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1.1  INTRODUCTION 

 
In our everyday life, we often come across objects in motion.Human beingswere inquisitive 

to understand the motion in detail since ages. Nowadays, we categorize the branch of physics 

dealing with these moving bodies as mechanics. The motion of objects, we see around us, 

astronomical objects, etc., which are macroscopic in nature can be defined by the principles 

of classical mechanics. One of the earliest contributions in the classical mechanics were by 

Isaac Newton and Gottfried Wilhelm Leibniz, who described the motion of a body under the 

action of forces. Applicability of classical mechanics is superseded by relativistic mechanics 

introduced by Albert Einstein for the bodies moving near the speed of light. Similarly, 

another branch of mechanics developed in the beginning of the last century for the 

microscopic systems, such as subatomic particles.Therefore, all these developments widened 

our horizon in understanding of the nature and motion of an object.  

In the meantime, our understanding of thermodynamic propertiesdealing with the systems in 

equilibrium was developed and summarized by the laws of thermodynamics. You may 

already be familiar with thermodynamics and related basic key terminologies, like the 

concept of system and surroundings, different types of thermal processes, laws of 

thermodynamics, state function, state variables and various macroscopic properties 

(macroscopic properties are the properties of matter as a whole in terms of macroscopic 

variables,likedensity, volume, temperature, pressure) related through an equation of state. So 

far these thermodynamic properties for the macroscopic system were not described in terms 

of its microscopic constituents.Thus, statistical mechanics is that branch of modern physics 

which deals with physical systems with many degrees of freedom and describes their 

macroscopic properties in terms of the microscopic properties of the constituent particles. 

We understood so far that our treatment of the constituent particles depends upon whether 

they can individually be described by classical mechanics or quantummechanics. Depending 

upon that statistical mechanics is broadly studied under two categories namely classical and 

quantum statistics.The classical statistics is discussed with Maxwell-Boltzmann statistics, 

whereas quantum statistics can further be categorized as Bose-Einstein and Fermi-Dirac 

statistics depending upon yet another quantum feature called the spin of the particle. 

Specifically, all the microscopic particles with integral (half-integral) spin governed by 

quantum mechanics are studied under Bose-Einstein (Fermi-Dirac) statistics.  Therefore, in 

this book, we will discuss the physical properties of various systems containing a large 

number of particles (atoms or molecules), comparable to Avogadro number, i.e., 

, on the basis of the properties and behavior of the microscopic constituents of 

those systems. To accomplish this we will be using statistical tools and probability theory as 

well asthe dynamics of microscopic particles governed by either classical or quantum 

mechanics. 

In this unit, we will discuss various concepts in classical statistical mechanics, like phase 

space, microscopic and macroscopic variables, the concepts of ensemble, and one of the 

important principles, i.e., postulate of equal a priori probability. These basic concepts are 

building blocks of statistical mechanics which are helpful in understanding the forthcoming 
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units and in discussing quantum statistics. In particular, we want to make a statistical analysis 

of a large number of collections of identical systems and determine their most probable 

behavior. In this process, we are not interested in the individual dynamics of a single particle. 

In statistical mechanics, we average the properties of all the particles to studythe macroscopic 

bodies they form. For instance, the temperature of a gas is found to be related to the random 

motion of the gas molecules. The faster they move on average, the higher is the temperature. 

 

 

1.2 OBJECTIVES 
After studying this unit, you should be able to understand- 

● Probability 

● Probability distribution 

● Distinguishable and indistinguishable particles 

● Define phase space and phase points 

● Ensemble 

● Density of states 

● Ensemble average or phase space average and time average 

● Ergodic hypothesis 

● Consequence of ergodic hypothesis as postulate of equal a priori probability 

 

 

 

1.3 BASIC CONCEPTS OF STATISTICAL MECHANICS 

 
Statistical mechanics is a branch of science which deals with the most probable behavior of 

an assembly of particles. There are various examples of such systems, like gases, liquids, 

solids in different forms, stellar matter, and radiation. In statistical mechanics, one tries to 

apply the ideas of statistics appropriate to a system containing a large number of particles that 

are individually described by the laws of mechanics.  

At the end of the nineteenth century J. C. Maxwell, L. Boltzmann and J. W. Gibbs established 

the fundamental pillars of statistical physics. The statistical mechanics started with the 

Maxwell’s kinetic theory of gases. To be specific, the first milestone in statistical physics is J. 

C. Maxwell’s statistical law for distribution of molecular velocities proposed in 1859, which 

will be discussed in detail in Unit 3. This work inspired L. Boltzmannwho dedicated all his 

life in developing statistical mechanics. His entropy formula was aptly inscribed on his 

tombstone. Specifically, he generalized Maxwell's argument and introduced the concept of 

ensembles, which will be discussed in detail in Unit 4. Although, this branch of mechanics 

was christened by J. Gibbs in addition to several of his contributions, such as establishing the 

equivalence of statistical physics and thermodynamics to be discussed in Unit 2. Boltzmann’s 

doctoral student P. Ehrenfestalso contributed significantly in the development of statistical 

mechanics, alas, both these stalwarts had same tragic demise.Einstein completedour present 

day understanding of statistical mechanicsby his various theories, like the theory of 
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fluctuations, diffusion, and Brownian motion. The development ofquantum theory helped in 

simplifying the principles of statistical physics.  

As we have already mentioned, we are going to use probability theory to quantify various 

notions in statistical physics. Here, we introduce the basic conceptof probability and 

probability distributionsbecause this serves as an important tool for understanding the 

behavior of statistical systems. 

 

1.3.1 Probability 
Probability is a mathematical concept that deals with calculating the likelihood of a given 

event’s occurrence. Thus, the probability of an event is defined as the ratio of the number of 

the cases in favor to the total number of possible cases also called sample size. 

  … (1.1) 

Example 1.1: Tossing a coin-when an unbiased coin is tossed, there are two equally probable 

outcomes, heads (H) or tails (T). Thus, we can say that the probability of the coin landingH 

up is , and the probability of the coin landing T up is . 

 

Example 1.2: Throwing die- when a fair die is thrown, there are six possible outcomes: 1, 2, 

3, 4, 5, and 6. The probability of each of them is . 

For example, suppose we wish to obtain the probability of getting a "4" on rolling a die. The 

number of ways it can happen is 1 as there is only one face with a "4" on it, and the total 

number of possible outcomes is 6 only as there are six faces altogether. So the probability of 

getting “4”is . 

 

Example 1.3: Suppose there are 5 marbles (4 blue and 1 red) in a bag. The probability that a 

blue marbleis picked can be calculated as: 

The number of ways it can happen is 4 for fourblue marbles, and the total number of 

outcomes is 5 as there are five marbles in total. So the probability is . 

 

 

 

Self Assessment Question (SAQ) 1: A boxcontains 4 chocolates and 4 icecreams. What is 

the probability of choosing 1 chocolates?  

 

1.3.2 Basic rules of probability  
There are three basic rules of probability distribution, like summation rule, multiplication 

rule, and conditional probability.  

• Summation rule is applicable to mutually exclusive events, i.e., happening of one 

event excludes the possibility of the happening of the other.  



MSCPH504 

5 

 

• The multiplication rule is applicable when the probability of occurrence of one event 

does not affect the probability of occurrence of the other. This rule is also known as joint 

probability, and the probability of joint occurrence of two independent events is equal to the 

product of the probabilities of each of the independent events.  

• The probability for an event say A to occur conditioned to the fact that another event 

say B has also occurred is called the conditional probability. This is denoted as . 

All the three rules discussed above can be better understood by the following examples. 

 
Example 1.4: A card is drawn from a pack of 52 cards. The probability of getting a red ace or 

a black king can be discussed as 

The total number of ways in which the event can occur is N = 52.  

We wish to draw a red ace. There are 2 red aces in a pack of 52 cards. Therefore, the number 

of ways favorable to the first event say . 

Thus, the probability of drawing a red ace . 

The number of ways in which second event, i.e., drawing a black king may happen say 

, as there are 2 black kings in the pack of 52 cards. 

The probability of drawing a blackking . 

Notice that both events are mutually exclusive. Therefore, the probability that the card drawn 

is either a red ace or a black king is  

 
 

Example 1.5: A bag contains 6 black marbles and 4 blue marbles. Two marbles are drawn 

from the bag, without replacement. The probability that both marbles are blue may be 

discussed as 

We have 6 black and 4 blue marbles so there are total ten marbles in the bag. 

So the probability of the first event, i.e., drawing a blue marble is  . 

Now there are nine marbles in the bag, so the probability of the second event, i.e., choosing a 

blue marble is  . 

Hence, the required probability that both the marbles are blue is  . 

 

Example 1.6: Discuss the probability of drawing two kings from a deck of 52 cards. 

First event (say event A) is drawing a king first, and second event (say event B) is drawing a 

king second.  

For the first card the chance of drawing a king is 4 out of 52 as there are 4 kings in a deck of 

52 cards. So, 
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After removing a king from the deck the probability of the second card drawn is less likely to 

be a king as there are only 3 of the 51 cards left are kings. Therefore, 

 
Probability of event A and event B, i.e.,  = probability of event A, i.e.,  times the 

probability of event B given event A, i.e.,  Thus, 

 
Hence, the chance of getting 2 kings is 1 in 221. 

 

Example 1.7: Suppose there are 10 marbles (6 blackand 4blue) in a bag as in Example1.5. 

We randomly select two marbles with replacement from the bag, i.e., once we select the first 

marble we put it back in the bag and then select the second marble. The probability of getting 

two blue marbles may be discussed as, 

 Here, drawing with replacement makes the draws independent of each other, since the color 

of the first marble drawn does not change the sample size for the second draw.  

The chance of drawing a blue marble on the first draw is . With the replacement of the first 

marble the probability of getting a blue marble on the second draw is again . Thus, the 

probability of getting two blue marbles with replacement is . Notice the 

difference between the probability of two blue marbles with replacement and without 

replacement. 

 

Self Assessment Question (SAQ) 2:  What is the probability of drawing a red king and then 

a black 7 without replacement from a deck of 52 cards? 

 

1.3.3 Probability distribution 
In all the examples discussed in the previous subsections, you have a rule which assignsa 

single real value to each outcome as probability. Notice that this number may vary for 

different outcomes. Thus, this number is a variableand depends upon the outcome of a 

random example, and hence, is called random variable.  

For example, consider the case of tossing a coin twice in succession. The sample space in this 

case is S = {HH, HT, TH, TT}. If X denotes the number of heads obtained, then X is a 

random variable and for each outcome, its value is as X(HH) = 2, X (HT) = 1, X (TH) = 1, X 

(TT) = 0.More than one random variable can be defined on the same sample space.Thus, 

these random variables can be used to obtain probability in each case by dividing them with 

sample size. This mathematical function defines the probability of the occurrence of all the 

outcomesand as expected the sum of probability in all the cases is unity. 

The probability distribution of a random variable can be understood by following example. 

Example 1.8: Discuss the probability distribution of the number of aces when two cards are 

drawn successively with replacement from a well-shuffled deck of 52 cards.  
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Let the number of aces (random variable) be denoted by X which can take the values 0, 1, or 

2. Since the draws are done with replacementthe two draws formindependent 

experiments.Therefore,  

 

 

 

 
 

 

 
 

Thus, the required probability distribution can be summarized as 

 
0 1 2 

 
   

 

Similarly, joint probability distributions are defined over two or more random variables.The 

probability distribution over one random variable, known as marginal distribution, can be 

obtained by summation of the joint probability distributions for the rest of the random 

variables. 

 

Self Assessment Question (SAQ) 3: A pair of dice is thrown thrice. Discuss the probability 

distribution of the number of doublets. 

 

1.3.4 Distinguishable and indistinguishable particles 
Before discussing further, you should know one of the important differences between the 

classical statistics and the quantum statistics. This difference is directly related to the nature 

of particles which form the system being considered. In classical statistics, particles are 

distinguishable whereas in quantum statistics particles are indistinguishable. 

Consider Example 1.7 with an additional constraint, i.e., obtain probability that the blue 

marble drawn in the first round is not the same as in the second round with replacement. In 

principle, if you keep track of each marble after labeling them with different numbers, you 

will end up with the same probability as in Example 1.5.This labeling is possible because 

these marbles, being classical particles,though may have same color, shape, etc., macroscopic 

properties but have uniquepositions in the bag.Further, assume the marbles in this example 

are quantum particles. We know that some properties of the subatomic particles are defined 

as universal constants, suchas mass, charge.Therefore, they are identical in that sense, and 
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once the marble is replaced in the bag the wavefunction associated with the replaced quantum 

marble overlaps with that of the remaining marbles in the bag due to spreading of the 

wavefunction as time progresses.We know that one cannot distinguish overlapping 

wavefunctionsso the quantum state of the composite system ofquantum marblescan be 

written as superposition of all the combinations. Therefore, the probability inthis case will be 

different from the classical particles.For example, in case oftwo indistinguishable quantum 

particles, quantum state is obtained asthe sum (difference)of two-particle wavefunctionand 

that obtained by particle exchangewhich is symmetric (antisymmetric). The symmetric 

(antisymmetric) wavefunction corresponds to bosons (fermions), i.e., quantum particles with 

integral (half-integral) spin. You can easily verify the significance of Pauli exclusion 

principlethat two fermions cannot have the same values for all the quantum numbers. We will 

return to this discussion in forthcoming units, especially Units 7-10. 

             Suppose you have two distinct particles which are distinguishable, like a Helium-3 

atom and a Helium-4 atom. If you switch their positions then the system changes. On the 

other hand, if two particles are indistinguishable, like two protons then, switching their 

positions makes no physical change because you do not know whether particles switched at 

all. The concepts of distinguishable and indistinguishable particles is important in statistical 

mechanics. Hereafter, for discussing classical statistical mechanics the particles shall be 

considered as distinguishable and later in quantum statistics you will understand the 

indistinguishability of particles in detail. 

 

Example 1.9: Let us rearrange all the letter of the word “POTATO” and compute the 

probability of obtaining words starting with P. 

The total number of ways the word “POTATO” can be rearrangedis . 

There is only 1 possibility for the first letter to be P andthe rest of the five letters can be 

chosen in 5! ways. Notice that there are two T and O in the word, so effectively there will be 

only unique words. 

Thus, the probability of obtaining words starting with P can be written 

as . 

This example shows that a repeated occurrence of letters changes the probability of a 

favorable outcome.Similarly, distinguishability (indistinguishability) of particlesplays 

significant role in the computation of probabilities and thus statistics of quantum and classical 

particles. 

 

 

1.4 PHASE SPACE  
You all know, in a static system the complete position of an object or a point particle in 

classical mechanics is specified by three Cartesian coordinates. This three dimensional space 

is known as position space ( ) and a small volume element in position space is 

defined as . If the system is dynamic then in addition to the position 

coordinates, we require three components of momenta for the specification of particles in the 
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system. These three mutually perpendicular momentum coordinates 

constitute momentum space. A small volume element in this space is 

expressed as .  

In a similar way, phase space is a scheme for the specification of a system in statistical 

mechanics. In this, the position of a particle is represented in terms of Cartesian coordinates 

 and the corresponding momentum ( ) components. Thus, the phase space is 

a combined position and momentum space. A small volume element in phase space is defined 

as 

…(1.2) 

Such a six dimensional space for a single particle or molecule is called phase space or mu-

space (µ-space). The phase space is a pure mathematical concept used to describe a single 

particle. Let us divide the phase space in two dimensional energy sheet as shown in 

Figure1.1. Further, if we subdivide the range of variables  and  into arbitrary small 

discrete intervals, then the single interval is known as phase cell. The minimum size of the 

phase cell in classical statistics is equal to the area of thesingle cell, i.e., . 

This may be viewed as our experimental limitation in measurement.In the classical 

scenario,  can be chosen arbitrarily as small as possible.Further, phase cell is the volume 

occupied by each phase point in the phase space. Hence the value of this elementary volume 

is equal to . However, in quantum statistics,according to the Heisenberg’s uncertainty 

principle the minimum size(volume) of phase cell in phase spaceis given by ,where h is 

Planck’s constant. 

 

 

 
Figure1.1: Two dimensional energy sheet of phase space representing phase cells. 

 

 Let us consider a system of  molecules or particles. If each molecule is specified in phase 

space by , ,  position and , , momentum coordinates, then for a system of N 

molecules there will be 6N dimensional space, i.e., 3N position and 3N momentum 
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coordinates. This space of 6N dimension is called gamma-space or Γ space. In Γ space each 

point is called a representative point or phase point corresponding to a state of a system of N 

particles at a particular time.The number of phase points per unit volume of the phase space 

is called phase density. With the passage of time the representative point traces out a 

trajectory which gives us a complete dynamics of the system.This trajectory is known as 

phase space trajectory. It is also important to mention here that a phase space trajectory never 

intersects itself because if it does so, then the point of intersection would denote two different 

states at two different times for the same system which is not physically acceptable. In 

Figure1.2, a random phase space trajectory showing the temporal evolution of systemis 

depicted. Analogously, the state of the system of N particles can be represented by specifying 

the state of each particle in six dimensional spaceµ -space (as discussed above). The µ -space 

is represented by a cloud of N points in a six dimensional space. 

Thus, the microscopic state of the complete system is specified by the phase points. These 

phase points vary with time, and therefore microscopic states of a dynamic system are 

differentfor each instant of time. Further, for the measurement of macroscopic variables (N, 

V, P, T, E, etc.) of the whole system we need to calculate the time average of the system of 

interest. Hence, each phase point represents a separate system with same macroscopic 

properties, but a different microscopic state. 

 

 

 
Figure1.2: Random trajectory in phase space. 
 

Example 1.10: Phase space diagram of an oscillator. 

Let us consider an oscillatorof mass m and spring constant k with energy 

...(1.3) 

We can rewrite this equation as 

…(1.4) 

This represents an ellipse (see Figure1.3) in the  plane for constant energy . This is a 

phase space diagram of an oscillator. The phase points are lying on the elliptical path with the 

ellipse whose semi major axis and semi minor axis are and , respectively. Thus, 
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the phase space available to the oscillator having the energy between 0 and E is the area of 

the ellipse given by . 

 
Figure1.3: Phase space diagram of an oscillator. 

 

 

 

Self Assessment Question (SAQ) 4: Using the concept of phase space find out the region of 

states accessible for a particle in an infinite square well potential defined as  

 

 
 

Self Assessment Question (SAQ) 5: Discuss the phase space trajectory of a free particle 

moving in the positive direction. 

 

 

1.5 WHAT IS AN ENSEMBLE? 
If we are considering a collection of particles with macroscopic properties, like energy, 

volume, chemical potential,then the collection of such particles is considered as an assembly. 

Further, this collection of a large number of non-interacting, independent assemblies is 

known as an ensemble or statistical ensemble. The members of an ensemble are referred to as 

elements or assemblies.These elements are identical in macroscopic properties, like , , , 

and differ in their microscopic properties, i.e., elements have different position and 

momentum coordinates. 

In other words, we can say that an ensemble is defined as a collection of a large number of 

assemblies which are identical in macroscopic properties but differ in microscopic properties. 

Thus, it can be viewed as numerous copies of a system or a probability distribution defining 

the state of the system. 
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Figure1.4: Phase space diagram of harmonic oscillator with energy between  and  

for infinitesimally small . 

 

For example, consider anotherphase space trajectory of a harmonic oscillator of energy 

, with infinitesimally small , represented by an ellipse in Figure1.4. Each point in 

phase space between the two ellipses represent state of a harmonic oscillator with a constraint 

that their energy is between and . This  corresponds to our experimental 

limitation in determining the energy of the system. This hypersurface, whichcorresponds to 

the collection ofall the phase pointssatisfying the constraint, is phase space distribution or an 

ensemble.  

There are three types of ensembles, namely microcanonical, canonical and grand canonical, 

which will be discussed in detail in Unit 4. These three categories are specified on the basis 

of macroscopic constraints.  

 

 

1.6  DENSITY OF STATES 
We have already discussed that the microscopic properties of a system are represented by 

phase points. The condition of an ensemble at any time can be specified by the density, which 

describes the distribution of phase points in phase space. The density distribution is often 

denoted by  and is a function of the continuous variables and . Consequently, 

the normalization condition for a closed system is , where the volume 

elements are and . Specifically, the 

density of distribution in phase space gives the number of states per unit volume in a given 

interval of energy of the phase space. This distribution function is a function of position 

coordinates and momentum coordinates. The time dependence of  may be implicitly 

governed by the time dependence of q and p. However, may also have an explicit time 

dependence. 

Hence, we can write 

                                                                          … (1.5) 

Therefore, the number of phase points in a small volume element say  is 

given by 



MSCPH504 

13 

 

 
We will further calculate an expression of density of state for a single particle of mass m with 

momentum in the range p to p+dpand energy in the range E to E+dE, respectively, placed in 

a phase cell of volume  in phase space. The total volume of the phase space is given by 

Total volume of phase space  

      …(1.6) 

where we have used the volume of position space ,the volume of the 

momentum space       

  

Thus, we can write the total number of phase cells in the given momentum range as 

  …(1.7) 

Using the relation between energyEand momentum p, i.e., 

, 

and therefore, 

 
Using this relation in equation (1.7), the total number of phase cells in the energy range E to 

E+dE is 

 

       …(1.8) 

Hence, the density of state or the total number of phase cells per unit energy range can be 

obtained as 

…(1.9) 

 

1.7 ERGODIC HYPOTHESIS: Equality of ensemble average 

and time average 
 

For a large collection of particles we shall consider the average of the variables for discussing 

the complete system. In the next unit, we will discuss the average values of variables in detail 

by considering various other aspects of statistical mechanics, like thermodynamic probability, 

concept of microstates and macrostates.  

In general, the ensemble average value of a variable  in an ensemble is calculated as 

.                            … (1.10) 

Here, defines the physical property for different phase points with density of phase 

points which is normalized . We have already given an 

example of ensemble for harmonic oscillatoras a hypersurface between two ellipses ofenergy 
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and , respectively.The ensemble average takes into consideration the contribution 

from each assembly in the ensemble, represented by phase points in the 

hypersurface,weighed with corresponding probabilitiesin the phase space distribution. 

Similarly, the time average of the variable over a complete time period is calculated by the 

following equation 

                            … (1.11) 

 

In case of our example of harmonic oscillator, temporal evolution of a phase point on the 

elliptical hypersurface traces all the phase pointsbetween energy  and over a long 

period of time. 

Thus, time average in principle takes into consideration the contribution from all the points in 

the phase space trajectory similarto the ensemble. 

Ergodic hypothesis is a connection between both types of averages. It states that the ensemble 

averages are equivalent to the time averages of any physical quantity to be considered.In 

other words, this hypothesis says that the ensemble average of any variable is the same as the 

time average of that variable for the single system. 

 

 

 

1.8  POSTULATE OF EQUAL A PRIORI PROBABILITY 
In statistical physics, we deal with systems with a very large number of particles and assume 

that the system exists in an equilibrium state. All the physical properties of such a system can 

be deduced by knowing the most probable or equilibrium state of the system. In such state, 

the phase space distribution of the system is independent of time, i.e., the ensemble does not 

evolve anymore with time.We will discuss the significance of the most probable state in 

establishing the relation between statistical and thermodynamic quantities in the next unit. 

 

The postulate of equal a priori probability is consistent with the idea of equilibrium and is 

solely related to the ergodic hypothesis. It states that the probability of finding the phase point 

for a given system in any region of the phase space is identical with that for any other region 

of equal extension or volume. Thus, you can assign equal a priori probability to equal 

volumes in phase space. In other words, for a system in equilibrium, all accessible 

microstates corresponding to possible macrostates are equally probable. The concept of 

microstates and macrostates in detail will be discussed in Unit 2.In case of phase space 

distribution for a harmonic oscillator, as in Figure1.4, all the phase points on the ellipse are 

equally likely.This priori principle is the fundamental basis of statistical mechanics. The 

following examples will illustrate this postulate in detail. 

 

Example 1.11: Suppose we pick a card at random from a well shuffled pack of 52 cards. 

There is nothing that would favor one particular card over the others. Hence, because there 

are 52 cards, we would expect the probability of picking the ace of spades equal to . We 

could now place some constraints on the system. For instance, we could only count red cards, 
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in which case the probability of picking the ace of hearts, say, would be , by the same 

reasoning. In both cases, we have used the principle of equal a priori probabilities.  

 

Example 1.12:  Let us consider an example from a famous Bollywood flick “Sholay” in 

which a priori probability for both head and tail on each coin toss is same based on this 

principle forVeeru, while when he comes to know the secret of the coin his posteriori 

probability is 1 for head and 0 for tail. 

 

Self Assessment Question (SAQ) 6: By tossing three coins many times check the validity of 

the postulate of equal a priori probability. 

 

1.9 SUMMARY 
 

In this unit, you have studied the basics of the statistical physics. In particular, this unit 

focuses on classical statistics. You learned the concepts of phase space and phase points. This 

concept also helps you to understand the density of states. In this unit, the concept of 

distinguishability and indistinguishability is also discussed. We understood that the notion of 

distinguishability (indistinguishability) has a profound impact on the underlying statistics. 

This is because the statistics involves computation of probabilities and the rules of probability 

are sensitive to distinguishability (indistinguishability) of the particles. Various other 

important concepts, like probability, probability distribution, equal a priori principle, are also 

discussedwith the help of numerical examples. We have briefly introduced the concept of 

ensemble which will be discussed in detail in Unit 4. All the basics of statistical 

thermodynamics we have discussed in this unit are very helpful in discussing and 

understanding many interesting concepts of thermodynamics and statistical physics in the 

forthcoming units. Many solved examples are given in the unit to make the fundamental 

concepts clear. Additionally, to check your progress and understanding some self-assessment 

questions are given at the end of different sections. 

We will return to some of the concepts introduced in this unit, like ensembles, equal a priori 

principle in Units 2-4. The rest of the units of this block (Units 2-3) are dedicated completely 

to classical statistics, but many of the topics introduced here, which can be easily extended to 

quantum statistics, are discussed in detail.Dedicated study of ensemble theory and different 

types of ensembles will be discussed in Block 2, which contains Units 4-6. Further, Block 3 

(Units 7-10) is entirely focused on quantum statistics. In the last block, which contains Units 

11-12, we will discuss the application part of both classical and quantum statistics by 

applying the methods of statistical mechanics to some physical situations. 

 

 

 

 

1.10 GLOSSARY 
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Microscopic 

properties 
These are defined in terms of microscopic variables, like position 

and momentum coordinates. 
Macroscopic 

properties 

These are defined in terms of macroscopic variables, like number 

of particles N,  volume V, temperature T, energy E. 

Phase space A scheme for the specification of a system in terms of the position 

coordinates  and corresponding momentum ( ) 

components. 

Phase points It represents an individual particle in the phase space. 

Density of states It tells us about the distribution of phase points in phase space 

Ensemble It is a collection of a large number of independent collections of 

particles. 

Ensemble average The value of a variable when averaged over all the states explored 

within an ensemble. 

Time average The value of a variable when averaged over a time period. 

Ergodic hypothesis An average over time is equal to an average over all the possible 

microstates. 

Probability A mathematical concept that deals with calculating the likelihood 

of a given event’s occurrence. 

Probability 

distribution 

A statistical distribution function that describes all the possible 

values and likelihoods that a random variable can take within a 

given range. 
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1.13 TERMINAL QUESTIONS 

1.13.1 Short Answer Type 

1. Explain the terms: (i) phase space and (ii) ensemble. 

2. Give two examples of phase space trajectories. 

3. Define phase cell. 

4. What are the basic rules of probability? 

5. What is ergodic hypothesis? 

6.  What do you understand by the density of states?     

7. Write down the statement of postulates of equal a priori principle. 

 

1.13.2 Long Answer Type 

1. Discuss the probability distribution function with the help of an example.  

2. Write notes on: 

      (i) Probability, (ii) density of states, and(iii) ensemble average and time average. 

3. Discuss the phase space trajectory of a particle of mass m in a gravitational field from a 

height h attime t. 

4. Explain the concept of distinguishability and indistinguishability with the help of an 

example. 

5. Obtain an expression for the total number of phase cells per unit energy range for a single 

particle in the phase space. 

6. With the help of an appropriate example explain the postulate of equal a priori principle. 

7. Briefly discuss the connection between ergodic hypothesis and postulates of equal a priori 

principle. 

 

1.13.3 Numerical Answer Type 

1. What is the probability of drawing two queens in succession from a pack of cards? 

2. Obtain the probability of drawing an ace three times in a row with replacementfrom a pack 

of cards. 

3.A drawer contains threered paper clips, fourgreen paper clips, and fiveblue paper clips.  

After taking one paper clip another paper clip is taken from the same drawer without 
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replacement.  What is the probability that the first paper clip is red and the second paper clip 

is blue?  

4.Check the validity of the postulate of equal a priori probability by tossing two coins many 

times. 

 

1.13.4 Objective Answer Type  

1. Phase space is a: 

(a)   momentum space                                                       (b) configuration space 

(c)  combinedposition and momentum space   (d) four dimensional Minkowskian space 

2. The statistical approach involves the concept of …………..  of distribution. 

(a)   sum (b) probability 

(c)    collection(d) particle 

3. The value of the probability of an event cannot be: 

(a)   1                                                             (b) zero 

(c)    1/2                                                         (d) negative 

 

4. What is the probability of getting a sum 9 from two throws of a dice? 

(a)   1/8                                                           (b) 1/6 

(c)    1/9                                                          (d) 1/12 

5. What are the chances that no two boys are sitting together for a photograph if there are 5 

girls and 2 boys? 

(a)   2/7                                                         (b) 5/7 

(c)    4/7                                                         (d) 1/21  

6.  Ensemble is a set of assemblies of a system, where each individual system may have a: 

(a) different microstate but same macrostates  (b) different macrostate but same microstate 

(c)  different macrostate and  microstate         (d) same macrostate and microstate 

7. Ergodic hypothesis relates the equality of: 

(a)  phase space and mu space (b) ensemble average and time average of a physical quantity 

(c)  time average of a physical quantity and density of states (d) ensemble average and 

density of states 
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1.14 ANSWERS 

1.14.1 Self Assessment Questions (SAQs): 

 

1. There are 4 chocolatesin the box containing total number of 4 chocolates and 4 ice 

creams,so the probability of getting 1 chocolatesis . 

2. There are four card in the pack of cards of each value, with two red and two black.  

P (red king) = 2/52. Now we have only 51 cardsand there are still two black 7s in the deck. 

P (second card is a black seven) = 2/51. 

Therefore, P (red king then black 7)= (2/52) (2/51)=1/663. 

3. The probability of rolling a doublet is 1/6 on each throw. It follows that the probability of 

no doublet on a given throw is 5/6. Therefore, 

 

Probability of zero doublets = (5/6) (5/6) (5/6) = 125/216. 

 

Probability of one doublet = (5/6) (5/6) (1/6)+(5/6) (1/6) (5/6) +(1/6) (5/6) (5/6) = 75/216. 

Probability of two doublets = (5/6) (1/6) (1/6) + (1/6) (5/6) (1/6) +(1/6) (1/6) (5/6) = 15/216. 

 

Probability of three doublets = (1/6) (1/6) (1/6) = 1/216. 

We can verify that the sum of the probability distribution is (125+75+15+1)/216=216/216=1. 

 

4.As we know that Hamiltonianrepresents the total energy of a system, i.e., 

. 

In the question, for the given range  , V=0. So the Hamiltonian or energy of 

particle is 

 .  

From this relation we get .Hence, the region of states accessible to the particle 

is shown in dark color. 
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Note that an arbitrary trajectory for the particle will be any random path in the range shown 

in accessible phase space. 

5. A free particle means that there is no potential(V=0) and is thus moving freely. Therefore, 

the energy of free particle has the form . Now,we can draw phase space trajectory by 

similar arguments as in the previous question. The trajectory is shown as 

 

 

1.14.2 Terminal Questions: Numerical type questions 

1. The probability of drawing two queens: 

There are 4 queens in the pack of 52 cards, so the probability of drawing 1 queen = . 

Now only 3 queens left and only 51 cards left in the pack. Therefore, the probability of 

drawing second queen = . 

Hence, the probability of drawing two queens in succession is 
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P(two queens in succession) = P(first card queen) P(second card queen) 

= . 

2. P(Three aces in a row) = P(Card 1 is an ace) P(card 2 is an ace) P(card 3 is an ace).  

We are replacing the cards, this means there will always be four aces in the deck of 52 total 

cards. Hence, 

P (Getting an ace) = 4/52. 

P (Three aces in a row) = (4/52) (4/52) (4/52)=1/2197. 

3. In question it is given that the first paper clip is not replaced. The sample space of the first 

event is 12 paper clips, but the sample space of the second event is changed it is now 11 

paper clips.  Both the events are dependent. So, 

P(red) = ( 3/12) 

P (blue given red occurred) = (5/11) 

P(red then blue) = P(red) P(blue given red occurred) = (3/12) (5/11) = ( 5/44). 

 

1.14.3 Objective type questions 

1. Correct option is (c), combined position and momentum space. 

2. Correct option is (b), probability. 

3. Correct option is (d), negative. 

4. Correct option is (c), 1/9. 

5. Correct option is (b), 5/7. 

6. Correct option is (a), different microstate but same macrostates. 

7. Correct option is (b), ensemble average and time average of a physical quantity. 
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2.1 INTRODUCTION 
 

In the first chapter, you have learnt the basics of statistical mechanics and its role in the 

modern physics. You already understand that statistical mechanics deals with the most 

probable behavior of the assembly of a large number of particles, usually comparable to 

Avogadro number. The dynamics of individual constituent particles may be governed by 

either classical or quantum mechanics depending upon their properties. You may have been 

wondering why not we solve the equations of motion for all particles independently to obtain 

the instantaneous state of the system and study the macroscopic properties forthis state.You 

probably did not realize the complexity of the task at hand as you would have to solve atleast 

10
23

 differential equations. This is not only impractical, we are actually not interested in the 

states of the individual particles and macroscopic properties of the system only. Therefore, 

we understand that many copies of the system instatistical ensemble are in different states at 

any instant of time and thus provide the probability of occurrence in certain state. Thus, it not 

only simplifies our lives to compute all the macroscopic properties as functions weighed with 

corresponding probabilities in the phase space distribution, but has application to be 

discussed in last few units of the book. 

We have mentioned in the previous unit that thermodynamics deals with macroscopic 

properties of the system at equilibrium. We have also mentioned that statistical mechanics is 

also studied at this stationary state. Equilibrium refers to a state which does not change with 

time.This state has maximum entropy and is thus most probablecondition for a closed 

system.Note that this does not mean that the states of the constituent particles is not changing, 

but their evolution is such that the system remains unchanged macroscopically. As we are 

going to discuss the connection between statistical and thermodynamic quantities in this unit, 

we should understand the idea of different types of statistical equilibriumsbefore that. 

Specifically, we will be discussing thermal, mechanical, and chemical equilibriums.  

Thermodynamic properties can be categorized as intensive and extensive properties. The 

former one is the bulk property and does not depend on the size and nature of material, while 

in contrast, the latter one is an additive property of the subsystems and increases with size.A 

few examples of the intensive property are temperature, pressure, chemical potential, density; 

and extensive property areenthalpy, entropy, internal energy, Gibbs energy. We will discuss 

these quantities in detail in the present chapter. 

We have discussed so far that the macroscopic properties of the system are concerned with 

the state of the system represented by phase points and remains unchanged with change in the 

state of the individual particles only. We will discuss the phase points and corresponding 

properties using terminology of ensemble theory by introducing the idea of macrostate and 

microstate.  

 

 

 

 

 

2.2 OBJECTIVES 
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After studying this unit, you should be able to understand- 

● Concept of statistical equilibrium and its importance in statistical physics 

● Establish a relation between statistical and thermodynamic quantities 

● Microstates and macrostates  

● Liouville's theorem and its applications 

 

 

 

2.3 STATISTICAL EQUILIBRIUMS 
 

We are familiar with thermodynamic equilibrium, since our graduation classes. In brief, a 

system is said to be in thermodynamic equilibrium, if it satisfies all the three requirements of 

equilibrium, i.e.,thermal, mechanical, and chemical equilibriums. A system is said to be in 

thermal equilibrium when there is no temperature difference between the system and its 

surroundings. For mechanical equilibrium there should be no unbalanced forces acting on any 

part of the system or the system as a whole. While if there is no chemical reaction within the 

system and there is no movement of any chemical constituent from one part of the system to 

the other then it represents chemical equilibrium. In Unit 1,we have discussed the postulate of 

equal a priori principle. This principle states that any arbitrary volume element dV in phase 

space bounded by a surface and containing a definite number of phase points does not change 

with time, i.e., equal volumes in phase space. The postulate of equal a priori principle is 

consistent with the idea of equilibrium.  

For a system of the ensemble to be in statistical equilibrium, two conditions should be 

fulfilled. Firstly the probabilities of finding phase points in various regions of phase space 

should be independent of time. Secondly the average values of the measurable properties of 

the system in the ensemble should be independent of time.Therefore, for the system to be in 

equilibrium, the phase space density should be independent of time. This equilibrium 

condition is solely related to the Liouville's theorem. In the forthcoming sections, we will 

prove the equilibrium condition with the help of Liouville's theorem.As we know that any 

statistical ensemble is defined by the distribution function which characterizes it,the statistical 

equilibrium is a state in which the probability distribution function of the states remains 

constant over time. In a similar way, as in the case of thermodynamic equilibrium for an 

ensemble to be in statistical equilibrium the system should fulfill the condition of thermal, 

mechanical, and particle equilibrium.  

 

2.4 CONNECTION BETWEEN STATISTICAL AND 

THERMODYNAMIC QUANTITIES 
Statistical mechanics is an experimental and empirical physics. Further, we are familiar with 

thermodynamic equilibrium. In this equilibrium, there is no net macroscopic flow of matter 

or energy, either within a system or between systems. Whereas, in statistical equilibrium, the 

average values of all the physical quantities characterizing the state are independent of time. 
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Statistical equilibrium plays the same role as thermodynamics equilibrium in 

thermodynamics.  

At equilibrium, in statistical mechanicsprobability is maximum, and in thermodynamics 

entropy is maximum. We know thatin equilibrium the entropy of a system depends upon the 

energy of the system (E), number of particles/molecules present in the system ( ), and the 

external variables (say ), like pressure, volume, etc. Therefore, we can write 

                                                                                                                    

….(2.1) 

As we have already mentioned that statistical mechanics and thermodynamics are closely 

related with each other. This relation between probability and entropy is an important concept 

in statistical physics.  Here, we define statistical temperature , statistical pressure , and 

statistical chemical potential  to establish this relation. Specifically, the statistical 

temperature  

…(2.2) 

is related  to the thermodynamic temperature as , where k is the Boltzmann’s constant. 

Similarly, statistical pressure 

, …(2.3) 

equals to the thermodynamic pressure ,and statistical chemical potential 

                              …(2.4) 

are other relevant parameters. Thermal equilibrium states same  for all parts of the system, 

while  is constant for mechanical equilibrium at thermal equilibrium. Due to particle 

diffusion allowed in particle equilibrium chemical potential is constant at thermal and 

mechanical equilibrium. 

Suppose we make a small insignificant reversible change in the equilibrium condition in such 

a way that the new system is in equilibrium, too.This can be described as 

                            …(2.5) 

With the help of equations (2.2)-(2.4), we obtained 

…(2.6) 

where  is generalized force.After rearrangement we can write 

                            …(2.7) 

If we assume that the number of particles are fixed and the volume is the only external 

parameter, i.e., , then from equation (2.7) we get 

                            …(2.8) 

The above equation represents the change in the internal energydue to heat exchange and 

change in external parameters. You should know about the first law of thermodynamics 

which tells us that the change in the internal energy can be defined in terms of 
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thermodynamic quantitiesas .Here,  is the thermodynamic entropy.As far 

as statistical mechanics is concerned, internal energy is the total energy (both kinetic and 

potential energies) of all the constituentsin the system. Thus, for statistical mechanics we can 

write .On comparing equation (2.8) with the relation in 

thermodynamics , we have 

                            …(2.9) 

From this relation we can say that  and  are proportional to  and , respectively. Thus, we 

can write 

                            …(2.10) 

and we have 

 …(2.11) 

It is imperative to mention here that for an ideal gas thepotential energy of the particles 

vanishesas the non-interacting gas molecules are assumed to be point particles, i.e., the 

diameter of the particles is negligible in comparison to mean free path,undergoing only 

elastic collision with each other. Thus, internal energy is just the sum of kinetic energy of all 

the gas molecules and only depends on the temperature not volume. 

Comparing equations (2.8) and (2.11), we get 

 and                             …(2.12) 

In a similar way, we can define other thermodynamic potentials which will be useful while 

discussing different types of ensembles. 

Helmholtz Free Energy (F):It definesthe work that can be extracted from a closed system at 

constant volume and temperature. Mathematically,it is 

…(2.13) 

which on differentiation gives . After rearrangement we can write 

 …(2.14) 

Independently, we can define 

                     …(2.15) 

to obtain 

               …(2.16) 

This allows us to write, on comparing equations (2.14) and (2.16), as 

and                                                      

…(2.17) 

Enthalpy (H): It is the total of the internal energy of the system and the product of pressure 

and volume. The internal energy of the system is the amount of energy required to bring the 

system together. It can be described as 

  …(2.18) 

with derivative 

                                                                             

…(2.19) 
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Further, if we write 

 
and 

                            …(2.20) 

Thus, comparing equations (2.19) and (2.20), we have 

and                               …(2.21) 

Gibbs Free Energy (G): It is defined as the maximum reversible work that may be extracted 

from a system at constant temperature and pressure. Mathematically, 

 
and its derivative 

                            …(2.22) 

Also, we may write 

 
and thus 

                            …(2.23) 

Hence, comparing equations(2.22) and (2.23) we have 

and         …(2.24) 

Therefore, we have established a relation between the statistical quantities, like entropy ( ), 

temperature ( ), pressure ( ), and thermodynamic quantities, like Helmholtz free energy (F), 

enthalpy (H), and Gibbs free energy (G). 

Self Assessment Question (SAQ) 1:Obtain the change in internal energy as in equation 

(2.11) for an ideal gas.  

Self Assessment Question(SAQ) 2: With the knowledge of thermodynamics discuss the 

physical significance of Helmholtz free energy and Gibbs free energy. 

 

 

2.5 MICROSTATES AND MACROSTATES 
 

The aim of statistical mechanics is to serve as a bridge between the microstate and 

macrostate. Let us understand these two states in detail. 

 

2.5.1 Microstate 

We have discussed in the last unit that6Ndimensional Γ space defines the position and 

momentum of allN particles. Specifically, the state of such a system can be specified by each 

particle's position qi and momentum pi.  

The coordinates of this 6N dimensional phase space describing the state of the constituent 

particles of the system are known as microstate. 

 

2.5.2 Macrostate 
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Suppose we are interested in the macroscopic variable, like energy Eofthe system,then it will 

be functions of the microstate, i.e., 

.                                                                                                                   ...(2.25) 

At equilibrium, the valueof E is very close to the average or mean value of E. This mean 

value of the macroscopic quantities specifies the state called macrostate of the system. Thus, 

the macroscopic state of the system is characterized by the macroscopic properties,like 

pressure, volume, temperature. More precisely, a microscopic state is simply a point in the 

phase space while a volume in the phase space represents a macroscopic state as it 

corresponds to a large number of microstates. 

 

 Example 2.1: Consider 1 mol. of He gas at pressure (P) = 1 atm and temperature (T) = 

298K. The given pressure and temperature defines one macrostate. Any change in one of 

the macroscopic properties (say pressure or temperature) corresponds to a different 

macrostate. For each macrostate, the configuration of each gas particle is the possible 

microstates. 

Here, one should note that a number of different microstates can have the same macrostate. 

 

Example 2.2: Let us distribute three particles a, b, and c in two compartments. The 

distribution is shown in Table 2.1.  

 

Macrostate Microstate 

Description of states Number of  

 Compartment 1 Compartment 2 states 

(3, 0) abc 0 1 

(2, 1) ab c 3 

bc a 

ca b 

(1, 2) c ab 3 

a bc 

b ac 

(0, 3) 0 abc 1 

Table 2.1:Different possible macrostates and microstatesfor three particles distributed in two 

compartments. 
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From the above table, we can conclude that the system has four macrostates and eight 

microstates. The macrostates (3,0) and (0,3) has 1 each, and macrostates (2,1) and (1,2) has 3 

each microstates, respectively. 

 

 

 Example 2.3: Let us discuss the case of tossing three coins. If we toss them several times, 

then each of the eight possible outcomes are microstates. One can see in Table 2.2 that the 

macrostates with only two heads or tails also have three possible microstates. Note that it 

confirms that there may be more than one microstates corresponding to the same macrostate. 

 

Macrostates Microstates 

First coin Second 

coin 

Third 

coin 

All heads H H H 

Two heads H H T 

H T H 

T H H 

Two tails H T T 

T H T 

T T H 

All tails T T T 

Table 2.2:All possible macrostates and microstates for the tossing of three coins. 

 

Example 2.4: Suppose there are four particles, say A, B, C, and D, and there are two cells in 

which these particles are to be distributed. Let us discuss the macrostates and corresponding 

microstates. 

Here, we have four different particles A, B, C, and D, and there are only two cells, namely 

Cell 1 and Cell 2. In Table 2.3 given below the possible arrangementsare summarized. 

 

Macrostate Microstate 

Description of states Number of 

states 

 Cell 1 Cell 2  
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(4, 0) ABCD 0 1 

(0, 4) 0 ABCD 1 

(1, 3) A BCD 4 

B ACD 

C ABD 

D ABC 

(3, 1) BCD A 4 

ACD B 

ABD C 

ABC D 

(2, 2) AB CD 6 

AC BD 

AD BC 

BC AD 

BD AC 

CD AB 

 

Table 2.3:All the macrostates and microstates of four different particles in two cells. 

 

Therefore, we can conclude that a state of the system which is defined in terms of 

microscopic variables are called microstates. Here, you should understand that microstates 

are the states of the constituent particles which gives the complete specification of the 

system. Whereas the states defined in terms of the macroscopic variables, like E, V, T are 

called macrostates. We also conclude one of the important facts here, i.e.,there are many 

possible microstates corresponding to a given macrostate. 

In statistical mechanics, we also have constraints on a system. These constraints are a set of 

conditions or say restrictions that must be followed by a system of interest. If we have a 

system of total number of particlesNwith total energy E, then we can represent the constraints 

in the form of equations known as equations of constraints as  and 

. Here, is the number of particles in the ith cell, and is the energy 

of each particle in the ith cell. On the basis of the equations of constraints, we can categorize 

all the macrostates in two types, one is accessible macrostate and the other one is inaccessible 

macrostate. Let we discuss an examplebelow which clarifies these two kinds of states.  
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Example 2.5: Suppose there are two particle J and K, and we wish to distribute them into two 

compartments say Compartment 1 and Compartment 2. The possible arrangements are shown 

in Table2.4 given below. 

 

Macrostate Microstate 

Description of states Number  

 Compartment 1 Compartment 2 of states 

(2, 0) JK 0 1 

(1, 1) J K 2 

K J 

(0, 2) 0 JK 1 

Table 2.4: All the macrostates and microstates for two particles distributed in two 

compartments. 

 

If we put the constraints that no compartment should remain empty, then the macrostates (2, 

0) and (0, 2) are not allowed. Only one macrostate (1, 1) will be there,which results in the 

decrement of the number of macrostates and microstates. Hence, we conclude that the 

macrostate which is allowed under the constraint is accessible macrostate, whereas the 

macrostates which are not allowed under the constraint are inaccessible macrostates. For the 

above mentioned constraints, i.e., no compartment should be empty, the macrostate (1, 1) is 

accessible macrostate while (2, 0) and (0, 2) are inaccessible macrostates. 

 

Self AssessmentQuestion (SAQ) 3: Discuss the microstates and macrostates for the 

distribution of two classical (distinguishable) particles in two compartments.  

SelfAssessment Question (SAQ) 4: Consider two coins and toss them many times. Discuss 

the various possible macrostates and the corresponding microstates.  

 

 

 

2.6 LIOUVILLE'S THEOREM 
We have studied in the previous unit that each phase point in the phase space represents the 

state of a system. The representative points in the phase space move along a path known as 

phase space trajectory. This trajectory is determined from Hamilton’s equation of motion. As 

a result of the motion of the phase points the density of the system in phase space, i.e., phase 

space density changes with time. Liouville’s theorem is helpful in finding the rate of change 

of phase density at a given point in phase space. 
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Let us consider an arbitrary volume element in the hyperspace located between and 

,  and  (see Figure 2.1). The number of phase points or systems in this 

volume element are given by 

          …(2.26) 

Here, is the phase space density, and is the volume element .  

The number of phase points entering the volume element through any face will be different 

from the number of phase points which are leaving the opposite face. This change in the 

number of phase points per unit time is given by 

   …(2.27) 

Further, consider two faces perpendicular to the  axis, located at and .The 

number of phase points entering the element in time through the face  are thus 

, where is velocity in the direction .  

Notice that changes in position as well as momentum coordinates.Thus, at the opposite face 

 changes to ,  changes to , and  changes to .Thus, 

the number of phase points leaving the element through face  are 

, where higher-order terms are neglected. 

 

 
Figure2.1:Arbitrary volume element in the hyperspace. 

 

Hence, the net number of systems entering the volume element in the direction , i.e.,the 

difference between the number of phase points entering face  and leaving opposite 

face ,is .Similarly, the number of phase points 

entering the volume element in the direction , i.e., the difference between the number of 

phase points entering face  and leaving opposite face ,  

is . 
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Therefore, the net number of phase points entering the volume element through all its faces 

comes out as 

             

…(2.28) 

which helps us conclude  

.               …(2.29) 

This equation can also be rearranged as 

.              

…(2.30) 

We can further use the Hamilton’s equation of motion here, i.e., the quantities 

,                 

…(2.31) 

and their derivatives 

.                  

…(2.32) 

Therefore, the first term in the bracket of equation (2.30) vanishes, and we obtain 

.        …(2.33) 

Here, gives the rate of change in phase density at an instant of time. Equation (2.33) is 

known as Liouville’s equation. 

Further, we can express equation (2.33) in the form 

,               

…(2.34) 

or 

.                 

…(2.35) 

Here, is Poisson bracket operationdefined for the 

functions and .Therefore,the total time derivative of can be defined as 

.              …(2.36) 

This equation tells us that the phase space density is an integral of motion, i.e., the total time 

derivative of the phase space density vanishes along a phase space trajectory. This is 

Liouville’s theorem in classical statistics. 

According to Gibbs  is called the principle of conservation of density in phase space, 

i.e.,the density of a group of points remains constant along their phase trajectories.Further, 
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considering equation (2.33) at statistical equilibrium, i.e.,  as is not explicitly 

dependent on time,it reduces to 

  

which will be satisfied only if . Thus, phase points are uniformly 

distributed in the phase space at statistical equilibrium. 

As we discussed about the statistical equilibrium in Section 2.3,herewe can conclude that is 

a function of some property of the ensemble which is independent of time. This means that 

the system of ensemble will be in a statistical equilibrium. 

 

Self Assessment Question (SAQ) 5: We have discussed the Liouville’s theorem which 

represents the conservation of density in the phase space by considering the time derivative of 

phase density for a volume element in equation (2.27).Similarly, illustrate the conservation of 

extension of phase space using the time derivative of volume element in equation (2.27). 

 

The Liouville’s theoremplays a significant role in statistical mechanics.The theorem is valid 

for both equilibrium and non-equilibrium systems. Consequently, it is of fundamental 

importance for the Gibbs formulation of statistical mechanics.In other words, this theorem 

states that the phase space density remains constant in phase space which suggests that the 

phase space density gives the probability of finding a system at an instant of time in the phase 

space. 

 

 

2.7 SUMMARY 
 

We all are too familiar with equilibrium or say thermal equilibrium, since our graduation 

classes. The state of equilibrium refers to a state of a system which does not change with 

time. This unit is solely based on the concept and condition of statistical equilibrium. We 

have learned about the various conditions required for a system to be in the statistical 

equilibrium. We also came to know about the role of entropy and probability in 

thermodynamics and statistical mechanics, respectively. Further, we defined various 

thermodynamic potentials and establish a relation between the statistical and thermodynamic 

quantities. Here, in the present unit, we have discussed one of the most important concepts in 

statistical physics, i.e., the concept of macrostates and microstates with the help of various 

examples.We can also understand the postulate of equal a priori principle in terms of 

microstates and macrostates, which will be discussed in detail in the next unit.Specifically, 

microstates are the representative points in the phase space, and we have already discussed in 

Unit 1 that these representative points are known as the phase points in the phase space. 

Finally, in this unit we came to know about Liouville's theorem which suggests an equal 

distribution of phase points in the given phase space at statistical equilibrium.This theorem 

also tells us that if we move with a phase space point as it evolves under the Hamiltonian, the 

phase space density of the neighbourhood is constant. 
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2.8 GLOSSARY 
 

Thermal equilibrium When the temperature of two or more than two systems is same 

then this condition is known as thermal equilibrium. 

Mechanical equilibrium Two systems are said to be in mechanical equilibrium if their 

pressures are same. 

Chemical equilibrium It is the state in which the chemical activities or concentrations 

of the reactants and products have no net change over time 

and also there is no movement of any chemical constituents 

from one part of the system to the other. 

Thermodynamic 

equilibrium 

A system is said to be in thermodynamic equilibrium with 

another system when it achieves all three equilibriums, i.e., 

thermal, mechanical, and chemical equilibriums. 

Statistical equilibrium A system is in statistical equilibrium when the probabilities of 

finding the phase points in various regions of the phase space 

and the average values for the measurable properties of the 

system in the ensemble are independent of time. 

Macrostates States which can be represented in terms of macroscopic 

variable, like pressure P, volume V, number of particles N, 

temperature T. 

Microstates States which can be represented in terms of microscopic 

variables and phase points in the phase space. 

Liouville’s theorem It states that the density of particles or phase space density in 

phase space is constant. 
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2.11 TERMINAL QUESTIONS 
 

2.11.1 Short Answer Type 

1. Explain the term statistical equilibrium. 

2. Write down the condition of statistical equilibrium. 

3. Define the terms (i) thermodynamic equilibrium and (ii) macrostate and microstate. 

4. State the principle of equal a priori principle in terms of microstate and macrostate. 

5.  Write down the statement of Liouville's theorem. 

2.11.2 Long Answer Type 

 

1. Differentiate between thermodynamic equilibrium and statistical equilibrium.  

2. Discuss the concept of macrostates and microstates in detail. Using an example of two 

dices rolled simultaneously, write the number of microstates and macrostates. 

3. State and prove Liouville's theorem. Also mention the consequences of Liouville's 

theorem. 
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4. Consider three particles which are distributed among three energy levels. Discuss the 

possible microstates and macrostates of the system. 

 

2.11.3Numerical Answer Type 

1. How many macrostates and microstates are there when a single coin is tossed three times? 

2. There are two distinguishable particles to be arranged in three cells. Show the possible 

arrangements, and discuss the macrostates and microstates in a tabular form.  

3. A system has a single particle state with 0, 1, 2, and 3 energy units. Discuss the 

macrostates and microstates for three distinguishable particles to be distributed in these 

energy states such that the total energy of the system is 3 units. 

4. Discuss the macrostates and microstates for tossing of four coins simultaneously. 

 

2.11.4 Objective Answer Type  

1. In general the possible microstates for a given macrostate are: 

(a)   only 1                                                             (b) Zero 

(c)   as many as possible                                       (d) cannot say 

2. The relation between the statistical entropy and thermodynamic entropy is given by 

(a)                                                                (b)  

(c)                                                                (d)  

3. Among the following the correct expression for the entropy is 

(a)                                                      (b)  

(c)                                                      (d)  

4. In Liouville's theorem, which of the following physical quantity remains constant along the 

phase space trajectory: 

(a)   momentum                                                         (b) phase density 

(c)    energy                                                               (d) ensemble 
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5. At statistical equilibrium,Liouville's theorem tells us phase points are ……… distributed in 

phase space 

(a)  randomly                  (b) uniformly  

(c)  not uniformly      (d) neither randomly nor uniformly 

 

 

 

2.12 ANSWERS 

2.12.1 Self-Assessment questions: 

1. As we have already mentioned that for an ideal gas , so we can obtain  

 

2. If we check or calculate the change in Helmholtz free energy, i.e., ,and change in Gibbs 

free energy , then it provides us useful information about the system and the process 

underway. For example, if changes in these quantities vanish,i.e.,  (at constant 

temperature and volume) and  (at constant temperature and pressure), then it 

represents that the systemis at chemical equilibrium.The minimum value of these free 

energies represent that the system is in stable condition. The change also tells us about the 

direction and nature of the process taking place. If at constant temperature and 

volume, the process is non-spontaneous, and corresponds to the 

spontaneousprocess. Similarly, for  the process is non-spontaneous (endergonic), 

while is signature of the spontaneous (exergonic)process at constant temperature and 

pressure. All these facts are summarized in the following table.  

State 

function 

Mathematical 

form 

Differential equation Condition 

for change 

in free 

energy 

Stable 

equilibrium 

measure 

/Type of 

process 

Helmholtz 

free energy 

(F) 

   
System is in 

equilibrium 

 
Non-

spontaneous  

 
Spontaneous  
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Gibbs free 

energy (G) 
   

System is in 

equilibrium 

 
Non-

spontaneous 

(endergonic) 

 
Spontaneous 

(exergonic) 

 

3.Different microstates and macrostates for the distribution of two classical (distinguishable) 

particles in two compartments. 

Macrostate Microstate 

Description of states Number  

 Compartment 1 Compartment 2 of states 

(2, 0)  a b 0 1 

(1, 1) a b 2 

b a 

(0, 2) 0 a b 1 

 

4.Possible macrostates and the corresponding microstates for tossing of two coins. 

 

Macrostate Microstate 

Description of states Number  

 Coin 1 Coin 2 of states 

Both heads H  H 1 

Either head or tail H T 2 

T H 

Both tail T T 1 
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5. Let us consider an elementary volume  in the phase space, and the phase space 

density can be assumed uniform throughout the phase space for this very small region. Thus, 

from equation (2.27) we will have 

 

We know in a given phase space each phase point represents a definite system, which can 

neither be created nor destroyed. Therefore, , i.e., the number of phase point  

remains fixed. So, 

 

With the help of equation (2.36), the above equation reduces to 

 or . 

This shows the conservation of extension in phase space. 

2.12.2 Numerical answer type:  

1.  The macrostates are (three heads, two heads, one head, no head), and the corresponding 

microstates are (three heads: HHH; two heads: HHT, HTH, THH; one head: HTT, THT, 

TTH; no head: TTT). 

2.  Let the particles be R and P 

 

Macrostates Microstates Total number 

of microstates 

Cell 1 Cell 2  Cell 3  

Both in same 

cell 

RP - - 3 

- RP - 

- - RP 

Both in 

different cells 

R P - 6 

P R - 

- R P 

- P R 
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R - P 

P - R 

 

3. Consider three particles as J, K, and L, and the energy unit is E. 

Macrostates 0E 1E 2E 3E Total 

energy 

Number of 

microstates 

(2, 0,0, 1) JK 

KL 

LJ 

0 

0 

0 

0 

0 

0 

L 

J 

K 

3E 3 

(1, 1, 1, 0) J 

J 

K 

K 

L 

L 

K 

L 

L 

J 

J 

K 

L 

K 

J 

L 

K 

J 

0 

0 

0 

0 

0 

0 

3E 6 

(0, 3, 0, 0) 0 JKL 0 0 3E 1 

 

4.  There are five macrostates as (all heads, only one head, two heads, only one tail, and all 

tails). The possible microstates are (HHHH, TTHT, TTTH, THTT, HTTT, HHTT, HTTH, 

THHT, THTH, TTHH, HHHT, HHTH, HTHT, HTHH, THHH, TTTT). 

2.12.3 Objective answer type: 

1. Correct option is (c), as many as possible. 

2. Correct option is (b), . 

3. Correct option is (a), . 

4. Correct option is (b), uniformly. 

5. Correct option is (d), statistical equilibrium. 
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3.1 INTRODUCTION 
We have already discussed and understand so farthe basic concepts of statistical mechanics 

and probability theory. We have further elucidated the relevance of statistical equilibrium in 

this discussion and stressed on the connection between statistical and thermodynamic 

quantities.The principle of equal a priori probability and the ergodic hypothesis enable us to 

compute statistical quantities and understand intensive and extensive thermodynamic 

properties. We have also discussed that the density of a group of points remains constant 

along their phase trajectorieswhich is useful in the Gibbs formulation of statistical mechanics. 

Our basic tools for both classical and quantum statistics are incomplete without the 

introduction of the idea of macrostates and microstates. Each phase point in the phase space 

corresponds to a microstate while many such microscopic statesmay have same macroscopic 

properties and thus macrostate. In the present unit, we will stress on the significance of the 

number of microstates in each macrostate which is concerned with thermodynamic 

probability. We will revisit the definition of the most probable state in view of the 

thermodynamic probability. 

We have all the tools required to understand the classical statistics governed by Maxwell-

Boltzmann distribution law. We also discuss the nature of particles this type of statistics may 

be used.We further study Maxwell-Boltzmann distributions of velocity and speedin brief. 

This gives us significant types of speeds namely, most probable speed, mean speed and root 

mean square speed. These unique types of speeds have a prominent role in statistical 

mechanics. Therefore, we will not only obtain their mathematical expressions, we will also 

discuss their physical relevance with the help of corresponding examples. We conclude this 

unit, as well as this block, focused on the classical statistics with the principle of equipartition 

of energy over all the degrees of freedoms. 

Here, it is worth stressing thatthe significance of the discussion in the present unit (and this 

block) is not restricted to classical particles, but many of these basic ideas areeither directly 

useful or easily extendible to quantum statistics to be discussed in the forthcoming blocks. 

One more significant example of classical statistics deservesattention here could be 

interaction between a quantum particle and its environment, which causes decoherence or 

quantum to classical transition of quantum behavior. To perform this study the environment 

is modeled as a classical system governed by Maxwell-Boltzmann statistics. There are 

various physical processes relevant in different branches of physics where the topics 

discussed in the present unit will be useful. For instance, obtaining Einstein coefficients and, 

in turn, the idea of laser. To begin with, we start our discussion with thermodynamic 

probability of macrostates.  

3.2 OBJECTIVES 
After studying this unit, you should be able to understand- 

• Thermodynamic probability 

• Most probable state 

• Classical distribution law known as Maxwell-Boltzmann distribution law 

• Maxwell law of distribution of velocities 
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• Maxwell speed distribution law 

• Principle of equipartition of energy 

• Fundamental postulates of statistical mechanics 

 

 

3.3 THERMODYNAMICAL PROBABILITY 
In the previous unit, we have discussed the microstates and macrostates in detail. The number 

of microstates corresponding to a given macrostate is called its thermodynamic probability. 

Hence, the probability of a macrostate is defined as the ratio of the number of microstates in 

it to the total number of possible microstates of the system. 

.                                                     …(3.1) 

 

For a given macrostate, the number of microstates is equal to the number of 

possiblearrangements of various particles. Consider there are n particles to be filled in two 

compartments. Let r particles are kept in Compartment 1 and the remaining (n-r) are in 

Compartment 2, thenthe total number of arrangements is given by 

… (3.2) 

Here, the notation means we have totaln particles, and out of these we choose rparticles 

to be filledin one compartment and the remaining in the second compartment.  

Thus,thermodynamic probabilitygives the number of microstates in a macrostate (r, n-r). 

Further, if there are c compartments, then the total number of microstates of the system is . 

Therefore, the probability of macrostate (r, n-r)can be computed as 

.                                                                                     …(3.3) 

With the help of following examples we can understand the concept of thermodynamic 

probability and probability. 

Example 3.1: Let us distribute three distinguishable particles a, b, and c in two compartments 

as shown in Table 3.1. The system has four macrostates and eight microstates. 

 

 

          MACROSTATE MICROSTATES 

       Description of state Number of states 

Compartment 1 Compartment 2 

(3, 0) a b c 0 1 

(2, 1) a b  c 3 

b c a 
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c a b 

(1, 2) c a b 3 

a b c 

 b a c 

(0, 3) 0 a b c 1 

Table 3.1: Distribution of three distinguishable particles a, b, and c in two compartments. 

 

Thermodynamic probability of macrostate (3, 0) is 1 as there is only one possible microstate 

corresponding to macrostate (3, 0). Similarly, thermodynamic probability of macrostates (2, 

1), (1, 2), and (0, 3) are 3, 3, and 1, respectively.  

 

Example 3.2:  Calculate the thermodynamic probability for the case of three coins tossed 

several times.  

In this case, there are eight possible microstates. See Table3.2 below summarizing all these 

possible outcomes.  

 

Table 3.2:All possible outcomes of three coin tosses summarizing all microstates and 

macrostates. 

 

Now we can discuss the thermodynamic probability of all the macrostates.Thermodynamic 

probability of both macrostates “All heads” and “All tails” is 1 as there is only one microstate 

Macrostates Microstates 

First coin Second 

coin 

Third 

coin 

Number 

of states 

All heads H H H 1 

Two heads H H T  

3 H T H 

T H H 

Two tails H T T  

3 T H T 

T T H 

All tails T T T 1 
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corresponding to these macrostates.Similarly, thermodynamic probability of macrostate “Two 

heads” is 3.You can verify that the thermodynamic probability of macrostate “Two tails” is 3. 

 

In Unit 1,we have discussed the postulate of equal a priori principle and stated that it is 

connected with the concept of microstates and macrostates.Further, in unit 2 we have already 

discussed this principle in brief. Here, we can verify the validity of this principleusing the 

following example. 

 

Example 3.3: Let us consider three distinguishable particles, say a, b, and c, in two 

compartments (see Example 3.1). 

With the help of the expression for thermodynamic probability and probability, we can 

calculate probabilities of different microstates as 

Probability of microstate (a b c, 0) corresponding to macrostate (3,0)= . 

Probability of microstate (a b, c) corresponding to macrostate (2, 1) = . 

Probability of microstate (a, bc) corresponding to macrostate (1, 2)  = . 

Probability of microstate (0, a b c) corresponding to macrostate (0, 3) = . 

Thus, we can conclude that the probability of all microstates of the system corresponding to 

the possible macrostates isequal. 

 

Self Assessment Question (SAQ) 1: Check the validity of the postulate of equal a priori 

principle by considering the system of four particles a, b, c, and d in two compartments for 

any two macrostates. 

 

3.3.1 Most probable state: Equilibrium state 

In statistical physics, we deal with systems with a very large number of particles and assume 

that the system exists in an equilibrium state. All the physical properties of such a system can 

be deduced by knowing the most probable or equilibrium state of the system. Thus, the 

macrostate having maximum probabilityis termed as the most probable state. 

Suppose there is a system of n distinguishable particles distributed in two compartments. Let 

r particles are kept in Compartment 1, and the remaining (n-r) are in Compartment 2, then the 

total number of arrangements = . Therefore, the probability of macrostate(r,n-r) is 

represented as 

.         

 …(3.4) 

The probability will be maximum when . The maximum value of probability is then 

given by   or  

         …(3.5) 
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We will elaborate this idea further using an example. 

 

 

Example 3.4: A coin is tossed six times. What is the probability of getting (i) all heads, (ii) 

three heads and three tails, (iii) four heads and two tails?Also calculate the probability of the 

most probable state.  

We have a coin which is tossed six times. Here, we will use equation (3.4). For there are all 

heads, then . Therefore,  

(i) For there are three heads and three tails, then . 

Therefore,  

(ii) For there are four heads and two tails, then . 

Therefore,  

We have already mentioned that for most probable state , and thus the result of (ii) 

corresponds to the most probable state. 

 

3.4 CLASSICAL MAXWELL-BOLTZMANN DISTRIBUTION 

LAW 
 

The distribution of classical particles is given by Maxwell-Boltzmann distribution law. In 

general, we have three types of particles. The first kind of particles is identical but 

distinguishable (like molecules of a gas) and the other two categories have identical but 

indistinguishable particles with integer or half integer spin (shall be discussed in Block 3 

under quantum statistics). 

The Maxwell distribution law, we are going to discuss or derive here, tells us about the 

distribution of energy among the assembly of identical particles.Let us consider a system of a 

large number of particles or gas molecules (say N)with of them in different 

compartments(or different energies), namely 1, 2, 3,…i, respectively.First, we will write the 

basic assumptions of classical statistics as 

(a) The particles or classical particles are identical and distinguishable. 

(b) Each energy level or state can be occupied by any number of particles. 

(c) The total number of particles in the system is constant the total number of particles  

      ...(3.6) 

or 

        ...(3.7) 

(d) The total energy of all the particles in the system is also constant 

         

 ...(3.8) 

or 

          ...(3.9) 
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where  is the energy of the ith particles. 

 

All these N particles are continuously moving in different directions and thus the values of 

skeep changing,maintaining the values which define the state of maximum probability or 

most probable state.  We know that in this equilibrium state the thermodynamic 

probability  is maximum, which can be written in the condition  

  ...(3.10) 

where the thermodynamic probability may be written in this case as 

.         ...(3.11) 

Taking the logarithm of both the sides, we get 

.     ...(3.12) 

Note that the number of molecules is large which allows us to use Striling’s approximation 

(i.e., ) to obtain 

 
      …(3.13) 

Differentiating this equation with respect to  (keep in mind that the total number of 

particles N is constant) we obtain 

     ...(3.14) 

or 

         ...(3.15) 

Equations (3.7), (3.9), and (3.15) are independent of each other and they must be satisfied at 

any instant. Thus, we apply the Lagrange method of undetermined multiplier, i.e., multiply 

equation(3.7) by ,equation(3.9) by , and adding the resultant equations to equation(3.15), 

we get 

       …(3.16) 

where  and  are arbitrary constants independent of s.Similarly, all s are independent 

of each other. Thus, equation (3.16) will be satisfied only when each term in the summation 

is separately equal to zero, i.e., 

          

After rearrangement and simplification,we can rewrite this equation as 

         ...(3.17) 

This expression is known as Maxwell-Boltzmann distribution law of particles in classical 

statistics.Here, the values of two constants  may be further evaluated in 

thenextsubsection. 

This distribution law has various important applications, such as in discussing the probability 

that a given assembly of molecules in equilibrium, and in understanding the equipartition 

principle in detail. With the help of above distribution law, we will discuss the some 

important distribution laws in statistical mechanics, i.e., the law of distribution of velocities 

and speedsof molecules. 
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3.4.1 Evaluation of constants  and in Maxwell-Boltzmann 

distribution law  
For evaluating the two constants in Maxwell-Boltzmann distribution law, we assume 

continuous distribution of energy and can represent equation (3.17) in the following form 

        …(3.18) 

where  and  is the number of molecules with energy between  and . 

Now consider a system of monoatomic ideal gas of mass m defined in three Cartesian (x, y, z) 

coordinates and three momentum coordinates . Then the number of molecules in 

volume element with energy in the range  and are 

      …(3.19) 

The kinetic energy of these particles  with velocity components  is given by 

 
Thus, we can write equation (3.19) as  

  …(3.20) 

The total number of molecules can be obtained by integrating it over all the possible values of 

position and momentum coordinates as 

 …(3.21) 

Thus, we can write 

     …(3.22) 

The integration over coordinate space gives us the total volume ,therefore, 

       …(3.23) 

Thus, equation (3.23) becomes 

       

With the help of a standard result 

 
we get 

 
or 

         …(3.24) 

We know the total energy E of N molecules is 

       …(3.25) 
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Using equations (3.19)-(3.20) in equation (3.25), we get 

 
or 

    …(3.26) 

As we can write this integration in the following form 

     …(3.27) 

which allows us to use the standard result  

 
to obtain equation (3.27) as 

 
or 

         …(3.28) 

With the help of equation (3.24), the expression of energy comes out as 

          …(3.29) 

For an ideal gas we have  

          …(3.30) 

So on comparing equation (3.29) and equation (3.30), we have  

          …(3.31) 

Now, from equation (3.24), we get 

or   

or 

     …(3.32) 

Thus, we can obtain the coefficient as 

.        …(3.33) 

Thus, on substituting the values of constants the distribution law can be written as 

.        …(3.34) 

 

3.4.1 Maxwell distribution law of velocities 
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At equilibrium, the Maxwell-Boltzmann distribution law is given by equation (3.17). If we 

consider the position and momentum in the range , , 

, , , , respectively. Thus, the number 

of molecules in this phase space volume element is proportional to the corresponding volume 

. 

Therefore, the number of molecules  of mass m having energy  in this volume element 

using equation (3.34) is given by 

…(3.35) 

In terms of position-velocity coordinates in the range , , 

, , , , equation (3.35) can be written 

using as 

 ...(3.36) 

If we further integrate this equation with respect to the position coordinates, we will get the 

number of molecules having velocity coordinates in the range , , 

and  as 

    ...(3.37) 

Therefore, we can obtain the number of molecules having velocity components in the range 

 by integrating this equation with respect to , which becomes  

 

 

 
thatcan be simplified as 

      …(3.38) 

This equation gives a symmetric distribution of the number of molecules having x-component 

of velocity in the range . Therefore, the probability that a molecule will have 

x-component of velocity in the range  can be represented as 

     ...(3.39) 

These two equations, i.e.,equations(3.38) and (3.39), representthe Maxwell distribution law 

of velocities. In a similar way, we can obtain the expressions for the number of molecules 
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having x and y component of velocity in the range , and , 

respectively. 

It is clear from equation(3.39) that the function  is symmetrically 

distributed about , i.e., . This can be used to calculate the average 

value of using Maxwellvelocity distribution to be zero. Further, the maximum of the 

probability distribution function can be calculated using the first derivative with respect to , 

i.e.,  or . Thus, the maximum value of  is  

        ...(3.40) 

It is clear from this equation that  increases as massm increases whileT decreases. 

 

Example 5:  Calculate the velocity component  for which the probability falls to times the 

maximum value. 

The probability distribution function is given by 

        

The condition   gives the value of maximum probability, i.e., 

          

We are given that 

         

Therefore, 

         

or 

           

Taking logeof both the sides of this equation  

. 

Using the property , we obtained 

            

Hence, this is the value of  for which the probability falls to times the maximum value. 

 

Self Assessment Question (SAQ) 2: Calculate the value of velocity component , for which 

the probability falls to  times the maximum value. 
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3.4.3 Maxwell speed distribution law 
Let us obtain the expression of the speed distribution law from the velocity distribution law 

given by equation (3.37). This equation represents the Maxwell distribution law for the 

number of molecules with velocity components in the interval , , 

and .For the expression of speed distribution, we change the velocity 

components in terms of the speed of a molecule v and changing it over to polar coordinates, 

i.e., 

and . 

Using these values in equation(3.37), we get 

.     …(3.41) 

This is the equation for the number of molecules with speeds between v and v+dv in a 

direction lying within the angular ranges and ,and and . We can obtain the 

number of molecules with velocity between v and v+dv (say )by integrating over the 

angular part as 

    …(3.42) 

or 

.       …(3.43) 

The function  is called the Maxwell speed distribution function, and  is called the 

probability distribution functiongiven by 

.        …(3.44) 

Both the velocity and speed distributions have been experimentally verified, too.  

Most probable speed ( ): It is the speed at which distribution has maximum value. 

The condition for  to be maximum is  or  This 

can be simplified to , which gives  or  

.           …(3.45) 
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This is the most probable speed of molecules. 

Mean or average speed ( or ):It is the mean of all the speeds at which the molecules of 

the gas are moving.Thus, the mean speed is calculated 

as or 

which can be simplified as 

.          …(3.46) 

Root mean square speed ( ):It is the average speed squared of the molecules of the gas. 

It can be defined as which can be simplified as 

or Thus, we can 

compute  

.          …(3.47) 

It is clear from equations (3.45)-(3.47) that (see Figure3.1). 

 

Figure 3.1:Speed distribution of gas moleculesdepicting most probable , average , 

and root mean square speeds. 

 

The variation of the speed distribution with all three types of molecular speeds, i.e., most 

probable, average, and root mean square speeds,is depicted in Figure3.1. The graph shows 

how the speeds of molecules are distributed for a gas. The vertical axis of the distribution 

graph gives the number of molecules per unit speed, and the total area under the entire curve 

is equal to the total number of the molecules in the given gas. Here, we can also see that the 

most probable speed is the speed that is most likely to be found for a molecule in a gas. 

Example 3.6: Calculate the most probable speed of hydrogen molecule at 27
0
C. 

Use , mass of hydrogen molecule . 

We have the expression of most probable speed given by equation (3.45)  
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Using mass of hydrogen molecule and 

temperature . From the expression of most probable speed 

 
 

Example 3.7: Calculate the root mean square value of speed of nitrogen molecules (mass of 

the nitrogen molecule ) at 27
0
C.  

With the help of equation (3.47). For given temperature , we can 

compute  

 
 

 

Example 3.8: At what temperature the mean speed of hydrogen molecules will be same as 

that of oxygen molecules at 35
0
C. (Given, the molecular mass of hydrogen molecule is 2 and 

of oxygen molecule is 32.) 

We have the expression of mean speed given by equation (3.46). 

For hydrogen molecules,  

While for oxygen molecules,  

Given, , , . 

According to the question 

, i.e., , and thus 

 
Therefore, at  the mean speed of hydrogen molecules will be same as that of 

oxygen molecules at 35
0
C. 

 

Self Assessment Question (SAQ) 3:Calculate the most probable, average, and root mean 

speed of oxygen molecules at 27
0
C. (Given, molecular mass of 

hydrogen molecule is 2 and of oxygen molecule is 32.) 

 

Self Assessment Question (SAQ) 4:Calculate the temperature at which the most probable 

speed of the molecules of hydrogen gas will be double the most probable speed of oxygen 

molecules at 300 K. (Given, , molecular mass of hydrogen molecule 

, and molecular mass of oxygen molecule .) 
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3.5 PRINCIPLE OF EQUIPARTITION OF ENERGY 
This principle states that the total kinetic energy of a system in thermal equilibrium at 

temperature T is equally distributed amongst the various degrees of freedom, and the average 

kinetic energy associated with each degree of freedom is , where k is Boltzmann’s 

constant. 

With the help of the following discussion, we can understand this principle in more detail. 

Consider one mole of a monoatomic gas in thermal equilibrium at temperature Tand each gas 

molecule has three degrees of freedom due to its translational motion, i.e., 

          ...(3.48) 

where  is the mean square velocity of the gas molecules, and m is the mass of the molecule. 

If the components of the mean square velocity of the gas molecules along the three 

axesare , , and , respectively. Then the average energy of a gas molecule will be 

       ...(3.49) 

From above two equations, i.e., (3.48) and (3.49), we have 

       ...(3.50) 

However, it is clear that the molecular motion is random in nature, and there is no preferred 

direction of motion. Therefore, the average kinetic energy corresponding to each degree of 

freedom is same. Thus, we can write 

        ...(3.51) 

Hence, from equation(3.50) we can express 

       ...(3.52) 

This suggests that the mean kinetic energy per molecule per degree of freedom is . 

Further, if we generalize this discussion for a system of N molecules of monoatomic gas then 

there are 3N number of degrees of freedom, and therefore the total kinetic energy is 

.For example,in case of10 Helium molecules,there will be 30 degrees of freedom. 

 

Example 3.9: Discuss the principle of equipartition of energy for diatomic gas molecules. 

The diatomic gases (like nitrogen, hydrogen, oxygen) have five degrees of freedom (three 

translational and two rotational). Therefore, the total kinetic energy 

is  

Example 3.10: Discuss the principle of equipartition of energy for linear triatomic and non-

linear triatomic gas molecules. 

The linear triatomic molecule like carbon dioxide has five degrees of freedom (three 

translational and two rotational). Hence, the total kinetic energy ofa linear triatomic molecule 

is .However, in case of a non-linear triatomic molecule, like water 
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molecule, there are six degrees of freedom (three translational and three rotational). Hence, 

the total kinetic energyof a linear triatomic molecule is . 

Example 3.11: The average kinetic energy of a monoatomic gas molecule at a certain 

temperature is . Calculate the temperature giventhat . 

Solution: We know the average kinetic energy of a monoatomic gasis . 

So, , 

 
 

 

Self Assessment Question (SAQ) 5: What is the total kinetic energy for a hydrogen chloride 

molecule? 

 

3.6 Classical statistics in brief 
We have studiedthe first three units focused onclassical statistical mechanics. Many of the 

concepts are discussedwhich are basic building blocks of classical statistical physics. Here, 

we are in the position of summarizing all these important discussions as follows. 

(i) Any gas under consideration is a collection of a large number of molecules in motion. 

(ii) All the phase cells in a phase space are equal in size. 

(iii)All the accessible microstates corresponding to all possible macrostates are equally 

probable. 

(iv) The equilibrium state of a gas corresponds to the macrostate of maximum probability. 

(v) The total number of molecules is constant. This is in agreement with the conservation 

of matter. 

(vi) The total energy of the system is constant. This is in agreement with the conservation 

of energy. 

The conclusion of classical statistics mentioned abovewill be further helpful in constructing 

the structure of quantum statistical mechanics and its applications.  

 

 

 

 

 

3.7 SUMMARY 
 

This unit is solely based on the concept of thermodynamic probability. In this unit, we have 

learned about the concepts of thermodynamic probability and also calculated it for different 

cases. Further, with the help of this concept we discussed the distribution of molecules in the 

classical scenario as Maxwell-Boltzmann distribution law. This law is applicable for only 

classical particles or molecules. As an application of Maxwell-Boltzmann distribution law, 

we have obtained the expression for the velocity distribution law. Also, we discussed 
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Maxwell speed distribution law and defined the various types of speeds namely most 

probable speed, mean or average speed and root mean square speed. We have further shown 

that the root mean square speed is maximum and most probable speed is minimum among all 

three speeds. We also came to know about the principle of equipartition of energy which 

states that for a system in thermal equilibrium, on the average, an equal amount of energy 

will be associated with each independent energy state or degree of freedom associated with 

the system. 

As a whole we can say that we are now familiar with all the basics of statistical mechanics 

after completing this unit including first two units. In the next units, we shall discuss the 

concepts of ensemble and different types of ensembles in detail. 

 

 

 

3.8 GLOSSARY 
 

Thermodynamic probability Itis the number of microstates corresponding to a given 

macrostate. 

Most probable state The most probable state is a macrostate with maximum 

probability. 

Maxwell-Boltzmann distribution 

law 

It is a probability distribution in classical statistical 

mechanics used for discussing the distribution of 

speed, velocity, and energy of particles at a particular 

temperature. 

Equipartition principle This principle states that energy is shared equally 

among all the accessible degrees of freedom of a given 

state. 

Degree of freedom It isdefined as the number of independent ways that 

specify the orientation or dynamics of a system or 

body, such as translational, rotational and vibrational. 
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3.11 TERMINAL QUESTIONS 
 

3.11.1Short Answer Type  

1. What is thermodynamic probability? 

2. What is most probable state? 

3. Write down the expression of Maxwell-Boltzmann distribution law. 

4. State the principle of equipartition of energy. 

5. What is the total kinetic energy for a linear hydrogen cyanide (HCN) and 

non-linear Sulfur dioxide (SO2)molecules? 

6. Write down the expressions for the most probable, average, and root mean 

square speeds. 

 

3.11.2 Long Answer Type 

1. With the help of an example, discuss the difference between probability and 

thermodynamic probability. 
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2. Derive the expression of Maxwell-Boltzmann distribution law for the distribution of 

particles. With the help of distribution law also obtain the Maxwell velocity distribution law? 

3. Obtain an expression for speed distribution of particles in classical statistical mechanics. 

Also deduce the expression for the most probable, average and root mean square speeds. 

4. What are the postulates of statistical mechanics? 

5. State and prove the principle of equipartition principle. 

 

3.11.3 Numerical Answer Type 

1. Calculate the thermodynamic probability of various macrostates corresponding to the 

distribution of two distinguishable particles into three energy levels 0, E, and 2E. 

2. Consider five particles in three compartments and calculate the thermodynamic probability 

for (i) 4 particles in the first compartment, one in the second, and none in the third 

compartment, and (ii) All five particles in the first compartment, and none in the second and 

third compartments. 

3. Find out the number of ways of distributing two identical particles in three distinct energy 

levels according to classical Maxwell-Boltzmann statistics. 

4. Find the value of temperature at which the mean speed of hydrogen molecules is double 

the mean speed of fluorine molecules at 300K.[ , molecular 

mass of hydrogen molecule is 2 and of fluorine molecule is 38.] 

5.If the most probable speed of nitrogen molecule is 50m/s at T K. Calculate the most 

probable speed of oxygen molecule at temperature4T K. [Given, , 

mass of nitrogen molecule  mass of oxygen molecule 

] 

3.11.4 Objective Answer Type  

1. In statistical equilibrium, the thermodynamic probability of a system is 

(a)   1                                                            (b) zero 

(c)    maximum                                              (d) minimum but not 1 

2. Maxwell-Boltzmann statistics is applicable for 

(a)   photons                                                          (b) ideal gas 

(c)   phonons   (d) electrons 

3. The value of  in Maxwell-Boltzmann distribution law is 
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(a)   1                                                              (b) zero 

(c)                                                              (d)  

4. The most probable speed of a gas molecules of mass m at a given temperatureT K is 

proportional to 

(a)  m                                                             (b)  

(c)                                                               (d)  

5. The speed of four particles are 2, 2, 3, and 3, respectively. Their root mean square speed is 

(a)                                                               (b)  

(c)    (d)  

6. The ratio between the root-mean-square speed, average speed and most probable speed 

will be 

(a)  1.596: 1.732: 1.414                                        (b)  1: 1.596: 1.414 

(c)   1.732 : 1.596: 1.414                                      (d) 1.596: 1.732: 2.125 

 

3.12 ANSWERS 

3.12.1 Self-Assessment questions 

1. The two macrostates for the distribution of four distinguishable particles a, b, c, and d in 

two compartmentsmay be chosen as 

Macrostate (0, 4) – One possible microstate (0, a b c d). 

Macrostate (1, 3) – Four possible microstates {(a, b c d); (b, c d a); (c, d a b); (d, a b c)}. 

Probability of microstate (0, a b c d) corresponding to macrostate (0, 4) = . 

Probability of microstate (a, b c d) corresponding to macrostate (1, 3) = . 

Probability of microstate (b, c d a) corresponding to macrostate (1, 3) = . 

Probability of microstate (c, d a b) corresponding to macrostate (1, 3) = . 

Probability of microstate (d, a b c) corresponding to macrostate (1, 3) = . 

2.The probability distribution function is given by 

 
According to question 
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,        

         

or 

           

Taking loge of both the sides of this equation  

.  

We obtained 

 

3. Use equations (3.45), (3.46) and (3.47).Here temperature is T= 27+273=300K. 

 

 

 

4. We have the expression of most probable speed given by equation (3.45). 

For hydrogen molecules,  

While for oxygen molecules,  

Given, , , . 

According to the question 

 , i.e.,  ,  

and thus 

 
Therefore, at  the mean speed of hydrogen molecules will be double as that of 

oxygen molecules at 300K. 

5. HCl is a diatomic molecule having three translational and two rotational degrees of 

freedom. So, the total kinetic energy of this molecule is 

. 
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3.12.2 Numerical answer type question: 

1.  Let the two particles are A and B 

 

 

As we know that thermodynamic probability is the number of microstates corresponding to a 

given macrostate. Therefore, 

Thermodynamic probability of macrostate “Total  energy 0” = 1. 

Thermodynamic probability of macrostate “Total  energy E” = 2. 

Thermodynamic probability of macrostate “Total  energy 2E” = 3. 

Thermodynamic probability of macrostate “Total  energy 3E” = 2. 

Thermodynamic probability of macrostate “Total  energy 4E” = 1. 

 

2.   Let the five particles are a, b, c, d, and e. We can write all the microstates corresponding 

to the desired macrostates. 

Macrostates Microstates 

0E E 2E Number 

of states 

Total  energy 0 AB - - 1 

Total  energy E A B - 2 

B A - 

Total  energy 2E - AB - 3 

A - B 

B - A 

Total  energy 3E - A B 2 

 B A 

Total  energy 4E - - AB 1 

Macrostates Microstates 

0E E 2E Number 

of states 

(4,1,0) 

 

abcd e - 5 

abce d - 

abdc c - 
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(i) Thermodynamic probability of macrostate (4,1,0) = 5. 

(ii) Thermodynamic probability of macrostate (5,0,0) = 1. 

 

3. Let the two particles are and .According to Maxwell-Boltzmanndistribution law a 

single state can be occupied by an arbitrary number of particles. So, the distribution is given 

as  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.Use equation (3.46) for calculating . Here,temperature , so 

, 

and thus 

. 

5. From equation (3.45), for nitrogen molecules we can write 

adce b - 

bcde a - 

(5,0,0) 

 

abcde - - 1 

Macrostates Microstates 

Energy 

level 1 

Energy 

level 2 

Energy 

level 3 

Both in same state 
 

- - 

-   - 

- -   

Both in different states 
  

- 

  
- 

 
- 

 

 
- 

 

- 
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,  

or 

. 

Now again with the help of equation (3.45), for oxygen molecule, 

 
Substitute the value of T from the expression of nitrogen in the expression of , we 

get 

 
 

3.12.3 Objective answer type questions: 

1. Correct option is (c), maximum. 

2. Correct option is (b), ideal gas. 

3. Correct option is (d), . 

4. Correct option is (b), . 

5. Correct option is (a), . 

6.  Correct option is (c), 1.732 : 1.596: 1.414. 
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4.1 INTRODUCTION 
 

We already understand the significance of statistical mechanics in the modern physics. 

Specifically, its applicability in studying the systems with a large number of constituent 

particles,where it provides us tool to study the macroscopic properties of the system in terms 

of the microscopic properties of its particles. We have already learned the basic tools of 

statistical physics and classical statistics in Block 1.  

The statistical analysis of the systemis useful if we consider a probability distribution 

describing the state of the systemcalled ensemble, which allows us to calculate the average 

values of the macroscopic properties as a weighed function with the help of probability 

distribution.Physically, we can consider an ensemble as multiple copies of independent 

systems with same macroscopic properties but different microscopic states. There are 

different types of ensembles depending uponthe macroscopic constraints. One of the most 

significant ensembles describes isolated system, i.e., when the individual assemblies are 

separated by a rigid, impermeable, and well insulated walls and thus the individual systems 

cannot exchange energy and particles with each other. The present unit will be focused 

entirely on this particular type of ensemble, i.e., microcanonical ensemble. 

Ourunderstanding of the thermodynamics tells us that entropy or randomness is an extensive 

property.Therefore, entropy of the systemobtained by mixing two distinct ideal gases 

increases, whereas if both ideal gases are sameit is a reversible process and entropy should 

not increase. Mathematically, a contradiction occurs in the latter case as it gives non-zero 

change in entropy, which is termed asGibbs paradox. This is resolved by dividing the number 

of microstates, used in obtaining the formula for entropy, by a factor called Gibbs factor. 

Quantum mechanics providesus an explanation for this factor as the constituent particles or 

gas molecules are identical. 

We will further discuss partition function, which quantifies the number of microstates 

accessible to the system in a given ensemble.While calculating this function, it becomes 

important that whether there exist more than one state with the same energy, if so it is 

referred to asdegeneracy.The partition function providesus a mathematical tool to obtain 

thermodynamic quantities.Therefore, we will be obtaining partition function and its relation 

to thermodynamic quantities for microcanonical ensemble. Some of the topics discussed in 

this unit will be further useful in the next units and understanding the rest of the ensembles, 

i.e., canonical and grand canonical ensembles. Specifically, we will obtain partition function 

for canonical and grand canonical ensembles in the next two units and obtain corresponding 

thermodynamic quantities. Here, we begin with a general discussion of ensemble theory.  

 

 

4.2 OBJECTIVES 
After studying this unit, you should be able to understand- 

• Concepts of ensemble 

• Microcanonical ensemble 
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• Entropy of an ideal gas in microcanonical ensemble 

• Gibbs paradox and Gibbs factor 

• Partition function 

• Relation between partition function and various thermodynamic quantities 

 

4.3 ENSEMBLE THEORY 
In statistical mechanics, we always deal with a large number of particles. For this kind of a 

system, it is very difficult to study the precise microscopic details of the system. Therefore, 

we need to construct the concept of ensembles in which a large number of systems with the 

same macroscopic properties but different microscopic properties are considered, and the 

individual system is assumed to evolve from different initial conditions. Therefore, the time 

evolution of individual system will be different from the other systems. Hence,the ensemble 

is a collection of copies of identical systems with the same macroscopic but different 

microscopic properties, and the macroscopic variables are obtained as averages over the 

system of ensemble. 

In statistical mechanics, there are three types of ensembles, namely microcanonical, 

canonical, and grand canonical, specified on the basis of macroscopic constraints. 

 

 

4.3.1 Microcanonical ensemble 
A collection of essentially independent assemblies with same energy , volume , and 

number of the particles  is known as microcanonical ensemble. The individual assemblies 

are separated by a rigid, impermeable, and well insulated walls. The macroscopic properties, 

such as , , and , are not affected by the presence of other systems. In this case, the 

individual systems cannot exchange energy and particles with each other(see Figure4.1). 

Here, it should be clear that independent systems essentially satisfy same macroscopic 

conditions, while the individual system in the ensemble differ in microscopic conditions. 
 

 

 

 
Figure4.1: Pictorial representation of microcanonical ensemble. 
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4.3.2 Canonical ensemble 
A collection of essentially independent assemblies with same temperature , volume , and 

number of the particles  is known as canonical ensemble. The individual assemblies are 

separated by a rigid, impermeable, and diathermic wall. The macroscopic properties, such as 

, , and , are not affected by the presence of other systems. Here, the individual systems 

can exchange energy, but not particles with each other. Since energy can be exchanged 

between assemblies, one could bring all of the assemblies in thermal contact with each other 

(see Figure4.2). 

 

 
Figure4.2: Pictorial representation of canonical ensemble. 

 

4.3.3 Grand canonical ensemble 
The grand canonical ensemble is a collection of essentially independent assemblies having 

same temperature , volume , and chemical potential . The individual assemblies are 

separated by a rigid, permeable, and diathermic wall. In grand canonical ensemble, the 

assemblies can exchange energy as well as particles with each other (see Figure4.3). 

 

 
Figure4.3:Pictorial representation of grand canonical ensemble. 
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We will discuss the microcanonical ensemble in the forthcoming sections of this unit. 

Whereas, the canonical and grand canonical ensembles shall be discussed in the Units 5 and 

6, respectively, in more detail. 

 

It is worth emphasizing here that the three kinds of ensembles mentioned in the previous 

section are used to obtain different thermodynamics quantities. 

 

Self Assessment Question (SAQ) 1:Discuss how microcanonical, canonical, and grand 

canonical ensembles are different from each other. 

 

 

4.4 MICROCANONICAL ENSEMBLE 
In the previous section, we have introduced the microcanonical ensemble in brief. The 

microcanonical ensemble is a system which is totally isolated from its surrounding. 

Therefore, it describes an isolated system, i.e., a microcanonical ensemble is a collection of 

multiple copies of the isolated system (seeFigure4.1). In microcanonical ensemble, the 

Boltzmann entropy relation is significant to discuss the thermodynamics of a 

system.Here, S is a thermodynamic quantity entropy and is a statistical quantity gives the 

total number of microstates. This serves as a bridge between statistical mechanics and 

thermodynamics, which shows that entropy is an appropriate thermodynamic function for 

understanding isolated system of microcanonical ensemble. 

 

4.4.1 Entropy of ideal gas in microcanonical ensemble 
We all are familiar with ideal gases since our graduation classes. Here, we briefly discuss 

what an ideal gas is. It is a gas in which the molecules interact only by elastic collisions and 

there are no intermolecular attractive forces between the molecules. Ideal gas obeys general 

gas equation and other gas laws. Further, the internal energy of an ideal gas is solely 

temperature dependent and is independent of its volume. Therefore, the internal energy is the 

only average kinetic energy of the molecules of an ideal gas. 

Let us calculate the expression for the entropy of an ideal gas in microcanonical ensemble. 

Suppose there are N particles or molecules of mass m each enclosed in a container of volume 

V with energy . The total energy of the system is E. Therefore, the total number of 

microstates is given by 

       

 …(4.1) 

Here, the integral over the phase space gives the total volume, andthus  

.        

 …(4.2) 

The integration is left in momentum spaceonly, and the momenta are constrained by relation 
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 …(4.3) 

Thisrepresents the equation of a 3N-dimensional hypersphere of radius . 

We assume that the energy is not exactly constant but vary by an amount , which 

satisfy . Thus, the momentum space available or accessible for the gas is a thin 

shell of a 3N-dimensional hypersphere of radius  and thickness . Therefore, 

the surface area of this hypersphere is . (Here, we use the standard result, 

the surface area of anN-dimensional hypersphere of radius Ris ). 

Hence, the total number of microstates can becalculated as 

 

 
or 

        

 …(4.4) 

Further, using the relation , the entropy of the gas can now be written as 

        …(4.5) 

which can be simplified as 

     

With the help of Stirling formula we can write 

 
Thus, the expression of entropy given by equation (4.5) now reduces as 

  

 …(4.6) 

In this equation, the terms in the curly bracket are much smaller than the other terms, hence 

we can neglect them, which results in 

      …(4.7) 

This is the expression of entropy (thermodynamic) for an ideal gas in the microcanonical 

ensemble. 
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We have a relation between thermodynamic entropy and statistical entropy as , where 

is Boltzmann’s constant, and  is the statistical entropy. Therefore, the expression of 

statistical entropy looks like 

       …(4.8) 

We now establish relation with other thermodynamic quantities. 

1. Internal energy: 

From Unit 2, we are familiar with the statistical temperature as 

 

 

 
We have used the fact that V and N are constant, so the remaining terms vanish.Thus, we get 

 
or the internal energy as  

         

 …(4.9) 

2. Relation between statistical temperature and thermodynamic pressure: 

Using the relation introduced in Unit 2, we have 

 

   

We have used the fact that E and N are constant here so the remaining terms vanish. Thus, we 

get the desired relation as 

 
or 

         …(4.10) 

3. Chemical potential: 

We have already discussed in Unit 2 that 
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Therefore, the chemical potential can be defined as 

         …(4.11) 

 

Example 4.1:If the available volume Vof the container of an ideal gas is doubled with no 

change in the number of moleculesN,their massm, and total energyE, how will the statistical 

entropy will change? 

The new volume is now  and the total number of molecules are constant. Therefore, the 

expression of statistical entropy given by equation (4.8) becomes 

.  

This means that on increasing the volume by keeping the number of molecules constant the 

statistical entropy increases. 

Self Assessment Question (SAQ) 2:How will the pressure change in Example 4.1 discussed 

above? 

 

4.5 GIBBS PARADOX 
We all are familiar that the mixing of two different gases is an irreversible process which 

leads to an increase in entropy. The Gibbs paradox involves the contrast between the 

quantities for mixing two distinct ideal gases and that for mixing of the same ideal gas. Let us 

consider two different but similar ideal gases in a box of volume V with partition as shown in 

Figure4.4, at the same temperature and pressure. The ideal gas in Partition 1 (Partition 2) of 

volume  contains number of gas molecules of mass andtotal energy 

. We subsequently remove the partition and allow the gases to mix with each other. 

Before mixing, the initial entropy ( of the combined system, using equation (4.7), is the 

sum of the entropies of the two gases, i.e., 

.…(4.12) 

After mixing, i.e., on the removal of partition, the energy, temperature, and pressure will not 

change as they are at the same temperature and pressure. Thus, the volume available to both 

the gases is V. Therefore, the final entropy ( ) after mixing of gases comes out as 

.  …(4.13) 

So the change in entropy is 

 
i.e., 
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.        …(4.14) 

This shows that there is a change (an increase) in entropy after mixing of the same kind of 

different gases, which is what we are expecting. This change, i.e., is called the entropy of 

mixing. 

 

 
Figure 4.4: Pictorial representation of mixing of two ideal gases. 

If we further consider that there is same ideal gas on both sides before removing the partition, 

then a problem arises. On removing the partition there should be no effect on entropy as the 

system remains unchanged. However, the expression of change in entropy represented by 

equation (4.14) yieldsa change in entropy. Let us check this fact in detail. In the case of two 

identical ideal gases, .Therefore, the final entropy is 

 
or 

…(4.15) 

Here, is the total number of particles.Thus, equation (4.15) can be simplified as 

      …(4.16) 

We can calculate , which gives us anon-zero value, i.e., there is a change in the 

entropy.However, there should be no change in entropy because this is a reversible process, 

i.e.,after reinserting the partition we are not able to make out if the partition was removed 

before. This contradiction of mixing of identical gases is known as Gibbs paradox. 

This paradox can be resolved. Gibbs suggested that while counting the number of microstates 

for N molecules of anideal gas if we multiply the number of microstates by a factor known as 

Gibbs factor, i.e., by , the contradiction disappears.  

In this way equation (4.4) in Subsection 4.4.1, takes the following form 

        …(4.17) 

Hence, the expression of entropy (see equation (4.5)) takes the form, 
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      …(4.18) 

Further, on applying the Stirling’s approximation in this equation, we get an extra term 

in comparison with equation (4.7). Thus,on simplification we obtain the 

correct form of entropy as 

       …(4.17) 

This equation describes the entropy of a classical ideal gas known as the Sackur-Tetrode 

equation.  

Hence, the entropy of two gases before mixing can be described by 

  …(4.18) 

For two identical ideal gases, and . So equation (4.18) reduces in the 

following form  

 

 
Thus, the initial entropy of the combined system is 

       …(4.19) 

This equation is similar to the equation for the entropy after mixing. So inthe case of mixing 

of identical gases,there is no change in entropy after removing the partition. In a similar 

way,we can also verify Sakur-Tetrode equation for the case of different types of ideal gases, 

which gives the same result for the entropy of mixing. 

The justification for the Gibbs factor can be provided from the quantum mechanical point of 

view. Specifically, we know that the particles or atoms or molecules are considered as 

identicalin quantum statistics (discussed in detail in Section 1.3.4).  Consider Example 1.9 of 

Unit 1 and calculate the number of words that can be obtained by rearrangement of a five 

letter word. It would be , but what if all the five letters are same (say “aaaaa”) then we 

divide the total number  by 5!to obtain only 1 word after rearrangement, i.e., “aaaaa”. 

Similarly, we should count the microstates in this case by assuming the particles (gas 

molecules) are indistinguishable. Therefore, we must divide the number of microstates by , 

where N is the number of gas molecules. Thus, Gibbs paradox is resolved by taking into 

consideration that gas molecules are identical. 

 

Example 4.2:Out of the two cases given below in which case we will encounter Gibbs 

paradox for mixing of gases? 
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Case (a): There is an ideal gashelium (oxygen) in Partition 1 (Partition 2) of volume  

containing  number of gas molecules of mass  and total energy  before 

mixing. 

Case (b): There is an ideal gas helium (helium) in Partition 1 (Partition 2) of volume  

contains  number of gas molecules of mass  and total energy  before 

mixing. 

 

In case (b), we have identical gas molecules so due to the indistinguishability of gas 

molecules we will encounter Gibbs paradox. 

 

 

4.6 PARTITION FUNCTION AND ITS RELATION WITH 

THERMODYNAMIC QUANTITIES 
First of all, we define partition function, which tells us how many microstates are accessible 

to the system in a given ensemble. In other words, it is a measure of volume occupied by the 

system in phase space. Partition function plays a central role in statistical mechanics and is 

useful in calculating various thermodynamic functions. 

Consider an assembly or collection of  molecules of an ideal gas in microcanonical 

ensemble. The Maxwell Boltzmann distribution law can be written as, 

       …(4.20) 

where  is the energy of the ith particles,  and .Therefore, the total number of 

molecules in the given system is 

 
or  

         …(4.21) 

Thus, we introduce Z,called as partition function, as 

         …(4.22) 

This partition function represented by equation (4.22) tells us how the gas molecules are 

distributed among various energy states or the particles are partitioned among various energy 

levels.In a similar way, we will obtain the two different expressions of partition function for 

the other two types of ensembles, i.e., canonical ensemble in Unit 5 and grand canonical 

ensemble in Unit 6. 

Here, we introduce the term degeneracy, which corresponds to the situation if there are more 

than one stateor level with the same energy.Taking into consideration the degeneracy of 

states, the expression of partition function given by equation (4.22) modifies to 

         …(4.23) 

where  is the degeneracy factor.  

In thermodynamic equilibrium, partition function which is a function of thermodynamic state 

variables, like volume and temperature, describes the statistical properties of a system. 
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We will further discuss that various thermodynamic variables can be expressed in terms of 

the partition function or its derivatives.   

1. Relation with entropy (S):  

For a classical system or classical statistical mechanics the distribution of molecules can be 

defined by 

           …(4.24) 

Taking the logarithm of both sides of the equation 

        …(4.25) 

and using Striling’s approximation, we can write 

      …(4.26) 

Further, we know that the Maxwell Boltzmann distribution law is 

      …(4.27) 

With the help of equations (4.25) and (4.26), we get 

               

…(4.28) 

or 

    …(4.29) 

In equation (4.28), the last two terms represent the total energy of the molecules and the total 

number of molecules, respectively, i.e.,  

Therefore, equation (4.28) can be simplified as 

 

 

 

Further, using , the partition function, we get 

        …(4.30) 

Now we know that,the Boltzmann’s entropy relation is 

          …(4.31) 

With the help of equation (4.30), we get 

 
or 

        …(4.32) 

This is the relation between partition function and entropy. 

For an ideal gas, , so 

        …(4.33) 

This equation gives the entropy of an ideal gas in microcanonical ensemble. As in 

mechanics,the potential energy of a system tells us about its stability, in a similar way, 
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entropy gives information about the most stable equilibrium state of the system. Also the 

entropy difference determines the direction of a changein an isolated system. 

 

2. Relation with Helmholtz free energy (F): 

The Helmholtz free energy is defined as 

          …(4.34) 

which can be obtained using equation (4.31) as 

 
or 

         …(4.35) 

 

3. Relation with pressure (P):  

Pressure of a gas given by 

 
and can be obtained in terms of the partition function 

        …(4.36) 

4. Relation with total energy (E): 

The total energy of a system of N particle is given by 

          …(4.37) 

Here, the average energy per particle is obtained as  

 

 

 

Further, using  , it becomes 

      …(4.38) 

For an isothermal-isochoric process, we have  

 

 

 
or 

,  

and  
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         …(4.39) 

Thus, the total energy is given by 

 
or 

       …(4.40) 

This is the relation between total energy and partition function. 

 

5. Relation with enthalpy (H): 

 

The enthalpy is defined as 

 
and can be written in terms of the partition function as 

       …(4.41) 

 

6. Relation with Gibbs potential or Gibbs free energy (G): 

Gibbs potential is defined as 

 
It can be obtained in terms of partition function as 

 

 

 
which can be simplified as 

       …(4.42) 

 

7. Relation with specific heat at constant volume ( ): 

 

The specific heat at constant volume is defined as 

 
and using equation (4.38), we obtain 

 
This can be simplified to 

      …(4.43) 
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Thus, we can conclude that if we are able to write a partition function for a given system in 

microcanonical ensemble we can obtain various thermodynamic quantities of the system. 

 

Example 4.3:Consider a system of N particles with only three possible energy levels , , 

and . Write down the expression of the partition function and average energy per particle 

for this system by assuming that the particles are following Maxwell Boltzmann statistics. 

 

For the given system of N particles with only three possible energy levels , , and . Using 

equation (4.22) we can directly write the partition function as 

 
Further, from equation (4.38), the average energymay be expressed as 

 
 

Example 4.4:There are two energy levels  and  with degeneracy 1 and 2 for a system of 

two particles which follow Maxwell Boltzmann statistics. Calculate the mean energy of the 

system. 

 

It is given that the particles are following Maxwell Boltzmann distribution law and 

degeneracy of the lower energy level is 1, whereas degeneracy of the upper energy level is 2. 

So, we can write partition function using equation (4.23) as 

 
Again, using equation (4.38), we havethe mean energy of the system 

 
 

Self Assessment Question (SAQ) 3: The expression of partition function for a system is 

given as . Write down the expression for Helmholtz free energy. 

 

Self Assessment Question (SAQ) 4:Obtain an expression for total energy when the partition 

function of a system is given by .  

 

 

4.7 SUMMARY 
In this unit, we learned about the concept of ensembles and three types of ensemblesoften 

used in statistical mechanics.Based on the three different types of macroscopic conditions, 

these three categories of ensembles are proposed. We also discussed the microcanonical 

ensemble in detail by considering the system of ideal gases in classical statistics. Yet another 

important quantity in statistical mechanics, i.e., partition function, is discussed in detail along 

with its relation with various thermodynamic quantities. The paradoxin deriving entropy due 

to mixing of ideal gases is discussed as the well-known Gibbs paradox, which can be 

resolved by dividingthe number of microstates with the Gibbs factor.Quantum mechanics 
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provides an explanation of the Gibbs factor that it is due to indistinguishabilityof molecules 

or particles. 

This unit was further focused on the system of an ideal gas as we calculated the entropy of 

ideal gases in microcanonical ensemble. We know the connection between statistical 

mechanics and thermodynamics is given by the Boltzmann entropy relation.Thus, it is 

important to calculate entropy in a particular type of ensemble,which helps us to calculate 

other thermodynamic parameters.  

In a similar way, we will discuss the remaining two kinds of ensembles, i.e. canonical and 

grand canonical ensembles, in Units 5 and 6, respectively. Thus,topics discussed in this unit 

will also be helpful in understanding the calculations and discussions in the forthcoming 

units. 

 

 

4.8 GLOSSARY 

 
Ensemble A large number of systems with the same macroscopic 

properties but different microscopic properties are 

collectively called an ensemble. 

Microcanonical ensemble A collection of essentially independent assemblies with 

same energy E, volume V, and number of the particles N is 

known as microcanonical ensemble. 

Entropy A thermodynamic quantity which is a measure of the 

molecular disorder or randomness of a system. 

Gibbs factor For the system of indistinguishable particles or molecules 

we have to multiply the expression of number of 

microstates by a factor of , known as Gibbs factor. 

Gibbs paradox Gibbs paradox involves the contradiction between mixing 

two ideal gases of a different kind and that of mixing two 

ideal gases of the same kind. 

Partition function This is a function which tells us how the gas molecules are 

distributed among various energy states or the particles 

are partitioned among various energy levels. 
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4.11 TERMINAL QUESTIONS 

 

4.11.1 Short Answer Type 

1. Define ensemble. 

2. With the help of pictorial representation define microcanonical ensemble. 

3. What do you understand by partition function? 

4.  What is the Gibbs paradox? 

5. Write down the expression for entropy and Sakur-Tetrode equation after removing Gibbs 

paradox. 

 

4.11.2 Long Answer Type 

 

1. Explain in brief the ensemble theory and various types of ensembles in 

statistical mechanics. 

2. What do you understand by ensemble? How the concept of ensemble is utilized to 

obtain the priorities of a statistical system. 

3. Define partition function for a microcanonical ensemble. Use it to derive 

expressions for chemical potential, Helmholtz free energy, and Gibbs free energy. 
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4. Obtain an expression for entropy of an ideal gas in the microcanonical 

ensemble,and also establish the relation between statistical entropy and various 

thermodynamic quantities. 

5. Discuss the significance of partition function.Subsequently, obtain an 

expression for the partition function in microcanonical ensemble and also establish its 

relation with different thermodynamic variables. 

6. By considering a system of an ideal gas discuss the Gibbs paradox by 

deriving an expression for entropy. Obtain an expression for Sakur-Tetrode equation 

after the removal of Gibbs paradox. 

7. Explain Gibbs paradox. How it can be resolved by the concept of 

indistinguishability of the molecules or particles. 

 

4.11.3 Numerical Answer Type 

1. Consider a system of two particles, each of which can be in one of three quantum 

states of respective energies , ,and . Obtain an expression for the particle function 

if the particles obey classical Maxwell Boltzmann statistics. 

2. Obtain the expression of Helmholtz free energy by writing partition function for a 

system of non-interacting classical particles having two energy levels with energies  

and . The lower level is four fold degenerate and the upper level is doubly 

degenerate. 

3. Calculate the partition function of a single harmonic oscillator with energy levels 

given by . 

4. Consider a system of two classical particles, each of which can occupy any of the two 

energy levels  and . Write down the expression for the mean energy of the system 

at temperature T. 

5. If a non-interacting system has two energy levels ,the lower level is doubly 

degenerated while that of energy  is non-degenerate. Write down an expression for 

partition function of this system. Also calculate the total energy and Gibbs free 

energy. 

 

 

4.11.4 Objective Answer Type  

1. The individual assemblies of an ensemble in which the macroscopic properties, 

namely energy, volume, and the number of particles remain same are separated by 

rigid 

(a)   impermeable and insulated wall           (b) permeable and insulated wall            

(c)   impermeable and diathermic wall(d) permeable and diathermic wall     
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2. In microcanonical ensemble, the individual systems cannot exchange 

(a)   particles                                                (b) energy and particles            

 (c)   energy                                                   (d) none of these 

 

3. The correct form of Boltzmann entropy relation is 

(a)                                                     (b)  

 (c)     (d)  

 

4. The entropy of the assembly of ideal gas molecules in terms of partition function Z is 

given by  

 (a)     (b)  

(c)    (d)  

 

5. For removing the Gibbs paradox, one should multiply the expression of 

number of microstates by a factor of 

 (a)         (b)  

 (c)     (d)  

 

4.12 ANSWERS  
4.12.1 Self Assessment  questions: 

1. We can summarize some of the important facts about the microcanonical ensemble in the 

tabular form given below. 

Property Microcanonical 

ensemble 

Canonical ensemble Grand canonical 

ensemble 

Macroscopic 

properties of 

independent 

assemblies 

Energy E, volume V and 

number of particles N 

Temperature T, 

volume V and 

number of particles 

N 

Temperature T, 

volume V and 

chemical potential 

 

Separation 

between 

independent 

assemblies 

Rigid, impermeable and 

insulated wall 

Rigid, impermeable 

and diathermic wall 

Rigid, permeable 

and diathermic wall 

Contact of 

individual 

assemblies with 

each other 

Cannot interact  Can interact  Can interact  
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Macroscopic 

property that can 

be exchanged 

between 

individual systems 

No exchange of energy 

and particles  

 

Only energy can be 

exchanged  

 

Both energy and 

particles can be 

exchanged 

 

Variation in the 

number of 

particles and 

energy for each 

assembly 

Both remain constant  Number of particles 

remains constant but 

not energy 

Neither number of 

particles nor energy 

remains constant 

 

As we are restricted with microcanonical ensemble in this unit, the expression of partition 

function is, in the present case. Further, with the knowledge of the partition 

function for microcanonical ensemble, we can define various physical quantities in terms of  

the partition function, like entropy (equation (4.32)), Helmholtz free energy (equation (4.35)), 

pressure (equation (4.36)), total energy (equation (4.40)), enthalpy (equation (4.41)), Gibbs 

free energy (equation (4.42)),  specific heat (equation (4.43)). Similar expressions for 

partition function in canonical and grand canonical ensembles will be obtained in the next 

two units.  

2.From equation (4.8), the pressure will remain one-half. 

3. The given partition function is,  

From equation (4.35) we can write 

 
or 

 
4. With the help of equation (4.40), we can calculate the total energy as 

 
and thus 

 
or 

 
 

4.12.2 Numerical answer type: 
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1. It is given that particle (say A and B) obey Maxwell Boltzmann statistics, i.e., any 

number of particles can occupy a single energy state. The distribution is shown in the 

table below. 

   
Total energy Degeneracy 

AB - - 0 1 

A 

B 

B 

A 

- 
 

2 

- AB - 
 

1 

A 

B 

- B 

A 

 
2 

- A 

B 

B 

A 

 
2 

- - AB 
 

1 

Now using the relation given by equation (4.23), we can obtain an expression of 

partition function as 

. 

 

2.In question, we have  for lower energy level, and  for upper energy 

level. So, with the help of equation (4.23), we can directly write the expression for 

partition function as 

. Thus, from equation (4.35) we obtain the expression of 

Helmholtz free energy as 

 or  

 

3.  We have . Thus, the partition function can be written as 

 
The summation term is a geometric series, so we can write 

 and 
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8. Let P and Q be the two particles and the distribution is given below 

  
Total energy Degeneracy 

PQ - 0 1 

P 

Q 

Q 

P 

 
2 

- PQ 
 

1 

We can write down the partition function as 

 

Thereafter, with the help of equation (4.38), we get the expression of mean energy 

 

9. According to the question, we can write the partition function 

 

We can use equation (4.40) for calculating the total energy as 

 

 

 

Further, from equation (4.42), Gibbs free energy can be calculated as 

. 

4.12.3: Objective answer type: 

1.  Correct option is (a), impermeable and insulated walls. 

2. Correct option is (b), energy and particles. 
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3. Correct option is (c), . 

4. Correct option is (d), . 

5. Correct option is (a), . 
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UNIT 5:  Canonical Ensemble 

 

Structure: 

5.1 Introduction: 

5.2 Objectives 

5.3 Canonical ensemble 

5.3.1 Application 

5.4 Energy fluctuation in the canonical ensemble 

5.5 Linear harmonic oscillator 

5.6    Summary 

5.7 Glossary 

5.8  Terminal questions 

5.8.1 Multiple Choice Questions 

5.9   References 

5.10  Suggested readings 
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5.1 Introduction: 

The given unit discuss an important ensemble of statistical mechanics, canonical ensemble. 

Among all ensembles, canonical ensemble is considered as more appropriate. It plays a 

central role in statistical mechanics. Reasonably it should come first and rest other ensemble 

(micro-canonical and grand-canonical) should be followed as a special case. In the case of 

canonical ensemble, system is considered in thermal equilibrium with a heat bath (taken as a 

closed system). 

The partition function is used as an important parameter to solve various thermodynamic 

quantities for canonical ensemble. Also, this helps to explain energy fluctuations as well. The 

difficulties and limitations raised by the Boltzmann’s statistical mechanics was removed by 

the Gibb’s theory which was based on the ensemble concept. The Boltzmann’s method is 

applicable only for the systems having small number density almost no interactions between 

particles while Gibb’s ensemble theory shows its validity for both the classical and quantum 

systems. 

5.2 Objectives: 

Students will understand: 

1. Concept of canonical ensemble. 

2. Role of partition function. 

3. The way to compute the various thermodynamic variables with the help of partition 

function. 

4. Energy fluctuations calculations. 

5. The case of Linear Harmonic Oscillator. 

 

5.3 CANONICAL ENSEMBLE: - 

It is a collection of essentially independent system having same temperature T. Exchange of 

energy of ensemble is explained by temperature. 

It is similar to partial open system. Ensemble are separated by rigid impermeable but 

conducting walls. 

Here we make walls conducting so energy is going to exchange. The physical quantity which 

defines the exchange of energy at equilibrium is temperature. The natural variable are [N, V, 

T]. 

The energy of this system is variable and can take up values anywhere b/w to .   

Let have a subsystem S1 in S2 which is a heat reservoir from which we can draw as much heat 

as we want without changing anything E2>>E1. 
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Assuming system is closed then E1 + E2 = Constant 

System as a whole is micro-canonical ensemble 

 E1 + E2 = E = Constant           .... (1) 

Since the reservoir is much layer them the system  any value of E1 will be a small fraction 

of E. 

    

     ….(2)  

 Let the number of states available to the reservoir be  (E2). The larger the number of 

states available to the reservoir, the larger the probability of the reservoir assuming that 

particular energy value E2. 

 The phase density  of the subsystem is proportional to the number of 

microstates available to both reservoirs  

   Ρ(p1 , q1) (E2)  …(3) 

     (E – E1) 

But the entropy is defined as,  

   S2 (E – E1) = K ln  (E – E1) 

As E1<< E, hence the above expression is expanded  

   S2 (E – E1)  S2 (E) –  

    S2 (E) – E1/T   

K ln  (E – E1) = S2 (E) – E1/T 

K ln  (E – E1) =  

S2 

E2 

E1 

S1 
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using eqn
n
 (3) 

  ln ρ(p1, q1)  

 ρ(p1, q1)  exp. * exp.  

If ‘H’ be the Hamiltonian of the system then,  

  ρ(p1, q1)  exp.  

 where ‘i' is dummy indices 

 ρ(p,q)  

i.e. ρ(p, q) phase density is dependent on exponential term and hence ρ is not a constant. As 

tempertaure increases, the phase density decreases i.e. all the states in canonical ensemble do 

not have equal probability. 

or ρ(p, q)= A  

The ensemble average <F> of a given physical quantity F(p, q) which may be different for 

system in different microstates is  

  

This gets reduced to the form: 

   

  V  

dω = d
3N

p d
3N

q (volume element of phase density)  

Here, denominator specifies the normalization constant or partition function which should be 

a dimensionless quantity.  

To get rid of the dimension of ‘dω’ we will use the relation 

     

N! is multiplied as the particles are indistinguishable. This is done for correct Boltzmann 

counting and is known as Gibb’s paradox. 

Hence,  
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Now, the denominator is dimensionless and the expression for partition function is 

   

Where, the integration goes over the whole space. Once the partition function is known, it 

tells us how the states are divided and this makes averages normalised. 

 

5.3.1 Application:- 

I. An Ideal Gas:- 

Consider a system of N-identical particles which are non-interacting. The particles confined 

to a space of volume V and in equilibrium at temperature T.  

    …(1)  

 Partition function in this case is  

  

Since potential energy depends only on q so 

    d
3
qk = V

N
 

  

To find d
3
p:- 

 Consider d
3
x = 4  x

2
 dx for spherical coordinates  

   

   

 Replacing d
3
x by d

3
p  

  

 But 4  is soild angle 

  

   Let           we get 
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   ___________(a)  

To make QN dimensionless in more obvious way we introduce De-Broglie wavelength. 

    

Now thermal wavelength  

    

But its correct definition is  

    

    

    

In above expression, we have all the three variables of canonical ensemble they are (N, V, T) 

In 1-D;   

 and for distinguishable particle 

    

Note:- 1. If partition function of electron & proton together but non-interacting is to find 

than potential energy of e
-
& potential energy of p. 

 2. Steps to write partition function: 

  (a) Write integral over dω 

  (b) Make it dimensionless  
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  (c) To make dω dimensionless  is multiplied 

  (d) Check whether system have distinguishable or indistinguishable 

particles. 

 

(i) Helmholtz Free Energy: - 

 Using equ. (a), we write the expression for partition function  

                          A (N, V, T) = - KT ln QN (V, T) 

 but from equ. (a),    

 A(N, V, T) = -kT ln  

 = kT ln N! – NKT ln  

Using Stirling formula, 

 = kT (N ln N – N) – NKT ln  NKT ln  

 = NKT (ln N – 1) – NKT ln V + NKT ln h
3

 NKT ln  

 = NKT  

or A (V, N, T) = NKT   … (b) 

The above expression is helpful to derive rest of thermodynamic parameters. 

(ii) Chemical Potential: - 

 It can be defined as: - 

     

 Using equ. (b) 

  A (V, N, T) = NKT  
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    = NKT ln  

  

 Let us suppose                

  

Or 

 = kT  

  

(iii) Pressure:- 

    

 from equ. (a),     

Now,  

  

  

  

(iv) Entropy:- 



MSCPH504 

97 

 

    

from equ. (a),  

   

  

 

 Let   

  

or  

  

  

  

  

   

or    … (c) 

It is also known as Sackur – Tetrode equation for the entropy. 

(v) Internal Energy:- 



MSCPH504 

98 

 

It is a function of temperature alone independent on volume & pressure. 

   (Average Energy per system in the Ensemble) 

   

   

   

  

but   

The Hamiltonian for a canonical ensemble is not conserved (as there is exchange of 

energy) 

  

 

 

Multiplying and dividing by  to make it dimensionless. 

   

 <H> =  (internal energy) 

 

 

But  
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but  

  

or A =  TS   

Now substituting the value of ‘A’ from equ. (b) and ‘S’ from equ. (c), we get 

  

  

 

 

  

 

 

 

5.4 Energy Fluctuation in the Canonical Ensemble: 

The average of energy is not a good option because positive or negative energies 

will cancel out each other and total energy will be zero. So to get rid of –ve sign and 

this problem we take square of energies and find out the average mean square 

energies. 

It is defined as the root mean square deviation & Hamiltonian from its average 

value <H> 
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    …(A) 

We’ve already proved that 

                     ……(1)   

By definition      

  

   

 

 

  …(2) 

Combining equ. (1) & (2) as defined by (A)  

   <H
2
> + <H>

2
 

Consider, 

   

 

 

 

   {Using equ. (2)} 
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   …(3) 

Now using (1) & (3) in equ. (A) 

 

   using equ. (1) here, 

 

=  

 

= kT
2
 CV 

 

 or  

Here, temperature is an intensive quantity. Energy & CV are extensive quantity. If E 

N then CV N, 

   

Here we’re dealing with macroscopic system which has number of molecules of as 

out 10
24

. The energy fluctuation is of the order 10
-12

i.e. they are very tiny  we can 

say that canonical and thermodynamic ensemble are approximately equivalent. 

For a perfect gas:- 

    

   

   

Here,  is the fudge factor. If this factor doesn’t come then result is wrong. 
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5.5 Linear Harmonic Oscillator:- 

 Classical expression for Hamiltonian is  

    

 where, 

   k = spring constant 

   m = mass of the particle 

   q = A cos (ωot + ) 

    

    

    

   A = Amplitude of Vibration 

   ωo = Angular frequency of Vibration 

    

    

   

Since, 

Hamiltonian = QN =  = Free Energy A(T, V, N) we use above Hamiltonian 

as, 

     

 The partition function for 1-Oscillator is  
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 Solving integration, we have 

   

   

 where,  

 For N-independent Oscillator 

   

 &other thermodynamic variables, 

    

    

    

    

The internal energy,  is an example of the general equipartition theorem in which 

each coordinate or monentum appear as a quadratic term in Hamiltonian such as( 

) contributes  to the average energy in case classical: 

In 3-Dim space, just replace N by 3N in the above expressions.  

# For Quantum – Mechanical situation, energy sign values of a 1-Dim harmonic 

oscillator is given by, 

    

 for single-Oscillator partition function 

    

    

    

 For N-one dimensional Oscillators.  
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    QN = (Q1)
N
 from which the thermodynamic variables follows as 

, 

    QN = (Q1)
N
 =  

     

 For the Helmholtz free energy of the system,  

 A = NKT ln [2 sin h ( )] 

   

    

   

   

  P = 0 

  

   

& C = Cp = Cv =  

   C = NK  

 For , & the exponantials can be expanded, thus we find classical 

equipartition result C = NK. 

 

5.6Summary: 

In the given unit you have studied aboutcanonical ensemble. Out of all the ensembles, 

canonical ensemble is considered as the most appropriate one. Ideally this ensemble 

considered as first and rest other ensemble should be followed as a special case. In a given 

unit, the theory of canonical ensemble is discussed in which the system is considered in 

thermal equilibrium with a heat bath (taken as a closed system).Here, you have also learnt 

about the partition function which is used as an important parameter to solve various 
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thermodynamic quantities for canonical ensemble. An important application of canonical 

ensemble is highlighted.You have learnt how tocalculatethe energy fluctuations in canonical 

ensemble. Also, linear harmonic oscillator case discussed as an important example.To check 

your progress, multiple choice questions and terminal questions are given in the unit. 

 

5.7 Glossary: 

Ensemble: It is consisting of a large number of virtual copies of a system, considered all at 

once, each of which represents a possible state that the real system might be in. 

Also, a statistical ensemble is a probability distribution for the state of the system. 

Density of states: It is the number of microstates or the number of independent quantum 

states of an N particle system per unit energy range. In other words, the density of 

states, denoted by g(E), indicates how densely packed quantum states in a particular 

system. Macroscopically, we can define: the density of states can be treated as a 

continuous function of the internal energy of the system. 

Microstate of a system: The microstate of a system at any time is given by specifying the 

maximum possible information about the system, e.g. the position and velocity of 

each molecule. It is a particular quantum state of a system. 

Canonical Ensemble: It is a statistical representative of a system in equilibrium (thermal 

contact) with a heat reservoir (bath) at some fixed temperature. It has a fixed N, V 

and T but variable E. The system can exchange energy with the heat bath, so that 

the states of the system will differ in total energy. This is a closed system. 

 

5.8 Terminal Questions: 

Q 1. Find the average energy of an ideal classical gas in a canonical ensemble at temperature 

T. 

Q 2.  A system in contact witha heat reservoir at temperature T has two accessible energy 

states with energies 0 and 0.2 eV. If the probability of the system being in the higher 

energy state is 0.2, find the temperature of the heat reservoir. 

Q3.Show that <( E)
3
>=T

4
+ 2T

3
Cv at constant volume for a system of canonical 

ensemble. 

Q 4.  How does the probability of a microstate of a system in canonical ensemble vary with 

the energy of state? Show the variation with the help of a graph. 

Q 5.  Find out the equation of state of an ideal classical gas in canonical ensemble. 
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Q 6. Show that the mean square fluctuations in the energy of a system in a canonical 

ensemble is proportional to the heat capacity of the system. 

Q 7. Using the method of canonical ensemble. calculate the partition function, average 

energy and specific heat of a system consisting of N noninteracting quantum 

harmonic oscillators and show that these expressions do reduce to the corresponding 

classical results in the appropriate classical limit. 

Q 8. Consider non-interacting particles subjected to a harmonic potential. Calculate the 

canonical partition function 

(a) for a single particle 

(b) for two distinguishable particles 

(c) for two spinless fermions 

(d) for two spin-zero bosons 

(e) for two spin-1/2 fermions. 

Compare the internal energies and entropies in these various cases. Study the limit T → 0, T 

→ ∞, and ђ = 0 and interpret the results physically. 

Q9.Give an account of Gibb’s canonical ensemble. 

Q10.Prove that energy fluctuations in canonical ensemble are related to the specific heat. 

 

5.8.1 Some Multiple Choice Questions for Practice: 

Q1. A collection of independent ensembles having the same temperature T, volume V and 

chemical potential μ is known as 

(a) microcanonical ensemble   (b) macrocanonical ensemble 

(c) canonical ensemble   (d) grand canonical ensemble 

Q2.  A canonical ensemble provides a model for 

(a) an equilibrium system with fixed volume and number of molecules and which exchanges 

energy with the outside world 

(b) an equilibrium isolated system with fixed volume, number of molecules and energy 

(c) an equilibrium system with fixed volume and which can exchange energy and matter with 

the surroundings 

(d) a system at constant pressure 
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Q3. In a Maxwell-Boltzmann system with two states of energies ϵ and 2ϵ, respectively and a 

degeneracy of 2 for each state, the partition function is 

(a) 2e
- 2ϵ/kT

     (b) 2e
- 3ϵ/kT 

(c) e
-ϵ/kT

 +e
- 2ϵ/kT    

(d) 2(e
-ϵ/kT

 +e
- 2ϵ/kT

 ) 

Q4.  An ensemble of systems is in thermal equilibrium with a reservoir for which kT 

=0.025eV. State A has an energy that is 0·1 eV above that of state B. If it is assumed the 

systems obey Maxwell-Boltzmann statistics and that the degeneracies of the two states are 

the same, then the ratio of the number of systems in state A to the number in state B is 

(a) e
+0.25 

(b) 1   (c) e 
-0.25  

 (d) e
- 4

  

Q5. Consider a system consisting of two distinguishable particles and having two energy 

states 0 and ϵ. The partition function of the system is given by 

(a)   1+  (b)  (c) (1+ )
2
  (d)   

Q6.  The classical statistics is valid under the following condition 

(a) nλT
3
 = 1 (b)  nλT

3
 = 0 (c)  nλT

3
<<1  (d)  nλT

3
>>1 

Q7. The partition function of a single one-dimensional harmonic oscillator is  

(a)     (b)   

(c)     (d)   

Q8.  The number of microstates Ω(E) for an ideal gas of N monoatomic molecules is related 

to energy as 

(a)  Ω(E) α E
3N/2  

(b) Ω(E) α E
N/2

  (c) Ω(E) α E
N
  (d) Ω α E 

 

Q9. The partition function (Z) of a system of particles is related to average energy <E> 

(a) <E> =    (b) <E> = -    (c) <E> =    (d) <E> = -  

Q10. N distinguishable particles are distributed among three states having energies 0, kBT 

and 2kBT respectively. If the total equilibrium energy of the system is 151.23 kBT, the 

number of particles of the system is about 

(a) 152                      (b) 264                     (c) 356                      (d) 635 

Q11. Which of the following statements is true? 

(a) In a micro-canonical ensemble the total no. Of particles N and the energy E are 

constants while in a canonical ensemble N and temperature are constants. 

(b) In a micro-canonical ensemble the total no. Of particles N is constant but the 
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energy E is variable while in canonical ensemble N and T are constants. 

(c) In a macro-canonical ensemble N and E are constants while in a canonical 

ensemble N and T both vary. 

(d) In a micro-canonical ensemble N and E are constants while in a canonical 

ensemble N is a constant but T varies. 

Q12. An isolated system consists of two non-interacting spin (1/2) particles a & b fixed in 

space& kept in magnetic field b. Find out the total no. of microstates allowed to the 

system 

(a) 2                       (b) 4                        (c) 3                             (d) 0 

 

Q13. What is the total energy of the system when one particles is in spin down state. 

(a) 0                       (b) 2μB                   (c) -2μB                        (d) 4μB 

 

Q14. The partition function of two independent (non-interacting) system i and j is given by 

(a) Zij = Zi + Zj   (b) Zij = Zi – Zj(c) Zij = Zi x Zj         (d) Zij = Zi / Zj 

 

Q15. A gas of N non-interacting particles is in thermal equilibrium at temperature T. Each 

particle can be in any of the possible non-degenerate states of energy 0, 2ε and 4ε. 

The average energy per particle of the gas, when βε<<1, is  

(a) 2ε                      (b)3ε                         (c) 2ε/3                         (d) ε 

 

Q16. Which of the following are the state functions of a grand canonical ensemble? 

(a) E,V,N                 (b) T,V,μ                     (c) T,V,N                      (d) E,N,T 

Q17. The relative fluctuation in energy of a system in a canonical ensemble is proportional to 

(a) 0                          (b) N                      (c) N
1/2

                        (d) N
-1/2 

Q18. In a canonical ensemble at equilibrium, F is 

(a) 0                           (b) constant          (c) maximum             (d) minimum 

Q19. In a monatomic gas, the first excited state is only 1.5 eV above the groundstate, 

whiletheother excited states are much higher up. The ground state is doubly-

degenerate, while the first excited state has a four-fold degeneracy. If now, the gas is 

heated to a temperature of 7000 K, the fraction of atoms in the excited state will be 

approximately 

(a) 0.07               (b) 0.14         (c) 0.42        (d) 0.3  

Q20. A system consists of N weakly interacting subsystems, each with two internal quantum 

states with energies 0 and ϵ. The internal energy for this system at absolute 

temperature T is equal to 

(a) Nϵe
-ϵ/kT

  (b) 3/2 NKT  (c)   (d)   

Q21. Consider an ensemble of quantum particles each of which can be in one of two states of 

energy E1 and E2. This system is in equilibrium at temperature T= 300 K. Let N1 and N2 
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denote the average number of particles in the two states. If the ratio N2/N1 is 1/e, the 

frequency of the radiation corresponding to transition between the two states is approximately 

(a) 62X10
9
 Hz  (b) 62X10

11
 Hz  (c) 62X10

13
 Hz(d) 62X10

15
 Hz  

Q22. Two non-interacting particles are distributed in three distinct states. Let Pc be the 

probability for both of them in the same state in case particles are distinguishable and Pb the 

probability for them to be in the same state in case they are indistinguishable bosons. The 

ratio Pc/Pb is 

(a) 3/2   (b) 1   (c) 2/3   (d) 1/3  

Q23. An isolated system has N non-interacting particles. If each particle can exist in three 

states, the entropy of the system according to Boltzmann’s prescription is given by 

(a) NkB ln 2 (b) NkB ln 3 (c) kBln(3N)  (d) 3kBln(N) 

Q24. The classical statistics is valid under the following condition 

(b) nλT
3
 = 1 (b)  nλT

3
 = 0 (c)  nλT

3
<<1  (d)  nλT

3
>>1 

Q25. The number of microstates Ω(E) for an ideal gas of N monoatomic molecules is related 

to energy as 

(b)  Ω(E) α E
3N/2  

(b) Ω(E) α E
N/2

  (c) Ω(E) α E
N
  (d) Ω α E 

Q26. An ensemble is said to be in statistical equilibrium if the phase point density 

 (a) is zero    (b) varies linearly with time   

(c) varies inversely with time  (d) is time independent 
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5.10 Suggested Readings: 

1. Statistical Physics: Berkeley Physics Course, F. Reif, (McGraw-Hill) 

2. An Introduction to Statistical Physics: W.G.V. Rosser (Wiley) 

3. An Introduction to Thermal Physics: D. Schroeder (Pearson) 

4. Concepts in Thermal Physics: Blundell and Blundell (Oxford Univ. press) 

5. Statistical and Thermal Physics: Loknathan and Gambhir (PHI) 
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UNIT 6    GRAND – CANONICAL ENSEMBLE 
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6.1 Introduction: 

The given unit discuss another important ensemble of statistical mechanics, grand canonical 

ensemble which allows the subsystem to exchange both energy and number of particles. It 

plays a central role in statistical mechanics where we need an ensemble having neither energy 

nor number of particles are fixed. In the case of canonical ensemble, system is considered in 

thermal equilibrium with a heat bath (taken as a closed system) while grand canonical 

ensemble is taken in contact with both heat and particle bath (open system). 

The partition function is used as an important parameter to solve various thermodynamic 

quantities for grand canonical ensemble as well. Here, both N and E may take any value from 

zero and infinity. To know the actual picture,we have explained energy and particle 

fluctuations. In the grand canonical systems, the distribution function and the phase space 

both will have dependence on the number of particles in the subsystem so the number of 

particles plays very crucial role in grand canonical ensemble. 

 

6.2 Objectives: 

Students will understand: 

6. About grand canonical. 

7. Role of G.C. partition function. 

8. Ideal gas equation for G.C.E. for a perfect gas 

9. Mean Energy for a G.C.E 

10. Energy and particle fluctuations in Grand Canonical Ensembles. 

11. Comparison of all ensembles. 

 

6.3 GRAND – CANONICAL ENSEMBLE: 

It is a large collection of copies of subsystems. For the macroscopic system, the number of 

copies has to be 10
24

 equivalent to N. The characteristics of grand canonical ensemble are: 

(i) The walls are rigid specified by volume. 

(ii) They are conducting specified by temperature. 

(iii) They are permeable specified by chemical potential. 

    E  constant, T = constant  

    N  constant, μ = constant 

    V = constant 

 Therefore, [V, T, μ] are the controlling variables here. 
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Let us conrider a subsystem S1 under study. It is immersed in S2 where S2 consists 

of heat reservoirs and particle reservoirs. Both together form a system S specified 

by (N, V, T). S1& S2 are kept at same temperature and since T is a defined 

quantitytherefore both S1& S2 are canonical ensembles. 

 

 

 

 S1 has H(p, q, N1) 

 S2 has H(p2, Q2, N2) are respectively Hamiltonians.  

The restrictions here are:- 

 N1 + N2 = N  S1<< S2 

 V1 + V2 = V  N2>> N1, V2>> V1 

These are very strong inequalities which are resulted  of reservoir. 

and are the phase densities of subsystem S1& S2 respectively. 

Probability that there are N1particles in volume V1 with coordinates 

p1, q1, n1 

Since this subsystem is immersed in S2 the  is dependent in the 

partition function of S1& S2 but how are they related? 

They can’t be directly multiplied. Since we’re not interested in the path of S2 but the 

result does not depend upon path. So, we integrate it over the whole space of path. 

 dp2 dq2 

QN is the normalisation factor which we obtained for normalised ρ. 

To remove this proportional sign we’ve to do the normalisation  of that we divide 

it by QN. 

dp2 dq2 

   

 

S2 

T 

S1 
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Since we know that partition function is a dimensionless quantity which can be 

written as  

   

   …(a) 

N >> N1& V >> V1, expand using Taylor’s expansion 

 A (N2, V2, T) = A (N – N1, V – V1, T) 

 = A (N, V, T) - N1  

= A(N, V, T) – N1μ + V1P 

Now equ. (a) becomes, 

   

Now, 

  

Similarly, 

  

Where  is the quantity which is defining that the ensemble is Grand 

CanonicalFugacity. 

We define z=  as the fugacity which tells us that there’s an exchange of matter as 

well as energy. 

Fugacity is the signature of G.C.E. 

  

This is the phase density of the system. 

According to normalisation condition the phase density integrated over entire space 

has to be 1. 
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This quantity is independent of p, q, N  it can be written outside the 

summation & integral sign. 

    

    

 

6.4 Definition of G.C. partition function: 

  

Our G.C.E partition function is the fugacity multiplied by old canonical partition 

function. 

Now, 

    

 

 

 

 Now, we’ve the following results 

   ST = kT ln   = Canonical 

   A = -kT ln QN  = Micro-canonical 

   PV = kT ln   = Grand Canonical 

 “A partition function helps us to lead the ideal gas equation”. 

e.g., For a perfect gas  

   ln  = N  {dimensionless} 

 Using (A),  

PV = NKT Ideal gas equation. 

 



MSCPH504 

116 

 

 6.5 Deriving the ideal gas equation for G.C.E. for a perfect gas:-
  

 The value of QN =  

     

  for perfect gas,  

 The G.C. partition function, 

                                =  

 

  

By definition,  

    

 Hence, 

    

      …(1) 

 Wa’ve found earlier 

       …(2) 

 on equating (1) & (2), we’ve 

      …(3) 

# If our G.C.E. is in equilibrium then there must be some mean of N. 

 By definition, 

           ………(4) 
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 Diff. w.r.t. z 

    

------(5) 

 on comparing (4) & (5) we obtain, 

       …(6) 

 on using (1) in (6) we obtain 

    

   -------(7) 

 on substituting (7) equ.in (3) we obtain  

    

 Where z is independent of  while QN is independent of z 

   PV = NKT 

 This is equation of state for a perfect gas G.C.E. 

 

6.6 Mean Energy for a G.C.E.:- 

 To prove <H> =  

PROOF:- The mean H is defined by, 

   

                     We’ve      lnΞ=ln   
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 Diff. w.r.t.  

   

 

 

 

 

 On comparing eqn
n
 (8) & (9) we obtain 

  <H> =    

 Now, using this relation we can find out the value of mean energy for perfect gas. 

   

   

   

   

   

   

   It is the energy for on ideal gas  

 

6.7 Particles Fluctuations in Grand CanonicalEnsemble 

 We have proved that the energy fluctuations are very small for canonical ensembles. 

We’ll prove the same thing for Grand Canonical. Let N(bar) is the total phase 

density integrated over entire phase volume. 
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 when we say,  then 

   

 
∑ ∫∞

=

−−

=
0

3!N
N

HPV

N dpdq
hN

ee
NZN

ββ

 

∑ ∫∞

=

−

=
0

3!/

N
PV

NH

N

e

hNdpdqe
NZ β

β

 

∑
∞

=

=
0N

PV

NN

e

Q
NZ β

-------------(10) 

Using (A), we’ve 

    

   exp  

 Substitute this in equ. (10) 

    

 

 

We define, 

    

  

    

      

 Substitute (12) in (11) 
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      …(13) 

 We’ve expressed average number of particle in terms of Grand Canonical partition 

function. 

 Now finding the value for <N
2
> 

    

 On Diff. w.r.t.Z, equ. (12) we get  

   

    

 

 

 When we Substitute (15) in (14), we obtain 

     …(16) 

 Equ. (16) – [(13)]
2
 

    …(17) 

 we ought to simplify equ. (17). For this diff. (13) w.r.t.Z again, 

  

    

    

 Multiply by z, 

   …(18) 

 When we Substitute (18) in (17) we obtain 
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  <N
2
> - <N>

2
 = Z <N>   …(19) 

    = fugacity 

 Since we know that exponentials and logarithmic are of dimensionless quantity, this 

implies that is dimensionless 

 Z = It is the signature of temperature & exchange of energy. 

 Equ.(19) in terms of  will be  

   

  

  

     …(20) 

 So far, we’re doing statistical mechanics. Now we want to go to thermodynamics. In 

thermodynamics we replace <N> by its thermodynamic limit N. 

       …(21) 

  <N> ~ N Here  

  We’ve the relation, 

  Nd  = VdP – SdT 

     (  =  = Specific volume) 

    

  Diff. adore eqn
 n
w.r.t.  
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       [V = N] 

    

      …(22) 

  Put (22) in (21) 

   

  But  which is referred to as isothermal compressibility. 

Isothermal compressibility is the change in volume w.r.t. pressure keeping 

temperature and N constant. 

  Hence, 

     

   The fluctuations of particles for G.C.E. is  

      …(23) 

  This again shows that particle fluctuation will vary with  times. This result 

is similar to the result obtained for C.E. 

 

EQUIVALENCE CRITERIA “All the ensembles are equivalent becauseall have very tiny 

energy fluctuations”. 

This is equivalence criteria for ensembles.  

In equ.(23),  χT is an intensive parameter. 

  V is an Extensive parameter.  

Determining particle fluctuation for perfect gas:- 

 For a perfect gas, 

   PV = NKT 

   V =   
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 To obtain χT differentiate above equation, 

     

     

    for perfect gas 

 So the fluctuation =    …(24) 

So for a perfect gas, fluctuations are equal to  ordinarily. But there may be 

exceptions too like the one which is met in the case of phase transitions. 

In these conditions compressibility of a given system can become extremely large as 

is evident by an almost flattening of isothermal. 

 

The point in P— V Curve where phase of a substance changes from phase 1 to 2 is 

the critical point. Here  is very large. So near the critical point, the fluctuations 

will be the order of  . 

 

 

 

 

   

  P  

 

 

Far away from the critical points, fluctuations are ordinary. The large fluctuations 

near critical point account for the existence of phenomenon like ‘Critical 

opalescence’. 

 

 

V  

Phase – 2  

Critical point 

Phase – 1  
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 6.8 Energy Fluctuations in Grand Canonical Ensemble: 

 The mean value of energy is given by,  

     

    The denominator term as normalisation constant = 1 

  …(25)    

 For G.C.E., the normalised value of  

  
Ξ=

−

/
!

),,(
3N

HN

hN

eZ
Nqp

β

ρ
 

   

  Substitute ρ  and Ξinequ. 25, 

   

  On differentiating equ. 26 w.r.t.  

   

   

   

  using (28) in (27) we obtain 

       …(29) 

  Now finding <H
2
> 

    

  On differentiating equ. (28) again w.r.t.  we get 

   

  This is nothing but N1 of <H
2
>. Hence we obtain  



MSCPH504 

125 

 

     …(30) 

  To find energy fluctuation subtract (30) – (29)
2
 

  <H
2
> - <H>

2
 =    …(31) 

This quantity has to be related to a Thermodynamics quantity and since for 

canonical ensemble was directly related to CV. Here too we expect the same 

relation,       

  Differentiate (29) w.r.t.  

   

     …(31) 

 On comparing (30) & (31), we’ve 

  <H
2
> - <H>

2
 =    …(32) 

 using the result for canonical ensemble, 

   

 Here too, we’ve energy fluctuations, 

  

So, the energy fluctuations are same for the Canonical & Grand Canonical but only 

when we’re away from the critical point. 

 

6.9 Comparison of Ensembles: 

 

S.No. MicroCanonical 

Ensemble 

Canonical Ensemble Grand Canonical 

Ensemble 

1. 

 

Walls are rigid, 

impermeable & wall 

Walls are rigid, 

impermeable & diathermal 

Rigid, permeable & 

diathermal walls 
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 insulated. 

2. Constant parameter are E, 

V, N 

Constant parameter are T, 

V, N 

Constant parameter are 

T, V, μ 

3. No exchange of energy & 

particle with surroundings. 

Only energy can exchange 

with surrounding not 

particle. 

Both energy & particle 

can exchange with 

surroundings. 

4. ρ (E )=constant ρ= A exp(-E/kT) ρ= exp(Ω+Nμ-E/kT) 

5. Thermodynamic state 

function is S (E, V, N)  

Thermodynamic state 

function is A (T, V, N) or 

F 

Thermodynamic state 

function is  ϕ(T, V, μ) or 

PV 

6. Partition function is   

Ω(E, V, N)  

QN (T, V, N) or Ω   Ξ(T, V, μ ) 

7. S = k ln Ω A = - kT ln QN(or Ω) PV= kT ln Ξ 

 

 

6.10Summary: 

In the given unit you have discussedanother important ensemble of statistical mechanics, i.e., 

grand canonical ensemble which allows the subsystem to exchange both energy and number 

of particles. Here, you focussed on the ensemble where neither energy nor number of 

particles are fixed. You have also discussed and analysedin the case of grand canonical 

ensemble the system is taken in contact with both heat and particle bath (open system). Here, 

in this unit you have discussed the partition function which is used to solve various 

thermodynamic quantities for grand canonical ensemble. Here, you have analysed both N and 

E may take any value from zero and infinity. You have also learnt how to computeenergy and 

particle fluctuations to know the actual picture.Here, in this unit, you have discussed the 

grand canonical system, the distribution function and the phase space which have dependence 

on the number of particles in the subsystem so the number of particles plays very crucial role 

in grand canonical ensemble. At the end, you discussed the comparison of an ensembles. 

Finally, to check your progress, multiple choice questions and terminal questions are given in 

the unit. 

 

6.11 Glossary: 

Grand Canonical Ensemble: System separated by a rigid, impermeable and diathermal 

walls. 
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Partition Function: Indicate that how the gas molecules of an assembly are distributed 

among the different energy levels. 

Fugacity: It refers to the activity or the ability of a gas to expand.It is more convenient to 

workwith the function  which is called fugacity. 

Chemical potential (μ): It is the change in the energy of the system as a result of the change 

in its number ofparticles, when every other thermodynamical variable that describes 

the state of thesystem, such as entropy, volume, etc., is kept constant.It has the units 

of energy/molecule, or otherwise stated, for a single species of particlesin a G.C.E. -

<μ<0 for bosons and - <μ<  for fermions. 

 

6.12 Terminal Questions: 

Q1. Consider a grand-canonical system in which a state with energy 2kT and 21 particles has 

a probability of 0.004, while a state with energy 3kT and 20 particles has a 

probability of 0.002. Find the temperature of the system if it has a chemical 

potential value -1.15 X 10
-21

 J. Also find out the value of grand partition function of 

the system. 

Q 2. Find the grand partition function of 1 mole of argon gas at 300 K and 1 atm pressure if it 

has a chemical potential value -0.212. 

Q 3.   Derive an expression for grand canonical partition function and hence grand canonical 

distribution. 

Q 4. Show that the relative fluctuation in the particle number in a system in grand canonical 

ensemble is inversely proportional to the square root of mean particle number in the 

system, N. 

Q 5.Consider a grand-canonical system in which a state with energy 2kT and 21 particles has 

a probability of 0.004, while a state with energy 3kT and 20 particles has a 

probability of 0.002. Find the temperature of the system if it has a chemical 

potential value -1.15 X 10
-21

 J. Also find out the value of grand partition function of 

the system. 

Q 6. Find the grand partition function of 1 mole of argon gas at 300 K and 1 atm pressure if it 

has a chemical potential value -0.212. 

Q 7.Derive an expression for grand canonical partition function and hence grand canonical 

distribution. 

Q8.Show that the relative fluctuation in the particle number in a system in grand 

canonicalensemble is inversely proportional to the square root of mean particle 

number in the system, N. 
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Q9.Deduce the equation of state and the entropy of an ideal classical gas in a grand canonical 

ensemble. Show that the results are the same as obtained in a canonical ensemble. 

What do you infer from this? 

Q10.Obtain the expression for the chemical potential μ (T, P) for an ideal gas of non-

relativistic particles in a grand canonical ensemble.  

 

 

6.12.1 Some Multiple Choice Questions for Practice: 

Q1. Which of the following statements is true? 

(a) In a micro-canonical ensemble the total no. Of particles N and the energy E are 

constants while in a canonical ensemble N and temperature are constants. 

(b) In a micro-canonical ensemble the total no. Of particles N is constant but the 

energy E is variable while in canonical ensemble N and T are constants. 

(c) In a macro-canonical ensemble N and E are constants while in a canonical 

ensemble N and T both vary. 

(d) In a micro-canonical ensemble N and E are constants while in a canonical 

ensemble N is a constant but T varies. 

Q2. Which of the following are the state functions of a grand canonical ensemble? 

(a) E,V,N                 (b) T,V,μ                     (c) T,V,N                      (d) E,N,T 

Q3. The chemical potential μ of a system in grand canonical ensemble is  

(a) positive              (b) fixed                (c) variable                (d) 0 

Q4. The probability of finding subsystem with n atoms of a perfect gas in grand canonical 

ensemble is (  is mean number of atoms present) 

(a)      (b)        (c)       (d)  

Q5. Two examples of G.C.E. are  

(a) an ideal gas      (b) a photon gas      (c) radioactive decay   (d) a paramagnetic solid 

Q6. Entropy (s) is related to the Grand partition function by the relation 

(a)          (b)       (c)     (d)  

Q6. The probability of a microstate in G.C.E. is proportional to 

(a)                   (b)                      (c) 1/Ω            (d)  

Q7. In grand-canonical ensemble the expression for probability distribution is 
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(a)        (b)      (c)    (d)  

 

Q8. The grand partition function of a system whose canonical partition function is ZN is 

(a)        (b)         (c)             (d)  
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7.1 INTRODUCTION 

In Maxwell-Boltzmann statistics or Bose – Einstein statistics, there is no restriction on the 

particles to be present in any energy state. But in case of Fermi-Dirac statistics, applicable to 

particles like electrons and obeying Pauli Exclusion Principle (no two electrons in an atom 

have same energy state), only one particle can occupy a single energy state. In Maxwell – 

Boltzmann statistics Particles are distinguishable and only particles are taken into 

consideration. In Fermi – Dirac statistics Particles are indistinguishable and quantum states 

are taken into consideration. In Bose – Einstein statistics Particles are indistinguishable and 

quantum states are taken into consideration. The most important application of Bose-statistics 

to electromagnetic radiation in thermal equilibrium, called black body radiation. The 

deviations from perfect gas behaviour exhibited by Bose Einstein gas is termed as ‘gas 

degeneracy. As the temperature is lowered, beginning at T = T0 the molecules fall rapidly 

into the ground state. There is a sort of condensation into this state. This phenomenon is 

known as Bose Einstein Condensation. The temperature T0 at which the Bose Einstein 

condensation begins depends upon the density of the gas. 

7.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand Symmetric and AntisymmetricWavefunctions,  

• understand and use Fermi – Dirac Statistics   

• understand and use Bose – Einstein Statistics 

• understand Ideal Bose Einstein Gas  

• understand Gas Degeneracy 

• understand Ideal Fermi Dirac Gas 

• understand Electron Gas 

7.3. CONSTRUCTION OF SYMMETRIC AND 

ANTISYMMETRIC WAVEFUNCTIONS:  

We know that the number of ways in which the indices can be interchanged will give the 

number of solutions of the Schrödinger equation of the system. For a two particle system {let 

the wave functions be [1, s1: 2,s2]there will be 2! Solutions, similarly for n particle system 

there will be n! Solutions. A linear combination of these solutions will be solution of 

Schrödinger equation. 

As an example, we can consider two and three particle functions with 2 and 6solutions 

respectively. The Schrödinger wave equation for two –particle system is  

    …(1) 

The two degenerate solutions are  and (2,1). Now the symmetric wave function will 

be given by 
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        …(2)  

And ant symmetric function by  

        …(3)  

Where (1,2) and (2,1) are unnormalized wave functions. 

Similarly, in case of three – particle system, there are six ways of exchanging the indices of 

particles, 

 

And the symmetric combinations are  

…(4) 

And antisymmetric combinations are  

…(5)  

Thus, antisymmetric wave function can be built by adding all the functions with even number 

of interchanges and subtracting the sum of all those with an odd number of interchanges. 

The two particles will be distinguishable from each other if the sum of the probabilities of the 

individual wave functions in two states is equal to the probability derived by the symmetrised 

wave function i.e., equations (2) and (3). 

Thus, |  

= |      …(6) 

Where Re is the real part of {2  

This is possible if the overlap of wave functions  and  is zero or 2 Re 

{ =0. In the way when the coordinates (space and spin) of two particles are not 

the same between exchange degenerate functions, the interference term 2Re  

becomes zero and particle coordinates do not overlap. 

7.4. AVERAGE VALUE AND QUANTUM STATISTICS: 

The average value of a dynamical quantity (a) in the same  is given by 

    …(1) 

Where  is the operator corresponding to the dynamical quantity? Remembering that the 

denominator integral is unity i.e., 
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         …(2) 

For example, the average value of the x component of momentum is given by 

        ..(3)  

In case of free particle  

   

         …(4) 

The symmetric and antisymmetriceigen functions give the following results 

        …(5)  

And      

It is clear from equation (5) that  remains unchanged due to exchange of coordinates 

of particles because exchange of particles leaves both  and  unaltered. In case of 

antisymmetric solution, the exchange of coordinates changes the sign of  and  and 

hence the net result is that  remains unaltered. We, therefore, conclude that the 

exchange of particles leaves the average value unaffected. Therefore; from the quantum 

mechanical point of view, the similar particles leaves the average value unaffected. 

Therefore; from the quantum mechanical point of view, the similar particles cannot be 

distinguished. 

7.5. FERMI – DIRAC STATISTICS: 

In Maxwell-Boltzmann statistics or Bose – Einstein statistics, there is no restriction on the 

particles to be present in any energy state. But in case of Fermi-Dirac statistics, applicable to 

particles like electrons and obeying Pauli Exclusion Principle (no two electrons in an atom 

have same energy state), only one particle can occupy a single energy state. The distribution 

of four particles (a,b,c and d) among two cells x and y, each having 4 energy states. Such that 

there are three particle in cell x while one particle in cell y is shown in fig 4. 

In this case there will be 4  4 = 16 possible distribution. 

We consider a general case. This statistics is applied to indistinguishable particles having half 

integral spin. Though the particles are indistinguishable, the restriction imposed is that only 

one particle will be occupied by a single cell. The situation of distribution is as follow:  
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Energy level e1, e2, …,ei,………..ek 

Degeneracy g1, g2, …….,gi,…..gk 

Occupation no. n1, n2,……,ni,….nk 

So in case of Fermi – Dirac statistics, we have the problem of assigning ni indistinguishable 

particles to gi distinguishable levels under the restriction that only one particle will be 

occupied by a single level; obviously, gi must be greater than or equal to ni, because there 

must be atleast one elementary wave function available for every element in the group. 

Thus in Fermi – Dirac statistics, the conditions are: 

(1) The particles are indistinguishable from each other i.e., there is no restriction 

between ways in which ni particles are chosen. 

(2) Each sublevel or cell may contain 0 or one particle. Obviously gi must be greater 

than or equal to ni. 

(3) The sum of energies of all the particles in the different quantum groups, taken 

together, constitution the total energy of the system. 

Now the distribution of ni particles among the gi states can be done in the following way: 

We easily find that the first particle can be put in any one of the i
th

 level in gi ways. 

According to Pauli exclusion principle no more particles can be assigned to that filled state. 

Thus we are left with (gi – 1) states in (gi – 1) ways, and soon. Thus the number of ways in 

which ni, particles can be assigned to gi states is 

gi(gi – 1)(gi – 2)…………(gi – ni + 1), 

=            …(1)  

The permutations among identical particles do not give distribution, and hence such 

permutations must be excluded from equation (1), which can be done on dividing it by ni !. 

Thus we have the required number as 

 …(2)  

The total number of eigen states for whole system is given by 

         …(3) 

The probability of the specific state being proportional to G will be  

    …(4) 

To obtain the condition of maximum probability, we proceed as follows: 
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Talking log of equation (4), we have 

    …(5) 

Using stirling approximation, equation (5) reduces to 

Log (i) =  + constant  …(6) 

Differentiating equation (6) with respect to ni, we get 

 

=  

=  - log(  

=          

 …(7)  

The condition of maximum probability gives 

        

 …(8) 

Introducing the auxiliary conditions, 

         

 …(9) 

 =          

 …(10) 

And applying the Lagrange method of undetermined multipliers i.e., multiplying equations 

(9) by  and adding the resulting expression to equation (8), we have 

       

 …(11) 

Since  s can be treated as arbitrary 

Log  

Or    
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Or  ni =         

 …(12) 

This is the most probable distribution according to Fermi – Dirac statistics. 

7.6. BOSE – EINSTEIN STATISTICS: 

In Maxwell-Boltzmann statistics, the particles are distinguishable from each other. Thus if the 

two particles interchange their positions or energy state, a new state is generated. But in case 

of Bose – Einstein statistics, the particles are indistinguishable. So the interchange of two 

particles between two energy states will not produce any new state.  

We consider a general case. Suppose the system contains n independent identical particles. 

Let these particles be divided into quantum groups or levels such that there are n1,n2,ni… 

number of particle in groups whose approximate constant energies are  

respectively. n1,n2,ni are the occupation numbers of levels i.e, the numbers of levels i.e, the 

numbers of levels i.e., the number of particles that are in that level. Again let there be gi 

single particle states in the i
th

 level, and we speak of this as the degeneracy or the statistical 

weight of the i
th

 level. This situation is as follows: 

Energy level    

Degeneracies   

Occupation no.    

In case of Bose – Einstein statistics, we have the problem of assigning n indistinguishable 

particles to gi distinguishable levels when there is no restriction as to the number of particles 

that can occupy one level. Gi is also termed as density of states function which gives number 

of one particle states per unit energy range. 

Thus in Bose – Einstein statistics, the conditions are: 

(1) The particles are indistinguishable from each other so that there is no distinction 

between the different ways in which ni particles can be chosen. 

(2) Each cell or sublevel of i
Th

 quantum state contains 0,1,2…,ni identical particles. 

(3) The sum of energies of all particles in the different quantum groups, taken 

together, constitutes the total energy of the system. 

For this distribution, let us imagine a box divided into gi sections and the particles to be 

distributed among these sections. The choice that which  of the compartments will have the 

sequence, can be made in gi ways. Once this has been done, the remaining (gi – 1) 

compartments and ni particles i.e., total particles (ni + gi – 1) can be arranged in any order i.e., 

number of ways of doing this will be equal to (ni + gi – 1)!. Thus the total number of ways 

realizing the distribution will be 
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(ni + gi – 1)!     

 …(1)   

The particles are indistinguishable and therefore rearrangement of particles will not give rise 

to any distinguishable arrangement. There are ni !permutations which correspond to the same 

configuration, hence term indicated by (1) should be divided by ni !. 

Secondly, the distributions which can be derived from one another by mere permutation of 

the cells among themselves, does no produce different states, the term (1) should also be 

divided by gi!. 

We thus obtain the required number of ways as 

     

Or       

There will be similar expressions for various other quantum states. Therefore, the total 

number of ways in which n1 particles can be assigned to the level with the energy 

  and so on is given by the product of such expressions as given below: 

G =  

=           …(2) 

According to the postulate of a priori probability of eigen states, we have the probability (i) 

of the system for occurring with the specified distribution to the total number of eigen states, 

i.e., 

(i) =      …(3) 

So to obtain the condition of maximum probability, we proceed as follows: 

Taking log of equation (3), we have  

  …(4) 

Using the Stirling’s approximation, equation (4) becomes  

 …(5) 

Here we have neglected 1 in comparison to ni and gi as they are very large numbers. 
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=  

    =  

= -      …(6) 

The condition of maximum probability gives 

         …(7)  

The auxiliary condition to be satisfied are  

         …(8) 

     = .     …(9)  

Applying the Lagrange method of undetermined multipliers i.e., multiplying equation (8) by 

 and equation (9) by , and adding the resulting expressions to equation (7), we get 

       …(10) 

As the variations  are independent of each other, 

 

or    1 +  

     - 1  

     

This represents the most probable distribution of the elements among various energy levels 

for a system obeying Bose – Einstein statistics. 

7.7. MAXWELL BOLTZMANN DISTRIBUTION LAW OF 

VELCOTITIES: 

The molecules of a gas do not all move with the same speed due to frequent collisions and so 

their velocities vary. The manner in which the molecules of a gas are distributed over the 

possible velocities from zero to very high values was first worked out by Maxwell 

distribution law. In deriving this law certain assumptions are made which are as follows: 
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(1) The gas in an enclosure maintained at a constant temperature assumes a steady 

state in which it is in thermal equilibrium with its surroundings. In the steady state the 

density of the gas remains uniform on an average throughout the gas. 

(2) The velocities along the three coordinate axes are independent if each other, i.e, 

the probability of a molecule along any axis will depend on the velocity along that axis 

only and not on the other. 

(3) The probability of the velocity of a molecule lying between certain limits is a 

function of velocity and of the limits considered. 

Let u,v,w be the component velocities of a molecule along X, Y, and Z axes, respectively as 

shown in fig 7. The number of molecules per c.c. having the velocities lying between u and 

u+du can be denoted by nudu. Obviously, nu must be some function of u say n f(u) where n is 

the number of molecules per e.e. and f(u) is a function of u to be determined. The probability 

that any molecule selected at random will have velocities lying between u and u + du is f(u) 

du. Hence the probability that molecule may have its velocity simultaneously between u and 

(u + du), v and (v + du), and w and (w + dw) is  

    F(u)f(v)f(w)du dv dw. 

All the molecules whose velocity components lie in the range u and (u + du),v and (v + dv), 

w and (w + dw) will be contained in the element of volume du dv dw. The chance that a 

single velocity of value c ends in this volume elements du dv dw is given by the assumption 

no. (3) as convenience we write the function F(c) as (c
2
) 

 f(u) f(v) f(w) du dv dw = (c
2
) du dv dw 

Or   f(u) f(v) f(w) = (c
2
) = (u

2
 + v

2
 + w

2
).     

 …(2)  

Where   c
2
 = u

2
 + v

2
 + w

2
. 

The equation (2) determines the nature of distribution law. Differentiating equation (2), we 

get  

   D [f(u) f(v) f(w)= d[(c
2
)]=0. 

D[(c
2
)] = 0, because for a particular value of c, (c

2
) is constant and its differentiate will be 

zero. 

Differentiating , we get 

  F(u)f(v)f(w) du + f(u) f(v)f(w)dw+f(u)f(v)f(w)dw = 0 

Dividing by f(u) f(v) f(w), we get  
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 …(3) 

Again    c
2
 = u

2
 + v

2
 + w

2
 on differentiation gives 

   0 = 2u dx + 2u dv + 2w dw 

Or    0 =      

 …(4)  

Where  is an arbitrary constant. 

Adding equation 

du + .      

 …(5) 

According to assumption no. (2), the velocity components are independent of each other, 

hence equation (5) can only be satisfied when each the term is separately equal to zero, i.e. 

        …(6) 

Now integrating equation 6(a), we have  

 

Where log A is constant of integration, thus  

Log {  

Or f(u) = Ae
-ku2/2

=Ac
-u2/u2

 where       

 ..(7) 

Similarly, writing for other two components  

         

 …(8)  

 =           …(9)  



MSCPH504 

141 

 

From equation (7), (8) and (9), we have  

F(u), f(v), f(w) =        

 …(10) 

Thus the probability that a molecule has the velocity between u and v + du is given by  

F(u) du = Ac
u2/a2

 du         

 …(11) 

7.7.1. EVALUATION OF CONSTANTS A AND   : The only problem remains 

to evaluate the values of the constants A and  interms of known quantities. 

Let n be the number of molecules per c.c. of the gas with all possible velocities from -  to + 

. Then the number of molecules per c.c. with velocity components between u and v + du. v 

and u + dv and, w and w + dw is n f(u)f(v)f(w) du dv dw. Hence  

 

Or       

 …(12) 

The value of the definite integral  

 

Or    A =  

In order to consider the value of , we calculate the pressure extorted by the gas on the walls 

of the enclosure. Let us consider the case of a molecule moving along X axis with velocity u. 

the molecule will collide with the surface of the enclosure which is perpendicular to X axis 

and will be reflected back with velocity – u. the change in the momentum of the molecule 

will be 2mu. The components v and w do not contribute any thing to the pressure for this 

surface. We know that the pressure is equal to the change in momentum suffered by the 

molecules striking per unit area of the wall per second if nu be the number of molecules per 

unit volume having velocity u, then the number of impacts on an area t will be nu u A t. 

Now the pressure P on the wall, average through the time interval t is given by 

 P A t = . 
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Or    P = 2m       

 …(13) 

The number of molecules per c.c. having velocity components lying between u and v + du is 

given in accordance with equation (11) by  

     Nu = nf(u) = n  

     = n     

 …(14) 

Substituting the value of nu from equation (14) in equation (13), we have 

P = 2m  

Replacing the sign of summation by integration, we have 

P = 2m du  

= 2mn.  

 

= 2mn.  

Because du=  

We also know that P = nkT 

   nkT =  

Or           

 …(15) 

Again    A =       

 ….(16) 

Now, the number of molecules dn having velocity components lying between u and v + du, v 

and v + dv, w + dw is given by  

Dn = n(fu)duf(v)dvf(w)dw 

=nA
3  
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= n     

 …(17) 

This is known as Mawell’s distribution law of velocities. 

7.7.2. NUMBER OF MOLECULES HAVING VELOCITY WITHIN C 

AND C + DC. 

Let us consider that the molecules having velocity within c and c + dc lie between two 

concentric spheres of radius c and c + dc with a common centre O as shown in fig 8. 

The volume of the shaded portion will be 

 

On neglecting small terms. 

This volume is the same as du dv dw in equation (17). Hence  

dn = n     

 …(18) 

This is Maxwell – Boltxmann distribution law for molecular velocities. This can also be put 

in the following form 

       

 …(18) 

This is Maxwell – Boltzmann distribution law for molecular velocities. This can also be put 

in the following form. 

dnc  = n  

dnc = n         

 …(19) 

7.7.3. EXPERIMENTAL PROOF OF MAWELL’S DISTRIBUTION LAW 

FROM THE FINITE BREADTHS IF SPECTRAL LINES:Theoretically s spectral 

line should have zero breadth and uniform intensity but it is observed that when the spectral 

line is viewed with the help of high resolving power instruments, it has large number of lines 

with varying intensity. This phenomenon is direct consequence of the Maxwell’s law of 

distribution of velocities and can be explained as follows: 
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We know that when atoms or molecules come from high energy levels to low energy levels, 

they emit spectral lines. If the atoms or molecules were at rest, the frequency emitted by them 

would have a single frequency. But as the molecules are moving with different velocities, 

they emit different frequency. When a source emitting radiation is moving away from the 

observer with components velocity v0, its wavelength,  as observed by the observer, is given 

by  

     

Where the wavelength of radiation corresponding to definite velocity v0 and c is is the 

velocity of light.  

Now the spectral range corresponding to the molecules having velocities in the range dvo, will 

be  

    d       

 …(20) 

If I is a vector representing the intensity of the spectral line, then multiplying equation (20) 

by I, we have 

    I d       … 

(21)   

The number of molecules having velocities between v0 and v0 + dv0 is given by  

     N  

If y represented the amount of radiation emitted by a single molecules, then the intensity of 

spectral line will be 

    .     

 …(22)  

From equations (21) and (22), we have  

 .  I  

Or     =  

   =  

[because v0 = ( c from equation  =  
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Or    I =  

If  then   constant representing the intensity  

     Corresponding to molecules of velocity vO 

Therefore  

I = IO exp.    ….(23)  

If I is plotted as a function of  a graph of the form shown I figure 9 is obtained. It is 

observed from the graph that the intensity is decreasing on both the sides of the maximum. 

The distance on the wavelength scale in either side where I = Io is known as half width and 

is denoted by  

When I =  

Now from equation (23) we get  

exp.  

Or    . 

Solving we have  

   B
2
 =  

Or    b =  

Or         

 ….(24)  

Where A is atomic weight  

Equation (24) shows that the half width is inversely proportional to the atomic weight i.e, the 

lighter elements will have greater width. Experimentally it is observed that hydrogen lines are 

very much broad while spectral lines due to heavy elements like Hg and Cd are quite sharp. 

This verifies the Maxwell’s law of distribution of velocities. 

7.8. A COMPARISON OF THE THREE STATISTICS 
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A comparison of the three statistics: 

Maxwell – 

Boltzmann 

 Fermi – Dirac  Bose – Einstein 

1. Particles are 

distinguishable 

and only particles 

are taken into 

consideration. 

2. There is no 

restriction on the 

number of 

particles in a 

given state. 

3. Applicable to 

ideal gas 

molecules. 

4. Volume in six 

dimensional space 

is not known. 

5. Internal energy of 

ideal gas 

molecules at 

absolute zero is 

taken as zero. 

6.   –  

7. The most 

probable 

distribution is 

given by  

 

 Particles are 

indistinguishable 

and quantum states 

are taken into 

consideration. 

Only one particles 

may be in a given 

quantum state. 

 

Applicable to 

electrons and 

elementary particles. 

Volume in phase 

space is known, 

(  

Even at absolute 

zero, the energy is 

not zero. 

At high 

temperatures, Fermi 

distribution 

approaches Maxwell 

– Boltzmann 

distribution. The 

most probable 

distribution is given 

by  

 

 Particles are 

indistinguishable 

and quantum states 

are taken into 

consideration. 

No restriction on the 

number of particles 

in a given quantum 

state. 

Applicable to 

photons and 

symmetrical 

particles. 

Volume in phase 

space is know, (h
3
).                              

The energy at 

absolute zero is 

taken to be zero. 

At high 

temperatures, Bose-

Einstein distribution 

approaches 

Maxwell-Boltzmann 

distribution. The 

most probable 

distribution is given 

by 

 

7.9. BLACK BODY RADIATION AND THE PLANCK 

RADIATION LAW:  
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The most important application of Bose-statistics to electromagnetic radiation in thermal 

equilibrium, called black body radiation. In quantum theory, radiant energy occurs in energy 

packets or photons or light quanta of energy hv/c where v is the frequency and c is the 

velocity. Photons have zero – rest mass and a spin quantum number of 1: like all particles 

with spin 1, they obey Bose – Einstein statistics.  

Consider a black body radiation chamber of volume V containing radiation in equilibrium 

with the walls at temperature T. Let Uv dv represent the energy density of radiation of 

frequency lying between frequencies v and v + dv. The problem is to find out Uv as a 

function of T. This was first solved by Max Planck through the hypothesis of linear harmonic 

oscillator possessing discrete energy values. 

In the momentum space, particles within a small volume  are indistinguishable. It 

therefore, represents an eigen state. At any instant, all particles, having their momenta 

between p and p + dp will lie within a cell of volume 4  Therefore the total number of 

eigen states is given by  

G(p) dp =          …(1)  

For a photon  

   P =     

   dp =        …(2)  

Substituting this value of dp in equation (1), we have  

G(v)dv  =  4          …(3)  

There is a duplication of states for the two independent directions of polarization. Therefore  

G(v) dv = 8          …(4)  

Equation (4) represents the total number of eigen states lying in the frequency range v and v 

+ dv. Introducing the result in Bose – Einstein distribution law, we get  

Dn= .          …(5)  

Dn = 8 . 

Or          …(6) 
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The left hand side of equation (6) represents the number of photons per unit volume. 

Multiplying by hv, the energy of photon, it gives energy density Uvdv in the specified 

frequency range substituting , we have 

   Uvdv= .      …(7)  

We know that  Moreover, if we put , equation (7) is just Planck radiation 

formula, , means, the conditions  = 0 should be dropped. 

Every process of emission, in nature, results in the creation of photons and similarly, every 

absorption process results in the absorption of photons, which may be converted into other 

forms of energy. Under these conditions, the restriction is no longer applicable. The 

term  then, does not involve in undermined multiplier and equation (7) reduces to  

Uv dv =        …(8)  

Which is Planck’s law, 

When hv<<kT, the term (e
hv/kT

-1) = hv/kT and hence equation (8) can be written as 

.   Uvdv =  Rayeligh Zean’s law,    …(9)  

For hv>>kT, equation (8) becomes  

  Uv dv =  Wien’s Law     …(10) 

The total energy density is  

 

on substituting  = x 

   

  = bT
4
 where b =       …(11) 

Equation (11) is Stefan – Boltzmann law. 

7.10. IDEAL BOSE EINSTEIN GAS  
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In Bose – Einstein distribution, we consider a system of identical (indistinguishable), 

independent, no interacting particles of integral spin (bosons) that have symmetrical wave 

function. 

7.11. ENERGY AND PRESSURE OF THE GAS: 

Consider a prefect Bose – Einstein gas of n bosons. Let these particles be distribution among 

states such that there are n1,n2,n3 no of particles In quantum state whose approximate constant 

energies are e1,e2,e3 respectively. 

For a perfect Bose – Einstein gas, consisting of material particles, the formula for the most 

probable distribution is 

Ni =      …(1)  

Where gi is measure of degeneracy. Since the gas is ideal the interaction between the particles 

is assumed to be negligible so that the energy may be regarded as entirely translational in 

character. The results thus obtained will be applicable to a monatomic gas. Equation (1) can 

be written as  

Ni= .          …(2) 

Where; for convenience, we have put D = e . 

We know that for particles in a box of ‘normal size’, the translational energy levels are 

closely spaced so that we can integrate over phase space instead of summing over particle 

states. The number of particle states g(p)dp lying between momentum p and p + dp is 

determined from  

 

Giving        …(3) 

Where g1 (=2s +1) is the spin degeneracy factor (arising due to the spin s1, of the particle). 

Equation (2) can now be written as  
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Since , we can write number of particles lying between energy range  and  

from equation (4), i.e.  

 

Where  has been substituted  

 

Let us put  x =  

   Dx= . 

So that we express dn(e) =gi  

 V  

From thermodynamically properties of diatomic molecules, we note that translational 

partition function is  

Z2 =  

It follow then dn =  

On integration total number of particles is given by  

N =  

=          …(6) 

And energy  E =   

  = kT  

  = . kT        …(7)  
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We shall now evaluate the integrals of equation (6) and (7). For a Bose Einstein system  

should be positive otherwise the value of  

 

Would become negative at sufficiently low energies which is physically unacceptable. When 

a is positive D > 1. The integral of equation (6) is  

 

 

    

 

And similarly, integral of equation (7) is  

 

    …(9)  

Using relation (8), we get from equation (6),  

    …(10) 

And from equations (9) and (7), 

 E =   …(11) 

Substituting value of giZI from equation (10) in equation (11), we get  
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  =      …(12)  

If we take only first term in equation (10) then  

    D =  

Which, when substituted in equation (12), gives  

    E =  

For one gram, molecule of the gas, since nk = R, we write energy expression as  

    E=  

    =       …(13) 

Where n has been substituted for bracketed terms. 

 

 

7.12. GAS DEGENERACY  

The pressure of a gas can be calculated from the relation. 

    P =       …(14)  

Which means, in order to calculate pressure, we must first set up a relation in energy E and 

volume V. 

Let us consider a particle of mass m enclosed in a container of volume abc. The wave 

function  of the particle must satisfy the Schrödinger equation 

.         …(15) 

Where V* (x,y,z) represents the potential energy of the particle which for  single particle in 

the box should be zero. Therefore 
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- .     …(16)  

To solve this equation let us write  in terms of variable. 

   ,      …(17) 

So that this equation (16) assumes the form  

    -   …(18)  

Which means  

    …(19)  

We consider first equation (19), i.e., 

 

The general solution of which can be written as  

    …(20) 

In which the constant A, B and C are to be determined by the application of boundary 

conditions.  

We know that the probability of finding the particle at any point (x,y,z) is equal to 

|   at the point. Therefore  which is a function of x – coordinate only, would 

determine the probability of the particle being found somewhere along the X- axis. Since the 

walls (x = 0 and x = a) is equal to zero. 

Thus     X(x) = 0 at  

Applying X(x) = 0 at x = 0, to equation (20), we get  

   0 = A sin C,  

Giving   sin C = 0 or C = 0. 

Now applying X (x) = 0 at x = a to the same equation we find  
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    0 = A sin (Ba + C)  

Giving  

   Ba + C = rx  where rx, is an integer. 

Or    B =  since C is zero. 

Therefore equation (20) finally assumes the form 

    X(x) = A sin      …(21s) 

Similarly, for the remaining two equation of relation (19), we can find  

   Y(y) = A sin       …(21b) 

   Z(z) = A sin       …(21c) 

Substituting (21a), (21b) and (21c) in equation of relation (19), we find  

   Ex= , 

   Ey= ,   

   Ez= , 

Giving   E = Ex + Ey + Ez 

   , . 

If container is cubic, a = b = c = l,  

So that    E =  

Further for cube of side l, volume is  

    V = l
3
 

So that    l
2
 = V

2/3
 

And taking    =r
2
.     …(22)  
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Thus we have established a relation between energy and volume. Now from equation (14), 

we obtain the pressure of ideal Bose gas, thus 

     P = -  

     = -  

     =  

     =  

Which is in agreement with classical result, Using equation (13), pressure of an ideal Bose 

gas is   

   P =  

   =        …(23) 

We find from equation (13) and (23) that there are deviations in energy and pressure from the 

values for ideal gas behaviour. An additional factor n occurs which can be held responsible 

for these deviations. The deviations from perfect gas behaviour exhibited by Bose Einstein 

gas is termed as ‘gas degeneracy’. The gas degeneracy is obviously a function of 1/D. Also 

        …(24) 

This shows that for particles of small mass at low temperature and small volume or high 

pressure, the gas degeneracy will be more marked. The deviations due to gas degeneracy are 

rather small as compared to those due to Van der Waal’s forces and that is why it is not 

possible to observe this effect under normal conditions. 

7.12.1. DEGENERACY FOR MOLECULAR HYDROGEN:Molecular 

hydrogen obeys Bose – Einstein statistics. The boiling temperature of hydrogen at 

atmosphere pressure is 20.38K which is the lowest temperature at which hydrogen can exist 

as a gas. For molecular hydrogen. 

    N = 6.02  10
23

 

    M = 2  1.67  10
-24

 gram. (Mass of proton)            

    V = 1400 e.e.    (Molar volume) 

    K = 1.38  10
-16

erg/K 
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And     h = 6.62  10
-37

 erg. Sec. 

Spin statistical weight  

    Gx = (2s + 1) 

    = 1 for paraform 

    = 3 for orthoform 

Taking    gx = 1, 

We find that     

    = 0.84  10
-2

. 

So that pressure  

    P =  

    = . 

We note that it differs slightly from PV = RT, the perfect gas equation. 

Further, , we conclude that gas degeneracy in the case of molecular 

hydrogen is small and impossible to be observed. 

7.12.2. DEGENERACY FOR HELIUM: Helium also obeys Bose – Einstein 

statistics. For helium molecular weight is two times that of hydrogen, it can exist in gaseous 

states at much lower temperatures ( the boiling point being 4.2K at atmosphere pressure) and 

the molar volume is 345e.e. we find  

    , 

Which is appreciable as compared to the case of molecular hydrogen and that is why there is 

some possibility of observing gas degeneracy in the gas of helium.  

7.12.3. BOSE EINSTEIN CONDENSATION  

We have  

    . 
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We note that at temperature nearing zero i.e, T = 0,1/D will have a large value which means 

the degeneracy will be more marked. It means the gas will deviate highly form its perfect gas 

behaviour. The reason is as follows: 

While arriving at the Bose – Einstein distribution, we have assumed that, because of the 

closeness of the energy levels, we could always replace the discrete distribution by a 

continuous distribution giving. 

         

I.e. we have changed summation into integration. As long as the change in occupation 

number, ni from state to state is small compared to the number of particles in the state, this is 

a valid procedure. If, however, the temperature in an ideal Bose gas is lowered to zero, the 

particles will begin to crowd into a few levels and the above condition will be violated. This 

means that when we are working at low temperatures, we must be careful in replacing the 

summation by integration. Now, from equation (5) the number of particles lying between 

energy range  and  is given by  

 

Where     g (  

We note that for ground state  while actually it should have been unity 

because there is one state at  Therefore above distribution fails to give the number of 

states at e = 0, while state, called the ground state, is very important at low temperatures 

because a large number of particles occupy it at such temperatures. We further note that if e 

=0, the above distribution holds good ass g (e) = 0. Therefore above distribution can still be 

applied for all states except ground state which should be treated separately. For a single 

state, we write 

 

For ground state e1 = e0 = 0 and gi = 1. Therefore, number of particles in ground state. 

 

For ground state  and gi = 1. Therefore, number of particles in ground state 

 

Therefore, for the total number of particle states we write  
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From equation (6) Value x is e/kT, 

And    Zt = V. 

Further   n = n0 + gizt F3/2 (a),       

 …(26)  

Where   F2/3(  

    

 …(27) 

When    

So that  F2/3(0) =  

   = 2.612 

Let T = T0 when  or D = 1 so that that from equation (10) we get  

  N = gi (Zt) T– To  

   = gs(Zt)t=to F3/2 (0).       

 …(29)  

Therefore   gs(Zt)t-to F.=3/12  

Putting the value gs from equation (26) in equation (26), we find  

   N = n0 + n  

   = no + n  
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   = no + n  

Or    n = n – n0 + n  

From equation (27), we find that with D > 1. F3/2(a) will have less value than when D = 1, 

i.e. 

    F3/2/ (a) <F3/2(0) 

When  

This means that n given by equation (29) acquires maximum value when a = 0. Thus for a = 0 

the maximum number of particles occupying states ground state is given by  

    N = n     … (30) 

And the rest of the particles given by  

     N0 = n – n = n [I – T/T0)
3/2

].   … (31) 

When      T = T0 

Must condense into ground state. 

Thus from equation (31) we note that, as the temperature is lowered, beginning at T = T0 the 

molecules fall rapidly into the ground state. There is a sort of condensation into this state. 

This phenomenon is known as Bose Einstein Condensation. The temperature T0 at which the 

Bose Einstein condensation begins depends upon the density of the gas. If we consider liquid 

helium to be a gas, we would obtain a value of about 3.14K for T0. 

It is found experimentally that liquid helium does undergo a rather unusual transition at 

2.19K below this temperature, the liquid helium displays the properties of a super fluid. It is 

generally, agreed that this transition in liquid helium is associated with a Bose – Einstein 

conservation.     

For temperatures above T0 –  must decrease in order to keep n < (n0 + n)< n. But if  

becomes significantly different from zero, then no becomes very small. We, therefore, assume 

for temperatures above T0 that n0 = 0. Therefore for T >T0 

    N0 = 0. 

And     n = n = giF3/2(a). 

From equation (29) when n = n1 we find that  

    N = n  
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Or       F3/2(1) =F3/2(0) .    … 

(32)  

Which when substituted in the expression for n given the total number of particle states equal 

to 

   N = giZi 3.162       … 

(33)  

7.13. IDEAL FERMI DIRAC GAS  

In Fermi – Dirac distribution, we consider a system of identical, independent, non – 

intersecting particles sharing a common volume and obeying ant symmetrical statistics so that 

the spin is half/integral and then according to the Pauli principle, the total wave function is 

ant symmetrical on interchange of any two particles. 

7.14. ENERGY AND PRESSURE OF THE GAS: 

Participants of Fermi – Dirac assembly are the particles with half integral spin like electrons, 

protons and neutrons. The general expression for the most probable distribution in energy for 

the Fermi – Dirac gas is,  

    Ni =  

Which, on putting D = , if of form  

    Ni =        … 

(1) 

Since in the denominator factor + 1 occurs,  need not be restricted to positive value only but 

may assume negative value as well unlike  Bose Einstein gas. 

The number of one particle states lying between momentum p and p + dp is determined from 

    Gp = gs      

Giving    gpdp = gs       … 

(2) 

Where gs = (2s + 1) is the spin degeneracy factor (Arising due to the spin s1 of desertions). 

Since  and dp =  the number of states in the energy range between 

e and (e + de) will be, on using equation (2), 
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   G(e)de = gs = gs    

 …(3)  

Where g (e) is termed as density of states function. 

From equation (1) and (3) we get the number of particles in the energy range between e and 

(e + de), as  

   Dn(e) = gs     

 …(4) 

Where we have substituted   

. Let us put     x = e/kT 

And     dx = de/kT 

Equation (4) then becomes  

    Dn = gs  

    = gs.  

From the thermodynamic properties of diametric molecules, we note that translational 

partition function is  

 

It follows then  

 

Therefore total number of particles  

        … (5)  

And energy    E = . 

    = kT.      … (6) 

 We shall evaluate the integral in equation (5) and (6) for both values of , i.e, when a is 

positive and again when it is negative. When s is positive, D is greater than one and the 
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condition so obtained is referred to as slight or weak degeneracy.  Condition corresponding to 

a negative i.e, D less than one is referred to as strong degeneracy. 

7.14.1. CASE OF SLIGHT DEGENERACY: 

For this case, integral in equation (5) can be expressed as 

 

 

 

 

So that total number of particles is given by  

 

Further the integral in equation (6) can be solved as follows: 

 

 

So that the total energy is given by  

       … (8)  

Putting the value of gsZt from equation (7) into equation (8), we get  

 

 =  
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Which assumes the form         … (9)  

After putting D =  from equation (7) which has been approximated only upon the first 

term of the expansion. 

The pressure of the ideal Fermi gas can now be obtained by the relation  

 

 

      …(10) 

In which nk = R, for one note of the ideal Fermi gas. 

We infer from equations (9) and (10), that ideal Fermi gas deviates from perfect gas 

behaviour and this deviation, as we know, is called degeneracy, obviously, degeneracy is a 

function of  or e
-x

. Smaller is the value of D or greater the value of  more marked will be 

the degeneracy.  

 

 

7.14.2. CASE OF STRONG DEGENERACY:  

When a is large and negative e
-a

>>1 or D is much less than one. This increases the value of  

and hence the degeneracy will become more prominent. Further  

From equation (7),  

=          … (11)  

Which shows that a gas will be highly degenerate at low temperature and high density ( we 

shall discuss this case of strong degeneracy at two temperature ranges. Firstly when T = 0 i.e, 

at absolute zero and secondly when temperature is above absolute zero but degeneracy is still 

considerably high i.e., D is still less than unity. 

(i) At T = 0:  From equation (11) we note that when T = 0, D = 0, so that equation (5) 

assumes the form  

N = . 

Since D = 0, we can replace the upper limit by 1/D. Therefore  
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N = =         … (12)  

Which gives     

With     

We find that   .      … (13)  

Which is a measure of degeneracy of the ideal Fermi gas at T = 0. 

From equation (6) we can obtain the energy of the Fermi gas ar absolute zero. Putting E as E0 

and D = 0 in equation (6) we get  

    E0 = kT.  

Where E0 is termed as zero point energy of a highly degenerate Fermi gas. Replacing again 

the upper limit by 1/D and solving the interval, we arrive at. 

Which, on using equation (13), becomes  

 

 

      … (14)  

And the corresponding zero point pressure will be  

 

 

From equation (14) and (15) we find that a highly degenerate Fermi Dirac gas would have a 

residual zero point energy and pressure – the so called zero point pressure – even at the 

absolute zero of the temperature, quite  unlike a Bose Eisntein gas where all the particles are 

condensed to the ground state with e = 0 at T = 0. 

7.14.3. EXPRESSION OF E AND P IN TERMS OF FERMI ENERGY EF: 
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From equation (3), the total number of energy states lying between 0 and specified value ef 

can be obtained as  

Gf = gs . 

Or  Gf =          …(15a)  

Further, in Fermi Dirac distribution, not more than one particle is to be occupied by a given 

cell which is also obvious from   

Ni= . 

Which gives ni = gi since at T = 0, D = 0. 

Therefore taking gf = ni, we write  

N =  

Or    ef=       …(16)  

Where the quantity ef is called the Fermi energy and it represents the energy of the highest 

level filled at T = 0K for the given assembly.  

From equation (13) and (16), we find that  

     …(17)  

And from equation (14) and (16), zero point energy is  

 

          …(19) 

If we define the Fermi temperature as  

 

Equation (17) becomes  

 

From which we conclude that gas is degenerate when T <<Tf.  

(ii) At T above absolute zero but D << 1: From eq. (4), the number of particles lying in the 

energy range between c and (c +de)is  
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We have seen in chapter 6 art 6, 10, that 

 

. 

But from equation (16).  

    Ef =  

Giving      

So that    dn (e) =3n  

    =      … (20) 

Which gives the total number of particles, as  

    N (e) =     ….(22)  

To evaluate the integrals of equations (21) and (22) we should solve the integral of the type 

     I =  

Where  is a simple function of e such that  if e = 0. Such integrals can be 

expanded using the method of Taylor’s series expansion i.e,  

  … (23)  

Where  etc denote the first, third … differentiate of the function we shall confinite 

ourselves only to the first two terms of the expansion (23).  

Observing equation (32), we write  

So that and   

Therefore we write equation (20) as  
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Or      

 

Giving     

    = 1 – +…     … (24)  

Taking into consideration only the first two terms of the expansion. We can write  

 

 

Neglecting higher order terms. 

Thus     

We make here a crude approximation by putting  in the second term on right side of 

above equation 

          … 

(25)  

Now putting equation (25) in equation (24), we get 
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    … (26)  

Neglecting the higher order terms. 

Since equation (22) involves the integral of the same type, we write, using the expansion 

(23), as      

E =  

Where  

So that and  

Therefore,   E =  

   =  

Putting the value of  from equation (26) and  from eq. (25), we get  

 

 

Leaving from the very beginning, the higher order terms. 

Therefore   E =     … (27)  

This is the approximate energy of a highly degenerate gas. The corresponding pressure will 

be  

 

  =        … (28)  
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7.15. THERMODYNAMIC FUNCTION OF DEGENERATE 

FERMI – DIRAC GAS: 

Energy and pressure expressions have already been obtained [equations (27) and (28)].  

7.15.1. THERMAL CAPACITY, CV:At such low temperatures, the gas will have a 

thermal capacity given by 

CV =  

=  

=nei  

=           … 

(1)  

We have  

CV =  

From equation (2), we infer that heat capacity per particle would be small for large deviation 

( and small particle mass m. If the particles are electrons then equation (2), gives electronic 

specific heat. We note that it is proportional to the absolute temperature and therefore, at 

ordinary temperatures, the contribution to the specific heat of metals due to electrons would 

be negligible as compared to the contribution due to the atoms since atomic specific heat is 

proportional to T3 while at very low temperatures electronic specific heat will be significant.    

7.15.2.Entropy:Entropy S. can be obtained from  

 

 

 

Using equation (2), If we use equation (1),  
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    …(3)  

7.15.3. HELMHOLTZ FREE ENERGY: 

 

 

 

neif 

Which is an expression for Helmholtz free energy. 

7.16. COMPRESSIBILITY OF FERMI GAS  

Here we shall derive an expression for compressibility of Fermi gas at absolute zero. The 

energy at absolute zero is given by  

E0 =  

=  

Now    P0 =  

   =     (where h = h/2  

So,    

Or    

Now compressibility is given by  

 

It has been observed that the compressibility of alkali metals is close to the compressibility of 

an electron gas.  



MSCPH504 

171 

 

7.17. ELECTRON GAS:-  

A metal can be considered to be composed of a system of fixed positive nuclei and a number 

of mobile electrons referred to as electron gas.  

To study the properties of an electron gas at low temperatures in the region T – 0 we shall 

revise the earlier discussion. For electrons s =  so that gz = 2s + 1 = 2, and therefore from 

equation  

 

10 (=n/V)=         

 …(1)  

   EO = nei       

 …(2)  

Further, from equations (15a) and (16) of, we get  

     Gf = ni 

Which means that in the limit T – 0 each one of the states is occupied fully upto the energy 

level ef whereas all the states above this energy level are empty. 

The degeneracy factor of an electron gas for electrons m = 9.1  10
-28

gm, and g = 2, we get  

 

Taking a typical metal of atomic weight 100 and density 10 so that volume of gm. Atom be 

10e.e. and the number of electrons, assuming one free electrons per atom, is 6.02 . 

Then,  

 

 

Which means degeneracy is sufficiently high. It shows clearly that for electron gas, the 

classical statistics is not valid and can be applied only at temperatures of the order of 10
5
K 

(because only then D will approach unity). Therefore at low and other ordinary working 

temperatures, it is necessary to use Fermi – Dirac statics to study the electron gas in the 
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metals. At low temperatures electrons contribution to the specific heat of metals is given by 

equation  

 

But we have  

 

So that      CV= . 

Using the above value of 1/D, we find that  

CV =  

Putting   nk =R gas constant  

   = 1.978 cal deg
-1

 mol
-1

 

   = 2 cal deg
-1

 mol
-1

 

    

We get electronic specific heat  

CV =  

= 1.5  cal/gm. Atom.  

Pressure of the electrons gas can be obtained from equation 

   P0 =  

   =  

   =  using g = 2.  

For a metal of atomic weight 100 and density 

    P0 – 10
5
 atoms 

Which means at normal temperature, the pressure of the gas is sufficiently high.  

7.18. SUMMARY  
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In this you unit you have learnt about construction of symmetric and antisymmetric wave 

functions. In this you unit you have learnt about different types of distribution method such as 

Maxwell-Boltzmann, Bose – Einstein and Fermi-Dirac statistics. You also learnt about 

different type of particle such as Boson and Fermions. You also learnt about Ideal Bose 

Einstein Gas and Ideal Fermi Dirac Gas. . You also learnt about Gas Degeneracy as an 

example for molecular hydrogen and for helium. You also learnt about Compressibility of 

Fermi Gas and electron gas. 

7.19. GLOSSARY 

Degeneracy - different states of equal energy  

Condensation - change of the physical state of matter from the gas phase into the liquid 

phase 

7.20. TERMINAL QUESTIONS 

1. What do you understand by a symmetric and anti-symmetricwave functions? 

2.  What is gas degeneracy explain it for He atom? 

3.  Explain the following- 

      (i)Bose Einstein statistics        (ii) Electron gas 

4. Compare all the three statistics Bose Einstein, Fermi Dirac and Maxwell Boltzmann. Show 

that at low temperature all the statistics give same result.  

5. What do you understand by Fermi Dirac statistics? Find an expression for it?  

6. What do you understand by Bose Einstein statistics? Find an expression for it? 

7. What do you understand by electrons gas? Show that at normal temperature, the pressure 

of the gas is sufficiently high.  
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8.1 INTRODUCTION 

 In the previous unit, you have studied the quantum statistics of identical 

particles, symmetric and anti-symmetric wave functions, degeneracy, Bose-Einstein 

condensation etc.  The phase transition is very important term in statistical mechanics. In this 

unit, you will study about phase transitions, various types of phase transitions, Ising model, 

Landau’s theory, Weiss theory of ferro-magnetism, Virial equation of states etc.In the unit, 

you will also study the significance of phase transitions.  

8.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand phase transitions 

• understand Ising model 

• know about ferro-magnetism 

8.3PHASE TRANSTION 

 In this section, let us know about phase transition. The term phase transition 

(or phase change) is most commonly used to illustrate transitions between solid, liquid, and 

gaseousstates of matter, as well as plasma in rare cases. A phase of a thermodynamic system 

and the states of matter have uniform physical properties. During a phase transition of a given 

medium, certain properties of the medium change, often discontinuously, as a result of the 

change of external conditions, such as temperature, pressure, or others. For example, a liquid 

may become gas upon heating to the boiling point, resulting in an abrupt change in volume. 

The measurement of the external conditions at which the transformation occurs is termed the 

phase transition. Phase transitions commonly occur in nature and are used today in many 

technologies. 

Phase transitions occur when the thermodynamic free energy of a system is non-

analytic for some choice of thermodynamic variables (cf. phases). This condition generally 

stems from the interactions of a large number of particles in a system, and does not appear in 

systems that are too small. It is important to note that phase transitions can occur and are 

defined for non-thermodynamic systems, where temperature is not a parameter. Examples 

include: quantum phase transitions, dynamic phase transitions, and topological (structural) 

phase transitions. In these types of systems other parameters take the place of temperature. 

For instance, connection probability replaces temperature for percolating networks.  

At the phase transition point (for instance, boiling point) the two phases of a 

substance, liquid and vapor, have identical free energies and therefore are equally likely to 

exist. Below the boiling point, the liquid is the more stable state of the two, whereas above 

the gaseous form is preferred.  

It is sometimes possible to change the state of a system diabatically (as opposed to 

adiabatically) in such a way that it can be brought past a phase transition point without 

undergoing a phase transition. The resulting state is metastable, i.e., less stable than the phase 
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to which the transition would have occurred, but not unstable either. This occurs in 

superheating, supercooling, and supersaturation, for example.  

 C 

 Liquid 

 p 

 Solid A Gas 

 B 

 

                                                                                     T 

Figure 1: Phase diagram 

 

Simple substances are capable of existing in phases of three types- solid, liquid and 

gas. The three lines, in a phase diagram (Figure 1) separating these phases are called phase 

equilibrium lines. The common point A, where three lines meet, is called ‘triple point’ at this 

unique temperature and pressure all three phases can coexist in equilibrium with each other. 

Point C is the critical point at which liquid gas equilibrium line ends. The change in volume 

ΔV between liquid and gas has then approached zero; beyond C there is no further phase 

transition since there exists only one ‘fluid phase’ 

 The following figure 2 shows the curve of constant temperature T for an equation of 

state p = p (v, t) describing the fluid state of a substance. In the shaded region mixture of two 

phases can coexist along the horizontal line. If at the given temperature T, the pressure is 

sufficiently low so that p < p1, the curve gives in, correspondingly, a unique value of v. There 

exists then a well defined single phase. Here the slope of the curve  ≤ 0 as necessary for the 

stability condition. Also |  | is relatively small so that compressibility of this phase is large 

as in a case of a gaseous phase. 

If at the given temperature T the pressure is sufficiently high that p > p2, then there 

exists again a single phase with a unique value of v. The stability condition  ≤ 0 is again 

satisfied but |  | is relatively large so that compressibility of this phase is relatively small as 

would be the case for a liquid phase.  

 p 
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 p2 

 

 

         p1 

 v 

O               v1             v2 

 Figure 2: Fluid state representation 

For intermediate pressure range p1< p < p2.  At the given temperature T, there are 

three values of v for each pressure p. In addition, the stability condition   ≤ 0 is violated in 

the region v1< v < v2 where curve has positive slope. This is the region where mixture of two 

phases coexist along the horizontal line. 

8.3.1 Classifications of Phase Transitions 

Let us discuss the classifications of phase transitions. There are two classifications of 

phase transitions. Now we shall discuss these phase transitions one by one. 

Ehrenfest classification 

Paul Ehrenfest classified phase transitions based on the behavior of the 

thermodynamic free energy as a function of other thermodynamic variables. Under this 

scheme, phase transitions were labeled by the lowest derivative of the free energy that is 

discontinuous at the transition. First-order phase transitions exhibit a discontinuity in the first 

derivative of the free energy with respect to some thermodynamic variable. The various 

solid/liquid/gas transitions are classified as first-order transitions because they involve a 

discontinuous change in density, which is the (inverse of the) first derivative of the free 

energy with respect to pressure. Second-order phase transitions are continuous in the first 

derivative (the order parameter, which is the first derivative of the free energy with respect to 

the external field, is continuous across the transition) but exhibit discontinuity in a second 

derivative of the free energy. These include the ferromagnetic phase transition in materials 

such as iron, where the magnetization, which is the first derivative of the free energy with 

respect to the applied magnetic field strength, increases continuously from zero as the 

temperature is lowered below the Curie temperature. The magnetic susceptibility, the second 

derivative of the free energy with the field, changes discontinuously. Under the Ehrenfest 

classification scheme, there could in principle be third, fourth, and higher-order phase 

transitions.  

Though useful, Ehrenfest's classification has been found to be an incomplete method 

of classifying phase transitions, for it does not take into account the case where a derivative 
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of free energy diverges (which is only possible in the thermodynamic limit). For instance, in 

the ferromagnetic transition, the heat capacity diverges to infinity. The same phenomenon is 

also seen in superconducting phase transition.  

Modern classifications 

In the modern classification scheme, phase transitions are divided into two broad 

categories, named similarly to the Ehrenfest classes:  

First-order phase transitions are those that involve a latent heat. During such a 

transition, a system either absorbs or releases a fixed (and typically large) amount of energy 

per volume. During this process, the temperature of the system will stay constant as heat is 

added: the system is in a "mixed-phase regime" in which some parts of the system have 

completed the transition and others have not.
[4][5]

 Familiar examples are the melting of ice or 

the boiling of water (the water does not instantly turn into vapor, but forms a turbulent 

mixture of liquid water and vapor bubbles). Imry and Wortis showed that quenched disorder 

can broaden a first-order transition. That is, the transformation is completed over a finite 

range of temperatures, but phenomena like supercooling and superheating survive and 

hysteresis is observed on thermal cycling.  

Second-order phase transitions are also called "continuous phase transitions". They 

are characterized by a divergent susceptibility, an infinite correlation length, and a power law 

decay of correlations near criticality. Examples of second-order phase transitions are the 

ferromagnetic transition, superconducting transition (for a Type-I superconductor the phase 

transition is second-order at zero external field and for a Type-II superconductor the phase 

transition is second-order for both normal-state—mixed-state and mixed-state—

superconducting-state transitions) and the superfluid transition. In contrast to viscosity, 

thermal expansion and heat capacity of amorphous materials show a relatively sudden change 

at the glass transition temperature which enables accurate detection using differential 

scanning calorimetry measurements. Lev Landau gave a phenomenologicaltheory of second-

order phase transitions.  

Apart from isolated, simple phase transitions, there exist transition lines as well as 

multicritical points, when varying external parameters like the magnetic field or composition.  

Several transitions are known as infinite-order phase transitions. They are continuous 

but break no symmetries. The most famous example is the Kosterlitz–Thouless transition in 

the two-dimensional XY model. Many quantum phase transitions, e.g., in two-dimensional 

electron gases, belong to this class.  

The liquid–glass transition is observed in many polymers and other liquids that can be 

supercooled far below the melting point of the crystalline phase. This is atypical in several 

respects. It is not a transition between thermodynamic ground states: it is widely believed that 

the true ground state is always crystalline. Glass is a quenched disorder state, and its entropy, 

density, and so on, depend on the thermal history. Therefore, the glass transition is primarily 

a dynamic phenomenon: on cooling a liquid, internal degrees of freedom successively fall out 

of equilibrium. Some theoretical methods predict an underlying phase transition in the 

hypothetical limit of infinitely long relaxation times. No direct experimental evidence 

supports the existence of these transitions.  
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8.4 Theory of Yang and Lee 

In this section, we shall discuss theory of Yang and Lee. This theory is a 

mathematical description of phase transition which becomes possible because we can 

characterize a phase transition as the manifestation of a certain singularity or discontinuity in 

the equation of state- 

 

                                          …..(1) 

where  , v the specific volume – a parameter independent of the total volume, V. Z is 

the grand partition function, z is the fugacity defined by- 

                                                         z =                                                                            

…..(2) 

It can be made clear that both P and v are analytic functions of z in a region of the 

complex z-plane that includes the real positive  axis. For any finite value of V, there are no 

real positive roots of the equation Z (z, V) = 0. This means that regarded as a function of 

complex variable z the zeros of the function Z(z, V) are distributed in the complex z-plane 

but are never on the positive real axis. But as V increases, number of zeros increases and their 

positions may move about in the complex z-plane. In the limit as V→ ∞ some of the roots 

may converge towards the positive real axis. In this limit, the equation of state is given by- 

                                         …..(3) 

 

 

 We may now hope to find possible singularities in the equation of state that 

can be identified as phase transitions. Suppose that in the complex z-plane there is a region R 

which contains a segment of the real positive z-axis and which is free of zeros of Z(z,v) for 

all V. It is reasonable to expect that as V→∞, the stability condition  holds. In that 

case region R represents a single phase. If there are many overlapping regions R, each region 

may be expected to correspond to a phase of the system. Therefore, to study phase transition, 

we study the behavior of equation of state as z goes from one R region to another. In this 

reference, there are two theorems- theorem 1 and theorem 2. Let us discuss these two 

theorems. 

8.4.1 Theorem 1 
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 exists  for all z> 0. This limit is independent of the shape of the 

volume V and is a continuous, non-decreasing function of z. 

It is assumed that as V →∞ the surface area of V increases no faster that V
2/3

.  

8.4.2 Theorem 2 (First order Phase Transitions) 

This theorem tells about first order phase transition. Let us discuss theorem 2. 

Let us consider a region R in the complex z- plane that contains a segment of the 

positive real axis and contains no root of the equation Z(z, v) = 0 for any V, then for all z in 

the region R the quantity V
-1

 log Z(z, v) converges uniformly to a limit as V→∞. This limit is 

an analytic function of z for all z in region R. 

Now let us discuss possible behaviors of equation of state consistent with above 

theorems. Suppose region R includes complete positive z-axis as shown in figure 3. Then the 

system is always in a single phase and if a phase of the system be defined as the collection of 

thermodynamic states corresponding to values of zlying in the single region R then P and v in   

 

      R 

 

 O Z-Axis 

 

 

                                  Zeros of Z (z, v) 

 Figure 3: Region R that is free of zeros of Z (z, v) 

the equation of state can be written as- 

β P (z) =                               …..(4)           

 

 

On the other hand, if a zero of Z (z, V) approaches the point z0 on the real positive z-axis as 

V→∞ then there will be two regions R1 and R2 in which theorem 2 holds separately [as 
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shown in figure (4) ]. At z= z0, P(z) must be continuous though its derivative dP(z)/dz may be 

discontinuous. An example of such a behavior is shown in figure(5), where for z < z0 system 

possesses one phase while for z > z0, the other phase. 

 R1 R2 

 

 O 

 Z-Axis 

 

Z= Z0 

Zeros of Z (z, v) 

 Figure 4: Two regions R1 and R2each free of zones of Z (z, v) 

 P(z) 1/v(z)               

 Discontinuity 

 b 

  

 a 

z                                                                                  z 

  z0     z0 

                                        P(v) 

 b           a 

 

 vb           va  

Figure 5: Equation of state of a system with two phases connected by a first order 

transition 

At z = z0, 1/v(z) is discontinuous. Thus we obtain first order phase transition between two 

phases (first order derivative is discontinuous at z = z0). This is shown infigure 5 exhibiting a 

discontinuity at z = z0. If dP(z)/dz is continuous at z = z0 but second derivative d
2
P(z)/dz

2
 is 

discontinuous then we have second order phase transition. In the next section, we shall study 

second order phase transitions in detail. 
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8.5 Second Order Phase Transitions 

Now in this section, let us study second order phase transition. If in the above example, 

dP(z)/dz is continuous at z = z0 but second derivative d
2
P(z)/dz

2
 is discontinuous then we 

have second order phase transition. The transition of liquid helium I into helium II for the 

common isotope of He
4
 is a well known example of second order phase transition. The other 

example of second order phase transition is the transition from non-ferromagnetic state to a 

ferromagnetic state. When a magnetic material changes its state from a ferromagnetic 

material to a paramagnetic material, the symmetrical arrangement of the elementary magnetic 

moments undergoes a discontinuity jump and the symmetry changes. Therefore, the second 

order phase transitions are usually associated with the abrupt changes in various properties 

characterizing the symmetry of the body.  Thus, we can conclude that phase transition of 

second is continuous in the sense that the state of the body changes continuously but 

discontinuous in the sense that symmetry of the body changes discontinuously. 

8.6 Ising Model: Phase Transitions of second kind 

In this section, we shall study Ising Model and phase transitions of second kind. In phase 

transition of second kind, the state of the body changes continuously. Let us consider a 

ferromagnetic substance like iron or nickel. In the absence of any external magnetic field, 

some of the spins of the atoms become spontaneously polarized in the same direction, below 

the curie temperature Tc. This generates a macroscopic magnetic field. The spontaneous 

magnetization, so generated, vanishes if temperature is greater than Tc because then thermal 

energy makes some of the aligned spins to flip over. In this way, the spinsget oriented at 

random and no net magnetic field is produced. As the curie temperature is approached from 

both sides the specific heat of the metal approaches infinity. The transition from non-

ferromagnetic state to the ferromagneticstate called the phase transition of second kind is 

associated with some kind of change in the symmetry of the lattice; for example, in 

ferromagnetism the symmetry of the spins is involved. In Ising model, the system considered 

is an array of N fixed points called lattice sites that form an n-dimensional periodic lattice (n 

= 1, 2, 3). Associated with each lattice site is a spin variable si (i=1,2,…….N) which is 

anumber that is either +1 or -1. There are no other variables. If si = +1, the ith state is said to 

have spin up and si = -1, it is said to have spin down. A given set of {si} specifies a 

configuration of the whole system whose energy is defined to be – 

EI{si} = -                                                  …..(5) 

where the subscript I stands for Ising and the symbol < i, j> denotes a nearest-neighbor pair 

of spins. There is no distinction between < i, j> and <j, i>. εij is the interaction energy and μH 

is the interaction energy associated with an external magnetic field H. For spontaneous 

magnetization, H = 0. μij  and H are given constants. We apply the model to the case is 

isotopic interaction so that all εij have the same value ε. We write for energy- 

                            EI{si} = -  

Or                       EI{si} = -                                                    …..(6) 
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The case ε> 0 corresponds to ferromagnetism and the case ε< 0 to anti-ferromagnetism. In the 

former case neighbouring spins tend to be parallel while in the latter case they tend to be 

antiparallel. In equation (6), the sum over <i, j> contains γN/2 terms where γ is the number of 

nearest neighbours of any given site (coordination number of the lattice). Thus in the Ising 

model equation (6), geometry of the lattice enters through γ and interaction energy εij. 

 We consider only the case of  ε > 0. The partition function can be written as- 

Z =                                                               …..(7) 

where each Si ranges independently over the values ± 1. Hence, there are 2
N
 terms in the 

summation. Thermodynamic functions e.g. internal energy, heat capacity can be calculated 

through Z but it is enormously not easy to calculate the partition function. There are so many 

approximate methods for this.   

8.7 Ising Model: One Dimensional  

One-dimensional Ising model is a chain of N spins, each spin interacting only with its two 

nearest neighbours.  Ignoring external magnetic field H, we can write for the energy of the 

configuration specified by  as- 

                                        EI = - ε                                                                        

…..(8) 

Applying periodic boundary condition, 

                                                Si+1  = Si 

The partition function is- 

                                    Z =  

                                      =                 

…..(9) 

 

 

where, we have used   exp (css
,
 ) =  e

c
  (ss

,
 = 1) = ( cosh c + ss

,
 sinh c) 

 e
-c

  (ss
,
 = -1) 

 

which holds because ss
, 
 can only be + 1  or – 1.  The expansion of products in equation (9) 

gives a sum of terms, each of which is a product of the form- 
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(cos βε) N
-s
 ( sinh βε)

s
  ( Si Si+1 ……….. Sj Sj+1)                                                                  

…..(10) 

 

 

 

 

 

 

                                     Figure 6: N Ising spins arranged in a ring 

Graphically these terms can be displayed by thick (corresponding to factor SS
’
 sinh βε ) and 

thin (corresponding to factor cosh βε)  links forming the ring. It can be argued that non-zero 

terms are the first term ( cosh βε)
N
 and the last term (sinh βε)

N
   so that- 

                                        Z =  2
N

 

                                           = 2
N
 ( cosh βε)

N
 ,   for N >>1.                                                    

…..(11) 

because cosh βε >>  for βε =  ≠ ∞ for T ≠0. 

Therefore, Helmholtz free energy for the system is written as- 

                                      F = -kT  = - N k T                                     

…..(12) 

We can write the energy of the system as- 

                                  E =  = - N ε tanh                                                           

…..(13) 

Obviously, in this case, there is no transition temperature. Therefore, one dimensional Ising 

model cannot be ferromagnetic. 

8.8 Weiss Theory of Ferro-magnetism 

To explain the phenomenon of ferromagnetism, Weiss proposed a hypothetical 

concept of ferromagnetic domains. He postulated that the neighboring atoms of the 

ferromagnetic materials, due to certain mutual exchange interactions, form several numbers 
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of very small regions, called domains. Weiss theory of ferromagnetism is also called domain 

theory of ferromagnetism. It has following points: 

• The domains which are aligned approximately along the direction of the applied 

magnetic field grow in size at the cost of unfavorably oriented domains, that is, those align 

opposite to the field direction get reduced. In other words, the domain boundaries move so as 

to expand the favorable domains. 

• Also domains rotate and orient themselves in the direction of the external magnetic 

field. 

In the presence of the weak external field, the magnetization in the material occurs mostly by 

the process of domain growing, but in the strong magnetic field the material is magnetized 

mostly by the process of domain alignment. When the magnetic field is removed, the domain 

boundaries do not recover their original positions and thus, the material is not completely 

demagnetized, but some residual magnetism remains in it. 

When the magnetizing field is weak; the magnetic polarization of the sample changes as a 

result of motion of domain walls. In this process, domains whose axes are parallel or at a 

small angle with the magnetic field grow at the expenses of those which are unfavorably 

oriented [ Figure 7 (b)]. This growth is reversible so long as the magnetic field stays very 

small; if we turn the magnetic field off, the magnetization will return to zero. This part of 

magnetization curve is marked in figure 7. In this region of field strength, magnetization is 

not a continuous process but takes place in a series of infinite small discrete steps because of 

the irregularities in crystal structure which might be due to strains, dislocation, impurities, 

dirt and imperfections. This can be shown by inserting the sample in a coil connected to an 

amplifier and loudspeaker, If the magnetic field surrounding the speaker is slowly increased, 

individual clicks are heard in a speaker which represent small discrete flux-increments. This 

is known as Barkhausen effect.  

     H =0                                         H1                                         H2                              H3 

 

 H2> H1               H3> H2 

(a)                                               (b)                                  (c)                                  

(d) 

Figure 7: Magnetic domain 

The step like nature of the magnetization curve, it viewed on a macroscopic scale, would 

appear as shown in figure 8. 

 

 

 

                                              B c 
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 H 

Figure 8: Step-like nature of magnetization curve 

 Now, let us explain the curve as shown in figure 8. It is obvious from the 

curve that near the knee of the curve, we have moved all domains walls and magnetized each 

crystal of the sample in its best direction [figure 7 (c)]. The use of a very powerful magnetic 

field then causes domain rotation, during which the magnetic polarization assumes a direction 

parallel to the applied magnetic field as in figure 7 (d) and this accounts for the curve c in 

figure 8. In this way, the motion of the domain walls accounts for portion of the 

magnetization curve below the knee of the curve while domain rotation accounts for the 

portion above the knee. If the applied magnetic field is removed, there is little change in the 

domain structure so that the magnetization remains quite high until reverse magnetic fields 

are applied and this accounts for the hysteresis. 

 Weiss introduced the idea of domains. Weiss assumed that in ferromagnetic 

substances, there must exist a molecular field produced at any point by all the neighboring 

molecules which is proportional to the magnetization vector M, i.e. 

                                   Molecular field  M 

                                                              = α M 

 In this way, the actual magnetic field acting upon a dipole is the sum of the 

applied field H and that arising from the presence of neighbouring dipoles i.e. effective 

magnetizing field may be expressed as-  

                                              Hi = H + α M                                                                         

…..(14) 

assuming that the contributions of the neighbouring dipoles to the effective field is 

proportional to the magnetic polarization.  This form of dependence is not self evident but 

was chosen by Weiss because it leads to the desired form. The factor of proportionalityα is 

known as the molecular field coefficient. 

 When the molecular field coefficient α is positive, the possibility of 

spontaneous magnetization of these domains arises even in the absence of external magnetic 

field. The value of such a spontaneous magnetization due to internal molecular field may be 

found by putting the external field H to zero in the above relation. This reduction can also 

determine the condition for spontaneous magnetization. 
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 Since the domains are assumed to obey the general theory of paramagnetism, 

therefore, we can write- 

                                                            M/MS = coth x- 1/x                                              …..(15) 

 Where x = m Bi /kT = μ0 m Hi/ kT  =  μ0 m ( H + α M)/ kT                                           

…..(16) 

MS = nm represents the saturation value of I, n =  total number of molecules or atoms per unit 

volume of the substance, m = magnetic moment of the atom, k = Boltzmann’s constant and 

rest symbols have their usual meaning. 

 Since the dipole aligning force Hi = H + α M depends partially upon the 

degree of alignment , any increase in magnetic polarization will result in an increase in the 

aligning force, which in turn, will result in an increase in the magnetic polarization etc. Thus, 

magnetization once induced, could occur without the application of an external field. Let us 

now examine the conditions under which such spontaneous magnetization could take place. 

When the applied field is zero i.e. H = 0 the equation (16) reduces to- 

                              x = μ0 m α M /kT  =  α (μ0 M MS)/ (n k T)                                           

…..(17) 

Since MS = n m, therefore equation (17) may be expressed as- 

                                            M/MS = (n k T ) x / (α μ0MS
2
)                                                

…..(18) 

Equations (15) and (18) constitute a pair of equation which may be solved simultaneously for 

two variables M/MS and x.  

 Figure (9) represents the curves corresponding to two equations (15) and (18) 

; equation (15) gives the Langevin’s curve 1 while equation (18) gives a straight line 2 

passing through the origin whose slope is equal to (n k T)/ (α μ0 MS
2
) and increases with T. 

These two curves intersect at origin O and at another point A so that solutions of these 

equations are- 

                                                   M/MS = 0 or AP 

 

 

     M/MS A 

                                                                     (1) 

          (2) 
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 P 

                                                                                              x 

Figure 9: Curves corresponding to equations (15) and (18) 

ButM/MS = 0 cannot be a true solution, since there is spontaneous magnetization by 

supposition. Hence, the only correct solution is M/MS = AP  i.e. non-zero point of 

intersection of two curves. We can conclude that as the slope of the straight line curve (2) 

increases with T, if this slope coincide or becomes greater than that tangent at the origin to 

the Langevin curve, then there will not exist a non- zero point of intersection of two curves; 

hence the spontaneous magnetization will not occur. On the other hand, we know that the 

slope of the tangent at the origin to the Langevin curve is 1/3, since M / MS = x/3, when x is 

small. From these considerations, the condition of stable spontaneous  (nkT/ αμ0MS
2
) < 1/3 

magnetization may be expressed as  T < (αμ0MS
2
/ 3nk). 

 But αμ0MS
2
/ 3nk = Θ, the Curie point ; hence T < Θ. Hence, below Curie 

point Θ a state of magnetization is possible without an applied field. The degree of 

spontaneous magnetization depends on the temperature approaching the saturation value as 

the temperature approaches absolute zero, since the non-zero point intersection will take 

place at- 

M/MS =1 for x = μ0 m Hi /k T  → ∞ when T = 0. 

 From the relation Θ = αμ0MS
2
/ 3n k, we may note that the absolute value of 

Θ is greater if the magnetic moment of domains (MS) and molecular field coefficient α have 

large values. If Θ is greater, greater will be the transition temperature. Incidentally, the Curie 

temperature for ferromagnetic elements Fe, Co and Ni are 770
0
C, 1131

0
 C and 358

0
 C 

respectively. Above the Curie point Θ, the spontaneous magnetization no longer occurs and 

ferromagnetic properties disappear and the substance becomes paramagnetic.  At 

temperature, not too near the transition point the Curie-Weiss law is obeyed. 

 There are some shortcomings of Weiss theory. This theory could not explain 

why and how internal fields between the molecules of ferromagnetic materials possess such 

large values and why the linear relationship expressed by Curie-Weiss law breaks near the 

Curie point. 

8.9 Landau’s Theory 

The Landau theory of phase transitions is based on the idea that the free energy can 

be expanded as a power series in the order parameter m. ... The parameters that are input into 

the form are also used to plot the temperature dependence of the order parameter, the free 

energy, the entropy, and the specific heat. 

 At a first-order phase transition, an order parameter like the magnetization is 

discontinuous. At a critical point, the magnetization is continuous – as the parameters are 

tuned closer to the critical point, it gets smaller, becoming zero at the critical point. However, 
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experiments on the liquid-gas phase transition and on three-dimensional magnets (and exact 

computations like Onsager and Yang’s for the two-dimensional Ising model) both point that 

even though the magnetization is continuous, its derivative is not. In mathematical language 

the magnetization is a continuous function, but not analytic. For example, at h → 0+ in the 

Ising magnet in 3d, the magnetization vanishes as T → Tc from below as- 

M ∝ (Tc − T)0.315
             T < Tc, 3d Ising                                 …..(19) 

where all evidence suggests that the exponent is not even a rational number. In the two-

dimensional Ising model, the exact computations give  

M ∝ (Tc − T)1/8
             T < Tc, 2d Ising                                   …..(20) 

 Even though the exponent is rational, the function is decidedly not analytic. 

This was (and remains) very strange compared to most of physics. The partition function of 

any finite system is a continuous function of all the parameters. Thus if any non-analyticity 

occurs, it must be a property of taking an infinite number of degrees of freedom. We usually 

take this limit out of necessity – it’s not possible to follow 1023 (or for that matter even 100) 

particles individually, even with a computer. Even Monte Carlo simulations can at best do 

thousands of particles. Now we’re saying that at a critical point, the limit we so desperately 

need to take is suspect. Since dimensionalanalysis arguments rely on analyticity, these are 

also suspect. Of course, at the end of the day all formulas are dimensionally consistent. What 

happens though is that at and near critical points, a hidden parameter is necessary for 

describing the physics. This 1 parameter arises from the short-distance physics – even if we 

are interested in describing long-distance physics, critical physics necessarily involves all 

length scales! To understanding how that happens requires considerable effort – this is why 

Wilson won a Nobel Prize, and why many others provided essential ingredients. The first 

major step toward theoretical understanding came from Landau, and his approach is still 

called today Landau theory, or Landau-Ginzburg theory. Sometimes it is also called 

GinzburgLandau theory, because the two wrote a paper applying these ideas to 

superconductivity.  

 Landau theory is an effective theory for what happens at and near the critical 

point. The experimental fact that very different systems can have quantitatively identical 

critical behavior suggests that one does not need to worry about every single detail of the 

system to understand this behavior. We gave an explicit example of how if we ignored many 

details of the liquid-gas system, we could obtain a lattice gas that was identical to the Ising 

model. This provides a suggestion as to why the universality occurs; Landau theory is the 

first serious attempt to derive a theory that will describe the critical behavior quantitatively. 

Landau theory only describes the universal behavior of a system; by construction, it cannot 

for example give non-universal numbers like the value of Tc for a given system. But one of 

the miracles of critical behavior is that it can give precise results for the universal behavior. It 

is important to emphasize that Landau’s original (genius) idea for an effective theory was and 

remains completely correct. It’s just that the naive computations do not give the right 

answers. To be precise, in the next section, I will describe how the effective theory can arise 
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from taking a specific approximation called mean-field theory. This approximation breaks 

down in low dimensions, for reasons explained by Ginzburg. But one of the beautiful aspects 

of Landau theory is that it makes deriving the consequences of mean-field theory really easy. 

The whole point is that the effective theory is independent of the details, so one can just guess 

what it is based on the symmetries and degrees of freedom of the system. Landau theory is an 

effective theory of the order parameter. To be precise about it, one first decides what the 

appropriate order parameter is to describe the phase transition. In one phase, the order 

parameter is non-vanishing, in another it vanishes. In a ferromagnetic spin system, this very 

naturally is the magnetization  . In an antiferromagnetic systems, there are a variety of 

possibilities, such as the staggered magnetization, which describes a transition away from 

N´eel order. Another possibility is that no local order parameters change values at a phase 

transitions. One example of such is known as “topological order”, where only non-local order 

parameters characterize the transition. One of Landau’s insights was an easy way to see how 

the non-analyticity arises. The basic assumption of Landau theory is that at a fixed value of 

the order parameter, the free energy as a function of the order parameter is analytic, both in 

the parameters such as J and T, and in the order parameter itself.  

8.10Viril Equation of States 

 Because the perfect gas law is an imperfect description of a real gas, we can 

combine the perfect gas law and the compressibility factors of real gases to develop an 

equation to describe the isotherms of a real gas. This Equation is known as the Virial 

Equation of state, which expresses the deviation from ideality in terms of a power series in 

the density. 

                                                 …..(21 ) 

where B is the second virial coefficient, Cis called the third virial coefficient, etc. 

The second Virial coefficient represents the initial departure from ideal-gas behavior 

and describes the contribution of the pair-wise potential to the pressure of the gas. The third 

virial coefficient depends on interactions between three molecules. The j
th
 virial coefficient 

can be calculated in terms of the interaction of j molecules in a volume V. The second and 

third Virial coefficients give most of the deviation from ideal  up to 100 atm. It is 

important to note  

that value of the virial coefficients are temperature dependent. 

Because  =                                                              …..(22) 

We can rearrange the viril equation to-  

                                           …..(23)   
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Or                                             = R T Z                                                                      

…..(24) 

Where                              Z =                                                         

…..(25) 

The virial Equation of state is a model that attempts to describe the properties of a 

real gas. If it were a perfect model, the viril equation would give results identical to those of 

the perfect gas law as the pressure of a gas sample approached zero. For the viril equation to 

collapse to the perfect gas law, all of the viril coefficients would need to have a value of zero 

at the same temperature.   This is an unlikely occurrence but because the second term in the 

viril equation B =  is the largest termin the equation ( , we can focus 

on the temperature at which B is zero. This temperature is called the Boyle temperature (TB) 

and it is the temperature at which the repulsive forces between the gas molecules exactly 

balance the attractive forces between the gas molecules. The equation (23) can be written as- 

                                          …..(26) 

In which case,     Z =                                                           

…..(27) 

Then,                                                                                                   

…..(28) 

 

Example 1: Calculate the pressure exerted by 0.275 moles of N2 gas in a 0.500 L flask at 273 

K using the first two terms of the series of viril equation. The value of B for N2 at 273 K is – 

10.5 cm
3
/mole. 

Solution:  Given, V = 0.275 L = 5 × 10
-4

 m
3
 

                  B = - 10.5 cm
3
/mole = - 1.05 × 10

-5
 m

3
/mole 

= 1.82 × 10
-3 

m
3
/ mole 

Now applying equation  

P × 1.82 × 10
-3 

m
3
/ mole = 8.3145 Joule/mole K × 273 K  
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Or      P = 1240 k Pa 

For a perfect gas, the pressure would be 1250 kPa. 

Self Assessment Question (SAQ) 1:Calculate the pressure exerted by 0.35 moles of CO2 gas 

in a 0.5 L flask at 273 K. The value of B for CO2 at 273 K is -149.7 cm
3
/mole. 

8.11 Summary  

 In this unit, you have studied about phase transition and its classification. 

You have studied that during a phase transition of a given medium, certain properties of the 

medium change, often discontinuously, as a result of the change of external conditions, such 

as temperature, pressure, or others. You have discussed Ehrenfest and Modern classifications 

in detail. In the unit, you have also discussed the theory of Yang and Lee, Ising model etc. To 

explain the phenomenon of ferromagnetism, you have studied Weiss theory of ferro-

magnetism in the unit. Weiss postulated that the neighboring atoms of the ferromagnetic 

materials, due to certain mutual exchange interactions, form several numbers of very small 

regions, called domains. You have also discussed and analyzed the Landau’s theorem and 

Virial equation of states. The Landau theory of phase transitions is based on the idea that the 

free energy can be expanded as a power series in the order parameter m. ... The parameters 

that are input into the form are also used to plot the temperature dependence of the order 

parameter, the free energy, the entropy, and the specific heat.To present the clear 

understanding and to make the concepts of the unit clear, some solved examples are given in 

the unit. To check your progress, self assessment questions (SAQs) and terminal questions 

are given in the unit. 

8.12 Glossary 

Generate -  create, make, cause 

Macroscopic- Visible to naked eye without use of any instrument. 

Spontaneous-  natural, impulsive 

Magnetization- Difference between the ratio of the magnetic induction to the permeability 

and        

                         the magnetic intensity. It represents departure from randomness of magnetic     

                        domains. 

Align- line up, ally 

8.13 Terminal Questions 

1. What is meant by phase transition? Explain first order and second order phase transitions. 
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2. What are the phase transitions of first and second kind? Discuss Ising model for phase 

transitions of second kind. 

3. Give a brief account of one-dimensional Ising model. 

4. What are phase transitions? How Yang and Lee theory may be used to explain phase    

transition? 

5. Explain Landau theory of phase transitions. 

6. Write notes on- 

    (a) Virial equation of states                      (b) Weiss theory of ferro-magnetism 

7. Discuss Weiss’s modification  to explain the phenomenon of spontaneous magnetization in 

ferromagnetic substances. 

8.  Establish Virial equation of states. What are the advantages of this equation of states?  

8.15 Answers 

Self Assessment Questions (SAQs): 

1. Given, V = 0.5 L = 5 × 10
-4

 m
3
 , B = - 149.7 cm

3
/mole = - 1.497 × 10

-4
 m

3
/mole, n = 0.35 

moles 

   = 1.42 × 10
-3 

m
3
/ mole 

Now applying equation  

P × 1.42 × 10
-3 

m
3
/ mole = 8.3145 Joule/mole K × 273 K  

Or      P = 1420 k Pa 

For a perfect gas, the pressure would be 1420 kPa. 
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