Contents

2] (0T od ot PO PP PP PPPPP T PPPPRPRRPP 8
O T U a
INtroduction t0 Data SrUCTULE.........coiiiiiiiiiiiie e 8
1.1 earning ODJECHIVES.........ccoo et a e e e e e 8
1.2 INEFOAUCTION ...ttt 8
1.3 What iS Data StrUCTUIE?.........uiiiieieeiiiiiieeee et e e 9
1.4 Methods of Interpreting Dit SEtHNG..........covviiiiiiii e 9
1.5 Types Of DatStrUCIUIE........oiiiiiiiiee et 12
CheCK YOUF PrOQIESS....cciiiiiee ettt e e e e e e aa e 16
1.6 Dynamic Memory AIOCAtION............coooeiiiiiiii e 17
1.7 ADSEract Data TYPES......uuuuuiiiiiiiiiiiiieieiereirr e e e ee e et ee e e e e e e e e e ea e e e e e e e s e e s e ea e eaaeenanes 19
ChECK YOUI PrOQIESS...cciiiiiiiiiiiiie ettt ettt e e e e aane 19
1.8 Answer to CheCk YOUr Progress.........oouiiiiiiiieeiiniiiiieeee e 20
1.9 MOdel QUESHIONS.......cceiiiie e e s r e e e e e e e e e e e e e aaeaaeaeeeeeeaeaans 21
L | | TP PPUPPPPPTPTRR 21
Introduction to AlGONtRMS...........oooi i e 21
1.1 Learning ODJECHVES.......uuuuiiiiiiiiiieeieeeeere et e e e e e e e e e 21
22 11 £ o 18 ox 1 0] o NPT PP P PPPPPPRPP 22
1.3 AIGOITENIML. . e e 22
1.4 AIgorithmiC COMPIEXITY.........uveieeiiiiiiiiiiie e 23
1.4.1 SPACE COMPIEXILY...uuuurirriiiiriiiiiiiiii e e et e e e e e e e e e e e e e e e e e eeaaan 24
1.4.2 TIME COMPIEXITY ..o iii i e e e e e e e e e e e e e e 25
ChECK YOUF PrOQIESS...ccciiiiiee ettt e e e e e e e aa e 26
1.5 ASYMPLOLIC NOTATION........eeeiiiiieiiiiiii e 26

1.5.1 Big Omega..Not.at.i.on..gq..(Ff)......26

1.5.2Big Oh NOtation O(F)......eeeeeeeieeiiiiiiiie e 27
1.5.3 Big Theta NOtatiQn........oooeviiiiiieeeeee e 27
ChECK YOUI PrOQIeSS . ..coiiiiiieee ettt e e e e e e e e e aaaaeens 27
1.6 ANSWERS TO CHECK YOUR PROGRESS.......ccccocceiiiiiiiieiiic, 28
1.7 Model QUESTIONS.......ccoieiii i e aaas 29
UNIT Hll: LINEAR DATA STRUCTURES.coiiiiiiieiieeeiiiie e 30
1.1 Learning ObJECHIVES........ccouiiiiii e e e e e e e e e e e e e eeeeaen 30

Data Structte

D2 0] £ o To 18 (3 1] o TR 30

1.3LiNear Data SIrUCTULEcciiiiiiiiie et 31
CheCK YOUF PrOQIESS...cciiiiiiee et r e e e e e e e e e e aaaaaeas 31
1.4 INtroduCtion O SEACK.........uviiiiiiiiie it 31
1.5 INtroducCtion t0 QUEUE.......uuuueeiiieeee ettt e e e e e e e e et e e e e e e e e e eessaaaaaaas 35
11100 (8o 1[0 o LT PP PPPPPPPPPPPPRPPP 35
ChECK YOUI PrOQIESS...ccii ittt ettt e e e 44
1.6 Answer to Check YOUr Progress........ccccccvvveevieeiiniiiineeeee e 45
1.7 MOdEl QUESLIONS.......cvviiiiiiiiiie ettt e e e e e e e e ear bbb 45
UNIT IV LINKED LIST L.ttt a e e e e e e e e e e e e e e e e e e n e 45
1.1 Learning ODJECHVES.......uuuuiiiiiiiiiiiiieeeeeee e e e e e e e e e e e e 46
1.2 INrOAUCTIONL.....cviiiieeeieiiiiieee e e s einnnee e e e e s nnnnne AO
1.3 LINKEA LISTS...eeiiiiiiiiiiiiiieee et e s snnnnne e e e s esnnnneeee e AT
1.4 Inserting and Removing Nodes from a.liSt.........covvvvviviiiinn. a7
1.5 Linked Implemented Of StackS........ccccuviiiiiiieiiiiiiiiiceceeeeceee e, 49
1.6 Getnode and Freenode Operation........ccccccvvvviieiieeeiic e, 50
1.7 Linked Implemented Of QUEUE..........cuuiiiiieeiiieeee et 52
1.8 List Implementation of Priority QUEUE.............eeeviiiiiiiiiiiiee e 53
1.9 Header NOUES.ciiiiiiiiiii it 54
1.0 CIrCUIAT LISES....eeieiiiiieeeiiee ettt 54
1.11 Doubly INKed liSt......cooiiiiiieeeeee e 56
CRECK YOUI PrOQIESS ... uiitiiiiiiiiiiiiiiieieiee ettt e s e e e s e e e e s se s eaaanennrearees 57
1.12 Answer to Check YOUr Progress.........cuuouiiiiiiiiiee it 57
1.13 MOEl QUESHIONS .. .evveiiiiiiiiiiee ittt e e et e s aeeeeees 57
BIOCK-2....cceeeeee e 58
UNIT VI SORTING. ...ttt e e e e e e eeees 58
1.1 Learning OJCLVES.........uuuuiiiiiiiiiiiiieieiieeeee et e e e e e e e e 58
1.2 INrOAUCTIONL ... et e e e e e 58
1.3 SINK SOttt e e e e et a e e e e nree s 59
1.4 INSEITION SOM.......iiiiiiiiie ettt e e e e s srnreeeee e e nnee] 60
1.5 SEIECHON SOML.....eiiiiiiiiiiiii et a e e 63
1.6 BUDDIE SOIL.....eeiiiieeee e 66
1.7 MEIQE SOML .ttt e e e eeeeanis s e e e e e eeeesennenn d L
1.8 QUICK SOIL... e 73

Data Structte Page2

S = Yo [Yo o TP 79

ChECK YOUI PrOgreSS......cceiieiieeeeiieiie ettt e e 80
1.10 Answer to Check YOUr Progress........viiiiiiiiiiiiieeeeee e 81
1.11 Model QUESHIONS.......cceiiiieeetcc ettt eeer et e e e e e e e eeeeeanes 81
UNIT VI: SEARCHING......coiiiiiiiiii e 82
Learning ODJECHVES..........cuiiiiie e 82
1.2 INTrOAUCTIONL ...ttt e e e s e e e e e 83
1.3 SEAICHING ... 83
1.3.1 LINEAI SEAICK......eiiiiiiiiiiiiii ettt 84
CHECK YOUR PROGRESS........ottttiiiiiiiiiiiiiiete e 87
1.3.2 BiNAry SEAICH.........uuuiiiiiiiiiiieieeeeee e ———— 87
1.4 Performance and COMPIEXITY.........uuueeieriiiiiiiieee e e e e e 92
CHECK YOUR PROGRESS.......ou it aeenee 93
1.5 Answer to Check YOour Progress..........ccccoe oo ee e 94
1.6 MOAEl QUESLIONS.......covviiiiiieieeeeeeeeee et e e e e e e e e 95
UNIT VII: GRAPHS I: REPRESENTATION AND TRAVERSAL..........oceee... 95
1.1 Learning ODJECHVESccuuiiiiiee et e e 96
1.2 INTFOAUCTIONL ...t e ettt e e e e e e e e e e nnnnees 96
1.3 Graph. . 97
1.4 Termimlogies of Graph............ccoooiiiiiii e, 97
1.5 Different Types of Graph.........cccccccoe e 101
1.6 Representation of Graph...........cccueviiiiiiii 104
1.6.1 Sequential Representatiof Graph...........cccociviiiii i 104
1.6.2 Linked Representation of Graph............ccccvveeiiiinniiiiiiiiee e 105
CHECK YOUR PROGRESS.......outiiiiiitii et 106
1.7 Traversal in Graphis..........coooo oo a e 106
1.7.1 Depth First SEArCh........ccooviiiiii e 107
1.7.2 Breadth First SEarCh............ooeviiiiiie e 108
1.8 K dnigsberg Bridge Problem...........cccooiiiiieiiiiiee e 110
CHECK YOUR PROGRESS.......ccoi ittt 111
1.9 Answer t0 CheCK YOUIr PrOgress.ccouuiiiiiiiiieneiiiiiieeee et e e e 112
1.10 Model QUESTIONS......ccoiiieeeiiiiciie e s e e e e e e e e e e e e e e e eeaeeneas 112
UNIT VIIGRAPHS 1I: BASIC ALGORITHMS. ..., 113
1.1 Learning ODJECHIVEScuviiiieee ittt e et e e 113

Data Structte Page3

2 [01 1 o Yo 18 (o3 1] n NPT 114

1.3 Minimum SPaNNINGg TrEE.......ccciiiiiiiiiieee e e e e e 115
1.5 Single Source Shortest Path...................ooo i 117
ChECK YOUI PrOQIESS . uitiiiiiiiiiiiiei ettt ee e et e et e et s s eeeeeees 120
1.6 Answer to Check YOUr Progress..........oooooi oo 120
1.7 Model QUESHIONS......ccoe i rr e e e e e e e e e e e e e aaaaaeeeeas 120
2 o o 3 | U 121
UNIT IX: BINARY TREES.o 121
1.1 Learning ODJECHVES......uuutiiiiiiiieeieereeer e 121
1.2 INEFOAUCTIONL. ..t 122
1.3 DefiNition Of 8@uiiiiiiiii e 122
1.4 BINATY TIBE. ... ittt ettt e e e e e e e e e e b e e e e e e e anne 123
1.5 Binary Tree Representation............cccoouiiiiieeeeiiniiiiee e 126
1.6 Tree Traversal AIgOrthMS.........cccciiiiiiiiiiiiireeeeeeeee e 129
1.6.1 Preorder TraverSal.........ccoiiiiiiiiiiiiee et 130
1.6.2 INOrder TrAVEISAL.......cocviiiiiiiiie ettt 130
1.6.3 POStOrder TraverSal..........cccueviiieeiiiiiiieie et 131
1.7 Prefix, Postfix and Infix NOtationNS..........oovviviiiiei e 135
CHECK YOUR PROGRESS.......oetiiiiiitii i 136
1.8 Answer to Check YOour Progress..........oooooi oo 138
1.9 Model QUESTIONS.........cooeiiie e e e e e e e e e e e e e 138
UNIT XHEAP SORT ...t 139
1.1 Learning ODJECHIVESc.uviiiiee ettt e e e e 140
1.2 INTFOAUCTIONL ...ttt e e e e e e et e e e e e e anee 140
1.3 HEAP SOOIttt 140
1.4 Heap RepPresentation...........cccoeveeeiiiiiiie et 141
CheCK YOUF PrOgreSS...cccciiiiiiiieeee e 141
ISR o (Y= T 1o o] o TR 141
1.6 Priority QUEBUE.....ccii ittt e e s e e e e abree s 145
CheCK YOUI PrOgreSS........uviiiiieeiiiiiieiee ettt 147
1.7 Answer t0 CheCK YOUI PrOgresSsS........ccuiuiiiiiiiiiieeeiiiiieeee e ssiiieeee e e e s 147
1.8 Model QUESLIONS........cuuuiiiiii i e e e e e e e e e e e e e 148
UNIT XI: SEARCH TREESo 148
1.1 Learning ODJECHIVEScuviiiieee ittt e et e e 148

Data Structte Paged

2 [01 1 o Yo 18 (o3 1] n NPT 149

1.3 AV TTEE ittt e e 149
1.4 Representation of AVL Tra@......ccccciciiiiiviiiiiiiiniiiiieereer e aa e e e e e 150
L O BTl 157
1.6 Multiwvay Search Trees.........ccoooi i 157
1.7 Operations 0N BTTEE........uuiiiiiiii it 158
ChECK YOUI PrOQIESS...ciciiiiiiiiieite ettt e e 165
1.8 Answer to CheCk YOUr Progress.ccouviiiiiiiieeneisiiiieeee e 166
1.9 MOdel QUESLIONS........uvviiiiiiiiiieeeeec ettt e e e e e e e e eera b 166
UNIT X TABLES ...t 167
I T T[T aTo @ o] [=Tex 1)Y= T 167
INEFOAUCTION. ... e e e e s ee s 168
1.3Hashing TECRNIQUES............ooiiiiiiiiiiee e 168
L.AWhY Hashing?........oooooiiiiii e 169
1.5 Mehods of Dealing with Hash Clash............cccocvviiiiiieeiiiiieeeeee, 169
1.6 DOUBLE HASHING......cootitiiiiiii ettt 173
CheCK YOUI PrOgreSS........cuviiiieeiiiiiiieee ettt 174
1.7 CHUSTEIING ..ttt e e e e e e e e s e e e e e e e e e nnnnees 174
1.8 DYNAMIC AND EXTENDIBLE HASHING.......cccvtviiiiiiieeeiiieeciiiici e 176
ChECK YOUF PrOQIESS....ciiiiiiiiiieeeee e ee e e e 180
1.9 Answer to Check Your Progress.........coooooi oo 180
1.10 Model QUESHIONSuviiiiiieiieiiiee e 181
BIOCKIV ... a e e 181
UNIT X SET S . e e e e e s 181
1.1 Learning ODJECHIVESc.uuiiiieee ittt e e 182
1.2 INEOAUCTIONE ...ttt e e 182
1.3 Bit Vector REpresSentatiQil..........cccvvuuiiiiiiiiiiiiiieieeeeeeeeeeeeeee e e e e e e e e e e e 182
1.4 Linked list representatiQn..............ooeeeeeeiiiiii i 183
ChECK YOUI PrOgreSS.......cuviiiiieeiiiiiieeee ettt e e 186
1.5 Answer t0 CheCK YOUr PrOgress.ccouuiiiiiiiiiieeiiiiiiieeeee e ssiiieeee e e e e 186
1.6 Model QUESTHIONS.......ccceie i e e e e e e e e e e aaaaaaeeeas 186
UNIT XIV: STRING ALGORITHMcoiiiiii e 187
1.1 Learning ODJECHIVE.cooii i e e e e e e e e e e e e e e e e 188
1.2 INTFOAUCTIONL ...ttt e e a e e e s et e e e e e e anee 188

Data Structte Pageb

1.3 SHNG FUNCHOML.....eviiiiieiiie e 188

1.3.1 STRING LENGTH...cutiiiei e 189
1.3.2 STRING CONCATENATION.ciiiiiiiiiiiiiittieeeiiee e e e e e e 190
I T S 11 To @] o)V 190
1.4 Pattern MatChing.........cccuuiiiiiiiiiieeeeeeeee e 191
CheCK YOUI PrOgreSS.cuviiiiieiiiiiieeee ettt 192
1.5 Brute Force String Matching algorithmy............ccovvveeeiiiiieeen 192
1.6 KnuthMorris-Pratt(KMP) string matching algorithm..............cccccooiiineeee. 194
CheCK YOUF PrOgIeSS...ciiiiiiiiiieeeee et 196
1.7 Answer to Check YOUr Progress......cccccvvviiieiiiieeee e, 197
1.8 MOdel QUESLIONS........cvvuriiieiiieeeeee et e e e e e e e 198
UNIT XV it e e e et e e e et bbb e e e e e e e e eeeeebbaanns 199

PROGRAM DEVELOPMENT& PROGRAM TESTING AND VERIFICATION99

1.1Learning ODJECHIVES.uuuiiiiiiiiiieieeeieeeeee e 199
1.2 INErOAUCTIONL. ..t 200
I B I (= 3o = 200
1.4 COAE DESIGNINGeveeeieeeiiiiiiiieieeeessiie et e e e s e e e s s e e e e e e s reeeeeeas 201
ST oo [o AP P ST PP PPTPPPPPPPPPPPPN 202
1.6Programming STYIE..........ooeeiiiiiiiiiiiiie e 202
CheCK YOUF PrOgIeSS...cccciiiiiiiieeee e 204
1.7 Testing MEethOd...........uuuiiiiiiiiiiieiieeeeeee e 204
1.8 Verification ProCEAUIE..........oviiiiiiie et 205
ChECK YOUI PrOgreSS........uviiiiieeiiiitii ettt 208
1.9 Answer to CheCK YOUI PrOgress.ccouuiiiiiiiiiieeeiiiiiiieee e e e 209
1.10 MOEl QUESHIONSuuviieiieiiieiieeiier e et e ee et a e e e e e e e e e e e e e e e s e ss e e e s e e e s e nennneenne 210
REEIENCING ..o i a e e e e e e e e 210

Data Structte

Page6

Title Data Structure

Authors Dr. Pradip K DaandDr. S.V. R@

Adaption and Typesetting Balam Singh Dafouti
Academic Consultarchool of CS & IT,
Uttarakhand Open University, Haldwan

ISBN:

Acknowledgement

The Universityacknowledges with thanks to NPTEL and the author for
providing the study material on NPTEL portal under Creative Commons
Attribution-ShareAlike- CC BY-SA.

The Universityalsoacknowledges with thanks to KKHSOU famroviding the
study material orhttp://eslm.kkhsou.ac.in/#ELM-for-
Learner%2F1st%20Sem%2FMaster%20Degree%2FMBA%2FAccounting
Managergortal a Creative Commons Attrition-Non CommerciaShare
Alike 4.0

License (internationalhttp://creativecommons.org/licensestigsa/4.0/

(©xaiel s
Uttarakhand Open University 200

This work byJttarakhand Open Universigylicensed undetGreative Commons
Attribution--Share Alike 3.0 United States Licelisg attributed to the sources marke
in the References, Article Sources and Contributors section.

Published By. Uttarakhand Open University

Data Structte Page7

http://eslm.kkhsou.ac.in/#E-SLM-for-Learner%2F1st%20Sem%2FMaster%20Degree%2FMBA%2FAccounting%20Managers
http://eslm.kkhsou.ac.in/#E-SLM-for-Learner%2F1st%20Sem%2FMaster%20Degree%2FMBA%2FAccounting%20Managers
http://eslm.kkhsou.ac.in/#E-SLM-for-Learner%2F1st%20Sem%2FMaster%20Degree%2FMBA%2FAccounting%20Managers
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Bl ok k

Unil t
| ntroduction to Data Str uc

1.1Learning Objectives

1.2 Introduction

1.3What is Data Structure

1.4 Methods of Interpreting bit setting
1.5Types of Data Structure

1.6 Dynamic Memory Allocation

1.7 Abstrad¢ Data Types

1.8 Answer to check your progress
1.9Model Questions

ll1Learning Objectives

After going through this unit, the learner will able to learn about:
1 What is data structure?
1 Methods of Interpreting bit setting
1 Types of Data Structure

1. 2 luncttrioodn

It is important for every Computer Science student to understand the
concept ofIinformation and how it is organized or how it can be
utilized.

If we arrange some data in an appropriate sequence, then it forms a
Structure and gives us a meaningisTimeaning is callethformation.

The basic unit of Information in Computer Science is a bit, Binary
Digit.

Data Structte Page8

So, we found two things in Information: OneDsita and the other is

Structure.

1.V8h at I s Data Structure?

1. A data structureis a systematic wagf organizing and accessing
data.

2. A data structurdries to structure data!
A Usually more than one piece of data
A Should define legal operations on the data
A The data might be grouped together (e.g. in an linked list)

3. When we define a data structure we m fact creating a new data
type of our own.
A l.e. using predefined types or previously user defined types.

Such new types are then used to reference variables type within

a program

1. Met hods of I nterpreting

Why Data Structures?

1. Data stuctures study how data are stored in a computer so that
operations can be implemented efficiently

2. Data structures are especially important when you have a large
amount of information

3. Conceptual and concrete ways to organize data for efficient
storage andhanipulation.
Methods of Interpreting bit Setting

1. Binary Number System
o Non Negative
o Negative
A Ones Complement Notation
A Twos Complement Notation

2. Binary Coded Decimal

3. Real Number

Data Structte Paged

4. Character String
Non-Negative Binary System
In this System each bit positi represents a power of 2. The right most
bit position represents 20 which equal 1. The next position to the left
represents 21= 2 and so on. An Integer is represented as a sum of
powers of 2. A string of all Os represents the number 0. If a 1 appears
in a particular bit position, the power of 2 represented by that bit
position is included in the Sum. But if a O appears, the power of 2 is
not included in the Sum. For example 10011, the sum is
Ones Complement Notation
Negative binary number is representgdones Complement Notation.
In this notation we represent a negative number by changing each bit in
its absolute value to the opposite bit setting. For example, since
001001100 represent 38, 11011001 is used to repred@nihe left
most number is resesd for the sign of the number. A bit String
Starting with a 0 represents a positive number, where a bit string
starting with a 1 represents a negative number.
Twos Complement Notation
In Twos Complement Notation is also used to represent a negative
number.In this notation 1 is added to the Ones Complement Notation
of a negative number. For example, since 11011001 repre8énis
Ones Complement Notation 11011010 used represhtin Twos
Complement Notation
Binary Coded Decimal
In this System a stringf dits may be used to represent integers in the
Decimal Number System. Four bits can be used to represent a Decimal
digit between 0 and 9 in the binary notation. A string of bits of
arbitrary length may be divided into consecutive sets of four bits. With
each set representing a decimal digit. The string then represents the
number that is formed by those decimal digits in conventional decimal
notation. For example, in this system the bit string 00110101 is
separated into two strings of four bits each: 00id @101. The first of
these represents the decimal digit 3 and the second represents the

decimal 5, so that the entire string represents the integer 35.

Data Structte PagelO

In the binary coded decimal system we use 4 bits, so these four bits
represent sixteen possible statéaut only 10 of those sixteen
possibilities are used. That means, whose binary values are 10 or
larger, are invalid in Binary Coded Decimal System.

Real Number

The Floating Point Notation use to represent Real Numbers. The key
concept of floatingpoint noation is Mantissa, Base and Exponent. The
base is usually fixed and the Mantissa and the Exponent vary to

represent different Real Number. For Example, if the base is fixed at

10, the number235.47 could be represented —23347*10% The
Mantissa is 23547 and thexponent is -2. Other possible

representations ai~ 23547 *10° gng —235.47*10°

In the floatingpoint notation a real number is represented by-ai82
string. Including in 3zbit, 24-bit use for representation of Mantissa
and remaining bit use for representation of Exponeroth the
mantissa and the exponent are twos complement binary Integers. For
example, the 24it twos complement binary representation28547
I$111111111010010000000101, and tHet&wos complement binary
representation of2 is 11111110. So the regzentation of 235.47 is
11111111101001000000010111111110. It can be used to represent
extremely large or extremely small absolute values.

Character Strings

In computer science, information is not always interpreted numerically.
ltem such as names, addressl job title must also be represented in
some fashion with in computer. To enable the representation of such
nonnumeric objects, still another method of interpreting bit strings is
necessary. Such information is usually represented in character string
form. For example, in some computers, the eight bits 11000000 is used
to represent the character "A" and 11000001 for character "B" and
another for each character that has a representation in a particular
machine. So, the character string "AB" would be regameed by the bit
string 1100000011000001.

Data Structte Pagell

1.5 Types of Data Strwuctur

The assignment of bit string to character may be entirely arbitrary, but
it must be adhered to consistently. It may be that some convenient rule
IS used in assigning bit string to chetexr. The number of bits varies
computer wise used to represent a character.

Some computers are usebit (therefore allow up to 128 possible
characters), some computers are udt<3(up to 256 character), and
some use 1Hdits (up to 1024 possible chatexs). The number of bits
necessary to represent a character in a particular computer is called the
byte sizeand a group of bits that number is calldolyte.

Array

In computer programming, a group of homogeneous elements of a
specific data type is knowras an arrayone of the simplest data
structures. Arrays hold a series of data elements, usually of the same
size and data type. Individual elements are accessed by their position in
the array. The position is given by an index, which is also called a
subgript. The index usually uses a consecutive range of integers, (as
opposed to an associative array) but the index can have any ordinal set
of values.

Some arrays are muldimensional, meaning they are indexed by a
fixed number of integers, for example lytuple of four integers.
Generally, one and twaedimensional arrays are the most common.

Most programming languages have a builarray data type.

Link List

In computer science, a linked list is one of the fundamental data
structures used in computarogramming. It consists of a sequence of
nodes, each containing arbitrary data fields and one or two references
("links™) pointing to the next and/or previous nodes. A linked list is a
selfreferential data type because it contains a link to anotheroflata
the same type. Linked lists permit insertion and removal of nodes at

any point in the list in constant time, but do not allow random access.

Data Structte Pagel2

info nexd infa nexl Il it

|—> 5

list

b
b

Y

Y

4 | i

Types of Link List

1. Linearly-linked List
o Singly-linked list
o Doubly-linked list
2. Circularly-linked list
o Singly-circularly-linked list
o Doubly-circularly-linked list
3. Sentinel nodes
Stack
A stack is a linear Structure in which item may be added or removed
only at one end. There are certain frequent situations in computer
science when one wants to restricteii®ons and deletions so that they
can take place only at the beginning or the end of the end of the list,
not in the middle. Two of the Data Structures that are useful in such
situations are Stacks and queues. A stack is a list of elements in which
an elenent may be inserted or deleted only at one end, called the Top.
This means, in particular, the elements are removed from a stack in the
reverse order of that which they are inserted in to the stack. The stack
also called "lasin first-out (LI FO) o I i st.
Special terminology is used for two basic operation associated with

stack:

Fush - .
Pap
’l’ Y |

Fig: Stack

"Push" is the term used to insert an element into a stack.

Data Structte Pagel3

"Pop" is the term used to delete an element from a stack.
Queue
A queue is a linear list aflements in which deletions can take place
only at one end, called the Afront
the other end, called Arear ". The
describing a linear list only when it is implemented as a queue.
Queues ar e adndist-out a(FIFG tst. Sirfce thesfitst
element in a queue will be the first element out of the queue. In other
words, the order in which elements enter in a queue is the order in
which they leave. The real life exampleetheople waiting in a line at
Railway ticket Counter form a queue, where the first person in a line is
the first person to be waited on. An important example of a queue in
computer science occurs in timesharing system, in which programs

with the same pridaty form a queue while waiting to be executed.

(usue

_) A4 B2 oL oo

Front Fioar

Tree

Data frequently contain a hierarchical relationship between various
elements. This nohnear Data structure which reflects this
relationship is called a rooted tree graph or, tree.

This structire is mainly used to represent data containing a hierarchical
relationship between elements, e.g. record, family tree and table of
contents.

A tree consist of a distinguished node r , called the root and zero or
more (sub) tree t1 , t2 , ... tn , eachndfose roots are connected by a

directed edge tor .

Data Structte Pagel4d

In the tree of figure, the root is A, Node t2 hasras a parentandt2.1, t
2.2 and t 2.3 as children. Each node may have arbitrary number of

children, possibly zero. Nodes with no children are knowleases.

ts

|

t1
Z 2 ta ta
e
Nodea
«— Edge
tz 14\
/ tza
2

£z

Tarminal Node

Graph

A graph consists of a set of nodes (or Vertices) and a set of arc (or
edge). Each arc in a graph is specified by a pair of nodes. A node n is
incident to an arc x if n is one of the two nodes in the ordered pair of
nodes that congtite x. The degree of a node is the number of arcs
incident to it. Thendegree of a node n is the number of arcs that have
n as the head, and the outdegree of n is the number of arcs that have n
as the tail.

The graph is the nonlinear data structure. §haph shown in the
figure represents 7 vertices and 12 edges. The Vertices are { 1, 2, 3, 4,
5, 6, 7} and the arcs are {(1,2), (1,3), (1,4), (2,4), (2,5), (3,4), (3,6),
(4,5), (4,6), (4,7), (5,7), (6,7) }. Node (4) in figure has indegree 3,

outdegree 3 andegree 6.

Data Structte Pagel5

Abstract Data Type

Abstract Data Types (ADT's) are a model used to understand the
design of a data structure

‘Abstract ' implies that we give an implementatiodependent view of

the data structure

ADTs specify the type of data storeddatihe operations that support
the data viewing a data structure as an ADT allows a programmer to

focus on an idealized model of the data and its operations

Check Your Progress
Choose the correct one

1. Which of the following is notiner data structure?
A) Stacks
B) List
C) Strings
D) Trees
2. Which of the following data structure is linear type?
A) Graph
B) Trees
C) Binary tree
D) Stack
3. A queue is a linear list of elements in which deletions can take place only at
one end, called the .
A. Front
B. Rear
C. Both Aand B
D. None of the above
4. A stack is a linear Structure in which item may be added or removed only
é é
A. One end
B. front end
C. Middle

D. None of the above

Data Structte Pagel6

16 Dynamic Memory All ocatio

The memory allocation processay be classified as si@ allocation

and dynamic allocation. In static allocation, a fixed size of memory are
reserved before loading and execution of a program. If that reserved
memory is not sufficient or too large in amount then it may cause
failure of the program or wastagef memory space. Therefore, C
language provides a technique, in which a program can specify an
array size at run time. Th@ocess of allocating memory at run time is
known as dynamic memory allocation.

There are three dynamic momory allocation functi@msl onememory
deallocation (releasing thememory) function. Theserakoc(),

calloc(), realloc()andfree().

malloc() : The functionmalloc()allocates a block of memory. Thealloc()
function reserves a block of memory of specified size andn®éupointer of

type void. The reserved block is not initialize to zero. The syntax

for usinigmalloc()function is :

ptr = (cast-type *) malloc(byte-size);

whereptr is a pointer of type casype. Themalloc() returns a pointe(of
casttype) to an eea of memory with size bytsze.

Suppose x is a one dimensional integer array having 15 elements.

It is possible to defing as a pointer variable rather than an array. Thus, we
write,

int *x;

instead of int x[15]; or #define size 15

int x[size];

Whenx is declared as an array, a memory block having the capacity to
store 15 elements will be reserved in advance. But in this case xwhen
Is declared as a pointer variable, it will not be assigned a memory
block automatically.

To assign sufficient memory for, we can make use of the library
functionmallog as follows :

x = (int *) malloc(15 * sizeof (int));

Data Structte Pagel7

This function reserves a block of memory whose size (in bytes) is
equivalent to 15 times the size of an integer. The address of the first
byte ofthe regrvedmemory block is assigned to the poiresf type

int. Pictonialrepresentation is shown below

X

Address of first byte

30 bytes space

Representation of dynamic memory allocation

9 calloc() : calloc is another memory allocation function that is
normally used for requesting memory spaterun time for
storing derived data types such as arrays and structures. The
main difference between tloalloc and malloc function is that
malloc function allocates a single block of storage space while
the calloc function allocates amultiple blocks tdrage space
having the same size and intialize the allocated bytes to zero.
The syntax for usinigalloc() function is :
ptr = (casttype *) calloc (n, elemensize) where n is the
number of contiguous blocks to be allocate each of having the

sizeelemenmsize

9 realloc() : realloc() function is used to change the size of the
previously allocated memory blocks. If the previously allocated
memory is not sufficient or is much larger then by using the
realloc function block size can be maximized or minidize
The syntax for usinigealloc() function is :
ptr = realloc (ptr, newsize);
wherenewsizas the size of the memory space to be allocated.

1 free() :Itis necessary to free the memory allocated previously

so that the memory can be reused. The free(nction

Data Structte Pagel8

deallocates memory that was previously allocated withmalloc(

), calloc(') or realloc(). The syntax for usirirge()function is

free(ptr);
whereptr is a pointer to a memory block, which has already

been created byalloc() or calloc().

1 Allstract Data Types

By now, you are well acquainted with data types, like integers, arrays,
and so on. To access the data, you have used operations defined in the
programming language for the data type. For example, array elements
are accessed by using thguare bracket notation; or scalar values are
accessed simply by using the name of the corresponding variables.
This approach doesnodot al ways wor k c
the real world.A modification to a program commonly requires a
changein oneormor e of its data structur es
responsibility to create special kind of data types. The programmer
needs to define everythimglaied to the new data type such as

1 how the data values are stored,

1 the possible operations that candagried out with the custom

data type
1 new data type should be free from any confusion @t
behave

like a builtin type Such custom data types are called abstract data
types.
Thus, an abstract data type is a formal specification of the logical
propertes of a data type such as its values, operations that are to be
definedfor the data type etc. It hides the detailed implementation of

the data typand provides an interface to manipulate them.

Check Your Progress
Choose the correct one

Data Structte Pagel9

"""

and execution of a program.
A. Statc allocation.
B. Dynamic Allocation
C. Both Aand B
D. None of the above

6. The functioné é é . allocates a block of memory
A. malloc()
B. Calloc()
C. Relock()
D. One of theabove

,,,,,

allocated memory blocks
A.Malloc()
B. realloc()
C. Both Aand B
D. None of the above

8. €& é é é is another memory allocation function that is normally
used for requesting memory spat¢eun time for storing derived data
types such as arrays and structures.

A. calloc

B. ralloc

C. malloc

D. None of the above

1 . Bhswer to Check Your Progre

. D) Trees
. D) Stack
Front

One end

malloc()

realloc()

© N o g s~ w D PE

A.
A.
A. Static allocation.
A.
B.
A.

calloc

Data Structte Page20

1. Model Questions

What is information? Explain with examples.
What is data? Explain with examples.
Name and describe the four basic data types in C.

What is a data structure? Why an array is called a data structure?

a r N

How does atructure differ from an array? How is a structure member
accessed?

What is a pointer? How is a pointer initialized?

What do you mean by dynamic memory allocation? How is it useful?
What is the difference between tlumctions malloc() and calloc()?

© 0 N o

Whatdo you mean by abstract data type? Explain.

UNI T I |

|l ntroduction to Al gorith

1.1 Learning Objectives
1.2 Introduction
1.3 Algorithm
1.4 Complexity
1.4.1 Space Complexity
1.4.2 Time Complexity
1.5 Algorithmic Notation
1.5.1 Big Theta Notation
1.5.2 Big Oh Notation
1.5.3 Big Omega Notation
1.6 Answers 6 Check Your Progress
1.7 Model Questions

l.llearning Objectives

Data Structte Page?21

After going through this unithe learnewvill be able to:
1 define and understand the term algorithm
1 describe time and space complexity for algorithm
1 define big theta asymptotic notation
1 define big oh asymptotic notation
1

define big omega asymptotic notation

l1.12ntroducti on

In this unit we will learn to define an algorithm and learn the basics of time and
space complexity. In addition to these, different types of algorithmic notations
will also be discussed. Moreover, we will be able to compare between different

algorithms by using the concepts covered in this unit.

1. A8l gorithm

An algorithm is a step by step procedure for solving a problem. Algorithms can
also be described as a sequentceamputational stepthat transform the input
into output. There are five basic properties to be fulfilled by an algorithm. They
are:

Input: An algorithm should have one or more inputs.

Output: An algorithm should have one or more outputs.

Finite: An algaithm should be a finite one in the sense that it must have a clear
stopping point. It must be of fixed length.

Unambiguous: The algorithm must be unambiguous, which means that it should
not contain any ambiguous or confusing part.

Easy to understand: The algorithm should be easy to understand so that it
should be solvable even without using a computer or any computational tools.
Algorithms can be expressed with the help of both natural languages and
programming languages. English is one of the commonaidanguages that is
used to describe an algorithm. Let us now look at sexaenples to understand
how to write an algorithm.

Example: Algorithm to calculate average and sum of three numbers

Data Structte Page22

Step 1: Input A, B, C

Step 2: Compute Sum (S)asA+B+C

Step 3 Compute Average (AVG) as S/3

Step 4: Display Sum, Average

Example: Algorithm to find the smaller of two numbers
Step 1: Input A, B

Step 2: If Ais less than B

Small = A
Else
Small=B

Step 3: Display Small

Example: Algorithm to find factorial of a number

Step 1: Input A

Step2: SetFact=1,1=1

Step 3: While 1 <= A

F=FXI

l=1+1

End

Step 4: Display Fact

An algorithm is written with the objective to solve a problem. For example, let us
consider the sorting problem. Suppose we have 15 nurabdrge want to sort

the numbers in ascending order. Sorting is a common problem and we may be
presented with many different solutions to the sasopding problem. Each
solution presented can be described using an algorithm. But now, if we have to
pick an algothm from the presentezblutions then which solution do we choose
and how do we compare the different algorithms to find the best algorithm for
solving the problem? Weompute the complexity of the different algorithms for

the purpose of comparison.

1. 4go0Ali thmic Complexity

The measure of an algorithm is made based on its algorithmic complexity.
Algorithmic complexity can be of two typésin terms of space and in terms of

time. We use data structures to implement an algorithm.

Data Structte Page23

Some of the data structunll require more space but less time while others may
take less space and more time. We will need to find a-tHdeetween these two
to find the most efficient algorithm. Let us look at the basics of space and time

complexity now.

1.4.1 Space Compbaty

Space complexity can be defined as the amount of space an algorithm needs from
its start to its completion. The amount of space used by the algorithm from its
start to its end is the space complexity of the algorithm. The memory space is
measured inerms of bits and bytes. An algorithm with lesser memory space is
preferred over the one with more memory space.

To understand what we mean by amount of space taken let us take a simple
example. Suppose we need to swap the values of two numbers.

The following two programs show the swapping tefo nos. in two different
ways

Example: Swap the values of two numbefdgorithm A: Swap two numbers
using third variable

Step 1: Input A, B

Step2:SetC=A

Step3: SetA=B

Step 4: SetB=C

Step 5: Display A, B

Algorithm B: Swap two numbers without using third variable

Step 1: Input A, B

Step2: SetA=A+B

Step 3:SetB=AB

Step4: SetA=AB

Step 5: Display A, B

Here, we see that both the algorithms have the same number

of steps (5). Still, in the firstlgorithm, we have used a third additional variable

to swap the values between the first two numbers. The space required for

Data Structte Page24

algorithm AAO0 will be more to store the
ABo, we have swapped trhvathowt ading eng thimf t he
variable. Even though we had to perform additional computation we did not
require any additional space in the second algorithm. The space required for the
second algorithm AaBo wil/l be tdhilderespace

the second algorithm ABO requires | ess

1.4.2Time Complexity

Time complexity of an algorithm can be defined as the running time of the
algorithm. Running time is measured not by computing the actual execution time
neededby the algorithm. If this is the case, then the runrtinge would be
different for different machines. So, we want a measure that is machine
independent, that is, it does not depend on the machine. The running time is
measured based on the number of i@ or key operations performed by the
algorithm. The number of operations does not change from one machine to
another. The number of computational steps performed in the algorithm gives us
the running time of that algorithm.

To understand what we meaty primitive or key operations let us take an
example. Suppose we need to find the ma
Following is an algorithm for this problem

Example:Algorithm to find maximum of N numbers

Step 1: Input N

Step 2: Read NUM

Step 3: Set MAX = NUM

Step4: For I =2to N Do

Read NUM

If NUM > MAX then

MAX = NUM

Step 5: Display MAX

For the above algorithm, we need to find out the key operations first.

The comparison and exchange of elements are the key operations in the above
algorithm. Once we know the keoperation we need to count the number of

times that operation has been executed. For the above case, the

Data Structte Page25

comparison instruction is inside for loop which goes from 2 to N so the number

of comparis-bas wil |l be AN

Check Your Progress

Q1. What are the pperties of an algorithm?

Q2. Define space and time complexity.

Q3. Write an algorithm to find the product of three numbers.
Q4. Write an algorithm to find the greatest of three numbers.

1 . Assymptotic Notation

The time complexity ban algorithm is measured with the help of asymptotic
notations. There are three basic asymptotic notations. They are as follows:
1) Big Omege €2 (f)

2) Big Oh O(f)

3) Big Theta d (f)

The notations used to describe the asymptotic running time of antlahgori
are defined in terms of function whose domains are the set of natural
numbers. Let us look at the definitions of these three basic asymptotic

notations.

151BigOmega Notation q (f)

Big Omega notation provides an asymptotic lower bound féunation
f(n). A function f(n) is said to bg (g(n)) if there exists positive
values k and c, such that

f(n) >= c* g(n), for all n >= k.

For a function g(n), we def@ol)={ by
f(n) : there exist positive constants ¢ and k siheth

0 <= cg(n) <=f(n) for all n >=k

For all values n that are at or to the right of k, the value of function

f(n) is on or above cg(n).

Data Structte Page26

1.5.2 Big Oh Notation o(f)

Big Oh notation provides an asymptotic upper bound for a function

f(n). A function f(n) is sal to be O(g(n)) if there exist positive values k and
o

such that

f(n) <= c* g(n), for all n >= k.

For a function g(n), we denote by O(g(n)) the set of functions

O(g(n)) ={ f(n) : there exist positive constants ¢ and k such that

0 <=1f(n) <= cg(n) for dln >=k

For all values n that are at or to the right of k, the value of function

f(n) is on or below cg(n).

1.5.3Big Theta Notation

Big Theta function provides both an asymptotic upper and lower

bound for a function f(n). A function f(n) is said to lggn)) if there exist

positive values k, c1 and c2, such that

cl*g(n) <= f(n) <= c2* g(n), for all n >= k.

For a function g(n), we denote by d (
d (g(n)) = { f(n) : there exist posit
0 <= cl1*g(n) <= f(n) <= c2* g(n), for all n >= k.

For all values n that are at or to the right of k, the value otifumc

f(n) lies at or above clg(n) and at or below c2g(n).

Check Your Progress
Q5. Define omega notation.

Q6. Define big oh notation.

Q7. Define theta notation.

Data Structte Page27

1 MNSWERS TO CHECK YOUR PROC

Answer to Q1: The properties of an algorithm are:

Input: An algorithm should have one or more inputs.

Output: An algorithm should have one or more outputs.

Finite: An algorithm must have a finite in the sense that it must have a
clear

stopping point. It must be of fixed length.

Unambiguous: The algorithm must beambiguous, which means that it
should not contain any ambiguous part.

Easy to understand: The algorithm should be easy to understand such
that it should be solvable even without using a computer or any
computationatools.

Answer to Q2 : Space complexitgan be defined as the amount of space
an algorithm needs from its start to its completion. The amount of space
used by the algorithm from its start to it end is the space complexity of the
algorithm.

Answer to Q3 Algorithm for finding the product of theenumbers:

Stepl: Input A, B, C

Step 2: Prod=A*B*C

Step 3: Display Prod

Answer to Q4 Algorithm for finding the greatest of three numbers:

Stepl: Input A, B, C

Step 2: IFA>Bdo

IFA>C

Set Great = A
ELSE

Set Great=C
End IF

Else IFB>C do
SetGreat = B
ELSE

Set Great=C

Data Structte Page28

End IF

Step 3: Display Great

Answer to Q5 For a function g(n), we deno
functions &!(g(n)) = { f(n) : there exist positive constants ¢ and k such
that

0 <=cg(n) <=f(n) for all n >= k

Answer to Q6 For a function g(n), we denote by O(g(n)) the set of
functions

O(g(n)) = {f(n) : there exist positive constants ¢ and k such that

0 <= f(n) <= cg(n) for all n >= k

Answer to Q7: For a function g(n), we denote by

d (g(n)) the set of functions
E(g(n)) = { f(n) : there exist positive constants c1, c2 and k such

that 0 <= c1*g(n) =< f(n) <= c2* g(n),

for all n>= k.

1.7 Model Questions

Q1. Define algorithm?

Q2. What are the properties of an algorithm?

Q3. Write an algorithm to find the factors of a given number.

Q4. Write an algorithm to find whether a given number is prime or not.
Q5. Write an algorithm to display the Fibonacci series till its 10th
element.

Q6. Define asymptotic notations.

Q7. Define Big Theta and Big Oh asymptotic notation.

Q8. Define omega notation.

Q9. How the asymptotic notations are used in evaluating algw#h

Data Structte Page29

UNI T LIIINEAR DATA STRUCTURES

1.1Learning Objectives

1.2 Introduction

1.3Linear Data Structure
1.4Introduction to Stack
1.5Introduction to Queue

1.6 Answer to Check Your Progress
1.7Model Questions

l.llearning Objectives

After going through this unit, the leamwill able to learn about:
1 Array
9 Linked List
1 Stacks
1

Queues

1.2 I ntroducti on

Data can be organized in many different ways. Therefore, yowcreate as
many data structures as you want. However, data structures demre
classified in several ways. Baally, data structures are of two typebnear
data structure and nonlinear data structure.

Linear data structure: a data structure is said to be linear if #lements
form a sequence i.e., while traversing sequentially, we can maghone
element diectly from another. For examplarray, Linked list,Queue etc.
Nonlinear data structure: elements in a nonlinear data structdeenot form
a sequence i.e each item or element may be connectetiwithr more other
items or elements in a ndimear arragementMoreover,removing one of the
links could divide the data structure into two disjoinpeelces. For example,
Trees and Graphs etc. The following figure showslitiear and nonlinear

data structures.

Data Structte Page30

1.3 Li near Data Structure

A data structure is saiw be linear if its elements form a sequence or a linear
list.
Examples:
1 Array
1 Linked List
1 Stacks
1 Queues
Operations on linear Data Structures
Traversal: Visit every part of the data structure
Search: Traversal through the data structure for a given eime
Insertion: Adding new elements to the data structure
Deletion: Removing an element from the data structure.
Sorting: Rearranging the elements in some type of ofday Increasing or
Decreasing)

Merging: Combining two similar data structures into one

Check Your Progress
Q.1. State whether the following statements are true(T) or false(F):

i) Stack follows a firsin-first-out technique.
ii) Insertion of data into the stack is called the push operation.

iii) Removal of element isermed as pop operation.

1. ld9nt roduction to Stack

1. Stack is basically a data object

2. The operational semantic (meaning) of stack is LIFO i.e. last in first out
Definition: It is an ordered list of elements n, such that n>0 in which all
insertions ad deletions are made at one end called the top.

Primary operations defined on a stack:

1. PUSH: add an element at the top of the list.

2. POP: remove at the top of the list.

Data Structte Page31

3. Also "IsEmpty()" and IsFull" function, which tests whether a stack is
emptyor full respectively.

Example:

1. Practical daily life: a pile of heavy books kept in a vertical balishes

kept one on top of another

In computer world: In processing of subroutine calls and returns; there is an
explicit use of stack of return addses.

Also in evaluation of arithmetic expressions, stack is used.

Large number of stacks can be expressed using a single one dimensional
stack only. Such an array is called a multiple stack array.

Push and Pop:

Algorithms
Push(item,array , n, top) Pop (item,array,top)
Push (item,array , n, top) Pop (item,array,top)
{ {
if
If (n> = top) (top<=0)
1 n H n o, Then
Then print "Stack is full”" ; orint fAstack
Else Else
{
{ item
top =top + 1; = array[top];
o - top =
array[top] = item ; topi 1:
}
) .

Arithmetic Expressions:
Arithmetic expressions are expressed as combinations of:
1. Operands
2. Operators (arithmetic, Boolean, relational operators)
Various rules have been formulated to specify the order ofuatiah of
combination of operators in any expression.
The arithmetic expressions are expressed in 3 different notations:
1. Infix:

Data Structte Page32

1 In this if the operator is binary; the operator is between the 2
operands.
And if the operator is unary, it precedes tiperand.
2. Prefix:
1 In this notation for the case of binary operators, the operator
precedes both the operands.
3. Simple algorithm using stack can be used to evaluate the final answer.
Postfix:
1 In this notation for the case of binary operators, theratpr is after
both the corresponding operands.
1 Simple algorithm using stack can be used to evaluate the final

answer.

Always remember that the order of appearance of operands does not
change in any Notation. What changes is the position of operators
working on those operands.

Rules Expressions:

RULES FOR EVALUATION OF ANY EXPRESSION:

An expression can be interpreted in many different ways if parentheses

are not mentioned in the expression.

1 For example the below given expression can be interpreted ny ma

different ways:
1 Hence we specify some basic rules for evaluation of any expression :

A priority table is specified for the various type of operators being used:

| PRIORITY LEVEL | OPERATORS
| 6 | = unary - . unary +
I |
| 4 | i

3 - - b o
| 2 | Logical and operation
| 1 | Logical or operation

Arithmetic Expressions:
Algorithm for evaluation of an expression E which is in prefixation :

1 We assume that the given prefix notation starts with ISEmpty ().

Data Structte Page33

1 If number of symbols = n in any infix expression then number of
operations performed = some constant times n.
1 Here next token function gives us the next occurring element in
theexpression in a left to right scan.
1 The PUSH function adds element x to stack Q which is of
maximum length n
Evaluate (E)

{ Else
{
Top =0;
If (x = = operand)
While (1
lle (1) PUSH(Q, top, n, X);
{ If (x = = operator)
x= next toker(E) {
If (x = = infinity) Pop correct number of operands according t
{ the operator (unary/binary) and then perforn

Print value of stack [top] as the ~ operation and stomesult onto the stack

output of the expression }
} }
}

Multiple stacks:
1 Here only one single ordimensional array (Q) is used to store
multiple stacks.
1 B (i) denotes one position leshan the position in Q for
bottommost element of stacks i.
1 T (i) denotes the top most element of stack i.
1 m denotes the maximum size of the array being used.
1 ndenotes the number of stacks.
We also assume that equal segments of array will be used fortaelch s
Initially let B (i) = T (i) = [m/n]*(i-1) where 1<=i<=n.

Data Structte Page34

Again we can haveush or pop operations, which can be performed on

each of these stacks.

Algorithms:
Push (i, x) Pop (i,x)
{ {
If (((i<n) && (T(i)==B(i+1)) || (T ==8())
((i>=n) && (T(i) ==m))): Then print that the stack is empty.
Else
Then call STACK_FULL ; {
Else X =Q[T():
{ T[] = T[] - 1;
T(i) = T(i) +1; }
Q[T =x; }
}
}

ALGORITHM TO BE APPLIED WHEN T [i] = = B [i] CONDITION IS
ENCOUNTERED WHILE DOING PU SH OPERATION.

{
1. Find j such thati < | <= n and there is a free space between stack] and stack (j +1).
if such aj exist, then move stack i+1 | i+2 ... till j one position to the right and hence create space
for element between stack i and i +1.
2. Else
Find j such that 1 <= < i and there is a free space between stack j and stack(j +1).
if such a j exist , then move stack j+1 | j+2 ... till i one position to the left and hence create space
for element between stack iand i +1 .
3. Else
If none of above is possible then there is no space left out in the one-dimensional array used hence
print no space for push operation.
1

1.5 I ntroduction to Queue

Introduction:
1. Itis basically a data object

2. The operational semantic of queue is FIFO i.e. first in first out

Definition:

Data Structte Page35

It is an ordered list of elements n , such that n>0 in waiictleldions are made
at one endalled the front end and all insertions at the other end called the rear
end .

Primary operations defined on a Queue:

1. EnQueue :This is used to add elements into the queue at the back end.

2. DeQueue This is usedd delete elements from a queue from the front end.
3. Also "IsEmpty()" and "IsFull()" can be defined to test whether the queue is
Empty or full.

Example:

1. PRACTICAL EXAMPLE: A line at a ticket counter for buying tickets
operates on above rules

2. INCOMPUTER WORLD: In a batch processing system, jobs are queued up
for processing.

Circular queue:

In a queue if the array elements can be accessed in a circular fdmhgqreue

is a cicular queue.

Priority queue:

Often the items added to a queue have a priority associated with them: this
priority determines therder in which they exit the queudighest priority

items are removed first.

CIRCULAR QUEUE

Primary operationsefined for a circular queue are

1. add_circular It is used for addition of elements to the circular queue.

2. delete_gcular- It is used for deletion of elements from the queue.

We will see that in a circular queue, unlike static linear array implementation of
the queue; the memory is utilized more efficient in case of circular queue's.
The shortcoming of static linetlrat once rear points to n which is the max size
of our array we cannot insert any more elements even if there is space in the
gqueue is removed efficiently using a circular queue.

As in case of linear queue, we'll see that condition for zero elemdhts sti
remains the same i.e.. rear=front

ALGORITHM FOR ADDITION AND DELETION OF ELEMENTS

Data structees required for circular queue

Data Structte Page36

http://nptel.ac.in/courses/106103069/Module_3/queue/circular_queue.htm
http://nptel.ac.in/courses/106103069/Module_3/queue/priority_queue.htm

1. front counter which points to one position anticlockwise to the 1st element

2. rear countewhich points to the last element in the queue
3. an array to represent the queue

add _ circular (item,queue,rear,front)

{
rear=(rear+1)mod n;
if (front == rear)
then print " queue is full "
else
{
gueue [rear]=item;
}
}

delete operation :

delete_circular (item,queue,rear,front)

{
if (front = = rear)
print ("queue is empty");
else
{
front= front+1;
item= queue[fromt];
}
}

Data Structte Page37

ALGORITHM FOR AD DITION AND DELETION OF ITEMS IN A
QUEUE

note : addition is done only at the rear end of a queue like in a ticket counter line

add (item ,queue , n ,rear)

{
if (rear==n)
then print "queue is full "
else
{
rear=rear+1,
gueue [rear]=item;
}
}

ALGORITHM FOR ADDITION AND DELETION OF ITEMS IN A
QUEUE

note : deletion is allowed onBt the front end of the queue

delete (item , queue , rear , front)

{
if (rear==front)
then print "queue is empty";
else
{
item = queue [front] ;
front=front+1 ;
}
}

Data Structte Page38

Priority queue:
Queues are dynamic collections which have some concept of order. This can be

either based on order of entry into the queugiving us Firstin-FirstOut
(FIFO) or Lastin-FirstOut (LIFO) queues. Both of #se can be built with
linked lists: the simplest "adi-head" implementation of a linked list gives
LIFO behavior. A minor modification adding a tail pointer and adjusting the
addition method implementaticrwill produce a FIFO queue.

Performance

A straightforward analysis shows that for both these cases, the time needed to
add or delete an item is constant and independent of the number of items in the
gueue. Thus we class both addition and deletion as an O (1) operation. For any
given real machine eperating system + language combination, addition may
take ¢ 1 seconds and deletion ¢ 2 seconds, but we aren't interested in the value
of the constant, it will vary from machine to machine, language to language, etc
. The key point is that the time is ndependent on n producing O (1)
algorithms.

Once we have written an O (1) method, there is generally little more that we can
do from an algorithmic point of view. Occasionally, a better approach may
produce a lower constant time. Often, enhancing oupdemruntime system,
machine, etc will produce some significant improvement. However O (1)
methods are already very fast, and it's unlikely that effort expended in
improving such a method will produce much real gain!

PRIORITY QUEUE:

Often the items adal to a queue have a priority associated with them: this
priority determines the order in which they exit the quelrghest priority

items are removed first.

This situation arises often in process control systems. Imagine the operator's
console in a laye automated factory. It receives many routine messages from all
parts of the system: they are assigned a low priority because they just report the
normal functioning of the systemthey update various parts of the operator's
console display simply so thahere is some confirmation that there are no
problems. It will make little difference if they are delayed or lost.

However, occasionally something breaks or fails and alarm messages are sent.

These have high priority because some action is requirek tihef problem

Data Structte Page39

(even if it iIs mass evacuation because nothing can stop the imminent
explosion!).

Typically such a system will be composed of many small units, one of which
will be a buffer for messages received by the operator's console. The
communicatios system places messages in the buffer so that communications
links can be freed for further messages while the console software is processing
the message. The console software extracts messages from the buffer and
updates appropriate parts of the disptagtem. Obviously we want to sort
messages on their priority so that we can ensure that the alarms are processed
immediately and not delayed behind a few thousand routine messages while the
plant is about to explode.

As we have seen, we could use a treeecture- which generally provides O

(log n) performance for both insertion and deletion. Unfortunately, if the tree
becomes unbalanced, performance will degrade to O (n) in pathological cases.
This will probably not be acceptable when dealing with demge industrial
processes, nuclear reactors, flight control systems and otheriliéal systems.

C ++ IMPLEMENTATION OF QUEUE USING CLASSES

Data Structte

Paged0

#include <iostream.h>
#include <conio.h>

#define MAX 5 // MAXIMUM CONTENTS IN QUEUE

class queue

{

private:
int t{MAX]:
int al; // Addition End
int dl; // Deletion End
public:
queue()

di=-1:
al=-1;

}
void del()

int tmp:
if(dl==-1)
{

cout<<"Queue is Empty";

¥

else
for(int j=0;j<=al j++)
if((j+1)=<=al)

tmp=t[j+1];
t[j]=tmp;

else

{
al—;

if(al==-1)
di=-1;
else

void add(int item)
{
f(dl=—=-1 && al=—=-1)
{
dl++:
al++:

al++:
flal=—MAX)
: cout<<"Queue is Fulln";
al--:
return;
¥
3

t[al]=item:

3

void display()
{
if(dl!=-1)
{
for(int =0 i<=al;i++)
cout<<t[i]<<"";
3
else
cout<<"EMPTY";
h

¥

Data Structte

Paged41

cout<<endlz<end!;

void main()
for(int i=0;i<5;i++)
queue a; {
int data[5]={32,23,45,99,24}, a.del().
cout<<"Deletion Number - "<<(ji+1)<<" 1 ";
cout<<"Queue before adding Elements: " a.display():
a.display(): coutz<endl;
cout<<endl<<end!; }
getch():

for(int i=0;i<5;i++) }
{
a.add(datali]).
cout<<"Addition Number - "<<(i+1)<<" 2 "]
a.display();
cout<<endl;
coutz<endl;

cout<<"Queue after adding Elements: ",
a.display():

OUTPUT:

Queue before adding Elements: EMPTY

Addition Number : 1: 32

Addition Number : 2 : 32 23

Addition Number : 3 : 32 23 45

Addition Number : 4 : 32 23 45 99

Addition Number : 5 : 32 23 45 99 24

Queue after adding Elements: 32 23 45 99 24

Deletion Number : 1 :23 4599 24

Deletion Number : 2 : 45 99 24

Deletion Number : 3 : 99 24

Deletion Number : 424

Deletion Number : 5 : EMPTY

As you can clearly see through the output of this program that addition is
always done at the end of the queue while deletion is done from the front end of

the queue.

Problems-Linear Data Structure

Tower of Hanoi Problem

Tower of Hanoi is a historical problem, which can be easily expressed using
recursion. There are N disks of decreasing size stacked on one needle, and two

other empty needles. It is required to stack all the disks onto a second needle in

Data Structte Paged2

the decreasing ordef size. The third needle can be used as a temporary
storage. The movement of the disks must confirm to the following rules,
1. Only one disk may be moved at a time

2. A disk can be moved from any needle to any other.

3. The larger disk should not restan a smaller one.

Question: write a ¢ program to impdent tower of Hanoi using stk
Solution:

#include <stdio.h>
#include <conio.h>
void move (int, char, char, char) ;

void main()
{
intn=3;
clrser() ;
move (n, 'A','B,'C");
getch() ;
}
void move (int n, char sp, char ap, char ep)
{
if(n==1)
printf ("\nMove from %c to %c ", sp, ep) ;
else
{
move (n- 1, sp, ep, ap) ;
move (1,sp,'',ep);
move (n- 1, ap, sp, ep) ;
}
}

Function Calls and Stack
A stack is used by programming lamges for implementing function calls.

Write a program to check how function calls are made using stack.

Data Structte Paged3

SOLUTION
* To show the use of stack in function calls */

#inchide <stdio h>
#include <conio h>
#inchide <stdlib h>
#inchide <dos. h>

unsigned int far *ptr ;
void (*p } void) ;

void f1() ;
void f2() ;

void main()
{
f1()
£20):
printf ("nback to main...") ;
exit (1);

Check Your

void f1()
{
ptr = (unsigned int far *) MK_FP (_SS, SP+2):
printf ("n%d", *ptr) ;
p=(void (*)())MK FP (_CS, *ptr):
(*p)O):
printf ("nl am f1() function ") ;

}
void £2()
{
printf ("l am f2() function”) ;
¥

Progress

Q.2. Select the appropriate option for each of the following questions :

i) The push() operation is used
a) to move an element
b) to remove an element
c) to insert an element
d) none of these
il) The stack is based on the rule
a) firstin-first-out
b) lastin-first-out
c) both (a) and (b)

d) none of these

iii) A stack holding elements equal to its capacity and if psigerforned

then the situation is called
a) Stack overflow
b) Stack underflow
c) Pop
d) illegal operation

iv) The top pointer is increased

Data Structte

Paged4

a) when push() operation is done
b) when pop() operation is done
c) both (a) and (b)
d) none of the above
V) The pop operain removes
a) the element lastly inserted
b) first element of the stack
c) any element randomly

d) none of the above

1.6 Answer to Check Your Prog

Ans. to Q. No. 1 : i) False; ii) True; iii) True
Ans. to Q. No. 2 : i) ¢) insert an element; ii) bgtlan-first-out; iii) a) Stack
overflow; iv) a) when push() operation is done; v) a) the element lastly

inserted

1.7 Model Questions

What is a stack? What different operations can be performed on stacks?
What is stack overflow and stack underflow?

What i linked implementation of stack?

P w0 NP

Write a C program to implement stack with array. Perform push and pop
operation.

5. What is queueWhat are its properties?

6. What are the applications of queue?

7. What is overflow and underflow in a queue?

UNI TLIWKEDTLI S

Data Structte Paged5

1.1Learning Objectives

1.2 Introduction

1.3Linked Lists

1.4Inserting and Removing Nodes from a list
1.5Linked Implemented of Stacks

1.6 Getnode and Freenode Operation
1.7 Linked Implemented of Queue
1.8List Implementation of Priority Queue
1.9Header Nodes

1.10 Circular Lists

1.11 Doubly linked list

1.12 Answer to Check Your Progress
1.13 Model Questions

l.llearning Objectives

After going thraugh this unit, you will able to
1 describe a linked list
1 learn the types of linked list

1 describe the advantages of linked list over arrays

1. 2 lurcttn awadh

We are already familiar with the array data structdwegay is a linear and
homogenous data structure. It is very simple to represent a list of elements by
using the array but it has some limitations. Once dlze of the array is
declared, it canot be changed during program execution. The unused portion of
an array also occupies the memory space. Insertion and deletion operation in an
array is time consumin@nd it needs shifting of elements to rearrange the
numbers in order. To overcome suclpdy of difficulties, we will introduce
another data structure called linked list in this unit. The different types of linked

lists are also discussed in this unit.

Data Structte Paged6

1.3 nked LiI st s

What is Linked Lists?
A linked list is simply a chain of structures whicbntain a pointer to the next
element. It is dynamic in nature. Items may be added to it or deleted from it at

will.

Start
Node A NodeN Node B
ey e oL o[

_ -y MextPointer field of Node W
Single Linked List L Information Part of Mode N

This definition applies only to Singly Linked List®oubly Linked Lists and
Circular Lists are different.
A list item has a pointer tihe next element or to O if the current element is the
tail (end of the list). This pointer points to a structure of the same type as itself.
This structure that contains elements and pointers to the next structure is called
a Node.
Each node of the list las two elements:

1 the item being stored in the lshd

T a pointer to the next item in the list

Some common examples of a linked list:

¢ Hash tables use linked lists for collision resolution
Any "File Requester" dialog uses a linked list
Binary Trees

Stacls and Queues can be implemented with a doubly linked list

= = =4 =4

Relational Databases (e.g. Microsoft Access)

l1.l1d9nserting and Removing Node

Algorithm for inserting a node to the List
9 allocate space for a new node,
1 copy the item into it,

1 make he new node's next pointer point to the current head of the list and

Data Structte Paged7

1 Make the head of the list point to the newly allocated node.
This strategy is fast and efficient, but each item is added to the head of the list.
Below is given C code for inserting a reodfter a given node.

C Implementation

[* inserts an item x into a list after a node pointed to by p */

void insafter(int p, int x)

{
int q;
if(p == -1)
{
printf("void insertionn");
return;
}

g = getnode(); / * getnode() returns a pointer tolgeocated node */
node[q].info = x;

node[q].next = node[p].next;

node[p].next = q;

return;

} I* end insafter

Algorithm for deleting a node from the List

Start
Node A NodeN Node B
%EH o3 Tefo Tefs| [X]

{a) Before deletion

Start
Node M Node B
EEE% &5 \LO\H [ol s [X]

{(b) After Deletion

Stepl: Take the value in the 'nodevalue’ field of the TARGET node in any
intermediate variablddere node N.
Step2: Make the previous node of TARGET to point to where TARGET is

currently pointing

Data Structte Paged8

Step3: The nextpointer field of Node N now points to Node B, Where Node
N previously pointed.

Step4: Return the value in that intermediate variable

Thereare also two special cases. If the deleted node N is the first node in the
list, then the Start will point to node B; and if the deleted node N is the last

node in the list, then Node A will contain the NULL pointer.

Below is a C code for deleting a nogliéer a given node.
C Implementation
[* routine delafter(p,px), called by the statemant delafter(p,&x), deletes the
node following node(p) and stores its contents in x */
void delafter(int p, int *px)
{
int q;
if ((p ==-1) || (node[p].next=-1))
{
printf("void deletionn™);
return;
}
g=node[p].next;
*px = node[q].info;
node[p].next = node[q].next;
freenode(q);

return;

}

/* end delafter */

1.5 Linked dfmp$teanckg e d

The operation of adding an element to the frdra bnked list is quite similar
to that of pushing an element on to a stack. A stack can be accessed only

through its top element, and a list can be accessed only from the pointer to its

Data Structte Paged9

first element. Similarly, removing the first element from a linkest Is
analogous to popping from a stack.
A linked-list is somewhat of a dynamic array that grows and shrinks as values
are added to it and removed from it respectively. Rather than being stored in a
continuous block of memory, the values in the dynamrayaiare linked
together with pointers. Each element of a linked list is a structure that contains
a value and a link to its neighbor. The link is basically a pointer to another
structure that contains a value and another pointer to another structure, and s
on. If an external pointer p points to such a linked list, the operation push(p, t)
may be implemented by
f = getnode();
info(f) = t;
next(f) = p;
p="f
The operation t = pop(p) removes the first node from a nonempty list and
signals undrflow if the list is empty
if(empty(p))
{
printf('stack underflow');
exit(1);
}
else {
f=p;
p = next(f);
t = info(f);
freenode(f);

}

=t T b [s
S TIES SRS

rull

J—o o

1. @etnode and Freenode Operat

Data Structte Pages0

GETNODE AND FREENODE OPERATIONS

The génode operation may be regarded as a machine that manufactures
nodes. Initially there exist a finite pool of empty nodes and it is impossible to
use more than that number at a given instant. If it is desired to use more than
that number over a given ped of time, some nodes must be reused. The
function of freenode is to make a node that is no longer being used in its
current context available for reuse in a different context.

The list of available nodes is called the available list. When the avdilstike
empty that is all nodes are currently in use and it is impossible to allocate any
more, overflow occurs.

Assume that an external pointer avail points to a list of available nodes. Then
the operation getnode and fneele are implemented as follaws

int getnode(void)
{
int p;
if (avail ==-1)
{
printf (Moyerfl ow
exit(1);

}

p = avail;

avail = node[avail].next;
return(p);

} I* end getnode */

void freenode (int p)

{
node[p].nex = avalil;
avail = p;
return;

} I* end freenode */

Data Structte Pages1

1.L71 nked | mpl emented of Queue

Queues can be implemented as linked lists. Linked list implementations of
gueues often require two pointers or references to links at the beginning and
end of the listUsing a pair of pointers or references opens the code up to a
variety of bugs especially when the last item on the queue is dequeued or
when the first item is enqueued.

In a circular linked list representation of queues, ordinary ‘for loops' and 'do
while loops' do not suffice to traverse a loop because the link that starts the
traversal is also the link that terminates the traversal. The empty queue has no
links and this is not a circularly linked list. This is also a problem for the two
pointers or refeences approach. If one link in the circularly linked queue is
kept empty then traversal is simplified. The one empty link simplifies traversal
since the traversal starts on the first link and ends on the empty one. Because
there will always be at least edink on the queue (the empty one) the queue
will always be a circularly linked list and no bugs will arise from the queue
being intermittently circular. Let a pointer to the first element of a list
represent the front of the queue. Another pointer tdasteelement of the list
represents the rear of the queue as shown in fig. illustrates the same queue
after a new item has been inserted.

rear

front

> 7 - T 9 |null

rear

tronl_} 5 L, 7 3 2 9 |null

Under the list representation, a queue q consists of a list and two pointers,

g.front and g.rear. The operationg amsertion and deletion. Special attention

is required when the last element is removed from a queue. In that case, g.rear
must also be set to null, Since in an empty queue both r.front and g.rear must
be null.

The pseudo code for deletion is below:

if (empty(q))

Data Structte Pages2

printf("Queue is Underflow");
exit(1);

}

f = q.front;

t = info(f);

g.front = next(f);

if (g.front == null)
g.rear = null,
freenode(f);

return(t);

The operation insert algorithm is implemented

f = getnode();
info(f) = x;
next(f) = null;
if (g.rear == null)
g.front =f;
else
next(qg.rear) = f;

g.rear =f;

1.8 st | mplementation of Pr

We can use a list to represent a priority queue in oddesteor unordered list.

For an ascending Priority queue, insertion is implemented by the place

operation, which keeps the list ordered, and deletion of the minimum element
is implemented by the delete operation, which removes the first element from

the ist. A Descending priority queue can be implemented by keeping the list

in descending order rather than ascending, or by using remove to delete the
minimum element. In an ordered list, if you want to insert an element to the

priority queue, it will requireexamining an average of approximately n/2

nodes but only one search for deletion.

Data Structte Pages3

An unordered list may also be used as a priority queue. If you want to insert an
element to the list always requires examining only one node but always
requires examining alements for removal of an element.

The advantage of a list over an array for implementing a priority queue is that
an element can be inserted into a list without moving any other elements,

where as this is impossible for an array unless extra spactemigty.

1 HBeader Nodes

A header linked list is a linked list which always contains a special node called

the header node at the beginning of the list. It is an extra node kept at the front
of a list. Such a node does not represent an item in the tistinformation
portion might be unused. There are two types of header list
1 Grounded header list : is a header list where the last node contain the null
pointer.
1 Circular header list : is a header list where the last node points back to the
header node.
More often, the information portion of such a node could be used to keep
global information about the entire list such as:
1 number of nodes (not including the header) in the list
o count in the header node must be adjusted after adding or deleting the
item fromthe list
1 pointer to the last node in the list
o it simplifies the representation of a queue
1 pointer to the current node in the list

o eliminates the need of a external pointer during traversal

%Eﬂ[:—)—zi [[= [x]

Grounded header node

start

%ﬂﬂ—aﬁ [+t | ++)

Circular header node

1. COrcul ar Li st s

Data Structte Pageb4

Circular lists are like singly linked listexcept that the last node contains
apointer back to the first node rather than the null pointer. From any point in
such a list, it is possible to reach any other point in the list. If we begin at a
given node and travel the entire list, we ultimatelgt ap at the starting point.
Note that a circular list does not have a natural "first or "last” node. We must
therefore, establish a first and last node by conventieh external pointer

point to the last node, and the following node be the first node.

Stack as a Circular List
A circular list can be used to represent a stack.

The following is a C function to push an integer x onto the stack. It is called
by push (&stack, x), where stack is a pointer to a circular list acting as a stack.

void push(NODIPTR *pstack, int x)
{

NODEPTR p;

p = getnode();

p->info = x;

if (*pstack == NULL)
*pstack = p;

else

p->next = (*pstack}> next;
(*pstack)-> next = p;

} I*end push*/

Queue as a circular list
It is easier to represent a queue as a circular list thariasar list. If
considered as a linear list, a queue is specified by two pointers, one to the front

of the list and other to its rear. However, by using a circular list, a queue may

Data Structte Pageb5

be specified by a single pointer g to that list. Node (q) is the raaeafueue
and the following node is its front.
Queue as a circular list
The following is a C function to insert an integer x into the queue and

is called by insert (&q, x)
Void insert (NODEPTR *pq, int x)

{
NODEPTR p;

p = getnode();

p->info = x;

if (*pg == NULL)
*Pq = p;

else

p->next = (*pq)-> next;

(*pa) -> next = p;

*Pg = p;
return;

} I*end insert*/
Queue as a circular list

To insert an element into the rear of a circular queue, the element is

inserted intothe front of the queue and the circular list pointer is then
advanced one element, so that the new element becomes the rear.

Exercise: Write an algorithm and a C routine to concatenate two circular lists.

1.11 Doulbliwvtlinked

Doubly linked lists areike singly linked lists, in which for each node there are

two pointers- one to the next node, and one to the previous node. This makes

life nice in many ways:

1 You can traverse lists forward and backward.

1 You can insert anywhere in a list easily. Thislues inserting before a
node, after a node, at the front of the list, and at the end of the list and

1 You can delete nodes very easily.

Doubly linked lists may be either linear or circular and may or may not

contain a header node

Data Structte Pages6

Check Your Progress
Q.1.Select the apppriate answer from the folowing

a) The elements of linked list are stored in
i) successive memory locations
i) alternate memory locations
iii) random memory locations
iv) all of the above
b) The linked list where first and last node carm®identified is
i) doubly linked list
i) singly linked list
iii) circular linked list
iv) all the above
c) The linked list in which the first node have the NULL values is
i) doubly linked list
i) singly linked list
iii) circular linked list
iv) all the above
d) The function used for memory allocation in linked list is
i) malloc()
ii) calloc()
iii) realloc()

iv) free()

1. ABswer to Check Your Progre

Ans. to Q. No. 1:a) i) successive memory locations b) iii) Circular linked list
c) i)Doubly linked list d) i) malloc()

1. M8del Questions

1. Why is a linked list called a dynamic data structure?
2. What are the advantges of using a linked list over arrays?
3. Explain types of linked lists. On which basis is the linked list

classified?

Data Structte Pages7

4. List the addantages of doubly linked list over singly linked list.
5. Compare circular linked list with doubly linked list and list their

relative merits and demerits.

Bl oz k
UNI TS®ORTI NG

1.1Learning Objectives
1.2 Introduction

1.3Sink Sort
1.4Insertion Sort
1.5Selection Sort

1.6 Bubble Sort
1.7Merge Sort

1.8 Quick Sort
1.9Radix Sort

1.10 Answers to Check Your Progress
1.11 Model Questions

1. llearning Objectives

After going through this unit, you will able to
1 define sorting
describe insertion sort algorithm
describe selection sort algorithm

1
1
1 explain bubble sort algorithm
1 describe quick sort algorithm
1

Compute the complexitgf the above sorting algorithms

l1.12ntroducti on

Data Structte Pages8

In computer science and mathematics, a sorting algorithm is an algorithm that
puts elements of a list in a certain order. Tin@st used orders are numerical
order and lexicographical order. Since the dawrcahputing, the sorting
problem has attracted a great deal of research, perhaps due to the complexity
of solving it efficiently despite its simple, familiar statement. Edfintisorting

is important for optimizing the use other algorithms that require sorted lists

to work correctly; it is also often useful for canonicalizing data and for
producing humaimeadable output. In this unit, we will introduce you to the
fundamentalconcepts ofsorting. Also, we shall discuss the various sorting
algorithms i.e. insertion sort, selection sort, bubble sort and quick sort

including their complexity.

1.8 nk Sort

1 Main idea in this method is to compare two adjacent elements and put
them in proper order if they are not.
Do this by scanning the element from first to last.
After first scan, largest element is placed at last position. This is like a
largest object sinking to bottom first.
After second, scan second largest is placed ahsdast position.
After n passes all elements are placed in their correct positions, hence

sorted.

Input Pass 1 Pass 2 Paso 3 Paso d Pass 5 Pags 6 Pass 7 Pagg B
12 12 12 12 12 12 2 i i3
3z 18 18 18 18 18 14 14 44
18 24 24 18 19 4 iB 18 48
24 =0 i9 24 44 49 8 4 19
30 18 28 14 24 24 24 24 24
19 2B 14 28 48 48 48 Fi 28
2B 14 ia 30 3] 10 3]] k|
14 az 32 a2 2 a2 2 a2 iz

The algorithmic description of the Sink sort is given below:
Algorithm SinkSort (a[n])
Step 1: fori=0ton2 do

Data Structte Pages9

Step 2: forj=0to#do
Step 3if (a[j] > a[j+1]) then
Step 4 : swap(a[j],a[j+1]);
The algorithm can be modified, such that, after each pass next smallest
element reach to the top position. This is like a bubble coming to top. Hence
called BubbleSort.

l1.ldnsertion Sort

Insertion sort is a simple sorting algorithm that is relatively efficient for small
lists and mosthsorted lists, and is often used as part of more sophisticated
algorithms. It works by taking elements from the list one@bg and inserting
them in theircorrect position into a new sorted list. In arrays, the new list and
the remaining elements can share the &
requiring shifting of all following elements over bye.

Let A is an arraywith n element# [0], A [1], ..., ..., ...,A[N 1] in memory.

The insertion sort algorithm scans the array from A[0] toTA[Nand the

process of inserting each element in proper place is as follow

Pass 1: A[O] by itself is sorted because of one element.

Pass 2: A[1] is inserted eithbefore or afte A[0] so thatA[0],A[1] are sorted.
Pass 3: A[2] is inserted into its proper plac@jf], A[1], i.e. beforeA[0],
BetweenA[0] and A[1], or afterA[1], so that :A[0],A[1],A[2] are sorted.

Pass 4 : A[3] is inserted into its proper placéja],A[1],A[2]

so that :A[0],A[1],A[2],A[3] are sorted.

Pass N:A[N 1] is inserted into its proper place inA[0],A[1],..., ...,AR
so that :A[O],A[1], ..., ..., ...,A[N1] is sorted.

Insertion sort algorithm is frequently used when n is small.

The element inserted in the proper place is compaithcthe

previous elements and placed in between the ith element and (i+1)th
element if :

elementOith element

elementO(i+1)th element

Data Structte Pages0

Let us take an emple of the following elements

82 42, 49, 8, 92, 25,
Pass 1 82 42,49, 8, 92, 25,

Pass 2 j 82, 49, 8, 92, 25,

Pass3 42, 49,82, 8, 92, 25,

* 1
Pass4 8, 42 49, 82, 92, 25,

v 5 '
Pass 5 8, 42, 49, 82, 2, 25,
+ 1
Pass 6 8, 25, 42, 49, 82, 92,

59,
59,
59,
59,
59,
59,

59,

]
Pass7 8, 25, 42, 49, 59, 82,

Pass 8 Sorted elemnts

8, 25, 42, 49, 52, 59,

92,

82,

52

52

52

52

52

52

52

92

92

Finally, we get the sorted array.The following program uses the

insertion sort technique to sort a list of numbers.
[* Program of sorting using insertion sort */
#include<stdio.h>

#include<conio.h>

void main()

{

int a[25], i, j, k, n;

clrscr();

printf(AEnter the number of
scanf (A%do, &n) ;
for(i=0;i<ni++)

{

printf(AEnter el ement %d : 0,

scanf (A%do, &alil]);
}

el ement s

+1) ;

Data Structte

Pagesl

printf(AUnsoyted | ist is
for (i=0;i<n;i++)

printf (A%d A, al[i]);

pr i mtof) (n

[*Insertion sort*/

for(i=1;j<n;j++)

{

k=al[j]; /*k is to be inserted at proper place*/
for(i=j-1;i>=0 && k<a[i];i --)

ali+1]=a[i];

afi+1]=k;

printf(iAnPass %d, EIl ement %d inserted
placen o, j , k) ;

for (i=0;i<n;i++)

printf(A%d A, al[i]);

pri mtof) (n
}
printf(AiSwaxed | ist is

for (i=0;i<n;i++)

printf (A%d A, al[i]);

pr i mtof) (h

getd();

} I*End of main()*/

Analysis In insertion sort we insert the element i before or aftet we start
comparison from the first element. Since the first element nmasther
elements before it, so it does not require any comparison. Setemgnt
requres 1 comparison, third element requires 2 comparisons, felethent
requires 3 comparisons and so on. The last element requikre®mparisons.
So the total number of comparisons will be

1+2+3+ . e e e B (DD

It is a form of arithmetic progression series, so we can apply

Data Structte Page62

the formula sum = ;—j {2a + (n—1)d}
where d = common difference i.e. first term — second term,

a = first term in the series, n = total term

(rm—1)
Thus sum = 5 {2=1 + (n—=1)-1} = 1
—1
= (”,,) (2 + n=2)
_(n—1)
= n‘—f

which is of O(n?).
It is the worst case behavior of insertion sort where all the eleraeatm
reverse order. If we compute the best case of the above algonigmnit will
be of O(n). The insertio sort technique is very efficient if theumber of

element to be sorted are very less.

1.SSel ecti on Sort

Let us have a list containing n elements in unsorted order and we want to sort
the list by applying the selection sort algorithm. In selectiontsohnique, the
first element is compared with all remaining-{1) elements.

The smallest element is placed at the first locatiayain, the second element

is compared with the remaining (8) elements and the smallest element is
picked out fronthe lig and placed in the second location and so on until the
largest element of the list.

Let A is an array with n elemengd0],A[1], ..., ..., ...,A[Ni 1]. First you

will search the position of smallest element frafd] A[Ni 1]. Then

you will interchange that smallest element with A[0]. Now, you will search

the position of the second smallest element (because the A[Q] is the first
smallest element) froR[1] A[N 1], then interchange that smallest
element withA[1]. Similarly, the proceswill be for A[2] A[N 1]. The
whole process will be as follovis

Pass 1: Search the smallest element ##¢@),A[1], ..., ...,A[NT 1].

Interchange A[0] with the smallest element

Result : A[0] is sorted.

Data Structte Paget3

Pass 2: Search the smallest element #¢dj, A[2], ..., ...,A[N 1].

Interchange A[1] with the smallest element
Result A[0], A[1] is sorted.

Pass N1: Search the smallest element fréfiNT 2], A[NT 1]
InterchangeéA[N -2] with the smallest element

Result :A[0],A[1], ..., ..., ...,A[N2],A[NT 1] is sorted.
Thus A is sorted after NL passes.

Let us take an emple of the following elements

* 1
Pass 1 75 35 42 13 87 24 84 57
Pass 2 13 35 42 75 87 24 64 57
+ 1
Pass 3 13 24 42 75 87 35 B84 &7
_* 1
Pass 4 13 24 35 75 87 42 64 57
* 1
Pass 5 13 24 35 42 87 75 64 57
i
Pass 6 13 24 35 42 57 75 64 87
Pass 7 13 24 35 42 57 64 T5 87
Sorted
Elements 13 24 35 42 57 64 T5 87

[*Program of sorting using selection sort*/

#include <stdio.h>

#include<conio.h>

void main()

{

int a[25], i, ,J, k, n, temp, smallest;

clrscr();

printf(AEnter the number of
scanf " %d 60, &n) ;

for (i=0;i<n;i++)

{

el ement s

Data Structte

Paget4

printf(fAENnter el ement %d : A, i +1);

scanf (A%wdo, &al[il]);

}
[* Display the unsorted list */
printf(AUnwonted | ist is

for (i=0; i <n; i++)

printf (A%d A, al[il]);
pr i mtof) (n

[*Selection sort*/

for(i=0;i<n-1;i++)

{

/*Find the smallest element*/

smallest = i;

for(k =1+ 1; k<n;k++)
{

if(a[smallest] > a[k])
smallest =k ;

}

if(i!= smallest)

{

temp = ai];

afi] = a[smallest];
arr[smallest] = temp ;

}

printf("After Pass %d elements are : ", i+1);
for =0;j<n;j++)
printf("%d ", a[j]);
printf("\n");

} *End of for*/
printf("Sorted list is An");
for (i=0;i<n;i++)
printf("%d ", ali]);
printf("\n");

getch();

Data Structte Paget5

} *End of main()*/

Analysis: As we have seen, selection sort algoritiviti search thesmallest
element in the array and then that element will be at proper position. So, in
Pass 1 it will compareil elements, in Pass 2 comparison will b& n
because the first element is already at proper position. Thus, we can write
the function for compéson as

FNM=@W1)+@W2)+rW3)+......co. e +3+2+1

This is an arithmetic series, solving the series we will get
(n—1)
F(n) 5 [2(n=1) + {{(n-1)-1}{(n-2)—(n—1)}]

(n—1)
= [2n—2 + (n—=1-1)(n—2-n+1)]

=) [2n=2 + (n=2)(=1)]

-

-1
= (H,}) [2n—2-n+2]

(i —1)

Thus, the number of comparisons is proportional f.I{ris the worst case
behavior of selection sort . If we cootp the average case of the above
algorithm then it will be of O®). The best thing with the selection sort is that
in every pass one element will be at correct position, very few temporary
variables will be required for interchanging the elements aigl sStmple to

implement.

1. Boubbl e Sort

Bubble sort is a commonly used sorting algorithm. In this algorittuvo,
successive elements are compared and interchanging is done fifsthe
element is greater than the second one.

Let A is an array with n elemés A[O], A[1], ..., ..., ..., A[N1]. The

bubble sort algorithm works as follows :

Step 1 First compare A[0] and A[1] and arrange them so that

Data Structte Paget6

Data Structte

A[0] <A[1].Then compareA[1l] and A[2] and arrange thenso that A[l] <
A[2]. Then compare A[2] and A[3] andrrarge them so that A[2] < A[3].
Continue until wecompare A[N 2] and A[N 1] and arrange them mithe
desired order so thaA[N712] <A[Ni 1] Observe that Step 1 involves 1

comparisons. Durinp he Step 1, the | ar gesnh

positiono r

i s i nthspositianoWhenhSeep 1 ompleted A[NT 1] will
contain the largest element.

Step 2 Repeat Step 1 and finally the second largest elementaalpyA[NT

2]. In this step there will bei 2 comparisons.

Step 3 Repeat Step 1 and findle third largest element witiccupyA[N -3].

In this step there will ba -3 comparisons.

Step N 1 Canpare A[1] and A[2] and arrange them so that A[1] <A[2] After

ni 1 steps, the list will be sorted in ascending order.

Let us take an example of the following elements

0

1

2 3 4 5 5]

A 13

32

20 62 68 52 38

46

we will apply the bubble sort algorithm to sort the elements.

Pass 1

We have the following comparisions

a)
b)
13

Compare A0 and A1, 13 < 32, no change
Compare A1 and A2, 32 > 20, interchange

20 32 62 68 52 38 46
Compare A2 and A3, 32 <62, no change
Compare A3 and A4, 62< 68, no change
Compare A4 and A5, 68 = 52, interchange

20 32 62 52 68 38 46
Compare A5 and A8, 68=38, interchange

20 32 62 52 38 68 46
Compare A6 and A7, 68 > 46, interchange

Page67

e |

eme

13 20 32 62 52 38 46 68
Pass 2

13 20 32 62 52 38 46 68
a) Compare AO and A1, 13 <20, no change

b) Compare A1 and A2, 20 < 32, no change

c) Compare A2 and A3, 32 <62, no change

d) Compare A3 and A4, 62 > 52 interchange

13 20 32 52 62 38 46 68
e) Compare A4 and A5, 62 > 38, interchange

13 20 32 52 38 62 46 68
f) Compare A5 and A6, 46 > 62, interchange

13 20 32 52 38 46 62 68

At the end of the Pass 2 the second largest element 62 has moved to its

proper place.

Pass 3

13 20 32 52 38 46 B2 68

a) Compare A0 and A1, 13 < 20, no change

b) Compare A1 and A2, 20 < 32, no change

c) Compare A2 and A3, 32 < 52, no change

d) Compare A3 and A4, 52 = 38, interchange

13 20 32 38 52 46 B2 68

e) Compare A4 and A5, 52 = 48, interchange

13 20 32 38 46 52 B2 68
Pass 4

13 20 32 38 46 52 B2 68
Compare A0 and A1, 13 < 20, no change
Compare A1 and A2, 20 < 32, no change
Compare A2 and A3, 32 < 38, no change
Compare A3 and A4, 38 < 46, no change

Pass 5
13 20 32 38 46 52 62 68
a) Compare A0 and A1, 13 < 20, no change

Data Structte Page68

b) CompareA1andA2, 20 <32, no change

c) CompareA2andA3, 32 <38, nochange
Pass 6

13 20 32 38 46 52 82

a) Compare AOandA1, 13 <20, no change

b) CompareA1andA2, 20 <32, no change
Pass 7

1320 32 38 46 52 82

a) Compare AOandA1, 13 <20, nochange

Since the list has 8 elements, it is sorted after the 7th Pass. The list

was actually sorted after the 4th Pass.

[* Program of sorting using bubble sort */

#include<stdio.h>

#include<conio.bk

void main()

{

int a[25], i, ,j, k, temp, n, xchanges;

clrscr();

printf("Enter the number of elements : *);
scanf("%d",&n);

for (i=0;i<n;i++)

{

printf("Enter element %d : ", i+1);
scanf("%d",&ali]);

}

printf("Unsorted list is\n");
for (i=0;i<n;i++)
printf("%d ", ali]);
printf("\n");

[* Bubble sort*/

for(i=0;i<nl;i++)

{

xchanges=0;

68

68

Data Structte

Paget9

for (j = 0; j <nt1-i; j++)

{

if (aj] > afj+1])
{

temp = afj];
afj] = afj+1];
afj+1] = temp;
xchanges++;

} I*End of if*/

} I*End of inner for loop*/

if(xchanges==0) /*If list is sorted*/

break;

printf("After Pass %d elements are : ",i+1);

for (k = 0; k < n; k++)

printf("%d ", a[k]);

printf("\n");

} I*End of outer for loop*/

printf("Sorted list is\n");

for (i=0;i<n;i++)

printf("%d ", a[i]);

getch();

printf("\n");

} I*End of main()*/

Analysis: As we have seen, bubble sort algorithm will search the largest
element in the array and place it at proper position in each PaissP8ss 1 it
will compare n-1 elements, in Pass 2 comparison will b@ iecase the first
element is already at proper position. Thus, we can write

the function for comparison as

FN) =1+ 2)+ 3+ .ccccvrrrrneeee +3+2+1

This is an arithmetic series, solving the series we will get

Data Structte Pager0

F(n) = ;{Za + (n=1)d}

_(n=1)

_ (n-1)

-~
-

n(n-1)
2

{2x14+(n=1)~1)x 1}

(2 + n=2)

= o(m?)
Thus, the time required to execute the bubble sort algorithm is

proportional to (n?), where n is the number of input items.

1 . Merge Sort

1 The time coplexity of the sorting algorithms discussed till now are in
O(). That is, the numbers of comparisons performed by these algorithms
are bound above by c, for some constant ¢ > 1.

1 Can we have better sorting algorithms? Yes, merge sort method sorts given
a set of number in O(n log n) time.

1 Before discussing merge sort, we need to understand what is the meaning
of merging?

Merge sort Method:

Definition: Given two sorted arrays, a[p] and b[q], create one sorted array of

size p + g of the elements of a[pjoaa[q] .

1 Assume that we have to keep p+q sorted numbers in an array c[p+q].

1 One way of doing this is by copying elements of a[p] and b[q] into
c[p+q] and sort c[p+q]which has time complexity ofesst O(n log n).

91 Another efficient method is by merging wh is of time complexity of
O(n)

1 Method is simple, take one number from each array a and b, place the
smallest element in the array c. Take the next elements and repeat the

procedure till all p+q element are placed in the array c

Data Structte Page/1l

Pseudocode of the merging is given below.

Algorithm Merge (alpl, bIlgl)

Step 1: i=20 Step 17: else

Step 2: i=0 Step 18: while(i < p) do

Step 3: k=0 Step 19: { clk] = a[i] ;

Step4: Step20 k=k + 1 ;
while (i < p) && (§ < g) do{

Step 5: if (a[i] < bI31) { Step 21: i=1i+1;

Step 6: clk] = a[i] ;)

Step 7: i=4i+1;

Step 8: else {

Step 9: clk] = b[il

Step 10: 5 =3 +1

Step 11: k=k +1

Step 12: if (i == p) then

Step 13: while (§ < g) do{

Step 14: clkl = b[]] ;

Step 15: k=k+1;

Step 16: 3 =49 +1;

3
We can assume daclement in a given array as a sorted sub airake
adjacent arrays and merge to obtain a sorted array of two elements. Next step,
take adjacent sorted arrays, of size two, in pair and merge them to get a sorted
array of four elements. Repeat the stapluvhole array is sorted.

Following figure illustrates the procedure.

[12] |32 [18| |24| [30] [19] [28] [14]

N/

[1232| [18 24| [19 30| [14 28]

12 18 24 32 14 19 28 30

~

12 (14 (18 |19 (24|28 |30 | 32

1 Assume that procedure Mergel (a, i, j, k) takes two sorted
arrays a[i..j] and a[j+1..k] as an input and puts their merged
output in the array afi..k]. That is, in the same locations.

Pseudaode of the merge sort is given below.

Data Structte Pager2

Algorithm Merge-Sort (a, g, gl

Step 1: if p< g {

Step 2: mid = (ptg)/2 ;

Step 3: Merge-Sort{a, p, mid) ;
Step 4: Merge-Sort(a, mid+l, g} ;
Step 5:

Merge (a,p,mid, g) ;

}

1 The above procedure sorts the elements in the sub array a[p..q].

1 To sort given any a[n] invoke the algorithm with parameters (a; D, n

1. @Buick Sort

This sorting algorithm was invented by C.A.R.&fle in 1960. This algorithm
is based on partition, hence, it falls under the divide and conquer technique. In

this algorithm, the list of elements are divided into two sub lists.

For example, a list of n elements are to be sorted. The quick sort marks the
first element in the list called as pivot or key. Consider the first element as P.
Shift all the elements whose value is less than P towards the left and elements
whose value is greater than P to the right of P. Now, the pivot element divides
the main listinto two parts. It is not necessary that the selected key element
must be in the middle.

Now, the process for sorting the elements through quick sort is as follows:

1. Take the first element of list as pivot.
2. Place pivot at the proper place in list. So asteone element of the list
i.e. pivot will be at its proper place.
3. Create two sub lists in left and right side of pivot.
4. Repeat the same process until all elements of list are at proper position

in list.

Data Structte Page’/3

For placing the pivot element at proper place wedre do the
Following procesis

5. Compare the pivot element one by one from right to left for getting the
element which has value less than pivot element.

6. Interchange the element with pivot element.

7. Now the comparison will start from the interchanged elerpesition
from left to right for getting the element which has higher value than
pivot.

8. Repeat the same process until pivot is at its proper position.
Let us take a list of elements and assume that 48 is the pivot element.
48 29 8 59 72 88 42 65 9® 82 68
We have to start comparison fromright to left. Now the first element
less than 48 is 19. So interchange it with pivot i.e. 48.

19 29 8 59 72 88 42 65 95 48 82 68

Now, the comparison will start from 19 and will be from left to right.
The first element greater than 48 is 59. So interchange it with pivot.
19 29 8 48 72 88 42 65 95 59 82 68

Now, the comparison will start from 59 and will be from right to left.
The first element less than 48 is 42. So interchange it with pivot.
19 29 8 42 72 88 48 65 95 59 82 68

Now, the comparison will start from 42 and will be from left to right.
The first element greater than 48 is 72. So interchange it with pivot.
19 29 8 42 48 88 72 65 95 59 82 68

Now, the comparison M start from 72 and will be from right to left.
There is no element less than 48. So, now 48 is at its proper position in the

list. So we can divide the list into two sub list, left and right side of pivot.

Data Structte Pager4

19 29 8 42 48 88 72

1 + 1

68

T

Sublist 1

Now, the same procedure will be followed tbe sublistl and sublist2

and finally you will get the sorted list.

The following program will demonstrate the quick sort algorithm:

#include<stdio.h>
#include<conio.h>

enum bool { FALSE,TRUE };
void main()

{

int elem[20],n,i;

clrscr();

printf("Enter thenumber of elements : ");
scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter element%d : ",i+1);
scanf("%d",&elem[i]);

}

printf("Unsorted list is\n");
display(elem,0,);

printf("\n");

quick(elem,0,nl);

printf("Sorted list is\n");
show(elem,0,+1);

getd();

Data Structte

Page’5

printf("*\n");

H*End of main() */

quick(int a[],int low, int up)

{

int piv, temp, left, right;

enumbool pivot_placed=FALSE;
left=low;

right=up;

piv=low; /*Take the first element of sublist as piv */
if(low>=up)

return;

printf("Sublist :);

show(a,lav,up);

/*Loop till pivot is placed at proper place in the sublist*/
while(pivot_placed==FALSE)

{

[*Compare from right to left */

while(a[piv]<=a[right] && piv!=right)
right=right-1;

if(piv==right)

pivot_placed=TRUE;

if(a[piv] > a[right])

{

temp=a[piy;

a[piv]=a[right];

Data Structte Page’6

a[right]=temp;

piv=right;

}

[*Compare from left to right */
while(a[piv]>=a[left] && leftl=piv)
left=left+1;

if(piv==left)
pivot_placed=TRUE;

if(a[piv] < a[left])

{

temp=a[piv];

a[piv]=a[left];

a[left]=temp;

piv=left;

}

} *End of while */

printf("-> Pivot Placed is %e> ",a[piv]);
show(a,low,up);

printf(*\n");

quick(a, low, pivl);

quick(a, piv+1, up);

Y*End of quick()*/

show(int a[], int low, int up)

{

inti;

Data Structte Pager7

for(i=low;i<=up;i++)
printf("%d ",ali]);

}

Analysis: The time requiredby the quick sorting method (i.e. teéficiency of
the algorithm) depends on the selection of the pivot element.

Suppose that, the pivot element is chosen in the middle position of tee list
that it divides the list into two sub lists of equal sizewiNoepeatedlyapplying
the quick sort algorithm on both the sub lists we will finally havesihwed
list of the elements.

Now, after Ist step, total elements in correct position is = 1i4 2

after 2nd step, total elements in correct position is = 3i4.2

after 3rd step, total elements in correct position is = 7i=.2

after Ith step, total elements in correct position i< 2

Therefore, 2il=ri1

or2=n

or | =log2n

Here, the value dfis the number of steps. rifis comparison pestep then for
log2n steps we get = nlog2n comparisons. Tthesoverall time complexity
of quick sort is = nlog2n

The above calculated complexity is called theerage caseomplexity. So,
the condition for getting the average case complexitghisosing the pivot
element at the middle of the list

Now, suppose one condition is th#te given list of the elements irstially
sorted We consider the first element of the list as the pivot element.

In this case, the number of steps needed for obtaining the finally sorted-list
(ni 1).

Again, the number of comparisons in each stépbe almostn i .e.it will be
of O(n).

So, the total number of comparisons fdar(psteps is

=(ni 1) O (n)

=0 (M)

Data Structte Page’8

Thus, the time complexity in this case will be = €)(This is calledheworst
case complexityf the quick sort algorithno, the codition for worst case is

if the list is initially sorted

1 Padi x Sort

1 All the algorithms discussed till now are comparison based
algorithms. That is, comparison is the key for sorting.

1 Assume that the input numbers are three decimal digits. First
we sort the numbers using least significant digit. Then by
next significant digit and so on.

1 See following example for illustration.

327 470 4138 146
476 382 327 173
285 173 146 259
4138 285 259 285
568 476 568 327
382 146 470 382
146 327 173 418
259 418 476 470
173 sS568 382 476
470 259 285 568
Input Sorted Sorted Sorted
by LS by by
digit Middlie Most
digit Sig
digit

A Next question is how to sort with respective to a least

significant digit or any significant digit?
A We can use any sortirggorithm we have discussed.
Another way by maintaining a BIN for each digit from 0 to 9. If the digit is
X put the number in BIN X. Concatenate the BINs from O to 9 to get a
sorted list of numbers of that significant digit.

1 The method is given in the follving pseudo code

Algorithm radix-sort (a)

Step1: for i =0 to 9 do
Step 2: empty-bin(i);
Step 3: for position = least significant digit to most significant digit
Step 4: for i =1 ton do
Step 5:

% = digit in the position of a[i];
Step 6: put a[i] in BIN x;
Step 7: i =1;
Step &: for § =0 to 9 do
Step 9: while (BIN(j) <> empty) do
Step 10: a[i] = get-element (BIN(j));
Step 11: i=i+1;

Data Structte Pager9

A Procedure getlement (bin) gets the next element from the bin.

A We can use Queues for implementing Bins.

Check Your Progress

Q.1. Selection sort and quick sort both fall into the same category
of sorting algorithms. What is this cgtay?

A. O(n log n) sorts

B. Divide-andconquer sorts

C. Interchange sorts

D.Average time is quadratic.

Q.2. What is the worstase time for quick sort to sort an array of
n elements?

A. O(log n)

B. O(n)

C. O(n log n)

D. O(n?)

Q.3. When is insertiosort a good choice for sorting an array?

A. Each component of the array requires a large amount of memory.
B. Each component of the array requires a small amount of memory.
C. The array has only a few items out of place.

D. The processor speed is fast.

Q.4. How does a quick sort perform on :
A. An array that is already sorted

B. An array that is sorted in reversed order

Q.5 The Bubble sort, the Selection sort, and the Insertiomsodil O(n2)

algorithms. Which is the fastest and which is the slowest among them?

Data Structte Pages0

1. AGswer to Check Your Progre
Ans.t0 Q. No.1C

Ans.to Q. No. 2D
Ans.to Q. No. 3C
Ans. to Q. No. 4 The quick sort is quite sensitive to input. The Quick Sort

degrades into an O{n algorithm in the special cases where the array is
initially sorted in ascending or descending order. This is because if we
consider that the pivot element will tee first element.

So, here it produces only 1 sub list which is on the right side of first element
and starts from second element. Similarly, other sub lists will be created only
at right side. The number of comparison for first element is n; seconeériem
requires inl comparison and so on. Thus, we will get the complexity of order
n”instead logn.

Ans. to Q. No. 5:The Bubble Sort is slower than the Selection Sort, and

the Insertion Sort (in most cases) is a little faster.

1. Mddel Questions

Write aprocedure for the merge procedure Mergel (a, i, |, k).

Write nonrecursive procedure for merge sort.

Modify merge sort procedure to sort number in4asoending order.
For what input, merge sort takes maximum number of comparisons.
Implement merge sogtigorithm in c.

Trace the Quick sort algorithm on sorted array of elements 1 to 10.
Trace the Quick sort algorithm on elements 10, 9, 8, 1.

Write a program for quick sort method.

© © N o g p» w0 DB

Implement the radix sort.

10.Design an algorithm to sort given namesggadix sort.

11.Explain the different types of sorting methods.

12.What is sorting? Write a function for Bubble Sort.

13. Write a program for sorting a given list by using Insertion Sort :
14.2, 32, 45, 67, 89, 4, 3, 8, 10

15.Write a program to sort the follomg members in ascending order
using Selection Sort :

Data Structte Paged1

16.12, 34, 5, 78, 4, 56, 10, 23, 1, 45, 65

UNI T S\FEHARCHI NG

1.1Learning Objectives
1.2 Introduction
1.3Searching
1.3.1 Linear Search
1.3.2 Binary Search
l4Per f ormance and Compibnexi ty wusing Bi
1.5Answers to Check Your Progress
1.6 Model Questions

Learning Objectives

After going through thisinit, the learner will able to
1 learn about searching techniques.
1 describe linear seach and binary search.

M search an element in sorted and unsorted list ofaxiés.

Data Structte Paged2

1 learn about performance and complexity of search technique using Big

606 notation.

l1.12ntroducti on

In our dayto-day life there are various applications, in which the process of
searching is to be carried. Searching the name of a person fronvehdisgt,
searching a specific card from the set of cards, etc.s@ree examples of
searching. Searching is an important function in computer science.Many
advanced algorithms and data structures have been devised for the sole
purpose of making searchemre efficient. As the data sdiecome larger and
larger, good search algorithms will become more important. Searching
methods are designed to take advantage of the(thi consits of many
records/data) organisation and optimise the search for aypartiecord or to
establish its absence.

This unit will focus on searching for data stored in a linear data structure such
as an array or linked list.

1. SBearching

Searching is a technique of finding an element from the given data list or set
of the elements like an array etc. For example, let us consider an array of 20
elements. These data elements are stored in successive niecations. We

need to search an element from the array. In the searching operation, assume a
particular element e to be seaedh The element e is compared with all the
elements in a list starting from the first element of aray till the last
element. In other words, the process of searching is continued till the element
is found or list is completely exhaustathen the exactatch is found then

the search process is successfully terminated.

In case, no such element exists in the array, the process of searching should be
abandonedSuppose,our element to be searched is 8. In that case if the given
element is exist in the sef elements or array, then the search process is said

to be successful as per the below @&y It indicates that the given element

belongs to the array.

Data Structte Paged3

8 | Element to be searched

33| AT| 18| 1|19 20|55

End of search

Fig: (a) Successful search

Again, let us consider our element to be searched is 66. The search
Is said to be unsuccessful if the given element does not exist in the

array as per given Figp). It means that the given element does not

belong to the array arollection of the items.

66 | Element to be searched

e
“‘*’-1?@_% Element to element comparison

\\H\MH

b
=
"
o
m.
@ .
-q
=
2

13 |14 |15

I
I

33| AT 18 1| 19 20|55

End of search
Fig. (b) : Unsuccessful search
We will now dscuss two searching tealques
1 Linear or Sequential search

1 Binary search

1.3.1 Linear Search

Linear search, also known as sequential search, means starting at the
beginning of the data and checking each item in turn until either the desired
itemis found or the end of the dasareached.

Data Structte Page34

This is the most natural searchingethod. Though, it is simple and
straightforward, it has some limitations. It consumese time and reduces
the retrieval rate of the system. The linear or sequemaiale implies that the
items are stored isystematic manner. The linear search can be applied on
sorted or unsorted linear data structure.

Algorithm of linear search_et us start with an array or list, L which may have
the item in question.

Step 1:If the list L is empty, then the list has nothinThe list does not have
the item in question. Stop here.

Step 2:Otherwise, look at all the elements in the list L.

Step 3:For each elementf the element equals the item in question, the list
contains the item in question. Stop here. Otherwise, gpthatnext element.
Step 4:The list does not have the item in question.

[* Program: Program to search an element from the entered nuabers
program for linear searching) */

include<stdio.h>

#include<conio.h>

void main()

{

int arr[20],n,i,item;

printf("How many elements you want to enter in the array : ");
scanf("%d",&n);

for(i=0; i < n;i++)

{

printf("\nEnter element%d : ",i+1);

scanf("%d", &arr[i]);

}

printf("\nEnter the element to be searched : ");

scanf("%d",&item);

for(i=0;i < n;i++)

{

if(item == arfi])

{
printf("\n%d found at position%d",item,i+1);

Data Structte Pages5

break;

}

}

if(i == n)

printf("\nltem%d not found in array",item);
getch();

}

In the program above, suppose the user enters 10 numbers i.e., n=10 using the
first for loop. The element which is to beasehed is stored in the variable
item. By using a second for loop the element is compared with each element
of the array. If the element in item variable is matched with any of the
elements in the array then tleeation is displayed. Otherwise the itésmot
present in the array.

Analysis of Linear Search: We have carried out linear search on lists
implemented as arrays. Whether the linear search is carried out on lists
implemented as arrays or linked list or on files, the crifeard in performance

is the comparison loops (i.e., Step 3 of the algorithm). Obviously, the fewer
the number of comparisons, the sooner the algorithm will terminate.

The lowest possible comparison is equal to 1 when the required item is the
first item in the list. The maximum ogparisons will be equal to N (total
numbers of elements in the list) when the required item is the last in the list.
Thus, if the required item is in position i in the list, then only i comparisons
are required. Hence the average number of comparisonshbyoleear (or

sequential) search will be

2= N
_N+1

4

Advantages anddisadvantages of Linear Seardhinear search algorithm is

easy to write and efficient for short lists. It does not require sorted data.

Data Structte Pages6

However, it is lengthy and time consuming for long listsefe is no way of
quickly establishing that the required item is not in the list or of finding all
occurrences of a required item at one place.liflear search situation will be

in the worst case if the element is at the end of the list.

CHECK YOURREBE8SG

Q.1. Select the appropriate option for each of the following questions :

i) Linear search is efficient in case of
A. short list of data
B. long list of data
C. both a) and b)
D. none of these

i) The process of finding a particular record is called
indexing

sarching

sorting

none of these

00w

Q.2.What are the advantages of sequential search?

1.3.2 Binary Search

The binary search approach is different from the linear search. Let us consider
a list in ascending sorted order. It would work to search from the beginning
until an item is found or the end is reached, but it makes s&mge to remove

as much of the working data set as possible so that the item is found more
quickly. If we started at the middle of the list we could determine in which
half the item is in (because the list is sorted). This effectively reduces the
working range into half of the original list with a single test. By repeating the
procedure, the result is a highly efficient search algorithm called binary

search.

Data Structte Paged7

The binary search is based on the dixashelconquer approach. We compare
the element with middlelement of the array or list. If it is less than the
middle element then we search it in the left portion of the array and if it is
greater than the middle element then search will be in the right portion of the
list. Now, we will take that portion only fasearch and compare it with the
middle element of that portion. This process will be in iteration until we find
the element or the middle element has no left or right portion to search.

Let us take a sorted array of 11 elements and they are shown ia)Figet(us

assume that we want to search the element 56 from the list of elements.

Start ™y Middle | < End
[2 16 T3] 9] 22 [41 [56 [69 [72 [&1][99 |
indices 1 2 3 4 5 G T a8 o] 10 11

Fig: (a) Sorted array
For this, we will take 3 variables start, end and middle, which will keep track
of the status of start, end and middle value of the portion of thg, &an which

we will search the element. The value of the middle will be:

] start + end
middle =" """

Initially, start =1, end = 11 and the middle = (1+11) / 2 = 6.

The value at index 6 is 41 and it is smaller than the target val(&6).eThe
steps are as follows

Step 1 The dement 2 and 99 are at start and end positions respectively.

Step 2 Calculate the middle index which is as

middle = (start + end)/2

middle = (1+11)/2

middle = 6

Step 3 The key element 56 is to be compared with the middle value. If the key
is less than tlvalue at middle then the

key element is present in the first half else in other half; in our case, the key is
on the right halfNow we have to search

only on right half.

Hence, now start = middle + 1 = 6+1 =7.

end will be same as earlier.

Data Structte Paged8

Step 4: Calcdte themiddle index of the second half

middle = (start + end) / 2

middle = (7+11) / 2

middle =9

Step 5 Again, themiddle divides the second half into the twarts, which is
shown in fig:(b).

Sta I_r* Middlel {*—E nd
56| 69| 72| 81| 99
indices 7 8 9 10 11

Fig: (b)
Step 6 The key element 56 is less than the gatimiddle whichs 72, hence

it is present in the left half i.e., towards the &f72. Hence now, end =
middle-1 = 8. start will remain 7.

Step 7 At last, the middle is calculated asddle = (Start + End) / 2
middle = (7+8) / 2

middle =7

Start—. Middle —~End
N

56 | 69

indices 7 8

Fig: (c)
Step 8 Now, if we compare our key element 56 with the value at middle, then
we see that they are equal. The key element is searched successfully and it is
in 7th location.
/[Program: Program to search an element using binary search
#include <stdio.h>
#include<conio.h>
void main()
{
int arr[20],start,end,middle,n,i,item;
clrscr();

printf("How many elements you want to enter in the array : ");

Data Structte Paged9

scanf("%d",&n);

for(i=1;i<=n;i++) {

printf("Enter element%d : ",i);
scanf("%d",&arr[i]);

}

printf("\nEnter the elment to be searched : ");
scanf("%d",&item);

start =1;

end = n;

middle = (start +end) / 2;
while(item!=arr[middle] && start<=end)
{

if(item>arr[middle])

start = middle+1;

else

end = middle-1;

middle = (start + end) / 2;
}

if(item==arr[middle])

printf("\n %d is found at position %", item, middle);

if(start>end)

printf("\n%d is not found in array”, item);

getch();

}

In Binary search,by dividing the working data set in halfwith each
comparisonlogarithmic performance, O(log n), is achieved.

[* Program Write a program to search a name from a list ohdafes using
binary search*/

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

int start=1,end=10,mid,i,flag=0,value;

Data Structte Paged0

char name[15][10],nm[15];

clrscr();

printf("\nEnter 10 namew");
for(i=1;i<11;i++)
scanf("%s",&nameli]);

printf("\nEnter the name to search: ");
scanf("%s", &nm);

mid=(start+end)/2;
while(strcmp(nm,name[mid])!=0 && start<=end)
{

value=strcmp(nm,name[mid]);
if(value>0)

{

start=mid+1;

mid=(start+end)/2;

}

else

{

end=midl,

mid=(start+end)/2;

}

}

if(strcmp(nm,name[mid])==0)

{

flag=1;

}

if(flag==1)

printf("\nThe name %s is found successfully”,nm);
else

printf("\nThe name %s is not found",nm);
getch();

}

Data Structte Pagedl

1 . PAer formance and Complexity

Searching for data is one of the fundamaé fields of computing. Often, the
difference between a fast programmd a slowone is the use of good
algorithm for the data set. The ability to analyze a piece of code or an
algorithm and understand its efficiency is vital for understanding computer
science.

Suppose our problem is to input a name (key) and a list of names, and to
determine whether the name occurs in the list and if so wheretdoesir.

For example, if a list contains 6 names i.e., N=6 and we are using linear search

technique, then
Compares to find
Rahul 1
Joy
Rita
John

Kiran

G W s W M

Krishna

Worst case6 compares.
Best casel compare.
Average caseExpect to compare key with half of list

In linear (sequential) search Comparison is the key operation.

Number of compares depends on data (position of the element to be searched
and the numberfelements). If the list or array size is N:

Best casel compare (if the sequential search finds the name at the first
position of the list then it will behave like best case).

Worst case Compare key with all names in list. The sequential search
situatian will be in the worst case if the name is at the end of the list,

i.e., the number of comparison needed is N.

Average caseKey may match with name in any position. Expect to compare
with half of list.

Data Structte Paged2

Again, for example, if we are to determine a targeti® (key) thabccurs in a

list using binary search, then the algorithm will be as follows

Binary Search Algorithm

Input : (List, Key)

WHILE (List is not empty) DO

(Select fAimiddledo entry in |ist as test
Il F (Key test entr yStop)THEN (Output (fAFoO
IF (Key < test entry) THEN (apply Bina§earch to part of

list preceding test entry)

IF (Key > test entry) THEN (apply Bina§earch to part of

list following test entry)

OQut put (ANot Foundo)

Binary Search required a sorted arr@wven that the aay is of sizen, split
the array into haff test the middle element, originally n/2; if it is tkelue
you are searching for, return the current index. Otherwise, if you trlye
one element in your sudoray, return a sentinel indicating that you carfimat
the value. If that is not the case, if your search key is less thamittukbe
element, perform the same operation on the elementsthermstarto n/2- 1;
if the middle element is less than your search key, perforrsgaech on the
subarray of n2 + 1 to n. Every time you do this, you cut #iee of the array
to search in hald so it takes O(log n) time with base 2.

Binary search is worst case O(log n) where n is the size of the list am&l log
with base 2. Thus if n = 8, then Log 8 = L&&j = 3 Log,2 = 3.

CHECK YOUR PROGRESS

Q.3. State whether the following statements are true(T) or false(F)
i) Element should be in sorted order in case of binary search.

i) Binary search cannot be applied in character array.

iii) Sequential search is worsase and average case O(n).

iv) Binary search is worst case O(log n).

Data Structte Paged3

Q. 4.In the following function code which type of search algorithm
is applied?
intfind (inta[], intn, intx)
{
int i;
for(i=0;i<n;i++)
{
if (afi]==x)
return i;

}

return O;

}

Q.5. Write a function in C to find an element x in an array of n elements

where the array size of the array and the element is passed as arguments.

1.Ahswer to Check Your Progres

Ans.to Q. No. 1i) A, i) B

Ans. to Q. No.2: Sequeritll search is easy to implement and relatively
efficient to use for small lists. It does not require a sorted listeshents or
data.

Ans. to Q. No. 3i) True; ii) False; iii) True; iv) True

Ans. to Q. No. 4 Sequential (Linear) search is applied.

Ans.to Q. No. 5 int find (inta[], int n, int x)

{

inti=0;

while (i<n)

{

intmd=(n+i)/2;

if (a[mid] <x)

n = mid,

else if (a[mid] > x)

Data Structte Paged4

i=mid + 1;
else

return mid;

}

return O;

}

1.6 Model Questions

1. Write a program to find the given miper in an array of 20 elements.
Also display how many times a given number exists in the list.

2. What are the advantages and disadvantages of sequential search

technique?

What are the precondition of binary search technique?

Differentiate between linear amhary search.

Explain linear and binary search.

o g bk~ w

Write a program to demonstrate binary search. Use integer array and
store 10 elements. Find the given element.
7. Write down the best, worst and average case time complexity of

sequential search.

UNI T &RAPHS | : REPRESENTATI C
TRAVERSAL

1.1Learning Objectives
1.2Introduction

1.3Graph

1.4 Terminologies of Graph
1.5Different Types of Graph
1.6 Representation of Graph

Data Structte Paged5

1.6.1 Sequential Representation of Graph
1.6.2 Linked Representation of Graph
1.7 Traversal in Graphs
1.7.1 Depth First Search
1.7.2 Breadth First Search
1.8K o6nigsberg Bridge Problem
1.9 Answer to Check Your Progress
1.10 Model Questions

l.llearning Objectives

After going through this ut) the learner will be able to
1 learn about the basic definition of graph
1 describe the different types afagph
1 describe the various representations of graph

1 distinguish between depth first search and breadth first search

l1.12nt roducti on

Like tree, graphs are also nonlinear data structure. Tree has some specific
structure whereas graph does not have a spesifucture. It varies-rom
application to application in our daily life. Graphs are frequently used in every
walk of life. A map is a welknown example of a graph. In a magrious
connections arenade between the cities. The cities are connedeedoals,
railway lines and aerial network. For example, a graph that contains the cities
of India is connected by means of roads. We can assumtn¢hgtaph is the
interconnection of cities by roads. If we provide our office or home address to
someone by drawg the roads, shops etc. in a piece pafper for easy
representation, then thatll also be a good example of graph.

In this unit, we are going to discuss the representation of graph in memory and
present various graph traversal techniques like deghdearch and breadth

first search.

Data Structte Paged6

1.&Gr aph

A graph G is a collection of two sets V and E where V is the collection of
vertices v, vi, ..., \h.1 and E is the collection of edges e, ..., en where an
edge is an arc which connects two vertices. Tértioes are also termed as
nodesand edges are termedass This can be represented as

G=(V,E)
where, V(G) ={\, V1,V2,......,\h.1} and E(G) = {q, &, &;,.....6} .
For example let us consider the graph G = (V, E) shown in Fig
where V(G) = {A, B, CD, E} and E(G) ={(A, C), (C, B), (B, D), (D, A), (C,
E)}

Fig.: A Graph

1. T4er mi nol ogi es of Graph

Weighted Graph: A graph is said to be weighted if there are some non
negative values assigned to each edge of the graph. The value is equal to the
lengthbetween two vertice§Veighted graph is also called a network.

A weighted graph is shown in figure.

Fig.: A weighted graph

Data Structte Paged7

Adjacent nodes:When there is an edge from one node to another then these
nodes are called adjacent nodes.

Incidence: In an undireted graph the edge between v1 and v2 is incident on
node v1 and v2.

Walk: A walk is defined as a finite alternating sequence of vertices and edges,
beginning and ending with vertices, such that each edge is incident with the
vertices preceding and follong it.

Closed walk: A walk which is to begin and end at the same vertex is called

close walk. Otherwise it is an open walk.

V1 e V2
ed a2
v3 v4

e3

Fig.: Closed walk present in Graph
If el, e2, e3 and e4 be the edges of pair of vertices (v1, v2), (v2, v4), (v4, v3)
and (v3, vl)espectively, then vl el v2 e2 v4 e3 v3 e4 v1 can bdadsed
walk or circuit.

Path: An open walk in which no vertex appears more than once is called a

e?
D

path.

ef
Fig.: A path

If el and e2 be the two edges between the pair of vertices (v1, v3) and (v1, v2)
respectively, then v3 el vl e2 v2 is its path.

Length of a path: The number of edges in a path is called the length of that
path. In the following diagram the length of the path is 3.

Data Structte Paged8

Fig. : An open walk graph
Circuit: A closed walk in which no vertexeXcept the initial and the final
vertex) appears more than once is called a circuit.

v =2 w2

e
e3

Fig. : A circuit having three vertices and three edges

Sub Graph: A graph S is said to be a sub graph of a graph G if all the vertices
and all the edges of S are in&hd each edge of S has the same end vertices in

SasinG.

Fig.: Graph G Graph S

In the above figure, a subgraph of the grapks, since all the vertices and
edges in thgraph S are also the vertices and edges of G.

Connected GraphA graph G is said to be connected if there is at least one
path between every pair of vertices in G (Fig). Otherwise, the graph is

disconnected.

Data Structte Paged9

@€ OO
e
O: " (%)
el
() R

Fig.(a): A connectedyraph G Fig.(b): A disconnected graph G

The graph in fig (b) is disconnected because the vertex v1 is not connected
with the other vertices of the graph.

Degree: In an undirected graph, the number of edges connected to a node is
called the degree of that node or we can say that the degrepoafeais the
number of edges incident on it. In the graph shown in fig. (a), degree of vertex
vlis 1, degree of vertex v2 is 3, degree of v3 and v4 is 2.

Degree of the vertex v1 of the graplogim in fig. (b) is zero.

Indegree: The indegree of a node is the number of edges connected to that
node or, in other words, edges incident to it.

V1 e V2
eb
ed e2
e5
v4 =3

Fig. (c)A graph

In the figure (c), indegree of vertices v1, v3 is 2, indegree of vertices v2, v5 is
1 andindegree of v4 is zero.
Outdegree: The outdegree of a node (or vertex) is the number of edges going

outside from that node or in other words the edges incident from it. In the

Data Structte

Pagel00

graph shown in figure (c), the outdegree of vertex v4 @muBjegree of vertex
vlis 1.

1.6t fferent Types of Graph

There are different types of graphs. Some of them are:
1. Digraph

Undirected graph

Complete graph

Regular graph

Cyce graph

Acyclic graph

N o g M DN

Multigraph
8. Euler graph
Let us look at some of the different types of graph is detai
Directed Graph (Digraph): Airected graph or digrap@ consistof a vertex
set V (G) and an edge set E(G), where each edge is an ordered pair of vertices.
A simple digraph is a digraph in which each ordered paredices occurs at
the most once aan edge. In this type of graph each edge has direction,
meaning, (v1, v2) and (v2, v1) will represent different edges.
In the figure (d), V (G) = {A, B, C, D}, E (G) ={(A, B), (B, D), (D, A),
(A, C), (C, D)}. The graph has 4 vertices and 6 edges.

A

(O—Xo

Fig. (d) : Directed Graph
Undirected Graph: A graph containing unordered pair of nodes is termed as
undirected graph. If there is an edge between vertex vO and vl then it can be

represented as (vO, v1) or (v1, vO).

Data Structte PagelOl

CAX@
© ®)
Fig. (e)Undirected Graph

In the graph showm fig.(e), V(G) = {A, B, C, D} and E(G) = {(A, B), (A,
C), (A, D), (B, C), (B, D), (D, C)}. The graph has 4 vertices and 6 edges.

Complete Graph: A graph in which any node is adjacent to all other nodes
present in the graph is known as a complete graphundirected graph
contains total edges equal to =i{)Y2 where n is the number eértices

present in the graph. The figure (f) shows a complete graph.
%
© ®

Fig.(f): A complete graph

(>)

©

Regular Graph: Regular graph is the graph in which nodes are adjagent t

each other, i.e., each node is accessible from any other node.

Data Structte Pagel02

(>)

)
©

Fig.(g): A regular graph
Cycle Graph: A graph having cycle is called cycle graph. In this case the first
and last nodes are the samecldsed simple path is a cycle.

Fig. (h):A cycle gaph

Acyclic Graph: A graph without cycle is called acyclic graph.

Fig. (i): A acycle graph
Multigraph: A graph in which more than one edge is used to join the vertices
is called multigraph.

Fig.(j): A multigraph

Data Structte Pagel03

Euler Graph: If some closed walk in graph contains all the edges of the

graph,then the walk is called an Euler line and the graph is called an Euler

graph.

v

oy

Fig. (K): An Euler graph

1l . Reepresentation of Graph

There are two standard ways of storing graph G imtémory of a computer.
Oneway, called the sequential representation of Gnbgns of its adjacency
matrix A. The other way called the linked representation as®y means of
linked list.

1.6.1 Sequential Representation of Graph

Adjacency Matrix : Suppose G is a simple dirdcggaph with m nodes, and
suppose the nodes of G have been ordered arwdlded \, Vo,..., ..., V. Then
the adjacencynatrix A= (g;) of the graph G is the m x m matrix defined as
follows:

]Lﬁ v, is adjacent to v..that is.if there is an edge (1:]-.1:]-)']

=

-]!J otherwise. J

Such a matrix Awhich contains entries of only 0 and 1, &led a bit matrix
or a Boolean matrix. For example: for the graph G in the following figure

(I),we have the adjacency matrix A.

Data Structte Pagel04

Fig. (1): Directed Graph G

The equivalent adjacency matrixig

A B C D
A 0 1 1 1
B 0 0 1 1
C 0 0 0 1
D 0 0 0 0

1.6.2 Linked Representation of Graph

In this type of repesentation a graph G is usually represented in memory by a
linked representation. It is also called an adjacency list. Let nsidsr a

graph G as shown below

Fig.(m): Directed Graph G

The graph G can be represented by its adjacency list, whicHist dé

adjacent nodes, also called its successors or neighbors

Data Structte Pagel05

Nodes Adjacency List
B,C,D
B C,D
C D
D

Fig. (n):Adjacency list of graph G.

CHECK YOUR PROGRESS

Q.A. Select the appropriate option

1. Graph can be implemented using

i) arrays; ii) linked list; iii) stack; iv) queue
a) i), ii) and iv)

b) i), ii) and iii)

c) ii) and iii)

d) i) and ii)

2. Adjacency matrix for a diagraph is
a) unit matrix

b) anti symmetric

C) symmetrix matrix

d) none of these

3. A walk which is to begin and end at the same vertex is called
a) close walk

b) open walk

c) path

d) none of these

1. Tr aver sal i n Graphs

When dealing with graphs, one fundamental issue is to traverse the graph. In
other words, to visit each vertex. To solve this problem, naggrithms

exist. Two of them will be presented hei2epth First Search (DFS) and
Breadth First Search (BFS).

Data Structte Pagel06

1.7.1 Depth First Search

In this method, a node frograph is taken as a starting node. Traverse through
the possible pathef the starting nodeWhen the lashode of the graph is
obtained and phtis not available fronthe node, then control returns to
previous node. This process is implemenisihg stack data structure. Let us
consider the following graph:G

NG

Fig.(0):A model graph G
Let us apply Depth First Search traversal method, and corRids starting

node. Then,we traverse the node adjacei® tmd we will get Q and then R
(adjacent to Q) and U (adjacent to R).The traversal will-beP> R-> U.

The search is always carried in forward direction. After reaching to U,we
reach the end ofhe path and furthemovement inforward direction is not
possible. Hence, the control goes to the previous node and again traverses
through the available paths for

norttraversed nodesNe get the node R and it has no rneaversed node.
Hence we go bado Q and it gives T. The nodedives U, but

it is already visited. Therefore, control in reverse direction checks all the
nodes. Then it goes back to P which gives node S. Hence the

sequence of traversal will beQ->R->U->T->S.

The general idea behinddapthfirst search beginning at a starting node A is

as follows.

First we take the starting node A. Then we examine each node N along a path
P which begins at the node A. That meangwaeess a neighbor node of the
nodeA. Then again a neighbor of a nepr and proceed and so okiter
coming to a ndislte thedendeoh tbeopattwh wecbacktrack on P
until we can continue along another path P and so on. The algorithm is similar

to theBreadthFirst Search except that here we take a stack shstequeue.

Data Structte Pagel07

In the algorithm given below, a field STAT is used to tell ¢herent status of
a node. Algorithmof DFS : Algorithmfor DepthFirst Search on a graph
beginning at a starting node A

Step 1. Initialize all nodes to the ready state [STAT=1]

Step 2. Push the starting no8eonto STACK and change its status

to the waiting state [STAT=2]

Step 3. Repeat Step 4 and Step 5 until STACK is empty.

Step 4. Pop the top node N of STACK. Process N and change its

status to the processed state [STAT=3]

Step5. Push onto STACK all the neighbors of N that are still in the

ready state [STAT=1] and change their status to the wastiag [STAT=2]
[End of Step 3 loop]

Step 6. Exit.

The above algorithm will process only those nodes whrehreachable from
the sarting nodeA.

1.7.2 Breadth First Search

This is one of the popular methods of traversing graph. This method uses the
gueue data structure for traversing nodes of the graph. Any node of the graph
can act as a beginning node. Using any node as startiteg alb other nodes

of the graph are traversed.

This process is repeated till unvisited nodes are available.

Cr—(O—®

@

Let us apply the Breadth First Search traversal methdlgeirmbove grapks.

Fig.(p):A model graph G

Take the Pas a starting node and all tHachtnodes of P are traversed, that

Data Structte Pagel08

is Q, T and S. The traversal of nodemn be carried in any sequence. For
example, the sequencetodiverse of nodes is Q,S and T. The traversal will be
P->Q->S->T.

First, all the nodes neighbouring Q are traversezhteighbouring nodes of S
and finally T are taken into account. Thdjacent node of Q is Rand T is U.
Simillarly, the adjacent node ofi$ U and S does not have any adjacent node.
Hence, in this step thieaversal now should be in the following way>B-
>S->T->R->U.

The general idea behind a breafitht search beginning at starting node A is

as follows :

First, we examine the starting node Then we verify all theneighbors ofA.
Then we examine all the neighbors of the neighlobr& and proceedason.
Here actually we need to keep track of iegghbors of a node, and we need to
guarantee that no node psocessed more than once. This is done by using
gueue to hold theodes that are waiting to be processed, and by using a field
STAT which keep tack of the current status of any node. The algorithasis

given below:

Algorithm of Breadth First Search: Algorithfor a breadtkirst

search on a graph G beginning at a starting nod&ep 1. Initialize all the
nodes to the ready state [STAT=1]

Step 2 Put the starting nod& in QUEUE and change its status to

the waiting state [STAT=2]

Step 3. Repeat Step 4 and Step 5 until QUEUE is empty.

Step 4. Remove the fronbde Nof QUEUE. Proceshl and change

the status of N to the processed state [STAT=3]

Step 5. Add to the rear of QUEUE all the neighbors of N that are in

the steady state [STAT=1] and change their status to the

waiting state [STAT=2] [End of Step3 loop]

Step 6. Exit.

The above algorithm will process only those nodes whrehreachable from
the starting nod@.

In an unweight graph, you can consider all edges to aaexjual weight of 1.

BFS visits all the vertices on the same ledvet f or e proceedi ng t

Data Structte Pagel09

level, so all vertices newly visitezh a levelwill be of the same distance fro
the starting vertex. Furthesince BFS proceeds level by level with distances

of 0, 1, 2 etc, it wilreach a vertex via the shortest path to that vertex.

1.8 °nigsberg Bridge Probl em

A Graph without loops and parallel edges is called a simple graph.
A graphs with isolated vertices (no edges) is called null graph.

Set of edges E can be empty for a graph but not set of vertices V.

= =4 4

Graphs can be used in wide ranges of applications. For example consider
the K O nigsberg Bridge Problem.

1 K 6 nigsberg Bridg Problem: Two river islands B and C are formed by
the Pregel river in K 6 nigsberg (then the capital of East Prussia, Now
renamed Kaliningrad and in west Soviet Russia) were connected by
seven bridges as shown in the figure below. Start from any land area

walk over each bridge exactly once and return to the starting point.

r/ s ”\ ™
e

‘\“ o -"_':'r :

I e

g B |

=1 s S e

o g =]

M = S - '_,X_ i]

GRAPHS Representation:
1 Euler (17071783) in 1736 formulated the k& nigsberg bridge problem
as a graph problem and solved.
1 Represent land area by vertices and bridges connecting thengbs.

We get the following graph.

Data Structte Pagell0

—
/’/ »'\ ﬁ
b /I/ ' l
- \ ’3

> e —
l/ C i 4 D \"'
___“/ N

1 The problem is nothing but a children's game of drawing a figure

without lifting pen from the paper and without retracing a line.

CHECK YOUR PROGRESS
Q. B. Select the appropriate option :

1. Breadth First Search amethod to traverse

a) all successors of a visited node before any successors of any of those
SUCCSSOrs

b) a single path of the graph as far as it can go.

c) the graph using shorted path

d) none of these.

2. ldentify the correct statements about DFS trsale

i) It can be used to determine whether a graph is acyclic or not.

ii) It identifies the connected component of an undirected graph.

iii) Traverses a single path of the graph until it visits a node with no successor.
a) i) and iii)

b) ii) and iii)

c) i) and ii)

d) i), ii) and iii)

3. Avertex of degree oneiscalled

a) pendant

b) isolated vertex

c) null vertex

Data Structte Pagelll

d)coloured vertex

4. A graph in which all nodes are of equal degree is known as
a) multigraph

b) non regular graph

c) regular graph

d) complete graph

5. A simple graph with n vertices and k components can have
atthe most

a) n edges

b) nk edges

c) (ni k)(ni ki 1)/2 edges

d) (ni k)(ni k+1)/2 edges

6. If there exists at least one path between every pair of vertices
in a graph, the graph isiown as.

a) complete graph

b) disconnected graph

c) connected graph

d) euler graph.

1. O$nswer to Check Your Progre

Ans. to Q. No. A:1. d) i) and ii); 2. ¢) symmetrix matrix; 3. b) open walk.
Ans. to Q. No. B :1. a); 2. d); 3. a); 4. ¢); 5. d); 6).

1. Mo del Questions

1. Distinguish between the directed and undirected graphs.

2. What are complete graphs

3. Distinguish between Breadth First and Depth First search traversals in
a graph.

4. How are graphsnplemented in computer mem@ry

5. Distingish betwee tree and graph.

Data Structte Pagell?2

6. Write short notes on: (a) Breadth First Search (BFS) and (b) Depth
First Search (DFS).
7. Define degree, indegree and outdegree of graph. Explain with

examples.

UNIVIIIIGRAPHS | I : BASI C ALGORI T

1.1Learning Objectives

1.2 Introdudion

1.3Basic Algorithms

1.4 Minimum Spanning Tree
1.5Single Source Shortest Path

1.6 Answer to Check Your Progress
1.7 Model Questions

l1.llearning Objectives

After going through this unit, the learner will able to learn about:
1 Basic of Algorithm
1 Minimum Spanning Tree

1 Single Source ShorteBath

Data Structte Pagell3

1.12nt roducti on

1 Assume, in a country, there are many oil wells. It is necessary to connect
them by a pipkne. Main objective oflesigning should be minimization of
total cost of laying pipeline.

9 This problem can be modeled a graph problem. The set of oil wells are
represerdgd by vertices. The pipeline betweany pair of oil wells is
corresponding to the edge between the vertices denoting these oil wells.

1 The cost of laying a pipeline between a pair of oil wells is thighteof
the edge joining these oil wells.

1 Consider the following example of five oil wells. The weight on the edges

denotes the & of the laying pipelinbetween their respective oil wells.

Fig. 1

1 The best way of connecting them is shown in the folhgufigure.

Fig. 2

1 The cost of the laying the above pipe line connecting these oil wells is 20.

Any other way of connectingincreases the cost.
1 Resultant graph is a tree which spannes all vertices of the graph. Hence

called spanning tree.

Data Structte Pagell4

1 The spanningrée with minimum cost is called Minimum Spanning tree
(MST).

1 .Mi ni mum Spanning Tree

1 Problem: Given a weighted undirected graph G, find the minimum
spanning tree.
One of the main property of a tree is cycle freeness.
This property is exploited duringonstruction of a MST for a given
graph. That is, to obtain a spanning tree of a given graph, starts from a
null graph add edges one after the other without forming cycles.

1 If the edges considered for adding is in the increasing order we get a
MST.

1 Considetthe following weighted graph.

Fig.3

1 In the above figure there are two least weighted edges. We can choose any
one of them. Lets choose edge (v4,v5).

1 Next least weighted edge is between (v3,v6), add this edge to MST edges,
since it is not creating any clg.

1 Next edge is (v7,v9). Repeat the processes of adding edges till we found n
1 edges without forming any cycle. The number of vertices's in the graph
is n.
This is method is Kurskal's algorithm, named after the inventor.
The following sequence of figes shows a way of adding edges to obtain
a MST.

Data Structte Pagell5

Fig. 4 Fig. 5

1 The weight of the MST is 33.

The above method is depicted in the algorithm below.

algorithm Kurskal_MST(G)

Step 1: Sort_E = Sort the set E of edges by nondecreasing order
Step 2: MST = NULL

Data Structte Pagell6

