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1.1 INTRODUCTION 
We have study that the applications of Newton’s laws of motion require the specification of 

all the forces acting on the body at all instants of time. But in practical situations, when the 

constraint forces are present, the applications of the Newtonian approach may be a difficult 

task. You will see that the greatest drawback with the Newtonian procedure is that the 

mechanical problems are always tried to resolve geometrically rather than analytically. When 

there is constrained motion, the determination of all the insignificant reaction forces is a great 

bother in the Newtonian approach. In order to resolve these problems, methods have been 

developed by D’Alembert, Lagrange and others. The techniques of Lagrange use the 

generalized coordinates which will be discussed and used in this unit. You will see that in the 

Lagrangian formulation, the generalized coordinates used are position and velocity, resulting 

in the second order linear differential equations. 

1.2 OBJECTIVES 

After studying this unit, you should be able to- 

• understand degrees of freedom, constraints and generalized coordinates 

• understand and use D’Alembert principle 

• understand and use Lagrange’s equation of motion 

• solve the problems based on D’Alembert principle and Lagrange’s equation 

of motion 

 

1.3 SYSTEM OF PARTICLES 

We know that a system of particles means a group of particles inter-related. The equations for 

a system of particles can be readily used to develop those for a rigid body. An object of 

ordinary size known as a “macroscopic” system — contains a huge number of atoms or 

molecules. A very important concept introduced with a system of particles is the center of 

mass.  

Let us consider a system consisting of N point particles, each labeled by a value of the index i 

which runs from 1 to N. Each particle has its own mass  mi and (at a particular time) is 

located at its particular place ri. The center of mass (CM) of the system is defined by the 

following position vector- 

                        Center of mass   = (1/ M )                                                          .....(1) 

where M is the total mass of all the particles. This vector locates a point in space which may 

or may not be the position of any of the particles. It is the mass-weighted average position of 

the particles, being nearer to the more massive particles. Let us consider a simple example to 

understand this. Let us consider a system of only two particles, of masses m and 2m, 

separated by a distance l.  Let us choose the coordinate system so that the less massive 

particle is at the origin and the other is at   x= l, as shown in Figure (1). Then we have   m1 = 
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m,   m2 =2m,   x1 =0,    x2 = l. (The y and z coordinates are zero of course.) By the definition    

xCM = ( 1/ 3m) (m×0+2m×l)= (2/ 3)l  

 With time, the position vectors of the particles  generally change, therefore, in general the 

center of mass (CM) moves.  

The velocity of its motion is the time derivative of its position- 

    = (1/M)                                                                                                     .....(2) 

But the sum on the right side is just the total linear momentum of all the particles. Solving for 

this, we find an important result- 

Total linear momentum of a system   = M                                                             .....(3) 

This is just like the formula for the linear momentum of a single particle. Therefore, we see 

that the total linear momentum of a system is the same as if all the particles were located 

together at the CM and moving with its velocity. 

 The total force on the ith  particle consists of the (net) external force on it, plus the net force 

due to the interactions with other particles in the system, which we call the internal forces. 

We can write this out as follows- 

                             =  +                                                                                   .....(4) 

where  denotes the force exerted on the ith particle by the jth particle.  

To get the total force on the whole system, we simply add up all these forces- 

                             =  +                                                                  .....(5) 

 In the double sum on the right the terms cancel in pairs by Newton's 3rd law (for example,     

=0). The double sum thus gives zero, therefore- 

                                          =                                                                          .....(6) 

The total force on the system is the sum of only the external forces. Since there are very 

many internal forces, the fact that they give no net contribution to the total force is why it is 

possible for many applications to treat an object of macroscopic size as a single particle. The 

internal forces do play important roles in determining some aspects of the system, such as its 

energy. 

 For each particle individually, we have Newton's 2nd law- 

                                                   =                                                                             .....(7) 

Adding these for all the particles, and using the above result for , we find two forms of 

the 2nd law as it applies to systems of particles- 
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Newton’s 2nd law for systems- 

 =    = M                                                                                                     .....(8) 

Here     =   is the acceleration of the CM. We see that the total external force 

produces an acceleration of the center of mass, as though all the particles were located there. 

This is not the only possible effect of the external forces. They can also cause rotational 

motion about the CM. But the internal forces do not change the motion of the CM. From the 

first formula above we find one of the most important laws of mechanics i.e. law of 

conservation of momentum. If the total external force on a system is zero, the total 

momentum of the system is conserved. In physics, the term “is conserved” means “remains 

constant in time 

The total kinetic energy of all the particles is 

 

   =  

=  

But the value of last term is zero, therefore we have- 

     

We can interpret the terms on the right as-  

• The first term is what the kinetic energy would be if all the particles really were at the CM 

and moving with its speed. We often call this the kinetic energy of the CM motion. 

 • The second term is the total kinetic energy as it would be measured by an observer in the 

CM reference frame. We call this the kinetic energy relative to the CM, or sometimes the 

internal kinetic energy.  

The total kinetic energy is the sum of these two terms- 

Kinetic energy of a system, K =   

This breakup of the kinetic energy into that of the CM plus that relative to the CM is an 

example of the general property. We will see that this property also holds for angular 

momentum. It holds for linear momentum too, but the second part, the total linear momentum 

relative to the CM, is always zero. 

Newton’s second law of motion says that the total (external) force is equal to the rate of 

change of total (linear) momentum. It follows that 
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Integrating both sides, we find for the net change in momentum-   

                                        

This integral (over time) of the force is called the impulse. We have shown a theorem: 

We know that according to Impulse-momentum theorem, “The impulse of the total force is 

equal to the change of the total linear momentum.” 

One use of this relation is to define the average force that acts during a specified time interval. 

Let the force act for time Δt, producing a net change  in the total momentum. The average 

force is given by- 

Average force    

This is useful in cases where the force is an unknown function of time and we would like to 

describe its average effect over some specific time interval without having to investigate the 

detailed behaviour. 

 

1.4 DEGREE OF FREEDOM 

“The minimum number of independent variables or coordinates required to specify ( or 

define) the position of a dynamical system, consisting of one or more particles, is called the 

number of degrees of freedom of the system.”  

Let us consider the example of the motion of a particle, moving freely in space. This motion 

can be described by a set of three coordinates (x, y, z) and hence the number of degrees of 

freedom possessed by the particle is three.  Similarly, a system of two particles moving freely 

in space needs two sets of three coordinates (x1, y1, z1 ) and (x2, y2, z2 ) i.e. six coordinates to 

specify its position. Thus, the system has six degrees of freedom.  If a system consists of N 

particles, moving freely in space, we require 3N independent coordinates to describe its 

position. Hence, the number of degrees of freedom of the system is 3N. 

The configuration of the system of N particles, moving freely in space, may be represented 

by the position of a single in 3N dimensional space which is known as configuration space of 

the system. The configuration space for a system of one freely moving particle is 3-

dimensional and for a system of two freely moving particles, it is six dimensional. 

The Number of coordinates required to define (or specify) a dynamical system, becomes 

smaller, when the constraints are present in the system. Therefore, the degrees of freedom of 

a dynamical system is defined as the minimum number of independent coordinates or 

variables required to specify the system well-matched with the constraints.  



MSCPH502 

6 

 

If there are n independent variables, say q1, q2 ,............. qn and n constants C1, C2, ........, Cn 

such that  = 0    at any position of the system, then we must have- 

 C1 = C2 = .........Cn = 0 

 

1.5 CONSTRAINTS  

Generally, the motion of a particle or system of particles is restricted by one or more 

conditions. The restrictions on the motion of a system are called constraints and the motion is 

said to be constrained motion. A constrained motion cannot proceed arbitrarily in any 

manner. For example, a particle motion is restricted to occur only along some specified path, 

or on a surface ( plane or curved) arbitrarily oriented in space. The motion along a specified 

path is the simplest example of a constrained motion. 

1.5.1 Holonomic Constraints  and Nonholonomic Constraints      

The constraints that can be expressed in the form f(x1, y1, z1: x2, y2, z2; xn, yn, zn; t) = 0, where 

time t may occur in case of constraints which may vary with time, are called holonomic and 

the constraints not expressible in this way are termed as non-holonomic. 

The motion of the particle placed on the surface of sphere under the action of gravitational 

force is bound by non-holonomic constraint ( r
2
- a

2
) ≥ 0 

1.5.2  Scleronomic Constraint and Rheonomic Constraints  

If the constraints are independent of time, they are called as scleronomic but if  they contain 

time explicity, they are termed as rheonomic. A bead sliding on a moving wire is an example 

of rheonomic constraint. 

1.6 FORCES OF CONSTRAINT 

You should know that the constraints are always related to forces which restrict the motion of 

the system. These forces are known as “forces of constraint”. For example, the reaction force 

on a sliding particle on the surface of a sphere is the force of constraint. If we consider the 

case of a rigid body, the inertial forces of action and reaction between any two particles are 

the forces of constraint. In a simple pendulum, the force of constraint is the tension in the 

string. Similarly, in the case of a bead sliding on the wire is the reaction by the wire exerted 

on the bead at each point. These forces of constraint are elastic in nature and generally appear 

at the surface of contact because the motion due to external applied forces is slowed down by 

the contact. Newton has not given any direction to calculate these forces of constraint. 

Generally, the forces of constraint act in a direction perpendicular to the surface of 

constraints while the motion of the object is parallel to the surface. In such cases, the work 

done by the forces of constraint is zero. These constraints are known as workless and may be 

called as ideal constraints. 
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 1.7 GENERALIZED COORDINATES 

The smallest possible number of variables to describe the configuration of a system are called 

“Generalized coordinates”. Thus the name generalized coordinates is given to a set of 

independent coordinates sufficient in number to describe completely the state of 

configuration of a dynamical system. The coordinates are represented as q1, q2, q3,............qk, 

........qn; where n is the total number of generalized coordinates. Thus, we should know that 

these are the minimum number of coordinates required to describe the motion of the system. 

Let us consider some examples of generalized coordinates. For a particle constrained to move 

on the circumference of a circle, only one generalized coordinate q1 = θ is enough and two 

generalized coordinates q1 = θ and q2 = ϕ for a particle moving on the surface of a sphere. 

The number of generalized coordinates for a system of N particles, constrained by m 

equations, are n = 3N- m. It is not necessary that these coordinates should be rectangular, 

spherical or cylindrical.  

Let us see the generalized notations for displacement, velocity, acceleration, momentum, 

force, potential energy in terms of generalized co-ordinates as follows- 

(a) Generalized Displacement: δqj are called generalized displacement or 

arbitrary displacements. If qj is an angle coordinate, δqj is an angular displacement. 

(b) Generalized Velocity: Generalized velocity may be described in terms of 

time derivative  of the generalized coordinate qj. 

(c) Generalized Acceleration: The double derivative of qj i.e.  is known as 

generalized acceleration. 

(d) Generalized Momentum: The momentum associated with generalized 

coordinate qk is called the generalized momentum pk associated with a coordinate qk. 

Generalized momentum pk = , where T is the kinetic energy of a system 

(e) Generalized Force:  Qj = . , here Qj is called the generalized force 

associated with a coordinate qj and N , the number of free particles in the system. 

1.8 PRINCIPLE OF VIRTUAL WORK 

Let us consider a system of N particles. We know that an infinitesimal virtual displacement of 

ith particle of the system is represented by δ . This is the displacement of position 

coordinates only and does not involve variation of time i.e. 

                                         δ  = δ  (q1, q2, q3, ........qn)                                                      .....(9) 

Let us assume that the system is in equilibrium, then we know that the total force on any 

particle is zero i.e. 

                                            = 0,                                                       i= 1, 2, 3, .................N 
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The virtual work of the force   in the virtual displacement δ  will also be zero i.e.  

                                             δWi =  . δ = 0 

Similarly, the sum of virtual work done for all the particles should be zero i.e. 

                                                      δW =  = 0                                             .....(10) 

The equation (10) represents the “Principle of Virtual Work”. It states that the work done is 

zero in the case of an arbitrary virtual displacement of a system from a position of 

equilibrium. 

The total force  on the ith particle can be expressed in the following way- 

                                               =     +                                                                     .....(11) 

Here,  is the applied force and  is the force of constraint. Therefore, equation (10) takes 

the form as- 

                                        δW =  = 0    

or                                      +    = 0                                              .....(12) 

Now we limit ourselves to the systems where the virtual work of the forces of constraints is 

zero (i.e.  in the case of rigid body), then from equation (12), we have- 

                                                 = 0                                                              .....(13) 

i.e.  for the equilibrium of a system, the virtual work of applied forces is zero.  It is obvious 

that the principle of virtual work deals with the statics of a system of particles.  

1.9 D’ALEMBERT’S PRINCIPLE      

D’Alembert’s principle, alternative form of Newton’s second law of motion, stated by the 

18th-century French polymath Jean le Rond d’Alembert. In effect, the principle reduces a 

problem in dynamics to a problem in statics. The Newton’s second law states that the 

force F acting on a body is equal to the product of the mass m and acceleration a of the body, 

or F = ma; in D’Alembert’s form, the force F plus the negative of the mass m times 

acceleration a of the body is equal to zero: F - ma = 0. In other words, the body is 

in equilibrium under the action of the real force F and the fictitious force -ma. The fictitious 

force is also called an inertial force and a reversed effective force. 

This method is based on the principle of virtual work. We know that according to Newton’s 

second law of motion, the force acting on the ith particle is given by- 
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Or                                                                             where i = 1, 2, 3.......N 

It is clear from the above equation that any particle in the system is in equilibrium under a 

force which is equal to the actual force  plus a reversed effective force   . Therefore, for 

virtual displacement  , we can write- 

                                                          = 0                                           .....(14) 

But                                                  =     +   , therefore from equation (14), we have- 

                                            +  = 0                                   .....(15) 

Again, the system is restricted for which the virtual work of the constraints is zero, i.e. 

 = 0. Therefore, above equation (15) reduces as- 

                                                   = 0                                                  .....(16) 

This is known as D’Alembert’s principle. 

 In general, we can write- 

                                                      = 0                                               .....(17) 

 

1.10 LAGRANGE’S EQUATION OF MOTION 

Let us consider a system of N particles. The coordinate transformation equations are- 

 =  (q1, q2,  q3,......., qk..........,qn, t)                                                                             .....(18) 

 where  ‘t’ is the time and qk ( k = 1, 2, 3, .....n) are the generalized coordinates. 

Differentiating equation ( 18) with respect to t, we get- 

 

Or                                               =  =                                          .....(19) 

where  are the generalized velocities. 

The virtual displacement is given by- 
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                          =  +  + .............+  

Or                                =                                                                         .....(20) 

(since by definition, the virtual displacements do not depend on time ) 

According to D’Alembert’s principle- 

                                                     = 0                                                 .....(21) 

Here  =   

     =   =                                                                 .....(22) 

where Gk = .  =                                        .....(23) 

are known as the components of generalized force associated with the generalized 

coordinates  qk. 

Now,                    =   

                                     =                                                    .....(24) 

and           =  -  .  (    )                                 .....(25) 

We can write the above equation (25) as- 

 =  -  . (    )                                                  .....(26) 

Putting equating (26) in equation (24), we get- 

                 =  

                                    =   

                                   =                                                       .....(27) 

Using equations (22) and (27) in equation (21), we get- 

                            -  = 0 
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Or                           -  = 0 

Or                                   = 0 

The constraints are holonic, i.e. any virtual displacement  is independent of . 

Therefore,                                      = 0 

Or                                                     -  =                                              .....(28) 

The above equation represents the general form of Lagrange’s equations. 

For a conservative system- 

 =  = -                                                                                  .....(29) 

Comparing equations (23) and (29), we get- 

                 Gk = -                                                                                                .....(30) 

From equation (28)- 

                                               -  =      -                                

Or                                           -    +   = 0         

Or                                           -      = 0                                             .....(31) 

Or we can write – 

                                                 -      = 0                                            .....(32)       

(since the scalar potential V is the function of generalized coordinates qk only not depending 

on generalized velocities.) 

We define a new function as- 

                                                       L = T - V                                                                .....(33)    

which is called the Lagrangian of the system   i.e. the difference of kinetic energy and 

potential energy is the Lagrangian. 

Now we can write the above equation as- 
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                                                        -      = 0                                              .....(34)     

These equations are known as Lagrange’s Equations for conservative system 

1.11 DISSIPATION FUNCTION 

In physics, the Rayleigh dissipation function, named for Lord Rayleigh, is a function used 

to handle the effects of velocity-proportional frictional forces in Lagrangian mechanics. It is 

defined for a system of N particles as- 

                                           F =                                    …..(35) 

The force of friction is negative the velocity gradient of the dissipation function,  

. The function is half the rate at which energy is being dissipated by the system 

through friction. 

As friction is not conservative, it is included in the Qj term of Lagrange's equations. 

It can be shown that if a system involves frictional forces or in general dissipative forces, 

then in suitable circumstance, such a system can also be described in terms of extended 

Lagrangian formulation. 

1.12 CYCLIC COORDINATES 

Cyclic Coordinate is the coordinate , on which the physical parameter ( like momentum ) 

doesn't depend or moreover , one can conclude that this physical parameter will remain 

conserve when the motion is being taken in that coordinate . These coordinates are also 

known as ignorable coordinates. 

This is quite useful to determine the conservative nature of motion . Let us take , 

L = m/2 ( x'² + y'² ) + a( 2x ) 

So , here the motion is in xy plain but our potential term ( 2ax) is y coordinate independent , 

hence by the use of cyclic coordinate , one can conclude that the momentum in y direction 

will be conserve , however this may not be the only conserve quantity. 

Example 1: Consider the motion of a particle of mass m. Using Cartesian coordinates as 

generalized coordinates, deduce Newton’s equation of motion from Lagrange’s equations. 

Solution: We know the general form of the Lagrange’s equations- 

                                                            -  =   

Here q1 = x, q2 = y, q3 = z and generalized force components G1= Fx, G2= Fy, G3= Fz 

                            The kinetic energy T =  
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For x-coordinate, we can write the Lagrange’s equation as- 

                                                                -  =   

But    = m      and       = 0 

 Therefore,   - 0 =      or             =    =  

Where px is the x-component of the momentum. 

Similarly for y and z- components- 

                                             Fy =   ,               =  

Thus,                                                =  

This is Newton’s equation of motion. 

Example 2: A mass M is attached a spring of force constant k. The other end of the spring is 

fixed in a wall. The entire system is placed on a frictional less surface. If the mass is slightly 

displaced by linear displacement x, deduce the equation of motion and hence find out the 

expression for time period of the system. 

Solution:  

 

                            

We know the Lagrangian’s equation of motion- 

                                                        -      = 0                                              .....(1) 

In this case, only one generalized coordinate i.e. x is required, thus qk = x. 

The above equation can be written as- 

                                                      -      = 0                                                     .....(2)                              

The kinetic energy of the system, T = (1/2) M  

The potential energy of the system, V= (1/2) k x
2
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Thus, we can write Lagrangian as- 

                                                            L = T- V 

                                                            = (1/2) M  - (1/2) k x
2
                                       .....(3) 

 = M       and     =  -kx 

From equation (2), we have- 

                                              - ( -kx )    = 0      

Or                                         M   + kx = 0                                                                      .....(4) 

This is required equation.                                               

From above equation,   = - (k/M) x 

Standard equation of Simple Harmonic Motion,   

Comparing the above equation with standard equation of motion of linear mass spring system 

(Simple Harmonic Motion), we get- 

                               = (k/M)    or  

Or                                                   

Or                                                   T = 2  

This is the expression for time period of linear mass spring system. 

Example 3: Obtain the equation of motion of a simple pendulum by using Lagrange’s 

equation of motion and hence deduce the formula for its time period for small amplitude 

oscillations. 

Solution: 

 

                                                           C 

                                                                 θ 

                                                                                   l 
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 B A 

 m 

 D                  s 

Let point of suspension C is taken as reference point. The angle θ between rest position and 

deflected position is chosen as generalized coordinate. 

The kinetic energy of the system, T = (1/2) mv
2
 = (1/2) m s

2
=  (1/2) m(l )

2
 = (1/2) ml

2  

Here m is the mass of the bob and l, the effective length of pendulum. 

As the bob comes from point A to point D, it falls freely through a vertical distance BD. 

Thus, potential energy of the system, V = mg(BD) = mg ( CD-CB) = mg (l- l cos θ) 

                                              = mgl (1- cosθ) 

The Lagrangian can be written as- 

                                 L = T – V 

        Or                                   L = (1/2) ml
2

 - mgl (1- cosθ)                                          .....(1) 

Now,     = m l
2

                          and        = - mgl sin θ 

We can write Lagrange’s equation of motion – 

                                                -      = 0   

Or                                          -  (- mgl sin θ)  = 0      

Or                                           ml
2
    + mgl sin θ = 0 

Or                                                 + (g/l) sin θ = 0 

This is the equation of motion of simple pendulum.  

Since oscillations are of small amplitude, therefore sin θ ≈ θ. Hence equation of motion of 

simple pendulum becomes- 

                                                    + (g/l)  θ = 0 

Or                                                 = -(g/l)  θ  

Comparing the above equation with standard equation of motion of SHM , ,   

We get- 
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                                           = (g/l)       or        

Or                                                     

Or                                                   T = 2  

This is the expression for time period of simple pendulum.      

Example 4: Atwood’s Machine: Obtain the equation of motion of a system of two masses, 

connected by an inextensible string passing over a small smooth pulley. 

Solution:  Atwood’s machine is an example of a conservative system with holonomic 

constraint. The pulley is small, mass less and frictionless. 

Let us consider that two masses m1 and m2 are connected by an inextensible string of length l. 

Let us suppose that x be the variable vertical distance from the pulley to the mass m1, then the 

mass m2 will be at a distance (l-x) from the pulley. 

Obviously, here is only one independent coordinate i.e. generalized coordinate x. 

Let us assume the pulley as reference. 

The total kinetic energy of the system T = Kinetic energy of mass m1 + kinetic energy of                        

mass m2 = (1/2) m1   + (½) m2  

                                                                                       = (1/2) (m1 + m2 )   

 

 

 

  

       x                         (l-x) 

 

 

 m1 

 

 m2 
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Obviously, m2 > m1 

Total potential energy of the system, V = Potential energy of mass m1 + potential energy of 

mass m2 

                                                            = - m1 gx – m2 g ( l-x) 

Thus we can write the Lagrangian  as – 

                                                                L = T- V  

                                                                  = (1/2) (m1 + m2 )   - { - m1 gx – m2 g ( l-x) } 

                                                                  =  (1/2) (m1 + m2 )   + m1 gx + m2 g ( l-x) 

Now,                    = (m1+ m2 )        and     =  (m1 –m2 ) g 

Lagrange’s equation of motion,   -      = 0   

Putting for  and  in the above equation- 

                                - (m1 –m2 ) g    = 0   

                                        - (m1 –m2 ) g  = 0   

                                       = (m1 –m2 ) g   

Or                                         =   g 

Or                                           = -  g 

This is the required equation of motion. 

Self Assessment Question (SAQ) 1: Find Lagrange’s equation of motion for an electrical 

circuit comprising an inductance L and capacitance C. The capacitor is charged to a q 

coulombs and current flowing in the circuit is i amperes. 

Self Assessment Question (SAQ) 2:  Obtain the equation of motion of a compound 

pendulum using Lagrange’s equation of motion. Also find out the expression for its time 

period. 

Self Assessment Question (SAQ) 3: Choose the correct option- 

(i) A rigid body moving freely in space has degrees of freedom- 

(a) 4                    (b)   9                        (c)  6                    (d) 3 
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(ii) Constraint in a rigid body is- 

       (a)  holonomic            (b)    rheonomic            (c)    scleronomic            (d)  nonholonomic 

(iii) Generalized coordinated- 

 (a) depend on each other     (b) may be Cartesian coordinates     (c) are necessarily      

spherical coordinates        (d)   are independent of each other  

1.13 SUMMARY  

In this unit, you have studied about System of particles, degree of freedom, constraints and 

generalized coordinates. You have learnt that the minimum number of independent variables 

or coordinates required to specify ( or define) the position of a dynamical system, consisting 

of one or more particles, is called the number of degrees of freedom of the system. You have 

studied that the generalized coordinates are the smallest possible number of variables to 

describe the configuration of a system. You have known about generalized displacement, 

generalized velocity, generalized acceleration, generalized momentum and generalized force. 

In this unit, you have also studied about principle of virtual work and established  

D’Alembert’s principle.  We have also established the Lagranges’s equation of motion. An 

glimpse of Rayleigh dissipation function and cyclic coordinates has been given. To present 

the clear understanding and to make the concepts of the unit clear, some solved examples are 

given in the unit. To check your progress, self assessment questions (SAQs) are given in the 

unit 

 

 

1.14 GLOSSARY 

Degree of freedom- The minimum number of independent variables or coordinates required 

to specify the position of a dynamical system 

Constraints-              restrictions                

Generalized coordinates- the smallest possible number of variables to describe the 

configuration of a system 

Dissipation- rakishness, indulgence 

1.15 TERMINAL QUESTIONS 

1. What do you understand by a system of particles. Explain. 

2.  What are constraints? Explain the various types of constraints. Give their significance. 

3.  Explain the following- 
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      (i) Degrees of freedom       (ii) Generalized coordinates 

4. Determine the number of degrees of freedom for a massless rod, moving freely in space 

with a particle which is constrained to move on the rod. 

5. Explain the principle of virtual work. Hence deduce D’Alembert’s principle. 

6. Establish the Lagrange’s equation of motion. Give its importance. 

7. Write notes on- 

      (i) Dissipation Function    (ii) Cyclic Coordinates 

8.  Derive Lagrange’s equation oif motion from D’Alembert’s principle. 

9. A bead is sliding on a uniform rotating rod in a force-free space, find its equation of 

motion. 

 

1.16 ANSWERS 

Self Assessment Questions (SAQs): 

1.                                                                       C 

                                                                              q 

 

 

 L 

   

Here charge q is playing a role of displacement. It is generalized coordinate. 

The kinetic energy of the system, T = (1/2) L i
2
 

The potential energy, V =  q
2
/ (2C) 

The Lagrangian L = T- V =  (1/2) L i
2
 - q

2
/ (2C) = (1/2) L  - q

2
/ (2C) 

  = L             and    = - (q/C) 

Lagrange’s equation of motion- 

                                                      -      = 0   
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   Or                   - {  - (q/C)    }   = 0     

Or                         L    + q/C = 0   or              = - (1/LC) q 

This is the required equation of motion. 

2.    = - (mgl/I) θ 

3. (i)   (c),        (ii)   (a) , (c)         (iii)   (b),  (d)               

Terminal Questions: 

4. 4      

9.        = r ω
2
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2.1 INTRODUCTION 

In the previous unit, we have studied about system of particles, degrees of freedom, 

constraints and their type, generalized coordinates and D’Alembert’s principle and used the 

D’Alembert’s principle to deduce Lagranges equations of motion. In that unit, we have learnt 

about Lagrange’s equations of motion and applied these equations to solve the problems. In 

this unit, we shall study Hamilton’s principle and calculus of variation. Lagrange’s equations 

of motion can be derived by an entirely different way, namely Hamilton’s variational 

principle. We shall learn to deduce Lagrange’s equations of motion from Hamilton’s 

principle. We shall also discuss various conservation laws in the present unit. 

2.2 OBJECTIVES 

After studying this unit, you should be able to- 
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• understand Hamilton’s variational principle 

•  apply  Hamilton’s principle in various cases 

• understand various conservation laws 

2.3 HAMILTON’S PRINCIPLE 

Let us know about Hamilton’s principle. Hamilton’s principle is one of the variational 

principles in classical mechanics. All the laws of mechanics can be derived by using the 

Hamilton’s principle. Hence it is one of the most fundamental and important principles of 

mechanics and mathematical physics.  

We shall first explain the meaning of the motion of the system as it is involved in Hamilton’s 

variational principle. The determination of the motion of the single particle in three 

dimensional space is a mechanical problem. The mechanical problem involving two particles, 

every particle being described by a set of three co-ordinates, can be reduced to a single 

particle problem simply by regarding that the single particle moves in a six dimensional 

space. Thus in general, a problem N- particles can be treated as one of a single particle 

moving along a trajectory in 3N- dimensional space. This space is referred to as configuration 

space and the single particle as system point. The motion of system point in configuration 

space is called the motion of the system between any two given instants. Configuration space 

has no necessary connection with the real three dimensional space.   

 

Hamilton’s principle states that for a conservative holonomic system, its motion from time t1 

to time t2 is such that the line integral (known as action or action integral) 

                                                                I = , t) dt     

with  L = T - V has stationary (extreme) value for the correct path of the motion. The quantity 

I is called as Hamilton’s principal function. We can express the principle as- 

                                                          δ , t) dt = 0 

or   simply                                          δ dt = 0                                                                

…..(1) 

or       where δ is the variation symbol. 

 

2.3.1 Modified Hamilton’s Principle 

According to Hamilton’s principle- 

                                                            δ dt = 0 

where L= T-V = L (qk, , t) 

We can write the above equation in terms of Hamiltonian H  which is written as- 

                              H (pk, qk, t) = L (qk,  , t) 

Or                       L (qk,  , t)= - H (pk, qk, t)   
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 Hence the Hamilton’s principle in the new form can be written as- 

       

                                                    δ dt = 0 

or simply                                    δ dt = 0                                                 

…..(2) 

This is known as modified Hamilton’s principle. 

2.3.2 Advantage of  Hamilton’s Variational principle 

Hamilton’s principle of mechanics has special advantages as the beginning point for 

approximations. First, it is extremely succinct. Secondly, it easily accommodates 

moving disconnecting fluid boundaries. Thirdly, approximations - however strong - 

that maintain the symmetries of the Hamiltonian will automatically preserve the 

corresponding conservation laws. For example, Hamilton’s principle allows useful 

analytical and numerical approximations to the equations governing the motion of a 

homogeneous rotating fluid with free boundaries. Hamilton’s principle of mechanics 

governs the motions of classical fluids. As a statement of dynamical law, it has 

important practical advantages over the more conventional Eulerian formulation of 

fluid mechanics.  

 

 

2.4 LAGRANGE’S EQUATIONS OF MOTION FROM 

HAMILTON’S PRINCIPLE 

Here, we shall derive Lagrange’s equations of motion from Hamilton’s principle. The 

Lagrangian L is a function of generalized coordinates qk’s and generalized velocities ’s and 

time t, i.e.  

L = L (q1, q2, q3,………….qk,……….qn, , , ,………. ,………. , t ) 

If the Lagrangian does not depend on time t explicitly, then the variation δL  can be written 

as- 

                     δL =                                                                  

…..(3) 

We integrate both sides from t=t1 to t = t2 – 

                                        dt                   

…..(4) 

But by Hamilton’s principle- 
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                                                            δ dt = 0 

Therefore,  we have-  

                                      dt= 0                                      

…..(5) 

                                                      Where  =  

Integrating by parts, the second term on the left hand side of equation (5), we get- 

                dt =   - δ  dt                                 

…..(6) 

At the end points of the path at the times t1 and t2, the coordinates must have definite values 

qk(t1) and qk (t2) respectively, i.e. (t1) = (t2) = 0 and hence we have- 

                                                               = 0 

Therefore, equation (5) takes the form- 

                                               dt - δ  dt   =0   

                                                  dt = 0                               

…..(7) 

For holonomic system, the generalized coordinates δqk are independent of each other. 

Therefore, the coefficient of each δqk  must vanish, i.e.  

                                                     -  = 0                                                            

…..(8) 

Where k = 1, 2, 3, ……, n are the generalized coordinates. 

Equation (8) represent the Lagrange’s equations of motion. 

2.5 CALCULUS OF VARIATIONS  

In this section, we shall discuss the calculus of variations. Calculus of variations is a field of 

mathematical analysis that uses variations, which are small changes in functions and 

functionals, to find maxima and minima of functionals: mappings from a set of functions to 

the real numbers. Functionals are often expressed as definite integrals involving functions 

and their derivatives. Functions that maximize or minimize functionals may be found using 

the Euler–Lagrange equation of the calculus of variations.  

A simple example of such a problem is to find the curve of shortest length connecting two 

points. If there are no constraints, the solution is obviously a straight line between the points. 

However, if the curve is constrained to lie on a surface in space, then the solution is less 

obvious, and possibly many solutions may exist. Such solutions are known as geodesics. A 

related problem is posed by Fermat's principle: light follows the path of shortest optical 
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length connecting two points, where the optical length depends upon the material of the 

medium. One corresponding concept in mechanics is the principle of least action.  

Many important problems involve functions of several variables. Solutions of boundary value 

problems for the Laplace equation satisfy the Dirichlet principle. Plateau's problem requires 

finding a surface of minimal area that spans a given contour in space: a solution can often be 

found by dipping a frame in a solution of soap suds. Although such experiments are relatively 

easy to perform, their mathematical interpretation is far from simple: there may be more than 

one locally minimizing surface, and they may have non-trivial topology. The calculus of 

variations may be said to begin with Newton's minimal resistance problem in 1687, followed 

by the brachistochrone curve problem raised by Johann Bernoulli (1696). It immediately 

occupied the attention of Jakob Bernoulli and the Marquis de l'Hôpital, but Leonhard Euler 

first elaborated the subject, beginning in 1733. Lagrange was influenced by Euler's work to 

contribute significantly to the theory. After Euler saw the 1755 work of the 19-year-old 

Lagrange, Euler dropped his own partly geometric approach in favor of Lagrange's purely 

analytic approach and renamed the subject the calculus of variations in his 1756 lecture 

Elementa Calculi Variationum.  

Legendre (1786) laid down a method, not entirely satisfactory, for the discrimination of 

maxima and minima. Isaac Newton and Gottfried Leibniz also gave some early attention to 

the subject. To this discrimination Vincenzo Brunacci (1810), Carl Friedrich Gauss (1829), 

Siméon Poisson (1831), Mikhail Ostrogradsky (1834), and Carl Jacobi (1837) have been 

among the contributors. An important general work is that of Sarrus (1842) which was 

condensed and improved by Cauchy (1844). Other valuable treatises and memoirs have been 

written by Strauch (1849), Jellett (1850), Otto Hesse (1857), Alfred Clebsch (1858), and 

Carll (1885), but perhaps the most important work of the century is that of Weierstrass. His 

celebrated course on the theory is epoch-making, and it may be asserted that he was the first 

to place it on a firm and unquestionable foundation. The 20th and the 23rd Hilbert problem 

published in 1900 encouraged further development. In the 20th century David Hilbert, Emmy 

Noether, Leonida Tonelli, Henri Lebesgue and Jacques Hadamard among others made 

significant contributions. Marston Morse applied calculus of variations in what is now called 

Morse theory. Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new 

mathematical tools for the calculus of variations in optimal control theory. The dynamic 

programming of Richard Bellman is an alternative to the calculus of variations.  

The calculus of variations is concerned with the maxima or minima (collectively called 

extrema) of functionals. A functional maps functions to scalars, so functionals have been 

described as "functions of functions." Functionals have extrema with respect to the elements 

y of a given function space defined over a given domain. A functional J [ y ] is said to have 

an extremum at the function f  if ΔJ = J [ y ] - J [ f] has the same sign for all y in an arbitrarily 

small neighborhood of f . The function f is called an extremal function or extremal. The 

extremum J [ f ] is called a local maximum if ΔJ ≤ 0 everywhere in an arbitrarily small 

neighborhood of f , and a local minimum if ΔJ ≥ 0 there. For a function space of continuous 

functions, extrema of corresponding functionals are called weak extrema or strong extrema, 

depending on whether the first derivatives of the continuous functions are respectively all 

continuous or not.  

Both strong and weak extrema of functionals are for a space of continuous functions but 

weak extrema have the additional requirement that the first derivatives of the functions in the 

space be continuous. Thus a strong extremum is also a weak extremum, but the converse may 
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not hold. Finding strong extrema is more difficult than finding weak extrema. An example of 

a necessary condition that is used for finding weak extrema is the Euler–Lagrange equation.  

The solution of a dynamical problem means that we want to locate the position of the system 

e.g. a particle, at a particular instant of time. We are also interested in the path adopted by the 

system. The piecewise information of this path i.e. where it is maximum or minimum is 

protected through differential calculus by putting (x) = 0 etc. But if we want the 

information about the whole path then we shall have to look for integral calculus and will be 

interested in the arguments like whether the path as a whole is largest or shortest (extremum 

or having a stationary value). This type of study requires the technique of calculus of 

variations (Figure 1). 

  y 

 P2 (x2, y2) 

 2 

 ds P1 (x1, y1) 

 1 dx dy 

 

 

 

 O                                                                                       x                                             

                                                                               Figure (1) 

                                                                            

Two paths which a particle may follow in going from position 1 to position 2 are shown. The 

straight line path is shortest and can be represented as- 

                                                y = mx + c  

or                                                         y = y(x)                                                          

…..(9) 

in functional form indicating that y is a function of independent parameter x. For each value 

of x, there will be fixed value of y.  

As we are interested in the length of the path, denoted by say, I , we can write- 

                                          I =  =  
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                                             =        =  (   )    dx 

                                            =  dx =   , x ) dx                                             

…..(10) 

because   involves both y and x, we have expressed it in f. Thus, we note that path I is the 

integral of the function f which itself is the function of y.  If we want that the path I be 

extremum, then δI should be equal to zero, i.e.  δI = 0  

or                                                          δ  , x)  dx = 0 

or                                                      = δ  (x), x ] dx = 0 

This is the formulation of the problem of calculus of variations.  It is obvious that variation δ 

is defined as the variation in the quantity to which it is applied at the fixed value of 

independent parameter i.e.  

                                              δ y = ( y2 – y1 )x                                                                       

…..(11) 

If we report  for both curves then the equation y = y (x) is incapable to represent both e.g.  y 

= mx + c will represent straight line path only. Therefore, to include other paths, we require 

another parameter, say, α, designating path, to be introduced in y i.e.  

                                                              y = y (x, α) 

so that                                                   y = y ( x, α1 )   and     y = y (x, α2) 

may represent the two paths. However, the relationship can be expressed as- 

                                                      y (x, α) = y (x, 0) + α η(x)                                              

…..(12) 

where η(x) is any arbitrary function of x which vanishes at end points. Note α = 0 in  y (x, 0) 

may be taken to represent extremum path. Thus α  represents the paths.  It means I, the length 

of path, which is different for different paths, will also be a function of α,  i.e. I = I(α) so that 

we may write the integral- 

                                                          I(α) =  (x, α), x ] dx                             

…..(13) 

In this way, it may be noted that δ is taken at a fixed value of independent parameter, i.e. x is 

same for all paths considered i.e. x is not the function of α or we can write 

                                                          = 0 
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Further, at end points, all paths meet and therefore, there is no variation even in y coordinate 

at end points 

Or                 end points 1 & 2     = 0                           

…..(14) 

The shortest path is taken as extremum path and the other paths with which we compare it are 

called comparison paths. 

δ- variation represents the increase in the quantity to which it is applied as we pass from 

extremum path to the comparison path at the same value of independent variable. Thus δy  

represents arbitrary variation of y(x) with respect to an arbitrary parameter, α about its 

extremum value. In other words, δy corresponds to a virtual displacement. Such a virtual 

displacement does not always coincide with possible actual displacement occurring in the 

course of motion i.e.  varied path may or may not be an actual path.  

 y 

 

                                          y2  B 

      P
’
 

                                          y1  A      P 

                                             

  x1                                    x2 X 

  

Figure (2) 

The two important points in this variation, significant to note are- 

(i) end points’ coordinates are same for each curve which gives     end points = 0. Further, 

variation is considered at a fixed value of independent coordinate x;    = 0 for 

such a variation. 

(ii) The system must travel from one end point A to other end point B in the same time 

for all the paths conceived. It also predicts that end points’ time is also fixed for 

every path. This gives that     = 0 along the path and also at the end points. For 

satisfying these conditions, we consider that system particle moves with different 

velocities along different paths so as to keep end points’ time fixed i.e. there is no 

variation of time along any path i.e. δt = 0.    
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2.6 EULER- LAGRANGE’S EQUATIONS 

 In this section, we shall establish Euler-Lagrange’s equations. Let us consider a function 

f (y, , x) defined on a curve given by y = y(x) between two points A (x1, y1 ) and B (x2, 

y2). Here, 
 
 = dy/dx. We shall find a particular curve  y(x) for which the line integral I of 

the function f between the two points I =  has a stationary value. 

 

 

                y 

 

 

                                                                         P
’
 (x, y +δy)   B (x2, y2) 

 δy(x) 

 P (x, y) 

 A(x1, y1) 

 y(x)  

 

 x 

                                       Figure (3) 

 

Let us suppose that APB be the curve for which I is stationary. Now, let us consider a 

neighbouring curve AP
’
B with the same end points A and B. The point P (x, y) of the curve 

APB corresponds to the point P
’
(x, y + δy) of the curve AP

’
B, keeping x-coordinate of the 

points fixed. This defines a δ-variation of the curve. The variation is arbitrary but small and 

may be represented as- 

                                                    δy =   = η (x) δα                                                   

…..(15) 

where α is a parameter common to all points of the path which is independent of x and η (x) 

is a function of x with the condition that- 

                                                     δy1 = δy2 = η (x1) = η (x2) = 0                                    …..(16) 
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By choosing different η(x), we may construct different varied paths. The corresponding 

variation in  is 

                                                                      δ
 
=  (x) δα                                            …..(17) 

Now, the integral on the varied path is-  

                                                 I
’
 =  

Or                                            I
’
 =                        …..(18) 

Since the variation is small, the integral I
’
 may be obtained by considering only first order 

terms in the Taylor expansion of the function f i.e., 

                                     I
’
 = ηδα +  δα] dx                             …..(19)       

Hence                             δI = I
’
 – I = δα  η +    ) dx                                      …..(20)  

But               dx = η   
x
2     - η dx 

 x1   

 

        or                         dx = - η dx                [as η (x1) = η (x2) = 0] 

Therefore,                   δ I = δα η dx                                                   …..(21) 

The condition that the integral I is stationary means that δI = 0, i.e. 

                                                   η dx  = 0                                           

…..(22) 

As η is arbitrary, the integrand of equation (22) must be zero, i.e. 

                                                       = 0                                                         

…..(23) 

The above equation (23) is known as Euler-Lagrange equation. 

This is a relation that should be satisfied by a function f if the integral I is to be extremum. 

Obviously, Euler- Lagrange equations bear a great similarity with Lagrange’s equation of 

motion. 
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Example 1: Show that the shortest distance between two points in a plane is a straight line. 

Solution: Let us consider two points A (x1 , y1 )  and B (x2, y2 )  in XY- plane. An element of 

length ds of any curve, say AP
’
B, passing through A and B points is given by- 

 

                                                   Y 

 

 P
’
 B(x2, y2) 

 

                                                            A(x1, y1) P 

 

 O X 

 

 ds
2
 = dx

2
 + dy

2
  

or                                                   ds =  dx = 0                                        …..(i)  

Total length of the curve from point A to the point B is given by- 

                                                       s =  dx  =  dx                         …..(ii) 

where f = .  

The length of the curve s will be minimum if δs = 0. It means that f should satisfy the Euler-

Lagrange’s equation i.e. 

                                                        = 0                                                            

…..(iii) 

Here,       = 0 and   =    

Therefore, from equation (iii), we have- 

                                       0 -  = 0 

Or                                              = 0 
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Or                                             = constant  = C (say) 

Or                                        = C ( 1 +  ) 

Or                                        =   = a constant    (K) 

 Or                                    =    = K 

Or                                         = K         

Integrating both sides, we get- 

                                       y = Kx + J                                                                                  …..(iv) 

where J is again a new constant. 

Obviously, the above equation represents a straight line. Therefore, the shortest distance 

between any two points in a plane is a straight line.  The constants K and J can be determined 

by the condition that the straight line (iv) passes through points A (x1, y1) and B (x2, y2 ). 

 

Example 2: Apply variational principle to find the equation of 1-D harmonic oscillator. 

Solution:  For 1-D harmonic oscillator- 

The potential energy V = (1/2) kx
2
        and kinetic energy T = (1/2) m  

The Lagrangian L for 1-D harmonic oscillator can be written as- 

                                        L = T-V = (1/2) m  - (1/2) kx
2
         

According to Hamilton’s principle or variational principle  or  is 

extremum. 

Euler-Lagrange’s equation is- 

  = 0                 

Here,    = - kx ,          = m                                    

Therefore, from the above equation, we have- 

                      m  + kx = 0 

 or                            = - (k/m) x 
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which is the equation of motion for 1-D harmonic oscillator.  

Example 3: A particle slides from rest at one point on a frictionless wire in a vertical plane to 

another point under the influence of the earth’s gravitational field. If the particle travels in the 

shortest time, show that the path followed by it is a cycloid [Brachistochrone Problem]. 

Solution: Let the shape of wire be in the form of a curve OA. The particle starts to travel from 

O (0, 0) from rest and moves to A (x1, y1) under the influence of gravity on the frictionless 

wire. 

 

                         O(0, 0) y 

 

 

 

  P 

       P
’
 

 x A (x1, y1) 

 

Let v be the speed at P.  

The time taken in moving  PP
’
 = ds  element = ds/v 

Therefore, the total time taken by the particle in moving from the higher point O to the lower 

point A is given by- 

                                                              t =                                             …..(i)  

If the vertical distance of fall from point O to point P be x, then from the particle of 

conservation of energy, we have- 

                                                            (1/2) mv
2
 = mgx 

Or                                                        v =  

Therefore,            t =                       [ds =    = dx  ]              

…..(ii) 

So that f =       and for t to be minimum 
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 -  = 0                                                                                                                      

…..(iii) 

Here,   =0       and       =     

Substituting in equation (iii), we get- 

                                                              = 0 

Or                                   =  constant (C) 

Squaring both sides, we get- 

                                          =    C
2
                      

Or                                       =  x(1+  )      

Or                                  = C
2
 x ( 1+  

Or                                 = C
2
 x + C

2
x  

Or                                (1 – C
2
x) = C

2
x 

Or                                =  =    =  

Or                                =         , where  = B, a constant 

Or                                       =  

Or                                   y =   dx  + C
’
, another constant of integration            …..(iv) 

Let us consider that- 

 x = B sin
2

 , then dx = 2 B sin  cos  d  

Therefore,       y =   + C
’ 

                           = B d  + C
’
 

                           = B C
’
 



MSCPH502 

36 

 

                           = B [ ] + C
’
  = (B/2) [ 2  + C

’
 

 Thus the parametric equations of the curve are- 

  X = B sin
2
θ = (B/2) ( 1- cos 2θ)        and    y = (B/2) ( 2θ – sin 2θ ) + C

’
  

Since the curve passes through point (0, 0),   C = 0 

Therefore- 

  x =  (B/2) ( 1- cos 2θ)        and    y = (B/2) ( 2θ – sin 2θ )                                                

…..(v)  

 

 O y 

 

 

 A (x1 , y1 ) 

 

 x 

 

  

Let 2θ = ϕ    and B/2 = A, then the parametric equations of the curve are- 

                               x =  A (1- cos ϕ)        and    y = A ( ϕ – sin ϕ )                                  …..(vi)      

The above equation represents a cycloid ( the above figure). The constant A can be 

determined because the curve passes through the point A (x1, y1). 

Self Assessment Question (SAQ) 1:  If we take a curve passing through the fixed points (x1, 

y1) and (x2, y2) and revolve it about Y-axis to form a surface of revolution, find the equation 

of the curve for which the surface area is minimum [Minimum surface of revolution]. 

Self Assessment Question (SAQ) 2:  Choose the correct option- 

(i) In 

δ-variation- 

(a) the 

time is not involved        (b) time as well as position coordinates are allowed to vary 

(c)  the time is involved            (d) only time is allowed to vary 
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(ii) In case of modified Hamilton’s principle- 

(a) the 

path refers to phase space             (b) the path refers to configuration space 

(c) δ dt = 0                (d)  dt = 0 

  2.7 CONSERVATION LAWS 

The word conservation applies in the sense of constantness when some characteristics of the 

motion of a system remains constant in time. In this physical world, there exist a number of 

conservation laws. There are conservation laws relating to linear momentum, angular 

momentum, energy and various other quantities. We apply Newtonian mechanics to deduce 

conservation laws for a particle in motion. Conservation laws prove to be very powerful tools 

in solving mechanical problems in the following respects- 

(i) Conservation laws are independent of the details of the trajectory and often, 

of the details of a particular force. The laws are, therefore, a way of stating very 

general and significant consequence of equations of motion. Conservation laws 

assure us many times that some aspects of motion are impossible and must be left 

out. 

(ii) Conservation laws have an intimate relation with invariance. Their failure in 

certain cases may result in the discovery of new and not yet understood 

phenomenon. 

(iii)  Conservation laws tell us a graet deal about the motion even if forces 

affecting motion are not known in advance. 

(iv) Even when the force is known exactly, a conservation law may provide a 

simple and suitable method of solving the motion of the particle and particle 

systems. 

In this section, we shall discuss some conservation laws. 

 

2.7.1 Conservation of Linear Momentum 

Let us consider that a force  is acting on a particle of mass m, then according to Newton’s 

second law of motion, we have- 

                                                             =       

                                                           =  =                                                      …..(24) 

Where  = , the linear momentum of the particle. 
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If the external force acting on the particle is zero, then- 

 =  = 0 

Or                                         = m  = constant                                                               …..(25) 

Thus, in the absence of external force, the linear momentum of a particle is constant 

(conserved) i.e. if there is no external force applied on a particle, then its linear momentum is 

conserved. This is known as conservation law of linear momentum. 

 2.7.2 Conservation of Angular Momentum 

We know that the angular momentum of a particle about a fixed point is defined as the 

moment of its linear momentum i.e. the angular momentum of a particle P of mass m about a 

point O is defined as- 

                                                    =  ×                                                                        …..(26) 

Where  is the position vector of the particle P and  = m  is its linear momentum. 

 

      O 

  

   

 P  

                                                                                  θ   

                                                                         Figure (4) 

If force  is acting on the particle, then the moment of force i.e. torque about point O is given 

as- 

                                                               =  ×                                                                 

…..(27) 

Differentiating equation (26) with respect to time t, we get- 

                                               =  ×  =  ×  +  ×  

Or                                         =  ×  + 0        [since  ×  =  × (m ) = m (  × ) = m (0) 

= 0] 
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                                                =  ×   

                                                  =                   [from equation (27)] 

i.e.                                       =                                                                                       

…..(28) 

Thus, the time rate of change of angular momentum of a particle is equal to the torque acting 

on it. 

If the torque acting on the particle is zero i.e.  = 0, then from equation (28), we have- 

                                                                  = 0 

Or                                                    = constant                                                                

…..(29)    

Thus, if there is no torque acting on the particle then the angular momentum of that particle is 

constant (conserved). This is known as law of conservation of angular momentum.           

2.7.3 Conservation of Energy 

We know that the work done by an external force   acting on the particle in displacing from 

point 1 to point 2 is given by-   

                                                     W12 =                                                                 

…..(30) 

According to Newton’s second law- 

                                                  = m                                                                                

…..(31) 

Putting for  in equation (30), we get- 

                                                W12 =  

                                  = m  = m  =    m  

                                    = m  = m  

                                   =                                                                     …..(32) 

 2 
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 P 

 

 1 

 

 Figure (5) 

The scalar quantity  is defined as the kinetic energy and denoted by T. Thus, the work 

done by the force acting on the particle appears equal to the change in the kinetic energy i.e.  

                                                W12 =    = T2 – T1                                          ……..(33) 

This is known as work-energy theorem. 

Further, we have read that- 

                                                 = -  

We can write- 

                                    W 12 =  =  

                                        =  = -  = V1 – V2                                         …..(34) 

From equations (33) and (34), we get- 

                                                     T2 – T1   = V1 – V2                                          

                                      Or          T2 + V2 = T1 + V1 

Or                                          T1 + V1 = T2 + V2  = constant 

Or                                       T + V= constant = Total energy 

i.e. the total energy of the particle is constant (conserved).  

Thus the sum of kinetic energy and potential energy ( i.e. total mechanical energy) of a 

particle remains constant in a conservative force field. This is known as the law of 

conservation of energy. 
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2.8 NOETHER’S THEOREM 

Noether's theorem states that every differentiable symmetry of the action of a physical system 

has a corresponding conservation law. The theorem was proven by mathematician Emmy 

Noether in 1915 and published in 1918, although a special case was proven by E. 

Cosserat & F. Cosserat in 1909. The action of a physical system is the integral over time of 

a Lagrangian function (which may or may not be an integral over space of a Lagrangian 

density function), from which the system's behavior can be determined by the principle of 

least action. 

Noether's theorem is used in theoretical physics and the calculus of variations. A 

generalization of the formulations on constants of motionin Lagrangian and Hamiltonian 

mechanics (developed in 1788 and 1833, respectively), it does not apply to systems that 

cannot be modeled with a Lagrangian alone (e.g. systems with a Rayleigh dissipation 

function). In particular, dissipative systems with continuous symmetries need not have a 

corresponding conservation law. 

Let us consider an example to understand the thing. If a physical system behaves the same 

regardless of how it is oriented in space, its Lagrangian is symmetric under continuous 

rotations: from this symmetry, Noether's theorem dictates that the angular momentum of the 

system be conserved, as a consequence of its laws of motion. The physical system itself need 

not be symmetric; a jagged asteroid tumbling in space conserves angular momentum despite 

its asymmetry. It is the laws of its motion that are symmetric. 

Let us consider another example, if a physical process exhibits the same outcomes regardless 

of place or time, then its Lagrangian is symmetric under continuous translations in space and 

time respectively: by Noether's theorem, these symmetries account for the conservation 

laws of linear momentum and energy within this system, respectively. 

As a final example, if the behavior of a physical system does not change upon spatial or 

temporal reflection, then its Lagrangian has reflection symmetry and time reversal symmetry 

respectively: Noether's theorem says that these symmetries result in the conservation laws 

of parity and entropy, respectively. 

Noether's theorem is important, both because of the insight it gives into conservation laws, 

and also as a practical calculational tool. It allows investigators to determine the conserved 

quantities (invariants) from the observed symmetries of a physical system. Conversely, it 

allows researchers to consider whole classes of hypothetical Lagrangians with given 

invariants, to describe a physical system. As an illustration, suppose that a physical theory is 

proposed which conserves a quantity X. A researcher can calculate the types of Lagrangians 

that conserve X through a continuous symmetry. Due to Noether's theorem, the properties of 

these Lagrangians provide further criteria to understand the implications and judge the fitness 

of the new theory. 

There are numerous versions of Noether's theorem, with varying degrees of generality. The 

original version applied only to ordinary differential equations (used for describing distinct 
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particles) and not partial differential equations (used for describing fields). The original 

versions also assume that the Lagrangian depends only upon the first derivative, while later 

versions generalize the theorem to Lagrangians depending on the n
th

 derivative. There are 

natural quantum counterparts of this theorem, expressed in the Ward–Takahashi identities. 

Generalizations of Noether's theorem to super spaces also exist.  

 

2.9 SYMMETRIES 

Symmetry  in everyday language refers to a sense of harmonious and beautiful proportion and 

balance. In mathematics, "symmetry" has a more precise definition, that an object is invariant 

to any of various transformations; including reflection, rotation or scaling. Although these 

two meanings of "symmetry" can sometimes be told apart, they are related, so in this article 

they are discussed together. Mathematical symmetry may be observed with respect to the 

passage of time; as a spatial relationship; through geometric transformations; through other 

kinds of functional transformations; and as an aspect of abstract objects, theoretic 

models, language, music and even knowledge itself.  

In this section, we shall discuss the symmetry from three perspectives: in mathematics, 

including geometry, the most familiar type of symmetry for many people; 

in science and nature; and in the arts, covering architecture, art and music. The opposite of 

symmetry is asymmetry. 

 

 

 

                                                                  Figure (6) 
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A geometric shape or object is symmetric if it can be divided into two or more identical 

pieces that are arranged in an organized fashion. This means that an object is symmetric if 

there is a transformation that moves individual pieces of the object but doesn't change the 

overall shape. The type of symmetry is determined by the way the pieces are organized, or by 

the type of transformation: 

• An object has reflectional symmetry (line or mirror symmetry) if there is a line going 

through it which divides it into two pieces which are mirror images of each other.  

• An object has rotational symmetry if the object can be rotated about a fixed point 

without changing the overall shape.  

• An object has translational symmetry if it can be translated without changing its 

overall shape.  

• An object has helical symmetry if it can be simultaneously translated and rotated in 

three-dimensional space along a line known as a screw axis.  

• An object has scale symmetry if it does not change shape when it is expanded or 

contracted. Fractals also exhibit a form of scale symmetry, where small portions of the 

fractal are similar in shape to large portions.  

• Other symmetries include glide reflection symmetry and roto reflection symmetry. 

Symmetry in physics has been generalized to mean invariance—that is, lack of change—

under any kind of transformation, for example arbitrary coordinate transformations. This 

concept has become one of the most powerful tools of theoretical physics, as it has become 

evident that practically all laws of nature originate in symmetries. In fact, this role inspired 

the Nobel laureate PW Anderson to write in his widely read 1972 article More is 

Different that "it is only slightly overstating the case to say that physics is the study of 

symmetry." See Noether's theorem (which, in greatly simplified form, states that for every 

continuous mathematical symmetry, there is a corresponding conserved quantity such as 

energy or momentum; a conserved current, in Noether's original language); and 

also, Wigner's classification, which says that the symmetries of the laws of physics determine 

the properties of the particles found in nature. Important symmetries in physics 

include continuous symmetries and discrete symmetries of spacetime; internal symmetries of 

particles; and supersymmetry of physical theories. 

2.10 SUMMARY  

In this unit, we have studied Hamilton’s principle, modified Hamilton’s principle and its 

advantages. In this unit, we have derived Lagrange’s equations of motion from Hamilton’s 

variational principle. Here, we have discussed and learnt the calculus of variations by 

considering some important examples and problems. We have seen that the calculus of 

variations is concerned with the maxima or minima (collectively called extrema) of 

functionals. Euler-Lagrange’s equations also have been derived in this unit. We have 

discussed various conservation laws and their importance. To present the clear understanding 
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and to make the concepts of the unit clear, some solved examples are given in the unit. To 

check your progress, self assessment questions (SAQs) are given in the unit. 

2.11 GLOSSARY 

Fundamental – basic 

Configuration- pattern, design 

Conservative- traditional, conventional  

2.12 TERMINAL QUESTIONS 

1. State Hamilton’s principle and derive Lagrange’s equations of motion from it. 

2. Explain modified Hamilton’s principle. Discuss advantages of Hamilton’s variational 

principle. 

3. What is δ-variation? Establish Euler- Lagrange’s equations. 

4. What do you mean by variational principle? Explain. 

5.  What are conservative laws? Prove that if there is no external force acting on a particle, 

then its linear momentum is conserved. 

6. Prove that if  external torque acting on the particle is zero, its angular momentum is 

conserved. 

7. Explain and discuss Noether’s theorem. What are symmetries? Explain. 

8. State and prove energy conservation law. 

2.13 ANSWERS 

Self Assessment Questions (SAQs): 

1.  Let us consider a curve AB which passes through the fixed points A (x1, y1) and B (x2, 

y2). The curve AB has been revolved about Y-axis to generate a surface.  

Let us consider a strip of the surface with radius x and breadth PP
’
 = ds. 

ds
2
 = dx

2
 + dy

2
        or        ds =   dx 

The area of the strip ds = 2π x ds = 2π x   dx 
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 Y 

 

 

 B(x2, y2) 

 

 

 P
’
 

 P(x, y) 

 x 

 

 A(x1, y1) 

 

 X 

 O 

 

 

 

 Z 

 Minimum surface area of revolution 

 

 

 ds 

  

                x    P P
’
 

 

 

 

                                           Circular strip of area 2π x ds 

Total area of revolution S = 2π   dx 

This area will be minimum ( extremum ), if δS = 0, for which Euler- Lagrange equation is to 

be satisfied i.e. 

                                                  = 0     
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Where f =   x            

Here,    = 0 ,          =                  

From above equation, we get- 

                                                             = 0       or      = a (constant of integration) 

Squaring both sides, we get- 

                                              = a
2
 

Or                                       =           or    dy/dx =  

Or                                  y =    dx   = a cosh
-1

(x/a) + b  

where b is another constant of integration. 

From the above equation, we get- 

                                              cosh
-1

 (x/a) =  

or                                            x =  a cosh(    ) 

This is the equation of a catenary. This is the equation of the curve for which the surface of 

revolution is minimum. The constants a and b can be determined by applying the conditions 

that the curve passes through points (x1, y1) and (x2, y2). 

2. (i)     (a), (b)                                     (ii)  (a), (c)                     

2.14 REFERENCES 

1.  Classical Mechanics, J.C. Upadhyaya, Himalaya Publishing House, New Delhi 

2. Classical Mechanics, Gupta, Kumar, Sharma, Pragati Prakashan, Meerut 

3.  Classical Mechanics, John R., Taylor 

4. Classical Mechanics, R. Douglas Gregory, Cambridge University Press 

2.15 SUGGESTED READINGS 

1.  Classical Mechanics, H. Goldstein,  Pearson Education   

2. Introduction to Classical Mechanics, David Morin, Cambridge University Press 

3. A Course on Classical Mechanics, Madhumangal Pal, Narosa 



MSCPH502 

47 

 

4. Classical Mechanics and General Properties of Matter, P.D. Raychaudhuri, New Age 

International 

5. Introduction to Classical Mechanics, French and Ebison, Kluwer Academic Publisher 

6. Classical Mechanics, C.R. Mondal, PHI 

7. Classical Mechanics, SN Biswas, New Central Book Agency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MSCPH502 

48 

 

UNIT 3                CENTRAL FORCE MOTIONS - I 

Structure  

3.1 Introduction 

3.2 Objectives 

3.3 Reduction to One-Body Problem 

3.4 General Properties of Central Force Motion 

      3.4.1 Angular Momentum 

      3.4.2 Law of Equal Areas 

3.5 Differential Equation for the Orbit 

      3.5.1 Integrable Power-Law Potentials 

3.6 Effective Potential 

3.7 Conditions for Stability and Closure of Orbits 

3.8 Kepler Problem: Inverse-Square Force Law  

3.9 Summary 

3.10 Glossary  

3.11 Terminal Questions 

3.12 Answers 

3.13 References 

3.14 Suggested Readings 

 

 

 

 

 

 

 

 



MSCPH502 

49 

 

3.1 INTRODUCTION 

In this unit, we will discuss the motion of two bodies each of which exerts a conservative, 

central force on the other but which are subject to no other, external forces. There are many 

examples of this problem: the two stars of a binary star system, a planet orbiting the sun, the 

moon orbiting the earth, the electron and proton in a hydrogen atom, the two atoms of a 

diatomic molecule. In most cases the true situation is more complicated. For example, even if 

we are interested in just one planet orbiting the sun, we cannot completely neglect the effects 

of all the other planets; likewise, the moon—earth system is subject to the external force of 

the sun. Nonetheless, in all such cases, it is an acceptable starting approximation to treat the 

two bodies of interest as being isolated from all outside influences.  

Here it is important to also state that the examples of the hydrogen atom and the diatomic 

molecule do not belong in classical mechanics, since all such atomic-scale systems must 

really be treated by quantum mechanics. However, many of the ideas that we will develop in 

this unit (e.g. the important idea of reduced mass) play a crucial role in the quantum 

mechanical two-body problem. 

3.2 OBJECTIVES 

After studying this unit, you should be able to 

• describe how a two-body problem can be reduced to a mathematically 

equivalent one-body problem 

• understand the idea of reduced mass 

• describe the general properties of central force 

• define Kepler’s second law of planetary motion 

• describe what is meant by effective potential 

• derive the differential equation for the orbit 

• describe the conditions for stability and closure of orbits 

• derive the inverse-square force law and describe how it relates to the 

Kepler’s laws of planetary motion   

3.3 REDUCTION TO ONE-BODY PROBLEM 

Let us consider a conservative isolated system of two point masses  and  with position 

vectors  and  relative to the origin O of some inertial reference frame as shown in Figure 

3.1.  
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FIGURE 3.1 A conservative system of two point masses.  

The two masses interact via central force for which the potential  is a function of the 

separation distance between them, i.e. . Such a system has six degrees of 

freedom, which means six independent generalized coordinates are required to describe the 

state of the system. We can conveniently choose the three generalized coordinates to describe 

the relative position , since the potential energy is expressed as , and the other three, 

describing the center-of-mass (CM) position, , of the two masses. Because of the 

symmetries in the system, the two-body problem can be reduced to a mathematically 

equivalent one-body problem.  

The total kinetic energy of the system  can be written as the sum of the kinetic energy of the 

CM,  plus the kinetic energy of the motion about the CM, , i.e. 

 

 

where  is the total mass of the CM. Here  and  are the position vectors of 

the two point masses relative the CM,  

 

 

where . Similarly, 

 

Therefore, the kinetic energy for the system is given as 
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This can be thought of as the kinetic energy of two fictitious objects, one of mass  moving 

with the speed of the CM, and one of mass  moving with the speed of the relative position , 

where  is called the reduced mass of the two-particle system, 

 

We may consider two simple limits here: 

 If , then the reduced mass, ,  and . That is, the CM is 

fixed on the heavier mass and the motion is entirely of the smaller mass.  

 If , then ,  and . In this case, the motion 

of the two particles is completely symmetric about the CM. 

The Lagrangian for the system can be written as 

 

From the above expression, it is obvious that  is not present, i.e. the three coordinates of  

are cyclic or ignorable and hence, the corresponding linear momentum or the velocity of the 

CM, , which means that the CM does not move or moves with a constant 

velocity. Therefore, the first term in the above expression is a constant and the Lagrangian 

takes the form  

 
 

The rest of the Lagrangian is exactly same as for the one-body problem, i.e. a fixed center of 

force with a single particle of mass  at a distance  from it. Thus, the central force motion of 

two bodies about their CM can always be reduced to an equivalent one-body problem. 

3.4 GENERAL PROPERTIES OF CENTRAL FORCE MOTION 

From the results of the previous section, we can see that we only need to consider the 

problem of a single particle of reduced mass  moving about a fixed center of force, which is 

taken as the origin of the coordinate system as shown in the Figure 3.2. 
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FIGURE 3.2 Motion of a particle subjected to a central force is confined to an x-y plane 

perpendicular to . 

3.4.1 Angular Momentum 

We know that the torque is given as 

 

If  is in the direction of the position vector , then we can see that the net torque should be 

zero, and therefore, 

 

Since, ,  is always perpendicular to the fixed direction of  in space. This can be 

true if and only if  always lies in the plane whose normal is parallel to . When  is directed 

along the z-axis, then  will lie in the x-y plane, that is, the polar angle . Therefore, 

 

We know that the Lagrangian in the spherical polar coordinate system is given by 

 

In our case, since  and , the Lagrangian takes the form, 

 

As it is clear that  does not contain , i.e.  is a cyclic coordinate, whose corresponding 

generalized momentum is the angular momentum of the system, i.e. 
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One of the two Lagrange’s equations of motion is then simply, 

 
 

 

 
 

 

where  is the constant magnitude of the angular momentum. 

3.4.2 Law of Equal Areas 

From equation (3.2), we also get the following interesting result,  

 
 

 

The factor  is inserted because  is nothing but the areal velocity – the area swept 

out by the radius vector per unit time as shown in Figure 3.3.  

 
FIGURE 3.3 The area dA swept by the radius vector in time dt. 

From the figure we can see that the differential area  swept out in time  is 

 
And hence, the areal velocity is given as  
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From equation (3.4a), we can see that the areal velocity is constant. The conservation of 

angular momentum is thus, equivalent to saying that the areal velocity is constant, which is 

also the Kepler’s second law of planetary motion. 

The Lagrange’s equation for the coordinate  is given as 

 
 

Substituting,  from equation (3.3) in the above equation, we get  

 

 
 

 

 

 

 

 

 
 

 

As we know the total energy  is given as 

 

 

Therefore, the constant in equation (3.7) is equal to the total energy of the system , which is 

conserved. The constants, angular momentum  appearing in equations (3.3) and total energy 

 in (3.7) are called the integrals of motion (or first integrals of motion). 

From equation (3.7), we have 
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Integrating both sides, we have 

 

 

 

The above equation gives , but we can rearrange to solve for . Once, we have 

obtained , we can integrate equation (3.3) to obtain , i.e. 

 

On integrating the above equation, we get 

 
 

 

Thus, equations (3.8) and (3.9) provide us  and , by which we can locate the position 

of the particle on the path at any instant of time  and hence, are the solutions of our central 

force problem. If the nature of force is known, that is,  is known, then the integration of 

these two equations may be done. The result will contain  and . 

3.5 DIFFERNTIAL EQUATION FOR THE ORBIT 

We want to deduce the nature of an orbit, in case of a central force, so that the solution to the 

equation of the orbit can give us the radial distance  as a function of .  

From equation (3.3), 
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Therefore,  

 

 

 

From equation (3.6), the equation of motion for a particle of reduced mass , moving under 

central force , can be written as  

 

 
 

 

 
 

 

This is a differential equation for the orbit connecting  and . It can be written in more 

compact form if instead of , it is written in terms of . Therefore,  

 

 

Putting these values in equation (3.10), we get 

 
 

 

This is the differential equation for the orbit provided the force law  is 

known. Conversely, if the equation of orbit is known, i.e. , then one can work 

backwards and obtain the force law. However, one thing that should be noted carefully is that 
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an orbit is uniquely specified for a central force but the converse is not true, i.e. there might 

be infinitely large number of force laws or force fields for a specified orbit. 

 

Example 1: Show that the force that will cause a particle to describe a circular orbit, which 

passes through the center of the force, varies as the inverse fifth power of the distance?  

Solution:  

Equation of a circle of radius  whose circumference passes through the origin is  

 

where  and  are the usual polar coordinates (Figure 3.4).  

 

 

FIGURE 3.4  

 

 

 

 

  

Substituting the above expression in the differential equation (3.11), we get 



MSCPH502 

58 

 

 

 

 

 
 

 

 

Example 2: Show that for the orbit described in the previous example, the total energy of the 

particle is zero. 

Solution:  

The kinetic energy of the particle moving in a circular orbit is given as 

 

 

 

In terms of  [equation (3.3)], the KE becomes 

 

 

Potential energy of the particle is given as 
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Therefore, the total particle energy . 

3.5.1 Integrable Power-Law Potentials 

The equation of the orbit can be worked out from the conservation of total energy. We know 

that  

 

 

 

Substituting  in the above equation, we get 

 
 

From equation (3.3) 

 

Integrating both sides, we get 

 

For any particular force law, one can obtain the actual equation of the orbit by eliminating  

using the solution (3.8), to get 

 

 
 

 

Replacing  by  in the above expression, we get 
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The most important force laws are the power-law functions of ,  

  

 

so that the force varies as the n
th

 power of . With this potential, equation (3.13) becomes 

 
 

 

If  and , the denominator in the above expression takes the form 

 and the integration can directly be expressed in terms of circular functions. 

Since,  corresponds to a constant potential [equation (3.17)], which is no force at all, 

we exclude this case. We are therefore, left with  and  corresponding to the 

inverse-square and inverse-cube force laws. 

3.6 EFFECTIVE POTENTIAL 

While describing the motion of a particle under the influence of a central force, we have seen 

that the two-dimensional motion can be reduced to a one-dimensional problem by using 

conservation of angular momentum and energy. Before obtaining any specific force laws, let 

us look into the motion in the general case, without explicitly arriving at any solutions but 

just making use of equations of motion and the conservation theorems and making plots of 

 vs. . The conservation of total energy according to equation (3.7), is given as 

 

where  and  are the kinetic energies due to the radial and angular motions. 

Since, , also known as the centrifugal energy, is a function of  and so it , the two terms 

are combined to given the effective potential energy, i.e. 

 
 

 

where . 

As an illustration, consider a plot of  against  for the case of an attractive inverse-square 

law of force, 
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For positive , the minus sign ensures that the force is attractive and towards the center of the 

force. The potential energy for this force is given as 

 

And the corresponding effective potential is 

 
 

 

 

FIGURE 3.5 Equivalent one-dimensional potential for attractive inverse-square law of 

force.  

Figure 3.5 shows the effective potential with the solid line and the two dashed lines showing 

the actual central potential term  and the centrifugal potential term , which is a 

repulsive potential arising from angular momentum conservation. The relative sizes of the 

two terms determine if the effective potential is attractive or repulsive. The shape of the 

effective potential and the total energy of the system determine if the orbits are unbounded, 

bounded, or bounded and circular, and if the bounded orbits are periodic (closed)
1
. All 

unbounded orbits are open, but not all bounded orbits are closed, or in other words, periodic. 

                                                             
1
 In closed orbits, the particle eventually retraces its own footsteps. For example, motion of 

a particle in a circle about the center of force. 
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If the energy of the particle , like the case of  , the motion of the particle is 

unbounded with  being the upper limit of . A particle headed toward the center of force 

can come as far as  and then must turn back, and may go back to infinity. In other words, 

there is a single turning point at  (Figure 3.6a). The distance between  and  is 

, i.e. proportional to the square of radial velocity, and becomes zero at the turning point 

. Now, if the particle’s energy , a roughly similar orbit behavior is obtained.  

 
FIGURE 3.6 (a) The motion of particle when E > 0 corresponding to unbounded 

motion. (b) Motion of a particle with energy 0 > E > Emin, confined between two circles 

of radii r1 and r2. 

But for any lower energy, i.e. , such as  and , the motion of the particle is bounded. 

Considering  case, we can see that for the kinetic energy to be positive, in addition to 

a lower limit of , there is also an upper limit of . So, there are two turning points 

 and . Bounded system does not automatically imply that the orbits are closed, but that 

the orbits are contained between two circles of radii  and  with turning points always 

lying on the two circles (Figure 3.6b). If the energy , is at the minimum of the 

effective potential, then the two bounds coincide, implying that there is no radial motion and 

the orbit is a circle of radius . If the energy of the particle is less than the minimum energy 

, no physically meaningful motion is possible, as in such a scenario the kinetic energy of 

the particle  becomes negative. 
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For the case of attractive inverse-square force law discussed above, we shall see in Section 

3.7 that the shape of the orbit for particle energy  is a hyperbola, for  is a 

parabola, for  is a an ellipse and for , where  is negative, the shape of the 

orbit is a circle.  

Another commonly encountered force law is the isotropic harmonic law of force. The 

important features of the central force can also be understood by considering the case of a 

harmonic oscillator. For this case of linear restoring force, 

 

For positive , the minus sign ensures that the force is attractive and towards the center of the 

force. The potential energy for this force is given as 

 

Thus, the corresponding effective potential becomes 

 

 

 

 
FIGURE 3.7 Equivalent one-dimensional potential for an isotropic harmonic law of 

force. 

Figure 3.7 shows the effective potential with the solid line and the two dashed lines showing 

the actual central potential term  and the centrifugal potential term . As in the 

previous case, the relative sizes of the two terms determine if the effective potential is 

attractive or repulsive. For a given energy , which is greater than the minimum energy 

, the particle oscillates between two extreme values, the lower limit of  
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and the upper limit of  of the radial distance . These two points are the turning points of 

motion, where the kinetic energy of the particle  is zero. The motion is bounded for all 

physically possible energies and does not pass through the center of force. It can be seen that 

in this case, the shape of the orbit is an ellipse. 

When the particle energy , i.e.  and the angular momentum 

, the motion of the particle is bounded and describes circular motion, whose one-

dimensional projection describes the simple harmonic motion. The radial distance  defines 

a circle of radius .  

 

Example 3: Apply the energy diagram method by making plots of  vs.  to examine the 

feature of the orbit for the following attractive potential 

 

where  is a positive constant.  

Solution: From the energy diagram shown in the following figure, we can see that for an 

energy , there are two types of motions possible, depending on the initial value of . If it is 

less than , the motion will be bounded and  will always remain less than , and the 

particle will pass through the center of force. On the other hand, if initial  is greater than , 

then the motion will be unbounded and ,  being the single turning point, will be the lower 

limit of . 
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FIGURE 3.8 Equivalent one-dimensional potential for an attractive inverse-fourth law 

of force. 

As for the initial value of  between  and , this is not physically possible because this 

would result in negative value of kinetic energy. 

 

Self Assessment Question (SAQ) 1: Choose the correct option: 

A particle moving under the influence of a central force  (where  is the position 

vector of the particle and k is a positive constant) has non-zero angular momentum. Which of 

the following curves is a possible orbit for this particle? 

(a) A straight line segment passing through the origin. 

(b) An ellipse with its center at the origin. 

(c) An ellipse with one of the foci at the origin. 

(d) A parabola with its vertex at the origin. 

Self Assessment Question (SAQ) 2: Choose the correct option: 

A planet of mass  moves in a circular orbit of radius  in the gravitational potential 

, where k is a positive constant. The orbital angular momentum of the planet is 
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Paragraph for self assessment questions 3-4: Consider a comet of mass  moving in a 

parabolic orbit round the sun. The closest distance between the comet and the sun is . Mass 

of the sun is denoted by  and the gravitational constant by . 

Self Assessment Question (SAQ) 3: Choose the correct option: 

What is the angular momentum of the comet? 

 

Self Assessment Question (SAQ) 4: Choose the correct option: 

Which one of the following is TRUE for the above system? 

(a) The acceleration of the comet is maximum when it is closest to the sun. 

(b) The linear momentum of the comet is constant. 

(c) The comet will return to the solar system after a specified period. 

(d) The kinetic energy of the comet is a constant. 

 

3.7 CONDITIONS FOR STABILITY AND CLOSURE OF 

ORBITS 

If the potential function for the central force is of the form ,  being a positive 

constant, then for any given angular momentum , the effective potential is given as 

 

 

The character of the circular orbit depends on whether the extreme value of  is a 

minimum, or a minimum. If  exhibits a minimum as shown in Figure 3.7, we can see that 

for a given value of  if the energy is a little higher than  that is required for a circular orbit, 

then the orbit will still be bounded, although not circular. On the other hand, if  exhibits a 

maximum as shown in Figure 3.8, then the slightest raising of the energy above this value 

would result in the motion becoming unbounded. The circular orbit arising at a minimum is 

called stable and the circular orbit arising because of a maximum is termed as unstable. Thus, 

the stability of the circular orbit can be found from the sign of the second derivative of , 

the positive value signifying a minimum and a stable orbit while the negative second 

derivative indicates the presence of a maximum and therefore, an unstable circular orbit. 

A stable orbit, therefore, occurs at  when 
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Thus, 

 
And 

 

Thus, a circular orbit under a central force is stable if  or  

 
 

 

If a circular orbit is stable, then a small raising of the energy above the value for a circular 

orbit results in slight variation of  about  and as a result, the particle executes a simple 

harmonic motion, an example of which is depicted in Figure 3.9. 

 
FIGURE 3.9 Orbit for motion in a central force deviating slightly from a circular orbit. 

It has been found that the only values of  that result in closed circular orbits for all bound 

particles for more than first-order deviations from circularity, are  and  

corresponding to the following familiar central forces: 

 Hooke’s law ( ):  

 

 Inverse-square law : 

 

The above result is enormously useful and has a very important consequence. Since, Hooke’s 

law is not a realistic force law for all distances, because at large distances, , the only 

possible alternative for closed orbits, therefore, is the inverse-square law of force. Thus, the 
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nature of the orbits in a gravitational field itself fixes the form of the force law and leads to 

the conclusion that the gravitational force that exists in nature must vary as the inverse-

square of the distance.  

3.8 KEPLER PROBLEM: INVERSE-SQUARE FORCE LAW 

We have already seen that Kepler’s second law follows directly from the conservation of 

angular momentum in conservative systems. Now, we shall see how Kepler’s first and third 

law are consequences of the nature of gravitational potential, which follows from the inverse-

square central force law. For this case, the force, which is attractive in nature, can be written 

as 

 
where  is known as the force constant.   

 

 

There are many ways to integrate the equation for the orbit. We directly use the expression 

(3.16b) and put , to get  

 
 

 

Here the integral is taken as indefinite and  is the constant of integration, whose value can 

be determined by the initial conditions.  

The above indefinite integral is of the standard form, 

 

To use this, we need to set, 

 

With these substitutes, equation (3.24) becomes 
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Replacing  by  in the above equation, we get 

 
 

 

The constant of integration  can now be identified as one of the turning angles of the orbit. 

Comparing the above equation with the general equation of conics with one focus at the 

origin, 

 

where  is the eccentricity of the conic section, we find that the orbit is always a conic section 

with the eccentricity, 

 
 

 

The value of  determines the shape of the orbit, according to the following scheme: 

 Ellipse:   and   

 Circle:   and   

 Parabola:  and   

 Hyperbola:   and   

 Not allowed:   and   

The two particles in bound motion cannot leave each other, such as the earth and the sun, in 

which case the total energy . So, in the case of planetary motion,  and the orbit is 

elliptical. This justifies the Kepler’s first law, which states that planets move in elliptical 

orbits with the sun at one focus.  
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FIGURE 3.10 Definitions of different quantities in elliptical orbits. 

From equation (3.25a),  

 

An ellipse is a curve traced by a point so that the sum of its distances from two foci F and F’ 

is constant (Figure 3.10), i.e. 

  
where  

 

Therefore, the length of semi-major axis in terms of the particle energy is equal to 

 

 

 
 

While the length of the semi-minor axis is given by 

  

Now, let us calculate the time period of planetary motion and see if it leads us to the Kepler’s 

third law, which states that the square of the period of revolution is proportional to the cube 

of the semi-major axis. From the relation for areal velocity [equations (3.4b) and (3.3)], we 

have 
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The total area covered in one period  is then given by 

 

 
 

Substituting the expressions for the semi-minor axis in the above equation, we get 

 

 

From equation (3.27), substituting  in the above equation, we get 

 

 

or , which is the Kepler’s third law.  

Since, the gravitational force between the sun and a planet, which is an example of the 

inverse-square law, is given as 

 

where  is the mass of the sun,  is the mass of the planet and  is the gravitational 

constant, in astronomy, the constant  occurring in equation (3.30) is given by 

  

 

3.9 SUMMARY 

In this unit, we began with introducing the concept of reduced mass and how a two body 

central force problem can be reduced to a one body problem. Then we understood the 

different properties of the central force and we derived the Kepler’s second law of planetary 

motion. This was followed by an overview of the concept of effective potential, and then we 
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derived the differential equation for an orbit. We also touched upon the conditions for 

stability and closure of orbits. And finally, we saw how the inverse-square force law relates 

to the Kepler’s laws of planetary motion.  

 

3.10 GLOSSARY 

Acceleration - is the rate of change of velocity of an object with respect to time. An object's 

acceleration is the net result of any and all forces acting on the object, as described by 

Newton's Second Law. 

Angular momentum – is the rotational equivalent of linear momentum. It is an important 

quantity in physics because it is a conserved quantity – the total angular momentum of a 

system remains constant unless acted on by an external torque. In three dimensions, the 

angular momentum for a point particle is a pseudovector r×p, the cross product of the 

particle's position vector r (relative to some origin) and its momentum vector p = mv.  

Central Force - is a force that points from the particle directly towards a fixed point in space, 

the center, and whose magnitude only depends on the distance of the object to the center. 

Effective Potential – The effective potential (also known as effective potential energy) is a 

mathematical expression combining multiple (perhaps opposing) effects into a single 

potential. In classical mechanics it is defined as the sum of the 'opposing' centrifugal potential 

energy with the potential energy of a dynamical system. 

Motion – is a change in position of an object over time. 

Kinetic Energy – energy which a body possesses by virtue of being in motion. 

Orbit – is the gravitationally curved trajectory of an object, such as the trajectory of a planet 

around a star or a natural satellite around a planet. 

Planet – an astronomical body orbiting a star or stellar remnant that is massive enough to be 

rounded by its own gravity, and is not massive enough to cause thermonuclear fusion. 

Potential Energy – the energy of a particle or system of particles derived from position, or 

condition, rather than motion. 

Reduced Mass – the "effective" inertial mass appearing in the two-body problem of 

Newtonian mechanics. It is a quantity which allows the two-body problem to be solved as if 

it were a one-body problem. 

Velocity – The velocity of an object is the rate of change of its position with respect to a 

frame of reference, and is a function of time. Velocity is equivalent to a specification of its 

speed and direction of motion. 

3.11 TERMINAL QUESTIONS 
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1. Discuss the two-body central force problem. Show that the motion of two interacting 

particles is equivalent to the motion of a single particle in an external field. 

2. What is meant by equation of motion and the first integrals? 

3. State and prove the Kepler’s laws of planetary motion. 

4. Derive the differential equation for the orbit of a particle moving under the influence of a 

central force. Investigate the motion of the particle under the attractive inverse square 

law. 

5. Choose the correct option:  

A planet of mass  and an angular momentum  moves in a circular orbit in a potential 

, where  is a constant. If it is slightly perturbed radially, the angular 

frequency of the radial oscillations is 

 

Paragraph for questions 6-7: Consider the motion of a particle in the potential field  as 

shown in the figure below. 

 
FIGURE 3.11 

6. Choose the correct option: 

Suppose the particle has a total energy  as shown in the figure. Then the speed of 

the particle is zero when it is at point 

(a) P  (b) Q  (c) S  (d) T 

 

7. Choose the correct option: 

Which of the following statement is NOT correct about the particle? 

(a) It experiences no force when its position corresponds to the point Q on the curve. 
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(b) It experiences no force when its position corresponds to the point R on the curve. 

(c) Its speed is the largest when it is at S. 

(d) It will be in a closed orbit between P and R, if . 

 

8. Choose the correct option: 

A space station moving in a circular orbit around the earth goes into a new bound orbit 

by firing its engine radially outwards. The orbit is  

 

 

3.12 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. (b) 

2. (d) 

3. (d) 

4. (a) 

 

Selected Terminal Questions: 

5. (b) 

6. (b) 

7. (c) 

8. (c) 
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4.1 INTRODUCTION 

In this unit, we will continue with the discussion from the last unit on Kepler laws of 

planetary motion and inverse square law. We will first understand the concept of escape 

velocity, and then move on to discuss the concepts of geosynchronous and geostationary 

orbits. Then we will see how a geostationary satellite is launched into its orbit. Then we will 

discuss about orbital transfers and interplanetary trajectories.  

In this unit, we will also discuss the virial theorem. 

4.2 OBJECTIVES 

After studying this unit, you should be able to 

• describe what is meant by escape velocity 

• understand the concepts of geostationary and geosynchronous orbits 

• describe how a geostationary satellite is launched into its orbit 

• understand the concept of Hohmann transfer orbit 

• discuss how interplanetary trajectories look like for both inner and outer 

planets 

• discuss the virial theorem 

4.3 ESCAPE VELOCITY 

Consider a body of mass  projected upward from the surface of the earth. Neglecting 

the air resistance, if the velocity of the projectile is greater than the escape velocity, the body 

will escape from the earth’s sphere of influence into the outer space. If  is the velocity with 

which the body is projected upward, then the total energy of the body at the surface of the 

earth is given as 

 

where  and  are the radius and the mass of the earth. Since, the gravitational force acting 

on the particle is given by , therefore,   or the acceleration due to 

gravity
2
 . Using this relation, the energy of the body at the surface of the earth is 

given as 

                                                             
2
 Close to the surface of the earth, the acceleration due to gravity . 
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In order to escape, the trajectory has to be non-elliptical, which is possible only when . 

Therefore, if  is the escape velocity, then 

 

  

It must be noted that the above condition for the escape velocity is independent of the angle 

of projection of the projectile. For , , we get .  

One must understand that this is not a practical way of launching a satellite or a spacecraft 

and put them into orbits. In the subsequent sections, we will study briefly how this task is 

accomplished.      

4.4 GEOSTATIONARY SATELLITES 

A body that revolves constantly round a comparatively much larger body is called a satellite. 

Moon that revolves around the earth is an example of a natural satellite. Then there are man-

made satellites or artificial satellites that are placed with the help of multistage rockets in 

stable orbits to revolve round the earth. The concepts that were discussed for the planetary 

orbits are also valid for satellites. 

4.4.1 Geosynchronous Orbit 

A geosynchronous orbit is an orbit around the earth with an orbital period of one sidereal
3
 

day, purposely matching the earth's sidereal rotation period (23 hours 56 minutes and 4.1 

seconds), irrespective of its eccentricity and orientation with respect to the earth’s equator. 

The synchronization of orbital and rotation period means that, an observer on earth will see 

an object in this orbit in the same position in the sky at the same time of the day, each day. In 

other words, for an observer on the surface of the earth, an object in the geosynchronous orbit 

returns to exactly the same place in the sky after a period of one sidereal day. 

4.4.2 Geostationary Orbit 

A special case of geosynchronous orbit is the geostationary orbit, which is a circular 

geosynchronous orbit at zero inclination (i.e., in the plane of the equator). With these 

additional constraints, an object in a geostationary orbit remains stationary as seen from all 

the points on the surface of the earth. This means that we can point a TV satellite antenna at a 

satellite in a geostationary orbit, it will continue to point at the geostationary satellite. 

                                                             
3
 Sidereal time refers to a time scale that is based on the earth's rate of rotation measured relative to the 

distant stars, i.e. the constellation of fixed stars, rather than the sun or the planets. 
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Let us now find the height  of the geostationary orbit above the earth’s equator. Consider the 

case of a geostationary satellite of mass , where  is the mass of the earth. Since, the 

satellite has the same period  as the rotation of the earth, its orbiting speed  is given as 

 
 

where  is the radius of the orbit. The satellite in the orbit is only acted by gravitational force, 

which must provide the necessary centripetal force for it to move in a circular orbit. 

Therefore, 

  

Substituting  from (3.33) in equation (3.34), we get 

 

 

where the radius of earth . Substituting the values of 

, ,   

in the above expression, we obtain the height of the geostationary orbit above the earth’s 

equator as  

 

We could have also obtained equation (4.4) directly from Kepler’s third law [equation 

(3.30)], where  becomes  in the case of circular orbit. Since, , the reduced mass 

. 

4.4.3 Launching Geostationary Satellites into Orbit 

There is a significant amount of knowledge and technology used to make sure that satellites 

enter their orbits in the most energy efficient ways possible. Certainly, it is possible to place a 

satellite directly into geostationary orbit, but this would take more energy and would not be 

practical.  
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FIGURE 4.1 Transfer orbit for launching an artificial satellite into the geostationary 

orbit. 

Figure 4.1 depicts a representative satellite launch method followed by space agencies such 

as ISRO and NASA. During the launch phase, the launch vehicle places the satellite into the 

transfer orbit, which is an elliptical orbit having its farthest point from earth known as 

apogee, at the geosynchronous elevation of 35,786 km and its nearest point from earth known 

as perigee, at an elevation of usually not less than 180 km. Alternatively, the satellite can first 

be placed into a low earth orbit and once in the correct position in this orbit, rockets are fired 

to put the satellite into the transfer orbit, where it simply coasts from perigee to apogee. 

Again, when the satellite reaches the required altitude (apogee), the rocket or booster is fired 

to retain it in the geostationary orbit with the correct velocity. This final step may not be a 

single step process but may require a few intermediate drift orbits before the orbit is fully 

circularized and its inclination is lowered to zero.  

4.5 ORBITAL TRANSFERS AND INTERPLANATARY 

TRAJECTORIES 

For simplicity, let us assume that the orbits of the planets around the sun to be circular and try 

to understand the different phases in the Mars Orbiter Mission, which can be envisaged as a 

rendezvous problem, i.e. a space probe on the earth has to go and meet the Martian orbit.  

Let the radii of orbits of the earth and the Mars be  and , respectively, with the sun as 

their common center as shown in Figure 4.2. In the geocentric phase, the spacecraft is 

injected into an elliptical transfer orbit by the launcher. One primary concern is to get the 

spacecraft to Mars, using the least amount of fuel, and hence a minimum energy transfer orbit 

or Hohmann
4
 transfer orbit is used to send the spacecraft from the earth to the Mars. The 

elliptical transfer orbit is tangential to the earth’s orbit at E and to the Mar’s orbit at M. 

                                                             
4
 The fundamental assumption behind Hohmann transfer is that there is only one body which exerts a 

gravitational force on the body of interest, such as a spacecraft. This is also a good model for transferring an 

earth-based satellite from a low orbit to a geostationary orbit. 
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FIGURE 4.2 Transfer orbit from the earth to the Mars is tangential to the circular 

orbits of the earth and the Mars around the sun, at E and M, respectively.  

As can be seen from Figure 4.2, the length of the major axis of the ellipse is given as 

 
 

 

The earth of mass  is going round the sun of mass  in a circular orbit with an orbital 

velocity of . The gravitational force between them provides the necessary centripetal force 

for the earth to move in a circular orbit, therefore, 

 

 

 

In the geocentric phase, the spacecraft is maneuvered into a departure hyperbolic trajectory 

with which it escapes from the earth’s sphere of influence with earth’s orbital velocity  

plus  boost. If  is the velocity of the probe in the transfer orbit, then 

  

At the point of departure E from the earth’s sphere of influence, we can write the total energy 

 of the probe as the sum of the gravitational potential energy and the kinetic energy as 
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For the transfer orbit, we can write 

 
 

 

Therefore, 

 
 

 

 

And the gravitational boost needed for orbit transfer is given as 

 

 

The sphere of influence of earth ends at about 918347 km from the surface of the earth, 

beyond which the perturbing force on the probe is due to the sun only and it enters the 

heliocentric phase. As the space probe leaves the earth’s orbit and enters the transfer orbit, 

the probe’s speed , the earth’s orbital speed. Once, the probe is in the transfer orbit, it 

will simply coast from point E to point M, which is roughly one-half of an ellipse around the 

sun in about half the time period of the transfer orbit. Eventually it will intersect the orbit of 

Mars at the exact time that Mars is also there. According to Kepler’s third law [equation 

(3.30)], , so we can write 

 

 
 

 

where  and  are the time periods of the earth’s orbit and the transfer orbit, respectively. 

As the probe coasts to the other end of the ellipse, its speed continuously decreases as its 

distance from the sun increases based on the Kepler’s second law. If  is taken to be the 

speed of the probe when it reaches point M, then from energy conservation, 

 

 

Therefore, from equations (3.44) and (3.37), we get 

 

 

The orbital speed of Mars round the sun is given as 
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We can see that , i.e. the probe is moving slower than Mars when it arrives at Mars, 

hence, Mars approaching from behind will overtake the probe. To tackle this situation, the 

speed of the probe is to be increased from  to  by giving it a  boost. 

In the Martian phase, the probe finally arrives at the Mars sphere of influence, which is about 

573473 km from the surface of the Mars. At the time, the space probe reaches the closest 

approach to the Mars (perigee), it is captured in the Martian orbit by imparting  retro
5
, 

which is known as the Mars orbiter insertion maneuver.  

 
FIGURE 4.3 Transfer orbit from the earth to the Venus is tangential to the circular 

orbits of the earth and the Venus around the sun, at E and V, respectively.  

The condition is a slightly different, if the space probe has to be transferred from the earth to 

one of the inner planets, like Venus as shown in Figure 4.3. When the probe is transferred 

from the earth’s orbit round the sun to a smaller transfer orbit, it is slowed down from  to 

 through a retroburn. As the probe coasts from point E to point V of the elliptical transfer 

orbit to move closer to the sun, its speed continuously increases to .  

 

Example 1: A space vehicle A is moving round the earth in a circular orbit of radius . 

Another space vehicle B is moving in a larger circular orbit of radius . The vehicle A now 

                                                             
5
 Retro means backwards or behind. Retroburning means firing rockets in the opposite direction from the way 

they were fired to push the spacecraft forward. This thrust in the opposite direction slows the spacecraft 

down. 
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has to be docked with B. This is done by means of the Hohmann transfer ellipse between A 

and B (Figure 4.4). The transfer is achieved by means of a burst of speed  at A and a 

second burst of speed  at B to make sure that the satellite will remain in that orbit. 

Determine  and . 

 

FIGURE 4.4 Hohmann transfer orbit and the docking of space vehicles. 

Solution 

For the two circular orbits, we have 

 

where  and  are the masses of the earth and the space vehicle. Therefore, the orbital 

speeds of space vehicles A and B are 

 

 

where  and  are the radii of circular orbits of A and B, respectively. 
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From Kepler’s law, we know that earth is at one of the foci of the transfer ellipse. Therefore, 

from Figure 4.4 we can see that the length of the semi-major axis of the transfer ellipse is 

given as 

  

At point A, while it is in the transfer orbit, the total energy of space vehicle A can be written 

as 

 
 

 

For the elliptical transfer orbit, we can also write the total energy as 

 
 

 

Therefore,  

 
 

 

Therefore, the speed burst required at point A is given as 

 

Similarly, the speed burst required at point B is given as , where the speed of 

the space vehicle at point B in the transfer orbit is . As the space vehicle A coasts to the 

other end of the ellipse, its speed continuously decreases as its distance from the earth 

increases based on the Kepler’s second law. From energy conservation, 

 

Therefore, 

 

And 
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Example 2: A planet has a circular orbit around a star of mass . The star explodes, ejecting 

its outer envelope at a velocity much greater than the orbital motion of the planet, so that the 

mass loss may be considered instantaneous. The remnant of the star has a mass  which is 

much greater than the mass of the planet . What is the eccentricity of the planetary orbit 

after the explosion?  

Solution:  

Since, the mass of star >> mass of the planet, the reduced mass . Before the explosion, 

since the orbit is circular, the eccentricity of the orbit is zero; i.e. 

 

 
 

 

where the angular momentum ,   being the orbiting speed of the planet and  being 

the radius of the orbit. For circular motion, the centripetal force is provided by the 

gravitational force between the star and the planet, i.e.  

 

 

 
 

 

The angular momentum is conserved after the explosion. However, the gravitational potential 

energy is reduced because of mass loss of the star from  to . Hence, the total energy of 

the system changes to , 

 
 

 

Therefore, the eccentricity of the orbit after the explosion is given by 
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4.6 VIRIAL THEOREM 

Another property of central force motion can be derived from the virial theorem. Virial 

theorem was first given by Rudolf Clausius in 1870, and owes its name to the word “vires,” 

the Latin word for force. Virial theorem is applicable to a general gravitationally bound 

system and relates the gravitational potential energy of a system to the kinetic energy, 

providing an insight into the stability of the system. Of course, in a more general system of 

this sort, for even a particle in an elliptical orbit the kinetic and potential energy change with 

time. This is why, the virial theorem refers to time averages of the kinetic and potential 

energy. The fact that the average value of the kinetic energy in a bound system gives a 

measure of the potential energy forms the basis for measurements of the missing mass, or 

dark matter, in galaxies and in clusters of galaxies. 

Consider a general system of interacting particles with position vectors  and the applied 

forces  including forces of constraint, if any. The equations of motion are given as 

 
(4.24) 

Clausius assigned the name virial to the quantity denoted  and defined it as the sum of the 

scalar product of each particle momentum  by its position , 

 

(4.25) 

Therefore, 

 

(4.26) 

From equation (4.24), the first term on the RHS is 

 

while the second term becomes 
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Therefore, equation (4.26) reduces to 

 

(4.27) 

Since, the virial theorem is a statement about the time-averaged motion of a mechanical 

system, we next take the time average of equation (4.27) over a finite time interval , 

 

 
 

(4.28) 

Now, if the system executes motion in a finite region of space, and the velocities of all the 

particles remain finite, then the virial  is bounded and the quantity on the LHS vanishes 

because if the motion is periodic, then  can be chosen as the period and even if the motion is 

not periodic, by choosing  large enough, LHS can be made as small as desired and 

consequently it may be reduced to zero. In both the cases, 

 

 

(4.29) 

Equation (4.29) is called the virial theorem and the quantity  is known as the 

Virial of Clausius. The theorem in this form is very useful in the kinetic theory of gases, in 

particular for obtaining the equation of state of imperfect gases. 

In case, the forces are derivable from a potential 

 

the theorem becomes 

 

(4.30) 

Further, if  is a homogenous function of degrees  of the coordinates , i.e. 

, where the exponent is chosen so that the force law is of the form , then from 

Euler’s theorem on homogenous functions 
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so that equation (4.30) becomes 

 

(4.31) 

Now, since for a conservative system, the total energy of the system is a constant of motion 

and , we get 

 

(4.32) 

Virial theorem, thus enables us to express both  and  in terms of the total energy of the 

system. 

For the special case of any bound system of particles interacting by means of an inverse-

square force ( ), equation (4.31) states that the average kinetic energy is half the 

average (negative) potential energy, i.e. 

 

(4.33) 

 

 

Example 3: For an elliptical central force motion, in an inverse-square law attractive force, 

show that 

 

Solution:  

 

Therefore,  

 

So, 

 

Therefore, 
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Thus, 

 

 
 

(4.34) 

where  denotes the usual time average of . From the virial theorem for force law of the 

form  [equation (4.32)], we have 

 

Thus, for the inverse-square law, i.e. , the average kinetic energy  and 

equation (4.34) takes the form, 

 

(4.35) 

Further, for the inverse-square force law, we have 

 

Hence, 

 

 

Self Assessment Question (SAQ) 1: Choose the correct option: 

An artificial satellite revolves about the earth at a height  above the surface. The orbital 

period so that a man in the satellite will be in a state of weightlessness is 

(a)  

(b)  
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(c)  

(d) None of the above 

Self Assessment Question (SAQ) 2: Choose the correct option: 

ISRO’s probe Mangalyaan was sent recently to explore the planet Mars. The inter-planetary 

part of the trajectory is approximately a half-ellipse with the Earth (at the time of launch), 

Sun and Mars (at the time the probe reaches the destination) forming the major axis.  

 
FIGURE 4.5 

Assuming that the orbits of Earth and Mars are approximately circular with radii  and 

, respectively (Figure 4.5), the velocity (with respect to the Sun) of the probe during 

its voyage when it is at a distance  from the Sun, neglecting the effect 

of Earth and Mars, is 

 

 

 

 
 

Self Assessment Question (SAQ) 3: Choose the correct option: 

A planet of mass  moves in the gravitational field of the sun (mass ). If the semi-major 

and the semi-minor axes of the orbit are  and , respectively, the angular momentum of the 

planet is 
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(a)  

(b)  

(c)  

(d)  

Self Assessment Question (SAQ) 4: Choose the correct option: 

A particle is moving in a spherically symmetric potential , where  is a positive 

constant. In a stationary state, the expectation value of the kinetic energy  of the particle  

is 

 

 

4.7 SUMMARY 

In this unit, we continued with the discussion of central force motions. We understood how 

the concepts that we learned in the previous unit can be applied to understand the idea of 

escpare velocity, geostationary and geosynchronous orbit and how a geostationary stationary 

satellite is launched into its orbit. We further learned about the Hohmann transfer orbit and 

interplanetary trajectories, for both the outer planets such as Mars, which is further away 

from the sun vis-avis the earth, and inner planets such as Venus, which are closer to the sun 

vis-à-vis the earth. 

Finally, we ended our discussion with looking at the virial theorem, which is an important 

property of the central force motion and is applicable to a general gravitationally bound 

system and relates the gravitational potential energy of a system to the kinetic energy, 

providing an insight into the stability of the system. 

4.8 GLOSSARY 

Angular momentum – is the rotational equivalent of linear momentum. It is an important 

quantity in physics because it is a conserved quantity – the total angular momentum of a 

system remains constant unless acted on by an external torque. In three dimensions, the 

angular momentum for a point particle is a pseudovector r×p, the cross product of the 

particle's position vector r (relative to some origin) and its momentum vector p = mv.  

Angular velocity – the angular velocity of a particle is the time rate of change of its angular 

displacement relative to the origin. The SI unit of angular velocity is radians per second. 

Central Force - is a force that points from the particle directly towards a fixed point in space, 

the center, and whose magnitude only depends on the distance of the object to the center. 
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Escape Velocity –  is the minimum speed needed for an object to escape from the 

gravitational influence of a massive body. The escape velocity from Earth is about 11.186 

km/s (6.951 mi/s; 40,270 km/h; 25,020 mph) at the surface. 

Geostationary satellite – orbits the earth directly over the equator, approximately 22000 

miles up. At this altitude, one complete trip around the earth (relative to the sun) takes 24 

hours. 

Geosynchronous satellite – A special case of geosynchronous satellite is the geostationary 

satellite, which has a geostationary orbit – a circular geosynchronous orbit directly above the 

Earth's equator. 

Geostationary orbit – geostationary Earth orbit is a circular geosynchronous orbit 35,786 

kilometres above the Earth's equator and following the direction of the Earth's rotation. 

Geosynchronous orbit – is a high Earth orbit that allows satellites to match Earth's rotation. 

Located at 22,236 miles (35,786 kilometers) above Earth's equator, this position is a valuable 

spot for monitoring weather, communications and surveillance. 

Motion – is a change in position of an object over time. 

Kinetic Energy – energy which a body possesses by virtue of being in motion. 

Orbit – is the gravitationally curved trajectory of an object, such as the trajectory of a planet 

around a star or a natural satellite around a planet. 

Orbital Velocity – velocity sufficient to cause a natural or artificial satellite to remain in 

orbit. Inertia of the moving body tends to make it move on in a straight line, while 

gravitational force tends to pull it down. The orbital path, elliptical or circular, thus represents 

a balance between gravity and inertia. A cannon fired from a mountaintop will throw a 

projectile farther if its muzzle velocity is increased. If velocity is made high enough the 

projectile never falls to the ground. The surface of the Earth may be thought of as curving 

away from the projectile, or satellite, as fast as the latter falls toward it. The more massive the 

body at the centre of attraction, the higher is the orbital velocity for a particular altitude or 

distance. Near the surface of the Earth, if air resistance could be disregarded, orbital velocity 

would be about 8 km/s. The farther from the centre of attraction a satellite is, the weaker the 

gravitational force and the less velocity it needs to remain in orbit. 

Planet – an astronomical body orbiting a star or stellar remnant that is massive enough to be 

rounded by its own gravity, and is not massive enough to cause thermonuclear fusion. 

Potential Energy – the energy of a particle or system of particles derived from position, or 

condition, rather than motion. 

Transfer Orbit – In orbital mechanics a transfer orbit is an intermediate elliptical orbit that 

is used to move a satellite or other object from one circular, or largely circular orbit to 

another. There are several types of transfer orbits, which vary in their energy efficiency and 

speed of transfer. 
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The Hohmann transfer orbit is an elliptical orbit used to transfer between two circular orbits 

of different radii in the same plane. 

Virial Theorem – The virial theorem states that, for a stable, self-gravitating, spherical 

distribution of equal mass objects (stars, galaxies, etc), the total kinetic energy of the objects 

is equal to minus 1/2 times the total gravitational potential energy. 

 

 

 

 

 

4.9 TERMINAL QUESTIONS 

1. State and prove the virial theorem. 

2. Derive the equation for orbit of a particle moving under the influence of an inverse square 

central force field. Also calculate the time period of motion in elliptical orbit. 

3. Fill in the blanks: 

(i) The square of the period of revolution of the planet around the sun is proportional to the 

cube of the …………. 

(ii) If e is the eccentricity of the earth’s orbit, the ratio of maximum and minimum speeds of 

the planet is …………… 

4. Show that earth’s escape velocity is . 

5. List down some of the uses of artificial satellites. 

6. An artificial satellite is revolving around the earth at a distance of 620 km. Calculate the 

orbital velocity and the period of revolution. Radius of the earth is 6380 km and acceleration 

due to gravity at the surface of the earth is 9.8 m/s
2
. 

7. Choose the correct answer: 

The radius of earth is approximately 6400 km. The height h at which the acceleration 

due to earth’s gravity differs from g at the earth’s surface by approximately 1% is 

 

8. Calculate the height of an equatorial satellite which is always seen over the 

same point of earth’s surface. (G = 6.66 x 10
-11

 SI units; Mass of earth M = 5.98 x 10
24

 

kg) 

 

9. Choose the correct answer: 
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A satellite is moving in a circular orbit around the Earth. If T, V and E are its average 

kinetic, average potential and total energies, respectively, then which one of the 

following options is correct? 

(a)  

(b)  

(c)  

(d)  

 

4.10 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. (b) 

2. (b) 

3. (d) 

4. (a) 

 

Selected Terminal Questions: 

3. (i) semi-major axis of the ellipse 

(ii) (1 + e)/(1 – e) 

5. Artificial satellites are used in the following ways: 

(i) Distant transmission of radio and TV signals. 

(ii) To study upper regions of the atmosphere. 

(iii) High altitude satellites for astronomical observations 

(iv) Weather forecasting 

(v) Earth measurements (gravitation and magnetic fields) 

 

6. Radius of earth’s satellite orbit r = R + h 

   = radius of earth + distance of satellite from the earth’s surface 

   = 6380 + 620 = 7000 km 

Therefore, the period of revolution is 
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And the orbital velocity is 

 

 

 

7. (c) 

8. Let the height of the equatorial satellite by h. The equatorial satellite is seen over the same 

point of earth’s surface, i.e. the angular velocity of satellite is the same as that of the earth 

itself.  

Hence, the angular velocity of the satellite is 

 

Also,  

 

 

 

Therefore, h = r – R = 3.57 x 10
4
 km. 

 

9. (a) 
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5.1 INTRODUCTION 

The collision experiment, or scattering experiment, is the single most powerful tool for 

investigating the structure of atomic and subatomic objects. In this type of experiment one 

fires a stream of projectiles, such as electrons or protons, at a target object—an atom or 

atomic nucleus, for example — and, by observing the distribution of "scattered" projectiles as 

they emerge from the collision, one can gain information about the target and its interactions 

with the projectile. Perhaps the most famous collision experiment was the discovery by 

Ernest Rutherford (1871-1937) of the structure of the atom: Rutherford and his assistants 

fired streams of alpha particles at a thin layer of gold atoms in a sheet of gold foil; by 

measuring the distribution of the scattered alpha particles, they were able to deduce that most 

of the mass of an atom is concentrated in a tiny, positively charged "nucleus" at the center of 

the atom. Since that time, most discoveries in atomic and subatomic physics (the discoveries 

of the neutron, of nuclear fission and fusion, of quarks, and many more) were made with the 

help of collision experiments, in which a stream of projectiles were directed at a suitable 

target and the outgoing particles carefully monitored. 

 

You could imagine doing a scattering experiment with larger objects — scattering one 

billiard ball off another, or even a comet off the sun — but in these cases there are usually 

easier ways to find out about the target. Thus the main application of collision theory is at the 

atomic level and below. Since the correct mechanics for atomic and subatomic systems is 

quantum mechanics, this means that the most widely used form of collision theory is 

quantum collision theory. Nevertheless, many of the central ideas of quantum collision theory 

— total and differential scattering cross sections, lab and CM reference frames — already 

appear in the classical theory, which gives an excellent introduction to these ideas without the 
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complications of quantum theory. This, then, is the main purpose of this unit, to give an 

introduction to the main ideas of collision theory in the context of classical mechanics.  

 

The scattering problem, in its one-body formulation, studies the scattering of particles by a 

center of force. Consider a uniform beam of particles all of the same mass and kinetic energy, 

incident upon a center of force. A particle in the beam will follow an unbounded orbit, since 

initially the particle is assumed to be at infinite distance from the center of force before it 

approaches it. Depending on the charge of the particle, it will either get attracted or repelled 

resulting in the deviation of its orbit from a straight-line trajectory. After passing the center of 

force, the force acting on the particle will in due course diminish and it will pick up the 

straight-line trajectory once again. In general, the final direction of the particle is not the 

same as its incident direction and the particle is said to be scattered. 

We shall discuss the scattering problem using Rutherford’s famous α-scattering experiment in 

which he bombarded very thin gold foil (~600 nm) with a stream of high energy α-particles 

from a radioactive source.  

 

5.2 OBJECTIVES 

After studying this unit, you should be able to 

• explain what is meant by scattering angle and impact parameter and what is 

the relationship between the two 

• describe the Rutherford alpha scattering experiment 

• calculate the scattering cross-section and the differential scattering cross-

section 

• differentiate between the center of mass frame and the laboratory frame and 

describe scattering in both these frames 

 

5.3 RUTHERFORD ALPHA SCATTERING 

Rutherford’s analysis of the observed α-scattering was based on the assumption that both the 

target nucleus contained in the thin gold foil and the incident α-particle, could be considered 

as point charges. The force was thus, taken to be Coulombic  

 

(5.1) 

where  is the charge on the nucleus and  is the charge of the incident particle, which in 

our case is α-particle. Owing to the repulsive inverse-square type fundamental form of the 

interaction, the trajectory of the α-particle is a hyperbola with the nucleus at the outer focus 

(Figure 5.1). We assume that the nucleus is sufficiently massive to be not displaced by the 

encounter with the α-particle. 
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FIGURE 5.1 Relationship of orbit parameters and scattering angle in Rutherford alpha 

scattering. 

The impact parameter  is the minimum distance at which the α-particle would approach the 

nucleus if there were no force between them. The Coulomb force exerted by the nucleus on 

the α-particle is along the radius vector , basically a central force, therefore the angular 

momentum of the system must be conserved. So, if  is the incident particle speed, then 

 
(5.2) 

The scattering angle  is the angle between the asymptotic incident direction of the α-particle 

and the asymptotic direction of the deflected α-particle. Since, the experiment is performed 

with an incident beam, instead of measuring  for a single particle, we have to account for a 

number of particles scattered through various angles. Normally, detectors are placed at one or 

more scattering angles to count the particles scattered into small cones of solid angle 

subtended by the detectors. Thus, we consider the distribution of scattered particles and for 

that we define a quantity called the cross-section for scattering in a given direction as 

 

(5.3) 

where the incident intensity  gives the number of particle crossing unit area normal to the 

incident beam in unit time,  is an element of solid angle in the direction  and  is 

called the differential scattering cross-section and has the dimensions of area. 
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FIGURE 5.2 Detection of alpha particles scattered between  and  in Rutherford 

experiment. A change in the impact factor has an associated change in the scattering 

angle. 

For a central force, the distribution of particles does not depend on the azimuthal angle  

because of the symmetry around the axis of the incident beam (Figure 5.2). Hence, the 

element of the solid angle can be written as 

 (5.4) 

In an actual experiment, a detector is placed over a range of angles from  to  for 

different . The detector usually covers only a small angular range in  because of symmetry 

about the beam axis. Thus, we need to find the number of particles scattered between  and 

 that corresponds to the incident particles with impact parameters between  and 

 as depicted in Figure 5.2. From equation (5.4), the number of particles scattered per 

unit time into solid angle  is given as  

 
 

(5.5) 

 

The corresponding particles that pass through an area of  is given as 

 

 
 

(5.6) 

 

From equations (5.5) and (5.6), the differential cross-section is given by 
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(5.7) 

 

The minus sign in the equation indicates that as  increases  decreases (Figure 5.1). 

5.4 RELATIONSHIP BETWEEN SCATTERING ANGLE AND 

IMPACT PARAMETER 

Comparing Coulomb force equation with the inverse-square force law 

 
we can write the value of the force constant as 

 
(5.8) 

The eccentricity of the orbit is given by 

 

 
 

(5.9) 

Since, , the eccentricity  and hence, the orbit is a hyperbola (Figure 5.3).  

 

 
FIGURE 5.3 Shape of a hyperbolic orbit. F and F’ are foci that represent the attractive 

and the repulsive force centers, respectively. 
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The shape of the orbit is given by the orbit equation, 

 

If  in the orbit equation is chosen to be , then the periapis corresponds to . And so 

the orbit equation for a hyperbola takes the form, 

 
 

(5.10) 

The hyperbolic path is always symmetric about the direction of the periapis (closest 

approach). As can be seen from Figure 5.1, the angle between the incoming asymptote and 

the direction of closest approach is given as 

 
(5.11) 

The angle  that the asymptotes make with the axes is obtained by substituting  in the 

orbit equation and putting , since at infinite distance, . That is, from equation 

(5.10), 

 

 
Therefore, using equation (5.11), we get 

 

 

Using equation (5.9), therefore, we get the scattering angle and the impact factor as 

 

 

(5.12) 
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This is the fundamental relation between the impact parameter  and the scattering angle , 

which shows that the scattering angle decreases as the impact factor increases, as depicted in 

Figure 5.4.    

 

FIGURE 5.4 Scattering angle as a function of the impact parameter. 

 

5.5 SCATTERING CROSS-SECTION 

Differentiating equation (5.12) with respect to , we get 

 

(5.13) 

Substituting  and  from equations (5.12) and (5.13) into equation (5.7), we get 

 

(5.14) 

This is the famous the Rutherford’s scattering formula.  

Quantum mechanics in the non-relativistic limit yields a result identical with the 

aforementioned classical prediction. Even when quantum-mechanical corrections are 

significant, it is often acceptable to use semi-classical approximation.        

 

Example 1  

Determine the differential scattering cross-section and the total scattering cross-section for 

the scattering of a particle by a rigid sphere of radius . 
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Solution 

 

FIGURE 5.5 Scattering of a particle by a rigid sphere of radius R. 

From Figure (5.5), we note that the impact parameter 

 

Differentiating the above equation with respect to , we get 

 

Therefore, the differential cross-section is given as 

 

Hence, the total scattering cross-section is given as  
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Example 2  

Show that for any repulsive central force, a formal solution for the angle of scattering can be 

expressed as  

 

where V is the potential energy, u = 1/r and u0 corresponds to the turning point of the orbit. 

Write down the corresponding expression for  for a force K/r
3
. 

Solution 

For a central force, 

 

 

But 

 

Therefore, 

 

 

 

As r = 1/u, dr = -du/u
2
. Integrating from 0 to u0 (turning point), we obtain 

 

where we have used J = p(2mE)
1/2

. 
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Now, 

 

For F = K/r
3
, V = K/2r

2
 and then 

 

 

Self Assessment Question (SAQ) 1: Choose the correct option: 

Rutherford’s differential cross-section  

(a) has the dimensions of area 

(b) has the dimensions of solid angle 

(c) is proportional to the square of the kinetic energy of the incident particle 

(d) is inversely proportional to , where  is the scattering angle 

 

5.6 TWO-BODY ELASTIC COLLISION 

In the previous section, we considered the one-body problem of the scattering of a particle by 

a fixed center of force. In practice, scattering always involves two bodies, where the second 

body is not fixed but recoils from its initial position as a result of the collision. Let us now 

look at the two-body elastic collision problem in both the center-of-mass and the laboratory 

frames of reference. 

 

 

 

Center-of-mass frame is an inertial frame in which the observer travels along with the center-

of-mass of the system. In many situations, center-of-mass system is more convenient to use 

rather than the laboratory system, because in this frame of reference the total momentum is 

zero and the collision of the reactants appear to undergo a head on collision and go off in 

opposite directions after collision.  

The simplest problem that can be considered is a two-body collision. In Figure 5.6 a two-

body collision problem is shown in laboratory frame and center-of-mass frame. 

A particle of mass  collides elastically with a particle of mass  which initially is at rest 

in the laboratory frame of reference. The trajectory of  is deflected through an angle  by 

 (at rest) 

  

 

 

 

 

 

 

 

(a) 

(b) 

FIGURE 5.6 (a) Reaction dynamics of a binary nuclear reaction in laboratory frame, (b) in CM 

frame. 
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the collision. The scattering distribution is independent of the details of the interaction 

between the particles and is determined by the laws of conservation of energy and 

momentum.  

We denote the initial velocities in the laboratory frame by  and , and the final 

velocities by  and . The law of conservation of energy requires that in an elastic collision 

the total kinetic energy before and after the collision should be equal. Thus, 

 

The law of conservation of momentum in the x-direction and the y-direction requires that 

 

 

Now, no doubt it’s possible to solve the above three equations, nonetheless it is going to be 

tedious. It is far more convenient to view the collision in the center-of-mass frame. The 

position of the center-of-mass is defined by 

 

Differentiating with respect to time, we get 

 

We denote the initial velocities in the CM frame by  and , and the final velocities by  

and . We have the following relations between the velocities in the lab and CM frames: 

 

 

Now, we know that the center-of-mass should remain at rest as no external force is acting and 

since the total momentum in this frame is zero, we don’t need to write the momentum 

conservation equations. We can easily see that the energy is conserved when  and 

. The reaction dynamics in the CM frame is trivially simple and all scattering angles 

( ) are allowed by the conservation laws. This is not true for and in the laboratory frame. 

We can find the relation between  and by doing the following steps: 
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Since, the y-component of the final velocity of particle 1 is identical in the two frames. Also, 

, therefore, 

 
Also,  

 

Thus, we have 

 

One can find that  when ;  when ;  

for ; where . 

Example 3 

Assuming an α-particle scatters from an electron in the 600 nm gold foil, estimate the 

maximum scattering angle in a single encounter. [Given:  mass number is 197 and its 

density is 19.3 g/cc] 

Solution 

Considering elastic collision between α-particle and  in the gold foil, the maximum 

momentum transfer occurs when the α-particle hits the  (at rest) head-on as shown in the 

figure below: 

 

 

According to the conservation of linear momentum  

 

Conservation of kinetic energy gives  

 

An α-particle is an ionized helium atom ( ), much more massive than the electron 

( ). So, its velocity remains almost unchanged. On solving the above two 

equations, we get 
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Thus, the maximum momentum change of the α-particle is  

 

 

 

Based on the above vector diagram for α-particle momentum 

 

 

 

Self Assessment Question (SAQ) 2: A particle of mass m1 moving with velocity u1 is 

elastically scattered from another particle at rest. After the collision, the two particles move in 

the opposite direction with the same speed. Find the mass of the target. 

Self Assessment Question (SAQ) 3: Choose the correct answer: 

A bullet in motion hits and gets embedded in a solid block resting on a frictionless table. 

What is conserved? 

(a) momentum and kinetic energy both 

(b) momentum alone 

(c) kinetic energy alone 

(d) neither momentum nor kinetic energy. 

 

5.7 SUMMARY 

In this unit, we have studied the two-body collisions, first in the laboratory frame, which is a 

frame of reference centered on the laboratory in which the experiment (either real or thought 

experiment) is done, and then in the center-of-mass frame, which is a zero-momentum frame 

or CM frame of a system that is the unique inertial frame in which the total momentum of the 

system vanishes. We learned about the concepts of total cross-section and differential cross-

section. We also studied the relationship between the impact parameter and the scattering 

angle. 

 

 

5.8 GLOSSARY 
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Alpha Particle – a positively charged nuclear particle identical with the nucleus of a helium 

atom that consists of two protons and two neutrons. 

Center of Mass – The center of mass of a system of particles is the point that moves as 

though (1) all of the system’s mass were concentrated there and (2) all external forces were 

applied there. 

 

Center-of-mass frame – the center-of-momentum frame (also zero-momentum frame or CM 

frame) of a system is the unique inertial frame in which the total momentum of the system 

vanishes. The center of momentum of a system is not a location (but a collection of relative 

momenta/velocities). 

Central force –a force (possibly negative) that points from the particle directly towards a 

fixed point in space, the center, and whose magnitude only depends on the distance of the 

object to the center. 

Coulomb's law or Coulomb's inverse-square law – is a law of physics that describes force 

interacting between static electrically charged particles. In its scalar form, the law is: 

 

where ke is Coulomb's constant (ke = 8.99×10
9
 N m

2
 C

−2
), q1 and q2 are the signed magnitudes 

of the charges, and the scalar r is the distance between the charges. The force of interaction 

between the charges is attractive if the charges have opposite signs (i.e., F is negative) and 

repulsive if like-signed (i.e., F is positive). 

Cross-section – When two particles interact, their mutual cross section is the area transverse 

to their relative motion within which they must meet in order to scatter from each other. If the 

particles are hard inelastic spheres that interact only upon contact, their scattering cross 

section is related to their geometric size. 

Elastic Scattering – a scattering of particles as the result of an elastic collision. 

Impact Parameter – defined as the perpendicular distance between the path of a projectile 

and the center of a potential field created by an object that the projectile is approaching. It is 

often referred to in nuclear physics (see Rutherford scattering) and in classical mechanics. 

Inelastic Scattering – a scattering of particles as the result of inelastic collision in which the 

total kinetic energy of the colliding particles changes. 

Ion – atomic particle, atom, or a chemical radical bearing an electric charge, either positive or 

negative. 

Kinematics – the branch of dynamics that studies the motion of a body or a system of bodies 

without consideration given to its mass or the forces acting on it. 
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Laboratory Frame – is a frame of reference centered on the laboratory in which the 

experiment (either real or thought experiment) is done. This is the reference frame in which 

the laboratory is at rest. Also, this is usually the frame of reference in which measurements 

are made, since they are presumed (unless stated otherwise) to be made by laboratory 

instruments. An example of instruments in a lab frame, would be the particle detectors at the 

detection facility of a particle accelerator. 

Law of Conservation of Energy – Although the word energy does not possess an obvious 

definition, it is generally explained as the capacity to do work. Technically, energy is a scalar 

quantity associated with the state (or condition) of one or more objects. The principle that 

energy can be transformed from one type to another and transferred from one object to 

another, but the total amount is always the same, is called law of conservation of energy. 

 

Law of Conservation of Linear Momentum – Conservation of linear momentum expresses 

the fact that a body or system of bodies in motion retains its total momentum, the product of 

mass and vector velocity, unless an external force is applied to it. 

 

Linear Momentum – a property of a moving body that the body has by virtue of its mass 

and motion and that is equal to the product of the body's mass and velocity. 

Scattering - a change in the direction of motion of a particle because of a collision with 

another particle. 

 

5.9 TERMINAL QUESTIONS 

1. What is differential scattering cross-section? 

2. Discuss alpha scattering in Coulomb’s field.    

3. In Rutherford’s scattering experiment 10
5
 alpha particles are scattered at an angle of 2

0
. 

Calculate the number of alpha particles scattered at an angle of 20
0
. 

4. What is meant by the laboratory system and the center-of-mass system in a two-body 

scattering problem? 

5. Write short notes on: 

      (i) Scattering Cross-section  

     (ii) Impact Parameter    

 (iii) Rutherford scattering  

 

6. What is collision? What is the difference between elastic and inelastic collisions? 

7. Choose the correct answer: 

A body A strikes a body B at rest. If A and B have the same masses, after the collision: 

(a) A and B move with the same velocities 
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(b) velocity of A is greater than that of B 

(c) A is at rest while B moves 

(d) none of the above 

 

8. Choose the correct answer:  

 

A completely inelastic collision is one in which the two colliding particles 

(a) Are separated after collision 

(b) Remain together after collision 

(c) Split into small fragments flying in all directions 

(d) None of the above 

 

9. Which of the following statement(s) are true about collisions? 

(a) Two colliding objects will exert equal forces upon each other even if their mass is 

significantly different. 

 (b) During a collision, an object always encounters an impulse and a change in momentum. 

 (c) During a collision, the impulse which an object experiences is equal to its velocity 

change. 

 (d) The velocity change of two respective objects involved in a collision will always be 

equal. 

 (e) While individual objects may change their velocity during a collision, the overall or total 

velocity of the colliding objects is conserved. 

 (f)  In a collision, the two colliding objects could have different acceleration values. 

 (g) In a collision between two objects of identical mass, the acceleration values could be 

different. 

 (h) Total momentum is always conserved between any two objects involved in a collision. 

 (i) When a moving object collides with a stationary object of identical mass, the stationary 

object encounters the greater collision force. 

 (j) When a moving object collides with a stationary object of identical mass, the stationary 

object encounters the greater momentum change. 

 (k)  A moving object collides with a stationary object; the stationary object has significantly 

less mass. The stationary object encounters the greater collision force. 

(l)  A moving object collides with a stationary object; the stationary object has significantly 

less mass. The stationary object encounters the greater momentum change. 

 

5.10 ANSWERS 

Selected Self Assessment Questions (SAQs): 

1. (a) 

2. Let the mass of the target be m2. Let the particle and the target move with velocities v1 and 

v2 , respectively, after the collision. Then, 
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As the collision is elastic, the laws of conservation of linear momentum and energy will be 

obeyed. The conservation of linear momentum gives 

 

 

 

For heavy target ( ),  is opposite to , i.e. the particle will be scattered 

backwards, while the target will move in the forward direction. 

From the conservation of energy, we have 

 

 

 

 

 

Thus, 

 

 

3. (b) 

 

Selected Terminal Questions: 

3. The number of particles scattered per second at an angle  is given by 

 

Therefore, 
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For small angles, . Therefore, 

 

 

 

 

7. (c) 

8. (b) 

9. (a), (b), (f) 

a. TRUE - In any collision between two objects, the colliding objects exert equal and 

opposite force upon each other. This is simply Newton's law of action-reaction. 

b. TRUE - In a collision, there is a collision force which endures for some amount of time to 

cause an impulse. This impulse acts upon the object to change its momentum. 

c. FALSE - The impulse encountered by an object is equal to mass multiplied by velocity 

change - that is, momentum change. 

d. FALSE - Two colliding objects will only experience the same velocity change if they have 

the same mass and the collision occurs in an isolated system. However, their momentum 

changes will be equal if the system is isolated from external forces. 

e. FALSE - This statement is mistaking the term velocity for momentum. It is momentum 

which is conserved by an isolated system of two or more objects. 

f. TRUE - Two colliding objects will exert equal forces upon each other. If the objects have 

different masses, then these equal forces will produce different accelerations. 

g. FALSE - It the colliding objects have different masses, the equal force which they exert 

upon each other will lead to different acceleration values for the two objects. 

h. FALSE - Total momentum is conserved only if the collision can be considered isolated 

from the influence of net external forces. 



MSCPH502 

115 

 

i. FALSE - In any collision, the colliding objects exert equal and opposite forces upon each 

other as the result of the collision interaction. There are no exceptions to this rule. 

j. FALSE - In any collision, the colliding objects will experience equal (and opposite) 

momentum changes, provided that the collision occurs in an isolated system. 

k. FALSE - In any collision, the colliding objects exert equal and opposite forces upon each 

other as the result of the collision interaction. There are no exceptions to this rule. 

l. FALSE - In any collision, the colliding objects will experience equal (and opposite) 

momentum changes, provided that the collision occurs in an isolated system. 
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6.1 INTRODUCTION 

In this chapter we develop the dynamics of a rigid body, one in which all inter-particle 

distances are fixed by internal forces of constraint. This is, of course, an idealization which 

ignores elastic and plastic deformations to which any real body is susceptible, but it is an 

excellent approximation for many situations, and vastly simplifies the dynamics of the very 

large number of constituent particles of which any macroscopic body is made. In fact, it 

reduces the problem to one with six degrees of freedom. While the ensuing motion can still 

be quite complex, it is tractable. In the process we will be dealing with a configuration space 

which is a group, and is not a Euclidean space. 

6.2 OBJECTIVES 

After studying this unit, you should be able to 

• explain what is meant by degrees of freedom 

• explain what are frames of reference, such as body and space frames of 

reference, or inertial and non-inertial frames of reference 

• explain the orthogonality condition 

• discuss Euler angles 

• define moment of inertia and inertia tensor 

• understand pseudo forces such as Coriolis force 

6.3 BODY AND SPACE REFERENCE FRAMES 

There are two coordinate systems that are generally used to describe the motion of a rigid 

body. A coordinate system, attached to the rigid body, is called a body-fixed frame and its 

axes are called the body set of axes. On the other hand, if the axes are fixed in the space 



MSCPH502 

118 

 

external to the body, the axes are called space set of axes, and such a coordinate system is 

called a space-fixed frame.  

In Figure 6.1, xyz represents the space-fixed frame with origin O, while x’y’z’ the body-fixed 

frame attached to the rigid body, with origin O’ chosen to coincide with the center-of-mass of 

the rigid body. Let  be the radius vector from the origin of the frame xyz to the center-of-

mass of the body. Obviously, 3 coordinates are needed to specify the origin O’ of the body-

fixed frame. Further, the orientation of the axes of this moving system, relative to the space-

fixed system, is given by 3 angles. The 3 coordinates of O’ and these 3 angles constitute 6 

independent coordinates, which give complete configuration of the body at any given instant 

of time. 

Next let us consider an arbitrary infinitesimal displacement of the rigid body, which is the 

sum of two parts: 

I. An infinitesimal translation of the rigid body such that its center-of-mass moves from 

an initial position without any change in the orientation of the system x’y’z’ with 

respect to the frame xyz. 

II. An infinitesimal rotation about the center-of-mass O’. 

If  is the position vector of an arbitrary point P in the rigid body with respect to the space-

fixed frame xyz and  be its position vector with respect to the body-fixed frame x’y’z’, then 

we can write the infinitesimal displacement of point P as 

 

where  is the infinitesimal angle of rotation. Dividing both sides of the equation by time 

 during which the infinitesimal displacement occurs, we get  

 
 

 

 

FIGURE 6.1 Body-fixed frame x’y’z’ and space-fixed reference frame xyz. P is an 

arbitrary point in the rigid body whose position vector with respect to the body-fixed 

frame is  and with respect to the space-fixed frame is .  is the position vector of the 

center-of-mass O’ of the rigid body with respect to O, the origin of the space-fixed axes. 

Here  is nothing but the instantaneous velocity of the center-of-mass with respect to 

the space-fixed frame, and  is the velocity of point P with respect to the space-fixed 

frame.   is defined as the angular velocity   of the rotation of the body. Therefore, 

equation (6.1) can also be written as 
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Instead of choosing the center-of-mass as the origin, even if some other point is chosen as the 

origin of the body-fixed frame, the translational velocity changes but the value of rotational 

velocity remains the same. So, we can conveniently choose O’ (O’ may be outside the body) 

such that it coincides with the origin of the space-fixed frame. In this case, the velocity  

so that the entire motion of the body at the given instant of time is a pure rotation about an 

axis passing through O’. It is obvious that when the rigid body rotates about a fixed point in 

space, it has only 3 DOFs. 

There are many ways of specifying the orientation of the body-fixed axes x’y’z’ with respect 

to the space-fixed axes xyz with common origin. A convenient way of doing this is to state 

the direction cosines. Direction cosines are the cosines of the angles between a line and the 

coordinate axes. Thus, the x’ axis can be specified by its three direction cosines , ,  

with respect to the x, y and z axes, as follows:  

 

 

 

 

where ,  and  are the three unit vectors along x, y and z respectively, while ,  and  are 

the three unit vectors along x’, y’ and z’ respectively. Thus, the vectors  can be written as 

 
 

 

Similarly, we can write  and  in terms of their respective direction cosines ( ) and 

( ), 

 

 
 

 

These set of 9 direction cosines then completely specify the orientation of the x’, y’ and z’ 

axes relative to the x, y and z axes. We may also invert the process and specify the x, y and z 

axes in terms of the x’, y’ and z’ axes. However, we must note that not all of the 9 direction 

cosines are independent, and relations between them arise. In fact only 3 are independent, 

because the unit vectors in the two Cartesian coordinate systems are orthogonal to each other 

and have a unit magnitude: 

 

 
 

 

with similar relations for ,  and . Thus, we cannot take these 9 direction cosines as 

generalized coordinates to setup the Lagrangian equations of motion for the rigid body 

because they are not all independent. In order to have 3 generalized coordinates 
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corresponding to the 3 DOFs, we must use some set of 3 independent functions of the 

direction cosines. A number of such sets of 3 generalized coordinates are possible; the most 

commonly used being the Euler angles, introduced by Leonhard Euler to describe the 

orientation of a rigid body.   

6.3.1 Orthogonal Transformations 

Before, discussing the Euler angles, let us first derive the general orthogonality condition 

which should be satisfied for any orthogonal transformation, such as a transformation 

between 3-dimensional Cartesian coordinates as represented by equations (7.4). Equations 

(6.4) are a group of transformation equations that take us from a set of coordinates (x, y, z) to 

(x’, y’, z’), are an example of linear or vector transformation. In general, a vector 

transformation from a set of coordinates  to a new set  can be defined 

by the following equations: 

 

 

 

 

where  are a set of coefficients. Equation (7.6) can be written, in short, as 

 

 

Relations between ’s can be derived from very simple arguments. Both the primed and the 

unprimed coordinate systems are Cartesian, hence, the magnitude of a vector is given in 

terms of the sum of the squares of the components. Further, the magnitude of the vector is 

independent of the coordinate system used. This invariance of the magnitude can be written 

mathematically as 

 

 

Substituting  from equation (6.7) into the above equation, we get  

 

 

The above equality is satisfied, if and only if 
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or in a more compact form, 

 

 

Equation (6.10) is known as the orthogonality condition, and any linear transformation that 

satisfies this condition is called an orthogonal transformation. 

The array of transformation coefficients can be written as the elements of a matrix A called 

the matrix of transformation, 

 
 

In order to see more clearly the usefulness of an orthogonal transformation, let us consider 

motion confined in a plane. Here we are restricted to 2-dimensional coordinate systems. 

Therefore, the matrix (7.11) simplifies to 

 

The 4 matrix elements are connected by 3 orthogonality conditions, 

 
It is therefore obvious, that only one independent rotation angle  is needed to specify the 

transformation (Figure 7.2), 

 

 

 

FIGURE 6.2 Rotation of the coordinate axes, as equivalent to two-dimensional 

orthogonal transformation. 

So the matrix  can be written as 
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The 3 orthogonality conditions can be expanded into equations, which then reduce to the 

mathematical identities, as follows: 

 

 

 

The transformation matrix  can be thought of as an operator which acting on the unprimed 

system transforms it into the primed system. For a 3-dimensional transformation, we can 

write 

 

 

For any vector  and , we may write 

  

where both vectors are expressed in the same coordinate system.  

Next, we consider two successive transformations transforming  to  via transformation 

matrix  

 

 

 followed by a transformation from  to  via transformation matrix  

 

 

Substituting  from equation (6.14a) in equation (6.14b), we get 

 

where . Thus, we can see that the successive application of two orthogonal 

linear transformations is equivalent to a third linear transformation. The transformation 

matrix  of the latter is the product of matrices  and , 
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It can be shown that the transformation generated by the matrix  is also orthogonal if those 

due to  and  are orthogonal. It should be noted here that this matrix operation is not 

commutative, 

 
However, matrix multiplication is associative,  

 

Another useful concept is the inverse transformation, which transforms the primed 

coordinates back to the unprimed coordinates. Let the corresponding matrix be denoted by 

 with matrix elements designated by . Then the transformation equation is 

 

 

Equation (6.16) should be consistent with equation (6.7). Therefore, we have 

 

 
This is true, if and only if 

 

 

or in a more compact form, 

 

 

In matrix notation, equation (6.18) can be written as 

  

where  is known as the identity matrix: 
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Thus,  is the inverse matrix of . It is also easy to check that  and  commute, i.e. 

 

The matrix obtained by interchanging the rows and the columns is known as the transposed 

matrix and is represented by . For orthogonal matrix, 

  

which is identical with the set of orthogonality conditions, equation (6.10), and can be 

verified by direct expansion. Another important property of orthogonal matrix is that its 

determinant can be described by the following condition 

  

which implies that the determinant of an orthogonal matrix can only have the value  or 

. Orthogonal transformations with determinant  are called proper, while those with the 

determinant  are called improper. The transformations representing rigid body motion is 

restricted to matrices having the determinant . 

6.3.2 Euler Angles 

We can carry out the transformation from a given Cartesian coordinate system to another (in 

our case from space set of axes to body set of axes) by means of 3 successive rotations 

performed in a specific sequence. The most commonly used set of 3 angles are the Euler 

angles, typically denoted by  and . First, the space set of axes is rotated 

counterclockwise through an angle , known as the precession angle, about the z-axis to 

produce  as shown in Figure 6.3a. Next, the system is rotated counterclockwise 

through an angle , known as the nutation angle, about  axis to produce  as 

shown in Figure 6.3b. The -axis is at the intersection of the y-z and -  planes and is 

known as the line of nodes. Finally, the system is rotated counterclockwise by an angle , 

called the body angle, about  axis to produce the desired system of  as shown in 

Figure 6.3c. 

     

FIGURE 6.3 Rotations defining the Euler angles. 

The elements of the complete transformation matrix for transforming  to  

can be obtained by writing  as the triple product of successive rotations.  

  

The first rotation about the z-axis can be described by a matrix ,  
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and the transformation equations can be written as 

 

 

Similarly, the  transformation corresponds to a rotation about -axis, with the matrix given 

by 

 

 

and the transformation equations can be written as 

 

 

For the final rotation, the  matrix is given by 

 

 

and the transformation equations can be written as 

 

 

Therefore, the product matrix  is given by 

 

 

and the transformation equations can be written as 
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The inverse transformation from the body set of axes to the space axes is given by the  

matrix, which from equation (6.20) is equal to the transposed matrix , i.e. 

 

 

   

6.4 ANGULAR MOMENTUM OF A RIGID BODY AND 

INERTIA TENSOR 

Since, a rigid body can be approximated by a system of particles, if the origin of the body-

fixed frame is chosen to be the center-of-mass, then the angular momentum of the body 

consists of two terms, one arising from the translation of the center-of-mass and the other 

from the rotation about the center-of-mass. 

The total angular momentum about a reference point is given by 

 

From equation (6.2), the velocity  of the i
th

 particle can be written as 

 

For a rotating body, with its center-of-mass at rest, , therefore, the total angular 

momentum can be written as 

 

 

By the vector identity, the vector triple product , the above 

equation becomes 

 

 

All particles in the rigid body have the same angular velocity , so the result (6.29) can be 

written in terms of the 3 components of . If ,  and  are the components of angular 

momentum along the x, y and z axes, respectively, then 
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Similarly,  

 

 

 

 

 

7.4.1 Inertial Coefficients 

We see in the expression (6.30a) for  involves 3 quantities:  

 

These quantities depend on the distribution of the mass in the body and on the instantaneous 

orientation of the body relative to the x, y, z coordinate axes. Thus, they will depend on time. 

We call these quantities inertial coefficients or moments of inertia: 

 

 

 

 

Similarly, for the inertial coefficients which enter into  and . We could then write the 

components of equation (6.30) in the following form: 

 

 

 

 



MSCPH502 

128 

 

We can see that for a rigid body of arbitrary shape and mass distribution, the angular 

momentum  is not simply a scalar multiple of the angular velocity . In other words,  is not 

in general in the direction of .  

In matrix notation, equation (6.32) could be written as 

 
 

 
(6.33b) 

The 9 inertial coefficients of the  matrix may be regarded as components of a single 

entity , called the inertia tensor. Since,  etc.,  is a symmetric tensor.  

In Cartesian system, a tensor  of N
th

 rank consists of  components. A tensor of zero rank 

has one component, which is invariant under orthogonal transformation. Hence, a scalar is a 

tensor of zero rank. A tensor of first rank has 3 components and is completely equivalent to a 

vector. The inertia tensor is of second rank having  components. The 9 components of 

the tensor of second rank transform under an orthogonal transformation of coordinates,  

  

where  is the transpose of matrix . 

Until now, we took a rigid body to be composed of discrete particles. In case of a continuous 

body, the summation sign in the inertial coefficients is replaced by volume integration. If 

 is the density at , we can rewrite the inertial coefficients in the integral form as  

  

where  is the volume element. 

6.5 ROTATIONAL KINETIC ENERGY 

The kinetic energy of a rigid body referred to the center-of-mass at rest is called the rotational 

kinetic energy of the body. Let a rigid body be rotating about a fixed point in the body with 

an angular velocity . Then the rotational kinetic energy of the rigid body made of discrete 

particles is given by 
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Since , we get 

 

Using the vector identity, , the above equation can be written as 

 

Since, the angular velocity  is the same for all the particles of the rigid body, we can take it 

out of the summation, i.e. 

 

Since,  about a fixed point, the above equation can be written as 

 
 

The kinetic energy is a scalar quantity and can be written in the form 

 

 

 
 

In a more compact form, the rotational kinetic energy may be written as 

 
 

 

6.6 PRINCIPAL AXES AND PRINCIPAL MOMENTS OF 

INERTIA 
If we conveniently choose the body-fixed axes in such a way that the off-diagonal 

coefficients vanish and only the diagonal coefficients remain in the inertia tensor, then such 

preferred set of axes are termed as the principal axes, or eigenvectors of the inertia tensor 
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and the corresponding moments of inertia as the principal moments of inertia, or eigenvalues 

of the inertia tensor. Thus, the diagonal form of the inertia tensor is written as 

 
 

where  and  are the principal moments of inertia. If , ,  are the components of 

the angular velocity and , ,  those of angular momentum about the principal axis, then 

equation (6.33) connecting  and  reduces to 

 
 

or ,  and .  

And so the rotational kinetic energy (6.37) may be written as 

 
 

In general, if the rotation is about one of the principal axes, say  with 

, then ,  and . Thus, we can say that for rotations 

about a principal axis, the angular momentum is co-linear with the angular velocity.  

The angular momentum  and angular velocity  each will have 3 components along the 

axes of any arbitrary body-fixed coordinate system. We know that if the body is rotating 

about it principal axis, we have , i.e. 

 

But the general relation (6.33) also holds. Therefore, we have 

 

 

 

This is a system of equations that can be rewritten as 

 

 

A trivial, but not useful solution exists when . To get more useful and 

nontrivial solutions, the determinant of the system should be zero. 
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This determinant leads to a polynomial of third order in . Equation (6.42) is a secular or 

characteristic equation, whose 3 roots give the desired principal moments. A body whose 

three principal moments of inertia are all different, i.e. , is called an 

asymmetrical top. If any two are equal, then the body is called a symmetrical top, and if all 

three are equal, i.e. , is called a spherical top.  

Now, the question arises – how are the principal axes found? There is no simple way of 

determining the principal axes for an asymmetrical top. For bodies that posses some 

symmetry, such as a symmetric top we can determine the principal axes by inspection. The 

principal axes are then the symmetry axis corresponding to the single root and any two 

perpendicular axes in the plane normal to the symmetry axis indicated by a double root to the 

secular equation, since all directions perpendicular to the axis of symmetry are alike.  

If the principal axes can’t be found by inspection, it is possible to find them by substituting a 

corresponding value of , say  back into the equations (6.41). Three equations result 

for the components of , whose ratios give the direction of  or the direction cosines of the 

corresponding principal axis in whatever body-fixed coordinate system we are using , i.e. 

 

 

Hence, we can determine the direction of the principal axis corresponding to . Similarly, if 

we substitute  or , we may find the direction of the corresponding principal axis by using 

equations (6.41). The magnitude of the angular velocity is arbitrary and we are free to take 

any value for it. 

6.7 EULER’S EQUATIONS OF MOTION FOR A RIGID BODY 
The equation of motion of a rotating body is given by 

 
 

The above equation holds in an inertial reference frame.  

The body-coordinate system rotates with an angular velocity . The time derivative of 

angular momentum in the body-fixed rotating reference frame and the space-fixed 

inertial frame are related as 
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Therefore, 

  

where  is observed in the rotating frame. 

We suppose that the Cartesian axes in the rotating frame lie along the principal axes 1, 

2, 3. From equations (6.39), we have ,  and . Therefore, the 

component of (6.52) along axis 1 is given by  

 

 

On rearranging the above equation and writing out the equations for the components of 

(6.52) along axes 2 and 3, we get 

 

 

 

 

These equations are known as the Euler equations for the motion of a rigid body with 

one point fixed. They are a good starting point for rotating-body problems. 

6.8 ROTATING FRAMES 

An inertial frame of reference also known as Galilean reference frame is a reference frame 

that describes time and space homogeneously, isotropically and in a time-independent 

manner. All inertial frames have zero acceleration and are in a state of constant, rectilinear 

motion with respect to one another. 

The accelerated frames are called as non-inertial frames because in such a frame, a free 

particle will seem to have an acceleration. A coordinate system attached to the earth is an 

example of a non-inertial reference frame because the earth rotates and is accelerated with 

respect to the sun. 
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FIGURE 6.4 Cartesian axes of an inertial frame (S) and a uniformly rotating frame (S’) 

about their common z-axis and origin with an angular speed ω with respect to S.  

Consider a frame S’(x’, y’, z’) rotating with an angular velocity  about the z-axis 

relative to an inertial frame S(x, y, z). For simplicity, we assume that both the coordinate 

systems have a common origin O and a common z-axis (Figure 8.1). 

The relationship between the coordinates of the two frames,  and  

is as follows: 

  

  

  

Now, for a free particle of mass m in frame S, the Lagrangian is given by 

 
 

We substitute the expressions (6.54) – (6.56) into the Lagrangian (6.57) to find  in terms of 

the rotating coordinates, 

 
 

To construct the Lagrangian equations of motion in the rotating frame, taking the derivatives 

of equation (6.58), we get 

 

 

Therefore, the Lagrange’s equation in the rotating frame becomes, 

 

  

The term on the LHS corresponds to the product of mass and the inertial acceleration, that is, 

the actual external forces applied to the system. The first and the second terms on the RHS 

are recognized as the centrifugal and the Coriolis forces, respectively. Both these forces are 

examples of pseudo or fictitious forces that we have seen earlier and are a consequence of the 
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reference frame, rather than any actual interaction. Thus, the particle moves in the rotating 

frame in accordance with the Newton’s laws provided we add the two fictitious forces.  

 

6.9 SUMMARY 

In this unit, we studied the rigid body dynamics. We began with the discussion of body and 

space reference frames. This was followed by talking about orthogonal transformations and 

Euler Angles. Then we derived the angular momentum of a rigid body and the inertia tensor, 

and looked at the inertial coefficients. 

We derived the equation for the rotational kinetic energy of a rigid body and learned about 

the principal axes and the principal moments of inertia. We then went on to study the Euler’s 

equation of motion for a rigid body before ending our discussion with understanding the 

difference between an inertial reference frame and a non-inertial frame of reference. Rotating 

frame is an example of non-inertial frame. Therefore, a particle moves in the rotating frame 

in accordance with the Newton’s laws provided we add the two fictitious forces – Coriolis 

force and the centrifugal force. 

 

6.10 GLOSSARY 

Angular Momentum – The angular momentum of a rigid object is defined as the product of 

the moment of inertia and the angular velocity. It is analogous to linear momentum and is 

subject to the fundamental constraints of the conservation of angular momentum principle if 

there is no external torque on the object. 

Coriolis effect – an effect whereby a mass moving in a rotating system experiences a force 

(the Coriolis force ) acting perpendicular to the direction of motion and to the axis of 

rotation. On the earth, the effect tends to deflect moving objects to the right in the northern 

hemisphere and to the left in the southern and is important in the formation of cyclonic 

weather systems. 

Euclidean Space - Euclidean space encompasses the two-dimensional Euclidean plane, the 

three-dimensional space of Euclidean geometry, and certain other spaces. It is named after 

the Ancient Greek mathematician Euclid of Alexandria. 

Euler Angles – The Euler angles are three angles introduced by Leonhard Euler to describe 

the orientation of a rigid body with respect to a fixed coordinate system. They can also 

represent the orientation of a mobile frame of reference in physics or the orientation of a 

general basis in 3-dimensional linear algebra. 

Kinetic energy – energy which a body possesses by virtue of being in motion.  

Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object 

and is part of its total kinetic energy. 
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Moment of Inertia – The moment of inertia, otherwise known as the angular mass or 

rotational inertia, of a rigid body is a tensor that determines the torque needed for a desired 

angular acceleration about a rotational axis. 

Pseudo Force – A Pseudo force (also called as fictitious force) is an apparent force that acts 

on all masses whose motion is described using a non-inertial frame of reference frame, such 

as rotating reference frame. 

Reference Frame – A frame of reference (or reference frame) consists of an abstract 

coordinate system and the set of physical reference points that uniquely fix (locate and orient) 

the coordinate system and standardize measurements. 

Rigid Body – a rigid body is a solid body in which deformation is zero or so small it can be 

neglected. The distance between any two given points on a rigid body remains constant in 

time regardless of external forces exerted on it. 

Tensor – Tensors, defined mathematically, are simply arrays of numbers, or functions, that 

transform according to certain rules under a change of coordinates. In physics, tensors 

characterize the properties of a physical system. 

A tensor may be defined at a single point or collection of isolated points of space (or space-

time), or it may be defined over a continuum of points. In the latter case, the elements of the 

tensor are functions of position and the tensor forms what is called a tensor field. This just 

means that the tensor is defined at every point within a region of space (or space-time), rather 

than just at a point, or collection of isolated points. 

A tensor may consist of a single number, in which case it is referred to as a tensor of order 

zero, or simply a scalar. 

 

6.11 TERMINAL QUESTIONS 

1. Define Euler’s angles and obtain an expression for the complete transformation matrix. 

 

2. What do you mean by inertia tensor? Give its physical significance. 

3.  Explain what do you understand by principal axes and the principal moments of inertia.   

4. Derive an expression for the rotational kinetic energy of a rigid body. 

5. What are body and space coordinate systems in relation to the motion of a rigid body? 

6. How many generalized coordinates are needed to specify the motion of a rigid body? 

7. Choose the correct answer: 

For a rigid body, angular momentum vector and the angular velocity vector are  
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(a) Always in the same direction 

(b) Always in different directions 

(c) Not always in the same direction 

(d) None of the above 

8. What do you mean by non-inertial frame of reference? 

9. What are fictitious forces? Define centrifugal force. 

10. Differentiate between real and fictitious forces. What is Coriolis force? 

 

11. Choose the correct option: 

Non-inertial frames are 

(a) accelerated frames 

(b) unaccelerated frames 

(c) are those frames in which a force-free particle moves with constant velocity 

(d) cannot be rotating frames 

12. Choose the correct option: 

A particle is at rest in a rotating frame. The pseudo force acting on the particle in the rotating 

frame is 

(a) Zero 

(b) Only the centrifugal force 

(c) Only the Coriolis force 

(d) Both centrifugal and the Coriolis forces 

 

13. Choose the correct option: 

In the most general case, which one of the following quantities is NOT a second order tensor? 

(a) Stress      (b) Strain      (c) Moment of inertia      (d) Pressure 

 

14. Choose the correct option: 

 

An annulus of mass M made of a material of uniform density has inner and outer radii a and 

b, respectively. Its principle moment of inertia along the axis of symmetry perpendicular to 

the plane of the annulus is: 
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6.12 ANSWERS 

Selected Terminal Questions: 

6. Six 

7. (c) 

11. (a) 

12. (b) 

13. (b) 

14. (d) 

 

6.13 REFERENCES 

10. Classical Mechanics, Herbert Goldstein, Charles Poole, John Safko –  

Pearson Education, New Delhi 

11. Classical Mechanics – System of Particles and Hamiltonian Dynamics, 

Walter Greiner –  Springer-Verlag, New York 

12. Classical Mechanics, John R. Taylor – University Science Books, New York 

 

6.14 SUGGESTED READINGS 

11. Classical Mechanics, H. M. Agrawal – New Age International, New Delhi 

12. Classical Mechanics – System of Particles and Hamiltonian Dynamics, 

Walter Greiner –  Springer-Verlag, New York 

13. Classical Mechanics, John R. Taylor – University Science Books, New York 

 

 

 



MSCPH502 

138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         

   UNIT 7: Hamilton’s Equations of Motion 
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7.9. Summary 

7.10 model questions 

7.11 References  
 

7.1. Objectives 

After finishing this chapter students will be able to know  

• The Hamilton’s equation of motion,  

• Concept of the cyclic coordinates and 

conservation theorems, 

•  Routh’s procedure  

• cyclic coordinates and association of 

these coordinates with conserved quantities.   

• To solve the numerical problems based 

on the Hamiltonian formulation 

 

7.2. Introduction 
 

 There are three major formulations of classical mechanics; Newtonian formulation, 

Lagrangian formulation and the Hamiltonian formulation. The Hamiltonian 

formulation is the further development of Lagrangian formulation. In which n 2
nd

 

order Lagrange Equations of motion are replaced by the 2n 1
st
 order time dependent 

equations of motion. 

 

In further section you will learn to derive these Hamilton’s equations As you have 

understood the Newtonian and Lagrangian formulations. In further discussion  you will be 

familier with the Hamiltonian formulations and the Hamilton’s equations of motion which is 

the heart of whole formulation. 

Newtonian and Lagrangian formulations are  naturally associated with configuration 

space, while the Hamiltonian formulation is the natural description for working in phase 

space. Hamilton’s approach arose in 1835 in his unification of the language of optics and 

mechanics. 

7.3.Hamilton’s Equations of Motion:-Hamilton’s equations of motion can be 

derived in the following two different ways: 

(1)  From the Hamiltonian of the system 

(2)   From the variational principle 

7.3.1. From the Hamiltonian of the system let us first derive the Hamilton’s equations 

from the Hamiltonian of the system. Generally Hamiltonian is the function of generalized 

coordinates, generalized momenta and time, i.e., H=H(q,p,t). And relation between the 

Lagrangian, L and the  Hamiltonian, H of a system is  defined as  
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                                   H=                                                     (7.1) 

Where q stands for   

Differentiating equation(7.1), we have 

dH= d                                        (7.2) 

now as you know that  when we replace the value of pk in the first term of 

above equation then the first and fourth terms on the right side within the square bracket 

will together vanishes. Hence we a new expression as;  

dH= d                                                                       (7.3) 

Again, H=H(q,p,t)  

Taking the differential of H 

dH= d                                                                       (7.4) 

now comparing equations, (7.3) and (7.4), we get        

          ,    k=1,2,...., n                                                                                (7.5) 

                                                                                   (7.6) 

And      =                                                                                                    (7.7) 

Equations (7.5) and (7.6) are called Hamilton’s equations of motion. They are also called 

the canonical equations of motion. They constitute a set of 2n first order differential 

equations replacing the n second order  Lagrange differential equations. 

Hamilton’s equations are applicable to holonomic conservative systems.  

 

7.3.2.From the variational principle  

 

   There are so many variational principles exist in theoretical physics.  Hamilton’s 

variational principle can be treated as special case of general formulation of variational 

principles and can be stated as , 

                                                                                   (7.8) 

Here (t) and hence (t) is to be varied such that  

(t1) = (t2)=0                                                                                              (7.9) 

 Which refers to paths in configuration space. In Hamilton’s formalism, the integral I has 

to be evaluated over the trajectory of the system point in phase space, and the varied 

paths must be in the neighbourhood of this phase space trajectories, we have to express 

the integrand of the integral I as a function of the independent coordinates p an q and 

their time derivatives. This can be achieved only by replacing L in equation (7.9) by the 

following expression 

                                                L =                           (7.10)  

 So from equation(7.8), (7.9) and (7.10) we have, 
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                                                            (7.11)  

Where q(t) is varied subject to  (t1) = (t2)=0.  And pk(t) is varied without any end-

point reaction .   Since the original variational principle is modified to suit phase space, 

it is known as modified Hamoilton’s principle. 

 Carrying out the variations in equation (11) we have  

                                          (7.12)   

         Now manipulating and then integrating the first term in above equation we have 

                                                                                        

                 = dt= dt 

=  

Now the term  vanishes at the end-points t1 and t2 therefore, 

       =                                                                           (7.13) 

Substituting equation (7.13) in equation (7.12), we get the following expression; 

 

                                             (7.14) 

Since the modified Hamilton’s principle is a variational principle in phase space, δq’s 

and δp’s are the arbitrary and therefore the coefficients of δqk and δpk in equation (7.14) 

must vanish separately. Hence we get the following two equations; 

                                                                                                                   (7.15) 

                                                                                                                (7.16) 

                  (  where k=1,2,...., n)                                                                           

Thus, Hamilton’s principle gives an independent method for obtaining Hamilton’s equations 

of motion without a prior Lagrangian formulation. 

 

 

7.4.Hamilton’s equations in different coordinate systems  

7.4.1. In Cartesian coordinates-  

The kinetic energy of the particle T=  

Potential energy of the particle, V=V(x,y,z) 

Lagrangian, L=T-V= - V(x,y,z) 

Generalized momentum,  
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Hence,  

Or  , similarly, ,   

Hamiltonian, H=          

For,k=x,y,z 

H=   )+ V(x,y,z)       

H=      

H=                                                               (7.17) 

Hamilton’s equations are    ,     

The Hamilton’s equations in Cartesian are (using equations (7.17), 

  =  = ,    and    =     =>  

 =  = ,    and      =>  

 =  ,   and     =>  

Now since p=m  Hence the equations of motion, will be  

=                                                                                                    (7.18) 

                                                                                                               (7.19) 

                                                                                                  (7.20) 

7.4.2. In polar coordinates: If r and  are polar coordinates of a particle of mass m, then 

x=rcos  and y=rsin , therefore, = cos -r sin  and = sin +r cos  

Now kinetic energy, T= )= ), and L=T-V therefore 

 L= )-V(r, ) 

Generalized momenta,  =m  and  =m  

Hence  and,  

Thus, H=          

Or, H= ) + V(r, )   

By manipulating this expression we get, 

H=  V(r, )                                                                              (7.21) 

Now by using the Hamilton’s equations, we get (using equation (7.16), 

Using, , we have  and by using, , we have,  
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Similarly 

Using, , we have,    and by using, , we have,  

 

7.4.3. In Cylindrical Coordinates: in cylindrical coordinates, x=rcos ,  y=rsin ,  z=z 

Hence, L=T-V =  - V(x,y,z) 

                      = + ) - V(r, ,z) 

Generalized momentum, =   = m  and  = m , =  

Hence  and, , =  

H= , where, k = r, ,z. 

Thus 

H=   + ) + V(r, , z) 

   =  V(r, , z)    

Hamilton’s equations are     ,     

Therefore, Using, , we have  and by using, , we have, 

 

Similarly 

Using, , we have,    and by using, , we have,  

Using,    , we have, , and by using, , we have,    

       

7.4.4. Spherical Coordinates: 

 In spherical polar coordinate, 

         x=rcos sin , y= rsin sin , and z = rcos  

L=T-V =  - V(x,y,z) 

            = + ) - V(r, ,z)  

Now proceeding as previous cases, we can write, 

H=  V(r, ,z)    

Now applying the Hamilton’s equations(   ,    ), we get the 

following expressions, ,                            
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                                        ,                       

                                        ,               

 

 

 

7.5. Cyclic Coordinates  as we know that a cyclic or ignorable co-ordinate as one 

that does not appear explicitly in the Lagrangian of a system. If the coordinate qk is not 

appearing in the Lagrangian,( k)=0 and since H= , then 

 

       = -L) 

Or    = L)  

First term on r.h.s. of above equation will become zero since there is differentiation of 

(pk  w.r.t. qk and the second term will become zero due to properties of cyclic 

coordinates,i.e., from k)=0 

 

Therefore above expression will provide us, = 0                                        (7.22) 

Hence, qk will not appear in the Hamiltonian also. It means we can write  

   =0 

And this expression directly tell us that 

    pk=constant 

That is , the momentum conjugate to a generalised co-ordinate which is cyclic is 

conserved.  Or in other way, the generalized momentum conjugate to a cyclic coordinate 

is conserved during the motion. 

7.5.1. Conservation theorems      The theorems of conservation of linear and 

angular momentum are the special cases of the general principle for cyclic coordinates in 

the Lagrangian formulation. 

7.5.2. Conservation of Linear momentum-The Lagrange’s equation of motion for a 

generalized coordinate qk is given by 

                                                                                 (7.23) 

−V. 

Suppose qk represents a translation of the entire system along a given direction. We consider 

a conservative system so that V is not a function of velocities and T is not a function of 

position. Therefore,  =  = 0 

Now we can write equation (6.23) as 
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 = Gk                                                                                                            (7.24) 

Or, Gk =                                                                                                               (7.25) 

These Gk and pk are the components of the total force F and total linear momentum p of the 

system along the direction of the translation dqk. For example, if the system is given a 

translation along X-axis, then dqk = dx and Gk = Fx and px=Px. This can be shown as follows; 

 dri = dqk   = dx  

Where  is a unit vector along X-axis. 

This gives  =  =  

As we have learnt that, the component of generalized force is given by; 

Gk=  =  = 

= =Fx .                                                 

Now since T=                                                    

Therefore, pk =  =   

Or       pk  =  =  =   = Px 

Hence equation (7.23) represents the equation of motion for the direction of translation. Now 

suppose that the translation coordinate   is cyclic. This means that  is not appearing in 

L= T-V. 

Then   therefore from equations (7.24) and (7.25), we get Gk =                                                                                     

=0 

Or pk = constant 

For X- direction, Fx = = 0 or Px = constant. 

This is the well known conservation theorem for linear momentum. Thus in absence of a 

given component of applied force, the corresponding component of linear momentum is 

conserved. 
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7.5.3. Conservation of Angular momentum- Let us consider that the generalized coordinate 

qk represents rotation 

  and dqk represents a rotation d , then the Lagrange equation can be written as, 

       or  

 

Because V is independent of  

   

 And =Gk                                    

hence       = Gk      (7.25a)                                                                         

Here we want to show that for a rotational coordinate qk, the generalized force Gk is the 

component of the total applied torque  about the axis of rotation and the generalized 

momentum pk is the component of the total angular momentum J about the same axis.  

Now,  Gk=                                                                                                     (7.25b) 

Here, dqk=d  is an infinitesimal rotation of the position vector ri of the particle of the system 

about Z-axis such that the magnitude of ri remains constant. 

From figure 7.2, the infinitesimal small distance |dri| is  

| dri| =risin d  = risin d  

Or   dri = dqk(   

Where  is a unit vector along the axis of rotation. 

Therefore,  =  

Thus Gk = =  =  =  =  

Where =  is the total applied torque and =  is the component of the total torque  

along Z-axis. 

Similarly,  

      pk =  =   
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             =  = .  = . =  =Jz                                          (7.26) 

Where = J is the total angular momentum and Jz=  is the component of the total 

angular momentum J along Z-axis. 

Thus equation (7.25a) represents the equation of motion about the axis of rotation ( ). 

Now, if the rotation coordinate qk is cyclic, it will not appear in the Lagrangian L or V and 

hence  

Gk = -  = 0 

Therefore, from equation (7.25a), we have Gk =  = 0 or =  =0 

Or       Jz =constant                                                                                                    (7.27) 

This is the theorem of conservation of angular momentum which states that in absence of a 

given component of applied torque along an axis, the corresponding component of angular 

momentum along the same axis is conserved. 

 

7.5.4. conservation of energy: In the Lagrangian formulation one may expect the deduction 

of the theorem of conservation of the total energy for a system where the potential energy is a 

function of position only. in fact  we shall see the theorem of conservation of total energy is a 

special case of a more general conservation theorem. Consider a general Lagrangian L of a 

system is given by 

     L = L(q1,q2,....,qk,....,qn,  ,..., ,..., , t)  

We denote it for our convenience by 

        L=L(qk, , t) 

The total time derivative of L is  

 =  +                                                                                    (7.28) 

From Lagrange equations, we have                                    (7.29) 

From equations (7.28) and (7.29) we have, 

                     =  +             

         or                           = +      
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or,                  L) =                                                                         (7.30) 

hence equation (7.30) can be written as  

 = -                                                                                                                           (7.31)  

If the Lagrangian L does not depend on time t explicitly, then  =0. 

 So that    = 0 i.e.,  

h= constant.                                                                                                                     (7.32) 

thus when the Lagrangian is not explicit function of time, the energy function is the constant 

of motion. It is one of the first integrals of the motion and is called jacobi’s integral. But as 

we know pk = . Hence equation (7.30) can be written as 

         L) = -                                                                                           (7.33) 

Or       = -                                                                                                                 (7.33) 

Where H   is called the Hamiltonian function. Hence  

        H= L)                                                                                                    (7.34) 

In general, the Hamiltonian function H is the function of Generalized coordinates,qk 

generalized momenta, pk 

And time t. i.e., 

H=H(q1,q2,....,qk,....,qn,  ,..., ,..., , t)                                                         (7.35) 

Or  H=H(qk, , t)                                                                                                    (7.36) 

It is to be seen that the energy function h is identical in value with the Hamiltonian H. It is 

given a different name and symbol h because h is a function of qk,   and t, while H that of  

qk, pk, and t. 

If t does not appear in the Lagrangian L explicitly, then    = 0 hence from equation (7.33); 

 = 0 or    H= constant, where the value of H is L. 

Thus, if the time t does not appear in the Lagrangian L explicitly, we see that the Hamiltonian 

H is constant in time i.e., conserved. This is the conservation theorem for the Hamiltonian of 
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the system. Under special circumstances, the Hamiltonian H is equal to the total energy E of 

the system. In-fact, this is the case in most of the physical problems. 

Physical Significance: the Hamiltonian takes a special form, if the system is conservative 

i.e., the potential energy V is independent of velocity coordinates   and the transformation 

equations for coordinates do not contain time explicitly, i.e.,  

ri  =  ri(q1,q2,....,qk,....,qn) 

for conservative system = 0  

hence pk =     =   =  

so H= L = [                                                                 (7.37) 

if  ri does not depend on time t explicitly, then the kinetic energy T is a homogeneous 

quadratic function. It is easy to show that                                   (7.38) 

in fact, for a natural conservative system neither T nor v contains any explicit time 

dependence and hence the Lagrangian. And T is a homogeneous quadratic function of the 

time derivatives . Hence from equations (7.37) and (7.38), we have 

H= L 

   =2T-(T-V) 

 = T+V= E, constant                                                                                               (7.39) 

Thus the Hamiltonian H represents the total energy E of the system and is conserved, 

provided the system is conservative and T is a homogeneous quadratic function.  

 

7.6.Routh’s Procedure: It has been remarked that the Hamiltonian formulation is not 

particularly helpful in the direct solution of mechanical problems. Often we can solve the 2n 

first-order equations only by eliminating some of the variables, for example, the p variables, 

which speedily leads back to the second-order Lagrangian equations of motion. But an 

important exception should be noted. The Hamiltonian procedure is especially adapted to the 

treatment of problems involving cyclic coordinates. Routhian mechanics is a sterile hybrid, 

combining some of the features of both the Lagrangian and the Hamiltonian 

formulations developed by Edward John Routh. Correspondingly, the Routhian is the 

function which replaces both the Lagrangian and Hamiltonian functions. It is a function of 

mixed variables qk, , and  where the number of qk coordinates is n, the number of 

degrees of freedom and the rest n velocity like independent( ’s and ’s) variables are 

shared in between ’s and ’s. When there are some cyclic coordinates in the Lagrangian, 
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the construction of Routhian is useful. If the first s out of n coordinates are cyclic in L then 

the Routhian for the system under consideration is defined as  

R=R(q1,q2,….,qn;p1,p2…,ps; ,…, ;t) 

= q1,q2,....,qn, )                                                         (7.40) 

Where pk(k=1,2,.....,s) are constants of motion 

Now dR=                            (7.41) 

        dR=  

or, dR=-                                     (7.42) 

comparing equations (7.31) and (7.32) for dR, we have for the first s coordinates 

                                                                               (7.43) 

For the rest n-s coordinates, i.e, from k=s+1 to k=n, we get   

 

 

Substituting for  in first of above, we get, 

( =0,     for k=s+1,.....,n                                                                            (7.44) 

For t variable,   = -                                                                                                (7.45) 

Thus for the first s coordinates, which are supposed to be cyclic, equations (7.43) are similar 

to the Hamilton’s equations of motion, where one has to replace H by R. They would 

conserve momenta (k=1,2.....,s) since R is cyclic in the corresponding . 

Therefore one may express R as  

R=R(                                                    (7.46) 

Where the momenta  are constants (which are to be determined 

from the initial conditions). 

Rest of the n-s conditions (k=s+1,......, n) are not cyclic and only the variables in 

R are the n-s conditions and the corresponding  n-s generalised velocities. these coordinates 
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satisfy in equation (7.44) Lagrange type equations of motion in R instead of L. Thus the 

Routhian function R effectively behaves like a lagrangian of a system, having the number of 

degrees of freedom n-s. In conclusion, in Routh’s procedure, a problem with some cyclic  and 

remaining non-cyclic coordinates may be solved in two steps: 

(1) Solve Hamilton’s equations for cyclic coordinates with the Routhian R as the 

Hamiltonian of the system, and 

(2) Solve Lagrange’s equations for non-cyclic coordinates with the Routhian as the 

Lagrangian of the system.   

 

 

    

 7.7. Advantages over the Hamiltoian formulation over Lagrangian 

Formulations: 

 Hamilton's equations consist of 2n first-order differential equations, while Lagrange's 

equations consist of n second-order equations. However, Hamilton's equations usually don't 

reduce the difficulty of finding explicit solutions; They still offer some advantages, since 

important theoretical results can be derived because coordinates and momenta are 

independent variables with nearly symmetric roles. Hamilton's equations have another 

advantage over Lagrange's equations that if a system has a symmetry, such that a coordinate 

does not occur in the Hamiltonian, the corresponding momentum is conserved, and that 

coordinate can be ignored in the other equations of the set. Effectively, this reduces the 

problem from n coordinates to (n-1) coordinates. In the Lagrangian framework, of course the 

result that the corresponding momentum is conserved still follows immediately, but all the 

generalized velocities still occur in the Lagrangian - we still have to solve a system of 

equations in n coordinates.but there are some areas too of physics where Lagrangian 

formulation is preferred than the Hamiltonian one, for example the quantum field 

theory(QFT) has been described in terms of Lagrangian formulation. 

 

7.8. Worked Examples 

Ex.1. Obtain the  Hamilton’s equations for a simple pendulum. Solution: We use the 

generalised co-ordinate. For evaluating potential energy, the energy corresponding to the 

mean position is taken as zero. 

 The velocity of the bob, v=                      

Kinetic energy, T=                                             

Potential energy, V=  

Lagrangian, L=T-V=  
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Now by applying  , we may get, 

 

 =  �    

Hamiltonian H( ) =  

                                  = { } 

                                  =  

    Now applying Hamilton’s equations,      ,     

We have  = ,       

=   

since  is small, sinθ  and the above equation reduces to 

 

 

 

 

This is standard differential equation; the solution of this equation is given by 

 
 

Ex.2. Charged particle moving in an electromagnetic field. obtain the equations of 

motion from Hamilton’s equations. 

The Lagrangian L for a charged particle in an electromagnetic field is given by  

L=T-qϕ+q(v.A) 

   = +q  

The canonical momenta,    =  = m            

Now, H= =  + ) - L 

         H   = m +qϕ - q(v.A) 

            =                                                                   

From equation expression of pk, we have, , then H can be expressed as  

H =  

Or, H= +qϕ                                   

Hence Hamilton’s equations are 

= or  
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And by using    , we have  

 

 

 

 

Ex.3. Apply the Hamilton’s equations in the study of the Compound Pendulum. 

Solution: Let us consider compound pendulum be suspended from a pivot point such 

that its centre of mass is oscillating in the vertical plane which is the plane of the paper. 

 

Now  the Lagrangian, 

 L= T- V= + mglcos  

Generalized momenta pθ =  = I                 

so      

   H= - - mglcos   

Or          H=          

Now using Hamilton’s equations     ,    

                                                                                         and    we get 

=  or  =  whence = I      and ,     or  ,        

Equating these two values of  we have,  

I =- Mgl sin        

When  is small then sin  and the equation of motion is 

+   = 0       

This equation represents simple harmonic motion, whose periodic time is given by 

   T=               

 

Ex. 4.   Describe the Hamiltonian and Hamilton’s equations for an ideal spring-mass 

arrangement. 

Solution: L= m - kx
2
, where k is the force constant of the spring. 

 

 px =  = m  or   =                               

  H=   

     = px -[ m - kx
2
] 
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     = m + kx
2 

 

      
Or   H= + kx

2
 

 

Hamilton’s equations are  =  =  and  = -  = -kx 

Thus the equation of motion of spring-mass system is  

        

    m  = - kx 

  

 or        + x = 0 

Ex. 5. Using Hamilton’s equations of motion, Show that the Hamiltonian. 

 

  H=   +  m ω
2
x

2
e

rt
, leads to the equation of motion of a damped harmonic 

oscillator,     + ω
2
x = 0  (where r is a constant). 

Solution:  

Equations of motion are  

                 =   and  = -  

         Here  q = x,  therefore 

     =  =               and   = -  = -m ω
2
xe

rt
 

Now   =  from here we will have, p =m    and  =  m e
rt
 + mr e

rt
 

   Now equating the above two values of  we will have m e
rt
 + mr e

rt
 = -m ω

2
xe

rt 

or                       + + ω
2
x =0 

which is the desired equation of damped harmonic oscillator. 

Ex.6. Determine the Hamiltonian corresponding to the Lagrangian L=a  + b -kxy. 

Solution:  H= , or 

                H =   +   - a  - b  + kxy (since, L=a  + b -kxy) 

Now since   px =   hence, px = 2a  and py = 2b , substituting these values of  and  in 

above expression of Hamiltonian, we get 
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                       H=  (  +  ( ) - a  - b  + kxy  

                           =  +  -  -  +kxy 

 Or H =  +  + kxy                    

Ex.7.   Find the Routhian for the Lagrangian L, given by 

L = ( ,  where = . 

 

Solution: 

R=  

Since  is the cyclic coordinate, 

R = pθ (  

But pθ =  = constant,  

Hence,  

Hence, R= -  

The last two terms in R give the effective potential for r-motion. 

7.9. Summary: In this chapter we have discussed the Hamiltonian formulation of classical 

mechanics thoroughly. We also discussed a hybrid formulation of Lagrangian formulation 

and Hamiltonian mechanics which was called the Routh’s procedure. We illustrated various 

worked examples to get enhance the understanding of each topic thoroughly. We studied the 

concept of cyclic coordinates and their consequences in the classical mechanics. In going 

through the cyclic coordinates we took three subtopics the conservation of linear momentum, 

conservation of angular momentum and the conservation of energy respectively. Hence we 

learned that how the knowledge of cyclic coordinates makes easy of the mechanical 

problems. At last of the unit we have compared the two formulations; Lagrangian and 

Hamiltonian and found the Hamiltonian formulation best but still we cannot replace the 

Lagrangian formulation in some special topics of physics like the modern field theories. 

7.10. Model questions 
 

A. Multiple Choice Questions 

 (1) If the Lagrangian of a particle moving in one dimensions is given by L = . the  

Hamiltoian is 

(a)                (b)  

(b)                (d)  
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(3) The Lagrangian for a simple pendulum is given by, L= ,         

 Hamilton’s equations are given by 

(a) = -mgl sin                                       (b) = mgl sin                                        

(c) = -m                                                     (d) =-( )  ,                                                      

       (4) Hamilton’s equations of motion are 

(a) ;                        (b) ;     

(c) ;                       (d) ;       

 (5) The Lagrangian for a simple pendulum is given by, L=  .      

which of the following is conserved  

(a)                               (b)   sin                                       

(c)    sin                             (d) /                                                                                     

 (6) Hamilton’s equations are  

 (a) 2n 1
st
 order time dependent equations   (b) n 1

st
 order time dependent equations 

 (c) n 2
nd

 order time dependent equations    (d) 2n 2
nd

  order time dependent equations  

 (7) Which of the following set of phase-space trajectories is not possible for a particle   

             obeying Hamilton’s equations of motion? 

 

 

 

 

 

 

 

 

 

 

(8) The Lagrangian of a particle moving in a plane under the influence of a central potential 

is given by L = + ) - V(r). The generalized momenta corresponding to r and θ are 

given by 

(a) m  and mr
2

          (b) m  and mr
 

       

(c)  m  and mr
2

       (d)   m  and mr
2
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(9) The Hamiltonian corresponding to the Lagrangian L=a  + b -kxy is 

(a)   +  + kxy                 (b)   +  - kxy  

(c)   +  + kxy                   (d)   + kxy     

 (10). The Hamiltonian of relativistic particle of rest mass m and momentum p is given by            

H=  in units in which the speed of light c = 1. The corresponding   

Lagrangian is  

(a) L = - V(x)                           (b) L=  - V(x)                            

(c) L = - V(x)                            (d)   L= x
2
 – V(x) 

 (11). The Hamiltonian of a classical particle moving in one dimension is  H=  +αq
4
.      

Where α is a positive constant and p and q are its momentum and position respectively. Given 

that its total energy E E0. the available volume of phase space which depends on E0 as 

                        (a)                                 (b)  

                         (c)                                 (d) is independent of  

Answers: (1)-a,  (2)-b, (3)-d,  (4)-a,  (5)-a, 6-b, (7)-a, (8)-c, (9)-c,(10)-b, (11)-a 

Answers of self-check Questions: (1).it is the function of q, p and t., (2).see any graduate 

level maths book / Wikipedia.(3). Linear momentum, (4). Angular momentum, (5). No,it is 

only when the system is conservative (6). All are best since use of any one of them depends 

on the situation of the system and on convenience. 

B. Short Answer type Questions 

1. What are the advantages of Hamiltonian formulation over the Lagrangian 

formulation? 

2. Define the phase –space and conjugate variables 

3. Define the cyclic coordinates 

4. Write the Hamiltonian function and Hamilton’s equations 

5. What are the advantages of Hamiltonian formulations over the Lagrangian 

formulations 

6. What is the first integral in the Hamiltonian formulation 

C.Long Answer type questions  

(1) Derive the Hamilton’s equations of motion by  the Hamiltonian of the system  and  

the variational principle 

(2) Define the cyclic coordinates and apply this concept in the principle of 

conservation of linear momentum, angular momentum and energy. 
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(3) Apply the Hamiltonian formulation to illustrate the equations of motion to for a 

charged particle moving in an electromagnetic field. 

(4) Apply the Hamilton’s equations to describe the motion of a simple harmonic 

oscillator and a compound pendulum. 

(5) A Hamiltonian of one degree of freedom has the form 

H=  - bqpe
-αt 

+ q
2
e

-αt
(α + b e

-αt
) + . 

Where α,a,b, and k are constants. 

(a) Find a Lagrangian corresponding to this Hamiltonian. 

(b) Find an equivalent Lagrangian that is not explicitly dependent on time. 

(c) What is the Hamiltonian corresponding to this second Lagrangian, and what is 

the relationship between the two Hamiltonian? 

(6) The Lagrangian for a system can be written as  

L = a  + b  + c  + fy
2

+ g  -k  . 

Where a, b, c, f, g, and k are constants. What is the Hamiltonian? What quantities 

are conserved? 

(7) A dynamical system has the Lagrangian 

L =  + + +  

Where a, b, k1, k2 are constants. Find the equations of motion in the Hamiltonian 

formulation. 

 7.11.References and books suggested 

• J.C Upadhyaya,Classical Mechanics, Himalaya Publishing House 

• G.Aruldhas, Classical Mechanics, PHI Learning private Limited. 

• H.Goldstein, Classical Mechanics, Addison-Wesley 

• Wikipedia 
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8.1 Aims and Objectives  
In this unit you will go through a new type of variation •-variation, rather than δ-variation. 

And we use this variation in deriving the principle of least action. You will be familiar with a 

transformation called the canonical transformations and their need in classical mechanics. 

You will be able to know a new concept that is the Poisson Bracket and it’s applications in 

writing the equations of motion in terms of Poisson brackets. Then you will learn how we can 

form the various forms of Poisson bracket with the help of canonical transformations. You 

will learn how to apply these transformations in actual mechanical problems like harmonic 

oscillator.  

8.2 Introduction In Hamiltonian mechanics, a canonical transformation is a change 

of canonical coordinates (q, p, t) → (Q, P, t) that preserves the form of Hamilton's equations. 

This is sometimes known as form invariance. It need not preserve the form of 

the Hamiltonian itself. Canonical transformations are useful in their own right, and also form 

firstly,the basis for the Hamilton–Jacobi equations  which is a useful method for 

calculating conserved quantities and secondly, Liouville's theorem which itself the basis for 

‘classical statistical mechanics’. 
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8.3 ∆-Variation- so far you have been learned about in variation, firstly, the variation 

of the path allows for variations in the coordinate qk at constant t and secondly the varied path 

and the correct path have the same end points i.e., (t1) = (t2)=0 
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While in ∆- variation time as well as position coordinates are allowed to vary. At the end 

points of the path, the position coordinates are kept fixed, while changes in the time are 

allowed. The ∆- variation of a coordinate qk is shown in figure 8.1 while figures 8.2 and 8.3 

represent the d-variation and  δ-variation respectively. The end points of the path A and B 

after time ∆t take the position A
’
 and B

’
 so that there is no change in the position coordinates, 

that is, •qk(1)= •qk(1)= 0. A point P on the actual path now goes over to the point P
’
, on the 

varied path with the correspondence, given by;   

qk =qk+•qk=qk + δqk+ .  

Where δ-variation is that where change in position coordinates and time both are kept fixed at 

the end points. 

The ∆- variation of any function f = f(  is given by  

   ∆ f( = qk + •t 

                        = •t 

                         =  •t 

                         =δf + •t  

Relation between these two types of variations can be written as-  

                   

                            δ+∆t                                                                              (8.1)  

                                                          

  

 

8.4. Principle of least Action- According to the principle of least action for a 

conservative system 

                ∆ dt = 0                                                                                      (8.2) 

Where ∆ represents variation of path which allows time as well as position coordinates to 

vary. As we know that Hamilton’s principle function S, is given by  

S= , the ∆-variation of S is  

∆S = ∆  = [δ+∆t ]  

                       = +  
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                  =δ  +[L∆t  

                  = δ  +[L∆t  

                   =                                                   (8.3) 

In the present case  at the end points, hence δ  is not equal to zero.Now, 

according to  Lagrange’s equations, we have                                   (8.4) 

              Also,        = [                                                                                  (8.5) 

Hence, (pk qk)                                                                         (8.6) 

Again we know that, ∆=δ+∆t , hence 

  ∆ =δ +∆t , or δ =  ∆ -∆t  or pk δ = pk ∆ -∆t pk 

Hence,  (pk qk)  ( )                                (8.7) 

hence  ∆S  =                                                    (8.8) 

using equations (7.3) and (7.8), we have 

∆S=     

    or ∆S  =                                                      (8.9)     

First term on r.h.s will become zero as  at the end points.   

Therefore equation (8.9) will become   

 ∆  =[(L-         

                 = -[H∆t                        (since H= )         

                 = -   (for conservative system), then 

 =0 

Or,   =0, which is known as principle of least action. 
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There are some other forms of principle of least action which are described as following-   

8.4.1.Fermat’s Principle-for a conservative system, the Hamiltonian is constant and the 

potential energy is independent of time. So that 

 =  =  

Therefore, = =2T 

By substituting this value of  in expression of principle of least action, we get 

    =0,                                                                                                             (8.10) 

This is the another form of principle of least action. If there is no external force acting on the 

system, then total kinetic energy T as well as total energy H will be conserved. In this case 

the equation (8.10) will become    =0, or    =0 

or,    = an extremum                                                                                      (8.11) 

here we see that the word least is misnomer since it is not always true rather sometime it take 

longer time than the normal. This form of the principle of least action is the same as Fermat’s 

principle in geometrical optics, which states that a ray of light travels between two points 

along such a path that the time taken is the extremum. 

 

8.4.2. Jacobi’s form of the principle of least action: when transformation equations do not 

involve time, the kinetic energy of a system can be expressed as a homogeneous quadratic 

function of the velocities,i.e,  

   T= kl                                                                                                                                                           (8.12) 

we construct a configuration space for which Mkl coefficients form the metric tensor and the 

element of path length d  in this space is defined as 

d
2
=                                                                                                           (8.13)  

so that, [d                                                                                  (8.14) 

from equations (8.12) and (8.13), we get 

T=                                                                                                                      (8.15) 
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Hence dt=d                                                                                                         (8.16) 

Hence the principle of least Action,    = 0 =                            (8.17) 

But H=T+V(q), total energy is constant for conservative system. Thus, the principle of least 

Action takes the form 

           = 0                                                                                 (8.18)  

This is known as Jacobi’s form of the least action principle 

8.4.3. Principle of least Action in terms of arc length of the particle 

trajectory- if the system contains only particle of mass m, its kinetic 

energy is given by 

T= =                                                                                           (8.19) 

Where ds is the element of arc traversed by the particle in time dt. From this 

expression, we have 

               dt =  

so that the principle of least Action ,    = 0 can be written as 

      = 0                     

  Or,         = 0 

Or,     = 0                                                                          (8.20) 

This equation represents the principle of least Action in terms of arc length of the 

particle trajectory. This equation is similar to the Jacobi’s form of the principle of 

least action.                 

     8.5   Canonical Transformations- In several problems, we may need to change one set of 

position and momentum coordinates into another set of position and momentum coordinates. 

Suppose that qk and pk are the old position and momentum coordinates and Qk and Pk are the 

new ones. Let these coordinates be related by the following transformations: 

Pk=Pk( ) and )                (8.21) 

Now if there exist a Hamiltonian H’ in the new coordinates such that 

                                                                                                                      (8.22a) 

                                                      =                                                                      (8.22b) 

                                  where                =                                              (8.23) 
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and  substituted in the Hamilton’s principle,  = 0                                         (8.24) 

gives the correct equations of motion in terms of the new coordinates Pk and , then the 

transformations (8.21) are known as canonical or contact transformations 

8.5.1. Legendre Transformations This is a mathematical technique used to change the 

basis from one set of coordinates to another. If f(x,y) is function of two variables x and y, 

then the differential of this function can be written as  

         df=    or, df=                                                                       (8.25) 

where u=                                                                                                          (8.26) 

Now, we want to change the basis from (x,y) to (u,v) so that u is now an independent variable 

and x is a dependent one. Let  be a function of u and y such that 

                                 =f-ux                                                                                             (8.27) 

Then,                                  =df-udx-xdu                                                                     (8.28) 

Substituting for df, we get,  

                                  = -udx-xdu    

Or                                        = -xdu                                                                         (8.29) 

But                                   is a function of u and y, therefore  

                    = + dy                                                                                           (8.30) 

Comparing equations (8.29) and (8.30), we get 

         x=-       and  v=                                                                                                  (8.31) 

these are the necessary relations for Legendre transformations. 

8.5.2.Generating Functions  For canonical transformations, the Lagrangian L in pk, qk 

coordinates and  in Pk, Qk coordinates must satisfy the Hamilton’s principle, i.e., 

and                                                                                   (8.32) 

But   =         and                                                 (8.33) 

                                                                                          (8.34) 
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And                                                                                    (8.35) 

Subtracting equation (7.35) from equation (7.34), we get 

                                                          (8.36) 

In -variation process, the condition =0 is to be satisfied, in general, by f = , where 

F is an arbitrary function. Therefore, 

                                                                                                                  (8.37) 

Where,  dF/dt = L -                                                                                                         (8.38) 

Or,   = (                                                                      (8.39) 

The function F is known as the generating function. The first function in equation (8.39) is a 

function of pk, qk and t and the second as a function of Pk, Qk and t. F is therefore , in general, 

subjected to the transformation equations (8.21) and therefore F may be regarded as the 

function of (2n+1) variables, comprising t and any 2n of the pk,qk, Pk, Qk. Thus we see that F 

can be written as a function of (2n+1) independent variables in the following four forms: 

(i) F1(qk, Qk,t),                                    (ii) F2(qk,Pk,t) 

(ii)  F3(pk,Qk,t),                                    (iv) F4(pk,Pk,t) 

 

First form :F1(qk, Qk,t)- if we choose this form, i.e., 

F1=F1  (q1, q2,....,qk,....,qn , Q1, Q2,...., Qk,....,Qn, t)                                                     (8.40) 

Then   =                                                                     (8.41)  

subtracting equation (8.41) from equation (8.39), we write,    

 

Or,      

                           (8.42) 

               As ,        and  may be regarded as independent variables, 

    

 , and =                                                                 (8.43) 
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In principle, first equation of equation (8.43) may be solved to give 

Qk=Qk(qk, pk, t)                                                                                                               (8.44) 

Substituting this in the second equation of equation (8.43), we get, 

Pk=Pk(qk, pk, t)                                                                                                                  (8.45) 

Equations (8.44) and (8.45) are the transformation equations (8.21). Thus we find that 

transformation equations can be derived from a knowledge of the function F. This is why F is 

known as the generating function of the transformation. 

Second Form: F2(qk,Pk,t)- If the generating function is of the type F2(qk,Pk,t), then it can be 

dealt with by affecting a Legendre transformation of F1(qk, Qk,t). 

 The Legendre transformation:        =f-ux , where u=   

hence, since 

      Pk=-  , we have u= - Pk, x= ,   =F2 and f = F1. 

Therefore,  F2(qk,Pk,t) = F1                                                               (8.46) 

Substituting the value of F1 from above equation in equation (8.39), we have 

( =  =  ] 

Or      =         +  +  -H                                                                       (8.47) 

Total time derivative of F2(qk,Pk,t) is  

      = +  +                                                                                     (8.48) 

From equations (8.47) and (8.48) = ,  and =                             (8.49) 

 Third form:F3(pk,Qk,t)- now we can relate this type of generating function to F1 by a 

Legendre transformation  in view of the first relation in form third,  = . Here u = , 

x= , =F3 and f=F1. therefore,   

F3(pk,Qk,t) =F1 -      

Or,    F1   = F3(pk,Qk,t) +      

Hence from equation (8.21), 
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( =  = ] 

= -                                                                               (8.50) 

Also, = +  +                                                                             (8.51) 

Therefore the new transformation equations are      

= ,      and        =                                                               (8.52) 

Fourth form:F4(pk,Pk,t)-  Using Legendre transformations, the generating function 

F4(pk,Pk,t) can be connected to F1  as    

 F4(pk,Pk,t) = F1(  +  -  

Using equation (8.21)    

 ( =  (F4  +   

Or,    = -                                                                    (8.53) 

  But  = +  +                                                                              (8.54) 

A comparison of the above two equations gives,   

           =   ,      ,        =                                                          (8.55) 

 

 

8.5.3.Table.Summary of Generating functions-  

Generating Function         Transformation Equations 

 

F1(q,Q,t) 

  
F2(q,P,t) =  

 
F3(p,Q,t) =    

F4(p,P,t)  
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 8.5.4.Procedure for application of canonical transformations:- we note that 

the relation between H and  in all the cases has the same form i.e.,      =   .  If F 

has no explicit time dependence, then   =0  and hence  

                                                                                                                       (8.56) 

Thus, when the generating function has no explicit time dependence, the new Hamiltonian  

is obtained   from the old Hamiltonian H by substituting for pk, qk in terms of the new 

variables Pk, Qk. Further we note that the time t has been treated as an invariant parameter of 

the motion and we have not made any provision for a transformation of the time coordinate 

along with the other coordinates. 

If in the new set of coordinates  all coordinates  are cyclic, then  

 =0 or, Pk=constant, say                                                                         (8.57) 

If the generating function F does not depend on time t explicitly and H is a constant of motion 

then  will also a constant of motion. 

Hence,  (qk, pk)  =  (Qk, Pk)   =  (Pk)   =   (      )      

Hamilton’s equations for Qk are  

                     =  =                                                                                   (8.58) 

Where  are functions of the s only and are constant in time. 

Equation (8.58) has the solution   

                                                                                                               (8.59) 

8.5.5. Condition for canonical transformation      

Suppose=F  then obviously  =0, and H=      

  

Also    dF =        

      Or, dF =                                                                                 (8.60) 

The L.H.S. of above equation is an exact differential, hence for a given transformation to be 

canonical, the R.H.S must be  an exact differential also. 
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8.5.6. Harmonic Oscillator       In case of a Harmonic Oscillator, the Hamiltonian in 

terms of q and p coordinates can be expressed as  

H = +         

Or, H   =  (                                                                                           (8.61) 

Let us consider the generating function, given by 

F1(q,Q,t) = cotQ 

  
 

Hence, p = m ,        P =       = H                                                            (8.62) 

Hence, q = ,  p =  cosQ                                                                      (8.63) 

Now, the transformation,   is obtained by using equation (8.62) and (8.63) i.e., 

  =H = (   =  (2m P Q   +2m Psin
2
Q) 

  =H=                                                                                                                     (8.64) 

Since the Hamiltonianis cylic in Q, the conjugate momentum P is constant. In fact H = = E 

is the constant energy E so that 

P=E/                                                                                                                            (8.65) 

Then the equation of motion for Q reduces to the simple form 

 =   =  

With the solution 

Q=                                                                                                                    (8.66)  

Where   is a constant of integration      

Equations (8.63), (8.65) and (8.66) we have 

q =  sin( )                                                                                                    (8.67) 
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which is the solution of a harmonic oscillator.              

  8.5.7. Identity transformation           

   Let us consider the generating function of the form, F=  

 This generating function looks like the second form, hence when we determine the pi and Qi, 

we get 

pi = =Pi and Qi = =qi  therefore 

again since F2 is independent of time therefore   =H 

Thus the new and old variables are separately equal and hence F generates the identity 

transformation. 

8.5.8. Bilinear invariant condition       according to this condition, if a transformation 

(qk,pk)  coordinates to (Qk,Pk)   coordinates is canonical, then bilinear form 

   remains invariant. This means that   

   =                                                 (8.68) 

Proof- from Hamilton’s canonical equations, we have  

    or d = dt 

     and    or   d  , similarly, d = dt and d  

since  and  are arbitrary,  

( =0                                                 (8.69) 

Obviously in order to satisfy this equation, the coefficients of   and  must be zero and 

we may get Hamilton’s equations again. Hence equation (8.68) is correct. 

Equation (7.68) can be written as 

     =0 

Or,                                                                 (8.70) 

Similarly, for   =H, when F does not depend on time, 

                                                                      (8.71) 

Eliminating   from equations (8.70) and (8.71), we obtain   
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  =  , which poves the statement.  

8.5.9.Infinitesimal contact transformations           Those transformations in which 

the new set of coordinates (Qk,Pk)   differ from the old set (qk,pk) by infinitesimals i.e., Qk 

=qk+ qk and Pk=pk+ pk, are called infinitesimal contact transformations. As we know that 

the generating function F2=  generates the identity transformation i.e, Qk =qk and   Pk 

=pk. The generating function, giving an infinitesimal change in the variables, can be readily 

written as  

F2=                                                                                              (8.76) 

Where    is an infinitesimal parameter of the transformation and G  is arbitrary.  Now 

putting the value of F2 in the following equations 

  = ,  and =  

We get  = +  , +  , and                                                      (8.77) 

Therefore, - = =-   , and - = =                                              (8.78) 

Since the difference, -  is infinitesimal. We can replace  by in the derivative and 

also  by . So that the equations (8.78) are; 

    =-   , and  =   .                                                                                (8.79) 

In case of infinitesimal contact transformations, the description is transferred to the G instead 

of the original generating function F. Thus G is the new generating function which generates 

the infinitesimal contact transformation. 

Let us consider a special case in which  and G=H. Equations (8.79) can be written by 

using Hamilton’s equations of motion as 

 =-   =dt =dpk 

 and  =   =dt  =dqk                                                                                                                             (8.80) 

these changes in the conjugate variables represent an infinitesimal change in coordinate in 

time dt. Equations (8.80) give thus a transformation from the variables qk, pk at time t to  

qk+dqk, pk+dpk at time t+dt. Hence the motion of the system in a small time dt can be 

described by an infinitesimal canonical transformation generated by the Hamiltonian H of the 

system. And the motion of the system in a finite interval of time is described by a succession 

of infinitesimal canonical transformations generated by the same Hamiltonian. In other 

words, the motion of a system corresponds to the continuous evolution of canonical 
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transformation. Thus we can say that the Hamiltonian of the system is the generator of the 

motion of the system in phase space with time.                  

                                                                   

8.6. Poisson Bracket: Hamilton’s equations of motion for give the time 

evolution of the coordinates and momenta of a system in phase space. Using these equations, 

we can find the equation of motion for any function F(q,p) in terms of what is known as 

Poisson Brackets. They are similar to commutator brackets in quantum mechanics and 

provide a bridge between classical mechanics and quantum mechanics. 

The Poisson Bracket of any two functions F(q,p,t) and G(q,p,t) with respect to the canonical 

variables(q,p), written as [F,G]q,p , is defined by 

  [F, G]q,p =                                                                                   (8.81) 

8.6.1. Fundamental Poisson brackets: The following three brackets are called the 

fundamental Poisson brackets. 

First.[ q,p =0 

     Proof:     [ q,p   =     = 0         

      (Since ( ) 

Second. [pj,pk]q,p=0 

 Proof:  [pj,pk]q,p=    =0 

Third.  [qj,pk]q,p=  

Proof: [qj,pk]q,p=    the second term inside the bracket is zero and 

= ,  = , hence, [qj,pk]q,p=  

8.6.2. Fundamental Properties of poisson brackets Let F,G and S be functions of 

canonical variables(q,p) and time. The following fundamental identities can be obtained from 

the Poisson bracket defined as  [F,G]q,p = ; 

(1). [F, F]=0 

Proof: 

[F,F]= =0 
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(2). [F,C]=0, where C is constant 

(3). [F,G]=-[G,F] 

Proof: 

[F,G]= =-[G,F] 

(4). [F,G+S]=[F,G]+[F,S] 

Proof: 

[F,G+S]=  

=  

=[F,G]+[F,S] 

(5). [F,GS]=[F,G]S+G[F,S] 

Proof: 

[F,GS]=  

=  

=  

=[F,G]S+G[F,S] 

(6). One of the important properties of Poisson bracket is the Jacobi identity for any three 

functions: Which states that ‘‘the sum of the cyclic permutations of the double Poisson 

Bracket of three functions is zero’’. i.e., 

[F,[G,S]]+[G,[S,F]]+[S,[F,G]]=0. Which we will study in further section of this unit. 

(7). =[ ,G]+[F,  

Proof:  

= ( -  

= ( +  
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=[ ,G]+[F,  

A pair of functions for which the Poisson Bracket [F,G]=0 are said to be commute with each 

other. 

8.6.3.Equations of motion in Poisson Bracket form- 

Let us consider a function F which is a function of q’s, and p’s and time t: 

F=F(q,p,t) from here we can write 

 

Replacing  using Hamilton’s equations 

 

                                                   =[F,H]+                                                               (8.82) 

Which is the equation of motion of F in terms of Poisson bracket. In equation (8.82), H is the 

Hamiltonian of the system. If F is replaced by , then equation (8.82) gives,  

 and    (when and  do not depend explicitly on t)              (8.83) 

These two equations constitute the canonical equations of motion in Poisson bracket form. 

8.6.4.Poisson Bracket and Constants of motion- 

One of the important uses of Poisson Brackets is finding the integrals of motion. Let us 

consider the equation,           =[F,H]+  . For F to be constant of motion, dF/dt must be 

equal to zero. Hence, [F,H]+  =0                                                                             (8.84) 

If the constant of motion F does not contain t explicitly, above equation reduces to 

                                  [F,H]=0                                                                                      (8.85) 

i.e., when the constant of motion does not contain t explicitly, its Poisson bracket with the 

Hamiltonian of the system vanishes. Conversely, the Poisson brackets of constants of motion 

with the Hamiltonian H must be zero. 
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8.7.Poisson Theorem- One of the important property of Poisson bracket is Poisson 

theorem according to this theorem, the Poisson bracket of any two constants of the 

motion is also a constant of motion. Or mathematicall,which states that if F(q,p,t) and 

G(q,p,t) are two constants of motion, then [F,G] is also a constant of motion. i.e., 

[F,G]=constant                                                                                                                 (8.86) 

Since F and G are constants of motion 

    =[F,H]+ =0 or, = -[F,H]                                                                                    (8.87) 

    =[G,H]+ =0 or,  = -[G,H]                                                                                  (8.88) 

Now, let us consider the time derivative of the Poisson bracket [F,G].( With the help of  

equation,        =     [F,H]+  ) 

[[F,G],H]+  

Now using expression, =[ ,G]+[F, , 

=[[F,G],H]+[ [F,  

Now replacing  and  from equations (7.87) and (7.88) in above expression, we get 

=[[F,G],H]+[[H,F],G]+[[G,H],F] 

Now right side of above expression will become zero by applying the Jacobi’s identity. 

Hence,  =0 

It means that, =constant. 

 

8.8.Jacobi’s identity One of the important properties of Poisson bracket is the Jacobi 

identity for any three functions as we stated earlier that the sum of the cyclic permutations of 

the double Poisson Bracket of three functions is zero, i.e., 

[F,[G,S]]+[G,[S,F]]+[S,[F,G]]=0 

Proof: The proof of this theorem has a lengthy algebraic process, there are some short cut 

methods too to prove this identity but those methods  comprise of  some other identities. It 

might possible that the reader might not familiar with those identities so we will go through 

this identity via same lengthy procedure this time.   
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 Let us start from an expression in Poisson bracket form [F,[G,K]]-[G,[F,K]] 

=[F,  

=[F, ]-[F,  

Now, using the property[F,GK]=[F,G]K+[F,K]G, we have 

[F,[G,K]]-[G,[F,K]]=[F, -[F, ] -[F,  –

[G, -[G, +[G, +[G,  

= ])+ ])-

 

=  (since Using the identity [F,G]=[ +[F, ]) 

= - [K,[F,G]] 

Thus, [F,[G,K]]+[G,[K,F]]+[K,[F,G]]=0 

Which is called the Jacobi’s identity. 

 

 

8.8.1.The Canonical invariance of Poisson bracket- Probably the most important 

property of poisson bracket is that it is invariant under canonical transformation. This means 

that if (q,p) and (Q,P) are two canonically conjugate sets, then 

q,p= [F,G]Q,P                                                                                                     (8.89) 

Where F and G are any pair of functions of (q,p) or (Q,P). The (q,p) and (Q,P) sets are related 

by a canonical transformation of the type given in equation as 

 And  

The Poisson bracket of the functions F and G with respect to the (q,p) set is given by 

[F,G]q,p =                                                                                 (8.90) 

Let us consider the function, G=G(Q,P) 

=                                                                                          (8.91) 
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=                                                                                          (8.92) 

Substituting equations (8.91) and (8.92) in equation (8.90), we have, 

[F,G]q,p = - ]                            (8.93) 

=  (   (  )) 

=  [F,Qi]q,p + [F,Pi]q,p}                                                                                   (8.94) 

Replacing F by Qk and G by F 

[Qk,F]q,p      =    [Qk,Qi]q,p + [Qk,Pi]q,p}                                                          (8.95) 

Since                       [Qk, Qi]=0 and   [Qk, Pi]=  

[Qk,F]q,p      =       or     [F,Qi]q,p=                                                                (8.96) 

In the same way replacing F by Pk and G by F in the same expression, we have 

[Pk,F]q,p      =        or   [F,Pi]q,p=                                                                         (8.97) 

Substituting equations (8.96) and (8.97) in equation (8.95), we have 

[F,G]q,p=  -  

=[F,G]Q,P 

Thus, Poisson bracket description of mechanics is invariant under a canonical transformation. 

Therefore, a canonical transformation can be defined as one that preserves the Poisson 

bracket description of mechanics. 

8.9.Lagrange Brackets-        In addition to Poisson bracket, other canonical invariants 

exist. One such invariant is the Lagrange bracket. 

The Lagrange bracket of any two functions F(q,p) and G(q,p) with respect to (q,p) variables, 

written as {F,G}q,p, is defined as 

{F,G}q,p =   -                                                                                  (8.98) 

The lagrange brackets are invariant under canonical transformations. That is, 

{F,G}q,p   = {F,G}Q,P                                                                                                   (8.99) 

Hence, the subscripts (q,p) or (Q,P) may be dropped. 
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From equation (8.98),    {G,F}q,p = -   -  

{F,G}q,p   =   -{G,F}q,p                                                                                               (8.100) 

If we take F=  and  G = , from equation (7.98) 

{  , } =   -  

= 0                                                                                                                             (8.101) 

In the same way, {  , }  = 0                                                                                 (8.102) 

Taking F=    and  G=  in equation (7.98), 

{  , }=   -   =  

=  =                                                                                                                (8.103) 

Equations (8.98) to (8.103) are called the fundamental lagrange brackets. 

The definitions of Poisson and Lagrange brackets clearly indicate some kind of inverse 

relationship between the two. The relation between the two is given by 

 =                                                                                                     (8.104) 

Lagrange brackets do not obey Jacobi’s identity. 

 

 

8.10 worked example  

Ex.1 show that the transformation 

  P=  is canonical. 

The transformation will be canonical, if pdq-PdQ is an exact differential. Here 

dQ=  

therefore, pdq- PdQ   = pdq-          

                           = (pdq+qdp) 
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                             =d(  

                              = an exact differential 

This means that the given transformation is canonical. 

Ex.(2): Show that the transformation Q = , and P = qp
2
 is canonical. 

Solution:     Q= , therefore, dQ= +  

Or, dQ= +   =                                                                  (8.72) 

  Q= +  =                                                                                            (8.73) 

Similarly, dP=p
2
dq +2qpdp                                                                                             (8.74) 

And P = p
2

q +2qp p                                                                                                  (8.75) 

Hence,   dQ dP= (p
2

q +2qp p) ( ) (p
2
dq +2qpdp ) 

 = qdp  p dp+ pdq+  p dp     

= pdq qdp. 

Therefore, the bilinear form is invariant and hence the transformation is canonical. 

Ex.3  Using the Poisson Bracket, show that the transformation  

Q=      and p=   is canonical. 

Solution: from the definition of Poisson bracket, it is obvious that [Q,Q]=0 and [P,P]=0. 

From the given data we have 

      tanQ=                       and                2P =  +      

sec
2
Q =   or  =  

sec
2
Q =    or  =  

 = q  and  = p 

[Q,P] =    
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         =  +  

         =  

 =  

 =1 

Hence, the transformation is canonical. 

Ex.4  For what values of α and β 

Q = cosβp  and  P= sinβp   represent a canonical transformation. Also find the generator 

of the transformation. 

Soution: = αq
α-1

cos βp        = αq
α-1

cos βp 

               = -β sinβp         = β cosβp       

   [Q,P] =   

             = α β q
2α-1

cos
2
 βp + α β q

2α-1
sin

2
 βp  

            =  α βq
2α-1

 

For the transformation to be canonical, this must be equal to 1. Hence,   

                      α βq
2α-1

=1 

R.H.S of this equation is dimensionaless. Hence, q
2α-1

 should be. Therefore,  

                         2α-1=0 

Or       α = ½  and 

 from α β =1 gives β = 2. 

    Hence  Q = cosβp      P= sinβp    

Q = cosβp  gives the value of q as;  q =  . we see that q is a function of p and Q so 

the generating function must be of the type 

   F= F3(p,Q). Hence q = -  so F3 = -  

    F3 = -  -  
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8.13 Summary- you have learned in this unit a different type of variation from -variation 

which is called the ∆-variation and you learned the principle of least action. In this unit you 

also learned the canonical transformation and need of such type of transformations in  

classical mechanical problems thoroughly. Along with an infinitesimal contact transformation 

also has been discussed. you learned the generating functions and the reason why they are 

called so. You also learned an important concept the Poisson bracket which has a close 

association with quantum mechanics and how these commutators has been revolutionised the 

modern physics. You also learned how one can write the equations of motion in terms of the 

Poisson Brackets. A bracket which is different from Poisson bracket called the Lagrange 

brecket and its properties are also discussed.  

 

8.14. Model Questions 

Multiple Choice Questions 

(1) Phase-space refers to 

(a) Position coordinates           (b)   momentum coordinates 

(b) Both position and momentum coordinates   (c)  None of these 

(2) The Poisson bracket of [ | ,|  ] has the value 

(a) | |         (b)            (c) 3                       (d) 1 

      (3) The Lagrangian for a simple pendulum is given by, L= .   

The Poisson Bracket between  and  is given by 

             (a) [ ,                                     (b) [ ,  

 (c) [ ,                                     (d) [ ,       

       (4) Let (p,q) and (P,Q) be two pairs of canonical variables. The transformation 

Q = , P = , is canonical for 

(a) 2,        (b)   2,    (c) 1,        (d) 1/2,                                            

(5)The Hamilton’s canonical equation of motion in terms of Poisson Brackets are 

(a)  =[q,H];  =[p,H]            (b)  =[H, q]];  =[H, p]             

(b)  =[H, p];  =[H, p]          (d)    =[p, H];  =[q, H]   

(6) which of the following is the correct representation of the Poisson bracket and 

commutator relationship 
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(a) [F, H] = -i/h[                 (b) [F,H] = [                  

(c) [F, H] = -[                  (d) [F,H] =  i/h[                  

                   Answers 

(1)-b, (2)-b, (3)-b, (4)-d, (5)-a, (6)-a 

Answers for self-check:, (1). See the article 7.3,(2) search in google, (3) 

search in google, (4) read the article7.5.2, (5). pairs of variables, related by 

the Heisenberg uncertainty principle, (6). Commutator, (7). Are associated 

with the conserve quantities,(8). yes, can be derived by the use of some 

higher mathematical identities, like a research article a concise proof  by 

R.P.malik, (9) search in google. 

 

Short answer type Questions 

1. Define the canonical transformations 

2. Define the Poisson bracket. What are the use of Poisson brackets. 

3. What is Jacobi’s identity. Where this identity is used. 

Long answer type questions 

1. Define canonical transformations and obtain the transformation equations 

corresponding to all possible generating functions. 

2. What is generating function?. Obtain canonical transformation equations 

corresponding to first two types of generating functions 

3. Derive equations of motion in terms of Poisson’s bracket. Prove Jacobi 

identity 
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9.1 INTRODUCTION 

A branch of classical variational calculus and analytical mechanics in which the task of 

finding extremals (or the task of integrating a Hamiltonian system of equations) is reduced to 

the integration of a first-order partial differential equation — the so-called Hamilton–Jacobi 

equation. The fundamentals of the Hamilton–Jacobi theory were developed by W. Hamilton 

in the 1820s for problems in wave optics and geometrical optics. In 1834 Hamilton extended 

his ideas to problems in dynamics, and C.G.J. Jacobi (1837) applied the method to the 

general problems of classical variational calculus.  
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Hamilton-Jacobi equation is an alternative formulation of classical mechanics, equivalent to 

other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian 

mechanics. Hamilton–Jacobi equation is particularly useful in identifying conserved 

quantities for mechanical systems, which may be possible even when the mechanical problem 

itself cannot be solved completely. 

Hamilton–Jacobi equation is also the only formulation of mechanics in which the motion of a 

particle can be represented as a wave. One can say that in this manner, Hamilton–Jacobi 

equation fulfilled a long-held aim of theoretical physics dating back to Johann Bernoulli in 

the 18th century, of finding an analogy between the propagation of light and the motion of a 

particle. The wave equation followed by mechanical systems is similar to, but not identical 

with, Schrödinger's equation; for this reason, Hamilton–Jacobi equation is considered the 

"closest approach" of classical mechanics to quantum mechanics. 

 

9.2 OBJECTIVES 

After studying this unit, you should be able to 

• understand the Hamilton-Jacobi equation 

• explain how the Hamilton-Jacobi equation compares with other formulations 

of classical mechanics 

• explain how the Hamilton–Jacobi equation is useful in identifying conserved 

quantities for mechanical systems 

• discuss action-angle variables 

• discuss harmonic oscillator in the Hamilton–Jacobi theory 

• describe motion of a particle in a central force field using the Hamilton–

Jacobi theory 

 

9.3 HAMILTON-JACOBI THEORY 

We have already discussed the time-dependent canonical transformation, which maps the 

coordinates of a system at a given fixed time to their values at a later time . Now, we can 

consider the reverse transformation, mapping 

 

But then ,  and the Hamiltonian, which generates these trivial equations of 

motion is .  

9.3.1 Hamilton-Jacobi Equation 
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Consider a canonical transformation from q-p basis to Q-P basis, changing the Hamiltonian 

 to ; then the equation of motion in terms of the new Hamiltonian are 

given by 

 

 

 

(9.1) 

where  is the generating function of the transformation.  

If the new variables  and  are cyclic variables, then  and , i.e. 

 

 

(9.2) 

Since,  contains  and  as constants but  is not constant, therefore, let . Then 

the generating function  satisfies the following equation 

 

(9.3) 

It is convenient to take  as  type. Then  

 

and equation (9.3) assumes the form 

 

(9.4) 

Equation (9.4) is known as the Hamilton-Jacobi equation, which is usually written in terms 

of the Hamilton’s principle function  (or action) integral. 

 

(9.5) 

This is a first order partial differential equation in  involving  independent variables 

 and . Thus 
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In order to understand the physical significance of , we write the total time derivative of  

as 

 

 

where  

 

and 

 

Thus, 

 

(9.6) 

 

9.3.2 Complete Integral of the Hamilton-Jacobi Equation 

The Hamilton-Jacobi equation is a first order partial differential equation of n independent 

coordinates  and . Therefore, for a system with n degrees of freedom, a complete 

integral of this equation contains  constants as .  

In Hamilton-Jacobi equation, only  and  type derivatives are involved. One 

of these constants, say  is taken as additive constant. The complete integral of the 

Hamilton-Jacobi equation is 

 

The additive constant  is neglected as it plays no physically significant role. 

Consider a canonical transformation from old variables  to new variables , taking 

 as the generating function. The constants  are treated as the new 

momenta. Then 
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(9.7) 

 

 

(9.8) 

 

 

(9.9) 

 

where  are the new coordinates.  

Since,  satisfies the Hamilton-Jacobi equation, so . Hence, the Hamilton’s canonical 

equations in the new variables are 

 

 

(9.10) 

which gives 

 

 

(9.11) 

Thus, the new coordinates  are constants and could be initial values of .  

Equation (9.8) can also be written as 

 

(9.12) 

 

(9.13) 

Thus, we get the solutions of the problem in equations (9.12) and (9.13). The Hamilton-

Jacobi equation is valid when the constraints of the problem are holonomic. 

9.3.3 Hamilton’s Characteristic Function 

When the system is conservative, i.e. the Hamiltonian  does not involve time explicitly, 

then  and the Hamilton-Jacobi equation can be written as 

 

(9.14) 

We can solve the above equation by separating the  from the  dependence and we may 

write 
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(9.15) 

where  is the separation constant independent of  and , but not necessarily of  (which 

may be constant). 

As the momenta  

 
we can write 

 

(9.16) 

and the Hamilton-Jacobi equation becomes 

 

(9.17) 

where . 

The physical significance of  may be understood by estimating . Thus, 

 

(9.18) 

On integration, we get 

 

 

(9.19) 

where  is the action. 

We now consider a canonical transformation in which the new momenta are the constants  

and . Let  be a part of the generating function for this transformation. Then 

 

 

(9.20) 

with the condition that . 
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(9.21) 

But the function  is time independent. Therefore, 

 

(9.22) 

Then the canonical equations for  and  are 

 

 

(9.23) 

and 

 

 

(9.24) 

Integrating equation (9.23) using equations (9.20), we get 

 

(9.25a) 

 

(9.25b) 

Thus, we see that the function  generates a canonical transformation in which all 

the new coordinates except one are cyclic.  is not a constant of motion. This shows that  

and  are canonical conjugate variables.  

9.3.4 Comparison with other Formulations of Mechanics 

Hamilton-Jacobi equation is a single, first-order partial differential equation for the function 

S of the N generalized coordinates q1...qN and the time t. The generalized momenta do not 

appear, except as derivatives of S. Remarkably, the function S is equal to the classical action. 

For comparison, in the equivalent Lagrange equations of motion of Lagrangian mechanics, 

the conjugate momenta also do not appear; however, those equations are a system of N, 

generally second-order equations for the time evolution of the generalized coordinates. 

Similarly, Hamilton's equations of motion are another system of 2N first-order equations for 

the time evolution of the generalized coordinates and their conjugate momenta p1...pN. 

Since, Hamilton-Jacobi equation is an equivalent expression of an integral minimization 

problem such as Hamilton's principle, Hamilton-Jacobi equation can be useful in other 
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problems of the calculus of variations and, more generally, in other branches of mathematics 

and physics, such as dynamical systems, symplectic geometry and quantum chaos.  

9.4 APPLICATIONS OF HAMILTONIAN-JACOBI METHOD 

9.4.1 Harmonic Oscillator Problem 

Consider a one-dimensional harmonic oscillator. The Hamiltonian is 

 

(9.26) 

where  is the force constant.  

The Hamilton-Jacobi equation is given as 

 

(9.27) 

By setting  

 

and taking  from equation (9.26), we get 

 

(9.28) 

Since, the explicit dependence of  on  is involved only in the last term, a solution of the 

above equation may be found in the form 

 

(9.29) 

where  is a constant of integration. With this choice of the solution,  can be eliminated 

from equation (9.28) and it reduces to 

 

(9.30) 
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From equation (9.29),  

 

(9.31) 

We know  

 

Therefore, 

 

(9.32) 

Now,  

 

Therefore, 

 

Putting  

 

and  

 

in the above equation, we get 
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(9.33) 

The above equation is the familiar solution for a harmonic oscillator. The constants  and  

must be connected with the initial conditions  and  at time . The dimension of  is 

time.  

Let the particle be at  at . From equation (9.32) 

 

 

(9.34) 

The constant  is therefore, the initial total energy of the system, while  is time. The 

conjugate momenta of the generalized coordinate in time is the energy. 

From equation (9.33) 

 

 under the given initial conditions. So now the solution becomes 

 

(9.35) 

One can show that  on the basis of the above equation in agreement with the 

general relation (9.32). 

9.4.2 Motion of a Particle in a Central Force Field 
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Consider a particle of mass m moving in a central force field. The Hamiltonian of the particle 

is given by 

 

(9.36) 

Since,  does not involve time, the Hamiltonian is equal to the total energy,  Then, 

the Hamilton-Jacobi equation is written as 

 

(9.37) 

The solution of equation (9.37) is  

 

(9.38) 

where  is the Hamilton’s characteristic function, which satisfies the Hamilton-Jacobi 

equation. Therefore, we get 

 

(9.39) 

The function  can be written as . Substituting it in equation (9.39), 

we get 

 

 

(9.40) 

Now, let  

 

Integrating it, we get 

 

(9.41) 

Also, from (9.40), we get 
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(9.42) 

Therefore, the Hamiltonian characteristic function is given as 

 

(9.43) 

Using equation (9.25), the transformation equations become 

 

(9.44) 

and 

 

(9.45) 

Using equation (9.45),  can be expressed as 

 

(9.46) 

Let  and changing to a new variable , equation (9.46) reduces to the 

following form, which gives the equation of the orbit. 

 

(9.47) 

 

9.5 ACTION-ANGLE VARIABLES 
Consider a conservative system whose motion is periodic and the Hamilton-Jacobi equation 

is separable. The periodic motion is determined by the characteristics of the phase space 

trajectory. For simplicity, let us consider a system with one degree of freedom, in which case 

the phase space is a two-dimensional plane. Two cases arise, each representing periodic 

motion: 
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1. In the first type, the system retraces its path periodically and the phase trajectory is 

closed as shown in Figure 9.1a. Both q and p are then periodic functions of time 

having the same frequency. This type of motion is often referred by the astronomical 

name libration. An example of such a periodic motion is that of a one-dimensional 

harmonic oscillator. 

 

 

FIGURE 9.1 Phase space trajectory for periodic motion of one-dimensional systems; (a) 

libration, (b) rotation. 

 

2. In the second type of periodic motion, the phase space orbit is such that the variable p 

is periodic in q, with a period of , as shown in Figure 9.1b. This kind of motion 

implies that the system configuration basically remains unchanged, when q is 

increased by , and the system is said to undergo a rotation, as opposed to libration. 

Now, in the phase space, the system does not travel in a closed orbit but only p is a 

periodic function of q. An example of this kind of periodic motion is that of a rigid 

body such as a heavy symmetrical top constrained to rotate about a given axis. Here 

the coordinate q is the angle of rotation , and . Increasing q by  then 

produces no real change in the state of the system, and the values of q are unbounded 

and increase indefinitely.  

Another familiar example of periodic motion is that of a simple pendulum in a 

gravitational field, through which we can see both kinds of periodic motion – libration 

and rotation. When the total energy is less than , where  and  are the mass and 

the length of the pendulum respectively, the phase trajectories are closed elliptical 

curves, and the pendulum oscillates back and forth, retracing its path. However, when 

the total energy is greater than , even at the highest point the pendulum’s velocity 

is non-zero and it continues its circular motion without reversal of direction. 

Many interesting physical problems such as in astronomy require the frequencies of the 

periodic motion rather than the detailed dynamical behavior of the system. An elegant and 

powerful technique of handing such system is provided by a variation of the Hamilton-Jacobi 

procedure.  

We introduce a new variable known as action variable  for each degree of freedom. The 

action variable  corresponding to the pair of separation variables  is defined as   

 

(9.48) 
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where the integration is to be carried over a complete period of libration or of rotation, as the 

case may be. 

We consider the Hamilton-Jacobi equation  

 

whose solution is given by 

 

(9.49) 

where .  

Using separation of variable method, we may write the above equation as 

 

(9.50) 

Now, from the property of , we have 

 

(9.51) 

Substituting this value of  in equation (9.48), we get 

 

(9.52) 

It is clear that  is a function of constants . Therefore, for  we have 

. We may invert these n equations to express each  as a function of 

. Thus, the characteristic function  can be written as 

 

(9.53) 

The variable  has the dimensions of angular momentum.  is action variable and its 

conjugate variable is angle . We call  as action-angle variables. The function W is 

used as a generating function for a canonical transformation from  to Then 

 

 

(9.54) 
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When action-angle variables are used, the Hamilton’s canonical equations are given by 

 

 

(9.55) 

 where  are constant functions of , ’s are constants and  can be given by 

 

(9.56) 

Here  are the constants of integration. Thus,  is a linear function of time . 

Let us determine the change in a given variable, say , when the coordinate  goes 

through a complete cycle: 

 

 

 

 

 
 

(9.57) 

Thus,  increases by unity when  goes through a complete cycle, but remains 

unaffected when other variables change. Again from equation (9.56), we have 

 

 
 

(9.58) 

where  is the time period.  

It is evident from the above equation that  is the frequency of the periodic motion of 

. Similarly,  is the frequency of the periodic motion of . Thus, using action-angle 
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variables, we can determine the frequencies of a periodic motion without solving for a 

complete solution.  

9.5.1 Linear Harmonic Oscillator using Action-Angle Variables 

We apply the action-angle variable method to the linear harmonic oscillator problem, whose 

Hamilton is given by 

 

Writing 

 
 

the Hamilton-Jacobi equation is written as 

 

(9.58) 

 

with 

 

(9.59) 

where .  

Therefore, the Hamilton-Jacobi equation becomes 

 

 

 

 
 

(9.60) 

Using equation (9.59), the integration constant  is obtained as 
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(9.61) 

On integration, we get 

 

 

 

(9.62) 

where .  

Then 

 

(9.63) 

Substituting equation (9.62) into (9.63), the momentum  is given by 

 

 

 

(9.64) 

Now, the action variable  is expressed as 

 

 

(9.65) 

Let  
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then  

 

Substituting them in equation (9.65), the equation becomes 

 

 

(9.66) 

Thus, we get 

 

(9.67) 

Therefore, the frequency is 

 

(9.68) 

and the time period is  

 

(9.69) 

 

We find that .  

Then equations (9.62) and (9.64) take the form 

 

(9.70) 

 

(9.71) 
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Equations (9.70) and (9.71) give the transformation equations from the canonical variables 

 to the canonical variables . 

 

 

 

 

9.6 SUMMARY 

In this unit, we studied the Hamilton-Jacobi equation, which is an alternative formulation of 

classical mechanics, equivalent to other formulations such as Newton's laws of motion, 

Lagrangian mechanics and Hamiltonian mechanics. We studied how the Hamilton-Jacobi 

equation compares with other formulations of classical mechanics and is useful in identifying 

conserved quantities for mechanical systems. We then discussed the linear harmonic 

oscillator and the motion of a particle in a central force field in the Hamilton–Jacobi theory. 

In the end, we studied the action-angle variables and .discussed its application in 

understanding the linear harmonic oscillator. 

 

9.7 GLOSSARY 

Action-angle Coordinates – In classical mechanics, action-angle coordinates are a set of 

canonical coordinates useful in solving many integrable systems. The method of action-

angles is useful for obtaining the frequencies of oscillatory or rotational motion without 

solving the equations of motion. 

Angular Frequency – is a scalar measure of rotation rate. It refers to the angular 

displacement per unit time or the rate of change of the phase of a sinusoidal waveform, or as 

the rate of change of the argument of the sine function. 

Angular Momentum – The angular momentum of a rigid object is defined as the product of 

the moment of inertia and the angular velocity. It is analogous to linear momentum and is 

subject to the fundamental constraints of the conservation of angular momentum principle if 

there is no external torque on the object. 

Degrees of Freedom – In physics, the degree of freedom (DOF) of a mechanical system is 

the number of independent parameters that define its configuration. It is the number of 

parameters that determine the state of a physical system and is important to the analysis of 

systems of bodies in mechanical engineering, aeronautical engineering, robotics, and 

structural engineering. 

Differential Equation - an equation involving derivatives of a function or functions.  

An ordinary differential equation (ODE) is a differential equation containing one or more 

functions of one independent variable and its derivatives. The term ordinary is used in 
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contrast with the term partial differential equation which may be with respect to more than 

one independent variable. 

Frequency – the number of occurrences of a repeating event per unit of time. 

Generalized Coordinates – refers to the parameters that describe the configuration of the 

system relative to some reference configuration. These parameters must uniquely define the 

configuration of the system relative to the reference configuration. 

Generating Function – Generating functions which arise in Hamiltonian mechanics are 

quite different from generating functions in mathematics. In physics, a generating function is, 

loosely, a function whose partial derivatives generate the differential equations that determine 

a system's dynamics. 

Harmonic Oscillator – In classical mechanics, a harmonic oscillator is a system that, when 

displaced from its equilibrium position, experiences a restoring force, F, proportional to the 

displacement, x. 

Holonomic System – a system may be defined as holonomic if all constraints of the system 

are holonomic. For a constraint to be holonomic it must be expressible as a function: 

 

i.e. a holonomic constraint depends only on the coordinates xj and time t. It does not depend 

on the velocities or any higher order derivative with respect to t.  

A constraint that cannot be expressed in the form shown above is a non-holonomic constraint. 

Libration – a type of reciprocating motion in which an object with a nearly fixed orientation 

repeatedly rotates slightly back and forth. 

Periodic Motion – motion repeated in equal intervals of time.  

Simple harmonic motion is a special type of periodic motion or oscillation motion where the 

restoring force is directly proportional to the displacement and acts in the direction opposite 

to that of displacement. 

Theory – A theory is a contemplative and rational type of abstract or generalizing thinking, 

or the results of such thinking. The word has its roots in ancient Greek, but in modern use it 

has taken on several related meanings.  

In modern science, the term "theory" refers to scientific theories, a well-confirmed type of 

explanation of nature, made in a way consistent with scientific method, and fulfilling the 

criteria required by modern science. 

 

9.8 TERMINAL QUESTIONS 
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1. Briefly discuss the Hamilton-Jacobi theory. 

2. Apply Hamilton-Jacobi theory to solve the one-dimensional harmonic oscillator 

problem.  

3. What are action-angle variables?  

4. Explain how action-angle variables can be used to obtain the frequencies of periodic 

motion and hence, determine the frequency of one-dimensional harmonic oscillator. 
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10.1 INTRODUCTION 

Every oscillatory motion is simple harmonic motion in character. When a system is displaced 

from its equilibrium position, oscillation occurs. It means that oscillation refers to any 

periodic motion moving at a distance about the equilibrium position and repeats itself over 

and over for a period of time.Oscillation in a system is caused due to restoring forces that 

come into play, during displacement of an object from its equilibrium position. Restoring 

forces can do both positive and negative work. Such forces acting on the system are 

conservative in which the potential depends only on the spatial coordinates; it is independent 

of the time and velocity 

In this chapter, we will study the concept of small oscillations about a stable equilibrium 

point. The description of motion about a stable equilibrium is one of the most important 

problems in physics. We will use the Lagrange’s method to solve the equations of motion that 

emphasizes related to small oscillations. While dealing with the formulation of small 

oscillations, we will discuss the concepts of normal frequency, normal modes and normal 

coordinates of a system.In this unit, we will discuss the behavior of a system under forced 

vibrations. 
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10.2 OBJECTIVES 

After studying this unit, you should be able to 

• understand concepts of potential energy 

• define equilibrium systems 

• formulate and solve small oscillation problems 

• understand and calculate normal coordinates 

• understand and calculate normal modes of vibrations 

• understand driven oscillations 

• apply Lagrange method to solve the problems related to small oscillations 

10.3 POTENTIAL ENERGY 

Potential energy is energy which results from position or configuration. It can also be defined 

as the capacity of doing work as a result of its position in a field. The field can be a 

gravitational field,an electric fieldor a magnetic field. An example of potential energy can be 

explained by considering a mechanical system say spring. 

 

 

 

  

Figure1(a) shows the mass attached to an unstretched spring, which means the potential 

energy is zero. When the spring is displaced slightly from its “stable” position by a distance 

x, it undergoes oscillation, as can be seen in Figure 1(b). The cause of oscillation is the 

restoring force that comes into play. For most mechanical systems, when the system is not 

too far from the equilibrium, the restoring force is proportional to the displacement (F = −kx). 

Here k is a spring constant.F in the definition of potential energy is the force exerted by the 

force field. The potential energy V is equal to the work one must do against that force to 

move an object from the V=0 reference point to the position x. The force you must exert to 

move it must be equal but oppositely directed, and that is the source of the negative sign.  

The negative sign on the derivative shows that if the potential V increases with increasing x, 

, the force will tend to move it toward smaller x to decrease the potential 

energy. 

 

10.4 EQUILIBRIUMS 
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As we are studying the small oscillations experienced by various systems, it is important to 

have an idea of conditions of equilibrium. Therefore, we will study the following equilibrium 

systems: 

 

10.4.1 Stable Equilibrium 

If a slight displacement of the system from its position of equilibrium results only in small 

bounded motion about the point of equilibrium, then system is said to be in a stable 

equilibrium. 

Examples: a book lying on a horizontal surface, bar Pendulum at rest, a suspension 

galvanometer at its zero position. The minimum potential energy is also an important 

requisite for stable equilibrium. Therefore, the bounded motion is possible only when the 

potential at equilibrium is minimum. 

10.4.2Unstable Equilibrium 

If a slight displacement of the system from its equilibrium results in unbounded motion, then 

the system is said to be in an unstable equilibrium.Examples: a pencil standing on its point, 

stick in vertically standing position. The unstable equilibrium is not characterized by 

minimum potential energy. 

Let us discuss the concepts of stable and unstable equilibrium using potential energy curve. 

Consider a particle executing bound and unbound motion. The potential energy of the particle 

as a function of displacement is shown in figures (2) and (3), respectively.  

 

 

 

 

 

 

 

 

 

Figures 2 and 3 show the variation of potential energy with distance. From Figure2, it can be 

explained that in the case of a stable equilibrium point, the potential energy is at a local 

minimum, which means point x0 is the point of minimum potential energy (P.E.).Any 

external force will insert a small amount of energy into the body, which will move the body 

until it stops at a point where all that extra energy has been converted into potential energy. 

After this, the body will once again move back towards the stable equilibrium point, and that 

small amount of extra energy will oscillate between kinetic and potential energy, causing the 

object to oscillate about the stable equilibrium point until the extra energy has dissipated. 

In the case of an unstable equilibrium, the potential energy is at the maximum value at 

the point of equilibrium, and does not know which direction to fall in (Figure3). An external 

force that pushes it off the equilibrium point will give the body a direction to fall in, and the 

potential energy will decrease while the kinetic energy will increase, until the body either 

reaches a new equilibrium point or else crashes into another object. 
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10.4.3 Static Equilibrium 

The state of zero kinetic energy continues for an indefinite period, and the immediate 

surroundings of the system are not changing with time. Example: a stone at the bottom of a 

valley.   

10.4.4 Dynamic Equilibrium 

The net force on the system is zero and the system continues with zero kinetic energy, but the 

immediate surroundings of the system change with time in such a way that it exerts the 

balancing force on the system.Example: charge neutrality of atoms.Molecuels and solids 

make them exert zero electrical force on one another, but each of them is in dynamic 

equilibrium. 

10.5 FORMULATION OF SMALL OSCILLATIONS 

Before the discussion and formulation of small oscillations, we understood the concept of 

P.E. and how it behaves in stable and unstable equilibriums. For discussion of small 

oscillations, we consider a conservative system in which the potential energy is a function of 

position only. Also the constraints that depend on time will be excluded from this 

formulation. 

As we studied in previous section, a system of particles is said to be in stable equilibrium if 

all the particles are and remain at rest. The generalized forces acting on each particle must 

vanish: 

               …..(1) 

This equation yields the values q0j of the generalized co-ordinates that the particles have in 

equilibrium configuration. If we assume the equilibrium to be stable, the potential energy 

must be a minimum when evaluated at these q0j. If displacements of the generalized coo-

ordinates from their equilibrium value be denoted by j then 

                                                                                                                   …..(2) 

In equation (2), q0j are fixed and kareconsideredas generalized co-ordinates of the system. 

Expanding P.E. aboutq0j, 

…..(3) 

The terms linear in kvanishes as a result of equation (1),because of stability requirement.The 

first term in the series is the P.E. of the equilibrium position, which may be arbitrarily, be 

chosen as reference level wih the P.E. zero there. We are therefore left with the quadratic 

term as the first approximation to V: 
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…..(4) 

The coefficients 

are constants and are characteristic of equilibrium 

configuration. We calculate the generalized force on the k
th

particle 

 

The force changes any generalized co-ordinate depends on the displacement of all the others 

coordinates and we have the correct form of the potential energy that is given by (4). 

A similar series expansion can be obtained for the kinetic energy (K.E.).The expression in 

generalized co-ordinates is a homogeneous quadratic function of generalized velocities: 

                                                                               …..(5) 

Where, the coefficients mklare given by 

                                            …..(6) 

Equation 5 is a quadratic in the small quantities , we cannot use the higher order terms and 

therefore choose the lowest order approximation to T by taking  

Denoting the constant value of mklfunctions at equilibrium by Tkl, wecan therefore write 

kinetic energy as 

                                                                                                               …..(7) 

Near the equilibrium configuration of the system, Lagrangian is given as: 

  (as L=T-V)…..(8) 

Lagrange’s equations of motion in our notation appear as  

 

Taking the  as the general coordinates, the Lagrangian of  equation (8) leads to following 

equation of motion 

(k=1,…., n);…..(9) 

The equation (9) will involve, in general all coordinates , and it is this set of simultaneous 

differential equations that must be solved to obtain the motion near equilibrium. 
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The co-ordinates kmay be used to define a column matrix  and in matrix notation 

equations (9) appear as 

 

or                                                                                                              ….. (10) 

An equation (10) is the equation of motion for a system displaced from a stable equilibrium.  

10.6DETERMINATION OF NORMAL FREQUENCIES AND 

EIGEN VALUE PROBLEM 

The equations (9) and (10) in the previous topic represents the equations of motion near 

equilibrium or when a system is displaced slightly from the equilibrium and is linear 

differential equations with constant coefficients. These equations are solved by trying an 

oscillatory solution of the form 

                          …..(11) 

This is a harmonic oscillator solution which equations of type (9) and (10) must have. Here 

 provides the complex amplitude of the oscillation for each coordinate.  It is a scalar 

factor. On substituting equation (11) in to equation (9), it leads to the following equation for 

the unknown  : 

                          …..(12) 

Equations (12) constitute n linear homogenous functions for the . The equations can be 

written by expanding as follows: 

 

 

             …                         …                         …                       …                 …            

 

The above written equations can have a nontrivial solution only if the determinant of the 

coefficient vanishes: 

 = 0                                                                    …..(13) 

By solving the determinantal condition in equation (13), an algebraic equation of the n
th

 

degree is obtained for the frequency . The roots   of the determinant provide the 

frequency for which equation (11) represents the correct solution for equations of motion 
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(9)and (10). These values of  are the normal frequenciesor the eigenfrequenciesof the 

system. For each of these values of , equations (12) may be solved for the amplitudes of , 

precisely, for (n-1) of the amplitudes in terms of remaining .Equation (12) may also be 

written as  

                          …..(14) 

Equations (14) can also be expressed as 

and is alsoknown as secular equation. 

where, ais now a column matrix of n components: 

 

The above equation is not in the form of an eigenvalue equation as is not equal toa 

constant times  but a constant times .If we make  invertible, one can achieve an 

eigenvalueequation 

…..(15) 

 

Since we have n homogeneous equations, and haven solutions for . Letus denote the m
th 

mode frequency by . Thus the vector  corresponding to thismode be written as 

 

 
 

Thus we have 

         …..(16) 

Taking conjugate of this equation and changing the index m to o, we get 

…..(17) 

On multiplying equation (16) by ,we get 

          …..(18) 

Here, we have used  is used to denote the transpose of the matrix . 

From equations (16) and (17), we get, 
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Thus we get 

 
 

Therefore, if the eigenvalues are non-degenerate, i.e. if , we get the orthogonality 

condition 

…..(19) 

 

As equations (15) doesn’t uniquely determine , we define normalization condition as 

                          …..(20) 

If we form all the eigenvectors  into a square matrix , then equations (19) and (20) can be 

combined to form one matrix equation: 

                             …..(21) 

Example 1: Consider two masses and  connected by three springs of spring constant  

in a two coupled oscillator. The masses of the system are equal, such that = m. 

Calculate the frequency of vibration of the system. (Problem from Classical 

Mechanics,Gupta, Kumar, Sharma) 

Solution: The system can be visualized by two equal masses joined by identical springs (same 

stiffness constant k) to each other and to fixed walls as shown in Figure (5). We assume the 

system to be ideal i.e., free from friction. The motion is thus undamped and takes place along 

the straight line of their configuration. The generalized co-ordinates x1and x2of each mass are 

measured from their equilibrium positions. The masses are equal such that, . 

 

 

The kinetic energy of the system is given by 

                                                                                     …..(1) 

Lagrangian for the system, L=T-V, where the potential energy V of the system is the sum of 

potential energies of the two masses plus the potential energy resulting from interaction 

between them which is a function of relative displacement(x2-x1) of the particles. To sum up: 

…..(2) 

and  

                                          …..(3)    

Lagrange’s equations of motion then follow immediately: 
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or 

                                  …..(4)   

and  

 

or 

 …..(5)   

since  at a point x0 of stable equilibrium. 

Since zero level of potential energy is arbitrary, we can choose it at the point x0, making 

(V)x0= 0. Then, to a first approximation, we can write  

 

Where, 

 

where, we have set and m1=m2=m. Equations (4) and (5) arethe set of simultaneous 

linear differential equations with constant coefficients and therefore, we try solutions 

characteristic of such equation, viz,                        

                                                                        …..(6)    

where A and B are constants. If we substitute these into equations (4) and (5), we obtain two 

homogeneous simultaneous equations for the determination of constants A and B; 

, 

                                                                   …..(7)    

Such a set will have a solution if and only if the determinant of coefficients of A and B 

vanishes that is 

                                                                                 …..(8)    

Expanding and solving for , we get the pairs of roots of , viz. 

 …..(9)    
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Since the equations (4) and (5) are linear, the sum of four solutions is, obtained upon putting 

the four values of , will also be a solution and will contain four arbitrary constants. It will 

be, in effect, the general solution, by the superposition principle. With a slight rearrangement 

and keeping in view that x1 and x2 must correspond to real physical situation (in other words 

x1 and x2 are real), we obtain
*
, 

The general solutions for x1 and x2, after having substituted the four values of α given by 

equation (9), become of the forms  

 

 

where a’s and b’s are each four arbitrary constants mentioned in this paragraph. Now take up 

the part with a single frequency, say ω0 in x1 and let  

 

Here two new constants A1 and φ1are introduced and each is real whereas a1 and a2 could be 

complex numbers also. We thus have for this part: 

 

 

 

 

The constants A and B are, however, connected by the conditions  equation (7): 

 

Hence the general solution assumes the form 

and 

…..(10) 

It is noted from eqations (10) that the motion of each co-ordinate is a superposition of two 

harmonic vibrations of frequencies ω0 and . The frequencies of oscillation are the same 

for both x1 and x2 but their relative amplitudes are different. 

 

10.7FREQUENCIES OF FREE VIBRATIONS, THEORY OF 

SMALL OSCILLATIONS, NORMAL MODES  
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10.7.1Free Vibrations When a system is slightly displaced form equilibrium; the 

equations of motion for such a system is given by equation (9) or (10).We have already 

studied the system under the topic of formulation of small oscillations. 

 (k=1,…., n) 

 or  

These equations of motion are satisfied by oscillatory solutions given in equation (11). 

 

The solution provided by equation (11) is not for one frequency only, but in general for a set 

of n frequencies. Thus, a complete solution of equations of motion involves a superposition 

of oscillations with all the allowed frequencies . A system displaced slightly 

from equilibrium position performs small oscillations about equilibrium with these 

frequencies. The solution of these equations are therefore, referred as frequencies of free 

vibration or the resonant frequencies of the system. The general solution of the equations 

of motion may be now written as: 

…..(22) 

Here, represent the set of n frequencies, is the complex scale factor for each resonant 

frequency, is the eigenvector element (make up columns & rows of “eigenvector 

matrix” ). For each eigenvalue . It may be found that for each solution of  

there aretwo resonant frequencies . 

10.7.2Normal coordinates 

Certain solutions of equations of motion are such that there is one single frequency involved; 

the coordinates used in such solutions are called normal coordinates. Thus, generalized 

coordinates, each coordinate corresponds to a vibration of the entire system with only one 

frequency is referred to as normal coordinates. 

We define the new set of coordinates 

                                                                                                                   …..(23) 

The equations (23) can be written in single column matrix form as 

…..(24) 

The P.E. in matrix notation can be written from equation (4): 

…..(25) 

Now, the transpose of gives 

…..(26) 

From equations, (24), (25) and (26), the P.E.is given as 



MSCPH502 

216 

 

….. (27) 

 

If a diagonal matrix  is introduced, then 

 

Thus, we get 

 

In terms of matrix form,  

The above equation after multiplying by  becomes 

 

or 

 

that can also be written as 

 

 

As  diagonalizes by equation , P.E. can be written as: 

 

…..(28) 

Similarly, the K.E. is given by using equation (7), 

…..(29) 

Using equation (21), equation (29) reduces to 

…..(30) 

Equations (28) and (30) are the P.E. and K.E. in new coordinates. 

Now the Lagrangian using new set of coordinates will be, 

                                                                                     …..(30) 

Using equation (30) and substituting in the equation below will result, 

 

                                                                                                            …..(31) 
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Equation (31) is thesolution of the equation of motion with the new coordinates. The solution 

of the equation is given by: 

                                                                                                                …..(32) 

From equation (32), each of new coordinate is simply a periodic function involving only one 

of the resonant frequencies. Thus  are the normal coordinates of the system. 

The periodic function can also be expressed as : 

   if                                                                      …..(33) 

10.7.3Normal Modes of Vibration 

Each normal coordinate corresponds to a vibration of the system with only one frequency, 

and these components of the oscillation are known as normal modes of vibration.  System A 

normal mode of an oscillating system is a pattern of motion in which all parts of the system 

move sinusoidally with the same frequency and with a fixed phase relation. The free motion 

described by the normal modes takes place at the fixed frequencies. These fixed frequencies 

of the normal modes of a system are known as its natural frequencies. When relating to 

music, normal modes of vibrating instruments (strings, airpipes, drums etc.) are called 

harmonics or overtones. 

From equation (33), the periodic oscillation is provided by 

 , such that ; is the normal frequency 

The above equation can be written as: 

 

 

                                                                                                 …..(34) 

 and  are the arbitrary constants. Now, if we choose all theconstants are zero, except  

and . Then only  will vary periodically will time. Such a system is said to be vibrating in 

the normal mode. 

Equation (34) can be re-written as: 

)                                                                                               …..(35) 

Here,  is the arbitrary phase. 

Example 2:A system consists of two identical simple pendula, each of mass m,length l and 

coupled by a massless spring of force constant k, as shown in Figure 5. They move in a 

vertical plane and, in equilibrium position.The two pendula are identical. Calculate the 

normal frequencies of vibration and equations of motion of the system.(Problemfrom 

Classical Mechanics, Gupta, Kuma, Sharma) 
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Solution:Let the anglesθ1 and θ2 as the generalized co-ordinates, the kinetic and potential 

energy can be expressed as 

*
 

or                   

 

giving, 

…..(1) 

Further,* 

 

that can also be expressed as: 

 

giving, 

                                                                          …..(2) 

From equations (1) and (2),  

=0                                        …..(3) 

On solving, we get, 

 

or 
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or                                   

 

giving, 

=  and                                                                                               …..(4) 

Here  and are the normal frequencies of vibration. 

 

*Expressions of T and V are derived in the following way: 

Let x1 and x2 be the horizontal displacements and y1 and y2 be the vertical displacements of 

each mass point from the position of equilibrium. Then  

 

 

 

From Figure (5)   

 and   

 and  

Putting values of ẋ1, ẋ2, ẏ1 and ẏ2 etc. in the expressions for T and V, we get 

 

On expanding cosine terms and retaining only upto squared terms, as θ1and θ2 are small, then 

 

 

V  

 

Suppose normal co-ordinate corresponds to ω1, and  corresponds to ω2. Then from 

equations(32), we c equations of motion in terms of normal co-ordinates as 
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                                                 …..(5) 

Now, we will write  and  in terms of generalised co-ordinates θ1 and θ2. From equation 

(23) of normal coordinates, the generalized coordinate   can be written as: 

 

thus, we get 

…..(6) 

We need to calculate the components a11and a21of eigenvector a1; and a12and a22 of 

eigenvector a2, respectively, 

For a1 we put ω=ω1 in eq. (3) which becomes, 

 

Putting  from equation (4), we get 

 

or 

 

 

Giving a11 =a21 =α (say) 

For eigenvector a2, we put ω
2
=ω2

2
=  in equation (3) to obtain 

                            …..(7) 

or                                                

 

or                                                        

 

                                                                                                       …..(8) 
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or                                                          

 a12= -a22=β (say) 

Therefore, 

 

Its transpose will be                      

 

So that from equation (21) ,we can write 

 

 

 

or 

 

or                      

 

giving                                               

 

 

or                                                           

 

so that                                        

 

and 



MSCPH502 

222 

 

 

Therefore from equation (6),  

 

 

 

giving    

 

                                                                                                       …..(9) 

Thus equations (4), (5) and (9) are related to the parallel pendula. 

In order to interpret modes of vibration,put  equal to zero and discuss the mode associated 

with and hence with ω1. Similarly, we put  equal to zero and discuss mode with ω2. Let 

us first put 

 

Then from equation (9), 

θ1=θ2 

Which means the two pendula oscillate in phase and frequency of the motion is  

 

Obviously k, the spring constant is not occurring in ω1, the two pendula can vibrate as if they 

are independent i.e., there is no stretching or compressing of the spring during the motion 

justifying the inphase condition.  

Now we put, 

 

Then from equation (9), 

 θ1= - θ2 
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i.e. they are out of phase which is obvious because the frequency associated with this mode 

involves spring constant.  

, 

 

10.8FORCED VIBRATIONS, DISSIPATION 

10.8.1Forced Vibrations 

As we studied in the earlier sections that free vibration occur when the system is displaced 

from its equilibrium position such that the system oscillates by itself. Very often, however the 

system is set into oscillations by an external driving force that continues to act on the system 

after . The frequency of such forced oscillation is then determined by the frequency of 

the driving force.  

In this case if  is the generalized force corresponding to the coordinates , then the 

generalized force  for the normal coordinate  is given by 

                                                                                                                     …..(35)  

Using Lagrange equation for non-potential generalized forces, 

                                                                                                         …..(36) 

Here  is the non-potential force. An Example of a non-potential force is 

frictional force, which is proportional to the velocity of the particle, and, is given by 

.The frictional forces are generally given as: 

 

,  

where  are positive quantities. Such non-potential forcesin the Lagrangian 

formalism can be included by defining Rayleigh Dissipation Function Rand is given as: 

                                                                               …..(37) 

The force is given as: 

 i.e.  

Where the gradient is taken with respect to velocity field and  is the particle index. Work 

done by the system in overcoming the resistive force is given as: 

 

Thus, 
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…..(38) 

Now, the generalized force  can be written as: 

…..(39) 

The Lagrange equation now becomes by incorporating an additional term 

 

…..(40) 

 

Here, are non-potential forces which are not derivable either from a potential or from 

a dissipation function. 

 

10.8.2Driven Oscillations 

If  is the time dependent potential along with the harmonic potential, then 

 
Here,  is considered as the reference potential. The Lagrangian in this case is 

given as: 

 
 

The Euler Lagrange equation gives 

 

The driving force is sinusoidal, , with frequency  .On introducing the velocity 

dependent damping, the equation of motion becomes, 

…..(41) 

Here,  

The solution of equation (41) has two parts,a solution of the homogeneous 

equation and a particular solution. The equation is solved by a particular 

solution by putting . Thus we get, 

 

 and .                                                                                               …..(42) 

 

 Substituting equations (42) in equation (41), we get 

 

Thus,  

 

The motion is oscillatory with the frequency same as that of the driving frequency. 
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10.9 SUMMARY 
In this unit, you have studied about the concepts of small oscillations. In order to understand 

about oscillations, concept of equilibrium was stated. The basic definition of potential energy 

with respect to equilibrium was also studied. You have also studied the formulation of small 

oscillations for a system using . If you are provided with a system with small 

oscillations, you can form equations of motion using Lagrangian method , L=T-V and hence 

. You also learnt to solve the equation of motion using oscillatory solution. 

Furthermore, you studied calculating eigenfrequencies using equation and 

hence studied tocalculatenormal frequency, normal modes and normal coordinates of a 

system. The different examples in the form of problems are also discussed such as, coupled 

oscillator and parallel pendula. You have also studied about the free and driven oscillations. 

Few solved examples are given in the unit to make the concepts clear. To check your 

progress, self assessment questions (SAQs) are also provided. 

 

10.10 GLOSSARY  

Applied -  Forces imposed to the system by coupling elements (force 

actuators and springs) and forces which can be described by 

physical laws (gravity force, etc.) 

 

Constraint forces - The constraint forces are imposed to the system by kinematic 

constraint elements (joints, bearings, actuators that prescribe 

motion of the system) 

Constrained particle - A particle whose motion is limited  and constrained 

Constraint -  A restriction on the motion of a system 

Cycle -  It is the sequence of a periodic quantity during one period 

Damping -  The process related to dissipation of energy 

Degrees of freedom -  The number of independent generalized coordinates required 

to uniquely define the configuration of a system  

Equilibrium -  A state of a body which is at rest or undergoes a uniform  

motion  

Forced vibration -  Vibration of a system caused by a sustained excitation 

Free vibration - Vibration over an interval of time during which the system is 

free from excitation 

Lagrange’s equations -  A tool for deriving equation of motion of a mechanical system 

based on K.E, P.E. and generalized coordinates 

Period - The time taken to complete one cycle of the periodic motion 

Periodic motion - An oscillatory motion having the same pattern after a definite 

time interval  

Resonance - It is a state of vibration occurring if the external frequency 

coincides with the natural frequencies 
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10.13 TERMINAL QUESTIONS 

10.13.1 Short Answer type 

1. What do you understand by stable and unstable equilibria? 

2. What is the condition of stable equilibrium in terms of potential energy? 

3. Explain the following: 

(a) Normal coordinates (b) Normal modes (c) Free vibration 

10.13.2Long Answer type 

1. Consider a system with N generalized coordinates qkdescribedby a mass mkland a potential 

V. The kinetic energy of the system is given by T. Obtain the formulation of small 

oscillations for the defined system. How would you calculate the normal frequency for 

such system? 

2. Consider a triatomic molecule (eg. CO2). Such molecule have linear structures with two 

masses “m”at both the ends and a mass “M”.Assume that the masses are connected by 

springs (as shown in the Figure 6). Calculate the normalfrequencies of such molecule. 

 

 

 

 

 

 

 

 

 

 

3. Two masses m1 and m2 resting on a smooth surface are joined together by a spring of 

negligible mass and spring constant k. Length of the spring at rest is l0. Find the normal 
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frequency. Aaume that the motion remains one dimensional. (Classical Mechanics, Gupta, 

Kumar, Sharma). 

4. A particle of mass m is moving along the positive x direction under a potential, 

 

If the particle is slightly displaced from its equilibrium position, calculate the potential at 

stable equilibrium. 

 

10.13.3 Numerical type question 

 
1. A spring of force constant 1 Nm

-1
 is connected between two identical simple pendulums, 

each of length 5 m. Calculate the period of other pendulum if one is damped. The mass of 

each bob is 0.3 kg (g= 10m/s
2
). (Problem from Classical Mechanics. H. Goldstein, C. Poole 

and J.Safko). 

2. A mass of 0.300 kg is placed on a vertical spring and the spring stretches by 1m. It is then 

pulled down an additional 0.5 m and then released. Find (i) the force constant, (ii) the 

angular frequency,and (iii) the time period, (g= 10m/s
2
). 

3. Calculate the force constantof harmonic oscillator if its resting position potential energy is 

6 joule and total energy is 10 joule. The amplitude given is 2m. (Problem from Classical 

Mechanics. H. Goldstein, C. Poole and J.Safko). 

 

10.14 ANSWERS 

10.14.2Long Answer type 

1. (Hint): Topics 9.5 and 9.6 of this unit 

2. (Hint): 

 

The Lagrangian can be written as: 

 and   

So,  

Form the matrices of T and V and write the secular equation 

 

This will provide three values of , that are  
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,  

 and  

3.  

 

These can be written as, 

 

 

The matrices for K.E. and P.E. can be written as: 

  and 

 

The secular equation is given as . Thus putting T and V in this equation, 

we get 

 

 and  

 

4.  

For particle at stable equilibrium, 

 

Thus  

 

Thus, 

 

Putting in the value of potential equation  
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or 

 

or 

 

10.14.3 Numerical type question 

 
1. If one of the pendulums is damped, the equation of motion of the other pendulum is 

given as: 

 

which can be written as,  
 

 

or 

, it represents the simple harmonic motion equation of motion. 

and the time period is given as: 

 =  

On solving, 

 

 

2. The spring constant can be given as: 

         (i)  =  

thus, 
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 (ii)  =  

     or  

 

(iii) =  = 1.98 

      thus, 

 

3. Potential energy (P.E.) at rest = 6 J 

      Potential energy at maximum displacement = 10 J 

      Gain in P.E. = 10 J - 6 J = 4J 

    thus, 

 

, amplitude  

thus,  
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