Block-1
Unit-1
Introduction to Operating System

1.1 Introduction to Operating system
1.2 User and System View

1.3 The Evolution

1.4 Operational View

1.5 Processes and Tools

1.6 Trends in Computing

1.7 Parallel Computing

1.8 Real - Time Systems

1.9 Wireless Systems

1.1 Introduction to Operating system

Operating System (or shortly OS) primarily provides services for running applications on a
computer system.

Need for an OS:

The primary need for the OS arises from the fact that user needs to be provided with services and
OS ought to facilitate the provisioning of these services. The central part of a computer system is
a processing engine called CPU. A system should make it possible for a user’s application to use
the processing unit. A user application would need to store information. The OS makes memory
available to an application when required. Similarly, user applications need use of input facility
to communicate with the application. This is often in the form of a key board, or a mouse or even

a joy stick (if the application is a game for instance).

-~

Keyboard Mouse Joystick

~- T~

Monitor Printer

The output usually provided by a video monitor or a printer as some times the user may wish to
generate an output in the form of a printed document. Output may be available in some other
forms. For example it may be a video or an audio file.

Let us consider few applications.

 Document Design
+ Accounting

* E-mail

* Image processing

* Games

We notice that each of the above application requires resources for

* Processing information
« Storage of Information
* Mechanism to inputting information
* Provision for outputting information

* These service facilities are provided by an operating system regardless of the nature of

application.

The OS offers generic services to support all the above operations. These operations in turn
facilitate the applications mentioned earlier. To that extent an OS operation is application

neutral and service specific.

1.2 User and System View:

From the user point of view the primary consideration is always the convenience. It should be
easy to use an application. In launching an application, it helps to have an icon which gives a
clue which application it is. We have seen some helpful clues for launching a browser, e-mail or
even a document preparation application. In other words, the human computer interface which
helps to identify an application and its launch is very useful.

This hides a lot of details of the more elementary instructions that help in selecting the
application. Similarly, if we examine the programs that help us in using input devices like a key
board — all the complex details of character reading program are hidden from the user. The same
is true when we write a program. For instance, when we use a programming language like C, a
printf command helps to generate the desired form of output. The following figure essentially
depicts the basic schema of the use of OS from a user stand point. However, when it comes to
the view point of a system, the OS needs to ensure that all the system users and applications get
to use the facilities that they need.

et vz R
T -1

SYSTEM AND APPLICATION PROGRAMS

L]
|1

OPERATING SYSTEM

COMPUTER HARDWARE

Also, OS needs to ensure that system resources are utilized efficiently. For instance, there may
be many service requests on a Web server. Each user request need to be serviced. Similarly,
there may be many programs residing in the main memory. The system need to determine which
programs are active and which need to await some form of input or output. Those that need to
wait can be suspended temporarily from engaging the processor. This strategy alone enhances
the processor throughput. In other words, it is important for an operating system to have a control

policy and algorithm to allocate the system resources.

1.3 The Evolution:

It would be worthwhile to trace some developments that have happened in the last four to five
decades. In the 1960s, the common form of computing facility was a mainframe computer
system. The mainframe computer system would be normally housed in a computer center with a
controlled environment which was usually an air conditioned area with a clean room like facility.
The users used to bring in a deck of punched cards which encoded the list of program
instructions.
» The mode of operation was as follows:
» User would prepare a program as a deck of punched cards.
» The header cards in the deck were the “job control” cards which would indicate which
compiler was to be used (like Fortran / Cobol compilers).
» The deck of cards would be handed in to an operator who would collect such jobs from
various users.
» The operators would invariably group the submitted jobs as Fortran jobs, Cobol jobs etc.
In addition, these were classified as “long jobs” that required considerable processing

time or short jobs which required a short and limited computational time.

Each set of jobs was considered as a batch and the processing would be done for a batch.
Like for instance there may be a batch of short Fortran jobs. The output for each job
would be separated and turned over to users in a collection area. This scenario clearly
shows that there was no interactivity. Users had no direct control. Also, at any one time
only one program would engage the processor. This meant that if there was any input or

output in between processing then the processor would wait idling till such time that the

I/0 is completed. This meant that processor would idling most of the time as processor
speeds were orders of magnitude higher than the input or output or even memory units.
Clearly, this led to poor utilization of the processor. The systems that utilized the CPU
and memory better and with multiple users connected to the systems evolved over a

period of time as shown in Tablel.1.

: 1950 1960 1970 1980 1990 2000
Mainframes Q\MULTICS
Multiuser
N
sy Nehvorked
Mini S AUNIX
Computers MljltiL_l\SQf
N
Networked
Clustered
Desktop g ex:‘UNIXJLINUX
Computers S
Multiprocessor
<
Net\?VQr\ked
Handheld \'DL'NUX
Computers

Migration of operating-system concepts and features.

At this time we would like to invoke Von - Neumann principle of stored program operation. For
a program to be executed it ought to be stored in the memory. In the scheme of things discussed
in the previous paragraph, we notice that at any time only one program was kept in the memory
and executed. In the decade of 70s this basic mode of operation was altered and system designers
contemplated having more than one program resident in the memory. This clearly meant that
when one program is awaiting completion of an input or output, another program could, in fact,
engage the CPU.

Late 60’s and early 70’s

Storing multiple executable (at the same time) in the main memory is called multiprogramming.
With multiple executable residing in the main memory, the immediate consideration is: we now
need a policy to allocate memory and processor time to the resident programs. It is obvious that
by utilizing the processor for another process when a process is engaged in input or output the
processor utilization and, therefore, its output are higher. Overall, the multiprogramming leads to
higher throughput for this reason.

/O Operation

Process /_\‘

Process 1 I

/\ Process 2

Processor I Process 3

Keyboard

Process 4

Processing
order

\

Main memory No. of Cycle =1

Process 6

Process 7

Process 5 I

Process 8

Multiprogramming
While multiprogramming did lead to enhanced throughput of a system, the systems still
essentially operated in batch processing mode.

1980°s
In late 70s and early part of the decade of 80s the system designers offered some interactivity

with each user having a capability to access system. This is the period when the timeshared
systems came on the scene.

Basically, the idea is to give every user an illusion that all the system resources were available to
him as his program executed. To strengthen this illusion a clever way was devised by which each
user was allocated a slice of time to engage the processor. During the allocated time slice a users’
program would be executed. Now imagine if the next turn for the same program comes quickly
enough, the user would have an illusion that the system was continuously available to his task.
This is what precisely time sharing systems attempted — giving each user a small time slice and
returning back quickly enough so that he never feels lack of continuity. In fact, he carries an
impression that the system is entirely available to him alone.

Timeshared systems clearly require several design considerations. These include the following:
How many programs may reside in the main memory to allow, and also sustain timesharing?
What should be the time slice allocated to process each program?

How would one protect a users’ program and data from being overwritten by another users’

program? Basically, the design trends that were clearly evident during the decade of 1970-80

were: Achieve as much overlapping as may be feasible between 1/0 and processing. Bulk storage
on disks clearly witnessed a phenomenal growth. This also helped to implement the concept to
offer an illusion of extended storage. The concept of “virtual storage” came into the vogue. The
virtual storage essentially utilizes these disks to offer enhanced addressable space. The fact that
only that part of a program that is currently active need be in the main memory also meant that
multi-programming could support many more programs. In fact this could be further enhanced as
follows:

1. Only required active parts of the programs could be swapped in from disks.

2. Suspended programs could be swapped out.

This means that a large number of users can access the system. This was to satisfy the notion that
“computing” facility be brought to a user as opposed to the notion that the “user go to compute”.
The fact that a facility is brought to a user gives the notion of a utility or a service in its true
sense. In fact, the PC truly reflects the notion of “computing utility” - it is regarded now as a
personal productivity tool.

Process 1 4.__2_‘_
part -1

Process 2

Main memory

Swapping of program parts main memory - disc, vice-versa
It was in early 1970s Bell Laboratory scientists came up with the now well-known OS:
Unix. Also, as the microcomputers came on scene in 1980s a forerunner to current DOS was a
system called CP/M. The decade of 1980s saw many advances with the promise of networked
systems. One notable project amongst these was the project Athena at MIT in USA. The project
forms the basis to several modern developments. The client-server paradigm was indeed a major

fall out. The users could have a common server to the so called X-terminals.

The X windows also provided many widgets to support convenient human computer interfaces.
Using X windows it is possible to create multiple windows. In fact each of the windows offers a
virtual terminal. In other words it is possible to think about each of these windows as a front-end
terminal connection. So it is possible to launch different applications from each of the windows.
This is what you experience on modern day PC which also supports such an operating
environment.

In our discussions, we shall discuss many of the above issues in greater detail as we move to
later chapters. On the micro-computer front the development was aimed at relieving the
processor from handling input output responsibilities. The I/O processing was primarily handled
by two mechanisms: one was BIOS and the other was the graphics cards to drive the display. The
processor now was relieved from regulating the 1/0. This made it possible to utilize the processor
more effectively for other processing tasks. With the advent of 1990s the computer Networking
topologies like star ring and general graphs, as shown in the figure, were communication was

pretty much the order of the day.

CP/M based computer

Being experimented with protocols for communication amongst computers evolved. In
particular, the TCP/IP suites of network protocols were implemented. The growth in the
networking area also resulted in giving users a capability to establish communication between
computers. It was now possible to connect to a remote computer using a telnet protocol. It was
also possible to get a file stored in a remote location using a file transfer (FTP) protocol. All such

services are broadly called network services.

(a) Star (b) Ring (c) Tree

Let’s now briefly explore where the OS appears in the context of the software and application.

Let’s consider a scenario where we need to embed the computer system in an industrial

application. This may be regulating the temperature of a vessel in a process control. In a typical
process control scenario

* Monitoring — initializes and activates the hardware.
* Input — Reads the values from sensors and stores it in register.
* Decision — checks whether the readings are within the range.

* Output — responds to the situation.

* Scenario: A temperature monitoring chemical process.

* What we need: A supervisory program to raise an alarm when temperature goes

beyond a certain band.

* The desired sequence of operational events: Measure input temperature,

process the most recent measurement, perform an output task.

v

[nitialize the software

L}

w
Activate hardware to read
temperature

'

Read the temperature
Store it in a register: temp register

Is temip register
within the band?

Crutput: Within band
|

-~

Ring Alarm!!!

|
The computer system may be employed in a variety of operational scenarios like a bank, airlines

reservation system, university admissions and several others. In each of these we need to provide

the resources for

* Processing

* User access to the system

* Storage and management of information

* Protection of information against accidental and intentional misuse

* Support for data processing activities

* Communication with 1/O devices

* Management of all activities in a transparent manner.

Let’s now review What Does an OS Do?

* Power On Self Test (POST)

* Resource management

* Support for multi-user

* Error Handling

« Communication support over Network

* (Optional) Deadline support so that safety critical application run and fail

Gracefully

1.4 Operational View:

Let’s briefly look at the underlying principle of operation of a computer system. Current systems
are based on The Von-Neumann principle. The principle states that a program is initially stored
in memory and executed by fetching an instruction at a time.
The basic cycle of operation is

» Fetch an instruction (Fetch)

> Interpret the instruction (Decode)

» Execute the instruction (Execute)

FETCH =

Program Instructions

Y
DECODE

Memory Modules

Y
EXECUTE -

Data Partition

Operating Cycle Memory Map
Modern systems allow multiple users to use a computer system. Even on a stand-alone PC there

may be multiple applications which are running simultaneously. For instance, we have a mail
program receiving mails, a clock to display time while we may be engaged in browsing a word
process.

In other words OS need to schedule the processor amongst all the application simultaneously
without giving an impression that the processor time is being divided and scheduled per an
application.

An Operational Overview:

* Processor — schedule and allocate processor time.

* Memory — executes program and access data

* Input output devices

* Communication with devices

 Mutual exclusion — schedule the usage of shared device and fair access
* Shell of an OS

* Human computer interface (HCI/CHI)

Cpru
= Terminals
Secondary Slorage

ll Primary Storage
= * # Dy
Disk

onioler Input/Output
I (B3

Remote Access
I Dy....Dy are 10 devices

A Modern Computer System
The peripheral devices communicate in a mode known as interrupt mode .Typically human input
is considered important and often uses this mode. This is so because human desire to guide the
operation. For instance, we use a mouse click or a key board input.
These require immediate attention by needing an appropriate interruption service.

I'he normal
instruction cycle

FETCH

'

DECODE

!

EXECUTE

Interrupt Service? —
I

1.5 Processes and Tools:

Processes:
Most OSs support a notion that a program in execution may be regarded as a process. Clearly,

with multiple applications active at the same time there are many processes that are active. The
OS needs to manage all these processes. Often applications may spawn processes that need to
communicate with each other. Such inter process communication forms the primary basis of
distributed computing.

With the coming together of communications network and computers it is possible to create
processes on one machine and seek services from another machine. The machine seeking the
services is called client machine and the machine offering services is called server machine.
When you use a web browser, your computer is the client and the machine which provides the
content for browsing is the web server. All modern Oss support client-server operations for
service provisioning.

Tools:
One important issue is: how does one use the services efficiently? In addition to the device

handling utilities, most OSs provides many other general purpose utilities as a set of packaged
tools. The tools help us to think in terms of higher level of operations. In the absence of tools and
tool kits we would be required to write a fresh program each time.

As an example, consider a sort utility in UNIX. It supports identification of fields in a file with
multi field structured data. Sort allows us to sort on a chosen field on a file. Imagine if we had to
write a sort program every time we had a set of records making a file. Also look at the support
we derive from the compression software tools like compression of files for long-term storage or
transmission (Zip tools in windows environment). It would be stupendous task to write a

compression program for every file transfer.

1.6 Trends in Computing:

The emergence of micro-computer, in particular Apple mackintosh, offered improvement in the
manner in which human computer interfaces could be utilized for 1/0 and also for launching the

applications. Apple was the first computer system to use mouse clicks to launch application.

It also was the first environment to offer a “drag and drop” facility. In fact this set trends to offer

icon driven convenient ways of launching applications.

Apple Mac Computer

In this section we shall examine other trends in computing. The application scenario can
considerably influence the types of services that need to be managed by an operating system.

One such example is the emergence of parallel computing.

1.7 Parallel Computing:

There are many problem solving situations like weather forecasting, image processing, statistical
data analysis and simulation, pharmaceutical drug synthesis and others where using a single
processor becomes a limiting factor For this class of problems one has to resort to parallel
processing. In a parallel processing environment we may have a problem split in such a way that
different parts of the same problem use a different processor with minimal communication.
Parallel processing together with the network based services supports a mode of computing
which is referred some times as distributed computing. In distributed computing environment it

is also possible to support distribution of data, files and execution of processes.

File Server Recording PC

Switch

Processing Nodes

Parallel Computing

In some other situation a computer system may be a part of a control system. For instance, the
system may be utilized for regulating a utility — like electrical power supply. There is usually an
elaborate instrumentation to keep track of the health of plant or a process. In these situations the
instrumentation monitors physical quantities like pressure, temperature or speed and the process

needs to respond in a real-time mode to be able to regulate the operation of the system.

1.8 Real - Time Systems:

Another category of real-time systems are those that are used to offer services like ATM
(Automatic teller machine) or airlines reservation systems. The systems of the latter kind are
often called transaction oriented systems. This is because the basic information processing
involves a transaction.

As an example, consider processing a request like withdrawing money. It is a financial
transaction, which requires updating accounts within an acceptable response time. Both the
process control systems and transaction oriented systems are real time systems in which the
response time to a request is critical. The main objective is to assure timeliness in response. The
transaction oriented systems may even use the computer network extensively and often. The
process control systems may be bus based or may have local area network as well. Both these
systems invariably recognize an event and offer a response. In a transaction oriented system

like ATM, it may be a card input. In a process control system an event may be detected when the
temperature in a process vessel exceeds a certain limit. The operating system used in such real-
time systems is often referred to as RTOS.

In addition, to the above kind of systems, we are now witnessing emergence of a class of systems
that are embedded within an application.

For instance, it is not unusual to find up to four microprocessors in a car. These may be used for
regulating fuel injection, cruise control or even operation of brakes. Similarly, there are

microcontrollers embedded in washing machines. The presence of these systems

ATM

is totally transparent to the user. He does not experience the presence of the system while using
the gadgets. This is because the operating environment only requires minimal control buttons and
response panels. The embedded systems are designed completely with a different philosophy.
These are not general purpose computing environments.

Instead, these have dedicated mode of operation. In these cases the operating system is not aimed
at raising through put with general purpose utility back-ups. Instead these systems are designed
with minimal and dedicated services. The minimal service provisioning is done using a minimal
OS kernel often called micro-kernel.

A well known embedded system is a common mobile phone and a personal digital assistant
(PDA). One important Indian contribution in this class of systems is a Simputer. A Simputer can
be utilized as a PDA. Simputer can also be used in a dedicated application. Simputers have also
been upgraded to support wireless connectivity.

Simputer

1.9 Wireless Systems:

Wireless systems in general allow access from anywhere any time. These are also called
ubiquitous systems. The ubiquity comes from the fact that unlike a wired system, the medium of
communication is air which can be utilized from anywhere anytime.

Finally, the other major trend which we are witnessing now is driven by Web — the World Wide
Web. All modern systems are internet compliant and allow a user to connect to the rest of the
world. Web offers commercial organizations to offer their merchandise on the web. Also, it gives
the consumers an opportunity to seek services using the web. In our country now Web is quite
extensively utilized for railway reservation and also for the air ticket booking. Web can also offer
other services. For example, down loading music is common. Web can, and in due course of time
will, offer services which are currently offered by operating systems. In fact, then we will have
the paradigm where “network is the computer” as was proclaimed by the SUN CEOQO, Scott

McNealy a few years ago.

Unit-2

1.1 File Systems and Management
1.2 What Are Files?

1.2.1 File Types and Operations
1.3 File Access Rights
1.4 File Access and Security Concerns
1.5 File Storage Management

1.5.1 Inode in Unix

1.5.2 File Control Blocks
1.6 The Root File System
1.7 Block-based File Organization
1.8 Policies In Practice

1.8.1 Disk Partitions

1.8.2 Portable storage

1.1 File Systems and Management

In the previous module, we emphasized that a computer system processes and stores
information. Usually, during processing computers need to frequently access primary memory
for instructions and data. However, the primary memory can be used only for only temporary
storage of information. This is so because the primary memory of a computer system is volatile.
The volatility is evinced by the fact that when we switch off the power the information stored in
the primary memory is lost. The secondary memory, on the other hand, is non-volatile. This
means that once the user has finished his current activity on a computer and shut down his
system, the information on disks (or any other form of secondary memory) is still available for a
later access. The non-volatility of the memory enables the disks to store information indefinitely.
Note that this information can also be made available online all the time. Users think of all such
information as files. As a matter of fact, while working on a computer system a user is
continually engaged in managing or using his files in one way or another. OS provides support
for such management through a file system. File system is the software which empowers users
and applications to organize and manage their files. The organization and management of files
may involve access, updates and several other file operations. In this chapter our focus shall be

on organization and management of files.

1.2 What Are Files?

Suppose we are developing an application program. A program, which we prepare, is a file.
Later we may compile this program file and get an object code or an executable. The executable
is also a file. In other words, the output from a compiler may be an object code file or an
executable file. When we store images from a web page we get an image file. If we store some
music in digital format it is an audio file. So, in almost every situation we are engaged in using a
file. In addition, we saw in the previous module that files are central to our view of
communication with 10 devices. So let us now ask again:

What is a file?

Irrespective of the content any organized information is a file. So be it a telephone numbers list
or a program or an executable code or a web image or a data logged from an instrument we think

of it always as a file. This formlessness and disassociation from content was emphasized first in

Unix. The formlessness essentially means that files are arbitrary bit (or byte) streams.
Formlessness in Unix follows from the basic design principle: keep it simple. The main
advantage to a user is flexibility in organizing files. In addition, it also makes it easy to design a
file system. A file system is that software which allows users and applications to organize their
files. The organization of information may involve access, updates and movement of information
between devices. Later in this module we shall examine the user view of organizing files and the
system view of managing the files of users and applications. We shall first look at the user view
of files.

User's view of files: The very first need of a user is to be able to access some file he has stored in
a non-volatile memory for an on-line access. Also, the file system should be able to locate the
file sought by the user. This is achieved by associating an identification for a file i.e. a file must
have a name. The name helps the user to identify the file. The file name also helps the file
system to locate the file being sought by the user. Let us consider the organization of my files for
the Compilers course and the Operating Systems course on the web. Clearly, all files in
compilers course have a set of pages that are related. Also, the pages of the OS system course are
related. It is, therefore, natural to think of organizing the files of individual courses together. In
other words, we would like to see that a file system supports grouping of related files. In
addition, we would like that all such groups be put together under some general category (like
COURSES).

This is essentially like making one file folder for the compilers course pages and other one for
the OS course pages. Both these folders could be placed within another folder, say COURSES.
This is precisely how MAC OS defines its folders. In Unix, each such group, with related files in
it, is called a directory. So the COURSES directory may have subdirectories OS and
COMPILERS to get a hierarchical file organization. All modern OSs support such a hierarchical
file organization. In Figure 2.1 we show a hierarchy of files. It must be noted that within a
directory each file must have a distinct name. For instance, | tend to have ReadMe file in
directories to give me the information on what is in each directory. At most there can be only one
file with the name “ReadMe" in a directory. However, every subdirectory under this directory
may also have its own ReadMe file. Unix emphasizes disassociation with content and form. So

file names can be assigned any way.

Some systems, however, require specific name extensions to identify file type. MSDOS
identifies executable files with a .COM or .EXE file name extension. Software systems like C or

Pascal compilers expect file name extensions of .c or .p (or .pas) respectively. In

We have a tree structures amongst directorias.
Files form leaves in the tree structure of directories.

\\ = DIRECTORY A and B are top level directorizs.

@ - roE Al and AZ are subdirectories under &
£ and g0 are filss under dirsctory A,
f1 1z a file under subdirectory Al
Fil= £12 haz a full path name
AAAILELD.

Also, note the two Readhie files.

f12 Each iz in a diffsrent directory.

There can be only one file with the

name Readhe ina directory.

Besdbe

Figure 2.1: Directory and file organisation

Section 1.2.1 and others we see some common considerations in associating a file name
extension to define a file type.

1.2.1 File Types and Operations

Many OSs, particularly those used in personal computers, tend to use a file type information
within a name. Even Unix software support systems use standard file extension names, even
though Unix as an OS does not require this. Most PC-based Oss associate file types with specific
applications that generate them. For instance, a database generating program will leave explicit
information with a file descriptor that it has been generated by a certain database program. A file
descriptor is kept within the file structure and is often used by the file system software to help
OS provide file management services. MAC OS usually stores this information in its resource
fork which is a part of its file descriptors.

This is done to let OS display the icons of the application environment in which this file was
created. These icons are important for PC users. The icons offer the operational clues as well. In
Windows, for instance, if a file has been created using notepad or word or has been stored from
the browser, a corresponding give away icon appears. In fact, the OS assigns it a file type. If the

icon has an Adobe sign on it and we double click on it the acrobat reader opens it right away. Of

course, if we choose to open any of the files differently, the OS provides us that as a choice
(often using the right button).

For a user the extension in the name of a file helps to identify the file type. When a user has a
very large number of files, it is very helpful to know the type of a file from its name extensions.
In Table 2.1, we have many commonly used file name extensions. PDP-11 machines, on which
Unix was originally designed, used an octal 0407 as a magic number to identify its executable
files. This number actually was a machine executable jump instruction which would simply set

the program counter to fetch the first executable

Usage File extension used | Assaciated functionality

An ASCIT teot file ety oo A sitnple tet file

A Word processing file | owp, tex Usually for structursd docwments
F'n:-gr:!rn file=s &Gy Py £77, asm ! Pascal, Fortran, or :!:.a-m'.H:.' cods
Print or view e, il i Printing and viewing images, documents
Scripting .pl, BAT, sh Fer shell scripts or Web CG1

Program library ik Library routines in packages

Archive gensration .arc, .zip, tar Compression and long-term storage
Files that execute .o, ok, hin Compilsr gemerated sxecutable files
Ohject codes o Orfeen nesd linking to executbs

Table 2.1: File extension and its context of use

instruction in the file. Modern systems use many magic numbers to identify which application
created or will execute a certain file.

In addition to the file types, a file system must have many other pieces of information that are
important. For instance, a file system must know at which location a file is placed in the disk, it
should know its size, when was it created, i.e. date and time of creation. In addition, it should
know who owns the files and who else may be permitted access to read, write or execute. We
shall next dwell upon these operational issues.

File operations: As we observed earlier, a file is any organized information. So at that level of
abstraction it should be possible for us to have some logical view of files, no matter how these
may be stored. Note that the files are stored within the secondary storage. This is a physical view
of a file. A file system (as a layer of software) provides a logical view of files to a user or to an
application. Yet, at another level the file system offers the physical view to the OS. This means
that the OS gets all the information it needs to physically locate, access, and do other file based
operations whenever needed. Purely from an operational point of view, a user should be able to
create a file. We will also assume that the creator owns the file. In that case he may wish to save

or store this

file. He should be able to read the contents of the file or even write into this file. Note that a user
needs the write capability to update a file. He may wish to display or rename or append this file.
He may even wish to make another copy or even delete this file. He may even wish to operate
with two or more files. This may entail cut or copy from one file and paste information on the
other.

Other management operations are like indicating who else has an authorization of an access to
read or write or execute this file. In addition, a user should be able to move this file between his
directories. For all of these operations the OS provides the services. These services may even be
obtained from within an application like mail or a utility such as an editor. Unix provides a visual
editor vi for ASCII file editing. It also provides another editor sed for stream editing. MAC OS
and PCs provide a range of editors like SimpleText.

Usage Editor based cperation OF terminology and description
Creats Inder FILE menn NEW A CHEATE command is available
with explicit read [/ write option
Chpem nder FILE menu OFPEN An OPEN cormmmmand is available
with explicit read write option
Cloms Under FILE menu CLOSE A file CLOSE option is available
Al=o when you chocss QUIT
Head Oip=sn, to read Specified at the time of open
Write Sawe to write Sp=cified at the time of open
Remame or copy | Us= SAVE AS Clan copy using a copy cormm anc
Cut and Paste Via a bufler Uses desk top emvircoment C0DE
Jain files Comcatenation possibles
or uses an append at shell lewvel
Drlete Under FILE use delete Use remove cr delete command
Relocats A move command is available
Alias A symbolic link is possible
List files DOPEM affers selection Use a list cormmand in a shell

Table 2.2: File operations

With multimedia capabilities now with PCs we have editors for audio and video files too. These
often employ MIDI capabilities. MAC OS has Claris works (or Apple works) and MSDOS-based
systems have Office 2000 suite of packaged applications which provide the needed file oriented
services. See Table 2.2 for a summary of common file operations.

For illustration of many of the basic operations and introduction of shell commands we shall
assume that we are dealing with ASCII text files. One may need information on file sizes. More
particularly, one may wish to determine the number of lines, words or characters in a file. For
such requirements, a shell may have a suite of word counting programs. When there are many
files, one often needs longer file names. Often file names may bear a common stem to help us

categorize them. For instance, I tend to use “prog” as

a prefix to identify my program text files. A programmer derives considerable support

through use of regular expressions within file names. Use of regular expressions

enhances programmer productivity in checking or accessing file names. For instance, prog* will
mean all files prefixed with stem prog, while my file? may mean all the files with prefix my file
followed by at most one character within the current directory. Now that we have seen the file
operations, we move on to services. Table 2.3 gives a brief description of the file-oriented
services that are made available in a Unix OS. There are similar MS DOS commands. It is a very
rewarding experience to try these commands and use regular expression operators like ? and * in
conjunction with these commands.

Later we shall discuss some of these commands and other file-related issues in greater depth.
Unix, as also the MS environment, allows users to manage the organization of their files. A

command which helps viewing current status of files is the Is command in

Usage Unix shell cormmand | M5 DOS command
Copy a file op COPY

Rename a fil= v REMAME

Dealete a fil= rm DEL

List fil== Is ()

Make a directory mkdir MEDIR

Changs current directory | od CHDOIR

Table 2.3: File oriented sarvices

Choose option | To get this information

nome chosen Lists files and directaries in a singls cohunn list

-1 Lists long revealing fil= type, permissions, munber of links,
ewner and group ids., file size in bytes, modification date
time, name of the fil

-d For each named directory list directory information

-a List files including those that start with . { period)

-= Sizes of files in blocks occupisd
-t Print in time sorted order

-1 Print the access time instead of the modification times

Table 2.4: Unix Is conumnand options

Unix (or the dir command in MS environment). This command is very versatile. It helps
immensely to know various facets and usage options available under the Is command. The Is
command: Unix's Is command which lists files and subdirectories in a directory is very revealing.
It has many options that offer a wealth of information. It also offers an insight in to what is going
on with the files i.e. how the file system is updating the information about files in “inode” which

is a short form for an index node in Unix. We shall learn more about inode in Section 2.4. In fact,

it is very rewarding to study Is command in all its details. Table 2.4 summarizes some of the
options and their effects.

Using regular expressions: Most operating systems allow use of regular expression operators in
conjunction with the commands. This affords enormous flexibility in usage of a command. For
instance, one may input a partial pattern and complete the rest by a * or a ? operator. This not
only saves on typing but also helps you when you are searching a file after a long time gap and
you do not remember the exact file names completely. Suppose a directory has files with names
like Comp_page_1.gif, Comp_page_2.gif and Comp_page_1.ps and Comp_page_2.ps. Suppose
you wish to list files for page_2. Use a partial name like Is C*p*2 or even *2* in Is command.
We next illustrate the use of operator ?. For instance, use of Is my file? in Is command will list all
files in the current directory with prefix my file followed by at most one character.

Besides these operators, there are command options that make a command structure very
flexible. One useful option is to always use the -i option with the rm command in Unix. A rm -i
my files* will interrogate a user for each file with prefix my file for a possible removal. This is
very useful, as by itself rm my file* will remove all the files without any further prompts and this
can be very dangerous. A powerful command option within the rm command is to use a -r
option. This results in recursive removal, which means it removes all the files that are linked
within a directory tree. It would remove files in the current, as well as, subdirectories all the way
down. One should be careful in choosing the options, particularly for remove or delete
commands, as information may be lost irretrievably.

It often happens that we may need to use a file in more than one context. For instance, we may
need a file in two projects. If each project is in a separate directory then we have two possible
solutions. One is to keep two copies, one in each directory or to create a symbolic link and keep
one copy. If we keep two unrelated copies we have the problem of consistency because a change
in one is not reflected in the other. The symbolic link helps to alleviate this problem. Unix
provides the In command to generate a link anywhere regardless of directory locations with the
following structure and interpretation: In fileName pseudonym.

Now fileName file has an alias in pseudonym too. Note that the two directories which share a file
link should be in the same disk partition. Later, in the chapter on security, we shall observe how

this simple facility may also become a security hazard.

1.2 File Access Rights

After defining a fairly wide range of possible operations on files we shall now look at the file
system which supports all these services on behalf of the OS. In the preamble of this chapter we
defined a file system as that software which allows users and applications to organize and
manage their files. The organization of information may involve access, updates, and movement
of information between devices. Our first major concern is access.

Access permissions: Typically a file may be accessed to read or write or execute. The usage is
determined usually by the context in which the file is created. For instance, a city bus timetable
file is created by a transport authority for the benefit of its customers. So this file may be
accessed by all members of public. While they can access it for a read operation, they cannot
write into it. An associated file may be available to the supervisor who assigns duties to drivers.
He can, not only read but also write in to the files that assign drivers to bus routes. The
management at the transport authority can read, write and even execute some files that generate
the bus schedules. In other words, a file system must manage access by checking the access
rights of users. In general, access is managed by keeping access rights information for each file
in a file system.

Who can access files?: Unix recognizes three categories of users of files, e.g. user (usually the
user who created it and owns it), the group, and others. The owner may be a person or a program
(usually an application or a system-based utility). The notion of “group” comes from software
engineering and denotes a team effort. The basic concept is that users in a group may share files
for a common project. Group members often need to share files to support each other's activity.
Others has the connotation of public usage as in the example above. Unix organizes access as a
three bit information for each i.e. owner, group, and others. So the access rights are defined by 9
bits as rwx rwx rwx respectively for owner, group and others. The rwx can be defined as an octal
number too. If all bits are set then we have a pattern 111 111 111 (or 777 in octal) which means
the owner has read, write, and execute rights, and the group to which he belongs has also read,
write and execute rights, and others have read, write and execute rights as well. A pattern of 111
110 100 (or 764 octal, also denoted as rwx rw- r--) means the owner has read, write, and execute
permissions; the group has read and write permissions but no execute permission and others have

only the read permission. Note that Unix grouppermissions are for all or none. Windows 2000

and NTFS permit a greater degree ofrefinement on a group of users. Linux allows individual

users to make up groups.

1.4 File Access and Security Concerns

The owner of a file can alter the permissions using the chmod command in Unix. The commonly
used format is chmod octalPattern fileName which results in assigning the permission interpreted
from the octalPattern to the file named fileName. There are other alternatives to chmod
command like chmod changePattern fileName where changePattern may be of the form go-rw to
denote withdrawal of read write permission from group and others. Anyone can view all the
currently applicable access rights using a Is command in Unix with -l option. This command lists
all the files and subdirectories of the current directory with associated access permissions.
Security concerns: Access permissions are the most elementary and constitute a fairly effective
form of security measure in a standalone single user system. In a system which may be
connected in a network this can get very complex. We shall for now regard the access control as
our first line of security. On a PC which is a single-user system there is no security as such as
anyone with an access to the PC has access to all the files.

Windows 2000 and XP systems do permit access restriction amongst all the users of the system.
These may have users with system administrator privileges. In Unix too, the super-user (root) has
access to all the files of all the users. So there is a need for securing files for individual users.
Some systems provide security by having a password for files. However, an enhanced level of
security is provided by encryption of important files. Most systems provide some form of
encryption facility. A user may use his own encryption key to encrypt his file. When someone
else accesses an encrypted file he sees a garbled file which has no pattern or meaning. Unix
provides a crypt command to encrypt files.

The format of the crypt command is:

crypt EncryptionKey < inputFileName > outputFileName

The EncryptionKey provides a symmetric key, so that you can use the same key to retrieve the
old file (simply reverse the roles of inputFileName and outputFileName) In Section 1.5 we

briefly mention about audit trails which are usually maintained in syslog files in Unix systems. In

a chapter on security we shall discuss these issues in detail. So far we have dealt with the logical

view of a file. Next, we shall address the issues involved in storage and management of files.

1.5 File Storage Management

An operating system needs to maintain several pieces of information that can assist in
management of files. For instance, it is important to record when the file was last used and by
whom. Also, which are the current processes (recall a process is a program in execution)
accessing a particular file. This helps in management of access. One of the important files from
the system point of view is the audit trail which indicates who accessed when and did what. As
mentioned earlier, these trails are maintained in syslog files under Unix. Audit trail is very useful
in recovering from a system crash. It also is useful to detect un-authorized accesses to the
system. There is an emerging area within the security community which looks up the audit trails
for clues to determine the identity of an intruder.

In Table 2.5 we list the kind of information which may be needed to perform proper file
management. While Unix emphasizes formlessness, it recognizes four basic file types internally.
These are ordinary, directory, special, and named. Ordinary files are those that are created by
users, programs or utilities. Directory is a file type that organizes files hierarchically, and the
system views them differently from ordinary files. All 10 communications are conducted as
communications to and from special files. For the present we need not concern ourselves with
named files. Unix maintains much of this information in a data structure called inode which is a
short form for an index node. All file management operations in Unix are controlled and
maintained by the information in the inode structure.

We shall now briefly study the structure of inode.

1.5.1 Inodein Unix

In Table 2.6 we describe typical inode contents. Typically, it offers all the information about
access rights, file size, its date of creation, usage and modification. All this information is useful
for the management in terms of allocation of physical space, securing information from

malicious usage and providing services for legitimate user needs to support applications.

Nature of Information | It= significance | [ts vme in management

File name Chosen by its creator To check its uniqueness
USSr OF 3 program within a directory
File type Text, binary, program, stc. Ta check its correct usage
Drate of creation Time and date Useful for recording
and last usage idemtity of user{s)
Current usage Time and date Identity of all current users
Back-up info. Time and date Useful for recovery
following a crash
Permissions rwx information Controls rw soscute 4
wseful for network access
Starting address Physical mapping Useful for access
Size The user must operate Int=rmal allocation
within the allocated space of disk Blocks
File structurs Useful in data manipulation | To check its usages

Table 2.5 Information required for management of files
Typically, a disk shall have inode tables which point to data blocks. In Figure 2.2 we show how a

disk may have data and inode tables organized. We also show how a typical Unix-based system

provides for a label on the disk.

Label for the disc -\(System
Boot area / Information

Cylinder group information

Inode tab li-""" RS ~—

Data block area (Inodes point to this data)

Back—up area

Figure 2.2: Organisation of modes

Ttemn Dlescription

Fil= type 18 bit information

Bits 14 - 12 : file typ= (crdinary; directory; character, stc.)
Bits 11 - 9 1 Execution flags

Bits & - & : Chwner's rwe information

Bits & - 3 1 group's rex information

Bits 2 - 0 : other's rwx information

Link count Number of symbolic references 1o this fils
Crwmer’s id Login id of the individual who ownes this fil=
Group's id Group id of the user

Fil= size Expressed in mumber of bytes

Fil= address 9 bytes of addressing information

Last access to File Diate and time of last access

Last modifisd Diate and time of last modification

Last incds modification | Date and times of last incde modification

Table 2.6: Inode structure in Unix

1.5.2 File Control Blocks

In MS environment the counterpart of inode is FCB, which is a short form for File Control
Block. The FCBs store file name, location of secondary storage, length of file in bytes, date and
time of its creation, last access, etc. One clear advantage MS has over Unix is that it usually
maintains file type by noting which application created it. It uses extension names like doc, txt,
dll, etc. to identify how the file was created. Of course, notepad may be used to open any file
(one can make sense out of it when it is a text file). Also, as we will see later (in Sections 1.7 and
1.8), MS environment uses a simple chain of clusters which is easy to manage files.

1.6 The Root File System

At this stage it would be worthwhile to think about the organization and management of files in
the root file system. When an OS is installed initially, it creates a root file system. The OS not
only ensures, but also specifies how the system and user files shall be distributed for space
allocation on the disk storage. Almost always the root file system has a directory tree structure.
This is just like the users file organization which we studied earlier in Figure 2.1. In OSs with
Unix flavors the root of the root file system is a directory. The root is identified by the directory
. In MS environment it is identified by "n'. The root file system has several subdirectories. OS
creates disk partitions to allocate files for specific usages. A certain disk partition may have
system files and some others may have other user files or utilities. The system files are usually
programs that are executable with .bin in Unix and .EXE extension in MS environment.
Under Unix the following convention is commonly employed.
» Subdirectory usr contain shareable binaries. These may be used both by users and the
system. Usually these are used in read-only mode.
» Under subdirectories bin (found at any level of directory hierarchy) there are executables.
For instance, the Unix commands are under /usr/bin. Clearly, these are shareable
executables.

» Subdirectory shin contains some binaries for system use. These files are used
during boot time and on power-on.

» Subdirectories named lib anywhere usually contain libraries. A lib subdirectory may
appear at many places. For example, as we explain a little later the graphics library which

supports the graphics user interface (GUI) uses the X11 graphics library, and there shall
be a lib subdirectory under directory X11.

» Subdirectory etc contains the host related files. It usually has many subdirectories to store
device, internet and configuration related information. Subdirectory hosts stores internet
addresses of hosts machines which may access this host. Similarly, config subdirectory
maintains system configuration information and inet subdirectory maintains internet
configuration related information. Under subdirectory dev, we have all the 10 device
related utilities.

» Subdirectories mnt contain the device mount information (in Linux).

» Subdirectories tmp contain temporary files created during file operation. When you use
an editor the OS maintains a file in this directory keeping track of all the edits. Clearly
this is its temporary residence.

» Subdirectories var contain files which have variable data. For instance, mail and system

log information keeps varying over time. It may also have subdirectories for spools.
Spools are temporary storages. For instance, a file given away for printing may be
spooled to be picked up by the printer. Even mails may be spooled temporarily.
» All X related file support is under a special directory X11. One finds all X11 library files
under a lib directory within this directory.
» A user with name u name would find that his files are under /nome/u name. This is also
the home directory for the user u name.
» Subdirectories include contain the C header include files.
» A subdirectory marked as yp (a short form for yellow pages) has network information.
Essentially, it provides a database support for network operations.
One major advantage of the root file system is that the system knows exactly where to look for
some specific routines. For instance, when we give a command, the system looks for a path
starting from the root directory and looks for an executable file with the command name
specified (usually to find it under one of the bin directories). Users can customize their
operational environment by providing a definition for an environment variable PATH which
guides the sequence in which the OS searches for the commands. Unix, as also the MS
environment, allows users to manage the organization of their files.
One of the commands which helps to view the current status of files is the Is command inUnix or

the command dir in MS environment.

1.7 Block-based File Organization

Recall we observed in chapter 1 that disks are bulk data transfer devices (as opposed to
character devices like a keyboard). So data transfer takes place from disks in blocks as large as
512 or 1024 bytes at a time. Any file which a user generates (or retrieves), therefore, moves in
blocks. Each operating system has its own block management policy. We shall study the general
principles underlying allocation policies. These policies map each linear byte stream into disk
blocks. We consider a very simple case where we need to support a file system on one disk. Note
a policy on storage management can heavily influence the performance of a file system (which in
turn affects the throughput of an OS). File Storage allocation policy: Let us assume we know
apriori the sizes of files before their creation. So this information can always be given to OS
before a file is created. Consequently, the OS can simply make space available. In such a
situation it is possible to follow a pre-allocation policy: find a suitable starting block so that the
file can be accommodated in a contiguous sequence of disk blocks. A simple solution would be

to allocate a sequence of contiguous blocks as shown in Figure 2.3.

Files:

File_1 { size 1145 bytas)
File_2 { size 4060 bytes)

| 1| File_3 (size TOO byvtes)
|

| | File_4 { siza 5000 bytas)
1

| i

Figure 2.5: Contignons allocation

The numbers 1, 2, 3 and 4 denote the starting blocks for the four files. One clear advantage of
such a policy is that the retrieval of information is very fast. However, note that pre-allocation
policy requires apriori knowledge. Also, it is a static policy. Often users' needs develop over time
and files undergo changes. Therefore, we need a dynamic policy.

Chained list Allocation: There are two reasons why a dynamic block allocation policy is
needed. The first is that in most cases it is not possible to know apriori the size of a file being
created. The second is that there are some files that already exist and it is not easy to find
contiguous regions. For instance, even though there may be enough space in the disk, yet it may
not be possible to find a single large enough chunk to accommodate an incoming file. Also,

users' needs evolve and a file during its lifetime undergoes changes. Contiguous blocks leave no
room for such changes. That is because there may be already allocated files occupying the
contiguous space.

In a dynamic situation, a list of free blocks is maintained. Allocation is made as the need arises.
We may even allocate one block at a time from a free space list. The OS maintains a chain of
free blocks and allocates next free block in the chain to an incoming file. This way the finally
allocated files may be located at various positions on the disk. The obvious overhead is the
maintenance of chained links. But then we now have a dynamically allocated disk space. An

example is shown in Figure 2.4.

l_;.I +__: |-.. |-4| :a-I. |.__:
4 +_l | |i_l§| H_h Free
: il -h-—F"'i"{'_rHEpace
1 < [REH! hi 1| List
: :_|:::::::::::::':. ____________ :_JI.E_ __________ : i :
N - | =] |-rad | 11| Files :
N DN | e— [|File_1 (size 1145 bytes)
A1 R 4 Ml
P I File_2 (size 4060 bytes)
|- 3 Lo _ _
i -I ldi | |-+t | File_3 (size 700 bytes)
S | File_4 (size 9000 bytas)

Figura 2.4: Chained allocation

Chained list allocation does not require apriori size information. Also, it is a dynamic allocation
method. However, it has one major disadvantage: random access to blocks is not possible.

Indexed allocation: In an indexed allocation we maintain an index table for each file in its very
first block. Thus it is possible to obtain the address information for each of the blocks with only
one level of indirection, i.e. from the index. This has the advantage that there is a direct access to

every block of the file. This means we truly operate in the direct access mode at the block level.

|

| Files:

yd
| | || | |File_1 (size 1145 bytes)
| A Y |

| 13- . : :
File_ 2 (size 4060 bytes)
/ _....--"'"'ﬂf - { ’

]
[+]
B

7 File_3 (size 700 bytes)

Figure 2.5: Indexed allocation

In Figure 2.5 we see that File-2 occupies four blocks. Suppose we use a block 12 to store the
starting addresses of these four blocks, then from this index we can access any of the four parts
of this file. In a chained list arrangement we would have to traverse the links. In Figure 2.5 we
have also shown D to denote the file's current directory. All files have their own index blocks. In
terms of storage the overhead of storing the indices is more than the overhead of storing the links
in the chained list arrangements. However, the speed of access compensates for the extra
overhead.

Internal and external Fragmentation: In mapping byte streams to blocks we assumed a block
size of 1024 bytes. In our example, a file (File 1) of size 1145 bytes was allocated two blocks.
The two blocks together have 2048 bytes capacity. We will fill the first block completely but the
second block will be mostly empty. This is because only 121 bytes out of 1024 bytes are used.
As the assignment of storage is by blocks in size of 1024 bytes the remaining bytes in the second
block cannot be used. Such non-utilization of space caused internally (as it is within a file's
space) is termed as internal fragmentation. We note that initially the whole disk is a free-space
list of connected blocks. After a number of file insertions and deletion or modifications the free-
space list becomes smaller in size. This can be explained as follows. For instance, suppose we
have a file which was initially spread over 7 blocks. Now after a few edits the file needs only 4
blocks. This space of 3 blocks which got released is now not connected anywhere. It is not
connected with the free storage list either. As a result, we end up with a hole of 3 blocks which is
not connected anywhere. After many file edits and operations many such holes of various sizes
get created. Suppose we now wish to insert a moderately large sized file thinking that adequate
space should be still available. Then it may happen that the free space list has shrunk so much

that enough space is not available. This may be because there are many unutilized holes in the
disk. Such non-utilization, which is outside of file space, is regarded as external fragmentation. A
file system, therefore, must periodic all perform an operation to rebuild free storage list by
collecting all the unutilized holes and linking them back to free storage list. This process is called
compaction. When you boot a system, often the compaction gets done automatically. This is
usually a part of file system management check. Some run-time systems, like LISP and Java,

support periodic automatic compaction. This is also referred to as run-time garbage collection.

1.8 Policies In Practice

MS DOS and OS2 (the PC-based systems) use a FAT (file allocation table) strategy. FAT is a
table that has entries for files for each directory. The file name is used to get the starting address
of the first block of a file. Each file block is chain linked to the next block till an EOF (end of
file) is stored in some block. MS uses the notion of a cluster in place of blocks, i.e. the concept of
cluster in MS is same as that of blocks in Unix. The cluster size is different for different sizes of
disks. For instance, for a 256 MB disk the cluster may have a size of 4 KB and for a disk with
size of 1 GB it may be 32 KB. The formula used for determining the cluster size in MS
environment is disk-size/64K. FAT was created to keep track of all the file entries. To that extent
it also has the information similar to the index node in Unix. Since MS environment uses chained
allocation, FAT also maintains a list of “free" block chains. Earlier, the file names under MS
DOS were restricted to eight characters and a three letter extension often indicating the file type
like BAT or EXE, etc. Usually FAT is stored in the first few blocks of disk space.

An updated version of FAT, called FAT32, is used in Windows 98 and later systems. FAT32
additionally supports longer file names and file compression. File compression may be used to
save on storage space for less often used files. Yet another version of the Windows is available
under the Windows NT. This file system is called NTFS. Rather than having one FAT in the
beginning of disk, the NTFS file system spreads file tables throughout the disks for efficient
management. Like FAT32, it also supports long file names and file compression. Windows 2000
uses NTFS. Other characteristics worthy of note are the file access permissions supported by
NTFS.

Unix always supported long file names and most Unix based systems such as Solaris and almost
all Linux versions automatically compress the files that have not been used for long. Unix uses
indexed allocation. Unix was designed to support truly large files. We next describe how large
can be large files in Unix. Unix file sizes: Unix was designed to support large-scale program
development with team effort. Within this framework, it supports group access to very large files

at

Data Block U]

MODE
CAHNEER
CREATE TIME

MODIEY TTME
SIZE

Data Block O]
—— Data Block 0]

LINE COUNT
DIFEECT ELOCE
DIFEECTT ELOTE

L Data Elock 0

4+— = Data Block 0]
DIERCT BLOCK '

SIMNG. THNDIE. ' . -
DOUE. IHDIE. ; L T { Data Elock n|
TREIEF. THDIE. '

Level Blocks Evtes J 1 . Tata Elock 0]

Direct 10 10 K
S1.Ind. 2gg 255 K
Do.Ind. 256+%256 &5 Mega —
Tr.Ind. 256*55 M 16 Giga

OO

4'-1 Data Block nf

=

Figure 2.6: Storage allocation m Uhanc

very high speeds. It also has a very flexible organization for files of various sizes. The
information about files is stored in two parts. The first part has information about the mode of
access, the symbolic links, owner and times of creation and last modification.

The second part is a 39 byte area within the inode structure. These 39 bytes are 13, 3 byte
address pointers. Of the 39 bytes, first 10 point to the first 10 blocks of a file. If the files are
longer then the other 3, 3 byte addresses are used for indirect indexing. So the 11th 3 byte
address points to a block that has pointers to real data. In case the file is still larger then the 12th
3 byte address points to an index. This index in turn points to another index table which finally
point to data. If the files are still larger then the 13w 3 byte address is used to support a triple
indirect indexing. Obviously, Unix employs the indexed allocation. In Figure 2.6 we assume a
data block size of 1024 bytes. We show the basic scheme and also show the size of files

supported as the levels of indirection increase.

Physical Layout of Information on Media: In our discussions on file storage and management
we have concentrated on logical storage of files. We, however, ignored one very important
aspect. And that concerns the physical layout of information on the disk media. Of course, we
shall revisit aspects of information map on physical medium later in the chapter on 10 device
management. For now, we let us examine Figures 2.7 and 2.8 to see how information is stored,
read, and written in to a disk.

In Figure 2.7, tracks may be envisaged as rings on a disk platter. Each ring on a platter is capable
of storing 1 bit along its width. These 1 bit wide rings are broken into sectors, which serve as

blocks. In Section 2.6 we essentially referred to these as blocks.

A sootor .]
I —] R::-sfd
) T r:—l_,f’ Write
Rings [: :j Heads
—= —al
e— = I“"""-.
Flatter [0] The arms
Cylinder [] :]
T —
Spindle L b . 1

Mote that the rings on the disk platters on the spindle form a eylinder.
Since all heads are on a particular ring at the same time, so it is easy
to crganiss information on a evlinder. The information is stored in the
ssotors that can be identifisd on the rings. sectors are seperatsd from
each other. All sectors can hold squal amount of information.

Figure 2.7: Information storage organisation on disks

Preamble Sync Syne ECC
25 51 25 1 512 6 22
Header Pre—amble Data bvtes Post—amble

The numbers are in bytes

Figure 2.8: Information storage in sectors

This break up into sectors is necessitated because of the physical nature of control required to let
the system recognize, where within the tracks blocks begin in a disk. With disks moving at a
very high speed, it is not possible to identify individual characters as they are laid out. Only the
beginning of a block of information can be detected by hardware control to initiate a stream of

bits for either input or output. The read-write heads on the tracks read or write a stream of data

along the track in the identified sectors. With multiple disks mounted on a spindle as shown in
Figure 2.7, it helps to think of a

Cylinder formed by tracks that are equidistant from the center. Just imagine a large number of
tracks, one above the other, and you begin to see a cylinder. These cylinders can be given
contiguous block sequence numbers to store information. In fact, this is desirable because then
one can access these blocks in sequence without any additional head movement in a head per
track disk. The question of our interest for now is: where is inode (or FAT block) located and
how it helps to locate the physical file which is mapped on to sectors on tracks which form

cylinders.

1.8.1 Disk Partitions

Disk-partitioning is an important notion. It allows a better management of disk space. The basic
idea is rather simple. If you think of a disk as a large space then simply draw some boundaries to
keep things in specific areas for specific purposes. In most cases the disk partitions are created at
the time the disc is formatted. So a formatted disk has information about the partition size.

In Unix oriented systems, a physical partition of a disk houses a file system. Unix also allows
creating a logical partition of disk space which may extend over multiple disk drives. In either
case, every partition has its own file system management information. This information is about
the files in that partition which populate the file system. Unix ensures that the partitions for the
system kernel and the users files are located in different partitions (or file systems). Unix systems
identify specific partitions to store the root file system, usually in root partition. The root
partition may also co-locate other system functions with variable storage requirements which we
discussed earlier in section 1.6. The user files may be in another file system, usually called home.
Under Linux, a proc houses all the executable processes.

Under the Windows system too, a hard disk is partitioned. One interesting conceptual notion is to
make each such partition that can be taken as a logical drive. In fact, one may have one drive and
by partitioning, a user can make the OS offer a possibility to write into each partition as if it was
writing in to a separate drive. There are many third-party tools for personal computer to help
users to create partitions on their disks. Yet another use in the PC world is to house two
operating system, one in each partition. For instance, using two partitions it is possible to have

Linux on one and Windows on another partition in the disk. This gives enormous flexibility of

operations. Typically, a 80 GB disk in modern machines may be utilized to house Windows XP
and Linux with nearly 40 GB disk available for each.

Yet another associated concept in this context, is the way the disk partitions are mounted on a
file system. Clearly, a disk partition, with all its contents, is essentially a set of organized
information. It has its own directory structure. Hence, it is a tree by itself. This tree gets
connected to some node in the overall tree structure of the file system and forks out. This is
precisely what mounting means. The partition is regarded to be mounted in the file system. This
basic concept is also carried to the file servers on a network. The network file system may have
remote partitions which are mounted on it. It offers seamless file access as if all of the storage
was on the local disk. In modern systems, the file servers are located on networks somewhere
without the knowledge of the user. From a user's standpoint all that is important to note is that as
a user, his files are a part of a large tree structure which is a file system.

1.8.2 Portable storage

There are external media like tapes, disks, and floppies. These storage devices can be physically
ported. Most file systems recognize these as on-line files when these are mounted on an 10
device like a tape drive or a floppy drive. Unix treats these as special files. PCs and MAC OS
recognize these as external files and provide an icon when these are mounted.

In this chapter we have covered considerable ground. Files are the entities that users deal with
all the time. Users create files, manage them and seek system support in their file management
activity. The discussion here has been to help build up a conceptual basis and leaves much to be
covered with respect to specific instructions. For specifics, one should consult manuals. In this
very rapidly advancing field, while the concept does not change, the practice does and does at a
phenomenal pace.

Unit-3

Processes and Process management

1.1 Introduction to Processes and Process management
1.1.1 What is a Process
1.2 Main Memory Management
1.2.1 Files and 10 Management
1.2.2 Process Management
1.3 Processor Utilization
1.3.1 Response Time
1.4 Process States
1.5 A Queuing Model
1.6 Scheduling
1.7 Choosing a Policy
1.7.1 Policy Selection
1.7.2 Comparison of Policies
1.7.3 Pre-emptive Policies
1.8 How to Estimate Completion Time
1.9 Exponential Averaging Technique
1.10 Multiple Queues Schedules
1.10.1 Two Level Schedules
1.11 Kernel Architecture
1.11.1 System Calls
1.12 Layered Design
1.13 The Virtual Machine Concept
1.14 System Generation
1.15 Linux: An Introduction
1.15.1 The Linux Distribution
1.15.2 Linux Design Considerations

1.15.3 Components of Linux

1.1 Introduction to Processes and Process management

a process is a program in execution. In this module we shall explain how a process comes into
existence and how processes are managed.

A process in execution needs resources like processing resource, memory and 10 resources.
Current machines allow several processes to share resources. In reality, one processor is shared
amongst many processes. In the first module we indicated that the human computer interface
provided by an OS involves supporting many concurrent processes like clock, icons and one or
more windows.A system like a file server may even support processes from multiple users. And
yet the owner of every process gets an illusion that the server (read processor) is available to
their process without any interruption. This requires clever management and allocation of the
processor as a resource. In this module we shall study the basic processor sharing mechanism
amongst processes.

1.1.1 Whatis a Process

As we know a process is a program in execution. To understand the importance of this
definition, let’s imagine that we have written a program called my_prog.c in C. On execution,
this program may read in some data and output some data. Note that when a program is
written and a file is prepared, it is still a script. It has no dynamics of its own i.e, it cannot
cause any input processing or output to happen. Once we compile, and still later when we run
this program, the intended operations take place. In other words, a program is a text script
with no dynamic behavior. When a program is in execution, the script is acted upon. It can
result in engaging a processor for some processing and it can also engage in I/O operations. It
is for this reason a process is differentiated from program. While the program is a text script,

a program in execution is a process.

Text file Program in C

static in nature

\ 4

Compiler

Executable ‘

dynamic behaviour a.out

In other words, To begin with let us define what is a “process” and in which way a process
differs from a program. A process is an executable entity — it’s a program in execution. When we
compile a C language program we get an a.out file which is an executable file. When we seek to
run this file — we see the program in execution. Every process has its instruction sequence.
Clearly, therefore, at any point in time there is a current instruction in execution.

A program counter determines helps to identify the next instruction in the sequence. So process
must have an inherent program counter. Referring back to the C language program — it’s a text
file. A program by itself is a passive entity and has no dynamic behavior of its own till we create
the corresponding process. On the other hand, a process has a dynamic behavior and is an active
entity.

Processes get created, may have to be suspended awaiting an event like completing a certain 1/0.
A process terminates when the task it is defined for is completed. During the life time of a
process it may seek memory dynamically. In fact, the malloc instruction in C precisely does that.
In any case, from the stand point of OS a process should be memory resident and, therefore,
needs to be stored in specific area within the main memory. Processes during their life time may
also seek to use 1/0 devices.

For instance, an output may have to appear on a monitor or a printed output may be needed. In
other words, process management requires not only making the processor available for execution
but, in addition, allocates main memory, files and 10. The process management component then
requires coordination with the main memory management, secondary memory management, as
well as, files and 1/0. We shall examine the memory management and 1/O management issues

briefly here. These topics will be taken up for more detailed study later.

1.2 Main Memory Management

As we observed earlier in the systems operate using Von-Neumann’s stored program concept.
The basic idea is that an instruction sequence is required to be stored before it can be executed.
Therefore, every executable file needs to be stored in the main memory.

In addition, we noted that modern systems support multi-programming. This means that more
than one executable process may be stored in the main memory. If there are several programs
residing in the memory, it is imperative that these be appropriately assigned specific areas.

Main Memory

Legend:

Process files

Main memory management
The OS needs to select one amongst these to execute. Further these processes have their data
areas associated with them and may even dynamically seek more data areas. In other words, the
OS must cater to allocating and de-allocating memory to processes as well as to the data required
by these processes. All processes need files for their operations and the OS must manage these as

well.

1.2.1 Files and 10 Management

On occasions processes need to operate on files. Typical file operations are:
1. Create: To create a file in the environment of operation
2. Open: To open an existing file from the environment of operation.
3. Read: To read data from an opened file.
4. Write: To write into an existing file or into a newly created file or it may be to modify or

append or write into a newly created file.

o

Append: Like write except that writing results in appending to an existing file.

6. Modify or rewrite: Essentially like write — results in rewriting a file.

7. Delete: This may be to remove or disband a file from further use.
OS must support all of these and many other file operations. For instance, there are other file
operations like which applications or users may be permitted to access the files. Files may be
“owned” or “shared”. There are file operations that permit a user to specify this. Also, files may
be of different types. For instance, we have already seen that we may have executable and text
files. In addition, there may be image files or audio files. Later in this course you will learn about
various file types and the file operations on more details. For now it suffices to know that one
major task OSs perform related to management of files.

1.2.2 Process Management

Multi-Programming and Time Sharing: To understand processes and management, we begin
by considering a simple system with only one processor and one user running only one program,
prog_1 shown in fig 3.1 (a).

Proc. 10 P, 10
Figure -2 tonly prog_| & running
Figure 3.1(a): Multiple-program Processing
We also assume that 10 and processing takes place serially. So when an 10 is required the
processor waits for 10 to be completed .When we input from a keyboard we are operating at a
speed nearly a million times slower than that of a processor. So the processor is idle most of
time. Even the fastest 10 devices are at least 1000 times slower than processors, i.e, a processor
is heavily underutilized as shown in fig 3.1.
Recall that Von Neumann computing requires a program to reside in main memory to run.
Clearly, having just one program would result in gross underutilization of the processor.

Let us assume that we now have two ready to run programs

1 [0 for | 1 I fior |
____________ g Of S 1 & S
Proc. j- 10) 'E . T)
__________ | o o, L2 [oy
Wait | Proc. | Wait | Proc. |

Figure — b rog_| and prog_2 are running
o o

Processing [0 Operation

Figure 3.1(b): Multiple-program Processing

Consider two programs prog_1 and prog_2 resident in the main memory. When prog_1 may be
seeking the 10 we make the processor available to run prog_2 that is we may schedule the
operation of prog_2.Because the processor is very much faster compared to all other devices, we
will till end up with processor waiting for 10 to be completed as shown in fig 3.1(b). In this case
we have two programs resident in main memory. A multi-programming OS allows and manages

several programs to be simultaneously resident in main memory.

1.3 Processor Utilization

Processor Utilization: A processor is a central and a key element of a computer system. This is so
because all information processing gets done in a processor. So a computer's throughput depends
upon the extent of utilization of its processor. The greater the utilization of the processor, larger

is the amount of information processed.

O e L . 2 o i i
Figure— b prog L and prog 2 are cunmng
Frocoesming ________ 10 Operatien . Waiting for pooesor

In the light of the above let us briefly review this figure above. In a uni-programming system
(figure a) we have one program engaging the processor. In such a situation the processor is idling
for very long periods of time. This is so because 10 and communication to devices (including
memory) takes so much longer. In figure above we see that

during intervals when prog_1 is not engaging the processor we can utilize the processor to run
another ready to run program. The processor now processes two programs without significantly
sacrificing the time required to process prog_1. Note that we may have a small overhead in
switching the context of use of a processor. However, multiprogramming results in improving
the utilization of computer's resources. In this example, with multiple programs residing in the
memory, we enhance the memory utilization also!!.

When we invest in a computer system we invest in all its components. So if any part of the
system is idling, it is a waste of resource. Ideally, we can get the maximum through put from a

system when all the system components are busy all the time. That then is the goal.

Multiprogramming support is essential to realize this goal because only those programs that are

resident in the memory can engage devices within in a system.

1.3.1 Response Time

So far we have argued that use of multiprogramming increases utilization of processor and other
elements within a computer system. So we should try to maximize the number of ready-to-run
programs within a system. In fact, if these programs belong to different users then we have
achieved sharing of the computer system resource amongst many users. Such a system is called a
time sharing system.

We had observed that every time we switch the context of use of a processor we have some
overhead. For instance, we must know where in the instruction sequence was the program
suspended. We need to know the program counter (or the instruction address) to resume a
suspended program. In addition, we may have some intermediate values stored in registers at the
time of suspension. These values may be critical for subsequent instructions. All this information
also must be stored safely somewhere at the time of suspension (i.e. before context of use is
switched). When we resume a suspended program we must reload all this information (before we
can actually resume). In essence, a switch in the context of use has its overhead. When the
number of resident user programs competing for the same resources increases, the frequency of
storage, reloads and wait periods also increase. If the over heads are high or the context
switching is too frequent, the users will have to wait longer to get their programs executed. In
other words, response time of the system will become longer. Generally, the response time of a
system is defined as the time interval which spans the time from the last character input to the
first character of output. It is important that when we design a time sharing system we keep the
response time at some acceptable level. Otherwise the advantage of giving access to, and
sharing, the resource would be lost. A system which we use to access book information in a
library is a time-shared system. Clearly, the response time should be such that it should be
acceptable, say a few seconds. A library system is also an online system .In an online system,
devices (which can include instrumentation in a plant) are continuously monitored (observed) by
the computer system . If in an online system the response time is also within some acceptable
limits then we say it is a real-time system. For instance, the airlines or railway booking office

usually has a real-time online reservation system.

A major area of research in OS is performance evaluation. In performance evaluation we study
the percentage utilization of processor time, capacity utilization of memory, response time and of

course, the throughput of the overall computer system.

1.4 Process States

Process States: In the previous example we have seen a few possibilities with regards to the
operational scenarios. For instance, we say that a process is in run state (or mode) when it is
engaging the processor. It is in wait state (or mode) when it is waiting for an 10 to be completed.
It may be even in wait mode when it is ready-to-run but the processor may not be free as it is
currently engaged by some other process.

Each of such identifiable states descry be current operational conditions of a process. A study of
process states helps to model the behavior for analytical studies.

For instance, in a simplistic model we may think of a five state model. The five states are: new-

process, ready-to-run, running, waiting-on-10 and exit. The names are self-explanatory.

i=patch RUNNING

NEW To
PROCESS L

erminzte

e WAITING T
enter FOR
ready 10 EXTIT
Lo run =tate
I
Complet ed
Figure 3.3

Figure 3.3: Modeling Process States

The new process is yet to be listed by an OS to be an active process that can be scheduled to
execute. It enters the ready to run state when it is identified for future scheduling. Only then it
may run. Once a processor is available then one of the ready to run processes may be chosen to
run. It moves to the state “running”. During this run it may be timed out or may have to wait for

an 10 to be completed. If it moves to the state of waiting for 10 then it moves to ready to run

state when the 10 is completed. When a process terminates its operation it moves to exit state.
All of these transitions are expressed in the figure 3.3 above.

Process States: Management Issues

Process states: Management issues an important point to ponder is: what role does an OS play as
processes migrate from one state to another? When a process is created the OS assigns it an id
and also creates a data structure to record its progress. At some point in time OS makes this
newly created process ready to run. This is a change in the state of this new process. With
multiprogramming there are many ready to run processes in the main memory. The process data
structure records state of a process as it evolves. A process marked as ready to run can be
scheduled to run. The OS has a dispatcher module which chooses one of the ready to run
processes and assigns it to the processor. The OS allocates a time slot to run this process. OS
monitors the progress of every process during its life time. A process may, or may not, run for
the entire duration of its allocated time slot. It may terminate well before the allocated time
elapses or it may seek an 10. Sometimes a process may not be able to proceed till some event
occurs. Such an event is detected as a synchronizing signal. Such a signal may even be received
from some other process. When it waits for an 10 to be completed, or some signal to arrive, the
process is said to be blocked .OS must reallocate the processor now. OS marks this process as
blocked for 10. OS must monitor all the 10 activity to be able to detect completion of some 10 or
occurrence of some event. When that happens, the OS modifies the process data structure for one
of the blocked processes and marks it ready to run. So, we see that OS maintains some data
structures for management of processes. It modifies these data structures. In fact OS manages all

the migrations between process states.

1.5 A Queuing Model

A Queuing Model: Data structures play an important role in management of processes. In
general an OS may use more than one data structure in the management of processes. It may
maintain a queue for all ready to run processes. It may maintain separate queues for blocked
processes. It may even have a separate queue for each of the likely events (including completion
of 10). This formulation shown in the figure 3.4 below is a very flexible model useful in
modeling computer system operations. This type of model helps in the study and analysis of
chosen OS policies.

Dispatch RUNNING

Mtess BEDY B G

N
g4 . o Froces=zor
@i===—==a"
PN

~,

t
ready . EXIT
C | I"_
TR 07
T [~ - 1
I P
Event—1

Figure 3.4: Queues-based Model

As an example, let us consider a first-come-first-served policy for ready-to-run queue. In such a
case, processes enjoin the tail end of ready-to-run queue. Also, the processor is assigned to the
process at the head of ready-to-run queue. Suppose we wish to compare this policy with another
policy in which some processes have a higher priority over other processes. A comparison of
these two policies can be used to study the following:

* The average and maximum delays experienced by the lowest priority process.
* Comparison of the best response times and throughputs in the two cases.

* Processor utilization in the two cases. And so on.

This kind of study can offer new insights. As an example, it is important to check what level of
prioritization leads to a denial of service (also called starvation).The maxi mum delay for the
lowest priority process increases as the range of priority difference increases. So at some
threshold it may be unacceptably high. It may even become infinity. There may always be a
higher priority process in the ready-to-run queue. As a result lower priority processes have no

chance to run. That is starvation.

1.6 Scheduling

The OS maintains the data for processes in various queues. The OS keeps the process
identifications in each queue. These queues advance based on some policy. These are usually

referred to as scheduling policies.

To understand the nature of OS's scheduling policies, let us examine a few situations we
experience in daily life. When we wish to buy a railway ticket at the ticket window, the queue is
processed using an “all customers are equal policy " i.e. first-come-first-served (FCFS).
However, in a photocopy shop, customers with bulk copy requirements are often asked to wait.
Some times their jobs are interrupted in favor of shorter jobs. The operators prefer to quickly
service short job requests. This way they service a large number of customers quickly. The
maximum waiting time for most of the customers is reduced considerably. This kind of
scheduling is called shortest job first policy. In a university department, the secretary to the
chairman of department always preempts any one's job to attend to the chairman'’s copy requests.
Such a pre-emption is irrespective of the size of the job (or even its usefulness sometimes). The
policy simply is priority based scheduling. The chairman has the highest priority. We also come
across situations,

Typically in driving license offices and other bureaus, where applications are received till a
certain time in the day (say 11:00 a.m.). All such applications are then taken as a batch. These
are processed in the office and the outcome is announced for all at the same time (say 2:00 p.m.).
Next batch of applications are received the following day and that batch is processed next. This
kind of scheduling is termed batch processing.

In the context of processes we also need to understand preemptive and non-preemptive
operations. Non-preemptive operations usually proceed towards completion uninterrupted. In a
non-preemptive operation a process may suspend its operations temporarily or completely on its
own. A process may suspend its operation for 10 or terminate on completion. Note neither of
these suspensions is forced upon it externally. On the other hand in a preemptive scheduling a
suspension may be enforced by an OS. This may be to attend to an interrupt or because the
process may have consumed its allocated time slot and OS must start execution of some other
process. Note that each such policy affects the performance of the overall system in different

ways.

1.7 Choosing a Policy

Depending upon the nature of operations the scheduling policy may differ. For instance, in a
university set up, short job runs for student jobs may get a higher priority during assigned

laboratory hours. In a financial institution processing of applications for investments may be

processed in batches. In a design department projects nearing a deadline may have higher
priority. So an OS policy may be chosen to suit situations with specific requirements. In fact,
within a computer system we need a policy to schedule access to processor, memory, disc, 10
and shared resource (like printers). For the present we shall examine processor scheduling

policies only.

1.7.1 Policy Selection

A scheduling policy is often determined by a machine's configuration and usage. We consider
processor scheduling in the following context:

* We have only one processor in the system.

* We have a multiprogramming system i.e. there may be more than one ready-to run program
resident in main memory.
* We study the effect (of the chosen scheduling policy) on the following:

o The response time to users

o The turnaround time (The time to complete a task).

o The processor utilization.

o The throughput of the system (Overall productivity of the system)

o The fairness of allocation (includes starvation).

o The effect on other resources.
A careful examination of the above criterion indicates that the measures for response time and
turn around are user centered requirements. The processor utilization and throughput are system
centered considerations. Last two affect both the users and system. It is quite possible that a
scheduling policy satisfies users’ needs but fails to utilize processor or gives a lower throughput.
Some other policy may satisfy system centered requirements but may be poor from user’s point
of view. This is precisely what we will like to study. Though ideally we strive to satisfy both the
user's and system's requirements, it may not be always possible to do so. Some compromises
have to be made. To illustrate the effect of the choice of a policy, we evaluate each policy for
exactly the same operational scenario. So, we set to choose a set of processes with some pre-
assigned characteristics and evaluate each policy. We try to find out to what extent it meets a set

criterion. This way we can compare these policies against each other.

1.7.2 Comparison of Policies

We begin by assuming that we have 5 processes pl through p5 with processing time

requirements as shown in the figure below at 3.5 (A).

* The jobs have run to completion.
* No new jobs arrive till these jobs are processed.
* Time required for each of the jobs is known apriori.

* During the run of jobs there is no suspension for 10 operations.

PROCESS NUMEER TIME TC RESFOND
PL [P2 [P3 [P4 | PS | Ay | (B Pl [P2 [P3 [P | PS
TIME |20 [10 |25 |15 | 5 TIME |20 [30 |55 |70 | 75
THE PROCESSES FOR PROCESSING FCES [QUEUE) ORDER : P1,P2, P3, P4. PS5
AVERAGE TIME TO COMPLETE : 50
| Pl |Ep2 | E3 | P4 P9
GANTT CHART
TIME TG RESPOND TIME TC RESPOND
P3 [PL[P2 [BS [P4 | () | (D) Ps [F2 [P4 [PL [P3
TIME |25 [45 |55 |60 | 75 TIME |5 |[15 |30 |50 | 75

SHORTEST ICE FIRST : F1,F2, B3, B+ FS
AVERAGE TIME TO COMPLETE : 35

PRICRITY QUEUE: F3,Fl1,P2, BS, B
AVERAGE TIME TO COMPLETE : 52

| P3 | Pl | P2|PY P4 | [efp2 | P4 | PL | P3
GANTT CHART GANTT CHART

Figure 3.5: Comparison of three non-preemptive scheduling policies

We assume non-preemptive operations for comparison of all the cases. We show the processing
of jobs on a Gantt chart. Let us first assume processing in the FCFS or internal queue order i.e.
pl, p2, p3, p4 and p5 (see 3.5(B)). Next we assume that jobs are arranged in a priority queue
order (see3.5(C)). Finally, we assume shortest job first order. We compare the figures of merit
for each policy. Note that in all we process 5 jobs over a total time of 75 time units. So

throughput for all the three cases is same. However, the results are the poorest (52 units) for

priority schedule,