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1.1 INTRODUCTION 

 The branch of physics which deal with the properties of solids materials is known as solid state 

Physics. We are living in the world of material and maximum are in solid form. Many things are 

used by human society, are made of different types of solid material. Properties like strength, 

modulus, electrical, thermal and chemical properties of solid material depend on its atomic and 

molecular structure. To study materials or solid, first we have to understand the structure of solid 

material. The study of solids and its properties started after the X-ray diffraction by Crystal in 

1912. Previously, solid state Physics concerned with crystalline solids and its properties. Later on 

the study of solids and materials has been extended, and many new materials like nanocrystalline, 

amorphous, glasses, liquid crystals polymer, composite materials and many other new materials 

are included in this Branch. This new wider field is known as Condensed Matter Physics. It is a 

new and largest area of Physics which is useful to understand the nature of matters range from 

fundamental particle to matter in Universe. 

 1.2 OBJECTIVE  
After reading this unit we will able to understand: 

  1. Crystalline and amorphous and other type of solids 

 2.  Different types of crystal structure 

3. Lattice and lattice types  

4. Symmetry and symmetry operation 

5.  Crystal directions, crystal planes and Miller Indices  

5 Structure of different solid 

6. Quasi crystals 

7. Liquid crystals 

 

1.3 CRYSTALLINE AND AMORPHOUS SOLID 
In solids, the structure refers the arrangement of its components on that solid material.  It could be 

on length scale (atomic, micro, macro on nano scale) and all length scales are significant. On the 

basis of structure, the solids can be classified in two broad categories crystalline and amorphous. 

1.3.1 Crystalline Solid 

 A crystal or crystalline solid is formed by regular repetition of its building blocks (atoms 

or molecule) in a three dimensional periodic array. Thus a crystal is formed by adding atoms or 

molecules in constant environment.  The common examples of crystals are table salt (NaCl), 

diamond, snowflakes, metals, ice, ceramics etc. Crystal can be considered a material in which 

constituent are arranged in a highly ordered microscope structure in space up to long range. In 

actual case, crystalline solid is composed of a bunch of large number of small crystal grains. These 
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grains are arranged in a random manner and joint to each other at certain boundaries called green 

boundaries. Such crystalline solids are called poly crystal.  

Further, if constituents of crystal are arranged in a regular manner up to a large scale size in 

macroscopic range (≈1mm order) such crystal specimen is called single crystal. An ideal crystal 

is a single crystal with a perfectly regular long range ordered arrangement of constituent which 

has no impurity and no defects. A single crystal gives the maximum information about the 

properties of such crystalline material. Therefore, single crystal is being studied more. The 

experimental evidence of long range periodicity in a crystalline solid was first confirmed in 1912 

by x-ray diffraction experiment. The branch which deals with the study of crystalline solids is 

often known as crystallography. 

 1.3.2 Amorphous solid 

 Amorphous solids are those materials in which constituents (atoms or molecules) are not arranged 

in a regular manner over a long range. There is no periodicity in structure, if periodicity occurs, it 

must be over a short distance of the order of several angstrom. The examples of crystalline solid 

are glass, plastic, rubber etc. Figure 1.1 shows arrangement of atoms or molecules in crystalline 

and amorphous solids. 

 

 1.4 CRYSTAL STRUCTURE  
 Following terms are used in the study of crystal and other solids. 

1.4.1 Lattice 
 Lattice is defined as a regular periodic array of point in space. Each point in a lattice has identical 

surrounding everywhere. Lattice is basically imaginary points on space with a periodic manner. 

Lattice points in two dimensional and three dimensions are shown in figure 1.2 and 1.3. 
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 1.4.2 Basis 
 The term basis is used for atoms or molecules which are constituents of a crystal material. For 

example in NaCl crystal, NaCl molecule, group of one sodium and one chlorine atoms form basis 

as shown in Figure 1.4. 

 

1.4.3 Crystal Structure 

 Logically a crystal structure is given as: 

 Crystal structure = lattice + basis 

Therefore, on placing bases on the lattice point in space we will obtain a crystal structure as 

shown in figure 1.5. 
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1.4.4:  Lattice Translation Vectors 

 The lattice is defined by three fundamental vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 in such a way that all the lattice 

points in the crystal can be denoted by using these vectors. Inside the crystal, basis (atoms or 

molecules) arrangement looks same everywhere with respect to any points. Any lattice point can 

be expressed by a position vector  𝒓 as 

𝒓 = 𝑛1 𝒂𝟏 + 𝑛2𝒂𝟐 + 𝑛3𝒂𝟑 

 Where 𝑛1, 𝑛2, 𝑛3 are integer numbers. Similarly any another lattice point 𝒓′ in the crystal can be 

obtained by  

𝒓′ = 𝒓 + 𝑛1 𝒂𝟏 + 𝑛2𝒂𝟐 + 𝑛3𝒂𝟑 

Thus any point in the lattice can be translated to another point by using suitable integers 𝑛1, 𝑛2, 𝑛3 

as shown in figure 1.6.  The lattice translation vector T is a vector, which can connect any two 

lattice points, and T can be given as 

𝑻 = 𝑛 𝒂𝟏 +  𝑙𝒂𝟐 +  𝑚𝒂𝟑 

Where 𝑛, 𝑙, 𝑚  are again suitable integer numbers.  This vector is useful to understand the nature 

and shape of lattice. 
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 1.4.5: Primitive Lattice Vector and primitive cell 

Primitive vectors define the smallest volume cell of crystal. We often use primitive lattice vectors 

to define the axis of crystal. Lattice translation vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are said to be primitive vectors 

if these vectors form three adjacent edges of parallelepiped of smallest volume. This parallelepiped 

is called primitive cell. There is always one lattice point in a primitive cell. For example, if a 

primitive cell is cubic, with eight lattice points at its corners, then each points are shared by eight 

neighbor cubes and net point in such primitive cell is 1/8×8=1. Then the edges of this cube give 

primitive vectors.  

1.4.6: Unit cell 

For describing crystal structure, it is convenient to divide the crystal into small entities such small 

group of atoms or molecules is a well defined arrangement. These small cells are called unit cells. 

The unit cells are building blocks for construction of complete crystal structure. In three 

dimensional lattices, the unit cells are generally parallelepiped.  A unit cell can be completely 

described by three vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 called lattice vectors. The interfacing angle between lattice 

vectors are generally α, β, γ. On the basis of lattice vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 and interfacing angles  𝜶, 𝜷, 𝜸  

different types of unit cell are determined as shown in figure 1.7. For example, if lattice vectors 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are equal and angles 𝜶,𝜷, 𝜸  are 900 degree, the unit cell will be cubic type. Bravis 

showed that there are total 14 types of space lattice possible on the condition of lattice vectors 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑 and interfacing angles  𝜶, 𝜷, 𝜸 . 
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 1.4.6 Difference between Unit Cell and Primitive Cell  

Unit cell and primitive cell, both are building blocks for a crystal structure. The difference is, the 

primitive cell always contains lattice points only at corners. But in case of unit cell, the lattice 

points may be at corners, or at edges or at surfaces. For example, NaCl crystal is face centered 

cubic as shown in figure 1.8. The volume of a unit cell is a3 but the volume of primitive cell is a3 

/4. It means four primitive cells are contained in a unit cell. The detail of NaCl structure will be 

discussed later on. In some cases, primitive cell is same as unit but not always. Thus we can 

summarize that unit cell may be primitive but all the primitive cells are not always unit cell. 

 1.5 TYPES OF CRYSTAL LATTICE 

In a perfect crystal, there is a regular arrangement of atoms or molecules. The periodicity is 

maintained in all directions. Now can classified the lattice structure into two cases as two 

dimensional and three dimensional. 

 1.5.1 Two Dimensional Lattice Type 

 Crystal lattice can be mapped into them self by lattice translational vector T. Symmetric operation 

can be used to map the crystal lattice into them self.  Symmetric operation is an operation, after 

which the Crystal is mapped into itself. There is no variation in arrangement of lattice point. In 

case of two dimension lattice, there is unlimited number of ways for defining the lattice points 

because there is no restriction on the length of crystal. If 𝒂𝟏  and 𝒂𝟐 are lattice vectors in two 

dimensional crystal as shown in figure 1.9. The lattice vectors  𝒂𝟏  and 𝒂𝟐 can be chosen by 

different ways as shown in figure.  
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We can choose any arbitrary point as origin and consider two lattice vectors for defining any point. 

The simplest translational T can be given as 

𝑇 = 𝑛𝑎1 + 𝑚𝑎2 

 Where n and m are integer numbers depends on the position of any point. Based on the possibility 

and restrictions, there are five distinct type of lattice in two dimensions as shown in figure 1.10. 

These lattice types are called Bravais lattice. 
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1.5.2 Three Dimensional Lattice Types 

In general practice crystal system are divided into seven groups or seven types crystal system based 

on condition of lattice three vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 and three interfacing angles  𝜶, 𝜷, 𝜸 between them. 

The seven types of Crystal system which contains total 14 types of lattice are listed in table 1. The 

7 types of crystal system are named as cubic, tetragonal, orthorhombic, monoclinic, triclinic, 

triangular (rhombohedral) and hexagonal. The simplest crystal system in three dimensional space 

is cubic, which has three types of lattice structure named as simple cubic (sc), body centered cubic 

(bcc) and face centered cubic(fcc). For better understanding we will study the cubic crystal in 

detail. Similarly, we have other types of crystal structure.  All 14 types of crystal lattice under 

seven types of Crystal system are given in figure 1.11. 
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Table l:  14 types of crystal lattice under seven types of Crystal system 

Crystal System Number 

of 

Lattice  

Lattice types Restriction on lattice 

parameters 

Lattice 

symbol 

Examples 

Cubic 

 

3 Simple Cubic (sc) 

Body centered cubic (bcc) 

Face centered cubic (fcc)  

𝒂𝟏 = 𝒂𝟐 = 𝒂𝟑  

 𝜶 = 𝜷 = 𝜸 = 𝟗𝟎° 

P 

I 

F 

𝐶𝑢, 𝐴𝑔, 𝐹𝑒,  

𝑁𝑎𝐶𝑙 

Tetragonal 2 Simple tetragonal (st) 

Body centered tetragonal 

(bct) 

𝒂𝟏 = 𝒂𝟐 ≠ 𝒂𝟑  

 𝜶 = 𝜷 = 𝜸 = 𝟗𝟎° 

P 

I 

𝛽⎻𝑆𝑛,  𝑇𝑖𝑂2 

Orthorhombic 4 Simple  

Body centered 

Face centered  

End centered  

𝒂𝟏 ≠ 𝒂𝟐 ≠ 𝒂𝟑 

𝜶 = 𝜷 = 𝜸 = 𝟗𝟎° 

P 

I 

F 

C 

𝐺𝑎,   𝐹𝑒3𝐶 

Monoclinic 2 Simple  

End centered  

𝒂𝟏 ≠ 𝒂𝟐 ≠ 𝒂𝟑  

 𝜶 = 𝜸 = 𝟗𝟎° ≠ 𝜷 

P 

C 

 

Triclinic 1 Simple  

 

𝒂𝟏 ≠ 𝒂𝟐 ≠ 𝒂𝟑  

 𝜶 ≠ 𝜷 ≠ 𝜸 

P 𝐾𝑟3𝐶𝑟2𝑂7 

Trigonal 

(Rhombohedral) 

1 Simple  

 

𝒂𝟏 = 𝒂𝟐 = 𝒂𝟑  

 𝜶 = 𝜷 = 𝜸 <

𝟏𝟐𝟎° 

≠ 𝟗𝟎° 

P 𝐴𝑠, 𝐵𝑠 

Hexagonal 1 Simple  

 

𝒂𝟏 = 𝒂𝟐 ≠ 𝒂𝟑  

 𝜶 = 𝜷 = 𝟗𝟎° 

𝜸 = 𝟏𝟐𝟎° 

P 𝑍𝑛,𝑀𝑔 
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Figure 1.11 Seven types Crystal System (14 types lattice) 

 

Figure 1.11.1 Cubic Crystal System. 

 

 

Figure 1.11.2 Tetragonal Crystal System. 

 

 

Figure 1.11.3 Orthorhombic Crystal System. 
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Figure 1.11.4 Monoclinic Crystal System. 

 

                                           

Figure 1.11.5 Triclinic Crystal System.     Figure 1.11.6 Trigonal (Rhombohedral) Crystal 

 

 

 

Figure 1.11.7 Hexagonal Crystal. 
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 1.6 CUBIC CRYSTAL SYSTEM 

The simplest and easiest structure is cubic crystal. There are three types of possible crystal structure 

under this family named as simple cubic, body centered cubic and face centered cubic crystal as 

shown in figure 1.11a. 

 

1.6.1 Simple cubic crystal (sc) 

 In simple cubic crystal, lattice points are arranged at each 8 corner of cube. At each corner of 

cube, an atom is shared by 8 nearby unit cells. Therefore one unit cell contains 1/8×8=1 atoms. If 

we take an atom at one corner, we can be observed that it is surrounded by 6 nearest neighbor’s 

atoms. The number of nearest neighbors of a lattice point (or atom) in a crystal lattice is called 

coordinate number. Hence the coordinate number of simple cubic crystal is 6.  Example Cu, Ag, 

Au metals have this types of structure. 

When we observe the structure, it can be seen that atoms touch each other along the edges as shown 

in figure11.12. In the figure if a is lattice parameter and r is the radius of atom then  

                       

 

As seen from figure1.12 we can summarize: 

𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝟐𝒓 

𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝒂 = 𝟐𝒓 

 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑪𝑵 = 𝟔 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 =
1

8
× 8 = 𝟏 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 (𝑉) = 𝒂𝟑 
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𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 (𝑉) = 𝒂𝟑 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙(𝑣) = 1 ×
4

3
𝜋𝑟3 =

4

3
𝝅𝒓𝟑 

𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑷𝑭) =
𝑣

𝑉
=

4
3𝜋𝑟3

𝑎3
=

1

6
𝜋 = 𝟎. 𝟓𝟐 

Packing fraction gives the idea about how much space of a unit cell is occupied by solid atoms. 

And define as 

PF =
volume of atoms in unit cell

volume of unit cell
 

 1.6.2 Body centered cubic structure (bcc) 

In this case of cubic crystal, one atom is arranged inside the cube additional to eight atoms at eight 

corners this structure is shown in figure 1.13. Many metals a like Li, Na, K, Cr exhibit bcc crystal 

structure. In bcc lattice one atom is inside the unit cell entirely, and eight corners of lattice cube 

share1/8 part of each atom. Therefore, the number of atoms in a bcc unit cell =1+1/8(8)=2. 

It can be seen from the arrangement of atoms in bcc lattice; the corner atoms do not touch each 

other but each corner atoms touch atoms inside the lattice. Therefore, the diagonal of unit cell is 

equal to 4 as shown in figure 1.13. 

 

From figure 

𝑆𝑉2 = 𝑆𝑅2 + 𝑅𝑉2 = 𝑎2 + 𝑎2 = 2𝑎2  

𝑃𝑉2 = 𝑆𝑉2 + 𝑃𝑆2 = 2𝑎2 + 𝑎2 = 3𝑎2 

4𝑟2 = 3𝑎2   𝑜𝑟       𝒂 =
𝟒

√𝟑
𝒓 
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Thus we can summarize: 

𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √𝟑
𝒂

𝟐
= 𝟎. 𝟖𝟔𝟔𝒂 

𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝒂 =
𝟒

√𝟑
𝒓 

 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑪𝑵 = 𝟖 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑎𝑡𝑜𝑚𝑠) 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 = 1 +
1

8
× 8 = 𝟐 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 (𝑉) = 𝒂𝟑 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 = 𝒂𝟑/𝟐 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙(𝑣) = 2 ×
4

3
𝜋𝑟3 =

8

3
𝝅𝒓𝟑 

𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑷𝑭) =
𝑣

𝑉
=

8
3𝜋𝑟3

𝑎3
=

√3

8
𝜋 = 𝟎. 𝟔𝟖 

 

1.6.3 Face centered cubic crystal 

In case of face centered cubic crystal (fcc), 8 atoms are arranged at eight corners of the cubic lattice 

and 6 atoms are arranged at the centre of eight faces of cube. Each atom of 8 corners is shared by 

8 neighbor unit cells therefore one corner of cube shares 1/8 atom. On the other hand, each atom 

at the faces of cube is shared by 2 unit cell and each face shared 1/2 atom thus total 6 faces share 

6×1/2=3 atoms. Therefore, net atoms inside a unit cell of fcc crystal is equal to 1/8×8+½×6=4. If 

one atoms at the face as origin, then this atom is shared by two unit cells and there are 12 atom 

nearest to this atom. Thus the coordinate number of fcc crystal is 12. When we observe the face of 

fcc crystal lattice, it can be see that face centered atom touches all the atoms at its nearby corners 

as shown in figure 1.14. 
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From figure 1.14 face diagonal d=4r therefore  

(4𝑟)2 = 𝑎2 + 𝑎2 = 2𝑎2 

16𝑟2 = 2𝑎2   𝑜𝑟       𝒂 =
𝟒

√𝟐
𝒓 

Thus we can summarize: 

𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝒂

√𝟐
 

𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝒂 =
𝟒

√𝟐
𝒓 

 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑪𝑵 = 𝟏𝟐 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 =
1

8
× 8 +

1

2
× 6 = 𝟒 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 (𝑉) = 𝒂𝟑 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 = 𝒂𝟑/𝟒 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙(𝑣) = 4 ×
4

3
𝜋𝑟3 =

16

3
𝝅𝒓𝟑 

𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑷𝑭) =
𝑣

𝑉
=

16
3 𝜋𝑟3

𝑎3
=

𝜋

3√2
= 𝟎. 𝟕𝟒 

Some common example of fcc Crystal are Al, Cu, Au, Ag etc. These elements have monoatomic 

fcc crystal structure.  
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Table 2: The characteristics of cubic crystal   

 Parameters Simple Cubic Body centered Face centered 

1 Lattice constant (a) 𝒂 = 𝟐𝒓 
𝒂 =

𝟒

√𝟑
𝒓 𝒂 =

𝟒

√𝟐
𝒓 

2 Volume of unit cell (V) 𝒂𝟑 𝒂𝟑 𝒂𝟑 

3 Number of lattice point (atom) 

per unit cell 

1 2 4 

4 Volume of primitive cell  𝒂𝟑 𝒂𝟑/𝟐 𝒂𝟑/𝟒 

5 Coordinate number (Number 

of nearest neighbors) 

6 8 12 

6 nearest neighbors distance 𝒂 √𝟑

𝟐
𝒂 

𝟏

√𝟐
𝒂 

7 Packing fraction (PF) 𝜋

6
= 𝟎. 𝟓𝟐 √3 𝜋

8
= 𝟎. 𝟔𝟖 

𝜋

3√2
= 𝟎. 𝟕𝟒 

 

1.7 SYMMETRY AND SYMMETRY OPERATION 

Crystal symmetry describes the similarity in the lattice points and environment throughout the 

Crystal. The idea of symmetry is useful for the understanding of crystal structure. A crystal 

possesses different symmetry. These symmetries are described by certain operations. A symmetry 

operation is that which transform the Crystal to itself. Simply a symmetry operation interchanges 

the position of atoms which results the same appearance of crystal. The Crystal environment 

remains unchanged (invariant) under any symmetry operation.  The symmetry operations are 

translation, rotation, reflection and inversion. Symmetry operations performed about a point or a 

line are called point group symmetry operations. On the other hand, symmetry operations perform 

by translation vectors are called space symmetry operations. There are total 230 space groups of 

entire crystal system. Further, there are 32 point group which describe all symmetry operation 

about a point in space with does not move during operation. The symmetry operations are 

described below 

 1.7.1 Translation Symmetry 

 In translation symmetry, a lattice point 𝒓 under a lattice translation operation performed by 

translation vector 𝑻, gives another point 𝒓′  which is exactly identical to initial point 𝒓 . If lattice 

translation vector 𝑻 is given as 

𝑻 = 𝑛1𝒂𝟏 + 𝑛2𝒂𝟐 + 𝑛3𝒂𝟑  where 𝑛1, 𝑛2, 𝑛3 are integer numbers. then  
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𝒓′ = 𝒓 + 𝑻 

 1.7.2 Rotational Symmetry 

 In rotational symmetry, if a crystal is rotated through a point by an angle Ɵ, it transforms the 

lattice to another lattice which is again itself in appearance. For simplest example is the crystal 

lattice is rotated by an angle Ɵ is 3600  its lattice arrangement remains same. 

 For rotational symmetry 

𝑛𝜃 = 2𝜋    𝑜𝑟     𝜃 =
2𝜋

𝑛
 

Possible value of 𝑛 are 1,2,3,4,6 only. 𝑛 is called multiplicity of rotational axis. Lattice can be 

found as one, two, three, four and six fold rotation about an axis which carries the lattice to itself.  

It can be seen that a lattice cannot transform into itself under the rotation like 
2𝜋

5
,
2𝜋

7
,
2𝜋

9
 etc. If we 

have 5 fold symmetry, then pentagon could not fitted to each other in space under this rotation. 

Thus the five fold symmetry is not possible under rotation. 

 1.7.3 Reflection 

 If the lattice has a plane or line in two dimensional which divide the lattice into two halves which 

are mirror image of each other than this is called reflection symmetry such a plane is symbolically 

represented by letter small m. 

 1.7.4 Inversion 

 Inversion is a symmetry operation which is applicable in three dimensional lattice structure only. 

In this symmetry if we consider a point as centre of symmetry, and locate all points by lattice 

vector 𝒓  then −𝒓  (inversion of sign) give the same lattice. The centre of inversion of lattice is 

denoted by symbol 1̅ and read as one bar. 

 1.8 CRYSTAL DIRECTION AND PLACE 

In a crystal lattice, it is necessary to locate the directions and planes for its analysis. In a crystal 

lattice the directions are given by the coordinates of first whole number point. In figure 1.15 there 

are two dimensional and three dimensional lattices.  In two dimensional lattice if lattice point O is 

considered as origin then the directions OA and OB are denoted by their coordinates of first points 

[1, 1] and [2 1] respectively. Similarly, in three dimensional lattice directions OC and OA are 

denoted by [111] and [110] which are the coordinate of first lattice point in the line. Similarly, 

other directions are also shown in the figure. Generally square bracket [ ] is used for representing 

direction in a crystal lattice. The directions of cube edges are represented by [100], [010], [001]. 
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A family of directions of a particular type of is presented by enclosing Miller Indices into a < >. 

Thus the directions edges of cubic lattice constitute a family of directions denoted by <100>.   

 

 1.8.1 Miller Indices 

 Crystal is made up an aggregate of a large number of parallel equidistance planes in which lattice 

points are arranged in ordered manner. The orientation of the planes is first defined by Miller, and 

known as Miller Indices. Miller indices represent the set of parallel planes. Miller Indices of a 

plane is obtained by following 3 steps: 

 (1) Find out the Intercepts of plane on the three crystal axis x, y, z. 

(2) Take reciprocals of these intercepts  

 (3) Find out simplest ratio in integer number. 
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Miller Indices is generally written as (h k l) in small bracket. In Figure 1.16  �̅�, �̅�, 𝑐̅  are lattice 

vectors along x, y, z axis respectively.  A plane ABC cut three axes at points A, B and C with 

coordinates 3�̅�,, 2�̅�, 2𝑐̅  respectively.  Now the Millar indices can be obtained as: 

 (1) Intercepts of plane on the three crystal axis x, y, z is 3, 2, 2. 

 (2)  Reciprocals of these intercepts are 1/3 , 1/2, 1/2   

 (3) Simplest ratio of reciprocals in integer number are 2, 3, 3 

Thus Miller indices (2 3 3) 

 The indices (h k l) may denote a single plane or set of parallel planes. If a plane cuts in 

negative axis negative sides of origin then we put a negative sign above the axis as ( ℎ̅ �̅� 𝑙 ̅) . A 

family of planes of a particular type of is presented by enclosing Miller Indices into a {} brass. For 

example the cube faces of a cubic crystal (100) (010) (001) (1̅00) (01̅0) (001̅) represented by 

family {100}. Figure 1.17 indicates the indices of different planes of a cubic crystal family {100}. 
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1.8.2 Inter planer Spacing 

Crystal can be considered as arrangement of equidistance planes on which the lattice points are 

situated in a regular manner. Now we can calculate the interspacing distance (separation) between 

two planes. This distance is significant parameter when we study the crystal diffraction. Consider 

a set of parallel planes with indices (h k l) and among these planes, one plane is passing through 

origin O. The next plane lies just parallel to first plane and gives intercepts a/h, b/k, c/l on x, y, z 

axis as shown in figure 1.18 where a, b, c are lattice vectors of a crystal. ABC is plane which 

intercepts x, y, z axis at points A, B, C respectively.  If we draw a perpendicular ON from O to 

plane ABC then ON=d.  
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Let us consider perpendicular ON makes angle 𝛼ˈ , 𝛽ˈ , 𝛾′  with x, y, z axis respectively then we 

can consider a ∆ OAN as shown in figure 1.18 then 

cos 𝛼′ =
𝑂𝑁

𝐴𝑂
=

𝑑

𝑎/ℎ
=

ℎ𝑑

𝑎
 

Similarly, for other angles  

cos 𝛽′ =
𝑂𝑁

𝐵𝑂
=

𝑑

𝑏/𝑘
=

𝑘𝑑

𝑏
 

cos 𝛾′ =
𝑂𝑁

𝐶𝑂
=

𝑑

𝑐/𝑙
=

𝑙𝑑

𝑐
 

 

According to cosine law 

cos2 𝛼 ′ + cos2 𝛽′ + cos2 𝛾′ = 1 

Putting the value of cos 𝛼′  ,  cos 𝛽′  , cos 𝛾′ 

(
ℎ𝑑

𝑎
)
2

+ (
𝑘𝑑

𝑏
)
2

+ (
𝑙𝑑

𝑐
)
2

= 1 

𝑑 =
1

√(
ℎ
𝑎)

2

+ (
𝑘
𝑏
)
2

+ (
𝑙
𝑐)

2
 

 

This is general expression for inter-planer spacing which is valid for orthogonal crystal lattice only. 

In case of cubic crystal, 𝑎 = 𝑏 = 𝑐 then above expression becomes  

𝑑 =
𝑎

√(ℎ)2 + (𝑘)2 + (𝑙)2
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1.9 SOME IMPORTANT CRYSTAL STRUCTURE 
Now we discuss structure of some materials which are commonly used. For general understanding 

we can discuss simple crystal like sodium chloride (NaCl), cesium chloride (CeCl)), hexagonal 

close packed (hcp), Diamond, zinc sulfide (ZnS), peroveskite etc. Generally crystal structure can 

be classified as below. 

 

 
 

Crystal structure is divided into three parts, one is called the metallic crystal structure, then ceramic 

crystal structure and last one is the polymer structure. If we see the metallic crystal structure, we 

can find three types of structure, one is called the bcc (body centered cubic), then fcc (face centered 

cubic), and last one is the hcp (hexagonal closed packed) structure. We have already studied these 

structures. When we are talking about the ceramic crystal structure generally it is AX-Type, AMXP 

Type, AMBXNP Type, and when we are talking about the polymer structure, so generally polymer 

crystallinity and polymer crystal. 

 Now we are going to briefly discuss about the ceramic crystal structures, so ceramics are 

compounds between metallic and non-metallic elements, they have interatomic bonds either totally 

ionic or with covalent characteristics, many ceramics have a combination of these two bonding 

types, so we can see ionic bond as well as we can see the covalent bond, that degree of ionic 

character is being dependent on the electronegativities of the atoms. They are examples of 

inorganic metallic materials like silicates, aluminates, oxides, carbides, borides and the 

hydroxides. Most common AX (cations and anions are represented by A and X) structure is sodium 

chloride (NaCl) or maybe the rock salt type, so coordination number for both cations and anion is 

6, unit cell is generated from an fcc type. Other examples are examples of the cesium chloride 

structure zinc blende structure, Zinc sulfide, zinc tellurium and silicon carbide. 
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 AM XP Type Crystal Structure, are formed if the charges on the cations and anions are not 

the same, a compound can exist with the chemical formula AM XP where M and P not is equal to 

1, so for examples CaF2 which is known as the fluorite. Coordination number of cation Ca+2  is 8 

and anion F- is 4. Other examples are zirconium oxide, uranium oxide, plutonium oxide or maybe 

the thorium oxides. The third type is  AMBXNP type Crystal Structure, so it is also possible for 

ceramic compounds to have more than one type of cations, so here generally two types of cations 

are present, so for two types of cations represented by A and B, their chemical formula maybe 

designated as AMBXNP, so for example BaTiO3 .  

So some common ceramic crystal structure, examples so like rock salt structure type is AX 

at anion packing is FCC, here the cation number is 6, anion is 6, example sodium chloride FeO, 

MgO like that, cesium chloride so generally CsCl, so here it is simple cubic cation and anion 

number is also equal, for zinc blende also it is equal, zinc sulfide and silicon carbide, for fluorite 

generally it is AX2 type structure type, here the cation number is 8, and the anion number is 4, so 

CaF2 or UO2 or maybe ThO2, generally we are talking about the Perovskite materials nowadays it 

is been widely used for the solar cells, so generally the structure type is ABX3 or fcc in structure, 

in this particular case, anion is 6, like BiTiO3, SrZrO3, SrSnO3 like this, if we are talking about the 

spinel generally the crystal structure type is AB2X4, FCC in structure here also 2 cations are present 

4A and 6B, and anions number are 4, so example is magnesium, aluminate, or maybe FeAl2O4. 

 

1.9.1 Sodium Chloride (NaCl) Structure 

Rock salt (NaCl) structure type is AX at anion packing is fcc, here the cation number is 6, anion 

is 6. A basis consist one Na and one Cl. In a unit cell there are four primitive cells shown in figure 

1.19. If a is lattice parameter (side length of cubic unit cell) then the position of Cl and Na atoms 

are: 

Cl :  0, 0, 0;    1/2,1/2, 0;  1/2, 0, 1/2;   0, 1/2, 1/2; 

Na : 1/2, 1/2, 1/2;     0,0, 1/2; 0;  0, 1/2, 1/2;   1/2,0,0 
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The separations between two Na (or Cl) atoms are half of the face diagonal of unit cube and the 

separation between two basis is half of the body diagonal of cube as shown in figure 1.19. Each 

ion (Na and Cl) is surrounded by six nearest neighbor of opposite kind.  The coordinate number 

of each Na and Cl atom in this structure is 6. Other examples of NaCl (AX) type structure are KBr, 

KCl, MgO, AgBr. 

 

 

1.9.2 Cesium Chloride (CeCl) Structure 

Cesium chloride (CsCl) structure type is AX at anion packing is body centered cubic. In this 

structure there are two primitive cells in a cubic unit cell. Thus each unit cell has two molecule 

(basis) of CsCl. As shown in the figure 1.20, the Cl ion is at (0, 0, 0) and Cs ion is at (1/2, 1/2,/1/2). 

The Cs is situated at body center and 8 Cl ions at the corner of unit cell. Similarly if we extend the 

unit cell we can see a Cl ion is surrounded by 8 Cs ions. Thus the coordinate number of CsCl is 8. 

The other examples of CsCl type structure are RbCl, LiHg etc. 

 

 
 

1.9.3 Diamond Structure 

The diamond structure is face centered cubic with four additional atoms in the body diagonals.  

Out of four additional atoms, two atoms are placed at ¾ length of first and second diagonal, 

remaining two atoms are placed at ¼ lengths of 3rd and 4th body diagonals as shown in figure 1.21. 

To draw the diamond structure, first we construct a face centred cubic unit cell and place the 8 C 

atoms at all 8 corners, and 6 C atoms at 6 face centres. Now we draw 4 body diagonals as shown 

by red lines and place one C atom at each diagonal at ¼, ¾, ¼, ¾ respectively. Total number of C 
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atoms is 18. The whole appearance seems complicated thus for simplicity, some time we draw the 

projection of atoms on a plane (say XY plane) as shown in figure 1.22. In figure 1.22 only five 

atoms are at the face (base of cube) ABCD in actual and other atoms are projections of atom near 

to face. Points E, G, M, K show the projection of atoms at vertical faces of cube and z coordinate 

of actual position of these atoms are ½ as shown in figure. We write only z coordinates of projected 

atom explicitly. Now point F, H, J, L shows the projection of atoms situated at 4 body diagonals 

and z coordinates of these atoms are ½, 3/2, ½, 3/2 as shown in figure 1.22. Figure 1.21 gives 3D 

view and 1.22 gives 2D view. The coordinate number (number of nearest neighbours) is 4 and 

each group of 4 C atoms make a tetrahedral bond arrangement. The packing fraction of diamond 

structure is 0.34 which is considerably small with comparison of fcc structure (PF 0.74) and shows 

relatively empty space in the crystal.  

 

 
 

1.9.4 Zinc Sulphide (Zinc Blende) Structure 

Cubic zinc blende (ZnS) crystal structure is similar to diamond structure the only difference is that 

the four diagonal atoms are of different type. ZnS structure becomes diamond structure if all the 

diagonal atoms and fcc atoms are same type. In figure 1.23, circles represent one type of atoms 

(say Zn atoms) and dark circles show another types of atoms (say S atoms). ZnS structure is a 

prototype and many other compound form ZnS structure as ZnO, GaAs, SiC, BN etc. 
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1.9.4 Hexagonal close packed (hcp) Structure 

Hexagonal close packed are generally found in monoatomic crystal structure such as metals. In 

hcp consider a layer of similar atoms say A, in which each atom is surrounded by six atoms are 

arranged on the plane of paper as shown in figure 1.24. Now another layer of atoms of type B is 

placed on the paper just above the layer A such as each atoms of type is fitted on the depressions 

formed by the atoms of layer A. A third layer of atoms of atoms of A type is again placed on the 

layer B in same manner. Thus the repetition of layers as ABABABAB…….one upon one we get 

hpc structure. 

The three dimensional structure of hcp is shown in figure 1.25. In this figure, six atoms of 

one type (A type) are arranged at six corners of base hexagon. Six same atoms of A type are placed 

just upon the top of hexagon at height (distance) c. These two hexagons (base and top) form a unit 

cell. Now just between these two hexagons three atoms of type B are situated (at height c/2), as 

shown in figure 1.25. 
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The effective number of atoms in a unit cell is 12×1/6+ 2×1/2+3=6. The first term arises 

as the 12 corners of base and top hexagons contain 12 atoms and each corner atom shared by 6 

neighbor hexagons. Thus these atoms contribute12×1/6. Similarly, second term arises as center of 

top and bottom hexagons, have 2 atoms which are shared by 2 hexagons thus it contributes2×1/2. 

In the third term, 3 atoms (may be type B) are fully inside the unit cell between top and base 

hexagon thus it contributes 3 in the unit cell. Thus total 6 atoms are in a unit cell of hcp. If a is 

interatomic distance in the layer of hexagon i.e. side length of hexagon, and c is the height then 

we can calculate the ratio c/a which is a standard parameter for hcp structure and calculated as 

below. 

 
 



             MSCPH506 

31 
 

 

If we connect B1  atom of layer B to atoms A, A1, A3 atoms of layer A as shown in figure 

1.26, then atoms B, A, A1, A3 form a tetrahedral of height c/2. If BN is perpendicular from B to 

triangle A, A1, A3 then in triangle BA1N 

𝑎2 = (𝑐/2)2 + (𝐴1𝑁)2 

As triangle AA1A3 is equilateral, then in triangle A1NA2 

cos 30 =
𝑎/2

𝐴1𝑁
 

𝐴1𝑁 =
𝑎

√3
 

Putting the value of 𝐴1𝑁 in above relation  

𝑎2 = (𝑐/2)2 + (
𝑎

√3
)

2

 

 
𝑐

𝑎
= 1.633 

Thus for ideal hcp c/a ratio is 1.633. 

The packing fraction is defined as ratio of total volume of atoms in a unit cell to volume of unit 

cell. 

𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑷𝑭) =
𝑣

𝑉
= 6 ×

4
3𝜋𝑟3

6 ×
√3
4

𝑎2 × 𝑐

= 𝟎. 𝟕𝟒 

 

The coordinate number CN (number of nearest neighbours) is 12 as shown in figure1.25. It can be 

seen CN and PF is same as fcc crystal. The hcp structure is also shown by Cd, Mg, Ti, Zn crystals. 

Generally, 90% metals show bcc, fcc or hcp structure. 

 

1.10 WIGNER SEITZ CELL 
 

There are several ways to choose a primitive cell or unit cell in a crystal. A convenient way of 

choosing the unit cell is the area covered by perpendicular bisectors of lines joining the nearest 

neighbours. In 3D the smallest volume enclosed in this way is called Wigner Seitz cell. Wigner 

Seitz cell is special type of unit cell, which describes the symmetry of cell. A Wigner–Seitz cell is 

an example of a primitive cell, which is a unit cell containing exactly one lattice point. For any 

given lattice, there are an infinite number of possible primitive cells. However there is only one 

Wigner–Seitz cell for any given lattice. It is the locus of points in space that are closer to that lattice 

point than to any of the other lattice points. 

In practice, the Wigner–Seitz cell itself is actually rarely used as a description of direct 

space, where the conventional unit cells are usually used instead. However, the same 

decomposition is extremely important when applied to reciprocal space. The Wigner–Seitz cell in 

https://en.wikipedia.org/wiki/Primitive_cell
https://en.wikipedia.org/wiki/Unit_cell
https://en.wikipedia.org/wiki/Locus_(mathematics)
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Unit_cell
https://en.wikipedia.org/wiki/Reciprocal_lattice
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the reciprocal space is called the Brillouin zone, which contains the information about whether a 

material will be a conductor, semiconductor or an insulator. 

 
 

1.11QUASI CRYSTA 
In terms of symmetry, crystalline solids are those in which 2,3,4,6 fold and translational symmetry 

exhibits. Previously during the development of crystallography it was assumed that fivefold 

symmetry is not possible but later on, it was observed there are some crystal with yours 5,7,8 fold 

symmetries and are called forbidden symmetry. Such crystals are called quasi crystals. On the 

other hand, non-crystalline solid does not exhibit rotational and translational symmetry. Numbers 

of solids like platonic solids as shown in figure 1.28, exhibit fivefold symmetry. In this figure two 

platonic solids out of five show, named Dodecahedron and Icosahedron show fivefold symmetry. 

Another example of fivefold symmetry is burg man cluster in which a complex unit cell is formed 

by total 90 atoms out of which 60 carbon atom and 20 Zn-Mg atom. 

https://en.wikipedia.org/wiki/Brillouin_zone
https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Insulator_(electrical)
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1.12 LIQUID CRYSTAL 
Generally, when solids are heated up, it changes into liquid state but there are some solids, when 

they are heated, not directly change into liquid state but it goes through an intermediate state and 

state is called liquid solids.  This mixed state of solid and liquid has property in between true 

crystals solid and true liquid. Main properties of liquid crystals are as ordered arrangement of 

particles, optically active, fluidity, viscosity, and surface tension. Liquid crystals have state which 

flow like a liquid but have ordered arrangement of atoms. In, 1888, Frederick Reinifzer an Austrian 

Botanists discovered first liquid crystal Cholesteryl benzoate used for hair color. 

12.1 Uses of liquid crystals 

1. Liquid crystals are used in display of electrical device known as LCD. 

2. Liquid crystals are used as temperature sensor in thermometers. 

3. Used in medical sciences for locating blockage in veins, arteries, infections and tumors by skin 

thermograph. Skin thermograph indicates temperature of body as the colour of liquid crystal placed 
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on the body changes with temperature. The temperature of infected cells of body have more 

temperature than normal cells which shows different colours at the blockage and infected location. 

 

Self assessment questions (SAQ) 

SAQ1: What are the seven types crystal lattice systems? 

Solution: There are seven crystal lattice systems- 

(i) Cubic (ii) Trigonal (iii) Hexagonal (iv) Tetragonal (v) Orthorhombic (vi) Monoclinic (vii) 

Triclinic 

SAQ2: What are the cubical crystal systems? 

Solution: In a cubical crystal system, the unit cell is a cube. All cubical systems have one atom 

each in all the corners of the cube. Each atom has 1/8th of its volume contained within the cube. In 

addition to this arrangement, each cubical system has its own extra atomic configuration. In 

general, there are three cubical crystal systems- 

(i) Simple cubical lattice (ii) Body centred cubical lattice (iii) Face centred cubical lattice 

SAQ3: The ............cell is the smallest unit cell that can be repeated to form the lattice. 

Solution: primitive 

SAQ4: A BCC system has............atoms in its unit cell. 

Solution: 2 

SAQ5: An FCC system has............. atoms in its unit cell. 

Solution: 4 

 

1.13 SUMMARY 

1. In this unit, we have studied about crystalline solids, crystal structure, properties based on 

structure. 

2. A crystal or crystalline solid is formed by regular repetition of its building blocks (atoms or 

molecule) in a three dimensional periodic array. Thus a crystal is formed by adding atoms or 

molecules in constant environment.  

3. In actual case, crystalline solid is composed of a bunch of large number of small crystal grains. 

These grains are arranged in a random manner and joint to each other at certain boundaries called 

green boundaries. Such crystalline solids are called poly crystal.  

4. If constituents of crystal are arranged in a regular manner up to a large scale size in 

macroscopic range (≈1mm order) such crystal specimen is called single crystal. 

5. Amorphous solids are those materials in which constituents (atoms or molecules) are not 

arranged in a regular manner over a long range. 

6.  Logically a crystal structure is given as: 
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 Crystal structure = lattice + basis 

7. The lattice is defined by three fundamental vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 in such a way that all the lattice 

points in the crystal can be denoted by using these vectors. 

8. For describing crystal structure, it is convenient to divide the crystal into small entities such 

small group of atoms or molecules is a well defined arrangement. These small cells are called 

unit cells. 

9. The seven types of Crystal system which contains total 14 types of lattice. The 7 types of 

crystal system are named as cubic, tetragonal, orthorhombic, monoclinic, triclinic, triangular 

(rhombohedral) and hexagonal. 

10. The idea of symmetry is useful for the understanding of crystal structure. A crystal possesses 

different symmetry. These symmetries are described by certain operations. A symmetry 

operation is that which transform the Crystal to itself. 

11. In a crystal lattice the directions are given by the coordinates of first whole number point. 

Generally square bracket [ ] is used for representing direction in a crystal lattice. The directions 

of cube edges are represented by [100], [010], [001]. A family of directions of a particular type 

of is presented by enclosing Miller Indices into a < >. 

12. Miller indices represent the set of parallel planes. The indices (h k l) may denote a single 

plane or set of parallel planes. If a plane cuts in negative axis negative sides of origin then we put 

a negative sign above the axis as ( ℎ̅ �̅� 𝑙 ̅) . A family of planes of a particular type of is presented 

by enclosing Miller Indices into a {} brass. 

13. This is general expression for inter-planer spacing which is valid for orthogonal crystal 

lattice 

𝑑 =
1

√(
ℎ
𝑎)

2

+ (
𝑘
𝑏
)
2

+ (
𝑙
𝑐)

2
 

For cubic crystal  

𝑑 =
𝑎

√(ℎ)2 + (𝑘)2 + (𝑙)2
 

14 . A convenient way of choosing the unit cell is the area covered by perpendicular bisectors of 

lines joining the nearest neighbours. In 3D the smallest volume enclosed in this way is called 

Wigner Seitz cell. 

15. There are some crystal with yours 5,7,8 fold symmetries and are called forbidden symmetry. 

Such crystals are called quasi crystals. 
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16. There are some solids, when they are heated, not directly change into liquid state but it goes 

through an intermediate state and state is called liquid crystals.  

 

7.14 GLOSSARY 
Array- arrangement. 

Periodicity- the process of occurring something at regular manner. 

Disordered- tangled, lawless. 

Macroscopic- visible to naked eye without use of any instrument. 
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7.17 TERMINAL QUESTIONS 

7.16.1 Short Answer Type Questions 

 

1. Explain the crystalline and amorphous solids. 

2. What do you mean by primitive basis and unit cell? 

3. What is meant by basis? 

4. What are primitive cell and unit cell in solids? Explain. 

5. Which rotations are allowed in a lattice? 

https://www.researchgate.net/publication/264386832
https://byjus.com/chemistry/bcc-fcc-primitive-cubic-unit-cell/
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6. What are the different types of Bravais lattices for a cubic system? Give their names. 

7. How does a crystal differ from a lattice? 

8. What is the difference between single crystal and poly crystal? 

10. Explain the seven types crystal system. 

11. What is primitive lattice cell? How Wigner-Seitz cells are formed? Discuss Bravais lattices. 

Give different types of crystal structure. 

7.16.2 Long Answer Type Questions 

1. Explain the unit cell and primitive cell. Explain the symmetric operation in acrystal. 

2. What are Bravais lattice. Explain seven types crystal systems and draw possible Bravais lattice 

in three dimensional space. 

3. Explain the concept of Millar indices. With the help of diagram, find out the Millar indices of a 

simple cubic crystal. 

4. Obtain the expression for inter planer separation of a crystal.  

5. What is a crystal structure? Draw the crystal structure of NaCl crystal and explain its lattice 

vectors, primitive vector, coordinate number, packing fraction.    

6. What is a crystal structure? Draw the diamond structure and explain its lattice vectors, primitive 

vector, coordinate number, packing fraction. 

7. Explain the structure of hexagonal close packed structure and obtain the c/a ratio of hcp. 

8. What is packing fraction of a crystal? Obtain the packing fraction of sc, bcc and fcc crystal. 

   

7.16.3 Objective Type Questions 

Choose the correct option- 

     1.  Long range order is found in- 

     (a) amorphous       (b) crystalline    (iii) in both   (iv) none of these 

     2. Which relation is correct- 

(a) Lattice + crystal structure = basis    (b) lattice + basis = crystal structure 

(c) lattice – basis = crystal structure      (d) basis + crystal structure = lattice 

3. In three dimensions, the number of Bravais lattice is- 

(a) 7       (b)   5      (c)  10    (d) 14 
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2.1 INTRODUCTION 

In the previous unit, we have studied about crystal structure, structure types, unit cell, some 

parameters related to crystal structure like coordination number, atomic radius, packing fraction, 

lattice constants of a lattice, density of lattice points in a lattice plane, symmetry operation etc. In 

the present unit, we will study about X-ray diffraction by crystal, Bragg’s law, different method 

of diffraction, reciprocal lattice, and learn about the determination of crystal structure.  

After the discovery of X-rays in 1895, it was assumed that X-rays are electromagnetic wave, and 

it would show diffraction. Wavelengths of X-rays are of the order of 10-8 to 10-9 cm, and spacing 

between the layers of atoms in a crystal is in order of 10-8cm, which are of the same order. 

Therefore, in 1912, German physicist Max Vor Laue suggested that the ordered arrangement of 

atoms in a crystal must make it to act as a three-dimensional grating. Thus the three dimensional 

crystal would be suitable for the diffraction of X-rays and diffraction pattern so obtained can give 

the information about the crystal structure. Later on, WL Bragg presented a suitable explanation 

of X-ray diffraction by crystal. Now x ray diffraction techniques have become an important tool 

study the crystal structure. 

 

2.2 OBJECTIVES 

After studying this unit, you should be able to- 

 X ray diffraction by a crystal 

 X ray diffraction methods 

 understand reciprocal lattice, Bragg’s law in reciprocal system. 

 calculate primitive translation vectors of reciprocal lattice. 

 reciprocal lattice of sc, bcc, fcc. 

 Brillouin zones 

 solve problems based on crystal diffraction and Bragg’s law. 
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2.3 X RAY DIFFRACTION AND BRAG’S LAW  

When a beam of x rays is incident on a crystal, under certain condition diffraction takes place. The 

diffraction occurs when the incident rays are reflected by the atoms on the different parallel planes, 

and these reflected rays interfere constructively and make diffraction pattern. By analyzing the 

diffraction patterns we can find out the lattice parameters, size, shape, orientation of crystal, inter 

planner distance etc.  In 1913, Bragg presented a method to explain the diffraction of x ray beam. 

  Consider a set of parallel planes of the crystal, and each plane is separated by spacing d. The 

crystal acts as a series of parallel reflecting planes. When a parallel beam of X-rays strikes on the 

crystal, each atom in the crystal plane scatters the X- ray in all directions. Since X-rays can 

penetrate the crystal, there would be partial reflection from every plane. The rays reflected from 

various planes will interfere constructively if they are in same phase. The diffraction occurs when 

a constructive interference of radiation reflected from two successive crystal plane takes plane.  

 

To find out the diffraction condition, we consider the incident ray makes an angle θ with crystal 

plane, and the reflected ray also make an angle θ with the plane as shown in figure 2.1. The path 

difference between rays PBE and QDF can be given as  

∆= 𝑀𝐷 + 𝐷𝑁 = 2𝑀𝐷 = 2𝑑 sin 𝜃 

For constructive interference the path difference should be integral multiplication of 𝑛𝜆 therefore   

2𝑑 sin 𝜃 = 𝑛𝜆 

This is Bragg’s law. The condition occurs only at certain values of 𝜆 and 𝜃. Thus by observing the 

parameters 𝜆 and 𝜃 by experiment we can determine the crystal lattice spacing, size, shape, 

orientation and we can study the crystal structure. 
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Example 1: An electron is accelerated through a potential difference of 1kV  and diffracted 

through a crystal. The first reflection maxima observed when the glacing angle is 100. Find out the 

interplaner spacing of the crystal.  

Solution: The wavelength of electron beam accelerated through potential difference 1kV is 

λ =
h

√2meV
=

6.67 × 10−34

√2 × 9.1 × 10−31 × 1.6 × 10−19 × 1000
= 0.38 × 10−10m 

Now using Bragg’s equation-             2 d sin θ = n λ 

or                                                        d = n λ / 2 sin θ = 1×0.38 × 10-10 / (2× sin 100 ) 

=  1.11 × 10-10 m = 1.11 A0 

Example 2:X-rays of wavelength 0.36 A0 diffracted in a Bragg spectrometer at an angle of 40 48’. 

Determine the effective value of atomic spacing. 

Solution: Given-  λ = 0.36 A0 = 0.36 × 10-10 m, θ =  40 48’ 

Now using Bragg’s equation-             2 d sin θ = n λ 

or                                                        d = n λ / 2 sin θ = 1×0.36 × 10-10 / (2× sin 40 48’ ) 

=  2.15 × 10-10 m = 2.15 A0 

Self Assessment Question (SAQ) 1: what is diffraction? How a crystal diffractions X-rays?  

2.4 DIFFRACTION METHODS 

We know that the diffraction occurs whenever the Bragg’s condition is satisfied. In general when 

monochromatic x ray beam falls on a single crystal, for arbitrary setting x rays will not produce 

any diffraction pattern. But some way if we continuously vary wavelength (λ) or diffraction angle 

(θ) then at a particular setting of single crystal, the Bragg’s condition satisfies, and diffraction 

occurs.  The ways, in which these quantities vary, there are three diffraction method as given 

below: 

Method Wavelength Angle  Specimen type 

Laue Method Variable  Fixed Single crystal 

Rotating crystal method Fixed  Varying  Single crystal 

Powder method  Fixed  Variable  powder 
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2.4.1 Laue Diffraction Method 

Laue method was the first diffraction methods, because it has been developed first, ever used till 

today and it reproduces Von Laue’s original experiment.  It is mainly used to determine the 

orientations of large single crystals.  While radiations is reflected or transmitted through a fixed 

single crystal, the Bragg’s angle that is fixed in this particular case, for every set of planes, in the 

crystal and each set picks out and diffracts that particular wavelength which satisfies the Bragg’s 

law for the particular values of d and θ. We are having the sample which is single crystals, so the 

X-rays are coming and incident beam maybe the diffracted.  In this particular region on to the 

particular film we are getting some kinds of white spots over there, which are the different 

diffraction picks, or maybe the spots. Each diffracted beam has a different wavelength and some 

selected wavelength of the incident beam of X ray radiations are reflected for some value of d and 

θ.  

 

 
                                             Figure 2.2: Laue diffraction method 

 

The positions of any Laue spot can be alter early, if the wavelength of the diffracted beam changed. 

Suppose we are having the two crystals having the same orientations and same crystal structure, 

but of different lattice parameter, will produced the same identical Laue patterns.  We are having 

that incident beam, then we are having collimators, then it is going through the samples then rays 

has been diffracted and then on the film it is giving some kind of spot pattern. 

Now we know that the Elastic Scattering 

 

|𝑲| = |𝑲ˈ| 
 

 𝑤ℎ𝑒𝑟𝑒    𝑲 =
𝑺𝟎

𝜆
= incident wave vector 
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𝑲ˈ =
𝑺

𝜆
= diffracted wave vector 

 

𝑺𝟎 = incoming X ray beam 

𝑺 = Scattered  X ray beam 
The Laue’s theory states that for diffractions the differences in the two wave vectors must be equal 

to a reciprocal lattices vector 𝝈∗.  

𝑲ˈ − 𝑲 = 𝝈∗ 
Now from this particular case, we are going to discuss about the Ewald sphere. The Ewald sphere 

is a pictorial way to show the diffraction condition. We construct a sphere which is known as the 

Ewald constructions as shown in figure 2.3. In this figure an incoming beam S0 is coming then 

after passing  through single crystal it has be diffracted and it is going to the S and it has falling on 

to the sphere in a particular point. 

 

 
So generally the Ewald sphere is a virtual or imaginary sphere whose radius is 1/λ. The geometrical 

construction of  Eward sphere provides the relationship between the orientations of a crystal and 

the directions of the beams diffracted by it. If the origin of reciprocal space is placed at the tip of 

incident beam then diffractions will occur only for those reciprocal lattice points that lie on the 

surface of the Ewald sphere as shown in figure 2.3. 

 

2.4.2 Rotating Crystal Method 

In rotating crystal method, a single crystal is mounted at a point on the axis of a cylindrical shape 

in such a way that the monochromatic x-rays strike perpendicular on the crystal. A cylindrical 

photographic film is placed around the crystal and crystal is rotated about the axis in a chosen 

direction. The axis of the photographic film is same as the axis of rotation of the Crystal. As crystal 

rotates, sets of lattice points come at the positions that are suitable for Bragg's diffraction. At some 

particular positions, lattice points correctly at Bragg angle for reflection of X-Ray beam, and at 

this instant diffraction beam will be formed. The diffracted beam is located on the surface of 
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imaginary cone when the film is laid out from the cylinder, flat it, the diffraction spots lies on the 

film in horizontal lines. 

 

 
2.4.2.1: Crystal structure determination by the rotating crystal method 

By recording the diffraction pattern, both angle and intensities for various crystal orientations can 

be obtained and the shape and size of unit cell of the crystal and arrangement of atoms inside the 

crystal can be determined. If the wavelength of X-Rays is λ and angle of diffraction is Ɵ at which 

a reflection occurs, the inter-planar spacing d can be determined by using Bragg's law as given 

below: 

2𝑑𝑠𝑖𝑛 Ɵ = 𝑛𝜆 
 

𝑑 =
𝑎

√(ℎ)2 + (𝑘)2 + (𝑙)2
 

 

2.4.3 Powder Method 

As we know in powder method, wavelength of X-ray, λ is fixed but angle of incident x ray with 

crystal plan Ɵ variable. The sample consists of powder and it consists of large number of 

crystallites with various orientations. The crystal to be examined is reduced to a very fine powder 

and placed in a beam of monochromatic X-rays. When the X-rays falls on the sample, tiny crystal 

are oriented in random directions with respect to the incident X rays and some of the crystals will 

be correctly oriented with the X-ray beam and give diffraction pattern. For example, in particular 

planes, say, (100) planes can reflect the incident beam and other crystals will be correctly oriented 

for the other planes say (110) and so on. Thus in Powder method every set of lattice planes will be 

capable of reflection as all the orientations of crystal are available on the sample.  



             MSCPH506 

45 
 

Powder method is used to determine the value of lattice parameters accurately which define the 

unit cell of crystal. When monochromatic x-ray beam is directed on a single crystal then only one 

or two diffracted beams are observed. But if the sample consists of many randomly oriented single 

crystals, the diffraction beams are seen to lie on the surface of several cones. The cones may merge 

in all directions, in forward and backwards as shown in figure 2.6. In case of powder method, a 

sample has hundreds of tiny crystals show that the diffraction beam form continuous cones.  A 

circle of film is used to record the diffraction pattern. Each cone intersects this film gives 

diffraction line. The lines are seen as arc on the as shown in figure 2.7. 

 
 

2.4.3.1 Powder diffraction film 

 The cones of distracted radiation intersect the cylindrical strips of film inline or are and when the 

strips are unrolled and make it flat, the strip shows diffraction lines as shown in figure 2.8. We can 

see that each diffraction line is made up of a large number of small spots. Each line is formed by 

a separate crystal particle.  The spots lying so closer together and they appear as a continuous line. 

The lines are generally curved as cone of diffracted rays cut the strip a curved line but at  2𝜃= 900 

, the line will be straight. From the measured position of a given diffraction line on the film, angle  

𝜃 can be determined. If we know the wavelength λ of X-Rays, we can calculate the inter planar 

spacing (d) of reflecting lattice planes. Figure 2.8 shows the different positions of lines 

corresponding to different lattice planes. 
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2.5 RECIPROCAL LATTICE SYSTEM 

When we observe diffraction patterns, the diffraction spot form a picture of crystal lattice.  This 

periodic structure like lattice is not direct picture of crystal but image of actual crystal. This is 

called reciprocal lattice.   In the reciprocal lattice, each lattice point is corresponding to reflection 

of lattice point of crystal plane. Simply reciprocal lattice points are inverse of actual lattice points. 

Thus the distance in reciprocal lattice system is 1/ distance corresponding to actual distance d in 

actual crystal lattice. All the periodic points of reciprocal lattice form a reciprocal lattice system. 

Such space is called reciprocal space or Fourier space. Fourier analysis is useful to form a 

theoretical background of reciprocal lattice system.  In direct lattice system, the lattice vectors are 

denoted by 𝒂𝟏, 𝒂𝟐, 𝒂𝟑  (or 𝒂, 𝒃, 𝒄 ) similarly in reciprocal lattice system, the reciprocal lattice 

vectors are denoted by 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 (or 𝒂∗, 𝒃∗, 𝒄∗ ) . We will develop relations between direct and 

reciprocal lattice vectors in the next section. Any vector in reciprocal space called a reciprocal 

vector G can also be given as 
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𝑮 = 𝑣1𝒃𝟏 + 𝑣2𝒃𝟐 + 𝑣3𝒃𝟑   where 𝑣1, 𝑣2, 𝑣3 are integer numbers. 

2.5.1 Construction of Reciprocal Lattice 

For construction of a reciprocal lattice following steps can be taken. 

1. Consider a crystal lattice in real space as shown in figure 2.9 and consider a plane (hkl). We 

know that (hkl) shows a set of parallel equidistance planes with interspacing dhkl.  

2. Now consider a normal on any arbitrary lattice point on the plane (hkl) and find out a point at 

distance 1/ dhkl . This point is reciprocal lattice point. The array of all such point are called 

reciprocal lattice. In figure 2.9 if 𝑎1, 𝑎2, 𝑎3 are lattice vector in real space, ABCD is a plane (101) 

then C' is reciprocal point, which is 1/ dhkl apart from the plane ABCD along direction normal to 

plane.  

 

 

 

 
Now consider a monoclinic crystal have lattice constants 𝒂𝟏 ≠ 𝒂𝟐 ≠ 𝒂𝟑 𝒂𝒏𝒅 𝜶 = 𝜸 = 𝟗𝟎𝟎;  𝜷 ≠

𝟗𝟎𝟎 as shown in figure 2.10. We construct a unit cell in which vectors 𝒂𝟏, 𝒂𝟑 are along the plane 

of paper and  𝒂𝟐 vector is perpendicular to this plane. Consider a plane (h0k) which makes 

intercepts at 𝒂𝟏, 𝒂𝟑 at point A and C, and this plane is parallel to axis 𝒂𝟐. The normal to this plane 

is along the direction of plane containing vectors 𝒂𝟏, 𝒂𝟑 i.e. plane of paper as shown by vector OO' 

as shown in figure 2.11. If we go 1/ dhkl distance from the arbitrary plane (hkl), for example, 

perpendicular to line AC, along the direction perpendicular to plane (h0l) i.e. OOˈ, we get the 

reciprocal lattice point corresponding to point O.  

We can extend the same manner to get other reciprocal lattice points as shown in figure 2.12. In 

this figure OA and OC represent two faces (sides) of monoclinic crystal. Line AC represents a 

plane (h0k) which is perpendicular along line AC. Now for reciprocal point, normal is drawn on 

planes (h0l) at a distance 1/dh0l . Similarly, we draw normal to all (hkl) planes and arranged the 
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points at distance 1/dhkl in the direction of normals, the three dimensional reciprocal lattice is 

obtained. It can be seen that plane (200) have half the interplaner spacing with respect to plane 

(100) but reciprocal point (200) is twice far from the origin.  
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2.5.1 Reciprocal Lattice Vectors 

Reciprocal lattice vector is defined as the vector has magnitude 1/dhkl and direction perpendicular 

to the plane (h k l). Generally reciprocal lattice vector is denoted by 

𝜎ℎ𝑘𝑙 =
1

𝑑ℎ𝑘𝑙
�̂�     where n̂ unit vector along the normal to (hkl)plane  

  

 If lattice vectors of a crystal are denoted by 𝒂𝟏, 𝒂𝟐, 𝒂𝟑   in direct lattice system and similarly in 

reciprocal lattice system, the reciprocal lattice vectors are denoted by 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 then the volume 

of crystal unit cell in direct lattice system can be given by 

𝑉 = 𝑎𝑟𝑒𝑎 × ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑎𝑟𝑒𝑎 × 𝑑ℎ𝑘𝑙 

For simplest case if we choose plane (100) then 

𝑉 = 𝑎𝑟𝑒𝑎 × 𝑑100  
1

𝑑100
=

𝑎𝑟𝑒𝑎

𝑉
=

𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

 

𝝈100 =
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

The fundamental reciprocal lattice vector are defined as  

𝒃𝟏 = 𝝈100 =
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

Similarly 

𝒃𝟐 = 𝝈010 =
𝒂𝟑 × 𝒂𝟏

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

𝒃𝟑 = 𝝈001 =
𝒂𝟏 × 𝒂𝟐

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

Since each reciprocal vector is orthogonal to two axis vectors of direct lattice thus 

𝒃𝟏. 𝒂𝟐 = 𝒃𝟏. 𝒂𝟑 = 𝒃𝟐. 𝒂𝟏 = 𝒃𝟐. 𝒂𝟑 = 𝒃𝟑. 𝒂𝟏 = 𝒃𝟑. 𝒂𝟐 = 𝟎 

Above relations are equally valid if we introduce 2𝜋.  Since in reciprocal lattice the wave vector 

is represented in term of 2𝜋 ( as k = 2𝜋/𝝀). Thus the reciprocal vector are given as  

𝒃𝟏 = 𝟐𝝅
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

𝒃𝟐 = 𝟐𝝅
𝒂𝟑 × 𝒂𝟏

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

𝒃𝟑 = 𝟐𝝅
𝒂𝟏 × 𝒂𝟐

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

 

 

Thus   𝒃𝒊. 𝒂𝒋 = 𝟐𝝅 𝜹𝒊𝒋   where 𝜹𝒊𝒋 = 𝟏   if  𝒊 = 𝒋;  𝜹𝒊𝒋 = 𝟎   if 𝒊 ≠ 𝒋 
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2.5.2 Reciprocal Lattice of Simple Cubic Crystal 

  Consider unit cell in a simple cubic crystal, primitive lattice vectors in direct lattice system are 

given by 

𝒂𝟏 = 𝑎�̂� ;  𝒂𝟐 = 𝑎𝒋̂  ;  𝒂𝟑 = 𝑎�̂�  

Where �̂� , 𝒋̂ , �̂�  are unit vector along x y z Axis respectively. Now the reciprocal lattice vectors are 

given as 

𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
= 2𝜋

𝑎𝟐 𝒋̂  × �̂�

𝑎𝟑 �̂� . 𝒋̂  × �̂�
=

2𝜋

𝑎
�̂�   where [𝒂𝟏. 𝒂𝟐 × 𝒂𝟑] is volume (V)of unit cell. 

          or     𝒃𝟏 =
2𝜋

𝑎
�̂� 

Simlarly    𝒃𝟐 =
2𝜋

𝑎
𝒋̂  

And            𝒃𝟑 =
2𝜋

𝑎
�̂� 

We can say that the unit cell of simple cubic lattice in reciprocal lattice space is again a cubic 

lattice, same as the direct space, but the cube edge is  
2𝜋

𝑎
 in place of a. Thus a simple cubic lattice 

of lattice parameter a, transformers to a simple cubic lattice of lattice parameter  
2𝜋

𝑎
 in reciprocal 

lattice system. Figure 2.13 and 2.14 show the simple cubic lattice in direct and reciprocal lattice 

system. 
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 2.5.3 Reciprocal Lattice of Body Centered Cubic Crystal 

 The primitive lattice vectors bcc crystal in direct lattice system is given as 

𝒂𝟏 =
𝑎

𝟐
(�̂� + 𝒋̂ −  �̂� ); 𝒂𝟐 =

𝑎

𝟐
(−�̂� + 𝒋̂ + �̂� ) ;  𝒂𝟑 =

𝑎

𝟐
(�̂� − 𝒋̂ + �̂� )  

Where �̂� , 𝒋̂ , �̂�  are unit vector along x y z Axis respectively. These vectors are shown in figure 

2.15. Now the reciprocal lattice vectors are given as 

𝒃𝟏 = 𝟐𝝅
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
= 𝟐𝝅

(𝑎𝟐/𝟒 ) (−�̂� + 𝒋̂ +  �̂� ) × (�̂� − 𝒋̂ +  �̂� )

(𝑎𝟑/𝟐) 
=

2𝜋

𝑎
 (𝒋̂ +  �̂�  ) 

𝒃𝟏 = 𝟐𝝅
(𝑎𝟐/𝟒 ) 𝟐(�̂� + 𝒋̂ )

(𝑎𝟑/𝟐) 
=

2𝜋

𝑎
 (𝒋̂ + �̂�  )  

          or     𝒃𝟏 =
2𝜋

𝑎
(𝒋̂ +  �̂�  ) 

Simlarly    𝒃𝟐 =
2𝜋

𝑎
(�̂� + �̂� ) 

And            𝒃𝟑 =
2𝜋

𝑎
 (�̂� + 𝒋̂ ) 

 If we recall fcc crystal lattice the primitive vectors can be given as 

𝒂𝟏 =
𝑎

𝟐
(�̂� + 𝒋̂ ); 𝒂𝟐 =

𝑎

𝟐
(𝒋̂ +  �̂� ) ;  𝒂𝟑 =

𝑎

𝟐
( �̂� + �̂� ) 

Thus we can say that the unit cell of body centered cubic lattice in reciprocal lattice space is a face 

centered with lattice parameter 
2𝜋

𝑎
. Figure 2.15 shows the body centered cubic lattice in direct and 

reciprocal lattice system. 
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2.5.4 Reciprocal Lattice to fcc Crystal 

Consider a unit cell of fcc crystal with lattice parameter a.  The primitive lattice vectors for fcc 

crystal are given as 

𝒂𝟏 =
𝑎

𝟐
(�̂� + 𝒋̂ ); 𝒂𝟐 =

𝑎

𝟐
(𝒋̂ +  �̂� ) ;  𝒂𝟑 =

𝑎

𝟐
( �̂� + �̂� ) 

Figure 2.16 represents a fcc lattice.  Reciprocal lattice vectors of this unit cell is given 

 

𝒃𝟏 = 𝟐𝝅
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. (𝒂𝟐 × 𝒂𝟑)]
= 𝟐𝝅

(𝑎𝟐/𝟒 ) (𝒋̂ +  �̂� ) × (�̂� + �̂� )

𝑎𝟑

𝟖 [(�̂� + 𝒋̂ ). ((𝒋̂ +  �̂� ) × (�̂� + �̂� ))] 
= 𝟐𝝅

(𝑎𝟐/𝟒 ) (�̂� +  𝒋̂ −  �̂� )

𝑎𝟑

𝟒  
 

          or     𝒃𝟏 =
2𝜋

𝑎
(�̂� + 𝒋̂ −  �̂� ) 

Simlarly    𝒃𝟐 =
2𝜋

𝑎
(−�̂� + 𝒋̂ +  �̂� ) 

And            𝒃𝟑 =
2𝜋

𝑎
 (�̂� −  𝒋̂ +  �̂� ) 

Thus the reciprocal lattice to fcc in the form of bcc lattice with lattice parameter to 
2𝜋

𝑎
 . Now it is 

clear that reciprocal of bcc is fcc, and reciprocal of fcc is again bcc.Therefore figure 2.15 can be 

considered as reciprocal lattice to fcc.  
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2.6 DIFFRACTION CONDITION IN RECIPROCAL LATTICE 

In direct lattice system, diffraction takes place when the condition 2d sin θ=nλ is satisfied. This 

condition can also be obtained in reciprocal lattice system. We know, the reciprocal points are the 

points 1/dhkl distant along a normal to crystal plane (h k l).  Now consider a reciprocal lattice space 

which has a large number of such reciprocal lattice points corresponding to different plans as 

shown in figure 2.17.  Take a Reciprocal lattice point O as a centre, we draw a circle of radius 1/λ 

which is called Eward circle in two dimensional space, and in three dimension it is called Eward 

sphere.  Eward stated that whenever a beam of x rays coming in the direction OA and strikes at 

point O, the centre of circle, and if the beam diffracted in the direction OB and passes through any 

another lattice point B on the circle, then the Bragg diffraction takes place. 

 

 

 

 Support an x-ray beam is coming in the direction of OA, strike at a lattice point O where a crystal 

is placed as shown in figure 2.18 and OA represents the incident wave vector k in reciprocal lattice 

system. The incident wave strikes at point O, the diffracted x ray passes through another lattice 

point B on the circle then Bragg diffraction occurs. Thus the reciprocal vector AB = G can be given 

as 

𝑨𝑩 = 𝑮 = 𝑣1𝒃𝟏 + 𝑣2𝒃𝟐 + 𝑣3𝒃𝟑   where 𝑣1, 𝑣2, 𝑣3 are integer numbers.  

  
𝒃𝟏, 𝒃𝟐, 𝒃𝟑 are reciprocal lattice primitive vectors. If we draw a perpendicular bisector of a vector  

AB, then it passes through point N where ON is nothing but plane of diffraction (h k l) which  is 
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perpendicular to plane of paper. We know that the separation between two reciprocal planes is dhkl 

then distance between points A and B in reciprocal space can be given as: 

𝑨𝑩 =
𝒏

𝒅𝒉𝒌𝒍
 

 Where n is integer number called Common Factor.  

Similarly by geometry 

𝑨𝑩 = 𝟐𝑨𝑵 = 𝟐 𝑶𝑨. 𝒔𝒊𝒏 𝜽 =
𝟐 𝒔𝒊𝒏 𝜽

𝝀
 

 using above two expressions for a AB 

𝒏

𝒅𝒉𝒌𝒍
=

𝟐 𝒔𝒊𝒏 𝜽

𝝀
      𝒐𝒓       𝟐𝒅  𝒔𝒊𝒏 𝜽 = 𝒏𝝀 

 

  This is nothing but diffraction condition in direct lattice system. Thus in reciprocal lattice system, 

diffraction occurs when an x-ray coming along a direction OA, strikes on a point O, and after 

diffraction at this point O, diffracted ray passes through any another point (say B)  situated on the 

same Eward circle. 

Now we find out the diffraction condition in reciprocal lattice system. We know that in reciprocal 

space (Fourier space) the lattice parameter is denoted by wave vector 𝒌 =
𝟐𝝅

𝝀
. Figure 2.18 is the 

simplified representation of diffraction in reciprocal lattice system shown by figure 2.17. Now as 

shown in figure 

𝑶𝑨 + 𝑨𝑩 = 𝑩𝑶 

𝑲 + 𝑮 = 𝑲′  𝒐𝒓   𝑲 − 𝑲′ = 𝑮   𝒐𝒓  ∆𝑲 = 𝑮 

This is diffraction condition in reciprocal lattice system, where 𝑲  is incident wave vector, 𝑲′  is 

scattered wave vector and 𝑮 is reciprocal lattice vector. Since OA and OB are radius of the Eward 

circle and magnitude of both vectors are same only direction are different thus 

|𝑶𝑨|𝟐 = |𝑶𝑩|𝟐 

|𝑲|𝟐 = |𝑲 + 𝑮|𝟐 

𝑮𝟐 +  𝟐𝑲𝑮 = 𝟎     
This is another representation of diffraction condition in reciprocal lattice system. 

 

 

2.7 BRILLOUIN ZONES 
In direct lattice system we defined Wigner Seitz cell which is nothing but a type of unit cell 

constructed by the area enclosed by perpendicular bisectors of nearest neighbours. Similarly if we 

construct a unit cell by area enclosed by perpendicular bisectors of nearest neighbours reciprocal 
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lattice points that is called Brilloun zone. Figure 2.19 shows the first Brillouin zone and second 

Brillouin zones of a two dimensional lattice.  In this figure, we have considered a two dimensional 

lattice space with a large number of lattice point, and O is an arbitrary point as origin. Now we 

draw perpendicular bisectors AB, BC, CD, DA of first nearest neighbor points, then the area 

enclosed by these perpendicular bisectors, i.e. ABCD is called first Brillouin zone. Similarly, the 

areas enclosed by the perpendicular bisectors of second nearest neighbous, EFGH, give the second 

Brillioin zone.   

There are also third, etc., Brillouin zones, corresponding to a sequence of disjoint regions (all with 

the same volume) at increasing distances from the origin, but these are used less frequently. As a 

result, the first Brillouin zone is often called simply the Brillouin zone. In general, the n-th 

Brillouin zone consists of the set of points that can be reached from the origin by crossing 

exactly n − 1 distinct Bragg planes. A related concept is that of the irreducible Brillouin zone, 

which is the first Brillouin zone reduced by all of the symmetries in the point group of the lattice 

(point group of the crystal). The concept of a Brillouin zone was developed by Léon 

Brillouin (1889–1969), a French physicist. 

 
In three dimensional space, Brillouin zone is the minimum volume under perpendicular bisectors 

of Bragg planes in reciprocal lattice space. Brillouin zone can also be understood by Eward 

construction. According to Eward construction, Bragg diffraction occurs for all possible value of 

wave vector K for which condition 𝑮𝟐 +  𝟐𝑲𝑮 = 𝟎 satisfies.  A Brillouin zone is the locus of all 

such values of K in reciprocal lattice system for which Bragg diffraction occurs.  The importance 

of the Brillouin zone stems from the Bloch wave description of waves in a periodic medium, in 

which it is found that the solutions can be completely characterized by their behavior in a single 

Brillouin zone. Figure 2.20 and 2.21 shows the Brillouin zone of bcc and fcc crystal. 

 

https://en.wikipedia.org/wiki/Point_group
https://en.wikipedia.org/wiki/L%C3%A9on_Brillouin
https://en.wikipedia.org/wiki/L%C3%A9on_Brillouin
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Several points of high symmetry are of special interest – these are called critical points.  

Symbol Description 

Γ Center of the Brillouin zone 

Simple cube 

M Center of an edge 

R Corner point 

X Center of a face 

Face-centered cubic 

K Middle of an edge joining two hexagonal faces 

L Center of a hexagonal face 

U Middle of an edge joining a hexagonal and a square face 

W Corner point 

X Center of a square face 

Body-centered cubic 

H Corner point joining four edges 

N Center of a face 

P Corner point joining three edges 

Hexagonal 

A Center of a hexagonal face 

H Corner point 

K Middle of an edge joining two rectangular faces 

L Middle of an edge joining a hexagonal and a rectangular face 

M Center of a rectangular face 
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2.8 SUMMARY  
In this unit we studied about X-ray diffraction by crystal, Bragg’s law, different method of 

diffraction, reciprocal lattice, and learn about the determination of crystal structure with the help 

of crystal diffraction. 

1. The diffraction occurs when the incident rays are reflected by the atoms on the different 

parallel planes, and these reflected rays interfere constructively and make diffraction pattern. By 

analyzing the diffraction patterns we can find out the lattice parameters, size, shape, orientation 

of crystal, inter planner distance etc.   

2. Bragg’s law 

2𝑑 sin 𝜃 = 𝑛𝜆 

The condition occurs only at certain values of 𝜆 and 𝜃. Thus by observing the parameters 𝜆 and 𝜃 

by experiment we can determine the crystal lattice spacing, size, shape, orientation and we can 

study the crystal structure. 

3. Diffraction method as given below: 

Method Wavelength Angle  Specimen type 

Laue Method Variable  Fixed Single crystal 

Rotating crystal method Fixed  Varying  Single crystal 

Powder method  Fixed  Variable  powder 

 

4. The Laue’s theory states that for diffractions the differences in the two wave vectors must be 

equal to a reciprocal lattices vector 𝝈∗.  

𝑲ˈ − 𝑲 = 𝝈∗ 
The Ewald sphere is a pictorial way to show the diffraction condition. 

5. In rotating crystal method, a single crystal is mounted at a point on the axis of a cylindrical 

shape in such a way that the monochromatic x-rays strike perpendicular on the crystal. By 

recording the diffraction pattern, both angle and intensities for various crystal orientations can be 

obtained and the shape and size of unit cell of the crystal and arrangement of atoms inside the 

crystal can be determined. 

6. In case of powder method a sample has hundreds of tiny crystals, show the diffraction beam 

form continuous cones.  A circle of film is used to record the diffraction pattern. Each cone 

intersects this film gives diffraction line. 
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7. When we observe diffraction patterns, the diffraction spot form a picture of crystal lattice.  This 

periodic structure like lattice is not direct picture of crystal but image of actual crystal. This is 

called reciprocal lattice.   In the reciprocal lattice, each lattice point is corresponding to reflection 

of lattice point of crystal plane. Simply reciprocal lattice points are inverse of actual lattice points. 

8. Fundamental reciprocal lattice vector are defined as  

𝒃𝟏 = 𝟐𝝅
𝒂𝟐 × 𝒂𝟑

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

𝒃𝟐 = 𝟐𝝅
𝒂𝟑 × 𝒂𝟏

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

𝒃𝟑 = 𝟐𝝅
𝒂𝟏 × 𝒂𝟐

[𝒂𝟏. 𝒂𝟐 × 𝒂𝟑]
 

9. For simple cubic crystal, primitive lattice vectors in direct lattice system is given by 

𝒂𝟏 = 𝑎�̂� ;  𝒂𝟐 = 𝑎𝒋̂  ;  𝒂𝟑 = 𝑎�̂�  

The reciprocal lattice vectors are  

          or     𝒃𝟏 =
2𝜋

𝑎
�̂� ;   𝒃𝟐 =

2𝜋

𝑎
𝒋̂  ;   𝒃𝟑 =

2𝜋

𝑎
�̂� 

9. For bcc crystal, primitive lattice vectors in direct lattice system is given as 

𝒂𝟏 =
𝑎

𝟐
(�̂� + 𝒋̂ −  �̂� ); 𝒂𝟐 =

𝑎

𝟐
(−�̂� + 𝒋̂ + �̂� ) ;  𝒂𝟑 =

𝑎

𝟐
(�̂� − 𝒋̂ + �̂� )  

The reciprocal lattice vectors are  

          𝒃𝟏 =
2𝜋

𝑎
(𝒋̂ +  �̂�  ) ;    𝒃𝟐 =

2𝜋

𝑎
(�̂� + �̂� ) ;   𝒃𝟑 =

2𝜋

𝑎
 (�̂� + 𝒋̂ ) 

10.  The primitive lattice vectors for fcc crystal are given as 

𝒂𝟏 =
𝑎

𝟐
(�̂� + 𝒋̂ ); 𝒂𝟐 =

𝑎

𝟐
(𝒋̂ +  �̂� ) ;  𝒂𝟑 =

𝑎

𝟐
( �̂� + �̂� ) 

The reciprocal lattice vectors are 

           𝒃𝟏 =
2𝜋

𝑎
(�̂� + 𝒋̂ −  �̂� );   𝒃𝟐 =

2𝜋

𝑎
(−�̂� + 𝒋̂ +  �̂� ) ;    𝒃𝟑 =

2𝜋

𝑎
 (�̂� −  𝒋̂ +  �̂� ) 

Thus the reciprocal lattice to bcc is fcc, and reciprocal of fcc is again bcc.  

11. Diffraction condition in reciprocal lattice system 

𝑲 − 𝑲′ = 𝑮   𝒐𝒓  ∆𝑲 = 𝑮        and      𝑮𝟐 +  𝟐𝑲𝑮 = 𝟎  

12. A unit cell constructed by area enclosed under perpendicular bisectors of nearest neighbours 

reciprocal lattice points is called Brilloun zone. In three dimensional space, Brillouin zone is the 

minimum volume under perpendicular bisectors of Bragg planes in reciprocal lattice space. 
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Self Assessment Questions (SAQs): 

SAQ1: If λ ˃ 2 d then explain the solution of Bragg’s equation. 

SAQ 2:  Are the Laue spots show diffraction property of X-rays? 

SAQ: What will be the relation between volume of unit of reciprocal lattice and the volume of unit 

in direct lattice? 

2.9 GLOSSARY 
Diffraction- bending of waves at the corners of the object in their path whose size is one of the 

order of wavelength of wave. 

Transmitted- passed on, sent out. 

Reciprocal lattice- The diffraction image of actual crystal lattice.   

Wigner Seitz cell- A type of unit cell constructed by the area enclosed by perpendicular bisectors 

of nearest neighbours. 

Brilloun zone – A unit cell constructed by area enclosed under perpendicular bisectors of nearest 

neighbours reciprocal lattice points 

2.10 REFERENCES 
C Kittel, Introduction to Solid State Physics 7th Edition, John Wiley and Sons, Singapore 

H C Gupta, Solid State Physics, Vikas Publication House, New Delhi 

Arun Kumar, Introduction to Solid State Physics, PHI Learning Private Limited, New Delhi 

 

2.11 SUGGESTED READIN 
1.  OS Pillai, Solid state Physics, New Age International(P) limited, New Delhi 

2. Solid State Devices, B.Somanathan Nair, S.R. Deepa, PHI Learning Private Limited, New 

Delhi. 

3.  Fundamentals of Solid State Physics, B.S. Saxena, R.C. Gupta, P.N. Saxena, Pragati Prakashan 
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2.12 TERMINAL QUESTIONS 

2.17.1 Long Answer Type Questions 

1. Describe Laue’s experiment for X-rays diffraction. Give its significance. 

2. What is reciprocal lattice? How we construct a reciprocal lattice? Give its properties. 
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3. Describe powder method for the determination of crystal structure. 

4 What is Eward’s construction? How does it help in the explanation of x ray diffraction? 

5. Obtain the relation between direct lattice vector and reciprocal lattice vectors. 

6. What are Brillouin zones? Construct first two Brillouin zone of a two dimensional lattice. Obtain 

the volume of first Brillioun zone. 

 

2.17.2 Short Answer Type Questions 

1. Describe Bragg’s law for x ray diffraction. And give its significance. 

2. What is reciprocal lattice? 

3. Show that reciprocal of fcc is bcc. 

4. How will you use Bragg’s law to determine the crystal structure? 

5. Give the types of diffraction methods.  

6. Explain Laue pattern. 

7. Discuss Ewald’s construction. Give its importance and uses. 

8. Write Bragg’s law in terms of reciprocal lattice vectors? 

9. What are Brilloun zones? 

10. A set of crystal planes reflects X-rays of wavelength 1.32 A0 at a glancing angle of 90 30’. 

Determine the possible spacing of this set of planes. 
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UNIT 3        CRYSTAL BONDING 
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3.9 Hydrogen bond 
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3.14 Terminal Questions 
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3.1. INTRODUCTION 

In previous unit we have discussed the classification of crystal on the basis of structure. We have 

also seen seven types of crystal systems and geometrical structures of different crystals. The 

physical properties of solids depend on their crystal structure and bonding. In this unit, now we 

will discuss about crystal bonding. Bonding of molecules of solids is also an important aspect for 

the understanding of solid. Strong attractive forces among the atoms or molecules hold the crystal 

together. This force is nothing but attractive electrostatic interaction between negative change 

electrons and positive charge nuclei which is entirely responsible for cohesion of solids. Inside a 

crystal, the atoms are arranged in a very short distance, thus the main force is electrostatic. The 

gravitational force is negligible and magnetic forces have a weak effect and nuclear force does not 

operate among the atoms in this range. This unit also deals with cohesive energy which is the 

energy that must be added to the crystal to separate its components into neutral free atoms at rest 

at infinite separation. Depending on the nature of constituents of a crystal, there are different types 

of bonding like ionic, covalent, hydrogen bonding and metallic bonding. In this unit we will 

understand these aspects of bonding in detail. 

3.2. OBJECTIVE 

After reading this unit we will able to understand: 

 Cohesive energy of crystalline solids 

 Lattice energy 

 Different types of bonding 

 Vander Waals bonding 

 Ionic bonding 

 Covalent bonding 

 Metallic bonding and hydrogen bonding. 

3.3. BONDING IN SOLIDS 

Solids are basically aggregates of atoms. For the existence of solid there is a binding force which 

binds the atoms in molecules, and molecule in solid. In solids, the interatomic forces are of two 

types, one is repulsive to prevent the atoms for merging on each other, and the other is attractive 

to keep them close. Both the attractive and repulsive forces depend on the interatomic separation 

(generally denoted by r). At a particular separation called equilibrium separation r0 , the force of 

repulsion is equal to force of attraction. At this position the potential energy of system becomes 

minimum and crystal becomes stable. Figure 3.1 show the variation of interatomic force (denoted 

by F) with interatomic separation r. The potential energy or internal energy of a solid or material 

is the sum of all individual energies of atoms plus their interaction energies. The potential energy 



             MSCPH506 

63 
 

is sum of repulsive and attractive energy of atoms which again depends on the interatomic 

separation r. At equilibrium position r= r0 the potential energy U(r) becomes minimum as shown 

in figure 3.2 and solid becomes stable. For example the NaCl crystal is more stable than Na and 

Cl atoms. Thus the energy of NaCl crystal is less than the individual energy of Na and Cl atoms. 

This means the energy of crystal is less than that the energy of individual free atoms. The difference 

in the energies is nothing but binding energy. Thus binding energy is defined as the energy required 

to keep the atoms or molecules is a solid to an infinite separation.  

Similarly, the cohesive energy of a crystal is also defined as the energy required for separating its 

components (ion or molecule) into neutral free atoms at infinite separation with some electronic 

configuration. For example, the cohesive energy of nitrogen solid is the energy required to separate 

nitrogen molecules from nitrogen solid as nitrogen molecules are the component of solid nitrogen. 

Similarly, in case of NaCl crystal, the cohesive energy of NaCl is the energy required to separate 

the NaCl solid into isolated Na+ and Cl- ions, instead of atoms, as ions are the components of NaCl 

crystal. In case of metallic solid, the cohesive energy of metallic solids is the energy required to 

separate its components (neutral atoms) into neutral atoms of metals. Sometime we use term 

binding energy defined as the energy required to separate a particle from a system of particles. 

This term is generally used in sub atomic particle line electron (e), proton (p) or neutron (n) etc. in 

atomic nucleus. In crystal, the binding energy is energy which includes cohesive energy and 

ionization energy. For example, in magnesium, cohesive energy is 1.51eV/atom, ionization energy 

is 22.67eV/atom and binding energy is 24.18 eV/atom. 

 

 

3.3.1. Cohesive Energy 

The potential energy between two atoms in solid varies greatly with interatomic spacing r and 

generally given by  
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𝑈(𝑟) =
𝑎

𝑟𝑚
+

𝑏

𝑟𝑛
                                 (1)  

Where n and m are integer numbers. 

The individual atoms in a solid must be hold together by interatomic forces and known as bond. 

However, there are repulsive forces which provide elasticity to crystal and avoid the atoms to 

collapse on each other. The attractive forces among the constituent particles are basically 

electrostatic and depend on the electronic configuration of atoms. Depending on the configuration 

of atoms, different types of bonding occur as Vander Waal bonding, ionic bonding, coordinate 

bonding and metallic bonding etc. Based on different types of bonding different kinds of solids 

come into existence as discussed in next steps. 

3.4 INERT GAS SOLIDS AND VANDER WAALS BONDING 

The inert gas solids are the simplest crystals. The crystal is transparent, insulators, weakly bond 

exist at very low temperature. The properties of inert gas solids are given in table 3.1. In the solids 

of inert gases, the outmost shell of each element (He, Ne, Ar, Kr, Xe) are completely filled and 

there are no free electrons or vacancies to make ionic or coordinate bond. The ionization energies 

of inert gas solids are very high thus there is no possibility of transfer or sharing of electrons in 

these solids. The atoms are neutral in nature. Due to saturation of electronic charge in these solids, 

there exists a different type of bond called Vander Waals bond and interaction is called Vander 

Waals- London Interaction. 

Table 3.1: Properties of inert gas solids 

Inert 

gas solid 

Nearest neighbor 

distance Å 

Cohesive energy  Melting point  Ionization 

Potential 
kJ/mole eV/atom 

He     24.58 

Ne 3.13 1.88 0.02 24 24.58 

Ar 3.76 7.74 0.080 84 15.76 

Kr 4.01 11.2 6.116 117 14.00 

X 4.35 16.0 0.17 161 12.13 

 

3.4.1. Vander Waals-London interaction 

Consider two atoms of an inert gas solid. As we discussed earlier, in case of inert gas solids, the 

electrons in the outermost shell are completely filled and charge distribution is symmetric and 
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rigid. There would be no interaction between the atoms because net electrostatic force cancelled 

to each other. But in actual, the center of electron cloud and positively charge nucleus of each 

atom, make a weak dipole and two such dipoles interact to each other as shown in figure 3.3.  

 

 

Thus in a solid, atoms are arranged in such a way that they induce dipole moments in each other, 

and induced dipole moments cause an attractive interaction among the atom and formation of inert 

gas solid takes place. 

Consider two atoms of an inert gas solid which are separated by a distance R as shown in figure 

3.4. Each atom in the solid behaves as a dipole. We can consider each atom as a linear harmonic 

oscillator separated by distance R. The electron cloud of each dipole (atom) oscillated with respect 

to nucleus. Suppose each oscillator has a charge e- and e+ separated by distance x1 and x2 as shown 

in figure 3.4. p1 and p2 are dipole moment of first and second atoms, and c is force constant of such 

oscillators. Then the Hamiltonian H0 of such system when there are no other interactions 

(unperturbed parts), can be given as 

𝐻0 =
1

2𝑚
𝑝1

2 +
1

2
𝐶𝑥1

2 +
1

2𝑚
𝑝2

2 +
1

2
𝐶𝑥1

2                                                            (2) 
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Suppose each uncoupled oscillator has frequency 𝜔0  then 𝐶 = 𝑚𝜔0
2  

If 𝐻1 is the Coulomb interaction energy of two such oscillators (perturbed part of Hamiltonian) 

then 

𝐻1 =
𝑒2

𝑅
+

𝑒2

𝑅 + 𝑥1 − 𝑥2
−

𝑒2

𝑅 + 𝑥2
−

𝑒2

𝑅 − 𝑥1
                                                             

Since electrons are very close to nuclei in inert gas solids then 𝑥1 𝑜𝑟 𝑥2 ≪ 𝑅 thus 

𝐻1 =
−2𝑒2𝑥1𝑥2

𝑅3
                                                                             (3) 

Total Hamiltonian is given as 

𝐻 = 𝐻0 + 𝐻1  

𝐻 =
1

2𝑚
𝑝1

2 +
1

2
𝐶𝑥1

2 +
1

2𝑚
𝑝2

2 +
1

2
𝐶𝑥1

2 −
2𝑒2𝑥1𝑥2

𝑅3
             (4) 

Now we consider symmetric and anti-symmetric modes positions as 𝑥𝑠 and 𝑥𝑎 ; and momenta as 

𝑝𝑠 and 𝑝𝑎 which are defined as  

𝑥𝑠 =
1

√2
 (𝑥1 + 𝑥2) ;  𝑥𝑎 =

1

√2
 (𝑥1 − 𝑥2)                                    (5) 

𝑜𝑟    𝑥1 =
1

√2
 (𝑥𝑠 + 𝑥𝑎) ;  𝑥2 =

1

√2
 (𝑥𝑠 − 𝑥𝑎)                             

Similarly  
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𝑝𝑠 =
1

√2
 (𝑝1 + 𝑝2) ;  𝑝𝑎 =

1

√2
 (𝑝1 − 𝑝2)                              (6) 

𝑜𝑟    𝑝1 =
1

√2
 (𝑝𝑠 + 𝑝𝑎) ;  𝑝2 =

1

√2
 (𝑝𝑠 − 𝑝𝑎)                             

The details of symmetry and anti-symmetric modes are the part of quantum mechanics. We are 

using direct formula here.  

Now using equation (4) the total Hamiltonian H is 

𝐻 =
1

2𝑚

1

2
(𝑝𝑠

2 + 𝑝𝑎
2 + 2𝑝𝑠𝑝𝑎) +

1

2
𝐶

1

2
(𝑥𝑠

2 + 𝑥𝑎
2 + 2𝑥𝑎𝑥𝑠) +

1

2𝑚

1

2
(𝑝𝑠

2 + 𝑝𝑎
2 − 2𝑝𝑠𝑝𝑎)

+
1

2
𝐶

1

2
(𝑥𝑠

2 + 𝑥𝑎
2 − 2𝑥𝑠𝑥𝑎) −

2𝑒2𝑥1𝑥2

𝑅3
              

𝑜𝑟          𝐻 =
1

2𝑚
(𝑝𝑠

2 + 𝑝𝑎
2) +

1

2
𝐶(𝑥𝑎

2 − 𝑥𝑠
2) −

2𝑒2

𝑅3
 (𝑥𝑎

2 − 𝑥𝑠
2)             

𝑜𝑟          𝐻 = [
1

2𝑚
𝑝𝑠

2 + 
1

2
(𝐶 −

2𝑒2

𝑅3
) 𝑥𝑠

2] + [
1

2𝑚
𝑝𝑎

2 +
1

2
(𝐶 −

2𝑒2

𝑅3
) 𝑥𝑎

2]                    (7)          

Generally Hamiltonian is given as  

𝐻 =
𝑝2

2𝑚
+

1

2
𝐶′𝑥2 

In this expression C' is nothing but the force constant and given as 𝐶′ = 𝑚𝜔0
2  or 𝜔0 = √

𝐶′

𝑚
which 

give the frequency. Thus the frequency of oscillation of a system of harmonic oscillator 

represented by equation (4) can be given as  

𝜔 = √𝐶 ± (
2𝑒2

𝑅3 ) /𝑚 = [𝐶 ± (
2𝑒2

𝑅3 ) /𝑚]
1/2

                                                                                   (8) 

𝜔 = 𝜔0 [1 ±
2𝑒2

𝐶𝑅3
]

1/2

  𝑤ℎ𝑒𝑟𝑒  𝜔0 = √
𝐶

𝑚
   

Using binomial theorem 

𝜔 = 𝜔0 [1 ±
1

2
(
2𝑒2

𝐶𝑅3
) −

1

8
(
2𝑒2

𝐶𝑅3
) + ⋯       ]                                                                       (9) 
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The term 
1

2
(

2𝑒2

𝐶𝑅3
) is corresponding to zero point energy. The change is interaction energy due to 

coulomb interaction is corresponding to second term. Therefore the change in energy ∆𝑈 can be 

given as    

∆𝑈𝑎 =
1

2
ℏ(∆𝜔𝑠 + ∆𝜔𝑎) = −ℏ𝜔0

1

8
(
2𝑒2

𝐶𝑅3
) 

∆𝑈𝑎 = −
𝐴

𝑅6
                                                                                              (10) 

Where A is constant. Thus the attractive interaction varies inversely sixth power of separation 

between two atoms of inert gas solids.   

3.4.2 Repulsive Interaction 

A repulsive interaction also exists in the atoms of solids. When two atoms are come together, there 

charge distributions gradually overlap to each other. The electron cloud of one atom superimposed 

on other and at a sufficient close separation, repulsive forces gradually come in to existence. The 

repulsive interaction can also be explained by Pauli’s exclusion principle which stated that two 

electrons cannot have same all quantum numbers. When two atoms come sufficient close there is 

a tendency of an electron to occupy the quantum state of other electron. The Pauli Principle 

prevents the electron distribution for multiple occupancy which results repulsive interaction as 

shown in figure 3.5. There is no theoretical method to evaluate the repulsive force or energy for 

atoms of inert gas solids but the experimental data show a repulsive potential energy can be given 

as 

𝑈𝑟 =
𝐵

𝑅12
                                                                              (11) 

where B is a constant and R is separation. 

 



             MSCPH506 

69 
 

                  The total potential energy of two atoms of inert gas solids are given by combining two 

terms as given by equation (6) and (7) 

𝑈(𝑟) = 𝑈𝑎 + 𝑈𝑟

𝐵

𝑅12
                                                                               

𝑈(𝑟) =
𝐵

𝑅12
−

𝐴

𝑅6
                                                                               

𝑈(𝑟) = 4 ∈ [(
𝜎

𝑅
)
12

− (
𝜎

𝑅
)
6

]                                           (12)         

Here ∈ and 𝜎  are new parameters. The equation (12) is known as Lenard-Zone potential. The 

force between two atoms can be obtained by differentiating the energy as -dU/dR. The values of 

parameters are given in table 3.2. In this expression we have chosen repulsive potential as B/R12. 

Other form of empirical relation for repulsive interaction is given as 𝑈 = λ exp(−R/𝜌 ) which is 

widely used in solid state physics, where λ and 𝜌 other parameters. 

3.4.3. Cohesive Energy 

The cohesive energy of an inert gas solid is given by summing up the Lenard Zone potential over 

all pairs of atoms. If there are N atoms in the solid, then total potential energy is given as  

𝑈𝑡𝑜𝑡𝑎𝑙(𝑅) =
1

2
𝑁 4 ∈ [∑ (

𝜎

𝑝𝑖𝑗𝑅
)
12

− ∑ (
𝜎

𝑝𝑖𝑗𝑅
)
6

𝑗𝑗 ]                                                             (13) 

Where 𝑝𝑖𝑗𝑅 is the separation between 𝑖𝑡ℎ  and  𝑗𝑡ℎ atoms. Since in summision each terms comes 

twice therefore we introduced a term 
1

2
 with N. 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦  ∑(
1

𝑝𝑖𝑗
)

12

= 12.13

𝑗

   𝑎𝑛𝑑  ∑(
1

𝑝𝑖𝑗
)

6

= 14.45

𝑗

  

Thus above expression reduced as 

𝑈𝑡𝑜𝑡𝑎𝑙(𝑅) = 2𝑁 ∈ [12.13 (
𝜎

𝑅
)
12

− 14.45 (
𝜎

𝑅
)
6

 ]                                 (14) 

At 𝑅 = 𝑅0 the above equation reduces as 

𝑈𝑡𝑜𝑡𝑎𝑙(𝑅) = −2.154𝑁 ∈                                                                                (15) 

 This is the expression for cohesive energy of all inert gas solids when all the atoms are at rest. 

There are always some fluctuations which cause correction and called quantum mechanical 

correction. These fluctuations reduce the cohesive energy of solid but this effect is very small. The 

effect of quantum correction is an advance field and is an area of research now a day. 
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3.5 IONIC CRYSTAL AND IONIC BONDING 

Ionic bonding is simplest type of bonding which occurs between electropositive and 

electronegative atoms. The electronegative elements are those have tendency to acquire electron 

and these elements are on the right side of periodic table (as Cl, F, O, Br etc). The electropositive 

elements are those elements which can easily give the electron from the outermost shell. 

Electropositive elements are generally metals and element on the left side of periodic table (as Na, 

K, Br, I, Mg, Fe, Ni, Cu etc.). When an electronegative atom come into close proximity of an 

electropositive atom, one or more electron from electropositive atom transfer to electronegative 

atom and both atoms become ions. There positive and negative ions are bonded by an electrostatic 

force which is called ionic bonding. The simplest example of ionic bonding is formation of NaCl 

(sodium chloride) atom. 

The electronic configuration of Na11 =1s2, 2s2, 2p6,3s1 

Thus the Na atom can easily donate electron of its outermost shell to Cl atom. The energy required 

to remove an electron from outermost shell is called ionization energy. The ionization energy of 

Na atom is 5.14 eV. Now the electronic configuration chlorine Cl atom is  

Cl= 1s2, 2s2, 2p6,3s2, 3p5 

Thus the Cl atom can easily acquire an electron as there is vacancy in the outermost shell. When 

an electronegative atom like Cl gained an electron it releases an energy which is called electron 

affinity and become Cl- ion. The electron affinity of Cl atom is 3.16ev. Thus Na gives up it valance 

electron to Cl and each Na+ and Cl-  ions are bounded by a strong electrostatic attraction and 

becomes a stable molecule of NaCl. The reaction can be given as: 

Na (atom) + 5.14 eV  (ionization energy) →    Na+  +   e-  

e- + Cl (atom)          →     Cl-    + 3.61eV (electron affinity)  

Na+ (gas)          +   Cl-  (gas)  →  NaCl (crystal) + 7.9eV (cohesive energy) 

Thus in case of NaCl, a net energy of 5.1- 3.6 = 1.5eV is to be need in creation of Na+ and  Cl- ions 

as  

Na + Cl + 1.5eV = Na+   +  Cl-   

If these two ions come to a close proximity of equilibrium spacing of  r0 ≈ 2.81 × 10-10 m then the 

potential energy will be minimum (electrostatic interaction) and the energy released in the 

formation of NaCl molecule which is called bond energy. The bond energy is given as: 

𝑉 = −
𝑒2

4𝜋𝜀0𝑟0
=

(1.6 × 10−19)2

4𝜋 × 8.85 × 10−12 × 2.4 × 10−10
= −6 𝑒𝑉 
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This energy will be released in formation of NaCl molecule. Thus the entire process evolve an 

energy of 6 -1.5 = 4.5 eV to produce NaCl molecule from individual Na and Cl atoms. 

Na+   +  Cl-  (isolated ions)   → NaCl (at 0.28nm spacing ) + 6eV 

The energy involve in the dissociation of NaCl molecule into Na+ and Cl- ions is 6 eV. This value 

may be comparable to the experimental value of cohesive (lattice energy) of NaCl which is 7.9eV. 

The value of lattice energy can be calculated more closed with the help of Madelung energy. 

3.5.1 Electrostatic or Madelung Energy 

The electrostatic interaction between ions is ±  𝑘
𝑞2

𝑟
  and it is attractive if the ions are oppositely 

charged, and repulsive if the charges are of same type.The ions in the crystal are arranged them in 

such a way that the ions give the strongest attractive interaction in the crystal and minimize the 

repulsive interaction. The repulsive interactions in ionic crystal are same as in inert gas solids. But 

this interaction is very small with comparison of strong attractive interaction among the ions. The 

binding energy of ionic crystals arises due to electrostatic interaction is called Madelung energy. 

Since a crystal contains a very large number of ions therefore the interaction energy between ith 

ion and jth can be given as Uij . If we define interaction of ith ion to all other remaining ions as Ui 

then Ui can be given as the sum of all interactions of ith ion with all remaining ions say then  

𝑈𝑖 = ∑𝑈𝑖𝑗    𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2… . . 𝑛 𝑒𝑥𝑐𝑒𝑝𝑡 𝑗 = 𝑖                                               (16)

𝑗

 

 The interaction 𝑈𝑖𝑗 has two components a repulsive potential in the form of 𝜆 exp  (−𝑟/𝜌) where 

𝜆 and 𝜌 are constants. The another interaction is Coulomb potential energy  𝑉 = ±
1

4𝜋𝜀0

𝑞2

𝑟0
 thus 

𝑈𝑖𝑗 = 𝜆 exp  (−𝑟𝑖𝑗/𝜌)   ±  
1

4𝜋𝜀0

𝑞2

𝑟𝑖𝑗
                                                                    (17)  

𝑈𝑖𝑗 = 𝜆 exp  (−𝑟𝑖𝑗/𝜌)   ±  
𝑞2

𝑟𝑖𝑗
    ( in CGS system)                                            (18) 

The repulsive term is same as in inert gas solids and can be taken as 
𝜎

𝑅12  but the form 

𝜆 exp(−𝑟𝑖𝑗/𝜌)  gives better representation in ionic solids where 𝜌 range of repulsive interaction. 

In ionic solids like NaCl, if we ignore the surface effect them term 𝑈𝑖does not depend on reference 

ion, we can consider any ion as reference. Thus if a crystal contains N molecules of NaCl or 2N 

ions, then total lattice energy (interaction energy) can be given as  

𝑈𝑇 = 𝑁𝑈𝑖                                                                                                                    (19)  
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We count each pair of ions only once. Thus we use N in place of 2 N, total number of ions. The 

total lattice is the energy required to break the crystal into individual ions at sufficient far (infinite) 

distance apart. With the help of total lattice energy, we can calculate lattice energy per molecule. 

For convenience we introduce a term 𝑝𝑖𝑗 such that separation between two  ith and jth ion can be 

given as : 

                                𝑟𝑖𝑗 = 𝑝𝑖𝑗𝑅                                                                                                          (20) 

Where R is nearest neighbor separation between two ions in a crystal or called as equilibrium 

separation. Now equation (18) becomes 

                    𝑈𝑖𝑗 = 𝜆 exp  (−𝑅/𝜌)   ±  
1

𝑝𝑖𝑗
 
𝑞2

𝑅
                                                                             (21)     

Thus the total lattice energy can be given as  

𝑈𝑇 = 𝑁 ∑𝑈𝑖𝑗 = 𝑁 (𝜆 exp  (−𝑅/𝜌)   ±∑  

𝑗

1

𝑝𝑖𝑗
 
𝑞2

𝑅
)       

𝑗

                                                       

𝑈𝑇 = 𝑁 (𝑧 𝜆 exp  (−𝑅/𝜌)   ± 𝛼 
𝑞2

𝑅
 )                                                                                      (22)  

Where  𝛼 ≡ ∑   𝑗
±1

𝑝𝑖𝑗
= 𝑀𝑒𝑑𝑒𝑙𝑢𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                            (23) 

Where z is another parameter which represents the number of nearest neighbors. The value of 𝛼 is 

important for the theoretical calculation of binding energy of ionic crystals. 

At equilibrium separation, the energy becomes minimum therefore 

𝑑𝑈𝑇

𝑑𝑅0
= 0 

Thus eq. (18) becomes 

  

𝑑𝑈𝑇

𝑑𝑅
= 𝑁

𝑑𝑈𝑖

𝑑𝑅0
= −

𝑁𝑧𝜆

𝜌
 𝑒𝑥𝑝 (−

𝑅

𝜌
) +

𝑁𝛼𝑞2

𝑅0
2 = 0                                        (24) 

𝑜𝑟   
𝑁𝑧𝜆

𝜌
 𝑒𝑥𝑝 (−

𝑅

𝜌
) =

𝑁𝛼𝑞2

𝑅0
2  

𝑜𝑟   
𝑁𝑧𝜆

𝜌
 𝑒𝑥𝑝 (−

𝑅0

𝜌
) =

𝑁𝛼𝑞2

𝑅0
2  
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𝑜𝑟   𝑅0
2 𝑒𝑥𝑝 (−

𝑅0

𝜌
) =

𝜌𝛼𝑞2

𝑧𝜆
                                                                        (25) 

This equation determines the equilibrium separation 𝑅0.  

Total lattice energy can be obtained by putting the value of 𝑅0 from eq. (25) into equation (18) 

then 

𝑈𝑇 = 𝑁 (
𝜌𝛼𝑞2

𝑅0
2 −  𝛼 

𝑞2

𝑅0
 )                                                                                        

𝑈𝑇 =
𝑁𝛼𝑞2

𝑅0
(1 −

𝜌

𝑅0
 )                                                                                      (26) 

The term 
𝑁𝛼𝑞2

𝑅0
 is called madelung energy. Since the value of P is very small 𝜌 ≈ 0.1𝑅  thus the 

total repulsive energy is very small, and net energy is negative which is attractive in nature, and 

crystal bonded strongly. 

Calculation for Madelung Constant 𝜶 

The Madelung constant 𝛼 was first calculated by Madelung. By definition of 𝛼 

𝛼 =  ∑  

𝑗

±1

𝑝𝑖𝑗
                                                                             

Where 𝑝𝑖𝑗   represents all combination of ion in a crystal. As we defined  𝑟𝑖𝑗 = 𝑝𝑖𝑗𝑅 thus 

𝛼

𝑅
= ∑  

𝑗

±

𝑟𝑖𝑗
                                                                                        (27)                                                      

Where  𝑟𝑖𝑗  is distance between ith  and jth ions.  

Now consider an infinite long chain of ions in which positive and negative ions are linearly 

arranged in a repetitions of R as shown in figure 3.6. 
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From eq. (27) 
𝛼

𝑅
 can be given as 

𝛼

𝑅
= 2 [

1

𝑅
−

1

2𝑅
+

1

3𝑅
−

1

4𝑅
……… . . ] 

𝛼 = 2(1 −
1

2
+

1

3
−

1

4
………………… . . ) = 2 ln 2 

The factor 2 arises since there are two ions, one is to right side and another to left side at same 

distance. Thus the value of Madelung constant for one dimensional chain of ions in a crystal is 

2 ln 2. In three dimension, it is very difficult to consider all chains and not possible to find out 

simple expression. 

Typical value of Madelung constant of some ionic crystals are given below 

Crystal  NaCl  CsCl  ZnS 

Madelung constant  1.74  1.76  1.63 

3.6 COVALENT CRYSTALS 

If two atoms have opposite types of number of electrons in outmost shell (for example 1 and 7 

electrons in outermost shell), then they have heterogeneous nature of charge and they make 

generally heteropolar bond or ionic bond. But if the atoms have same type number of electrons in 

outermost shell they have homogenous nature of charge, they have tendency to make a different 

kind of bond known as homopolar or covalent bond. Covalent type bond occurs basically by 

sharing of electrons, between different types of non metal- non metal atom like CH4 , and metaloid- 

non metal atom like SiO2 etc. The bond between carbon atoms in diamond is a strong covalent 

bond with bond strength comparable to ionic bond. 

The Covalent bond has strong directional properties. For example, the carbon in diamond has four 

nearest neighbor atoms arranged in tetrahedral angles as shown in figure 3.7. The structure of 

diamond has been discussed in previous first unit. The directions of atoms are fixed for the 
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existence of diamond structure. The tetrahedral structure allows only four nearest atoms with 

packing fraction 0.34. The same bonding is shown by boron, silicon, germanium etc. 

 

The simplest example of covalent bond is formation of hydrogen molecule, in which each electron 

of both atoms, is arranged in such a way that the pair of electron is shared by both atoms. Figure 

3.8 shows the sharing of electrons by both atoms. 

 

After sharing of electron both atoms complete their outmost electron orbit, and this tendency of 

completion of outermost electron orbit becomes a bonding known as covalent bonding. In 

formation of hydrogen molecule, the two electrons are in between the nuclei of both atoms and 

two electrons are more like to be found at the between the nuclei therefore the electron density is 

maximum in this region.  
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The covalent bond comes into existence when the separation between atom are 0.074nm, 

equilibrium distance where repulsive and attractive forces of both atoms balance each other. The 

bond energy of covalent bond in hydrogen molecule is about 4.5eV which required to break a 

covalent bond in H2 molecule. 

Thus 

𝐻2 (𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)    +       4.5𝑒𝑉    →   𝐻(𝑎𝑡𝑜𝑚) +    𝐻(𝑎𝑡𝑜𝑚) 

The covalent bond is represented by H-H. Sometime the other representation are also used as H:H  

which indicates the sharing of electrons from different atoms. The large number of organic material 

in biology and in organic chemistry covalent bonding is occurred. Some example of covalent bonds 

is listed below. Similarly many semiconductors also show covalent bonding. 

Table 2: Covalent Bond and their bond length and bonding energy 

Bond  Bond length 

nm 

Bond energy 

kJ/mole 

Bond  Bond length 

nm 

Bond energy 

kJ/mole 

𝐻 − 𝐻 0.074 736 𝑁 − 𝑁 0.100 390 

𝐶 − 𝐻 0.108 414 𝑁 ≡ 𝑁 0.109 945 

𝐶 − 𝐶 0.154 348 𝐶𝑙 − 𝐶𝑙 0.199 242 

𝐶 = 𝐶 0.134 615 𝐻 − 𝐶𝑙 0.128 431 

𝐶 ≡ 𝐶 0.122 840 𝐶 − 𝑆𝑖 0.193 301 

𝐶 − 𝑂 0.143 358 𝑆𝑖 − 𝐻 0.145 293 

𝐶 = 𝑂 0.122 748 𝑆𝑖 − 𝑆𝑖 0.234 176 

𝑂 − 𝐻 0.097 463 𝑆𝑖 − 𝐶𝑙 0.216 360 

𝑂 = 𝑂 0.121 498 𝑆𝑖 − 𝑂 0.183 368 

 

 

 

The electrons in atom arranged in different shells designed by principle quantum numbers (n= 

1,2,3….) and further the electrons of each shell arranged in different orbital (s,p,d,f corresponding 

to l= 0,1,2,3,……..). Each orbit can occupy maximum number of electrons as s2, s2, p6, d10, f14 (2, 
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6, 10, 14 respectively). When a covalent bond is formed, the orbitals become fully filled depending 

on the number of bond. For example in hydrogen molecule, when the pair of electron is shared by 

atoms, the s orbital is completely filled and hydrogen molecule becomes stable. There is no further 

possibility of third hydrogen atom or electron for making bond. Thus the covalent bond exhibits 

saturation. Further the covalent bond is directional in nature. Since covalent bond is formed after 

the overlapping of different orbitals thus bond would be lie along the direction of overlapping. 

3.7 METALS AND METALLIC BOND 

Metallic bonds are the forces of attraction between free floating electron, valance electron and 

positively charged cation. Metallic bonds are found in metals and alloys. In metal, all electrons 

belong to the metal are considered a whole rather than any particular atom. Metals have low 

ionization energies and atoms of such elements give their valance electrons to form as whole 

electron sea or say ‘electron gas’ throughout the space. Having giving up their valance electron, 

the atoms become positive ions called core which float in the electron sea as shown in figure 3.9. 

These positive ions are held together by electrostatic force in the electron sea. These bonds are 

called metallic bonds. The high electric and thermal conductivity of metallic solid are result of 

ability of free movement of electron through Electron Sea in the crystal. 

Unlike other crystal, metals show high melting point, good conductor, hard, dense, high tensile, 

strength, malleable, ductile, Luster. The most of such properties are because of electron sea permits 

atoms to slide inside crystal structure by acting as lubricant. This property cannot be seen in 

covalent bonds as the movement atoms break the bond. Copper, solidus, silver, gold, iron, 

aluminum are examples of metallic crystals. 

 

3.8 INTERMOLECULAR BOND 

We have discussed ionic, covalent and metallic bonds. These all bonds are result from transfer or 

sharing of electron. These bonds are classified as primary bond. These bonds are strong and 
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involve electrons and generally responsible for the formation of molecules. The bonds that hold 

molecules together to form a solid is called secondary bond. The secondary bonds are considerably 

weak, intermolecular, arid arises due to induced attractive dipole interaction when molecules come 

to close proximity. The secondary bonds are Vander Waals bond, hydrogen bond etc. We have 

already discussed Vander Waals bond now we discuss about hydrogen bond. 

 

3.9 HYDROGEN BOND 

Hydrogen bond is a special type of bond formed between hydrogen and an extremely 

electronegative atom like (O, F, N). In this case when hydrogen atom is covalently bonded with 

high electronegative atom, the electron cloud is strongly attracted by electronegative atom and a 

permanent electric dipole is set up as hydrogen polarized with negative charged. These dipoles of 

molecules are arranged themselves in such a way that all molecule attract each other and form 

solid crystal or liquid. The examples of hydrogen bonds are H2O, water molecules, ferroelectric 

solids like KH2PO4, proteins, DNA etc. In water hydrogen and oxygen atom formed covalent bond 

as shown in figure 3.10. 

 

 

In figure 3.10, H2O molecule is formed with the help of covalent bond. After bonding, the oxygen, 

a strong electronegative atom attracts electron cloud and polarized with a charge 𝛿-  and hydrogen 

atom polarized with charge 𝛿 + . The O-H bond between oxygen atom of one molecule of H2O 
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and hydrogen atom of another molecule is formed and this electrostatic bond called hydrogen 

atom. Hydrogen bond is responsible for cohesion of water which further responsible for surface 

tension. Thus the water form droplets and these properties are important for many biological 

process and basis for the life. 

Self Assessment Questions (SAQ) 

1. What is the main force responsible for the formation of crystalline solids? 

2. What are primary and secondary bonds? 

3. Explain cohesive and binding energy of a solid. 

4. Distinguish cohesive, ionization and binding energy. 

5. What is lattice energy? 

6. Calculate the cohesive energy of NaCl crystal. 

7. What is force which holds the atoms of inert gas solid? 

8. Give the origin of repulsive force in inert gas solids. 

9. What is harmonic oscillator? Why, we consider the atoms on inert gas solids as harmonic 

oscillator? 

10. Why we cannot obtain the Madelung constant for a chain of ions in three dimensions? 

11. Explain metallic bonds. 

12. Why the metallic solids are good conductors of electricity and heat? 

13. Why hydrogen bonds are significant in nature? 

 3.10 SUMMARY 

1. In this unit, we have learnt about crystal bonding and known how different types of crystals are 

formed due to different types of bonding.  

2. According to their bonding, crystals have been divided into different groups- ionic crystals, 

covalent crystal or homopolar crystals, metallic crystals, Vander Waals or molecular crystals and 

hydrogen bonded crystals.  

3. Cohesive energy which is defined as the energy of an ionic crystal that would be liberated by 

the formation of the crystal from individual neutral atoms. The main contribution to the cohesive 

energy of an ionic crystal is the electrostatic potential energy U of the ions.  

4. The atoms of inert gas solids (He,Ne,Kr)  are neutral in nature. Due to saturation of electronic 

charge in these solids, there exists a different type of bond called Vander Waals bond and 

interaction is called Vander Waals- London Interaction. 

Lenard − Zone potential  𝑈(𝑟) = 4 ∈ [(
𝜎

𝑅
)
12

− (
𝜎

𝑅
)
6

]                                                    

5. When an electronegative atom come into close proximity of an electropositive atom, one or 

more electron from electropositive atom transfer to electronegative atom and both atoms become 
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ions. There positive and negative ions are bonded by an electrostatic force which is called ionic 

bonding. 

6. Madelung constant which is a property of  ionic crystal structure is given as  

𝛼 ≡ ∑   

𝑗

±1

𝑝𝑖𝑗
= 𝑀𝑒𝑑𝑒𝑙𝑢𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                        

7. the atoms have same type number of electrons in outermost shell they have homogenous nature 

of charge, they have tendency to make a different kind of bond known as homopolar or covalent 

bond. The Covalent bond has strong directional properties.  

8. Metallic bonds are the forces of attraction between free floating electron, valance electron and 

positively charged cation. Metallic bonds are found in metals and alloys. 

9. Hydrogen bond is a special type of bond formed between hydrogen and an extremely 

electronegative atom like (O, F, N). In this case, hydrogen atom is covalently bonded with high 

electronegative atom, the electron cloud is strongly attracted by electronegative atom and a 

permanent electric dipole is set up which is responsible for cohesion of molecules.  

 

3.11 GLOSSARY 

Bonding: Attraction between atom, molecules or ions in a material 

Cohesion: To stick together or stay together. 

Inert gases: Gas do not undergo chemical reaction 

Vander Waals Force: Weak, short range electrostatic force between molecule or atoms 

Hamiltonian: In quantum mechanics, a Hamiltonian is an operator, which represent sum of kinetic 

and potential energy 

Harmonic Oscillator: A system which oscillates regularly under certain restoring force 

Metal: Material with high conductivity lustrous, malleable and ductile. 
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3.13 SUGGESTED READIN 
1.  O S Pillai, Solid State Physics, New Age International(P) limited, New Delhi 

2. L Poling, Nature of chemical bond, Cornell 

Solid State Devices, B.Somanathan Nair, S.R. Deepa, PHI Learning Private Limited, New Delhi. 

3. Fundamentals of Solid State Physics, B.S. Saxena, R.C. Gupta, P.N. Saxena, Pragati Prakashan 

Meerut. 

 

3.14.1 Short Answer Type Questions 

1. Explain the bonding of atoms in crystalline solids. 

2. Explain the bonding energy in terms of interatomic separation. 

3. What do you mean by Vander Waals interaction? 

4. Explain the formation of inert gas solids. 

5. Give the origin of attractive and repulsive interactions in the inert gas solids. 

6. Explain the origin of ionic bonding. 

7. What do you mean by lattice energy and cohesive energy? 

8. Calculate the Madelung constant for one dimensional chain of ions. 

9. What are metallic bonds? 

10. Explain the origin of covalent bond. 

11. What is the difference between covalent and metallic bond. 

12. What are primary bonds and secondary bonds? Give the difference. 

13. What is hydrogen bond? Give an example of solid which show hydrogen bond. 

 

3.14.2 Long Answer Type Questions 

1. What is Vander Waals interaction? Obtain the expression for Lennard Jones  Potential. 

2. Explain the formation of ionic crystals. Find out expression for Madelung constant for the 

linear chain of ions. 

3. Obtain an expression for the cohesive energy, bulk modulus and coefficient of thermal 

expansion of a linear molecular solid consisting N atoms. 

4. Find out an expression of cohesive energy and bulk modulus of an ionic solid by considering 

that the repulsive energy of ions is given by 
𝐵

𝑟𝑛  . 

5. With the help of Lennard-Jones Potential, calculate the ration of cohesive energy of neon in 

bcc and fcc structure.(Ans. 0.956 ) The lattice sum for the bcc structure are: 

∑𝑝𝑖𝑗
−12

𝑗

= 9.1141 ;      ∑ 𝑝𝑖𝑗
−6

𝑗

= 12.2533 
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6. Consider a line of 2N ions in an ionic solid and each ion has charge ±𝑞 with repulsive potential 
𝐴

𝑅𝑛 between two nearest neighbors. Show that at equilibrium separation 

𝑈(𝑅0) = −
2𝑁𝑞2 ln 2

𝑅0
(1 −

1

𝑛
) 
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4.1 INTRODUCTION  

A crystal is defined as combination of lattice and basis. In a perfect crystal there is a long range 

periodic arrangement of lattice point at lattice sites. However, in reality the crystals show some 

deviation from perfect ordering of atoms or molecules from their actual ordered lattice positions. 

All deviations from the specified ordered periodicity are called defects or imperfections. If a 

crystal does not possess defects, then it is called ideal crystal. In general, all crystals are not ideal 

and always show some considerable defects. The defect or imperfection affects the physical 

properties, chemical properties, mechanical or electrical properties of a material. Thus the study 

and analysis of defects exist in a solid or material is important in various technological 

processing and applications. 

Knowing the Imperfection in a crystal we can obtain the required behavior of solid. For example, 

(70% Cu + 30% Zn) is much harder and stronger than pure copper.  Thus the lattice irregularities 

in crystal result tremendous effect on properties of material. It should be noted that the 

Imperfections or defects in crystal affect the crystal structure but they bring some specific useful 

characteristics in the material. For example, the electrical resistance in an electric wire (heater 

element) can be controlled by adding some impurity in the material. Therefore, the study of 

imperfect crystals is equally significant as perfect crystal. 

 

4.2 OBJECTIVE 

After reading this unit we will able to understand:  

 different type of defects and imperfection in crystal 

 point Defects 

 line defects 

 surface defects 

 volume defects 
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4.3 CLASSIFICATION of DEFECTS 

On the basis of dimensions, the defects are classified in four groups as given below. 

 

 

4.4 POINT DEFECTS  

Point defects are simplest imperfection in crystal. In such type of defects an atom involves 

individually and therefore called zero dimension (0D) defect. Point defect is very localised and 

not spread over more than one or two lattice spacing. Point defect does not affect the perfection 

of more distant parts of crystal. The point defect is generally three types as vacancies, interstitial 

and impurity. 

4.4.1 Vacancies 

Vacancies are those sites which are unoccupied in the crystal structure. At vacancies, atoms are 

absent from its regular atomic positions. All crystalline solids contain vacancies. These vacancies 

are also known as Schottky defect. If an atom of crystal leaves its site, create a vacancy and fit 

interstitial, is known as Frenkel defect. The Schottky and Frenkel defects are shown in figure 

4.1(a). Presence of vacancies increases the entropy (randomness) of crystal. At equilibrium the 

number of vacancies can be given as 

Nv = N exp(−
𝑄𝑣

𝑘𝑇
)    (1) 

where Nv = number of vacancies, 

 N = total number of atoms 

Qv = Energy required to form a vaccine 
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k = Boltzman constant and T is temperature 

For metal Nv ≈ 10-4 

4.4.2 Interstitials 

Interstitials are atoms which occupy a site in the crystal structure at which there is usually not 

any atom. We can say an interstitial atom can be inserted into the voids between regularly 

occupied sites as shown in figure 4.1(b). Atoms can move from its original site to and interstitial 

site and create a vacancy in original positions. 

 

                                               

 

Figure 4.1(a) Vacancies in a crystal   Figure 4.1(b) Interstitials in a crystal 

 

4.4.3 Impurity 

If an impurity atom is present in a perfect crystal, it also causes a point defect. The impurity atom 

may fit into the crystal structure in two ways. (i) The impurity atom may occupy a position 

normally occupied by crystal atom (host atom). This case is called substitutional impurity. (ii) In 

second case, the impurity atom occupies the unfilled space (volume) of crystal. The unfilled 

space is called interstitial and hence impurity atoms are called interstitial impurity. 

 

 

 

Figures 4.2 Substitutional impurity Figure 4.3 Interstitial impurity 

 

The impurity is used in metallic crystal structure to enhance the strength of metal and achieve 

corrosion resistance. In this process, a sold solution is formed by adding solute (impurity) atom 
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in the main metal solution. The crystal structure is maintained and no new structure is formed 

during the process of adding impurity. 

In metallic crystals, following are the factors which determine the degree of dissolving of solute 

(impurity). 

(i) Atomic size factor: Atomic radius is to be less than 15% 

(ii) Crystal structure: Same for both solvent and solute 

(iii) Electronegativity: One Electronegativity + Another Electropositive = intermetallic 

 compound 

 (iv) Valances: Metals have more tendency to dissolve another metal of higher valancy. 

 

Specification of computation: 

Composition or concentration is determined by following methods. This is basically relative 

content of a specific element. 

(i)  Weight or mass percent: For two element alloy it can be given as 

C1 =
𝑚1

𝑚1+𝑚2
×100       (2) 

 Where m1, m2 are masses in gm. 

(ii) Atomic percent: Atomic percentage of an element can be given as 

  C1 =
𝑛𝑚1

𝑛𝑚1+𝑛𝑚2
×100        (3) 

 Where nm1, nm2 are number of atoms. 

 

4.4.4 Schottky Defects in Metallic Crystal 

Schottky defects are basically missing of atoms from the lattice sites of crystal. The vacancies 

exist at all temperature as defects created during the crystal formation. The concentration of 

defects in crystal depends on the energy of formation of the crystal. Thermodynamically the free 

energy should be minimum at a particular temperature during the crystal formation. 

Let us consider a crystal consists of N total number of atom at a temperature T. The free energy 

of crystal is F(T) and suppose there are n vacancies created by transferring atoms from their 

regular sites to surface. Let the energy of formation of vacancies is EV which is energy required 

to remove an atom from its regular site to surface of crystal. To removal of n atoms from their 

regular site to surface of crystal is nEV. If U is energy associated and S is entropy associated with 

crystal then for a perfect crystal: 

F = U – TS       (4) 

If SCF is configurational entropy and STh thermal entropy then 
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    F = U – T (STh + SCF)      (5) 

Since for perfect crystal SCF = 0 then 

F = U – TSTh      (6) 

Similarly, the free energy of an actual crystal containing n vacancies can be given as 

Fa (n, T) = U + nEV – T (STh + n∆Sth) – Tk log W   (7) 

Where ∆STh is change in thermal entropy during vacancy creation and W is number of ways, in 

which the atoms may be arranged over the available lattice sites. 

Fa (n, T) = U – TSTh + nEv – nT∆STh – kT log [
𝑁!

(𝑁−𝑛)! 𝑛!
]   (8) 

 Since Thermodynamically W = [
𝑁!

(𝑁−𝑛)! 𝑛!
] 

 Now eq. (8) can be written as 

Fa (n, T) = F + nEv – nT∆STh – kT log [
𝑁!

(𝑁−𝑛)! 𝑛!
]    (9) 

 Using sterling formula log x!  = x log x      for x>>1 

Thus above eq. (9) can be written as 

 Fa (n, T) = F + nEv – nT∆STh – kT [N log N – (N–n) log (N– n) – n log n]  (10) 

 In equilibrium (
𝜕𝐹𝑎

𝜕𝑛
)

𝑇
= 0 

 Then eq. (10) can be given as 

  EV – T∆STh – kT [log (N–n) –log n] = 0 

  or  log 
𝑛

𝑁−𝑛
 = 

−EV + T∆S𝑇ℎ

𝑘𝑇
 

  or  
𝑛

𝑁−𝑛
 = 𝑒∆𝑆𝑇ℎ/𝑘 . 𝑒

−𝐸𝑉
𝑘𝑇⁄  

 If n <<N then 

   
𝑛

𝑁
 = A.𝑒

−𝐸𝑉
𝑘𝑇⁄

       (11)  

where A is a constant as 𝑒∆𝑆𝑇ℎ/𝑘   called some time exponential factor and considered as unit. 

 Or   
𝑛

𝑁
 = 𝑒

−𝐸𝑉
𝑘𝑇⁄        (12) 

If Ev = 1 eV, temperature = 1000K then 
𝑛

𝑁
 ≈10–5. The equilibrium concentration of vacancies 

decreases as temperature decreases. 

Using similar statistical calculation, the equilibrium concentration for ionic crystal can be 

calculated and the expression is given as 

 
𝑛

𝑁
 = 𝑒

−𝐸𝑉
2 𝑘𝑇⁄

       (13) 
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4.4.5 Frenkel Defects in Metallic Crystals 

A Frenkel defect is basically vacancy created by moving an atom from its actual regular position 

to interstitial positions. The calculation of Frankel defect is similar type procedure as for 

Schottky defects calculation. 

Let us consider a metallic crystal at temperature T contains at N atoms, Ni is interstitial sites, n is 

number of Frenkel defects (n vacancies or n interstitial atoms are shifted in its interior), Ef is 

energy required to create a Frenkel vacancy. Then the expression for free energy for an actual 

crystal containing n Frenkel defects at temperature T can be given as (as in eq. 4) 

Fa(n, T) = U – TSTh + nEF – nT∆STh – kT log [
𝑁!

(𝑁−𝑛)! 𝑛!
+

𝑁𝑖!

(𝑁𝑖−𝑛)! 𝑛!
]    (14) 

Fa(n, T) = U – TSTh + nEF – nT∆STh – kT log 𝑤 

where  w= [
𝑁!

(𝑁−𝑛)! 𝑛!
+

𝑁𝑖!

(𝑁𝑖−𝑛)! 𝑛!
]         (15) 

w is number of way by which atoms may arranged in available interstitial sites, and can be 

calculated by statistical mechanics. By using Sterling formula, Eq. 14 can be written as 

Fa(n, T) = F + nEF – nT∆STh – kT [N log N – (N–n) log (N–n) – n log n + Ni log Ni  

                                                             – (Ni –n) log  (Ni + n) – n log n]   (16) 

At equilibrium (
𝜕𝐹𝑎

𝜕𝑛
)

𝑇
= 0          (17) 

Thus differentiating equation (16) 

(
𝜕𝐹𝑎

𝜕𝑛
)

𝑇
= EF – TΔSTh – kT [log (N – n) (Ni – n) – log n2] = 0 

Or    
TΔSTh – 𝐸𝐹

𝑘𝑇
 = log n2 – log (N–n) (Ni – n) 

Or   
𝑛2

(N – n) (Ni – n)
 = 𝑒∆𝑆𝑇ℎ/𝑘𝑇   . 𝑒–E𝐹/𝑘𝑇  

If n<< N and n << Ni then 

𝑛2

N.  Ni
 = A. 𝑒–E𝐹/𝑘𝑇  

or     n = √N Ni
. A𝑒–E𝐹/2𝑘𝑇                  (18)   

or     n = √N Ni
. 𝑒–E𝐹/2𝑘𝑇             (19) 

Considering constant A i.e. exponential factor as unit 1. This is expression for number of Frenkel 

defects in a metallic crystal. Similarly, we can calculate number of Frankel defects for ionic 

crystals and by using statistical calculation. 
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4.4.6 Diffusion 

In solid if there is a variation in concentration or concentration gradient of impurities or vacancies, 

and then there will be a flux through the solid. However, in equilibrium, there is no flux, and 

impurity or vacancies are distributed uniformly. 

The flux JN of impurities or vacancies in a crystal is given by Fick's law given as 

JN = – D grad N = –D . 
𝑑𝑁

𝑑𝑥
        (20) 

Where N is concentration of impurities or vacancies, 
𝑑𝑛

𝑑𝑥
  is concentration gradient and D is 

diffusion constant or diffusivity (unit m2/s). The negative sign indicates that diffusion takes place 

from higher concentration to lower concentration side. 

The diffusion constant is often given as 

D = Do exp (–E/kT)         (21) 

Where E is an activation energy, k is Boltzmann constant and T is temperature, Do is constant and 

give as Do = νa2 where ν is a characteristic atomic vibrational frequency and a is lattice constant. 

Then D can be given as 

D = ν a2 . exp (–E/kT)         (22) 

4.4.7 Color Centers 

Pure alkali halides or ionic crystals have band gap of order ≈6 eV which is corresponding to  2000 

Å wavelength. This wavelength is in the region of ultra violet, not is optical or visible region 

(3500 Å to 7800 Å). Thus the pure alkali Halides crystal (NaCl, KBr, LiF, KCl etc) are transparent 

throughout the visible region. But these crystals can be made able to observe visible light or 

crystal may be coloured under certain conditions. In fact, in the presence of certain lattice defects 

(vacancies or impurities) these crystal show colours which are called colour centers.  

The crystal shows colors centers by following ways 

1. By adding chemical impurities:  

By adding the chemical impurities like transition metals (Ti, V, Cu, Zn etc.) the colour centers 

can be produced. The colors are corresponding to energy band gap of impurity atoms. 

2. By introducing an excess of metal icons:  

We can heat the crystal in vapor of alkali metal and cool down it. For example KCl crystal is 

heated in presence of K(potassium) vapour and cool down it. The crystal formed contains excess 

K ions which give the particular color centers under the visible light. 

3. Bombardments of high energy radiation (x ray, 𝛾 ray, neutron beam):  
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When a sample of alkali halide is exposed to high energy radiation the atom of crystal components 

is ionized. In this process the electron and holes are released and trapped in the vacancies. These 

filled vacancies produce color centers. 

4.4.8 F Centers  

The name F comes from German word Faber means color. The F centers are produced by heating 

a crystal in presence of access alkali vapour or by X Ray irradiation. When excess alkali atoms 

are added to alkali halides crystal, a number of negative ion vacancies are created. The valance 

electrons of alkali atom migrate in the crystal, and bound with vacant negative ion sites on at 

vacancies. The F centers are identified by electron spine resonance as electrons are bound at 

negative ion vacancies. This model was first suggested by de Boer. The central optical absorption 

band (F band) associated with F centers of some alkali halide is shown in figure 4.4. 
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Figure 4.4: F band of some alkali Halides 

 

4.5 LINE DEFECT (Linear Dislocation) 

Line defects are defect along a line which ends on the surface of the crystal. In such defects the 

atoms are displaced from their normal position along a line and causes strains which spread over 

the volume of crystal. When a stress force is applied on a crystal, the crystal is deformed 

elastically and it returns to its original state after removal of stress force. But, if the stress is 

sufficiently high, a certain amount of deformation remains after removal of stress. Such type of 

plastic deformation in which atoms are dislocated from original position are called dislocation. In 

such defects, a linear chain of atoms slide from one part of crystal to another. 

The line defect is characterized by Burgers vectors. Burger vector (b) whose direction and 

magnitude can be determined by constructing a loop around the disrupted region and noticing the 

extra inter atomic spacing needed to close the loop. 

A crystal structure is a regular arrangement of atom in a perfect manner. However, a defect can 

occur in the sequence of arrangements of atom. There may be an addition layer of atoms or may 

be messing of a layer. There distortions cause linear defects or dislocations in crystal structure. 

Usually a crystal contains a high concentration of dislocation. There are three types of dislocation 

as: 
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4.5.1 Edge Dislocation  

To understand the edge dislocation, consider a two-dimensional crystal arrangement as shown 

in figure 4.5. If there is the presence of an extra half row of atom it is called edge dislocation. 

The edge dislocation is characterized by Burgers vector, named after Dutch physicist Jan 

Burger, is a vector that represents the magnitude and direction of lattice distortion. 

 

                               
         Figure 4.5(a): ideal crystal    Figure 4.5(b): edge dislocation 

 

Similarly, in 3D case, edge dislocation is defined as the presence of an extra half plane of 

atoms in the crystal. In edge dislocation has its Burgers vector perpendicular to dislocation 

line. The deformation is along the edge of extra half plane and called edge dislocation. Now 

we try to understand the geometry of edge dislocation in three-dimensional case as shown in 

figure 4.6. 

 

          

Figure 4.6(a): Edge dislocation          Figure 4.6(b): HC extra half plane    

 

Now consider a simple cubic crystal as shown in figure 4.6(a). The atoms are bound to each 

other in the crystal structure. Now we consider an imaginary experiment. Now, the crystal is 

cut along the direction ABCD just at the half of crystal. Now the planes above and below two 

ABCD are disconnected. Now we apply a share force on the above half of crystal. After the 

effect to this push the upper half is slipped such that ABEF plane is displaced by b⃗  which is 

initially at ABEF. If the position of two half were aligned again as shown in figure 4.6 (b), 

then an extra half plane HC is produced in the crystal structure. It is clear that CD is the edge 

of extra half plane which is called edge dislocation line. The deformation is only along 
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dislocation line. Figure 4.6 (b) represent the point view of crystal section FIJK. In this figure 

HC represents the rows of atoms on the plane perpendicular to the plane of paper. Vector b 

represents the amount and direction of crystal structure distortion which is Burgers vector. 

Positive and negative edge dislocation: 

Consider a square network of lines which represents the arrangements of atoms in a regular 

manner as shown in figure 4.7.  

 

              Figure 4.7: Positive and negative dislocations 

Edge dislocation for which the extra half plane lies above or in upper half, then it is called 

positive edge dislocation and are denoted by ┴ as shown in figure 4.7 (b). Similarly, if the 

extra half plane is situated in the lower half of crystal, that is below the slip plane, then the 

dislocation is called negative edge dislocation ┬ as shown in figure 4.7 (c). 

 4.5.2 Screw Dislocation 

As we study earlier, in case of edge dislocation burger vector b is perpendicular to dislocation 

line (𝑏 ̅⟘ t̂ ). But in case of screw dislocation, Burgers vector b is parallel to dislocation line 

(�̅� ‖ �̂� ). To understand the geometry of screw dislocation, consider a cubic crystal as shown in 

figure 4.8. The crystal is divided into two parts, left half and right half. A boundary LM divided 

two half as left slip and right slip. 

      

         Figure 4.8: Screw dislocation 
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Now we slip the right slip by an amount b along the direction LM. In screw dislocation if we 

draw a circuit along the corner of plane as shown in figure 4.8 by arrow we can see on moving 

clockwise direction starting from point A, then after completing a complete circuit we will reach 

in the next to lower plan at point B. Thus the discrete parallel planes perpendicular to the 

dislocation line join to form a continuous spiral ramp with dislocation line as axis of spiral ramp. 

4.5.3 Mixed Dislocation  

It has been discussed that in edge dislocation the Burgers vector is perpendicular to dislocation 

line (𝑏 ̅⟘ t̂ ). On the other hand in case of screw dislocation the Burgers vector is parallel to 

dislocation line (�̅� ‖ �̂� ). But in more general case, the Burgers vector is neither perpendicular nor 

parallel to distribution line. This is called mixed dislocation. In this case the dislocation line is 

not straight line due to stress. A straight line dislocation required a lot of energy to maintain its 

bond in crystal. Therefore, crystal has a tendency to be in low energy configuration by bending 

the dislocation line. The mixed dislocations are generally bend, irregular with curved dislocation 

line. The mixed dislocation is result of external stress which plastically deformed the crystal. 

 

4.5.4 Observation of Dislocation 

The dislocations can be observed by different experimental techniques as given below. 

(1) X ray diffraction method 

(2) Transmission electron microscopy 

(3) Surface methods 

By X-ray diffraction method we can determine the location and its density. 

 

4.6 SURFACE DEFECTS 

Surface defects are also known as planner defect or interfacial defects. They are boundaries that 

have two dimensions and normally separate reasons of crystal that have different orientation. 

Surface defects arise from clustering of line defects into a plane. These defects are not 

thermodynamically stable rather they are metastable. Surface defects are basically two types 

external and internal. The internal surface defects are again of four types as given below: 

(1) Grain boundaries 

 (2) Tilt boundaries 

 (3) Twin boundaries 

(4) Stacking fault and phase boundaries. 

 

4.6.1 External Surfaces 
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The external surface of crystal marks the ending of crystal in structure where the atoms have 

neighbours on one side only. However, the atoms inside the crystal have neighbours on other 

sides. The unsaturated bonds of surface atoms give rise to the surface energy. This results 

relaxation and reconstruction of crystal structure. To reduce energy, the crystal tends to minimize 

surface area and surface imperfection arises. 

4.6.2  Grain Boundaries 

Grain boundaries are interface surfaces between two crystal grains of same phase but different 

orientations as shown in figure 4.9. Figure 4.9 shows two grains of crystal which is separated by 

a grain boundary. In most of the crystal, there are polycrystals and there are multiple boundaries 

as shown in figure 4.10. When a crystal is solidified from liquid, the crystal starts formation at 

different regions of liquids. The orientation of crystal formed at different point of liquid are 

different and therefore grain boundaries arises. Grain boundaries affect the properties of poly 

crystalline material. The grain boundaries affect mechanical properties dielectric and optical 

properties of solids. 

 

                                                    

Figure 4.9: Grain boundaries of two crystal grains     Figure 4.10: Grain boaries of     

                                                                                                                   polycrystalline solid 

 

Based on the rotation of axis with respect to grain boundary, the grain boundaries are classified 

into two main groups as tilt boundary and twist boundary. 

(i) Tilt Boundary:  

In case of tilt boundary the rotation axis is parallel to boundary plane as shown in figure 4.11(a). 

In figure 4.11(a) there are two grains of two side of boundary represented by LM which is a plane 

perpendicular to the paper. If we want to get the orientation of grain 2 from grain 1 we just rotate 

the grain 1 about an axis perpendicular to plane of paper. Since the boundary is perpendicular to 

plane of paper and axis of rotation is also perpendicular to the plane of paper therefore the axis of 

rotation is parallel to the plane of boundary. 
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Figure 4.11(a): Tilt Boundary   Figure 4.11(b): Twist Boundary 

 

(ii) Twist Boundary:  

In this case the angle of rotation is perpendicular to the plane of boundary as shown in figure 

4.11(b). We can see that the orientation of grain 2 can be obtained by rotating the grain 1about 

the axis XY. 

(iii)Twin Boundary: 

This is a special type of grain boundary across which the atomic arrangement of one side of 

boundary is mirror reflection of atomic arrangement of other side. Twin boundaries occur in pairs 

such that orientation change introduced in one side is restored by other. Figure 4.12 shows twin 

boundary. 

                   

             Figure 4.12: Twin Boundary 

 

(iv) Stacking fault: 

The stacking fault is surface defect that arise from the stacking of one atomic plane out of 

sequence on another. For example in FCC crystal the ideal sequence is ABC, ABC, ABC, 

ABC….. But due to stacking fault, there is an interruption in the stacking sequence as ABC, ABC, 

ABC, ABC, ABC, BC, ABC……. . This is called stacking fault. 

(v) Phase boundary: 

 Phase boundaries exist in multiphase crystal across which there is a sudden change in physical 

and chemical characteristics. 
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4.7 VOLUME DEFECTS 

Volume defects are also known as 3D defects. They are normally introduced during the process 

of crystal formation. They manifest them self, microscopically as pores and cracks. 

 

4.8 SUMMARY 

1. All deviations from the specified ordered periodicity are called defects or imperfections. If a 

crystal does not possess defects, then it is called ideal crystal 

2. Point defects are simplest imperfection in crystal. In such type of defects an atom involves 

individually and therefore called zero dimension (0D) defect. The point defect is generally three 

types as vacancies, interstitial and impurity. 

3. At vacancies, atoms are absent from its regular atomic positions. These vacancies are also known 

as Schottky defect. If an atom of crystal leaves its site, create a vacancy and fit interstitial, is known 

as Frenkel defect. 

4.  At equilibrium the number of vacancies can be given as 

Nv = N exp(−
𝑄𝑣

𝑘𝑇
)  

5. The concentration of Schottky defects in metallic crystal 
𝑛

𝑁
 = 𝑒

−𝐸𝑉
𝑘𝑇⁄

 

6. The concentration of Frenkel defects in metallic crystal     n = √N Ni
. 𝑒–E𝐹/2𝑘𝑇  

7. The flux JN of impurities or vacancies in a crystal is given by Fick's law given as 

                         JN = – D grad N = –D . 
𝑑𝑁

𝑑𝑥
 

Then D can be given as      D = ν a2. expr (–E/kit)  

8. Line defects are defect along a line which ends on the surface of the crystal. 

9. In Plastic deformation atoms are dislocated from original position are called dislocation. In 

such defects, a linear chain of atoms slide from one part of crystal to another. 

 

4.9  GLOSSARY 

Defect: a shortcoming, imperfection, or lack in crystal structure  

Interstitial: situated within  

Substitutional:  substituting or replacing one atom or thing with another 
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Diffusion: process resulting from random motion of defects by which there is a net flow from a 

region of high concentration to a region of low concentration 

Dislocation: Line defects in solids 

Grain boundary: A grain boundary is the interface between two grains, or crystallites, in a 

polycrystalline material. 

Tilt: move or cause to move into a sloping position. 

Twist: form into a bent, curling, or distorted shape. 

Stacking: arrange (a number of things) in a pile. 
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4.12 TERMINAL QUESTIONS 

4.12.1 Short answer type questions 

1. What do you mean by imperfections in crystals? Classify the different types of imperfections. 

2. Explain various types of point defects.  

3. What are Scottky and Frenkel diffect? 

4.  What are color centers?  Explain the F centers in ionic crystals. 

5. Explain   the reason for existence of color centers. 

6. How color centers can be produced in an ionic crystal. 

7. What are V centers?  Explain the model for V centers and its properties. 
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8. What are the applications of color centers? 

9. What is diffusion? State and explain Fick’s law of diffusion. 

10. Explain the dislocation is crystal?  

11. Explain edge dislocations. 

12. Explain screw dislocation with the help of diagram. 

13. What is mixed dislocations? 

14. What is Berger vector? 

15. What are grain boundaries? 

16. Explain the difference between tilt and twist boundary. 

 

4.12.2 Long answer type questions 

1. Explain the Schottky defect and find out the expression for equilibrium concentration of 

Schottky defects in a metallic crystal. How does the expression change for ionic crystal? 

2. Obtain the expression for equilibrium concentration of vacancies in a metallic crystal. 

3. Explain the Frenkel defect and find out the expression for equilibrium concentration of Frenkel 

defects in a metallic crystal. 

4. What are dislocations? Classify different type of dislocations. Explain edge and screw 

dislocations with the help of diagram. 

5.  What are edge and screw dislocations? Explain with the help of diagram. 
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UNIT 5      CRYSTAL VIBRATIONS 
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5.3 Crystal Vibration for monatomic chain of atoms 
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5.3.3 Derivation of force constants 

5.4 Crystal Vibration for diatomic chain of atoms  
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5.6 Inelastic scattering by phonon  
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5.1  INTRODUCTION 

When we see a crystalline solid, it seems all atoms or molecules of the lattice are fixed and 

there is no any motion. But in actual, all the constituents of crystal lattice are vibrating 

regularly. There vibrations are in atomic level and can be understood with the application 

of quantum mechanics. These type motions are called crystal vibrations or lattice 

vibrations, and dynamics of lattice is called lattice dynamics. The wave associated with 

crystal vibrations is called elastic wave. The energy associated with the lattice vibration is 

also quantized like electromagnetic energy, charge etc. The quanta of lattice vibrations or 

elastic wave are called phonon. Figure 4.1 shows the quantization of different types of 

waves or yields and their quanta. 

 

Name of 

field/wave 

associated 

Quanta unit 

of energy 

Symbol 

Electromagnetic 

wave  

Photon   

Elastic wave 

(lattice 

vibration) 

Phonon  

Collective 

electron wave  

Plasmon   

Magnetization 

wave 

Magnon  

Electron + 

Electric 

deformation  

Polaron  - 

Polarization 

wave  

Exciton  - 

                          Figure 5.1:  Different types of excitations in solids 

In this unit we will understand the vibrations of crystal lattice and find out the dispersion 

relation. Since crystal vibration are significant to understand the different properties of 

solids like thermal, electrical, mechanical, magnetic or superconducting properties can be 

described in terms of continuum theory disregarding the atomic structure of lattice. In this 
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chapter we make a basic understand of lattice vibration, elastic wave, quantization of 

elastic wave, energy associated with wave, phonon and phonon momentum etc. 

5.2 OBJECTIVE 

 After reading this unit we will able to understand  

 (i) Lattice vibration 

 (ii) Lattice vibration of monatomic or diatomic basis 

 (iii) Dispersion relations 

 (iv) Group velocity, phase velocity, quantization of elastic waves 

 (v) Phonon and Phonon momentum    

 

5.3 CRYSTAL VIBRATION for MONATOMIC CHAIN of 

ATOMS 
Consider a crystal with one atom in each primitive cell. For simplicity we consider a case 

of simple cubic crystal. We are interested in the elastic vibration of this crystal lattice. We 

want to calculate the frequency of elastic wave occurs in a simple cubic lattice. We know, 

the atoms are arranged in the different crystal planes, and some planes are [100], [110], 

[111] etc which are the directions of cube edge along yz plane, perpendicular to face 

diagonal of xy plane and Plane along body diagonal of cube respectively as shown in figure 

1.17 in first unit. When an elastic wave propagates along any one direction of these Planes, 

entire system of planes consisting atoms displaced in phase, with displacements either 

parallel or perpendicular to direction of propagation. For simplicity, we consider one 

dimensional case, and s, s+1, s+2 ... s-1, s-2 ... are the number of planes and 𝑢𝑠 is the 

displacement of sth plane from its equilibrium position as shown in figure 5.2. 

 

Figure 5.2: Displacements of different atoms in lattice vibration. Dotted lines are the 

positions of atom at equilibrium and bold lines are position of displaced atom with 

displacement of us  
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Let us consider 𝑢𝑠 is the displacement of sth plane from its equilibrium. Similarly the 

displacement of (s+1)th plane is 𝑢𝑠+1 and displacement of (s-1)th plane is 𝑢𝑠−1 as shown in 

figure 5.2. s is integer number shows the number of plane. In figure 5.2, the bold lines show 

the equilibrium positions of planes and dashed lines show the displacements of planes from 

equilibrium positions. In lattice vibration, we assume that the elasticity of lattice is linear 

function of force acts on planes. The vibrations allow Hook’s law and force (or energy) 

will vanish in equilibrium position at which displacement becomes zero (F = -kx). 

Thus the total force on sth plane is the force due to nearest s+1 and s-1 planes, and given 

us 

  Fs = C (𝑢s+1 − u𝑠) + 𝐶(𝑢s−1 − 𝑢𝑠)      (5.1) 

 Where C is the force constant for crystal planes which is different for longitudinal 

and transverse directions of lattice vibrations. 

 The equation of motion for sth plane can be given as 

  𝑀
𝑑2𝑢s

𝑑𝑡2 = 𝐶(u𝑠+1 + u𝑠−1 − 2𝑢𝑠)      (5.2) 

 Where M is the mass of an atom. Equation (5.2) is second order different equation 

and the solution of such different equation for plane wave can be given us  

    𝑢𝑠 = 𝑢0𝑒
𝑖(𝑘𝑎𝑠−ω𝑡)       (5.3) 

 This is the solution of travelling wave in terms of wave vector k and angular 

frequency ω. a is lattice constant, s is integer number shows the number of plane and 𝑢0 

is constant . 

 Now, differentiate equation (5.3) two times we get 

   
𝑑2𝑢𝑠

𝑑𝑡2 = −𝜔2𝑢𝑜𝑒
𝑖(𝑘𝑎𝑠−ω𝑡)      (5.4) 

 Putting this value of 𝑢𝑠 and 
𝑑2𝑢𝑠

𝑑𝑡2  in equation (5.2) 

  −M𝜔2𝑢𝑜𝑒
𝑖(𝑘𝑎𝑠−ω𝑡) = 𝐶 [𝑢𝑜𝑒

𝑖(𝑘𝑎(𝑠+1)−𝜔𝑡) + 𝑢𝑜𝑒
𝑖(𝑘𝑎(𝑠−1)−𝜔𝑡) −

2𝑢𝑜𝑒
𝑖(𝑘𝑎𝑠−𝜔𝑡)] 

 Or −M𝜔2 = 𝐶[𝑒𝑖 𝑘𝑎 + 𝑒−𝑖 𝑘𝑎 − 2] 

 We know the identify  

  𝑒𝑖 𝑘𝑎 + 𝑒−𝑖 𝑘𝑎 = 2 cos 𝑘𝑎 
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 Putting this value in above equation 

  −M𝜔2 = 𝐶[2 cos 𝑘𝑎 − 2]  𝑜𝑟  ω2 =
2C

𝑀
(1 − cos 𝑘𝑎)  (5.5) 

  𝜔2 =
2C

𝑀
(1 − 2 sin2 𝑘𝑎

2
− 1) 

  𝜔 = √
4C

𝑀
sin

𝑘𝑎

2
       (5.6) 

 The plot of ω and wave vector k is shown in figure 5.3. For simplicity, we plot 

curve 
𝜔

√4C/M
 versus ka. The range of k is physically significance for elastic waves. The 

boundary lies at 𝑘 = ±
Π

𝑎
 is nothing but first Brillouin zone thus called first zone 

boundary. At zone boundary, the value of sin
𝑘𝑎

2
= sin 90𝑜 = 1 thus  𝑘 = ±

Π

𝑎
 . It is clear 

from the figure 5.3, at zone boundaries the slop of ω verses k becomes zero. 

 

From equation (5.6) it is clear that the maximum frequency 𝜔𝑚 = √
4𝐶

𝑀
 which is called 

natural cut off frequency of linear chain of atom in a solid. Corresponding to 𝜔𝑚, 

maximum value of ω, 
𝑘𝑎

2
 equal to odd multiple of 

Π

2
 𝑜𝑟 𝑘 = ±

Π

𝑎
 which is called zone 
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boundaries. The ω becomes 0 corresponding to 
𝑘𝑎

2
= 𝜋 or k =

2π

𝑎
 .  In phonon dispersion 

relation shown in figure 5.3 and wave formation is shown in figure 5.4. Now, we discuss 

different cases based on different values of k. 

 

(i) At low frequencies: In this case of low frequencies, when value of k is small with 

comparison to inter  atomic distance of solid a, the value of wavelength λ becomes high 

which is called long wavelength limit. In this condition 

   𝜔 → 𝑜 𝑜𝑟   𝑘 → 𝑜 𝑡ℎ𝑒𝑛 𝜆 → ∞ (high)  

   then sin
𝑘𝑎

2
≈

𝑘𝑎

2
    (for small values of sin θ) 

  Then eq. (5.6) can be given as 

   𝜔 = √
4C

𝑀

𝑘𝑎

2
= 𝑘𝑎√

𝐶

𝑀
    𝑜𝑟    ω ∝ 𝑘     (5.7) 

 Thus for long wavelength limit, the frequency ω is proportional to wave  vector 

k and dispersion is very small and atoms in solid behaves as homogeneous medium. In 
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this condition the phase velocity and group  velocity is same as for homogeneous (non 

dispersive medium) medium.  

   Thus phase velocity 𝑣𝑝 =
𝜔

𝑘
= 𝑎√

𝐶

𝑀
= 𝑣𝑠      (5.8) 

  Where vs is nothing but the velocity of sound. 

  Similarly, the group velocity of elastic wave can be given 

     𝑣𝐺 =
𝑑𝜔

𝑑𝑘
= 𝑎√

𝐶

𝑀
= 𝑣𝑠         (5.9) 

 Therefore for long wavelength limit, the phase velocity and group velocities are 

sums and equal to velocity of sound. The order of frequency in low frequency range is = 

1013 Hz which is acoustic waves range. In this range of low  frequency the non-dispersive 

medium behave as homogeneous continuum. In figure 5.3, curve represents continuum 

lattice. For elastic continuum ω = vok and for phonon dispersion 𝜔 = √
4𝐶

𝑀
. sin

𝑘𝑎

2
, but as 

𝑘 → 0 both are coincide. 

(ii) At high frequency: At high frequencies there is no proportionality relation between ω 

and k as given be equation (5.7). In this condition dispersion becomes significant. In this 

region the system of atoms in lattice behaves as non homogeneous. In this frequency range, 

the curve becomes sinusoidal as given by equation (5.8).  

In this region the phase velocity and  group velocity are different and can be given as 

phase velocity 

      𝑣𝑝 =
𝜔

𝑘
=

√
4𝐶

𝑀
sin

𝑘𝑎

2

𝑘
=

𝑣𝑠 sin
𝑘𝑎

2
𝑘𝑎

2

   (5.10) 

  Group velocity       𝑣𝑔 =
𝑑𝜔

𝑑𝑘
=

𝑑

𝑑𝑘
(√

4C

𝑀
sin

𝑘𝑎

2
)     

     𝑣𝑔 = √
4C

𝑀
.
𝑎

2
cos 𝑘𝑎 = 𝑣𝑠 cos

𝑘𝑎

2
                     (5.11) 

(iii) At maximum value of frequency: In the case of maximum frequencies which is 

called natural cut off frequency 𝜔𝑚 = √
4C

𝑀
,  the minimum wavelength can be obtained as 

      𝑘𝑚𝑎𝑥 = ±
Π

𝑎
  𝑜𝑟 

2𝜋

𝜆𝑚𝑖𝑛
= ±

π

𝑎
     

    𝜆𝑚𝑖𝑛 = ±2𝑎               (5.12) 
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(iv) Brillouin Zone: 

From equation (5.6) it can be observed that at value 𝑘 =
Π

𝑎
,
3Π

𝑎
,
5Π

𝑎
 maximum cutoff ωm is obtained. 

Similarly at 𝑘𝑛 = 𝑘 =
2πn

𝑎
 always give the some lattice vibrational states (where n is any integer 

number.n = 1, 2, 3 ....). The  region between 𝑘 = +
Π

𝑎
 𝑡𝑜 −

Π

𝑎
 is called first Brillouin zone. 

Similarly the region between +
Π

𝑎
 𝑡𝑜 +

3Π

𝑎
 and −

Π

𝑎
𝑡𝑜

2Π

𝑎
 of k values both side of first Brillium 

zone, is called second Brillion zone.  Since the value of vg becomes zero at b, zone boundaries 

(𝑘 = ±
Π

𝑎
) as given by equation (5.11) therefore no energy propagation at zone boundaries and the 

wave becomes stationary.        

 Thus the displacement of nth atom at the boundary can be given as  

    xn = Aei(ωt-ka.n)         (5.13) 

   at boundary ka.n = + 𝑛𝜋 

   and 𝑥𝑛 = 𝐴𝑒𝑖(𝜔𝑡±nπ)                     (5.14) 

(v) Density of State: 

As we discussed W is a periodic fraction with several value of k less than  ωm. If the 

boundaries of linear chain of atoms are fixed, then there should be an integral number of 

half wave lengths in the linear chain as 𝐿 = 𝑛
𝜆

2
  where h = 1, 2, 3, ... N   

and wave vector can be given as  𝑘 =
2π

𝜆
=

2π
2𝐿

𝑛

=
𝑛π

𝐿
 

   𝑘 =
π

𝐿
,
2π

𝐿
,
3π

𝐿
…

nπ

𝐿
 

The density of state D(k) is defined as the number of states per unit wave  number as 

   𝐷(k) =
𝑑𝑁

𝑑𝑘
=

1
π

L

=
𝐿

π
                       (5.15) 

as 1 state corresponding to each wave vector 
Π

𝐿
.  

  Total number states can be given as  

   𝑑𝑁 = 𝐷(k)𝑑𝑘 = D(𝜔)𝑑𝜔                      (5.16) 
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  Or 𝐷(𝜔) =
𝐷(𝑘)𝑑𝑘

𝑑𝜔
=

𝐷(𝑘)
𝑑𝜔

𝑑𝑘

=
𝐿

π.𝑣𝑔
 

This fraction is useful in the calculation of energy and specific heat of solids.  

5.4 CRYSTAL VIBRATION OF DIATOMIC LINEAR 

CHAIN OF ATOMS 

The phonon relation becomes different from previous if two or more atoms are in a 

primitive cell. We can consider a crystal of diatomic molecule like NaCl or diamond. Let 

us consider a cubic crystal of diatomic molecule in a liner chain, in which atoms of masses 

M1 and M2 are separated by a lattice distance a as  shown in figure 5.5. We can consider 

the atoms are connected by a virtual spring of force constant C. The displacement of atoms 

M1 are denoted by 𝑢𝑠−1, 𝑢𝑠, 𝑢𝑠+1, 𝑢𝑠+2 …. and the displacement of atoms M2 are 

𝜐𝑠−1, 𝜐𝑠, 𝜐𝑠+1, 𝜐𝑠+2 …. where s is any interger number (s = 1, 2, 3...) represents the number 

of atom.  

 

  

Fig. 5.5 Diatomic molecular chain 

We consider that waves propagate in a symmetric direction for which a  plane contains 

one type of atom and such direction are [111] or [100] etc. If the atoms interact with 

neighbour atoms, only then the equations of  motion can be given as 

   𝑀1
𝑑2𝑢𝑠

𝑑𝑡2 = 𝐶(𝜐𝑠 + 𝜐𝑠−1 − 2 𝑢𝑠)          (5.17a) 

   𝑀2
𝑑2𝑢𝑠

𝑑𝑡2
= 𝐶(𝑢𝑠+1 + 𝑢𝑠 − 2 𝜐𝑠)           (5.17b) 

  Where C is force constant of lattice system.    

This is a second order differential equations show the travelling wave and  the solution 

can be given as 

   𝑢𝑠 = 𝑢𝑒
𝑖 (k𝑎𝑠−ω𝑡)

              (5.18a) 

   𝜐𝑠 = 𝜐𝑒
𝑖 (𝑘𝑎𝑠−ω𝑡)

                                                                (5.18b) 

   Here s is any integer number represents the number of plane. 

Differentiate above equation (5.18) two times and put the value in eq. (5.17) we will get 

M1 M2 

𝑢𝑠−1 𝑣𝑠−1 

𝑢𝑠  𝜐𝑠  𝑢𝑠+1 𝜐𝑠+1 
a 
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   −𝜔2𝑀1𝑢 = C𝜈(1 + 𝑒−𝑖 𝑘𝑎) − 2𝐶𝑢 

   −𝜔2𝑀2𝜈 = 𝑐𝑢(𝑒𝑖 𝑘𝑎 + 1) − 2𝐶𝜈 

  or  (2𝑐 − 𝑀1𝜔
2)𝑢 − 𝐶(1 + 𝑒𝑖 𝑘𝑎)𝜈 = 0  

   −𝐶(1 + 𝑒𝑖 𝑘𝑎)𝑢 − (2C − 𝑀2𝜔
2)𝜈 = 0  

The solutions of above equations exist only if determinant of coefficients of unknown 

variables 𝑢 and 𝜈 vanishes thus 

   |
2C − 𝑀1𝜔

2 −𝐶(1 + 𝑒−𝑖 𝑘𝑎)

−𝐶(1 + 𝑒𝑖 𝑘𝑎) 2C − 𝑀2𝜔
2

| = 0 

  On solving the determinant 

  (2C − 𝑀1𝜔
2)(2C − 𝑀2𝜔

2) − 𝐶2(1 + 𝑒𝑖 𝑘𝑎)(1 − 𝑒−𝑖 𝑘𝑎) = 0 

4𝐶2 + 𝑀1𝑀2𝜔
4 − 2𝐶𝑀2𝜔

2 − 2𝐶𝑀1𝜔
2 − 𝐶2(1 + 𝑒−𝑖 𝑘𝑎 + 𝑒𝑖 𝑘𝑎 + 1 + 𝑒𝑖 𝑘𝑎−𝑖𝑘𝑎) = 0 

  or 4𝐶2 + 𝑀1𝑀2𝜔
4 − 2𝐶𝜔2(𝑀2 + 𝑀1) − 𝐶2(2 + 2 cos 𝑘𝑎) = 0 

  or  𝑀1𝑀2𝜔
4 − 2𝐶𝜔2(𝑀2 + 𝑀1) + 2𝐶2(1 − cos 𝑘𝑎) = 0  (5.19) 

    or 𝜔4 −
2𝐶(𝑀1+𝑀2)

𝑀1𝑀2
𝜔2 +

4𝐶2 sin2 𝑘𝑎/2

𝑀1+𝑀2
= 0 (5.20) 

This is the quadratic equation on 𝜔2 and its solution can be given as  

𝜔2 =
𝐶(𝑀1+𝑀2)

𝑀1𝑀2
±

1

2
√

4𝐶2(𝑀1+𝑀2)2

𝑀1
2𝑀2

2 −
4𝐶2.4 sin2 𝑘𝑎/2

𝑀1𝑀2
             [∵ 𝑎𝑠 𝑥 =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
] 

  𝜔2 = 𝐶 (
1

𝑀1
+

1

𝑀2
) ± 𝐶 [(

1

𝑀1
+

1

𝑀2
)
2

−
4 sin2 𝑘𝑎/2

𝑀1𝑀2
]
1/2

   (5.21) 

Equation (5.21) represents the relation between 𝜔 frequency and wave vector k for 

diatomic liner chain of atoms. It is clear from the equation, for any value of k we get two 

values, positive and negative value of 𝜔2, and represented as 𝜔+
2  and 𝜔−

2 . For 

simplification we examine limiting case as  ka << 1 then sin 𝑘𝑎 ≈ 𝑘𝑎 . 

5.4.1 Acoustic and Optical Phonon 

According to equation (5.21), if we use negative sign in expression of 𝜔2, we get 𝜔−
2  

value, which gives minimum value of frequency which is called acoustic phonon. The 

order of frequency of acoustic phonon is same as the frequency of acoustic waves 

therefore these phonons are called acoustic phonon. Figure 5.6 show the acoustic branch 
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of phonon. On the other hand if we use positive sign in the equation (5.21), we get the 

maximum value of 𝜔+
2  and the waves are called optical phonon. The order of frequency 

of optical phonon is same as the frequency of light waves. The optical branches of 

phonon are also shown in the figure 5.6. The range of frequency of optical branch of 

wave are order of optical range of electromagnetic wave thus the vibration of crystal 

lattice, optical branch can be excited with the help of electromagnetic waves of optical 

regions. 

 

Figure 5.6: Dispersion relation of [111] direction of germanium crystal 

 

For simplification we can discuss the limiting case 𝑘 → 0 of acoustic and optical 

branches.  

(1) Optical Branch:- 

  When k=0 then eq. (5.21) given the value of 𝜔+
2  as  

   𝜔2 = 𝐶 (
1

𝑀1
+

1

𝑀2
) ±  𝐶 [(

1

𝑀1
+

1

𝑀2
)
2

− 0]

1

2

 

   𝜔2 = 𝐶 (
1

𝑀1
+

1

𝑀2
) ±  𝐶 (

1

𝑀1
+

1

𝑀2
) 

   𝜔+
2 = 0 

  and 𝜔+
2 = 2𝑐 (

1

𝑀1
+

1

𝑀2
)   Optical Branch    (5.22) 

 (2) Acoustic Branch:- 
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  When k is very small k → 0 then  

   sin
𝑘𝑎

2
≈

𝑘𝑎

2
 then equation (5.21) becomes  

   𝜔2 = 𝐶 (
1

𝑀1
+

1

𝑀2
) ±  𝐶 [(

1

𝑀1
+

1

𝑀2
)
2

−
4 (

𝑘𝑎

2
)
2

𝑀1𝑀2
]

1

2

 

         = 𝐶 (
𝑀1+𝑀2

𝑀1 𝑀2
) ±  𝐶 [(

𝑀1+𝑀2

𝑀1 𝑀2
)
2

−
 𝑘2𝑎2

𝑀1𝑀2
]

1

2

 

   𝜔2 = 𝐶 (
𝑀1+𝑀2

𝑀1 𝑀2
) [1 ± (1 −

 𝑘2𝑎2𝑀1𝑀2

(𝑀1+𝑀2)2
)

1

2
] 

  Using binomial theorem and taking negative value for acoustic range. 

   𝜔2 = 𝐶 (
𝑀1+𝑀2

𝑀1 𝑀2
) [1 ±

1

2
(1 −

1

2

 𝑘2𝑎2𝑀1𝑀2

(𝑀1+𝑀2)2
)] 

   𝜔−
2 =

𝑐

2

𝑀1+𝑀2
𝑘2𝑎2     (5.23) 

Acoustic Branch is denoted by negative sign as 𝜔−
2  . 

In dispersion relation each mode in a given propagation direction, develops two branches 

known as optical and acoustic branches. Further, these branches are two types as 

Longitudinal Acoustic (LA) and Transverse  Acoustic (TA) modes and Longitudinal 

optical (LO) and Transverse optical (TO). If  there are p atoms in a primitive cell, then 

there are 3p branches of dispersion relation. There are 3 acoustic branches and (3p - 3) 

optical branches. Figure 5.6  shows the LA, TA, LO, TO branches of germanium. 

Germanium atom has 2 atoms in a primitive cell, thus it has 3 optical, and 3 acoustic 

branches. Out of there 6 branches it has one LA, two TA, one LO, two TO. 

As we discussed earlier the first Brillouin zone is extended from −
Π

𝑎
 to +

Π

𝑎
, where a is 

lattice parameter for diatomic crystal lattice. It is clear from equation (5.21), at k  = + =

±
Π

𝑎
= 𝑘 +

mΠ

𝑎
 , we get same values of ω. Thus at interval of  

mΠ

𝑎
, the value of ω repeats. 

Therefore in this range of −
Π

𝑎
 to +

Π

𝑎
 provide the limits of ω which is Brillouin zone. At k 

= + 
Π

𝑎
, 𝑘 has it maximum value then from equation (5.22) and (5.23), them for M1>M2 the 

roots can be given as 

 𝜔+
2 =

2𝑐

𝑚2
 and 𝜔−

2 =
2𝑐

𝑚1
 .           (5.24 a) 
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Now we will discuss the particle displacement in the transverse waves as (OT and AT). 

For optical branch, the transverse displacements atoms m1 and m2 can be  obtained as 
𝑢

𝜈
= −

𝑀2

𝑀1
         (5.24 b) 

Thus the ratios of amplitudes are inversely proportional to their masses. The TO and TA 

waves are depicted in figure 5.7 

     

  

Forbidden Gaps: It can be observed from figure 5.6 that the vibrations between the 

frequencies √
2𝐶

𝑀1
 and √

2𝐶

𝑀2
 are not possible. There frequencies between these ranges are 

not shown in lattice vibrations and called forbidden gap. Therefore, the  lattice 

vibrations of diatomic lattice can be considered as band stop filter. If the  mass of M1 

and M2 are same, then forbidden gap becomes zero. In this for forbidden range, the two 

successive atoms vibrate in opposite phase with same amplitude so that they cancel the 

vibrations of each other, and there is no any wave in this region.  

5.5 QUANTISATION of ELASTIC WAVES 

The energy associated with lattice vibration is quantised. The quanta of lattice vibration are 

called phonons. This is similar to quanlisation of electromagnetic energy, where the quanta of 

electromagnetic wave is photon which is quanlised  as E = nhν where n is any integer number, ν 
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is frequency and h is Plank constant.  In case of lattice, thermal vibrations are always available 

which are responsible  for lattice vibration. This is analogues to excitation of photon in a cavity of 

black body. The energy associated to lattice vibrations or elastic wave can be given as  

 𝜖 = (𝑛 +
1

2
) ℏ𝜔         (5.25) 

where 𝜔 is angular frequency and  ℏ Plank constant and n is any integer number. 

The term corresponding to n = 0 i.e. 

 𝜖 =
1

2
ℏ𝜔           (5.26) 

This is called zero point energy. This energy is equivalent to quantum harmonic Oscillator. Zero 

point energy is lowest possible energy that a quantum mechanical system may have. Zero point 

energy of a system is arising due to quantum fluctuations which are always available in the 

system even as zero temperature. The phonons play a significant role to explain in any Physical 

system like thermal conductivity, electric conductivity, bulk modulus, magnetic properties of 

solids.   

5.5.1 Phonon Momentum 

Phonon is basically quanta of lattice vibrations. Phonon exists only during the lattice vibrations 

and physically it does not exist. Therefore a lattice phonon  does not carry any momentum but 

phonon interacts with other particle or fields such as photon, electron, neutrons etc. as it has a 

momentum  ℏ𝑘 . where k is wave vector. However, a photon has no physical mass but it interacts 

with other particle as it has momentum 𝑝 = ℏ𝑘.  p is also called crystal momentum. 

According to de' Broglie relation 

𝑝 =
ℎ

𝜆
= ℏ𝑘           (5.27) 

The physical significance of ℏ𝑘 is conservation of linear momentum in a crystal. 

According to Bragg's diffraction law in crystal 

   k' = k + G       (5.28) 

Where G is reciprocal lattice vector, k is incident wave vector, k' is scattered wave vector. 

The above equation shows the conservation of momentum in reciprocal lattice system. If 

the scattering of phonon is inelastic, which create a phonon of wave vector K, then the 

wave vector conservation relation becomes 

   𝑘′ +  𝐾 =  𝑘 +  𝐺      (5.29) 
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In term of momentum the conservation relation becomes 

ℏ𝑘′ +  ℏ𝐾 = ℏ𝑘 + ℏ𝐺        (5.30) 

Similarly in term of energy the conservation relation becomes  

  ℏ𝜔′ +  ℏ𝜔 = ℏ𝜔 + ℏ𝜔𝐺      (5.31) 

If a phonon K is absorbed in the process, we have relation 

𝑘′ −  𝐾 =  𝑘 +  𝐺 

5.6. INELASTIC SCATTERING by PHONON 

When neutron strikes on a crystal lattice, it interacts with lattice vibrations of crystal and 

shows inelastic scattering. In inelastic scattering, the neutron transfers energy to lattice in 

the form of emission or abruption of phonons. The phonon dispersion relation ω(k) can be 

determined with the help of inelastic scattering of neutron. Further, with the help of angular 

width of scattering of neutron, the lifetime of phonon can be obtained. 

The relation for the interaction of neutron with lattice vibration can be given as  

   k' + K = k + G 

Where +K is the wave vector of phonon created or absorbed during the  interaction. k 

is incident wave vector, k' is scattered wave vector and G is any  reciprocal lattice 

vector. It mn is mass of neutron, then the kinetic energy of  incident neutron is 
𝑝2

2𝑚𝑛
 and 

momentum of neutron is ℏ𝑘 . 

Thus the kinetic energy of incident neutron  = 
ℏ2𝑘2

2𝑚𝑛
 

The kinetic energy of scattered neutron = 
ℏ2𝑘′2

2𝑚𝑛
 

The told energy can be given as  
ℏ2𝑘2

2𝑚𝑛
=

ℏ2𝑘′2

2𝑚𝑛
± ℏ𝑘 

 

5.7 SUMMARY 

1. The wave associated with crystal vibrations is called elastic wave or lattice wave. 

2. The energy associated with lattice vibrations is quantised like electromagnetic wave, 

charge etc. The quantum unit (quanta) of lattice vibration is called phonon. 
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3. The energy associated to lattice vibrations or elastic wave can be given us 

   𝜖 = (𝑛 +
1

2
) ℏ𝜔 

The energy corresponding to n = 0; 𝜖 =
1

2
ℏ𝜔 is called zero point energy. Zero point energy 

is lowest possible energy that a quantum mechanical system may have. 

4. When a neutron is scattered inelastically, a phonon of wave vector K is created or 

absorbed during the interaction of neutron and lattice vibrations. If the incident wave vector 

of neutron is k and scattered wave vector is k' then k' + K = k + G where G is a reciprocal 

lattice vector. 

 

5.8: GLOSSARY   

Elastic wave: The wave associated with crystal vibrations is called elastic wave. 

Phonon: The energy associated with the lattice vibration is also quantized like 

electromagnetic energy, charge etc. The quanta of lattice vibrations or elastic wave are 

called phonon. 

Lattice vibration: all the constituents of crystal lattice are vibrating regularly. There 

vibrations are in atomic level and called crystal vibrations or lattice vibrations, 

Dispersion relation: relation between 𝜔 frequency and wave vector k for lattice. 

Brillouin zone : In reciprocal lattice system, the boundary lies at 𝑘 = ±
Π

𝑎
 is first Brillouin 

zone. 

Dispersive medium: A medium in which wave of different frequencies travel with different 

velocities. 

Non dispersive medium: In this medium all the frequencies travel at same velocity. 

Density of states: The number of different states at a particular energy level. 
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5.11. TERMINAL QUESTIONS 

5.11.1. Long Answer type questions 

Q1. Show that in a one dimensional diatomic linear chain of atoms, both acoustic 

 and optical branches of dispersion curve meet at zone boundary.  

Q2. Obtain dispersion relation of a monatomic chain of identical atoms. 

Q3. Derive expression for different modes of vibrations of diatomic linear chain of 

atoms. 

5.11.2. Short answer type questions 

Q1. What are the normal modes of vibrations? 

Q2. Explain the meaning of lattice vibration. 

Q3. What are phonons? Give the properties of phonon. 

Q4. Explain the dispersion curves. 

Q5. What are Brillouin Zones? 

Q6. What are group velocity and phase velocity? Obtain the relation between group 

 and phase velocities.    

Q7. What is zero point energy of a quantum mechanical system? 

Q8. Explain the neutron inelastic scattering by crystal lattice. 
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6.1  INTRODUCTION 

 The heat capacity is defined as amount of heat required to change the temperature of a 

substance by 1oC. The specific heat capacity or specific heat is the heat capacity of unit mass 

(one gram of the substance). Heat capacity or thermal capacity is a physical property of a 

material. In this unit we will discuss the heat capacity in terms of a phonon gas and effect of 

anharmonic lattice interaction on the heat capacity. 

 Specific heat of substance is defined as  

   𝑐 =
𝑑𝑄

𝑚.𝑑𝑇
             (6.1) 

 According to first law of thermodynamics, the heat supplied to a substance is utilised in 

raising the temperature or internal energy and secondly in some work done by system to change 

its volume as  

   dQ = dU + pdV       (6.2) 

 Where the symbols have their usual meaning. Commonly heat capacities are two types. If 

the system is at constant volume, then heat capacity becomes  

   𝐶𝑉 = (
𝜕𝑄

𝜕𝑇
)
𝑉

= (
𝜕𝑈

𝜕𝑇
)
𝑉

       (6.3) 

 Similarly, the heat capacity at constant pressure is define as 

  𝐶𝑝 = (
𝑑𝑄

𝑑𝑇
)
𝑝
        (6.4) 

 In gases there is a significant difference between 𝐶𝑝 and 𝐶𝑉. However, in solids, there is a 

very small change in volume with pressure therefore, Cp is almost same as Cv and generally 

called specific heat of solid, usually it means the heat capacity at constant volume. In solids, 

when heat is supplied, the atoms of molecules start vibration about its equilibrium position. 

These vibrations are responsible for different thermal properties of solids. 

6.2 OBJECTIVE 

 After reading this unit you will be able to understand 

 * Heat capacity, specific heat capacity of solids 

 * Lattice heat capacity and electronic heat capacity of solids 

 * Classical theory of heat capacity 

 * Einstein and Debey theory of heat capacity  

 * Thermal Expansion 

* Thermal Conductivity 
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6.3 CLASSICAL THEORY of HEAT CAPACITYS 

     A crystal is an arrangement of atoms or molecules in a regular manner. These atoms are 

bonded by strong binding force but each atom can vibrate about its equilibrium position and 

comminute as three-dimensional harmonic oscillator. When the solid is heated, its internal 

energy increases and the atoms vibrate more strongly. Thus according to chemical theory of heat 

capacity, it is assumed that each atoms in a solid act as three dimensional harmonic oscillators. If 

heat energy is supplied to the solid, the vibrational energy of solid increases. If the system has N 

number of atom or independent harmonic oscillator, then there are 3N independent one 

dimensional harmonic oscillator as each atom has 3 degree of freedom. According to classic 

equipartition theorem, each degree of freedom contributes  kT energy to internal (Vibrational) 

energy of solid. 

 The total vibrational energy of solid containing N number of atom or 3N number of one 

dimensional harmonic oscillator  

   𝐸 = 3𝑁. 𝑘𝑇 = 3𝑁𝑘𝑇        (6.5) 

 Heat capacity of solid 𝐶𝑣 = (
𝑑𝐸

𝑑𝑇
)
𝑣

= 3𝑁𝑘 = 3𝑅     (6.6) 

    𝐶𝑣 = 5.96
𝑐𝑎𝑙

𝑚𝑜𝑙𝑒−𝐾
 

 Thus the heat capacity (at constant volume) remains same for all solids. This is the result 

based on classical theory of heat capacity and known as Dulong-Petit law.  When we plot the heat 

capacities of different solids (say metals) it is observed that at high temperature, the heat capacity 

is almost 3R for most of solids which is a good agreement between experimental values and 

classical theory of heat capacity as shown in figure 6.1. But at low temperature, the classical 

theory of heat capacity does not hold and heat capacity decreases as temperature decreases to 0 

K. This is known as the failure of classical theory of heat capacity at low temperature. The 

discrepancy was later on resolved by Einstein and Debye by using quantum theory. 

 It is also mentioned here, when heat energy is supplied to a solid, the most of heat is 

utilised to increase the internal energy of solid. A very small part of this energy is utilised in the 

excitation of free electrons available in the solid. The first contribution, which is responsible for 

atomic vibration or phonon is called lattice heat, which gives lattice heat capacity. The second 

contribution, which excite the electron called electron heat capacity. The total heat capacity can 

be given as  

    Csolid = Clattice + Celectron.     (6.7) 
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 However, the electron’s contribution on heat capacity is very small or it can be 

considered that no free electrons are available in a solid therefore many times only lattice heat 

capacity is considered. 

 

6.4 PLANK DISTRIBUTION FUNCTION 

 Let us consider a mole of solid and there are N number of atoms and each atom has three 

degree of freedom. Each mode of system is considered as a quantum mechanical simple 

harmonic oscillator. The vibration of each oscillator can be expressed by phonon. The total 

energy of phonons in a crystal can be given as sum of the energy of each phonon 

    Energy of a phonon = kBT 

 The energy of all phonon modes can be given as  

    ∪= ∑ ∑ ∪𝑘𝑝=𝑝 ∑ ∑ < 𝑛 > ℏ𝜔𝑝𝑘𝑘     (6.8) 

 Where <n> is thermal equilibrium occupancy of phonon.  ∑ 𝑎𝑛𝑑 ∑ represents𝑝𝑘  sum 

over all wave vector and polarisation mode. 

 At thermal equilibrium, occupancy of phonon <n> is given by  

   < 𝑛 > =
1

𝑒𝑥𝑝 (
ℏ𝜔

𝑘𝑇
)−1

        (6.9) 

 This is called Plank's distribution. 
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6.5 EINSTEIN THEORY of HEAT CAPACITY 

 According to Plank theory (quantum theory), a physical system like black body, can be 

considered as system of simple harmonic oscillators. On the basis of Plank's quantum theory, 

Einstein proposed a hypothesis that a solid can be consider as a system of harmonic oscillators. 

The energy or thermal energy of solid can be obtained by the summing over energy of all simple 

harmonic oscillators. According to quantum theory of solids atoms are identical, independent 

harmonic oscillator, and vibrate independently with same natural frequency but have desecrate 

energy values. The energy of the system can be given by Planck’s law given as 

       𝐸 = 𝑛ℏ𝜔                                                                                         (6.10) 

If we consider a solid of N atoms and each atom is considered as an oscillator, and dN oscillator 

have energy range between E to E+dE then the Boltzmann <En> of system can be given by 

< 𝐸𝑛 >  =  
∑𝐸 𝑑𝑁

∑𝑑𝑁
                                                                        (6.11) 

From Boltzmann statistic mechanics, the number of harmonic oscillators can have energy lying 

between ranges E to E+dE at temperature T is proportional to exp [−
𝐸

𝑘𝑇
] where 𝑘 is Boltzmann 

constant. Thus average energy of the system can be given as 

< 𝐸𝑛 >=
∑  𝐸 exp [−

𝐸
𝑘𝑇

]𝑛=∞
𝑛=0

∑  exp [−
𝐸
𝑘𝑇

]𝑛=∞
𝑛=0

 

< 𝐸𝑛 >=
∑  𝑛 ℏ𝜔 exp [−

𝑛ℏ𝜔
𝑘𝑇

]𝑛=∞
𝑛=0

∑  exp [−
ℏ𝜔
𝑘𝑇

]𝑛=∞
𝑛=0

 

Let −
ℏ𝜔

𝑘𝑇
  = 𝑥 then 

< 𝐸𝑛 >=
ℏ𝜔 ∑  𝑛 𝑒−𝑛𝑥 𝑛=∞

𝑛=0

∑  𝑒−𝑛𝑥𝑛=∞
𝑛=0

 

Putting the values of all n, from 𝑛 = 0 to 𝑛 = ∞ terms 

< 𝐸𝑛 >=
ℏ𝜔[𝑒𝑥 + 2𝑒2𝑥 + 3𝑒3𝑥 + … . .∞ ]

[1 + 𝑒𝑥 + 𝑒2𝑥 + 𝑒3𝑥 + … . .∞ ]
 

Using mathematical identities 

< 𝐸𝑛 >= ℏ𝜔 [
𝑑

𝑑𝑥
log(1 + 𝑒𝑥 + 𝑒2𝑥 + 𝑒3𝑥 + … . . ∞)] 
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< 𝐸𝑛 >= ℏ𝜔 [
𝑑

𝑑𝑥
log (

1

1 − 𝑒𝑥
)] 

< 𝐸𝑛 >= ℏ𝜔 [
−𝑒𝑥

1 − 𝑒𝑥
] 

< 𝐸𝑛 >= ℏ𝜔 [
𝑒𝑥

𝑒𝑥 − 1
] 

< 𝐸𝑛 >= ℏ𝜔 [
1

𝑒−𝑥 − 1
] 

                                                        < 𝐸𝑛 >=
ℏ𝜔

𝑒
ℏ𝜔
𝑘𝑇 − 1

                                                              (6.12) 

According to quantum theory of solids, the energy of a system of harmonic oscillators is given as 

∈= (𝑛 + 
1

2
) ℏ𝜔 = 

1

2
ℏ𝜔 + 𝑛 ℏ𝜔  

Then above equation 6.12 can be modified as     

                                                        <𝐸𝑛 >=
1

2
ℏ𝜔 +

ℏ𝜔

𝑒ℏ𝜔/𝑘𝑇 −1
                                                           (6.13)  

      The first term is zero point energy of system and secondary term is the contribution due 

to thermal energy. In second term, 
1

𝑒ℏ𝜔/𝑘𝑇 −1
 is nothing but Plank’s distribution function. With the 

help of Plank’s distribution function the thermal energy of the system can be given as  

    ∪= 3𝑁 < 𝐸𝑛 >=
3𝑁ℏ𝜔

𝑒ℏ𝜔/𝑘𝑇 −1
               (6.14 a) 

 Where N is total number of atoms in solid. Einstein considered a solid of N atoms 

behaves as 3N independent oscillators as each atom has 3 degree of freedom.   

 Specific heat of system can be given as  

    𝐶𝑣 =
𝜕∪

𝜕𝑇
= 3𝑁ℏ𝜔

1

(𝑒ℏ𝜔/𝑘𝑇 −1)
2 . 𝑒ℏ𝜔/𝑘𝑇 . ℏ𝜔/𝑘𝑇2           

                       𝐶𝑣 = 3𝑁𝑘 (
ℏ𝜔

𝑘𝑇
)
2

.
𝑒ℏ𝜔/𝑘𝑇 

(𝑒ℏ𝜔/𝑘𝑇 −1)
2    (6.14 b) 

 If number of atoms in solid system is one mole (N=NA ) atoms then  𝑁𝑘 = 𝑅 

                         𝐶𝑣 = 3𝑅 (
ℏ𝜔

𝑘𝑇
)
2

.
𝑒ℏ𝜔/𝑘𝑇 

(𝑒ℏ𝜔/𝑘𝑇 − 1)2
                                            (6.15) 
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This is Einstein formula for specific heat of solids. If we use a term  
ℏ𝜔

𝑘
= 𝜃𝐸  called Einstein 

Temperature then equation becomes  

                         𝐶𝑣 = 3𝑅 (
𝜃𝐸

𝑇
)
2

.
𝑒𝜃𝐸/𝑇 

(𝑒𝜃𝐸/𝑇 − 1)2
                                            (6.16) 

Variation of specific heat with the temperature at different temperatures is shown as Figure 6.2.   

 

At high temperature 𝜃𝐸 ≪ 𝑇 or ℏ𝜔 ≪ 𝑘𝑇 Then energy  

∪=
3𝑁ℏ𝜔

𝑒ℏ𝜔/𝑘𝑇 − 1
 

We know that 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
 +

𝑥3

3
+. ..  

For high value of T or small value of x we can ignore higher terms then above expression 

becomes  

∪=
3𝑁ℏ𝜔

1 +
ℏ𝜔
𝑘𝑇

− 1
= 3𝑁𝑘𝑇 

                                                                   𝐶𝑣 = 3𝑁𝑘𝑇 = 3𝑅       (6.17)  

Thus at high value of temperature, the expression reduces to classical result. 
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6.6 DENSITY OF STATES 

 If a crystal is considered as a system of simple harmonic oscillator, then the energy of 

crystal can be given as 

  ∪= ∑ ∑ < 𝑛 > ℏ𝜔𝑘𝑝𝑝𝑘        (6.18) 

 Where <n> is plank distribution function and ℏ𝜔𝑘𝑝 is average energy. 

   ∪= ∑ ∑
ℏ𝜔𝑘𝑝

𝑒ℏ𝜔/𝑘𝑇−1𝑝𝑘         (6.19) 

 Some time we replace the summation over k, ∑ by𝑘  an integral as the crystal has 

𝐷𝑝(𝜔)𝑑𝜔 modes of polarisation in frequency range 𝜔 to +𝑑𝜔 . Then the above equation of 

energy becomes 

   ∪= ∑ ∫𝑑𝜔 𝐷𝑝(𝜔)
ℏ𝜔

𝑒ℏ𝜔/𝑘𝑇−1𝑝       (6.20) 

 The term 𝐷(𝜔) in the above expression (eq.6.20) is number of modes per unit frequency 

is called density or states density of modes. Once we calculate the density of states (𝜔) , we can 

calculate the energy of system and heat capacity. This is a central problem to calculate 𝐷(𝜔). 

Practically, 𝐷(𝜔) is obtained by measuring the depression situation, 𝜔 verses k in a selected 

crystal direction by inelastic neutron scattering. 

6.6.1 Density of State in one Dimension   

 Consider a one dimensional chain of N + 1 atom arranged in a distance a between two 

atoms as shown in figure 6.3. We assume that the first particle is situated as S = 0 and Nth 

particle as S = N, the ends of linear chain. We consider that the ends points are fixed. Each 

vibrational mode of polarisation p form a standing wave between ends (fixed) point. If us the 

displacement of sth particle, then according to standing wave  

   𝑢𝑠 = 𝑢0𝑒
−𝑖𝜔𝑘𝑝𝑡. sin 𝑠𝑘𝑎       (6.21) 

 As we know, in one dimension linear chain, the wave number k is restricted by boundary 

then acceptable value of k are  

   𝑘 =
Π

𝐿
,
2Π

𝐿
,
3Π

𝐿
… 

(𝑁−1)Π

𝐿
      (6.22) 

 and wave vanishes as k = 0 and k = 
𝑁Π

𝐿
    

 Thus eq. 6.21 becomes 

   𝑢𝑠 = 𝑢0 sin 𝑠𝑘𝑎 
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 sin 𝑠𝑘𝑎 Vanishes at each atom, thus (N-1) allowed values of k are possible as given in 

eq.(6.22). This number is equal to the number of particles allowed to move and each allowed value 

of k is corresponding to a mode. Therefore in case of one dimensional line, the number of modes 

per unit range k is 
𝐿

Π
. 

 The number of modes 𝐷(𝜔)𝑑𝜔 in 𝑑𝜔 range in one dimension can be given as  

   𝐷(𝜔)𝑑𝜔 =
𝐿

Π

𝑑𝑘

𝑑𝜔
𝑑𝜔 =

𝐿

Π

𝑑𝜔

(
𝑑𝜔

𝑑𝑘
)
               (6.23) 

 In above relation 
𝑑𝜔

𝑑𝑘
 is group velocity and can be obtained by dispersion relation (relation 

between 𝜔 and k). Density of state 𝐷(𝜔) can not be defined at a point 
𝑑𝜔

𝑑𝑘
= 0 where 𝜔(𝑘)  

becomes horizontal or group velocity becomes zero. This point is called singularity. 

      L 

     ← 𝑎 →          ↑ 𝑢𝑠 

       𝑠 = 0  𝑠 = 1…………………………𝑠 = 𝑛    

Figure 6.3 One dimensional chain of atoms 

 

6.6.2: Density of State in Three Dimensions  

Consider a cubic primitive cell of side length L. If there are N numbers of atoms in one dimension 

then N3 atom in 3 dimensions, and we have N3 primitive cell. If k is wave vector in reciprocal 

lattice system then boundary condition may be applied over N3 primitive cells and k can be 

determined by the boundary conditions for lattice vibrations allowed in the crystal lattice. As we 

know boundary condition is 

   𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧]=𝑒𝑖[𝑘𝑥(𝑥+𝐿)+𝑘𝑦(𝑦+𝐿)+𝑘𝑧(𝑧+𝐿)] 

 which gives 

   𝑘𝑥 , 𝑘𝑦, 𝑘𝑧 = 0;±
2Π

𝐿
, ±

4Π

𝐿
; … 

𝑁Π

𝐿
         (6.24) 

 Therefore there is one allowed value of k (mode) per unit volume of (
2Π

𝐿
)
3

 in reciprocal 

space. The total number of modes can be obtained by divide the volume of a sphere of k in 

reciprocal lattice system by volume of (
2Π

𝐿
)
3

 corresponding to one mode. 
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 Then total number of modes = 
Volme of sphere in k space

Unit volume corresponding to one mode
  

   𝑁 =
4

3
π𝑘3

(
2𝜋

𝐿
)
3 

   𝑁 = (
𝐿

2π
)
3

.
4

3
π𝑘3       (6.25) 

 For each polarisation mode.  The density of state 𝐷(𝜔) can be calculated as  

   𝐷(𝜔) =
𝑑𝑁

𝑑𝜔
=

𝐿3

2π2 𝑘2 𝑑𝑘

𝑑𝜔
       (6.26) 

   𝐷(𝜔) =
𝑉𝑘2

2π2
 
𝑑𝑘

𝑑𝜔
        (6.27) 

 

 

6.7. DEBYE THEORY OF HEAT CAPACITY 

Einstein model was based on the assumption that atoms of crystals vibrate independently to one 

other. The vibration of crystal as a whole was considered to be the same as the vibration of each 

atom. The common angular frequency of vibration was considered as 𝜔, which natural frequency 

of vibration. But Debye assumed that the atoms of crystal form coupled harmonic oscillators and 

there are a range of frequencies rather than a single frequency. Debye proposed that the frequency 

may have values from the low range (sound wave) to high frequency of optical wave. These modes 

of vibrations, per unit frequency range are nothing but density of state. 

 In Debye approximation, the velocity of sound is constant in crystal which is lower limit 

of vibration, so we need to innumerate number of sound modes that exist in the crystal. The angular 

frequency 𝜔  of vibration can be given as  

   𝜔 = 𝑣𝑘               (6.28) 

 Where v is velocity of sound wave. 

 From equation 6.27, Density of state can be given as 

𝐷(𝜔) =
𝑑𝑁

𝑑𝜔
=

𝑉𝑘2

2π2
 
𝑑𝑘

𝑑𝜔
  

    

                                                      𝐷(𝜔) =
𝑉(𝜔 𝑣⁄ )2

2π2
 
𝑑

𝑑𝜔
(
𝜔

𝑣
) =

𝑉𝜔2

2π2𝑣3
                                ( 6.29)    
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If there are N numbers of primitive cell in the crystal, L is side length and V is volume, then total 

number of acoustic phonon modes are 3N.  The cut of frequency 𝜔𝐷 can be given by 

𝜔𝐷 = 𝑣 𝑘𝐷 

 by using eq. (6.25) 

𝑁 = (
𝐿

2𝜋
)
3

.
4

3
𝜋𝑘3 

     𝑁 =
𝑉

8𝜋3
.
4

3
𝜋. (

𝜔𝐷

𝑣
)
3

=
𝑉

6𝜋2
.
𝜔𝐷

3

𝑣3
 

                          𝜔𝐷
3 =

6𝜋2𝑁𝑣3

𝑉
        (6.30) 

 This frequency is corresponding to cutoff wave function. The cut of wave vector 𝑘𝐷 can 

be given as  

   𝑘𝐷 =
𝜔𝐷

𝑣
= (

6𝜋2𝑁

𝑉
)

1

3
       (6.31) 

 This wave vector is corresponding to sound wave which is lowest limit of vibration. In this 

model we do not consider wave vector larger the cut off wave vector 𝑘𝐷. 

 The thermal energy of the crystal is given as  

   ∪= ∫  𝐷(𝜔). 𝑛(𝜔). ℏ𝜔. 𝑑𝜔      (6.32) 

   ∪= ∫ (
𝑉𝜔2

2π2𝑣3) . (
ℏ𝜔

𝑒𝑥𝑝 (
ℏ𝜔

𝑘𝑇
)−1

)𝑑𝜔
𝜔𝐷

0
.     (6.33) 

 Where 𝑛(𝜔) is Plank distribution fraction as given in eq.(6.9) and 𝐷(𝜔) is Density of state 

as given is eq. 6.29. If we assume that phonon velocity is independent of polarisation, so that we 

introduce a multiplication factor 3 to obtain thermal energy. 

                                 ∪= (
3𝑉ℏ

2π2𝑣3
)∫ (

𝜔3

𝑒𝑥𝑝 (
ℏ𝜔
𝑘𝐵𝑇

) − 1
)𝑑𝜔                                              (6.34)

𝜔𝐷

0

 

 If we consider 
ℏ𝜔

𝑘𝑇
= 𝑥𝐷 = 𝜃/𝑇 for solving the integration then  

                                 ∪= (
3𝑉ℏ 𝑘𝐵

4 𝑇4

2π2𝑣3ℏ3
)∫ (

𝑥3

𝑒𝑥 − 1
)𝑑𝑥                                              (6.35)

𝑥𝐷

0
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∪= 9 𝑁𝑘𝐵𝑇 (
𝑇

𝜃𝐷
)

3

∫
𝑥3

𝑒𝑥 − 1
𝑑𝑥

𝑥𝐷

0

                                               (6.36) 

               where           𝜃𝐷 =
ℏ𝑣

𝑘𝐵
(
6Π2N

𝑣
)

1
3

                                       (6.37) 

 The 𝜃𝐷  given in eq. 37 is defined as is Debye temperature. 

 The heat capacity of solid specimen can be obtained as  𝑐𝑉 =
𝑑𝑈

𝑑𝑇
 then differentiating eq. 

(6.35 and 6.36) 

                                 𝐶𝑉 = (
3𝑉ℏ 

2π2𝑣3
)∫  

𝜔4 𝑒
ℏ𝜔
𝑘𝐵𝑇

(𝑒
ℏ𝜔
𝑘𝐵𝑇 − 1)

2 𝑑𝜔                                               (6.38)
𝜔𝐷

0

 

 and  𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

∫
x4ex

(ex−1)2
𝑑𝑥

𝑥𝐷

0
               (6.39) 

 Where   
ℏ𝜔

𝑘𝐵𝑇
= 𝑥  and 𝜃𝐷 is Debye Temperature define as 𝜃𝐷 =

ℏ𝜔𝐷

𝑘
 

This is shown in figure 6.4. At higher temperature T > 𝜃𝐷 , x becomes very small and expending 

the exponential in equation 6.39, the integral becomes almost 𝑥2  so that the heat capacity 

approaches 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

∫ 𝑥2𝑑𝑥
𝜃/𝑇

0

= 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

. [
𝑥3

3
]
0

𝜃/𝑇

= 3𝑁𝑘𝐵 = 3𝑅 

This is classical value 3NkB.  

At low temperature  𝑇 ≪ 𝜃𝐷 , we can consider integral limit 𝑥𝐷 → ∞ then 

                                  ∫
x4ex

(ex−1)2
𝑑𝑥 =

4 Π4

15

∞

0
        (6.40) 

 Putting this value in eq. 6.39, it becomes 

   𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3 4 Π4

15
= 12𝑁𝑘𝐵

 Π4

5
(

𝑇

𝜃𝐷
)
3

 

   𝑐𝑣 = 234 𝑁 𝑘𝐵 (
𝑇

𝜃𝐷
)
3

       (6.41) 

This is known as Debye T3 low of heat capacity of solids. 
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6.8 ANHARMONIC CRYSTAL INTERACTIONS 

We have studied the theory of lattice vibration on the assumption that the crystal is ideal. The 

harmonic theory used in the lattice vibrations of solids assumes that the anharmonic terms in the 

lattice potential energy expansion are neglected while the quadratic term is retained. However, in 

actual case the anharmonic terms are also significance. 

In case of idea crystal, the consequences of lattice vibration are: 

 1. The lattice waves do not interact. 

 2. The lattice waves do not decay during propagation in the crystal. 

 3. There is no thermal expansion during the lattice wave propagation. 

 4. The heat capacity becomes constant at high temperature as Debye law. 

 But the real, crystal is not as ideal and these consequences are not satisfied exactly. The 

deviations are attributed to enharmonic crystal interaction. The enharmonic interaction is basically 

arising due to higher terms in the interatomic displacement. The effect of anharmonic interaction 
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in crystal is very significant and gives different result as thermal expansion, thermal conductivity, 

resistance etc. 

6.9 THERMAL EXPANSION 

Thermal expansion of a solid is change in size of a solid due to change in temperature. If the lattice 

vibrations are perfectly harmonic then interatomic vibrations follow Hook’s law exactly, and there 

is no change in the dimension of solid on raising the temperature of solid. However, in actual, the 

vibrations are not perfectly harmonic and dimensional changes occurs during the change of 

temperature. Thermal expansion of solid is a consequence of displacement of ions or atoms of the 

material as temperature changes. The thermal expansion of solid is characterized by volume 

thermal expansion coefficient & which is defined as change in volume per unit volume per unit 

temperature rise as given below. 

    𝛼𝑉 =
1

𝑉

𝑑𝑉

𝑑𝑇
  (6.42) 

We can also define linear coefficient which is 

    𝛼𝐿 =
1

𝐿

𝑑𝐿

𝑑𝑇
       (6.43) 

 We can also know that linear coefficient is 1/3rd of volume thermal expansion and defined 

as change in length per unit length, per unit change in temperature. As we discussed if the lattice 

vibration in a solid were perfectly harmonic, then the atoms or molecules of solid obey Hook's law 

exactly and there would be no dimensional charge on raising the temperature of solid. But in actual, 

the lattice vibrations are not perfectly harmonic and this anharmonicity in solid leads to the concept 

of thermal expansion. The anharmonicity can be understand by the potential energy curve against 

enteratomic distance as shown in figure 6.5. 
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 Point O is minimum energy point or equilibrium point where the inter atomic spacing is 𝑟𝑜. 

As temperature rise, the energy of system also increases. The interatomic spacing remains same if 

potential energy curve were symmetrical on both side of point O. But in actual the curve on both 

side of dotted is not symmetrical as gradient on both sides is different. The difference in symmetry 

in potential energy curve means the anharmonicity in lattice vibration which provide the basis for 

origin of thermal expansion. 

 Therefore, we take the potential energy of atoms of a solid with a displacement x from its 

their equilibrium position at absolute zero temperature as  

   ∪(x) = cx2 - gx3 - f x4        (6.44) 

 Where c is a constant corresponding to Hook's law and g and f are other higher term 

constants corresponding to asymmetry arises due to mutual repulsion of atoms and f is another 

constant associated with x4 which represents the softening of vibration at large amplitude. 

 As x = 0; is not an absolute zero, potential energy for small oscillation can be written as 

 ∪ (𝑥) =∪𝑜 (𝑥) + 𝑐𝑥2 + 𝑔𝑥3 − 𝑓𝑥4         (6.45) 

 The force can be given as 

 𝐹 = −
𝜕𝑈

𝜕𝑥
= −𝛽𝑥 + 𝑔𝑥2 − 𝑓′𝑥3         (6.46) 

This is Hook's law with higher order terms. By using thermodynamic probability, we can find out 

the value of average displacement <x> with the help of Boltzmann distribution function as 

   < 𝑥 >=
∫ 𝑥𝑒−∪(𝑥)/𝑘𝐵𝑇∞

−∞ 𝑑𝑥

∫ 𝑒−∪(𝑥)/𝑘𝐵𝑇∞

−∞ 𝑑𝑥
        (6.47) 

 The numerator and denominator of above expression is a standard integration in 

mathematics and its value is 

   ∫ 𝑥𝑒−∪(𝑥)/𝑘𝐵𝑇∞

−∞
𝑑𝑥 =

3𝑔

4𝑘𝐵𝑇
√(

𝜋
𝑐

𝑘𝐵𝑇⁄
)

5

     (6.48) 

 

 and  ∫ 𝑒−∪(𝑥)/𝑘𝐵𝑇∞

−∞
𝑑𝑥 = √(

𝜋
𝑐

𝑘𝐵𝑇⁄
) +

3

4

𝑓

𝑘𝐵𝑇 √
𝜋

(
𝑐

𝑘𝐵𝑇
)
5             (6.49) 

 Using above expansions  
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   < 𝑥 >=
3𝑔 𝑘𝐵𝑇

1+3𝑓
𝑘𝐵𝑇

4𝑐2

=
3𝑔 𝑘𝐵𝑇

4𝑐2
(1 + 3 

𝑓𝑘𝐵𝑇

4𝑐2
)
−1

 

 This is a binomial and using first order approximation  

   < 𝑥 >=
3𝑔 𝑘𝐵𝑇

4𝑐2
(1 + 3 

𝑓𝑘𝐵𝑇

4𝑐2
)  

Ignoring 2nd term as its value is negligible in with respect to first term 

                                      < 𝑥 > =
3𝑔

4𝑐2
𝑘𝐵𝑇       (6.50) 

 Coefficient of linear Thermal expansion can be given as 

                                       𝛼 =
1

𝑟0

𝑑<𝑥>

𝑑𝑇
=

3𝑔

𝑟04𝑐2 𝑘𝐵          (6.51) 

 Thus according to classical statistic the <x> is proportional to temperature but thermal 

expansion coefficient 𝛼 is independent to T. At normal room temperature, this result is valid but 

when temperature goes to absolute zero temperature, the value of 𝛼 tends to zero. To understand 

this fact, we use quantum mechanics. Replacing the classical statistics, quantum mechanics 

(replace kBT by 
ℏ𝜔

𝑒

ℏ𝜔
𝑘𝐵𝑇−1

),   < 𝑥 >   can be given as 

we in equation then we have 

  < 𝑥 > =
3𝑔

4𝑐2  
ℏ𝜔

𝑒

ℏ𝜔
𝑘𝐵𝑇−1

          (6.52) 

 At high temperature 𝑇 → ∞ it becomes < 𝑥 > =
3𝑔

4𝑐2  𝑘𝑇  it assumes the classical limit. 

 But at low temperature 𝑇 → 0 then < 𝑥 > =
3𝑔

4𝑐2  ℏ𝜔 𝑒
ℏ𝜔

𝑘𝐵𝑇 

 And thermal expansion    𝛼 =
1

𝑟0

𝑑<𝑥>

𝑑𝑇
=

1

𝑟0

3𝑔

4𝑐2
(

ℏ𝜔

𝑘𝐵𝑇
)
2

𝑘𝐵𝑒
ℏ𝜔

𝑘𝐵𝑇   (6.53) 

 From this equation it is clear that as 𝑇 → 0 the 𝛼 also goes to zero as observed in 

experimental results. 

 

6.10 GRUNEISEN PARAMETER AND EQUATION OF STAT  

 Gruneisen parameter is measurement of anharmonicity of a crystal and denoted by 𝛾. 

Gruneisen assumed that the lattice vibrational frequency 𝜔 varies inversely as 𝛾th power of volume. 
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 Mathematically  𝜔 ∝  
1

𝑉𝛾    or  𝜔 =
𝐶

𝑉𝛾   

Taking  natural log      ln 𝜔 = ln𝐶 − 𝛾 ln 𝑉       

on differentiating   
1

𝜔
𝑑𝜔 =

−𝛾

𝑉
𝑑𝑉 

    𝛾 =
𝑉

𝜔

𝑑𝜔

𝑑𝑉
        (6.54) 

 Gruneisen observed that the ratio of thermal expansion coefficient to the specific heat is 

constant for a given crystal at all temperature. 

 Mathematically 
𝐶

𝐶𝑉
=

1

3𝑉

𝛾

𝐵
 

    𝛼 =
1

3𝑉
𝛾

𝐶𝑉

𝐵
       (6.55) 

 where B is bulk modulus. The typical value of Gruneisen parameter 𝛾 is order of 2. 

 

6.11 THERMAL CONDUCTIVIT 

 Debye extended his theory of heat capacity of solids to explain the lattice thermal 

conductivity of solid and observed that the thermal conductivity would be infinite if the lattice 

vibrations become perfectly harmonic. But the nature of lattice vibrations in real crystal is 

inharmonic which destroy the independence of normal modes and change the direction of 

propagation and different interactions take place in the crystal. Due to this inharmonicity, the 

thermal conductivity has a finite value. 

 If thermal heat energy is transmitted through a solid rod, then flux of thermal energy 𝑗𝑢 can 

be give as  

   𝑗𝑢 = −𝐾
𝑑𝑇

𝑑𝑥
     (6.56) 

 Where K is coefficient of thermal conductivity, 
𝑑𝑇

𝑑𝑥
 is the temperature gradient at steady 

state flow. Thermal flux is nothing but energy transmitted per unit time across per unit volume. 

The process of thermal energy transfer is a random process and heat transmitted as diffused 

manner. In solids, the thermal conduction takes place by two process i.e. conductivity due to free 

elements and coefficient of free electron thermal conductivity is denoted by 𝐾𝑒𝑙, and the 

conductivity due to phonon or lattice vibrations is lattice thermal conductibility 𝐾𝑙𝑎𝑡 . 

   𝐾 = 𝐾𝑒𝑙 + 𝐾𝑙𝑎𝑡         (6.57) 
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6.11.1  Lattice Thermal Conductivity   

The lattice of a solid can be considered as the form the kinetic theory of gases we can understand 

the thermal conductivity. Suppose a crystal lattice is like a phonon gas system. In this system of 

phonon on gas suppose there are N photons moving between two surfaces of a crystal (or plates) 

at temperature T1 and T2. The two surfaces are at distance 𝜆 which is mean free path for photon 

gas. The photons move rand only in the system with mean velocity v. 

 If N phonons are randomly moving in the crystal, then 
𝑁

3
 phonons are moving in a particular 

axis and 
𝑁

6
 phonons move in the direction of +ve of -ve axis (say along + x or -x axis). If 𝑣 is the 

average particle velocity and 𝜆 is mean free path then we can applied Debye theory of heat capacity 

for calculating the thermal conductivity.  

    T1 = T+dT       T  T2 = T-dT 

 

     𝛾          B         𝛾 

    A        2𝜆   C 

Figure 6.6: Thermal conductivity in a crystal solid 

 The number of phonons moving across the unit area in a second is given as 

    =
𝑁𝑣

6
        (6.58) 

 The energy of phonon =
3

2
 𝑘𝐵𝑇 

 The thermal energy passing through surface A to surface B in unit time, across unit area, 

can be given as  

   𝑄1 =
𝑁𝑣

6
.
3

2
𝑘𝐵(𝑇 + 𝑑𝑇 − 𝑇) =

𝑁𝑣

6
.
3

2
𝑘𝐵𝑑𝑇    (6.59) 

 Similarly, the thermal energy passing through unit surface area, in a unit time from surface 

B to C is  

   𝑄2 =
−𝑁𝑣

6
.
3

2
𝑘𝐵𝑑𝑇       (6.60) 

 Thus thermal current at surface B per unit area, per unit time is  

   𝑄𝑗 = 𝑄2 − 𝑄1 =
𝑁𝑣

2
𝑘𝐵𝑑𝑇     (6.61) 

 If thermal gradient is  
𝑑𝑇

𝑑𝜆
= 

𝑑𝑇

𝑑𝑥
 , then from the definition of thermal current 
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   𝑄𝑗 = −𝐾
𝑑𝑇

𝑑𝜆
        (6.62) 

putting the value of 𝑄𝑗 in this eq. 6.61 

   
𝑁𝑣𝑘𝐵

2
𝑑𝑇 = 𝐾

𝑑𝑇

𝑑𝜆
 

   𝐾 =
𝑁𝑣𝑘𝐵𝜆

2
       (6.63) 

 In case of solid crystal lattice heat capacity  

   𝐶𝑉 =
3

2
𝑁𝑘𝐵       (6.64) 

 Putting this value in eq. 6.63 we will get 

 𝐾 =
1

3
𝐶𝑉𝑣𝜆   

As this is a mode of conductivity through lattice therefore denoted as  

 𝐾𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
1

3
𝐶𝑉𝑣𝜆          (6.65) 

 

6.11.2  Electronic Thermal Conductivity 

In many crystalline solids there are some free electrons. In case of metals, a large number of free 

electrons are available and called electron gas. The contribution to thermal conductivity due to free 

electrons is known as electronic thermal conductivity. In case of metals electronic thermal 

conductivity is significant. In metals, free electrons are at Fermi surface, and then velocities of 

Fermi electrons are 𝑢𝑓 , then electronic thermal conductivity is given as 

 𝐾𝑒𝑙 =
1

3
𝑐𝑣𝑢𝑓𝜆𝑓         (6.66) 

 Debye observed that the thermal conductivity is a result of lattice vibrations and if the 

lattice vibrations are perfectly harmonic, then thermal conductivity becomes infinity. But in actual 

the vibrations are not harmonic therefore there is a certain value of thermal conductivity. The 

nature of lattice vibration in real crystal in enharmonic which destroy the independent vibration 

modes and different modes interact each other and exchange energy. Therefore, the thermal 

conductivity is the result of anhamonicity of crystal. 
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6.12. THERMAL RESISTIVITY of PHONON GAS (Normal and Umklapp 

Processes) 

 To explain thermal conductivity, there exist mechanisms in the crystal whereby the 

distribution of phonon may be brought locally into thermal equilibrium. This equilibrium 

mechanism is helpful to explain the phonon at one end of the crystal are being in thermal 

equilibrium at temp T1 and the phonons at another end of crystal are in thermal equilibrium at 

temperature T2. If phonons collide with lattice imperfection and with lattice boundaries, they do 

not establish thermal equilibrium because in such collision there is no change in energy of phonons. 

In such process where momentum and energy both remains conserved are called normal process. 

In such three phonon process 

  K1 + K2 = K3  with 𝜔1 + 𝜔2 = 𝜔3         (6.67) 

 Where K is phonon wave vector and 𝜔1 is phonon frequency. Therefore, the normal 

processes do not change in direction of energy flow and hence do not contribute towards the lattice 

thermal conductivity. The flow of phonon is shown in figure 6.7  

 

 

 

Figure 6.7(a): N-Process  Figure 6.7(b): Net flow of phonon in N Process 

6.12.1. Umklapp Process  

According to perfectly harmonic vibrations in crystal, normal process occurs consequently crystal 

have infinite thermal conductivity. Therefore, we consider enharmonic effect. Due to enharmonic 

effect, there is umklapp process (U process) where the energy and moment commutation can 

denote it as 

   K1 + K2 = K3 + G       (6.68) 

 where G is a reciprocal lattice vector. This process was discovered by Pearls. Such 

processes are always probable in the crystal lattice. 

     Hot end                            Cold 

end 

 

Figure 6.8 (a): U-Process   Figure 6.7(b): Net flow phonon in U Process        

K1 

K3 

K2 

K2 

K1 

K3 G 
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 Collisions corresponding to G=0 are called Normal process or N process. In Umklapp 

process, if K1 and K2 are larger such that the phonon wave vector K3 = K1 + K2 is going out side, 

the first Brillion zone, then K3 can bring into first Brillion zone with the help of reciprocal lattice 

vector G as given in eq. (6.68). The anharmonic phonon interaction, U process, is given in figure 

6.8. The energy of phonons K1, K2 suitable for occurring U process in of order 
1

2
𝑘𝐵𝑂. The U 

process also conserves energy as given in equation (6.68). The variation of thermal conductivity 

with temperature is shown in figure 6.9. 

 

    K 

 

 

𝑇 → 
Figure 6.9: Variation of Thermal conductivity 

 

6.13 IMPERFECTIONS 

The shape and size also plays the significant role in the determination of mean free path 𝜆. We 

must consider the scattering by crystal boundaries, chemical impurity, lattice imperfection and 

amorphous structure in the crystal. If the mean free path becomes comparable to the size of width 

of specimen, the value of mean free path 𝜆 is limited by width, and at low temperature thermal 

conductivity become the function of width of specimen. At low temperature, U process becomes 

ineffective and size effect become significant for the determination of thermal conductivity. 

 We can consider 𝜆 as constant and thermal conductivity can be given as  

   𝐾 =
1

3
𝐶𝑉𝑣𝐷         (6.69) 

 where D is diameter of sample. The only temperature dependent term in above equation is 

specific heat CV which is proportional to T3 at low temperature. The variation of K at low 

temperature is shown in figure 6.9. For example, the thermal conductivity of Al2O3 (sapphire) is 

200W/cm-k at 30oK and for Cu (copper) thermal conducted is 100W/CmK.     

6.14 SUMMARY 

1. Specific heat of solid, usually it means the heat capacity at constant volume is define as 

  𝐶𝑉 = (
𝜕𝑄

𝜕𝑇
)
𝑉

= (
𝜕𝑈

𝜕𝑇
)
𝑉
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2. According to classical theory of heat capacity and known as Dulong-Petit law the heat 

capacity (at constant volume) remains same for all solids. Given as 

𝐶𝑣 = (
𝑑𝐸

𝑑𝑇
)
𝑣

= 3𝑁𝑘 = 3𝑅 

3. At thermal equilibrium, occupancy of phonon <n> is called Plank's distribution and 

given by  

   < 𝑛 > =
1

𝑒𝑥𝑝 (
ℏ𝜔

𝑘𝑇
)−1

        

4. Einstein formula for specific heat of solids 

                         𝐶𝑣 = 3𝑅 (
ℏ𝜔

𝑘𝑇
)
2

.
𝑒

ℏ𝜔
𝑘𝑇

(𝑒
ℏ𝜔
𝑘𝑇 − 1)

2 

 If we use a term  
ℏ𝜔

𝑘
= 𝜃𝐸  called Einstein Temperature then equation becomes 

                         𝐶𝑣 = 3𝑅 (
𝜃𝐸

𝑇
)

2

.
𝑒𝜃𝐸/𝑇 

(𝑒𝜃𝐸/𝑇 − 1)2
 

5. Number of modes per unit frequency is called density or states density of modes. Once 

we calculate the density of states (𝜔) , we can calculate the energy of system and heat 

capacity. 

6. The number of modes 𝐷(𝜔)𝑑𝜔 in 𝑑𝜔 range in one dimension can be given as  

   𝐷(𝜔)𝑑𝜔 =
𝐿

Π

𝑑𝑘

𝑑𝜔
𝑑𝜔 =

𝐿

Π

𝑑𝜔

(
𝑑𝜔

𝑑𝑘
)
  

7. In three dimensions, the density of state 𝐷(𝜔) can be calculated as  

   𝐷(𝜔) =
𝑑𝑁

𝑑𝜔
=

𝐿3

2π2 𝑘2 𝑑𝑘

𝑑𝜔
       

   𝐷(𝜔) =
𝑉𝑘2

2π2
 
𝑑𝑘

𝑑𝜔
   

8. Debye assumed that the atoms of crystal form coupled harmonic oscillators and there 

are a range of frequencies rather than a single frequency. Debye proposed that the 

frequency may have values from the low range (sound wave) to high frequency of optical 

wave. These modes of vibrations, per unit frequency range are nothing but density of state. 

According to Debye Model 
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𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

∫
x4ex

(ex − 1)2
𝑑𝑥

𝑥𝐷

0

 

Where   
ℏ𝜔

𝑘𝐵𝑇
= 𝑥  and 𝜃𝐷 is Debye Temperature define as 𝜃𝐷 =

ℏ𝜔𝐷

𝑘
 

At higher temperature T > 𝜃𝐷 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

∫ 𝑥2𝑑𝑥
𝜃/𝑇

0

= 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

. [
𝑥3

3
]
0

𝜃/𝑇

= 3𝑁𝑘𝐵 = 3𝑅 

At low temperature  𝑇 ≪ 𝜃𝐷 

 𝑐𝑣 = 234 𝑁 𝑘𝐵 (
𝑇

𝜃𝐷
)
3

 This is known as Debye T3 low of heat capacity of solids. 

9. The harmonic theory used in the lattice vibrations of solids assumes that the anharmonic 

terms in the lattice potential energy expansion are neglected while the quadratic term is 

retained. However, in actual case the anharmonic terms are also significance. The effect of 

anharmonic interaction in crystal results thermal expansion, thermal conductivity, 

resistance etc. 

10. Coefficient of linear Thermal expansion can be given as 

                                       𝛼 =
1

𝑟0

𝑑<𝑥>

𝑑𝑇
=

3𝑔

𝑟04𝑐2 𝑘𝐵     

11. Gruneisen parameter is measurement of anharmonicity of a crystal and denoted by 𝛾. 

Gruneisen assumed that the lattice vibrational frequency 𝜔 varies inversely as 𝛾th power of 

volume. 

𝜔 =
𝐶

𝑉𝛾     and 𝛾 =
𝑉

𝜔

𝑑𝜔

𝑑𝑉
 

12. In solids, the thermal conduction takes place by two process i.e. conductivity due to 

free elements and coefficient of free electron thermal conductivity is denoted by 𝐾𝑒𝑙, and 

the conductivity due to phonon or lattice vibrations is lattice thermal conductibility 𝐾𝑙𝑎𝑡 . 

   𝐾 = 𝐾𝑒𝑙 + 𝐾𝑙𝑎𝑡    

 Lattice thermal of conductivity can be given as   𝐾𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
1

3
𝐶𝑉𝑣𝜆 

Electronic thermal conductivity is given as   𝐾𝑒𝑙 =
1

3
𝑐𝑣𝑢𝑓𝜆𝑓   

13. If phonons collide with lattice imperfection and with lattice boundaries, they do not 

establish thermal equilibrium because in such collision there is no change in energy of 
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phonons. In such process where momentum and energy both remains conserved are called 

normal process. In such three phonon process 

  K1 + K2 = K3  with 𝜔1 + 𝜔2 = 𝜔3 

14. Due to enharmonic effect, there is umklapp process (U process) where the energy and 

moment commutation can denote it as 

   K1 + K2 = K3 + G 

6.15 GLOSSAR 

Specific heat of solid: amount of heat required to change the temperature of a substance by 1oC. 

Density or states density: number of modes per unit frequency range 

Thermal expansion: Change in size of a solid due to change in temperature.  

Normal process: If phonons collide with lattice imperfection and with lattice boundaries, if there 

is no change in energy of phonons, such process where momentum and energy both remains 

conserved. 

Umklapp process (U process): where the energy and moment commutation takes place. 
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6.18. TERMINAL QUESTIONS 

6.18.1. Short Answer type questions 

Q1. What do you mean by classical theory of heat capacity of solids? Explain Dulong-Petit law. 
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Q2. In Einstein model of heat capacity, explain the behavior of solids at low temperature and high 

temperature. 

Q3. What is Debye model of heat capacity?  

Q4. In Debye model of heat capacity, explain the behavior of solids at low temperature and high 

temperature.  

Q5. What are the drawbacks of Einstein model of heat capacity? 

Q6. Explain the density of mode. Calculate the density of modes for one dimensional crystal. 

Q7. Explain lattice thermal conductivity.  

Q8. Compare lattice thermal conductivity and electronic lattice thermal conductivity. 

Q9.  What is the meaning of Anharmonicity in crystals? 

Q10. Explain thermal expansion.  

Q. What is Gruneisen parameter?  Show that the lattice vibrational frequency 𝜔 varies inversely 

as 𝛾th power of volume. 

6.18.2. Long Answer type questions 

Q1. Explain the Einstein model of heat capacity. Find out the expression for heat capacity and 

explain the behavior of solids at low temperature and high temperature. 

Q2. Explain the Debye model of heat capacity. Find out the expression for heat capacity and 

explain the behavior of solids at low temperature and high temperature. How this model is different 

from Einstein model. 

Q3. On the basis on anharmonicity explain the thermal conductivity of solids. 

Q4. Find out the thermal expansion for solids on the basis of anharmonicity. 

Q5. Calculate the density of state in three dimensional crystals.  
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7.1 INTRODUCTION 

In previous units we studied that many properties of solids can be studied by structure of solids. 

But many properties of solids like conductivity, electric or magnetic susceptibility can be 

explained with the help of free electron theory. According to this model it is assumed that the 

conduction electrons of the atoms leave the atomic shells and move freely inside the solid.  The 

metals are one of the important classes of solids and have a large number of free electrons. For 

example, electric configuration of magnesium and cupper are Mg12 = 1s2, 2s2, 2p6, 3s2 and Cu29 = 

1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s1. The outermost electron of Mg and Cu are 3s2 and 4s1 respectively, 

and these electrons leave the orbits, and become free electron. In this theory it is assumed that the 

motions of free electrons are independent from the motion of ion core. The ion core fill only 15% 

of the volume of solid the rest of the volume is filled by free electrons.  

 Further, in lattice vibrations theory, we ignored the effects occurring due to electrons in crystals. 

We supposed that the electrons surrounding the nucleus of an atom are tightly bound. This 

assumption is valid for insulators, but not for metal and semiconductors. To understand the 

properties of metal and semiconductors, it is essential to understand the behavior of electrons. The 

free electron theory was successful in explaining the properties such as electrical conductivity, 

thermal conductivity etc. Although, it was unable to explain even the observed facts that why some 

solids are conductors and some insulators. We know several types of energies associated with the 

atom, like heat energy, electrical energy, light energy and so on and so forth. But we know that the 

atoms and molecules can be described by quantum mechanics. In the quantum mechanics the 

scientists trust on the Fermi energy to define the energy of the electrons.  In 1927, Pauli applied 

quantum statistics to explain the weak para magnetism of alkali metals, that was the first success 

of the theory. The very subsequent year Sommerfeld published an improved free electron theory 

by switching classical statistics of Maxwell Boltzmann by Fermi Dirac statistics. The Sommerfeld 

free electron theory of metal could be better explained as the statistical behavior of the gas obeying 

Fermi Dirac statistics. In this unit, we shall study concept of free electron theory, Lorenz Drude 

theory, electrical conductivity, thermal conductivity, Fermi energy, Density of states, heat capacity 

of free electrons.  

7.2 OBJECTIVE 

After studying this unit, you should be able to- 

 Understand the free electron theory. 

 Energy level in one dimension 

 Fermi energy and density of states. 

 Fermi Dirac energy distribution 

 Heat capacity of electron gas 

 Apply free electron theory to calculate electrical conductivity, thermal conductivity. 
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 Hall Effect 

 Solve problems using Fermi energy and density of states. 

7.3 FREE ELECTRON THEORY 

The Drude theory model of electrical conduction was proposed in 1900 by Paul Drude to explain 

the transport properties of electrons in materials especially metals. The model, which is an 

application of kinetic theory, assumes that the microscopic behaviour of electrons in a solid may 

be treated classically and looks much like a pinball machine, with a sea of constantly jittering 

electrons bouncing and re-bouncing off heavier, relatively immobile positive ions. The metals 

consist of positive ion cores with valence electrons moving freely among these cores. The electrons 

are however bound to move within the metal due to electrostatic attraction between the positive 

ion cores and the electrons. The potential field of these ion cores, which is responsible for such an 

interaction, is assumed to be constant throughout the metal and mutual repulsion among the 

electrons is neglected. The behaviour of free electron moving inside the metals considered to be 

similar to that of atoms or molecules in the perfect gas. These free electrons are therefore referred 

to as free electron gas and the theory is named as free electron gas model. These free electrons are 

known as the conduction electrons. The total energy of conduction electron is equal to its kinetic 

energy. Also, since the movement of conduction electrons is restricted to within the crystal only, 

the potential energy of a stationary electron inside metals is less than the potential energy of 

identical electrons just outside it. This energy difference serves as the potential barrier and stops 

the inner electrons from leaving the surface of the metal. Thus, in free electron Gas model, the 

movement of free electrons in a metal is equivalent to the movement of free electron gas inside a 

potential energy box.  

7.3.1 Lorentz Drude Theory 

The Drude model is a purely classical model and treats both electrons and ions as solid spheres.  

On the basis of Drude considerations that the electron gas behaves as perfect gas, Lorentz 

postulated in 1909 that the electrons constituting the electron gas obey Maxwell Boltzmann 

statistics under the equilibrium conditions. These shared ideas of Drude and Lorentz establish the 

Drude Lorentz theory. The basic assumptions of Lorentz Drude theory are 

(i) In metals, there is large number of free electrons. These electrons are free to move 

about the volume of the metal as the molecules of a perfect gas in a container, 

(ii) Free electron motion in a metal is similar to the thermal agitation of a perfect gas. The 

assembly of free electrons in a metal is called the electron gas. The electrical and 

thermal conductivity of metals is due to these free electrons. 

(iii) In metals, the free electrons move randomly in all possible directions with different 

velocity like the molecules of a perfect gas. The average kinetic energy of an electron 

is 3kT/2, where k is Boltzmann’s constant and T absolute temperature. 
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(iv) In the lattice, the free electrons make collisions from time to time with fixed positive 

ions.  

(v) In the absence of external electrical field, the random motion of free electrons is equally 

probable along all directions. In presence of external electric field, the electrons drift 

slowly with some average velocity, known as average drift velocity, in the direction 

opposite to that of electric field.  

(vi) The free electrons are accelerated and gain some additional kinetic energy in the 

presence of external electric field. The accelerated free electron on collision with 

positive ion fixed in the lattice loses its additional kinetic energy. Such a collision is 

called inelastic collision. 

(vii) Between two successive collisions with the positive ions, the average distance traversed 

by the free electron is known as mean free path denoted by . 

 

7.4 ENERGY LEVELS of FREE ELECTRONS in SOLIDS (One 

Dimensional case) 

Consider a free electron gas in a one dimensional case. By quantum mechanics we can find out the 

energy levels and wave function for electron gas. For simplicity, first we consider one dimensional 

case and we can extend the same theory for three dimensional case. Suppose an electron of mass 

m confined to a length L by infinite barrier and 𝜀𝑛 is the energy of nth orbit. If the wave function 

for such electron is 𝜓𝑛 , then Schrodinger wave equation can be given as 

𝐸𝜓 = 𝐻𝜓 

 𝜀𝑛𝜓𝑛 = −
ℏ2

2𝑚
 
𝑑2𝜓𝑛

𝑑𝑥2 + 𝑉𝜓𝑛     (7.1)  

For free electron we neglect the potential energy term 𝑉 then 

 −
ℏ2

2𝑚
 
𝑑2𝜓𝑛

𝑑𝑥2 = 𝜀𝑛𝜓𝑛      (7.2) 

 
𝑑2𝜓𝑛

𝑑𝑥2
+ 𝑘2 𝜓𝑛  = 0    where 

2𝑚𝜀𝑛

ℏ2
= 𝑘2  (7.3) 

 Mathematically the solution of above equation can be given as 

𝜓𝑛  = 𝐴 sin 𝑘𝑥 + 𝐵 sin 𝑘𝑥      (7.4) 

where A and B are constants.     

Using boundary conditions in eq. 7.4 as 

At x= 0, 𝜓𝑛 = 0 then 0 = 0 + 𝐵 sin 𝑘𝑥 ⇒ 𝐵 = 0 
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At x= L, 𝜓𝑛 = 0 then 0 = 𝐴 sin 𝑘𝐿   ⇒   𝑘𝐿 = 𝑛𝜋   ⇒   𝑘 =
𝑛𝜋

𝐿
 

Thus the wave function   𝜓𝑛  = 𝐴 sin
𝑛𝜋

𝐿
𝑥    (7.5) 

     From eq. 7.3 Energy of nth level 𝜀𝑛  =
ℏ2

2𝑚
(𝑘2) =

ℏ2

2𝑚
(
𝑛𝜋

𝐿
)
2

  (7.6) 

Equation 7.5 and 7.6 represent the wave function and energy of free electron in a solid, as shown 

in figure 7.1. Wave function has a sine wave shape. If there is N number of electrons in the solid 

than according to Pauli principle, no two electrons have same set of all quantum numbers. Thus 

the orbits can be filled in such a manner that each electron has different quantum number. 

However, one orbit may have same energy. The number of orbital with same energy is called 

degeneracy. If we start the filling of electrons from bottom n=1, and continue the filling the higher 

levels until all N electrons are accommodated then the topmost filled level is called Fermi level 

and denoted by 𝑛𝐹 .  

 

Figure7.1: Wave function and energy states of free electron in a solid. 

 

7.4.1 Fermi Energy 

Fermi energy is defined as the energy of the topmost filled level in the ground state of N electrons. 

As given in equation 7.6 the Fermi energy can be given as 
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                                         𝜀𝐹  =
ℏ2

2𝑚
(
𝑛𝐹𝜋

𝐿
)
2

                         (7.7) 

. The Fermi energy is a concept in quantum mechanics usually referring to the energy difference 

between the highest and lowest occupied single-particle states in a quantum system of non-

interacting fermions at absolute zero temperature. In a Fermi gas, the lowest occupied state is taken 

to have zero kinetic energy, whereas in a metal, the lowest occupied state is typically taken to 

mean the bottom of the conduction band. 

 

 

 

 

7.4.2 Calculation of Fermi Energy 

Suppose a given metal contains N free electrons. We can calculate its Fermi energy by filling up 

its energy states. At T=0, starting from  0  , all quantum states upto
F  are filled. 

That is  

0

( )
F

N n d



    

or, 3/2 1/2

3

0

8 2 F

N Vm d
h



   
 

or we get, 
2/32 3

2 8
F

h N

m V




 
  

   (7.8) 

This is the expression for the Fermi energy of a metal at T=0, the N/V is the density of free 

electrons. Thus, the Fermi energy is independent of the size of metal. Fermi energy can be written 

in terms of Fermi temperature defined as
F FkT  , where k is the Boltzmann’s constant 

 

7.5 FERMI DIRAC DISTRIBUTION FOR ELECTRON GAS IN 

METAL 

In a metallic solid, the valence electrons are loosely bound to the individual atoms; we can treat 

these electrons as an ideal electron gas. Since electrons are Fermi particles, they obey Pauli’s 

exclusion principle and Fermi Dirac distribution law. 

According to this law, the number of electrons 
in with energy 

i  is given by 

/
1F B

i

i k T

g
n

e
 




,          (7.9) 
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where 
ig is the number of quantum states having the energy 

i  

In a solid, there are 1022 to 1023 atoms/ cm3 and the same number of valence electrons. As such 

there are an enormous number of quantum states which the electron can occupy. 

So, the number of electrons in energy ranges   to d   

/

( )
( )

1F Bk T

g d
n d

e
 

 
 




          (7.10)
 

where ( )g d  is the number of quantum states available to these electrons.  

It can be shown that the number of allowed energy values between  to d  is 

3/2 1/2

3

4 2
( )g d Vm d

h
     , where m is the mass of electron and V is the volume of the electron gas.  

Since there are two possible spin states (
1

2
 ,

1

2
 ) for an electron, each energy value can have by 

two electrons.  

Therefore, the number of energy states available to the electrons having energy between  to d 

is given by 

3/2 1/2

3

8 2
( )g d Vm d

h
    

        (7.11)
 

Hence 3/2 1/2

3 ( / )

8 2 1
( )

1F Bk T
n d Vm d

h e
 

    



       (7.12) 

( )n  , is known as Fermi Dirac distribution function which give the number of electrons in an 

energy state 𝜀𝐹 .  

7.5.1 Effect of Temperature on Electron Distribution in Solids 

The ground state is a state at which all N atoms at absolute zero temperature. Now we will see 

the behaviours of electron distribution at different energy levels when temperature increases. For 

simplicity, above distribution function can be given as 

𝑃(1, 𝜀𝐹) =  
1

exp((𝜀−𝜇)/𝑘𝑇)+1
          (7.13) 

Where P probability distribution in energy state 𝜀𝐹 at temperature T , 𝜇 is chemical potential. 

The kinetics energy of electron gas increases with temperature. When temperature increases, 

some energy states become occupied which were vacant at absolute zero and some states become 

vacant which were occupied at absolute zero temperature. Fermi-Dirac distribution function 
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gives the probability that an orbit of energy 𝜀𝐹  at temperature T will be occupied in an electron 

gas in thermal equilibrium. Equation 7.13 can be given as 

                                              𝑓(𝜀) =  
1

 𝑒(𝜀−𝜀𝐹)/𝑘𝑇+1
     (7.14) 

Some time we use Chemical potential( 𝜇) in place of Fermi energy 𝜀𝐹 , which is function of 

temperature.  

At temperature T=0; if 𝜀 > 𝜀𝐹 eq. 7.14 becomes 

𝑓(𝜀) =  
1

 𝑒(𝜀−𝜀𝐹)/0 + 1
=

1

 𝑒∞ + 1
= 0 

And At temperature T=0; if 𝜀 < 𝜀𝐹 eq. 7.14 becomes 

𝑓(𝜀) =  
1

 𝑒(𝜀−𝜀𝐹)/0 + 1
=

1

 𝑒−∞ + 1
= 1 

Therefore at temperature T=0, the function 𝑓(𝜀) changes from the value 1(filled state) to 0 

(empty state) as shown in figure 7.2. At absolute zero temperature 𝜇 = 𝜀𝐹. It is clear from the 

picture, the Fermi energy 𝜀𝐹  is the energy of topmost filled orbit at absolute zero. At absolute 

zero temperature, all states have energy more than Fermi energy, are empty as  𝑓(𝜀) = 0.  

At all temperature 𝑇 ≠ 0, if 𝜀 = 𝜀𝐹 ,  

𝑓(𝜀) =  
1

 𝑒0 + 1
=

1

 1 + 1
= 1/2 

The 𝑓(𝜀)  if is equal to 1/2. Thus at all temperature 𝑇 ≠ 0, at Fermi level the Fermi Dirac 

distribution function becomes ½  as shown in figure 7.2. 
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                                     Figure 7.2:  Fermi Dirac distribution function  

 

7.6. FREE ELECTRON GAS IN THREE DIMENSIONS 

Consider the behavior of free electron gas in 3D metallic crystal. The potential of the electrons 

inside the crystal is constant and may be taken zero, whereas it has a large value outside the crystal. 

For simplicity, the 3D crystal may be regarded as a cubical box having length of the edge equal to 

L. the free particle Schrodinger equation in 3D is given as 

2 2
( ) ( ) 0k k k

m
r E r   

       (7.15) 

This is standard equation and the solution of it given by 

( ).( ) x y zi k x k y k zik r

k x Ae Ae
 

 
       (7.16) 

Where, A is an arbitrary constant. Such wave function must satisfy the periodic boundary 

conditions. They must be periodic in x, y, z with period equal to L. these boundary conditions are  

( , , ) ( , , )k kx L y z x y z  
       (7.17) 

( , , ) ( , , )k kx y L z x y z  
 

( , , ) ( , , )k kx y z L x y z  
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An application of the first boundary condition in (7.17) to the wave function (7.16) gives 

1xik L
e 

 

or, 
2 4

0, , ,......xk
L L

 
  

 

Similar results are obtained for ,y zk k  

The allowed Eigen values of the state or orbital with wave vector k are obtained  

2 2 2
2 2 2( )

2 2
k x y z

k
E K k k

m m
   

      (7.18) 

Where the magnitude of the wave vector k is related to the wavelength  as 

2
k




  

Thus, it is easy to see the energy spectrum consists of discrete energy levels. These energy levels 

are very close to each other. 

In a system of N free electrons, the occupied states or orbitals in the ground state may be 

represented by points inside a sphere in the k space. The energy corresponding to the surface of 

the sphere represents the Fermi energy as shown in figure 5.2. Let Fk be the wave vector from the 

origin of the k space to the surface of the sphere. Then the Fermi energy is written as  

2 2

2

F
F

k
E

m


          (7.19) 

Fermi sphere volume is given by  

34

3
Fk

 

Volume occupied by one state in k space  

32
( )

L


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Figure 7.3: Fermi Sphere and surface in k space, kF is radius of Fermi sphere. 

 

The total number of electronic states or orbitals is (the number of states is equal to number of 

electrons) 

3 34 2
(2) / ( )

3
FN k

L




         (7.20) 

Where a factor 2 appears because there are two allowed values for each orbital. So, we get 

2
1/33

( )F

N
k

V




         (7.21) 

Therefore, eq (7.20) and (7.21), we get the expression of Fermi energy  

2 2
2/33

( )
2

F

N

m V


 

          
(7.22) 

The electron velocity Fv  at the Fermi surface is obtained  

 
2

1/33
( )F

F

k N
v

m m V


 

         (7.23) 
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(Particle velocity is given by /F Fv k m ) 

The density of state function is obtained by using the fact that at absolute zero, all the energy 

states below Fermi energy are occupied and the total number of states is equal to the number of 

electrons. 

0
( ) ( )

F

N D f d


   
         (7.24) 

𝑁 =
𝑉

3𝜋3
(
2𝑚𝜀

ℏ2
)
3/2

 

So, from (7.24) and (7.22), on solving we get 

                                            𝐷(𝜀) =
𝑑𝑁

𝑑𝜀
=

𝑉

2𝜋2
(
2𝑚

ℏ2
)
3/2

𝜀1/2                             (7.25)    
 

 Figure 7.4 shows the Density of state as a function of energy. The dashed line represents 

the density function of filled orbits at finite temperature. If kT is small comparative to Fermi 

energy, it represents the filled orbit at 0K. If average energy increases, the electrons are shifted 

from region 1 to 2. 

 

Figure 7.4: Density of state as a function of energy  
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7.6.1 Average Kinetic Energy 

Average Kinetic Energy is defined as 

0

1
( ) ( )

F

D f d
N



       

Putting the values of ( )D   and Fermi function and integrating we get 

 

3

5
F   

or we can write at absolute zero as 

00

3

5
F            (7.26) 

 

7.7 ELECTRICAL CONDUCTIVITY 

Let the time taken between two successive collisions be  and velocity along one direction u, then 

u


  , where  is the mean free path 

If the applied field on the electron of charge –e be E, then the equation of motion of electron is 

2

2

d x
m eE

dt
   

or, 
2

2
/

d x
eE m

dt
   

Integrating it, we get 

dx eE
t C

dt m
    

At t=0, dx/dt=0 

Therefore C=0 

Hence, 
dx eE

x t
dt m

    

Average velocity between two collisions is defined as 
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0

1 eE
x tdt

m




    

On solving we get 

2

eE
x

m


  

If J is the current density and n the number of electrons per unit volume, then we have 

J nex  , putting the values, we get,  

21

2

ne E
J

m u


            (7.27) 

Since we know 21
3

2
mu kT          (7.28) 

Therefore from eq.(7.27) and eq. (7.28), we get 

2

6

ne E u
J

kT


            (7.29) 

or J E  

where 
2

6

ne u

kT


            (7.30) 

which is defined as electrical conductivity. 

 

7.8 THERMAL CONDUCTIVITY 

Thermal conductivity is a process in which heat is transferred from one part of the body to another 

as a result of temperature gradient. In order to calculate the thermal conductivity, let us draw three 

parallel planes at E X and F, as shown in figure 7.5,  normal to the direction of heat flow which 

are separated by mean free path  , if two temperatures are equal, T1=T2, then there is no exchange 

of energy. 



             MSCPH506 

156 
 

 

Figure 7.5: Heat conduction from one part of body to another 

If T1is greater than T2, there is an exchange of energy from A to B, therefore the number of 

electrons per unit area per unit time is 
6

nu
 and each electron has energy 

2

1

2

mu
. 

Thus, Energy transferred from A to B 

2

1

6 2

munu


 

13

6 2

Bk Tnu


 

1

1

4
Bnuk T

 

Likewise, the energy transferred from A to B 

1

1

4
Bnuk T

 

Therefore, the net energy transferred from A to B per unit area per unit time 
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1 2

1
( )

4
Bnuk T T 

 

Therefore, the transfer of energy per unit area per unit time, when K is the thermal conductivity  

1 2( )

2

K T T






 

On solving  

1 2

1 2

( ) 1
( )

2 4

T T
K nuk T T




 

 

1

2
BK nuk

           (7.31)
 

where 
Bk is Boltzmann constant. 

Dividing (7.31) by (7.30), we get 
21

/
2 6

B

K ne u
nuk

kT





  

or  23( / )B

K
k e T




          (7.32)
 

or 
K

T

 , or 

K
LT


 .This is known as Wiedemann-Franz relation where the constant of 

proportionality L is called the Lorenz number. For metals, the thermal conductivity is quite high, 

and those metals which are the best electrical conductors are also the best thermal conductors. At 

a given temperature, the thermal and electrical conductivities of metals are proportional, but raising 

the temperature increases the thermal conductivity while decreasing the electrical conductivity. 

This behaviour is viewed in the Wiedemann-Franz Law. 

 Qualitatively, this relationship is based upon the fact that the heat and electrical transport both 

involve the free electrons in the metal. The thermal conductivity increases with the average particle 

velocity since that increases the forward transport of energy. However, the electrical conductivity 

decreases with particle velocity increases because the collisions divert the electrons from forward 

transport of charge. This means that the ratio of thermal to electrical conductivity depends upon 

the average velocity squared, which is proportional to the kinetic temperature. 

Self-Assessment Question (SAQ) 1:  A uniform copper wire of length 0.5 m and diameter 0.3 

mm has a resistance of 0.12 Ohm at 293 k. If the thermal conductivity of the specimen at the same 

temperature is 390 Wm-1K-1, calculate the Lorentz number. Compare the value with the theoretical 

value. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/conins.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1


             MSCPH506 

158 
 

7.8.1 Ohm’s Law from Free Electron Theory 

We know from Lorentz-Drude theory,
2

F

ne
J E

mv


  , if I is the current flowing through a 

conductor of l length and area of cross section A and potential difference V, then 

/J I A and /E V l  

or, 
2

/
F

ne V
I A

mv l


  

or. 
2

F

ne AV
I

mv l


 for a given conductor, if the physical conditions do not change l, A,   , Fv  are 

constant.  

 

Hence, I V , that is at given physical conditions the current flowing through a conductor is 

proportional to the potential difference across it. That is Ohm’s law. 

7.9 ELECTRICAL CONDUCTIVITY OF METALS 

The mechanism of electrical conductivity of metal can be understood by the free electron theory. 

The crystal lattice of a metal consists of positive ions at the lattice points and the valence electrons 

free to move inside the crystal. When there is no electric field applied, the free electrons move in 

the random direction inside the crystal. It is because of that the electrons collide frequently with 

the imperfection in the crystal lattice, which occurs with the thermal vibrations of the ions about 

their equilibrium positions in the lattice and also from the presence of impurity ions. Following 

each collision, the electron is scattered in the new directions with new speeds, which makes their 

random motion. Let  be the average time between successive collisions of an electron, which 

gives
Fv


  . Where  is the average distance between collisions and Fv is the speed of those 

electrons whose kinetic energy is equal to the Fermi energy. It should be noted that electrons which 

are near the Fermi level contribute to the conductivity. In the presence of applied the electric field 

to the metal, the electrons modify their random motion in such a way that on an average they drift 

slowly in the direction opposite to that of the field (since electrons have negative charge) with a 

small speed, which is known as drift velocity, dv . When electric field is applied to an electron in 

the metal exerts on it a force eE , which gives acceleration to electron, that is 

eE
a

m
 , where e and m are the charge and mass of electron respectively. Consider an electron that 

has just collided with the lattice imperfection. The drift speed of electron has become momentarily 

zero and it would now move in a purely random direction, gaining a drift speed a just before its 

succeeding collision. Therefore, the average drift speed during the interval of  is given as 
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2
d

a
v


  

or, 
2

d

eE
v

m


  

placing the value of , we get 

2
d

F

eE
v

mv


  

If n is the number of electrons per unit volume in the conduction band of the metal, then the 

current density j  is given as  

dj nev  

or, 
2

2 F

ne E
j

mv


  

We know the resistivity  of the metal, which is defined as  

E

j
   

Hence, we obtain 

2

2 Fmv

ne





  
 

This form is a sort of Ohm’s law, since the quantities Fv  and  which determine  do not depend 

on the applied field. Therefore, at given temperature the resistivity   is a constant for a given 

metal.   

Since conductivity of metal is defined as  

 

1/   

or, 
2

2 F

ne

mv


            (7.33) 

Mobility is defined as  

/dv E   

or, 
2 F

e

mv


   
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Putting this expression in equation (7.33), we get  

ne   

This is the general expression for conductivity. If the conductivity is due to holes and electrons, 

then the expression becomes 

e e h hn e n e     

Where, h and e are the mobility due to holes and electrons respectively.  

 

7.9.1 Effect of Temperature on Conductivity of Metals 

On increasing temperature of the metals, its conductivity decreases and the resistivity increases.  

In the metallic lattice, metals have electrical resistivity due to the scattering of free electrons by 

the imperfections. There are two types of imperfections. 

1. Occurring due to the thermal vibrations of the positive ions about their equilibrium 

positions in the lattice. 

2. Occurring due to structural defects as presence of impurity ions. Hence the resistivity of a 

metal can be given as 

t i     

Here t the resistivity due to thermal imperfections and i  is caused by impurity or structural 

imperfections. As the temperature increases, the amplitude of ion vibrations increases, because of 

that the scattering cross section of the ions increases. Hence, the resistivity t increases. The 

vibration of t with temperature is of the form 5

t T   at low temperature and t T   at high 

temperatures. We can explain metallic resistivity by this expression 

Fv



  

On rising temperature, the electron speed Fv increases and the mean free path  decreases, 

therefore, the resistivity  increases.  On the other hand, the resistivity i is independent upon 

the temperature. 

 

7.10 HALL EFFECT 

If a current carrying conductor placed in a perpendicular magnetic field, a potential difference will 

generate in the conductor which is perpendicular to both magnetic field and current. This 

phenomenon is called Hall Effect. Hall Effect is an important tool to characterize the materials 

especially semiconductors. It directly determines both the sign and density of charge carriers in a 

given sample. 

 Consider a rectangular conductor of thickness d kept in XY plane as shown in figure 7.6. An 

electric field is applied in X-direction so that current I flow through the sample. If w is the width 

of the sample and d is the thickness. There for current density is given by 
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Jx= I/wd              (7.34) 

  

  

Figure.7.6:  Schematic representation of Hall Effect in a conductor. JX – current density, B – 

applied magnetic field, d – thickness, w – width, VH – Hall voltage  

  

If the magnetic field is applied along negative z-axis, the Lorentz force moves the charge carriers 

(say electrons) toward the y-direction. This results in accumulation of charge carriers at the top 

edge of the sample. This set up a transverse electric field Ey in the sample. This develop a potential 

difference along y-axis is known as Hall voltage VH and this effect is called Hall Effect.  A current 

is made to flow through the sample material and the voltage difference between its top and bottom 

is measured using a volt-meter. When the applied magnetic field B=0, the voltage difference will 

be zero. 

We know that current flows in response to an applied electric field with its direction as 

conventional and it is either due to the flow of holes in the direction of current or the movement 

of electrons backward. In both cases, under the application of magnetic field the magnetic Lorentz 

force 𝐹 = 𝑞(𝑉 × 𝐵), causes the carriers to curve upwards. Since the charges cannot escape from 
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the material, a vertical charge imbalance builds up. This charge imbalance produces an electric 

field which counteracts with the magnetic force and a steady state is established. The vertical 

electric field can be measured as a transverse voltage difference using a voltmeter. In steady state 

condition, the magnetic force is balanced by the electric force. Mathematically we can express it 

as 

𝑒𝐸 = 𝑒𝑉𝐵         (7.35) 

Where 'e' the electric charge, 'E' the hall electric field developed, 'B' the applied magnetic field and 

'v' is the drift velocity of charge carriers. And the current 'I' can be expressed as, 

𝐼 = 𝑛𝑒𝐴𝑣          (7.36) 

Where 'n' is the number density of electrons in the conductor of length l, breadth 'w' and thickness 

'd'. 

Using (7.33) and (7.34) the Hall voltage VH can be written as, 

𝑉𝐻 = 𝐸𝑤 = 𝑣𝐵𝑤 

Putting value of v from above eq. 7.36 

𝑉𝐻 =
𝐼𝐵

𝑛𝑒𝑑
 

                                                                  𝑉𝐻 = 𝑅𝐻
𝐼𝐵

𝑑
       (7.37) 

Where eq. 7.37 gives Hall Voltage. The Hall coefficient 𝑅𝐻 is defined as 

                                                                           𝑅𝐻 =
1

𝑛𝑒
=

𝐸𝑦

𝐽𝑥𝐵
       (7.38) 

 

 

7.11 HEAT CAPACITY OF FREE ELECTRON GAS 

Electron heat capacity or electronic specific heat describes the contribution of electrons to the heat 

capacity. Heat is transported by phonons and by free electrons in solids. For pure metals, however, 

the electronic contributions dominate in the thermal conductivity. In impure metals, the electron 

mean free path is reduced by collisions with impurities, and the phonon contribution may be 
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comparable with the electronic contribution. Theoretically the specific heat of metal shall get 

contribution from the atoms as well as free electrons 

atomic electronicc c c   

Since the FT (Fermi Temperature) is of the order of 104K, as the temperature increase some of the 

electrons close to the Fermi energy level are moved to occupy higher energy states due to the 

thermal excitation (around 100K). It is only a fraction of electrons with energy near Fermi energy 

which can be excited. For most electrons, the states to which they will be excited are already 

occupied and because of the Pauli exclusion principal, they cannot be excited into these states. 

The electrons in the metal which contribute to conduction are very close to the Fermi level. But to 

contribute to bulk specific heat, all the valence electrons would have to receive energy from the 

thermal energy Bk T  . But the Fermi energy ( B Fk T  ) is much greater than thermal energy, and the 

majority of the electrons cannot receive such energy since there are no available energy levels 

within of their energy.  

The small fraction of electrons which are within Bk T  of the Fermi level does contribute a small 

specific heat, and this electron specific heat becomes significant at very low temperatures. Using 

Fermi-Dirac statistics (as opposed to Einstein-Bose for phonons), a small fraction of the electrons 

is available to participate in specific heat. This fraction contributes a specific heat. 

Excited electrons will be only fraction given by 

/B B Fk T k T  

B Fk T  Corresponds to all the states and Bk T corresponds to the energy of thermal excitation.

/ /B B F Fk T k T T T , These are the fraction of electrons excited thermally. And each of them has 

the excitation of Bk T . Therefore, the excitation energy is of the order of 

( / )B Fk T T T  

Or, 2 /B Fk T T   

By definition of specific heat 

2( / )e B F

d
c k T T

dT


 

2 /e B Fc k T T , or we can write 

 

ec T , where (2 / )B Fk T   is constant.  
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We know by Debye theory the specific heat due to lattice vibration 

3

atomicc T  

Thus, the total specific heat as shown in figure 5.4, is given by the sum of these two 

3

atomic electronicc c c T T    
 

 

 

Figure 7.7: Specific heat with temperature 

At very low temperature the atomic specific heat becomes small and the electronic specific heat 

becomes relatively high. For, example the atomic heat of silver becomes very small compared to 

its electronic specific heat from the temperature range 3K. In specific heat measurement Keesom 

and Cock found that in the range from 1.5 to 3K the specific heat varies according to ec T . This 

suggests that below the 3K for silver, free electrons become the chief contributor to the specific 

heat. Thus, the Fermi Dirac statistics has solved the problem of specific heat of metals. 

 

 

Self-Assessment Question (SAQ) 2: Calculate the Fermi energy in electron volts for sodium 

assuming that it has one free electron per atom. Given density of sodium = 0.97 g cm-3, atomic 

weight of sodium = 23. 

Self-Assessment Question (SAQ) 3: Consider silver in metallic state with one free conduction 

electron per atom. Calculate its Fermi energy. The density of silver is 10.5 gram/cm3 and its atomic 

weight is 108. The Avogadro’s number is 6.02 x 1023 atoms/mole.  
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Self-Assessment Question (SAQ) 4: The Fermi energy for lithium is 4.72 eV at absolute zero. 

Calculate the number of conduction electrons per unit volume in lithium. (h= 6.67 x 10-34 J-sec, 

m=9.1 x 10-31 kg, k=1.38 x 10-23J/K) 

Examples 1:  Calculate the Fermi energy in electron volts for sodium assuming that it has one free 

electron per atom. (Atomic weight of sodium= 23, density of sodium= 0.97 g cm-3 

Solution: we have the expression of Fermi energy
2 2

2/33
( )

2
F

N

m V


   or 

2/32 3

8
F

h N

m V




 
  

   

First calculate / AN
N V

W




 

We know 266 10 / .AN atoms kg mole 
 

Given 30.97 .g cm 
 

or, 3 30.97 10 /kg m  
 
28 3/ 2.53 10 /AN

N V electrons m
W


  

 

Planck’s constant h= 6.62 x 10-34 joule sec, mass of the electron m= 9.1 x 10-31kg 

Putting all these values in
2 2

2/33
( )

2
F

N

m V


    , we get 

105.032 10F jules  
 

Or, 10 195.032 10 /1.6 10 3.14F eV     
 

Example 2: There are 2.54 x 1022 free electrons per cm3 in sodium. Calculate its Fermi energy, 

Femi velocity and Fermi temperature. (h= 6.67 x 10-34 Jsec, m=9.1 x 10-31 kg, k=1.38 x 10-23J/K,  

1eV=1 x 10-19joule) 

Solution: 
2 2

2/33
( )

2
F

N

m V


 

 

First calculate N/V= 2.54 x 1028 / m3, putting in above equation, with the values of m and h, we 

get 

195.0 10 3.1F J eV     

At absolute zero, this is the maximum kinetic energy of the free electron  
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2 191
5.0 10

2
Fmv J 

 

Therefore, on solving 61.05 10 /Fv m s 
 

Fermi temperate is defined as 
19

4

23

5.0 10
3.6 10

1.38 10

FT K
k

 




   

  

Example 3: The Fermi energy in silver is 5.51 eV. What is the average energy of the electrons in 

silver at 0K? At what temperature a classical free particle will have this kinetic energy. 

Solution: At 0K the average energy of an electron is 
00

3

5
F 

 

0

3
5.51 3.31

5
eV   

 

The kinetic energy of a classical particle is  

3

2
kT

 

So, 193
3.31 3.31 1.6 10

2
kT eV J   

 

On solving for T we get 

19
4

23

2 3.31 1.6 10
2.56 10

3 1.38 10
T K





 
   

  

Example 4: The Fermi energy of copper is 7eV. Calculate the average distance (mean free path) 

travelled by the conduction electrons between collisions. (conductivity of copper 6 x 107/ ohm m, 

concentration of valence electrons 8.5 x 1028/ m3) 

Sol: The velocity of electrons is given by
2 F

Fv
m


 , putting the given values you may get

61.6 10 /Fv m s  , Conductivity is given as 
2

2 F

ne

mv


  or 22 /Fmv ne  , putting the given 

values you may get 88 10 m    

Example 5:  What would be the mobility of electrons in copper if there are 9 x 1028 valence 

electrons per metre3 and the conductivity of copper is 6 x 107 mho/meter 



             MSCPH506 

167 
 

Solution: conductivity of metal is given as ne  or
ne


  , putting the given values you may 

get 3 24.16 10 /m Vs    

Example6: Find the average drift velocity of electrons in copper conductor with a cross-sectional 

area of 10-6 m2 carrying a current of 4 x 10-10meter. The atomic weight of copper is 63.6 and the 

density is 8.9 gram/cm3. Avogadro’s number NA= 6.02 x 1023. 

Solution: 28 38.42 10 /AN
atoms m

M


  , you know the relation dj nev , therefore

43.0 10 /d

j i
v m s

ne neA

   
 

 

7.12 SUMMARY 

In this unit, we have briefly reviewed classical kinetic theories of an electron gas both by Drude 

and by Lorentz as simple models of metals. The free electron model explains successfully some 

of the properties of solids, such as electrical and thermal conductivities etc. We have also reviewed 

electrical conductivity of metals in terms of electron collisions and mean free path. The Fermi 

energy is useful in determining the thermal and electrical characteristics of the solids. It is the very 

important concepts in the quantum mechanics and the superconductor physics. It is used to metal, 

insulators and semi-conductors. We learned that the Fermi Level is the highest energy level which 

an electron can occupy at the absolute zero temperature. Since at absolute zero temperature the 

electrons are all in the lowest energy state hence the Fermi level is in between the valence band 

and the conduction band. Free electrons are associated with a continuous energy spectrum and 

bound electrons with a discrete energy spectrum. Moreover, you have learned Fermi Dirac energy 

distribution among free electrons in metals. Now, we understand that at low temperature the 

electronic specific heat of solid is found to be predominant and varies linearly with T.  

7.13 GLOSSARY 

Assumption- supposition. 

Randomly-arbitrarily. 

Collision–accident. 

Bouncing-Recoiling. 

Trust-Belief. 

Immobile-Steady. 
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Imperfection-deficiency. 

Exclusion- rejection. 

Mobility- flexibility. 

Contribute-provide. 

Residual-remaining. 
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7.16 TERMINAL QUESTIONS 

1. What is the relation of electrical conductivity and the thermal conductivity agreeing to free 

electron theory? 

2. What is Fermi energy? 

3. What is the value of Fermi energy at absolute Zero? 

4. What is the value of mean energy in terms of Fermi energy at absolute zero? 

5. How does Fermi energy depends upon temperature? 

6. How does electrical conductivity of a metal depends upon on temperature?  

7. Write the relation of Fermi energy F with Fermi temperature FT
 

8. Why do metals have high electrical conductivity? 

9. Why does metallic resistivity increase with rise in temperature? 

10. What is Hall Effect? 
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True or False types questions 

(i) Fermi energy of a metal depends upon the size of the metal. 

(ii) Fermi energy does not change when two identical metals are joined together. 

(iii) Only electrons near the Fermi level contribute to the conductivity. 

(iv) Conductivity of metals increase with rice in temperature. 

(v) Pure metals have some residual resistivity at absolute zero temperature. 

(vi) Electron, proton and neutron are fermions. 

 Fill in the Blanks 

(i) In Quantum Physics, two or more identical particles are ……... 

(ii) Fermions have…...spin. 

(iii) The highest energy level that can be occupied by an electron in a metal at 0K is 

called……level. 

(iv) The maximum energy that a free electron in a metal can have at absolute zero is 

called…. 

(v) The Fermi energy of a metal at 0 K temperatures depends on …. per unit volume in the 

metal. 

(vi) The ratio of Fermi energy to Fermi temperature equals to… 

(vii) In metals, the average distance covered by free electrons between collisions is called… 

 

Numerical Problems 

1.       The electrical and thermal conductivities of silver at 20oC are 6.22 x 107 / ohm / meter and 

423 W/m/K, respectively. Calculate the Lorentz number on the basis of free electron 

theory. 

2.  Calculate the heat capacity of electron gas at room temperature in copper assuming 

         one free electron per atom. Compare this with the lattice specific heat value of 2.4 x  

         104 J/ kmol/K. the Fermi energy of copper is 7eV. 

3.  A copper wire of cross sectional area 5 x 10-2 sq. cm. carries a study current of 50 amperes. 

Assume one electron per atom; calculate the density of free electrons, the average drift 

velocity and the relaxation time. Given: the resistivity of copper 1.7 x 10-8/ ohm m. 

 

Objective questions 

(i) The formula relating the thermal conductivity and electrical conductivity is 

(a)  /K T const   (b) 2/K T const   (c) / KT const   (d) 2/ KT const 
        (ii) Fermi level is. 

 

 
(a) Lowest level filled with electrons 

(b) Highest level containing electrons 

(c) Sometimes 

(d) Highest vacant level 

(iii) The drift speed of an electron in presence of an electric field E across a metal, having 

relaxation time   is 

(a) / 2eE m (b) / 2e E m (c) / 2eE m  (d) 2 /mE e  

       (iv)  The current density in a metal in terms of drift speed and electron concentration per unit   

volume n is 
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(a) / dne v (b) /dv ne (c) dnev (d) /dev n  

(v) The resistivity of a metal 

(a) Increases linearly with absolute temperature t at high temperatures 

(b) Decreases linearly with temperature T at high temperatures 

(c) is proportional to T3 at high temperatures 

(d) is proportional to T1/3 at high temperatures. 

 

7.17 ANSWERS 

Self-Assessment Question (SAQ): 

1. Given: l=0.5 m, d = 0.3 mm, r = 0.15 x 10-3 m, R = 0.12 W, Lorentz Number =?  

2 2

1 1
R

r r

 

 
 

75.89 10 / m   
 

7

390

5.89 10 293

K
L

T
 

   

8 22.26 10L W K     

2. The Fermi energy is given by 

2 2
2/33

( )
2

F

N

m V


 

 

First, we calculate electron density. Assuming one electron per sodium atom N/V is given 

by 

ANN

V W




 
26 36 10 0.97 10

23

N

V

  


 
28 32.53 10 /electrons m 

 2 2
2/3 193

( ) 5.02 10
2

F

N
jules

m V


   

 

3.145F eV 
 

3. Use the formula 

2 2
2/33

( )
2

F

N

m V


 

 

Here    
27 3/ 58.4 10 /N V atoms m 

 

Putting these values in eq

2 2
2/33

( )
2

F

N

m V


 

 

We get 
198.8 10F J  

 

or, 
5.5F eV 
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4. 

2 2
2/33

( )
2

F

N

m V


 

 

Here N is the number of conduction electrons in a volume V of lithium metal. The 

number of conduction electrons per unit volume is given as 
28 3/ 4.64 10 /N V m 

 

Terminal Questions 

1., ,
K

Const
T
  electrical conductivity and, K thermal conductivity  

2. Fermi energy is the highest energy level containing electrons. 

3. 

2/32 3

8
F

h N

m V




 
  

   

4. 
00

3

5
F 

 

5. Fermi energy increases with increasing temperature. 

6. On increasing temperature, the thermal agitation of electrons increases so electrons collide 

more frequently, thus leading to decrease in relaxation time consequently electrical conductivity 

decreases with increase in temperature. 

7. F FkT  , where k is the Boltzmann constant. 

8. Metals contain free electrons in abundance which is charge carriers. 

9. The metallic resistivity is expressed as
2

2 Fmv

ne





 
As temperature increases, Fv increases and  decreases, so  increases. 

10. (i) F, (ii) T, (iii) T, (iv) F, (v) T, (vi) T 

11. (i) indistinguishable (ii) half integral (iii) Fermi (iv) Fermi energy (v) Number of electrons 

(vi) Boltzmann constant k (vii) mean free path 

 

Numerical Type questions 

12. 2.32 x 10-8 W ohm K-2. 

13. 146 X 102 J kmol-1 K-1, 0.608 %. 

14. 8.4 x 1028 / m3, 7.4 x 10-4 m/s, 2.46 x 10-4 s. 

 

Objective type 

 (i) a (ii) b (iii) b (iv) c (v) a 
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UNIT 8                BAND THEORY OF SOLIDS 

 

Structure  

8.1 Introduction 

8.2 Objectives 

8.3 Bands and Band Gaps in solids 

 8.3.1 Valence Band 

8.3.2 Conduction Band 

8.3.3 Forbidden band 

8.4 Classification of Solids on the Basis of Band Structure 

8.4.1 Conductors 

8.4.2 Semiconductors 

8.4.3 Insulators 

6.5 Bloch Theorem 

6.6 Extended, Reduced and Periodic Zone Scheme 

 6.6.1 Extended Zone Scheme 

 6.6.2 Reduced Zone Scheme 

 6.6.3 Periodic zone Scheme 

6.7 Behavior of an Electron in Periodic Potential 

6.8 Theory of Band Structure in Solids (Kronig Penney Model) 

6.9 Origin of Band Gap 

6.10 Summary 

6.11 Glossary  

6.12 References 

6.13 Suggested Reading 
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6.14 Terminal Questions 

6.15 Answers 

 

8.1 INTRODUCTION 

The electronic band structure of a solid describes the range of energies that an electron within the 

solid may have, named as energy bands, allowed bands, or simply bands and ranges of energy that 

it may not have named as band gaps or forbidden bands. Band theory derives these bands and band 

gaps by examining the allowed quantum mechanical wave functions for an electron in a large, 

periodic lattice of atoms or molecules. Band theory has been successfully used to explain many 

physical properties of solids. In this division, the one-electron energy band theories for the 

crystalline solids are proposed. The significance of energy band theories for a crystalline solid is 

due to the fact that many important physical and optical properties of a solid can be described 

using its energy band structure. In broad, the energy band structure of a solid can be raised by 

solving the one-electron Schrödinger equation for electrons in a crystalline solid that contains a 

large number of interacting electrons and atoms. To simplify the complex work of solving the 

Schrödinger equation for the many-body problems in a crystal, the results that arise from the 

motion of atomic nuclei must be ignored; it is supposed that the nuclei are at rest in the equilibrium 

positions at each lattice site. In this unit, we shall study how the bands are formed and their 

classification on the basis of energy band gap. We shall use the concept of Bloch function to 

discuss the Kronig-Penney model for the behavior of an electron in periodic potential and describe 

how it leads to the origin of the energy bands and the forbidden bands in solids. 

8.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Define origin of energy bands. 

 Apply the theory to classify bands. 

 Understand Bloch function. 

 Motion of an electron in one dimensional periodic potential. 

 Kronig Penney Model and its consequences. 

 Apply the theory to solve problems. 

8.3 BANDS AND BAND GAPS IN SOLIDS 

To understand the physics of energy band, consider a solid enclosing a huge number of atoms 

packed closely together.  Each atom when isolated has a discrete set of electron energy levels 1s, 

2s, 2p, 3s, 3p……. If we consider all the N atoms of the solids to be isolated from one another, 
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then they would have completely coinciding sets of energy levels. That is each of the energy levels 

of the N atoms system would have N fold degeneracy. They fill the energy levels in each atom 

independently. As the atom approach one another to form the solid, a continuous increasing 

interaction occurs between them which causes each of the levels to split into N distinct levels. In 

practice, N is very large, therefore the split energy levels become so numerous and so close 

together that they form an almost continuous energy band. The amount of splitting is different for 

different energy levels as shown in figure 8.1. In general, the lower levels are splitted less than the 

higher levels, the lowest levels remaining almost unsplitted. The reason is that the electrons in the 

lower levels are the inner electrons of the atoms. which are not significantly influenced by the 

presence of nearby atoms. On the other hand, the electrons in the higher levels are the valence 

electrons whose wave functions overlap appreciably. The formation of energy levels for some of 

the higher energy levels of isolated sodium atoms are shown in figure. The 2p level does not split 

until the interatomic distance become smaller than actually found in the solid sodium, the level 1s 

and 2s do not split at all. The 3s level is the first occupied level to be splitted into a band. The 

energy bands in the solid correspond to energy levels in an atom. An electron in a solid can have 

only energies that fall within these energy bands. The various energy bands in solids may or may 

not be overlapping depending upon the structure of the solid. If they do not overlap then the 

intervals between them represents energies which the electrons in the solid cannot have. These 

intervals are called forbidden band gap or the energy band gap. If there is overlapping between the 

bands then they have the continuous distribution of allowed energies. 

 

Figure 8.1: Splitting of Energy levels 

In a single isolated atom, the electrons in each orbit have definite energy associated with it. But in 

case of solids all the atoms are close to each other, so the energy levels of outermost orbit electrons 

are affected by the neighbouring atoms.  

When two single or isolated atoms are bringing close to each other than the outermost orbit 

electrons of two atoms are interact or shared with each other. i.e., the electrons in the outermost 

orbit of one atom experience an attractive force from the nearest or neighbouring atomic 

nucleus.  Due to this the energies of the electrons will not be in same level; the energy levels of 

http://www.physics-and-radio-electronics.com/electromagnetics/electrostatics/atom.html


             MSCPH506 

175 
 

electrons are changed to a value which is higher or lower than that of the original energy level of 

the electron. The electrons in same orbit exhibit different energy levels. The grouping of these 

different energy levels is called energy band. However, the energy levels of inner orbit electrons 

are not much affected by the presence of neighbouring atoms. There are number of energy bands 

in solids but three of them are very important as revealed in figure 8.2. These three energy bands 

are important to understand the behaviour of solids. These energy bands are  

1. Valence Band 

2. Conduction Band 

3. Forbidden Band 

 

 

 

Figure 8.2: Classification of bands 

8.3.1 Valence Band 

The energy band which is formed by grouping the range of energy levels of the valence electrons 

or outermost orbit electrons is called as valence band. Valence band is present below the 

conduction band as shown in figure. Electrons in the valence band have lower energy than the 

electrons in conduction band. The electrons present in the valence band are loosely bound to the 

nucleus of atom. 

8.3.2 Conduction Band  

The energy band which is formed by grouping the range of energy levels of the free electrons is 

called as conduction band. Generally, the conduction band is empty but when external energy is 

http://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/valence-electrons.html
http://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/introduction/free-electrons.html


             MSCPH506 

176 
 

applied the electrons in the valence band jumps in to the conduction band and becomes free 

electrons. Electrons in the conduction band have higher energy than the electrons in valence band. 

The conduction band electrons are not bound to the nucleus of atom.  

8.3.3 Forbidden Band 

The energy gap which is present between the valence band and conduction band by separating 

these two energy bands is called as forbidden band or forbidden gap. In solids, electrons cannot 

stay in forbidden gap because there is no allowed energy state in this region. Forbidden gap is the 

major factor for responsible of electrical conductivity of a solid. The classification of materials as 

insulators, conductors and semiconductors are mainly depending on forbidden gap. The energy 

associated with forbidden band is called energy gap and it is measured in unit electron volt, eV (1 

eV = 1.6 × 10-19 J). The applied external energy in the form of heat or light must be equal to the 

forbidden gap in order to push an electron from valence band to the conduction band.   

 

8.4 CLASSIFICATIO OF SOLIDS ON THE BASIS OF BAND 

STRUCTURE: 

The electrical properties of a solid depend upon its energy band structure. In common, each energy 

band has a total of N individual levels, and each level can hold 2(2l+1) electrons. In this way each 

band has 2(2l+1) N electrons. It means that the 1s, 2s, 2p, 3s…. bands can hold 2N, 2N, 6N, 

2N……electrons respectively. The classification of solids is based upon the nature of band 

occupation by electrons and the width of forbidden bands.  

A useful way to visualize the difference between conductors, insulators and semiconductors is to 

plot the available energies for electrons in the materials as displayed in figure 8.3. Instead of having 

discrete energies as in the case of free atoms, the available energy states form bands. Crucial to 

the conduction process is whether or not there are electrons in the conduction band. In insulators 

the electrons in the valence band are separated by a large gap from the conduction band, in 

conductors like metals the valence band overlaps the conduction band, and in semiconductors there 

is a small enough gap between the valence and conduction bands that thermal or other excitations 

can bridge the gap. With such a small gap, the presence of a small percentage of a doping material 

can increase conductivity dramatically. An important parameter in the band theory is the Fermi 

level, the top of the available electron energy levels at low temperatures. The position of the Fermi 

level with the relation to the conduction band is a crucial factor in determining electrical properties. 
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Figure 8.3: Comparative study of insulator, semiconductor and conductor 

 

8.4.1 Conductors 

In some solids, there is partially filled band above the completely filled lower bands. Such a band 

is formed from partially filled atomic levels as in case of Sodium. A sodium atom has a single 

valence electron in its outer 3s level. Therefore, out of N atoms in a solid material of sodium, each 

contributes only one 3s electron to the solid, and so there are only N valence electrons in the 3s 

band. Thus the balance band 3s is only half full. A partially filled band may also be the result of 

overlapping of a completely filled band and an empty band, as in case of alkaline earth metals. As 

shown in figure the energy band of beryllium in which there is an overlap of the lower energy 

levels of the empty 2p band with the upper energy levels of the completed 2s band. Those electrons 

which would occupy the highest energy levels in the 2s band will actually go into the lowest levels 

of the overlapping 2p band. Thus, levels of the top of 2s band become unoccupied and the band is 

only partially filled. 

When an electric field is applied across a piece of solid sodium, the electrons in the partially filled 

valence band easily acquire additional energy to move to the higher unoccupied energy levels 

within the same band as depicted in figure 6.4, without crossing the energy gap. Thus, a partially 

filled valence band is a feature of conductors. As we know a conduction band is an empty band 

just above the valence band into which electrons can pass. So, in conductors the balance band itself 

is a conduction band. 
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Figure 8.4: Overlapping of bands in conductor 

 

8.4.2 Semiconductor 

 

In semiconductor as shown in figure 6.5, the band gap is small enough that the thermal energy 

can bridge the gap for the small fraction of the electrons.      

       

     
     Figure 8.5: Band gap in semiconductor 

For intrinsic semiconductors like silicon and germanium, the Fermi level is essentially halfway 

between the valence and conduction bands. Although no conduction occurs at 0 K, at higher 

temperatures a finite number of electrons can reach the conduction band and provide some current. 

In doped semiconductors, extra energy levels are added. The increase in conductivity with 

temperature can be modelled in terms of the Fermi function, which allows one to calculate the 

population of the conduction band. However, the doping of semiconductors has a much more 

dramatic effect on their electrical conductivity and is the basis for solid state electronics. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/intrin.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dsem.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html#c1
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8.4.3 Insulator 

In insulators, there is a big gap between valence band and conduction band. Figure 6.6  shows the 

energy bands of diamond. There is an energy band completely filled with electrons and above is 

the empty band separated by a gap of around 7 eV. At least 7eV of energy must be supplied to an 

electron in order to reach the conduction band where it can move freely.  

 

Figure 8.6: Band gap in insulator 

Most solid substances are insulators, and in terms of the band theory of solids this implies that 

there is a large forbidden gap between the energies of the valence electrons and the energy at which 

the electrons can move freely through the material (the conduction band). Glass is an insulating 

material which may be transparent to visible light for reasons closely correlated with its nature as 

an electrical insulator. The visible light photons do not have enough quantum energy to bridge the 

band gap and get the electrons up to an available energy level in the conduction band. The visible 

properties of glass can also give some insight into the effects of doping on the properties of solids. 

A very small percentage of impurity atoms in the glass can give it colour by providing specific 

available energy levels which absorb certain colours of visible light. The ruby mineral (corundum) 

is aluminium oxide with a small amount (about 0.05%) of chromium which gives it its 

characteristic pink or red colour by absorbing green and blue light. While the doping of insulators 

can dramatically change their optical properties, it is not enough to overcome the large band gap 

to make them good conductors of electricity. 

8.5 NEARLY FREE ELECTRON MODEL 

As we discussed earlier, in free electron model the allowed energy for the electrons are distributed 

continuous from zero to infinity depending on wane vector and given as  

𝜀 =
ℏ2

2𝑚
𝑘2 =

ℏ2

2𝑚
(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2) 
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The boundary condition for a cubic crystal can be given as 

𝑘𝑥, 𝑘𝑥, 𝑘𝑥 = 0,±
2𝜋

𝐿
,±

4𝜋

𝐿
+ ⋯ 

Schrodinger wave equation for free electron gas can be given as  

𝑑2𝜓𝑛

𝑑𝑥2
+ 𝑘2 𝜓𝑛  = 0    where 

2𝑚𝜀𝑛

ℏ2
= 𝑘2 

This is standard differential equation. The wave function for the free electron can be given as  

𝜓𝑛(r)  = 𝑒𝑖𝑘𝑟 

The band formation in solids cannot be explained by free electron model because the energy is 

continuous. The band formation of solids is often explained by free electron model. In this model, 

it is assumed that the electrons are perturbed weakly by the periodic potential of ion core of solid. 

The Bragg reflection of electron wave at zone boundaries causes the band gap. At these points, the 

solution of above equation does not exist and the energy pattern is break as shown in figure 8.. In 

figure 8.an energy is shown for free electron model. In figure 8 b, is for nearly free electron model 

with energy gaps at = ±
𝑛𝜋

𝑎
 . The Bragg condition for diffraction at these point is (𝑘 + 𝐺)2 = 𝐾2 

where symbols have usual meaning. The first Bragg reflection and first energy gap occurs at first 

Brillioun zone. Thus we explain the origin of band gap with this model.  

 

Figure 8.7: Energy variation and formation of band gap for free electron (a) and nearly free 

electron (b) 
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8.6 BLOCH THEOREM 

A periodic potential appears because the ions are arranged with a periodicity of their Bravais 

lattice, given by lattice vectors a. 

V(x + a) = V(x) 

The Bloch theorem is a mathematical statement regarding the form of the solutions of the 

Schrodinger equation of an electron moving in a region of periodic potential, such as crystal lattice. 

It states that the eigenfunction of the electronic Schrodinger equation for a periodic potential are 

of the form .( ) ( )ik r

kr e u r  , where the function ( )ku r  has the period of the crystal lattice and k

is the wave vector. This is the statement of Bloch theorem which means that the eigenfunctions of 

the wave equation for a periodic potential are of the form of plane waves .ik re , modulated by a 

function ( )ku r with the periodicity of the crystal lattice.  

8.6.1 Extended, Reduced and Periodic Zone Scheme  

In Bloch function, .( ) ( )ik r

kr e u r  , we have labeled the modulating factor ( )ku r by a subscript k

to indicate that the form of this factor depends on the wave vector k . There are three ways called 

zone schemes to states in different energy bands. 

8.6.2 Extended Zone Scheme 

Different energy bands are drawn in different Brillouin zones in the wave vector space.  

     
 

   Figure 8.8: Energy versus wave vector in extended zone scheme 

 

Three energy bands of a linear lattice have shown in figure 8.8 for the first three Brillouin zones. 

The first zone is the region of k space with in the first energy gap; the second zone is the region 

between the first and the second energy gap and so on.  
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8.6.3 Reduced Zone Scheme 

The representation using 
2 2

2
k

k
E

m
  shows all bands in the first Brillouin zone only and is known 

as the reduced zone scheme. 

 

     
    Figure 8.9: Energy versus wave vector in reduced zone scheme 

 

8.6.4 Periodic zone Scheme 

In this pattern, energy band is drawn in every zone as shown in figure 6.9. We repeat a given 

Brillouin zone periodically through whole of k space. If we translate a band from other zones into 

the first zone, then we can translate a band in the first zone into every other zone. Therefore, in 

this pattern the energy E of the band is a periodic function in the reciprocal lattice. 

 

   
    Figure 8.10: Energy versus wave vector in periodic zone scheme 
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8.7 BEHAVIOR OF AN ELECTRON IN PERIODIC POTENTIAL 

The free electron model of metals assumes the conduction electrons to move freely in a region of 

constant potential without interacting with the crystal lattice. Although this model explains certain 

properties of metals, such as conductivity, specific heat, Para magnetism etc., but it fails to explain 

satisfactorily properties of solids in general. Hence it needs to be modified. 

In general, an electron in solid moves in a region of periodically varying potential caused by the 

ion cores situated at the lattice points. 

8.8 KRONIG PENNEY MODEL 

Kronig and Penney assumed that an electron experiences an infinite one dimensional array of finite 

potential well. Each potential well model attraction to an atom in the lattice, so the side of the wells 

must correspond roughly to the lattice spacing as exposed in figure 6.10.  

In order to find the allowed energies of electrons in solids, we must solve the Schrodinger equation 

for an electron in a crystal lattice. The figure shows the actual potential as seen by the electron in 

the crystal lattice in one dimension. Kronig-Penney suggested a simplified model potential 

consisting of an infinite row of rectangular potential wells separated by barriers of width b, with 

space periodicity a is the periodicity of the lattice. The solution to the Schrodinger equation for an 

electron in a periodic lattice can be found by Bloch theorem. According to this, the eigenfunction 

of the free electron travelling wave ( ) ikx

k x e  is modified by the periodic potential to be of the 

form ( ) ( ) ikx

k kx u x e  .   

Where ( ) ( )k ku x u x a   
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Figure 8.11: Kronig and Penney square well potential 

On solving Schrodinger equation of the electron for the Kronig-Penney potential under the 

condition that   and /d dx  must be continuous at the boundaries of the well, a complicated 

expression for the allowed energies in terms of k of the electron is obtained which shows that the 

gap in the energy occur at values given by 

2 3
, , ,.......k

a a a

  
     

Figure 8.12 shows the relationship between energy  and wave number k for a one-dimensional 

lattice. The dashed curve is the free electron parabola. 

At the above value of k we get energy gap, whereas for values of k not near these values the energy 

are much like that of free electron. The origin of the allowed energy bands are forbidden gaps are 

seen in figure. 

 

 

Figure 8.12: Allowed and forbidden bands 

The occurrence of gaps can be understood in terms of Bragg reflection. The Bragg’s condition is 
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2 sina n   

Where a is the spacing between the ions of the lattice. Since we are considering the lattice in one 

dimension only, the above equation becomes 

2a n  

or 2 2 / 2a n    

or, 
2 3

, , .....k n
a a a a

   
      

These are just the values of k at which the gaps in the k  curve occur. The waves corresponding 

to values of k not satisfying the above condition travel almost freely and those satisfying the 

condition are reflected resulting in standing waves.  

8.9 ORIGIN OF BAND GAP 

The wave function associated with Kronig-Penney model may be calculated on solving 

Schrodinger wave equation in two sections. 

We have 
2 2

2 2

8
0

d m
E

dx h

 
   for 0 < x < a 

or we can write 
2

2

2
0

d

dx


    

Where the value of 
2

2

2

8 mE

h


   

Also, 
2 2

02 2

8
( ) 0

d m
E V

dx h

 
   for -b < x < a 

or we can write 
2

2

2
0

d

dx


    

Where 
2

2

02

8
( )

m
V E

h


    

Expected solutions of these Schrodinger equations should have the form of Bloch function, which 

requires that  and /d dx to be continuous throughout the crystal. Let us consider the general 

solutions of these Schrodinger equations 

1( ) exp( ) exp( )x A i x B i x      
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And 2 ( ) exp( ) exp( )x C x D x      

Here, A, B, C, and D are the constant in region I and II. Values of these constant can be obtained 

using the boundary conditions as 

1 20 0
( ) ( )x x   

1 20 0
/ /

x x
d dx d dx 

 
  

And 
1 20
( ) ( )

x x b
x x 

 
  

Because for the periodic lattice that is ( ) ( )V x a V x  , it is supposed that the wavefunction will 

also show the same periodicity. Hence, the expected solution of the above said Schrodinger 

equation must have the same form as that of the Bloch function. 

So, we can write 

( ) ( )exp( ( ))k kx a b x ik a b      

( ) ( )exp( ( ))k kx x a b ik a b       

Now applying the boundary conditions, we get the following relations 

A B C D    

( ) ( )i A B C D     

On simplifying these equation one can get 

2 2

cos ( ) sin sinh cos cosh
2

k a b a b a b
 

   


 
   

 
 

To solve above equation, Kronig-Penney supposed that the potential energy is zero at lattice sites 

and equal V0 in side. Also assumed that, as the height of the potential barrier V tends to infinity 

and the width of the barrier b tends to zero so that the product V0 b remains finite. Under these 

assumptions 

sinh b b   

cosh 1b   as 0b  

Therefore 
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2 2

cos sin cos
2

ka b a a
 

  


 
  
 

 

Hence on solving we get 

2

02

8
cos sin cos

2

m
ka V b a a

h


  



 
  
 

 

or, cos sin / coska P a a a     

Where 
2

02

4 ma
P V b

h

 
  
 

 
Figure 8.13: Origin of band gap 

This is the condition for the solutions of the wave equation to exist. As you see from figure 8.13 

that this is satisfied only for those value of a  for which its left-hand side lies between +1 and -1. 

It is because its right hand side must lie in range. Such values of a represent the wave like 

solution and are reachable. On the other hand, the other values of a  will be inaccessible. The 

significances of this can be agreed very well by the figure. The part of vertical axis lying between 

the horizontal lines represents the range acceptable. Since 
2 is proportional to the energy so a  

will be measure of energy. It is clear that the region for a  where the value of 

sin / cosP a a a    does not lie between -1 and +1. Therefore, these values of a and 

henceforth of energy E, there is no solution. Such region of energy is disallowed and is named 

forbidden bands. This analysis led to the following inferences 

1. The energy spectrum of the electron consists of alternate regions of allowed energy that is 

continuous band and forbidden energy band. Usually these bands are referred as allowed and 

forbidden energy bands. 
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2. As the value of a increases the width of the allowed energy bands increases. 

3. The quantity P, which is noted as a measure of potential barrier strength. If P is large, means 

the potential barrier V0 b is large. For the infinite deep well the electron can be considered as 

confined into a single potential well. It is applied to the crystals where the electrons are very 

tightly bound with their nuclei. In second case, when P is small, the barrier strength is small 

that is 0P , the electron can be considered to be moving freely through the potential well. It 

is the case of crystal where the electron is almost free of their nuclei. Hence we conclude that 

the width of particular allowed band decreases as P increases. As P , the allowed bands 

are compressed into energy levels and the energy spectrum is thus a line spectrum. Whereas

0P , we have the free electron model of the energy spectrum. It is known as quasi 

continuous. In between these limits, the position and the width of the allowed and forbidden 

bands for any value of P are obtained. 

4. To calculate the energy spectrum in extreme cases ( P), we have 

a n   

or we can write 2 2 2

2

2mE
a n   

or you can write, 
2 2

2

22
E n

ma


  

It is the physically expected result because the large P makes the tunneling through the barrier 

nearly unlikely. In second case when 0P  

We get cos cosa ka   

Which implies k   

or, 
2 2k   

Which gives
2 2

2

k
E

m
 , this is equivalent to the case of free particle. Thus no allowed energy 

level exists.  

 

8.9.1 Effective Mass 

If an electric field is applied to a free electron the electrostatic field experienced by electron is 

given by 

𝐹 = −𝑒𝐸 = 𝑚𝑎 

If external force is applied to electron the mass of the electron is proportional to the ratio of force 

and acceleration (m=F/a). This mass is called free mass or actual rest mass. But in case of solids, 

due to periodic potential due to ion core, the acceleration of the electron is different.  This 

interaction of ion core results the mass of electron is different than the actual mass of electron 

and this mass is called effective mass 𝑚 ∗. The equation of motion is given as 

𝑚 ∗= (𝑚 − 𝑚′) = −𝑒𝐸/𝑎 

 In case of lattice, the energy of free electron is given as 
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𝐸 =
ℏ2𝑘2

2𝑚
 

Differentiate this equation 2 times with respect to k 

𝑑2𝐸

𝑑𝑘2
=

ℏ2

𝑚
 

𝑚 =
ℏ2

(
𝑑2𝐸
𝑑𝑘2)

 

If the free electrons of solid is moving in a periodic potential the mass is call effective mass and 

given as 

  

𝑚 ∗=
ℏ2

(
𝑑2𝐸
𝑑𝑘2)

 

The value of effective mass may be more and less than the actual mass of electron 𝑚𝑒 = 9.1 ×

10−31 𝑘𝑔. 

 

 

 

Example 1: Show that for the Kronig-Penney potential with 1P  , the energy of the lowest 

energy band at k=0 is given by 
2

2 24

h P
E

ma
  

Solution: for k=0  sin / cos cosP a a a ka    becomes  

sin / cos 1P a a a     

or we may write  

/ 1 cos / sinP a a a     

On expanding sine and cosine function 

where cos 𝛼𝑎 = 1 − 
𝛼2𝑎2

2
 

And sin 𝛼𝑎 =  𝛼𝑎 

so, we can write 
2 2

/
2

a
P a


   

we know 
2

2

2

8 mE

h


  

hence, we get 
2

2 2

2

8
( / 2)

mE
P a

h


  

or 
2

2 24

h P
E

ma
  
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Example 2: In germanium the energy gap is about 0.75 eV. Show that the crystal behaves as a 

transparent medium only for light of wavelength above 16533 Å. (given h= 6.63 x 10-34 J s, vel 

of light c= 3.0 x 108 m/s) 

Solution: first we calculate the energy of 16533 Å photon 

/E hc   

On putting the values, we get  
34 8

10

6.63 10 3.0 10
/

16533 10
E hc 





  
 


 

= 1.2x 10-19 Joule 

or =1.2x 10-19 Joule/ 1.6 x 10-19= 0.75 eV 

Since the photon energy for light of wavelength above 16533 Å will be less than 0.75 eV which is 

energy band gap in case of germanium. Therefore, these photons will not be absorbed and the light 

will be transmitted through the crystal. Those photons for light below 16533 Å will have energy 

more than the energy gap of 0.75 eV and so they will be absorbed in exciting the electrons from 

the valence band to the conduction band. So, the crystal is opaque for the light below 16533 Å.  

Example 3: The energy gap in silicon is 1.1eV and in diamond it is 6eV. State the transparency 

of these substances to visible light. 

Solution: the wavelength of light corresponding to photon energies 1.1 eV 
34 8

19

6.63 10 3.0 10
/

1.1 1.6 10
E hc 





  
 

 
 

= 11.3 x 10-7 m  

= 11300 Å 

And for 6 eV 
34 8

19

6.63 10 3.0 10
/

6 1.6 10
E hc 





  
 

 
 

=2072 Å 

So, we conclude the silicon is transparent only to radiation of 11300   Å. Because, it absorbs 

photons of shorter wavelength, and so it is opaque to visible light. Since diamond is transparent to 

radiation of 2072   Å, therefore it is transparent to visible light. 

 

8.10 SUMMARY 
In this unit, you have studied about the origin of the energy band theory in solids.  The large energy 

gap between the valence band and conduction bands in an insulator says that at ordinary 

temperature, no electron can reach the conduction band. It is discussed that, in semiconductor the 

band gap is small enough that the thermal energy can bridge the gap for the small fraction of the 

electrons. In, conductors, there is no band gap since the valance band overlap the conduction band. 

Making use of the Bloch theorem and the Kronig-Penney model, the energy spectrum of the 

electron is found to comprise a set of continuous band, separated by the region of forbidden 

energies which are called energy gaps. This can be understood from the construction of Brillouin 
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zones. The first Brillouin zone is defined as the region in k space. The energy levels of an electron 

in a crystal can be determined by solving Schrödinger’s equation for a periodic potential and by 

studying changes to the electron energy structure as atoms are pushed together from a distance. 

The energy structure of a crystal is characterized by continuous energy bands and energy gaps. 

The ability of a solid to conduct electricity dependences on the energy structure of the solid. In 

solids, the discrete energy levels of the individual atoms merge to form energy bands Energy gaps 

arise in solids because they contain standing wave states. The size of the energy gap between the 

valence and conduction bands determines whether a substance is a conductor, an insulator or a 

semiconductor. To check your progress, examples and terminal questions are given.  

 

8.11 GLOSSARY 

extended – extensive. 

Periodic- cyclic. 

Forbidden – prohibited. 

Contribute– provide. 

Crucial– critical. 

Doping– fixing. 

Dramatically–noticeably. 

Translate– interpret. 

Assumption– supposition. 

Accessible– reachable. 

Transmit– convey. 

Discrete -  isolated. 
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8.14 TERMINAL QUESTIONS 
1. How does the electrical conductivity of a pure semiconductor change with rise in 

temperature? 

2. Why does the electrical conductivity of a pure semiconductor increase on heating? 

3. Name the charge carriers at room temperature in a conductor, an intrinsic semiconductor and 

an insulator. 

4. 16. The energy gaps in the energy band diagram of a conductor, an insulator and a 

semiconductor are E1, E2 and E3, arrange them in increasing order. 

5. Describe in what sense an insulator with infinite band gap cannot be a perfect insulator. 

6. Calculate the energy gap of a crystal which is transparent only for light of wavelength greater 

than 12345 Å.   

7. An insulator has an optical absorption only for wavelengths shorter than 1800 Å. Find the 

width of the forbidden band for the insulator. What is the order of magnitude of the forbidden 

gap in a semiconductor? 

8. The energy gaps of Si, Ge and Ag are 1.1, 0.7 and 0 eV respectively. Find the wavelength 

of electromagnetic radiation to which these solids are opaque. (given h= 6.63 x 10-34 J s, 

vel of light c= 3.0 x 108 m/s ) 

9. What are the two main approaches used to determine the energy levels of electrons in a 

crystal? 

10. How does the number of energy levels in a band correspond to the numberN of atoms? 

11. What is the main difference between an insulator and a semiconductor? 

12. A valence electron in a crystal absorbs a photon of wavelength, λ=0.300nm, this is just 

enough energy to allow the electron to jump from the valence band to the conduction band. 

What is the size of the energy gap?   

13. In a band theory of solids, there are an infinite number of bands. If T = 0 K, the uppermost 

band to contain electrons is partially filled, and the gap between the band and the next lowest 

band is 0.8 eV, is the material a metal, an insulator, or a semiconductor. 

14. In a band theory of solids, there are an infinite number of bands. If T = 0 K, the uppermost 

band to contain electrons is completely filled and the gap between the band and the next 

lowest band is 8 eV, is the material a metal, an insulator, or a semiconductor? What if the 

gap is 0.8 eV?  

15. True/ False statements 

(a) When the large number of atoms is brought close together, the energy levels split and form 

energy band.  

(b) The conduction band of an insulator is empty. 

(c) The forbidden energy band in Si is 1.1 eV. 

(d) The conduction band of a conductor is empty. 

(e) Insulators are opaque to visible light. 
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(f) All one electron configurations in an ideal crystal are Bloch functions. 

(g) Conductivity of semiconductors decreases with rice in temperature. 

(h) At temperature near absolute zero, the semiconductors become insulators. 

(i) Kronig-Penny model explains the behaviour of an electron in non-uniform magnetic field. 

16. Fill in the Blanks 

(a) Conductors have ……………..valence energy band. 

(b) The motion of electron in the periodic crystal lattice gives rise to ………… 

(c) The band energy of solids deals with electron motion in the ………..field of crystal. 

(d) In metals, there is an overlapping of ……..and…….bands. 

(e) The energy gap for a semiconductor is………..than for an insulator. 

(f) A solid having a band completely field and the next allowed band completely empty is 

called……. 

(g) Insulators are transparent to …….light. 

(h) Kronig-Penney model explain the behaviour of an electron moving in a periodically 

varying……... 

(i) Semiconductors are opaque to visible light but transparent to ….. 

8.15 ANSWERS 

2. Around absolute zero, a pure semiconductor is an insulator because the valence band is full 

and there are no free electrons in the conduction band. As the temperature rises, more and 

more of the electrons in the valence band gain energy to cross the energy gap and enter the 

conduction band, hence the conductivity increases.  

3. Free electrons, free electrons and holes, no charge carriers. 

4. E1 ˂ E2 ˂ E3. 

5. As long as band gapis finite, an electron can be elevated to the conduction band, resulting is 

conduction 

6. 1.0 eV 

7. 6.9 e V 

8. For Si, = 0-11300 Å, For Ge,  = 0- 17760 Å, For Ag,  = 0-   Å 

9. (1). Solve Schrödinger’s equation for the allowed states and energies. (2) Determine energy 

levels for the case of very large lattice spacing and then determine the energy levels as this 

spacing is reduced. 

10. For N atoms spaced far apart, there are N different wave functions, all with the same energy 

(similar to the case of an electron in the double well of H2). 

As the atoms are pushed together, the energies of these N different wave functions are split. By 

the exclusion principle, each electron must each have a unique set of quantum numbers, so the 

N atoms bringing N electrons together must have at least N states. 

11. For an insulator, the energy gap between the valence band and the conduction band is larger 

than for a semiconductor. 
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12. 4.13 keV. 

13. Metal. 

14. Insulator, semiconductor. 

15. (a) T, (b) T,(c) T, (d) F,  (e) F,  (f) T,  (g) F,  (h) T, (i) F. 

16. (a) partially filled, (b) energy gap, (c) periodic, (d) valence, conduction, (e) smaller (f) 

insulator (g) visible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



             MSCPH506 

195 
 

UNIT 9   SEMICONDUCTOR CRYSTALS 

Structure  

9.1 Introduction 

9.2 Objectives 

9.3 Semiconductors 

9.4 Types of Semiconductors 

9.4.1 Intrinsic semiconductors 

9.4.2 Extrinsic semiconductors 

9.5 Band Gap 

9.6. Equation of motion electron in band 

9.7. Effective Mass of an Electron 

9.8 intrinsic carrier concentrations in semiconductor 

9.8.1. Fermi energy 

9.9 Extrinsic carrier concentrations in semiconductor 

9.9.1 n-type semiconductor 

9.9.2 p-type semiconductor 

9.10 Drift Current 

9.11. Mobility and conductivity 

9.12 Thermoelectric effect 

9.13 Summary 

9.14 Glossary 

9.15 References 

9.16 Suggested Readings 

9.17 Terminal Questions 

9.18 Answers 



             MSCPH506 

196 
 

9.1 INTRODUCTION 

Semiconductors are generally classified as the materials which have electric resistivity at room at 

the order of 10-4 ohm-m. The resistivity of semiconductors strongly depends on temperature. As 

temperature increases the resistivity decreases. At absolute zero temperature all the 

semiconductors become insulators. On the basis of electrical properties, solids can be classified as 

conductors, semiconductor and insulators. Conductors are those across which electric charge can 

flow very easily.  While insulators are those through which, there is no electric charge or difficult 

to flow the charge.  In conductors, there are large numbers of free charge carriers while insulators 

have nearly no free charge carriers. Semiconductors have very few thermally generated charge 

carriers and electrical conductivity is intermediate between conductors and insulators. All 

semiconductors have crystalline structure and the most commonly used semiconductors are Ge, Si 

and GaAs as they have application in electronics. The number of free electrons in semiconductors 

is at the order of 107 to 1028 electron/m3. The variation of carrier concentration with temperature is 

shown in figure 9.1. In conductors, the electrical resistance increases with rise in temperature 

meaning that the temperature coefficient of resistance is positive. The outermost valence shell 

electrons of semiconductors are neither so tightly bound with the atom as in insulator, nor so 

loosely bound as in case of conductors. Semiconductor has electric conductivity much greater than 

that insulator but much smaller than metals. The electrical resistance of semiconductors decreases 

with the increase in temperature that is why, the temperature coefficient of semiconductors is 

negative. In terms of band gap, solids have a much smaller energy gap that is of the order of 1 eV, 

between valence band and the conduction band are known as the semiconductors. In this unit, we 

will study the physical features and different properties of semiconductors.  

All significance electronic devices like diode, transistors, switches, photovoltaic devises, LED, 

detectors, sensors, IC, memory devices are based on semiconductor material. Thus the properties 

of semiconductors are significant for design such devices. Semiconductor compounds are also 

used for different required purpose.  

 

9.2 OBJECTIVES 

After studying this unit, we will able to understand- 

 semiconductor 

 Band gap 

 intrinsic and extrinsic semiconductors 

 Equation of motion of electron in a semiconductor 

 electron and hole mobility and conductivity 

 drift current 

 effective mass 
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 carrier concentration in semiconductors 

 Thermo-physical effect 

 

 

Figure 9.1: The variation of carrier concentration with temperature is shown in  

 

9.3 SEMICONDUCTORS 
The semiconductors are the solids whose conductivity lies between the very high conductivity of 

conductors and very low conductivity of insulators. The energy band gap between the conduction 

band and the valence band is narrow, which is of the order of 1 eV. At absolute zero the 

semiconductor behaves as insulator as there is no thermally generated charge carrier and has 

forbidden band gap. But at room temperature a semiconductor shows properties and may have   

partially filled conduction band or partially unoccupied valence band and a small energy gap of 

the order of 1eV. Some properties of semiconductors are: 

1. The resistance of semiconductors decreases with the increase of temperature that is 

semiconductor have negative temperature coefficient. 

2. Electrical properties of semiconductors changes on adding some impurities.  
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3. The bonding in semiconductors is covalent which are formed by sharing of valence 

electrons. 

9.4 TYPES OF SEMICONDUCTORS  

The semiconductors are the solids whose electrical conductivity lies between the very high 

conductivity of metals and the very low conductivity of insulators. They are characterized by the 

narrow gap of the order of 1 eV between the valence band and the conduction band. Germanium 

and silicon have the energy gaps of around 0.7 eV and 1.1 eV respectively. Pure semiconductors 

are insulators at low temperatures. At room temperature, although, some of the valence electrons 

acquire thermal energy greater than forbidden band gap and cross over to the conduction band. A 

vacancy is created in the valence band at each place where an electron was present before moving 

to the conduction band as shown in figure 9.2. This vacancy is called the hole. The free electrons 

in the conduction band and the holes in the valence band can move about even under a small field. 

Therefore, semiconductors are slightly conducting. As the  

 

Figure 9.2: Energy Band gap  

temperature increases, more and more electrons are reaching to the conduction band, leaving 

behind equal number of holes in the valence band. Consequently, the conductivity of 

semiconductors increases with the increase in temperature. Depending upon the conductivity, there 

are two types of semiconductors as pure semiconductors (intrinsic semiconductors) and impure 

semiconductors (extrinsic semiconductors). 

9.4.1 Intrinsic Semiconductor 

A pure semiconductor is called an intrinsic semiconductor. The electrical conductivity of these 

semiconductors arises by the thermal excitation of electrons from the valence band to the 
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conduction band. Pure Si and pure Ge are notable examples of intrinsic semiconductors. The 

electronic configurations of these semiconductors are as follows: 

2 2 6 2 2

14 1 ,2 2 ,3 3Si s s p s p  

2 2 6 2 6 10 2 2

32 1 ,2 2 ,3 3 3 ,4 4Ge s s p s p d s p  

Since, atoms of Si and Ge both have four valence electrons, because of that, these are tetravalent. 

 

 

Figure 9.3: Intrinsic semiconductor 

The atoms of Si and Ge have four valence electrons surrounding an inner core as shown in figure 

9.3. Each of the four valence electrons of an atom is shared by an electron of its four nearest 

neighours atoms and formed the covalent bonds. At temperature near to zero, all valence electrons 

are tightly bound to the inner core and there are no free electrons available to conduct electricity 

through the specimen. At room temperature, although, some of the valence electrons are thermally 

excited into the conduction band and become free to move about. These excited electrons leave 

holes in the valence band as shown in figure 9.4. Greater the temperature more is the number of 

electron-hole pairs created. On applying the electric field, the free electrons in the conduction band 

move in a direction opposite to the field and holes in the valence band move in the direction of the 

field also both give growth to the electric current. Therefore, in a semiconductor electrons and 

holes both establish current. Thus, in an intrinsic semiconductor the conduction is due to electrons 

and holes both and the total current is the sum of currents due to free electrons and holes. The 

conductivity of an intrinsic semiconductor is very poor. At normal temperature, only one covalent 

bond breaks in 109 atoms of Ge. Meaning that, only one atom in 109 atoms is available for 

conduction. So, practically there is no use of intrinsic semiconductor. 
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Figure 9.4: Bond formation in intrinsic semiconductor 

9.4.2 Extrinsic Semiconductors  

Extrinsic semiconductor is an impure semiconductor formed from a pure semiconductor by adding 

a small quantity of impurity atoms called dopants. The process of adding impurities to the 

semiconductor solid is known as doping. This added impurity is very small of the order of one 

atom per million atoms of pure semiconductor. Depending upon the type of impurity added to the 

extrinsic semiconductors are categorized as  

1. n type semiconductor. 

2. p type semiconductor. 

9.4.2.1 n-type Semiconductor 

To describe the formation of n-type semiconductor, consider that a pentavalent impurity (As), is 

added to a pure Ge semiconductor. As shown in figure 9.5, four of the five valence electrons of 

the impurity atom form covalent bond with one each valence electron of four Ge atoms nearby it. 

The fifth valence electron of the impurity atom requires little energy to leaves its atom. Therefore, 

it becomes free to move about in the crystal and acts as a free charge carrier. Therefore, on adding 

the pentavalent impurity to the intrinsic semiconductor, the number of free charge carriers 

increases, henceforth, the conductivity of semiconductors increases. The impure Si or Ge 

semiconductor is called the n-type semiconductor since it has an excess of negative charge carriers. 

The impurity atoms are called the donor atoms because they donate the electrons to the crystal. 
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Figure 9.5: n type semiconductor 

n-type semiconductor energy band diagram is shown above. The valence electron of the impurity 

atoms occupies the energy level just below the conduction band. This is called the donor level. 

This level is around 0.01 eV below the conduction band. At normal temperature, nearly all the 

electrons in the conduction band come from the donor levels, only a few come from the valence 

band. Therefore, in n type semiconductor, majority charge carriers are the electrons donated by 

donors. Because of the thermal excitation, there are few holes in the valence band, hence small 

current contributed due to holes also. Therefore, in an n type semiconductor the electrons are the 

majority charge carries and holes are the minority charge carriers.   

 

9.4.2.2 p-Type Semiconductor 

In a pure (intrinsic) Si or Ge semiconductor, each nucleus uses its four valence electrons to form 

four covalent bonds with its neighbors as shown in figure.  Each ionic core, consisting of the 

nucleus and non-valent electrons, has a net charge of +4, and is surrounded by 4 valence electrons. 

Since there are no excess electrons or holes in this case, the number of electrons and holes present 

at any given time will always be equal. 

Now, if one of the atoms in the semiconductor lattice is replaced by an element with three valence 

electrons, as shown in figure 9.6, such as a Group 3 element like Boron B or Gallium Ga, the 

electron-hole balance will be changed. This impurity will only be able to contribute three valence 

electrons to the lattice, therefore leaving one excess hole as shown in figure. Since holes will accept 

free electrons, a Group 3 impurity of periodic table, is also called an acceptor. Since an acceptor 

donates excess holes, which are considered to be positively charged, a semiconductor that has been 

doped with an acceptor is called a p-type semiconductor, p stands for positive. It is observed that 

the material as a whole remains electrically neutral. In p-type semiconductor, the population of 

holes in valence band is more, whereas the population of free electrons in conduction band is less. 

So, current conduction is mainly because of holes in valence band. Free electrons in conduction 

band constitute little current. Hence in p-type semiconductor, holes are called majority carriers and 

free electrons are called minority carriers. 
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  Figure 9.6: p type semiconductor 

At room temperature, the number of holes in the valence band is greater than the number of 

electrons in the conduction band. Hence, the probability of occupation of energy levels by the 

holes in the valence band is greater than the probability of occupation of energy levels by the 

electrons in the conduction band. This probability of occupation of energy levels is represented in 

terms of Fermi level.  

 

9.5 BAND GAP 

The band gap is the difference in the energy between the lowest point of conduction band and 

highest point of valance band. The lowest point of conduction band is called conduction band edge 

and highest point of valance band is called valance bans edge. The carrier concentration of 

semiconductors largely depends on 
𝐸𝑔

𝑘𝑏𝑇
⁄  ratio of band gap and temperature. If the ratio is high 

the carrier concentration and conductivity will be high. The value of band gap can be determined 

by optical absorption. In optical absorption, the photon energy matches the energy gap between 

the ground excited states. The threshold of continuous optical absorption at the frequency 𝜔𝑔 

determines the band gap. Thus the relation is given as  

 𝐸𝑔 = ℏ𝜔𝑔        (9.1) 

In direct absorption process a photon is absorbed by crystal with the energy exactly equal to the 

energy required to create an electron and hole pair. The band gap is called "direct" and the crystal 

momentum of electrons and holes is the same in both the conduction band and the valence band; 

an electron can directly emit a photon.  

In the indirect absorption process, the minimum energy gap of band structure is not exactly same 

as the energy of photon but it involves a substantial wave vector 𝑘𝑐. Thus if the k-vectors are 

different, the material has an "indirect gap". In an "indirect" gap, a photon cannot be emitted 

because the electron must pass through an intermediate state and transfer momentum to the crystal 

lattice. In this case 

https://www.sciencedirect.com/topics/engineering/photon-energy
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    𝐸𝑔 + ℏΩ = ℏ𝜔     (9.2) 

Where Ω is phonon frequency corresponding to energy transfer to of lattice and 𝜔 optical 

absorption at the frequency of photon. In terms of wave vector  

𝑲 (corresponding to band gap) + 𝒌𝒄(phonon) =  𝒌(photon) 

The phonon energy is very less than the photon energy. Figure 9.7 show the direct and indirect 

gap.  

                 
  Figure 9.7: direct and indirect gap gap in semiconductors. 

One important process is called radiative recombination, where an electron in the 

conduction band annihilates a hole in the valence band, releasing the excess energy as a photon. 

This is possible in a direct band gap semiconductor if the electron has a k-vector near the 
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conduction band minimum (the hole will share the same k-vector), but not possible in an indirect 

band gap semiconductor, as photons cannot carry crystal momentum, and thus conservation of 

crystal momentum would be violated. For radiative recombination to occur in an indirect band gap 

material, the process must also involve the absorption or emission of a phonon, where the phonon 

momentum equals the difference between the electron and hole momentum. It can also, instead, 

involve a crystallographic defect, which performs essentially the same role. The involvement of 

the phonon makes this process much less likely to occur in a given span of time, which is why 

radiative recombination is far slower in indirect band gap materials than direct band gap ones. This 

is why light-emitting and laser diodes are almost always made of direct band gap materials, and 

not indirect band gap ones like silicon. 

The exact reverse of radiative recombination is light absorption. For the same reason as 

above, light with a photon energy close to the band gap can penetrate much farther before being 

absorbed in an indirect band gap material than a direct band gap one. This fact is very important 

for photo voltaic (solar cells). Crystalline silicon is the most common solar-cell substrate material, 

despite the fact that it is indirect-gap and therefore does not absorb light very well. As such, they 

are typically hundreds of microns thick; thinner wafers would allow much of the light (particularly 

in longer wavelengths) to simply pass through. By comparison, thin-film solar cells are made of 

direct band gap materials (such as amorphous silicon, Cd Te, CIGS or CZTS), which absorb the 

light in a much thinner region, and consequently can be made with a very thin active layer (often 

less than 1 micron thick). 

 

9.6 EQUATION OF MOTION OF ELECTRON IN 

SEMICONDUCTORS 

The equation of motion for an electron in energy band gap can be derived with the help of motion 

of wave packet in applied electric field. Suppose the wave packet is formed near the particular 

wave vector k.  

The group velocity of wave packet is given as  

    𝑣𝑔 = 𝑑𝜔
𝑑𝑘⁄        (9.3) 

If the energy associated with wave function is 𝜖 then 𝜖 = ℏ𝜔 𝑜𝑟 𝑑𝜖 = ℏ 𝑑𝜔 

Thus     𝑣𝑔 = ℏ−1 𝑑𝜖
𝑑𝑘⁄      (9.4) 

The work done in an electric field in a small time interval 𝛿𝑡 can be given as 

    𝛿𝜖 = 𝑒𝐸𝑣𝑔𝛿𝑡      (9.5) 
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Energy can also be written as 𝛿𝜖 = (𝑑𝜖
𝑑𝑘⁄ )𝛿𝑘 and with the help of eq. 9.4 we have 

    𝛿𝜖 = ℏ 𝑣𝑔 𝛿𝑘        (9.6) 

Compare eq. 9.5 and 9.6 we have 

   𝑒𝐸𝑣𝑔𝛿𝑡 = ℏ 𝑣𝑔 𝛿𝑘   or  𝑒𝐸 = ℏ  𝛿𝑘/𝛿𝑡   

Since  𝑒𝐸 is force thus in term of external force the equation can be written as  

   𝐹 = ℏ 
𝑑𝑘

𝑑𝑡
= ℏ�̇�      (9.7) 

  This is equation of motion in term of external force. If external force is Lorentz force than 

equation can be written as 

  𝐹 = ℏ 
𝑑𝑘

𝑑𝑡
=  𝑒𝐸 − 𝑒𝑉 × 𝐵      

 

9.6.1 Electron and Holes 

We know about electron but in semiconductor physics, hole is also significant. The deficiency of 

electron is simply defined as hole. Vacant orbital in a band is called hole. A hole is act in electric 

and magnetic field as it has chare +e. Some properties of hole are: 

1. Wave vector  𝑘ℎ = −𝑘𝑒        (9.8) 

2. Energy: 𝜖ℎ(𝑘ℎ) = −𝜖𝑒(𝑘𝑒)        (9.9) 

3. Velocity:  𝑣ℎ = 𝑣𝑒         (9.10) 

4. Mass: 𝑚ℎ = 𝑚𝑒         (9.11) 

5. Lorentz force:  ℏ 
𝑑𝑘ℎ

𝑑𝑡
=  𝑒𝐸 + 𝑒𝑉 × 𝐵      (9.12) 

 

9.7 EFFECTIVE MASS OF AN ELECTRON  

The electrons in a crystal are not free, but instead interact with the periodic potential of the crystal 

lattice. The behavior of interacting electron with crystal concerning the external forces is different 

from that of free electron. In the crystal lattice, the variation of the electron behavior can be grasped 

into account simply by seeing the electron to have an effective mass m rather than its free space 

mass m. It differs with the direction of the motion of the electron in the lattice. The energy wave 
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vector relation for free electron in a solid is 𝜖 = ℏ2𝑘2/2𝑚. It can be seen that shape is parabolic 

with the curvature is determined by 𝑘2. The variation of mass in bands is shown in figure 9.8. We 

can see the curvature is also determined by 1/𝑚 . As curvature is high, near the band gap at zone 

boundary thus the reciprocal mass enhanced by same factor. 

From previous unit we know that the energy of free electron conduction band is given by 

    𝜖 = 𝜖𝑐 + ℏ2𝑘2/2𝑚𝑒     (9.13) 

Similarly, energy of hole near the edge of valance band is given as 

    𝜖 = 𝜖𝑉 − ℏ2𝑘2/2𝑚ℎ      (9.14) 

If the curvature is negative near the valance band the effective mass of carrier is less than the mass 

of electron and hence negative. Thus according to band theory, the effective mass may be negative 

inside a crystal. 

Differentiate eq. 9.4  

𝑣𝑔

𝑑𝑡
= ℏ−1  

𝑑2𝜖

𝑑𝑡 𝑑𝑘
= ℏ−1  (

𝑑2𝜖

𝑑𝑘2 

𝑑𝑘

𝑑𝑡
) 

From eq. 9.7 we know that 𝐹 = ℏ 
𝑑𝑘

𝑑𝑡
= ℏ�̇� thus above eq. becomes  

𝑣𝑔

𝑑𝑡
= ℏ−1  (

𝑑2𝜖

𝑑𝑘2 

𝐹

ℏ
) 

Or  

𝐹 =
ℏ2

𝑑2𝜖
𝑑𝑘2⁄

 
𝑣𝑔

𝑑𝑡
 

If we compare the eq. with Newton 2nd law of motion (𝐹 = 𝑚𝑎) we can observe that the quantity  

ℏ2

𝑑2𝜖
𝑑𝑘2⁄

 is identical to mass and define as effective mass (𝑚∗) 

     
1

𝑚∗ =
1

ℏ2  
𝑑2𝜖

𝑑𝑘2     (9.15) 
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Figure 9.8: Variation of mass (effective mass) in bands.
 

The effective mass is a new concept and causes because of the interaction of the electron wave 

packet with the periodic lattice as shown in figure 9.8. The effective mass of an electron may be 

positive or negative as shown in figure. It is evident that the effective mass is positive in the lower 

part of the band and negative close to the zone boundary.  The effective mass may be equal to m, 

only when the energy is not close the edge of the band and E versus k curve is parabolic. In case 

of semiconductor, where full or almost full valence bands are concerned, effective mass varies 

with the mass m. 

 

 

9.8 INTRINSIC CARRIER CONCENTRATION IN 

SEMICONDUCTOR  

According to Quantum Mechanics, the density of energy states per unit volume in the conduction 

band is given by 

3/2

2 1/2

2

2
( ) (1/ 2 ) ( )e

C

m
D E E E

 
  

 
,       (9.16) 

where em  is the effective mass of an electron. Further for charge carrier, we know the Fermi Dirac 

distribution function as 
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( )/

1
( )

1F B
e E E k T

F E
e




            (9.17)
 

Where symbols have usual meaning. If we take an approximation as  𝐸 − 𝐸𝐹 ≫ 𝑘𝐵𝑇, the Fermi 

function becomes  

( )/

1
( )

F B
e E E k T

F E
e


  

or,   ( )/
( ) F BE E k T

eF E e


      (9.18)
 

This is known as the Boltzmann approximation which says that all electrons in the conduction 

band are in narrow region at the bottom of conduction band. Now we can calculate the number of 

electrons per unit volume in the energy interval E and E +dE in the conduction band by this relation 

( ) ( ) ( )e en E dE D E F E dE
     (9.19)

 

On putting the values of Fermi function and density of states, we get 

3/2

( )/2 1/2

2

2
( ) ( ) (1/ 2 ) ( ) F BE E k Te

e C

m
n E d E E E e dE


  

  
 

,  

on integrating it between the limits E and , we obtain 

3/2

( )/2 1/2

2

2
( ) ( ) (1/ 2 ) ( ) F B

C

E E k Te
e C

E

m
n E d E E E e dE

 
  

  
 

  

or,  

3/2

( )/ ( )/2 1/2

2

2
( ) (1/ 2 ) ( )F C B C B

C

E E k T E E k Te
e C

E

m
n E e E E e dE


    

  
 

  

On substitution, C

B

E E
x

k T


  and differentiation it,

B

dE
dx

k T
  

On putting in the above equation we get 

3/2

( )/2 3/2 1/2

2

0

2
( ) (1/ 2 ) ( ) F C BE E k T xe

e B

m
n E k T e x e dx


   

  
 


 

Where, 1/2

0

xx e dx





  is the standard integral, whose integration is 1/2 / 2  



             MSCPH506 

209 
 

Therefore,  

   

3/2

( )/2 3/2 1/2

2

2
( ) (1/ 2 ) ( ) / 2F C BE E k Te

e B

m
n E k T e 


  

  
   

 𝑛𝑒(𝐸) = 2 (
𝑚𝑒

∗𝑘𝐵𝑇

2𝜋ℏ2 )
3/2

 𝑒(𝐸𝐹−𝐸𝐶)/𝑘𝐵𝑇    (9.20) 

This is the equation of electron concentration in the conduction band. Similarly, we can calculate the 

concentration of holes in the valence band. Hence, the concentration on holes in the valence band is 

written as 

𝑛ℎ(𝐸) = 2 (
𝑚ℎ

∗ 𝑘𝐵𝑇

2𝜋ℏ2 )
3/2

 𝑒(𝐸𝑉−𝐸𝐹)/𝑘𝐵𝑇    (9.21) 

 Multiplying these two equations, we have 

𝑛𝑒 𝑛ℎ = 4(
𝑘𝐵𝑇

2𝜋ℏ2
)
3

(𝑚𝑒
∗𝑚ℎ

∗ )3/2 𝑒(𝐸𝑉−𝐸𝐶)/𝑘𝐵𝑇 

Or we can write   

 𝑛𝑒  𝑛ℎ = 4(
𝑘𝐵𝑇

2𝜋ℏ2)
3
(𝑚𝑒

∗𝑚ℎ
∗ )3/2 𝑒−𝐸𝑔/𝑘𝐵𝑇   (9.22) 

where,
g C VE E E   is the forbidden energy gap. It shows that the electron and hole densities at 

thermal equilibrium is independent upon the Fermi level and depends only upon the forbidden 

energy band gap. For intrinsic semiconductors, e h in n n  , therefore the above equation becomes 

  𝑛𝑖 = 2(
𝑘𝐵𝑇

2𝜋ℏ2)
3/2

(𝑚𝑒
∗𝑚ℎ

∗ )3/2 𝑒−𝐸𝑔/2𝑘𝐵𝑇    (9.23) 

This is the carrier concentration of intrinsic semiconductor and it depends exponentially on 

𝐸𝑔/2𝑘𝐵𝑇.   

9.8.1 Fermi Energy 

It is the energy of latest occupied level below which all the states are completely occupied and 

above it is completely unoccupied. In intrinsic semiconductor, the electron and hole concentrations 

are given in equations 9.20 an 9.21 and equate these equation as  

In intrinsic case e h in n n 
 

2 (
𝑚𝑒

∗𝑘𝐵𝑇

2𝜋ℏ2
)
3/2

 𝑒(𝐸𝐹−𝐸𝐶)/𝑘𝐵𝑇 = 2(
𝑚ℎ

∗𝑘𝐵𝑇

2𝜋ℏ2
)

3/2

 𝑒(𝐸𝑉−𝐸𝐹)/𝑘𝐵𝑇 
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or    

2

3/2( / )
F C V

B

E E E

k T

h ee m m

 

 
 

taking log on both sides, we have 

2
(3 / 2) log( / )F C V

h e

B

E E E
m m

k T

  
  

which gives,  2 (3/ 2) log( / )F C V B h eE E E k T m m     

or,    ( ) / 2 (3/ 4) log( / )F C V B h eE E E k T m m   
   (9.24)

 

If effective mass of an electron is equal to the effective mass of holes ( h em m   ), putting these values in 

above equation, we get 

( ) / 2F C VE E E 
      (9.25)

 

It shows that in case of intrinsic semiconductor, Fermi level lies in middle of valence band and the 

conduction band as shown in figure 9.9.  

  

                  Figure 9.9: Fermi level in intrinsic semiconductor 

9.9 CARRIER CONCENTRATION OF INTRINSIC 

SEMICONDUCTORS 
In intrinsic semiconductors if we added impurity atom the electrical properties of semiconductor 

drastically affected. There are two cases. 
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9.9.1 Carrier Concentration of n Type Crystal 

Impurity atom that can give the electron is call donor. The crystal remains neutral overall because 

the electrons remain in crystal. In case of donor type or n type semiconductors, the Fermi level, 

this is measure of top filled energy state, shifts from the middle of energy gap towards the 

conduction band. Let the density of ionized donor atoms is Nd and the density of electron hole 

pairs in the intrinsic semiconductors is ni at any temperature T, we have  𝑁𝑑 = 𝑛𝑖 because of 

recombination of electron hole in the presence of surplus electrons.  Hence, we have  
3/2

( )/

2

2
2 F C BE E k Te

d

m kT
N e

h

 
 

  
     (9.26)

 

or,     

( )/F C BE E k T

d CN N e



     (9.27) 

Where,    

3/2

2

2
2 e

C

m kT
N

h

  
  

            (9.28) 

or, from above equations we get, 

( )/
/ F C BE E k T

C dN N e
 


 

Taking log on both sides, we get 

( )
log( / ) F C

C d

B

E E
N N

k T


 

 

or, it become   
log( / )F C B C dE E k T N N 

     (9.29)
 

 

 
   Figure 9.10: Fermi level in n type semiconductor 
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It shows in figure 9.10, that in n type semiconductor the Fermi level lies below the bottom of 

conduction band. As we increase the temperature, the Fermi level goes on falling below the 

conduction band ( CE ).  On application of potential difference across the n type semiconductor, the free 

electrons in the crystal are attracted towards the positive terminal and few holes towards the negative 

terminals. Thus, the current flow takes place. The current flow in the n type semiconductor is mainly due 

to the free electrons and hence in n type the majority charge carries are the electrons.  

In n type semiconductor, minority charge carriers are given as  
2 /h i en n n  

or,     2 /h i dn n N
      (9.30)

 

Since, the density of free electrons is i dn n N  , where dN  is the density of donor impurity 

electron and in  is the density of intrinsic semiconductor electrons.  

9.9.2 Fermi Level in the p-Type Semiconductor 

Therefore, the Fermi level in the p-type semiconductor lies close to the valence band. The 

expression for Fermi energy in p type (acceptor type) semiconductor is given as 

log( / )F V B V aE E k T N N  ,     (9.31) 

Where, Na is the density of acceptor atoms and

3/2

2

2
2 h B

V

m k T
N

h

  
  

 
, the equation shows that the 

Fermi level lies above the top of the valence band as shown in figure 9.11 and 9.12. The Fermi 

level depends upon the number of impurity atoms and the temperature of the specimen. On 

increasing the number of impurity atoms, the number of holes in the valence increases and the 

Fermi level shifts towards the valence band. As temperature increases, the electrons from the 

valence band excited to the conduction band and the crystal behaves like an intrinsic 

semiconductor when the number of electrons in the conduction band is equal to the number of 

holes in the valence band.  At very high temperature, Fermi level shift towards the middle of the 

forbidden energy band gap.  
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Figure 9.11: p type impurity semiconductor  Figure 9.12: Fermi level in p type 

 

Example 1: Pure Si at 300K has equal electron ne and nh concentration of 1.5 x 1016 /m3. Doping 

of Boron increases hole concentrations nh to 4.5 x 1022/ m3. Calculate ne in the doped Si.  

Solution:  We have in doped semiconductor, 2

e h in n n  

Where, n is the intrinsic concentration in a pure semiconductor.  

nh = 4.5 x 1022/ m3 

ni = 1.5 x 1016 /m3 

Putting these values in the above equation we get, 

16 2
2

22

(1.5 10 )
/

4.5 10
e i hn n n


 


 

= 5.0 X 109/m3 

Example 2: The number of electron hole pair in an intrinsic semiconductor is 2 x 1019/m3 at 270C. 

if this semiconductor is doped by a donor impurity such as the number of conduction electrons 

becomes 2 x 1024/m3, calculate the number of holes. Also calculate the dopant concentration. 

Solution: for doped semiconductor, we know 2

e h in n n  

ne = 2 x 1024/ m3 

ni = 2 x 1019 /m3 
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19 2
2

24

(2 10 )
/

2 10
h i en n n


 


 

= 2 x 1014/m3 

 On doping it becomes an n type semiconductor. 

Therefore, the number of dopant  

24 32 10 /d eN n m  
 

Example 3: Show that the electron and hole concentrations in intrinsic semiconductor is constant, also 

called Law of Mass Action.  

Solution: We have electrons and hole concentrations as  

3/2

( )/

2

2
( ) 2 F C BE E k Te B

e

m k T
n E e

h

 
 

  
 

 

3/2

( )/

2

2
( ) 2 V F BE E k Th B

h

m k T
n E e

h

 
 

  
 

 

On multiplying both equations, we get 

3/2 3/2

( )/ ( )/2

2 2

2 2
2 2F C B V F BE E k T E E k Te B h B

e h i

m k T m k T
n n n e e

h h

  
    

     
   

 

or,  
/2 3 g BE k T

e h in n n T e   

or,   
/2g BE k T

in e  

where, 

3/2 3/2

2 2

2 2
4 e B h Bm k T m k T

A
h h

     
    

   
is a constant and Bk is the Boltzmann constant. 

This equation shows that at a given temperature and certain band gap, 2

in is a constant. It does not 

depend upon the impurities introduced in it. This equation is known as law of mass action. For pure 

semiconductors conductivity increases with increasing temperatures, also increases on impurity doping.   
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9.10 Drift Current in Semiconductors 

Drift current is defined as the flow of electric current due to the motion of the charge carriers under 

the influence of an external electric field. In a semiconductor, there are two types of charge carriers, 

they are electrons and holes. When the voltage is applied to a semiconductor, the free electrons 

move with drift velocity dv towards the other end as indicated in figure 7.11. 

  

Figure 9.13: Flow of charge carriers 

If q is the charge carried through the section of wire in time t, then current is given as /i q t  

Let n be the charge density per unit volume, therefore the total number of charge carriers in passing per 

second through the cross-section of wire is dnAv . So, dnAv t electrons will pass through the cross section 

of wire in t second. Thus, charge passing through any cross-section of wire in t second is given as  

( )dq nAv t e  

Therefore, by definition  

    di neAv
      (9.32)

 

It is well known relation between electric current and the drift velocity. 

We may define current density, 

    / dj i A nev       (9.33) 

This is the relation of current density and drift velocity. In vector form, dj nev  

9.11 MOBILITY  

The ability of an electron to move through a semiconductor, in the presence of applied electric 

field is called electron mobility.  Due to the electric field, electrons and holes both drift in opposite 

direction with velocity dv and creates the current ei and hi  respectively. 
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Hence,    e e di n eAv
 

h h di n eAv
      (9.34)

 

Therefore, total current due to both charge carriers 

e h e d h di i i n eAv n eAv   
    (9.35)

 

or, current density 𝑗 =
𝑖

𝐴
= 𝑛𝑒𝑒𝑣𝑑 + 𝑛ℎ𝑒𝑣𝑑     (9.36) 

 If R is the resistance, l is length of semiconducting specimen and  is the resistivity, we have a 

relation 

/R l A       (9.37) 

If V is voltage applied and E is electric field then  /E V l     (9.38) 

we get     𝐸 =
𝑉

𝑙
=

𝑖𝑅

𝑙
= 𝑖

𝜌𝑙/𝐴

𝑙
=

𝑖𝜌

𝐴
 

/ /E i A   

On substituting the value of 𝑖/𝐴 from eq.9.36 in above expression, we get 

/ ( )e d h dE e n v n v    

or,     1/ ( ) /e d h de n v n v E  
   (9.39)

 

Let us define a quantity, mobility due to electrons and mobility due to holes, define as  

                                                   /e dv E 
  and      

/h dv E 
 (9.40) 

Hence above equation 9.39 become as 

1/ ( )e e h he n n     

or     ( )e e h he n n    ,     (9.41) 

Where   is reciprocal of resistivity, therefore defined as conductivity of semiconductor. This is the 

expression of electrical conductivity of semiconductor, which depends upon the concentration and 

mobility of charge carriers. I would like to mention here; the mobility of electron is higher than the nobility 

oh holes.  
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Example 4: Find the conductivity of p type Ge crystal which is doped with acceptor atoms of 

concentration 2 x 1017 atoms/ cm3 and all acceptor atoms are active. Ignore minority concentration, 

given 21900 / sech cm volt 
 

Solution: In a p type semiconductor, the hole concentration is roughly equal to the acceptor 

concentration 

That is 

17 32 10 /h an N cm  
 

We know the expression of conductivity as 

e e h hn e n e   
 

In p type semiconductor 

𝑛ℎ > 𝑛𝑒and holes are the majority charge carriers, so we have h hn e 
 

On putting the given values, we get  

= 6100/ ohm meter 

 

Example 5: The mobility of electrons and holes sample intrinsic germanium at room temperature is 0.36 

and 0.17 m2/Volt/s respectively. If the electron and hole densities are each equal to 2.5 x 1019/ m3, calculate 

the electrical conductivity and resistivity of germanium. 

(a) e e h hn e n e     

 

e h in n n 

 

2.12 / /ohm m 

 
Resistivity 

1
0.47 m


    

9.12. THERMOELECTRIC EFFECTS 

When an electric current is passed through a circuit of a thermocouple, heat is evolved at one 

junction and absorbed at the other junction. This is known as the Peltier Effect. The Peltier effect is 

the presence of heating or cooling at an electrified junction of two different conductors and is 

named after French physicist Jean Charles Athanase Peltier.  When a current is made to flow 

through a junction between two conductors, A and B, heat may be generated or removed at the 

junction. The Peltier heat generated at the junction per unit time is 
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dQ

dt
= (ΠA − ΠB)𝐼      (9.42) 

where  ΠA and ΠB are the Peltier coefficients of conductors A and B, and I is the electric current 

(from A to B). The total heat generated is not determined by the Peltier effect alone, as it may also 

be influenced by Joule heating and thermal-gradient effects also. 

In a semiconductor the electric current density or charge flux is given as  

 𝑗𝑞 = 𝑛𝑒𝑣 = 𝑛. (−𝑒)(−𝜇𝑒)𝐸      (9.43) 

Where 𝜇𝑒 is mobility of electron. The average energy transported by electron can be given as 

 𝐸 = (𝐸𝐶 − 𝜇) + 
3

𝑐
𝑘𝐵𝑇      (9.44) 

Where 𝜇 = 𝜖𝐹 is Fermi level and 𝐸𝐶 is energy at the edge of conduction band. 

The energy flux can be given as 

   𝑗𝑈 = 𝑛𝐸𝑣 = 𝑛. ((𝐸𝐶 − 𝜇) + 
3

𝑐
𝑘𝐵𝑇) (−𝜇𝑒)𝐸    (9.45) 

The Peltier coefficient is defining as the ratio of energy flux to charge flux for electron is given as 

    Πe =
𝑗𝑈

𝑗𝑞
=

((𝐸𝐶−𝜇)+ 
3

𝑐
𝑘𝐵𝑇)

𝑒
     (9.46) 

Similarly, for hole  

    Πh =
𝑗𝑈

𝑗𝑞
=

((𝜇−𝐸𝑉)+ 
3

𝑐
𝑘𝐵𝑇)

𝑒
    (9.47) 

The Peltier coefficient is related to thermoelectric power Q and T by 

    Π = QT      9.48) 

 

9.13. SUMMARY 

1. The band gap is called "direct" and the crystal momentum of electrons and holes is the same in 

both the conduction band and the valence band; an electron can directly emit a photon.  

𝐸𝑔 = ℏ𝜔𝑔 

2. In the indirect absorption process, the minimum energy gap of band structure is not exactly 

same as the energy of photon but it involves a substantial wave vector 𝑘𝑐. 
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𝐸𝑔 + ℏΩ = ℏ𝜔 

3.  This is equation of motion in term of external force.  

𝐹 = ℏ 
𝑑𝑘

𝑑𝑡
= ℏ�̇� 

4. Effective mass (𝑚∗) is define as     

1

𝑚∗
=

1

ℏ2
 
𝑑2𝜖

𝑑𝑘2
 

5. Electron concentration in the conduction band 

 𝑛𝑒(𝐸) = 2 (
𝑚𝑒

∗𝑘𝐵𝑇

2𝜋ℏ2
)
3/2

 𝑒(𝐸𝐹−𝐸𝐶)/𝑘𝐵𝑇     

Similarly, the concentration of holes in the valence band 

𝑛ℎ(𝐸) = 2 (
𝑚ℎ

∗𝑘𝐵𝑇

2𝜋ℏ2
)

3/2

 𝑒(𝐸𝑉−𝐸𝐹)/𝑘𝐵𝑇 

6. Fermi level can be given as 

( ) / 2 (3/ 4) log( / )F C V B h eE E E k T m m   
    

  If effective mass of an electron is equal to the effective mass of holes ( h em m   ), then 

( ) / 2F C VE E E 
     

 

 shows that in case of intrinsic semiconductor, Fermi level lies in middle of valence band and the 

conduction band. 

7. Carrier concentration of donor type or n type semiconductors 

( )/F C BE E k T

d CN N e



 

Where            

3/2

2

2
2 e

C

m kT
N

h

  
  

   

Fermi level     
log( / )F C B C dE E k T N N 

  

8. Fermi level of acceptor type or p type semiconductors 

log( / )F V B V aE E k T N N 
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9.  
Current density   / dj i A nev   

10. mobility due to electrons and mobility due to holes, define as  

                                                   /e dv E 
  and      

/h dv E 
 

11. Conductivity is given as    
( )e e h he n n   

 

12. 
Charge flux is given as  

 𝑗𝑞 = 𝑛𝑒𝑣 = 𝑛. (−𝑒)(−𝜇𝑒)𝐸   

13. Energy flux can be given as 

   𝑗𝑈 = 𝑛𝐸𝑣 = 𝑛. ((𝐸𝐶 − 𝜇) + 
3

𝑐
𝑘𝐵𝑇) (−𝜇𝑒)𝐸  

14. Peltier coefficient is defining as the ratio of energy flux to charge flux for electron is given as 

    Πe =
𝑗𝑈

𝑗𝑞
=

((𝐸𝐶−𝜇)+ 
3

𝑐
𝑘𝐵𝑇)

𝑒
 

15. The Peltier coefficient is related to thermoelectric power Q and T by 

    Π = QT 

9.14 GLOSSARY 

Intrinsic– basic (pure). 

Extrinsic – impure. 

Drift – flow. 

Characteristic – specific. 

Minority – lesser. 

Majority – bulk. 

Donor – contributor. 

Effective – actual. 
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9.17 TERMINAL QUESTIONS 

Short answer type questions 

1. How does the energy gap in an intrinsic semiconductor vary, when doped with pentavalent 

impurity? 
2. Why is Ge preferred over Si for making semiconductor devices? 
3. What is hole? How does it behave? 

4. What is the purpose of making extrinsic semiconductor by adding impurity in intrinsic 

semiconductor? 

5. What is the effect of temperature rise on the resistivity and conductivity of a pure 

semiconductor? 

6. Why is semiconductor damaged when a strong current is passed through it? 

7. Why? Semiconductor is opaque to visible light, but transparent to infra-red radiation.  

8. Calculate the intrinsic conductivity and resistivity of pure Si at room temperature, assuming 

intrinsic carrier (electron hole pair) density at this temperature to be 1.5 x 1016/ m3. The 

electron and hole mobilities in Si are 0.135 and 0.048 m2/V s respectively.  

9. The semiconductor has 6 x 1019 electrons and 7 x 1020 holes/m3. If the mobilities of 

electrons and holes are 0.10 m2/ V s and 0.06 m2/V s respectively. Calculate the 

conductivity of the semiconductor. 

10. A Ge crystal is doped with 1014 donor atoms/ cm3. Assuming that all the donors are ionized 

determine the resistivity of the doped sample. ( 20.39 /e m Vs  ).  

http://en.wikipedia.org/wiki/P-n_junction
http://britneyspears.ac/physics/basics/basics.htm
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Long answer type questions 

1. Explain the difference between intrinsic and extrinsic semiconductor. Find out the 

expression for carrier concentration of intrinsic semiconductors. 

2. Show that the Fermi level for extrinsic semiconductors lies exactly between the conduction 

and valance band. 

3. Find out the expression for carrier concentration and Fermi level of donor type 

semiconductor. 

4. Find out the expression for carrier concentration and Fermi level of acceptor type 

semiconductor. 

 

Objective type questions 

1. Silicon has 14 electrons. Its outermost orbit is  

(a) Empty 

(b) Completely filled 

(c) Half filled 

(d) None of the above 

2. Main current in an intrinsic semiconductor is due to 

(a) Conduction band electrons 

(b) Valence band holes 

(c) Valence band electrons 

(d) Thermally generated electrons 

3. When Ge is doped with indium, it becomes 

(a) N type semiconductor 

(b) P type semiconductor 

(c) An insulator 

(d) Photo transistor 

4. The energy gap between the valence and conduction bands in a semiconductor is of the order 

of 

(a) 0.025 eV 

(b) 1 eV 

(c) 6 eV 

(d) Negligible 

5. An example of p type semiconductor is  

(a) pure Ge 
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(b) germanium doped with arsenic 

(c) silicon doped with boron 

(d) germanium doped with carbon 

9.18 ANSWERS 

Short answer types  

1.  Energy gap decreases. 

2. The energy gap for Ge is only about 0.7 eV while for Si it is about 1.1 eV. 

3. A hole indicates a vacancy left by an electron in the p type semiconductor. It behaves like a 

positively charged particle. 

4. Since the conductivity of intrinsic semiconductor is very small. By introducing impurity in 

it, the conductivity of semiconductor is increased. 

5. The resistivity decreases, conductivity increases. 

6. Since at room temperature, a semiconductor has a finite resistance. When a strong current is 

passed through it, it gets heated and the covalent bonds break up. This give rise to a very large 

number of free electrons. The semiconductor then behaves like a conductor that is why; it 

ceases to be a conductor. 

7. Valence band of semiconductor is full; above it there is an empty conduction band with a 

very small gap of around 1 eV in between them. Photons of visible light have energies roughly 

between 1 and 3 eV and so they are absorbed by the valence electrons which are excited to the 

conduction band. Thus, the semiconductor is opaque to the visible light. The photons of infra-

red radiation are of much smaller energies and fail to excite the electrons in the valence band. 

So, the infra-red radiation passes through the semiconductor, because of that, the 

semiconductor is transparent to it. 

8.   Conductivity = 4.4 x 10-4 / ohm meter, resistivity = 2.27 x 103 ohm meter 

9.  Conductivity = 7.68 / ohm meter,  10. Resistivity = 0.16 ohm meter 
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10.1 INTRODUCTION 

 

Dielectrics are insulating or non-conducting ceramic materials. They exhibit the property of 

electrical polarization, thus modify the dielectric function of the vacuum. A dielectric material is 

a material that supports charge without conducting it to a significant degree. In principle all 

insulators are dielectric, although the capacity to support charge varies greatly between different 

insulators. These materials do not conduct electrical current when an electric field is applied, they 

are not inert to the electric field. The field may cause a slight shift in the balance of charge within 

the material to form an electric dipole. They are used in many applications such as capacitors, 

memories, sensors, actuators etc. 

The first numerical measurements on the properties of insulating materials when placed between 

the two parallel plates (capacitor), was carried out by Faraday and the insulating material is known 

as dielectrics. He establishes that the capacity of a condenser was dependent on the nature of the 

material separating the conducting surface. This discovery encouraged further empirical studies of 

insulating materials aiming at maximizing the amount of charge that can be stored by a capacitor. 

In search of suitable dielectric materials for specific applications, these materials have become 

increasingly concerned with the detailed physical mechanism governing the behaviour of these 

materials. 

 

10.2 OBJECTIVES 

 

After studying this chapter, you will be able to know 

 Dielectric materials 

 Polarizability 

 The different ways of polarization of materials 

 Clausius-Mossotti relation 

 Ferroelectricity, Antiferroelectricity, Piezoelectricity 
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10.3 SOME IMPORTANT DEFINITIONS 

 

10.3.1 Electric Dipoles 

 

Upon application of a dc or static electric field in a material, there is a limited movement of charges 

leading to the formation of charge dipoles and the material, this state, is considered as polarized. 

These dipoles are aligned in the direction of the applied field. The net effect is called Polarization 

of the material. A dielectric supports charge by acquiring a polarization in an electric field, 

whereby one surface develops a net positive charge while the opposite surface develops a net 

negative charge. This is made possible by the presence of electric dipoles – two opposite charges 

separated by a certain distance – on a microscopic scale. 

 

1. If two discrete charged particles of opposite charges are separated by a certain distance, a dipole 

moment μ arises (Figure 10.1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure: 10.1 
 

2. If the centre of positive charge within a given region and the centre of negative charge within 

the same region are not in the same position, a dipole moment μ arises. For example, in the 

Figure 10.2 below the centre of positive charge from the 8 cations shown is at X, while the centre 

of negative charge is located some distance away on the anion. 
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Figure: 10.2 

 

3. The second view of dipole moment is more useful, since it can be applied over a large area 

containing many charges in order to find the net dipole moment of the material. 
 

The dipoles can be aligned as well as be induced by the applied field 

 

Note that in the equation for dipole moment, r is a vector (the sign convention is that r points 

from negative to positive charge) therefore the dipole moment μ is also a vector 

 

10.3.2 Electric Field Intensity or Electric Field Strength (E) 
 

The force experienced by a unit test charge is known as electric field strength E 

 

𝐸 =
𝑄

4𝜋𝜀𝑟2           (10.1)                                              

 

 

where is the permittivity or dielectric constant of the medium in which electric charge is placed. 

For vacuum  = o = 8.854X10-12 Fm-1 

 

10.3.3 Electric Flux Density or Electric Displacement Vector (D) 

 

The electric flux density or electric displacement vector is the number of flux lines 

crossing normal to a unit surface area. The electric flux density at a distance from the point 

charge Q is 

𝐷 =
𝑄

4𝜋𝑟2                                                                                     (10.2) 

 

By using equation from (10.1)and(10.2), we will get the relation between D,𝜀, and E as: 

                                     D=E                                                                                    (10.3) 
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10.3.4 Dielectric Constant (𝛆𝐫) 
 

The dielectric constant of a material is defined as the ratio of the permittivity of the medium () to 

the permittivity of free space (o). It can also have defined as the ratio of the capacitance with 

dielectric (Cd) and with air (CA) between the plates. 

𝜀𝑟 =
𝜀

𝜀0 
= 

𝐶𝑑

𝐶𝐴
                                                                                                                      (10.4) 

It gives the expression for the extent to which a material concentrates electric flux. It is electrically 

equivalent to relative magnetic permeability. 

 

10.3.5 Capacitance 

 

 The property of a conductor or system of conductor that describes its ability to store electric 

charge. 

 

C=q/V=A ε/d 

 

Where, the terms have their usual meaning: C is capacitance of capacitor, q is charge on the 

capacitor plate V is potential difference between plates, A is area of capacitor plate, ε is 

permittivity of medium and d is distance between capacitor plates. Unit of charge is Farad. 

 

10.4 POLARIZATION 

 

When an electric field is applied to a material with dielectrics, the positive charges are displaced 

opposite to the direction of the field and negative charges displaced in the direction of the field. 

The displacement of these two charges create a local dipole, creation of dipole by applying electric 

field is called as polarization. Polarization is defined as induced dipole moment per unit volume. 

 

𝑃 =
𝜇

𝑉𝑜𝑙𝑢𝑚𝑒
                                                                  (10.5) 

 

Polarizability: 

 

Polarization or polarizability is the ability to form instantaneous dipoles. It is a property of matter 
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which determines the dynamical response of a bound system to external fields and provide insights 

into the molecular internal structure. Normally, in a solid polarizability is defined as the dipole 

moment per unit volume of crystal.  

 

The polarization P is directly proportional to the electric field strength E 

 

𝑃 ∝ 𝐸 𝑃 = 𝛼 𝐸                                                                                                  (10.6) 

 

 

Where  proportionality is constant called as polarizability. The polarizability is defined as 

polarization per unit applied electric field. If the material contains N number of dipoles per unit 

volume, then 

𝑃 = 𝑁 𝛼 𝐸 

 

10.4.1 Relation between Polarization and Dielectric Constant 

Let us consider a parallel plate condenser.  Applying Gauss theorem on it. We will get: 

 

∫𝐸0𝑑𝐴 =
𝑞

𝜀0
 

𝐸0𝑑𝐴 =
𝑞

𝜀0
 

𝐸0 =
𝑞

𝐴𝜀0
=

𝜎

𝜀0
 

Here  𝜎 is the charge per unit area. Let us suppose a dielectric slab is put between the capacitor.  

The charges appear on the two faces of the slab due to the polarization and establish another field 

within the dielectric media. Suppose this field is 𝐸′ and its direction is opposite to the direction of 

E0. Hence the resultant field E in the material can be written as: 

𝐸 = 𝐸0 − 𝐸′ 

 

Let 𝜎𝑃 is the charge per unit area on the dielectric slab that is inserted in between the capacitor. 

Hence the equation can be changed as: 
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𝐸 =
𝜎

𝜀0
−

𝜎𝑃

𝜀0
 

Or                                                                        𝜀0𝐸 = 𝜎 − 𝜎𝑃

The magnitude of polarization P is given as dipole moment per unit volume and dipole moment 

is given as multiplication of induced charge and distance  

So P can be given as: 

𝑃 =
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑒

𝐴𝑟𝑒𝑎
= 𝜎𝑃 

We know that electric displacement field or electric flux density D is given by charge /unit area 

𝐷 =
𝑞

𝐴
= 𝜎 

Hence the equation 𝜀0𝐸 = 𝜎 − 𝜎𝑃becomes 

𝜀0𝐸 = 𝐷 − 𝑃 

𝑃 = 𝐷 − 𝜀0𝐸 

 

in free space where there is no dielectric P=0

𝐷 = 𝜀0𝐸 

But in dielectric media the D changes. From electrostatics 

𝐷 = 𝜀𝑟𝜀0𝐸 

On putting the value of D in the equation of P, we get  

𝑃 = 𝜀𝑟𝜀0𝐸 − 𝜀0𝐸 

𝑃 = 𝜀0𝐸(𝜀𝑟 − 1) 

Or (𝜀𝑟 − 1) =
𝑃

𝜀0𝐸
= 𝜒                                                                                                       (10.7) 

 

where𝜒 is the electric susceptibility of the dielectric medium. It is unit less quantity. 
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10.5 TYPES OF POLARIZABILITY 

 

There are four different types of polarizability, they are listed below. 

 

1. Ionic polarizability 

2. Electronic polarizability 

3. Oriental polarizability 

4. Molecular polarizability 

 

10.5.1 Ionic Polarizability 

 Ionic polarizability is a measure of how easily and electron cloud can be distorted by an electric field. Ionic 

polarization occurs in ionic solids such as NaCl, KBr, and LiBr. When an electric field is applied to an ionic 

solid the positive and negative ions displace to their respective polarities creating an electric dipole this is 

called as ionic polarization. 

1. Ionic polarization occurs due to the relative displacement between positive and negative ions in 

an ionic crystal.   

2. If a crystal or molecule consists of atoms of more than one kind, the distribution of charge 

around an atom in the crystal or molecules leads to positive or negative.  As a result, when lattice 

vibrations or induced vibrations induces relative displacement of atoms centres of positive and 

negative charges are also displaced.  The location of these centres are affected by symmetry of 

displacement.  

3. Then the centres do not correspond, polarization arises in molecules or crystals. The 

displacement and thus ionic polarizability is independent of temperature. 

In order to derive ionic polarizability(i), consider the diagram showing ionic structure of NaCl. 

Let x1 and x2 be the displacement of Na+ and Cl- ions respectively then electric field E is applied 

(Figure 10.3).  

 

 

 

 

 

 

Figure: 10.3 
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The resultant dipole moment per unit cell is given by 

𝜇 = 𝑒(x1 + x2)                                                        (10.8) 

Where e is the magnitude of the charge. When electric field is applied, due to the displacement of 

ions, a restoring force is produced which tend to bring ions back into their original position. 

Let F be restoring force. For positive ions:  

Fx1 

F1x1 

For negative ions: 

Fx2 

 

F2x2 

 

 1 and 2 are the constant, which depend upon the mass of ions and the angular frequency 

of vibrations of molecules.  

 

Let us suppose 𝜔0 be the angular frequency and 𝑚,𝑀 are the masses of cations and anions respectively. 

From mechanics the spring constant of mass attached to a spring given by 𝛽 = 𝑚𝜔2, at equilibrium the 

Lorentz force and restoring force are equal. 

 

𝑒𝐸 = 𝑚𝜔0 
2 𝑥 

Therefore; 

𝑥 =
𝑒𝐸

𝑚𝜔0 
2

 

 

𝑥1 =
𝑒𝐸

𝑚𝜔0 
2

, 𝑥2 =
𝑒𝐸

𝑀𝜔0 
2

 

 

µ =
𝑒2

𝜔0
2 [

1

𝑚
+

1

𝑀
] 𝐸 = 𝛼𝑖𝐸                              (10.9) 

 

 

where,                                                      𝛼𝑖= 
𝑒2

𝜔0
2 [

1

𝑚
+

1

𝑀
] 𝐸(10.10) 

 

Equation 10.10 gives expression for ionic polarizability and 𝛼𝑖  is called as ionic polarisability. 

Where 𝜔0 is the angular frequency, e is the magnitude of the charge, m,M are the masses of ions. 
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10.5.2 Electronic Polarizability 

Electronic polarizability is the relative tendency of a charge distribution like the electron cloud of 

an atom or molecule and consequently of any material body to have its charges displaced by any 

external electric field, which in the uniform case is applied typically by a charged parallel plate 

capacitor. In all circumstances the application of electric field causes some distortions of electronic 

cloud relative to Nucleus.  This is known as electronic polarizability. 

On applying a field, the electron cloud around the nucleus shifts towards the positive end of the 

field. As the nucleus and electron cloud are separated by a distance, dipole moment is created 

within each atom. The extent of this shift is proportional to the field strength. 

Induced dipole moment  
eE 

e eE 

Where e is called electronic polarizability. The dipole moment per unit volume is called 

electronic polarization. 

 It increases with increase of volume of the atom. 
 

 This kind of polarization is mostly exhibited in monoatomic gases.(e.g. He, Ne, Ar, Kr, 

Xe etc..) 

 It is independent of temperature. 
 

 It occurs only at optical frequencies(1015Hz) 

 Vast fast process:10-15~10-16s. 

 

Calculation of electronic polarizability 

Electronic polarization can be explained by classical model of an atom in gasses. An atom can be thought 

of having a centre positive charge +Ze at nucleus and a smeared out electron cloud of charge -Ze. The 

electron cloud is assumed to be spherical region of uniform charge of radius a.  When an external field is 

applied the centre of positive charge and the centre of negative charge shift by a distance d with respect to 

one another. Here the nucleus of charge Ze is surrounded by an electron cloud of charge –Ze distributed 

in the sphere of radius R. Charge density is given as: 
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Charge density,  𝜌 = −
𝑍𝑒

(4/3)𝜋𝑟3                                                           (10.11) 

When an electric field E is applied, the nucleus and electrons experience Lorentz force of 

magnitude ZeE in opposite direction. Therefore, the nucleus and electrons are pulled apart. At 

equilibrium these two forces are equal and nucleus and electron cloud are separated by a small 

distance x (Figure 10.4). 

 

Figure: 10.4 
 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑓𝑜𝑟𝑐𝑒 = −𝑍𝑒𝐸                                               (10.12) 

𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑓𝑜𝑟𝑐𝑒 = 𝑍𝑒 ×
Charge enclosed in the sphere of radius x 

4𝜋 𝜀0𝑥2
 

The charge enclosed = 
4

3
𝜋𝑥3𝜌 

From the equation 10.11, the value of charge enclosed can be given as: 

= 
4

 3
𝜋𝑥3[−

3

4
(

𝑍𝑒

𝜋𝑅3)] 

= −
𝑍𝑒𝑥3

𝑅3
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Hence the Coulomb force can be written as:  

= −
𝑍𝑒 

4𝜋𝜀0𝑥2 𝑋 −
𝑍𝑒𝑥3

𝑅3 = −
𝑍2𝑒2𝑥

4𝜋𝜀0𝑅3                                                                                   (10.13) 

At the position of equilibrium, the Lorentz ad coulomb forces are equal. Therefore: 

 

−𝑍𝑒𝐸 = −
𝑍2𝑒2𝑥

4𝜋𝜀0𝑅3
 

or 

𝑥 = −
4𝜋𝜀0 𝑅

3𝐸

𝑍𝑒
                                                                     (10.14) 

The displacement of the electron cloud is proportional to applied electric field. Hence the value of 

the electric dipole moment can be written as 

𝜇𝑒 = 𝑍𝑒𝑥 =
𝑍𝑒4𝜋𝜀0𝑅

3𝐸

𝑍𝑒
 

𝜇𝑒 = 4𝜋𝜀0𝑅
3𝐸 

𝜇𝑒 ∝ 𝐸 

𝜇𝑒 ∝ 𝛼𝑒𝐸                                                              (10.15) 

From the equation 10.15, 𝛼𝑒is called electronic polarizability and its value is 𝛼𝑒 =  4𝜋𝜀0𝑅
3. We 

know that;  

𝑃𝑒 =  𝑁µ𝑒 

As we know that𝜇𝑒 ∝ 𝛼𝑒𝐸, so the above equation may be written as: 

𝑃𝑒 =  𝑁𝛼𝑒𝐸𝑒 

Where N is the number of atoms/m3. However, the polarization can be given as: 

𝑃 = 𝐸𝜀0(𝜀𝑟−1) = 𝑁𝛼𝑒𝐸 

(𝜀𝑟−1) =
𝑁𝛼𝑒

𝜀0
 

Or 𝛼𝑒 =
(𝜀𝑟−1)

𝑁
𝜀0 

 

10.5.3 Orientation Polarizability 

Orientation polarizability is a kind of polarizability which occurs in liquids and solids which have 

symmetric molecules whose permanent dipole moment can be aligned by electric field. So we can 
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say that, orientation polarization occurs only in polar molecules (the molecules which have 

permanent dipole moment eg H2O, Phenol, etc.). In order to find orientation polarizability, let us 

consider a system of a permanent dipole with dipole moment P is subjected to an external field be 

parallel to x axis. When an electric field is applied to a polar molecule, the dipoles experience a 

torque and try to align parallel to the applied field. 

 

 

 

 

 

 

 

Figure: 10.5 
 

Consider a polar molecule subjected to an electric field E. The alignment of electric dipole with the electric 

field is similar to the alignment of magnetic dipole with the applied magnetic field in paramagnetic material 

(Figure 10.5).  

The expression for polarization can be obtained from the theory of paramagnetism. The orientation 

polarization is given as; 

𝑃0 =
𝑁µ0 

2 𝐸

3𝐾𝑇
= 𝛼𝑂𝐸                                                                 (10.16) 

𝛼𝑂 =
µ0 
2 

3𝐾𝑇
                                                                       (10.17) 

Where 𝛼𝑂 =
µ0 
2 

3𝐾𝑇
 is known as orientation polarisability. 

Space charge polarization: 

Space charge polarization occurs due to the accumulation of charges at the electrodes or at 

interfaces in a multiphase material. 

In the presence of an applied field, the mobile positive ions and negative ions migrate toward the 

negative electrode and positive electrode respectively to an appreciable distance giving rise to 

redistribution of charges, but they remain remains in the dielectric material (electrode is blocking). 

The space charge polarization can be defined as the redistribution of charges due to the applied 



 
 

237 
 

electric field and the charges accumulate on the surface of the electrodes (Figure 10.6). It occurs 

when the rate of charge accumulation is different from rate of charge removal. Space charge 

polarization is not significant in most of the dielectric materials. 

 

 

 

 

 

 

 

 

Figure: 10.6 

 

10.5.4 Molecular Polarizability 

 

When a beam of light is incident on a transparent material medium of refractive index different 

from that of the surroundings, the medium gets polarized.  If a light wave of electric intensity E 

goes past a molecule in a medium it induces and optic moment in the molecule. The molecule is 

said to be polarized. In the absence of an electric field the electron of mass “m” would oscillate 

with frequency is, which is given by: 

𝜈0 =
1

2𝜋
√

𝑘

𝑚
 

 

𝑘 = 4 𝜋 𝑚𝜈0
2 

By neglecting damping, molecular polarizability (𝛼𝑚) can be given as: 

𝛼𝑚 =
𝑒2

𝑘
 

On putting the value of 𝑘 in the above equation, we can get value of𝛼𝑚. 

 

𝛼𝑚 =
𝑒2

4 𝜋 𝑚𝜈0
2                                                         (10.18) 

Frequency Dependence of Dielectric Properties Frequency Dependence of Dielectric Properties 
 
s 
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10.6 FREQUENCY DEPENDENCE OF DIELECTRIC 

PROPERTIES 

 

Different dielectric properties depend upon the frequency of applied field and temperature. In this 

section we will discuss the frequency dependence of polarisation and dielectric constant: 

Dielectric constant is very much affected by the frequency of applied voltage. The frequency 

dependence of dielectric constant on the frequency is shown in the figure.  

Atomic polarization is present in all materials by definition and hence any other mechanism 

would be an addition. 

 

 

 

Figure 10.7: Schematic diagram between dielectric constant vs frequency showing various 

mechanism. 

 

Qualitatively, we can see that in the above four mechanisms, the masses of the entities to be 

displaced are different, with mass getting larger from electronic to ionic to dipolar polarization. 

This has a direct relation with the frequency of the applied field (Figure10.7). Intuitively, we can 

mention that heavier the particular entity, more is the time spent in displacing it. As a result, atomic 

polarization is the fastest and typically persists at frequencies between ~1013-1015 Hz. In contrast, 

ionic polarization is sluggish and typically occurs at frequencies between ~109-1013 Hz while 
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dipolar polarization involving movement of molecules happens below 109 Hz. Interface or space 

charge polarization occurs at frequencies below 10 Hz. 

For non-magnetic dielectrics, Maxwell’s electromagnetic theory predicts that the dielectric 

constant obtained from the electronic contribution is also related to the index of refraction as 

er = n2 which is true at very high frequencies, above 1012-1013 Hz. Contribution from another 

mechanism will be on top of it. Carbon and germanium being single elemental materials show 

electronic polarization only and as a result their dielectric constants match well with the values of 

n2. However, the same is not the case with NaCl or water which have strong contributions of ionic 

and ionic and dipolar polarization respectively 

 

 

10.7 INTERNAL FIELD (OR LOCAL FIELD) IN LIQUIDS AND 

SOLIDS (ONE DIMENSIONAL) 

In gases state the atoms are separated by large distances and the interaction between the atoms can 

be neglected. When an external electric field E is applied, the intensity of the electric field 

experienced by an atom in gases state will be equal to the applied electric field E. 

In solids and liquids, the atoms are close to each other leading to strong interaction between the0m. 

In solids and liquids, the intensity of the electric field at a given point of the material is not equal 

to the applied electric field but equal to internal field which is the sum of applied electric field and 

field due to other dipoles present in the material. 

Internal field Ei =E+E`  

The internal field can be calculated by Epstein model in the case of one dimensional atomic array. 

 

Electric field along the axis of an electric dipole 

 

Consider an electric dipole of length 2d and charge Q, the field along the axis of the dipole at point 

A is the sum of the electric field due to +Q and –Q (Figure 10.8). 
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Figure 10.8 

The electric field due to +Q at point A is𝐸+ =
𝑄

4𝜋𝜖0(𝑥−𝑑)2
 

The electric field due to +Q at point A is𝐸− =
𝑄

4𝜋𝜖0(𝑥+𝑑)2
 

Electric field of dipole at A is𝐸𝐴 = 𝐸+ − is  𝐸− = 
𝑄

4𝜋𝜖0
[

1

(𝑥−𝑑)2
−

1

(𝑥+𝑑)2
 

= 
2𝑄

4𝜋𝜖0
[

2𝑑𝑥

(𝑥 − 𝑑)2(𝑥 + 𝑑)2
] 

 

Since 𝑥 ≫ 𝑑,  (𝑥 − 𝑑)2 ≈ (𝑥 + 𝑑)2 ≈ 𝑥2 then  

= 
2𝑄

4𝜋𝜖0
[
2𝑑𝑥

𝑥4
] =

4𝑑𝑄

4𝜋𝜖0𝑥3
 

Since 2𝑑𝑄 = 𝜇𝑖𝐸𝐴 =
2𝜇𝑖

4𝜋𝜖0𝑥3 

Consider an array of one dimensional atoms along x- axis. The all the atoms are similar, equally 

spaced and have induced electric dipole moment 𝜇𝑖in an applied electric field E (Figure 10.9).  

 

 

 

Figure 10.9 

 

The electric field experienced at the A is the sum of electric fields of other dipoles and applied 

electric field E. The electric field at A due to the induced dipole B and L at a distance x is 

𝐸𝐵 = 𝐸𝐿 =
2𝜇𝑖

4𝜋𝜖0𝑥3
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The electric field at A due to the induced dipole C and M which are at a distance 2x is 

𝐸𝐶 = 𝐸𝑀 =
2𝜇𝑖

4𝜋𝜖0(2𝑥)3
 

Consequently, the field due to other dipoles is given as: 

𝐸′ = 𝐸𝐵 + 𝐸𝐿 + 𝐸𝐶 + 𝐸𝑀 + 𝐸𝐷+⋯.. 

On putting the values of 𝐸𝐵, 𝐸𝐿 , 𝐸𝐶 , 𝐸𝑀 …The above equation becomes: 

𝐸′ = 
2𝜇𝑖

4𝜋𝜖0𝑥3
+

2𝜇𝑖

4𝜋𝜖0𝑥3
+

2𝜇𝑖

4𝜋𝜖0(2𝑥)3
+

2𝜇𝑖

4𝜋𝜖0(2𝑥)3
+

2𝜇𝑖

4𝜋𝜖0(3𝑥)3
+

2𝜇𝑖

4𝜋𝜖0(3𝑥)3
+ ⋯ .. 

𝐸′ = 
4𝜇𝑖

4𝜋𝜖0𝑥3
+

4𝜇𝑖

4𝜋𝜖0(2𝑥)3
+

4𝜇𝑖

4𝜋𝜖0(3𝑥)3
…… 

𝐸′ = 
𝜇𝑖

𝜋𝜖0𝑥3
[1+

1

23
+

1

33
+

1

43
+

1

53
+

1

63
+ ⋯…] 

1+
1

23 +
1

33 +
1

43 +
1

53 +
1

63 + ⋯ = 1.2 

𝐸′ = 
1.2𝜇𝑖

𝜋𝜖0𝑥3
 

Therefore, the internal field can be given as; 

𝐸𝑖 = 𝐸 + 
1.2𝜇𝑖

𝜋𝜖0𝑥3
 

The local field in a three dimensional solid is similar the above equation the number density N of 

atoms replaces 1/a3. Since Nμi=P and 1.2/π is replaced by γ. Then the internal field is given as 

𝐸𝑖 = 𝐸 + 
1.2𝑁𝜇𝑖

𝜋𝜖0
 

Or  

𝐸𝑖 = 𝐸 + 
1.2𝑃

𝜋𝜖0
= 𝐸 + 

𝛾𝑃

𝜖0
 

Here depends on the internal structure and its value for a cubic symmetry is 1/3. So the above 

equation reduces as: 

𝐸𝑖 = 𝐸 + 
𝑃

3𝜖0
                                                                           (10.19) 

The above equation for field is called Lorentz field. 
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10.8 CLAUSIUS MOSSOTTI RELATION 

The clausius-mossotti expresses the dielectric constant of a material in terms of atomic 

polarizability of a material constituting atoms molecules or a homogeneous mixture. The Clausius-

Mossotti equation was developed by Italian physicist Ottaviano Fabrizio Mossotti in 1863. He 

used macroscopic electrostatics for the formation of the equation. Later in 1870, a German 

physicist Rudolf Clausius developed this theory independently in 1879. The equation gives a 

relation between dielectric constant ε of a material and the polarizability of the atoms. It is best 

followed by gases and liquids and solids follow it approximately. In dielectric solids, the atoms 

and molecules experience externally applied electric field. The dipole also produces the internal 

electric field. Both the electric fields give rise to a resultant electric field which is termed as local 

electric field or internal field. In other words, local electric field is the field that is applicable on a 

dipole inside the solid locally.  

The induced dipole moment is given by: 

                              (10.20) 

where α is the polarizability of atom or molecule (electronic). Atom will only exhibit electronic 

polarizability whereas molecule can have electronic, ionic and dipolar polarizability.  

For a parallel plate capacitor, let E0 be the field of the free charges on the conducting plates and 

E1be the field of bound charges on the surface of the dielectric (depolarized field). Suppose we 

take out a spherical shaped cavity of dielectric from capacitor. E2 and E3 are the field of the bound 

charges on the surface and inside the cavity respectively.  

Local electric field will be: 

 

           (10.21) 

 

Polarization for linear dielectric,  𝑝 = ε0χE⃗⃗ mac 

𝑝 = ε0 (εr-1) E⃗⃗ mac 

Put in (10.21), E⃗⃗ local = E⃗⃗ mac + 
ε0 (εr−1) E⃗⃗ mac

3𝜀
                                    (10.22) 

𝑝 in = α E⃗⃗ local 

 

E⃗ local = E⃗ macroscopic + 
�⃗� 

3𝜀
 



 
 

243 
 

 

                                        (10.23) 

If the molecule is kept in vaccum, then εr=1 

E⃗⃗ local =  
(1+2) E⃗⃗ mac

3
 = E⃗⃗ mac 

E⃗⃗ macroscopic = E⃗⃗ local 

but if the molecule is kept in solid, E⃗⃗ macroscopic <E⃗⃗ local 

from (10.20): 𝑝 in = α E⃗⃗ local 

if N is the atomic or molecular density 

�⃗� = N 𝑝 in = Nα E⃗⃗ local 

ε0 (εr-1) E⃗⃗ mac = Nα 
(εr+2) E⃗⃗ mac

3
 

ε0 (εr-1) = Nα 
(εr+2) 

3
 

 

(10.24) 

This is Clausius Mossotti relation. This equation provides a link between a microscopic quantity 

(the polarizability) and a macroscopic quantity (the dielectric constant). 

Limiting case: at visible frequency or 1014 Hz frequency, 

Let αe and αi be the electronic and ionic polarizability and n be the refractive index, then, 

α = αe + αi 

at αi= 0, α = αe and εr=n2 

the equation (10.24) becomes                                                                 (10.25) 

 

 

Equation (10.25) is the Lorentz relation. 

E⃗ local =  
(εr+2) E⃗ mac

3
 

𝑁𝛼𝑒

3ε0
=

(𝑛2 − 1)

(𝑛2 + 2)
 

 

𝑁α

3ε0
=

(ε𝑟 + 2)

(ε𝑟 − 1)
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10.9 FERROELECTRICS 

Below a certain temperature it is found that some materials spontaneously acquire an electric 

dipole moment. These materials are called as ferroelectric materials or ferroelectrics. The 

temperature at which ferroelectric property of the material disappears is called as ferroelectric 

Curie temperature. Ferroelectric materials are anisotropic crystals which exhibit a hysteresis curve 

P versus E which can be explained by domain hypothesis. 

 

Ferro electricity 

Ferro electric materials are an important group not only because of intrinsic Ferro electric property, 

but because many possess useful piezo electric, birefringent and electro optical properties. The 

intrinsic Ferro electric property is the possibility of reversal or change of orientation of the 

polarization direction by an electric field. This leads to hysteresis in the polarization P, electric 

field E relation, similar to magnetic hysteresis (Figure 10.10). Above a critical temperature, the 

Curie Point Tc, the spontaneous polarization is destroyed by thermal disorder. The permittivity 

shows a characteristic peak at Tc. 

 

Figure 10.10: Ferroelectric Polarization 

 

Basically ferroelectricity is a characteristic of certain materials that have a spontaneous electric 

polarization that can be reversed by the application of an external electric field.  All 

ferroelectrics are pyroelectric with the additional property that their natural electrical polarization 

is reversible. 
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Examples  

An important ferroelectric material for applications is lead zincronateTitanate (PZT), which is part 

of the sodium solution formed between ferroelectric Lead titanate and antiferroelectric Lead 

zirconate. 

Apart of PZT, PbZr, TiO3, BaTiO3, PbTiO3 

 PbTiO3 : Lead titnate 

 PZT : Lead zirconate 

 PLZT : Lead lanthanum zirconattetitanats 

 

Applications of ferroelectric materials 

Ferroelectric materials have a number of applications. Some of them are mentioned below: 

1. Capacitors 

2. Non-volatile memory 

3. Piezoelectric for ultrasound imaging and actuators 

4. Electro optic materials for data storage applications 

5. Thermistors 

6. switches known as trans charges or trans polarizers 

7. Oscillators 

8. Filters 

9. Light detector 

10. Modulators 

 

10.10 ANTIFERROELECTRICITY 

Antiferroelectricity is a physical property that is associated with antiferroelectric materials. These 

materials have ions which can polarize without external field (spontaneous polarization). As a 

result, dipoles are ordered or arranged with alternating orientation. That is, adjacent lines will be 

in anti-parallel direction. Electric field causes phase transition in these materials. This phase 

transition causes large pattern strain and energy change. Antiferroelectricity is highly linked to 

ferroelectricity. They are contrast with each other. So we have to know that ferroelectricity is also 

a physical property which polarizes quickly. By varying the direction of the field applied we can 
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invert the direction of polarization. So, the difference is the direction of dipoles after polarization. 

The former will align anti parallel and latter will align in the same direction (Figure 10.11). 

Antiferroelectric property is steady than ferroelectric property in a plain cubic pattern. 

The entire macroscopic spontaneous polarization in antiferroelectric material is zero. The reason 

is that the closest dipoles will cancel each other. This property can emerge or vanish depending on 

various parameters. The parameters are external field, pressure, growth method, temperature etc. 

The antiferroelectric property is not piezoelectric. That is there is no change in mechanical 

character of the material by the application of external field. These materials usually have high 

dielectric constant. The dipole orientation of this material is similar to the chess board pattern 

which is shown below: 

 

 

Figure 10.11: Arrangement of dipoles in the antiferroelectric material material with the 

application of electric field. 

Examples  

The examples of antiferroelectric materials are as follows 

 PbZrO3 (Lead Zirconate) 

 NH4H2PO4 (ADP: Ammonium dihydrogen Phosphate) 

 NaNbO3(Sodium Niobate) 

 

Antiferroelectricity and Temperature 

 

The antiferroelectric property will vanish above a particular temperature. This we can call as 

Antiferroelectric Curie point. The materials and their curie temperature are shown in Table no.1. 

The dielectric constant (relative permittivity) less and more than this Curie point is investigated. 
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This is done for both first and second order transition. In the second order transition, dielectric 

constant is continuous all over the Curie point. In the two cases dielectric constant must not be 

very high. 

 

Hysteresis loop of a perfect antiferroelectric material 

The hysteresis loop of a perfect antiferroelectric material can be drawn as shown in Figure10.12. 

The reversal of spontaneous polarization of these materials gives a double hysteresis loops. The 

external field applied is a low frequency AC field. 

 

 

 

Figure 10.12: Hysteresis loop of a perfect antiferroelectric material. 

 

Application of Antiferroelectricity 

 Super capacitors 

 MEMS Application 

 Used in integration with ferromagnetic materials 

 High energy storage devices 

 Photonic application 

 Liquid crystal etc. 
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10.11 PIEZOELECTRICITY 

Piezoelectricity or piezoelectric effect is the ability of certain materials to generate an electric 

charge in response to applied mechanical stress.  The word piezoelectric is derived from Greek 

word piezein means to squeeze or press.  One of the unique characteristics of the piezoelectric 

effect is that it is reversible that is the materials exhibiting the direct piezoelectric effect also exhibit 

the Converse Piezoelectric effect. When piezoelectric material is placed in under mechanical stress 

a shifting of positive and negative charge centres in the material takes place which then results in 

an external electric field.  When reversed and out electrical field that stretches or compresses the 

piezoelectric material. The piezoelectric effect is useful within many applications that involve the 

production and detection of sound generation of high voltages electronic frequency generation 

micro balances and ultrafine focusing of optical assemblies.  It is also the basis of a number of 

scientific instrumental techniques with atomic resolution such as the scanning probe microscopes.  

This effect also has its use in more mundane application as well, such as acting as the ignition 

source for cigarette lighters.  

Piezoelectric materials: 

 There are a number of materials both natural and manmade that exhibit a range of piezoelectric 

effects. Some naturally piezoelectric occurring materials includes berlinite (structurally identical 

to quartz) Cane sugar rock salt Topaz tormaline and bone. An example of manmade piezoelectric 

material includes barium titanate and lead zirconatetitanate. 

Working 

In a piezoelectric crystal, the positive and negative electrical charges are separated, but 

symmetrically distributed. This makes the crystal electrically neutral. Each of these sides forms an 

electric dipole and dipoles near each other tend to be aligned in regions called “Weiss domains”. 

The domains are usually randomly oriented, but can be aligned during poling, a process by which 

a strong electric field is applied across the material, usually at elevated temperatures. When a 

mechanical stress is applied, this symmetry is disturbed, and the charge asymmetry generates a 

voltage across the material. In Converse piezoelectric effect, application of an electrical field 

creates mechanical deformation in the crystal. 
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The most common application of piezo crystals to generate a potential is the electric cigarette 

lighter. Pressing the button of the lighter causes a spring-loaded hammer to hit a piezoelectric 

crystal, producing a sufficiently high voltage that electric current flows across a small spark gap, 

thus heating and igniting the gas. Some substances like quartz can generate potential differences 

of thousands of volts through direct piezo electric effect. 

 

Applications 

The Piezo effect finds many applications such as the production and detection of sound, generation 

of high voltages, electronic frequency generation, microbalances, and ultra-fine focusing of optical 

assemblies. It is also the basis of a number of scientific instrumental techniques with atomic 

resolution, the scanning probe microscopies and everyday uses such as acting as the ignition source 

for cigarette lighters and push-start propane barbecues. Some main applications of piezo crystals 

are: 

1. High voltage and power sources: An example of applications in this area is the electric 

cigarette lighter there pressing a button causes a spring loaded hammer to hit a piezoelectric crystal, 

thereby producing a sufficiently High Voltage that electric current flows across a small Spark gap, 

heating and igniting the gas.  Most type of gas burners have a built in Piezo based injection system. 

2. As Sensing elements: Principle of operation of a piezoelectric sensor is that a physical 

dimension, transformed into force acts on two opposing surfaces of the sensing element. 

3. Ultrasound imaging: Piezoelectric sensors are used with high frequency sound in ultrasonic 

transducers for medical imaging. For many sensing techniques, the sensor can act as both a sensor 

and an actuator. Ultrasonic transducers, for example, can inject ultrasound waves into the body, 

receive the returned wave, and convert it to an electrical signal (a voltage). 

4. Sonar sensors: Piezoelectric elements are also used in the detection and generation of sonar 

waves. Applications include power monitoring in high power applications such as medical 

treatment, sonochemistry and industrial processing etc. 

5. Chemical and biological sensors: Piezoelectric microbalances are used as very sensitive 

chemical and biological sensors. Piezo are also used as strain gauges. 

6. In Music instruments: Piezoelectric transducers are used in electronic drum pads to detect the 

impact of the drummer’s sticks. 
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7. Automotive application: Automotive engine management systems use a piezoelectric 

transducer to detect detonation by sampling the vibrations of the engine block. Ultrasonic piezo 

sensors are used in the detection of acoustic emissions in acoustic emission testing. 

8. Piezo resistive silicon devices: The Piezo resistive effect of semiconductors has been used for 

sensor devices employing all kinds of semiconductor materials such as germanium, polycrystalline 

silicon, amorphous silicon, and single crystal silicon. Since silicon is today the material of choice 

for integrated digital and analog circuits the use of Piezo resistive silicon devices has been of great 

interest. It enables the easy integration of stress sensors with Bipolar and CMOS circuits. 

9. Piezoresistors: Piezoresistors are resistors made from a Piezo resistive material and are usually 

used for measurement of mechanical stress. They are the simplest form of Piezo resistive device. 

 

10.12 SUMMARY 

In the present unit, we have understood that polarization is caused by the movement of electrons 

or ions or molecules from their equilibrium positions and is frequency dependent. This is because 

the mass of each entity is different and hence time scales are different. Basically, there are four 

polarization mechanisms: electronic, ionic, dipolar or orientation and interface and each of these 

mechanisms is characterized by different polarizability. The net polarizability of a solid will be 

sum of these four polarizabilities. We have also learnt that the local field inside a dielectric is not 

the same as the applied electric field. This field is a result of various microscopic and macroscopic 

fields inside the dielectric. This leads to derivation of Clausius-Mossotti equation which relates 

the microscopic dielectric properties to the macroscopic dielectric properties. In the last section 

we have understand the concept of ferroelectrics antiferroelectricity, and piezoelectricity.  

10.13 GLOSSARY 

 

 

Dipole a pair of equal and oppositely charged or magnetized poles separated by a 

distance 

Dielectric a nonconducting substance; insulator 
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10.15 TERMINAL QUESTIONS 

Multiple Choice Questions:  

Question 1. The unit of dipole moment is____ 

A. coulomb. Metre 

B. coulomb/metre 
C. coulomb. metre2 
D. metre / coulomb 

Voltage electromotive force or potential difference expressed in volts 

Polarize to cause polarization in 

Ferroelectric pertaining to a substance that possesses spontaneous electric polarization 

such that the polarization can be reversed by an electric field 

Piezoelectricity electricity, or electric polarity, produced by the piezoelectric effect 

Sensor a mechanical device sensitive to light, temperature, radiation level, or the 

like, that transmits a signal to a measuring or control instrument 

Polarization The action of restricting the vibrations of a transverse wave, especially light, 

wholly or partially to one direction. 
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Question 2.  The unit of dielectric constant is 
A. farad / metre 
B. unitless 
C. farad .metre 
D. farad . metre2 
 

Question 3.  The unit of Polarizability is 
A. farad / metre2 
B. farad metre2 
C. farad / metre 
D. Farad .metre 

  

Question 4. The unit of Electric Susceptibility is 
A. coulomb. Metre 
B. coulomb/metre 
C. farad. metre2 
D. unit less 
 

Question 5. The dielectric constant is --------- of the material. 
A. absolute permeability 
B. permittivity 
C. absolute permittivity 
D. permeability 

  

Question 6.  The unit of Polarization is 
A. coulomb. metre3 
B. coulomb/metre2 
C. coulomb. Metre 
D. metre / coulomb 

 

Question 7. 1 Debye = ------- coulomb. Metre 
A. 3.33 x 10-12 

B. 3.33 x 10-13 
C. 3.33 x 10-3 
D. 3.33 x 10-30 

  

Question 8. The value of relative permittivity for air is 
A. 1 
B. 1.6 
C. 1.66 
D. 1.8 
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Question 9. The following is not the type of polarization 
A. orientation 
B. ionic 
C. orbital 
D. electronic 

  

Question 10. Piezoelectric effect is when materials produce electric charges when  
A. Voltage is applied 

B. Mechanical Stress is applied 

C.  Electric field is applied 

D. Magnetic field is applied 

Question 11. Piezoelectricity means _________________ 

A. Electric polarization 

B. Electric dielectric 

C. Pressure electricity 

D. Polar dielectric 

 

Question 12. The piezoelectric materials used for converting energy are called as 

___________ 

A. Transition Devices 

B. Converter 

C. Dielectric 

D. Transducer 

 

Question 13. Piezoelectric effect is ___________ 

A. Isotropic 

B. Anisotropic 

C. Large in Magnitude 

D. Dominating 

 

ANSWERS:  

 
1. A, 2. A, 3. B, 4. D, 5. B, 6. B, 7. D, 8. A, 9. C, 10. B, 11. C, 12. D, 13. B, 

 

Short Answer type questions 

 

1. What do you mean by dielectric constant? 

2. What is antiferroelectricity? 

3. What is piezoelectricity? 

4. What do you understand by local field? 
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5. Explain the main characteristics of the ferroelectric crystals? 

6. Explain different type of polarizability? 

7. What are the uses of piezoelectric effect? 

8. Write Clausius –Mossotti equation. 

9. Is Clausius –Mossotti equation valid for a gas dielectric? 

10. What is the role of dielectric in capacitors? 

11. What do you mean by orientational polarization? Discuss the temperature dependence of 

orientational polarization. 

 

Long Answer type questions 

 

1. Deduce the expression for the local field for structures possessing cubic symmetry. 

2. Obtain Clausius-Mosotti equation and explain how it can be used to determine the dipole 

moment of a polar molecule from dielectric measurement. 

3. What do you mean by polarisation in the dielectrics? Deduce the relation between dielectric 

constant and polarisability. 

4. Write down the uses of ferroelctric crystals. 

5.  Briefly describe electronic polarizability? 

6. Explain the various dielectric polarisation mechanism. How does it vary with frequency? 

7. Obtain an expression for Lorentz field in a dielectric material and hence derive the Clausius-

Mosotti equation. 

8.What is the limitation for Clausius-Mossotti relation? Is that applicable for all the crystal 

structure? 

9. What are dielectrics? Explain different types of polarization mechanisms and theirfrequency 

dependence with suitable diagrams 

10. Define internal field. Derive an expression for the same for an array of dipoles in one 

dimension. Express Lorentz field for 3D array of dipoles. 

11. Write a Short note: (a) dielectric strength, (b) antiferroelectricity, (c) Ferroelectricity, (d) 

Piezoelectricity. 
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Numerical Type questions 

1. Compute the dielectric susceptibility of a material of dielectric constant 6.19. 

2. Calculate the electronic polarizability of a material of dipole moment 0.04 x 10-1 Cm induced 

by an electric field of 50 V/m.20. 

3. What is the internal electric field in a gas substance subjected to an electric field of 20V/m? 
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UNIT 11                  PLASMA OPTICS 
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11.2 Objectives 

11.3 Dielectric function of Electron gas  

11.4 Plasma Oscillations and Plasmon 

11.5 Plasma in metals 

11.6 Electrostatics screening  

11.7 Polaritons and LST relation 

11.8 Electron electron interaction 

11.9 Electron phonon Interaction 

11.10 Summary 

11.11 Glossary  

11.12 References 

11.13 Suggested Readings 
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11.1 INTRODUCTION 

Plasma is one of the four fundamental states of matter, first systematically studied by Irving 

Langmuir in the 1920s. It consists of a gas of ions – atoms or molecules which have one or more 

orbital electrons stripped and free electrons. In case of solids, according to free electron model, 

free electron gas oscillates with respect to ion core. This free electron gas, especially in case of 

metals where a large number of free electrons are available is considered as plasma.  Dielectric 

function 𝜖(𝜔, 𝐾) strongly depends on frequency and wave vector, is used to explain the 

oscillations. The physical properties of solids depend on plasma oscillations. The plasma 

oscillations are quantized and the quantum of oscillations is called Plasmon. Plasmons can be 

described as an oscillation of electron density (free electrons of solid) with respect to the fixed 

positive ions in a metal. To visualize a plasma oscillation, imagine a cube of metal placed in an 

external electric field pointing to the right. Electrons will move to the left side (uncovering positive 

ions on the right side) until they cancel the field inside the metal. If the electric field is removed, 

the electrons move to the right, repelled by each other and attracted to the positive ions left bare 

on the right side. They oscillate back and forth at the plasma frequency until the energy is lost in 

some kind of resistance or damping.  In this unit we will understand the different aspects of plasma 

oscillations and its interaction with crystal lattice, electron, phonon and photons. 

 

11.2 OBJECTIVE 

After studying this unit, you should be able to- 

 Understand the Dielectric function of Electron gas  

 Plasma Optics and Plasmon 

 Electrostatics screening  

 Polaritons 

 LST relation 

 Electron-electron interaction 

 Electron- phonon Interaction 

 

 

11.3 DIELECTRIC FUNCTION OF ELECTRON GAS 

Dielectric function of electron gas is an angular frequency and wave vector based complex function 

𝜖(𝜔, 𝑘) which is useful to explain the optical and transport properties of solids. The interaction 

between metal and light of semiconductor and light is determined by dielectric function of free 

electrons. If 𝑘 = 0, dielectric function becomes 𝜖(𝜔) which describe the collective oscillation of 

electron gas with respect to ion core. This is called Plasmon system and the longitudinal oscillation 
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quanta are called Plasmons.  In another case if 𝜔 = 0; the dielectric function becomes 𝜖(𝑘); system 

is defined by electrostatic screening.  

 

11.3.1 Dielectric Constant 

Dielectric constant or relative permittivity of a medium is define as the ratio of absolute 

permittivity of a medium to absolute permittivity of free space(𝐾 = 𝜖𝑟 = 𝜖
𝜖0⁄ ). In term of electric 

field (E), electric displacement vector (D) and polarization vector (P) the dielectric constant is 

given as 

      𝑫 = 𝜖0𝑬 + 𝑷 = 𝜖𝑬 = 𝜖0𝜖𝑟𝑬    (1) 

   If 𝜌 is total charge density given by the sum of internal charge density and induced charge density 

then 

     𝜌 = 𝜌𝑒𝑥𝑡 + 𝜌𝑖𝑛𝑑      (2) 

Using Maxwell’s equations 

𝑑𝑖𝑣 𝑫 = 𝑑𝑖𝑣 𝜖𝑬 = 𝜌𝑒𝑥𝑡 

     𝑑𝑖𝑣 𝐸 =
𝜌

𝜖0
=

𝜌𝑒𝑥𝑡+𝜌𝑖𝑛𝑑

𝜖0
    (3) 

 

Now in terms of vector the relation among the quantities 𝐷, 𝐸, 𝜌 , 𝜑 are given as  

   𝑫(𝑲) = 𝜖(𝑲)𝑬(𝑲)                                                                       (4) 

 

11.4 PLASMA OSCILLATIONS AND PLASMON 

 Plasma oscillation in a solid especially in metals is collective excitations of free electron gas. The 

oscillations are quantised and the Plasmon is the quantum of plasma oscillations. It is assumed that 

in such oscillations the ion core is fixed and the free electron gas oscillates as collective 

longitudinal excitation. We can follow the classical electrodynamics approach to determine the 

dielectric constant. We assume that there is no any external electric field or any perturbation. 

Consider a free electron gas in a metal in two dimensions as shown in figure 11.1.    
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In 

equilibrium position the, two positively and negatively charge density regions are created. In such 

region the charge neutrality is destroyed however the specimen as whole is neutral. We can 

calculate the frequency of plasma oscillations. Let us consider a small area da of in the charge 

distribution region with enclosed surface S having total charge q then from Gauss law 

      ∮ 𝐸. 𝑑𝑎 =
𝑞

𝜖0𝑠
      (5) 

Where E is electric field. For two dimensional case, if l is the width of chosen region as shown in 

figure 11.1 the surface integral can be calculated as 

     ∮ 𝐸. 𝑑𝑎 = −𝑙𝐸
𝑠

     (6) 

Thus 
𝑞

𝜖0
= 𝑙𝐸  𝑜𝑟     𝐸 =

𝑞

𝜖0 𝑙
 

We know that in terms of electron concentration, charge per unit area 𝑁0 , total charge q can be 

given as 

𝑞 = −𝑙𝑥𝑁0𝑒 

Thus     𝑬 =
𝑁0𝑒 𝒙

𝜖0 
      (7) 

This electric field is responsible for oscillation of electron gas. The equation of motion of a free 

electron in an electric field can be given as 
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    𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑒𝐸        (8) 

Using eq. 7 

 
𝑑2𝑥

𝑑𝑡2
= −(

𝑁0𝑒2

𝜖0𝑚
) 𝑥      (9) 

This is the equation in terms of simple harmonic oscillation where the acceleration is proportional 

to negative of displacement(𝛼 = −𝜔2𝑥). Thus the characteristic frequency of plasma oscillation 

can be given as 

         𝜔𝑃 = (
𝑁0𝑒2

𝜖0𝑚
)
1/2

                (10) 

The 𝜔𝑃 is known as plasma frequency. In presence of external electric field x and E have time 

dependent oscillation in the form of 𝑒−𝑖𝜔𝑡 .  

If      𝑥 = 𝑥0𝑒
−𝑖𝜔𝑡 

Differentiate this equation two times and put in eq. 8 

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥0𝑒

−𝑖𝜔𝑡 = −𝜔2𝑥 = −𝑒𝐸  

    𝑥 = −𝑒𝐸/𝑚𝜔2             (11) 

In this case the electrons also acquires dipole moments – 𝑒𝑥 and bulk polarisation 𝑃  i.e. dipole 

moment per unit volume can be given as 

𝑃 = −𝑁0𝑒𝑥 

     𝑃 = −(
𝑁0𝑒2

𝑚𝜔2
)𝐸           (12) 

From eq. 1 the dielectric function 𝜖(𝜔, 0) or 𝜖(𝜔)  at frequency 𝜔 can be given as 

𝜖(𝜔) =
𝑫 (𝜔)

𝜖0𝑬(𝜔)
=

𝜖0𝑬(𝜔) + 𝑷(𝜔)

𝜖0𝑬(𝜔)
= 1 +

𝑷(𝜔)

𝜖0𝑬(𝜔)
 

or     𝜖(𝜔) =
𝑫 (𝜔)

𝜖0𝑬(𝜔)
= 1 +

𝑷(𝜔)

𝜖0𝑬(𝜔)
                (13) 

 Putting the value of P from eq. 12 

    𝜖(𝜔) = 1 −
𝑁0𝑒2

𝜖0𝑚𝜔2
                 (14) 

    𝜖(𝜔) = 1 −
𝜔𝑃

2

𝜔2                (15) 
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From the eq. (15) it is clear that if frequency 𝜔 matches with the characteristic frequency of plasma 

oscillation 𝜔𝑃 , the dielectric function (constant) becomes 0. This condition is referring to 

longitudinal plasma oscillations. In this condition the electron gas oscillates as a whole with respect 

to ion core. The energy of oscillations is quantised and energy quanta ℏ𝜔𝑃 is called Plasmon. 

11.5 PLASMA IN METALS 

 In metallic solids there are a large number of free electrons. These free electrons can be excited 

by providing energy from external sources. The plasma oscillations in the metal are nothing but 

collective longitudinal excitations of free electrons gas. Plasmon is the quantum of energy 

associated with oscillations of electron gas.  

Now we will find out the potential variation in terms of length for metal plasma. Consider a 

metallic crystal with volume charge density 𝜌. If 𝛿𝑁 is the change in electron concentration due 

to fluctuation in charge density then resulting charge density at a point can be given as 

                                     𝜌′ = 𝜌 − 𝑒𝛿𝑁                (16) 

From Poisson’s equation 

          ∇2𝑉 =
1

𝜖0
(𝜌 − 𝑒𝛿𝑁)                (17) 

According to classical statistics change in electron concentration 𝛿𝑁 can be given by 

   𝛿𝑁 = 𝑁0 [exp
𝑒𝑉

𝑘𝑇
− 1]            (18) 

Where is number of electron concentration at equilibrium. If kt is very small than excitation energy 

of electron gas than above expression can be given as 

𝛿𝑁 ≈ 𝑁0

𝑒𝑉

𝑘𝑇
  

Putting this value in eq. (17) we will get 

∇2𝑉 =
1

𝜖0
(𝜌 − 𝑒𝑁0

𝑒𝑉

𝑘𝑇
) 

∇2𝑉 +
𝑒2𝑁0

𝜖0𝑘𝑇
𝑉 =

𝜌

𝜖0
 

Let 
𝑒2𝑁0

𝜖0𝑘𝑇
= (

1

𝜆𝐷
)
2

 the equation becomes 

  ∇2𝑉 + (
1

𝜆𝐷
)
2

𝑉 =
𝜌

𝜖0
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This is second order differential equation and its solution can be given as 

    𝑉 =
𝜌

𝑟
 𝑒−𝑟/𝜆𝐷               (19) 

𝜆𝐷 is known as Debye length. 

 

11.5.1 Experimental Setup for Creating Plasma in Metals 

We can excite a Plasmon in a metal by passing a high energy electron in a thin sheet or by reflection 

of electrons from the metals, or reflection of photons from the surface of a metal as shown in figure 

11.2 and 11.3. The charge of the electron, interact with the electrostatic field fluctuations of plasma 

oscillations of free electron gas. After reflection or transmitted the electron loses its energy equal 

to integer multiplication of Plasmon energy. Table 1 shows the observed and calculated values of 

excite the collective plasma oscillation in dielectric materials also.   

 

Figure 11.2: Creation of Plasmon in a metal film 
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Figure 11.3: Experimental setup for Plasmon excitations 

 

 

            Table 11.1: Volume Plasmon energies of different materials 

Type of material Materials Plasmon energies (eV) 

Observed Calculated   ℏ𝜔𝑃 

Metals Li 7.12 8.02 

Na 5.71 5.95 

Mg 10.6 10.9 

Al 15.3 15.8 

Dielectrics Si 16.4-16.9 16 

Ge 16.0 – 16.4 16 
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11.6 ELECTROSTATIC SCREENING 

In physics, screening is the damping of electric fields caused by the presence of 

mobile charge carriers. It is an important part of ionized gases as classical 

plasmas, electrolytes, charge carriers in electronic conductors, semiconductors and metals. In a 

plasma, with a given permittivity 𝜖, composed of electrically charged constituent particles, each 

pair of particles (with charges q1 and q2) interact through the Coulomb force as 

   𝐹 =
1

4𝜋𝜖

𝑞1𝑞2

𝑟2 �̂�               (20)    

where the vector r is the relative position between the charges. This interaction complicates the 

theoretical treatment of the plasma. The difficulty lies in the fact that even though the Coulomb 

force diminishes with distance as 1/r 2, the average number of particles at each distance r is 

proportional to r 2, assuming the plasma is fairly isotropic. As a result, a charge fluctuation at any 

one point has non-negligible effects at large distances. In reality, these long-range effects are 

suppressed by the flow of particles in response to electric fields. This flow reduces 

the effective interaction between particles to a short-range "screened" Coulomb interaction.  

In solid-state physics, especially for metals and semiconductors, the screening effect describes 

the electrostatic field and Coulomb potential of an ion inside the solid. Like the electric field of 

the nucleus is reduced inside an atom or ion due to the shielding effect, the electric fields of ions 

in conducting solids are further reduced by the cloud of conduction electrons. 

Consider a plasma or fluid composed of electrons moving in a uniform background of positive 

charge (one-component plasma). Each electron possesses a negative charge. According to 

Coulomb's interaction, negative charges repel each other. Consequently, this electron will repel 

other electrons creating a small region around itself in which there are fewer electrons. This region 

can be treated as a positively charged "screening hole". Viewed from a large distance, this 

screening hole has the effect of an overlaid positive charge which cancels the electric field 

produced by the electron. Only at short distances, inside the hole region, can the electron's field be 

detected. If the background is made up of positive ions, their attraction by the electron of interest 

reinforces the above screening mechanism. In plasma physics, electric-field screening is also 

called Debye screening or shielding.  

The screened potential determines the inter atomic force and the phonon dispersion relation in 

metals. The screened potential is used to calculate the electronic band structure of a large variety 

of materials, often in combination with pseudopotential models. The screening effect leads to 

the independent electron approximation, which explains the predictive power of introductory 

models of solids like the Drude model, the free electron model and the nearly free electron model. 

Theory: 

Consider a plasma or fluid of electrons in a background of heavy, positively charged ions. For 

simplicity, we ignore the motion and spatial distribution of the ions, approximating them as a 

uniform background charge. This simplification is permissible since the electrons are lighter and 

more mobile than the ions, provided we consider distances much larger than the ionic separation.  
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https://en.wikipedia.org/wiki/Shielding_effect
https://en.wikipedia.org/wiki/Valence_and_conduction_bands
https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Dispersion_relation
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265 
 

Screened Coulomb interactions: 

Let ρ denote the number density of electrons, and 𝜙 the electric potential. At first, the electrons 

are evenly distributed so that there is zero net charge at every point. Therefore, 𝜙 is initially a 

constant as well. 

We now introduce a fixed point charge Q at the origin. The associated charge density is Qδ(r), 

where δ(r) is the Dirac delta function. After the system has returned to equilibrium, let the change 

in the electron density and electric potential be ρ(r) and 𝜙(r) respectively. The charge density and 

electric potential are related by Poisson's equation, which gives 

∇2[𝜙(𝑟)] =
1

𝜖0
[𝑄𝛿(𝑟) − 𝑒𝜌(𝑟)]                         (21) 

where 𝜖0 is the vacuum permittivity. 

To proceed, we must find a second independent equation relating ρ and 𝜙. We consider two 

possible approximations, the Debye–Hückel approximation, valid at high temperatures (e.g. 

classical plasmas), and the Thomas–Fermi approximation, valid at low temperatures (e.g. electrons 

in metals). We use Thomas–Fermi approximation. 

Thomas–Fermi approximation: 

In the Thomas–Fermi approximation, the system is maintained at a constant electron chemical 

potential (Fermi level) and at low temperature. The former condition corresponds, in a real 

experiment, to keeping the metal/fluid in electrical contact with a fixed potential 

difference with ground. The chemical potential μ is, by definition, the energy of adding an extra 

electron to the fluid. This energy may be decomposed into a kinetic energy T part and the potential 

energy −e 𝜙 part. Since the chemical potential is kept constant. Thus 

                ∆𝜇 = 𝑇 − 𝑒∆𝜙                             (22) 

 Or           𝜇 = 𝜖𝐹(𝑥) − 𝑒𝜙                            (23) 

If the temperature is extremely low, the behavior of the electrons comes close to the quantum 

mechanical model of a Fermi gas. We thus approximate T by the kinetic energy of an additional 

electron in the Fermi gas model, which is simply the Fermi energy 𝜖𝐹.  

 

Thomas–Fermi Screening: 

The static screening can be described by the wave vector dependence of the static dielectric function (0,𝑲) 

. We consider an electron gas of charge concentration −𝑛0𝑒  superimposed on a positive ion core of charge 

+𝑛0𝑒  . 

The Poisson eq. can be given as 

     𝐾2𝜙
𝑒𝑥𝑡

(𝐾) = 4𝜋𝜌
𝑒𝑥𝑡

(𝐾)              (24) 

 

The total charge density is given as  

 𝜌 = 𝜌 𝑖𝑛𝑑(𝐾) + 𝜌 𝑖𝑛𝑑(𝐾)                           (25)        

using Poisson eq. 

𝐾2𝜙(𝐾) = 4𝜋 𝜌(𝐾)                           (26) 
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Now the total chemical potential of the electron gas is constant in equilibrium at any point. In a 

region where there is no any electrostatic contribution the chemical potential is given as 

𝜇 = 𝜖𝐹 =
ℏ2

2𝑚
(3𝜋2𝑛0)

3/2                                     (27) 

Using approximation as given in eq. 23, the total chemical potential is given as   

 𝜇 = 𝜖𝐹(𝑥) − 𝑒𝜙 =
ℏ2

2𝑚
(3𝜋2𝑛(𝑥))3/2 − 𝑒𝜙 ≅

ℏ2

2𝑚
(3𝜋2𝑛0)

3/2             (28) 

 

At approximation 𝑞 ≪ 𝑘𝐹 the Taylor series expansion of eq. 28 can be given as 

  
𝑑𝜖𝐹

𝑑𝑛0
[𝑛(𝑥) − 𝑛0] ≅ 𝑒𝜙(𝑥)                (29) 

Differentiate eq.27 

 
𝑑𝜖𝐹

𝑑𝑛0
=

2𝜖𝐹

3𝑛0
 

Now eq. 29 becomes 

2𝜖𝐹

3𝑛0

[𝑛(𝑥) − 𝑛0] ≅ 𝑒𝜙(𝑥) 

   [𝑛(𝑥) − 𝑛0] =
3

2
𝑛0

𝑒𝜙(𝑥)

𝜖𝐹
                          (30) 

In this equation, the left hand side is nothing but induced part of electron concentration. Thus the 

Fourier component (induced part) of this eq. can be given as 

 

                           𝜌 𝑖𝑛𝑑(𝐾) = −𝑛𝑒 = −
3

2
𝑛0

𝑒2𝜙(𝑥)

𝜖𝐹
                        (31) 

Now eq. 26 becomes 

                              𝜌𝑖𝑛𝑑(𝐾) = −
6𝜋𝑛0𝑒2

𝜖𝐹𝐾2 𝜌(𝐾)                         (32) 

We know that if 𝜌(𝐾) is total charge density then  𝜌(𝐾) = 𝜌𝑒𝑥𝑡 + 𝜌𝑖𝑛𝑑 and dielectric function can 

be given as 

𝜖(𝐾) =
𝜌𝑒𝑥𝑡

𝜌(𝐾)
= 1 −

𝜌𝑖𝑛𝑑(𝐾)

𝜌(𝐾)
 

 

Putting the value of 𝜌𝑖𝑛𝑑(𝐾) from eq. (32) 

𝜖(𝐾) = 1 −
𝜌𝑖𝑛𝑑(𝐾)

𝜌(𝐾)
= 1 +

6𝜋𝑛0𝑒
2

𝜖𝐹𝐾2
 

   𝜖(𝐾) = 1 +
𝐾𝑠

2

𝐾2                (33) 

 

where 𝐾𝑠is Thomas–Fermi screening wave vector and given as 

                                   𝐾𝑠 =
6𝜋𝑛0𝑒2

𝜖𝐹
                                                    (34) 
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The expression is called Thomas –Fermi dielectric function and 1/𝐾𝑠 is called Thomas –Fermi 

screening length. For copper its value is 0.55A. By using some more rearrangements, the eq. 34 

can also be written as 

                     𝐾𝑠 =
6𝜋𝑛0𝑒2

𝜖𝐹
= 4(

3

𝜋
)
1/3

𝑛0
1/3/𝑎0 = 4𝜋𝑒2𝐷(𝜖𝐹)            (35) 

Where 𝑎0 is Bohr radius and 𝐷(𝜖𝐹) is density of states for free electron gas. 

11.7 POLARITONS 

Polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an 

electric or magnetic dipole-carrying excitation.  Polaritons describe as the interaction of transverse 

optical phonon and transverse electromagnetic (Phonon-photon coupling).  Thus the quantum of 

coupled phonon- photon transverse wave interation is called Polariton.  A major feature of 

polaritons is a strong dependency of the propagation speed of light through the crystal on 

the frequency of the photon. In figure 11.4 shows Dispersion relation of phonon polaritons in GaP. 

Red curves are the uncoupled phonon and photon dispersion relations, black curves are the result 

of coupling (from top to bottom: upper polariton, LO phonon, lower polariton). 

 

 

Figure 11.4: dispersion relation for photon and transverse optical phonon. 

https://en.wikipedia.org/wiki/Quasiparticle
https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Dipole
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Dispersion_relation
https://en.wikipedia.org/wiki/Gallium_phosphide
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According to classical theory of electronic polarisation when an electron cloud is displaced from 

its original position, the electron cloud exhibits simple harmonic motion which tends to restore 

its original position. The differential equation of motion is given as 

     𝑚
𝑑2𝑥

𝑑𝑥2 + 𝛽𝑥 = 0           (36) 

Where 𝛽 is force constant. The characteristic frequency of this oscillatory motion of electron gas 

or resonance frequency can be given as 

𝑚𝜔0
2 = 𝛽 

If an alternating field is applied, then the force acting on the electron can be given as 

 𝑚
𝑑2𝑥

𝑑𝑥2 + 𝛽𝑥 = 𝑒𝐸0 𝑒
𝑖𝜔𝑡           (37) 

The solution of this type of differential equation is given as 

 𝑥 =
𝑒

𝑚
  

𝐸0𝑒𝑖𝜔𝑡

𝜔0
2−𝜔2             (38) 

The induced dipole moment in the system can be given as 

     𝑝 = 𝑒. 𝑥 =
𝑒2

𝑚
  

𝐸0𝑒𝑖𝜔𝑡

𝜔0
2−𝜔2             (39) 

  As we know that the electronic polarizability 𝛼𝑒 is define as dipole moment per unit 

electric field (𝑝 = 𝛼𝑒 𝐸) thus from above equation electronic polarizability can be given as 

   𝛼𝑒 =
𝑒2

𝑚
  

1

𝜔0
2−𝜔2              (40) 

If there are more than one absorption frequencies or number of harmonic oscillators, then above 

equation can be modified as summation of all frequencies thus 

 𝛼𝑒 =
𝑒2

𝑚
  ∑

1

𝜔0
2−𝜔2𝑗                                                     (41) 

We know the Clausius- Mossotti equation is 

       
𝜖𝑟−1

𝜖𝑟+2
=

1

3𝜖0
∑ 𝑁𝛼𝑗𝑗               (42) 

Using this equation with an approximation 𝜖𝑟 + 2 ≈ 3 and putting the value of  

 𝜖𝑟 − 1 = 𝑁
𝑒2

𝑚𝜖0
∑  

1

𝜔0
2−𝜔2𝑗                                                   (43) 

On simplifying for an atom 
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 𝜖𝑟(𝜔) = 1 +
𝑁𝑒2

𝑚𝜖0
  

1

𝜔0
2−𝜔2

                                                  (44) 

This equation give the dielectric function which is function of 𝜔 and its value ranges from 0 to ∞ 

and given as 

 𝜖𝑟(𝜔) = 𝜖𝑟(∞) +
𝜔𝑇

2

𝜔𝑇
2−𝜔2

 [𝜖𝑟(0) − 𝜖𝑟(∞)]                         (45) 

Above eq.45 Shows that the electromagnetic wave will not propagate in a forbidden range define 

as 𝜔𝑇
2 < 𝜔 < 𝜔𝐿

2 . Here  𝜔𝑇 is TO phonon frequency in the absence of coupling. The 𝜔𝐿 is 

define as 

𝜔𝐿
2 = 𝜔𝑇

2 𝜔𝐿
2−𝜔2

𝜔𝑇
2−𝜔2                                         (46) 

Putting the values of 𝜔𝐿
2 eq. 45 becomes 

𝜖𝑟(𝜔) = 𝜖𝑟(∞)
𝜔𝐿

2−𝜔2

𝜔𝑇
2−𝜔2                                        (47) 

Thus the wave does not propagate in the frequency range 𝜔𝑇and 𝜔𝐿 . In this region 𝜖𝑟(𝜔) becomes 

negative. The zero of 𝜖𝑟(𝜔) give the above relation eq. 47 as 

𝜖𝑟(0) = 𝜖𝑟(∞)
𝜔𝐿

2

𝜔𝑇
2                                                                                                   (48) 

                                                           
𝝎𝑳

𝟐

𝝎𝑻
𝟐
=

𝝐𝒓(𝟎)

𝝐𝒓(∞)
                         (49) 

The relation given in eq. 49 is called Lyddane-Sachs-Teller (LST) relation. In this relation 𝜖𝑟(0) 

is called static dielectric constant and 𝜖𝑟(∞) is called high frequency limit of dielectric function.  

11.8 ELECTRON-ELECTRON INTERACTIONS 

In free electron gas or Fermi gas is a system of non-interacting electrons. The same system of 

interacting electrons is called Fermi liquid.   

11.8.1 Fermi Liquid 

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state 

of most metals at sufficiently low temperatures. The phenomenological theory of Fermi liquids 

was introduced by the Soviet physicist Lev Davidovich Landau in 1956, 

using diagrammatic perturbation theory. The effect of electron-electron interaction is described by 

this theory. The theory explains why some of the properties of an interacting fermion system are 

very similar to those of the ideal Fermi gas (i.e. non-interacting fermions), and why other properties 

differ. Important examples of where Fermi liquid theory has been successfully applied are most 

notably electrons in most metals and liquid helium-3. Liquid helium-3 is a Fermi liquid at low 

https://en.wikipedia.org/wiki/Fermion
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Fermi_gas
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temperatures. Helium-3 is an isotope of helium, with 2 protons, 1 neutron and 2 electrons per atom. 

Because there are an odd number of fermions inside the nucleus, the atom itself is also a fermion. 

The electrons in a normal metal also form a Fermi liquid and these electrons suffer collisions. 

Landau’s theory explains the low lying single particle excitations of the system of interacting 

electrons. These single particle excitations of electron gas are called quasiparticles. A   

quasiparticle may be considered as a single particle accompanied by a distortion cloud in the 

electron. This type of interactions may change the effective mass of the electron in Fermi liquid 

system.  

11.8.2 Electron – Electron Collision 

In metals the conduction electrons are roughly 2 Å apart but electrons travel long distance between 

collisions with each other. The mean free path is in order of 104 Å at room temperature, and 10cm 

at 0K.  Two factors are responsible for such large value of free path, one is exclusion principle and 

other is screening of the coulomb interactions between two electrons. We can see the exclusion 

principle reduces the collision frequency of electron that has low excitation energy outside the 

filled Fermi sphere.   

 

11.9 ELECTRON–PHONON INTERACTION (POLARONS) 

A polaron is a quasiparticle condensed matter physics to understand the interactions 

between electrons and phonon (atomic vibrations in a solid material). The polaron concept was 

proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in 

a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen 

the charge of an electron, known as a phonon cloud. The results of polaron theory are lowering 

the electron mobility and increase the electron's effective mass. This occurs because the electrons 

drag the heavy ion core along with it. The general concept of a polaron has been extended to 

describe other interactions between the electrons and ions in metals that result in a bound state, or 

a lowering of energy compared to the non-interacting system. This is still an active field of research 

to find exact numerical solutions to the case of one or two electrons in a large crystal lattice, and 

to study the case of many interacting electrons. 

Experimentally, polarons are important to the understanding of a wide variety of materials. The 

electron mobility in semiconductors can be greatly decreased by the formation of 

polarons. Organic semiconductors are also sensitive to polaronic effects, which is particularly 

relevant in the design of organic solar cells that effectively transport charge. Polarons are also 

important for interpreting the optical conductivity of these types of materials. Figure 11.5 shows 

the electron and ion core interaction in a semiconductor solid. The electron is repelled by another 

electron and attracted by ion core. The electron phonon interaction can also be seen in the 

temperature dependence of the electric resistivity of a metal say copper, as it is 1.55micro ohm at 

0oC and becomes 2.28micro ohm at 100oC. This occurs due to electron phonon interaction in the 

crystal. As temperature increases more phonon are there and more scattering which result increase 

in resistivity.   

https://en.wikipedia.org/wiki/Isotope
https://en.wikipedia.org/wiki/Proton
https://en.wikipedia.org/wiki/Neutron
https://en.wikipedia.org/wiki/Electron
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Figure 11.6: Formation of Polaron in a semiconductor crystal 

 

The effect is large in ionic crystal as the coulomb interaction is large between electron and ions. 

However, in covalent crystals the effect is weak.  The strength of electron-lattice interaction is 

measured by a dimensionless constant 𝛼  called Fröhlich coupling constants and given as 

1

2
𝛼 =

𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦

ℏ𝜔𝐿
 

Where 𝜔𝐿 is longitudinal optical phonon frequency near zero wavevector. 
1

2
𝛼 can be understand 

as number of phonons which surround a slow moving electrons in the crystal. The value of 

effective mass of polaron 𝑚𝑝𝑜𝑙
∗  can be given as 

𝑚𝑝𝑜𝑙
∗ =≅ 𝑚∗ (

1 − 0.008𝛼2

1 −
1
6𝛼 + 0.0034𝛼2

) 

Where 𝑚∗ is effective mass calculated by band theory of solids. Table 11.2 shows the values of  , 

and effective mass of polaron 𝑚𝑝𝑜𝑙
∗  

         Table: 11.2 

Material α 𝑚𝑝𝑜𝑙
∗ /𝑚 𝑚∗/𝑚 

InSb 0.023 0.014 0.014 

AgBr 1.53 0.33 0.24 

KBr 3.05 0.93 0.43 

KCl 3.44 1.25 0.50 

AgCl 1.84 
0.51 0.35 
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ZnO 0.85 
  

GaAs 0.06   

 

11.10 SUMMARY 

1. Plasmons can be described as an oscillation of electron density (free electrons of solid) with 

respect to the fixed positive ions in a metal. 

2. Dielectric function of electron gas is an angular frequency and wave vector based complex 

function 𝜖(𝜔, 𝑘) which is useful to explain the optical and transport properties of solids. 

3. If 𝑘 = 0, dielectric function becomes 𝜖(𝜔) which describe the collective oscillation of 

electron gas with respect to ion core. This is called Plasmon system and the longitudinal 

oscillation quanta are called Plasmons.   

4. In another case if 𝜔 = 0; the dielectric function becomes 𝜖(𝑘); system is defined by 

electrostatic screening. 

5. In term of electric field (E), electric displacement vector (D) and polarization vector (P) the 

dielectric constant is given as 

      𝐷 = 𝜖0𝐸 + 𝑃 = 𝜖𝐸 = 𝜖0𝜖𝑟𝐸    

6. Dielectric function is also define as 

𝜖(𝜔, 𝐾) =
𝜌𝑒𝑥𝑡𝐸(𝜔,𝐾)

𝜌𝑒𝑥𝑡(𝜔, 𝐾) + 𝜌𝑖𝑛𝑑(𝜔, 𝐾) 
 

7. Plasma Frequency or characteristic frequency of plasma oscillation can be given as 

         𝜔𝑃 = (
𝑁0𝑒2

𝜖0𝑚
)
1/2

   

𝜖(𝜔) = 1 −
𝜔𝑃

2

𝜔2
 

8. The pole of dielectric function is defined as plasma 𝜔𝑇 and zeroes define as 𝜔𝐿. 

9. Thomas–Fermi screening wave vector and given as 

                                   𝐾𝑠 =
6𝜋𝑛0𝑒2

𝜖𝐹
 

10. 1/𝐾𝑠 is called Thomas –Fermi screening length. 

11. Polaritons describe as the interaction of transverse optical phonon and transverse 

electromagnetic (Phonon-photon coupling).   

12. Lyddane-Sachs-Teller (LST) relation is given as 

                                                           
𝜔𝐿

2

𝜔𝑇
2 =

𝜖𝑟(0)

𝜖𝑟(∞)
 

 In this relation 𝜖𝑟(0) is called static dielectric constant and 𝜖𝑟(∞) is called high frequency limit 

of dielectric function.  

13. Fermi gas is a system of non-interacting electrons. The same system of interacting electrons is 

called Fermi liquid.  Landau’s theory explains the low lying single particle excitations of the 

system of interacting electrons. These single particle excitations of electron gas are called 
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quasiparticles. A   quasiparticle may be considered as a single particle accompanied by a distortion 

cloud in the electron. This type of interactions may change the effective mass of the electron in 

Fermi liquid system.  

14. A polaron is a quasiparticle due to the interactions between electrons and phonon (atomic 

vibrations in a solid material). The results of polaron theory are lowering the electron mobility and 

increase the electron's effective mass in solids. 

15. The strength of electron-lattice interaction is measured by a dimensionless constant 𝛼  

called Fröhlich coupling constants and given as 

1

2
𝛼 =

𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦

ℏ𝜔𝐿
 

  

11.11 GLOSSARY 

Plasma: collective excitations of free electron 

Polaritons:  Phonon-photon coupling 

Fermi liquid: system of interacting fermions. 

Polaron:  Quasiparticle which are quanta of interaction between electrons and phonon 
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11.14 TERMINAL QUESTIONS 

11.14.1 Short answer type questions 

1. What do you mean by Plasma? Define the Plasmon. 
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2. What do you mean by Dielectric function of electron gas? 

3. Define Dielectric function of electron gas. 

4. How the Plasmon can be created in metals?  

5. What is electrostatic screening? 

6. What are polaritons? 

7. Define Fermi liquid. How can we achieve a Fermi liquid. 

8. Define Polaron. 

 

11.14.2 Long answer type questions 

1. Find out the expression for plasma frequency. 

2. Define Thomas- Fermi screening and find out the expression for Thomas –Fermi screening 

length. 

3. Derive Lyddane-Sachs-Teller (LST) relation. Define static dielectric constant and high frequency 

limit of dielectric function.  

4. Define electron phonon nitration and Fröhlich coupling constants.  
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UNIT 12        DIAMAGNETISM AND PARAMAGNETISM 
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12.1 INTRODUCTION 

Magnetism begins with a mineral called magnetite (Fe3O4), which is abundant the rock-type 

lodestone. These magnets were used by the ancient peoples as compasses to guide sailing vessels. 

However, the first study of magnetism was made by William Gilbert. He published a book “On 

the magnet” in 1600. Magnetism is a physical phenomenon in which certain materials exert an 

attracting or repellent force or influence on other materials. In the current idea, all materials, 

regardless of their nature, are said to show magnetic. 

When a substance is placed in a magnetic field H substance gets magnetized. The magnetic 

moment per unit volume M is produced inside the substance M is called magnetization. The 

relation between magnetization and magnetic field is given as below: 

𝑀 = 𝜒𝑚𝐻 

𝜒𝑚is a constant and known as magnetic susceptibility of the material and defined as the ratio of 

magnetization M and magnetic field intensity H. The value of 𝜒𝑚for vacuum is zero because there 

is no magnetization in vacuum. 

In this unit we shall discuss the various types of magnetic materials and their characteristics. We 

shall also discuss the different theories of diamagnetism and paramagnetism in detail.  

 

12.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Differentiate the paramagnetic and diamagnetic materials. 

 Define Magnetic moment, Susceptibility etc. 

 Understand the Classical theory of paramagnetism. 

 Define Curie Law for paramagnetism. 

 Understand the Weiss theory of paramagnetism. 

 Understand the Quantum theory of paramagnetism 
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12.3 BASIC DEFINITIONS 

Magnetic field 

The magnetic field is the area in which a magnet's magnetic effect can be felt. Magnetic lines of 

force radiate from the North Pole, pass through the surrounding medium, and then re-enter the 

South Pole to constitute the magnetic field. 

Magnetic flux (𝝋) 

Magnetic flux is the total number of magnetic lines of forces travelling through a surface. It is 

represented by symbol (φ) it, and the unit is weber (Wb). 

 

Magnetic flux density (or) Magnetic induction (B) 

 
Magnetic flux density (B) is defined as the magnetic flux (𝜑) passing normally through unit area 

of cross section at that point. The unit is Wb/m2or tesla. 

Thus 𝐵 =
𝜑

𝐴
 

 

Magnetic field intensity (H) 

Magnetic field intensity at any point in a magnetic field is the force experienced by a unit North 

Pole placed at that point. It is denoted by H and its unit is N/Wb. 

Relation between B, H and M 
 

A magnetic field can be expressed in terms of Magnetic field intensity (H) and Magnetic flux 

density. In free space, these quantities are related as  

𝐵 = 𝜇0𝐻 

 

 In a magnetic material, above relation is written as  

𝐵 = µ𝐻 

 

Here 𝜇0 = absolute permeability of free space, µ = absolute permeability of the medium and µ/ 

µ0 = µr = relative permeability of the magnetic material. 
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Magnetization (M) 

Magnetization is defined as magnetic moment per unit volume and expressed in ampere/meter. It 

is proportional to the applied magnetic field intensity (H). It is measured in 

Amperes per meter (am-1). 

 

𝑀 = 𝜒𝐻 
 

Here, χ is the Magnetic susceptibility. 

𝐵 = 𝜇0(𝐻+M)                                                 (12.1) 

 

12.4 MAGNETIC MOMENT (µ𝒎) 

Magnetism in materials is normally described as mutual attraction between two pieces of a 

material, say iron or iron ore. There are various microscopic mechanisms of magnetism in 

materials which are shown later. The strength of magnetism is quantitatively judged by a quantity 

called as ‘magnetic moment’.  

Origin of magnetic moments 

The major contributors of magnetic moment in a material are: 

 Due to the orbital motion of electrons: Motion of electrons in an orbit of an atom. Orbital 

moment can be related to the current flowing in a loop of a wire of zero (negligible) 

resistance. 

 Due to the spin of the electrons: Spinning of electron around its own spin axis gives rise 

to a moment. 

 Due to the spin of the nucleus: Nuclear magnetic moment due to nuclei. 

The first two contributions are quite significant and contribute to most of the magnetic character 

of a material while the third component, nuclear magnetic moment, is rather insignificant in the 

context of most magnetic materials of practical interest and can be neglected. 
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12.5 CLASSIFICATION OF MAGNETISM 

A material is magnetically characterized based on the way it can be magnetized. Basically it 

depends on the material’s magnetic susceptibility (its magnitude and sign). 

There are normally three basic magnetisms: 

• Diamagnetism 

• Paramagnetism 

• Ferromagnetism 

Anti ferromagnetism and ferrimagnetisms are considered as subclasses of ferromagnetism. 

Diamagnetism 

Applied external field acts on atoms of a material, slightly unbalancing their orbiting electrons, 

and creates small magnetic dipoles within atoms which oppose the applied field. This action 

produces a negative magnetic effect known as diamagnetism. It is a very weak effect in nature and 

exists only in presence of an external field, and non-permanent. Magnetic susceptibility for these 

materials is negative, and is in order of -10-5.Cu, Ag, Si, Ag and alumina are some common 

examples of diamagnetic materials at room temperature. 

Paramagnetism 

In the absence of an external field, the orientations of atomic magnetic moments are random 

leading to no net magnetization. When an external field is applied dipoles line-up with the field, 

resulting in a positive magnetization. Paramagnetismis a slightly stronger than diamagnetism. 

Paramagnetic materials exhibit a small positive magnetic susceptibility in the presence of a 

magnetic field. Para-magnetism is produced in many materials like aluminium, calcium, 

titanium, alloys of copper. Magnetic susceptibility of these materials is slightly positive, and lies 

in the range +10
-5 

to +10
-2

. 

 

Ferro-magnetism 
 

Both dia and para magnetic materials are considered as non-magnetic because they exhibit 
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magnetization only in presence of an external field. Certain materials possess permanent 

magnetic moments even in the absence of an external field. This is result of permanent unpaired 

dipoles formed from unfilled energy levels. These dipoles can easily line-up with the imposed 

magnetic field due to the exchange interaction or mutual reinforcement of the dipoles. 

Materials with ferromagnetism (Examples: Fe, Co, Ni, Gd) possess magnetic susceptibilities 

approaching 10
6

.  

Comparison of Diamagnetic and Paramagnetic materials 

 

S. No. Diamagnetic Material              Paramagnetic Material 

1. Dipoles oriented in such a way that the 

resultant dipole moment is zero. 

1. Dipoles are randomly oriented in 

such a way that the resultant 

dipole moment is not equal to 

zero. 

2. When the material is placed in the 

magnetic field the magnetic flux lines are 

repelled away from the material. 

2. When the material is placed in the 

magnetic field the magnetic flux 

line pass through the material. 

3. Susceptibility is negative 3. Susceptibility is positive and 

small. 

4. Susceptibility is independent of 

temperature. 

4. Susceptibility is independent of 

temperature. 

5. Permeability is less than one 5. Permeability is greater than one 

6. No spin or magnetic moment. 6. All spins are randomly oriented. 

7. When the temperature is less than the 

Curie temperature the diamagnetism 

suddenly disappears and the material 

becomes normal material 

7. When the temperature is less than 

the Curie temperature the 

paramagnetic material is 

converted into diamagnetic 

material. 
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8. Examples: Hydrogen, Bismuth, Gold, 

water, germanium, silicon etc., 

8. Examples: Platinum, Aluminium, 

Chromium etc., 

 

 

 

12.6 DIAMAGNETISM 
 
Diamagnetism is a weak magnetic effect that occurs in substances that do not have any permanent 

magnetic moments. Unpaired electrons do not exist in diamagnetic materials. Individual magnetic 

moments do not interact in these materials because electron spin moments cancel one other out 

(Figure 12.1). Because of their low, negative magnetic susceptibility, these materials are weakly 

repelled in a magnetic field. MgO, Cu, Ag, Au, are some examples of the diamagnetic materials. 

In diamagnetic compounds the electrons all have paired spins. In case of diamagnetism two 

electrons are paired together in an orbital, or their total spin is 0.  

 
 

Figure 12.1: Representation of diamagnetic material in the absence of a magnetic field and in the 

presence of applied field. When magnetic field is applied, induced moments oppose the field. 

 

 

12.6.1 Classical Theory of Diamagnetism 

 
The theory of diamagnetism was first work out by Paul Langevin in 1905. Negative magnetism 

present in an applied field even though the material is composed of atoms that have no net magnetic 

moment. 
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Let us consider an electron revolves in the orbit of radius (r) about the nucleus of an atom is 

equivalent to a current and has magnetic moment. The electron revolves with an angular velocity 

ω0around nucleus of charge Ze. Then 

𝐹0 =
𝑚𝑟2 𝜔0

𝑟
= 𝑚𝑟𝜔0

2 

 

=
𝑍𝑒2

4𝜋𝜀0𝑟
2 

 

 

𝜔0
2 =

𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 

 

 

 

𝜔0  = √
𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 
                                                               (12.2) 

 

 

The magnetic moment of an electron is given as 

 

𝑀𝐿 = 𝑖𝐴 =
𝑒

𝑇
(𝜋𝑟2) =

𝑒𝜔0 𝑟
2

2
                                         (12.3) 

 

The Lorentz force (𝐹𝐿) that acts on the electron is: 

 

𝐹𝐿 = −𝐵𝑒𝑣 = −𝐵𝑒𝜔𝑟                                                       (12.4) 
Now we can write the equation of motion as 

 

𝐹0 − 𝐹𝐿 = 𝐹0 − 𝐹𝐿 

On putting the value of  𝐹0 , 𝐹𝐿 in the above equation, 

 

𝐹𝑚 =
𝑍𝑒2

4𝜋𝜀0𝑟
2 

− 𝐵𝑒𝜔𝑟 

As we known that 

𝐹𝑚 =
𝑚𝑣2 

𝑟
 

𝑚𝑣2 

𝑟
=

𝑍𝑒2

4𝜋𝜀0𝑟
2 

–𝐵𝑒𝜔𝑟 

𝑚𝑟𝜔2 =
𝑍𝑒2

4𝜋𝜀0𝑟
2 

–𝐵𝑒𝜔𝑟 

By simplifying the above equation, we will get; 

 

𝜔2 =
𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 

–
𝐵𝑒𝜔

𝑚
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𝜔2 +
𝐵𝑒𝜔

𝑚
=

𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 

 

Or 

 

𝜔2 +
𝐵𝑒𝜔

𝑚
−

𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 

= 0 

 

By solving the equation we will get the values of 𝜔 as: 

𝜔 = {–
𝐵𝑒

𝑚
± √

𝐵2𝑒2

𝑚2
+

4𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 
}(

1

2
) 

 

=–
𝐵𝑒

2𝑚
± √

𝐵2𝑒2

4𝑚2
+

𝑍𝑒2

4𝜋𝑚𝜀0𝑟
3 

 

𝜔 =–
𝐵𝑒

2𝑚
± √

𝐵2𝑒2

4𝑚2
+ 𝜔0

2                                                                                                                         (12.5) 

𝜔 = ±𝜔0–
𝐵𝑒

2𝑚
if

𝐵𝑒

2𝑚
≪ 𝜔0                                                                                                                             (12.6) 

This shows that the angular velocity of revolution of an electron changes by a factor of
𝑒𝐵

2𝑚
in the 

presence of magnetic induction B. this result is called the Larmor theorem. 

The change in frequency produces as additional current I =charge × revolution per unit time. 
 

𝐼 = −𝑒(
1

2𝜋

𝑒𝐵

2𝑚
)                                                             (12.7) 

 

= 
𝑒2𝐵

4𝜋𝑚
 

 

The corresponding change in the magnetic moment of the electron is 

∆𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑋 𝑎𝑟𝑒𝑎 

On putting the value of I from the above equation.  

∆𝑚 =
𝑒2𝐵

4𝜋𝑚
 𝑋𝜋𝑟2 

On summing over all electrons in the atoms, the induced moment /atom becomes 

 

∆𝑚𝑎𝑡𝑜𝑚 =
𝑒2𝐵 ∑𝑟2

4𝑚
 

 

Let Z be the number of electrons in the atom. Then, 
 

The magnetization𝑀 = −
𝑍𝑒2𝐵 ∑𝑟2

4𝑚
                                                   (12.8) 
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All the electron orbits are not oriented normal to the magnetic field hence r2in above equation 

replaced by 
2

3
𝑟2 

∴  𝑀 = −
𝑍𝑒2𝐵 ∑𝑟2

6𝑚
 

 

For the solid consisting of N atom per unit volume, 

 

The susceptibility of the material 𝜒 =
𝑀

𝐻
 = -

𝑍𝑁𝑒2𝐵∑𝑟2

6𝑚𝐻
 

We know that 𝐵 = 𝜇0𝐻 

 

𝜒 = −
𝑍𝑁𝑒2𝜇0 ∑𝑟2

6𝑚
 

= −
𝑒2𝜇0

6𝑚
𝑍𝑁 ∑𝑟2 

𝜒 = −
𝑒2𝜇0

6𝑚
𝑍𝑁 < 𝑟2 >                                                                                                                          (12.9) 

 

This shows χis independent of the field strength and temperature. This is called Langevin formula 

for volume susceptibility. This equation shows that susceptibility of a diamagnetic material is 

directly proportional to the atomic number and is independent of temperature. 

χ for most of the diamagnetic substance is of the order 10-6. 

 
 

12.7 PARAMAGNETISM 

 
Paramagnets have a small positive magnetisation M (directed parallel the applied field B). Each 

atom of paramagnetic material possesses a permanent non-zero net magnetic moment by virtue of 

incomplete cancellation of electron spin and/or orbital magnetic moments (Figure 12.2). Some 

examples of paramagnetic materials are Mg, Mo, Li etc.  In the absence of an external magnetic 

field, the orientations of these atomic magnetic moments are random, but have small magnetic 

moment. The susceptibility of paramagnetic materials is usually very small 10-3 to 10-6. 
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Figure 12.2: Representation of paramagnetic material in the absence of a magnetic field and in 

the presence of applied field. When magnetic field is applied, induced moments aligned 

magnetic dipoles with large moment. 

 

12.7.1 Langevin’s Theory of Paramagnetism 

A paramagnetic material is one which when placed in a magnetic field becomes weakly 

magnetized in the same direction as the field. Langevin explained paramagnetism on the basis that 

the atoms or molecules of a paramagnetic material have a net intrinsic magnetic moment due to 

the spin and orbital motion of electrons in it. In the absence of magnetic field, a macroscopic 

amount of paramagnetic material is not magnetized because molecules are randomly oriented due 

to thermal vibrations so that the net magnetic moment of the specimen is zero.  

When paramagnetic material is placed in an external magnetic field the molecule experience torque 

which tries to align them in the direction of the field. But the alignment is not complete because 

the thermal motion of the molecule which favors random orientation. The average alignment gives 

raise a net magnetic moment per unit volume in the direction of the field. If the temperature of the 

specimen is raised the magnetization becomes smaller due to the increase of thermal agitation.  

Let us now calculate the net magnetic moment per unit volume produced by alignment of the 

molecules at certain temperature T (Figure 12.3). Suppose n be the number of molecules per unit 

volume of the specimen and θ the angle which the magnetic moment µ𝑚⃗⃗⃗⃗  ⃗of a molecule makes with 

the external magnetic field �⃗� the potential energy of the molecule in the field is  
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𝑈 = − µ𝑚B cos 𝜃                                                             (12.10) 

 Figure 12.3 

Statistically the number of molecules having energy U at a temperature T is proportional 

to 𝑒−𝑈/𝐾𝐵𝑇, where 𝐾𝐵 is Boltzman’s constant. The number of molecules per unit volume 𝑑𝑛, 

having energy U and oriented at angles between 𝜃𝑎𝑛𝑑 𝜃 + 𝑑𝜃with respect to the direction of �⃗�  is 

given by 

𝑑𝑛 = 𝐶𝑒
−

𝑈
𝐾𝐵𝑇𝑑𝜔                                                           (12.11) 

Where C is a constant and 𝑑𝜔 is solid angle between two hollow cones of semi vertex 

angles 𝜃𝑎𝑛𝑑𝜃 + 𝑑𝜃 and is given by 

𝑑𝜔 = 2𝜋 sin 𝜃𝑑𝜃                                                            (12.12) 

substituting the value of U and 𝑑𝜔 in equation (12.11) we get; 

𝑑𝑛 = 𝐶𝑒µ𝑚B cos𝜃/𝐾𝐵𝑇2𝜋 sin 𝜃𝑑𝜃                                    (12.13) 

or 

𝑑𝑛 = 𝐴𝑒x cos𝜃 sin 𝜃𝑑𝜃                                                          

where 

𝑥 =
µ𝑚B

𝐾𝐵𝑇
 

and𝐴 = 𝐶2𝜋 is a new constant. Integrating equation (12.13) from 𝜃 = 0 to 𝜃 = 𝜋, we get the total 

number of molecules per unit volume i.e. 
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𝑛 = 𝐴 ∫ 𝑒x cos𝜃 sin 𝜃𝑑𝜃
𝜋

0
                                          (12.14) 

putting cos 𝜃 = 𝑟, sin 𝜃𝑑𝜃 = −𝑑𝑟 we have 

𝑛 = −𝐴∫ 𝑒𝑥𝑟𝑑𝑟

−1

1

 

= −𝐴 [
𝑒𝑥𝑟

𝑥
]
1

−1

 

= −
𝐴

𝑥
(𝑒−𝑟 − 𝑒𝑟) 

=
𝐴

𝑥
(𝑒𝑟 − 𝑒−𝑟) 

=
2𝐴

𝑥
(sinh 𝑥)                                                                                                                                   (12.15) 

Since each molecule of 𝑑𝑛 has a component of magnetic moment µ𝑚 cos 𝜃 along the direction of 

magnetic field. Thus, the magnetic moment of 𝑑𝑛 molecules along the direction of magnetic field 

µ𝑚 cos 𝜃 𝑑𝑛. The total magnetic moment 𝐼 along the direction of field due to all molecules per unit 

volume is given by 

𝐼 = ∫ µ𝑚 cos 𝜃 𝑑𝑛                                                   

𝜋

0

(12.16) 

𝐼 = 𝐴µ𝑚 ∫ 𝑒x cos𝜃 cos 𝜃 sin 𝜃𝑑𝜃

𝜋

0

                             (12.17) 

Assuming cos 𝜃 = 𝑟so that sin 𝜃𝑑𝜃 = −𝑑𝑟 we have  

𝐼 = −𝐴µ𝑚 ∫ 𝑟𝑒𝑟𝑥𝑑𝑟                                                                           

−1

1
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= −𝐴µ𝑚 [𝑟
𝑒𝑟𝑥

𝑥
− ∫

𝑒𝑟𝑥

𝑥
𝑑𝑟

−1

1

]

1

−1

 

= −𝐴µ𝑚 [𝑟
𝑒𝑟𝑥

𝑥
−

𝑒𝑟𝑥

𝑥2
]
1

−1

 

= −𝐴µ𝑚 [{−
𝑒−𝑥

𝑥
−

𝑒−𝑥

𝑥2
} − {

𝑒𝑥

𝑥
−

𝑒𝑥

𝑥2
}] 

=
𝐴µ𝑚

𝑥
[{𝑒−𝑥 +

𝑒−𝑥

𝑥
} + {𝑒𝑥 −

𝑒𝑥

𝑥
}] 

=
𝐴µ𝑚

𝑥
[{𝑒𝑥 + 𝑒−𝑥} −

1

𝑥
{𝑒𝑥 − 𝑒−𝑥}] 

=
2𝐴µ𝑚

𝑥
[cosh 𝑥 −

sinh 𝑥

𝑥
] 

Using, 
2𝐴

𝑥
=

𝑛

sinh 𝑥
 , we have 

𝐼 = 𝑛µ𝑚 [coth 𝑥 −
1

𝑥
] (12.18) 

[coth 𝑥 −
1

𝑥
]is termed as Langevin’s function and is denoted by 𝐿(𝑥). Hence  

𝐼 = 𝑛µ𝑚𝐿(𝑥)                                                                           (12.19) 

where 

𝑥 =
𝐵µ𝑚

𝐾𝐵𝑇
 

for small value of  𝑥 the series expansion of  𝐿(𝑥) shows that  

𝐿(𝑥) =  coth 𝑥 −
1

𝑥
≃

𝑥

3
                                                                                                                  (12.20) 
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Figure 12.4: Variation of Langevin function with x. 

So that 

𝑀 = 𝑛µ𝑚

𝑥

3
=

𝑛µ𝑚
2

3𝐾𝐵𝑇
𝐵                                                  (12.21) 

we know that 𝐵 = 𝜇𝜊(𝐻 + 𝑀), 𝐼is very small for paramagnetic substances hence 𝐵 = 𝜇𝜊𝐻. Then 

we have 𝑀 = 𝜇𝜊
𝑛

𝐾𝐵𝑻
𝐻 

Since magnetization is a vector quantity, hence 

�⃗⃗� = 𝜇𝜊

𝑛µ𝑚
2

3𝐾𝐵𝑇
�⃗⃗�                                                                                                                                   (12.22) 

In paramagnetic materials  𝑀 ⃗⃗⃗⃗ 𝑎𝑛𝑑 �⃗⃗�  are in same direction. The magnetic susceptibility of a 

paramagnetic material is given by 

𝜒 =
�⃗⃗� 

�⃗⃗� 
= 𝜇𝜊

𝑛µ𝑚
2

3𝐾𝐵𝑇
                                                                                                                           (12.23) 
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𝜒 ∝
1

𝑇
                                                                                                                                  (12.24) 

Thus, for a paramagnetic material the magnetic susceptibility is inversely proportional to the 

absolute temperature (Figure 12.5). This relation is known as Curie’s law. 

Where 𝐶 = 𝜇𝜊
𝑛µ𝑚

2

3𝐾𝐵
 is called Curie constant. 

 
 

Figure 12.5: Variation of magnetic susceptibility of a paramagnetic material. 

 

12.7.2 Weiss Theory of Paramagnetism 

 
In order to remove the failures of Langevin theory, Weiss introduce the concept of internal 

molecular field. In real gas the molecules are mutually influenced by their magnetic moments 

and consequently there should exist within the gas a molecular field. This field produced at any 

point by all the neighbouring molecules is proportional to the intensity of magnetization. 

The molecular field can be given as: 

𝐻𝑖 = 𝜆𝑀                                                                                                         (12.25) 

𝜆 is known as molecular field coefficient. Hence the effective field (𝐻𝑒𝑓𝑓) can be given as; 

𝐻𝑒𝑓𝑓 = 𝐻 + 𝐻𝑖                                                                               (12.26) 

From Langevin theory of paramagnetism we known that 

𝑀 =
𝑁µ𝑚

2

3𝐾𝐵𝑇
𝐵                                                   (12.27) 

Since we know that 𝐵 = 𝜇0𝐻 

Then the above equation 12.27 can be written as: 
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𝑀 =
𝑁µ𝑚

2𝜇0𝐻𝑒𝑓𝑓

3𝐾𝐵𝑇
                                                (12.28) 

 

𝑀 =
𝑁µ𝑚

2𝜇0(𝐻 + 𝐻𝑖) 

3𝐾𝐵𝑇
                                        (12.29) 

 

On putting the value of  𝐻𝑖in above equation 12.27: 

𝑀 =
𝑁µ𝑚

2𝜇0(𝐻 + 𝜆𝑀) 

3𝐾𝐵𝑇
                                     (12.30) 

 

After rearranging the terms, we will modify the equation as: 

 

𝑀 =
𝑁µ𝑚

2𝜇0𝐻

3𝐾𝐵𝑇
+

𝑁µ𝑚
2𝜇0𝜆𝑀

3𝐾𝐵𝑇
 

 

Or   

𝑀 −
𝑁µ𝑚

2𝜇0𝜆𝑀

3𝐾𝐵𝑇
=

𝑁µ𝑚
2𝜇0𝐻

3𝐾𝐵𝑇
 

 

𝑀 [1 −
𝑁µ𝑚

2𝜇0𝜆

3𝐾𝐵𝑇
] =

𝑁µ𝑚
2𝜇0𝐻  

3𝐾𝐵𝑇
                                               (12.31) 

 

Let us suppose 𝐶 =
𝑁µ𝑚

2𝜇0

3𝐾𝐵
 and 𝜃 = 𝐶𝜆 

 

On putting these values in the above equation 12.31, we will get: 

 

𝑀[1 −
𝜃

𝑇
] =

𝐶𝐻

𝑇
 

As we know that 𝜒 =
�⃗⃗� 

�⃗⃗� 
 

So𝜒 =
𝐶

[1−
𝜃

𝑇
]𝑇

 

 

Or 𝜒 =
𝐶

𝑇−𝜃
                                                            (12.32) 

 

This equation is known as curie Weiss law.𝜃 =
𝑁µ𝑚

2𝜆

3𝐾𝐵
is called paramagnetic curie point. Form this 

curie Weiss law we can conclude that below paramagnetic curie temperature (𝑇 < 𝜃) susceptibility 

becomes negative. However most of the paramagnetic substances curie temperature is quite low. 
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12.7.3 Quantum Theory of Paramagnetism 
 

Quantum theory assumes that the permanent magnetic moment of a given atom is limited to a 

finite set of orientations related to the applied field. Let N be the number of atom/m3. 

J=L+S (Total angular momentum quantum number of each atom) 

𝜇𝑗 = 𝑔𝑀𝑗𝜇𝐵is the magnetic moment of each atom. 

𝑀𝑗=magnetic quantum number = J, (J-1), (J-2),…..-(J-1), -J 

According to statistical mechanics, the magnetization can be given as: 

𝑀 = 𝑁
∑ 𝑔𝑀𝑗𝜇𝐵exp (𝑀𝑗𝜇𝐵𝐻𝜇0/𝐾𝐵𝑇)

𝑗
−𝑗

∑ exp (𝑔𝑀𝑗𝜇𝐵𝐻𝜇0/𝐾𝐵𝑇)
𝑗
−𝑗

                          (12.33) 

 

At high temperature 
𝑔𝑀𝑗𝜇𝐵𝐻𝜇0

𝐾𝐵𝑇
≪ 1 

exp (
𝑔𝑀𝑗𝜇𝐵𝐻𝜇0

𝐾𝐵𝑇
) = 1 +

𝑔𝑀𝑗𝜇𝐵𝐻𝜇0

𝐾𝐵𝑇
                       (12.34) 

 

 

By neglect higher order terms, the magnetization equation becomes as: 

𝑀 = 𝑁
∑ 𝑔𝑀𝑗𝜇𝐵(1 +

𝑔𝑀𝑗𝜇𝐵𝐻𝜇0

𝐾𝐵𝑇 )
𝑗
−𝑗

∑ (1 +
𝑔𝑀𝑗𝜇𝐵𝐻𝜇0

𝐾𝐵𝑇 )
𝑗
−𝑗

                                                  (12.35) 

 

 

Or 

𝑀 = 𝑁 

[
 
 
 ∑ 𝑔𝑀𝑗𝜇𝐵 + ∑

𝑔2𝑀𝑗
2𝜇𝐵

2𝜇0

𝐾𝐵𝑇
𝑗
−𝑗

𝑗
−𝑗

∑ 1 + ∑
𝑔𝑀𝑗𝜇𝐵𝐻𝜇0

𝐾𝐵𝑇
𝑗
−𝑗

𝑗
−𝑗 ]

 
 
 

                                                                                    (12.36) 

 

 

Substituting these values ∑ 𝑀𝑗
𝑗
−𝑗 = 0, ∑ 1

𝑗
−𝑗 = (2𝑗 + 1) and ∑ 𝑀𝑗

2𝑗
−𝑗 =

𝑗(𝑗+1) (2𝑗+1)

3
 . 

equation12.36 becomes 
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𝑀 = 𝑁 [
0 +

𝐻𝑔2𝜇𝐵
2𝜇0

𝐾𝐵𝑇 𝑋
𝑗(𝑗 + 1)(2𝑗 + 1)

3

(2𝑗 + 1) + 0
]                                                                             (12.37) 

 

 

= 𝑁 [
𝐻𝑔2𝜇𝐵

2𝜇0

𝐾𝐵𝑇
]𝑋

𝑗(𝑗 + 1) (2𝑗 + 1)

3
 

 

= 𝑁[
[
𝐻𝑔2𝜇𝐵

2 𝜇0

𝐾𝐵𝑇
]𝑋 

𝑗(𝑗+1)(2𝑗+1)

3

(2𝑗+1)+0
] 

𝑀 = 𝑁
𝐻𝑔2𝜇𝐵

2𝜇0
𝑗(𝑗 + 1)

3
𝐾𝐵𝑇

 

𝑀 = [
𝑁𝐻𝑔2𝜇𝐵

2𝜇0

𝐾𝐵𝑇
]
𝑗(𝑗 + 1)

3
                                  (12.38) 

 

Susceptibility𝜒 =
�⃗⃗� 

�⃗⃗� 
 = [

𝑁𝐻𝑔2𝜇𝐵
2𝜇0

𝐾𝐵𝑇𝐻
]

𝑗(𝑗+1)

3
 

=
𝐽(𝐽 + 1)

3

𝑁𝑔2𝜇𝐵
2𝜇0

𝐾𝐵𝑇
 

=
𝑁𝜇𝑗 

2𝜇0

3𝐾𝐵𝑇
                                                             (12.39) 

 

𝜒 =
𝐶

𝑇
 

Where, 𝜇𝐽 = 𝑔2𝐽(𝐽 + 1)𝜇𝐵
2  

𝜇𝐽 = 𝜇𝐵 × 𝑔√𝐽(𝐽 + 1) 

 

𝜇𝐽 = 𝜇𝐵 × 𝑃𝑒𝑓𝑓 

𝑃𝑒𝑓𝑓= Effective Bohr magneton 

χ =
𝑁𝑃𝑒𝑓𝑓

2 𝜇𝐵
2𝜇0

3𝐾𝐵 𝑇
=

𝐶

𝑇
                                                    (12.40) 

 

For ground state of the atom J=S and L=3. Hence the value of 𝑃𝑒𝑓𝑓is 𝑔√𝑆(𝑆 + 1).    
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12.8 SUMMARY 

We concluded in this chapter that diamagnetism is a very weak magnetic effect. It can be seen in 

solids that do not have a permanent magnetic moment. Diamagnetism is present in all materials 

but the effect is so weak it is often neglected in comparison to paramagnetic and ferromagnetic 

effects. It is independent of temperature so heating a material will not change its diamagnetic 

susceptibility. Diamagnetism is possible in solids, liquids, and gases. The orbital motion of 

electrons causes the modest non-zero magnetic moment in these materials and magnetic moment 

is always in the opposite direction of the applied magnetic field. These materials do not obey 

Curie’s law. Paramagnetism is a weak magnetic phenomenon in which the magnetic moments are 

aligned in the field directions, unlike diamagnetism. Magnetization of paramagnetic substances is 

inversely proportional to absolute temperature. The magnetization of paramagnetic substances is 

inversely proportional to absolute temperature. It means that if we increase the temperature, 

paramagnetic substances start losing their magnetic power. 

 

12.9 GLOSSARY 

Magnetic Induction, B Flux per unit area of a section normal to the direction of the 

magnetic path.  

Flux This is the number of “magnetic lines of force”. 

Permanent Magnet  A magnet that retains its magnetic properties in the absence of 

an inducing field or current. 

Magnetism A class of physical phenomena that include being able to attract 

iron. 

Magnet  It is any material that has a magnetic field. 

Magnetic Field 

 

The space around a magnet in which the magnetic force can be 

detected. 

Magnetic Flux The total magnetic induction across or through a specified area 

Diamagnetic 

 

Magnetic properties of materials that have lower permeability 

values to 1 (eg. Silver, copper, water, gold, lead, zinc ...). 
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Magnetic 

susceptibility 

Magnetic susceptibility is the ability of a material to react to the 

action of a magnetic field 
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12.13 TERMINAL QUESTIONS 

QUESTIONS 

1. What will be the change in diamagnetic susceptibility of Bismuth, if it is heated from 298 K to 

650 K. 

2. Can you calculate the diamagnetic susceptibility of single crystal HCP titanium using the 

classical Langevin model? Explain why or why not. 

3. Why would doping a piece of silicon change its bulk magnetic susceptibility?  

4. What happens in the bulk magnetic susceptibility of silicon, if we vary the temperature? 
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ANSWERS 

1:  Reason: The diamagnetic susceptibility has no dependence on temperature, so heating a 

material will not change its diamagnetic susceptibility. 

2: No. The derivation of Langevin's susceptibility relies on the assumption that the material has a 

classically bound electron (rotating around an atom to create the magnetic moment), however, 

metals do not have localized electrons. Therefore, the substitutability cannot be determined using 

this theory. 

3: The susceptibility depends on the number of contributing electrons surrounding an atom, Z. 

Doping silicon introduces atoms that have different valencies and thus changes the overall 

susceptibility contribution of atoms in the material. 

4: By heating the material through different temperature regimes the electrons bound to their atoms 

can be freed, ionizing the donor atoms, such as in n-type silicon. The freed electrons populate the 

material at different temperatures (see: Extrinsic Semiconductors) making the susceptibility vary 

with temperature. 

 

Short answer type questions 

1. What do you mean by magnetic susceptibility? 

2. Give some examples of diamagnetic substances. 

3. Explain the term susceptibility and permeability in magnetic materials. 

4. Define Curie Weiss law and its application. 

5. Discuss the variation of temperature and susceptibility in paramagnetic substances. 

6. Explain the origin of diamagnetism in free electron. 

7. Explain the Langevin’s theory of paramagnetism. 

7. Explain the Langevin’s theory of diamagnetism. 

8. Write a short note on classification of magnetic materials. 

 

Long Answer Type Questions 

1. Discuss Langevin’s theory of diamagnetism. Derive an expression for the change of magnetic 

moment. 
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2. Use angular momentum of processing electron in magnetic field to derive the magnetization of 

a sample and thus diamagnetic susceptibility. 

3. What is the difference between diamagnetic and paramagnetic materials? Discuss the 

temperature and susceptibility variation in paramagnetic and diamagnetic substances in detail. 

4. Discuss Langevin’s theory of paramagnetism and derive an expression for paramagnetic 

susceptibility. 

 

Multiple Choice Questions 

1. Basic source of magnetism ______________. 

(a) Charged particles alone  

(b) Movement of charged particles 

(c) Magnetic dipoles  

(d) Magnetic domains 

2. Units for magnetic flux density 

(a) Wb / m2 

(b) Wb / A.m 

(c) A / m 

(d) Tesla / m 

3. Magnetic permeability has units as 

(a) Wb / m2 

(b) Wb / A.m 

(c) A / m 

(d) Tesla / m 

4. Magnetic permeability has units as 

(a) Tesla  

(b) Henry  

(c) Tesla / m  

(d) Henry / m 

5. Magnetic field strength’s units are 

(a) Wb / m2 

(b) Wb / A.m 
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(c) A / m  

(d) Tesla / m 

6. Example for dia-magnetic materials 

(a) Super conductors  

(b) Alkali metals 

(c) Transition metals  

(d) Ferrites 

7. Example for para-magnetic materials 

(a) Super conductors  

(b) Alkali metals  

(c) Transition metals 

(d) Ferrites 

8. Example for ferro-magnetic materials 

(a) Super conductors  

(b) Alkali metals  

(c) Transition metals  

(d) Ferrites 

9. Example for anti-ferro-magnetic materials 

(a) Salts of transition elements 

(b) Rare earth elements  

(c) Transition metals 

(d) Ferrites 

 

10. Example for ferromagnetic materials 

(a) Salts of transition elements  

(b) Rare earth elements  

(c) Transition metals  

(d) Ferrites 

11. Magnetic susceptibility para-magnetic materials is 

(a) +10-5 

(b) -10-5 
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(c) 105 

(d) 10-5 to 10-2 

12. Magnetic susceptibility diamagnetic materials is 

(a) +10-5 

(b) -10-5 

(c) 105  

(d) 10-5 to 10-2 

13. Magnetic susceptibility ferro-magnetic materials is 

(a) +10-5 

(b) -10-5 

(c) 105 

(d) 10-5 to 10-2 

ANSWERS:  
1. b ,2. a ,3. b ,4. d ,5. c ,6. b ,7. b ,8. c ,9. a ,10. d ,11. d ,12. b ,13. c 

 

Numerical Type Questions: 

1. The susceptibility of a paramagnetic material at temperature 300K is 2 X 10-5. At what 

temperature its susceptibility will increase to 2 X 10-5. (Answer: 200K) 

2. Consider a He atom in its ground state. The mean radius of the atom is approximated by Bohr 

radius 0.53 Å. The density of helium is 0.18 Kg/m3. Using Langevins formula calculate the 

diamagnetic susceptibility. (Atomic mass of the He atom M=4.003 X 10-3 Kg and Avogadro’s 

number NA= 6.023 X  1023) (Answer: -8.93 X 10-10) 

3. For the given value of Magnetic field B= 1.6 T, Magnetic intensity=H=1000 A/m, µ0 =4 X 10-

7Wb/Am. Then calculate relative permeability, susceptibility? (Answer: Relative permeability is 

1273 and susceptibility is 1272). 

4. The susceptibility of annealed iron at saturation is 5500. Find the permeability of annealed iron 

at saturation. (Answer: Permeability at saturation is 6.9 X 10-3 H/m). 

5. A paramagnetic material has 1028atoms/m3. Its susceptibility at350 K is 2.8 X 10-4. Calculate the 

susceptibility at 300 K. 
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13.1 INTRODUCTION 
Magnetic materials fascinated human beings for over 4000 years. Magnetism is a phenomenon 

through which materials assert an attractive or repulsive force or influence on other materials. In 

the modern concept all materials are said to exhibit magnetism, though of different nature.  When 

a substance is placed in a magnetic field H substance gets magnetized. The magnetic moment per 

unit volume M is produced inside the substance M is called magnetization. The relation between 

magnetization and magnetic field is given by the equation  

                                    �⃗⃗� = 𝜒𝑚�⃗⃗�                                                                                (1) 

The constant 𝜒𝑚is called magnetic susceptibility of the material. It may be defined as the ratio of 

magnetization M and magnetic field intensity H. The value of 𝜒𝑚 for vacuum is zero because there 

is no magnetization in vacuum. In this unit we shall discuss the ferromagnetic materials and their 

relation with paramagnetic characteristics.  

When a specimen is placed in a magnetic field H it is magnetized due to alignments of current 

loops or spins. The magnetic flux density within the specimen is the resultant of magnetizing field 

and intensity of magnetization M. The relation is given by  

                                    �⃗� = 𝜇𝑜(�⃗⃗� + �⃗⃗� )                                                                      (2) 

By susceptibility equation,  

Hence                   �⃗� = 𝜇𝑜(�⃗⃗� + 𝜒𝑚�⃗⃗� )                                                 (3) 

                               �⃗� = 𝜇𝑜(1 + 𝜒𝑚)�⃗⃗�                                                                                  (4) 

If we write  

𝜇 = 𝜇𝑜 (1 + 𝜒𝑚) 

Then we have 

 �⃗� = 𝜇�⃗⃗�                                                                       (5) 

The constant 𝜇 is called magnetic permeability if the material. Magnetic permeability may be 

defined as the ratio of magnetic induction to the magnetic intensity. For vacuum, it is denoted by 

𝜇𝑜(4𝜋 × 10−7 𝑊𝑏

𝐴−𝑚
) and called permeability of vacuum. Hence magnetic induction in vacuum will 

be 

𝐵𝑜
⃗⃗⃗⃗ = 𝜇𝑜�⃗⃗�                                                                                       (6) 

The ratio  
𝐵

𝐵𝑜
=

𝜇

𝜇𝑜
= 𝜇𝑟                                                                          (7)          

is called relative permeability. This is basic idea about magnetism.  
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13.2 OBJECTIVES 

After studying this unit, you should be able to- 

 Differentiate the paramagnetic, diamagnetic, ferromagnetic, antiferromagnetic and 

ferrimagnetic materials.  

 Understand the domain theory of ferromagnetism. 

 Curies law 

 Heisenberg’s Exchange interaction 

 Understand the domain theory of anti ferromagnetism 

 Understand ferrimagnetism 

 Understand the hysteresis curve and hysteresis losses. 

13.3 TYPES OF MAGNETISM 

According to modern theories, magnetism in solids arises due to orbital and spins motion of 

electrons as well as spin motion of nuclei. The motion of electrons is equivalent to an electric 

current which produces magnetic effect. The major contribution in magnetism comes from the spin 

of unpaired valence electrons which produces permanent magnetic moments. A number of such 

magnetic moments align themselves in different directions to generate a net non-zero magnetic 

moment. Therefore, the nature of magnetization produced depends on the number of unpaired 

valence electrons present in the atoms of the solid and on the relative orientations of the 

neighboring magnetic moments. As we have already studied, the magnetism in solid materials can 

be classified into five main groups according to their spin alignment. 

1. Diamagnetism 

2. Paramagnetism 

3. Ferromagnetism 

4. Antiferromagnetism 

5. Ferrimagnetism 

Diamagnetism is a very weak magnetic effect and is found in those solids which do not contain 

any permanent magnetic moments. Diamagnetic materials do not have unpaired electrons in them. 

In these materials electron spin moments are mutually cancelled and there is no interaction between 

individual magnetic moments (figure 13.1). These materials are weakly repelled in a magnetic 

field because they have a weak, negative magnetic susceptibility. Examples of diamagnetic 

materials are MgO, Cu, Ag, Au etc. For Paramagnetism materials, each atom possesses a 

permanent dipole moment by virtue of incomplete cancellation of electron spin and/or orbital 

magnetic moments e.g. Mg, Mo, Li etc. (figure 13.1).  In the absence of an external magnetic field, 

the orientations of these atomic magnetic moments are random, but have small magnetic moment. 

A ferromagnetic material has spontaneous magnetic moment. The spontaneous magmatic moment 

is due to electron spin and magnetic moment arranged in regular manner. The electron spin and 
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magnetic moment may be arranged in different manner as shown in figure 13.1. Depending on the 

arrangement of orientation of spin, a magnetic material behaves as ferromagnetic, 

antiferromagnetic, weak ferromagnetic (canted antiferromagnetic) or ferrimagnetic. If there is an 

internal interaction which line up the magnetic moment parallel to each other, then the material 

becomes ferromagnetic. Such interaction is called exchange interaction. The orientation effect is 

destroyed by thermal agitations and therefore at high temperature the spin order is destroyed.  

 

            

             Figure 13.1: Spin orientations of different types of ferromagnetic materials 

13.4 FERROMAGNESISM 

Ferromagnetism is a property by which certain materials become permanent magnets. 

Ferromagnetism is the strongest type and is responsible for the common phenomenon of 

magnetism in magnets encountered in everyday life. Permanent magnets (materials that can 

be magnetized by an external magnetic field and remain magnetized after the external field is 

removed) are either ferromagnetic or ferrimagnetic. Only a few substances are ferromagnetic. The 

common ones are iron, cobalt, nickel (Fe, Co, Ni) and most of their alloys, and some compounds 

of rare earth metals. Some applications of ferromagnetism are electromagnets, electric 
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motors, generators, transformers, and magnetic storage such as tape recorders, and hard disks, 

and nondestructive testing of ferrous materials.   

These materials possess a permanent magnetic moment in the absence of an external magnetic 

field (figure 13.2), and exhibit very large and permanent magnetizations below a certain 

temperature called Curie temperature (Tc). Ferromagnetic material shows maximum magnetization 

at 0K and start decreasing as temperature increases. Permanent magnetic moments in 

ferromagnetic materials result from atomic magnetic moments due to uncancelled electron spins 

as a consequence of the electron structure. Above a particular temperature called Curie temperature 

(Tc) the ferromagnetic material exhibits paramagnetism.  

                                             

Figure 13.2:  The orientation of atomic dipoles for a ferromagnetic material. 

13.4.1 Weiss Molecular Field theory for Ferromagnetic Material 

According to Weiss theory of ferromagnetism, a specimen of ferromagnetic material contains a 

number of small regions called domains which are spontaneously magnetized in a certain direction. 

The magnitude of spontaneous magnetization of the specimen as a whole is determined by the 

vector sum of the magnetic moments of individual domains. This spontaneous magnetization is 

responsible for internal magnetic field, and if there are atoms in specimen then they experience a 

magnetic field which is the sum of the internal magnetic field due to spontaneous magnetization 

and external magnetic field.   

According to Curie-Weiss law, above the Curie temperature TC, the susceptibility of a 

ferromagnetic material is given as 

               𝜒𝑓𝑒𝑟𝑟𝑜 =
𝐶

𝑇−𝑇𝐶
                                                                                       (8) 

where C is the Curie- Weiss constant. 

If H is external magnetic field than effective magnetic field on atom becomes 

                               𝐻𝑒𝑓𝑓 = 𝐻 + 𝐻𝑖𝑛𝑡                                                                            (9) 
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     𝐻𝑒𝑓𝑓 = 𝐻 + 𝜆𝑀                                                                (10) 

 Since 𝐻𝑖𝑛𝑡 = 𝜆𝑀 where 𝜆 is a parameter called Weiss-field constant, and M is 

magnetization. Consider a paramagnetic material with N atoms per unit volume; J is total angular 

momentum; g is Lande g factor, 𝜇𝐵 is Bohr magnrton,   than magnetization can be given as 

   𝑀 = 𝑁 𝑔 𝜇𝐵 𝐽 𝐵(𝑎)      (11) 

Where 𝐵(𝑎) is Brillouin function used in magnetism and given as 

  𝐵(𝑎) =
2𝐽+1

2𝐽
coth (

2𝐽+1

2𝐽
) 𝑎 −

1

2𝐽
coth

𝑎

2𝐽
   (12) 

 Here a is the ratio of the Zeeman energy of the magnetic moment in the external field to the 

thermal energy 𝑘𝐵𝑇  and a is given as 

  𝑎 =
𝑔𝜇𝐵 𝐽  

𝑘𝐵𝑇
𝐻𝑒𝑓𝑓 =

𝑔𝜇𝐵 𝐽  

𝑘𝐵𝑇
(𝐻 + 𝜆𝑀)     (13) 

For spontaneous magnetization H=0 then above eq. 13 can be given as 

  𝑎 =
𝑔𝜇𝐵 𝐽  

𝑘𝐵𝑇
𝜆 𝑀(𝑇)       (14) 

We have replaced magnetization M by 𝑀(𝑇) as magnetization is function of temperature T. If 

𝑀𝑠(0) is saturation magnetization which is the maximum value of magnetization at absolute zero 

temperature than 

 𝑀𝑠(0) = 𝑁 𝑔 𝜇𝐵 𝐽        (15) 

Using eq. (14) and (15) the ratio of 𝑀(𝑇) and 𝑀𝑠(0) can be given as 

   
𝑀(𝑇)

𝑀𝑠(0)
=

𝑎 𝑘𝐵𝑇   

𝑔𝜇𝐵 𝐽𝜆 
.

1   

𝑁 𝑔 𝜇𝐵 𝐽 
  

                 
𝑀(𝑇)

𝑀𝑠(0)
=

𝑎 𝑘𝐵𝑇   

𝑁𝑔2𝜇𝐵
2 𝐽2𝜆 

                                                                                        (16) 

It is clear from eq. 11 and eq. 15, if 𝑇 → 0 than 𝐵(𝑎) → 1. We further know from eq. (11) and 

eq. (15) that  

𝑀(𝑇) = 𝑁 𝑔 𝜇𝐵 𝐽 𝐵(𝑎) 

𝑀𝑠(0) = 𝑁 𝑔 𝜇𝐵 𝐽 

The ratio can be given as 
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𝑀(𝑇)

𝑀𝑠(0)
= 𝐵(𝑎)                                                                   (17)        

On solving eq. (16) and eq. (17) simultaneously and plot a graph between a and  
𝑀(𝑇)

𝑀𝑠(0)
 we get a 

plot as shown in figure 13.3.  

 

   Figure 13.3: Variation of magnetization and a.  

13.4.2 Relation Between Tc and 𝜆 

From equation (16) we can see that the slop of equation is given as the coefficient of a which is 

   
 𝑘𝐵𝑇𝑐  

𝑁𝑔2𝜇𝐵
2 𝐽2𝜆 

         (18) 

Similarly from equation (17), we can see that the slops of equation is given by 𝐵(𝑎). If a << 1 then 

from eq. 12, 𝐵(𝑎) can be given as 

   𝐵(𝑎) =
𝐽+1

3𝐽
𝑎        (19) 

Thus the eq.17 becomes 

                                             
𝑀(𝑇)

𝑀𝑠(0)
=

𝐽 + 1

3𝐽
𝑎                                                                     (20)        

Thus slop is again the coefficient of a and given as  

  
𝐽+1

3𝐽
        (21) 

Equating these two slops given in eq. (18) and eq. (21) 

 
𝐽+1

3𝐽
=

 𝑘𝐵𝑇𝑐     

𝑁𝑔2𝜇𝐵
2 𝐽2𝜆 

       (22) 

 𝑻𝒄 =
(𝑱+𝟏)𝑵𝒈𝟐𝝁𝑩

𝟐 𝑱𝟐𝝀

𝟑𝑱 𝒌𝑩
       (23) 
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We know that the total magnetic moment 𝜇 can be given as 

 𝝁𝟐 = 𝒈𝟐𝝁𝑩
𝟐 𝑱(𝑱 + 𝟏)         (24) 

Putting this value in eq. (23) 

𝑻𝒄 =
𝑵𝝁𝟐𝝀

𝟑 𝒌𝑩
                                           (25) 

Thus the transition temperature is proportional to 𝜆. 

13.4.3 Temperature Dependence of Saturation Magnetization 

From eq. (23) 

 𝑘𝐵

𝜆
=

𝑁𝑔2𝜇𝐵
2 𝐽(𝐽 + 1)

3𝑇𝑐
 

Putting this value in eq. (16) 

  
𝑀(𝑇)

𝑀𝑠(0)
=

𝑎𝑇   

𝑁𝑔2𝜇𝐵
2 𝐽2 

𝑁𝑔2𝜇𝐵
2 𝐽(𝐽 + 1)

3𝑇𝑐
                                                                

  
𝑀(𝑇)

𝑀𝑠(0)
=

(𝐽 + 1)

3𝐽
(
𝑇

𝑇𝑐
) 𝑎                                                                                                    (26) 

The plot of equation 26 can be represented by figure 13.4.  

                                        

                       Figure 13.4: Magnetization versus temperature variation    

 

13.4.4 Paramagnetic Region 
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Now we will see the behavior of ferromagnetic material above the Curie temperature. We know 

that above the Curie temperature the substance becomes paramagnetic.  

Above 𝑇𝑐 magnetization 𝑀(𝑇) = 0 as spontaneous magnetization vanishes. For small value of a 

the Brillioun function can be expressed as 

𝐵(𝑎) =
𝐽 + 1

3𝐽
𝑎 

From eq. (11) magnetization  

𝑀 = 𝑁 𝑔 𝜇𝐵 𝐽 𝐵(𝑎) 

                                                     𝑀 = 𝑁 𝑔 𝜇𝐵 𝐽 .
𝐽 + 1

3𝐽
𝑎                                           (27)        

Putting the value of a from eq.13 in eq. 27, we have 

𝑀 =
𝑔𝜇𝐵 𝐽  

𝑘𝐵𝑇
(𝐻 + 𝜆𝑀).𝑁 𝑔 𝜇𝐵 𝐽 .

𝐽 + 1

3𝐽
  

𝑀 =
𝑁𝑔2𝜇𝐵

2 𝐽(𝐽 + 1)  

3𝑘𝐵𝑇
(𝐻 + 𝜆𝑀) 

From eq. 24 the magnetic moment is given by 𝜇2 = 𝑔2𝜇𝐵
2 𝐽(𝐽 + 1); using this expression, above 

expression becomes 

   𝑀 =
𝑁𝜇2  

3𝑘𝐵𝑇
(𝐻 + 𝜆𝑀)                                     (28) 

𝑀 (1 −
𝑁𝜇2𝜆  

3𝑘𝐵𝑇
) =

𝑁𝜇2  

3𝑘𝐵𝑇
𝐻 

Magnetic susceptibility can be given as 

            𝜒𝑚 =
𝑀

𝐻
= [

𝑁𝜇2  

3𝑘𝐵𝑇

1−
𝑁𝜇2𝜆  

3𝑘𝐵𝑇

]                       (29) 

 𝝌𝒎 =
𝑴

𝑯
=

𝑪

𝑻−𝜽
         (30) 

                   Where 𝑪 =
𝑵𝝁𝟐  

𝟑𝒌𝑩
 and 𝜽 =

𝑵𝝁𝟐𝝀  

𝟑𝒌𝑩
= 𝝀𝑪      (31) 

The equation (29) is Curie Weiss law. This is modified classics Curies law  (𝝌𝒎 =
𝑪

𝑻
). The C is 

known as Curie constant and 𝜃 is transition temperature (𝑇𝑐).  The variation of magnetic 

susceptibility and with temperature is given in figure 13.5. 
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                       Figure 13.5: Magnetic Susceptibility versus temperature variation    

 

13.5 HEISENBERG’S EXCHANGE INTERACTION 

Magnetism arises due to spin and orbital motion of electrons or any other charge particle. 

Experimentally the saturation magnetization Ms is in order of 107 A/m. It is reasonable that such a 

large field cannot be due to spin orbital interaction.  Heisenberg proposed that this strong magnetic 

interaction is must be due to exchange interaction. Ferromagnetism is due to spin interaction of 

electrons. The source of ferromagnetism is the spin interaction of electrons in d orbital of some 

elements as Fe, co, Ni. Only those elements show the ferromagnetism which have incomplete d 

shell. The electrons are a fermions system and possess anti symmetric wave function. A system of 

electron not only possesses coulomb interaction but also possesses another extra energy called 

exchange energy. This is purely quantum mechanical phenomenon. This interaction gives rise to 

collective magnetic ordering in a ferromagnetic crystal. According to Heisenberg, the interaction 

energy determines the strength of Weiss field. The Hamiltonian associated with exchange energy 

can be given as  

 𝐻𝑒 = −∑ ∑
2

ℏ2
 𝐽𝑖𝑗(𝑆𝑖𝑆𝑗)𝑗𝑖       (32) 

  Where 𝑆𝑖 𝑎𝑛𝑑 𝑆𝑗 are the spin operators of ith and jth atoms respectively. 𝐽𝑖𝑗 is a parameter 

determining the strength of exchange force called exchange integral. If 𝐽𝑖𝑗 is positive, the material 

will be ferromagnetic.  

The exchange energy of two electrons may be written in the given form if there is a direct coupling 

between two spins. 
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 𝐻𝑒 = −2 𝐽𝑖𝑗(𝑆𝑖 . 𝑆𝑗)      (33) 

By quantum mechanical treatment we can establish a connection between exchange interaction 𝐽𝑖𝑗 

and Curie temperature TC. The quantum mechanical treatment called mean field theory and results 

as 

 𝑇𝑐 =
2𝑧

3𝑘
𝑆(𝑆 + 1) 𝐽𝑖𝑗      (34)  

  𝐽𝑖𝑗 =
3𝑘 𝑇𝑐 

 2 𝑧 𝑆 (𝑆+1)
       (35) 

where z is the number of nearest neighbors of atoms under consideration. Better statistical 

approximation gives some more complex results. For simplicity we consider this one only. 

13.6 RETENTIVITY COERCIVITY AND HYSTERESIS  

When a specimen of ferromagnetic material is placed in an external magnetic field the specimen 

is magnetized by induction. As the magnetic field intensity is varied the flux density in the material 

does not varies linearly which means the permeability is not constant. Permeability depends not 

only on the value of H but also on the past history of the material. The variation of B with the 

variation of H is shown in following figure 13.6. Point O represents an initially unmagnetised 

specimen at zero magnetic field intensity. As H is increased B also increased but not uniformly, 

and a point such as ‘a’ is reached where B becomes constant, and substance is called magnetically 

saturated. Magnetization corresponding to this point is called saturation magnetization Ms. 

 
Figure 13.6: Hysteresis loop of a ferromagnetic material. 

 

If H is now decreased, B also decreases but following a different path abc, thus B lags behind H. 

when H becomes zero B still has a value Ob. This magnetic flux density remaining in the specimen 
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in the absence of any external field is called residual magnetism. The property of bearing this 

magnetism is called retentivity or remanence of the material. If the magnetic field intensity H is 

increased in reversed direction, the value of B further decreased, still lagging behind H, and 

becomes zero when magnetic field intensity H has a value equal to Oc. This value of magnetic 

intensity is called the coercivity of the specimen. Thus, coercivity is a measure of the magnetic 

intensity required to destroy the residual magnetism of a specimen. 

When H is increased beyond Oc the specimen is strongly magnetized in opposite direction and a 

point such as d is reached after which magnetization becomes constant. Magnetization 

corresponding to this point is also called saturation magnetization Ms .reducing H from this point 

d to zero and again increasing in another direction a similar curve defa is obtained at point b and 

e where substance consist magnetization in the absence of external magnetic field, is said to be 

permanent magnet. The closed curve abcdefa is known as hysteresis curve of the substance. 

Hysteresis curve shows that B always lags behind H when H changes. 

 

13.7 SPIN WAVE AND MAGNONS 

The magnetism is a property arises due to the spin of electrons in the atoms. There is interaction 

among the spins which is responsible for magnetic properties. We consider only nearest neighbor 

interaction for simplicity. A spin wave is a propagating disturbance in the spin ordering of a 

magnetic material. Let us consider a ferromagnetic material, with one dimensional chain of atoms 

with parallel spins. If there are n spins, then there will be N-1 pairs of spins as shown in figure 

13.7(a). At zero temperature the all spins are at ground state and aligned in parallel direction. If 

temperature increases, the thermal energy will available for excitation, and this excitation flip the 

one spin. In the first excitation state only one spin is flipped shown in figure 13.7b.      

                                           

 

Figure 13.7(a): Ground state and exited state of spins 

Since the excitation spin cannot be isolated from the neighbor, therefore quantum mechanically, 

the exited single spin is spread over the system. Thus the single flip (excitation) of spin is 

equivalent to propagation of flipping of spins as in figure 13.7(b). In this figure there are different 

cone for representing spin and the spin initially all parallel, starts rotating step by step. If we look 

at the top of cones, as shown in second figure, the locus of points of arrow forms a wave. The 

propagation of such flipping of spins form a wave which is spin wave.  
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Figure 13.7(b): Propagation of flipping of spin or spin wave 

According to Heisenberg exchange interaction model, the exchange energy in ground state is given 

by 

 𝐸𝑒𝑥 = −2𝐽𝑆𝑖𝑆𝑗(𝑁 − 1) = −2𝐽𝑆2(𝑁 − 1)   (36) 

In exited state when one spin is flipped than energy increase and given as 

𝐸𝑒𝑥 = −2𝐽𝑆2(𝑁 − 3) + 2(2𝐽𝑆2) 

𝐸𝑒𝑥 = −2𝐽𝑆2(𝑁 − 1) − 2𝐽(−2)𝐽𝑆2 + 4𝐽𝑆2 

 𝐸𝑒𝑥 = −2𝐽𝑆2(𝑁 − 1) + 8𝐽𝑆2    (37) 

Thus the energy of excited state increased by 8𝐽𝑆2 arises due to flip of one spin. This flip is spread 

over the system as shown in figure. As light and phonon wave is quantize similarly the spin wave 

is also quantize and the quanta of energy associated with spin wave is known as megnon.  Now 

we will find out the dispersion relation for spin wave. 

The Heisenberg exchange energy for nearest spins is given as 

𝑈 = −2𝐽 ∑𝑆𝑝 𝑆𝑝+1

𝑁

𝑝

                                                                        (38) 

Where N is number of spins in ground state, 𝑆𝑝 is spin of 1st atom, J is exchange integral, ℏ𝑆𝑝 is 

spin angular momentum. If we consider 𝑆𝑝 as classical vector then for ground state then the product 

of spin angular moment can be simplify as 𝑆𝑝. 𝑆𝑝+1 = 𝑆2 and exchange energy becomes 𝑈0 =

−2𝑁 𝐽 𝑆2. 

For the interaction of pth spin with (p-1) and (p+1)th spins can be given as 

   𝑈 = −2 𝐽 𝑆𝑝 . ( 𝑆𝑝−1+ 𝑆𝑝+1)        (39) 
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The magnetic moment at pth atom is given as 

 𝜇𝑝 = −𝑔 𝜇𝐵 𝑆𝑝      (40) 

thus the eq.17 can be given 

𝑈 = −2 𝐽 (−𝜇𝑝/𝑔 𝜇𝐵) . ( 𝑆𝑝−1+ 𝑆𝑝+1) 

   𝑈 = −𝝁𝒑. (−2 𝐽 /𝑔 𝜇𝐵)( 𝑆𝑝−1+ 𝑆𝑝+1)      (41) 

This expression of the form of 𝑈 = 𝝁𝒑. 𝐵𝑝 which nothing but the energy stored by a dipole in an 

effective magnetic field B can be considered as exchange energy U. From eq. 18 the effective 

magnetic field B can be given as 

 𝐵𝑝 = (−2 𝐽 /𝑔 𝜇𝐵)( 𝑆𝑝−1+ 𝑆𝑝+1)     (42)   

We know that the rate of change of angular momentum is equal to the torque thus 

   
𝑑

𝑑𝑡
(ℏ𝑆𝑝) = 𝜇𝑝 × 𝐵𝑝      (43) 

Putting the values form eq. 18 and eq. 20 

𝑑𝑆𝑝

𝑑𝑡
= (−𝑔 𝜇𝐵/ℏ) 𝑆𝑝 × 𝐵𝑝 = (−𝑔 𝜇𝐵/ℏ) 𝑆𝑝 × (−2 𝐽 /𝑔 𝜇𝐵)( 𝑆𝑝−1+ 𝑆𝑝+1)  

 
𝑑𝑆𝑝

𝑑𝑡
= (2 𝐽/ ℏ) (𝑆𝑝 × 𝑆𝑝−1 + 𝑆𝑝 × 𝑆𝑝+1)    (44)  

In Cartesian coordinate system x component of equation (44) can be written as  

𝑑𝑆𝑝
𝑥

𝑑𝑡
= (2𝐽/ℏ)[𝑆𝑝

𝑦
(𝑆𝑝−1

𝑧 × 𝑆𝑝+1
𝑧 ) − 𝑆𝑝

𝑧(𝑆𝑝−1
𝑦

× 𝑆𝑝+1
𝑦

)]                 (45) 

Similarly, we can find the y and z components of this equation 45. 

For simplicity if we consider the amplitude of excitations is small and we can consider 𝑆𝑝
𝑧 = 𝑆 and 

𝑆𝑝
𝑥 , 𝑆𝑝

𝑦
≪ 𝑆 than eq.45 can be written as 

𝑑𝑆𝑝
𝑥

𝑑𝑡
= (2𝐽/ℏ)[2𝑆𝑝

𝑦
− 𝑆𝑝−1

𝑦
− 𝑆𝑝+1

𝑦
]                                 (46a) 

𝑑𝑆𝑝
𝑦

𝑑𝑡
= (2𝐽/ℏ)𝑥[2𝑆𝑝

𝑥 − 𝑆𝑝−1
𝑥 − 𝑆𝑝+1

𝑥 ]                                 (46b) 

𝑑𝑆𝑝
𝑧

𝑑𝑡
= 0                                                                                        (46c) 
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These are the differential equations and by analogy to phonon dispersion relation the standard 

solution of such equation can be considered as  

𝑆𝑝
𝑥 = 𝑢 exp[𝑖(𝑝𝑘𝑎 − 𝜔𝑡)]                                                     (47a) 

𝑆𝑝
𝑦

= 𝑣 exp[𝑖(𝑝𝑘𝑎 − 𝜔𝑡)]                                                     (47b) 

Where u and v are constants k is wave vectors, a is lattice constant and p is any integer number. 

Putting the value of S from equation (47) to equation (46) we get 

−𝑖𝜔𝑢 = (2𝐽𝑆/ℏ)[2 − 𝑒𝑖𝑘𝑎 − 𝑒−𝑖𝑘𝑎]𝑣 = (4𝐽𝑆/ℏ)(1 − 𝑐𝑜𝑠 𝑘𝑎)𝑣 

−𝑖𝜔𝑣 = (2𝐽𝑆/ℏ)[2 − 𝑒𝑖𝑘𝑎 − 𝑒−𝑖𝑘𝑎]𝑢 = (4𝐽𝑆/ℏ)(1 − 𝑐𝑜𝑠 𝑘𝑎)𝑢 

To solve above equation, we can arrange the coefficient in determinant as 

|
𝑖𝜔 (4𝐽𝑆/ℏ)(1 − 𝑐𝑜𝑠 𝑘𝑎)

(4𝐽𝑆/ℏ)(1 − 𝑐𝑜𝑠 𝑘𝑎) 𝑖𝜔
| = 0 

ℏ𝜔 = (4𝐽𝑆)(1 − 𝑐𝑜𝑠 𝑘𝑎)                                                     (48) 

This is the dispersion relation of spin wave in one dimensional case. For long wavelengths if we 

consider 𝑘𝑎 ≪ 1 than 1 − 𝑐𝑜𝑠 𝑘𝑎 ≈
1

2
 𝑘2𝑎2   and eq. (48) can be given as 

   ℏ𝜔 = 2 𝐽𝑆 𝑎2𝑘2       (49) 

For a typical ferromagnetic material, the magnon dispersion relation as given in eq. 48 is shown 

in figure 13.8a. The spin wave also quantized exactly as phonon wave.  

  

Figure 13.8a: Magnon dispersion relation for aferromagnetic material.  

13.7.1 Quantization of Spin Wave 

The energy of a mode of frequency 𝜔𝑘 associated with spin wave is given as 
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    𝜖𝑘 = (𝑛 + 1/2)ℏ𝜔𝑘      (50) 

where n is integer number. The quantum of energy is known as megnon. 

 

13.8 ANTIFERROMAGNETISM 

 In one this case, the coupling among the neighboring atoms or lattice points are in antiparallel 

ordering; the alignment of the spin moments of neighboring atoms or ions are in exactly opposite 

directions, such magnetic materials are termed as antiferromagnetism. Manganese oxide (MnO) is 

one material that displays this behavior (figure 13.8b). Antiferromagnetism occurs below a critical 

temperature called Neel temperature TN. Above TN, antiferromagnetic material becomes 

paramagnetic. 

                   
                   

Figure 13.8b: Antiparallel alignment of spin magnetic moments for antiferromagnetic manganese 

oxide. 

 

Due to antiparallel spins ordering, the net magnetic moment of material is zero. As temperature 

increases, the anti-parallel arrangement disturbed and magnetization increases up to a certain 

temperature called Neel’s Temperature (TN), after this temperature the antiferromagnetic material 

behaves as paramagnetic as shown in figure 13.8c.   
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Figure 13.8c: magnetic susceptibility of antiferromagnetic material and Neel’s Temperature.   

 

13.8.1 Molecular Field Theory of Antiferromagnetic Material 

Consider an antiferromagnetic material which has two type sub-lattices AB. The example of such 

sub lattice system is Manganese oxide (MnO) as shown in figure 13.8c. In such antiferromagnetic 

material, there are three types of interactions as AA, BB and AB. 

The molecular field at atom A can be given as 

𝐻𝑚𝑎 = 𝐻 − 𝛼𝑀𝑎 − 𝛽𝑀𝑏     (51a) 

Similarly, molecular field at atom A can be given as 

𝐻𝑚𝑏 = 𝐻 − 𝛽𝑀𝑎 − 𝛼𝑀𝑏     (51b) 

Where 𝛼 and 𝛽 are Weiss constants.  𝛼 is for AA and BB type interaction between AA and BB 

type atoms,  and 𝛽 is interaction between AB type  atoms. H is external magnetic field, and 𝑀𝑎 

magnetization of atom A and 𝑀𝑏 magnetization of atom B. Now there are two cases. 

 

Case1: If T > TN (Temperature is greater than Neel’s Temp.) paramagnetic region: 

Magnetization of atom A: 

 𝑀𝑎 =
𝑁𝜇2  

3𝑘𝐵𝑇
𝐻𝑚𝑎     (52) 

Where 𝜇 is total magnetic moment and given as  𝜇2 = 𝑔2𝜇𝐵
2 𝐽(𝐽 + 1) 

Similarly, the Magnetization of atom B: 

 𝑀𝑏 =
𝑁𝜇2  

3𝑘𝐵𝑇
𝐻𝑚𝑏     (53) 

Total magnetization can be given as 

Magnetization of atom A: 
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 𝑀 = 𝑀𝑎 + 𝑀𝑏 =
𝑁𝜇2  

3𝑘𝐵𝑇
(𝐻𝑚𝑎 + 𝐻𝑚𝑏)  (54) 

Putting the value from eq. (51) 

𝑀 =
𝑁𝜇2  

3𝑘𝐵𝑇
(𝐻 − 𝛼𝑀𝑎 − 𝛽𝑀𝑏 + 𝐻 − 𝛽𝑀𝑎 − 𝛼𝑀𝑏) 

  

𝑀 =
𝑁𝜇2  

3𝑘𝐵𝑇
(2𝐻 − 𝛼(𝑀𝑎 + 𝑀𝑏) − 𝛽(𝑀𝑎 + 𝑀𝑏)) 

Putting the value of 𝑀𝑎, 𝑀𝑏 from eq. (54) 

𝑀 =
𝑁𝜇2  

3𝑘𝐵𝑇
(2𝐻 − 𝛼𝑀 − 𝛽𝑀) 

𝑀 =
𝑁𝜇2  

3𝑘𝐵𝑇
(2𝐻 − 𝑀(𝛼 + 𝛽)) 

𝑀 (
 3𝑘𝐵𝑇 

𝑁𝜇2
) = 2𝐻 − 𝑀(𝛼 + 𝛽) 

𝑀 (
 3𝑘𝐵𝑇 

𝑁𝜇2
+ (𝛼 + 𝛽)) = 2𝐻 

 

𝑀

𝐻
=

2𝑁𝜇2

3𝑘𝐵𝑇 + (𝛼 + 𝛽)𝑁𝜇2
 

 

𝑀

𝐻
=

2𝑁𝜇2/3𝑘𝐵𝑇

1 + (𝛼 + 𝛽)𝑁𝜇2/3𝑘𝐵𝑇
 

 

𝑀

𝐻
=

2𝑁𝜇2/3𝑘𝐵𝑇

1 + (𝛼 + 𝛽)𝑁𝜇2/3𝑘𝐵𝑇
                                 (55) 

 

𝜒𝑚 =
𝑀

𝐻
=

𝐶/𝑇

1 +
𝐶
2𝑇

(𝛼 + 𝛽)
                                 (56) 

Where 𝐶 = 2𝑁𝜇2/3𝑘𝐵 is Curie constant and if 
𝐶

2
(𝛼 + 𝛽) = 𝜃 then eq. (56) can be given as 

𝜒𝑚 =
𝑀

𝐻
=

𝐶

𝑇 + 𝜃
                                             (57) 

This is the magnetic susceptibility for antiferromagnetic material. Now as we already calculated 

the magnetic susceptibility of paramagnetic and ferromagnetic material (eq.30) thus the inverse of 

magnetic susceptibilities all these materials can be given as follow and shown in figure 13.9. 

 

1

𝜒𝑝𝑎𝑟𝑎
=

𝑇

𝐶
      ,     

1

𝜒𝑓𝑒𝑟𝑟𝑜
=

𝑇 − 𝜃

𝐶
          ,

1

𝜒𝑎𝑛𝑡𝑖𝑓𝑒𝑟𝑟𝑜
=

𝑇 + 𝜃

𝐶
                         (58) 
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This can be noted here the curie constant for ferromagnetic material is 𝐶 = 𝑁𝜇2/3𝑘𝐵 and curie 

constant for antiferromagnetic material is 𝐶 = 2𝑁𝜇2/3𝑘𝐵. Thus curie constant for 

antiferromagnetic material is double to ferromagnetic material. According to eq. (58). The inverse 

of magnetic susceptibility can be shown in figure 13.9. 

                              

 
Figure 13.9: Magnetic susceptibility for paramagnetic, ferromagnetic and antiferromagnetic 

materials  

 

Case 2: If T< TN (Temperature is less than Neel’s Temp.): 

This is antiferomagnetic region. In this case, if there is no external field than according to eq. (52), 

the magnetization of atom A can be given as 

 𝑀𝑎 =
𝑁𝜇2  

3𝑘𝐵𝑇
𝐻𝑚𝑎             (59)  

In the absence of external magnetic field, the molecular field at atom A can be given as 

𝐻𝑚𝑎 = −𝛼𝑀𝑎 − 𝛽𝑀𝑏      (60) 

Putting the value in eq. (59) we get 

 𝑀𝑎 =
𝑁𝜇2  

3𝑘𝐵𝑇
[−𝛼𝑀𝑎 − 𝛽𝑀𝑏]     (61) 

𝑀𝑎 +
𝑁𝜇2  

3𝑘𝐵𝑇
𝛼𝑀𝑎 = −

𝑁𝜇2  

3𝑘𝐵𝑇
𝛽𝑀𝑏      

𝑀𝑎 [1 +
𝑁𝜇2  

3𝑘𝐵𝑇
𝛼] = −

𝑁𝜇2  

3𝑘𝐵𝑇
𝛽𝑀𝑏    (62) 

Similarly, for molecular B can be given as 

𝑀𝑏 [1 +
𝑁𝜇2  

3𝑘𝐵𝑇
𝛼] = −

𝑁𝜇2  

3𝑘𝐵𝑇
𝛽𝑀𝑎    (63) 

The eq. (62) and eq. (63) can be solve by determinant method and comparing the coefficients of 

𝑀𝑎and 𝑀𝑏 
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|
|
1 +

𝑁𝜇2  

3𝑘𝐵𝑇

𝑁𝜇2  

3𝑘𝐵𝑇
𝛽

𝑁𝜇2  

3𝑘𝐵𝑇
1 +

𝑁𝜇2  

3𝑘𝐵𝑇

|
| = 0 

[1 +
𝑁𝜇2  

3𝑘𝐵𝑇
𝛼]

2

− (
𝑁𝜇2  

3𝑘𝐵𝑇
𝛽)

2

= 0 

 

[1 +
𝑁𝜇2  

3𝑘𝐵𝑇
𝛼] = (

𝑁𝜇2  

3𝑘𝐵𝑇
𝛽) 

                             
𝑁𝜇2  

3𝑘𝐵𝑇
(𝛽 − 𝛼) = 1                                                                                 (64) 

If  
𝑁𝜇2  

3𝑘𝐵𝑇
=

𝐶  

2
 where C is curie constant and T is now Neel’s temperature TN, then 

                             
𝐶  

2 𝑇𝑁

(𝛽 − 𝛼) = 1                                                                                  

                              𝑇𝑁 =
𝐶  

2
(𝛽 − 𝛼)                                                                                (65) 

And if  𝜃 =
𝐶  

2
(𝛽 + 𝛼) , another parameter than 

                          
 𝑻𝑵  

𝜽
   =

𝜷 − 𝜶 

𝜷 + 𝜶
                                                                                (𝟔𝟔) 

Thus the Neel’s temperature depends on Weiss constants 𝛼 and 𝛽. When 𝛼  increases Neel’s 

temperature decreases. On the other hand if 𝛽 increases Neel’s temperature also increases. 

 

13.9 FERRIMAGNETISM 
If the neighboring atoms of antiferromagnetic material have spins anti-parallel but the magnitude 

are unequal than the material is define ferrimagnetic. Thus the solid material exhibits net 

spontaneous magnetic moment. Figure 13.1 shows the spin orientations of ferrimagnetic materials. 

The ferromagnetic materials have great industrial applications and these materials are known as 

ferrites. These materials may be represented by the chemical formula MFe2O4 in which M 

represents any one of several metallic elements (Mn, Fe, Co, Ni, Cu, Zn etc.). The prototype ferrite 

is Fe3O4, the mineral magnetite, sometimes called lodestone. The formula for Fe3O4 may be written 

as (Fe+2)[Fe+3]2O
-2

4 in which the Fe ions exist in both +2 and +3 valence states in the ratio of 1:2. 

A net spin magnetic moment exists for each Fe+2 and Fe+3 ions, which corresponds to 4 and 5 Bohr 

magnetons, respectively. There are antiparallel spin-coupling between the Fe ions, similar in 

character to antiferromagnetism. However, the net moment arises from the incomplete cancellation 

of spin moments. Figure 13.10 shows the opposing magnetic moments of two different sites. As a 

result, the solid as a whole possesses some net magnetic moment. 
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Figure 13.10: Antiparallel alignment of spin magnetic moments for ferrimagnetic materials. 

 

13.9.1 Molecular Field Theory of Ferrimagnetism 

As we discussed earlier, we consider a ferrimagnetic material which has two type sub-lattices AB. 

The example of such sub lattice system is shown in figure 13.10. In such antiferromagnetic 

material, there are three types of interactions as AA, BB and AB. The only difference is that all 

spin interactions have negative exchange energy.   

The mean magnetic field experiences by atom A can be given as 

𝐵𝑎 = −𝜆𝑀𝑎 − 𝜇𝑀𝑏               (67a) 

Similarly, molecular field at atom A can be given as 

𝐵𝑏 = −𝜇𝑀𝑎 − 𝜈𝑀𝑏              (67b) 

The negative sign is due to anti parallel spin arrangement. Here  𝜆, 𝜇, 𝜈 are positive Weiss 

constant for ferromagnetic materials.  The interaction energy can be given as 

   𝑈 =
1

2
(𝐵𝑎𝑀𝑎 − 𝐵𝑏𝑀𝑏)      (68) 

Putting values of 𝐵𝑎 , 𝐵𝑏 from eq. 67 we get 

   𝑈 =
1

2
𝜆𝑀𝑎

2 + 𝜇𝑀𝑎𝑀𝑏 +
1

2
𝜈𝑀𝑏

2     (69) 

Suppose we consider AA and BB interactions are very weak and only ASB interaction is strong 

than eq.67 can be given as 

𝐵𝑎 = −𝜇𝑀𝑏                   (67a) 

Similarly, molecular field at atom A can be given as 

𝐵𝑏 = −𝜇𝑀𝑎                      (67b) 

If 𝐶𝑎 is the curie constant for atom A, and 𝐶𝑏 is curie constant for atom B than mean field 

approximation  

    𝑀𝑎𝑇 = 𝐶𝑎(𝐵 − 𝜇𝑀𝑏)    (68a) 

    𝑀𝑏𝑇 = 𝐶𝑏(𝐵 − 𝜇𝑀𝑎)    (68b) 

In absence of external magnetic field B=0, if we solve eq. 68 by determinant method 

 𝑇 = 𝜇 √𝐶𝑎𝐶𝑏     (69) 
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Using eq. 68 and 69 we can calculate the magnetic susceptibility as 

𝜒𝑚 =
𝑀

𝐻
=

𝑇(𝐶𝑎 + 𝐶𝑏) − 2𝜇𝐶𝑎𝐶𝑏

𝑇2 − 𝑇𝑐
2                                              (70) 

 

This is the expression for magnetic susceptibility of ferrimagnetic material or ferrites. Figure 

13.11 show the variation of magnetic susceptibility with temperature.  

 
Figure 13.11: Magnetic susceptibility of Ferromagnetic or ferrimagnetic material 

 

13.10 FERROMAGNETISM DOMAINS 

Ferromagnetic domains are small regions in ferromagnetic materials within which all the magnetic 

dipoles are aligned parallel to each other. When cooled below a temperature called the Curie 

temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into 

many small regions called magnetic domains. When a ferromagnetic material is in its 

demagnetized state, the magnetization vectors in different domains have different orientations, and 

the total magnetization averages to zero. The process of magnetization causes all the domains to 

orient in the same direction. Magnetic domain structure is responsible for the magnetic behavior 

of ferromagnetic materials like iron, nickel, cobalt and their alloys, and ferrimagnetic materials 

like ferrite. This includes the formation of permanent magnets and the attraction of ferromagnetic 

materials to a magnetic field. The regions separating magnetic domains are called domain walls, 

where the magnetization rotates coherently from the direction in one domain to that in the next 

domain. The study of magnetic domains is called micromagnetics. 

Paramagnetic and diamagnetic materials, in which the dipoles align in response to an external field 

but do not spontaneously align, do not have magnetic domains. 

The reason a piece of magnetic material such as iron spontaneously divides into separate domains, 

rather than exist in a state with magnetization in the same direction throughout the material, is to 

minimize its internal energy. A large region of ferromagnetic material with a constant 

magnetization throughout will create a large magnetic field extending into the space outside 

itself as shown in figure 13.12. This requires a lot of magnetostatic energy stored in the field. To 

reduce this energy, the sample can split into two domains or four domains, with the magnetization 

in opposite directions in each domain. The magnetic field lines pass in loops in opposite directions 
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through each domain, reducing the field outside the material. To reduce the field energy further, 

each of these domains can split also, resulting in smaller parallel domains with magnetization in 

alternating directions, with smaller amounts of field outside the material. Figure 13.13 shows the 

Ferromagnetic materials divided into several domains, with the random magnetization  

 

 
 

Figure 13.12: splitting of ferromagnetic materials into two and four domains, with the 

magnetization in opposite directions in each domain to minimize the energy 

 

 
Figure 13.13: Ferromagnetic materials divided into several domains, with the random 

magnetization  

 

 

13.11 SOFT AND HARD MAGNETIC MATERIALS 

The wide variety of magnetic materials can be sharply divided into two groups, the magnetically 

soft (easy to magnetize and demagnetize) and the magnetically hard (hard to magnetize and 

demagnetize). The distinguishing characteristic of the first category is high permeability. 

Magnetically hard materials, on the other hand, are made into permanent magnets; here a high 

coercivity is a primary requirement because a permanent magnet once magnetize must be able to 

resist the demagnetizing action. Most widely used permeable materials are iron and iron alloys. 

Almost pure iron is used as the magnetic core for direct current applications. The maximum 

permeability is obtained for a composition of about 79% nickel and the balance is iron. Such an 

alloy shows zero magnetostriction and zero anisotropy and that is why the permeability is high. 
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The addition of molybdenum or chromium increases as the electrical resistivity thereby reducing 

the eddy current losses.  

The most widely used permanent magnetic materials are low alloy steels containing 0.6 to 1% 

carbon which are hardened by quenching. The permanent magnetic materials usually hard, brittle 

and difficult to shape so that they must be cast and finished by grinding. For many applications a 

permanent magnet is the better choice, because it provides a constant field without the continuous 

expenditure of electric power and without the generation of heat. A magnet can be regarded as an 

energy storage device. This energy is put into it when it is first magnetized and it remains in the 

magnet. In short the magnetism is permanent. Moreover, the energy of a magnet, which is chiefly 

the energy of its external field, is always available for use and is not drained away by repeated use, 

like the energy of a battery, because a magnet does no network on its surroundings. 

Example 1: A magnetic field of 20 CGS units produces a flux of 2400 CGS units in a bar of iron 

of cross section 0.2cm2. Calculate the permeability, intensity of magnetization and susceptibility 

of a bar.  

Solution: the flux density in a bar is  

𝐵 =
∅

𝐴
=

2400

0.2
= 12000 𝑔𝑎𝑢𝑠𝑠 

Therefore, the permeability of the bar is  

𝜇 =
𝐵

𝐻
=

12000

20
= 600 𝐶𝐺𝑆 𝑢𝑛𝑖𝑡𝑠 

The intensity of magnetization is  

𝐼 =
𝐵 − 𝐻

4𝜋
=

12000 − 20

4 × 3.14
= 953.8 

The relation between permeability μ and susceptibility χm is  

χm =
𝜇 − 1

4𝜋
=

600 − 1

4 × 3.14
= 47.7 𝐶𝐺𝑆 𝑢𝑛𝑖𝑡𝑠 

 

Example 2: the hysteresis loop for a specimen of 12 kg is equivalent to 3000 ergs/cm3. Find the 

loss of energy per hour at a frequency of 50 cycle/ sec, if density of iron is 7.5 gm/cm3.  

Solution: the energy dissipated per cm3 per hysteresis loop is given to be 3000 ergs. The volume 

of the core is mass/ density. 

12000

7.5
= 1600 𝑐𝑚3 

Therefore, the energy dissipated in the specimen per cycle  

= 1600 × 3000 = 4.8 × 106 𝑒𝑟𝑔𝑠 

The number of cycles in one hour is 

= 50 × 60 × 60 = 1.8 × 105 

energy loss per hour = 1.8 × 105 × 4.8 × 106 

= 8.64 × 1011𝑒𝑟𝑔𝑠 
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13.12 SUMMARY 

1. The relation between magnetization �⃗⃗�  and magnetic field 𝐻 and magnetic susceptibility 𝜒𝑚 is 

given by the equation  

                                    �⃗⃗� = 𝜒𝑚�⃗⃗�            

2. The magnetic flux density 𝐵 within the specimen is given by  

                                    �⃗� = 𝜇𝑜(�⃗⃗� + �⃗⃗� )   

and   𝜇 = 𝜇𝑜 (1 + 𝜒𝑚) 

�⃗� = 𝜇�⃗⃗�         ;  constant 𝜇 is called magnetic permeability. 

3. Ferromagnetism is a property by which certain materials become permanent magnets. These 

metallic materials possess a permanent magnetic moment in the absence of an external magnetic 

field and exhibit very large and permanent magnetizations below a certain temperature called Curie 

temperature (Tc).  

4. According to Curie-Weiss law, Above the Curie temperature TC, the susceptibility of a 

ferromagnetic material is given as 

 𝜒𝑚 =
𝑀

𝐻
=

𝐶

𝑇−𝑇𝑐
          

    Where Curie constant 𝐶 =
𝑁𝜇2  

3𝑘𝐵
 and  𝑇𝑐 = 𝜃 =

𝑁𝜇2𝜆  

3𝑘𝐵
= 𝜆𝐶                                                                                                                    

And Curie temperature 𝑇𝑐 =
(𝐽+1)𝑁𝑔2𝜇𝐵

2 𝐽2𝜆

3𝐽 𝑘𝐵
               

 5. According to Heisenberg exchange interaction, the interaction energy determines the strength 

of Weiss field. The Hamiltonian associated with exchange energy can be given as  𝐻𝑒 =

−∑ ∑
2

ℏ2  𝐽𝑖𝑗(𝑆𝑖𝑆𝑗)𝑗𝑖        

  Where 𝑆𝑖 𝑎𝑛𝑑 𝑆𝑗 are the spin operators of ith and jth atoms respectively. 𝐽𝑖𝑗 is a parameter 

determining the strength of exchange force called exchange integral. If 𝐽𝑖𝑗 is positive, the material 

will be ferromagnetic.  

6. A spin wave is a propagating disturbance in the spin ordering of a magnetic material. 

According to Heisenberg exchange interaction model, the exchange energy in ground state is given 

by 

 𝐸𝑒𝑥 = −2𝐽𝑆𝑖𝑆𝑗(𝑁 − 1) = −2𝐽𝑆2(𝑁 − 1)    

In exited state when one spin is flipped than energy increase and given as 

𝐸𝑒𝑥 = −2𝐽𝑆2(𝑁 − 1) + 8𝐽𝑆2 
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Thus the energy of excited state increased by 8𝐽𝑆2 arises due to flip of one spin. 

7. The dispersion relation of spin wave in one dimensional case can be given as 

   ℏ𝜔 = 2 𝐽𝑆 𝑎2𝑘2 

8. The energy of a mode of frequency 𝜔𝑘 associated with spin wave is given as 

    𝜖𝑘 = (𝑛 + 1/2)ℏ𝜔𝑘       

where n is integer number.  Thus the spin wave also quantized. The quantum of energy is known 

as megnon. 

9. Antiferromagnetism occurs below a critical temperature called Neel temperature TN. Above TN, 

antiferromagnetic material becomes paramagnetic. According to molecular field theory 

𝑀

𝐻
=

2𝑁𝜇2/3𝑘𝐵𝑇

1 + (𝛼 + 𝛽)𝑁𝜇2/3𝑘𝐵𝑇
                                

𝜒𝑚 =
𝑀

𝐻
=

𝐶/𝑇

1 +
𝐶
2𝑇

(𝛼 + 𝛽)
                                

Where 𝐶 = 2𝑁𝜇2/3𝑘𝐵 is Curie constant and if 
𝐶

2
(𝛼 + 𝛽) = 𝜃 then eq. (56) can be given as 

𝜒𝑚 =
𝑀

𝐻
=

𝐶

𝑇 + 𝜃
                                        

10. Susceptibilities can be listed as 
1

𝜒𝑝𝑎𝑟𝑎
=

𝑇

𝐶
      ,     

1

𝜒𝑓𝑒𝑟𝑟𝑜
=

𝑇 − 𝜃

𝐶
          ,

1

𝜒𝑎𝑛𝑡𝑖𝑓𝑒𝑟𝑟𝑜
=

𝑇 + 𝜃

𝐶
                         (58) 

11. If the neighboring atoms of antiferromagnetic material have spins anti-parallel but the 

magnitude are unequal than the material is define ferrimagnetic. Thus the solid material exhibits 

net spontaneous magnetic moment. 

12. According to Molecular Field Theory of ferrimagnetism 

𝑇 = 𝜇 √𝐶𝑎𝐶𝑏 

𝜒𝑚 =
𝑀

𝐻
=

𝑇(𝐶𝑎 + 𝐶𝑏) − 2𝜇𝐶𝑎𝐶𝑏

𝑇2 − 𝑇𝑐
2  

13. Ferromagnetic domains are small regions in ferromagnetic materials within which all the 

magnetic dipoles are aligned parallel to each other. 
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13.13 GLOSSARY  
Specimen – sample 

Flux density – Flux passing through per unit volume 

Domain – small regions 

Orientation - direction  

Susceptibility – sensitivity  

Retentivity – tendency to retain  

Saturation magnetization – limit to be magnetized 

Remanence – residual magnetism 

Hysteresis – tendency to remember their magnetic history. 
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13.16 TERMINAL QUESTIONS 

13.16.1 Short Answer Type Questions 

1. What do you mean by magnetic susceptibility and maagnetisation? 

2. Explain Ferromagnetism. 

3. What is Heisenberg exchange interaction?    

4. What is hysteresis? Discuss a brief laboratory method for determining the hysteresis curve of a 

sample of iron. What is the utility of the curve? Derive an expression for the energy dissipated in 

hysteresis cycle. 

5. Write short notes on (i) Hysteresis, (ii) magnetic circuit and (iii) Magnetic reluctance. 

https://en.wikipedia.org/wiki/Magnetism
https://www.youtube.com/channel/UCs2wMhTEMuU94m6j6RJEWDA/videos
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6. A paramagnetic substance of volume 40 cm3 is placed in a magnetic field of intensity 500 

oersted. Find (i) the magnetization, (ii) permeability and (iii) mass susceptibility. Given that 

susceptibility = 0.3 × 10−3 and density= 5.0
𝑔

𝑐𝑚3
. 

[Ans. (i) 150 joule/ weber-m3, (ii) 1.0038, (iii) 6 × 10−8𝑘𝑔 − 𝑚3] 

7. Two rectangular blocks of length 20 cm and 10 cm, each of area 3cm×5cm are connected in 

series. Assuming magnetic induction uniform throughout the blocks, find the net reluctance and 

permeance. The relative permeabilities of blocks are 500 and 2000 respectively.                                           

[Ans. 1.59 × 105 h-1, 6.3× 10−6h] 

8. Consider a typical magnetic field of 104 gauss and compare the magnetic potential energy of an 

electron spin dipole moment with kT at room temperature.                  [Ans. 
𝜇𝐻

𝑘𝑇
≈ 2.3 × 10−3] 

9. A magnetic material has magnetization of 3300 ampere/meter and flux density of 0.0044 Wb/m2. 

Calculate the magnetizing field and the relative permeability of the material.   

     [Ans. 203A/m, 17.3] 

10. The magnetic field intensity in a piece of ferric oxide is 106 ampere/ meter. If the susceptibility 

of the material at room temperature is 1.5 × 10−3, compute the flux density and magnetization of 

the material.  [Ans. 1.259Wb/m2,1500A/m] 

13.16.2 Long Answer Type Questions 

1. Show that the magnetization in a field B for a paramagnetic material is given by 

2. Give the Weiss theory of ferromagnetism and find out the magnetic susceptibility of 

ferromagnetic material. 

3.  Explain the spin wave and magnon. Find out the dispersion relation for ferromagnetic 

materials. 

4. Define antiferromagnetism and give the molecular field theory of antiferromagnetism. 

5. Explain spin orientations of ferrimagnetic materials. Give the molecular field theory of 

antiferromagnetism. 
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UNIT 14                SUPERCONDUCTIVITY 
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14.1 INTRODUCTION 

When certain materials or alloys are cooled to sufficiently low temperatures (say beyond the 

critical temperature TC), the electrical resistivity of many material and alloys suddenly drop to 

zero. This critical temperature is of the range of temperature of liquid helium. Such materials and 

alloys are termed as superconductors and this phenomenon is called superconductivity. The zero 

resistance of the material leads to the maximum conduction in the material. Thus, it is named as 

superconductors. At critical temperature TC, a phase transition is observed in the specimen from 

normal conducting state to superconducting state. 

In superconducting state, the dc resistivity of a superconducting specimen is zero or very close to 

zero thus the electric current in a superconducting loop can flow for many years without any 

attenuation.   The variation of the superconducting behaviour of superconductor and metals (pure 

or impure) is shown in Fig.14.1. 

 

Figure 14.1 Variation of resistance of a metal and a superconductor with temperature. 

Following are some important features of superconductivity: 

 The crystal structure did not get altered during transition from normal state to 

superconducting state. This can be proved by X-ray diffraction. This also validates that the 

superconductivity is a phenomenon related to free electrons and not the atoms. 

 The photoelectric properties did not change. 

 Thermal expansion and elastic properties remained unchanged. 

 Latent heat and volume remain unchanged. 
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 During the phase transition, the magnetic flux is fully ejected out of the material and it 

behaves as a perfect diamagnetic material. 

 If the field equal to critical field Hc is applied to the material, it loses its superconductivity. 

 Specific heat shows exponential change with temperature. 

14.2 OBJECTIVE 

After studying this unit, we should be able to understand- 

 Superconductivity  

 Critical field and critical temperature 

 Meissner Effect 

 Thermodynamic properties of superconductor  

 London Equation 

 London Penetration depth 

 Coherence length 

 BCS Theory 

 Flux quantization 

 Josephson Tunneling effect 

 

14.3 DISCOVERY OF SUPERCONDUCTIVITY AND 

OBSERVATIONS  

In 1908, Kamerlingh Onnes was first liquidify the helium. He used an ingenious apparatus to cool 

helium and converts it in liquid form. This liquid helium and its properties were studied. Based on 

this theory, cooling of different substances and framing their properties at low temperatures was 

also done. Later, this theory became base for the generating of the new theory of superconductors. 

In 1911, Kamerlingh Onnes observed that the electrical resistance of mercury dropped abruptly 

and completely disappeared at temperatures a few degrees above the absolute zero, and named this 

phenomenon as superconductivity. Kamerlingh demonstrated the superconducting phases for 25 

elements. Many alloys and intermetallic compounds have also been shown to be superconductors. 

A few of them are mentioned in Table 1.  

Table 1: Some elements and compounds show superconductivity 

Element TC (K) Compound TC (K) 

Niobium 9.46 Nb3Ge 23.2 

Lead 7.18 Nb3Ga 20.3 

Mercury 4.15 Nb3Sn 18.05 

Indium 3.41 NbN 16 

Aluminium 1.19 Mo3Lr 8.8 
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Cadmium 0.56 PdSb2 1/25 

Titanium 0.40 AuBe 2.64 

Iridium 0.14 AuSb2 0.58 

Tungsten 0.01 ZrAl2 0.30 

 

In case of the superconductors, the resistance decreases with the decrease in temperature and when the 

metal became a superconductor the resistivity abruptly drops to 0 at Tc.  This temperature is termed 

the critical temperature. As predicted by Cohen, superconductivity had been observed in 

semiconductor crystals with large free electron densities. There is a possibility of every pure 

element showing superconducting behaviour below critical temperature, though it may take a long 

time for the transition to occur. The monovalent alkali and noble metals had been investigated to 

less than 0.1K without showing any evidence of superconductivity. Superconductivity is also 

absent in the ferromagnetic metals, and it is well known that magnetic impurities have a deleterious 

effect on superconductivity in their host solid. This is easy to reconcile with the startling magnetic 

behaviour of a superconductor.  

14.4 DESTRUCTION OF SUPERCONDUCTIVITY BY 

MAGNETIC FIELD 

In 1913, Kammerlingh observed that superconductivity is destroyed if sufficient strong magnetic 

field is applied. In other words, we can say that the electrical resistivity of any material remains 

unaltered or restored due to the presence of a strong magnetic field. The externally applied 

magnetic field necessary to destroy the superconductivity of any material is called the critical 

magnetic field HC(T).  HC(T) is the function of temperature and is expressed by the equation given 

as: 

 𝐻𝐶(T) =  𝐻𝐶(0) [1 − (
𝑇

𝑇𝐶
)
2

]        (1) 

Where HC(0) is the critical magnetic field at absolute zero.  

This expression is often called Tuyn's law. The relation between critical field and temperature is 

shown in figure 14.2 which is result of this expression. It shows the phase boundary between the 

superconducting and normal state.  
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Figure 14.2 Variation of critical magnetic field with temperature. 

14.5 MEISSNER EFFECT 

In 1933, Meissner and Ochsenfeld found that if a superconductor is cooled in a magnetic field 

below the transition temperature, the magnetic field lines are pushed out from the bulk 

superconductor. They named this phenomenon “Meissner effect”. In other words, the bulk 

superconductor behaves as the inside of superconductor B = 0. The relatively weak magnetic fields 

are entirely repulsed from the interior of superconductors. The Fig 14.3 shows the behaviour of 

magnetic field lines when a superconductor is placed in magnetic field. 

 

Figure 3  Meissner effect in Superconductors. 

The Meissner effect can be understand by assuming that the destruction of magnetic field inside 

the bulk superconductor is due to an electric current flowing inside the material, which produces 
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a magnetic field which cancel the applied magnetic field. Thus the net magnetic field inside the 

superconducting material is zero as 

B = 0        (2) 

    𝐵 = 𝜇0(𝐻 + 𝑀)     (3) 

  

𝐻 = −𝑀 
And, magnetic susceptibility is given as 

     𝜒 =
𝑀

𝐻
= −1      (4) 

 

This gives the negative magnetic susceptibility of which show the superconductivity behaves as 

perfect diamagnetic material. 

 

14.6 TYPES OF SUPERCONDUCTIVITY 

Superconductors have been classified as the type I and type II depending upon their behaviour in 

an external magnetic field, i.e., how they follow the Meissner effect.  

 

Figure 14.4 Types of superconductors and magnetization curves. 

Type I superconductors: 

In type I superconductor, as critical field reaches the superconductivity destroyed suddenly and 

entire specimen change to normal state. Figure 14.4(a) shows the magnetization curve. At critical 

field the magnetization suddenly becomes zero and superconductivity destroyed. Material exhibits 

such behavior is call type I superconductors or soft superconductor. These superconductors easily 

lose the superconducting state by low-intensity magnetic field. Therefore, Type-I are also known 

as soft superconductors. Some properties of Type I superconductors are: 
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 Low critical temperature (typically in the range of 0K to 10K) 

 Perfectly obey the Meissner effect and magnetic field cannot penetrate inside the material. 

 The transition from a superconducting state to a normal state due to the external magnetic 

field is sharp and abrupt for type-I superconductors. 

 Type-I superconductors are generally pure metals. 

 These are completely diamagnetic. 

 Pure metals like Hg, Pb, Zn, etc. are few examples. 

Type II superconductors have the following properties: 

In type II superconductor, as critical field HC1 reaches the superconductivity start destroying 

gradually. Figure 14.4 shows the magnetization curve for Type II. There are two critical fields, at 

critical field HC1 the magnetization start decreasing and gradually becomes zero at critical field 

HC2 and superconductivity totally destroyed. The state between lower critical magnetic field HC1 

and upper magnetic field HC2 is known as an intermediate state or mixed state. Material exhibits 

such behavior is call type II superconductors. These materials do not easily lose the 

superconducting state by external magnetic field thus also called as Hard Superconductors. Type-

II superconductors are generally alloys and complex oxides of ceramics. These are also called as 

High-temperature Superconductors. The critical temperature is typically greater than 10K. Some 

features of type II superconductors are: 

 Partly obey the Meissner effect but not completely: Magnetic field can penetrate inside the 

material. 

 Due to the high critical magnetic field, type-II superconductors can be used for 

manufacturing electromagnets used for producing strong magnetic field. 

 Slight impurity greatly affects the superconductivity of type-II superconductors. 

 Due to the high critical magnetic field, type-II superconductors have wider technical 

applications. 

 Compounds like Nb, Ta, Nb3Sn, etc. are few examples. 

14.7 THERMODYNAMIC PROPERTIES OF 

SUPERCONDUCTOR 

Thermodynamic properties are defined as characteristic features of a system, capable of specifying 

the system's state. There are free electrons pairs present in conductors which are the reason of the 

conduction. In normal conductors these conduction electrons are scattered by impurities, 

dislocations, grain boundaries, and lattice vibrations (phonons). Unlike normal conductors there is 

an ordering among the conduction electrons that prevents this scattering. This ordering is named 

as cooper pairs. The thermodynamic parameters have direct relation with the cooper pairs. Some 

thermodynamic properties of superconductors are mentioned below. 

14.7.1 Entropy 
The disorderness and the randomness of the particles of any system is explained by the 

entropy of the system. The entropy of the normal conductors increases with the rise in 

temperature. But in case of superconductors, the entropy decreases on cooling below the 

critical temperature. This validates the ordering of the superconducting state. Figure 14.5 

shows the variation of entropy of a normal conductor and a superconductor with temperature.  
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Figure 14.5: Change of entropy of normal conductor and superconductor with temperature. 

14.7.2 Thermal Conductivity 

Thermal conductivity accounts the level of conduction in superconductors due to the rise in 

temperature. A continuous change between the two phases is observed in the thermal conductivity 

of superconductors (Fig. 14.6). A superconductor is a perfect conductor of charge, but it cannot 

conduct heat. At normal temperature, electronic heat conduction of a superconductor goes to zero, 

as there are no thermally-excited quasiparticles to carry heat Therefore, the superconducting 

electrons possibly playing no part in heat transfer. 

 

Figure 14.6: Thermal conductivity of normal conductor and a superconductor with temperature. 

14.7.3 Isotopic Effect 

It has been observed that the critical temperature TC of superconductors varies with isotopic mass. 

The Isotope effect is one of the major properties of the superconductors. Higher TC is found in 

lighter nuclei. The transition temperature TC of superconductors found to have the dependency on 

the isotopic mass as  

𝑇𝑐 ∝ 𝑀−𝛼 

 𝑇𝑐𝑀
𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    (5) 
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Where M is atomic mass and  𝛼 = 0.5 which is valid for most of the materials. It is also observed 

that transition temperature changes smoothly when we mix different isotopes with same element. 

For example, Tc for mercury varies from 4.18 K to 4.14 K as the isotopic mass varies from 199.5 

to 203.4. Isotopic mass is involved in the formation of the superconducting phase of any material.  

14.7.4 Heat Capacity and Specific Heat 

Electronic specific heat for superconducting materials is found to vary with temperature. Lattice 

specific heat variation of superconductor however remains unaltered by change in temperature 

(proportional to T3). The given equation shows the variation of specific heat of superconductivity.  

 𝐶𝑛(𝑇) = 𝐴𝑇 + 𝐵𝑇3       (6) 

In this relation the first term is specific heat contribution due to electrons and the second term is 

contribution due to lattice vibration. When a small amount of heat is given to a superconductor 

system, some of the energy is used to increase the lattice vibrations, and the remained energy is 

used to increase the energy of the conduction electrons. The electronic specific heat (Ce=AT) of 

the electrons is defined as the ratio of that portion of the heat used by the electrons to the rise in 

temperature of the system. Superconductivity affects electrons mainly thus we assume that lattice 

vibration part remains same for both superconducting and normal states. The specific heat of the 

electrons in a superconductor varies with the absolute temperature (Tc) in the normal and in the 

superconducting state as shown in the Fig. 14.7.   

 

Figure 14.7: Specific Heat of normal conductor and a superconductor 

14.7.5 Energy Gap 

In a superconductor the important interaction is electron-electron interaction. These electrons are 

paired and known as cooper pair, may be considered as the single-particle of the system with zero 

spins. All the electrons related to the Cooper pair can be considered as the bosons. At T=0, all the 

electrons in the superconducting states are cooper pairs in the ground state. The energy can be 

absorbed or emitted only when the Cooper pair will break. This can be compared with the energy 

associated with the dissociation of atoms. The bonds of the atoms need the energy to break. Thus, 

the energy required to break up the Cooper pairs of the superconductors is defined as the 

superconducting energy gap Eg.  
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Figure 14.8: Energy gap as a function of temperature.  

The energy gap in superconductor is entirely different that the nature of band gap of 

semiconductor. In semiconductor band gap arises due to electron lattice interaction and prevent 

the flow of electron. Energy needed to move the electron from valance band to conduction band. 

But in superconductor, this interaction ties the electron to lattice and the electrons flow in ordered 

way in the presence of this energy gap. The existence of energy gap can be confirmed by number 

of experiment and theoretically explained by BCS theory. The energy gaps of some 

superconductors are given in table 14.2. As temperature increases, the energy gap increases as 

shown in figure 14.8. 

 

 

Table 14.2: Energy gaps and transition temperature of some superconductors 

Elements Energy gap 

Eg(0) in 10-4eV 

 

TC 2 Eg(0)/kTT 

Nb 3.05 9.5 3.8 

Ta 1.40 4.48 3.6 

Al 0.34 1.2 3.3 

Sb 1.15 3.72 3.5 
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14.8 LONDON EQUATIONS 
Maxwell equations of electromagnetism were not sufficient to explain the zero resistivity and 

perfect diamagnetic nature of superconductors. Following this array, F. London and M. London 

came up with two equations in 1934. These equations are termed as London equations and explain 

the Meissner effect and zero resistivity and superconductors. In superconductors, the conduction 

is due to the superconducting electrons. Superconducting electrons (cooper pairs) are different than 

free electron. As Temperature decreases, the numbers of free electrons decrease and 

superconducting electrons increase.  

The equation of motion of superconducting electron is given as 

     𝑚
𝑑𝑣𝑠

𝑑𝑡
= 𝐹 = −𝑒𝐸     (7) 

Where E is electric field. The current density is 

   𝐽 = −𝑛𝑠𝑒𝑣𝑠         (8) 

Where ns is the number of superconducting electrons per unit volume and vs is the velocity 

corresponding to superconducting electrons. 

From derivation of eq. (8) 
𝑑𝐽

𝑑𝑡
= −𝑛𝑠𝑒

𝑑𝑣𝑠

𝑑𝑡
 

 

Put the value of  
𝑑𝑣𝑠

𝑑𝑡
 from eq. (7)              

𝑑𝐽

𝑑𝑡
= −𝑛𝑠𝑒

−𝑒𝐸

𝑚
 

 
𝑑𝐽

𝑑𝑡
=

𝑛𝑠𝑒
2

𝑚
𝐸     (9) 

 

 

This is first London equation. The superconducting electrons act like free electrons to the electric 

field. Taking curl of the first London equation  

 

   𝑐𝑢𝑟𝑙 
𝑑𝐽

𝑑𝑡
=

𝑛𝑠 𝑒
2

𝑚
 𝑐𝑢𝑟𝑙(𝐸)      (10) 

Using Maxwell 3rd equation  {𝑐𝑢𝑟𝑙 𝐸 = −µ0
𝛿𝐻

𝛿𝑡
} eq. 10 becomes 

𝑐𝑢𝑟𝑙 
𝑑𝐽

𝑑𝑡
=

𝑛𝑠 𝑒
2

𝑚
[−µ0

𝛿𝐻

𝛿𝑡
] 

 

 𝑐𝑢𝑟𝑙 
𝑑𝐽

𝑑𝑡
=

−µ0𝑛𝑠 𝑒
2

𝑚
[
𝛿𝐻

𝛿𝑡
]               (11) 

 

Integrating the above eq. (11) 

 

 𝑐𝑢𝑟𝑙 𝐽 =
−µ0𝑛𝑠 𝑒

2

𝑚
 𝐻 − 𝐻0               (12) 

For the Meissner effect, the field inside the material is zero, i.e., H0=0. Then 

   𝑐𝑢𝑟𝑙 𝐽 =
−µ0𝑛𝑠 𝑒

2

𝑚
 𝐻          (13) 

According to the Maxwell’s 4th  equations:  

 𝑐𝑢𝑟𝑙 𝐻 = (𝐽 + 𝐽𝐷)           (14) 
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where J is the current density related to the material and JD is the displacement current. If the 

applied external field is varying, then the JD is very small as compared to the J value. Thus, for 

superconductor, Maxwell’s eq. 4 can be written as above can be written as

 

𝑐𝑢𝑟𝑙 𝐻 = 𝐽 

Putting this value of 𝐽 in eq. 13 we get  

−𝛻2𝐻 =
−µ0𝑛𝑠 𝑒

2

𝑚
 𝐻 

 

         𝛻2𝐻 =
µ0𝑛𝑠 𝑒

2

𝑚
 𝐻         (15) 

 

𝛻2𝐻 =
1

λ2  𝐻                                                                 (16) 

                                          Where   λ2 =
𝑚

µ0𝑛𝑠 𝑒2
                                              (17) 

Where λ is another constant. This is known as London’s second equation which explains 

Meissner’s effect.  

 

 

14.8.1 London Penetration Depth 

Equation (16) is second order differential equation. The standard solution of this equation can be 

given as  

                   𝐻(𝑥) = 𝐻0 𝑒
−𝑥/λ                                                    (18) 

where H0 is defined as the externally applied magnetic field and H(x) is the magnetic field present 

inside the material at a distance x from the surface. λ is named as London penetration depth. The 

London penetration depth can be defined as the measure of the distance from the surface of a 

superconductor at which the magnetic field decays to 1/e of its value and the surface of the 

superconductor as shown in figure 14.9. The penetration depth did not remain constant and vary 

with temperature. At low temperature the depth remains constant but when the temperature is 

raised, the depth increases rapidly. When the temperature reaches its transition value, the depth 

approaches to infinite. The dependency of temperature on penetration depth is given by the 

equation  

 λ(𝑥) = 
λ(0)

√[1−(
𝑇

𝑇𝑐
)
4
]

     (19) 
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Figure 14.9: Decay of magnetic field inside a superconductor 

14.8.2 Coherence Length 

The coherence length is the characteristic exponent of the variations of the density of 

superconducting component. In eq. (18) the x component in the exponent term is coherence length. 

The average distance between the two electrons in a Cooper pair is known as the coherence length. 

It is represented by ξ. The coherence length depends upon the particular superconducting material. 

 

14.9 BCS THEORY 

BCS theory gave a satisfactory explanation for the Superconductivity of the material. In 1957 

Bardeen, Cooper, and Schrieffer (BCS) gave an explanation for the superconductor based on the 

formation of cooper pairs. In normal state the force between the electrons is observed to be 

repulsive. Superconductors the force between two electrons becomes attractive due to the 

formation of the Cooper pairs. The BCS theory postulated that the electrons present inside the 

superconductor experience a special kind of neutral attraction. This attraction dominates over the 

coulombic repulsion and results in the formation of cooper pairs at very low temperature. Cooper 

pairs move within the letters without catering and result in the transition of material from normal 

conductor to superconductor. BCS theory has very wide range of applicability as for He, Type I, 

Type II and high temperature superconductors. It is assumed that there is a BCS wave function 

composed of particle pairs 𝑘 ↑   and 𝑘 ↓. The BCS theory can be understood with the help of 

following accomplishments. 

 (1) Attractive interaction of electrons:  

An attractive interaction among the electrons in a superconductor results a ground state separation 

from excited state by energy gap Eg. The critical field thermal properties are due to this energy 

gap. 
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(2) Electron – Lattice – Electron Interaction 

The electron pair experiences an attractive force. The ion core undergoes a slight displacement due 

to the attractive force. This displacement is termed as lattice distortion. Similar thing happens 

with the nearby electrons which ever came in the field of this attractive force. This process is 

known as Electron–Lattice–Electron Interaction. Any two electrons can interact via lattice 

distortions. The interaction leads to the subsequent reduction of energy of the electron. Thus, the 

interactions between electrons give results in attractive forces. 

 
Figure 14.10: Electron – Lattice – Electron Interaction due to phonon field. 

 

(3) Cooper Pair 

The lattice distortions result in the generation of momentum of lattice which leads to the generation 

of phonons. These phonons interact to give free electrons called cooper pairs. Thus, Cooper pairs 

are the pair of free electrons formed by the interaction between the electrons in the phonon field. 

The cooper pairs do not experience any scattering and flow with zero resistance. 

(4) Penetration depth and coherence length: 

The penetration depth and coherence length are the natural consequences of BCS theory. If we go 

in detail, we will find the explanation of out the results as penetration depth and coherence length 

Meissner effect.   

(5) Transition temperature: 

The transition temperature depends on the density of state 𝐷(𝜖𝐹) and lattice interaction energy. 

BCS theory predicts that  

 𝑇𝐶 = 1.14𝜃 𝑒𝑥𝑝[−1/𝑈 𝐷(𝜖𝐹)]    (20) 

Where  𝜃 is Debye temperature and U is attractive interaction energy. 

 (6) Magnetic Flux quantization: 

The magnetic flux through a superconducting loop is quantised in terms of 2e in place of e. The 

superconducting state contains electron pair thus the charge is quantised in term of 2e.  

 

14.10 FLUX QUANTIZATION IN SUPERCONDUCTING RING 

We can prove that the flux that pass through a superconducting ring is quantized and flux 

associated to the ring of any superconducting body is an integral multiple of(
ℏ

𝑒∗) where e*=2e is 
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the charge associated to the superconductor. The circulation of electrons within the circumference 

of superconductor leads to the phase coherence. Therefore, the line integral of the phase around 

the inner circumference must be an integral multiple of 2π. 

   ∫𝒌.⃗⃗  ⃗ 𝑑𝒍⃗⃗  ⃗ = 2πn        (21) 

Where k is phase vector l is circular path. The momentum of superconducting electron can be 

given as 

  ℏk = 𝑚∗𝑣𝑠 + 𝑒∗𝐴       (22) 

where mass of superconducting electrons is represented by m* and A is the vector potential. 

From the definition of current density 𝐽𝑠 = −𝑛𝑠𝑒
∗𝑣𝑠  or  𝑣𝑠 =

𝐽𝑠

𝑛𝑠𝑒∗   

Putting the value in equations (22) we have 

    ℏk =
𝑚∗𝐽𝑠⃗⃗  ⃗

𝑒∗𝑛𝑠
+ 𝑒∗𝐴        (23) 

In wave vector form    �⃗� =
𝑚∗𝐽𝑠⃗⃗  ⃗

ℏ𝑒∗𝑛𝑠
+

𝑒∗𝐴 

ℏ
       (24 a) 

Put the value of wave vector from eq. (24 a) in eq. (21) 

   ∫𝑘.⃗⃗⃗  𝑑𝑙⃗⃗  ⃗ = (
𝑚∗

ℏ 𝑒∗ 𝑛𝑠
)∮ 𝐽𝑠⃗⃗ . 𝑑𝑙 +

𝑒∗

ℏ
∮𝐴 . 𝑑𝑙 = 2𝜋𝑚    (24 b) 

Beyond the penetration depth, the line integral Js will be zero. Hence eq.24 becomes  

 ∮𝐴 . 𝑑𝑙 = 2π 
nℏ

𝑒∗      (25) 

Using Stokes theorem, this eq.25 can be given as  

∮𝑐𝑢𝑟𝑙 𝐴 . 𝑑𝑠 = ∮  �⃗� . 𝑑𝑠 = 2π 
nℏ

𝑒∗
 

we can get the magnetic flux as  

 ϕ = ∮  �⃗� . 𝑑𝑠 = n
h

2𝑒
= n ϕ0    (26) 

Where  ϕ0 =
h

2𝑒
= 2.07 × 10−15weber , is a constant called fluxon or fluxoid. The flux 

quantization is shown in figure 14.11. This validates that the theory of superconductivity relates 

with the electron pairs at the Fermi surface.   
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Figure 14.11: Flux quantization in a superconducting ring 

 

14.11 SUPERCONDUCTING TUNNELLING 

 We have two conductors separated by a thin insulator then the insulator acts as barrier for charge flow. But 

if the barrier is very thin then there is a probability of charge flow. This quantum mechanical phenomenon 

is called tunnelling. In the year 1960, I. Giaver extended this idea and first introduced the idea of 

superconductive tunnelling. In his experiment he used two superconductors separated by a very thin layer 

of insulating material. Current passes through the junction via the process of quantum tunneling. This is 

also termed as superconducting tunnel junction (STJ) or superconductor–insulator–superconductor tunnel 

junction (SIS). Giaver did an experiment with a thin insulating oxide layer sandwiched between a normal 

metal and a superconductor. It was observed that the current voltage characteristics change from the straight 

line to curve as shown in figure 14.12. 

  

       Figure 14.12: (a) Current voltage relation in normal conductor separated by an insulator (b) 

superconductor and a conductor separated by an oxide layer insulator  

In superconductor there is an energy gap centered at Fermi level. At absolute zero temperature 

there is no flow of electron until a potential, equal to energy gap is applied.  This is minimum 

energy for excited state. The existence of energy gap and the requirement of conservation of 

https://en.wikipedia.org/wiki/Superconductors
https://en.wikipedia.org/wiki/Insulator_(electrical)
https://en.wikipedia.org/wiki/Quantum_tunneling
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energy, any single particle current to flow until a voltage (𝜙) is applied and the condition is given 

as 

 𝜙 = 𝐸𝑔/2𝑒       (27) 

For the above equation, for 𝑒𝜙 <𝐸𝑔, the flow of current is restricted to tunneling by the thermally 

excited particles. For e 𝜙 >𝐸𝑔 secondary tunnelling came into work destroying the cooper pairs 

and sharp increase in current occurs. At T>0 the discontinuity becomes less prominence and 

discontinuity observed in current-voltage characteristics. 

 

14.12 JOSEPHSON TUNNELING EFFECT 

In 1962, Brian Josephson postulated that the superconducting electron pairs (Cooper pairs) could 

tunnel through a thin insulating barrier kept in between two superconducting electrodes. Josephson 

observed some remarkable effects due to tunneling of superconducting electrons through a very 

thin insulator sandwiched between two superconductors. Such an insulating layer forms a weak 

link between the superconductors which is referred to Josephson junction. Josephson effect is two 

types: 

1. DC Josephson effect  

2. AC Josephson effect 

14.12.1 DC Josephson Effect 

The Cooper pairs in the two superconductors develop a correlation and there is tunnelling of these 

Cooper pairs through the barriers and a current flow across the junction in absence of any 

voltage.  This phenomena of quantum mechanical tunneling of Cooper pairs between two 

superconductors separated by a thin insulating barrier is termed as DC Josephson effect. In 1962, 

Josephson predicted that if two superconducting metals are placed next to each other separated by 

a thin insulated oxide coating, then a current would flow in the absence of any voltage. This effect 

is indeed observed because if the barrier is not too thick then electron pairs can cross the junction 

from one superconductor to the other without dissociating. The superconducting wave function of 

the electron of both side of junction must have a definite phase difference𝜃.  

The superconducting current flowing across the junction is given by the expression: 

𝐽 = 𝐽0 𝑠𝑖𝑛 𝜃 = 𝐽0 𝑠𝑖𝑛[𝜃2 − 𝜃1] 

Where 𝐽0 is critical current i.e. maximum current that can be sustained by the junction and 

𝜃 = (𝜃2 − 𝜃1) is quantum mechanical phase difference.   

14.12.2 AC Josephson Effect 

If a dc voltage is applied across such a junction, it produces a small alternating current (ac), this 

effect is known as AC Josephson effect. These two properties are of great interest to the electronics 

and computer industries where they can be exploited for fast-switching purposes. The phase 
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difference associated to AC Josephson effect can be derived from Schrodinger equation. When a 

voltage is applied through the junction, the phase difference changes as: 

𝑑𝜃

𝑑𝑡
=

2𝑒𝜙0

ℏ
 

Where 𝜙0 is applied voltage. Now the phase variation can be given as 

𝜃(𝑡) = 𝜃0 −
2𝑒𝜙0

ℏ
𝑡 

And current is given as 

𝐽 = 𝐽0 𝑠𝑖𝑛 𝜃(𝑡) = 𝐽0 sin [𝜃0 −
2𝑒𝜙0

ℏ
𝑡]  

The current oscillation frequency is 𝜔 =
2𝑒𝜙0

ℏ
. This is called AC Josephson effect.  

 

14.13 HIGH TEMPERATURE SUPERCONDUCTORS 

High temperature superconductors (HTS) are mainly oxides with high transition temperature and 

critical field.   The discovery of high temperature superconductors had given new field of research 

in superconducting materials. The chemical bonding and physical properties at high temperature 

vary from low transition temperature. A minor hindrance in the oxygen atoms and cations doping 

converts the material into low carrier density metal first and then into the superconducting one. 

Some high temperature oxide superconductors are: 

 BaPb0.75Bi0.25O3              (BPBO)   TC = 12K   

 La1.85 Ba0.15CuO4      LBCO)  TC = 36K 

  YBa2Cu3O7              (YBCO)  TC = 12K 

  Tl0.75Ba2Ca2Cu3O10     (TBCO)  TC = 120K 

The high temperature oxide semiconductors can have the following properties: 

 They are derived from ideal perovskite composition ABX3 here A is larger cation, B is 

smaller cation, and X is anion. 

 Copper is present in the mixed valance state involving a partial oxidation of Cu2+ into Cu3+. 

 There is a charge transfer to and from CuO2 layer which is induced by doping near the 

metal-insulator phase boundary existing in all oxide high temperature superconductors. 

 The crystal structures of all these are highly anisotropic. The bonding in these materials is 

highly directional and covalent. 
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 The coherence length and the penetration depth are also highly anisotropic. 

 The lower critical field Hc1, and upper field Hc2 are highly anisotropic. 

 

14.14 APPLICATIONS 
In practical and applied physics, superconductors have wide applicability. A few of them are 

mentioned below: 

A. Power transmission: Electrical power transmission through any conductor is always 

accompanied by energy loss I2R.  If superconductors are used for power transmission, the 

losses will be eliminated and the power transmission can be done at a lower voltage level 

with much higher efficiency. 

 

B. Superconducting magnets: An Electromagnet is made by using superconducting wire is 

called a superconducting magnet.  The advantage of such wires or cables is that once the 

current is set up the coil requires no source of electromotive force to derive the current. 

Superconducting magnets are used in Magnetic resonance imaging(MRI) employed to 

generate images of bodies. This technique has very less harmful and can be used over X-

rays. 

 

C. Electrical applications in cryotron: Cryotron consists of a wire of superconducting 

material A around which another wire of superconducting material B is bound in the form 

of a solenoid. The cryotron Based on the principle of activity above the critical temperature. 

At 4.4 K temperature, both A and B materials are in the superconducting state. Cryotron 

has wide applications in fast-acting switches. 

 

D. Very strong magnetic fields: The strong magnetic field is of the order of 50 Tesla by 

consuming only 10 KV can be generated with the poles made of superconducting 

material.  Such coils are cost-effective than the regular conventional electromagnets.  High 

magnetic fields are required in many areas of research and in pharmaceutical science. 

 

E. Superconducting quantum interference devices: Superconducting Quantum 

interference devices (SQID) are fundamentally superconducting rings that act as storage 

devices for magnetic flux they are used to detect very minute changes in the magnetic field 

of a human brain or body or any other part. 

 

F. In computer technology: Due to heat generated (loss I2R), there is a limit to which the 

components can be crowded on a chip of given size. The use of superconductors in makes 

it possible to assemble more circuit in the given area of the chip. 

14.15 SUMMARY 

1. When certain materials or alloys are cooled to sufficiently low temperatures (say beyond the 

critical temperature TC), the electrical resistivity of many material and alloys suddenly drop to 

zero. Such materials and alloys are termed as superconductors and this phenomenon is called 

superconductivity.  



 
 

347 
 

2. Kammerlingh observed that superconductivity is destroyed if sufficient strong magnetic field is 

applied. The externally applied magnetic field necessary to destroy the superconductivity of any 

material is called the critical magnetic field HC(T) is the function of temperature. 

 𝐻𝐶(T) =  𝐻𝐶(0) [1 − (
𝑇

𝑇𝐶
)
2

]  

3. Meissner and Ochsenfeld found that if a superconductor is cooled in a magnetic field below the 

transition temperature, the magnetic field lines are pushed out from the bulk superconductor. They 

named this phenomenon “Meissner effect”. 

4. The transition temperature TC of superconductors found to have the dependency on the isotopic 

mass as  

  𝑇𝑐𝑀
𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

5. The specific heat of superconductivity  

 𝐶𝑛(𝑇) = 𝐴𝑇 + 𝐵𝑇3   

6. This is first London equation 

 
𝑑𝐽

𝑑𝑡
=

𝑛𝑠𝑒
2

𝑚
𝐸      

Second London equation 

𝛻2𝐻 =
1

λ2
 𝐻        where   λ2 =

𝑚

µ0𝑛𝑠 𝑒2   

7. London penetration depth  

  𝐻(𝑥) = 𝐻0 𝑒
−𝑥/λ      

λ(𝑥) = 
λ(0)

√[1 − (
𝑇
𝑇𝑐

)
4

]

 

8. Flux quantization:  

 ϕ = ∮  �⃗� . 𝑑𝑠 = n
h

2𝑒
= n ϕ0     

where  ϕ0 =
h

2𝑒
= 2.07 × 10−15weber , is a constant called fluxon or fluxoid.  

 

9. Superconducting current flowing across the junction: 

𝐽 = 𝐽0 𝑠𝑖𝑛 𝜃 = 𝐽0 𝑠𝑖𝑛[𝜃2 − 𝜃1] 

Where 𝐽0 is critical current i.e. maximum current that can be sustained by the junction and 

𝜃 = (𝜃2 − 𝜃1) is quantum mechanical phase difference. 
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10. AC Josephson effect 

𝐽 = 𝐽0 𝑠𝑖𝑛 𝜃(𝑡) = 𝐽0 sin [𝜃0 −
2𝑒𝜙0

ℏ
𝑡]  

The current oscillation frequency is 𝜔 =
2𝑒𝜙0

ℏ
.   

14.16 GLOSSARY  
Superconductivity: Zero resistance ability.  

Critical: Involving a deep analysis.  

Hard superconductor: These materials do not easily lose the superconducting state by external 

magnetic field.  

Soft superconductor: These superconductors easily lose the superconducting state by low-intensity 

magnetic field. 
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14.19 TERMINAL QUESTIONS 

Short answer type questions: 

Q1. At what temperature is Hc (T) = 0.1 Hc (0) for Lead having Tc equals to 7.2K? 

Q2. Why do superconductors expel magnetic fields? 

Q3. Is plasma a superconductor? 

Q4. Prove that the value of magnetic susceptibility for diamagnetic materials is -1. 

Q5. Do all superconductors expel magnetic flux? 

Q6. For the energy gap of 10.97×10-4m, determine the value of the bias voltage for the tunnelling 

current to flow (φ). 

Q7. What happens to the magnetic field when a superconductor is placed in a weak external magnetic field 

H, and cooled below its transition temperature? 

Q8. Describe the physical meaning of the coherence length (ξ) in superconductors. 

Long answer type questions: 

Q1.  What is Type 1 and Type 2 superconductors? Mention important differences.  

Q2. Explain the occurrence of superconductivity. 

Q3. Explain and derive the London equations. 

Q4. Explain Josephson effect in detail.   

Q5. Why do various superconductors have different Tc? 

Q6. The critical temperature of mercury is 4.153 k for its one isotope of mass 200.59 

amu.  Calculate the critical temperature of Mercury for its one isotope of mass 20 amu. 

  

Answers: 

Short Answer – 1. 6.83K,  7. 21.94×10-23V 

Long Answer–4. 0.0126Wb m-2,   

 


