy difference is proportional to the term (J+1). Larger the value of J, 

greater will be the energy difference and consequently larger spacing. 

 

2.4.2 Normal and Inverted Multiplets 

Generally, the lowest lying level in a multiplet carries lowest value of J. These types of 

multiplets are known as normal multiplets. However, the multiplets in which the lowest lying 

level is designated with highest value of J are known as inverted mutiplets. 

The normal multiplets are stable in nature. The orbital angular momentum�⃗�  and the magnetic 

field �⃗�  caused by the motion of electrons in orbit (under the influence of nucleus) in same 

direction. In such a situation the spin magnetic moment 𝜇 𝑠 of the electron lies in the same 

direction as that of �⃗� . This builds up a stable state as illustrated in fig. 5. As the electron is 

negatively charged 𝜇 𝑠 is in opposite direction to 𝑆 . Therefore, �⃗�  and 𝑆 are in opposite directions 

and hence attain lowest energy as well as the lowest value of 𝐽  . In this condition 𝜇 𝑠 points 

opposite to �⃗� , corresponding to inverted multiplet (least stable). Some perturbing influences 

give rise to inverted multiplets. 

 
 

 Fig. 5 Orientations of 𝜇 𝑠, �⃗� , 𝑆  and �⃗�  in normal and inverted multiplets 
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Solved Example 3:  

Question: The energy levels with increasing energy in a multiplet are separated with 3:5 ratio 

for line spectrum of an arbitrary atom. Designate S, L and J quantum numbers to these levels 

via using Lande’s interval rule. 

 

Solution: Let us consider a normal mutiplet in accordance with the energies associated 

with a level, the lowest energy is designated with J and the consecutive higher levels are 

designated with J+1 and J+2 respectively. Then the energy (E) of of the levels with J+1 

and J+2 level is 5/3 E. According to Lande interval rule, the energy interval of 

consecutive levels for a given multiplet is directly proportional to the J value of the upper 

level 

𝐸 = 2𝐴 (𝐽 + 1) 
5

3
= 2𝐴 (𝐽 + 2) 

By dividing the above two equations, we get 

3

5
=  
𝐽 + 1

𝐽 + 2
 

3(J + 2) = 5(J + 1) 

3J + 6 = 5J + 5 

2J= 1 

  J= 
1

2
  

The values of J with increasing energy levels are given as – J = 
1

2
 ; 
3

2
 ; 
5

2
 . 

We also know, 

𝐽 =   |�⃗�  +  𝑆 |, |�⃗� − 𝑆 | + 1,…… . (�⃗�  + 𝑆 )  

The maximum and minimum values of J are 
5

2 
 and 

1

2
 respectively. 

         |�⃗� − 𝑆 | =  
1

2
 

|�⃗�  + 𝑆 | =  
5

2
 

If L> S 

          L-S =  
1

2
 

                             L+S =  
5

2
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Subtraction and addition gives 

L = 
3

2
 and S = 1 

But L cannot be half – integral, therefore S < L, then  

S – L =  
1

2
 

S + L =  
5

2
  

Subtraction and addition gives, 

S = 
3

2
 and L= 1 

2.4.3 Determination of Spectral Terms 

 

Only the optical electrons present in the atoms are useful for the determination of spectral terms 

of L-S coupling. This is because the core electrons present in the atom do not contribute in the 

determination of angular momentum. 

The odd or even spectral terms are determined by the electronic configuration. The odd 

electronic configuration results into odd spectral terms and even spectral term is associated 

with the even electronic configuration. The even or odd electronic configuration is further 

determined by l’s of optical electrons. If the summation of l’s (l) is odd, then the electronic 

configuration is odd and if the l is even then the electronic configuration is also even. The 

superscript ˚, is written after L symbol for only odd spectral term. Let us understand this 

statement with an example. A term ‘3P’ arising from an odd electronic configuration is written 

as ‘3P˚’ and ‘3P’ arising from an even electronic configuration 2p 3p is simply written as ‘3P’. 

Now we would determine the spectral terms of the atoms under below given three categories:  

 

(a) One optical electron atoms: 

Let us compute the spectral term for atoms with one optical electron such as hydrogen like 

atom. The ground state electronic configuration of hydrogen like atom is given as 1s 

And for this configuration = 1/2 ; 𝑙 = 0 

Such that 𝑆 = 𝑠 = 1/2 and the multiplicity  2S+1 = 2 

𝐿 = 𝑙 = 0  (S State) 

𝐽 =   |�⃗�  + 𝑆 |, |�⃗� − 𝑆 | + 1,…… . (�⃗�  +  𝑆 ) =  1/2  

Hence, the spectral term for the ground state hydrogen like atom would be: 𝟐𝑺𝟏
𝟐⁄
. 

 

Let us now determine the spectral terms for the excited states of hydrogen like atoms: 

 

2s,3s, 4s..........................2𝑺𝟏
𝟐⁄
 

2p, 3p, 4p........................2𝑷˚
𝟏
𝟐⁄
,  2𝑷˚

𝟑
𝟐⁄
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3d, 4d..............................2𝑫𝟑
𝟐⁄
,  2𝑫𝟓

𝟐⁄
 

 

Now, we would compute the spectral terms for alkali atoms. For this, let us consider Lithium 

(Li) as alkali atom, having electronic configuration as 1s22s. 

The spectral term would be 2𝑺𝟏
𝟐⁄
. 

 

(b) Two or More Non-Equivalent optical electron atoms: 

We would now compute the spectral term for an atom having two non-equivalent electrons in 

its outer shell, having an electronic configuration: 4p4d 

For the above configuration 

𝑠1= 1 2⁄
  ;  𝑠2= 1 2⁄

 ; 𝑙1 = 1  ;  𝑙2 = 1 

 

Thus, S =0,1 and multiplicity (2S+1) = 1, 3 

L = 1, 2, 3 (P, D, F states) 

 

Therefore, we have a total of six terms – three singlet and three triplet terms. 

All these terms arise from odd electronic configuration – 4p4d and this configuration has l = 

1+2 = 3 

 

The spectral terms associated with above configuration are: 
1P˚, 1D˚, 1F˚, 3P˚, 3D˚, 3F˚ 

 

Let us now evaluate J  

𝐽 =   |�⃗�  + 𝑆 |, |�⃗� − 𝑆 | + 1,…… . (�⃗�  +  𝑆 )  

 

For Singlet terms we have,  

𝑆 = 0 ; 𝐿 = 1 𝑔𝑖𝑣𝑒𝑠 𝐽 = 1   1𝑃1
˚ 

𝑆 = 0 ; 𝐿 = 2 𝑔𝑖𝑣𝑒𝑠 𝐽 = 2   1𝐷2
˚  

𝑆 = 0 ; 𝐿 = 3 𝑔𝑖𝑣𝑒𝑠 𝐽 = 3   1𝐹3
˚ 

 

For triplet terms, we have 

𝑆 = 1 ; 𝐿 = 1 𝑔𝑖𝑣𝑒𝑠 𝐽 = 0, 1, 2   3𝑃0
˚  , 3𝑃1

˚, 3𝑃2
˚  

𝑆 = 1 ; 𝐿 = 2 𝑔𝑖𝑣𝑒𝑠 𝐽 = 1, 2, 3   3𝐷1
˚  , 3𝐷2

˚ , 3𝐷3
˚  

𝑆 = 1 ; 𝐿 = 3 𝑔𝑖𝑣𝑒𝑠 𝐽 = 2, 3, 4   3𝐹2
˚ , 3𝐹3

˚, 3𝐹4
˚ 
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This indicates that the single level representing the configuration 4p4d splits into 12 levels as 

shown in the fig. 6. The spin-spin interaction splits it into singlet (S = 0) and triplet (S = 1) 

levels. As shown in the figure, the triplet state lies lower to the singlet state owing to higher 

multiplicity. The residual electrostatic interaction further splits the two levels into three levels 

namely; P, D and F levels. Here also the F level lies at the lowest owing to highest l value.  

Now, due to spin orbit interaction, the triplet state is further split up into three fine-structure 

levels characterised by different J values. The spacing between these levels is determined by 

Lande Interval Rule, such that the levels with lowest J lie at the lowest for a given normal 

multiplet. Furthermore, each J level is 2J+1 fold degenerate. Henceforth, a total of 60 

degenerate levels can be obtained for a level representing 4p4d electronic configuration. 

Let us now evaluate for three non-equivalent optical electrons. For this, the spins of two 

electrons are first combined then the third spin is combined. Similarly, the orbital angular 

momentum of two electrons that are more closely bound is combined first and thereafter the 

third electron’s orbital angular momentum is combined. The electronic configuration under 

consideration is 3d4s5p (l = 3; odd configuration) 

Let’s combine the spins first 

𝑠1= 1 2⁄
  ;  𝑠2= 1 2⁄

 ; 𝑠3= 1 2⁄
 

Lets combine 𝑠1= 1 2⁄
 and  𝑠2= 1 2⁄

 first to get S = 0, 1. Then, 𝑠3= 1 2⁄
 is combined with 

S to get values as S = 1/2, 1/2, 3/2. Subsequently, the multiplicities 2S + 1 are 2, 2 and 

4. These states correspond to two sets of doublets and one set ‘quartet’. 

 

Let us now combine orbital angular moments 

Fig. 6 Splitting of 4p4d level under L-S coupling scheme 
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Consider 3d and 4s first 

𝑙1 = 2  ;  𝑙2 = 0 

Thus, L = 2 

 

Now combine the l for 5p electron (l3 = 1). 

Therefore, L = 1, 2,3 (P, D, F states) 

 

Hence, there exists two sets of three doublets terms and one set of three quartet terms. 

The spectral terms are: 
2P˚, 2D˚, 2F˚, 2P˚, 2D˚, 2F˚, 4P˚, 4D˚, 4F˚ that is 2P˚(2), 2D˚(2), 2F˚(2), 4P˚, 4D˚, 4F˚ 

By inculcating the spin orbit interaction, we get now: 
2𝑃1/2,   3/2 

˚ (2); 2𝐷3/2,   5/2 
˚ (2); 2𝐹5/2,   7/2 

˚ (2), 2𝑃1/2,   3/2,   5/2 
˚ , 4𝐷1/2,   3/2,   5/2,   7/2 

˚ , 

4𝐹 3/2,   5/2,   7/2,   9/2 
˚   

A total of 23 levels are obtained. 

 

(c) Two or more equivalent optical electron atoms: 

The quantum numbers n and l are same for two equivalent electrons. To satisfy Pauli’s 

exclusion principle, ml and ms (remaining quantum numbers) differ. Due to equivalence, 

certain spectral terms are not allowed. Let us understand this with example of two non 

equivalent and equivalent p electrons.  

Non equivalent - 2p and 3p give rise to 1S, 1P, 1D, 3S, 3P, 3D 

Equivalent – 2p2 gives rise to 1S, 1D and 3P spectral terms respectively. Thus, 3D, 3S and 1P 

are missing. 

 

To determine the spectral terms for equivalent electrons, following points should be kept 

in mind: 

 

1. 1𝑆0
 term is always formed for closed sub-shell (S2, p6, d10, .....) 

The maximum number of equivalent electrons in a closed sub-shell is 2(2l + 1). These 

exist in antiparallel pairs. These electrons have: 

ml = 0 ; ms = 0 

And hence ML = 0; MS = 0 

Correspondingly, L = 0 (S State) 

S = 0 and the multiplicity 2S + 1 = 1 (Singlet State) 

J = 0 

 

These above values are satisfied only for the term 1𝑆0. This suggests that the total spin 

and the angular momentums are zero for completely filled sub shell. 

 

2. The electronic configuration (nl)q and (nl)r-q have same spectral terms. The symbol ‘r’ 

represents maximum number electrons present in a shell (2(2l + 1)) and ‘q’ being even 
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integral number. This implies that the electronic configurations like p5 and p1; d8 and 

d2 will have same spectral terms. 

 

Let us now consider two equivalent p electrons (p2) and evaluate its spectral term. For 

this we would place the atom under very strong magnetic field so that all the internal 

couplings are broken and individual 𝑙  and 𝑠  vectors exist. For a p electron l = 1, ml = -1, 

0, 1 and ms = 1/2, -1/2. Therefore, ml  and ms can possibly combine in following ways: 

 

ml = 1 0 -1 1 0 -1 

ms = 1/2 ½ ½ -1/2 -1/2 -1/2 

 

  (a) (b) (c) (d) (e) (f) 

        

 

Thus, there exists six possible ways (a, b, c, d, e, f) of configuration. The above six 

combinations are for single p electrons. This can be done by taking these six ways twice 

at a time. However, ml and ms cannot be same for two equivalent electrons due to Pauli’s 

exclusion principle. Such a type of combination allows fifteen possible ways (6C2= 

6!/2!(6- 2)! = 15) 

The possible combinations are given as follows: 

ab ac ad ae af; 

 bc bd be bf; 

  cd ce cf; 

   de df; 

    ef; 

 

 

    

Under strong field two ml and ms values combine individually to form ML and MS 

respectively. Therefore, the following ML and MS are obtained. 

𝑚𝑙1 = 1 0 -1  

ML = 2 1 0 1 

ML = 1 0 -1 0 

ML = 0 -1 -2 -1 

  S P D 𝑚𝑙2 

From the table, it is noticed that ML can take values 2, 1 and 0. 

(i) For ML = 2; L = 2 (D State) and for Ms = 0  

The spectral term as 1D (S = 0) 

Apart from ML = 2, ML has values -2, -1, 0, 1 and with MS = 0 gives 

The spectral term as 1D  

Therefore the 1D term abides with following combinations: 
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Combinations ad ae af bf cf  
1D ML 2 1 0 -1 -2 

MS 0 0 0 0 0 

       

 

(ii) For ML = 1 and MS = 1  

The spectral term is 3P (L = 1, S = 1) 

For ML = 1, 0, -1; L = 1(P State) and MS = 1 

The spectral term is 3P and the combinations are 

 

Combinations ab ac bc bd cd ce de df ef  
3P ML 1 0 -1 1 0 -1 1 0 -1 

MS 1 1 1 0 0 0 -1 -1 -1 

 

 

(i) For ML = 0 and MS = 0  

Only one combination is justified and the spectral term is 1S (L = 0, S = 0)  

 

Combinations bc  

1S ML 0 

MS 0 

 

Therefore the spectral terms for two equivalent p electrons are 1D, 3P, 1S. Henceforth, the fine 

structure levels are 1D2, 
3P0, 1, 2, 

1S0. 

The above exercise is bit cumbersome. These spectral terms can be evaluated by using Breit’s 

Scheme. Under this scheme, a table as shown below is written bearing all possible values of 

ML.  The ML values are evaluated by combining ml1  and ml2  values of two electrons 

respectively. The ml1  and ml2  values are written in row and column respectively. The 

summation of ML are noted below ml1  and towards the left of  ml2 . As shown in the table below, 

there exists three sets of nine ML values in L shaped (dotted) lines. These sets are  

2 1 0 -1 -2 (i set) 

 1 0 -1  (ii set) 

  0   (iii set) 

 

For the above ML values, the corresponding L = 2, 1 and 0 gives one D, P and S term. 

Singlet (S = 0) or triplet (S = 1) are obtained by combing the spins of two electrons. The spin 

quantum number ms of the electrons is same for the triplet state and hence to satisfy the Pauli’s 

exclusion principle ml should differ. Therefore, ML values placed on the diagonal cannot be 

combined (ml1  and ml2  values are same at the diagonal). Thus, for S = 1, the ML values are 

1,0,-1 (ii set) and the corresponding term 3P or 3P0, 1, 2 fine - structure multiplet. 
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Let’s discuss for Singlet state (S = 0) now. The spin quantum number ms differ and hence any 

value of ML is allowed. As the ML values corresponding to set ii have been designated for term 
3P, the remaining sets i and iii are combined for Singlet state. Thus, the spectral terms obtained 

are 1D2 and 1S0. 

Therefore, the two equivalent p electrons give the following spectral terms: 1S0, 
1D2, 

3P0, 1, 2. 

The p4 will also have same terms. 

Let us repeat the above exercise for two d electrons which has electronic configuration (nd)2. 

Write the Breit’s scheme for the ML values.  

ml1 = 2 1 0 -1 -2  

ML = 4 3 2 1 0 2 

ML = 3 2 1 0 -1 1 

ML = 2 1 0 -1 -2 0 

ML = 1 0 -1 -2 -3 -1 

ML = 0 -1 -2 -3 -4 -2 

  S P D F G ml2  

 

The above table deduces five sets of ML values: 

4 3 2 1 0 -1 -2 -3 -4 i set 

 3 2 1 0 -1 -2 -3  ii set 

  2 1 0 -1 -2   iii set 

   1 0 -1    iv set 

    0     v set 

 

These L values = 0, 1, 2, 3, 4 (set v, iv, iii, ii, i) correspond to S, P, D, F, G respectively. 

 For the Triplet state (S = 1). As discussed in the above example (p2 configuration) here only 

diagonal ML values are not taken into consideration. Therefore, the limited ML values are: 

3 2 1 0 -1 -2 -3 ii set 

  1 0 -1   iv set 

 

For above ML values; L = 3 and 1 which give 3F and 3P terms or 3F2, 3, 4 and 3P0,1,2 fine-structure 

multiplets respectively. 

For Singlet state (S = 0); the ML values of left out sets, that is i, iii and v are combined and term 
1G, 1D and 1S are obtained. 

Therefore, the term values of two d electron are: 1S0, 
1D2, 

1G4, 
3P0,1,2, 

3F2,3,4. 
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d8 configuration will also have same spectral terms as stated above. 

 

2.4.4 Selection Rules in L-S Coupling: 

 

The atoms in which L-S coupling is applicable abide by following selection rules: 

1. When an electron jumps to make one transition at a time then l value should change by one 

unit. That is l = 1. 

The above selection rule follows ‘Laporte Rule’. The Laporte rule states that in an electric 

– dipole transition, the parity of the electronic configuration must change and hence the l 

must change by an odd number for one electron atom. If two electrons are involved in a 

transition simultaneously then l will be odd for one electron and even for second electron. 

That is l1 = 1; l2 = 0,2. 

2. The total quantum number, n can take up any values. 

3. For a complete atom, the L, S and J must follow: 

L = 0, 1 (L = 0 is not allowed for one electron atom) 

S = 0  

J = 0, 1 but for J = 0 J = 0 

When the coupling between the spin and orbit is weak, L-S coupling holds good. The spacing 

between the fine-structure levels for a given multiplet is much less compared to spacings 

between different multiplets itself. This happens only in lighter atoms, thus the L-S coupling 

holds good. This we saw in case of He (Unit I, Section 1.7) that there was no inter combination 

between singlet and triplet state. As the atoms become heavier, the spin-orbit interaction starts 

predominating and hence the L-S coupling breaks up. This gives rise to j-j coupling in heavier 

atoms. 

Solved Example No 4: 

 Question: The separation, between the adjacent components for a normal triplet state is 20cm-

1 and 40cm-1 respectively for an atom following L-S coupling. The separations for higher states 

are 22cm-1 and 33cm-1 respectively. Evaluate the terms for the two states and draw energy level 

diagrams for the allowed transitions. 

Solution: The quantum numbers J, J+1 and J+2 are associated with lowest for normal 

triplet state. By applying Lande’s interval rule, we get, 

𝐽 + 1

𝐽 + 2
=
20

40
 

 This gives J=0, 

 Therefore, J=0, 1, 2 (in increasing energy order) 
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We know J=|L-S|, |L-S|+1,…., |L+S|. The minimum and maximum value of J is 0 and 

2, respectively.  

 |L-S|=0,  

 (L+S)=2 

 If L>S, then L-S=0 and L+S=2 

 This gives S=1, so that 2S+1=3 

 L=1 (p state) 

 This gives the term 𝑃0 ,
3 𝑃1 , 𝑃2 

33 . 

 Let us evaluate for higher states,   

𝐽 + 1

𝐽 + 2
=
22

33
 

 This gives J=1, 

 Therefore, J= 1, 2,3, … (in increasing energy order) 

Since J=|L-S|, |L-S|+1,…., |L+S|. The minimum and maximum value of J is 0 and 2, 

respectively.  

 |L-S|=1,  

 (L+S)=3 

 This gives S=1, so that 2S+1=3 

 L=2 (D state) 

 This gives the term 𝐷1 ,
3 𝐷2 , 𝐷3 

33  

 By applying selection rule ΔJ=0, ±1  
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 This gives a total of six transitions as shown in figure above. 

2.5 j-j Coupling 

In heavier atoms, the magnetic spin-orbit interaction factor present in the Hamiltonian, 

dominates over the spin-spin interaction and residual electrostatic interaction. This dominance 

results into j-j coupling. This spin-orbit interaction dominance also implies that the interaction 

between spin and orbit for a single electron is strongly coupled compared to spin momentum 

coupling and orbital momentum coupling in the individual electrons. Therefore, the splitting 

of the unperturbed energy level is more affected by spin-orbit interactions compared to spin-

spin interactions and residual electrostatic interactions. 

The resultant angular momentum j of magnitude √j(j + 1)h/2 is obtained due to strong 

coupling between spin and orbital angular momentums of individual electrons. The quantum 

number j takes vales from j = l – 1/2 to j = l + 1/2 (half integral values only). This implies that 

the well spaced split energy levels are obtained due to strong spin- orbit interaction. Each of 

these energy levels correspond to different j values such that j = l – 1/2  be lowest and        j = 

l + 1/2  be highest. 

Thereafter, this j of individual electrons combine due to residual electrostatic and spin-spin 

interaction with each other. The resultant total angular momentum J  of an atom vary from J =

 |j1⃗⃗ + j2⃗⃗  +  j3⃗⃗ +  … . . . | min, |j1⃗⃗ + j2⃗⃗  + j3⃗⃗ +  … . . . | min+1,( j1⃗⃗ +j2⃗⃗ + j3⃗⃗ +....... ) and magnitude 

as J =  √J(J + 1)h/2 . 

Let us understand the j-j splitting illustratively by considering the level having electronic 

configuration as 4p4d (fig. 7), 
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For the p – electrons: 𝑙1 = 1;  𝑠1 =
1

2
; 𝑙1 =

1

2
,

3

2
 

For the d – electrons: l1 = 2;  s2 =
1

2
; j1 =

3

2
,

5

2
 

The above values of j1 and  j2 may possibly combine in following ways: 

(1/2,3/2); (1/2,5/2); (3/2,3/2); (5/2,5/2) 

Thus the j-j coupling splits the energy levels into four ways such that (1/2,3/2) is the lowest 

and (3/2,5/2) is the highest level. These levels further combine to give: 

(1/2,3/2) J = 1, 2 

(1/2,5/2) J = 2,3 

(3/2,3/2) J = 0,1,2,3 

(3/2,5/2) J = 0,1,2,3 

It is relatively quite seldom to find pure j-j coupling. As atoms transit from being lighter to 

heavier there is a gradual shift from L-S to j-j coupling. 

 

 

 

 

 

 

Fig. 7 Splitting of 4p4d level under j-j coupling scheme 
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2.5.1 Selection Rules in j-j Coupling 

 

The atoms in which j-j coupling is applicable abide by following selection rules: 

1. The selection rule follows ‘Laporte Rule’. The Laporte rule states that in an electric -dipole 

transition, the parity of the electronic configuration must change and hence the l must 

change by an odd number for one electron atom. If two electrons are involved in a transition 

simultaneously then l will be odd for one electron and even for second electron. That is 

l1 = 1; l2 = 0,2. This rule is same as for L-S coupling. 

2. When an electron jumps to make one transition at a time then j value should follow j =

0,1 and for other electrons j = 0 

3. For a complete atom, the J must follow: 

𝐿 = 0, 1 but for J = 0 J = 0 

S = 0 and L = 0, 1 do not hold good for j-j coupling. 

 

Solved Example 5: 

Question: Two optically active electrons in two- valance electrons are associated with 

following quantum numbers as: 

 𝑛1 = 6, 𝑙1= 3, 𝑠1=  
1

2
  

 𝑛2 = 5, 𝑙2 = 1, 𝑠2 = 
1

2
  

(a) Obeying the L-S coupling scheme, evaluate the possible values of L, S and J. 

(b) Obeying the j-j coupling scheme, evaluate the possible values of J. 

Solution: (a) Given Data: 

𝑙1= 3, 𝑙2 = 1 

Therefore, 𝐿 =  |𝑙1 − 𝑙2|, |𝑙1 − 𝑙2| + 1, ----------------- |𝑙1 + 𝑙2| 

                          L= 2, 3, 4 

       𝑠1 =  
1

2
 ; 𝑠2 = 

1

2
  

           Therefore, S = |𝑠1 − 𝑠2|, |𝑠1 − 𝑠2| + 1, ----------------- |𝑠1 + 𝑠2| 

       S = 0, 1 

  Therefore, J values are J =|𝐿 − 𝑆|, -----------------------|𝐿 + 𝑆| 

For S = 0 and L = 2, 3, 4 the values of J = 2, 3, 4  

For S = 1 and L = 2, 3, 4 the values of J = 1, 2, 3; 2, 3, 4 and 3, 4, 5 

(b) Given Data: 

For 𝑛1 , 𝑙1 = 3, 𝑠1 = 
1

2
 

 Therefore, 𝑗1 =|𝑙1 − 𝑠1|, |𝑙1 − 𝑠1| + 1, ----------------- |𝑙1 + 𝑠1| 
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            = 
5

2
 , 
7

2
  

                      For 𝑛2 , 𝑙2 = 1, 𝑠2 = 
1

2
  

  Therefore, 𝑗2  = 
1

2
 , 
3

2
 

This gives four combinations of 𝑗1 and 𝑗2 as: 

 (
1

2
 ,
5

2
) ; (

1

2
 ,
7

2
) ; (

3

2
 ,
5

2
) ; (

3

2
 ,
7

2
)  

These combinations give J values as follows: 

 (
1

2
 ,
5

2
) Gives J = 2, 3 

 (
1

2
 ,
7

2
) Gives J = 3 ,4 

 (
3

2
 ,
5

2
) Gives J = 1, 2, 3, 4 

 (
3

2
 ,
7

2
) Gives J = 2, 3, 4, 5 

There are a total of 12 in number J values. 

 

2.6  Summary  

As the Bohr-Sommerfeld model became incapable of explaining the fine structure splitting, 

Zeeman effect, Paschen-Back effect, Stark effect etc.,. The, evolution of vector model of an 

atom seeded the concept of space quantization and spinning electrons. This further explained 

the splitting due to various interaction energies - the kinetic energy of the electrons, the 

electrostatic energy of the electrons, residual electrostatic interaction, spin-spin correlation and 

spin-orbit correlations that are involved in the Hamiltonian of an atom. This gave rise to 

splitting due to various coupling schemes namely L-S and j-j coupling. In the heavier atoms, 

the spin-orbit energy term dominates over the other interaction energy terms and this type of 

atoms combine in accordance with j-j coupling. In the lighter atoms, the residual electrostatic 

energy of the electrons and the spin-spin correlation energy of electrons show dominance over 

the other terms and this type of atom combine in accordance with L-S coupling. 

As the spin-orbit interactions is weaker in L-S coupling, compared spin-spin interaction and 

residual electrostatic interaction, the spin angular moments and orbital angular moments couple 

individually first to resultant S⃗  and L⃗  respectively. Thereafter, the resultant spin angular 

momentum S⃗  and the resultant orbital angular moment L⃗  combine with each other to form 

resultant total angular moment J  of the atom. 
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In heavier atoms, the magnetic spin-orbit interaction factor present in the Hamiltonian, 

dominates over the spin-spin interaction and residual electrostatic interaction. This dominance 

results into j-j coupling. This spin-orbit interaction dominance also implies that the interaction 

between spin and orbit for a single electron is strongly coupled compared to spin momentum 

coupling and orbital momentum coupling in the individual electrons. Therefore, the splitting 

of the unperturbed energy level is more affected by spin-orbit interactions compared to spin-

spin interactions and residual electrostatic interactions. 

The spectroscopic terms are further determined as per these coupling schemes and the allowed 

transitions follow the selection rules governed by these coupling schemes. 
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2.9 Terminal Descriptive type questions  

Q-1. Discuss different types of coupling schemes in atoms with the help of illustrative 

examples. 

Q-2. What do you understand by L-S coupling? Discuss various interaction energy terms 

involved in L-S coupling of an atom. 

Q-3. Consider two-valance electron atom. Apply L-S and j-j coupling on this atom and prove 

that the numbers of terms are same under both the coupling schemes for ps electronic 

configuration. 

Q-4. Differentiate between L-S and j-j coupling. Give examples to support your answer. 

Q-5. Explain the concept of equivalent and non-equivalent electrons with the help of examples. 

Q-6. Discuss vector model of an atom. 

Q-7. Deduce an expression for magnetic dipole moment for a hydrogen atom. Also evaluate 

Bohr magneton. 

Q-8. Discuss Lande’s interval rule for L-S coupling. 

Q-9. State various selection rules for j-j and L-S coupling schemes. Consider an oxygen atom 

and apply the selection rules to find the allow transitions from 1D and 1S terms. 

Q-10. What is the condition of the atoms that L-S coupling transits into j-j coupling? Explain 

with the help of examples. 

2.10 Numerical type (Self Assessment questions) 

Q-1. Consider an electronic configuration1𝑠22𝑠22𝑝1. Evaluate the values of l, s and j for the 

corresponding L, S and J of an atom. 

(Ans- 𝑙 = 𝐿 = 1 ; 𝑠 = 𝑆 =  
1

2
; 𝑗 = 𝐽 =  

1

2
,
3

2
 ) 

Q-2. Evaluate the term symbol for an aluminium atom that has two 3s electrons and one 8p 

electron in the outer most shell. 

(Ans- 2𝑃1
2

 ) 

Q-3. Two 3s electrons are present in the outer shell of magnesium. Evaluate term symbol of its 

ground state. 

(Ans- 1𝑆0 )  

Q-4. Evaluate the spectroscopic notation for the following states; 
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(a) 𝐿 = 1; 𝑆 = 1 2⁄   

(b) 𝐿 = 2; 𝑆 = 7 2⁄   

(c) 𝐿 = 3; 𝑆 = 3  

(Ans- (a) 2𝑃1
2
,
3

2

 (b) 2𝑃3
2
,
5

2
,
7

2
,
9

2
,
11

2

 (c) 7𝐹0,1,2,3,4,5,6) 

Q-5. Find the values of L, S and J for the spectroscopic term 4𝐷5
2

 . 

(Ans- = 2; 𝑆 =
3

2
; 𝐽 =

5

2
 ) 

Q-6. Compute the spectral terms for two equivalent d electrons. 

(Ans- 1𝑆0; 1𝐷2; 1𝐺4; 3𝑃0,1,2; 
3𝐹2,3,4) 

Q-7. Consider an odd electron configuration 2𝑝23𝑝 and evaluate its spectroscopic terms. 

(Ans- 2𝑆1
2

0; 2𝑃1
2
,
3

2

0 (3); 2𝐷3
2
,
5

2

0 (2); 2𝐹5
2
,
7

2

0 ; 4𝑆3
2

0; 4𝑃1
2
,
3

2
,
5

2

0 ; 4𝐷1
2
,
3

2
,
5

2
,
7

2

0 ) 

Q-8. Diagrammatically represent the term values of 3𝑝 4𝑑  electronic configuration for L-S 

and j-j coupling. 

Q-9. Compute the spectral terms arising from neutral nitrogen atom. 

(Ans- 2𝑃1
2
,
3

2

0 ; 𝐷3
2
,
5

2

0 ; and 4𝑆3
2

0) 

Q-10. Evaluate the electronic configuration of N+ and hence evaluate the spectral terms. 

(Ans- 1𝑠22𝑠22𝑝2; 1𝑆0; 1𝐷2; 3𝑃0,1,2) 

Q-11. Prove that the neutral carbon atom gives spectroscopic terms as 1𝑆0 , 3𝑃0,1,2 and 1𝐷2. 

Draw the energy level diagram for it. 

Q-12. Consider the data of quantum numbers of two electrons in a two valance electron atom 

as: 

𝑛1 = 5; 𝑙1 = 0; 𝑠1 =
1

2
  

𝑛2 = 4; 𝑙2 = 1; 𝑠2 =
1

2
  

Find the possible values of the l and j under (a) L-S coupling (b) j-j coupling 

Q-13. Evaluate the angle between 𝐽  and z axis largest value of j and mj (Given:𝑙 = 4 𝑎𝑛𝑑 𝑠 =
1

2
) 

(Ans – 25.2˚) 



             MSCPH507 

64 

 

 

UNIT 3      SPECTRA OF ALKALI EARTH ELEMENTS 
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3.2 Introduction of Alkali Spectra 

3.3 Ritz Combination Principle 

3.4 Theory of comprehensive features of the Alkali spectra 

3.5 Fine structure in Alkali Spectra: The Spinning Electron 

3.6 The Ratio of Intensity (for the Doublets) 

3.7 Essential factors of Alkaline Earth Spectra 

3.8 Two valence electron Vector Model 

3.9 Interaction Energy (Triplet separation) in L – S and j – j couplings 

3.10 Comparison of the terms used in L – S and j – j couplings 

3.11 Regularities in Complex Spectra 

3.12 Summary 

3.13References 

3.14Suggested Readings 

3.15Terminal Descriptive type questions 

3.16 Numerical type (Self Assessment Questions) 
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3.1.  Objectives 

After studying this unit, the learners should be able to: 

 Understand and explain the features of spectra of alkali or alkali like atoms. 

 Better comprehend the absorption  spectra and simultaneously the ionisation potential 

 Apply the spin-orbit interaction to understand the doublet separation for an alkali 

atom. 

 Elaborate in depth the splitting of S and P levels in alkali atoms resulting of the four 

series. 

 Appreciate the quantitative intensity relation of the doublet spectra stated by Burger, 

Dorgelo and Ornstein.  

 Understand the broad and fine-structure spectra of Alkaline Earth atoms with vector 

model of to valance electron atom. 

 Apply the selection rules for analytical investigation of spin-orbit interaction showing 

the triplet and anomalous triplets splitting. 

 Calculate the energy of interaction involving L-S and j-j coupling. 

 

3.2. Introduction to Alkali Spectra 

As we all know, hydrogen is the simplest atom, studied so far. Next that comes in line with 

respect to its spectra is the ‘Alkali Atoms’. These alkali atoms include Li, Na, K, Rb, Cs and 

Fr having their individual spectra whose experimental study was done by renowned scientists 

Bergmann, Rydberg, Living and Dewar. The study recognized that emission spectrum of the 

alkali atoms show spectral lines in form of four series. These include: A principal series of 

bright and constant lines, a sharp series of fine lines, a diffuse series of approximately broader 

lines and a fundamental (also called Bergmann) series in the infra-red region. 

From the Balmer’s formula for hydrogen, Rydberg edged out that alkali series can be expressed 

by similar formulae, as given below: 

   As per Balmer’s formula, 

𝜈 =  𝜈∞ −
𝑅

𝑛2
 

Rydberg’s representation, 

Principal:   𝜈𝑝𝑚 = 𝜈
𝑝

∞ − 
𝑅

(𝑚+𝑝)2
  ,   m =2, 3, 4…… ∞ 

Sharp:     𝜈𝑠𝑚 = 𝜈
𝑠

∞ − 
𝑅

(𝑚+𝑠)2
  ,   m =2, 3, 4…… ∞ 

Diffuse:   𝜈𝑑𝑚 = 𝜈
𝑑

∞ − 
𝑅

(𝑚+𝑑)2
  ,          m = 3, 4, 5…… ∞ 
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Fundamental:  𝜈𝑓𝑚 = 𝜈
𝑓

∞ − 
𝑅

(𝑚+𝑓)2
  ,   m = 4, 5, 6…… ∞ 

 

Where 𝜈∞ of all the equations are the wave numbers of the convergence limits of its specific 

series and these terms are called as ‘fixed terms’. The ‘running terms’ that is, p, s, d and f shows 

the Rydberg corrections for the specific series. 

Rydberg perceived that different series of same atom have following relations among 

themselves: 

1. The convergence limit is same in diffuse and sharp series (𝜈𝑑
∞ 
= 𝜈𝑠∞ ). 

2. The common convergence limit of sharp and diffuse series is equal to the first running 

term of the principal series. 

𝜈𝑠∞ = 𝜈
𝑑

∞ − 
𝑅

(2 + 𝑝)2
 

3. The convergence limit of the principal series is equal to the running term (with m=1) 

of the sharp series. 

𝜈𝑝∞ =  
𝑅

(1 + 𝑠)2
 

4. The convergence limit of the fundamental series is equal to the first running term (with 

m = 3) of the diffuse series. 

 

𝜈𝑓∞ =  
𝑅

(3 + 𝑑)2
 

 

Therefore, keeping the above relations into consideration, the above Rydberg formulae can be 

represented as follows: 

     

Principal:   𝜈𝑝𝑚 = 
𝑅

(1+𝑠)2
− 

𝑅

(𝑚+𝑝)2
  ,   m =2, 3, 4…… ∞ 

Sharp:     𝜈𝑠𝑚 = 
𝑅

(2+𝑝)2
− 

𝑅

(𝑚+𝑠)2
  ,   m =2, 3, 4…… ∞ 

Diffuse:   𝜈𝑑𝑚 = 
𝑅

(2+𝑝)2
− 

𝑅

(𝑚+𝑑)2
  ,          m = 3, 4, 5…… ∞ 

Fundamental:  𝜈𝑓𝑚 = 
𝑅

(3+𝑑)2
− 

𝑅

(𝑚+𝑓)2
  ,   m = 4, 5, 6…… ∞ 

 

Rydberg – Schuster Law: The difference in the wave number of the principal series limit and 

the sharp (or diffuse) series limit is equal to the wave number of the first line of the principal 

series: 
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𝜈𝑝∞ − 𝜈
𝑠 (𝑜𝑟 𝑑)

∞  =  
𝑅

(1 + 𝑠)2
− 

𝑅

(2 + 𝑝)2
= 𝜈𝑝2 

Runge’s law: The difference in the wave number of the diffuse series limit and the fundamental 

series limit is equal to the wave number of the first line of the diffuse series: 

𝜈𝑑∞ − 𝜈
𝑓 

∞  =  
𝑅

(2 + 𝑝)2
− 

𝑅

(3 + 𝑑)2
= 𝜈𝑑3 

 

3.3.  Ritz Combination Principle 

The plausibility of the occurrence of other species was pinpointed by Ritz, as a result of the 

change in the ‘fixed term’ present in the formula for the main series.  Such new series has been 

recognised in many different spectra’s, even in that of hydrogen spectra. 

For example, the main principal series and sharp series of the alkali spectra are explained in 

the form of abbreviations as follows: 

𝜈𝑝𝑚 = 1𝑆 −𝑚𝑃, where m = 2, 3, 4…..∞ ………………1 

𝜈𝑠𝑚 = 2𝑃 −𝑚𝑆 , where m = 2, 3, 4…..∞     ………………2 

 

Ritz predicted the series that was achieved by variation in the ‘fixed term’ 1S and 2P to 2S, 

3S….. and 3P, 4P,….. . Thus, the principal series is now represented as 

2𝑆 − 𝑚𝑃,where m =  3, 4, 5… . .∞
3𝑆 − 𝑚𝑃,where m =  4, 5, 6… . .∞ 

} …………...3  

And the combination sharp series are represented as 

3𝑃 −𝑚𝑆,where m =  4, 5, 6… . .∞
4𝑃 −𝑚𝑆,where m =  5, 6, 7… . .∞ 

} ……………4 

It can be observed that the fixed terms that existed in equation number 3 are included 

in the running terms of equation 2. Moreover, the fixed terms occurring in equation 4 are 

included in the running terms of equation 1. Thus the final prediction of series is simple sum 

or the difference of the terms of the main series. The resulting series are therefore termed as 

the ‘combination series’ and the possibility of their occurrence is called as ‘Ritz combination 

principle’.  

3.4.  Theory of comprehensive features of the Alkali spectra 

It is understood till now that in case of alkali atoms, one can assume it to be consisting of an 

inert atom-as atom as its core composed of the nucleus and completed sub-shells, plus a single 

valence electron. In this case, the next incomplete sub-shell is s sub shell coming next after 

fully occupied outermost p sub-shell. It is known widely that during the optical excitation 
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process, only the valence electron is responsible for its optical spectra. The inert gas atoms are 

neutral due their symmetrical distribution of charge throughout. 

Considering the case of Na atom, it has the outer most configurations of 3s, which leads 

to an S-term. For other possible excitation terms, can be: 4s, 5s, 6s, … S-terms; 3p, 4p, 5p, … 

P-terms; 3d, 4d, 5d,…D-terms, 4f, 5f, 6f,… F-terms. With the constant energy of the core, the 

total optical energy of the optically active electron in that state is consider to be its total energy 

(taking the energy due to core as constant and as zero, here for the sake of simplicity).  One 

can look into the quantum mechanics for considering the energies of H-atom. In H-atom, the 

total energy is dependent on shell n only. When we consider the case of alkali atom, the electron 

revolves around the ‘central field’ of the nucleus along with the core electrons. Mathematically, 

this is given by 

𝐸𝑛,𝑙 = −
2𝜋2𝜇(𝑍𝑛𝑒)

2𝑒2

(𝑛ℎ)2
 

where   is the reduced mass, 

 Zne is the effective charge of the nucleus for nth shell.  

The value of Zne will be greater than that of e because of Ze charge of the nucleus by the (Z-

1)e charge of the electron in the core, which is not equated or perfectly balanced. This results 

in the more negative energy of the alkali atoms as compared to H-atom. With same n. 

corresponding to above result, one can conclude that the energy levels of alkali atoms will be 

lower in energy values as compared to H-atom. Although, with increasing value of n levels in 

alkali atoms, energy will finally approach to those corresponding level of H-atom and try to 

stabilize the atom more and more with increasing screening effect. 

In contrast to Hydrogen, the energy of an alkali atom not only depends on n but also depends 

on l values. Since the probability of finding the electron near the nucleus is largest for l=0 (s-

electron) and decrease for increasing values of l. Thus for a given n, the energy is most negative 

for s electrons and further keeps on decreasing for p,d,f,… electrons. This is depicted in the 

Figure 1.  
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Figure 1.The alkali levels of Na atom, where the shift is greatest for s and becomes smaller for 

p,d,f,…levels. 

The selection rule for such allowed transitions are n = any integer, and l = 1. The observed 

transition in the emission spectra corresponds to the following series: 

np  3s, n > 2 , known as Principal Series 

ns  3p, n > 3 , known as Sharp Series 

nd  3p, n > 2 , known as Diffuse Series 

nf  3d, n > 3 , known as Fundamental Series 

Experimentally, we have huge number of atoms, so we observe all the four series collectively. 

Ultimately, the principal series is observed because the entire excited electron returns to the 

ground state making this series as most intense. 

The important observations noted from Figure 1 are stated as follows. The sharp and 

diffuse series have the same limit that corresponds to the jump of electron from infinity to 3p 

level.  The absorption spectrum of Na is obtained when the light from a source is passed through 

the cooled vapours of Na. The absorption spectra of alkali atoms follow the selection rule of 

l=1. Usually at room temperature, the atoms in the vapour state are in ground energy state, 

the only possible absorption transition occurs as 3snp, for n>2. This results as the principal 
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series, which is the only series occurring both for absorption and as well as emission. The limit 

of this series corresponds to either the complete removal of 3s electron (in case of absorption) 

or de-exciting to 3s level from infinity (in case of emission). This gives the ionization potential 

of the atom, when converted in eV. 

With the above understanding of the methodology of absorption, when the electron transits 

from 3s3p, the only transition possible is 3p3s which results in the only resonance yellow 

D-line in emission spectra. These are termed as resonance lines. Usually the other transition 

may results from other possible paths, say for e.g. the transition from 3s4p and back to 

normal state may occur from (i)  4p3s, (ii) 4p4s3p3s, (iii) 4p3d3p3s, thus 

emitting other lines in the spectrum as well.  

3.5.  Fine structure in Alkali Spectra: The Spinning Electron 

Splitting of fine structure is obtained by the alkali atoms when the lines of the optical spectra 

are emitted from the atoms. The fine structure splitting is smaller for the light weighted atoms 

and increases promptly with the increase in the atomic number. Sharp series constitutes lines 

in close doublets with separation of similar wave number. In the same way, for the principal 

series, each line is also in doublet form but here the wave number separation declines speedily 

between the two components and the declination is towards the lines of increase in the wave 

number. On the other hand, diffuse as well as the fundamental series express a three component 

fine structure and therefore, are also known as ‘Compound doublets’ rather than the triplets. 

However, the fundamental series has negligible fine structure in the lines.  

Alkali spectral analysis show that the line splitting are etched back to the level splitting 

and the S levels are single while other levels like P, D, F are the doublet levels. The spin of the 

electron give rise to the splitting of the levels. It is through the nuclear electric field, the electron 

moves and that creates the interaction between the spin magnetic moment (of the optically 

active electrons) and the internal magnetic field. This type of interaction is known as the Spin 

– Orbit interaction. This interaction causes the coupling of the orbital angular momentum 𝑙  of 

the optical electron with that of the spin angular momentum 𝑠  to give rise to the resultant 𝑗  

about which both the coupled momentums 𝑙  and 𝑠  precess  further. 𝑗  is also termed as the total 

angular momentum of the alkali atom as the angular momentum of the core is equal to zero. 

There are two values which the quantum number j can exhibit as the spin and orbital angular 

momenta are parallel or anti-parallel: 

𝑗 = 𝑙 ± 𝑠 = 𝑙 ±
1

2
 

The placement of the spin with respect to the orbit results in the splitting of each energy level 

in two, one which corresponds to 𝑗 = 𝑙 + 
1

2
 and the other corresponds to𝑗 = 𝑙 − 

1

2
. The 

exception is the S-level for which l = 0. The complete notation of levels is as given below: 
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Level l S Multiplicity 

(2s+1) 

j Full 

notation 

S 0 ½ 2 1/2 2S1/2 

P 1 ½ 2 3/2, 1/2 2P3/2,
 2P1/2 

D 2 ½ 2 5/2, 3/2 2D5/2, 
2D3/2 

F 3 ½ 2 7/2, 5/2 2F7/2, 
2F5/2 

 

The components in every doublet levels, analogous to the j’s smaller value are more stable and 

thus placed deeper. The stable state arrives when the spin magnetic moment of the electron, 𝜇𝑠⃗⃗  ⃗ 

channels in the direction of the magnetic field �⃗�  generated due to the orbital motion of the 

electrons in the nuclear electric field. Moreover, this �⃗�  is in the same direction as that of the𝑙 , 

which is the angular momentum. Since the electron is negatively charged, the directions of the 

spin moment 𝜇𝑠⃗⃗  ⃗ and 𝑠  are opposite to each other. As 𝜇𝑠⃗⃗  ⃗ is in the same direction to that of 𝑙  for 

a stable state, the latter becomes opposite to 𝑠 , while the value of j is very low,  j = l – s. On 

the contrary, the higher value of j corresponds to the unstable or the less stable state, as shown 

in Figure 2.  

 

 

Figure 2. (A) The lower value of j corresponds to less stable state where 𝑙  is opposite to 𝑠  (B) 

the higher value of j corresponds to less stable state. 

 

The interaction between the spin magnetic moment of an electron and an atom’s internal 

magnetic field arising from the electron’s orbital motion through the nuclear electric field is 

called as the Spin – Orbit Interaction. Although, it is a weak interaction, it is the partial reason 

behind the fine structure of the excited states of an electron atom. The spin – orbit interactions 

that acts on the optically active electron cause the splitting of the energy levels of the alkali 

atom, and can be calculated by deriving the expression for the interaction energy. 
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Let us take the �⃗�  as the electric field, in which the electrons are moving with a gradient of a 

potential function V(r). Here ‘r’ is the distance between the electron and nucleus. 

�⃗� = 𝑔𝑟𝑎𝑑 𝑉(𝑟)  

Since, 𝑔𝑟𝑎𝑑 𝑟 =  
𝑟 

𝑟
 

�⃗� =  
𝑟 

𝑟
 
𝑑𝑉(𝑟)

𝑑𝑟
 

The magnetic field, that is, �⃗� , which arises from the electron’s orbital motion with velocity 𝑣  

in the electric field �⃗�  can be written as 

�⃗� =
1

𝑐
 (�⃗� × 𝑣 ) 

�⃗� =
1

𝑐𝑟
 
𝑑𝑉(𝑟)

𝑑𝑟
(𝑟 × 𝑣 ) 

Since, the angular momentum of the electron is expressed as �⃗� = 𝑚 𝑟 × 𝑣 , 

�⃗� =
1

𝑚𝑐
 
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
 �⃗�  

The internal magnetic field �⃗�   of the atom can cause different orientations for the spin magnetic 

moment 𝜇𝑠⃗⃗  ⃗ of the electron and the electron itself. For different orientations, the potential energy 

is also different. The magnetic potential energy of the orientation can be expressed as 

∆𝐸𝑙𝑠 = −𝜇𝑠⃗⃗  ⃗. �⃗�  

But, 

𝜇𝑠⃗⃗  ⃗ = −𝑔𝑠
𝑒

2𝑚𝑐
𝑠 , where 𝑔𝑠 = 2 

Therefore, the above expression for the magnetic potential energy can be written in terms of 

the spin angular momentum of the electron, 𝑠 , which is given below 

∆𝐸𝑙𝑠 = −
𝑒

2𝑚𝑐
𝑠 . �⃗�  

Now, substituting the value of �⃗� , we get 

∆𝐸𝑙𝑠 = −
𝑒

𝑚2𝑐2
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
𝑠 .  �⃗�  

This is the energy in the reference frame in which the electron is at rest. The relativistic 

transformation to the normal reference frame in which the nucleus is at rest, the energy is 
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reduced by the factor of 2. This is called as the ‘Thomas Precession’. Therefore, the spin – orbit 

interaction energy can be expressed as 

∆𝐸𝑙𝑠 = −
𝑒

2𝑚2𝑐2
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
𝑠 .  �⃗�  

 

In the terms of quantum numbers, that is, l, s, and j, the expression can be written as  

𝑗 = 𝑙 + 𝑠  

If we take a self dot product of the above equation, we have 

𝑗 . 𝑗 = (𝑙 + 𝑠 ) . (𝑙 + 𝑠 ) 

Since, 𝑠 . 𝑙 = 𝑙 . 𝑠  

𝑗 . 𝑗 = (𝑙 . 𝑙 ) + (𝑠 . 𝑠 ) + 2𝑠⃗⃗⃗⃗ . 𝑙   

Therefore, 

𝑠 . 𝑙 =
1

2
[𝑗 . 𝑗 − 𝑙 . 𝑙 − 𝑠 . 𝑠 ] 

=
1

2
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

ℎ2

4𝜋2
 

Now,  

∆𝐸𝑙𝑠 = −
𝑒ℎ2

16𝜋2𝑚2𝑐2
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
 

 

Generally, 
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
 term is not constant during the motion of electron. Therefore, its average 

value is taken. 

∆𝑬𝒍𝒔 = −
𝒆𝒉𝟐

𝟏𝟔𝝅𝟐𝒎𝟐𝒄𝟐
[𝒋(𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏) − 𝒔(𝒔 + 𝟏)]

𝟏

𝒓

𝒅𝑽(𝒓)

𝒅𝒓

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

This is the general expression for the interaction energy, provided that the 
1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
 average value 

is calculated through the probability density which is attained from the Hartree eigen functions. 

The above equation reveals that the interaction energy, that is, ∆𝐸𝑙𝑠 = 0, when 𝑙 = 0 as 𝑗 =

𝑠 =
1

2
. For the other values of 𝑙, ∆𝐸𝑙𝑠 has two values, one being positive and the other being 

negative. 
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As per the Hartree theory, an orbital electron present in ‘n’ shell of an alkali atom moves in a 

potential field, 

𝑉(𝑟) =  −
𝑍𝑛𝑒

𝑟
 

Here 𝑍𝑛 is a constant which is equal to 𝑍(𝑟) examined at the average value of r for the shell n. 

The value of 𝑍(𝑟) is such that 𝑍(𝑟) → 𝑍 as 𝑟 → 0 and 𝑍(𝑟) → 1 as 𝑟 → ∞. The above quantity 

𝑍𝑛𝑒 is called the effective nuclear charge for a particular shell n. 

𝑑𝑉(𝑟)

𝑑𝑟
=  −

𝑍𝑛𝑒

𝑟2
 

 

Therefore, the final equation can be expressed as follows: 

∆𝑬𝒍𝒔 = −
𝒁𝒏𝒆

𝟐𝒉𝟐

𝟏𝟔𝝅𝟐𝒎𝟐𝒄𝟐
[𝒋(𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏) − 𝒔(𝒔 + 𝟏)]

𝟏

𝒓𝟑

̅̅ ̅
 

 

1

𝑟3
̅

 is calculated using the radial eigen functions 𝑅𝑛𝑙(r) of an alkali atom. The value of 
1

𝑟3
̅

 is 

finally written as  

1

𝑟3

̅̅ ̅
=

𝑍𝑛
3

𝑎03𝑛3𝑙 (𝑙 +
1
2)
(𝑙 + 1)

, provided 𝑙 > 0 

Where 𝑎0 is the radius of the smallest Bohr orbit of hydrogen atom and 𝑎0 =
ℎ2

4𝜋2𝑚𝑒2
. 

Now if we introduce the value of 𝑎0 in the above equation of interaction energy will be: 

∆𝑬𝒍𝒔 = −
𝒁𝒏𝒆

𝟐𝒉𝟐

𝟏𝟔𝝅𝟐𝒎𝟐𝒄𝟐
[𝒋(𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏) − 𝒔(𝒔 + 𝟏)]

𝒁𝒏
𝟑

𝒂𝟎𝟑𝒏𝟑𝒍 (𝒍 +
𝟏
𝟐)
(𝒍 + 𝟏)

 

The above equation can be simplified as 

∆𝑬𝒍𝒔 = −
𝑹∞𝜶

𝟐𝒉𝒄 𝒁𝒏
𝟒

𝟐𝒏𝟑𝒍 (𝒍 +
𝟏
𝟐)
(𝒍 + 𝟏)

[𝒋(𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏) − 𝒔(𝒔 + 𝟏)] 

Where 𝑅∞ = 
2𝜋2𝑚𝑒4

𝑐ℎ3
 is the Rydberg constant for a very boundlessly heavy nucleus and 𝛼 =

2𝜋𝑒2

ℎ𝑐
 is the fine structure constant. 

The shift of energy level in the wave number due to the spin – orbit interaction is 
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∆𝑻𝒍𝒔 =
−∆𝑬𝒍𝒔
𝒉𝒄

= −
𝑹∞𝜶

𝟐 𝒁𝒏
𝟒

𝟐𝒏𝟑𝒍 (𝒍 +
𝟏
𝟐)
(𝒍 + 𝟏)

[𝒋(𝒋 + 𝟏) − 𝒍(𝒍 + 𝟏) − 𝒔(𝒔 + 𝟏)] 

For a single optically active electron of an alkali atom, 

𝑠 =
1

2
 and 𝑗 = 𝑙 ± 𝑠 = 𝑙 ±

1

2
 

Substituting this,  

𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1) =  𝑙,   for 𝑗 = 𝑙 +
1

2
 

𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1) = (𝑙 + 1),   for 𝑗 = 𝑙 −
1

2
 

Now, the shift in the level, with respect to 𝑗 = 𝑙 +
1

2
 and 𝑗 = 𝑙 −

1

2
 is expressed as 

∆𝑇𝑙𝑠′ = −
𝑅∞𝛼

2 𝑍𝑛
4

2𝑛3 (𝑙 +
1
2)
(𝑙 + 1)

 

∆𝑇𝑙𝑠′′ = −
𝑅∞𝛼

2 𝑍𝑛
4

2𝑛3𝑙 (𝑙 +
1
2)

 

Therefore, the spin – orbit interaction causes the splitting of the 𝑙- level into two different levels 

of 𝑗, one in upward direction and the other in downward direction. The separation between the 

two, 

∆𝑇 =  ∆𝑇𝑙𝑠′′ − ∆𝑇𝑙𝑠′ 

∆𝑇 = −
𝑅∞𝛼

2 𝑍𝑛
4

2𝑛3 (𝑙 +
1
2)
[
1

𝑙
+

1

𝑙 + 1
] 

∆𝑇 = −
𝑅∞𝛼

2 𝑍𝑛
4

𝑛3𝑙(𝑙 + 1)
 

Putting the value of 𝑅∞ = 1.097 × 105 cm-1 and 𝛼 = 1 137⁄ , we get 

∆𝑇 = 5.84
 𝑍𝑛

4

𝑛3𝑙(𝑙 + 1)
cm−1 

If 𝛼 is the screening constant, then 𝑍𝑛 = 𝑍 − 𝜎, such that 

∆𝑻 = 𝟓. 𝟖𝟒
 (𝒁 − 𝝈)𝟒

𝒏𝟑𝒍(𝒍 + 𝟏)
𝐜𝐦−𝟏 
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This equation shows that the splitting of the levels for an alkali atom decreases with increase 

in ‘n’ for same level 𝑙. Further it increases with increase in the atomic number and decreases 

with increase in 𝑙 (for same ‘n’). Moreover, for the value of 𝑙 = 0, the splitting is equal to zero. 

For a given value of ‘n’, the relative splitting of the P2, D2 and F2 levels can be drawn as follows 

(in Figure 3): 

 

Figure 3. The relative splitting of the P2, D2 and F2 levels. 

The splitting of Alkali levels involved in the emission of the lines of the four series are shown 

in Figure 4. The S2 are the single components and written as 2S1/2. The splitting of 2P is given 

as 2P3/2 and 2P1/2, where 2P1/2 is deeper and there is decrease in splitting with increase in ‘n’. In 

the same way, 2D and 2F levels can be splitted into 2D5/2, 
2D3/2, 

2F7/2 and 2F5/2, although these 

splitting are very small. 
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Figure 4. The emission of lines of the four series due to the splitting of involved alkali levels. 

There are selection rules which are: 

∆𝑛 = 𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜) 

∆𝑙 = ±1 

∆𝑗 = 0,±1 

These rules provide an insight to the formation of the single as well as the compound doublet 

structure of the spectral lines.  

As per example, let us take the resonance doublet of sodium atom, called as D1 and D2 lines. 

These lines arise from the 32P → 32S transition, which is corresponding to the given two 

transitions: 

32P1/2 → 32S1/2 (D1 5896 Å) 

32P3/2  → 32S1/2 (D2 5890 Å) 

The separation in the wave number between D1 and D2 lines and that between 32P3/2 and 32P1/2 

is similar as shown in Figure 5. Other higher wave number lines of the principal series owe 

their doublet structure to the doubling of higher aP levels such as 42P, 52P, …….levels. As we 

know, increase in ‘n’ decreases the splitting of these levels it causes the decrease in the wave 

number separation between the doublet components. 



             MSCPH507 

78 

 

 

 

Figure 5. The separation in the wave number between D1 and D2 lines. 

Now for the sharp series, the doublets are formed by the transition n2S1/2 → 32P3/2, 3
2P1/2. Here, 

the value of n = 4, 5, 6…. . In this type of series, separation in the wave number between the 

doublet components of all the lines is equal and similar to that between 32P3/2 and 32P1/2 levels 

where there is termination to all the transitions. 

On the other hand, for the diffuse as well as the fundamental series, the lines display a three 

component structure and are called compound doublet. In the given Figure 6, transition 32D5/2, 

32D3/2 → 32P3/2, 3
2P1/2 arise for a diffuse series. Here, both the 2D and 2P levels split and allow 

three transitions via selection rules. 

 

Figure 6. The splitting of allowed both the 2D and 2P levels. 
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However, the 2D level splitting is too small to cause ordinary resolution to display only two 

components. Ignoring the 2D level splitting, all the lines of the diffuse series have similar 

doublet separations since the lines of the sharp series are equal to the separation between 32P3/2 

and 32P1/2 levels. 

The lines of the diffuse as well as the fundamental series are called doublets, although it has 

three components to be called as triplets. This is because they come from the doublet level 

transitions. Here the term ‘doublet’ clearly refers to the multiplicity of the energy levels and 

not to the number of the components in the spectral lines. 

3.6. The Ratio of Intensity (for the Doublets) 

There are certain intensity rules that line intensities follow in doublet spectra: 

1. The transition where 𝑗 and 𝑙 change in the similar manner give rise to the strongest line 

in any doublet. 

2. If the same doublet contains more than one such lines, then the line having the highest 

value of 𝑗, is the strongest. 

Taking Figure 5 into consideration, we can see in the principal – series doublet, line 
2P3/2 – 2S1/2 is stronger than line 2P1/2 – 2S1/2, as in the 2P3/2 – 2S1/2 line, the value of 𝑗 

and 𝑙 change in same way, that is, by -1. On the other hand, in line 2P1/2 – 2S1/2, the 

value of 𝑗 changes by zero while 𝑙 changes by -1.  

Similarly, it can be seen in Figure 6, there is a diffuse – series compound doublet with 

two strong lines, 2D5/2 – 2P3/2 and 2D3/2 – 2P1/2, where both the value of 𝑗 and 𝑙 change 

in same way, that is, by -1. Having the higher value of 𝑗, makes the 2D5/2 – 2P3/2, 

stronger. On the other hand, for the faint satellite, 2D3/2 – 2P3/2, the values change 

differently, that is, the value of 𝑗 changes by zero while 𝑙 changes by -1.  

In the doublet spectra, quantitative intensity relations have been observed. The intensity 

ratio in the doublet of the sharp series line in sodium is 2:1. Similar ratio was observed 

for the diffuse and the principal series, if the 2D level splitting is unresolved and if self-

absorption is avoided, respectively. 

Burger, Dorgelo and Ornstein discovered the quantitative rules for the relative 

intensities, according to which these apply not only to the doublets, but to all the 

multiplets also. These are as follows: 

 

(A) The sum of the intensities of those lines of a multiplet arising from a common level 

is proportional to the quantum weight 2𝑗 + 1 of that level. 

(B) The sum of the intensities of those lines of a multiplet ending on a common level is 

proportional to the quantum weight of that level. 

Taking an example of a principal series doublet (Figure 7), here are the two component 

lines beginning from the upper levels 2P3/2 and 2P1/2, and terminating on the common 

lower level 2S1/2.  
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Figure 7. Schematic showing the generation of principle series doublet. 

 

Ratio of the intensities would be same as the ratio of the quantum weights of the doublet 

levels. Therefore, 

𝐼𝑏
𝐼𝑎
=
2(
3
2) + 1

2 (
1
2) + 1

=
4

2
= 2: 1 

Similarly the ratio can be calculated for the sharp series. 

Now taking an example of diffuse – series compound doublet as shown in Figure 8 

below. The line ‘b’ arises from the 2D5/2 level while the lines ‘a’ and ‘c’ arise from the 

level 2D3/2. Therefore,  
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Figure 8. Schematic showing the diffuse series compound doublet. 

𝐼𝑏
𝐼𝑎 + 𝐼𝑐

=
2 (
5
2) + 1

2 (
3
2) + 1

=
6

4
= 3: 2 

Further, the line ‘c’ terminates on the level 2P1/2 while ‘a’ and ‘b’ terminates on the 2P3/2 

level. 

𝐼𝑐
𝐼𝑎 + 𝐼𝑏

=
2(
1
2) + 1

2 (
3
2) + 1

=
2

4
= 1: 2 

 

Thus, solving both the above equations, we get 

𝑐 =
5

9
𝑏 , 𝑎 =

1

9
𝑏 

This means that 

𝑎: 𝑏: 𝑐 =  
1

9
: 1:
5

9
 

Or it can be written as 

𝑎: 𝑏: 𝑐 =  1: 9: 5 

If ‘a’ and ‘b’ are not resolved, then we shall see two lines with an intensity ratio 
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(1 + 9): 5 = 2: 1 

Similarly, the intensity ratio for the compound doublet of the fundamental series is 

calculated and is found to be 1:20:14 that will roughly be equal to 3:2. 

This is the splitting between the levels 42P3/2 and 42P1/2. 

Now, for the wavelength 4047.2 and 4044.1 Å, we have 

𝑑𝜈 =
(4047.2 − 4044.1) × 10−8𝑐𝑚

(4047.2 × 10−8𝑐𝑚) × (4044.1 × 10−8𝑐𝑚)
 

𝑑𝜈 =
3.1

4047.2 × 4044.1 × 10−8𝑐𝑚
 

𝑑𝜈 = 18.9 𝑐𝑚−1 

This is the splitting between the levels 52P3/2 and 52P1/2. 

 

3.7. Essential factors of Alkaline Earth Spectra 

An alkaline earth atom constitutes two electrons in its valence shell, which are optically active, 

outside the subshells or the closed shells. Alkaline earth atoms include Be, Mg, Ca, Sr, Ba and 

Ra. Two types of spectral lines arise from the spectrum of such type of atoms, which are – 

Singlets and Triplets. As discussed in chapter 10, the lines of all the types can be categorised 

into four different series: Principal, sharp, diffuse and fundamental. There are certain relations 

among these series, which are as follows: 

1. A common convergence limit has been observed between the singlet sharp (1S) as well 

as the singlet diffuse (1D) series. Similarly, the triplet sharp and diffuse (3S and 3D) 

have different common convergence limit. 

 

2. The common limit of the singlet sharp and diffuse series (1S and 1D) and that of the 

principal series (1P) have a difference of wave number and is equal to the wave number 

of the first member of the principal series (1P). On the other hand, when we look into 

the triplet series, the wave number difference between the common convergence limit 

of triplet sharp and diffuse (3S and 3D) series and that of the convergence limit of triplet 

principal series (3P), is equal to the wave number of the first member of the (3S) sharp 

series. This is called as the Rydberg – Schuster Law. 

 

3. Runge Law states that the difference in the wave number between the convergence limit 

of 1S and 1D series and that of the limit of 1F series is equal to the wave number of the 

first member of the 1D series. This law holds true for the triplet series also, that is, the 

wave number difference between the common limit of the triplet 3S and 3D series and 

that of the limit of 3F series is equal to the wave number of the first member of the 3D 

series. 
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4. When the fine structure is taken into consideration, the above relation holds true here 

also.  

A fine structure is observed in the lines of all the triplet series: 

(i) A three component fine structure is observed in all the lines of the principal 

series with decrease in the separation of the wave number approaching a single 

limit. 

(ii) On the contrary, similarity in the separation of the wave number approaching a 

triple limit although three component fine structure is observed in all the lines 

of the sharp series. 

(iii) A six component fine structure was observed in the all the lines of the diffuse 

and the fundamental series, approaching triple limit – three satellite and the 

other three strong ones. Due to the fine structure, these are called as compound 

triplets in contrast to the above simple triplets of principal and sharp series.  

(iv) There is another class of triplets, called anomalous triplets, within which some 

lines display a fine structure and features very different from the normal 

compound and simple triplets. 

(v) There are some other kinds of alkaline earth atom spectra which display lines 

that do not comply to any of the above mentioned series. These types of lines 

are called as Combination and inter-combination lines. 

All the features of the fine structures can be detailed by the vector model of an 

atom. 

 

3.8. Two valence electron Vector Model 

 

The vector model of an atom can be easily explained by several atomic spectra, within which 

different angular momenta present in the atom along with their combinations, have been 

described using the vectors and their quantum numbers. In the Vector Model, the quantum 

vector 𝑙  has been used to express the orbital angular momentum of each electron while 𝑠  has 

been used to express the spin angular momentum. In different conditions, the resultant vectors 

arise from the combination of these individual vectors in terms of which the atom’s spectral 

properties are described. 

Suppose, for an alkaline earth atoms, with two valence rather optically active electrons present, 

the vector model constitutes four vectors (𝑙1⃗⃗  ,𝑙2⃗⃗⃗  ,𝑠1⃗⃗  ⃗,𝑠2⃗⃗  ⃗) with the resultant vector 𝐽 . Two varying 

coupling schemes are responsible for the formation of the resultant vector and these are known 

as L-S coupling and j-j coupling as shown in Figure 9.  
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Figure 9: The vector model of L-S coupling. 

The L-S coupling is a common type of coupling and exists in most of the lighter atoms. In this 

type of coupling the 𝑙1⃗⃗   and 𝑙2⃗⃗⃗   of two electrons, that is the individual orbital angular momentum 

vectors are coupled to each other strongly, thus giving rise to a resultant orbital angular 

momentum vector �⃗� . Therefore, the corresponding quantum number L can take the values  

𝐿 =  |𝑙1 − 𝑙2|; |𝑙1 − 𝑙2| + 1,… . . (𝑙1 + 𝑙2) 

This can provide numerous terms of the atom. These terms are expressed as S, P, D, ….. as per 

the value of L= 0,1,2…. . 

In similar manner, 𝑠1⃗⃗  ⃗ and 𝑠2⃗⃗  ⃗ of two electrons, that is the individual orbital angular momentum 

vectors are coupled to each other strongly, thus giving rise to a resultant orbital angular 

momentum vector 𝑆 . Therefore, the corresponding quantum number S can take the values  

𝐿 =  |𝑠1 − 𝑠2|;  |𝑠1 − 𝑠2| + 1, … . . (𝑠1 + 𝑠2) 

Since the value of 𝑠1 = 𝑠2 = 
1

2
, the S = 0, 1. 

Thus in value of multiciplicity (2S+1) is 1 and 3, which means that the two electrons give rise 

to singlet and triplet terms. 

Now, for the formation of the total angular momentum 𝐽  (resultant) of an atom, the spin – orbit 

interaction, that is �⃗�  and 𝑆  are less strongly coupled to each other. Therefore, both �⃗�  and 𝑆  

move slowly around 𝐽 . Therefore, the values of quantum number 𝐽  can be 

𝐽 =  |𝐿 − 𝑆|;  |𝐿 − 𝑆| + 1,… . . (𝐿 + 𝑆) 
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The spin orbit interaction is important for each and every multiplet term, which being a 

combination of fine structure levels, each designated with a J value. 

 

Now this vector model can be used to describe the spectrum of the two electron atom, let’s 

suppose Ca (Z=20). The configuration, generally called as ground state configuration is 

1𝑠22𝑠22𝑝63𝑠23𝑝6  4𝑠2 

 

For the electrons which are optically active,  

𝑙1 = 0, 𝑙2 = 0, 𝑠1 =
1

2
 , 𝑠2 =

1

2
  

Thus,  

L = 0 (S-term) 

S = 0, 1 so that (2S+1) = 1, 3 

And  

J = 0, 1 

The terms used are 1S0 and 3S0. Since the electrons (4s2) are equivalent, the term 3S1 is excluded 

by Pauli’s principle. Therefore, only singlet S- term 1S0 arises from the normal atom. 

The optically active electrons, either one or both present in the outer valence shell rise to the 

higher levels or states when the atom is excited. It seems true that excitation of just one of the 

optical electrons can give rise to the lines of all the eight series present in a spectrum.  

 

Configuration Terms 

4s 5s, 4s 6s,…. 51S0, 6
1S0, …… and 53S1, 5

3S1, ……. 

4s 4p, 4s 5p,….. 41𝑃𝑜1, 5
1𝑃𝑜1, … and 43𝑃𝑜2, 1, 0 ; 5

3𝑃𝑜2, 1, 0 ; …… 

4s 3d, 4s 4d,….. 31D2, 4
1D2,…… and 33D1, 2, 3 ; 4

3D1, 2, 3 ;  ……. 

4s 4f,…. 41𝐹𝑜3,…….. and 43𝐹𝑜2, 3, 4 ; …….. 

 

The energy levels with respect to the terms given in the table above, can be designed as per in 

Figure 10. When the spin – orbit interactions are studied, it displays different levels with triplet 

splitting of the levels of the same L which converges swiftly with the increasing value of n. 

Moreover, it shows that intervals of 3P are broader than that of the respective intervals of 3D. 

Similarly, the intervals of 3D are broader than that of the respective intervals of 3F.When the 

excited electron jumps back through any path, as per the selection rules, it emits different 

spectral series.  

∆𝑆 = 0 
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∆𝐿 = ±1 

∆𝐽 = 0, ±1, but 𝐽 = 0 ←∕→ 𝐽 = 0 

 

Figure 10. Energy levels corresponding to various configuration terms of excited states. 

 

The permitted transitions can be expressed as in the Figure 10. Here, a singlet principal series 

arise from the transition of electrons from the 1𝑃𝑜1 level to the normal and lower level 41S0. On 

the other hand, the triplet sharp series arise from the transition beginning from the 3S1 series 

level and terminating on the lowest levels, that is, 43𝑃𝑜2, 1, 0; the triplet diffuse series arise from 

the transition from 3D3, 2, 1 to lowest 43𝑃𝑜2, 1, 0 levels and the triplet fundamental series arise 

from the transition from 3𝐹𝑜4, 3, 2 to the lowest 3 3D3, 2, 1 levels. Those lines that start from the 

transitions between the levels that are higher as in the Figure 10 are called as the ‘combination 

lines’. Seldom, the 3𝑃𝑜1 - 
1S0 transition, that is the transition that takes place between the triplet 

and the singlet levels, are also seen. These reflect to ‘inter-combination lines’.  
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(a)  (b)  

Figure 11. (a) Simple and (b) Compound triplet structure formation, respectively. 

Figure 11(a) and (b) displays a simple as well as the compound triplet structure (3D → 3P), 

respectively. The order of the levels is regular as the lower j valued levels are placed lower. 

Moreover, the spacing obeys the Lande’s interval rule. The 3P2 – 3P1 and 3P1 – 3P0 intervals 

exists in ratio 2:1, and that of 3D3 – 3D2 and 3D2 – 3D1 intervals exists in 3:2 ratio.  

There are following rules which govern the relative intensities of the spectral lines. This rule 

says that where ∆𝐿 changes in the similar way as that of ∆𝐽. Out of these, the transition with 

the largest value of L and J, give rise to the strongest lines. 

The Anomalous Triplets: The alkaline earth elements as well as the alkaline earth ion 

spectra’s exhibit few multiplets with structure difference from that of simple or compound 

triplets, with respect to the intensities and the relative separations. These multiplets are then 

called as anomalous triplets and these are generated as a result of excitation of both of the 

optical electrons (Figure 12).  
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Figure 12. Depiction of the transition resulting in the formation of anomalous triplet. 

A multiplet in Ca at 4300Å gives rise to six lines. An examination of this multiplet proposes 

its generation from the transition between two 3P terms with same splitting. The lowest 4s 4p 
3𝑃𝑜 state constitutes the lower state of the multiplet while the upper state is an anomalous term 

which is labelled as 3𝑃′ that is not included in the normal term series of the atom. In this term, 

both the optical electrons are excited to 4p subshell. This configuration gives three terms, that 

is, 3P, 1D, 1S out of which 3P only combines to all in a strong manner, as per the selection rule. 

If we write the symbol in full, we get transitions 

4p2 3𝑃′→ 4s 4p 3𝑃𝑜 

In this scenario, ∆𝐿 = 0, is possible, providing that ∆𝑙 = ±1 (even ↔ odd) for that one electron 

that skips or jumps. 

 

The j – j coupling scheme in the vector model of two electron atom constitutes the spin and 

the orbital vectors, 𝑠1⃗⃗  ⃗ and 𝑙1⃗⃗   of one electron are coupled firmly to each other to give rise to a 

resultant 𝑗1⃗⃗  around which the two individual vectors precess swiftly. In the similar way, 𝑠2⃗⃗  ⃗ and 

𝑙2⃗⃗⃗   of the another electron give rise to resultant 𝑗2⃗⃗⃗  . The two resultants 𝑗1⃗⃗ and 𝑗2⃗⃗⃗  , themselves 

couple with each other strongly, thus giving rise to 𝐽 , which is the total angular momentum. 
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The individual resultant vectors precess quite slowly around the total angular momentum. 

(Figure 13)  

 

Figure 13. Vector model of two electron j-j coupling. 

The terms and the 𝐽 values for this type of coupling are similar to those of the L – S coupling. 

Moreover, this type of coupling occurs seldom.  

 

3.9. Interaction Energy (Triplet separation) in L – S and j – j couplings 

For every different value of J, the atomic terms consists of multiplet components dues to spin-

orbit interaction. This interaction is dependent on the fourth power of atomic number Z which 

gets further large in heavier atoms.  

 From the relation of the shift in fine-structure level from the hypothetical centre, for a 

single electron atom, the interaction energy is given by: 

−∆𝑇𝑙𝑠 =
𝑅∞

2𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]cm-1 

= 𝑎
𝑗∗2 − 𝑙∗2 − 𝑠∗2

2
 

Where 𝑎 =
𝑅∞𝛼

2𝑍4

𝑛3𝑙(𝑙+
1

2
)(𝑙+1)

𝑐𝑚−1; 𝑗∗ = √𝑗(𝑗 + 1), 𝑙∗ = √𝑙(𝑙 + 1), 𝑎𝑛𝑑 𝑠∗ = √𝑠(𝑠 + 1) 
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For two optical electrons there could be four possibilities of arrangement of angular momenta 

𝑙1
∗, 𝑙2

∗ , 𝑠1
∗, 𝑠2

∗ and these four possibilities can be paired um in six possible interactions the ways 

as (𝑎) 𝑙1
∗ 𝑤𝑖𝑡ℎ 𝑙2

∗ , (𝑏) 𝑠1
∗𝑤𝑖𝑡ℎ 𝑠2

∗(𝑐) 𝑙1
∗ 𝑤𝑖𝑡ℎ 𝑠1

∗, (𝑑) 𝑙2
∗  𝑤𝑖𝑡ℎ 𝑠2

∗, (𝑒) 𝑙1
∗ 𝑤𝑖𝑡ℎ 𝑠2

∗, (𝑓) 𝑙2
∗  𝑤𝑖𝑡ℎ 𝑠1

∗. 

It is seen that in L-S coupling, the interaction mentioned by processes (a), (b) are most probable 

over process (c) and (d), while the process I & (f) are least probable. Using the cosine law of 

𝑗∗2 = 𝑙∗2 + 𝑠∗2+ 2𝑙∗2𝑠∗2cos (𝑙∗𝑠∗),  

Therefore, the general terms will be: −∆𝑇𝑙𝑠 = 𝑎𝑙
∗𝑠∗cos (𝑙∗𝑠∗). For the above interactions, the 

related energies are:  

∆𝑇1 = 𝑎1𝑠1
∗ 𝑠2

∗cos (𝑠1 
∗ 𝑠2
∗) 

∆𝑇2 = 𝑎2𝑙1
∗ 𝑙2
∗cos (𝑙1 

∗ 𝑙2
∗) 

∆𝑇3 = 𝑎2𝑙1
∗𝑠2
∗cos (𝑙1 

∗ 𝑠2
∗) 

∆𝑇4 = 𝑎2𝑙2
∗  𝑠1

∗cos (𝑙1 
∗ 𝑠1

∗) 

Since, in  𝑠1
∗ and  𝑠2

∗ precess around in the fixed angles to form their resultant S*, and therefore 

its magnitude remains fixed. Similar observations were taken for  𝑙1
∗ and  𝑙2

∗  around L*.  Again 

using the cosine law in terms to calculate S*2, L*2, we have, 

∆𝑇1 =
1

2
𝑎1(S

∗2 − s1
∗2 − s2

∗2)  

∆𝑇2 =
1

2
𝑎2(L

∗2 − l1
∗2 − l2

∗2)  

Here L* and S* also precess around J* in the similar manner as l* and s* do for a single electron 

process around j*. The energy of interaction is due to coupling in between l1
* and s1

* and in 

between l2
* and s2

*  is given by the terms ∆𝑇3 and ∆𝑇4, respectively. Since the angle between 

the vector changes continuously, we have to involve the average values obtained by the cosine 

functions between the vectors. This average value is given by  

cos(𝑙1
∗ 𝑠1

∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑐𝑜𝑠(𝑙1
∗ 𝐿∗ )𝑐𝑜𝑠(𝐿∗𝑆∗)𝑐𝑜𝑠(𝑆∗𝑠1

∗) 

And      

cos(𝑙2
∗  𝑠2

∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑐𝑜𝑠(𝑙2
∗  𝐿∗ )𝑐𝑜𝑠(𝐿∗𝑆∗)𝑐𝑜𝑠(𝑆∗𝑠2

∗) 

 

Using the average cosine values from ∆𝑇1, ∆𝑇2, and rearranging the terms from the cosine laws 

on the we get: 

∆𝑇3 + ∆𝑇4 =
1

2
(𝑎3𝑐3 + 𝑎4𝑐4)(J

∗2 − L∗2 − S∗2) 

Where,  𝑐3 =
𝑙1
∗2−𝑙2

∗2+𝐿∗2

2𝐿∗2
.
𝑠1
∗2−𝑠2

∗2+ S∗2

2 S∗2
  and  
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 𝑐4 =
𝑙2
∗2−𝑙1

∗2+𝐿∗2

2𝐿∗2
.
𝑠2
∗2−𝑠1

∗2+ S∗2

2 S∗2
 

Since for any of the sets of triplet, 𝑙1
∗, 𝑙2

∗ , 𝑠1
∗, 𝑠1

∗, 𝐿∗, 𝑆∗ are having fixed magnitudes therefore 

𝑎3, 𝑐3,𝑎4,𝑐4 are all constant and could be summed up as A. Therefore the equation reduces to, 

∆𝑇3 + ∆𝑇4 =
1

2
𝐴(J∗2 − L∗2 − S∗2) 

Now the formula for the fine structure can be written as, 

𝑇 = 𝑇0 − ∆𝑇1 − ∆𝑇2 − ∆𝑇3 − ∆𝑇4 

Where T0 can be assumed to be a hypothetical centre of gravity for the entire electronic 

configuration. 

3.10. Comparison of the terms used in L – S and j – j couplings 

The L – S coupling gives the singlet and triplet term, that is, 1P and 3P with high energy 

difference. The triplet term divides into three closely spaced components by the spin – orbit 

interactions. Thus, after splitting, there are four plausible states, 1P1, 
3P0, 

3P1 and 3P2 with value 

of J = 0, 1, 2. On the other hand, in the j – j coupling, this similar configuration gives broadly 

separated (j1, j2) terms (
3

2
,
1

2
) and (

1

2
,
1

2
). When a small interaction is taken into consideration, 

each term is divides into two closely spaced components. Here, for term (
3

2
,
1

2
), the value of J 

is 2, 1. For term (
1

2
,
1

2
), the value of J is 1, 0. Therefore, we can look that the number of the 

terms are similar along with the J values for both the type of coupling. The terms can be 

correlated in the Figure 14. Below. 

 

 

Figure 14. Correlation of two coupling is shown by dotted lines. 
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The coupling intermediate can exist with the extreme values but the terms can be determined 

through their J values as the total angular momentum of the atom is always conserved as the 

coupling changes. 

 

3.11. Regularities in Complex Spectra 

 Atomic spectra of a complex atom constitute different regularities which are as follows: 

(i).  The Hartley Law of Constant Doublet separation 

According to Hartley (1983), the components of the multiplets of a spectral series 

constitute constant wave separation. Let us take an example: same wave number 

separation is present in all the doublet lines of the sharp series of an alkali atom. 

It is an undeniable repercussion of the concept of energy levels. The transitions 

that are starting from or terminating on a doublet level gives two sets of lines, 

which are separated by the energy interval between two segments of the level. 

 

(ii).  The Rydberg – series relationships 

According to the Rydberg’s observation, the spectral lines of a complex atom 

splits into several series, with many recognized series can be denoted by a formula 

comparable to Balmer’s formula of the hydrogen series 

 

𝒗𝒎 = 𝒗∞ −
𝑹

(𝒎+ 𝝁)𝟐
;  𝜇 < 1 and 𝑚 = 2,3,4,… .∞ 

Where, 𝑣∞, also called convergence limit and 𝜇 are constant, which vary from one 

series to another. This can be interpreted from Schroedinger theory which 

explains that an electron which is at far distance from the nucleus travel through 

into the potential field and reach the field because of the singly charged nucleus, 

as that of hydrogen, due to the shielding effect of the inner electrons. Therefore, 

higher excited states of a neutral atom where only one electron is excited, reach 

for hydrogen. 

 

(iii).  The Alternation law of Multiplicities 

According to this law, the spectral terms that generates from the consecutive 

elements present in the periodic table, alternates between even and odd 

multiplicities. As taking an example, the elements in fourth period, the 

multiplicities are: 

K – Doublets 

Ca – Singlets, Triplets 

Sc – Doublets, Quartets 

Ti – Singlets, Triplets, Quintets 
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This law is an effect of the combination of the spin properties of different valence 

electrons. Therefore, the even multiplicity arises from the odd number of 

electrons while the odd ones arise from the even number of electrons. 

1 electron – Doublet 

2 electrons – Singlet, Triplet 

3 electrons – Doublet, Quartet 

4 electrons – Singlet, Triplet, Quintet 

 

 

(iv).   Connection between member of same Chemical Group 

The chemically similar atom spectra show noticeable connection. Such atoms 

have analogous electron configuration giving rise to analogous sets of excited 

energy levels, further results in similar spectra. 

 

(v).  The Displacement Law 

Kossel and Sommerfeld stated this law in year 1919. According to this law, the 

energy level and the spectrum of any neutral atom of Z atomic number closely 

simulate the energy level and the spectrum of the singly ionised atom of atomic 

number Z+1 coming next in the periodic table. This law is based on the fact that 

the electron configuration of two such atoms would be same. Therefore, the 

spectrum of the hydrogen atom is similar to that of the He atom while the doublet 

series of Li, Na, K, … and so on, which are the alkali metals, are similar to the 

doublet series of Be+, Mg+, Ca+,… and so on, the ionised alkaline earth metals. 

 

(vi).  Isoelectronic Sequences  

The displacement law can also be applicable to the series with adjacent elements, 

each one of them ionised to a successively greater degree. Therefore, the series 

of atoms, whose electron configurations are similar, are called as an ‘Isoelectronic 

Sequence’. As per example, the atoms that form the isoelectronic sequence are as 

follows: 

 

K – Z=19 

Ca+ – Z=20 

Sc++– Z=21 

Ti+++– Z=22 

 

These can also be written as: 

K I, Ca II, Sc III, Ti IV 

 

The spectrum lines and the energy level generating from each of the atoms show 

great resemblance. For example, similar relative intensities for the various 

transitions, same type of fine structure splitting, etc.  

 



             MSCPH507 

94 

 

 

3.12. Summary 

This unit III is in continuation with previously discussed Unit I and II where most of the 

basic details and properties related to Hydrogen atom and its spectra were discussed. In this 

Unit III, we have summarised the whole unit in two halves. The first comprises of studies 

about the spectra of alkali and the second half considers the spectra about the alkaline earth 

spectra.  

 In first part, the fundamental introduction to the formation of four spectral lines were 

observed and elaborated. The Rydberg-Schuster Law and Runge’s Law were found to be 

established in alkali series. The concept of ‘combinational’ series was established by Ritz 

combination principle. With the effect of increase in the shell value n, the alkali levels 

approach the corresponding H-levels because of the screening effect and also in comparison 

to hydrogen, it was found that the energy not only depends on n value but also on l. thus all 

alkali levels with a given n are shifted lower than the corresponding H-levels. The selection 

rule for the absorption spectra of Na atoms was revealed. It was noted that the optically 

active electron in atom absorbs quantised energy and gets excited to the higher levels. The 

concept of spin-orbit interaction leading to j was considered in details. The mathematical 

formulation for considering the screening effect gave a good agreement for doublet 

separation with experimental results. Quantitative rules for intensity relations were also 

discussed.  

 In the second half section of this unit, the essential features of alkaline earth spectra are 

elaborated in details. Vector Model, in which various angular momenta occurring in the 

atomic spectra are considered. In this model, the combined form of the resultant vectors, 

and subsequently their spectral properties were briefed. LS and jj coupling schemes are 

quantitatively and qualitatively discussed in details. Further, one can easily calculate the 

interaction energy for the triplet separation in L-S and j-j coup;ing using the mathematical 

operations therein.   
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3.15. Terminal Descriptive type questions 

1.  How will you explain the common features of spectra of alkali like atoms? 

2.  Even though H and Na belong to the single valance electron system, distinguish between 

the spectra obtained for two atoms. 

3.  Show the conception of spinning electrons that result for the doubling of levels in the 

spectra of alkalis. 

4.  Using the spin-orbit interaction energy for a single non-penetrating valence electron, 

elaborate and discuss the separation of 2P and 2D terms of alkali spectra. 

5.  Explain the theoretical background along with the essential features of the spectra of 

alkaline earth elements. 

6.  Describe using the vector model of an atom for explaining its spectra  with two electrons 

outside the closed shell. 

7.  Discuss the vector model of an atom consisting of the two valance electrons in terms of L-

S and j-j couplings. 

 

 

3.16. Numerical type (Self Assessment Questions) 

1.  The mean position of the first pair of lines of the principal series of sodium is 16960 cm-1. 

If the convergence limit of the sharp series lines is at 24490 cm-1, calculate the ionisation 

potential of sodium.  

Ans. The first principal line is obtained from the transition of 3s-3p and the convergence 

limit is obtained from 3p-∞. The sum of wave numbers will be (referring to Figure 1) 

16960+24490=41450cm-1. This corresponds to 3s-∞, resulting in the ionization of atom 

having energy 5.14eV. [Use 1eV=8066cm-1].  

 

2.  The longest wavelength lines in the series (𝑛, 𝑙) →  (4,0) in potassium have wavelengths 

7699.0, 7664.9, 4047.2, 4044.1Å respectively. Construct the relevant part of the energy level 
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diagram and calculate the splitting between the levels with the same values of n and l but 

different j.  

Ans. The given wavelengths represent the first two doublets of the principal series of 

potassium, and arise from the transitions 

4 2P3/2, 1/2 → 4 2S1/2  

5 2P3/2, 1/2 → 4 2S1/2 

 

Diagram showing the splitting between the levels 

The line splitting in the wave number are the corresponding level splitting with the 

same values of n and l but different j. We know that the wave number 𝑣 is the reciprocal 

of wavelength 𝜆 

𝜈 =
1

𝜆
 

So that 

𝑑𝜈 = −
1

𝜆2
𝑑𝜆 

Numerically, it can be written as 

𝑑𝜈 =
𝑑𝜆

𝜆2 × 𝜆2
 

2
S

1/2
 

2
P

3/2
 

2
P

1/2
 

6s 

5s 

4s 

5p 

4p 

6p 

Potassium 

4044.1 Å 4047.2 Å 

7699 Å 

7664.9Å 
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For the wavelengths 7699.0 and 7664.9 Å, we have 

𝑑𝜈 =
(7699.0 − 7664.9) × 10−8𝑐𝑚

(7699.0 × 10−8𝑐𝑚) × (7664.9 × 10−8𝑐𝑚)
 

𝑑𝜈 =
34.1

7699.0 × 7664.9 × 10−8𝑐𝑚
 

𝑑𝜈 = 57.8 𝑐𝑚−1 
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4.1   INTRODUCTION 

The Zeeman effect is a magneto-optical phenomenon in which spectral lines are affected by an 

applied magnetic field and split into several components. This was first observed by Zeeman 

in 1896 and hence called Zeeman effect. He found if a source of light giving line spectra be 

placed in a magnetic field, the lines were split into a number of component lines, symmetrically 

distributed about the original line.  Doublets, triplets and even more complex system were 

observed.  

Primarily, it was observed that a single spectral line splits into three components such that one 

line has got a large frequency, other a lower frequency than the frequency of original line and 

a third one has a frequency of original line. This was named as normal Zeeman effect. But later 

on, more complicated splitting was observed and was called anomalous Zeeman effect. 

However, when a huge magnetic field is applied the splitting is called Paschen-Back effect. 

The effect of electric field on spectral line was observed by Stark in 1913 and is called Stark 

effect. 

 

4.2   OBJECTIVES: 

This unit introduces the effect of magnetic field on the spectral lines of atom which is called as 

Zeeman effect. Depending on the strength of the magnetic field we have normal, anomalous 

Zeeman effect and Paschen-Back effect.  In this unit we will study about these effects and their 

classical and quantum mechanical explanation. After going through this unit, the students will 

be able to know about  

1.  The normal Zeeman effect, anomalous Zeeman effect and Paschen-Back effect. 

2. The experimental study of above effects. 

3. The classical and quantum mechanical explanation of above. 

4. The spin orbit interaction. 

 

4.3   ZEEMAN EFFECT AND ITS EXPERIMENTAL STUDY 

Zeeman effect was discovered by Pieter Zeeman in 1896. He observed that if a source of light 

producing line spectrum is placed in a magnetic field, the spectral lines are split up into 
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components. When the splitting is into two or three lines, then it is called normal Zeeman effect 

because it can be explained easily by classical theory. But when the applied magnetic field is 

weak, then the splitting of a single line takes place into a number of components. This effect is 

called anomalous Zeeman effect. The normal Zeeman effect is observed rarely whereas the 

anomalous Zeeman effect is observed in general. The experimental arrangement for studying 

normal Zeeman effect is shown in fig. 4.1 

 

In the given arrangement, an electromagnet 

MM capable of producing a very strong 

magnetic field and having conical pieces 

PP, through which holes are drilled 

lengthwise, is set up. A source L emitting 

spectral lines; say a sodium vapour lamp, is 

placed between the pole pieces. The 

spectral lines are observed with a high 

resolving power instrument with a constant 

deviation spectrometer S. The light can be 

viewed perpendicular as well as parallel to 

the magnetic field. 

When light is viewed parallel to the magnetic field through the hole drilled in the pole pieces, 

a single line is observed to be split up into two components (doublet). One component has a 

higher frequency than the original line and the other lower. The original line is not observed. 

Also, the original line is not polarized but the other two components are circularly polarized in 

opposite direction. The outer components are known as σ components and the middle one is π 

component. The σ components are symmetrically situated about the original line, so the change 

in wavelength dλ, known as Zeeman shift, is the same in both cases (fig 4.2). 

When light is observed perpendicular to the magnetic field, a triplet i.e., three component lines 

are seen. One component line is observed in the same position as the original line and the other 

two components, one on either side of this line are separated by equal amounts. These three 

components are plane polarized but the vibrations of the central line is parallel to the magnetic 

field while those of outer ones perpendicular to the field (fig. 4.2). 

Figure 4.1: Experimental arrangement for 

studying Zeeman effect 
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Figure 4.2: Normal Zeeman Effect 

 

4.3.1 CLASSICAL INTERPRETATION OF NORMAL ZEEMAN EFFECT: 

It is observed that when magnetic field is applied, a single spectral line splits up into three 

components such that one line has got a larger frequency, other a lower frequency than the 

original line and the third one has the same frequency as that of the original line. This is called 

normal Zeeman effect. 

The normal Zeeman effect is explained on the basis of Lorentz classical theory. According to 

this theory if a source of light is placed in a magnetic field, the frequency of motion of electron 

moving in a circular orbit gets modified. 

Let us consider an electron in an atom moving in a circular orbit of radius ‘r’ with a linear 

velocity ‘v’ and angular velocity ‘ω’. Let ‘e’ and ‘m’ be the charge and mass of electron 

respectively. The centripetal force acting on the electron towards the centre in the absence of 

the magnetic field, 

                                           F = 
𝑚𝑣2

𝑟
  = 𝑚𝑟𝜔2                                        ………………..(1) 

Now, let an external magnetic field ‘B’ be applied in a direction perpendicular to the plane of 

the orbits of the two circular components. Then, an additional radial force of magnitude Bev 

acts on the electron. The direction of this force will be outwards from the center for clockwise 
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motion but inwards towards the center for anticlockwise motion. The resulting complex motion 

of the electron subjected to an additional radial force is called Larmor precession. This 

produces change in the angular velocity without any change in the form of the orbit. 

Let d𝜔 be the change in angular velocity caused by the magnetic field. For the circular motion 

in the clockwise direction, the additional radial force is directed away from the center,  

Therefore                                            𝐹 − 𝐵𝑒𝑣 = 𝑚𝑟 (𝜔 + 𝑑𝜔 )2            ……………….(2) 

𝑚𝑟𝜔2 −𝑚𝑟 (𝜔 + 𝑑𝜔 )2 = 𝐵𝑒𝜔𝑟 

Or                                       -2mr𝜔𝑑𝜔 = 𝐵𝑒𝜔𝑟                𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔  (𝑑𝜔)2 

Or                                         d𝜔 = −
𝐵𝑒

2𝑚
                                                   ………………(3) 

For the circular motion in the anticlockwise direction, the additional radial force is directed 

towards the centre. 

Therefore                                       F + Bev =  mr (𝜔 + 𝑑𝜔 )2 

Or                                                   d𝜔 = +  
𝐵𝑒

2𝑚
                                      ………………..(4) 

The two cases can be combined into the equation 

                                                       d𝜔 = ±
𝐵𝑒

2𝑚
                                          ………………(5) 

If ν be the frequency of vibration of the electron, 

Then                                                       𝜔 = 2𝜋𝜈 

Or                                                          d𝜔 = 2𝜋𝑑𝜈 

Or                                                          dν =  
𝑑𝜔

2𝜋
  

Therefore, change in frequency of the spectral line,  

                                                               dν = ±  
𝐵𝑒

4𝜋𝑚    
                                 …………….(6) 

If ν and 𝜆 are the frequency and wavelength of the original line, 
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                                                                     ν = 
𝑐

𝜆
 

or                                                                dν = -  
𝑐

𝜆2
 dλ 

Therefore, the Zeeman shift 

                                                                    dλ =  ± 
𝐵𝑒𝜆2

4𝜋𝑚𝑐
                            ………………(7) 

Taking a spectral line of known wavelength λ, and applying a magnetic field B, the Zeeman 

shift dλ is measured. 

From equation (7),  

                                           
𝑒

𝑚
 = (

4𝜋𝑐

𝐵𝜆2
) dλ 

From above equation, 
𝑒

𝑚
 can be calculated. 

𝑒

𝑚
  is found to be 1.757 × 1011 CKg-1 which is in 

agreement with the value of 
𝑒

𝑚
 of the electron obtained from Thomson’s experiment. 

 

4.3.2   VECTOR MODEL AND NORMAL ZEEMAN EFFECT: 

We have studied that Lorentz was able to explain normal Zeeman effect quite satisfactorily 

using classical theory. Later, Debye was able to interpret the same using vector atom model 

where, the concept of electron spin was not taken into account, but only orbital motion was 

considered. 

Here only the angular momentum possessed by the electron due to its orbital motion is taken 

into account. The magnitude of this orbital angular momentum which is quantized is given by 

                                              𝑝
𝑙 =  𝑙.  

ℎ

2𝜋

                                                        ……………….(1) 

The corresponding magnetic moment is given by 

                                             µ
𝑙 =  𝑙 .  

𝑒ℎ

4𝜋𝑚𝑐 

   = 
𝑒

2𝑚𝑐
  𝑝𝑙                                    ………………(2) 
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The vectors l and µ𝑙  will act along the same line, viz., perpendicular to the orbital plane. In the 

presence of external magnetic field B, the vector l will execute Larmor precession round the 

field direction as axis whose frequency is given by 

                                           𝜔
𝑖 =  𝐵  

µ𝑙
𝑝𝑙  

   =  
𝑒

2𝑚
  B                                          ………………(3) 

The effect of this Larmor precession is to alter the energy of the system by an amount ΔE, 

which is given by 

    ΔE  =  𝜔𝑙  ×  Projection of mechanical momentum on the field direction 

    ΔE  =  
𝑒

2𝑚
  B 𝑝𝑙 cos𝜃 =  

𝑒𝐵

2𝑚
  
𝑙ℎ

2𝜋
  cos𝜃 

   ΔE   =  
𝑒ℎ𝐵

4𝜋𝑚
   𝑚𝑙                                                                                          …………….(4)     

Since cos𝜃 =  𝑚𝑙 

Now change in energy means that each energy level of the undisturbed state of the atom is, 

splitted into a number of levels which is given by (2l + 1) and the magnitude of separation is 

proportional to the strength of magnetic field. 

Now suppose that E1 and E2 are the energies of the two levels in the presence of magnetic field 

and E01 and E02 in the absence of magnetic field with the two values of ml as 𝑚𝑙1  and 𝑚𝑙2 . Then 

we have 

                        E1 =  E01  +  ΔE1  =  E01  +  𝑚𝑙1   
𝑒ℎ𝐵

4𝜋𝑚
                                                        …………………………(5)   

                        E2 =  E02  +  ΔE2  =  E02  +  𝑚𝑙2   
𝑒ℎ𝐵

4𝜋𝑚
                                                        …………………………(6)   

If transitions take place between these two above multiplet states, a multiplet group of lines 

will result. The frequency 𝜈 of any of these lines is obtained from equations (5) and (6) by 

using Bohr’s frequency condition i.e. 

                   E1  -  E2  =  E01  -  E02  +   
𝑒ℎ𝐵

4𝜋𝑚
 ( 𝑚𝑙1   -  𝑚𝑙2  ) 

                           hν   =  hν0  +  Δml 
𝑒ℎ𝐵

4𝜋𝑚
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                                             ν  =   ν0    +    
𝑒𝐵

4𝜋𝑚
  Δml                                                                           ……………………….. (7) 

Here ν0 is the frequency of the line in the absence of the field. Applying the appropriate 

selection rule; viz., Δml  = 0 or ± 1 ; we have three possible lines, 

                          𝜈1 =   ν0    

                          𝜈2  =   ν0   +   
𝑒𝐵

4𝜋𝑚
   

                                       𝜈3   =  ν0    -      
𝑒𝐵

4𝜋𝑚
   

The frequency shift dν produced by the field is therefore ±𝑒𝐵 4𝜋𝑚𝑐,⁄  the same as derived by 

the classical theory for normal Zeeman effect.  𝑒𝐵 4𝜋𝑚𝑐 ,⁄  is called Lorentz unit. Fig. 4.3 

represents normal Zeeman effect. For three transitions in a bracket change in the value of Δml 

is the same and hence they represent same change of energy and a single line.                                    

   

Figure 4.3: Normal Zeeman effect 
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4.3.3   QUANTUM MECHANICAL EXPLANATION OF NORMAL ZEEMAN 

EFFECT 

Here the procedure is to calculate the interaction of magnetic field with the angular momentum 

of electrons. The magnetic moment of an electron moving in its orbit is given by 

         µL = -
𝑒

2𝑚𝑜
 L 

This magnetic moment interacts with external magnetic field and gives the perturbing 

Hamiltonian as 

          H’ = - µL.B 

               = 
𝑒

2𝑚𝑜
 L . B 

To calculate the splitting of spectrum lines, the operator forms of H’ is used in the perturbation 

theory. The first order interaction energy is  

        ΔE = ∫ Ψ* �̂� Ψ dτ 

        ΔE = 
𝑒

2𝑚𝑜
  ∫ Ψ* �̂� �̂� Ψ dτ 

Let us assume that B is directed towards z axis; then 

        B = Bz 

      ΔE = 
𝑒

2𝑚𝑜
  Bz ∫ Ψ* �̂� Ψ dτ 

But the average value of z-component of angular momentum is ML h. Hence, change in energy 

value is (changing Bz to B) 

       ΔE = 
𝑒ℎ

2𝑚𝑜
  Bz ML 

Therefore, the energy of the having the orbital quantum number ML1 is 

        E1 = E(1) + 
𝑒ℎ

2𝑚𝑜
  BML1 

And         E2 = E(2) + 
𝑒ℎ

2𝑚𝑜
  BML2 
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       (E2 – E1) = (E2 – E1) + 
𝑒ℎ

2𝑚𝑜𝑐
  B ΔML               

          hν =  hν0 + 
𝑒ℎ

2𝑚𝑜
  B ΔML                

             ν = ν0 + 
𝑒𝐵

4𝜋𝑚𝑜
 ΔML    

The expression when subjected to selection rule ΔML = 0, ±1 gives rise to Zeeman normal 

triplet. ΔML = 0 corresponds to π components and ΔML = ±1 gives σ components                                                 

 

Self-Assessment question (SAQ) 1: Choose the correct option- 

1. The number of spectral lines seen in normal Zeeman effect is 

a) Greater than 3 

b) Equal to 3 

c) Less than 3 

 

2. In normal Zeeman effect we take  

a) Only orbital motion in account 

b) Only spin motion in account 

c) Both the above 

 

3. The rule for ΔML=0 gives 

a) π component 

b) σ component 

c) none of above  

 

4. 4   ANOMALOUS ZEEMAN EFFECT 

When the applied magnetic field is weak as compared to the internal magnetic field, a single 

spectral line is splitted into a more complex - greater number of components. This is called 

anomalous Zeeman effect. The Lorentz or Debye theory was able to explain normal Zeeman 

effect but it was unable to explain anomalous Zeeman effect. To achieve this the idea of spin 
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of electron was introduced. By introducing this the total angular momentum of the atom j* 

becomes the vector sum of the orbital and spin angular moments, l* and s*, i.e., 

                                              j* =   l* +   s*                                                    ……………. (1) 

In this case the coupling between l* and s* is intact, so that there is physical significance in 

compounding l* and s* into j* and then considering the precession of j* about B. 

The magnetic moment due to orbital motion                                                   

                                           𝜇𝑙  =   l* 
𝑒ℎ

4𝜋𝑚
                                                      

……………… (2) 

This  𝜇𝑙   𝑖𝑠 directed opposite to l* because of negative 

charge of electron. Similarly, magnetic moment due to 

spin is given by, 

                                                    𝜇𝑠  = 2s*  
𝑒ℎ

4𝜋𝑚
                                          

……………… (3) 

𝜇𝑠  is directed opposite to s*. This is shown in fig 4.4. 

Now since l* and s* precess around j*,                                            

𝜇𝑙   and  𝜇𝑠   will also precess around 𝜇𝑗  ( 𝜇𝑗  is not in 

the line of the resultant of  𝜇𝑙   and  𝜇𝑠). 

To find out the resultant magnetic moment of the 

electron, we resolve 𝜇𝑙𝑠 into two directions, one along j* 

and the other perpendicular to it. The perpendicular 

component average out to zero due to the continuous change in direction and the parallel 

components add together. We can say that the parallel components of  𝜇𝑙   and  𝜇𝑠  contribute 

for 𝜇𝑗    while perpendicular components do not. Hence 

 𝜇𝑗 = Component of 𝜇𝑙  𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒  direction of j* + component of 𝜇𝑠 along the direction of j* 

  𝜇𝑗 =
. 𝑒ℎ

4𝜋𝑚
  l* cos ( l* j* )  +  

𝑒ℎ

4𝜋𝑚
   2s* cos ( s* j* ) 

      =  
𝑒ℎ

4𝜋𝑚
  [ l* cos ( l* j*)  +  2s* cos ( s* j*) ] 

Figure 4.4: The precession of 

mechanical and magnetic moments 
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Or     

     𝜇𝑗 =   j
*g  =   [ l* cos ( l* j*)  +  2s* cos ( s* j*) ] 

   ………………………….(4) 

In terms of Bohr Magneton. 

But according to cosine law,  

                           cos ( l*j*)  =  
𝑗∗2+ 𝑙∗2− 𝑠∗2

2𝑗∗ 𝑙∗
 

and                    cos (sl*j*)  =  
𝑗∗2+ 𝑠∗2− 𝑙∗2

2𝑗∗ 𝑠∗
 

Putting the values in equation (4), we write 

                          j*g = [
𝑗∗2+ 𝑙∗2− 𝑠∗2

2𝑗∗ 
+ 

𝑗∗2+ 𝑠∗2− 𝑙∗2

𝑗∗ 
 ] 

or                         g = 1 + 
𝑗(𝑗+1)+ 𝑠(𝑠+1)−𝑙(𝑙+1) 

2𝑗(𝑗+1)
                                              …………….(5) 

                                                        Writing 𝑗∗2 = j(j+1) and so on. 

With this value of g, the total magnetic moment of the electron is 

                            𝜇𝑗 =   j
*g, in the unit of Bohr magneton. 

If now the atom is placed in the weak magnetic field, the total angular momentum vector j* 

precesses around the B direction. The result of this precession is the change in the energy of 

electron by the amount. 

                             ∆𝐸 = 𝜇𝑗B cos(j*B) 

                                    = j*gh cos(j*B) 

                             ∆𝐸 = mjgB                                                                        ……………(6) 

This equation again shows that change in the energy is proportional to the magnetic field 

strength. In the ordinary unit of energy in the above expression, 
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                             ∆𝐸 = mjg 
𝑒ℎ

4𝜋𝑚0
 B         

Hence                  ∆𝜈  =  mjg 
𝑒𝐵

4𝜋𝑚0
    

                             ∆�̅� = ∆ mjgO 

where                  O =  
𝑒𝐵

4𝜋𝑚0𝑐
  = Lorentz unit. 

 

Figure 4.5: Anomalous Zeeman effect 

Further, since mj has (2j + 1) values right from -j to +j, so a given level is split up into (2j + 1) 

sublevels with the application of magnetic field. When this mj is subjected to the selection rule 

∆ mj = 0 or ± 1, we get the transition shown in fig. 4.5, for the sodium D lines. The longer 

wavelength components 32S1/2 – 32P3/2 splits into four lines. The magnitude of component 

separation is governed by the factor ∆ mjg showing fig. 4.6. Since g is different for different 

𝑣𝑎𝑙𝑢𝑒𝑠 of j, we get different components for the same change in the value of ∆ mj. In this case 

∆ mj = 0 give rise to 𝜋 components while ∆ mj = ± 1 gives to 𝜎 components. 

Thus, it is clear that Lande’s g factor is important in order to explain the anomalous Zeeman 

effect.   
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Figure 4.6: The orientations of total angular moment vector in magnetic field 

 

4.4.1 QUANTUM MECHANICAL TREATMENT OF ANOMALOUS ZEEMAN 

EFFECT 

When the source emitting spectral lines is subjected to weak magnetic field, the spin and the 

orbital angular momentum are separately conserved, and L, S and J are well defined. When we 

take the spin of the electron into account, the magnetic moment is given by 

      µJ = µL + µS, 

      µJ = - 
𝑒

2𝑚𝑜
 [L + 2S] 

The perturbing Hamiltonian comes out to be 

      H’ = - µJ B 

      H’ = 
𝑒

2𝑚𝑜
 [L + 2S] . B 

The change in energy value due to the perturbation is 

      ΔE’ = ∫ Ψ* �̂�’ Ψ dτ 

             = 
𝑒

2𝑚𝑜
 �̂� ∫ Ψ* (�̂� + 2�̂� )Ψ dτ 
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             = 
𝑒

2𝑚𝑜
 [(B.�̂�) + 2 (�̂�. �̂�)] 

Further if B is directed along z-axis. B = Bz and  

     (�̂�. �̂�) = 
𝐽.�̂�

𝐽2̂
 �̂�. 𝐽 = 

𝐽2+�̂�2+�̂�2

2𝐽2
�̂�. 𝐽 

and     (�̂�. �̂�) = 
𝐽 (𝐽+1)+𝑆(𝑆+1)−𝐿(𝐿+1)

2𝐽 (𝐽+1)
 BMJℏ 

MJ is the Z component of total angular magnetic moment which is associated with the electron 

of the atom. The above relations follow from the fact that in a weak magnetic field L and S 

vectors precess rapidly round their resultant J and, hence, in the average only the component 

along J survives and the perpendicular component averages to zero. With the substitution, we 

get (Replace Bz by B) 

      ΔE’ = 
𝑒

2𝑚𝑜
 B [

𝐽 (𝐽+1)+𝑆(𝑆+1)−𝐿(𝐿+1)

2𝐽 (𝐽+1)
] MJℏ 

      ΔE’ = g µB BMJ 

Where                                 g = 1+ 
𝐽 (𝐽+1)+𝑆(𝑆+1)−𝐿(𝐿+1)

2𝐽 (𝐽+1)
, 

And µB = 
𝑒ℎ

2𝑚𝑜
 is Bohr magneton 

The energy expression then becomes, 

       EJ1 = E(1) + ΔEJ1 

Or        EJ1 = E(1) + µB BMJ1 g1 

          EJ2 = E(2) + µB BMJ2 g2 

And           ν = 
𝐸(2)− 𝐸(1) 

ℎ
 + 

𝑒𝐵

4𝜋𝑚𝑜
 Δ(MJ g) 

Or           �̅� = 𝜈0̅ + Δ(MJ g), In Lorentz Unit. 

The equation implies that anomalous splitting depends not on Δ(MJ) but on Δ(MJg) informing, 

thereby, that it is ‘g’ which is responsible for anomalous splitting. 
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The expressions are same as derived on classical lines and with the selection rule ΔMJ = 0, ±1, 

it explains anomalous Zeeman effect. ΔMJ = 0 gives π components and ΔMJ = ±1 gives σ 

components. 

 

Self-Assessment question (SAQ) 2: Choose the correct option- 

1. Anomalous Zeeman effect takes into account  

a) Spin motion of electron 

b) Orbital motion of electron  

c) Both (a) and (b) 

 

2. The ration of spin magnetic moment 𝜇𝑠 to the spin angular momentum |𝑠 | is  

a) e/2m 

b) 2e/2m 

c) 0 

d) 3e/2m 

 

3. In the Anomalous Zeeman effect, the resonance line D1 and D2 of sodium arise from 

transition’s 

a) 2P1/2→2S1/2
 

b) 2P3/2→2S1/2
 

c) Both (a) and (b) 

d) None of the above 

                                                                      

4.5   PASCHEN – BACK EFFECT:                                           

We have already studied that in Zeeman effect, the external magnetic field is weak as compared 

with the internal magnetic field due to spin and orbital motion of valence electron. Here the 

precession of 𝑙∗ and 𝑠∗ around 𝑗∗ is much faster than that of 𝑗∗ around B which makes no change 

due to motion of  𝑙∗ and  𝑠∗ into other motions. However, when the external magnetic field is 

increased in strength, the coupling between 𝑙∗ and 𝑠∗ breaks down and 𝑗∗loses its significance.  

𝑙∗ and 𝑠∗are quantized separately and precess more or less independently around B as shown 
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in fig 4.7. This is known as Paschen – Back effect. Further, when the motion of  𝑙∗ and 

𝑠∗become separately quantized, the perpendicular component of magnetic moment, does not 

average out to zero and contributes to the total magnetic moment, i.e., now total magnetic 

moment is not equal to mj. Due to this kind of splitting, whatever be the anomalous Zeeman 

pattern in the weak magnetic field it is converted into normal pattern in the strong magnetic 

field. 

 

The angular velocities of two precessions are     

         

              ωl = B
𝑒

2m0
  and  ωS = B

𝑒

2m0
  2. 

 

Therefore, the change in interaction energy due to 

these two motions is the sum of two changes, i.e. 

    ΔE = ΔElB + ΔEsB, 

 

Where 

ΔElB = B
𝑒

2m0
  l* 

ℎ

2𝜋
 cos(l*B),   

ΔEsB  = B
2𝑒

2m0
  
ℎ

2𝜋
 cos(s*B) 

 

Or       ΔElB = 
𝑒ℎ

4𝛱𝑚𝑜
 Bml, 

              

                        ΔEsB = 
𝑒ℎ

4𝛱𝑚𝑜
 2Bms 

Therefore,          ΔE = (ml + 2ms) B 
𝑒ℎ

4𝛱𝑚𝑜
 

The quantity, (ml + 2ms) is known as strong field quantum number. In terms of the frequency 

change 

Figure 4.7: Precession of l* and s* 

vectors in Paschen-Back effect 
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            Δν = Δ(ml ± 2ms) 
𝑒𝐵

4𝛱𝑚𝑜
 

And in terms of wave number 

            Δ�̅� = Δ(ml ± 2ms) 
𝑒𝐵

4𝛱𝑚𝑜𝑐
 

       = Δ(ml ± 2ms), in Lorentz unit 

Now since Δml = 0 or ±1, and Δ ms=0 or ±1. 

We get three different frequencies. It means that the result is normal Zeeman triplet as said 

before. As a specific example, we consider a principal series doublet,  

                      (2P3/2  ⟶ 2S1/2  and 2P1/2  ⟶ 2S1/2) 

In the strong field, P level is split up into six levels, because for a particular value of l(l+1), ml 

has (2l + 1) values (here 1, 0, -1) and for each value of ml, ms has two values (+
1

2
 and -

1

2
); and 

levels with same value of (ml + 2ms) coincide. So, on the whole, we have five sub levels of P 

level and two sub levels of S level. The values of different quantum numbers are given in the 

table 

 

Term l s ml ms ml + 2 ms a ml ms 

 

 

2P3/2 

1 +
1

2
 1 +

1

2
 2 𝑎

2
 

1 +
1

2
 0 +

1

2
 1 0 

1 +
1

2
 -1 +

1

2
 0 −

𝑎

2
 

 

 

2P1/2 

1 +
1

2
 1 -

1

2
 0 −

𝑎

2
 

1 +
1

2
 0 -

1

2
 -1 0 

1 +
1

2
 -1 -

1

2
 -2 𝑎

2
 

 

2S1/2 

0 +
1

2
 0 +

1

2
 +1 0 

0 +
1

2
 0 -

1

2
 -1 0 
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The allowed transitions are shown in fig. 4.8, with the coincidence of the transitions having the 

same value Δ(ml + 2ms). 

 

Figure 4.8: Paschen-Back effect 

The allowed transitions in figure are correct up to the first approximation. 

 

Figure 4.9: Transition from weak to strong magnetic field 
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4.5.1 QUANTUM MECHANICAL TREATMENT OF PASCHEN-BACK EFFECT 

In a strong situation magnetic field L and S are not well defined and do not give a well-defined 

resultant J. In such a situation L and S precess independently round the direction of B. The 

values of equation 10 and equation 11 then modify as 

               (�̂�.�̂�) = (Bz Lz) = B ML ℏ 

               (�̂�.�̂�) = (Bz Sz) = Bz Ms ℏ 

The change in energy is  

              ΔE’ = 
𝑒ℎ

2𝑚𝑜
 B(ML + 2MS) 

The strong field quantum number (ML + 2MS) when subjected to selection rule Δ (ML + 2MS) 

= 0, ±1, gives rise to Paschen-Back Effect. 

 

Self-Assessment question (SAQ) 3: Choose the correct option 

1. The strength of mag. Field is max. in  

a) Normal Zeeman effect  

b) Paschen-Back effect 

c) Anomalous Zeeman effect 

 

2. The total magnetic quantum number J precess around external magnetic field in 

a) Normal Zeeman effect 

b) Anomalous Zeeman effect 

c) Paschen-Back effect 

 

4.6 SPIN – ORBIT CORRECTION 

In practice, the residual spin-orbit coupling changes the relative energies of the components of 

different terms. This can be allowed for by adding a small coupling term 𝑎𝑀𝐿𝑀𝑠 in the 

expression for the magnetic interaction energy, which now becomes 
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−∆𝑇 = (𝑀𝐿 + 2𝑀𝑆)𝐿
′ + 𝑎𝑀𝐿𝑀𝑆 

Where 𝐿′ =
𝑒𝐵

4𝜋𝑚0𝑐
 is the Lorentz unit. 

As a result of this, each of the two σ-components of the normal triplet splits into narrow doublet, 

triplet, etc., according to original field-free transition was a doublet, triplet, etc., transition. In 

the present field-free transition 2P⟶2S, each σ-component split into a doublet with a separation 

just two-thirds that of the field free-doublet. 

The Paschen-Back effect has experimentally been observed for very narrow multiplets only, 

such as the Li doublet having a field-free separation of 0.34 cm-1. The reason is that the effect 

occurs when the magnetic splitting exceeds the fine-structure (field-free) splitting. The 

ordinarily available fields, for example, a field of 4.3 tesla can produce a magnetic splitting of 

about 2 cm-1, which is larger than the fine-structure splitting of Li doublet, and Paschen-Back 

effect can easily be observed. On the other hand, this magnetic splitting is much less than the 

fine structure splitting of sodium resonance doublet (17 cm-1). Hence a field of 4.3 tesla cannot 

produce Paschen-Back effect in sodium doublet. Instead, an abnormally large field is required. 

So far, we have considered the cases when the external field is either very weak (Zeeman effect) 

or very strong (Paschen-Back effect), as compared to the internal field in the atom. For 

intermediate fields (comparable with internal field) complicated patterns are obtained.  

 

Question: The calcium line of wavelength 𝜆 = 4226.73 Å (P→S) exhibits normal Zeeman 

splitting when placed in uniform magnetic field of 4 Webers/m2. Calculate the wavelength of 

three components of normal Zeeman pattern and the separation between them. 

Sol. We know that  

𝜈 = 𝜈0 ±
𝑒𝐵

4𝜋𝑚
 

Δ𝜈 = 𝜈 − 𝜈0 =
𝑒𝐵

4𝜋𝑚
 

Δ𝜈 = 1.7588 × 1011
𝑐𝑜𝑢𝑙𝑜𝑚𝑏

𝑘𝑔

1

4𝜋
4 ×

𝑊𝑒𝑏𝑒𝑟𝑠

𝑚2
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= 0.56 × 1011 𝑐𝑦𝑐𝑙𝑒𝑠/𝑠𝑒𝑐 

Since 𝜈 =
𝑐

𝜆
, 

𝑑𝜈 = −
𝑐

𝜆2
𝑑𝜆 

|𝑑𝜆| = −
𝜆2

𝑐
𝑑𝜈 

=
(4226.70 × 10−10𝑚)2

3 × 10 8𝑚/𝑠𝑒𝑐
× 0.56 × 1011 𝑐𝑦𝑐𝑙𝑒𝑠/𝑠𝑒𝑐 

= 3 × 10 −10 𝑚 

= 0.33 Å 

Thus, the wavelengths of three normal Zeeman components are 

4226.40 Å, 4226.73 Å, 4227.06 Å 

 

Question: Determine the normal Zeeman effect of the cadmium red line of 6438 Å when the 

atoms are placed in a magnetic field of 0.009 T. 

Sol. The change in wavelength is given by  

𝑑𝐸 = −𝑐ℎ
1

𝜆2
𝑑𝜆 or  |𝑑𝜆| = −

𝜆2

𝑐ℎ
𝑑𝐸 

𝑑𝐸 = −
𝑒ℏ

2𝑚
𝐵 = (5.79 × 10−5

𝑒 𝑉

𝑇
) (0.009𝑇) 

= 5.21 × 10−7𝑒𝑉 

|𝑑𝜆| = −
𝜆2

𝑐ℎ
𝑑𝐸 =

(6438 Å)(5.21 × 10−7𝑒 𝑉)

12.4 × 103𝑒𝑉
 

|𝑑𝜆| = 1.74 × 10−3Å 
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Question: The spin -orbit effect splits the 3P→3S transition into two lines, 5890 Å 

corresponding to 2P3/2→2S1/2 and 5896 Å corresponding to 2P1/2→2S1/2. Calculate, by using 

these wavelengths, the effective magnetic induction experienced by an outer electron in the 

sodium atom as a result of its orbital motion.  

Sol. We know that 

  

|𝑑𝜆| =
𝜆2

𝑐
𝑑𝜈 

6 × 10−10 =
(5893 × 10−10 𝑚)2

3 × 108 𝑚/𝑠𝑒𝑐
∆𝜈 

 

∆𝜈 =
6 × 10−10  × 3 × 108𝑚/𝑠𝑒𝑐

(5893 × 10−10 𝑚)2
 

=
18

(5893)2
× 1018𝑐𝑝𝑠 

but 

Δ𝜈 =
𝑒𝐵

4𝜋𝑚
 

B =
18

(5893)2
× 1018 ×

4 × 3.14

1.7588 × 1011
 

𝐵 = 18.5 𝑇. 

Question: Evaluate the Lande g-factor for the 3P1 level in the 2p3s configuration of the 
6C 

atom, and use the result to predict the splitting of the level when the atom is in an external 

magnetic field of 0.1 T. 

Sol: For the 3P1 level, we have  

L=1, S=1, J=1 and so 

𝑔 = 1 +
𝐽(𝐽 + 1) − 𝐿(𝐿 + 1) + 𝑆(𝑆 + 1)

2𝐽(𝐽 + 1)
 

= 1 +
1(1 + 1) − 1(1 + 1) + 1(1 + 1)

2 × 1(1 + 1)
= 1 +

1

2
=
3

2
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For J=1, the possible values of Mj are 1, 0, -1 and so the level is split into three components. 

The wave-number shift of the component is given by 

∆𝑇 = ±𝑔𝑀𝑗
𝑒𝐵

4𝜋𝑚𝑐
 

The Zeeman level corresponding to Mj=0 remains unshifted while those corresponding to 

Mj=±1 are shifted by  

∆𝑇 = ±𝑔𝑀𝑗
𝑒𝐵

4𝜋𝑚𝑐
 

∆𝑇 = ±
3

2

(1.6 × 10−19𝐶)(0.1 𝑁𝐴−1𝑚−1)

4 × 3.14 × (9.1 × 10−31𝐾𝑔)(3.0 × 108 𝑚𝑠−1)
 

= ±7.0 𝑚−1 

= ±0.07 𝑐𝑚−1 

 

 

4.7. SUMMARY  

Classically we have that when charge particle undergoes periodic motion, they emit light and 

the frequency of radiation is the characteristic of the element concerned. Now when these 

particles are subjected to external magnetic field, then we have studied that they undergo 

variation in frequency of emitted radiation. This effect was studied in 1896 by Zeeman. It was 

observed by him that a single spectral line splitted into three lines of frequencies greater than, 

less than and same as that of the original line. This was called normal Zeeman effect. This kind 

of splitting is explained classically as well as quantum mechanically by taking only orbital 

motion of the electron into account. When the applied magnetic field is less than internal 

magnetic field of the atom then we get multiple splitting of the spectral line which is called 

anomalous Zeeman effect. This is explained by taking the spin motion of electron also into 

account. When the external applied magnetic field is more than the internal field of the atom 

then the splitting obtained is due to Paschen-Back effect. In this case, the orbital and spin 

angular momentum are quantize separately and they precess independently around the external 

magnetic field.  

 

4.8 Glossary  

 Precession- to move around 

 Spectral line- light of particular wavelength emitted by a source  

 Discreate- separate and distinct  

 Anomalous- deviation from normal or standard behavior  

 Unperturbed- undisturbed  
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4.9.   TERMINAL QUESTIONS 

 

1. What are the normal and anomalous Zeeman effects? Use classical idea to explain 

normal Zeeman effect. 

2. Explain clearly the phenomenon of anomalous Zeeman effect and Paschen-Back effect. 

Describe the spectral patterns expected for the yellow lines of sodium according to these 

two effects.  

3. Describe the effect of weak magnetic field on the spectral lines emitted by an atom 

having two valance electrons. 

Calculate the Zeeman patterns for the transition sp 3P1→sd 2D1 in LS coupling.  

4. Define Lande’s splitting factor and derive expressions for its values for L-S and j-j 

coupling in a two-electron system.  

5. Outline the theory of Paschen-Back effect and discuss the Paschen-Back pattern for a 
2P→ 2S transition. 

6. An electron in He+ is in an n=2 orbit. What is its magnetic moment due to its orbital 

motion according to Bohr theory? 

7. What is the frequency difference in the photons emitted in the normal Zeeman effect 

corresponding to transitions from adjacent magnetic sublevels to the same final state in 

a magnetic field of 1.2 T? 
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4.11   ANSWERS  

Self-Assessment question (SAQ)1: 

Ans. 1. (b) 

Ans. 2. (a) 

Ans. 3. (a) 

Self-Assessment question (SAQ)2: 

Ans. 1. (c) 

Ans. 2. (b) 

Ans. 3. (c) 

Self-Assessment question (SAQ)3: 
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Ans. 1. (b) 

Ans. 2. (b) 

Terminal question  

Ans. 6. 1.85×10-23 T 

Ans. 7. 1.08×1010 Hz 
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5.1. Aims and objectives 

In the previous unit, we have studied about the effect of magnetic field on the spectral line. 

Now, in this unit we will study the effect of electric field on the spectral line which is called 

Stark effect. After going through this unit we will come to know: 

1. What is Stark effect? 

2. Stark effect in hydrogen atom. 

3. The qualitative and Quantum mechanical treatment of Stark effect. 

4. Hyperfine structure of spectral line.  

5.2. INTRODUCTION: STARK EFFECT 

In late 1913 Johannes Stark (1874–1957), the professor of experimental physics at the technical 

university of Aachen, discovered the effect of electric fields on spectral lines. This phenomenon 

is usually referred to as the Stark effect and is analogue of the magnetic field effect on spectral 

i.e. Zeeman effect. Stark worked with specially constructed discharge tubes. Stark’s tube 

allowed stable electric fields of up to 100,000 Vcm−1.  

 

In numerous experiments, Stark demonstrated the following: 

• The spectrum lines in the Balmer series of hydrogen split up into several components 

• The number of these components increases with the series number 

• Splitting and polarization of Balmer lines is symmetric to the original line 

• The splitting seemed to be asymmetric for some other elements 

• The distances between the hydrogen spectral-line components (in units of frequency or 

wavenumber) are all integer multiples of a smallest line distance 

• The splitting interval Δ increases proportionally with the electric field E (i.e., Δ∼E for 

not too small or too large E) first order stark effect or linear Stark effect 

• For very small electric fields and atoms not subject to a permanent dipole moment, Δ 

actually increases by the second power of E (‘quadratic Stark effect’) 

 

In the presence of external electric field, emission lines from atoms or ions (particle carrying 

an electric dipole moment) split into several polarised components. When viewed 

perpendicular to field, some of components of each line are plane polarised with electric field 

vector parallel to the field (π-components) and the other are polarised with electric field vector 

perpendicular to the field (σ-components). When viewed parallel to field, only σ-components 

appear which are now unpolarised. This phenomenon is called the Stark effect. 

The magnitude of the wavelength separation and the relative intensity among the split line 

components depend on the field strength. The splitting of the emission lines is ascribed to the 

resolution of magnetic sublevels which are degenerate in the absence of an external field. The 

variation of relative intensity among the split line components is interpreted as a change of 

electric dipole moment between the magnetic sublevels of the transition; this change is caused 

by the wavefunction mixing. Stark effect generally increases as the square of the applied field 

strength (quadratic Stark effect). For hydrogen like system special condition prevail due to the 

level degeneracy and hence linear Stark effect (shift is linear in applied field strength) is 

obtained. The relationship for splitting of spectral line in stark effect is not simple and unique 

like Zeeman effect. So Stark effect is of no particular value as a help in analysis of spectrum 

but plays an important role in the theories of molecule formation from atom, broadening of 

spectral lines and dielectric constants.   
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The amount of splitting and or shifting is called the Stark splitting or Stark shift. In general, 

one distinguishes first- and second-order Stark effects. The first-order effect is linear in the 

applied electric field, while the second-order effect is quadratic in the field. When the 

split/shifted lines appear in absorption, the effect is called the inverse Stark effect. 

 

 

Figure 5.10 

 

5.3. STARK EFFECT IN HYDROGEN ATOM 

J. Stark discovered that the Balmer lines emitted by hydrogen atoms placed in an electric field 

of the order of 105 V/cm are split into a number of polarised components.  

 All hydrogen lines from symmetrical patterns, but the pattern depends markedly on 

quantum number n of the term involved. The number of Stark lines, and the total width 

of the pattern increases with n. The line 𝐻𝛽 shows a larger number of Stark components 

than 𝐻𝛼, the line 𝐻𝛾 showing still more larger numbers. 

 The wave number shifts are integer multiples of a unit which is proportional to the 

strength of the electric field and is same for all hydrogen lines. 

 Except for circular polarisation in longitudinal observation, the polarisation properties 

of Stark lines resemble those of the Zeeman lines. But, in contrast to Zeeman lines, the 

π-components shows greater shifts than the σ-components.  

 The hydrogen lines involving the lower energy states (small n) shows only a 

symmetrical splitting proportional to the field strength about their field-free positions. 

This is known as the ‘first-order’ or ‘linear’ Stark effect. 

 For lines involving higher states the Stark components shows unidirectional 

displacement proportional to the square of the field strength. This is known as the 

‘second-order’ Stark effect. 

 For hydrogen, at high field strength, a quadratic effect is superimposed on linear effect, 

and results essentially in a one-sided shift of the whole splitting pattern (Fig. 5.2) 
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In order to obtain theoretically the Stark effect splitting of H and H-like ions for low field 

strengths, relativity and spin effects have to be considered, and these then give an 

unsymmetrical splitting of the individual fine structure components. 

 

Fig. 5.11: Stark Effect in Hydrogen: The until then degenerate excited energy levels are split 

up if an exterior electric field is applied.  

 

5.4. WEAK AND STRONG FIELD STARK EFFECT 

The electric field is said to be WEAK when the splitting of energy level is smaller than the 

fine-structure splitting and STRONG when the splitting of the energy levels is greater than the 

fine-structure splitting. 

 5.4.1. WEAK FIELD EFFECT 

A weak field for hydrogen atom is one for which the interaction energy between the electron’s 

total angular momentum j and the electric field F is less than the 

magnetic interaction energy between orbital angular momentum I 

and spin momentum s, that is for which the Stark splitting is 

smaller compared with the fine-structure splitting. In such a field, 

I and s couple to form j which precesses around F with projection 

𝑚𝑗ℎ/2𝜋, where 

𝑚𝑗= +j, j-1, j-2, …., -j 

Figure 5.12 
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However, in contrast to Zeeman levels, the Stark levels +𝑚𝑗 and -𝑚𝑗 arising from a given 

unperturbed level have the same energy.  

The energy levels of hydrogen atom for the two states n=2 and n=3 are shown in Fig 5.4. the 

field-free levels and theoretical pattern for 𝐻𝛼 are given at the left, and the weak-field levels 

and Stark pattern at the right. The unperturbed levels for each 𝑛(22𝑃3/2 𝑎𝑛𝑑 3
2𝐷5/2) do not 

show Stark splitting because in these states the atom has no electric moment.  

The selection rules for the weak-field Stark effect are the same as those for the Zeeman effect, 

i.e. 

∆𝑚𝑗 = 0 gives π components 

∆𝑚𝑗 = ±1 gives σ components 

According to these rules, each of the fine-structure components should show symmetrical stark 

pattern, as shown at the lower right. However, since the fine-structure components of 𝐻𝛼  have 

not been completely resolved, the weak-field stark pattern has never been observed.  

 

Figure 5.13: fine structure and weak field Stark effect for hydrogen Hα line 

 

5.4.2. STRONG FIELD EFFECT 

A strong electric field for hydrogen is one for which the interaction energy between the 

electron’s total angular momentum j and the field F is greater than the magnetic interaction 
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energy between electron’s orbital momentum I and spin momentum s, that is, for which the 

(Stark) splitting of the energy levels due to the field is greater than the fine-structure splitting. 

The strong-Field Stark effect is actually been observed. In such a field the magnetic coupling 

between I and s is broken down and I is quantised with respect to and precesses independently 

around the field F. The spin is not acted on by F. 

Schwarzschild and Epstein in 1916 explained the observed stark effect in Hydrogen atom and 

ionised helium by quantising hydrogen like atom in an electric field. 

The effect of a homogeneous 

electric field F, parallel to the z-axis, 

on an electron moving in a Kepler 

ellipse is different from that of a 

magnetic field. For the Kepler 

motion the centre of gravity of the 

electron averaged over its orbit does 

not coincide with the nucleus and 

thus forms an electric dipole. The 

torque on the orbital dipole exerted 

by the electric field causes a 

precession the orbital about the z-

axis. However, the orbital angular 

momentum I is not a constant, and 

the orbital quantum number 𝑙 is no 

longer a “good” quantum number. 

The projection of I on the electric 

axis is 𝑙𝑧, given by 𝑚𝑙
ℎ

2𝜋
 where 𝑚𝑙 is the electric quantum number. 𝑙𝑧 is still a constant of 

motion and 𝑚𝑙 retain its strict meaning. Calculation carried out in parabolic coordinates given 

the energy values as: 

𝐸 = 𝐸0 −
3𝑎0𝑒

2𝑍
𝐹𝑛(𝑛2 − 𝑛1) 

Where 𝐸0 is the electric field free energy of the atom, 𝑎0is the Bohr radius, nis the usual total 

quantum number, and 𝑛1 and 𝑛2 are two new quantum numbers, subjected to the condition 

𝑚𝑙 = 𝑛 − 𝑛2 − 𝑛1 − 1 

The allowed values are  

  𝑛 = 0, 1, 2, ……… ,∞ 

𝑚𝑙 = 0,±1,±2,………… ,±(𝑛 − 1) 

𝑛1 = 0, 1, 2, ……… , (𝑛 − 1) 

𝑛2 = 0, 1, 2, ……… , (𝑛 − 1) 

𝑛1 limits the electron’s motion to the region between the two paraboloids of revolution 𝜉𝑚𝑖𝑛 

and 𝜉𝑚𝑎𝑥; while 𝑛2 limits it to the region between the two paraboloids of revolution 𝜂𝑚𝑖𝑛 and 

𝜂𝑚𝑎𝑥. Thus, confined to the region intersected by the two pairs of paraboloids, the electron has 

Figure 5.14 
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three periodic motions, one around the field F given by 𝑚𝑙, and one each along the 𝜂 and 𝜉 

coordinates given by 𝑛1 and 𝑛1. Since the last two periods are not necessarily the same, the 

orbit is not closed and the electron in time covers every point in the intersected region.  

 

5.4.2.1. STRONG-FIELD STARK SPLITTING OF HYDROGEN LEVELS  

The term shift is given by 

−Δ𝑇 =
Δ𝐸

ℎ𝑐
=
3𝑎0𝑒

2𝑍ℎ𝑐
𝐹𝑛(𝑛2 − 𝑛1) 

Pitting the known values of 𝑎0, e, h and c, we get 

−Δ𝑇 =
3(0.53 × 10−10 𝑚)(1.6 × 10−19 𝐶)

2𝑍(6.63 × 10−34 𝐽𝑠)(3.0 × 108 𝑚𝑠−1)
𝐹𝑛(𝑛2 − 𝑛1) 

=
6.40 × 10−5 𝐶/𝐽

𝑍
𝐹𝑛(𝑛2 − 𝑛1) 

=
6.40 × 10−5 𝑉−1

𝑍
𝐹𝑛(𝑛2 − 𝑛1) 

If the field F is expressed in V/cm, then this becomes 

−∆𝑇 =
6.40 × 10−5 

𝑍
𝐹𝑛(𝑛2 − 𝑛1)      𝑐𝑚

−1 

Thus, the Stark levels in a hydrogen like atom are all shifted by integral multiples of a 

fundamental amount from the original level. 

The quantity 𝑛(𝑛2 − 𝑛1) represent the Stark shift. Allowed values of n, 𝑛1and 𝑛2 shows that 

there is exactly 𝑛2 possible states for Stark effect similar to Zeman effect but certain levels fall 

together in Stark effect. Further, the Stark-shift for the ground state of Hydrogen is zero. 

The selection rules for the strong-field Stark effect are as follows: 

∆𝑚𝑙 = 0 gives π components 

∆𝑚𝑙 = ±1 gives σ components 

the transition ∆𝑚𝑙 = 1 and ∆𝑚𝑙 = −1 gives components circularly polarised in opposite sense. 

But a transition ∆𝑚𝑙 = −1 occurs for every transition ∆𝑚𝑙 = 1 and the superposition of the 

two gives linearly polarised components in transverse observation and unpolarised components 

in longitudinal observation.  

n 𝑛2 𝑛1 𝑛2 − 𝑛1 𝑛(𝑛2 − 𝑛1) 
𝑚𝑙 

(𝑛 − 𝑛2 − 𝑛1−1) 
1 0 0 0 0 0 

2 

1 1 0 0 -1 

1 0 1 2 0 

0 1 -1 -2 0 
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0 0 0 0 1 

3 

2 2 0 0 -2 

2 1 1 3 -1 

2 0 2 6 0 

1 2 -1 -3 -1 

1 1 0 0 0 

1 0 1 3 1 

0 2 -2 -6 0 

0 1 -1 -3 1 

0 0 0 0 2 

 

 

 

Figure 5.15: strong field first-order Stark effect for 𝐻𝛼 line 

The possible transitions for the 𝐻𝛼 line and the resulting Stark pattern have also been shown. 

This has been found in good agreement with experimental observation in both the relative shifts 

and the intensities. The intensities were calculated by Schrödinger quantum mechanically.  
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Thus, the comparison of weak-field and strong-field Stark effect: 

Electric 

Field 

Level energy Transition rules 

Weak   ∆𝑚𝑗 = 0 gives π components 

∆𝑚𝑗 = ±1 gives σ components  

Strong  
𝐸 = 𝐸0 −

3𝑎0𝑒

2𝑍
𝐹𝑛(𝑛2 − 𝑛1) 

∆𝑚𝑙 = 0 gives π components 

∆𝑚𝑙 = ±1 gives σ components  

 

 

 

 

 

 

Figure 5.16: Comparison of level shifting for hydrogen in weak—field and strong field (n=2 

and n=3 line)  
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Figure 5.17: Comparison of Stark effect of hydrogen in weak--field, strong field and no-field 

 

            

(a)                                                                      (b) 

Fig. 5.9: Energy level shifts against electric field strength for n = 2 of neutral hydrogen (a) in 

a wide field strength range and (b) in a weak field strength range where the intrinsic fine 

structure and Stark splitting are comparable 

 

5.5. QUANTUM MECHANICAL TREATMENT OF STARK EFFECT 

In this section we will discuss Stark Effect on the basis of perturbation theory of quantum 

mechanics. Stark Effect is the splitting of spectral line of an atom or ion (particle carrying an 

electric dipole moment) in a uniform external electric field. Splitting of spectral line is a result 

of shifting of energy level in the presence of external field.  The shifting of energy level in 

external field can be understood by the theory of perturbation of Quantum mechanics, which 

was used to find the energy eigen values and wave function of a system with slightly modified 

potential then the potential for which exact solution of Schrödinger equation are known. The 

applied external field act as perturbation potential for known system. The first and second order 
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energy correction in energy level will provide the shifted energy levels. By using these shifted 

energy levels, allow transition will give information of Stark effect. 

The aim of the section is to solve the Schrödinger equation and find the eigenstates and the 

energy of the electron when a static electric field is applied to the atom. Unlike the analytical 

approach used until now, perturbation theory will be used in this section and after introducing 

the Schrödinger equation for the Stark effect, the perturbation theory method is presented.  

 

5.5.1.  THE UNPERTURBED SYSTEM 

Before embarking on perturbation theory, we must understand the unperturbed system, its 

energies, eigenstates and their degeneracies. In the electrostatic model, the unperturbed energy 

levels in hydrogen are given by the usual Bohr formula,  

𝐸𝑛 = −
1

2𝑛2
𝑒2

𝑎0
 

where a0 is the Bohr radius. Here we ignore the small difference between the electron mass m 

and the reduced mass µ. These levels are n2 -fold degenerate. 

The eigenstates of Hydrogen have the form |𝑛𝑙𝑚⟩.  The eigenfunction: 

𝜓𝑛𝑙𝑚 = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃)   

For hydrogen, central force Hamiltonian is 𝐻0 

𝐻0 = −
ℏ2

2𝜇
∇2 − 

𝑘 𝑒2

𝑟
;      𝑘 =

1

4𝜋𝜀0
 

 

 

 5.5.2. IMPORTANT RESULTS OF PERTURBATION THEORY 

The time-independent perturbation theory is used to find the energy eigen values and eigen 

function of the system whose Hamiltonian is slightly different from the system of known 

energy eigen values and eigen wavefunction. If 𝐻0 is the unperturbed Hamiltonian, then the 

Hamiltonian of the system under consideration can be written as 

𝐻 = 𝐻0 + 𝐻′ 

Where H’ is the changes of Hamiltonian of the system under study i.e. perturbed Hamiltonian.  

Result 1: The first-order correction to the energy is the average value of the perturbation over 

the corresponding unperturbed states of the system. 

𝐸𝑛
(1)
= ⟨𝜓𝑛

0|𝐻′|𝜓𝑛
0⟩ 

Result 2: The perturbative state corrections of first order are given by the superposition of all 

unperturbed states with energies different from the considered state. 
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𝜓𝑛
(1)
= ∑

⟨𝑚|𝐻′|𝑛⟩

𝐸𝑛
0 − 𝐸𝑚

0 |𝜓𝑚
0 ⟩

𝑚≠𝑛

 

Thus, the energy and wave function corrected to first order are 

𝐸𝑛 = 𝐸𝑛
0 + ⟨𝜓𝑛

0|𝐻′|𝜓𝑛
0⟩ 

𝜓𝑛 = 𝜓𝑛
0 + ∑

⟨𝑚|𝐻′|𝑛⟩

𝐸𝑛
0 − 𝐸𝑚

0 |𝜓𝑚
0 ⟩

𝑚≠𝑛

 

Result 3: The perturbative energy corrections of second order are determined by all unperturbed 

states with energy different from the considered state. 

𝐸𝑛
(2)
= ⟨𝜓𝑛

0|𝐻′|𝜓𝑛
(1)
⟩ 

𝐸𝑛
(2)
= ∑

|⟨𝑚|𝐻′|𝑛⟩|2

𝐸𝑛
0 − 𝐸𝑚

0 |𝜓𝑚
0 ⟩

𝑚≠𝑛

 

 

 

5.5.3. EFFECT OF ELECTRIC FIELD ON THE GROUND STATE OF HYDROGEN 

Consider an atom situated at origin. Let an external electric field E applied along the positive 

z-axis. If r is the position vector of the electron, the electric dipole moment µ=-er interacts 

with the electric field E giving an additional potential energy to the electron  

H’= -µ.E = erE cos𝜃 =eEz ; e-positive 

Where 𝜃 is the angle the position vector makes with z-axis. Since this extra energy term is very 

small, it can be treated as a perturbation on the Hamiltonian of the system Hº 

Hº= -
ℏ2

2𝜇
∇2 − 

𝑘 𝑒2

𝑟
;      𝑘 =

1

4𝜋𝜀0
 

The ground state of the Hydrogen atom (|nlm > = ψ100) is non-degenerate and first order 

correction to the energy  

𝐸(1) = ⟨𝜓100|𝑒𝐸𝑟𝑐𝑜𝑠𝜃|𝜓100⟩           (5.1)          

Where 𝜓100 is the hydrogen ground state wave function:  

𝜓100 = 
1

(𝜋𝑎0
3)1/2

 𝑒𝑥𝑝 (−
𝑟

𝑎0
) 

The 𝜃 part of the integral in equation (5.1) vanishes as 

∫ 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃 =  −∫ 𝑐𝑜𝑠𝜃 𝑑(𝑐𝑜𝑠𝜃) = 0
𝜋

0

𝜋

0
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Hence, the ground state of hydrogen atom will not show a first-order Stark effect and we have 

to calculate the second-order energy shift. 

The second-order energy shift presented in the next section, present a method of solving 

perturbation on the basis Dalgarno and Lewis method. They found an operator F (scalar 

function) such that 

𝐸𝜓1
0 = 𝜓1

(1)
 

The second order energy correction  

𝐸𝑛
(2)
= ⟨𝜓𝑛

0|𝐻′|𝜓𝑛
(1)
⟩ 

𝐸1
(2)
= ⟨𝜓1

0|𝐻′𝐹|𝜓1
0⟩ 

and 

𝐻′𝜓𝑛
0 + 𝐻0𝜓𝑛

(1)
= 𝐸𝑛

(1)
𝜓𝑛
0 + 𝐸𝑛

0𝜓𝑛
(1)

 

𝐻′𝜓1
0 + 𝐻0𝐹𝜓1

0 = 𝐸1
(1)
𝜓1
0 + 𝐹𝐸1

0𝜓1
0 

Since 𝐸1
(1)

 is zero and 𝐸1
0𝜓1

0 = 𝐻0𝜓1
0, 

(𝐹𝐻0 − 𝐻0𝐹)𝜓1
0 = 𝐻′𝜓1

0 

[𝐹, 𝐻0]𝜓1
0 = 𝐻′𝜓1

0 

{Since the scalar function F commutes with -ke2/r in 𝐻0, the relation  ∇2(𝐹𝜓1
0) = F∇2(𝜓1

0) +
𝜓1
0∇2𝐹 + 2∇𝜓1

0. ∇𝐹} 

ℏ2

2𝜇
(𝜓1

0∇2𝐹 + 2∇𝜓1
0. ∇𝐹) = 𝐻′𝜓1

0 

This gives the differential equation that determines the operator F. Substituting the values of 

𝜓1
0 in the above equation  

∇2F −
2

𝑎0

𝜕𝐹

𝜕𝑟
=
2𝜇

ℏ2
𝑒𝐸𝑟𝑐𝑜𝑠𝜃 

The angular part of the right- hand side of the above equation comes from cos𝜃 which is the 

Legendre polynomial P1. Therefore, F may be assumed to be of the following form 

F=f(r) P1 

This value of F when substituted in equation satisfied b f(r) which leads to 

𝐹 =
𝜇

ℏ2
𝑒𝐸 𝑎0 (

𝑟

2
+ 𝑎0) 𝑟𝑐𝑜𝑠𝜃 

The second order correction is then 

𝐸1
(2)
= ⟨𝜓1

0|𝐻′𝐹|𝜓1
0⟩ 
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= −
𝜇

ℏ2
𝑒2𝐸2𝑎0

1

𝜋𝑎0
3∫ ∫ 𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑∫ (

𝑟5

2
+ 𝑎0𝑟

4) 𝑒𝑥𝑝 (−
2𝑟

𝑎0
) 𝑑𝑟

∞

0

2𝜋

0

𝜋

0

 

= −
4

3

𝜇

ℏ2
𝑒2𝐸2

𝑎0
2 ∫ (

𝑟5

2
+ 𝑎0𝑟

4) 𝑒𝑥𝑝 (−
2𝑟

𝑎0
) 𝑑𝑟

∞

0

 

On solving, we get 

𝐸1
(2)
= −

9

4

𝜇

ℏ2
𝑒2𝐸2𝑎0

4 = −
9

4𝑘
𝑎0
3𝐸2 

Since 𝑎0 = ℏ
2/𝑘𝜇𝑒2. The ground state energy corrected to second order is found to be 

𝐸1 = 𝐸1
0 −

9

4𝑘
𝑎0
3𝐸2 

As the correction is proportional to the square of E, it is often referred to as the quadratic Stark 

effect.  

The correction term (−9/4𝑘)𝑎0
3𝐸2 is due to the distortion of the charge distribution of the 1s-

electron by the electric field E and therefore we may say that the atom has been polarized b the 

field. The extent of this polarisation is measured by the polarizability α, which is defined as the 

ratio of the induced electric dipole moment µ to the external field E  

µ= 𝛼 E 

The energy of an induced dipole in an applied field is given by –(1/2) 𝛼𝐸2. Equating this energy 

change with the energy due to perturbation calculation 

−
1

2
𝛼𝐸2 = −

9

4𝑘
𝑎0
3𝐸2 

The polarizability of Hydrogen atom in its ground state is 

𝛼 =
9

2𝑘
𝑎0
3 

 

5.5.4. EFFECT OF ELECTRIC FIELD ON THE DEGENERATE ENERGY LEVELS 

In the case of degenerate energy levels, unperturbed wave function of the system can be taken 

as the linear combination of degenerate wave functions. For simplicity let us consider a case in 

which 𝐸𝑛
0 is two-fold degenerate. Let 𝜓𝑛

0 and 𝜓𝑙
0 be eigenfunctions corresponding to eigenstate 

𝐸𝑛
0 = 𝐸𝑙

0 and a linear combination of tow be  

𝜙 =  𝑐𝑛𝜓𝑛
0 + 𝑐𝑙𝜓𝑙

0 

Where cn and cl are constants. 

First-order correction: 

𝐻′𝜓𝑛
0 + 𝐻0𝜓𝑛

(1)
= 𝐸𝑛

(1)
𝜓𝑛
0 + 𝐸𝑛

0𝜓𝑛
(1)
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𝐻′|(𝑐𝑛𝜓𝑛
0 + 𝑐𝑙𝜓𝑙

0) > +𝐻0|𝜓𝑛
(1)
>= 𝐸𝑛

(1)
|(𝑐𝑛𝜓𝑛

0 + 𝑐𝑙𝜓𝑙
0) > +𝐸𝑛

0|𝜓𝑛
(1)
>                (5.2) 

Operating eq.(5.2) from left by < 𝜓𝑛
0| 

𝑐𝑛 < 𝜓𝑛
0|𝐻′|𝜓𝑛

0 > +𝑐𝑙 < 𝜓𝑛
0|𝐻′|𝜓𝑙

0 > +< 𝜓𝑛
0|𝐻0|𝜓𝑛

(1) >= 𝑐𝑛𝐸𝑛
(1) + 𝐸𝑛

0 < 𝜓𝑛
0|𝜓𝑛

(1) > 

Since 𝐻0 is Hermitian, 

< 𝜓𝑛
0|𝐻0|𝜓𝑛

(1) >= 𝐸𝑛
0 < 𝜓𝑛

0|𝜓𝑛
(1) > 

So  

𝑐𝑛 < 𝜓𝑛
0|𝐻′|𝜓𝑛

0 > +𝑐𝑙 < 𝜓𝑛
0|𝐻′|𝜓𝑙

0 >= 𝑐𝑛𝐸𝑛
(1)

 

                      (𝐻′𝑛𝑛 − 𝐸𝑛
1)𝑐𝑛 + (𝐻′𝑛𝑙)𝑐𝑙 = 0                                                (5.3) 

Operating eq. (5.2) from left by < 𝜓𝑙
0| 

                    (𝐻′𝑛𝑙)𝑐𝑛 + (𝐻′𝑙𝑙 − 𝐸𝑛
1)𝑐𝑙 = 0                                                 (5.4) 

Equation (5.3) and (5.4) together form a set of simultaneous equations for the coefficients 

𝑐𝑛and 𝑐𝑙. A nontrivial solution of these equations exists only if the determinant of coefficients 

vanishes. 

|
𝐻′𝑛𝑛 − 𝐸𝑛

(1) 𝐻′𝑛𝑙

𝐻′𝑙𝑛 𝐻′𝑙𝑙 − 𝐸𝑙
(1)
| = 0                           (5.5) 

This is called the secular equation and its two solutions are: 

𝐸𝑛±
(1)
=
1

2
(𝐻′𝑛𝑛 + 𝐻′𝑙𝑙) ±

1

2
[(𝐻′𝑛𝑛 − 𝐻′𝑙𝑙)

2 + 4|𝐻′𝑛𝑙|
2](

1
2
)
 

Now the corrected energies are: 

                             𝐸𝑛 = 𝐸𝑛
0 + 𝐸𝑛+

(1)
 and 𝐸𝑙 = 𝐸𝑛

0 + 𝐸𝑛−
(1)

 

Both the energies will be real as the diagonal matrix element H’nn and H’ll pf the Hermitian 

operator H’ are real. If H’nn =H’ll and H’nl=0, En+=En- and the degeneracy is not removed in the 

first order. 

When the two roots of eq. (5.5) are distinct, each can be used to calculate the ratio 𝑐𝑛/𝑐𝑙 either 

from eq. (5.3) or from (5.4). the normalization condition 𝑐𝑛
2 + 𝑐𝑙

2 = 1 allows us to calculate the 

values of 𝑐𝑛 and 𝑐𝑙. 

 

5.5.4.1. THE N=2 STATE OF HYDROGEN IN EXTERNAL FIELD   

The first excited state (n=2) of hydrogen atom is four-fold degenerate, with |𝑛𝑙𝑚⟩: |200⟩, 
||210⟩, |211⟩, and |21 − 1⟩.  Similar to previous discussion, let the applied external field is 

along the positive Z-axis which interacts with the electric dipole moment giving the perturbing 

Hamiltonian H’=eEz=eErcos𝜃. 
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For 4-fold degenerate state, the application of perturbation theory requires the evaluation of 

sixteen matrix elements of H’. The four diagonal matrix elements out of these sixteen elements 

are zero, since they correspond to the same parity (H’ is of odd parity). The off-diagonal matrix 

elements between states of different m values are zero since  

∫ exp[𝑖(𝑚′ −𝑚)𝜑]𝑑𝜑 = 0  
2𝜋

0
 if m’≠m 

The remaining two matrix elements ⟨200|𝐻′|210⟩ and ⟨210|𝐻′|200⟩ are the only 

nonvanishing ones. These can be evaluated using the values of  

𝜓200 =
1

4√2𝜋

1

𝑎0
3 (2 −

𝑟

𝑎0
) 𝑒𝑥𝑝 (−

𝑟

2𝑎0
) 

And  

𝜓210 =
1

4√2𝜋

1

𝑎0
3/2

𝑟

𝑎0
𝑒𝑥𝑝 (−

𝑟

2𝑎0
) 𝑐𝑜𝑠𝜃 

Therefore  

⟨200|𝐻′|210⟩ =
𝑒𝐸

32𝜋𝑎0
4∫ ∫ ∫ (2 −

𝑟

𝑎0
) 𝑟2𝑒𝑥𝑝 (−

𝑟

𝑎0
) 𝑐𝑜𝑠2𝜃𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜑

∞

0

𝜋

0

2𝜋

0

 

=
𝑒𝐸

16𝜋𝑎0
4∫ 𝑐𝑜𝑠2𝜃𝑟2𝑠𝑖𝑛𝜃𝑑𝜃∫ (2𝑟4 −

𝑟5

𝑎0
) 𝑒𝑥𝑝 (−

𝑟

𝑎0
) 𝑑𝑟

∞

0

𝜋

0

 

= −3𝑒𝐸𝑎0 

So, 

⟨200|𝐻′|210⟩ = −3𝑒𝐸𝑎0 

⟨210|𝐻′|200⟩ = −3𝑒𝐸𝑎0 

The perturbation matrix is therefore  

𝐻′ = [

0 −3𝑒𝐸𝑎0 0
−3𝑒𝐸𝑎0 0 0
0 0 0
0 0 0

] 

The secular determinant is then 

[
 
 
 
 
 −𝐸2

(1)
−3𝑒𝐸𝑎0 0 0

−3𝑒𝐸𝑎0 −𝐸2
(1)

0 0

0 0 −𝐸2
(1)

0

0 0 0 −𝐸2
(1)
]
 
 
 
 
 

= 0 

The four roots of this determinant are 3𝑒𝐸𝑎0, −3𝑒𝐸𝑎0, 0 and 0. The state |200> and |210> are 

affected by the electric field whereas the state |211> and |21-1> are not. The four-fold 
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degeneracy is thus lifted partially. Corresponding eigenstate can be evaluated using equation 

(5.3) and (5.4)  

The eigenstate corresponding to the eigenvalues 3𝑒𝐸𝑎0 is then (|200>-|210>)/√2. In a similar 

way the eigenstate for eigenvalue −3𝑒𝐸𝑎0 is (|200>+|210>)/√2. 

 

Fig. 5.10. Energies and wave functions of the first excited state of hydrogen atom in an electric 

field E. 

The hydrogen atom in the first excited state thus possesses a permanent electric dipole moment 

of magnitude 3𝑒𝑎0 with three different orientations- one state parallel to the external electric 

field, one state antiparallel to the field and two states with zero component along the field. The 

states |211> and |21-1> do not possess dipole moments and therefore do not have a first-order 

interaction with the field.  

 

Self-Assessment Questions (SAQ) 1: 

1. The splitting of spectral line in Stark effect increase with  

a) Increase in B 

b) Decrease in B 

c) Increase in E 

d) Decrease in E 

 

2. In the First-order Stark effect, the splitting is proportional to  

a) E 

b) Square of E 

c) Cube of E 

d) All of above 

 

3. In strong field Stark-effect, the splitting of energy level is  

a) Less than fine structure splitting 

Energy 

𝐸2
0

+ 3𝑒𝐸𝑎0 

𝐸2
0
 

𝐸2
0

− 3𝑒𝐸𝑎0 

 

Eigenstate 

1

2
(|200 > −|210 >) 

|211 >, |21 − 1 > 

1

2
(|200 > −|210 >) 
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b) Greater than fine structure splitting 

c) Equal to fine structure splitting 

d) None of the above 

  

5.6. HYPERFINE STRUCTURE  

In this section, we will go through the hyperfine structure of atoms. Various origins of the 

hyperfine structure are discussed. The coupling of nuclear and electronic total angular 

momentum is explained. 

Many fine-structure components of spectral lines, when examined under high resolution, are 

further splitted into components with separations of the order of 2 cm-1, which is very much 

smaller than those of the ordinary multiplet structure. This splitting is called the “hyperfine 

structure” and is caused by properties of the atomic nucleus. There are two type of nuclear 

effects that produce hyperfine structure.  

The first is due to the presence of isotopic species in the element under investigation. The 

energy levels of isotopes are slightly displaced relative to each other, producing spectral 

transitions at slightly displaced relative to each other, producing spectral transition at slightly 

different wave numbers. Therefore, different isotopes of same element have slightly different 

spectral lines. 

The second type of effect arises because the charged nucleus processes as spin angular 

momentum and the associated magnetic dipole moment. An interaction between the internal 

magnetic field produced by the orbital motion of the electrons in the atom and the spin magnetic 

dipole moment of the nucleus causes a hyperfine splitting of the spectral terms. As nuclear 

dipole moments are smaller than electronic magnetic dipole moments by ̴ 10-3, the hyperfine 

splitting is smaller than the spin-orbit splitting by the same factor. Hyperfine structure, with 

energy shifts typically orders of magnitudes smaller than those of a fine-structure shift, results 

from the interactions of the nucleus (or nuclei, in molecules) with internally generated electric 

and magnetic fields. 

 

 5.6.1. ISOTOPE EFFECT 

Different isotopes of an element have same number and arrangement of extranuclear electrons, 

differ from one another in mass. Since the nuclear mass enters into Rydberg constant for an 

atom, different isotopes have slightly different values of Rydberg constant. Correspondingly, 

the same transitions in different isotopes give rise to slightly different wave numbers.  

Let us calculate the shift for 𝐻𝛽 line (4861.33Å) due to presence of deuterium.  

The Rydberg constant for hydrogen and deuterium  

𝑅𝐻 = 𝑅∞
1

1 +
𝑚
𝑀𝐻

= 1.09677 × 107 𝑚−1 

𝑅𝐷 = 𝑅∞
1

1 +
𝑚
𝑀𝐷

= 1.097074 × 107 𝑚−1 
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The transition formula for this transition from Balmer’s formula 

1

𝜆𝐻
= 𝑅𝐻 (

1

22
−
1

42
) 

1

𝜆𝐷
= 𝑅𝐷 (

1

22
−
1

42
) 

𝜆𝐷
𝜆𝐻
=
𝑅𝐻
𝑅𝐷

 

𝜆𝐷 − 𝜆𝐻
𝜆𝐻

=
𝑅𝐻 − 𝑅𝐷
𝑅𝐷

 

Δ𝜆 = 𝜆𝐷 − 𝜆𝐻 = −𝜆𝐻 (
𝑅𝐷 − 𝑅𝐻
𝑅𝐷

) 

= −4861.33 Å (
109707.4 − 109677.6

109707
) 

= −1.32 Å 

Observed calculated 

𝑯𝜶  1.79  1.787 

𝑯𝜷  1.33  1.323 

𝑯𝜸  1.19  1.182 

𝑯𝜹  1.12  1.117 

Many cases of isotope-shift are not as simple as that for hydrogen. In fact, for the rare earth 

and heavier atoms, the main contribution to isotope shift is not due to a difference in mass but 

due to a change in nuclear radius with mass and the deviation of the nuclear magnetic field 

from being purely a coulombic one.  

Sm150→Sm152 shift is double that of Sm152→Sm154 

Usual increase is not from Sm150→Sm152 

 

 5.6.2. NUCLEAR SPIN AND HYPERFINE SPLITTING  

In many cases the isotope effect is not sufficient to explain the hyperfine structure. The number 

of hyperfine structure components is often considerably greater than the number of isotopes. 

In particular, elements which have only one isotope in appreciable amount also show hyperfine 

structure splitting. Likewise, the number of components of different lines is frequently quite 

different for one and the same element. These hyperfine structures can be quantitatively 

explained, when it is assumed that the “atomic nucleus possess an intrinsic angular momentum 

with which is associated a magnetic moment”. This angular momentum can have different 

magnitudes for different nuclei and of course, for different isotope of the same element. This 

is known as Nuclear spin. 
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Thus, the atomic nucleus possesses an intrinsic spin angular momentum I with which is 

associated a magnetic dipole moment 𝝁𝒍. Similar to electron, the magnitude of the nuclear 

angular momentum 

𝐈 = √𝐼(𝐼 + 1)
ℎ

2𝜋
 

Where I is the “nuclear spin quantum number” which has different values for nuclei of odd 

mass numbers. Thus, angular momentum has different magnitude for different nuclei and also 

for different isotopes of the same element. 

Just as L, S and J have quantised components along an axis in space, the component of I along 

z-axis is 

I𝑧 = 𝑀𝐼
ℎ

2𝜋
 

Where the nuclear magnetic quantum number 𝑀𝐼 has 2I+1 values given by  

𝑀𝐼 = 𝐼, 𝐼 − 1, 𝐼 − 2,……… ,−𝐼 

The motion of nuclear protons produces a magnetic moment 𝜇𝑙which is proportional to the 

angular momentum, and which we shall write 

𝜇𝐼 = 𝑔𝐼 (
𝑒

2𝑚𝑝
) 𝐈 

Where e and 𝑚𝑝 are respectively the charge and mass of proton. The quantity 𝑔𝑙 is called the 

‘nuclear g factor’. The magnitude of the nuclear magnetic moment is 

𝜇𝐼 = 𝑔𝐼 (
𝑒

2𝑚𝑝
)√𝐼(𝐼 + 1)

ℎ

2𝜋
 

= 𝑔𝐼√𝐼(𝐼 + 1)
𝑒ℎ

4𝜋𝑚𝑝
 

The quantity 
𝑒ℎ

4𝜋𝑚𝑝
 forms a natural unit for the measurement of nuclear magnetic moment and 

is called the ‘nuclear magnetron’ 𝜇𝑁. It is 1/1836 times the Bohr magnetron (because the mass 

of the proton is 1836 times the mass of electron). Thus  

𝜇𝐼 = 𝑔𝐼√𝐼(𝐼 + 1) 𝜇𝑁 

The component of 𝜇𝐼 along the z-axis is 

𝜇𝐼𝑧 = 𝑔𝐼𝑀𝐼 𝜇𝑁 

Where 𝑀𝐼 = 𝐼, 𝐼 − 1, 𝐼 − 2,……… ,−𝐼 

Since the maximum values of 𝑀𝐼 is I, the maximum observed component of 𝜇𝐼 is 𝑔𝐼𝐼 𝜇𝑁, and 

is commonly called the ‘nuclear magnetic moment’. It is roughly 1000 times smaller than 

electron magnetic moment.  
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5.6.2.1. VECTOR ATOM MODEL  

Let us now construct the vector atom model with nuclear spin taken 

into account. The total angular momentum of the whole atom is the 

sum of three angular momenta: the electron orbital angular 

momentum L, the electron spin singular momentum S and the nuclear 

spin singular momentum I. that is, the total angular momentum is 

F=L+S+I=J+I 

As a result of interaction between electron orbit and spin L and S 

precess rapidly around their resultant J. Further, the interaction 

between the nuclear magnetic moment and the magnetic field 

produced by the orbital and spin motions of the atomic electrons 

couples I with J (because nuclear magnetic moment is so much 

smaller than electronic magnetic moment). Correspondingly the 

energy differences are very much smaller.  

The quantised values of the total angular momentum F are 

√𝐹(𝐹 + 1)
ℎ

2𝜋
, where hfs quantum number F can take the values: 

𝐹 = 𝐽 + 𝐼, 𝐽 + 𝐼 − 1, 𝐽 + 𝐼 − 2,…… ,−( 𝐽 + 𝐼) 

Giving 2J+1 values if 𝐼 ≥ 𝐽, or 2I+1 values if 𝐼 ≤ 𝐽. This means that as a result of I.J interaction, 

each fine-structure J-level split into 2J+1 (if 𝐼 ≥ 𝐽) or 2I+1 (if 𝐼 ≤ 𝐽) hfs levels, each 

characterised by an F value. 

Interaction energy: 

The I - J interaction energy can be shown to be given by 

𝐸𝐼,𝐽′ =
1

2
𝐴′[𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1)] 

Where A’ is a constant. The various hfs (hyperfine fine structure) levels of a given term of a 

given atom have the same I and same J, but differ in F. Hence the separation between two hfs 

levels can be obtained by substituting first F+1, then F, in the above equation and taking the 

difference. This gives 

∆𝐸′ =
1

2
𝐴′[(𝐹 + 1)(𝐹 + 2) − 𝐹(𝐹 + 1)] 

= 𝐴′(𝐹 + 1) 

Thus, energy interval between consecutive hfs levels F and F+1 is proportional to the larger of 

the F values (Lande’s interval rule). The order of hfs levels in some hypermultiplets is normal 

(smallest F level deepest) while in other it is inverted (largest F level deepest) (Fig. 5.12).  

Figure 5.11 
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Figure 5.12 

The selection rule for F electric dipole transitions is similar to that for j: 

∆𝐹 = 0, ±1 𝑏𝑢𝑡 𝐹 = 0 ↮ 𝐹 = 0 

 

Example 1: 

For the H atom, with a proton as the nucleus, the 

experiments give the values 

I = 1/2, gI = +5.58 ⇒ (μN)z = ±2.79μK . 

For the ground state 𝑆1/2
2  is j = 1/2, I = 1/2  

⇒ F =0 or F = 1.  

 

This gives the two hyperfine components.  

𝐸𝐼,𝐽′ =
1

2
𝐴′[𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1)] 

Ehfs(F = 0) = 𝐸(1,0,1/2) − 
3

4
𝐴 

 

Ehfs(F = 1) = 𝐸(1,0,1/2) + 
1

4
𝐴 

 

with the separation ΔE = A = 5.8 ×10−6 eV. 

Figure 5.13: Hyperfine structure 

of the 1𝑆1/2
2  state of the H atom. 

The hyperfine coupling constant is 

A = 0.047cm−1. 
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Δ.ν = ΔE/hc = 0.047 cm−1 ⇒ Δν =1.42 GHz, Δλ = 21 cm. 

 

 

Example 2: For Hyperfine Structure of bismuth (I=9/2) 

line 4722 Å.  

The fine-structure in bismuth shows j-j coupling. The 

transition corresponding to this line is  

6𝑝27𝑠, ( 
1

2
,
1

2
 ,
3

2
)1
2
→ 6𝑝3, ( 

1

2
,
1

2
 ,
3

2
)3
2
 

With a nuclear spin I=9/2 and J=1/2, the initial state is 

split into two hfs levels with F= 5,4 which are in normal 

order. Again, with I=9/2 and J=3/2, the final state is split 

into four hfs levels with F= 6, 5, 4, 3 which are in 

inverted order. 

 The selection rule ∆F=0, ±1 (but 𝐹 = 0 ↮ 𝐹 = 0) 

allows six transitions. Hence, the Bi line 4722 Å shows 

six Hyperfine components.  

 

 

5.6.3. INTENSITY RATIO AND DETERMINATION OF NUCLEAR SPIN 

When hfs components are observed due to the splitting of only one of the terms, a measurement 

of the intensity ratio of the observed components leads to the determination of nuclear spin. 

This is based on the ‘sum rule’, according to which the sum of the intensities of all the 

transitions starting from or ending on the same level is proportional to the statistical weight 

2F+1 of that level. This situation arises in the hfs of the resonance lines (D2, 5890 Å) of sodium. 

In this case, the ratio of the intensities of the two observed hfs components equal to the ratio of 

the weights (2F+1) of the hfs levels of the term 2S1/2. When I is unknown, the F values of the 

two hfs levels of the term 2S1/2 (𝐽 =
1

2
) would be 𝐼 +

1

2
 and 𝐼 −

1

2
. Hence 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =
2 (𝐼 +

1
2) + 1

2 (𝐼 −
1
2) + 1

=
𝐼 + 1

𝐼
 

The observed intensity ratio is 5:3. Thus,  

𝐼 + 1

𝐼
=
5

3
 

𝐼 =
3

2
 

Thus, the nuclear spin I is determined.  

When the hfs components are observed due to the splitting of both the terms, as in case of Bi 

line 4722 Å (Fig. 5.14), then also an analysis of the hyperfine structure can also lead to the 

Figure 5.14 
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determination of nuclear spin. When all the hyperfine components are fully resolved, as in case 

of Bi, then constant wave-number difference occur between pairs of components. For example, 

we have 

𝑐 − 𝑏 = 𝑒 − 𝑑 

𝑑 − 𝑏 = 𝑒 − 𝑐 

These differences correspond to level difference in the lower and the upper state respectively. 

We arrange the wave numbers of the hyperfine components in a square array such that along 

each row and along each column they increase (or decrease) regularly, and the difference 

between them in two successive rows and successive column is constant. Then, all the 

components in any row correspond to the same upper hfs level, while all those in any column 

correspond to the same lower hfs level. This will enable us to construct hfs energy levels for 

the upper and the lower states. For example, in the above case of Bi, when the wave numbers 

of the 6 observed components are filled in the square array, we obtain 2 hfs levels in the upper 

state and 4 in the lower state, as shown below: 

     

Flower 

Fupper 

3  4  5  6 

4 a (b-a) b (c-b) c   

   

(q
-p

) 

 (e-c) 

  

5   d (e-d) e (f-e) f 

 

Now, two case may arise: 

 The upper and lower states have different J values and have also different number of 

hfs levels. In this case, number of hfs level is always (2J+1). We may apply the Land’s 

interval rule to obtain the F values of the hfs levels from the interval ratio. Thus, all F 

values of the state whose J value is already known are determined. From this the nuclear 

spin I can be calculated. In the above case, for the lower state F= 3, 4, 5, 6 and J=3/2, 

so that 

𝐼 =
9

2
 

 The upper and the lower states have different J values but have the same number of hfs 

levels. In this case this number is always 2I+1; hence I may be evaluated. 

Self-Assessment Questions (SAQ) 2: 

1. The Hyperfine structure of spectral line arises due to  
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a) Isotope effect 

b) Nuclear spin 

c) Both ‘a’ and ‘b’ 

d) None of above 

 

2. Numbers of Hyperfine components are present in Bi (6722 Å) 

a) 5 

b) 4 

c) 3 

d) 6 

 

3. Intensity ratio of hyperfine components of sodium D2 line (5890Å) 

a) 5:3 

b) 4:5 

c) 2:2 

d) 3:5 

5.7. SUMMARY  

The Stark effect is the shift in atomic energy levels caused by an external electric field. The 

magnitude of the wavelength separation and the relative intensity among the split line 

components depend on the field strength. Stark effect generally increases as the square of the 

applied field strength (quadratic Stark effect). For hydrogen like system special condition 

prevail due to the level degeneracy and hence linear Stark effect (shift is linear in applied field 

strength) is obtained. 

Hyperfine structure is the splitting of individual multiplet (J→J transitions) components into a 

number of components lying extremely close together under the high resolution. The 

magnitude of the splitting is ~2 cm−1. Hyperfine structure is caused by properties of the atomic 

nucleus, either due to presence of isotope or due to an interaction between the internal magnetic 

field produced by the orbital motion of the electrons in the atom and the spin magnetic dipole 

moment of the nucleus. 

5.8. GLOSSARY 

Polarisation- restrict vibration to one direction 

Symmetrical- made up of similar part 

Coupling- to join 

Quantised- to have only certain values 

Intrinsic- belonging 

Isotope- elements having same atomic number and different atomic mass 

 

5.9. TERMINAL QUESTIONS 

1. Discuss Stark Effect with the overview of classical electrostatic.  

2. Discuss the First order and Second order on the basis of Perturbation theory. 

3. Why the hydrogen atom in the ground state does not show a first-order Stark effect?  

4. Draw the Hyperfine structure of the fine structure component 𝐷2 (5890 Å) of sodium 

(I=3/2). Transition 2P3/2→2S1/2. 

5. Draw the Hyperfine levels for 2D5/2 of Bismuth (I=9/2). If the separation of 𝐷2
2

5/2 and 

𝐷2
2

5/2 is 30 cm-1. Calculate the separation of all adjacent Hyperfine levels. 
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5.11. ANSWERS 

Self-Assessment question (SAQ)1: 

Ans. 1. (c) 

Ans. 2. (a) 

Ans. 3. (b) 

Self-Assessment question (SAQ)2: 

Ans. 1. (c) 

Ans. 2. (d) 

Ans. 3. (a) 

 

Terminal question  

Ans. 5. 𝐷3
2

5/2 − 𝐷4
2

5/2 = 40 cm-1 

𝐷4
2

5/2 − 𝐷5
2

5/2 = 50 cm-1 

𝐷5
2

5/2 − 𝐷6
2

5/2 = 60 cm-1 

𝐷6
2

5/2 − 𝐷7
2

5/2 = 70 cm-1 
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UNIT 6                                                             BREADTH OF 

SPECTRAL LINES  

 

Structure  
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6.4 Causes of Spectral Line Breadth 

       6.4.1 Natural Breadth  

       6.4.2 Doppler Effect 

       6.4.3 External Effects 

               6.4.1.1 Collision Damping 

               6.4.1.2 Pressure Broadening 

               6.4.1.3 Stark Broadening 

   6.4.1.4 Instrument Broadening 

6.5 Voigt Profile 

6.6 Summary 

6.7 Glossary 

6.8 Reference Books 

6.9 Suggested Reading 
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6.1 Objectives 

 

After studying this unit, you will come to know about: 

1. Spectral line breadth. 

2. Causes of spectral line breadth. 

3. Define natural breadth  

4. Define Doppler effect 

5. Define external effects 

 

6.2 Introduction   

In the previous chapters, we have already discussed the two main important transition 

phenomena; Absorption and emission. Spectral lines are narrow emission or absorption 

features in the spectra of gaseous sources. Spectral lines are intrinsically quantum phenomena 

and have no explanation in classical physics. The classical concepts of ideal particles and 

waves are blurred in quantum mechanics: classical particles (e.g., electrons) and waves (e.g., 

radio waves) behave as both particles and waves.  

An individual atom/molecule making a transition between energy levels emits one photon with 

a well-defined energy / frequency. However, profiles of real spectral lines are not infinitely 

narrow. 

 

Figure 6.1: Width of the spectral line. 

e.g. for an emission line, width of the spectral line Δν could be defined as the full width at  
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half the maximum intensity of the line (Figure 6.1). 

In molecular spectroscopy, the spectral lines depend on two factors:  

 

1.  Width of the spectral lines decides the sharpness or broadness of the line  

2.  Intensity of the spectral lines decides the strength of the signal 

6.3 Spectral Line Breadth 

 

If the spectral line is sharp, it will have no width i.e. it can be seen at a specific frequency only. 

If the spectral line is broad, it will have a certain width i.e. It is spread over a range of 

frequencies. The breadth of a spectral line is defined as the separation in the cm-1 between two 

points whose intensities are half that of the maximum intensity. Figure 6.2 represents a) a sharp 

spectral line and b) a spectral line having observable width. A spectral line is a dark or bright 

line 

 

Figure 6.2: a) A sharp spectral line b) A sharp spectral line having width.   

6.4 Causes of Spectral Line Breadth 

Generally, the spectral lines observed are broad. The width or broadening depends on the 

following factors: 

1. Natural Breadth  
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2. Doppler Effect 

3. External Effects: (collision damping, pressure broadening, stark effect etc.) 

 

            

6.4.1 Natural Breadth 

This type of broadening is usually much smaller than other broadening mechanisms. Natural 

also known as intrinsic broadening. This type of spectral line broadening is one cause of the 

width Δν in a line profile function φ(ν). It arises from the spontaneous decay rate. In quantum 

mechanics by using the Heisenberg uncertainty principle, if we consider a bunch of atoms, their 

lifetimes are affected by the uncertainty in their energy states from. Such as given below:  

                                                          (6.1) 

Where E is the energy spread of a state and t is the mean time for which atoms remain in that 

state. A photon in a certain energy state will therefore have a range of possible frequencies 

when it decays to a lower state. 

                                                (6.2) 

The value of mean life is inversely proportional to the energy breadth of the state. From this 

we can say that ground state and metastable states are sharp, while the other states are quite 

broad. 

The line profile function resulting from Natural Broadening is the Lorentzian Profile. It is 

proportional to A10. This shows that the larger values of A result in more broadening or wider 

profile function. 

 

                                                           (6.3) 

If radiation is present, then stimulated emission effects must be added to the spontaneous 

emission ones. Overall though, natural line broadening is not the dominant broadening effect 

and isn’t often directly observed, except in the line wings. Natural line width isn’t often directly 

observed, except in the line wings in low-pressure (nebular) environments. Other broadening 

mechanisms usually dominate. 
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The half intensity breadth of a spectral line due to the transition from an excited state to the 

ground state is given by:  

                                                   (6.4) 

 

For the ordinary excited state, the value of mean time is 10-8 sec. Hence, by using the above 

formulae the value of energy breadth is given as: 107 s-1.  

 

For a visible wavelength (6000 Å). This corresponds to a wavelength broadening of  

 

 

=  Å 

This shows that the value of wavelength broadening is quite small and it cannot be measured 

by ordinary spectroscopic methods. 

6.4.2 Doppler Effect 

Unlike the other forms of broadening, Doppler broadening does not involve intra- or inter-

atomic interactions. This type of broadening is due to the motions of the atoms with respect to 

an observer. Doppler broadening is sometimes called inhomogeneous broadening since each 

atom contributed its own frequency to the profile. Hence, removal of a (non-random) sample 

of atoms (e.g., by saturating a transition at a particular frequency) will distort the line shape.  
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Figure 6.3: Doppler broadening. 

 

Two basic mechanisms: 

 

1) Energy levels themselves are not infinitely sharp: emitted photons have a range of 

frequencies. 

2) Atoms and molecules in the gas are moving relative to the observer: observed photons don't 

have the same frequency as the emitted photons because of the Doppler Effect. 

DDoppler Effect 

 

 It is named after an Austrian physicist Christian Doppler, who proposed it in 1842 

in Prague. The Doppler effect also known as Doppler shift. It is defined as the change 

in frequency of absorbed or emitted radiation when the source is moving towards or away 

from the observer. It is observed in case of gaseous samples as the molecules of the gases 

are in a state of continuous random motion. If the source emitting the radiation is moving 

away from the observer or the observing instrument with a velocity ‘v’ , then the observer 

or instrument detects the radiation of frequency ϑ  

 

 𝜗0 = 𝜗 /1+ v/c 

where  𝜗0 is frequency of radiation detected by the observer, f is the frequency emitted by 

the source,  v is the velocity of the radiation and c is velocity of  light. 

If the source emitting the radiation is moving away from the observer or the observing 

instrument, then the observer or instrument detects the radiation of frequency 𝜗0.  
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𝜗0 = 𝜗 /1- v/c 

The difference ∆𝜗 = 𝜗 − 𝜗0 is called Doppler shift or broadening. 

When the source of the waves is moving toward the observer, each successive wave crest is 

emitted from a position closer to the observer than the previous wave. Therefore, each wave 

takes slightly less time to reach the observer than the previous wave. Hence, the time between 

the arrivals of successive wave crests at the observer is reduced, causing an increase in the 

frequency. While they are travelling, the distance between successive wave fronts is reduced, 

so the waves "bunch together”. Conversely, if the source of waves is moving away from the 

observer, each wave is emitted from a position farther from the observer than "spread out".  The 

previous wave, so the arrival time between successive waves is increased, reducing the 

frequency. The distance between successive wave fronts is then increased, so the waves. 

As the gas molecules are moving in different directions with different speeds, some towards 

and some away from the observer, so the spectral lines arise from all the resulting DOPPLER 

SHIFTS. 

 

The shape of the Doppler shift resembles that of Maxwell's distribution of speeds as at a 

particular temperature the speed of the gas molecules is given by Maxwell's distribution. 

 

Let us assume a Maxwell distribution of velocities:  the probability that the velocity of an atom of  

an ideal gas lies between  𝜗 and 𝜗 + 𝑑𝜗 is given by 

𝑑𝑃 = 4𝜋 (
𝜇

2𝜋𝑅𝑇
)

3

2
𝑒
(
−𝜇𝑣2

2𝑅𝑇
)

3
2
 
𝑣2𝑑𝑣                                                 (6.5) 

Here R is the universal constant and its value is given as: 8.31 J/(mol-K). 

T is the temperature. 

𝜇 is defined as atomic weight. 

We can write the Doppler shift as given below 

∆𝜗 = 𝜗 − 𝜗0 = 𝜗0
𝑣

𝑐
  

bility that the velocity of an atom of the gas lies between is given as              .m.k;  
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𝑣 = 𝑐
𝜗− 𝜗0

𝜗0
                                                                      (6.6) 

Here, 𝜗0 is the source of light, 𝜗 is the apparent frequency measured by the observer, 𝑣 is the  

velocity relative to the observer. On putting the value of 𝑣 from equation 6.6 to equation 6.5,  

we will get the value of relative intensity in the terms of frequency as: 

𝐼(𝜗) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒
−𝜇𝑐2(𝜗− 𝜗0)

2

2𝑅𝑇𝜗0
2

                                               (6.7) 

Figure 6.4 gives the plot for the relative intensity expression. If we set the exponential term in the 

the equation 6.7 as one half, we will get the situation at which the intensity drops to half of its maximum value. 

So by putting the exponential term in the equation 6.7 as ½; 

 

  𝑒
−𝜇𝑐2(𝜗− 𝜗0)

2

2𝑅𝑇𝜗0
2

= 
1

2
                                                         (6.8) 

By taking loge both sides. 

 

−𝜇𝑐2(𝜗− 𝜗0)
2

2𝑅𝑇𝜗0
2 = log𝑒 2                                                   (6.9) 

By rearranging terms in the equation 6.9. 

𝜗 − 𝜗0 =
𝜗0

𝑐
√
2𝑅𝑇

𝜇
log𝑒 2                                           (6.10) 

Multiplying equation 6.10 by 2 we will get line breadth as 𝛿𝜗. Thus, 

𝛿𝜗 = 2(𝜗 − 𝜗0)√
2𝑅𝑇

𝜇
log𝑒 2                                     (6.11) 

√log𝑒 2 = √0.693 = 0.832  
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∴ 𝛿𝜗 = 1.66
𝜗0

𝑐
√
2𝑅𝑇

𝜇
                                                (6.12) 

Equation 6.12 represent Doppler broadening and it is directly proportional to the square root  

of the temperature and frequency and inversely proportional to the square root of the atomic  

weight. Equation 6.12 represent the Doppler broadening in terms of frequency, by using below\ 

equation we can convert half intensity line breadth in terms of wavelength. 

Now,     
𝛿𝜗

𝜗
=
𝛿𝜆

𝜆
  

 

𝛿𝜆 = 1.66
𝜆0

𝑐
√
2𝑅𝑇

𝜇
                                               (6.13) 

 

Equation 6.13 clearly represent that line breadth due to Doppler broadening increases with 

increasing temperature and decreases with increasing atomic weight.  

 

                                                              Figure 6.4 
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If we consider Doppler-broadened spectral lines at three different temperatures, we observe 

 line broadens as the temperature is increased. The reason behind is that Doppler Broadening  

increases with temperature as molecular speed increases with rise in temperature. So in order  

to get maximum sharpness of the spectra, it is essential to work at low temperatures.  

 

 

Figure 6.5: Shapes of Doppler-broadened spectral lines at three different temperatures.  

6.4.3 External Effects 

A number of external effects are also in nature that will cause the broadening in the spectral 

lines. Some of them are mentioned below: 

 Collision Damping 

 Pressure Broadening 

 Stark Broadening 

 Instrument broadening 

Now in the coming sections we will discuss them. 

 

6.4.1.1 Collision Damping 

In a dense gas, atoms/molecules are colliding frequently. This effectively reduces the 

lifetime of states further, to a value smaller than the quantum mechanical lifetime. If the 

frequency of collisions is νcol, then expect to get a collisional linewidth of about Δν ∼ νcol. 
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Frequency of collisions increases with density - expect to see broader lines in high density 

regions as compared to low density ones. e.g. a main sequence star (small radius) has a 

higher density at the photosphere than a giant of the same surface temperature. Spectral 

lines in the main sequence star will be broader than in the giant.  

 

Figure 6.6: Collision Damping. 

 

6.4.1.2 Pressure Broadening 

At high pressure, the collision time for the two atoms are quite high in comparison with the 

mean time between collisions. When the emitting or absorbing atom is treated  to a strong 

atomic field. It causes a shift in the spectral line (towards red) and line broadening 

asymmetrically. The shape of spectral lines due to collisions, referred to as pressure 

broadening, is given by the Lorentz profile. 

6.4.1.3 Stark Broadening 

The Stark effect was discovered in 1913 named after the physicist Johannes Stark. The 

Stark effect is defined as the shifting and splitting of spectral lines of atoms and molecules 

into several components due to the presence of an external electric field. It is an analogue 

of the Zeeman effect, where a spectral line is split into several components due to the 

presence of the magnetic field. In specific, the Stark effect is accountable for the Stark 

https://www.wordhippo.com/what-is/another-word-for/treated.html
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/line-spectra
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broadening of spectral lines by charged particles in plasmas. For most spectral lines, the 

Stark effect causes asymmetry in spectral line broadening. 

6.4.1.4 Instrument Broadening 

The spectrum is the spectroscopic signal that arises from physical processes in the material 

under study. The source of the distortion is the spectrometer slits or apertures, including 

entrance/exit slits, grating or gratings, confocal aperture, detector etc. through which 

radiation passes. The spectral distortion by the slits causes, among other phenomena, an 

increase in the observed band widths. Observed spectral line shape and line width are also 

affected by instrumental factors. 

 

6.5 Voigt Profile 

The combination of thermal broadening with the natural or collisionally broadened line 

profile is called the Voigt profile. This is the convolution of the Lorentz profile with a 

Doppler profile. Curves show the profile as the natural (or collisional) line width is 

increased. The Lorentz profile falls off slower than the Doppler profile, so the core remains 

roughly Gaussian, while the wings look like a Lorentz profile. 
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Figure 6.7: Voigt profile: combination of thermal and natural (or collisional) broadening 

The wider Doppler broadening dominates near the center of the line, but since the Doppler 

profile decreases exponentially, natural and pressure broadening make a greater 

contribution farther from the center of the line. Most stellar spectra lines have a profile 

described by a Voigt profile. The use of Voigt profile are fit to observations of absorption 

towards quasars to measure temperatures and column densities of the gas along line of 

sight. 

6.6  Summary 

In this unit, you have studied the spectral line broadening and their causes in detail. Strength 

of different spectral lines depends upon the abundance of different elements, and on the 

excitation/ ionization state (described in part by the Boltzmann formula). Width of spectral 

lines depends upon: natural linewidth (small), collisional linewidth (larger at high density) 

and thermal linewidth (larger at higher temperature). You have also studied the dependence 

of temperature and pressure and different types of broadening. To check your progress, 

self-assessment questions (SAQs) are given place to place. Many terminal questions are 

given in the unit for practice and to make the concept clear. 

 

6.7 Glossary 

Spectrum 

 

The set of colors into which a beam of light can be separated, or a range 

of waves. 

rotational A rotation is a circular movement of an object around a center of 

rotation. 

vibrational A molecular vibration is a periodic motion of the atoms of a molecule 

relative to each other,  

Emission 

spectrum 

The distribution of electromagnetic radiation released by a substance 

whose atoms have been excited by heat or radiation. 

absorption 

spectrum 

The spectrum formed by electromagnetic radiation that has passed 

through a medium in which radiation of certain frequencies is absorbed 

https://www.collinsdictionary.com/dictionary/english/certain
https://www.collinsdictionary.com/dictionary/english/frequency
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Transition 

 

 

The process or a period of changing from one state or condition to 

another 

The act of making something wider. 

Doppler 

 

Collision 

 

Relating to, or utilizing a shift in frequency in accordance with 

the Doppler effect. 

the act of colliding; a coming violently into contact 
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6.10 Terminal Questions 

Long answer type questions:      
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1. Show that φ(ν)=∆ ν-2 well away from the center of a line with a Lorentzian broadening 

profile.  

2. Calculate the line-of-sight thermal velocity dispersion ∆νD of line photons emitted 

from a hydrogen cloud at a temperature of 104 K. 

3. Calculate the natural broadening line width of the Lyman α line, given that Aul=5x108 

s–1. Convert to km/sec via the Doppler formula.  

4. Mention the difference between line and Doppler broadening. 

 

Numerical type questions:      

 

1. Estimate the fractional width of a spectral line of 5000 Å wavelength emitted from 

a level of a life time of 10-8 sec. 

2. Calculate the Doppler half-life intensity breadth of the sodium D-lines at 5893 Å 

corresponding to the temperature of 500 K. Value of R= 8.31 J/(mol-K), c= 3x108 

m/s, atomic weight of sodium = 22.99 g/mol. 

3. Calculate the Doppler half-life intensity breadth of the sodium D-lines at 5893 Å 

corresponding to the temperature of 400 K. Value of R= 8.31 J/(mol-K), c= 3x108 

m/s, atomic weight of sodium = 22.99 g/mol. 

4. Calculate in Å the Doppler half-intensity breadth of mercury green line 5461 Å, if 

the light source is at 1000 K. Given R= 8.31 J/(mol-K), c= 3x108 m/s, atomic 

weight of mercury = 200.59 g/mol. 

Answer 1: 1.33 x10-4 Å;     2: 0.02 Å;  4: 0.0087 Å   

Objective Question 

Question 1: One of the causes of the breadth of the spectral lines is: 

a) Doppler effect 

b) Dispersion 

c) Reflection 
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d) Diffraction 

 

 

Question 2: Doppler broadening most significant at: 

a) Low P, high T, small λ 

b)  High P, high T, high λ 

c) Small P, small T, small λ 

d) Low P, Low T, Low λ     

 

Question 3: Collision broadening is most significant at: 

a) High P, low T, large λ 

b) High P, low T, large λ 

c) High P, low T, large λ 

d) High P, low T, large λ 

 

Question 4: The width or broadening depends on the which? 

a) Natural Breadth  

b) Doppler Effect 

c) External Effects 

d) All of the above 

 

Question 5: In a real radiation spectrum the emission and absorption lines tend to overlap 

with each other due to 
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a) Vibrational transition  

b) Electronic transitions  

c) Presence of spectral lines of various gases  

d) Line broadening 

Question 6: The Doppler broadening mechanism dominates over other broadening under: 

a) Low pressure and high temperature 

b) High pressure and low temperature 

c) Low temperature in infrared  

d) High pressure in infrared 

 

Answer 1: a; 2: a;  3: a;  4: d;  5: d; 6: a;        
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UNIT 7:                                                                        X Rays 

 

Structure  

 

7.1  Introduction  

7.2  Objective 

7.3  X-ray Continuous spectra and Line spectra  

7.4  Kossel’s explanation of line spectra  

7.5  X ray emission spectra and Moseley law 

7.6  X ray absorption spectra  

7.7  Fine structure of X ray emission spectra  

7.8  X ray spectra and optical spectra  

7.9  Summary 

7.10  Glossary  

7.11  References 

7.12  Suggested reading 

7.13  Terminal questions  
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7.1 Introduction 

In 1895, Roentgen observed that when a beam of fast moving electrons struck on a 

suitable target, some rays are produced that have highly penetrating power. These rays were 

named as X-rays. Actually when fast moving electrons are deaccelerated, and according to 

classical electromagnetic theory, these deaccelerated electron emit electromagnetic radiations 

(Bremsstarhlung) which are known as X-rays.  

 For the production of X-rays we use a Coolidge tube. This tube has a target of a metal 

which have high melting point and high atomic numbers, for example tungsten, platinum, 

molybdenum etc. In this tube under lower pressure, electron are emitted from a filament and 

struck on a target (anode) due to high voltage difference (1000 to 30000 V) at anode. When we 

observe spectra of X-rays, we have two types of spectra, namely continuous spectra and 

characteristic (line) spectra. The continuous spectra arises due to deacceleration of electron 

when they hit the target. The intensity of continuous spectra depends on the energy of incident 

electron and not depends on target material. On the other hand, the line spectra arise when 

some electrons emitted from filament, penetrate the target material, hit and eject electron form 

inner shells of target atom. These spectra give the information about the target material. 

  

7.2. Objective  

After reading this unit we will able to understand  

(i) continuous spectra of X-rays 

(ii) Characteristic spectra or line spectra of X-rays 

(iii) Significance of line spectra  

(iv) Emission spectra  

(v) Absorption spectra  

(vi) Fine structure in X-rays  

(vii) Doublets in  X-rays spectra  

7.3. X-Rays Continuous And Line Spectra  

When the X-rays are produced at low potential applied between target and filament, some 

electrons penetrate the core of atoms of target material and deaccelerated. The deaccelerated 

electrons emit X-rays and give continuous spectra. The intensity of continuous spectra depends 

on the energy of incident electron and not depends on target material. 
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𝜆𝑚𝑖𝑛 =
ℎ𝑐

𝑒𝑉
 where V is applied potential 

𝜆𝑚𝑖𝑛 =
12400

𝑉
  

The continuous spectra do not give the information about target material. Other type of 

radiation is line spectra, which consists of distinct spectral line whose frequencies are 

characteristic of the material of target. This type of spectra is also called characteristic spectra 

as it gives the information about atomic structure of atoms of target materials. The 

characteristic X-rays are produced when extremely high energy electrons penetrate well inside 

the atoms of target material, and hit the bounds electrons of K, L, M shells and bound electron 

is ejected from the shell (says K shell). As an electron ejected from K shell, an another electron 

from any higher energy shell say L, M. jump at the vacancy at K shell, and during thus 

transmission an x-ray emitted as shown in figure 1. The figure 2 shows the line spectra 

corresponding to such transition.  

 

 

 

 

Figure 7.1: X Ray production by high energy electron penetration in an atom. 
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Figure 7.2: Characteristic X ray line spectra. 

 

7.4 Explanation of Characteristic X-Ray Spectra  

 The most of element shows series of lines known as K series, L series and M 

series.  On minute observation, each series contains number of lines named as K, 

K....., L, L.... and M, M.... etc. K. series appears when the x ray tube operated at 

highest voltage near 70,000 V as K electrons are strongly bound with nucleus and need 

maximum energy to eject. On the other hand, L series appear at voltage in the order of 

2500 volt as M shell electrons are bound relatively loosely than K and L shell electrons.  

 Kossel first explained the feature of X-ray line spectra. Since electrons are 

arranged in K, L, M ....... shells in normal state and K shell electrons are bound most 

strongly with positively charged nucleus. Thus K shell electrons require maximum 

energy to eject. Kossel explained that in an high energy electrons penetrates well inside 

an target atom, it eject the electron of K shell, and immediately an electron from outer 

shell, says L shell jump to K shell, X-ray photon of higher energy is emitted similarly 

an electron from N shell may jump to K shell. These lies of K series are designated as 

K, K, K, K ..... respectively as shown in figure 7.3.  
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Figure 7.3: Characteristic X ray spectra. 

 

 In case of L series, an electron strikes the electron of L shell of target atom, and 

an electron from M, N, O shell jumps to L shell. Corresponding to these transitions L, 

L or L lines arise as shown in figure 7.3. In the similar manner M, N.... series arise in 

X-ray spectra of a target material.    

 It is observed that when an electron from K shell is ejected, an electron from the 

L shell most likely fill the vacancy created at K shell and emits K line. Now a vacancy 

is created at L shell, and an electron from M shell most likely jumps from M shell and 

emit a phonon corresponding to L line. This process is continued until the vacancy 

reaches the outermost shell. Thus the emission of K series is always accompanied by L, 

M, N ... series as shown in figure 7.3.  

 Thus the x-ray lines are emitted when the potential is sufficient enough so that it 

can hit the particular K, L, M shell electron. Thus the necessary condition for the 

emission of K line, a accelerated fast moving electron must create a vacancy in the K 

shell of target material.  
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7.5 X-Rays Emission Spectra And Moseley Law 

 In 1913, Moseley studied the X-ray radiation of different elements. On this 

experiment he recorded the photographs of different – different elements. He observed 

K and K lines and later he observed that K and K lines are itself close doublets. 

These doublets are four lines designed as K1, K2, K1, K2.  

 Moseley found that as atomic number increases, K lines shift towards higher 

frequency. On this observation he stated that “The frequency of each corresponding K 

lines is approximately proportional to the square of atomic number of target element. 

The trend is shown in figure 4, and mathematically given as.  

 = RA2(Z-)2 

σ)(ZA
R

ν 
  

Where A and  are constants for a given transition. In case of K line. 

 = 1, 
4

3
A2 

 

 

 

Figure 7.4: Moseley Law 

by analogy with hydrogen line atoms the Moseley law can be given as  

  









22 2

1

1

1
1ZR  
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Similarly L, L series also composed of a number of lines.  

7.6 X-ray Absorption Spectra  

 When a beam of X-rays passes through a film of a substance, and transmitted 

light is analyze through an X-ray spectrograph, an absorption spectra of that substance 

has been obtained. The absorption spectra of a substance are quite different from the 

emission spectra of some substance absorption lines are not observed corresponding to 

emission lines like K, K, K .... In absorption spectra, a continuous region of absorption 

bounded by a sharp edge in the position of the limit of the emission of K series is 

observed as shown in figure 7.5. These edges are characteristics of absorber substance 

and called absorption edge. The frequency of absorption edge is k is called K 

absorption limit.  

 It is clear that an x-ray emission line say K line occurs in the spectra when an 

electron jump from L shell to K shell of substance. In absorption spectra this line would 

be occurs when an electron jump from K shell to L shell. But it is not possible as L shell 

is already full with 8 electrons. Thus K line cannot be observed in the absorption 

spectra of X-ray.  

 

 

Figure 7.5: Absorption spectra of X ray. 
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 Now we will explain the sharp edge occurred in the absorption spectra. In an x-

ray photon has sufficient energy to eject an electron from it inner shells say k shell, such 

photon can be absorbed by k shell electron. But the frequency of such photon should be 

greater than a certain value say k such that it can provide the energy required to remove 

the e- of K shell (Wk) 

Thus hk = Wk 

 The frequencies lower that this k value would not be able to remove an K shell 

electron and such photon transmitted by substance. At frequency k, the absorption 

process suddenly started and continues for frequencies greater than k as shown in 

figure. Thus K absorption edge observed in the x-ray spectra corresponding to k 

frequency. Absorption beyond the k indicates that K electron ejected to infinity with 

kinetic energy say Ek as Einstein photoelectric equation (Ek = hk – Wk), where Wk is 

corresponding to work function.  

 In case of L series, when we observed the x-ray absorption we will observed 

three absorption edges designed a LI, LII, LIII. This occurs because L emission lines form 

three groups according to their escalation voltages. It indicates L shell has three energy 

levels the L series edges are shown in figure 7.5.   

 Similarly M absorption spectra shows S and N absorption spectra gives 7 edges.  

 

7.7 Fine Structure of X-Rays Spectra 

 Kossel’s explained the x ray spectra on the basis of electron’s transmission in K, L, M, 

.... shell. But actually this explanation is only a rough approximation. When we observe the x-

ray spectra more precision, we see each line of K series (K, K, K....) is a doublet, and other 

series are more complex. These large numbers of lines are called fine structure. It is observed 

that absorption edges shows that K level is single L level is 3 fold and M level is 5 fold. The 

higher levels are shown by only heavier elements which are more complex.  

 The x ray levels arise due to removed of an electron from a shell. The x ray rotation of 

shell K, L, M are due by removal of electron from these shell respectively. When electron from 

15 shell is removed the neutral atom raised to higher energy K state. If one electron remains in 
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15 subshell, this energy state is represented by I25½ as in the standard notation in spectroscopy 

for k level.  

 For next shell principal quantum number n=2, i.e. L shell, 25 level will again give rise 

to a state 225½. This is corresponding to L1 level. In this shell there is another p subshell of 6 

electrons. If an electron eject from this subshell, configuration becomes 2p5. This gives rise of 

some states as a single electron in p subshell. Hence the states arise as 22P½ and 22P 3/2. 

Corresponding to LII and LIII levels as shown in figure. Hence L shell has 3 absorption edges 

corresponding to LI, LII and LIII states.  

 In case of third shell n=3 i.e. M shell, there as 3 subshells as 3s, 3p and 3d. The removal 

of an electron from this shell the possible incomplete subshells are 3s, 3p5, 3d9. These give the 

rise of the states 325½ , 32P½, 32P3/2, 32P5/2 respectively. These 5 states of M shells are 

represented by MI, MII, MIII, MIV, Mv respectively. The levels are displayed in figure 7.6.  
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Figure 7.6: Fine structure of x-rays spectra 

 

 

 The selection rule for x-ray spectra is given as  

n is arbitrary 

L = 1 

J = 0, 1 

Thus it is clear that the x-ray lines K1 and K2 arises due to transmission from K level to LII 

and LIII. Similarly 3 groups of lines in L series appears due to transmission to LIII, LII, LI to M 

or N levels. Figure 6 displays the K and L series arise due to transmission. Similarly the M 

series can be shown due to transmission among different subshells of M and N.  
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7.8 X-Ray Spectra and Optical Spectra 

 We can compare x-ray spectra and optical spectra on the basis of following aspects.  

(i) In the X ray spectra the tightly bond inner shell electrons say K shell or L shell 

electron are involved in transition. On the other hand, in optical spectra, the only 

outermost shell electrons are involved in the transition.  

(ii) The frequencies of x ray spectra are about thousand times more than optical spectra. 

Since X ray spectra is related to complete removal of inner shell electrons hence the 

frequency range is quite higher.  

(iii) In x ray spectra, the frequencies of x ray lines increase steadily, not periodically for 

different elements when their atomic number Z increases. This is because for heavy 

elements (more Z), the electrons of inner shells hold more strongly and need more 

energy for removal. Thus the X ray spectra of elements of nearby atomic number 

are very similar. On the other hand the in optical spectra, no similarity in the 

elements of nearby atomic number. This is because the structure of outermost shell 

changes for the elements of nearby Z.  

(iv)  In case of x ray spectra, the emission spectra consist of desecrate lines and 

absorption spectra consists of continuous region bounded by sharp edges. On the 

other hand, in optical spectra, emission lines are and absorption lines are same or 

both are identical.  

 

SAQ 1  : In x ray emission, what happens when an high energy electron beam strikes on 

K shell electron? 

SAQ 2  : What do you mean by K, K, K .... lines? 

SAQ 3  : What is the difference between emission spectra and absorption spectra? 

SAQ 4  : Write down Moseley law. 

SAQ 5  : What is absorption edge in x ray absorption spectra? 

SAQ 6  : What is fine structure? 

SAQ 7  : Give the selection rule for x ray spectra. 

SAQ 8  : What are the range of frequencies of x ray spectra and optical spectra. 

SAQ 9  : What happens when an electron from K shell of an element removed 

completely from its shells? 
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Example 1: Calculate the required voltage that must be applied to an x ray tube to produce x 

ray of wave length 0.1A (given e = 4.8 × 10-10esu, C = 3 × 1010 cm/sec, h = 6.62 × 

10-27 erg-5) 

Solution: The electron is accelerated in x ray tube. If V is the accelerating voltage, e is change 

of electron then the energy E of emitted photons can be given as.  

λ

hc
hνEev   

cm100.1esu104.8

cm/5103erg106.62

eλ

hc
ν

810

10527








  

= 413.75 esu 

= 413.7 × 300 Volt 

= 1.24 × 105 Volt 

 

Example 2: How much energy goes into the quantum emitted when an L-electron drops into 

empty K shell in copper (Z = 29).  

[guen R= 109737cm-1 and 1 cm-1= 1.239 × 10-4 ev] 

Solution: from moseley’s law, x-ray wavelength is given by  

  









22

2

2

1

1

1
1

λ

1
ZR  

 Where h2=2 and n1=1 for transmission from L shell (n = 2) to k shell (n = 2) 

corresponding to K line. Thus 

 21ZR
4

3

λ

1
  

=
228109737

4

3
  

= 6.4525 × 10-7 cm-1 

Corresponding energy  E = 6.4525 × 10-7 × 1.239 × 10-4 

     7.9946 × 103 eV 

 

Example 3: Calculate the wave length of K line of higher (given atomic number Z = 47, R = 

109737 cm-1) 

Solution: According to moseley law  
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  









22

2

2

1

1

1
1

λ

1
ZR  

Where symbols are usual meaning and 1 and 2 are transition from L shell to K shell 

 21ZR
4

3

λ

1
  

246109737
4

3
  

= 1.74 × 10-8 cm 

cm
81074.1

1
λ


 = 0.57A 

 

Example 4: If K radiation of M0(Z=42) has wavelength 0.75A, calculate the wavelenght of 

K radiation of cu (atomic number Z = 29) 

Solution: According to moseley law of K line 

  









22

2

2

1

1

1
1

λ

1
ZR  

 21ZR
4

3

λ

1
  

 
  2

2

2

Cu

2

Mo

mo

cu

28

41

1Z

1Z

λ

λ





  

1.60A
28

41
0.75

28

41
λλ

2

2

2

2

MoCu   

7.9 Summary 

1. When fast moving electrons are deaccelerated, these deaccelerated electron emit 

electromagnetic radiations (Bremsstarhlung) which are known as X-rays.  

2. The intensity of continuous x ray spectra depends on the energy of incident electron and not 

depends on target material. 

𝜆𝑚𝑖𝑛 =
ℎ𝑐

𝑒𝑉
 where V is applied potential 

𝜆𝑚𝑖𝑛 =
12400

𝑉
  

3. Kossel explained that in an high energy electrons penetrates well inside an target atom, it 

eject the electron of K shell, and immediately an electron from outer shell, says L shell jump 
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to K shell, X-ray photon of higher energy is emitted similarly an electron from N shell may 

jump to K shell. These lies of K series are designated as K, K , K . 

4. Moseley law states that as atomic number increases, K lines shift towards higher frequency. 

He stated that “The frequency of each corresponding K lines is approximately proportional to 

the square of atomic number of target element”. Mathematically   

 = RA2(Z-)2 

 

5. Kossel’s explained the x ray spectra on the basis of electron’s transmission in K, L, M, .... 

shells. When we observe the x-ray spectra more precision, we see each line of K series (K, 

K, K....) is a doublet, and other series are more complex. These large numbers of lines are 

called fine structure. 

 

7.10 Glossary  

X-rays  : Electromagnetic radiation of wavelength of 0.01 to 1A 

Line spectra : Dark or bright lines in continuous spectrum in a narrow frequency 

range 

Emission line : if source emit specific wavelength of radiation 

Absorption line : If a substance absorbs a specific wavelength from radiation 

Fine structure : Splitting of a the main spectral line of a substance into two or more 

spectral lines 

Optical spectra : Spectra arises due to outmost electron of atom 

Selection rule : Also known as transitions rule give the possibility of transitions 

from one quantum state to another 

 

7.11 References  

1. Atomic and Molecular spectra. Raj Kumar, Kedarnath Ramnath Publication, Meerut 

7.12 Suggested reading:  

1. C.N. Benwell and E.M. McCash. Fundamental of molecular spectroscopy  

2. Introduction to Atomic spectra. H.E. White.  

7.13 Technical Questions  

7.13.1 Short Answer type question  

1. Give the Kossel’s explanation of x-ray spectra  

σ)(ZA
R

ν 

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2. What is x-ray emission spectra? 

3. Explain Moseley law.  

4. What is absorption edge in x ray spectra? 

5. What is fine structure? Discuss the fine structure of x ray.  

6. Give comparison between x ray spectra and optical spectra.  

 

7.13.2 Long Answer type questions 

1. Explain emission spectra of X rays and deduce Moseley’s law. 

2. Explain absorption spectra of X ray and discuss how it is different from emission 

spectra? 

3. Discuss the fine structure of X rays. Give the diagram from the possible transition in x 

ray spectra.  

4. Give a comparison between optical and x ray spectra an explain why in optical spectra 

of element of nearby atomic number are qualitatively very similar, while the optical 

spectra of these elements are different.  
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8.1 Objectives 

 

After studying this unit, you will come to know about: 

1. Molecular spectra and its kinds. 

2. Pure rotational spectra of diatomic molecules and its salient features. 

3. Vibrational rotational spectra of diatomic molecules and its salient features. 

4. Electronic spectra of diatomic molecules and its salient features. 

5. Types of molecular energy states and associated spectra. 

6. The Born-Oppenheimer approximation 

 

 

8.2 Introduction   

The absorption and emission of molecules arise from transitions between allowed energy 

states; ground and excited ones. The energy-level scheme of molecules is different from that 

of atoms and is relatively complicated; there are two main reasons for this. Firstly, we cannot 

classify molecular energy states according to the electronic angular momentum L (as we do in 

atoms) which is not conserved in molecules. Secondly, the nuclear motion in molecules cannot 

be ignored, as we can do in atoms. In a diatomic molecule, for example, the nuclei vibrate along 

the internuclear axis, and in addition the whole system rotates about its center of mass. The 

energy of each of these vibrational and rotational motion is quantized, with the result that there 

are many more energy levels in a molecule than in an atom. 

Molecular spectroscopy is defined as the study of the interaction of electromagnetic waves and 

matter. So far we have studied about the interaction of electromagnetic waves with atoms, i.e. 

when the emitting substance is in atomic state. However, here the emitting substance is a 

molecule, which may contain two (diatomic) or more atoms (polyatomic). Molecular spectra 

are band spectra which appear as a continuous band when observed with a low resolving power 

instrument. With high resolving power instruments, molecular spectra disclose a three-fold 

structure:  

1. Each band is composed of a large number of lines which are arranged with great regularity 

which are crowded together at the long wavelength side, i.e. at the band head and as they 

recede from the band head, the lines become more widely separated and also weaker. 

2. There is a regular sequence in which the several bands follow one another, and thus 

constitute a group of bands. 

3. There is a close and regular arrangement of different groups of bands which form a band 

system. 
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8.3 Molecular Spectra 

The spectra emitted by molecules (When the emitting substance is in molecular state) is known 

as molecular spectra. It appears as a continuous band, therefore it is also known as band spectra. 

A band has a sharp intense edge on one side (band head) which decreased in intensity towards 

the other side. The study of molecular spectra is known as molecular spectroscopy. 

8.3.1 Regions of the Electromagnetic Spectrum 

The entire range of electromagnetic waves is known as the electromagnetic spectrum. This 

includes electromagnetic energy ranging from gamma rays to radio waves. In general the 

electromagnetic spectrum is mainly divided into six regions. In order of decreasing wavelength 

(increasing energy and frequency) different regions are mentioned below: 

 (i) Radio frequency region (100 to 10 m): Radio waves have the longest wavelength in the 

electromagnetic spectrum. To transmit a variety of data, radio waves are used. They are also 

used in wireless networking, television and amateur radio. 

(ii) Microwave region (or far infra-red region) (1mm to 1m): Microwaves are essentially high 

frequency radio waves. They have wavelengths in the range of 1mm to 1m. Microwaves are 

used for many applications. They are beneficial for satellite communication, studying the Earth 

from space, radar technology etc.  

(iii) Infra-red region (780 nm - 1000 µm): Infrared spectrum divided into the three main regions 

Near Infrared (NIR): 0.7 – 1.3µm 

Shortwave Infrared (SWIR): from 1.3 – 3 µm 

Far or Thermal Infrared from 3 - 100 µm 

 

Infrared radiation is mainly used in remote sensing.  

(iv) Visible and ultraviolet region (1 nm to 750nm): Ultraviolet (UV) light has wavelengths of 

approximately 1 – 380 nm. The main source of ultraviolet energy is the Sun. The UV waves 

are invisible for the human, however some insects, can see them. 

Visible light wavelengths range from 400 – 750 nm. Human eyes can see only this region of 

the electromagnetic spectrum. Each individual wavelength within the spectrum of visible light 

wavelengths is represented by a particular color. The visible portion of the electromagnetic 

spectrum is mainly used in remote sensing.  

(v) X-ray region (0.01 – 10 nm): X-Rays range in wavelength from 0.01 – 10 nm. These rays 

are generated from superheated gas from exploding stars and quasars. The main important 

properties of the X-rays is that they are able to pass through a variety of materials. The most 

common use of X-rays are in the field of medical imaging and for checking cargo and luggage.  
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(vi) Gamma rays region (< 0.01 nm): Gamma rays are produced by the hottest objects in the 

universe, including neutron stars, pulsars, and supernova explosions. These rays are 

biologically hazardous. 

8.3.2    Effect of Electromagnetic Radiation 

    There are two processes of interaction of electromagnetic radiation with the matter available. 

They are photo physical interaction and photochemical interaction. Both the photo physical 

and photochemical processes are used to study the nature and characteristics properties of 

molecules in their different energy states. If the chemical identity of a molecule is retained after 

the interaction, the process is called a photo physical process, if not, then it is called a 

photochemical process. The interaction of specific frequency with a molecule takes place 

between the electric field component of radiation and electric dipole moment of the 

molecule.  Because of interactions, the transition of molecules can occur from ground state to 

excited state or vice versa. The energy level at which a molecule exists is referred to as its state. 

Two basic processes is observed when light interacts with matter:  

•    Absorption process 

•    Emission process 

    A molecule can move from one level to another level by using a finite amount of energy. 

Normally, a molecule exists in their most stable state referred to as the ground state or lower 

energy state. The transition from the ground state (E0) to the excited state (E1) requires some 

form of energy input.  When the radiation interacts with molecules, it absorbs a suitable amount 

of energy and jump from its ground energy state to its nearest excited energy state by following 

the famous equation as:  

                                                                                                                     

    where λ is wavelength of incident radiation, υ is frequency of incident radiation, h is Planck's 

constant and c is the velocity of light. This process is known as absorption (Figure 8.1). Process 

of emission is just the opposite phenomenon of absorption. In this process, molecules that are 

in excited state decay to the lower levels by emitting radiation (Figure 8.1). 
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Figure 8.1: Absorption and emission process. 

 

Electromagnetic radiation may also reorient the molecule along the direction of the field, which 

can break some bond. Now in the following sections, we will discuss different types of 

molecular spectra. 

8.4 Type of Molecular Spectra 

The molecular spectra can be divided into three spectral ranges corresponding to the different 

type of transition between molecular energy states. 

1. Pure rotational spectra 

2. Vibration-rotational spectra 

3. Electronic spectra 

8.4.1 Pure Rotational Spectra 

 These spectra are observed in absorption in the far infrared or in the microwave region. It 

involves transitions between rotational states of the molecules.  Rotational spectroscopy is 

called pure rotational spectroscopy, to distinguish it from roto-vibrational spectroscopy (the 

molecule changes its state of vibration and rotation simultaneously) and vibronic spectroscopy 

(the molecule changes its electronic state and vibrational state simultaneously). For a molecule 

to exhibit a pure rotational spectrum it must possess a permanent dipole moment (otherwise 

the photon has no means of interacting “nothing to grab hold of”). Normally, a molecule must 

be polar to be able to interact with a microwave. A polar rotor appears to have an oscillating 

electric dipole. However, homonuclear diatomic molecules such as O2, H2, do not have a dipole 

moment and, hence, no pure rotational spectrum. For rotational spectroscopy, molecules are 

classified according to symmetry into spherical top, linear and symmetric top. 
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8.4.1.1 Salient Feature of Rotational Spectra 

The salient features of the pure rotational spectra are given below: 

1. The band which appears in the infra-red region is due to transition involving very small 

energy changes, about 0.005ev. With such a small quantum of energy, electronic and 

vibrational energy states will not be excited or in other words only transitions that are purely 

rotational in character will appear. Therefore bands that appear in the infra-red region arise 

due to the changes in the rotational energy of the molecule unaccompanied by changes in 

electronic or vibrational energy. Only those molecules which have permanent electric 

dipole moment can give rise to pure rotational spectra. Thus homonuclear diatomic 

molecules such as H2, O2, N2 etc. do not exhibit pure rotation spectra. While heteronuclear 

diatomic molecules such as HF, HCl, HBr etc. exhibit pure rotation spectra.  

2. In practice, rotational spectra are observed in absorption. For heteronuclear diatomic 

molecules such as HF, HCl, HBr, Co etc. the rotational spectra consist of a simple series of 

absorption maxima, which are very nearly equidistant on a wave number scale. A 

measurement of the frequencies of these maxima help to determine the moment of inertia 

and the internuclear distance. 

3. The basic molecular requirement for the emission or absorption of radiation by a transition 

between rotational energy states is that the molecule must have a permanent dipole 

moment. This is in line with classical electrodynamics according to which a rotating 

molecule can lead to the emission of radiation, only if a changing dipole moment is 

associated with it. During the rotation of a heteronuclear diatomic molecule, having a 

permanent dipole moment, the component of this dipole moment in a fixed direction 

changes periodically with the frequency of rotation of the molecule, emitting radiations of 

the same frequency. However, homonuclear molecules have no dipole moment and hence 

there is no emission of infra-red radiation. 

4. Further infra-red radiation can be absorbed by a rotating molecule and thereby increase 

rotation, only if a permanent dipole moment is present such a molecule interacts with the 

oscillating electric field of the incident radiation to absorb rotational energy and produce 

absorption spectra. 

 8.4.2 Vibration-Rotational Spectra 

These spectra are observed in absorption in the near infra- red region. Each spectrum consists 

of an intense band (known as fundamental) which is followed by a few weak bands (known as 

overtones). If the molecule in its equilibrium position has a dipole moment, as is always the 

case for the heteroatomic molecules, this dipole moment will in general change if the 

internuclear distance changed. Thus, on the basis of classical electrodynamics the molecular 

vibration would lead to the emission of light at the oscillation frequency. Conversely, the 

oscillator could be set in vibration by absorption of light at this frequency. Therefore, all 

heteroatomic molecules in principle are said to be infrared active that is they can absorb or emit 

infrared radiation. Contrary, all homoatomic diatomic molecules do not have any dipole 
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moment and cannot be set in vibration by absorption of infrared light. These molecules are said 

to be infrared inactive.  

8.4.2.1 Salient features of vibrational-rotational spectra 

1. When there are transitions between vibrational states of the same electronic state of 

molecule, we get vibrational-rotational molecular spectra. Such a spectra is observed in a 

near infra-red region of the electromagnetic spectrum. 

2. Vibrational-rotational spectra, like pure rotational spectra, are observed only for molecules 

that have permanent dipole moments such as HCl, HCN, HF (heteronuclear diatomic 

molecules). 

3. The internuclear distance changes when the nuclei of these molecules vibrate relative to 

each other. Thus these molecules possess an oscillating dipole moment, which according 

to classical electrodynamics emits radiations of frequency that fall in near infra-red region-

conversely, if electromagnetic radiation falls on such a molecule then oscillating dipole 

interactions will the incident radiation and can absorb radiation of frequency of near infra-

red region. 

4. In practice, vibrational-rotational spectra are observed in absorption. 

     If the molecule in its equilibrium position has a dipole moment, as is always the case for the 

heteroatomic molecules, this dipole moment will in general change if the internuclear distance 

changed. Thus, on the basis of classical electrodynamics the molecular vibration would lead to 

the emission of light at the oscillation frequency. Conversely, the oscillator could be set in 

vibration by absorption of light at this frequency. Therefore, all heteroatomic molecules in 

principle are said to be infrared active that is they can absorb or emit infrared radiation. 

Contrary, all homoatomic diatomic molecules do not have any dipole moment and cannot be 

set in vibration by absorption of infrared light. These molecules are said to be infrared inactive.  

 

Infrared transitions 

 

     W. Coblentz coined the first systematic use of infrared technique in 1905. Infrared R 

spectroscopy can be divided into three areas based on spectral region: far-IR, mid-IR, and near-

IR. A molecule will be IR active when there is a change in dipole moment of the molecule with 

time. Due to change in dipole moments, the bond lengths and bond angles suffer a variation, 

which in turn appears as vibrational and bending modes. If one or more bond lengths of the 

molecule changes symmetrically, vibrational modes are known as symmetric stretching 

vibrational (υ) modes. Let us take an example of a linear CO2 molecule.   

There is a small net positive charge on C atom and O has small negative charges. In the 

symmetric stretching mode both the C=O bonds change simultaneously (Figure 8.2). If two 

bonds are in opposite atomic motions. One bond is elongating while the other is contracting. 

The vibration of molecules is known as asymmetric stretching (α) mode.  In α stretching 



             MSCPH507 

189 

 

 

vibration shown in Figure 8.2 a periodic alteration in the dipole moment is observed. If one or 

more bond angles of the molecules change while bond lengths remain constant, vibrational 

mode is known as bending mode (δ).  In the δ vibration, a change in dipole moment is also 

observed (Figure 8.2).   

In CO2, symmetric stretching mode for both the C=O bonds changes simultaneously and 

resultant dipole moment remains zero for the whole system as shown in Figure 8.2. As a result 

the symmetric υ mode remains “infrared inactive”.  Whereas, due to a periodic alteration in the 

dipole moment, α stretching vibration, is “IR active”. In the δ vibration, a change in dipole 

moment is also observed and that results in “IR activity”. 

 

 

 

 

Figure 8.2: Different vibrational modes of carbon dioxide molecule showing the dipole moment 

and IR activity. 
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8.4.3 Electronic Spectra  

These spectra are observed both in emission and absorption regions. Each spectrum consists of 

a large number of bands. Each band has a sharp edge (Band head) on one side which decreases 

in intensity towards the other side. Actually, a band is composed of a series of lines which draw 

further apart with the increase of distance from the band head. The band is said to be ‘degraded’ 

towards the side opposite to the bard-head. These spectra are observed for the hetro-nuclear as 

well as for the homonuclear diatomic molecules. 

8.4.3.1 Salient Features of Electronic spectra 

1. Electronic spectra is the most complex molecular spectra which appear in the visible and 

ultraviolet regions and involve the change in all the three energies (electronic, vibrational 

and rotational) of the molecule.  

2. These spectra are obtained in emission and absorption regions.  

3. The spectral band exhibits a fine structure which is more complicated. The head formation 

tendency is story and the bands are degraded either towards violet or toward the red. All 

molecules give electronic spectra. 

4. Homo-nuclear molecules (H2, N2, O2 etc.) do not give neither rotational nor vibrational- 

rotational spectra because of having no permanent dipole moments but they give electronic 

spectra because of the instantaneous dipole moment changes during the redistribution of 

change which results in the transition. 

Electronic transitions 

 

    When an electron in its lowest energy state gains some energy and transfers to its excited 

states, is known as molecular electronic transition. This process involves promotion of an 

electron from a bonding or nonbonding molecular orbital to an antibonding molecular orbital. 

These transitions provide information regarding the structure of a molecule and determine 

many more molecular properties. Electronic transitions are measured by Ultraviolet and visible 

spectroscopy and fall in the ultraviolet and visible region (190 nm-700 nm) of the 

electromagnetic spectrum both in absorption and emission modes. The electronic transition is 

mainly possible by absorbing photon energy equivalent to the separation of energy levels 

between which the electron transited. Mostly four types of electronic excitation exist in 

molecules (Figure 8.3).  

1. σ→σ*  

2. π→π* 

3. n→σ* 

4. n→π* 
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Figure 8.3: Possible transition between bonding (σ, π), anti-bonding (σ*, π*), and nonbonding 

(n) orbitals. 

 

Energies associated with different molecular transitions are in the following order.  

n→π* < π→π* < n→σ* < σ→π* < σ→σ* 

The wavelength corresponding to the σ→σ* transition is located at the far ultraviolet region of 

the electromagnetic spectrum. The n→π* and π→π* are located at a near visible part of the 

spectrum. The strength of an electronic transition is expressed in terms of “oscillator strength” 

(f) and defined as the ratio of the experimental transition probability to that of the ideal case of 

a harmonic oscillator.  

                                                                                                     

It is a dimensionless quantity and totally allowed transition corresponds to the oscillator 

strength 1, when all the molecules are transferred to the higher energy state. 

 

8.5 Atomic Spectra 

When electrons of an atom are excited to higher energy states, the radiations that are absorbed 

in this process appear as the absorption spectra of atoms. In a similar way, electronic spectra 

of molecules arise when the electrons of a molecule are excited to higher energy states. The 

energy involved in this process is generally large and electronic spectra of molecules are 

usually found in visible and ultraviolet regions. Therefore electronic spectra arise due to the 

changes in the arrangement of molecular electrons. We shall discuss electronics spectra of 

diatomic molecules. 

The electronic transition is the result of change in electronic energy. A small change in the 

electronic energy will be accompanied by a large change in the vibrational energy of the 

molecule. These vibrational energy changes give rise to vibrational transitions which form a 

group of various bands. Further, a small change in the vibrational energy will be accompanied 

by a large change in the rotational energy of the molecule. These rotational energy changes 
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give rise to rotational transitions forming a series of lines in each band-the so called fine 

structure of each band. 

8.6 Types Of Molecular Energy States And Associated Spectra 

Molecular energy states arise from the rotation of a molecule as a whole and from the vibration 

of its constituent nuclei relative to one-another as well as from changes in its electronic 

configuration. Rotational states are separated by quite small energy-interval ( 10-3ev) and the 

spectra arising from transitions between these states are in the far infra-red or microwave 

region. Vibrational states are separated by somewhat larger energy intervals ( 10-1ev) and the 

vibrational spectra fall in the near infra-red region. The electronic states have higher energy 

separation ( 10ev) and the corresponding spectra fall in the visible and ultraviolet regions. 

The two nuclei vibrate about their respective equilibrium positions along the internuclear axis, 

and the molecule rotates about the center of mass. Schrodinger's equation for the nuclear 

motion in a diatomic molecule is.  

[- 1
2 

2
2  

When M1 and M2 are the masses of the nuclei and V(r) is the Potential energy function consisting 

of the instantaneous electronic energy and electrostatic energy of the two nuclei.  is the 

nuclear eigenfunction which E is the eigenvalues for the whole molecule. Besides electronic 

bands. We have non-electronic bands also (for which e=0) such bands are of two types: 

Vibration-rotational bands and pure rotational bands. 

The explanation for three types of band spectra demands that the internal energy of a molecule, 

i.e. the energy other than the translational is essentially of three kinds, namely electronic, 

vibrational and rotational which are all quantised and thus the molecule possesses only certain 

discrete energy states. The transition between two energy states of a molecule, as a result of 

either absorption or emission of energy, will give rise to a spectral line in the spectrum of that 

molecule. Suppose energy difference of two states is (E  – E'') then the wave number 

(frequency in cm-1) corresponding to the line, arising due to transition between these two states 

will be: 

cm-1, 

where c is the velocity of light. 

The three types of bands, discussed above, are correlated with  
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1. Change in the rotational energy 

2. Simultaneous change of the rotational and vibrational energies, and 

3. Simultaneous change in the rotational, vibrational and electronic energies. 

 

Figure 8.4: Diagram representing electronic, rotational and vibrational energy levels. 

 

The diagram shows that:  

i. A molecule has a number of discrete electronic levels with separation of the same order 

as in atoms. A transition between two electronic levels results in a radiation that falls in a 

visible or ultraviolet region. 

ii. With each electronic level are associated a number of vibrational energy levels whose 

spacing decreases with increasing quantum number, ν. A transition between two vibrational 

levels results in a radiation which falls in a near infrared region. 

iii. With each vibrational level is associated a set of rotational levels whose spacing 

increases with increasing quantum number, J. A transition between two rotational energy 

levels results in a radiation that falls in a far infrared or microwave region. 

 

Fig. 8.4, shows transition from: Electronic level A to electronic level B 

                                                   Vibrational level v'' = 0to vibrational level v' = 0 

                                                   Rotational level J'' = 1 to rotational level J' = 3    

 

8.7 The Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation is the assumption that the electronic motion and the 

nuclear motion in molecules can be separated. It leads to a molecular wave function in terms 

of electron positions and nuclear positions. 
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This involves the following assumptions: 

1. The electronic wave function depends upon the nuclear positions but not upon their 

velocities, i.e., the nuclear motion is so much slower than electron motion that they can be 

considered to be fixed. 

2. The nuclear motion (e.g., rotation, vibration) sees a smeared out potential from the speedy 

electrons. 

We know that if a Hamiltonian is separable into two or more terms, then the total Eigen 

functions are products of the individual Eigen functions of the separated Hamiltonian terms, 

and the total eigenvalues are sums of individual eigenvalues of the separated Hamiltonian 

terms. 

Consider, for example, a Hamiltonian, which is separable into two terms, one involving 

coordinate q1 and the other involving coordinate q2. 

 
 

 

With the overall Schrödinger equation being 

 
 

If we assume that the total wave function can be written in the form  

,    

where ψ1(q1) and ψ2(q2) are Eigen functions of H1 and H2 with eigenvalues E1 and E2, then 

 

 

 

(8.1) 

  
 

 

(8.2) 

  
 

 

(8.3) 

  
 

 

(8.4) 

  
 

 

(8.5) 
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Thus the Eigenfunctions of  are products of the Eigenfunctions of H1 and H2, and the 

eigenvalues are the sums of eigenvalues of H1 and H2. 

The Eigenfunctions and eigenvalues of this Hamiltonian, which will be given by solution of 

the time-independent Schrödinger equation 

 
 

We first invoke the Born-Oppenheimer approximation by recognizing that, in a dynamical 

sense, there is a strong separation of time scales between the electronic and nuclear motion, 

since the electrons are lighter than the nuclei by three orders of magnitude. This can be 

exploited by assuming a quasi-separable ansatz of the form 

 
 

where ϕN(R) is a nuclear wave function and  ϕe(x, R) is an electronic wave function that depends 

parametrically on the nuclear positions. If we look again at the Hamiltonian, we would notice 

right away that the term VeN would prevent us from applying this separation of variables. The 

Born-Oppenheimer (named for its original inventors, Max Born and Robert Oppenheimer) is 

based on the fact that nuclei are several thousand times heavier than electrons. The proton, 

itself, is approximately 2000 times more massive than an electron. In a dynamical sense, the 

electrons can be regarded as particles that follow the nuclear motion adiabatically, meaning 

that they are ``dragged'' along with the nuclei without requiring a finite relaxation time. This, 

of course, is an approximation, since there could be non-adiabatic effects that do not allow the 

electrons to follow in this ``instantaneous'' manner, however, in many systems, the adiabatic 

separation between electrons and nuclei is an excellent approximation. Another consequence 

of the mass difference between electrons and nuclei is that the nuclear components of the wave 

function are spatially more localized than the electronic component of the wave function. In 

the classical limit, the nuclear are fully localized about single points representing classical point 

particles. 

After these considerations, HN(R) can be neglected since TN is smaller than Te by a factor 

of M/m. Thus for a fixed nuclear configuration, we have 

 
 

 

Such that 

 



             MSCPH507 

196 

 

 

 

This is the “clamped-nuclei'” Schrödinger equation. Quite frequently VNN(R) is neglected in 

the above equation, which is justified since in this case  is just a parameter so that VNN(R) is 

just a constant and shifts the eigenvalues only by some constant amount. Leaving VNN(R) out 

of the electronic Schrödinger equation leads to a similar equation, 

 

 

 

(8.6) 

 

 

  
                                    (8.7) 

 

where we have used a new subscript “e'' on the electronic Hamiltonian and energy to distinguish 

from the case where VNN is included. 

We now consider again the original Hamiltonian. If we insert a wavefunction of the form ψ(r, 

R)=ϕe(r, R)ϕN(R), we obtain 

 

(8.8)   

 

    

 

Since Te contains no  dependence, 

 
 

However, we may not immediately assume 

 
 

(this point is tacitly assumed by most introductory textbooks). By the chain rule, 

 

 

 

Using these facts, along with the electronic Schrdöinger equation, 

 
we simplify Equation to 

 

                                                    (8.9) 
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                       (8.10) 

                                                        (8.11) 

We must now estimate the magnitude of the last term in brackets. A typical contribution has 

the form 1/(2M)∇2R ϕe(r, R)  , but ∇R ϕe(r, R)  is of the same order as ∇r ϕe(r, R) since the derivatives 

operate over approximately the same dimensions. The latter is ϕe(r, R)Pe, with  Pe the momentum 

of an electron. Therefore 

  

Since m/M~1/10000 the term in brackets can be dropped, giving 

 
 

 

 
 

 

This is the nuclear Shrödinger equation we anticipated-the nuclei move in a potential set up by 

the electrons. 

To summarize, the large difference in the relative masses of the electrons and nuclei allows us 

to approximately separate the wavefunction as a product of nuclear and electronic terms. The 

electronic wavefucntion ϕe(r,R) is solved for a given set of nuclear coordinates, 

 
 

 

 

and the electronic energy obtained contributes a potential term to the motion of the nuclei 

described by the nuclear wavefunction ϕN(R). 
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In the conclusion we can say that Born approximation enables us to solve the complete 

molecula wave equation in the the following way: 

 

1. For a given electronic state of a molecule the electronic wave equation is solved for a range 

of nuclear coordinates (internuclear separations). 

2. The eigenvalues E are the characteristic energies for the whole molecule in the given 

electronic state. A different set of wavefunction and energy eigen value is found for each 

electronic state of the molecule. 

3. The total wavefunction of the system is the obtained by the product of wavefunctions of 

the coordinates of the nuclei and electrons.  

 

 

Self Assessment Question (SAQ) 1: What do you understand by dipole moment?  

Self Assessment Question (SAQ) 2: Why dipole moment is important in molecular 

spectroscopy? 

Self Assessment Question (SAQ) 3: Homonuclear diatomic molecules are microwave 

inactive. Why?  

Self Assessment Question (SAQ) 4: Heteronuclear diatomic molecule will show rotational 

spectrum or not? 

Self Assessment Question (SAQ) 5: What is the main condition that a molecule will be 

microwave active or not? Give some examples. 

Self Assessment Question (SAQ) 6: What is the main condition for a molecule to be IR active? 

Self Assessment Question (SAQ) 7: What do you mean by degrees of freedom of a molecule? 

What is its value for a linear molecule and a nonlinear molecule? 

Self Assessment Question (SAQ) 8: Which of the following molecules will show microwave 

spectrum:  H2, HCl, CH4, CH3Cl, CH2Cl2, H2O, SF6. Why? 

 

8.8 Summary 

In this unit, you have studied the electronic, vibrational and rotational spectra of diatomic 

molecules in detail. Transitions between different rotational levels give rise to pure rotational 

spectra of diatomic molecules. Transitions between different rotational levels give rise to pure 

rotational spectra in the microwave or far infrared region. This study helps in evaluation of 

molecular parameters. The transition between vibrational levels results in the vibrational 

spectra which are observed in the near infrared region. This gives information about molecular 

structure, bond length, interatomic distances etc. In electronic spectra which are obtained in 

visible and ultraviolet regions, transition from one electronic level to the other level takes place. 

This is accompanied by change in vibrational and rotational energy. This gives rise to 
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vibrational coarse structure and rotational fine structure. We are able to get information about 

the rotational constants and vibrational frequencies of both ground and excited electronic states. 

 

8.9 Glossary 

 

Spectrum 

 

The set of colours into which a beam of light can be separated, or a range of 

waves 

rotational A rotation is a circular movement of an object around a center of rotation. 

vibrational A molecular vibration is a periodic motion of the atoms of a molecule relative 

to each other,  

Emission 

spectrum 

The distribution of electromagnetic radiation released by a substance whose 

atoms have been excited by heat or radiation. 

Absorption 

spectrum 

The spectrum formed by electromagnetic radiation that has passed through a 

medium in which radiation of certain frequencies is absorbed 

Transition The process or a period of changing from one state or condition to another. 
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8.12 Terminal Questions 

 Short and long answer type question 

 

1. What is the meaning of Molecular spectra? 

2. How many ranges in Molecular spectra can be classified? 

3. Discuss various types of spectra. 

4. Account for: “The molecules have rotational and vibrational states but atom do not”. 

5. What are the salient features of rotational spectra? 

6. Why do homonuclear diatomic molecules not exhibit pure rotation spectra? 

7. Why is a vibrating diatomic molecule considered as an anharmonic oscillator? 

8. Which physical quantities can we calculate from vibration rotation spectra? 

9. Is electronic spectra exhibited by all molecules? Give proper reason. 

 

Objective type question 

 

 1. The different types of energies associated with a molecule are __________ 

a) Electronic energy 

b) Vibrational energy 

c) Rotational energy 

d) All of the mentioned 

 

2. During the motion, if the centre of gravity of molecule changes, the molecule possess        

__________ 

     a) Electronic energy 

     b) Rotational energy 

     c) Translational energy 

     d) Vibrational energy 

 

     3. The correct order of different types of energies is __________ 

     a) Eel >> Evib >> Erot >> Etr 

     b) Eel >> Erot >> Evib >> Etr 

     c) Eel >> Evib >> Etr >> Erot 

     d) Etr >> Evib >> Erot >> E el 

 

    4. The region of electromagnetic spectrum for nuclear magnetic resonance is __________ 

    a) Microwave 

    b) Radio frequency 

    c) Infrared 

    d) UV-rays 
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    5. Which of the following is an application of molecular spectroscopy? 

    a) Structural investigation 

    b) Basis of understanding of colors 

    c) Study of energetically excited reaction products 

    d) All of the mentioned 

 

Answer 1- d; 2-c; 3- a; 4-b; 5-d 
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9.1 Introduction 

The story starts with the idea of  the atom and molecule. An atom has a central nucleus with 

positively charged protons and uncharged neutrons in it and negatively charged electrons 

revolving around the nucleus. Usually atoms in nature cannot exist independently, rather atoms 

combine with other atoms of the same element or atoms of other elements. When atoms 

combine, they form a new structure called molecule. So molecular structure is a resultant of 

two or more atoms. Examples: Oxygen (O2), Ozone (O3), Water (H2O), Sodium chloride 

(NaCl), Nitric acid (HNO3) etc. 

By knowing the various chemical and physical properties of molecules, we can get the 

knowledge about various properties of that molecule under consideration. To know a person, 

one has to interact with that person. Similarly to know a molecule you have to interact with 

that molecule. When a molecule interacts with some external field (electric or magnetic), the 

response that molecule shows due to that interaction, appears in the form of molecular spectra. 

The response may come in the form of absorption or emission of electromagnetic radiation. 

Spectroscopy is the output of that interaction in terms of measurement and interpretation of 

absorption and emission of radiation when atoms or molecules or ions move from one energy 

state to another state. To know the detail about the molecular structure and its properties, one 

requires a total knowledge about the quantum mechanics with investigation and theoretical 

interpretation of different spectroscopic techniques.  Molecular spectroscopy measures various 

characteristics of absorbed or emitted radiation during transition between energy states by 

frequency ( or ), wavelength (), wavenumber (̅ 𝑜𝑟�̅�), energy () as their units. 

Molecule possesses different energy states. They are main rotational states, vibrational states 

and electronic energy states. Molecular rotational energy states arise from the rotation of 

molecular counter parts, i.e. atoms about their center of gravity as a whole. Molecular 

vibrational energy states arise from the vibrations of its atoms relative to each other due to 

periodic displacement of the atoms from their equilibrium position. Similarly the molecular 

electronic energy states may arise from changes in their electronic configuration since electrons 

associated with each atom are in continuous motion. In current unit we are going to discuss 

about the spectroscopy related to molecular rotational energy state transitions. Rotational 

energy states are separated by small energy interval (10-3eV). The molecular spectra arise from 

the transition between two rotational energy states are observed in the microwave region of the 

electromagnetic spectrum with wavelength range from 0.1 mm to 1 cm.   

9.2 Objectives 

After studying this unit, you should be able to- 

 understand the meaning of rotation of molecules 

 understand the rotational spectra of linear and nonlinear rigid and nonrigid rotators,  

 solve problems using rotational energy transitions  

 apply the theory of rotation to identify the intensity of spectral lines 
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 apply the theory of rotation to identify the isotopic effects 

 apply the rotation for polyatomic, symmetric top system 

9.3 Salient Features Of Rotational Spectra 

A molecule can have many forms of energy. It may have rotational energy due to its different 

bodily rotation about its center of gravity. It may have vibrational energy due to the periodic 

displacement of atoms from their equilibrium positions. It may also have electronic energy due 

to its electrons associated with each atom or bond are in varying motion. All these rotational, 

vibrational and electronic energies are quantized in nature (you know from the knowledge of 

Quantum Mechanics). A molecule exists in any energy level can show transition from one 

energy level to another energy level, either by absorbing or by emitting a finite amount of 

energy which is equivalent to the energy difference between that two specific adjacent energy 

levels. 

Let us consider two possible rotational energy levels of a molecule as EJ and EJ+1. The 

transition can take place between EJ and EJ+1 if the appropriate amount of energy can either be 

absorbed or emitted by the probe system. According to Max Planck, the absorbed/ emitted 

energy can take the form of electromagnetic radiation frequency or wavelength which has the 

simple form as (Fig 9.1) 

∆𝐸 = 𝐸𝐽+1 − 𝐸𝐽 = 𝑛ℎ𝜔 = 𝑛ℎ𝜐 =
𝑛ℎ𝑐

𝜆
…………………… (1) 

Where energies are expressed in Joule, h is universal Plank constant (6.626x10-34 Joule-sec), 

frequencies ( or ) are expressed in Hertz or sec-1, wavelength () in meter or centimeter or 

nm or Å. For molecular rotational spectroscopy the boundaries of electromagnetic radiation are 

known as Microwave region. The detail of this region is as follows: 

In terms of frequency (): 3 x1010 – 3 x1012 Hz 

In terms of wavelength (): 1 cm – 100 m 

In terms of wavenumber (�̅�) : 1 – 100 cm-1 

In terms of energy (): 10 – 103 Joules/mole 

 
Fig 9.1: Absorption and emission process between rotational energy levels. 
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9.3.1 Conditions for a molecule to show Rotational spectra 

When the interaction of electromagnetic radiation of proper frequency with a molecule (having 

rotational/vibrational/electronic energy levels) happens then different energy level transitions 

may appear. The rotational energy level transitions will only appear when the incident 

frequency is equivalent to the energy difference between two adjacent rotational energy levels 

as described in equation 1. The molecules having a permanent dipole moment are said to be 

eligible for rotational energy level transitions. So molecule with permanent dipole moment are 

said to be ‘microwave active’. Usually heteronuclear molecules are generally microwave 

active. Example: HCl, H2O etc. The molecules which do not have a permanent dipole moment, 

doesn’t show rotational or microwave spectra and are said to be ‘microwave inactive’. Usually 

homonuclear molecules are microwave inactive. Example: H2, CO2, O2 etc.  

9.3.2 Dipole moment  

A dipole is defined as molecules or atoms with equal and opposite electrical charges separated 

by a small distance (Fig 9.2). In a molecule if one atom carries a permanent net positive charge 

and other atom carries a permanent net negative charge then the molecule is said to have a 

permanent electric dipole moment. Example: HCl. Hydrogen carries the positive charge and 

Cl carries the negative charge. H2, CO2 have no charge separation between the atoms and so 

they zero dipole moment. 

 

Fig 9.2: Dipole creation 

9.3.3 Role of dipole moment in rotational transition 

Let us consider the rotation of a simple diatomic molecule AB having a dipole moment due to 

its separated negative charge (A-) and positive charge (B+) densities. If we consider the pure 

rotation of AB where center of gravity does not move, then with time we can observe the 

positive and negative charges change their place periodically (Fig 9.3).  

 

Fig 9.3: Rotating molecule 
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Let us start with a polar diatomic molecule HCl. Due to its rotation the component of dipole 

moment in a given direction fluctuates periodically. We can plot this fluctuation in Fig 9.4. 

 

Fig 9.4: Periodic fluctuation of dipole moment of polar diatomic molecule due to rotation. 

The fluctuation is same as that of the fluctuating electric field of radiation. If this fluctuating 

electric field interacts with the electric field of incident electromagnetic radiation, energy can 

be absorbed or emitted and pure rotation of the molecule will give rise rotational spectrum. So 

energy can be exchanged only if the molecule has a permanent dipole moment. If the permanent 

dipole of the molecule is zero, there will be no periodic variation and so no rotational spectrum.  

9.3.4 Classification of molecules depending on rotation 

Microwave or rotational spectroscopy is dependent on the rotating molecule. The complexity 

of rotational molecule is dependent on its dimension. The rotation of a three dimensional body 

is very much complex compared to one or two dimensional bodies. To describe the rotational 

motion it is convenient to explain the rotational component about three mutually perpendicular 

directions through the center of gravity which is known as principal axis of rotation. So a three 

dimensional body can be described by three principal moments of inertia, one about each axis 

as Ia, Ib and Ic where a, b, c are the three mutually perpendicular axes of rotation. Molecules 

can be classified into groups according to the values of Ia, Ib and Ic. Let us first describe the 

classification. 
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9.3.4.1 Linear molecules 

All the atoms in this type of molecules are arranged in a straight line. Example: HCl, CO2, 

OCS, C2H2 etc. Here the three axes or rotation are described as (Fig 9.4a): 

H-Cl 

O-C-O 

a) The molecular or bond axis. Let it be a axis. 

b) The direction of end over end rotation in the plane of the paper passing through the 

center of gravity of the molecule and perpendicular to a axis. Let it be b axis. 

c) The direction of end over end rotation at right angles to the plane i.e. axis perpendicular 

to both a and b axes and passing through the center of gravity of the molecule. Let it be 

c axis. 

As the nuclei of the atoms give the main contribution to mass and are situated in a axis, so the 

moment of inertia about a axis is tentatively zero (only approximation) and so Ia=0 for linear 

molecule. Again, since Ib and Ic are correspond to the end over end rotation and so they are 

equal (Ib = Ic).  

So for linear molecule:    Ia=0  and Ib = Ic. 

(Note: Moment of inertia is a measure of an object's resistance to changes in its rotation rate. 

It is the rotational analog of mass. A molecule can have three different moments of inertia Ia, 

Ib and Ic according to the axis of rotation.) 

 
 

Fig 9.4a: Moment of inertia of linear HCl molecule. 

 

9.3.4.2 Symmetric top type molecules 

In symmetric top type molecules all the three moments of inertia are non-zero. Example: 

methyl chloride (CH3Cl) where three hydrogen atoms are bonded tetrahedrally with carbon.  

Here C-Cl bond axis can be considered as a axis on which the center of gravity lies. This time 

Ia is not negligible since it involves the rotation of three massive hydrogen atoms of this axis. 

So Ia ≠ 0.  The two mutually perpendicular b and c axes lie in the plane perpendicular to a axis 

and these end over end in and out rotation are remain identical. So Ib = Ic. A molecule of this 

type spinning about a axis behaves like spinning top and known as symmetric top molecule.  
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So for symmetric top molecule: Ia ≠ 0 and Ib = Ic.  

There are two subdivisions of symmetric top molecule. They are: prolate symmetric top and 

oblate symmetric top.  

For prolate symmetric top molecule Ia  Ib = Ic. Example: CH3Cl, CH3F.  

For oblate symmetric top molecule Ia  Ib = Ic. Example: BF3, BCl3 (Fig. 9.5).  

 

Fig 9.5. Methyl chloride (CH3Cl) and Boron trifluoride (BF3) 

9.3.4.3 Spherical top type molecules 

The molecule in which all three moment of inertia are equal is known as spherical top. 

Example: CH4, CCl4. Spherical top molecules have no dipole moment and so they are 

microwave inactive (Fig. 9.6).    

So for spherical top molecule:  Ia = Ib = Ic.  

 

Fig 9.6. Methane (CH4) and water (H2O) 

 

9.3.4.4 Asymmetric top type molecules 

Molecules in this category have all three moment of inertia different. Example: H2O, CH3OH, 

CH2CHCl. Majority of the natural molecules belong to the category of asymmetric top. (Fig. 

9.6). 

So for asymmetric top molecule:  Ia ≠ Ib ≠ Ic.  

Till now we have discussed different categories of molecules in terms of their moment of 

inertia. If we combine all then overall rotating molecules can be classified into four main groups 

as (Table 1): 
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Serial no Moment of Inertia Type of molecule 

1. Ia=0 and Ib = Ic. Linear molecule 

2. Ia ≠ 0 and Ib = Ic.  

Ia  Ib = Ic.  

Ia  Ib = Ic. 

Symmetric top molecules 

prolate symmetric top     

oblate symmetric top 

3. Ia = Ib = Ic. Spherical top molecule 

4. Ia ≠ Ib ≠ Ic. Asymmetric top molecule 

 

Table 9.1: Classification of rotating molecules in terms of moment of inertia. 

Self Assessment Question (SAQ) 1: What do you mean by dipole moment? Why dipole 

moment is important in molecular spectroscopy? 

Self Assessment Question (SAQ) 2: Homonuclear diatomic molecules are microwave 

inactive. Why? Heteronuclear diatomic molecule will show rotational spectrum or not? 

Self Assessment Question (SAQ) 3: What is the main condition that a molecule will be 

microwave active or not? Give some examples. 

 

9.4 Rotational Spectra Of Diatomic Molecule 

Rotational energy states arise from the rotation of the molecule as a whole. A detailed picture 

of a particular molecule (bond length, force constant, bond angles) can be obtained from its 

permitted rotational energy level transition or from rotational spectrum. Let us consider the 

case of a simple heteronuclear diatomic molecule. The molecule can rotate as a whole about 

an axis passing through the center of gravity and perpendicular to the line joining the nuclei 

i.e. along internuclear axis. We will now try to investigate what type of spectrum this rotating 

system will show on the basis of quantum theory and will also try to compare the computed 

rotation spectrum with the experimental one.    

 9.4.1 Rigid rotator 

We will start with the simple possible model of rotating diatomic molecule which is known as 

dumbbell model as shown in Fig 9.7. Two atoms of masses m1 and m2 considered to be point 

like are joined by a rigid bar (bond length) of distance R. The bar is considered as weightless. 

The bond length is represented as 

𝑅 = 𝑟1+ 𝑟2     ………………………………….. (2) 
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Fig 9.7. Rotation of rigid diatomic molecule with two masses m1 and m2 joined by a rigid bar 

of length R=r1+r2, about its center of mass or center of gravity C. 

The molecule can rotate about its center of mass (C). From the definition of center of mass  

𝑚1𝑟1 = 𝑚2𝑟2   ……………………………………. (3) 

𝑚1𝑟1 = 𝑚2𝑟2 = 𝑚2(𝑅 − 𝑟1)                      from equation (2) 

𝑟1(𝑚1 +𝑚2) = 𝑚2𝑅 

𝑟1 =
𝑚2𝑅

(𝑚1+𝑚2)
 𝑎𝑛𝑑 𝑟2 =

𝑚1𝑅

(𝑚1+𝑚2)
 …………………. (4) 

The moment of inertia of this molecule about the axis passing through center of mass C and 

perpendicular to the line joining the atoms is 

𝐼 = 𝑚1𝑟1
2 +𝑚2𝑟2

2……………………………… (5) 

= 𝑚2𝑟2𝑟1 +𝑚1𝑟1𝑟2                                using equation (3) 

= 𝑟1𝑟2 (𝑚1 +𝑚2)………………………………. (6) 

𝐼 =
𝑚1 𝑚2

(𝑚1+𝑚2)
𝑅2 = 𝜇𝑅2……………. (7)    using equation (4) 

Where we have used 𝜇 =
𝑚1 𝑚2

(𝑚1 +𝑚2)
⁄ as reduced mass of the system. Equation 7 defines 

the moment of inertia in terms of atomic masses and the bond length. Here instead of 

considering the rotation of the dumbbell we have considered the rotation of single mass  at a 

fixed point R from the axis of rotation. Such system is called as simple rigid rotator. 
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9.4.2 Energy levels of rigid rotator 

 

To determine the possible energy states of rigid rotator, we have to use the concept of quantum 

theory. So we have to solve the Schrödinger equation in terms of amplitude of wave motion ψ 

for the system having mass , potential energy V, total energy of the mass point E as: 

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝜇

ℎ2
(𝐸 − 𝑉)𝜓 = 0…………… (8) 

Here we have to consider V=0 since no potential energy is associated with the rotation as long 

as the rotator is considered as completely rigid. So the modified Schrödinger equation will be  

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
+
8𝜋2𝜇

ℎ2
𝐸𝜓 = 0………………. (9) 

Where x2+y2+z2 =R2 is a constant. The solution of the above equation (consult Arther Beiser, 

Modern Physics) in terms of ψ is single valued, finite and continuous occurs only for certain 

values of rotational energy levels EJ namely the Eigen values as 

𝐸𝐽 =
ℎ2𝐽(𝐽+1)

8𝜋2𝜇𝑅2
=
ℎ2𝐽(𝐽+1)

8𝜋2𝐼
………………………. (10) 

Where J is the rotational quantum number and can take the integer values 0, 1, 2, 3……Thus 

we have a series of discrete energy levels whose energy values increase quadratically with 

increasing J. Equation 10 is expressed in Joules. Now to calculate the emitted or absorbed 

rotational wavenumber we know that according to quantum theory the absorption of light 

quantum takes place as a result of the transition of the rotator from lower (E’’) to higher (E’) 

energy state, whereas the emission of a light quantum takes place as a result of a transition of 

the rotator from a higher to a lower energy state. The wave number of absorbed or emitted light 

quantum is (in units of cm-1) expressed as 

�̅� =
𝐸′

ℎ𝑐
−
𝐸′′

ℎ𝑐
……………………….. (11) 

Where E/hc=J is known as rotational term or energy in wavenumber (in units of cm-1) and is 

expressed as 

𝜀𝐽 =
𝐸

ℎ𝑐
=
ℎ𝐽(𝐽+1)

8𝜋2𝑐𝐼
= 𝐵𝐽(𝐽 + 1)…………. (12)    where J = 0,1,2,3……. 

Where the constant 𝐵 =
ℎ

8𝜋2𝑐𝐼
 is called as rotational constant. It is also expressed in units of 

cm-1. 

From equation 12 we can show the allowed energy levels (Fig 9.8a). For J=0 we have J=0 

=0 and so we can say that the molecule is not rotating at all. For J=1 the energy is J=2= 2B 

which is the lowest value of rotational energy. Similarly for higher values of J we get J as 6B, 

12B, 20B etc. It is important to mention here that in principle there no limit to get the values 

of J with increasing J values but in practice there comes a point at which the centrifugal force 
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of the rotating diatomic molecule will be greater than the strength of the bond length. At that 

point the molecule will be disrupted. It is not possible to achieve this situation at room 

temperature. 

Using equation 11 we can write for the transition from higher to lower rotational level i.e. from     

J’  J’’ state the emitted frequency as  

�̅� = 𝐽′ − 𝐽′′ = 𝐵𝐽
′(𝐽′ + 1) − 𝐵𝐽′′(𝐽′′ + 1) ………….. (13) 

To calculate the frequencies that are emitted or absorbed it is necessary to know the selection 

rule for the rotational quantum number J. The selection can be obtained by evaluating the 

matrix elements of the dipole moment (Herzberg, Molecular spectra and molecular structure) 

of the molecular system which show that only those rotational energy level transitions are 

allowed in which J changes by only one unit. All other transitions are spectroscopically 

forbidden. So the selection rule for the rotational transition of rigid diatomic rotator is 

Δ𝐽 = 𝐽′ − 𝐽′′ = ±1………………………… (14) 

In general we can consider J’’=J and J’=J+1 and for ∆𝐽 = +1we can have 

�̅�𝐽→𝐽+1 = �̅�𝐽 = 𝐽+1 − 𝐽 = 𝐵(𝐽 + 1)(𝐽 + 2) − 𝐵𝐽(𝐽 + 1) 

= 𝐵[𝐽2 + 3𝐽 + 2 − (𝐽2 + 𝐽)] 

  = 2𝐵(𝐽 + 1)   𝑐𝑚−1………………… (15)    with  J = 0,1,2,3……. 

Thus the spectrum of the simple rigid rotator consists of a series of equidistant absorption lines 

at 2B, 4B, 6B…cm-1 (Fig 9.8a). Similar identical lines will be obtained for the rotational 

emission spectrum. The first of these lines observed at 2B for J=0 J=1 transitions in accord 

to equation 15 (with J=0) having the separation of successive lines as 2B.   
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Fig 9.8a. Allowed rotational energies of a rigid diatomic molecule, their allowed transition 

probabilities according to selection rule and the spectrum arise from transition. 

According to equation 11 and 15 the rotational frequency can be calculated as 

𝜐𝑟𝑜𝑡 = �̅�𝐽𝑐 = 𝑐2𝐵(𝐽 + 1) ≈ 2𝑐𝐵𝐽…………………. (16) 

 which is approximately equal to the frequency of the spectral line that has this rotational energy 

state (J) as upper state i.e. if the rotational transition is from J-1 J. 

Example 1: Experimental rotation spectrum of HCl shows the first rotational line at 21.2 cm-

1. Using this value one can easily determine the moment of inertia and hence the bond length 

of HCl (Fig 9.8b).  

 

 

 

Fig 9.8b. Experimental Rotational spectrum of HCl with separation between any two lines is 

21.2 cm-1. 

Here 

�̅�0→1 = 2𝐵 = 21.2 cm-1 

𝐵 = 10.6 cm-1=1060m-1
.Using the relation 𝐼 =

ℎ

8𝜋2𝐵𝑐
   we have 𝐼𝐻𝐶𝑙 =

ℎ

8𝜋2𝐵𝑐
=

2.63𝑥10−47𝑘𝑔𝑚2 

𝜇 =
𝑚1𝑚2

𝑚1 +𝑚2
=

(
1𝑔
𝑚𝑜𝑙

) (
35𝑔
𝑚𝑜𝑙

)

(
36𝑔
𝑚𝑜𝑙

) (6.023𝑥1023)
= 1.61𝑥10−24𝑔𝑚 = 1.61𝑥10−27𝑘𝑔 

𝑅2 =
ℎ

8𝜋2𝜇𝐵𝑐
=

6.626𝑥10−34𝐽. 𝑠𝑒𝑐

8𝜋2(1.61𝑥10−27𝑘𝑔)(1060 m−1) (
3x108𝑚

𝑠 )
= 1.63𝑥10−20𝑚2 

𝑅 = 1.27𝑥10−10𝑚 = 1.27Å 

Wave Number in 

cm-1 
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 9.4.3 Intensities of rotational spectral lines 

The pure rotational spectrum of a rigid diatomic molecule consists of a series of equidistant 

lines corresponding to the transitions, J=0 J=1, J=1J=2, J=2J=3 and so on. To identify 

the relative intensities of the different spectral lines from equation 15 and Fig 9.8a-c, we need 

the knowledge of the relative probabilities of transition between rotational energy levels. The 

factor that decides the intensity of lines is the number of molecules present in each energy 

level. So the line intensities will be directly proportional to the initial number of molecules in 

each level. The population of molecules in each level follows the Boltzmann distribution. We 

know that the rotational energy at the lowest energy level has been zero since J=0 (from 

equation 12), so if we have N0 molecules in this lowest energy state then the number of 

molecules in any higher energy state J is given by according to Boltzmann distribution 

𝑁𝐽 = 𝑁0𝑒
(
−𝐸𝐽

𝑘𝑇
⁄ )

= 𝑁0𝑒
(
−𝐵𝑐ℎ𝐽(𝐽+1)

𝑘𝑇⁄ )
………(17) 

Where c is expressed in cm/sec, and B is in cm-1. We can easily say that NJ is varying with J. 

Let us consider a typical case where B = 2 cm-1 and temperature as T= 300K. The relative 

population (
𝑁1

𝑁0
) at J=1 can be obtained as 0.98. So we see that there are almost as many 

molecules in the state J=1 at equilibrium as in the J=0 state. Again the population depends on 

the degeneracy of each level, which is (2J+1) since each energy level is (2J+1) fold degenerate. 

So taking degeneracy into account the total relative population at an energy EJ will be  

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(2𝐽 + 1)𝑒
(
−𝐸𝐽

𝑘𝑇
⁄ )

…………….. (18) 

Differentiating equation 18 shows that the population is a maximum at the nearest J value to 

𝐽 = √
𝑘𝑇

2ℎ𝑐𝐵
−
1

2
……………… (19) 

That is the rotational energy level to this J value will have the maximum population. So the 

transition originating from the level having this J value will have the maximum intensity as 

described in Fig 9.8c for HCL molecule at various temperature. 
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Fig 9.8c. Relative population of HCl including degeneracy with B value as 10.6 cm-1 at two 

different temperatures: 300K and 1000K.   

 

9.4.4 Effect of Isotope 

When an atom is replaced by one of its isotope, the interatomic bond distance remains the same 

as the electronic charge distribution does not change duo to this substitution. The resulting 

substance is identical chemically with the original. However a change in the total mass of the 

system due to changes in the nuclear mass appears and hence a change in the moment of inertia 

and B value of the molecular system appears. It is observed that if the atomic mass increases 

due to isotopic substitution the B value decreases as B1/I. 

Example 2: Two isotopes of carbon monoxide. They are 12C16O having B value 1.921cm-1 and 
m’C16O having B’ value 1.836 cm-1. The change in the B value reflects in the rotational energy 

levels of the two isotopes as described in Fig 9.9. The spectrum of the heavier species shows a 

smaller separation between the lines (2B’) than that of the lighter one (2B). For clarity the 

spectrum of heavier one is shown by dashed lines. Here the heavier mass is m’. Observation of 

the decreased separation of lines helps us to evaluate the precise atomic weights by using the 

relation (prime refers to the heavier atom) 

𝐵

𝐵′
=

ℎ

8𝜋2𝐼𝑐

8𝜋2𝐼′𝑐

ℎ
=
𝐼′

𝐼
=
𝜇′

𝜇
= 1.046…………….. (20) 

Taking the mass of oxygen as 16 and that of 12C to be 12 we have 

𝜇′

𝜇
= 1.046 =

16𝑚′

16 + 𝑚′

12 + 16

1216
 

𝑚′ = 13  which is the atomic weight of 13C. 

So rotation spectroscopy can give directly an estimate of the abundance of isotopes by 

comparison of absorption intensities. 

Rotational quantum number J 

(2
𝐽
+
1
)𝑒
(−
𝐸
𝐽
𝑘
𝑇

⁄
)
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Fig 9.9. The effect of isotopic substitution on the energy levels and rotational spectrum of a 

diatomic molecule such as carbon monoxide. Dashed lines are for isotope. 

Example2: Below is the rotational spectrum of HCl isotopes as 1H35Cl and 1H37Cl. By 

identifying the wavenumber of transitions one can easily determine the atomic masses, bond 

length, and relative abundance of the isotopes (Fig 9.10).  

 

 

Fig 9.10. Rotational spectrum of a diatomic molecule hydrogen chloride isotopes. 

Problem 1: What is the change in the rotational constant B when hydrogen is replaced by 

deuterium in the hydrogen molecule? 

Solution: Denoting the isotopically substituted hydrogen by prime 

𝐵

𝐵′
=

ℎ

8𝜋2𝐼𝑐

8𝜋2𝐼′𝑐

ℎ
=
𝐼′

𝐼
=
𝜇′

𝜇
 

𝜇 =
𝑚𝐻

2
     𝜇′ =

𝑚𝐷

2
= 𝑚𝐻      

𝐵

𝐵′
=
2𝑚𝐻

𝑚𝐻
= 2,    𝐵′ =

𝐵

2
 

Spectral lines in cm-1 

Rotational energy  

Level transitions with 

Selection rule ΔJ=+1  

Wave Number in cm-1 
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1H35Cl 

1H37Cl 
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So change in rotational constant: 𝐵 − 𝐵′ =
𝐵

2
 

Problem 2: The first line (J=0J=1) in the rotational spectrum of carbon monoxide (12C16O) 

has a frequency of 3.8424 cm-1. Calculate the rotational constant and the C-O bond length in 

CO. Given Avogadro number is 6.023x1023 /mol. 

Solution: For first line, 2B= 3.8424 cm-1. B= 1.9212 cm-1 = 192.12 m-1. 

 I=R2 = 
ℎ

8𝜋2𝐵𝑐
, 𝑅2 =

ℎ

8𝜋2𝜇𝐵𝑐
 

So, 𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
=

(
12𝑔

𝑚𝑜𝑙
)(
16𝑔

𝑚𝑜𝑙
)

(
28𝑔

𝑚𝑜𝑙
)(6.023𝑥1023)

= 1.1385𝑥10−23𝑔𝑚 = 1.1385𝑥10−26𝑘𝑔 

𝑅2 =
ℎ

8𝜋2𝜇𝐵𝑐
=

6.626𝑥10−34𝐽. 𝑠𝑒𝑐

8𝜋2(1.1385𝑥10−26𝑘𝑔)(192.12 m−1) (
3x108𝑚

𝑠 )
 

𝑅 = 1.131𝑥10−10𝑚 = 1.131Å 

 Problem 3: What is the average period of rotation of HCl molecule if it is in the J=1 state. The 

internuclear distance of HCl is 0.1274nm. Given the mass of hydrogen and chlorine atoms are 

1.673x10-27 kg and 58.06x10-27kg. 

Solution: We have rotational energy of a classical oscillator =
1

2
𝐼𝜔2  

Rotational energy of quantum oscillator 𝐸𝐽 =
ℎ2𝐽(𝐽+1)

8𝜋2𝜇𝑅2
=
ℎ2𝐽(𝐽+1)

8𝜋2𝐼
       

Equation both the above equation we get  𝜔2 =
ℎ2𝐽(𝐽+1)

4𝜋2𝐼2
 

Also we can write angular frequency 𝜔 =
ℎ√𝐽(𝐽+1

2𝜋𝐼
 

I=R2 =
(1.673x10−27 kg)(58.06x10−27kg)(0.1274x10−9𝑚)

2

59.733𝑥10−27𝑘𝑔
=0.0264x10-45 kgm2 

 =
ℎ√𝐽(𝐽 + 1

2𝜋𝐼
=
(6.626𝑥10−34𝐽. 𝑠𝑒𝑐)√2

2𝜋(0.0264x10−45𝑘𝑔𝑚2)
= 56.5116𝑥1011𝑠𝑒𝑐−1 = 56.5116𝑥1011𝐻𝑧 

Period of rotation 𝑇 =
2𝜋

𝜔
=

2𝜋

56.5116𝑥1011𝑠𝑒𝑐−1
= 1.112𝑥10−12𝑠𝑒𝑐 

Self Assessment Question (SAQ) 4: Which of the following molecules will show microwave 

spectrum:  H2, HCl, CH4, CH3Cl, CH2Cl2, H2O, SF6. Why? 

Self Assessment Question (SAQ) 5: Distinguish between symmetric top (prolate and oblate), 

spherical top and asymmetric top molecules. Which are suitable for microwave spectroscopy? 
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Self Assessment Question (SAQ) 6: The intensity of J=0 J=1 is often not the most intense 

rotational line. Why?  

Self Assessment Question (SAQ) 7: Outline the effect of isotopic substitution on the rotational 

spectra of molecules. 

Self Assessment Question (SAQ) 8:  Prove that for maximum population 𝐽 = √
𝑘𝑇

2ℎ𝑐𝐵
−
1

2
 

Self Assessment Question (SAQ) 9: Choose the correct option- 

(a) For linear diatomic molecule the relation of moment inertia are 

(i) Ib=0  and Ia = Ic (ii) Ic=0  and Ib = Ia (iii) Ia=0  and Ib = Ic (iv) Ia≠0  and Ib = Ic 

Self Assessment Question (SAQ) 10: Fill in the blank- 

(i) Region of rotational spectrum in terms of wavenumber is  ………. 

(ii) Relation between centrifugal distortion constant and rotational constant is 

…………….. 

(iii) Prolate type asymmetric rotator can be represented by its moment of inertia 

as……….. 

 

9.5 Non rigid rotator 

In rigid rotator model we have observed that the separation between the adjacent rotational 

lines remain fixed as 2B. In reality it is found that the separation between the adjacent lines 

decreases steadily with increasing J value. If we check the experimental and computed 

rotational spectrum of hydrogen fluoride (HF) as given below in table 9.2, it is observed from 

the table that as J increases, B value also decreases for the experimental spectrum. The reason 

for this decreases in B may be observed if we calculate the internuclear distances from B value. 

It is observed that the bond length increases with J. We can say that our assumption of existence 

of rigid rotator is only an approximation. So the bond is not rigid as we assumed rather all 

bonds are elastic to a certain extent. It is quite obvious that the molecule cannot be a strict, rigid 

rotator when it is also able to carry out vibrations in the direction of the line joining the two 

nuclei. Therefore a better model for representing the rotations of the molecule is given by the 

“non rigid rotator” that is a rotating system consisting of two mass points which are not 

connected by a massless rigid bar rather by a massless spring. 

 

Rotational 

transition 

Bcal in cm-1  Bexp  in cm-1 Bond length req in 

Å 

J=0 J=1 20.56 20.55 0.929 

J=1 J=2 20.56 20.48 0.931 

J=2 J=3 20.56 20.43 0.932 
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J=3 J=4 20.56 20.31 0.935 

J=4 J=5 20.56 20.16 0.938 

J=5 J=6 20.56 20.04 0.941 

J=6 J=7 20.56 19.82 0.946 

J=7 J=8 20.56 19.64 0.951 

J=8 J=9 20.56 19.45 0.955 

J=9 J=10 20.56 19.16 0.963 

J=10 J=11 20.56 18.91 0.969 

 

Table 9.2: Rotation spectrum of hydrogen fluoride for different rotational energy level 

transitions. 

In non-rigid rotator system the increase in bond length with J reflects the fact that the more 

quickly a diatomic molecule rotates the greater is the centrifugal force (as discussed in section 

9.4.2). In such system as a result of greater action of centrifugal force, the internuclear distance, 

and consequently the moment of inertia increases with increasing rotation, which tends to move 

the atoms apart.  

To explain how the elasticity of bond length may be quantitatively allowed for rotational 

spectrum, we have to consider the vibration energy of the molecule since the elastic bond length 

will stretch and compress periodically with a certain fundamental frequency dependent on the 

masses of the atoms and the elasticity (force constant) of the bonds. If we consider the motion 

of bond length as simple harmonic, the force constant is given by 

𝑘 = 4𝜋2�̅�2𝑐2𝜇 …………………….. (21)   with �̅� =


𝑐
=

1

2𝜋𝑐
√
𝑘

𝜇
 

with ̅ as vibrational frequency (in cm-1), c be  the velocity of light,  be reduced mass of  the 

system. The variation of B with J can be determined by force constant as: the weaker the bond, 

the more quickly the molecule will distort under centrifugal force. Another consequence of 

elasticity is that the R and B varies during vibration as B1/R2.  

So for a correct treatment we have to use the complete Hamiltonian of the non-rigid rotator and 

apply Schrödinger wave equation to solve the Hamiltonian. The solution of the corresponding 

Schrödinger equation gives us the following energy Eigen value as 

𝐸𝐽 = 
ℎ2𝐽(𝐽+1)

8𝜋2𝐼
−
ℎ4𝐽2(𝐽+1)2

32𝜋4𝐼2𝑅2𝑘
    Joule …………. (22) 

or  𝜀𝐽 =
𝐸

ℎ𝑐
= 𝐵𝐽(𝐽 + 1) − 𝐷𝐽2(𝐽 + 1)2  cm-1   ………..(23) 

where, B is the rotational constant as defined earlier and D as centrifugal distortion constant 

and is expressed as a positive quantity.  

𝐷 =
ℎ3

32𝜋4𝐼2𝑅2𝑘𝑐
=
4𝐵3

�̅�2
  cm-1  ……………..(24) 
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The above equation 23 is only applied for the simple harmonic force field. If the force field is 

anharmonic the expression will become 

𝜀𝐽 =
𝐸

ℎ𝑐
= 𝐵𝐽(𝐽 + 1) − 𝐷𝐽2(𝐽 + 1)2 + 𝐻𝐽3(𝐽 + 1)3 +⋯ cm-1  …………… (25) 

From equation 24 it is evident that centrifugal distortion effect is greatest for molecules with 

smaller moment of inertia and small force constants. In a given molecule, the effect of D is to 

decrease the rotational energy (equation 23) which increases rapidly for higher rotational states. 

It is only in very rare cases the experimental data consider the introduction of the term H.  

The selection rule for the non-rigid rotator is again Δ𝐽 = ±1. So the frequency of transition for 

J=1J=J+1 is given by (only considering up to D term) 

�̅�𝐽→𝐽+1 = 𝐽+1 − 𝐽

= 𝐵[(𝐽 + 1)(𝐽 + 2) − 𝐽(𝐽 + 1)] − 𝐷[(𝐽 + 1)2(𝐽 + 2)2 − 𝐽2(𝐽 + 1)2]          

= 2𝐵(𝐽 + 1) − 4𝐷(𝐽 + 1)3 cm-1 ………………(26)                 with J=0,1,2,3…… 

The first term in equation 26 is the same as that of rigid rotator. The additional term gives the 

shift of the lines of the spectrum of a rigid molecule which increase with J as (J+1)3. Fig 9.11 

gives the schematic representation of the energy levels and the spectrum of non-rigid rotator as 

well as rigid rotator. We can see that the rotational spectrum of non-rigid rotator is similar to 

that of rigid rotator expect each line is displaced slightly to low frequency. The knowledge of 

D allows us to determine the J value of the lines in an observed spectrum. Also the D value 

helps us to determine the vibrational frequency of the diatomic molecule. 

 

 

 

 

Fig 9.11. Representation of the energy levels and spectrum of rigid and non-rigid diatomic 

rotator. 

Rigid Rotator 

𝜀𝐽 = 𝐵𝐽(𝐽 + 1) 

 

Non Rigid Rotator 

𝜀𝐽 = 𝐵𝐽(𝐽 + 1) − 𝐷𝐽
2(𝐽 + 1)2 

 

0        2B       4B       6B       8B       10B     

cm-1 
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Problem 4: Rotational and centrifugal distortion constants of HCl are 10.593 cm-1 and 5.3 x10-

4 cm-1. Estimate the vibrational frequency and force constant of the molecule. 

Solution: Centrifugal distortion constant 𝐷 =
ℎ3

32𝜋4𝐼2𝑅2𝑘𝑐
=
4𝐵3

�̅�2
  cm-1 

�̅� = [
4(10.593 cm−1)3

5.3 x10−4 cm−1
]

1
2⁄

= 2995.2cm−1 

Force constant 𝑘 = 4𝜋2�̅�2𝑐2𝜇 

 = 1.6261x10-27kg 

k=42x(3x108m/sec)2(1.6261x10-27kg)(2995.2x102m-1)2 

= 517.8Nm-1 

 

Problem 5: Three consecutive lines of the rotational spectrum of a diatomic molecule are 

observed at 84.544, 101.355, 118.112 cm-1. Assign these lines to their appropriate J’’J’ 

Transitions and deduce the values of B and D. Also evaluate the approximate vibrational 

frequency of the molecule. 

Solution: Frequency for JJ+1 transition 

�̅�𝐽→𝐽+1 = 2𝐵(𝐽 + 1) − 4𝐷(𝐽 + 1)
3cm-1. According to the given condition 

84.544 cm-1= 2𝐵(𝐽 + 1) − 4𝐷(𝐽 + 1)3  

101.355 cm-1= 2𝐵(𝐽 + 2) − 4𝐷(𝐽 + 2)3 

118.112 cm-1=2𝐵(𝐽 + 3) − 4𝐷(𝐽 + 3)3  From the first two equations 

16.811 cm-1=2𝐵 − 4𝐷[(𝐽 + 2)3 − (𝐽 + 1)3] 

Since DB, an approximate value of B can be obtained by neglecting the term in D. With 2B= 

16.811 cm-1 again neglecting the term in D we get, 

84.544 cm-1= 16.811cm−1 (𝐽 + 1) 

J=4.03=4(corrected to the integer) 

So the line at 84.544 cm-1 correspond to J=4J=5 transition. The line at 101.355 cm-1 is due 

to J=5J=6 transition. The line at 118.112 cm-1is due to J=6J=7 transition. 

With these values we get 

 84.544 cm-1=2𝐵 × 5 − 4𝐷 × 125 
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101.355 cm-1=2𝐵 × 6 − 4𝐷 × 216 . Solving these two equations we get 

B= 8.473 cm-1 and D=3.7x10-4 cm-1. Again by using the relation 𝐷 =
ℎ3

32𝜋4𝐼2𝑅2𝑘𝑐
=
4𝐵3

�̅�2
 

We can calculate �̅� = 2564.4cm−1.  

Self Assessment Question (SAQ) 11: What is centrifugal distortion? Explain the effect of 

centrifugal distortion on the moment of inertia and energy of a diatomic molecule. How 

centrifugal distortion can help to determine the force constant of a bond? 

Self Assessment Question (SAQ) 12: The observed rotational spectrum of HF shows decrease 

in the line separation on the high frequency side. Why? 

Self Assessment Question (SAQ) 13: Find the frequencies of the J=1J=2 and J=2J=3 

rotational absorption lines in NO, who’s molecules have the moment of inertia 1.65x10-46 kg 

m2.  

Self Assessment Question (SAQ) 14: Calculate the energies of the four lowest non zero 

rotational energy levels of the H2 and D2 molecules where D represents deuterium atom H2
1. 

9.6 Linear Polyatomic Molecules 

Linear polyatomic molecules can also be treated similar to the diatomic molecules since Ia=0  

and Ib = Ic. Similarly the energy levels EJ are given by the same formula identical to that of the 

diatomic molecules as 

�̅�𝐽→𝐽+1 = 𝐽+1 − 𝐽 = 2𝐵(𝐽 + 1) − 4𝐷(𝐽 + 1)
3 cm-1     with J=0,1,2,3…… 

Spectrum will show the same 2B separation modified by the distortion constant. So the whole 

theory of diatomic molecules are equally applicable to all linear molecules. However there are 

some points are needed to be understand. They are: 

1. The moment of inertia for end over end rotation of the polyatomic linear molecule is 

considerably greater than that of the diatomic molecule, The B value will be much 

smaller. Usually for diatomic molecules B value are observed to be 10 cm-1 while for  

linear triatomic molecule B value is observed as tentatively around 1 cm-1 or less. So 

for larger linear molecules it will be smaller more. As a result of this the spectral lines 

are observed to be more closely spaced.  

2. The molecule should have a permanent dipole moment to be microwave active. 

Example: OCS molecule is microwave active, whereas OCO or CO2 is not. Also 

isotopic substitution does not lead to microwave activity. 

3. A noncyclic polyatomic linear molecule having N atoms contains N-1 individual bond 

lengths. So in a triatomic molecule like OCS, there we have two bond length as rCO  and 

rCS. The molecule has only one moment of inertia for the end over end rotation of OCS. 

So only one value can be determined from the microwave spectrum of OCS. If we study 

the spectra OCS molecule for different transitions we will observe there is no existence 
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of centrifugal distortion and so B remains constant at 0.2027 cm-1. And the moment of 

inertia comes out to be as Ib=137.95 x10-47 kg m2. From this observation, it is impossible 

to deduce the values of the bond lengths rCO  and rCS. To overcome this problem if we 

study the molecule with different atomic masses, but with the same bond lengths then 

we may get the value of different moment of inertia. 

Let us consider the rotation of OCS where rO, rC, rS represent the distances of the atoms from 

the center of gravity having corresponding masses as mO, mC, mS  (Fig-9.12).  

 

Fig 9.12. Linear polyatomic molecule carbon oxysulphide (OCS) showing the distances of each 

atom (ro, rc, rs) from center of gravity. 

Following the figure moments of OCS will be given by 

mOrO+mCrC =mSrS  ……………………(27) 

The moment of inertia will be 

𝐼 = 𝑚𝑂𝑟𝑂
2 +𝑚𝐶𝑟𝐶

2 +𝑚𝑆𝑟𝑆
2………………. (28) 

Again we have  rO=rCO+rC   rS=rCS-rC  ……….(29) 

Substituting equation 29 into equation 27 we get 

(𝑚𝐶 +𝑚𝑂 +𝑚𝑆)𝑟𝑆 = 𝑚𝑆𝑟𝐶𝑆 −𝑚𝑂𝑟𝐶𝑂…………………. (30) 

𝑀𝑟𝑆 = 𝑚𝑆𝑟𝐶𝑆 −𝑚𝑂𝑟𝐶𝑂……………………………. (31) 

Where M is the total mass of the molecule. Now substituting equation 29 to equation 28 we get 

𝐼 = 𝑚𝑂(𝑟𝐶𝑂 + 𝑟𝐶)
2 +𝑚𝐶𝑟𝐶

2 +𝑚𝑆(𝑟𝐶𝑆 − 𝑟𝐶)
2

= 𝑀𝑟𝐶
2 + 2𝑟𝐶(𝑚𝑂𝑟𝐶𝑂 −𝑚𝑆𝑟𝐶𝑆) + 𝑚𝑂𝑟𝐶𝑂

2 +𝑚𝑆𝑟𝐶𝑆
2  

Substituting for rC from equation 31 we get 
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𝐼 = 𝑚𝑂𝑟𝐶𝑂
2 +𝑚𝑆𝑟𝐶𝑆

2 −
(𝑚𝑂𝑟𝐶𝑂−𝑚𝑆𝑟𝐶𝑆)

2

𝑀
…………………. (32) 

If we consider the isotope of 16OCS as 18OCS then for mass of isotope of oxygen we may write 

mO
’ for mO  and by applying it in the equation 32 we will get the moment of inertia of the 18OCS 

as  

𝐼′ = 𝑚′𝑂𝑟𝐶𝑂
2 +𝑚𝑆𝑟𝐶𝑆

2 −
(𝑚′𝑂𝑟𝐶𝑂−𝑚𝑆𝑟𝐶𝑆)

2

𝑀′
……………….. (33) 

The analysis of the spectra of the parent 16OCS and isotope 18OCS molecules give I and I’ from 

which the two unknown bond lengths rCO  and rCS  can be evaluated form the spectrum of the 

isotope. Point to be noted here that for isotopic substitution we have considered the bond length 

remains unaltered.  

Self Assessment Question (SAQ) 15: The rotational constant for 12H14CN and 12D14CN are 

1.4782 and 1.2077 cm-1. Calculate the moments of inertia of these molecules and the 

internuclear distances of C-H and CN bonds. 

9.7 Symmetric Top Molecules 

Rotational energy levels of this type of molecules are more complicated than a linear molecule 

but due to the symmetry, the pure rotational spectra of symmetric top molecules are relatively 

simple. The condition for symmetric top molecule: Ia ≠ 0 and Ib = Ic .There are two directions 

of rotation in which the molecule might absorb or emit energy. They are one about the main 

symmetry axis and another one is perpendicular to this axis. As mentioned earlier, for the 

molecule CH3Cl the main axis is C-Cl bond axis. So we need two quantum numbers (K and J) 

to describe the degree of rotation one for Ia and the other for Ib or Ic. The condition for the 

quantum number K is that it cannot be greater than J. K can be negative, so we can imagine 

positive and negative values of K to correspond with clockwise and anticlockwise rotation 

about the symmetry axis. In general K can take the values: 

K= J, J-1, J-2,……..0,…….,-(J-1), -J  …………….(34) 

If we take the case of a rigid symmetric top molecule with no centrifugal distortion effect, the 

Schrödinger equation may be solved to give the allowed energy levels for rotation as 

 𝜀𝐽,𝐾 =
𝐸𝐽,𝐾

ℎ𝑐
= 𝐵𝐽(𝐽 + 1) + (𝐴 − 𝐵)𝐾2  cm-1  …………(35) 

Where 𝐵 =
ℎ

8𝜋2𝑐𝐼𝐵
  and 𝐴 =

ℎ

8𝜋2𝑐𝐼𝐴
 

The selection rule for the energy transitions are  ∆𝐽 = +1  and  ∆𝐾 = 0 

If we apply the selection rule in equation 35 the frequency of transition will be 

�̅�𝐽,𝐾→𝐽+1,𝐾 = 𝐽+1,𝐾 − 𝐽,𝐾 = 𝐵[(𝐽 + 1)(𝐽 + 2) + (𝐴 − 𝐵)𝐾
2 − [𝐵𝐽(𝐽 + 1) + (𝐴 − 𝐵)𝐾2] 
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= 2𝐵(𝐽 + 1) cm-1   …………….(36)       with J=0,1,2,3……. 

So we observe that the rotational spectrum is independent of K and hence rotational change 

about the symmetry axis do not give rise the rotational spectrum. 

9.8 Asymmetric Top Molecules 

These categories of molecules have three different moments of inertia and also have much 

more complicated rotational energy levels and spectra. No simple general expression for the 

energy and transition can be derived from this class of molecule. These classes of molecules 

generally treated by different approximation methods and so much complicated computation 

being required to deal these systems.  

9.9 Instrumentation for Rotational Spectroscopy 

The instrument required for rotation spectroscopy is known as microwave spectrometer. The 

instrument consists of source, monochromator, beam directors, sample and sample space, 

detector (Fig 9.13). 

 

Fig 9.13. Schematic diagram of microwave spectrometer. 

Source: Usual source used for microwave spectroscopy is klystron valve which acts as its own 

monochromator. In recent times Gunn diodes are used extensively as source since they need 

only 20 V power compared to the 300 V- 4000 V required for klystron source. 

Beam director: This is achieved by using waveguides which is achieved by hollow tube of 

copper or silver with rectangular cross section inside which the radiation is confined.  

Sample and sample space: Usually the sample are used in gaseous phase and is retained in a 

piece of evacuated waveguide by a very thin mica window. 

Detector: Radio receiver is used as detector provided it can be tuned to the appropriate high 

frequency. Now simple crystal detector is also in use since it detects the radiation focused on 

it by the waveguide and the signal it gives is amplified for display on an oscilloscope. 
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9.10 Applications of Rotational Spectroscopy 

Molecular structure: A whole molecular structure can be examined by rotational 

spectroscopy. Rotational constant can be obtained with a very high accuracy. Moment of inertia 

can be determined. The rotational spectroscopy can readily distinguish the presence of isotopes 

in a sample and can even detect the presence of different conformational isomers provided they 

have a different moment of inertia. 

Dipole moment and nature of bond: Precise determination of electric dipole moment is 

possible from microwave spectroscopy by measurement of  the Stark Effect (not discussed yet). 

Dipole moment can also throw light on the nature of the molecular bond present in the sample. 

Chemical examination of interstellar space: Microwave spectroscopy has extended the 

analysis to the detection of simple stable molecules in space. Some 100 or molecules have been 

already been characterized by this process. Some of them are existence of water, ammonia and 

formaldehyde. Such observations are done by comparing the relative intensities of various 

rotational transitions of samples like ammonia which helps us to estimate the temperature of 

the interstellar material. 

Microwave oven: Microwave oven is one of the major application areas of rotational 

spectroscopy for today’s industry especially in the kitchen. Its mode of operation depends upon 

the absorption of the microwave radiation by the food in which it is bathed. Water molecule is 

the basic requirement of the microwave oven to operate. Water molecules present in food only 

absorb the microwave radiation and are raised to the higher rotational levels. The food 

molecules which are mainly biological in nature are too large in size to be able to rotate so they 

do not take part in rotational level transitions. With the presence of many rotational excited 

states, after absorption the excess rotational energies of the water molecules are re emitted as 

heat which is used to cook the food. In conventional oven, food is heated from outside and it 

is used till its food center has been raised to sufficiently high temperature which is time 

consuming process. For microwave heating, water molecules throughout the whole bulk food 

are excited and used to heat and cook the food.  This is the reason why cooking time in 

microwave oven is lesser than normal oven.  

It is essential to ensure that the door of microwave oven should be properly sealed under 

working so that no radiation is allowed to leak out. 

Self Assessment Question (SAQ) 16:  Microwave communication systems operate over long 

distances in the atmosphere. The same is true for radar which locates objects such as ships, 

aircrafts by microwave pulses they reflect. The region of molecular rotational spectra is 

microwave region of em radiation. Can you comment on why atmospheric gases do not absorb 

microwaves to any great extent? 
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Self Assessment Question (SAQ) 17: Microwave oven cannot be used to boil egg or to cook 

dry food. Why?  

Self Assessment Question (SAQ) 18: A space probe was designed to seek CO in the 

atmosphere of Saturn by looking for lines in its rotational spectrum. If the bond length of CO 

is112.8 pm, at what wavenumber do the first three rotational transitions appear? What 

resolution would be needed to determine the isotopic ratio of 13C to 12C on Saturn by observing 

the first three 13CO rotational lines as well? How could the experiment be extended to estimate 

the temperature of Saturn’s atmosphere? 

9.11 Summary 

In this unit, you have studied about rotational spectroscopy. To present the clear understanding 

of rotational motion, some basic definitions like dipole moment, moment of inertia, energy, 

energy transition have been discussed. You have studied about the requirements of specific 

molecules to show rotational spectra. You have discussed about different categories of 

molecules like linear, symmetric top, asymmetric top in terms of their moment of inertia. You 

have also studied about the theories of rotational spectroscopy in detail for different linear 

molecular systems like diatomic rigid rotator, diatomic non-rigid rotator, polyatomic linear 

molecules, etc. You have also studied about the isotopic effect on the pure rotational spectra. 

In the unit, you have seen the characteristics of rotational spectra for symmetric and asymmetric 

top molecules. You have also studied the detailed instrumentation and techniques used to do 

rotational spectroscopy. You have been informed about different application areas of the use 

of rotational spectroscopy for the industry starting from your kitchen to interstellar space. Many 

solved examples are given in the unit to make the concepts clear. To check your progress, self 

assessment questions (SAQs) are given place to place. 

9.12 Glossary 

Spectroscopy – the study of the interaction between matter and electromagnetic radiation 

Dipole moment- A dipole moment is the product of the magnitude of the charge and the distance 

between the centers of the positive and negative charges. 

Moment of inertia- A quantity expressing a body's tendency to resist angular acceleration, 

which is the sum of the products of the mass of each particle in the body with the square of its 

distance from the axis of rotation. 
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 9.15 Terminal Questions 

(Should be divided into Short Answer type, Long Answer type, Numerical, Objective type) 

9.15.1 Short Answer type 

1. How microwave oven works? 

2. How many revolution per second does a CO molecule make when J=3? The CO bond length 

is 0.1131 nm. 

3. Show that a substantial number of molecules of a gas are in excited rotational states at 

temperature 300K. 

4. Mention the difference between rotational and vibrational spectra. 

9.15.2 Long Answer type 

1. Explain different types of rotator molecules in terms of their moment of inertia 

2. Derive the rotational energy value for a diatomic rigid rotator by using the quantum 

mechanical model. Identify the transition frequency value for two rotational level 

transition. 

3. Why the concept of non-rigid rotator is needed? What correction do you need to explain 

non-rigid rotator and why? 

4. The energy levels of a rigid symmetric top molecule are given by 

𝜀𝐽,𝐾 =
𝐸𝐽,𝐾

ℎ𝑐
= 𝐵𝐽(𝐽 + 1) + (𝐴 − 𝐵)𝐾2  cm-1 .What are A, B, J, and K. State the selection rules 

for 

allowed transitions. 

5. Write notes on- 

      (i) Dipole moment       (ii) Microwave oven   (iii) Isotopic effect on rotational spectroscopy  
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9.15.2 Numerical type 

1. Let the number of molecules in the first excited state are 98% of the number of 

molecules in the ground state at 23 ºC. Can one estimate the value of Rotational constant 

(B)? 

 

2. Calculate the ratio of the number of molecules (NJ ) in the rotational state J=5 to J=0 

in a 

Sample of HI at 300K. Use the moment of inertia of the HI molecule 4.31x10-47kg m2. 

 

3. Estimate the frequencies of the J = 1  J = 2 and J = 2  J = 3 rotational absorption 

lines in NO, whose molecules have the moment of inertia 1.65 x 10-46 kg.m2. 

 

4. The rotational constant for H12C14N and D12C14N are 1.4782 and 1.2077 cm-1
 

respectively. Calculate the moments of inertia of each molecule and bond lengths of C-

H, C-D and C N .Given the mass mH=1.008 amu, mD=2.014, mC=12 amu, mN=14.003 

amu. 

 

5. Consider a diatomic molecule as non – rigid rotator with rotational constant B=10.5 

cm-1 and distortion constant D=5.0x10-4cm-1. Obtain vibrational frequency, and force 

constant of the molecule. Consider reduced mass of the molecule as 1.6x10-27Kg. 

 

6. Three consecutive lines in microwave spectra are observed at 82.19 cm-1, 123.15cm-1, 

and 164 cm-1. Obtain the value of the rotational constant and assign the J values between 

which the transition occurs for rotational line at 164 cm-1. 

 

7. Rotational and distortion constants of HCl molecule are 10.593 cm-1
 and 5.3x10-4

 

respectively. If the force constant is 517.8 Nm-1
 and vibrational frequency is 2995.2 

x102
 m-1. Using these data can we obtain the reduced mass of the molecule? If yes, then 

find its value. 

 

8. For ClF molecule, the bond length is 0.1630 nm and the centrifugal distortion is 10-4B, 

where B is the rotational constant. Calculate the spacing between first four lines. Use 

atomic mass mCl= 35.45 amu and mF= 19 amu. 
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UNIT 10                                VIBRATIONAL SPECTRA 
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10.1 Introduction 

The atoms in a molecule do not remain in a fixed relative position, but vibrate about some mean 

position. A molecule may have many different modes of vibration. When sufficiently excited, 

a molecule can vibrate as well as it can rotate. So the vibrations of its atoms with respect to 

each other has an energy level spacing as we have already observed the rotational energy levels 

of molecules due to rotation of the atoms with respect to center of gravity. Transitions between 

these vibrational levels result vibrational spectra which give an insight into the discrete motion 

of the atoms in the molecular system. Vibrational frequencies of the molecule also help us to 

get valuable information regarding molecular structure, symmetry, bond length, inter and 

intramolecular interaction etc. 

10.2 Objective 

After studying this unit, you should be able to- 

 define vibrational motion of atoms in molecule 

 study the effect of vibrational motion on diatomic harmonic oscillator, anharmonic 

oscillator 

 study the effects of vibration and rotation on molecule 

 apply the laws vibrational spectroscopy for identifying different modes of normal 

vibrations in linear and nonlinear molecules 

 apply the concept of vibrational spectroscopy to different infrared spectra of complex 

molecules 

 learn to apply the knowledge of vibrational spectroscopy for different industrial 

applications 

10.3 Slient Features Of Vibrational Spectra 

For vibrational spectroscopy to be observed it is the vibration between atoms rather than 

rotation is important. The vibration gives rise to a change in dipole moment in the molecular 

system which results transitions between vibrational energy levels and give rise vibrational 

spectra. Vibrational energy states are separated by an energy interval of 104 Joule/mole. The 

molecular spectra arise from the transition between two vibrational energy states are observed 

in the infrared region of the electromagnetic spectrum with a wavelength range from 100 m 

to 1 m. Vibrational spectroscopy also known as infrared spectroscopy also. Let us discuss the 

vibrational spectra due to the change in dipole moment with an example. Consider linear carbon 

dioxide (CO2) molecule. In CO2, three atoms are arranged linearly with a small net positive 

charge on the carbon atom (2+) and small negative charges on the oxygen atoms (-) (Fig 

10.1). If we consider the possibility of vibration, it can happen between two CO bonds. 
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Fig10.1 Charge distribution in CO2. 

During the period of vibration between the atoms in CO2 molecule as a whole, alternately 

stretching and compression of the CO bonds happens simultaneously with respect to its center 

of gravity at C. For the symmetric stretching condition, both the C-O bonds on both sides of a 

central carbon atom stretched and compressed in equal amount with respect to C and so the 

resultant dipole moment remains zero throughout the whole vibration process (Fig 10.2). Since 

there is no change dipole moment is observed during “symmetric stretch”, the particular 

vibration due to symmetric stretching mode is ‘infrared inactive’. 

 

Fig10.2 Symmetric stretching vibration of CO2 in terms of stretched and compressed mode 

with respect to center.  

For antisymmetric stretching mode the amount of stretching or compression of both bonds are 

not equal and simultaneous. At the same time one bond stretches while the other is compressed 

or vice versa (Fig 10.3). As a result of this asymmetric stretching or compression, the total 

change in dipole moment for the whole CO2 molecule shows a periodic alteration. Since a 

change in dipole moment exists for asymmetric stretching mode, the vibrations is thus ‘infrared 

active’.  

 

Fig10.3 Asymmetric stretching vibration of CO2 in terms of stretched and compressed mode 

with respect to normal.  
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Another vibrational mode exists for this linear molecule which is bending mode. For bending 

mode also CO2 shows change in dipole moment and so this mode also acts as ‘infrared active’ 

mode (Fig 10.4). We have to keep one point in mind that in neither of these vibrational motions 

does the center of gravity move. So change in dipole moment is the main requirement for the 

molecule to show vibrational or infrared spectroscopy. Homonuclear diatomic molecule has no 

change in dipole moment and so they are infrared inactive. 

For molecular vibrational spectroscopy the boundaries of electromagnetic spectrum is known 

as Infrared region. The detail of this region is as follows: 

In terms of frequency (): 3 x1012 – 3 x1014 Hz 

In terms of wavelength (): 100 m – 1 m 

In terms of wavenumber (̅) : 100 – 104 cm-1 

In terms of energy (): 103 – 105 Joules/mole 

 

 

Fig10.4 Bending vibration of CO2 and associated change in dipole moment with respect to 

normal.  

 

10.4 Vibration Of Various Molecular Structures 

10.4.1 Vibration of diatomic molecule 

The simplest step to consider the possible assumption about the form of different vibrations is 

diatomic molecule.  Let us start with the stable configuration of molecule. Two atoms in a 

stable diatomic molecule settle at an equilibrium internuclear distance (req) when the balancing 

for attractive and repulsive forces appears between them. The repulsive force appears due to 

the repulsion between the positively charged nuclei of both atoms and between their negative 

electron clouds. The attractive force appears between the nucleus of one atom and electrons of 
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the other. So squeezing the atoms more from their equilibrium position will generate repulsive 

force to rise rapidly, similarly pulling apart them will be resisted by the generation of attractive 

force. The restoring force exerted by the two atoms of the molecule on each other when they 

are displaced from their equilibrium position (req) which is proportional to the change of the 

internuclear distance (r). The compression and extension of the bond length may follow the 

behavior of a spring which obeys Hook’s law as 

𝑓 = −𝑘(𝑟 − 𝑟𝑒𝑞)………….. (1) 

Where f is restoring force, k is the force constant, r is the distance of two atoms and req is the 

mean internuclear distance or equilibrium distance.  

Any attempt to disrupt req or bond length requires an input energy as potential energy as 

described in equation (2) as  

𝑉 =
1

2
𝑘(𝑟 − 𝑟𝑒𝑞)

2……….. (2) 

At the energy minimum, the internuclear distance is referred as the equilibrium distance req or 

equilibrium bond length which can be described by a parabolic curve (red line) as Fig 10.5. For 

periodic motion each atom moves towards or away from each other so that the placement from 

the equilibrium position is the sine function of time. Such a motion of the two atoms can be 

reduced to the simple harmonic vibration of the single mass point about the equilibrium 

position. Such model is known as harmonic oscillator.    

 

Fig10.5 Variation of Potential energy curve of diatomic molecule.  
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10.4.2 The harmonic oscillator 

According to classical mechanics, a harmonic oscillator is defined as the mass point as mass 

(m) on which an acted force (f) is proportional to the distance (x) from the equilibrium position 

and is directed toward the equilibrium position. As force = mass x acceleration, so we may say 

𝑓 = −𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
……….. (3) 

where k is the force constant. The solution of the differential equation 3 is well-known to us 

and can be expressed as 

𝑥 = 𝑥0𝑠𝑖𝑛(2𝜋𝜈𝑜𝑠𝑐𝑡 + 𝜑)…….. (4) 

where x0 is the amplitude of vibration and  is the phase constant dependent on the initial 

conditions. The vibrational frequency 𝜔𝑜𝑠𝑐 is given by equations 5a and 5b as 

𝜔𝑜𝑠𝑐 =
1

2𝜋
√
𝑘

𝑚
    𝑖𝑛 𝐻𝑧……………….. (5a) 

�̅�𝑜𝑠𝑐 =
1

2𝜋𝑐
√
𝑘

𝑚
    𝑖𝑛 𝑐𝑚−1………………. (5b) 

Since force is negative derivative of potential energy V so we may express equation 2 as 

𝑉 =
1

2
𝑘𝑥2 = 2𝜋2𝑚𝜔𝑜𝑠𝑐

2𝑥2………….. (6) 

This equation justifies the parabola nature (red line) of the potential energy curve in Fig 10.5.  

 Again we know that for diatomic molecule the restoring force is applied by the atoms on each 

other when they are forcefully displaced from their equilibrium position and the force is 

proportional to the change of req.  If we assume that this relation hold good for diatomic 

molecule then for mass m1 and m2  with their distances from r1 and r2 from the center of gravity 

(Fig 9.7 of unit 9), we can express the relations as 

𝑚1
𝑑2𝑟1
𝑑𝑡2

= −𝑘(𝑟 − 𝑟𝑒𝑞) 

𝑚2
𝑑2𝑟2

𝑑𝑡2
= −𝑘(𝑟 − 𝑟𝑒𝑞)     

where r is the distance of two atoms and req=R is the mean internuclear distance or equilibrium 

distance. We can combine both the above equations as (by using equation 4 of unit 9) 

𝑚1 𝑚2

(𝑚1 +𝑚2)

𝑑2(𝑟 − 𝑟𝑒𝑞)

𝑑𝑡2
= −𝑘(𝑟 − 𝑟𝑒𝑞)                𝑠𝑖𝑛𝑐𝑒 𝑟𝑒𝑞 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝜇
𝑑2(𝑟 − 𝑟𝑒𝑞)

𝑑𝑡2
= −𝑘(𝑟 − 𝑟𝑒𝑞)………… . (7) 
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Equation 7 is identical with equation 3 of harmonic oscillator except that x is replaced by 

(𝑟 − 𝑟𝑒𝑞),  the change of internuclear distance from its equilibrium value. So we have reduced 

the vibration of two atoms of a molecule to the vibration of a single mass point  whose 

amplitude equals to the change of internuclear distance of the molecule. 

10.4.2.1 Energy levels of harmonic oscillator 

If we assume the potential energy (V) of the two nuclei is given by equation 6 then the 

Schrödinger equation describing the motion of the representative particle in harmonic oscillator 

is given by 

𝜕2𝜓

𝜕𝑥2
+
8𝜋2𝜇

ℎ2
(𝐸 −

1

2
𝑘𝑥2)𝜓 = 0…………… (8) 

Equation 8 gives a single valued, finite and continuous solution which vanish at infinity and 

do not exist for all Eigen values of Ev but exist only for a entrain quantized Ev values as 

𝐸𝑣 =
ℎ

2𝜋
√
𝑘

𝜇
(𝑣 +

1

2
) = ℎ𝜔𝑜𝑠𝑐 (𝑣 +

1

2
) Joules ………..(9) with v=0,1,2,3….. 

Where v is the vibrational quantum number. Converting the energy Eigen value in 

spectroscopic unit we get the energies of harmonic vibrator as 

𝜀𝑣 =
𝐸𝑣

ℎ𝑐
= (𝑣 +

1

2
) �̅�𝑜𝑠𝑐 𝑐𝑚

−1……….(10) 

The values of equation 9 and 10 are the only energy values allowed by the quantum theory for 

the harmonic oscillator and so for the harmonically vibrating molecule. It should be noted that 

in contrast to the rigid rotator the state of lowest energy at v=0 does not have Ev=0 rather it has 

the value 

𝐸0 =
ℎ

2𝜋
√
𝑘

𝜇
(
1

2
) =

1

2
ℎ𝜔𝑜𝑠𝑐 Joules     with 𝜔𝑜𝑠𝑐   in Hz    or 

𝜀0 =
1

2
�̅�𝑜𝑠𝑐 𝑐𝑚

−1         With �̅�𝑜𝑠𝑐  in cm-1……………(11) 

So even in lowest vibrational state the vibrational energy is present. This energy 
1

2
�̅�𝑜𝑠𝑐  is 

known as zero point energy. Due to the existence of zero point energy, the diatomic molecule 

can never have zero energy value. As a result of that, the atoms can never be completely be at 

rest relative to each other. In spite of zero point vibration the state v=0 is known as vibration 

less state. 

The prediction of zero point energy creates a basic difference between the quantum mechanical 

approach and classical approach to deal with molecular vibrations. Quantum mechanics insists 

that the molecule must always vibrate to some extent which justifies the existence of zero point 

energy. Classical mechanics has no objection to the molecule possessing no vibrational energy.  
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10.4.2.2 Spectrum of harmonic oscillator 

The molecule with unlike or heteronuclear atoms in its equilibrium position always has a dipole 

moment. This dipole moment arises due to change in the internuclear distance. Example: HCl. 

Vibrational spectra will only be observed in heteronuclear molecules and not in homonuclear 

molecules since they don’t have dipole moment or change in dipole moment. Example: N2, O2 

etc.  It is considered that the change in dipole moment with internuclear distance is linear. 

According to classical electrodynamics, the dipole moment changes with a frequency equal to 

the frequency of the mechanical vibration. This would lead to the emission of light of 

frequency 𝜔𝑜𝑠𝑐 . Similarly the oscillator could be set in vibration by absorption of light of 

frequency 𝜔𝑜𝑠𝑐. 

According to Quantum mechanics the emission of radiation takes place as a result of a 

transition of the oscillator from higher to lower state and absorption takes place for the 

transition of the oscillator from lower to higher state. The wavenumber (cm-1) of emitted or 

absorbed light between two vibrational states is given by  

�̅� = 
𝐸𝑣′

ℎ𝑐
−
𝐸𝑣′′

ℎ𝑐
 ………….. (12) 

Where v’ and v’’ are the vibrational quantum numbers of the upper and lower energy states. In 

order to determine which particular transition can actually occur we have to evaluate the 

expectation value of the density matrix () of the molecule. In your Quantum mechanics and 

Atomic and molecular physics courses you have already studied that the probability of 

transition from one quantum state | 𝑛 〉to another quantum state |𝑚 〉 is given by 

 

𝑇𝑛𝑚 = 〈𝑛|𝜌|𝑚〉……….. (13) 

If 𝑇𝑛𝑚 = 〈𝑛|𝜌|𝑚〉 ≅ 0 𝑜𝑟 → 0  then the transition is forbidden. If not then 

 𝑇𝑛𝑚 = 𝑝  𝑤𝑖𝑡ℎ  0 < 𝑝 < 1 

So for harmonic oscillator the transition probability are zero except when p is between 0 and 

1. If the two quantum or vibrational states are v’ and v’’ then the allowed transition will follow 

the selection rule for the vibrational quantum number as 

∆𝑣 = 𝑣′ − 𝑣′′ = ±1 ………………… (14) 

Applying the selection rule we can get the value of transition frequency for emission as 

�̅�𝑣+1→𝑣 = 𝑣+1 − 𝑣 = (𝑣 + 1 +
1

2
) �̅�𝑜𝑠𝑐 − (𝑣 +

1

2
) �̅�𝑜𝑠𝑐 = �̅�𝑜𝑠𝑐  cm-1………………(15) 

Similarly for absorption 

�̅�𝑣→𝑣+1 = 𝑣+1 − 𝑣 = �̅�𝑜𝑠𝑐  cm-1 
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So the vibrational level transitions are equally spaced transitions between any two neighboring 

states which gives rise to same energy change (Fig 10.6).  

 

Fig10.6 Vibrational energy levels and allowed transition between them for harmonic 

oscillator model.  

(Note: The frequency of the radiated light is equal to the frequency 𝜔𝑜𝑠𝑐(= 𝑐�̅�𝑜𝑠𝑐) of the 

oscillator.) 

10.4.3 Diatomic molecule as Anharmonic oscillator 

In real diatomic molecule the actual potential energy curve is not as simple parabola as it is for 

harmonic oscillator (Fig 10.5 (red one)). In an actual molecule when the two atoms are placed 

at larger distance from each other, the attractive force becomes zero and correspondingly the 

potential energy has a constant value as described in Fig 10.5 (blue line). The minimum of the 

curve reaches at equilibrium internuclear distance (req). It its nearby points the potential energy 

curve can be represented approximately by a parabola. This is the reason why the model of 

harmonic oscillator represents the main characteristics of the vibrational spectrum very well.  

If the bond between two atoms are stretched beyond a certain limit, the bond will break and the 

molecule will dissociates into two atoms. For small amplitude of stretching and compression 

of the bond length the bond may be considered as elastic, but for larger amplitude of stretching 

and compression of the bond length, tentatively for more than 10 percent change compared to 

the initial bond length, a complicated behavior of the potential energy curve appears. A purely 

empirical expression which fits the real potential energy curve of vibrating diatomic molecule 

is given by Morse function (Fig 10.7) was derived by P.M. Morse as 

𝑉(𝑟) = 𝐷𝑒𝑞[1 − 𝑒𝑥𝑝{𝑎(𝑟𝑒𝑞 − 𝑟)}]
2
 ……..(16) 

Where Deq is the dissociation energy, a is the constant for a given molecule, req is the 

equilibrium internuclear distance corresponds to minimum V(r). 

�̅�𝑜𝑠𝑐   
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Fig10.7 The vibrational energy levels for harmonic and anharmonic oscillator and some 

transitions.  

If we use the potential of equation 16 in the Schrödinger equation 8 and solve the newly formed 

Schrödinger equation of anharmonic oscillator we get the allowed vibrational energy eigen 

values corresponds to different energy levels as 

𝜀𝑣 =
𝐸𝑣

ℎ𝑐
= (𝑣 +

1

2
) �̅�𝑒 − (𝑣 +

1

2
)
2

𝑥𝑒�̅�𝑒 + (𝑣 +
1

2
)
3

𝑦𝑒�̅�𝑒 𝑐𝑚
−1   ……….(17) with v= 

0,1,2,3….. 

Where �̅�𝑒 =
𝜔𝑜𝑠𝑐

𝑐
 is considered as the equilibrium oscillation frequency (expressed in wave 

number, we will describe about it in later section) of the anharmonic system, xe and ye are the 

anharmonicity constants which are very small and positive for bond stretching vibrations. So 

retaining only up to first anharmonic terms the equation (17) will become 

𝜀𝑣 =
𝐸𝑣

ℎ𝑐
= (𝑣 +

1

2
) �̅�𝑒 − (𝑣 +

1

2
)
2

𝑥𝑒�̅�𝑒 𝑐𝑚
−1………….. (18) 

as xe is positive the effect of this anharmonicity is to crowd more closely the vibrational levels 

with increasing value of v. Some of these levels are shown in Fig 10.7. It should be mentioned 

that equation 18 is an approximation only as we can consider more precise expressions of 

energy levels also with rapidly diminishing magnitudes. These terms are only important for 

higher values of v. We can rewrite the equation 18 as 

~𝜔𝑒  ~2�̅�𝑒 ~3�̅�𝑒 
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 𝜀𝑣 = �̅�𝑒 {1 − 𝑥𝑒 (𝑣 +
1

2
)} (𝑣 +

1

2
) 𝑐𝑚−1……………. (19) 

If we compare equation 18 with equation 10 of harmonic oscillator we get 

�̅�𝑜𝑠𝑐 = �̅�𝑒 {1 − 𝑥𝑒 (𝑣 +
1

2
)}   𝑐𝑚−1…….. (20) 

So we may conclude that anharmonic oscillator behaves like the harmonic oscillator but with 

a oscillation frequency which decreases steadily with increasing v. 

If we consider a vibrational energy state with v=-1/2, then according to equation 19, =0. It 

means the molecule will be at equilibrium point with zero vibrational energy. Then the 

oscillation frequency will be 

 �̅�𝑜𝑠𝑐 = �̅�𝑒   𝑐𝑚
−1………………… (21) 

For ground state (v=0), the oscillation frequency and zero point energy for anharmonic 

oscillator  

will be 

�̅�0 = �̅�𝑒 (1 −
1

2
𝑥𝑒)   𝑐𝑚

−1    And   𝜀0 =
1

2
ω̅𝑒 (1 −

1

2
𝑥𝑒)  𝑐𝑚

−1  …… (22) 

So we see that zero point energy of anharmonic oscillator slightly differ from that of harmonic 

oscillator. 

10.4.3.1 Spectrum of anharmonic oscillator 

For anharmonic oscillator the selection rules are considered as 

∆𝑣 = 𝑣′ − 𝑣′′ = ±1,±2, ±3,±4…… .. ……. (23) 

Thus the selection rules are same as the harmonic oscillator with some additional possibility of 

larger jumps between the energy levels like 2, 3….etc. Though the other possibilities of 

transitions are allowed but applications of Boltzmann distribution can show that the additional 

possibilities have rapidly diminishing probability and so these transitions have less observable 

intensity. Usually spacing between two lowest vibrational levels comes out to be of the order 

of 103cm-1. At room temperature at around T=300K, if we apply Boltzmann distribution we 

can get 

𝑁𝑣=1

𝑁𝑣=0
= 𝑒𝑥𝑝 {−

6.63𝑥10−34𝑥3𝑥1010𝑥103

1.38𝑥10−23𝑥300
} = exp(−4.8) = 0.008…………(24) 

So we can see that v=1 state has only about 0.01 per cent of the ground state population under 

room temperature. So to a very good approximation we need to consider only transitions 

originating from v=0 state. We can ignore all transitions originating at v=1 or more. The 

frequencies of first few possible transitions are described as (Fig 10.7): 
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1. Fundamental absorption with considerable intensity: v = 0 v = 1, ∆𝒗 = ±𝟏 

�̅�0⟶1 = ∆𝜀 = 𝑣=1 − 𝑣=0 

= (1 +
1

2
) �̅�𝑒 − (1 +

1

2
)
2

𝑥𝑒�̅�𝑒 − {
1

2
�̅�𝑒 − (

1

2
)
2

𝑥𝑒�̅�𝑒} 

= �̅�𝑒(1 − 2𝑥𝑒) cm-1    ……………….. (25) 

2. First overtone with small intensity: v = 0   v = 2, ∆𝒗 = ±𝟐 

�̅�0⟶2 = ∆𝜀 = 𝑣=2 − 𝑣=0 

= (2 +
1

2
)𝜔𝑒 − (2 +

1

2
)
2

𝑥𝑒�̅�𝑒 − {
1

2
�̅�𝑒 − (

1

2
)
2

𝑥𝑒�̅�𝑒} 

= 2�̅�𝑒(1 − 3𝑥𝑒) cm-1   ………………… (26) 

3. Second overtone with negligible intensity: v = 0  v = 3, ∆𝒗 = ±𝟑 

�̅�0⟶3 = ∆𝜀 = 𝑣=3 − 𝑣=0 

= (3 +
1

2
) �̅�𝑒 − (3 +

1

2
)
2

𝑥𝑒�̅�𝑒 − {
1

2
�̅�𝑒 − (

1

2
)
2

𝑥𝑒�̅�𝑒} 

= 3�̅�𝑒(1 − 4𝑥𝑒) cm-1   ……………… (27) 

And so on……. 

The three transitions are shown in Fig 10.7. As xe 0.01  is very small the three spectral 

frequencies fundamental, first overtone , second overtone may be considered as �̅�𝑒 , 2�̅�𝑒 , 3�̅�𝑒. 

By measurement of these frequencies one can easily evaluate xe  and �̅�𝑒. 

Till now we have ignored the transition from v=1 to higher states. If the temperature of the 

sample is high or if the vibration has a particularly low frequency means v=1 level is not far 

from v=0 level, the population of v=1 state may be appreciable. The wave number of the 

transition from v=1 to is given by 

�̅�1⟶2 = ∆𝜀 = 𝑣=2 − 𝑣=1 

= (2 +
1

2
) �̅�𝑒 − (2 +

1

2
)
2

𝑥𝑒�̅�𝑒 − [(1 +
1

2
) �̅�𝑒 − (1 +

1

2
)
2

𝑥𝑒�̅�𝑒] 

= �̅�𝑒(1 − 4𝑥𝑒) cm-1   ……………(28) 

This is very weak absorption frequency and it will be found close to and at slight lower 

wavenumbers than the fundamental frequency. Such weak absorptions bands are called as hot 

bands since high temperature is the main condition for their appearance. A hot band will 

increase in intensity as the temperature of the sample is increased. 

10.5 Diatomic Vibrating Rotator 

Till now we have considered the rotation and vibration of the molecule quite separately. 

However rotation and vibration can take place simultaneously and in fact the observed fine 

structure of the rotation bands suggests that rotation and vibration in molecule occurs 
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simultaneously. So we will consider a model in which simultaneous rotation and vibration takes 

place simultaneously. The model is known as vibrating rotator or rotating oscillator. 

The energies of   rotations and vibrations are very different so we may say that a diatomic 

molecule can execute rotations and vibrations quite independently. The approximation which 

considers both motion is known as Born –Oppenheimer approximation. The approximation 

considers that combined rotational-vibrational energy is simply the sum of separate energies as 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑟𝑜𝑡 + 𝐸𝑣𝑖𝑏 Joules………………… (29) 

𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑟𝑜𝑡 + 𝜀𝑣𝑖𝑏  cm-1 ……………….......(30) 

𝜀𝐽,𝑣 = 𝜀𝐽 + 𝜀𝑣 

Substituting the values of 𝜀𝐽 and 𝜀𝑣 from equation 23 of unit 9 and equation 18 of unit10 we 

get 

𝜀𝐽,𝑣 = 𝜀𝐽 + 𝜀𝑣 

= 𝐵𝐽(𝐽 + 1) − 𝐷𝐽2(𝐽 + 1)2+(𝑣 +
1

2
) �̅�𝑒 − (𝑣 +

1

2
)
2

𝑥𝑒�̅�𝑒  cm-1 ……… (31) 

Where J= 0,1,2….. and v= 0,1,2….. 

The selection rules for the combined notation will be same as that of individual notation as 

∆𝑣 = ±1,±2, ±3,±4…… ..    and      Δ𝐽 = ±1 …………(32) 

Now consider the vibrational transition for ∆𝑣 = ±1 means transition from v=0v=1. Also 

assume that B and D are same for both the states. Let us consider upper energy state by single 

prime and lower energy state by double prime. Then we get 

�̅� = Δ𝜀𝐽,𝑣 = 𝜀𝐽′,𝑣=1 − 𝜀𝐽′′,𝑣=0 

= 𝐵[𝐽′(𝐽′ + 1) − 𝐽′′(𝐽′′ + 1)] − 𝐷[𝐽′
2(𝐽′ + 1)2 − 𝐽′′

2(𝐽′′ + 1)2] 

+(1 +
1

2
) �̅�𝑒 − (1 +

1

2
)
2

𝑥𝑒�̅�𝑒 − {
1

2
�̅�𝑒 − (

1

2
)
2

𝑥𝑒�̅�𝑒} 𝑐𝑚
−1 

= �̅�𝑒(1 − 2𝑥𝑒) + 𝐵(𝐽
′ − 𝐽′′)(𝐽′ + 𝐽′′ + 1) − 𝐷[𝐽′

2(𝐽′ + 1)2 − 𝐽′′
2(𝐽′′ + 1)2]𝑐𝑚−1……(33) 

Using the selection rule Δ𝐽 = +1 = 𝐽′ − 𝐽′′ = +1 we get R branch frequencies as 

�̅�𝑅 = �̅�0 + 2𝐵(𝐽
′′ + 1) − 4𝐷(𝐽′′ + 1)3 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝐽′′ = 0,1,2,3……… .. ……..(34) 

Again using the selection rule Δ𝐽 = −1 = 𝐽′ − 𝐽′′ = −1 we get P branch frequencies as 

�̅�𝑃 = �̅�0 − 2𝐵(𝐽
′ + 1) − 4𝐷(𝐽′ + 1)3 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝐽′ = 0,1,2,3……… .. …………(35) 
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Where we have used �̅�0 = �̅�𝑒(1 − 2𝑥𝑒) which is the frequency of v=0v=1 transition and 

known as band center or band origin or Q branch line. So the lines corresponding to Δ𝐽 = +1 

are called R Branch lines and lines corresponding to Δ𝐽 = −1 are called P Branch lines. This 

notation is the part of the sequence like O, P, Q, R, S corresponds to Δ𝐽 = −2,−1,0, +1,+2  

respectively.  

Equations 34 and 35 may be combined into a single equation as  

�̅�𝑃,𝑅 = �̅�0 + 2𝐵𝑚 − 4𝐷𝑚
3 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝑚 = ±1,±2,±3……… ..  ………….(36) 

Where m replaces J’’+1 in equation 34 and J’+1 in equation 35. It takes positive values for R 

branch lines and negative values for P branch lines. Usually D is extremely small so we may 

ignore D. Then equation 36 will be  

�̅�𝑃,𝑅 = �̅�0 + 2𝐵𝑚 𝑐𝑚
−1   𝑤𝑖𝑡ℎ 𝑚 = ±1, ±2,±3 ………(37) 

 

Fig10.8 Some transition for vibrating rotator between the energy levels with vibrational states 

v=0 and v=1. 

The vibration-rotation spectrum according to equation 37 will have both P and R branch lines 

each consisting of equally spaced lines with separation 2B. The P branch lines will appear at 

the lower frequency side whereas R branch lines will appear at higher frequency side of band 

center. The spectrum is shown in Fig 10.8.  
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By analysing the spectrum one can calculate the value of band center and B from the spacing 

between lines. From B value one can calculate the value of bond length and force constant. 

 

10.5.1 The fine structure of rotating vibrator spectrum-Breakdown of Born-

Oppenheimer approximation 

A detailed investigation of the experimental absorption band shows that the spacing between 

the rotational lines decreases as the frequency increases. So far we have assumed that vibration 

and rotation proceed independently without interaction. So constant rotational spacing 2B 

should appear between the lines of P and R branches. It is a fact that a molecule vibrates 103 

times during a course of single rotation. So it is a proven fact that bond length also changes 

during the rotation. Since bond length changes, so moment of inertia and B value also changes. 

For simple oscillator motion due to fixed equilibrium bond length it will not vary with 

vibrational energy (Fig 10.5). B is proportional to 1/r2.  In real system i.e. in anharmonic 

oscillator, an increase in vibrational energy is accompanied by an increase in bond length with 

increase in vibrational amplitude and hence the value of B is dependent on the vibrational 

quantum number v. So B varies even more with the vibrational energy. So we may say that 

since req increases with the vibrational energy, B is smaller in the upper vibrational state than 

in the lower. We can express the rotational constant as 

𝐵𝑣 = 𝐵𝑒 − 𝛼 (𝑣 +
1

2
)…………….(38) 

Where Bv is the rotational constant in vibrational level, Be is the equilibrium rotational constant 

and  as the small positive constant for each molecule under consideration. If we restrict our 

discussion to the fundamental vibrational change means the change between v=0v=1 

vibrational energy levels, considering the respective B values as B0 and B1 with B0> B1 we can 

get the transition frequency as 

�̅� = Δ𝜀𝐽,𝑣 = 𝜀𝐽′,𝑣=1 − 𝜀𝐽′′,𝑣=0 

= �̅�𝑒(1 − 2𝑥𝑒) + 𝐵1𝐽
′(𝐽′ + 1) − 𝐵0𝐽

′′(𝐽′′ + 1) 

= �̅�0 + 𝐵1𝐽
′(𝐽′ + 1) − 𝐵0𝐽

′′(𝐽′′ + 1) cm-1 …………….(39) 

Again we have two conditions. Same as previous case for R branch, Δ𝐽 = +1 = 𝐽′ − 𝐽′′ = +1 

�̅�𝑅 = �̅�0 + 𝐵1(𝐽
′′ + 1)(𝐽′′ + 2) − 𝐵0𝐽

′′(𝐽′′ + 1) 

= �̅�0 + (𝐽
′′ + 1)(𝐵1 + 𝐵0) + (𝐵1 − 𝐵0)(𝐽

′′ + 1)2 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝐽′′ = 0,1,2,3   ….. (40) 

For P branch, Δ𝐽 = −1 = 𝐽′ − 𝐽′′ = −1 
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�̅�𝑃 = �̅�0 − (𝐽
′ + 1)(𝐵1 + 𝐵0) + (𝐵1 − 𝐵0)(𝐽

′′ + 1)2 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝐽′ = 0,1,2,3………    ….. 

(41) 

If we combined equations 40 and 41 we get 

�̅�𝑃,𝑅 = �̅�0 + (𝐵1 + 𝐵0)𝑚 + (𝐵1 − 𝐵0)𝑚
2 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝑚 = ±1,±2,±3……… ..  …… (42) 

Where m is positive value for R branch lines and negative value for P branch lines. If B1=B0 

then equation 42 reduces to equation 37. For the case B1< B0 then (𝐵1 − 𝐵0)𝑚
2 is always 

negative irrespective of the sign of m and its magnitude increase as m increases. As the first 

two terms are positive so the presence of this term is to crowd the rotational lines of the R 

branch with increasing m values. While for P branch lines the second and third terms are 

negative and so the lines become more widely spaced (Fig 10.9).  

 

Fig10.9 P and R branch lines and their spacing between the lines in HCl molecule.    

10.6 Vibbbrations of Polyatomic Molecule 

A molecule having n atoms has 3n degrees of freedom. The translational movement uses 3 and 

rotational movement uses 3 of 3n degrees of freedom. So a nonlinear of atoms of n atoms has 

3n-6 fundamental vibrations. For linear molecule since there is no rotation about the bond axis 

it will only have 3n-5 fundamental vibrations. Again for both the cases since molecules with n 

atoms has (n-1) bonds between the atoms, n-1 number of the vibrations are for bond stretching 

motions. The other 2n-5 number of vibrations for non-linear molecule and 2n-4 vibrations for 

linear molecule are for bending motions. Let us consider two cases one for linear polyatomic 

molecule (CO2) and other for non-linear polyatomic molecule (H2O).  

10.6.1 Fundamental vibrations for H2O 

H2O is a non-linear triatomic molecule. For this according to previous mentioned rule there 

must be 3n-6 = 3 allowed fundamental vibrational motions. The three vibrational motions are 

referred as normal modes of vibrations. The three normal modes are: symmetric stretching (1), 

asymmetric stretching (3) and symmetric bending (2). 

�̅�/cm-1   
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Fig10.10 Vibrational modes of water: symmetric stretching (1), asymmetric stretching (3), 

symmetric bending (2) 

In order to be infrared active there must be change in change in dipole moment during the 

vibrations. According to fig 10.10 each mode has a change in dipole moment so for H2O 

molecule all modes are infrared active. 

10.6.2 Fundamental vibrations for CO2 

CO2 is a linear molecule and so it has 4 normal vibrations. For this molecule there are two 

different sets of symmetry axes. There is an infinite number of two fold axes. There is an 

infinite number of two fold axes (C2) passing through the carbon atom at right angle to the 

bond direction. There   is a  fold axis (C) passing through the bond axis itself.  
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 Fig10.11 Vibrational modes of CO2: symmetric stretching (1), asymmetric stretching (3), 

symmetric bending (2). 

Symmetric stretching mode produces o change in dipole moment so this vibtational mode is 

infrared inactive. Rest two modes are infrared active (Fig 10.11). 

10.7 Isotope Effect 

For isotopic molecules that is molecules that differ only by the mass of one or both of the nuclei 

but not by their atomic number, the vibrational frequencies are observed to be different. 

Assuming harmonic vibrations the vibrational frequency osc is given by as equation 5 we can 

express 

𝜔𝑜𝑠𝑐 =
1

2𝜋
√
𝑘

𝜇
    𝑖𝑛 𝐻𝑧 

The force constant k since it is determined by the electronic motion only, is exactly the same 

for different isotope molecules. But the reduced mass  will be different for different isotopes. 

So if we try with the superscript i which distinguish an isotope molecule from the ordinary 

molecule then we have 

𝜔𝑜𝑠𝑐
𝑖

𝜔𝑜𝑠𝑐
= √

𝜇

𝜇𝑖
= 𝜌 ……. (43) 

The behavior of isotopic molecule has a smaller frequency. This can be easily visualized if we 

consider that the larger of mass hanging on a spring, then is the smaller is its vibrational 

frequency. If the superscript i refers to the heavier isotope then the constant  will be smaller 

than 1. The values of  for the isotopic pairs 1H35Cl and 1H37Cl are 0.99924 and 0.71720. If we 

substitute equation 43 into equation 10 as 

𝜀𝑣 =
𝐸𝑣

ℎ𝑐
= (𝑣 +

1

2
) �̅�𝑒 ………. (10) 

We find for the vibrational levels of two isotope molecules for the case of harmonic oscillators 
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𝜀𝑣 = (𝑣 +
1

2
) �̅�𝑒       𝜀𝑣

𝑖 = (𝑣 +
1

2
) �̅�𝑒

𝑖 = 𝜌�̅�𝑒 (𝑣 +
1

2
)   ……………. (44) 

 

If anharmonicity is taken into account the calculation become more complicated and to solve 

the energy levels we need the applicability of some very good approximation method. After 

application of such approximations the energy values will be obtained as 

 𝜀𝑣 =
𝐸𝑣

ℎ𝑐
= (𝑣 +

1

2
) �̅�𝑒 − (𝑣 +

1

2
)
2

𝑥𝑒�̅�𝑒 + (𝑣 +
1

2
)
3

𝑦𝑒�̅�𝑒 +⋯ 

  𝜀𝑣
𝑖 = (𝑣 +

1

2
) �̅�𝑒

𝑖 = 𝜌�̅�𝑒 (𝑣 +
1

2
) − 𝜌2𝑥𝑒�̅�𝑒 (𝑣 +

1

2
)
2

+ 𝜌3𝑦𝑒�̅�𝑒 (𝑣 +
1

2
)
3

+⋯   ………. 

(45) 

or in other words we may write 

�̅�𝑒
𝑖 =  𝜌�̅�𝑒,     �̅�𝑒

𝑖𝑥𝑒
𝑖 = 𝜌2𝑥𝑒�̅�𝑒,      �̅�𝑒

𝑖𝑦𝑒
𝑖 = 𝜌3𝑦𝑒�̅�𝑒…………. (46) 

For isotopes the separations of the vibrational energy levels increase with the increasing v 

values. The energy level of the higher isotope always lie higher than those of the heavier. 

10.8 Instrumentation for Vibratioanl Spectroscoy 

Infrared spectroscopy is generally divided into three regions- the near IR region, mid IR region 

and far IR region. The essential components of the IR spectrometer are source, fore optics, 

monochromator, and beam directors with amplifier, sample, and detector. The block diagram 

of double beam IR spectrometer is shown in Fig 10.12. 

 

Fig 10.12. Schematic diagram of double beam IR spectrometer. 

In double beam instrument the beam is splitted into two parts one is directed through the sample 

and the other is directed through the reference sample. The two beam are then compared either 

continuously or alternatively many times in a second. So in double beam instruments, the 

fluctuations in the source intensity, detector response and amplifier gain are compensated by 

observing the sample to reference signal ratio.  

Source: The source is always which maintained at red or white light. The most commonly used 

sources are the globar filament and the Nernst glower. The Nernst glower consists of a spindle 
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of  rare earth oxide (thorium, cesium or zirconium) of about 2.5 cm long and 0.25 cm diameter 

with a peak around 1.4 m (7100 cm-1). The Nernst requires to be preheated before it will emit, 

but once red-heat is reached the temperature is maintained by the current. The globar is a low 

resistance rod of silicon carbide with black body peak between 1.8 to 2.0 m (5500-5000cm-

1). It is more useful in longer wavelengths.  

Fore optics: The fore optics consists of mirrors aluminized or silvered on their surfaces, and 

rotating chopper. Mirrors divide the source radiation into two equivalent beams of which one 

passes through the sample and the other passes through an equivalent path and is called the 

reference beam. The two beams meet at the rotating chopper. The rotating chopper alternately 

allows the sample beams through the spaces or reflects the reference beam with a 

predetermined period. 

Monochromator: Monochromator splits the polychromatic radiation into its component 

wavelengths. It is achieved by using prisms or grating or both. Rock salt prisms usually used 

as monochromator for the region 650-4000 cm-1. 

Detector: Thermopiles, bolometers and Golay cells are used as detectors. The IR detectors 

measure the radiant energy by its heating effect. Two main types of sensing are used for 

detection. One sensing the heating effect of the radiation and the other depending on the 

photoconductivity. For both cases greater the effect at a given frequency, greater is the 

transmittance of the sample at that frequency. The detector does not show any signal when the 

energy transmitted by reference and sample cells are equal.  If the sample absorbs radiation, 

there will be an inequality in two beams and a signal is produced. The signal is then fed to a 

gain amplifier which amplifies the low intensity signal to a useable level with minimum 

thermal and electrical noise. 

Sample: The sample is held between plates of polished mineral salt rather than glass. Pure 

liquid samples are studied in thickness of about 0.01mm while solution should be at the order 

of 0.1-10 mm thickness. Gas samples are placed at pressure of up to 1 atm and are contained 

in long glass cell of 5 to 10 cm closed at their ends with rock salt windows. Recording of IR 

spectra of solid samples are more difficult because the solid particles reflect and scatter the 

incident radiation and so the transmittance becomes low. For solid samples three common 

techniques are used in recording the IR data. They are: 

 Mull Technique = If the solid cannot be dissolved in a suitable solvent, it is best 

examined by grinding it very finely in paraffin oil (nujol) and then forming a suspension 

or mull. This mull can then held between salt plates in the same way as pure liquid of 

solvent. Here the main constraint condition is that refractive index of the sample liquid 

and its solid phase should not be very different otherwise the scattering will be high. 

For best result the sample particles must be less than that of the wavelength of radiation 

used. 

 Pellet Technique = In this technique for handling solids, the sample should be grinded 

very finely with potassium bromide. Under high pressure this materials will flow 
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slightly and so the mixture can usually be pressed into a transparent disk. This may then 

be placed directly in the IR beam in a suitable holder. The main disadvantage of this 

method is that anomalous spectra may result from physical and chemical changes 

induced during grinding. A common change of this type is the absorption of water from 

atmosphere. 

 Solid films = Spectra of solids may also be recorded by depositing a thin film of a solid 

on the suitable window material. A concerned layer of solution of the substance is 

allowed to evaporate slowly on the window material forming a thin uniform film. By 

changing the concentration thickness of the film can be adjusted. 

Recorder: The amplified signal from the detector is moved to an attenuator which cuts down 

the radiation coming out of the reference beam until energy balance is restored. This is achieved 

by a motor which droves the attenuator into the reference beam when an absorption band is 

encountered and out of the beam when the band is passed over.   

10.9 Applications for Vibrational Spectroscopy 

Applications of infrared spectroscopy are spread in different areas. Invention Fourier 

transformed infrared (FTIR) spectroscopy added more interest in the field of IR spectroscopy. 

Different areas of applications are: 

10.9.1 Identification of molecular constituents (skeletal vibrations and group 

frequencies) 

Due to 3n-6 and 3n-5 rules a complex molecule is likely to have infrared spectrum due to its 

large number of normal vibrational modes. Identification of any molecular constituent is done 

by assigning the experimentally observed vibrations into various stretching and bending 

modes. The normal modes of a molecule can be divided into two major classes: skeletal or 

finger print vibrations and characteristic group vibrations.    

10.9.1.1 Skeletal vibrations  

The region in the range 700-1400 cm-1 is very important in IR absorption bands which contains 

mainly bending and certain stretching vibrations for most of the organic molecules in the form 

of linear or branched chain structure. A molecular or structural moiety can be identified by the 

assignments of the observed bands in this region. Some important group of molecules are 

-c-o-c-          

Such modes or vibrations are known as skeletal vibrations. Presence of functional groups 

generally show some marked changes in the pattern of skeletal bands. Skeletal modes of IR 

spectroscopy are used to gather information of different planets like Saturn, Uranus, and 
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Neptune etc. The atmosphere of these planets are mainly composed of hydrogen and helium. 

IR spectroscopy were proved to be extremely useful for the determination of different hydrogen 

and helium based constituents in these planets. Skeletal modes of IR spectroscopy are also very 

useful in comparing the spectra of natural and synthetic compounds. 

10.9.1.2 Group vibrations  

Group vibrations are frequencies that are associated with certain structural units such as –CH3, 

-OH, -NH2, -CN etc. which appear a fairly constant region in the spectrum. Group frequencies 

are almost independent of the structure of the molecule as a whole. The approximate 

consistency of the position of the group frequencies form the basis of the structural analysis of 

an unknown compound. There are some factors which affects the group frequencies. They are 

 Internal factors involving changes in the atomic mass, vibrational coupling, resonance 

effects, hydrogen bonding etc. 

 External factors such as physical states (gas, liquid, solid, solution, solvent, 

concentration) and temperature. The effect of every factor is independent. So the 

influence of any factor on the particular group frequency can be identified 

individually. 

It is observed that vibrations of lighter atoms (–CH3, -OH, -NH2 etc.) in terminal groups are 

observed at high frequency side of the IR spectrum. Whereas those of heavier atoms (-C-Cl, -

C-Br, metal-metal etc.) are observed at low frequency side. –CH3 group gives rise a C-H 

symmetric stretching absorption in the region between 2850-2890 cm-1, asymmetric stretching 

absorption in the region between 2940-2980 cm-1, a symmetric deformation mode at about 

1375 cm-1 and asymmetric deformation mode at about 1470 cm-1. Some important group 

frequencies are listed in the table 10.1. The idea of group vibrations also covers the motions of 

isolated features of a molecule which have frequencies not too far near those of the skeletal 

vibrations.  

Group Approximate frequency (cm-1) 

-OH 3600 

-NH2 3400 

CH 3300 

CH2 3030 

-CH3 2970 (asymmetric stretch) 

2870 (symmetric stretch) 

1460 (asymmetric deformation) 

1375 (symmetric deformation) 

-CH2- 2930(asymmetric stretch) 

2860(symmetric stretch) 

1470 (asymmetric deformation) 

-SH 2580 

-CN 2250 

-CC- 2220 

>CO 1750-1600 
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>CC< 1650 

>CN< 1600 

>CS 1100 

>C-F 1050 

-COOH 2800-3000 (symmetric OH) 

1600-1750 (symmetric C=O) 

1220-1300 (symmetric C-O) 

-CHO 2700-2870 (symmetric C-H ) 

1670-1740 (symmetric C=O) 

 

Table 10.1. Characteristic frequencies of some molecular groups 

A very important consideration we have note at this point. As we know that IR spectrum only 

appears if the vibrations produces by the change in electrical dipole moment of the molecule. 

So it is reasonable to suppose that more polar a bond, the more intense will be the infrared 

spectrum arising from the vibrations of the bond. For this reason the ionic crystal lattices often 

give rise to very strong IR absorptions. The reverse effect is true for Raman spectroscopy.  

It should be mentioned that complete interpretation of the IR spectrum of a complex molecule 

can be a very complicated tusk. Only practice can give necessary intuition for making correct 

assignment of the group frequencies.  

10.9.2 Identification of molecular structure  

From the observed P, Q, R branches of the IR spectra of polyatomic molecules, estimate of the 

rotational constants are possible. Then from B values moment of inertias and interatomic 

distances can be determined. IR spectroscopy is also useful is determining the shape of the 

molecule. For AB2 type of polyatomic molecules, whether the molecule is linear symmetric 

type or linear nonsymmetrical type or bent symmetric or bent asymmetric type can be 

determined by their IR spectrum. If the IR spectrum shows some bands with P-R contour then 

the molecule is linear. If all the modes of linear molecule are IR active then the molecule is 

linear nonsymmetric. If all modes are not IR active then the molecule is linear symmetric. If 

no band shows the simple P-R structure, then the molecule is nonlinear. For nonlinear 

molecules the number of active fundamental bands decide whether the molecule is symmetric 

or nonsymmetric.  

10.9.3 Characterization of transition phases of Ceramic material 

Particle size and state of aggregation of ceramic type materials have a very strong effect in their 

IR spectra. So IR spectroscopy has been considered as a very effective tool in the 

characterization of the dihydroxylation behavior of ceramic material. Example-Boehmite 

(AlOOH) precursor gel, which is one of the most widely used gels in the operation of high 

temperature ceramics, abrasives and composites. At room temperature boehmite gel shows 

peaks at 485, 625, 742 cm-1 indicating the Al-O bonding in its octahedral structure. When 

temperature increases from 45C-1100C the structural changes appear in it from its octahedral 
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form to tetrahedral form due to dihydroxylation. IR spectroscopy can be efficiently used to 

follow the structural changes taking place during this dihydroxylation process of boehmite 

precursor gel.  

10.9.4 Characterization of Biological material 

For different biological samples are applications of IR spectroscopy are 

 Most biological samples are aqueous based and surface specific so their complex 

characteristics can only be evaluated by IR spectroscopy 

 Most biological experiments require instruments with extremely high signal to noise 

ratio which is only achieved by FTIR spectrometers.  

 Artificial devices used for temporary and permanent life support. Artificial surfaces are 

poorly tolerated by blood and so allotting is often initiated. FTIR is used to study the 

events that occur at the blood-biomaterial interface. 

 For antibiotics and virus synthesis, an FTIR spectrometer is used to quantify the level 

of product in the fermentation mixture. The data is then transferred to another computer 

that evaluated the analysis and take appropriate control of action for the production 

through a preprogrammed logic operation. In this way IR spectroscopy is now 

extensively in use for biomedical research in the area of toxicology, mutagenesis and 

cellular research.  

10.10 Summary 

Throughout the present chapter we have considered the consequence of elasticity on bond 

length since the atoms in a molecule do not remain in fixed relative positions but vibrate about 

some mean position. We have considered first the case of diatomic molecule where we 

observed that the infrared or vibrational spectrum arises if molecular motion is in vibration. 

After that we have dealt with more practical case of diatomic molecule undergoing vibration 

and rotation simultaneously. Then we have extended our discussion to some more complex 

system like isotopes. We have observed that IR spectroscopy is extensively used in different 

areas of industry 

10.11 Glossary 

IR Spectroscopy- Infrared Spectroscopy 

FTIR- Fourier Transformed Infrared   

Elasticity- is the ability of a body to resist a distorting influence and to return to its original size 

and shape when that influence or force is removed. 

Molecular vibration- A molecular vibration is a periodic motion of the atoms of a molecule 

relative to each other, such that the center of mass of the molecule remains unchanged. 
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Normal modes of vibration- The normal modes of vibration are: asymmetric, symmetric, 

wagging, twisting, scissoring, and rocking for polyatomic molecules. 
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10.14 Solved Problems 

Problem1: The frequency of OH stretching vibration in CH3OH is 3300 cm-1. Estimate the 

frequency of OD stretching vibration in CH3OD. 

Solution: 
𝜔𝑂𝐻

𝜔𝑂𝐷
= √

𝜇𝑂𝐷

𝜇𝑂𝐻
= √

16×2

18

17

16×1
= 1.37 

𝜔𝑂𝐷 =
3300

1.37
= 2401 cm-1  

Problem2: The fundamental and the first overtone for CO are 2143.26 cm-1 and 4260.04 cm-

1. Find the equilibrium vibrational frequency and anharmonicity constant for CO. 

Solution: �̅�𝑒 − 2�̅�𝑒𝑥𝑒 = 2143.26………1 

2 �̅�𝑒 − 6�̅�𝑒𝑥𝑒 = 4260.04………2 

Multiplying first equation by 3 and subtracting we get 

�̅�𝑒 = 2169.74 𝑐𝑚
−1 

Applying the value of �̅�𝑒 equation 1 or 2 we get xe= 0.00617. 

Problem3: The fundamental and the first overtone transition of 14N16O are given by 1876.06 

cm-1 and 3724.20 cm-1 .Evaluate the equilibrium vibrational frequency, the anharmonicity 

constant, zero point energy and the force constant of the molecule. 
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Solution: Frequency of the fundamental: �̅�𝑒(1 − 2𝑥𝑒)= 1876.06 cm-1 

Frequency of the first overtone: 2�̅�𝑒(1 − 3𝑥𝑒)= 3724.20 cm-1. Solving these two equation we 

get 

�̅�𝑒 = 1903.98 𝑐𝑚
−1, 𝑥𝑒 = 7.332𝑥10

−3 

Zero point energy: 𝜀0 =
1

2
�̅�𝑒 (1 −

1

2
𝑥𝑒) = 948.5 𝑐𝑚

−1 

𝜇 =
23.25𝑥26.56

23.25+26.56
𝑥10−27 = 12.3975𝑥10−27 kg 

𝑘 = 4𝜋2𝜇𝑐2�̅�𝑒
2=1598 N/m. 

Problem4: The position of the lines in the fundamental band for v=0v=1 of CO is given by  

      �̅� (𝑐𝑚−1) = 2143.3 + 3.813𝑚 − 0.0175𝑚2,     𝑚 = ±1,±2,±3…… Calculate B0, B1, 

Be. Given e=0.018 cm-1. Calculate also the equilibrium internuclear distance. Given that 

reduced mass of CO is 1.1385 x10-26 kg. 

Solution: For the P branch lines m is positive and for R branch line m is negative. We know 

�̅�𝑃,𝑅 = 𝜈𝜔̅̅ ̅̅ 0 + (𝐵1 + 𝐵0)𝑚 + (𝐵1 − 𝐵0)𝑚
2 𝑐𝑚−1   𝑤𝑖𝑡ℎ 𝑚 = ±1, ±2,±3  so 

�̅�𝑃1 = 2143.3 + 3.813(−1) − 0.0175(−1)
2 𝑐𝑚−1 = 2139.5  𝑐𝑚−1 

�̅�𝑃2 = 2143.3 + 3.813(−2) − 0.0175(−2)
2 𝑐𝑚−1 = 2135.6  𝑐𝑚−1 

�̅�𝑅0 = 2143.3 + 3.813(+1) − 0.0175(+1)
2 𝑐𝑚−1 = 2147.1  𝑐𝑚−1 

�̅�𝑅1 = 2143.3 + 3.813(+2) − 0.0175(+2)
2 𝑐𝑚−1 = 2150.9  𝑐𝑚−1 

Comparing the above equations we can get 

B1+B0=3.183 cm-1        B1-B0=-0.0175 cm-1 . Solving them we can get 

B1=1.8978 cm-1   and B0=1.9153 cm-1 

Again we know 𝐵𝑣 = 𝐵𝑒 − 𝛼 (𝑣 +
1

2
),     𝐵𝑒 = 𝐵0 +

𝛼

2
= 1.9153 + 0.009 = 1.9243 𝑐𝑚−1 

𝐵𝑒 =
ℎ

8𝜋2𝜇𝑟𝑒2𝑐
,     𝑟𝑒

2 =
ℎ

8𝜋2𝜇𝐵𝑒𝑐
 

re= 0.1129 nm 

Problem5: The fundamental band for HCl is centred at 2886 cm-1. Assuming that the 

internuclear distance is 1.276 Å, calculate the wave number of the first two lines of each of the 

P and R branches of HCl. 
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Solution: The reduced mass of HCl= 
(1.008

𝑘𝑔
𝑘𝑚𝑜𝑙𝑒⁄ )(35.45

𝑘𝑔
𝑘𝑚𝑜𝑙𝑒⁄ )

(36.46
𝑘𝑔

𝑘𝑚𝑜𝑙𝑒⁄ )(6.023𝑥10
26

𝑚𝑜𝑙𝑒⁄ )
= 1.6275𝑥1027𝑘𝑔 

The rotational constant 𝐵 =
ℎ

8𝜋2𝜇𝑟𝑒
2𝑐
=

6.626×10−34𝐽−𝑆

8𝜋2(1.6275𝑥1027𝑘𝑔)(1.276×10−10𝑚)2(3×
108𝑚

𝑠
)
 

=      10.6129 × 102 = 10.6129𝑐𝑚−1 

�̅�𝑃,𝑅 = �̅�0 + 2𝐵𝑚 𝑐𝑚
−1   𝑤𝑖𝑡ℎ 𝑚 = ±1,±2,±3 

�̅�𝑃1 = 2886 − 2 × 10.6129 = 2864.77  𝑐𝑚
−1 

�̅�𝑃2 = 2886 − 4 × 10.6129 = 2843.55  𝑐𝑚
−1 

�̅�𝑅0 = 2886 + 2 × 10.6129 = 2907.23  𝑐𝑚
−1 

�̅�𝑅1 = 2886 + 4 × 10.6129 = 2928.45  𝑐𝑚
−1 

10.15 Self Assesment Questions 

Self Assessment Question (SAQ) 1: What is the main condition for a molecule to be IR active? 

Self Assessment Question (SAQ) 2: What do you mean by degrees of freedom of a molecule? 

What is its value for a linear molecule and a nonlinear molecule? 

Self Assessment Question (SAQ) 3: What do you mean by normal modes? 

Self Assessment Question (SAQ) 4: What are the selection rules of P,R,Q branch lines? 

Self Assessment Question (SAQ) 5: For CO2 molecule which mode is IR active and which 

mode is not? Why? 

Self Assessment Question (SAQ) 6: What do you mean by zero point energy? What is its 

value? What do you mean by vibrational less state? 

Self Assessment Question (SAQ) 7: What is the need of anharmonic oscillator to consider? 

Self Assessment Question (SAQ) 8: What do you mean by dissociation energy? 

Self Assessment Question (SAQ) 9: What do you mean by oscillation frequency? Write down 

its value. 

Self Assessment Question (SAQ) 10: Why anharmonic constant appears? Express its value. 

Self Assessment Question (SAQ) 11: What do you mean by equilibrium oscillation 

frequency? 

Self Assessment Question (SAQ) 12: What do you mean by fundamental, first overtone, 

second overtone vibrations? Mention their values. 
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Self Assessment Question (SAQ) 13: Why the breakdown of Born-Oppenheimer 

approximation appears for vibrating rotator? 

Self Assessment Question (SAQ) 14: In higher vibrational states what will happen to 

molecular bond length and why? 

Self Assessment Question (SAQ) 15: What do you mean by skeletal and group frequencies? 

Which one is important to characterize the molecular structure? 

Self Assessment Question (SAQ) 16: Why for astronomical studies Infrared spectroscopy 

plays a major role? 

Self Assessment Question (SAQ) 17: What do you mean by FTIR spectroscopy? 

10.16 Terminal Questions 

(Should be divided into Short Answer type, Long Answer type, Numerical, Objective type) 

10.16.1 Short Answer type question 

1. IR spectrum of a symmetric AB2 molecule gives 3 prominent lines. Check whether the 

molecule is linear or not? 

2. Separation between P and R branch lines are different. Why? 

3. What are hot bands? Why are they called so? 

4. Homonuclear diatomic molecule does not show vibrational spectrum. Why? 

5.  The spacing between lines in P and R branch lines of CO2 is 4B instead of 2B. Why? 

6. How many normal modes would you expect to be observed in the infrared absorptionspectra 

of H2O and CO2 ? 

10.16.2 Long Answer type question 

1. Explain the effect of anharmonicity on the vibrational spectra of a diatomic molecule. 

2. What parameters one can get from a study of the vibration-rotation spectrum of the 

heteronuclear diatomic molecule? Explain how are they estimated? 

3. What are the effects of isotope on the spectrum of vibrating rotator? 

4. Explain different vibrational modes with figures for H2O and CO2 and explain which modes 

of them are IR active and why? 

5. Outline the theory of rotation-vibration spectrum of a diatomic molecule. How many normal 

Modes of vibrations are possible for these molecules: HBr, O2. Why water can’t be used as a 

solvent for infrared spectroscopy? 
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6. How many normal modes of vibrations are possible for the following molecules OCS, SO2, 

CH4, CH3I? 

7. Assuming that the force constant for C  C, C  C, and C-C are in the ratio of 3:2:1. The 

normal range of C  C stretch absorption is 1630 – 1690 cm-1. What range is expected for C-

C, and C  C stretch vibration? Why monochromator (grating / prism) are made up of rock 

salts like NaCl / KBr? 

 

8. Using a block diagram show essential components of IR spectroscopy. 

 

10.16.3 Numerical and objective questions 

1. Calculate the amplitude of vibration in the v=0 level of the molecule CO which has a force 

constant of 1870 N/m. 

2. Assume that the H2 molecule behaves like a harmonic oscillator with force constant k = 573 

Nm-1. Find the vibrational quantum number corresponding to its dissociation energy 4.5 eV. 

Given the atomic mass of H atom is 1.68x10-27kg, and h=6.63x10-34J-s. 

 

3. The equilibrium vibrational frequency of the I2 molecule is 215 cm-1. The anharmonicity 

constant is 0.003. At temperature 300K what is the intensity of the band for transition 

v=1v=2 relative to that of the transition for v=0v=1? 

4. The fundamental vibrational frequency of HCl is 2989 cm-1. Find the force constant. 

5. The position of the lines in the fundamental band for v=0v=1 of HCl is given by  

      �̅� (𝑐𝑚−1) = 2886.0 + 20.577𝑚 − 0.3034𝑚2,     𝑚 = ±1, ±2,±3…… Calculate B0, B1, 

Be. Given e=0.3019 cm-1. 

6. Calculate the energy in cm-1 of the photon absorbed when HCl moleculegoes from the state 

v=0, J’’=1v=1, J’=0 and v=0, J’’=1v=1, J’=2. Assume that v=0 and v=1 states have the 

same B values. Given �̅� = 2990cm-1, xe=0.0174, rHCl=0.124 nm. 

Objective type question 

1. Identify true or false: 

a. A infrared spectrum is possible only for the molecules with a permanent dipole moment. 

b. The selection rule for fundamental vibrational transition is Δv=2. 

c. For linear molecule the number of vibrational frequencies are 6. 
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Unit 11                                                     RAMAN SPECTRA 
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11.1 Introduction 

Rayleigh theoretically study the scattering and shows that in scattering of light, the intensity of 

scattered light is inversely proportional to the forth power of wavelength (𝐼 =
1

𝜆4
). This is 

called Rayleigh scattering. We know the colour of sky is blue due to greater scattering of blue 

light as it is shorter wavelength. The scattering of lights takes place due to dust particles 

suspended in atmosphere. In Rayleigh scattering, only incident wavelengths are present in 

scattered light. No other wavelengths are present in scattered light therefore Rayleigh scattering 

is also called coherent scattering. 

 While studying the Rayleigh scattering, Raman found that when a beam of light was 

passing through some mediums like benzene or toluene, the scattered light contained some 

additional frequencies along with incident frequency (Rayleigh frequency). This effect was 

observed by CV Raman in 1928, and called Raman Effect. 

11.2. Objective: 

 After studying this unit we will able to understand: 

I. Raman effect and its discovery 

II. Quantum theory of Raman effect 

III. Pure rotational Raman effect 

IV. Infra-red spectra and Raman spectra 

V. Applications of Raman spectra 

11.3 Raman Effect: 

When a monochromatic beam of light passes through a gas, organic liquids like benzene or 

toluene, or a transparent solid, a small part of light scattered in all directions. The scattered 

light contains some other frequencies along with frequency of incident light (Rayleigh lines). 

The spectral lines of additional frequencies are called Raman lines. The frequency of incident 

light is called Rayleigh line or exciting line. The Raman lines corresponding to each Rayleigh 

line occur symmetrically on both ride of Rayleigh line as shown in figure 7.1. The lines on the 

low frequency side of Rayleigh line is called stoke line, while the lines on the higher frequency 

side is called anti-stoke lines. The intensity of antistoke lines are much weaker than stoke lines. 

It is also observed that the displacement of Raman Stoke lines from the Rayleigh line do not 

depend on the Rayleigh frequency. 
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Rayleigh line 
(exciting lines)

Stoks lines Anti-stoks lines

 

 (cm-1)

Figure 7.1: Raman Spectra of diatomic gas  

If we change the frequency of incident light or used another Rayleigh line, we get other Raman 

lines for the same medium. However, the displacements of Raman lines from Rayleigh line are 

same. Thus for a particular material the displacement of Raman lines from Rayleigh line 

remains same. Thus the Raman displacements are characteristics of a scattering material. 

 Raman displacement is denoted by ∆ν (in cm-1) unit which is wavenumber and 

proportional to energy 

ν = λ̅ =
E

hc
=
1

𝜆
=
ν′

𝑐
 

 Where λ̅ or ν is wave number, E is energy and ν′ is frequency of incident light, h and c 

have its usual meanings ∆ν denotes the Raman displacement from Rayleigh line. 

 Under low resolution we observe one stoke Raman line and one anti-stoke Raman line 

each having same displacement ∆v. The Raman displacement ∆v is corresponding to main 

vibrational rotational absorption band near infrared band. On the other hand at high resolution, 

approximately equidistance lines are found on both side of Rayleigh line. This is pure rotational 

Raman spectrum as shown in figure 7.1. 

11.4 Experimental Arrangement of Raman Experiment: 

The basic arrangement for obtaining the Raman spectra is shown in figure 7.2. In this 

Experiment a liquid for which Raman spectra is to be obtained is filled in a tube which is called 

Raman tube figure 7.2. Raman tube is a thin walled glass tube about 15 cm long and 2 cm 

diameter. One end is closed with a optically plane glass from which scattered light can be 

emerged towards spectrometer and other is drawn out into the horn shape covered by black 

tape. This black colour horns shape end causes reflection of backward scattered light. The 

Raman tube is illuminated by a large spiral shaped lamp L wrapped around the Raman tube T. 
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The outer surface of lamp L is covered by a reflector R. Raman tube is surrounded by a jacket 

J, in which a filtering solution is used to filter one of the spectral line of mercury lamp. 

 The mercury arc lamp light source has three prominent lines at 2536, 4047Å and 

4358Å. By using noviol glass and CCl4 solution, the 4047Å line may be filtered. Similarly by 

using pale noviol and quinine, we can filter 4358Å line and finally we have only one prominent 

2536Å prominent line for this experiment. 

 The scattered light passing through plane end of tube and a stop S and finally focused 

on the slit of a spectrometer G. Spectrograph or photograph of Raman spectra can be obtained 

by exposing the spectrograph plate for several hours. 

 

S
Spectrometer

G
Stop

HORN SHAPED 
END

Lamp Reflector Jacket Tube

Figure 7.2: Experimental arrangement of Raman Spectra

 

 

11.5 Quantum Theory of Raman Effect: 

According to quantum theory of light, a light wave consists of photons, and the energy of 

photons is given by 𝐸 = ℎ𝜈′ = ℎ𝑐𝜈 where 𝜈′ is frequency of light and 𝜈 is wave number  
1

𝜆
 . 

When these light photons fall on a molecule of a liquid gas or solid material, the photon collides 

with molecules. There are two cases of collision called elastic and inelastic collusion. 

I. If the collision is elastic, there is no transfer of energy from photon to molecule or 

molecule to photon. In this case the light is scattered without any modification in energy 

or frequency. This scattered light is corresponding to Rayleigh scattering line presence 

in Raman spectrum. 

II. If the collision is inelastic, there is an exchange of energy from photon to molecule or 

molecule to photon. If the molecule is initially at energy state (say E0), takes energy from 

the photon and goes to higher energy state of molecule say E1, then photon is scattered 
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with a smaller energy  (ℎ𝑐𝜈 − ∆𝐸) where ∆𝐸 = 𝐸′ − 𝐸0 as shown in figure 7.3. In this 

case the frequency of Raman line is less than incident frequency. The scattered light has 

frequency 
ℎ𝑐𝜈−∆𝐸

ℎ
 and in term of wave number shift = 

∆E

hc
 such Raman lines are called 

Stoke line. 

 

There is another possibility called inelastic collision. If the molecule is initially at higher energy 

state E1 and after collision it shifted to lower energy state E0, now the scattered photon emerges 

with increased energy (ℎ𝑐𝜈 + ∆𝐸)  after gaining an addition energy ∆E. In this case the 

frequency of scattered light is greater than incident light. The frequency of scattered light is 
ℎ𝑐𝜈+∆𝐸

ℎ
  and the wave number shift is again 

∆E

hc
 but now this line is in another side to Rayleigh 

line.  Such Raman lines are called anti-stoke lines. The stoke line and anti-stoke lines are 

symmetrically situated on both side of Rayleigh (indent) line. 

 

 

 

11.6 Intensity of Raman lines: 

 At normal temperature, the number of molecule in lower energy state is more than 

molecules in higher energy state E1. When radiation falls on molecule there is more transition 

from lower to higher energy state. In this process molecules absorb energy from photons. 

However, the transition from higher to lower energy state in which photon absorbs energy from 

h
c h
c-


E
h
c

+


E
h
c


E

Stokes line Anti-stokes line

E'

E0

Figure 7.3: Quantum Theory of Raman Scattering
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molecule is very few. Since Stoke lines are corresponding to transition from lower energy state 

to higher energy state therefore Stoke lines are more intense than anti-stoke line. In some case 

the anti-stoke lines are so faint or weak that they are not observed. 

 If the temperature increases, more molecules are available at higher energy state E1 and 

transition from higher energy state to lower energy state also increase and consequently anti-

stokes lines becomes brighter. 

11.8 Pure Rotational Raman Spectra: 

 Pure rotational Raman spectra arises when the transition from one rotational energy 

state to another rotational energy state of a molecule. 

 In case of diatomic molecule, the energy involved in the different motion of molecules 

can be divided into three categories as translational, rotational, and vibrational energies. The 

rotational energy of a diatomic molecule is given by 

 𝐸𝑗 =
1

2
I ω2 where I is moment of inertia and 𝜔 is angular frequency. 

 If J is angular momentum then we know 𝐿 = Iω  

or 𝐸𝑗 =
1

2

L2

I
  

Angular momentum can be given as  𝐿 = √J(J + 1) ħ  where J is rotational quantum number 

and have values J = 0, 1, 2, 3……………….. 

thus 𝐸𝑗 = J(J + 1)
ħ2

2I
          (1) 

The selection rule for pure rotational transition is ∆J = 0, + 2 

∆J = 0 is corresponding to Rayleigh line. The transition from J→J+2 (absorption) gives stoke 

rotational Raman line and J+2→J gives the Anti Stoke Raman rotational Raman lines as shown 

in figure 7.4. 

 From eq. 1 the rotational energy in terms of wave number can be expressed as 

1

𝜆
= 𝑣 =

𝐸𝑗

𝘩𝑐
=
ħ2

2Ihc
J(J + 1) 

or  𝑣 =
h

8 π2Ic
J(J + 1) 

h

8 π2Ic
= B is another constant known as rotational constant. Then the wave number for 

rotational energy is can be expressed as 

 𝑣 = 𝐵 J(J + 1) where J=0, 1, 2, 3………. 
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 For rotational Raman lines the selection rule is ∆J = + 2, therefore the wave number of 

the rotational Raman lines are given by 

𝑣𝑟𝑎𝑚𝑎𝑛 = 𝜈𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 ± [𝑣𝑗+2 − 𝑣𝑗] 

                                                   = 𝜈𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 ± [𝐵 (J + 2)(J + 3) − 𝐵 J(J + 1)] 

                                                  = 𝜈𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 ±  𝐵[4 J + 6] 

= 𝜈𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 ±  4𝐵( J + 3/2) 

Thus rotation Raman Shift is 

∆𝜈 = 𝑣𝑟𝑎𝑚𝑎𝑛 − 𝜈𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 =  4𝐵( J + 3/2) 

∆𝜈 = 6𝐵, 10𝐵, 14𝐵, 18𝐵………………. 

 

Thus in pure rotational Raman spectrums, a series of equidistance lines corresponding to 

different Raman shift are situated on both side of Rayleigh line. The separation between two 

successive lines is 4B as shown in figure 7.4. 

Pure rotational molecular spectra can be shown by molecules that have permanent electric 

dipole moment. Thus the homonucleus diatomic molecule such as H2, O2, N2, symmetric linear 

molecule O=C=O etc. do not exhibit rotational spectra. But homonucleus molecule exhibits 

rotational Raman spectra. Homonucleus molecules like H2, N2, O2
, the rotational Raman lines 

are alternately weak and strong due to symmetric properties of rotational energy levels. On the 

other hand hetronucleus molecule like HF, HCl, HBr, CO etc. exhibit rotational spectra. 
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Figure 7.4: Pure rotational Raman Spectra

cm-1

 

 

11.9 Vibrational Raman Spectrum: 

 The Vibrational Raman Spectrum arises when the transition takes place from one 

vibrational level to another vibrational level of the same electronic state of a molecule. 

Quantum mechanically, a molecule can be treated as a harmonic oscillator. If ν' is classical 

frequency of harmonic oscillator, then the energy E of such molecule can be given as  

E=h ν' (v+1/2) 

 Where v = 0, 1, 2, 3, 3………are integer number corresponding to different energy 

states. ν' is classical frequency given as 

 ν′ =
1

2π
√
k

m′
           where k = force constant and  m' = reduced mass 

In terms of wave number, the vibrational energy can be given as 

G(v) =
E

hc
=
ν′

𝑐
(v +

1

2
) 
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Where G(v) is known as vibration term and 
ν′

𝑐
 is known as vibrational constant denoted by ω 

thus 

G(v) = ω (v +
1

2
) in cm-1 

 Corresponding to different vibrational levels v =1,2,3,4....... 

G(v)  =  
1

2
ω,

3

2
ω,

5

2
ω  …… 

 In case of vibrational Raman spectrum, if ν is the wave number of incident light 

(Rayleigh line), Raman lines are symmetrically arise on either side of Rayleigh line. The 

selection rule (possible transition) for vibrational Raman spectrum is 

∆ ν = + 1 

 Thus the vibrational Raman lines are situated on either side of Rayleigh line as  

𝜈𝑟𝑎𝑚𝑎𝑛 = 𝜈 ± [G(v + 1)  − G(v)] 

If transition takes place from v =1 to v = 0 states then  

𝜈𝑟𝑎𝑚𝑎𝑛 = 𝜈 ± [ω
3

2
 − ω

1

2
] = 𝜈 ± ω 

Similarly for transition v = 2 to v =1 state 

𝜈𝑟𝑎𝑚𝑎𝑛 = 𝜈 ± [ω
5

2
 − ω

3

2
] = 𝜈 ± ω 

Thus in general the vibration Raman lines arises as 

  

𝜈𝑟𝑎𝑚𝑎𝑛 = 𝜈 ± ω 

Vibrational Raman shift is given as 

∆𝜈 = 𝜈𝑟𝑎𝑚𝑎𝑛~𝜈 = ω 

 This is Raman Shift in terms of wave number corresponding to absorption band of 

vibrational energy levels and generally observed near infra-red spectrum. 

 

11.10 Comparison between Raman and infrared spectra: 

 The infrared absorption spectra arises when a transition between vibration state v = 0 

to v = 1 takes place. This transition is similar to vibration stoke Raman line in which some 
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vibration state involved. Hence, there is an agreement between infrared and Raman spectra but 

the mechanism of production of both spectra are quite different. 

 In infrared spectra, we provide the radiation energy exactly same as energy difference 

between two different vibrational states; whereas in Raman spectra we provide a radiation of 

higher frequency and there is a change in energy corresponding to two energy states of 

molecule. 

 Further, in infrared band there is a change in molecular electric dipole moment due to 

molecular vibrational states. Thus permanent magnetic moment is must for occurrence of 

infrared spectra. On the other hand, Raman spectra arise due to polarizability of a molecule and 

no need of permanent dipole moment. 

11.11 Application of Raman spectroscopy 

11.11.1 Molecular structure: 

 Raman Effect is an important tool for study of structure of a molecule. Vibrational 

Raman spectra can be used for determining the force constant of diatomic molecule. As we 

know vibrational Raman shift ∆v=ω where ω is vibrational constant given by 𝜔 =
ν′

𝑐
. Here ν′ 

is classical frequency of vibration of molecule and given as ν′ =
1

2
√
𝑘

𝑚′
 . By this relation the 

force constant k can be obtained. On the other hand, by using Rotational Raman Spectra, the 

bond length of a molecule can be determined. 

11.11.2  Structure of triatomic molecule: 

 With the help of Raman lines, its intensity and number of lines we can determine 

whether a triatomic molecule is symmetric or asymmetric. For structure infrared spectrum is 

also used along with the Raman spectrum for more information. 

 Theoretically we use rule of mutual exclusion. According to this rule a molecule with 

centre of symmetry transitions that are allowed in the infrared are for hidden in Raman spectra 

and vice versa. However, all transitions forbidden in one must occur in the other is not always 

true. Sometime some transitions may be forbidden in both Raman and infrared spectrum. 

 For example CO2 has two strong bands in infrared absorption spectrum at 668cm-1 and 

at 2349cm-1while a strong band at wave number 1389cm-1 in Raman spectra. As none of the 

bands appear both in Raman as well as infrared spectrum thus the CO2 molecule has a centre 

of symmetry and CO2 has linear structure as O-C-O. 

Example1: In a Raman study of a material, the wavelength of a light source used is 5460Ǻ. 

The stoke line is observed at 5520Ǻ. Find the wavelength of anti stoke line 

Solution: The light source provides the Rayleigh line for the Raman spectra. The location of 

Rayleigh line in terms of wave number ν can be given as  
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𝜈 =
1

5460 X 10−8cm
= 18318𝑐𝑚−1 

The stoke line is given as  

𝜈 =
1

5520 X 10−8cm
= 18116𝑐𝑚−1 

The displacement in terms of wave number is 

∆ 𝜈 = 𝜈 − 𝜈𝑠𝑡𝑜𝑘𝑒 =  18315 – 18116 = 199cm-1 

 The stoke line and anti-stoke lines are symmetrically located on either side of Rayleigh 

line. Therefore, the location of anti-stoke line is 

∆ 𝜈 = 𝜈 + 𝜈𝑎𝑛𝑡𝑖𝑠𝑡𝑜𝑘𝑒 

 𝜈𝑎𝑛𝑡𝑖𝑠𝑡𝑜𝑘𝑒 = 𝜈 + ∆ 𝜈 = 18315+199=18514cm-1 

 

The corresponding wave length = 
1

18514 𝑐𝑚−1 = 5401Ǻ 

Example 2: When a celylene is irradiated with the 4358Ǻ light source, a Raman line 

corresponding to vibration spectra is observed at 4768Ǻ. Calculate the fundamental frequency 

(frequency corresponding to vibrational constant ) for this vibration. 

Solution: The wave number corresponding to exciting line(Rayleigh line) is 

ν = 
1

4358𝑋10−8
= 22946𝑐𝑚−1 

Raman line is located at 

νraman = 
1

4768𝑋10−8
= 20973𝑐𝑚−1 

 This is stoke line 

In case of vibrational Raman spectra, the Raman displacement is given as 

∆ ν = ν raman- ν  = ω 

Where ω is vibrational constant  
ν′

𝑐
 and ν′ is frequency. 

Thus ω = 22946 - 20973 = 1973 cm-1 

Hence, vibration frequency ν' = ωc = 1973 X 3 X 1010 

      ν' = 5.92 x 1013cm-1 
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Example 3: A substance shows Raman lines at 4567Ǻ when the wavelength of incident light 

(Rayleigh line) is 4358Ǻ. Find out the positions of stoke and anti-stoke lines for the same 

substance when a light of 4047Ǻ is used. 

Solution: The wave number ν corresponding to incident light or Rayleigh line is 

 ν = 
1

4358𝑋10−8
𝑐𝑚−1 = 22946𝑐𝑚−1 

 The Raman line corresponding to 4567Ǻ is 

 νraman = 
1

4567𝑋10−8
𝑐𝑚−1 = 21896𝑐𝑚−1 

The Raman Shift or wave number displacement is 

 ∆ ν = ν  – ν raman= 22946 – 21896 

 ∆V = 1050cm-1 

 We know that the Raman shift is a characteristic of material and remains same for all 

incident light or Rayleigh line. 

 Now if the light used is of wavelength 4047Ǻ, then in terms of wave number the 

Rayleigh line corresponding to incident light. 

 ν =  
1

4047 𝑋 10−8
= 24710 𝑐𝑚−1 

 Since the Raman shift ∆ ν remain same therefore position of Stoke line is 

= ν - ∆ ν =  24710 – 1050 = 23660cm-1 

Wave length of Stoke line =𝜆𝑠𝑡𝑜𝑘𝑒 = 
1

23660 𝐶𝑚−1 = 42265Ǻ 

Similarly Anti Stoke line  = ν+∆ν 

    = 24710 + 1050 = 23760 Cm-1 

Wave length of anti-stoke line 
1

25760𝐶𝑚−1 = 3.882 𝑋 10
8𝑐𝑚 

         = 3882Ǻ 

 

Self assessment questions (SAQ) 

SAQ1: What are Raman lines? 

SAQ2: Why Stoke lines are more intense than anti-stoke line? 

SAQ3: Explain the unit of Raman displacement? 
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SAQ4: Give the Rotational energy in terms of rotational quantum number? 

SAQ5: What is rotational constant? 

SAQ6: What is classical frequency of molecular vibrations? 

SAQ7: Define Vibrational Constant? 

SAQ8: How structure of molecule can be studied with the help of Raman spectroscopy? 

11.12 Summary 

1.  Rayleigh scattering, only incident wavelengths are present in scattered light. No other 

wavelengths are present in scattered light therefore Rayleigh scattering is also called coherent 

scattering. The frequency of incident light is called Rayleigh line or exciting line. 

2. When a monochromatic beam of light passes through a gas, organic liquids like benzene or 

toluene, or a transparent solid, a small part of light scattered in all directions. In the spectral 

lines, if there are some additional frequencies, they are called Raman lines.  

3. The Raman lines corresponding to each Rayleigh line occur symmetrically on both ride of 

Rayleigh line. The lines on the low frequency side of Rayleigh line is called stoke line, while 

the lines on the higher frequency side is called anti-stoke lines.  

4. The intensity of antistoke lines is much weaker than stoke lines. Displacement of Raman 

Stoke lines from the Rayleigh line do not depend on the Rayleigh frequency. 

5. Raman displacement is denoted by ∆ν (in cm-1 unit) which is wavenumber and proportional 

to energy 

ν = λ̅ =
E

hc
=
1

𝜆
 

6. Rotational energy in terms of wave number 

𝑣 =
h

8 π2Ic
J(J + 1) 

𝑣 = 𝐵 J(J + 1) where J=0, 1, 2, 3………(J is rotational quantum number) 

Where 
h

8 π2Ic
= B is rotational constant.  

7. Rotation Raman Shift is 

∆𝜈 = 𝑣𝑟𝑎𝑚𝑎𝑛 − 𝜈𝑟𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 =  4𝐵( J + 3/2) 

∆𝜈 = 6𝐵, 10𝐵, 14𝐵, 18𝐵………………. 

8. In terms of wave number, the vibrational energy can be given as 



             MSCPH507 

272 

 

 

G(v) =
E

hc
=
ν′

𝑐
(v +

1

2
) 

where v = 0, 1, 2, 3, ...are integer number corresponding to different energy states. 

G(v) = ω (v +
1

2
) in cm-1 

 

9. vibrational Raman lines are situated on either side of Rayleigh line as  

𝜈𝑟𝑎𝑚𝑎𝑛 = 𝜈 ± [G(v + 1)  − G(v)] 

10. Vibrational Raman shift  ∆𝜈 = 𝜈𝑟𝑎𝑚𝑎𝑛~𝜈 = ω 

 

11.13 Glossary 

Rayleigh line: Wave number ν corresponding to incident light 

Wave number: inverse of wavelength 
1

𝜆
 = ν or (

𝐸

𝘩𝑐
)  

Spectrum: A band of colours 

Selection rule: A rule specify the possibility of transition among the different energy levels  

Rotational energy state: energy state arises due to rotations in molecule 

Vibrational energy state: energy state arises due to vibration of molecule. 

Rotational spectra: Spectrum due to transitions among rotational states 

Vibrational spectra: Spectrum due to transitions among vibrational energy states of molecule. 

Raman Displacement: separation between Rayleigh line and Raman line in terms of wave 

number ν. 

Stoke line: particular wavelength (or wave number) present in the Raman spectra of a molecule 

on the low frequency side of Rayleigh line. 

Anti-stoke line: Particular wavelength (or wave number ) present in the Raman spectra on the 

higher frequency side of Rayleigh line. 

11.14 References 

Raj Kumar, Atomic and molecular spectra,  KedarNath Raman, Nath Publication, Meerut 

CL Arora and PS Hemne, Physics for Degree students, S Chand Publication, Delhi 



             MSCPH507 

273 

 

 

11.15 Suggested Reading 

1. CL Arora, Atomic and Molecular Physics, S Chand and Company Ltd., New Delhi 

2. M. Alonso and EJ Finn, Fundamental University Physics, Addison-Wesley Publication 

Company. 

3. HE., White., Introduction to Atomic Spectra, McGraw Hill Publication, New Delhi. 

4. CN Banwell, Fundamental of Molecular Spectroscopy, Tata McGraw Hill Publication, New 

Delhi. 

5. John R., Introduction to Raman Spectroscopy, FerraoKazuaNakamoto, Academic Press, New 

York 

 

11.16 Terminal Questions 

11.16.1 Short answer type questions 

1. What is Raman Effect? 

2. Explain the intensity of Stoke and anti-stoke lines? 

3. Give the characteristic of molecular spectra. 

4. Explain rotational Raman spectra. 

5. Explain Vibrational Raman spectra. 

6. What do you mean by Raman shift? 

7. Give a comparison between Raman and infrared spectra. 

8. With the help of Raman spectra, how the structure of a molecule can be studied. 

11.16.2 Long answer type questions 

1. Explain the Raman spectra with the help of experimental setup. 

2. Explain rotational Raman spectra. Obtain the Rotational Raman shift with the help of 

vibrational constant. 

3. Give the explanation of pure rotational Raman spectra. Find out the expression for rotational 

Raman shift and Rotational constant. 

4. Give the applications of Raman spectrum. 

5. Discuss the main features of vibrational and rotational Raman spectra of a diatomic molecule. 

Give the necessary theory. 

6. Discuss Raman spectra of diatomic molecules and point out the similarities and differences in 

infrared and Raman spectra. 



             MSCPH507 

274 

 

 

7. Describe the salient features of Raman spectra of a hetronucleus diatomic molecule and how 

this can be explained.  

8. Explain how Raman spectra depends on polarisability of a molecule and entirely independent 

from the presence of permanent dipole moment. 

9. Consider H2 , N2 , HCl and OH molecule. Explain which of these molecule show infrared 

spectrum and which will give Raman Spectrum.  

10. Distinguish between scattering and Rayleigh scattering. 

 

11.16.3 Numerical type questions 

1. A sample is irradiated with a light source of wave length 3458 Å. If the stoke lines are observed 

at 4458 Å, find out the wavelength of anti-stoke line.    [Ans. 4262 Å] 

 

2. In the vibrational Raman spectra of HF, Raman lines are observed at 2670 Å and 3430 Å. What 

is the fundamental vibrational frequency of molecule?    [Ans. 1.24×1014 

Hz] 

 

3. The exciting line in an experiment with Raman Effect is 5460 Å. If the stoke line has 𝜆=5520 

Å, Calculate the wavelength of anti-stoke line.     [Ans. 5400 

Å] 
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12.1 Franck Condon Principal 

when electrons of an atom are excited to higher energy states, the radiations that are absorbed 

in this process appear as the absorption spectra of atoms. In a similar way, electronic spectra 

of molecules arise when the electrons of a molecule are excited to higher energy states. The 

energy involved in this process is generally large and electronic spectra of molecules are 

usually found in visible and ultraviolet region. Therefore, electronic spectra arise due to the 

changes in the arrangement of molecular electrons. We shall discuss electronics spectra of 

diatomic molecules. 

The electronic transition is the result of change in electronic energy. A small change in the 

electronic energy will be accompanied by a large change in the vibrational energy of the 

molecule. These vibrational energy changes give rise to vibrational transitions which form a 

group of various bands. Further, a small change in the vibrational energy will be accompanied 

by a large change in the rotational energy of the molecule. These rotational energy changes 

give rise to rotational transitions forming a series of line in each band-the so called fine 

structure of each band. 

12.2 Salient Features of Molecular Electronic spectra 

Electronic spectra is the most complex molecular spectra which appear in the visible and ultra 

violet regions and involve the change in all the three energies (electronic, vibrational and 

rotational) of the molecule. These spectra are obtained in emission and absorption regions. The 

spectral band exhibit a fine structure which is more complicated. The head formation tendency 

is story and the bands are degraded either towards violet or toward the red. All molecules give 

electronic spectra.Homo-nuclear molecules (H2,N2,O2 etc.) do not give neither rotational nor 

vibrational- rotational spectra because of having no permanent dipole moments but they give 

electronic spectra because of the instantaneous dipole moment changes during the 

redistribution of change which results in the transition. 

12.3 Formation of electronic spectra; electronic transition 

 Each electronic state of the molecule has a different potential energy curve. For stable 

electronic state, the curve, is characterized by a minimum at an equilibrium inter-nuclear 

distance 𝛾e a dissociation limit De, a set of discrete vibrational levels and sets of discrete 

rotational levels. Fig 5.1 shows the two potential energy curves for a diatomic molecule. The 
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lower curve represents the ground state and the upper curve an electronically excited state of 

the molecule. The asymptote in the upper curve is higher by axe the electronic energy of 

excitation of the atom. Also 

                    

                             Fig 12.1 Both curve differ in shape as well as in position of minimum  

When an electron of a molecule is raised from a low energy electronic state (ground state) to 

another of high energy, radiation is absorbed giving rise to absorption bands. The return of the 

excited molecule to lower electronic states results in an energy release giving rise to emission 

spectrum. Since during excitation a change takes place in vibrational and rotational level also, 

therefore the electronic emission is always accompanied by the vibrational transitions. Each 

vibrational transition of upper and lower electronic states, is accompanied by a number of 

transitions involving a rotational state. These rotational transitions give rise to a graph of fine 

lines known as band. The bands arising from all the vibrational transitions give rise to a bands-

system.                                            

𝜐𝑒 = (𝑇𝑒
′ − 𝑇𝑒

′′)𝑐𝑚−1 

The bands of the system corresponding to the same upper vibrational level (𝜈′) but different 

lower vibrational levels (𝜈") are known as to form a 𝜈" - Progression and the bands 

corresponding to the same lower vibration level (𝜈") but different upper vibrational level (𝜈′) 

from a 𝜈′- progression. 
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12.5.4 Vibrational Structure of Electronic Band-System in Emission 

 In an electronic transition, a change in all these energy (electronic vibrational and rotational) 

of the molecule takes place. The wave-numbers obtained from an electronic transition are. 

𝜈 = (𝑇𝑒
′ − 𝑇𝑒

") + (𝐺′ − 𝐺") + (𝐹′ − 𝐹") 

Taking F’=F”=0 (neglecting rotational structure of the individual bands), the wave numbers of 

band system are. 

                                 𝜈𝐺 = 𝜈𝑒 + 𝐺′(𝜈
′) − 𝐺"(𝜈") 

                                 = 𝜈𝑒 + {𝑤𝑒
′ (𝜈′ +

1

2
) − 𝑤𝑒

′𝑥𝑒
′ (𝜈′ +

1

2
)2 − {𝑤𝑒

" (𝜈" +
1

2
) − 𝜔𝑒𝑥𝑒"(𝜈

" +
1

2
)2 

 As there is no limitation on the change in the vibrational quantum number 𝜈 for an electronic 

transition, therefore. 

Δ𝜈 = 𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

That is, all transitions from each vibrational level of the upper electronic state can take place 

to each of the vibrational levels of the lower state. This gives rise to a large number of bands 

for a single electronic transition. Fig12.2 shows some of emission transition. 
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                                                              Fig.12.2 

It can be band –system may be divided in to different groups. Each group contains a few close 

bands. These are known as sequences (Δ𝜈 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒). Bands of 

sequences lie along the diagonal or along a line parallel to diagonal of the (Deslandre table). 

Bands in the horizontal rows and in the vertical columns are knows as 𝜈"− 𝑎𝑛𝑑 𝜈′ - 

progressions respectively. 

12.5   Electronic Band spectra in Absorption 

 An electronic absorption spectrum consists of a series of bands which come more and more 

closer toward high wave-number side and ultimately give a continuum. All emission band 

systems are not observed in absorption. A large number of 𝜈" −Progressions (related to 𝜈′ =

0,1,2, − − −)of emission bards occur while there is only a single 𝜈′- Progression (related to 

𝜈" = 0) of bands occur in the absorption spectrum. Other progressions (related to  𝜈" =

0,1,2, − − −) occur, if at all in very poor intersities Fig 5.3 shows the energy level diagram 

and the corresponding transitions. The bands coverage at a point corresponding to the 

transition. 
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                                                               Fig.12.3 

The wave numbers of the band-origins of a system are 

𝜈0 = 𝜈𝑒 + 𝐺
1(𝜈1) − 𝐺11(𝜈11) 

                          =𝜈𝑒 + {𝑤𝑒
1 (𝜈1 +

1

2
) − 𝑤𝑒

1𝑥𝑒
1(𝜈1 +

1

2
)2} − {𝑤𝑒

11 (𝜈11 +
1

2
) − 𝑤𝑒

11𝑥𝑒
11(𝜈11 +

1

2
)2} 

For the observed absorption progression of bands 𝜈11 = 0 

𝜈0 = 𝜈𝑒 + 𝑤𝑒
1 (𝜈1 +

1

2
) − 𝑤𝑒

1𝑥𝑒
1(𝜈1 +

1

2
)2 −

1

2
𝑤𝑒11 +

1

4
𝜔𝑒
"  𝑥𝑒

" . 

For the first few bands of this progression, we have 𝜈′ = 0,1,2,3, − − − −− 

The wave numbers of these bands and wave number separations are 

                       Wave numbers                                              First difference 

               𝜐𝑒 +
1

2
𝜔𝑒
′ −

1

4
𝜔𝑒
′𝑥𝑒
′ −

1

2
𝜔𝑒
′′ +

1

4
𝜔𝑒
′′𝑥𝑒

′′                           𝜔𝑒
′ − 2𝜔𝑒

′𝑥𝑒
′                                     

  𝜐𝑒 +
3

2
𝜔𝑒
′ −

9

4
𝜔𝑒
′𝑥𝑒
′ −

1

2
𝜔𝑒
′′ +

1

4
𝜔𝑒
′′𝑥𝑒

′′                          𝜔𝑒
′ − 4𝜔𝑒

′𝑥𝑒
′                               
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        𝜐𝑒 +
5

2
𝜔𝑒
′ −

25

4
𝜔𝑒
′𝑥𝑒
′ −

1

2
𝜔𝑒
′′ +

1

4
𝜔𝑒
′′𝑥𝑒

′′                                       𝜔𝑒
′ − 6𝜔𝑒

′𝑥𝑒
′            

𝜐𝑒 +
7

2
𝜔𝑒
′ −

49

4
𝜔𝑒
′𝑥𝑒
′ −

1

2
𝜔𝑒
′′ +

1

4
𝜔𝑒
′′𝑥𝑒

′′                                                                                   

With the increase of 𝜈′, first difference (wave-number separation between successive bands) 

decreases, that is levels come closer and closer. The second difference (2𝜔𝑒
′𝑥𝑒
′ ) between the 

adjacent bands is the same. Thus the vibrational constant 𝜔𝑒
.  can be determined if  𝜔𝑒

′𝑥𝑒
′    is 

knows.  

Potential Structure of Electronic Bonds: - The fine structure of individual bands of electronic 

spectra due to the rotation of the molecule, that is each line of band corresponds to a change in 

all the three energies of the molecule. The wave number of a line (J:J”) is given as 

                                     𝜈 = 𝜈𝑒 + (𝐺
′ − 𝐺") + (𝐹′ − 𝐹") 

                                        =𝜈0 + 𝐹
′(𝜈.

′𝐽′) − 𝐹"(𝜈". 𝐽"), 

                      where  𝜈0 = 𝜈𝑒 + (𝐺
′ − 𝐺") is the band origin. 

Putting the values of rotational terms F’ and F” of the upper and lower electronic states, we 

get’ 

𝜈 =  𝜈0 + 𝐵𝜈
′𝐽′(𝐽′ + 1) − 𝐵𝜈

"𝐽(J+ 1),                                          

The selection rule is Δ𝐽 = ±1 

R-branch – Transitions corresponding to Δ𝐽 = 𝐽′ − 𝐽" = +1 

Provide one set of lines known as R-branch, Putting J’=J”+1, we get 

                           𝜈𝑅 = 𝜈0 + 2𝐵𝜈
′(3𝐵𝜈′ −  𝐵𝜈")J”+( 𝐵𝜈

′ − 𝐵𝜈")J”2 

R-branch is a series of lines R(0),R(1),R(2),-------------having J”=0,1,2,---------- 

P-branch – Transitions corresponding to Δ𝐽 = 𝐽′ − 𝐽" =  −1 

Provide another setoff lines known as P-branch. Putting J’=J”-1, we get 

                                   𝜈𝑃 = 𝜈0 − (𝐵𝜈′ −  𝐵𝜈")J”+ ( 𝐵𝜈
′ − 𝐵𝜈")J”2 
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P-branch is a series of lines P(1), P(2), P(3),-------------having  J”=1,2,3,----------in  Fig 12..4 

shows the transitions and the band-structure obtained. P-and P- branch can be incorporated in 

a single parabolic equation. 

𝜈 =  𝜈0 + (𝐵𝜈
′ + 𝐵"𝜈)m+(B'ν-B"ν)𝑚

2 

                where             m = J”+1=1,2,3,------------- for R(0),R(1),R(2),------ 

                                       m = J”+1=1,2,3,------------- for P(1),P(2),P(3) -------- 

                and                 m= o for band origin, 

                     

                                                                              Fig.12.4 

Fortrat Parabola:- The fig 12.5 shows the plots of above equation when (𝐵𝜈
′ − 𝐵𝜈") is 

negative (red- degraded band) and when  (𝐵𝜈
′ − 𝐵𝜈") is positive (violet – degraded band). These 

are known as ‘Fortrat Parabola’ The vertex of the Parabola represents the band-head. 

Differentiating the able equation and equation d𝜈/dm to zero, we get 

                                                    
𝑑𝜈

𝑑𝑚
= (𝐵𝜈

′ + 𝐵"𝜈)+2(Bν'-B"ν)𝑚 = 0 

This gives the value of m at which the vertex of the Fortrat Parabola (band-head) lies as 

                                                      m vertex =  - 
(𝐵𝜈
′+𝐵𝜈")

2(𝐵𝜈
′−𝐵𝜈")
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                                                         Fig.12.5 

Putting this value, the wave number separation between band-head and band origin is obtained 

as 

𝜈𝑅𝑒𝑎𝑑 − 𝜈0 = −(𝐵𝜈
′ + 𝐵𝜈) 

(𝐵𝜈′+𝐵𝜈")

2(𝐵𝜈′−𝐵𝜈")
  + (Bv′ − Bν" ) 

(𝐵𝜈′+𝐵𝜈")
2

4(𝐵𝜈′−𝐵𝜈)2
 

                    = -  
(𝐵𝜈′+𝐵𝜈")

2

4(𝐵𝜈′−𝐵𝜈)2
 

Thus 𝜈ℎ𝑒𝑎𝑑 − 𝜈0 is positive for a band degraded to the red and negative for a band degraded to 

the violet. 

12.6 Observed Intensity Distribution (Vibrational) in Band system 

(Franck-Condon Principal) The Intensity distribution among the bands of a band-system of 

electronic spectra varies from one molecule to another and from one band-system to another of 

the same molecule. The intensity distribution of absorption bands of O2,Co2 and I2 is shown in 

12.6. 

In the spectrum of O2 (0,0) band is maximum intense and the intensity of successive bands 

(𝜈′ −  𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 𝑤𝑖𝑡ℎ 𝜈" = 0) decreases rapidly. In the spectrum of co2 the intercity of 

bands along the progression first increases rapidly to a maximum and then decreases. In the 

spectrum of I2, the intensity of bands increases gradually and the maximum reaches at a very 

high 𝜈′ − 𝑣𝑎𝑙𝑢𝑒 .thus a long progression is obtained. 
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Franck- Condon Principle: - The Franck–Condon principle is a rule in spectroscopy and 

quantum chemistry that explains the intensity of vibronic transitions. Vibronic transitions are 

the simultaneous changes in electronic and vibrational energy levels of a molecule due to the 

absorption or emission of a photon of the appropriate energy. The intensity distributions can 

be explained with the help of Franck-Condon principal. This principle states that- ‘An 

electronic transition in a molecule takes place so rapidly in comparison to the vibrational 

motion of the nuclei that the intense and the velocity of the nuclei can be considered unaltered 

during the electronic transitions. 

The principal also states that an electronic transition would take place only when the atoms in 

the lower electronic states are in their extreme position. Hence, transitions must be represented 

by vertical lines on the potential energy curves. 

                        

                                                                   Fig12.6 

Quantum Mechanical Formulation of Franck - Condon Principal:- In quantum mechanics, 

the intensity of spectroscopic transitions, between two states (total wave functions 𝜑′𝑎𝑛𝑑 𝜑") 

depends on the square of the corresponding transitions moment R(matrix element). If R be the 

average electronic transition moment, then  

                                                         R or  R𝜈′, 𝜈" = 𝑅𝑒  ∫ 𝜓′𝜈 𝜓𝜈"𝑑𝑟 

Where r is the inter-nuclear distance. We may define the ‘Franck-Condon factor’ 𝑞𝜈
′,𝜈" as   

                                                             𝑞𝜈
′,𝜈" = [∫𝜑𝜈

′𝜑𝜈’ dr]2 
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The Franck-Condon factor and also the relative intensities depend upon the relative positions 

of the maxima and the nodes of the vibrational wave function 𝜓𝜈 in two states quantum 

mechanically we may state the principle as follows:-  

A vibrational transition will have a large Franck-Condon factor only if one of the two turning 

points of a level of one electronic state lies nearly at the same inter nuclear distance as one of 

the two turning points of a level of the other state, except for 𝜈 = 0 level for which the middle 

point of the level must be subetituted (in place of turning point) 

Intensity Distribution in Absorption Bands: - Franck - Condon principle explains it. Fig 12.7 

shows the three typical situations of absorption transitions between two electronic states in a 

diatomic molecule. The equilibrium in inter-nuclear distances are equal in both states in fig 

12.7(a), slightly greater in upper state in (b), and much greater in upper state in (c) In fig 

12.7(a), the transition 𝜈" = 0—𝜈′ = 0 is the most probable one because of connecting the 

configurations of high probability and it appears as a vertical line (r remains unchanged).other 

transitions are also taking place but week in intensity. Thus (0,0) band has maximum intensity 

and for higher bands decreases rapidly. This is the case of o2 molecule. 

 

                                                                  Fig.12.7 

In fig 12.7(b), the most probable transition is 𝜈" = 0—𝜈′ = 2. Other transitions to the 𝜈′ =

 0,1,2,3,4, − − − are taking place but weak in intensity. Thus, the intensity first increase from 
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(0,0) band and after reaching a maximum for (2,0) band intensity decreases. This is the case of 

co molecule. 

In fig 12.7(b), the most probable transitions is 𝜈" = 0—𝑐𝑜𝑛𝑡𝑖𝑛𝑛𝑢𝑛 of upper electronic state. 

Thus molecule is dissociated so that a progression of weak bands terminated to a continuum of 

maximum absorption intensity occurs. This is the case of I2 molecule, 

Intensity Distribution in Emission Bands:- The distribution of intensity in a band progression 

with 𝜈′ = 0 in emission corresponds exactly to that of a progression with 𝜈" = 0 in absorption. 

The intensity maximum at a 𝜈" value is obtained whose value depends on the relative portion 

of the maxima of the two potential curves. The larger value of 𝜈” is obtained for intensity 

maximum for the greater difference 𝑟′𝑒 − 𝑟′′𝑒. The intensity distribution for band progression 

in emission (for 𝜈′ > 0) is different from that for 𝜈′ = 0. For 𝑂2
+ and Co, the fig 12.7 shows 

the Condon parabola. This is a plot of intensities at the bands of a system in a 𝜈′ − 𝜈" array 

exactly similar to a Deslandre table and joining the most intense bands. Thus a Condon 

parabola may be defined as the locus of most intense bands in a 𝜈′ − 𝜈" array. 

           

 

                                                                    Fig.12.8 

The potential curves are not symmetrical. This means transitions will be more probable from 

(or to) the one side than the other in accordance with Franck-Condon principal. Therefore, for 
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a red-end degraded system, (r’>r”), the right part of the Condon parabola is stronger while for 

violet-end degraded system (r’ < r”), the left part is stronger. 

12.7 Rotational Intensity Distribution 

 The intensity of a line in an electronic band depends upon the rotational levels of the initial 

electronic state and upon the transition probability in emission or absorption of that line. For a 

transition 1Σ − 1Σ, the value of intensity factor i for the lines of R –and P- branches is given 

by  

                                                              iR(J) = iP(J)= J’+J”+1 

If a graph between intensity and J is plotted, then in 1Σ − 1Σ electronic band an intensity 

maximum in each of R- and P-branches is found, fig. 12.9. with the increase of temperature, 

the maxima shift to higher J values. The R-branch is stronger in absorption while P- branch is 

stronger in emission.               

      

                                                                 Fig.12.9 

                                                        

                                                                Solved Problems 

Q.1 Rotational analysis of one band system is given by 𝜈 = 24762 + 25𝑚 − 2.1𝑚2 𝑐𝑚−1. 

       Deduce the position of the band-head, the values of B𝜈′𝑎𝑛𝑑𝐵𝜈" and the degradation of the  

       band. 
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Sol:-                               𝜈 = 24762 + 25𝑚 − 2.1𝑚2𝑐𝑚−1  ----------------- (i) 

               The line of P and R branches of a band are represented by a single formula 

                                          𝜈 =  𝜈𝑜 + (𝐵𝜈′ − 𝐵𝜈")𝑚 + (𝐵𝜈′ − 𝐵𝜈")𝑚2  

                     where 𝜈0 is the band origin. Comparing it with the eq.(1), we get 

                                 𝜈0 = 24762𝑐𝑚
−1, 𝐵𝜈′ + 𝐵𝜈" = 25𝑐𝑚−1 

                        and      𝐵𝜈′ − 𝐵𝜈" = −2.1𝑐𝑚−1 

                solving these equations., we get. 

𝐵𝜈′ = 11.45𝑐𝑚−1 𝑎𝑛𝑑 𝐵𝜈" = 13.55𝑐𝑚−1 

              Now m venterx = - 
𝐵𝜈′+𝐵𝜈"

2(𝐵𝜈′−𝐵𝜈")
= − 

25

2𝑥(−2.1)
= 5.9 

             That is, the head lies at 6 (whole number). Putting m=6 in eq.(1) we get 

𝜈ℎ𝑒𝑎𝑑 = 24762 + (25𝑥6) − (2.1 𝑥 6
2) = 24836.4𝑐𝑚−1 

     This is clear that the band-head lies towards the high-frequency side of the band-origin so 

that    

      the band is degraded towards the law frequency side or ‘toward the red’. 

Q.2:- The 5’-0” transition is Hcl35 occurs at 99022 cm-1. Calculate the position of the band 

origin of same transition for Pcl35 on the basis of the assumption that in both the electronic 

states the molecule behaves as harmonic oscillator. Given that. 

                              𝜔𝑒
′ = 2710cm-1     𝜔𝑒

′′ = 2990cm-1 for Hcl35 

                      m'(Hcl) = .979889     m” (Hcl) =  1.90500 

Sol:-                  𝜌 = √(
0.979889

1.90500
) = 0.7172 

         The origin of an electronic band is given by  

𝜈0 = 𝜈𝑒 + 𝜈𝜈 
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                                                                          = 𝜈𝑒 + [𝜔𝑒
′ (𝜈′ +

1

2
) − 𝜔𝑒"(𝜈" +

1

2
)] 

                              91022= 𝜈𝑒 + [2710 (5 +
1

2
) − 2990 (

1

2
)] 

                                    𝜈𝑒 = 77612 𝑐𝑚
−1 

This represents the energy difference between potential energy minima of two electronic state 

that remain unchanged. Position of new band origin is given by 

                                       𝜈0
′ = 𝜈𝑒 + 𝜌𝜈𝜈 

                                            = 77612+0.7172(𝜈0 − 𝜈𝑒) 

                                            = 77612+0.7172(91022-77612) 

                                            = 87230cm-1 

Q.3:- The zero point energy of the ground state of N2 is 1176 cm-1 and that of its lowest excited 

state is 727 cm-2. The energy difference between the minima of the potential energy cueves is 

50,206 cm-1. What is the energy of the 𝜈′ = 0—𝜈′′ = 0 transition is cm-1? What is the 

corresponding wavelength? 

Sol:- The wave numbers of the band origins of a system are given by 𝜈0 = 𝜈𝑒 + (
𝐸𝜈′−𝐸𝜈"

ℎ𝑐
) 

In our case            Zero point energy of ground state = 𝐸𝜈" 

                            Zero point energy of excited state =𝐸0′ 

Therefore, 𝜈0 = 𝜈𝑒 + (
𝐸0
′−𝐸0"

ℎ𝑐
) 

                 𝜈𝑒 = 50206 𝑐𝑚
−1 

               
𝐸0′

ℎ𝑐
= 727𝑐𝑚−1 

               
𝐸0′

ℎ𝑐
= 1176 𝑐𝑚−1 

So that frequency of (0-0) bands is  

𝜈00 = 50,206 + (727 − 1176) 
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                                                  = 50,206-449 

                                                 = 49,757 cm-1 

Corresponding wave length of (0-0) band is given by  

𝜆00 =
1

𝜈00
= 

1

49,757
 𝑐𝑚 = 2010 Å 

Q.4:- The bands of a system are given by relation 𝜈 = 19221.2 + (1611.3𝑈′ − 40.7𝑈12) −

(1495.7𝑈" − 31.5𝑈"2) where U = 𝜈 +
1

2
 calculate the position of (0,0) band. Towards which 

side is the band degraded? Given that U’= 𝜈+ 
1

2
 

Sol:- we know that band that band origin of the system is represented by  

           𝜈0 = 𝜈𝑒 + (𝜔𝑒
′𝑢′ − 𝜔𝑒′ 𝑥𝑒′ 𝑢

′2) − (𝜔𝑒
′′𝑢′′ − 𝜔𝑒′′ 𝑥𝑒′′ 𝑢′′

2) 

        Comparing it with 

𝜈 = 19221.2 + (1611.3𝑢′ − 40.7𝑢′
2
) − (1495.74" − 31.54"2) 

       we get 𝜈𝑒 = 19221.2 𝑐𝑚
−1, 𝜔𝑒

′ = 1611.3𝑐𝑚−1, 𝜔𝑒′𝑥′ = 40.7 

       𝜔𝑒
′′ = 1495.7cm-1, 𝜔𝑒′′𝑥" = 31.5cm-1 

      for (0,0) bard 𝜈′ = 0, 𝜈" = 0 

     Hence u’= 
1

2
 𝑎𝑛𝑑 𝑢" =

1

2
 

Substituting equation for  𝜈00. we get. 

𝜈00 = νe + (
1

2
 ωe

′ −
1

4
 ωe′xe’) - (

1

2
 ωe

′′ −
1

4
 ωe′′xe’’) 

       = 19221.2+(
1

2
𝑥1611.3 − 

1

4
 𝑥40.7) − (

1

2
 𝑥 1495.7 − 

1

4
𝑥31.5) 

       = 19276.7 cm-1 

As this case                        𝜔𝑒
′ > 𝜔𝑒” 

Hence B’>B or B’- B” is positive; so bands are degraded towards the violet. 
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                                                          MCQ Problem 

  

1. Which statement is correct about the vibrational ground state of an H2 molecule? 

   
The molecule is vibrating. 

   
The molecule is in its lowest vibrational level but is not vibrating.  

   
The molecule is static in its ground state.  

   
In its vibrational ground state, the molecule has no vibrational energy.  

 2. Which value is the correct reduced mass of HF? 

 

 

 

 

 

 

   
1.59 × 10–27 kg 

   
6.30 × 1026 kg 

   
5.72 × 1026 kg  

   
1.75 × 10–27 kg 

 

3. Which statement is incorrect about CO2? 

   
CO2 is linear. 

   
CO2 has two degenerate bending modes of vibration. 

   
The IR spectrum of CO2 shows four absorptions.  

   
CO2 has two stretching modes of vibration.  

4.Which of the following transitions between rotational energy levels is 
not allowed? 

 

   
J = 1 ← J = 3 

   
J = 1 →  J = 0 

   
J = 1 ← J = 2 

   
J = 0 ← J = 1 

   

 

5. For which of the following molecules could a pure rotational spectrum not be observed in 

the gas phase? 
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Answers : (1)   a     (2)  a  (3)    c   (4)   a   (5)   c       

Short and Long Answer Problems 

Q.1:- Write a note (short) on Franck-Condon principle? 

Q.2 :- Give an account of the salient features observed in the electronic spectrum of a diatomic   

molecule. Discuss the conditions under which the band-heads are degraded towards violet red 

in the electronic spectrum. 

Q.3:- Discuss rotational fine structure of electronic vibrational transitions. What is Fortrat 

diagram? 

Q,4:- The band-head of the branch is always at J= -
1

2
, while that of the P-or R-branch may be 

any where explain. 

Q.5:- Describe Franck-Condon principle in emission and absorption. 

Q.6:- How did it become known as .Franck-Condon Principle? 

Q.7:- The dissociation energy of H2 molecule is 4.45 ev and that of D2 molecule is 4.54ev. Find 

the zero-point energy of H2 molecule.  

Q.8:-You are given a Franck –Condon parabola. What information’s could be deduced from it about 

the molecule? 

  

 

 

 

 

   
HCl 

   
NO 

   
N2 

   
CO 
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UNIT  13                       

PHOTOACAUSTIC                           

Structure  

 

13.0    Introduction to photoacoustic effect 

13.1    Photothermal Phenomena and Detection Techenques 

13.2 Electret Microphone and Piezoelectric Detection 

13.3  Photo-thermal Beam Detection (PBD) 

13.4  Photo-thermal Radiometry and Other Remote Sensing Techniques 

13.5  Photo thermal Displacement Spectroscopy (PDS) 

13.6  Photoelectric Detection: 

13.7  Interferometric Detection 

13.8  Theory of the Photoacoustic effect in condense media 

13.9  Advantages of Photoacoustic Spectroscopy 

13.10  Applications of Photoacoustic in different fields 
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13.0 Introduction to photoacoustic effect 

Photoacoustic effect was discovered by Alexander G Bell in 1881. Bell accidently stumbled 

onto this effect as he was experimenting with this invention of the photo phone. Photoacoustic 

effect is essentially the generation of acoustic waves on irradiating certain substances by a 

modulated electromagnetic radiation ranging from radio frequency to X-rays. The 

photoacoustic effect or optoacoustic effect is the formation of sound waves following light 

absorption in a material sample. In order to obtain this effect, the light intensity must vary, 

either periodically or as a single flash. There are different mechanisms that produce the 

photoacoustic effect. The primary universal mechanism is photo-thermal its mechanism 

consists of the following stages:  

 Conversion of the absorbed pulsed. 

 Temporal changes of the temperatures at the loci.  

 Expansion and contraction of temperature changes (diffusion of the thermal pulsations). 

In applying the photoacoustic effect there exist various modes of measurement. Thus, when a 

sample is irradiated by a modulated electromagnetic waves, absorption of photons (Photon 

energy) generates excited internal energy levels. All or part of the absorbed photon energy is 

then transformed in to heat (thermal energy) through non-radiative relaxation processes in the 

sample. In a gas this heat energy appears as vibrational energy of the gas molecules, while in a 

solid or liquid, it appears as vibrational energy of ions or atoms. Photoacoustic (PA) generation 

is generally due to photo thermal heating effect apart from other mechanisms. Since the 

radiation incident on the sample is intensity modulated, the internal heating of the sample, 

which in turn produces acoustic signal of same frequency as that of modulating signal. 

A condenser microphone can pick this signal. The sample to be studies is often enclosed in a 

PA cell. 

(i) For the case of gases and liquids the sample generally fills the entire chamber where 

as in the case of solids, the sample fills only a portion of the chamber and the rest 

of the chamber is filled with a non-absorbing gas such as air. In addition, the cell 

also contains a sensitive microphone, which acts as acoustic transducer. Thus the 

periodic heating of the sample due to the absorption of modulated electromagnetic 

radiations results in a periodic heat flow from the sample to the gas, which itself 
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does not absorb the radiation. This periodic heat flow in turn produces pressure 

variations in the gas medium at the same frequency at which the incident beam is 

modulated. A sensitive microphone placed in the PA cell and converted in to 

electrical signals directly monitors these pressure variations. 

(ii) In case of sample in the form of thin film, bulk solid samples and liquids, it is 

possible to measure the heat production through subsequent pressure or stress 

variation in the sample itself by means of a piezoelectric transducer, which is placed 

in intimate contact with the sample. Thus the acoustic output signal amplitude 

directly gives the measure of absorption of the incident beam of radiation. This 

output is often processed through a ‘phase sensitive detection’ technique. 

 

                                            Fig.13.1 Common direct PA generations mechanism 
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                               Fig 13.2 various possible cases of indirect PA Generation 

Photothermal (PT) heating due to the absorption of an excited beam at a surface can generate 

surface acoustic wave and affect the propagation of surface acoustic waves. The former effect 

is sometimes called PA Rayleigh surface wave generation while the latter can be called as 

surface wave probing of PT generation. 

 

13.0.1 Photothermal Phenomena and Detection Techenques 

When the sample is illuminated by an intensity modulated beam, it gets heated up periodically 

due to the absorption of incident energy and subsequent excitation and non-radiative de-

excitation phenomena This is a dissipative process in which the rate of energy transfer is 

determined by the thermal diffusivity α = k/ρc and the distance of appreciable energy transfer 

is given by the thermal diffusion length it, which for periodically deposited heat µ=(2α/ω)1/2 
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   Fig.13.3 Block diagram showing the optical absorption and various possible de-excitation   

                     Channels. 

Detection methods can either be applied to the sample directly when it is called direct PT effect 

or to the coupling medium adjacent to the sample which is the indirect PT effect. The second 

method lies on the assumption that only the sample absorbs the indirect light but not the 

coupling medium. 

13.0.2 Electret Microphone and Piezoelectric Detection: 

The conventional P A microphone detection technique is a non-contact, remote sensing 

technique. In this case, a displacement sensitive detector such as a capacitor microphone proves 

to be an excellent heat detector. With the availability of sensitive microphone and associated 

electronics, it is possible to detect temperature rise in a gas of 10-6 °C or a thermal input of the 

order 10-9 cal/cm3 –sec. The response time of the gas-microphone system to the order of 100 µ 

sec or longer. In the case of solids or liquids, for measuring heat in the sample by means of a 
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piezoelectric detector placed in intimate contact with the sample. It can detect temperature 

changes of 10-7 °C to 10-6 OC, which for a particular solids or liquids corresponds to thermal 

inputs of the order of 10-6 cal/cm3-sec. Since the sample with a displacement sensitive detector 

such as microphone would be 10 to 100 times less sensitive than a pressure sensitive device 

such as a piezoelectric detector. 

              

                  (a)                                                                          (b) 

                        Fig.13.4 Transducer assembly for PZT detection for solids  

                                            (a) opaque and (b) transparent. 

 

13.0.3 Photo-thermal Beam Detection (PBD) 

This is a non-contact technique originally proposed by Boccara et al and Fournier et al. It is 

based on the concept of beam deflection by thermally induced changes in the refractive index. 

The absorption of a modulated pumping beam followed by the diffusion of the deposited heat 

causes a gradient in the refractive index in a thin layer of gas (or liquid) adjacent to the sample 

surface. Assuming that the probe beam passes through the coupling medium parallel to the 

sample surface at a distance x from the surface, it will be deflected by an angle ϕ from its 

original path Fig. 13.6. For small deflections, ϕ is given by 

                ∅ = (
𝐿

𝑛0
) [𝜕𝑛 𝜕𝑇⁄ ].𝑇0 [

𝜕𝑇𝑔

𝜕𝑋
] .𝑋=𝑋0       ………………(1)                                            
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where Tg (x, t) = θ exp. (-σg.x).exp. (jωt) is the temperature distribution in the coupling 

medium(gas), no is the refractive index of the gas at ambient temperature (To) and L is the 

length of the sample illuminated by the pump beam. 

 

         

                                Fig.13.5 PBD experimental configuration 

The PBD technique has been employed in the measurement of optical absorption coefficient 

of thin films, solids, liquids and gases and more recently to a quite diverse class of problems 

ranging from imaging to scanning microscopy. 

13.0.4 Photo-thermal Radiometry and Other Remote Sensing Techniques: 

Photo thermal radiometry (PTR) is a non-contact technique in which the specimen is irradiated 

with amplitude modulated light. This results in pulsating surface temperature and similar 

pulsation in the thermal radiation emanating from the irradiated region. The technique was 

originally proposed by Kanstad and Nordal. The thermal radiation from the illuminated area is 

collected by an appropriate optical system and focused on an infrared detector. The experiment 

can also be performed using pulsed laser with boxcar or transient detection.By Stefan-

Boltzmann law, the total radiant energy emitted from a body of emissivity `e' at temperature T 

is given by 
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                                           W = eσT4      ……………… (2) 

where σ is the Stefan's constant. For a temperature change δT due to the absorption of energy 

E from a radiation of wavelength λ, the change in radiant energy is 

                                         δW = 4σeT3 δT   …………………(3) 

The PTR signal in a broadband detector over the entire thermal radiation spectrum may be 

written as 

                                        S = 4σeT3 A Sin2θ dT   ………………..(4) 

where A is the detector area and θ the collecting angle. 

 

                    Fig.13.6 Experimental arrangement for PTR measurement 

13.0.5 Photo thermal Displacement Spectroscopy (PDS) 

The basic principle involved in PDS is that whenever a sample gets heated due to photo thermal 

effect, the surface expands due to thermal effect thereby getting displaced. The magnitude of 

displacement is related quantitatively to the optical absorption coefficient. A schematic 

representation of this technique is shown in figure 13.7. For an absorbing layer of thickness, 1, 

on a transparent substrate, the photo thermal surface displacement h is given by 

ℎ =
∝𝑡ℎ 𝛽𝑃

2𝐴𝑓𝑐𝜌
     ……………… . . (5)                            
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where αth - thermal expansion coefficient, R - the fraction of the absorbed light, P - incident 

power, f – modulating frequency, A - area of optically illuminated region, ρ – the mass density 

and c - specific heat capacity. 

 

       

 

                                                     Fig.13.7 PDS principle 

13.0.6 Photoelectric Detection 

This is another example of contact type photo thermal detection technique. It is based on the 

use of pyroelectric thin films to detect the temperature change in the sample when exposed to 

modulated heating. In a pyroelectric material a temperature fluctuation induces an electrical 

current proportional to the rate of change of its average heat content 
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                                                    Fig.13.8 PDS-Interferometric method 

 The induced current in the pyroelectric film is 

                                                      ip = -p A [d∆T/ dt]   ……………….(6)  

where p is the pyroelectric constant of the material, A the detector area and ∆T - the temperature 

fluctuation. 

13.0.7 Interferometric Detection 

The sample Is kept in one of the arms of a Michelson interferometer and the position of the 

mirror in the other arm is modulated to overcome thermally induced drifts and the effect of 

mechanical vibrations on the interferometers (Fig.13.8). It is reported that the beam reflection 

approach is easier to implement and serves long term stability requirement. 

 13.0.8 Theory of the Photoacoustic effect in condense media 

Though the photoacoustic effect was discovered as early as in 1881, the potentiality of the 

technique is not exploited until 1975 after the invention of microphone. There had been several 

theories to account for the photoacoustic effect in-gaseous media. There theories range from 

Bell’s concept of air expulsion from the pores in the solid surface during heating to Rayleigh’s 

convention that the signal is derived primarily from thermally induced mechanical vibrations 

of the solid. Experiments performed during the last few years indicate that the primary source 
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of photoacoustic signal from a condensed sample, as measured by the gas microphone method, 

arises from the periodic heat flow from the sample to the surrounding gas with the subsequent 

change in the gas pressure within the cell.  

The first attempt to develop an exact theory of photoacoustic effect in solid was carried out by 

porker in order to give a quantitative explanation for photo acoustic signal emanating from cell 

window while performing photo acoustic effect in condensed media was formulated by 

Rosencwaig and Gorsho. This theory now commonly referred to as the RG theory, shows they 

in a gas-microphone measurement of a PA signal, the signal depends both on the generation of 

an acoustic pressure disturbance at the sample-gas interface and on the transport of this 

disturbances through the gas to the microphone. The generation of the surface pressure 

disturbances depends in turns on the periodic variations of temperature at the sample-gas 

interface.  

13.0.9 Advantages of Photoacoustic Spectroscopy 

Since the photoacoustic signal is generated only after the absorption of optical signal, the light 

that transmitted or elastically, scattered by the sample does not interfere with the photoacoustic 

spectroscopic (PS) measurements. This is of greater importance when one works with 

essentially transparent media, such as polluted gasp that have few absorbing centers. Since the 

method is insensitive to the scattered radiation it Is possible to obtain optical absorption data 

on highly scattering materials such as powders, amorphous solids, gels and colloids. Another 

advantage is the capability of obtaining absorption spectra of optically opaque samples, since 

the method does not depend on the detection of photons.Coupled with this is the capability, 

unique to photoacoustic spectroscopy, of performing non-destructive depth profile analysis of 

absorption as a function of depth in to a material. The PA effect results from a radiation less 

energy conversion process and is therefore complementary to radiative and photo chemical 

processes. Thus PAS can be used as a sensitive, though indirect method for studying the 

phenomena of fluorescence and photosensitivity in matter. 

Table 13.1 Comparison of various techniques optical absorption measurement for weak 

optical absorption measurement 
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13.1.0 Applications of Photoacoustic in different fields:    

The applications of photo acoustic spectroscopy (PAS), which are directly related to the 

technological importance, are presented in the following points. 

(a) Application to solid: In recent year’s substantial progress has been made in the 

fabrication of law loss optical materials for use in the visible and infrared spectral 

regions. This work how made necessary development of new techniques for measuring 

bulk and surface absorption at law levels. The absorption studies carried out in the 

infrared transmitting materials like Zn,Se and Uncoated sapphire could reveal the 

absorption coefficients at 10.6 Um and the influence of thickness. The studies revealed 

that the layer which acts as an antireflection coating on the surface of these materials at 

this wavelength region. This in turn brings out the developments of precision optics, 

which can improve the Co2 laser efficiency. Similarly, the methods for the accurate 
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determination of photoluminescence quantum efficiencies and relaxation processes are 

of considerable importance. 

(b) Application to weak Absorption in Gases:  One of the most significant applications 

of photoacoustic effect is the sensitive detection of pollutant gas species present in the 

atmosphere. The studies could attain a sensitivity limit of few parts per billion, which 

is considered to be a remarkable achievement the photoacoustic spectroscopic 

technology. 

(c) Application to thin films: The use of Photoacoustic technique for measuring 

absorption in thin films, minelayers or even multilayers has been reported. For thin 

films of powders or for liquids, the pulsed Photoacoustic technique provides 

measurement of an absorption coefficient as low as 10-3 cm-1 for a thickness of 10-8 cm. 

the photoacoustic method has been successfully employed to measure the enthalpy of 

absorbed materials like pyridine on evaporated Polycrystalline nickel films this provide 

the absolute rate deposition of a single monolayer of surface absorption coefficient at 

various monolayer and the of deposition of layers on the substrate ‘Consequently’ this 

technique finds its application in the field of semiconductor industry in which the 

detailed analysis of the changes in Physical properties at each monolayer is often 

necessary to develop highly efficiently semiconductor devices since the photoacoustic 

signal is a function of the thermal propagation within the sample, it is possible to 

determine the thermal properties like thermal diffusivity and thermal conductivity with 

great accuracy normally not attainable with other technique. 

(d) Microwave and Interference Spectroscopy 

Originally studies of (PA) were carried out in the LW -Visible region of the electromagnetic 

spectrum. Such studies can be carried out at any wavelength provided, the material under 

study has absorption in the wavelength used. Several authors have used PP. detection for 

microscopic absorption studies over a wide range of materials. The use of PAS in the near 

IR region can be carried out using the same instrumentation as for UV-Visible region. The 

absorption bands observed in the near IR region for solid and liquid samples are attributable 

to overtones and combinations of the fundamental vibrational modes of particular bands. 

Most frequently observed bands are those relating to hydrogenic systems e.g.: -CH, -OH, 

and -NH.  

(e ) Surface Studies:  
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PAS can be used in the study of adsorbed and chemisorbed molecular species and 

compounds on the surface of metals, semiconductors and even insulators. Such studies can 

be done at any wavelength, provided the substrate is non-absorbing at that wavelength. The 

PAS experiment gives optical absorption spectra of the adsorbed or chemisorbed 

compounds on the surface of the substrate. 

(f) Chemical Studies: 

PAS is ideally suited to catalytic studies since catalytic substances are by their very nature 

difficult to investigate by conventional spectroscopic means. These difficulties arise from 

the fact that in heterogeneous catalysis the catalyst is often in the form of a fine powder. 

(g)Photoacoustic in Biology and Medicine: A Photoacoustic method of determining the 

absorption of a material is widely being used in biological as well as in medical fields many 

of the above-mentioned samples occur naturally in insoluble states; many others are 

membrane bound or part of bone or tissue structure. These materials are found to function 

biologically with in a more or less solid matrix. Photoacoustic spectroscopy through its 

capability of providing optical data on intact biological matter, even with materials, which 

are optically opaque, holds great promise both as a research tool and as a diagnostic tool in 

biology and medicine. 

(h)Miscellaneous Applications: Photoacoustic spectroscopy is a tool for the study of 

radiation chemistry. Another important area of application of photoacoustic spectroscopy 

is in photosynthesis. This technique can be used to measure energy conversion and storage, 

for molecular structure and interaction studies as well as oxygen evolution in 

photosynthetic systems. The bond gap energies of semiconductors can be obtained by 

photoacoustic spectroscopy. Study of the strength characteristics of thin films is another 

application of photoacoustic method. 

                                                         Problems Sets 

Q.1 What is photoacoustic effect. 

Q.2 Explain about the different mechanisms for producing the photoacoustic effect. 

Q.3 Discuss about the direct and indirect PA generation mechanism. 



             MSCPH507 

308 

 

 

Q.4 Why does PAS require pulses of light instead of a continuous steady source of light to 

hit the  

         Sample. 

Q.5 Draw the block diagram showing the optical absorption and various possible de-excitation   

       channels. 

Q.6 write a short note on Electret Microphone and Piezoelectric Detection mechanism. 

Q.7 Give brief idea of Experimental arrangement for PTR measurement. 

Q.8 Give the Advantages of Photoacoustic Spectroscopy. 

Q.9Write the applications of Photoacoustic in different fields. 
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