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1.0 Objective:

After reading this unit you will be able to understand:
* Basic idea about vector and vector types

* Vector representation, addition, subtraction

* Multiplication of vectors

* Scalar product, vector product and triple product
* Differentiation of vector

* Gradient, Divergence and curl

* Vector integration

* Gauss Divergence theorem

* Poisson’s equation and Laplace’s equation

* Green’s theorem and Stoke’s theorem

* Curvilinear coordinate systems

1.1 Introduction:
On the basis of direction, the physical quantities may be divided into two main classes.
1.1.1 Scalar quantities: The physical quantities which do not require direction for their
representation. These quantities require only magnitude and unit and are added according to the
usual rules of algebra. Examples of these quantities are: mass, length, area, volume, distance,
time speed, density, electric current, temperature, work etc.

1.1.2 Vector quantities: The physical quantities which require both magnitude and direction
and which can be added according to the vector laws of addition are called vector quantities or
vector. These quantities require magnitude, unit and direction. Examples are weight,
displacement, velocity, acceleration, magnetic field, current density, electric field, momentum
angular velocity, force etc.

1.2 Vector representation:
Any vector quantity say A, is represented by putting a small arrow above the physical quantity

like A. In case of print text a vector quantity is represented by bold type letter like A. The vector
can be represented by both capital and small letters. The magnitude of a vector quantity A is

denoted by |/T | or mod A or some time light forced italic letter A. We should understand
following types of vectors and their representations.

1.2.1 Unit vector
A unit vector of any vector quantity is that vector which has unit magnitude. Suppose

A is a vector then unit vector is defined as
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A==
4]
The unit vector is denoted by A and read as ‘A unit vector or A hat’. 1t is clear that the magnitude

of unit vector is always 1. A unit vector merely indicates direction only. In Cartesian coordinate
system, the unit vector along x, y and z axis are represented by 1 , j and k respectively as shown
in figure 1.1.
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>

Figure 1.1: Vector representation

Any vector in Cartesian coordinate system can be represented as
A=1Ac + ] Ay + kA,.
Where i, j and k are unit vector along x, y, z axis and, Ay, Ay, A, are the magnitudes

projections or components of A along x, y, z axis respectively.
The unit vector in Cartesian coordinate system can be given as:

A= 1Ax+] Ay + kA,

JAX2+ By 2+ cxz'
1.2.2 Zero vector or Null vector:
A vector with zero magnitude is called zero vector or null vector. The condition for null vector is
|4] =o.
1.2.3 Equal vectors:
If two vectors have same magnitude and same direction, the vectors are called equal vector.
1.2.4 Like vectors:
If two or more vectors have same direction, but may have different magnitude, then the vectors
are called like vectors.
1.2.5 Negative vector:
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A vector is called negative vector with reference to another one, if both have same magnitude but
opposite directions.

1.2.6 Collinear vectors:

All the vectors parallel to each other are called collinear vectors. Basically collinear means the
line of action is along the same line.

1.2.7 Coplanar vector:

All the vectors whose line of action lies on a same plane are called coplanar vectors. Basically
coplanar means lies on the same plane.

1.2.8 Addition and subtraction of vectors:

The addition of two vectors can be performed by triangle law or parallelogram law. According to
triangle law if a vector is placed at the head of another vector, and these two vectors represent
two sides of a triangle then the third side or a vector drawn for the tail end of first to the head end

of second represents the resultant of these two vectors. If vectors A and B are two vectors as

shown in figure 1.4, then resultant R can be obtained by applying triangle law.

v
¥

A

N

Figure 1.2: Addition of two vectors

If the angle between Aand B is 6, and resultant R makes angle o with vector A then

magnitude of Ris

IR| = VA% + B%+ 24B cos6.
The angle « is given as

1 Bsin @

=tan t———.
@ an A+ Bcos 0

You should notice that all three vectors A , B and R are concurrent i.e. vectors acting on the
same point O. The same addition can be shown by Figure 1.3
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Figure 1.3: Addition of two vectors

Similarly the subtraction of a vector vectors B from another vector, A is the addition of vectors
A and (—E).

-

A -B=4+ (-B).

1.2.9 Resolution of vector:

A vector can be resolved into two or more vectors and these vectors can be added in accordance
with the polygon law of vector addition, and finally original vector can be obtained. If a vector is
resolved into three components which are mutually perpendicular to each other, called
rectangular components or mutually perpendicular components of a vector. These components
are along the three coordinate axes x, y and z respectively as show in Figure 1.4.

Z Figure 1.4: Resolution of a vector
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If the unit vectors along x, y and x axis are represented by i, j and k respectively then any vector

A can be give as
A=1A + A, + kA, .

A constitutes the diagonal of a parallelepiped and, Ay, Ay and A, are the edges along x, y and z
axes respectively. A is the polynomial addition of Ay, Ay and A,. The rectangular
components Ay, Ay and A, can be considered as orthogonal projections of vector A on X,yand z

axis respectively. Mathematically, the magnitude of vector A can be given as:

A=|/T|=\/AX2+ A2+ A%

1.2.10 Position vector:

In Cartesian co-ordinate system the position of any point P(x, y, z) can be represented by a
vector r, with respect to origin O, the vector r is called position vector of point P. Position vector
is often denoted by 7. Figurel.5 shows the position vector of a point P(x, y, z) in Cartesian
coordinate system. If we have two vectors P and @ with position vectors ry and 1, respectively
such as

ri=ix, +jys + kz

r,=1x, +jy, + kz, .

Where (x1,y1,21) and (x,,Y5,2,) are the coordinates of point P and Q respectively.

Now the vector PQ can be given as

PQ=0Q -OP (~OP+PQ=0Q)

F=r—F.

Therefore, vector PQ = position vector of Q — position vector of P

Q (x2,¥2,22)

L) P (x1,¥1,71)

Figurel.S: Position vectors

7
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1.3 Multiplication of vectors

1.3.1 Multiplication and division of a vector by scalar:

If a vector P is multiplied by a scalar quantity m then its magnitude becomes m times. For
example if m is a scalar and A is a vector then its magnitude becomes m times.

Similarly, in case of division of a vector A by a non zero scalar quantity n, its magnitude
becomes 1/n times.

1.3.2 Product of two vectors:

There are two distinct ways in which we can define the product of two vectors.

1.3.2.1 Scalar product or dot product:

Scalar product of two vectors P and Q is defined as the product of magnitude of two vectors P
and Q and cosine of the angle between the directions of these vectors.

If @ is the angle between two vectors P and 5, then dot product (read as P dot 6 ) of two
vectors is given by-

—_— >

P.Q =PQcosfO =P (QcosB)
= P (projection of vector Q on P) = P.MN.

The Figure 1.6 shows the dot product. The resultant of dot product or scalar product of two
vectors is always a scalar quantity. In physics the dot product is frequently used, the simplest
example is work which is dot product of force and displacement vectors.

»
»

0 N P
Figurel.6: Dot product of two vectors
Important properties of dot product

(i) Condition for two collinear vectors:
If two vectors are parallel or angle between two vectors is 0 or m, then vectors are called
collinear. In this case

P. 6 = PQcos0° = PQ.

Then the product of two vectors is same as the product of their magnitudes.
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(ii) Condition for two vector to be perpendicular to each other:

If two vectors are perpendicular to each other then the angle between these two vectors is 90°,
then

P. Q = PQcos 90° = 0.

Hence two vectors are perpendicular to each other if and only if their dot product is zero.

In case of unit vectors i, j and k we know that these vectors are perpendicular to each other then
i j=tk=ki=0

similarly

i.i=jj=kk=1

(iii) Commutative law holds:

In case of vector dot product the commutative law holds. Then

P.Q =Q.P.

(iv)  Distributive property of scalar product:

If P, Q and R are three vectors then according to distributive law

B.(G+R)=P.G+P.R

Example 1.1: Show that vector A=3i+ 6j — 2k and B = 4i — J + 3k are mutually
perpendicular.

Solution: If the angle between A and B is 6 then

A).E):ABCOSH

A.B 3i+6j—2k) (4i—j+3k
cos @ = __ (Bi+6j-2k) (4i—j+3k)

=0
B /(A§+ A5+ A%) |(BZ+ By+ B

cos® = 0, 8 = 90°. Therefore the vectors are mutually perpendicular.

Example 1.2: A particle moves from a point (3,-4,-2) meter to another point (5,-6, 2) meter
under the influence of a force F = (=31 + 4f + 4k ) N. Calculate the work done by the force.

Solution: Suppose the particle moves from point A to B. Then displacement of particle is given
by

7 = position vetor of B — position vetor A
T=[(5-3)i+(—6+4)j+ (2 + 2)k] meter
7 = (2i — 2j + 4k) meter.

Work done = F.# = [(—31 + 4f + 4k ).( 2i — 2j + 4k)]N meter =2 joule.

1.3.2.2 Vector product or Cross Product
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The vector product or cross product of two vectors is a vector quantity and defined as a vector
whose magnitude is equal to the product of magnitudes of two vectors and sine of angle between
them.

If A and B are two vectors then cross product of these two vectors is denoted by AxB (read as
A cross ﬁ) and given as
AxB = ABsinp A = C.

Where @ is the angle between vectors Aand B, and 7 is the unit vector perpendicular to both A
andﬁ(i. e.normal to the plane containg Aand E)

Suppose Ais along x axis and Bis along y axis then vector product can be considered as an area
of parallelogram OPQR as shown is figure 1.7 in XY plane whose sides are A and B and
direction is perpendicular to plane OPQR 1i.e. along z axis. The cross product Aand B is positive
if direction of @ (A) to ﬁ) is positive or rotation is anticlockwise as show in figure 1.8, and

negative if the rotation of @ (/T to §) is clockwise (Figure 1.12).

1 1
1 1
1 1
1 1
I I
- | I
I I
1 1
1 1
1 1
1 1

o
ol
)
/@)

X

Figure 1.7 Vector product as area of parallelogram OPQR

Y Y
A
C=AxB B B
) )
0 A X 0 A X
C=BxA
A 4
Figurel.8: Direction of vector product

10
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Important properties of vector product
(i) Commutative law does not hold: From the definition of vector product of two vectors A
and B the vector products are defined as
A x B= ABsind 7
B x A= ABsin® (—A) = —AB singi=— A x B.
Since in case of B X A the angle of rotation becomes opposite to case AxE , hence product
becomes negative.
Therefore, AxB+BxA.
(i1) Distributive law holds:
In case of vector product the distribution law holds.
Ax(F+G) =AdxB+ixC
(1i1) Product of equal vectors:
If two vectors are equal then the angle between them is zero, and vector product becomes
A x A =|A||Alsing 7 = 0.
Hence the vector product of two equal vectors in always zero.
In case of Cartesian coordinate system if i, j, kare unit vectors along x, y and z axes then
ixi=jxj=kxk=0.
(iv)  Collinear vectors: Collinear vectors are vectors parallel to each other. The angles
between collinear vectors are always zero therefore
A x B = |A||B|sind? = 0.
Thus, two vectors are parallel or anti-parallel or collinear if its vector product is 0.

(v) Vector product of orthogonal vector : If two vectors A and B are orthogonal to each
other then angle between such vectors is @ = 90°, therefore

/Txﬁ = AB sin®n
Ax B = |A||B| R

In Cartesian coordinate system if 1, j, k are unit vector along x, y and z axes then
ixj=k jxk=iand kxi=j
fxi=—k kxj=—-tand i xk =].

(vi)  Determinant form of vector product: If Aand B are two vectors given as

Then,
Ax B = (At + Ay + Ak) X (B,l + B,j + B,k)

11
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= AB i X1+ AB,i X j+ AB,i Xk + A B,j X i+ AyB,j X j+ A,B,j x k +
A Byk x 1+ A,B,k X j+A,Bk x k
= A,B,k — A,B,j — AyByk + A,B,i + A,B,j — A,B,1
(SinceixXi=jxj=kxk=0andixk=—},jxi=-k kxj=-0
= i{(AyB, — A,B,) — j (AyB, — A,B,) + k(A,B, — A,B,)

i j k
AxXB =4, A, A4
B, B, B,

Physical significance of vector product:

In physics, numbers of physical quantities are defined in terms of vector products. Some basic
examples are illustrated below.

(i)  Torque: Torque or moment of force is define as

Z=7%xFf.

Where 7 is torque, 7 is position vector of a point P where the force f is applied. (Figure 1.9)

it
.,

Figure 1.9

(ii) Lorentz force on a moving charge in magnetic field: if a charge q is moving in a
magnetic field Bwith a velocity Vat an angle with the direction of magnetic field then force

F experienced by the charged particle is give as;
F=q(WVxB)

This force is called Lorentz force and its direction is perpendicular to the direction of both
velocity and magnetic field B.

(iii)  Angular Momentum: Angular momentum is define as the moment of the momentum
and given as:

o~
Il
=l
X
=1
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Where 7 is the radial vector of circular motion and p is the linear moment of the body under

circular motion, and Lis angular momentum along the direction perpendicular to both # and p.
The law of conservation of angular momentum is a significant property in all circular motions.

1.3.3. Product of three vectors:

If we consider three vectorsA , Band C , we can define two types of triple products known as
scalar triple product and vector triple product.

1.3.3.1 Scalar Triple product:

Let us consider three vectors A), Band C then the scalar triple product of these three vectors is
defined as E(E x C ) and denoted as [/T BC ] This is a scalar quantity.

If we consider 4, Band C the three sides of a parallelepiped as shown in Figure 1.14 then BxC
is a vector which represents the area of parallelogram OBDC which is the base of the

parallelogram. The direction of BxCis naturally along Z axis (perpendicular to both B and C ).
If @ is the angle between the direction of vectors (§ x C ) and vector A , then the dot product of

vectors (§ x C ) and vector Ais given as (Figure 1.10)
A.(BxC)=A||B x C|cosp = ACos®(B x C) = h.(B x ()
= Vertical height of parallelogram X area of base of parallelogram

= Volume of parallelogram = [A B C].

Figure 1.10: Volume of parallelogram represented by 3 vectors

13
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Therefore, it is clear that A . (§ x C ) represents the volume of parallelepiped constructed by

Vectors71>, B and C as its sides. Further, it is a scalar quantity as volume is scalar. It can also be
noted that in case of scalar triple product the final product (volume of parallelepiped) remains

same if the position of A, B and C or dot and cross are interchanged.

> —

[AF¢) = A (BxC)=B.(CxA) =C.(AxB) = (BxE)d=(CxA)F=(AxB)T

Scalar triple product can also be explained by determinant as

A A, A,
c C, G,

In case of three vectors to be coplanar, it is not possible to construct a parallelepiped by using
such three vectors as its sides; therefore the scalar triple product must be zero.

> = >

[ABC]=4.(BxC)=o.
1.3.3.2 Vector triple product:

The vector triple product of three vectors is define as

—

ix (B xC) = (A.6)F - (AB)C

The vector triple product is product of a vector with the product of two another vectors. The
vector triple product can be evaluated by determinant method as given below.

i j k
(BxC)=|Bx By, B,
. C, C,

=i(B,C, — B,Cy) — j(B,C, — B,Cy) + k(B,Cy, — B,Cy)

i j k
/_1) X (E X 5) = Ax Ay Az
B,C,— B,C, B,Cy—B,C, B.C,—B,C,

=(4.C)B - (A.B)C.
As in cross product the vector A x (§ x C ) will be perpendicular to plane containing vectors A
and (§ x C ) Since (E x C ) is itself in the direction perpendicular to plane containing B and
C, therefore the direction of A X (§ x C ) will be along the plan containing Band C,

— —
hence is a linear combination of B and C.

14
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1.4 Differentiation of vector:

Suppose 7 is the position vector of a particle situated at point P with respect to origin O. If
particle moves with time, then vector 7 varies corresponding to time t, and 7 is said to be
vector function of scalar variable t and represented as 7 =F(t) as shown in Figure 1.11

If P is the position of particle at time t then OP = 7.

If Q is the position of particle at time t+&t and position vector of Q is (7 + 67)

=74+ 67 — 7.

In limiting case if §t — 0 then §7 — 0 and P tends to Q and the chord become the tangent at
P. Differentiation is define as

dr i 67 " 7(t + 6t) —7(t)
dt ~ 61508t 8ts 5t '

When the limit exists only then the function # is differentiable. If we further differentiate
function with respect to t and hence it is called second order differentiation. If should be
cleared that the derivatives of a vector (say 7') are also vector quantities.

i

Figure 1.11

Properties of vector differentiation:

If A and B are two vectors, @ is a scalar field and C is a constant vector then

ds> = dA dB
(1)E(A+B)—E+E.

a _ady g0
(Z)E(AX¢)_dt¢+Adt'

d /2> = > dB  did =
(3 (AB)=A—+—.B.

15
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d = dB | dA
(4) E(AXB) —Axd—+sz
ac
(5);=0
di#  dids . .
(6) il where s is the scalar function of t.
(7) L)y =L@ = P47 = 22 Where 7 is the position vector
dt dat dt dt at’ )

Example 1.3: A particle is moving along the curve x = t? + 2, y=t? + 1 and z= 3t + 5.
Find the velocity and acceleration of particle along the direction 3i+2j+6k at time t=2.

Solution:
Curve is defineas x = t> + 2, y=t* + 1 and z= 3t + 5.
The position vector of particle at any time t is given as
r=xi+yj+zk
F=({t*+2)i+(t>+1)j+ (Bt + 5k

P

v

O N B
Figure 1.12

Velocity is given as
ar_ 3t%i 4 2tj + 3k
ac oottt ed

at t=2 velocity becomes

dr—12'+4'+3k
gp = L2t 4 .

Component of the velocity along the direction 3i + 2j + 6k = B (say)

v.B B (v.B)B

ON = |7|cos6.b = |7

(16 i+4j+3k).(3i+2j+6k)
32422462

(3 + 2j + 6k) === (3 + 2j + 6k)

- . _ _ ar . .
acceleration a can be given as a = s 6ti+2j

acceleration a att=2 can be given as a = 12i + 2j.
Component of acceleration along direction B is given as

16
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aB B _ (aB)B
lal 1BIIBI ~  |BI2

= |@lcosf. b = |a|

_ (12i+2)).(3i+2j+6k)
322422462

_ 52 . .
= (3i + 2j + 6k).

(3i + 2j + 6k)

1.4.1 Partial derivative:

If fis a vector function which depends on variable (X, y, z), then the partial derivatives are
defined as

of _ . [G+8%y.2) ~f(xy.2)
m

ox  6x-0 ox

of . fxy+6y,z2)—f(xy,2)

— = lim

dy &y-0 &y

of . fyz+6z)—f(xy, 2)
= lim .

0z 6z-0 0z

In case of partial derivatives with respect to a variable, all the other remaining variables are taken
as constant.

Partial derivatives of second order are defined as:

9/ _ 2 3f
=-—Gh

0x%  ox

9% _ 9 of

dy? B ay (63/)

2’ 0 (0_f)

0z2 9z \az/’

1.4.2 Del operator:

The vector differential operator del is denoted by V and defined as

veil ;240
~lox oy "oz

1.4.3 Scalar and vector point functions:
(1) Field: Field is a region of the space defined by a function.

(ii) Scalar point function: A scalar function @(x,y, z) defines all scalar point in the space. For
example, gravitational potential is a scalar function defined at all gravitational fields in the space.

17
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(ii1) Vector potential function: If a vector function F (X, y, z) defines a vector at every point in
space then it is called vector point function. For example gravitational force is a vector function
defined at a gravitational field in the space.

1.4.4 Gradient:

The gradient of a scalar function @ is defined as
.9 .0 d
grad @ = VQ = (1a+15+ k-0
_ 0, 00 00
B 16x+]6y+kaz
grad @ is a vector qunatity.

Total differential d@ of a scalar function @(x, y, z) can also be expressed as,

1540 1510 a0
d@ —adx+@dy+£dz.

Total differential d@ of a scalar function @ can be expressed as
LY N
do = axdx + aydy + ade
_ 00 09 00, . .
=(i > T 3y + kaz) (idx + jdy + kdz)
dp = (V)Q)) dr = |[V@||dr|cosb = (VQ)). dr 7, (where 7 is a unit vector along dr)

also 0 is angle between V@ and d7 (The direction of displacement).

s = 4
So, = = (V). .

. dp . o . . : on
This, d—f is the directional derevative of @. The rate of change is maximum if #

. = A e
is along V@ and 7 is zero.

Hence gradient of the sector field @ defines a vector field the magnitude of which is equal to the
maximum rate of change of @ and the direction of which is the same, as the direction of
displacement along with the rate of change is maximum.

Example 1.4: In the heat transfer, the temperature of any point in space is given by
T=xy+yx+zx. Find the gradient of T in the direction of vector 4i-3k at a point (2, 2, 2).

Solution:

18
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Temperature is define as
T=xy+yx+zx

gradient of temperature T is given as

0 a2 0
gradT = VT = <1a+] a—y+£6)(xy+yz+zx).

VT=ily+2)+jlx+2)+k(x+y)
at point (2, 2, 2) the VT is (4i + 4j + 4k).
The gradient T in the direction of vector 4i-3k is

= (4i + 4j + 4k). Unit vector along (4i — 3k)

(4i-3k)
V42432

—(4i + 4 + 4k).
=4/5.
1.4.5 Physical significance of grad @ :

The physical significance of grad @ can be explained on the basis of surface defined by scalar
field @. The value of @ remains constant on the surface S, as shown in Figure 1.13 and it is called
a level surface or equi-scalar surface. Let us consider two surfaces S and S' defined by scalar
function @ and @+d@ respectively. Suppose 71 is normal to the surfaces S and S'. If the
coordinates of point P and Q are (x, y, z) and (x+dx, y+dy, z+dz) then the distance between P
and Q are

dr = idx + jdy + kdz
as the definition of differentiation

1540 1510 a0
d@ —adx+@dy+£dz

—<a®'+a® +a®k> (dxi+dyj+dzk)
=3¢ ayy 5, ) - (dxit+dyj+dz

do = V. d7.
If we consider the point Q approaches to P and finally lies on P then

dp =0
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Vo.d# = 0.

Where V@ and dr are perpendiular to each other.

Figure 1.13: physical significance of grad

Therefore, V@ is a vector which is perpendicular to the surface S.

If 7 is normal on the surface S and d7i represents the distance between surfaces S to S' then
dn = dr cos 6 = A.d7

g 00 ~ ;>
and d@ = —an = —Qn. dar.
on on

By using equation (1), V@.dr = %ﬁ. dr

00
V(Z)—%n

Thus, V@ is defined as a vector whose magnitude is rate of change of @ along normal to the
surface and direction is along the normal to the surface.

Examplel.5: Find the directional derivative of a scalar function @(x,y,z) = x*+ xy +z? at
the point A (2,-1,-1) in the direction of the line AB where coordinate of B are (3, 2, 1).
Solution:

The component of V@ along the direction of a vector A is called directional derivative of @ and
given as V@ . A
= (1242 4 k2 (52 2
Now V@ = (lax+]6y+kaz)(x + xy + z°)
=2x+y)i+xj+2zk
gradient at point A (2,-1,-1)
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VO =3i+2j—-2k.

The vector AB = position vector of B -position vector of A
=Bi+2j+k)-QRi—j—k)=1i+3j.

Directional derivative of @ in the direction of AB is

o i+3) 9
V¢.AB=(3i+2j—2k).( D _

Vi+9 V10

1.4.6 Divergence of Vector:

The divergence is defined as dot product of del operator with any vector point function jT> or any
vector F and given as,

div.f =V.f = (i;—x+j% k). (ife +ifyekfy) where f = ify + jfyikf,

_of Oy O

ox 9y 9z’

Since divergence of a vector f is dot product of del operator V and that vector f , therefore it is a
scalar quantity.
1.4.6.1 Physical Significance of Divergence:
On the basis of fluid dynamics or a fluid flow, the divergence of a vector quantity can be
explained. Let us consider a parallelepiped of edges dx, dy and dz along the x, y, z directions as
shown in figure 1.14.

Figure 1.14: Physical Significance of Divergence

Let ¥ is the velocity of fluid at A(x, y, z) and given as

U= vl +vyj + vk
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Where the v, vy, v, are the components of veolcity along x,y, z directions.

Amount of fluid entering through the surface O'P'Q'R' per unit time is given as:
velocity X area = v,dydz.

Amount of fluid flowing out through the surface O'P'Q'R' per unit times is given as

= Uxyax dydz

= (ve + 22 dx)dydz.

Decrease in the amount of fluid in the parallelepiped along x axis per unit time.

=v,dydz — (vx + % dx) dydz

= -2 dxdydz.

Negative sign shows, decrease in the amount of fluid inside the parallelepiped.

Similarly decrease of amount of fluid along y axis
—_
R dxdydz.

Decrease of amount of fluid along z axis

_ v

===, dxdydz.

Total amount of fluid decrease inside the parallelepiped per unit time=— (% % +
v,

ai) dxdydz).

. . a 5] 5]
Thus, the rate of loss of fluid per unit volume = == 4 Ty g T
ox ady 0z

(We can ignore negative sign when we specify that the negative sign indicates decrease in the
amount of fluid).

Further the rate of loss of fluid per unit volume
(.8 , .0 ) . . -
—(la+]£+ k@) (i +vyj+v,k)=V.v =divv

Thus, the divergence of velocity vector shows the rate of loss of fluid per unit timer per unit
volume.
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If we consider fluid is incompressible, there is not any loss or gain in the amount of fluid,

therefore div v = 0.

If the divergence of a vector is 0, then the vector function is called solenoidal.

Example 1.6: If u=x*+y’*+z° and ¥ = 2xi + 3yj + 2zK, then find the div (ur).

Solution: Div (ur) = V.(ur)

0 0 0
R I 2 2 2 ; ;
(lax+]ay+kaz>.[(x + v+ z2)(2xi + 3yj + 2zk)]

= i%(xZZx)i +jaiy(y23y)j + k%(zz.Zz)k
= 6x2% +9y? + 62°.
1.4.7 Curl
The curl of a vector F is defined as
Cul F=VXF (where F=Fi + E,j + Fik)
=(i;—x+j:—y+ k) x (Ei + Fyj + Fk).

In terms of determinant of vector product

i j k
— d d d

Curl F= % oy 22|
F, E F

Since curl is vector product of two vectors, therefore it is a vector quantity.
1.4.7.1 Physical significance of curl:

On the basis of angular velocity and linear velocity the curl can be explained.

Let us consider a particle moving with velocity v and 7 is the position vector of particle rotating

around origin O. Let @ is the angular velocity of particle then
curlv=Vxv

=VXx(wXT1)

S V=0 XT)

= V(wyi + wyj + w,k) X (xi + yj + zk)
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i j k
=VX|wy wy, w,
x y z

=VXx [(wyz — w,Y)i — (wyz — W,x)j + (WY — wyx)k]

i j k
_ a a a
ax ay 0z

WyZ — WY WX — WyxZ WyY — WyX

curlv = Z(wxi + w,j + wzk) =20 .

MSCPH501

Thus, the curl of linear velocity shows angular velocity which means rotation of particle. i.e.
Curl of a vector quantity is connected with rotational properties of vector field. If curl of a vector

is zero, V X ]7 = 0, there is no rotational property and /7 is called irrotational.

Example 1.7: Calculate the curl of a vector given by F = xyzi + 2x%yj + (x22% — 2y?)k.

Solution:
curl F =VXF

9 .0 d . .
= (La+]£ + ka) X (xyzi + 2x*yj + (x*z* — y*)k)

i j k
[5] [5] [5]
| ox oy 0z

xyz 2x*y x?z%—2y?
= —4yi — (2xz% — xy)j + (4xy — x2)k.
Example 1.8:
Show that F = (y? + 2xz2)i + (2xy — 2)j + (2x%z — y + 22)k is irrolational.

Solution:

curl F=VXF
= (i;—x+j:—y + kaa_z) X [(y% + 2xz2)i + (2xy — 2)j + (2x%z — y + 22)k]
= 0.

Therefore, F is irrotational.
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1.5 Vector integral:

1.5.1 Line Integral: The integral of a vector function F along a line or curve is called line
integral.

Suppose F (X, y, z) be a vector function and PQ is a curve and dl is a small length of curve as

shown in figure 1.15 then line integral of vector F along a length di is given as
J, F.dl.

yA

Q dl

»
»

O X

Figure 1.15: Line Integral

The integral may be closed or open depending on the nature of the curve whether closed or open.
To compute the line integral of a function F, any method of integral calculus may be employed.

In case of fore F acting on a particle along a curve PQ, the total work done can be calculated as
line integral of force.

Work done= pr F.dl.

1.5.2 Surface integral:

Similarly as line integral of F is a vector function and s is a surface, then surface integral of a
vector function F over the surface s is given as

Surface integral=] F.di.

The direction of surface integral is taken as perpendicular to the surface s.

If ds is written as ds = dxdy.
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Surface integral= F.ds = N fy F.dxdy .

Surface integral represents flux through the surface S.
1.5.3 Volume integral:

If dV denotes the volume defined by dxdydz then the volume integration of a vector F is define
as

Volume integral=f, FdV = [_ fy J, F.dxdydz.

The volume integral can be explained in terms of total charge inside a volume. Suppose p is
charge density of a volume dV then total charge inside the volume is given as q= fv pdv.

1.6 Vector identities:

If @, and @, are two scalar point functions and A and B are two vectors, then
V(@ +0;) = V0, + VO,

V(0.9;) = 0,VD, + O,V0,

div (/T+§) =divA+divE

div (A.B) = A. div B + B. div A
curl (/T + §) = curl A + curl B

div ((Z)A)) =@pdivA+A.grad @
curl ((Z)/T) =@ curl 4 + grad @ X A
divcurl A =0

curl grad @ =0

div (/T X ﬁ) =B.curl A+ A.curl B
curl curl A = grad div A —V? 4.
Example 1.9 : Prove that

(1) div curl A=0
(2) curl grad @ = 0.
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Solution:
() (D) divecurl A=V.V x 4
i j k
_vl|ld 2 39
=V ox dy 0z
Ay A, A,
oy [i (PA2_ ) 4 @A _0az L\ 24y oy
_V'[l (ay az)+](az ax)+k 0x 6y)]
_ 0 (24 _ 04\ | 0 04y 24y D Ody ddy
_6x(6y 6Z)+6y(6z ax)+6z(6x 6y)
=0.
(2) curl grad @ =V XVQ
i j k
a ad 0
dx Jdy 0z
00 00 00
dx dy 0z

(0% 9% (0?0 0%0 °¢p  0%¢
=1 - +j - +k - =0
dydz 0zdy 0z0x 0x0z dxdy 0dydx
Example 1.10:
Show that
(1) div (/T X E) =B.curlA— A4 .curl B
(i) curlcurlA =graddivA—V?A.
Solution (i) div (4 x B) = V.(4 x B)

272 4 kL) [(AB,~A,By) I+ (ABy- AB,) J + (A By— A,BK]

:(l ox ady 0z
) P )
= = (AB.~AB) + - (AB— AB) + 7~ (AB,— A,B)
_ R 94z %4y 94x 04z 04y 9Ax, , 0Bz 9By, , ©9Bx 0Bz
B X(ay-62)+By(6z ax)+BZ ox ay) AX(ay 62) Ay(az 6x)
9By 0Bx
U 9 6y)
A A ~ 0Az O0Ay. . 0Ax O0Az , 0Ay 0Ax .+
= (Bul By + Bzk). (57 - 50+ (G - 500 + (50 -5 k] -
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(Ad+ A + AZR). [(GF - T2+ (G - T0) + (5 - TOk)
=B.curl A - A. curl B
=curl4.B -curl B . 4.
Solution (ii)
curl curlA= VX (VXA
ik
= (g +) 3o+ l3) X > >
A, A, A
= (i +) g+l x[i (32-22) -G - 5D + kG2 - 39)]
i J k
9 9 9
= ox ay oz
(Gr-%2) Gr-%0 GX-59
=il5; (-5 -5 G -ol+ils G- T) -5 G- )

0A 0A a ,0A d0A
k5 (G -5 -5 G~
0z x ay ay
024, 0%A, 0%4y 62Ax]
0z0y dz2 d0x2 0x0y
Tk [0%4x  0%4,  0°4A, n 62Ay]
| 0x0z 0x2 doy? dyoz
=yi [(62Ax 024, 62AZ) (62Ax+ 62Ax+62Ax)]
dx2 dydx  0zox 0x2 dy? 0z2

_Z (6Ax+%+%)_zi :(aZAx_I_aZAx_I_aZAx )]

0x? dy? 0z2
= grad divA—-V?A.

. [aZAy _0%Ay  0%Ay n azAz] , [
dydx dy? 0z2 0z0x

1.7 Gauss divergence theorem:
Gauss divergence theorem is a relation between surface integration and volume integration. The

theorem states:
The surface integral of a vector filed F over a closed surface s is equal to the volume integral of

divergence of F taken over the volume enclosed by surface s.
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Mathematically [f F.d§ = JIf, div F dv.

Mathematical proof:
Let us consider a vector F = Fii + F,j + F;k.

According to Gauss divergence theorem [f (Fii+ Fyf + Fsk).ds = {]] I, (i% +7 aa_y +
k %) .(F,i + F,j + Fsk)dxdydz

? 8 A JF OF JF:
Or [[. (Fil+ Fpf + Fsk)ds = [ff, (6_961+6_;+a_z3) dxdydz O
Y
Sy T S,
A RO
y X
z

Figure 1.16: vector filed F over a closed surface and corresponding enclosed volume

Now we can prove equation (1)

6F1 _ x=f2(y,2)&
o dxdydz = ] [fx=f1(y,z> ox dx] dydz

Let us first evaluate [ff

= ffs [Fl (.X,', 4 Z)]x=f2 (y’Z)dde

x=f1(,2)
= ffR[F1(f2’y1 z) — Fi(f1,y,2)]dxdy (2)
Now, the right portion of surface i.e. S, can be given as
dydz = n,.ids, where 71, is the direction of unit vector perpendicular to the surface.
Similarly the left portion of surface S; can be given as
dydz = n;.ids;.

Putting the value of area in the factors of RHS of equation (2) we have

ﬂ; [Fl(fz,y,z)dydz = +]fs Fifi,. i dszl
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ff [F1<f1,y,z)dydz - ffs

Since the outward flux at surface S, is in the direction along the x axis and flux at surface S; is

1

along the negative direction of x axis. Therefore, S; component is negative.

Putting the above values in equation (2) we have

0F; o .
dxdydz = Fini,.ids, + Finq.ids,
v ax N S
2 1
6F1 .
dv = Fin.ids.
S

Since 71, and 7 , are the direction perpendicular to yz plane that is along x axis shown by 7.

dF, )
fff —dv—ffFZﬁ.] ds
S
0F;
fff—dv—ff&ﬁ.kds.
S
Adding all above terms

6F1 d0F, O0F; o . ~
jﬂ. +az> dv:f (Fii.i+ Fon.j + Fsi.k) ds
S

Similarly it can be shown that

and

or Jfff, (V.F)dv = [f_F.ds.

This is Gauss divergence theorem. The theorem relates the flux of a vector filed through a

surface (I3 .zs)) to the behavior of vector field (V. F ) inside the volume.
1.7.1 Deduction of Gauss law with Gauss Divergence theorem:

In electrostatics the Gauss law is one of the fundamental law and frequently used. This law is a
result of Gauss theorem in electric field.

Statement: The total electric flux through a closed surface is equal to Ei times total charge

enclosed inside the surface.
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Mathematically: [f E.ds = ei ( total charge inside the surface)

ffsﬁa =eio 2idi-

Proof: Let us consider a charge q is situated at O, the origin of Cartesian coordinate system.
Consider an imaginary surface called Gaussian surface around the charge q. The Gaussian
surface may be of any shape but closed.

Consider a small surface ds on the Gaussian surface as shown is Figure 1.17. The distance
(radial) of this surface is r from the origin and it subtends a solid angle dw at the centre.

Figure 1.17: Gaussian surface

The electric flux through this small surface ds is
dp =E.ds.

The total electric flux through the whole surface

¢=]f F.d3.

Now the electric field on the surface ds is given by

1 q, .,
E = —7.ds
4 €y 12
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where 7 is unit vector along the direction of 7. The flux @

1 q, .,
(ijff —Zr.ds
s4m Egr
1 ff 7.Ads
4w € Sq' r?

where i is unit vector perpendicualr to surface ds.

5= 1 ﬂ‘qucose
CAmey)), rz

Where #.71 = cosf. Now ds:ZO %9 is solid angle subtended by surface ds and denoted by dw.
0=— f f do=——.qan="1
" 4m g, Sq'w_zmeo'q'n_eo'

Since total angle subtended by whole surface S at the centre is 4.
Hence [[ E.ds = —Y,;q;.
S €o

In case the charge in the closed surface is distributed in the volume V with volume charge
density p then the statement can be given as

o [[ s =L [[[oar.

1.7.2 Gauss law in differential form:

Gauss law in electrostatics is given as
=4 - 1 . .
E.ds = - (total charge inside surface s).
S 0

If p is volume charge density inside the volume and is enclosed by surface s then,

ﬂ; E.d§=eiofffvpdv
ffsﬁ.cﬁ: fdeivEdv.

Applying Gauss divergence theorem
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fff,, divE deeiOfﬂ;pdV
]ﬂv(diuﬁ—eﬁo)dv=o

divE')—ﬁ:O
€o

divE = Eﬁo'
This is called differential equation of Gauss law.
1.7.3: Poisson’s equation and Laplace equation:
If we consider E as electric field and @ as electric potential then the electric field can be given as
E=-Vg.

Now using differential form of Gauss law

div (—=V9Q) =E£
0
V(-V0) =Eﬁ
0
p
2 — T
Ve = &

This is called Poisson’s equation. Poisson’s equation is basically second order differential
equation and operator V2 is an operator defined as

92 92 02
+

V2=V.V= + .
0x? dy? 0z?

This is called Laplacian operator.
If there is no charge inside the volume i.e. p=0, then above equation becomes
Vg = 0.
This is called Laplace equation.
Example 1.11: If # is position vector of any point on the surface s whose volume is V, find

If, 7. d3.
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Solution:

ff F.d_s’=ff div # dV
=fffv(—+]ay+k 2).Gix + jy + kz) av

=I0,(G+ 3 +5) @
= fffv3 dvV = 3V.
Example 1.12:

Using Gauss divergence theorem find out [f A .dS where, A =x3i+y3j + z3k and s is a
surface of a sphere defined by x2 + y? + z% = a?.

Solution:
[ A.ds =[] v.AdV
= JIl, (l +]ay+k ) (x3i+y3 + z3k) av
= [Jf (3x* + 3y? +32%) dV
= Bfffv(xz +y2+2z2)dV
= 3fffva2 dV == 3a? fffv av
= 3a? Gna3) = (13—27ra5).
1.8 Green’s Theorem for a Plane:

Statement: If @,(x,y) and @,(x,y) are two scalar functions which are continuous and have

00, (Z)
continuous derivatives — 3y and —= over a region R bounded by simple closed curve ¢ in x-y
plane, as

6(2)1

$.(91dx + 0,dy) = [J, (52— ) dxdy

Proof: Let us consider a close path ABCD denoted by curve c, and curve ¢ divided into two parts
curve ¢;(ABC) and ¢, (CDA) as shown in Figure 1.18.
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Figure 1.18: Close path ABCD denoted by carve C

The equation of curve c; is

y = y1(0).
The equation of curve c,is

y = y2(x).

First we calculate the value of

o0 _px=c[ ry=y2(x) 00
oS5 dxdy = [0 {52 S dy| dx

= [10: e )RS dx

= [ [0:(x,2) — 01(x,y1)] dx

= = [10,(x,y,) dx — [0, (x, y1)dx
= [ 0:(x, y)dx + [ 81 (x, y1)dx]
- [fcz 01(x,y)dx + [, 01(x, y)dx]
=~ 0, (x,y)dx.
20,

L dxdy.

Thus § @, (x,y)dx = — [[, ay
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Similarly it can be proved that

00
$, 8,(x, y)dy = + [[, =~ dxdy.
Adding above two equations

§ 01 y)dx + 0z y)dy) = j [ (52-52)axay

0 0
j€(®1dx+¢2dy) —jf ﬂ—ﬂ dxdy.

This is Green’s theorem for a plane.

Example 1.13: A vector field Fis given by F= siny i+ x(1+ cosy)j . Evaluate the line
integral fc F.d7, where ¢ is the circular path given by x? + y? = a?.

Solution: The vector field F is given as
F = siny i + x(1 + cosy)j.

Taking line integral along the curve ¢

jF.dr=f[sinyi+x(1+cosy)j].(idx + jdy)
C c

= f (sinydx + x(1 + cosy)dy)
Cc

herer =ix + jy or dr =idx + jdy.
Now take siny = @, and x(1 + cos y) = @,.

On applying Green’s theorem

j(¢1dx+¢2dy) —ff (———)d dy

_ jf d(x(1 + cosy)) B dsiny dxd
dy

= f [(1 + cosy) — cosyldxdy
R
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= ff dxdy = ma? .
R

Since R is the region of circular path along xy plane given by x? + y% = a?. Therefore the
radius of circular path is a.

Example 1.14: Applying Green’s theorem evaluate

f [(x? + 3xy)dx + (x? + y?)dy].

c

Where c is a curve which form a square between the line y = +1 and x = £1.
Solution: Given integral is
JI(? + 3xy)dx + (x* + y?)dy].

Applying Green’s theorem

§.@1dx + 0rdy) = [[ (52— 52) dxdy

1 1 [9(x%+y? 3]
= f—l f—l[ (xaiy )_a(xz + BXY)] dXdy
= J2, [} [2x — 3:)]dxdy
11 1 1
=— [, [ xdxdy =~ [ xdx [  dy
1t 1 1.2 2
=-|3_, b= -1Ha+n=o.

1.9 Stoke’s Theorem:

Stoke’s theorem transforms the surface integral of the curl of a vector into line integral of that
vector over the boundary C of that surface.

Statement: The surface integral of the curl of a vector taken over the surface s bounded by a
curve c is equal to the line integral of the vector A along the closed curve c.

ff CurlA.ds = %J. ar
S C
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Since the curl A of a vector or vector function is along the normal to the surface, therefore the
above statement may also be represented as

jf curl/f.ﬁds=j€/f.d?f
S o

Where 71 is a unit vector perpendicular to the surface ds. Unit vector 7 can be given as
fl = cosai+ cosP j+ cosy k.
Proof: Let us consider a vector function A given as
A=Ayi+ Ayj + Azk
and 7 = xi +yj + zk
dr = idx + jdy + kdz.
Using the Stoke’s theorem | Adr = Jl,curl A ds

J.(Axi + Ayj + Azk) . (idx + jdy + kdz)
d . . . .
ﬂ- l—+]—+ ka ) (Axl + Ayj +Azk)].(l cosa + j cosf + k cosy)ds

or

J (Aydx + Aydy + A,dz) =[] [(6Az—aﬂ)i+

. (aﬂ— %)j+ (w an) k] (i cosa +

0z ox ox
jcosp + k cosy)ds

or J (Aydx + Aydy + A,dz) =[], [(aAZ —%) cosa + (%—%) cosp + (%—
E;—';’C) cosy)]
or
fc(Axdx + Aydy + A,dz) = JI, [(% cosf — %cosy) + (—%cosa + %cosy) +
(3 )] ds. (1)

Let us first prove the first term
dAx DAy
J Axdx =[] (E cosf — o cosy) ds. (2)

Consider the A, is function of (x,y,z) as Ay(x,y,z) and z = g(x,y) describes an equation of
surface s, and ds is a small elementary part of this surface as shown in Figure 1.19.
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JoAx (e y, 2)dx = [ Ax(x,y, g(x,¥))dx

_ fc[ A, + 04y (x,y,9(x,y)) dy] dx.

dy
By using Green’s theorem
0Ax | Ay 0
J Ax(x,y, 2)dx = ffs(E + Eﬁ) dxdy. 3)

The direction cosines of the normal to the surface s are given as
Cosa Cosp _ Cosy
_9g  _99 1
0x dy

Figure 1.19: Small elementary part of surface

If the projection of ds on x-y plane is ds cosy

dxdy
cosy’

Then dxdy = ds cosy or ds =

Putting this value on equation (2)
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0A, Cosp 0A,
- ff < )
¢\ 0z Cosy Oy

_ ff an an ag]d xdy.
Putting the value of R.H.S. from equation (3)
ffs(% Cosf — %cosy) ds = [, Ax(x,y,2)dx
or [.Ax(x,y,z)dx = ffs(% Cosp — %cosy) ds.
Similarly

J.Aydy = ffs(aa—yCo )/——Cosoc) ds

and [ A,dz = ffs((:;z Cosy — %Cosﬁ)ds.

On adding above equations (4), (5) and (6)

f(A dx + Aydy + Aydx) = [[, | %= Cos /3——

E cosﬁ] ds

Or fCZﬂ =[], CurlA.ds .
Hence Stoke’s theorem is proved.

Example 1.15: Using Stoke’s theorem evaluate

J[(2x — y)dx — yz®dy — y®zdz] where c is the circle x* + y* =

surface of a sphere of radius 1.
Solution:

The given integral

j [(2x — y)dx — yz?dy — y?zdz]
c
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0A,Cosy_dxdy

dy cosy

4

)

(6)

1, corresponding
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= f [(2x — y)i — yz?j — y?zk]. (idx + jdy + kdz)
c

—

A.dr.
C

s

Where 4 = (2x — )i — yz%j — y®zk and dr = idx + jdy + kdz
Using stokes theorem |_ Adr = .V x A ds
— [V xAfds 1)

where fi = unit vector perpendicualr to surface ds

[ j k
_| 2 9 9
VxA= ox oy 0z

2x —y —yZ* -—y?z
=1(-2zy+2yz)-j(0-0)+k(0+1)
=k.
Putting this value in equation (1)
[ A.d7 = [[ k.fds .

Since ds is area of a circle described by x% + y? = 1 along xy plane, therefore direction of ds is
along perpendicular to surface which is along z axis.

Thus, [[ k.Aids = [f ds = [[ dxdy = m.

Example 1.16: Verify Stoke’s theorem for vector filed given by F= (Bx —2y)i + x?zj +
y2(z + 1)k for a plane rectangular area with corners at (0,0),(1,0) (1,2) and (0,2) in x-y plane.

Solution: the given function is
F=@x—2y)i+x%zj +y*(z + Dk.

Since the vector field is applying in an area which is described in x-y plane only, therefore z=0
and function becomes

F = (3x — 2y)i + y2k. (1)
According to Stoke’s theorem
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JF.dr = [[.VxF.ds. )

The line integral along the close path described by rectangle OADC as shown in figure 3.5 and
can be given as

JF.dr = fch.dr + fczF.dr + fch.dr +fc4 F.dr.
Where €y, C,, C5, C, are components of curve C.
J F.dr= fol[(Bx —2y)i + y?k].idx + foz[(?)x —2y)i + y?k].jdy
+ flo[(3x — 2y)i + y?k].idx + fzo[(Bx —2y)i + y?k]. jdy
= [13xdx + [20dy + [ (3x — 4)dx + [, 0.dy
0 0 1 2

=24+0+3+0=4
2 2

C(02)  D(1.2)

()N (T.0) X
Figure 1.20

The L.H.S of equation (2) become 4 for given field. Now we calculate the R.H.S of equation (2 )

i j k
VxF = 9 9 9
0x dy 0z

3x—2y 0 vy
=Qyi+0+2k)=2yi+2k.
Now [[.Vx F.ds = [[ (2yi + 2k).7 dxdy

= [f, 2dxdy = 2 [[_ dxdy
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=2. Area of rectangle =2.2 = 4.

On comparing equation (3) and (4) the Stoke’s theorem has been verified.

1.10 CURVILINEAR COORDINATES:

We are well familiar about Cartesian coordinate system in which any point or vector can be defined with
the help of origin and three mutually perpendicular axes. Some time we need to use some another type of
coordinate system which is more convenient for describing a system or solving an equation. In this unit
we will study how the component of a vector can be formulated in another coordinate system called
curvilinear coordinate system.

Let us consider a rectilinear Cartesian coordinate system in which a point is defined by a vector
P(x,y,z). We can say the point P is determined by intersection of three mutually planes x=constant, y=
constant and z= constant. Now we introduce another system of coordinates which is defined by the
superposition of three another plans described by u; = constant, u, = constant, u; = constant. The family
of these new plans is not necessarily parallel and mutually perpendicular. These new lanes are intersecting
to each other at point P. These three new surfaces are called curvilinear surfaces. If these new surfaces are
perpendicular to each other, then the coordinate defined by these plans called orthogonal curvilinear
coordinate system. The three surfaces intersect each other at three curves or lines which are called
coordinate lines. The three axis of this new coordinate system are defined by these coordinate lines.
Consider a point in the space is defined by P(x,y,z) in Cartesian coordinate system, and P(u;, up,u3), in
curvilinear coordinates system as shown in Figure 1.21.

Uycurve

Figure 1.21: rectibinear Cartesian coordinate system

The transformation equations between the curvilinear coordinates and the Cartesian coordinates
are
X = x(uy, Uy, u3)
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y = y(u1, uz, u3) (1)
z = z(uy, Uy, U3).

The functions (1) are single-valued functions of u;, u;, and u; and are assumed to be
continuously differentiable.
The set of egs.(1) may be solved for uy, u,, us in terms of x, y, z.

u =uw(X,y, z) (2a)
uw =w(X,Yy, z) (2b)
us =uws(X, Y, 2). (2¢)

Here, u;, uy, us are single- valued, continuously differentiable functions of x, y, and z.
The set of equations (1) and (2) define a one-to-one correspondence between each point (X, y, z)
and the related set of values (u;, uy, us). The partial derivative of of equation 1 is given as

dx = — d + d + d (3a)
dy ay ay
dy = —d d d 3b
y= ouy t ou, uz + duz Hs (30)
0z 0z 0z
dz _a_uldul +a—uzdu2 +Edu3. (30)
The distance between two points in the space with respect to curvilinear coordinate system is
given by
ds? = dx? + dy? + dz>. 4)

Putting the value from equation (3) and for simplicity 1, 2, 3 are denoted by i,j = 1,2,3 then
expression for ds? can be represented as

ds? = Z 6xdx+dy6y+dzdzdd .
> du; du; 0w 0u; | duyduy )
ij

Further for more simplification if
0x 0x dy 6y 0z 0z

/7 T .
du; dy; T ou; du] + du; du; Y

dS2 = Z hl] duidu]-.
Lj

For convenience we introduce a unit vector W; normal to each surface u; = const. wherei = 1,2,3.
Now for orthogonal curvilinear coordinate system in which surfaces always intersect to each
other at right angles then

Then

as Wi.\?vi =1 , butwi.\?vj =0.
We have
hii = hi; h]] = h] and hkk = hk and hi]' =0ifi# ] .
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Now above equation (5) becomes

ds? = (hydu;)? + (hyduy)? + (hzdug)?. (6)
In this orthogonal coordinate system h; , h, and hs are called scale factor. The dimension of ds
in space is of length. The product of h and u is of dimension of length however, the h and u may
have any unit. The distance between two points in space along the coordinate line can be given
as
ds; = h;duy; . (7)
Equation (7) indicates the distance between two points in the coordinate axis therefore surface
element on the plane defined by coordinate axis ds; and ds; can be given as
dS;; = h;du;hjdy wherei,j=1,2,3. (8)
Similarly the volume element in the orthogonal coordinate system defined by coordinate axis ds;,
dsj and dsy can be given as

dVijx = hjdu;h;dujhyiduy where i, j, k= 1,2,3.

Differential operator in terms of orthogonal coordinate system:
Suppose we have three mutually perpendicular curvilinear planes defined by u;, = constant, u, =
constant, u; = constant. Now let us consider a scalar function {(uq,uz,uz) and a vector function
V=104,V; +1,V, +13V; where {i;, i, and {3 are unit vector along the direction of curvilinear
coordinates u; , u, and u;.
We know that del operator V is a vector which give the maximum rate of change of space of a scalar
function Y(uq,u,, u3) . In Cartesian coordinate system in we consider only one dimension then

Vg = &IJ 6_111
8x—>0 8X ox
As del operator V is a vector quantity, then we can introduce a unit vector along the direction of x and can

write as

VL|J—la—L|J

In three dimensional case V { = 1—lIJ +73 + k

Similarly in curvilinear coordinate system for one dlmensional case

v i Sy oy ay
llJ 5511n—1>0 831 651 h1 aul
oy
NG

For three dimensional case
oy oy oy
V=4 i A
V= T o, T B, o,
0 N 0 +1 0
Thow, T 25 au, T B o,

©)

\Y

0 ——

(10)

V ¢ is nothing but gradient of a scalar function in curvilinear coordinate system.
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Divergence: Similarly the divergence of a vector function in the space defined by curvilinear coordinates
u;, u; and uz can be given as

V V = V (ﬁlvl + ﬁZVZ + ﬁ3V3)

V.Vv=V.4,V; + V.4,V, + V.(3V; . (11
Since we know that
div (dA) = ¢pdivA + A Grad ¢
div (0, V) = V. 4; + G; . VV; (12)

Now we calculate V. {i; as follow and we will put the value in above equation (12)

- ) - oo (M) 2 v xa 4Ly xa
Since curl (h1) = VX (h1) = Vh1 XU + ™ Vx4, (13)

We know that V X u, =%.

1

Since curl grad u;= 0 therefore V X % = 0 and above equation (13) becomes
1

ulxv(hil)=hilv><u1. (14)
Using equation (10)
1\ @, 01 6,0 1 @39 1
V(55) = B urin * hdurin " hdusn
o (1> g, dh, 1, oh, 1, oh,
hy h,®0u; ~ hy%h,0u;  hy*hy0uy

Putting this value in equation (14)

;% 0,;0h; G, X G,0h; @, X O3 dh,
h,? 0wy h;h, 0u, h;h; 0du,’

VXﬁ1=—

Using the identity u; X u; = 0
i, oh; ti; dhy

x{; = —
VX = 5, T hoh, ou, (153)
similarly
; oh, @, oh,
VX, = - 15b
Y2 = h,9u;  hyh, dus (15b)
g, dhy; O, oh
VXl;=—— 2 3 (15¢)

hsh, du, hgh; du,
Now again using identity
div(A X B) = B.curl A— A.curl B
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VXﬁl = V.(ﬁz X ﬁ3) :ﬁ3. (Vxﬁz)_ﬁz. (VXﬁ3)
Putting the value of V X {i, and V X {i; from equation 15 we have

1 a(hyhy)

V.ul S

From equation (12)
V. (ﬁlvl) S Vlv. ﬁl + ﬁlv Vl

V;  d(hyhy) 0,0V 4,0V G530V,
V (ulvl) ul. <_ + T T )
h;h,h;  ouy h;0u;  hy0u, h;du;
V d(h,h 1 dV. 1 d(V;h,h
V.(0,V,) = 1 (hzhs3) 4oV (Vihzhs) ' (162)
h;h,h;  duy h; du; hjh,hg ou,
Similarly
1 d(Vzhshy)
V.(14,V,) = 16b
(0V) = i o (16b)
1 d(V3hihy)
V.(t3V3) = T : (160)
Combining all equation and using equation (11)
_ 1 [0(Vihzh3)  9(Vohghy)  9(V3hy hz)
divV=V.V= hlhzh [ o, + au, + T (17)

Laplacian: The Laplacian operator is define as V.V or denoted as V2. Putting the value of V { from
equation (9 ) in place of vector V in equation (11)

R p— [a{hh a‘"} {hh a"’} {hh a“’}]
' llJ_hlhzh3 du; U2 3hy duy)  du, U Thydu,)  dugl b 2hsdu,

T a{hh a"’}+a{hh a“’}+a{hh ""’}] 18
llJ_hlhzhg du; U2 3hy0uy) " du, U3 hyouy) " aus U % hs duy (18)

Curl : Similarly the curl of a vector F in curvilinear coordinate system is given as
curl F=VXF=Vx (G;F; + 0,F, + i3F3)

We have vector Fas F = ;F; + 0,F, + 3F;

VXF=Vx0;F; + VxU,F, +VXx{3F; (19)

We know that curl (¢pA) = ¢ curl A— A X grad ¢

Curl (ﬁlFl) = F]_ (V X ﬁl) - ﬁl X VFl
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Substituting the value of V X {i; from equation (15) and VF; from equation (9)

i, oh i, oh i, 0V, 1,adV Ui, OV
Vx(ﬁ1F1)=F[ 2 Ohy Uz 1] ~ 10Vy Uz dvy Uz 1]

'lh,hs0u, hyh, du, h,du;  h,du, h;ous

_ [0;F;0h;  G3F,; 0hy ﬁ36Fl+ﬁ26V1]
" |h;h30u;  hyh,du, h,0u;  hsydusg

F, oh, 16F1] [ F ohy 16F1]
=u, —

hihy dus By dus) 2 lhyh, du, | by duy

_ 0 o(Fihy) 03 O(Fihy)
hh; du;  h;h, ou,

U d(Fihy) 03 9(Fihy)

VvV x (,F,) = — 20a
(@, F1) h;h;  dus h;h, du, (203)
Similarly
U3 d(F;hy) Gy 9(Fzhy)
V x (4,F,) = - 20b
X @F2) = = =~ o o (20b)
i, d(Fsh i, d(Fsh
V x (G5F3) = 1 0(F3 3)_ 2 0(F3h3) (200)

h,h; du, hsh; duy
Substituting all values in equation (19)

U d(Fihy) U3 Od(Fihy) U3 d(Fzhy) Gy d(Fhp) 0y d(Fshs)

VXthlhg dus h;h, du, +h1h2 ou, h,h; dug +h2h3 du,
8, 0(Fshs)
h;h;  duy
VXF = U; [0(F3hj) a(thz)] U, [6(F1 1) 6(F3 3) U [a(thz) 6(F1 1) 1)
h,h; 1 du, h;h; 1 dus h1h2 du,

The determinant form of above equation is given as

h,6, h,, hyis
1 d d d 22
hihyhg [du;  du,  dus | (22)

h,F;  hyF, h3F;

VXF =

1.10.1 Spherical Coordinate System:
A spherical coordinate system is a coordinate system for three-dimensional space where the

position of a point is specified by three coordinates (r, 0, ¢) as radial distance r of that point from
a fixed origin, its polar angle 6 measured from a fixed zenith direction, and the azimuthal angle
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¢ of its orthogonal projection on a reference plane that passes through the origin and is
orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen
as the three-dimensional version of the polar coordinate system. The radial distance is also called
the radius or radial coordinate. The polar angle may be called colatitude, zenith angle, normal
angle, or inclination angle. In physics (r, 0, ¢) gives the radial distance, polar angle, and
azimuthal angle,

(r; 0, 9)

#
]
]
1
]
1

¢ 1
]
1
]
I
]
]
1
1
]
]
]
I

L

X

Figure 1.22: Spherical coordinate system in three-dimensional

If the coordinate of a point is given by (r, 0, @) in spherical coordinate system and (X,y,z) in
Cartesian coordinate system. From the Figure 1.22

X =rsinBcos P (23a)
y =rsin® cos® (23b)
Z=rcosH (23¢)

and r=.x%+y? +z2 (24)
We know x is function of (r, 8, @) thus x = x(r, 6, @)

0x 0x 0x
—dr + —dob + —d@.

dx = zodr+ o9 20
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Partially differentiating equation (23a) with respect to r, 0, @ and putting the values in this
equation we get
dx = sinf@cos@dr +rcos@cosPdl —r sinf cos P dp (25)
Similarly y= y(r, 8, @) and

9 9 9
dy =a—idr+£d9 +£d(25

dy =sinf@sin@dr+rcosfcsin@df +r sinf cos®@dd (26)

and z=2z(r,6,0)

dr =2 ar + %% 40+ 2 g
2= Y T30 20

dz = cos0dr —rsinfdef. (27)
We know the line element ds in Cartesian coordinate system is given as
ds? = dx? + dy? + dz*. (28)
Substituting the value of dx, dy and dz from above equations 25,26 and 27
ds? = dr? + r2d8? + r?sin®0 dp>. (29)
Compare this equation (29) with standard curvilinear equation as given below
ds? = (hydq;)? + (hpdq;)? + (hzdgs)?. (30)
We have
hy=1landq, =71 ; h=randq, =0 ; hy=rsinf and q, = 0. (31)
Gradient:

Putting the coefficients in the equation of gradient in curvilinear coordinate

oY P P

=, ——+10 +1
Yhoou;  2hy0u,  ° hydus

dp=vyp=02 0, % 14 v
grady = lp_urlar Yo 90 T M T sine o g

grady =Ty

VEA—-}‘ﬁg +ﬁ®rsinga®. (32)
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Divergence:

In orthogonal curvilinear equation divergence of a vector can be given as

divV=V.V=

1 [O(Vlhzhs) 0(Vyhshy) a(V3h1h2)]
+ +
hihzh, aq, aq, dq,

Putting the value of h;h,h; and q; q, q3 from equation (31)

1

divV = -
v r2sin@

a(V,r?sin@) N d(Vyrsind) N (Vg 1)
or a0 ol
1 or? 1 Jdsiné 1 0

divV = 26r+rsin9 00 +rsin9%' (33)

Laplacian :

In orthogonal curvilinear equation Laplacian of a funtion can be given as

e P o B (o i e |
l/"hlhzh3 ou, U3 houy)  ou, U3 hyou,)  ous U 2 haduyJl

Putting the value of h;h,h; and q; q, q3 from equation (31)

1 [a o\ 0 o 1 oy
VY= g W(r sin® ) 69(5m0 )+6®<Sln06®>]

L 0 1 2 o 1 oy
2 & _ - ¥
vy = r2 ar(r ar) +r2 sin@ 96 (S‘”Hae) +r2 sin®9 00 (34)

1.10.2 Cylindrical Coordinate system:

A cylindrical coordinate system is a three-dimensional coordinate system (r, ©, z ) that specifies
point positions by the distance from a chosen reference axis z, the direction from the axis relative
to a chosen reference direction, and the distance from a chosen reference plane perpendicular to
the axis. The cylindrical coordinate system consist of a right circular cylinder having reference
axis z, r is the perpendicular distance of a point from z axis and O is the angle r with respect to x
axis as shown in figure . If (x,y,z) are Cartesian coordinate of point specified by (r, ©, z ).

Thus
x=rcosb (35a)
y=rsinf (35b)
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z=1z (35¢)

x=x(r0,2)

Partially differentiated equation (35) and putting the value in above equation

dx = cos 8 dr —rsin@ df. (36a)
Similarly
dy = sin@ dr —rcos 6 do (36b)
dz =dz (36¢)
z
[x,y,z) = [r, 5,2)
!
iz
8 el !

Figure 1.23: Cylindrical coordinate system in 3D

In Cartesian coordinate system, the line segment is given as
ds? = dx? + dy? + dz>. (37)
Substituting the value of dx, dy and dz from above equations (36)

ds? = cos?0dr? + r?sin?6 d6?
— 2rsinfcos 8 dr d6 + sin?0dr? + r?cos?0 d6?
+ 2rsin@ cos 0 dr d8 + dz?

ds? =dr? +r?df? + dz=. (38)

52

MSCPH501



MSCPH501

Compare this equation (29) with standard curvilinear equation as given below
ds? = (hydq,)* + (hpdqy)? + (hsdgs)?.
We have
hy=1landq,=7r; hy=randq, =0 ; hy=1land gq; =z. (39)
Now we can put the values of h and q and find out the value of gradient, curl and Laplacian.
Gradient:

Putting the coefficients in the equation of gradient in curvilinear coordinate

oy oy oy

dp =V =0 ——+1 Q
grad =Vy =ty + i -t

putting the values of hand q

Loy oy oY
gradt/;=V¢=ur—1ar+u9—r69+uza

0 0 0
174 Eura-}‘ug mﬁ'uza. (40)

Divergence:

In orthogonal curvilinear equation divergence of a vector can be given as

1 o(Vih,h o(V,hsh d0(Vahih
divV =V .V = [(123)4_(231)_'_(312)]'

hihzh, aql aqz 6q3

Putting the value of h;h,h; and q; q, q3 from equation (39)

1 [arV,  aVe) 0V, T)
dwv_l.r.l[ ar "0 T a2
1@V, 10(Ve)  av,
divV=C—F3—%730 t 3
vy 2197 103 “
=5 trae T o (4D

Laplacian :

In orthogonal curvilinear equation Laplacian of a function can be given as

T [a{hh ov }+ a{hh v }+ a{hh v }]
l/"hlhzh3 ouy U2 3 houy * ou, U3 P hyou,)  ous U 2 haduyJl
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Putting the value of h,, hy, h; and q, q, q3 from equation (39)

o=z [0 5 (s 3) 05

1 0%y\ oy 1 0%y 0%y
2y = — ol e GO (i —r
Vv r [(r 6r2> + or + (r 662> + razz]
V2 = 0’y 1oy 1 0%y 9%y
V=92 T ror 12 o2 | 022
19 1 9% 92

62
2= 4 4 - 4
V_6r2+r6r+r2392+622'

(42)

1.11 Summary:

1. Physical quantities are of two types, scalar and vector. The scalar quantities have
magnitude only but no direction. The vector quantities have magnitude as well as direction.

2. Two vector quantities can be added with parallelogram law and triangle law. In
parallelogram law, the resultant is denoted by the diagonal of parallelogram whose adjacent
sides are represented by two vectors. In triangle law, we place the tail of second vector on the
head of first vector, and resultant is obtained by a vector whose head is at the head of second
vector and tail is at the tail of first vector.

3. For subtraction, we reverse the direction of second vector and add it with first vector.

4. In case of more than two vectors we simply use Polygon law of vector addition.

5. Any vector can be resolved into two or more components. By adding all components we
can find the final vector.

6. If a vector makes angles a, § and y with three mutual perpendicular axes x, y and z
respectively then cos «, cos f and cos y are called direction cosines.

7. Scalar product of two vectors is defined as P. (j = PQ cos 6 which is a scalar quantity.
8. Vector product of two vectors is defined as Ax B = ABsin® i which is a vector

quantity. The direction of vector is perpendicular to Aand B.

0. If two vectors are parallel to each other then they are said to be collinear. For collinear
vectors P. 6 = PQ or ﬁxaz 0.

10.  If the angle between two vectors is 90°, then vectors are called orthogonal. In this case
P.0 =0.

11.  Cross product of two vectors can also be calculated by determinant. The determinant
form of cross product is
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i j k
AxB=|Ax A, 4,
B, B, B,

12.  Scalar triple product of three vectors can also be calculated by determinant. The
determinant form of Scalar triple product is

Ay A, A,
A(BxC) =|B. B, B,|.
Ce C, C,

13. Vector triple product is defined as

-

Ax(BxC)=(4.C)B - (4.B)C.
14. Differentiation and integration techniques are used to solve and explain many physical

problems. Differentiation of a vector is defined as

7(t+6t)-7(t)

ar _ lim L lim
dt 5t—0 St S5t—0 St

15. If we further differentiate function with respect t then it is called second order differentiation.

If should be cleared that the derivatives of a vector (say 7') are also vector quantities. If r is a

iy . . dr . .
position vector of a particle at time t then d—: denotes its velocity.

16. Partial derivative is defined as

of . flx+béx,y,2)—f(xy2)
— = lim
Ox  6x-0 ox

In case of partial derivative with respect to a variable, all the other remaining variables are taken
as constant.

17. Vector differential operator del is denoted by V and defined as

18. The gradient of a scalar function @ is defined as
N ]
grad @ = V@ = (IE-HE-H(E)Q

19. The divergence is dot product of del operator with any vector point function }T> and is given
as

-

. 2 ) ., 0 d . . 2 . .
div.f=V.f = (la+]§+k£). (ife +jfyckf,) where f = if, +jfyokf,
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L0k Wy 0
ox oy 0z’

20. The curl of a vector F = FEi+ FE,j + Fjk is defined as
CulF = Vx F=(i2+j2+kd)x (Ei+Fyj+Fk)
u - ax dy 9z x y] T k)
21. The integral of a vector function F along a line or curve is called line integral and given as
[ F.dl
22. If F is a vector function and s is a surface, then surface integral of a vector function F over

the surface S is given as [ F.ds.

23. If dV denotes the volume defined by dxdydz then the volume integration of a vector F is
defined as [ FdV = [ fy J, F.dxdydz.

24. Gauss divergence theorem transforms surface integral into volume integral and vice-versa.
The theorem states that the surface integral of a vector filed F over a closed surface s is equal to

the volume integral of divergence of F taken over the volume enclosed by surface s.
ffsﬁa‘) = [ff div F dv.

25. Gauss law is a result of Gauss theorem in electric field. According to this law the total

. . 1 .. .
electric flux through a closed surface is equal to — times total charge enclosed inside the surface.
o

1 N
JI.E.ds = < (total charge inside the surface).
26. Gauss law in differential form:
divE = ﬁ
€o
27. Poisson’s equation and Laplace equation:

vig = -2
€o
This is called Poisson’s equation. Poisson’s equation is basically second order differential
equation and operator V? is an operator called Laplacian operator and defined as

0% 0%  0?

2_ =
V== Gt gt o
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If there is no charge inside the volume i.e. p=0, then above equation becomes Laplace equation
Vip = 0.

28. Green’s Theorem for a Plane: If @;(x,y) and®,(x,y) are two scalar functions which are

. . . .09 09 . .
continuous and have continuous derivatives a_yl and a_xz over a region R bounded by simple

closed curve ¢ in x-y plane, then

09 09
fﬁc(@ﬂix + @ody) = ffR (6_; - a—yl)dxdy.
29. Stoke’s Theorem: Stoke’s theorem transforms the surface integral of the curl of a vector into
line integral of that vector over the boundary C of that surface. According to this theorem the
surface integral of the curl of a vector taken over the surface s bounded by a curve c is equal to
the line integral of the vector A along the closed curve c.

JJ, curl A.ds = $ A.ds.

1.12 Glossary

Vector- Physical quantity with direction

Scalar quantities- Physical quantity without direction

Collinear — in same line or direction

Orthogonal- perpendicular to each other

Coplanar — on same plane Displacement — net change in location of a moving body.
Differentiation- instantaneous rate of change of a function with respect to one of its variables
Integration- The process of finding a function from its derivative. (Reverse of differentiation)
Partial derivative- derivative of a function with respect to a variable, if all other remaining
variables are considered as constant

Operator — An Operator is a symbol that shows a mathematical operation.

del operator - vector differentiation operator

gradient- derivative of function.(rate of change of a function or slope)

divergence- rate at which density exits at a given region of space. (flux density)

Curl- describes the rotation of vector field.

line integral- Integration along a line.

surface integral- Integration along a surface.

volume integral- Integration along a volume.

Transformation- conversion
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Flux — scalar product of a field vector and area
divergence- rate at which density exits in a given region of space. (flux density)
Curl- describes the rotation of vector field.

1.13 Reference Books:
1. Mathematical Physics — Satya prakash, Sultan Chand, Meerut
2. Mathematical Physics- H K Dass, S Chand and Company Ltd. New Delhi

1.14 Suggested readings:

1. Mathematical Methods for Physicists: Arfken.

2 Mathematical Methods for Physics: Wyle.

3. P.K. Chakrabarti and S.N. Kundu, A Text Book of Mathematical Physics, New Central Book
Agency, Kolkata.

4. A.K. Ghatak, I.C. Goyal and S.H. Chua, Mathematical Physics Macmillan India, New Delhi.
5. B S Rajput, Mathematical Physics, Pragati Publication

1.15 Terminal questions
1.15.1 Short answer type questions

Define unit vector, like vector and equal vectors.

What are direction cosines? Give its significance.

What angle does the vector 3i +v/2j + k make with y axis?
What is the condition for vector to be collinear?

Explain the difference between dot and cross products.

What is angular momentum? How the direction of angular momentum can be
decided?

A

7. Give some examples of dot product in physics.

8. Give some examples of cross product in physics.

9. Define scalar triple product.

10. How the angle between two vectors can be obtained?

11. Define gradient of a scalar function @.

12. Show that V@ is a vector whose magnitude is equal to maximum rate of change of @
with respect to space variable.

13. Show that V@ is perpendicular to surface @.

14. Solve V(%) for r #0

58



MSCPH501

15. If vector F = 6xzi — y?j + yzk then calculate | s F.A dS where S is the surface of a
cube with boundariesx = 0tox =2, y=0toy=2, z=0toz = 2.

16. Obtain the value [grad @(#)] x 7

17. Find the area of parallelogram determined by the vectors (i + 2j + 3k) and (—3i —
2j + 4Kk).

18. Explain the physical significance of Gauss’s divergence theorem.

19. If F is a scalar function which is solution of Laplace equation V2F = 0 in a volume
V bounded by the piecewise smooth surface S, then apply the Gauss theorem and
show that

20. ffsﬁ.VF ds =0

21. Verify Green’s theorem in a plane for [(3x? — 8y?)dx + (4y — 6xy)dy] where C is
boundary of a region definedby x =0,y =0,x +y =1

22. Prove that fl.dS = 0 and [ (V x F).dS = 0

23. If the line integral of a vector A around a closed curve is equal to the surface integral
of the vector B taken over the surface bounded by the given closed curve then show
that B = curl A.

1.15.2 Essay type questions

If |A+ B| = |A — B|, show that A and B are perpendicular to each other.

What is the significance of dot product? Give the properties of cross product.

Show that A = 5i + 2j + 4k and B = 2i + 3j — 4k are perpendicular to each other.

What is the vector product? Give the properties of vector product.

Find out the condition if two vectors are collinear.

Find the components of a vector along and perpendicular to the direction of another vector.
Define divergence of a vector function and its physical significance. Obtain the expression

for the divergence of a vector F.

Define curl of a vector function and its physical significance. Obtain the expression for the

curl of a vector F.
Prove that V x (4 x B) = (B.9)A— (A.V)B + 4 div B — B divd

10. Prove that any vector function can be expressed as the sum of lamellar vector and solenoidal

vector.

11. Derive the equation of continuity
12.2 + div] = 0
13. And show that how this equation express charge conservation.

14. Show that © X ¥ is solenoidal if ¥ and ¥ are irrotational.
15. State and proof Gauss’s divergence theorem.

16. State and prove Stoke’s theorem in vector analysis.
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17. State and prove Green’s theorem in a plane.
18. Verify Green’s theorem in a plane for ¢ (3x* —8y*)dx + (4y — 6xy)dy where ¢ is the

boundary defined by y = x'/2; y = x2.
1.15.3Numerical question

1. Calculate the dot product of vectors A = 6i + 7j + k and B =i + 3j + 2k.

2. A particle moves from the position (3i + 3j + 2k)meter to another position (-2i + 2j +
4k) meter under the influence of a force F = 3i + 2j + 4k newton. Calculate the work
done by the force.

3. Obtain the projection of a vector A = 3i + 4j + 5k along a line which originates at a point
(2, 2, 0) and passing through another point (-2, 4, 4).

4. Find the unit vector in the direction of resultant vectors of A=6i+7j+kand B =i+
3j + 2k.
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After studying this unit, you should be able to-

Knowledge on matrices

Knowledge on matrix operations

Matrix as a tool of solving linear equations with two or three unknowns

Solve application problems that can be modeled by systems of linear equations.

1.1 Introduction: The understanding of matrices is essential in various field of mathematics.
Matrices are one of the most powerful tools in mathematics. This mathematical tool simplifies
our work to a great extent when compared with other straight forward methods. The evolution of
concept of matrices is the result of an attempt to obtain compact and simple methods of solving
system of linear equations. Matrices are not only used as a representation of the coefficients in
system of linear equations, but utility of matrices far exceeds that use. Matrix notation and
operations are used in electronic spreadsheet programs for personal computer, which in turn is
used in different areas of business and science like budgeting, sales projection, cost estimation,
analyzing the results of an experiment etc. Also, many physical operations such as magnification,
rotation and reflection through a plane can be represented mathematically by matrices. This
mathematical tool is not only used in certain branches of sciences, but also in genetics,
economics, sociology, modern psychology and industrial management. In this chapter, we shall
find it interesting to become acquainted with the fundamentals of matrix and matrix algebra.

1.2 Matrices
1.2.1 Definition of a Matrix

“A rectangular array of real or complex numbers is called a matrix”.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called its columns.
A matrix having m rows and n columns is said to have the order mx n.

A matrix A of order mx n can be represented in the following form:

[all aip aln]

| azl azz en “ew azn
A= : :

lel A2 aan

Where, a;; is the entry at the intersection of the i" row and jth column.
In a more concise manner, we also denote the matrix A by [a;;] by suppressing its order.
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1 3 7
L“A_h 5 J'
Then a1 = 1, A1 = 3, az= 7, dpy1= 4, dpp= 5, and dp3= 6.

“A matrix having only one column is called a column vector; and a matrix with only one row is
y > y
called a row vector”.

Remarks:-
1. A matrix is a collection of objects of numbers over a field of numbers, the elements of the
field being called the scalars.
2. It has no numerical value.
3. A matrix cannot be equal to a number.

1.2.2 Notations

Matrices are denoted by capital letters A, B, C,.. and their elements are denoted by the
corresponding small letters a;j, b;; , ¢;j,......

Generally, we have used only a pair of brackets i.e. [ ] to denote a matrix, but a pair of
parentheses i.e. ( ) and double bars i.e. || || are also sometimes used to indicate a matrix.

1.2.3 Order of a matrix
The order of a matrix is defined in terms of its number of rows and columns.
Order of a matrix = No. of rows x No. of columns.

1.2.4 Equality of two Matrices

Two matrices A = [aj;] and B = [by;] having the same order mx n are equal if aj; = by; for each i
=1,2...mandj=1,2,...,n.

In other words, two matrices are said to be equal if they have the same order and their
corresponding entries are equal.

1.2.5 Transpose of a Matrix: If in given m % n matrix A = [a;], we interchange the rows and
the corresponding columns, the new matrix obtained is called the transpose of the matrix A.

The transpose of A is denoted by A’ or A”.

2 3 4 2 0 5
For example, if A=|0 9 7| and its transpose of A=4'=|3 9 6|.
5 6 2 4 7 2

Thus, the transpose of a row vector is a column vector and vice-versa.
1.2.6 Conjugate of a matrix:-

_[1+i 2-3i 4

tee A=, 5 T07 5 D)

. . o= _[1—=1 2+4+3i 4

Conjugate of matrix A is A = [7 e i 34 Zi]'

1.2.7 Trace of a matrix:-The sum of all elements in the principal diagonal is called the trace of
the matrix.
Trace of A=tr A=Y1", a;;.
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2 8 0
LetA=(4 3 7]
3 6 9

The trace of matrix A is = 2+3+9=14.

1.3 Types of Matrices:

1.3.1 Zero matrix or Null matrix: A matrix in which each entry is zero, called a zero-
matrix, denoted by 0.

For example,

A= [8 8] is a null matrix denoted by O or O, 5.
1.3.2 Rectangular matrix: Any mXn matrix is called a rectangular matrix, if m=#n.

For example A = 2 1 5].

6 8 4
1.3.3 Square matrix: A matrix having the number of rows equal to the number of columns
is called a square matrix. Thus, its order is mx m (for some m) and is represented by m only.

3 7 2
For example A=(4 5 7] is a square matrix of order 3. In a square matrix, A = [aj;],
3 6 9
of order n, the entries a;4,a,5,...,apgare called the diagonal entries.

1.3.4 Diagonal matrix: A square matrix A = [aj;] is said to be a diagonal matrix if a;;=
0 for i# j. In other words, all its non-diagonal elements are zero.

1 0 0
For example, A=|0 3 0.
0 0 4

1.3.5 Identity or unit matrix: A square matrix A = [a;;] with a;;=(1 if i = j and 0 if i# j
is called the identity matrix, or in other words if all the diagonal elements are unity and
diagonal elements are zero. It is denoted by I.

For example,

1 0 0
I= [O 1 O] is a unit matrix of order 3, and [(1) (1)] is a unit matrix of order 2.
0 0 1

1.3.6 Triangular matrix: A square matrix A = [a;], all of whose elements below the
leading diagonal are zero, is said to be an upper triangular matrix or in other
words a;;= 0 for i>j.
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1 3 2
For example- A=|0 4 1|.
0 0 6

A square matrix A = [a;;], all of whose elements above the leading diagonal are zero, is
said to be a lower triangular matrix or in other words aj;;= 0 for i<j.

2 0 0
For example- A=|[4 1 0.
5 6 7

1.3.7 Single element matrix: A matrix [a;;] of order 1X1 is defined to be equal to a scalar
‘a’.
1.3.8 Scalar matrix: A diagonal matrix, in which all the diagonal elements are equal to a

scalar, is called a scalar matrix.

2 0 0
For example- A=|0 2 0] is a scalar matrix of order 3 and is also written as diag [2, 2,
0 0 2

2].

1.3.9 Symmetric and skew-symmetric matrix: A square matrix A is called symmetric if
transpose of A i.e. A’= A and skew-symmetric if A’= —A.

a h g 0 —-h —g
Forexample, |[h b f| issymmetricand |h o —f| is skew symmetric.
g f c g f 0

1.3.10 Orthogonal matrix: A square matrix A is said to be orthogonal if the product of the
matrix A and the transpose matrix A’ is an identity matrix i.e., AA’= A’A=1.

1.3.11 Nilpotent matrix: The matrices A for which a positive integer k exists such that A*=

0 are called nilpotent matrices. The least positive integer k for which A¥= 0 is called the
order of nilpotency.

LetA=[_aCIl’2 _b:b],Az _aClZz _ab”ab —ab] [

1.3.12 Idempotent matrix: The matrices that satisfy the condition that A% = A are called
Idempotent matrices.

For example-

66



MSCPH501

2 -2 —4 2 =2 —41[2 -2 -4 2 -2 —4
A=|-1 3 4 |,A4%=|-1 3 4]||l-1 3 4|=|-1 3 4|
1 -2 =3 1 -2 =3ll1 -2 =3 1 -2 =3

1.3.13 Involuntary matrix: A matrix A will be called an involuntary matrix, if A% = I(unit
matrix).
1.3.14 Singular matrix: If the determinant of the matrix is zero, then the matrix is known as

is singular matrix because |[A| = 6 — 6 = 0.

singular matrix e.g. A=[§ 6]

1.3.15 Unitary matrix: A square matrix A is said to be unitary if its product with Transpose
of the conjugate gives the Identity matrix.
AA=1.
Where A® denotes the transpose of the conjugate of matrix A.

1+ —1+i 1-i 1-i
_ 2 2 0 _ 2 2 6 _
Let A=17 S | A= | A4 =1
2 2 2 2

1.3.16 Hermitian and skew-Hermitian matrix:-A square matrix A is called Hermitian
matrix if transpose of the conjugate of A i.e. A° = (4)’= A and skew-Hermitian if
AP = (A)=-A.

1.4 Properties of Matrix:-
(a) The commutative law-
If A and B are two matrices of the same order, say mXn.
A+B =B+A
If4 = [aij] and B = [bij] i=12,...... ,m

Then A+B = [al-j] + [bl]] = [al-j + bl]]
= [bl-j + al-j] since b;j and a;; are scalars
=[byj] + [a;] =B+ 4

i.e. the commutative law of addition holds.

(b) The associative law-
If A, B and C are three matrices of the same order, then
(A+B)+C=A+ (B+C)
Let A = [Cll'j],B = [bu]and C = [Cij]
(A+BY+C= ([ay;] + [byj]) + [c]
= ([aj + bij] + [ci])
= [(ai; + by) + ey
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=[aij + (bl-j + cij)], a;j, bi; and c;j are scalars.
= [ai;] + ([bij + cij])
=A+ (B+C)

1.€. the associative law of addition holds.

(¢) The Distributive law-
If A and B are two matrices of the same order mXn and Kk is a scalar, then
k (A+B) = k[a;; + byj]
=[k(ai; + b;j)]
= [kay;] + [kb)]
= k[al-j] + k[bi]-], k is a scalar.
= kA+kB.
The distributive law of addition holds.

(d) Existence of Additive identity-
If A be a matrix of any order, say, mXn and O a null matrix of the same order such that
when it is added to A leaves it unchanged.
A+O=A
Then O is said to be the additive identity of A.
Proof: if A = [ai]-] and O is a null matrix
Then A+O= [a;; + O]
= [ai j] since a zero added to any scalar leaves it unchanged.
=A.
Hence O is said to be an additive identity of A.

(e) Existence of Additive Inverse-
If A be a matrix of any order say mXn, and there exists a matrix —A of the same order
such that if it is added to A, gives a null matrix O.
A+ (-A)=0
(-A) 1s said to be the additive inverse of A.
Let A=[aij]
-A=-[a;] = [-ay]
A+ (-A) = [ay] + [-a;] = [a;; — a;] = 0.
Hence (-A) is said to be an additive inverse of A.

(f) The cancellation law-
If A, B and C are three matrices conformable for addition then the relation

A+B=A+C.
If B=C.
Let A= [ai]-], B = [bl]] and C = [Ci]'] izl, 2, ........ m
=1,2,........ n
Then the relation
A+B = A+C

aij + bU = aij + Cij'
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Which yields, b;; = ¢;; since a;j, b;j, ¢;; all are scalars.

ie. (i, j)th element of B=(i,j)th element of C, for all values of i and j.
As such B=C.

Hence the relation, “A+B = A+C” holds if and only if B = C.

1.4.1 Addition of Matrices: let A = [a;;] and B = [b;;] be are two mxn matrices. As the
sum A + B is defined to be the matrix C = [¢;;] with ¢;;= a;; + b;;.

We define the sum of two matrices only when the order of the two matrices is same.

Thosif a=[ 2 >]B=[1 7 7
aB=[113 507 Seval=l & L)

1.4.2 Subtraction of Matrices:- let A =[a;;] and B = [b;;] be are two mxn matrices. Then the
difference A - B is defined to be the matrix C = [¢;;] with ¢;;= a;; — by;.
4 7 8

Thusif A=[c 6],B=[

1 2 5
3 1 4V

4—-1 7—-2 8-=5]1_1[3 5 3]

A-B= =
[5—3 3—1 6—4 2 2 2

1.4.3 Multiplying a Scalar to a Matrix:- Let A = [a;;] be an m X n matrix. Then for any
element k @ R, we define kA = [ka;;].

a1 4 5
For example, 1fA—[05 1202]25
andk=5,then5A=0 = 1ol

1.4.4 Multiplication of Matrices: The multiplication of two matrices A and B is only possible if
the number of columns in A is equal to the number of rows in B.
Let A = [a;;] be an m % n matrix and B = [b;;] bean n x r matrix. Then the product AB is a
matrix C = [¢;;] of order mx r, with

Cij = aj1bqj + ajpbyj + ajzbzy + - + ajyby;,

1.4.4.1 Properties of matrix multiplication: Suppose that the matrices A, B and C are so
chosen that the matrix multiplications are defined.

1. Then (AB)C = A(BC). That is, the matrix multiplication is associative.

2. For any k@ R, (kA)B = k(AB) = A(kB).

3. Then A(B + C) = AB + AC. That is, multiplication distributes over addition.

4. If A is an n x n matrix then Al=IA = A, where I is identity matrix.
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1.4.4.2 Determinant of a matrix: In linear algebra, the determinant is a value that can be
computed from the elements of a square matrix. The determinant of a matrix A is denoted
det(A), det A, or |A|. It can be viewed as the scaling factor of the transformation described by the
matrix.

In the case of a 2 x 2 matrix the specific formula for the determinant is:

|A] = |Ccl Z|= ad — bc.

Similarly, suppose we have a 3 X 3 matrix A, and we want the specific formula for its
determinant |A|:

~ O

a
d
g

Al = :alfz i

S0 o

f-of

+c |; Z| = aei-ath-bdi+bfg+cdh-ceg.

o~

Each determinant of a 2 x 2 matrix in this equation is called a "minor" of the matrix A. The
same sort of procedure can be used to find the determinant of a 4 x 4 matrix, the determinant of a
5 x 5 matrix, and so forth.

1.5 Important Properties of Determinants

a. The value of a determinant is not altered if its rows are written as columns in the same order.

3 1 4 3 6 7
6 2 1|=11 2 O0f
7 0 5 4 1 5

b. If any two rows (or two columns) of a determinant are interchanged, the value of the
determinant is multiplied by —1.

3 1 4 6 2 1
6 2 1|=—13 1 4
7 0 5 7 0 5
c. A common factor of all elements of any row (or column) can be placed before the determinant.
3 8 1 3 21
5 4 2|/=4|5 1 2|
1 12 3 1 3 3

d. If each element of a row (or a column) of a determinant can be expressed as a sum of two, the
determinant can be written as the sum of two determinants.

31 4 -1+4 1 4 -1 1 4 4 1 4
6 2 1|=|13+3 2 1|=|3 2 1|+|3 2 1
7 0 5 5+2 0 5 5 0 5 2 0 5

1.6 Minor of a matrix: The determinant corresponding to any rX r submatrix of an mX n
matrix A is called a minor of order r of the matrix A. For example, if
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1 2 3

A=[4 5 6

. . 1 2112 3111 3
] then its m1norsz;1re|4 5|,|5 6|'|4 6l
1.7 Cofactors of a matrix: If A is a square matrix, (3 % 3) for example, then the minor of
element a;;is denoted by M;;and is defined to be the determinant of the submatrix that remains
after the i" row and j™ column are deleted from A.
The number (—1)"*/ M; jis denotd by C;jand is called the cofactor of elementa;;.

3 1 —4
Example, Let A=|2 5 6
1 4 8

The minor of element a, is
_12 6|_ _ _
M, = |1 o= 28~ 6() = 10.
Then the cofactor of a;,is
C12 == (_1)1+2M12 = (_1) X 10 = —10.

1.8 Adjoint of a matrix:-Let A=[a;;] be a square matrix of order n and let 4;;denote the
cofactor of a;; in the determinant|A|. The transpose of the matrix [4;;] is, then defined as the
adjoint of A and is denoted by Adj (A).

A1 Qi Qin

) a1 Qzz ' dap
Thus, if A= . : :

ana An2 Apn

All A12 Aln
Then [4;;] = Az :‘%22 Azn
Ain A Ann
All AZI'“ Anl
AdjA=[4] = A Az
A A o A

1.9 Properties of adjoint:-If A=[a;;] is a square matrix of order n, then
(1) adj A= (adj A)
(i)  adj A*=(adj A)
(ii1))  Adjoint of a symmetric (Hermitian) matrix is symmetric (Hermitian).
(iv)  The adjoint of the product of square matrices is the product of their adjoint matrices
taken in reverse order i.e., adj(AB) = adjB.adj A.
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1.10 The inverse or reciprocal of a matrix:-
Let A be a square matrix of order n. If there exists a square matrix B of the same order n, such
that
AB =BA =1, where [ is identity matrix.
Then B is called inverse of A and is denoted byA™1.
Thus, AA™'=A"'A=1

We know that A (adj A) =|A|=1

A(adj A)
|A|
Hence, A~ 1= % [since,AA™1 =I].

1.11 The Rank of a Matrix:
The maximum number of linearly independent rows in a matrix A is called the row rank of A,
and the maximum number of linearly independent columns in A is called the column rank of A.
If A is an mX n matrix, or
A matrix ‘A’ is said to be of rank 1, if and only if:

(1) There exist at least one non-zero minor of order r.

(i1) Every minor of order (r+1) and higher, vanishes.

1.12 Normal Form (Canonical Form): By performing elementary transformation, any non-zero
matrix A can be reduced to one of the following four forms, called the normal form of A:

L@, ol [glam[y o]

The number r so obtained is called the rank of A and we write p (A) =r.

1 2 31
Ex. Find therank of A=|2 4 6 2|.
1 2 32

Sol. Since rank of a matrix is not altered by elementary operation, therefore, we have

1 2 31
A~ [0 0 O O|byR, =R, —2R;and R3 = R; — R,
0 0 01
1 2 31
~[0 0 0 1|byR, =R, + R;and then R; = R; —R;.
0 0 00
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No. of non-zero rows are 2, which shows that every minor of 3™ order is zero, while a minor of
9 y 9

second order i.e.,|g i| Hence rank of A is 2.

Ex. Reduce the matrix A to its normal form, where A =

and hence find the rank of A.

1 2 -13
4 1 2 1
3 -1 1 2
1 2 0 1

[RZ = Rz - 4R1; R3 = R3 - 3R1;R4 = R4 - Rl

1 2 -1 3]
4 1 2 1
Sol. A 3 21 1 2
1 2 0 11
1 2 -1 3
0 -7 6 -11
A 0 -7 4 -7
0 O 1 -2 |
1 0 O 0 1 0
o =7 6 -11| |0 -7
0o -7 4 -7 0 O
O 0 1 =2 0 O
CZ S Cz _261,
1 0 0 0 1 0
o =7 0 o] [0 -7
0O 0 -2 4 0 O
0 O 1 -2 0 O
6 11
=Cg +7C2, C4=C4__7C2
1 0 0 O
_ 0 -7 0 0
Cy=Cy+2C; 0 0 -2 0
0 O 0 O

Hence, Rank of A = 3.

0

0
-2

0

S O O

O O mr O

C3:C3+Cl, C4:C4_361

S r OO

[Rs =R; — Rz]

0

0 1

0 [RZ = 7Rk =
0

1.13 Eigen Values:-Let A is a matrix of order 3X 3, X is a column vector and Y is also a

column vector.
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a1 412 Q13 [*%1 V1
A1 Gz Q3| |X2| =1Y2
asz; dzz dAszz)lX3 Y3
AX=Y. . (1)

Here, column vector X is transformed into the column vector Y by means of the square matrix
A.

Let X is a such vector which transforms into AX by means of the transformation (1). Suppose
the linear transformation Y=AX transforms X into a scalar multiple of itself i.e. AX.

AX =Y =2X
AX-AX =0
(AADX=0. . )

Thus, the unknown scalar A is known as an Eigen value of the matrix A and the corresponding
non- zero vector X as Eigen vector.
Eigen values are also called characteristic values or proper values or latent values.

2 21
LetA=]1 3 1]
1 2 2
2 21 1 0 0 2—A 1
A—M=[1 3 1 [0 1 0] [ 1 ]
1 2 2 0 0 1 2=\

(a) Characteristic Polynomial: The determinant |A — AI| when expanded will give a
polynomial, which is called characteristic polynomial of matrix A.

2—A 2 1
1 3—-A 1
1 2 2—A

For example; = (2—%)(6—5X+X2—2)—2(2—%—1)+

1(2-34%
=23+ 702 — 110+ 5.

(b) Characteristic equation:-The equation |A — Al| = 0 is called the characteristic equation of
the matrix A e.g.
A =70 +110—-5=0.
(¢) Characteristic roots or Eigen values:- The roots of characteristic equation |A — AI|=0 are
called characteristic roots of matrix A. e.g.

B -7 +110-5=0

A-DAr-1DAR-5=0
Eigen values are A = 1,1,5.
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1.14 CAYLEY- HAMILTON THEOREM:

Statement- A square matrix satisfies its own characteristic equation i.e., if A is an nXm matrix
whose characteristic equation is

A+ CAV L+ CA 2+ - Cy, = 0.
Putting A=A in the above equation, we have

A" 4 CLAY Y + C,A™2 + - Cyl, = 0.

Ex. Verify Cayley-Hamilton theorem for A=B g] and Find A™1.

Sol. we know that
|[A—=AIl =0

I 31-4 =127 520=d
(1-DGE-2) - ®)(2) =0

P(1) = A2 — 41 — 51 = 0.

Replace A with A
PA=A2—4A—51=0 ... (1)
, (1 411 4] _[1+8 4+12]_[9 16
=, 3l 3=hie Saol=ls 17

Now from (1)

P =lg 13l=4l; 5l-sl 1

_[9—4-5 16—16—0]_ 0 0]
8—-8-0 17-12-5 0 oF

Cayley-Hamilton theorem is verified.
|A| = 3 —8 = —5 % 0 hence A exists.
To find inverse, multiplying eq. (1) withA™1, we get
A"Y(A%? —4A —51) = A71A2 —44AA™1 —5IA71 =0

=A—-41-54"1=0
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A—4] =5471
At =2 (A—4D)

-4 1 9

-1_1[-3 4
A 5[ 5 _ 1]. Ans.
7 2 =2
Ex. Verify Cayley-Hamilton theorem for A=|—-6 -1 2 |.
6 2 -1
Sol.
1 0 0
|[A—All = A0 1 0
0 0 1

-~ —2
= —6 —1—/1 2 |=0
| 6 2 —1-2

(7=D(-1-D(-1-2) = 4] = 2[-6(-1— 1) — 12] - 2[-12 — 6(—1 — 2)]
=0

(7=D[A%2+21-3]-2[61—6] +2[61—6]=0
7(124+21-3)—2(A2+221-3)=0

—23+512-71+3=0

Or A3 —=512+71-3=0.
Now replace A by A
A3 —5A2+74-3I1=0 (1)
7 2 =2117 2 =2
A2=]-6 -1 2]||-6 -1 2
6 2 -—-1llL6 2 -1
25 8 -8
A*=|-24 -7 8
24 8 =7
A3 = A%A
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79 —26
A3 =1-78 —25 26
78 26 —25

Now from (1), we have

79 —26 25 - 1 0 O
[—78 —25 ]—5[ +7 ]—3[0 1 O]
78 —25 0 0 1
79 —125+49 -3 26 —40 + 14 —26+40—-14
[—78+120—42 —-254+35-7-3 26—-40+14 |=0.
78 — 120 + 42 26 —40 + 14 —-25+35-7

Hence cayley-hamilton theorem is verified.

1.15 Summary: Hence this chapter deals with the matrices and its properties. Matrix is a
rectangular array of elements, which are very helpful to deal with several variables at once. We
can perform number of operations by organizing the elements in terms of rectangular arrays of
numbers. Then we have found that matrices themselves can under certain conditions be added,
subtracted and multiplied hence they will follow the set of algebraic rules. Another operation on
the matrices is transpose by just reversing the transpose and columns. In another section we have
discussed the various types of matrices like unit matrix, zero matrix, diagonal matrix etc.
Matrices find many applications in scientific fields and apply to practical real life problems as
well, thus making an essential concept for solving many practical problems.
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1.17 EXERCISE

1.

Write the minors and cofactors of each element of the following determinants and also
evaluate the determinant in each case:

42 1 6 1 a bc
(1) 28 7 4 ) |1 b cal.
14 3 2 1 ¢ ab

Matrices A and B are such that

_[2 1 -1 2
3a-28=| %, | and-aarB=|”, ¢
. _ 0 -1 _[-1 =2
Find A and B. Ans.A—[2 _],B—[4 _1]
IfAZ[ 0 1] choose a and B so that(al + fA)? = A Ans: o=p=+ -
-1 0 ' ) V2
. 1 -2 1
(1) Show that the matrix -2 4 -2 is idempotent.
1 -2 1
(i1) Show that if A is idempotent, then
1+A"=1+2"-1)A.
1if1+i i—17. .
Prove that > [ 140 1—ql1 unitary.
Show that adj(kl,)) = k™ 11, where k is a scalar.
Find the adjoint and then inverse of the matrix
1 0 -1 . 2 6 4
A=(3 4 5 Ans:E 21 -7 =8|
0 -6 -7 -18 6 4
Reduce the following matrices into normal form and find the Rank:
1 2 3 4 1 1 2 2 4 3 =2
(1) 3 4 1 2{@G)|1 2 2| @Gi)f-3 -2 -1 4
4 3 1 2 2 2 3 6 -1 7 2
Ans: (i)3 (i) 3 (i) 3
4 2 =2
Find the eigen values of the matrix A = |-5 3 2 |. Ans:\= 1,2,5
-2 4 1

10. Use Cayley-Hamilton Theorem to find the inverse of the matrix
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[ cosf sin6 AnS°[COS 0 —sin 6]
—sinf cos® ‘Lsin® cos©

Choose the correct alternative:

1. Transpose of a rectangular matrix is a
(1) rectangular matrix
(i1) diagonal matrix
(ii1))  square matrix
(iv)  scalar matrix.

2. Additive inverse of a matrix A is

. adj(A) ..
(1) i (ii) A2
Q) Al e A

3. The number of non-zero rows in an echelon form is called?
i) rank of a matrix

(iii))  cofactor of the matrix
(iv)  reduced echelon form

(V) conjugate of the matrix.

1 2 3
4. Rank of the matrix A=|1 4 2]is
2 6 5

i 0 (i)l (ii)3 (iv)2.

5. Which of the following matrices are Hermitian:

[ 1 2+l 3—l 20
(1) 2+1 ](11)[ 1 ](lll)
3+ 4+l 20

4 2—i 5+42i
2+ 1 2—>5i
5—-2i 2+5i 2

0 i 3
av)[=7 0 5if.
13i 1 0
6. If A is an Eigen value of the matrix M then for the matrix (M-AI), which of the following

statement is correct?
(1) Skew-symmetric (ii) Non singular (iii) Singular (iv) None of these.
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7. A square matrix is idempotent if:
(1) A=A (())A=-A (ii)A*?=A (iv)A? =L
8. If A and B are matrices, then which from the following is true?
(i) AB # BA
(i) (4)#A4
(iii) A+B#B+A4

(iv) all are true.
9. Two matrices A and B are multiplied to get BA if

(i) no of rows of A is equal to no. of columns of B

(1) no of columns of A is equal to columns of B

(i11)) both have same order

(iv) both are rectangular.

10. A matrix having m rows and n columns with m # n is said to be a
(1) scalar matrix

(ii) identity matrix

(ili)  square matrix

(iv)  rectangular matrix.

Ans: 1) () @)@G) Q@) @A) )i (6) (i) (7) (1) B) (1)
10(iv)
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3.0 Objectives
After studying this unit, you should be able to-

e Knowledge on Complex Numbers

e Knowledge on operation of fundamental laws of algebra on complex numbers
e Function of a complex variable

e Types of Singularities and Residues

e Evaluation of residues and Integrals

3.1 INTRODUCTION

Cantor, Dedekind and Weierstrass etc., extended the concept of rational numbers to a larger field
known as real numbers which constitute rational as well as irrational numbers. But, the number
system solely based on real numbers is not sufficient for all mathematical needs. There is no real
number, rational or irrational, which satisfies the equation x?+1 = 0. It was, therefore, felt
necessary by Euler Gauss, Hamilton, Cauchy, Riemann and Weierstrass etc. to extend the field
of real numbers to the still large field of complex numbers. Euler for the first time introduced the
symbol i with the property i?=-1 and then Gauss introduced a number of the form a+ip, which
satisfies every algebraic equation with real coefficients. Such a number o+ip with i= V-1 and a, p
being real, is known as a complex number.

3.2 DEFINITIONS

3.2.1 Complex Numbers: “An ordered pair of real numbers such as (X, y) is termed as a
complex number.” If we write

7= (X, y) or x+iy, where i= V-1, then

x is called the real part of z and y is called the imaginary part of the complex number z and
denoted by,

x= R, or R (z) or Re (z)
y=1, or I (z) or Im (z).

3.2.2 Equality of complex numbers: Two complex numbers (X,y) and (x’,y") are equal if
x=x"and y=y'.
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3.2.3 Modulus and Argument of a complex number: If z=x+iy be a complex number
then, If we introduce polar co-ordinates (r, 0), we have x =rcosé and y = rsin@ and then

from equation z = r(cosé@ +isinf) =re'’ Here, r is the modulus of the complex number

x-+iy and is denoted by |x +iy| or arg (z).Argument of z; 6 = tan™ )
X

3.3 OPERATION OF FUNDAMENTAL LAWS OF ALGEBRA ON COMPLEX
NUMBERS

Taking three complex numbers z;= (x1,y1), Z,= (X2,Y2), Z3= (x3,y3) we define the
following operations:

3.2.1 Addition: The sum of two complex numbers z;= (Xx1,V1), Z= (X3,y>) is defined as
a complex number z = (z,+2z;) = (X;+X2, y11y2) such that its real part is the sum of
real parts and imaginary part is the sum of imaginary parts of the given numbers.

3.3.1 Subtraction:

If z1=(x1, y1) and z,=(X3, y»), then
21-22 =(X1-X2, y1-Y2).
Multiplication: we have z;z,=(x; 1y )(X2H1y2)
1.€., Z1Zo=(X1X2-y1Y2, X1y2TX2Y1)
3.3.2 Conjugate complex numbers :

If z= x+y, then its conjugate complex number is z = x —iy
Evidently,z, +z, =z, + z,

212y =212,

zz = (x+iy)(x—iy) =x’+y’ = |z|2
3.3.3 Modulus properties:

|zl+z2|S|zl|+|z2|
|ZI+ZZ|Z|ZI|_|ZZ|

_al

|2,]
3.4 Function of a complex variable: All the elementary functions of real variables may
be extended into the complex plane replacing the real variable x by the complex variable
z. Before giving a formula definition of functions of a complex variable, let us define
some useful terms.

2

Z
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3.5 Set of points: The set of points in Argand diagram is a collection of points finite or
infinite in number.

3.6 Neighborhood of a point: Let ‘a’ be a point in the Argand diagram. A set of all the z
points such that |z — a| < €, where €, is an arbitrary chosen small positive number, is
defined as neighborhood of point ‘a’.

3.7 Limit point of a set: A point ‘a’ every neighborhood of which contains a point of set
S other than ‘a’ is defined as the limit point of the set S of points in the Argand plane. For
example, each point on the circumference of circle|z| = r is a limit point of set|z| < r.
These points do not belong to the set. But each point inside the circle is also a limit point
that belongs to the set. Thus the limit point of a set may not necessarily be the point of the
set. If ‘a’ is a limit point of the set S such that in the neighborhood of ‘a’, there exist
entirely the point of the set S, it is defined as interior or inner point. If all the points in the
neighborhood do not belong to the set S, it is said to be the boundary limit point.

A set is said to be closed if all its limit points (inner or boundary points) belong to the set.
If a set consists of entirely the interior points, it is known to be an open set.

3.8 Domain: If every pair of points of a set of points in Argand diagram can be
connected by a polygonal are every point of which is the point of the set then the set is
said to be domain or region. Open domain is open connected set of points. When the
boundary points of the set are also added to an open domain, it becomes a closed domain.
We may now give a formula definition of a function of complex variables. Let x and y be
a pair of real variables such that z= x+iy, and let u and v be a pair of real functions such
that w=u+iv, then w is said to be the function of complex variable z and written as
w=f(z), if to every value of z in a certain domain D, there correspond one or more definite
value of w. In case w has only one value for each value of z in the given domain D, w is
said to be uniform or single valued function of z and if it takes more than one value for
some or all value of z in D, then w is known as a many valued or multiple valued
function of z. thus the function w=u+iv of complex variable z=x+iy is ordered pair of real
functions of real variable,

iLe. w=f(z) =u(x,y) + iv(x,y).

3.9 Analytic function: A function f{z) is said to be analytic at a point z=a, if f(z)is
differentiable not only at ‘a’ but at every point of some neighborhood of ‘a’. A function
f(z) is analytic in a domain if it is analytic at every point of the domain D of the function.
The points at which the function is not differentiable are called singular points or a
singularity of the function.An analytic function is also known as “holomorphic”,
“regular”, and “monogenic”.
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3.10 Cauchy-Riemann equation
A necessary condition for a function f{z) such that w= f{z)= u(x,y)+ iv(x,y) to be analytic
in domain D is that u and v satisfy Cauchy- Riemann equation given by

ou Ov ou ov

—=—and —=——

ox Oy oy ox

Or ux=vyand u,=-vy
These two equations are called the Cauchy- Riemann differential equations.

3.11 Harmonic Function: A function u(x, y) is called harmonic function if its first and
second order partial derivatives are continuous and it satisfy Laplace equation
2 2
e, V=Y,V _g
ox~ Oy
3.12 Polar form of Cauchy-Riemann equation- If f{z)= u+iv is an analytic function and
z=re'® then the Cauchy-Riemann equations are given by-

ﬁu_lﬂ d@v_ 1 ou

—=——and —=
or r oo or r 00
Proof:-

Let f(z) = u+iv is an analytic function, so ou = Ll d Ou__Ov

an = ..(1)
ox Oy oy ox

For polar co-ordinate system, we know that- x=r cosf, y =r sinf and & = tan™ (X)
X

7”2 =x2+y2

r:(x2+y2)l/2
gzizcose,@=1=sin9

ox r oy r

%__ v __rsin@__sin@
ox x2+y2 r’ r
00 x _rcosf cosf
oy x*+y’ r r
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6u_6u@ ou 00 eéu sinH@_u

—=——+——=cosf0—— ...(2)
Ox Orox 06 ox or r 06
Similarly, 2 = sin g 24 4 SO0 O ..03)
oy or r 00
@:cosﬁﬂ—smeﬁ ...(4)
ox or r 060
N ingQy 0800w .5
oy or r 06
Substituting these values in equation (1), we get
0050@— SIn6)@=sin6?@+ cosd ov .. (6)
or r 00 or r 00
sin9@+cosgﬂz-cosﬁﬁ+Smgﬁ .. (7)
or r 06 or r 06
. : . ou 1 0v
Multiplying (6) by cos6, (7) by sinf and adding, we get—=——
or rob
: . . . ou ov
Again multiplying (6) by sinf and (7) by cos and subtracting, we get% = —ra—
»

Hence polar form of Cauchy- Riemann equations are

6u_12 6u_ ov

— == —=—r
or r ol , 00 or
3.13 CAUCHY INTEGRAL FORMULA:

If f(z) is analytic within and on a closed contour ¢ and ‘a’ is any point within c.
Then,

@

zZ—a

f@ =]

Proof- Letz=a, is a point within a closed contour c. Draw a circle vy, with centre at the
point z=a and radius p such that it lies entirely within c.

/()

Consider a function p(z) = is analytic in region between v and c.

86



MSCPH501

As we know- L p(z)dz = Lgo(z)dz

/@, f@
dez—j d

7Z—a

If(Z)dZ:If(Z)dZ

‘zZ—a ’Z—a

(1O [f@+ /@S @),
cz—a Y

zZ—a

IMdZ:I—f(Z)_f(a)dZ+IMdZ (1)
czZ—a zZ—d

b4 rz—a

Now, equation of circle, |z - a| =p

z—a=pe” (Since, e =1)

dz =ipe'®df and 0<0<2n

So. | SG) gy o ff @, 40
'z—a 0 pe“g
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= [if@d0=27ir @)

Putting this value in equation (1)

| EACI [ SO=S@D 4y omif(a)
¢ Z—a

zZ—a 4

IMdz—2mf(a) =j—f(z)_f(“) dz
¢ 4 zZ—a

zZ—a

Taking modulus on both sides

[fO-f@
7 zZ—a

[EAP 2m‘f(a)‘ -

zZ—da

f(2)-f(a)
<O,

Now by the definition of continuity,

[/ (2) = f(a)e,

z- a| = p and J.|dz = perimeter =2mp|
/4
Hence,

(2re

IMdz—me(a)
. zZ—d

Making € — 0, we get

[ SG) 4 o mif (@0
. zZ—da

| S 4 o @) =0
zZ—da

&dz =27f (a)

z—a
e,

Sa)= 27zi-!,‘z—ad

This is Cauchy integral formula.

3.14 TAYLOR SERIES: If a function f{z) is analytic at all points inside a circle C, with
its centre at the point a and radius R, then at each point z inside C.
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f(2) = fa)+ f (@)(z—a) +%+ f"(a)

PROOF: Take any point z inside C. Draw a circle C; with centre a, enclosing the point

z. Let w be a point on circleC; .

1 1 1

w—z w—a+a—z_w—a—(z—a)

1 11 (l_z— j“

(w—a)(l_Z—a) w—a w—a
w—a

Applying binomial theorem

1 L G NN Gt S Cet) LN (1)

w—z w-a (w—a)> (w-a)’

z-4
<1

As |z—a|<|w—a|—>
[w-dl

so the series converges uniformly. Hence the series is integrable.
Multiplying eq.(1) by f(w).
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S _ S, G-afW)  E-a)'fw),  (E=a)" W)

w—z w—a (w—a)’ (w—a)’ (w—a)™"

On integrating with respect to “w” we get

If(r\adw:!f(:Zdwﬂ—(z—a)j ﬁj)zdw( jf(‘” dwk...+(z— )j f(‘”

We know that,

| SO o 27if (z) and | TA 27f (a)
Sw—z Lw—a

J‘ f(W)

K =27f (a) and so on.
w—a)

Substituting these values in (2) we get

@) =f@)+f @z- a)+f (22 D %(z—a)”wt

This is Taylor’s series.

Examples

Que: Find Taylor expansion of j(z)— about the point z=1.

Ans:-

3

, singularities are given by z=0, -1

2z
J&)= z(z+1)

If centre of the circle is at z=1, then the distance of the singularities z=0 and z=-1 from
the centre are 1 and 2. Hence, if a circle is drawn with centre z=1 and radius 1, then
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within the circle |z - 1| =1, the given function f{z) is analytic and therefore, it can be

expanded in a Taylor series within the circle |z - 1| =1.

3
22 +1:22—2+ ! +l
z(z+1) z+1 z
VSR SRR S [z -11<1]

z—=1+2 z-1+1

=Zz—2+l(1+
2

z—1

5 j_ +[1+(z-D]"

:22-2%{1—(2;1}(2;1) —(z;j +...1+[l—(z—l)+(z—l)2—(z—l)3+ ..... ]

YR P S el 8 IO R AR S
2 202 ) 8 16

Which is required expansion.

Que: Expand cos z in a Taylor series about z=rm /4.

Sol. Heref(z)= cos z, fi(z)=-sin z, f'"(z)=-cos z, fi"'(z)=sinz, .....

Here cos z=f(z)

et
G G

Which is required expansion.

sin z

Que: Expand the function( J about z = 7.

Z—T

Sol. - Putting z-n=t, we have
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sinz _sin(z+¢) _ sin¢
zZ—7 t t
1 ¢ r £t
=——|t——F+——.... =—l+—-—
t 3 s 3t sl
N3 5
_1+(z )y (z—n)
3! 5!

Which is required expansion.

3.15 LAURENT’S SERIES: If we are required to expand f{z) about a point where f{(z)
is not analytic, then it is expanded by Laurent’s series and not by Taylor’s series.

Statement: If f{z) is analytic on ¢, and ¢, and the annular region R bounded by the two

concentric circles ¢, and c,of radii 7, and r,(r, < r;)and with centre at a, then for all z in
R.

f(2)=a,+a(z—a)+a,(z—a)’ +...a,(z—a)" + b + b, St b,
z—a (z—a) (z—a)"
Where a, = j S -d

J‘ S(w)
b, T4 (w- a)"’+1
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Proof: By introducing a cross cut AB, multi-connected region R is converted to a simply
connected region. Now f(z) is analytic in this region.
Now by Cauchy’s integral formula

R P ACO f (W) f (W) S (W)
= f f f
Integral along c, is clockwise, so it is negative. Integrals along AB and BA cancel.

jfﬁ@ If@@ )

A

w—2z

for the first integral, can be expanded exactly as in Taylor’s series as z lies onc;, .

aw+ ...

ff(w) ff(w) f fw (Z a) I f(w)

5 (w— a) o (w=a)’

=a,+a,(z—a)+a,(z—a)’ +.... )

J‘ S (w)
A 2 (w— a)”+1

In the second integral, z lies onc, . Therefore

w—d
<1

w—a| <]z~ or
7=l

1 1 1
So here = =
w—z w-a+a-z (w—-a)—(z—a)

1 11 (l_w—aj_l
z—a(l_w—aj zZ—a z—da

zZ—a

Using binomial expansion
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Multiplying by —%, we get
7

LW _ 1w, 1 w=a)f(w), 1 (w=a)

2iw-z 27iz-a 2 (z-a)’ 2727' (z—a)’ S )t
NS PR S O S (S
(z a) 27 27 (z a)’ (w—a)" 2 (z—a)’ (w—a)

Integrating, we have

f(W) AW ™
'[ ( j '[f() 27Zl(z a) J.(w a)” W+2ﬂl(z —a)’ '[(w a)

by + b, —+ b, TH e b, j f(w?l
z—a (z—a)” (z—a) 2717 (w—a) "

Substituting the values of values of both integrals from (2) and (3) in (1), we get

f(2)=a,+a,(z-a)+a,(z—a)’ +...+b(z—a)" +b,(z—a)” +...

_na)"
This is Laurent Theorem.
Que: Expand f(z) = S S 1<|7|<2
(z=-D(z-2)
1 1 1

Sol:- f(z) =

(z—1)(z-2) z-2 z-1

In first bracket |z| < 2 we take out 2 as common and from second bracket z is taken out

common as1 < |z| .
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1 22z 1 I 1 1
=——|l+-+—+—+. ||+ =+ +5+
2 z z z° z
_lz 2 =z 1 1 1 1

2 4 8 16 z z2 22 ¢

This is the required expansion.

Que: Find the Laurent series expansion of

f(2)=

= valid for |z—1|> 1.
(z=1)(z-2)

Sol. f(z)=

z
= -
(z—-1)(z-2) z—-1 z-2 z—1 z-1-1

=— + 1+ + >+ T+
z—1 z-1 z=1 (z-1)" (z-1)
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1 2 2 2
+ + + +....
-1 (=172 (-1’ (-1°

---Ans

3.16 SINGULARITY: A singular point or singularity of a function is the point of a
function at which the function ceases to be analytic.

1

For example:- If f(z) =
z—-2

Then z=2 is a singularity of f{(z).

3.17 Types of singularities:

3.17.1 Isolated singularity-If the function f (z) has a singularity at z = a and in a
neighborhood of ‘a’ (i.e. a region of the complex plane which contains a) there are no
other singularities then ‘a’ is an isolated singularity of f(z).

For example: If f(z)= 1/z then z=0 is an isolated singularity of f{(z).

3.17.2 Removable singularity- In this type, if f(z) has a singularity at z=a then we can
remove this singularity.

sin z

For example, consider the function f (z) = ,  (z) has an isolated singularity at

z=0.
1 A 22 z
f@)=—|z——+——........ =l-—+——.....
z 35 3 5
Since no negative power of z occurs in the expansion. Hence z=0 is a removable
singularity.

3.17.3 Poles-Poles and Zeros of a function are the values for which the value of the
denominator and numerator of function becomes zero respectively. If the number
of terms are ‘m’ then z = a is said to be a pole of order m. A pole of order 1 is
called a simple pole.

1
2(z=5)*(z-4)’

is a pole of order 3.

If f(z) =

then z=0 is a simple pole, z=5 is a pole of order 2 and z=4
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3.17.4 Essential singularity-

Iff(z)zel/2=1+l+ Lo
zZ

2 3
z=2! z°.3
Since in the expansion there is an infinite series of negative powers of z thus z=0 is
the essential singularity of f'(z).

3.18 Residue:
For a function f'(z), the Laurent expansion is-

f@) =Y a,G=a) + Xb,-a)”

If this function f (z) has a pole of order m at z=a then its principal part is given by-

ibn (z—a)™"

Where, @, =[SO o L[ SO
s Yy (Z a)n+1 n 2721 (Z a)—rH—l

Evidently, b, =—— j f(z)dz

The coefficient b11s called residue of f(z) at the pole z=a.

Res (z=a)= b, = ﬁ j f(z)dz

When z = a is a simple pole then,

“3 b
f(Z)zza,,(z—a)”+Z 1

—d
(z-a)f(2)=Y a,(z—a)" +b,

lim(z —a)f(z) =b,

1. Hence, for simple pole
Res (z=a) =lim(z — a) f(z)
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[(z—-a)" 1(2)]

m—1

2. Forpole of orderm, Res(z=a)=I1im L —~
=a (m—1)dz"

3. Residue at infinity (a) Re s(z = ) = lim— zf(z) if limit exists.

(b) Res (z = o) = negative of the coefficient of 1/z in the
expansion of f(z)

3.19 CAUCHY RESIDUES THEOREM: If f(z) is analytic within and on a closed contour
c, except at a finite number of poles z,,z,,z;,........ ,z, within c, then,

[ f(2)dz =203 Res(z = z,) = 273 K"

Where Z R = sum of residues of f(z).

Proof-
Consider c,,c,,c;,......,c, are the circles with centre a,,a,,a,,......,a, respectively and

radii so small that they lie within closed contour ¢ and do not overlap.
Since f(z) is analytic within the annulus bounded between these circles and the
contour ¢, then we know-

j f(2)dz = j f(2)dz + j F(2)dz + v + j f(2)dz

Dividing by 2mi

By the definition of residue,

Residue of f(z)=% j f(2)dz
e,

Res(z=z,) = zi j f(2)dz
a

Hence, from equation (1), we get
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%jf(z)dz =Res(z=a,)+Res(z=ay)+oovrrecer. +Res(z=a,)= iRes(z =a)
a

r=l1

j f(2)dz = 27zii Res(z=a,)

This is Cauchy residues theorem.

3.20 EVALUATION OF RESIDUES

Question: Find the order of each pole and residue of i
z(z-1)(z-2)

Ans:-
Let f(z )_i

z(z-1)(z-2)
The poles of f(z) are given by z(z-1)(z-2)=0
z=0, 1, 2 all are simple poles.
Residue of /() at (z=0) = lim(z - 0) /(2) = lim _ =27

20 z(z-1)(z—-2)

1-2z 1

lim———
=0 (z-1)(z-2) 2

(z-D(A-22) lim 1-2z _

Residue of /(2) at (z=1)=1lim(z ~ 1)/ (z) = lim Slz(z=1)(z-2) =1z(z-2)

Residue of f (2) at (z=2)~lim(z - 2) /(z) = lim (ZZ(Z Zi;iz 22 lim Zl(; 2?) __%

Hence, the residue of f(z) at z=0, 1 and z=2 are 2, 1 and -3/2 respectively.

2
z

Question: Evaluate the residue of at 1,2,3 and infinity and show

(z-D(z—-2)(z-3)

that their sum is zero.
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2
z

Ans: Let f(z2)= G DG_2)3)

Res(z=1)= lin}(z -1 f(2)

— lim(z 1) a L
2ol (z=D(z-2)(z-3) 2

. iy z _
Res(z=2) =lim(z—2)/(2) = %1—(2 e 4

Res(z=3)= lm 2 -9
PB(z-N=z-2) 2
Res(z=0)= lirg— zf(2)

m -z
o (z—-1)(z-2)(z-3)

3
—Zz

= lim =-1
P 1 2 3
2 (1-H)1-)1-")
z z z
' =1/ 4+ 9 1=
Sum of residues A 4+ A 1=0
. . z+3
Question:-Evaluate the residue of f(z) = — 5
z —LZ
Ans:
f(z)= z+3
z(z-2)
Poles are z=0 and z=2
Res(z = 0) = limG=VE*FD 2433
=0 z(z-=2) =0 z-2 2
Res(z = 2) = lim G 2DEFD 243 5
z2 Z(Z — 2) 22 Z
Question:-Find the residue of f(z) = 2; at z=ia

z"+a
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1
~ 1
" (z+ia) (z—ia)?

Ans: f(z2)=

Poles are z=ia, -ia of order 2.

Res(z =ia) =lim ! i{(z—ia)2 . 21 —
ia (2-1)dz (z+ia) (z—ia)
1
:ng[(z+za)2}
2

Question:-Find the residue of — " at z=o0.
Z —
Z3
Ans:-Let f(z) =—
z- -1
3 -1
f@ = =21
ez)
ZZ
1
=zl l+——.......
(o)
1
=2 — e
z

Res (z=w0) = negative coefficient of 1/z =-1

3.21 EVALUATION OF INTEGRALS

(a) Iff(z) is analytic in a closed curve C, except at a finite number
of poles within C, then J. f(2)dz =2m i (sum of residues at the

poles within C).
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1+z

Question:-Evaluate the following integral using residue theoremj dz , where c is

z(2-2)

the circle |z| =1.

1+z

Ans. Let f(z)=
ns. Let f(z) 229

Poles are z=0, 2.
The integrand is analytic on |z| =1 and all points inside

except z=0, as a pole at z=0 is inside the circle|z|=1.

Hence by residue theorem,

[ Y2 = 2zilres (0)]

. 2(2—-2)
1
Residue f(0)=lim 202 = 1
z—0 2 —z 2

Putting the value of Residue f(0) in eq.(1), we get

| 2 o[ )=
z(2-1z2) 2

c

4 -3z

Question: Evaluate the following integral using residue theoremjm /4
zZ(z-1)(z—

3
Where, c is the circle|z| = 5

Ans: The poles of the function f{z) are given by
7z=0, 1,2

The function has poles at z=0, 1, 2 of which the given circle encloses the pole at z=0 and
z=1.

Residue of f (z) at the simple pole z=0 is

z(4 - 3z) . (4-32) 4-0
m————=1im = =
S02(z-1z=2) N (E-DE-2) (D*(2)

Residue of {(z) at the simple pole z=1 is

— lim(z—1)— 2737 i 432
-l z(z=1)(z=2) =12z(z-2)
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4-3

=——=-1
1(=1)
By Cauchy’s integral formula

.[ f(z)dz =2mi (sum of the residue within c)
=2mi (2-1) = 2mi.

(b) Evaluation of j £ (x)dx

Let f (z) be a function such that-

(1) f (z) s analytic throughout the upper half plane except at certain points which are
its poles.

(11) f (z) has no poles on the real axis i.e., if R—o (R being the radius of semi-circle),
then it will cover entire upper half plane.

(111)  zf(z) —0, uniformly as z —oo forO<arg z< m.

© 0
(1v) I f(x)dx and j f(x)dx both converges then
0 -0

I f(x)dx=2mY R* Where » R* denotes ‘
the sum of the residues of f{z) at its pole in the upper .
half plane. 0
Question: prove that Ojo & __z
ol+ x2 2
Ans: let f(z) = ! 5 =m/2
1+z

Only z=i lies inside the contour c.
Res (z=1) = lim(z —i)f(2)

RTINS S
G ey T

Hence, [*, f(z)dz =24y R" = 2m'%
l

[Z f(x)dx = 7

i dx .
_wl+x2

w dx 7
0—2_5
1+x
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2
Question:-Evaluate | x—dx
_oo(l+x )(x +4)

2
Ans: Con51derjz—dx = [f(z)dz
c(l+z )(z +4)

MSCPH501

Where, C is the contour consisting of the semi-circle Cy of radius R together with the

part of the real axis from —R to +R.

The integral has simple poles at
z = +i,z = £2i, of which z=1, 2i only lie inside C.

2
The residue (at z = i) = lim (z-0)z
20 (z +i)(z —i)(z2 +4)

22 1 1
lim - =——
20 (z+i)(z2 + 4) 2i-1+4) 6

2
The residue (at z=2i) = lim (z-2i)z
z—2i (z +1)(z + 2i)(z — 2i)

22 2i)2
lim =
z—2i (Z +1)(z +2i) (—4 +1)(2i + 2i)

=1/3i

By residue theorem,

0 1 1 Vs
=2y RY = 27| -— =
T o =2ms e =2a] - |5

Question: Prove that jde rlogz

0 1+x

Ans: Let f(z)= _log(1+2%)

1+z2

Poles of f (z) are given by

1+2z2 =0, only z=i lies inside the contour c.

Res (z=1) = lim(z —i) f(2) = lim (z ~ )M
z—i z>i (z+i)(z—1)

104

= log(2i)/2i



MSCPH501

=%=(10g2+10gei”/2)/2i
2i
_log2+ix/2
2i
o0 i} .
Hence jwdz:2mwzﬁlog2+mz/2
—0 1+Z 21
© .
2] ww:ﬁlog2+iﬂ2/2
0o l+x

Using formula log (a+ip) Z%log(az + %) +itan (B )

0 2 oo -1
| log(l+; ) + 2itan (zﬁ/a) dx = ﬂlog2+i7r2/2
0 1+x 1+x

Equating real parts, we get
© | Jog(1+ x?)

J | —=—5—|dx = 7log2
0 1+x

2
(c) Integration round unit circle of the type j” f(cos@,sin0)do
0

2z . . . .
Here | f(cos#,sin@)d@ s a rational function of cosf and sin®.
0
Convert cos0, sin 0 into z.
Consider a circle of unit radius with centre at origin, as contour.

0, i
COS(,:L:L[Z_%

2i 2i z
i0 i0
sin@:l:i Z.J,_l
2 2i z
As z=rel? =1%¢10 = 19

As we know, z= ¢l 5 dz = %d6 = izdo

The integrand is converted into a function of z.
Then apply Cauchy’s residue theorem to evaluate the integral.

2z
. do
Question: Evaluate the integral I _—
v >—3cosd
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[c is the unit circle |z|=1]

__.J‘—:zl'J‘L
i+ (3z-1(z-3) ~(3z-1)(z-3)

2 dz 1 2dz
_IIO 3e“" 3¢ i =)

L3, 3z ig10z-32" -3
z

Poles of the integrand are given by (3z — 1)(z — 3)=0
i.e., z=1/3,3.There is only one pole at z=1/3 inside the unit circle c.

Residue at z=1/3

Re s[z = %) = ?il}(z — %jf(z)

m =
L (2=D(E=3) 7213 -3) 3(1 _3) 4
3

Hence by Cauchy residues theorem
I =2m1 (sum of the residues within contour) = 2mi (-1/4) = /2

2z
Question:-Evaluate contour integration of the real integral _[ _cos30
vy D —4cosd
2z 3i0
Ans: Jﬂdﬁ Real part of _[—
 d—4cosd 5—4coséd
2z 3i0
d
= Real part of _[ e'g ——do Letz=e"and d9——Z
v d—2(e” +e™) iz
z’ dz . o
= Real part of _[ — c is the unit circle.
iz

C5—2(2+1j
z
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2z 3
z

= Real part of—lj.—dz
22> —5z+2

= Real part of i Im

Poles are given by (2z-1) (z-2) =0 i.e. z=1/2, z=2
z=1/2 is the only pole inside the unit circle.

Z(Z - 2jZ3
Residue (at z=1/2) = hm—
Z+ 2z-1)(z-2)

. iz’ L
Z_>, 2(2 2) 24

2 .
IﬂdHZReal part of2ni(— szi. Ans.
v > —4cosd 24) 12
Question: Evaluate the integral I o .
v 2+cosd

2r 2r 2r
Ans. Let1=J il :'[ Cje g:j 2.;19 —
v 2+cosl e’ +e 4+e% —e”’
2+——— 0
2
dz

Put €' = zso that ¢’ (id6) = dz, d@——e
i

d
1:'[2—%.2:%]'2 dz

. 2
C4qpppr T Z +4z+1
z

The poles are given by

—42416-4 _ ‘422*5:—21\/5

2

22 +4z+1=0o0r z =

The pole within the unit circle C is a simple pole at z=—2 + V3 . Now we calculate the
residue at this pole.
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Residue at (z=—2+x/§)=
p (z+2-43)2 - 2 ~ 2 1
Z—(-2+3) (z+2—\/§)(z+2+\/§) Zo(-2433) i(z+2+\/§) i(—2+\/§+2+\/§) J3i

Hence by Cauchy’s residues theorem, we have

2
_[ _d49 =271 (sum of the residues within the contour)
o 2+cost

=2 —==—=. Ans

3.22 Summary: This chapter introduces imaginary and complex numbers. Complex

numbers are numbers of the form a + ib, where i = v/~ 1 and a and b are real numbers. They
are used in a variety of computations and situations. Complex numbers are useful for our
purposes because they allow us to take the square root of a negative number and to calculate
imaginary roots.

In the beginning of this chapter, we have discussed the complex plane, along with the
algebra and geometry of complex numbers, and then we have made our way via
differentiation, integration, complex dynamics, power series representation and Laurent
series into territories at the edge of what is known today. Complex Integration now includes
a new and simpler proof of the general form of Cauchy's theorem. There is a short section on
the concept of Singularities, residues, poles and Evaluation of Integrals by using Cauchy
residue theorem.
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3.24 EXERCISE

1. If z=a cosO+ ia sinB, prove that [i +Z =2cos 9].
z z

z—1

2. Prove that =1.

z—1

3. Test the analyticity of the function w= sin z.
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z

4. I ¢ ldz Where c is the circle|z| = 2. Ans: 2mie
. Z
2z +z ) ) .
5. j 5 dz , where c is the circle |z - 1| =1 Ans: 3ni
Z —
6. Expand —; z - in1<|z]<2
(z7-1D(z" +4)

3
7. Find Taylor Expansion of f(z)= 222 1 about the point z=i.
z 4z
i 3 i = 1 1
Ans: | ——= |+|3+=|(z-D+ ) (D" + z—1i)"
[2 2) [ ZJ( : nzz;'( : {(1 +i)" )" }( :
8. Find the poles or singularity of the following function

1
(sinz—cosz)
Ans: Simple pole at z=n/4

o0

9. Evaluate J.

0

dx Ans: /2

1+ x?

0

10. Evaluate I

—00

dx Ans: w/ \/5

1+ x*

Choose the correct alternative:

1. If z = r(cos @ +isin @) then |z|3 is equal to:

3
7

(i) (cos@+isin@)’ (ii)r’(cos@+isin@)’ (iii) 7(iV)l"3_

2. If f(z)= %log(x2 +y)+itan” E be an analytic function if o is equal to:
Y

(1 (i) -1 (ii)2  (iv) 2.
2 —z+1

3. The value of _[—

. 1.
-1 dZ,cbemg |z| =3 is:
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(1) 2 (i)— ()0  (iv) mi.
27t

1
(z=2)"(z+3)

4. Let f(2)= —, then z=2 and z=-3 are the poles of order:

(1) 6 and 4 (i1) 2 and 3 (ii1) 3 and 4 (iv) 4 and 6.

2z
5. What is the value of I ¢ > where C is circle|z| =1 ?
" (z+1)
. . D
()  Zero (ii)4zie” (iii)%ne‘z (iv) 87”; .
2z
2
6. The value of integral J.Mdﬁ is
v 3 +4cosd
. T o T LT
)z ()= i) — iv)— .
(@) (i) 5 (iii) o (iv) 3
7. Find the sum of residues at all poles of function z
cosz

(i) @ (i1) - (iii) zero (iv) w/2.
8. Evaluate '[ |z|dz where the contour C is straight line from z= -i to z=+i

()zero (i)  (i)<i  (iv)i.

9. Evaluate J. e cos2xdx

—00

(1) Jr (i) Ve (iii) e (iv) none of these.

ikz
10. What is the residue at all poles of the function ——— ?
a +z
(1) Slnh(ka) (ll) lSlnh(ka) (111) _ M (IV) Z€ET0.
a a a

Ans: (D@iv) 2) (1) Q) () @) Gv) G)av) (6) (iii) (7) (i) B)(v) (9) (i)
(10)(ii).

110



MSCPH501

UNIT 4: TENSOR

STRUCTURE

4.1 Objectives
4.2 Introduction

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

Tensors

Co-Ordinate Transformations

Indical and Summation Conventions

4.5.1 Indicial convention

4.5.2 Einstein’s summation convention
Dummy and Real Indices

Kronecker Delta Symbol

4.7.1 Some properties of Kronecker delta
4.7.2 Generalised Kronecker Delta

Scalars, Contravariant and Covariant vectors
4.8.1 Scalars

4.8.2 Contravariant vectors

4.8.3 Covariant vectors

Tensors of Higher Ranks

4.9.1 Contravariant tensors of second rank
4.9.2 Covariant tensor of second rank

4.9.3 Mixed tensor of second rank

4.9.4 Tensor of higher ranks, rank of a tensor
Symmetric and Antisymmetric Tensors

4.10.1 Symmetric Tensors
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4.11

4.12

4.10.2 Anti- symmetric tensors or skew symmetric tensors
Invariant Tensors

4.11.1 Levi-Civita symbol

Algebraic Operations on Tensors

4.12.1 Additional and subtraction

4.12.2 Equity of tensors

4.12.3 Outer product

4.12.4 Contraction of tensors

4.12.5 Inner Product

4.12.6 Quotient law

4.12.7 Extension of rank

4.13 Riemannian Space: Metric Tensor

4.14

4.15

4.16

Fundamental Tensors Gy, G* And 6{(
4.14.1 Covariant fundamental tensor g

4.14.2 Contravariant fundamental tensor g

4.14.3 Mixed fundamental tensor g{(or 8}

Christofell’s 3-Index Symbols

Geodesics

4.17 Covariant derivative of a contravariant vector

4.18 Summary

4.19 Glossary

4.20 References

4.21 Suggested Readings

4.22 Terminal Questions

4.22.1 Short Answer type

112

MSCPH501



MSCPH501

4.22.2 Long Answer type

4.22.3 Numerical Answer type

4.1 OBJECTIVES
After studying this unit, you should be able to-

e Define rank of tensor

e Define Covariant and Conravariant vectors
e Define Covariant and Conravariant tensors
e Define mixed tensor

e Define contraction of tensor

e Define summation and subtraction of tensor
e Define inner and outer product

e Define geodesics

e Define Christofell’s symbol

4.2 INTRODUCTION

In three dimensional space a point is determined by a set of three numbers called the co-ordinates
of that point in particular system. Tensor analysis is intimately connected with the subject of co-
ordinate transformations. Number of indices present in a physical quantity is called its rank. A
Tensor of rank zero is said to be scalar or invariant. A Tensor of rank one is said to be vector. A
Tensor having indices in superscript is said to be contravariant while Tensor having indices in
subscript 1s said to be covariant. A Tensor having indices both in subscript and superscript is
called mixed Tensor. If two contravariant or covarint indices can be interchanged without
altering the tensor, then the tensor is said to be symmetric with respect to these two indicas. A
tensor, whose each component alters in sign but not in magnitude when two contravariant or
covariant indices are interchanged, is said to be skew symmetric or anti- symmetric with respect
to these two indices. The tensor which has the same components in all co-ordinate systems are
said to be invariant tensors. The Levi-Civita symbol is defined as a quantity g, in three
dimensional space which is antisymmetric in all its indices. The sum or difference of two tensors
of the same rank and same type is also a tensor of the same rank and same type. Two tensors of
the same rank and same type are said to be equal if their components are one to one equal. The
algebraic operation by which the rank of a mixed tonsor is lowered by 2 is known as contraction.
An expression which are express the distance between two adjacent point is called a metric or
line element. The path of extremum (maximum or minimum) distance between any two points in
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Riemannian space is called the geodesic. The quadratic differential form gjkdeka 1s independent
of the coordinates system and is called the Riemannian metric for n dimensional space. The
space which is characterised by Riemannian metric is called Riemannian space.

4.3 TENSORS: Tensors are important in physics as they provide a concise mathematical
framework for formulating and solving physics problems in areas such as mechanics (stress,
elasticity, fluid mechanics, moment of inertia etc.) and in electrodynamics (electromagnetic
tensor, Maxwell tensor, permittivity, magnetic susceptibility etc.) or general relativity (curvature
tensor, stress- energy tensor etc.).

In applications, it is common to study situations in which a different tensor can occur at each
point of an object; for example the stress within an object may vary from one location to another.
This leads to the concept of a tensor field. In some areas, tensor fields are so ubiquitous that they
are often simply called "tensors".

Number of indices present in a physical quantity is called its rank. A Tensor of rank zero is said
to be scalar or invariant. A Tensor of rank one is said to be vector.

4.4 CO-ORDINATE TRANSFORMATIONS

Tensor analysis is connected with the subject of co-ordinate transformations.

Consider two sets of variables (x', x°, x*, ...,x") and (xl,xz, X3, ... xn)in two different frames of

reference which determine the co-ordinates of point in an n-dimensional space. Let the two sets
of variables be related to each other by the transformation equations

xl = P1(x1,x2,x3,..x")

X2 = PZ(x1,x2,x3,..x")

x" = P (x1,x%,%x3, ... x")
or briefly x* = PH(x%, %2, %53, ..., %, ..., x) ..(4.1)
(i=1,2,3,...,n)

where function P" are single valued, continuous differentiable functions of co-ordinates. It is
essential that the n-function P* be independent. Equations (4.1) can be solved for co-ordinates x'

as functions of x* to yield
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xi = Al(xL, x2, %3, .., X5, .., X0) ..(42)
Equations (4.1) and (4.2) are said to define co-ordinate transformations.
From equations (4.1) the differentials dx* are transformed as

ax" ax"

i S N W B g o
dxM _axldx +ax2 dx~ + +axndx
n a_“.
= Z_éﬁil,(uZI,Z,&...,n). ...(4.3)
— Ox

4.5 INDICAL AND SUMMATION CONVENTIONS

The summation convention implies the sum of the term for the index appearing twice in that
term over defined range. An index repeated as sub and superscript in a product represents
summation over the range of the index.

We can define two types of convention:

4.5.1 Indicial convention-Any index, used either as subscript or superscript will take all
values from 1 to n unless the contrary is specified. Thus, equations (4.1) can be written as

X" = PH(x!). ...(4.4)

The convention reminds us that there are n equations with p =1, 2, ...n and A" are the
functions of n-co-ordinates with (i=1, 2, ..., n).

4.5.2 Einstein’s summation convention-If any index is repeated in a term then a
summation with respected to that index over the range 1, 2, 3, ..., n is implied. This convention
is called Einstein’s summation convention.

n
According to this conversation instead of expression Z ax’
i=1
we write a; X'

Using above tow conversation eqn. (4.3) is written as

—H  ox"

dx = P dx'. ...(4.52)

Thus, the summation convention means the drop of sigma sign for the index appearing twice in a
given term.

4.6 DUMMY AND REAL INDICES
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Any index which is repeated in a given term, so that the summation convention implies, is called
a dummy index and it may be replaced freely by any other index not already used in the term.
For example i is a dummy index inaiu X!,

—u oz ax"
dx = —dxk =

oxK ~ oxh

dx?. ...(4.5b)

Also two or more dummy indices can be interchanged. Any index which is not repeated in a
given term is called a real index. For example p is a real index inpiu x!. A real index cannot be
replaced by another real index, e.g.

pix' # pix’
SAQ 1: What is difference between real and dummy indices?
4.7 KRONECKER DELTA SYMBOL
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two

variables, usually just non-negative integers. The function is 1 if the variables are equal and 0
otherwise:

1ifj =k

j
The symbol Kronecker delta 6, = {O ifj = k ... (4.6)

The Kronecker deltad;is a piecewise function of variablesiandj. For example, 8;2= 0,
whereas 633 = 1.
4.7.1 Some properties of Kronecker delta

. 1.2 3 . :
(1) If x', x°, x°, ...x" are independent variables, as

ax i
2~ 5], . (47)

axk
(i1) An another property of Kronecker delta symbol is
51 P = PK, ... (4.8)

Since by summation convention in the left hand side of this equation the
summation is with respect to j and by definition of kronecker delta, the only surviving
term is that for which j = k.

(i11))  If we are dealing with n dimensions, then
8 = 8; = n. ...(4.9)
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By summation convention
8} =8+ 82+ 83+ -+ 8"
=1+1+1+--+1=n.
(iv) 818} = 8} ...(4.10)
By summation convention
516} = 81 8L + 8582 + 8183 + - + SI8k + - 8L 6D
=0+0+0+-+18 +-+0
= &L

ox) 0x _ ax i
v) 6—;6—;=6—;= 8. LL(4.11)

4.7.2 Generalised Kronecker Delta: The generalised Kronecker delta is symbolized as

st 2 wim
kK, . ko

and defined as follows:

(1)  The subscripts and superscripts can have any value from 1 to n.

(i1) If either at least two superscripts or at least two subscripts have the same value or
the subscribts are not the same set as super-scripts, then the generalised Kronecker
delta is zero. For example

S}klkk = Sijmkm = Siif‘m = 0.

(i11) If all the subscripts are separately different and the subscripts are the same set of
numbers as the superscripts, then the generalised Kronecker delta has value +1 or -1
according to whether it requires as even or odd number of permutations to arrange
the superscripts in the same order as the subscripts.

For example
123 _ g123 _ <1452 _
8123 = 8231 = 84135 = +1
123 _ 123 _ 1452 _
and 8213 = 6132 = 84735 = —1L.

It should be noted that
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81187, 834" 8}, 8%, 8175, = 81 81,825
4.8 SCALARS, CONTRAVARIANT VECTORS and
COVARIANT VECTORS

4.8.1 SCALARS: Consider a function ¢ in a co-ordinate system of variables x' and let his
function have the value 6 in another system of variables X" . If
b=¢.
Then the function ¢ is said to be scalar or invariant or a tensor of the order zero.
The quantity
Sl=61+82+83++8=n.
Is a scalar or an invariant.

4.8.2 CONTRAVARIANT VECTORS: Consider a set of n quantities P, P2,P3,...P™ in

. —1 —2 =3 —n
a system of variables x' and let these quantities have values P ,P ,P ,...P in another co-ordinate

system of variablesX" . If these quantities obey the transformation relation

— <H .
pl =2 —pi ..(4.12)

T oaxd

where the quantities P! are said to be the components of a contravariant vector or a contravariant
tensor of first tank.

Any n functions can be chosen as the components of a contravariant vector in a system of
variablesX' .

Multiplying equation (4.12) by %—X:l and taking the sum over the index p from 1 to n, we get

- - .
o0 gh o oxt i od i g
ax" ax" oxi axl
i ax) =H
or P) =ﬁp . (413)

Equations (4.13) represent the solution of equations (4.12).

The transformation of differentials dx' and dx" in the systems of variables x' and X"
respectively, from eqn. (8.5a), is given by
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o _0x
ax* = 2 dxl, (414

As equations (4.12) and (4.14) are similar transformation equations, we can say that the
differentials dx' form the components of contravariant vector, whose components in any other
system are the differentials dX' of that system. Also we conclude that the components of a
contravariant vector are actually the components of a contravariant tensor of rank one.

Let us now consider a further change of variables from X' to x’9, then the new
components P’ must be given by

ox'd o, ox/dax"
oot T oaxM axl

.pi (using 4.12)

_ oxd
= 2Pl ..(4.15)

This equation has the same from as eqn. (4.12). This indicates that the transformations of
contravariant vectors form a group.

4.8.3 COVARIANT VECTORS: Consider a set of n quantities P, P,, P, ...P, in a

system of variables x' and let these quantities have values P, P,,Ps,...P,in another
system of variables X' . If these quantities obey the transformation equations

P=25P ..(4.16)

where the quantities P; are said to be a covariant tensor of rank one.

Any n functions can be chosen as the components of a covariant vector in a system
of variables x' and equations (4.16) determine the n-components in the new system of
variables X"

M
Multiplying equation (4.16) by % and taking the sum over the index p from 1 to n, we

get
XMt = ax" axt ax!
—P,=——P=—P =P
oxi M 0x) 0x x ]
ail-L —
Thus, P] = E e ...(4.17)

Let us now consider a further change of variables fromx" to x % Then the new
components P; must be given by
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pr — ox' = %" ox! p
47 gxa M gxaaxt
axl
— @Al- ...(4.18)

This equation has the same form as eqn. (4.16). This indicates that the
transformation of contravariant vectors form a group.

As oy _ oy oxt _ ax oy

ox" ~ oxiox"  ox"oxi
] :
It follows from (4.16) that a_iji form the components of a contravariant vector, whose

: . . .. @ :
components in any other system are the corresponding partial derlvatlves%. This

convariant vector is called grad .
4.9 TENSORS OF HIGHER RANKS
The laws of transformation of vectors are given by following formulas

— <H
U-_aX i

Contravariant ...P = o ... (4.12)
Covariant ...P" = :—;Pi : ... (4.16)

4.9.1 CONTRAVARIANT TENSORS OF SECOND RANK-

Let us consider (n) > quantities P (here i and j take the values from 1 to n independently)
- - i . —uv .
in a system of variables x' and let these quantities have values P in another system of

variablesX' . If these quantities obey the transformation equations

=uv %" X" i

)
P =22p ...(4.19)

where the quantities P” are said to be the components of a contravariant tensor of second
rank.

4.9.2 COVARIANT TENSOR OF SECOND RANK- If (n)* quantities A" in a
system of variables x' are related to another (n)® quantities Kuv in another system of

variables X" by the transformation equations
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ﬁ _ oxl axl
W ozt gxY

...(4.20)

where the quantities Pj; are said to be the components of a covariant tensor of second
rank.

4.9.3 MIXED TENSOR OF SECOND RANK: If (n) > quantities P]-i in a system of
variables x' are related to another (n) > quantities P! in another system of variables X" by

the transformation equations

=1 ax" X

where the quantities Pji are said to be component of a mixed tensor of second rank.
SAQ 2: Show that Kronecker deltamixed tensor of rank 2?

4.9.4 TENSOR OF HIGHER RANKS, RANK OF A TENSOR-The tensors having

ranks more than two are called tensor of higher rank. Tensor of higher ranks are defined by
similar laws. The rank of a tensor only indicates the number of indices attached to its per

component. For example Plilj;( are the components of a mixed tensor of rank 5; contravariant of
rank 3 and covariant of rank 2.

They transform according to the equation

—uvo  ax" 9%’ 0%° 0% ,ijk
4  9xi 9xi axk 9xa !

...(422)

—Muvo ijk
Where Py andP1 are tensors of rank 4.

4.10 SYMMETRIC AND ANTISYMMETRIC TENSORS

4.10.1 SYMMETRIC TENSORS- If two contravariant or covarint indices can be

interchanged without changing the tensor, then the tensor is said to be symmetric with respect to
these two indices.

For example if

Pij — P]l}

or
Pj = B

...(4.23)
then the contravariant tensor of second rank P! or covariant tensor P;; 1s said to be symmetric.
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For a tensor of higher rank Plijk if
ijk _ piik
P =H
where the tensor Plijk is said to be symmetric with respect to indices i and j.

So if a tensor is symmetric with respect to two indices in any co-ordinate system, it remains
symmetric with respect to these two indices in any other co-ordinate system.

This can be seen as follows:

If tensor Plijk is symmetric with respect to first indices i and j, we have

Pk =p. ..(4.24)

—uvo  ax* ax¥ 9%° 9% iik
ha P =—= """ p
We have p axi 9x) axk gxp 1

ax" ox" 0x° ox! _ .. .
= o 97 0k 3P P jik. (using 4.24)
Now interchanging the dummy indices i and j, we get

P — ox" ox" 9x° ox! piik = p°
P 7 axl axi axk ox? JIXK="Fp

1.e., given tensor is gain symmetric with respect to first two indices in new co-ordinate system.
Thus, the symmetry property of a tensor is independent of coordinate system.

Let Plijk be symmetric with respect to two indices, one contravarient i and the other covariant 1,
then we have

ijk _ plik
R =P ...(4.25)
=uvo  ax" ax" 0x° ax! ijk
Wehave R v
ox" ox’ 0% ox! Lljk .
~ 9x1 0% 9xK oxP I [(using 4.25)]
Now interchanging dummy indices i1 and 1, we have
PHYC XX OR” oxl pijk
P axl axl axkoxP ]
_ 06l 0 0% 0% ik w2
T 9%° 0% axk axl 1 ...(4.
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According to tensor transformation law,

=pvo  9%° 9%’ 9x° ax! ijk

Comparing (4.26) and (4.27), we see that

—uvo —pVvo

P #Py,
1.e., symmetry is not preserved after a change of co-ordinate system.

n(n+1

A symmetric tensor of rank 2 in n-dimensional space has at most > ) independent

components.

SAQ 3: Show that the symmetry property of a tensor in independent of co-ordinate system used?

4.10.2 ANTISYMMETRIC TENSORS OR SKEW SYMMETRIC TENSORS-
A tensor, whose each component alters in sign but not in magnitude when two
contravariant or covariant indices are interchanged, is said to be skew symmetric or anti-
symmetric with respect to these two indices.

For example if

ij _ _ pji
or P P } ...(4.28)

Pj = —P;

then contravariant tensor P or covariant tensor Pj; of second rank is antisymmetric or for a tensor
‘ .
of higher rank Plll if
ijk _ _ pikj
Pl - Pl

where tensor Plijk 1s antisymmetric with respect to indices j and k.

If tensor Plijk 1s antisymmetric with respect to first two indices 1 and j.

We have
e e
p’ =-p ...(4.29)
—pvo  gx" ox’ ax° ax! _ijk
and P e PN ) 11]
p axl 9x) 9xK 9%

—W A=V =0 o ] ..
= I X % pk [using (4.29)]

axi 9x) axk ox” "1
Now interchanging the dummy indices i and j, we get
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ﬁuVO' B ai“ aiV 626 aXl l]k _ §Vu0
P T ox axiaxkex® 1 T TP

i.e., given tensor is again antisymmetric with respect to first two indices in new co-ordinate
system. Thus, antisymmetry property is retained under co-ordinate transformation.

(n

. . . . . -1) .
An antisymmetric tensor of rank 2 in n-dimensional space has HT) independent components.

Any tensor having either two contravariant or two covariant indices can be expressed as a sum
parts, one symmetric and the other antisymmetric.

Thus, PV == (PV+P) +-(PU + P) ...(4.30)

the first term on the right is the symmetric part and the second is the antisymmetric part. The
symmetric part is a symmetric tensor and the antisymmetric part is an antisymmetric tensor.

The process of writing a tensor as a sum of symmetric and antisymmetric parts not only holds for

tensors of rank 2 but is quite general. For example a tensor Pll]l can be written as

ij _ Lrpil 4 pii] . 1(pil 4 pii
P = 2 [Pkl + Pkl] + 2 [Pkl + Pkl]
Symmetric part ~ Antisymmetric part
i 1rpij i1 |, 1pi] ij
or Pa =3 [Pkl + Pkl] 2 [Pkl - Plk]
Symmetric part Antisymmetric part

SAQ 4: Show that the skew-symmetry property of a tensor of is independent of co-ordinate
system used?

4.11 INVARIANT TENSORS

The tensor which has the same components in all co-ordinate systems are said to
be invariant tensors.

Kronecker delta symbol and Levi Civita symbol (Epsilon tensor) are the important
examples of such tensors.

Kronecker delta: The kronecker delta symbol; is defined as

: 0ifi#j
1 _
51'_{1ifi=j'

We shall now prove that Kronecker delta is an invariant tensor.

- . . i =K
Let 8} be the components of Kronecker delta in a system of variables x' and 8, as the

corresponding components in another system of variables X' .
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If Kronecker delta is a mixed tensor of rank two then it must transform according to the
rule.

5o X o
Vo ooxiox’ )
_ox"ox ox! _ ax" ox

T xiox' ox  oxi 9%

...(431)

...(432)

Since new variables X" are the functions of old variables x' which in turn are the
functions of new variablesX , we have by chain rule

ax"  ox" ox!

T ox 0%
This gives the changes 8%" consequent upon change 8% .

. —_ -V . . . .
Since X" and X' are the coordinates of the same system, hence their variations are
independent of each other unless p = v in which case

85" = 8%
ﬁ_{lforuzv
ox'  (Oforp#v’

Therefore, by definition of Kronecker delta, we have

P <M
=5 ..(433)
4.11.1 LEVI-CIVITA SYMBOL (OR EPSILON TENSOR OR
ALTERNATING TENSOR OR PERMUTATION TENSOR): Levi-Civita symbol
in three dimensional space in a tensor of rank 3 and is denoted by &;; while in four dimensional
space it is a tensor of rank four and denoted by &y. The Levi-Civita symbol is defined as a
quantity g in three dimensional space which is antisymmetric in all its indices. Thus, the only
non-vanishing components of g are those for which all the indices are different and they are
equal to +1 or -1 according as (i, j, k) is an even or odd permutation of (1, 2, 3), i.e.,

+1 if (i, j, k)is an even permutation of (1, 2, 3)
Eijk = —1if(i, j, k)is an odd permutation of (1, 2, 3) ...(4.34)
0 otherwise (contain two or more repeated indices).
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4.12 ALGEBRAIC OPERATIONS ON TENSORS

4.12.1 ADDITION AND SUBTRACTION: The tensors are added and subtracted only

if the tensors have some rank and same type. Same type means the same number of contravarient
and covariant indices. To add or subtract two tensors the corresponding elements are added or
subtracted.

The sum or difference of two tensors of the same rank and same type is also a tensor of the same
rank and same type.

If there are two tenors Plij and Qili of the same rank (3) and same type (mixed with two indices in
contravariant and one in covariant), then the laws of addition and subtraction are given by

P + Q) = R (Addition) ...(4.35)
P) — Q) =S (Subtraction) ...(4.36)

where RE and Sli(j are the tensors of the same rank (3) and same type (mixed with two indices in
contravariant and one in covariant) as the given tensors.

The transformation laws for the given tensors are

_ —H A=V 2 Kk ..
o X X 0% pij ..(4.37)

O 7 oxi 9xl 9%° K

—v %" ax” axk i
and Qo_ ZEEEQk (438)

Adding (4.37) and (4.38), we get

MY _ OR ox” oxK i ...(4.39)

O 7 9xi axl 9x° Tk

where is a transformation law for the sum and is similar to transformation laws for PI? and Qﬂ

given nby (4.37) and (4.38). Hence the sum Rili(= Plij + Qﬂ) is itself a tensor of the same rank
and same type as the given tensors.

Subtracting eqn. (4.38) from (4.37), we get

P kv ox" 9x" 9xk pil ij
o ~Q =i Bk ~ K
S oxt ax” axK i
or S = ———==S,. ...(4.40
o axi axi ax° 7k ( )
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which is a transformation law for the difference and is again similar to the transformation law for

Plij and QE Hence the difference Sli(j(= Plij — QE) is itself a tensor of the same rank and same
type as the given tensors.

SAQ 5: Show that sum and difference of tensor of same rank and same type is also a tensor of
the same rank and same type.

4.12.2 EQUITY of TENSORS: Two tensors of the same rank and same type are said to be
equal if their components are one to one equal, i.e., if

Plij = Qii for all values of the indices.

If two tensors are equal in one co-ordinate system, they will be equal in any other co-
ordinate system.

SAQ 6: Show that two tensors are equal in one co-ordinate system, they will be equal in any
other co-ordinate system.

4.12.3 OUTER PRODUCT: The outer product of two tensors is a tensor whose rank is the
sum of the ranks of given tensors.

Thus, if t and t” are the ranks of two tensors, then rank of their outer product will be (t+t’).
For example if Plij and QL. are two tensors of ranks 3 and 2 respectively, then
PJQL, = R (say) ..(4.41)
is a tensor of rank 5 (=3 + 2).

For proof of this statement we write the transformation equations of the given tensors as

=hv uv _ 0x" X axK _jj

Pc - QG = EEF Pk (442)
—p axP oxm

Q=57 57 Un- ..(4.43)

Multiplying (8.42) and (8.43), we get

v —p  9x" 9%’ 9xX ox’ ax™ _jj

P, — = —— —
o A axi 9% ax° ax!l g%t k Qn

—uvp  gx" %"’ axP axK ax™m _ijl
or R —————R/ ...(4.44)

oA T 9xi 9% ox! 0%X° g0 km
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which is a transformation law for tensor of rank 5. Hence the outer product of two tensors Plij and

Q! is a tensor Rﬂin ofrank 3+2=) 5.
The outer product of tensors is commutative and associative.

4.12.4 CONTRACTION OF TENSORS: The algebraic operation by which the rank of

a mixed tensor is lowered by 2 is known as contraction.

. . ijk . . o .
For example consider a mixed tensor Ph]n of rank 5 with contravariant indices 1, j, k and
covariant indices I, m.

The transformation law of the given tensor is

—pvp  ax" ax’ ax° ax! ax™M ik
P, gX OX 0X Ox pUx. ...(4.45)

- axi ax) axkK 0§p§ Im
To apply the process of contraction, we put A = ¢ and obtain

PO T gxi 9xi 9xk ax” 4x° Im

_ 9% 0% ox 9% 0x b ijk

T axl axi 9x® axk 9x° " 1m

_ 0% OX 09X empijk
T 9xi ax ox° K 'lm

=0
Xm

. I 0x° ox™ m)
(smce substitution operator PR Ok

. =hwvo  ox" ax’ ax! L ijk
1.C., Ppo —Ewﬁ 1k (446)

which is a transformation law for a mixed tensor of rank 3.

SAQ 7: Show that contraction of a tensor of rank 7 is tensor of rank 5?

4.12.5 INNER PRODUCT: The outer product of two tensors followed by a contraction

results a new tensor called and inner product of the two tensors and the process is called the
inner multiplication of two tensors.

Example (a) Consider two tensors Plij and QL
The outer product of these two tensors is
il _ piil
P Qin = Ry (s2Y)
Applying contraction process by setting m = 1, we obtain
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P”Q1 = R”l = S]l (a new tensor)
The new tensor S{: is the inner product of the two tensors Plij and QL.

(b) An another example consider two tensors of rank 1 as P! and Qj. The outer product of
P! and Q; is
Applying contraction process by setting i = j, we get
PiQ]- = R];- (a scalar or a tensor of rank zero).

Thus, the inner product of two tensors of rank one is a tensor of rank zero. (i.e.,
invariant).

4.12.6 QUOTIENT LAW: Quotient law provided a direct method to find out if the given
entity is a tensor or not. Quotient law states that:

An entity whose inner product with an arbitrary tensor (contravariant or covariant) is a tensor, is
itself a tensor.

Example: Let P (i, j, k) be the given entity to be tested whether it is a tensor or not. To apply
quotient law let us consider an arbitrary tensor Q}k whose inner product with P (i, j, k) is a tensor.

1e.,
P (15.]’ k)Q]k - Ri
We have to show that P (i, j, k) is a tensor. In the other system of variables X", we must
have
= —p =p
P(w,v,0)Q,, = Ry.
—p oxP ax) axk
Now Qo = 0 o7 o7 Lk
p _ 0%
and Ry =507 R

4.12.7.EXTENSION OF RANK:

o o

So that Ry =P Q, =—=P = Q]

_ox" ox iQ = ax" ox)
T oxl 9%’ )7 axlox’ -
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The rank of a tensor can be extended by differentiating its each component with respect to
variables x'.

As an example consider a simple case in which the original tensor is of rank zero, i.e., a

i . . . i as .
scalar S (x') whose, derivatives relative to the variables x'are —. In other system of variables
ox! Y

X" the scalar is §(§”), such that

dS _ s ox! _ ax! as
ox"  oxlox" T oxMoxl”

...(4.49)

. s .
This shows that pwL transforms like the components of a tensor of rank one. Thus, the

differentiation of a tensor of rank zero gives a tensor of rank one. In general we may say that the
differentiation of a tensor with respect to variables x' yields a new tensor of rank one greater than
the original tensor.

The rank of a tensor can also be extended when a tensor depends upon another tensor and
the differentiation with respect to that tensor is performed. As an example consider a tensor S of
rank zero (i.e., a scalar) depending upon another tensor Pj;, then

s _

A Qjj; = atensor of rank 2. ...(4.50)
ij

Thus, the rank of the tensor of rank zero has been extended by 2.

4.13 RIEMANNIAN SPACE: METRIC TENSOR

An expression which are express as the distance between two adjacent point is called a
metric or line element. In three dimensional space the line element, i.e., the distance between two
adjacent points (X, y, z) and (x + dx, y + dy, z + dz) in Cartesian coordinates is given by

ds* = dx* + dy” + dz*.

In terms of general curvilinear coordinates, the line element becomes
3 3 . . .

2 Using summation convention).
ds’ =3 % g du;du, =g ydu,du, (Using )

j=1 k=1

This idea was generalised by Riemann to n-dimensional space.

The distance between two neighbouring points with coordinates x' and x’ + dx’ is given
by
ds® = ZZgjkdxjdxk =gjkdxjdxk --(4.54)
j=1 k=1

(Using summation convention)
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where the coefficients gy are the functions of coordinates X, subject to the restriction g =
determinant of gj, i.e, | g]-k| * 0.

The quadratic differential form gjkdeka 1s independent of the coordinates system and is
called the Riemannian metric for n dimensional space. The space which is characterised by
Riemannian metric is called Riemannian space. Hence the quantities gj are the components of a
covariant symmetric tensor of rank two, called the metric tensor or fundamental tensor.

(dx')? + (dx?) + (dx)’ + ...+ (dx")’ or dxldx,

the space is called n-dimensional Euclidean space. It is now obvious that Euclidean spaces are
the particular cases of Riemannian space.

In general theory of relativity (four dimensional space), the line element is given
by

Ds” = gudxldx* (G, k=1, 2, 3, 4).
In special theory of relativity, the line element is given by
(dx")? + (dx?)? + (dx°)* + ... + (dx™)? or dx'dx".

the space is called n-dimensional Euclidean space. The Euclidean spaces are the
particular cases of Riemannian space.

In general theory of relativity (four dimensional space), the line element is given
by

ds’ = gpdx'dx’dx* (j, k = 1, 2, 3, 4).
In special theory of relativity, the line element is given by
ds? = (dx")* + (dx?)* + (dx*)? [with x* =ict, i = (-1)]
=dxdx! (j=1,2, 3, 4).
As ds* = gjkdxjdxk has been defined in general space, it is independent of the
coordinate system, i.e., dx? = gjkdxjdxk 1S an invariant.

4.14 FUNDAMENTAL TENSORS g, g™ AND 8}

4.14.1 COVARIANT FUNDAMENTAL TENSOR gj: The line element or interval

ds in Riemannian space is given by
ds® = g dx'dx". ...(4.55)
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As dx'dx" are contravariant vectors and ds® is invariant for arbitrary choice of vectors dx’
and dx*, it follows from quotient law that g is a covariant tensor, we have

ds* = gjkdxjdxk in system of variables X

— ——H—V . ) -
= guvdx dx in system of variables X"

. - —H—V it k
ie., = guvdx dx = gudx’'dx". ...(4.56)
Now applying inverse transformation law to dx’ and dx/, i.c.,
. oxl
dx) = ai_x“ dx"etc.

_ d—p.d—v _ an d_p_ an d_V
gHVX X _gjkﬁ X ﬁ X
ax) axK
=gy ——dx dX
Sk oz a%"
— ax axky =
{gw - g,-kai—"pa—;} dx"dx’ = 0. . (4.57)

— . v4 . .
As dx" and dX" are arbitrary contravarient vectors, we must have

ox) gxk _

B~ o

ox) gxK

B = G B

Hence gjy is a covariant tensor of rank 2.

gjx may be expressed as
1 1
Bjk = 3 (8 + 8xj) + > (i — 85)
= P + Qjk ...(4.58)

where Ay = %(g]-k + gk]-) is symmetric tensor 4.59)
and Bjx = %(gik - gk]-) is symmetric tensor T

ds” = gydxldx® = (Aj + By,) dxldx". ...(4.60)
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We have
Bjkdxjdxk = Bkjdxkdxj (interchanging dummy indices j and k)
= — Bjdx'dx"
(since Bjiis antisymmetric i.e., Bjx=— Byj)
ie., 2Bj, dx'dx"= 0.

As dx’ and dx* are arbitrary vectors, we have

Bj =0
. 1
1Le., 5 (g]-k + gk]-) =0
i.e., 8jk + 8kj = 0
ie., gjk 18 symmetric.

So, we can write gj as

Buv- = %(guv + gvu)-

Thus, we have proved that the metric tensor gjx is covariant symmetric tensor of rank 2.
This is called covariant fundamental tensor of rank 2.

4.14.2 CONTRAVARIANT FUNDAMENTAL TENSOR g*

Let us define g as

ik cofactor of gj in g

...(4.61
. (461)
where g is the determinant of gy, i.e.,
gll g12 g13 gln
821 822 823 - 8on
8n1 8n2 8n3 .. 8Bnn

' Since gj is symmetric, g is symmetric which implies cofactor of gj in g is symmetric and
so g is symmetric.

Let P! be an arbitrary contravariant vector, then by quotient law,

P = g P’ ...(4.62)
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is an arbitrary covariant vector.

Now multiplying eqn. (4.62) by gkl, we get

2P, = gy g"'P'. ...(4.63)
But gjkgkl = gjkwfacmr;f B ing (using 4.61)
_ sl .
= & (by theory of determinants). ...(4.64)
Therefore, equation (4.63) yields
g'A=8 P =P ...(4.65)

1.e., the inner product of gkl with an arbitrary covariant vector Py yields a contravariant vector.
Hence by quotient law gkl 1s a contravariant tensor of rank 2.

4.14.3 MIXED FUNDAMENTAL TENSOR g{(or 8%
From equation (4.64), we have
gig" =5} . ...(4.66)

As gy and K are covariant and contravariant tensors of rank 2 respectively, therefore

) s ’

from quotient law 6} is also a tensor of rank 2; it is a mixed tensor, contravariant in 1 and
covarian in j and is known as mixed fundamental tensor.

4.15 CHRISTOFELL’S 3-INDEX SYMBOLS

We now introduce two expressions formed of the fundamental tensors, known as
Christofell’s symbols of first and second kind.

Christofell’s symbol of first kind

. 1,085 , 0 0g;j
[k 1] = Tyjpc =5 (5o + 224 — ZBk), ..(4.67)

oxk ox} ox!

Christofell’s symbol of second kind.

N 1 im (98m | 9gkm _ 98jk
{jk}—r-ik—zgm(me—axj o). -(469)

From the symmetry property of gji it follows that

[]k, 1] = [k], 1]01’1—‘1’]'1( = Fl.k]' .. (469)
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1 1
and {jk} = {kj} or [y =Ty ...(4.70)
there by indicating that Christofell’s symbols Ijj, and T l]-k are symmetrical with respect to
indices j and k.
Relations between Christofell’s symbols of first and second kind

(1) Replacing 1 by m in eqn. (4.67), we get

. = 1 (agmj 08km _ axik)
mjk = 5 gxk ox oxm /J*

Multiplying both sides of above equation by glm, we get

1 08im . 0gxm  08j . _
g™ Tnji = ;8™ (a_;k += - ﬁ) (since gim = Zm)
= T}} [Using (4.68)]
ie., T = 8™ jic ...(4.70)

(i)  Interchanging | and m in eqn. (4.68), we get

m _ 1 _1m (ﬂ g1 agik)
jk 2 oxk = oxl ox! J*

Multiplying above equation by g, we get

m_1 Im (ﬂ ogr1 agik)
glmF]k =38m8 oxK + ox dx!

_1 (@ n 08kl agjk)
2 \9xKk 0% ox!

(since glmgml = 6} =1)

= Fl,]'k-

4.16 GEODESICS

In Euclidean three dimensional space the path of shortest distance between two fixed
points is a straight line. Here we shall generalise this fundamental concept to Riemannian space.

The path of extremum (maximum or minimum) distance between any two points in
Riemannian space is called the geodesic. Thus, a geodesic is determined by the condition that
the path between two fixed points A and B given by be extremum, i.e.,

B

Ids

! ffd extremum (or stationary), ...(4.71)
s

4
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B
5j ds =0
ie., y .(4.72)

Where & represents the variation symbol.

In Riemannian space, we have

ds” = gydx'dx" ...(4.73)

2 ds & (ds) = 8 (gj) dxldx" + gi8 (dx') dx* + gydxI8 (dx¥)
= dxldx* g"‘ K sx™ + g dx*8 (dxd) + gudxI8 (dx").
Dividing both sides by 2 ds and using the relation
ax
( ds) (SX])
d dxk 0 dx) d
We get(ds) = {d); + % g’kS m 4 g]k I (8 N+ gk dx = (SXk)} ds

Substituting the value of §(ds) from (4.73) in (4.72), we get

0 ’
%I{dxl dx’ g”‘&x’”+g‘k%}%(5xk)+g a;c d(5x )}ds:o

ds ds ox" / ds

On changing the dummy indices in the last two terms, we get
B J gk Do j k

lJ. dx’ dx ik sxm 4 g.mdi+g &4 (5x )ds=0.

29 ds ds ox" ™ ds ds )ds

Integrating the second term by parts and remembering that the variation 6 is zero at the
fixed end points A and B,

J 0 j k
l didiﬁ_i g/mdi+gmkdi 5xmdS=O,
“ | ds ds ox" ds\ " ds ds

As the infinitesimal displacements 8x™ are arbitrary, therefore for the integral to be
stationary the coefficient of 6x™ in the integrand must vanish at all points on the path, i.e.,

1| dx’/ dx* Og w o d dx’ dx"
-~ Am - gjm_+gmk_ :O
2| ds ds ox ds ds ds
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Ldx! dx* Ogy 1dgy, dx’ 1 dx'

g 4X .
2ds ds ox" 2 ds ds ngk ds®
ldg a1 dx
2 ds ds 25" 4 ' ...(4.74)

But we have

dg/m — ag]m dxk and dgmk _ ag.mk d‘x/

ds ox* ds ds ox’ ds

With these substitutions, equation (4.74) becomes

1dx/ di* ( 0g: 02, g, j_ 1 ( d’x’ d’x* j o

- +
ie 2ds ds | ox™  oxt ox’ 2| S g2 Emk e

Replacing the dummy indices j and k and | in the second bracketed terms, we get

lad dc* (0gu Ogw 8g,, | 1 d’x' N d’x' 0o
2ds ds | ox™  oxt ox/ 202 ds? En ds* )

Using symmetry property of gim (i.€., gim = gmi1) above equation mau be written as

ldxj dx" ( 0g,, N 08 i N d’x' o
2.ds ds | ox*  ox'  ox" " ds?
Now multiplying throughout by g™, we get
Jo gk oo . do . 21
2 ds ds ox ox’  ox" ds
1dx/ dx* ,, d*x'
R VAP L
2 ds ds E ma O ds®
2.p j k
d x2 N dx’ dx gmprm-jk ~0
ds” ds ds ...(4.75)
2.p J k
a’x2 +dx dx Fj.’kzo.
ds” ds ds ...(4.76)

137



MSCPH501

4.17 COVARIANT DERIVATIVE OF A CONTRAVARIANT VECTOR
Let Al be a contravariant vector, then by tensor transformation law

A= %AJ (477

Differentiating above equation with to X', we get

U

04" _ox" oAl ot o' o
o4 ox) ax* gy oo ox

—u

04" _ox" o' o4’ o'x" o
o4 ox) oy oxt ax'oxt gy

...(4.78)
The presence of the last term on the R.H.S. of eqn. (4.77) shows that the partial
—H
derlvatlvesg—N]( or—— do not transform like the components of tensor.

From eqn. (4.77) interchanging x and X co-ordinates, we get

&x o ox ox
Ak Tk Ap j Lon
Oox’Ox ox ox’ ox*

...(4.79)

04" ox" ox* oa’ +[rp ox' ox Ox Jaxk p

= . [N |—

o4 ox) 5y ox *oxr o axt 7 Ox.
M k j H k

_Ox Or 04| py Ox OF Aj—y"l“gzaiA’
ox’ gy Ox " ox? oy ox’

P N YL ok —
_0x O 04 OX O i
ox’ gy Ox ox” 5y

Interchanging dummy indices j and p in the second term on R.H.S. of above equation, we
obtain

oA" —=u— ox" axk o4’
+Tov A= +T7 A7

o4 ox’ gy ox' .. (4.80)
Introducing the comma notation
—_ J
ot = +T7 A"
ox* ...(4.81)
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Eqn. (8.108) can be written in the form

o7 ox ox*
k=

J
sk

ox’ ox (4.82)

This equation shows that Aj;k defined by (4.82) is a mixed of rank two, called the

covariant derivative of Al with respect to x*,

4.18 SUMMARY

In this unit you have learned about tensor analysis, rank of tensor, types of tensor etc. You have
learnt coordinate transformation in terms of covariant and contravariant vector and tensor. You
have also learnt reduction of rank of a tensor and algebra rule like addition, subtraction,
multiplication etc. You have also learnt symmetric and skew symmetric tensor. You have also
learnt Christofell’s three index symbol and their relationship. In this unit you have studied
fundamental tensor, Remanian metric, Geodesic. Many solved examples are given in the unit to
make the concepts clear. To check your progress, self assessment questions (SAQs) are given
place to place.

4.19 GLOSSARY

Dummy indices — which can be changed without altering meaning
Covariant — set of quantities remain unchanged

Contravariant - not comparable

Geodesic- the shortest line between two points that lies in a given surface.

Fundamental - basic
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4.22 TERMINAL QUESTIONS

(Should be divided into Short Answer type, Long Answer type, Numerical, Objective type)

4.22.1 Short Answer type

PNk WwW =

What do you understand by dummy and real indices?

Explain Kronecker delta. Discuss some properties of kronecker delta.
Explain contravariant vectors.

Explain covariant vectors.

Discuss contravariant tensors of second rank.

Discuss Covariant tensor of second rank.

What do you understand by mixed tensor of second rank?

Explain symmetric and antisymmetric tensors.

4.22.2 Long Answer type

1.

98]

Show that the sum or difference of two tensors of the same rank and same type is
also a tensor of the same rank and same type?

What do you understand by Contraction of tensors? Discuss it with an example.
Explain Metric tensor in Riemannian space.

Explain Christofell’s 3-index symbols. Establish Relations between Christofell’s
symbols of first and second kind.
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UNIT 5:

Differential equations: Linear ordinary differential equations of first and second order

5.1 Objectives

The Learning objectives of this unit are

1. To know the difference between linear and non-linear differential equations.

2. To classify the differential equations according to their order.

3. To find the solution of linear first and second order differential equations using different
approaches.

5.2 Introduction

A great many number of problems in nature, either scientific or non-scientific, involves rate of
change of one quantity with respect to another, this referred to as derivative in mathematics.

A differential equation is an equation expressing a relation between a function and its derivatives
it contains derivatives either ordinary or partial. Most common example of differential equation,
which every one might have come across with, is the Newton’s second law. The equation is F =

ma, where F is the force applied on a particle of mass m and ‘a’ is the acceleration which results
2

. . d
because of that force. We may also write the equation as: F = m d—tfwe can see that the force on

the body is expressed as a double differential of the position w.r.t time. Other frequently
encountered differential equations are; the Laplace’s equation, the Poisson’s equation and many
others.

53 Ordinary and Partial Differential equations

The function which is being described by a differential equation decides whether it is an ordinary
differential equation or partial differential equation. If the function has single independent
variable it is ordinary differential equation, whereas if the function has more than one
independent variable then it is partial differential equation. Ordinary differential equations are

o d C . :
expressed as complete derivatives (E) , whereas the partial differential equations are expressed

as ().

As an example consider the function y = 2x or any higher powers of x, now the differential
equation expressing the different derivatives of the function would be called an ordinary
differential equation since the function has a single independent variable x.

On the other hand for the function of type y = xz + xz°, the differential equation should contain
terms representing rate of change of y with respect to both the variables x and z, thus this
differential equation is termed as partial differential equation.

Example of ordinary differential equation isNewton’s second law, rate of change equations etc
Examples of Partial differential equations are Schrodinger equation, Maxwell’s equations etc

Order of a differential equation:
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The order of a differential equation is the order of the highest derivative of the unknown function
involved in the equation, for example a first order differential equation contains only first order

. . . . dy
derivatives such as the expression for slope of a line; m = - whereas a second order

differential equation contains at least one second order derivative such as Newton’s second law.
The order of a differential equation does not depend on whether the equation is ordinary or
partial. Some examples of differential equations ca be summarized as

ay +by +cy=g(t) (1)
2
Sin()5F=A-NT+ye™. @)
5.4 Linear Differential equations

The differential equations are further classified as linear differential equations and nonlinear
differential equations. The linear differential equations are those differential equations in which
the dependent variable and their derivatives do not occur in product form or in powers other than
single power. For example a linear differential equation ca be written as

an(t) YO + an(®) y" eyt - - - - +ai(t) y (t) +ao(t) y(t) = gt). (3)

The coefficients ay(t), ..... a,(t) and g(t) can be zero or non - zero functions, constant or non - constant
functions, linear or non — linear functions. Only the function y (t) and its derivatives are considered to
determine whether a differential equation is linear or not.If a differential equation cannot be written in the
form of (3) it is a non - linear differential equation as is equation (2). The fundamental equations of
atmospheric physics are non-linear.

For the present unit we will restrict ourselves to linear differential equations of first and second orders
only as these are more frequently involved in studying different physical phenomenon.

We start here with first order ordinary linear differential equation.

5.4.1 Linear Differential equation of First order

A first order ordinary linear differential equation is one which involves only first derivative of the
independent variable.
The standard form of first order ordinary differential equation can be expressed as:

y +Px)y=Q(x). 4

where P and Q are functions of x.

As defined this equation is a first order differential equation as the derivative of the unknown variable y
is of first order only, the equation is also linear because dependent variable y is neither in product form
nor in any power other than single power.

A first order linear differential equation can be encountered in different fields of study such as scientific
research, engineering, and economics etc.
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An example of first order linear differential equation we may study the radioactive decay equation.

According to law of radioactivity, a unstable nuclei decays to more stable nuclei and the rate of this decay
is proportional to the initial number of the unstable nuclei, we may express this as

dN N
at &
dN N
dt
N _ Adt
- =

This is of the form of eq 4, a linear differential equation of first order
The solution of this differential equation can be done as
Integrating both sides we get

InN = —Adt + Constant.
Using initial conditions we can solve this to get N = Nge™.

Further example of differential equation of this type may be encountered in electronic circuits such as a
simple series circuit as shown below

V@ - C

oo vTol dumnn
L

For the given series circuit above containing resistor R, capacitor C, and inductor L and a source of emf
V, we can study this circuit using a first order linear differential equation as follows

If at time t the current flowing through the circuit is I(t) and the charge on the capacitor is q(t) then I =
dq/dt, The voltage across R is R, the voltage across capacitor is q/V and the voltage across inductor is
L(dI/dt). At any time t we must have

LdI+RI+q—V
dt c
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This is the required equation of which we have to find the solution.

Now we move on to study the techniques to solve a first order linear differential equation.
5.4.2 Solution of a First order linear differential equation

A Solution of a differential equation (in the variables x and y) is a relation between x and y
which, if substituted into the differential equation, gives an identity.

There are three main techniques for solving linear differential equations depending on the form.

5.4.2.1. Separation of variables method: If the first order differential equation is of the form

dy
a - F(ny)

F(x,y) can be expressed as F(x,y) = X(x)Y(y) (separation of variable form).
Then the equation can be expressed as

d
— = XCYO)

Ay _
o) X(x)dx.

The equation can thus be solved by integrating both sides as

fd7y= jX(x)dx.

Examples

1. Solve the following differential equation using separation of variable method
“ 4
)y = Ty .
i) x’yy = ¢”, x#0.

Sol. 1) The equation can be solved by separation of variables method we separate the variables as

dy 4y
dt  t
dy dt
4y_ t

Integrating this we get
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dy dt
,[E_,[T-l_ Cq
In

In
2 In|t| = C;

In

1
yi# = In|t] = ¢4

1
y% = te“
y = Ct*.

This is the general solution of the given differential equation which defines a family of solution
curves corresponding to various initial conditions.

Sol. ii) Xyy=¢".
This equation can be written as

ye Vdy = x"?%dx.

Now the variables are separated, now we integrate it

fye‘ydyz fx‘zdx

—Q+y)e¥+C= —x1

where C is a constant of integration.
The solution can thus, be expressed implicitly in the form as

x(y+1) =1+ Cx)e”.
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5.4.2.2 Using Integrating factor: This method is used for those first order linear differential
equations, which are in standard for as

y' +p@®)y =q(®).
The ODE can be solved using an integrating factor as [ = el Pt
Next step is to multiply both sides by this integrating factor
e/POUy +p(t)y] = eI POdq(2)

[efp(t)dty]f — efp(t)dtq(t)

o/ POty j el POt g(r)dt + C.

Now solving the integration on R.H.S and dividing both sides by the integrating factor gives the
general solution of the equation.

Examples

Q.2. Solve the following equations using Integrating factor method
Hy —2ty=t
iy +2 =2

x3°

Sol.i)y' =2ty =t

We first find the integrating factor as I. F. = e/ ~2tdt
Multiplying both sides by e/ ~2t4t = ¢~t*

We get
d
ef—tht d)t/ _ ef—thtzty — ef—thtt
d [ —2tdt [ —2tdt
I [e y] = e t

ef—thty — f el —2tdty g

e t’y = je‘tztdt
tZ

1
y =Ce -3
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Where C is constant

.\ 4 . 3y e*
Sol.i) y' +—==—
* . x3 . fidx 1 3
The integrating factor LF = e’x™* = !"*" = x3

Now we multiply both sides of the differential equation by this integrating factor

3 e*
X

3 !
x*[y" + 3

d
x3%+3x2y = e¥

a3 N _ _x
— (x7y) = e*.
Integrating both sides we get
x3y = fexdx+C.

Which gives the solution as

5.4.2.3. Change of Variable method:
This method is applied for those differential equations which gets convertible to integrable
forms under proper substitution.

Examples
i)d—y = e* V(e* - &%)
dx

Sol. Multiplying both sides by e* we get

d
ey% = (e** — e*eY)

eyj—i: + e¥eY = e?¥,

. . d dv
Put e¥ = v, which gives e¥ = = =
dx dx
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This equation is linear in v and x.

Put P=¢"and Q = &**

Integrating factor . F=1.F = elpdx = ge*

Multiplying both sides of the differential equation by L.F, we get

dv

eex[a+ ve*] = e® e?*

e

i[veex] = g 2X,

Integrating both sides we have

ex

ve® = feexezxdx+C

Pute* =t
ve® = jtetdt +c
= (t—1)et+C= (e*—1)e +C

v=eX—1+Ce ¢

e¥ = eX—1+Ce®".
5.5 Second order linear differential equation
A second order linear differential equation is one in which the highest order derivative occurring in the
equation is 2 and the coefficients are functions of only x. The general form of the second order linear

differential equation can be written as
y'+a(x)y" +b(x)y =Q(x)
This is an example of inhomogeneous differential equation of second order; the homogeneous differential
equation of second order is obtained if Q(x) becomes zero.
y'+a()y +b(x)y =0

The second order linear differential equations are used to model many situations in physics and
engineering. The behavior of simple models such as spring mass - system and an LCR circuit can
be studied using the differential equations involving both single as double derivatives, these can
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then be used to approximate other more complicated situations such as the bonds between atoms
or molecules are often modeled as springs that vibrate, as described by these same differential
equations.

5.5.1 The solution of the differential equations of second order

The two forms of the second order differential equations as described above i.e. non-
homogeneous and homogeneous differential equations are related to each other and there is an
important connection between the solution of a nonhomogeneous linear equation and the solution
of its corresponding homogeneous equation. The two principal results of this relationship are as
follows:

Theorem 1:

fy,y, yn are n linearly independent solutions of the differential equation

Vieay™ +ay™”  tay=0,theny=cyitceyt + cnyn is also its solution,
wherecj,co, cn are arbitrary constants.

Theorem 2:

If y(x) is any particular equation of the linear non homogeneous equation, and if y,(x) is the
general solution of the corresponding homogeneous equation, then the general solution of the
linear non homogeneous equation is the linear sum of y,(x) and the particular solution of given
non- homogeneous equation.

The general solution of the homogeneous linear differential equation part is called the
complementary function (C.F) of the non - homogeneous equation whereas the other part is the
particular integral (P.I) of the equation.

5.5.2 Complementary function:

For a non-homogeneous differential equation,the complementary function is the solution of the
differential equation with the right hand side term replaced by zero. To find C.F we need to first
find the auxiliary equation.

The Auxiliary equation (Characteristic equation): The equation obtained by equating to zero the
symbolic coefficient of y is called the auxiliary equation.

Steps for finding Auxiliary equation

Replace y by 1.
Replace % by m

n

d’y 2 a"y
Replace = by m” and so on replace

dx™

P b=

By doing so we have an equation in m of degree n called auxiliary equation.
5.5.3  Rules for finding the complementary function
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Write the corresponding characteristic equation for the given differential equation.
The auxiliary equation would be an equation in m of degree n, so it will give n values of
m on solving.

3. fmy,my, ........ m, are the roots of the auxiliary equation, then the complimentary
function depends upon the nature of the roots of the auxiliary equation. The different
cases which arise are discussed as follows.

CASE 1

N —

When the roots of the Auxiliary equation are real and distinct: In this case the general solution of
the homogeneous differential equation comprises of only complementary function.
The general solution is given as
y = Cie™* + Ce™2*,

Example:
Solve the equation y'+ y —6y=0.
The auxiliary equationis m? + m — 6 = 0.
The roots of this equation can be obtained as

m*+3m—-2m—6=0.
Which gives m; =2 and m, = -3.
Since the roots are real and distinct the solution of the differential equation would be

y (x) = Ce?* + C,e 3%,
This solution can be verified by differentiating and substituting in the original differential
equation to get zero.

CASE I

When the roots of the auxiliary equation are equal: In this case the solution of the differential
equation is written as y(x) = C;e™ + C,xe™*, where m is the common root.

Example:

Solve the equation  4y" + 12y’ 4+ 9y = 0.

The auxiliary equation of this differential equation can be written as
4m? 4+ 12m +9 = 0.

Which can be factored as (2m+3)?2 =0.

The two roots of this equation are same and thus m = -3/2.

Thus the solution of the given differential equation would be
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3 3
y(x) = Cie 2" + Crxe 2°.
CASE III

When two roots of the auxiliary equation are imaginary: In this case the solution of the
differential equation involves sine and cosine function, if the roots of the auxiliary equation are
my; = a + iff and m, = «a — if then the solution of the differential equation would be

y(x) = e™(Cycosfx + C,sinfx).

Example:

Solve the equation y' =6y +13y =0.

The auxiliary equation of the differential equation would be
m? —6m+ 13 = 0.

We can obtain the roots of this equation as

—b +Vb? — 4ac
m= g )

Which gives

The solution of the differential equation would be
y(x) = e3*(Cicos2x + C,sin2x).
CSAE IV

When roots of the auxiliary equation are repeated imaginary: If the two roots of the differential
equation are m; = m, - o + iBand m3 = m4 = o —1f3, then the complementary function will be

y(x) = e®™(C; + Cyx)cosPx + (C5 + Cyx)sinPx.

This would be the case for fourth order linear differential equation. Since we are discussing
second order linear differential equation this case is not elaborated.

5.5.4 Rules for finding the Particular Integral
For a non -homogeneous second order linear differential equation the solution comprises of both

the complimentary function and the Particular integral part. Depending on the nature of the term
Q(x) on the R.H.S of the differential equation we have the following cases for the solution.

Case I: When Q =™

. 1
First findthe PTas: P.I.= o) Q
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1 ojax — 1 ax ;
¢ @ ,provided f(a) # 0.

Case II: When Q = sin (ax + b) or cos (ax +b)
Replace D? by —a’.

If denominator reduces to a constant, it will be the final step in finding P.1.

MSCPH501

If denominator reduces to D only, we are then only to integrate the given function Q once.
If denominator reduces to a factor of the form aD + 3 then operate by its conjugate aD — 3 on

both numerator and denominator from left hand side such as

aD — 1
aD — plaD +

sin(ax + b)|.

By doing so, denominator will become a?D? — 2% which in turn reduces to a constant by

replacing D? by —a’.

Now operating sin (ax + b) by aD — B we can find the required particular integral.

CASE III: When Q = x", m being a positive integer.

_ 1 m
Here P.I = f(D)x .

Take out the lowest degree term from f(D) to make the first term unity (so that Binomial theorem

for a negative index is applicable). The remaining factor will be of the form

Examples:
Q.1. Solve the following differential equations

d?y dy _
262 +5y=0.

szcZ
.o dcy .
11) E + 4ly = 0.
Sol.i) First we write the corresponding characteristic equation
k* -6k +5y = 0.

The roots of this equation are k; = 1 and k, = 5.
Since the roots are real and distinct, the solution has the form

y(x) = c1e* + ce™.

Sol. ii) The characteristic equation is
k> +4i=0.

The roots of the equation are k; , k, = £2iVi .
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These can be expressed in trigonometric form as

in/2 in/4

i = sin 7/2 + i cos /2 =™ which implies Vi = ¢™* = sin 7/4 + i cos w/4.
The roots of the equation can thus, be written as
k; = 2i (sin w/4 +1 cos m/4) and k, = -2i (sin /4 + i cos /4)
ki=2i (12 +i/V2) and ky = -2i (12 + i/N2)
ki =-2N2 + 2i/N2 and k, = -2i/\2 + 22

ki=-\2+\2iandky= V2-2i.
The general solution of the given differential equation would thus be

y (x) = Cle(-\/zwz x4 Coe (N2 -2i) x
where C,; and C, are arbitrary constants.
5.6 Summary
In the present unit, we studied about forms of the differential equations. The different forms of
the differential equations were introduced, such as linear, non-linear, ordinary and partial
differential equations. The order of the differential equations was defined and difference between
first order and second order differential equation was elaborated. We also presented some first
and second order linear differential equations and studied different approached to determine their
solution.
5.7 Glossary

Equation: relationship between dependent and independent variable.

Differential equation: equations involving dependent variable and their derivatives with respect
to independent variables.

Linear differential equation: no multiplication among dependent variables.
Ordinary differential equation: Equations involving only one independent variable.

Auxiliary equation: An equation obtained from the standard form of a linear differential
equation by replacing the right members by zero.

Complementary Function:general solution of auxiliary equation of linear differentialequation.

Particular Integral: Any solution to a differential equation
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5.10 Terminal Questions

Short Answer type questions
Q.1. What is the order of the differential equation Z—z + 4y = Sinx ?

Q.2. The process of formation of the differential equation is given in the wrong order,

1) Eliminate the arbitrary constants.

2) Differential equation which involves x,y,dydx.

3) Differentiating the given equation w.r.t X as many times as the number of arbitrary constants.
Write the correct order.

2
Q.3. Consider the differential equation‘:le -3 % + 2x = 0, if x =0 at t=0, and x=1 at t=1,
determine the value of x at t=2.

Q.4. Find the Particular solution of the differential equation Z—z = % ,y(1)=1.

2
Q.5. Solution of the second order differential equationd—y -5 % +ky =0 isy=¢”, the value

dt?
of k is.
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Long Answer type questions

Q.1. Solve the Differential equation x 2= x4 3y.
dx

. . d? d x

Q.2. Find the Solution ofd—xJz/ -2 d—z +y= ﬁ
2

Q.3. Find the Solution of% +7y=0

. . d?’y dy _ _
Q.4. Find the Solution of 3 Tz 2 Y= 2x — 3.

Q.5. Solve the initial value problem % +xy =x,y(0) =

5.11 Answers

Answers to Short Answers type questions
1. First Order

2.3,1,2

3e’te

4. y=xlog [x] +x

5k=6

Answer to Long Answer type questions

1. y=-xz+Cx3
2.y=Ae" + Bxe" - %ex In(1 + x2) + xe*arctanx
3.y =AelV7x 4 Be~iV7x

1
4. y=Ae*+Be 3 —2x+7
2

X

Sy=1—-7e 2
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6.1 Objectives

The learning objectives of this unit are

1. To introduce students with Partial Differential Equations
2. To derive Heat and wave equations

3. To find solutions of PDE using boundary conditions.

6.2 Introduction: Partial differential equations describe the behavior of ,any engineering
phenomena, such as wave propagation, fluid flow (air or liquid), vibration, mechanics of solids,
heat flow, electric field, diffusion of chemicals etc. Many of the problems of mathematical
physics involves the solution of partial differential equations. In fact, a single partial differential
equation may apply to a variety of physical problems.

A partial differential equation is an equation involving functions and their partial derivatives,
such as the heat equation, the wave equation and the Laplace’s equation.

These are termed, as partial differential equations since these involve partial derivatives, which
are derivatives of the functions having more than one variable.

To start with the partial differential equations we first describe the partial derivative and then try
to study some important partial differential equations such as the heat equation, the wave
equation and the Laplace’s equation.

6.3 Partial Derivative: For a function dependent on more than one variables, the change in
the function with respect to one variable keeping the other variables constant is represented by
partial derivative. For example let f be a function of x,y,z and ¢, represented as f(x,),z,¢), the
change in function /' with respect to change in variable x, keeping the other variables constant is

represented by, % .
6.4 Examples of Partial differential equations:
?u 9
——2—==0
ot? 0x?
UL L
dy? “oxz T
d 0%u
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The partial differential equations are classified based on their order, form and nature as first,
second, third or higher orders, linear, non-linear, homogeneous and non-homogeneous PDE’s
respectively.

6.5 Order of a Partial differential equation: The order of the highest derivative
term in any partial differential equation is the order of the PDE. All the above equations given
above are second order partial differential equations. Depending on the nature of the problem,
first or second order PDE’s are used to describe it. For example, the gas flow problem, the traffic
flow problem, the phenomena of shock waves, motion of wave fronts, Hamilton Jacobi theory,
nonlinear continuum mechanics and quantum mechanics etc. can be studied using first order
PDE’s, whereas the problems of fluid mechanics, heat transfer, rigid body dynamics and
elasticity are modelled by second order PDE’s.

Some of the examples of first and second order PDE’s are

ou + ou =0; t t ti
xtay= 0 ransport equation
o%u + o%u =0 Lapl tion in 2D
oz Tz = O aplace equation in
ou 0%*u — 0 Heat i
5 3z 0 eat equation
0°u  0°u 0w .

57 gz O ave equation.

Linear PDE: If the dependent variable and all its partial derivatives occur linearly, i.e. degree at
most one, in any PDE then such an equation is called linear partial differential equation,
otherwise a non-linear PDE, in above equations all except the last are linear PDE.

Quasi — Linear PDE: A partial differential equation in which all the terms of the highest order
derivatives of dependent variable occurs linearly. The coefficients of such terms are functions of
only lower order derivatives of the dependent variables.

Homogeneous PDE:A linear differential equation is termed homogeneous if the dependent
variable and its partial derivatives appear in terms with degree exactly one, or it has no,non-
differential terms. If it has one or more non-differential term, it is non-homogeneous or
heterogeneous PDE.

6.6 Solution of a partial differential equation

The solution of Ordinary differential equation contains arbitrary constants, whereas the solution
to partial differential equations contains arbitrary functions. While an ODE of order m has m
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linearly independent solutions, a PDE has infinitely many solutions. These are consequences of
the fact that a function of two variables contains immensely more of information than a function
of only one variable. Some of the method for solving PDE are:

Separation of variables method

Integral solutions employing a green function

Use of Integral Transforms

Numerical calculations

We will now discuss some important partial differential equations.

6.7 The Laplace Equation: The steady state of a field that depends on two or more

independent variables, which are typically spatial. The Laplace equation arises as a steady state
. oy ] a2
problem for the heat or wave equations that do not vary with time so that a—’: =0= a_tZ

Laplace equation in 2D.

The physical problems in which the Laplace equation arises are
1) 2D steady state heat conduction

i1) Static deflection of a membrane

i11) Electrostatic potential.

The general form of a 2D Laplace equation is

0%u N %u 0

axz  dy?
We can relate this equation to the steady state heat equation, which do not vary with time.
Secondly, we can also relate it to the equation of continuity for incompressible potential flow.

The Laplacian represents the flux density of the gradient flow of a function. For instance, the net
rate at which a chemical dissolved in a fluid moves toward or away from some point is
proportional to the Laplacian of the chemical concentration at that point.

The three-dimensional Laplace equation is

0°u  0%u 0d*u

0x? + 0y? + 972 0.

Since there is no time dependence in the Laplace’s equation, there is no initial condition to
satisfy by their solutions, However there should be certain boundary condition on the bounded
curve in which the differential equation is to be solved.

Typically, there are three types of boundary conditions given as
6.7.1 The Dirichlet Boundary Condition:

This boundary condition when imposed on an ODE or PDE specifies the values that a solution
needs to take along the boundary of the domain.
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The solution u (x,y) of the Laplace equation in a domain D is specified by boundary dS as
u(x,y)=f(x,y)ondS

where f (X, y) is a given function. The question of finding solutions to such equations is known
as Dirichlet problem and is expressed as

V2u(x,y) = 0in D;u(x,y) = f(x,y)on dS.

6.7.2 The Neumann or second type boundary condition:
It is the boundary condition which when imposed on an ODE or PDE, specifies the values in
which the derivative of a solution is applied within the boundary of the domain.

du(x,y)

I =g(x,y), for x,y €dS.

In physical terms, the normal component of the solution gradient is known on the boundary. In
steady state heat flow problem, Neumann boundary condition means the rate of heat loss or gain
through the boundary point is prescribed.

The Laplace equation together with Neumann BC are called the Neumann BVP or the Neumann
problem and is written as

ou(x,
V2u(x,y) = 0in D; % = g(x,y) for (x,y) € dS.

The Neumann problem have no solution unless the average value of the function g on dS is
assumes zero. This assumption is known as the compatibility condition.

6.7.3 Robin’s type condition: This boundary condition also called as the third type
boundary condition, when imposed on an ordinary or a partial differential equation, is a
specification of a linear combination of the values of a function and the value of its derivative on
the boundary of the domain.

ou(x,y)
T + c(u - g) = 0.

C is a constant and g is a function, which can vary over the boundary. The Laplace equation
together with Robin’s conditionis known as Robin’s boundary value problem or mixed problem.

6.8 Solution of 2D Laplace equation with Boundary Condition

Consider the geometry of a rectangle given by 0< x <L, 0<y < H. For this geometry the Laplace
equation along with the four boundary conditions is

" d>u  9%u
Veu = ﬁ‘l— a_yZ:O

u(0.y) = gi(y);
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u(L, y) = g:(y)
u(x, 0) =f1(x)
u(x, H) = f5(x).

There is no initial condition here and both the variables are spatial variable and occur in a 2™
order derivative, so we need two boundary conditions for each variable.

The PDE is both linear and homogeneous but the boundary conditions are only linear but not
homogeneous. To solve the Laplace equation completely it need to be solved four times. Each
time the equation is solved, one of the boundary condition can be non homogeneous while the
remaining three will be homogeneous.

The four conditions are as represented by the below figure

ul[x,Hj:D ug[x,H:l:U
uz[ﬂ,y):[]
\\\A
 (0,0)=0] V=0 Vi =0 |%(Ly)=g(»)
‘\\
ul[L,y):D
(% 0= A(%) a(0)=0
uﬂx,H):fz[x) By [x,H)= 0

1, (0,0 =g, (¥)

u(0,))=0 V=0 Vi, =0 |u,(L,y)=0

u3[x,0):0 u4[x,0):0

These four equations can be solved by separation of variable method. We proceed by solving for
u;as follows.
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us (x,y) = X(x)Y(y).

The Laplace equation is

d’u  0%u
b ——=0

+
dx?  0y?
Substituting the solution in the equation, we get
XII + YII B 0
X v 7
On separating the variables we get

X _ Y,
X Y '
Which gives
X"—kX=0
Y"+kY =0.

Substituting A* = -k .
The solution u(x,y) can be written as

u(x,y) = (A Cos Ax + BSin Ax)(CCosh Ay + DSinh 1y).

With the boundary conditions

u(0,y) =0
ulL,y)=0
we get

A=0and A, =nw/L,n=1,2,3

So the solution becomes

nmx

nm
u,(x,y) = SinT (AnCosh Ty + B,Sinh

The boundary condition u(x, H) = 0 gives
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So the solution can now be written as

o)

nm
u,(x,y) = Zun(x y) = ZSm—(A Cosh y+ B,Sinh Ty)
n=1
niwx Sinh TlT[(I‘é Y)
up,(x,y) = z ZAn in T
SInhn —— I

The remaining boundary condition u(x, 0) = f;(x) can be used to find the value of A,

[o e}

nmx

f(x) = AnSin T
n=1

3 ZJL o

—Lof(x)mL X.

Similarly other solutions u,, u3, u4 can be determined and the overall solution can be written as

u=wtu +us;+uy.

6.9 The Wave equation: The Vibrating string

An important second order partial differential equation for description of waves.

Consider a vertical string of length L, that has been tightly stretched between two points at x =0
and x = L.Since, the string is tightly stretched, we can assume that the slope% of the displaced

string at any point is small. The string never getsfar away from its equilibrium position

Consider a point x on the string in this equilibrium position i.e. the location of the point at t = 0.
As the string vibrates this point will be displaced both vertically and horizontally, however if we
assume that at any point the slope of the string is small then the horizontal displacement will be
very small in relation to vertical displacement.

So at any point x on the string the displacement will be purely vertical, let this displacement be
u(x,t). we now write the 1D wave equation as

The wave equation in one dimension case can be derived from Hook’s law as follows.

Imagine an array of little weights of mass m interconnected with massless springs of length / and
spring constant k.
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I K m K I
uflxl U':;”“"]' uflx+2

Here the dependent variable u(x) measures the distance from the equilibrium of the mass situated
at x, So that u(x) essentially measures the magnitude of a disturbance, travelling in an elastic
material.

The forces exerted by the mass m at the location x + / are

2

Fyewton = m.a(t) = mos u(x+1,t)

Fuook = Fx2i — Fc = k[u(x + 20, t) —u(x + [, t)] — k[u(x + [, t) —u(x,t)]
Fyoor = klu(x + 21,t) — 2u(x + [,t) — u(x, t)].

Equating the two forces, we get

2

m.ﬁ u(x+1t) = klu(x+2Lt) —2u(x + L, t) —u(x,t)]

2

0 k
32 u(x+Lt) = — [u(x + 2L, t) — 2u(x + 1, t) — u(x, t)].

If the array of weights consists of N weights spaced evenly over the length L = Nh of total mass
M = Nm, and the total spring constant of the array K = k/N we can write the above equation as

0° KL? [u(x + 21, t) — 2u(x + I, t) — u(x, t)]

ﬁu(x+l,t)= M %

Under the limits N — oo and h — 0, the equation attains the form

0%u(x,t) 1 0%u
otz v2ox?’

Where v = /% is the propagation speed of the wave.

The generalized 1D wave equation can thus be written as
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0%u 1 0%u

ot2  v29x?’

For the wave equation, the only boundary condition is that of the prescribed location of the
boundaries.

The 2 D and 3D version of the wave equation is

0%u
ot?2

2y72

= c“V4u.

6.10 The Heat Equation: It is the equation, which governs the temperature distribution
in an object. There are in fact several forms of the heat equation; we will focus on one of the
forms in 1D and 3D. The heat equation is, derived using the principle of conservation of energy
and the fact that heat flows from hot regions to cold regions.

The 1D heat equation: Temperature distribution in a rod of length L

Consider a uniform rod of length / with non uniform temperature lying on the x axis from x = 0
tox =1.

Let u(x,t)denotes the temperature at x at a time t, and is assumed constant throughout the rod at
each time t.

¥ i A

7 07T D

™,

f

By the principle of energy conservation the net change of heat inside the segment between x and
x + A x is equal to the net heat flux (influx at x and out flux at x + Ax) across the boundaries and
the total heat generated between x and x + A x.

If ‘s’ is the, specific heat capacity of the rod, ‘k’ is the thermal conductivity of the rod, ‘p’ the
density of the rod, ‘A’ the cross sectional area of the rod and f{x,t) is the external heat source,
then we can have

Total amount of heat inside the segment between x and x + A x at time t = f;ﬁ o spAu(x, t)dx.
.. d rx+Ax x+ Ax

Net change of heat inside the segment = — fx spAu(x, t)dx = fx spA u.(x, t)dx .

Net heat flux across the boundaries = kA ;—x [u(x +Ax,t) —u(x,t)]

= kA[(ux(x +Ax,t) — u,(x, t))].
du

Where U, = a .
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A
Heat generated due to external heat source between x and x + Ax = A4 f;” *

By principle of conservation of energy we now have

o Y spAu,(x, t)dx = kA[(up(x + Ax, 1) — uy(x,0))] + A [ ax

X

f(x, t)dx.

X

Applying mean value theorem for integral we have

spAu(§4,)Ax = [(we(x +Ax,t) — u (x,t))] + Af (&5, 0)Ax.

Where &, &, € (x,x + Ax) hence

u(§y,t) = %[(ux(x * Ax'Atj — Ul t))] n f(izp, t)'

In the limit A x = 0, we arrive at

u(x, ) = a’uy, (x,t) + F(x, t).

f(x, t)dx.

MSCPH501

Where a? = ﬁ is called the thermal diffusivity of the rod and F(x,t) = é f(x,t)is called the heat

source density.

Now there arises three cases

1. The case when the lateral boundary is not insulated as above, and heat is allowed to flow in and out

across the lateral boundary at a rate proportional to the difference between the temperature of the rod

u(x,t) and the surrounding medium u,, the conservation of heat principle yields

Ug = 6rzuxx - Blu—u,), pB>0.

The heat loss or gain is proportional to the difference between the temperatures of the rod and

surrounding medium, B is the constant of proportionality.
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2. If, the material of the rod is uniform then k is independent of x. for some materials the value of k
depends on the temperature u and hence the resulting heat equation is nonlinear and given as:

1 a{k( )au}
Ye = cp 0x W

3. If, the material is non-homogeneous i.e one-half the rod is made of one material and the other half of
different materials, the diffusion within the rod depends on x. The heat equation is written as

U= a?(uy,, 0<x<I.
With
l
a, = aq, 0<x< E,
X, 2 < x <1,

Where a; and a, are the thermal diffusivity of the two materials respectively.

6.11 Summary

In the present unit we studied the partial differential equation and its different forms. We also
studied different boundary value problems and methods to solve the partial differential
equations. The Laplace equation, the Heat equation and the wave equation for one dimensional
and two dimensional cases were discussed in detail.

6.12 Glossary

Partial derivatives: Derivative of a multivariable function w.r.t any one, keeping others fixed.
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Linear PDE: Dependent variable and all its derivatives occur in first order.

Quasi-Linear PDE: All terms of highest order derivative of dependent variable occurs linearly.

Homogeneous PDE: A differential equation is homogeneous if it is a homogeneous function of
the unknown function and its derivatives

6.13 References
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6.14 Suggested Readings

° I.N. Sneddon, Elements of Partial Differential Equations, Dover Publications, New
York, 2006.

. Peter J. Olver, Introduction to Partial Differential equations, Springer, New York
2014,

6.15 Terminal Questions

Short Answer type questions

0%u
dxdy

2 2
1. The nature of the partial differential equations 371; +4 + Z—y’; =0is
i) elliptic
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ii) parabolic
iii) hyperbolic

iv) none of the above.

2. The equation E:TZ = c? %is known as
i) one dimensional heat equation
ii) One dimensional wave equation
iii) Laplace equation

iv) Poisson’s equation.

2 2
3. Using substitution which of the following are solutions of the PDE% = 9371;

i) Cos (3x-y)
i) X2 +y?
iii) Sin (3x-3y)

iv) e >™Sin(my).

4. The three dimensional heat equation among following is

. Ou o%u | 9%u  9%u
) S =k(Ga+ 550

.. 0%u 2y 0%u = 0%u

i) 5=k (Gt 55+ 55)

ou ou 6u)

dx ay 0z

., Oou 0%u 0%u 0%u

iv)]— = —k ( )
) at dxdy + dyoz + 0z0x

im%=k(
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5. The boundary condition which include direct boundary value is
i) Dirichlet boundary condition
ii) Neumann boundary equation
iii) Forced boundary equation

iv) Discrete boundary equation.

Long Answer type questions

d

1. Solve ﬁ = 6% + u using the method of separation of variables, if u(x,0) = 10 e™.

2. Solve the initial boundary value problem
ou 0%u
5—35,0 <x<mil<t<ow
u(0,t)=u(mt)=0,0<t < o0
u(x,0) = 3Sin 2x — 6Sin 5x, 0 < x < .
Zu 5, 0%u

3. Consider the initial value problem 27 =T, o<, t >o0 , IC u(x,0) = 0, u(x,0) = Sin (x)
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6.16 Answers

Answer to short answer type questions
1.iii

2.

Solution to Long Answer type questions

1.10e* ™3

2.u(x,t) = 3¢ ' Sin(2x) — 6 e " Sin(5x)

4. u(x,t) = —% [Cos(x + ct) — Cos (x — ct)].
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UNIT 7: LEGENDRE’S AND
DIFFERENTIAL EQUATIONS

BESSEL’S

Structure
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7.3 Definitions
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7.3.2 Real and analytic function

7.3.3 Regular and Singular points

7.3.4 Leibniz’s rule
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7.4 Series solution of differential equation

7.4.1 Power series method
7.4.2 Theorem
7.4.3 Frobenius Method

7.5 Legendre differential equation

7.5.1 Solution of Legendre equation
7.5.2 Legendre Polynomials P,,(x)
7.5.3 Rodrigue’s Formula

7.6 Properties of Legendre Polynomial P, (x)

7.6.1 Generating function
7.6.2 Orthogonality
7.6.3 Recurrence relations

7.7 Bessel’s differential equation

7.7.1 Solution of Bessel’s equation
7.7.2 Recurrence relations

7.7.3 Generating function

7.7.4 Orthogonality

7.8 Summary
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7.9 Answer to SAQs
7.10 References / Bibliography

7.11 Terminal and model Questions

7.1 Objective
The plan of this unit is as follows:

e First, [ am going to briefly review linear second order differential equations which have
already been introduced to you in unit 5(Ordinary differential equations of First and
Second order).

e Second, [ am going to introduce power series methods to solve differential equations.

e Third, we will apply the power series methods to solve above two special differential
equations.

e We will learn other methods to generate polynomial like generating function, Rodrigues
formula.

e We will discuss various properties of the polynomials such as orthogonality, recurrence
relations.

7.2 Introduction

You have already studied the methods to solve first and second order differential equations. The
solution of which are continuous i.e. exists for all the values over the real line. However there are
certain differential equations whose solution exists only in a defined range. In this unit we are
going to learn how to solve linear and homogeneous second order differential equations using
power series method. Our focus will be to seek solution of two of the four special forms of
second order differential equations which are linear and homogeneous in nature. The differential
equations are:

a) Legendre Differential Equation:
1-x2)y"-2xy"+nn+1)y=0.

b) Bessel’s differential equation:

x2y" +xy' + (x*2—vHy =0.

The solution of the differential equation turns out to be a polynomial which plays an important
role as a part of solution to various important problems of different fields. We see the existence
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of Legendre polynomials in numerical analysis as a solution of Gaussian quadrature integration
method. For weight function as 1the Gauss quadrature method turns out to be Gauss-Legendre
quadrature. Bessel’s polynomial occurs as one of the solution of partial differential equation of a
circular membrane. We also see presence of Bessel polynomial in the intensity distribution of
very interesting phenomena well known as Airy’s pattern (It is diffraction pattern of a star light
when the star is seen through a circular lens/aperture). So let’s proceed to learn detail description
of these complex but beautiful differential equations.

7.3 Definitions

In this section we will review and learn important definitions which will be used in
understanding the mathematical development of the differential equations.

7.3.1Differential equations of second order

A second order linear differential equation is a differential equation that can be written in the
following form:

fy" + gy +h(x)y =](x). €]

d? d . . . . .
Wherey'" = d_xZ' y' = ﬁ and f(x) # 0. In any linear differential equations there is no
products of the function y(x), and its derivatives and no terms of y and its derivatives with
. dy (dy\? az
power other than first power, for example: terms like y?2, yé ,(é) or yd—x}; etc.. are not

part of linear differential equations. The coefficients f(x), g(x), h(x) and J(x) can be zero or
non-zero functions, constant or non-constant functions, linear or non-linear functions. Only y(x)
and its derivatives are used to determine whether equation is linear or not.

We can write equation (1) as follows

L9® k@
T Y T

y'+p@)y' +qx)y =rkx). (2)

If r(x) = 0 then equation (2) is homogeneous equation.
7.3.2 Real and analytic function

A real function f(x) is called ANALYTIC at a point x = x, if it can be represented by a power
series in powers of (x — x,) with radius of convergence R > 0, the convergence interval is
(xO - R, xO + R).
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7.3.3 Regular and Singular points

A regular point of y"' +p(x) y + q(x)y = 0 is a point x, at which the coefficients p(x) and
q(x) are analytic i.e. converges to a finite value as x — x;) . Then the power series method can
be applied. If x, is not regular, it is singular point (i.e.lim,_,, p(x)and lim,_, g(x)do not
converge to finite value).

Again consider a homogeneous second order differential equation of the form
y"'+p(x)y" +qx)y = 0.

If at x = x, the coefficients p(x) and q(x) are not analytic i.e. x = x, is a singular point,
however the condition for weak singularity is satisfied, which is as follows
lim(x — xy) p(x) — finite value

X—X0

lim,_, (x — x¢)*> q(x) — finite value

thenx = x, is called as regular singular point.

SAQ1: Find the regular singular point of the differential equation
2(x—2)2%xy"+3xy +(x-2)y=0

7.3.4 Leibniz’s rule

Leibniz's rule (named after Gottfried Wilhelm Leibniz) is a generalization of the product rule in
differential calculus. It expresses the derivative of ordern of the product of two functions.
Suppose that the functions u(x) and v(x) have the derivatives up to ordern. Then the derivative
of the product of these functions (D is the derivative operator)

The first order derivative will be
D(uv) = (Du)v + u (Dv).
The second order derivative will be
D?(uv) = (D*u)v + 2(Du)(Dv) + u (D?v).
The third order derivative will be
D3(uv) = (D3w)v + 3(D?w)(Dv) + 3(Du)(D?*v) + u (D3v).
If we keep differentiating with increasing the order of derivative, it is easily visualized that the

terms on the right side is similar to binomial expansion with appropriate exponent on the
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derivative operator D. So in general forn®® order derivative of the product of two functions
can be expanded as (with D%u = u and D%v = v, i.e. no derivative)

D*(uv) = (D"w)v+ "c;(D*u)(Dv)+ "c,(D"*u)(D*v)+ "c3(D™3u)(D3v)
+-4+ "¢, (DWDW)+ "c,(w)(D™W).

7.3.5 Generating function

A generating function is a continuous function associated with a given sequence. Consider a
sequence of function be {f;, };=o. The generating function of this sequence of function is defined
as

9(2) = i fuz"
n=0

for|x| < R and R is radius of convergence of the series. The sequence of function f,, appears as
coefficient in the series g(z). It is important that the series has a non-zero radius of convergence,
otherwise g(z) would be undefined for all x # 0.

7.4 Series solution of second order differential equation

There are several methods to find the solution of second order differential equation depending on
their form. Series solution is one of the method applied to normally special kind of second order
differential equation.

7.4.1 Power series method

Power series method is the standard basic method for solving linear differential equations with
variable coefficients. It gives solution in the form of Power series.

A power series is an infinite series of the form

e

z a,(x —x)" = apg+ a;(x — xg) + a,(x —xy)? + -

n=0

If x, = 0 then a power series will have powers of x only i.e.

(o]
Zanx =ay + a;x + a,x?* + azx3 + -

n=0
For a given homogeneous differential equation of the form of equation (2):

y' +px)y + q(x)y = 0 withp(x)and g(x)are analytic at x = 0, the solution can be found
using power series method as follows:
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1. Assume the solution in the form of power series

y = Z Apx™ = ag + a;x + azx* + azx® + - (3)
n=0

and the series obtained by term wise differentiations

y'= z napx"t = a; + 2a;x + 3azx® + - G
n=1

y'" = Z n(n—Dapx™? = 2a, + 6azx + 12a,x> + - (3.2)
n=2

2. Replace y,y'and y" in the given differential equation.

3. Collect the like powers of x and equate the sum of the coefficients of each occurring
power of x to zero. We get equations from which the constants coefficients a,, a;, a,, ....
can be determined.

4. Once the coefficients are known put it in assumed power series solution (in step 1)to get
final solution and simplify it if possible.

Let’s take a very simple example of a differential equation whose solution can be obtained from
methods explained in unit 5.

SAQ2:Using power series method Solve the differential equation
y'+y =0

7.4.2 Theorem

Several second order differential equations of great practical importance (e.g. Bessel equation,
etc.) have coefficients that are not analytic but singular and are such that following theorem
holds:

Any differential equation of the form

WRLCNCN

. 5y =0. 4)

Or
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x%y" + xb(x)y + c(x)y = 0. (5)

With coefficientsp(x) = %and(x) = Ci_x)

2

such that the function x p(x) and x*q(x) are

analytic at x = 0,(x = 0 is a regular singular point) has at least one solution that can be
represented in the form

[o¢]
y= x" Z a,x™ = x"(ay + a;x + a,x? + azx3 + a,x* + ) with a, # 0. (6)

n=0
Where the exponent v may be any (real or complex) number (r is chosen so that ag + 0).

This provides an extension of power series method called as Frobenius Method.The method was
known for German mathematician F.G. Frobenius (1849 — 1917).

7.4.3 Frobenius Method
To find the solution of equation (4) or (5) first expand b(x) and c(x) in power series:
b(x) = by + byx + byx? + byx3 + byx* + -
c(x) = co+ c1x + cx?% + c3x3 + cyxt + -
and consider the solution is given by equation (6)
y=x" Z a,x" = Z ayx™tr.
n=0 n=0

Differentiate this term by term

e

y' = z a,(n+7r)x™" 1 =x"Hagr + a;(r + Dx + ay(r + 2)x% + az(r + 3)x3 + - 1(7)
n=0

[oe)

y" = Z a,(n+7r)(n+r—1)x"*tr2

n=0
=x"2aqr(r — D+ a;r+ Drx+a,(r +2)(r + Dx? + az;(r +3)(r + 2)x3 + - 1(8)
Insert this in equation (5) we get
x"agrr—1D) +a,r+Drx+a,r+2)r+Dx?+a;(r+3)(r+2)x3 + -]

+(by + byx + byx? + byx3 + - )x"[agr + a;(r + Dx + a,(r + 2)x? + az(r + 3)x3 + -]
+(co + c1x + c3x% + c3x3 + cpxt + - )x"(ag + arx + azx? + azx® +ax* +--) =0. (9)
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T+2 x"+3 etc. to zero. This

Equate the sum of the coefficients of each power of x i.e. x7, x"*1,x
will give system of equations involving unknown coefficients a;. Here we are interested in only

equation with lowest or smallest power of x. The equation is:

(Coefficient of smallest power of x i.e.x")
[r(r — 1) + bor + cylay = 0. (10)

From equation (10) it is possible that either a,is zero or the other term in square bracket is zero.
We choose 7 such that ay # 0. Therefore, we get a quadratic equation in r

[r(r —1) + bor + c¢] = 0. 11
called as Indicial equation of differential equation (4).

Let ryandr;,be the roots of the indicial equation thenbasis of the general solution depends on
three cases:

e CASE L distinct root not differing by an integer 1,2,3,...
The basis is:
y1 = x"(ag + a;x + ayx? + azx® + ---) and
yz = er(AO + Alx + Azxz + A3x3 + )
1-by

e CASEIl: Adoubleroot:ry =1, =1 = >

The basis is:
y1 = x"(ag + a;x + azx? + azx3 + -+ )and
¥y, = y1(x) In(x) + x"(A;x + A,x? + Azx3 + -+ Yfor x > 0.

e CASE III: Roots differing by an integer 1,2,3,... ,letry > 1,
y1 = x"(ay + a;x + ayx? + azx3 + -+ )correspond to the larger root and
Yy, =k y (x) In(x) + x™2(A4g + A1x + Ayx? + Azx3 + ).

Note: In case Il and case 11l the second solution or basis y,is obtained by Reduction of order
method which is applied when one solution is known.

The general solution is = ¢; y1(x) + ¢y, (x) .kis some constant, may turn out to be zero.

SAQ3: Can we use Frobenius method to solve following differential equation

x2=x)y"+@Bx—-1y +y=0

7.5 Legendre differential equation

Any solution of Legendre Differential Equation:
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1-x¥)y"—=2xy" +m(m+ 1)y =0 ; mis a constant integer (12)
is called a Legendre Function (Polynomial). Rewrite above equation (12) in the form
2x m(m+ 1)

" ' ———~y=0. 13
Y- 2¥ Tt 12 Y (13)

Compare equation (13) with equation (2) we can write

e 1r(x) = 0so Legendre equation is a homogeneous equation.

_ 2 m(m+1)
* p(x) h 1-x2 1-x2
x=0.

and q(x) = turns out to be singular at x = +1and analytic at

Therefore solution lies in the interval —1 < x < 1, i.e. solution should be bounded (have finite
terms) and not divergent.

7.5.1 Solution of Legendre equation

We can apply power series solution to the differential equation with x, = 0. The expansion of
power series solution given by equation(3) i.e.y = Yo, a,x™and its derivatives, which is given
by equations (3.1 and 3.2), put this in equation (12) we get

(1-x2) z nn—1)a,x"? - 2x Z na,x" t1+m@m+1) Z a,x" = (14)
n=2 n=1 n=0
Z nn—1a,x"?— z nn—1Da,x™—2 z na,x" + m(m+ 1) Z a,x" =0 (15)
n=2 n=2 n=1 n=0

Writing each series and arranging each power of x :
2Xla,+3X2a3x+4X3a,x>+5%xX4ax3+ -+ (G +2)(s+1Dag x5+
+2x1ax?+3%X2a3x3+4Xx3ax*+5x4agx>+-+s(s—1axs + -
—2(ayx + 2a,x? + 3a3x3 + dax* + -+ sagxs + )

+m(m + 1)(ap + a1x + a;x? + azx® + a,x* + -+ agx’ + -+ )(16)
Collect the coefficients of same power of x:
Coefficient of x° : 2a;, + m(m+ 1ay =0
Coefficientof x : 3X2a3+[-24+m(m+1)]a; =0

Coefficient of x> : 4X3a, +[2—4+m(m+ 1)]a, =0.
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So we can write a general term as
Coefficientof x5 : (s+2)(s+ 1agy, —s(s — Dag — 2sag + m(m + 1)ag, = 0 or,
(s+2)(s+1agz —[s(s—1)+2s—m(m+ 1)]a, = 0. a7
The coefficient of second term of above equation can be written as
[s(s—1D+2s—m(m+1)]=52—-s+2s—m?—-—m=(s—m)(s+m)+ (s—m)
=(6-m)(s+m+1)= —-(m—-s)(m+s+1).
So from equation (17) we get

_—(m-s)(m+s+1)
A I S TR DI

(18)

called as recurrence relation or recurrence formula. With s = 0,1,2,3,4, ... we can get all the
coefficients in terms of a, and a; which is an arbitrary constants.

e Put the value of s = 0,1,2,3,4, ... in equation(18) we get

m(m+ 1)
$=00 @ = ————d
(m—-1)(m+2)
s=1: a3= — 3 a,
(m-2)ym(m+1)(m+ 3)
S=2: a,= a0 a
m-=-3Y(m—-1(m+2)(m+4)
s=3: ag= o aq
m—-—4)(m-2)ym(m+1)(m+3)(m+5)
s=4: ag= — o Qo
m-5m-3)(m—-1)(m+2)(m+4)(m+6)
s=5: a;= — o a

and so on so that we can write even coefficients (a; for i = 2,4,6, ...) in terms of a, and odd
coefficients (a; for i = 3,5,7, ...) in terms of a4 .

Put these coefficients in power series solution

[oe)

y = Z A, x™ = ag + a1x + ax? + azx3 + azxt + -
n=0
We get
= m(m+1 m-—2)m(m+1)(m+ 3
y= anxn =dag — ( _) aoxz +( ) ( )( )a0x4+...
2! 4!
n=0

182



MSCPH501

(m—-1)(m+ 2) ;  (m=3)(m—-1)(m+2)(m+4)
3 a; x> + = a,
Or the solution of differential equation can be expressed as
y=apy1(x) +a,y:(x) ; V [x[] <L (20)
Called Legendre function with
mm+1) ., (m—-2)ym(m+1)(m+3) ,
1- x“ + X

+a,x — x5+ - (19)

Y1 = 2! 41
(m—-4)(m—-2)m(m+1)(m+3)(m+5)
- X
6!
+ - (20.a)
Y1
. -2 —4) .. —-2j+2 1 3 5) .. 2j—1 .
:1+Z(_1),[m(m Jm—4)..(m—-2j+ )][((;1]1_;!L ) +3)(m +5)...(m + 2j )]le 20.a)
j=1
B (m-1)(m+2) , (m-3)(m—-1)(m+2)(m+4) .
Yo =X — T x>+ 2 x
(m—-5)(m—-3)(m—1)(m+2)(m+4)(m+6) .,
- X
7!
o (20.b)
- [m-1)m-3)..(m-2j+1 2 4 6) .. 2] .
y2=x+;(—1)1 [(m—-1)(m—-3)..(m-2j+ ()2]][(1711-;-! Ym+4)(m +6)...(m + ])]leﬂ 20.5)

The series converges for |x| < 1, therefore, the radius of convergence is unity. The two basis of
the solution y; and y, are linearly independent as y, consists even power of x and y,consists

odd power of x, so the ratio % 1s not constant.
2

e If put s = m in equation (18) we see that a,,+» = 0 which implies
Amssa =0, Amse =0, Amsg =0, Ams10 =0, ... and soon
If m is even: then from equation (20.a and 20.b) we see that y;reduces to polynomial of degree
m andy, diverges. For example
= Take m = 0, then Legendre functions

¥1(x) = 1which is a polynomial of order zero,

3 5
and y,(x) = x + x? + x? + = %ln ( i—i) which diverges.

So the bounded solution of differential equation form = 0isy = y{(x) = 1.
= Take m = 2, then Legendre functions

y1(x) = 1 — 3 x%a polynomial of order two
x3 3x7 1 1+x

and y,(x) = 2x — 5 5 —5n ( E) which diverges.

So the bounded solution of differential equation form = 2is = y;(x) = 1 — 3 x2.
If m is odd: then from equation (20.a and 20.b) we see that y, reduces to polynomial of degree
m and y,; diverges. For example
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= Takem =1, then Legendre functions
yi(x)=1- % x1In ( i—i) which diverges
andy, (x) = x which is a polynomial of order one.
So the bounded solution of differential equation form = 1is y = y,(x) = x.
= Take m = 3, then Legendre functions
y1(x) diverges

and y,(x) = x — §x3which is a polynomial of order three.

So the bounded solution of differential equation form = 3isy = y,(x) = x — §x3 .

7.5.2 Legendre Polynomials P,,(x)

Solution to Legendre’s equation are the polynomials y; (x) and y,(x) for various values of m
gives an independent solution.

If y;(x) or y,(x) is the solution of differential equation then ¢ y, (x) or ¢ y,(x) (c is a constant)
is also a solution. We shall choose the normalization constant ¢ such that the polynomials (for
various m) are normalized to have value unityat x =1 i.e. B,(1) =1 (or cy(1) = 1). Such
normalized polynomials are called as Legendre Polynomials.

So the few normalized polynomials are

m=0: Py(x)=1 whichis y;(x) =landc=1
m=1: Pi(x)=x which is y,(x) =xandc =1

m=2: Pz(x)=%(3x2—1) which is y; (x) = 1 — 3 x? andc=—%
m=3: P3(X)=% (5x3 — 3x) whichisyz(x)zx—§x3 and ¢ = —%

m=4: P(x) =% (35 x* — 30 x2 + 3)which is y; (x) = 1 — 10x? + 35x*and ¢ = Z

1
m=>5: P5(x)=§(63x5—70x+15x) (21)

One canformulate compact or general representation for polynomials in equation (21). To do that
rewrite recurrence relation as
—(s+2)(s+1)
as; = a
m—-s)(m+s+1)

s+2 [s <m—2]. (22)

Then all non vanishing coefficients may be expressed in terms of coefficient a,,,of highest power
of xof the polynomial. The coefficient a,, is then arbitrary. Choose a,;, = 1 when m = 0 and in
general
_(h@!_lexSxm@m—l)
Gm = 2m(m!)2 m! '
For this choice of a,, all those polynomials will have the value latx = 1.
Now put s = m — 2 (m = 2) in equation (22)

(23)
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- —(m)(m - 1) .
T @em-1n "

put a,, from equation (23) we get

—(m)(m—-1) (2m)! (2m —2)!
Im—2 =" 2m—-1) 2"mD)Z _  2™(m - 1)! (m — 2)!
Similarly if put s = m — 4 (m > 4) in equation (22) and with a,,_, we can find

—(m—-2)(m—-3) (2m —4)!
Am—4 = @2 Am—2 = (_1)2 m

m—3) 2m 2! (m—2)! (m —4)!
So in general when m — 21 > Owe can write for s = m — 21
(2m - 20!

_a = (1)t
@21 = 1 S an = DI n = 20!
so the Legendre polynomials of degree m denoted by P,, (x)can be written as

N
B (2m - 20D)! —
Prm(2) = ;(_1)lzml!(m—l)! m—2D!" *25)

m. . m-1 . . . . . m
whereN = ;1fmls evenandN = 5 ifmis odd i.e. Nis an integer= 5"

(24)

from equation (25) for integer m :

m=0=N=0: Py(x)=1
m=1=N=0: P(x)=x
m=2 =N =1: Pz(x)=%(3x2—1)
m=3 =N=1: Py(x) == (5x—3x)

T2

1
m=4 = N=2: P4(x)=§(35x4—30x2+3)

1
m=5 = N=2: P5(x)=§(63x5—70x+15x)

we can cross check that equation (21) is reproduced. We can plot the polynomials given by
equation (25), first few have been plotted in the figure below
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First few Legendre Polynomials :
M
1)™(2 2m)! e _
Fualz) = Z ( L 2124 );;;" ‘BM=n/2n=0,1,2,....

2'ml(n — m)l(n — 2m)!

rr==ll

-

o
4]

'jr,u[-UJ

©
(3

o
T TRNY T T PSS TPy NUTT Y TS| Y R VI WO AN 00, TOUNY T

i
-

7.5.3 Rodrigue’s Formula

We will try to find yet another solution of Legendre differential equation in terms mt" order
derivative of some function and from this we will obtain Legendre polynomial.

Consider a function

y=(x*-1m (26)
Take derivative of equation (26)
dy 2 m—1
dx—me(x -1) : (27)
Multiply both side of equation (27) by (x2 — 1)
d
—y(x2 —1)=2mx(x?-1)™
dx

=y2mx. (28)
Differentiate both side of equation (28) (m + 1) times by Leibniz’s rule taking u = %, v =
(x?—-1)onLHS.andu =y, v = 2mx on R H.S..
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dm+1 dy dm+1
22
a i g & T )] dpmriy 2mxl
dm+2y m+1 dmy
T (x2—-1)+ mtle——= P (2x) + ™tlc, Tom 2
dm+1y m
= o (2mx) + ™tlg —— T (Zm)
m+2 m+1 m
y y d™y
(xz - I)W + (2x)m—m(m+ 1)dx_m =0
or,
m+2 m+1 m
y d™y
(1 —xz)d miz (Zx)m+m(m+ 1)— =0
LetV = Zlm then we can write above equation as
dzv dv
(1 —xz)—— (2x)—+m(m +1)V
=0. (29)
Equation (29) is Legendre equation and V is the solution this equation with
. d™y d™(x*-1)™
~odxm dxm
Now let the Legendre polynomial be
dm dm xZ —1)m
P,(x)=CV=C Y _ Cc ( ) . (30)

dxm dxm

To find C, put x = 1 in equation (30) so that from the definition of Legendre polynomial we

have
P,(1)=1=C anx” - )"
mAtST dx™ x_1'

Now as we had considered

y=@*-1D"=((x—-1"x+ 1™

Differentiate both sides m times and use Leibniz rule (on R.H.S.) to get
d™y d™(x*-1"

dx™ dx™ )
m m m-— m
_ et D7 (;‘xfnl) G- D™ +m di’;fll) fm(x — ™1
d™2(x + 1)™ _
+ m(m + 1) T2 fm(m—1D(x—1)™2}+ -
+ (x + 1)mM
dx™
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<dmy> _ (e D" =0+0+0+--+2™(m!) GGl
axm)._. = e . = m!)4 as e =m!

1
2m(m!)

am(x2-1)"
dx™m

therefore the

hence, P,(1) =1= C ( ) = (C 2™ (m!)soweget C =
x=1

Legendre polynomials are also obtained from

1 d"(x®?-1)™
2m(m!) dxm

Pm(x) =

well known as Rodrigue’s Formula.

(31)

7.6 Properties of Legendre Polynomial

7.6.1 Generating function
Since P,,,(x)is a sequence of polynomials, it may appear as coefficient of some particular series.
We observe that on the expansion of a function

1
V1 —2xz + z2

as power series P, (x)is generated as a coefficient of z™. Hence, equation (32) is expressed as
generating function for Legendre Polynomials.

G(z,x) =

(32)

Proof: Letw = 2xz — z%then (z,x) = L =, Now binomial expansion of this function is

Tiow
1 ( )_l
=(1—w) 2
vli—w
1 3 1 3 5
1 —5)\—5 —5){—5)(=3)
=1+(—§)(—w)+(2)2—|(2)(—w)2+( 2)(3?) 2 (—w)* +
_1+1 +1><3 2_|_1><3><5 3 +1><3><5><...><(2n—1) n
TV Toxaxe” 2x4x6x..x2n "
1 1x3 1x3X%X5
— _ _ 52 _ »2)2 _ 233
—1+2(2xz Z)+—2X4(ZXZ z%) +—2><4><6(2x2 z°)° +

z* 3 5
=1+xz—— +§(4x2 z% 4+ z* — 4xz3) + E(8x3z3 + 26 — 8x?z* — 4x2°) + -

2

1 1 5 5
=1+xz+=3x%-1)z%+ —(—12xz3 + =% 8x323 — —4x25> + e

2 8 2 2

1 1
=1+xz+ E(sz —1)z? +§(5x3 —3x)z3 + -
= Py(x) + Py (x)z + Py(x)z% + P3(x)z> + -

1 [oe]
G(x,z) = (1 —2xz+22)77 = Z P, (x) z". (33)

n=0
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7.6.2 Orthogonality
If P,,(x)and P, (x)are two Legendre polynomials then the orthogonality property is defined as
1 0 if n+m
Pn(X)Py(x)dx = | 2 .
] {m iy om=m
Proof:
The Legendre equation is
1-x3)y"=2xy ' +n(n+1)y=0
or

d d
a{(l - xz)d—z} +n(n+ 1)y =0.

Since P,,(x)and P, (x)are solutions of the Legendre equation, we can write

d (1 2y %P DP. =0 34
and

d dpP,

E{(l — xz)a} +n(n+ 1P, =0 (35)

multiply equation (34) by P,,(x)and equation (35) by P,,,(x)and subtract
p d {(1 2) dPn} p d

™ dx X dx "dx

Integrating above equation w.r.t. x from —1 to 1

{(1—x2)dﬁ} + PP [n(n+1)—mm+1)] =0
dx n‘m .

1 1 1
Pd{l ZdP"d Pd{l 2ded+ +m+1) | B,R.d
fma( X)E}x fna( X)E}x (m—m)(n+m )fnmx
-1 -1

-1
= 0.
The first and second term will cancel each other so we get

m—-—m)(n+m+1) anPmdx = 0. (36)

Case I: if m # nthen term outside the integration in equation (36) is not zero hence
1

anPmdx =0 (for m # n). (37)

-1
Case II: if m = nthen equation (36) is zero as term outside the integration is zero, however the

: . . . . 1 :
integration may not be zero for this case. To find the value of integration | 1 P2 dx , start with

the generating function
1
(1-2xz +z%)7 2= ZPnZ".
Squaring both side we get
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(1—ZXZ +Zz)_1= ZPnZn mezm ZPZ n 4 ZZZ PP Zn+m(38)
n m

n m¥+n
The expression on R.H.S. has been separated into two terms, first for m = n and second for
m # n. The factor 2 with the second is due to repeated terms for each m and n.

For example: Let’s look how it would appear, we will evaluate R.H.S. of equation (38) for
m=12andn =1,2soR.H.S. is

2
Z B,z" Z Bn,z™ = (Piz + P,z?%) (P1z + P,z?%)
= m=1

= [P z* + P;z*] + [P1z P,z* + P,z°P; z]
:[P Z +P22 4]+ 2[P1PZZ]

Il
D 3
o)

N
S
+
N
D
L
o)
o)
N

Integrating equation (38) both side w.r.t. x from —1 to 1 we get

dx

_fl(l—ZxZ + z2)

1
=f ZPnz” Zszm dx
-1

n

= Z anPde+ ZZZ "+ijP dx.

n m#+n
Using orthonahty property second term on RHS is zero, so we get

1
r —[in(1-2xz +2z?)]t Z 2"']‘Pzdx

Z 2n f P2dx = — [1n(1—z>2 1n(1+z)2]=§[ln(1+z)—ln<l—z>l

%ﬂn(ifi)]
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On comparing the coefficient of Y, z2™ we get
1

[reax = 2
e
-1
Or we can write
1
f P,P,dx = 2 = 39
"mx_2n+1 for m=n. (39)
Combining equation (37 ) and equation (39) we get orthoganility property
1 0 if n+m
me(x)Pn(x) dx = { 2 . .
4 i1 SonmEm

7.6.3 Recurrence relations

1
Differentiating generating function (1 — 2xz + z2)™2 = Y, P,,(x) z"both side w.r.t.Z, we
get

[oe)

1 3
) (1—2xz+2z%)72(-2x+22) = Z n P,(x) z"1

n=1

1
(=D =202 42972 = (1= 2x2+2%) ) nB(0) 2"
n=1
Use generating function to replace 2nd factor on LHS

(x—z)ZP(x)z" —(1—2xz+zz)ZnP(x)z” d

Z P.(x)z" — Z P, (x) 2"+

= Z nP,(x)z" 1 — 2x Z nP,(x)z" + Z nP,(x)z"t?! (40)
n=1 n=1 n=1

Expanding equation (40) both sides
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[x (Po(x) + Py(x)z + -+ P ()27t + Py(x)zt + )] — [(Po(x)z + -+ + Pi_p(x)z" ™t

+ P (x)zt + )]

= [Py(x) + 2P, ()z + -+ + iP;(x) 27 + (i + )Py () 2" + -+ ]
—[2x (Py(x) z+ 2Py (x) 2% + -+ (i — DPi_1(x) 2771 + ()P, (x) z' + -+)]
+[Py(x) 22 + 2P, (x) 23 + -+ (i = 2)P;_,(x) 21 + (i — D)Pi_ (%) 28 + -]

i-1

and equating coefficient of z
xPi_1(x) = Pi_(x) = iPi(x) — 2x(i = 1)Pi—1 () + (i — 2)Pi—2(x)

and replacing i by n
X Pp_1(x) = Pp_p(x) = nPy(x) —2x (n — DPy_1(x) + (n — 2)Pp_(x)
n—laS

We get one of the recurrence relations from coefficient of z
nP,(x)=2n—-1)xP,_1(x) —(m—1)P,_forn=234,..(41)

if we equate coefficient of z'in the expansion of equation (40) and replacing i by nwe get other

recurrence relation
n+1P, 1 (x)=2n+1)xP,(x) —nP,_{forn=12,34,..(42)

Again first few Legendre polynomialshave been shown in the figurebelow but this time we used
recurence relation (41) to draw the figure. The figure has been generated using Sci-Lab package.

DB, & Fy=1F=%

First few Legendre Polynomials :
Recurence Relation : nP,=(2n—1)zP,.1— (n
1
0.8 4| \
' |
0.6 /]
= |
_ VN — /
( j |
0.4 4 fi_ \\ \\ /
y " 4 / |
: / \ /,-‘ \\ |
) \ |
?—'.1 ,/ \\'\ J III
& \ / |
A |
7 X
r A\
/ \ [
' \ /
/ N //
P N S
T T
-0.2 0 0.2 0.4 0.6 0.8
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dPy (%)

dx

SAQ4: Show that nP,,(x) = xP}(x) — P,,_;(x) where P,,(x) =

7.7 Bessel’s differential equation
The Bessel’s differential equation of order v(a real and non-negative number) is

Xy +xy + (2 -vH)y=0

can be rewritten in the form of equation (2) as

2 2

X° =V

1
y”+;y’+ y=0.

xz
Compare above equation with equation (2) we can write

e 1r(x) = 0so Bessel’s equation is a homogeneous equation.

1

e p@=1 and q(x) =

e However in the lirr(l) x p(x) and lin%xzq(x) are finite at x = 0.
xX—> X—

x2 _y2
X

>— turns out to be singular at x = 0.

Therefore at x = 0 the equation has regular singularity, hencesolution can be obtained using
Frobenious method. The solution will lie in the interval ( 0, 00).

7.7.1 Solution of Bessel’s equation

Solution: Using Frobenious method we can find the solution of the Bassel’s function, let the

solution be
[ee]
y= Y apam

m=0

The first and second derivative of y is

y' = Z (m+71) apx™t1
m=0

yn = Z (m + r)(m +r— 1)amxm+r—2.

m=0

Replace y,y'and y"' in Bessel’s differential equation
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Z (m+r)(m+7r—1) apx™" + Z (m+71) apx™" + (x* —v?) Z Apx™T =0
m=0 m=0 m=0

Z m+r)(m+r—1)a,x™" 2+ Z (Mm+71) aux™ ™1+ Z Ay x™tTt2
m=0 m=0 m=0

—v? Z Apx™ = 0. (43)
m=0

¢ To find indicial equation, equate the coefficient of lowest power of x i.e. x" form = 0, we get

r(r—1Day+71a,—viag
= 0. (44)

The lowest power of x gives the indicial equation so we get

[r(r—1)+7r —v?¥ay =
0 (45)

with choice ag # 0
rr—-1D+r —v¥]=1* —v? =T +v)r—-v)= 0.
We get the solution for r as

ri=v and r,= —V.
e To find a4, equate the coefficient of next lowest power of x i.e. x"*1for m = 1, to get
r+Dra+@+1)a, —v?a, =0 (46)
[+ Dr +(r+1) —v?]a, =0. (47)

The term in square bracket is not zero for the solution of robtained from indicial equation
therefore we get

a, = 0.
e To find recursion relation, equate the coefficients of x5*" to zero
(s+7r)(s+r—1VDas+ (s+r)ag+ as_, —v?a, =0. (48)

Rearrange the terms to get recursion relation as

a, = as_, fors =2,34,.. (49)

B ((s+1r)2—v?)
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Now we will find first Bessel function for first solution of indicial equationi.e. 7 = r; = v, put
this in equation (49) to get

1 1
= — Yy =————a,_ = 2,34, ... 50
s ((s+v)2—vz)as2 (SZ+st)aS2 fors (50)
Sincea; = 0wegetaz; =0,a5 =0,a, =0, ... .... , so we get all the odd coefficients zero as all

the odd coefficients can be written in terms of a; from equation (50). So only even coefficients
are non-zero i.e. for = 2m with m = 1,2,2,3 ..... From eq. (50) for s = 2m we get

1 1
“m = T gmTt avm T T iy m) 2 (1)
-1 - — ___%
m=l:a, = 20D
A _ az _ Ao
M=2:0s = ~5o012) © BEIODETY)
m=3:q = ———2— = — 2o = — 2o
6 223 (v+3) (222%) 3x2D(W+1)(v+2)(v+3) 26(3N(V+1)(v+2)(v+3)
in general we can write
(=1)"a, 1,2,3 52
am = . =123 ..
zm = 2mm) v+ D@ +2)(V+3) v +m) for m (52)
Now ayis still arbitrary so for simplicity take ay = (2v1v')put in eq.(52) to get
_ D™ _
Ay = 22 (D) (v & m)!for m=1,2,3,.. (53)
The solution forr = r; = vis denoted by J, (x), we have assumed solution to be y =
Yoo 0 Amx™*" from Frobenious method. Replace the coefficient a,, by a,,, (as the odd
coefficients are zero) to get the Bessel function
o) =2 ) agua®™
m=0
(_1)mx2m+v
Jy(x) = (54)

~ 22m+v(m)(v + m)!’

This is called BESSEL FUNCTION of First Kind of order v.

195



MSCPH501

Figure 1: Graphical representation of several Bessel’s function. (Source:
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html)

Second Bessel function for other solution of indicial equation i.e. r = r, = —v, which can be
obtained by replacing vby - vin Eq. (54).

B (_1)mx2m—v . ] .
J_,(x) = ,ZO 2T (ml) (—v + )] (for vis not an integer) (55)

This is called BESSEL FUNCTION of second Kind of order —v.

So for v is not an integer the general solution of Bessel differential equation is

y(x) = C1Jy(x) + C2J - (%). (56)

If vis an integer then Eq. (56) is not a general solution as J,, and J_,, are not linearly independent
which can be shown as follows

e Linear dependence of |, and J _,, when Vv is an integer:
Put k = —v 4+ mthen m = k + v, put this in Eq.(55) for J_, (x) (with v to be integer,
summation on mwill start from vand not from zero as for any value ofm = 0 to vthe
term(m — v)! = I'(m — v + 1) becomes infinite, hence summation over k will start
from 0).

(_1)k+vx2k+v (_1)kx2k+v

J2@= 2 v TV L kvl

J_»(x) = (—1)"],(x) therefore, If vis an integer J, and J_, are linearly dependent.

When v in an integer i.e. the roots of indicial equation differ by an integer then the
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e First solution is y; (x) = J,(x) and
e second linearly independent solution is given as CASE III of solution of indicial equation
when solution is obtained using Frobenous method

yo(x) = A, In(x) J,(x) + x> AxktY

The second solution or basis y,is obtained by Reduction of order method which is applied when
one solution is known.

For many purposes, it is convenient to take the linear combination

(cos(vm) J, () = J»(x))

sin(vm)

V2 = Yv(x) =

as the second independent solution instead of J_,,(x). This is known as the Bessel function of
second kind of order v. Hence the general solution is given as

y(x) = C4J,(x) + (oY, (x) (57)

Bessel function of order zero (v = 0), Jo(x):

e From indicial equation Eq. (45) we find the solution to be 7% = 0, hence double root
rn=r= 0.
e From recursion relation Eq. (49)

1
= " Grrzh? fors=234,.. (58)

Hence from Eq. (52) one can write even coefficients as

o - (-1)"ay for
2m — (r + 2)2(1” + 4)2(r + 6)2 ...... (r+ 2m)2

m=1

(—D™ay
Aym — W fOT'T' =0and m= 1,2,3 (59)
Therefore, the solution is

(_1)mx2m
o ;1 (r+2)2(r+4)%(r+6)%....(r + 2m)?

— 2T
Yr =X Qg

and forr = 0.,
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= 1 (D"’
Yr=0 = Qg |1+ £ (2)2(4)2(6)? .. .. 2m)?
—1)m 2m
or, Jo(x) =ag |1+ Z (22"1)(—1:')2] (60)

This is Bessel Function of the first kind of order zero.
7.7.2Recurrence relations

Following relations are the recurrence formulae and their proof for Bessel's functions:

L (x],(0) = x"Jy_1(%)

Proof:

v _1\ym.,.2m+v _ 1 \m,.2(m+v)
d(x ]v(x)):i{xvz (=1)™mx? } d {Z (-D™x

dx dx 22mv D (v + m)!|  dx ; 2277 (mD) (v + m)!
m=

m=0

. F O 2(m 4 v) ()R-t (m + v)(—1)mx2m+v-1
(1 () = Z 227 (m (v + m)l Lo 22mv-1(m) (v + m)(m + v — 1)!
” (_1)mx2m+v—1 _ ,
=X ;0 22m+v-1(pq) (m+v—1)! = xJy1(x).

2. (271, (0) = =211 (%)

Proof:

d(x_V]v(x)) _i{x—v (—1)mx2m+v } d { (—1)mx2(m) }

dx dx , 227 () (v + m))! ~ dx ; 227 (mD) (v + m)!
m=

2m (—1)my20m-1
— AV
2Z2mvm (v +m)! 22mv-1(m — 1)] (v +m)!

(_1)mx2(m)+v—1

(x V) =

form—1=kiem=k+1

(_1)k+1x2k+v+1 (_1)kx2k+v+1

— 4V
L2l vk + Dl L2l (k+ v+ D)

= —x""[y41(x).

(x,(x) = x7
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3.5 =20 = Ty (®orx J',(x) =v J,(0) — xJy1 (%)

Proof:
d(J,(x)) o _d (—1)mx2mty 3 (2m + v)(—1)mx2miv-1
TR £ 22 (mh(v +m)lf 227 (D (v + m)!

Multiplying both side by x

(2m +v)(=1)Mx2mtv
22m+v(mh (v + m)!

x],v(x) =
m=0
_ 2m (=1)Mx?mrY (—1)mx2m+v
= mzzo 22m+v(m!)(v + m)! +v mzzo 22m+V(m!)(V + m)!
(_1)mx2m+v

T L 2 (m = 1)) Wm0
m=
form—1=kiem=k+1
. (_1)k+1x2k+v+2
x]'Wy(x) = +v/,(x)

£ 223 (v + 1+ k)
- (_1)kx2k+v+1

= —X a 22k+1/+1(k)! (V 11+ k)' +V]v(x) = —XJy41 +V]v(x)-

4. J'(x) =5(y-1(0) = Jyua(x)).

SAQ 5: Show that
x]’v(x) =V ]v(x) + x]v—l(x)-

5.Ju(®) = (Ju-1 () + Jypa (),

7.7.3 Generating function

The Bessel polynomials J,, (x) can be expressed ascoefficients of t™ in the series expansion of a

function exp (%x (t - %)) called “Generating function’.
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exp (%x (t - %)) = Z J.(x) t" (61)

Proof:

1 1 xt _x xt 1 /xt
exp(zx(t—?)>=eze 2t =l1+?+§<?) + -

the coefficient of t™ in this product is

n+2 1 x n+4

1 x\n 1
E(g)_(nﬂ)!@ +2!(n+1)!(§) — =R

as all the integral powers of t , both positive and negative occurs, we have

t

= i Ja(x) t".

n=—oo

exp (%x (- 1)) = Jo () + L1y(0) + o) + o+ 7 () + (0 +

Thus, the coefficients of different powers of t in the expansion of exp Gx (t - %)) give Bessel's

functions of various orders, hence it is said to be the generating function of Bessel's functions.
7.7.4 Orthogonality

IfA andu are the roots of the equation J, (@) = 0 then condition of orthogonality of Bessel’s
function over the interval (0,1) with weight function isx is

) 0 if A+pu
[ xm@on@oax =1 4 (62)
0 SBa() if A=p

Or both the cases can be written in terms of delta function

1 1
| * Ul dx = 3122 08
0

Proof: The second order Bessel’s differential equation is

Xy +xy +(x?-n>)y=0
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Let us change the independent variablexto Ax, the resulting equation is
Zyll + xyl + (Azxz _ le)y =0

With the general solution from equation (57) be C,J,,(Ax) + C,Y,(Ax).
Let y;(x) = J,(Ax) and y,(x) = J,,(ux) are the solutions of the equation then we have
2y +xy; + (A%x2 —n?)y, =0 (63)

and
2 144

x?yy +xy; + (Wx? —n?)y, =0 (64)

multiply equation (63) by y, and eq.(64) by y; and subtract to get

K P PN T Y T 2.
dx 12 dx " ax T PP ax T ax ] Tax\ PP ax T dx
integrating on x with limit 0 to 1 we get

dy dy dy dy,1\'
(u? _Az)fx}’l}’de— f dx( [YZ - Y1d_xz>dx: <x[}’2d_xl_Y1d_xz])0

Since y;(x) = J,(Ax)and y,(x) = J,(ux) , replace these in above equation

(.U — A*)x Y1y, =X

, (5 ey 229 1 ae )‘J”n(‘”‘)])0
J| #9007 00) = o
1 / _ ’
f e o) () e = (Mn(ux)fn(zzz _szn(ux)fnux)) fordx u (65)

Therefore, in order to ensure orthogonality we must have A and u be zeros of [, (x), i.e.J,(1) =
Jn(u) = 0 then for A # u in eq. (65) we have

f 3w Q)] (i) dx = 0.
0

For A = p if we take the limit then we get RHS of eq. (65) of the form %. So we apply L’Hospital

rule (differentiate w.r.t. u keeping A constatnt) and find
! ! ! —_ ! _ "
0

2p
(A/n(z)/n(A) — Jn W) = A (D5 (D)
21
Since J,,(1) = 0 we have
! TR 1 1
fo x J2(Ax) dx = A](;—ﬁ() = S = i1 ().

Since J,,+1(1) # 0, thus we have the orthogonality condition.
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Steps to show J,(1) = —J,:1 (1)
With the recurrence relation

X Jn(x) =1 Jn(x) = X Jni1 (%)

change the independent variable x to Ax

Ax Jn(Ax) = n J,(Ax) — Ax [ 41 (AX)
For x = 1we have

AJn) =nJn(D) = A n4a(D) = =4 )41 (1) since J,(2) = 0.

7.8 Summary
e Legendre differential equation

1-x¥)y" —=2xy"+m(m+ 1)y =0 ; mis a constant integer

e Legendre polynomials of degree m denoted by P,,,(x)can be written as

C (2m — 20)!
Pn() = ) (-1 a2
=0

2mll(m—1)! (m— 20)!

m. . m-1 . . . . . m
whereN = ;1fmls evenand N = 5 ifmis odd i.e. Nis an integer= 5"

e Properties of Legendre polynomials
o Rodrigue’s Formula
1 d*(x*-1D™
2m(m!) dxm '

Pm(x) =

o Generating function

1 [o¢]
Gx,z) =(1-2xz+2%)72 = Z P, (x) z".
n=0

o Orthogonality
1

fmmmmm=
21

2
2n+1

0 if n#m
[ if n=m
o Recurrence relations
* nP,(x)=2n—-1)xP,_ 1(x)—(n—1)P,_,forn=2,34,..
* mM+1)P,1(x)=2n+1)xP,(x) —nP,_{forn=12,34,..

" nP,(x) = xPy(x) — Py (%)

202



MSCPH501

* (n+1) Ppy(x) = 2n+ DxPp(x) —n Py (x).

o Bessel’s differential equation
x2y" +xy + (%2 —-v¥)y=0.

e Bessel function of First Kind of order v :
Iy (x) =

(_ 1)mx2m+v

= 22m+v(m) (v + m)!

¢ Bessel function of Second Kind of order

(_ l)mem—v

—v]_,(x) = Ym=0 Py (for vis not an integer)
e Bessel Function of the first kind of order zero:
(_1)mx2m
]0 (.X') = Qay 1+ W .

e Properties of Bessel function
o Recurrence Formula

= (@) =21 (x)

= (@) = ()

" JV®) =20 = ()

= x) (0 = J,(0) + xJ,1 ()
= J,®) =30 = Jya @)
= L) = (Jyo1 () + Sy ().

o Generating function

exp (%x (t — %)) = i J.(x) t".

o Orthogonality:

) 0 if A+p
| x @ Gdx -
0 SBa® i A=p
7.9 Answer to SAQs:
SAQ1: From equation we have p(x) = = (ziz)z =3 (xiz)zand (x) = = (;_2) , so there are two

singular points, x = 0,x = 2 at which p(x), g(x) are not finite.
To check for regular singular point, evaluate weak singularity condition
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: : 3 . 3 . .
}Cl_rg(x -2)px) = }Cl_rg(x 2) ————= 20— 2)° }Cl_rgm — o i.e.not a finite value

So x = 2 is not a regular singular point. Now check for x = 0,

3 3x
llm(x -0)pkx) = hmx 20— 2)? = }ci—I}(l)Z(x ST -0 i.e.a finite value
lim(x — 0)? q(x) = lim xZ; —lim——— 0 i.e.a finite value
X0 = Y 2x(x—2)  x202(x - 2) ' e

Hence x = 0 is a regular singular point or the differential equation has regular singularity

atx = 0.

SAQ?2: Stepl: Assume the power series solution
oo
= z apx™ = ag + a1 x + ax® + azx3 + agxt + -

Then find derivatives

y" = z:n(n—l)anx"_2 = 2a,+3X2a3x+4X3a,x?+5x4agx®+ -
n=2

Step 2: Replace y and y'" in the given dlfferentlal equation:

y' +y=Zn(n—1)anx"2+ Zanx =

n=2
Or,
2a, +3X2a3x +4X3a4x*+5%X4asx®+ -+ ag+ a;x + ax* + azx3+ - =0.
Step 3: Collect the like powers of x

(2Qa,+ap)+(Bx%x2az+a)x+ (4%x3a, +a,)x*+(5%X4as+az)x3>+-=0
Now, equate the sum of the coefficient of each occurring power of x to zero and find

Ay, A1, Az, A3, Ay, As, ...

. a a
Coefficient of x° : 2a,+a, =0 > a,= _70 — _2_?
1 a a,
Coefficientof x : 3X2a3+a, =0 = az = —0s = =5
1 2 ap [0 1) ag
Coefficientof x* : 4X3a, +a,=0 > a,= ——=2% = = %
4x3 4X3x2 4!
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. a a a
Coefficientof x3 : 5X4as+a3=0 = gg=——> =-——— =2
5x4 5x4X3X2 5!
. a. a, a,
Coefficientof x* : 6X5a,+a,=0 = gg=—— = -——2>— = -2
6X5 6X5X4X3X2 6!
. . aq 21 aq . .
Similarly we can find a; = ——, ag = — ,a9 = — and so on. Thus in power series of
7 717 78 T g1 79T o

y when n is odd the coefficients are expressed in term of a; and when nis even the
coefficients are expressed in term of a, with alternate signs.

Step 4: Put the value of coefficients in power series of y and simplify the solution by
collecting terms of a, and a;.

y =ay+ ax + a;x? + azx3

Ao a; Qo a, Ao a,
_ _ 0,2 "1 3 0.4, 1 5 0.6 1 7,70 g, 9o
y=ay+ax Z!x 3!x + 4!x +5!x 6!x 7!x +8!x +9!x

x%  x* x® x8 x3 x® x7 x°
y=a0<1——.+———'+—.—--->+a1<x—§+a—ﬁ+§—--->

y = agcos(x) + a;sin(x) = ¢y, (x) + ¢y, (x).

This is a well-known solution, and can also be obtained directly from standard methods
to solve the second order homogeneous ordinary differential equation.
(y1(x) and y,(x) are two basis of the general solution y).

The example is just to convince you that we can apply power series method to find
solution of any differential equation although we apply the method to solve generally
special differential equations.

Comparing differential equation with general form, we have
()_Bx—l_ 3x—1 d q(x) = 1
piX T x2—x x(x—-1) and qlx T x(x—1)

so there are two singular points x = 1 and x = 0.

Check for regular singularity:
y 1 _ )i 1 3x—1 _ i 3x—1 5
lim e = Dp() =i — 12— = Im—— -
lim(x — 1)?q(x) =lim(x — 1)? _t lim > - 0
x—1 1  xol x(x - 1) S x-o1 X
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3x—1 o 3x-—1
—_— - =
x(x—1) 20 (x—1)

lim(x — 0)p(x) =lim x
x—0 x—0

lim(x — 0)2q(x) = limx?—— == 0
x—0 x—

o x(x—1) }cl—rg(x—l)_)

Hence both x = 0,1 are regular singular points So solution of the differential equation
can be obtained using Frobeneous method.

SAQ4: Step 1: Differentiating generating function given by equation (33)

1 oo
(1-2xz+2%)72 = Z P, (x)z"
n=0
w.r.t. Z we get
3
(1-2xz+2z)2(x—2) = Z n z" 1B, (x).
Step2: Now differentiating generating function w.r.t. x we get
3

z(1-2xz+2z%) 2= Z z" By (x).

Step 3: put result of step 2 in step 1 to get

C0S gy = Yo

V4

Or
(x —2) Z Z"P,(x) = Z n z" B,(x).

Step4: now compare the coefficient of z™ and rearrange terms to get
P, (x) = xPp(x) — Pp_y(%).

SAQ 5: Proof:

() .. _d (=1)mx?mty
dx Sy = E{mzo 22m+v(m) (v + m)!}

3 (2m +v)(—=1)mx2mtv-1
B Z 22m+vim (v + m)!

m=0

Multiplying both side by x and write 2m +v = 2m + 2v —v

206



MSCPH501

2m + 2v —v)(=1)mx2mtv

x]',(x) = 4 22+ (m) (v + m)!
_ N 2mAv) D (—1)my2mty
= Z: 22m+V(m!)(V + m)! -V pn 22m+1/(m!)(v T m)!
(—1)my2mtv=1+1
L 22mv=i(m)l (v =1+ m)! —v,(x)

(_1)mx2m+v—1
—v ]y (x) +x Z 22m+v-1(m)! (v—1+m)!

m=0

= —V]v(x) + x]v—l(x) .
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7.11 Terminal and model Questions :

Q1: Show that (n+1) P,,1(x) = 2n + 1)xP,,(x) — n P,,_{(x).
Q2: Proof the following recurrence relations:

LT3 =510 = Jyar ()
2. ]v(x) :%(]V—l(x) + ]v+1(x))-

Q3: Find a power series solution in powers of xof the following differential equation:
l. y"+xy'+y=0
2. y'4+xy=0
3. 1=x®)y"—xy' +2y=0.
Q4: Find the singularity point and solution of following differential equation:
l. 2xy"+2y"+y=0
2. (x+2)%y"+(x+2)y' —y=0.
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UNIT 8: Hermite and Laguerre differential equations

Structure

8.1 Objective

8.2  Introduction

8.3 Hermite differential equation and polynomial

8.3.1 Solution of Hermite equation

8.3.2 Generating function

8.3.3 Orthogonality

8.3.4 Rodrigue's formula of Hermite function
8.3.5 Recurrence relations of Hermite Polynomial

8.4 Laguerre differential equation and polynomial

8.4.1 Solution of Laguerre’s equation
8.4.2 Generating function
8.4.3 Recurrence relations of Laguerre’s Polynomial L, (x)

8.4.4 Orthogonality
8.4.5 Rodrigues Formula

8.5 Summary
8.6 Answer to SAQs

8.7 References / Bibliography

8.8 Terminal and model Questions

8.1 Objective

We will apply the mathematical techniques of power series solution and Frobenious method
learned in the previous unit to find the solution of differential equation which is of the form
ofHermite and Laguerre. We will also learn the properties, like generating function,
orthogonality, recurrence relations and Rodrigue’s relation of the Hermite and Laguerre
polynomials and their proofs.
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8.2 Introduction

In Unit 7 you have already learned to solve two special differential equations whose solution
exists only in a defined range. In this unit we will seek solution of rest two of the four special
forms of second order differential equations which are linear and homogeneous in nature. The
differential equations are:

c) Hermite Differential Equation:
y'=2xy'+2A2y=0; A>0and constant.

d) Laguerre differential equation:
xy"+(A—-x)y'+ny=0.

The solution of the differential equation is a polynomial which arises as a part of solution of
important fields. In numerical analysis we can observe presence of Hermite and Laguerre
polynomials as a solution of Gaussian quadrature integration method. Depending on the weight
function the methods are called as Gauss-Hermite or Gauss-Laguerre quadrature. In physics,
Quantum mechanics, we can see Hermite polynomials arises as eigen states of the quantum
harmonic oscillator, whereas Laguerre polynomials are seen as solution of radial Schrodinger
equation for a one-electron atom like Hydrogen. So it is really beautiful to learn the behavior and
properties of the above differential equations.

8.3 Hermite Differential equation and polynomial

Any solution of Hermite Differential Equation:
y'=2xy'+21y=0. (1)

(Ais positive constant) is called a Hermite Function or Polynomial H,,(x). In the equation
p(x) = —2x and q(x) = 24, which is finite for all x so one can obtain solution of the equation
using power series method.

8.3.1 Solution of Hermite equation

We can apply power series solution to the differential equation with x, = 0. Put the expansion
of power series givenby y = ¥ a,x"and its derivatives y' = >o_ na,x" tandy"” =
Yo ,n(n—1)a,x" ?to Eq. (1) we get,

[ee] [ee] [oe]
z n(n—1)a,x" % - 2x Z na,x"14+221 ) ax"=0
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Z n(n—1Da,x" % — 2 Z nax" + 221 Z apx™ = 0

n=2 n=1 n=0

Z nn—1Da,x"? — 2 (Z na, — AZ an) x" = 0. (2)
n=2 n=1 n=0

Expand the series in Eq.(2) and collect the coefficients of same power of x:

Coefficient of x° : 2a, +2ag =0 or a; =—-ag
. 2(1-2)
Coefficientof x : 3xX2a;—2(1-1)a; =0 or a3 =-——-0
. 2 2(2-2)
Coefficientof x* : 4x3a,—22—-M1a, =0 o Gy == —=05.
So we can write a general term as
Coefficientof x° : (s+2)X(s+1)ag, —2(s—ADa; =0 or asy = %as(&

So we obtain the recurrence relation or recurrence formulain the form of Eq.(3) and with
s =0,1,2,3,4, ... we can get all the coefficients in terms of ay and a; which is an arbitrary
constants.

e Put the value of s = 0,1,2,3,4, ... in Eq. (3) we get

—2A
s=0: a,= > a
1 2(1-2)
s=1: a3= ———a4
3!
5 22(2-1 2
S=2: a=— ——ay
4!
221-1)3B -2
s=3: ag= 3 aq
2222-10D@-21
s=4: ag= — ol a
221-210DB-DGE-2
s=5: a;= a

7! 1
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and so on so that we can write even coefficients (a,j ) in terms of a, and odd coefficients
(azk4+1 ) interms of a, for k = 1,2,3,4,5, .... Such that

2802 =-2DA-2) ... k—-2-2)
Aok = — (2k)! Qo

2 -0DB-DGE- D ... k—1-2)
Fak+1 = 2k + 1)!

a,

the solution of differential equation can be expressed as
y = apy1(x) + a; y2(x)

with

o0 k . . . .
ylez_z 1@-DU-D) ... Rk =2-0) ,,

£t (2k)!

251 = DB = DG = A) ... @k—1-2)

y2=x+k_1 2k + 1)!

2k+1

Polynomials of solution when A = 0, 1, 2,3 ... (reduce the complete solution to a finite
polynomial)

A=0: y(x)=1
A=1: y,(x) = x
A=2: y(x)=(1-2x?

2 4
A=3: yZ(x): (x_gxg)lzzl': yl(X): (1—4x2+§x4)

A=5: (x) = ( 2 + 4 5)

=5: y() = (x—gx°+ %)
Si = 2D 4 ford=sweh — 0and h - = =0
ince @syy = 5y, @sfor 4 = swe have @, = Oand hence @14 = @516 =+ = 0.

If sis even: solution is the polynomial with even power of x.

If sis odd: solution is the polynomial with odd power of x.

—1)"ql .

We arbitrarily choose coefficient a,, = ( 1E)| T a multiplicative constant so that coefficient of
al

the term x™is 2™ . The resulting solution is Hermite polynomial, H,(x)in general expressed as

n! (—1)k

Hn(x) = £k (n— 26!

(2x)" 2k, (4)
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: : . -1 .
Where the integer N is g when n is even and nT when n is odd.

First few Hermite polynomials are

1.

2.

3.

Hy(x) = 1.

H,(x) = 2x.

Hy(x) = 4x? — 2.
Hi(x) = 8x3 — 12x.

Hy(x) = 16x* — 48x% + 12.

H 3(-]:]'

Figure 2: Graph of Hermite Polynomialsover the domain (—, ) for n = 1,2,3 and 4.
(Source :https://mathworld.wolfram.com/images/eps-gif/HermiteH_1000.gif)

8.3.2 Generating function

The generating function of Hermite Polynomial is given as

e2xt—t* = Z H,() t". (5)

n!
n

Let’s work out how we can write Eq. (5)

er

= 1 = 1
t = Z(Zx)rtr— and et = Z(—l)stzs—.
r! s!

=0 s=0

Therefore,
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N 1% 1 1
e2xto—t? — Z(Zx)rtrTZ(_l)stZS_' — ZZ(_l)s (Zx)rtr+25?
| r.s=0 S! — & r:s:

putr = n — 2s in above equation,
p2xt—t? Z Z(_l)s (2x)""2s 1 ¢(n
(n—2s)!s!
n=2s s=0

multiply and divide by n! on R.H.S. in above equation, and change the upper limit of summation

over s from co to N = %to avoid the negative factorial term in factor (n — 2s)!.

N
2 1 (=D n! @)% H,(x) ,
e’ B ZF{S (n — 2s)!s! }t _Z n! e

n n

8.3.3 Orthogonality

The orthogonality property of the Hermite polynomial is given as

fe‘szn(x)Hm(x) dx = Vm2"n! &, (6)

— 00

SAQ 1:Show that orthogonality relation for Hermite polynomial is given by Eq. (6).

8.3.4 Rodrigue's formula of Hermite function

The Rodrigue's formula for Hermite polynomial is given as

Ho) = (—Dre L (e 7
W@ = (e (e). ™

SAQ?2: Proof the Rodrigue's relation Eq.(7) of Hermite polynomial.

8.3.5 Recurrence relation for Hermite polynomial (H,,(x))
Some of the recurrence relations for Hermite polynomial are
I. Hy(x)=2nH,,(x); n=>1.
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. 2xH,(x)=2nH,_1(x) + Hpp1(x).
. H)(x)= 2xH,(x) — Hy.1(x).
Proof:
@ from generating function we have

Ho(x) n _ 2xt—t?
Z"=°—n! t" = e .

Differentiate both side with respect to x
ZHT{l(x) tn — Ztert_tZ — Zt ZHTL(x) tn — 2 ZHn(x) tn+1
n! n! n!
n=0 n=0 n=0

comparing both side the coefficient of t™

Hy(0)  Hpq()
- fmoy s =l
an—l(x) _ 2 Hn—l(x)
nn—1! " T o
Therefore,

H,(x)=2nH,_;(x); n=>1.

(II)  from generating function we have

Z Hn (%) tn = g2xt—t?
n!

n=0

differentiating both side with respect to t

Z n Hn (%) thl = 2 x et _ Xttt = 2y Z Hn (%) t" — 2t Z Hn (%) t"
n! n! n!
n=1 n=0 n=0

(:-(?y =2 Z = 2 e
z(:_(l))'tnl ”Z e

comparing both side the coefficient of t™
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Hence, we have

2x Hp(x) =2nHp_1(x) + Hpyq(2).

(IIT) from the first recurrence relation we have
Hn(x) = 2n Hy_y(x)
from second recurrence relation we have
2x Hy(x) = 2nHyp_1(x) + Hpyi(x)
or, 2nHp1(x) = 2xHy(x) — Hyya(x)
put this in first recurrence relation on R.H.S., we get

Hy(x) = 2x Hy(x) — Hpyq (%),

8.4 Laguerre differential equation and polynomial
Laguerre differential equations is

xy'+ 1—-x)y +ny=0
or

1—x n
( )y’+;y:0.

"
+
y X

8.4.1 Solution of Laguerre’s equation
1

H,(x) _ Hypyq(x) 2 Hy_1(x) _ Hypiq(x) 42 Hy_1(x)

MSCPH501

(11)

Thus, p(x) = %xandq (x) = g, implies x = 0 is a regural singular point. So we get the solution

of the differential equation using Frobeneous method. Assuming solution of the form

(o]
y= Yt

m=0

y' = Z (m+r)apx™t1
m=0
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yu — Z (m + r)(m +7r— l)amxm+r—2.

m=0

Replace above expressions in Laguerresdifferential equation (11) we get

x (;O(m +r)(m+7r— l)amxm”‘z) + (1—x) (;O(m + r)amxm”‘l)

+ n(Z amxm”) =0

m=0
{Z m+r)(m+r—1)+ Z (m+ r)} Ay x™T 1 + 1 (z amxm”)
- Z (m+1r)a,x™T"
m=0
— 0. (12)

To find the indicial Equation put the coefficient of lowest power of x i.e.x" ™! form = 0 to
zZero,

Indicial equation :[r (r — 1) +r]a, = 0; ag # 0.

Therefore, [r (r — 1) + 7] = 0 and the solution of this equationis [r2 =0] or r=20 isa
double root.

To find recursion relation: equate coefficient of x5*" to zero in Eq.(12)
s+r+1D(+nrag, +(+r+1agy; +nag— (s+r)ag =0

(s+r+1D%ag+ (n—s—r)a;=0

(s+r—n)
U1 = G rrr 2™ s=0123,.. (13)
Now roots are r = 0, put this in recursion relation
s—n
1= Sz s (14)
s =0: a; = —na, =(-1Dna,
1-n n(n-—1)
s=1: a=—a = (D —m—a
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2—n nn—1)n-2)
s=2: @3 =50 = (-1)3 3 % 77 a,
3—n nn—1)n-2)(n—-3)
— q. — — 4
s=3: ay 2 % = (-1) 27 % 32 % 22 ao.

In general we can write

nn—1Dn-2).... n—s+1)

(52 o
multiplying and divide by (n — s)! on right hand side

as = (—1)°

nn—1Dn-2).... n—-s+1)x(n-—-s)!

— (_1)\S
as = (=1) (sDZ(n—s)! o
n!
— ((— S
as = ( 1) (S!)z(n_s)!ao. (15)
Now put 7 = 0 in the assumed solution y and replace a,, by recursion relation Eq.(15) for s = m
[ee] n n!
— m _ _1\ym m
y = A X —aOZ( 1) (m!)z(n—m)!x .
m=0 m=0

If we take a, = n! then solution y is known as Laguerre polynomial (L, (x))

(n!)? -

La(x) = ) ()" e (16)
m=0

First few Laguerre polynomials are
1. Lo(x) S 1.
2. Li(x)=—x+ 1.

1
3. Ly(x) = E(x2 —4x + 2).

1
4, Li(x) = g(—x3 + 9x% — 18x + 6).
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Ly(x)
" La(x)

-1 S g
I T~ \ Ly(x)
T Ls(x)
- Ly(x)

Figure 3: Graph of few Laguerre polynomials for x € [-1,5]andn =1, 2, ..., 5.
(Source: https://mathworld.wolfram.com/images/eps-gif/LaguerreL_1000.gif)

8.4.2 Generating function

Z L,;l('x) Z" = I 1 Zexp (— 1x_zz). (17)

n=0

SAQ3: Show that generating function for Laguerre’s polynomial is given by Eq.(17)

8.4.3Recurrence relations of Laguerre’s Polynomial L, (x)
1. Ly () +(x—2n-1)L,(x)+n*L,_4(x) = 0.

Proof: use generating function

1 Xz - Ly(x) ,
1—ZeXp(_1—Z)_Z n! z

n=0

Or, exp ( ) =(1-2)Yr0 L"(x)z ™ differentiating w.r.t. z

exp (_ 135_22){ 1iz - xZZ)Z} _a- Z)Z n(x) Sn-1 ELnn(!x)Zn

L) B s 5 ),
() T TR —(1—>Z SR T
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—sznn(!x)Z" = (1—Z)ZZnLnn—(!x)zn‘1—(1—z)z

Equate the coefficients of z"

B T S M R O
n! n! n-1D!' n=-2) n!l (-1
n!'L, n! L,y n! L,_4

So we get

Lpii(x)+ (x —2n— 1)L, (x)+n?L,,_,(x) = 0.

2. Lp(x)+nL,_1(x)—nL,_4(x) = 0.

Proof: use generating function

exp (—%) =(1-2) Z:‘)Lnn—(!x)zn.

differentiating w.r.t. x

X =

n=0

n!

z"=(1-2) Z Ln (%) z™
n=0

Equate the coefficient of z"

! !
Ln—l _ Ln n—1

m—1! nl  (n-1)!

!
n! L,_4 . n! L,_4

A T

So we get

Lyp(x) + nlyp_q(x) —nly_1(x) = 0.

z Xz - Ln(x)
1—zeXp(_1—z)_(1_Z)Z) n! z
n=

=D "= It moDi

n

Problem: show that xLj, (x) + (1 —x)Ly,(x) +nL,(x) =0.
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8.4.4 Orthogonality
[ a0 L)
J e x% T;u dx = 8, (18)
0
Proof: From generating function we have
- Ly(x) , 1 Xz \ 1 x
z T Z =1-2) exp(—:)— 1-2) exp(x—l_z) ..(0.1)
n=0
and
= Ly(x) . xt 1 x
= t"m=00-1t)" exp(—m) = (1-1¢) exp(x—l_t) ..(0.2)
m=0
multiply Eq. (0. 1)and Eq. (0. 2) we get
o 00 X X
HOPHCI -1z e (x—155)
mzt = ..(0.3)
1-z 1-t
n=0m=0
multiplying both side of Eq. (0.3) by e™* and integrate on x from 0 to o
oo x X
o Ln () Ly (x eXp\X =7 — ) &XP\X —1—¢
Zz f - () m (%) dx |z"t™ = fe_x ( 1 Z) ( 1 t) dx ..(0.4)
m! 1-z 1—-t

(=}

o) X X e} X X
1-2(1-1) 1-2(1-10)
0
f 1 1 1) d
(1—z)(1—t) %P 1—z 1—¢ x
; — b
now we can write ) = 1+ 1o
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5= 1 Z ")) 4
RH mfp< +1_z‘m)> *

= ! - ! exp(—x(1+ z —L>> ’

= — — - = —
1-2)(1-1) (1+%_m) 1—-z 1-t 0

3 1 0 1-2(1-1) B 1

- (1—2)(1—t){ +(1—Z)(1—t)+z(1—t)+t(1—z)} T (1-zt)

> e

n=0

Therefore, we have

ZZ f -xin (X)Ln;rf!x) dx |zt = zzntn - zz5mn Sngm

when m = n LHS is non zero and the integral is equal to one as the coefficient of z"t™ , otherwise for

m # n integral is zero. Therefore the orthogonality relation for Laguerre polynomial is

f L (%) Ly ()
goxlm®

m! n! dx = Smn-
0
8.4.5 Rodrigues Formula
dn
L,(x)=¢€* P (x"e™). (19)
Proof: Generating function is given as

~(R.1)

=) -

differentiate Eq.(R. 1) n times with respect to z (according to Leibnitz theorem) we get

(1—2)"lexp (— %) = (1-2)texp [(

n=0

n B x dn L, L, Lysq )
—n[(l—Z) 16Xp(—1_ Z)] dZn[L0+L12+§Z + - +—Z +m n+ +](R2)

¢ To evaluate differential factor of LHS of Eq.(R. 2) i. e [(1 —z) lexp (— LZ)] we proceed as

follows:

evaluate derivative for n = 1 in the limitz - 0
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d 1—x—
E[(l —z) Lexp (— T ic Z)] = a _xz):exp (— %)

£%E[(1_Z) exp(——)] —(1—x)e‘x=—(xe )

evaluate derivative for n = 2 in the limitz - 0

T f Z)] =(x?—4x+2)e* = i(xze_")

lim— @ [(1 —z) lexp (— P

z-0 dz2

evaluate derivative for n = 3 in the limitz - 0

llm [(1 —z) lexp (——)] =(6—18x +9x% —x3)e ™ = i(x3e"‘)
z-0dz3 dx

similarlily, we can show and express that n™ orderderivative in the limit z — 0

n n

LHS = exhn&% [(1 —z) lexp (— &)] = :n (x"e ™).

e To evaluate RHS of Eq.(R. 2)

dn L, L L Ln() ,
= 2244y A ond1 | 2 2
RHS = dz”[L0+le+2!Z + +n!Z +(n+1)!Z + ] dznz n!

n=0

proceed as follows:

d e a3

Ez" =nz" 1L @Z" =n(n-1)z"2 ; @Z" =n(n—-1Dn-2)z"3;
k

@Z" =nn—-1DMn-2).(n—k+1)z"F,

Therefore, we get fork = n

dTl.
—z"=n!
dz"

similarly we can write

k

17K —z" =(+r)n+r—-Dn+r—2).(n+r—k+ 1z"7k,

Therefore, again for k = n we get

A ntr m+r(n+r—-1)(n+r-2)..(r+1)z" =

(n+r)!
dz" z

r!

Hence, using above relations and with the fact that L,, is funtion of x we can evaluate RHS in the
limtz - 0
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" L, Ly Lpyq Lptz
RHS = — Lo+ Liz+—z%2 4 oo — 7z 4 —"T—__ 0+l n+2
T T A’ Tt ) n+2)”
Ly (+D! Lpy (n+2)! Lyyo
—[0+0+0++n 2+ 24 ..
[ e 1 @+ 2T 2 m+2)”

: _d
Iy es =l >

Hence, in the limt z — 0 we get Rodrigue's formula

n

d _
LHS = e"m(x"e *) = L,(x) = RHS.

8.5 Summary
¢ Hermite differential equation and polynomial

y'=2xy'+22y=0; A>0and constant.
e Hermite Polynomial

n! (=1)k

Ha(x) = £,k (n— 26!

(zx)n—Zk_

e Properties of Hermite function
o Generating function

ert—tZ — Z H,(x) .

n!
n

o Orthogonality

e

fe‘szn(x)Hm(x) dx = Vma2"n! &,

— 00

o Rodrigue's formula of Hermite function

n
H,(x) = (-1)"e* %(e-xz).
o Recurrence relations of Hermite Polynomial
1. Hy(x)=2nH, ;(x); n=>1.
2. 2xH,(x)=2nH,_1(x) + Hyp.1(x).
3. Hp(x) = 2xHyp(x) — Hpyq(X).
4. H,)(x) = 2xH,(x) —2nH,(x).
e Laguerredifferential equation and polynomial
xy"+ (1—x)y' +ny=0.
e Laguerre’s Polynomial

223



MSCPH501

(mH%2(n —m)!

n 2
L= Y om
m=0

e Properties of Laguerre function
o Generating function

L,(x) 1 Xz
Z a2 =T (1)
n=0
o Recurrence relations of Laguerre’s Polynomial L, (x)
1. L)+ (x—2n—1)L,(x)+n?L,_,(x) = 0.
2. L,(x)+nL, 4(x)—nL,_;(x)= 0.

o Orthogonality

m! n! dx = Omn.

f o Lm () Ln(2)
o Rodrigues Formula
n

L,(x) = ¢€* g

—— (x"e™).

8.6 Answer to SAQs

SAQ1: Proof:

We will use generating function to show the orthogonality relation as follows

e2xt=t? — ZHn—(x)t" ) and e2xt—t* — Hm—(x)tm wevenn (D)
n! m!
n m
multiply Eq. (a) and Eq. (b)
ZZH n(OHm () (©
- L

Multiply both side of Eq. (¢)bye ™"

—x2
o XPtaxt=2t? _ p-xPtaxt-at?+2t? _ ,-(x-20)2+2t7 _ ZZ e Hn(x)Hpm () gntm (d)
n!m! S

Integrating Eq.(d) from —oo to o0 on x, and puty = x — 2t, hence dx = dy then use
definition of Gamma function

L.HS. _f " e o~ (x—20%42t% g, — p2t? f o~ dy = RN \/EZ?LO:O(ZL“Z)R

n!
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O P

—o0 N

when m = n; on comparing the coefficient of t?™in Eq.( e)

[oe)

fe"‘z(Hn(x))2 dx = Vm2"n!

—00

and m # m; then comparing the coefficient of t™*"in Eq.( e)

[oe)

fe‘szn(x)Hm(x) dx = 0.

—00

SAQ2: Generating function for Hermite polynomial is

p2xt—t? — ZHn(x) ¢(n
n!

n

exz—x2+2xt—t2 — e{xz— (x—t)?} _— ZHn(x) ¢n

n!
n

differentiating both side n times partially with respect to t, and then put t = 0.

a" H (x)
=0 ~atn <z n! )
t=0

n

(e{xz— CRUE)

atn

o (H t°+H—t +
0

H 2 Hn n
p 't +---+—'t +)
~ ot n! t=0

1! 2!

= H,(x).

Therefore,

Ha(x) = e (aat’;( o t)2)>t=0

letz=t—x, so, dz = dt
n

i) = o (32 )) = e (0 gme)

ozn
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Hence, we get Eq. (7)
2 dn A2
Hn(x) = (—1)"e" W(@ x )

SAQ3: RHS. (of Eq. (17))
1 xz) 1 (1_ Xz (xz)? (—1)k(xz)k+m>

=1—zeXp(_1—z ST\ Tz a-22 T ta-oF
v DRk o (DR ()k

- | — N\k+1 |
k:ok'(l z) — k!

(1—2z)7k1,

Use binomial expansion

had —1D)*(x)k
RHS = %zk [1+(k+1)z+
k=0 '

+]

Multiply and divide the term in summation by k!

(k + 1)2Sk +2) 5, ., G+ Dk +“2) HCEDN

X ANk (K
RHS = %zk [1+(k+1)z+Wz2+---+(k+l)(k +l'2) "'(k+l)z’+---
= k!
]

kU1 k!

oo (DR DE (0F L,
Z; (kN2 1! Z

k=01

RHS =Zz( D+ Dk +1-1) ... (k+2)(k + 1Dk! (x) s
=0

Putk+l=n or l=n—-k,soforl =0, n will start from n = k in the summation, since summation
over k starts from k = 0 so e can take summation over n from n = 0 with the condition that n is always
greater than k to restrict the appearance of any negative factorial term because of replacement of [! =
(n — k)!. Hence we can take summation of k from 0 to n and summation of n from 0 to co.

O EDF 0F O Lo DR F L O L)
RHS = 22 N2 (n—k) =~ ;EH D2 (m—ky ME = nz:; o 2 = LHS.
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8.8 Terminal and model questions

Q1. Show that

Q2. Show that

Q3. Show that

Q4. Show that

Q5. Prove that

Q6. Evaluate

2

Ll_l’)%% [(1 —z) lexp (— %)] = (x? —4x + 2)e™*.

A -1 x 2 _ . 3Va—X
il_t)%@[(l—z) exp(—m)] = (6 —18x 4+ 9x“ — x°)e™*.

[oe]

. dan Ly(x) ,
lll%ﬁz; a2 = .
n=

H)/(x) = 2x H,(x) —2nH,(x).

Hy(x) = 4n(n—1Hy,,

f x e‘szn(x)Hm(x)dx.
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9.1 OBJECTIVES

After studying this chapter we will learn about how Fourier transforms is useful many
physical applications, such as partial differential equations and heat transfer equations. With the
use of different properties of Fourier transform along with Fourier sine transform and Fourier
cosine transform, one can solve many important problems of physics with very simple way. Thus
we will learn from this unit to use the Fourier transform for solving many physical application
related partial differential equations.

9.2 INTRODUCTION

The central starting point of Fourier analysis is Fourier series. They are infinite series
designed to represent general periodic functions in terms of simple ones, namely, cosines and
sines. This trigonometric system is orthogonal, allowing the computation of the coefficients of
the Fourier series by use of the well-known Euler formulas, as shown. Fourier series are very
important to the engineer and physicist because they allow the solution of linear differential
equations and partial differential. Fourier series are, in a certain sense, more universal than the
familiar Taylor series in calculus because many discontinuous periodic functions that come up in
applications can be developed in Fourier series but do not have Taylor series expansions.

The Fourier Transform is a tool that breaks a waveform (a function or signal) into an
alternate representation, characterized by sine and cosines. The Fourier Transform shows that
any waveform can be re-written as the sum of sinusoidal functions.

The Fourier transform is a mathematical function that decomposes a waveform, which is
a function of time, into the frequencies that make it up. The result produced by the Fourier
transform is a complex valued function of frequency. The absolute value of the Fourier transform
represents the frequency value present in the original function and its complex argument
represents the phase offset of the basic sinusoidal in that frequency.

The Fourier transform is also called a generalization of the Fourier series. This term can
also be applied to both the frequency domain representation and the mathematical function used.
The Fourier transform helps in extending the Fourier series to non-periodic functions, which
allows viewing any function as a sum of simple sinusoids.

So for detailed knowledge of Fourier transform one should know about the Fourier series
and Fourier Integral. So we will start the brief review of Fourier series and then I will explain the
Fourier Integral and transforms in detailed.

9.3 FOURIER SERIES:
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Fourier series are infinite series that represent periodic functions in terms of cosines and
sines. As such, Fourier series are of greatest importance to the engineer and applied
mathematician. To define Fourier series, we first need some background material. A function f
(x) is called a periodic function if /'( x) is defined for all real x, except possibly at some points,
and if there is some positive number p, called a period of /' (x) such that

fx+p)=fKx) for all x.

Familiar periodic functions are the cosine, sine, tangent, and cotangent. Examples of functions
that are not periodic are x, x2,x3,e%, cos hx etc. to mention just a few.
If f{x) has a period of p then it has also a period of 2p

fx+2p) =f{llx+p)+p}=flx+p)=f(0).

Or in general we can write

f(x +np) = f(x).

A Fourier series is defined as an expansion of a real function or representation of a real function
in a series of sines and cosines such as

a
fx) = 70 + Z a, cosnx + Z b, sinnx.
n=1 n=1

Where ag,a,, and b, are constants, called the Fourier coefficients of the series. We see that
each term has the period of 2w Hence if the coefficients are such that the series converges, its
sum will be a function of period 21t.

The Fourier coefficients of f{x), given by the Euler formulas

1 T
a, = Ef_nf(x)dx
1 s
a, = ;j f(x) cosnx dx n=1273,...
-7

1 T
b, = —f f(x) sinnx dx. n=1273,..
TJ g

The above Fourier series is given for period 2m. The transition from period 2w to be period
p = 2L is effected by a suitable change of scale, as follows. Let f(x) have period = 2L . Then
we can introduce a new variable v such that, f(x) as a function of v, has period 2.

If we set

D 21 s

X=—V DV=—X DV =—X.
2m p L

This means v = £m corresponds to x = L. This represent /', as function of v has a period of

2m. Hence the Fourier series is
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Now using v = %x Fourier series for the perlod of (-L, L) is given by

[ee)

f(v)—?0 z cosnv + ansinnv.
n=1

(x) = a°+§: Tt Zb inn_
fx) = > O COSTLL X nSINTNTX.
n=1 n=1

This is Fourier series we obtain for a function of f{x) period 2L the Fourier series.

The coefficient is given by

9.4

9.5

v A W R

0 =1 Jo F®)dt,

_1fL ) nmx
I _fo cos I X,
_lfL ()_mrxd
=7 _fo sin——dx.

SOME IMPORTANT RESULTS

[ e sinbx dx = (a sinbx — bcos bx).

[ e% cos bx dx = m (acos bx + bsin bx).

fo x dx = 2_
© _x2 i
fo e dx - ? .
N o Gop)Pta? dx = - e “sinbm. [m > 0]
FOURIER INTEGRAL

MSCPH501

Fourier series are powerful tools for problems involving functions that are periodic or are

of interest on a finite interval only. Since, of course, many problems involve functions that are
non-periodic and are of interest on the whole x-axis, we ask what can be done to extend the

method of Fourier series to such functions. This idea will lead to “Fourier integrals.”

9.6 FOURIER INTEGRAL THEOREM

Fourier integral theorem states that f(x) = % ) Ooo f_oooo f(t) cosu(t — x)dt du

Proof. We know that Fourier series of a function f (x) in ( -c, ¢) is given by
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fl) ==

+Y o, a, cos ==

Where a, , a, and b, are given by

g = % f_ccf(t)dt.
B 1 jc © mrtdt
== _Cf cos p ,

) _1fc ©)s nntdt
n =7 _Cf sin —dt.

Substituting the values of a, , a,, and b,, in above equation, we get

nmx

f()— ff(t)dt+z ff(t)cos—dtcosT

+ Z f f sm—dt sinnnx

nmt nmwx nmt

= +Y® b, sin—.

+ sin sin

MSCPH501

nmx

f(x)=2—1cj;if(t)dt+§%f_if(t) :cos . cos . i .
=5 | Ccf(t)dt+Z% [ro]

fo=q [ Ccf(t)dwié [ro]
£lx) = Z—ICJ:f(t) {1 + 22 cos (¢ - x)} dt.

nnt  nux
cos (— - — )] dt
c c

nm
cos—(t — x)] dt
c

c

Since cosine functions are even functions i.e., cos (—8) = cos @ the expression

[0}

{1 + ZZ cosn%r(t — x)} =

n=-—oo

Hence, we have
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f(x)=2—1C j_ £(6) {Z cos%(t—x)}dt

f(x) = %fif(t) {gnzw cos nTﬂ(t — x)} dt.

We now let the parameter ¢ approach infinity, transforming the finite interval [-c, c] into the
infinite interval (-oo to 00). We set

nmw T ]
—=w,and — =dw with ¢ > oo,
c c

Then, we have

f(x) =%j_oof(t) {j_oodwcosw(t—x)}dt

On simplifying

f(x) = %j-w j_oo f(t)cos w(t — x) dw dt. Proved

9.7. FOURIER SINE AND COSINE INTEGRALS
flx) = % fooo sin wx du fooo f(t) sin wt dt. (Fourier Sine Integrals)

2 [e¢] o] . .
fl) == J, coswxdu [ f(t)coswt dt. (Fourier Cosine Integrals)

Proof: We can write
cos w(t — x) = cos(wt — wx) = cos wt cos wx + sin wt sin wx.

Using this expansion in Fourier integral theorem, we have

f(x)=%f0mf_m cosw(t —x)dwdt

1 [00] [00]
= f(x) = ;f f f(t)(cos wt cos wx + sin wt sin wx)dw dt
0 —00
= f(x) = ;j- j f(t)(cos wt cos wx dw dt + ;j f f(t) sin wt sin wx dw dt.
0 —o00 0 —0o
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Now to solve the above equation, we have two different cases, using the following conditions

a
f f(x)dx=0. for odd function
—-a

And

fa f(x)dx =2 faf(x) dx.  for even function
—a 0

Case I: when f(?) is even function: this means
= f(t)sinwt isodd function and
f(t) coswt. iseven function

Hence

1 o0 [ee]
;f f f(t)sinwtsinwx dw dt = 0.
0 —o0

And

1 co oo 2 co oo
= f(x) = ;j f f(t)(cos wt cos wx dw dt = ;j COS WX du)f f(t)cos wt dt
0 —00 0 —0o

o)

flx) = %f cos wx du joof(t) cos wt dt.

This is known as Fourier cosine integral.
Case II: If f{?) is odd function: this means
= f(t)sinwt iseven function and
f(t) coswt. isodd function

Hence

1 (=
;j f f(t) cos wt cos wx dw dt = 0.
0 —00

And
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[ee)

sin wx da)f f(t)sinwt dt

= f(x) =%wa_mf(t)sinwtsinwx dw dt :%L

o)

fx) = %f sin wx du joof(t)sinwt dt.

This is known as Fourier sine integral.
9.8. FOURIER’S COMPLEX INTEGRALS

We know from Fourier integral theorem

flx) = %f_oo f_oo f(t)cos w(t —x) dw dt.

Now adding
flx) = %j_o:of(t)dtj_o:o sinw(t—x)dw = 0.
Since
joosin w(t —x)dw = 0. because of odd function
Hence

f(x) =%f_o:of_o:of(t)cos w(t—x)dw dt+%f_o:of(t)dtf_o;sinw(t—x) dw

f(x)=%j_oof(t)dtU_oo cosw(t—x)+isinw(t—x)l dw

fe) =7 f@dt[f" et ] do

[o e}

flx) = %j_we“'“’xdw j_o:of(t) el®tdt,

This relation is known as Fourier’s complex Integral.
Example 1. Express the following function

et when x <1
f@) = {O when x > 1
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as a Fourier integral. Hence evaluate

du.

f‘” sinu cos ux
0 u

Solution: we know the Fourier Integral theorem, the Fourier Integral of a function f(x) is given
by

1 co oo
f(x) =;j f f(t)cos w(t — x) dw dt.
0 —00
Using w = u we have

f(x) =%j-°°]_°° f(t)cos u(t — x) du dt

1t
flx) = ;j- j cos u(t — x) dt du. since f(t) =1
0 -1
Now integrating w.r.t.  we have
1 (*®rsinu(t —x)1
Flx) = _f [#] du
T J, u _1
1 ®[sinu(l—x)+sinu(l+x
f() :_f [ ( ) ( )l L
T J, u

o ) . C+D c-D . .
Now using sin € + sinD = 2 sin % cos —= and solving it we will get

2 (®sinucosux
flx) = —f —du.
T J, u
We can rewrite this
j‘wsinucosux m
=5
T T
f‘”sinucosuxd EX1=§: for x <1
—_—adu =
T
0 u 5% 0=0, forx>1
Zio
For x=1, which is a point of discontinuity of f(x), value of integral = % = % Ans.

Self Assessment Question (SAQ) 1: Find the Fourier cosine integral of
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_ (sinx, for 0<x<m
f(x)_{o for x>
Self Assessment Question (SAQ) 2: Find the Fourier sine integral of
flx) =e™™.
0 @ sin wx _ T _—ax
Hence prove that Jo Doror do =3e™ ™

9.9. FOURIER TRANSFORMS:

From the Fourier complex integral we know that

fx) = %f:e‘iwxdw f_o:of(t) el®tdt.

We can rewrite the above expression as follows usingw = s

MSCPH501

flx) = %f_o:oe‘isxds j;o;f(t) elStdt = L/%fjoe‘isxdsl I%j;if(t) ei“dtl.

Now using \/% f_oooo f(t) e’stdt = F(s) in above equation, we get

flx) = ~isX R (s)ds.

1 oo
—| e
V2w J-_OO
Where F(s) is called the Fourier Transform of f(x).

And f(x) is called the Inverse Fourier transform of F(s).

Thus, we obtain the definition of Fourier transform is

F(s) = FIf(0)] = 2= [, f()e" dt

f(x) = =, e F(s)ds.
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9.10. FOURIER SINE TRANSFORMS

We know that from Fourier sine integral

flx) = %fooo sin sx ds fooof(t) sinst dt = \/% fooo sin sx ds [\/%fowf(t) sin st dtl.

Now putting F(s) = \/% fooo f(t) sin st dt.

We have

flx) = \/%fooo sin sx ds F(s).

In above equation F(s) is called Fourier Sine transform of f(x)

F(s) = Fs[f(x)] = \/%foof(t) sin st dt.
0

And, f(x) given below is known as inverse Fourier Sine transform of F(s)

y _
f(x)z\/;fo F(s)sinsx ds.

9.11 FOURIER COSINE TRANSFORM

From Fourier cosine integral we know that

fo== [

flx) = \/%fom cos sx ds [\/%fomf(t) cos st dtl .

o)

cos wx du f f(t) cos wt dt
0

Now putting F(s) = \E fooo f(t) cosst dt

flx) = \/gfom cos sx ds F(s).

In above equation F(s) is called Fourier cosine transform of f(x)
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F(s)= F.[f(x)] = \E fooo f(t) cos st dt.

And, f(x) given below is known as inverse Fourier cosine transform of F(s)

fx) = \/% fooo cos sx F(s)ds.

—ax?

Example 2: Find the Fourier transform of e , where a>0.

Solution : The Fourier transform of f(x):

Fif(0} = 2= [, f(x)e'™ dx.

Hence
F{e—axz} _ \/% f_oooo e—axZeisx dx = \/%f_oooo e—ax2+isxdx
{ 2} ax? +lsx+s2 - a—l—j—)z Z—Z
= Fie ™" | = j % T4a tadx = — j e 2 dx
V2 V2T J oo
s? ,
20 oo LS
o rleot) =<2 [T ) g
TJ_w
Putting x\a — 7— =u=dx = j—; in above expression we get,

> Fle=) = =

e % du Isincef e™* dx = \/El

V2ma )
s2 s2
e 4a e 4a
= Ffe—ax*) = Vi = Ans.
{ } V2ma V2a

Example 3: Find the Fourier transform of

(2 for |x| <a
f) = {O for |x|>a

Solution: We know that the Fourier transform of a function is given by

1 0 )
PG} = J= f f (e dx.
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Using the given value of f{x) we get,

1 a 2 a .
F{f(x)} = —f 2e"*dx =—f e *dx =
a —a

Verm J- V2r
— i — 2 ias __ ,—ias] — 4 [eias — e—ias]
U = 7 =i =G =

4 2 sinsa
F{f(x)}zmsmnas:Z P Ans.

Example 4: Find Fourier Sine transform of i .

Solution: ~ We have to find the Fourier sine transform of f(x) = i .

We know that from Fourier sine transform

2 co
F [f(x)] = j;f() f(x) sin sx dx.

Now using the value of f(x) = i, we get,

Rl = 215 Ysinsx dx

dt
now using sx =t = dx = —

We get fwamdt—J%(g). =>Sanef Lntdt—

Hence E [f(x)] = \E Ans.

Example 5: Find the Fourier Sine Transform of e~ ¢*.
Solution: Here, f(x) = e~ **.

The Fourier sine transform of f(x):

F [f(x)] = \/% fooof(x) sin sx dx.

On putting the value of f(x) in (1), we get
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F, [e” %] :\/% foooe‘axsinsx dx.

On Integrating by parts, we get

2
Fle” ] =f;

o e ax
J ¥ sin bx dx = ———— (asinbx — bcos b
using U;) e sinbxdx =5 (asin bx — bcos xl

= ib-wmeol= )

Example 6: Find the Fourier Cosine Transform of f(x) = 5e72* + 2e¢75%,

o8]
—-ax
e

a? + s2

[—a sinsx — s cos sx]]
0

Solution: The Fourier Cosine Transform of f(x) is given by

FE{f(x)}= \/% fooof(x) cos sx dx.

Putting the value of f(x), we get

FE{f(x)}= \/g foo(Se‘zx + 2e7%%) cos sx dx
0

co _ co _
=5, e **cossxdx +2 [ e > cossx dx

ax

using U e * cos bx dx = % (a cos bx + bsin bx)
0

Py
=5 [(—Z)_% (=2 cossx + s sin sx)]:o +2 [(_;% (=5cossx +
s sin Sx)]:o
=s|o- mael+2o- 259 =5 () +2 ()
=10 (5214 + 5241-25) Ans.

Self Assessment Question (SAQ) 3: Find Fourier sine transform of f(x) = e™*

Assessment Question (SAQ) 4: Find Fourier transform of f(x)
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Fx) = {10 for x| <1

otherwise

Assessment Question (SAQ) 5: Find Fourier cosine transform of f (x)

X foro<x<1
f(x)=452-x forl<x<?2

0 for x> 2

9.12 PROPERTIES OF FOURIER TRANSFORMS

9.12.1 LINEAR PROPERTY: If F,(s) and F,(s) are Fourier transforms of f; (x)
and f,(x) respectively then

Flaf;(x) + b f2(x)] = a F1(s) + b F,(s). where a and b are constants.

Proof: we know from the definition of Fourier transform

F _ 1 * isxd
() == f f@etd

We can write

F _ 1 * isxd
(6) = 5= f iGetrdx

And
1 ® .
Fs) == f et

Now

Flafi(x) + b f,(x)] [afy(¥) + b f(x)]e"*dx

7=
—a—f fl(x)elsxdx+b—f f(x)]e*dx

= Flafi(x) + b f,(x)] = a F,(s) + b F,(s). Proved
9.12.2 CHANGE OF SCALE PROPERTY:

We know that Fourier transform equation is given by
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F — 1 00 isxd
(s) = \/T_ﬂf_oof(x)e X.
Then
1
Fif@)}=—F ()
Proof: we know

F _ 1 * isxd
(Q—E§LJQE x

1 (® . dt
= F{f(ax =—j ax)e™*dx. [now utax =t =dx =—
(@} == flan p :
We have
1 [~ s, dt 1 1 (°® (S
F{f(ax =—j t)elat — = ——f t el(a)tdt
1 S
= F{f(ax)} = EF (E) Proved
9.12.3 SHIFTING PROPERTY:

The Fourier transform equation is given by

F _ 1 00 isx d
®‘wELJ“” .
Then,

F{f(x —a)} = e®* F(s).

Proof: Given

F(s) = \/%_nj_o:of(x)eisxdx.

Then,
1 (“ .
F{f(x—a =—f x —a)e"*dx
{f( )} m_wf( )
Put(x—a)=u > x=u+a and dx = du.
We have
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1 © . . 1 « .
F{f(x—a)} = Ef_ fw)els@+rddy = elsa Ef_ f(w)e*du

= F{f(x — a)} = e’S* F(s). Proved

Following are few more properties of Fourier transform which can be proved as same manner as
above properties. Students are advice to proof these properties by themselves.

Assessment Question (SAQ) 6: Prove following properties of Fourier Transform

F{e'™ f(x)} = F(s + a).
F{f(x) cosax} =%[F(s+a) + F(s —a)].

n

Flx™ f(x)} = (D" <= F(s).
F{f'(x)} = is F(s).
F{fm(x)} = (=i s)" F(s).
FUZf @) dx} =22,

AN A S

9.13 FOURIER TRANSFORM OF DERIVATIVES

As we know from the properties of Fourier Transform
F{f"(x)} = (=i s)" F(s).

L. F (%) = (=i s)? F{f(x)} = —s*f. [where f is Forier Transform of f]

I. If F. and F; are cosine and sine Forier tranform f(x) then

2
FAf'()} = —\/; f(0) + sFs(s).

Proof: From cosine Fourier transform we know that

! 2 ® ! 2 ®
F.[f'(x)] = j;f() f'(x) cos sx dxzj;f() cos sx d{f (x)}.

Now integrating by parts, we get

= \/% [cossx f(x)]g —\/%[—s jooosin sx f(x) dxl
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= \/% [0—f(0O)] + s\/% U:osinsx f(x) dxl. {assumimg f(x) - 0 as x - oo}

Hence,

FAf'(x)} = —\/g f(0) + sF,(s) where\/%“jsinsx f(x) dxl = F,(s).

Proved

Similarly we can prove the following relations
L E{f'(x)} = —sk.(s).
V. R = - 2 O - SR

VR = 2 SF0) - R

9.14 FOURIER TRANSFORM OF PARTIAL DERIVATIVE OF A
FUNCTION

The Fourier transform of the partial derivatives is given by
0%u
F l%l = —S2 F(u)

Where F(u) is the Fourier transform of u.
The Fourier sine transform of the partial derivatives is given by

F; laz—ul = s(Wx=o — s* F(W.

0%x
Where F, (u) is the Fourier sine transform of u

The Fourier cosine transform of the partial derivatives is given by
0%u
Fe 0°%x

Where F,(u) is the Fourier cosine transform of u.

ou
—_ | _ o2
- [ax Y=o S F'C(u)'
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Note: From the above formula, it is clear that if u at x = 0 is given then we apply sine

. .o Ou . . . .
Fourier transform and if 2 at x = 0 is given the, we apply Fourier cosine transform.

9.15 APPLICATION TO SIMPLE HEAT TRANSFER EQUATIONS

One of the important applications of Fourier transforms is to solve the simple heat
transfer equations. Example of this is given below.

Example 7: Solve the equation

du _ d%u

at 02x
Subject to the conditions

1 for0<x<1

0 forx =1 whent =0

(i) u=0whenx=0. t>0 (ii)uz{

(iii) u(x , t)is bounded.

Solution: In view of the initial conditions we know that if u at x = 0 is given then we apply

. . .~ Ou . . .
sine Fourier transform and if 57 atx = 0 is given the, we apply Fourier cosine transform.

So here we apply Fourier sine transform in given equation

ou  0%u
at  9%x’
We get
2J‘°°6u _ = 2 (®0%u 4
). Bt sinsxdx = |~ ) 52, Sinsx dx
0 J‘°° _ = ®9%u 4
3t ), usinsx dx = i 52, Sinsx dx.

Now using the Fourier sine transform partial derivative given below

lazu
F;

37| = SWax=0— s? Fy(u).

Where F, (u) is the Fourier sine transform of u

We will get
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0F;(w) .
F YR S(W)y=o — s? F,(u) {givenu = 0 when x = 0}
0F;(u 0F;(u
B(t ) =—s?F(u) = B(t ) + 52 F(u)=0= (D +s?)F,(u) = 0.
Now the auxiliary equation (A.E) is
m+s?=0 =>m=—s2

Hence, the solution is given by

F,(w) = Ae™s"t = F,(u,t)

o)

F,(u,t) = f u(x, t) sin sx dx.

0

Now using the given condition

1 for0<x<1
u—{o forx>1 whent =0
We get,
1 _ o —cossxyl 1—coss
Fs(u,0)=j u(x,0)51nsxdx=f 1.smsxdx=[ ] = :
0 0 S 0 S

But we have the solution
F(ut) = Ae~S"t = F,(u,0) = A.

Hence, from above equation we get

1—coss
S .
Hence solution is
1—-coss _,
F.(u,t) =———e .
Ny

And, finally the complete solution of given equation using inverse Fourier sine transform

2 (®1—coss 52
u=- —e ds Ans.
T J, S
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Solution of partial differential Equation by Fourier Transform

Example 8: Sol az_u_azaz_u —o<x<oo, t=>0
ple 8: Solve — = a’—, , >

With conditions u(x,0)=f(x),
du . u
= (x,0) = g(x) and assuming u, u and i 0asx — too,

Solution: We have given

0%u 5 0%u
— = q®—.
o0t2 0x2

Taking Fourier transform on both sides of the differential equations,

1 [*0%u 1 (® ,0%u
_27-[ _Oowe dx :—zﬂj‘_ooa ﬁe dx.

Now using the Fourier transform of derivative

isx

{F (ﬂ) = (-is)* F{f(0)} = —SZF{f(x)}}-

dx?
We have
OFW) _ o,
gz - S (w)
0%F (u
dt(z ) + a?s?F(u) =0 = D?F(u) + a?s?F(u) = 0.

Now Auxiliary equation corresponding to this equation is
m? + a’s? = 0> m = tias.
Hence, solution corresponding this equation is
F (s,t) = Ae'®st + Be~last .1

Using given condition

u(x,0) = f(and 3 (x,0) = g(x)

dF

F(s,0) = F(s) and -
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Using these conditions in above equation, we get

F(5,0) =A4+ B =F(S) s cee vevcee e 0 2

20 (5,0) = ias(A — B) = G(5) .3

Solving (2) and (3), we get

A= %[F(s) + G(”]

ias

_1 G(s)
B=3[re) -3
Using the value of A and B in (1), we get
1 G ; 1 G —i
F(s,t) = 5|F(s) + 52 efest 1+ 2[F(s) - 22 e-test, (@)

By inversion theorem, (4) reduces to

1 1 (Xt 1 1 [xtat
U t) = E[f(x—at)— Ef g(G)dHl+§[f(x+at)+ Ef g(9)d0].

Using the result

F(I7 f(oat) = %

Self Assessment Question (SAQ) 7: Solve

ou 0%u

ot o9x’

The given conditions are
() u(x,0)=0, forx=0
(iii)  u(x,t)is bounded.

9.16 SUMMARY

foro<x<oandt>0

(i) %(0, t) = —a (constant)

The main aim of to study the Fourier transforms is the solution of partial differential
equations and systems of such equations. Firstly we have learned about brief review of Fourier
series, which very important to learn the Fourier transform. After that Fourier Integral along with
Fourier sine Integral and Fourier cosine Integral have been explained. The knowledge of Fourier
Integral is very important for Fourier transform. After this we have explained Fourier transform
and their important properties in detailed. We also have explained Fourier sine transform and

249



MSCPH501

Fourier cosine transform, which is equally important to Fourier transform. To understand this
unit more clearly various solved examples are includes almost in each section. For students
assessment self assessment question is also incorporated throughout the chapter.

9.17

GLOSSARY

Periodic Function: The function which repeat itself after a fix time.

Computation: Calculations such as addition, subtraction etc.

9.18

1.

10.

TERMINAL QUESTIONS

Find the Fourier Transform of f(x) if

feo =1

Show that the Fourier Transform of

f@ =1,

Is \/% (1—csozs as).

N2
Hence show that fooo (L:t) dt = g

Show that the Fourier Transform of

x|x| <a
0,|x| >a

a—|x| forlx|<a
for|x|>a>0

V2m <
f(x): % forIxI_a
0 for|x| >a
Is sinsa

sa
Find the Fourier cosine Transform of e~ 4*.

Find Fourier transform of
2

_ x*, x| < a
Feo) = {O, x| > a

Find Fourier Sine Transform of

T = vy

Find the Fourier Sine and Cosine Transform of ae~%* + be~FX, a,f >0

N
1+s2° X
Find f(x) if its Fourier Sine Transform is (27ms)z
ou
ot
0,and t > 0 with initial condition u(x,0) = 0,x = 0.

Find f(x) if its Fourier Sine transform is

02 : .
Solve = kaT:l forx > 0andt >0 under the given condition u =ugat x =
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9.19 ANSWERS
Self Assessment Question (SAQ)

1. f(x)= —%fooo (1+Cosux) cos ux du.

uz-1

3. ) = |2 (=)

m \1+s2

4. f(x) = \/% =

3 f(x) _ Zsins(l—coss).

s2

_ ks2t
7. f(x)= %.afoool ; cossx ds.

Terminal Questions:

1 2i

V2m 52’

s R} = [2(5)

2a? 4\ . 4a
5. (———)sm as+s—2cosas.

1.

s s2

i
6. —(1—e ).

52 ( )
7 as bs ax bp
T os24+a2 | s2+4B2 7 s+ s24p2°
3 2sin? ax
T m2x2

1
9. —.

xVx

2
1_ekS t

10. u(x, t) = z%fow ( )sin sx ds.
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10.1 OBJECTIVES

After studying this chapter we will learn about how Laplace transforms is useful for
solving differential equations with boundary values without finding the general solution. With
the use of different properties of Laplace transform and Inverse Laplace transform one can solve
many important problem of physics with very simple way. Thus we will learn from this unit to
use the Laplace transform for solving the differential equations.

10.2 INTRODUCTION

The Laplace transform is named for the French mathematician Laplace, who studied this
transform in 1782. Laplace transforms is an integral transform. It helps in solving the differential
equations with boundary values without finding the general solution and values of the arbitrary
constants. The method of Laplace transforms is a system that relies on algebra (rather than
calculus-based methods) to solve linear differential equations. While it might seem to be a
somewhat cumbersome method at times, it is a very powerful tool that enables us to readily deal
with linear differential equations with discontinuous forcing functions.

Laplace transforms are invaluable for any engineer’s mathematical toolbox as they make solving
linear differential equations and related initial value problems, as well as systems of linear
differential equations, much easier. Applications abound: electrical networks, springs, mixing
problems, signal processing, and other areas of engineering and physics. The process of solving
differential equations using the Laplace transform method consists of three steps:

Step 1. The given differential equations is transformed into an algebraic equation, called the
subsidiary equation.

Step 2. The subsidiary equation is solved by purely algebraic manipulations.

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given problem.

10.3 LAPLACE TRANSFORM

Definition: The Laplace transform of a function f{z) is defined as follows
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F(s) = fooe‘Stf(t)dt.
0

For all positive values of ¢ and integral should exits. The Laplace transform is denoted by

o)

LIF(8)] = F (s) = f -5t f(D)dL.

0

The Laplace transform is an operation that transforms a function of ¢ (i.e., a function of time
domain), defined on [0, ), to a function of s (i.e., of frequency domain). F(s) is the Laplace
transform, or simply transform, of f (). Together the two functions f (#) and F(s) are called a
Laplace transform pair.

10.4 LINEARITY OF THE LAPLACE TRANSFORM

The Laplace transform is a linear operation; that is, for any functions f(t) and g(t)whose
transforms exist and any constants a and b the transform of af (t) + bg(t) exists, and

Llaf(t) + bg(t)] = aL[f()] + b[g(®)].

Proof:

[oe)

LLaf () + bg(D)] = f e~ [af (t) + bg(6)]dt.

0

As we know that integration is a linear operation. So we can use the linearity property of
integration in above equation

Llaf(®) + bg(®)] = a f Ce st (Ot + b j Cemst g(t)dt

Llaf(t) + bg(®] = aL[ f(©)] + bL[g(D)].

Proved

10.5 CHANGE OF SCALE PROPERTY
If the Laplace transform of f(t) is F(s) then

Lfan] = F(3)

Proof: From the definition of Laplace transform

e

LIf (ab)] = f et f(at)dt

0

dr T
putat=r =dt = — and alsot = —
a a
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1

= Llf(at)] = fwe_%f(r)% = ELOO e ST f(r)dr [WhereS = 2]

0

= 2F(5‘) = %F (2) ) Proved

10.6 FIRST SHIFTING THEOREM:

If F (s) has the Laplace transform of f(t) then
Lle®f(O)] = F(s — a).

Proof: Using the definition of Laplace transform

e

F(s—a) = f e~ (-t f(1)dt

0

e

_ fo " emstratg(p)dt = fo e~ f(t)dt

= [ e~St{eat f(D}dt = L[e® f(¢)]. Proved

Alternative Method:

[o e}

eate—stf(t)dtzj e—st+atf(t)dt

0

o)

LIt £ (8)] = f

— fooe—(s—a)tf(t)dt = f e Y f(t)dt
0 0
Using (s—a) =u

=F(u) =F(s —a). Proved

10.7 SECOND SHIFTING THEOREM (HEAVISIDE’S SHIFTING

THEOREM):
o romano =, (707
Then, Llg(®)] = e F(s).

Proof: As per the definition of Laplace transform

e

Llg(©)] = f et g(t)de

0
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a

L@ = |

e St g(t)dt +f e Stg(t)dt.
0 a

Using the given condition g(t) =0 for 0 <t <aand g(t) = f(t—a) fort >a
Llg®)] =0+ f e Stf(t — a)dt.
a

Now using (t —a) = r =dt =drand t = (r + a) we get

(o] (o8]

e ST+ f(r)dr = e‘saf e STf(r)dr = e 5*F(s).
0

Lg@] =

0

Hence, Lig(t)] = e ™®F(s) Proved

10.8 LAPLACE TRANSFORM OF THE DERIVATIVE OF f (t)
If L[f(£)] = F(s) and f(¢) is the derivative of f'(t) then
LIF®)] = sLIfF®)] - £(0).
Proof: As we know
LIF @] = [ et f'Oat.
Solving above equation using integration by parts we get
LI @1 = fe~* 7@ - [ T(sem (@)t

As we know that
e ®=0and e’ =1> e S'f(t) = 0whent = wand e St f(t) = f(0)whent = 0

= LIf'(O)] = =f(0) +s J, e f(©)dt = —f(0) + sL[f (¢)
= L[f'(t)] = sL[f(t)] — f(0). Proved

10.9 LAPLACE TRANSFORM OF THE DERIVATIVE OF ORDER n
LIf™(®)] = s"LIf(O] = s"71f(0) = s"2f'(0) — s™°f"(0) — -+ = f*71(0).

Proof: As we know that the Laplace transform of derivative is given by

LIf'(©)] = sLIf(®)] - £(0) R |
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Using this equation we can find the Laplace transform of [f"'(t)]

LIf" (] = sLIf'(®)] = £/(0).

Using equation 1 we get
LIf"®)] = s{sLIf (O] - f(0)} — f'(0)
LIf"(®)] = s:L[f(t)] — sf(0) — f'(0) et e e e 2

nr

Similarly we can find the value of L[f""'(t)] by using equation 1 &2

LIf"" ()] = s3LIf ()] —s*f(0) —sf'(0) — f"(0) ..........3

Similarly, using above method we get
LIf™(®)] = s"LIf(O)] = s"71f(0) = s"2f'(0) — s™3f"(0) — - = f*71(0).

Proved

10.10 LAPLACE TRANSFORM OF THE INTEGRAL OF f(t)

IfL[f(t)] = F(s) and f'(t) is the derivative of f'(t) then
L Utf(t)dtl = 1F(s).
B s

Proof: Let g(t) = fotf(t) and g(0) = 0 then g'(t) = f(¢t).
As we know that Llg'(t)] = sL[g(t)] — g(0)

S Lg'®) = sLlg®]  as g(0) = 0
- Lg®] =< Lg O]

Using the value of g(t) = fot f(t) and g'(t) = f(t) we will get

t 1
:L[ f f(t)dt] = ~L[f(O)]
0

=L Utf(t)dtl = ;F(s). Proved
0

10.11 LAPLACE TRANSFORM OF SOME IMPORTANT FUNCTIONS
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L L) =;.

Proof: From the definition of Laplace transform, the Laplace transform of L(7) can be
written as

[o%e) _ —st7® 1 1
[As e™® = 0 and e = 1]

2. L(e™) =$. where s > a

Proof: As per the definition of Laplace transform

Ry [o)

e e~ St dt = j e@=s)t gt
0

L(e%) = f

0

© e—(s—a)t ® 1
= f e Dt gt = [———| = . [Ase™® = 0 and e = 1]
0 —(s—a) s—a
0
3 L(sinat) = ——
) ~ s24a?’

Proof:
L(sinat) = L(%) = %[L(e"at) — L(e™iat)].

1. . ]
Since sinf = Z[e”’ — e—lG]

Using Laplace transform L(e%) =$ we will get

_ 171 1 1 1[(s+ia)—(s—ia)
L(sinat) = —_[ — — : ]:__ : _
2ils—ia s+ia 20 (s—ia)(s+ia)
_ 1 [ 2ia ] _ a
T 2ils?+ a?l s+ a2’
S
4. L(cosat) = e
etat 4 o—iat 1 i .

Proof: L(cos at) :L(T) = E[L(ezat) + L(e lat)]_

1. . ]
Since cosf = E[ele + 3—19]
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Using Laplace transform L(e%) =$ we will get

L t)—l[ 1 N 1 ]_1(s+ia)+(s—ia)
A= ols—ia " s+ial 2 (s —ia)(s +ia)
_1[ 2s ]_ s [ i 2 Z )
=5 |52 q2| = 525 g2 lasweknow i* =
Proved
L(sinhat) = —
5. (sinhat) = 5—.

Proof:

L(sinhat) = L) = LL(e™) — L(e™0)].

1
Since sinh@ = E[ee — e‘9]

Using Laplace transform L(e%") =ﬁ we will get

L(sinat) = 1[ 1 1 ]_1 (s+a)—(s—a)
A= ols—a” s+al” 2 (s—a)(s+a)
_1[ 2a ]_ a P 4
=5l T o rove
S
6. L(coshat) = ot

Proof:

et et 1 at —at
L(cosh at) =L(T) = E[L(e )+ L(e )]
1
Since cos@ = E[ee + e‘e]

Using Laplace transform L(e%) =$ we will get

L hat) = =
(cosh at) a s+a s—a)(s+a)

171 1 171 1f+a)+(-a)
2[5— +—]_§l(
s

_1[ 2S ]_
T2 1s2— 2] s2— @2’
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n!
sn+l

7. L(t") =

where n and s are positive

Proof: L(t") = fooo t". e Stdt

) u du
now using st=u=>t=; :>dt=?.
We will get
“u™ du 1 (= _
L(t") = —.et—=—1| e"u"du
o S s s 0

we know that f e *utdu=rIT(n+1)=nl
0

Hence we have
I

L(t") = Ty Proved
Example 1: Find the Laplace transform of sin3 2t.
Solution: we have given f(t) = sin3 2t
And, we also know that sin30 = 3sin 6 — 4sin3 6.
From above equation sin3 2t = % [3 sin 2t — sin 6t].
Hence, L[sin3® 2t] = i[3 L(sin 2t) — L(sin 6t)]

_1[ 6 6 ]
- 4ls24+4 s2+436)

As we know that L(sinat) =

s?+a?
_6[s?P+36—s7—4] 48
4|2+ 4)(s2+36)]  (s2+4)(s2+36)°

Example 2: Find the Laplace transform of sin 2t sin3t

Solution: we have given f(t) = sin 2t sin3t
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1
Using relation — sin A sinB = > [cos(A — B) — cos(A + B)]

1
> sin 2t sin3t = 3 [cost — cos 5t].

So  L(sin 2t sin3t) =

N |-

[L(cost) — L(cos5t)].

Now using relation ~ L(cosat) =

s2+a?’
, . 1 S S 12s
We have L(SlTl 2t Sln3t) = E[SZ+1 _sz+25] = m
Ans
1 1 . t 1
Example 3: Show that L (ﬁ) =7 Given that L <2 ;) ==

Solution: Suppose F(t) = (2\/%) then F'(t) = \/% and also we can see that F(0) = 0

Now we know that L[F'(t)] = sL[F(t)] — F(0).
1) H_og=¢ L _
Hence L (ﬁ) = sL <2\/;> R .

1 1

=1L (—) =—. Hence Proved
Vat/ s

Example 4: Find the Laplace transform of t + t? + ¢t3.

Solution: we have given f(t) =t + t? + t3

n!
sn+l

Now using the relation L(t") =
We haveL | f(£)] = L(£) + L(t?) + L(t®) =5 + =+ Ans.

Example 5: Find the Laplace transform of t cosh at

Solution: we have given f(t) = t cosh at

N

We know that L(cosh at) =

s2—qg2"’

Now using the relation L[t f(t)] = (—1)" ;—1; [F(s)].
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. __a s _ _(s*-a®)1-s2s _  (s’-a’-2s® _ (s®+a?)
We will get L(t cosh at) = — (sZ—aZ) = Ty e e Ans.
Self Assessment Question (SAQ) 1: Find the Laplace transform of 2sin 2t cos 4 t.
1
Self Assessment Question (SAQ) 2: Find the Laplace transform of tz.
1, 0<5t<1

Self Assessment Question (SAQ) 3: Find the Laplace transform of F(t) =4t, 1<t<?2
t?, 2<t<o

Self Assessment Question (SAQ) 4: Find the Laplace transform of 1 + sin 2t.

Self Assessment Question (SAQ) 5: Find the Laplace transform of sinh3 t .

1
10.12 LAPLACE TRANSFORM OF ?f(t)

IFLIF(8)] = F(s) then I L |3 £ (©)| = [ f(5) ds.
Proof: As per the Laplace transform

LIf(O] =F (s) = []"e~st f(D)dL.

Integrating with respect to s, we get

J-OOF(S)ds = joo Uooe_“f(t)dtl ds
_ fo T [ fs ooe‘“dsl dt = fo T [e__zt[o dt

- [ PPt par = - [ B 1e - e
—- O emeryge = | et L= L[ ro)

> L Ef(t)] = fOOF(s)ds. Proved

N

10.13 LAPLACE TRANSFORM OF ¢t. f(t)

n

d
Lt f(O] = (-=1)" = F(s).

Example 6: Find the Laplace transform of -
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Solution: L(sin2t) = 2

s2+4
sin 2t © 2 1 _15]1%® _ 1S s 1S
L(—)=f : ds=2.—[tan 1—] = [tan 1 oo — tan 1—] =——tan"1=
t s s2+4 2 2l 2l T2 2
—1S
=cot™ . Ans

Example 7: Find the Laplace transform of the function

f(t) =te tsin2t.

2

Solution: L[sin 2t] = =

—t .- _ 2 _
Lle *sin2t] = v F(s) say

2.2(s+1) _ 4(s+1) Ans

—t : — _i 2 —
Lle™ sin2t] = —F'(s) = [(s+1)2+4] [+ D2+42  [(s+1)2+4]2

10.14 UNIT STEP FUNCTION
The unit step function is defined as follows:

0, whent<a

= 0.
1, whent>a wherea = 0

u(t—a)z{

10.15 LAPLACE TRANSFORM OF UNIT STEP FUNCTION

—as

Llu(t—a)] = 5

Proof: Using the definition of Laplace transform, we have

[o e}

Llu(t—a)] = j e Stu(t — a)dt.
0

Now using the condition of unit step function

a [ee]
Llu(t —a)] = f e Stu(t — a)dt + f e Stu(t — a)dt
0 a
a o0 e~st @
= f e St0.dt +f e St1.dt =0+ l l
0 a —S1,
e—as
Llu(t —a)] = o Proved

Example 8: Convert the following function in terms of unit step function and then find the
Laplace Transform
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6, whent < 2
f® = {4, whent > 2

Solution: Given that

6, whent < 2
f@® = {4, whent > 2

This further can be written as

6+ 0, whent <2 _ 0, whent < 2
f(t)_{6—2, whent > 2 _6+{—2, whent > 2
0, whent <2 _ _ _
_6+(_2){1, whent > 2 =6—2u(t—2)

[Using the condition of unit step function]

6 e—ZS

LIF(©O] = 6L(D) = 2Lfu(t = D)] = ~—2—.  A4ns

10.16 PERIODIC FUNCTIONS:
If £(t) be a periodic function with period T,= f(t + T) = f(t) then

Te stf(t)dt
L) = RO

Proof: As we know

[oe)

LIF©)] = f et F(£)dt.

0

This can be written as in the following manner
LIFO] = [Te st f)dt = [ e f(t)dt + [ e st f(O)dt + [ e~ f(t)dt + -

Now substitutingt =u+T, t =u+ 2T, ...and dt = du in second integral, third integral, and
so on respectively, we will get

LIFO] = [, e fO)dt + [] e @D f(u + T)du + [ e@*+2D f(u + 2T)du + -

T

e S% f(u+T)du + e‘ZSTf e S% f(u+2T)du + -
0

T

= fOTe‘Stf(t)dt + e‘STf

0

T

e S% f(u)du + e‘ZSTf e S% f(u)du + -
0

T

= fOTe‘Stf(t)dt + e‘STf

0

As f(u) be a periodic function with period T,= f(u+T) = f(u+ 2T) = --- = f(w).
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Now we can write

T T

e St f(t)du + e‘ZSTf e St f(w)dt + -
0

= fOTe‘Stf(t)dt + e‘STf

0

T
- f et F(O)dt[1 + e~ + 72T 4 -],
0

Now using the condition [1 +x + x* +x3 + ... = i we have

T st
LIf(®)] = fo i — Z_(S?dt. Proved

Example 8: Find the Laplace transform of the waveform

f() = (%),OSts&

1

Solution:  L[f(t)] = —= fOTe_STf(t)dt

- —st13
2t] 1 3 _St(g) ! g[te“_ esf]
L [3] T 1-e73s fO € 3t dt = 1-e7353 1 —s M s2 1y

2 1 [3e—35 e_35+ 1] 2 1 [3e—35+1—e—3s]
3 1-e 35| -s s2 s2 3 1-e735| -s s2
2e73S 2
_—t —. Ans.

—s(1—e~35) = 3s2

Self Assessment Question (SAQ) 6: Find the Laplace transform of ¢t cost.
Self Assessment Question (SAQ) 7: Find the Laplace transform of %sinzt.

Self Assessment Question (SAQ) 8: Find the Laplace transform of

C(t—1, 1<t<?2
f&) = {0 elsewehre

Self Assessment Question (SAQ) 9: Find the Laplace transform of the periodic function

f®)=et for0<t<2m

10.17 SOME IMPORTANT FORMULAE OF LAPLACE TRANSFORM
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S.No. f(t) F(s)
1 e !
S—a
. a
2 sin at SZ-I-—az
3 S
cosat SZ n az
. a
4 sinh at m
S
5 cosh at m
n!
6 tn Sn+1
bt.; a
7 e’'sinat G-Db)2+a
s—b
8 bt - - -
e--cosat (S—b)z +a2
t S
s? —qa?
10 tcosat —_—
(s2 + a?)?
10.18 INVERSE LAPLACE TRANSFORM

If F(s) is the Laplace Transform of a function f(t), then f(t) is known as Inverse Laplace

Transform.

f@®) = L7F(s)].

The Inverse Laplace Transform is very useful to solving the differential equations without

finding the general solution and arbitrary constants.

10.18
S.No. F(s) f(@) = LHF(s)]
1 1 Jat
S—a
) - in at
52 n az sSina
3 > t
52 n az cosa
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a .
4 2 _ g2 sinh at
S
S 2 _ g2 cosh at
n!
6 gntl "
¢ bt:
7 (s —b)2 + a2 e  sinat
s—b
8 - bt
(S — b)z T g2 e-rcosat
S t )
? (s2 + q?)2 %Sln at
2 _ g2
10 m t cos at
11 1 1
S
1
Example 9: Prove that a7 L [ﬁ]
1 -1
Solution: we know that L1 [s_"] = ] [ ]
_1
2

Using above relation we can write L~ [51 72 [ ] [—

== 51/2

» [ =

] . Proved

Example 10: Find the inverse Laplace Transform of the following:

1

O =
) 1
(W) 5249

Solution.

(1) L_l: = e

. 11
(i1) L o

(i) L l1——=

.. 1
(11) s2-25

1
) (s—2)2+1

_11(_ 5 1.
=1L 15{52—(5)2} = =sinh5t.

-1 N
s2+(4)2

. 41
[since L 15—

= cos 4t.

(iii)

(vi)

at]
; -1
[since L™"—

[since since L7!
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s—1
(s—1)2+4 "

a .
—3 = sinh at]

S
= cos at
s2+a? ]

Since I‘% =+m
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. _ _ . . . 11 .
Gv) L1 5219 = 1m = %sm 3t. [since since L' o— = %Sln at]
(v) L7'— = e2gint [since since L1—— = ebtsin at]
(s—2)%2+1 ’ (s—b)2+a?
. _ -1 _ -1 . . _ —
(vi) L (s—s1)z+4 = 1(5_15)2W = el cos 2t. [Smce since L 1(5—;ﬁ = e%cos bt]
2
Example 11: Find 158
S
Solution: Here, we have
LIS [l+i+£]=1+2+it2 [ since L‘li:i]
s3 s s2 s3 1! 2! sn (n-1)!
=1+ 3t + 4t Ans
Self Assessment Question (SAQ) 10: Find the Inverse Laplace transform of ﬁ
Self Assessment Question (SAQ) 11: Find the Inverse Laplace transform of 9?25:25.
10.20 MULTIPLICATION BY S
_ d
L™ [sF(s) 1=_f(® + f(0)8(0).
Example 12: Find the Inverse Laplace Transform of szs+4.
Solution: we know that L1 = sin at.
s2+a?
Hence L' =— =sin2t
s2+4
-1 S _ i . . _
And L TVl (sin 2t) + sin(0) 6(t) = 2 cos 2t. Ans.
10.21 DIVISION BY s (MULTIPLICATION BY %)
_ F t _ t
FULEL ] = T rt F@llde = f f@r.
Example 13: Find the Inverse Laplace Transform of
. 1 .. 5243
@) s (s+a) (i) s(s2+1) (1) s(s2+9)’
Solution:
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(i) since L7t (L) =e &

s+a
7 | = 6 () e
evan ] st e

.. -1 _ .
(i1)) we know that L i sint.
L s (sz+1)) o fO L (52+1) o fO sint dt
= [—cost]y =[—cost+ 1] = [1 — cost]. Ans.
2
Self Assessment Question (SAQ) 12: Find the Inverse Laplace transform of o
Self Assessment Question (SAQ) 13: Find the Inverse Laplace transform of S(Szﬁ
10.22 FIRST SHIFTING PROPERTY
If the inverse Laplace transform of F(s) is f(t) such that
LHF@S)] = f(©)
Then, L7 'F(s+a)=e % L F(s)].

Example 14: Find the Inverse Laplace Transform of

. 1 . s 1
() (s+4)% (i) 52+45+13 (1) 952+6s5+1 "
Solution:

: YN
(1) we know that L [54] =3

- 1 —atr-11 : . s
Then, L1 [(s+4 )4] = e H 71 [5—4] using first shifiting property
— ettt _Lo-as Ans.
31 6
. o -1 N e | s+2-2

Solution (if) L ( 52+4s+13) =L (s+2)2+(3)2
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- | S+2 -1 2

(s+2)2+(3)2 (s+2)2+(3)% °

Using First shifting property = L™1F(s + a) = e % L™1[F(s)]

_,-2ty-1__ S -2t —13( 3 )
= e I G
2 .
= e %t cos 3t —ge‘Ztsm 3t. Ans.
. eos -1 1 -1 1
Solution (iii) L sarea = Got1)?
=211 _=2e-t/31-11  [Using First shifting property]
9 (s+§)2 9 s2
1 —t/3
=le-t/3p = Ans.
9 9

10.23 SECOND SHIFTING PROPERTY

L e ™ F(s)]=f(t—a)u(t—a).

Example 15: Obtain Inverse Laplace Transform of

—TS —=S

@ (es+3) (D) (sil )3’
Solution:
(1) As we know that
-1 I p—3t

Now using second shifting theorem we can find the inverse Laplace transform of

s

-1 (‘213) = e~30t-My (¢t — ). since [L™[ 7% F (s)] = f(t — )u(t — a)]
Ans.

2

(ii) As we know that  L7! S% = ;—'
2
Then L1 (S+11)3 ‘t;—' : [using first shifiting property]
Hence
| o [ Gt D u(t—1) [using second shifitin t
Gl > : g g property]
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Ans.
10.24 INVERSE LAPLACE TRANSFORMS OF DERIVATIVES:

L& F(s)| = —tL )] = —tf(©)

d

LF()] == L7 F ().

Example 16: Find L7t {log (E) }

Solution: {log (S+1) } = —%L_l [%log(g) ]

using inverse laplace transform of derivatives

=_1;1]e 4 —Nl= iAo L
=—-L [dslog(s+1) — log (s 1)]— - L [

s+1 s—1

= —%[e‘t—et] =%[et—e‘t]. Ans.
10.25 INVERSE LAPLACE TRANSFORM OF INTEGRALS
L[ F(s)ds] = K2 =217 (F (5)]

= L7F(s)] = L[ F(s)ds].

2s

Examplel7: Find the Inverse Laplace Transform of ———.
(s=+1)

Solution: we have to find L™* ( (522+S1)2)'

We will solve this using inverse Laplace transform of integrals

L‘1< _1J' 2sds
(s? + 1)2 (s2 + 1)?
@ 1
-1]_ — 71| _ — 71
tL [ 52+1L tL [ 0+52+1] tL [52+1]
=tsint. Ans.

10.26 INVERSE LAPLACE TRANSFORM BY PARTIAL FRACTION METHOD

Example 18: Find the Inverse Laplace Transform of R

Solution: Let us convert the given function into partial fractions.
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— 1 _ 1 1
Ll[ ]:Ll[___
$2-55+6 s—3 s-2

=L1 (L) — L1 (L) =3l — 2t Ans.

s—3 S—2

s+1

Example 19: Find the Inverse Laplace Transform of —————.
S4—6S+25

Solution:
-1 1 -1 1 — -1 s—3+4
L [sz—6s+25] =L [ (s—3)2+(4)2] L (5—3)2+(4)2]

- | s-3 -1 4
=L [(5—3)2+(4)2] + [(5—3)2+(4)2]
= e3t cos 4t + e3' sin4t. [Using first shifiting property] Ans.

s
(s+7)*

Self Assessment Question (SAQ) 14: Find the Inverse Laplace transform of

e—S

Self Assessment Question (SAQ) 15: Find the Inverse Laplace transform of i

Self Assessment Question (SAQ) 16: Find the Inverse Laplace transform by partial fraction
method of

s2-7s+12"

10.27 SOLUTION OF DIFFERENTIAL EQUATIONS BY LAPLACE
TRANSFORMS

Ordinary linear differential equations with constant coefficients can be easily solved by the
Laplace Transform method, without finding the general solution and the arbitrary constants. The
method wil be clear from the following examples:

Let us now discuss how the Laplace transform method solves ODEs and initial value problems.
We consider an initial value problem

y" +ay' + by =r(t). y(0) = Ky, and y'(0) = K;

where a and b are constant. Here is the given input (driving force) applied to the mechanical or
electrical system and is the output (response to the input) to be obtained.

In Laplace’s method we do three steps:
Step 1. Setting up the subsidiary equation.

This is an algebraic equation for the transform Y = L(y) obtained by transforming the given
differential equation using the Laplace transform of derivatives,
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[s2Y — sy(0) — y'(0)] + a[sY — y(0)] + bY = R(s).
Where R(s) = L(r).
Now collecting the Y-terms, we have the subsidiary equation as follows
(s?+as+ b)Y = (s+ 1)y(0) +y'(0) + R(s).
Step 2. Solution of the subsidiary equation by algebra.

We divide by and use the so-called transfer function

) = vas+by

This gives the solution

Y =(s+Dy(0)Q(s) +y'(0)Q(s) + R(s)Q(s).

Note that Q depends neither on r(t) nor on the initial conditions (but only on @ and b).

Step 3. Inversion of Y to obtain y = L7Y.

Now take the inverse Laplace transform to get the solution of differential equations.

Example 20: Solve the following equation by Laplace transform
y'—y=t; y(0) =1land y'(0) = 1.
Solution: The given equation is
y'—y=t; y(0)=1landy'(0) =1
Step 1: Taking the Laplace transform of the given equation, we get the subsidiary equation
Liy™) = L(y) = L.
Now using the condition of Laplace transform of derivatives with L(y) =Y
LIf™(®)] = s"LIf(O)] = s"71f(0) = s"2f'(0) — s™3f"(0) — - = f*71(0).
We get

s?2Y —sy(0) —y'(0) - Y =

1 1
(s2—=1Y =sy(0)+y'(0) + ke s+1+ 2 As giveny(0) =1land y'(0) =1
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Step 2: Transfer function is given by

Q(s) = ﬁ and hence

o) (s+1) 1
s2 (s2—-1)  s%(s2—-1)

Y=(+1)Q(s) +

On simplifying

Y:(sin +{(521—1) _slz}

Step 3: Now taking the inverse Laplace transform to get the solution of differential equation

0 =10 =1 )+ e -

y(® =L~ {(s i 1)} L {ﬁ} N L_lgsiz}

y(t) = et +sinht —t. Ans.

Self Assessment Question (SAQ) 17: Solve the differential equation using Laplace transform
method

4y y=0, wherey=1and 2= —1atx=0
I y=0, wherey=1an T at x = 0.
Self Assessment Question (SAQ) 18: Solve the differential equation using Laplace transform

method

y" +4y'+4y =6e7t, wherey(0) =—-2andy'(0) = 8.

10.28 SUMMARY

The main purpose of Laplace transforms is the solution of differential equations and
systems of such equations, as well as corresponding initial value problems. Firstly we have
learned about Laplace transform and their various properties and theorems. Using these
properties we have find the Laplace transform of some very important function which were used
to solve many important problems. Later we have learned about Inverse Laplace transform and
their various properties. And finally we used these properties of Laplace transform and inverse
Laplace transform to solve the differential equation and many other important problems which is
in the form differential equations. To understand this unit more clearly various solved examples
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are includes almost in each section. For students assessment self assessment question is also

incorporated throughout the chapter.

10.29 GLOSSARY

Domain: one system, one type of region.

Subsidiary equation: contributory equation, secondary equation.
Arbitrary constants: random constant.

Cumbersome method: unmanageable method, bulky method.

10.30. TERMINAL QUESTIONS

Find the Laplace transform of the following:

1. sint cost.

2. tedt,

3. tsinhat.

4. Provethat L[t"f()] = ()" [F(s)].
5. %(1 —eb).

Obtain the Inverse Laplace Transform of the following:

6 s+8
) (s2+4s+5) "
s
7. —_—
(s+3)2+4
s
8. —_—
(s+7)*
S+2
9. _—
$2-25-8
s
10. _—,
s2+ 65425

Solve the differential equation using Laplace transform method

1.  y"+9y=6cos3t. wherey(0)=2andy'(0)=0

12.  y" =3y +2y =4e?*. wherey(0) =—-3andy’'(0)=5
13.  y"+4+2y"+y=tet, wherey(0)=1andy'(0)=-2

10.31 ANSWERS

Self Assessment Question (SAQ)
3 1

5249 s241°
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T
2. -
1 2 _ e”s 3 _ 2 _
3. ~+e B+ —+=e 2+ =%,
s s s2 s2 s3
1 2
4, —4+——.
s S244
6
>. (s2-1)(s2-9) "
s2-1
6. 51
(s2+1)2
1 s2+4
7. 2log™s
4 S
3 e—S_eg~2s e=2s
) 52 s
9 62(1—5)71:_1
" (1-s)(1—e—2ms)’
10. e>t.

2 5¢ 1 . , 5t
11. =cosh— — -sinh—.
9 3 3 3

12. —asinat + 1.
13 1—cosat

a?
2

14, e‘7t%(3 — 7¢).
15. e~(t=2) ﬂu(t —2).

2
16. et — e3t,
17. y = cosx — sinx.
18. y = 6e~ ¢t — 8e %t — 2te %,

Terminal Questions:

1

1. s2+4°

2

3. G
log%.

5
6. e 2t(cost + 6sint).

7. e 3%(cos 2t — 1.5 sin t).
8

9

et (3= 70)
. )
. e t(cosh 3t + sinh 3t).
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10. e3¢ [cos 4t — 2 sin 4t ]
4
11.y = 2cos 3t — t sin 3t.
12.y = —7e* + 4e* + 4xe?~,

13.y=(1—t+§)e‘t.
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