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This unit entitled “Origin of quantum mechanics” includes mainly limitations of classical theories
and origin of quantum mechanics.Planck’spostulate and description of experiments that are at the
origin of quantum mechanics,namely the study of blackbody radiation, the photoelectric effect
andthe Compton effect. Then Classical theories of heat capacity of solids, Einstein theory of heat
capacity of solids, Debye theory heat capacity of solids, Bohr’s theory of H atom and Wilson-
Sommerfeld quantization rule discussed.

1.2 LEARNING OBJECTIVES

After going through this unit, you will be able to:
e Understand the need and limitations of quantum mechanics.
Understand black body radiation, Rayleigh Jean’s law andWien’s distribution law
Understand Planks hypothesis
Explain the photoelectric effect and the Compton effect
Differentiate between Einstein theories to Debye theory of heat capacity of solids.
Understand Bohr’s theory of H atom.
KnowWilson-Sommerfeld quantisation rule.

1.3 INADEQUACIES OF CLASSICAL MECHANICS

Classical mechanics or Newtonian mechanics is a very elegant and successful theory that
describes the dynamics of the all kind of macroscopic systems , such as cluster stars, planets,
moon, tennis ball and dust particles as well as microscopic systems such as motion of a bacteria,
virus. It describe the motion of a particle in non-relativistic limit. i.e. v<<c.The foundation of
Newtonian mechanics is based on concept ofabsolute Space,Absolute Time andAbsolute
mass.till the end of the nineteenth century, it was assumed that all physical events can be
explained under the three branches of physics named classical mechanics, the theory of
electromagnetism, and thermodynamics. Classical mechanics was used to study the dynamics of
material bodies, and Maxwell’s electromagnetism provided the proper framework to study
radiation; matter and radiation were described in terms of particles and waves, respectively. As
for the interactions between matter and radiation, they were well explained by the Lorentz force
or by thermodynamics. The remarkable success of classical physics— classical mechanics,
classical theory of electromagnetism, and thermodynamics—made people believe that the
ultimate description of nature had been achieved. It seemed that all known physical phenomena
could be explained within the framework of the general theories of matter and radiation.
In the early years of the twentieth century, in 1905 when Einstein proposed theory of relativity
and showed that the validity of Newtonian mechanics ceases at very high speeds (i.e., at speeds
comparable to that of light) and due the development of advancedexperimental techniques to
study atomic and subatomic structures, it turned out that classical physics fails miserably in
providing the proper explanation for several newly discovered phenomena. It thus became
evident that the validity of classical physics ceases at the microscopic level and that new



concepts had to be needed to describe, for instance, the structure ofatoms and molecules and how
light interacts with them.

Due to certain limitation of classical mechanics and it's wrong assumption this theory could not
explain following physical phenomena.

1. It fails to explain the spectrum of black body radiation.

. It fails to explain the stability of atoms.
. It fails explain discrete atomic spectrum:

. It fails not explain photoelectric effect:

. It fails to explain the phenomena of Compton scattering.
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5. It fails to explain the phenomena of pair production .

6

7. It fails to explain variation of electric conductivity of solid ( super conductivity ).
8

. Classical mechanics could not explain the phenomena associated with spinning motion of
electron. 9. Classical mechanics could not explain Zeeman effect, Stark effect, Raman effect.

10. It could not explain phenomena of radioactivity likep-decay and a- decay .

To solve above physically observable problem Scientists purposed, a new field of physics based
on uncertainity principle and wave-matter duality of particles. This new field of physics is
known as quantum mechanics. The early development of atomic theory consisted of efforts to
overcome these difficulties by modifying the laws of Classical Physics. These efforts reached
their successful conclusion in the period from 1925 to 1930, when an entirely new theoretical
discipline, Quantum Mechanics was developed by Schrodinger, Heisenberg, Dirac and others.
Quantum Mechanics can be regarded as the fundamental theory of atomic phenomena. The
experimental data on which it is based are derived from physical events that lie almost entirely
beyond the range of human perception. It is not surprising, that the theory embodies physical
concepts that are foreign to common daily experience.

1.4 BLACKBODY RADIATION

In 1860, Gustav Kirchhoff introduced the concept of a “black body”, an object that absorbs all
electromagnetic radiation that falls upon it. Since no light is reflected or transmitted, the object
appears black when it is cold. However, above absolute zero, a black body emits thermal
radiation with a spectrum that depends on temperature.

The energy of blackbody radiation is not shared evenly by all wavelengths of light. The spectrum
of blackbody radiation (below) shows that some wavelengths get more energy than others. Three
spectra are shown, for three different temperatures.
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Here are some experimental facts about blackbody radiation:

a. The blackbody spectrum depends only on the temperature of the object, it is not depend on the
type of material, ie all materials emit the same blackbody spectrum if their temperatures are the
same.

b. As the temperature of an object increases, it emits more blackbody energy at all wavelengths.

c. As the temperature of an object increases, the peak wavelength of the blackbody spectrum
shifts toward shorter wavelength. For example, blue stars are hotter than red stars.
d. The blackbody spectrum always becomes small at the left-hand side (the short wavelength,
high frequency side).

1.4.1 WIEN’S ENERGY DENSITY DISTRIBUTION

A number of attempts were carried out to explain thecharacteristics of black body radiation. by
using classical thermodynamics and Stefan—Boltzmann law Wilhelm Wien in 1896 derived the
energy distribution formula (energy per unit volume per unit frequency)

u(v,T)= Avie ™"
Called Wien’s radiation law.in this relation 4 and are empirically defined parameters (they can

be adjusted to fit the experimental data) .This radiation law was correct only for short
wavelength region but it fails badly at high wavelength region of the black body spectrum.



1.4.2 RAYLEIGH’S ENERGY DENSITY DISTRIBUTION

In 1900 Rayleigh focused on understanding the nature of the electromagnetic radiationinside the
cavity. He considered the radiation to be consists of standing waves having atemperature 7' with
nodes at the cavity surface. The energy radiated by the cavity can be estimated by considering
the resonant modes. In three-dimensions, the number of modes, per unit frequency per unit
volume is given by

2
Ny ="y (1)
C

Gives the number ofmodes of oscillation per unit volume in the frequency range vto v +dv. So
the electromagnetic energy density in the frequency range v to v +dv is given by

2_
872;/ 5
C

u(v,T)=N(V)E =

Where E is the average energy of the oscillators present on the walls of the cavity (or of the
electromagnetic radiation in that frequency interval)According to the equipartition theorem of
classical thermodynamics,all oscillators in the cavity have the same mean energy, irrespective of

their frequencies:

o0

jEe_E/deE
E=2 kT ... 3)
jeiE/deE

0
An insertion of (3) into (2)
Leads to the Rayleigh—Jeans formula:

2
v
c3

u(v,T)=N(V)E = KT ... (4)

this law is in complete disagreement with experimental data, except for low frequencies. uas
given by (4) diverges for high values of v , whereas experimentally it must be finite (Fig 1.2). the
integration of this equation over all frequencies diverges, impliesthat the cavity contains an
infinite amount of energy. This result is absurd. Divergence of this equation forkigh frequencies
(i.e., in the ultraviolet range)called the ultraviolet catastrophe.The origin of this failure is due to
the classical assumption of the average energy ( eq.3).
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1.5 PLANCK’S HYPOTHISIS

In 1900 Planck succeeded in resolving the ultraviolet catastropheby suggesting the quantum
theory of radiation and put forward an accuratedescription of blackbody radiation. He suggested
that the correct results could be obtained if the energy of oscillator is taken as discrete rather than
continuous. Planck derived a formula, which agrees extremely well with experimental results. He
derived the radiation law by using the following assumptions.a. A black body chamber is filled
up not only with radiation, but also with simple harmonic oscillators or harmonic oscillators or
resonators of molecular dimensions. They can vibrate with all possible frequencies.

b. The frequency of radiation emitted by an oscillator is the same as the frequency of its
vibration.
c. An oscillator cannot emit energy in a continuous manner. It can emit energy in the multiples
of a small unit called Quantum (Photon).
If an oscillator is vibrating with a frequency v, it can radiate in quantas of magnitude hv . The
oscillator can have only discrete energy E given by

E =nhv

10



The emission of radiation corresponds to a decrease and absorption to an increase in the energy
and amplitude of an oscillator.

1.5.1PLANK’S RADIATION LAW

Since Planck assumed that the energy of an oscillator is quantized, he showed that the relation
for the average radiationenergy can be obtained by replacing theintegration of eq.3 of art.
1.4.2bysummation ,which correspondingto the discreteness of the oscillators’ energies.

Hence

iEe_E/deE
E=0

Ze—E/deE

O e (1)
By putting E = n hv and solving , we get

Znhve—nhv/deE
0

- hv
E=— - VT |
Ze—nhv/deE
O (2)

The energy density per unit frequency of the radiation emitted from the hole of a cavity is given
by
8o’ hv
uW,Ty=—F—"—"7"——
(v, T) S MM

........................ 3)

This is known as Planck’s distribution relation.This relation can be rewritten in terms of
wavelength. thePlanck’s energy density or the energy density per unit wavelength

u(A.T) = 8rhe 1

5 hel AkT
A e —1

In the region of very low frequencies hv << kT

MO+ kT o (5)
Hence the relation reduces to

2
v
3
c

u(v,T) =22 kT

Which is the Rayleigh—Jeans law .

In the region of very high frequencies Av >> kT
hv/kT hv!/ kT

en —10e™ T (7)

Hence the relation reduces to

u(v,T)= )

Which is Wien’s energy density distribution law.In summary, the spectrum of the blackbody
radiation reveals the quantization of radiation, notably the particle behavior of electromagnetic
waves

3
8xhv™ o ir
— e
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1.6 PHOTOELECTRIC EFFECT

The phenomenon of photoelectric effect was first observed by Heinrich Hertz in 1887, when he
was performing an experiment for production of electromagnetic waves by means of spark
discharge, Hertz observed that sparks occured more rapidly in the air gap of his transmitter when
ulraviolet radiations was directed at one of the metal plates. But he could not explain the reason
of his observations. In 1902, Philipp Eduard Anton von Lenard observed that the energy of
individual emitted electrons increases with the frequency of the light. This experimental
observation did not match with Maxwell’s wave theory of light,which predicted that the
electron energy would be proportional to the intensity of the radiation.
Light

l;:':;‘:fq’b\'h,‘ Metal surface

Electrons

Ammeter _ . _
( ) Vacuum chamber

-
Battery

4

Fig (1.4)

When light shines on the surface of a metallic substance, electrons in the metal absorb the energy
of the light and they can escape from the metal's surface. This is called the photoelectric effect. It
was found that the magnitude of the electric current thus produced is proportional to the intensity
of the striking radiation provided that the frequency of the light is greater than a minimum value
characteristic of the metal, while the speed of the electrons does not depend on the light intensity,
but on its frequency. These results could not be explained by the theory of
classicalelectromagnetism.

1.6.1 CHARACTERISTICS OF PHOTOELECTRIC EFFECT
(i) Effect of Intensity : It was observed that for a given frequency, if intensity of incident light is

increased, the photoelectric current increases and with decrease of intensity, the photoelectric
current decreases; but the stopping potential remains the same.

12
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This means that the intensity of incident light affects the photoelectric current but leaves the
maximum kinetic energy of photoelectrons unchanged.(ii) Effect of Frequency : When the
intensity of incident light is kept fixed and frequency is increased, the photoelectric current
remains the same; but the stopping potential increases.If the frequency is decreased, the stopping
potential decreases and at a particular frequency of incident light, the stopping potential becomes
zero. This value of frequency of incident light for which the stopping potential is zero is called
threshold frequency vy If the frequency of incident light (v)is less than the threshold
frequency (vo), no photoelectric emission takes place.Thus, the increase of frequency increases

13



the maximum kinetic energy of photoelectrons but leaves the photoelectric current unchanged.
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(iii) Effect of metal : When frequency and intensity of incident light are kept fixed and
photometal is changed, we observe that stopping potentials (V) versus frequency (v) graphs are
parallel straight lines, cutting frequency axis at different points (Fig). This shows that threshold
frequencies are different for different metals, the slope (V/v) for all the metals is same and hence

a universal constant.

T Metal
&

Fig (1.8)
(iv) Effect of Time: There is no time lag between the incidence of light and the emission of
photoelectrons.

1.6.2 EINSTEIN'S EXPLANATION OF PHOTOELECTRIC EFFECT

The wave theory of light failed to explain the observed characteristics of photoelectric effect.
Einstein in 1905 explained these results by assuming light, in its interactionwith matter,

14



consisted of corpuscles of energy /v, called photons. According to this idea, “The energy of
electromagnetic radiation is not continuously distributed over the wavefront like the energy of
water waves but remains concentrated in packets of energy content 4v, where v is frequency of
radiations and his universal Planck's constant ( 6.625 x 10*Js). Each packet of energy is called
a photon or quantum and travels with the speed of light. When a photon encounters an electron of
the metal it is entirely absorbed,and the electon, after receiving the energy /v, spends an amount
of work W equal to its binding energy in the metal, and leaves with a kinetic energy. Accordingly,
if v is the energy of incident photon, then the kinetic energy of ejected photo electron is given
by

Eomax= %mvmax V- W oo (1)

Whereworkfunction W= hvy,in terms of stopping potential V

V=tV =W oo )
hv W

orVS=—V—— ..................... 3)
e e

Thus, a plot of V versus v for different frequencies of light will yield a linear plot with a
slope (//e) and a V intercept of (- W/e).

Equation(1) is referred as Einstein's photoelectric equation and explains all experimental
results of photoelectric effect.From Einstein’s relation, it follows that :

1. No electron will be emitted from the metalsurface if the frequency of the incident light is less
than a certain value called as thresholdfrequency,v,. If v <y then the kinetic energy of the

photoelectrons will become negative physically impossible.Thus the frequency of incident
radiation should be greater than the thresholdfrequency(v,) for the metal for the ejection of

electrons.

2. Equation (1) shows that the photoelectrons with greater value of maximum kinetic energy
will come out of the metal surface, when the frequency of incident radiation is increased.
Since the equation (1) does not involve the term of intensity so the maximum kinetic

energy does not depend upon the intensity.

3. The rate of emission of photoelectrons will be large, when intense beam of light is incident
on the metal surface. This is because, an intense beam of light contains a large number

of photons which transfers their energy to a larger number of electrons and hence more
photoelectrons are emitted.

4. The electron is emitted from the metal surface in a time less than one nanosecond so the
photoelectric effect is an instantaneous process.The predictions of Classical Physics, using just

the electromagnetic wave nature of light, are drastically different. In 1913 and 1914 Robert A
Millikancarried out careful experiments and measured precisely what Einstein's new theory

15



predicted.Thus  quantitative theory of photoelectricity has been completely verifiedby
experiment and establishing the corpuscular nature of light.

1.7 COMPTON EFFECT

Compton effect is a process in which x-rays collide with electrons and are scattered. In order to
establish the particle nature of radiation, it is necessary that photons must carry momentum. In
1923, Arthur Compton studied the scattering of x-rays of known frequency from graphite and
looked at the recoil electrons and the scattered x-rays. Unlike the prediction of classical wave
theory, the wavelength of the scattered radiation does not depend on the intensity of radiation but
depends on the scattering angle and the wavelength of the incident beam.

According to wave theory, when an electromagnetic wave of frequency v is incident on an
atom, it would cause electrons to oscillate. The electrons would absorb energy from the wave
and re-radiate electromagnetic wave of a frequency vs<vy . The frequency of scattered radiation
would depend on the amount of energy absorbed from the wave, i.e. on the intensity of incident
radiation and the duration of the exposure of electrons to the radiation and not on the frequency
of the incident radiation.

Compton found that the wavelength of the scattered radiation does not depend on the intensity of
incident radiation but it depends on the angle of scattering and the wavelength of the incident
beam. The wavelength of the radiation scattered at an angle o is given by

A =4, +L(1—0056’)
c

m,

) h .
Where my is the rest mass of the electron. The constant —— is known as the Compton
m,c

wavelength of the electron and it has a value 0.0024 nm.

Intensity Intensity

i 8= 90°
N\ oo !
: Prismary beam ll
i
I
1 1

Fig (1.9)

The spectrum of radiation at an angle 8 consists of two peaks, one at and Ay the other at A .

Compton effect can be explained by assuming that the incoming radiation is a beam of particles

hv,

with Energy E = hv, and momentum p=—2
c

Which comes from the energy - momentum relation of the special theory of relativity , according
to which, E? = m,’c* + p*c?

16



Where my is the rest mass of a particle. Since photons are massless (my=0 ), we get E=pc.
Compton's observation is consistent with what we expect if photons, considered as particles,
collide with electrons in an elastic collision.

1.7.1 COMPTON'S FORMULA

hy,
Consider a photon of energy v, and momentum p, =—2 colliding elastically with an electron
c

at rest. Let the direction of incoming photon be along the x-axis. After scattering, the photon
moves along a direction making an angle & with the x-axis while the scattered electron moves
making an angle ¢. Let the magnitude of the momentum of the scattered electron be p, while

that of the scattered photon be p,

Compton scattering /
Target [=)
glectron " Recoil

atrest -{p  electron

- &
A
Incident
photan Scattered
photon A f

Fig(1.10)
Applying the law of conservation of momentum in x-direction :
P =D,;COSO+ P COSP wovvniiiniiiiinnn, (1)
Applying the law of conservation of momentum in y-direction :
O0=-p,sin@+p,sing ................... (2)

From the relation (1) and (2)
p.=(p,— p,cosb)’ +(p,sinf)’

=pl+p;=2pp,cosf............. 3)

Conservation of Energy : (relativistic effect)

If the rest mass of the electron is taken to be my , the initial energy is moc” and the final energy is
given by the relation

E* =myc* + plc’

hvy +myc® =hv +ymjct + plc® (4)

From Eqn. (4), we get, on squaring, Thus,

myct + plc? = (v, —hv + mc®) oo ()

pict =(hvy—hv) +2mc* (hvy —hv) coooieeieian.e, (6)

On substituting expression (3) for in the above equation, we get
pic® + pic® =2p,p c* cos@ == (hv, — hv)* + 2mc* (hv, — hv)

- (7

hv, 1%
Recalling p,=—2 and p » =——and on simplification, we get
c c

17



hvv,(1-cos@) =m,c* (v, — V) )
Using A=c/v , we get Compton's formula

A =4 +L(1—0059)
c

MG 9)

Or

h
A=A —4 =——(—cosb)

M€, (10)
A = M is known as the Compton Wavelengthof an electron.
m,c

01: EXAMPLE :

A photon of wavelength 6000 nm collides with an electron at rest. After scattering, the
wavelength of the scattered photon is found to change by exactly one Compton wavelength.
Calculate (i) the angle by which the photon is scattered, (ii) the angle by which the electron is
scattered and (iii) the change in the energy of the electron due to scattering.

SOLUTION :

1. Since the change in wavelength is one Compton wavelength

Ad =2 (1-cosf) =1, ,ie.0=90
Thus the photon is scattered at right angles to the incident direction.
il. Initial momentum of the photon is

_34
M:%:%zl.l%xlo_nk/minx direction
c 0 X

The final momentum of the photon is
hv _h _6.63x107™
c A 84x107"
Thus the final momentum of the electron is
L1Ix10%x-7.9%x107y
The Final direction of electron makes with the x-axis is
$=tan"'(=7.9/11.1)=35.6°
iii. The change in the energy of the electron is negative of the change in the energy of the photon
which is
hc  he

— T =947x107%J =59.2keV
A A

=7.9x107 Js / m iny direction

1.8 HEAT CAPACITY OF A SOLID

18



In 1819 Pierre Louis Dulong and A. T. Petit conducted someexperimentson three dimensional
solid crystals to determine the heat capacities of a variety of these solids.Dulong and
Petit discovered that all investigated solids had a heat capacity of approximately 2.49x 10°
JKilomol'K™! at room temperatureroom temperature (300K). The result from their experiment
was explained by considering every atom inside the solid as an oscillator with six degrees of
freedom (an oscillator can be thought of as a spring connecting all the atoms in the solid lattice).
These springs extend into three dimensional space. The more energy that is added to the solid the
more these springs vibrate). Each atom has an energy of 2kT  .Thus C,= 6/2 R=
3R.The number 6 in this equation is the number of degrees of freedom for the molecule. Petit
and Dulong suggested that these results supported their foundation for the heat capacity of
solids.The explanation for Petit and Dulong's experiment was not sufficient when it was
discovered that heat capacity decreased as temperature approached absolute zero. The degrees of
freedom do not slow down or cease to move when the solid reaches a sufficiently cold
temperature. An additional model was proposed to explain this deviance. Two main theories
were developed to explain this puzzling deviation in the heat capacity experiments. The first
model was constructed by Einstein and the second was proposed by Debye.

Any theory used to calculate heat capacities of crystalline solids must explain two things:

1. Near room temperature, the heat capacity of most solids is around 3k per atom (the molar

heat capacity for a solid consisting of n-atom molecules is ~3nR). This is the well-known

Dulong and Petit law.

2. At low temperatures, Cv decreases, becoming zero at T=0. Heat capacities have a

temperature dependence of the form T + yT, where the T° term arises from lattice vibrations,
and the linear term from conduction electrons.

Classical mechanics would predict Cv = 3R at all temperatures, in violation of both experiment
and the third law of thermodynamics.

1.8.1 MATHEMATICAL ANALYSIS
Suppose we have a solid crystal having N monoatomic atoms, then 3N-6 vibrational modes will
be there. Since N iv vary large number , then 3N-6 =~ 3N. So, we will have 3N normal modes of
frequency of the jth mode be

1 |k,

V. J

gy H;

We shall replace v; by a distribution which is called phonon density of state (the normal modes
are called phonons).

Now the partition function of the crystals is
- 3N
Oy (VoT) =e”’ Oquib,j
J=1

Here qvivj 1s the vibrational partition function (PF) of the jth normal mode. Let us now evaluate
the vibrational PF. Consider a harmonic oscillator of frequency v. Energy of a particular level is
given by

19



1 )
Ejz(j+3th , 1=0,1,23.............
Partition function is
o0 1 o0
_BE. ——phv .
Gy = Ze PE; _ g2 Zeﬁﬂhv
j=0 =0

—lﬁhv
e 2

1 _ e—ﬂhv

So, the total PF is

——phv;
3N 4
e 2

O,(V.T)=e""]]

—Bhv .
-l l_eﬂv;/

Taking the logarithm of the PF ,we have

Uy, & ~hv, Ik hv,
- > |Infl—e """ )+ —=
k,T ;{n( ) )+kBT}

B

nQ, (V,T)=-

Now, we introduce a phonon density of states g(v) which should follow the following equation

Tg(v)dv =3N

0

So the logarithm of the PF can be written as the following integral equation

—anN(V,T) = kU;“ + I[ln(l _ o har )+ 2hva}g(v)dv
3L 0 B

Now we will try to get integral equation of different thermodynamics properties of the crystal
using this PF.

Let us get the integral equation for energy of the system E. Using the relation of canonical

8anN(V,T)] we gt
14

ensemble E = k,T°
oT

—hv/kyT

ok h
E =U0 +}[{(lveew+7v:lg(l/)dl/

We can also get an expression for heat capacity Cy using the thermodynamics relation
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vik T)2 Wl g (v)dv

e T )

CV k[?].i h
0

At this point given a suitable expression for phonon density of states g(v), one can get the
thermodynamics properties and their temperature dependence.

To explain the low temperature behavior of specific of solids, Einstein treated the atoms in a
crystal as N simple quantum mechanical harmonic oscillators, all having the same frequency v,
termed as Einstein frequency. He considered a simple model of a solid, in which the atoms were
represented as weakly-coupled quantum harmonic oscillators. The frequency vg depends on the
strength of the restoring force acting on the atom.Since the equation of motion for each atom
decomposes into three independent equations for the x, y and z components of displacement, and
N atom solid is equivalent to 3N harmonic oscillators, each vibrating independently at frequency
v. So, according to the proposal the phonon density of states will take the form

g(v)=3Né(v-v,)

So the Cy will take the form

2 —hv lkyT
c, :3Nk3(h‘/5] ( ¢
1

2
5 _ o MelkeT )

Now we will define a characteristic temperature called Einstein temperature (®g) for crystal as

vy

O, =
E kB

Now the expression of Cy will read as a function @g
2 -0/T
C, =3Nk, (&j L
T (1 _e T )

Let us now examine the above equation at two different conditions:
1. At very high temperature regime
If temperature is vary high

&—m,
T
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So, C, (T — ) — 3Nk,

This is the dulong-petit’s law of heat capacity, classical limit

2. At very low temperature regime
®
—£ —><>Oand(1—e'®f/r)2 —1
T
So, the expression for heat capacity at low temperature regime will be
@ 2
C, (T —0)=3Nk, LTEJ e !t

Before going into the limitation of the theory, we would like to point out one important feature of
the above equation. The equation predicts that Cy is the same function for all the substances if it
is plotted against the reduced temperature T/Og.
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Fig(1.11)
1.8.2 LIMITATION OF EINSTEIN THEORY

The temperature dependence of heat capacity derived from Einstein model is capable of giving
an impressive qualitative agreement with experiment. However, quantitative agreement is
somewhat poor, especially in the low temperature regime. The experimental temperature
dependence of the heat capacity follows a T° law at lower temperature regime. The low
temperature dependence of the heat capacity predicted by the theory falls to zero value more
rapidly than T° law.
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The reason for this breakdown at low T, low frequency or long wavelength modes get more
populated and that needs to be treated explicitly. Debye theory which we will discuss next has
solved the issue.

1.8.3 DEBYE THEORY OF SOLIDS

The disagreement between Einstein’s result and the experimental data is due to the fact that
Einstein’s assumptions about the atoms in a crystal do not strictly apply to real crystals. The
main problem lies in the assumption that a single frequency of vibration characterizes all 3NV
oscillators. Debye improved on Einstein’s theory by considering the vibrations of a body as a
whole, regarding it as a continuous elastic solid. He associated the internal energy of the solid
with stationary elastic sound waves. Each independent mode of vibration (or normal mode) is
treated as a degree of freedom.

In Debye’s theory a solid is viewed as a phonon gas. Vibrational waves are matter waves, each
with its own de Broglie wavelength and associated particle. The particle is called a phonon, with
characteristics similar to those of a photon. We are interested in determining the number of
possible wavelengths or frequencies within a given range. For quantum waves in a one-
dimensional box we saw that the wave function is i = A4sin kx, where

23



Here A is the de Broglie wavelength, n is the quantum number and L is the dimension of the box.
v
Using the fundamental equation of wave motion, vV = z , where v is the wave velocity and v is

the frequency, we obtain

Where, in this case n = nx2 + ny2 + nZZ.The quantum numbers n,,n,and n.are positive integers.
Thus the possible values that they can assume occupy the first octant of a sphere of radius

1/2

) 2 2
n—(nx +n,+n, )

fy

"

H.

Fig (1.13)

Let g(v)dv be the number of possible frequencies in the range v to v+ dv . Since 7 is proportional
to v, g(v )dv is the number of positive sets of integers in the interval n to n + dnthat is, within a
shell of thickness drof an octant of a sphere with radius »:

g(v)dv = %47m2dn = %ﬂnzdn
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In a vibrating solid, there are three types of waves: one longitudinal with velocity o and two
transverse with velocity v, All are propagated in the same direction. When all three waves are
taken into account, the above equation becomes

1 2
v)dv =4zV| —+-— |[vidv
g( ) (013 Ut3j

Since each oscillator of the assembly vibrates with its own frequency, and we are considering an
assembly of 3N linear oscillators, there must be an upper limit to the frequency spectrum. The
maximum frequency vpis determined from the fact that there are only 3N phonons:

3N = jg(v)dv = 47[V£L3+%ng
0

vy,

Now, we can understand the principle difference between Einstein and Debye model is the
assumption about the frequency spectrum of the lattice vibration (shown below Fig (1.14)).

gl by

b

(]

Fig (1.14)

Now put the expression for g(v) in the integral expression of Cy and we will get
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Now, we will define x = hv/kgT and Debye characteristic temperature ®p = hvp/kg. The above
equation will take a form after certain step of mathematical manipulation

3e,/T x
CV=9NkB(®LJ I(x“_e)zdx
D o (e =1
(10)

Let us examine the above equation in two conditions

1. At very high temperature regime
x—0, (ex —1)—>x, and e* —> 1
So, the heat capacity will be
3 3
e —omt L) e 2 (22)
Cv=3Nk,

This is heat capacity predicted by Dulong-petit’s law (classical equi-partition theory)
2. At very low temperature regime

O,/T—>x

So, the integral equation for Cy can be written as

T Y% xle
CV :9Nk3(®—DJ ‘([WX

The integral appears on the RHS is a standard and equals to 47*/15. So the expression for Cy
becomes

4 3
- )

5 e,

=al’
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Here a is constant for a particular solid. This is the famous T>-law. This theory predicts the
temperature dependence of the heat capacity of monatomic solids in the whole temperature range
quiet well both qualitatively and quantitatively.

CV Specific Heat of Solids
Debye Specific Heat

3R+

1

Einstein Specific Heat
T
Fig (1.15)

1.9 BOHR’S MODEL H ATOM

Neil Bohr modified Rutherford atomic model by using Plank’s Quantum theory of radiation
and purposed the model of hydrogen atom which could explain successfully the origin of spectral
line in hydrogen atom and also gave a model for all other atoms. For simplicity Bohr considered
only circular orbits and introduced several, arbitrary assumption which violate classical physics
but which are immensely successful in explaining many properties of hydrogen atom. The force
of attraction between the nucleus and the electron

1 Ze?

4mey T2

The centripetal force acting on the electron due to its mechanical motion in circular orbit mv?/r.

For equation of the electron due to the electron in circular orbit Coulomb’s force of attraction
must be equal to the centripetal force upon the electron i.e.

mv: 1 Ze?

r  4mey 12

1 Ze?

4mEy MUV

.......... (1)
From the second postulates we have angular momentum of electron

nh
mvr =——
21

nh
2mmr

Substituting value of v from eqn. (3) in eqn. (2)

1 Ze? 1 ze?x4m?m?r?

4mey m(nh/2mmr)2  4meg mn2h2
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thz a2

................ )

mmZe?
This eqn. gives the radius of nth stationary orbit. We denote it by 7;, Thus

__goh?n?

....................... 3)

r =
N mmze?

The kinetic energy of the electron in nth orbit =§ mv? where v,is the velocity of the electron in
nth orbit.

For nth orbit eqn. (2) may be written as

1 Ze? 1 Zze?
e —— O V2= T 4)
4TEY MUy 4mEy MUy

Substituting value of the vn® from this eqn. We get the kinetic energy of the electron in nth orbit

. . L1 1 Zze? 1 Ze?
Potential energy in nth orbit =-m — = —
2 4TTEG My 4TTEY 2T
. . 1 (ze)(-e 1 Ze?
P.Einnthorbit = — £ L . Ze
4TTE n 4TTE n

The total energy of the electron in nth orbits given by

2 2 2
E, =KE+PE= —.22__L .20 L1 .22 ... (5)

4mEy 21 4mEy T 4mEy 2T

Substituting value of 7, from eqn. (3) in eqn. (5)

mz2e* 1 me* \ hc
En = __-_:ZZ( 2 )_ ............... (6)
8g92h2 n2 8e5ch3/ n?

Let us introduce Rydberg constant as

me?

= BZaRs e (7)

Now eqn. (6) may be written as

Z2Rhc
nZ

E, =

Let an electron jump from a stationary orbit of higher energy to a stationary orbit of lower
energy. Now if n; and ny are the Quantum numbers of initial and final state, E; and E; are
respective energies,

Z2Rhc
Ei= ——

n;

And
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If v is the frequency of emitted radiation, from Bohr’s fourth postulate,

E;_Ef Z?Rc Z?Rc 2 1 1
V= =——7 ——z =ZRc|5-3
h ng ny ng ng

The wave number of emitted radiation is given by

C 1 (11
U—A—ZR(n}% n%) .................... (10)

This relation explains the origin of spectral lines. For Hydrogen atomic number is unity. (i.e.
Z=1)

Therefore for hydrogen, equation (14) becomes

o=1=p(L1_-21
v=1= R(n% n?) ........... an
Different observed series in the spectrum of hydrogen can be obtained from this equation.

1. Lyman series. This series of spectral lines in the spectrum of hydrogen is found in the
ultraviolet region. This series is produced by jumping of electron from higher orbits to
orbit for whichny = 1.

This is for series

Where n;-2,3,4,5 ...

2. Balmer series. This series is found in the visible spectrum. This is produced when
electron jumps from higher orbit to orbit 2.
Hence for this series

Where n;-3,4,5,6 ...

29



n=on 13.6eW

F T_
n=4 r ~r + 12.73eWV

o I

>
>

n=3
= A Paschen
= series
s
n=2 = 10.19eWV
A Balmer
series
=
el =
-§ _§
2l =
E| =
=
G o t
—— v YYYY round scate o
Lymamn
series
Fig (1.16)

3. Paschen series. This series is found in infra-red region and is produced when electron
jump from higher orbit to third stationary orbit,

Where n;-4,5,6,7 ...

4. Brackett series. This series is found in infra-red region and is produced when electron
jump from higher orbit to fourth stationary orbit,

G=%=R(4iz—iz> ....................... (15)

n;
Where n;_5,6,7,8 ...
This was discovered by Brackett in 1922 and hence called Brackett series.

5. Pfund series. This is obtained by the jump of electron from higher orbits to fifth
stationary orbit. This series is found in far infra red region

—_ 1 1 1
U:zz R(S_Z_n_2> ................ (16)

Where n;-6,7,8,9 ...

The variation of Rydberg constant with mass of nucleus led to discovery of Deuterium. The
Deuterium is an isotope of hydrogen having a mass exactly double the ordinary hydrogen.
Therefore Rydberg constant for deuterium is slightly greater then hydrogen. As a result the wave
no. of special lines of deuterium are slightly greater and wavelength slightly shorter than
corresponding spectral lines of hydrogen. Urey in 1932 concluded that the faint line was due to
some isotope of Hydrogen. This isotope is known as heavy hydrogen or deuterium.
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1.10 THE WILSON-SOMMERFELD QUANTIZATION RULE

In 1916 Wilson and Sommerfeld, independently discovered a set of rules for the quantization of
any physical system for which the coordinates are periodic functions of time. These rules
included both the Planck and the Bohr quantization as special cases. These rules can be stated as
follows:

For any physical system in which the coordinates are periodic functions of time, there exists a
quantum condition for each coordinate. These quantum conditions are :

mpqdq =nh

Where q is one of the coordinates, pqis the momentum associated with that coordinate, nq is a
quantum number which takes on integral values, and means that the integration is taken over one
period of the coordinate qg-
let us understand these rules by on simple example. consider we have a one dimensional
harmonic oscillator of mass m and force constant k oscillating along x axis with frequency v .
At any instant the total energy of the oscillator is sum of the kinetic energy to potential energy.

E=P.E+KE
1 p2
BE=—hC+= 1
2 2m M
Divided by E both sides, and rearranging gives
2 2
X P,
= +
2E/k 2mE"
2 2
X . r,

(RETE] (VanE)

2 2
We can compare it with equation of ellipse (x )2 + (y )2
a b

semi-major axis a = +/2E / k and semi minor axisb= 2mE fig. (17).

=1, so it is an ellipse in x-px plane with
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Harmonic Oscillator in Phase space (x-px)

Px

«2mE

Momentum axis] _,

V2E/k
1

Position axis x —

Fig (1.17)

So a one dimensional harmonic oscillator which executes to and fro motion along x axis in
static space , will have elliptical trajectory in phase space . The total energy of oscillator along
the ellipse will remain constant. The area of this ellipse gives the phase area available from
energy range 0 to E.

The total phase area of ellipse or action integral Uj pqdq = mab

=w\2E |k .N2mE ............ (4).

1 |m
Since frequency v= —,—
q Y 27\ k

Hence , by applying Wilson-Sommerfeldquantisation condition
E

Uqudqzjznh

Then E =n /v or the energy of harmonic oscillator will be in multiples of 7. which is identical
with Planck's quantization rule.
Note that the allowed energy states of oscillation are represented by a series of ellipses in phase

space, the area enclosed between successive ellipses always being h as in fig.(18):
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Fig(1.18)

We find that the classical situation corresponds to h —0, all values of E and hence all ellipses
being allowed if that were true.
From the Wilson-Sommerfeld rule, (Eq.1), We can also deduce the Bohr quantization of orbital

angular momentum( L = nh/2m) .

An electron moving in a circular orbit of radius r has an angular momentum, mvr = L, which is
constant. The angular coordinate is 0, which is a periodic function of the time. That is 0 versus t
is a function increasing linearly from zero to 2z rad in one period and repeating this pattern in

=3
i *n=3
—=
e n=4
\\_‘
A
-

each succeeding period. The quantization rule [ﬁ pqdq = nqh

In this case

DdeH = nhintegrating from 0 to 27

h
We have L=n—=nh
27

Physical meaning of Bohr’s Second Postulate:

A more physical interpretation of the Bohr quantization rule was given in 1924 by de Broglie.

The Bohr quantization of angular momentum can be written as:

L=mvr=pr=nh2n=nhn=1,2,3, ...
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Where p is the linear momentum of an electron in an allowed orbit of radius r. If we substitute
into this equation the expression for p in terms of the corresponding de-Broglie

. hr  nh
wavelength(p=h/A),the Bohr equation becomes: L = y = Py
V4

Or 2mr=ni n=123.......

Thus the allowed orbits are those in which the circumference of the orbit can contain exactly an
integral number of de Broglie wavelengths. If the orbit circumference is not equal to an integer
of the wavelength, overlapped will cancel each other and will be accompanying wave in this case
is zero. This means that there is no electron orbit and is not available for an electron to exist in
it(see fig.1.19).

(a)

Forbidden orbit,
destructive

Allowed orbit, interference
constructive
interference
2nr’ # nd’,
onr = ni n = integer
n = integer
“—L‘Waue representing —7 /<5 Wave representing
electron electron
Fig (1.19)

One of the important applications of the Wilson-Sommerfeld quantization rules is to the case of a
hydrogen atom in which it was assumed that the electron could move in elliptical orbits.
Sommerfeld first evaluated the size and shape of the allowed elliptical orbits, as well as the total
energy of an electron moving in such an orbit using the formulas of classical mechanics.
Describing the motion in terms of the polar coordinates r and 6 by applied the quantization rule
to fined :

[1Ld0=nyh

And der =nh

1.11 CHECK YOUR PROGRESS

Q1.Apply Planck’s radiation law, to derive; Wien’s law; and Stefan’s law (for black body
radiation).

Q2. Explain Debye’s model of a solid, and discuss the significance of vibrational modes and
theirquantisation (phonons).
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Q3. Use Debye’s model to derive expressions for the heat capacity of a solid in the limits of low
and high temperature.

Q4.Explain what was learned about quantization of radiation or mechanical system from two of
the following experiments:

(a) Photoelectric effect.

(b) Black body radiation spectrum.

(c) Davisson-Germer experiment.

(d) Compton scattering.

Describe the experiments selected in detail, indicate which of the measured effects were non-
classical and why, and explain how they can be understood as quantum phenomena. Give
equations if appropriate.

Q5.(a) Show that the maximum of the Planck energy density (1.9) occurs for a wavelength of

the form A, =b/T , where T is the temperature and b is a constant that needs to be

estimated.

(b) Use the relation derived in (a) to estimate the surface temperature of a star if the radiation
it emits has a maximum intensity at a wavelength of 446 nm. What is the intensity radiated by
the star? ( 6500 K, 1.0x10® W/m?)

(c) Estimate the wavelength and the intensity of the radiation emitted by a glowing tungsten
filament whose surface temperature is 3300 K. (878.45 nm, 6.7x10° W/m?)

Q6. Discuss the Einstein’s explanation of photoelectric effect .State the laws of photoelectric
emission.

Q7.1If the stopping potential of a metal when illuminated with a radiation of wavelength 480 nm
1s1.2V, find

(a) The work function of the metal,
(b) The cutoff wavelength of the metal, and
(c) The maximum energy of the ejected electrons.

Q8.Find the maximum Compton wave shift corresponding to a collision between a photon and a
proton at rest.

Q9. Photons of wavelength 5 nm are scattered from electrons that are at rest. If the photons
scatterat 60° relative to the incident photons, calculate

(a) The Compton wave shift,

(b) The kinetic energy imparted to the recoiling electrons, and

(c) The angle at which the electrons recoil.

Q10. A photon has the same wavelength as the Compton wavelength of an electron. What is the

energy of the photon in eV ?

QI11. Find the smallest energy that a photon can have in order to be able to transfer half of its
energy to an electron at rest (rest mass of an electron is 0.5 Mev) (Ans. 0.256 Mev)

QI12. A photon scatters from a proton, initially at rest. After the collision, the proton is found to
scatter at an angle of 30 with the original direction of the incident photon with a kinetic
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energy of 100 MeV.
Find (i)the initial energy of the photon and
(i1) the angle through it is scattered
( 329Mev ,104°%)
Q13.A photon of wavelength 6000 nm collides with an electron at rest. After scattering, the
wavelength of the scattered photon is found to change by exactly one Compton wavelength.
Calculate (i) the angle by which the photon is scattered, (ii) the angle by which the electron is
scattered and (ii1) the change in the energy of the electron due to scattering.
Q14.Using the Bohr model, find the speed, the radius, and the energy of the system in the
case of circular orbits. Determine also the angular frequency of the radiation generated by a
transition of the system from an energy state n to m.
Q.15.Positronium is the bound state of an electron and a positron; it is a short-lived,
hydrogen-like atom where the proton is replaced by a positron.
(a) Calculate the energy and radius expressions, E,and 7.
(b) Estimate the values of the energies and radii of the three lowest states.
(c) Calculate the frequency and wavelength of the electromagnetic radiation that will just
ionize the positronium atom when it is in its first excited state.
Q.16.What are the longest and shortest wavelengths in the Balmer and Paschen series for
hydrogen?
Q.17.What is ultra-violet catastrophe ? How Plank’s theory resolved it.
Q.18. Discuss Einstein theory of specific heat of solids. What are its shortcomings ?
Q.19. Discuss Debye theory of specific heat of solids.
Q.20. What is Wilson-Sommerfeldquantisation rule discuss in detail .
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The unit called « Basics of quantum mechanics » introduces De-Broglie hypothesis and experimental
evidence of matter wave, phase and group velocity, Time dependent and independent Schrodinger wave
equation, the concepts of the wave function. The statistical interpretation of the wave function and its
properties .Then expectation values, Probability current density, Ehrenfest’s theorem, Uncertainty
principle and solving the Schrodinger equation for simple cases is also discussed.

2.2 LEARNING OBJECTIVES

After going through this unit, you will be able to:

Understand the dual nature of matter and wave .

Know the De-Broglie hypothesis and its experimental varification .
Understand time dependent and independent Schrodinger wave equation.
Understand the concept phase and group velocity of wave packet.
Understand Physical significance wave function and its properties.
Understand Probability current density.

Drive and explain Ehrenfest’s theorem

Explain Uncertainty principle.

2.3 DUAL NATURE OF WAVE AND MATTER

There are some phenomenon involving light like photoelectric effect, Compton scattering etc which can
be explained only on the particle nature of light. Whereas, some other phenomenon like Interference,
diffraction, polarization etc. can be explained on the wave nature of light. This implies that light possess
both the particle as well as wave nature.

Thus, phenomenon depicted by light can be classified into three categories

i. The phenomenon like photoelectric effect or Compton scattering which can be explained using particle
character

ii. The phenomenon like diffraction or polarization, which can be, explained only using wave character.

iii. Phenomenon like refraction or refraction, which can be, explained either by particle or wave character.

2.3.1 DE BROGLIE HYPOTHISIS

In 1924, Lewis de-Broglie proposed that matter also has dual characteristic just like radiation. It means
when the matter is moving it shows the wave properties (like interference, diffraction etc.) are associated
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with it and when it is in the state of rest then it shows particle properties. Thus the matter has dual nature.
The waves associated with moving particles are matter waves or de-Broglie waves.

2.3.2 WAVELENGTH OF DE-BROGLIE WAVES

Consider a photon whose energy is given by E=hv=hc/A ...l (1)

If a photon possesses mass (rest mass is zero), then according to the theory of relatively,its energy is
given by

E=mc® ......ccooeiiieiiinn, )

From (1) and (2) ,we haveMass of photon m= h/cATherefore Momentum of photon
p=mc=hc/cA=h/A .................. 3)

Or A=h/p

If instead of a photon, we consider a material particle of mass m moving with velocity v,then the
momentum of the particle, p=mv. Therefore, the wavelength of the wave associated with this moving
particle is given by:

Or A=h/p (But here p=mv)

If E is the kinetic energy of the material particle of mass m moving with velocity v,then

E=1/2 mv’=1/2 m*v’=p*/2m

Or p=\2mE

Therefore the by putting above equation in equation (4), we get de-Broglie wavelength equation for
material particle as:

2.4 EXPERIMENTAL EVIDENCES OF MATTER WAVE:

2.4.1 DAVISSON AND GERMER EXPERIMENT

In 1927 C. J. Davisson and L. H. Germerset an experiment to observe diffraction of electrons from the
surface of a solid crystal. by this experiment they demonstrated that de-Broglie wave is associated with
the moving electron ie it is a solid experimental confirmation of De Broglie’s hypothesis of ‘Matter
Waves’.

The experimental set-up is consists of an electron gun. It was directed to strike normally on the
(1,1,1) face of a nickel crystal. Electrons were scattered in all directions from the nickel crystal which was
held fixed throughout the experiment. Scattered electrons were collected in a movable detector mounted
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on an arc which could be rotated through an angle about an axis passing through the point of incidence of
electrons on the crystal. The detector was adjusted at different angles for collecting electrons and the
electric current was recorded for each setting of accelerating voltages . The electric current was directly
proportional to the number of scattered electrons per second collected in the detector.
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The intensity of scattered electrons was obtained at different scattering angle ¢. Different sets of
observations were taken corresponding to fixed potential differences (e.g. from 40V to 68V). Polar graphs
are plotted between the intensity (I) of scattered electron and the latitude angle © for different
accelerating voltages. From the graphs it is clear that the intensity of scattered beam is maximum for © =
50 at 54 volt.
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Fig (2.2)

The peak indicates that the waves associated with the moving electrons scattered by the periodic
arrangement of atoms in the crystal interfere constructively. It is similar to Bragg reflections of X rays
from atoms in the crystal and confirms the wave-like behavior of electrons. for an single electron the
pattern of electron scattering is same as that of the electron beam. It indicates that different portions of the
wave associated with a single electron are scattered from different parts of the crystal and interfere
constructively to produce the peak.

2.4.2 MATHEMATICAL ANALYSIS
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According to de Broglie hypthisis , The de Broglie wavelength A of matter waves of moving electrons
having mass m and momentum p=mv is

The velocity v of electrons due to the potential difference V can be obtained from kinetic energy (non
relativistic kinetic energy) of the electron is :

2
p—=eVgiveSp =+2meV )
2m .................
Hence
p) h 1227

Namev NV 3)
V=54V gives A =0.167nm
The experimental value of A is calculated as follows

The interplanar spacing d of the crystal measured by X-ray scattering comes to be equal to 0.091 nm.the

angle of scattering of electrons & =50°

Corresponding to the scattering angle of 50°, the angle ¢ in the Bragg’s law is given by

$=90"—-6/2=65"................. 4)
The wavelength of electrons is calculated using Bragg’s Law 2d sin ¢ = nA

d is the spacing between lattice planes

A is the Wavelength of matter waves associated with electrons
2dsing = ni

nA=2x 0.091 x sin 65°

A =0.165 nm (for n=1)

The experimental value agrees very well with the theoretical value of the wavelength of electrons. Thus
the experiment gives confirmation to the de Broglie’s hypothesis.

2.4.3 THOMSON EXPERIMENT

After the experiments on diffraction of electrons by C. J. Davisson and L. H. Germer, G. P. Thomson also
replicated the experiment on electron diffraction in 1927.

Electrons from an electron gun were accelerated towards a thin, rolled foil of gold. After passing through
the hole in the gold foil, the electron beam was received on a photographic plate placed perpendicular to
the direction of the beam. The diffraction pattern was in the form of continuous, concentric, alternate
black and white rings as diffraction was due to the crystalline grains which were randomly oriented at all
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possible angles in the gold foil. Thus transmission of electrons through a thin foil of a polycrystalline
material was studied.
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Thomson's experiment
a ) G. P Thomson's apparatus for electron diffraction
b ) Diffraction pattern of a beam of electrons by thin gold foil

Fig (2.3)

The diffraction rings on the photographic plate had narrowly defined radii and always seemed to occur in
multiples i.e. circles of radii 2r,3r... ... They were similar to the sharply defined principle maxima of the
intensity pattern for N-slits. Here the planes of atoms in the crystal act as slits. The radii of the different
sets of rings were found to correspond precisely to the spacing of the various planes of atoms. Electrons
were scattered at different angles from the atoms of crystallites and produced interference pattern with
maxima corresponding to those angles satisfying the Bragg condition. In terms of the probabilistic
interpretation of matter waves, the probability of finding an electron scattered at an angle 0 is exactly
equal to computed intensity pattern of interfering waves associated with electron beam.

The diffraction pattern due to polycrystalline material was similar to the powder diffraction pattern of X-
rays having wavelength equal to the de Broglie wavelength of electrons. The wavelength of electrons was
varied by changing the incident energy of the electrons, then diameters of the diffraction rings changed
proportionately according to the Bragg's equation.

The diffraction pattern due to electrons was similar to the Debye-Scherrer diffraction pattern due to X-
rays.
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Fig.(2.4)

When crystalline sample of aluminium was used, the diffraction pattern changed to spots lying around a
ring-like structure.

For Aluminium, the spacing between atomic planes d=2.34 A..

According to the N-slit interference formula, the n-th order principle maximum occurs at angle Bragg’s
condition is

2dsin@=nA . (1)

Wavenumberk = 2w / A

k=2r/dsin@ for n=1 (i.e. the first-order principle maximum).

From the experimental observations it is found that k depends on the voltage V as

For electron having mass m, velocity v, the momentum p in potetial V is given by

Kinetic Energy the relations are

p=~N2meV .

Momentum p is controlled by the voltage V
Thus momentum p and wave number k both are proportional to V'?
Since k=p/h

This is the relation between two intrinsic properties k and Momentum p of electrons.
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By substituting the values for the constants m,e and using the relation

: 1 —od
7i= p / k ,Value of the proportionality constant 7 comes out to be about 1 X 10 Is

This value is quite close to the official value of % which is a universal constant of nature known as
reduced Planck's constant and given by

h=1.005x10"*J.s
Thus the de Broglie’s relation and his hypothesis of matter waves are verified.

G.P. Thomson and C. J. Davisson shared the Nobel Prize in 1937 for Their experiments proved
independently the wave-like behavior of electron (i.e. matter) and confirmed quantitatively the de Broglie
hypothesis of matter waves. These experiments proved that de Broglie's waves are not just mathematical
tools, but exhibit real physical effects which can be observed in the laboratory.

2.5 THE SCHRODINGER EQUATION

Schrédinger developed his equation after his prior attempts to explain with de Broglie’s relation
the Bohr model at a more fundamental level failed.
The one-dimensional wave equation is

ov_ o
ot ox* (1)

The wave equation has solutions of the form cos(kxia)-t), sin(kxia)-t), and

+i(kx—ct) . . = 27
. These are all traveling harmonic waves, where the wave number is * =

A

e and

the angular frequency is @ =27 - f .

Taking W = 4e™ ™ ") Then the derivatives are

2
a—\Pziia)‘P anda \f =+ (2)
ot ox
Evidently,
¥ _iod
o kPox 3)

Whence we can identify 5 = g .
k
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2
For a free particle, p_ P_, just the kinetic energy. We can express this in terms of the
2m

272
frequency and wave number, since £-hroand p = ? =hk: ho= hzk .
m

Solving for the frequency, we obtain what is called a dispersion relation.

e

=
2m

If we substitute this for o in the wave equation, we obtain the following:

o¥ ik’ *Y  inh O’
o kK o’ 2mox’ (4)

If we multiply and divide the r.h.s. by /i, we can see that the r.h.s. is just the momentum
operator squared, divided by 2m.

. . 2 2
o¥ _inih 0¥ _ 1 (—ihij‘P
ot ih2m ox*>  ih2m Oox
s S §

o 2mox’ . (5)

The left hand side (1.h.s.) must be the total energy operator, £ = ;5 0

, since for a free particle,
ot

the total energy is the kinetic energy.

6V(x, t)

For a conservative force acting on a particle, F. =— , Where V(x,1) is the potential energy

function.

We’ll just add it to the kinetic energy operator on the r.h.s. of the wave equation.

B 2 2
LA
ot | 2m Ox

B 2 A2
kA B (o)
ot 2m Ox
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This equation is known as the Time Dependent Schrodinger Equation. This equation tells us how
the initial information about the system changes with time according to a particular physical
circumstance that a system finds itself in. The solution of this equation gives us the wave
function as the time passes in a particular physical situation.

2.51 SOLUTION OF THE TIME DEPENDENT SCHRODINGER
EQUATION

Let us say that V' is independent of time. The potential energy function is constant.

Assume that W(x,)=w(x)f(z). Substitute into the Schrédinger equation. The partial

2 2
derivatives become ok = l//iand 0 lf =f d V; .
ot dt ox dx
iy & T dw +V(x)w-f
VT T am” aw e (1)
Divide both sides by - 1.
ih d, nod’
mA AV ()
f dt 2my dx 2)
The two sides must equal the same constant, namely the total energy, £
L df
ih—=Ef .................. 3
i f 3)
And
nody
——+V =EW i 4
S PV (X =By (4)

It is called timelndependent, steady-state or stationary Schrodinger equation in one dimensions

if we have an arbitrary potential energy function V(x) there are no explicit analytical solutions to
this equation.
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From

L df

ih-—=F
dt /

Bt
t)=e 7"
f@=e " (5)
This is an oscillatory solution, as we always get with a wave equation.in this equation E is the
total energy, which we can normalize to be the kinetic energy plus the potential energy. Hence
solution of the time-dependent Schrodinger equation is written as

¥ (xt)=w(x)f()=w(x)e (6)

This wave function gives complete information about the position, momentum and energy of a
particle at any time. Since superposition principle assert that any linear combination of various
solutions will also be a valid solution. applying superposition principle on a particle that can be
in any one of the infinitely many discrete positions, the most general solution to the time-
dependent Schrodinger equation can be written as

iE,t

Y (x,t)= ganl//n (x) e’

Et Et

It is clear that the probability density. [W(x,)’ =W W =y"e " -pe " =|y(x)’. This is constant
in time, therefore it is called a stationary state. A stationary state has a definite total energy; the
uncertainty AE =0,

2.6 WAVE FUNCTION

We propose to describe the motion or state of a particle by a wave function—a solution to a wave
equation.

2.6.1 STATISTICAL INTERPRETATION OF THE WAVE FUNCTION

The wave function is a complex function of position (x) and of time (t), denoted ‘P(x,t). it

contains a complete description of the behavior of a particle, such as an
electron. In quantum Mechanics the state of particle is describes by a wave function (T, t).

So, P(%, t) describes the wave properties of particle. 1927 Born interpreted |y|*as the
probability density and [(%, t)|d>r as probability, dp (%, t)of finding a particle at the time t in the
volume element located between I andt* + dr.
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W@ 0l*d°r = dp(Z0)

Where [{|?has dimension of[Length]™3? Thus, the total probability of finding the particle
somewhere in space must be equal to one.

J @ oPPd’r =1

2.6.2 PHYSICAL INTERPRETATION OF THE WAVE FUNCTION

In the beginning it was considered that the wave function v is just an auxiliary mathematical quantity to
facilitate computation relative to experimental results. It is true to certain extent in certain cases:

In calculating the intensity of waves scattered by a crystal in direction of the detector; but it does not seem
reasonable to introduce an isolated mathematical function without inquiring into its physical significance.
Schrodinger himself attempted the physical interpretation of y in terms of charge density. If v is the
amplitude of matter wave at any point in space then, the particle density must be proportional to 2. Thus
|y [*is measure of charge density. Usually y*y is written instead of |y[?, where is the complex conjugate of

V.

This interpretation was finding to lead very satisfactory result, when wave mechanics applied to the
distribution of photon (electron), intensity distribution in Compton scattering, the stable state of Bohr
atom or emission of spectral line. But difficulty arises when we talk about flight of electron. To remove
this difficulty another physical interpretation of the wave function generally accepted at present, was
suggested by Max-Born in 1926 and then developed by Bohr Dirac, Heisenberg and others. According to
this view yy* = |y[* represent probability density of particle in the state y .the p [probability of finding
the particle in volume element dt = dxdydz about point r at time t expressed as:

P(r) dt = |y(r, t) 7 dt

Y sometimes called probability amplitude for the position of particle; the postulates suggested by born
show that the Quantum mechanical laws and result of their measurement can be interpretened on the basis
of probability consideration.

conditions for physical acceptability of a wave function are :
(1) A well behaved wave function always obeys the Schrodinger equation.

(2) It must be finite, single-valued and continuous everywhere.
(3) The partial derivatives of the wave function must also be finite, single-valued and continuous
everywhere.
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2.6.3 NORMALIZATION

The probability of finding the particle someplace must be 1, therefore,
+00 5
[|w(x,ef dx=1.0

if the wave function is to represent a physically realistic particle. That is, a wave function must be
normalizable. This boils down to the requirement that ‘P(x,t) — 0as |x| — o . Some wave functions

satisfy the wave equation but are not normalizable.

2.6.4 EXPECTATION VALUES

To relate a quantum mechanical calculation to something you can observe in the laboratory, the
"expectation value" of the measurable parameter is calculated.Imagine a large number of identical but
independent regions in space. In each region is a particle described by the wave function, ‘P(x,t). The

particles and wave functions are identical. In each of these identical systems we measure the position of
the particle, x. The average of all the independent measurements of x is

<x>= T‘P*x‘l’dx = Tx“l"z dx .

-

This is called the expectation value of x. Note that this is not the most probable value of x. That occurs
2, . . .

where |‘P| 1s a maximum. The variance of the measurements of x is

ol =<x?>—-<x>2.

EXAMPLE :let us calculate expectation value <x> and <p> for the ground state wave function in the
infinite square well

Since the normalized wave function for the 1-D infinite square well is given by
[2 . nax
W, = 1|—sin , n=12,3,.
L L

As there is no i, the conjugate complex function has the same form and they > are simply
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1,//,12:£sin2 nzrx’ n=12,3,..
L L

So the integral becomes

0

< x >= jxy/(x)*y/(x)dx

— 00

%j; X (sin %)(Sm ”Lﬂ)dx

x sin( 2n7zx) cos( 2n7zx)
2 . 2 ?
< x >= —ILx-mnznﬂxdx:—[x — L — L 1¢

L Jo L 4 4nrw n7x >

8 ( )
L L

Since sin (nx) = 0, cos (2nm) = 1 and cos 0 = 1, for all values of n the expectation value of x is

2 L? L
< x > —( ) = —

L 4 2

In all quantum states, the arithmetic mean position of the particle is in the middle of the box.

For n = 2,4,6 the “average” position is also "/, and this has nothing to do with ¥ > = 0 the
probability density of finding the particle there

L
/2 TX no 0 2 T X
< P> j L sin( L X i 6x) L sin( L ) dx

0

Simplifies to

h2omo§ . X TX
< p > ———|sin( —)cos( —)dx = 0

i L L+ L L
This is of course because sin x = 0 at the nodes.so the expectation value <p> is zero, what does it mean,
simply the particle is just as likely moving to the right as it is moving to the left, the arithmetic mean

must, thus, give zero.

2.7 PROBABILITY CURRENT DENSITY

The state of a system is described by the wavefunction W(7,#). this wavefunction is a solution of the

time dependent Schrodinger wave equation
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ih%‘P(F,t):H‘P(F,t), )

Where H is a differential operator called the Hamiltonian. For a single particle of mass m moving in a
scalar potential energy field V' (7,¢), the Hamiltonian is

2 2 2 2 2
T a_2+a_2+a_2 +V(77,t)=—h—V2+V(7,t) 2
2m\ ox~ 0Oy~ 0Oz 2m

And the normalization condition (probability of finding the particle is one) is

[w(Fo) w(FEydr=1. ... 3)
14

The probability density p associated with the single particle is

P(Fot) =W (Fot) W(Fot) oo, )

The probability that the particle is in the finite volume 7

P=[p(F.0)=[W(F.t) WFENAT oo, (5)

The time rate of change of this probability is

a_sz L (6)
ot ot ot

The time dependent Schrodinger wave equation is

2
ih%‘?(r,t) = —;—mVZ\P(r,t) +VY¥(rt) ceveeenn (1)
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Gives

aﬁtq,( )_%(_h_zv W(r,t)+V¥(r, t)j ........ (3)

i 2m
Taking complex conjugate of eq (7)
2
—m%w* (rf)= _;_mv W (rt) + V(1)

Hence

1 n

0 s N O .
ET (r,t)— ih[ sz v (r,t)+V‘P (r,t)j ... (10)

Substituting eq 8 and 10 in following expression
oY g g Y oY in (

YV VYY) L, (11)
ot o 2m

ih . .
__mvu(\y VY - ¥ VY ) ......... (12)

Considering j = Zl—h(‘l—’ (A . V‘P) as current probability density
m

o . 0¥

YW |dr=-[Vjdr i, 13
I( o atj e[ vge (13)
From above
P _ 0
— = jpdr _—jv JAT e, (14)
Gives P vi=0

ot

This equation expresses the conservation of probability density.In quantum mechanics, a particle
does not have a definite location. Instead, it is considered to be located over all space as defined
by the probability densityp=y=*\ . J is the probability current density. This gives the rate at which
the probability density of the particle is moving at any point in space.

53



2.8 EHRENFEST THEOREM :

Suppose that y(x,t) is a state function representing a one dimensional wave packet . So the time
rate of change of the expectation value of position x is

—J“P d +J—x‘PdT ....... (2)

Using the time dependent Schrodinger wave equation

0 "
Ih—Y=——V' W+ .cevreernnnnnn. A3)
ot 2m
We get
2
Swo gyl (4)
ot ih\ 2m
Similarly the complex conjugate of the time dependent Schrodinger wave equation gives
2
O L g g | (5)
ot ih\ 2m

Substituting eq (4) and( 5) in eq (2), we have

d L |1 h n’
Zc<x>= [Pl —| —— V¥ + VY dr+j S LT VAL 2 70N i LG N (6)
dt ih 2m 2m

Solving and arranging it we get

%< x >=—%j\y*x{v2\y}dr +%J.{V2‘P*}x‘l’dr ............. (7)

Integrating the second integral by parts

[{v?w}x®dr = [$'V* (xW}dr ... @®)

Putting it in equation (7)

_<x>=—% j VY -V ()T e, 9)
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XV - V2 (x \P)——za—q] .............................. (10)
Ox

Hence eq (9) reduced to

1 b4 1
i<)c>:— v {—Zha—}dr——< D> e (11)
dt m ox
o o d 1
Generalisation of which gives d_< FO>=—< P> i (12)
t m

Now the time rate of change of expectation of py

i< D, >:i \P*{—ihﬁ—l}l}dr ..................................... (13)
’ ox

. . 0
_—Zh(J‘\P o { } ggd j ................. (14)

Substituting eq (4) and( 5) in eq (14), we have

Or in general

i<p>:<—VV> ............................ (17)
dt

We recognize it as Newton’s second law. This is an example of the correspondence principle,
the result manifests as Newton’s second law in the case of having so many particles that the net
motion is given exactly by the expectation value of a single particle.
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2.9HEISENBERG UNCERTAINITY PRINCIPLE

This principle is direct result of Dual nature of particle .According to classical mechanics a moving
particle has a definite momentum occupies a definite position, it is also possible to determine both its
velocity and position (momentum). Therefore if the initial coordinates position 7(t) and velocity?(t) and
all force acting on the particle are known then the position #(t) and velocity?(t) are uniquely determine by
the means of Newton’s second law. In recent it is clear that the classical view is based on the
approximation which is valid for the object of noticeable size. It does not describe the behavior of atomic
dimensions.

In quantum mechanics it is described by wave packets which represent all about particle and move with
group velocity. According to Born’s probability “the position of the particle is uncertain with the limits of
wave packets”. It is impossible to know where within the wave packet the particle is and what is the exact
velocity or momentum.

For large wave packets with many crests the velocity spread is very small. So the particle velocity can be
easily determined but the position of particle is very uncertain.

For small wave packets the position can be more or less fixed, but the velocity spread is very large. Thus
the velocity of particle remains uncertain.

For infinitely large wave packet the velocity becomes certain but the position becomes completely
uncertain.

For infinitely small wave packet the position becomes certain but the velocity becomes quite uncertain.

Hence it is impossible to determine simultaneously both the position and the momentum of the particle
with accuracy.

2.9.1 STATEMENT OF UNCERTAINTY PRINCIPLE

The product of uncertainty in position and momentum of particle is approximately equal to a no. of other
h.

Ap.Aq=h 1
Where, h = h/2n
Ap = Uncertaininty in determining position

Aq = Uncertainity in determining velocity
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According to above relation smaller is the value of Aq more exactly we can determine the position.
Larger the value of A p, less exactly we can determine the momentum and velocity. That is, it is
impossible to determine simultaneously both the position and momentum of particle accurately.

This relation holds for all canonical conjugates physical quantities. Such as position and momentum,
energy and time, angular momentum and angle etc.
Thus similarly,

AEAt=h 2
AJLAB=h 3

The product of uncertainties in determining the position and momentum of a particle can never be smaller
than the no. of order ' h.

Equation 1 becomes
Ap.Aq >3 h
AEAt > h
ALAO > -h

Examples of position momentum uncertainity

1) Heisenberg gamma ray microscope
2) Diffraction of a beam of electrons by a slit

Application of uncertainty principle

1) The existence of the electron in the nucleus.

2) The radius of Bohr’s first orbit.

3) Light quanta

4) Bohr’s atomic energy levels and uncertainty principle.
5) Minimum energy of harmonic oscillator.

6) Energy of particle in one-dimensional box.
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2.10HARMONIC OSCILLATOR PROBLEM

Harmonic oscillator is a particle which is bound to an equilibrium position by a force which is
proportional to the displacement from that position . The potential for the harmonic ocillator is
the natural solution for every potential with small oscillations at the equilibrium . Harmonic
motion is one of the most important examples of motion in all of physics because almost all
potentials in nature have small oscillations at the equilibrium , including many systems studied
in quantum mechanics. so the study of harmonic motion plays a fundamental role as a
Stepping stone towards more rigorous applications.
The classical potential for a harmonic oscillator is derivable from Hooke’s law. It is
conventionally written:

Schrédinger equation

nwdwy 1
- kW =E
2m dx* 2 v v

The total energy operator is called the Hamiltonian: Hy = Ey .

2.10.1 SOLUTION: THE ANALYTICAL METHOD

Asymptotic behavior of {/

2 2
(_h_d_m%mwzxzwzwj.(_z_mj

2m dx’ n
A’y me’x’ 2mE
w L w
dy Emzwz o 2mEj
| L (3)
2 2 2

dy mo
-~

If X — 00, then 3
dx h

x’w , which has solutions of the form
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2 2

2 2
m-o”~ , m-o~ ,

w(x)=de " +Be ™ ... )

B = 0 because that term diverges as x — o. So, let us propose that

m2a*

w(x)=h(x)e 2 i, (5)

By substituting the assumed I/ into the Schrodinger equation, and making a change of variable, we’ll

produce a differential equation for that unspecified function, /(x) .

mao
Let y=.— x.
YV

Then y(y) = h(y)e .

d’y _[mza)2 - 2mEJ

de hZ X hZ
mo d’y _(ma)y2 2mEj
5 = T2
nody h h ) (6)

dy’ dy’ dy dy
2 A
_ [j?_zyjhﬂyz —l)hJe
Y Yoo (7
yZ

The € 2 divides out, so we have an equation for the 4(y).
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2
m_w(d h_2y@+(yz_1)h]:[m_wyz_2mEjh

h\dy’ dy h h
d*h dh 5 ,. 2E
2y =+ (Y =Dh=yh—""h
E ydy (y'=Dh=y D
d*h dh

2y —+(k-1Dh=0
0 ydy( )

Where we have set kK = —.
ho
Solution of the Sturm-Liouville equation
The standard tack is to assume a series solution:
h(y)=a,+a,y+a,p’> +a,p’ +. overriiiinnn, )

Put this into the S-L equation, and we obtain a recursion relation for the coefficients. We’d like to have
all the sums start at the same place, as well.

h & LS,
—=> ja,y™ =>(j+Da,,y’
dy Jj=1 J=0
Ch o N Y e v
d2 =2 =Day’ =3 (j+2)(+Da,,y
4 Jj=2 Jj=0
yz jajyj_l = zja;yj = Z(J + l)aj+lyj+l
= = T (10)

2 G+ +Da,,0" =23 (j+Da,,y" + (k=D a;y" =0
j=0 Jj=0

=0
Collect the coefficients of yj and set equal to zero.

(J+2(+Da,, —2ja, +(x—-1a, =0 (12)

Solve for

2j+1-k

aj+2=maj .............. (13)

This result is a recursion relation for two sequences of coefficients. Namely
{ao,az,a4,. . .}and {al,a3,a5,...}.
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However, an infinite series is not normalizable. So the series must terminate at some finite number of

terms; say at j,., =n. Thatis a,,=0 and all succeeding a; = 0 also. The A(y) is a finite

polynomial of degree n. Of course, n is going to be the principle quantum number.

Through the «, the n is related to the total energy, E.

Set 2j+1—x =0, solve for E whenj = n.

K,=2n+1

1
E =(n+-)h
L =(n 2) w

2.10.2 HERMITE POLYNOMIALS

We have found an infinite number of energies for each energy level, n. The formula for the wave function
is incomplete, however, because the power series solution is incomplete. The solution of differential

equation (8) ( itresembles with Hermite differential equation ) is A(y)= N H, ( y) ,where H, ( y) is

Hermite polynomials. The first several Hermite polynomials are tabulated below in table(2.1).
So the wave functions of the harmonic oscillator are

OE)C2

l//n(x)anHn(\/E x)eiT ..................... (15)

Where N, is the normalization constant, after normalization the complete solution is
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ot 20t ) (16)
e i ho
Ho(y)zl WO(y)=NOe 2 EO:T
e 2 3t
H (y)=2 v, (y)=N,(2y)e ° B
" R 2 5ha
H2 (y) :4)/2_2 l//z(y) = N2 (4)/ - 2)€ 2 E2: T
" ; 7 _ Tho
H3(y):8y3_12y l//3(y):N3(8y +12y)€ 2 E3— T

Table (2.1)

2.11PHASE AND GROUP VELOCITY

Phase and group velocity are twovary important and related concepts in wave mechanics. They arise in
quantum mechanics in the time development of the state function for the continuous case.

2.11.1 HARMONIC WAVES AND PHASE VELOCITY

A harmonic wave of constant frequency (monochromatic wave) propagating in one-dimension  (along
x-axis )is described by a wave equation : (Figure 1)

u(x,t) = Asin(wt — kx + @)

Where k is the wave number; and ¢ is an initial, constant phase.
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Fig.(2.6)

In general, these waves propagate in space without distortion and remains same throughout time and
space. That is, the phase @(x,t) remains constant with time :

do kdx

L ew-kE=0
dt dt

Gives phase velocity

dx o

V S
phase d 1 k

Obviously particle can not be represented by a single , since matter wave must be localized around the
region of space within which the particle is confined.

However if we study the superposition of two harmonic waves with very close frequencies and of the
same amplitude. The equations for the motion are,

u(x,t) = Acos(at — k,x) + Acos(w,t — k,x)
= 2Acos((a)2 —2a)1)t (& _kl)xe cos((a)2 +o)t_(k +k1)xJ

2 2 2

= U Xu,

The superposition of many such waves of varying frequencies can results an "envelope" calledwave
packet . This wave packet can be considered to be a superposition of a number of harmonic waves. A
wave packet therefore consists of agroup of waves of slightly different frequencies or wavelengths, with
phases and amplitudes so chosen that they interfere constructively .The plot of such a wave is shown in
Figure 2.
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Fig.(2.7)

The envelope is given by u; and travels at the group velocity. The carrier wave travels at the phase
velocity and is given by u,. The wave packet moves at the group velocity. Group velocity and phase
velocity are not necessarily the same. Group velocity is given by,

o, -0 Ao

v _“ 1 _

wow " ko Ak

Phase and group velocity are related through Rayleigh's formula,
dv
— ph
v, =V, tk e

If the derivative term is zero, group velocity equals phase velocity. In that case, there is no dispersion.
Dispersion is when the distinct phase velocities of the components of the envelope cause the wave packet
to "spread out" over time. The components of the wave packet (or envelope) move apart to the degree
where they no longer combine to complete the envelope.

2.11.2 WAVE PACKETS

A microscopic particle can be not represented by a single de Broglie wave of well-defined frequency and
wavelength, but by a wave packet that is obtained by adding a large number of

waves of different frequencies . This wave packet must then be localized means the wave function which
vanishes everywhere except in the neighborhood of the particle. A localized wavefunction or a
wavepacket can be constructed by the superposition of harmonic waves of slightly different
wavelengths, but with phases and amplitudes chosen to make the superposition constructive in the desired
region. consider a one-dimensional wave packet; describes a classical particle confined to a one-
dimensional region, for instance, a particle moving along the x-axis. the mathematical repersentation the

packet ‘P(x,t) propagating along the x-axis is
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1 ¢ i(kx—aot

.............. (D
At t=0, the wavepacket represented by
¥(x,0)= LT(/)(k)e"k"dk
NImsoo )

(o(k ) is the amplitude of the wave packet.It is the Fourier transform of ‘¥ (x, 0) and is given by

p(k)= ﬁzr‘{’(x)eik"dx

The wave packet travels with a speed called the group velocity, v,. The individual ripples within the
packet travel with a speed called the phase velocity, v,. The phase velocity is the familiar wave speed.

o FE
=— = .. 4
v P 4)

2
The angular frequency of a harmonic wave is , - Bk” . This is called a dispersion relation, because it

2m
implies that waves of different frequency travel with different wave speeds.

Let’s say that the wave packet is composed of harmonic waves with a narrow range of k-values, centered
on k,. We might expand a)(k) in a Taylor’s Series about k,, and keep just the first two terms.

dw
k)= —
olk)= 0, + 4

(k-k)=w,+o, -(k-k,)
ko )

Put this in the ¥ forw.

N7 (x, t) ~ ﬁ?}(}c )ei(kx—(womo'v(k—ko ))’)dk

.................... (6)
~ 1 i(—wu‘t+wo"k0~t)+oo i(k(x—w,,,~t))
P(x, )z e k dk
()= e ottt o
‘P(x, t) = \/;_7[ ei(“"o'”“’vl"‘u't )\P(x - a)o, t,O)
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do
Evidently, the wave packet slides along the x-axis at the speed v, =

),
, _do i[&j ik, _dE
¢ dk|,  dk\ 2m m d
o k, P (9)
Note that the classical speed of a particle with momentum pis L1 , where k = 77[ and A is the
m m

deBroglie wavelength.

EXAMPLE .

Calculate the group and phase velocities for the wave packet corresponding to a relativisticparticle.
SOLUTION

Since ,as we know that the energy and momentum of a relativistic particle are given by

E =mc’

2
myC

B N1=v*/¢?

myv

p=my=—fF—
NI e

wherem, is the rest mass of the particle and c is the speed of light in a vacuum. Squaring and

And

adding the expressions of £ and p, we obtain
E2 — m02c4 +p202
or

E=\mjc* + p’c?

. E
group velocity v, = d_
P

:i ,m02c4+p2c2
dp
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pc

2.2 2:v
my e +p

and phase velocity v, = £ =
p

2
C

This shows that the phase velocity of the wave corresponding to a relativistic particle having non zero
mass, is larger than the speed of light, v,>c. it seems unphysical because it violates the law of special
theory of relativity, according to which the speed of material particles cannot exceed c. In fact, this
principle is not violated because vydoes not represent the velocity of the particle; the velocity of the
particle is represented by the group velocity . As a result, the phase speed of a relativistic particle has no
meaningful physical significance.

2.12 CONCLUSIONS

This unit describes the experimental findings that lead to a new concept and a new scientific approach
towards understanding the physical phenomena at the microscopic level. In addition, it describes the
formal terminology based on assumptions derived from these experimental observations, such as
Schrodinger's wave mechanics and the fundamental principles of quantum mechanics. Examples of
applications can aid in supporting the results of abstract ideas which bring about the various formal
theories of quantum mechanics.

2.13 Terminal Questions
Q1. Write down two expressions of the uncertainty principle.

Q2.Discuss the wave nature of matter and obtain an expression of de Broglie wavelength for
matter waves

Q3.What is the relation between energy and momentum for a particle without mass?

Q4. What is the relation between energy and momentum for a particle with mass?

Q5.In Davission and germer experiment, state the observations which led to (i) show the weave
nature of electrons and (ii) confirm de Broiglie relation.
Q6..Describe the experiment of G.P. Thomoson .Explain the results obtained.

Q7. Deduce de Broglie wavelength of electrons accelerated by a potential of v volt. Draw a schematic

diagram of a localized wave describing the wave nature of moving electron.
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Q8.An electron isconfined in the ground state in a one-dimensional box of width 107" m. Its energy is 38
eV. Calculate:

(a) The energy of the electron in its first excited state. (152 eV.)
(b) The average force on the walls of the box when the electron is in the ground state.

(7.6 x 10°eV/cm)

Q9.Show that the minimum energy of a simple harmonic oscillator is hTCU if AxAp = g , where
(Ap)2 =<(p-<p >)2 >,

Q10. A proton is confined in an in_nite square well of width 10 fm. (The nuclear potential that

binds protons and neutrons in the nucleus of an atom is often approximated by an infnite

square well potential.)

i. Calculate the energy and wavelength of the photon emitted when the proton undergoes a

transition from the first excited state (n = 2) to the ground state (n = 1).

ii. In what region of the electromagnetic spectrum does this wavelength belong?

(E=06:15MeV and A=202 fm)

Q11. An electron is described by the wave function y(x) =0 for x<0 ;(x)=Ce "(1—¢") for x>0
where X is in nm and C is a constant.
i Determine the value of C that normalizes w(x).

ii. Where is the electron most likely to be found? That is, for what value of x is the probability of finding
the electron the largest?

iii. Calculate the average position <x> for the electron. Compare this result with the most likely position,

Y2 xm=0.693 nm, <x>=1.083 nm)

and comment on the difference. (C= 2\/§nm_
Q12. Use the uncertainty principle to estimate:
(a) the ground state radius of the hydrogen atom and

(b) the ground state energy of the hydrogen atom.

Q13. A simple one-dimensional harmonic oscillator is a particle acted upon by a linear restoring force
F(x) =m’x . Classically, the minimum energy of the oscillator is zero, because we can place it
precisely at x = 0, its equilibrium position, while giving it zero initial velocity. Quantum mechanically,
the uncertainty principle does not allow us to localize the particle precisely and simultaneously have it at
rest. Using the uncertainty principle, estimate the minimum energy of the quantum mechanical oscillator.
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Q14.Show that for those waves whose angular frequency @ and wave number k obey the relation

k*c® = @’ the product of the phase and group velocities is equal to ¢?, Vg.vp=cz, where c is the speed of
light.

Q15. The angular frequency for a wave propagating inside a waveguide is given in terms of the wave

-1/2
2
number & and the width b of the guide by @ = kc{l — % k)z} . Find the phase and

group velocities of the wave.

Q.16. Obtain the wave equation for a linear harmonic oscillator and solve it.

Q.17. State and prove Heisenberg’s uncertainty principle.

Q.18.State and prove Ehrenfest’s theorem

0,
Q.19.Show equation 8_p +Vj =0 expresses the conservation of probability density.
t

Q.20.Distinguish between phase velocity and group velocity
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3.1 INTRODUCTION

In this unit we learn how to solve the Schrodinger equation using spherical polar coordinatesfor
spinless particles moving in three-dimensional potentials. We describe the motion of a particle in
spherically symmetric potentials. After presenting a general treatment, we consider several
applicationsranging from the free particle and the isotropic harmonic oscillator to the hydrogen

atom.

3.2 LEARNING OBJECTIVES

After going through this unit, you will be able to:

e Understand the of separation of the variables method.

e Understand the Schrodinger equation in a spherically symmetric potential.
e Solve the various three dimensonal problems in spherical coordinates
[ ]

Understand and solve the Hydrogen atomproblem.

3.3 SCHRODINGER EQUATION IN SPHERICAL COORDINATES

Three dimensional time dependent Schrodinger equation is given as-

Where H is Hamiltonian operator representing a certain way of expressing the total energy of the system

and E = ih 00t is thenumerical value of total energy.

As H is the total energy value of the system. Hence its value can be obtained classically by H=K.E. + P.E.

Hence

2

1 1 2 2
H=—mv"+V =— +
5 2m(px p

y
Also we know that( see operators in next chepter)

+p§)+V

p :Ei p :EQ and p :Ei """"
X jox Y idy z oz
So we can write in general- , — hy
I
SO
in oV —h2V2w+Vl//
ot 2m
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Here V2 a2 a2 . a2 isaLaplacian operator in Cartesian coordinates.

ox2 6y2 822

As the potential energy V and the wave function  are now functions of r = (x, y, z) and t. The probability

of finding the particle in infinitesimal volume ¢ 3 r=dxdydz will be lw (r,1) |2 d 3 7 for which
normalization condition can be given as-

H‘//|2d3r:1 ................. [4]

Here the integral is taken all over the space.

Let we assume that the potential be independent of time, then there ~ will be a complete set of stationary states
which will follow-

—i t
l//n(r,t):z//n(r)e lEx/h .............. [5]

This is simply the evolution of the wave with time. Thus the general solution for time dependent Schrédinger
equation will be given as-

l//(}’,t)chnl//n(r)e_iEX% ...................... [6]

Here the constant Cn can be found by initial wave function w (r,0) and the wave function 74 satisfies
n

the time-independent Schrodinger equation given by-

3.3.1 SEPARATION OF VARIABLES

In the case where potential is a function only of distance from the origin than we should adopt spherical
coordinates (7,6 ,¢ ) as the Hamiltonian in that case will be spherically symmetric. Spherical coordinates can be

shown as-
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Fig. (3.1)
Where r is the radius, @ be the polar angle and ® being the azimuthal angle.
In spherical coordinates the Laplacian is given as-

2
szla(rz 8]_'_ L 0 (sinﬁ 0 J+ ! 62
p2 0or ar r2sing 00 00 2 sin2 @ 0 ¢

So by putting value of laplacian, the time-independent Schrodinger equation can be given as-

+ 1 (821//

1 0 ( Oy
+ sin @
r2sin29L8¢2

_n201 8l,00yp
rzsingaet 00

2m ,/287/[ or Vy =Lty

We start by looking for the solutions that are separable into product-

w (r,0,0)=R(r)Y (0,90) i [3]

Putting this value ofy, in equation [2]-

2 2
_h {Y d(rzde+ R 9 .ngayj+ ; R (a YHJrVRY—ERY
r

S1
2m| 2dr\" dr) 2900\ 00

2
Dividingit by Y R and multiplying by _ 2m7 "
h 2

2 2
ld(rzdR]_Zmzr [V(r)—E]+L 1 aisingay+.12 8Y2 _
Rdr\  dr h Yy |Sin6 06 00 sin’0 0¢
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We observe that the term in first bracket depends only upon r, whereas the second bracketed term depends on

both § and¢ .
Let us designate this equation as-
1 d{( ,dRY 2mr*,, . 4| . . [4]
| r - V(r)-E |;=1(+1
{Rdr( dr) hZ[() ]} (+1)
And

2y Y 5
LI (L A Y PR AL R A | T >
Y | Sin@ 06 06 sin“ 6@ 0¢

Where / (l +1) is called as separation constant.
Thus we can transform the equation as separated variable equation.
Let we designate the LaplacianV 2 into one radial party, 2 and one angular part then by considering derivatives as partial

and using the separation eqn. [4]

2
1 1 o 1 22 1 9 0 1 a2
vZoy 2_ v 2-- r— L =—— rz— - L -6l
2.2 2 ar or 2.2

hzrz @ r@rz r-h r r-h
Where 2 is given by separation eqn. [5] as-
2 20 7
0--p2) L0 (sin& g j+ L9 .
Sind 06 040 Sin26‘8¢2

These equations are the equation for separating laplacian into one radial & one angular part.
Now we study the structure of Schrédinger equation for a particle of mass M moving in a sphericallysymmetricpotential

V(;):V(r) .......................... [8]

This potential is also known as the centralpotential.

The time independent Schrédinger equation for this particle of momentum —;#V  and position vector 7 is-

/P I PR [9]

s VOV ) v ()= By (r)

No as we know that the Hamiltonian is spherically symmetric so we have to use spherical coordinates
(r,0.,9) which are related to their counterpart Cartesian coordinates as-

x=rsinf cos¢d, y=rsinfsing, z=rcosd

Thus putting the value of vV 2 into eqn. [9] using the separation eqn. [6] which is
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. 1
ror? r2p?
the Schrédinger equation in spherical coordinates can be given as-

{ R 1 82 1

<

[\
|

\

|
hp

2 - —_
oM 2 art r+2Mr2% +V(r)}//(,ﬁ):El//(r) .........

Here the first term can be viewed as radial kinetic energy.

OM r%or®: 2M

h? 1 8° r_@,z [11]

Since the radial momentum operator is given by the Hermitian form-

E":;Hij'%%'(iﬂz‘ih(i*i}z‘ihifﬁ ......... [12]

The second term 1 % % of eqn. [10] can be identified with the rotational kinetic energy because

2Mr?
this term can be considered as generated from a pure rotation of particle about the origin.

2
From eqn. [7] is it clears that % doesn’t depend on r. Hence it commutes with both V(r) and radial
kinetic energy {from eqn. [11]} as both the potential and radial kinetic energy is pure functions of r only.
Hence it also commutes with Hamiltonian H which can be seen by eqn. [10]. From angular momentum

2 ~
theory we know that I commutes with Lz , hence we observe that these three operators mutually
commute-

[%2513}:[1-?,1:2}:0 ............ [13]

N 2
Hence H, 7 andg have common eigenfunctions as they commute mutually and also we know that

2
simultaneous eigenfunctions of % and,@z are given by the special harmonics Y, (0,9)"

%2Ylm (H,w):l(l-i_l)thlm (H,w) ..................... [14]
And
LY, (6,0)=mRY, (0,0) e [15]
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As Hamiltonian in eqn. [10] is a sum of a radial and an angular part so we start by looking for the

solution which are the product of one radial and one angular part, where the angular part is simply the

spherical harmonics 0.0) .and also the orbital angular momentum of a system moving in a central
Im ’

potential is conserved, hence it also commutes with the Hamiltonian.

Let we begin by the solution-
v (F)= <,—;|n1m >: v, (r,0,0)=R ()Y, (0,0) e [16]

We have also to find the radial function g (r) - Let the quantum number n is introduced to identify the
n

eigenvalues of H such that:

Putting value ofy, (7) ineqn. [10] and then multiplying whole eqn. by 2Mr? and dividing throughout by

2

R ()Y, (8,9): and using the values from eigenvalues and eigenfunctions eqn. of % we obtain

an eqn. where radial and angular degrees of freedom are separated-

L2y, (0.0)
Im ">

2
(arl)+2Mr V(r)-E) |+ Ylm 0.0) =0

r82
2

_p2
Rnl a”'

The terms inside the first square bracket are independent of @ and ¢ hence it is free from angular

degrees and similarly the second term second term is independent of r so it can be considered free from
radial degrees. These terms must be

separately equal to constants and their sum equals to zero. The second term has the value /(] + 1) 7
2
from eqn. [14] so the first bracketed term must have the value — |/ (I+1)n for the sum to be zero.

Which yields the same result of separation as obtained in last article of separation of variables.

Thus we obtain an eqn. known as the radial eqn. for central potential-

2
n? a2 I(1+1)h

... [19]
R (| V(=T T R (0= E (R, ()

2M dr
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This eqn. shows that the energy levels of the system, does not depend on the azimuthal quantum number
m. for a given |, there are (21+1) different eigenfunctions % corresponding to same eigenenergy ,E,

nilm
. Thus the energy E,, is (21+1)-fold degenerate.
This degeneracy is peculiar to central potential problem.

This eqn. [19] has the structure of a-one dimensional eqn. in r.

2
2 220 N | gau+ny [20]
B L T LS VN O B A ()
2M dr2 M7 nl n nl
Or n% 42U (r) 21]
_ nl +V U (}/‘):E U (’/‘) ................
oM 4,2 " nl n nl
Here we defined the wave function as ; (r)y=rR (r) = [22]
nl nl
And the potential b 2 [23]
nd the potentialby |  J(/+DAE | e
P Y V(r)+l(l+1)hz -V, (r)

2Mr

Solutions of this eqn.gives the energy levels of the system.

The potential given by eqn. [23] known as the effective or centrifugal potential, inwhile the V(r) is

2
central potential and /(/+1)%  is called as repulsive potential associated with the orbital angular

2
2Mr
momentum, which tends to repel the particle away from the centre. In case of atoms V(r) is the Coulomb
potential resulting from the attractive forces between the electron and the nucleus.

We require the wave function (r.0.4) to be finite for all values of r between zero to infinity,
nlm > 7"~
notably for r=0. For the eigenvalue eqn. [21] to describe bound states, the potential V(r) must be

2
attractive (i.e. negative potential) because [(/+1)7% is repulsive potential.

2Mr2

Thus we want to emphasize the fact that, for spherically symmetric potentials, the Schrédinger equation

[10] reduces to a trivial angular equation [14] for L 2 and a one-dimensional radial equation .
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3.3.2 THE FREE PARTCLE

Now we want to apply the general formalism of central potential to study the motion of a free particle of

mass M and energy .. 72 k2 and k is the wave number (k = k ). The Hamiltonian
k= 2Mm
g —h 2 1 2 of the free particle commutes with [ 2 and [, . Since V(r) =0 the Hamiltonian of a
2 M
free particle is rotationally invariant. Thus the free particle can be viewed as a special case of central
potential.

Separation of wave function in radial and angular part can be given as-
<r‘9(p|k1m>:‘//k1m(’”"9’¢):sz(’”)yz,n(e’(/’) ............... [1]

Radial eqn. for free particle is obtained by setting V(r) =0in eq. [19] of last article -

20 2
—fﬂji;rzz{mk,(mn ’(i;)rhz R, ()= E R, (r) -
This can be rewritten as-
1 d? I(I+1) [ [3]
_rdrz{rRkl(r)}+{ . }Rkl(r)—k Rkl(r)
Herek 2 _yumE ) 172 . Using the change of variable p=kr, eqn. [3] can be reduced to-
h

2
T Rip) +2dR1<p>+_l<l+1>}R RN —
dp2 p dp p2 !

Here Rl (p)= Rl (kr)=R 'l (r) - This differential equation is known as the spherical Bessel equation.

The general solutions to this equation are given by an independent linear combination of Spherical Bessel
functions jl (p) and the Spherical Neumann functions nl (p)-

Rl(p):Aljl(p)+anz(/’) .......................... [5]

These function jl (p) and nl (p) are given by-

. (1 4 jlsinp
JZ(P) (-p) (pdp p
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And

| !
nl(p)Z—(—p)l( d j cos p ... [6]
pdp p

Expanding sinp/p and cosp/p in a power series of p, we see that the functions ) and 5 (p) reduce for
[

]l(P

small values of p near the origin to-

2D 1

nl(p)D— NIt

And

. 201
]l(p)D 7101,0 <<1 .... [7]

(21+1)!
And for large values of p to-

1 I
nl(p)D —pcos(p—zj

And

. 1. %3 o [8]
J;(p) —sin| p——— |, >>1

! P 2

As Neumann functions diverge at origin and also the wave function is required to be finite everywhere in
space hence the Neumann function become unacceptable solutions of the problem. Hence in such cases only
spherical Bessel functions jl (kr) contribute to the eigenfunctions of the free particle.

2ME, ....[9]
Vg (70w )= (kr)Y, (0.9) N

Some first few spherical Bessel and Neumann function are given by-

/ BESSEL FUNCTIONS j] (r) NEUMANN FUNCTION nl (I’)
=0 ) sin cosr

Jo(ry="200 n,(r)=-

r

[=1 ) sinr cosr cosr sinr

S (r)="—"—- n(r)=-=—"7,--

r r 7 r
=2 j, (r)= 3——1— sinr—73cosr n,(r)=-— 3——1— cosr—3Sinr
2 1”3 ’ 1”2 2 1”3 7 1’2

80



Table(3.1)

Jo(r)

Fig.(3.3)
The Spherical Bessel function and Neumann function can be plotted as above figure (3).

We observe that only the Bessel functions are finite at origin. Also the amplitude of wave function becomes
smaller and smaller as r increases. At larger distances, the wave functions are represented by spherical waves.

Also the index k in energy 2,2 2ME
_hk _ k
E,= as k= [——"—
2M h
spectrum of a free particle is infinitely degenerate. This is because all orientation this vector k in space
correspond to the same energy.

varies continuously, so the energy

Problem- Finding the 1=0 energy and wave function of a particle of mass m that is subjected to
a<r<b

elsewhere
Solution- the 1=0 radial equation between a<r<b can be given by radial equation

following central potential-y, (r)= <O
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d*U o (1)

5 FETU 0 () = 0 e, (a)
2mFE
Where U (r)=rR, 4 (r) and kzzhz

Since the solution has to satisfy UnO (a)=0 so-
U,o(r)=Asin[k(r-a)] ... (b)
The radial function is zero elsewhere. So UnO (r)=0 for 0<r<a and r>b
Also the radial function must vanish at r=b, UnO (b)=0
So Asin[k(b-a)]=0 so k(b-a)=nz where n=1,2,3..... ... (c)
And we know

2,2 2ME 2,2
Ek=h k as k= TkenergyE __zh

2M " am(a-b)?

We we normalise the radial function we find the constant

A=b‘T"A2 ............. (e)

Here we have to integrate the radial function between limits a to b.

And Kn = bn” so the normalised radial function is given by-
-a

1 ‘, 2 1—sinm[(r_a) a<r<b
RnO(r)sznO(r): Ob—ar b-a

elsewhere

It is the required solution.

3.4 3D PROBLEMS IN SPHERICAL COORDINATES :

Now we will try to solve some problems for a particle by applying the Schrodinger time
independent equation in spherical coordinates using the theory we have studied.

3.4.1 THE SPHERICAL SQUARE WELL POTENTIAL

Consider the problem of a particle of mass M in an attractive spherical well potential
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vy T<a

v(r) = {

0, r>a

Casel: where0<r<a

Inside the well, 0< r< a, the time-independent Schrédinger equation for this particle-

h? 1 d?

— g M R) + =

2M r dr?

1(1+1)h?
2Mr?

R/(r) = (E +vy)RIl(r) ..(1)
V2M(E +vq)
- h

reduces to the spherical Bessel differential equation. As in the case of
a free particle, the radial wave function must be finite everywhere, and is given as follows in
terms of the spherical Bessel functions J; (k;7):

Ri(r) = Aj (k1) = Aj (—“ZM(EWOr), for r <a,..(2)

h

Using the change of variable p =klr, where k1 is now given by k1

Where A is a normalization constant

Case2: wherer>a

Outside the well, r > a, the particle moves freely; its Schrodinger equation is-

—h_zl @’ (T, Rkl(r)) +—

2M 7 dr?

1(1+1)h?
2M7?2

Ri(r) = (ExRiq(r) (r>a)..(3)
Two possibilities arise here, depending on whether the energy is negative or positive.
The negative energy case corresponds to bound states (i.e., to a discrete energy spectrum). The
general solutions of (3).are similar to those of (2), but k is now an imaginary number; that is, we
must replace k by ik2 and, hence, the solutions are given by linear combination of jl (ik2r ) and
nl (ik2r ):

R, (ik,7r) = B[jl(ik,r) £ nl(ik,1)]...(4)

Where B is a normalization constant, with k2 =v—2ME /h.
Linear combinations of jl (p) and nl(p)an be expressed in terms of the spherical Hankel

functions of the first kind, hl(l)(p), and the second kind, hl(z) (p) as follows:

hY(p) = ji(p) + inl(p),...(5)
h? (p) = jl(p) — inl(p) = (A" (p)).....(6)

The first few spherical Hankel functions of the first kind are :
Wy = _;e” Wy (Lo pin  p®Ocy— (L_3 _31,ip
hg ' (p) = —i >y (p) = (p+p2)e ,  hy (p)—(p s pg)e (7)
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The asymptotic behavior of the Hankel functions when p — oo
RO (p) > — el p P (p) » Let0=1D _(8)

The solutions that need to be retained in (4) must be finite everywhere. As can be inferred from
Eq (8), only the Hankel functions of the first kind hl(l) (ik,r) are finite at large values of r (the

functions hl(z)(ikzr) diverge for large values of r). Thus, the wave functions outside the well that
are physically meaningful are those expressed in terms of the Hankel functions of the first kind

(see (4)):

r) +iBjl (i 2 7)...0)

Ry (ikyr) = Bh{V (i@r) — BjI (im

The continuity of the radial function and its derivative at r =a yields
1 ahM(ikyr) 1 djllyr)

D @ T wen e =000

For the I = 0 states, this equation reduces to
-k, = ki cot(kia) ... (11)

This continuity condition is analogous to the transcendental equation.
The positive energy case corresponds to the continuous spectrum (unbound or scattering states),
where the solution is asymptotically oscillatory. The solution consists of a linear combination of

jl(k'r) and nl(k'r), where k’=vV2ME /h. Since the solution must be finite everywhere, the
continuity condition at r = a determines the coefficients of the

linear combination. The particle can move freely to infinity with a finite kinetic energy
E=h?k’?/(2M).

3.4.2 THE ISOTROPIC HARMONIC OSCILLATOR

The radial Schrodinger equation for a particle of mass M in an isotropic harmonic oscillator
Potential

Is

1(1+1)h?
2Mr?2

h? d?Up (1)
2M  dr?

1
+ [Eszrz + ] Uni(r) = EUpyryen(2)
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We are going to solve this equation by examining the behavior of the solutions at the asymptotic
limits (at very small and very large values of r ). On the one hand, when r — 0, the E and

Mw?r?2 /2 terms become too small compared to the 1(I+1)h? /2Mr? term. Hence, when r -0, Eq.
(2) reduces to

h? d?U(r) N I(l + 1)h?
" 2M  dr? 2Mr?

Ur)=0 ...(3)

The solutions of this equation are of the form U(r)~r!*1. On the other hand, when r — oo, the E
and 1(1+1)h? /2Mr? terms become too small compared to the Mw?r? /2 term; hence, the
asymptotic form of (2) when r — oo is

h? d?U(r)
2M  dr?

+ %Ma)zrzU(r) =0..(4)

Which admits solutions of type U(r) ~ e ™ w*r?/2h Combining (3) and (4), we can write the
solutions of (2) as-

U@ = Fryrtte ™ an. (5

Where f (r) is a function of r. Substituting this expression into (4), we obtain an equation for f(r) :

d?f(r) I+1 Mo _\df(r) 2ME Mw
L0 4o (-2 ) O 4 2R - 20+ 3)22| £() = 0....(6)

Let us try a power series solution
fr)=¥r ja,r =ag+a;r + aynr? + .+ a, "+ ... (7)
Substituting this function into (6), we obtain

+1 Mw

Din=0 {n(n —Da,r" %+ 2 (T _ Tr) na,r" 2ME

MTw] anr"} = 0..(8)
Which in turn reduces to

2ME

Y O{n(n + 21+ Da,r" 2 + [— 2P0

2| apr} = 0...9)

For this equation to hold, the coefficients of the various powers of r must vanish separately. For
instance, when n = 0 the coefficient of 72 is indeed zero:
0.Q2l+)ay=0 ...(10)

Note that a, need not be zero for this equation to hold. The coefficient of 7~ corresponds to n =

1 in (9); for this coefficient to vanish, we must have
1.2l + 2)a; = 0...(11)

Since (21 +2) cannot be zero, because the quantum number 1 is a positive integer, al must vanish.
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The coefficient of 7™ results from the relation

2ME

S o{(n+ 2)(n+ 2L + 3y + |5 — S (20 + 21+ 3| @y} = 0...12)

Which leads to the recurrence formula

(n+2)(n+ 2l +3)a,,, = [% +222n+ 21+ 3] a,...(13)

This recurrence formula shows that all coefficients a,, corresponding to odd values of n are zero,
since al =0 (see (11)). The function f (r) must therefore contain only even powers of r:

f@) =S oa2nr®® = 3R apr™,.(14)

Where all coefficients a2n, with n > 1, are proportional to a,.

Now note that when n — +oo the function f (r) diverges, for it behaves asymptotically like er’.
To obtain a finite solution, we must require the series (14) to stop at a maximum power r™ ;
hence it must be polynomial. For this, we require an'+2 to be zero. Thus, setting a,,,, = 0 into
the recurrence formula (13) and since a,;; #0, we obtain at once the quantization condition

2 By — = (20" + 20 + 3) = 0,...(15)
Epi = (0" +1+3) ho,.(16)

Where n' is even (see (14)). Denoting n* by 2N, where N =0,1,2,3,..., , we rewrite this energy
expression as

En=(n+ro  (n=0123.).(17
Where n =n"+1=2N+1
The ground state, whose energy is Eg =3 / o hw, 1s not degenerate; the first excited state, E;

= 5/ 2 hw, is threefold degenerate; and the second excited state, E; =7/ 2 hw, is sixfold

degenerate A table . As shown in the following example, the degeneracy relation for the nth level
is given by

gn =2+ D +2).|..(18)

This expression is in agreement with an eq. obtained for an isotropic harmonic oscillator in
Cartesian coordinates.
Finally, since the radial wave function is given by

Rnl(r) = Up(r)/r,

whereUnl(r) is listed in (16) with f(r) being a polynomial in 2! of degree (n, —1)/2, the total
wave function for the isotropic harmonic oscillator is
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unl(r)
T

Yim (8, 9) = 1 f ()Y (8, @)e ™M /21 (19)

(pnlm(rr 0, (,0) = Rnl(r)ylm(er (,0) =

Table For The Representation Of Energy Levels E,, and g,, For An Isotropic Harmonic

Oscillator -
nE, N1 m In
0 3/2hw 00 0 1
1 52hw 01 +1,0 3
2 7/2hw 10 0 6
02 +2,+1,0
R} 9/2hw 11 +1,0 10
03 +3,+2,+1,0
Table (3.2)

Where | takes only odd or only even values. For instance, the ground state corresponds to
(n,1,m)=(0,0,0) its wave function is —

2 Mo\ 1 _Mor’
(pOOO(rr 9! (P) = ROO(r)YOO(HJ (P) = \/:\/E(T) e 2h Yoo(e, (p)(ZO)

The (n,],m) configurations of the first, second, and third excited states can be determined as
follows. The first excited state has three degenerate state : (1,1,m)with m=-1,0,1. The second
excited states has 6 degenerate states: (2,0,0) and (2,2,m) with m =-2,-1,0,1,2.The third excited
state has 10 degenerate states: (3,1,m) with m =-1,0,1 where m -3,-2,-1,0,1,2,3 . Some of these
wave functions are given by-

8

P11m(1,0,9) = Ri1 (MY (6, 9) = ﬁ(_

Mw)5/4 _Ma)rz
h

re zh Y1,(0,0) .......Q21)

3/ Mwr?

8 M 4 (3 M =

®200(1, 6, 9) = Ry ()Y (6, @) = EW= (—hw) (E - Twrz) e 2h Y50(0,9)...(22)
Ty _Mor?

(p31m(r1 91 (p) = R31(r)ylm(01 (p) = \/%\/E (%) re 2h Ylm(e’ (p) ................ (23)

3.5 HYDROGEN ATOM

The hydrogen atom is one of the precious few realistic systems which can actually be solved

analytically. The form of the Schrédinger equationfor the hydrogen atom in spherical coordinates

hZ
- Evzw(r, 0, (p)+ V(r)t//(r, 0, go) = El//(l”, o, (p)




Where

,_1o(,0 1 0 ) 1 0
\% + sinf— [+———— 5
» or 8r 2 sind 06 00) rsin” @\ op @)

And r is the position of the electron (r = |r| is the magnitude of the position), theSpherically
Symmetric Potential Energy Function(s) V' (< ) = V(r), with no dependence on & or ¢ is due to

the coloumb interaction andm = , 1s the 2-body reduced mass of the hydrogen nucleus(

m,+m,
a proton) of mass m, and the electron of mass m.. The reduced mass in place of the electron mass
is used since the electron and proton together orbit each other about a common centre of mass,
and constitute a two-body problem to solve. The motion of the electron is the prime interest, so
the equivalent one-body problem is the motion of the electron using the reduced mass.Assume
that w(r,8,p)= R(r)Y (6, ) and substitute that into the Schrédinger equation.

= a(rZaijL 21? a(sman}R OV | vRY = ERY
“om| P or or) r-sinf 06 r”sin Ha(p

2

Divide both sides by RY and multiply both sides by — th_zr , and collect terms.

2
1a[rzaR) 2mr oy -Elbs L1 6[1 eay) 12 a{ o
R or or sin@ 90 060) sin"6dp

The quantities in thebrackets must separately be equal to a constant, = C , else the equation
won’t be valid for all ,9,¢. Therefore, we have two equations,

Angular equation:

2
‘1 0 (51 QGYJ 12 a)::—CY
sind 06 06 ) sin“ 0 op (5)

Radial equation:

d( ,dR _Zmr2 B _
E(r drj pVO-ER=CR (6)

These have to be solved separately.
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3.5.1 THE ANGULAR SOLUTIONS

From the relation

2
.1 i(sinﬁa—Yj+—. 12 _612 =-CY
sin@ 06 00 ) sin”“ 0 o¢p

We need to solve for Y and evaluate the C.

Assume that Y(8, p) = O(0)D(¢). Substitute into the differential equation and divide both sides
by Y.

2
{i[sinei(sined—G)]+Csin29}+ id—qf =0
0} do do @ do

As usual, the two terms must separately be equal to a constant, = D .

d’o

27~ D0

sin Hi(sin 9@)+(Csin2 6-D)® =0
do ao- 9)

It can be shown that in fact C = ¢(¢ +1)and D=m". We have ® = e””. What remains is to
solve for the O(H).

sin 0- (sin 099 4 [0(¢ + 1)sin 0 - m?10 = 0
do do

This is a well known differential equation, whose solutions are the Associated Legendre
Functions, P"(cos @) . These are defined in turn in terms of the Legendre Polynomials, P,(x) ,

with x =cos @.

P.(x) =2%ﬂ[%}<xz 1y

|| |m|
Pl (x)=(1-x")> [Ej £, (x)

So, we do not have to solve for ® all over from scratch .Now we have to normalize the angular
solution. Y,"(8,¢) =e™?P" (cos 0)

2nm

II Y 2sin6’a’t9af(p=1
00 e (12)




This has been done already, so we just look up the result:

m (2€ +1) (é _‘m‘)' im m
Y"(0,p)= 7P 0
" (6:9) g\/ 4z (C+lm) € /" (cos6)
where & = (=D)"ifm=0

TheY," are called Spherical Harmonics, and comprise a complete set of orthogonal functions.

That means that any function of & and ¢ can be expanded as a sum of Yém

3.5.2 RADIAL EQUATION AND SOLUTION

d{ ,dR 2m r?
A2 B 2 ()= E)R=((£+1)R
dr(r dr) hZ ( (r) ) ( )

Since we have m for the azimuthal, or magnetic, quantum number, we’ll start using m.for the
mass of the electron. In addition, we’ll find it convenient to make a change of variable, letting
u(r)y=rR(r).

n* d’u
2m, dr’

+[V(r)+ ik le)Ju — Eu
2m r

e T (15)

Classically, we do the same thing when solving Newton’s “Law” for orbits in a gravitational
field.

For the Hydrogen atom, the force acting on the electron is the electrostatic Coulomb force: The
2

potential energy function is V() =— . The radial equation therefore becomes

4re r
2 2 2 2
_h dzt+ h K(K;Ll)_ A
2m, dr 2m, r 4re,r

A~ 2m,E
h

To simplify it, we’ll change the variable again. Firstly, let x = . Secondly, let

2
m.,e

e

p=xrandp, = . Now, the radial equation at least has a cleaner appearance:

2me WK

de + 2

d*u _(l_po £(£+1)]u
p P
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The solution is divided into two parts. The first part is called the asymptotic behavior, related to
the solution at very large distance from the proton or very close to the proton.

a. Asymptotic behavior

2
1) as p - o,

th ~ u , which has the solution u(p) = 4de™”

du _((0+])
¥ 5 U

P

Z+l

i) as p >0, , which has the solution u(p) = Cp

Therefore, we propose that the radial solution has the form u(p) = p""'e”v(p). We’ll plug this
into the radial equation and assume that v(p) is a power series in p .

b. Series solution

We’ll need
du—pep[(€+1—p)v+pﬂ] ..................... (18)
dp dp
And
2
gJ;=p%”’PQ€—2+p+£w+JH +2(0+1- )—1+ vl . (19)
dp p dp*

In the radial equation, the common factors of p‘e™” will divide out.

€M+D]+%[H_ ﬁg+pd%zn_gﬁj@+ub
dp

dp’ p P’ (20)

[20-2+p+

Collect the like terms.

2
p Y a1 p) i fp, 2ty =
dp dp =~ (21)
At this point, we assume that v(p) = Z a,p’ and substitute it into the differential equation.
j=0
dv > - e j
=) ja,p’" = (j+Da..p
dp 73 = (22)

d*v d & . N~ . i
7 :_Z(] +1)aj+1pj :Z](] +1)aj+1pj :
dp” dp % T (23)
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pY j(i+Da,p +2(+1=p)Y (j+Da,,p’ +[p, =20+ DY a,p’ =0
" = = (24)

The coefficient of each power of p must vanish separately.

JG+Da,, +2(0+D(j+Da,, —2ja, +[p,-2({+D]a, =0

e mSE Me A A (25)
Solve for aj+1 .

4 —a -p,+2(0+1)+2j
TG D 2(0+ D(j + 1)
— 4 2(j+L+1)—p,
](j+1)(j+2f+2) (26)

The first coefficient is determined by the normalization condition, @, = A for the moment, and

the rest follow from the formula (called a recursion relation) above. However, the series must
terminate, else v(p) will diverge at large p . That is, the series cannot be infinitely long, for

physical reasons. There must be some maximum value of j such that ¢, , =0. In the recursion

x T

relation

2(Jpax L+ —p, =0
Po

Joae TE+1=

We define n=j__ +¢+1 to be the principle quantum number, because it labels the discrete
energy levels (through the p,).

3.5.3 RADIAL WAVEFUNCTIONS

Now, we work backward from v(p)to R(r). We had set p = and R = ruand
u=ptetv(p).

1 |
an(r)=;u=;,0f e "v,(p)

a. Ground state wave function

The ground state wave function is
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1 1 .

_ Py ] — = -5 _ -
Rlo—;pe a, l—rkre a, = a,xKe
2 B mi,e2 .
m.e 47, 1”
= ao 5
4dre h
_r
=YL ¢
a (29)

2
o

TE
Here, the a = 5— 1s the Bohr Radius. To evaluate the a, we normalize the Rjo.

m,e
© 2 % 7& 2 3
I|R102r2dr: aoz _[e @ pldp = aoz 4
g @ a 4 (30)
L2
S~
2 _r
R1o(r):_3/e ¢
a’ e, (31)

b. Excited state wave functions

Forn>1,/0=0,1,2,3,...,n—1 and m=—(,...,0,...,¢. The v ,(p) is a polynomial of degree
n— (-1 (thatis, j ) whose coefficients are given by the recursion relation

2(j+0+1-n)
aj+1_ . . aj

anda, is determined by normalizing the function.

As they have been defined, thev ,(p) are also “well known” as the Laguerre and Associated

Laguerre Polynomials:

L,(x)=¢ (%)q (e’xx”’ )

()= (—1)1’(%) L,(x) .
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2r
Forus, x = —.
na

After all the normalization, we get the wave functions for the energy states of the electron in the
Hydrogen atoms:

2N == -2 e 21
l//n/,/m =\/(_j Q e "™ (_j Lii/i—l(%)yﬂ (99 (/7)

na) 2n[(n+0)'7 na

c. Energy levels

4
Pkt me

The p is in the total energy, E: E=— =— )
Po &y 2m 87’ o’

e

4 2 2 2
E, =- zmzeez 2 - ’72’lei 2 2 :_Lz mez © ,n=123, ..
8n e h”4n 32rn ¢, h"n n” | 2h° \ 4re,

These are exactly the same energy levels obtained for the classical Bohr model of the Hydrogen
atom. However, Bohr’s model does not have £ and m1.

The ground state wave function is

Wi (7,60,0) = R, (7’))700 (0,9)

20
a% Nar
1 _r
= 3 e a
Ta (36)
The corresponding ground state energy is £; = -13.6 eV. The excited states have the energies
g=-b
n n2 ‘
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Fig.(3.4)
d. Degeneracy

As we know that forany 7, /=0,1,2,3,...,.n—1 and m=—/,...,0,...,¢. Consequently, there

may be several states whose energy is the same. This condition is called degeneracy. The
energy levels are said to be degenerate. For instance, let n =3 . Then there are three possible

values of /. For each value of £, there are 2¢+1 possible values of 71. Therefore, the
degeneracy of the n =3 level is 1 +3 + 5=09. There are nine wave functions that have the same

energy, E 3.

e. Unbound states

If E<0,then « >0 andisreal. Butif £ > 0, then x is imaginary and we obtain free-particle
oscillating solutions, with continuous energy values rather than discrete. We speak of the
continuum of energy states lying above the discrete bound states.

3.6 CHECK YOUR PROGRESS

Q1. For the hydrogen atom prove the degeneracy relation g, = Z:; QI+ =n".

Q2. An electron is trapped inside an infinite spherical well V(r)= 0 for r<a and V(r)=o for r>a,

(a) Using the radial Schrodinger equation, determine the bound eigenenergies and the
correspondingnormalized radial wave functions for the case where the orbital angular
momentumof the electron is zero (1=0)

(b) Show that the lowest energy state for / = 7 lies above the second lowest energy state for
[=0.

(c) Calculate the probability of finding the electron in a sphere of radius a/2, and then in a
spherical shell of thickness a/2 situated between » = a and r = 3a/2.
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Q3. Consider a hydrogen atom which is in its ground state; the ground state wave function is
givenby

|
Y 0.4) =——¢ "

ra,

where ag is the Bohr radius.

(a) Find the most probable distance between the electron and the proton when the hydrogen
atom is in its ground state.

(b) Find the average distance between the electron and the proton.

Q4. A hydrogen atom has the wave function y, ,(r), where n =4, /=3 and m= 3.

(a) What is the magnitude of the orbital angular momentum of the electron around the
proton?(c) Sketch the shapes of the radial function and of the probability of finding the electron a
distance r from the proton.

Q5. (a) For the following cases, calculate the value of » at which the radial probability density
of the hydrogen atom reaches its maximum: (i) n =1, /=0, m= 0; (ii) n= 2, [ =1, m =0;

(ii1) /=n -1, m= 0.

(b) Compare the values obtained with the Bohr radius for circular orbits.

Q6.Calculate the mean value of r for an electron in the ground state of hydrogen atom
Q7.Calculate the mean value of 1/r for 1s electron in the hydrogen atom.

Q8.Solve the radial part of the Schrodinger’s equation for the hydrogen atom.Obtain the energy
eigen values and radial wave function.

Q9.Using Schrodinger’sequation discuss and solve the problem of particle in a 3D box.

Q10.0Obtain the Schrodinger’s equation for a particle moving under a central potential and
separate the variables.

Q11.Disscuss the motion of a particle in central potential using spherical coordinate system.
Q12.Discuss the 3D isotropic oscillator using spherical coordinate system.
Q13.Solvethe problem of a particle of mass m in an attractive 3D spherical well potential

Q14.0btain ground state wavefunction for hydrogen atom and calculate the most probable
distance of the electron from the nucleus.

Q.15.Explain how one can solve the problem of the hydrogen atom quantum mechanically.
Q.16.Write polar part of Schrodinger’s equation and solve it.

Q.17.Discuss the degeneracy of energy levels of hydrogen atom, explain the conditions under
which degeneracy removed.

Q.18.Write angular part of Schrodinger’s equation and separate it.
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Q.19.Consider an electron in the coulomb field of a stationary proton.Determine energy eigen
values and the radial part of the eigen functions of electron.

Q.20.Discuss the motion of free particle in central potential using spherical coordinate system.
Q.21. Show that the wave function

x(r)=Cr [1—227”Jexp(— Zrzao)

0

satisfies the TISE for the radial part of the electron’s wave function in a Hydrogen-like atom ,
where the quantum numbers are n=2 and [=0.
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4.1 INTRODUCTION

In the previous chapter we have developed Schrodinger wave equation and applied it to simple problems.
We also learnt how to find the expectation values of various physical quantities. Now in this unit we will
study the operator formalism of some common physical quantities like position, linear momentum, kinetic
energy etc. The various kinds of operators and their properties will be studied in details.

4.2 OBJECTIVES

After going through this unit you will be able to understand what are -

e  Operators in quantum mechanics

e FEigen values and Eigen functions

e Orthogonality of Eigen functions

e Various kinds of operators and their properties

e To solve the problems related to the above topics

4.3 DYNAMICAL VARIABLES AS OPERATORS

An operator is a rule by means of which a given function is changed into another function. The dynamical

variables like energy, momentum, position etc. are called observables. Each observable has a definite

operator associated with it.

An operator may also be defined as a mathematical term which is used in operation on a function such

that it is transferred into another function.

Thus if A is an operator applied to a function u(x), then it is changed into a function v(x); accordingly
V(x) = A u(x)

The example of operators are addition, subtraction, multiplication, division, differentiation, integration,
operations of grad, div, curl etc.

For example, let u(x) = sinax

And the operator A =—

Then, v(x)=A u(x)
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=—(sin ox
(sin )
= 0, COSUX

Thus the operation of— on a function sinx transforms it into another function acosox.
X

4.3.1 Linear Operators:-

In quantum mechanics, we deal with linear operators and even if the term operator is used, it means linear
operator only. An operator A is said to be linear if it satisfies the following two condition for arbitrary
functions f(x), g(x) and arbitrary constant C.

(@) 4[fx)+ex) ] =4[] +4[e(x)] (1)
(b) 4 [cftx)] = C[Afx)] (2

According to the first condition, we add two functions f(x), g(x) and then operate A on the resulting
function, or, we operate A on f(x) and g(x) separately and then add, we should end up with the same
function. The second condition states that if we multiply a function by a constant C and then operate A on
the resulting function, or we operate A on the function and then multiply by C, we should end up with the
same function.

» Example —

Check whether the following operators are linear or not : (a) Multiplication by x, (b) Squaring.
Solution — (a) Let f{x) and g(x) be two functions of x. Let 4 denote the operator “multiplication by x”
A[f) +80) ] =x[fx) +8() ] =xfx) +xg(x) =A[fx) ] +A[g(x)]
A[cf)] =x[cflx)] = cexflx) =c [ Af(x)].
Both the required conditions are satisfied. Hence, A is a linear operator.

(b)Let A denote the operator “squaring”.

A1) +g00) ] =[fC) + g(0)]?

A[ )] =f(0? A[gx)] =[g)]>

Wesee that 4 [ f(x) + g(x) ] #A[fx) ] + A[g(x) ].

So, A4 is not a linear operator.

We can check that the second condition is also not fulfilled.

Properties of linear operators
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4.3.1(a) Identity Operator i :The identity operator (I) is an operator, which operating on a
function ,leaves the function unchanged,i.e.

If(x) = f(x) e(3)

(b)Null or zero Operator: An operator which annihilates a function when operates on it is
called a null operator. Thus if

Of(x) =0 (®)

Then O is a null operator.

4.3.2 OperatorAlgebra:

The algebra of linear operators is constructed by their addition, multiplication, power etc. If there are two
operators A andB then their sum is

C=A+B (D)
If for every function ¥
CY =AY + BY (2)

Similarly, if their product is
C = AB, then
ABY = A(BY)=CY¥ (3)

But it is to be noted that product of operators may not be commutative. The operators AB and B A are in
general not the same but addition of operators is commutative.

d
For example: Let A=xand B= I

A av
Then ABY= Xd_

Or AB # BA

The operators A andB will commute only if
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AB =BA

The power of an operator is defined as

A2 —AA
A3 = AAA

A" =AA....A (ntimes)

4.3.3 Operators associated with dynamical variables

The measurable quantities like energy, momentum position etc. are called observables. Each observable
has definite operator associated with it.

Energy operator
The Schrodinger equation
HY =EY
informs that the operator associated with the energy E is Hamiltonian H, i.e. E,, or E=H

The time independent form of E,;, is
hZ
Ep=H=-—+V’V
2m
The time dependent Schrodinger equation is
¥—ih— ie. (H)¥-[in —|¥
HY =1 " re. (H) —[1 _t]
i.e. time dependent value of Hamiltonian is

Hzlh—t

Thus, we have
hZ
Ep=H=-—V+V=ih —
2m t
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Momentum operator

As Hamiltonian

2
H=KE +PE=2—+4 V
2m

h
Also, H= -—V2+ A%
2m

2 hZ
fe V= VAV
2m 2m
ie. p= -h2V2

Thus, operator associated with momentum P, is
2 h%_»
P0p2 =-1'V'= —ZV
i

\

h
or, Pop = ;

If P, Py and P, are components of momentum P,
then (iP, + jP, + kP —h(i + i—+ k )
en (iPy +jPy 2) = i X ] y e

Accordingly, the following table represents the operators associated with different observables.

Quantity Operator Symbol

Position Multiplication by x X

Linear momentum

(x-component) —ih T x P
2 2

Kinetic Energy L K
2m dx?

Potential Energy Multiplication by V(x) A"
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Total Mechanical h? d?
— H
Energy omaxz T V(x)

4.4 EIGEN VALUES AND EIGEN FUNCTIONS

If ¥ is a well behaved function, then an operator A may operate on ¥ in two different ways depending on
the nature of function ¥:
(i) The operator A operating on the function ¥ may change the function into another function ¢, i.e.,

AY = ¢ e (D)

Then the new function ¢ will in general be linearly independent of initial function ‘P.

(ii) The operator A operating on some function ¥, may leave the function unchanged but with a
complex or real multiple, i.e.,

INEVN ()

where A may be real or complex number. In this case the function ¥ is a member of the class of physically
meaningful function, called the eigen function of the operator A. The number A is called the eigen value
of the operator A associated with eigen function ¥. Equation (2)is called Eigen value equation.

NOTE: The eigen functions are selected from a special class of functions. In a bound state problem, for
example, all wave functions are required to be continuous, to have continuous derivatives and to vanish at
infinity in such a way as to have an integrable square. In the continuum states, the functions are not
allowed to become infinite at large distances.

" d
Ex: let operator A= —
dx

And wave function = e ~*#*

Then according to the standard eigen value equation AY = AP,
d —4x
—_ =_4 —4x
I e™) e

a
We see that A = -4 is the eigen value of operator (E) associated with the eigen functione ~**.

d2

an eigenfunction of the operator [—dxz-

Example 1:Find the value of the constant B that makes e—ax”

Bx?2]. What is the corresponding eigen value?
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Solution: The eigen value function of operator A is
AY =\¥ (D)

Where A is eigen value of state V.

L d?
HereA = [@ - Bx?] (2
and ¥ = e~
AW — a 271 ,—ax?
so, A¥Y= [@—Bx ]e

d2 _ 2 2 - 2
——(e™")-Bx?e™

Dae~%"[1-2ax?] - Bx2e~ %
= [4a®x?- 2a-Bx2]e~ %"
AY = [(4a?-B)x?- 2a]e™9*’ n(3)
If the constant B makes ¥ = e~%” on R.H.S., then

4a%>-B=0 or B=4a?
So above equation takes the form

AY = 22~

AY = -2a¥ (@)
Comparing eqn.(4) with (1)

A=-2a

i.e., eigen value of operator A is (-2a).

4.5 EIGEN VECTOR OF AN OPERATOR

We have studied in section 4.3 that the result of operating on a vector with an operator A, is in general, a
different vector.

A¥Y = ¢ (D)

But there may be some vector ¥ with the property
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INEIN (2)

Where A is a scalar and ¥ is then called the eigen vector or eigen function of A belonging to the eigen
value A. A linear operator has in general, several eigen values and eigen vectors, which are distinguished
by the subscript:

NN (3)

The set [A] of all the eigen values taken together constitute the spectrum of the operator. The eigen
values may be discrete, continuous or partly discrete and partly continuous. An eigen vector belongs to
only one eigen value. But several linearly independent eigen vectors may belong to the same eigen value.

We find the eigen vector in the following way:-
Let us consider a matrix A, for which the characteristic matrix is
A-M (4

where A is the given matrix, A is the scalar quantity and I is the Identity matrix. Here A and I should have
same order and they should be square matrix. Their characteristic equation will be obtained by equating
the determinant of equation (4)equal to zero.

IA—All=0 c(5)

The roots of the above equation are called the eigen values. For every eigen value there is an eigen vector.
For finding the eigen vector, we consider a non-zero characteristic vector ‘X’ which satisfies the equation

[A-AIX=0 ...(6)

4.6 ORTHOGONALITY OF EIGEN FUNCTIONS

Two wave functions W;(x) and W,(x) are said to be orthogonal or ina definite interval a < x< b if they
follow the condition

by
fa Y (x) P1(x)dx =0 (1)
where W5 (x) is the complex conjugate of ¥, (x).

If we consider a set of functions ¥, ¥,, ¥s.....%,, , ¥,..., then the two functions ¥,, and ¥, (m #n ) are
said to be orthogonal in the interval (a,b) if and only if

[ W Wadx =0 Q)

In general if m = n, then
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[¥; ¥dx =1
e, [ Wy Wndx= [ ¥y ¥dx =1 .....3)

Here ¥,,, and ¥, are normalised wave functions. If any wave function ¥ is not normalised, then it can be
normalised by multiplying it with a normalisation constant N, i.e.,

[ N*W*NWdx = 1

N*N[ W Wdx =1

N*N=|N|?= [ N* =N, it is not imaginary]

[w*wdx
In general orthogonal functions satisfy the condition
f (P (X)dx = p

1 for m = n, gives the condition of normalised function

WRETE mn {O form # n,gives the condition of orthogonal function

4.7 HERMITIAN OPERATOR

The expectation average of a dynamical variable, by definition, is the arithmetic mean of the possible
results of a precise measurement of this variable, each possible result being weighted by its probability.
The possible result of measurements of actual physical variables or observable is real numbers and
consequently the average value of any physical variable for any state at any time must be real number.
Now if P is the Schrodinger operator associated with an observable quantity then the value of observable
quantity is the normalised state ¥ is given by

avPy = <P> = [¢'PWdx (D)

An operator P associated with dynamical variable is said to be hermitian if its average value in any state
¥ is real. If the average of P for the state \P is to be real, the expression [ ¥ *PWdx must be real or in other
words, imaginary factor must be zero, i.e.,

Ly, [W*P¥Ydx =0 ()

for any normalised wave function V.

All Schrodinger operators associated with real variable must satisfy above relation.
The complex conjugate of the function [ ¥*PWdx may be written either as
[(W*PY) dx=| Y(P¥) dx = [P"¥ " Pdx (3)
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Where (P¥) =P"¥" denotes the complex conjugate of the function (P¥) and P"¥"¥ denotes (P¥)".\P.

Condition (1) is only satisfied if the complex conjugate of the function ¥'P¥ is equal to the function
J‘P*P‘de itself, i.e. the condition of an operator P to be hermitian is

[¥PPdx = J(P¥) Wdx (®)

To obtain a general condition for a hermitian operator let # and v be any two acceptable normalisable
wave equations x and let P satisfy (1) so that (4) holds also. Then setting W=u+v, equation (4) gives

[(u+v) PWdx = | [P(utv)]".(utv)dx n(5)
=[P (utv)".(utv)dx
That is

J uPudx + [ uP vdx + ,[V*P udx+ Jv*f’ vdx

=[P uwdx + ] Pu'v.dx + [ PViudx + [ P'Vviv.dx.....(6)

As P is hermitian operator in the state u and v, therefore relation (4) provides

J uPudx =] Pu'udx

And

J v'Pvdx = J P'Vv'v dx

In view of above, equation (6) gives
JuPvdx+[vPudx=]Puvdx+]PVvudx....(7)

If we use the function iv instead of v in (5), we get instead of (8).

[uPivdx +] (iv)Pudx =] Pu'(iv)dx + | P'(iv)"u dx

iJuPvdx+ilvPudx=iPu'vdx+i[PVudx ....(8)

Cancellation of the factor i in the above equation yields

J u'Pv dx - J vPudx = Jf’*u*v dx - Jf’*v*u dx .....(9)

Adding (7) and (9) we get

2f_+;° u*Pvdx = ijozo P urvdx

or

fj;ou*pvdx = f_t: Prutvdx (10)
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If an operator satisfies equation (10) whenever u and v are normalisable, we call it Hermitian, self-adjoint
or real.

Thus, if u and v are two acceptable normalised wave functions, defined over a certain range of
configuration range t, then operator P associated with a dynamical variable is Hermitian if

[uUPvdr = [Pu'vde (1D
This equation may be expressed as

(u,Pv) = (Pu,v)
i.e. the operator can be applied on the either factor in the scalar product.

We have shown above that equation (10) is deduced from equation (4) and since equation (4) must hold
for Schrodinger operators associated with real dynamical variables we conclude that every Schrodinger
operator associated with a real dynamical variable is Hermitian.

4.7.1 Properties of Hermitian Operators

Theorem: Hermitian operators have real eigen values.

Proof: Let ¥ be an eigen value of Hermitianoperatorin the state described by normalised wave function
Y.

Then, eigen value equation is

PY =AY e
Taking its complex conjugate

PP =0y (2)
According to the condition of Hermitian operator

[¥'PWdr =[PPV dt ()
Using (1) and (2) equation (3) gives

[Wapde = [ VY'Y de
LY dr = AT de

A-A)[¥'¥dr=0

I‘P*‘P dt=1 (condition of normalisation)

A—A" =0and hence " = A.
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This is only possible if A is a real number.

This proves that the eigen value of each Hermitian operator is real.

Theorem: Two eigen functions of Hermitian operators, belonging to different eigen values, are
orthogonal.

Proof: Let P be any Hermitian operator and ¥, and ¥, be two eigen functions of operator P.

If A, and A, are distinct eigen values of operator p corresponding to eigen functions ¥, and ¥,
respectively, then eigen value equations are

PY, =LY,
PY, = LY, e
Complex conjugates of these equations are
PP =", or P, =0,
PP, =", or P, =00, c2)
Since A, and A,, being eigen value of Hermitian operator, are real.
According to the general condition of Hermitian operator P, we have
¥, PW dt = [ (P)'W, ¥, dt
Using (1) and (2), we get
[, Pide =, P, W de
or A, Widt= 0¥, W dt
or (M —M)W,"Wdr=0
As A # Ly, we have J‘P;‘Pldr =0.
Thereby indicating that ¥, and ¥, are orthogonal functions.

This theorem guarantees that the orthogonality relations f‘Pi*‘der = §; are satisfied for a set of normalised
eigen functions belonging to different eigen values A;.

Theorem: If two Hermitian operators commute, then their product is also a Hermitian operator.
Proof: Let P, and ¥, be two functions and Aand B be two Hermitian operators.
Now consider the integral

111



¥, ABY,dt
If A is Hermitian operator, then
¥, "ABY,dt = [¥," A (BY,) dr(
= JA'Y," (BY,)dr e
Again B is Hermitian operator, we have
[ (A", "BY,dt = [B"'A"Y,"W,dt c(2)
From (1) and (2), we have (for two operators A and B to be Hermitian)
[¥,"AB W,dt = [B'A"Y,"W,dt (3)
If operators A and B commute, we have
AB=BA or A'B" = (B)'(A)’ (4
In view of this equation (3) becomes
[¥,"ABW,dt = JA'B"Y, " W,dr d)
This is the condition for the product operator (AE) to be Hermitian operator.

Hence, if A and B are commuting Hermitian operators, then their product AB is also Hermitian.

Example 3: Show that momentum operator - — is Hermitian.
i x

. h
Sol: Momentum operator p = T

.. . D
Complex conjugate of pisp = <

If p is a hermitian operator its expectation value <p> in any state ¥ must be real i.e.

N +0 h ¥
<p>= -—

p>=J,, ¥ *s xdx (D)
must be real.

Integrating (1) by parts, we get

R +00 h oy o
<p>:f—oo Y (;g)dx=<p> N (%))

It is obvious from (1) and (2) that <p> is equal to its complex conjugate. In other words <p> is real.
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,_h . iy
Hence, we may say that the momentum operator p = ——is Hermitian.
i x

4.8UNITARY OPERATOR

A linear operator U is unitary if it preserves the Hermitian character of an operator under similarity
transformation. Now, a similarity transformation of an operator A’ by a non singular® operator S, is
defined as,

A->A=§AS' (D)
Thus the condition for U to be unitary is that

(VAU =UAU! (2)
where A"’ = A
But (VAU =" AU, so that

UHTAU'=UA U
Multiplying from the left by U' and from the right by U, we get

U'(0H"AUTU=0"0 A
ie. AU U)=@U0)A (3)
since U (0N =0'0) =7
Now, only identity operator has the property that
Al =TA
for arbitrary operator A, Hence,

Uto=7 ce(®)

In the case of infinite dimensional space, equation (4) by itself does not imply the condition that U should
have an inverse. This condition can be incorporated by multiplying both sides of the equation by U™.
Then, the condition for the unitary of U becomes,

Ut=0U" .5

or UU'=UT=T ...(6)
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Under the operation of U, a vector X is transformed into a vector X’ = UX. Thus if two vectors X and Y
are transformed by the same unitary operator U, then,

(X7, Y") = (UX, UY) = (X, U'UY) = (X.Y)
Thus the transformation by a unitary operator preserves the scalar product of vectors.
The properties of unitary vectors are

(1) The eigen values are unimodular, that is

UX = aX, then |o| = 1.

(2) Eigen vectors belonging to different eigen values are orthogonal.

(3) Product of two or more unitary operators is unitary.

4.9 PROJECTION OPERATORS

Let us consider A and B as complementary subspaces. Any eigen vector possesses ‘a’ projection in A and
‘b’ projection in B. Let these component vectors be denoted by ¥, and W, respectively. These vectors are
uniquely defined and we may write

Y=Y¥,+Y¥,

To each ¥ there corresponds one and only one W¥,. This correspondence is linear and the operator P,
which brings out the projection of ¥ in sub space A is denoted by P, and is called the projection operator
on sub-space A, i.e.

PY =1, D)
Also (P)¥ =P,P, ¥)=P.¥,=Y, n2)

Comparing (1) and (2), we get

i.e. the projection vector is idempotent.

Now let us consider a set of basis vectors ¥ , ¥, , ¥s......
For projection on i" direction

P, ¥ = a;¥;(eigen value equation)

f)if)j Y= f)i (aj‘Pj) = ajf’i‘Pj = aj><0 =0
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Thus, the projection operators on the basis vector have the property
PP, =P,P, = 0 if i#j (@

For every ¥

Zt{=1 p/’l Y= 2321 a;¥; =¥  (By expansion theorem)
Hence

23}:1132:1 )

4.10 COMMUTATING OPERATORS

4.10.1 Commutator

If A and B are two operators, then AB-BA is called the commutator of A and B and is denoted by [A, B]
Le.

[A, B] = AB-BA e))

(1) [A, B] = AB-BA
=-(BA-AB)
[A, B] =-[B,A] )

(i)  [A, B+C] = A(B+C) «(B+C)A
= AB + AC -BA- CA
(AB-BA) + (AC-CA)
—[A,B]+[A,C] (3)

(i)  [A+B, C]=(A+B)C - C(A+B)
=AC+BC-CA-CB
— (AC - CA) + (BC - CB)
= [A, C] +[B, C] )

(iv) [A,BC]=ABC-BCA
Adding and subtracting BAC, we get
[A, BC]=ABC -BAC + BAC-BCA
= (AB-BA)C + B(AC-CA)
=[A, B]JC + B[A, C].....(5)
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)

(vi)

[AB, C]=ABC - CAB
Adding and subtracting ACB, we get
[AB, C]=ABC - ACB + ACB - CAB
=A(BC-CB) + (AC-CA)B
=A[B,C]+[A, C]B .....(6)

[A,[B,C]] =[A, (BC-CB)]

= A(BC-CB) — (BC-CB)A

= ABC — ACB - BCA +CBA
[B,[C,A]] =B, (CA-AC)]

=B(CA-AC) — (CA-AC)B  .....(ii)
=BCA - BAC - CAB + ACB
Similarly [C,[A,B]] = CAB-CBA-ABC+BAC

Adding (i), (i1) and (iii) we get

[A,[B,C]] + [B,[C,A]] + [C,[A,B]] = 0

()

......(iif)

4.10.2 Commutation relation between position and momentum

(1)

where, X — X, and py—pop =

Let us propose to find the commutation of x and py,

h 6
iéx

Consider the operation of [X,p,] on a function ¥(x).

i'e' [Xa px]qj(x) = (pr - pxX) \P(X)
We h oy 29¥
ehave xp,¥=x T 5%
h s h 134
And pxx‘P=—,—(x‘P)=—,(‘P+x—)
L &x l ox

~Equation (1) gives

hé¥w h 5¥
Xp¥Y=x ——--\¥Y +x—

i6x 1 8x
h sy 5Y h
——_(x—— —x—)=——,qj
l ox ox 1
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=ih¥

i.e. [x,px] =ih ....(2)

(i) Also, [x%, p] = [xx, p]
= [X, pudx + X[x,py]
(since [ab,c]=[a,c]b + a[b,c])
=ihx + xih
= 2ihx ....(3)
Similarly [x’, px = [xx%, pxl [, px]X2
= x 2i hx + ihx®

= 3ihx> )

Therefore, by induction, we have

[x", px] =nihx™’

4.10.3 Commutation relation between Momentum and Hamiltonian
The Hamiltonian for a particle is given by

15
—— +
H 5 V(x)

Where p, is momentum operator and V(x) is potential energy. The commutator of H and p,is

pZ
[H, p] = [ﬁ + V(x), psl

pZ

=[xl + V(. p]

[+ VG b
2m Px » Px

=0+ [V(x), px {since [py, px] = 0}

Now consider the operation of [H, ps] on ¥(x), we have
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[Ha px]qj(x) = {V(X)px - pr(X)} lIj(x)

10k~ b2 v woo
g RO hs
Bl (X)i 5x  idéx () ¥()
B ES‘P(x) E S¥(x) E OV (x)
_V(X)i 5x iV(x) Sx illu(x) ox
ESV(x)
T Sx Y)
%
[H, p.J= b

4.10.4 Angular Momentum Operator and their Commutation Rules

The ortital angular momentum of a particle having momentum p and position vector r relative to an
arbitrary origin is defined as

L=rxp
The components of angular momentum in cartesian co-ordinates may be obtained as follows:

(iLy + jLy + kL,) = (ix + jy + kz) x (ipy + jpy, + kp,)
= (Yp; — zpy)l + (2px — XD5)j + (xpy — Y2 )k

Comparing coefficient of £, j and k, we get

i 0 id
L=, =22y =3 (537) =2 (535)

Ly =2px —xp, =2 (m) - x(ﬁ%)

0

. i _ia
Since p,, = o Py = oy

Commutation Rules:Let us write the commutation relation ( Ly, Ly, ) as
[Ly)Ly] = LyxLy — LyLy

Substitution operator values
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e, a 9 d 9
Liby = () (%‘Z@)(Za‘%)
(9 0 a, @ a/ 0 a/ 0
=-h {Ya(%)‘ya("a)‘Z@(Za)“@(xa)}
=—h2{yi+yz o o z?2 o + zx 82}
dyodx dydz

0x azax_yxﬁ_

Similarly
2

b= ) (r5r-3,) 03 733)
vir = \7) \Pox ™ %92/ Yoz Zﬁy

=l l5) 75 a) a bm) g )
- Zax yaz Zax Zay xaz yaz xaz Zay

__hz{ 02, 9 9 9 az}

Zyaxaz_z axay_yxﬁﬂaﬂzazay

On subtracting above two relations, we have

d d
-2l 2,2
[Lx Lyl = ~h {yax xay}

Provided x, y and z are perfect differentials
92 92 92 92
" 9xaz ~ dzox and 0yoz - 0zdy

Ly Ly] = ih {—ih (y;—x _x %)}

—'hh( d 6)
-t {i Y ox xay}

and so on.

={hL, .....(la)
Similarly, we get
[Ly,L;] = hL, .....(1b)
and
[L; Ly] = ihL, .....(lc)

The commutation relations represented by equations (1) can be combined symbolically as follows:
LxL=ihL
Commutation relation of L* with components L,, Ly and L,,
The totalangular momentum is defined by the relation
L* = L5+ L5 + L
Let us take
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(L2, Ly] = [L% + L3 + L%, Ly | = [L2, L] + [L3, Ly ] + [L2, Ly ]
But [L%, Ly] = [LyLy, Ly]
= Ly[Ly, Ly] + [Ly, Lx]Lx = 0
Since [ab,c]=a[b,c]+[a,c]b
[, Ly] = [L3, L] + [LZ, Ly ]
= [LyLy,Ly] + [LyLy Ly]
= Ly[Ly,Ly] + [Ly, Ly|Ly + Ly[L;, L] + [Ly, Ly]L,
But [Ly,Ly] =ihL, and [L,, L] = —ihLy,
Also [Ly, Ly] = ihLyand [Ly,L,] = —ihL,
Therefore

[L?,Ly] = Ly(—ihL,) + (—ihL,)Ly + L,(ihLy) + (ihLy)L, = 0

[L? L] =0 ....(22)
Similarly ~ [L? L,] =0 .....(2b)
[L?,L,] =0 ....(20)

Hence L? commutes with any of the three components of the angular momentum operator.

From eqn. (2c) it is obvious that L? and L, commute, so they have simultaneous eigen functions and hence
are simultaneously measurable.

4.10.5 Ladder Operators L, and L_
Let us define the operators
Ly =Ly +iLyandL_ = L, — i,
Commutation relation of L, with L and L_:
[Ly Ly] = [Ly Ly +iLy] = [Ly Lyl 4 i[Ly Ly
= ihLy, + i(—ihLy)
= ihL, + hL,

= h(Ly+ily) = hL, (1)
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[Ly L] =[Ls Ly —iLy] = [Ly Lyl —i[L, Ly]
= (hL, — i(—ihLy)
= (hL, —hL,
= —h(Ly—iL,) = —hL_ ()
Equation (1) and (2) may be expressed form as
[Lz, Ls] = thL,
Commutation relation of L, and L_ mutually:
[Lz Ly] =[(Lyx+ily), (Lx—iLy)]
= [Ly Ly]=i[Lx Ly] + i[Ly, Lx] + [Ly, Ly)]
=0 —1i(ihL,) +i(—=ihL,) + 0
[L,,Ly] =hL, +hL, = 2hL,

[L,,Ly] = 2hL, (3)

4.11 SUMMARY

In this unit, we have studied

e With each physically measurable quantity, there is associated an operator.
o The operators for different measurable quantities are given.
e Linear operators are those which obey the equation

a) Alfx)+gx)]=A[fx)]+A[gX)]

b) A[Cf(x)]=C[Af(x)]

e The eigen values and eigen functions of the operator corresponding to a variable have intimate
relations with the measurement of that variable.

A¥ =aV is called an eigen value equation. In this equation A is the operator, a is the eigen
value and ¥ is the eigen function.

e Two wave functions W (x) and Wx(x) are said to be orthogonal if they follow the condition
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b
f P ()P (x)dx =0

Where ¥, "(x) is the complex conjugate of Wx(x).

e The condition of an operator P to be Hermitian is

[W*PW dx = [(P¥)*W¥ dx

e Hermitian operators have real eigen values and eigen functions corresponding to different eigen
values are orthogonal.

e A linear operator is unitary if it preserves the Hermitian character of an operator under a
similarity transformation.

e If two operators commute, then any eigen function of one operator corresponding to a non-
degenerate eigen value is also an eigen function of the other.

e For any given function ¥, one can construct the projection operator P,. This operator has eigen
values 0 and 1.

4.12 GLOSSARY

Dynamical - pertaining to forces not in equilibrium

Operator - a function over a space of physical state to another physical state
Commuting - to exchange

Bound State - confined or restrained state

Continuum - uninterrupted succession

Discrete - distinct, non-continuous

Orthogonal - no overlap between vectors or states

Normalised Subspace - scaling of wave function, so that all probabilities add to 1.

4.13 TERMINAL QUESTIONS
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)

What is the significance of operators in quantum mechanics? State with specific examples of
space and momentum operators.

2) Define (a) linear operator, (b) projection operator and (c¢) unitary operator.
3) What is Hermitian operator? Show that Hermitianoperatots have real eigen values.
4) Show that -
(a) Momentum operator is Hermitian.
(b) If Hermitian operators commute, then their product is also Hermitian operator.
(c) If a pair of operators A and B possess a complete set of simultaneous eigen functions,
then the operators A and B commute.
5) Prove that two commutating operators have simultaneous eigen functions.
6) Describe the basic features of operator formalism in quantum mechanics.
7) Prove that no two of the three components of angular momentum L commute with each other but
all of them.
8) Show that eigenfunctions of Hermitian Operator belonging to different eigen values are
orthogonal.
NUMERICAL PROBLEMS:
1) Show that :
. Xp+px
1) The operator %is Hermitian.
1) x and 5 e linear operators.
daz
111) The function cos 4x is an eigen function of the operator T
2) Two operators A and B are given as
d
A=x3, B=x—
dx
Find the commutator [A,B].[Ans — 3x%]
3) If A and B are two operators which both commute with their commutator [A,B], then show that
i) [A,B"]=nB" '[A,B]
i) [A",B] =nA""1[A,B]
4) Find the value of commutators [x3,P,], [xP,] and [x ,P,].

[Ans — 3i i x°, 2i h x, if]

123



4.14 REFERENCES:

Quantum Physics, H.C. Verma Surya publication, Ghaziabad.

Quantum Mechanics, SatyaPrakash and Swati Saluja, KedarNath Ram Nath publication, Meerut.
Quantum Mechanics, V.K. Thankappan, New Age International publishers.

Quantum Mechanics, SatyaPrakash, PragatiPrakashan.

A. Das and A.C. Melissions, Quantum Mechanics: A modern introduction; Gordon and Breach
Science publishers, Switzerland.

Quantum Mechanics, B.N. Srivastava;PragatiPrakashan.

7. Quantum Mechanics, Leonard 1. Schiff;McGraw- HILL International Editors.

nhk W=

o

124



UNIT 5: MATRIX FORMULATION OF QUANTUM
MECHANICS

5.1 Introduction
5.2 Objectives
5.3 Vector Space
5.3.1 Linear independence of vectors
5.3.2 Inner product and unitary spaces
5.4 Matrix Algebra
5.4.1 Transpose of a matrix
5.4.2 Conjugate of a matrix
5.4.3 The transposed conjugate of a matrix
5.4.4 Symmetric and anti — symmetric matrices
5.4.5 Hermitian and Skew Hermitian matrices
5.4.6 Unitary matrix
5.4.7 Orthogonal matrices
5.4.8 Diagonal matrix
5.5 Linear Transformations
5.6 Orthogonal and Unitary Transformations
5.7 Characteristic equation of a matrix
5.7.1 Diagonalization of Matrices
5.8 Hilbert Space
5.9 Operators as matrices
5.10 Matrix representation of wave function
5.10.1 Schrodinger representation
5.10.2 Heisenberg representation
5.10.3 Interaction representation
5.11 Dirac’s Bra and Ket Vector
5.12 Summary
5.13 Glossary
5.14 Terminal Questions
5.15 References
5.16 Suggested reading

125



5.1 INTRODUCTION

In the previous chapter the quantum theory has been developed in terms of wave function ¥ occurring in
Schrodinger equation and in terms of operators which operate on this function ¥ and is in general

s~ h o . .
combination of x andP,= ——. Now in this chapter we are going to study Heisenberg’s approach to
i x

employ operators as matrices. In this approach, the wave function ¥ is regarded as a representative of a
vector, and the operators transform one vector into another. The vector represents different states of a
physical system and can be combined linearly to represent other states. The transformations representing
linear relations among vectors can be expressed by matrices. Thus in this new approach the Schrodinger’s
operators appear as matrices and the wave function as representative of vectors.

5.2 OBJECTIVES

After going through this unit you will be able to understand:

e Vector Space

e What is matrix algebra?

e Characteristic equation of matrix

e Hermitian matrix

e  Unitary matrix

e Hilbert space

e State vectors and operators in Hilbert Space
e Matrix form of Operator

e Schrodinger, Heisenberg and Interaction matrix representation
e Dirac’s Bra and Ket Vectors

e Solved numerical problems

5.3 VECTOR SPACE

A vector space is a collection of objects that can be added and multiplied by scalars. The operations called
addition and multiplication are not necessarily our familiar algebraic operations, but they must obey
certain rules. We know how the vectors are added or multiplied. But the intention here is not to give a
complete discussion but to highlight a number of properties of such vectors that are analogues in the case
of quantum states. Let us take two vectors ¥;and¥,, then their linear combination will be
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V:aﬁl +b'|,7\2 (1)

where a and b are scalar numbers. The right hand side is called linear combination of vectors ¥;and ¥s.
Just like combination of vectors produce another vector, we in quantum mechanics study that combining
states produces other states.

In quantum physics, let us take a set L = {u, v, w, ....} in which elements can be multiplied by complex
number o or added to one another to give the members of the same set, is said to form a linear vector
space L. The elements of vector space are vectors.

Ifu and v are in L, then

au and utv

are also in L.

The operations of multiplication and addition must satisfy conditions

e u+v=v+u (Commutative Law of addition)

e (utv)+w=u+(v+w) (Associative Law of addition)
e (a+P)u=oau+pu (Distributive Law of multiplication)
e outv)=oautav (Distributive Law of multiplication)

e af(u)=a(pu) (Associative Law of multiplication)

e Tu=u, where I is unit or identity operator.

The space L will contain a zero(null) vector 0 such that
u+0=uforall u

The elements of linear vector space L can be multiplied by complex numbers. The linear vector space is
also called vector space.

If the multipliers like a and b in equation (1)are real multipliers, we obtain a real space. The three
dimensional space of position vector is an example of real vector space. This can be shown as below

Ifu and v are also any two vectors of this space, then u + v =v + u is also a vector of this space.

The identity element is null vector 0. The inverse of u is (-u) because u + (-u) = 0. The vector addition is
associative. Thus the position vectors satisfy all the above properties and hence is an example of real
vector space.

5.3.1 Linear independence of vectors and Dimensions
A linear combination of vectors uy, U,,....u, is suppose u of the form

U= iUy + AUy +....Qply = Nieq AilU; e(2)

wherea;(7 =1, 2, ....n) are complex numbers. The vectors u,, U, ....u, are said to be linearly dependent
if
a,uUq + ar,U, +. LApUp = 0

127



iey;au=0 (witha; #0,fori=1,2,....n) .....(3)

On the other hand if no relation of the form(3) exists unless a; = 0, for all values of i (=1, 2, ....n) then
vectors Uy, Uy, ....U, are said to be linearly independent.

5.3.2 Inner Product and unitary spaces

A vector of magnitude 1 is called a unit vector. To represent an arbitrary vector, we introduce unit vector
uq, u,and uz along the positive direction of right handed system OXYZ of three mutually perpendicular
axes. Then any vector a can be expressed as

o= 0qUq +0(2u2 +(X3U3 (1)

where a4, a, and a3 are scalars. Given a vector ‘o’ the scalorsa,, o, and a3 in equation (1) are uniquely
determined. The unit vectors u;, u,and us are said to form a basis for the set of all vectors in three
dimensions. Further, since u;, u,and uz are unit vectors along perpendicular direction, we call them
orthonormal basis. The scalars o4, a, and a5 are the components of o in the basis (uq, u,, uz) we
represent a as a column

The components of a,are 1,0,0; those of a, are 0,1,0 and those of oz are 0,0,1. Hence on expressing
them as column vectors, we have

ol f o

The totality of vectors in three dimensions, is called the dimensional space.
Given two vectors

Uy V1
u= |Uzland v=|V2

U3 V3

in this space, the scalar or inner product of u and v, denoted by u.v or (u,v) is defined as

(wv) = X7, u;v; (2)

In n-dimensional real space, the inner product is defined as

(u,v) = Xis g wv; (3)

If the vectors are complex, that is, if the components of the vectors are complex numbers, the inner
product is defined as
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(wv) =Y, ujv; (@)

whereu; is complex conjugate of u;. Thus we observe that for any vector u,
(ww =Y ujuy = Yy c(5)

is real. We now define the norm(N) of a vector u by

N = (u,u)"? )

A vector whose norm is unity is said to be normalised. Thus for a normalised vector u, we have
(wu) =3, wju; =3, lul* =1 w7

Two vectors u and v are said to be orthogonal if

(u,v)=0 n(8)

Using the concept of inner product we say that the vectorsuy, u,....form an orthogonal set if and only if

(W, wp)= 4, ij=123,... )

Where ;; is the kronecker delta, defined by

(1 ifi=j
if‘{o i ....(10)
5.4 MATRIX ALGEBRA

A matrix may be defined as a square or rectangular array of numbers or functions that obeys certain laws.
The individual numbers (or functions) of the array are called the elements of thematrix and are
represented by capital or small lettersAy or ay; such that & gives the number of row and / gives the
number of columns in the matrix.

Two matrices can be added when they have the same rank, i.e., the same number of rows and the same
number of columns. Addition is Commutative. If A and B denote two matrices, then

A+B=B+A (D)
If the sum matrix is called C, then
Ckl:Akl+Bkl (2)

A matrix A can be multiplied from the left into a matrix B if the number of columns of A is equal to the
number of rows of B; then the product matrix C has the number of rows of A and the number of columns
of B.
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C=AB (3)
Or Ckl :Zm CkmBml (4)

where the summation is over the subscript m, which denotes the columns of A and the rows of B. it
follows from equations (2) and (4), that the distributive law of multiplication is valid.

AB+C)=AB+ AC .....(5
Also, associative law of multiplication is seen to be valid :
A (BC)=(AB)C ....(6)

where the left side means that A is multiplied from the left into the product of B and C, and the right side
means that the product of A and B is multiplied from the left into C. The product (equation 6) can be
written simply as ABC, hence

D=ABC (D)
or, Dy = Zm,n AxmBmn Cni —...(8)

Thus it is clear from equation (4) that AB is not, in general, equal to BA; thus the commutative law of
multiplicationof matrices is not generally valid.

1 -1 1 1 2 3
Example - Given A=|-3 2 —1|and B=|2 4 6]|. Compute AB and BA and hence show that
-2 1 0 1 2 3

AB # BA.

Solution — As A is a 3x3 matrix and B is also 3%3 matrix, therefore the product AB and BA are 3x3

matrices.
1 -1 1711 2 3
AB=|-3 2 —1]2 4 6]
-2 1 ollr 2 3
1x1+(-1)x2+1x1 1x24+(-1)x4+1x%x2 1x3+(-1)x6+1x%x3

=[(-3)x14+2%x2+(-1)x1 (3)x24+2x4+(-1)x2 (-3)x3+2x6+(—-1)x3
(-2)x1+1x2+0x1 (=2)x24+1x4+0x2 (-2)x3+1x6+0x3

BA=

N S DN oo o
W W ocoo
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[1Xx14+2x(-3)+3%x(-2) 1X(-D+2x2+3x1 1x1+2x(-1)+3x0
2Xx1+4x(-3)+6x(-2) 2X(-1)+4x2+6Xx1 2x1+4%x(-1)+6x0
[1Xx142x(=3)+3x(=2) 1xX(-1)+2x2+3x1 1x14+2x(=1)+3x0

—-11 6 -1

=(=-22 12 -2

—-11 6 -1
Hence AB # BA.

The basic concepts of Matrix algebra is already studied in the previous classes. Here we study some
special kind of matrices.

5.4.1 Transpose of a matrix

A matrix of the order n x m obtained by interchanging the rows and columns of (m X n) matrix A is
called the transpose of A and is denoted by the symbol A" or A or A" (A transpose) i.c.

[‘111 Q12 Q1n [‘111 21 0m1
Qz1 Az3 Ao Q12022 0m2

ifA=| ,then AT=| ™
| .. I | .. I
lamlamzaan lalnaZnaan

a1 2 3
For example, if A = [ 4 5 6]’ then
1 4
A'=[2 5
3 6
Let A" and B"be the transpose of matrices A and B respectively, then some properties of transpose of a
matrix are:-
1. (AH"=A
2. (MA)"=XA", A being any scalar (real or complex)
3. (A+B)"=A"+B" A and B being conformable for addition
4. (AB)'=B"A", A and B being conformable for multiplication.

5.4.2 Conjugate of a matrix

If A is any matrix having complex numbers, then the matrix obtained from A by replacing its each
element by its conjugate complex number, is called the conjugate of matrix A and is denoted by A”. Thus,
if A =[ay], then A" = [a; ]
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whereaij* is the complex conjugate of ajj.

Example —if A = [1 +20 2 L ]

3 50 2-3i

thenA" = [1 e 2 L ]

3 =50 2+3i

If A" and B are the conjugates of matrices A and B respectively, then some properties of conjugate of
matrix are

(A =A

(A+B) =A"+B’", A and B being conformable for addition
(M) =L"A", A being any complex number

(AB) = A'B’, A and B being conformable for multiplication.

Sl .

5.4.3 The transposed conjugate of a matrix

The conjugate of the transpose of a matrix A is called the conjugate transpose of A and is denoted by AT =
(AT,

It is obvious that the conjugate of that transpose of a matrix is the same as the transpose of the conjugate
of that matrix i.e. AT~ (AT) = (A")".

Thus if A = [ajj]mxn, then Al = |a]*i

nxm

[1+2i 5i 2+9i
For example,if A=|5—i 0 5i
1 3 5-3i

[1—2i 5+ 1
then Af=| —5i 0 3
|2—-9i —-5i 5+43i

If A" and Bfare the transposed conjugates of matrices A and B respectively, then some properties of
transposed conjugate of a matrix are —

(AN =A

(A+B)" = AT+ B, A and B being conformable for addition
(M) =A"AT, A being any complex number

(AB)' =B" A", A and B being conformable for multiplication.

el
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5.4.4 Symmetric and antisymmetric matrices
A square matrix A = [a;] is said to be symmetric, provided
a; =a;; for all values of i and j
If AT is the transpose of a square matrix A = [ajj], xn , then
Al= [aji]nxn
Therefore (1) implies that
AT=A

Thus a symmetric matrix is one whose transpose coincides with the matrix itself.

a b c] 1 2 3
For example the matrices |b ¢ d|,|2 4 5| aresymmetric matrices.
c d el I3 5 6

A square matrix A = [a;] is said to be antisymmetric or skew symmetric provided
a; = -a;; for all values of i and j.
If A" is the transpose of the square matrix A = [aji]n x n , then
A= [@ji]nxn
Therefore equation (3) implies that
AT=-A
Thus a skew-symmetric matrix A is one for which A= -A.
The examples of skew symmetric matrices are —
0 2 310 a b
[—2 0 5] ) [—a 0 c]

-3 =5 0l l-b —c O

5.4.5 Hermitian and Skew — Hermitian Matrices
A square matrix A = [ajj], «  1s said to be Hermitian matrix if
ajj= aj; for all values of i and j

If AT is the transposed conjugate of A = [ajj], « n,then
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A"=T[afi]nxn
Now equation (1) implies
AT=[ajl,<n=A c(2)

Thus a Hermitian matrix is one whose transposed conjugate or Hermitianadjoint coincides with the matrix
itself. Equation (2) represents the necessary and sufficient condition for a matrix A to be Hermitian.

For i =], equation (1) gives
a;; =a;; for all values of i .....(3)

i.e. every diagonal elements of a Hermitian matrix is equal to its complex conjugate and it is only possible
if all the diagonal elements of a Hermitian matrix are real numbers.

The examples of the Hermitian matrices are

1 i 01710 —i -—3i
-i 0 =2i|li 5 0
0 2t O01L3i 0 2

If A4 is any Hermitian matrix, then k4 is Hermitian if & is any real number.
Any square matrix A = [a;] is said to be skew — Hermitian (or anti — Hermitian) matrix if
aj= -aj; forall values of i and cn(d)
If AT is the transposed conjugate of A = [ajj], « n,then

AT=[ajiln<n
Now equation (1) impliesA"= - [aj],«n = - A (5)

Thus a skew - Hermitian matrix is one whose transposed conjugate coincides with negative of the matrix.
Equation (5) represents the necessary and sufficient condition for a matrix A to be skew - Hermitian.

For i =j, equation (4) gives

a; =—aj; ie.a; ta; =0 c.(6)
Now writing a;;= x + iy, where x and y are real numbers

Thenaj;= x — iy

Therefore a;; +aj;=2x )
Comparing (6) and (7), we get x =0

Therefore a;; =1y
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This proves that every diagonal element of a skew — Hermitian matrix either zero or a pure imaginary
number.

The examples of the skew — Hermitian matrices are:

_i -1z 0 1+4i
[_; i f]'[—1+i o]

5.4.6 UnitaryMatrix

A matrix is known as a unitary matrix if its Hermitianadjoint is equal to its inverse. Thus U is a unitary
matrix if

u'=u

or UU'=1andU'U=1

5.4.7 OrthogonalMatrices

A square finite matrix A is said to be orthogonal if
ATA=1

This implies that AA" =1

where A" is transpose of A and I is unit matrix.

We know that

|AT| = |A|l and |ATA|=]|AT||A]

Hence if ATA = 1; we have |A|>=11ie. |A]=1.

This shows that the determinant of an orthogonal matrix can only have values +1 or -1.

5.4.8 Diagonal Matrix

The diagonal matrix has zero element everywhere except for elements in principal diagonal. Thus

D, 0 0
D=0 Dy 0 |=Dy n
0 0 Dy
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The unit matrix j; can be regarded as a special kind of diagonal matrix in which diagonal elements are
unit.

The elements in the diagonal of the diagonal matrix are known as eigen values of the matrix and have
special significance in quantum mechanical representation.

5.5 LINEAR TRANSFORMATIONS

Let X ={xq,x5,..x,} and Y = {y;,y,, ...y} be two column vectors of vector space V,(F) , their co-
ordinates being related to the same basis of space. Let the coordinates of X and Y be related by the
following n — linear equations

A11X1+ QX+ .t ApXp= Y1)
Az1X1+ AzpXx+ ...+ AypXp= )’2!

+ o e (D
AniX1t ApaXo+ .+ AQupXp= Yn
In matrix notation this set of equations is written as
AX=Y ()

where A = [ajj]n«n 1S Over F.

Then relation (1)represents a transformation which carries any vector X of V(F) into another vector Y of
the same space. Matrix A is called the matrix of transformation.

If the transformation (1) transforms X into Y; and X into Y5, then

(a) It transforms k X into £ Y| for every scalar &, and
(b) It transforms kX, + k,X, into kY + k, Y, for every pair of scalars & and k&,

Due to this reason the transformation is called linear transformation.

If |A| # 0, then the transformation is called non — singular.

If |A| = 0, then the transformation is called singular.

The rank of transformation matrix A is said to be the rank of transformation.
The transformation (2) assigns to each n — vector X another n — vector Y.
If|A| # 0, then from(2) we have

A'Y=X (3)
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This transformation assigns to each n — vector Y another n — vector X.
Thus, if|A| # 0, then the correspondence between vectors X and Y is one — one.

Now consider the transformations

AX=Y ce(d)
and BY=Z .....(5
Then Z=BY =B (AX)=(BA)X N ()]

This transformation assigns to each vector X another vector Z and is called the product or resultant of the
transformations (4) and (5). Obviously the matrix of product transformation is the product (BA).

5.6 ORTHOGONAL AND UNITARY TRANSFORMATIONS

Consider a linear transformation
Y =AX (D)

Such that X and Y are column vectors of order n x 1 and A is a square transformation matrix of order n
xn. If the matrix A of transformation is unitary, the linear transformation is said to be a unitary
transformation. From definition of unitary matrix

AT A=AAT=1 c(2)
Hence we have Y'Y =(AX)" (AX)=X'ATAX=X"X (3)
OrYin, ¥iyi = Ni=q XX )

This shows that the norm of the vector remains invariant under a unitary transformation.

As in inverse case let us consider a linear transformation matrix A which leaves the norm of every vector
of a vector space unchanged that is

Y| =IX] or [AX]|=[X]|
or X'X=AX)AX=X"ATAX c(5)
Obviously A" A =1, showing that A is unitary.

Thus a linear transformation acting on a vector space is unitary if and only if it leaves the norm of every
vector in the vector space unchanged.
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If the matrix of linear transformation is further restricted to be real, it is called a real orthogonal
transformation. In this case equation (3) reduce to

Y Yy=X"ATAX=X"X )

(since ATA=1)
Here A" represents transpose of matrix A.
ie Yt yZ= " x? (D)

Obviously the condition of transformation Y = AX to be orthogonal is that the transformation matrix A
satisfies the condition

ATA=AAT=1

and the transformed vectors satisfy condition (6).

5.7 CHARACTERISTIC EQUATION OF A MATRIX

Let A be a matrix operating upon a set of eigen vectors ¥ and A is the eigen value of this operation. Then
the eigen value equation can be written as:

AY=AY=AIY wherelis the unit matrix.

[A-AIY=0

But ¥’s are generally not zero.

Therefore, [A—A1]=0 (D)

The det of |A — A 1| = 0 and is known as the characteristic equation of matrix A. Here A and I should have
same order and they should be square matrix. Its roots are the eigen values of matrix A. For every eigen
value there is an eigen vector. For finding the eigen vector we consider a non — zero characteristic vector
“X” which satisfies the equation

[A-AT]X=0 )

This is demonstrated by considering the example of a 3 x 3 matrix:

8 -6 2
Example—letA=|—-6 7 —4
2 -4 3
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Then, [A-AT]

[l
| o
o
<
o
S
NN
L—
|
>
—
o =
— o
=
e—

Since [A—-A1]=0.
8—-1 -6 2
Therefore, [—6 7—-1 —4 ]=O
2 -4 3-2
B-NMN[T-MEC-N—-(4%x-4]+6[-6[3-A]-2[4]]+2[-6x-4—-2%x(T-1)]=0
On solving, gives
AP —1807+451=0
A(A2-18 A +45)=0

this gives A =0 and (\* -18 AL +45)=0

Solving the quadrating equation we get
A=15andA=3

Thus the three eigen valuesare A =0, 15, 3.

For every eigen value we can find the eigen vector

[A - A T][X] =[0]

8—41 -6 2 X 0
R
2 -4 3=z 0

Where, x , y, z are non — zero quantities.

Now, putting A = 0 in the above equation,

[ 2 bl

On solving gives,
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8x -6y +2z=0 (3
-6x +7y -4z=0 ceen(®)
2x -4y +3z=0 .(5)

Using determinant method in equation (3) and (4)

b S -y . vA
24—14 —32—(-12) 56—36
X z
OI_ = l = —
10 20 20
X vA
Ol_ = X = -
1 2 2
1
Thus [ 2] is the eigen vector corresponding to the eigen value A = 0.
2

Similarly, we can find the eigen vector for A =15 and A = 3.

5.7.1 Diagonalization of Matrices
The roots or eigen values of matrix A can also be obtained by using the method of diagonalization.
A matrix which is similar to a diagonal matrix is said to be diagonable.

Let 4, , A, .. 4, be distinct eigen values of a diagonable matrix A and X, , X; ,
...X,bethecorrespondingeigen vectors. Let the column vector X; be given by
lel
Xai

Consider a matrix P whose column vectors are neigen vectors such that

[X11X12'"X1n]
X21X22+Xon
P=| .. .o X (2)
[ |
I—XnIXnZ "'XnnJ

Let D be the diagonal matrix such that
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024,00
D0 0% 0L Giag 4y, 4o, ] 3)
[o 00 AnJ
[A1X1112X12"'Anx1n]
IA'1X21AZX22"'AnX2n |
ThenPD=| .. .. -« .. | [AXJ] (@

Alxnllzxnz '"AanmJ

AX,AX, ...AX)

= A[X, X5, .. X,]=AP ..(5)
If P is a non — singular matrix, then multiplying (5) by P, we get

D=P'AP o (6)

Thus, premultiplying A by P and postmultiplying by P , we get the diagonal matrix whose elements in
diagonal are the eigen — values. This process is said to be diagonalization of matrix A.

Example — Diagonalise the following matrix

4/3 \/5/3]
v2/3 5/3

Solution — Let A = 4/3 \/5/3]

Vv2/3 5/3
The characteristic equation is

A1 ‘(4/3)—,1 V2/3 ‘:0

v2/3  (5/3)-4
NI 2 _
1.e.(37X)(Bfk)-g—OOrorkf37u+2—0
or(A-1)(A-2)=0

Therefore the characteristic roots A’s are 1,2.

1 O]'

Thus the diagonal matrix is D = [ 0 2
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5.8 HILBERT SPACE

The transformation of a vector a into another vector a’ in three dimensional space is represented by a
linear transformation

a'=Ta

where transformation is represented by 7 which is a 3 X 3 matrix. We have seen earlier that the wave
function ¥ can be represented as a column matrix or as a vector in a suitable vector space. As ¥ may have
components which are complex and sometimes infinite, hence this vector space must be of infinite
dimensions and complex. This type of space is known as Hilbert space. In other words, the vector space is
said to be Hilbert space if it is complex and of countable infinite dimensions such that all infinite series
occurring in it are convergent.

Some properties of Hilbert space alongwith some operations are discussed below :
The scalar product of two functions , i.e., f( qi, 92, ...q; ) and g ( q1, qa, ...q; ) iS Written as
[/(a,q,..9),8(q, G, ...q) ]
= [ f*(41,92,---Qi) & (41,92, - 4i) gy dqy, ... da; (D)
If one puts up a restriction that the scalar product
[u?| = (u.u)y=Y2,uf l2)
exists where u = (u; , u, ,...) is a sequence of real or complex scalars and is called a vector.
Using equation (1) the equation (2) becomes
[1f?] dq; dq,...dq; = C exists ....3)
which is true for wave functions.
The wave functions are orthogonal when

Jf*(a1,92,---9;) g (91 92, - 9i) dq; dqgy ...dg; =0 (4

The state function ¥ gives all the information about a physical system at a given instant of time and is
represented by a vector along a direction in the Hilbert space. Thus the arbitrary representative vector of
the ray is generally normalised to one.

The states specified by different functions ¥and represented by vectors along mutually perpendicular
axes in such a way that complete set of states forms a complete orthogonal system of coordinate axes in
the Hilbert space. By completeness of the system means that any wave function associated with vector Q
in the Hilbert space can be represented as a vector sum of its component along these axes. Thus
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Q:Zibillui (5)

For every ¥; there being an axis and each b; corresponds to the component of an arbitrary vector along i —
axis.

We have already seen that the multiplication of two finite matrices are given by
[AB]m,, :ZiAmiBin (6)

This law can be extended to the matrices having infinite number of rows and columns in the Hilbert
space. Thus any operator 4 can be associated with matrix 4 whose matrix elements are expressed as

A=Y Anm¥n = Y0 Yrlnm )

whered,,, = f YA V. dg= (¥, AV,)

with respect to basic set of eigen functions ¥, . Since every integral has a certain numerical value, hence
Ao = [ i Poda= (V,AY,)

gives a doubly infinite array of numbers which is also called matrix.

5.9 Operators as Matrices

The wave function can be considered as a vector in some imaginary space in quantum mechanics. If any
operator A operates on the function W(x), we can write

APx) =dx) (D)

For passing from x representation to F representation, we have to expand the function W(x) and ¢(x) in
terms of the eigen functions

¥,,(x) of the operator Fas given below:

Y(X) = Xm Cn ¥ () (2)
P(x) =Xn By (%) (3)
Substituting equations (2) and (3) in (1) we get
Y Bp¥n () = Ton CinA Pin(x) celd)

On multiplying equation (4) by W;*(x) and integrating over the entire region of variation of the
independent variables, we get

B,=Ym AimCom ()
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Whered,, = [ ¥} (x) A ¥,(x) dV ()

The equation (5) gives the transformation of the function ¥ into the function ¢ in the F representation
when the operator is 4. Thus, the operator 4in this representation is given by equation (6), in the form of a
matrix.

It can be concluded that the definition of matrix 4 is equivalent to the definition of the operator Aitself.

The matrix element A; is also known as the matrix element corresponding to the transition from the kth
state, i.e.

#(x) = Yu(x)

By the action of the operator Athe transformation (1) takes place. Now using the equations (2) and (5) and
considering that in the given case

C,n= mxandB,=A4,, we get
¢x)=A4 V= Yn B = Xn Ani n (%) (D)
The square of the matrix element 4, gives the probability of finding the system in the i state.

Now, knowing the matrix corresponding to the quantity 4 we can get the mean value of this quantity in
certain state '\, i.e.

A=W Avdy

On substituting the expression (2) instead of ¥, we get

A=Y Y0 CnCpr [ ¥ AP, dV

= Ym2nCmAmnCn ce(8)

Thus if we determine the matrix elements (6) by using the wave functions ¥, which are the eigen
functions of the operator 4, then we also determine the matrix 4 of the operation in its own representation

A= [ WA WAV = A/ ¥ WdV
:Aléml (9)

Hence we see that the matrix element with m = [ are different from zero. Such types of matrices are
known as diagonal matrices, i.e.,
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Thus we see that each operator has a representation as a diagonal matrix if the wave function is expanded
in terms of eigen functions.

In other words we can say that the definition of operator 4 is equivalent to the matrix [4]. The matrix
representation of the operator helps us to determine the eigen values and the eigen functions of the
corresponding operator. Hence on knowing the operator 4, the matrix elements can be found.

5.10 Matrix Representation of wave function

The wave functions can be represented by matrices in the following three ways:

)] Schrodinger representation
(i1) Heisenberg representation
(iii)  Interaction representation

5.10.1 Schrodinger Representation
In Schrodinger picture the state vectors are time dependent while the operators are time independent.

Any wave function can be expressed as a linear combination of a set of basic functions which are
orthogonal and time independent. The expression can be written as:

W (r,t)=Xn P () &n(r) (D)

where¥, (t) are the expansion coefficients and ¢, (r) are the orthonormal set of basic functions. The
Schrodinger equation in the Hamiltonian form can be written in terms of time independent functions as:

0¥ (r,t)

HY(r,9)=ih>=2 2

By substituting the values of ¥ (r, t) from the equation (1) in the above equation (2) we get
.. 0
HY @) dp(r)= ih aZn Pn(t) &n(r)

OrYn W (6) H & (1)= i 72 5 ¥ () (1)

On multiplying above equation by ¢y, (r) and integrating over all r, we get
* : 0 *
J Z0 ¥n(t) br(HS,(r) dr = ih 30 W (t) [ Pin(r) by () dr

. 0
Orf[ ¥, %.(t) H,,=ih P Y Wo(t) 8
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i 0¥y

WhereH,,,= [ di (r) Hdy, (1) dr
Therefore equation (3) can be expressed as
i B ¥ =Ym Hyn W (?) c(d)

The equation (4) completely defines how the expansion coefficients ¥,’s change with time if YW,are
known at any instant. It means that the time dependence of the value of ¥, is entirely due to time
dependence of the state.

The matrix representation for equation (4)is as follows:
_ a¥
HY = zhdt (5
av . . . . o .
Whered—l’: is a matrix whose each element is the time derivative of the corresponding elements of the
matrix V.

The representation given by equation (5) in which the basic functions are independent of time is called the
Schrodinger representation.

5.10.2 Heisenberg Representation

In Heisenberg picture the state vectors are time independent and the time dependence is carried by the
operators.

In this representation the basic functions are chosen to be position as well as time dependent. In other
words, the wave function ¥(r , t) has the form

Pr,t) =X ¥nba(r, v (D)

If the basic functions ¢, satisfy Schrodinger equation, then ¢, can be shown to satisfy the orthonormality
condition at all time, i.¢.,

[ b dndr =6, 2

Each term of equation (1) in the sum satisfies Schrodinger’s equation; hence the sum with constant
coefficients ¥, will also satisfy this equation. As a result the wave functions W(r , t) will satisfy the
Schrodinger’s equation in the time dependent form. The operators n this representation will be time
dependent which will be clear from the discussion given below:
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Let us consider the ijthe matrix element of the operator which is written as

0= [ i Q bjdr = (¢: 0 §) n(3)

The time derivative of the matrix can be written as follows:
_ (99 0 2Q
0= (32,0 ) (i, Q22)+(:, 2 9)) )

Now we know that ¢’s satisfy Schrodinger’s equation

_ 209 **:_.649*
H¢ zhdt , so that H*¢ in "

Hence equation (4)may be written as follows:
1 9Q
Oy=={ (-Hpy, O) + (1, OH §) } + (0,50 b5 )

= (b, [0H - HQl)) + (91,52 d)) con(5)

The equation (5)in matrix form becomes

0= %[Q’H]+Z_f ....(6)

The above relation is similar to the classical relation of Poisson bracket with the Hamiltonian function
which is expressed as:

_ aQ
0=10, H]+32 D)

Similarity between the two relations suggests that ¥ has the representation given by the classical equation
of motion. This type of representation (1)is called Heisenberg representation. It establishes a close
connection between classical and quantum formulations.

5.10.3 Interaction Representation
In interaction picture the state vectors and operators are both time dependent.

There is yet another representation known as the interaction representation of wave functions. This
representation is useful in perturbation representation where the Hamiltonian H can be divided in two
parts Hy and H,. Here H, is unperturbed term and H, is the interaction term. In case ¢, represents an
orthonormal set of functions which are eigen functions of Hamiltonian H, , the Schrodinger equation can
be expressed as :

— 52
Hypi=1ih Py (1)
The total function Pcan be represented as a linear combination of@; as given below:

Y=3;¥d; .....(2)
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Hence the Schrodinger equation of the complete system becomes

]
HY=ih% . 03)

.. 0
or (Hy+H;)Xj¥d;= ’hazjlpjcbj

orH, X Wiy + Hi%; Wiy = i {3 ¥, 224 5,50 ¢ oon(8)

Substituting equation (1) in equation (4)we may write

. 0d; . b ow;
¥ ihSE - HE Wb = in{T S+ 25 ¢
. 6‘1’{
OrH 3 ¥ &= i h¥j—= i e(5)

On multiplying the above equation from the left by ¢; and integrating for all » , we obtain :
J Qi HEWidjdr=ih [ Wi L dr

L
or( H, ¥); = (l h E)] . (6)

17
orH; ¥=1ih Fr (D)

This representation is known as interaction representation as it is used for the interaction Hamiltonian.

. . . . .9 .
The equations of motion for a time independent matrix operator 0, i.e., a—f = 0 are given below :

1
0=210.H) )
Orih 2= [0, Hy] .(9)
If H; = 0, then interaction representation takes the form of Heisenberg representation.

Such commutation rules in fact are more general and are also used in field theoretical formulations also.

From the above discussion we can conclude that the Schrodinger, Heisenberg and interaction
representations use different forms of eigen functions. The Schrodinger representation uses time
independent representation of wave functions. In Heisenberg representation the base functions chosen are
time dependent and are used for time independent wave function representation. The interaction
representation is used where the small interaction term exists in the Hamiltonian. When this interaction
term H; becomes zero, the interaction representation takes the form of Heisenberg’s representation.
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5.11 Dirac’s Bra and Ket Vector

The quantum matrix theory can be put into compact form by making use of notations invented by Dirac.
According to him, the state of a system can be represented by a vector called state vector in the vector
space. He introduced the symbol| ) called the Ket vector or simply Ket to denote a state vector which will
take different forms in different representations. It is represented by inserting a particular letter in the
middle. For example | a )denotes the Ket vector corresponding to state a of the system (which was written
as 'V, in old notation).

Corresponding to every vector,| a )is defined a conjugate vector | a)" for which Dirac used the notation
(a| which is called a bra vector or simply bra. The conjugate of a Ket vector is a bra vector and vice
versa. A scalar in the ket space becomes its complex conjugate in the bra space. The bra — ket notation is
a distorted form of the bracket notation. Thus the bracket symbol ( | ) is distorted to (| and | )in Dirac
notation. The scalar product of a bra vector ( a| and a ket vector | b ) is represented as (a|b). The two
vertical lines in the middle are contracted to one.

In terms of bra and ket vectors, the definition of inner product of the state vectors ¥, and ¥, takes the
form

(¥, ¥)=[¥;¥,dr=(alb) (D)
Thus a and b in (a, b) are written respectively as ( a |and | b ), and the scalar product is
(a,b)=(alb) = (bla)’ el2)

The prefactor space is, thus a bra space and the post factor space a ket — space. Since the conjugate of a
product of complex function is the product of the conjugates, equation (2) implies that

la) = (a| (3)

This shows that the two spaces are not independent of each other, they are said to be dual to each other.
Not only is there a vector in one space corresponding to every vector in the other space, but also each
relationship among vectors in one space has its ‘image’ in the other space. If the ket space has a finite
number of dimensions, the dual space (bra space) has the same number of dimensions. There exists one to
one correspondence between the vectors of bra and ket space. For example,

|[v)=Cila)+Cyb) (4
is a vector of ket space. If | a) and | b ) are two kets and C, and C, are two arbitrary complex numbers.
Operation by an operator A on a ket vector produces another ket vector.
Ala) =|a") wn(5)

Operation on a bra vector from the right by A gives another bra vector
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(b|A=(b"| cen(6)
The bra conjugate to ket

[v)=Cila) +Cyfb)
is(v|=C/(a|+C,(b] (7)
The norm of a ket| a ), denoted by (ala) is a real non — negative number. That is
(ala) = 0 .....(8)
The equality sign holds only if |a)=0.
The ket| a ) is said to be normalised if
(ala) =1 .....(9)
A bra and a ket vector are said to be orthogonal if their scalar product is zero, i.e.,
(alb)=0 ...(10)
The orthogonality relation is expressed as
(ai|aj)= ij ....(1D)
In this notation, the condition for an operator to be Hermitian is

(alAlb) = (blAJa)’

Example: If | a) and | b) are arbitrary kets, prove that
la)b| =]b)Xal

Solution:Let us consider an arbitrary ket| c) , so that its operation from left on |a)(b| gives

lc)aXb]

Taking conjugate imaginary ket

e a)bl=la)b|(c]
Also |c)(al{b = (alc)b)= |b)alc)

Hence |a){b| = |b)a]

150



5.12 SUMMARY

In this unit we have studied that

e When a set of » linearly independent vectors v; , v, ....v, span an n — dimensional space and if
any vector lies in this space then it can be expressed in the form

¢ =i Wy

The generalization of these concepts to an infinite — dimensional space is called vector space.

e The inner product of # and v is given by
(u) v):Z{L:]_ulvl

e What is matrix algebra and kinds of matrices like Transpose of a matrix, Conjugate of a matrix,
Hermitian, Symmetric, Unitary matrix etc. and also numerical problems based on them?

e In matrix notation, we can write an equation
AX=Y

which represents a transformation which carries a vector X into another vector Y of the same
space. Matrix A is called the matrix of transformation.

e  The characteristic equation of a matrix is
(A-ADX=0

where I is the unit matrix. It is also explained how to get the eigen values and eigen vectors of the
matrix.

e The vector space is said to be a Hilbert space if it is complete and of countable infinite
dimensions such that all infinite series occuring in it are convergent.

e The operator can be represented in matrix form which enables us to determine the eigen value and
eigen function of the corresponding operator.
e In Schrodinger representation the state vectors are time dependent while the operators are time

independent.

e In Heisenberg picture, the state vectors are time independent and the time dependence is carried
by the operators.

o In Interaction picture, both state vectors and operators are time dependent.
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e Dirac’s notation to put quantum matrix theory into a compact form. Here each dynamical state is
represented by a vector called ket vector (|)). Its mirror image is a bra vector ({|). The
correspondence between the kets and bras is analogus to the correspondence between the wave
functions of wave mechanics and their complex conjugates.

5.13 GLOSSARY

Independent — not depending on others

Orthogonal — rectangular

Conjugate — combined in pairs

Array — orderly collection of objects

Conformable — corresponding

Symmetric — proportionate parts or relations
Singular — number denoting one person or thing
Transformation— change or transform the character
Invariant — not varying

Characteristic — indicating the character

Generalised  — infer as a general principal
Degeneracy  — the state of being degenerate
Convergent  —tending to one point

Unperturbed —undisturbed
Interaction — to interact between

Dual — composed of two numbers

5.14 TERMINAL QUESTIONS

1) What do you mean by linear vector space and linear operators?
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2) What do you mean by inner product?
3) Define with examples the following —
(a) Unitary matrix
(b) Hermitian matrix
(c) Transpose of a matrix
(d) Conjugate of a matrix
(e) Symmetric matrix
4) What do you mean by Hilbert space? How a basic set of wave functions is changed into another
by unitary transformation in Hilbert space?
5) Explain the principle of matrix mechanics.
6) Show that the eigen values of a diagonal matrix are its diagonal elements.
7) Discuss the Schrodinger, the Heisenberg and the Interaction representations for describing the
dynamical behaviour of a system.
8) How do you diagonalise a matrix?
9) Show that the eigen values of a matrix are not changed by a unitary transformation.

NUMERICAL PROBLEMS:

1) Reduce to diagonal form the matrix
1 0 1 0
[3 2][Ans' [0 2]]

2) Find the eigen values and eigen vectors of the matrix

8 -8 2
4 -2 —2|[Ans-r=1.23]
3 -4 1

3) Which one of the following matrices areHermitian?
1 i 0

[_i 0 _Zi]
0 2i 2

4) If | n)and | m) are two arbitrary ket vectors and vector | i ) forms a complete set, then show that

(nfm) = Xy(nli) (i|m)

0 —i —i
(ii)[i 5 0 |[Ans— ()]

3i 0 2

5) Which of the following is a singular matrix
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6) Find the elements Cy3, Cs,, Cyy, Cs3 in the product C = AB where

2 3 4 1 30
A=[1 2 3] B=[-1 2 1] [Ans - 8,-1,7,5]
-1 1 2 0 0 2
5.15 REFERENCES

1) Quantum MechanicsbySatyaPrakash and Swati Saluja, KedarNath Ram Nath, Meerut.
2) Quantum Mechanics by V.K. Thankappam, New Age International publishers.
3) Quantum Mechanics by G. Aruldhas ; PHI learning Pvt. Ltd., New Delhi.

Suggested Reading —
1) Quantum Mechanics by G.R. Chatwal and S.K. Anand, Himalaya publishing house, Delhi.

2) Quantum Mechanics by Leonard I. Schiff, Tata McGraw — Hill Publication.
3) Quantum Mechanics by B.N. Srivastava, PragatiPrakashan, Meerut.

154



UNIT-6: IDENTICAL PARTICLES AND SPIN ANGULAR
MOMENTUM

Structure

6.2.1 Consequences of the Fundamental Indistinguishability of Identical Particles.
6.2.2 Symmetry of Wave functions of Identical Particles.
6.2.3 Statistics of Identical Particles.

6.2.4 Pauli’s Exclusion Principle.

6.2.5 Intrinsic (Spin) Angular Momentum.

6.2.6 Stern and Gerlach Experiment.

6.2.7 Spin of Electron.

6.2.8 Pauli Spin Matrices.

6.2.9 Spin-1 Matrices

6.2.10Spin-Space (Spinors)

6.2.11Spin Quantum Numbers
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6.1 INTRODUCTION

The study of many particles system is of great importance in both classical and quantum
mechanics. Modern physical theories are based on the fact that matter is composed of few types
of elementary (fundamental) particles (electrons, positrons, protons, neutrons, mesons, neutrinos,
several strange particles etc.). Each type of particle is characterized by some properties like
mass, charge, spin and several other quantum numbers. These properties are exactly same for all
the particles of the same type. Consequently, the substitution of one particle by another of the
same type in the theoretical description of a system cannot effect any prediction about its motion.
Such two particles with their physical properties exactly same are known as identical particles.
This nature precludes the possibility of an observation which could distinguish these particles. In
classical mechanics this property of indistinguishability of identical particles plays a secondary
role while in quantum mechanics it raises a serious problem. In classical mechanics, the identical
particles do not lose their individuality despite the identity of their physical properties since you
can imagine the particles at some instant to be numbered and follow the subsequent motion of
each of them in its path and hence at any instant each particle can be identified.On the other
hand, by virtue of uncertainty principle in quantum mechanics, the concept of path of an
elementary particle ceases to have any meaning and hence theindistinguishability of identical
particles leads to several complications in their quantum mechanical description. Even if the
position of an electron (for example) is exactly known at a given instant in quantum mechanics
(with its most uncertain momentum), its coordinates will have no definite values at the next
instant. Furthermore, if the wave functions of the individual identical particles overlap then it is
impossible to keep track of individual locations of the particles without seriously affecting their
motion. Thus in quantum mechanics there is no way to distinguish the identical particles and
consequently the identical particles entirely lose their individuality in quantum mechanics.

It has become clear by many experimental and theoretical arguments that many elementary
particles including electrons, protons and neutrons are not adequately described by the model of
a massive point whose position in space exhausts its dynamical properties. Experimental
developments, during1920’s,

provided data leading to the idea that these particles not only possess wave properties (orbital
angular momentum) but also have intrinsic angular momentum (spin) and associated magnetic
moment. The existence of intrinsic magnetic moment leads to spin dependent term in the
Hamiltonian of an electron in an electromagnetic field. The spins of elementary particles also
play an important role in their classifications as bosons and fermions in terms of the different
statistics followed by them (spin-statistics relationship for the Identical Particles.
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6.2 LEARNING OBJECTIVES
After learning this unit we will ABLE TO understand:

e Identical Particles

o Symmetry of Wave functions of Identical Particles
o Statistics of Identical Particles

e Pauli’s Exclusion Principle

e Spin, Angular Momentum

e Stern and Gerlach Experiment

e 8 Pauli Spin Matrices, Spin Quantum Numbers

6.3 INDISTINGUISHABILITY OF IDENTICAL PARTICLES.

The Principle of Indistinguishability plays a fundamental role in the quantum theory of systems
composed of identical particles. To say that two particles are identical means that there do not
exist the interactions that can distinguish them. In the Hamiltonian formulation of the dynamics,
the principle of indistinguishability implies that the Hamiltonian for any system is not affected
by an interchange of the symbols which assign the dynamical quantities to the members of any
pair of identical particles. For instance, you write in the following manner the Hamiltonian for a
system of two identical particles with the corresponding symbols 1 and 2.

2 2
— P1 P2 2 2
H(1,2) = pwuls M V(r, — 15l (6.1)
where the potential V(r) depends on the distance between two identical particles and m is the
mass of each of them. This Hamiltonian is un-affected by the exchange of symbols 1 and 2
assigned to the two identical particles in the system. Thus this Hamiltonian is invariant under the
interchange of these identical particles;

H(1,2) = H(2,1) (6.2)

This invariance represents the symmetry of the Hamiltonian with respect to the exchange
(permutation) of the labels attached to the identical particles. In classical mechanics this
exchange symmetry does not lead to any particular unusual consequence because the classical
path of any particle can be followed from instant to instant.In quantum mechanics, the classical
equations of motion are replaced by Schrodinger equation the solution of which gives the
probability distribution for the position of the particles at each instant of time. The Schrodinger
equation for the system of two identical particles with the Hamiltonian given by equation (6.1)
may be written as

Suy _ iy 0¥
AY = ih— (6.3)
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whereh = % = 1.1054 x 10~%7ergs — sec
with h =6.63 x 107%7ergs — sec (Planck’s constant).
Here H is the linear Hermitian operator associated with the Hamiltonian given by eqn.(6.1).The
wave functions W(1,2)and W (2,1), which correspond to two classical motions of the system of
two identical particles, are both solutions of this equation. You may write this equation for the

first wave function as

0w (1,2)
ot

H(1,2)¥(1,2) = ih (6.4)

Interchanging the labels 1 and 2 of the two particles this equation becomes

aw(2,1)
ot

H(2,)¥(2,1) = ih (6.5)
¥ (2,1)

orf(1,2)¥(2,1) = ih =

(6.52)

whereeqn. (6.2) has been used. Since every linear combination of the functions W(1,2)and
W(2,1)is also a solution of eqn. (6.3), it is possible to separate the states of the system into two
distinct categories : symmetric state ¥s and antisymmetric state ¥, given as

W =~ [¥(1,2) + ¥(2,1)] (6.6)
and Wy =-[¥(1,2) - W(21)] (6.7)
such that  ¥(1,2) = ~{[¥(1,2) + Y2, D]+ [¥(1,2) - ¥(21)] }

=Y +Y¥, (6.8)

which may be generalized to

¥(1,2) = a¥ + Y, (6.9)

and similarly you may write

Y21 = aW—BW¥, , (6.9a)

whereWs and ¥, are the solutions of the Schrodinger equation (6.3) corresponding respectively
to the following initial conditions:

Wso = [Wo(1,2) + ¥o(2,1)];

1
Yo = E [Po(1,2) — ¥o(2,1)]

If the system is initially in the state
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Yy = aWs + B¥4owith|a|? + |f]?> = 1 at the later time t it will be in the state given by eqn.
(6.9).

The probability density P(1,2) of finding one particle at position 7; and the other identical
particle at the position 7, is given by

P(1,2) = |¥(1,2)|2 + |¥(2,1)|?
= 2[a?|Ps(1,2) 1 + p21¥4(1,2)%]
For this expression to be independent of a and  you must have
¥4 (1,2)| = |¥s(1,2)] (6.10)

so far as two particles have not entered into interaction. The separation of a wave function into
symmetric and antisymmetric parts according to eqn. (6.9) is permanent in time. This means that
an initially symmetric state can never change, either wholly or partially, into antisymmetric state
and vice-versa. The relative amplitudes of the symmetric and antisymmetric components of a
general wave function, given by eqn. (6.9), are determined by their values at the initial instant
and do not change with time.

Equations (6.6) and (6.7) show that under the exchange of labels 1 and 2 the state ¥ is not
changed while the sign of state ¥, is changed. Denote this exchange by the operator P then
you will have

quS = Wsandplle = — leA (611)

whereP? = 1 ,
showing that the exchange operator P is an evolution operator with its eigen values 1 and -1 and
the corresponding functions ¥s and ¥, respectively. You also have

PH(1,2)¥(1,2) = H2,1D¥(2,1) = H1,2)¥(2,1) = H(1,2)P¥(1,2)which shows that P
commutes with the Hamiltonian of the system:

PO -HP= [P,H|]=0 (6.12)

Thus ¥ and ¥, are the eigen functions of H also, since the commuting operators have
simultaneous eigen vectors. The operatorP is unitary and hence these eigen functions, belonging
to two different eigen values, 1 and -1, are mutually orthogonal. Eigen functions ¥(1,2) =
Y, (1,2) of the Hamiltonian operator A which satisfy the relation

HY¥:(1,2) = E W:(1,2)are the stationary states of the system. The symmetric and antisymmetric
parts of ¥5(1,2), as given by eqn. (6.9), are linearly independent functions belonging to the same
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eigen value E (energy). This degeneracy is the exchange degeneracy which is the consequence
of symmetry of the Hamiltonian operator H under the permutation of labels 1 and 2.

You can generalize this exchange symmetry for the wave function of the system of N identical
particles. In this system there are N! different possible permutations of the particles.
LetP,¥ (1,2, .......N) denote the function which can be obtained from ¥(1,2,.......N) by v
consecutive permutations of particle pairs. Then you may get the symmetric and antisymmetric
wave functions through the following rules:

Wy =A4Y,B¥{12,....N) (6.13)

Y,=BY,(-1)'R,¥(1,2,.....N) (6.14)
where summation has been taken over all N!functions corresponding to different possible
permutations of N particles in the system. In eqn. (6.14) the terms involving the odd number of
permutations from the original product are subtracted to generate an antisymmetric eigen
function under the permutations.

The exchange degeneracy, as the result of separation of eigen functionsinto symmetric and
antisymmetric parts, does not permit you to decide which of the linear combinations of these
states represents the state of the system. This difficulty is resolved by introducing the following
symmetry postulate which fixes once for all the coefficients a and £ of the linear combination
given by eqn. (6.9):

The dynamical states of a system of two identical p[articles are necessarily either all
symmetrical (a« = 1,8 = 0) or all antisymmetrical ( &« = 0,8 =1 ) in the permutation of two
identical particles.

This postulate can be easily generalized to the system of any number of particles as shown in the
following section.

6.4 EXCHANGE SYMMETRY THROUGH PERMUTATION OPERATORS

You consider a system of N identical particles, where the observables associated with it"

particle are collectively denoted by &;, the space of its dynamical states is F; and the space F of
the dynamical states of the whole system is the direct product

F=FQF®..QF (6.15)

Nl!permutations of N identical particles are well defined operations to each of which there
corresponds a certain operator of this space F. If q is the complete set of commuting observables
of F and |q, > is the eigen vector of a basis for q with corresponding differenteigenvaluesq,,,
then

< qylq, >= &y (6.16)

160



The i*"particle of the N particles has its own set of commuting observables ¢ such that

Q=[qgW,q?,.....q"]is a complete set of commuting observables for the space F and the
vectors

N
ql(xl),qéz), g > = |qa >M |qp >@ ... |gq, >W>, (6.17)

formed by taking the direct product of the basis vectors of the spaces F; F, ... ... Fy,constitute the
basis for a certain representation of the vectors of space F. It is a symmetrical representation
where particle- 1 is in the sub-state |q, >, particle-2 is in the sub-state [gg > and so on, and the
particle-N is in the sub-state |q, >. Any permutation of N identical particles modifies their
distribution among the states [qq > , [qg >,....... ,|q, > but the state (6.17) will remain
unchanged under any permutation. To each permutation of N particles a permutation operator
Pcan be associated such that

PPt = PP = [(unit operator) (6.18)

showing that the permutation operator satisfies unitarity condition. The transposition (I, j),
associated with the permutation operator transforms the state (6.17) into which i*" particle of ut"
sub-state goes to ot sub-state ofj‘" particle and vice versa:

5 1) (2 j ' N 1) (2 j j N

P; qv, q[(; ) ql(f) gD g > = | gL ),qé ) nq® .....ql(]) e g >(6.19)

For simplicity, you consider the case where N=3 (the results obtain here will hold for any N).
You may associate the operator P,,5 with the permutation (1,2,3) in which 1 takes the place of 3,
2 takes the place of 1 and 3 takes the place of 2. Then you have

oy 1) 2 .3 1) (2 .3

Piyslad’.qf. a)” > =g, qP. a) > (6.20)

You may also have the product of two successive permutations P; and P,as the operator P
corresponding to the resulting permutation;

P = P,P,which shows that the permutation operators obey the same algebraic relations as the
permutations which they correspond. Any permutation operator P can be expressed as the
product of transpositions. All such products contain either the even or the odd number of
transpositions. The parity of the permutation is + or — according to this number being even or
odd and it is represented as (—1)F. The permutations, shown by eqn. (6.19), are equal to their
own inverse and the associated operator is an observable with the eigen values + 1 since you
have

Pt =17 (6.21)
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Thus all the % N(N — 1) transpositions for the system of N particles are evolutions (which

satisfy the condition 6.18). The eigen functions of Pl-jbelonging to the eigen values +1 are
symmetric. The projector on the space of all symmetrical eigen vectors ( in the interchange of
it"and jt"particles ) is the symmetrizing operator

A~

Sij =

N |-

[+ P;] (6.22)

On the other hand, the eigen vectors corresponding to the eigen value -1 of the transposition P j
are antisymmetric with their projector on the space of antisymmetric vectors defined as anti-
symmetrizing operator

A 1 &
A = E [[-P;;] (6.23)
From these equations (6.22) and (6.23) you may readily get the following results

~ ~

Sij + Ay = ISy — Ay = Py; PySyj = $ijPy = SijiPijAy; = APy = Ay

It can also be shown that operators P; ; do not commute with each other. For example, you
consider the wave function W(qq qp q, ) of the state |¥ > of three particles in {Q}
representation:

Y(qe 95 9y) = Zapy |9 98 @y >< 42959, |¥ > (6.25)

Then you will have
P3P, ¥ (a0 s 4y) = Pia¥(9p 90 9y) = ¥(qy 9 ap) = P2s¥(4y 45 qa)
= P23ﬁ13lp(%z qp q)/)

Wthh shows that P13P12 = ﬁ23P13 (626)
and hence P3P, # P,,P;;, (6.27)

showing non-commutation of operators P;;.

Following the derivation of eqn. (6.12) you may readily prove that the operators P; jcommute
with the Hamiltonian operator of the system. It follows from this commutation and the non-
commutation (6.27) that except for N=2, it is not possible to find a complete set of the N
degenerate eigen functions of Hwhich are all simultaneous eigen functions of all the
transposition operators.Only two eigen functions satisfy this property of being simultaneous
eigen functions of all transposition operatorsP; ;- The first one is completely symmetric function

WY, which belongs to the eign value +1 for every P; i
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P, Ys = ¥ (6.28)The corresponding projection
operator S; ; 1s given by eqn. (6.22). The other such eigen function is the totally antisymmetric

eigen function ¥, which belongs to eigen value -1 for every P; is

Pv, =Y, (6.29)
The corresponding projection operator; j 1s given by (6.23). For instance, you assume
‘P(qa qp qy)as the simultaneous eigen function of operators P;,, P;; and P,; with the
corresponding eigen values 44, A, and A5 respectively:

Po¥ (94 95 9y) = ¥ (94 95 9y);
Pis¥(q0 95 9y) = 2.%(qa 95 9y) (6.30)

1323‘P(qa dp qy) = @‘P(qa qp qy)where each of eigen values A;is either 1 or -1. You may use
eqn. (6.26) to get

12/11 = /13&201‘&1 = /13. Slmllarly
the relation

P3P, = P,,P,5impliesd, = 1. Thus an eigen function, satisfying each of eqns. (6.30), either
remains unchanged under every transposition (totally symmetric) or changes its sign under
every transposition (it is totally antisymmetric). For the most general case of N particles, you
may prove this property of the eigen function using the following generalization of relation
(6.26):

Pijpik = pjkpij (6.31)
The principle of indistinguishability of identical particles tells that the states represented by ¥

and PW are the same state. Thus for every permutationP, ¥ and PW give the same probability
amplitude and hence differ only by the phase factor at the most:

1P¥(q4 g - 4)1=1¥(qa qp - ) | (6.32)
which shows that the probability

1¥(qa qp ----qu)|? dFydFs...... dry

that one of the particle of the system is in the element d7d7...... d7y remains unchanged
under the permutation of the identical particles. Thus every eigen function
‘P(qa qp .....qv)representing the physical state of the system of identical particles must be a
simultaneous eigen function of all the transposition operators. Hence the physical states of a
system of any number of identical particles are necessarily either all symmetrical or anti-
symmetrical with respect to the permutations of the particles. Consequently, the number of states
accessible to a physical system of identical particles is much smaller than that to an equivalent
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system of non-identical particles.It is entirely different from the classical situation where every
solution of equation of motion for non-identical particles leads to a possible solution for identical
particles.

The symmetric character of a solution of Schrodinger equation for the system of two or more
identical particles is permanent in time and every such physical state is pure one (either totally
symmetric of totally antisymmetric). The linear combinations (like those given by eqns. (6.9) and
(6.9a) of symmetric and antisymmetric states are impossible in general (for non-zero aand
pboth) for a system of identical particles and the symmetry properties of their wave functions
cannot be changed by an external perturbation. Thus the symmetric character of the wave
function for the system of identical particles of given type is permanent in time. Which of these
prescriptions (symmetric or antisymmetric) is to be applied on a given system depends on the
nature of identical particles constituting the system. The particles with symmetric states are
called bosons and the particles with antisymmetric states are called fermions. This is an empirical
law without any exception. All elementary particles occurring in nature are either bosons or
fermions.For instance, electrons, positrons, protons,neutrons and neutrinos etc are fermions
while photons, all scaler particles, some mesons and all gauge particles are bosons. Though in
quantum mechanics (and also in quantum field theory) these two classes (fermions and bosons)
of elementary particles are treated as altogether separate and different classes following two
different symmetries of their eigen states under the permutation of particles, recently, there has
been put forward the idea of another type of symmetry, known as super-symmetry which relates
fermions and bosons.

EXAMPLES:

Ex. 6.1: Show that for a system of two identical particles, each of which can be in one of the n

quantum states, there are % n(n + 1) symmetric states.

Solution: When there are nsingle-particle states, there are nsymmetric states in which both
particles are in the same state. The number of symmetric states in which both particles are in
different states is equal to the number of ways in which we can select two objects from n i.e.

1
ne, =En(n—1).
Thus the total number of symmetric states is
1 1
n+§ nn—1) =§n(n+1)

Ex. 6.2: Show that the probability density of finding a system of two identical particles at zero
separation is maximum when the particles are bosons and zero when the particles are fermions.
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Solution: You consider two free non-interacting identical particles in one dimension (along X-
axis). The single particle states may be written in the form e** Then the total symmetrized state
of the system may be written as

Y= W, (x,x,) = el¥1gikixa 4 pikxz gikixy (6.33)
(except for the normalization), where upper sign + sign is for symmetric wave-function ( for two
bosons) and the lower —sign gives the antisymmetric wave function for two fermions.

Introduce the variables x = x; —x, and X = %(xl + x,) and then you may write eqn. (6.33) as

i(k—k")x —i(k—k")x

W (6, X) = el FHK)X[e™ 2 e 2z ] (6.34)

where variables x and X are the relative separation and the center of mass of two particles. This
equation leads to the following expression for the probability density of finding the system with
an inter-particle separation x;

2 1!
Ppj (x) m(’;—k)xfor symmetric wave function (for bosons) (6.35)

(

. o (k-K' . . . .

« sin? T)xfor anti-symmetric wave function (for fermions)(6.35a)

It shows that the probability at zero separation is maximum for bosons and zero for fermions (a
simplified version of Pauli’s exclusion principle which will be discussed in a following section).

Ex. 6.3: Obtain the symmetric and antisymmetric wave functions by applying the repeated
permutations on a solution of Schrodinger equation for a system of three particles.

Solution: For a system of three particles the time independent Schrodinger equation is

H(1.2,3)¥ (1,2,3) = EW¥ (1,2,3) (6.36)
from any solution of which the following six solutions may be obtained by repeated
permutations: W (1,2,3); ¥ (2,3,1); ¥ (3,1,2); ¥ (1,3,2); ¥ (2,1,3)¥ (3,2,1) first three of
which have been obtained by applying even number of permutations on the solution ¥ (1,2,3) of
the Schrodinger equation (6.36) and the remaining three have been obtained on applying the odd
number of permutations on this solution. Now using rules given by eqns.(6.13) and (6.14), you
may readily get the following symmetrical and antisymmetric wave functions for the given
system

Ve =AY (1,23)+ Y (23, 1D)+¥ (3,1,2)+ ¥(1,32)+ ¥ (2,1,3) +¥ (3,2,1)]

and

Yo =AY (1,23)+ Y (23, 1)+¥ (3,1,2)— ¥(1,32)— ¥(21,3)-¥(3,21)]
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SELF ASSESSMENTQUESTIONS (SAQ):

QI1. Show that forasystem of two identical fermions, each of which can be in one of the n

1
quantum states, there are > n(n — 1)states of the system.

Q2. A configuration for a three particle system has one particle in each of the following orbital
states:¥; = N; exp(—m?r{); W, = N,ysinm,1,; W3 = N3 exp( —mg x3)

where m; refer to mass of each particle and N; is the normalization constant.
(a) Construct the total state function of the system if the particles are indistinguishable (m,, m,
and msare all different) (b) Construct the state functions of even and odd symmetries if the
particles are indistinguishable (m; = m, = m3).

Q3. Show that any interchange of two particles of the system of identical particles of any type
(bosons or fermions) leaves the average or the observed properties of system unchanged.

6.5 STATISTICS OF IDENTICAL PARTICLES

There is a definite connection between the symmetry of the eigen states of identical particles and
the Statistics followed by them. You have seen that the quantum mechanical states assessable to
a system of identical particles are all symmetric or all antisymmetric under the permutation of
the particles. Now youconsider two non-interacting particles for each of which there are
available two quantum states ®,and ®,. Now you have following three different situations:

(1) When two particles are distinguishable then you have following four linearly
independent combined states for the system;

D1 (DP1(2); P1(1)P,(2) ; P1(2)P,(1); P2(1)P2(2)

(i1) For the identical particles with symmetric wave functions, the following three states
can be formed by superposition of the state wave functions:

D1 (DP1(2); [P1(1)P(2)+P1(2) P, (1)]; P2(1)P2(2)

(ii1))  For two identical particles with antisymmetric wave function, there exists only one
state given by

[©1(1)P(2)-P41(2)P,(1)]

These three types of systems obey quite differenttypes of statistical laws. In case (i) of
distinguishable particles, every permutation of particles corresponds to a different state just
as in classical theory following classical statistical behavior known as Maxwell- Boltzmann
Statistics. Second system with symmetrical wave functions, specified in class (ii), obeys
Bose-Einstein Statistics and the third type of system with antisymmetric wave functions as
prescribed in case (iii), obey Fermi-Dirac statistics. As discussed earlier, the particles that are
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described by antisymmetric wave functions are called fermions as they obey Fermi-Dirac
statistics while the particles described by symmetric wave functions obey Bose Einstein
statistics and are known as bosons.

Symmetric eigen states form a subspace Fs of the total space F described by eqn.(6.15) for
N particles. The antisymmetric eigen vectors form the subspace F4of the space F. These
subspaces are mutually orthogonal and the corresponding projectors are given by

S = %ZP Pand4 = %ZP(—l)PP (6.37) respectively,

where summation has been taken over N! possible permutations. The subset of vectors of

eqn. (6.16) may be formed as |q\™,¢{"?, .q™ >by partitioning the total number of

particles (n;in q; state, n, in g, state and so on) with the symmetrical wave functions
constituting an orthonormal basis in Fs subspace while the similar set of vectors constructed
for particles with antisymmetric states constituting an orthonormal basis in the subspace F,.
The distinction among the three types of statistics, discussed herewith, lies in these state
vector subspaces as shown in the following table:

Statistics Maxwell-Boltzmann Bose-Einstein Fermi-Dirac
....................................... Character of Particles Distinguishable
Identical Identical State Vector- Space FFFq

Even in the idealized quantum systems identical bosons(particles obeying Bose-Einstein
statistics) attract each other while the identical fermions (particles obeying Fermi-Dirac
statistics) repel each other as shown above in the Examples Ex. 6.2.

6.6 PAULI EXCLUSION PRINCIPLE

It has been shown by eqn. (6.35a) that for two identical fermions the probability density for
zero one- dimensional separation is zero which means that the fermions move in such a
manner as to exclude other fermions. It may also be noted in eqn. (6.35a) that the probability
function vanishes identically when two fermions are in the same momentum states (i.e. for
k=k’) . In other words, two identical fermions cannot occupy the same Momentum quantum
state. It verifies Pauli’s exclusion principle for momentum states. To verify this statement in
a general case you may note that an antisymmetric eigen vector can exist in the sub-space F,,
introduced in the previous section, only if

Alg™, g5, ..q™ > %0 (6.38)
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where operator A is given by eqn. (6.37). You may start with the assumption that at least one
of the integers n,,n,,ns, ........n, is greater than one. Then in the state of condition (6.38)
at least two particles, say i*" and j**,would occupy the same individual quantum state so that
the eigen state of this condition is symmetrical under the exchange of these two particles:

4™, 65", )™ > = Sylag™, 45" ag™ >

1.2 D v
= ST+ P)Ig™, a5, .q]” > (639)

where use of relation (6.22) has been made. Operating this equation by the operator
A= Ai]-, you may get

A|q§n1), qgnZ), ql(,"”) > = Oshowing that the state |q§n1), qgnZ), ql(,"”) > with two identical
fermions in the same sub-state cannot exist.In other words none of the integers
ny, Ny, N3, ........ N, in this state can be greater than one. It verifies Pauli’s exclusion
principle in a general case.

An alternative proof of this principle may be given in terms of vanishing value of Slater
determinant for an antisymmetric state with more than one fermion in the same quantum sub-
state. To meet this end you may write eqn. (6.14) in the following normalized form:

W, (1,2, 00, N) = J%zp(—npp[tpl(n w,(2) .. Wy(N)]  (6.40)

whereW;, ¥V, ..... Wyare single particle states. You may also write this state as following
Slater determinant:

(1) ¥,(2) .. W(N)
Wy (12, e, N) = = o) 2@ - B 64
Y1) ¥n(2) .. ¥y

The determinant on the right hand side of this equation vanishes when two of the identical
fermions are in the same state because in such a case its two rows will be identical. In other
words, in any configuration two (or more) identical fermions cannot occupy the same
quantum state. Consequently, no two or more

fermions can be assigned the same set of quantum numbers. This is Pauli exclusion principle
which is a fundamental law for understanding atomic structureand the properties of the
elements as represented in periodic table.

EXAMPLES

Ex. 6.4: Show that the factor \/%In equation (6.40) is necessary to normalize W, to unity.
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Solution: You have
< l{lA |IIUA > =
L (Spp [ dFy diy....diy (1P (=D P9 ()W (@) .. Wi (NIP[F (D) ¥(2) . ¥y (V)]}

Since various W'sin this expression are mutually orthogonal, the terms corresponding to
P # P'will vanish. Thus you are left with only the sum of N! permutations of unity in the
bracket {} in this expression. As such you have

< lIJA |leA > = i
which confirms the required normalization.

Ex. 6.5: Factorizing the wave function of N identical particles into a product of single
particle wave function and anti-symmetrizing it according to Pauli’s exclusion principle,
reduce the expectation value of an operator describing the action of an external force field
into single particle integral.

Solution: Equation (6.40) gives the anti-symmetrized wave function in terms of single
particle wave functions ¥; (1), ¥,(2) ..... Wy (N). An operator Q describing an external force
will act on the particles in the similar way:

a=yV.0, (6.42)

Its expectation value, with respect to the anti-symmetric wave function of eqn. (6.40), is
given by

2] = 5 Zp p (=D < P[NP, 11 201 Q, [P[ W1 (DW2(2)..] > (6.42)

Now you single out from eqn. (6.42a) one term  {,of eqn. (6.42) acting only upon the
functions of v*" particle by using the following orthogonality of single particle functions:

<l{.}]|l{.}k>: 6]1(

which means the identity of permutations P and P’. Then the term {),, will contribute only
one particle integral

< P’mv'P >= 6ppr Z?’=1 <Y (n)|ﬁv|l'pi(v) > (6.43)

In the wave functionW the factor W;(v) with fixed i and v is combined with a determinant of

rank N-1. Then there remains, amongst the total N! permutations, (N-1)! permutations of the

remaining (N-1) functions ( except W;(v) functions). Thus you are left with

~ N-1)! ~
<YLY > =N <y )]0, W) > (6.44)
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This result holds for whatever term {,, you pick out of the sum given by eqn. (6.42). Thus in
< ¥|Q|¥ > you have a total N similar expressions of the form (6.44). Consequently, you have

N
<YIO¥>= z <Y; (0)|2, |9 () >

i=1
which is the required result.
SELF ASSESSMENTQUESTIONS (SAQ):

Q.4 Find the value of A in eqn. (6.13) for the symmetric normalized state.Q.5 Show that there is
some sort of repulsive force between electrons in addition to the Coulomb repulsion.
Q.6 Two identical non-interacting particles are in an isotropic harmonic oscillator potential.
Show that the degeneracies of three lowest energy levels are: (a) 1,12,39 if particles have
antisymmetric eigen states. (b) 6,27,99, if the eigen states of the particles are all symmetric.

6.7 SPIN ANGULAR MONENTUM

The wave mechanical description of quantum mechanics, as proposed by Schrodinger, is
complete with reference to only simple model of a point particle in a given external field. It is
incapable of accounting for many of finer details. It became clear by many experimental and
theoretical arguments that many elementary particles including electrons, protons and neutrons
are not described adequately by the model of a massive point whose position in space exhausts
its dynamical properties. Experimental developmentsduring 1920’s provided data leading to the
idea that these particles possesses not only wave properties ( orbital angular momentum) but also
have intrinsic angular momentum (spin ) and associated magnetic moment. In 1922 an
experiment by Stern and Gerlach revealed this spin almost dramatically. Before discussing Stern
and Gerlach experiment and the consequences of its results in terms of spin of electrons and
other elementary particles, you must understand the meaning of angular momentum operator.

6.7.1 Angular Momentum operator.

A vector operator Jis an angular momentum operator if its components are observables
(Hermitian) and obey the following commutation relations

[/x./y] = i bf,(and other cyclic orders)

or in general [fi,fj] = ihsijkfk, (i,j,k=123) (6.45)
where ¢;jhas its value +1 for jkl as even permutation of 1,2,3 and -1 for jkl as odd permutation

of 1,2.3 and zero if any two of the indices of jkl are equal. This definition enables you to treat
those entities also which have no classical analogue like intrinsic spin of elementary particles.
Defining the square of angular momentum operator as
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JP=Ji+]y 4z
you may readily show that

2] =0 (6.46)

Equation (6.45) shows that the components of angular momentum operator | do not commute
among themselves and hence you cannot have a common eigen basis for all these components.
On the other hand eqn. (6.46) enables you to form a complete set of common eigen functions of
J? and one of the components say f, . It will be demonstrated in next unit (chapter) that
corresponding to such common eigen functions [j,m; > the eigen values of J? and J,are

jG 4+ Dh? and mjh respectively, where j = 0,%1,%, w0 and my = —j,—j+1,....., 4
showing that for a given value of jthere are (2 j + 1) values of m; and the length of angular
momentum vector is uniquely fixed as /j(j + 1)h. These (2 j + 1) allowed values of m; for the

same value of j and the same value of energy eigen values reveals the concept of orientation
quantization of angular momentum and leads to (2 j + 1)-fold orientation degeneracy for the

given eigen value /j(j + 1) h of the angular momentum operator. For a given value of , there
are (2j+ 1) linearly independent eigen vectors |j,m; > corresponding to (2 j + 1) distinct
values of m;. Thus for the given value of j the angular momentum operator J? may be

represented by (2 j + 1)-dimensional squarematix with diagonal elements j(j + 1)h%.In other
words you may write

J? = j( + DR,
and [, =mhl, (6.47) where [is (2j +1) —
dimensional unit matrix.

Examples:

For j = %you may readily have

J2= 2w (6.48)
and I, = %haz
where [ is 2 X 2 unit matrix ando, = ((1) _01) (6.49)

For,j = 1 you may readily write

1 0 O

J? = 2h%[and], = <0 0 0 )h (6.50) where [ is
0 0 -1

3X 3 unit matrix. It will also be shown in the next unit that the components of angular

momentum operator L corresponding to orbital angular momentum vector L = r X p satisfy the

171



commutation rule (6.45) and (6.46) and that the eigen values of operators L? and L, are given by
I(l+1)h? and m;h respectively, where m; =—1,—l+1,..,l showing (2l + 1)-fold
orientation degeneracy. The quantum number m;, having(2l + 1) possible values for a given
value of orbital quantum numberl, is known as magnetic quantum number due to its role in
describing the effect of a uniform magnetic field on a charged particle as shown in the following
subsection.

6.7.2 Charged Particle in Uniform Magnetic Field

It may be shown that reduction in symmetry produced by the uniform magnetic field Bresults in
removal of the orientation degeneracy with respect to m;. A magnetic field may be written as

B=V XA,
where Ais a vector potential. For uniform magnetic field this relation gives

A= % B x 1, sinceV X (a X b) = a(V.b) —b.(V.a) + (bV)a — (aV)b. This equation also
gives V.A=20,sinceV.(a xb) =b.(VXxa) —a.(Vxb).

Classically the Hamiltonian of the particle of mass m and charge e is modified by magnetic field
in to the following form

_ (pmea)® _ P _e e 2 00
H = — + V( 1) — +V( 1) —P. (Bxr)+ — {2 [B X r]}*which reduces to the

following form on assuming that the magnetic field is sufficiently weak to ignore the last term in
it:

2
H= ——pu.B+V() (6.51) wherep =
% (rxp) = % (6.52) is the orbital

magnetic dipole moment of the charge. When an electron of charge —e and mass m,, describes an
orbit under the Coulomb law of attraction, its magnetic moment can be written classically as

eL
2m,

w = — (6.53)

Orienting the coordinate system such that the field Bis alongZ-direction, you may write the
quantum mechanical Hamiltonian for electron corresponding to eqn.(6.51) as

H= A+ zimeBZZ (6.54)
ﬁz

wheref, F=5—t V(r) which obviously satisfies the following commutation relations:
e

(I?,H;) = 0and (L, H;)=0 (6.55)
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and hence (A, ﬁcf) =0
showing that H and H, s have simultaneous eigen functions with the corresponding energy eigen

values of H given by

Enlml = Enl + (Ze?e) m, hB = Enl - ,Ll.lB (656)

where E,; are eigen values of ﬁcf. This expression gives normal Zeeman shift. This naive
theory of Zeeman effect must be refined to take into account of the hyperfine experimental
details. It needs a refinement in this theory by incorporating the fact that in addition to an orbital
magnetic moment

h
= - : my = —HUpmy, (6.57)

2me

incorporated in eqn.(6.56), the electron must carry a magnetic dipole generated by its intrinsic
spin. In eqn. (6.57) up is Bohr Magnetron given by

eh

Hp = 5— =9.2032 X 10_2°T]Z—Sulfl = 0.927 X 107 %%ergs/gauss (6.58)

Mme

The need of postulating the spin quantum number (and hence the spin angular momentum)
became a compulsion in view of the results of Stern Gerlach experiment discussed in the
following section.

6.7.3 Stern Gerlach Experiment

In this experiment a well collimated beam of silver atoms was passed through a slightly
inhomogeneous magnetic field as shown with simple line diagram in fig. (6.1) where by
measuring the deflection, through inspection of the trace left by the beam on the screen one can
determine its motion.

S

Beam of atoms e

Fig. 6.1: Sketch of Stern Gerlach Experiment

The inhomogeneous magnetic field in the experiment produces the net force on the magnetic
dipole associated with the atoms of the beam and provides a direction of spatial quantization
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(orientation quantization) (say z-direction). The atoms are deflected by this force which is
classically given as

F =V(u.B)orF, = ,uz% where p,is

the component of the atom’s dipole moment along Z-axis. A magnetic moment arises due to
orbital motion of electron about the nucleus of the atom. Let this moment be due to the single
outer electron of each silver atom. Then from eqn.(6.57) we get

My = =5 -y = —upmy(6.57a)

whereyou have (21 + 1) allowed values for a given | which is always an integer and hence the
number of

sub-states, (21l + 1), is always odd. Thus one must expect the atomic beam in Stern-Gerlach
experiment to give an odd number of traces on the screen as shown due to dotted lines in fig. 6.1.
In the actual experiment only two traces were found as shown due to continuous lines in the
figure. Thus the dipole moments of the silver atoms could have not been produced only by the
orbital angular momentum. The exciting implications of this experiment could not be understood
immediately and several efforts were made to interpret the results of this experiment in terms of
equations (6.52) and (6.57).

The correct interpretation of Stern-Gerlach observations and several fine structure spectroscopic
measurements of emission spectra of atoms was given by the hypothesis of Uhlenbeck and
Goudsmit in 1925 that in addition to an orbital angular momentum, the electron possessed an
intrinsic spin (an intrinsic angular momentum) characterized by  quantum numbers
s and mgwhich are analogue of [ and m; associated with orbital angular momentum operator.
To explain two projections in Stern-Gerlach experiment, Uhlenbeck and Goudsmit restricted

1 1 . . .
these quantum numbers tos = Eand mg = iE' Accordingly, each electron has an intrinsic

angular momentum of magnitude %h( i.e. spin %) with which is associated the following
magnetic moment analogues to that given by eqn.(6.53) for orbital angular momentum ):
e

Hs = —Gs7-S (6.58)

wheregis adjustable constant. The theory based on hypothesis of Uhlenbec and Goudsmit is in
excellent agreement with experiment if you take gy=2 and then write

s = — mieS(6.58a)

Experiments show that the nucleons ( proton and neutron) also have spin- % It should be

reemphasized that spin is a quantum number and it has no classical analogue. It is absurd to
visualize the electron as a sphere rotating about its axis.
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6.8SPIN ANGULAR MOMENTUM OPERATOR

Orbital angular momentum operator arising due to orbital motion in classical mechanics has only

integral values of its quantum number . Thus eqns. (6.48) for quantum number j = % give the

. e .1
angular momentum operators corresponding to intrinsic angular momentum or spin--. In general

case the components of spin angular momentum operator $§ also satisfy the similar
commutations rules as given by eqn. (6.45) i.e.

[SA],SAk] = ihc‘fjleAl (659)
orS x § = ihS (6.59a)

Defining the squareof spin angular momentum operator as

8% =82+82+ 52, (6.60)
you may readily prove that

[$2,8] =0 (6.61)
which implies that [$2,5,] = [$%5,]=[$2,5,] =0 (6.61a)

In view of eqns. (6.47) the eigen values of operatorsS? and S, may be written as

$? = s(s + 1) h?[andS, = mghl (6.62)
where s is integer (including zero) or half integer giving the spin of the corresponding particle:

s=0,%,1,3/2,......... and —s<mg<s ie mg= —s,—s+1,....... s—1,5s (6.63)

Thus mg have distinct (2s+1) values for a given value of spin s. The particles with integral spins
are bosons and those with half odd integral spins are fermions. Thus the eigen states of the
particles with integral spins are always symmetrical under permutations of these identical
particles and consequently these particles obey Bose-Einstein statistics. On the other hand the
eigen states of the particles with half odd integral spins are always antisymmetric under
permutation of such identical particles and hence these particles follow Fermi -Dirac statistics.

For spin-% case you can rewrite eqns. ( 6.48) as follows:

$2 = %hzfandﬁz = %haz (6.63)

where [ is 2 X 2 unit matrix and o, = ((1) _01) (6.63a)
Matrices $? and S, are obviously matrices of order 2X2 each. Eigen value of matrix $? is th

(repeated twice) and the eigen values of matixS$,are +%h and —%h which corresponds to two
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spin- states. The eigen values of matrix o, are obviously +1 and -1. You may directly prove that
the square of matrix g, is unit matrix i.e.

o,2=1 (6.64)

Using relations (6.63), (6.63a) and (6.64) you may readily prove that the eigen values of
operators S, and fy are also +%h and —%h.You may also represent these operators by 2X2

matrices in the similar manner as operator S, has been written in eqn. (6.63a) i.e.

s 1
Sx = EhO'x

andfy = %hay (6.65) with eigen values of each of

matrices o, and gyas +1 and -1 and square of each of them as unit matrix
0,2 = [ando,? =1 (6.64a)

For the case of spin-1, the matrices representing intrinsic angular momentum operator may be
written as follows from eqns (6.50):

) /200 A 10 0
§2=2h*I=(0 2 O0|h%andS,=(0 0 0 |h
0 0 2 0 0 -1

Using these results in the following equation
§2 =8+ 55 +82,
you may readily obtain following matrices for the operators 5'3, and S,
A 1 /0 1 0
“oaly o)
and
X i (0 -1 0
Sealy b )

Using these properties of spin angular momentum operators in the following section, you will
study the theory of spin of electrons but it may be generalized to higher intrinsic spin values.

6.9 PAULI THEORY OF ELECTRON SPIN (PAULI SPIN MATRICES)
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Using Uhlenbec and Goudsmit hypothesis, Pauli developed the theory to give mathematical
formulation to spin -1/2 of electrons. In a simple version of his formulation you may combine
eqns. (6.63) and (6.65) to write the spin operator for electron in the following matrix
representation

$= ~ho (6.652)
where the components of the vector operator @ are operators oy, gy,and o,satisfying eqns. (6.64)
and (6.64a) where the matrix representation of ag,is given in eqn.(6.63a). The matrices
representing o, and g, will also be of order 2X2 each with eigen values +1 and -1 as shown

previous section. Using relations (6.59) and (6.65a), you may readily prove the following
commutation relation for these matrices:

[0}, 0] = 2igj01,),k, 1 =1,2,3 (6.66)
which may be elaborated in the following form
0x0y — 0,0y = 21 0,,0,0, — 0,0, = 21 0y, 0,0, — 050, = 2i 0,,(6.66a)
Now you may write
2i(ox0y + 0y0y) = (2i0y) 0y + 0y (2i0,) =0,

whereyou have used second of eqns. (6.66a). Similar relations you may get by using other
relations of eqns.(6.66a). Thus you have following anti-commutation relations for matrices ay, o,

and o,:

0x0y + 0,0, =0 ; 0,0, + 0,0, =0; 0,0, + 0,0, =0 (6.67)
Combining these relations with relations (6.62) and (6.64), you may readily write the following
general anti-commutation rules for these matrices

{aj,ak} = 0j0y + 00 = 2 §ji, (6.67a)

Combining this anti-commutation relation with the commutation relation (6.66), you may readily
get

O']'O'k = 6]k + ig]'klo—l (668)
which give 0,0, = i0,; 0,0, = i0y; 0,0, = i0, (6.69)
Using these relations and relations (6.62) and (6.64), you may readily get

0x0y 0, = 0,0,0, = 0,0,0, = il (6.70)
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Using these relations ( 6.66)- (6.70) and the matrix of eqn. (6.63a) for o,, the following matrices
may readily be obtained foro, and o), :

Oy = ((1) (1)), oy = (? _Oi); along with o, = ((1) _01) (6.71)

These matrices are called Pauli matrices. They satisfy all the properties given by eqns. (6.66)-

(6.70) and square of all of these individual matricesis unityas shown in eqns.(6.64) and (6.64a).
Moreover, trace of each of these matrices is zero and determinant of each of them is -1 i.e

tro;=0, (=xy2) (6.72)
detoj =—-1,(=x,,2) (6.73).

You may also have the matrix representing operator oof eqn. (6.65a) satisfying the following
property

o’ =0f+oi+0} =3I (6.74)
From this relation you get

[62,0,] = [02,0,] + [af,ax] + [02,0,] (6.75)
where[o2,0,] = 02 — 02 = 0;

[af, ax] = oy[0y, 0] + [0y,04] 0y= 0,(—2i0,) + (—2i0,)0;, = Owhere second of relations
(6.66a) has been used. Similarly, you may get

[0Z,0,] = 0.
Using these relations in eqn.(6.75) you may readily get

[62,0,] =0
and similarly, [az,ay] =[6%,0,] =0

This commutation of @2 with its component matrices readily follows from eqns.(6.61), (6.61a)
and (6.63) also. These Pauli matrices given by eqns. (6.71) are widely used to describe the spin
of electron, hypothesized by Uhlenbec and Goudsmit, without exploring the origin of spin-1/2 (
intrinsic angular momenta) in electrons. This spin-1/2 of electron was automatically incorporated
later in the solution of Dirac’s relativistic quantum equation.

6.10 EIGEN STATES (SPINORS) OF SPIN OPERATORS

On using eqns. (6.63) and (6.63a), you may readily write the spin operators in the following
matrix form
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A~

§2 = 2p2 ((1) (1))and5'z - %h((l) _01) (6.76)

It can be readily shown that these matrices commute with each other. This commutation also
follows from eqns. (6.61a). Consequently these spin operatorshave simultaneous eigen vectors.
Both these operators have been represented by 2X2 diagonal Hermitian matrices in eqns. (6.76)
and hence elements along the principal diagonals in these matrices give the eigen values of these

: : A . 3

operators respectively. Both the eigen values of operator S2are identical, each equal to th and
. A 1 1 . . .

the eigen values of operator S,are + Eh and — Eh respectively. The simultaneous eigen states of

these matrices are two component eigen vectors which constitute an eigen basis which spans the
space (spin space) in which these operators are represented by matrices given in eqns. (6.76).
These two- component columneigen vectors in spin space are called spinors (i.e. spin vectors).
You may write any such column vector as
=)
X=\w
A 1

Then you have S;x = izh)(where upper sign gives v = 0 and the lower sign gives u =

0.Thus the normalized eigen vectors corresponding to these eigen values of the spin operatorS,
may be written as follows

1 0
X+ = (O)and)(_ = (1) (6.77)
which are eigen vectors (spinors) for spin-up and spin-down states (pure states):

| T>spin-up state ; and | !> spin-down state respectively.
Thus you may write

Img >, = | +% > = ((1)) =|T> (spin-up state);
and |mg>_=|-— % >= ((1)) =|l>  (spin-down state) (6.78)

Using eqns (6.65a) and (6.71) in this basis, you may readily write all the components of the spin
operator as

o ! —th L
S«=1n “) S = ih ) Se=1" h (6.79)
>0 20 0 -2

Using these relations you may readily verify the relation
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which follows from eqn. (6.76) also. Both eigen values of this matrix for operator $? are equal
and hence the corresponding eigen vectors given by eqns. (6.77) are degenerate eigen states of
this operator. It is obvious from equation (6.79) that eigen values of operators S, and fy are also

h h . . A . .
+ Eand -7 The normalized eigen vectors of operator S, corresponding to theseeigenvalues may

readily be obtained as

o= (i = () 6

Similarly, you may obtain the eigenvectors of the operator S'y in the following form
_ 11 _1/1
xoe = 5 (3 Jandr- = 5(2,) (6.81)
Since eigen vectors y, and y_ of spin operator S,, as given by eqns.(6.77), constitute the eigen

basis of spin-space, any two- component state -vector in this space may be written as linear
combination of these eigen vectors. For instance, you may readily write

1 1 1 1
X1+ = FZXeFBX- - = FXe T B (6.82)
1 i 1 i
andyy, = X+t HX- - = FXr T FX- (6.83)

a
In general any spin eigen vector a = ( a+) may be written in terms of these spin-up and spin-

down spinors as
a=a,y;+a_y_.=a,|1> +a_| 1> (6.84)

In an assembly of spin-1/2 particles, some of particles are spin-up and others are spin-down and
then the spinor is the linear combination of y,and y_. Furthermore, 2x2 unit matrix /, and Pauli
matrices 0y, dyand g,are linearly independent and constitute the complete set in spin-space and

hence any 2x2 matrix Acan be written as their linear combination:
A=ayl+ a0, + a,0y + azo, (6.85)

Spin of a particle is a degree of freedom additional to the spatial degree of freedom. It is
independent of the spatial degrees of freedom and hence you can simultaneously specify the
exactly the spin state and the spatial state of a particle. In other words, all operators referring to
the spatial degrees of freedom commute with those referring the spin degrees of freedom,;
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[S,7] = 0; [S,p] = 0; [S,L] = Oetc (6.86)

wherep is the linear momentum operator and Lis the orbital angular momentum operator which
will be discussed in details in the next unit. For the particle of spin-1/2, the totaleigen state can
be completely specified as the dot product of the spatial eigen state and the spin eigen state:

|total > =|space > @ |spin > (6.87)

If we choose Z-axis as spin orientation direction, then the total eigen state of electron is
determined by giving, for all #,both W;(#) and W,(#) which are amplitudes for finding the
particle at # with its spin- up and spin- down respectively.

Thus in general, the true wave function of the system of identical particles can be written as the
product of spatial function ® (7,75 .......7y) ( a solution of Schrodinger equation (6.3)) and the
function y depending on spin variables:

W(q1,qz - qn) = P (1,72, oo oo Ty) X(S1, 82, cev ver 2 SN) (6.88)

For this type of wave function the symmetry requirement under permuatation refer to the
complete wave function since a permutation of particles corresponds to both, the space and the
spin variables. Thus the necessary symmetry of wave function (symmetric for bosons and anti-
symmetric for fermions ) can be ensured for several combinations of & and y which may have
different symmetries under permutations of the appropriate coordinates.

EXAMPLES
Ex.6.6: Prove the  followingidentity @ for any two  vectorsAand B
(6.A4) (6.B) = (A.B) +io.(A X B) (6.89)

Solution.LHS =(0.A) (0.B) = (0,4, + 0yAy + 0,4,) (6,B, + 0,B), + 0,B;)

=07 AxBy + 0jA,B, + 0;A,B, + 0,0,A,B), + 0,0,A,B,

+0,0,A,B, + 0,0,A,B), + 0x0,AxB, + 0,0,A,By

Using the following properties of Pauli matrices in this equation

2 - 22— 2 T — —
o; = 0y = 0; = landoy,0, = —0,0, = ioyetc,
you may readily get

LHS= A,B, + A,B, + A,B, + io(A,B, — A,B,) + i0,,(A,B, — AyB,) + io,(AB, — A,B,)

=(A.B) +io.(A X B) =RHS
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Ex. 6.7: Show that the shift operators
0, = oxytioyand= o_=o0,—io,
cannot be diagonalized. What happens when these operators are applied on spinorsy, and y_ ?

Solution: Using Pauli matrices of eqns.(6.71) you may readily get

oy = (8 (z))anda_ = (g 8) (6.90)

which are not Hermitian since 6,7 = o_and o_T = o,

Matrices of eqns. (6.90) cannot be made diagonal with any choice of diagonalizing matrix.
If matrices given by eqns.(6,90) are applied on spinor y, you will get

o.x+ =0ando_y, = 2y_
Similarly, on applying these matrices on the spinor y_ you will get
o, x- = 2xyando_y_ =0

showing that operator o, raises the spin- down to spin-up and the operator o_ lowers the spin-up
to spin-sown. Thus these operators are called raising and lowering operators respectively in the
spin-space.

Ex. 6.8Show that the operators
P, == (I+0)andP- == (I - 0,) (6.91)

are idempotent operators and they suppress either the spinor y, or y_ in a state of mixed spin
orientation where [ is 2x2 unit matrix.

Solution: Substituting relation (6.63a) in to given operators, you may write

s _(1 0 5 _ (0 0 :
P, = (0 O)andP_ = (0 1) which
obviously satisfy the following conditions

~

p,>= P,andP.’ = P

Which show that these given operators are idempotent operators. When applied to Hilbert
vectors (spinors)y,and y_ these operators give

P+X+=X+§P+X—=0

andP_y, =0; P y_ =y (6.92)
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Thus when applied on a state of mixed spin orientation in the state ay, + by_, these operators
give

Py(ax, +bx-) = axsandP_ (axs + by-) = bx-

Showing that these operators suppress the spinors y_and y, respectively leaving the projection
of the state vector upon one of the basic directions in Hilbert space. Consequently, these
operators may also be called projection operators.

SELF ASSESMENT QUESTIONS (SAQ)

Q.7Find thenormalized eigen vectors of the operator @.71, where nis unit vectorin an arbitrary
direction in space.

Q.8Show that the only matrix which commutes with Pauli matrices is a scalar matrix ( scaler
multiple of unit matrix).

Q.9Show that Pauli matrices are all traceless, square of each of them is unity and all of them are
mutually anti-commuting.

6.11 SUMMARY

In this unit you have learnt the fundamental indistinguishability of identical particles and its
main consequences and you have seen thatthewave functions of Identical Particles are either
totally symmetrical or totally antisymmetric depending on whether the identical particles are
bosons or fermions respectively. You have also seen that the identical particles with symmetric
states (bosons) follow Bose-Einstein Statisticswhile those with anti-symmetric states (fermions)
follow Fermi-Dirac Statistics. You have also seen that the distinguishable particles follow
classical Maxwell Boltzmann Statistics. You have proved the Pauli’s exclusion principle for the
system of fermion and studied its consequences. You have learnt in details that the elementary
particles have intrinsic angular momenta (spins) besides their spatial (orbital) angular momenta.
You have constructed the spin angular momentum operators for all the types of identical
elementary particles,obtained their eigen values and eigen states, and learnt that the eigen states
of the particles with integral spins are all symmetrical and those of half odd integral spins are all
anti-symmetric under the permutations of particles. You have learnt the Stern- Gerlach
experiment and the interpretations of its results in terms of the hypothesis of Uhlenbec and
Goudsmit incorporating the spin-1/2 of electron. You have also learnt the Pauli theory of
electron spin in terms of Pauli matrices and represented Spin operatorsinterms of these matrices.
Undertaking the study of spin-space you have obtained the eigen states of spin operators for
electron in terms of Hilbert eigen states (spinors) in this spin-space. You have also obtained the
whole algebra of Pauli matrices and the resulting spin quantum numbers and finally developed
the total eigen state of an elementary particle as the product of its spatial state and spin- state
and then described the symmetries of the resulting states of identical particles of different types
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(fermions and bosons). Eight examples of solved innovative problems have been learnt and nine
self- assessment questions (SAQ) , based on different topics discussed in this unit, have been
solved.

6.12GLOSSARY (KEY WORDS);

Identical Particles; Symmetric eigen state; anti-symmetric wave function; distinguishability;
bosons; fermions; intrinsic angular momentum, spin; spinor; Pauli matrices; Stern-Gerlac
experiment; spin angular momentum; Pauli exclusion principle; spin-operators; Bose- Einstein
statistics; Fermi-Dirac statistics. Maxwell- Boltzmann statistics; exchange operators;
permutations.
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(A) Short Answer Type:

Q.1 What are the values of [0?,0,]; [0% 0y]; and [0?,0,], where gy,0, and o, are Pauli

matrices?.

Q.2 What is the value of [0y, 0y, ], where o, andoy are first two Pauli matrices?.
Q.3 What is the value of 0,0, + 0, 0, where o,andayare first two Pauli matrices?.

Q.4 What is the value of [ P jir

particles and H is the Hamiltonian operator of the system?.

H], where P, ; 1s the exchange operator for the system of identical

Q.5 If aand f are single particle spin states of spin-1/2 identical particles, write the three
symmetric spin states corresponding to three projections (1, 0,-1 of the total spin S=1 of these
particles.

Q.6 In the previous problem, write the antisymmetric state corresponding to total spin zero.

Q.7 For a system of two identical particles each of spin-/, find the ratio of number of
symmetricand anti- symmetric spin states.

Q.8 Show that {aj, ak} = 26;j, where g;and oy, are Pauli matrices

jo
Q.9 Show that 62 = 3

Q.10 Prove that Pauli matrices are unitary
(B) Long Answer Type:

Q.1 Prove that gjo, = 8 + i €j,0; where 0}, 0, and g;are Pauli matrices and other symbols
have their usual meaning.

Q.2 Show that three Pauli matrices together with 2X2 unit matrix form the complete basis of an
algebra.

Q.3 Show that the operator (641.0,)™ for two particles, each of spin-1/2, can be linearly
expressed in terms of 1.0,

Q.4Show that 0 X 0 = 2io

Q.5 Show that
(a) (U3,U+) = 20'+
(b) (03,0.) = ~20. ,

where 0, = gy * i,
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Q.6 Show that (0,,0_) = 40,

Q.7 Two identical non-interacting particles are in an isotropic harmonic oscillator potential.
Show that the degeneracies of tree lowest energy levels are
1,12,39 if the particles have spin-1/2
Q.8 Consider two non-interacting particles in a one-dimensional potential oscillator potential

V= % kx? and in the same spin states and find the eigen functions if the particles are
(a) distinguishable
(b) identical bosons
(c) identical fermions

Q.9 For the angular momentum operator J,prove the identity

[/2,J2] = [T 2,J2] = [J2 /Z]and show that all these commutators are zero in states for j=0, %, or
1

Q.10 (a) Define particle exchange operator and prove that its eigen values are + 1.
(b) Obtain the spin wave functions of the system of two electrons and classify them according to
their symmetries. Show that these wave functions are the eigen functions of the operators $?and
Sy.

( C) Numerical Type

Q.1 A particle with spin-1/2 is in a state with a definite value s, = 1/2. Show that the
probabilities of possible values of components of spin along an axis-z’ at an angle 8 to the z-axis

0 Y o 1 :
are w, = cos?=and w_ = sin?=, where w,are probabilities of s, = + = respectively.
2 2 - 2

Q.2 From the first principle determine the eigen states of total spin angular momentum obtained
by adding the spin angular momenta of two spin-1/2 particles.

Q.3 Construct the eigen functions of $2 and $,, for a system of three particles of spin-1/2 each.

Q.4 Show that the wave function of a j=1 state formed from two spin less particles in p-state is
anti-symmetric in the coordinates of the two particles.

Q 5. Show that every unitary 2x2 matrix with determinant +1 has the form cos@ + io. 7t where 6
and the components of unit vector 71 are suitably chosen parameters.

Q.6for a system of spin -1/2, find the eigen values and eigen vectors of the operator S, + fy.
When the system is found to be in the state corresponding to the larger eigen value of this

operator, find the probability that the measurement of § Zyieldsg.
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Q.7 Determine the number of energy levels with different values of total spin S, for a system of
N identical particles with spin-1/2.

Q.8 For Pauli spin matrices, prove that

(a) exp (iﬁ. ag) = cosg + ifl. o sin g(b)(al. 0,)* +2(01.0,) =3

Q.9 Write four linearly independent spin states for a pair of electrons and then construct the four
normalized eigen functions for the operators ((S; + $,)? and S;, + $,,

Q. 10 In the S,-eigen basis, find the eigen vectors of particle whose spin projections are precisely

+ % h along the x-axis. If the is in a quantum state in which its projection is precisely %h along x-

axis, find the probability of finding it with its projection %h along z-axis.
ANSWERS
Self-Assessment Questions:

Q.4: (Ny! Ny!.......Ny.)/V/N!
Q6: 2" = e (L m)xs £ (y +iny)-)

Terminal Questions

(A) Short Answer Type:

Q.1 All Zero; Q.2 2i0y,; Q3 Zero; Q4 Zero;

Q.5 a(Da(2); (L 2); a(DB(2) + a(2)B(1) Q.6a(1)p(2) — a(2)B(1)
I+1

Q.7 —

(B) Long Answer Type

Q.10+ (1) x+(2); X—(l) X- (2); (W x-(2) + {x+ (2)x-(1) }(symmetric )
and {¥+(1)x-(2) — {x+(2)x-(1)} (anti-symmetric)

( C) Numerical Type

Q.2 Triplet states: | 11> ; % [| 1> +[11>]; | W>
. 1

and singlet state: ﬁ[l > —|I1>]

Q.3
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3 3 >
Is=2,ms=>>= (D@13 =13,

X+(Wx-@x+3) + x-(Dx+(2)x+(3)]

N W

> 155> =W @r-G) +

12,5 > = Z - Wx- @ 3) + - Dx-3) + 1+ (Dx-@Dx-B3)] S-i>=
X-(Wx-(2)x-(3) For
double eigen value s=1/2:

symmetric doublets

53 >1 = =M @x-B) + - @13} = 2x- W @D, =5 >1 =
=D @2-B3) + x- @ B} = 220 (Dx-@2x-(3)] and anti-
symmetric doublets

1

33 >2 = S0 D@r-3) = - @B, — 3 >2 = Zx-DIr-@x: (3) -
X+ (2)x-(3)]

NI(25=1)

N+s+1)1(5-5)!

Q.7  For a given value of S : n(S)= (

Total number of different energy level

N

n=yysn(S) = (ﬂlngor even N
!
N!
and n=xw+v7— for N odd
GG
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UNIT-7: ORBITAL ANGULAR MOMENTUM

Structure:

7.2.1 Angular Momentum and Rotational symmetries

7.2.2 Angular Momentum Operator

7.2.3Commutation of Components of Angular Momentum Operator

7.2.4 Orbital Angular Momentum Operator and Its Commutation with H_f

7.2.5 Eigen Values and Eigen Functions of Orbital Angular Momentum Operator

7.2.6 Bohr Magnetron 7.2.7 Total Angular Momentum Operator
7.2.8 Eigen Values and Eigen Functions of Total Angular Momentum Operator

7.2.9 Addition of Two Angular Momentum Operators
7.2.10 Clebsch-Gordan Coefficients and Their properties
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7.1 INTRODUCTION

The simplicity which the physicist have to expect of Nature, has been sought almost
exclusively in terms of symmetries rather than detailed dynamics. Based on this idea of
symmetry man, since his awakening, had tried to comprehend order, beauty and perfection in
most diversified phenomena of Nature. By making the use of symmetric properties of a physical
system one can make certain predictions more conveniently than by going through the detailed
calculations. Under the set of symmetric transformations, the Lagrangian and the resulting
dynamical equations of the physical system remain unaltered. Some symmetries, like spatial and
temporal translations and spatial and temporal rotations are the exact symmetries ( any violation
of which has never been observed) while other symmetries, like space-reflections are only
approximate (which is followed by some physical systems and violated by others).All these
symmetries are space-time dependent and hence they are called the external symmetries. Beside
these space-time dependent symmetries, physical systems follow some internal symmetries
which do not depend on external spatial-temporal degrees of freedom but these symmetries
depend on internal degrees of freedom ( like spin, charge, isospin, strangeness, baryon number
and charm etc, )  Other striking fact of nature, besides the symmetry properties, is that besides
many properties of physical system that continuously change with time, the few properties
remain invariant. These constant properties appear in so many different physical systems that
these properties are among the most fundamental laws of physics, known as conservation laws.
Some of these laws, like conservation of energy, conservation of linear momentum and the
conservation of angular momentum, are exact conservation laws while some others, like
conservation of parity, are only approximate. The connectionsbetween symmetries and
conservation laws of physical system, the apparently unrelated properties, was first established in
classical mechanics by Jacobi when he showed that the invariance of the Lagrangian of a
Physical system under spatial translations implies the conservation of its linear momentum and
its invariance under the spatial rotations (rotations about a spatial coordinate-axis) implies the
conservation of its angular momentum( rather, orbital angular momentum). A little later Schutz
derived the conservation of energy from the invariance of Lagrangian under time translations.
Then Herglotz gave a complete discussion of ten constants of motionassociated withthe
invariance of Lagrangian (i.e. invariance of the physical system) under the group of
Inhomogeneous Lorentz Transformations ( Poincare group) consisting of time translation, three
spatial translations, three spatial rotations and three pure Lorentz transformations ( space-time
rotations). In the Hamiltonian formulation, whenever a conservation law holds good for a
physical system, the Hamiltonian of the system remains invariant under the corresponding group
of transformations. In other words, every conservation law is a consequence of a symmetry
possessed by the physical systems. The converse of it is not necessarily true as even if
Hamiltonian of the system remains invariant under a group of transformations, there may not be
a related conservation law. For instance, a physical system is invariant under time reversal (

— —t)but there is no corresponding conservation law. Then there had been a question,
unanswered for some time, that what type of symmetries do lead to conservation laws and what
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type of symmetries do not. Then Wigner showed that all the symmetries of quantum mechanical
statescan be chosen so as to correspond to either unitaryor anti-unitary operators. It is the unitary
operator which is associated with a conservation law. For instance, the operators associated with
four space-time translations and space-time rotations ( three rotations about spatial axes by real
angles and three rotations by imaginary angles in spatial-temporal planes like x-t, y-t and z-t) are
all unitary operators and hence all these symmetric transformations lead to the corresponding
conservation laws. On the other hand, the operator associated to time reversalis anti-unitary and
hence it does not lead to a conservation law. However if the Hamiltonian of a physical system is
invariant under an anti-unitary transformation, it has other consequences which may be verified
experimentally.

This unit is devoted to symmetries with respect to rotations (about spatial coordinate axes as well
as rotations in spin- space ) which implies the conservation of angular momentum operators.
Here you will study the angular momentum operators (the operators corresponding to orbital
angular momentum, spin angular momentum, and total angular momentum) through the
commutation rules for their components as incorporated in earlier unit (unit-6). In this unit the
eigen values and eigen states of these angular momentum operators will be obtained and the
rules of combination of two or more angular momenta will be derived in terms of Clebsch-
Gordan Coefficients.

7.2 LEARNING OBJECTIVES
After reading this unit we will able to understand:

e Angular Momentum and Rotational symmetries

e Angular Momentum Operator

e Commutation of Components of Angular Momentum Operator

e Orbital Angular Momentum Operator and Its Commutation

e Figen Values and Eigen Functions of Orbital Angular Momentum Operator
e Bohr Magnetron

Total Angular Momentum Operator

Addition of Two Angular Momentum Operators
e Clebsch-Gordan Coefficients and Their properties

7.3 DEFINITION OFORBITAL ANGULAR MOMENTUM OPERATOR

You know from classical mechanics that the angular momentum vector of a particle is given as
L=rxp, where r and p are respectively the position and momentum vectors for the particle. In
wave mechanics this vector is written as a linear Hermitian operator on replacing the
dynamicalvariablesr and p by the corresponding operators. Thus you can write the Cartesian
components of this vector operatorLas
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~ - a. = ~ ]
L,=L = —Lh(ya—za) s Ly =1L, = —Lh(za——xa),
- ~ . ) ]
and LZ=L3=—Lh(x5—y£)
(7.1) or in general f,j = —i hejpxy 6%1(]', k,l = 1,2,3), where g has the

value +1 if the indices jklare even permutations of 1,2,3 and -1for odd permutations of 1,2,3
and zero if two of the indices are equal. Using the fundamental commutation rules of
components of the operators Xand pyou may readily get the following commutation relations for
the components of angular operator, given by eqns. (6.1):

[ZJ,ZR] =i hgjklzl (72)

Using this relation, you may readily have

[12,L] =0 (7.3)
wherel? = % + [ +12 (7.4).

This relation (7.3) shows that though the components of angular momentum operator L do not
commute mutually, they commute with L.

You know that central force is derivable from the potential that depends only on the distance r of
the moving particle from a fixed point (usually the coordinate origin) and the Hamiltonian for
such a problem is

2
H = ;’—m + V() (7.5)

Classically, since this central force has no torque about its origin, the angular momentum
L =rxp is conserved. This property is equally valid in wave mechanics where central force
Hamiltonian operator corresponding to eqn.(7.5) may be written as

—~ h2
Hy = —%Vz +V(r) (7.5a)

and you may readily write L[ = r?p? + h? % (r? %) (7.5b)

~ 2
ThisL? obviously commutes with kinetic energy T = zp—m and the potential V (r) for central force

and hence you may readily write
[L? H,s] = Oand[L, H.(] = 0, (7.6)

ensuring the conservation of angular momentum in central force problem. These equations reveal
an important difference between classical and quantum mechanical formulations of angular
momentum. In classical mechanics the three components of angular momentum are the
consequence of rotation in three planes in three dimensional space and the classical rotational
symmetry leads to the conservation of all the three components separately. On the other hand,
though eqns. (7.6) show the commutation between Hamiltonian and all the three components of
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angular momentum operator, these components do not commute among themselves and hence no
more than component, L j» of angular momentum operator can be a constant of motion. Another
difference between classical and quantum cases is that in classical mechanics one is concerned
only withsuch angular momenta which are associated with space time description while in
quantum mechanics a wider conceptual basis is used which includes those angular momenta also
that do not have classical analogue, like the intrinsic spin and iso-spin of elementary particles.
The angular momentum associated with operators defined by eqns. (7.1),is called orbital angular
momentum, the definition of which has been borrowed from classical mechanics as the constant
of motion in three dimensional ordinary space.

7.4 EIGEN VALUES AND EIGEN VECTORS OF ORBITAL ANGULAR
MOMENTUM

Angular momentum operator L, defined by eqns. (7.1), is closely related to the rotation of
the system and if the system has rotational symmetry, then the eigen states of central force
Hamiltonian, A, 7, are the simultaneous eigen states of I? and the operator associated with one
well defined component of L, say L,. These states have well defined eigen values of the
operators L2, and L,. You have already studied these states in third unit of your quantum
mechanics course, where you have obtained the solution of three dimensional Schrodinger
equation in spherical coordinate system (r, 6, @) in the following form

Y(r,0,8) = R(@)Y,"™(6,0) = Wp,m,(6,0), (7.7)

withR () as radial part and Y™ (6, ®)as spherical harmonics introduced in the third unit of this
course such that

ﬁcfwn,l,ml(el ?) = Enlwn,l,ml(e' ?) (7.8)
LW, 1 m, (6, 0) = B2+ 1)W1 m, (6, D) (7.8a)
andzzwn,l,ml(el ?) = mlhlpn,l,ml(el ?), (7.8b)

where E,are energy eigen values corresponding to considered eigen states of H, r. In these
equations [ is orbital quantum number and m; is magnetic quantum numbers. Allowed values of
these quantum numbers are

1=0,1,2, e candmy = =L —l+1, e, l—1,0) (7.9)

where half odd integral values of j in the corresponding operator of general angular momentum
operator J?, in eqn. (6.47) of section 6.7 of previous unit-6, have been ignored in the allowed
values of [ in eqn. (7.9) due to the condition of single valued-ness of the wave function
¥n,,m, (8, @)with respect to the angle @ i.e.
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LPn,l,ml(er @+ 2m) = an,l,ml(er ?) (7.10)

The central force eigen functions ¥, ; m, (6, @)may also be written eigenkets|n, [, m; > and then
eigen value equations (7.8), (7.8a) and (7.8b) may be written as

ﬁcfln, l,ml >= Enlln, l,ml >
?|n,I,m; >=h2%l(l + DIn,I,m; >; (7.11)
L,|n,1,m; >=m;h|n,l,m, >wherel and m; are given by (7.9).

These are the eigen values and eigen vectors of operators L?, and L, corresponding to the
energy eigen states for central force problem. You will get an alternate derivation of these values
of orbital and magnetic quantum numbers in the following sections.

7.5 ROTATIONAL SYMMETRY AND ORBITAL ANGULAR
MOMENTUM

It is the result of isotropy of space (equivalence in all directions) which leads to the invariance of
the properties of closed systems under rotation (rotational symmetry). Classically, a rotation is
specified by an axis of rotation and an angle of rotation. The positive sense of rotation is
determined by the well-known right handed screw rule. The rotation of a physical system within
coordinate axes fixed in space is an active transformation while the rotation of coordinate system
with physical system fixed in space is a passive transformation. Let us first consider herethe
active point of rotating the physical system in fixed coordinate system. An infinitesimal rotation
of the system may be denoted by the vector @ , length of which is equal to the infinitesimal angle
of rotation 6@ and the direction of which is along the axis of rotation. Under such a rotation the
radius vector is transformed according to

Y =r+60Xr=1+ dr(7.12)You may readily prove that the infinitesimal rotations commute
to the first order of infinitesimals. Assuming that the function 1 (7) is continuous and
differentiable, the value of ¥ at point r'may be written to the first order in dras

W) =) + dr.v ) =) + (68 x ). V(r)

=y(r) + 50. (rxvVyr) =y + % (56 Z)l,b(r), (7.13)where we have usedeqns (7.1)This

equation gives

Yr') —yYr)=dy = %(56 L)y (r)which when integrated gives the final result for the finite

rotation 6 :
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Y(') =exp(£ 0. Dy(r) = exp (é ¢ L)y (r)(7.13a)wherei is unit vector along the axis of

rotation i.e. @ = ¢A. It shows that from 1 (r)you may know (r")provided you know the orbital
angular momentum operator L of the system about the axis of rotation. Equation (7.13) may also
be written as

(") = Ra(P)(r)(7.132)

whereR; (¢) = exp (% . L) (7.14)

is the rotation matrix associated with the orbital angular momentum operator L. The inverse
operation of eqn.(7.13) may be readily written as

() = exp (—; ¢A.LY()(7.13b)

When the coordinate system is rotated by keeping the physical system fixed (passive point of
view) and the coordinate system S’ is obtained from S by rotation about the axis 7 by an angle

—56, then you have

Y =r+60xXr=r+ 8@ (7 X r)whereris the coordinate in S and r'is that in S’ for the same
physical point. If an observer in S defines the state of the system as Y (r)and the observer in S’
defines it as Y’ (r")then Y (r) = ' (r")because both observersmeasure the same amplitude at
particular physical point. Then according to eqn. (7.13), you may write

Y'ry=[1+ é(&@. ). L]y’ (r)and for finite rotation you have

W) = [+ @D o' (1) = exp [~ (0. 1) |9/ () = exp [~ (9 .1)| ()

(7.15) or Y'(r) = RI(r)
(7.15a) where Rg = exp [— é (Q) . Z)]
(7.15b)

It is clear from eqns. (7.14) and (7.15b) that the generator of transformations of a rotation or the
operator of an infinitesimal rotation around an axis 7 is determined by the component of orbital
angular momentum operator along that axis. Comparison of these equations also show that a
rotation of the coordinate axis around a unit vector 7 over an angle @ is equivalent to a rotation
of the system over —@ around the same axis. From

eqn. (7.15b) we may write the following operator of an infinitesimal rotation 3 :
Rsy =1—=(66.L)(7.16)

Using this result, you may transform the eigen value equation
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Ay=Evy oHY =Ey' =HY'
under the rotation Rgg where the invariance of Hamiltonian in rotations has beenused. This
equation may be written as

OI'RE&H?SQ):EI/) = ﬁl/)
(A.L)S@|H = H[1 - —(n 1)59]

Choosing 71 along z-axis, this equation gives

—~ -~

[A,L,]=0

which is the same result as given by second of eqns. (7.6). It shows that the invariance of
Hamiltonian operator under infinitesimal rotation is visualized through the commutation of
Hamiltonian with the component of orbital angular momentum operator along the axis of
rotation. It also implies that in a centrally symmetric field the component of orbital angular
momentum operator along an arbitrary direction ( ) is constant of motion. In an axially
symmetric field Hamiltonian is invariant under rotation around the axis of symmetry and hence
the component of orbital angular momentum operator along that direction is constant.

EXAMPLES

. . A .8 1 P2 p? i2
Ex. 7.1 Using the relation P, = i h[; + ;], prove that prni

2m  2mr?’
where L is orbital angular momentum operator.

Solution: Using eqn.(7.5b) you have

2=r2P2 41022 (120, ()
From the given relation you may readily write
R R LN MR
= [%z%(rsz—r)l

Substitute this relation in eqn.(i) then you will get

2 alP] R [ii (rz f;—lf)]which gives

r or r2 0r
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72 _ 2P2 _ 25 2t b o S N
L = r“P* — r“P. which gives —=—+
2m  2m  2mr?

which is the required result.

Ex. 7.2 Show that any quantum mechanical operator F transforms under infinitesimal rotation
60 into

F' = OF U'(ii)

whereU is an unitary operator given as

—

0=1-160.1) (iii)

5~

and hence derive the commutation rules for ((fl-, a?k) ; (L;, D) and (fl-, L k).

Solution: From eqn. (7.13) it is obvious that every state vector Y or @ transforms into state
vector ' = Uy or @' = U@ funder the infinitesimal rotation where U is given by eqn.(iii).
But the expectation value of any quantum mechanical operator is independent of the choice of
coordinates and hence you may write

<Y'|F'|0" > =< P|F| B >(iv)
Oor <Oy|F|0¢>=<y|F|o>
ie< Y|U'F'O|0>= < Y|F| 0>

which givesUTF'U = F which may readily be written in the required form given by relation (ii)
proving the first part of the problem.

Now substituting relation (iii) into relation (ii), you may write
F'=F-_60.[LF] v)
where only first order terms of the infinitesimal § @ have been retained. You may now choose F

to be the operator corresponding to rectangular coordinates x = 14,y = 1,,Z = r3 and then eqn.
(v) will reduce to

vy = = 80. [L,7;](vi)
Comparing this relation with eqn. (7.12), you may readily get

[L;, 7] = i hejafy (vii)

As for the components of every vector operator the transformation under the rotation is the same
as given by eqn. ( 7.12) and hence the same commutation rules must be satisfied by the
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components of linear momentum operator and the angular momentum operator and thus you may
readily write

L, px] = i hegjprand[L;, L] = i hejal,  (viii)
‘which are the requires commutation rules.

SELF ASSESMENT QUESTIONS (SAQ)

Q. 7.1. Show that orbital angular momentum operator commutes with the potential energy of a
central force problem

Q. 7.2 A system is in the state @;,,, an eigen state of the orbital angular momentum operators
I?and L,. Calculate < L, >and < L2 >.

7.6 TOTAL ANGULAR MOMENTUM OPERATOR

Total angular momentum of a particle is composed of its orbital angular momentum discussed in
earlier section and its intrinsic spin angular momentum (which does not have a classical
analogue), discussed in previous unit-6. Thus total angular momentum operator is written as

J=L+S (7.17)

You have seen in unit-6 that the components of spin angular momentum operator also satisfy
the same commutation rules as given by eqn. (7.2) for the components of orbital angular
momentum operator:

[SA], SAk] = ithleAl (718)

You have also seen in unit-6 that these operators also satisfy the similar commutation rule as
given by eqn.(7.3) for orbital angular momentum operator i.e.

[$2,5'] = Oor in particular manner[$?2,$,] = 0 (7.19)

Furthermore, all operators referring to spatial degree of freedom commute with those referringto
spin degree of freedom i.e.,

[S,#] =0; [$,9]=0; [S,L]=0,etc (7.20)
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In view of the commutations, given by eqns.(7.2), (7.3), (7.18), (7.19) and (7.20), it is clear that
the total angular momentum operators, given by qn. (7.17), is the Hermitian operators associated
with observables and its components obey the following commutation relations

[/x./y] = i bf,(and other cyclic orders)
or in general [fi,fj] = ihel-jkfk, (i,j,k =1,2,3) (7.21)
Defining the square of angular momentum operator as

=i+ Iz (7.22)
you may readily be show that

.72l =0 (7.22a)

Equation (7.21) shows that the components of angular momentum operator | do not commute
among themselves and hence you cannot have a common eigen basis for all these components.
On the other hand eqn. (7.21) enables you to form a complete set of common eigen functions of
J? and one of the components say J,.

7.6.1Eigen Values of Total Angular Momentum Operator

Let the vector |j, m; > be the common eigen vector of the commuting operators J?and J, with

the corresponding eigen values A; h? and A,,, h respectively:
JPlim; >= 402 |,m; > (7.23)
andjz |]' mj > = /1m hl]: mj > (7233)

In view of eqn. (7.22), the operator J? is positive definite and hence its eigen values A h?

should be positive definite i.e., 4; should be positive definite. You may also verify this property

of A; from Hermitian nature of operator J, and the fact that for any state |a > the quantity

< a|f?|a > may be written as norm of vector J; |a > i.e. it is positive definite. Thus you have
<jmj|j2|jm;>

A = - >0 (7.24)

In view of eqn.(7.22), you may write
<j,m|f?|j,m; >=<J? >=< JZ >(7.25)
ord; = 4,2 =0 (7.26)

For mathematical convenience you may introduce the non-Hermitian operators
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j+ :jx + ijyandj— :jx - ijy (7.27)

Then you

may readily get

J2 =S U+ T+ ]2 (7.28)
Je=5Ue+J-1 (7.282)

Jy =3 Us—J-] (7.280)

Using relations (7.21), (7.27) and (7.28), you may readily get

2 Jel =05 [l = Was (-] = —hf;

e J-] =20/ 200 = 0; U 1] = 0; 24 /,]1 = 0; (7.29)

Thus the three operators /., /_ and J, completely define the angular momentum operator J .

You may readily obtain following relations also
JJv=T12=J2=tj,=J* =], U, + h), (7.30)
andj+j— = jZ _jzz + hjz = ]"2 _jz (fz - h) (7303-)

These relations may be combined to give

Jo-+JJe =207 - J21; (7.30b)
Jo-=JJs =21/, (7.30c)
Appling J, and J_ on eqn. (7.23), you will get

Jel21j,m; > =024 [, | j,m; >
Or J2{J.|jm >} = 024 {+]j,m; >}, (7.31)

which shows that [ | j, m; > is also an eigen state of J? corresponding to the same eigen value

h?2; . Similarly on applying J+ on eqn.(7.23a), you will get

JAelimy >} = (A + 1) h{e| j,m; >}, (7.31a)
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which shows that the states J, | j, m; > and J-1J, m; > are the eigen vectors of J, corresponding
to eigen values (4,, + 1) h and (1,, — 1) h respectively. Thus you may write

Jelimi >= Ciljmi+1>, (7.32)
and/_| j,m; >= C_|jm;—1> (7.32a)
withC, and C_ as constants.
Now from eqn.(7.30), you may readily get
<jmylJ_Js liomy > =<j,m|[?j,m; > —<j,m|JZ]j,m; > —h < j,mylf, |j,m; >
Keeping in mind that /T = J_and using eqn.(7.23a), you may write this equation as
Uiljimi > 12 = {4 = A (Am + 1)I0?
On the other hand, under normalization condition eqn. (7.32) gives
Vel jym; > > =|C,

Comparing these equations you may readily get

Ci =[{4 —An Ay + 1)} hz]%
and hence eqn. (7.32) may be written as
Jljym > = B — Ay (A + DI [jym, +1 > (7.33)
Similarly, eqn. (7.32a) may be written as
Jljymy > =0k — Am (A — DYz lismy — 1> (7.33)

These eqns. (7.33) and (7.33a) respectively show that the operator J, raises the A,, eigen value of
J, by unity and operator J_ lowers it by unity. Therefore these operators are respectively called
raising and lowering operators and consequently the spectrum of eigen values of operator f,is
integrally spaced.

Combining eqns. (7.33) and (7.33a), you may write

A 1
Jeljmy >=0h{; =4, A £ D} |jm£1>, (7.33b)

which shows that by repeated applications of /. you may have
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]i | j,m; >« |j,m; + p >where p is any positive integer. But according to eqn. (7.26), the
maximum value of 12, is bounded and hence maximum value of p is restricted with the
conditions that

Jeljim; . >=0 (7.34)
and J-ljm; . >=0 (7.34a)

which show that after attaining maximum value of m;in the eigen value of J, the operator
J.cannot raise it further and after lowering it to the minimum value of m;, the operator J_ cannot
lower it further. Since the spectrum of operator J, is integrally spaced, you may readily write
m; —m; = apositive integer including zero (7.34b)

Under the condition (7.34), eqn. (7.33) gives

/1]' = A max (Am max T 1) (7.34¢)
and under condition (7.34a) eqn. (7.33a) gives

/1]' = Am min (Am min — 1) (7.34d)
These conditions (7.34¢) and (7.34d) lead to

Ammax = —Ammin = dmo (7.34¢)

Thus integrally spaced eigen values 4,, are symmetrical with respect to zero and are bounded by
Amo as

_/17710 ) _){mo + 1, ETRT TR '/17710 - 1, Amo (7.34f)

and it is possible to have these integrally spaced valuesonly when A,,, ; is either integral or half
integral:

Amo = J (integral or half integral) (7.35)

Then A,, = m; is integral or half integral according to the value of j. Values of (7.34f) then
become

—j =m < j (7.36)

orm; = —j,—j+1,.... ,+j (7.36a)

wherej = O,%, 1,% ) weewee e 00 (7.37)

Using eqns. (7.34c¢), (7.34¢) and (7.35) you may readily get
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A =jG+1) (7.38)

It is clear from eqn. (7.36)thatd; is the maximum value of projection of angular momentum Jon

z-axis. Thus the maximum eigen value of J,is jh. The eigen values of operator f2are given as
j(J + 1)h?and for a given value of jthere are (2j + 1)eigen values of operator f,corresponding
to (2 j + 1)values of m; givenby eqn. (7.36a).

7.6.2 Eigen Vectors Of Total Angular Momentum Operator

You have seen that eigen values of operator 2 are j(J + 1)h? and for a given value of j there (2
j + 1) eigen valuesm; hof operator J,. Consequently, for a given value of j thereare (2 j + 1)
linearly independent vectors |j, m; > which are simultaneous eigen vectors of angular

momentum operators 2 and J,. From any of these eigen vectors others can be constructed by the
repeated operations of operators f, and J_ according to eqns. (7.33) and (7.33a) respectively,
which may be written as

Jeljm; >= a{G-m)(j +m; + 1)}% lj,mj +1>

andf_| j,m; > = R{(j+m)(j —m; + 1)} [j,m; +1 > (7.39)
In particular from eqns. (7.34) and (7.34a) you mat write

Jilj,j >=0and _|j,—j > =0, (7.39a)

showing that the operation of J, on the state with maximum value jof m; gives zero and the

operation of J_ on the state with minimum value - j of m; gives zero.

The simultaneous eigen vectors | j, m; >of the angular momentum operators, constitute an eigen
basis for a (2 j + 1)-dimensional subspace of the Hilbert space of the system, where operators J2
and J, are represented by Hermitian matrices with rows and columns labelled by (2 j + 1) values
of m; :

and{)m! jm; =< Jymyl| jymy > = my W8y i, (7.40)
Then using eqns. (7.29), you may readily write
. _ . L ) 1
UDdm! jm; =<Jmillel jymy; > = {0 +my)(j £ m; + 1}208m, i, (7.40a)

In other words you may have the following matrix representations of these operators in the basis
constituted by eigen states | j, m; >
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J? =j(j + 1) h?I (7.41)
andj, = m; hi (7.41a)

showing that matrices representingoperators f? and f,are diagonal in this representation. Allowed
values of j and m; of these equations are given by eqns.(7.37) and (7.36a) respectively. These
results have been derived by using the commutation relations

[/i.J;] = iheipfe,  (0j k =1,2,3)

and[f 2 fz] = 0 as given by eqns. (7.21) and (7.22a). The similar relations are satisfied by the
components of orbital momentum operator L defined in section -7.3 and the components of
intrinsic spin angular momentum operator S, defined in earlier unit -6. The energy eigen values
and eigen vectors of the orbital angular momentum operator have been obtained in section-7.4
and those of the spin operators have been obtained in the previous unit-6, where the relations
corresponding to eigen value equations (7.41) and (7.41a) have been respectively obtained as
given by eqns. (7.11) and (6.62). In view of these results the result corresponding to eqns. (7.40a)
may be readily written as

-~ -~ _ 1
Cdt my =< LDl Ly > = (A Fm)(Lkmy + 15 W, (7.42)

with [ =0,1,2,.......c0 and —l<m; <,

where the half integral values of [ have been excluded due to the single valuedness of its eigen
functions as shown by eqn. (7.10) since the orbital angular momentum operator has classical
analogue. On the contrary, the operator Shas no classical analogue and hence half integral eigen
value for this operator is allowed. In view of eqn. (7.17) the half integral values are allowed in
eqn. (7.37). In view of definition (7.17) of total angular momentum operator /,the eigen state
vectors | j,m; >may be written as

| j,mj > = |total > = |space > ® |spin > = |space > |spin >

or[total > =|n, [, m;,mg >=Inl,m >Q|m; >=|n,l,m > |mg; > (743)

State vectors|n, [, m; > are the simultaneous eigen vectors of Hamiltonian operator H, 5 for

central force problems and the orbital angular momentum operator. These state vectors satisfy
eqns. (7.11) and the spin eigen states [mg > have been introduced in previous unit-6. Thus, in
view of the conditions (7.17) and (7.20),eigen vectors of eqn. (7.43) are simultaneous

eigenfunctions of the Hamiltonian operatorH, f» orbital angular momentumoperators I?and L,

and intrinsic spin angular momentum operators $2 and S, with the corresponding eigen

values given by
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Hepln, L m,mg >= Ep|n,l,m;,mg >;
I?In, 1, m;, mg >=1(l + DR?|n, I, m, ms >;
L,In,l,m;,mg >= m;h|n,I,m;,mg >;

$?|n, I, m;, mg > = s(s + Dh?|n,[,m;, ms >;

and§Z|n, [,m, mg >= mghin,[,m;,mg; >; (7.44)
wherel = 0,1,2, ... ... ;m = —L,—=l+1,.... ,l;s=0,%,1,%,....;5=—s,—s+1,..,s
EXAMPLES

Ex. 7.3Determine the eigen values of angular momentum operator obtained by adding two
orbital angular momentum operators L; and L,.

Solution: If you are given the simultaneouseigen function erlnl of the operators L2and L,, and
the eigen functions erznz of the operators L2and L,,, then you can form (21, + 1)(2l, + 1)
product wave functions YlTlYlTZ, for —l; <my; < I} and =1, <m, < [,. These eigen states

may be classified by the eigen values of
jZ = z:12 + z\‘Zz

which are given by (m; + m,) h = mh, where —(l; +1,) <m < (l; + l;). Different linear
combinations of the functions with same m value will belong to different j values. The highest
state has the total angular momentum l; + [, for which you may have

PR = LG+ D + L+ D™y

1

The product Y;lnl YZZ"Z can be decomposed into eigen states of J? with the correspongingeigen

values j(j + 1) h? where j can have the values [; + 1,,l; +1, — 1,.......|l; — L, |.

Ex. 7.4How do the operators J, and fy operate on the simultaneous eigen states of operators 2

and J, where [ is the total angular momentum operator?

Solution: Simultaneous eigenfunctions of the operators 2 and J, are | j, m; >with the
corresponding eigen values given by eqns. (7.41) and (7.41a). These eigen functions constitute
the eigen basis in which the matrix elements of operatorsj? and J, are given by equations (7.40).
In this eigen basis the matrix elements of the raising and lowering operators fJ_, are given by
eqns.(7.40a). The operators J, and fy are given by eqns. (7,28a) and (7.28b) respectively in
terms of these operators ( J). Substituting relations (7.39) in eqn.(7.28a), you may readily get
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A 1 . . T
Jeljymy > =S [{G-—m)(j +m; + 1)} [j,m; + 1>

1
+h(G+m; )(j -m; + 1)}5 ljm; +1>] which gives the
operation of the operator J, on the simultaneous eigen functions of the operators 2 and J,.
Similarly, on substituting relations (7.39) into eqn. (7.28b), you may readily get

s, 1 . . 1.
Jyliym > = —[{G-m)([ +m; + 1)}z |j,m; +1>

—hG+m)(G—m + D} lj,m +1>]

which gives the operation of the operator fy on the simultaneous eigen functions of the

operators J? and J,.
SELF ASSESSMENT QUESTIONS (SAQ)
Q.7.3. Find the transformation of an spinor under the rotation.

Q.7. 4.An electron has orbital angular momentum L in addition to the intrinsic spin momentum
(I+1)+L.o

S = %6. Show that the projection operator to the state j = [ + % 1s DI

7.7 ADDITION OF TWO ANGULAR MOMENTA ( C-G COEFFICIENTYS)

Consider a system with angular momentum J; and a second system with angular momentum
J2then classically, the total angular momentum of the combined system will be

J =1+ )2

In quantum mechanics the situation is not that simple because here you become concerned with
the eigen values and eigen states of the total angular momentum operator when you have one
system in a state with angular momentum quantum numbers j = j; and m; = m, and a second
system with angular momentum quantum numbers j = j, and m; = m,. Aparticular case has
been described by eqn. (7.17) by combining orbital angular momentum operator L and spin
angular momentum operator S into total angular momentum operator f. In a more general case
you consider the addition of two mutually commuting angular momentum operators J; and f, and
construct the eigen states of the total system in which the squares and z-components of both
these angular momentum operators have well defined eigen values (in view of their mutual
commutation ). Designate any such state as |j;j,m4, m, >and then you may readily write

JEljjzme, my > = ji(p + DR?|jyjamy, m, >;

Jizljvjz2mq, my > = my hljjomy, my >;
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J2ljjamy,my > = jo(Gz + DR2|jjymy, my >;
Jozljsjamy, my > = my, hljj,my,m, > (7.45)

In these equations the quantum numbers specifying eigen values of Hamiltonian have been
suppressed.Such simultaneous eigen states of the operaorsjZ, J;,:/2, J,, can be written as the
following direct product of kets|j; m; > and |j,m, > as generalization of eqn. (7.43):

ljij2m, my >= |jimy > |jomy > (7.46)

These are (2j; + 1)(2j, + 1) different eigen states for fixed j; and j, which differ in the values
of myand m,.

In view of the commutation rules (7.21) for the components of the operators J; and J,
respectively and the fact that the different components of the operator f; commutes with all the
components of the operator J, , the components of the total angular momentum operator/ must
satisfy the commutation rules (7.21) and also the following ones with j? and f2:

Ut J) = Uz .1 =% Jf1 = U%J21 = 0 (7.47)

However, J? does not commute with J; ,and J,,. In view of these facts you can think of the
simultaneous eigen states of the operators f2, f, , /2 and J2. Designate such states as |jyj, jm > .
Then you may readily write the following eigen value equations

J?livz jm > = j(j + Dh?|jyjp jm >;

Joljrjz jm > = mhljyj, jm >;
Jilivz jm > = j1(jy + DB?|jyjp jm >;
J2ljja jm > = j2(jo + DR?|jyj, jm > (7.48)

It is obvious from eqns. (7.45) and (7.48) that sets of states |j;j,m,, m, > and |j;j, jm >
constitute two different basis in the same Hilbert space. Thus the problem of addition of two
angular momenta in quantum mechanics reduces to find out the ways to express states

|j1j2 jm > as linear combination of states |j,j,m,, m, > and vice-versa.

Using The completeness property of the basis |j;j,m;m, >, you can readily write

ljz Jm > = Xmm, Ji2m,my > < jyj,mimg|jj, jm > (7.49)

where summation has beentaken over m,and m,since you have assumed j; and j, having fixed
values. In this relation the coefficients < j;j,m;m,|j1j, jm > determine the contribution of state
|j1j.mq, m, > given by eqn.(7.46) to the state |j;j, jm > which simultaneously specify square
of total angular momentum, its z-component, and squares of angular momenta Jiand J,. These
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coefficients are called Clebsh-Gordon coefficients of Wigner coefficients which may be

designated as
67{11111721112 m =<Juz2mimy|jijz jm >=|mym, > |[jm >, (7.50)

where it is understood that j; and j, are the maximum values of m;and m, and hence these

symbols have been dropped in right hand side of eqn. (7.50).Then eqn. (7.49) may be written as
; — Jud2.J ; ;

lim > = Ymim, Cinrng m i ma > |joma, > (7.51)

where you have used relation (7.46). It shows that Clebsh-Gordon coefﬁcientsC,f,.lll’{,?,‘lJZ. m are the

matrices of transformation from the representation, where z-components of angular momenta

Jiand J, are given, to a representation where total angular momentum J and its z-component J,

are given.

Using relation, J, = f;, + J,,, you may readily write

Jeljvjz jm > = mhljij, jm >
andf,|jij, jm > = (Jiz + J22) ljifz jm > = (my + my)hljyjp jm >
Combining these two equations, you may readily get

(m —my —my)hl|jij, jm>=0
Using relation (7.51), this equation may be written as

(m—my — my)h z 614111]1211]2 m ljamy,my >=0
mim,

But |j,j,m4, m, > are linearly independent vectors, and hence this equation leads to

Cotz) o = 0form # (my + my)
Thus Clebsch-Gordon coefficient, defined by eqn. (7.50), vanishes unless
m=my; + m, (7.52)

and hence in eqns. (7.49) and (7.51) you can take summation only on m,(or m, )once mis given.

Now operating the state of eqn. (7.49) by the operators J, = J, + if,and using eqns. (5.39), you
may readily get the following recurrence relations for C-G coefficients

VGEmGFm+DC%) ey = G+ ma+ D0 F m)C

mq,m, m¥1 ~ myt1m,,m
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+/ Gz £ my + D[, F my)C2/ (7.53)

mqymy t1m >

whereorthonormality of the states have been kept in mind. Now you substitute m; = j; and
m = j in the upper part of this equation ( i.e. for J,) and have the value m, = j — j; — 1 using
relation (7.52). Then you will readily get

\/2_161111]]21]1 -1,j-1 — = VU2 —Jj+ii+ DUz +J _]1)61111]]2]]1] (7.54)

Similarly, in the lower part of eqn. (7.53) ( Le. for J_), you set m; = j;, m, = j — j; and
m = j — 1 and get the following recurrence relation

] ]]11]]2]]1 J - 2] C]11 ]12]] ji.j—1 + \/(]2 +] _jl)(jZ _] +]1 + 1)6']]11]]2]]1 1,j-1 (7543.)

Eqn.(7.54) gives C-G coefficient C; J 1’73 | _1j—1 if the C-G coefficient C; J 1]] 2 ]] j is known and

1J2,J
1—=1j—j1.j-1

coefficients. Repeating this procedure by using recurrence relation (7.53), you may get all the C-

subsequently eqn. (7.54a) can be used to get C-G coefficient(; J from these two

G coefficients for fixed values of j; , j, and j in terms of just one of them ( i.e. C; J 1]’2 ]] ])which is

non-vanishing only if —j, < j — j; < j,, since —j, < m, < j,. It gives
J1 —J2=J <j1 +Jj2forjy 2, (7.55)

From recurrence relation (7.53) you could equally well have expressed all these C-G coefficients

in terms of C; 1_]]2]] j Which is non-vanishing only when—j; < j — j, < j; corresponding to

—j1 < my < j;. This condition gives

J2 =J1 =] < j1 +Joforj; 2y (7.55a)
Combining relations (7.55) and (7.55a), you may readily write

1 —J2l ST <Jj1+ J2 (7.55b)

which is the triangle rule obeyed by the possible values of j showing that the three numbers
J1,j> and j must constitute the three sides of a triangle for the non-vanishing values of the
concerned C-G coefficients. If this condition is not satisfied, these C-G coefficients
automatically vanish.

It is obvious that

Sl @i+ 1) =2 + DR +1) (7.56)
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which is the number of linearly independent functions defined by eqn.(7.46). Thus for fixed
values of j; and j, eqn. (7.49) gives a completely new basis in (2j; + 1)(2j, + 1)dimensional
vector space spanned by the vectors . |jij, jm >.

C-G coefficients C,’nlljfnjz ‘mcan be written as square matrices with number of rows and columns
equal to (2j, + 1) for j; > j, and (2j; + 1) forj, > J1 -Since the largest values of
myand m,are j; andj, respectively, the largest possible value of m is m; + m, and largest value
of jis j; + j, . For such a case when m; = j; and m, = j, the summation in eqn.(7.51) reduces
to a single term and you have

i1 tjzmitmy>= |j1 +j2,jatj2>= 6}111]]22]]11:]]22 lji1j1 > lj2j2 >which gives

Juziitlz = q (normalization condition) (7.57)

J1.J2.d1+ J2
Thus you have |ji +j2,j1 +Jj2 >=j1J1 > lj2j2 >

Now applying the operator /_ = J;_ + J,_ on this equation and using eqn. (7.33a) you may
readily get

s 42yt —1>= /]. Sy = 1> sy >+ [l gy > Lz — 1(7.58)
1+J2 J1tJ2

You may also write this equation as follows by using eqn. (7.51)

L _ rdujaiiti . o
U1 +i2jitiza=1>=C %50 5, —ilir =1 > j2.jz >

+Cj]11,j]22_]i,j1]42- j,—1liJ1 > ljz,j2 =1 > (7.58a)

Comparing these equations (7.58) and (7.58a), you may readily get

CJ'1J'2J'1 +J2 _ J1
in—Lj2 g1 +j2—1 |7 :
J1 J2,J1 % J2 ]1 + ]2

J1.Jz2J1+ J2 _ Jj2
andC/'” ; . =
d J1,]2 _1Jl+]2 -1 j1+j2

Continuation of this process would give all C-G coefficients for which j = j; + j,.

Similarly you may readily get

clviziitiz=t )2
AN Er
J1 J2,J1 1 J2 ]1 + ]2
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C_J'1J.'2J'1‘|'_]'2 -1 _ j1
J1,]2 _1']1+]2 -1 j1+j2

and

7.8 PROPERTIES OF C-G COEFFICIENTS

7.8.1 Symmetry Properties

The following symmetry properties of C-G coefficients may be readily verified from their
recurrence relations

Juizd  _— pdudad
(a) lel,ﬁnz m = C—%’nzz,—ml,—m (7'60)
(b) Cotiym = (=DM CR (7.60a)
i i —my (2012 g
(c) 677111.7%’12 = (1) ™ (m 2Cn111,—72n,—m2 (7.60b)

2j+1
2j, +1

1 P
Y2 Cl T (7.60c

(d) CJ'1J'2;J' — (_1)j2 +m, (

myi,my,m

7.8.2 Orthogonality Properties
C-G coefficients obey the simple orthogonality relations.
Proof: Since the states |j; j,jm > constitute a basis, you may write
rjofm >= Y 1 jafm >< s jajmljs jomaims >
jm
< jpjom'ym'sljs omamy > = Y in[<jip om'im'z |y jojm >< ji jojmljy jomamy >,

where m = m, + m,. Here left hand side vanishes unless m'; = m;and m’, = m,. Thus
you have

< jyjom'ym'slj1 jojm >< jy jojmljy jomimy > = Gimyme, Smymi, (7.61)

According to recurrence relation (7.53), C-G coefficients are all real numbers if one of them
is chosen real by the proper choice of phase.. Thus you may readily have

< JiJ2Jmlji jomimy > =< ji jomymylj; jojm >

Then eqn.(7.61) reduces to the following orthogonality condition of C-G coefficients:
Z]m le!jZ'j le!jZ'j — 6m1m[16m2m12 (7.62)

mi;,mi; m=mg,my;,m

Similarly, from eqn. (7.49) you may readily get
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J1.J2.J J1.d2.J7 —
Zm1.m2 le’mz m le‘mz mr = (SJ],(Smm, (7623.)

Equations (7.62) and (7.62a) give the orthogonality properties of C-G coefficients.

Sometimes, it is convenient to use Wigner’s 3-j symbols in place of C-G coefficients. These
symbols are defined as

Ji J2 J3\ _ (1 fom 1 i
(o, oy o) = COP T R (7.63)

These symbols high degree of symmetry and they are non-vanishing only when the following
conditions are satisfied

my+my;+my =0 (7.63a)
and|j; —jo| <j <Jj1+J> (7.63b)
EXAMPLES

Ex. 7.5 Find the C-G coefficients for addition of spin-1/2 to the orbital angular momentum
operator and find the corresponding eigen states.

Solution: For constructing the eigen states of
J=L+S5§, (i)
we need the required C-G coefficients. In the special case for [ = 0, i.e. for j; = 0, only

possible j values are % hence for the trivial case (j; = 0,j = %, Jo = %), we have the trivial C-

G coefficients

2’2 —
le,mz m 5m,(m1+m2)

Forj, =1,j, = % (i.e. s), the possible j values are given by
1--<j<1+:
2 2

orj=j; + % , since there is only one state withm = [ + % , you may write

i mim = ts o tae iy
Lym=1lm=3>=|L71+351+7

Comparing it with eqn. (7.51), you may readily write

212



1
€Y i=1 (i)

1
1,1 l+m+5 1,1
Cl,z,l+2 2 Cl,z,l+2
m—llm B 3 m+llm+1
22 l + m + ? 2

Iterating it and using relation (ii), you may readily have

1 1 1
Lo 1+ l+m+>
C?* .3 = 2 (iii)
m—??m 21+1
In general you may write
1 1 1
Lo+ ltm+-
C*.% %, (iv)
m¥=+=, 21+1
272
Lol-3 _ [1Fm
andC % %, =+ (v)
m+?i—,m 21+1

These are the required C-G coefficients which enables you to find the eigen states

|n, [, j, m; > of the total angular momentum operator given by eqn. (i) for s = %:

11>
"2

. 1 1 11
|n,l,],mj >=|n,l,l+—,m>=— [(lim+§)2 |n,l,m—§

T2 21+ 1
- = 1.1 1 1 .
tl+m+znlm+-,—->](vi)

which are required eigen states. Substituting [ = 1 in eqns. (iv) and (v), you may readily get
the values of C-G coefficients for p-states of electron. Then these states may be readily
obtained from eqn. (vi) by substitutingl = 1.

Ex. 7.60btain the states of $ = $;+5, by using the method of C-G coefficients for addition
of two angular momenta.

Solution: For two spin-1/2 particles the direct product spin space,
|s,ms > = |s1,M51 > |53, M5, >,
of the composite system is four dimensional and particle representation-space is spanned by

the following eigen vectors of S;, and S, :
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X+ (1) x4+ (2); x-(1) x-(2); X+ (Wx-(2); x-(Dx+(2) (@)

which have been introduced in previous umit-6.

Setting | = 1/2 in eqgns. (iv)and (v) of previous example EX. 7.5, you may write
11 11

CZ‘Z_’11 1= &_m; CZ’Z_’? . =+ ’ m (i1)
m+5¢5,m 2 m+5¢5, 2

Using these relations you may readily get the following values of concerned non-zero C-G
coefficients:

11, 11, L ity i, 0, 11 L
— 2’2’ = 22 - 2’2 — 2’2’ — .22 — (33

C__1 —1,C_%%,0 f’ C___O NeL C? 2_1—1,%_10— 2,C_2110 ﬁ(m)
Then you may readily write

11 1 .

15200>= Z [ (Dx-(2) = x-(Wx+ ()] (iv)

11

122115 = (D 42 V)

11 1 .

15310 > = Z D (Dx-(2) + x-(Dx+ (2)](vi)

11 .
|551-1>= x-(D) x-(2) (vii)

where the state given in eqn. (iv) is singlet corresponding to s = 0 and the three states given
by eqns. (v), (vi) and (vii), corresponding to s = 1,are the triplets with eigen values of
S,given by h,0 — h respectively.

SELF ASSESSMENT QUESTIONS

Q.7.5: Using relations (iv) and (v) of Ex. 7.5, find the values of C-G coefficients:

1,
C

1,

T oNIR
Nlw
H

NI»—k
|

3 1
2. 2’
1 1 1> CO 1
2’ 2" 2 2’

Q.7.6. Prove that
V% R Ji2J _J@-y
@ Go = J7 ® Gof = |Groaes
Q.7.

7Using (iv) and (v) of Ex. 7.5, prove that
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7.8 SUMMARY

In this unit you have undertaken the study of symmetries with respect to rotations about
spatial coordinate axes as well as the rotations in spin-space, which implies the conservations
of orbital angular momentum and intrinsic spin angular momentum. You have studied
herewith the angular momentum operators (the operators corresponding to orbital angular
momentum, spin angular momentum and the total angular momentum)

through the commutation rules for their components as incorporated in earlier unit (unit-6).
In this unit the eigen values and eigen states of these angular momentum operators havebeen
obtained and the rules of combination of two angular momenta have been derived in terms
of Clebsch-Gordan Coefficients and Wigner’s 3-j symbols. Starting with the commutation
rules of the components of orbital angular momentum operator among themselves and also
with the Hamiltonian of central force problem, you have derived the eigen values and
corresponding eigen functions of the orbital angular momentum operator and learnt its
invariance under the infinitesimal rotations about space-coordinates. You have also
constructed the total angular momentum operator by adding the orbital angular momentum
operator and spin angular momentum operator and derived its eigen values and
corresponding eigen vectors. Undertaking the study of addition of two angular momentum
operators in this unit, you have also derived C-G coefficients for obtaining the eigen
functions of the combination of two angular momentum operators. In this unit you have also
studied the symmetry properties and orthogonality of C-G coefficients.

7.9 GLOSSARY (KEY WORDS)

Symmetries and Conservation Laws; Orbital Angular Momentum Operator; Rotational
Symmetries; Eigen Values ; Eigen Functions; Hilbert Space; Eigen -Basis; Spinors; Total
Angular Momentum Operator; Spin Angular Momentum Operator; Orthogonality; Ortho-
normality; Triangle- Rule; Addition of Angular momenta; Clebsch-Gordan Coefficients;
Wigner’s 3-j Symbols.
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TERMINAL QUESTIONS
A) Short Answer Type:

Q.1 Write the values of the following C-G coefficients

ll ll 111 111
22 . 22 272 2’2
(@) C ol 1> (b) C 111 ;(©C 111 (d)Cl 1
‘2‘ 2 22 2’ 2 2" 2
Q.2 Show that
13 13 13 13 13 13 13
152 152 152 15~ 152 152 152
272 _ pt22 _ Y22 Al Rl Rbea R
C3=C7y3=C135=C 33=C 13=C 33=Ci5 =0
) ) 22 22 22 22 22
(L3 413 g1 j13
Q.3 Find values of C 2%; C 2% ; C ??%,,andC %72 ,
052 T_q4117 T_q-11 -15-32
2’2 2’2 2’2 27 2
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113

Q.4 Show that Cl'2 2
~3

Q.5 Show that in a state @ with well-defined eigenvalues of J, the average values of J, and

fy are zero

Q.6 Write the matrices representing [ for the quantum number j = 1

Q. 7 Represent the operators J, and fy in the basis corresponding to j = 1

Q.8Show that every matrix representative of a component of J which satisfies

J X J = ihJhas zero trace.

Q.9 Show that the vector |j;m; > |j;m, > is an eigen vector of J? only for particular
values of m; and m,.

Q.10 Show that magnetic quantum number cannot exceed the orbital quantum number.
B) Long Answer Type

Q. 10btain the matrix elements of the matrices representing the operators /, j_, I, and fy

in space spanned by the simultaneous egien vectors |jm; > of the operators J?and J,.

Q21IfL,, Zy and L, are operators representing the components of orbital angular
momentum, show that if @, ,,, s an eigen function of L, corresponding to eigen value
m, h, then L, Dim, = (L, + iZy)QSLml are also the eigen functions of L, with the

corresponding eigen values (m; + 1) h respectively.

Q.3 Deduce the following commutation rules for angular momentum operators:
@ [2J]=0  Gi) [fofe] =+ Gii) [oJ-] = 21,
¢ 1
Show that J4|j,m; > = [j(j + 1) — m;(m; + D]zh|j,m; £1 >

where|j, m; > is an eigen function of the operator J, with the corresponding eigen value

Q.4 Determine the eigen function of angular momentum operator obtained by adding two
orbital angular momental,; and L.
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Q.5 Find the eigen functions for addition of two angular momenta to give the zero total
angular momentum

Q.6 Find the transformation of spinor under rotation about an axis @ which rotates the unit
vector minto unit vector A such that

A=m+60 xm

Q.7 Orbital angular momentum operator L and spin angular momentum S commute.
Show that | = L + § commutes with L. S and L

Q.8. Find the matrices representatives of the operators J?;/,; J. and J_in

the basis corresponding to j = %

Q.9 In the previous problem, find the matrices representing operators f, and fy.
Q.10Show that the operator £ = .7 anti-commutes with the operator M = &.L + hil
Numerical Type

Q.1 Find the inverse of matrices representing the operators J,, fy, J, and j? in the eigen
basis corresponding to j=1.

Q.2 If the operators associated to components of orbital angular momentum satisfy the
commutation relation [fx, f,y] = i hL,, express these operators in polar coordinates and

show that the eigen values of the operator L, are integral multiples of h.
Q.3. In the previous problem obtain the polar forms of L, and L_

Q.4 Prove that [JZ, /2] = [J2, /2] = [JZ,/2] and show that all these commutators are zero

in the eigen states corresponding to j=0,1,or V5.
Q.5Show that
(a) An operator which commutes with J, and fy, commutes with J, also.
(b) Angular momentum of a particle is 3/2 means the length of angular momentum vector
1s \/% h
(¢)tr i, =0 fork=1,2,3

Q. 6 Show that
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@) L, ¥,™(6,9) = h{(l = m)( + my + DY, (6, )
(0) L_Y™(6,9) = h{(l + mD(U = m; + DYV, )
whereY,™ (8, ¢) are spherical harmonics and L, =L, + L,

Q.7 If eigen functions of the orbital angular momentum operators L? and L, corresponding
to quantum numbers [= 1 and m; = 1,0, —1 are @, @, and @_; respectively then show
that eigen functions of L, corresponding to eigen values

h,0,~hare 5 (81 +V20o +0_1) 5 (81— 0_1) and; (B, — V20 +0_1)

respectively.

Q.8. Calculate from the first principle the C-G coefficients for j; = 1 and j, = % and then

write the wave functions for the p-states of an electron ([ = 1,5 = 1/2) forj = % (m; =

31
2’2"

—~ —and forj == (m; =.—)
Q.9 Show that:

@) JiJz =j* = J,(J, F i)

(b) Uz J?] = tnh [}

() 2 =S (fuf-+]-J.) + ]2

Q.10 Show that the operatorL. § has the eigen values 3/2 and -1

in the p-states of an electron and verify that:
(L.9)12,m>=2 |3, m>and(L.9)|2,m >=—|-,m >
2 22 2 2

Q.11 Show that the following expression gives the effect of spin operator on a vector
wave function of a particle of spin-1/2:
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(l +m + %) Ylm‘%(e, 0)
p

R, (r

) (T, 9, (Z)) — nl( )
nLltzm V21l +1 1
_ 1 m+§

<l+m+§)Yl 0, 0)

whereR,; () in the radial part and n is the principal quantum number.

ANSWERS

(a) SELF ASSESSMENT QUESTIONS

Q7.2: 0201+ D -m} Q73 [At>= e WP |At> Jal>= eV |ml>

1 1 2 2 1 1
Q7.5: NEL \/—g;ﬁ;\/—gand I Q78: —\/—5;0; O;E
(b)TERMINAL QUESTIONS

A) Short Answer Type

Q.1: All zeros; Q.3: All zeros;
) V2 0\ 0 0
Q.6:J, =h 0o vZ|J-=h[v2 o0
0 V2

0 0
L0 10 l,

Q.7: jx=—(1 0 1);fy= —<
o 1 0 i

o O O

j=1
or o

I
o L
I
ol o
v

B) Long Answer Type
QLU iy = (G =m)G +my + DJhS,
R 1
Uty = LG +m)G =1y + DI St
N L. . 1
L. . 1
+ (G +m)G = my + D2 08 s
- - 1
Uty = 5 LG = M) + 1y + D20t 11
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L. . 1
+5{G MG = my + DI 0 s
Q 4. |]m > = Zmlmz 1%3112m|llm1 > |lzm2 >
L1 j ® ()
Q.5: V2j1t+1 Zml(_l)h mlpjl'"h l/)j1'—m1

Q.6: |AT>= ¢ /09 MmT> ;|Al>=e nf‘”’| 1>

Q.8:J? = —hz s, = % , where [ is unit matrix of order 4X4
0 v3 0 0 0 0 0 0
o o 20}, .[¥3 0 00
+=h 00 0 3 =Rl 2 0 o
00 0 0 0 0 V3 0
/o NER o\ /o V3 0 0
R 2 0 |. _ 2 0
Q9: Jy=1n|V3 O j,=Ln| V3 0
2 0 2 0 3 2t 0 -2 0 3
00 V3 o 0 0 /3 o0
C ) Numerical Type:

Q.l: Inversesof [, Jyand[,; (JH)™'= %IA, where [ is 3X3 unit matrix
~ e . D . = . ] .
Q2 L,=i h(smqb% + cotfcos® 6_(2)); L,=1i h(—cosd)ﬁ + cotfsin®d 6_(2));

= o 0
andL, = —lh%

Q3: Ly = het0(+ 2 —5 T icot —)
li 312
Q.8: For j=3/2, ; P = / ‘6m,where m=3/2,1/2,-1/2,-3/2;
7™
. 153 — [3F2m
forj=1/2, C 2% , =+/ , where m=1/2, -1/2.
m+5,i?m 6
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8.1 Introduction

The basic idea of perturbation is taken from classical mechanics; in quantum mechanics as in
classical mechanics exactly solvable problems are rare and in one must frequently resort to
approximation. Various methods of approximate solution of the wave equation have been
devised, leading to the more or less accurate approximate evaluation of energy values and wave
function. These methods the first and in many respect the most interesting is simple wave
mechanical perturbation theory developed bySchroedinger in 1926.

Perturbation theories are of two types:

(1) Time independent or stationary perturbation theory
(11) Time dependent perturbation theory

These theories can be used for solving some important problems.

8.2 Stationary or Time independent Perturbation Theory

The stationary or time independent theory helps in finding the change in the energy levels and
eigen functions of a system caused by a small disturbance. In such cases, the Hamiltonian can be
broken up into two parts,one of which is large and represent a system for which the schroedinger
equation can be solved exactly, while other part is small and can be treated as perturbation term.

Consider a physical system subjected to a perturbation which shifts the energy levels
slightly, however, the arrangement of energy levels remains the same. Mathematically, it can be
said that the effect of perturbation is to introduce additional terms in the Hamiltonian of the
unperturbed system (or unchanged system). This additional term may by constant or it may by
constant or it may be a function of both the space and momentum co-ordinates.

In other words, the Hamiltonian H in the Schroedinger wave equationcan be written as sum of
two parts; one of these parts H(O)corresponds to unperturbed Hamiltonian and the other part
H(l)corresponding to perturbation effect. It means the perturbed Hamiltonian can be represented as

H=H"+H" (1)
In the perturbed state the schroedinger wave equation can be written as
Hy =Ey (2)
Where Hamiltonian H represents the operator
2
H=(-=V2+V) ()
In the equation (2) E is the eigen value and v is eigen function of the operator.

Let 1/),(10) and E,(lo) are the orthonormal eigen function and eigen values of unperturbed
Hamiltonian H(Orespectively ie.
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H(O)w(o) — E(O)l/)(o)(4)
8.2 .1 Perturbation theory for Non-degenerate Case

Consider non degenerate system that is the system for which there is one eigen function
corresponding to each energy level or eigen value. In case there are two or more eigen functions
corresponding to one energy level the system is regarded as degenerate system

The Schroedinger wave equation for a perturbed state can be represented as follows:

Hy =Ey (1)
Where H Hamiltonian the operator is given by
2
H=(-2=v+V) )

In the stationary state of the system , the Hamiltonian H does not depend upon time and it is
possible to expand H in terms of some parameter A , given the expression:

H=H% 2 H+ 2 *HP(3)
Where the energy associated with H® is large compared with that associated with H".

Consider the eigenvalues and eigenfunctions of the unperturbed problem be

El(o),Ez(O), ...... ,E,(lo),. ..,and 1,01(0), 2(0) e ,(10), ....... respected.Its means
H? ,(10) = E,(lo)l,b,(lo) wheren=1,23,.....n (4)

The equation represent (4) is regarded as the wave equation for the unperturbed system and E,(lo)
represented the energy of the n™ level of the system.

The eigenfunctiony,, for the perturbed system must satisfy the equation

Hy,= E iy ©)

Now let us consider the effect of perturbation. The application of perturbation does not cause
large changes; hence the energy values and wave function for the perturbed system will have
very small difference from the unperturbed system. Now expand the energy E and the wave
function y for perturbed system in terms of A as given below :

Epe EQ ED+R2EP+ (6)
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Yo P 2P (7)

Where E,(ll),E,(lz), ....... and 1,0(1) ...... are quantities to be determined.

Now substituting (6) and (7) in equation (5), we get

HO+  HY)y @@+ + 2P ey = ED EPZED+ )@Y
apP 2P+ ) (3)

or HOp + MHOp® + HOpO )+ 2(HOPP + HOp Oyt = EDp® +MED +
E(l)lp(o)) + AZ(E(O)IIJ(Z) E7(12)l/)7(11) E(Z)l/)(o) )

Equation (9) should be satisfied for all values of A,the coefficient of the same power of A on both
sides of this equation must be equal. Its means

HOR® = fOy© 0)

This equation (10),(11) and (12) represent unperturbed, first order perturbation and second order
perturbation equation respectively.

8.3 First order perturbation

8.3.1 Evaluation of first order energy EL : The first order perturbation equation can be
expressed as follows:

To solve above s equation can be use the expansion theorem. The unknown function 1,0,(11) can be
expanded in terms of the known functions

© (0 ., (0) ©

1 ¥2 W3 seeeen m seeeeen as

1 *© 0

=) Cnty (13)
m=0

Now solve equation (11) to evaluate the perturbation of the first order.

On substituting equation (13) in equation (11), we get
T CnH O + HOYE =T Cn By i+ B (14)

Now HOp( = EDypY
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S CnEn Y’ = Zm CmEn ¥ + HOY V= By
Or  ERCnl By = E 1w + HOW = EVy” (15)
On multiplying (15) by 1/),(10) and integrating over the space variable, we get
[3, 09 , [EQ — B9 p©@dr + [ 9@ HOp©@dr = [ FDp0* Oy
The function tp,(lo)from a complete orthogonal set if they have been normalized
S pPdr = 0,if i # j

=1 ,if i=j
Using equation (17) in equation (16), we get
0+f O HOpPdr = ELV

1 0)* 0
EV = [y HOyPdr

The first order perturbation of the energy eigenvalue is given by the equation (18).

8.3.2 Evaluation of first order wave function 1,0(1).

(0)+

On multiplying equation (15) by ¥,;,” and integrating over all space

me Cm[Er(r(z)) _ Er(lO)] (0)*¢(0)d +fl/J(O)* H(l)l/)(o)d’l'_ fE(l)l/)(O)* 7(10) dt

Using condition (17), of the orthonormal set we get
CnlESY = 1+ [ HOpVde = o

J S OO g

Or Cm=
™Y -EY

,m#Fn

It means the first order energy and wave functions by the following equation :
EneE + 2 [ 0" HOp P de

J‘w(o)*H(l)w(O)dT

0)_ o1
And wnz Z [E,Sg) ETELO)]

Y. 'indicates the omission of the term having m =n
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Q1. For the harmonic oscillator, V = %kxz, the energy eigenvalues are

E, = [n + %] hw. For a small charge in k, the spring constant £k, find the first

order perturbation in energy.
Sol. V=V0+y!
Vo = Zkx2,
2
V= %[k + ek]x?
So, V' = %kx2
If |n> are the eigenkets of the unperturbed Hamiltonian
H|n=E,|n >
Where E,, = [n + %] hw.
El =<|H'|n>
:% ek < n|x?|n >

Using creation and annihilation operator, X may be written as

— h +
x—\/me(a+a )

h
x? = (a* +a*ta+aa* +a*)
2mw

When the expectation with respect to [n>,only a*a and aa* will be contribute.

h
< n|x%|n >= ——[< n|a*a|]n > +< njaa*|a*’]
2mw

o VR < la¥in = 1> +Vn + T<Vn + 1] < nlaln +1>]
=L[\/ﬁ\/ﬁ+\/n+1\/n+ 1]
2mo
=" [2n+1
_Zma)[ n ]

227



Therefore,EL = %% [n + %]

In fact, the exact energy eigenvalue would be

how' 1
E, =— Tl+z]
k(l+¢
w' = kd+e) )= (1+ &)Y/?
m

=w(1+ g)zw +Z

hew

En = whn+2[+22n+ 2]+

Which agree up to first order.

Self Assessment Question

Q2. Consider the isotopic three-dimensional harmonic oscillator. Discuss the
effect of the perturbation.

= Ax?yzon the ground state.

8.4 Second order perturbation
8.4.1 Evaluation of second order energy E2 :

Let us consider the unknown function 1/),(12) can be expanded in terms of the known function 1/),(,? )
as given by the following expression:

= Yon I P 23)

On substituting equations (23) and (13) in equation (12) , we get

(2)

S g HOp@r s ¢ gOp©@ —5 o pOuO 5 o 0,0 p@),0 o
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Or
S gmlEr —En"] i = Zom Cm [E5Y = HO TR+ E P (25)
On multiplying equation (25) by 1/)(0) and integrating over the space variable, we get

I3 gnlE® —E@] @ © g
I3, O, [ED — H(l)]X¢(°> dr+[ EPp@ p© go
(26)

Using orthonormal condition from equation (17) we get
0=— ZmCn [ H Y do+ EP
OrEP =¥, Co [ HD P gz 27)

Substituting the value of C,,, , we get

gD _ Z [ HOpRde [ H Oy
n (EQ _ 5O

Or

(0)* 17(1),7,(0) (0) (1), (0)
(2) d} HY 7 dr fwn H Yy

8.4.2 Evaluation of second order wave functlonlp(z) :
On multiplying equation (25) by 1/)(0)* (m=# n) and integrating, we get

S Gm [ B’ = Ex” T ¥’ A0 = Zn G [ " [Ex” = HV Wy do+ [ BP9 de

(29)
O g JIER — EP) = B G (B — [ Hy ) dr
Cm i
Im=tm o0, C ED — (O g1© y g 0

Now we can calculate the second order perturbed wave function if the value of g,,, from equation
(30) in equation (23).
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Q3. Find the second order correction to the energy due to a perturbation H' = aé(x — g) at
the centre of a infinite square well.

Sol. The unperturbed energy eigenvalues are

. 2722
E; = >
2ma
And Eigen functions are {0 = \E sin %
The second order correction to the energy is
Z |< t/JkIH It/Jn >|?

j |Sln—a6(x — —)smn—dx

2RH2
m‘h
_ 12
gz 2 — k%)
4 2m2aa? szkz_nsmznzn
= Sk
__ 8 m2a%a? Si‘l’lnn( 1 1 1 )
T a2 m2h? 2 ‘m?2-1  n?2-9  n2-25

8.5 PERTURBED HARMONIC OSCILLATOR

The perturbation energy term is proportional to x. Let the Hamiltonian of one-dimensional harmonic
oscillator be given as

H=Hy,+ H'

i.e. unperturbed equation for H, can be solved very easily by Schrodinger method.

Hy = ne o +1k z
0T T omoaxz T 2"
The unperturbed Schrodinger equation is
Hoypn = Enthy
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n2 0%, | 1
2m 0x? 2

klepn = Enn

%Y, . 2m 1
4 2 (B — 2hex? )y, = 0 i (3)
This is simple harmonic oscillator equation having the energy values

En= (n+3) ho,  n=012..... ... 4)

Where w is the angular frequency of oscillations given by

Equation (4) gives eigen values of unperturbed harmonic oscillator
Eo = 3 ha( for n=0)

Ey = Zha(forn=1)

Ist order perturbation energy
E'=<m|H'|m >
E'"=<9o()|H'[ho(x) >

Where 1,(x) = Nye **°/2

Where Ny = % and a* = Tg—zk

But we have H' = %bx
! ! 1
E'=<yolH [pg >= <y |§bx|1/’o >

1
= fNoe‘“zxz/z.szNoe‘“zxz/z dx

1
= Eb Nozfe_“zxzxdx =0
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Since [e™*xdx =0

We should remember that if function H' in E’ is odd like x, x°, x°,....., then E’ will be zero definitely.
Hence Ist order energy E' is zero.

8.6 ZEEMAN EFFECT (WITHOUT ELECTRON SPIN)

The change in the energy levels of an atom when it is placed in uniform external magnetic field is
called the Zeeman Effect.

Let us consider that the field strength B is applied on a hydrogen atom, so that an electron of reduced
mass | carrying the charge ‘-e’ is moving in a field whose vector potential is A. The magnetic induction
B in terms of vector potential A can be written as

B=curlA=V XA

Then the constant magnetic potential A in terms of magnetic induction B can be expressed as

[SinceBXxr= VXA Xr(forB=VXxA)
=(V.rNA-(AV)r=34-A=24
Therefore, A= % (BXr)

The classical Hamiltonian of a particle of mass p carrying charge —e and moving in field of vector
potential A may be expressed as

H(p.1) = (p +eA)? + V(1)

_r e e’ 42
—2#+ V(r) + 2 (p.A+A.p)+ 2#A

=H°+H' +H

2
Where HC = g—u + V(r) is the unperturbed Hamiltonian

e
H' = Z(p.A + A.p)

Ist order Zeeman effect:
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For weak fields the second order perturbation term H containing A®may be neglected and hence the
perturbed Hamiltonian takes the form

H=H°+H'=§+V(r)+ i(p.A+A.p) ------------- ()
Writing p—D =?V
And keeping in mind the vector identity
div(Ay)=ydivA+A. V§
V.(AY) = (V.A)U + A VY

We note P A+APYY =(3V.A+AZV)Y
h h
= —V.(4Y) + Ay

h h
=AY +A TV} + —AVY
= ?[(V-A)Lb +2AV¢] e 3)

Also V.A=V.[5(Bxr)|=3V.(Bx7)
Also using the identity vector identity

div (axb)=b.curl a-a.curl b we get

1
V.Azz[rxVxB—B.er] =0
Since VXxB=0andVxr=0 e (4a)
And AVp=-BXP.VY=-B.cxVY e (4b)

Using (4a) and (4b) equation (3) gives

h 1
P-A+Ap)y==[0+2.5 B.(rx V)]

=B.(r fo,lV> Y =B.(r Xp)Y
=BLY

(p.A+A.p)=B.L
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The energy eigen function of the unperturbed H-atom are usually chosen to be eigen state of L,with eigen
values mh, mbeing magnetic quantum number. It is customary for convenience to chose magnetic field
along Z-axis then BL=B L,

First order energy correction

e
E' =<n|H'|n >=< n|ﬂ BL,|n >

= iBmh<n|n >=mZp 5
2u 2u

can take for (2/+1) values since m varies from - / to +/

The selection rule permits only those transitions in which magnetic quantum number m changes by 0 or
+1. This selection rule coupled with expression (5) is sufficient to explain the spectrum of normal Zeeman
effect. As an example we consider the transitions between two states with /=2 and /=1, (i.e. between d and
p-states) shown in fig 1.

Fig. 1 The three lines observed are a superposition of several transitions.

242
The Second Order Zeeman Effect: If the magnetic field applied is large, then the term % cannot be

neglected.
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If we consider again the field B along Z-axis, then according to expression A——; (B x r), the components

of A are given as
1 1
A, = —3 B.y,A, = —3 B.xand A, =0

So that the second order perturbation term in Hamiltonian

e?A? 2 e?
H"= =—(A; + 45 + A7) = —B*(x* + y*
pY:
=@Bz(x2+y2)n

where suffix z indicates the energy in nth state.
If we consider the state to be spherically symmetrical,

T
thenx? = y2 = z2 = 5

then the average value of energy

e?B? e?B?

<H">= <xt+y?r>, =

=<7r?>
gy '3°7 °n

For ground state of hydrogen atom

1 _
— e /% ,wherea, =

(mad)

2 .
M 05294

me?2

Yn =

<r?>p= le* r2y dr

1
e "/a0r2 ——— e /%2y sinf d6 do

_007'[271'1
1

«© 4
=—5.4m J rte=2r/ody =
a3 0 a

< H">=

More generally it can be shown that for a state with quantum number n/m in hydrogen like atom with
nuclear charge Z
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1
5 asn* 3 I[+1) -5
<rc>um= 7 1+ E 1-— )

For large value of n i.e. for highly excited states, this is proportional to n*.

Therefore the general expression foe the effect of term containing A2 on the energy of state of nlmis

B e e?A?> e?B*2
<SH'>= =3 <1 >
2 (l+1)— L+
_e2B22agn? 1_|_3 1_( )~ 3
N2 A

This equation gives second order Zeeman Effect under the selection rule Al = +1.

So far we have not considered the effect of electron spin. The complete and generalized solution can be
found by taking the spin contribution as well. The resulting effect gives rise so called anomalous Zeeman

Effect.
8.7 STARK EFFECT

The splitting of energy levels of an atom caused by a uniform external electric field E is called Stark
Effect. It was observing Balmer lines of hydrogen with an electric field of strength 10° volt/cm.

Let us choose the unperturbed initial states with a direction of the perturbing electric field along the z-axis
and use the eigen states of L,.

The force on electron of charge (q= -e, e being positive quantity) in an electric field of strength E is
F=qE=-¢E
As field is along z-axis, therefore extra-energy of electron in electric field=F.z=-¢ Ez
The Schrdodinger equation for this case is

2 Ze?
Vp+E(w+ZteEz)y=0 e (1)

. Ze? . . .
Where W is total energy and — % — eEz is potential energy of electron in atom.

Equation (1) may be written as

L L W
<_2_Ll - € Z)’l’ =Wy
HetH)y=W¢ e 2
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Where the unperturbed Hamiltonian;

And the first order perturbed Hamiltonian term
H =—eEz
If we use polar co-ordinates (r, 0), then z=r cos 0
And so H' = —e Ez = —eEr cosf
e being again a positive quantity.

Here the potential energy is spherically symmetric.

Ist Order Stark effect in General state of Hydrogen Atom:

The ground state of H- atom is specified by
n=1,=0,m=0

The ground state (n= 1, /= 0, m= 0) of hydrogen atom is non- degenerate state and the corresponding
spherically symmetric function is given by

Y100 = R10(r)Y100(0, P) =

R . . , .
wherea, = “o7 I radius of Bohr’s first orbit.

The first order perturbation energy correction is given by
E'= J YiooH P100dT

e~/ ( — eEr cosB) e~/ r2drsin@ dé d¢

_ 1 1
-1l Jowad (na3)

eE ®
=——]| 7 e‘r/aodrj
mag Jo 0

T 2m
sin6 cos6 dGJ dp =0
0

Since [ siné cosd d6 = 0

Thus for ground state of hydrogen there is no first order Stark effect.
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Ist Order Stark effect in First Excited State:

Let us now consider the first excited state n= 2 for Hydrogen atom. Since n=2, therefore /=0, 1 and m =1,
0,-1 and hence the quantum number (/, m) can have the following combinations.
ie., (0,0), (1,0), (1, 1)and (1, -1)

Thus the wave-function Y,,;,,1s four fold degenerate i.e., the wave-function Y00, Y210, Y211 andp, 1 4
all have same energy.

Let us calculate the elements of the secular determinant, we have

1 T
Y200 = —(2 - a_> e"/2%
’(327‘[618) 0
1 T
Ya10 = —(a— cosO) e /2%
’(327‘[618) 0
1 r .
Py1q = < NG siné e‘¢> e~ /2%
/(32na8) V2
1 T .
1= sinf ei® | /240
Y21,-1 <ao\/§ )

’(3 2mad)

< 0,0 |H'|0,0 >= flp;oo H,ll)zood‘[ - 0

The non-vanishing elements of H' are

< 1,0|H'|0,0 >=< 0,0 |H'|1,0 >,

= f¢510 (—eEr cosO),q0dt

(2 — L) e /2% y2drsin 6 dO d¢

1 r 3 1
= —fff—(a— cosH) e~"/2% (eEr c0s8). —— »
(32ma3) ° /(32na8) 0

=— 3;:{13 000 (2 - aLO) .rhe~T/2%4r [* cos?6 sinf df f027r do
T 2 . _ 1 3 _ 2
We have fo cos“6 sinf do = —E[cos 015 = 3
21
f dep =2r
0
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*© r
f (2 - —) rte /2% dr = —72 a3
0 Qo

Using above results we get
<1,0|H'|0,0 >=<0,0 |H'|1,0 >,

e

E 2
- _—__ (_ 5 _
= 327mg( 72 ao).(B).Zn

=3eEaq,

The splitting of energy level as shown in fig.2. The electric potential energy of a dipole moment p is — p.
E

Fig 2. First order splitting of energy level
8.8 VARIATION METHOD

The variation method is especially applicable for the interest in chemical problems. In special cases
variation method can be extended to the state of the system other than the lowest one. The variation
method may also be applied to the lowest state of the given resultant angular momentum and of given
electron spin multiplicity.

The expectation value of energy in normalized state vy is given by
<E>=[y*Hyd e (1

If we choose the wave function y as variable function, then the integral (1) is known as variation integral
and gives an upper limit to the energy E, of the lowest state of the system. The function v is the variation
function.

If the variation function y equal to the function y, of the lowest state, then energy E will be equal to E,
<E>=J\VO*H\|/0dT=EO _______ )

If v # o, then by expansion theorem y may be expanded in term of a complete set of orthogonal
functions ¢y, ¢1, ¢5...... obtaining
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Y = Zn anbn with Zn a,a,* =1 and H¢,=E,¢, = - (3)
Substituting this in equation (1), we get
<E>=Ynanam [$n Hpmde e )

Hom = Emdm

<E>= 2 a, a;, f(,b;‘; Epdmdt
n

<E>= Z a;}amEmfd),*l ¢pmdt
n

= Xn an G EmSpmn
Therefore, <E>=Y,ana,E, [since &y, = 1 for m=n
= ( for m# n]
=Ynlanl?En e )
Subtracting ground state energy E, from both sides, we get
<E>-Ey=Yulanl* EBn—E) e (6)

As |a,|? is positive and E,, > E, (always) for all values of n; therefore RHS is positive or zero. Thus we
have proved that < E > is always upper limit to Ej i.e.

<E>=EO

This theorem is the basis of the variation method for the calculation of the approximate eigen value of the
system.

Q4.For a harmonic oscillator,using a Gaussian wave function as atrial wave function, estimates the
ground state energy.

Sol.y = Ae~b**is atrial function. A is a normalization constant.
+00
J [Y|? dx =1
—0o0

2b)1/4

i

Or A=(

We calculate < y|H [ >
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maw

2
= A? f{—zh—m (—=2b + 4b%x2)e 0% 4 —xze‘b" dx

- h* _ 4b’h?  mw?] +o Copa2
=A% [ 2bx° gy 4 A2 |22 T | (F9 32 p-2bx® gy
® 2m 2m 2 |J-o

h? b4 —2b?h? mw? T 1
A2 = |24 a2 ( +225)2 |22
2m+[| 2b 2m 2 2b2b
2bh? L3 2b2h2 mwz)

b 4b m 2

—bh? mw?
2m 8b

_ h2b
m

2

h2h  m
<H>=—"+1I2
m 8b

Minimize <H> with respect to b

0<H>
ob
i _ mw?
2m 8b
m2w?
Or b? = "y
mw
T
<H>min=%
hw
o=

For this trial function, we get the exact answer.
Self Assessment Question

Q5. Use the Gaussian trial function to obtain the lowest upper bound for the potential V= a|x|.

8.9 WKB APPROXIMATION

WKB Approximation is a final type of time independent approximate calculations. It applies to only
situations in which the potential energy is slowly varying function of position.
A slowly changing potential means the variation of potential energy V(r) slightly over several
wavelength of the particles as shown in fig 3.
The de- Broglie wavelength associated with a particle moving with energy E in a region of

potential V is

h___ P
A= p [2m(E-V)]1/2 (M
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1,
Emv =E-V
m?v? =2m(E - V)
p=mv=.[2m(E —-V)]

Fig. 3“ Slowly changing” one-dimensional potential and its associated wavefunction

The propagation constant
2n _ [2m(E-V)]Y/?

p=fpolmEn @)

Mathematically slowly varying potential can be expressed by conditions

1 dk| <
k2 dx
Substituting value of k from (1), we get
52| v
X 1oy —9x <1
ZmE-V)[/? <lor pym (E 7 <1 3)

This equation gives the validity of W.K.B approximation.

Principle of the Method:W.K.B. method consists in introducing an expansion in the powers of hand
neglecting the terms in higher order of f. Thus, Schrodinger equation reduced in its classical limits.

Let y(x) be the wave function satisfying Schrodinger’s equation

e BE-vew=0 4)

dx2

Let the solution of equation (4) be of the form

W=Cel0@/m )



Where C is a constant, ¢(x) is an undetermined function of x

i o
W _ Lo 9P
ax - (R ry

Y _ _ C vt (90N L AL ip(x)/n 020
= e (5) e e (©)

. . 6¢ ! 62¢ "o .
Now substituting Pl ¢’ and ez = ¢" in equation (6)

b _ € Lip)/h g2 4 oL id()/h g
oz = " 2€ . +Che () R @)

Substituting values of i and 22715 from (5) and (7) in (4)
¢ ip)/h. 32 4 ¢ L ip(x)/h_pn 2m E —V(x)]Cel®®/h =
—ﬁe (i) + Ee ¢ +?[ - (X)] e =
¢ ip(x)/h 2 4 ihd"
7€ T—¢'" +ih¢"+2m[E -V(x)] =0

As ) = Cel®X/t £ ¢

[ihd" — ¢'2 +2m[E-V()]=0 e (8)

To get the approximate solution of (8) we apply W.K.B method and hence expand ¢(x) in the power of A

$(x) =¢o(x)+fl¢1(X)+z—2!¢z(x)+--- ....... ©)

where the subscript ¢’s are independent of 4.
Differentiating equation (6), we get

@'(x) = o' (x) + hepyr (x) + h;quz'(x) 4o

hZ
¢"(0) = ¢o" (1) + 1" (x) + 57 972 () + -

Substituting values of ¢" and ¢" from (10) in equation (8), we get

h? h?
ih(¢o"(x) + hep"1 (x) + o7 @™, (0) + ] - [¢o'(x) + hepyr () + 7¢z'(x) + o

2m[E - V(x)]=0
Collecting coefficient of various powers of A

[2m(E — V)] - 4’0'2] + fl[id’o" - 2¢0’¢1’] + h? [i¢"1 - ¢1’2 - ¢o’¢2'] =0

2
+

In order that equation (11) may hold identically in #, the coefficient of each power of A must vanih

separately. This requirement leads to the following series of equations
2m(E = V)] — ¢'*= 0 (a)
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i$o" = 20'$y = 0 ) e (12)
i$"1 = py” = Pycbs’ = 0 ©

and so on.
These equations may be solved successively. That is, the first equation definesg, in terms of | (E-V) |,
the second equation defines ¢4 in terms of ¢, the third defines ¢, in terms of ¢p;andg etc.

From equation (12 a), we obtain

¢o = ty(2mE-V)] (13)

Integration of above equation yields
¢o= [, tJ/2mE-V]ax e (14)

Where x is an arbitrary fixed value of x

From equation (12 b), we obtain

"
¢'1= 200

Integration of above equation yields

¢1=3loggo+Cc (15)

whereC; is the integration constant. This result is inconvenient if ¢ is negative. Therefore keeping in
mind that the logarithm of a negative function differs only an arbitrary constant from the logarithm of the
absolute value of the function, we replace equation (15) by

¢1=3loglgol+C; (16)
whereC, is an arbitrary constant.

Similarly

m(av) _ 1 fx (aV) (17)

1
P2 = 2 [2m(E-V)]3/2 o[2mE-V)3S2 T

From equation (16) we see that ¢, is represented as a logarithm of |¢|, therefore it is not, in general,
small compared with ¢,. Consequently ¢, and ¢, both must retained. On the other hand from equation
(17) we see that ¢, will be small whenever dV /dx is small and (E—V) is not too close to zero. Further it
can be seen easily that the smallness of the higher approximations (¢3, ¢, ... etc) requires the smallness
of all derivatives of V. Thus the W.K.B. approximation will be suitable in case where V is a sufficiently
smooth and slowly varying function of position.

Thus the approximation W.K.B. solution of equation (8) may be expressed in the form

¢ =do(x) +3logldp| e (18)
Assuming constant C, is absorbed in ¢ (x)

Substituting value ¢(x) from (18) in equation (5) and rearranging the result, we finally get the
approximation solution 1,5, of equation (4) in the form

244



Yapp = C 2MIE VOl Vexp £ 7 J2mE -] dx| (19)

where C remains arbitrary. The two solution contained in (19) and differing in the sign of the exponent
are linearly independent and hence the approximate general solution, according to W.K.B approximation,

| Ao (5 VZmE = V)] dx)
Yapp = C {2m|E =V ()} N I — (20)
+B exp (_Efxo [2m(E — V)] dx)
where A and B are arbitrary constants. The positive exponential corresponds to a wave moving in the

positive direction and the negative exponential corresponds to a wave moving in the negative direction.
For the special case when V(x) is a constant, these reduce respectively to the plane waves

exp(ipx/h)andexp(— ipx/h)

The alternative form of equations (20) may be expressed as

Wapp = C {2m|E =V (x)[}"*cos (% Jo N 2m(E = V)] dx + 9) ....... Q1)

where C and 8 are arbitrary constants.

The approximate solutions (20) and (21) of Schrodinger equation are usually called W.K.B - functions.

8.10 FERMI GOLDEN RULE

The transition rate and probability of observing the system in a state k after applying a perturbation to /
from the constant first-order perturbation doesn’t allow for the feedback between quantum states, so it
turns out to be most useful in cases where we are interested just the rate of leaving a state. This question
shows up commonly when we calculate the transition probability not to an individual eigen state, but a
distribution of eigen states. Often the set of eigen states form a continuum of accepting states, for
instance, vibration relaxation or ionization.

Transfer to a set of continuum (or bath) states forms the basis for a describing irreversible relaxation. You
can think of the material Hamiltonian for our problem being partitioned into two portions, H = Hg + Hp
+Vsp (t), where you are interested in the loss of amplitude in the Hg states as it leaks into Hp .
Qualitatively, you expect deterministic, oscillatory feedback between discrete quantum states. However,
the amplitude of one discrete state coupled to a continuum will decay due to destructive interferences
between the oscillating frequencies for each member of the continuum.

So, using the same ideas as before, let’s calculate the transition probability from / to a distribution of final
states: Py.

P, = |by* Probability of observing amplitude in discrete eigen state of Hy
p (Ey: Density of states—units in 1/Ey , describes distribution of final

states—all eigen states of Hy

we start in a state / , the total transition probability is a sum of probabilities

P_k=zpk
X
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We are just interested in the rate of leaving / and occupying any state & or for a continuous distribution:
Y P — A
P.=[dE, p(E,) P

For a constant perturbation:

. i: sin:{{E* ~E, )t/ zﬁ}

P. = [dE, p(E,)4

m

|E, - E,

Now, let’s make two assumptions to evaluate this expression:
1) p(E ) varies slowly with frequency and there is a continuum of final states. (By slow what we are
saying is that the observation point t is relatively long).
2) The matrix element Vy, is invariant across the final states.

.

2mit

These assumptions allow those variables to be factored out of integral

sin’(E, - E, )t/ 2h
E-BY

Here, we have chosen the limits — co — 400 since p(E ) is broad relative to Py . Using the identity

B=pl,| [ dE 4

=  sin” aA
J_ dA =am

ﬁ-\

with g=¢/}k we have

The total transition probability is linearly proportional to time. For relaxation processes, we will be
concerned with the transition rate, w;
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Remember that Py is centered sharply at E,= E,. So although p is a constant, we usually write in terms of p
(E x = E;) or more commonly in terms of 6 (E , - E))

=2 ol = B

W, :% v,| 8(E,-E) W, = [dE, p(E)w,

ki

This expression is known as Fermi’s Golden Rule.
8.11 Summary

Time independent theory or stationary is concerned with finding changings in the energy levels
and eigen function of system when a small disturbance is applied.If the potential energy is
disturbed by the influence of additional forces, the energy levels are shifted and for a weak
perturbation, the amount of shift can be estimated if the original unperturbed states are known.

The change in the energy levels of an atom when it is placed in uniform external magnetic
field,is called the Zeeman effect. The splitting of energy levels of an atom caused by a uniform
external field E is called Stark-Effect. Stark observing Balmer lines of hydrogenwith an electric
field of strength 10°volt/cm. The energy shift of stark effect by perturbation theory.

Generally the solution of schrodinger’s equation gives the energy eigenvalues but it is difficult to
solve it in a closed from except for some special cases. Finding the ground state energy, the
variation method provides an upper limit in the ground state energy

8.12Glossary

Perturbation a deviation of a system

Degenerate  having lost the physical

Transition the process or a period of changing from one state or condition to another
Discrete distinct, separate

Relaxation  the state of being free from tension and anxiety

Harmonic a component frequency of an oscillation or wave
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Anomalous  non typical,abnormal

Orthogonal  statistically independent

Continuum  a continuous nonspatial whole or extent or succession in which no part
Approximate almost correct but completely accurate
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8.15 Terminals questions
Long Answer type

Q1. What do you mean by perturbation theory? Discuss the perturbation theory for non-
degenerate levels in first orders.

Q2. Discuss the general theory of the variation principle.

Q3. Describe W.K.B. approximation method and give an application of this method.
Q4. Discuss the general theory of the Fermi Golden Rule.

Q5. Describe the general theory on one-dimensional harmonic oscillator.

Q6. What do you mean by Zeeman Effect? Explain the theory on 1 order and 2™ order Zeeman
Effect.
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Q7. Write the short note on

(a) Perturbation of harmonic oscillator
(b) First order Stark effect in H atom.

Numerical type
Q1.Suppose a perturbation H' = ad(x — %) is put in the centre of an infinite square well,

0,0<x<a
oo, elsewhere

V)= {

Find the first order correction to the energies and Y.

Q2. For the Hamiltonian

h2 2

H="2 _ a5

T 2mdx?

Where, 6 (x) is a delta function, find the estimate for the ground state energy.
Objective answer type

Q1. In the harmonic oscillator problem we consider a small perturbation bx,the first order energy
correction to the nth energy level is

(@) 2(n+3) = (b) 5 hab
(¢) (n +) hwb (d) 0

Q2.Consider a two dimensional harmonic oscillator with a perturbation H' = bx, x,, the first
order correction to the energy is

(a) S () — 2=
() == (d)0

Q3.Zeeman effect is

(a) The change in energy levels of an atom when it is placed in uniform external field
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(b) The change in energy levels of an atom when placed in non-uniform external field
(c) The change in energy levels of an atom when placed in external electric field
(d) The change in energy levels of an atom when placed in non —uniform field

Q4. A one —dimensional harmonic oscillator of mass m,charge q and classical amplitude a is
kept in an electric field of strength E along x. First order change in ground and first excited state
are respectively.

(a) 022 (b)0,gEa  (c)0,0 (d) T=gqEa
Q5.  The degree of degeneracy for three dimensional isotropic harmonic oscillators
(a) n? (b) 2n+1) (c) % (2n+1) (2n+2) (d) % (n+1)(n+2)
Q6. The WKB approximation is valid, when

v v v
:>1 (b)—2&5>1 (o—&5<1 (d—=5 <1
2m(E-V)2 (2m(E-V)}z 2m(E-V)2 2m(E-V)2z

(2)

Q7. The first order perturbed Hamiltonian, when an external uniform electric field E is applied to
the z-axis on an atom is

ez

(a) H'=cEz (b)H'= - ¢Ez (OH =% (dH =-=

2
&.consider a harmonic oscillator of the form H = 2 + lma)zxz.If it is subjected to a time
2m 2 J

independent perturbation M(xP+Px), where A is real. The first order correction to the nth
energy state is

() Zero (b) Ah (©)A%h @ 20

Q9. A quantum harmonic oscillator is in energy eigenstate|n).A time independent
perturbation 1A(a‘a)? acts on the particle, where X is a constant of suitable dimensions and a
anda' are lowering and raising operator respectively. Then ,the first order energy shift is
given by

(a) An (b) A*n (c) An? (d) (An)?

Q10.When a perturbation of c¢x3 is applied in the Hamiltonian of harmonic oscillation, the
shift in first order energy is

3

(a)Zero (b) 2c(5)? (0)5 c(-)? () c(2)
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8.16 Answers

1(d) 2(c)  3(a) 4(d) 5(d) 6(d) 7() 8@ 9(b)
10(a)
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UNIT 9 Elementary theory of scattering

Structure
9.1 Introduction
9.2 Classical theory of Scattering

9.3 Scattering cross-section
9.3.1 Differential Scattering Cross-section
9.4 Scattering amplitude

9.5 Quantum theory of Scattering
9.6 Partial Wave

9.7 Born Approximation

9.8 Phase shift

9.9 Summary

9.10Terminals questions
9.11Glossary

9.12 Reference

9.13 Suggested Reading
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9.1 Introduction

If a beam of particle of any kind is directed at matter the particle will be deflected from their
original path due to their collision with the particle of matter which they encounter. The
scattering experiments with atom and nuclei have given very useful information about the forces
and interaction between the scattered particle and the target materials.

In some collisions, the energy of incident particle does not change after interaction, such
collisions are called elastic collision and such scattering is called elastic scattering.

In some collisions, the energy of incident particle change after interaction. Such collisions are
termed as inelasting collision and such scattering are termed as inelasting scattering.

9.2 Classical theory of scattering

In order to treat scattering problem quantum mechanically, the motion of a particle cannot be
describe accurately by involving classical orbits; but one must use wave packet whose average
coordinate give the classical orbits. It means the scattering has to be described by wave functions
which are solutions of the Schrodinger equation but not by particle trajectories which are
solutions of classical equation of motion.

These conditions under which classical theory become inadequate and quantum theory become
necessary can easily obtained. When the classical theory is applied, one must be able without
seriously changing any significant result to get this classical description by forming a wave
packet. But in most of the case the angle of scattering is obtained from the magnitude of force in
the neighborhood of the distance of closed approach. Its indicate that wave packet has to
narrower than this distance otherwise no method is available which make one to sure that the
particle gets experienced a definite predictable force which become possible to calculate
deflection in a classical way. To obtain get the condition of validity roughly of classical
approximation, its assumed that the distance of closed approach is of the same order of
magnitude as the collision parameter b. In order to from a wave packet smaller than b,it is
necessary to use the range of wavelength <b. From uncertainty principle,

Ax Ap>1h/2

Its mean that the momentum of the incident particle should be greater than ~ h/2b.In defining the
position of this packet, that the momentum of a particle becomes uncertain by a quantity much
greater than 6 p = h/2b . This uncertainty will make the angle of deflection to be uncertain by a
quantity which is much greater than 6 p/p. Therefore the classical description will hold only if
this uncertainly 6 p/p is much smaller than the deflection itself otherwise the entire calculation of
deflection by classical methods will be meaningless .This mean that the uncertainty in
momentum must be much smaller than the net momentum which gets transferred (A p) during
the collision i.e.
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sp_Map_ n
p Ap 2bAp

To get the value of A p must be obtained by using classical orbits theory. Large angles of
scattering the calculation of A p is rather complicated, but for small angle of scattering use
classical perturbation theory. This theory is applicable only when the scattering angle is large
compared with quantum fluctuations, but small compared with 7.

Calculate the value of A p in the following way:

Let us consider momentum p of the particle moving x direction under a force .when the particle
is scattered and obtain Y component of momentum. If 0 is the angle of deflection, then

sin @ :p_y
p

If Fybe the force along y- axis, then

+00
Py =/" Frat

If the force is spherically symmetric, then Fy,_»;

T

where F is the total force.
Py =[** Yp(ryac

As an approximation, it may be considered that y =b, x = v i.e. dx = vdt

Sothat r = V(x2 +y?) ~V(x?+b?) and dt = %

Thus the momentum transferred
Ap = py =f+oo bF(T)(f]—x

b (T F(r
:_f F@O
v) o T
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Thus the classical description will be valid whenever

dp Ap
—<lor—>1
Ap< or 6p>

1.€.

b _ 2b® 4o F(r) i
0 = hw - dx > 1( for small deflections)

9.3 Scattering cross section

Scattering cross section used to dealing with the collision of a beam of particle with scattering
centre. It is measured of the probability that the particle will get scattered as it traverse as given
thickness of matter dx. In scattering, each molecule offers the on-coming particle a target area
nd*,where d represents the diameter of the molecules. This target area will be representing that
cross section of the region within which there occurs a collision which can viewed along the
direction of motion of the beam of molecule. This is where the name scattering cross-section
comes from. The results of the collision experiments are expressed by means of cross section and
are directly related to the asymptotic behavior of the stationary solutions of the Schrodinger’s
equation.

TARGET UNSCATTERED
IMPINGING BEAM 5 PARTICLES
Z

SCATTERED
PARTICLES

DETECTOR

Fig. 2

To define the cross-section considers a typical experiment in which a target is struck by a beam
of mono-energetic particles and the scattered particles are counted with the aid of a detector
(fig.2). Let J be the magnitude of the incident flux i.e. the number of incident particles crossing
per unit time a unit surface area placed perpendicular to the direction of incident beam and at rest
respect to the target. If p is the number of particles per unit volume in the incident beam and v is
the velocity of the incident particles, then

J=pv
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UNIT
AREA

Fig. 3

If p is small (under the conditions of the experiment) that the mutual interaction of the incident
particles can be neglected, then they undergo their collisions independently of each other. If n is
the number of particles scattered per unit time into a solid angle dw located in the direction (0, ¢)
then n is directly proportional to the incident current i.e.

nx | dw

n=2%0)/dw

ORIGINAL =
- '\
DIRECTION CATTERER
Fig.4

where X(w) is a constant of proportionality which has dimension of source area and is
characteristic parameter of the collision of particle with target. It is known as scattering cross-
section of the particle and the target in the direction w(8, ¢).

9.3.1 Differential Scattering Cross-section:Let us consider the target to be made up of a large
number N of atomic or nuclear scattering centers and the distances between these atoms or nuclei
are sufficiently large with respect to the wavelength of the incident particles as is observed in
most practical cases. Then each scattering centers acts as it were alone. Moreover, if the target is
sufficiently thin, so that one may neglect multiple scattering; then n is directly proportional to N
also i.e.

n«<nN
So in this case n« NJdw
= o(w) N] dw

Again ¢ (®), the constant of proportionality, has the dimensions of surface area and is called the
scattering cross-section of the particle by the scattering centre in the direction w(0, ¢) or briefly
the differential scattering cross-section.
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Total Scattering Cross-section: The total number of particles scattered in unit time is obtained
by integrating n over all angles. It is equal to

Nootal = ] 6 () NJ dw = NJSoral
whereci o= [o (w)dw
is the total scattering cross section.
9.4 Scattering amplitude

In wave mechanics, an incident beam of particles is represented by a plane wave in an incident
channel. Let us consider the scattering of a particle of mass m by a central potential V(r) such
that V(r) tends to zero more rapidly than 1/r as r—oo.

Let E be the energy and p = fikthe initial momentum of the particle where kis the wave —
vector. The Schrodinger equation for the central potential V(r) is

fLZ
<—ﬁv2 +V(r)> Yp(r) =EyY(r) - (1)
™,
%o X
\ %
oG rdm )
oS A\
INCIDENT BEAM " ¥ L St S
== s — | | S | |
| |
| I |
/ / |||
/ /| [ sPHERICAL

Fig. 5

The wave function 1, may be written as a function of 6;¢ and radial distance r between the two
particles, i.e.

lpk = lpk(rl 0' ¢)

The scattering is determined by the asymptotic form of Y, (7, 8, ¢) in the region where V=0,
when the colliding particles are far apart (or r—o0). We want to represent such that it contains
two parts, one representing an incident wave and the other representing a scattered radially
outgoing wave i.e.
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Ve(r,0,8) = lim e®7 + f(@) 0 2

Let us assume that one and only one solution of this type exists for each value of k. We shall call
this solution, the stationary scattering wave vector k. The two terms of the asymptotic form are
easily interpreted if we remember the definition of current density vector

J= =@ -y e 3)

2im

i . . .. hk ..
kT represents a wave of unit density and of current den51ty — . Retaining

f( ) lk.

The plane wave term e

|f( )

only the lowest order in r, the term — e'*" represents a wave of density ———— and of current

lr)!” |2
2

density —— dlrected along the direction w towards increasing r (outgoing-wave). In fact,

since the effect of the potential V(r) can be neglected in the asymptotic region, therefore

ik.r

according to classical approximation we can interpret the term e'®" as a beam of monoenergetic

particles of momentum hkand of density 1, representing the incident beam @eik'r is

interpreted as a beam of particles emitted radially from the scattering centre and represents a
beam of the scattered particles.

In accordance with this interpretation we can calculate the number of particles emitted per
unit time into the solid angle dwlocated in the direction .

f()

The scattering wave-function is == e*"; hence density of scattered particles

ikr | w |2
ps = Ifl@—P=L% )

r2
From fig. small elementary area = r.rdm = r2dw
The volume element between r and r+dr = r?dw. dr

As pg in the number of scattered particles per unit volume, hence the number of particles in this
elementary volume

= psridw.dr
Substituting value of p, from equation (4), we get
£ () |?
Ny =L r?dw.dr = |pl?drdo e (5)

The number of scattered particles per unit time

dNg dr hk
e | £(a]? dwd—= lfan)® dw v = |p(a)l? dw;
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hk
=lfwl*—do (6)
If J is the current density, then J=pv e (7)

Since beam of particles is travelling in the same direction with velocity v. The flux of the beam
is the number of particles crossing unit area (perpendicular to the beam) per unit time. These are
number of particles in a volume of unit cross-section and length v

But p =1 for incident particles.

J=v== """ e 3

m

Also if o(w) is the scattering cross-section, then number of particles scattered in solid angle dw
per unit time.

= Jo(w)dw :% .o(w)dw [using (8)]  -=—-—-m- 9

Comparing equations (6) and (9) we get

hk , hk
?.a((u)dw = |l — dw

o(w)dw = |f(w)|2 """" (10)
Here f (w) is called the scattering amplitude
Hence the total scattering cross section is

Orotar = [ lfl®d0 e (11)

The wave function 1, may be normalized by making

[ wwedr=1

off [y ldr=1 e (12)
over a large box that have periodic boundary conditions

Therefore for finding out the normalization constant A, we must take the wave function as

e ikr

Y = limy_,, A[eik'r + f(w)

I (13)

r

The wave-function may be normalized to unit incident flux by choosing
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1/2

But for simplicity we often choose A equal to unity.
The argument given above is incorrect for two reasons:

(1) The current density vector is not simply the sum of the current of the incident plane
wave and that of the scattered wave. We must add to these contributions, the

interaction term
ikr

e*" and f(w) -

in the foregoing treatment. The interfaces between incident and scattered waves have
been deliberately ignored.
(11) The representation of the physical situation by the stationary wave

e (14)

in an idealization. In reality each particle participating in the scattering process must
be represented by a wave-packet formed by superposition of the stationary wave.

9.5 Quantum theory of Scattering

In the quantum theory of scattering, we imagine an incident plane wave,y(z) = Ae'*?, travelling
in the z-direction, which encounters a scattering potential, producing an outgoing spherical wave.
We will look for solution to the Schrodinger equation of the general

. ikr
Y(r,0) = A {elkz + £(0) eT}, for larger

(The spherical wave must carry a factor of 1/7 , because this portion of [y|* must go like 1 /72
to conserve probability). The wave number k is related to the energy of the incident particles in
the usual way:

(As before, I shall assume the target is azimuthally symmetrical; in the more general case the
amplitude f of the outgoing spherical wave could depend on ¢ as well o).

The whole problem is to determine the scattering amplitude f(e); it tells you probability of
scattering in a given direction e, and hence related to the differential cross-section. The
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probability that the incident particle, travelling at speed v, passes through the infinitesimal area
do, in time dt,

ap = |¢incident|2dv = |A|2(th)d0'

ek

gikz

Fig. 6 Scattering of waves; incoming plane wave generates outgoing spherical waves.

Fig.7 The volume dV of incident beam that passes through area do in time dt

But this is probability that the particle later emerges into the corresponding solid angle dQ

A1 |f|?
dpP = Ilpscatteredlzdv = r—z(th)Tde.

From which it follows that= |f|? d(, so

do
D(9) = T QI

The differential cross section is equal to the absolute square of the scattering amplitude.

9.6 Partial Wave
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The Schrodinger equation for a spherically symmetrical potential V(r) admits the separable
solutions

Y(r,0,¢) =R(MY™(6,¢)
WhereY,"is a spherical harmonic and u(7) = rR(r)satisfies the “radial equation”

h? d%u R 11+ 1
-t V(r)+—( )
2m 712

—E
2m dr? u u

At very large r the potential goes to zero, and the centrifugal term is negligible, so

d*u 5
Wz —k“u

The general solution is
u(r) = Ce™*™ + De~ T,

The first term represents an outgoing spherical wave, and the second an incoming one—for the
scattered wave, we evidently want D = 0. At very large r, then,

ikr

R(r) =

That’s for very large r (more precisely, for k&#>>1; in optics it would be called the radiation
zone). As in one-dimensional scattering theory, we assume that the potential is “localized”, in the
sense that exterior to some finite scattering region it is essentially zero. In the intermediate region
(where V can be ignored but the centrifugal term cannot), the radial equation becomes

d?u I+ 1)
- u

— _ 1,2
dr? T2 = —ku

And the general solution is a linear combination of spherical Bessel functions
u(r) = Arj,(kr) + Brny(kr)

However, neither j(which is something like a sine function) nor n(which is a sort of generalized
cosine function) represents an outgoing (or an incoming) wave. The linear combinations
ikr

analogous to e**"ande ~*"; these are known as spherical Hankel functions:

hP () = j,(x) + iny(x); RSP (%) = ji(x) — iny (x)

The first few spherical Hankel functions are listed in table. At larger r, hY (kr)( the “Hankel
function of the first kind”) goes likee’®” /r, whereas h/” (kr)( the “Hankel function of the second
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kind”) goes likee ~**" /rfor outgoing waves we evidently need spherical Hankel functions of the
first kind:

R(r) = Ch® (kr)

kr i1

Radiation
Zone

. Scattering
region

Fig.8 Scattering from a localized potential: the scattering region (shaded)the intermediate region
(where V= 0), and the radiation zone (where kr>> 1)

Thus, the exact wave function, in the exterior region [where V(r) = 0], is

Y(r6,¢) = A [e"** + 3 Cruhy” (kr)Y[', ¢;;}
f.m

Now, for very large r, the Hankel function goes like (- i)*1 e'*" /r (Table), so

W(r,0,¢) ~ A{e™ + £(6,4) ).

Where
F6.0) = Y (~DH1C, 16, 0)
Lm

This confirms more rigorously the general structure postulated and tells us how to compute the
scattering amplitude, f(e,), in terms of the partial wave amplitude. Evidently, the differential
cross section is

D@, ¢) = (6. ) = ZZ(: Y G G (Y)Y

fom 1o’
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Table: Spherical Hankel function /" (x)and 1 (x)

Wl = i W =it
hli'.m __{__E_l}‘?f.. qum — { i '—}e’ i
= (R deh)e W= (3-2-)e

And the total cross section is

. 1 ,
= 5 LY O [y ¥ d0 = 5 3 [l
I.m

Im ' m

If V is independent of ¢, then only terms with m=0 survive (remember Y;"~ e™®)

H0,9) = [ Pcosd)

Where Piis the /th Legendre polynomial. The exact wave function in the exterior region is

v, H}—A{ “'=+Z\,

r:,h}”(krm{ms a}l :
=)

The scattering amplitude is

[ _—

f0) = E{ z}’“
L =

C;H[m:-.ﬁ}

The total cross-section is

1 [ee]
== 1aP
=0
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9.7 Born Approximation

Suppose V(1) is localized about ry= 0 that is, the potential drops to zero outside some finite
region and we want to calculate y(r) at points far away from the scattering center. Then [r|>>|r]
for all points that contribute to the integral form in equation

|r—r0|2=r2+r02—2r.r0Erz(l— %) _________ (1)
And hence

lr—rl=zr-7fr, )
Let

k=k# 3)

Then

elklr=rol ~ pikr—ikro_________ (4)

And therefore

elklr—ro| elkr

r=r¢l ~— 7

In the denominator we can afford to make the more radical approximation |r- ro|=ry; in the
exponent we need to keep the next term.

In the case of scattering, we want
Po(r) = Ae'”
representing an incident plane wave. For the large r, then.

VTG L — ©)

2mh? 1

P(r) = Ae” —

This is in the staandard form. We can read off the scattering amplitude:

m
2mh? A

f(6,8) = = [ e "IV Y(ro)d’ry e (7

Suppose the incoming wave is not substantially altered by potential; then

Y(ro) = (1) = Ae™ %0 = Ae¥ o (8)
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where k' = kZ,

This would be the exact wave function, if V were zero; it is essentially a weak potential
approximation. In the Born approximation, then

£(6,¢) = —— [ 'K~y (1)) d3ry-memomm- 9)

2mh?

In particular, for low energy (long wavelength) scattering, the exponential factor is essentially
constant over the scattering region and the Born approximation simplifies to

m
2mh?

f,¢) =— [v(r)d3r (low energy)--------- (10)

Fig.9Two wave vector in the Born approximation: k points in the incident
direction, k'’ in the scattered direction

For a spherically symmetrical potential, V(r) = V(r), the Born approximation again reduces to a
simpler form.

And let the polar axis for the rointegral lies along k, so that

(k' — k).ry = krycos6y-------- (12)

Then

f(6) =— 27’;2 [ eixrocosboy (y V2 sinbydry dOydpg-------- (13)
Dropping the subscript on r, then

f(6) =— :LZ—TZ Ooo rV(r) sin(kr) dr, (spherical symmetry)

The angular dependence of f'is carried by k

K = 2k sin (6/2)
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9.8 Phase Shift

The total scattering cross section is given by

AT~ .
o= FZ(ZI + 1)sin?,
1=0
The above equation represents the cross section of /th partial wave and §;represents the phase
shift of /th partial wave

The cross section gets vanished when §; = 0 or = and the value of cross section becomes

) 3
maximum when the value of §; = ig ,t ?n ,etc.

We have
. Ap . i
R(r)=lim, _,4 -, sin (kr — St 6;)
It is coming from R(r) —=Aj;(kr)

Thus, §; represents the difference in phase between the asymptotic from actual radial function
R(r) and the radial function j;(kr) in the absence of scattering potential i.e., V=0

, We

ol

. . . 1 ’
Now j;(kr) becomes maximum if r = i thus for the value of r (we select “a” )r~a =

obtain higher order phase difference because V gets vanished beyond a, i.e., r >a.

The phase shift becomes very small when a <% . Hence the summation Y2, will beequal to the
summation of few terms such as Y/=3,

Calculation of8,.It becomes possible to calculate the value of §; by applying the boundary
condition for the continuity of Rsat r=a in the region r <a and r> a

1 dR 1 dR
(— —l) | at =0 (— —l) | at r=a
R; dr r>a R; dR r>a

R; = A;(cosdj,(kr) — sind;n;(kr)

(20

) | at r=a
R; dr

r>a

_ [cos6ljl' (ka)—sin6ljl' (ka)

cosépji(ka)—sindyji(ka)l,. ;s
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l@) _ =7
Suppose (Rz = | atr=a="

r>a
. !
v _ 1 [ ka)—tans ] (ka)
So', k[jl(ka)—tanamz(ka)
_ [k ikl
tan 0 = [kn{ (ka)—yim(ka) M

.1 . l .
whereji (ka) = jy_1 (ka) — = jy(ka)

[+1

m(ka) = n_1(ka) — g Mka)

In the above equations, Y; represents the ratio of the slope to the value of the interior wave

equation.

It becomes possible at once to get an approximate value of o;provided the value of 1 is large and

5, is expected to be small. In such a case, ¥;will not be much different from the ratio of the slope

to the value of the solution in the absence of a scattering potential, so that it becomes possible to
put

I ]l, (ka)
v'=k (jl(ka> + El)
As

bk
el < gea @

[ aka)?jE(ka)
tan 6, = [el(ka)zn(kam—l """"" (3)

The above is still exact

If the power series equation for j; is used when 1>>(ka)?and the value of j; is used in terms of
sine and cosine, the inequality Eq. 2 becomes as follows

1
& Ko - “4)

a

And Eq. (3) on approximation becomes as follow:

_ Ska?+2 _ Eiea)2H252L 2
RTCIRSIE (21+1)!
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By using Stirling’s formula, we obtain

log|s |~ logle| = 2l[log(ka) + 1 + log2] — logl

Some explanatory remarks about & are as follows:

(1)

(i)

(iii)

(iv)

(V)

It follows that for an attractive field X(r) gets shifted inward relative to Xy(r) and for
a repulsive field X(r) gets shifted outward relative to other function. i.e.,

6; > Ofor attractive field

6; < Ofor repulsive field

Classically, [h = pp where pp represents the momentum of the particle and p the
impact parameter. The summation of / for the partial wave /=0,1... has been found to
be equivalent to the integration of all values of the impact parameter in the classical
theory.

When the values of £ and /are large, it is possible to calculate the phase shift by the
Born approximation. Thus, we get

1
6 = — 2k U(ro)ro
Where ryrepresents the classical distance of closet approach. For large /, r, becomes
p, the = impact parameter. The series for total cross section behaves like as follows:

oc (2l+1)52=1 dpp3U2(p)
o [ =7 dpP’U%(p
0

As lh =pp = hkp
In order that this may get converged U(r) should decrease with distance at a rate
greater than riz

For the scattering amplitude in the forward direction, f(0) will take the following

form:
o0

FO) % Y @+ D8~ k [ dpp?U(p)
0
In order that it may get converted U(p) should decrease with distance faster than ris

For low energy scattering by a potential of the asymptotic form c/r", the variations
of the phase shifts for various /are as follows:

8, « k?*for 21<n—3

5, « k?"*llogk for 2l=n-3
8, « k™ 2for2l >n — 3
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Aliter.It follows that the total S-wave (i.e.,/=0) scattering cross-section is given as follows:

4,
05 = 77 Sin é

_ (2 sin5>2

In case of classically hard sphere scattering, the total cross-section may be given as follows:
c=rma

where a represents the radius of hard sphere

8 . :
Here (2 — ) represents the effective radius of the target.

The scattering cross section gets vanished for §; =0 or 180°nd the cross section

. 1 3
becomesmaximum for the value of §; = + 5T + ST ete.

Sind< 1

4

O'S<ﬁ

Thus, it represents upper limit of scattering. A simple case for which 6 can be solved exactly has
been found to be that of the S-wave scattering from hard sphere scattering by a hard sphere

Scattering by a hard sphere
But X(r)=7rR(r)
For r>a, V(r)=0

h2k?

E
2m

Now general equation may be written as:

d:x I[(a+1
2 _ — =
o [V - =[x =0
2uV(r
U(r) = Mhz()—>0 asr>a

270



I(1+1)
rz

And 0 for =0
dZ
Thus, (W + kz) X)) =0
The solution of above equation must be as follows:
Al . I
R(r) = —sin (kr ——+ 5)
kr T

e (ikr—ilm/2+i8) _ e (—ikr+ilm/2-i5)

xm:m@=f oF

— ﬁe i5 (6218 elkT e ilm/2 _ e ikr ellTL’/Z)

But A, = e and 1 =0

6218 e—lkT _ elkr

So X(r) = ™

From the boundary condition, function, and
X(r)=0 at r=>a
On substituting X (a) = 0 in the above relation, we obtain
eZi6 e—ika _ eika

0=
2ik

Thus, 0=—ka
And total S-wave scattering may be given as follows:

4,
Oy =ﬁsm ka

For extreme low energy limit, we obtain
ka <1

It means that only S-wave scattering is taking place and this is equal to total scattering. Thus,

L Am 2 2
o= F(ka) = 4ma
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In classical way it has been found to be ma? only. Thus, it becomes large by factor 4 for the
same radius. Hence, for low energy particles the cross-section becomes 4 times the geometrical
cross-section of the rigid sphere.

9.9 Summary
Scattering theory is very important both to the experimentalist as well as the theoretical

physicist. A thorough understanding of scattering is indispensable in the study of interaction of
atoms, nuclei and particle.The result of scattering are mainly expressed in terms of a cross
section.Scattering cross section used to dealing with the collision of a beam of particle with
scattering center. It is measured of the probability that the particle will get scattered as it traverse
as given thickness of matter.Where the Born approximation fails, use some other method. One
such method is the method of partial waves. This method is applicable to spherically symmetric
potentials. For such potentials, the angular momentum is a constant of motion. It is advantageous
to expand the solution in terms of angular momentum eigenfunctions.

9.10 Glossary

Collision — to hit something violently
Inelastic- lacking flexibility

Scattering- refract or diffract
Transverse- acting or lying
Incident- falling on or striking something
Interaction- exchange

Imagine- assume

Symmetrical- arrangement of part

Intermediate- coming between two things in time

Approximate- close to
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9.13 Terminals questions
Long Answer type

Q1.What do you understand by scattering cross-section? Deduce an expression for the scattering
cross-section of particles by a spherically symmetric potential. Explain the significance of the
“phase shift” terms appearing in the formula.

Q2. Give the theory of Born approximation in scattering.

Q3. Find a general expression for the phase shift produced by scattering potential V(r) = A/r*
where A>0.

Q4. Calculate the scattering amplitude for a central potential in the first Born approximation.

Q5. Describe and discuss the method of partial waves for an elastic scattering. Give the
interpretation of phase-shift.

Q6. Define the scattering cross-section. Describe the method of partial waves for scattering.

Q7. What is meant by differential scattering cross-section, the total scattering cross-section and
the scattering amplitude?

Q8. Write short notes on

(a) Classical theory of scattering
(b) Quantum theory of scattering

273



Objective answer type

Q1. The differential cross-section o (8, ¢) will be equal to

(b) |f(9r (I))l (b) |f(92'¢|2
ORICAIE @£ ¢

Q2.Scattering cross-section for coulomb potential using Born approximation is directly
proportional to

(a) sin*0 (b) cos*8
(c) cosec*d (d) cosec“g

Q3.Born approximation is vaild only when

(a) Total wave function is different from incident wave function

(b) Total wave function is not generally different from the incident wave function
(c) Always applicable

(d) None of theses

Q4 For scattering on a hard sphere of radius R,in classical physics the different scattering cross-
section is given by

RZ

(a)mR? (b)) (o @ =

.
Q5. If scattering amplitude f(0) = e+(6+1)l ,then total scattering cross-section is

2m i 22w 2m
(a) \/; (b) 5757 (©)—— O
Q6.  Which of the following is /are correct?
(a) Scattering amplitude for bose particle = amplitude direct +amplitude exchanged

(b) Scattering amplitude for Fermi particle = amplitude direct- amplitude exchanged

(c) For bose and Fermi particle scattering amplitude = amplitude direct + amplitude
exchanged

(d) Nose of these
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Q7.  The scattering amplitude in partial wave analysis is given by
. . Vs
f(@) = cos2 + i 2sin (9 + 5)

Propagation constant is k =7
The value of imaginary part at 6=0 is
(a) 2 (b) 4 (o1 (d)o
Q8. In Q7 the total scattering cross section is given by
(a) 4 (b) 8 (c) 10 (d) 12
Q9.Which of the following is /are correct for partial wave analysis?

(a) This method is applied when born approximation failed
(b) It is used only antisymmetric potentials

(c) It is used only symmetric potential

(d) All of the above

Q10. For scattering on a hard sphere of radius R. The §,- wave phase is given by

Answers

1(c) 2(d) 3(b) 4(d) 5(c) 6(ab) 7(a) 8() 9(a,c) 10(b)
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