Title | Introduction to Java

Author

R. Morelli and R. Walde
Trinity College
Hartford, CT

Acknowledgement

The University acknowledges with thanks to NPTEL and the author for providing the study material on
NPTEL portal under Creative Commons Attribution-ShareAlike - CC BY-SA.

This course on Digital Electronics, available at Open Textbook Library repository(
https://open.umn.edu/opentextbooks) under licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0, is adopted by Uttarakhand Open University from for Master of
Computer Applications program. All copyrights belong to their respective owners.



http://creativecommons.org/licenses/by-sa/4.0/

Contents

0 Computers, Objects, and Java 1
0.1 Welcome ......... i 2
0.2 WhatlsaComputer? . ..........c.ouiine.n. 2
0.3 Networks, the Internet and the World Wide Web . ... . .. 4
0.4 Why Study Programming? .................... 6
0.5 Programming Languages .................... 7
0.6 Why Jdava? .........cciiiiiiiiiiinn. 9
0.7 What Is Object-Oriented Programming? ............ 11

1 Java Program Design and Development 23
1.1 Introduction . ........... .. i 24
1.2 Designing Good Programs . .. ................. 24
1.3 Designing aRiddle Program . .................. 26
1.4 JavalanguageElements..................... 34
1.5 Editing, Compiling, and Running a Java Program ...... 48
1.6 From the Java Library: System and

PrintStream . ......... . ... ... . . .. 52

2 Objects: Using, Creating, and Defining 61
2.1 Introduction . ....................... e 62
2.2 Using String Objects .................. .e. 62
2.3 Drawing Shapes with a Graphics Object (Optional) ... 66
2.4 Class Definition . . .................... ... 69
2.5 CASE STUDY: Simulating a Two-Person Game . . .. .. 76
2.6 From the Java Library: java.util.Scanner. . . .. ... 90

3 Methods: Communicating with Objects 101
3.1 Introduction.............. ... .. ....... ..102
3.2 Passing Information to an Object .............. ..102
3.3 ConstructorMethods . .. .................. ..109
3.4 Retrieving Information from an Object........... 114
3.5 Passing a Value and Passing a Reference . ......... ..118
3.6 Flow of Control: Control Structures . ............ 121
3.7 Testing an Improved OneRowNim .. ............ ..130
3.8 From the Java Library java.lang.Object . . .. ... ..135

3.9 Object-Oriented Design: Inheritance and Polymorphism  ..136
3.10 Drawing Lines and Defining Graphical Methods (Optional) 138

4 Input/Output: Designing the User Interface 149
4.1 Introduction............ ... ... ... ..150



4.2 TheUserinterface ....................
4.3 A Command-Line Interface ..............
4.4 A Graphical User Interface (GUI) . ..........
4.5 Case Study: The One Row Nim Game ........
4.6 From the Java Library: java.io.File

and File Input (Optional) .. ..............

5 Java Data and Operators

5.1 Introduction.......................

5.2 Boolean Data and Operators . .............

5.3 Numeric Data and Operators .............

5.4 From the Java Library java.lang.Math . .. ...

5.5 Numeric Processing Examples ............

5.6 From the JavaLibrary
java.text.NumberFormat .. ...........

5.7 Character Data and Operators . ............

5.8 Example: Character Conversions . ..........

5.9 Problem Solving = Representation + Action . . . ..

6 Control Structures
6.1 Introduction.......................
6.2 Flow of Control: Repetition Structures .. ... ...
6.3 CountingLoops............covvv....
6.4 Example:CarlLoan ...................

6.5 Graphics Example: Drawing a Checkerboard . . ..

6.6 Conditional Loops ...................
6.7 Example: Computing Averages ... .........
6.8 Example: Data Validation ...............
6.9 Principles of Loop Design ...............
6.10 The switch Multiway Selection Structure . . . . ..
6.11 OBJECT-ORIENTED DESIGN:

Structured Programming . . ..............

7 Strings and String Processing
7.1 Introduction .......................
7.2 StringBasics . .......... ... o oL
7.3 Finding Things Withina String ............
7.4 Example: Keyword Search . ..............

7.5 From the Java Library: java.lang.StringBuffer . . . .

7.6 Retrieving Parts of Strings .. .. ...........

7.7 Example: Processing Names and Passwords . . ..

7.8 Processing Each Characterina String .. .....
7.9 Comparing Strings .. ...
7.10 From the Java Library:

java.util.StringTokenizer . .. .............
7.11 Handling Text in a Graphics Context

Optional) ................ ...

8 Inheritance and Polymorphism
8.1 Introduction.......................
8.2 Java’s Inheritance Mechanism.............

CONTENTS



CONTENTS

9

10

11

12

8.3 Abstract Classes, Interfaces,

and Polymorphism ................

8.4 Example: A Toggle Button .. ........
8.5 Example: The Cipher Class Hierarchy

8.6 Case Study: A Two Player Game Hiera
8.7 Principles Of Object-Oriented Design .

Arrays and Array Processing

9.1 Introduction......................

9.2 One-Dimensional Arrays . ..........
9.3 Simple Array Examples ............

rchy...........

9.4 Example: Counting Frequencies of Letters . ..........

9.5 Array Algorithms: Sorting . .. ........
9.6 Array Algorithms: Searching ........
9.7 Two-Dimensional Arrays . ..........
9.8 Multidimensional Arrays (Optional) . . .
9.9 OBJECT-ORIENTED DESIGN:
Polymorphic Sorting (Optional) . . .. ..
9.10 From the Java Library: java.util.Vector .

9.11 Case Study: An N-Player Computer Game ..........
9.12 A GUI-Based Game (Optional Graphics) ............

Exceptions: When Things Go Wrong

10.1 Introduction . .. ...

10.2 Handling Exceptional Conditions . . . ..
10.3 Java’s Exception Hierarchy .........
10.4 Handling Exceptions Within a Program
10.5 Error Handling and Robust
ProgramDesign..................
10.6 Creating and Throwing Your Own
Exceptions......................
10.7 From the Java Library: JOptionPane . .

Files and Streams: Input/Output Techniques
11.1 Introduction . .. ....... .

11.2 Streamsand Files ................

11.3 CASE STUDY: Reading and Writing Text Files ........

11.4 TheFileClass ...................

11.5 Example: Reading and Writing Binary Files ... .. .. ...
11.6 Object Serialization: Reading and Writing Objects .. ....

11.7 From the Java Library
javax.swing.JFileChooser ..........

11.8 Using File Data in Programs . . . . . ..............

Recursive Problem Solving

12.1 Introduction . .. ....... ... oo,

12.2 Recursive Definition ..............
12.3 Recursive String Methods ..........
12.4 Recursive Array Processing ........
12.5 Example: Drawing (Recursive) Fractals

347
353
357
363
384

393
394
394
401
403
406
414
417
426

428
430
431
437

459
460
460
462
466

477

487
489

499
500
500
505
518
521
530

535
536

545
546
549
551
563
569



CONTENTS

12.6 OBJECT-ORIENTED DESIGN:

TallRecursion .......... ... 573
12.7 OBJECT-ORIENTED DESIGN:

Recursionor lteration? . ..................... 574
12.8 From the Java Library:

javax.swing.JComboBOX ............. ... ... 577

13 Graphical User Interfaces 591
13.1Introduction.......... ... ... ... 592
13.2 Java GUIs: From AWTtoSwing .. ............... 592
13.3 The Swing ComponentSet.................... 595
13.4 OBJECT-ORIENTED DESIGN:

Model-View-Controller Architecture . ............. 596
13.5The Java EventModel ...................... 598
13.6 CASE STUDY: Designinga BasicGUI ............. 602
13.7 Containers and Layout Managers . ............... 614
13.8 Checkboxes, Radio Buttons, and Borders ........... 620
13.9 Menus and ScrollPanes ..................... 629

14 Threads and Concurrent Programming 643
14.1 Introduction . .. ... . 644
142 WhatlsaThread? . ........................ 644
14.3 From the Java Library: java.lang.Thread . ... ... .. 648
14.4 Thread Statesand LifeCycle . ... ............... 654
14.5 Using Threads to Improve
Interface Responsiveness ................ 656
14.6 CASE STUDY: Cooperating Threads .............. 664
14.7 CASE STUDY: The Game of Pong . . .............. 679

15 Sockets and Networking 693
15.1 Introduction . . . ... ... . 694
15.2 An Overview of Networks . . .................. 694
15.3 Using Multimedia Network Resources for a Graphical Pro-
gram ... 700
15.4 From the Java Library: java.netURL .. .......... 701
15.5 The Slide Show Program . .................... 704
15.6 Adding Text Network Resources for an
Application .......... .. ... ... .. 708
15.7 Client/Server Communication via Sockets . .. ....... 719
15.8 CASE STUDY: Generic Client/Server Classes . . ....... 724
15.9 Playing One Row Nim Over the Network . . . ... ..... 732
15.10Java Network Security Restrictions . . ............. 741
15.11Java Servlets and Java ServerPages . . ............. 742

16 Data Structures: Lists, Stacks, and Queues 757
16.1 Introduction . . ... 758
16.2 The Linked List Data Structure ................. 758
16.3 OBJECT-ORIENTED DESIGN:
The List Abstract Data Type (ADT) ............... 770
16.4The Stack ADT .. ...ttt 776
16.5The Queue ADT . ... oottt 778



CONTENTS

m O O @ >»

T

16.6  From the Java Library: The Java Collections Framework

and Generic TYPeS ... cvvii e
16.7 Using the Set and Map Interfaces ...............
16.8 The Binary Search Tree Data Structure . ............

Coding Conventions

The Java Development Kit

The ASCII and Unicode Character Sets
Java Keywords

Operator Precedence Hierarchy

Java Inner Classes

Java Autoboxing and Enumeration

Java and UML Resources

801

809

819

821

823

825

831

837



C

hapter O

Computers, Objects,

a

nd Java

OBJECTIVES
After studying this chapter, you will

Understand basic computer terminology that will be used throughout the book.
Become familiar with the notion of programming.

Understand why Java is a good introductory programming language.
Become familiar with Java objects and classes.

Know some of the principles of the object-oriented programming approach.

OUTLINE
0.1 Welcome
0.2 What Is a Computer?
Special Topic: Processors Then and Now
0.3 Networks, the Internet and the World Wide Web
0.4 Why Study Programming?
0.5 Programming Languages
0.6 Why Java?
0.7 What Is Object-Oriented Programming?

Chapter Summary
Exercises



Figure 1: A diagram of the main
functional components in a com-
puter system. The arrows
indicate the flow of information
between various components.

2 CHAPTER O Computers, Objects, and Java
0.1 Welcome

Welcome to Java, Java, Java, a book that introduces you to object-
oriented programming using the Java language. When considering the
purpose of this text, three important questions might come to mind: Why
study programming? Why study Java? What is object-oriented
programming? This chapter will address these questions. First, we
provide a brief in-troduction to computers and the Internet and World
Wide Web (WWW). Then, we address why someone would study
programming and we ex-amine types of programming languages. We
introduce the Java program-ming language and conclude the chapter by
exploring object-oriented pro-gramming principles and how Java is an
object-oriented programming language.

0.2 What Is a Computer?

A computer is a machine that performs calculations and processes infor-
mation. A computer works under the control of a computer program, a
set of instructions that tell a computer what to do. Hardware refers to the
electronic and mechanical components of a computer. Software refers to
the programs that control the hardware.

A general-purpose computer of the sort that we will be programming
can store many different programs in its memory. That is what gives it
the ability to perform a wide variety of functions, from word processing to
browsing the Internet. This is in contrast to a special-purpose computer,
such as the one that resides in your microwave oven or the one that
controls your digital watch or calculator. These types of computers
contain control programs that are fixed and cannot be changed.

A computer’s hardware is organized into several main subsystems or
components (Fig. 1).

Central
Processing
Unit Main Memory
(CPU)
Secondary
A Storage
,I, Disk Drive

Input Devices Output Devices CD:\?_DROM
Keyboard Printer
Mouse Monitor
Optical Audio
Scanner Speakers

Output devices provide a means by which information held in the com-
puter can be displayed in some understandable or usable form. Com-mon
output devices include printers, monitors, and audio speakers.



SECTION 0.2What Is a Computer? 3

Input devices bring data and information into the computer. Some of
the more common input devices are the keyboard, mouse,
microphone, and scanner.

Primary memory or main memory of a computer is used to store both
data and programs. This type of memory, which is often called RAM,
short for Random Access Memory, is built entirely out of electronic
components—integrated circuit chips—which makes it extremely fast.
A computer’s main memory is volatile, which means that any informa-
tion stored in it is lost when the computer’s power is turned off. In a
sense, main memory acts as the computer’s scratch pad, storing both
programs and data temporarily while a program is running.

Secondary storage devices are used for long-term or permanent stor-
age of relatively large amounts of information. These devices include
hard drives or magnetic disks, compact disks (CDs), digital video
disks (DVDs), and magnetic tapes. All of these devices are non-
volatile, mean-ing that they retain information when the computer’s
power is turned off. Compared to a computer’s primary memory, these
devices are relatively slow.

The central processing unit (CPU) is the computer’s main engine. The
CPU is the computer’s microprocessor, such as the Intel Pentium pro-
cessor, which serves as the foundation for most Windows PCs, or the
Power-PC processor, which serves as the foundation for Macintosh
computers. The CPU is designed to perform the fetch-execute cycle, Fetch-execute cycle
whereby it repeatedly gets the next machine instruction from memory
and executes it. Under the direction of computer programs (software),
the CPU issues signals that control the other components that make
up the computer system. One portion of the CPU, known as the
arithmetic-logic unit (ALU), performs all calculations, such as addition
and sub-traction, and all logical comparisons, such as when one piece
of data is compared to another to determine if they are equal.

There are two main types of software:

Application software refers to programs designed to provide a
particular task or service, such as word processors, computer games,
spreadsheet programs, and Web browsers.

System software includes programs that perform the basic operations
that make a computer usable. For example, an important piece of
system software is the operating system, which contains programs
that manage the data stored on the computer’s disks.

An operating system assists application software in performing tasks
that are considered primitive or low-level, such as managing the com-
puter's memory and its input and output devices.

Another important thing that the operating system does is to serve as
an interface between the user and the hardware. The operating system
determines how the user will interact with the system, or conversely, how
the system will look and feel to the user. For example, in command-line
systems, such as Unix and DOS (short for Disk Operating System), a
pro-gram is run by typing its name on the command line. By contrast, in



0.3

Client/server computing

4 CHAPTER O Computers, Objects, and Java

graphically based systems, such as Windows and Macintosh, a program
is run by clicking on its icon with the mouse. Thus, this “point-and-click”
interface has a totally different “look and feel” but does the same thing.

Special Topic: Processors Then and Now

To give you some idea of how rapidly computer hardware technology
has advanced, let's compare the first digital processor with one of
today’s models.

The ENIAC (which stood for Electronic Numerical Integrator and Cal-
culator) was developed in 1946 at the University of Pennsylvania primar-
ily for calculating ballistic trajectories for the U.S. Army. ENIAC occupied
more than 640 square feet of floor space and weighed nearly 30 tons. In-
stead of the integrated circuits or chip technology used in today’s
comput-ers, ENIAC’s digital technology was based on over 17,000
vacuum tubes. ENIAC, which could perform around 300 multiplications
per second, ran more than 500 times faster than other computing
machines of that day and age. To program the ENIAC, you would have
to manipulate hundreds of cables and switches. It took two or three days
for a team of several pro-grammers, most of whom were young women,
to set up a single program that would then run for a few seconds.

One of today’s most advanced and powerful processors for desktop
computers is Intel’s Pentium IV processor. This chip contains 42 million
transistors and runs at speeds over 3 GHz (3 gigahertz or 3 billion cycles
per second). The Pentium processor is small enough to fit in a space the
size of your pinky finger’s fingernail. Despite its size, it executes millions
of instructions per second, thereby enabling it to support a huge range of
multimedia applications, including three-dimensional graphics, stream-
ing audio and video, and speech recognition applications. To write pro-
grams for the Pentium, you can choose from a wide range of high-level
programming languages, including the Java language.

Networks, the Internet and
the World Wide

Web

Most personal computers contain software that enables them to be con-
nected to various-sized networks of computers. Networks allow many in-
dividual users to share costly computer resources, such as a high-speed
printer or a large disk drive or application server that is used to store and
distribute both data and programs to the computers on the network. Net-
works can range in size from local area networks (LANSs), which connect
computers and peripherals over a relatively small area, such as within a
lab or a building, through wide area networks (WANS), which can span
large geographic areas, such as cities and nations.

Application servers are just one example of client/server computing, a
computing approach made possible by networks. According to this ap-
proach, certain computers on the network are set up as servers, which pro-
vide certain well-defined services to client computers. For example, one
computer in a network may be set up as the email server, with the responsi-



SECTION 0.3Networks, the Internet and the World Wide Web 5

bility of sending, receiving, and storing mail for all users on the network.
To access their email on the email server, individual users employ client
application software that resides on their desktop computers, such as Out-
look Express or Eudora or Pine. Similarly, another server may be set up as
a Web server, with the responsibility of storing and serving up Web pages
for all the users on the network. Users can run Web browsers, another type
of client software, to access Web pages on the server. Java is particularly
well suited for these types of networked or distributed applications, where
part of the application software resides on a server and part resides on the
client computer.
The Internet (with a capital 1) is a network of networks whose geo-
graphical area covers the entire globe. The World Wide Web (WWW) is
another example of distributed, client/server computing. The WWW is
not a separate physical network. Rather it is a subset of the Internet that
uses the HyperText Transfer Protocol (HTTP). A protocol is a set of rules
and conventions that govern how communication takes place between
two computers. HTTP is a multimedia protocol, which means that it
supports the transmission of text, graphics, sound, and other forms of
information. Certain computers within a network run special software
that enables them to play the role of HTTP (or Web) servers. They store

Web documents and are capable of handling requests for documents
from client browser applications. The servers and clients can be located

anywhere on the Internet.

The documents stored on Web servers are encoded in a special text-
based language known as HyperText Markup Language, or HTML. Web
browsers, such as Netscape’s Navigator and Microsoft’s Internet Explorer,
are designed to interpret documents coded in this language. The language
itself is very simple. Its basic elements are known as tags, which consist

of certain keywords or other text contained within angle brackets, < and
>, For example, if you wanted to italicize text on a Web page, you would

enclose it between the < | > and < =I > tags. Thus, the following HTML
code

B<I>$Italic font$</1>$ can be used for $<I>$emphasis$</I>$

would be displayed by the Web browser as
Italic font can be used for emphasis.

When you use a Web browser to surf the Internet, you repeatedly instruct
your browser to go to a certain location and retrieve a page that is encoded

in HTML. For example, if you typed the following URL (Uniform Resource
Locator)

|http://www.prenhall.com/morelli/index.html

into your browser, the browser would send a message to the Web server
located in the prenhall.com domain—the prenhall portion of this
address specifies Prentice Hall and the com portion specifies the com-
mercial domain of the Internet—requesting that the document named
index.html in the morelli directory be retrieved and sent back to your

www.



Figure 2: WWW: The client’s
browser requests a page from a
Web server. When the HTML doc-
ument is returned, it is interpreted
and displayed by the browser.

6 CHAPTER O Computers, Objects, and Java

Display

HTML HTTP
document

software

Se)

Internet

Browser
software

Server
a document

Request

Client

computer (Fig. 2). The beauty of the Web is that it is possible to embed
text, sound, video, and graphics within an HTML document, making it
possible to download a wide range of multimedia resources through this
(relatively) simple mechanism.

The Web has begun to change business, entertainment, commerce,
and education. The fact that it is possible to download computer games
and other application software from the Web is changing the way
software and other digital products are purchased and distributed.
Similarly, as noted earlier, many businesses have begun to organize
their information systems into intranets—private networks that implement
the HTTP protocol. Cur-rently, one of the biggest areas of development
on the Web is commerce. As consumers become more comfortable that
credit-card information can be securely transmitted over the Web (as it
can over a telephone), the Web will explode as a marketing medium as
powerful, perhaps, as television is today. Because Java has been
designed to support secure, distributed, networked applications, it is
ideally suited to be used as the language for these types of applications.

0.4 Why Study Programming?

A computer program is a set of instructions that directs the computer’s
behavior. Computer programming is the art and science of designing and
writing programs. Years ago it was widely believed that entrance into the
computer age would require practically everyone to learn how to pro-
gram. But this did not prove to be true. Today’s computers come with so
much easy-to-use software that knowing how to use a computer no
longer requires programming skills.

Another reason to study programming might be to enter into a career
as a computer scientist. However, although programming is one of its
primary tools, computer science is a broad and varied discipline, which
ranges from engineering subjects, such as processor design, to
mathemat-ical subjects, such as performance analysis. There are many
computer sci-entists who do little or no programming as part of their
everyday work. If you plan to major or minor in computer science, you
will certainly learn to program, but good careers in the computing field
are available to programmers and nonprogrammers alike.



SECTION 0.5Programming Languages 7

One of the best reasons to study programming is because it is a cre-
ative and enjoyable problem-solving activity. This book will teach you to
develop well-designed solutions to a range of interesting problems. One
of the best things about programming is that you can actually see and
experience your solutions as running programs. As many students have
indicated, there’s really nothing like the kick you get from seeing your
program solving a problem you’ve been struggling with. Designing and
building well-written programs provides a powerful sense of accomplish-
ment and satisfaction. What’s more, Java is a language that makes pro-
gramming even more fun, because once they’re finished, many Java
pro-grams can be posted on the World Wide Web (WWW) for all the
world to see!

0.5 Programming Languages

Most computer programs today are written in a high-level language, such
as Java, C, C++, or FORTRAN. A programming language is considered
high level if its statements resemble English-language statements. For
example, all of the languages just mentioned have some form of an “if”
statement, which says, “if some condition holds, then take some action.”

Computer scientists have invented hundreds of high-level program-
ming languages, although relatively few of these have been put to prac-
tical use. Some of the widely used languages have special features that
make them suitable for one type of programming application or another.
COBOL (COmmon Business-Oriented Language), for example, is still
widely used in commercial applications. FORTRAN (FORmula TRANSsla-
tor) is still preferred by some engineers and scientists. C and C++ are still
the primary languages used by operating system programmers.

In addition to having features that make them suitable for certain types
of applications, high-level languages use symbols and notation that make
them easily readable by humans. For example, arithmetic operations in
Java make use of familiar operators such as “+” and “ ” and “/”, so that

arithmetic expressions look more or less the way they do in algebra. So,
to take the average of two numbers, you might use the expression

€ +b) /2 |

The problem is that computers cannot directly understand such expres-
sions. In order for a computer to run a program, the program must first
be translated into the computer’s machine language, which is the language
understood by its CPU or microprocessor. Each type of microprocessor
has its own particular machine language. That’s why when you buy soft-
ware it runs either on a Macintosh, which uses the Power-PC chip, or on a
Windows machine, which uses the Pentium chip, but not on both. When a Platform independence
program can run on just one type of chip, it is known as platform dependent.
In general, machine languages are based on the binary code, a two-
valued system that is well suited for electronic devices. In a binary repre-
sentation scheme, everything is represented as a sequence of 1’'s and 0’s,
which corresponds closely to the computer’s electronic “on” and “off”
states. For example, in binary code, the number 13 would be repre-



8 CHAPTER O Computers, Objects, and Java

sented as 1101. Similarly, a particular address in the computer’'s memory
might be represented as 01100011, and an instruction in the computer’s
instruction set might be represented as 001100.

The instructions that make up a computer’'s machine language are
very simple and basic. For example, a typical machine language might
in-clude instructions for ADD, SUBTRACT, DIVIDE, and MULTIPLY, but
it wouldn’t contain an instruction for AVERAGE. In most cases, a single
in-struction, called an opcode, carries out a single machine operation on
one or more pieces of data, called its operands. Therefore, the process
of av-eraging two numbers would have to be broken down into two or
more steps. A machine language instruction itself might have something
sim-ilar to the following format, in which an opcode is followed by several
operands, which refer to the locations in the computer’s primary memory
where the data are stored. The following instruction says ADD the num-
ber in LOCATIONL to the number in LOCATIONZ2 and store the result in
LOCATIONS:

Opcode Operand 1 Operand 2 Operand 3
011110 110110 111100 111101
(ADD)  (LOCATION1) (LOCATION2) (LOCATION 3)
Given the primitive nature of machine language, an expression like

(a + b)=2 would have to be translated into a sequence of several machine
language instructions that, in binary code, might look as follows:

011110110110111100111101
000101000100010001001101
001000010001010101111011

In the early days of computing, before high-level languages were de-
veloped, computers had to be programmed directly in their machine
languages, an extremely tedious and error-prone process. Imagine how
difficult it would be to detect an error that consisted of putting a 0 in the
preceding program where a 1 should occur!

Fortunately, we no longer have to worry about machine languages, be-
cause special programs can be used to translate a high-level or source
code program into machine language code or object code, which is the
only code that can be executed or run by the computer. In general, a pro-
gram that translates source code to object code is known as a translator
(Fig. 3). Thus, with suitable translation software for Java or C++ we can write
programs as if the computer could understand Java or C++ directly.

Source code translators come in two varieties. An interpreter trans-
lates a single line of source code directly into machine language and ex-
ecutes the code before going on to the next line of source code. A com-
piler translates the entire source code program into executable object
code, which means that the object code can then be run directly without
further translation.

There are advantages and disadvantages to both approaches. Inter-
preted programs generally run less efficiently than compiled programs,



SECTION 0.6 Why Java? 9

High-level Machine
language language
T 000110101
(a+h)2 ‘ Translator 101000110
L software 101000110
Source Object
code code

because they must translate and execute each line of the program
before proceeding to the next line. If a line of code is repeated, an
interpreter would have to translate the line each time it is encountered.
By contrast, once compiled, an object program is just executed without
any need for further translation. It is also much easier to refine compiled
code to make it run more efficiently. But interpreters are generally
quicker and easier to develop and provide somewhat better error
messages when things go wrong. Some languages that you may have
heard of, such as BASIC, LISP, and Perl, are mostly used in interpreted
form, although compilers are also available for these languages.
Programs written in COBOL, FORTRAN, C, C++, and Pascal are
compiled. As we will see in the next section, Java programs use both
compilation and interpretation in their translation process.

0.6 Why Java?

Originally named “Oak” after a tree outside the office of its developer,
James Goslin, Java is a relatively young programming language. It was
initially designed by Sun Microsystems in 1991 as a language for em-
bedding programs into electronic consumer devices, such as microwave
ovens and home security systems. However, the tremendous popularity
of the Internet and the World Wide Web (WWW) led Sun to recast Java
as a language for embedding programs into Web-based applications. As
you recall, the Internet is a global computer network, and the WWW is
that portion of the network that provides multimedia access to a vast
range of information. Java has become one of the most important
languages for Web and Internet applications.

Java has also generated significant interest in the business
community, where it is has proved to have tremendous commercial
potential. In addi-tion to being a useful tool for helping businesses to
promote their products and services over the Internet, Java is also a
good language for distribut-ing software and providing services to
employees and clients on private corporate networks or intranets.

Because of its original intended role as a language for programming
mi-croprocessors embedded in consumer appliances, Java has been
designed with a number of interesting features:

Java is object oriented. Object-oriented languages divide programs
into separate modules, called objects, that encapsulate the program’s
data and operations. Thus, object-oriented programming (OOP) and

Figure 3: Translator software
translates high-level source code
to machine language object code.

object-oriented design (OOD) refer to a particular way of organizing pro- Object-oriented Languages



Platform independence

10 CHAPTER O Computers, Objects, and Java

grams, one which is rapidly emerging as the preferred approach for
building complex software systems. Unlike the C++ language, in
which object-oriented features were grafted onto the C language,
Java was designed from scratch as an object-oriented language.

Java is robust, meaning that errors in Java programs don’t cause system

crashes as often as errors in other programming languages. Certain

features of the language enable many potential errors to be detected
before a program is run.
Java is platform independent. A platform, in this context, is just a
particu-lar kind of computer system, such as a Macintosh or Windows
system. Java’s trademark is “Write once, run anywhere.” This means
that a Java program can be run without changes on different kinds of
computers. This is not true for other high-level programming
languages. This porta-bility — the ability to run on virtually any platform
—is one reason that Java is well suited for WWW applications.
Java is a distributed language, which means that its programs can be
designed to run on computer networks. In addition to the language it-self,
Java comes with an extensive collection of code libraries—software that
has been designed to be used directly for particular types of
applications—that make it particularly easy to build software systems for
the Internet and the WWW. This is one of the reasons why Java is so well
suited for supporting applications on corporate networks.
Java is a secure language. Designed to be used on networks, Java
con-tains features that protect against untrusted code—code that
might in-troduce a virus or corrupt your system in some way. For
example, once they are downloaded into your browser, Web-based
Java pro-grams are prevented from reading and writing information
from and to your desktop computer.

Despite this list of attractive features, perhaps the best reason for
choosing Java as an introductory programming language is its potential
for bring-ing fun and excitement into learning how to program. There are
few other languages in which a beginning programmer can write a
computer game or a graphically based application that can be distributed
on a Web page to just about any computer in the world. The simplicity of
Java’'s design and its easily accessible libraries bring such
accomplishments within reach of the most novice programmers.

For example, we will work on projects throughout the text that involve
games and puzzles. We start out in Chapter 2 by designing very simple
games that involve storing and retrieving data. As we learn more sophisti-
cated programming techniques, we gradually build more complexity into the
games and puzzles. For example, we learn how to create interactive, two-
person games in Chapter 4. In Chapter 8, we develop some games and
puzzles that are played on virtual game boards. Finally, in Chapter 14 we
learn how to introduce games with multiple players on different com-puters.

To get a look at where we are headed you might want to visit the
authors’ companion Web site:

http:/lwww.cs.trincoll.edu/ram/jjj/



SECTION 0.7What Is Object-Oriented Programming? 11
0.7 What Is Object-Oriented Programming?

Java is an object-oriented (OO) language, and this book takes an object-
oriented approach to programming. So before beginning our discussion
of Java, it is important that we introduce some of the underlying con-
cepts involved in object-oriented programming. We need to talk about
what an object is, how objects are grouped into classes, how classes are
related to each other, and how objects use messages to interact with
and communicate with each other.

0.7.1 Basic Object-Oriented Programming Metaphor:
Interacting Objects

A Java program, and any object-oriented program, is a collection of inter-
acting objects that models a collection of real-world

objects. Think of the model that a kitchen designer might use to layout
your new kitchen (Fig. 4). It will contain objects that represent the various
kitchen appliances and cabinets. Each object in the model is a simplified

version of the corresponding real object. For example, a rectangle might
be used to represent the refrigerator.

A kitchen model is mostly static. It doesn’t change. Once put into place,
its various objects just stand there in a certain relation to each other. By
contrast, a computer program is dynamic. It changes. It does things and
performs certain actions. The objects in a computer program communi-cate
with each other and they change over time. In this respect, the objects that
make up our computer programs are very anthropomorphic, a big word that
means “like people.” If we are eating together and | want you to pass me the
salt, | say, “Please pass me the salt,” and you invariably comply. Similarly,
when you (Student X) put your ATM card into an ATM machine, the ATM
object asks the bank’s database object “Give me Student X’s bank account
object” and the database invariably complies. If you tell the ATM you want to
withdraw $100 dollars it tells your bank account object to deduct $100 from
your current balance. And so it goes. Both you and your bank account are
changed objects as a result of the transaction.

0.7.2 What is an Object?

So what is an object? Just as in the real world, an object is any thing
whatsoever. An object can be a physical thing, such as a Car, or a mental
thing, such as an Idea. It can be a natural thing, such as an Animal, or an
artificial, human-made thing, such as a ATM. A program that manages an
ATM would involve BankAccounts and Customer objects. A chess program
would involve a Board object and ChessPiece objects.

Throughout this text, we will use the notation shown in Figure 5 to
depict objects and to illustrate object-oriented concepts. The notation is
known as the Unified Modeling Language, or UML for short, and it is a
standard in the object-oriented programming community. As the diagram
shows, an object is represented by a rectangle whose label consists of
the object’s (optional) id and its type. An object’s id is the name by which
it is referred to in the computer program. In this case we show a ATM
object, who’s id is not given, and a ChessPiece object, named pawnl.
An object’s label is always underlined.

counter ||( sink ) frig

Etove

counter door

Figure 4: A model of a kitchen.



Figure 5: In UML, objects are rep-
resented by rectangles that are
la-beled with a two-part label of
the form id:Type. The object’s
label is always underlined.

Figure 6: A second patrtition of an
object diagram is used to display
the object’s attributes and their
values.

12 CHAPTER O Computers, Objects, and Java

id:Type ——#An object’s label consists
of its 7 and its Ao

tATM

pawnl:ChessPiece

0.7.3 Attributes and Values

Just as with real objects, the objects in our programs have certain char-
acteristic attributes. For example, an ATM object would have a current
amount of cash that it could dispense. A ChessPiece object might have a
pair of row and column attributes that specify its position on the chess
board. Notice that an object’s attributes are themselves objects. The
ATM’s cash attribute and the chess piece’s row and column attributes
are Numbers.

Figure 6 shows two ATM objects and their respective attributes. As
you can see, an object’s attributes are listed in a second partition of the
UML diagram. Notice that each attribute has a value. So the lobby:ATM
has a $8650.0 in cash, while the drivethru:ATM has only $150.0 in cash.

lobby:ATM drivethru:ATM

cash = 8650.00\ /cash = 150.00

V

#nobject’s attributes and
their values are shownina
second partititon.

We sometimes refer to the collection of an object’s attributes and
values as its state. For example, the current state of the lobby:ATM is
$8650.0 in cash. Of course, this is a gross simplification of an ATM’s
state, which would also include many other attributes. But, hopefully, you
see the point.

0.7.4 Actions and Messages

In addition to their attributes, objects also have characteristic actions or
behaviors. As we have already said, objects in programs are dynamic.
They do things or have things done to them. In fact, programming in
Java is largely a matter of getting objects to perform certain actions for
us. For example, in a chess program the ChessPieces have the ability to
moveTo() a new position on the chess board. Similarly, when a customer
pushes the “Current Balance” button on an ATM machine, this is telling
the ATM to report() the customer’s current bank balance. (Note how we
use parentheses to distinguish actions from objects and attributes.)

The actions that are associated with an object can be used to send mes-
sages to the objects and to retrieve information from objects. A message is
the passing of information or data from one object to another. Figure 7
illustrates how this works. In UML, messages are represented by arrows.



SECTION 0.7What Is Object-Oriented Programming? 13

pawnl:ChessPiece
o> row=2
column= 4

moveTo(3,4)

In this example, we are telling pawnl:ChessPiece to moveTo(3,4). The
numbers 3 and 4 in this case are arguments that tell the pawn what
square to move to. (A chess board has 8 rows and 8 columns and each
square is identified by its row and column coordinates.) In general, an
argument is a data value that specializes the content of a message in
some way. In this example we are telling the pawn to move forward by 1
row. If we wanted the pawn to move forward by 2 rows, we would send
the message moveTo(4,4).

The diagram in Figure 8 depicts a sequence of messages
representing an idealized ATM transaction. First, an ATM customer asks
the ATM ma-chine to report his current balance. The ATM machine in
turn asks the customer’s bank account to report the customer’s balance.
The ATM re-ceives the value $528.52 from the bank account and passes
it along to the customer. In this case, the message does not involve an
argument. But it does involve a result. A result is information or data that
is returned to the object that sent the message.

lobby:ATM
cash = 8650.00

% reportBalance()
—_—

—
customer 528.52

customer:Account

balance = 528.52

Obviously, in order to respond to a message, an object has to know
how to perform the action that is requested. The pawn has to know how
to move to a designated square. The ATM has to know how to find out
the customer’s current balance. Indeed, an object can only respond to
messages that are associated with its characteristic actions and
behaviors. You can’t tell an ATM to move forward 2 squares. And you
can’t ask a chess piece to tell you your current bank balance.

Responding to a message or performing an action sometimes causes
a change in an object’s state. For example, after performing moveTo(3,
4), the pawn will be on a different square. Its position will have changed.
On the other hand, some messages (or actions) leave the object’s state
un-changed. Reporting the customer’s bank account balance doesn'’t
change the balance.

0.7.5 What is a Class?

A class is a template for an object. A class encapsulates the attributes and
actions that characterize a certain type of object. In an object-oriented pro-
gram, classes serve as blueprints or templates for the objects that the pro-

Figure 7: Messages in UML are
represented by labeled arrows. In
this example, we are telling a
pawn to move from its current po-
sition to row 3 column 4.

Figure 8: This UML diagram
illustrates an ATM transaction in
which a customer asks the ATM
machine for his current bal-ance.
The ATM gets this informa-tion
from an object representing the
customer's bank account and
passes it to the customer.



Figure 9: A UML diagram of the
Rectangle class.

14 CHAPTER O Computers, Objects, and Java

Rectangle Class name
length: int  x:int .
—}— Attribut
width: int  y:int BRI
calculateareal): int
| Actions

drawi) =

gram uses. We say that an object is an instance of a class. A good
analogy here is to think of a class as a cookie cutter and its objects, or
instances, as individual cookies. Just as we use the cookie cutter to
stamp out cookies of a certain type, in an object-oriented program, we
use a definition of a class to create objects of a certain type.

Writing an object-oriented program is largely a matter of designing
classes and writing definitions for those classes in Java. Designing a
class is a matter of specifying all of the attributes and behaviors that are
characteristic of that type of object.

For example, suppose we are writing a drawing program. One type of
object we would need for our program is a rectangle. A Rectangle object
has two fundamental attributes, a length and a width. Given these
attributes, we can define characteristic rectangle actions, such as the
ability to calculate its area and the ability to draw itself. Identifying an
object’s attributes and actions is the kind of design activity that goes into
developing an object-oriented program.

Figure 9 shows a UML diagram of our Rectangle class. Like the sym-
bol for an object, a UML class symbol has up to three partitions. Unlike
the UML object symbol, the label for a UML class gives just the class’s
name and it is not underlined. The second partition lists the class’s
attributes and the third partition lists the classes actions. Our rectangle
has four attributes. The first two, x and y, determine a rectangles position
on a two-dimensional graph. The second two, length and width,
determine a rectangle’s dimensions. Note that the attributes have no
values. This is because the class represents a general type of rectangle.
It specifies what all rectangles have in common, without representing
any particular rect-angle. Like a cookie cutter for a cookie, a class gives
the general shape of an object. The content is not included.

0.7.6 Variables and Methods

Up to this point we have been using the terms attribute and action to de-
scribe an object’s features. We will continue to use this terminology
when talking in general about objects or when talking about an object or
class represented by a UML diagram.

However, when talking about a programming language, the more com-
mon way to describe an object’s features are to talk about its variables and
methods. A variable, which corresponds to an attribute, is a named memory
location that can store a certain type of value. You can think of a variable as
a special container that can only hold objects of a certain type. For example,
as Figure 9 shows, Rectangle’s length and width are



SECTION 0.7What Is Object-Oriented Programming? 15

variables that can store a certain type of numeric value known as an int.
An int value is a whole number, such as 76 or -5.

A method, which corresponds to an action or a behavior, is a named
chunk of code that can be called upon or invoked to perform a certain
pre-defined set of actions. For example, in our Rectangle object, the
calculateArea() method can be called upon to calculate the rectan-gle’s
area. It would do this, of course, by multiplying the rectangle’s length by
its width. Similarly, the draw() method can be invoked to draw a picture
of the rectangle. It would take the actions necessary to draw a rectangle
on the console.

0.7.7 Instance versus Class Variables and Methods

Variables and methods can be associated either with objects or their
classes. An instance variable (or instance method) is a variable (or
method) that belongs to an object. By contrast, a class variable (or
class method) is a variable (or method) that is associated with the class
itself. An example will help make this distinction clear.

An instance variable will have different values for different instances.
For example, individual Rectangles will have different values for their
length, width, x, and y variables. So these are examples of instance
variables. The calculateArea() method is an example of an instance
method because it uses the instance’s current length and width values in
its calculation. Similarly, the draw() method is an instance method,
because it uses the object’s length and width to draw the object’s shape.

An example of a class variable would be a variable in the Rectangle
class that is used to keep track of how many individual Rectangles have
been created. (Our drawing program might need this information to help
manage its memory resources.) Suppose we name this variable
nRectangles and suppose we add 1 to it each time a new Rectangle
instance is created.

An example of a method that is associated with the class is a special
method known as a constructor. This is a method used to create an
object. It is used to create an instance of a class. Calling a constructor to
create an object is like pressing the cookie cutter into the cookie dough:
the result is an individual cookie (object).

Figure 10 illustrates these concepts. Note that class variables are un-
derlined in the UML diagram. We have modified the Rectangle class to
include its constructor method, which is hamed Rectangle(). Note that it
takes four arguments, representing the values that we want to give as
the rectangle’s x, y, length and width respectively. Note also how the
Rectangle class’s nRectangles variable has a value of 2, representing
that two Rectangle instances have been created. These are shown as
members of the Rectangle class.

It won’t be obvious to you at this point, but nRectangles is a value that
has to be associated with the Rectangle class, not with its instances. To see
this let's imagine what happens when a new Rectangle instance is created.
Figure 11 illustrates the process. When the Rectangle() constructor is
invoked, its arguments (100, 50, 25, 10) are used by the Rectangle class to
create a Rectangle object located at x=100, y=50 and with a length of 25
and width of 10. The constructor method also increases



Figure 10: The Rectangle class
and two of its instances. Note

that the class variable,
nRectangles, is underlined to
distinguish it from length and

width, the in-stance variables.

Figure 11: Constructing a
Rectangle instance.

Superclass and subclass

16 CHAPTER O Computers, Objects, and Java
Rectangle
nRectangles= 2
length: int %-int
width: int yeint

Rectangle{x:int y:int l:int, w:int)
calculateArea(): int
draw()

rect1:Rectangle rectZ:Rectangle

x =100
v =50

Xx=125
y=75

length = 25
width =10

length = 30
width = 20

the value of nRectangles by 1 as a way of keeping count of how many
objects it has created.

Rectangle
Rectangle{100,50,25,10) nRectangles= 1
* length: int w:int
- width: int yiint
:Rectangle
Rectangle{x:int y:int l:int, w:int)
length =25 x =100 calculatedreal ): int
width=10 v =50 draw()

0.7.8 Class Hierarchy and Inheritance

How are classes related to each other? In Java, and in any other object-
oriented language, classes are organized in a class hierarchy. A class hier-
archy is like an upside-down tree. At the very top of the hierarchy is the
most general class. In Java, the most general class is the Object class. The
classes below Object in the hierarchy are known as its subclasses. Since
all of the objects we use in our programs belong to some class or other,
this is like saying that all objects are Objects.

Figure 12 illustrates the concept of a class hierarchy using the classes
that we have described in this section. Notice that the Object class oc-
curs at the top of the hierarchy. It is the most general class. It has fea-
tures that are common to all Java objects. As you move down the hierar-
chy, the classes become more and more specialized. A Rectangle is an
Obiject but it contains attributes — length and width — that are common
to all rectangles but not to other objects in the hierarchy. For example, an
ATM object does not necessarily have a length and a width. Notice that we
have added a Square class to the hierarchy. A Square is a special type
of Rectangle, namely one who'’s length equals its width.

To introduce some important terminology associated with this kind of
hierarchy, we say that the Rectangle class is a subclass of the Object



SECTION 0.7What Is Object-Oriented Programming? 17
Object

AN

ATM Rectangle ChessPiece |

hierarchy of Java

Square

class. The Square class is a subclass of both Rectangle and Obiject.
Classes that occur above a given class in the hierarchy are said to be its
superclasses. Thus Rectangle class is superclass of the Square class.
The Object class is also a superclass of Square. In general, we say that
a subclass extends a superclass, meaning that it adds additional
elements (attributes and/or methods) to those contained in its
superclasses. We saw this in the case of the Square class. It adds the
feature that its length and width are always equal.

Another important concept associated with a class hierarchy is the no- Class inheritance
tion of class inheritance, whereby a subclass inherits elements (attributes
and/or methods) from its superclasses. To take an example from the nat-
ural world, think of the sort of inheritance that occurs between a horse
and a mammal. A horse is a mammal. So horses inherit the
characteristic of being warm blooded by virtue of also being mammals.
(This is dif-ferent from the kind of individual inheritance whereby you
inherit your mother’s blue eyes and your father’s black hair.)

To illustrate how inheritance works, lets go back to our chess
program. There are several different types of ChessPieces. There are
Pawns, and Knights, and Queens and Kings. Figure 13 illustrates the
chess piece hierarchy. A pair of attributes that all chess pieces have in
common is their row and column position on the chess board. Because
all chess pieces have these attributes in common, they are located at the
top of the ChessPiece hierarchy and inherited by all ChessPiece
subclasses. Of course, the row and column attributes are given different
values in each ChessPiece object.

One of the actions that all chess pieces have in common is that they can
moveTo() a given square on the chess board. But different types of chess
pieces have different ways of moving. For example, a Bishop can only move
along diagonals on the chess board, whereas a Rook can only move along a
row or column on the chess board. So, clearly, we can’t describe a moveTo()
method that will work for all ChessPieces. This is why we put the moveTo()
method in all of the ChessPiece subclasses. The ChessPiece class also has
a moveTo() method, but note that its name is italicized. This indicates that it
cannot be completely defined at that level.

Finally, note that in chess, the king has certain special attributes and
actions. Thus only the king can be put in check. This means that the king is
under attack and in danger of being captured, thereby ending the game.
Similarly, only the king has the ability to castle. This is special move that



Figure 13: The ChessPiece hier-
archy.

18 CHAPTER O Computers, Objects, and Java

The row and column

ChessPiece 3 ; :
) /attnbutes are inherited
The King class has rO\;V 1 by all subclasses.
unique attributes column
and actions. moveTo(r,c) move() is customized
\ Z} /\in each subclass.
Bishop Queen / \ Pawn
21 0
moveTo(r,c) moveTo(r,c) moveTo(r,c)
Knight King Rook
inCheck
moveTo(r,c) moveTo(r,c) moveTo(r,c)
castle()

a king can make together with one of its rooks under certain conditions.
Thus, the reason we show the inCheck attribute and castle() action in the
King class is because these are characteristics that particular to Kings.

In this way, a class hierarchy represents a specialization of classes as
you move from top to bottom. The most general class, ChessPiece, is at
the top of the hierarchy. Its attributes and methods are passed on to
(inher-ited by) its subclasses. However, in addition to the attributes and
methods they inherit from their superclasses, the subclasses define their
own spe-cial attributes and methods. Each of the subclasses, Pawn,
Bishop, and so on, represents some kind of specialization of the
superclass. In this ex-ample, each of the subclasses have their own
distinctive ways of moving. And the King subclass has unique attributes
and actions (inCheck and castle().

0.7.9 Principles of Object-Oriented Design

As we have discussed, an object-oriented program is composed of many
objects communicating with each other. The process of designing an
object-oriented program to solve some problem or other involves several
important principles:

Divide-and-Conquer Principle. Generally, the first step in designing
a program is to divide the overall problem into a number of objects
that will interact with each other to solve the problem. Thus, an object-
oriented program employs a division of labor much as we do in
organiz-ing many of our real-world tasks. This divide-and-conquer
approach is an important problem-solving strategy.

Encapsulation Principle. Once the objects are identified, the next step
involves deciding, for each object, what attributes it has and what ac-tions

it will take. The goal here is to encapsulate within each object



SECTION 0.7What Is Object-Oriented Programming? 19

the expertise needed to carry out its role in the program. Each object
is a self-contained module with a clear responsibility and the tools (at-
tributes and actions) necessary to carry out its role. Just as a dentist
encapsulates the expertise needed to diagnose and treat a tooth
ache, a well-designed object contains the information and methods
needed to perform its role.

Interface Principle. In order for objects to work cooperatively and effi-
ciently, we have to clarify exactly how they should interact, or interface,
with one another. An object’s interface should be designed to limit the
way the object can be used by other objects. Think of how the different
interfaces presented by a digital and analog watch determine how the
watches are used. In a digital watch, time is displayed in discrete units,
and buttons are used to set the time in hours, minutes and seconds. In an
analog watch, the time is displayed by hands on a clock face, and time is
set, less precisely, by turning a small wheel.

Information Hiding Principle. In order to enable objects to work to-
gether cooperatively, certain details of their individual design and per-
formance should be hidden from other objects. To use the watch anal-
ogy again, in order to use a watch we needn’t know how its time keep-
ing mechanism works. That level of detail is hidden from us. Hiding
such implementation details protects the watch’s mechanism, while
not limiting its usefulness.

Generality Principle. To make objects as generally useful as possible,
we design them not for a particular task but rather for a particular kind of
task. This principle underlies the use of software libraries. As we will see,
Java comes with an extensive library of classes that specialize in
performing certain kinds of input and output operations. For example,
rather than having to write our own method to print a message on the
console, we can use a library object to handle our printing tasks.
Extensibility Principle. One of the strengths of the object-oriented
ap-proach is the ability to extend an object’s behavior to handle new
tasks. This also has its analogue in the everyday world. If a company
needs sales agents to specialize in hardware orders, it would be more
eco-nomical to extend the skills of its current sales agents instead of
train-ing a novice from scratch. In the same way, in the object-
oriented ap-proach, an object whose role is to input data might be
specialized to input numeric data.

Abstraction Principle. Abstraction is the ability to focus on the impor-
tant features of an object when trying to work with large amounts of
information. For example, if we are trying to design a floor plan for a
kitchen, we can focus on the shapes and relative sizes of the
appliances and ignore attributes such as color, style, and
manufacturer. The ob-jects we design in our Java programs will be
abstractions in this sense because they ignore many of the attributes
that characterize the real objects and focus only on those attributes
that are essential for solving a particular problem.

These, then, are the principles that will guide our discussion as we learn
how to design and write object-oriented Java programs.



CHAPTER SUMMARY

20 CHAPTER O Computers, Objects, and Java

Technical Terms

action (behavior) constructor object oriented
argument high-level language result

attribute instance source code

class instance method subclass

class inheritance instance variable superclass

class hierarchy interpreter Unified Modeling
class method method Language (UML)
class variable message variable

compiler object

computer program object code

Summary of Important Points

A computer system generally consists of input/output devices, pri-mary
and secondary memory, and a central processing unit. A com-puter can
only run programs in its own machine language, which is based on the
binary code. Special programs known as compilers and in-terpreters
translate source code programs written in a high-level language, such as
Java, into machine language object code programs.
Application software refers to programs designed to provide a
particu-lar task or service; systems software assists the user in using
application software.
The client/server model is a form of distributed computing in which
part of the software for a task is stored on a server and part on client
comput-ers.
HyperText Markup Language (HTML) is the language used to encode
WWW documents.
A Java program is a set of interacting objects. This is the basic
metaphor of object-oriented programming.
An object in a Java program encapsulates the program’s attributes (or
variables) and actions (or methods). A variable is a named memory lo-
cation where data of appropriate type can be stored. A method is a
named section of code that can be called (or invoked) when needed.

An object’s methods are used to pass messages to it.
A class is an abstract template that defines the characteristics and
be-haviors of all objects of a certain type.
An object is an instance of a class. An object has instance methods and
in-stance variables. A class method (or class variable) is a method (or
variable) that is associated with the class itself, not with its instances.

A constructor is a special method that is used to construct objects.

Java classes are organized into a class hierarchy, with the Object
class at the top of the hierarchy. For a given class, classes that occur
below it in the hierarchy are called its subclasses, while classes that
occur above it are called its superclasses.
Classes inherit attributes and methods from their superclasses. This
is known as class inheritance.
The main principles of the object-oriented programming approach are
as follows:
Divide and Conquer: Successful problem solving involves breaking
a complex problem into objects.



CHAPTER OExercises 21

Encapsulation and Modularity: Each object should be assigned a
clear role.
Public Interface: Each object should present a clear public
interface that determines how other objects will use it.
Information Hiding: Each object should shield its users from unnec-
essary details of how it performs its role.

Generality: Objects should be designed to be as general as possible.
Extensibility: Objects should be designed so that their functionality
can be extended to carry out more specialized tasks.
Abstraction is the ability to group a large quantity of information
into a single chunk so it can be managed as a single entity.

EXERCISE 0.1 Fillin the blanks in each of the following statements.

Dividing a problem or a task into parts is an example of the
principle.
Designing a class so that it shields certain parts of an object from other objects
isan exampleofthe_____ principle.

c. Java programs that can run without change on a wide variety of computers is
an example of .

d. The fact that social security numbers are divided into three parts is an example
ofthe——______ principle.

e. To say that a program is robust means that .

f. An is a separate module that encapsulates a Java program’s

attributes and actions.

EXERCISE 0.2 Explain the difference between each of the following pairs of
concepts.

hardware and software

systems and application software

compiler and interpreter

machine language and high-level language
general-purpose and special-purpose computer
primary and secondary memory

the CPU and the ALU

the Internet and the WWW

a client and a server

HTTP and HTML

source and object code

EXERCISE 0.3 Fill in the blanks in each of the following statements.

a. A isasetofinstructions that directs a computer’s behavior.
b. A disk drive would be an example of a device.

c. Amouseisanexampleofan—____ device.

d. A monitor is an example of an device.

e. The computer’s functions like a scratch pad.

f. Javais an example of a programming language.

. The Internet is a network of

«

EXERCISES



22 CHAPTER O  Computers, Objects, and Java

h. The protocol used by the World Wide Web is the protocol.
i. Web documents are written in code.
i A is a networked computer that is used to store data for other

computers on the network.

EXERCISE 0.4 Identify the component of computer hardware that is responsi-
ble for the following functions.

executing the fetch-execute cycle

arithmetic operations

executing instructions

storing programs while they are executing

storing programs and data when the computer is off

EXERCISE 0.5 Explain why a typical piece of software, such as a word proces-
sor, cannot run on both a Macintosh and a Windows machine.

EXERCISE 0.6 What advantages do you see in platform independence? What
are the disadvantages?

EXERCISE 0.7 In what sense is a person’s name an abstraction? In what sense
is any word of the English language an abstraction?

EXERCISE 0.8 Analyze the process of writing a research paper in terms of the
divide-and-conquer and encapsulation principles.

EXERCISE 0.9 Analyze your car by using object-oriented design principles. In
other words, pick one of your car’s systems, such as the braking system, and
ana-lyze it in terms of the divide-and-conquer, encapsulation, information-hiding,
and interface principles.

EXERCISE 0.10 Make an object oriented analysis of the interaction between, a
student, librarian, and a library database when a student checks a book out of a
college library.



Chapter 1

Java Program Design
and Development

OBJECTIVES

After studying this chapter, you will

Know the basic steps involved in program development.
Understand some of the basic elements of the Java language.
Know how to use simple output operations in a Java program.
Be able to distinguish between different types of errors in a

program.
Understand how a Java program is translated into machine language.

Understand the difference between a Java console application and a
Java Swing application.

Know how to edit, compile, and run Java programs.

OUTLINE

1.1 Introduction
1.2 Designing Good Programs
1.3 Designing a Riddle Program
Special Topic: Grace Hopper and the First Computer
Bug 1.4 Java Language Elements
1.5 Editing, Compiling, and Running a Java Program
1.6  From the Java Library: System and PrintStream
1.7 From the Java Library: System and PrintStream
Chapter Summary
Solutions to Self-Study Exercises
Exercises

23



CHAPTER 1 Java Program Design and Development

1.1 Introduction

This chapter introduces some of the basic concepts and techniques in-
volved in Java program design and development. We begin by identi-
fying the main steps in designing an object-oriented program. The steps
are illustrated by designing a program that “asks” and “answers” riddles.
As an example of a riddle, consider the question “What is black and
white and read all over?” The answer, of course, is a newspaper.
Following the design phase, we then focus on the steps involved in
coding a Java program, including the process of editing, compiling, and
running a pro-gram. Because Java programs can be text based
applications or window based graphical applications, we describe how
the coding process differs for these two varieties.

Next we begin to familiarize ourselves with Java’s extensive class li-
brary by studying its PrintStream and System classes. These classes
contain objects and methods that enable us to print output from a pro-
gram. By the end of the chapter you will be able to design and write a
Java application that “sings” your favorite song.

1.2 Designing Good Programs

Programming is not simply a question of typing Java code. Rather, it in-
volves a considerable amount of planning and careful designing. Badly
designed programs rarely work correctly. Even though it is tempting for
novice programmers to start entering code almost immediately, one of
the first rules of programming is

NANVAEIRIe el VIVIIN[ERRIEE The sooner you begin to type code,
the longer the program will take to finish, because careful design of
the program must precede coding. This is particularly true of
object-oriented programs.

In other words, the more thought and care you put into designing a pro-
gram, the more likely you are to end up with one that works correctly.
The following subsections provide a brief overview of the program
develop-ment process.

1.2.1 The Software Engineering Life Cycle

Software engineering is the process of designing and writing software. The
software life cycle refers to the different phases involved in the design and
development of a computer program. Our presentation of examples in the
book will focus on four phases of the overall life cycle. In the spec-ification
phase we provide a statement of the problem and a detailed de-scription of
what the program will do. In the design phase we describe the details of the
various classes, methods, and data that will be used in the program. The
implementation phase refers to the actual coding of the program into Java.
In the testing phase we test the program’s performance to make sure it is
correct, recoding it or redesigning it as necessary.

Figure 1.1 gives a more detailed overview of the program development
process, focusing most of the attention on the design phase of the software



SECTION 1.2Designing Good Programs 25

life cycle. It shows that designing an object-oriented program is a matter
of asking the right questions about the classes, data, and methods that
make up the program.

Overall, the program development process can be viewed as one that
repeatedly applies the divide-and-conquer principle. That is, most pro-
gramming problems can be repeatedly divided until you have a collection
of relatively easy-to-solve subproblems, each of which can be handled
by an object. In this way the program is divided into a collection of
interact-ing objects. For each object we design a class. During class
design, each object is divided further into its variables and methods.

Problem Specification
What exactly is the problem? Program Development
How will the program be used? Process
How will the program behave?
Problem Decomposition o
. . The problem is divided
What ObjeCtS will be used and how <—— into Objects_ For each
will they interact with each other? ‘ object we design a class.
|
;- ¥ » N
Class Design
What role or roles will the object perform? The object's role
What variables (attributes) will it need? decomposes into
What methods (behaviors) will it use? tasks. Each task
What interface will it present? can be assigned to
What information will it hide? a method.
Data Design Method Design
What types of instance variables What task will the method perform?
are needed? What information will it need?
Should they be public or private? What algorithm will it use?
/ What result will it produce?
Algorithm Design Method design involves
What information is needed? designing an algorithm.
What control structures are needed?

!

Coding into Java

Stepwise refinement | | Errors may require
Fixing syntax errors h recoding or
J redesigning.

Testing, Debugging, Revising

Designing test data and test cases
Fixing semantic errors

When should we stop subdividing? How much of a task should be
assigned to a single object or a single method? The answers to these and
similar questions are not easy. Good answers require the kind of judg-ment
that comes through experience, and frequently there is more than one good
way to design a solution. Here again, as we learn more about

Divide and conquer

Figure 1.1: An overview of the
program development process.



Divide and conquer

CHAPTER 1 Java Program Design and Development

object-oriented programming, we’ll learn more about how to make these
design decisions.

1.3 Designing a Riddle Program

The first step in the program-development process is making sure you
un-derstand the problem (Fig. 1.1). Thus, we begin by developing a
detailed specification, which should address three basic questions:

What exactly is the problem to be
solved? How will the program be used?
How should the program behave?

In the real world, the problem specification is often arrived at through an
extensive discussion between the customer and the developer. In an
introductory programming course, the specification is usually assigned
by the instructor.

To help make these ideas a little clearer, let's design an object-
oriented solution to a simple problem.

Problem Specification. Design a class that will represent a riddle
with a given question and answer. The definition of this class should
make it possible to store different riddles and to retrieve a riddle’s
question and answer independently.

1.3.1 Problem Decomposition

Most problems are too big and too complex to be tackled all at once. So
the next step in the design process is to divide the problem into parts that
make the solution more manageable. In the object-oriented approach, a
problem is divided into objects, where each object will handle one specific
aspect of the program’s overall job. In effect, each object will become an
expert or specialist in some aspect of the program’s overall behavior.

Note that there is some ambiguity here about how far we should go in
decomposing a given program. This ambiguity is part of the design
process. How much we should decompose the program before its parts
become “simple to solve” depends on the problem we're trying to solve
and on the problem solver.

One useful design guideline for trying to decide what objects are
needed is the following:

NN =S =GN\ =RpI=SI[€IN L ooking for Nouns. Choosing a
program’s objects is often a matter of looking for nouns in the problem
specification.

Again, there’s some ambiguity involved in this guideline. For example,
the key noun in our current problem is riddle, so our solution will involve
an object that serves as a model for a riddle. The main task of this Java
object will be simply to represent a riddle. Two other nouns in the spec-
ification are question and answer. Fortunately, Java has built-in String



SECTION 1.3Designing a Riddle Program 27

objects that represent strings of characters such as words or sentences.
We can use two String objects for the riddle’s question and answer.
Thus, for this simple problem, we need only design one new type of
object—a riddle—whose primary role will be to represent a riddle’s
guestion and answer.

Don’t worry too much if our design decisions seem somewhat myste-rious
at this stage. A good understanding of object-oriented design can come only
after much design experience, but this is a good place to start.

1.3.2 Object Design

Once we have divided a problem into a set of cooperating objects, de-
signing a Java program is primarily a matter of designing and creating
the objects themselves. In our example, this means we must now design
the features of our riddle object. For each object, we must answer the
following basic design questions:

What role will the object perform in the program?
What data or information will it need?
What actions will it take?
What interface will it present to other objects?
What information will it hide from other objects?

For our riddle object, the answers to these questions are shown in
Fig-ure 1.2. Note that although we talk about “designing an object,” we
are really talking about designing the object’s class. A class defines the
col-lection of objects that belong to it. The class can be considered the
ob-ject’s type. This is the same as for real-world objects. Thus,
Seabiscuit is a horse—that is, Seabiscuit is an object of type horse.
Similarly, an individ-ual riddle, such as the newspaper riddle, is a riddle.
That is, it is an object of type Riddle.

The following discussion shows how we arrived at the decisions for
the design specifications for the Riddle class, illustrated in Figure 1.2.

Class Name: Riddle

Role: To store and retrieve a question and

answer Attributes (Information)

question: A variable to store a riddle’s question (private)
answer: A variable to store a riddle’s answer (private)

Behaviors

Riddle(): A method to set a riddle’s question and answer

getQuestion(): A method to return a riddle’s question

getAnswer(): A method to return a riddle’s answer

Figure 1.2: Design specification
for the Riddle class.

The role of the Riddle object is to model an ordinary riddle. Because What is the object’s role?

a riddle is defined in terms of its question and answer, our Riddle ob-
ject will need some way to store these two pieces of information. As we
learned in Chapter 0, an instance variable is a named memory location
that belongs to an object. The fact that the memory location is named,
makes it easy to retrieve the data stored there by invoking the variable’s
name. For example, to print a riddle’s question we would say something
like “print question,” and whatever is stored in question would be
retrieved and printed.



What information will the object

need?

What actions will the object take?

What interface will it present, and

what information will it hide?

28 CHAPTER 1 Java Program Design and Development

In general, instance variables are used to store the information that an
object needs to perform its role. They correspond to what we have been
calling the object’s attributes. Deciding on these variables provides the
answer to the question, “What information does the object need?”

Next we decide what actions a Riddle object will take. A useful design
guideline for actions of objects is the following:

AN SSS=eli=pI=S (el Looking for Verbs. Choosing the
behavior of an object is often  a matter of looking for verbs in the
problem specification.

For this problem, the key verbs are set and retrieve. As specified in Fig-
ure 1.2, each Riddle object should provide some means of setting the
values of its question and answer variables and a means of retrieving each
value separately.

Each of the actions we have identified will be encapsulated in a Java
method. As you recall from Chapter 0, a method is a named section of
code that can be invoked, or called upon, to perform a particular action.
In the object-oriented approach, calling a method (method invocation) is
the means by which interaction occurs among objects. Calling a method
is like sending a message between objects. For example, when we want to
get a riddle’s answer, we would invoke the getAnswer() method. This
is like sending the message “Give me your answer.” One special method,
known as a constructor, is invoked when an object is first created. We will
use the Riddle() constructor to give specific values to riddle’s question
and answer variables.

In designing an object, we must decide which methods should be made
available to other objects. This determines what interface the object should
present and what information it should hide from other objects. In gen-
eral, those methods that will be used to communicate with an object are
designated as part of the object’s interface. Except for its interface, all
other information maintained by each riddle should be kept “hidden”
from other objects. For example, it is not necessary for other objects to
know where a riddle object stores its question and answer. The fact that
they are stored in variables named question and answer, rather than
variables named ques and ans, is irrelevant to other objects.

AN SRR =eqli=pI=s|[ElN]  Object Interface. An object’s interface
should consist of just those methods needed to communicate with or
to use the object.

VAN =SSR =pI=S (€N Information Hiding. An object should
hide most of the details of its implementation.




SECTION 1.3Designing a Riddle Program 29

Taken together, these various design decisions lead to the specification
shown in Figure 1.3. As our discussion has illustrated, we arrived at the
decisions by asking and answering the right questions. In most classes the
attributes (variables) are private. This is represented by a minus sign (). In
this example, the operations (methods) are public, which is represented by
the plus sign (+). The figure shows that the Riddle class has two hidden (or
private) variables for storing data and three visible (or public) methods that
represent the operations that it can perform.

1.3.3 Data, Methods, and Algorithms

Among the details that must be worked out in designing a riddle object is
deciding what type of data, methods, and algorithms we need. There are
two basic questions involved:

What type of data will be used to represent the information needed by
the riddle?
How will each method carry out its task?

Like other programming languages, Java supports a wide range of differ-
ent types of data, some simple and some complex. Obviously a riddle’s
question and answer should be represented by text. As we noted earlier,
Java has a String type, which is designed to store text, which can be
considered a string of characters.

In designing a method, you have to decide what the method will do. In
order to carry out its task, a method will need certain information, which it
may store in variables. Plus, it will have to carry out a sequence of
individual actions to perform the task. This is called its algorithm, which
is a step-by-step description of the solution to a problem. And, finally,
you must decide what result the method will produce. Thus, as in
designing objects, it is important to ask the right questions:

What specific task will the method perform?
What information will it need to perform its task?
What algorithm will the method use?

What result will the method produce?

Methods can be thought of as using an algorithm to complete a required
action. The algorithm required for the Riddle() constructor is very sim-ple
but also typical of constructors for many classes. It takes two strings and
assigns the first to the question instance variable and then assigns the
second to the answer instance variable. The algorithms for the other two
methods for the Riddle class are even simpler. They are referred to as
get methods that merely return or produce the value that is currently
stored in an instance variable.

Not all methods are so simple to design, and not all algorithms are so
simple. Even when programming a simple arithmetic problem, the steps
involved in the algorithm will not always be as obvious as they are when
doing the calculation by hand. For example, suppose the problem were
to calculate the sum of a list of numbers. If we were telling our classmate
how to do this problem, we might just say, “add up all the numbers and
report their total.” But this description is far too vague to be used in a
program. By contrast, here’s an algorithm that a program could use:

1. Set the initial value of the sum to 0.

Riddle
-question: Sthng
-answer: Stiing

+Riddle(q: String, a: String)
+ getQuestion(): String
+ getAnswer(): String

Figure 1.3: A UML class diagram
representing the Riddle class.

What type of data will be used?

How will each method carry out
its task?

Algorithm design



Pseudocode

Sum List of Numbers

54 30 20
3020
20

104 -

Stepwise refinement

CHAPTER 1 Java Program Design and Development

2. If there are no more numbers to total, go to step 5.
3. Add the next number to the sum.

4. Go to step 2.

5. Report the sum.

Note that each step in this algorithm is simple and easy to follow. It would
be relatively easy to translate it into Java. Because English is somewhat
imprecise as an algorithmic language, programmers frequently write al-
gorithms in the programming language itself or in pseudocode, a hy-
brid language that combines English and programming language struc-
tures without being too fussy about programming language syntax. For

fe>ilample, the preceding algorithm might be expressed in pseudocode as
ollows:

sum=0

while (more numbers remain )
add next number to sum

printthe sum

Of course, it is unlikely that an experienced programmer would take
the trouble to write out pseudocode for such a simple algorithm. But
many programming problems are quite complex and require careful de-
sign to minimize the number of errors that the program contains. In such
situations, pseudocode could be useful.

Another important part of designing an algorithm is to trace it—that is,
to step through it line by line—on some sample data. For example, we
might test the list-summing algorithm by tracing it on the list of numbers
shown in the margin.

Initially, the sum starts out at O and the list of numbers contains 54,
30, and 20. On each iteration through the algorithm, the sum increases
by the amount of the next number, and the list diminishes in size. The
algorithm stops with the correct total left under the sum column. While
this trace didn’t turn up any errors, it is frequently possible to find flaws in
an algorithm by tracing it in this way.

1.3.4 Coding into Java

Once a sufficiently detailed design has been developed, it is time to start
generating Java code. The wrong way to do this would be to type the en-
tire program and then compile and run it. This generally leads to dozens
of errors that can be both demoralizing and difficult to fix.

The right way to code is to use the principle of stepwise refinement.
The program is coded in small stages, and after each stage the code is
compiled and tested. For example, you could write the code for a single
method and test that method before moving on to another part of the
pro-gram. In this way, small errors are caught before moving on to the
next stage.

The code for the Riddle class is shown in Figure 1.4. Even though we
have not yet begun learning the details of the Java language, you can
easily pick out the key parts in this program: the instance variables
question and answer of type String, which are used to store the riddle’s
data; the Riddle() constructor and the getQuestion() and



SECTION 1.3 Designing a Riddle Program 31

/

File: Riddle.java

Author: Java, Java, Java

Description: Defines asimple riddle.

/

public clas s Riddle extends Object //class header

f /I Begin class body
private String question; /lIlnstance variables
private String answer;

public Riddle (String q, String a) //constructor method
f

question =q;

answer= a;
g// Riddle()

public String getQuestion() //instance method
f

return question;

g// getQuestion()

public String getAnswer () /l'lnstance method
f
return answer;
g//getAnswer()
g// Riddle class /I End class body

Figure 1.4: The Riddle class definition.

getAnswer() methods make up the interface. The specific language de-
tails needed to understand each of these elements will be covered in this
and the following chapter.

1.3.5 Syntax and Semantics

Writing Java code requires that you know its syntax and semantics. A
language’s syntax is the set of rules that determines whether a partic-
ular statement is correctly formulated. As an example of a syntax rule,
consider the following two English statements:

The rain in Spain falls mainly on the plain. //valid
Spain rain the mainly in onthe falls plain. //invalid

The first sentence follows the rules of English syntax (grammar), and it
means that it rains a lot on the Spanish plain. The second sentence does
not follow English syntax, and, as a result, it is rendered meaningless.
An example of a Java syntax rule is that a Java statement must end with
a semicolon.

However, unlike in English, where one can still be understood even
when one breaks a syntax rule, in a programming language the syntax
rules are very strict. If you break even the slightest syntax rule—for ex-

Syntax



Semantics

Syntax errors

Semantic errors

32 CHAPTER 1 Java Program Design and Development

ample, if you forget just a single semicolon—the program won’t work at
all.

Similarly, the programmer must know the semantics of the language—
that is, the meaning of each statement. In a programming language, a
statement’s meaning is determined by what effect it will have on the pro-
gram. For example, to set the sum to 0 in the preceding algorithm, an as-

signment statement is used to store the value 0 into the memory location
named sum. Thus, we say that the statement

| sum= 0;

assigns 0 to the memory location sum, where it will be stored until some
other part of the program needs it.

Learning Java’s syntax and semantics is a major part of learning to
program. This aspect of learning to program is a lot like learning a for-
eign language. The more quickly you become fluent in the new language
(Java), the better you will be at expressing solutions to interesting pro-
gramming problems. The longer you struggle with Java’s rules and con-
ventions, the more difficult it will be to talk about problems in a common
language. Also, computers are a lot fussier about correct language than
humans, and even the smallest syntax or semantic error can cause tremen-
dous frustration. So, try to be very precise in learning Java’s syntax and
semantics.

1.3.6 Testing, Debugging, and Revising

Coding, testing, and revising a program is an repetitive process, one
that may require you to repeat the different program-development stages
shown in (Fig. 1.1). According to the stepwise-refinement principle, the
process of developing a program should proceed in small, incremental
steps, where the solution becomes more refined at each step. However,
no matter how much care you take, things can still go wrong during the
coding process.

A syntax error is an error that breaks one of Java’s syntax rules. Such er-
rors will be detected by the Java compiler. Syntax errors are relatively easy
to fix once you understand the error messages provided by the compiler.
As long as a program contains syntax errors, the programmer must correct
them and recompile the program. Once all the syntax errors are corrected,
the compiler will produce an executable version of the program, which
can then be run.

When a program is run, the computer carries out the steps specified
in the program and produces results. However, just because a program
runs does not mean that its actions and results are correct. A running
program can contain semantic errors, also called logic errors. A semantic
error is caused by an error in the logical design of the program causing it
to behave incorrectly, producing incorrect results.

Unlike syntax errors, semantic errors cannot be detected automatically.

For example, suppose that a program contains the following statement for
calculating the area of a rectangle:

Feturn length + width;




SECTION 1.3Designing a Riddle Program 33

Because we are adding length and width instead of multiplying them, the
area calculation will be incorrect. Because there is nothing syntacti-cally
wrong with the expression length + width, the compiler won’t detect an
error in this statement. Thus, the computer will still execute this
statement and compute the incorrect area.

Semantic errors can only be discovered by testing the program and they
are sometimes very hard to detect. Just because a program appears to run
correctly on one test doesn’t guarantee that it contains no semantic errors. It
might just mean that it has not been adequately tested.

Fixing semantic errors is known as debugging a program, and when
sub-tle errors occur it can be the most frustrating part of the whole
program development process. The various examples presented will
occasionally provide hints and suggestions on how to track down bugs,
or errors, in your code. One point to remember when you are trying to
find a very sub-tle bug is that no matter how convinced you are that your
code is correct and that the bug must be caused by some kind of error in
the computer, the error is almost certainly caused by your code!

1.3.7 Writing Readable Programs

Becoming a proficient programmer goes beyond simply writing a pro-

gram that produces correct output. It also involves developing good pro- Programming style
gramming style, which includes how readable and understandable your

code is. Our goal is to help you develop a programming style that

satisfies the following principles:

Readability. Programs should be easy to read and understand. Com-
ments should be used to document and explain the program’s code.
Clarity. Programs should employ well-known constructs and standard
conventions and should avoid programming tricks and unnecessarily
obscure or complex code.

Flexibility. Programs should be designed and written so that they are
easy to modify.

Special Topic: Grace Hopper and
the First Computer Bug

Rear Admiral Grace Murray Hopper (1906-1992) was a pioneer
computer programmer and one of the original developers of the COBOL
program-ming language, which stands for COmmon Business-Oriented
Language. Among her many achievements and distinctions, Admiral
Hopper also had a role in coining the term computer bug.

In August 1945, she and a group of other programmers were working
on the Mark I, an electro-mechanical computer developed at Harvard
that was one of the ancestors of today’s electronic computers. After
several hours of trying to figure out why the machine was malfunctioning,
some-one located and removed a two-inch moth from one of the
computer’s circuits. From then on whenever anything went wrong with a
computer, Admiral Hopper and others would say “it had bugs in it.” The
first bug itself is still taped to Admiral Hopper’s 1945 log book, which is
now in the collection of the Naval Surface Weapons Center.



© O ~NO UL WN -

CHAPTER 1 Java Program Design and Development

In 1991, Admiral Hopper was awarded the National Medal of Tech-
nology by President George Bush. To commemorate and honor Admiral

Hopper’'s many contributions, the U.S. Navy recently named a warship
after her. For more information on Admiral Hopper, see the Web site at

http:/lwww.chips.navy.mil/
1.4 Javalanguage Elements

In this section we will introduce some of the key elements of the Java
language by describing the details of a small program. We will look at how
a program is organized and what the various parts do. Our intent is to
introduce important language elements, many of which will be explained
in greater detail in later sections.

The program we will study is a Java version of the traditional Hel-
loWorld program—"traditional” because practically every introductory

programming text begins with it. When it is run, the HelloWorld program
(Fig. 1.5) just displays the greeting “Hello, World!” on the console.

/
File: HelloWorld.java
Author: Java Java Java
Description: Prints Hello, World! greeting.
/
public class HelloWorld extends Object //class header
f /l Start class body
private String greeting = ;
public void greet() /1 Method definition
f // Start method body
System.out.println(greeting);// Output statement
g/l greet() /I End method body
public static void main(String args[])// Method header
f
Helloworld helloworld; /I declare
helloworld =new HelloWorld () ; // create
helloworld.greet(); // Method call
g/l main()
g // Helloworld /I End class body

Figure 1.5: The HelloWorld application program.

1.4.1 Comments

The first thing to notice about the HelloWorld program is the use of com-
ments. A comment is a non-executable portion of a program that is used
to document the program. Because comments are not executable
instruc-tions they are just ignored by the compiler. Their sole purpose is
to make the program easier for the programmer to read and understand.
The HelloWorld program contains examples of two types of Java
comments. Any text contained within /* and */ is considered a comment.



SECTION 1.4  Java Language Elements 35

As you can see in HelloWorld, this kind of comment can extend over
several lines and is sometimes called a multiline comment. A second type
of comment is any text that follows double slashes (//) on a line. This is
known as a single-line comment because it cannot extend beyond a single
line.
When the compiler encounters the beginning marker (/*) of a multiline
comment, it skips over everything until it finds a matching end marker
(*/). One implication of this is that it is not possible to put one multiline
comment inside of another. That is, one comment cannot be nested, or con-

tained, within another comment. The following code segment illustrates
the rules that govern the use of /* and */:

/ This first comment begins andends onthe same line./

/| Asecondcomment starts on this line ...
and goeson ...

and this is the last line of the secondcomment.
/
/ Athird comment starts on this line ...

/| This is NOT afourth comment. It is just
part of the third comment.
And this is the last line of the third comment.
/
/| Thisis an error because it is an unmatched end marker .

As you can see from this example, it is impossible to begin a new com-
ment inside an already-started comment because all text inside the first
comment, including /*, is ignored by the compiler.

SN EAN[EEVAET=RRBIR =" omments. Any text contained within /* and
*/, which may span several lines, is considered a comment and is
ignored by the compiler. Inserting double slashes (/) into a line turns
the rest of the line into a comment.

Multiline comments are often used to create a comment block that
pro-vides useful documentation for the program. In HelloWorld, the pro-
gram begins with a comment block that identifies the name of file that
contains the program and its author and provides a brief description of
what the program does.

For single-line comments, double slashes (//) can be inserted any-

where on a line of code. The result is that the rest of the line is ignored by Single-line
comment the compiler. We use single-line comments throughout the HelloWorld program to

provide a running commentary of its language elements.

SUAVZANERIOIE] SNV VIIN[ERRIEE se of Comments. A well-written program
should begin with a comment block that provides the name of the
program, its author, and a description of what the program does.




CHAPTER 1 Java Program Design and Development

1.4.2 Program Layout

Another thing to notice about the program is how neatly it is arranged on
the page. This is done deliberately so that the program is easy to read
and understand. In Java, program expressions and statements may be
ar-ranged any way the programmer likes. They may occur one per line,
sev-eral per line, or one per several lines. But the fact that the rules
governing the layout of the program are so lax makes it all the more
important that we adopt a good programming style, one that will help
make programs easy to read.

So look at how things are presented in HelloWorld. Notice how
beginning and ending braces, and , are aligned, and note how we use
single-line comments to annotate ending braces. Braces are used to
mark the beginning and end of different blocks of code in a Java
program and it can sometimes be difficult to know which beginning and
end braces are matched up. Proper indentation and the use of single-line
comments make it easier to determine how the braces are matched up.

Similarly, notice how indentation is used to show when one element of
the program is contained within another element. Thus, the elements of
the HelloWorld class are indented inside of the braces that mark the
beginning and end of the class. And the statements in the main() method
are indented to indicate that they belong to that method. Use of indenta-
tion in this way, to identify the program’s structure, makes the program
easier to read and understand.

VAR EIRIeIE VAV IVIIN[EREIEAUse of Indentation. Indent the code
within a block and align the block’s opening and closing braces. Use
a comment to mark the end of a block of code.

1.4.3 Keywords and Identifiers

The Java language contains 48 predefined keywords (Table 1.1). These
are words that have special meaning in the language and whose use is
reserved for special purposes. For example, the keywords used in the
HelloWorld program (Fig. 1.5) are: class, extends, private, public, static,
and void.

Table 1.1: Java keywords.

abstract default goto package this
boolean do if private throw
break double implements protected throws
byte enum import public transient
case elses instanceof return try

catch extend int short void
char final interface static volatile
class finally long super while
const float native switch

continue for new synchronized




SECTION 1.4Java Language Elements 37

Because their use is restricted, keywords cannot be used as the names
of methods, variables, or classes. However, the programmer can make up
his or her own names for the classes, methods, and variables that occur in
the program, provided that certain rules and conventions are followed.
The names for classes, methods, and variables are called identifiers,
which follow certain syntax rules: Identifier syntax

JAVA LANGUAGE RULE Identifier. An identifier must begin with
a capital or lowercase letter and may be followed by any number of
letters, digits, underscores (), or dollar signs ($). An identifier may not
be identical to a Java keyword.

Names in Java are case sensitive, which means that two different identifiers
may contain the same letters in the same order. For example, thisVar
and ThisVar are two different identifiers.
In addition to the syntax rule that governs identifiers, Java program- Identifier style
mers follow certain style conventions in making up names for classes,
variables, and methods. By convention, class names in Java begin with
a capital letter and use capital letters to distinguish the individual words
in the name—for example, HelloWorld and TextField. Variable and Java naming conventions
method names begin with a lowercase letter but also use capital letters
to distinguish the words in the name—for example, main(), greeting,
greet(), getQuestion(), and getAnswer(). The advantage of this
convention is that it is easy to distinguish the different elements in a
program—classes, methods, variables—just by how they are written. (For
more on Java style conventions, see Appendix A.).
Another important style convention followed by Java programmers
is to choose descriptive identifiers when naming classes, variables, and
methods. This helps to make the program more readable.

NIV SISOl 2V VIVIIN[EmNIERC hoice of Identifiers. To make your
program more readable, choose names that describe the purpose of 74
the class, variable, or method.

1.4.4 Data Types and Variables

A computer program wouldn’t be very useful if it couldn’t manipulate
different kinds of data, such as numbers and strings. The operations that
one can do on a piece of data depend on the data’s type. For example,
you can divide and multiply numbers, but you cannot do this with strings.
Thus, every piece of data in a Java program is classified according to its
data type.

Broadly speaking, there are two categories of data in Java: various
types of objects and eight different types of built-in primitive data types.
In addition to new types of objects that are created by programmers,
Java has many different types of built-in objects. Two types that we will
en-counter in this chapter are the String and PrintStream objects. Java’s
primitive types include three integer types, three real number types, a Primitive types
character type, and a boolean type with values true and false. The names



num:| >
fint)
str:|_“hello”|
(String)

Figure 1.6: Variables are like
typed containers.

Executing a program

Declaration statement

CHAPTER 1 Java Program Design and Development

of the primitive types are keywords like int for one integer type, double
for one real number type, and boolean.

As we noted in Chapter 0, a variable is a named storage location that
can store a value of a particular type. Practically speaking, you can think
of a variable as a special container into which you can place values, but
only values of a certain type (Fig. 1.6). For example, an int variable can
store values like 5 or -100. A String variable can store values like “Hello”.
(Actually, this is not the full story, which is a little more compli-cated, but
we will get to that in Chapter 2.)

In the HelloWorld class, the instance variable greeting (line 8) stores a
value of type String. In the main() method, the variable helloworld is
assigned a HelloWorld object (line 16).

A literal value is an actual value of some type that occurs in a
program. For example, a string enclosed in double quotes, such as
"Hello, World!”, is known as a String literal. A number such as 45.2 would
be an example of a literal of type double, and -72 would be an example
of a literal of type int. Our HelloWorld program contains just a single
literal value, the "HelloWorld!” String.

1.4.5 Statements

A Java program is a collection of statements. A statement is a segment of
code that takes some action in the program. As a program runs, we say
it executes statements, meaning it carries out the actions specified by those
statements. In our HelloWorld program, statements of various types
occur on lines 8, 11, 15, 16, and 17. Notice that all of these lines end with a
semicolon. The rule in Java is that statements must end with a semicolon.
Forgetting to do so would cause a syntax error.

A declaration statement is a statement that declares a variable of a par-
ticular type. In Java, a variable must be declared before it can be used in a
program. Failure to do so would cause a syntax error. In its simplest form,
a declaration statement begins with the variable’s type, which is followed
by the variable’s name, and ends with a semicolon:

Type VariableName ;

A variable’s type is either one of the primitive types we mentioned, such
as int, double, or boolean, or for objects, it is the name of the object’s
class, such as String or HelloWorld. A variable’s name may be any

legal identifier, as defined earlier, although the convention in Java is to be-

gin variable names with a lowercase letter. In our Helloworld program,
an example a simple declaration statement occurs on line 15:

|HeIIOW0rId helloworld;

This example declares a variable for an object. The variable’s name is
helloworld and its type is HelloWorld, the name of the class that is

being defined in our example. To take another example the following
statements declare two int variables, named intl and int2:

int intl;
intint2;




SECTION 1.4Java Language Elements 39

As we noted, an int is one of Java’s primitive types and the word int is a
Java keyword.

Without going into too much detail at this point, declaring a variable
causes the program to set aside enough memory for the type of data that
will be stored in that variable. So in this example, Java would reserve
enough space to store an int.

An assignment statement is a statement that stores (assigns) a
value in a variable. An assignment statement uses the equal sign (=) as
an as-signment operator. In its simplest form, an assignment statement
has a variable on the left hand side of the equals sign and some type of
value on the right hand side. Like other statements, an assignment
statement ends with a semicolon:

VariableName = Value ;

When it executes an assignment statement, Java will first determine what
value is given on the right hand side and then assign (store) that value to (in)
the variable on the left hand side. Here are some simple examples:

| greeting = :

|num1: 50; /I (a) Assign 50to numil

|num2: 10 + 15; /I (b) Assign 25to num2

|num1 =num2 ; /l (¢c) Copynum2’s value (25) intonuml

In the first case, the value on the right hand side is the string literal
"Hello, World!”, which gets stored in greeting. Of course, greeting has to
be the right type of container—in this case, a String variable. In the next
case, the value on the right hand side is 50. So that is the value that gets
stored in num1, assuming that numl is an int variable. The situation after
this assignment is shown in the top drawing in Figure 1.7. In the third
case, the value on the right hand side is 25, which is determined by
adding 10 and 15. So the value that gets assigned to num2 is 25. After
this assignment we have the situation shown in the middle drawing in the
figure. Of course, this assumes that num2 is an int variable. In the last
case, the value on the right hand side is 25, the value that we just stored
in the variable num2. So, 25 gets stored in numl. This is the bottom
drawing in the accompanying figure.

The last of these examples

| numl=num2; /I Copynum2’s value into numi

can be confusing to beginning programmers, so it is worth some addi-tional
comment. In this case, there are variables on both the left and right of the
assignment operator. But they have very different meaning. The variable on
the right is treated as a value. If that variable is storing 25, then that is its
value. In fact, whatever occurs on the right hand side of an assignment
operator is treated as a value. The variable on the left hand side is treated
as a memory location. It is where the value 25 will be stored as a result of
executing this statement. The effect of this statement is to copy the value
stored in num2 into num1, as illustrated in Figure 1.8.

Java has many other kinds of statements and we will be learning
about these in subsequent examples. The following examples from the

a0

Cint)
50

Cint)

num::

num::

fint)

25

fint)

numl:| 25 num:: | 25 |

Cint)

fint)

Figure 1.7: This illustrates how
the state of the variables numl
and num2 changes over the
course of the three assignments,
(@), (b), (c), given in the text.

numl: IEJ num2:

iint,

v
n

nt

The walue in nums is
copied into numt.

)



CHAPTER 1 Java Program Design and Development

HelloWorld program are examples of statements in which a method is
called:

| System.out.printin(greeting);// call printin () method
|he||ow0r|d.greet(); /I Call greet() method

We will discuss these kinds of statements in greater detail as we go
along. One final type of statement that should be mentioned at this point
is the compound statement (or block), which is a sequence of
statements con-tained within braces (). We see three examples of this in
the HelloWorld program. The body of a class definition extends from
lines 7 through 19. The body of the greet() method is a block that
extends from lines 10 through 12. The body of the main() method is a
block that extends from lines 14 to 19.

1.4.6 Expressions and Operators

The manipulation of data in a program is done by using some kind of ex-
pression that specifies the action. An expression is Java code that specifies
or produces a value in the program. For example, if you want to add two
numbers, you would use an arithmetic expression, such as numl+ num2. If
you want to compare two numbers, you would use a relation expression
such as numl < num2. As you can see, these and many other expressions
in Java involve the use of special symbols called operators. Here we see
the addition operator (+) and the less-than operator (<). We have already
talked about the assignment operator (=).

Java expressions and operators have a type that depends on the type
of data that is being manipulated. For example, when adding two int
values, such as 5 + 10, the expression itself produces an int result.
When comparing two numbers with the less than operator, numl <
numz2, the expression itself produces a boolean type, either true or false.

It is important to note that expressions cannot occur on their own.

Rather they occur as part of the program’s statements. Here are some
additional examples of expressions:

num=7 I/l An assignment expression of type int
num = square (7) /I An method call expression of type int
num == // An equality expression of type boolean

The first of these is an assignment expression. It has a value of 7,
because it is assigning 7 to num. The second example is also an
assignment expres-sion, but this one has a method call, square(7), on its
right hand side. (We can assume that a method named square() has
been appropriately defined in the program.) A method call is just another
kind of expression. In this case, it has the value 49. Note that an
assignment expression can be turned into a stand-alone assignment
statement by placing a semicolon after it.

The third expression is an equality expression, which has the value
true, assuming that the variable on its left is storing the value 7. It is



SECTION 1.4Java Language Elements 41

important to note the difference between the assignment operator (=)
and the equality operator (==).

A EANElB/NElSHRIUIRER- quality and Assignment. Be careful not to
confuse = and ==. The symbol = is the assignment operator. It
assigns the value on its right-hand side to the variable on its left-hand
side. The symbol == is the equality operator. It evaluates whether the
expressions on its left- and right-hand sides have the same value and
returns either true or false.

SELF-STUDY EXERCISES

EXERCISE 1.1 What is stored in the variable num after the following
two statements are executed?

int num = 11;

num =23 - num,;

EXERCISE 1.2 Write a statement that will declare a variable of type int
called num2, and store in it the sum of 711 and 712.

1.4.7 Class Definition

A Java program consists of one or more class definitions. In the
HelloWorld example, we are defining the HelloWorld class, but there are
also three predefined classes involved in the program. These are the
Object, String, and System classes all of which are defined in the Java
class library. Predefined classes, such as these, can be used in any
program.

As the HelloWorld program’s comments indicate, a class definition

has two parts: a class header and a class body. In general, a class header Class

header takes the following form, some parts of which are optional (opt):

ClassModifiersopt class ClassName Pedigreeopt

The class header for the HelloWorld class is:

|pub|ic class HelloWorld extends Object

The purpose of the header is to give the class its name (HelloWorld),
identify its accessibility (public as opposed to private), and describe
where it fits into the Java class hierarchy (as an extension of the Object
class). In this case, the header begins with the optional access modi-fier,
public, which declares that this class can be accessed by any other
classes. The next part of the declaration identifies the name of the class,
HelloWorld. And the last part declares that HelloWorld is a subclass of
the Object class. We call this part of the definition the class’s pedigree.

As you recall from Chapter 0, the Object class is the top class of the
entire Java hierarchy. By declaring that HelloWorld extends Object, we
are saying that HelloWorld is a direct subclass of Object. In fact, it is not
necessary to declare explicitly that HelloWorld extends Object because
that is Java’s default assumption. That is, if you omit the extends clause
in the class header, Java will automatically assume that the class is a
subclass of Object.



42 CHAPTER 1 Java Program Design and Development

The class’s body, which is enclosed within curly brackets (), contains Class body
the declaration and definition of the elements that make up the objects of
the class. This is where the object’s attributes and actions are defined.

1.4.8 Declaring an Instance Variable

There are generally two kinds of elements declared and defined in the
class body: variables and methods. As we described in Chapter 0, an
instance variable is a variable that belongs to each object, or instance, of
the class. That is, each instance of a class has its own copies of the class’s

instance variables. The HelloWorld class has a single instance variable,
(greeting), which is declared as follows:

private String greeting = : |

In general, an instance variable declaration has the following syntax, some
parts of which are optional:

Modifiersopt Type VariableName InitializerExpressionopt

Thus, a variable declaration begins with optional modifiers. In declaring

the greeting variable, we use the access modifier, private, to declare

that greeting, which belongs to the HelloWorld class, cannot be di-

rectly accessed by other objects. The next part of the declaration is the
Information hiding variable’s type. In this case, the greeting variable is a String, which

means that it can store a string object. The type is followed by the name

of the variable, in this case (greeting). This is the name that is used to

refer to this memory location throughout the class. For example, notice

that the variable is referred to on line 11 where it is used in a printin()

statement.

The last part of the declaration is an optional initializer expression. In
this example, we use it to assign an initial value, “Hello, World!,” to the
greeting variable.

1.4.9 Defining an Instance Method

Recall that a method is a named section of code that can be called or in-
voked to carry out an action or operation. In a Java class, the methods
correspond to the object’s behaviors or actions. The HelloWorld pro-
gram has two method definitions: the greet() method and the main()
method.

A method definition consists of two parts: the method header and the
method body. In general, a method header takes the following form,
including some parts which are optional:

Modifiersopt ReturnType MethodName (  ParameterListopt)

As with a variable declaration, a method definition begins with optional
modifiers. For example, the definition of the greet() method on line 9
uses the access modifier, public, to declare that this method can be
accessed or referred to by other classes. The main() method, whose def-
inition begins on line 13, is a special method, and is explained in the next
section.



SECTION 1.4Java Language Elements 43

The next part of the method header is the method’s return type. This
is the type of value, if any, that the method returns. Both of the methods
in HelloWorld have a return type of void. This means that they don't
return any kind of value. Void methods just execute the sequence of
state-ments given in their bodies. For an example of a method that does
return a value, take a look again at the declaration of the getQuestion()
method in the Riddle class, which returns a String (Fig. 1.4).

The method’s name follows the method’s return type. This is the
name that is used when the method is called. For example, the greet()
method is called on line 17.

Following the method’'s name is the method’s parameter list. A
param-eter is a variable that temporarily stores data values that are
being passed to the method when the method is called. Some methods,
such as the greet() method, do not have parameters, because they are
not passed any information. For an example of a method that does have
parameters, see the Riddle() constructor, which contains parameters for
the riddle’s question and answer (Fig. 1.4).

The last part of method definition is its body, which contains a sequence
of executable statements. An executable statement is a Java statement

that takes some kind of action when the program is run. For example, the
statement in the greet() method,

|System.out.println(greeting); //Output statement

prints a greeting on the console.

1.4.10 Java Application Programs

The HelloWorld program is an example of a Java application program,
or a Java application, for short. An application program is a stand-alone
program, “stand-alone” in the sense that it does not depend on any other
program, like a Web browser, for its execution. Every Java application pro-
gram must contain a main() method, which is where the program begins
execution when it is run. For a program that contains several classes, it is
up to the programmer to decide which class should contain the main()
method. We don’t have to worry about that decision for the HelloWorld,
because it contains just a single class.

Because of its unique role as the starting point for every Java applica-

tion program, it is very important that the header for the main method be
declared exactly as shown in the HelloWorld class:

|pub|ic static void main(String args[]) |

It must be declared public so it can be accessed from outside the class

that contains it. The static modifier is used to designate main() as Class method
a class method. As you might recall from Chapter 0, a class method is

a method that is associated directly with the class that contains it rather

than with the objects of the class. A class method is not part of the class’s

objects. Unlike instance methods, which are invoked through a class’s ob-

jects, a class method is called through the class itself. Thus, a class method

can be called even before the program has created objects of that class.



Default constructor

Interacting objects

CHAPTER 1 Java Program Design and Development

Because of main()’'s special role as the program'’s starting point, it is nec-
essary for main() to be a class method because it is called, by the Java
runtime system, before the program has created any objects.

The main() method has a void return type, which means it does not
return any kind of value. Finally, notice that main()’'s parameter list con-
tains a declaration of some kind of String parameter named args. This is
actually an array that can be used to pass string arguments to the
program when it is started up. We won'’t worry about this feature until our
chapter on arrays.

1.4.11 Creating and Using Objects

The body of the main() method is where the Helloworld program cre-
ates its one and only object. Recall that when it is run the Helloworld
program just prints the “Hello World!” greeting. As we noted earlier, this
action happens in the greet() method. So in order to make this ac-tion
happen, we need to call the greet() method. However, because the
greet() method is an instance method that belongs to a HelloWorld
object, we first need to create a HelloWorld instance. This is what

happens in the body of the main() method (Fig. 1.5).
The main() method contains three statements:

Helloworld helloworld; /I Variable declaration
| helloworld =new HelloWorld (); // Object instantiation
|he||owor|d.greet(); /l Method invocation

The first statement declares a variable of type Helloworld, which is
then assigned a HelloWorld object. The second statement creates a
HelloWorld object. This is done by invoking the HelloWorld() con-
structor method. Creating an object is called object instantiation because
you are creating an instance of the object. Once a HelloWorld instance
is created, we can use one of its instance methods to perform some task
or operation. Thus, in the third statement, we call the greet() method,
which will print “Hello World!” on the console.

If you look back at the HelloWorld program in Figure 1.5 you won’t
find a definition of a constructor method. This is not an error because Java
will provide a default constructor if a class does not contain a constructor
definition. The default constructor is a trivial constructor method, “triv-

ial” because its body contains no statements. Here is what the default
HelloWorld() constructor would look like:

|pub|ic Helloworld () f g /I Default constructor

For most of the classes we design, we will design our own constructors,
just as we did in the Riddle class (Fig. 1.4). We will use constructors to
assign initial values to an object’s instance variables or to perform other
kinds of tasks that are needed when an object is created. Because the
HelloWorld object doesn’t require any startup tasks, we can make do
with the default constructor.

The HelloWorld program illustrates the idea that an object-oriented
program is a collection of interacting objects. Although we create just a
single HelloWorld object in the main() method, there are two other ob-



SECTION 1.4Java Language Elements 45

jects used in the program. One is the greeting, which is a String ob-ject
consisting of the string “Hello, World!”. The other is the System.out
object, which is a special Java system object used for printing.

1.4.12 Java JFrames

Java cann run a program in a JFrame so that the output and interaction
occurs in a Window (or Frame). Figure 1.9 shows a Java program named

HelloWorldSwing. This program does more or less the same thing as
the HelloWorld application—it displays the “Hello, World!” greeting.

/File: HelloWorldSwing program /

import javax.swing.JFrame; // Import class names
import java.awt. Graphics;
import java.awt.Canvas;

public clas s HelloWorldCanvas extends Canvas // Class heade r
f
/I Start of body
public void paint(Graphics g)
/l The paint method
f
g . drawString ( , 10, 10);
g // Endof paint

public static void main(String[] args)f
HelloWorldCanvas ¢ = new HelloWorldCanvas () ;
JFrame f =new JFrame () ;
f.add(c);
f.setSize(150,50);
f.setVisible(true);

g

g //Endof HelloWorldCanvas

Figure 1.9: HelloWorldCanvas program.

The difference is that it displays the greeting within a Window rather than
directly on the console.

As in the case of the HellowWorld console application program,
HelloWorldCanvas consists of a class definition. It contains a single

method definition, the paint() method, which contains a single exe-
cutable statement:

g~ drawstring ( ,10,10);

This statement displays the “Hello, World!” message directly in a Win-
dow. The drawString() method is one of the many drawing and paint-ing
methods defined in the Graphics class. Every Java Canvas comes with
its own Graphics object, which is referred to here simply as g. Thus, we
are using that object’s drawString() method to draw on the window. Don’t
worry if this seems a bit mysterious now. We’'ll explain it more fully when
we take up graphics examples again.




CHAPTER 1 Java Program Design and Development

The HelloWorldSwing also contains some elements, such as the
import statements, that we did not find in the HelloWorld application. We
will now discuss those features.

1.4.13 Java Library Packages

Recall that the HelloWorld application program used two pre-defined
classes, the String and the System classes. Both of these classes are
basic language classes in Java. The HelloWorldSwing program also
uses pre-defined classes, such as JFrame and Graphics. However,
these two classes are not part of Java’s basic language classes. To
understand the difference between these classes, it will be necessary to
talk briefly about how the Java class library is organized.

A package is a collection a inter-related classes in the Java class
library. For example, the java.lang package contains classes, such as
Object, String, and System, that are central to the Java language. Just
about all Java programs use classes in this package. The java.awt
package provides classes, such as Button, TextField, and Graphics, that
are used in graphical user interfaces (GUIs). The java.net package
provides classes used for networking tasks, and the java.io package
provides classes used for input and output operations.

All Java classes belong to some package, including those that are pro-
grammer defined. To assign a class to a package, you would provide a
package statement as the first statement in the file that contains the class

definition. For example, the files containing the definitions of the classes
in the java.lang package all begin with the following statement.

package java.lang;
If you omit package statement, as we do for the programs in this book,
Java places such classes into an unnamed default package.

Thus, for any Java class, its full name includes the name of the
package that contains it. For example, the full name for the System class
is java.lang.System and the full name for the String class is
java.lang.String. Similarly, the full name for the Graphics class is
java.awt.Graphics. In short, the full name for a Java class takes the
following form:

package.class

In other words, the full name of any class provides its package name as
a prefix.

Of all the packages in the Java library, the java.lang package is the
only one whose classes are available by their shorthand names to all
Java programs. This means that when a program uses a class from the
java.lang package, it can refer to it simply by its class name. For exam-
ple, in the HelloWorld program we referred directly to the String class
rather than to java.lang.String.

1.4.14 The import Statement
The import statement makes Java classes available to programs under their
abbreviated names. Any public class in the Java class library is avail-able to
a program by its fully qualified name. Thus, if a program was using



SECTION 1.4Java Language Elements 47

the Graphics class, it could always refer to it as java.awt.Graphics.
However, being able to refer to Graphics by its shorthand name, makes
the program a bit shorter and more readable.

The import statement doesn’t actually load classes into the program. It
just makes their abbreviated names available. For example, the im-port
statements in HelloWorldSwing allow us to refer to the JFrame, Canvas,
and Graphics classes by their abbreviated names (Fig. 1.9).

The import statement takes two possible forms:

import package.class

import package.*

The first form allows a specific class to be known by its abbreviated name.
The second form, which uses the asterisk as a wildcard characters ('*),
allows all the classes in the specified package to be known by their short

names. The import statements in HelloWorldSwing are examples of
the first form. The following example,

|import java.lang. ;

allows all classes in the java.lang package to be referred to by their class
names alone. In fact, this particular import statement is implicit in every
Java program.

1.4.15 Qualified Names in Java

In the previous subsections we have seen several examples of names in
Java programs that used dot notation. A qualified name is a name that is
separated into parts using Java’s dot notation. Examples include package
names, such as java.awt, class names, such as javax.swing.JFrame,
and even method names, such as helloworld.greet().

Just as in our natural language, the meaning of a name within a
Java program depends on the context. For example, the expression
helloworld.greet() refers to the greet() method, which belongs to
the HelloWorld class. If we were using this expression from within that
class, you wouldn’t need to qualify the name in this way. You could just
refer to greet() and it would be clear from the context which method
you meant.

This is no different than using someone’s first name (“Kim”) when
there’s only one Kim around, but using a full name (“Kim Smith”) when
the first name alone would be too vague or ambiguous.

One thing that complicates the use of qualified names is that they are
used to refer to different kinds of things within a Java program. But
this is no different, really, than in our natural language, where names
(“George Washington”) can refer to people, bridges, universities, and so
on. Here again, just as in our natural language, Java uses the context
to understand the meaning of the name. For example, the expression
java.lang.System refers to the System class in the java.lang pack-
age, whereas the expression System.out.print() refers to a method
in the System.out object.

How can you tell these apart? Java can tell them apart because the
first one occurs as part of an import statement, so it must be referring



CHAPTER 1 Java Program Design and Development

to something that belongs to a package. The second expression would
only be valid in a context where a method invocation is allowed. You will
have to learn a bit more about the Java language before you’ll be able to
completely understand these names, but the following provide some
naming rules to get you started.

SANAR AN [ElB/AEI=RRlUIR=N ibrary Class Names. By convention, class
names in Java begin with an uppercase letter. When referenced as
part of a package, the class name is the last part of the name. For
example, java.lang.System refers to the System class in the java.lang
package.

NAN/A AN O/ANEl =R IBIR=RD ot Notation. Names expressed in Java’s
dot notation depend for their meaning on the context in which they are
used. In qualified names—that is, names of the form X.Y.Z—the last
item in the name (2Z) is the referent—that is, the element being
referred to. The items that precede it (X.Y.) are used to qualify or
clarify the referent.

The fact that names are context dependent in this way certainly compli-
cates the task of learning what’s what in a Java program. Part of learn-
ing to use Java’s built-in classes is learning where a particular object or
method is defined. It is a syntax error if the Java compiler can’t find the
object or method that you are referencing.

SA\ae ] EEl0[elellN[emElEl Not Found Error. If Java cannot find the item
you are referring to, it will report an “X not found” error, where X is the
class, method, variable, or package being referred to.

1.5 Editing, Compiling, and Running a Java
Pro-gram

In this section we discuss the nuts and bolts of how to compile and run a
Java program. Because we are exploring two different varieties of Java
programs, console applications and Swing applications, the process dif-
fers slightly for each variety. We have already discussed some of the
main language features of console and Swing applications, so in this
section we focus more on features of the programming environment
itself. Because we do not assume any particular programming
environment in this book, our discussion will be somewhat generic.
However, we do begin with a brief overview of the types of programming
environments one might encounter.



iting, compiling,
lloWorld.java.

SECTION 1.5  Editing, Compiling, and Running a Java Program 49

User types program into a file
using a standard text editor.

:

text editor

!

Correct the syntax errors

Editor creates the source
program in a disk file.

{ HeIIoWorId._je;va

1 syntax javac generates
| javac — . errors a list of error
? messages

™

javac creates the bytecode
in a disk file.

) rﬂ:g

appletviewer
or Web Applets require
browser an HTML file.
T Applet Programming
—| java

The Java Virtual Machine
loads the class file into
memory and interprets and
runs the bytecode.

1.5.1 Java Development Environments

A Java programming environment typically consists of several pro-grams
that perform different tasks required to edit, compile, and run a Java
program. The following description will be based on the software
development environment provided by Oracle, the company that owns
and maintains Java. It is currently known as the Java Platform, Standard
Edition 8.0 (Java SE 8). Versions of Java SE are available for various
platforms, including Linux, Windows, and ma-cOS computers. Free
downloads are available at Sun’s Web site at
http://www.oracle.com/technetwork/java/. (For more details about the
Java SE, see Appendix B.)

In some cases, the individual programs that make up the Java SE are
available in a single program development environment, known as an
integrated development environment (IDE). Some examples include
Eclipse, jGrasp, and Oracle’s own NetBeans IDE. Each of these
provides a com-plete development package for editing, compiling, and
running Java ap-plications on a variety of platforms, including Linux,
macOS, and Win-dows.

Figure 1.10 illustrates the process involved in creating and running a Java
program. The discussion that follows here assumes that you are us-



CHAPTER 1 Java Program Design and Development

ing the Java SE as your development environment to edit, compile and run
the example program. If you are using some other environment, you will
need to read the documentation provided with the software to determine
exactly how to edit, compile, and run Java programs in that environment.

1.5.2 Editing a Program

Any text editor may be used to edit the program by merely typing the
program and making corrections as needed. Popular Unix and Linux
editors include vim and emacs. These editors are also available on ma-
cOS and Windows. However, free macOS editors include TextMate and
TextWrangler, and Windows has Notepad++ for free.

As we have seen, a Java program consists of one or more class def-
initions. We will follow the convention of placing each class definition in
its own file. (The rule in Java is that a source file may contain only one
public class definition.) The files containing these classes’ defini-tions
must be named ClassName.java where ClassName is the name of the
public Java class contained in the file.

SAVAFANEO/ANEI=RRIBIR=R  File Names. A file that defines a public
Java class named ClassName must be saved in a text file named
ClassName.java. Otherwise an error will result.

For example, in the case of our HelloWorld application program, the file
must be named HelloWorld.java, and for HelloWorldSwing, it must be
named HelloWorldSwing.java. Because Java is case sensitive, which
means that Java pays attention to whether a letter is typed uppercase or
lowercase, it would be an error if the file containing the HelloWorld class
were named helloworld.java or Helloworld.java. The er-ror in this case
would be a semantic error. Java would not be able to find the HelloWorld
class because it will be looking for a file named HelloWorld.java.

NAVIFANESVANEI =R IBIR = ase Sensitivity. Java is case sensitive,
which means that it treats helloWorld and Helloworld as different
names.

1.5.3 Compiling a Program

Recall that before you can run a Java source program you have to com-
pile it into the Java bytecode, the intermediate code understood by the
Java Virtual Machine (JVM). Source code for both applets and applica-
tions must be compiled. To run a Java program, whether an applet or an
application, the JVM is then used to interpret and execute the bytecode.
The Java SE comes in two parts, a runtime program, called the Java
Runtime Environment (JRE) and a development package, called the
Software Development Kit (SDK). If you are just going to run Java programs,
you need only install the JRE on your computer. In order to run Java applets,
browsers, such as Internet Explorer and Netscape Navigator, must contain a
plugin version of the JRE. On the other hand, if you are going to be
developing Java programs, you will need to install the SDK as well.




SECTION 1.5  Editing, Compiling, and Running a Java Program 51

The Java SDK compiler is named javac. In some environments—
such as within Linux or at the Windows command prompt —

HelloWorld.java would be compiled by typing the following com-
mand at the system prompt:

Iiavac HelloWorld .jav a |

As Figure 1.10 illustrates, if the HelloWorld.java program does not
contain errors, the result of this command is the creation of a Java bytecode
file named HelloWorld.class—a file that has the same prefix as the
source file but with the suffix .class rather than .java. By default,

the bytecode file will be placed in the same directory as the source file.

If javac detects errors in the Java code, a list of error messages will be
printed.

1.5.4 Running a Java Application Program

In order to run (or execute) a program on any computer, the program’s
executable code must be loaded into the computer’s main memory. For
Java environments, this means that the program’s .class file must be
loaded into the computer’'s memory, where it is then interpreted by the

Java Virtual Machine. To run a Java program on Linux systems or at the
Windows command prompt, type

java Helloworld |

on the command line. This command loads the JVM, which will then
load and interpret the application’s bytecode (HellowWorld.class). The
“HelloWorld” string will be displayed on the command line.

On Macintosh systems, or within an IDE, which do not typically have a
command line interface, you would select the compile and run commands
from a menu. Once the code is compiled, the run command will cause the

JVM to be loaded and the bytecode to be interpreted. The “Hello, World!” P T—————

output would appear in a text-based window that automatically pops (bash-3.2§ javac HelloWorld.java
[bash-3.28% j HelloWorld

up on your computer screen. In any case, regardless of the_system you e

use, running the HelloWorld console application program will cause the bash-3.25 I

“Hello, World!” message to be displayed on some kind of standard output
device (Fig. 1.11).

1.5.5 Running a Java Swing Program

When you run a Java Swing Program, there is typically no console
output. You only see your output in the Window (JFrame) that your
Graphics are displayed in. This makes automated testing more difficult
since you need to visually inspect that the program is working correctly.

When you run

Figure 1.11: Compiling and Run-
ning the HelloWorld.java con-sole
application program.

| java HelloworldSwing |

A window will open, and you won’t be able to type in the console until
you close the window, quit the program, or type ctl-c to send a kill signal
to the Swing program. The result of running, as shown in Figure 1.12,



www java.sun.com/j2se/1.5.0/docs/api/
—_—
Hello, World!
Figure 1.12: Running

HelloWorldSwing.java
graphical program.

PrintStream

+print(in data : String)
+print(in data : boolean)
+print(in data : int)
+printin(in data : String)
+printin(in data : boolean)
+printin(in data : int)

Figure 1.13: A UML class
diagram of the PrintStream class.

CHAPTER 1 Java Program Design and Development

is that the “Hello, World!” message will be displayed within it's own
window.

1.6 From the Java Library: System
and PrintStream

Java comes with a library of classes that can be used to perform
common tasks. The Java class library is organized into a set of
packages, where each package contains a collection of related classes.
Throughout the book we will identify library classes and explain how to
use them. In this section we introduce the System and PrintStream
classes, which are used for printing a program’s output.

Java programs need to be able to accept input and to display output.
Deciding how a program will handle input and output (I/O) is part of
designing its user interface, a topic we take up in detail in Chapter 4. The
simplest type of user interface is a command-line interface, in which input is
taken from the command line through the keyboard, and output is dis-played
on the console. Some Java applications use this type of interface. Another
type of user interface is a Graphical User Interface (GUI), which uses
buttons, text fields, and other graphical components for input and output.
Java applets use GUIs as do many Java applications. Because we want to
be able to write programs that generate output, this

section describes how Java handles simple console output.

In Java, any source or destination for 1/O is considered a stream of
bytes or characters. To perform output, we insert bytes or characters into
the stream. To perform input, we extract bytes or characters from the
stream. Even characters entered at a keyboard, if considered as a
sequence of keystrokes, can be represented as a stream.

There are no I/O statements in the Java language. Instead, I/O is han-
dled through methods that belong to classes contained in the java.io
package. We have already seen how the output method printin() is used

to output a string to the console. For example, the following
printin() statement

System . out.printing )5
prints the message “Hello, World” on the Java console. Let’'s now exam-
ine this statement more carefully to see how it makes use of the Java I/0O
classes.

The java.io.PrintStream class is Java’s printing expert, so to speak. It
contains a variety of print() and printin() methods that can be used to
print all of the various types of data we find in a Java pro-gram. A partial
definition of PrintStream is shown in Figure 1.13. Note that in this case
the PrintStream class has no attributes, just operations or methods.

Because the various print() and printin() methods are instance
methods of a PrintStream object, we can only use them by finding a



SECTION 1.6~ From the Java Library: System and PrintStream 53

PrintStream object and “telling” it to print data for us. As shown in Figure
1.15, Java’s java.lang.System class contains three predefined streams,
including two PrintStream objects. This class has public (+) attributes.
None of its public methods are shown here.

Both the System.out and System.err objects can be used to write
output to the console. As its name suggests, the err stream is used
primarily for error messages, whereas the out stream is used for other
printed output. Similarly, as its name suggests, the System.in object can
be used to handle input, which will be covered in Chapter 2.

The only difference between the print() and printin() methods is that
printin() will also print a carriage return and line feed after printing its

data, thereby allowing subsequent output to be printed on a
new line. For example, the following statements

System .out.printin( )

.System.out.print( )
System .out.printin( )

would produce the following output:

hellohello again
goodbye

Now that we know how to use Java’s printing expert, let’s use it to “sing”
a version of “Old MacDonald Had a Farm.” As you might guess, this
program will simply consist of a sequence of System.out.printin()
statements each of which prints a line of the verse. The complete Java
application program is shown in Figure 1.15.

public class OldMacDonald
f
public static void main(String args|[])
/I Main method
f
System .out.println( );
System.out.println( );
System .out.println( );
System.out.println( );
System .out.println( );
System .out.println( );
System.out.println( );
System.out.println( );
System.out.printin( );
System.out.println( );
g //Endofmain
g //End of OldMacDonald

Figure 1.15: The OldMacDonald.java class.

This example illustrates the importance of using the Java class library.
If there’s a particular task we want to perform, one of the first things we

System

Hout : PrintStream
Herr : PrintStream
tin : InputStream

Figure 1.14: The System class.



*kkkkkkkkk

*kk *kk
* *% *
*% *%
* *kkk *

*kkkkkkkkk

CHAPTER SUMMARY

CHAPTER 1 Java Program Design and Development

should ask is whether there is already an “expert” in Java’s class library
that performs that task. If so, we can use methods provided by the expert
to perform that particular task.

SAVARSESSGIPAENRI=S|[€l)  Using the Java Library. Learning how to
use classes and objects from the Java class library is an important
part of object-oriented programming in Java.

SELF-STUDY EXERCISES

EXERCISE 1.3 One good way to learn how to write programs is to
modify existing programs. Modify the OldMacDonald class to “sing” one
more verse of the song.

EXERCISE 1.4 Write a Java class that prints the design shown on the
left.

Technical Terms

algorithm declaration statement  parameter

applet default constructor primitive data type

application program executable statement pseudocode

assignment expression qualified name
statement identifier semantics

comment literal value statement

compound statement object instantiation stepwise refinement
(block) operator syntax

data type package

Summary of Important Points

Good program design requires that each object and method have a

well-defined role and clear definition of what information is needed for

the task and what results will be produced.

Good program design is important; the sooner you start coding, the

longer the program will take to finish. Good program design strives for

readability, clarity, and flexibility.

Testing a program is very important and must be done with care, but it

can only reveal the presence of bugs, not their absence.

An algorithm is a step-by-step process that solves some problem. Al-

gorithms are often described in pseudocode, a hybrid language that

combines English and programming language constructs.

A syntax error occurs when a statement breaks a Java syntax rules.

Syn-tax errors are detected by the compiler. A semantic error is an

error in the program’s design and cannot be detected by the compiler.
Writing Java code should follow the stepwise refinement process.



CHAPTER 1Chapter Summary 55

Double slashes (//) are used to make a single-line comment. Com-

ments that extend over several lines must begin with /* and end with

*/.

An identifier must begin with a letter of the alphabet and may consist

of any number of letters, digits, and the special characters and $. An

identifier cannot be identical to a Java keyword. Identifiers are case

sensitive.

A keyword is a term that has special meaning in the Java language

(Table 1.1).

Examples of Java’s primitive data types include the int, boolean, and

double types.

A variable is a named storage location. In Java, a variable must be

declared before it can be used.

A literal value is an actual value of some type, such as a String

("Hello”) or an int (5).

A declaration statement has the form: Type VariableName ;

An assignment statement has the form:VariableName = Expression ;

When it is executed it determines the value of the Expression on the

right of the assignment operator (=) and stores the value in the

variable named on the left.

Java’s operators are type dependent, where the type is dependent on

the data being manipulated. When adding two int values (7 + 8), the +

operation produces an int result.

A class definition has two parts: a class header and a class body. A

class header takes the form of optional modifiers followed by the word

class followed by an identifier naming the class followed, optionally,

by the keyword extends and the name of the class’s superclass.

There are generally two kinds of elements declared and defined in the

class body: variables and methods.

Object instantiation is the process of creating an instance of a class using

the new operator in conjunction with one of the class’s constructors.

Dot notation takes the form qualifiers.elementName. The expression

System.out.print("hello") uses Java dot notation to invoke the print()

method of the System.out object.

A Java application program runs in stand-alone mode. A Java appletis a

program that runs within the context of a Java-enabled browser. Java
applets are identified in HTML documents by using the <applet> tag.

A Java source program must be stored in a file that has a .java exten-

sion. A Java bytecode file has the same name as the source file but a

.class extension. It is an error in Java if the name of the source file is not

identical to the name of the public Java class defined within the file.

Java programs are first compiled into bytecode and then interpreted

by the Java Virtual Machine (JVM).



SOLUTIONS TO SELF-
STUDY EXERCISES

56 CHAPTER 1 Java Program Design and Development

SOLUTION 1.1 The value 12 is stored in num.

SOLUTION 1.2 intnum2 =711 + 712;
SOLUTION 1.3 The definition of the OldMacDonald class is:

public class OldMacDonald
f
public static void main(String args/[])
/1 Main method

f
System.out.println (’Old MacDonald had a farm”);
System.out.println(’E | EI10.);
System.out.println(’And on his farm he had a duck.”);
System.out.println('E | EI10.);
System.out.println("With a quack quack here.”);
System.out.println(’And a quack quack there.”);
System.out.println("Here a quack, there aquack,”);
System.out.println (’Everywhere a quack quack.”);
System.out.println("Old MacDonald had a farm”);
System.out.println(’E | EI10.);

System.out.println("Old MacDonald had a farm”);
System.out.printin(’E | EI10.);
System.out.println("And on his farm he had a pig.");
System.out.printin(’E | EI10.);
System.out.println ("With an oink oink here.”);
System.out.println("And an oink oink there.”);
System.out.println("Here an oink, there an oink,”);
System.out.println(’Everywhere an oink oink.”);
System.out.println("Old MacDonald had a farm”);
System.out.printin(’E | E 10.7);
g //Endofmain
g //End of OldMacDonald

SOLUTION 1.4 The definition of the Pattern class is:

public class Pattern
f
public static void main(Stringargs[])// Mainmethod
f
System.out.printin(”);
System.out.printin(”
System .out.printin(”
System.out.printin(”
System .out.printin(”
System .out.printin(™);
g //Endofmain
g // Endof Pattern




CHAPTER 1Exercises 57

EXERCISE 1.1 Fillin the blanks in each of the following statements. EXERCISES
a. A Java class definition contains an object’s and
b. A method definition contains two parts, a and a .

EXERCISE 1.2 Explain the difference between each of the following pairs of
concepts.

Application and applet.

Single-line and multiline comment.
Compiling and running a program.
Source code file and bytecode file.
Syntax and semantics.

Syntax error and semantic error.
Data and methods.

Variable and method.

Algorithm and method.
Pseudocode and Java code.
Method definition and method invocation.

EXERCISE 1.3 For each of the following, identify it as either a syntax error or a
semantic error. Justify your answers.

Write a class header as public Class MyClass.

Define the init() header as public vid init().

Print a string of five asterisks by System.out.printin("***");.

Forget the semicolon at the end of a println() statement.
e. Calculate the sum of two numbersas N wm.

EXERCISE 1.4 Suppose you have a Java program stored in a file named
Test.java. Describe the compilation and execution process for this program,
naming any other files that would be created.

EXERCISE 1.5 Suppose N is 15. What numbers would be output by the fol-

lowing pseudocode algorithm? Suppose N is 6. What would be output by the
algorithm in that case?

0. PrintN.

1.If Nequals 1, stop.

2. If N is even, divide it by 2.

3. If Nis odd, tripleit andadd 1.
4. Go to step 0.

EXERCISE 1.6 Suppose N is 5 and M is 3. What value would be reported by the

following pseudocode algorithm? In general, what quantity does this algorithm
calculate?

| o. write 0 ona piece of paper. |
| 1. IfMequals 0, report what ‘




CHAPTER 1 Java Program Design and Development

EXERCISE 1.7 Puzzle Problem: You are given two different length ropes that
have the characteristic that they both take exactly one hour to burn. However,
neither rope burns at a constant rate. Some sections of the ropes burn very fast;
other sections burn very slowly. All you have to work with is a box of matches
and the two ropes. Describe an algorithm that uses the ropes and the matches to
calculate when exactly 45 minutes have elapsed.

EXERCISE 1.8 Puzzle Problem: A polar bear that lives right at the North Pole
can walk due south for one hour, due east for one hour, and due north for one
hour, and end up right back where it started. Is it possible to do this anywhere
else on earth? Explain.

EXERCISE 1.9 Puzzle Problem: Lewis Carroll, the author of Alice in Wonder-
land, used the following puzzle to entertain his guests: A captive queen weighing
195 pounds, her son weighing 90 pounds, and her daughter weighing 165
pounds, were trapped in a very high tower. Outside their window was a pulley
and rope with a basket fastened on each end. They managed to escape by using
the baskets and a 75-pound weight they found in the tower. How did they do it?
The problem is that anytime the difference in weight between the two baskets is
more than 15 pounds, someone might get hurt. Describe an algorithm that gets
them down safely.

EXERCISE 1.10 Puzzle Problem: Here’s another Carroll favorite: A farmer
needs to cross a river with his fox, goose, and a bag of corn. There’s a rowboat
that will hold the farmer and one other passenger. The problem is that the fox will
eat the goose if they are left alone on the river bank, and the goose will eat the
corn if they are left alone on the river bank. Write an algorithm that describes
how he got across without losing any of his possessions.

EXERCISE 1.11 Puzzle Problem: Have you heard this one? A farmer lent the
mechanic next door a 40-pound weight. Unfortunately, the mechanic dropped the
weight and it broke into four pieces. The good news is that, according to the
mechanic, it is still possible to use the four pieces to weigh any quantity between
one and 40 pounds on a balance scale. How much did each of the four pieces
weigh? (Hint: You can weigh a 4-pound object on a balance by putting a 5-pound
weight on one side and a 1-pound weight on the other.)

EXERCISE 1.12 Suppose your little sister asks you to show her how to use a
pocket calculator so that she can calculate her homework average in her science
course. Describe an algorithm that she can use to find the average of 10
homework grades.

EXERCISE 1.13 A Caesar cipher is a secret code in which each letter of the al-
phabet is shifted by N letters to the right, with the letters at the end of the
alphabet wrapping around to the beginning. For example, if N is 1, when we shift
each letter to the right, the word daze would be written as ebaf. Note that the z
has wrapped around to the beginning of the alphabet. Describe an algorithm that
can be used to create a Caesar encoded message with a shift of 5.

EXERCISE 1.14 Suppose you received the message, “sxccohv duh ixqg,” which
you know to be a Caesar cipher. Figure out what it says and then describe an
algorithm that will always find what the message said regardless of the size of
the shift that was used.

EXERCISE 1.15 Suppose you’re talking to your little brother on the phone and
he wants you to calculate his homework average. All you have to work with is a
piece of chalk and a very small chalkboard—big enough to write one four-digit
number. What's more, although your little brother knows how to read numbers,
he doesn’'t know how to count very well so he can't tell you how many grades
there are. All he can do is read the numbers to you. Describe an algorithm that
will calculate the correct average under these conditions.



CHAPTER 1Exercises 59
EXERCISE 1.16 Write a header for a public applet named SampleApplet.
EXERCISE 1.17 Write a header for a public method named getName.

EXERCISE 1.18 Design a class to represent a geometric rectangle with a given
length and width, such that it is capable of calculating the area and the perimeter
of the rectangle.

EXERCISE 1.19 Modify the OldMacDonald class to “sing” either “Mary Had a
Little Lamb” or your favorite nursery rhyme.

EXERCISE 1.20 Define a Java class, called Patterns, modeled after OldMac-

Donald, that will print the following patterns of asterisks, one after the other
heading down the page:

EXERCISE 1.21 Write a Java class that prints your initials as block letters, as
shown in the example in the margin.

EXERCISE 1.22 Challenge: Define a class that represents a Temperature ob-

ject. It should store the current temperature in an instance variable of type
double, and it should have two public methods, setTemp(double t), which
assigns t to the instance variable, and getTemp(), which returns the value of the
instance variable. Use the Riddle class as a model.

EXERCISE 1.23 Challenge: Define a class named TaxWhiz that computes the
sales tax for a purchase. It should store the current tax rate as an instance
variable. Following the model of the Riddle class, you can initialize the rate using
a TaxWhiz() method. This class should have one public method, calcTax(double
purchase), which returns a double, whose value is purchases times the tax rate.
For example, if the tax rate is 4 percent, 0.04, and the purchase is $100, then
calcTax() should return 4.0.
EXERCISE 1.24 What is stored in the variables num1 and num2 after the follow-
ing statements are executed?

int numl =5;

int num2 = 8;

numl = numl + num2;

num2 = nmm1 + numz2;

EXERCISE 1.25 Write a series of statements that will declare a variable
of type int called num and store in it the difference between 61 and 51.

UML EXERCISES

EXERCISE 1.26 Modify the UML diagram of the Riddle class to con-tain
a method named getRiddle() that would return both the riddle’s question
and answer.

EXERCISE 1.27 Draw a UML class diagram representing the follow-ing
class: The name of the class is Circle. It has one attribute, a radius that
is represented by a double value. It has one operation, calculateArea(),
which returns a double. Its attributes should be designated as private
and its method as public.

*kkkkk

*

*

*kkkkk

*%

* %

* ok ok kX %



Person

rname : String
tphone : String

t+printName()
t+printPhone()

Figure 1.16: The Person class.

CHAPTER 1 Java Program Design and Development

EXERCISE 1.28 To represent a triangle we need attributes for each of
its three sides and operations to create a triangle, calculate its area, and
calculate its perimeter. Draw a UML diagram to represent this triangle.

EXERCISE 1.29 Try to give the Java class definition for the class de-

scribed in
the UML diagram shown in Figure 1.17.



Chapter 2

Objects: Using,
Creating, and Defining

OBJECTIVES
After studying this chapter, you will

Be familiar with using variables to store and manipulate simple data.
Be familiar with creating and using objects.

Understand the relationship between classes and objects.

Understand the difference between objects and data of primitive type.
Understand the difference between static and and instance elements of a
class. Be able to understand and design a simple class in Java.

Understand some of the basic principles of object-oriented programming.

OUTLINE

2.1 Introduction

2.2 Using String Objects

2.3 Drawing Shapes with the Graphics Object (Optional)

2.4  Class Definition

2.5 Case Study: Simulating a Two-Person Game

2.6 From the Java Library: java.util. Scanner Special
Topic: Alan Kay and the Smalltalk Language Chapter
Summary
Solutions to Self-Study Exercises
Exercises

61



Stnng

-l
-ciount

+ Stringf]

+ Stringfin s Shing)
+length]: int

+ concakfins: Skhing): Stdng

+ equalsfin s: Sthing): boolean

Figure 2.1: A partial representa-
tion of the String class.

62 CHAPTER 2 Objects: Using, Creating, and Defining
2.1 Introduction

This chapter introduces some more of the basic principles of object-
oriented programming. We begin by looking at some examples of creat-
ing and using objects of type String and Graphics. Then, we examine
how user defined classes are used by doing a detailed walk-through of
the Riddle class we saw in Chapter 1. We focus on the basic Java
language elements involved. By the end of these sections, you should
know how to identify the key elements that make up a Java program.

We then present a detailed example of the programming development
process by designing a class that models a certain two person game and
implements the class. The design is represented using UML notation.

2.2 Using String Objects

As we know, a Java program is a collection of interacting objects, where
each object is a module that encapsulates a portion of the program’s at-
tributes and actions. Objects belong to classes, which serve as
templates or blueprints for creating objects. Think again of the cookie
cutter analogy. A class is like a cookie cutter. Just as a cookie cutter is
used to shape and create individual cookies, a class definition is used to
shape and create individual objects.

Programming in Java is primarily a matter of designing and defining
class definitions, which are then used to construct objects. The objects
perform the program’s desired actions. To push the cookie cutter
analogy a little further, designing and defining a class is like building the
cookie cutter. Obviously, very few of us would bake cookies if we first
had to design and build the cookie cutters. We’d be better off using a
pre-built cookie cutter. By the same token, rather than designing our own
classes, it will be easier to get into “baking” programs if we begin by
using some predefined Java classes.

The Java library contains many pre-defined classes that we will use in
our programs. So let’s begin our study of programming by using two of
these classes, the String and Graphics classes.

2.2.1 Creating and Combining Strings

Strings are very useful objects in Java and in all computer programs.
They are used for inputting and outputting all types of data. Therefore, it
essential that we learn how to create and use String objects.

Figure 2.1 provides an overview of a very small part of Java’s String
class. In addition to the two String() constructor methods, which are used
to create strings, it lists several useful instance methods that can be
used to manipulate strings. The String class also has two instance
variables. One stores the String’s value, which is a string of characters
such as “Hello98”, and the other stores the String’s count, which is the
number of characters in its string value.

Recall from Chapter O that in order to get things done in a program we
send messages to objects. The messages must correspond to the object’s
instance methods. Sending a message to an object is a matter of calling one
of its instance methods. In effect, we use an object’s methods to get the



SECTION 2.2Using String Objects 63

object to perform certain actions for us. For example, if we have a String,
named str and we want to find out how many characters it contains, we
can call its length() method, using the expression str.length(). If

we want to print str’s length, we can embed this expression in a print
statement:

|System.out.print|n(str.Iength()); /I Print str's length

In general, to use an object’s instance method, we refer to the method in
dot notation by first naming the object and then the method:

objectName.methodName() ;

The objectName refers to a particular object, and the methodName() refers
to one of its instance methods.

As this example makes clear, instance methods belong to objects, and in
order to use a method, you must first have an object that has that method.
So, to use one of the String methods in a program, we must first create
a String object.

To create a String object in a program, we first declare a String
variable.

|Stringstr; /I Declare a String variable named str |

We then create a String object by using
the new keyword in conjunction with one of the String() construc-

tors. We assign the new object to fhe variable we declared

‘ str =new String/( );// Create a String object

This example will create a String that contains, as its value, the word
"Hello” that is passed in by the constructor. The String object that this
creates is shown in Figure 2.2.

We can also use a constructor with an empty parameter list. Note that

in this case we combine the variable declaration and the object creation
into one statement:

\ Stringstr2 =new String();// Create a String \

This example will create a String object that contains the empty string as
its value. The empty string has the literal value ™ — that is, a pair of
double quotes that contain no characters. Because the empty string has
no characters, the count variable stores a zero (Fig. 2.3).

Note that we use a constructor to assign an initial value to a variable of
type String (or of a type equal to any other class). This differs from how we
assign an initial value to variables of primitive type, for which we use a
simple assignment operator. This difference is related to an important
difference in the way Java treats these two types of variables. Variables of
primitive type are names for memory locations where values of prim-itive
type are stored. As soon as they are declared they are assigned a default
value of that primitive type. The default value for intis 0 and

Dot notation

str:String
value = “Hello™
count =5

Figure 2.2: A String object stores |
a sequence of characters and a
count giving the number of char-

acters.
str2:String
value = “7
count =0

Figure 2.3: The empty string has
a value of ™ and a its length is 0.



64 CHAPTER 2 Obijects: Using, Creating, and Defining

the default value for boolean is false. On the other hand, variables
that are declared to be of a type equal to a class name are designed to store
a reference to an object of that type. (A reference is also called a pointer
because it points to the memory address where the object itself is stored.)
A constructor creates an object somewhere in memory and supplies a ref-
erence to it that is stored in the variable. For that reason, variables that
are declared as a type equal to a class name are said to be variables of
reference type or reference variables. Reference variables have a special
default value called null after they are declared and before they are as-
signed a reference. It is possible to check whether or not a reference vari-
able contains a reference to an actual object by checking whether or not it
contains this null pointer.

Once you have constructed a String object, you can use any of the
methods shown in Figure 2.1 on it. As we already saw, we use dot no-
tation to call one of the methods. Thus, we first mention the name of the

object followed by a period (dot), followed by the hame of the method. For
example, the following statements print the lengths of our two strings:

System.out.printin(str.length());
System.out.printin(str2.length());

Another useful String method is the concat(String) method,

which can be used to concatenate two strings. This method takes a String

argument. It returns a String that combines the String argument to the
String that the method is called on. Consider this example:

String sl =new String( );
String s2 =new String( )
System.out.printin(sl.concat(s2));

In this case, the concat() method adds the String s2 to the end of the
String s1. The result, which gets printed, will be the String "George
Washington”.

Because strings are so important, Java allows a number of shortcuts
to be used when creating and concatenating strings. For example, you

don’t have to use new String() when creating a new string object. The
following code will also work:

| String sl
String s2 ;

Similarly, an easier way to concatenate two String objects is to use the
plus sign (+), which serves as a concatenation operator in Java:

|System.out.print|n(sl + s82);

Another useful String method is the equals() method. This is a
boolean method, which is used to compare two Strings. If both Strings
have the same characters, in the same order, it will return true.



SECTION 2.2Using String Objects 65

Otherwise it will return false. For example, consider the following code
segment:

| string s1 = :
String s2 = ;
String s3 = ;

In this case, the expression sl.equals(s2) will be true, but s1.equals(s3)
will be false.

It is important to note that the empty string is not the same as a String
variable that contains null. Executing the statements:

Stringsl;
Strings2 ="
System.out.printin(sl.equals(s2));

will not only not print out true; it will cause the the program to terminate
abnormally. It is an error to use the method of a String variable, or any other
variable whose type is a class, before it has been assigned an object. When
the above code is executed, it will report a null pointer exception, one of
the most common runtime errors. When you see that error mes-sage, it
means that some method was executed on a variable that does not refer to
an object. On the other hand, the empty string is a perfectly good String
object which just happens to contain zero characters.
Figure 2.4 shows a program that uses string concatenation to create

public class StringPuns
f
public static void main(String args[])

fString s = new String/( )
String s1 =s.concat( );
System .out.println( + sl);
String s2 = ;

String s3 = s + ;
System .out.printin(s2 + s3);
System .out.println( +

String s4 =new String( );
String s5 = ;
System.out.print(s4.length());
System.out.printin(s5 + s + );
System.out.print( );
System.out.print(s.equals( ));
System.out.println( + s + );
String s6 = ;
System.out.println( +s + s6);
g // main()
g/l StringPuns class

Figure 2.4: A program that prints silly string puns.



66 CHAPTER 2 Objects: Using, Creating, and Defining

some silly sentences. The programs declares a number of string
variables, named s, s1, and so on, and it instantiates a String object for
each vari-able to refer to. It then prints out a top-five list using the
concatenation operator to combine strings. Can you figure out what it
prints without running it?

SELF-STUDY EXERCISES

EXERCISE 2.1 What is the output to the console window when the
following Java code fragment is executed:

|Strings: :
System.out.println( +s+s+ + s + );

2.3 Drawing Shapes with a Graphics Object
(Optional)

All of the instance methods of the String class that we examined return
values. The length() method return an int value, and the concat() method
returned a String. It is also very common for classes to define instance
methods that perform actions but do not return a value. The Graphics
object, g, that appears in Chapter 1’s HelloWorldSwing is one example.
The program is reproduced in Figure 2.5

/File: HelloWorldSwing program /

import javax.swing.JFrame ; // Import class names
import java.awt. Graphics;
import java.awt.Canvas;

public clas s HelloworldCanvas extends Canvas // Class heade |
f
/l Start of body
public void paint(Graphics g)
/I The paint method
f
g . drawString ( , 10, 10);
g // Endof paint

public static void main(String[] args)f
HelloWorldCanvas ¢ = new HelloWorldCanvas () ;
JFrame f =new JFrame () ;
f.add (c);
f.setSize(150,50);
f.setVisible(true);

g

g //End of HelloWorldCanvas

Figure 2.5: HelloWorldCanvas program source code.



SECTION 2.3  Drawing Shapes with a Graphics Object (Optional) 67

At this point we will not worry about the language features that en-
able the paint() method to draw on the Java Swing window. We will focus
instead on the information needed to make good use of the
g.drawString() method. The first thing you should know is that, when the
paint() method is executed, its parameter, g, refers to an instance of the
Graphics class. Unlike our other examples involving variables that refer
to objects, in this case there is no need to use a constructor to create an
object of type Graphics. We can assume g already refers to such an
object.

We already know that the statement

| g . drawString ( ,10,10); |

displays the String “Hello, World!” in the program window. More gen-
erally, if str is a literal String value or a reference to a String object and x
and y are literal int values or int variables then

| g.drawString (str,x,y) |

displays the String str from left to right in the program window be-ginning
at a point which is x pixels from the left edge of the window and y pixels
down from the top edge of the window. In a graphics window, the point
with coordinates (0,0) is at the top-left corner. The horizontal axis grows
positively from left to right. The vertical axis grows positively from top to
bottom (Fig. 2.6).

(A pixel is a dot on the console window that can be set to a certain
color.) Notice that increasing the value of y will cause str to be displayed
lower. This is the opposite of the usual x and y coordinate system used
in mathematics where increasing the y value designates a higher point.

With this information about g.drawString(), we can calculate where to
display any message in the program window. For example, if we wish to

display the message “Welcome to Java” 25 pixels below where “Hello,
World!” is displayed we could use the statements

| g.drawsString ( ,10,10);
| g.drawString ( ,10,35);

in the body of HelloWorldCanvas’s paint() method. The result of these
statements would appear as shown in Figure 2.7.

2.3.1 Graphics Drawing Methods

The Graphics class discussed in the previous section also has methods
that can be used to draw geometric shapes in different colors. These
meth-ods can be used to create graphical user interfaces that are more
interest-ing or to give a visual representation of data, such as a pie chart
or a bar graph.

There are two Graphics methods for drawing rectangles, fillRect() and
drawRect() (Fig. 2.8). The first draws a rectangle and fills it with the
current drawing color and the second just draws the outline of the rectan-
gle. Using the Graphics object, g, each of these is called in the same way

0,0 80,0

0,60 g0,60

b

Figure 2.6: Coordinate system of
a Java window.



Graphics

+ drawRect{x,y,w,h)

+ fillRect{x,y,w,h}

+ getColor{Color)

+ drawline(x1,y1 x2 v2)
+ draw0val (x,y,w,h)

+ fillOval (x,y,w,h)

Figure 2.8: Some of the drawing
methods in the Graphics class.

68 CHAPTER 2 Objects: Using, Creating, and Defining

Figure 2.
® M O Drawstring Applet - Mozilla™ drawn at
v S . S 1 “Welcom
e --\. ~ <
fV é v e v 3 §§ & the JFram
i Stop

Back Forward Reload

E_/.‘}Home ¥ Bookmarks £ mozllaorg »

Hello Warld

Welcome 1o Java

as the drawString() method from the previous example. Each of these

methods takes four int arguments, which specify the rectangle’s location
and size. Thus, a call to fillRect() would take the form

g.fillRect(x,y,width,height); |

where x and y arguments specify the location of the upper left corner of
the rectangle as being x pixels from the left edge of the window and y
pixels down from the top edge of the window. The width and height
arguments specify the width and height of the rectangle in pixels. The
drawRect() method also takes the same four arguments.

A Graphics object stores a single color for use in drawing shapes or
displaying strings with drawString(). If we wish to draw an interesting
scene in the JFrame, we need to understand how to use colors.

For a given Graphics object, such as g, the setColor() method will
set its color for all subsequent drawing commands. The setColor()
method takes, as an argument, an object of type Color. All we need
to know about the Color class is that it is contained in the java.awt
package and that it contains 13 constant Color objects corresponding to
13 common colors. Table 2.1 lists the 13 Color constants. Each name
corresponds to the color it will represent in the program.

Color.black Color.green Color.red
Color.blue Color.lightGreen | Color.white
Color.cyan Color.magenta Color.yellow
Color.darkGray | Color.orange

Color.gray Color.pink

Table 2.1: Predefined color constants in the Color class.

To demonstrate how the new Graphics methods can be used for cre-
ating more interesting graphical programs, let’'s develop a plan for dis-
playing the two messages, “Hello, World!” and “Welcome to Java.”, on
an JFrame, but this time we will draw the first inside a colored rectan-gle
and the second inside a colored oval. For the rectangle, let’s use the



SECTION 2.4Class Definition 69

drawRect() method to create its border. We can choose some arbitrary
colors, say, cyan for filling the rectangle, blue for its border, and black for
the string itself. In order to have the message visible we should fill a
rectangle with the color cyan first, then draw the border of the rectangle
in blue and, finally, display the message in black.

Drawing and filling a Graphics oval is very similar to drawing and
filling a rectangle. Notice in Figure 2.8 that the fillOval() and drawOval()
methods take the same four arguments as the correspond-ing rectangle
methods. An oval is inscribed within an enclosing rectangle. The x and y
arguments give the coordinates of the enclosing rectangle’s top left
point. And the width and height arguments give the enclosing rectangles
dimensions.

All that remains is to choose the location and dimensions of the rect-
angles. We could specify one rectangle as having its upper left corner 25
pixels to the right of the left edge of the JFrame and 25 pixels down from

the top edge. A medium sized rectangle could have a width of 140 pixels
and a height of 40 pixels. The statement

g.filTRect(25, 25, 140, 40);
will fill this rectangle with whatever color happens to be g’s current color.
A location 25 pixels to the right of the left edge of the rectangle and 25

pixels down from the top edge of the rectangle would have coordinates
X =50 and y = 50. Thus, the statement

g . drawsString ( , 50,50);
will display “Hello, World!” inside the rectangle. We can use similar
planning to locate the oval and its enclosed message.

Thus, we now have sufficient information to finish the paint() method
for accomplishing our plan. The completed program is displayed in
Figure 2.9. Note how we repeatedly use the g.setColor() method to
change g’s current color before drawing each element of our picture.

Figure 2.10 shows what this program looks like. To experiment with
this Java Swing application, download its sourcecode from the book’s
Web site and compile and run it on your computer. Additional drawing
capa-bilities will be explored throughout the text in sections that can
either be covered or skipped.

2.4 Class Definition

To program in Java the main thing you do is write class definitions for the The class as template
various objects that will make up the program. A class definition encapsu-
lates its objects’ data and behavior. Once a class has been defined, it serves
as a template, or blueprint, for creating individual objects or instances of the
class.
A class definition contains two types of elements: variables and meth-
ods. Variables are used to store the object’s information. Methods are used Variables and methods



Riddle

- question: String
- answer: 3tring

+ Riddle{q: String, a: String)
+ getQuestion(): String
+ geténswer(): String

Figure 2.11: The Riddle class.

70 CHAPTER 2  Obijects: Using, Creating, and Defining

import java.awt. ;
import javax.swing . JFrame ;

public clas s HelloWorldGraphic extends Canvas
f
/l called after setVisible(true)
public void paint(Graphics g) f
g.setColor(Color.cyan); Il Set color
g.fillRect(25, 25, 140, 40); // Fill rectangle
g.setColor(Color.blue); /I Set color
g.drawRect (25, 25, 140, 40); // outline rectangle
g.setColor(Color.black); /I Set color
g . drawString ( , 50, 50); // Display |tring
g.setColor(Color.yellow);
g.fillOval(25, 75,140, 40); // Fill oval
g.setColor(Color.red);
g.drawOval (25, 75, 140, 40); // outline oval
g.setColor(Color.black);
g . drawString ( , 50, 100);
g//ipaint()

//'the program

public static void main(String[] args)f
HelloWorldCanvas ¢ = new HelloWorldCanvas () ;
JFrame f =new JFrame () ;
f.add(c);
f.setSize(150,50);
f.setVisible(true);

g

g//HelloWorldGraphic

Figure 2.9: The HelloWorldGraphic class is a Java Swing program that
shows how to use color and drawing methods.

to process the information. To design an object you need to answer five
basic questions:

What role will the object perform in the program?
What data or information will it need?

What actions will it take?

What interface will it present to other objects?
What information will it hide from other objects?

2.4.1 The Riddle Class

Recall our definition of the Riddle class from Chapter 1, which is sum-
marized in the UML diagram in Figure 2.11. A Riddle has two attributes,
question and answer. Each of these variables stores a string of charac-
ters, which Java treats as data of type String. The Riddle class contains
three methods. The Riddle() constructor method assigns initial values (q
and a) to its question and answer variables. The getQuestion() and
getAnswer() methods return the data stored in question ands answer
respectively.



his is how the

aphic
un.

program

SECTION 2.4Class Definition 71
jé 6 O Hello Graphic - ... O |

Back Forward Reload

v %% Home  ‘§¥Bookmarks »

Hello World i

-ﬁ

Welcome toJava

C————— «»
e £ 2 B @3

>

The instance variables question and answer are designated as private
( ), but the Riddle(), getQuestion() and getAnswer() methods are
designated as public (+). These designations follow two important object-
oriented design conventions, whose justification will be-come apparent
as we discuss the Riddle class:

VAN R=eRlI=bl=S][€lN]  Private Variables. Instance variables are
usually declared private so that they cannot be directly accessed by

other objects.

VAN ESREegilvi=blEsi(elN] Public Methods. An object’s public
methods can be used by other objects to interact with the object. The
public methods and variables of an object make up its interface.

Figure 2.12 shows the Java class definition that corresponds to the de-
sign given in the UML diagram. It contains the two private instance
variables and defines the three public methods listed in the UML dia-
gram. In a Java class definition, access to a class element, such as a vari-
able or a method, is controlled by labeling it with either the private, or
public access modifier. An access modifier is a declaration that controls
access to a class or one of its elements. Note also that the Riddle class
itself is declared public. This lets other classes have access to the class
and to its public variables and methods.
Recall that a class is like a blueprint or a cookie cutter. The Riddle class
defines the type of information (attributes) that each individual Riddle
has, but it doesn’t contain any actual values. It defines the methods (op-
erations) that each Riddle can perform, but it doesn’t actually perform
the methods. In short, a class serves as a template, providing a detailed
blueprint of the objects (or instances) of that class.

Access modifier

Class as blueprint



User interface

User
Interface

User

Computational
Object

Figure 2.13: The user interfaces
handles interaction between the
user and the rest of the program.

72 CHAPTER 2 Obijects: Using, Creating, and Defining

public class Riddle
fprivate String question; //instance variables
private String answer;

public Riddle (String q, String a) // cConstructor
fquestion =q;

answer = a;

g// Riddle constructor

public String getQuestion() // instance method
freturn question;
g// getQuestion()

public String getAnswer () //instance method
freturn answer;
g//getAnswer()

g//Riddle class

Figure 2.12: Definition of the Riddle class.

2.4.2 The RiddleUser Class

Now that we have defined the Riddle class, we can test that it works
correctly by creating Riddle objects and “asking” them to tell us their
riddles. To do this we need to define a main() method, which can be
defined either within the Riddle class itself or in a second class named
something like RiddleUser.

One advantage of using a second class is that it gets us in the habit of
thinking about the need for a separate class to serve as a user interface,
with a separate set of tasks from the Riddle class. A user interface is an
object or class that handles the interaction between a program’s user
and the rest of the program’s computational tasks. This concept is
illustrated in Figure 2.13. Note that we use the general term
computational object to distinguish the rest of the program’s
computations from the user interface. Obviously, the exact nature of the
computation will vary from program to program, just as will the details of
the user interface. The computation done by our Riddle class is just the
storing and displaying of a riddle’s question and answer.

By separating user interface tasks from riddle tasks this design em-
ploys the divide-and-conquer principle: the RiddleUser class will cre-ate
Riddle objects and handle interactions with the user, and the Riddle
class will handle the storing and transmission of riddle information. Thus,
as shown in Figure 2.14, this particular Java program will involve inter-
action between two types of objects: a RiddleUser and one or more
Riddles. Note that we characterize the relationship between Riddle and
RiddleUser with a one-way arrow labeled “Uses.” This is because the
RiddleUser will create an instance of Riddle and use its methods to
display (for the user) a riddle.

Because almost all of our programs will involve some form of a user in-
terface, we can generalize this design approach and follow it throughout the
book. One way to think about this approach is as a division of labor



is UML class di-
ts an association
iddleUser and

The Riddle-
use one or more
ddle class.

SECTION 2.4Class Definition 73

RiddleUser
- - Uses
- riddle: Riddle oz
+ main()
Riddle

- question: String
- answer: 3tring

+ Riddle{q: String, a: String)
+ getQuestion{): String
+ gethnswer(): String

between a user interface class and a second computational class, which
per-forms whatever computations are needed by the particular program.
In this case the computations are the simple Riddle methods that we
have defined. In subsequent programs the computations will become
more complex, which will make all the more clear that they should be
separated from the user interface.

2.4.3 Object Instantiation: Creating Riddle Instances

Figure 2.15 shows the complete definition of the RiddleUser class,
which serves as a very simple user interface. It creates two Riddle ob-

jects, named riddlel and riddle2. It then asks each object to request
each riddle’s question and answer and displays them on the console.

public clas s RiddleUser

f
public static void main(String argv[])
fRiddle riddle 1l =new Riddle (

)
Riddle riddle 2 =new Riddle (

)
System .out.println( );
System.out.printin(riddlel.getQuestion());
System.out.println(riddle2.getQuestion());
System.out.println( ) ;
System.out.println(riddlel.getAnswer());
System.out.println( );
System.out.println(riddle2.getAnswer ());
g// main()

g// RiddleUser

Figure 2.15: The RiddleUser class.




74 CHAPTER 2 Objects: Using, Creating, and Defining

Let's now discuss the statements that make up RiddleUser's main()
method. The following statements use the Riddle() constructor to cre-ate,
or instantiate, two instances of the Riddle class:

Riddle riddlel =new Riddle (

)
Riddle riddle 2 =new Riddle (

),

Note how the constructor gives each object a pair of Strings that serve
as the values of their two instance variables. Each object has its own
guestion and its own answer, and each object has its own unique name,
riddlel and riddle2.

2.4.4 Interacting with Riddles

Once we have created Riddle instances with values assigned to their
guestion and answer instance variables, we can ask each riddle to tell

us either of its values. The following expression is an example of a method
call:

| riddlel.getQuestion()

Method call Calling (or invoking) a method is a means of executing its code. The above
method call just gets the String value that is stored in the question
instance variable of riddlel.

,y? NANZ NS NOCRNWIVIINCRNIE Method Call versus Method
. Definition. Don’t confuse method calls with method definitions. The
definition specifies the method’s actions. The method call takes those

actions.

If we want to display the value of riddlel’s question, we can embed
this method call within a println() statement

|System.0ut.println(riddlel.getQuestion());

This tells the System.out object to execute its printin() method,

which displays the string given to it by riddle1 on the console. Thus,
the output produced by this statement will be

| What is black and white and red all over?

2.4.5 Define, Create, Use

As our Riddle example illustrates, writing a Java program is a matter of
three basic steps:

Define one or more classes (class definition).



SECTION 2.4Class Definition 75

Create objects as instances of the classes (object
instantiation). Use the objects to do tasks (object use).

The Java class definition determines what information will be stored in
each object and what methods each object can perform. Instantiation
cre-ates an instance and associates a name with it in the program. The
ob-ject’s methods can then be called as a way of getting the object to
perform certain tasks.



76 CHAPTER 2 Objects: Using, Creating, and Defining

SELF-STUDY EXERCISES

EXERCISE 2.2 Identify the following elements in the Riddle class (Fig.
2.12):

The name of the class.

The names of two instance variables.
The names of three methods.

EXERCISE 2.3 Identify the following elements in the RiddleUser class
(Fig. 2.15):

The names of two Riddle instances.

All six method calls of the Riddle objects in the program.
Two examples of qualified names.

2.5 CASE STUDY: Simulating a Two-Person
Game

In this section, we will design and write the definition for a class that
keeps track of the details of a well known, two-person game. We will
focus on details of designing the definition of a class in the Java
language. Our objective is to understand what the program is doing and
how it works without necessarily understanding why it works the way it
does. We will get to “why” later in the book.

The game we will consider is played by two persons with a row of
sticks or coins or other objects. The players alternate turns. A player
must remove one, two, or three sticks from the row on his or her turn.
The player who removes the last stick from the row loses. The game can
be played with any number of sticks but starting with twenty one sticks is
quite common. This game is sometimes referred to as the game of
"Nim”, but there is a similar game involving multiple rows of sticks that is
more frequently given that name. Thus we will refer to this game as "One
Row Nim”.

2.5.1 Designing a OneRowNim class
Problem Specification

Let’s design a class named OneRowNim that simulates the game of One
Row Nim with a row of sticks. An object constructed with this class
should manage data that corresponds to having some specified number
of sticks when the game begins. It should keep track of whose turn it is
and it should allow a player to diminish the number of sticks remaining
by one, two, or three. Finally, a OneRowNim object should be able to
decide when the game is over and which player has won.

Problem Decomposition

Let’'s design OneRowNim so that it can be used in with different kinds of
user interfaces. One user interface could manage a game played by two
persons who alternately designate their moves to the computer. Another
user interface could let a human player play against moves made by the



SECTION 2.5CASE STUDY: Simulating a Two-Person Game 77

computer. In either of these cases we could have a human player desig-
nate a move by typing from the keyboard after being prompted in a con-
sole window or, alternatively, by inputting a number into a text field or se-
lecting a radio button on a window. In this chapter, we will be concerned
only with designing an object for managing the game. We will design
user interfaces for the game in subsequent chapters.

Class Design: OneRowNim

As we saw in the Riddle example, class definitions can usually be broken
down into two parts: (1) the information or attributes that the object needs
which must be stored in variables, and (2) the behavior or actions the ob-ject
can take which are defined in methods. In this chapter, we will focus on
choosing appropriate instance variables and on designing methods as
blocks of reusable code. Recall that a parameter is a variable that tem-
porarily stores data values that are being passed to a method when that
method is called. In this chapter, we will restrict our design to methods that
do not have parameters and do not return values. We will return to the
problem of designing changes to this class in the next chapter after an in-
depth discussion of method parameters and return values.

The OneRowNim object should manage two pieces of information that
vary as the game is played. One is the number of sticks remaining in the
row and the other is which player has the next turn. Clearly, the number
of sticks remaining corresponds to a positive integer that can be stored
in a variable of type int. One suitable name for such a variable is nSticks.
For this chapter, let us assume that the game starts with 7 sticks, rather
than 21, to simplify discussion of the program.

Data designating which player takes the next turn could be stored in
different ways. One way to do this is to think of the players as player one
and player two and store a 1 or 2 in an int variable. Let's use player as the
name for such a variable and assume that player one has the first turn.

The values of these two variable for a particular OneRowNim object at
a particular time describes the object’s state. An object’s state at the
begin-ning of a game is a 7 stored in nSticks and 1 stored in player. After
player one removes, say, two sticks on the first turn, the values 5 and 2
will be stored in the two variables.

Method Decomposition

Now that we have decided what information the OneRowNim object
should manage, we need to decide what actions it should be able to per-
form. We should think of methods that would be needed to communicate
with a user interface that is both prompting some human players as well
as receiving moves from them. Clearly, methods are needed for taking a
turn in the game. If a message to a OneRowNim object has no argument
to indicate the number of sticks taken, there will need to be three meth-
ods corresponding to taking one, two, or three sticks. The method names
takeOne(), takeTwo(), and takeThree() are descriptive of this ac-tion.
Each of these methods will be responsible for reducing the value of
nSticks as well as changing the value of player.

What data do we need?

What methods do we need?



OneRowMim
- nSticks:int=7
- player:int =1
+ takednet )
+ takeTwol )

+ takeThreel )
+ reparti )

Figure 2.16: A UML class
diagram for OneRowNim.

Object

AN

OneRowNim

Figure 2.17: By default,
OneRowNim is a subclass of
Object.

Variables and methods

Class-level vs. local variables

78 CHAPTER 2 Obijects: Using, Creating, and Defining

We should also have a method that gives the information that a user
needs when considering a move. Reporting the number of sticks remain-
ing and whose turn it is to the console window would be an appropriate
action. We can use report() as a name for this action.

Figure 2.16 is a UML class diagram that summarizes this design of
the OneRowNim class. Note that the methods are declared public (+)
and will thereby form the interface for a OneRowNim object. These will
be the methods that other objects will use to interact with it. Similarly, we
have followed the convention of designating an object’s instance
variables—the OneRowNim’s instance variables—be kept hidden from
other objects, and so we have designated them as private( ).

2.5.2 Defining the OneRowNim Class

Given our design of the OneRowNim class as described in Figure 2.16,
the next step in building our simulation is to begin writing the Java class
definition.

The Class Header

We need a class header, which will give the class a name and will spec-
ify its relationship to other classes. Like all classes that are designed to
create objects that could be used by other objects or classes, the class
OneRowNim should be preceded by the public modifier. Because the
class OneRowNim has not been described as having any relationship to
any other Java class, its header can omit the extends clause so it will be

a direct subclass of Object (Figure 2.17). Thus, the class header for
OneRowNim will look like:

public class OneRowNim // cClass header
f // Beginning of class body
‘g /' Endof class body

The Class’s Instance Variables

The body of a class definition consists of two parts: the class-level vari-
ables and the method definitions. A class-level variable is a variable
whose definition applies to the entire class in which it is defined. Instance
variables, which were introduced in Chapter 1, are one kind of class-
level variable.

In general, a class definition will take the form shown in Figure 2.18.
Although Java does not impose any particular order on variable and
method declarations, in this book we’ll define the class’s class-level vari-
ables at the beginning of the class definition, followed by method defini-
tions. Class-level variables are distinguished from local variables. A
local variable is a variable that is defined within a method. Examples
would be the variables g and a that were defined in the Riddle(String q,
String a) constructor (Fig. 2.12). As we will see better in Chapter 3, Java

handles each type of variable differently.
A declaration for a variable at class level must follow the rules for
declaring variables that were described in Section 1.4.8 with the added



SECTION 2.5CASE STUDY: Simulating a Two-Person Game 79

public clas s ClassName

f //instance and class variables
VariableDeclarationl
VariableDeclaration?2

/' Instance and class methods
MethodDefinitionl
MethodDefinition2

g// End of class

Figure 2.18: A template for constructing a Java class definition.

restriction that they should be modified by one of the access modifiers
public, private, or protected. The rules associated with these access
modifiers are:

A private class-level variable cannot be accessed outside the class
in which it is declared.

A public class-level variable can be referenced and, hence, modi-
fied by any other class.

A protected class-level variable can only be accessed by sub-
classes of the class in which it is declared or by other classes that
belong to the same package.

When a class, instance variable, or method is defined, you can declare it
public, protected, or private. Or you can leave its access unspeci-fied, in
which case Java’s default accessibility will apply.

Java determines accessibility in a top-down manner. Instance vari-
ables and methods are contained in classes, which are contained in
pack-ages. To determine whether a instance variable or method is
accessible, Java starts by determining whether its containing package is
accessible, and then whether its containing class is accessible. Access
to classes, in-stance variables, and methods is defined according to the
rules shown in Table 2.2.

TABLE 2.2 Java’s accessibility rules.

Element Modifier Rule
Class public Accessible if its package is accessible.
by default Accessible only within its package.
Instance variable public Accessible to all other objects.
or protected Accessible to its subclasses and to
instance method other classes in its package.
private Accessible only within the class.
by default Accessible only within the package.

Recall the distinction we made in Chapter 0 between class variables
and instance variables. A class variable is associated with the class it-



80 CHAPTER 2 Objects: Using, Creating, and Defining

self, whereas an instance variable is associated with each of the class’s in-
stances. In other words, each object contains its own copy of the class’s in-
stance variables, but only the class itself contains the single copy of a class
variable. To designate a variable as a class variable it must be declared
static.

The Riddle class that we considered earlier has the following two
examples of valid declarations of instance variables:

|private String question;
| private String answer;

Class Level Variables for OneRowNim

Let’'s now consider how to declare the class level variables for the
OneRowNim class. The UML class diagram for OneRowNim in Figure 2.16
contains all the information we need. The variables nSticks and player
will store data for playing one game of One Row Nim, so they should
clearly be private instance variables. They both will store integer values,
so they should be declared as variables of type int. Because we wish

to start a game of One Row Nim using 7 sticks with player one making
the first move, we will assign 7 as the initial value for nSticks and 1 as
the initial value for player. If we add the declarations for our instance

variable declarations to the class header for the OneRowNim class, we get
the following:

public class OneRowNim

f
privateintnSticks =7;
privateint player =1;

/IMethod definitions go here

g// OneRowNim

To summarize, despite its apparent simplicity, a class level variable
declaration actually accomplishes five tasks:

Sets aside a portion of the object’s memory that can be used to store
a certain type of data.

Specifies the type of data that can be stored in that location.
Associates an identifier (or name) with that location.

Determines which objects have access to the variable’s name.
Assigns an initial value to the location.

OneRowNim’s Methods

Designing and defining methods is a form of abstraction. By defining a
certain sequence of actions as a method, you encapsulate those actions
under a single name that can be invoked whenever needed. Instead of
having to list the entire sequence again each time you want it performed,
you simply call it by name. As you recall from Chapter 1, a method def-
inition consists of two parts, the method header and the method body.




SECTION 2.5CASE STUDY: Simulating a Two-Person Game 81

The method header declares the name of the method and other general

information about the method. The method body contains the executable
statements that the method performs.

public  void methodName () // Method header
f /I Beginning of method body
g /1 End of method body

The Method Header

The method header follows a general format that consists of one or more
MethodModifiers, the method’s ResultType, the MethodName, and the
method’s FormalParameterList, which is enclosed in parentheses. The
fol-lowing table illustrates the method header form, and includes several
ex-amples of method headers that we have already encountered. The
method body follows the method header.

MethodModifiersopt ~ ResultType MethodName  (FormalParameterList)

public static void main (String argv(])
public void paint (Graphics g)
public Riddle (String q, String a)
public String getQuestion 0

public String getAnswer 0

The rules on method access are the same as the rules on instance
vari-able access: private methods are accessible only within the class it-
self, protected methods are accessible only to subclasses of the class in
which the method is defined and to other classes in the same package,
and public methods are accessible to all other classes.

NN S S S S ea ANV SRRI=SI (el Public versus Private Methods. If a
method is used to communicate with an object, or if it passes
information to or from an object, it should be declared public. If a
method is intended to be used solely for internal operations within the
object, it should be declared private. These methods are sometimes
called utility methods or helper methods.

Recall the distinction from Chapter O between instance methods and
class methods. Methods declared at the class level are assumed to be in-
stance methods unless they are also declared static. The static modifier is
used to declare that a class method or variable is associated with the class
itself, rather than with its instances. Just as for static variables, methods that
are declared static are associated with the class and are therefore called
class methods. As its name implies, an instance method can only be used in
association with an object (or instance) of a class. Most of the class-level
methods we declare will be instance methods. Class methods are used only
rarely in Java and mainly in situations where it



Designing a method is an application
of the encapsulation principle.

82 CHAPTER 2 Objects: Using, Creating, and Defining

is necessary to perform some kind calculation before objects of the class
are created. We will see examples of class methods when we discuss
the Math class, which has such methods as sqrt(N) to calculate the
square root of N.

NNV S R(elel A\ IVIIN[EmEIERClass versus Instance Methods. If a

method is designed to be used by an object, it is referred to as an
instance method. No modifier is needed to designate an instance
method. Class methods, which are used infrequently compared to
instance methods, must be declared static.

All four of the methods in the OneRowNim class are instance methods
(Fig. 2.19). They all perform actions associated with a particular instance

public class OneRowNim

fprivateint nSticks = 7; // Start with 7 sticks.
privateint player=1; //Playeri1plays first.
public void takeOne ()fg /I Method bodies need
public void takeTwo () fg /Ito be defined.

public void takeThree()fg
public void report()fg

g//OneRowNim class

Figure 2.19: The Instance variables and method headers for the
OneRowNim class.

of OneRowNim. That is, they are all used to manage a particular One
Row Nim game. Moreover, all four methods should be declared public,
be-cause they are designed for communicating with other objects rather
than for performing internal calculations. Three of the methods are
described as changing the values of the instance variables nSticks and
player and the fourth, report(), writes information to the console. All four
methods will receive no data when being called and will not return any
values. Thus they should all have void as a return type and should all
have empty parameter lists.

Given these design decisions, we now can add method headers to
our class definition of OneRowNim, in Figure 2.19. The figure displays
the class header, instance variable declarations, and method headers.

The Method Body

The body of a method definition is a block of Java statements enclosed
by braces, , which are executed in sequence when the method is called.
The description of the action required of the takeOne() method is typ-ical
of many methods that change the state of an object. The body of the
takeOne() method should use a series of assignment statements to
reduce the value stored in nSticks by one and change the value in




SECTION 2.5CASE STUDY: Simulating a Two-Person Game 83

player from 2 to 1 or from 1 to 2. The first change is accomplished in a
straightforward way by the assignment:

hSticks = nSticksl;

This statement says subtract 1 from the value stored in nSticks and
assign the new value back to nSticks.

Deciding how to change the value in player is more difficult because we
do not know whether its current value is 1 or 2. If its current value is 1, its
new value should be 2; if its current value is 2, its new value should be

Notice, however, that in both cases the current value plus the desired

new value are equal to 3. Therefore, the new value of player is equal to
3 minus its current value. Writing this as an assignment we have:

player =3 player;

One can easily verify that this clever assignment assigns 2 to player if its
current value is 1 and assigns 1 to it if its current value is 2. In effect, this
assignment will toggle the value off player between 1 and 2 each time

it is executed. In the next chapter we will introduce the if-else control
structure that would allow us to accomplish this same toggling action in

a more straightforward manner. The complete definition of takeOne()
method becomes:

ublic void takeOne ()
f

nSticks = nSticks 1; //Takeone stick

player =3 player; /l Change to other player
g

The takeTwo() and takeThree() methods are completely analogous
to the takeOne() method with the only difference being the amount
subtracted from nSticks.

The body of the report() method must merely print the cur-
rent values of the instance variables to the console window with
System.out.printin(). To be understandable to someone using a

OneRowNim object, the values should be clearly labeled. Thus the body
of report() could contain:

System.out.println( + nSticks);
System.out.println( player);

This completes the method bodies of the OneRowNim class. The com-
pleted class definition is shown in Figure 2.20. We will discuss alterna-
tive methods for this class in the next chapter. In Chapter 4, we will de-
velop several One Row Nim user interface classes that will facilitate a
user indicating certain moves to make.



84 CHAPTER 2 Obijects: Using, Creating, and Defining

public class OneRowNim
fprivateint nSticks = 7; // Start with 7 sticks.
privateint player = 1; //Playeriplays first.

public void takeOne ()
fnSticks = nSticks 1;

player =3 player;
g// takeOne()

public void takeTwo ()
fnSticks = nSticks 2;

player =3 player;
g//takeTwol()

public void takeThree()

fnSticks = nSticks 3;
player =3 player;

g //takeThree()

public void report()

f System.out.println( + nSticks);
System.out.println( + player);
g /I report()

g// OneRowNim1l class

Figure 2.20: The OneRowNim class definition.

2.5.3 Testing the OneRowNim Class

Recall our define, create, and use mantra from Section 2.4.5. Now that
we have defined the OneRowNim class, we can test whether it works
correctly by creating OneRowNim objects and using them to perform the
actions as-sociated with the game. At this point, we can test
OneRowNim by defining a main() method. Following the design we used
in the riddle example, we will locate the main() method in separate, user
interface class, named OneRowNimTester.

The body of main() should declare a variable of type OneRowNim and
create an object for it to refer to. The variable can have any name, but a
name like game would be consistent with it recording moves in a single
game. To test the OneRowNim class, we should make a typical series of
moves. For example, three moves taking 3, 3, and 1 sticks respectively
would be one way that the 7 sticks could be removed. Also, executing
the report() method before the first move and after each move should
display the current state of the game in the console window so that we
can determine whether it is working correctly.

The following pseudocode outlines an appropriate sequence of state-
ments in a main() method:



SECTION 2.5CASE STUDY: Simulating a Two-Person Game 85

Declare a variable of type OneRowNim named game.
Instantiate a OneRowNim object to which game refers.
Command game to report.

Command game to remove three sticks.

Command game to report.

Command game to remove three sticks.

Command game to report.

Command game to remove one stick.

Command game to report.

It is now an easy task to convert the steps in the pseudocode outline

into Java statements. The resulting main() method is shown with the
complete definition of the OneRowNimTester class:

public class OneRowNimTester
fpublic static void main (Stringargs|[])
f OneRowNim1 game = new OneRowNim () ;
game.report();
game.takeThree();
game.report();
game.takeThree();
game.report();
game . takeOne () ;
game.report();
g //main()
g

When it is run, OneRowNimTester produces the following output:

Number of sticksleft: 7
Next turn by player 1
Number of sticksleft: 4
Next turn by player 2
Number of sticksleft: 1
Next turn by player 1
Number of sticksleft: O
Next turn by player 2

This output indicates that player 1 removed the final stick and so player 2
is the winner of this game.

SELF-STUDY EXERCISES

EXERCISE 2.4 Add a new declaration to the Riddle class for a private
String instance variable named hint. Assign the variable an initial value
of "This riddle is too easy for a hint".

EXERCISE 2.5 Write a header for a new method definition for Riddle
named getHint(). Assume that this method requires no parameters and
that it simply returns the String value stored in the hint instance variable.
Should this method be declared public or private?




Figure 2.21: The method call and
return control structure. It's im-
portant to realize that method1()
and method2() may be con-
tained in different classes.

86 CHAPTER 2 Objects: Using, Creating, and Defining

EXERCISE 2.6 Write a header for the definition of a new public method

for Riddle named setHint() which sets the value of the hint instance
variable to whatever String value it receives as a parameter. What
should the result type be for this method?

EXERCISE 2.7 Create a partial definition of a Student class. Create
instance variables for the first name, last name, and an integer student
identification number. Write the headers for three methods. One method
uses three parameters to set values for the three instance variables. One
method returns the student identification humber. The last method re-
turns a String containing the student’s first name and last name. Write
only the headers for these methods.

2.5.4 Flow of Control: Method Call and Return

A program’s flow of control is the order in which its statements are ex-
ecuted. In an object-oriented program, control passes from one object to
another during the program’s execution. It's important to have a clear
understanding of this process.

In order to understand a Java program, it is necessary to understand the
method call and return mechanism. We will encounter it repeatedly. A
method call causes a program to transfer control to a statement located in
another method. Figure 2.21 shows the method call and return structure.

METHODZ1() METHOD2()

¢ |—->- STATEMENT1;

METHOD2(); ———
NEXTSTATEMENTL; |

f

— RETURN;

In this example, we have two methods. We make no assumptions
about where these methods are in relation to each other. They could be
defined in the same class or in different classes. The method1() method
executes sequentially until it calls method2(). This transfers control to the
first statement in method2(). Execution continues sequentially through
the statements in method2() until the return statement is executed.

N\ NWANE]U/NEI=HzUIN= Return Statement. The return
statement causes a method to return control to the calling
statement—that is, to the statement that called the method in the first
place.

Recall that if a void method does not contain a return statement, then

Default returns control will automatically return to the calling statement after the invoked method

executes its last statement.

2.5.5 Tracing the OneRowNim Program

To help us understand the flow of control in OneRowNim, we will perform
a trace of its execution. Figure 2.22 shows all of the Java code involved
in the program. In order to simplify our trace, we have moved the main()
method from OneRowNimTester to the OneRowNim class. This does not




SECTION 2.5CASE STUDY: Simulating a Two-Person Game 87

public class OneRowNim
2fprivateint nSticks = 7; // start with 7 sticks.
3 privateint player =1; //Player1plays first.

public void takeOne ()
20 fnSticks = nSticks 1;
21 player =3 player;
g// takeOne()
public void takeTwo ()
fnSticks = nSticks 2;
player =3 player;
g// takeTwo()

public void takeThree()
8,14 fnSticks =nSticks 3;
9,15 player =3 player;
g //takeThree()
public void report()
5,11,17,23f System.out.println( + nSticks);
6,12 ,18 24 System.out.println( + player);
g /l'report()

public staticvoid main(String args]|[])

1 f OneRowNim1 game = new OneRowNim1 () ;
4 game.report();

7 game.takeThree();

10 game.report();

13 game .takeThree();

16 game.report();

19 game . takeOne () ;

22 game.report();

23 g /Imain()

g//OneRowNim1l class

Figure 2.22: A trace of the OneRowNim program.

affect the program’s order of execution in any way. But keep in mind that
the code in the main() method could just as well appear

in the OneRowNimTester class. The listing in Figure 2.22 also adds
line numbers to the program to show the order in which its statements
are executed.

Execution of the OneRowNim program begins with the first statement in
the main() method, labeled with line number 1. This statement de-clares a
variable of type OneRowNim named game and calls a constructor
OneRowNim() to create and initialize it. The constructor, which in this case is
a default constructor, causes control to shift to the declaration of the
instance variables nSticks and player in statements 2 and 3, and as-signs
them initial values of 7 and 1 respectively. Control then shifts back to the
second statement in main(), which has the label 4. At this point, game refers
to an instance of the OneRowNim class with an initial state shown in Figure
2.23. Executing statement 4 causes control to shift to the report()

game : OneRowNim
nSticks : int=7
player : int=1

Figure 2.23: The initial state of
game, a OneRowNim object.



game : OneRowNim
nSticks : int=4
player : int=2

Figure 2.24: The state of game
af-ter line 9 is executed.

88 CHAPTER 2 Objects: Using, Creating, and Defining

method where statements 5 and 6 use System.out.printin() to write
the following statements to the console.

Number of sticks left: 7
Next turnby player 1

Control shifts back to statement 7 in the main() method, which calls the
takeThree() method, sending control to the first statement of that
method. Executing statement 8 causes 3 to be subtracted from the int
value stored in the instance variable nSticks of game, leaving the value
of 4. Executing statement 9 subtracts the value stored in the player vari-
able, which is 1, from 3 and assigns the result (the value 2) back to
player. The state of the object game, at this point, is shown in Figure
2.24. Tracing the remainder of the program follows in a similar manner.
Notice that the main() method calls game.report() four different times so
that the two statements in the report() method are both executed on four
different occasions. Note also that there is no call of game.takeTwo() in
main(). As a result, the two statements in that method are never
executed.

2.5.6 Object-Oriented Design: Basic Principles

We complete our discussion of the design and this first implementation
of the OneRowNim class with a brief review of some of the object-
oriented design principles that were employed in this example.

Encapsulation. The OneRowNim class was designed to encapsulate
a certain state and a certain set of actions. It was designed to
simulate playing the One Row Nim game. In addition, OneRowNim’s
methods were designed to encapsulate the actions that make up their
particular tasks.
Information Hiding. OneRowNim’s instance variables, nSticks and
player are declared private so other objects can only change the
values of these variables with the public methods of a OneRowNim in-
stance. The bodies of the public methods are also hidden from users
of OneRowNim instances. An instance and its methods can be used
without any knowledge of method definitions.

Clearly Designed Interface. OneRowNim’s interface is defined in terms

of the public methods. These methods constrain the way users can in-

teract with OneRowNim objects and ensures that OneRowNim instances

remain in a valid state. Those are the main purposes of a good interface.
Generality and Extensibility. There is little in our design of
OneRowNim that limits its use and its extensibility. Moreover, as we
will see later, we can create several different kinds of user interfaces
which interact with OneRowNim objects.

The OneRowNim class has some obvious shortcomings that are a
result of our decision to limit methods to those without parameters or
return values. These shortcomings include:

A OneRowNim object cannot communicate to another object the
number of remaining sticks, which player makes the next turn, or
whether the game is over. It can only communicate by writing a report
to the console window.



SECTION 2.5CASE STUDY: Simulating a Two-Person Game 89

The takeOne(), takeTwo() and takeThree() methods all have similar
definitions. It would be a better design if a single method could take
away a specified number of sticks.

There is no way to play a OneRowNim game starting with a different
number of sticks than 7. It would be nice to have a way of playing a
game that starts with any number of sticks.

In order to for a user to play a OneRowNim game, a user interface
class would need to be developed that would allow the user to receive
information about the state of the game and to input moves to make.

As we study other features of Java in the next two chapters, we will
modify the OneRowNim class to address these identified shortcomings.

Special Topic: Alan Kay and
the Smalltalk Language

Although Simula was the first programming language to use the con-cept
of an object, the first pure object-oriented language was Smalltalk.
Smalltalk was first started by Alan Kay in the late 1960s. Kay is an
innovative thinker who has had a hand in the development of several
advances, including windowing interfaces, laser printing, and the clien-
t/server model, all of which are now commonplace today.

One of the abiding themes throughout Kay’s career has been the idea
that computers should be easy enough for kids to use. In the late 1960s,
while still in graduate school, Kay designed a computer model that con-
sisted of a notebook-sized portable computer with a keyboard, screen,
mouse, and high-quality graphics interface. He had become convinced
that graphics and icons were a far better way to communicate with a
computer than the command-line interfaces that were prevalent at the
time.

In the early 1970s Kay went to work at the Xerox Palo Alto Research
Center (PARC), where he developed a prototype of his system known as
the Dynabook. Smalltalk was the computer language Kay developed for
this project. Smalltalk was designed along a biological model, in which
individual entities or “objects” communicate with each other by passing
messages back and forth. Another goal of Smalltalk was to enable
children to invent their own concepts and build programs with them—
hence, the name Smalltalk.

Xerox’s management was unable to see the potential in Kay’s innova-
tions. However, during a visit to Xerox in 1979, Steve Jobs, the founder
of Apple Computer, was so impressed by Kay’s work that he made it the
inspiration of the Macintosh computer, which was first released in 1984.

Kay left Xerox in 1983 and became an Apple Fellow in 1984. In ad-
dition to working for Apple, Kay spent considerable time teaching kids
how to use computers at his Open School in West Hollywood. In 1996
Kay became a Fellow (an “Imagineer”) at the Walt Disney Imagineering’s
Research and Development Organization, where he continues to explore
innovative ways to enhance the educational and entertainment value of
computers.



Scanner

+Scannein InputStreanm st)

+hext[]: String

+hext Int[]: ink

+hextbouble(]: double
+uzelelimitein Stking pat): Scanner

Figure 2.25: The Scanner class,
with a partial list of its public
methods.

90 CHAPTER 2 Objects: Using, Creating, and Defining

2.6 From the Java Library: java.util.Scanner.

If we wish to write useful interactive programs, we must be able to re-
ceive information from the user as well as send information to him or her.
We saw, in the previous chapter, that output from a program can be sent
to the console window by simply using the System.out.print() and
System.out.printin() statements. In this section we describe two simple
ways that Java can handle keyboard input. Receiving input from the
keyboard, together with sending output to the console window, creates
one of the standard user interfaces for programs.

Recall, that in Java, any source or destination for 1/0 is considered a
stream of bytes or characters. To perform keyboard input, we will extract
characters from System.in, the input stream connected to the keyboard.
Getting keyboard input from System.in involves two complications that are
not present in dealing with System.out.printin(). First, normal keyboard input
data requested of a user consists of a sequence of char-acters or digits
which represent a word, phrase, integer, or real number. Normally, an entire
sequence of characters typed by the user will repre-sent data to be stored in
a single variable with the user hitting the return or enter key to signal the end
of a piece of requested data. Java has a spe-cial class, BufferedReader, that
uses an input stream and has a method that collects characters until it reads
the character or characters that corre-spond to hitting the return or enter key.
A second complication for reading input involves the problem of how to
handle receiving data that is not in the same format as expected. The
BufferedReader class handles this problem by using certain exceptions, a
special kind of error message, that must be handled by the programmer.
Chapter 11 is devoted to exceptions and we will avoid their use, as far as
possible, until that time.

There is an alternate way to handle keyboard input in the Java 2 Plat-
form Standard Edition 5.0 (Java SE 5.0). A Scanner class has been
added to the java.util package which permits keyboard input without forc-
ing the programmer to handle exceptions. We introduce the Scanner
class in the next subsection and then describe how a user defined class
introduced in Chapter 4 can function in an equivalent fashion to permit
simple keyboard input.

2.6.1 Keyboard Input with the Scanner Class

A partial definition of Scanner is shown in Figure 2.25. Note that the
Scanner methods listed are but a small subset of the public methods of

this class. The Scanner class is in the java.util package so classes that
use it should import it with the following statement:

import java.util.Scanner;
The Scanner class is designed to be a very flexible way to recognize
chunks of data that fit specified patterns from any input stream. To use
the Scanner class for keyboard input, we must create a Scanner in-




SECTION 2.6From the Java Library: java.util.Scanner. 91

stance and associate it with System.in. The class has a constructor for
this purpose, so the statement

[Scanner s ¢ =new Scanner (System .in):

declares and instantiates an object that can be used for keyboard input.
After we create a Scanner object, we can make a call to nextint(),
nextDouble(), or next() to read, respectively, an integer, real number, or
string from the keyboard. The program in Figure 2.26 demonstrates how
an integer would be read and used. When the nextInt() method

import java.util. Scanner;

public class TestScanner
f
public static void main(String[] args)

f /l Create Scanner object

Scanner sc =new Scanner (System.in);

System .out.print( ); //Prompt
intnum= sc.nextlnt(); /l Read an integer
System.out.println (num + + num num ) ;
g//main()

g// TestScanner class

Figure 2.26: A very brief program with a Scanner object used for
keyboard input

is executed, no further statements are executed until an int value is re-
turned by the method. Normally this does not happen until the user has
typed in the digits of an integer and hit the return or enter key. Thus ex-

ecuting the main() method of the TestScanner class will result in the
output

|Input an integer:

to the console window and the program will wait for the user to type in

an integer and hit the return or enter key. After this has been done the
output will look something like:

|Input an integer:123
| 123 squared = 15129

Keyboard input of real numbers and strings are handled in a similar
manner.



92 CHAPTER 2 Obijects: Using, Creating, and Defining

~ Keyboard input will allow us to create examples of command line
interfaces for interactive programs. For example, the code

Scanner sc¢ =new Scanner ( System.in);
Riddle riddle =new Riddle (

)
System.out.println( );
System.out.printin(riddle.getQuestion());
System.out.print( ); I/ Prompt
System.out.printin( )
String str=sc.next(); /I Wait for input

System.out.printin(riddle.getAnswer());

will display a riddle question and prompt the user to type a letter and to
hit the enter key to see the answer. In the next chapter, we will develop
new methods for the OneRowNim class that will be able to use int values
input from the keyboard for the next move.

We must mention that, since the Scanner class is designed as a flexi-
ble tool for recognizing chunks of data from any input stream, it has some
properties that may be unexpected and not totally compatible with sim-
ple keyboard input. A Scanner object has a set of character strings that
separate or delimit the chunks of data that it is looking for. By default,
this set of delimiters consists of any non-empty sequence of white space
characters, that is, the space, tab, return, and newline characters. This will

allow a user to input several integers separated by spaces before hitting
the enter key. This might be handled by code like:

int numl= sc.nextlnt();

'System.out.print( );
int num2= sc.nextlnt();

White space as delimiters also means that the next() method cannot re-

turn an empty string nor can it return a string that contains any spaces.
For example, consider the code:

’System.out.print( )s |
String str=sc.next();

If one types "George Washington” and hits the enter key, the string str
will store only "George”. In order to get a Scanner object to read strings
that contain spaces, we must use the useDelimiter() method to de-

fine the set of delimiters as just that character string generated by hitting

the enter key. For example, for some Windows operating systems, the
statement

kc =sc.useDelimiter( );




SECTION 2.6From the Java Library: java.util. Scanner. 93

will result in the next() method returning the entire string of charac-ters
input from the keyboard up to but not including those generated by
hitting the enter key.

You should also be aware that just because we can use a Scanner
object to write Java code that ignores exceptions does not mean that
exceptions will not be generated by keyboard input. If the user enters
letters rather than digits for the nextint() method to process, the program
will be terminated with an error message.

It must be stressed that the strategy for handling keyboard input out-
lined above is a temporary strategy until the topic of exceptions is cov-
ered in Chapter 11. Real software applications that use keyboard input
should carefully handle the possibility that a user will enter something
unexpected. In Java, this can only be done by handling exceptions.

2.6.2 Keyboard Input with the KeyboardReader Class

If you are using an older version of Java that does not have the Scanner
class, a user-defined class can be used instead. A KeyboardReader
class that uses the BufferedReader class will be developed in Chap-ter
4. It has methods that read data from the keyboard in a manner very
similar to those of the Scanner class. A partial list of its public meth-ods
is given in the UML class diagram shown in Figure 2.27. To use the
KeyboardReader class for keyboard input, copy the source code
KeyboardReader.java from Chapter 4 into the same directory as the
source code of your current Java class (and add it to your current project
if you are using a integrated development environment).

To use a KeyboardReader object, we need to create an instance of
the class with a constructor. Then calling one of the three methods will
return an int, double, or String when data is input from the keyboard. Any
of the three methods of a KeyboardReader object will attempt to process
the entire string input from the keyboard up to the point that the enter key
is hit. That is, the character or characters generated by hitting the return
or enter key is the delimiter used by KeyboardReader. The
TestKeyboardReader class definition in Figure 2.28 reads an integer

public class TestkeyboardReader
f
public static void main(String[] args)

f /I Create KeyboardReader object
KeyboardReader kb = new KeyboardReader () ;
System .out.print( ); //Prompt
intnum=kb.getKeyboardinteger(); // Readan integer
System.out.println (num+ +numnum) ;
g//main()

g// TestKkeyboardReader class

Figure 2.28: A very brief program with a KeyboardReader object used for
keyboard input.

from the keyboard and squares it just like the TestScanner class. In the
remainder of the text, any time the Scanner class is used for keyboard

KeyboardReader

+ KeyboardReader)

+ getKevboardinput(): Sting

+ getKevboardinteger):int

+ getKeyboardDouble[): double

Figure 2.27: A UML class diagram
of the KeyboardReader class.




94 CHAPTER 2 Objects: Using, Creating, and Defining

input, the same program can be run using the KeyboardReader class
after making the obvious substitutions.

SELF-STUDY EXERCISES

EXERCISE 2.8 Modify the main() method of the TestScanner class so
that it reads a real number from the keyboard rather than an integer.

CHAPTER SUMMARY Technical Terms
access modifier local variable reference
class-level variable method call and reference variable
default value return static modifier
delimiter null pointer user interface
empty string null pointer
flow of control exception
interface pointer

Summary of Important Points

Dot notation is used to refer to an object’s public elements.
Designing a class is a matter of deciding what role it will play and
what information and actions it will have.
Writing a Java program is a matter of defining one or more classes. A
class definition serves as a template for creating instance of the class.
Classes typically contain two kinds of elements, variables and meth-
ods. An object’s state is defined by its instance variables.
Class elements that are declared public can be accessed by other
objects. Elements that are declared private are hidden from other
objects.
A class’s instance variables are usually declared private so they can-
not be accessed directly by other objects.
An object’s public instance methods can be called by other objects.
Thus, they make up the object’s interface with other objects.
Object instantiation is the process of creating an object, using the
new operator in conjunction with a constructor method.
A class definition consists of a header and a body. The header gives
the class a name, specifies its accessibility (public), and its place in
the Java class hierarchy (extends Object). The class body contains
declarations of the class’s variables and definitions of its methods.

By default, a newly defined class is consider a subclass of Object.
Class elements that are declared static, such as the main() method,
are associated with the class (not with its instances).
A Java application program must contain a main() method, which is
where it begins execution.
Methods that are used solely for the internal operations of the class
should be declared private.
An instance variable declaration reserves memory for the instance
variable within the object, associates a name and a type with the lo-
cation, and specifies its accessibility.



CHAPTER 2Solutions to Self-Study Exercises 95

A method definition consists of two parts: a header, which names the
method and provides other general information about it, and a body,
which contains its executable statements.

Declaring a variable creates a name for an object but does not create
the object itself. An object is created by using the new operator and a
constructor method.

SOLUTION 2.1 The Java code fragment prints out the following: SOLUTIONS TO
SELF-STUDY EXERCISES

| The singing king. |

SOLUTION 2.2 For the Riddle class (Fig. 2.12),

The name of the class: Riddle

The names of two instance variables: question, answer

The names of three methods: Riddle(), getQuestion(), getAnswer()

SOLUTION 2.3 For RiddleUser class (Fig. 2.15),

The names of two Riddle instances: riddlel, riddle2
All six method calls of the Riddle objects in the program:

Riddle ( "What is black and white and red all over ?”,
"An embarrassed zebra.”)
Riddle ("What is black and white and read all over ?”,

"A newspaper . ")
riddlel.getQuestion()
riddlel.getAnswer ()
riddle2.getQuestion()
riddle2.getAnswer ()

Qualified names: riddlel.getQuestion() and riddlel.getAnswer()

SOLUTION 2.4  Definition of new instance variable in the Riddle class:

|private String hint="This riddle is to easy for a hint”; |

SOLUTION 2.5 The header for a getHint() method of the Riddle class,
which should be a public method, is:

|pub|ic String getHint();

SOLUTION 2.6  The header for a setHint() method of the Riddle class is:

| public void setHint(String aHint); |

The result type is void. Although the identifier used for the parameter is arbitrary,
it is a good practice to make it descriptive, by referring in some way to the hint
instance variable.



EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

96 CHAPTER 2 Objects: Using, Creating, and Defining
SOLUTION 2.7 The partial definition of the Student class is given below.

public class Student

fprivate String firstName;
private String lastName;
privateint studentiD;

public void setStudent(String fName, String IName,
int anlD);

public int getStudentID();

public String getStudentName () ;

SOLUTION 2.8 A main method that reads and squares a real number is given
below.

public static void main(String[] args)

f /l Create Scanner object
Scanner sc = Scanner.create(System.in);
System .out.print( ); /I Prompt
double realNum= s c . nextDouble () ; /I Readadouble
System.out.println (num+ + realNum realNum) ;
g//main()

EXERCISE 2.1 Consider the transaction of asking your professor for your grade
in your computer science course. ldentify the objects in this transaction and the
types of messages that would be passed among them.

EXERCISE 2.2 Now suppose the professor in the previous exercise decides to
automate the transaction of looking up a student’s grade and has asked you to
design a program to perform this task. The program should let a student type in
his or her name and ID number and the program then should display his or her
grades for the semester, with a final average. Suppose there are five quiz
grades, three exams, and two programming exercise grades. Identify the objects
in this program and the type of messages that would be passed among them.
(Hint: The grades themselves are just data values, not objects.)

EXERCISE 2.3 In the RiddleUser class (Fig. 2.15), give two examples of object
instantiation and explain what is being done.

EXERCISE 2.4 Explain the difference between a method definition and a
method call. Give an example of each from the Riddle and RiddleUser ex-amples
discussed in this chapter.

EXERCISE 2.5 In the RiddleUser class (Fig. 2.15), identify three examples of
method calls and explain what is being done.

EXERCISE 2.6 Describe how the slogan “define, create, manipulate” applies to
the Riddle example.

EXERCISE 2.7 An identifier is the name for a , ,ora




CHAPTER 2Exercises 97
EXERCISE 2.8 Which of the following would be valid identifiers?

int 74EImStreet BigN L$&%# boolean Boolean
_number

Int public Private Joe il 2K
big numb

EXERCISE 2.9 Explain the difference between a class variable and an instance
variable.

EXERCISE 2.10 Identify the syntax error (if any) in each declaration. Remember
that some parts of an instance variable declaration are optional.

a. public boolean isEven ;

b. Private boolean isEven ;

c. private boolean isOdd

d. public boolean is Odd ;

e.string S ;
public String boolean ;
private boolean even = 0;
private String s = helloworld ;

EXERCISE 2.11 Write declarations for each of the following instance variables.

A private boolean variable named bool that has an initial value of true.
A public String variable named str that has an initial value of "hello”.
A private int variable named nEmployees that is not assigned an initial value.

EXERCISE 2.12 Identify the syntax error (if any) in each method header:

a. public String boolean()

b. private void String ()

c. private void myMethod

d. private myMethod()

e. public static void Main (String argv[])

EXERCISE 2.13 Identify the syntax error (if any) in each assignment statement.
Assume that the following variables have been declared:

'public intm;
public boolean b;
public Strings; |

a.m="86"; e.s="1295";
b.m=86; f. b ="true";
Cc. m =true; g. b =false
d.s=1295;

EXERCISE 2.14 Given the following definition of the NumberAdder class, add
statements to its main() method to create two instances of this class, named
adderl and adder2. Then add statements to set adderl’s numbers to 10 and



98 CHAPTER 2 Objects: Using, Creating, and Defining

15, and adder2’s numbers to 100 and 200. Then add statements to print their respective sums.

public class NumberAdder
f
private int numil;
private int num2;

public void setNums (int nl, int n2)
f
numl= nl;
num2= n2;
g
public int getSum ()
f
return numl+num2 ;

g

public static void main(Stringargs]|])
f
g

EXERCISE 2.15 For the NumberAdder class in the previous exercise, what are
the names of its instance variables and instance methods? Identify three expres-
sions that occur in the program and explain what they do. ldentify two
assignment statements and explain what they do.

EXERCISE 2.16 Explain the difference between each of the following pairs of
concepts.

A method definition and a method call.

Declaring a variable of reference type and creating an instance.

A variable of reference type and a variable of primitive type.

EXERCISE 2.17 Define a Java class named NumberCruncher that has a single
int variable as its only instance variable. Then define methods that perform the
following operations on its number: get, double, triple, square, and cube. Set the
initial value of the number with a constructor as was done with the instance
variables in the Riddle class.

EXERCISE 2.18 Write a main() method and add it to the NumberCruncher class
defined in the previous problem. Use it to create a NumberCruncher in-stance,
with a certain initial value, and then get it to report its double, triple, square, and
cube.

EXERCISE 2.19 Write a Java class definition for a Cube object, that has an inte-

ger attribute for the length of its side. The object should be capable of reporting
its surface area and volume. The surface area of a cube is six times the area of
any side. The volume is calculated by cubing the side.

EXERCISE 2.20 Write a Java class definition for a CubeUser object that will use

the Cube object defined in the previous exercise. This class should create three
Cube instances, each with a different side, and then report their respective
surface areas and volumes.

EXERCISE 2.21 Challenge: Modify your solution to the previous exercise so
that it lets the user input the side of the cube. Follow the example shown in this
chapter’s “From the Java Library” section.



CHAPTER 2Exercises 99

EXERCISE 2.22 Challenge: Define a Java class that represents an address
book entry, Entry, which consists of a name, address, and phone number, all
repre-sented as Strings. For the class’s interface, define methods to set and get
the values of each of its instance variables. Thus, for the name variable, it should
have a setName() and a getName() method.

UML EXERCISES

EXERCISE 2.23 Draw a UML class diagram to represent the following class hi-
erarchy: There are two types of languages, natural languages and programming
languages. The natural languages include Chinese, English, French, and
German. The programming languages include Java, Smalltalk and C++, which
are object-oriented languages, FORTRAN, COBOL, Pascal, and C, which are
imperative lan-guages, Lisp and ML, which are functional languages, and Prolog,
which is a logic language.

EXERCISE 2.24 Draw a UML class diagram to represent different kinds of au-
tomobiles, including trucks, sedans, wagons, SUVs, and the names and
manufac-turers of some popular models in each category.

EXERCISE 2.25 Draw a UML object diagram of a triangle with attributes for
three sides, containing the values 3, 4, and 5.

EXERCISE 2.26 Suppose you are writing a Java program to implement an elec-
tronic address book. Your design is to have two classes, one to represent the
user interface and one to represent the address book. Draw a UML diagram to
depict this relationship. See Figure 2.14.

EXERCISE 2.27 Draw an UML object diagram to depict the relationship be-
tween an applet, which serves as a user interface, and three Triangles, named
t1, t2, and t3.



100 CHAPTER 2 Objects: Using, Creating, and Defining



Chapter 3

Methods: Communicating
with Objects

OBJECTIVES
After studying this chapter, you will

Understand the role that methods play in an object-oriented program.
Know how to use parameters and arguments to pass data to an object.
Understand how constructor methods are used to instantiate objects.
Know the difference between passing a value and passing a reference to an
object. Be able to design your own methods.

Know how to use the if-else and while control structures.

OUTLINE

3.1 Introduction
3.2 Passing Information to an Object
3.3  Constructor Methods
3.4 Retrieving Information from an Object
3.5 Passing a Value and Passing a Reference
3.6  Flow of Control: Control Structures
3.7 Testing an Improved OneRowNim
Special Topic: Intelligent Agents
3.8 From the Java Library: java.lang.Object
3.9 Object-Oriented Design: Inheritance and Polymorphism
3.10 Drawing Lines and Defining Graphical Methods (Optional)
Chapter Summary
Solutions to Self-Study Exercises
Exercises

101



5 g
\

CHAPTER 3 Methods: Communicating with Objects

3.1 Introduction

In this chapter, we take a look at Java methods and parameters.
Methods and parameters are the primary mechanisms for passing
information into and out of an object. We will once again focus on the
OneRowNim simula-tion that we designed in the previous chapter. That
version was sufficient to introduce us to Java objects and classes, but it
was limited in its ability to communicate with other objects.

In this chapter, we want to expand OneRowNim to make our simulation
more realistic. We begin by learning how to pass information to an ob-ject.
That will enable us to specify the number of sticks to remove using a single
method. We then consider special methods called constructors, which are
used to initialize an object’s state when it is created. We also learn how to
retrieve information from an object. That will enable us to request a
OneRowNim object for several different bits of information. Then we
consider the if-else and while control structures which allow us to define
more useful methods and write more realistic test programs.

3.2 Passing Information to an Object

One convention of object-oriented programming is to provide public
methods to set and get the values of some of its private instance vari-
ables. Methods that set or modify an object’s instance variables are
called mutator methods. Methods that get or retrieve the value of an
instance variable are called accessor methods.

4 NN = S S SeanlYi=Np] =Si[€]\W\ccessor and Mutator Methods. An

accessor method is a public method used to get the value of an object’s
instance variable. Such methods are often named getVarName() where
VarName is the name of the variable that’'s being accessed. A mutator
method is a public method used to modify the value of one or more
instance variables. The special type of mutator method that sets or
assigns a variable a specified value is often called setVarName().

It is up to the designer of the class to determine which private vari-ables
require accessor and mutator methods. If you were designing a
BankAccount class, you might want a public getAccountNumber() method,
so that clients could retrieve information about their bank ac-counts, but you
would probably not want a public getAccountPassword() method or a public
setAccountBalance() method.

In the remainder of this section, we will be concerned with muta-tor
methods. We defined three mutator methods named takeOne(), takeTwo(),
and takeThree as part of the OneRowNim class in the pre-vious chapter. All
three of these method change the values of the instance



SECTION 3.2 Passing Information to an Object 103

variables nSticks and player. All three methods have very similar
bodies. The definition of the takeOne() is:

public void  takeOne () i
i nSticks = nSticks 1; |
player =3 player;
g

The only difference in the bodies of the other two methods is that they
subtract 2 and 3 from nSticks instead of 1. Instead of having three, vir-
tually identical methods, It would be a more efficient design to define a
single method where the number to be subtracted from nSticks would

be supplied as an argument when the method is called. In order to be able
to handle such an argument, we must design a new method that uses a
parameter to handle the argument.

A formal parameter, or more simply, parameter, is a variable used to
pass information into a method when the method is invoked. The type and  Formal parameter
variable name of the formal parameter must appear in the formal parameter
list that follows the method’s name in the method header. The formal
parameter is used to hold a value that it is passed while the method is
executing.

NA\ZNWANCO/XeIJ3{8]8=] Formal Parameter. A formal parameter S;E
Is a variable that serves as a storage location for information that is

passed to a method. To specify a formal parameter, you must provide
a type identifier followed by variable identifier, and you must place
this declaration inside the parentheses that follow the method’s name.

Consider the following definition for a takeSticks() method:

ublic void takeSticks (intnum)

f nSticks = nSticks num ;
player =3 player;

g

Notice that executing the body of takeSticks() when the parameter
num stores the value 1 accomplishes precisely the same task as executing
takeOne(). If, instead, a value of 2 or 3 is stored in num, then calling the
method acts like takeTwo() or takeThree() respectively. Thus, using
parameters enables us to design methods that are more general in what
they do, which is an important principle of good program design.

Another example of a mutator method is one in which define a set

method to allow the starting number of sticks to be set for an instance of
OneRowNim. For this, we could define:

Ipublic void setSticks(int sticks)
f nSticks = sticks;
g// setSticks()

As we will see in Section 3.3, we can also define a constructor method that
can be used, when the game is created, to set the initial value of nSticks.



Scope

Local scope

Class scope

104 CHAPTER 3 Methods: Communicating with Objects

It is often desirable to have more than one method that sets the values of
an objects’ instance variables.

If a method uses more than one parameter, use a comma to separate the
individual parameter declarations in the method header. For example, if
we wanted a method for OneRowNim that specified both the number of

sticks for the start of a game and which player takes a turn first, it could
be defined:

|pub|ic void setGame (int sticks, int starter)
|f nSticks = sticks;

| player = starter;

| g// setGame()

The Scope of Parameters, Variables, and Methods

The bodies of the mutator methods in the previous section make use of
both instance variables and parameters. It is important to note that there
is a difference in where these two types of variables can be used. The
scope of a variable or method refers to where it can be used in a program.

A parameter’s scope is limited to the body of the method in which it is
declared. Variables that are declared in the body of a method have scope
which extends from the point where they are declared to the end of the
block of code in which they are declared. Parameters are local variables
which are declared in the parameter list of a method’s header and which
have initial values specified by the arguments in a method call. The scope
of a parameter is the same as the scope of a variable declared at the very
beginning of the body of a method. Once the flow of execution leaves a
method, its parameters and other local variables cease to exist. The scope
of local variables is referred to as local scope.

SAVZANEANEAEl=NRUIEEN  Scope. Local variables, that is,
parameters and variables declared in the body of a method, have local
scope which extends from the point at which they are defined to the
end of the block of code in which they are defined. In particular, the
scope of a parameter is the entire body of the method in which it is
declared.

By contrast, instance variables, class variables, and all methods have
scope that extends throughout the entire class, that is, class scope. They
can be used in the body of any method and in the expressions that as-
sign initial values to class level variables. There are two restrictions to
remember. First, instance variables and instance methods cannot be used
in the body of a class method, one modified with static, unless an in-
stance of the class is created there and then the dot notation of qualified
names must be used to refer to the variable or method. This is because
class methods are called without reference to a particular instance of the
class. The main() method of the OneRowNim class that we defined in the
previous chapter is an example of such a class method. In that case, to



SECTION 3.2Passing Information to an Object 105

test the instance methods of OneRowNim we first created an instance of
OneRowNim and used it to call its instance methods:

nevw
OneRowNim game = OneRowNim (); // Create instance
game.report(); //call an instance method

The second restriction involved in class scope is that one class level
vari-able can be used in the expression that initializes a second class
level vari-able only if the first is declared before the second. There is no
similar restriction on methods.

AN AN/ el =R RBIE=S cope. Class level variables, that is, ?ﬂ
instance variables and class variables have class scope, which
extends throughout the class. Methods also have class scope.

Except for the restrictions noted above, methods and class level vari-
ables can be referred to within the same class by their simple names,
with just the method (or variable) name itself, rather than by their quali- Simple vs. qualified names
fied names, with the dot operator. Thus, in OneRowNim, we can refer to
nSticks and report() in the bodies of other instance methods. In a class
method, such as main(), we would have to create an instance of
OneRowNim with a name like game and refer to game.report().

VAN EAN[El/Ne =28 E=RD ualified Names. Within the same class, S;E

references to class methods or class variables can be made in terms
of simple names. Within the bodies of instance methods, references
to instance variables and references to other instance methods can
also be made in terms of simple names. However, within the bodies of
class methods, qualified names, or dot notation, must be used to refer
to instance methods or instance variables just like how they are
referred to in other classes.

NA\ZARBI= R 0ele](\[empls Scope Error. It would be a syntax error to
refer to a method’s parameters or other local variables from outside
the method.

3.2.1 Arguments and Parameters

The new class definition for OneRowNim is given in Figure 3.1. Note that
now that we have a single method, takeSticks(), that can be used to take
away a variable number of sticks, we have removed the three methods
we wrote in the previous chapter, takeOne(), takeTwo(), and
takeThree(), from OneRowNim. Using a single method, with a parame-
ter, is clearly a better design. To see this, just imagine what we would
have to do if we didn’t use a parameter and we wanted to be able to take
away four sticks, or five, or more. If we didn’t have parameters, we’'d
have to write a separate method for each case, which is clearly a bad
idea. Using parameters in this way leads to a more general useful
method and thus is an example of the generality principle.



106 CHAPTER 3 Methods: Communicating with Objects

public class OneRowNim
fprivateint nSticks = 7; // start with 7 sticks
privateint player =1;//player1plays first

public void takeSticks(int num)

f nSticks =nSticks num;
player =3 player;

g // takeSticks()

public void report()
f System.out.println( + nSticks) ;
System.out.println( + player);

g /l'report()
g//OneRowNim1l class

Figure 3.1: The OneRowNim class definition with takeSticks() method.

Now let’s consider how we would create a OneRowNim instance and
use the new method in the main() method or in a different class. If we
want to have an instance of OneRowNim object to remove 3 sticks on
the first move by using the takeSticks() method, we need to pass the int

value 3 to the method. In order to effect this action, we would use the
following statements:

new
OneRowNim game = OneRowNim () ;
game.takeSticks(3);

Because the definition of takeSticks() includes a single int parame-ter,
we must supply a single int value (such as 3), when we invoke it. When
the method is invoked, its formal parameter (num) will be set to the value
we supply (3). The value we supply does not have to be a literal int
value. We can supply any expression or variable that evaluates to an int
value. For example:

intval =7 5;
game.takeSticks(val);

In this case, the value being passed to takeSticks() is 2, the value that
val has at the time the method call is made.
It would be an error to try to pass a value that was not a int to

takeSticks(). For example, each of the following invocations of
takeSticks() results in a syntax error:

| game.takeSticks(); // no argument is supplied
game.takeSticks("3"); //"3” is a String , notan int
game.takeSticks(int); //int not is an int value




SECTION 3.2Passing Information to an Object 107

As you recall from Chapter 0, the value that is passed to a method when

it is invoked is called an argument. Even though the terms argument and Parameter vs. argument
parameter are sometimes used interchangeably, it will be useful to ob-

serve a distinction. We will use the term parameter to refer to the formal

parameter—the variable used to pass data to a method—that occurs in

the method definition. We use the term argument to refer to the actual

value that is supplied when the method is invoked.

AN]SR BIElelIN[€l IRl Type Error. It would be a syntax error to ¥
use an argument whose type doesn’t match the type of its 74
corresponding parameter.

The distinction between parameter and argument is related to the differ-  Defining vs. calling a method

ence between defining a method and invoking a method. Defining a method
is a matter of writing a method definition, such as

f System.out.printin(s);

lpublic void printStr(String s)
g

This definition defines a method that takes a single String parameter, s,

and simply prints the value of its parameter. On the other hand, invoking _
a method is a matter of writing a method call statement, such as Invoking a method

pbrintstr( ); |

This statement calls the printStr() method and passes it the string
“HelloWorld”. This notation assumes that the call to the instance method
printStr() is made within the body of another instance method of the
same class.

3.2.2 Passing an int value to a OneRowNim method.

To get a clearer picture of the interaction that takes place when we invoke
takeSticks() and pass it an int value, let’s write a main() method to
test our new version of OneRowNim.

Our first version of main() is shown in Figure 3.2. We will use it to
trace how the parameter of takeSticks() interacts with the instance

public static void main (String argv[])

f  OneRowNim game ; /l Declarea OneRowNimobject
game = new OneRowNim () ; /1 Instantiate the references |
game.takeSticks(3); /I remove 3 sticks |

g // main() |

Figure 3.2: A main() method to test the takeSticks() method.

variables nSticks and player. The statements in the main() program
simply create an instance of OneRowNim that is referenced by game
and invoke the setSticks() method with an argument of 3.



Figure 3.3: Tracing the state of
game (a) Just before calling

takeSticks(3). (b) Just before
executing the body of

takeSticks(3). (c) Just after
executing the body of

takeSticks(3). (d) After flow of
control leaves takeSticks().

108 CHAPTER 3  Methods: Communicating with Objects
game: OneBowiNim garmne: OneBowiim
naticks:int= 7 nsticks:int= 7
player:int= 1 player:int= 1

(3) fak e Sticks(]
num:int=3
game: OneRowiNim
nSticks:int = 4 (b)
player.int= 2
game: OneRowhim
tak e Sticks() noncks Int=4
hum:int=3 player:int=2
(c) (d)

To get a clearer understanding of how a parameter works, it will be
instructive to trace through the code in main(). Figure 3.3 displays how
the states of the instance variables of game and the parameter of
takeSticks() interact.

Executing the first two statements of main() creates the instance
game of OneRowNim. Figure 3.3(a) shows the initial state of game.
When the takeSticks(3) method call is made, a parameter (which is a
local vari-able) named num is created and the value 3 is stored in it. The
state of the instance variables and the parameter are shown in (b). Then
the body of takeSticks() is executed. The new state of game is shown in
(c). After the flow of control leaves the body of takeSticks() and returns to
main(), the memory location which stored the value of the parameter
num is released for other uses. The state of game at this point is shown
in (d). Notice that the value of nSticks has been reduced to 4.

3.2.3 Passing keyboard input to takeSticks()

To complete this section, let's modify our main() method in Figure 3.2 so
that it prompts the user to input an integer from the keyboard and then
uses a Scanner object, introduced in the previous chapter, to read the
integer. That integer will then be used as the argument in a call to
takeSticks(). These modifications have been incorporated into the
revised version of the main() method shown in Figure 3.4. If we now run

this program the following output will be generated in the console
window before waiting for keyboard input:

Number of sticks left: 7
Next turn by player 1
Input 1,2, 0or3 and hitenter:




SECTION 3.3 Constructor Methods 109

import java.util.Scanner;

public static void main (String argv[])

f Scanner sc; /| Declare a Scanner variable
sc = Scanner.create(System.in); // Instantiate it
OneRowNim game ; / Declare aOneRowNim variable
game =new OneRowNim (); // Instantiate it
game.report(); /I Report state of game
System.out.println( );
intnum=sc.nextlnt(); // Read an int from keyboard
game.takeSticks(um); // Use the value read
game.report(); /I Report state of game

g // main()

Figure 3.4: A main() method with keyboard input for OneRowNim.

If the user then inputs a 2 from the keyboard, that input will be read

and the takeSticks() method will remove 2 sticks. The output in the
console window will now look like:

Number of sticks left: 7

Next turn by player 1

Input 1,2, 0or3 and hitenter:2
Number of sticks left: 5

Next turn by player 2

SELF-STUDY EXERCISES

EXERCISE 3.1 Explain the difference between a method declaration
and a method invocation.

EXERCISE 3.2 Explain the difference between a formal parameter and
an argument.

EXERCISE 3.3 Modify the OneRowNim class of Figure 3.4 by adding
two instance variables of type String to store names of the two play-ers.
Choose names for the instance variables that would be appropri-ate for
storing names for player one and player two. Write a method named
setNames() with two string parameters which assigns the first parameter
to the instance variable that you created for the name of player one. The
second parameter should be assigned to the other new instance
variable.

EXERCISE 3.4 Write a statement that calls the setName() method of
the previous exercise and sets the name of player one of game to “Xena”
and sets the name of player two to “Yogi”.

3.3 Constructor Methods

In the previous section, we looked at several examples of mutator meth-
ods that change the values of private instance variables of an object. It



Constructor names

Constructing an object

Initializing variables

Constructors can’t return a value

CHAPTER 3 Methods: Communicating with Objects

is possible to define mutator methods to set the initial values of instance
variables after an object is created, but initial values can also be set by
constructors.

As you recall from Chapter 0, a constructor method is used to create
an instance (or object) of a class and to assign initial values to instance
variables. A constructor declaration looks just like a method definition
except it must have the same name as the class, and it cannot declare a
result type. Unlike the class level variables and methods of a class, con-
structors are not considered members of the class. Therefore, they are not
inherited by a class’s subclasses. Access to constructors is governed by the

access modifiers public and private. Here is a simple constructor for
our OneRowNim class:

public OneRowNim ()
f nSticks = 7;

player =1;
19

This constructor merely sets the initial values of the instance variables,
nSticks and player. In our current version of OneRowNim these vari-

ables are given initial values by using initializer statements when they are
first declared:

privateint nSticks
privateint player

7;
1;

So we now have two ways to initialize a class’s instance variables. In the
OneRowNim class it doesn’t really matter which way we do it. However,
the constructor provides more flexibility because it allows the state of the
object to be initialized at runtime. Of course, it would be somewhat redun-
dant (though permissible) to initialize the same variable twice, once when
it is declared and again in the constructor, so we should choose one or
the other way to do this. For now, let’s stick with initializing the instance
variables when they are declared.

AN SR sEegRlvI=pISS[€l\] Constructors. Constructors provide a
flexible way to initialize an object’s instance variables when the object
is created.

A constructor cannot return a value and, therefore, its declaration cannot
include a return type. Because they cannot return values, constructors
cannot be invoked by a regular method invocation. Instead, constructors
are invoked as part of an instance creation expression when instance objects

are created. An instance creation expression involves the keyword new
followed by the constructor invocation:

OneRowNim game // beclare
=new OneRowNim () ; /l and instantiate gamel
OneRowNim game2 // peclare
=new OneRowNim () ; // and instantiate game?2 |




SECTION 3.3Constructor Methods 111
Note here that we have combined variable declaration and instantiation into
a single statement, whereas in some previous examples we used sep-arate
declaration and instantiation statements. Either way is acceptable.

NN EANElB/ANE S RBIRERC onstructors. Constructors cannot return a
value. Therefore, no return type should be declared when the
constructor is defined.

NA\V/ANb] SR UIefellN[emlad \When to Use Return. All method
definitions except constructors must declare a return type.

Constructors should be used to perform the necessary initialization op-
erations during object creation. In the case of a OneRowNim object, what

initializations could be performed? One initialization that would seem State initialization
appropriate is to initialize the initial number of sticks to a number speci-fied. In order to do

this, we would need a constructor with a single int
parameter:

f nSticks = sticks;

rublic OneRowNim(int sticks)
g

Now that we have this constructor we can use it when we create instances
of OneRowNim:

| OneRowNim gamel = new OneRowNim (2 1) ;
OneRowNim game2 = new OneRowNim (13);

The effect of these statements is the same as if we had used the
setSticks() method that was discussed briefly on page 103. The dif-
ference is that we can now set the number of sticks when we create the
object.

Should we keep the preceding constructor, or keep the setSticks()
method or keep both in our class definition? The constructor can only
be invoked as part of a new statement when the object is created but the
setSticks() method could be called anytime we want. In many cases,
having redundant methods for doing the same task in different ways
would be an asset, because it allows for more flexibility in how the class
could be used. However, for a game like One Row Nim, a major concern
is that the two instance variables get changed only in a manner consistent
with the rules for One Row Nim. The best way to guarantee this is to have
takeSticks() as the only method that changes the instance variables
nSticks and player. The only time that it should be possible to set the
number of sticks for a game is when a constructor is used to create a new
instance of OneRowNim.

SELF-STUDY EXERCISES



CHAPTER 3 Methods: Communicating with Objects

EXERCISE 3.5 What’s wrong with the following constructor defini-
tion?

public void OneRowNim(int sticks)
f nSticks = sticks;

g |

EXERCISE 3.6 Change the OneRowNim(int sticks) constructor so that it
sets the number of sticks and also have it also set player two as the
player who takes the first turn.

3.3.1 Default Constructors

As we noted in Chapter 2, Java automatically provides a default
constructor when a class does not contain a constructor.

?E A\ZNWINES/NeI M Default Constructor. If a class contains

no constructor declarations, Java will automatically supply a default
constructor. The default constructor takes no parameters. If the class is
public, the default constructor will also be public and, hence,
accessible to other objects.

The default constructor’s role is simply to create an instance (an object) of
that class. It takes no parameters. In terms of what it does, the default

constructor for OneRowNim would be equivalent to a public constructor
method with an empty body:

public OneRowNim () f g

This explains why the following statement was valid when a class defini-
tion of OneRowNim contained no explicit definition of a constructor:

| new OneRowNim () ;

3.3.2 Constructor Overloading and Method Signhatures

Flexible design It is often quite useful to have more than one constructor for a given class.
For example, consider the following two OneRowNim constructors:

public OneRowNim () fg /l Constructor #1

public OneRowNim(int sticks) //constructor #2
f nSticks = sticks;

lg

The first is an explicit representation of the default constructor. The sec-
ond is the constructor we defined earlier to initialize the number of sticks
in a OneRowNim object. Having multiple constructors lends flexibility to
the design of a class. In this case, the first constructor merely accepts
OneRowNim’s default initial state. The second enables the user to
initialize the number of sticks to something other than the default value.



SECTION 3.3Constructor Methods 113
In Java, as in some other programming languages, when two different

methods have the same name, it is known as method overloading. In Method overloading

this case, OneRowNim is used as the name for two distinct constructor
methods. What distinguishes one constructor from another is its signa-
ture, which consists of its name together with the number and types of
formal parameters it takes. Thus, our OneRowNim constructors have the
following distinct signatures:

OneRowNim ()

OneRowNim(int)

Both have the same name, but the first takes no parameters, whereas
the second takes a single int parameter.

The same point applies to methods in general. Two methods can
have the same name as long as they have distinct signatures. A method
signa-ture consists of its name, and the number, types, and order of its
formal parameters. A class may not contain two methods with the same
signa-ture, but it may contain several methods with the same name,
provided each has a distinct signature.

Methods are known by
their signatures

SN AN €IS/l =NRIBIE =8 ethod Signature. A method signature
consists of the method’s name, plus the number, types, and order of
its formal parameters. A class may not contain two methods with the
same signature.

There is no limit to the amount of overloading that can be done in
design-ing constructors and methods. The only restriction is that each
method have a distinct signature. For example, suppose in addition to
the two constructors we have already defined, we want a constructor that
would let us set both the number of sticks and the player who starts first.
The following constructor will do what we want:

public OneRowNim(int sticks,int starter)

f nSticks = sticks; // set thenumber of sticks
player = starter; // Setwho starts

)

When calling this constructor, we would have to take care to pass the
num-ber of sticks as the value of the first argument and either 1 or 2 as
the value of the second argument:

OneRowNim game3 = OneRowNim(14 2);
new

OneRowNim game4 = new OneRowNim(31, 1);

If we mistakenly reversed 14 and 2 in the first of these statements, we
would end up with a OneRowNim game that starts with 2 sticks and has
player 14 as the player with the first move.

Ea



A constructor is invoked once to

cre-ate an object

CHAPTER 3 Methods: Communicating with Objects

We have now defined three constructor methods for the OneRowNim

class. Each constructor has the name OneRowNim, but each has a distinct
signature:

| oneRowNim ()
| OneRowNim(int)
| OneRowNim(int, int)

3.3.3 Constructor Invocation

A constructor method is invoked only as part of a new expression when

an instance object is first created. Each of these is a valid invocation of a
OneRowNim constructor:

/1 Default constructor
OneRowNim gamel = new OneRowNim () ;

/I Sets number of sticks
OneRowNim game2 = new OneRowNim (2 1) ;

/I Sets both instance variables
OneRowNim game3 = new OneRowNim(19, 2);

The following constructor invocations are invalid because there are no
matching constructor definitions:

// No matching constructors
OneRowNim game4 = new OneRowNim( )
OneRowNim game5 = new OneRowNim(12, 2, 5);

In the first case, there is no constructor method that takes a String pa-
rameter, so there’s no matching constructor. In the second case, there is
no constructor that takes three int arguments. In both cases, the Java
com-piler would complain that there is no constructor method that
matches the invocation.

SA\/Aeel=Elbele](N[Eel IR Method Call. The signature of the method
call—its name and the number, types, and order of its arguments—
must exactly match the signature of the method definition.

3.4 Retrieving Information from an Object

The modifications we’ve made to the OneRowNim class allow us to set the
instance variables of a OneRowNim object with a constructor, but there is no
way for us to retrieve their values other than to use the report() method to
write a message to the console. We will want to be able to ask a
OneRowNim object to provide us with the number of sticks remain-ing and
who plays next when we develop a graphical user interface for OneRowNim
in the next chapter. We declared nSticks and player as private variables, so
we cannot access them directly. Therefore, we will



SECTION 3.4Retrieving Information from an Object 115

need accessor methods to get the values of each of the instance variables.
Consider the following method definitions:

public int getSticks()
f return nSticks;

g

public int getPlayer()
f return player;
g

Recall that a method’s ResultType is specified just in front of the
Method-Name. We want the two methods to return int values that
represent OneRowNim’s instance variables. Therefore, their result types
are both declared int.

Before we discuss how the value that is returned by a method is used
when the method is called, let’s consider one more method definition.
Many methods that return a value do a computation rather than simply
returning the value of an instance variable. For example, suppose we
wish to define a method for the OneRowNim class that will notify the
user of an instance of the class whether the game is over. Thus we want
a method that, when called, returns a true or false depending on whether
or not all the sticks have been taken. gameOver() is a descriptive name
of such a method and the method should have a boolean result type.

This method should return true when the instance variable nSticks no
longer contains a positive int value. Thus we can define:

f return (nSticks<=0);

'public boolean gameOver ()
g

The expression (nSticks <= 0) evaluates to a false value if nSticks stores
a positive value and it evaluates to true otherwise. Thus the value
returned is precisely what is required.

3.4.1 Invoking a Method That Returns a Value

When we invoke a method that returns a value, the invocation expression Retrieving information

takes on, or is replaced by, the value that is returned. For example, if we
execute the statements

Ievw
OneRowNim gamel = OneRowNim (11);
int sticksLeft =gamel.getSticks();

the expression gamel.getSticks() will take on the value 11 after the
getSticks() method is finished executing. At that point, the second
statement above can be treated as if expression gamel.getSticks() is



Redundancy and flexibility

CHAPTER 3 Methods: Communicating with Objects

replaced with the value 11, which is assigned to sticksLeft. In effect,
the second statement is equivalent to the following statement:

intsticksLeft=11; |

NAZNWANCE]ONe]JRUIN=] Evaluating Method Calls. A nonvoid @
method call is an expression  that has a value of a particular type. After

the method is executed, the method call expression becomes the value
returned.

We can use a value returned by a method call the same way we use a
literal value of the same type. It can be assigned to variables, be part of

a numerical expression, or be an argument of another method. All of the
following statements involve valid calls of methods that return values:

int fewerSticks =gamel.getSticks() 1;
boolean done = gamel . gameOver () ;
System.out.printin(gamel.getPlayer());
gamel.getSticks();

In each statement, the method call can be replaced with the value it re-
turns. Notice that the last statement is valid but does nothing useful. In
Java and some other languages like C and C++, methods that return a
value can simply be called without making use of the value returned.
This may be useful to do if the method changes the state of instance
variables or sends a message to another object or an output device. The
method getSticks() does nothing but return the value of nSticks, so
simply calling the method accomplishes nothing.

3.4.2 An Expanded OneRowNim Class

Let's add the new methods that return values to our OneRowNim class.
We might note that the report() method from the previous chapter
displays the values of nSticks and player in the console window which
now could be done by using the methods getSticks() and getPlayer()
with System.out.printin(). However, calling report() is an easy way to
display the values of both instance variables but it cannot provide

access to either variable as an int value. So let’'s keep all three methods
in our class definition. The inconvenience of a small amount of redun-
dancy is outweighed by the added flexibility of being able to call all three
methods.

SN S S S SGIRNI=IRI=S (€N Using Redundancy. Incorporating some ¥
redundancy into a class, such as providing more than one way to 74
access the value of an instance variable, makes the class more
widely usable.

Figure 3.5 provides a UML class diagram of the expanded OneRowNim
class.



SECTION 3.4Retrieving Information from an Object 117
OneRowNim
nSticks: int
player: int
OneRowNim()
OneRowNim(in sticks:int)
OneRowNim(in sticks:int,in starter:int)
takeSticks(in num:int)
getSticks():int
getPlayer():int
gameOver():boolean
report()

Figure 3.5: A UML class diagram for the expanded OneRowNim.

Let’s also consider a new main() method to test the new methods of
the class. A very short list of statements that call each of the three new
methods returning values is given in the main() method in Figure 3.6

public static void main(String[] args)

f OneRowNim game = new OneRowNim (13,2);
game.takeSticks(2);
System.out.print( );
System.out.println(game.gameOver ());
System.out.print( );
System.out.println(game.getPlayer());
System.out.print( );
System.out.printin(game.getSticks());

g /Imain()

Figure 3.6: A main() method that tests the new methods for OneRowNim

The output to the console when this program is run will be:

The game is over is: false
The nextturnis by player: 1
Sticks remaining: 11

Note that the constructor sets player to 2, so player stores the value 1
after one turn.

SELF-STUDY EXERCISES



Passing a primitive value

CHAPTER 3 Methods: Communicating with Objects

EXERCISE 3.7 What would these segments of Java code display on the
screen?

new
OneRowNim myGame = OneRowNim (10,2);
System.out.println(myGame.getPlayer());
System.out.println(2 myGame.getSticks());
System .out.println (myGame.gameOver ());

EXERCISE 3.8 Suppose that an int instance variable named nMoves

is added to the OneRowNim class that counts the number of moves taken
in a One Row Nim game. Write a Java method for the OneRowNim class
to get the value stored in nMoves.

EXERCISE 3.9 Write a method for the OneRowNim class called
playerOneGoesNext() that returns a boolean value. The value re-
turned should be true if and only if player one has the next turn.

3.5 Passing a Value and Passing a Reference

The effect of passing arguments to a method differs depending on whether
you are passing a value of primitive type (such as 5 or true) or a value of
reference type (such as “Hello” or gamel). When an argument of primi-

tive type is passed to a method, a copy of the argument is passed to the for-
mal parameter. For example, consider the PrimitiveCall class shown

public class PrimitiveCall
f
public static void myMethod (intn)

f System .out.printin( +n);
n= 100;
System .out.printin( +n);

g// myMethod()

public static void main(String argv[])
f int k=5;

System .out.println( +k);

myMethod (k) ;

System .out.println( +k);
g/l main()

g// PrimitiveCall

Figure 3.7: Passing a primitive value to a method.

in Figure 3.7. Note that we have an int variable k, which initially stores
the value 5, and a method myMethod(), which takes an int parameter n.
In this case, when we invoke myMethod(k), k’s value (5) is copied into n
and stored there during the method.



SECTION 3.5Passing a Value and Passing a Reference 119

One implication of passing a copy of a primitive value to a method is

that the original value of k in main() cannot be altered from inside the
method. Thus, the output generated by PrimitiveCall would be

main: k=5
myMethod : n=5
myMethod : n= 100
main: k=5

Note that in main(), k's value is printed both before and after myMethod()
is called, but that its value remains unaffected even though n’s value is
changed within the method. This is because myMethod() contains just a
copy of k’s value, not k itself. Any changes to the copy within
myMethod() leave k unaltered (See Fig. 3.8).

JAVA LANGUAGE RULE
a primitive type, like boolean or int, is passed to a method, a copy of
the value is passed. That's why its original value remains unchanged
outside the method, even if the copy is changed inside the method.

assing a Primitive Value. When a value of

In contrast to this, when an argument of a reference type is passed to a
method, a copy of the reference to the object itself is assigned to the pa-
rameter. For example, in the case of a String parameter or a
OneRowNim parameter, the method would be given a reference to the
object—that is, the address of the object. The object itself is not passed,
because it would be too inefficient to copy the entire object with all its
data and methods. However, because the object’s reference gives the
object’s location in mem-ory, the method will have access to the object
and can make changes to the original object from within the method.

majn[] main()
k=3 k=5
(@) mytdethod])
n=5% <
rnain() )
k=5
mykdethod() tain()
h=100
k=5
{c) (c)

state
in be-

Figure 3.8: Tracing the of
variables k and n
PrimitiveCall (a) Just
fore calling myMethod(k) in main.
(b) Just before executing the
body of myMethod(). (c) Just
after executing the body of
myMethod(). (d) After flow of
control returns to main().



CHAPTER 3 Methods: Communicating with Objects

For example, consider the ReferenceCall class (Fig. 3.9). In this case,

myMethod() takes a parameter g of type OneRowNim. Because

\public

f

g// ReferenceCall

class ReferenceCall

public static void myMethod (OneRowNim g)

f System.out.print( );
System.out.println(g.getSticks());
g.takeSticks(3);

System .out.print( );
System.out.println(g.getSticks());
g// myMethod()

public static void main(String argv[])

f OneRowNim game = new OneRowNim (10);
System .out.print( );
System .out.printin(game.getSticks());
myMethod ( game ) ;
System .out.print( );
System .out.printin(game.getSticks());

g/l main()

Figure 3.9: Passing a reference value to a method.

a OneRowNim instance is an object, g is a reference variable. So when
myMethod(game) is invoked in main(), a reference to game is passed to
myMethod(). Note that in myMethod(), we use takeSticks(3) to change
the number of sticks of g from 10 to 7 and that this change persists even
after the method returns control to main(). The reason is that dur-ing the
method’s execution, both game and g refer to the exact same object

(see Fig. 3.10). The output generated by ReferenceCall would be

main: Number of sticks: 10
myMethod : Number of sticks: 10
myMethod : Number of sticks: 7
main: Number of sticks: 7

This illustrates that when passing a reference variable to a method, it is
possible for the method to change the state of the object associated with



SECTION 3.6Flow of Control: Control Structures 121

[main() | game= 4——== | nSticks = 10
@) player=1
[main(] | game= 4+——= | nSticks = 10
ImyMethod[] l g= H player= 1
i{a)]
[ main] | game= 4——= |nSticks = 7
Im':.vMethod[] I 0= H player= 2
{©)
[main) [ game= 4+——== | nSticks = 7
@ player= 2

the reference variable. In subsequent chapters we will see ways to make
use of this feature of reference parameters.

Figure 3.10: Tracing the state of
OneRowNim object in
ReferenceCall (a) Just before
calling myMethod(game). (b) Just
before executing the body of
myMethod(). (c) Just after exe-
cuting the body of myMethod().
(d) After flow of control returns to
main().

NN EANElB/ANE SN IBIR= ssing a Reference. When a reference to an
object is passed to a method, any changes made to the object from within
the method will persist when the method is finished executing.

AN]SR BIEfelIN[EelEis Side Effects. An unintended change to an
object is called a side effect. Care should be taken in designing
methods that the method does not produce unwanted side effects in

objects passed as reference parameters.

3.6 Flow of Control: Control Structures

We have been ignoring a couple of problems with the definition of the
OneRowNim class. One problem is that we would describe a One Row Nim
game as two players taking turns until there are no more sticks. An object
using OneRowNim would need a way to repeatedly execute a group of
statements. One command in Java that controls the repetition of a block of

statements is called a while loop. We will consider it later in this section.
A second problem is with the definition of takeSticks():

public void takeSticks(intnum)
f nSticks num;

player =3player;
g




Simple if statement

122 CHAPTER 3 Methods: Communicating with Objects

It is possible to call this method with an argument greater than 3 or less
than 1. The call game.takeSticks(5) will remove 5 sticks even though

the rules of One Row Nim say that you must remove 1, 2, or 3. While one
might assume that the user interface should prevent the user from break-
ing this rule, it is a far better design if it was dealt with in OneRowNim.
To do this we need a Java structure that executes different statements de-
pending on whether the parameter is greater than 3, less than 1, or be-
tween 1 and 3. The Java if-else statement has this capability. A fuller treat-
ment of control structures appears in Chapter 6, but in this section, we will
briefly introduce a couple of simple control structures. This will enable us
to write programs that take more interesting actions.

3.6.1 The Simple If Statement

A selection control structure, allows a program to select between two or
more alternative paths of execution. The if statement is the most basic
selection control structure in Java. Most programming languages have its
equivalent.

SAVAN AN ElO/NEl =R sUIR SR f Statement. The if statement has the
following syntax:
(' boolean expression )
containedstatement ;

The statement contained in the if statement can be any valid Java state-
ment, including a compound statement. (Recall from Chapter 1 that a
compound statement is a set of statements contained within curly
braces.) The boolean expression is an expression that is either true or
false. We have seen examples of boolean expressions that involve int
variables, int values, and the inequality or equality operators. A method
call to a method with a boolean result type is another example of a
boolean expression. Given this description of if statement syntax, the
following are examples of valid if statements:

if (true) System.out.println( );
if (nSticks<=0) System.out.println( )

For readability, we usually write an if statement with its contained state-
ment indented on the next line:

if (true)
System .out.println( );
if (nSticks<=0)
System .out.println( );




SECTION 3.6Flow of Control: Control Structures 123
The following are all examples of syntax errors involving the if statement:

iftrue /I Parentheses are missing
System .out.println( );

‘ if (nSticks<=0)return // Semicolon missing

if( Jreturn; // “true” is not a boolean

if (true) ; /I "Hello” is not a statement

Semantically, the if statement has the following interpretation: First, the
boolean condition is evaluated. If it is true, then the contained statement
is executed; if it is false, then the contained statement is not executed.
This is shown in Figure 3.11. The flowchart clearly shows that program
flow will take one or the other of the alternative paths coming out of the
diamond-shaped boolean condition box. The branch through the
rectangular state-ment box will be taken when the boolean condition is
true; otherwise the statement will be skipped.
As another example, consider the definition of a getPlayerString()

method for the OneRowNim class:

, public StringgetPlayerstring()
f
if (player ==1)

return 1] Exitthe method
if (player ==2)
return ) Il Exit the method
return y 1 Exit the met
hod

g

The flowchart in Figure 3.12 shows the program flow of the entire
getPlayerString() method. It is important to note that when a

T~ True

player==1"
False | return "Player One" I—». exit method )

player == 2 True

/’—x

return "Player Two" —M exit method
False -

| return "Player error” |

(" exit method

return statement is executed in a method, control is returned im-

" BOOLEAN TRUE

. CONDITION
\\
N

-~ .
FALsE

'l) STATEMENT

Figure 3.11: Flowchart of the if
statement. Diamond-shaped sym-
bols at the branch points contain
boolean expressions. Rectangu-
lar symbols can only contain ex-
ecutable statements. Circles act
simply as connectors, to connect
two or more paths.

Figure 3.12: Flowchart of the
getPlayerString() method.



CHAPTER 3 Methods: Communicating with Objects

mediately to the calling method. Thus, if player == 1 is true,

the string “Player One” is returned to the calling method and the
getPlayerString() method exits at this point. If it is false, then

player == 2 should be true (if we have a consistent state) and the string
“Player Two” should be returned and the method exited. Thus, if we have
a consistent state —that is, if player has value 1 or 2—then the third
return statement should never be reached.

The following example shows the more common case where the state-
Compound statement ment contained in an if statement can be a compound statement;

if (player ==1)

f String s = ;
System.out.print (s);
System .out.println ( );
System.out.println ( );
g

If player == 1 is true, then all four statements in the contained com-

Local scope pound statement will be executed. Note here that we are declaring the
local variable, s, in this block. Its scope would extend only to the end of
the block. Note also that when we use a compound statement, the com-
pound statement itself is not followed by a semicolon because it is already
enclosed in braces.

A common programming error is to forget the braces around the com-
pound statement. Merely indenting the statements following the if clause

doesn’t alter the logic of the if statement. For example, the following if
statement still has only one statement in its if clause:

if (condition1l)
System.out.println( );
System.out.println( );//Not part of if statement

This segment will always print “Two” because the second printin() is

not part of the if statement. To include it in the if statement, you must
enclose both println() statements within braces:

if (conditionl)
f System.out.println( );
System.out.println( );

| g

o PRAVZANe Sz ee]NelmEl  Indentation. Indentation can improve the
/4 readability of a program but doesn’t affect its logic. Braces must be
used to group statements in the if clause.

3.6.2 The if-else Statement

A second version of the if statement incorporates an else clause into the
structure. This allows us to execute either of two separate statements (sim-



SECTION 3.6Flow of Control: Control Structures 125

ple or compound) as the result of one boolean expression. For example,
the statement

if(player==1) |

System . out.printin( );
else
System.out.printin( )

will print “Player One” if player == 1 is true. Otherwise, it will print “Player

Two”.

WANIEANE 0Nl R0 f-clse Statement. The if-else statement has ?ﬂ
the following syntax:
if ( boolean expression )
statementl ;

else
statement?2 ;

As in the case of the simple if statement, the keyword if is followed by a  If-else syntax

parenthesized boolean expression, which is followed by statementl,

which may be either simple or compound. If statementl is a simple l'

statement, then it is followed by a semicolon. The else clause follows -
immediately after statementl. It begins with the keyword else, which is Fase " gooLEan TRUE
followed by statement2, which can also be either a simple or compound “._ CONDITION _#
statement. Note that there is no boolean expression following the else J— AN /T
keyword. In an if-else statement, the boolean expression following the -

keyword if goes with both the if and else clauses. TATEMENTL

Semantically, the if-else statement has the following interpretation: If
the boolean expression is true, execute statementl; otherwise execute T
state-ment2. This interpretation is shown in Figure 3.13.

1

3.6.3 The Nested if/else Multiway Selection Structure

The statements that one inserts in place of statementl and statement2 in Figure 3.13: Flowchart of the
the if-else statement can be any executable statement, including another if-else statement.
if statement or if-else statement. In other words, it is possible to embed
one or more if-else statements inside another if-else statement, thereby
creating a nested control structure. As with most things, making a control
structure too complex isn’t a good idea, but there is a standard nested if-
else control structure that is very useful. It is known as multiway selec-
tion. As shown in Figure 3.14, the multiway structure is used when you
want to select one and only one option from several alternatives.
Suppose we have an int variable num that will contain one of the val-
ues 1, 2, or 3 unless there has been an error assigning a value to it. Sup-
pose that we want to write code that will write out the English word for



Figure 3.14: Flowchart of a
nested if-else statement.

Multiple alternatives

CHAPTER 3 Methods: Communicating with Objects

A\
ERROR:

UNKNOWN VALUE

the value in num. In the example shown in Figure 3.14 there are three
alternatives plus an error state. Here is the Java code for this example:

f (num == 1)
System.out.println(’One”);
elseif (num==2)
System.out.println("Two”);
else if (num== 3)
System.out.println("Three”);
else
System.out.printin("Error: Unknown value”);

Note that the multiway structure has a single entry point and that only one
of the four possible alternatives is executed. The code will print exactly
one of the strings.

We will have many occasions to use the if-else structure. Al-
though it does not represent a significant change, we could rewrite our
takeStick() method to make use of the if-else instead of the somewhat
obscure statement :

player =3 player;




SECTION 3.6 Flow of Control: Control Structures 127
to change the value of player from 1 to 2 or vice versa:

public String takeSticks(intnum)
f nSticks = nSticks num;
if (player ==1)

player =2; //From1 to2
else
player=1; //From2 tol

g

In some respects this version of takeSticks() involves four lines of code
instead of one but is simpler to understand. The if-statement tests
whether the value of player is 1. If it is, the value is changed to 2. If the
value of player is not 1, then the value must be 2 and so the value is
changed to 1. Both versions of the code will give precisely the same
result, a programmer could choose to write the code either way.

SELF-STUDY EXERCISES

EXERCISE 3.10 Consider the following method with boolean param-
eter.

public StringgetStatus(boolean isDone)

f if (isDone)
return ;
else
return ;
g

Draw a flowchart for the if-else version of the getStatus() method, us- Flowchart symbols ing
the figures in this section as a guide. The if-else structure should be
drawn exactly as shown in Figure 3.11. It should have a single entry point
that leads directly to the top of a diamond-shaped box that contains a
boolean condition. There should be two branches coming out of the con-
dition box. The one going to the right is the true case, and the one going to
the left is the false case. Each of these branches should contain one
rectangular box, which contains the statements that would be executed in
that case. The left and right branches should be connected by a circular
symbol that is aligned directly under the diamond box whose conditions it
connects. There should be a single exit arrow pointing directly down.

EXERCISE 3.11 Identify the error in the following statements:

if (isHeavy == true)
System.out.println( );
else ;
System.out.println( );
if (isLong == true)
System.out.println( )
else

System .out.println( );




CHAPTER 3 Methods: Communicating with Objects

EXERCISE 3.12 Suppose we have an int instance variable named
player in some class describing a three person game. Write a method
named getPlayerName() that returns a String. It should return “Ann”,
“Bill”, “Cal”, or “Error” when the value of player is respectively 1, 2, 3, or
any other value.

EXERCISE 3.13 How does a parameter for a primitive type differ from a
parameter for a reference type?

3.6.4 The While Structure

A repetition structure is a control structure that repeats a statement or
sequence of statements in a controlled way. Repetition structures are
also referred to as loop structures. Many types of programming tasks
require a repetition structure. Consider some examples.

You want to add up the squares of the numbers from 1 to 100.

You want to compute compound interest on an amount of money in
a savings account with a fixed interest rate if it is kept there for 30
years.

A computer security employee wants to try every possible
password in order to break into an account of a suspected spy.

You want to have players input moves for a turn in a game until the
game is over. Our OneRowNim is such an example.

We will study several different repetition structures of Java in depth in
Chapter 6. We will briefly consider the while statement here so as to be able
to define methods that are more powerful and more interesting. Let us write
a method that solves a slight generalization of the first problem above. We
will use the while statement to sum the squares of integers from 1 to a
number specified as a parameter of the method. Thus, the method call

sumSquares(3) should return the value 14 since11+22+33 =
1+4+9 = 14.

public intsumSquares (int max)
fintnum= 1;
int sum= O0;
while (num <= max) f// while num <= max
sSum = sum + num num ; /1 Add square tosum
num = num + 1; /I Add 1 to num
g//while
return sum; /I Return the sum
g

Note that in this example, the variable num gets assigned an initial value
of 1 before the while statement. Note also that the boolean expression
num < max in parentheses after while states the condition for which we
wish to continue summing squares. Finally note that the last statement in
the block following the boolean expression adds 1 to num-that is, this
variable is updated at the end of the block.




SECTION 3.6Flow of Control: Control Structures 129

The while statement is a loop statement in which the loop entry
condi-tion occurs before the loop body. It has the following general form:

A EANElB/NEI=HRIBIR=R \/hile Statement. The while statement has
the following syntax:
while  (loop entry condition )
loopbody ;

When the while statement is executed, the loop entry condition is evalu-
ated and if this evaluates to false, execution continues at the statement
immediately after the loop body. If the loop entry condition evaluates to
true, the loop body is executed and then the entry condition is evalu-ated
again. The loop body continues to be executed until the loop entry
condition evaluates to false.

To have a while statement accomplish a task, the variable or variables
in the loop entry condition must be initialized correctly before the while
statement and these variables must be correctly updated at the end of
the loop body. We can refer to the initializer statement followed by a
while statement as a while structure. We can restate the above
guidelines as a design principle:

AN S S S SO EAAEERISES] (€1 | oop Structure. A properly designed
while structure must include an initializer, a loop entry condition, and
an updater. The updater should guarantee that the loop entry
condition eventually fails, thereby allowing the loop to terminate.

In pseudocode, the while structure would take the following form:

InitializerStatements; /I Initializer
while (loop entry condition) f//Bound test
Statements; // Loop body
UpdaterStatements ; // Updater
g

As its form suggests, the while structure is designed so that on some
con-ditions the loop body will never be executed. Because it tests for the
loop entry condition before the loop body, it is possible that the loop body
is never executed. We might say that it is designed to perform O or more
iterations.

For example, if the method call sumSquares(-3) is executed, the loop
body will be skipped, because the loop entry condition nhum <= max is
false to begin with. No iterations will be performed, and the algorithm will
simply return the value 0.

Note also that in the while statement the bound test is preceded by
initializer statements, and the loop body contains updater statements.
The semantics of the while structure are shown in Figure 3.15.




Figure 3.15: Flowchart of the
while statement and while struc-

ture.

CHAPTER 3 Methods: Communicating with Objects

While Statement While Structure
l‘ ! Initializer |
Updater
. True ¥ 1
Condition - Statement I i
\/ Loop
entry “Jrues-| Statement
False J condition (loop body)

SELF-STUDY EXERCISE

EXERCISE 3.14 Modify the definition of the sumSquares() method to
define a method named sumCubes() that sums the cubes of integers
from a minimum value up to a maximum value and returns that sum.
sumCubes() should have two parameters that will store the minimum
and maximum values. Thus the method call sumCubes(2,3) should
return 35since 222 +333=8+27=35.

3.7 Testing an Improved OneRowNim

Let's use the control structures that we have discussed to improve the
definition of the takeSticks() method of OneRowNim. We noted ear-lier
that our current definition allows 4 or more sticks to be removed from
nSticks even though the rules of One Row Nim indicate that a player
must take one, two, or three sticks on a turn. We can use if-else
statements to make certain that no more than 3 sticks get removed.

What should happen if the method takeSticks() is called with an argument
that does not represent a legal number of sticks to remove? In this case, it
would probably make sense to remove no sticks at all and to keep the value
of player the same so that the player whose turn it is does not change. In
addition, it would be nice if the method could signal that an illegal move has
been attempted. This can be accomplished if we redefine takeSticks() to
return a boolean value. Let’'s have a return value of true represent the case
that a valid number of sticks have been removed and the player to play next
has been changed. A return of false will indicate that an illegal move has
been attempted. Making these changes



SECTION 3.7  Testing an Improved OneRowNim 131

to the takeSticks() method will yield a method definition that looks
like:

public boolean take Sticks (intnum)
f if (num<1) f

return false; //Error
g elseif (num>3) f

return false; //Error
gelsef

nSticks = nSticks num ;
player =3 player;
returntrue;
g /lelse
Q//takeSticks

Notice that the new definition of the takeSticks() method has a boolean
return type. Also notice that the if/else multiway structure is used to
handle the three cases of the parameter num being less than one, more
than three, or a valid number.

Let us add one more method to the OneRowNim class. Let's define a
method called getWinner()that will return the number of the winning player if
the game is over. Recall that the player who takes the last stick loses, so
after that last play, the player whose turn it is to play next is the winner.
However, we should be concerned about what value to return if the game is
not over when the method is called. A common strategy is to have a method
return a special value to indicate that it is in a state in which it cannot return
the value requested. Returning a O value is a good way to indicate that the
game is not over so a winner cannot be identified. With this information, the

if/else statement can be used in the definition
of getWinner().

public int getWinner ()
f if (nSticks<1)
return player;
else
return O;
g//getWinner()

We now have the final version (for this chapter) of the OneRowNim
class whose implementation is given in Figure 3.16. We have turned a
very simple class into one that contains quite a few elements. Compared
to our first version (in Chapter 1), this Chapter’s version of OneRowNim
presents an interface (to other objects) that is easy and convenient to
use. The constructor methods with parameters provide an easy way to
create a OneRowNim instance with any number of sticks. The use of
private instance variables and a single, carefully designed mutator
method, takeSticks(), prevents other objects from tampering with the
state of a OneRowNim object’s state. The other methods provide a
flexible way to find out the state of a OneRowNim object. The complete
implementation of this OneRowNim is shown in Figure 3.16.




CHAPTER 3 Methods: Communicating with Objects

public class OneRowNim

f

privateint nSticks = 7;
privateint player =1;

public OneRowNim ()
f

g// OneRowNim() constructor

public OneRowNim(int sticks)
f nSticks = sticks;
g //OneRowNim() constructor2

public OneRowNim(int sticks, int starter)

f nSticks = sticks;
player = starter;

g // OneRowNim() constructor3

public boolean takeSticks(int num)

f if (num<1l)return false; /I Error
elseif (num>3) return false; // Error
else /I this is avalid move

f nSticks = nSticksnum;
player =3 player;
returntrue;

g /lelse

g// takeSticks()

public int getSticks()
f return nSticks;
g/l getSticks()

public intgetPlayer()
f return player;
g// getPlayer()

public boolean gameOver ()
f return (nSticks<=0);
g// gameOver()

public int getWinner ()

f if (nSticks<l)returngetPlayer();
elsereturn O;//game is not over

g//getWinner()

public void report()
f System.out.println("Number of sticks left: "+
getSticks());
System.out.printin("Next turn by player "+
getPlayer());
g /Il'report()

g// OneRowNimclass

Figure 3.16: The OneRowNim class with improved methods.




SECTION 3.7  Testing an Improved OneRowNim 133

Let’s use a while statement to test the new methods of the class. A
pseudocode description of how a game is played might look like:

Choose the initial number of sticks for the game
while the game is not over
f Report the stateof the game
Process the nextmove
g
Report the state of the game
Report who the winner is

Translating this pseudocode into Java code in a main() method in a sepa-
rate class gives us the class shown in Figure 3.17. We will use the Scanner
class introduced in the previous chapter to get moves from the keyboard

import java.util.Scanner;

public class TestOneRowNim
f

public static void main(Stringargv[])

f Scanner sc = Scanner.create(System.in);
OneRowNim game = new OneRowNim (11);
while (game . gameOver () == false)

f game.report(); // Prompt the user
System.out.print( );
int sticks =sc.nextlnt(); //Getmove
game.takeSticks(sticks); // Do move
System .out.printin();

g //while
game.report(); //The game is now over
System.out.print( )

System .out.println(game.getWinner());
g // main()
g// TestOneRowNim

Figure 3.17: The TestOneRowNim class with a while loop.

for both players. Before each move game.report() describes the state of
the game before the user is prompted to input a move for one of the
players. A reader interested in seeing the lengthy output to the console
when the TestOneRowNim class is run is encouraged to actually run the
program.

Note that the return value of the takeSticks() method is ignored in this
test program. We will make use of the return value in test pro-grams in
the next chapter when better user interfaces are developed for
OneRowNim. Note, however, that taken together, the public methods for




Object-oriented design

134 CHAPTER 3 Methods: Communicating with Objects

OneRowNim provide other objects with an interface that they can use to
communicate with individual OneRowNim objects.

VAV S s=egRlvi=pISS[€lN]  Interfaces. Well-designed objects
provide a useful public interface and protect the object’s private
elements from other objects.

To reiterate a point made at the outset, object-oriented programming is a
process of constructing objects that will interact with each other. Object-
oriented programs must ensure that the objects themselves are well de-
signed in terms of their ability to carry out their designated functions.
Good design in this sense requires careful selection of instance variables
and careful design of methods to ensure that the object can carry out its
assigned tasks. However, equal care must be taken to ensure that the
interactions that take place among objects are constrained in ways that
make sense for that particular program. This aspect of designing ob-jects
comes into play in designing the methods—constructor, accessor, and
mutator—that make up the object’s interface.

Special Topic: Intelligent Agents

Wouldn’t it be nice if we had a computer program that could schedule
appointments for us, remind us of meetings and commitments, find in-
formation for us on the WWW, and manage our e-mail messages for us?
Wouldn't it be nice to have a computerized personal assistant?

Actually, such programs are called intelligent agents, which are pro-
grams that are capable of acting autonomously to carry out certain tasks.
Intelligent agent technology is becoming an important research area in
computer science. Most agent programs incorporate some kind of ma-
chine learning capability, so that their performance improves over time.

As a typical agent activity, suppose | was able to tell my intelligent
agent to buy me a copy of a certain book that | just heard about. Given a
command like “buy me a copy of X,” the agent would perform a search of
online book sellers and come up with the best deal. Once it had found
the best buy, the agent would communicate with a computer-based
agent representing the book seller. My agent would make the order and
pay for it (assuming | gave it authority to do so), and the book seller’s
agent would process the order.

As far-fetched as the capability may now seem, this is the direction
that research in this area is headed. Researchers are developing agent
languages and describing protocols that agents can use to exchange in-
formation in a reliable and trustworthy environment. Obviously, you
wouldn’t want your agent to give your money to a fraudulent book seller,
so there are significant problems to solve in this area that go well beyond
the problem of simply exchanging information between two agents.

The best way to learn more about this research area is to do a Web
search using the search string “Intelligent Agent.” There are numerous
re-search groups and companies that provide online descriptions and
demos of their products.




SECTION 3.8From the Java Library java.lang.Object 135
3.8 From the Java Library java.lang.Object

The most general class in Java’s class hierarchy is the java.lang.Object

class. It is the superclass of all classes that occur in Java programs. By
de-fault, it is the direct superclass of any class that does not explicitly
specify a pedigree in its class definition.

All subclasses of Object inherit the public and protected methods
contained in Object, so all such methods can be thought of as belonging
to the subclasses. This means that all classes inherit the methods of the
Object class, because every class is a subclass of it. In this section, let’s
look briefly at how we can use an inherited method and also at how we
can override it-that is, redefine the method-if it doesn’t exactly suit our
purposes.

One of the most useful methods in the Object class is the
toString() method:

Ipublic class Object
f
I public String toString()

g

The toString() method returns a String representation of its object.
For example, o1.toString() will return a String that in some sense
describes o1.

Because OneRowNim is a subclass of Object, it inherits the

toString() method. To illustrate the default behavior of toString(),
let’s use it with a OneRowNim instance:

OneRowNim g1 = new OneRowNim (11);
OneRowNim g2 = new OneRowNim (13);
System.out.println(gl.toString());
System.out.printin(g2.toString());

This code segment creates two OneRowNim instances, one named gl and
the other named g2. The inherited toString() method is then invoked

on i ,
OneRowNim@1dc6077b
OneRowNim@1dc60776

What this experiment shows is that the default definition of toString()
returns some kind of internal representation of its object. It looks as if it
returns the name of the object’s class concatenated with its memory ad-
dress. This may be useful for some applications. But for most objects we
will want to override the default definition to make the toString() method
return a string that is more appropriate for OneRowNim.

What String should the gl.toString() method return? Let’s have it
return a String that reports the OneRowNim instances’s current state,
which are the values stored in the two instance variables. To override a
method, you simply define a method with the same signature in the

java.sun.com/j2se/1.5.0/docs/api/




Inheritance

CHAPTER 3 Methods: Communicating with Objects

subclass. If you call toString() with an instance of the subclass, its

version of the method will be used. In this way, the subclass method over-

rides the superclass version. Thus, OneRowNim.toString() will have
the following signature:

|pub|ic String toString();

Let us describe the state of a oneRowNim instance very briefly in the string

returned by the toString() method:

public String toString()

g

If we add the toString() method to the OneRowNim class and then run
the program shown in Figure 3.18, we get the following output:

9, player =2

| nSticks
13, player =1

nSticks

public class TestToString
f
public static void main(String argv[])
f OneRowNim gl =new OneRowNim (11);
OneRowNim g2 =new OneRowNim (13);
gl.takeSticks(2);
System.out.printin(gl.toString());
System.out.println(g2.toString());
g //main

g//TestToString

Figure 3.18: An application to test the overridden toString() method.

While this new method may not play an important role in the OneRowNim
class, it does provide a very brief, understandable description of the state
of the object. This is the reason that the toString() method was in-
cluded in the Object class.

3.9 Object-Oriented Design: Inheritance and
Polymorphism

This use of Object’s toString() method provides our first look at

Java’s inheritance mechanism and how it promotes the generality and
extensibility of the object-oriented approach. As a subclass of Object,
our OneRowNim class automatically inherits toString() and any other
public or protected methods defined in Object. We can simply use
these methods as is, insofar as they are useful to us. As we saw in this
case, the default version of toString() wasn’t very useful. In that case,

freturn + nSticks + + player; ‘



SECTION 9 OOD: Inheritance and Polymorphism 137

we can override the method by defining a method in our class with the
exact same method signature. The new version of toString() can be
customized to do exactly what is most appropriate for the subclass.

One of the great benefits of the object-oriented approach is the ability
to define a task, such as toString(), at a very high level in the class
hierarchy and let the inheritance mechanism spread that task through-
out the rest of the hierarchy. Because toString() is defined in Object, you
can invoke this method for any Java object. Moreover, if you over-ride
toString() in the classes you define, you will be contributing to its
usefulness. Two important lessons from this example are

8NN S SRS I Sp]SS (€N Mnheritance. The higher up in the class
hierarchy that a method is defined, the more widespread its use can be.

SN S S SORENAERRISS] [€1N Overriding toString(). The toString()
method can be overridden in any user defined Java class. Itis a
useful thing to do in any class where the state of an object can be
defined briefly.

Obviously there is much more that needs to be explained about Java’s
inheritance mechanism. Therefore, we will be revisiting this topic on
numerous occasions in subsequent chapters.

Another important concept of object-oriented design is polymorphism.
The toString() method is an example of a polymorphic method. The term
polymorphism is from the Greek terms poly, which means “many,” and
morph, which means “form.” The toString() method is polymor-phic
because it has different behavior when invoked on different objects.

For example, suppose we design a class, Student, as a subclass of
Object and define its toString() method to return the student ID number.
Given this design, then obj.toString() will return a student ID if obj is an
instance of Student, but if it is an instance of OneRowNim, it will return a

the description of its state that we defined above. The
following code segment illustrates this point:

Objectobj; // obj can refer toany Object
obj =new Student( );//obj refers toa Student
System.out.printin(obj.toString()); // Prints "12345
obj =new OneRowNim (11); //obj refers to aOneRowNim

System.out.printin(obj.toString());

[/ Prints: nSticks =11, player =1

In this case, the variable obj is used to refer to a Student and then to a
OneRowNim instance. This is okay because both classes are
subclasses of Object. When toString() is invoked on obj, Java will figure
out what subclass of Object the instance belongs to and invoke the
appropriate toString() method.




CHAPTER 3 Methods: Communicating with Objects

3.10 Drawing Lines and Defining Graphical
Methods (Optional)

We used a Graphics object in the previous chapter to draw rectangles
and ovals in a JFrame window. The Graphics class also possesses a
method for drawing a line segment. Problems involving drawing pic-tures
in an JFrame window using a series of line segments can be a source of
examples of defining useful methods and also of making good use of
loops.

‘The Graphics class has a public instance method with the header:

| public void drawLine(int x1, intyl, intx2, inty2) \

The method call g.drawLine(x1, y1, x2, y2) draws a line from the point
(x1; y1) to (x2; y2) where (x; y) refers to a point that is x pixels from the
left edge of the area that g is drawing in and y pixels from the top edge.
Thus g.drawLine(10, 10, 10, 60) draws a vertical line segment that is 50
pixels long and is 10 pixels from the left edge of the drawing area, that is,
a line segment from the point (10; 10) to the point (10; 60).

Consider the problem of creating an Swing program with a method
called drawSticks() to draw any specified humber of vertical line seg-
ments. This method might be useful for an graphical user interface to the
OneRowNim game to draw the number of sticks at a given point in a
game. Suppose that this method must have an int parameter to specify
the number of vertical lines to draw and two int parameters to spec-ify
the location of the top endpoint of the left most line segment. The
drawSticks() method will need to use a Graphics object connected to the
JFrame window for drawing the line segment. The only such Graphics
object available is the parameter in the paint() method of the Canvas.
Thus the method must have a Graphics parameter and it will be called in
the paint() method using the Graphics object there as an argument. Thus
the header of the method should look like:

| public void drawSticks (Graphics g,int x,inty,intnum) \

The length of the line segments and and the distance between them
are not specified by parameters so we need to choose some fixed values
for these quantities. Let us assume that the line segments are 10 pixels
apart and 50 pixels long. We now have enough information to complete
the definition of an applet to solve this problem. Such a class definition is
reproduced in Figure 3.19.

Note that the body of drawSticks() uses a while-loop to draw the lines
and declares and initializes a local variable to zero to use for counting
the number of lines drawn. The statement g.drawLine(x, y, X, y + 50);
draws a vertical line which is 50 pixels long. Increasing the value of x by
10 each time through the loop moves the next line 10 pixels to the right.

The first call to drawSticks() in the paint() method draws 12 lines with
(25; 25) the top point of the left-most line. The second call to



CHAPTER 3 Chapter Summary 139

IDrawlLineCanvas demonstrates some graphics commands.
It draws a set of 12 vertical lines and a set of 7 lines
/

import java.awt. ;

import javax.swing . JFrame ;

public class DrawSticksCanvas extends Canvas
/drawSticks(g,x,y,num) will draw num vertical line
segments. The line segments are 10 pixels apart and

50 pixels long. Thetop endpoint of the left most
line segment is at the point (x,y).
/
public void drawSticks (Graphics g,int x, inty, intnum)
f int k= 0;
while (k< num)
f g.drawLine (x, y, X,Yy + 50);
X=X+ 10;
k =k + 1;
g// while
g// drawSticks()

public void paint(Graphics g)
f drawSticks(g, 25, 25, 12);
g.setColor(Color.cyan);
drawSticks(g, 25,125, 7);
g/l paint ()

g// DrawSticksCanvas

Figure 3.19: A Swing Class with a method for drawing a set of sticks.

drawSticks() will draw 7 cyan sticks 100 pixels lower. Note that chang- O @ Draw Sticks Program
ing the color of g before passing it as an argument to drawSticks()
changes the drawing color.
An image of the DrawSticksCanvas as it appears in a window is shown
in Figure 3.20.
As we have seen in this example, defining methods with parameters
to draw an object makes the code reusable and makes it possible to
draw a complex scene by calling a collection of simpler methods. It is a
typical use of the divide-and-conquer principle. The while-loop can be
useful in drawing almost any geometrically symmetric object.

Technical Terms Figure 3.20: The DrawSticksCan-
vas as displayed in a Java win-
dow.

CHAPTER SUMMARY



SOLUTIONS TO SELF-
STUDY EXERCISES

CHAPTER 3 Methods: Communicating with Objects

accessor method loop structure repetition structure
class scope method overloading scope

formal parameter method signature selection

if statement mutator method side effect

if/felse statement multiway selection while statement
inherit override while structure
local scope polymorphism

Summary of Important Points

A formal parameter is a variable in a method declaration. It always
con-sists of a type followed by a variable identifier. An argument is a
value that is passed to a method via a formal parameter when the
method is invoked. A method’s parameters constrain the type of
information that can be passed to a method.

When an argument of primitive type is passed to a method, it cannot
be modified within the method. When an argument of reference type
is passed to a method, the object it refers to can be modified within
the method.

Except for void methods, a method invocation or method call is an
expression which has a value of a certain type. For example,
nim.getSticks() returns a int value.

The signature of a method consists of its name, and the number,
types, and order of its formal parameters. A class may not contain
more than one method with the same signature.

A constructor is a method that is invoked when an object is created. If
a class does not contain a constructor method, the Java compiler
supplies a default constructor.

Restricting access to certain portions of a class is a form of informa-
tion hiding. Generally, instance variables are hidden by declaring
them private. The class’s public methods make up its interface.

The if statement executes a statement only if its boolean condition is
true. The if-else statement executes one or the other of its statements
depending on the value of its boolean condition. Multiway selection al-
lows one and only one of several choices to be selected depending on
the value of its boolean condition.
The while statement is used for coding loop structures that repeatedly
execute a block of code while a boolean condition is satisfied.

SOLUTION 3.1 A method declaration defines the method by specifying its name,
qualifiers, return type, formal parameters, and its algorithm, thereby associating
a name with a segment of executable code. A method invocation calls or uses a
defined method.

SOLUTION 3.2 A formal parameter is a variable in the method declaration,
whose purpose is to store a value while the method is running. An argument is a
value that is passed to a method in place of a formal parameter.



CHAPTER 3Solutions to Self-Study Exercises 141

SOLUTION 3.3 The following code declares two instance variables for names of players and defines a
setName() method:

private String nameOne= "Player One”;
private String nameTwo= "Player Two”;

public void setNames (String namel, String name2)
f nameOne = hamel ;
nameTwo = name2 ;

g

Of course, there are many other appropriate names for the variables and
parame-ters and other initial assignments.
SOLUTION 3.4 A method call that sets the names of the players of gamel is:

‘ gamel . setNames ( "Xena”, "Yogi") ;

SOLUTION 3.5 A constructor cannot have a return type, such as void.

SOLUTION 3.6 One definition for the method is:

public OneRowNim(int sticks)
f nSticks = sticks;
player = 2;

1
SOLUTION 3.7  The following would be displayed on the screen:

20
false

SOLUTION 3.8  One definition for the method is:

public int getMoves ()
f return nMoves;

g
SOLUTION 3.9  One definition for the method is:

public boolean playerOnelsNext ()
f return (player ==1);

g

SOLUTION 3.10 See Figure 3.21.

N
FaLse /// sDone TRUE
J \/ Y

RETURN RETURN
"Not DoNe" "DonNE"

J Y
' i e -
| EXIT METHOD | EXIT METHOD
\ \

Figure 3.21: Flowchart of the if-
else version of the getStatus()
method.



EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

CHAPTER 3 Methods: Communicating with Objects

SOLUTION 3.11

if (isHeavy == true)
System.out.println("Heavy”)
else; J//Error (remove this semicolon)

System.out.printin("Light”);

if (iskong == true)
System .out.println(’Long”)

/1 Error (end line above with semicolon)
System.out.printin("Short”);

else

SOLUTION 3.12

public String getPlayerName ()
f if (player == 1)
return "Ann”;
elseif (player == 2)
return "Bill";
elseif (player == 3)
return "Cal”;
else
return "Error’”;
9

SOLUTION 3.13 When passing an argument for a primitive type, a copy of the
argument’s value is passed. The actual argument cannot be changed inside the
method. When passing a reference to an object, the object can be changed
within the method.

SOLUTION 3.14

public int sumCubes (int min, int max)
f
intnum=min;
int sum= 0;
while (num <= max) fr While num <= max
sum = sum + num num num ; /I Add cube of numtosum
num=num+ 1; /I Add 1to num
g//while
return sum; // Return the sum
g

EXERCISE 3.1 Fill in the blanks in each of the following sentences:

a. When two different methods have the same name, this is an example of

b. Methods with the same name are distinguished by their

A method that is invoked when an object is created is known as a
method.



CHAPTER 3Exercises 143

d. A method whose purpose is to provide access to an object’s instance variables
is known as an method.

. A boolean value is an example of a type.

A OneRowNim variable is an example of a type.
. A method’s parameters have scope.
. Aclass’s instance variables have scope.

o Q ™Mo

i. Generally, a class’s instance variables should have access.

j.  The methods that make up an object’s interface should have access.

k. A method that returns no value should be declared

I. Java’s if statement and if-else statement are both examples of control
structures.

m. An expression that evaluates to either true or false is known as a

n. In an if-else statement, an else clause matches

The ability to use a superclass method in a subclass is due to Java’s
mechanism.

The process of redefining a superclass method in a subclass is -
known as the method.

EXERCISE 3.2 Explain the difference between the following pairs of concepts:

Parameter and argument.

Method definition and method invocation.
Local scope and class scope.

Primitive type and reference type.
Access method and constructor method.

EXERCISE 3.3 Translate each of the following into Java code:

If bl is true, then print “one”; otherwise, print “two”.

If bl is false and if b2 is true, then print “one”; otherwise, print “two”.

If bl is false and if b2 is true, then print “one”; otherwise, print “two”, or print
“three”.

EXERCISE 3.4 Identify and fix the syntax errors in each of the following:

i f (isWalking == true) ;
System.out.println( );
else
System.out.println( );

i f (iswalking)
System.out.printlin( )
else
System.out.println( );




CHAPTER 3 Methods: Communicating with Objects

i f (isWalking )
System.out.println("Walking”);
else
System.out.println("Not walking”)

f (isWalking = false)
System.out.println("Walking”);
else
System .out.println("Not walking”);

EXERCISE 3.5 For each of the following, suppose that isWalking is true and
isTalking is false (first draw a flowchart for each statement and then determine
what would be printed by each statement):

if (isWalking == false)
System.out.println ("One”);
System.out.println ("Two")

f (isWalking == true)
System.out.println ("One”);
System.out.println ("Two”)

if (isWalking == false)
f

System.out.println("One”);
System.out.println("Two");

g
d.
if (isWalking == false)
if (isTalking ==true)
System.out.println("One”);
else
System.out.println("Two");
else
System.out.println ("Three”);




CHAPTER 3Exercises 145

EXERCISE 3.6 Show what the output would be if the following version of
main() were executed:

public static void main(String argv[])
f
System.out.println( );
OneRowNim gamel ;
gamel =new OneRowNim(21);
OneRowNim game2 ;
game2 = new OneRowNim (8) ;
gamel .takeSticks(3);
game2 .takeSticks(2);
gamel .takeSticks(1);
gamel.report();
game2.report();
System .out.println( );

g

EXERCISE 3.7 Determine the output of the following program:

public class Mystery

f
public String myMethod (Strings)
f

return( +s);
9
public static void main(String argv[])
f
Mystery mystery = new Mystery () ;
System .out.println( mystery. myMethod ( );
9

EXERCISE 3.8 Write a boolean method—a method that returns a boolean—
that takes an int parameter and converts the integers 0 and 1 into false and true,
respectively.

EXERCISE 3.9 Define an int method that takes a boolean parameter. If the
parameter’s value is false, the method should return 0; otherwise, it should return
1.

EXERCISE 3.10 Define a void method named hello that takes a single boolean
parameter. The method should print “Hello” if its parameter is true; otherwise, it
should print “Goodbye”.

EXERCISE 3.11 Define a method named hello that takes a single boolean
parameter. The method should return “Hello” if its parameter is true; otherwise it
should return “Goodbye”. Note the difference between this method and the one
in the previous exercise. This one returns a String. That one was a void method.

EXERCISE 3.12 Write a method named hello that takes a single String pa-
rameter. The method should return a String that consists of the word “Hello”
concatenated with the value of its parameter. For example, if you call this
method with the expression hello("dolly"), it should return “hello dolly”. If you call
it with hello("young lovers wherever you are"), it should return “hello young lovers
wherever you are”.



CHAPTER 3 Methods: Communicating with Objects

EXERCISE 3.13 Define a void method named day1l that prints “a partridge in a
pear tree”.

EXERCISE 3.14 Write a Java application program called TwelveDays that prints
the Christmas carol “Twelve Days of Christmas.” For this version, write a void
method named intro() that takes a single String parameter that gives the day of
the verse and prints the intro to the song. For example, intro("first") should print,
“On the first day of Christmas my true love gave to me”. Then write methods
dayl(), day2(), and so on, each of which prints its version of the verse. Then
write a main() method that calls the other methods to print the whole song.

EXERCISE 3.15 Define a void method named verse that takes two String
parameters and returns a verse of the Christmas carol “Twelve Days of Christ-
mas.” For example, if you call this method with verse("first", "a partridge in a pear
tree"), it should return, “On the first day of Christ-mas my true love gave to me, a

partridge in a pear tree”.

EXERCISE 3.16 Define a void method named permute, which takes three String
parameters and prints out all possible arrangements of the three strings. For
example, if you called permute("a”, "b", "c"), it would produce the following
output: abc, acb, bac, bca, cab, cba, with each permutation on a separate line.

EXERCISE 3.17 Design a method that can produce limericks given a bunch of

rhyming words. That is, create a limerick template that will take any five words
or phrases and produce a limerick. For example, if you call

limerick( , , , , i

your method might print (something better than)

There once a person named Jones
Whohad a great liking for stones,
But whenever it rained ,
Jones
t good for the bones.

For each of the following exercises, write a complete Java application program:

EXERCISE 3.18 Define a class named Donor that has two instance variables,
the donor's name and rating, both of which are Strings. The name can be any
string, but the rating should be one of the following values: “high,” “medium,” or
“none.” Write the following methods for this class: a construc-tor,
Donor(String,String), that allows you to set both the donor’'s name and rating;
and access methods to set and get both the name and rating of a donor.

EXERCISE 3.19 Challenge. Define a CopyMonitor class that solves the fol-
lowing problem. A company needs a monitor program to keep track of when a
particular copy machine needs service. The device has two important (boolean)
variables: its toner level (too low or not) and whether it has printed more than
100,000 pages since its last servicing (it either has or has not). The servicing rule
that the company uses is that service is needed when either 100,000 pages have
been printed or the toner is too low. Your program should contain a method that
reports either “service needed” or “service not needed” based on the machine’s
state. (Pretend that the machine has other methods that keep track of toner level
and page count.)



CHAPTER 3Exercises 147

EXERCISE 3.20 Challenge. Design and write an OldMacdonald class that sings
several verses of “Old MacDonald Had a Farm.” Use methods to generalize the
verses. For example, write a method named eieio() to “sing” the “E | E | O” part
of the verse. Write another method with the signature hadAnX(String s), which
sings the “had a duck” part of the verse, and a method withA(String sound) to
sing the “with a quack quack here” part of the verse. Test your class by writing a
main() method.

ADDITIONAL EXERCISES

EXERCISE 3.21 Suppose you have an Object A, with public methods a(), b(),
and private method c(). And suppose you have a subclass of A named B with
methods named b(), ¢() and d(). Draw a UML diagram showing the rela-tionship
between these two classes. Explain the inheritance relationships between them
and identify those methods that would be considered polymorphic.

EXERCISE 3.22 Consider the definition of the class C. Define a subclass of C

named B that overrides method m1() so that it returns the difference between m
and n instead of their sum.

public class Cf

private intm;

privateint n;

public C(int min, int nin) f
m=min;
n =nin;

g

public intmil() f
returnm+n;

g




148 CHAPTER 3  Methods: Communicating with Objects



Chapter 4

Input/Output: Designing
the User Interface

OBJECTIVES
After studying this chapter, you will

Understand the importance of the user interface.
Know how to use a simple command-line interface.
Be able to program and use a simple Graphical User Interface
(GUI). Understand the concept of event-driven programming.
Know how to program and use a Java Swing program.

OUTLINE

4.1 Introduction

4.2  The User Interface

4.3 A Command-line Interface

4.4 A Graphical User Interface (GUI)

4.5 Case Study: The One Row Nim Game

4.6 From the Java Library: java.io.File and file input (Optional)
Chapter Summary
Solutions to Self-Study Exercises
Exercises

149



User interface

Division of labor

150 CHAPTER 4 Input/Output: Designing the User Interface
4.1 Introduction

One of the most important parts of learning a programming language is
learning how to program an application to accept input and produce out-
puts (I/O). Computers wouldn’t be very useful if we could not give them
data to manipulate and compute, and if we were not able to read or un-
derstand the results that they produce. In general, a computer program’s
input and output capabilities are known collectively as its user interface.
An input operation is any action that transfers data from the user to
the computer’s main memory via one of the computer’s input devices.
An output operation is any action that transfers data from the computer’s
main memory to one of the computer’s output devices.

In this chapter, we will introduce three simple user interfaces: a
command-line interface and two graphical user interfaces (GUIs). These
interfaces can be used interchangeably with the material in most of the
subsequent chapters. Indeed, one of the most important design princi-
ples that we emphasize in this chapter is that the user interface should be
designed to function independently of the computational task. In other
words, it should be possible to take an application, such as a computer
game, and design it so that it can be used with a variety of different user
interfaces.

4.2 The User Interface

The user interface is that part of the program that handles the input and
output interactions between the user and the program. As an interface,
it limits or constrains the manner in which the user can interact with the
program.

Computer programs are just one of the many things that require a user
interface. Virtually every device we use has one. For example, consider
again the difference between the user interface of a digital versus an ana-
log watch. On a digital watch, you have a display that tells you the time
to the exact hour, minute, and second. On an analog watch, one with a
sweep second hand, the time can never be displayed to the exact second.
Similarly, on a digital watch there are buttons that let you set the time to
the exact hour, minute, and second. On an analog watch, there is a small
wheel that allows you to set the time only approximately. Thus, the user
interface constrains the kinds of interactions that are possible between the
user and the device.

With regard to our Java programs, one way to divide up the labor is to
distinguish between the user interface and the computational functions.
The role of the user interface is to transmit data back and forth between the
user and the program. The role of the computational part of the program
is to perform some kind of computation, in the broad sense of that term.
The computation might be to play a game, or calculate a square root, or
monitor a hospital patient. Figure 4.1 provides a generic picture of the
relationship between the user interface and the computational object.

In this chapter we focus our attention on the user interface side of the
relationship shown in Figure 4.1. In subsequent chapters we will focus
more on the computational side of the relationship. What we desire is an



SECTION 4.3A Command-Line Interface 151

Input B

:User|nterface
- Uutput

Input
Qutput

ComputationalObject

approach that lets us combine a computational object with any one of the
three different kinds of user interfaces.

NN SIS SO NVISEBISS][€IN The User Interface Module Separating
the user interface from the computational object is a good way to
divide up the labor in programs that perform 1/O.

4.3 A Command-Line Interface

A command-line interface is perhaps the simplest, and most old-
fashioned, way to design the interaction between a user and a program.
According to this approach, user input is taken from the keyboard, and
the program’s output is displayed on some kind of console (Fig. 4.2).

00000000 |1 LI commendlinelnterface
Keyboard

ONIRINONONINING] Output e,

< %] I P Output

ComputationalObject

Hi!

Console

The command-line approach might also be called console interface. In
the early days of computers, before we had graphics-based computer
monitors capable of displaying multiple windows, the console was the
entire computer display. For today’s computers the console might be a
window provided by your programming environment, as in Figure 4.3.

In Chapter 3 we described how to use the System.out.print() and
System.out.printin() methods to output strings to the console. That takes
care of the output side of command-line interface. The more challenging
task is managing the input-side of the interface.

Figure 4.1: The user interface
transmits data back and forth be-
tween the user and the program’s
computational objects.

Figure 4.2: A command-line user
interface.



152 CHAPTER 4 Input/Output: Designing the User Interface

Figure 4.3: The Java console
win-dow.

Java Console =——F1 BH|
Flease input your name here > Ralph
|Hi Ralph nice to meet you.

[«]»

R
-
Z

In Java, input and output is handled by objects that are called streams.
You can think of a stream as a kind of pipe through which data flow (Fig.
Streams 4.4). An input stream carries data from some kind of input device, such as a
keyboard or network connection or a file, to the program’s main memory. An
output stream carries data from the program’s memory to some kind of
output device, such as a printer or a file.

Figure 4.4: Input and output

streams. COO0O0O0O00O0 :
0O000O0000 _"’ 0100101000100
[ ] < = ] Program
Keyboard Input-Stream Memory
Hil 0010010100101
’ ~y— System.out t 0100101000100
Lonsole Output Stream

Each Java program has three standard streams available to it at
startup: System.in, System.out, and System.err. System.in is a prede-
fined input stream that is typically associated with the keyboard (Fig.
4.4). That is, it carries data from the keyboard to the program.
System.out and System.err are both output streams typically associated
with the console. They both carry data from the program to the console.
The dif-ference is simply that System.out is used for normal program
output and System.err is used to output error messages.

4.3.1 Using a BufferedReader to Input Strings from the
Keyboard

We will use a BufferedReader object to handle data input from the
keyboard. As its name implies, the BufferedReader class performs
buffered input. A buffer is a portion of main memory where input is held
Buffered input until it is needed by the program. Using a buffer between the keyboard
and the program allows you to use the Backspace key to delete a char-
acter. When you hit the Enter key, any characters that you deleted will
be ignored when the program retrieves characters from the input buffer.
If the user’s input were not buffered in this way, it would contain ev-ery
keystroke, including the Backspaces, and then it would be up to the
program to eliminate the characters that were supposed to be deleted.



SECTION 4.3A Command-Line Interface 153
Figure 4.5: The BufferedRead-er
Reader class.

LN

BufferedReader

+ BufferedReader(r : Reader)
+ readLine(): String

InputStreamReader

+ InputStreamReader(s: InputStream)

Figure 4.5 provides a UML diagram of the BufferedReader class and
shows its relationship to other the classes that will be used for keyboard
input . Note that along with InputStreamReader, BufferedReader is one
of several subclasses of the Reader class. As the diagram shows,
BufferedReader has two important methods. Its constructor method
takes a Reader parameter, which means that when we create a
BufferedReader we must provide it with a reference to some kind of
Reader object. To perform keyboard input, we want to provide a refer-
ence to an object that can read System.in, the standard input stream. As
the figure shows, InputStreamReader has a constructor that allows it to

read an InputStream. Therefore, to construct a BufferedReader
that will read System.in we use the following statement:

BufferedReader input =newBufferedReader
(new InputStreamReader ( System.in));

In this statement we are actually creating two objects. We first create an
InputStreamReader, giving it a reference to System.in. We then pass
that object to a BufferedReader. The result is a cooperation between
two objects that enables us to do buffered reading of the keyboard.

By creating a BufferedReader in this way, whenever we use its
readLine() method, it will read a line of characters from the keyboard.
For example, having created a BufferedReader named input, the fol-

lowing code segment will read one line of input and assign it to the
String variable named inputString.

|StringinputString:input.readLine(); |

When the program encounters the readLine() expression, it will wait Keyboard input for
the user to hit the Enter key. It will then input whatever the user



CHAPTER 4  Input/Output: Designing the User Interface

typed, minus any characters that were Backspaced over, into the String
variable.

?E NAV/NWNNC]U/NeI=RRUIR=] Keyboard Input. The
BufferedReader.readLine() method allows the user to
backspace over errors during keyboard input.

4.3.2 Inputting Numbers from the Keyboard

As the previous section showed, we can use a BufferedReader object
to input Strings from the keyboard. In Java, all keyboard input is repre-
sented as Strings. However, what if we want to input numbers? The an-
swer is that we have to extract numbers from the input strings. To do this,
Java provides us two special classes, known as wrapper classes: Integer
and Double.

Wrapper classes A wrapper class contains methods for converting primitive data into
objects and for converting data from one type to another. The Integer
class contains the parselnt() method, which extracts an int from its

String argument. For example, in the following usage, the string ”55” is
converted into the number 55:

|intm:Integer.parseInt( );

Similarly, the Double class contains the parseDouble() method, which

extracts a double value from its parameter. In this example, the number
55.2 is extracted from the string "55.2”:

|doub|e num = Double . parseDouble ( );

If we are writing a program that requires us to input numbers from
the keyboard, then assuming we have created a BufferedReader ob-
ject named input, we can use these methods in combination with the

readLine() method, to input and process numbers. For example, this
code segment calculates a runner’s race pace:

String inputString =new String();

System .out.println( );
inputString =input.readLine(); /l'lnputa Stringg
double miles =Double . parseDouble (inputString); //convert
System .out.println( )
inputString =input.readLine(); /I Input another String
double minutes = Double . parseDouble (inString);

/I Convert

System.out.println( +

minutes/ miles + )




SECTION 4.3A Command-Line Interface 155
Notice how we included prompts in this example so that the user knows
what type of input is expected. Designing appropriate prompts is an
important aspect of designing a good user interface.

SN S S S S eI PAERRIES| (€N Prompting. In a well-designed user
interface, prompts should be used to guide the user through the input
process.

4.3.3 Designing a Keyboard Reader Class

Now that we have introduced the library classes and methods that we
will use for command-line input, lets design a class to encapsulate these
functions. We want a class that will use a BufferedReader to read any
kind of data—strings, integers, or real numbers—from keyboard. We
also want this class to hide some of the messy details involved in
performing keyboard input.

KeyboardReader 2
- reader : BufferedReader Mses BufferedReader

+ KeyboardReader()

+ getKeyboardinput(): String
+ getKeyboardinteger(): int

+ getKeyboardDouble(): double
+ prompt(s: String)

+ display(s: String)

- readKeyboard(): String

Figure 4.6 presents the design of KeyboardReader class. Note that
instances of this class will use a BufferedReader object to perform the
actual keyboard input. That's why we need a private instance vari-able of
type BufferedReader. The constructor method will create a
BufferedReader, which will then be used whenever a read operation is
requested. Note that the KeyboardReader() has five public meth-ods.
The getKeyboardInput() method returns a String. This is the method we
will call when we just want to get the string that the user typed from the
keyboard. The getKeyboardinteger() method returns an int value. This is
the method we will call when we want an integer from the keyboard.
Similarly, the getKeyboardDouble() method returns a double. This is the
method we will call when we want to input a floating point value from the
keyboard. Finally, the prompt() and display() methods will be used to
perform two other important tasks of a user in-terface: that of prompting
the user and that of displaying the program’s output.

The following code segment illustrates how we will use a Keyboard-

Reader object to input an integer:

KeyboardReader cmdline = new KeyboardReader ();intm
=cmdline.getKeyboardinteger();

Figure 4.6: Design of the
KeyboardReader class.



Private helper method

I/0 exceptions

156 CHAPTER 4 Input/Output: Designing the User Interface

All we need to do is create an instance of the KeyboardReader and ask
it to get an integer for us. This greatly simplifies the work we would have
to do when we want to perform keyboard input.

Note that Figure 4.6 lists a private method named readKeyboard()
in the KeyboardReader class. This is the method that does the actual
work of reading data from the keyboard. Because it is private, it can only
be called by the other methods in KeyboardReader. It cannot be called
by other classes. The reason we make it private is to hide it, and the messy
details of performing keyboard input, from other classes.

One of those messy detalils is the fact that whenever I/O is performed,
it is possible for things to go wrong. The possibility of errors occurring
applies to all forms of I/O, not just keyboard I/O. For example, when a
program is trying to read a file, the file might be missing. Or when trying
to download a web page, the Internet connection might malfunction.

Because these types of external errors are possible, Java requires that
whenever a program performs certain types of 1/O, it must watch out
for certain kinds of error conditions, known as exceptions. Exceptions are
covered in Chapter 11, so we will not attempt to cover them here. Instead,
we will design the readKeyboard() method to take care of this detail
for us.

SANZANEANEONESRUIE=N  Exceptions. Java I/O methods require
that programs check for certain error conditions during input.

Figure 4.7 gives the full implementation (for now) of the Keyboard-
Reader class. Lets go through it line by line. The first thing to no-
tice is the use of the import statement. Recall that importing a Java
package enables us to refer to elements in the package by their short
names (BufferedReader), rather than by their fully qualified names
(java.io.BufferedReader).

Next notice how we create a BufferedReader object in the
KeyboardReader() constructor:

reader =newBufferedReader
(new InputStreamReader ( System.in));

The resulting reader object will persist as long as our KeyboardReader
object exists and can be used for all subsequent input operations.

Next notice the definition of the readKeyboard() method. It calls
the inherited readLine() method to input a line from the keyboard and
then it returns the line. Note, however, how the call to the readLine()
method is embedded in a try...catch block. This is one way to handle
the possibility that an exception might occur during the input operation.
Java requires that our program do something to address the possibility
of an 1/0 exception, and as we will learn in Chapter 11, there are other
designs that we might have used here. The primary advantage of doing
it this way is that we can hide this language detail from the rest of the
program. The rest of the program—and any other programs that use the
KeyboardReader class—will not have to worry about this exception is-
sue. They can just ask the KeyboardReader to get them a string or an
integer and it will deliver the goods.



SECTION 4.3 A Command-Line Interface 157

import java.io. ;

public class KeyboardReader
f private BufferedReaderreader;

public KeyboardReader () f
reader=newBufferedReader
(new InputStreamReader ( System.in));
g
public String getkeyboardinput ()
f returnreadKeyboard () ;
g
public int getKeyboardlinteger()
f returninteger.parselnt(readkeyboard ());

g

public double getKeyboardDouble ()

f return Double . parseDouble ( readKeyboard () ) ;
g

public void prompt(Strings)

f System.out.print(s);

g

public void display(String s)

f System.out.print(s);

g

private String readKeyboard ()

f String line =7
try
fline =reader.readLine();
gcatch (IOException e)
fe.printStackTrace();

g
returnline;

Figure 4.7: Definition of the KeyboardReader class.

Next, notice how the public input methods are defined. The
getKeyboardinput() method just returns the line that it gets by call-ing
readKeyboard(). The getKeyboardinteger() method also calls
readKeyboard(), but instead of just returning the line, it extracts an
integer from it and returns the integer. The getKeyboardDouble() method
works the same way.

Finally, notice how the public output methods are defined. Both the
prompt() and display() methods take a single String parameter and do
exactly the same thing—they merely print their string. So why do we have
two methods when one will suffice? The answer is that these methods
encapsulate important and distinct user-interface functions— prompting
the user and displaying output—that just happen to be imple-mented in
exactly the same way in this case. As we will see when we de-sign our
GUI interface, we will use completely different objects to prompt the user
and display output. So, despite their similarities, it is important



CHAPTER 4  Input/Output: Designing the User Interface

that we distinguish the task of prompting the user from the more general
task of displaying output.

4.3.4 Designing a Command-Line Interface

Now that we have defined a special class for performing keyboard input,
we now show how it can be used as a user interface in cooperation with
the other objects that make up a program. As described in Figure 4.1,
the user interface will serve as an intermediary between the user and
some type of computational object. Although our command-line interface
should work with any application, no matter how complex, we begin with
a very simple computational problem. This will allow us to focus on the
user interface.

Let’'s design a program that prompts the user for his or her name and
then says hello. Thus, the program’s 1/O should look like this:

Hi, please input your name here > Kim
HiKim, niceto meet you.

In the design we use there will be two primary objects involved. One
will serve as the user interface. This will be our KeyboardReader. A
second object will serve as the computational object. In this case it will
“compute” an appropriate greeting. It will serve contain the main()
method and will encapsulate the algorithm for this application. It will use
a KeyboardReader to handle its 1/0O needs.

The main advantage of this division of labor is that it enables us to
use the KeyboardReader, as is, with virtually any Java application. More-
over, despite its simplicity, our computational object in this example can
serve as a template for future programs.

SN S S SSGIRNI=RI=S (€N Modularity. By designing the user
interface as a self-contained module, we can use it with just about
any application.

Figure 4.8 provides the details the design we wish to implement. Note
that GreeterApp contains an instance variable for a KeyboardReader.
This will enable it to use the KeyboardReader whenever it needs to per-
form keyboard input. By giving GreeterApp a main() method, we al-low it
to be the main class for our application. Its run() method will con-tain the
algorithm that controls the application, and its greet() method will handle
the task of greeting the user.

The full implementation of the GreeterApp class is shown in Figure
4.9. It begins by declaring an instance variable for the KeyboardReader,
which is instantiated in the constructor method. This gives GreeterApp a
way to refer directly to the user interface whenever it needs keyboard
input. The run() method encapsulates the application’s algorithm. Notice
how it uses the KeyboardReader to prompt the user, to input the user’s
name, and then to display the greeting. Finally, the main() method
serves to create an instance of the computational object and calls its
run() method.



SECTION 4.3A Command-Line Interface 159

KeyboardReader
Input - reader : BufferedReader
+ KeyboardReader() ~=fUses Greeter
~&——1+ getKeyboardinput() : String - reader : KeyboardReader
Output |+ getKeyboardinteger(): int ¥ main(arosl]:Sting)
+ getKeyboardDouble() : double ¥ m A e
+ prompt(s: String) +run()
+ display(s: String) ; + greet(name :String): String
- readKeyboard(): String
User User Interface Computational Object
public class GreeterApp

f

g// GreaterApp

private KeyboardReader reader;

public  GreeterApp ()

f reader =new KeyboardReader () ;
g/l GreeterApp()

public void run ()

f String name="";

reader.prompt( );
name = read er. getkeyboardinput () ;
reader.display(greet(name)+ );

g //run()

public String greet(String name)

f return + name + ;

g //lgreet()

public static void main(Stringargs|[])

f GreeterApp app = new GreeterApp () ;
app.run();

9

Figure 4.9: Definition of the GreeterApp class.

To re-cap, we have designed a simple command-line interface that can
be used, with minor changes, for virtually any programming task in sub-
sequent chapters. Before moving on, it may be helpful to touch on some of
the important object-oriented principles that went into our design.

Divide-and-conquer: We see the usefulness of dividing a program
into separate objects, one to handle the computations required by
the application, and one to handle the user interface.

Encapsulation: The classes we designed encapsulate just the in-
formation and behavior that is necessary to perform their specific
roles.

Information hiding: We use a private method to hide certain messy
implementation details from other parts of the program.

Generality and Extensibility: We have developed a design that is
general enough that it can be extended to other applications.

Figure 4.8: Using Keyboard-
Reader as the user interface.



Event-driven programming

CHAPTER 4  Input/Output: Designing the User Interface

SELF-STUDY EXERCISES

EXERCISE 4.1 Java’s Math class has a static method that will gener-ate
a random number between 0 and 0.99999999—that is, between 0 and 1,
not including 1. By using simple arithmetic, we can generate random

numbers between any two values. For example, the following statement
assigns a random integer between 1 and 100 to the variable:

secretNumber = 1+ (int)(Math. random ()1 007
Given this statement, design and implement an application that will play
the following guessing game with the user. The computer generates a
ran-dom number between 1 and 100 and then lets the user guess the
number, telling the user when the guess is too high or too low. Note that
for this problem, the user will have to input integers at the keyboard.

4.4 A Graphical User Interface (GUI)

While command-line interfaces are useful, one of the great advantages of
the Java language is that its extensive class library makes it relatively easy
to develop applications that employ Graphical User Interfaces (GUIs). GUIs
have been around now for many years, since the production of the
Macintosh in the early 1980s. Today nearly all the personal computing
applications are GUI-based. Therefore, it is important that beginning pro-
grammers be able design and write programs that resemble, albeit on a
simpler scale, those programs that they use every day. Among other ben-
efits, developing the ability to write GUI programs, like the ones everyone
uses today, will make it easier for you to show off your work to others, which
might help motivate further interest in learning to program.

In this and subsequent sections, we will develop an extensible GUI model
that can be used with either a Java application or an applet. By extensible
we mean a model that can be easily adapted and used in a wide variety of
programs. GUI programming involves a computational model known as
event-driven programming, which means that GUI programs
react to events that are generated mostly by the user’s interactions with
elements in the GUI. Therefore, we will have to learn how to use Java’s
event model to handle simple events.

Given that this is our first look at some complex topics, we will keep the
discussion as simple as possible. This means we will delay discussion of
certain issues, which we take up in more depth in Chapter 13.

4.4.1 Java’s GUI Components

The Java library comes with two separate but interrelated packages of
GUI components, the older java.awt package and the newer javax.swing
package. For the most part, the Swing classes supersede the AWT
classes. For example, the java.awt.Button class is superseded by the
javax.swing.JButton class, and the java.awt.TextField class is
superseded by the javax.swing.JTextField class. As these examples
show, the newer Swing components add an initial 'J’ to the names of
their corresponding AWT counterparts.



SECTION 4.4A Graphical User Interface (GUI) 161

O Greeler =

Inpul your name here: |Rulpl |

Hi Ralph nice tn meet yan

Click here fur a yreeling! * |

Figure 4.10 illustrates how some of the main components appear in a
GUl interface. As shown there, a JLabel is simply a string of text dis-
played on the GUI, used here as a prompt. A JTextField is an input
element that can hold a single line of text. In this case, the user has in-
put his name. A JTextArea is an output component that can display
multiple lines of text. In this example, it displays a simple greeting. A
JButton is a labeled control element, which is an element that allows
the user to control the interaction with the program. In this example, the
user will be greeted by the name input into the JTextField, whenever
the JButton is clicked. As we will learn, clicking on the JButton causes
an event to occur, which leads the program to take the action of displaying
the greeting. Finally, all of these components are contained in a JFrame,
which is a top-level container. A container is a GUI component that can
contain other GUI components.
The Swing classes are generally considered to be superior to their AWT
counterparts. For one thing, Swing components use a sophisticated object-
oriented design known as the model-view-controller (MVC) architecture,
which gives them much greater functionality than their AWT counter-
parts. For example, whereas an AWT Button can only have a string as its
label, a Swing JButton can use an image as a label. (See Chapter 13 for a
detailed discussion of the MVC architecture.)

Second, Swing components are written entirely in Java which makes
them more portable and enables them to behave the same way regardless
of the operating system on which they are run. Because of their portability,
Swing components are considered lightweight. By contrast, AWT classes
use routines that are implemented in the underlying operating system and
are therefore not easily portable. Hence, they are considered heavyweight

components. Whereas a Swing JButton should look and act the same
way regardless of platform, an AWT Button would have a different im-
plementation, and hence a different look and feel, on a Macintosh and on
a Windows system. In this book, we will use the new Swing classes in our
programs.

Figure 4.10: Various GUI com-
ponents from the javax.swing
package. [Artwork: We need to
label the components.]

Model-view-controller (MVC) archi-
tecture

Swing portability



Inheritance

Functionality

The isa relationship

Top-level container

Specialization

CHAPTER 4  Input/Output: Designing the User Interface

4.4.2 Class Inheritance: Extending a Superclass

As you recall from Chapter 0, class inheritance is the mechanism by which
a class of objects can acquire (inherit) the methods and variables of its su-
perclasses. Just as a horse, by membership in the class of horses, inherits
those attributes and behaviors of a mammal, and, more generally, those of
an animal, a Java subclass inherits the variables and methods of its super-
classes. We sometimes lump together an object’s attributes and behaviors
and refer to them collectively as its functionality. So we say that an object
of a subclass inherits the functionality of all of its superclasses.

By the same token, just as a horse and a cow extend their mammalian
attributes and behaviors in their own special ways, a Java subclass ex-
tends the functionality of its superclasses in its own special way. Thus, a
subclass specializes its superclass.

In Chapter 3, we showed how all classes in the Java hierarchy inherit
the toString() method from the Object class. The lesson there was
that an object in a subclass can either use or override any public method
defined in any of its superclasses. In order to implement GUI programs,
we need to look at another way to employ inheritance. In particular, we
need to learn how to define a new class by extending an existing class.

We noted in Chapter 2 that unless a class is explicitly defined as a sub-
class of some other class it is considered implicitly to be a direct subclass
of Object. Thus, the GreeterApp class that we defined earlier in this
chapter is a subclass of Object. We can make the relationship between

GreeterApp and Object explicit by using the extends keyword when
we define the GreeterApp class:

Ipublic class GreeterApp extends Object f ... g

Thus, the extends keyword is used to specify the subclass/superclass
relationships that hold in the Java class hierarchy. We sometimes refer to
the subclass/superclass relationship as the isa relationship, in the sense
that a horse isa mammal, and a mammal isa animal. Thus, the extends
keyword is used to define the isa relationship among the objects in the
Java class hierarchy.

A top-level container is a GUI container that cannot be added to an-
other container; it can only have components added to it. Figure 4.11 is a
class hierarchy that shows the relationships among some of the top-level
Swing and AWT classes. For example, the javax.swing.JFrame class,
which represents a top-level window, is a subclass of java.awt.Frame,
and the javax.swing.JPanel is a subclass of java.awt.Panel. We
can see from this figure that a JFrame isa Frame and an Frame isa Window
and a Window isa Container. These subclass/superclass relationships

are created in their respective class definitions by using the extends
keyword as follows:

public class JFrame extends Frame f... ¢
public class Frameextends Window f... g
| public class Window extends Containerf ...g

As we will see in the next section, extending a class in this way enables us



SECTION 4.4 A Graphical User Interface (GUI) 163

java.lang

Object

JAN

java.awt

Component
AN

javax.swing

JFrame
JDialog

/\
| JComponent
JAN
java.applet

Applet <] JApplet

to create a new class by specializing an existing class.

4.4.3 Top-level Windows

Referring again to Figure 4.11, notice that all of the Swing components
are subclasses of the AWT Container class. This means that Swing
compo-nents are Containers. They inherit the functionality of the
Container class. So Swing components can contain other GUI
components. That is why a JButton can contain an image.

All GUI programs must be contained inside some kind of top-level
container. Swing provides three top-level container classes: JFrame,
JApplet and JDialog. For our basic GUI, we will use a JFrame as the top-
level window for stand alone applications.

Figure 4.11: Top-level Swing and
AWT classes. [NOTE: REDRAW
JWindow is a subclass of Win-
dow.]

A JFrame encapsulates the basic functionality of a top-level window. Content pane It

has what is called a content pane, to which other Swing components,
such as buttons and text fields, can be added. Also, it comes with
enough built-in functionality to respond to certain basic commands, such
as when the user adjusts its size or closes it.

Figure 4.12 shows a simple top-level window as it would be displayed
on the console. This window has a title ("My GUI”). It is 200 pixels wide,
150 pixels high, and its top-left corner is located at coordinates (100,150)
on the console screen. Like in other graphical systems, points on the
Java console always given as an ordered pair, (X, Y), with the horizontal
coordi-nate, X, listed first, followed by the vertical coordinate, Y. The
horizontal x-axis extends positively from left to right, and the vertical y-
axis extends positively from top to bottom.

The class that created and displayed this window is shown in Fig-ure
4.13. Note the use of the extends keyword to define SimpleGUI as a
subclass of JFrame. As a subclass, SimpleGUI inherits all of the
functionality of a JFrame (Fig. 4.14) . That is, it can contain other GUI



Figure 4.12: A simple window.

164 CHAPTER 4 Input/Output: Designing the User Interface

fe O 6 MyGul

import javax.swing. ;

public class SimpleGUI extends JFrame
f

public SimpleGUI (String title)

f setSize(200,150);
setLocation(100, 150);
setTitle(title);
setVisible(true); //pisplays the JFrame

g// simpleGUI()

public static void main(String args[])
f new SimpleGUI ( "My GUI");
g // main()

g// SimpleGUI class

Figure 4.13: A top-level window with a title.

components. It knows how to resize and close itself, and so on. The rea-
son we want to define a subclass of JFrame, rather than just use a
JFrame instance, is because we want eventually to give our subclass
additional functionality that is specialized for our application.

WSS S S S RAA=EBI =S [€IN  Specialization. By creating a subclass of
JFrame we can specialize its functionality for our application.

Note how SimpleGUI's main() program creates an instance of SimpleGUI
by invoking its constructor. There is no need to use a vari-able here because
there are no further references to this object in this class. However, simply
constructing a SimpleGUI will not cause it to appear on the Java console.
For that to happen, it is necessary to give it a size and to call its setVisible()
method. This is done in the constructor method.

The constructor method illustrates how to use some of the meth-ods
inherited from JFrame. Figure 4.14 shows some of the methods that
SimpleGUI inherits from JFrame. We use the setSize() and



pleGUI is a sub-

SECTION 4.4A Graphical User Interface (GUI) 165

JFrame

+ JFrameltitle: String)

+ getContentPane(]: Container
+ setLayvout(Layouthtdanager)

+ setTitle[s: Sthing)

+ getTitle[]: Stting

+add(c: Component)

+ pack()

+3how()

+ set Size[lint, wint)

+ setLocation[xint, yint)

2

SimpleGUI

setLocation() methods to set SimpleGUI’s size and location. We use the
setTitle() method to set its title. And we use the setVisible() method to
cause it to appear on the console.

4.4.4 GUI Components for Input, Output, and Control

To enable our top-level window to serve as a user interface, it will be nec-
essary to give it some components. Figure 4.15 provides an overview of
some of the main Swing components. Generally, there are three types of
components, which correspond to the three main functions of a user in-
terface: input, output, and control. A JTextField would be an example of an
input component. The user can type text into the text field, which can then
be transmitted into the program. A JTextArea is an example of an output
component. The program can display text in the text area. Control
components enable the user to control the actions of the program. A JButton
would be an example of a control component. It can be asso-ciated with an
action that can be initiated whenever the user clicks it. We might also
consider a JLabel to be an output component, because we can use it to
prompt the user as to what type of actions to take.

Let’'s begin by creating a simple user interface, one that enables us to
perform basic input, output, and control operations with a minimum of
Swing components. This will allow us to demonstrate the basic principles
and techniques of user-interface design and will result in a GUI that can
be extended for more sophisticated applications. For this example, we
will limit our application to that of simply greeting the user, just as we did
in designing our command-line interface. That means that the user will
be prompted to input his or her name and the program will respond by
displaying a greeting (Fig. 4.10). We will call our GUI GreeterGUI, to
suggest its interdependence with the same Greeter computational object
that we used with the command-line interface.

For this simple application, our GUI will make use of the following
components:

A JTextField will be used to accept user input.



Figure 4.15: Swing components.

166 CHAPTER 4 Input/Output: Designing the User Interface

java.lang
.
java.awt
A
Component
javax.swing I_

JCheckbox
._‘JTO leButton |4

| _( JRadioButtoni
;E;i[;;ié&;a JButton
vt |

JOptionPane
JPopupMenu

J

JTextField

TextComponent

JPasswordField

JMenuBar
JScrollPane

JLabel

JPanel

A JTextArea will serve to display the program’s output. A
JButton will allow the user to request the greeting.

A JLabel will serve as a prompt for the JTextField.

Figure 4.16 shows some of the constructors and public methods for
the JTextArea, JTextField, JButton, and JLabel components. The fol-

lowing code segments illustrate how to use these constructors to create
instances of these components:

/I Declare instance variables for the components
privateJLabel prompt;
private JTextFieldinField;
private JTextArea display;
privateJButton goButton;

/l Instantiate the components
prompt=new JLabel("Please type vyour name here: ");
inField= new JTextField(10); //10 chars wide
display= newJTextArea(10, 30); 710 rows x 30 columns
goButton =new JButton("Click here for agreeting!”);

For this example, we use some of the simpler constructors. Thus, we create
a JTextField with a size of 10. That means it can display 10 characters of
input. We create a JTextArea with 10 rows of text, each 30 characters




SECTION 4.4A Graphical User Interface (GUI) 167

Figure 4.16: Public methods and
constructors for basic Swing
com-ponents.

JButton

+ JButton([ text : String)
+addActionListener &l : ActionListener)
+setEnabled(in b : boolean)

JLabel
+ JLabeltext : String)

JTextField

+ JTextField(col :int)

+ JTextField(text : String)

+ getText(] : String

+ addActionListener{al : ActionListener]
+setEnabled(in b : boolean)

JTextAresa

+ JTextArea(row :int, col :int)
+append(text : String)
+setText[text : Sthng)

wide. We create a JButton with a simple text prompt meant to inform the
user of how to use the button.

4.4.5 Adding GUI Components to a Top-Level Window

Now that we know how to create GUI components, the next task is to
add them to the top-level window. A JFrame is a top-level Container (Fig.
4.11), but instead of adding the components directly to the JFrame we
have to add them to the JFrame’s content pane, which is also a

Container.
VNN EANEENe =R  Content Pane. GUI Components cannot ?E
be added directly to a JFrame. They must be added to its content
pane.

Java’s Container class has several add() methods that can be used to
insert components into the container:

dd ( Component comp ) // addcomp to end of container
add ( Componentcomp, int index)// add comp at index
add (String region, Componentcomp) addcomp atregion

The particular add() method to use depends on how we want to arrange

the components in the container. The layout of a container is controlled

by its default layout manager, an object associated with the container that Layout
manager determines the sizing and the arrangement of its contained components. For a
content pane, the default layout manager is a BorderLayout. This



CHAPTER 4  Input/Output: Designing the User Interface

is an arrangement whereby components may be placed in the center of
the pane and along its north, south, east, and west borders (Fig. 4.17).

Figure 4.17: Arrangement of com-
ponents in a border layout. Norm

WEsT CENTER EasT

SouTH

Components are added to a border layout by using the add(String
region, Component comp) method, where the String parameter
specifies either "North,” "South,” "East,” "West,” or "Center.” For exam-

ple, to add the JTextArea to the center of the JFrame we first create a
reference to its content pane and we then add the component at its center:

ontainercontentPane = getContentPane (); // Getpane
contentPane.add( ,display); //Add JTextArea

One limitation of the border layout is that only one component can be
added to each area. This is a problem for our example because we want
our prompt JLabel to be located right before the JTextField. To get
around this problem, we will create another container, a JPanel, and add
the prompt, the text field, and the goButton to it. That way, all of the
components involved in getting the user’s input will be organized into
one panel. We then add the entire panel to one of the areas on the content

pane.

PanelinputPanel =new JPanel();

inputPanel.add(prompt); /IAdd JLabel to panel
inputPanel.add(inField); //add JTextField to panel
inputPanel.add (goButton); //add JButton to panel
contentPane.add( ,inputPanel); //Add to JFrame

The default layout for a JPanel is FlowLayout, which means that com-

ponents are added left to right with the last addition going at the end of
the sequence. This is an appropriate layout for this JPanel because it will
place the prompt just to the left of the input JTextField.

oF  RAYZANESESeliSel=Elel]l  Encapsulation. JPanels can be used to

74 group related components in a GUI.

4.4.6 Controlling the GUI’s Action

Now that we know how to place all the components on the GUI, we need
to design the GUI's controls. As mentioned earlier, GUIs use a form of
event-driven programming. Anything that happens when you are using




SECTION 4.4A Graphical User Interface (GUI) 169
Figure 4.18: Java’s event model.

Java Applet
Handlers: actionPerformed() method

i

Java Enabled Browser: Netscape, JVM
Handlers: menu_event, scrollbar

I

Operating System: MacOS, Windows, Unix
Handlers: select_window, close_window

A N T O

Computer Hardware
Generate Events: mouse_clicks, diskette events,
mouse_moves, keyboard_events

a computer—every keystroke and mouse movement—is classified as an
event. As Figure 4.18 illustrates, events are generated by the computer’s
hardware and filtered up through the operating system and the applica-
tion programs. Events are handled by special objects called listeners. A
listener is a specialist that monitors constantly for a certain type of event. Event listener
Some events, such as inserting a CD in the CD-ROM drive, are handled
by listeners in the operating system. Others, such as typing input into a
Web page or a Word document, are handled by listeners in a piece of
application software, such as a browser or a word processor.

In an event-driven programming model, the program is controlled by
an event loop. That is, the program repeatedly listens for events, taking

some kind of action whenever an event is generated. In effect, we might
portray this event loop as follows:

Repeat forever or until the program is stopped
Listenfor events
If event A occurs, handle it with event A handler
If event B occurs, handle it with event B handler

The event loop listens constantly for the occurrence of events and then
calls the appropriate object to handle each event.

Figure 4.19 shows some of the main types of events in the
java.awt.event package. In most cases, the names of the event classes
are suggestive of their roles. Thus, a MouseEvent occurs when the
mouse is moved. A KeyEvent occurs when the keyboard is used. The
only event that our program needs to listen for is an ActionEvent, the
type of event that occurs when the user clicks the JButton.

When the user clicks the JButton, Java will create an ActionEvent
object. This object contains important information about the event, such
as the time that the event occurred and the object, such as a JButton,
that was the locus of the event. For our application, when the user clicks
the JButton, the program should input the user’s name from the
JTextField and display a greeting, such as “Hi John nice to meet you”



Figure 4.19: Java’s event hierar-

170 CHAPTER 4 Input/Output: Designing the User Interface

Chy. java.lang
JaN
' java.util
| [Eventobject _]
Jay
java.awt
AWTEvent 411
—————— Z X——m— iava awt even
ActionEvent
AdjustmentEvent
ComponentEvent
JAN
TextEvent
—{ PaintEvent | KeyEvent
—{WindowEvent| MouseEvent \
in the JTextArea. That is, we want the program to execute the following code
segment:
String name= inField.getText();
display.append(greeter.greet(name) + );
The first line uses the JTextField.getText() method to get the text that the
user typed into the JTextField and stores it in a local vari-able, name.
The second line passes the name to the greeter.greet() method and
passes the result it gets back to the JTextArea.append() method. This
will have the effect of displaying the text at the end of the JTextArea.

In this example, we have used a couple of the standard public methods of
the JTextField and JTextArea classes. For our simple GUI, the methods
described in Figure 4.16 will be sufficient for our needs. How-

java.sun.com/j2se/1.5.0/docs/api/ ever, if you would like to see the other methods available for these and
w Ww.x other Swing components, you should check Java’s online APl documen-

tation.

4.4.7 The ActionListener Interface

Given that the code segment just described will do the task of greeting the
user, where should we put that code segment in our program? We want that
code segment to be invoked whenever the user clicks on the goButton. You
know enough Java to understand that we should put that code in a Java
method. However, we need a special method in this case, one that will be
called automatically by Java whenever the user clicks that



SECTION 4.4A Graphical User Interface (GUI) 171

button. In other words, we need a special method that the button’s
listener knows how to call whenever the button is clicked.
Java solves this problem by letting us define a pre-selected method
that can be associated with the goButton. The name of the method is Java interface
actionPerformed() and it is part of the ActionListener interface.
In this case, an interface is a special Java class that contains only methods
and constants (final variables). It cannot contain instance variables. (Be
careful to distinguish this kind of interface, a particular type of Java class,
form the more general kind of interface, whereby we say that a class’s pub-

lic methods make up its interface to other objects.) Here’s the definition of
the ActionListener interface:

ublic abstractinterface ActionListener
extends EventlListener
f public abstract void actionPerformed(ActionEvente);

g

This resembles a class definition, but the keyword interface replaces the
keyword class in the definition. Note also that we are declaring this
interface to be abstract. An abstract interface or abstract class is one
that contains one or more abstract methods. An abstract method is one
that consists entirely of its signature; it lacks an implementation—that is,
it does not have a method body. Note that the actionPerformed() method
in ActionListener places a semicolon where its body is sup-posed to be.

NAVANIEANEl/NEl=HRBIR=R ava Interface. A Java interface is like a
Java class except that it cannot contain instance variables.

NN AN [E107Xe] =) U] M=\ hstract Methods and Classes. An
abstract method is a method that lacks an implementation. It has
no method body.

Declaring a method abstract means that we are leaving its imple- Abstract method
mentation up to the class that implements it. This way, its implementation
can be tailored to a particular context, with its signature specifying gen-
erally what the method should do. Thus, actionPerformed() should take
an ActionEvent object as a parameter and perform some kind of action.

What this means, in effect, is that any class that implements the
actionPerformed() method can serve as a listener for ActionEvents.
Thus, to create a listener for our JButton, all we need to do is give an
implementation of the actionPerformed() method. For our program, the
action we want to take when the goButton is clicked, is to greet the user
by name. Thus, we want to set things up so that the follow-



CHAPTER 4  Input/Output: Designing the User Interface

ing actionPerformed() method is called whenever the goButton is clicked:

public void actionPerformed (ActionEvent e)
f if (e.getSource() == goButton)
f String name=inField.getText();
display.append(greeter.greet(name) + );
g
g

In other words, we place the code that we want executed when the
button is clicked in the body of the actionPerformed() method. Note that
in the if-statement we get the source of the action from the ActionEvent
object and check that it was the goButton.

That explains what gets done when the button is clicked—namely, the
code in actionPerformed() will get executed. But it doesn’t explain how
Java knows that it should call this method in the first place. To set that
up we must do two further things. We must place the actionPerformed()
method in our GreeterGUI class, and we must tell Java that GreeterGUI
will be the ActionListener for the
goButton.

The following stripped-down version of the GreeterGUI class illus-
trates how we put it all together:

public class GreeterGUI extends Frame
implements ActionlListener
f.o..
public void buildGUI ()
f.o..
goButton =new JButton ( );
goButton.addActionListener(this);

g

public void actionPerformed (ActionEvente)
f if (e.getSource() == goButton)
f Stringname=inField.getText();
display.append(greeter.greet(name) + );

g

First, we declare that GreeterGUI implements the ActionListener
interface in the class header. This means that the class must provide a
definition of the actionPerformed() method, which it does. It also means
that GreeterGUI isa ActionListener. So SimpleGUI is both a JFrame and
an ActionListener.




SECTION 4.4A Graphical User Interface (GUI) 173

Second, note how we use the addActionListener() method to as-
sociate the listener with the goButton:

lgoButton .addActionListener(this)

The this keyword is a self-reference—that is, it always refers to the
object in which it is used. It’s like a person referring to himself by saying
“I”. When used here, the this keyword refers to this GreeterGUI. In other
words, we are setting things up so that the GreeterGUI will serve as the
listener for action events on the goButton.

SA\VIEAN[ElB/ANET=NRIBIR=RT his Object. The this keyword always
refers to the object that uses it. It is like saying “I” or “me.”




CHAPTER 4  Input/Output: Designing the User Interface

4.4.8 Connecting the GUI to the Computational Object

Figure 4.20 gives the complete source code for our GreeterGUI interface.
Because there is a lot going on here, it might be helpful to go through the
program carefully even though we have introduced most of its elements

import javax.swing. ;
import java.awt. ;
import java.awt.event. ;

public classGreeterGUI extends JFrame
implements ActionlListener
fprivate JTextArea display;
private JTextFieldinField;
private JButton goButton;
private Greeter greeter;

public GreeterGUI (String title)
fgreeter = new Greeter();

buildGUI () ;
setTitle(title);
pack () ;

setVisible(true);

g// GreeterGUI()

private void buildGUI ()

fContainer contentPane = getContentPane () ;
contentPane.setlLayout(new BorderLayout());
display = newJTextArea(10,30);
inField = new JTextField(10);
goButton =new JButton( )
goButton.addActionListener(this);
JPanelinputPanel =new JPanel();
inputPanel.add (new JLabel( ));
inputPanel.add(inField);
inputPanel.add (goButton);
contentPane.add( ,display);
contentPane.add( ,inputPanel);

g//buildGUI()

public void actionPerformed (ActionEvent e)

fif (e.getSource() == goButton)
f String name=inField.getText();

display.append(greeter.greet(name) + );

g

g// actionPerformed()

Figure 4.20: Definition of the GreeterGUI class.

already. That will help us put together all of the various concepts that we
have introduced.

To begin with, note the several Java packages that must be included
in this program. The javax.swing package includes definitions for all of
the Swing components. The java.awt.event package includes



SECTION 4.4A Graphical User Interface (GUI) 175

the ActionEvent class and the ActionListener interface, and the java.awt
packages contain the Container class.

Next note how the GreeterGUI class is defined as a subclass of
JFrame and as implementing the ActionListener interface. GreeterGUI
thereby inherits all of the functionality of a JFrame. Plus, we are giving it
additional functionality. One of its functions is to serve as an
ActionListener for its goButton. The ActionListener interface consists
entirely of the actionPerformed() method, which is defined in the
program. This method encapsulates the actions that will be taken
whenever the user clicks the goButton.

The next elements of the program are its four instance variables, the
most important of which is the Greeter variable. This is the variable that
sets up the relationship between the GUI and the computational object.
In this case, because the variable is declared in the GUI, we say that the
GUI uses the computation object, as illustrated in Figure 4.8. This is
slightly different from the relationship we set up in the command-line
interface, in which the computational object uses the interface (Fig. 4.2).

The other instance variables are for those GUI components that must
be referred to throughout the class. For example, note that the goButton,
inField, and display are instantiated in the buildGUI() method and
referenced again in the actionPerformed() method.

The next element in the program is its constructor. It begins by
creating an instance of the Greeter computational object. It is important
to do this first in case we need information from the computational object
in order to build the GUI. In this case we don’'t need anything from
Greeter, but we will need such information in other programs.

We've already discussed the fact that the constructor’s role is to coor-
dinate the initialization of the GreeterGUI object. Thus, it invokes the
buildGUI() method, which takes care of the details of laying out the GUI
components. And, finally, it displays itself by calling the pack() and
setVisible() methods, which are inherited from JFrame. The pack()
method sizes the frame according to the sizes and layout of the compo-
nents it contains. The setVisible() method is what actually causes the
GUI to appear on the Java console.

Finally, note the details of the buildGUI() method. We have dis-cussed
each of the individual statements already. Here we see the order in
which they are combined. Note that we can declare the contentPane and
inputPanel variables locally, because they are not used elsewhere in the
class.

SELF-STUDY EXERCISES

EXERCISE 4.2 There is a simple modification that we can make to
GreeterGUI. The JTextField can serve both as an input element and as a
control element for action events. An ActionEvent is generated whenever
the user presses the Return or Enter key in a JTextField so that the
JButton can be removed. Of course, it will be necessary to des-ignate
the inField as an ActionListener in order to take advantage of this
feature. Make the appropriate changes to the buildGUI() and
actionPerformed() methods so that the inField can function as both a
control and input element. Call the new class GreeterGUI2.

Extending a class

Implementing an interface

The computational object



OrieRowMim

- hSticks [ink =21
-plaseer :ink =1

+CmeRowMimn[)
+OneRowMin]sticks :int)
+OmeRowMim] st int, pl Cink)
+takeSticks{num :ink)
+getSticks[] ;ink
+getPlasser] : ink
+gamever]  boolean
+getWinner] : ink

+report]]

Figure 4.21: A UML diagram of
the OneRowNim class.

CHAPTER 4 Input/Output: Designing the User Interface
4.4.9 Using the GUI in a Java Application

As you know, a Java application is a stand alone program, one that can
be run on its own. We have designed our GUI so that it can easily be
used with a Java application. We saw in the previous section that the
GUI has a reference to the Greeter object, which is the computational
object. Therefore, all we need to get the program to run as an application
is a main() method.

One way to use the GUI in an application is simply to create an in-
stance in a main() method. The main() method can be placed in the

GreeterGUI class itself or in a separate class. Here’s an example with
the main in a separate class:

public class GreeterApplication
f public static void main(String

|
|
| f
|
|
|

args[])

new GreeterGUI ( );

g

The main() method creates an instance of GreeterGUI, passing it a string
to use as its title. If you prefer, this same main() method can be
incorporated directly into the GreeterGUI class.

4.5 Case Study: The One Row Nim Game

In this section, we show how to develop alternative interfaces for our
case study game of One Row Nim that was developed in the two
previous chapters. As you recall, the One Row Nim game starts with,
say, 21 sticks on a table. Players take turns picking up 1, 2 or 3 sticks,
and the player to pick up the last stick loses. We wish to develop an
application program so that the user of the program can play this game
against the computer, that is, against the program.

As in our other examples in this chapter, our design will divide this
problem into two primary objects: a computational object, in this case
OneRowNim, and a user interface object, for which we will use either a
KeyboardReader or a OneRowNimGUI. One goal of our design was to
develop the OneRowNim class so that it can be used, without changes,
with either a command-line interface or a GUI.

Recall that we designed the OneRowNim class to maintain the state of
the game and to provide methods that enforce the rules of the game. Thus,
we know that after each legal move, the number of sticks will decline, until it
is 0 or less, which indicates that the game is over. Also, an instance of
OneRowNim keeps track of whose turn it is and can determine if the game is
over and who the winner is when the game is over. Finally, the game
ensures that players cannot cheat, either by taking too few or too many
sticks on one turn. Figure 4.23 shows the UML diagram of the OneRowNim
class as described at the end of the previous chapter.



SECTION 4.5Case Study: The One Row Nim Game 177
451 A Command-line Interface to OneRowNim

Let's now focus on connecting a OneRowNim instance with a Keyboard-
Reader instance, the command-line interface we developed at the begin-
ning of this chapter. To do so requires no changes to KeyboardReader (Fig.
4.6). Unlike in the greeter example, we will use a third object to serve as the
main program. As shown in Figure 4.22, the OneRowNimApp class will
contain the run() method that controls the game’s progress. OneRowNimApp
will use the KeyboardReader object to prompt the user, to display the
program’s output, and to perform input from the keyboard. It will use the
OneRowNim object to keep track of the game.

In fact, the main challenge for this part of our problem is designing the Loop algorithm

run() method, which will use a loop algorithm to play the game. The
user and the computer will repeatedly take turns picking up sticks until
the game is over. The game is over when there are no more sticks to
pick up. Thus, we can use the game’s state—the number of sticks left—
as our loop’s entry condition. We will repeat the loop while there are
more than 0 sticks remaining.

The following pseudocode describes the remaining details of our al-
gorithm. We refer to the OneRowNim instance as the game object, and
we refer to the KeyboardReader instance as the reader object. We use

the notation game:get the number of sticks left to indicate
that we are sending a message to the game object.

Create agame object with 21 sticks
Create areaderobject
sticksLeft =game:get the number of sticks left
reader:display therulesof thegame
while (game: the game is not over)
whoseMove =game: find out whose turn it is

i f (whoseMove == user)
game: userchooses number of sticks totake
else

game : computer chooses number of sticks to take
sticksLeft =game: get the number of sticks left
reader: reportthe number of sticks left
/1 At this point the game is over.
if game: the user is the winner
reader: report that the userwins
else

reader: report that the computer wins

In this algorithm, the initializations we perform consist of creating the
game and reader objects and initializing sticksLeft. We use a while loop
structure to control the game. The loop’s entry condition is that the 'the
game is not over’. This is a piece of information that comes directly from
the game object. As long as the game is not over, the body of the loop
will be executed. Note that in the loop’s body, either the player or the
computer makes a move. Again, it is up to the game object to determine
whose move it is. Following the move we ask the game how many sticks
are left and we use the reader object to report this.

Note that the loop structure has the three necessary elements. The ini-

Loop structure: Initializer, entry
con-dition, updater



Division of labor

CHAPTER 4  Input/Output: Designing the User Interface

tializer in this case is the creation of a OneRowNim object. We know that
this will cause the game to have 21 sticks and it will be the user’'s move.
The loop-entry condition is that the game is not over, which is based on
the fact that there are still sticks remaining to be picked up. But again,
this knowledge is kept by the game object. Finally, we have an updater
that consists of either the computer or the user picking up some sticks.
This in turn changes the value of sticksLeft on each iteration, moving us
ever closer to the condition that there are no sticks left, at which point the
game will be over.

Note that we have left out of this algorithm the details of the user’s
moves and computer’s moves. These are the kinds of actions that are
good to put into separate methods, where we can worry about checking
whether the user made a legal move and other such details.

Figure 4.22 provides the implementation of the OneRowNimApp appli-
cation. It uses a KeyboardReader as a command-line interface and a
OneRowNim instance as it computational object. Thus, it has private in-
stance variables for each of these objects, which are instantiated in the
constructor method. The algorithm we just described has been placed in
the run() method, which is called from main() after the application is
instantiated. The use of the boolean method gameOver() to control the
loop makes this code segment easier to understand. Also, it leaves it up
to the game object to determine when the game is over. From an object-
oriented design perspective, this is an appropriate division of responsibil-
ity. If you doubt this, imagine what could go wrong if this determination
was left up to the user interface. A user-interface programmer might end
up, mistakenly, implementing the wrong rule for the game being over. A
similar point applies to the getWinner() method. This determination rests
with the game, not the user interface. If left up to the user interface, it is
possible that a programming mistake could lead to the loss of the game’s
integrity.

The run() method calls userMove() and computerMove() to per-form
the specific set of actions associated with each type of move. The
userMove() method uses the KeyboardReader() to prompt the user and
input his or her move. It then passes the user’s choice to
game.takeSticks(). Note how it checks the return value to determine
whether the move was legal or not and provides an appropriate
response through the interface.

Finally, note how we use private methods to implement the actions
as-sociated with the user's and computer's moves. Because these
private methods are not part of the object’s interface and because they
can only be used within the object themselves, they are in a sense
secondary to the object’s public instance methods. We sometimes refer
to them as helper methods. This division of labor allows us to organize
all of the details associated with the moves into a single module. The
computerMove() method uses a temporary strategy of taking a single
stick and passes the number 1 to game.takeSticks(). Finally,
computerMove() re-ports its choice through the interface. After we have
covered operators of the int data type in the next chapter, we will be able
to describe better strategies for the computer to make a move.

This example shows how simple and straightforward it is to use our
KeyboardReader user interface. In fact, for this problem, our interface



SECTION 4.5Case Study: The One Row Nim Game 179

\public class OneRowNimApp
fprivate KeyboardReader reader;
private OneRowNim game ;

public OneRowNimApp ()

freader =new KeyboardReader () ;
game = new OneRowNim (21);

g//OneRowNim()

public void run ()
f intsticksLeft =game.getSticks();

reader.display( )
reader.display( +sticksLeft +

)
reader.display( )
while (game .gameOver () ==false)
f if (game.getPlayer() ==1) userMove ();

el s e computerMove () ;
sticksLeft =game.getSticks();
reader.display( + sticksLeft+

g // while
if (game.getWinner() == 1)

reader.display( ),
else reader.display( )

g //run()

private void userMove ()

freader. prompt( );
int userTakes = reader.getKeyboardlinteger();
if (game.takeSticks (userTakes))
freader.display( + userTakes + );
gelse
f reader.display( + userTakes +

g /lelse
/luserMove()

private void computerMove ()
f game.takeAway (1); // Temporary strategy.
reader.display( );

g //lcomputerMove()
public staticvoid main(Stringargs[])

f OneRowNimApp app = new OneRowNimApp () ;

app . run ();
g//main()

g// OneRowNimApp

Figure 4.22: Definition of OneRowNimApp, a command-line interface to
the OneRowNim.



CHAPTER 4  Input/Output: Designing the User Interface

didn’t require any changes. Although there might be occasions where we
will want to extend the functionality of KeyboardReader, it can be used
without changes for a wide variety of problems in subsequent chapters.

A AN SESEe b= (€] Code Reuse. A well-designed user
interface can be used with many computational objects.

\!

%
5

45.2 A GUIfor OneRowNim

The first task is designing a GUI for the OneRowNim is to decide how to
use input, output, and control components to interact with the user. Fol-
lowing the design we used in the GUI for our greeter application, we can
use a JTextField for the user’s input and a JTextArea for the game’s
output. Thus, we will use the JTextArea to report on the progress of the
game and to display any error messages that arise. As in the greeter exam-
ple, we can use both the JTextField and JButton as control elements
and a JLabel as a prompt for the input text field. For the most part then,
the use of GUI components will remain the same as in our previous exam-
ple. This is as we would expect. The relationship between the user and
the interface are pretty similar in both this and the previous application.
In contrast, the relationship between the interface and the game are
quite different from what we saw in the greeter application. As in the

previous application, the GUI will still need a reference to its associated
computational object, in this case the game:

private OneRowNim game ;

game = new OneRowNim () ;

The biggest difference between this GUI and the one we used with the
greeter application occurs in the details of the interaction between the
GUI and the game. These details are the responsibility of the
actionPerformed() method, whose actions depend on the actual progress
of the individual game.

Unlike in the command-line version, there is no need to use a loop con-

Java’s event loop struct in the actionPerformed() method. Instead, because we are us-ing
event-driven programming here, we will rely on Java’s event loop to
move the game from one turn to another.

As in the greeter example, the actionPerformed() method will be
called automatically whenever the JButton is clicked. It is the responsi-
bility of the GUI to ensure that it is the user’s turn whenever this action
occurs. Therefore, we design actionPerformed() so that each time it is
called, it first performs the user’s move and then, assuming the game



SECTION 4.5 Case Study: The One Row Nim Game 181

is not over and an error did not occur on the user’s move, it performs the
computer’s move. Thus, the basic algorithm is as follows:

Let the user move.
If game:game is not over and computer turn
let the computer move.
Game :how manysticks are left.
display:report how many sticks are left
If game:game is over
Stop accepting moves.
Report the winner.

After the user’'s move, it is possible that the user picked up the last stick,
which means that the game would be over. In that case, the computer
would not get a move. Or, the user could have made an error. In that
case it would still be the user's move. These possibilities have to be
considered in the algorithm before the computer gets to move. As the
pseudocode shows, it is the OneRowNim object’s responsibility to keep
track of whether the game is over and whose turn it is.

Figure 4.23 shows the complete implementation of the OneRowNimGUI
class. In terms of its instance variables, constructor, and its buildGUI()
method, there are only a few minor differences between this GUI and the
GreeterGUI (Fig. 4.20). This GUI has instance variables for its JTextField,
JTextArea, and JButton, as well as one for OneRowNim instance, its
computational object. It needs to be able to refer to these objects throughout
the class. Hence we give them class scope.

The constructor method plays the same role here as in the previous
GUI: It creates an instance of the computational object, builds the GUI’s
layout, and then displays the interface on the console.

All of the changes in the buildGUI() method have to do with
application-specific details, such as the text we use as the prompt and
the goButton’s label. One new method we use here is the setText()
method. Unlike the append() method, which is used to add text to the
existing text in a JTextArea, the setText() method replaces the text in a
JTextArea or a JTextField.

Next let's consider the private userMove() and computerMove()
methods. Their roles are very similar to the corresponding methods in
the command-line interface: They encapsulate the details involved in
per-forming the players’ moves. The primary difference here is that for
the user move we input the user’s choice from a JTextField rather than
from the keyboard. We use getText() to retrieve the user’s input from the

JTextField and we use Integer.parselnt() to convert to an
int value:

int userTakes = Integer.parselnt(inField.getText());
Another difference is that we use a JTextField to display the program’s
messages to the user.
As we have noted, the main differences between this and the
GreeterGUI occur in the actionPerformed() method. Note




CHAPTER 4  Input/Output: Designing the User Interface

import javax.swing. ;
import java.awt. ;
import java.awt.event. ;

public class OneRowNimGUI extends JFrame implements ActionListener
fprivate JTextArea display;

privateJTextFieldinField;

private JButton goButton;

private OneRowNim game ;

public OneRowNimGUI(String title)
f game = new OneRowNim (21);

buildGUI () ;
setTitle(title);
pack () ;

setVisible(true);

g/l OneRowNimGUI ()

private void buildGUI ()

fContainercontentPane = getContentPane ();
contentPane.setLayout(new BorderLayout());
display =newJTextArea(20,30);
display.setText('Let splay Take Away . There are ” + game.getSticks() +

"sticks.nn” +”Pickup 1,2, or 3at a time . nn"+ "Yougo first.nn”)

inField =new JTextField(10);
goButton =new JButton('Take Sticks”);
goButton.addActionListener(this);
JPanelinputPanel =new JPanel();
inputPanel.add(new JLabel("Howmanysticks do vyoutake: )N
inputPanel.add(inField);
inputPanel.add (goButton);
contentPane.add (" Center”, display);
contentPane.add("South”, inputPanel);

g// buildGUI
private void userMove ()
fint userTakes =Integer.parselnt(inField.getText());

if (game.takeSticks (userTakes))
display.append ("You take "+ userTakes +".nn");
elsedisplay.append("You can'ttake”+ userTakes+ ". Try againnn’);
g/l userMove ()
private void computerMove ()
fif (game.gameOver()) return;
if (game.getPlayer() == 2)
f game.takeSticks(1); // Temporary strategy
display.append ("l takeone stick.”);
g/ if
g // computerMove ()
private void endGame ()
fgoButton.setEnabled(false); /Disablebuttonand textfield
inField.setEnabled(false);

if (game. getWinner () == 1)
display.append("Gameover. You win. Nice game.nn");
else display.append ("Gameover. | win. Nice game.nn");

g/l endGame ()
public void actionPerformed(ActionEvent e)
fif (e.getSource() == goButton)
f userMove () ;
computerMove () ;
int sticksLeft=game.getSticks();
display.append ("There are” +sticksLeft+” sticks left.nn”);
if (game.gameOver ())endGame ();
g/l if
g/l actionPerformed()
g // OneRowNimGUI

Figure 4.23: The OneRowNimGUI class.




SECTION 5 File Input 183

there how we use OneRowNim’s public methods, getPlayer(),
gameOver() and getWinner() to control the interaction with the user.

One issue that differs substantially from the command-line interface is:
How do we handle the end of the game? Because we are using Java’s built-
in event loop, the GUI will continue to respond to user’s events, unless we

stop it from doing so. One way to do this is to disable the JButton and
the JTextField. By disabling a control element, we render it unable to

respond to events. To do this we use the setEnabled() method, passing
it the value false to, in effect, “turn off” that component:

|if (game . gameOver ())
f goButton.setEnabled(false); //Endthe game
inField.setEnabled(false);

g

Although it doesn’t apply in this situation, the setEnabled() method
can be used repeatedly in a GUI to turn components on and off as the
context of the interaction dictates.

This example shows how simple and straightforward it can be to build
a GUI for just about any application. One main design issue is deciding GUI input, output, and control
what kinds of input, output, and control elements to use. For most ap-
plications, we can use JTextField, JTextArea, JLabel, and JButton
as the GUI’s basic elements. A second design issue concerns the develop-
ment of the actionPerformed() method, which must be designed in
an application-specific way. Here we apply what we’ve learned regard-
ing Java’s event-programming model: We designate one or more of our
elements to serve as an ActionListener and we design algorithms to
handle the action events that occur on that element.

Of course, for some applications we may need two JTextFields to
handle input. At some point, we also might want to introduce JMenus and
other advanced GUI elements. Some of these options will be introduced in
upcoming chapters. Others will be covered in Chapter 13, which provides
a more comprehensive view of Java’s GUI capabilities.

SRS S S S eI RAERRISS (€] GUI Design A well-designed GUI ¥
makes appropriate use of input, output, and control elements. /4

4.6 From the Java Library: java.io.File
and File Input (Optional)

%
¥

In addition to command-line and GUI user interfaces, there is one more
standard user interface, files. In this section we show how the Scanner
class, that was used in Chapter 2 for keyboard input, can also read input
from files. Reading input from a file is relevant to only certain types of
programming problems. It is hard to imagine how a file would be used in
playing the One Row Nim game but a file might very well be useful



File

+ File[in String path]
+exists[] : boolesn
+delete] : boolesn
+mkdi]_ boolean

Figure 4.24: A UML class
diagram of the File class with a
partial list of public methods

CHAPTER 4  Input/Output: Designing the User Interface

to store a collection of riddles that could be read and displayed by a Java
program. We will develop such a program later in this section.

Java has two types of files, text files and binary files. A text file stores a
sequence of characters and is the type of file created by standard text edi-
tors like NotePad and WordPad on a Windows computer or SimpleText on a
Macintosh. A binary file has a more general format that can store numbers
and other data the way they are stored in the computer. In this section we
will consider only text files. Binary files are considered in Chapter 11.

4.6.1 File Input with the File and Scanner Classes

An instance of the java.io.File class stores information that a

Scanner object needs to create an input stream that is connected to the
sequence of characters in a text file. A partial list of the public methods
of the File class is given in the UML class diagram in Figure 4.26. We

will need to use only the File() constructor in this section. The File
instance created with the statement

Scanner

+ create(in InputStresmm st Scanner
+create(in File f]: Scanner

+hext[]: String

+hextInt[]: int

+ hextDoublel): double
+uzelbelimitedin String pat]: Scanner
+hazMext(] : boolean

+hasMext Int[) : boolean

+ hasMextDoublel] ; boolean

Figure 4.25: A UML class diagram
of the Scanner class with an ex-
panded list of public methods

| FiletheFile =newFile( );

will obtain and store information about the "riddles.txt” file in the same
directory as the java code being executed, if such a file exists. If no such
file exists, the File object stores information needed to create such a file
but does not create it. In Chapter 11, we will describe how other objects
can use a file object to create a file in which to write data. If we wish to
create a File object that describes a file in a directory other than the one
containing the Java program, we must call the constructor with a string ar-
gument that specifies the file’s complete path name—that is, one that lists
the sequence of directories containing the file. In any case, while we will
not use it at this time, the exists() method of a File instance can be
used to determine whether or not a file has been found with the specified
name.

In order to read data from a file with a Scanner object we will need
to use methods that were not discussed in Chapter 2. An expanded list
of methods of the Scanner class is given in Figure 4.27. Note the there
is a Scanner() constructor with a File object as an argument. Unlike
the other create() method that was used in Chapter 2, this create()
throws an exception that must be handled. The following code will create

a Scanner object that will be connected to an input stream that can read
from a file:

try
f File theFile =new File( )
fileScan =new Scanner (theFile);
fileScan = fileScan.useDelimiter( );
g catch (IOException e)
f e.printStackTrace();
g //catch()

We will discuss the try-catch commands when exceptions are covered in
Chapter 10. Until then, the try-catch structures can be copied exactly as
above, if you wish to use a Scanner object for file input. In the code




SECTION 6 File Input 185

above, the useDelimiter() method has been used to set the Scanner
object so that spaces can occur in strings that are read by the Scanner
object. For the definition of a class to read riddles from a file, the above
code belongs in a constructor method.

After we create a Scanner object connected to a file, we can make a
call to nextInt(), nextDouble(), or next() method to read, respec-tively, an
integer, real number, or string from the file. Unlike the strategy for using
a Scanner object to get keyboard input, it is suggested that you test to
see if there is more data in a file before reading it. This can be done with
the hasNext(), hasNextint(), and hasNextDouble() methods. These
methods return the value true if there are more data in the file.

The program in Figure 4.26 is the complete listing of a class that reads
riddles from a file and displays them. Note that, in the body of the method
readRiddles(), the statements:

String ans=null;

tring ques =null;
Riddle theRiddle = null;

make explicit the fact that variables that refer to objects are assigned null
as a value when they are declared. The statements:

if (fileScan.hasNext())
ques = fileScan.next();

if (fileScan.hasNext())

f ans = fileScan.next();
theRiddle =new Riddle (ques, ans);

g

will read Strings into the variables ques and ans only if the file contains
lines of data for them. Otherwise the readRiddle() method will return a
null value. The main() method uses this fact to terminate a while loop
when it runs out of string data to assign to Riddle questions and
answers. There is a separate method, displayRiddle() using a sepa-rate
instance of Scanner attached to the keyboard to display the question of a
riddle before the answer.

The contents of the riddles.ixt” file should be a list of riddles with
each question and answer on a separate line. For example The following

three riddles saved in a text file would form a good example to test the
RiddleFileReader class.

What is black and white and red all over?
An embarrassed zebra

What is black and white and read all over?
A newspaper

LOGARITHM

What other word can be made with the letters ofALGORITHM?




186 CHAPTER 4 Input/Output: Designing the User Interface

import java.io. ;

import java.util. Scanner;

public class RiddleFileReader

fprivate Scanner fileScan; // For file input
private Scanner kbScan; /I For keyboard input

public RiddleFileReader(String fName)

f kbScan =new Scanner ( System.in);
try
f File theFile =new File(fName);

fileScan=new Scanner(theFile);

fileScan =fileScan.useDelimiter(’nrnn”);
g catch (I1OException e)
f e.printStackTrace();
g /lcatch()

g//RiddleFileReader() constructor

public Riddle readRiddle()

f Stringques = null;

Stringans = null;

Riddle theRiddle = null;

if (fileScan.hasNext())
ques = fileScan.next();

if (fileScan.hasNext())

f ans = fileScan.next();
theRiddle = new Riddle (ques, ans);

g /1 if

returntheRiddle;

g//readRiddle()

public void displayRiddle(Riddle aRiddle)

f System .out.printin(aRiddle.getQuestion());
System.out.print(”Input any letter tosee answer:");
Stringstr = kbScan .next(); /llgnore KB input
System .out.println(aRiddle.getAnswer());
System.out.printin();

g// displayRiddle()

public static void main(String[] args)

f RiddleFileReader rfr =

new RiddleFileReader("riddles. txt”);
Riddle riddle = rfr.readRiddle();
while (riddle != null)
f rfr.displayRiddle(riddle);
riddle =rfr.readRiddle();
g //while
g//main()
g //RiddleFileReader class

Figure 4.26: A program which reads riddles from a file and displays them.

When the main() method is executed, the user will see output in the
console window that looks like:

What is black and white and red all over?
Input any letter to seeanswer: X
An embarrassed zebra

What is black and white and read all over?
Input any letter to see answer:




CHAPTER 4Chapter Summary 187

Files are covered in depth in Chapter 11. Information on writing data
to a file and reading data from a file without using the Scanner class can
be found in that chapter.

SELF-STUDY EXERCISES

EXERCISE 4.3 Modify the RiddleFileReader class to create a pro-gram
NumberFileReaderthat opens a file named "numbers.txt” and re-ports
the sum of the squares of the integers in the file. Assume that the file
"numbers.txt” contains a list of integers in which each integer is on a
separate line. The program should print the sum of the squares in the
System.out console window. In this case, there is no need to have a
method to display the data being read or a Scanner object connected to
the keyboard. You will want a constructor method and a method that
reads the numbers and computes the sum of squares.

Technical Terms

abstract class event loop model-view-
abstract interface graphical user controller (MVC)
abstract method interface (GUI) architecture
AWT helper method output operation
binary file inheritance output stream
buffer input operation stream
command-line input stream Swing

interface interface text file
container layout manager top-level container
control element listener user interface
event-driven wrapper class

programming

Summary of Important Points

An input operation is any action that transfers data from the user to
the computer’'s main memory via one of the computer’s input devices.
An output operation is any action that transfers data from the
computer’s main memory to one of the computer’s output devices.

The user interface is that part of the program that handles the input
and output interactions between the user and the program. As an in-
terface, it limits or constrains the manner in which the user can
interact with the program.

In a command-line interface, user input is taken from the keyboard,
and the program’s output is displayed on some kind of console.

A buffer is a portion of main memory where input is held until it is
needed by the program. Using a buffer between the keyboard and the
program allows you to use the Backspace key to delete a character.

CHAPTER SUMMARY



188 CHAPTER 4 Input/Output: Designing the User Interface

A wrapper class contains methods for converting primitive data into
objects and for converting data from one type to another.

Designing appropriate prompts is an important aspect of designing a
good user interface.

1/0 operations must watch out for certain types of I/O exceptions.

GUI programming involves a computational model known as event-
driven programming, which means that GUI programs react to events
that are generated mostly by the user’s interactions with elements in
the GUI.

Java has two packages of GUIs, the older java.awt and the newer
javax.swing.

Swing components are based on the object-oriented model-view-
controller (MVC) architecture.

The extends keyword is used to specify subclass/superclass relation-
ships in the Java class hierarchy.

A top-level container is a GUI container that cannot be added to an-
other container; it can only have components added to it. All GUI
programs must be contained in a top-level container.

There are generally three kinds of GUI components, corresponding to
the three main functions of a user interface: input, output, and control.

Events are handled by special objects called listeners. A listener is a
specialist that listens constantly for a certain type of event.

An interface is a special Java class that contains only methods and
constants (final variables).



CHAPTER 4Solutions to Self-Study Exercises 189

SOLUTIONS TO

SOLUTION 4.1 The following modification of the GreeterApp class is an im-
plementation of the High Low Game:

private KeyboardReader reader;
private int secretNumber ;

public HighLowApp ()
freader =new KeyboardReader () ;

secretNumber =1 + (int)(Math.random () 100);
g// HighLowApp() constructor

public void run ()
f int userGuess = 1;
reader.display('Guessmy secret number between 1 and 100.7);
while (userGuess ! = secretNumber)
f reader.prompt("Please input your guess here  >7);
userGuess = reader.getKeyboardinteger();
i f (userGuess > secretNumber )
reader.display("Your guesswas too high.”);
i f (userGuess < secretNumber )
reader.display("Your guesswas too low.");
g /1 while
reader.display("Congratulations. Your guess was correct.”);

g // run()

public static void main(String args]|])
f HighLowApp app = new HighLowApp () ;
app .run();
g // main()
g// HighLowApp

SELF-STUDY EXERCISES



CHAPTER 4  Input/Output: Designing the User Interface

SOLUTION 4.2 The following modification of GreeterGUI eliminates the JButton.

import java.awt. ;
import java.awt.event. ;

public classGreeterGUI2 extends JFrame
implements ActionlListener
fprivate JTextArea display;
private JTextFieldinField;
private Greeter greeter;

public GreeterGUI2 (String title)
f greeter =new Greeter();

buildGUI () ;
setTitle(title);
pack () ;

setVisible(true);

g// GreeterGuUI12()

private void buildGUI ()

f ContainercontentPane = getContentPane ();
contentPane.setLayout(new BorderLayout());
display = newJTextArea(10,30);
inField = new JTextField(10);
inField.addActionListener(this);
JPanelinputPanel =new JPanel();
inputPanel.add (new

JLabel(”Inputyour nameand type enter:”));
inputPanel.add(inField);
contentPane.add(”Center”,display);
contentPane.add("South”, inputPanel);

g//buildGUI()

public void actionPerformed (ActionEvent e)

f if (e.getSource()==inField)

f String name=inField.getText();
display.append(greeter.greet(name) + 'nn’);
9
g// actionPerformed()
g// GreeterGuUI2




CHAPTER 4Exercises

191

SOLUTION 4.3 Java code that prints out the sum of the squares of a set of integers read from a file named

"numbers.txt”:

\import java.util. Scanner;

public class NumberFileReader
f privateScanner fileScan; //For file input
public NumberFileReader (String fName)
f try
f File theFile =new File(fName);
fileScan =new Scanner (theFile);
gcatch (IOException e)
f e.printStackTrace();
Q//catch()
g//NumberFileReader()

public void readNumbers ()

f int num= 0; /I To store
int sum= 0: /I To store
while (fileScan.hasNextlnt())
f num= fileScan.nextlnt();

sum =sum +num num ;
g// while
System.out.println(
g//readNumbers()

integers read

sum of squares

+sum);

public staticvoid main(String[] args)
f NumberFileReader nfr=
new NumberFileReader ( );
n fr.readNumbers ()
g //Imain()

g //INumberFileReader

EXERCISE 4.1 Fill in the blanks in each of the following sentences:

a. An is a Java program that can be embedded in a Web page.

b. A method that lacks a body is an method.

c. An
instance variables.

is like a class except that it contains only instance methods, no

d. In a Java class definition a class can a class and an inter-
face.

e. Classes and methods not defined in a program must be from the Java
class library.

f. A subclass of a class inherits that class’s

stance methods.

g. An object can refer to itself by using the keyword.

h. The JButton, JTextField, and JComponent classes are defined in the
package.

i. Java GUIs utilize a form of control known as programming.

instance variables and in-

EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.



CHAPTER 4 Input/Output: Designing the User Interface

j- When the user clicks on a program’s JButton, an will automatically

be generated.
k. Two kinds of objects that generate  ActionEvents are and

|. JButtons, JTextFields, and JLabels are all subclasses of
m. The JFrame class is a subclass of
n. If java class intends to handle ActionEvents, it must implement the

interface.
0. When an applet is started, its method is called automatically.

EXERCISE 4.2 Explain the difference between the following pairs of concepts:

Class and interface.

Extending a class and instantiating an object.
Defining a method and implementing a method.
A protected method and a public method.

A protected method and a private method.

An ActionEvent and an ActionListener() method.

EXERCISE 4.3 Draw a hierarchy chart to represent the following situation.
There are lots of languages in the world. English, French, Chinese, and Korean
are examples of natural languages. Java, C, and C++ are examples of formal
lan-guages. French and ltalian are considered romance languages, while Greek
and Latin are considered classical languages.

EXERCISE 4.4 Arrange the Java library classes mentioned in the Chapter Sum-
mary into their proper hierarchy, using the Object class as the root of the hierar-
chy.

EXERCISE 4.5 Look up the documentation for the JButton class on Sun’s Web
site:

http:/lfava.sun.com/j2se/1.5.0/docslapil
List the signatures of all its constructors.

EXERCISE 4.6 Suppose we want to set the text in our program’s JTextField.
What method should we use and where is this method defined? (Hint: Look up
the documentation for JTextField. If no appropriate method is defined there, see
if it is inherited from a superclass.)

EXERCISE 4.7 Does a JApplet have an init() method? Explain.
EXERCISE 4.8 Does a JApplet have an add() method? Explain.
EXERCISE 4.9 Does a JButton have an init() method? Explain.
EXERCISE 4.10 Does a JButton have an add() method? Explain.

EXERCISE 4.11 Suppose you type the URL for a “Hello, World!” applet into your
browser. Describe what happens—that is, describe the processing that takes
place in order for the applet to display “Hello, World!” in your browser.

EXERCISE 4.12 Suppose you have a program containing a JButton named
button. Describe what happens, in terms of Java’s event handling model, when
the user clicks the button.

EXERCISE 4.13 Java’s Object class contains a public method, toString(), which
returns a string that represents this object. Because every class is a subclass of
Object, the toString() method can be used by any object. Show how you would
invoke this method for a JButton object named button.



CHAPTER 4Exercises 193

EXERCISE 4.14 The JFrame that follows contains a semantic error in its
SomeFrame() constructor. The error will cause the actionPerformed() method

never to display “Clicked” even though the user clicks the button in the
JFrame. Why? (Hint: Think scope!)

public class SomeFrame extends JFrame
implements ActionListener
f

/I Declare instance variables
private JButton button;

public JFrame ()

f
/l Instantiate the instance variable
JButton button =new JButton("Click me”);
add (button);
button.addActionListener(this);
g /7 init()

public void actionPerformed (ActionEvent e)
f
if (e.getSource() == button)
System.out.printin("Clicked”);
g// actionPerformed()

g// SomeFrame

EXERCISE 4.15 What would be output by the following program?

public class SomeFrame2 extends JFrame
f

I/l Declare instance variables

private JButton button;

private JTextField field;

public SomeFrame ()

f
/l Instantiate instance variables
button =new JButton("Click me”);
add (button);
field =new JTextField("Field me”);
add (field);
System.out.printin(field.getText() + button.getText()) ;

g/l init()

public static void main(String[] args)f
SomeFrame2 frame = new SomeFrame2 () ;
frame.setSize(400,400);
frame.setVisible(true);

g

g// SomeFrame?2

g

EXERCISE 4.16 Design and implement a GUI that has a JButton, a JTextField,
and a JLabel and then uses the toString() method to display each object’s string
representation.



CHAPTER 4 Input/Output: Designing the User Interface

EXERCISE 4.17 The JButton class inherits a setText(String s) from its
AbstractButton() superclass. Using that method, design and implement a GUI
that has a single button labeled initially, “The Doctor is out.” Each time the button
is clicked, it should toggle its label to, “The Doctor is in” and vice versa.

EXERCISE 4.18 Design and implement a GUI that contains two JButtons, ini-
tially labeled, “Me first!” and “Me next!” Each time the user clicks either button,
the labels on both buttons should be exchanged. (Hint: You don’t need an if-else
statement for this problem.)

EXERCISE 4.19 Modify the GUI in the previous exercise so that it contains three

JButtons, initially labeled “First,” “Second,” and “Third.” Each time the user clicks
one of the buttons, the labels on the buttons should be rotated. Second should
get first’s label, third should get second’s, and first should get third’s label.

EXERCISE 4.20 Design and implement a GUI that contains a JTextField and
two JButtons, initially labeled “Left” and “Right.” Each time the user clicks a
button, display its label in the JTextField. A JButton()’s label can be gotten with
the getText() method.

EXERCISE 4.21 You can change the size of a JFrame by using the setSize(int h,
int v) method, where h and v give its horizontal and vertical dimensions pixels.
Write a GUI application that contains two JButtons, labeled “Big” and “Small.”
Whenever the user clicks on small, set the JFrame’s dimensions to 200

100, and whenever the user clicks on big, set the dimensions to 300 200.

EXERCISE 4.22 Rewrite your solution to the previous exercise so that it uses a
single button whose label is toggled appropriately each time it is clicked. Obvi-
ously, when the JButton is labeled “Big,” clicking it should give the JFrame its big
dimensions.

EXERCISE 4.23 Challenge: Design and write a Java GUI application that allows the
user to change the JFrame’s background color to one of three choices, indi-cated by
buttons. Like all other Java Components, JFrame’s have an associated

background color, which can be set by the following commands:

setBackground ( Color . red) ;
setBackground ( Color . yellow ) ;

The setBackground() method is defined in the Component class, and 13 primary
colors—black, blue, cyan, darkGray, gray, green, lightGray, magenta, orange, pink,
red, white, yellow—are defined in the java.awt.Color class.

ADDITIONAL EXERCISES
EXERCISE 4.24 Given the classes with the following headers

public class Animal ...

public class DomesticAnimal extends Animal ...
public class FarmAnimal extends DomesticAnimal . . .
public class HousePet extends DomesticAnimal. ..
public class Cow extends FarmAnimal ...

public class Goat extends FarmAnimal ...

public class DairyCow extends Cow ...

draw a UML class diagram representing the hierarchy created by these
declarations.



CHAPTER 4Exercises 195

EXERCISE 4.25 Given the preceding hierarchy of classes, which of the following
are legal assignment statements?

DairyCow dc = new FarmAnimal () ;
FarmAnimal fa =new Goat () ;
Cowcl =new DomesticAnimal () ;
Cowc2 =new DairyCow () ;
DomesticAnimal dom = new HousePet () ;




196 CHAPTER 4 Input/Output: Designing the User Interface



Chapter 5

Java Data and Operators

OBJECTIVES
After studying this chapter, you will

Understand the role that data play in effective program design.
Be able to use all of Java’s primitive types and their operators.
Appreciate the importance of information hiding.

Be able to use class constants and class methods.

Know how to use Java’s Math and NumberFormat classes.
Be able to perform various kinds of data conversions.

OUTLINE

5.1 Introduction
5.2 Boolean Data and Operators
Special Topic: Are We Computers?
5.3 Numeric Data and Operators
5.4  From the Java Library: java.lang.Math
5.5 Numeric Processing Examples
5.6 From the Java Library: java.text. NumberFormat
5.7 Character Data and Operators
5.8 Example: Character Conversions
5.9 Problem Solving = Representation + Action
Chapter Summary
Solutions to Self-Study Exercises
Exercises

197



Figure 5.1: Can the chess board be
tiled with dominoes?

198 CHAPTER 5  Java Data and Operators

5.1 Introduction

This chapter has two primary goals. One is to elaborate on Java’s prim-
itive data types, which were first introduced in Chapter 1. We will cover
boolean, integer, character, and real number data types, including the
var-ious operations that you can perform on these types. We will provide
ex-amples, including several modifications of the OneRowNim class, to
show typical uses of the various data types.

Our second goal is to illustrate the idea that programming is a matter
of choosing an appropriate way to represent a problem as well as
choosing an appropriate sequence of actions to solve the problem.
Programming is a form of problem solving that can be viewed as a two-
part process: representation and action.

Representation means finding a way to look at the problem. This
might involve seeing the problem as closely related to a known problem
or see-ing that parts of the problem can be broken up into smaller
problems that you already know how to solve. In terms of programming
prob-lems, representation often means choosing the right kinds of
objects and structures.

Action is the process of taking well-defined steps to solve a problem.
Given a particular way of representing the problem, what steps must we
take to arrive at its solution?

Choosing an appropriate representation is often the key to solving a
problem. For example, consider this problem: Can a chess board, with
its top-left and bottom-right squares removed, be completely tiled by
dominoes that cover two squares at a time?

One way to solve this problem might be to represent the chess board
and dominoes as shown in Figure 5.1. If we represent the board in this
way, then the actions needed to arrive at a solution involve searching for
a tiling that completely covers the board. In other words, we can try one
way of placing the dominoes on the board. If that doesn’t work, we try
an-other way. And so on. This process will be very time consuming,
because there are millions of different ways of trying to tile the board.

An alternative way to represent this problem comes from seeing that the
top-left and bottom-right squares of the board are both white. If you remove
them, you’ll have a board with 62 squares, 32 black and 30 white. Because
each domino must cover one white and one black square, it is



SECTION 5.2Boolean Data and Operators 199

impossible to tile a board with an unequal number of black and white
squares.

Thus, by representing the problem as the total number of black and
white squares, the actions required to solve it involve a very simple rea-
soning process. This representation makes it almost trivial to find the so-
lution. On the other hand, the brute force representation presented first—
trying all possible combinations—made it almost impossible to solve the
problem.

5.2 Boolean Data and Operators

As we learned in Chapter 1, the boolean type is one of Java’s primitive
types. For this type, there are only two possible values, true and false.
The boolean type is derived from the work of British mathematician
George Boole, who in the 1850s, developed an algebra to process logical
expressions such as p and g. Such boolean expressions produce a value that is
either true or false. Every modern programming language provides some
means of representing boolean expressions.

The boolean type has several important uses. As we saw in Chap-
ter 1, expressions of the form num == 7 and 5 < 7 have boolean val-
ues. Similarly, as we saw in Chapter 3, the boolean type is also used to
represent the condition in the if statement:

if (boolean expression)
statement;

For this reason, boolean expressions are also called conditions. Along these
same lines, a boolean variable can be used as a flag or a signal to “remem-
ber” whether or not a certain condition holds. For example, in the follow-

ing code fragment, we use isDone to mark when a particular process is
completed:

boolean isDone = false; // Initialize the flag

// Do some processing task
isDone = true; /I Set flag when the task done
/1 Do some other stuff

i f (isDone) /I Check if finished the task

I If so,dosomething
else

/1 Or,dosomething else

5.2.1 Boolean (or Logical) Operations

George Boole

Conditional statement

Boolean flag

Like all the other simple data types, the boolean type consists of certain Data and operations

data—the values true and false—and certain actions or operations that
can be performed on those data. For the boolean type there are four basic
operations: AND (signified by &&), OR (signified by jj), EXCLUSIVE-OR
(signified by *), and NOT (signified by !). These are defined in the truth table
shown in Table 5.1. A truth tables defines boolean operators by giving their
values in all possible situations. The first two columns of the table give
possible boolean values for two operands, 01 and 02. An operand is a value
used in an operation. Note that each row gives a different value



Binary operator

Unary operator

200 CHAPTER 5  Java Data and Operators

assignment to the two operands, so that all possible assignments are
repre-sented. The remaining columns give the values that result for the
various operators given the assignment of values to 01 and 02.

TABLE 5.1 Truth-table definitions of the boolean operators:
AND (&&), OR (jj), EXCLUSIVE-OR (%), and NOT ()

ol 02 01 && 02 o0ljjo2 o0l”o02 lol
true true true true false false
true false false true true false
false true false true true true
false false false false false true

To see how to read this table, let’s look at the AND operation, which is
defined in column 3. The AND operator is a binary operator—that is, it
requires two operands, ol and o2. If both 01 and o2 are true, then (ol
&& 02) is true (rowl). If either 01 or 02 or both 01 and 02 are false, then
the expression (01 && 02) is false (rows 2 and 3). The only case in which
(01 && 02) is true is when both ol and 02 are true (row 4).

The boolean OR operation (column 4 of Table 5.1) is also a binary
oper-ation. If both 01 and 02 are false, then (01 jj 02) is false (row 4). If
either ol or 02 or both 0l and 02 are true, then the expression (01 jj 02)
is true (rows 1-3). Thus, the only case in which (0l jj 02) is false is when
both 01 and 02 are false.

The boolean EXCLUSIVE-OR operation (column 5 of Table 5.1) is a
bi-nary operation, which differs from the OR operator in that it is true
when either 01 or 02 is true (rows 2 and 3), but it is false when both ol
and o2 are true (row 1).

The NOT operation (the last column of Table 5.1) is a unary
operator— it takes only one operand—and it simply reverses the truth
value of its operand. Thus, if 01 is true, !0l is false, and vice versa.

5.2.2 Precedence and Associativity

In order to evaluate complex boolean expressions, it is necessary to un-

derstand the order in which boolean operations are carried out by the
computer. For example, what is the value of the following expression?

truejj true&&false

The value of this expression depends on whether we evaluate the jj first
or the && first. If we evaluate the jj first, the expression’s value will be
false; if we evaluate the && first, the expression’s value will be true. In

the following example, we use parentheses to force one operation to be
done before the other:

EXPRESSION EVALUATION

(truejj true )&&false ==>true&&false ==>false
truejj (true alse ) ==>true jj alse ==>true
| i &&fal ij fal




SECTION 5.2Boolean Data and Operators 201
As these evaluations show, we can use parentheses to force one operator
or the other to be evaluated first. However, in Java, the && operator has Parentheses
supersede higher precedence than the jj operator. Therefore, the second alternative
corresponds to the default interpretation that Java would apply to the ex-
pression that has no parentheses. In other words, given the expression
true jj true && f alse, the AND operation would be evaluated before the
OR operation even though the OR operator occurs first (i.e., to the left) in
the unparenthesized expression.

TABLE 5.2 Precedence order of the boolean operators

Precedence Order Operator Operation
1 @) Parentheses
2 ! NOT
3 N EXCLUSIVE-OR
4 && AND
5 I OR

As this example illustrates, the boolean operators have a built-in prece-
dence order which is used to determine how boolean expressions are to be
evaluated (Table 5.2). A simple method for evaluating an expression is to

parenthesize the expression and then evaluate it. For example, to evaluate
the complex expression

kruejj !false “~false&&true |

we would first parenthesize it according to the precedence rules set out in
Table 5.2, which gives the following expression:

|truejj (((!'false) "false)&&true) |

We can then evaluate this fully parenthesized expression, step by step,
starting at the innermost parentheses:

tep 1. truejj ((true "false)&&true)
Step 2. true jj (true&&true)

Step 3.truejj true

Step 4. true

VAN IEl RV IVINIER AP arentheses. Parentheses can (and
should) be used to clarify any expression that appears ambiguous
or to override Java’s default precedence rules.

In addition to operator precedence, it is necessary to know about an
operator’s associativity in order to evaluate boolean expressions of the
form (opl jj op2 jj op3). Should this expression be evaluated as



202 CHAPTER 5 Java Data and Operators

((opl jj op2) jj op3) or as (opl jj (op2 jj op3))? The binary boolean opera-
tors all associate from left to right. Thus, the expressions

true “true "“true /I Same as: (true true) true
true &&true &&true //same as: (true &&true) true

. . jj true) jj true
true jjtrue Jjtrue //Same as: (true

would be evaluated as follows:

| EXPRESSION EVALUATION

(true “true) “true ==>false “"true ==>true
(true&&true) & &true ==>true &&true ==>true
(truejjtrue) jjtrue ==>true jjtrue ==>true

5.2.3 Short-Circuit Evaluation

Another important feature of the boolean operators is that they utilize a

form of evaluation known as short-circuit evaluation. In short-circuit eval-
uation, a boolean expression is evaluated from left to right, and the evalu-
ation is discontinued as soon as the expression’s value can be determined,

regardless of whether it contains additional operators and operands. For
example, in the expression

| exprl && expr2

if exprl is false, then the AND expression must be false, so expr2 need
not evaluated. Similarly, in the expression

|expr1 jjexpr2

if exprl is true, then the OR expression must be true, so expr2 need not
evaluated.

In addition to being a more efficient form of evaluating boolean ex-
pressions, short-circuit evaluation has some practical uses. For example,
we can use short-circuit evaluation to guard against null pointer excep-
tions. Recall from Chapter 2 that a null pointer exception results when
you try to use an uninstantiated reference variable—that is, a reference
variable that has not been assigned an object. For example, if we declare a

OneRowNim variable without instantiating it and then try to use it, a null
pointer exception will result:

OneRowNim game ; // Uninstantiated Reference
if (lgame.gameOver()) // Null pointer exception
game.takeSticks (num);




SECTION 5.2Boolean Data and Operators 203

In this code, a null pointer exception results when we use game in the

method call game.gameOver(). We can use short-circuit evaluation to
prevent the exception from occurring:

|if ((game '= null)&& (!game.gameOver())
game .takeSticks (num);

In this case, because game != null is false, neither method call involv-
ing game is made, thus avoiding the exception.

Special Topic: Are We Computers?

George Boole published his seminal work, An Investigation of the Laws
of Thought, in 1854. His achievement was in developing an algebra for
logic—that is, a purely abstract and symbolic system for representing the
laws of logic. Boole’s was not the first attempt to explore the relationship
between the human mind and an abstract system of computation. Back
in 1655, Thomas Hobbes had already claimed that all thought was
computa-tion.

It is estimated that the human brain contains (1012 =
10;000;000;000;000) neurons, and each neuron contains something like
10,000 dendrites, the fibers that connect one neuron to another.
Together, the neurons and den-drites make up a web of enormous
complexity. Since the 1840s it has been known that the brain is primarily
electrical, and by the 1940s scientists had developed a pretty good
model of the electrical interactions among neurons. According to this
model, neurons emit short bursts of electricity along their axons, which
function like output wires. The bursts leap over the gap separating axons
and dendrites, which function like the neurons’ input wires.

In 1943, just before the first digital computers were developed, War-ren
McCulloch, a neurophysiologist, and Walter Pitts, a mathematician,
published a paper titled, “A Logical Calculus of the Ideas Imminent in
Nervous Activity.” In this paper, they showed that all of the boolean
operators—AND, OR, NOT, and EXCLUSIVE-OR—could be represented by
the behavior of small sets of neurons. For example, they showed that three
neurons could be connected together in such a way that the third neuron
fired if and only if both of the other two neurons fired. This is exactly
analogous to the definition of the boolean AND operator.

A few years later, when the first computers were built, many scientists
and philosophers were struck by the similarity between the logic
elements that made up the computer’s circuits and the neuronal models
that Mc-Culloch and Pitts had developed.

The area of neural networks is a branch of artificial intelligence (one of
the applied areas of computer science) and is based on this insight by
McCulloch and Pitts. Researchers in this exciting and rapidly advancing
field develop neural network models of various kinds of human thinking
and perception.



204 CHAPTER 5  Java Data and Operators

5.2.4 Using Booleans in OneRowNim

Now that we have introduced the boolean data type, let’s use it to im-
prove the OneRowNim class, the latest version of which, from Chapter 3,
is given in Figure 3.16. Previously we used an int variable, player,

to represent who'’s turn it is. For a two-person game, such as One Row
Nim, a boolean variable is well suited for this purpose, because it can
toggle between true and false. For example, let’s declare a variable,

onePlaysNext, and initialize it to true, to represent the fact that player
one will play first:

private boolean onePlaysNext = true;

When onePlaysNext is true, it will be player one’s turn. When it is

false, it will be player two’s turn. Note that we are deliberately remaining

uncommitted as to whether one or the other player is the computer.
Given this new variable, it is necessary to redefine the methods that

had previously used the player variable. The first method that needs
revision is the constructor:

public OneRowNim(int sticks, int starter)
f nSticks = sticks;

onePlaysNext = (starter == 1);
g //OneRowNim() constructor3

In the constructor, the starter parameter is used with a value of 1 or 2 to
set which player goes first. Note how we use an assignment statement to
set onePlaysNext to true if starter equals 1; otherwise it is set to false.
The assignment statement first evaluates the expression on its right hand
side (starter == 1). Because this is a boolean expression, it will have

a value of true or false, which will be assigned to onePlaysNext. Thus,
the assignment statement is equivalent to the following if/else statement:

if (player ==1)
onePlaysNext = true;
else
onePlaysNext = false;

The remaining changes are shown in Figure 5.2. There are only two in-
stance methods that need revision to accommodate the use of boolean



SECTION 5.3Numeric Data and Operators 205

variables. The takeSticks() method contains two revisions. The first
uses the boolean OR operator to test whether a move is valid:

public boolean takeSticks (int num)

f if (hum<1 jjnum>3 jj num>nSticks)
return false; Il Error
else //'Valid move

f nSticks = nSticks num;
onePlaysNext = ! onePlaysNext ;
returntrue;

g /lelse

g// takeSticks()

It also uses the boolean NOT operator to toggle the value of
onePlaysNext, to switch to the other player’s turn:

bnePlaysNext = ! onePlaysNext ;

Finally, the getPlayer() method now uses a if/else statement to return
either 1 or 2 depending on who’s turn it is:

ublic int getPlayer()
f i f (onePlaysNext)
return 1;
elsereturn 2;
g// getPlayer()

5.3 Numeric Data and Operators

Java has two kinds of numeric data: integers, which have no fractional part,
and real numbers or floating-point numbers, which contain a frac-tional
component. Java recognizes four different kinds of integers: byte, short, int,
and long, which are distinguished by the number of bits used to represent
them. A binary digit, or bit, is a 0 or a 1. (Recall that computers read
instructions as series of Os and 1s.) Java has two different kinds of real
numbers, float and double, which are also distinguished by the number of
bits used to represent them. See Table 5.3.

TABLE 5.3 Java’s numeric types

Type  Bits Range of Values
byte 8 128 to +127
short 16 32768 to 32767
int 32 2147483648 to 2147483647
63 63
long 64 277to2 1
float 32 3:40292347E + 38 to +3:40292347E + 38

double 64  1:79769313486231570E + 308 to +1:79769313486231570E + 308




206 CHAPTER 5 Java Data and Operators

public class OneRowNim
f privateint nSticks = 7;
private boolean onePlaysNext = true;

public OneRowNim ()

f

g//OneRowNim() constructorl

public OneRowNim(int sticks)

f nSticks = sticks;

g //OneRowNim() constructor2

public OneRowNim(int sticks, int starter)
f nSticks = sticks;

onePlaysNext = (starter== 1);
g //OneRowNim() constructor3
public boolean takeSticks(int num)
f if (hum<1jj num>3jj num>nSticks)
return false; /Il Error
else /I'Valid move

f nSticks =nSticks num;
onePlaysNext = ! onePlaysNext ;
returntrue;

g/lelse

g// takeSticks()

public int getSticks()

f return nSticks;

g fncolorfcyang// getSticks ()g
public intgetPlayer()

f if (onePlaysNext) return 1;

elsereturn 2;

g// getPlayer()
public boolean gameOver ()
f return (nSticks<=0);
g// gameOver()
public int getWinner ()
f if (nSticks<l)returngetPlayer();
elsereturnO; /l game is not over
g// getWinner()
public void report()
f System.out.println("Number of sticks left:”
+ getSticks());
System.out.printlin("Next turn by player”
+ getPlayer());

g /Il'report()
g// OneRowNimclass

Figure 5.2: The revised OneRowNim uses a boolean variable to keep
track of who's turn it is.

The more bits a data type has, the more values it can represent. One bit
can represent two possible values, 1 and 0, which can be used to stand for
true and false, respectively. Two bits can represent four possible values: 00,
01, 10, and 11; three bits can represent eight possible values: 000, 001,



SECTION 5.3Numeric Data and Operators 207
010, 100, 101, 110, 011, 111. And, in general, an n-bit quantity can represent

2" different values.
As illustrated in Table 5.3, the various integer types represent posi-tive
or negative whole numbers. Perhaps the most commonly used in-teger
type in Java is the int type, which is represented in 32 bits. This means

that Java can represent 2°“ different int values, which range from
2:147:483:648 to 2:147;483:647, that is, from 251 to (231 1). Similarly,
an 8-bit integer, a byte, can represent 28 or 256 different values, ranging

from 128 to +127. A 16-bit integer, a short, can represent 216 different
values, which range from 32768 to 32767. And a 64-bit integer, a long,
263 to 263 1.

can represent whole number values ranging from
For floating-point numbers, a 32-bit float type can represent 232 dif-

ferent real numbers and a 64-bit double value can represent 2 4
different real numbers.

NN S S S ea RNV =RRISSI (el Platform Independence. In Java, a data
type’s size (number of bits) is part of its definition and, therefore,
remains consistent across all platforms. In C and C++, the size of a
data type is dependent on the compiler.

It is worth noting that just as model airplanes are representations of
real airplanes, Java’s numeric types are representations or models of the
numbers we deal with in mathematics. In designing Java’s data types,
various trade-offs have been made in order to come up with practical
implementations.

One trade-off is that the set of integers is infinite, but Java’s int type can
only represent a finite number of values. Similarly, Java cannot represent the
infinite number of values that occur between, say, 1.111 and 1.112. So,
certain real numbers cannot be represented at all. For exam-ple, because
Java uses binary numbers to represent its numeric types, one number that

cannot be represented exactly is 101 . This inability to exactly represent a
value is known as round-off error. Being unable to represent certain values
can cause problems in a program. For example, it might be difficult to
represent dollars and cents accurately in a program.

Another source of problems in dealing with numeric data is due to lim-
its in their precision. For example, a decimal number represented as a
double value can have a maximum of 17 significant digits, and a float
can have a maximum 8. A significant digit is one that contributes to the
number’s value. If you tried to store values such as 12345.6789 or
0.123456789 in a float variable, they would be rounded off to 12345.679
and 0.12345679, respectively, causing a possible error.

A\ EE BIefelIN[€el iz Significant Digits. In using numeric data, be
sure the data type you choose has enough precision to represent the
values your program needs.

SELF-STUDY EXERCISES

Integer data types

Data types are abstractions

Representation trade-offs

Round-off error



Numeric operators

Integer division gives an
integer result

Modular arithmetic

208 CHAPTER 5  Java Data and Operators

5.3.1 Numeric Operations

The operations that can be done on numeric data include the standard
algebraic operations: addition (+), subtraction (), multiplication (*), division
(/), as well as the modulus (%) operator. Note that in Java, the multiplica-tion

symbol is * and not the . The arithmetic operators are binary op-erators,
meaning that they each take two operands. Table 5.4 compares

TABLE 5.4 The standard arithmetic operators in Java

Operation Operator Java Algebra

Addition + X+2 Xx+2

Subtraction m2 m?2

Multiplication * m*2 2mor2xm

Division / X=y Xyory

Modulus % x%y X modulo y (for integers x and y)

expressions involving the Java operators with their standard algebraic
counterparts.
Although these operations should seem familiar, there are some im-

portant differences between their use in algebra and their use in a Java
program. Consider the following list of expressions:

[3/2 ==> value 1 Anintegerresult

[3.0 /2.0==> value 1.5 Afloating pointresult
(372 ==> value 1.5 A floating pointresult
|3 0 /2 ==> value 1.5 A floating pointresult

In each of these cases we are dividing the quantity 3 by the quantity 2.
However, different results are obtained depending on the type of the
operands involved. When both operands are integers, as in (3/2), the
result must also be an integer. Hence, (3/2) has the value 1, an integer.
Because integers cannot have a fractional part, the 0.5 is simply
discarded. Integer division (/) always gives an integer result. Thus, the
value of (6/2) is 3 and the value of (7/2) is also 3. Because 3.5 is not an
integer, the result of dividing 7 by 2 cannot be 3.5.

NVAN/ANI ]S EiB[ele] [N[E€llE! Integer Division. A common source of
error among beginning programmers is forgetting that integer
division always gives an integer result.

On the other hand, when either operand is a real number, as in the last
three cases, the result is a real number. Thus, while the same symbol (/)
is used for dividing integers and real numbers, there are really two dif-
ferent operations involved here: integer division and floating-point
division. Using the same symbol (/) for different operations (integer
division and real division) is known as operator overloading. It is similar
to method overloading, which was discussed in Chapter 3.

What if you want to keep the remainder of an integer division? Java
provides the modulus operator (%), which takes two operands. The ex-
pression (7 % 5) gives the remainder after dividing 7 by 5—2 in this case.



SECTION 5.3 Numeric Data and Operators 209

In general, the expression (m % n) (read m mod n) gives the remainder
after m is divided by n. Here are several examples:

|7 %5 ==>7mod5equals 2 |
5%7 ==>5 mod7equals 5

7%5 ==> 7mod5 equals 2
|7% 5 ==>7 mod 5 equals 2 |

The best way to interpret these examples is to perform long division on
the operands keeping both the quotient and the remainder. For example,
when you do long division on 7 5, you get a quotient of -1 and a re-
mainder of -2. The quotient is the value of 7=5 and the remainder is the
value of 7%5. When you do long division on 7 5, you get a quotient
of -1 and a remainder of 2. The quotient is the value of 7= 5 and the
remainder is the value of 7% 5.

We will encounter many practical uses for the modulus operator in our
programs. For a simple example, we use it when we want to determine

whether an integer is even or odd. Numbers that leave a 0 remainder
when divided by 2 are even:

f(N%2==0)
System.out.printin(N+ );

More generally, we could use the mod operator to define divisibility by 3,
4, 10, or by any number.

Numeric Promotion Rules

Java is considered a strongly typed language because all expressions in

Java, such as (3/2), have a type associated with them. In cases where Expressions have a type
one arithmetic operand is an integer and one is a floating-point num-

ber, Java promotes the integer into a floating-point value and performs a

floating-point operation.

Promotion is a matter of converting one type to another type. For ex-
ample, in the expression (5 + 4.0), the value 5 must be promoted to 5.0
before floating-point addition can be performed on (5.0 + 4.0). Generally
speaking, automatic promotions such as these are allowed in Java when-
ever it is possible to perform the promotion without loss of information. Be-
cause an integer (5) does not have a fractional component, no information
will be lost in promoting it to a real number (5.0). On the other hand, you
cannot automatically convert a real number (5.4) to an integer (5) because
that might lead to loss of information. This leads to the following rule:

A/ASANN[El 8/ el =R M =] nteger Promotion. In an operation that ?E
contains an integer and a floating-point operand, the integer is
promoted to a floating-point value before the operation is performed.

This rule is actually an instance of a more general rule, for whenever an
expression involves operands of different types, some operands must be



Promotion is automatic

210 CHAPTER 5 Java Data and Operators

converted before the expression can be evaluated. Consider the following
example:

byte n=125;
shortm=32000;
n m;

In this case, (n * m) involves two different integer types, byte and short.
Before evaluating this expression Java must first promote the byte to a
short and carry out the operation as the multiplication of two shorts.
Conversion of short to byte would not be possible because there’s no
way to represent the value 32000 as a byte.

It is important to note that this conversion rule applies regardless of
the actual values of the operands. In applying the rule, Java looks at the
operand’s type, not its value. So even if m were assigned a value that
could be represented as a byte (for example, 100), the promotion would
still go from smaller to larger type. This leads to following the general
rule:

NANAR AN [EB/AEI=RRlUIR=RT v pe Promotion. In general, when two
different types are involved in an operation, the smaller type—the one
with fewer bits—is converted to the larger type before the operation is
performed. To do otherwise would risk losing information.

Table 5.5 summarizes the actual promotion rules used by Java in
evaluat-ing expressions involving mixed operands. Note that the last rule
implies that integer expressions involving byte or short or int are
performed as int. This explains why integer literals—such as 56 or 108—
are rep-resented as int types in Java.

TABLE 5.5 Java promotion rules for mixed arithmetic operators.
If two rules apply, choose the one that occurs first in this table.

If either operand is The other is promoted to
double double

float float

long long

byte or short int

5.3.2 Operator Precedence

The built-in precedence order for arithmetic operators is shown in Ta-ble
5.6. Parenthesized expressions have highest precedence and are evalu-
ated first. Next come the multiplication, division, and modulus operators,
followed by addition and subtraction. When we have an unparenthesized
expression that involves both multiplication and addition, the multiplica-
tion would be done first, even if it occurs to the right of the plus sign. Op-



SECTION 5.3Numeric Data and Operators 211
TABLE 5.6 Precedence order of the arithmetic operators

Precedence
Order Operator  Operation

1 () Parentheses
= %Multiplication, Division, Modulus
3 + Addition, Subtraction

erators at the same level in the precedence hierarchy are evaluated from
left to right. For example, consider the following expression:

9 +6 36/2 |

In this case, the first operation to be applied will be the multiplication (*),
followed by division (/), followed by addition (+), and then finally the
subtraction ( ). We can use parentheses to clarify the order of evaluation.

A parenthesized expression is evaluated outward from the innermost set
of parentheses:

Step 1. ((9+6) ((36)/2))
Step 2. ((9+6) (18/2))
Step 3. ((9+6) 9)
Step 4. (15 9)

Step 5. 6

Parentheses can (and should) always be used to clarify the order of oper-

ations in an expression. For example, addition will be performed before
multiplication in the following expression:

| (a+b)c I

Another reason to use parentheses is that Java’s precedence and promo-

tion rules will sometimes lead to expressions that look fine but contain
subtle errors. For example, consider the following expressions:

System.out.printin(5/3/2.0); /1 0.5
System.out.printin(5/(3/2.0)); // 333

The first gives a result of 0.5, but the use of parentheses in the second
gives a result of 3.33. If the second is the expected interpretation, then
the parentheses here helped avoid a subtle semantic error.

L 9

VAN IE 2NV INIERIIERP arenthesize! To avoid subtle bugs /'
caused by Java’s precedence and promotion rules, use parentheses /
to specify the order of evaluation in an expression.

SELF-STUDY EXERCISE



Preincrement and postincrement

Precedence order

Predecrement and postdecrement

212 CHAPTER 5 Java Data and Operators
5.3.3 Increment and Decrement Operators

Java provides a number of unary operators that are used to increment or
decrement an integer variable. For example, the expression k++ uses the

increment operator ++ to increment the value of the integer variable k. The
expression k++ is equivalent to the following Java statements:

int k;
k=k+ 1;// Add 1to kand assign the result back tok

The unary ++ operator applies to a single integer operand, in this case to
the variable k. It increments k’s value by 1 and assigns the result back to k.
It may be used either as a preincrement or a postincrement operator. In the
expression k++, the operator follows the operand, indicating that it is being
used as a postincrement operator. This means that the increment operation
is done after the operand’s value is used.

Contrast that with the expression ++k in which the ++ operator precedes
its operand. In this case, it is used as a preincrement operator, which means
that the increment operation is done before the operand’s value is used.

When used in isolation, there is no practical difference between k++
and ++k. Both are equivalent to k = k + 1. However, when used in con-
junction with other operators, there is a significant difference between

preincrement and postincrement. For example, in the following code
segment,

intj=0, k=0; /l Initially both j and k are 0
j =++k; /Il Final values of both jand k arel

the variable k is incremented before its value is assigned to j. After execu-

tion of the assignment statement, j will equal 1 and k will equal 1. The
sequence is equivalent to

+ 1

)

non o

nt j 0, k=0; /l Initially both j and k are 0
k =k 1
i =k;

) /1 Final values of both j andk are 1

However, in the following example,

|int i =0, k=03 // Initially both iandkare 0
| i =k ++; /1 Final value of iis 0 and k is 1

the variable k is incremented after its value is assigned to i. After execution

of the assignment statement, i will have the value 0 and k will have the
value 1. The preceding sequence is equivalent to

| i=k;

inti=o0, k=0; // Initially both iandk are 0
|k=k+ 1; /I Final value of i is 0 andkis 1

In addition to the increment operator, Java also supplies the decrement op-



SECTION 5.3 Numeric Data and Operators 213

erator , which can also be used in the predecrement and postdecrement
forms. The expression k will first decrement k’s value by 1 and then use
k in any expression in which it is embedded. The expression k will

use the current value of k in the expression in which k is contained and then
it will decrement k’s value by 1. Table 5.7 summarizes the increment and
decrement operators. The unary increment and decrement operators have
higher precedence than any of the binary arithmetic operators.

TABLE 5.7 Java’s increment and decrement operators

Expression Operation Interpretation

j=++k Preincrement k=k+1;j=k;

j=k++ Postincrement j=kk=k+1;

j=k Predecrement k=k 1;j=k;

j=k Postdecrement j=kik=k 1;
N/\V/NW.\\[e]8/NeI=={8IM=m-re- and Postincrement/Decrement. If an ?E
expression like ++k or k occurs in an expression, k is incremented or

decremented before its value is used in the rest of the expression. If
an expression like k++ or k occurs in an expression, k is incremented
or decremented after its value is used in the rest of the expression.

1‘1\‘

NANVAR I NOIe 2V I\IIN[EmEIs Increment and Decrement
Operators. Because of their subtle behavior, be careful in how you /}
use the unary increment and decrement operators. They are most
appropriate and useful for incrementing and decrementing loop
variables, as we’ll see later.

SELF-STUDY EXERCISE

5.3.4 Assignment Operators

In addition to the simple assignment operator (=), Java supplies a hum-
ber of shortcut assignment operators that allow you to combine an arith-
metic operation and an assignment in one operation. These operations
can be used with either integer or floating-point operands. For example,

the += operator allows you to combine addition and assignment into one
expression. The statement

Kk +=3;

is equivalent to the statement

k =k+ 3;




214 CHAPTER 5 Java Data and Operators
Similarly, the statement

F+=3.5+2.09.3 ;

is equivalent to

F=r+(3.5+2.09.3); //lie r=r+22.1;

As these examples illustrate, when using the += operator, the expression
on its right-hand side is first evaluated and then added to the current
value of the variable on its left-hand side.

Table 5.8 lists the other assignment operators that can be used in com-
bination with the arithmetic operators. For each of these operations, the
interpretation is the same: Evaluate the expression on the right-hand side

TABLE 5.8 Java’s assignment operators
Operator Operation Example Interpretation
= Simple assignment m=n; m=n;
+= Addition then assignment m+=3; m=m+ 3;
= Subtraction then assignment m =3; m=m 3;
= Multiplication then assignment m =3; m=m 3;
== Division then assignment m==3; m =m=3;
% = Remainder then assignment m% = 3; m = m%3;

of the operator and then perform the arithmetic operation (such as addi-
tion or multiplication) to the current value of the variable on the left of the
operator.

SELF-STUDY EXERCISES

5.3.5 Relational Operators

There are several relational operations that can be performed on integers: <,
> <=, >=, == and ! =. These correspond to the algebraic operators <, >, , ,
=, and 6=. Each of these operators takes two operands (integer or real) and
returns a boolean result. They are defined in Table 5.9.

TABLE 5.9 Relational operators

Operator Operation Java Expression
< Less than 5<10

> Greater than 10>5

<= Less than or equal to 5<=10

>= Greater than or equalto  10>=5

== Equal to 5==

= Not equal to 5l=4

Note that several of these relational operators require two symbols in
Equals vs. assigns Java. Thus, the familiar equals sign (=) is replaced in Java by ==. This is so
the equality operator can be distinguished from the assignment operator.



SECTION 5.3Numeric Data and Operators 215

Also, less than or equal to (<=), greater than or equal to (>=), and not
equal to (!=) require two symbols, instead of the familiar , , and 6= from
algebra. In each case, the two symbols should be consecutive. It is an
error in Java for a space to appear between the < and = in <=.

ANz BI=2l0[ele][N[emalad Equality and Assignment. A common
semantic error among beginning programmers is to use the
assignment operator (=) when the equality operator (==) is intended.

Among the relational operators, the inequalities (<, >, <=, and >=) have
higher precedence than the equality operators (== and ! =). In an expression
that involves both kinds of operators, the inequalities would be evaluated
first. Otherwise, the expression is evaluated from left to right.

Taken as a group the relational operators have lower precedence
than the arithmetic operators. Therefore, in evaluating an expression that
in-volves both arithmetic and relational operators, the arithmetic
operations are done first. Table 5.10 includes all of the numeric
operators introduced so far.

TABLE 5.10 Numeric operator precedence including relations

Precedence
Order Operator Operation
1 O Parentheses
2 ++ Increment, decrement
3 =% Multiplication, division, modulus
4 + Addition, subtraction
<><=>= Relational operators
6 =I= Equality operators

To take an example, let us evaluate the following complex expression:

[0+6<=254+2

To clarify the implicit operator precedence, we first parenthesize the
expression

[(9+6)<=((254)+2)

and then evaluate it step by step:

Step 1. (9 + 6 )<=((254)+2)
Step 2. (9 +6)<=(100+2)
Step 3. 15<=102

Step 4. true

The following expression is an example of an ill-formed expression:

lo+6<=25 4 ==2




Strong typi

ng

w‘R

216 CHAPTER 5 Java Data and Operators

That the expression is ill formed becomes obvious if we parenthesize it
and then attempt to evaluate it:

| Step1.((9+6 ) <=(254))==2
Step 2. (15 <= 100)==2
Step 3. true == /1 Syntax error results here

The problem here is that the expression true == 2 is an attempt to com-
pare an int and a boolean value, which can’t be done. As with any other
binary operator, the == operator requires that both of its operands be of
the same type. This is another example of Java’s strong type checking.

SELF-STUDY EXERCISES

5.4 From the Java Library java.lang.Math

THE java.lang.Math class provides many common mathematical

java.sun.com/j2se/1.5.0/docs/api/ functions that will prove useful in performing numerical computations.
w w

As an element of the java.lang package, it is included implicitly in all
Java programs. Table 5.11 lists some of the most commonly used Math
class methods.

TABLE 5.11 A selection of Math class methods

Method Description Examples
int abs(int x) Absolute value of x if x >= 0 abs(x) is x
long abs(long x) if x <0 abs(x) is x

float abs(float x)

int ceil(double x) Rounds x to the smallest  ceil(8.3) is 9
integer not less than x ceil( 8.3)is 8
int floor(double x) Rounds x to the largest floor (8.9) is 8

integer not greater than x  floor( 8.9)is 9
double log(double x) Natural logarithm of x log (2.718282) is 1.0

double pow(double x, double y) X raised to the y power (x) pow(3, 4 ) is 81.0
pow(16.0, 0.5) is 4.0

double random() Generates a random random() is 0.5551
number in the interval [0,1) random() is 0.8712

long round(double x) Rounds x to an integer round(26.51) is 27
round (26.499) is 26

double sgrt(double x) Square root of x sqrt(4.0) is 2.0

All Math methods are static class methods and are, therefore, in-

voked through the class name. For example, we would calculate 2% as
Math.pow(2,4), which evaluates to 16. Similarly, we compute the square
root of 225.0 as Math.sqrt(225.0), which evaluates to 15.0.



SECTION 5.5 Numeric Processing Examples 217

Indeed, Java’'s Math class cannot be instantiated and cannot be sub-
classed. Its basic definition is

public final class Math /I Final, can't subclass
f private Math () fg /I Private , can’t invoke

public static native double sqrt(double a)
throws ArithmeticException;

g

By declaring the Math class public final, we indicate that it can be
accessed (public) but it cannot be extended or subclassed (final). By
declaring its default constructor to be private, we prevent this class from
being instantiated. The idea of a class that cannot be subclassed and
can-not be instantiated may seem a little strange at first. The justification
for it here is that it provides a convenient and efficient way to introduce
helpful math functions into the Java language.

Defining the Math class in this way makes it easy to use its methods,
because you don’t have to create an instance of it. It is also a very
efficient design because its methods are static elements of the java.lang
pack-age. This means they are loaded into memory at the beginning of
your program’s execution, and they persist in memory throughout your
pro-gram’s lifetime. Because Math class methods do not have to be
loaded into memory each time they are invoked, their execution time will
improve dramatically.

VAN S SR EpISS (€N Static Methods. A method should be
declared static if it is intended to be used whether or not there is an
instance of its class.

5.5 Numeric Processing Examples

In this section we consider several numeric programming examples.
They are carefully chosen to illustrate different issues and concepts
associated with processing numeric data.

5.5.1 Example: Rounding to Two Decimal Places

As an example of how to use Math class methods, let’s consider the prob-
lem of rounding numbers. When dealing with applications that involve
monetary values—dollars and cents—it is often necessary to round a cal-
culated result to two decimal places. For example, suppose a program
computes the value of a certificate of deposit (CD) to be 75.19999. Be-

fore we output this result, we would want to round it to two decimal
places—to 75.20. The following algorithm can be used to accomplish this:

Multiply the number by 100, giving 7519.9999.
.Add 0.5to the number giving 7520.4999.
.Drop the fractionalpart giving 7520
. Divide the result by 100, giving 75.20

~wr P

Algorithm design



What objects do we need?

Figure 5.3: Interacting  ob-
jects: The user interacts with the
user interface (Tempera-tureUl),
which interacts with the
Temperature object.

What data do we need?

218 CHAPTER 5  Java Data and Operators

Step 3 of this algorithm can be done using the Math.floor(R) method,
which rounds its real argument, R, to the largest integer not less than R
(from Table 5.11). If the number to be rounded is stored in the double
variable R, then the following expression will round R to two decimal
places:

| R= Math.floor(R 100.0 + 0.5) / 100.0;

Alternatively, we could use the Math.round() method (Table 5.11). This
method rounds a floating-point value to the nearest integer. For exam-
ple, Math.round(65.3333) rounds to 65 and Math.round(65.6666) rounds
to 66. The following expression uses it to round to two decimal places:

| - R)/ 100.0;

Note that it is important here to divide by 100:0 and not by 100. Other-
wise, the division will give an integer result and we’ll lose the two decimal
places.

NAN\AReISElBelell\[emEls Division. Using the correct type of literal in
division operations is necessary to ensure that you get the correct
type of result.

5.5.2 Example: Converting Fahrenheit to Celsius

To illustrate some of the issues that arise in using numeric data, let’'s de-
sign a program that performs temperature conversions from Fahrenheit
to Celsius and vice versa.

Problem Decomposition

This problem requires two classes, a Temperature class and a
TemperatureUl class. The Temperature class will perform the temper-
ature conversions, and TemperatureUl will serve as the user interface
(Fig. 5.3).

1: Convert 100C to F—»

<+ 3: result=212 2: result=celsToFahr(100) —»

. TemperatureUl ._Temperature |

| User |

Class Design: Temperature

The purpose of the Temperature class is to perform the temperature con-
versions. To convert a Celsius temperature to Fahrenheit or vice versa, it is
not necessary to store the temperature value. Rather, a conversion method
could take the Celsius (or Fahrenheit) temperature as a parameter, per-form
the conversion, and return the result. Therefore, the Temperature



SECTION 5.5Numeric Processing Examples 219

class does not need any instance variables. Note that in this respect the
Temperature class resembles the Math class. Unlike OneRowNim, which
stores the game’s state—the number of sticks remaining and whose turn
it is—the Math and Temperature classes are stateless.

Thus, following the design of the Math class, the Temperature class
will have two public static methods: one to convert from Fahrenheit to
Celsius and one to convert from Celsius to Fahrenheit. Recall that static
methods are associated with the class rather than with its instances.
There-fore, we needn’t instantiate a Temperature object to use these
methods. Instead, we can invoke the methods through the class itself.

The methods will use the standard conversion formulas: F = g5C + 32
and C = 59 (F 32). Each of these methods should have a single
parameter to store the temperature value that is being converted.

Because we want to be able to handle temperatures such as 98.6, we
should use real-number data for the methods’ parameters. Generally
speaking, because Java represents real literals such as 98.6 as doubles,
the double type is more widely used than float. Because doubles are
more widely used in Java, using double wherever a floating point value is
needed will cut down on the number of implicit data conversions that a
program would have to perform. Therefore, each of our conversion meth-
ods should take a double parameter and return a double result. These
considerations lead

VAN ERIeIE SV IVIINIER I N umeric Types. Java uses the int type for
integer literals and double for real-number literals. When possible,
using int and double for numeric variables and parameters reduces
the number of implicit conversions a program would have to perform.

Implementation: Temperature

The implementation of the Temperature class is shown in Figure 5.5.
Note that because celsToFahr() uses the double value temp in its cal-
culation, it uses floating-point literals (9.0, 5.0, and 32.0) in its conversion
expression. This helps to reduce the reliance on Java’s built-in promo-
tion rules, which can lead to subtle errors. For example, to the design
shown in Figure 5.4, suppose we had written what looks like an
equivalent expression using integer literals:

‘ return(9 /5 temp+ 32); // Error: equals (temp + 32)

Because 9 divided by 5 gives the integer result 1, this expression is always
equivalent to temp + 32, which is not the correct conversion formula. This
kind of subtle semantic error can be avoided if you avoid mixing

What methods do we need?

F=C+ 9/5+32
C=(F-32) *5/9

[

Temperature /

+Temperature() /
tfahrToCels(in fahr : double) : double
trcelsToFahr(in cels : double) : double

Figure 5.4: The Temperature
class. Note that static elements
are underlined in UML. (NEEDS
RE-VISION)

Semantic error



Testing strategy

Designing test data

220 CHAPTER 5 Java Data and Operators
types wherever possible.

SN HRelelzVANVIVIINERRIE]  Don’t Mix Types. You can reduce the
incidence of semantic errors caused by implicit type conversions if,
whenever possible, you explicitly change all the literals in an
expression to the same type.

Testing and Debugging

The next question to be addressed is how should this program be tested?
As always, you should test the program in a stepwise fashion. As each
method is coded, you should test it both in isolation and in combination
with the other methods, if possible.

Also, you should develop appropriate test data. It is not enough to just
plug in any values. The values you use should test for certain potential
problems. For this program, the following tests are appropriate:

Test converting 0 degrees C to 32 degrees F.
Test converting 100 degrees C to 212 degrees F.
Test converting 212 degrees F to 100 degrees C.

Test converting 32 degrees F to 0 degrees C.

The first two tests use the celsToFahr() method to test the freezing point
and boiling point temperatures, two boundary values for this prob-lem. A
boundary value is a value at the beginning or end of the range of values
that a variable or calculation is meant to represent. The second pair of
tests performs similar checks with the fahrToCels() method. One

public class Temperature
f
public Temperature () fg

public static doublefahrToCels(doubletemp)
f return (5.0(temp 32.0)/9.0);
gublic static doublecelsToFahr(doubletemp)
f return (9.0temp/ 5.0 + 32.0);

g

g// Temperature

Figure 5.5: The Temperature class.



SECTION 5.5Numeric Processing Examples 221

advantage of using these particular values is that we know what results
the methods should return.

SIS SSEGIFAERRISS (€] Test Data. Developing appropriate test
data is an important part of program design. One type of test data
should check the boundaries of the particular calculations you are
making.

NA\ANb] =R BIEleliN[€n s Test, Test, Test! The fact that your program
runs correctly on some data is ho guarantee of its correctness. The
more testing, and the more careful the testing you do, the better.

The TemperatureUl Class

The purpose of the TemperatureUl class is to serve as a user interface—
that is, as an interface between the user and a Temperature object. It will
accept a Fahrenheit or Celsius temperature from the user, pass it to one
of the public methods of the Temperature object for conversion, and
display the result that is returned.

As we discussed in Chapter 4, the user interface can take various forms,
ranging from a command-line interface to a graphical interface. Figure 5.6
shows a design for the user interface based on the command-line interface
developed in Chapter 4. The TemperatureUl uses a KeyboardReader to
handle interaction with the user and uses static methods in the Temperature
class to perform the temperature conversions.

Temperaturell

- temp: Temperature

- reader: KeyboardReader
+ runi)

+ maind )

Uses

Uses Temperature

+ Temperature()
+ celsToFahr{double): double
+ fahrToCels{double): double

. 4
KeyboardReader

SELF-STUDY EXERCISES

Figure 5.6: A command-line user
interface.



Applet Buttons

Input Temperature 5>
I
oC

[CtoF| [Ft
TextFields

Conversion Result:

45C =1130F

Labels

Figure 5.7: Layout design of a
GUI that performs temperature
con-versions.

222 CHAPTER 5  Java Data and Operators

EXERCISE 5.1 Following the design in Figure 5.6, implement the
TemperatureUl class and use it to test the methods in Temperature
class. The run() method should use an input-process-output algorithm:
Prompt the user for input, perform the necessary processing, and output
the result. Note that because Temperature’s conversion methods are
class methods, you do not need to instantiate a Temperature object in
this project. You can invoke the conversion methods directly through the
Temperature class:

|doub|e fahr = Temperature.celsToFahr(98.6);

EXERCISE 5.2 Following the design for the GUI developed in Chap-ter
4, implement a GUI to use for testing the Temperature class. The GUI
should have the layout shown in Figure 5.7.

5.5.3 Example: Using Class Constants

As we noted in Chapter 0, in addition to instance variables, which are
associated with instances (objects) of a class, Java also allows class
vari-ables, which are associated with the class itself. One of the most
common uses of such variables is to define named constants to replace
literal val-ues. A named constant is a variable that cannot be changed
once it has been given an initial value. In this section, we use our
running example, OneRowNim, to illustrate using class constants.

Recall that methods and variables that are associated with a class must
be declared with the static modifier. If a variable is declared static, there is
exactly one copy of that variable created no matter how many times its class
is instantiated. To turn a variable into a constant, it must be declared with the
final modifier. Thus, the following would be exam-ples of a class constants,

constant values that are associated with the class
rather than with its instances:

public static final int PLAYERONE= 1
public static final int PLAYERTWO = 2
public static final int MAXPICKUP = 3;
public static final int MAXSTICKS= 7

The final modifier indicates that the value of a variable cannot be
changed. When final is used in a variable declaration, the variable must
be assigned an initial value. After a final variable is properly declared, it
is a syntax error to attempt to try to change its value. For example, given
the preceding declarations, the following assignment statement would
cause a compiler error:

| PLAYER ONE = /' Syntax error; PLAYERONE is a constant

_ 5;

Note how we use uppercase letters and underscore characters (_) in the
names of constants. This is a convention that professional Java program-
mers follow, and its purpose is to make it easy to distinguish the constants



&

e

7,

e

SECTION 5.5Numeric Processing Examples 223

from the variables in a program. This makes the program easier to read
and understand.

SN ERIeIE RV IN[ERRIEAR eadability. To make your programs
more readable, use uppercase font for constant identifiers.

Another way that named constants improve the readability of a pro-

gram is by replacing the reliance on literal values. For example, for the
OneRowNim class, compare the following two if conditions:

f  (um<1 jjnum>3 jjnum>nSticks) ...
if (num<1 jinum>MAXRICKUP jjnum>nSticks) ...

Clearly, the second condition is easier to read and understand. In the first
condition, we have no good idea what the literal value 3 represents. In the
second, we know that MAX PICKUP represents the most sticks a player
can pick up.
Thus, to make OneRowNim more readable, we should replace all occur-
rences of the literal value 3 with the constant MAX PICKUP. This same
principle would apply to some of the other literal values in the program.
Thus, instead of using 1 and 2 to represent the two players, we could use Readability

PLAYER_ONE and PLAYER_TWO to make methods such as the following
easier to read and understand:

ublic int getPlayer()
f i f (onePlaysNext )
return PLAYER ONE;
elsereturn PLAYER TWO;

g// getPlayer()

ARSIl IE VNIV INIERIIEAR eadability. To make your programs
more readable, use named constants instead of literal values.

Another advantage of named constants (over literals) is that their use makes

the program easier to modify and maintain. For example, suppose

that we decide to change OneRowNim so that the maximum number of Maintainability
sticks that can be picked up is 4 instead of 3. If we used literal values, we would have to
change all occurrences of 4 that were used to represent the




224 CHAPTER 5  Java Data and Operators

maximum pick up. If we used a named constant, we need only change its declaration
to:

| public staticfinal int MAXPICKUP = 4;

NN S SN =RISS (€] Maintainability. Constants should be
used instead of literal values in a program. This will make the
program easier to modify and maintain.

So far, all of the examples we have presented show why named con-
stants (but not necessarily class constants) are useful. Not all constants
are class constants. That is, not all constants are declared static. How-
ever, the idea of associating constants with a class makes good sense.
In addition to saving memory resources, by creating just a single copy of
the constant, constants such as MAX_STICKS and PLAYER_ONE make
more conceptual sense to associate with the class itself rather than with
any particular OneRowNim instance.

Class constants are used extensively in the Java class library. For ex-
ample, as we saw in Chapter 2, Java’s various built-in colors are rep-
resented as constants of the java.awt.Color class—Color.blue and
Color.red. Similarly, java.awt.Label uses int constants to specify how a
label’s text should be aligned: Label. CENTER.

Another advantage of class constants is that they can be used before
instances of the class exist. For example, a class constant (as opposed
to an instance constant) may be used during object instantiation:

\ OneRowNim game = new OneRowNim(OneRowNim . MAX STICKS ) ;

Note how we use the name of the class to refer to the class constant. Of
course, MAX STICKS has to be a public variable in order to be
accessible outside the class. To use MAX STICKS as a constructor
argument it has to be a class constant because at this point in the
program there are no instances of OneRowNim. A new version of
OneRowNim that uses class constants is shown in Figure 5.8.

It is important to note that Java also allows class constants to be
referenced through an instance of the class. Thus, once we have
instantiated game, we can refer to MAX STICKS with either
OneRowNim.MAX STICKS or game.MAX STICKS.

SELF-STUDY EXERCISE
EXERCISE 5.3 Implement a command-line interface class named
KBTestOneRowNim, that uses our new version of OneRowNim. Make
use of the MAX STICKS and MAX PICKUP in the user interface.
5.5.4 OBJECT-ORIENTED DESIGN:

Information Hiding
The fact that our new versions of OneRowNim—we’ve developed two new
versions in this chapter—are backward compatible with the previous version



SECTION 5.5Numeric Processing Examples

225

\public class OneRowNim
f public static final int PLAYERONE= 1;
public static final int PLAYERTWO= 2;
public static final int MAXPICKUP= 3;
public static final int MAXSTICKS= 11;
public static final boolean GAME OVER= false;

private intnSticks =MAXSTICKS;
private boolean onePlaysNext = true;

public OneRowNim ()
f
g//OneRowNim() constructorl
public OneRowNim(int sticks)
f nSticks = sticks;
g //OneRowNim() constructor2
public OneRowNim(int sticks, int starter)
f nSticks = sticks;
onePlaysNext = (starter==PLAYER-ONE);
g //OneRowNim() constructor3
public boolean takeSticks (intnum)

f if (num<1l jj num>MAXRICKUP jj num>nSticks)
return false; /I Error
else /I Valid move

f nSticks = nSticks num;
onePlaysNext = ! onePlaysNext ;
returntrue;

g /lelse

g//takeSticks()
public int getSticks()
return nSticks;

/lgetSticks()

9
public int getPlayer()
f i f (onePlaysNext)
returnPLAYER ONE ;
elsereturnPLAYERTWO;
g//getPlayer()
public boolean gameOver ()
f return (nSticks<=0);
g// gameOver()
public int getWinner ()
f if (nSticks<1)
return getPlayer();
elsereturn 0; /l Game is not over
g// getWinner()
public String report()

+ + getPlayer() +
g Il report()

g// OneRowNim class

f return ( + getSticks()

)

Figure 5.8: This version of OneRowNim uses named constants.



Preserving the public interface

Information hiding

226 CHAPTER 5 Java Data and Operators

is due in large part to the way we have divided up its public and private
elements. Because the new versions still present the same public interface,
programs that use the OneRowNim class, such as the OneRowNimApp from
Chapter 4 (Fig. 4.24), can continue to use the class without changing a
single line of their own code. To confirm this, see the Self-Study Exercise
at the end of this section.

Although we have made significant changes to the underlying rep-
resentation of OneRowNim, the implementation details—its data and
algorithms—are hidden from other objects. As long as OneRowNim’s pub-
lic interface remains compatible with the old version, changes to its pri-
vate elements won’t cause any inconvenience to those objects that were
dependent on the old version. This ability to change the underlying im-
plementation without affecting the outward functionality of a class is one
of the great benefits of the information hiding principle.

JAVA EFFECTIVE DESIGN Information Hiding. In designing a
class, other objects should be given access just to the information they
need and nothing more.

The lesson to be learned here is that the public parts of a class should
be restricted to just those parts that must be accessible to other objects.
Everything else should be private. Things work better, in Java program-
ming and in the real world, when objects are designed with the principle
of information hiding in mind.

SELF-STUDY EXERCISE

EXERCISE 5.4 To confirm that our new version of OneRowNim still
works correctly with the user interfaces we developed in Chapter 4, com-
pile and run it with OneRowNimApp (Fig. 4.24).

5.5.5 Example: A Winning Algorithm for One Row Nim

Now that we have access to numeric data types and operators, lets de-
velop an algorithm that can win the One Row Nim game. Recall that in
Chapter 4 we left things such that when the computer moves, it al-ways
takes 1 stick. Let’s replace that strategy with a more sophisticated
approach.

If you have played One Row Nim, you have probably noticed that in a
game with 21 sticks, you can always win the game if you leave your
opponent with 1, 5, 9, 13, 17, or 21 sticks. This is obvious for the case of
1 stick. For the case where you leave your opponent 5 sticks, ho matter
what the opponent does, you can make a move that leaves the other
player with 1 stick. For example, if your opponent takes 1 stick, you can
take 3; if your opponent takes 2, you can take 2; and, if your opponent
takes 3, you can take 1. In any case, you can win the game by making
the right move, if you have left your opponent with 5 sticks. The same
arguments apply for the other values: 9, 13, 17, and 21.



SECTION 5.5Numeric Processing Examples 227

What relationship is common to the numbers in this set? Notice that
if you take the remainder after dividing each of these numbers by 4 you

always get 1:
1%4 =1
5%4 =1
9%4 =1
13%4 =1
17%4 ==
21%4 ==

Thus, we can base our winning strategy on the goal of leaving the oppo-
nent with a number of sticks, N, such that N % 4 equals 1.

To determine how many sticks to take in order to leave the opponent
with N, we need to use a little algebra. Let’s suppose that sticksLeft
represents the number of sticks left before our turn. The first thing we
have to acknowledge is that if sticksLeft % 4 == 1, then we have been
left with 1, 5, 9, 13, and so on, sticks, so we cannot force a win. In that
case, it doesn’t matter how many sticks we pick up. Our opponent should
win the game.

So, let’'s suppose that sticksLeft % 4 != 1, and let M be the number of

sticks to pickup in order to leave our opponent with N, such that N % 4 ==
1. Then we have the following two equations:

ticksLeft M==N

N%4==1
We can combine these into a single equation, which can be simplified as
follows:
(sticksLeft M) %4==1

If sticksLeft - M leaves a remainder of 1 when divided by 4, that means that
sticksLeft - M is equal some integer quotient, Q times 4 plus 1:

ksticksLeft M) == (Q4)+1

By adding M to both sides and subtracting 1 from both sides of this equa-
tion, we get:

[(sticksLeft 1) == (Q4) +M

This equation is saying that (sticksLeft - 1) % 4 == M. That is, that when
you divide sticksLeft-1 by 4, you will get a remainder of M, which is the

number of sticks you should pick up. Thus, to decide how many sticks to
take, we want to compute:

| M==(sticksLeft 1)%4




228 CHAPTER 5 Java Data and Operators
To verify this, let's look at some examples:

sticksLeft (sticksLeft 1)%4 sticksLeft
Before After
9 9O 1) %4 =0 Illegal Move
8 (8 1)%4 == 5
7 7 1)%4 == 5
6 (6 1)%4 ==1 5
5 G 1) %4 =0 Illegal Move

The examples in this table show that when we use (sticksLeft-1 % 4) to
calculate our move, we always leave our opponent with a losing situation.
Note that when sticksLeft equals 9 or 5, we can’t apply this strategy
because it would lead to an illegal move.

Let’s now convert this algorithm into Java code. In addition to incor-

porating our winning strategy, this move() method makes use of two
important Math class methods:

public int move ()
fint sticksLeft =nim.getSticks();// Getnumber of sticks

if (sticksLeft % (nim.MAXPICKUP + 1) = 1) 1f winnable
return (sticksLeft 1) % (nim.MAXPICKUP +1);
else f /I Else pickrandom

i nt maxPickup = Math . min (nim . MAX-PICKUP, sticksLeft);
return 1+ (int)(Math.random () maxPickup);
g
9

The move() method will return an int representing the best move pos-
sible. It begins by getting the number of sticks left from the OneRowNim
object, which is referred to as nim in this case. It then checks whether it
can win by computing (sticksLeft-1) % 4. However, note that rather than
use the literal value 4, we use the named constant MAX PICKUP, which is
accessible through the nim object. This is an especially good use for the
class constant because it makes our algorithm completely general — that is,
our winning strategy will continue to work even if the game is changed

so that the maximum pickup is 5 or 6. The then clause computes and re-
turns (sticksLeft-1) % nim.MAX_PICKUP+1, but here again it uses the class
constant.

The else clause would be used when it is not possible to make a winning
move. In this case we want to choose a random number of sticks between
1 and some maximum number. The maximum number depends on how
many sticks are left. If there are more than 3 sticks left, then the most we
can pick up is 3, so we want a random number between 1 and 3. However,
if there are 2 sticks left, then the most we can pick up is 2 and we want a

random number between 1 and 2. Note how we use the Math.min()
method to decide the maximum number of sticks that can be picked up:

|i nt maxPickup = Math . min (nim . MAX PICKUP, sticksLeft);




SECTION 5.6~ From the Java Libraryjava.text. NumberFormat 229

The min() method returns the minimum value between its two argu-
ments.

Finally, note how we use the Math.random() method to calculate a
random number between 1 and the maximum:

|1 + (int)(Math.random ( )maxPickup ) ; |

The random() method returns a real number between 0 and 0.999999 —
that is, a real number between 0 and 1 but not including 1:

|0<:Math.random()<1.0 |

If we multiply Math.random() times 2, the result would be a value be-
tween 0 and 1.9999999. Similarly, if we multiplied it by 3, the result would
be a value between 0 and 2.9999999. In order to use the random value, we

have to convert it into an integer, which is done by using the (int) cast
operator:

I( int)(Math.random ( )maxPickup ) ; |

Recall that when a double is cast into an int, Java just throws away the
fractional part. Therefore, this expression will give us a value between 0
and maxPickup-1. If maxPickup is 3, this will give a value between 0

and 2, whereas we want a random value between 1 and 3. To achieve this
desired value, we merely add 1 to the result. Thus, using the expression

|1 + (int)(Math.random ( )maxPickup ) |

gives us a random number between 1 and maxPickup, where
maxPickup is either 1, 2, or 3, depending on the situation of the game
at that point.

SELF-STUDY EXERCISE

EXERCISE 5.5 Implement a class named NimPlayer that incorporates NimPlayer
the move() method designed in this section. The class should implement
the design shown in Figure 5.9. That is, in addition to the move()
method, it should have an instance variable, nim, which will serve as a K NimPlayer{g:0neRowNim)
reference to the OneRowNim game. Its constructor method should take 4 move(): int

a OneRowNim parameter, allowing the NimPlayer to be given a
reference when it is instantiated.

= nim: OneRowNim

EXERCISE 5.6 Modify OneRowNim’s command-line interface to play
One Row Nim between the user and the computer, where the NimPlayer

_ _ _ _ Figure 5.9: The NimPlayer class.
implemented in the previous exercise represents the computer.

56 From the Java lerary wwuw. java.sun.com/j2se/1.5.0/docs/api/
java.text.NumberFormat

ALTHOUGH the Math.round() method is useful for rounding num-

NumBERFORMAT

+getinstance() : NumberFormat
+getCurrencylnstance() : NumberFormat
+getPercentinstance() : NumberFormat
+format(in n : double) : String
+format(in n : long) : String




BankCD
- principal: double
- rate: double

- vears: double

+ BankCD{ pdouble,rdouble,
wdouble)

+ calcyear|y( ) double

4+ calcDaily( ) double

Figure 5.11: The BankCD class.

230 CHAPTER 5 Java Data and Operators

bers, it is not suitable for business applications. Even for rounded values,
Java will drop trailing zeroes. So a value such as $10,000.00 would be
output as $10000.0. This wouldn’t be acceptable for a business report.

Fortunately, Java supplies the java.text. NumberFormat class pre-
cisely for the task of representing numbers as dollar amounts, percentages,
and other formats (Fig. 5.10).

The NumberFormat class is an abstract class, which means that
it cannot be directly instantiated. Instead, you would use its static
getinstance() methods to create an instance that can then be used for
the desired formatting tasks.

Once a NumberFormat instance has been created, its format()
method can be used to put a number into a particular format. The
setMaximumFractionDigits() and setMaximumIntegerDigits()
methods can be used to control the number of digits before and after the
decimal point.

For example, the following statements can be used to format a decimal
number as a currency string in dollars and cents:

NumberFormat dollars = NumberFormat.getCurrencylnstance();
System.out.printin(dollars.format(10962.555));

These statements would cause the value 10962.555 to be shown as
$10,962.56. Similarly, the statements,

NumberFormat percent = NumberFormat.getPercentlinstance();
p ercent.setMaximumFractionDigits (2 ) ;
System .out.printin(percent.format(6.55));

would display the value 6.55 as 6.55%. The utility of the Math and
NumberFormat classes illustrates the following principle:

VAN SRS II=bI=SIEN]  Code Reuse. Often the best way to solve
a programming task is to find the appropriate methods in the Java
class library.

SELF-STUDY EXERCISE

EXERCISE 5.7 A Certificate of Deposit (CD) is an investment instru-
ment that accumulates interest at a given rate for an initial principal over
a fixed number of years. The formula for compounding interest is shown
in Table 5.11. It assumes that interest is compounded annually. For daily
compounding, the annual rate must be divided by 365, and the com-

pounding period must be multiplied by 365, giving: a = p(1 + r:365)365n.

Implement a BankCD class that calculates the maturity value of a CD.
Fig-ure 5.11 gives the design of the class. It should have three instance
vari-ables for the CD’s principal, rate, and years. Its constructor method
sets the initial values of these variables when a BankCD is instantiated.
Its two public methods calculate the maturity value using yearly and daily



SECTION 5.7Character Data and Operators 231

compounding interest, respectively. Use the Math.pow() method to cal-
culate maturity values. For example, the following expression calculates
maturity value with annual compounding:

|principa| Math . pow(1 + rate, years)

TABLE 5.12 Formula for calculating compound interest

a=pl+ r)n where

a is the CD’s value at the end of the nth year
p is the principal or original investment amount
r is the annual interest rate

n is the number of years or the compounding period

EXERCISE 5.8 Design a command-line user interface to the BankCD
class that lets the user input principal, interest rate, and years, and re-
ports the CD’s maturity value with both yearly and daily compounding.
Use NumberFormat objects to display percentages and dollar figures in
an appropriate format. The program’s output should look something like
the following (user’s inputs are in cyan):

OUTPUT

kkkkkkkkkkkkkkkkkkkkkkkk K*kkkkkkkkkkkkkkkkkkk

Compare daily and annual compounding for a Bank CD. Input CD
initial principal, e.g. 1000.55 > 2500 Input CD interest rate, e.g. 6.5
>7.8

Input the number of years to maturity, e.g., 10.5 > 5 For Principal =
$2,500.00 Rate= 7.8% Years=5.0

The maturity value compounded yearly is $3,639.43 The maturity
value compounded daily is: $3,692.30
OUTPUT

kkkkkkkkkkkkkkkkkkkkkkkk *kkkkkkkkkkkkkkkkhkkk

5.7 Character Data and Operators

Another primitive data type in Java is the character type, char. A char-

acter in Java is represented by a 16-bit unsigned integer. This means that

a total of 21° or 65536 different Unicode characters can be represented, Unicode
corresponding to the integer values 0 to 65535. The Unicode character set

is an international standard that has been developed to enable computer

languages to represent characters in a wide variety of languages, not just
English. Detailed information about this encoding can be obtained at

|h ttp://'www. unicode . org/ |

It is customary in programming languages to use unsigned integers to

ters(a;:::;z A;:::; Z), punctuation symbols (such as .;, ““! -), and non-
printing control characters (LINE FEED, ESCAPE, CARRIAGE.RETURN,
: 1) that make up the computer’s character set are represented in the com-
puter's memory by integers. A more traditional set of characters is the



232 CHAPTER 5  Java Data and Operators

ASCII (American Standard Code for Information Interchange) character set. ASCI|
cod ASCIl is based on a 7-bit code and, therefore, defines 27 or 128 different

characters, corresponding to the integer values 0 to 127. In order to make
Unicode backward compatible with ASCII systems, the first 128 Unicode
characters are identical to the ASCII characters. Thus, in both the ASCII
and Unicode encoding, the printable characters have the integer values

shown in Table 5.13.

TABLE 5.13 ASCII codes for selected characters

Code 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Char SP | " # $% & ' ( ) +

Code 48 49 50 51 52 53 54 55 56 57
Char 0 1 2 3 4 5 6 7 8 9

Code 58 59 60 61 62 63 64
Char Do < =2 ? @

, . /

Code 65 66 67 68 69 70 71 72 73 74 75 76 77

Char A B CD E F GHI J KL M

Code 78 79 80 81 82 83 84 85 86 87 88 89 90

Char NO P Q R S T UVW XY ZzZ

Code 91 92 93 94 95 96
Char [ n ] ° - ‘

Code 97 98 99 100 101102 103 104 105 106 107 108 109
Char a b ¢ d e f g h i k I m

Code 110 111 112 113 114 115 116 117 118 119 120 121122

Char n o p q r S t u Vo ow

Code 123 124 125 126
Char f j g -

X y

z

5.7.1 Character to Integer Conversions

Is ‘A’ a character or an integer? The fact that character data are stored
as integers in the computer’s memory can cause some confusion about
whether a given piece of data is a character or an integer. In other words,
when is a character, for example ‘A’, treated as the integer (65) instead of
as the character ‘A’? The rule in Java is that a character literal—'a’ or ‘A’
or ‘0’ or “?’—is always treated as a character, unless we explicitly tell Java

to treat it as an integer. So if we display a literal’s value

System.out.println( );



SECTION 5.7Character Data and Operators 233

the letter ‘a’ will be displayed. Similarly, if we assign ‘a’ to a char variable
and then display the variable’s value,

har c¢h = ; i
|System.out.print|n(ch); /Il Displays ’a’ |

the letter ‘a’ will be shown. If, on the other hand, we wish to output a
character’s integer value, we must use an explicit cast operator as follows:

ISystem .out.printin((int) ) ; /I Displays 97 |

A cast operation, such as (int), converts one type of data ('a’) into an-
other (97). This is known as a type conversion. Similarly, if we wish to
store a character’s integer value in a variable, we can cast the char into an

int as follows:
int k= (int) ; /I Converts 'a’to 97
System.out.println(k); //Dpisplays 97
As these examples show, a cast is a type conversion operator. Javaal-  The cast operator

lows a wide variety of both explicit and implicit type conversions. Cer-
tain conversions (for example, promotions) take place when methods are
invoked, when assignment statements are executed, when expressions are
evaluated, and so on.

Type conversion in Java is governed by several rules and exceptions. In
some cases Java allows the programmer to make implicit cast conversions.

For example, in the following assignment a char is converted to an int
even though no explicit cast operator is used:

har ch;
int k;
k= Ch; /l convertachar into an int
Java permits this conversion because no information will be lost. A char-  Implicit type conversion

acter char is represented in 16 bits whereas an int is represented in 32

bits. This is like trying to put a small object into a large box. Space will be

left over, but the object will fit inside without being damaged. Similarly,

storing a 16-bit char in a 32-bit int will leave the extra 16 bits unused.

This widening primitive conversion changes one primitive type (char) into

a wider one (int), where a type’s width is the number of bits used in its Widening conversion
representation.

On the other hand, trying to assign an int value to a char variable
leads to a syntax error:

har ch;
int k;

|Ch =k; // Syntax error: can’t assign int to char

Trying to assign a 32-bit int to 16-bit char is like trying to fit a big object
into an undersized box. The object won't fit unless we shrink it in some



Narrowing conversion

234 CHAPTER 5  Java Data and Operators

way. Java will allow us to assign an int value to a char variable, but only
if we perform an explicit cast on it:

|ch:(char)k;// Explicit cast of int kinto char ch

The (char) cast operation performs a careful “shrinking” of the int by
lopping off the last 16 bits of the int. This can be done without loss of
information provided that k’s value is in the range 0 to 65535—that is, in
the range of values that fit into a char variable. This narrowing primitive
conversion changes a wider type (32-bit int) to a narrower type (16-bit
char). Because of the potential here for information loss, it is up to the
programmer to determine that the cast can be performed safely.

SANVZASEANES/NEI=RUIESE  Type Conversion. Java permits implicit
type conversions from a  narrower type to a wider type. A cast operator
must be used when converting a wider type into a narrower type.

The cast operator can be used with any primitive type. It applies to the

variable or expression that immediately follows it. Thus, parentheses
must be used to cast the expression m + n into a char:

char ch = (char)(m+n);

The following statement would cause a syntax error because the cast
operator would only be applied to m:

|char ch = (char)m+n; /I Exror: right side is an int

In the expression on the right-hand side, the character produced by
(char)m will be promoted to an int because it is part of an integer oper-
ation whose result will still be an int. Therefore, it cannot be assigned to
a char without an explicit cast.

SELF-STUDY EXERCISE

5.7.2 Lexical Ordering

The order in which the characters of a character set are arranged, their
lexical order, is an important feature of the character set. It especially
comes into play for such tasks as arranging strings in alphabetical order.

Although the actual integer values assigned to the individual char-acters
by ASCII and UNICODE encoding seem somewhat arbitrary, the characters
are, in fact, arranged in a particular order. For example, note that various
sequences of digits, '0’: : ’9’, and letters, ’'a’: : ’z’ and 'A’: : ’Z, are
represented by sequences of integers (Table 5.11). This makes it possible to
represent the lexical order of the characters in terms of the less than
relationship among integers. The fact that ‘a’ comes before ‘f’ in alphabetical
order is represented by the fact that 97 (the integer code for ‘@’) is less than
102 (the integer code for ‘f"). Similarly, the digit ‘5’ comes before the digit ‘9’
in an alphabetical sequence because 53 (the integer code for ‘5’) is less than
57 (the integer code for ‘9’).



SECTION 5.8Example: Character Conversions 235

This ordering relationship extends throughout the character set. Thus,
it is also the case that ‘A’ comes before ‘a’ in the lexical ordering
because 65 (the integer code for ‘A’) is less than 97 (the integer code for
‘a’). Similarly, the character ‘[ comes before ‘}' because its integer code
(91) is less than 125, the integer code for }.

5.7.3 Relational Operators

Given the lexical ordering of the char type, the following relational oper-
ators can be defined: <, >, <=, >=, ==, I=. Given any two characters, chl
and ch2, the expression chl < ch2 is true if and only if the integer value

of chl is less than the integer value of ch2. In this case we say that chl char relations

precedes ch2 in lexical order. Similarly, the expression chl > ch2 is true if

and only if the integer value of chl is greater than the integer value of
ch2. In this case we say that chl follows ch2. And so on for the other
relational operators. This means that we can perform comparison
operations on any two character operands (Table 5.14).

TABLE 5.14 Relational operations on characters

Operation Operator  Java True Expression
Precedes < chl < ch2 a0 <obo
Follows > chl >ch2 oco > UgY
Precedes or equals <= chl<=ch2 Ya"<=Y"
Follows or equals >= ch2>=ch1 Ya">=Y"
Equal to == chl==ch2 op =="a"

Not equal to = chl!=ch2 oa!= 0p0

5.8 Example: Character Conversions

Another interesting implication of representing the characters as integers
is that we can represent various character operations in terms of inte-ger
operations. For example, suppose we want to capitalize a lower-case
letter. Table 5.13 shows that the entire sequence of lowercase let-ters
(a’ ... ’2") is displaced by 32 from the sequence of uppercase letters (A’

.’Z’), so we can convert any lowercase letter into its corresponding
uppercase letter by subtracting 32 from its integer value, provided we
perform an explicit cast on the result. When we perform the cast (char)
(a’ - 32), the resulting value is ’A’, as the following example shows:

| (char)( 32) ==

Lowercase to uppercase



Uppercase to lowercase

Type error

236 CHAPTER 5 Java Data and Operators

Recall that in evaluating ’a’ - 32 Java will promote ‘a’ to an int and

then perform the subtraction. Thus, a step-by-step evaluation of the ex-
pression would go as follows:

tep 1. (char)((int) 32)/Promote 'a’ to int
Step 2. (char)(97 32) // Subtract

Step 3. (char) (65) /I Cast result toachar
Step 4. /I Results in A’

Similarly, we can convert an uppercase letter into the corresponding low-

ercase letter by simply adding 32 to its integer code and casting the result
back to a char:

(char)(J +32) ==>

We can group these ideas into a method that performs conversion from
lowercase to uppercase:

har toUpperCase ( char ch) f

if ((ch>= ) && (ch <= ))
return ch 32, //Error: can't return an int
return ch;

g

This method takes a single char parameter and returns a char value. It
begins by checking if ch is a lowercase letter—that is, if ch falls between
‘a’ and ‘Z’ inclusive. If so, it returns the result of subtracting 32 from ch. If
not, it returns ch unchanged. However, the method contains a syntax error
that becomes apparent if we trace through its steps. If we invoke it with
the expression toUpperCase(’b’), then since ‘b’ is between ‘a’ and ‘Z’,

the method will return ‘b’ 32. Because the integer value of ‘b’ is 98, it
will return 98 32 or 66, which is the integer code for the character ‘B’.

However, the method is supposed to return a char, so this last statement
will generate the following syntax error:

Incompatible type forreturn. An explicit cast needed
toconvertintto char.

>> return ch 32 ;

>> "

In order to avoid this error, the result must be converted back to char
before it can be returned:

har toUpperCase (char ch) f
if ((ch>= ) && (ch <= ))
return (char)(ch 32); /1 Explicit cast
return ch;

lg




SECTION 5.9Problem Solving = Representation + Action 237

Another common type of conversion is to convert a digit to its correspond-ing
integer value. For example, we convert the character ‘9’ to the integer 9 by
making use of the fact that the digit ‘9’ is 9 characters beyond the digit ‘0’ in
the lexical order. Therefore, subtracting ‘0’ from ‘9’ gives integer 9 as

result:

( ) ==>(57 48) ==> 9

More generally, the expression ch ‘0’ will convert any digit, ch, to its

integer value. We can encapsulate these ideas into a method that converts
any digit into its corresponding integer value:

ntdigitTolnteger(char ch) f
if ((ch>= ) && (ch <= ))

| return ch ;

| return 1 ;

l g

This method takes a single char parameter and returns an int. It first
checks that ch is a valid digit, and if so, it subtracts the character ‘0’ from
it. If not, the method just returns 1, which indicates that the method
received an invalid input parameter. Obviously, when an object invokes
this method, it should first make sure that the value it passes is in fact a
digit.

The Java application program shown in Figure 5.12 illustrates sev-eral
of the ideas discussed in this section. Note that both the digitTolnteger()
and toUpperCase() are declared static. This al-lows us to call them
directly from the (static) main() method, as useful and justifiable shortcut
if, as in this case, we are just testing the methods.

5.9 Problem Solving = Representation + Action

As you have seen in this chapter, designing classes involves a careful in-
terplay between representation (data) and action (methods). Our several
modifications to the OneRowNim class illustrate that the data used to
rep-resent an object’s state can either complicate or simplify the design
of the methods needed to solve a problem.

We hope that it is becoming clear to you that in writing object-oriented
programs, choosing an appropriate data representation is just as impor-
tant as choosing the correct algorithm. The concept of an object allows
us to encapsulate representation and action into a single entity. It is a
very natural way to approach problem solving.

If you look closely enough at any problem, you will find this close re-
lationship between representation and action. For example, compare the
task of performing multiplication using Arabic numerals—65 * 12 = 380—
and the same task using Roman numerals—LXV * XII = DCCLXXX. It's
doubtful that our science and technology would be where they are today

Digit to integer



238 CHAPTER 5  Java Data and Operators

public class Testf
public static void main(String argv[]) f
char ch ="a’; /l Local variables
intk=(int)' b’;
System.out.printlin(ch);
System.out.printin(k);
ch = (char)k; /I Cast needed here
System .out.println(ch);
System.out.println (toUpperCase('a’));
System .out.println (toUpperCase (ch));
System.out.printin(digitTolnteger('77));
g
public static char toUpperCase (char ch) f
if ((ch>="a’)&&(ch<="2"))
return (char)(ch 32);
return ch;
g
public static intdigitTolnteger(char ch)f
if ((ch>="0")&&(ch<="9"))
return ch 0}
return 1;

g
g// Test

Figure 5.12: A Java program illustrating character conversions. When
run, the program will generate the following outputs, one per line: a, 98,
b, A B, 7.

if our civilization had to rely forever on the Roman way of representing
numbers!

JAVA EFFECTIVE DESIGNEEEJEEEhIC Tl = Tg[s) /}55
Action. Representation (data) and action (methods) are equally /
important parts of the problem-solving process.

CHAPTER SUMMARY

Technical Terms

action named constant short-circuit
binary operator operand evaluation
binary digit (bit) operator overloading type conversion
boundary value precedence order unary operator
cast operation promotion Unicode

class constant round off error representation

input-process-output

Summary of Important Points



CHAPTER 5Chapter Summary

The way we approach a problem can often help or hinder us in our
ability to solve it. Choosing an appropriate representation for a
problem is often the key to solving it.

239

In order to evaluate complex expressions, it is necessary to understand

the precedence order and associativity of the operators involved. Paren-
theses can always be used to override an operator’s built-in precedence.

is 3, while (7.0/2) is 3.0.

Java provides several types of integer data, including the 8-bit byte, 16-
bit short, 32-bit int, and 64-bit long types. Unless otherwise specified,

integer literals are represented as int data in a Java program.
Java provides two types of floating-point data, the 32-bit float type
and the 64-bit double type. Unless otherwise specified, floating-point
literals are represented as double data.
In general, if a data type uses n bits in its representation, then it can

represent 2" different values.
The fact that Java’s primitive types are defined in terms of a specific
number of bits is one way that Java promotes platform independence.
It is necessary to distinguish integer operations from floating-point op-
erations even though the same symbols are used. For example, (7/2)

In revising a class that is used by other classes it is important to pre-
serve as much of the class’s interface as possible.
In Java, character data are based on the Unicode character set,

which provides 216 = 65,536 different character codes. To provide
backward compatibility with the ASCII code, the first 128 characters
are the ASCII coded characters.
Java operators are evaluated according to the precedence hierarchy
shown in Table 5.15. The lower the precedence number, the earlier
an operator is evaluated. So the operators at the top of the table are
evalu-ated before operators that occur below them in the table.
Operators at the same precedence level are evaluated according to
their association, either left to right (L to R) or right to left (R to L).

TABLE 5.15 Java operator precedence and associativity table

Order  Operator Operation Association
0 () Parentheses
1 +4--, Postincrement, postdecrement,
dotOperator LtoR
2 | Preincrement, predecrement RtoL
Unary plus, unary minus,
boolean NOT
3 (type) new Type cast, object instantiation R toL
4 * % Multiplication, division, modulus L to R
5 + -+ Addition, subtraction, string
concatenation LtoR
6 <><=>= Relational operators LtoR
7 === Equality operators LtoR
8 A Boolean XOR LtoR
9 && Boolean AND LtoR
10 i Boolean OR LtoR
11 =+=-=*=/=%= Assignment operators RtoL




240

CHAPTER 5

Java Data and Operators

EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.



Chapter 6

Control Structures

OBJECTIVES
After studying this chapter, you will

Be able to solve problems involving repetition.

Understand the differences among various loop structures.

Know the principles used to design effective loops.
Improve your algorithm design skills.

Understand the goals and principles of structured programming.

OUTLINE

6.1 Introduction

6.2 Flow of Control: Repetition Structures

6.3 Counting Loops

6.4 Example: Car Loan

6.5 Graphics Example: Drawing a Checkerboard

6.6 Conditional Loops

6.7 Example: Computing Averages

6.8 Example: Data Validation

6.9 Principles of Loop Design

6.10 The switch Multiway Selection Structure

6.11 Object-Oriented Design: Structured Programming
Special Topic: What Can Be Computed?
Chapter Summary
Solutions to Self-Study Exercises
Exercises

241



242 CHAPTER 6 Control Structures

6.1 Introduction

As we learned in Chapter 3, a control structure is a language element
that changes the flow of control of a program. Thus far, we have used
the if and if/else statements to select between two or more alternate
paths in a program. We have used the while-loop structure to repeat
statements. And we have used method-call-and-return to invoke
methods that carry out certain well-defined tasks in a program.

In this chapter we will extend our repertoire of control structures. We
will introduce the for and do-while statements, both of which are used in
programs that require calculations to be repeated. We will also introduce
the switch statement, which will give us another way, in addition to
if/felse, to select from among several alternate paths in a program.

We begin by introducing the idea of a counting loop, which is used for
repetitive tasks when you know beforehand exactly how many repetitions
are necessary. This type of loop is most often implemented using a for
statement.

We then distinguish two kinds of conditional loops, which are used for
performing repetitive tasks where the number of repetitions depends on
some kind of non-counting condition. These kinds of loops are usually
implemented using Java’s while and do-while statements. We give ex-
amples of several kinds of loop bounds and use them to identify several
useful principles of loop design. Finally, we introduce some of the key
principles of the structured programming approach, a disciplined design
approach that preceded the object-oriented approach.

6.2 Flow of Control: Repetition Structures

As we saw in Chapter 3, a repetition structure is a control structure that
repeats a statement or sequence of statements. Many programming
tasks require a repetition structure. Consider some examples.

You're working for the National Security Agency trying to decipher se-
cret messages intercepted from foreign spies, and you want to count the
number of times a certain letter, “a,” occurs in a document containing N

characters. In this case, you would want to employ something like
the following (pseudocode) algorithm:

initialize totalAs to 0O
for each character in the document
ifthe character is an
add 1 tototalAs
returntotalAs astheresult

You’re working for a caterer who wants to number the invitations to a
client's wedding, so you need to print the numbers between 1 and 5000



SECTION 6.3Counting Loops 243

on the invitation cards (it's a big wedding)! In this case, you want to go
through each number, 1 to 5000, and simply print it out:

for each number, N, from 1 to 5000
print Non the invitationcard

You are helping the forest service in Alaska to track the number of black
bear sightings, and you want to compute the average number of sight-
ings per month. Suppose the user enters each month’s count at the
keyboard, and uses a special number, say, 9999, to signify the end of
the sequence. However, 9999 should not be figured into the average.

This example differs a bit from the preceding ones, because here you
don’t know exactly how many numbers the user will input:

nitialize sumOfBears to 0
initializenumOfMonths to 0
repeatthe following steps
read anumber from the keyboard
if the number is NOT 9999
add it tothe sumOfBears
add 1 to numOfMonths
until the number read is 9999
divide sumOfBears by numOfMonths giving average
return average as the result

We repeat the process of reading numbers and adding them to a run-
ning total “until the number read is 9999.”

Student records are stored in a file and you want to calculate Erika
Wilson’s current GPA. Here we need to perform a repetitive process—

searching through the file for Erika Wilson’s record—but again we
don’t know exactly how many times to repeat the process:

epeatthe following steps

read arecordfrom the file
until Erika Wison’s record is read
compute Erika Wilson’s GPA
return gpaas theresult

As these examples suggest, two types of loops are used: counting loops
and non-counting loops. Counting loops are used whenever you know in
advance exactly how many times an action must be performed. Non-
counting loops are used when the number of repetitions depends on
some condition—for example, the number of data items input from the
keyboard or the input of a particular record from a file.

6.3 Counting Loops

A counting loop, or counter-controlled loop, is a loop in which you know
beforehand how many times it will be repeated. Among the preceding
examples, the first two are counting loops.




Zero indexing

Loop counter

244 CHAPTER 6  Control Structures

Because you know the exact number of times the loop repeats before-
hand, a counting loop can be made dependent on the value of a counter.

For example, if you want to print the word “Hello” 100 times, you can use
the following while structure:

|int k=0;

while (k<100) f
System.out.println( );
k ++;

|
| g

In this case, the counter is the variable k, which counts from 0 through
99—that is, it counts 100 times. Note that we start counting from 0 instead
of 1. Counting from 0 is known as zero indexing and it is a common
programming convention for counting loops. Although it doesn’t really
make any practical difference in this case, later on we will use loops to
process structures, such as strings and arrays, which use zero indexing. It
will be easier to process these structures if our loop counter also starts at 0.

The variable k in this example is called a counter variable or loop counter.
Although it is certainly possible to name the counter variable anything we
like, it is customary to use single letters like i, j, and k as loop counters. The
fundamental feature of a counting loop is that we must know beforehand
exactly how many iterations the loop will take.

VAN SRS RI=bISSiE\] Loop Design. A counting loop can be
used whenever you know  exactly how many times a process must be
repeated.

Although we can use a while-structure to code a counting loop, Java’s

for statement is ideally suited for this purpose. For example, the follow-
ing for statement will also print the word “Hello” 100 times:

’!or (int k= 0; k<100; k++)
System.out.println( );

In fact, this for statement is equivalent to the preceding while structure.
The for statement has the following syntax:

VAVASEANEVANESROINEY For Statement. The for statement has the
ollowing syntax:

for (initializer ; loop entry condition ; updater )
for loop body ;

The for statement begins with the keyword for, which is followed by a
parenthesized list of three expressions separated by semicolons: an ini-
tializer, a loop entry condition, and an updater. Following the paren-
thesized list is the for loop body, which is either a single statement or a
sequence of statements contained in curly brackets, {. . . }.



SECTION 6.3Counting Loops

245

Figure 6.1: Flowchart of the for

‘l J statement.
Initializer <0
< Updater S SR
] 1
//,,,,.z- Loop ““*n\\\ True Statement g
) Coen rgi?ilon ) (oap body) printin("Hello")

6.3.1 The For Structure

Figure 6.1 shows how the for statement works. It might be useful to compare
this flowchart with the flowchart for the the while structure (Fig. 6.2), which
was introduced in Chapter 3. You see that it has exactly the same structure.
First, the initializer is evaluated. Thus, the initializer sets the integer variable
k to 0. Then the loop entry condition, which must be a boolean expression, is
evaluated. If it is true, the body of the loop is executed; if it is false, the body
of the loop is skipped and control passes to the next statement following the
for statement. The updater is evaluated after the loop body is executed. After
completion of the updater, the loop entry condition is reevaluated and the
loop body is either executed again or not, depending on the truth value of
the loop entry condition. This process is repeated until the loop entry
condition becomes false.

Figure 6.2: Flowchart of the while

While Statement While Structure

\L statement and while structure.
J, | Initializer |
/ = Updater
7 . True Y 1
: Condition »~ Statement PN l
v [seere | /,/ Loop
g entry “True,-| Statement
condition (loop body)

False J




Loop variable scope

Loop bound

246 CHAPTER 6 Control Structures

Tracing the order in which the for loop components are evaluated
gives this sequence:

evaluate initializer
evaluate loop entry condition ==>True
executefor loop body;
evaluate updater
evaluate loop entry condition ==>True
executefor loop body;
evaluate updater
evaluate loop entry condition ==>True
executefor loop body;
evaluate updater

evaluate loop entry condition ==>False

As this trace shows, the loop entry condition controls entry to the body
of the loop and will, therefore, be the last thing done before the loop
terminates.

We have followed the standard convention of declaring the counter
variable in the header of the for statement. This restricts the variable’s

scope to the for statement itself. It would be a syntax error to use k outside
the scope of the for loop, as in this example:

or (int k=0; k<100; k++)

System .out.printin( )
/1 Syntax error , kundeclared
System .out.println( +k);

For some problems, it might be necessary to use the loop variable out-
side the scope of the for statement, in which case the variable should be
declared before the for statement. For example, if we want to print the

value of the loop variable, k, after the loop completes, we have to declare
it before the loop:

int k=0; /I Declare the loop variable here
for (k= 0; k<100; k++)

System.out.printin( );
System .out.println( +K); //Touse it here

In this example, the loop will exit when k becomes 100, so “k = 100” will
be printed.

6.3.2 Loop Bounds

A counting loop starts at some initial value and counts O or more itera-
tions. A loop bound is a value that controls how many times a loop is
repeated. A loop will repeat until its loop bound is reached. In a count-ing
loop, the loop entry condition should be a boolean expression that tests
whether the loop’s bound has been reached. Similarly, in a counting loop,
the updater should modify the loop counter so that it makes progress to-




SECTION 6.3Counting Loops 247

ward reaching its bound. Counting loops often increment or decrement
their counter by 1, depending on whether the loop is counting forward
or backward. The following method contains a countdown loop, which

prints 10987 654 32 1BLASTOFF. In this case, progress to-
ward the loop bound is made by decrementing the loop counter:

|pub|ic void countdown () f

for (int k=10; k>0; k )
System.out.print(k+ )
System.out.println( ) |

I
|g//countdown() |

Note in this case that we are using unit indexing instead of zero indexing, Unit indexing
because countdowns repeat, or iterate, from 10 down to 1, not from 10 down to O.

6.3.3 Infinite Loops

If the loop bound is never reached, the loop entry condition will never

become false and the loop will repeat forever. This is known as an

infinite loop. Can you see why each of the following for statements will Infinite loop
result in an infinite loop?

for(int k=0; k<100; k ) /I Infinite loop
System.out.printin( );

for (intk=1;k!=100; k+=2) // Infinite loop
System .out.println( );

for (int k=98; k<100; k=k/ 2)/ Infinite loop
System.out.println( );

In the first example, k starts out at 0 and is decremented on each itera-
tion, taking on values 1; 2; 3, and so on, so k will never reach its loop
bound.

In the second example, k starts out at 1 and is incremented by 2 on
each iteration, taking on the values 3, 5, 7, and so on. Because all these
values are odd, k will never equal 100. A much safer loop bound in this
case would be k <= 100.

In the third example, k starts out at 98 and is halved on each iteration,
taking on the values 49, 24, 12, 6, 3, 1, 0, 0, and so on, forever. Thus, it
too will be stuck in an infinite loop.

Encountering an unintended infinite loop when developing a program
can be very frustrating. If the program is stuck in a loop that gener- Stuck in a loop ates
output, it will be obvious that it is looping, but if no output is be-
ing generated, the computer will appear to “freeze,” no longer respond-ing to
your keyboard or mouse commands. Some programming envi-ronments
allow you to break out of a looping program by typing a spe-cial keyboard
command such as CONTROL-C or CTRL-ALT-DELETE or CONTROL-
APPLE-ESCAPE, but if that doesn’t work you will have to re-boot the
computer, possibly causing a loss of data. The best way to avoid



248 CHAPTER 6 Control Structures

infinite loops is to determine that the loop’s updater expression will cause
the loop to eventually reach its bound.

SN S S ESSENVI=IRISS (€N | oop Design. To guard against infinite
loops, make sure that the loop bound will eventually be reached.

6.3.4 Loop Indentation

Note how indentation is used to distinguish the loop body from both the heading and
from the statement that follows the loop:

for (intk=10; k>0; k ) /I Loop heading
System.out.print (k+~ Yol Indent the body
System.out.println( "BLASTOFF” ) // After the loop

Indenting the loop body is a stylistic convention intended to make the
code more readable. However, the indentation itself has no effect on
how the code is interpreted by Java. Each of the following code
segments would still produce the same countdown:

for (int k=10; k>0; k )
System.out.print (k+" 7);
System.out.println("BLASTOFF");

for (int k= 10; k>0; k )System.out.print(k+ ");
System .out.println("BLASTOFF");

for
(intk=10; k>0; k )
System.out.print (k+" "),

System .out.printin ("BLASTOFF");

In each case the statement, System.out.printin("BLASTOFF"), is not part
of the for loop body and is executed only once when the loop terminates.

SANAERIeLE T VIVIIN[EREIER oop Indentation. To make loops more
readable, indent the loop body to set it off from the heading and to
highlight which statement(s) will be repeated.

A\/Aeel=Elbele]IN[El IR L oop Indentation. Loop indentation has no
effect on how Java interprets the loop. The loop body is determined
entirely by the syntax of the for statement.

Note that up to this point the loop body has consisted of a single state-
ment, such as a printin() statement. But the loop body may con-sist of
any Java statement, including an if or if-else statement or a compound
statement, which contains a sequence of statements enclosed



SECTION 6.3  Counting Loops 249

within braces. Consider the following examples. The first example prints

the sequence 0, 5, 10, 15, : : : 95. Its loop body consists of a single if
statement:

if (k%5:: 0) /I Loop body: single if statement

or (intk=0; k<100; k++)//  Print 0 5 10..95
System.out.println(’k=" + k);

The next example prints the lowercase letters of the alphabet. In this case,

the loop counter is of type char, and it counts the letters of the alphabet.
The loop body consists of a single print() statement:

|ror(chark:'a’; k<= 'z'; k++)//Print 'a° b’z |
System.out.print (k+ "7); /I Loop body: single print( )

The next example prints the sequence 5, 10, 15, : : : 50, but it uses several
statements within the loop body:

or (intk=1; k<=10; k++)  fr/print 510 15...50
intm=k5; /I Beginbody
System.out.print (m+ "7);

g /1 End body

In this example, the scope of the local variable m, declared within the loop
body, is limited to the loop body and cannot be used outside of that scope.

SA\AN AN €SV =R RIBIE=R oop Body. The body of a for statement
consists of the statement that immediately follows the for loop
heading. This statement can be either a simple statement or a
compound statement—a sequence of statements enclosed within
braces, f. .. g.

Although braces are not required when the body of a for loop consists of a
single statement, some coding styles recommend that braces should always

be used for the body of a loop statement. For example, it is always
correct to code the for loop as

or (int k=1; k<= 10; k++) fi/ Print 12 .. 10
System.out.print (k +"7); /I Begin body
g / End body




250 CHAPTER 6 Control Structures

Another advantage of this coding style is that you can easily place addi-
tional statements in the loop body by placing them within the braces.

NAN\/ARpI=ES[ElelN[ERNEl  Missing Braces. A common programming
error for novices is to forget to use braces to group the statements
they intend to put in the loop body. When braces are not used only
the first statement after the loop heading will be iterated.

SELF-STUDY EXERCISES

EXERCISE 6.1 ldentify the syntax error in the following for loop
statements.

a.

for (int k=5, k<100, k++)
System.out.printin(k);

for (int k=0; k<12 ; k ;)
System.out.printin(k);

EXERCISE 6.2 Identify those statements that result in infinite loops.

a.

ror(intk:O;k<100;k=k)
System.out.printin(k);

b.

ror(intkzl;kzzloo;k:k+2)
System.out.printin(k);

C.
ror(intkzl;k>:100;k=k 2)
System.out.printin(k);

EXERCISE 6.3 Suppose you're helping your little sister learn to count
by fours. Write a for loop that prints the following sequence of numbers:
1,5,9,13,17, 21, 25.

EXERCISE 6.4 What value will j have when the following loop
terminates?

for (int i = 0;i<10; i++) f
intj;
=0 o+ 1




SECTION 6.3Counting Loops 251
6.3.5 Nested Loops

A nested loop is a structure in which one loop is contained inside the body
of another loop, such as when a for loop body contains a for loop. For
example, suppose you are working for Giant Auto Industries, and your
boss wants you to print a table for buyers to figure the cost of buying mul-
tiple quantities of a certain part. The cost of individual parts ranges from

$1 to $9. The cost of N items is simply the unit price times the quantity.
Thus, you’ll want to print something like the following table of numbers,

where the prices per unit are listed in the top row, and the prices for 2, 3
and 4 units are listed in subsequent rows:

1 2 3456 7 89

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36
To produce this multiplication table, we could use the following nested
for loops:
1{for (int row = 1; row<= 4 ; row++)f // For each of 4rows
2 for (intcol=1; col<=9; col++) // For each of 9 columns
3 System .out.print(col row + ) /I Print number
4 System.out.printin(); /l Start anew row
5 g// for row

Note how indenting is used here to distinguish the levels of nesting and to
make the code more readable. In this example, the outer loop controls the Inner and outer loop
number of rows in the table, hence, our choice of row as its loop counter.
The printin() statement is executed after the inner loop is done iterating,
which allows us to print a new row on each iteration of the outer loop. The
inner loop prints the nine values in each row by printing the expression
col*row. Obviously, the value of this expression depends on both loop
variables.

Let’s dissect this example a bit. How many times is the for statement
in line 2 executed? The inner loop is executed once for each iteration of
the outer loop. Thus, it is executed four times, which is the same number
of times that line 4 is executed. How many times is the statement on line
3 executed? The body of the inner loop is executed 36 times—9 times for
each execution of line 2.

Sometimes it is useful to use the loop variable of the outer loop as the  Algorithm design
bound for the inner loop. For example, consider the following pattern:

R
HH
#H##
# #
#




252 CHAPTER 6 Control Structures

Note that the number of # symbols in each row varies inversely with the
row number. In row 1, we have five symbols; in row 2 we have four; and
so on down to row 5, where we have one #.

To produce this kind of two-dimensional pattern, we need two coun-
ters: one to count the row number, and one to count the number of #
symbols in each row. Because we have to print each row’s symbols
before moving on to the next row, the outer loop will count row numbers,
and the inner loop will count the symbols in each row. But note that the
inner loop’s bound will depend on the row number. Thus, in row 1 we
want five symbols; in row 2 we want four symbols; and so on. If we let
row be the row number, then in each row we want to print 6 row
symbols. The following table shows the relationship we want:

Row Bound (6-row) Number of Symbols

6-1
6-2
6-3
6-4
6-5

a b~ wWwN B
P NWhO

If we let j be the counter for the inner loop, then j will be bound by the
expression 6 row. This leads to the following nested loop structure:

or (int row =1;row<=5; row++) f /I For eachrow
for (intj =1;j<=6 row ; j++)// Print the row
System.out.print( );
System.out.println(); /I Start anewline

g/l for row

Note that the bound of the inner loop varies according to the value of
row, the loop counter for the outer loop.

SELF-STUDY EXERCISE

EXERCISE 6.5 As the engineer hired to design ski jumps, write a nested
for loop to print the following pattern:

# #

#H##
BT
HHHHE

6.4 Example: Car Loan

Recall the self-study exercise from Chapter 5 that calculated the value of a
bank CD (a) given its initial principle (p), interest rate (r), and number of

years (n), using the formula a = p(1 + r)n. This section explains how to use



SECTION 6.4Example: Car Loan 253

the same formula to calculate the cost of a car loan for different interest
rates over various time periods.

Problem Description

For example, suppose you are planning on buying a car that costs $20,000.
You find that you can get a car loan ranging anywhere from 8 to 11 percent,
and you can have the loan for periods as short as two years and as long as
eight years. Let’s use our loop constructs to create a table to show what the
car will actually cost you, including financing. In this case, a will represent

the total cost of the car, including the financing, and p will represent the
price tag on the car ($20,000):

8% 9% 10% 11%
Year 2 $23,469.81  $23,943.82 $24 ,427.39 $24 ,920.71
Year 3 $25,42431  $26,198.42 $26 ,996.07 $27 ,817.98
Year 4 $27,541.59  $28,665.32 $29 ,834.86 $31,052.09
Year 5 $29,835.19  $31,364.50 $32,972.17 $34 ,662.19
Year 6 $32,319.79  $34,317.85 $36 ,439.38 $38 ,692.00
Year 7 $35,011.30 $37,549.30 $40,271.19 $43,190.31
Year 8 $37,926.96  $41,085.02 $44 ,505.94 $48 ,211.60

Algorithm Design

The key element in this program is the nested for loop that generates the
table. Because the table contains seven rows, the outer loop should iterate Nested loop design seven times,
through the values 2; 3; : : : 8:

for (int years=2; years<= 8; years++) |

The inner loop should iterate through each of the interest rates, 8 through
11:

or (int years=2; years<= 8; years++) f
for (int rate =8; rate<= 11; rate++)f
g/ for rate

g// for years

The financing calculation should be placed in the body of the inner loop
together with a statement to print one cell (not row) of the table. Suppose
the variable we use for a in the formula is carPriceWithLoan, and the
variable we use for the actual price of the car is carPrice. Then our inner
loop body is

carPriceWithLoan =carPrice
Math . pow(1 + rate/100.0/365.0, years365.0);
System.out.print(dollars.format(carPriceWithLoan) + );

Note that the rate is divided by both 100.0 (to make it a percentage) and by
365.0 (for daily compounding), and the year is multiplied by 365.0 before
these values are passed to the Math.pow() method. It is important here



Formatting output

254 CHAPTER 6 Control Structures

to use 100.0 and not 100 so that the resulting value is a double and not
the int 0.

Implementation

The program must also contain statements to print the row and column
headings. Printing the row headings should be done within the outer
loop, because it must be done for each row. Printing the column head-
ings should be done before the outer loop is entered. Finally, our
program should contain code to format the dollar and cents values
properly. For this we use the java.text.NumberFormat class that was
described in Chapter 5. The complete program is shown in Figure 6.3.

import java.text.NumberFormat ; Il For formatting $nn.dd or n%

public class CarLoan f
public static void main(String args[]) f
double carPrice= 20000; /I Car’'s actual price
double carPriceWithLoan; // Total cost of the car plus financing

NumberFormat dollars = NumberFormat.getCurrencylnstance();
NumberFormat percent = NumberFormat.getPercentlnstance();

System.out.printin();

Math . pow(1 + rate / 100.0 / 365.0,years 365.0);
System.out.print( dollars.format(carPriceWithLoan) + );
g//for rate
System.out.printin(); /I Start a new row
g// for years
g // main()
g/ CarLoan

/I Number formatting code

p ercent.setMaximumFractionDigits (2) ;
/1 Print the table
for (intrate =8;rate <= 11; rate++) // Print the column heading
System .out.print( + percent.format(rate/100.0) + );

for (intyears = 2;years <=8;years++) f /I For years 2 through 8
System .out.print( +years + ); // Print row heading
for (intrate=8;rate <=11;rate++) f /l Calc and print CD value

carPriceWithLoan = carPrice

Figure 6.3: The CarLoan application.



SECTION 6.5Graphics Example: Drawing a Checkerboard 255
6.5 Graphics Example: Drawing a Checkerboard

In this section we will combine some of the graphics methods we have
learned with the nested for-loop structure to draw a checkerboard with
checkers on it (Fig. 6.4). For this example, we will just concentrate on
drawing the checkerboard. We will not worry about providing a full
checkerboard representation, of the sort we would need if we were
writing a program to play the game of checkers. So, our design will not
involve in-stance variables for whose turn it is, how many checkers each
player has, where the checkers are located on the board, and other
elements of the game’s state. Still, our visible representation of the board
should be de-signed so that it will eventually be useful when we do
develop a checkers game in Chapter 8.

Problem Description and Specification

The specification for this problem is to develop a program that will draw a
checkerboard and place upon it the checkers in their appropriate starting
positions. As with many of our programs, our design will involve two
classes, one which defines the user interface and the other which repre-
sents the computational object. For this problem, the computational
object will be defined in the CheckerBoard class. The details of its design
are described in the next section.

Because the purpose of this example is to focus on how we use loops
and drawing methods, we will employ a very simple JFrame interface,

whose implementation is given in Figure 6.5. As
shown there, the program simply creates a CheckerBoard instance

import java.awt. ;
import javax.swing. ;

public class CheckerBoardFrame extends JFrame f
private CheckerBoard theBoard ;

public CheckerBoardFrame () f
theBoard = new CheckerBoard () ;

9

public  void paint(Graphics g) f
super.paint(g);
theBoard . draw (g ) ;

g// paint()

public static void main(String[] args)f
CheckerBoardFrame ¢ = new CheckerBoardFrame () ;
c.setSize(500,500);
c.setVisible(true);

g

g// CheckerBoardFrame

Figure 6.5: The CheckerBoardFrame class.

in its CheckerBoardFrame() constructor, and then invokes the
CheckerBoard’s draw method in its paint() method. The reason we

™ i | r ™ r
-__.':n. .l-,__.‘_-i. J'r_.ll-. .ir_‘:l. a
e e ""4--1:‘ T il S

"

Figure 6.4: A checkerboard with
checkers.



CheckerBoard

- LEFT_X: int

- UPPER_Y: int

- SQ_SIDE: int

- N_ROWS: int

- N_COLS: int

- SQ_COLOR1: Calor

- SQ_COLORZ: Color

- CHECKER_COLOR 1: Color
- CHECKER_COLORZ: Color

- drawCheckers{g:Graphics)
- drawBoard{q: Graphics)
+ draw{qg:Graphics)

Figure 6.6: Design of the
CheckerBoard class.

256 CHAPTER 6 Control Structures

invoke the draw() method in paint() is because we need to have ac-
cess to the JFrame’s Graphics context, which is passed as an argument
to the draw() method. Recall that the main() method is invoked when
CheckerBoardFrame is run,and then the paint() methods are invoked
automatically by calling the setVisible(true) method in main().

Thus, the action taken by this program is simply to draw a visual rep-
resentation of the checkerboard.

Class Design: CheckerBoard

Because the program will invoke its draw() method, this method must
be part of the CheckerBoard’s interface. Hence, it must be declared
public. The task of drawing a checkerboard involves two distinct sub-
tasks: (1) drawing the board itself, which will involve drawing a square
with smaller squares of alternating colors; and, (2) drawing the check-
ers on the checkerboard. A good design for the draw() method would

be simply to invoke helper methods that encapsulate these two subtasks.
This is good method design because it results in relatively small methods,
each of which performs a very well-defined task. Let’s call these methods
drawBoard() and drawCheckers(), respectively. Their signatures are
shown in Figure 6.6, which summarizes the design of the CheckerBoard
class.

Before gettinginto the details of the drawBoard and drawCheckers()
methods, we must first discuss CheckerBoard’s several instance vari-
ables. The first two variables LEFT X and UPPER.Y, give the absolute po-
sition of the upper left corner of the checkerboard on the JFrame’s drawing
panel. The SQ SIDE variable gives the size of the checkerboard’s individ-
ual squares. N ROWS and N COLS give the number of rows and columns
in the checkerboard (typically, 8 by 8). All of these variables are integers.
The final four variables, SQ COLOR1, SQ COLOR2, CHECKER.COLOR1, and
CHECKER COLOR2, specify the colors of the checkerboard and the check-
ers.

Note that the names of all the instance variables are written in upper-
case letters. This is to identify them as symbolic constants—that is, as fi-nal
variables whose values do not chage once they are initialized. Because their
actual values are not important, we do not show them in the UML diagram
and we won’t discuss them here. Recall that the advantage of defining class
constants, rather than sprinkling literal values throughout the program, is that
they make it easy to modify the program if we decide to change the size,
location, or color of the checkerboard.

Method Design

Returning now to the design of CheckerBoard’s instance methods, the
complete definition of the CheckerBoard class is given in Figure 6.7.
Note how simple its draw() method is. As we noted earlier, in order to
using Java’s drawing commands, it is necessary to have a reference to a
Graphics object. This is passed to the draw() method when the draw()
method is invoked in the program. Because the draw() method delegates
the details of the drawing algorithm to its helper methods, drawBoard()
and drawCheckers(), it has to pass them a reference to the Graphics
object.

The drawBoard() method uses a nested for loop to draw an 8 8 array
of rectangles of alternating colors. The loop variables, row and col,



SECTION 6.5 Graphics Example: Drawing a Checkerboard 257

import java.awt. ;

public class CheckerBoard f
/I Default values for a standard checkerboard

privatefinalint LEFTX =10; /I Position of left
privatefinalint UPPERY = 10; /I upper corner
privatefinalint SQSIDE= 40; //Size of each square
privatefinalint NROWS= 8; /I Checkerboard rows
privatefinalint NCOLS= 8; /I Checkerboard columns

privatefinal Color SQCOLOR1= Color.lightGray; //colors
privatefinal Color SQCOLOR2 = Color. gray ; /lof squares
private final Color CHECKER COLOR1 = Color . white ; /I and
privatefinal Color  CHECKER.COLOR2 = Color.black; //checkers

privatevoid drawBoard ( Graphics g) f
for(int row= 0; row<NROWS; row++)
I/l For eachrow
for(intcol = 0; col <NCOLS; col++)f //For each squar
if ((row + col)%2==20)
/1 Alternate colors
g.setColor(SQCOLOR1);
Il Light
else
g.setColor(SQCOLOR2);
/1 or dark
g.fillRect(LEFT-X+col SQ-SIDE,
UPPER Y+row SQ SIDE , SQ SIDE , SQSIDE) ;
g/lfor
g//drawBoard()
privatevoid drawCheckers ( Graphics g) f /I Place checkers
for(int row= 0; row<NROWS; row++) Il For each row
for(intcol = 0; col <NCOLS; col++)// For each square
if ((row + col)%2 == 1) fi/ oneplayer has top 3rows
if (row<3) f
g.setColor(CHECKER COLOR1);
g.fillOval(LEFT-X+col SQSIDE,
UPPER Y+row SQ SIDE , SQSIDE 2,SQSIDE 2);
gllif
i f (row>=N ROWS 3)f // oOther has bottom 3rows
g.setColor(CHECKER COLOR2) ;
g.fillOval(LEFT-X+col SQSIDE,
UPPER Y+row SQ SIDE , SQ SIDE 2,SQSIDE 2);
gllif
gllif
Q//drawCheckers()
public void draw ( Graphics g) f// Draw board and checkers
drawBoard (g ) ;
drawCheckers (g) ;
g//draw()
g//CheckerBoard

Figure 6.7: The CheckerBoard class.




0/0123
1/1234
2|2345
3|3456

Figure 6.8: Calculating the loca-
tions of the checkerboard squares.

258 CHAPTER 6 Control Structures

both range from 0 to 7. The expression used to determine alternating
colors tests whether the sum of the row and column subscripts is even:
((row + col)%2 == 0). If their sum is even, we use one color; if odd, we
use the other color.

As the table in the margin shows for a 4 4 board, the sum of a board’s
row and column subscripts alternates between even and odd values.
Thus, in row 2 column 3, the sum of the subscripts is 5.

To switch from one color to the other, we use the Graphics
setColor() method to alternate between the two colors designated for

the checkerboard, SQ COLOR1 and SQ COLOR2. We then use the following
method call to draw the colored squares:

’g fillRect(LEFTX+col SQSIDE, UPPER Y+row SQ SIDE ,
SQ_SIDE, SQSIDE ) ;

Note how we use the loop variables, row col, together with the constants
specifying the top left corner of the board (UPPER Y and LEFT X) and
the size of the squares (SQ SIDE) to calculate the location and size of
each square. The calculation here is illustrated in Figure 6.8. The first
two pa-rameters in fillRect(left,top,width,height) specify the coordi-nates
for the rectangle’s top-left corner. These are calculated as a func-tion of
the rectangle’s row and column position within the checkerboard and the
rectangle’s width and height, which are equal for the squares of a
checkerboard.

(LEFT_X, UPPER_Y)

\colO coll  col2

row 0

row 1 ‘\

(LEFT_X+col*SQ_SIDE,
UPPER_Y+row *SQ_SIDE)

SQ_SIDE

The drawCheckers() method also uses a nested for loop to trace
through the checkerboard’s rows and columns. In this case, however, we
draw checkers on just the dark-colored squares—that is, those that sat-
isfy the expression (row + col)%2 == 1)—on the first three rows of each



SECTION 6.6Conditional Loops 259

player’s side of the board. So, each player’s checkers initially are located
in the first three rows and last three rows of the checker board:

f ((row+ col)%2==1) fiioneplayer has top3 rows
if (row<3)f
g.setColor(CHECKER COLOR1);
g.fillOval(LEFT-X+col SQ-SIDE,
UPPER Y+row SQ SIDE , SQ SIDE  2,SQSIDE 2);

g//if
i f (row>=NROWS 3) f//other has bottom 3rows
g.setColor(CHECKER COLOR2);
g.fillOval(LEFT-X+col SQ-SIDE,
UPPER Y+row SQ SIDE , SQ SIDE  2,SQSIDE 2);
gllif

g/i/if

Because the checkers are circles, we use the fillOval() method to draw
them. Note that the parameters for fillOval(left, top, width,

height) are identical to those for fillRect(). The parameters spec-

ify an enclosing rectangle in which the oval is inscribed. In this case, of
course, the enclosing rectangle is a square, which causes fillOval() to
draw a circle.

Our design of the CheckerBoard class illustrates an important princi-
ple of method design. First, rather than placing all of the commands for
drawing the checkerboard and the checkers into one method, we broke
up this larger task into distinct subtasks. This resulted in small methods,
each of which has a well defined purpose.

WA\ =E RSN =gpl=S][el] Method Decomposition. Methods
should be designed to have a clear focus. If you find a method
becoming too long, you should break its algorithm into subtasks and
define a separate method for each subtask.

6.6 Conditional Loops

Unlike the problems in the previous sections, not all loops can be coded as
counting loops. Here’s a problem that can’t be solved by a counting loop.
Mathematicians, especially number theorists, have found that certain
operations on numbers lead to interesting sequences. For example, the
3N+1 problem is a conjecture in number theory, which says that if N is any

positive integer, then the sequence generated by the following rules will
always terminate at 1.

ICase Operation

N is odd N=3 N+1
N is even N=N/2




Sentinel bound

260 CHAPTER 6 Control Structures

In other words, start with any positive integer, N. If N is odd, multiply it by
3 and add 1. If N is even, divide it by 2. In either case, assign the result
back to N. The conjecture states that N will eventually equal 1. For
example, if N is initially 26, then the sequence generated is 26, 13, 40,
20, 10, 5, 16, 8, 4, 2, 1.

The 3N+1 problem is an example of a noncounting loop. Because for
any given N we don’t know how long the 3N+1 sequence will be, we need a
loop that terminates when the loop variable reaches a certain value, called a
sentinel value—when N equals 1. This is an example of a loop that is
terminated by a sentinel bound. With the exception of infinite loops, all
loops are bounded by some condition, which is why they are sometimes
referred to as conditional loop structures. The count and sentinel bounds
are just special cases of the conditional loop structure.

6.6.1 The While Structure, Revisited

Consider the following pseudocode algorithm for the 3N+1 problem:

Algorithm for computing th e 3N+1 sequence
While Nis notequaltol, do:f
Print N.
If N is even, divide it by 2.
If N is odd, multiplyNby3 andadd 1.

g
PrintN

In this structure, the body of the loop prints N and then updates N’s value,
using the 3N+1 rules. Suppose N equals 5 when this code segment begins.
It will print the following sequence: 5, 16, 8, 4, 2, 1. Note that the loop body
is entered as long as N is not equal to 1. So the loop entry condition in this
case is N I= 1. Conversely, the loop will terminate when N equals

Also note that in this code segment the loop bound is tested before
the body of the loop is executed.

We can implement this algorithm using Java’s while statement, whose
flowchart is shown in Figure 6.2:

while (N!=1) f /I While N not equal to 1
System .out.print(N+ )i/l Print N
if (N%2==0) /I'lfNis even
N=N/ 2; /1 divide it by 2
else /I'1fNis odd
N=3 N+1; /1 multiply by 3 and add 1
g
System .out.printin(N); /I PrintN

Recall that unlike the for statement, the while statement does not con-
tain syntax for the initializer and the updater. These must be coded sepa-
rately. As we pointed out in Chapter 3, the while structure (as opposed to




SECTION 6.6Conditional Loops 261

the while statement) is a segment of code built by the programmer that
satisfies the following design principle:

AN =SE=eVI=bl=S el Loop Structure. A properly designed
loop structure must include an initializer, a loop-entry condition, and an
updater. The updater should guarantee that the loop-entry condition
will eventually become false, thereby causing the loop to terminate.

The while structure has the following form:

InitializerStatements; /1l Initializer

while (loop entry condition) f//Bound test
Statements; /l Loop body
UpdaterStatements ; /I Updater

g

As its form suggests, the while structure is designed so that on some
conditions the loop body will never be executed. Because it tests for the
loop bound before the loop body, it is possible that the loop body is never
executed. We might say that it is designed to perform O or more iterations.

For example, going back to the 3N+1 problem, what if N equals 1 ini-
tially? In that case, the loop body will be skipped, because the loop entry
condition is false to begin with. No iterations will be performed, and the
algorithm will simply print the value 1.

The while structure would be an appropriate control structure for the
following type of problem:

rite the problems on the assignment sheet // Initializer
while there are problems on the sheet /l Bound test
do a problem /I Loop body
cross it off the assignment sheet /l Updater

It is possible that the assignment sheet contains no homework problems
to begin with. In that case, there’s no work for the body of the loop to do
and it should be skipped.

SELF-STUDY EXERCISES

EXERCISE 6.6 ldentify the syntax error in the following while struc-
tures:

nt k=5;

while (k<100) f
System.out.println(k);
k++




Problem description

Algorithm design

262 CHAPTER 6 Control Structures

intk = 0;

while (k <12 ;) f
System.out.printin(k);
k ++;

l g

EXERCISE 6.7 Determine the output and/or identify the error in each
of the following while structures:

intk = 0;
while (k<100)
System.out.printin(k);

hile (k<100) f
System.out.printin(k);
K ++;

EXERCISE 6.8 Your younger sister is now learning how to count by
sixes. Write a while loop that prints the following sequence of numbers:
0, 6,12, 18, 24, 30, 36.

EXERCISE 6.9 Here’s another number theory problem. Start with any
positive integer, N. If N is even, divide it by 2. If N is odd, subtract 1 and
then divide it by 2. This will generate a sequence that is guaranteed to
terminate at 0. For example, if N is initially 15, then you get the sequence:
15, 7, 3, 1, 0. Write a method that implements this sequence using a while
statement.

6.6.2 The Do-While Structure

Here’s another problem that can’t be solved with a counting loop. Your
father has been fretting about the bare spots on the front lawn and is con-
sidering hiring the ChemSure Lawn Service to fertilize. However, your
scientifically minded younger sister wants to reassure him that at the rate
the grass is dying, there will be enough to last through the summer. Using
techniques she learned in biology, your sister estimates that the grass is
dying at the rate of 2 percent per day. How many weeks will it take for
half the lawn to disappear?

One way to solve this problem would be to keep subtracting 2 percent
from the current amount of grass until the amount dipped below 50 per-



SECTION 6.6 Conditional Loops 263

cent, all the while counting the number of iterations required. Consider
the following pseudocode algorithm:

Algorithm for calculating grass loss
Initialize amtGrass to 100.0
Initialize nDays to 0
Repeat the following statements
amtGrass = amtGrass 0.02;
++nDays ;

As long as amtGrass>50.0

Print nDays/ 7

We begin by initializing amtGrass to 100.0, representing 100 percent.
And we initialize our counter, nDays to 0. Then we repeatedly subtract 2
percent of the amount and increment the counter until the amount drops
below 50 percent. In other words, in this case, we repeat the loop body
as long as the amount of grass remains above 50 percent of the original.
When the loop finishes, we report the number of weeks it took by
dividing the number of days by 7.

The loop bound in this case is known as a limit bound. The loop will
terminate when a certain limit has been reached—in this case, when the
amount of grass dips below 50 percent of the original amount. Note that
in this case the loop bound is tested after the loop body. This is appropri-
ate for this problem, because we know in advance that the loop will iter-

ate at least once. We can implement this algorithm using Java’s do-while
statement:

public int losingGrass(double perCentGrass) f

double amtGrass = 100.0; /7 initialize amount grass

int nDays= O; /1 Initialize day counter

do f /l Repeat
amtGrass = amtGrass LOSSRATE ;// update amount
++nDays ; 11 Increment the counter

g while (amtGrass > perCentGrass ) ;
/l Aslong as enough grass remains

return nDays /7; /! Return the number of weeks
g//losingGrass()

The do-while statement is a loop statement in which the loop entry con-
dition occurs after the loop body. It has the following general form:

Limit bound

JAVA LANGUAGE RULE Do-while Statement. The do-while

statement has the following syntax:
do

loop body
while ( loop entry condition ) ;

Note, again, that unlike the for statement, the do-while statement does
not contain syntax for the initializer and the updater. These must be
coded separately.




Figure 6.9: Flowchart of the

do-while statement
do-while structure.

and

264 CHAPTER 6 Control Structures

Do-While Statement Do-While Structure

N !

Statement Initializerl
| -——

Initializer2

b Statement

Updater

" Loop ™
& entry
condition

. True

To further highlight the difference between a loop statement and a loop
structure, the do-while structure takes the following form:

InitializerStatementsl; // initializer

dof // Beginning of loop body
InitializerStatements2;// Another initializer
Statements; /1 Loop body
UpdaterStatements /1 Updater

gwhile (loop entry condition); //Bound test

Note that initializer statements may be placed before the loop body, at the
beginning of the loop body, or in both places, depending on the particular
problem. Like the other loop structures, updater statements occur within
the body of the loop. A flowchart of the do-while structure is shown in
Figure 6.9.

The do-while structure would be an appropriate control structure for
the following type of problem:

o}
dialthe desiredtelephone number // Initializer
if youget a busy signal

hang up /I Updater

while there is a busy signal /I Bound test




SECTION 6.6Conditional Loops 265

In this case, you want to perform the actions in the body of the loop at
least once and possibly more than once (if you continue to receive a
busy signal).

VAN SER=eRINI=pI=S[El\]  Do-While Loops. The do-while loop is /}

designed for solving problems in which at least one iteration must
occur.

NN/ S S SO \A=EBISS (€l  \While versus Do-While Structures. For /}‘5

problems where a noncounting loop is required, the while loop
structure is more general and, therefore, preferable to the do-while
structure. Use do-while only when at least one iteration must occur.

.

SELF-STUDY EXERCISES

EXERCISE 6.10 Identify the syntax error in the following do-while
structures:

tad

nt k= 0;
do while (k<100)
f System .out.printin(k);

k++
g
b.
nt k= 0;
do f
System.out.printin(k);
k ++;

gwhile (k <12)

EXERCISE 6.11 Your sister has moved on to counting by sevens. Write
a do-while loop that prints the following sequence of numbers: 1, 8, 15,
22, 29, 36, 43.

EXERCISE 6.12 As the owner of Pizza Heaven, every night at the close
of business you quickly enter the price of every pizza ordered that day.
You take the data from the servers’ receipts. Pizzas cost $8, $10, or (the
Heavenly Special) $15. You enter the data without dollar signs, and use
99 to indicate you’re finished for the day. Write a Java method to input
and validate a single pizza data item. If an incorrect price is entered, the
program should print an error message and prompt for corrected input.
Correct input is used to compute a daily total.

EXERCISE 6.13 Because the pizza prices in the previous exercise are
fixed, change the method so you can save time on keyboarding. Instead
of entering the price, you'll enter codes of 1, 2, or 3 (corresponding to the
$8, $10, and $15 pizzas), and 0 to indicate that you’re finished. Validate
that the data value entered is correct and then convert it to the
corresponding price before returning it.



Algorithm design: what kind of loop?

Algorithm design

Priming read

Initialization step

266 CHAPTER 6 Control Structures

6.7 Example: Computing Averages

Suppose you want to compute the average of your exam grades in a
course. Grades, represented as real numbers, will be input from the key-
board using our KeyboardReader class. To signify the end of the list,

we will use a sentinel value—9999 or 1 or some other value that won’t
be confused with a legitimate grade. Because we do not know exactly
how many grades will be entered, we will use a noncounting loop in this
algorithm. Because there could be no grades to average, we will use a
while structure so it is possible to skip the loop entirely in the case that
there are no grades to average.

The algorithm should add each grade to a running total, keeping track
of the number of grades entered. Thus, this algorithm requires two vari-
ables: one to keep track of the running total and the other to keep track
of the count. Both should be initialized to 0. After the last grade has been

entered, the total should be divided by the count to give the average. In
pseudocode, the algorithm for this problem is as follows:

initializerunningTotal to O /I Initialize
initialize count to O
prompt and read the first grade /I Priming read

while the grade enteredis not 9999 fii sentinel test
add it totherunningTotal
add 1 to the count
prompt and read the next grade //update

if (count>0) /I Guard against divide by 0
divide runningTotal by count
output the average as the result

Note that in this problem our loop variable, grade, is read before the

loop test is made. This is known as a priming read. It is necessary in this
case, because the loop test depends on the value that is read. Within the
loop’s body, the updater reads the next value for grade. This is a standard
convention for coding while structures that involve input, as this prob-

lem does. Note also that we must make sure that count is not O before
we attempt to compute the average because dividing by 0 would cause a
divide-by-zero error.

Translating the pseudocode algorithm into Java raises several issues.
Suppose we store each grade that is input in a double variable named
grade. The loop will terminate when grade equals 9999, so its entry con-
dition will be (grade != 9999). Because this condition uses grade, it
is crucial that the grade variable be initialized before the bound test is
made. This requires a priming read. By reading the first value of grade
before the loop entry condition is tested, ensures that the loop will be
skipped if the user happens to enter the sentinel (9999) on the very first
prompt. In addition to reading the first exam score, we must initialize
the variables used for the running total and the counter. Thus, for our
initialization step, we get the following code:




SECTION 6.7 Example: Computing Averages 267

ouble runningTotal =0;
int count = 0;
reader.prompt ( +

double grade =
reader.getkKeyboardDouble (); //  Priming input

Within the body of the loop we must add the grade to the running total
and increment the counter. Since these variables are not tested in the loop
entry condition, they will not affect the loop control. Our loop updater

in this case must read the next grade. Placing the updater statement at

the end of the loop body will ensure that the loop terminates immediately
after the user enters the sentinel value:

while (grade 1= 9999) f //Loop test: sentinel
runningTotal += grade;
count ++;
reader.prompt( +
);
grade = reader.getkeyboardDouble (); // Update:input
g// while

You can see that it is somewhat redundant to repeat the same statements
needed to do the initializating and the updating of the grade variable. A

better design would be to encapsulate these into a method and then call
the method both before and within the loop. The method should take care

of prompting the user, reading the input, converting it to double, and
returning the input value. The method doesn’t require a parameter:

private double promptAndRead () f
reader.prompt( +

double grade = reader.getKeyboardDouble () ;
/1 Confirm input
System.out.println( + grade + );
return grade;
g

Note that we have declared this as a private method. It will be used to
help us perform our task but won’t be available to other objects. Such
private methods are frequently called helper methods.

This is a much more modular design. In addition to cutting down on
redundancy in our code, it makes the program easier to maintain. For
example, there is only one statement to change if we decide to change the

Updater step

Modularity



Method decomposition

268 CHAPTER 6 Control Structures

prompt message. It also makes the program easier to debug. Input
errors are now localized to the promptAndRead() method.

SRS ESSea Y =eISS (€] Modularity. Encapsulating code in a
method is a good way to avoid redundancy in a program.

NAN/AN I =EiB[ere] [N(E€mllEd | ocalization. Encapsulating code in a method
removes the need to have the same code at several locations in a
program. By localizing the code in this way, you make it easier to
modify and debug.

Another advantage of encapsulating the input task in a separate method
is that it simplifies the task of calculatlng the average. This task should
also be organized into a separate method:

public double inputAndAverageGrades () f
double runningTotal =0;
int count = 0;
double grade =promptAndRead ();// Priming initializer
while (grade != 9999) f /Il Loop test : sentinel
runningTotal += grade;
count ++;
grade = promptAndRead () ;// Update: get next grade
g // while
if (count>0) /I Guard against divide by zero
returnrunningTotal [/ count;//Return the average
else
return O; /I Special (error) return value
9

Note that we have declared this as a public method. This will be the
method you call to calculate your course average.

Because we have decomposed the problem into its subtasks, each sub-
task is short and simple, making it easier to read and understand. As we
saw in the checkerboard example, the use of small, clearly-focused
methods is a desireable aspect of designing a program.

The complete Average.java application is shown in Figure 6.10. Its
overall design is similar to application programs we designed in previous
chapters. The only instance variable it uses is the KeyboardReader vari-
able. The other variables are declared locally, within the methods. In this
case, declaring them locally makes the algorithms easier to read.

One final point about this program is to note the care taken in the design
of the user interface to explain the program to the user, to prompt the user

&

&



SECTION 6.7 Example: Computing Averages 269

import java.io. ;
public class Average f /I Console 1/0
private KeyboardReader re ader =new KeyboardReader () ;

private double promptAndRead () f
reader.prompt(”Input a grade (e.g., 853)" +
“or 9999 to indicate theend ofthe list >>");
double grade = read er. getkeyboardDouble () ;
System.out.println("You input” + grade + "nn”);// confirm input
return grade;

g
public double inputAndAverageGrades () f

double runningTotal = 0;
int count = 0;
double grade = promptAndRead () ; /1 Initialize: priming input
while (grade !'=9999) f /Il Loop test: sentinel
runningTotal += grade;
count ++;
grade = promptAndRead () ; /I Update: get next grade
g // while
if (count>0) /l Guard against divide by zero
returnrunningTotal / count; // Return the average
else
return O; /I Special (error) return value

g

public static void main(String argv[]) f
System.out.println(”This program calculates average grade.”);
Average avg = new Average () ;
double average = avg . inputAndAverageGrades () ;

if (average == 0) /Il Error check
System.out.println(”You didn’t enter any grades.”);
else

System.out.println("Your averageis " + average);
g // main()
g // Average

Figure 6.10: A program to compute average grade using a while struc-
ture.

before a value is input, and to confirm the user’s input after the program
has read it.

NN =SS eIl =RpI=S (€] User Interface. Whenever you ask a user
for input, the user should know why you are asking and what you are
asking for. Prompts should be used for this purpose. It is also a good
idea to confirm that the program has received the correct input.




Algorithm design

User inputs
data

I

) Is it
“~._ correct?
.

.

N
Yes

Process
data

Output error
message

Figure 6.11: Do-while is a good
structure for the data validation

algorithm.

270 CHAPTER 6  Control Structures
6.8 Example: Data Validation

One frequent programming task is data validation. This task can take dif-
ferent forms depending on the nature of the program. One use for data
validation occurs when accepting input from the user.

In the program in the preceding section, suppose the user types 10 by
mistake when asked to input an exam grade. Obviously this is not a valid
exam grade and should not be added to the running total. How should a
program handle this task?

Because it is possible that the user may take one or more attempts to
correct an input problem, we should use a do-while structure for this
problem. The program should first input a number from the user. The
number should then be checked for validity. If it is valid, the loop should
exit and the program should continue computing the before getting the
input average grade. If it is not valid, the program should print an error
message and input the number again. A flowchart for this algorithm is
shown in Figure 6.11.

For example, suppose only numbers between 0 and 100 are considered
valid. The data validation algorithm would be as follows:

do

| Get the next grade // Initialize: priming input

| if thegrade<O or grade > 100 and grade = 9999

| print an error message // Error case

| /I Sentinel test

| while the grade <0 or grade > 100 and grade I= 9999

Note here that initialization and updating of the loop variable are per-
formed by the same statement. This is acceptable because we must up-
date the value of grade on each iteration before checking its validity.
Note also that for this problem the loop-entry condition is also used in the
if statement to check for an error. This allows us to print an appropriate
error message if the user makes an input error.

Let's incorporate this data validation algorithm into the promptAnd-
Read() method that we designed in the previous section (Fig. 6.10). The
revised method will handle and validate all input and return a number
between 0 and 100 to the calling method. To reflect its expanded pur-
pose, we will change the method’s name to getAndValidateGrade(), and
incorporate it into a revised application, which we name Validate (Fig.
6.12).

6.9 Principles of Loop Design

Before moving on, it will be useful to summarize the main principles
involved in correctly constructing a loop.

A counting loop can be used whenever you know in advance exactly
how many iterations are needed. Java’s for statement is an
appropriate structure for coding a counting loop.



SECTION 6.9Principles of Loop Design

mport java.io. ;
ublic class Validate f

private KeyboardReader reader =new

private double getAndValidateGrade () f

double grade = 0;
do f
reader.prompt (

/I Console input

KeyboardReader () ;

grade = read er. getkeyboardDouble () ;

if ((grade '=9999)&& ((grade

System .out.println(
else

System .out.println(
/ Confirm input

g while ((grade '=9999) && ((grade <0) jj

return grade;

g
public double inputAndAverageGrades () f

double runningTotal = 0;
int count = 0;

double grade = getAndValidateGrade () ;

while (grade '=9999) f
runningTotal += grade;
count ++;
grade = getAndValidateGrade () ;

g/ while

if (count>0)

returnrunningTotal /count;

else
return O;
g
public
System.out.println(
Average avg = new Average () ;

static void main(String argv[])

<0)

f

);

ji (grade > 100))) //

If error

)

+ grade + );

(grade>100)));

/1 Initialize s priming input
/Il Loop test: sentinel

// Update: get next grade

/1 Guard against divide by zero

/l Return the average

/Il Special (error) return value

); /I Explain

double average = avg . inputAndAverageGrades () ;

if (average == 0)
System .out.println(
else
System.out.println(
gl main()
/1 Validate

/I Error

)

check

+ average) ;

Figure 6.12: A program to compute average grade using a while struc-
ture. This version validates the user’s input.

271




272 CHAPTER 6 Control Structures

A while structure should be used when the problem suggests that the
loop body may be skipped entirely. Java’s while statement is specially
designed for the while structure.

A do-while structure should be used only when a loop requires one or
more iterations. Java’s do-while statement is specially designed for
the do-while structure.

The loop variable is used to specify the loop-entry condition. It must
be initialized to an appropriate initial value, and it must be updated on
each iteration of the loop.

A loop’s bound may be a count, a sentinel, or, more generally, a
conditional bound. It must be correctly specified in the loop-entry
expression, and progress toward the bound must be made in the updater.
An infinite loop may result if the initializer, loop-entry expression, or
updater expression is not correctly specified.

The loop types are also summarized in Table 6.1.

TABLE 6.1 A summary of the design decisions required when coding a loop

Use If Java Statement
Counting loop Number of iterations known in advance for
While structure Number of iterations not known while

Loop may not be entered at all

Do-while structure ~ Number of iterations not known do-while
Loop must be entered at least once

SELF-STUDY EXERCISE

EXERCISE 6.14 For each of the following problems, decide whether a
counting loop structure, a while structure, or a do-while structure should
be used, and write a pseudocode algorithm.

Print the names of all visitors to your Web site.
Validate that a number input by the user is positive.

Change all the backslashes (n) in a Windows Web page address to
the slashes (/) used in a Unix Web page address.

Find the car with the best miles-per-gallon ratio among the cars in
the Consumer Reports database.



SECTION 6.10  The switch Multiway Selection Structure 273

6.10 The switch Multiway Selection Structure

Another selection structure to add to our repertoire is the switch/break

structure. It is meant to provide a shorthand way of coding the following
type of multiway selection structure:

if (integralVar == integralValuel)
/' some statements
elseif (integralVar ==integralValue?2)
/' some statements
elseif (integralVar ==integralValue3)
/l some statements
else //some statements

Note that each of the conditions in this case involves the equality of an
integral variable and an integral value. This type of structure occurs so
frequently in programs that most languages contain statements specially
designed to handle it. In Java, we use a combination of the switch and
break statements to implement multiway selection.

The switch is designed to select one of several actions depending on
the value of some integral expression:

switch (integralExpression)
fcaseintegralValuel:

/' some statements
caseintegralValue2:

/' some statements
caseintegralValue3:

/l some statements

default:
some statements

g

The integralExpression must evaluate to a primitive integral value of type
byte, short, int, char, or boolean. It may not be a long, float, Integral expression double, or a
class type. The integralValues must be literals or final vari-
ables. They serve as labels in the one or more case clauses that make
up the switch statement body. The default clause is optional, but it is a
good idea to include it.
A switch statement is executed according to the following rules:

Rule 1. The integralExpression is evaluated.

Rule 2. Control passes to the statements following the case label whose
value equals the integralExpression or, if no cases apply, to the
default clause.

Rule 3. Beginning at the selected label or at the default, all of the state-
ments up to the end of the switch are executed.



274 CHAPTER 6 Control Structures
Consider the following example:

ntm= 2
switch (m)
fcase 1:
System.out.print("m= 17);
case 2:
System.out.print("m= 2%;
case 3:
System.out.print("m= 37);
default:
System.out.print(” defaultcase”);

g

In this case, because m equals 2, the following output would be produced:

m=2m=3 defaultcase

Obviously, this output does not match the following if-else multiway
selection structure, which would output, simply, m = 2:

ntm= 2;
if (m==1)
System.out.print("m= 17);
elseif (m==2)
System.out.print("m= 27);
elseif (m== 3)
System.out.print("m= 37);
else
System.out.print(” default case”);

The reason for this disparity is that the switch executes all statements
following the label that matches the value of the integralExpression (see
again Rule 3 on the previous page).

In order to use the switch as a multiway selection, you must force it to
break out of the case clause after executing that clause’s statements:

ntm= 2

switch  (m)

f case 1:
System.out.print("m= 17);
break ;

case 2:
System.out.print("m= 27);
break ;
case 3:
System.out.print("m= 37);
break ;
default:
System.out.print(” default case”);
g




SECTION 6.10The switch Multiway Selection Structure 275

In this example, the break statement causes control to pass to the end of
the switch, with the effect being that one and only one case will be
executed within the switch. Thus, the output of this code segment will be
simply m = 2, matching exactly the behavior of the multiway if-else
selection structure (Fig. 6.13).

1
; O

«/C/;s;\\“ F ‘/CA.S‘;Z\ ~F > gs;\N\/\F»
T T T
| STATEMENTL || STATEMENT2 | E@
i !
| BREAK | BREAK | BREAK
| {0

VAAN ERlelel SNV IINIEmIAMultiway Selection. A typical use for the
switch statement is to use it together with break to code a multiway
selection structure.

Figure 6.13: Flowchart of the mul-
tiway switch structure. Note that
because of the break statement,
one and only one case is executed.

SN €10/ EI=HRlBIR=Ehreak. The break statement transfers
control out of its enclosing block, where a block is any sequence of

statements contained within curly brackets f and g.

AN =E BTl IN[ERpIE Switch without break. A common error in
coding the switch-based multiway selection is forgetting to put a break
statement at the end of each clause. This may cause more than one
case to be executed.




276 CHAPTER 6 Control Structures
SELF-STUDY EXERCISES

EXERCISE 6.15 Identify any errors in the following switch structures
(if there is no error, specify the output):

(a)int k=0;

switch (k)

case 0:
System.out.printin(’zero”);
break ;

case 1:
System.out.println(’one”);
break ;

default:
System.out.printin("default”);
break ;

(b)int k=0;

switch (k +1)

f case 0:
System.out.println(’zero”);
break ;

case 1:
System.out.println(’one”);
break ;

default:
System.out.printin("default”);
break ;

(c)int k=6;

switch (k /3.0)

f case 2:
System.out.printin("zero”);
break ;

case 3:
System.out.println(’one”);
break ;

default:
System.out.printin("default”);
break ;

EXERCISE 6.16 Flavors of ice cream are represented as integers
where 0 is vanilla, 1 is chocolate, and 2 is strawberry. Write a switch
statement that checks an integer variable flavor and prints out the name
of the ice cream flavor or prints “Error” in the default case.

EXERCISE 6.17 Modify your solution to the previous exercise to use
constants (final variables) to represent the ice cream flavors.



SECTION 6.11  OBJECT-ORIENTED DESIGN:Structured Programming 277

6.11 OBJECT-ORIENTED DESIGN:
Structured Programming

Structured programming is the practice of writing programs that are built
up from a small set of predefined control structures. As an overall
approach to programming, structured programming has largely been
superseded by the object-oriented approach. Nevertheless, its design
principles are still relevant to the design of the algorithms and methods
that make up a program’s objects.

The principles of structured programming seem so obvious today that
it may be difficult to appreciate their importance. In the 1960s and 1970s,
one of the main controls used in programs was the infamous go to state-
ment, which could be used to transfer control of a program to any arbi-
trary location within it, and from there to any other arbitrary location, and
so on. This led to incredibly complex and ill-formed programs—so called
“spaghetti code”—that were almost impossible to understand and
modify.

Structured programming evolved in reaction to the unstructured soft-
ware development practices of the 1960s, which were fraught with
budget overruns, costly delays, and failed products. One of the classic
research results of that era was a 1966 paper by Boehm and Jacopini
that showed that any program using go to’s could be represented by an
equivalent pro-gram that used a sequence of two types of controls:
if/felse and while structures. Another influential paper by Edgar Dikjstra
(“GoTo Statement Considered Harmful”) pointed out the various ways in
which the go to statement could lead to impossibly complex programs.

The Pascal language, introduced by Nicklaus Wirth in 1971, was de-
signed to promote structured programming techniques and became the
language of choice within academic institutions because of its suitability
as a teaching language. In Pascal, the go to was replaced with the four
structures that control the flow of execution in a program (Fig. 6.14):

Sequence Selection if/else

}

False . True

Repetition while loop Method call and return
N methodl method2
. True Y | > .
-——-]_ ]
False ;

Sequence—The statements in a program are executed in sequential
or-der unless their flow is interrupted by one of the following control
structures.

Spaghetti code

Figure 6.14: Flowcharts of the
four types of control structures.
Each small rectangle represents
a single executable statement.



Debugging with printin()

278 CHAPTER 6 Control Structures

Selection—The if, if/else, and switch statements are branching
statements that allow choice through the forking of the control path
into two or more alternatives.
Repetition—The for, while, and do-while statements are looping

statements that allow the program to repeat a sequence of statements.
Method Call—Invoking a method transfers control temporarily to a
named method. Control returns to the point of invocation when the
method is completed.

No matter how large or small a program you write, its flow of control can
be constructed as a combination of these four basic types of structures.

Preconditions and Postconditions

The Java language supplies us with a good collection of control
structures, and Java’s syntax constrains the way we can use them. One
of the fea-tures of the four control structures is that each has a single
entry point and exit (Fig. 6.14). This is an extremely important property.
To grasp its importance, consider the following debugging problem:

k= 0; //'1. Unstructured code
System .out.println( + K):;// 2.k should equal Ohere
goto labell; Il 3.

label2:

System .out.println( + K);// 4.k should equal 1here

In this example a goto statement is used to jump to labell, a label that
marks a section of code somewhere else in the program. Suppose we’re
trying to determine how k has acquired an erroneous value and that its
value is correct in line 2 of this sequence. Given the go to statement on
line 3, there’s no guarantee that control will ever return to the printin()
statement on line 4. Thus, in unstructured code it is very difficult to nar-
row the scope of an error to a fixed segment of code. Because the go to
statement can transfer control anywhere in the program, with no guar-
antee of return, any segment of code can have multiple entry points and
multiple exits.

Now contrast the unstructured code with the following well-structured
code:

|k: 0; /1'1. Structured code
|System.out.print|n( +K); // 2.k should equal O here
someMethod () ; 3.

System .out.println( +K); // 4.k should equal 1 here

In this case, we can be certain that control will eventually return to line 4.
If k’s value is erroneous on line 4, we can trace through someMethod() to
find the error. Because any segment of a structured program has a
single entry and exit, we can use a pair of printin() statements in this way
to converge on the location of the program bug.

An important implication of the single-entry/single-exit property is that
we can use preconditions and postconditions to help us design and
debug our code. The previous example provided a simple example: The



SECTION 11 OOD: Structured Programming 279
precondition is that k should equal 0 on line 2, and the postcondition is that k
should equal 1 on line 4. Figure 6.15 shows some additional examples.

int k=0; /I Precondition: k== 10
k=5; /l Assignment to k
/I Postcondition: k ==5
int k=20; /I Precondition: k== 0
while (k<100) f /I While loop
k =2 k+ 2;

g

// Postcondition: k >= 100

factorial(n):

factorial (n) is 1 ifnis O
factorial (n) isnniln 2. ..1 ifn>0

Precondition: n>=20
Postcondition:
factorial(n) =1 if n =0

=nn 1n 2.1 ifn>0
/
public int factorial(intn) f

if (n==0)
return 1;
elsef
intf =1; /I Init a temporary variable
for (int k=n; k>=1;KkK ) // For n down to 1
f = fk; 1 Accumulate the product
return f; /I Return the factorial
Il else

g// factorial()

Figure 6.15: Using pre- and postconditions to document code.

In the first example, we use pre- and postconditions to define the se-
mantics of an assignment statement. No matter what value k has before
the assignment, the execution of the assignment (k = 5) will make the
postcondition (k == 5) true.

In the second example, the postcondition follows from the semantics
of the while loop. Because the loop-entry condition is k < 100, when the
loop exits the postcondition (k >= 100) must be true.

The third example shows how pre- and postconditions can be used to
design and document methods. The factorial(n) is defined for n 0 as
follows:

actorial(n)is 1,if n==
factorial(n)isn nl1l n2..1,ifn>0




280 CHAPTER 6 Control Structures

In other words, the factorial of N is defined as the cumulative product of
multiplying 1 times 2, times 3, and so on up to N. For example, if N is 5,
then factorial(5) is 1 *2*3*4 *5 = 120.

Note how the factorial computation is done in the method. The
variable f, which is used to accumulate the product, is initialized to 1.
Then on each iteration of the for loop, f is multiplied by k and the product
is assigned back to f. This is similar to the way we accumulate a sum,
except in this case we are accumulating a product.

The precondition on the factorial() method represents the condi-tion
that must be true in order for the method to work correctly. Factorial is
undefined for n < 0, so it is important that n be greater than or equal to 0
whenever this method is called. Given that the precondition holds, the
postcondition gives a precise specification of what must be true when the
method is finished.

Design: Defensive Programming

The pre- and postconditions for a method can be used to design de-
fensive code—that is, code that guards against errors. For exam-
ple, what action should factorial() take if its precondition fails to

hold? In Java, the best way to handle this situation is to throw an
lllegalArgumentException, as the following example illustrates:

public int factorial(int n) f
if (n<0) /I Precondition failure
thrownew lllegalArgumentException( +n);
if (n==0)
return 1;
else f
intf=1; /l Init atemporary variable
for (int k=n; k>=1; k )/ Forndownto1l
f=1k; /1 Accumulate the product
return f; /I Return the factorial
g
g// factorial()

An exception is an erroneous condition (an error) that arises during
the running of a program. An Exception is an object that encap-
sulates information about the erroneous condition. A program can
throw an Exception, thereby stopping the program, when an er-
roneous condition is detected. In this example, we create a new

lllegalArgumentException that would report the illegal value of n
with something like the following error message:

Exceptioninthread java.lang.lllegalArgumentException:
Factorial: 1
at Test.factorial(Param.java:5)
at Test.main(Param.java:18)

You have undoubtedly already encountered thrown exceptions during
program development. Java has an extensive hierarchy of Exceptions,
which we will cover in some depth in Chapter 11. For now, however, we
just note how to use the lllegalArgumentException. As its name




SECTION 11 OOD: Structured Programming 281

implies, an lllegalArgumentException is used when an argument in a
method call is not legal.

Rather than continuing the program with an erroreous data value,
throwing an exception causes the program to stop and print an error mes-
sage. Determining whether an argument is legal or illegal is an impor-tant
use of the method’s preconditions. The failure of the precondition in
factorial() points to a problem elsewhere in the program, because it is
doubtful that the program deliberately passed a negative value to factorial().
The discovery of this error should lead to modifications in that part of the

program where factorial() was invoked—perhaps
to some validation of the user’s input:

|int num= Integer.parselnt(textin.getText());

|if (num>= 0) /11f factorial () precondition valid
| factNum= factorial(hum); /I Compute factorial
|e|se

| System .out.println( )i/l Report input errorg

This would be the traditional way to handle this kind of error.

Using Pre- and Postconditions

The use of preconditions and postconditions in the ways we’ve described
can help improve a program’s design at several distinct stages of its
development:

Design stage: Using pre- and postconditions in design helps to clarify
the design and provides a precise measure of correctness.
Implementation and testing stage: Test data can be designed to
demon-strate that the preconditions and postconditions hold for any
method or code segment.

Documentation stage: Using pre- and postconditions to document the
program makes the program more readable and easier to modify and
maintain.

Debugging stage: Using the pre- and postconditions provides precise
criteria that can be used to isolate and locate bugs. A method is incor-
rect if its precondition is true and its postcondition is false. A method is
improperly invoked if its precondition is false.

Like other programming skills and techniques, learning how to use pre-and
postconditions effectively requires practice. One way to develop these skills
is to incorporate pre- and postconditions into the documentation of the
methods you write for laboratories and programming exercises. Ap-pendix A
provides guidelines on how to incorporate pre- and postcondi-tions into your
program’s documentation. However, it would be a mistake to get in the habit
of leaving the identification of pre- and postconditions to the documentation
stage. The method’s documentation, including its pre- and postconditions,
should be developed during the design stage and should play a role in all
aspects of program development.

Effective Program Design

What we’re really saying here is that using pre- and postconditions forces
you to analyze your program’s logic. It is not enough to know that a single



282 CHAPTER 6 Control Structures

isolated statement within a program works correctly at the present time.
You have to ask yourself: Will it continue to work if you change some
other part of the program? Will other parts of the program continue to
work if you revise it? No matter how clever you are, it is not possible to
keep an entire model of a good-sized program in your head at one time.
It is always necessary to focus on a few essential details and leave aside
certain others. Ideally, what you hope is that the details you’ve left aside
for the moment aren’t the cause of the current bug you're trying to fix.
Using pre- and postconditions can help you determine the correctness of
the details you choose to set aside.

N\ SIS S e NN/ =NRISS|[e]\ Pre- and Postconditions. Pre- and
postconditions are an effective way of analyzing the logic of your
program’s loops and methods. They should be identified at the
earliest stages of design and development. They should play a role
in the testing and debugging of the program. Finally, they should be
included, in a systematic way, in the program’s documentation.

8A\AREIRIelEl RV IVIIN[ERRIZADevelop your program’s documentation
at the same time that you develop its code and include the pre- and
postconditions in the documentation.

As the programs you write become longer and more complex, the
chances that they contain serious errors increase dramatically. There’s
no real way to avoid this complexity. The only hope is to try to manage it.
In addi-tion to analyzing your program’s structure, another important
aspect of program design is the attempt to reduce its complexity.

NN =SS =S RlV=gnI=SI[€lN Reducing Complexity. Design your
programs with an aim toward reducing their complexity.

Perhaps the best way to reduce complexity is to build your programs us-ing
a small collection of standard structures and techniques. The basic control
structures (Fig. 6.14) help reduce the potential complexity of a pro-gram by
constraining the kinds of branching and looping structures that can be built.
The control structures help to manage the complexity of your




SECTION 11 OOD: Structured Programming 283

program’s algorithms. In the same way, the following practices can help
reduce and manage the complexity in a program.

AN EIRIOIE VANV INIEREIEAS tandard Techniques. Acquire and use
standard programming techniques for standard programming
problems. For example, using a temporary variable to swap the
values of two variables is a standard technique.

SN RIeLE 2 AV IIN[ERRIERE ncapsulation. Use methods wherever
appropriate in your own code to encapsulate important sections of
code and thereby reduce complexity.

AN EIRIGIE VNIV INIERIEAC ode Reuse. Instead of reinventing the
wheel, use library classes and methods whenever possible. These
have been carefully designed by experienced programmers. Library
code has been subjected to extensive testing.

SELF-STUDY EXERCISES

EXERCISE 6.18 Identify the pre- and postconditions on j and k where
indicated in the following code segment:

intj=0; k=5;
do f
if (k%5 ==0) f
/1 Precondition
i =k
k ;
g
else k =k;
g while (j <=k);
/I Postcondition

EXERCISE 6.19 Identify the pre- and postconditions for the following
method, which computes x" forn 0:

public double power ( double X,intn)f
doublepow = 1;
for (int k=1; k<=n; k++)
pow = pow X ;
returnpow;
g// power()




284 CHAPTER 6  Control Structures
Special Topic: What Can Be Computed?

Did you ever wonder whether there are problems that cannot be solved by
a computer, no matter what kind of control structures are used? Well, back
in 1939, in his seminal paper titled “On Computable Numbers,” Alan Tur-
ing proved that indeed there are an infinite number of unsolvable prob-
lems. Prior to this, mathematicians and logicians thought all problems
could be solved. So Turing’s proof was quite a blow!

To help him prove this point, Turing defined an abstract computer,
which has come to be known as a Turing machine. A Turing machine
has an alphabet of symbols; a read/write head; an infinitely long tape
on which the read/write head can write symbols, and from which it can
also read symbols; and a control unit, which controls the movement and
action of the read/write head. Note that the Turing machine elements
correspond to key components of a real computer—although Turing in-
vented this concept a decade before the first computers were developed.
The read/write head corresponds to a computer’s central processing unit
(CPU). The tape corresponds to the computer’s memory. And the control
unit corresponds to the computer program.

A Turing machine represents a purely abstract concept of computa-
tion. It represents the pure idea of an algorithmic solution to a problem.
Equipped with this concept, Turing was able to prove that there are un-
solvable problems—that is, problems for which no algorithm can arrive at
a solution.

One such problem is the halting problem. This problem asks whether an
algorithm can be devised to determine whether an arbitrary program will
eventually halt. If there were such an algorithm, it could be used to detect
programs that contain infinite loops, a service that might be really helpful
in an introductory computing lab, among other places! But, alas, there can
be no such algorithm.

Here’s an outline of a proof that shows that the halting problem is un-
solvable. (This particular version of the proof was suggested by J. Glenn
Brookshear in Computer Science: An Overview, Benjamin-Cummings, 1985.)

Suppose you had a program, P, that solves the halting problem. That is,
whenever P is given a self-halting program, it sets a variable isTerminating
to true, and otherwise it sets isTerminating to false. Now let’s create a new

version of P, named PO, which is identical to P except that right after where
P sets isTerminating to true or false, PO contains the following loop:

While (isTerminating == true); // infinite if isTerminating true

In other words, if the input to PO is a self-terminating program, then PO
will enter an infinite loop and it won’t terminate. Otherwise, if a non-self-
terminating program is input to PO, PO will skip the loop and will
terminate.

Now what if we give a representation of PO to itself. Will it halt? The
answer generates a contradiction: If PO is a self-terminating program,
then when it is input to itself, it will not terminate. And if PO is not self-
terminating, when it is input to itself, it will terminate. Because our as-
sumption that P solves the halting problem has led to a contradiction, we



CHAPTER 6Chapter Summary 285

have to conclude that it wasn’t a very good assumption in the first place.
Therefore, there is no program that can solve the halting problem.

The topic of computability is a fundamental part of the computer sci-
ence curriculum, usually taught in a sophomore- or junior-level theory of
computation course.

Technical Terms CHAPTER SUMMARY
conditional loop loop bound sentinel bound

counting loop loop entry condition unit indexing

do-while statement nested loop updater

infinite loop postcondition while statement

initializer precondition zero indexing

limit bound priming read

loop body repetition structure

Summary of Important Points

A repetition structure is a control structure that allows a statement or
sequence of statements to be repeated.
All loop structures involve three elements—an initializer, a loop entry
condition or a loop boundary condition, and an updater.
When designing a loop, it is important to analyze the loop structure to
make sure that the loop bound will eventually be satisfied.

The for statement has the following syntax:
for ( initializer ; loop entry condition ; updater )

for loop body ; . TABLE 6.2 A summary
The while statement takes the following form: of various loop bounds
while ( loop entry condition )
loop body ; Bound Example
The do-while statement has the following general form: ]
do Counting k <100
loop body ; Sentinel input != 9999
Flag done != true

while ( loop entry condition ); Limit amount < 0:5

When designing a loop, it is important to analyze the loop structure to
make sure that the loop bound will eventually be satisified. Table 6.2
summarizes the types of loop bounds that we have identified.
Structured programming is the practice of writing programs that are built
up from a small set of predefined control structures—the sequence,
selection, repetition, and method-call structures. An important feature of
these structures is that each has a single entry and exit.

A precondition is a condition that must be true before a certain code
segment executes. A postcondition is a condition that must be true
when a certain code segment is finished. Preconditions and
postconditions should be used in the design, coding, documentation,
and debugging of algorithms and methods.



286 CHAPTER 6 Control Structures

SOLUTIONS TO SELF- SOLUTION 6.1 Identify the syntax error in the following for loop statements:
STUDY EXERCISES a. Commas are used instead of semicolons in the header.

or (int k=5; k<100; k++)
System.out.println(k);

b. There shouldn’t be 3 semicolons in the header

or (intk=0; k<12 ; k )
System .out.printin(k);

SOLUTION 6.2 Identify those statements that result in infinite loops:
Infinite loop because k is never incremented.

Infinite loop because k is always odd and thus never equal to 100.

SOLUTION 6.3 Your sister is learning to count b fours. erte a for loop that
prints the following sequence of numbers: 1, 5 ,17,21,2

for (int k=1; k<= 25; k =k +4)
System.out.print(k+ " ");

SOLUTION 6.4 What value will j have when the following loop terminates? An-
swer: j will be undefined when the loop terminates. It is a local variable whose
scope is limited to the loop body.

for (int i =0;i<10; i++)

f
intj;

=0 +1

-

SOLUTION 6.5 Write a nested for loop to print the following geometric pat-tern:

#

##

# ##

# #HHH

#oHHH H

for (int row=1; row <= 5; row++) f /I For each row
for (intcol = 1; col<=row; col++) // Columns per row

System.out.print( #");

System.out.println(); /I New line

g/l row

SOLUTION 6.6 Identify the syntax error in the following while structures:



CHAPTER 6 Solutions to Self-Study Exercises 287

a.
int k=5;
while (k<100) f
System.out.printlin(k);
k++ << Missing semicolon
g
b.
int k=20;
while (k<12;) f <<Extra semicolon
System .out.printin(k);
K ++;
g

SOLUTION 6.7 Determine the output and/or identify the error in each of the
following while structures.

a.
int k=0;
while (k<100)
System.out.printin(k); << Missing updater in loop body
Output: infinite loop prints 000 0 0...
b.
hile (k<100) f <<Missing initializer
System.out.printin(k);
K ++;
g

Output: unpredictable since k’s initial value is not known

SOLUTION 6.8 Your younger sister is now learning how to count by sixes. Write
a while loop that prints the following sequence of numbers: 0, 6, 12, 18, 24, 30, 36.

intk=0; /I Initializer

while (k<=36) f /lLoop entry condition
System.out.printin(k);
k+= 6; /I Updater

SOLUTION 6.9 If N is even, divide it by 2. If N is odd, subtract 1 and then divide
it by 2. This will generate a sequence that is guaranteed to terminate at 0. For
example, if N is initially 15, then you get the sequence 15, 7, 3, 1, 0. Write a
method that implements this sequence using a while statement.

public static void sublDiv2 (int N) f
while(N!= 0) f
System.out.print(N+" 7);
if ( N%2==0)
N=N/ 2;
else
N= (N 1)/ 2;
g
System.out.printin(N );
g/l sub1Div2 ()

SOLUTION 6.10 Identify the syntax error in the following do-while structures:



288 CHAPTER 6 Control Structures

a.
int k=0;
do while (k<100)<<Misplacedcondition
f
System .out.printin(k);
K ++;
g << Belongs here
b.
intk=0;
do f

System.out.printin(k);
K ++;
g while(k<12)<< Missing semicolon

SOLUTION 6.11 Your sister has moved on to counting by sevens. Write a do-

while loop that prints the following sequence of numbers: 1, 8, 15, 22, 29,
36, 43.

n=1; /l Initializer
do f
System.out.print(n+" ");
n+= 7; /I Updater
g while (n<=43); /l Loop entry condition

SOLUTION 6.12 Write a method to input and validate pizza sales.

public int getAndValidatePizzaPrice()f/ Uses KeyboardReader
int pizza=0;
do f
reader.prompt(”Input a pizza price (8, 10,0r 15)"7);
reader.prompt(’or 99 to endthe list>>");
pizza=reader.getKeyboardinteger();
if ((pizza!=99)&&(pizza!=8)&&(pizza!=10)&&
(pizza!=15))
System.out.printin("Error: you've entered an’
+”invalid pizza pricenn”); /I Errorinput
else //IOKinput
System.out.println("ou input’+ pizza +"nn");
gwhile ((pizza!=99) &&(pizza!=8)&&
(pizza!=10)&&(pizza!=15));
return pizza;
g/l getAndValidatePizzaPrice()




CHAPTER 6Solutions to Self-Study Exercises 289

SOLUTION 6.13 Write a method_to input and validate pizza sales using the
numbers 1, 2, and 3 to represent pizzas at different price levels.

public int getAndValidatePizzaPrice() f// Uses KeyboardReader
int pizza=0;
do f

reader.prompt(”“lnput a 1,2o0r 3 to indicate pizza”
+”price (1($8), 2($10), or 3($15) ) ")
reader.prompt(’or Oto end the [ist >>");
pizza =reader.getKeyboardinteger();
if ((pizza<0)jj (pizza>3)) / Error check
System.out.printin("Error:you’ve entered an”
+”invalid valuenn’);
else /IOKinput
System .out.println("You input’” + pizza +"'nn");
gwhile ( (pizza<0) jj (pizza>3) );
if (pizza==1)
return 8;
elseif (pizza == 2)
return 10;
elseif (pizza == 3)
return 15;
else
return 0;
g/l getAndValidatePizzaPrice()

SOLUTION 6.14 For each of the following problems, decide whether a counting
loop structure, a while structure, or a do-while structure should be used, and
write a pseudocode algorithm.

Printing the names of all the visitors to a Web site could use a counting loop
because the exact number of visitors is known.

or each name in the visitor's log
print the name

Validating that a user has entered a positive number requires a do-while
structure in which you repeatedly read a number and validate it.

read a number
if number isinvalid, printerror message
while number is invalid

Changing all the backslashes (n) in a Windows Web page address, to the slashes
(/) used in a Unix Web page address.

or each characterinthe Web pageaddress
if it is abackslashreplace it with slash

Finding the largest in a list of numbers requires a while loop to guard against
an empty list.

nitialize maxMPGto smallest possible number
while there aremore cars in the database
if currentcar'sMPGis greater than maxMPG
replace maxMPG with it

SOLUTION 6.15 Identify any errors in the following switch structures (if there is
no error, specify the output):



290 CHAPTER 6 Control Structures

int k= 0;

switch (k) // Syntax error: missing braces

case O:
System.out.printin(’zero”);
break ;

case 1:
System.out.println(’one”);
break ;

default:
System.out.printin(’"default”);
break ;

int k= 0;
switch (k + 1)
f
case 0:
System.out.printin("zero”);
break ;
case 1:
System .out.println("one”); /I Output "one”
break ;
default:
System.out.printin("default”);
break ;

int k= ;
| switch (k /3.0) // Syntax error: notan integral value
f
case 2:
System.out.println("zero”);
break ;
case 3:
System .out.println("one”);
break ;
default:
System.out.println("default”);
break ;

SOLUTION 6.16 A switch statement to print ice cream flavors:

switch (flavor)
f

case 1:
System.out.printin("Vanilla”);
break ;

case 2:
System.out.println("Chocolate”);
break ;

case 3:
System.out.printin("Strawberry”);
break ;

default:
System.out.println("Error”);




201

CHAPTER 6 Exercises
SOLUTION 6.17
public final int VANILLA= 0,

CHOCOLATE= 1,
STRAWBERRY = 2;
switch (flavor)
f
caseVANILLA:
System.out.println("Vanilla”);
break ;
cas e CHOCOLATE:
System.out.printin("Chocolate”);
break ;
case STRAWBERRY :
System.out.printin("Strawberry”);
break ;
default:
System.out.println("Error”);

SOLUTION 6.18 Identify the pre- and postconditions on j and k where indicated
in the following code segment:

intj=0;k=5;
do f
if (k%5 ==0) f
/Il Precondition: j<=k
ik
Kk .
g
else k = k;
gwhile (j <=k);
/ Postcondition: j>k

SOLUTION 6.19 Identify the pre- and postconditions for the following method,
which computes x" forn>= 0.

// Precondition: N>=0
I/ Postcondition: power(x,n) ==x to then
public double power (double x,intn)f
doublepow =1;
for (intk =1; k<=n; k++)
pow = pow X ;
returnpow;
g/l power ()

EXERCISE 6.1 Explain the difference between the following pairs of terms:

Counting loop and conditional loop.

For statement and while statement.
While statement and do-while statement.
Zero indexing and unit indexing.

Sentinel bound and limit bound.
Counting bound and flag bound.

Loop initializer and updater.

Named constant and literal.

Compound statement and null statement.

EXERCISE 6.2 Fill in the blank.

EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.



292 CHAPTER 6 Control Structures
a. The process of reading a data item before entering a loop is known as a

b. A loop that does nothing except iterate is an example of

c. A loop that contains no body is an example of a statement.

d. A loop whose entry condition is stated as (k < 100 jj k >= 0) would be an

exampleofan_—_ |oop.

A loop that should iterate until the user types in a special value should use a
bound.

A loop that should iterate until its variable goes from 5 to 100 should use a
bound.

A loop that should iterate until the difference between two values is less than

0.005is an exampleofa___ bound.

EXERCISE 6.3 Identify the syntax errors in each of the following:
for (int k = 0; k j 100; k++) System.out.printin(k)
for (int k = 0; k j 100; k++); System.out.printin(k);
int k = 0 while k j 100 System.out.printin(k); k++;
int k = 0; do System.out.printin(k); k++; while k j 100 ;

EXERCISE 6.4 Determine the output and/or identify the error in each of the

following code segments:
for (int k = 1; k == 100; k += 2) System.out.printin(k);
int k = 0; while (k j 100) System.out.printin(k); k++;
for (int k = 0; k j 100; k++) ; System.out.printin(k);

EXERCISE 6.5 Write pseudocode algorithms for the following activities, paying
particular attention to the initializer, updater, and boundary condition in each case.
a. a softball game
b. a five-question quiz
c. looking up a name in the phone book

EXERCISE 6.6 Identify the pre- and postconditions for each of the statements
that follow. Assume that all variables are int and have been properly declared.
intresult =x1/vy;
int result = x
int x = 95; do x /= 2; while(x ¢=0);

EXERCISE 6.7 Write three different loops—a for loop, a while loop, and a do-
while loop—to print all the multiples of 10, including 0, up to and including 1,000.

EXERCISE 6.8 Write three different loops—a for loop, a while loop, and a do-
while loop—to print the following sequence of numbers: 45, 36, 27, 18, 9, 0,

9, 18, 27, 36, 45.

EXERCISE 6.9 Write three different loops—a for loop, a while loop, and a
do-while loop—to print the following ski-jump design:

HOH H R H R
HOH H R H R

HOHHHH
H OH HH
H H
#*




CHAPTER 6Exercises 293

EXERCISE 6.10 The Straight Downhill Ski Lodge in Gravel Crest, Vermont, gets
lots of college students on breaks. The lodge likes to keep track of repeat
visitors. Straight Downhill’'s database includes an integer variable, visit, which
gives the number of times a guest has stayed at the lodge (1 or more). Write the
pseudocode to catch those visitors who have stayed at the lodge at least twice
and to send them a special promotional package (pseudocode = send promo).
(Note: The largest number of stays recorded is eight. The number nine is used
as an end-of-data flag.)

EXERCISE 6.11 Modify your pseudocode in the previous exercise. In addition to
every guest who has stayed at least twice at the lodge receiving a promotional
package, any guest with three or more stays should also get a $40 coupon good
for lodging, lifts, or food.

EXERCISE 6.12 Write a method that is passed a single parameter, N, and dis-
plays all the even numbers from 1 to N.

EXERCISE 6.13 Write a method that is passed a single parameter, N, that prints
all the odd numbers from 1 to N.

EXERCISE 6.14 Write a method that is passed a single parameter, N, that prints
all the numbers divisible by 10 from N down to 1.

EXERCISE 6.15 Write a method that is passed two parameters—a char Ch and
an int N—and prints a string of N Chs.

EXERCISE 6.16 Write a method that uses a nested for loop to print the follow-
ing multiplication table:

2 3 45 6 7 8 9

4
6 9

8 12 16

10 15 20 25

12 18 24 30 36

14 21 28 35 42 48

16 24 32 40 48 56 64

18 27 36 45 54 63 72 81

© 00 N U~ wWN
©COoO~NOOUILA_WNRERBRP

EXERCISE 6.17 Write a method that uses nested for loops to print the patterns

that follow. Your method should use the following statement to print the patterns:
System.out.print(#).

HHHH ## HHHH HBHRH HHHHH |
# # # # #
it ## # # # [
i #HH#HHH# # # # |
HHHE #H#H#H# # # # |
## # # o#H# # # #
#o# # # # # #
# # HHHH BB H T

EXERCISE 6.18 Write a program that asks the user for the number of rows and
the number of columns in a box of asterisks. Then use nested loops to generate
the box.



294 CHAPTER 6 Control Structures

EXERCISE 6.19 Write a Java application that lets the user input a sequence of
consecutive numbers. In other words, the program should let the user keep en-
tering numbers as long as the current number is one greater than the previous
number.

EXERCISE 6.20 Write a Java application that lets the user input a sequence of
integers terminated by any negative value. The program should then report the
largest and smallest values that were entered.

EXERCISE 6.21 How many guesses does it take to guess a secret number be-
tween 1 and N? For example, I'm thinking of a number between 1 and 100. Il
tell you whether your guess is too high or too low. Obviously, an intelligent first
guess would be 50. If that's too low, an intelligent second guess would be 75.
And so on. If we continue to divide the range in half, we’ll eventually get down to
one number. Because you can divide 100 seven times (50, 25, 12, 6, 3, 1, 0), it
will take at most seven guesses to guess a humber between 1 and 100. Write a
Java Swing program that lets the user input a positive integer, N, and then
reports how many guesses it would take to guess a number between 1 and N.

EXERCISE 6.22 Suppose you determine that the fire extinguisher in your
kitchen loses X percent of its foam every day. How long before it drops below a
certain threshold (Y percent), at which point it is no longer serviceable? Write a
Java Swing program that lets the user input the values X and Y and then reports
how many weeks the fire extinguisher will last.

EXERCISE 6.23 Leibnitz’s method for computing p is based on the following
convergent series:

P

4 =1
How many iterations does it take to compute p to a value between 3.141 and
3.142 using this series? Write a Java program to find out.

=
7

wl -

1
+5 +

EXERCISE 6.24 Newton’s method for calculating the square root of N starts by

making a (nonzero) guess at the square root. It then uses the original guess to
calculate a new guess, according to the following formula:

guess = ((N7 guess) + guess) 1 2;
No matter how wild the original guess is, if we repeat this calculation, the algo-
rithm will eventually find the square root. Write a square root method based on
this algorithm. Then write a program to determine how many guesses are
required to find the square roots of different numbers. Uses Math.sqrt() to
determine when to terminate the guessing.

EXERCISE 6.25 Your employer is developing encryption software and wants
you to develop a Java Swing Program that will display all of the primes less than
N, where N is a number to be entered by the user. In addition to displaying the
primes themselves, provide a count of how many there are.

EXERCISE 6.26 Your little sister asks you to help her with her multiplication and
you decide to write a Java application that tests her skills. The program will let
her input a starting number, such as 5. It will generate multiplication problems
ranging from from 5 1 to 5 12. For each problem she will be prompted to enter
the correct answer. The program should check her answer and should not let her
advance to the next question until the correct answer is given to the current
question.



CHAPTER 6Exercises 295

EXERCISE 6.27 Write an application that prompts the user for four values and
draws corresponding bar graphs using an ASCII character. For example, if the
user entered 15, 12, 9, and 4, the program would draw

EXERCISE 6.28 Revise the application in the previous problem so that the bar
charts are displayed vertically. For example, if the user inputs 5, 2, 3, and 4, the

program should display

EXERCISE 6.29 The Fibonacci sequence (named after the Italian mathematician
Leonardo of Pisa, ca. 1200) consists of the numbers 0; 1; 1; 2; 3; 5; 8; 13; : : :in
which each number (except for the first two) is the sum of the two preceding numbers.
Write a method fibonacci(N) that prints the first N Fibonacci numbers.

EXERCISE 6.30 The Nuclear Regulatory Agency wants you to write a program
that will help determine how long certain radioactive substances will take to de-
cay. The program should let the user input two values: a string giving the sub-
stance’s name and its half-life in years. (A substance’s half-life is the number of
years required for the disintegration of half of its atoms.) The program should re-
port how many years it will take before there is less than 2 percent of the original
number of atoms remaining.

EXERCISE 6.31 Modify the CarLoan program so that it calculates a user’s car
payments for loans of different interest rates and different loan periods. Let the
user input the amount of the loan. Have the program output a table of monthly
payment schedules.

The next chapter also contains a number of loop exercises.



296 CHAPTER 6 Control Structures



Chapter 7

Strings and String
Processing

OBJECTIVES
After studying this chapter, you will

Be more familiar with Java Strings.

Know how to solve problems that involve manipulating strings.
Be able to use loops in designing string-processing algorithms.

OUTLINE

7.1 Introduction

7.2 String Basics

7.3 Finding Things Within a String

7.4 Example: Keyword Search

7.5 From the Java Library: StringBuffer

7.6 Retrieving Parts of Strings

7.7 Example: Processing Names and Passwords
7.8 Processing Each Character in a String

7.9 Comparing Strings

7.10 From the Java Library: StringTokenizer
7.11 Handling Text in a Graphics Context (Optional)

Chapter Summary
Solutions to Self-Study Exercises
Exercises

297



1

String

Fvalue
Fcount

H+String()

rString(in s : String)

rlength() :int

rvalueOf(in n : int) : String

Hconcat(in s : String) : String
rvalueOf(in d : double) : String
rcharAt(in n : int) : char

requals(in o : Object) : boolean
rindexOf(in ch : int) : int

rindexOf(in ch : int, in start : int) : int
rindexOf(in s : String) : int
rindexOf(in s : String, in start : int) : int
tsubstring(in strt : int) : String
tsubstring(in strt : int, in end : int) : String

7.1 The

class.

Figure
java.lang.String

Are strings objects?

298

7.1

CHAPTER 7 Strings and String Processing

Introduction

You have already had an introduction to Strings in the early chapters of
this text. In Chapter 2, we introduced the String data type and showed
how to create String objects and use String methods, such as length(),
concat(), and equals().

We have seen Strings used for GUI I/O operations when used Strings
as the contents of JTextFields and other text components, as the values
of JLabels, as the labels for JButtons, and so on. Strings are also used
extensively in command-line interfaces.

Another important task that Strings are used for are as a standard
way of presenting or displaying information about objects. As we saw in
Chapter 2, one of the key conventions of the Java class hierarchy is that
every class inherits the Object.toString() method, which can be used to
provide a string representation of any object. For example,
Integer.toString() converts an int to a String, so that it can be used in
JTextFields or JLabels.

Programmers often have to work with strings. Think of some of the
tasks performed by a typical word processor, such as cut, paste, copy,
and insert. When you cut and paste text from one part of the document
to another, the program has to move one string of text, the cut, from one
location in the document and insert it in another.

Strings are also important because they are our first look at a data
struc-ture. A data structure is a collection of data that is organized
(structured) in some way. A string is a collection of character (char)
data. Strings are important data structures in a programming language,
and they are used to represent a wide variety of data.

The main purpose of this chapter is to provide a detailed discussion of
Java’s string-related classes, including the String, StringBuffer, and
StringTokenizer classes. These are the important classes for writing
string-processing applications. Our goal is to introduce the important
String methods and illustrate common string-processing algorithms. We
will review how to create strings from scratch and from other data types.
We will learn how to find characters and substrings inside bigger strings.
We will learn how to take strings apart and how to rearrange their parts.
Finally, we will learn how to apply these string-processing skills in a
program that plays the game of Hang Man.

7.2 String Basics

Before we cover the new material on Strings, let’s first review what we
know about this topic. In Java, Strings are considered full-fledged
objects. A String object is a sequence of the characters that make up the
string, plus the methods that are used to manipulate the string. The
java.lang.String class (Fig. 7.1) is a direct subclass of Object, and it contains
many public methods that can be used to perform useful opera-tions on
strings (such as concatenation). We will discuss a selection of the



SECTION 7.2String Basics 299

more commonly used methods, but for a full listing and description of the
String methods see

http:/java.sun.com/j2se/1.5.0/docslapil |

Like other object variables, String variables serve as references to their
respective objects. However, unlike other Java objects, Strings have cer-tain —X
characteristics in common with the primitive data types. For example, as we

have already seen, Java allows for literal strings. A string literal is a

sequence of zero or more characters contained in double quotes, such as

“Socrates” and “’ (the empty string). Java allows us to perform operations

on literal strings, such as concatenation. As we have already seen, the

expression "Hello" + "world" results in the string "Helloworld". Java also

allows us to use string literals to initialize String variables with an assignment

statement. These exceptional features greatly simplify the use of Strings in

our programs. Given how much we use Strings, incorporating these features

into Java seems like a good design decision.

7.2.1 Constructing Strings

To create String objects, the String class provides many constructors,
including the following:

public String(); /I Creates an empty string
/I Copy constructor: Creates acopy ofa string

public String(String initialvalue);

When we create an object using the first constructor, as in

| String name=new String(); \ name : String
value=""
Java will create a String object and make name the reference to it. Fig- count=0

ure 7.2 shows a hypothetical representation of a String object. In addi-
tion to storing the sequence of characters that make up the string, Java
also stores an integer value representing the number of characters in the
string. We have chosen to represent these two elements as the private
in-stance variables, value, for the sequence of characters, and count for
the number of characters. In fact, we don’t know exactly how Java stores
the sequence of characters. That information is hidden. As Figure 7.2
illus-trates, when we use the default constructor, the value of the is the
empty string and its count is 0.

The second constructor is the copy constructor for the String class. A
copy constructor is a constructor that makes a duplicate, sometimes
called a clone, of an object. Many Java classes have copy constructors.
Consider the following statements:

Figure 7.2: An empty string is a
String object with value “ and
count O.

String s1 =new String( )i);
String s2 =new String(sl);

These two statements would result in two distinct String objects, both
storing the word “Hello”.



"Socrates" : String

value ="Socrates"
count =8
Figure 7.3: The lit-
eral String “Socrates.”
" SOCRATES" p Str.i ng

NAME2—-|value ="Socrates"
NAME3—-fcount =8

N . String

NAMEL ——fcount =0

value ="

Figure 7.4: The variables namel,
name2, and name3 serve as
refer-ences to the literal String

objects “Socra

NAME4

—

NAME6

tes” and .

NAMES ——

Str.ing

value ="Socrates"
count =8

Figure 7.5: Together with the

objects in Figu

re 7.4, there are

now four different String objects

with eight diffe

rent references to

them, includ-ing the literals

“Socrates” and .

300 CHAPTER 7 Strings and String Processing

Note that in the first of the preceding statements, we used the literal
string “Hello” in the constructor. When Java encounters a new literal
string in a program, it constructs an object for it. For example, if your
program contained the literal “Socrates,” Java would create an object for

it and treat the literal itself as a reference to the object (Fig. 7.3).
We often use a string literal to assign a value to a String variable:

String s; /1 The value of s is initially null
S = /' snowrefers to”Socrates” object

In this case, the reference variable s is initially null—that is, it has no
referent, no object, to refer to. However, after the assignment statement,
s would refer to the literal object “Socrates,” which is depicted in Figure
7.3. Given these two statements, we still have only one object, the String
object containing the word “Socrates.”. But now we have two references
to it: the literal string “Socrates,” and the reference variable s.

Assignment statements can also be used as initializers when declaring
a String variable:

String namel
String name2 ;/l References to "Socrates”
String name3 ;

, /Il Reference to the empty string

In this example, Java does not construct new String objects. Instead, as
Figure 7.4 shows, it simply makes the variables namel, name2, and
name3 serve as references to the same objects that are referred to by
the literal strings “” and “Socrates.” This is a direct consequence of
Java’s policy of creating only one object to serve as the referent of a
literal string, no mat-ter how many occurrences there are of that literal in
the program. Thus, these declarations result in no new objects, just new
references to existing objects. The justification for this policy is that it
saves lots of memory in our programs. Instead of creating a String object
for each occurrence of the literal “Socrates,” Java creates one object and
lets all occurrences of “Socrates” refer to that object.

Finally, consider the following declarations, which do invoke the
String constructors:

Stringname4 =new String(); /l Creates an object
Stringname5 =new String( )
String name6 = name4;

In this case, as shown in Figure 7.5, Java creates two new objects and sets
name4 to refer to the first and name5 to refer to the second. It gives name4
the empty string as its value, and it gives name5 “Socrates” as its value. But
these two objects must be distinguished from the objects corre-



SECTION 7.2String Basics 301
sponding to the literals (*” and “Socrates”) themselves. The declaration of
namee6 just creates a second reference to the object referred to by name4.

SAAS AN [e 8/ el =28l E =S trings. Java Strings are full-fledged ?E
objects, but they have some properties in common with primitive

types. They can have literal values and they can be used in
assignment statements.

RV WANElU/NSI=HRUIR=l String Declaration and ?E
Instantiation. Unless a String() constructor is called explicitly, no new

String object is created when declaring a String variable and
assigning it an initial value.

7.2.2 Concatenating Strings

Another way to build a String object is to concatenate two other strings.
Recall from Chapter 2 that there are two ways to perform string concate-
nation in Java: We can use the concat() method or the concatenation
operator, +.

StringlastName ="Onassis”;
String jackie =
new String("Jacqueline "+"Kennedy "+ lastName);

System.out.println("Jacqgueline”.concat(lastName));

The second of these statements uses the concatenation operator, +, to  String concatenation
create the String “Jacqueline Kennedy Onassis.” The third statement

uses the String method, concat(), to print “JacquelineOnassis.”

Using the + symbol as the string concatenation operator is another ex- Operator overloading
ample of operator overloading—using the same operator for two or more

different operations—which we encountered in Chapter 5.

VAN B/Nel =R =1R =S tring Concatenation. When surrounded on S;E
either side by a String, the + symbol is used as a binary

concatenation operator. It has the effect of joining two strings
together to form a single string.

Note that primitive types are automatically promoted to Strings when they are mixed
with concatenation operators. Thus, the statement

| System.out.printin("Thesum of 5 and 5="+ (5 + 5)); \

will print the string “The sum of 5 and 5 = 10.” Note that the integer

addition—(5 + 5)—is performed first, before the integer result is converted

into a String. If we had left off the parentheses around the addition oper-

ation, the second plus sign would also be interpreted as a concatenation
operator. Thus,

| System.out.println("The concatenation of 5and 5="+5+ |
5);




String length

Figure 7.6: The string “Socrates”
has eight characters,
from O to 7. This is an example of

zero indexing.

302 CHAPTER 7 Strings and String Processing

would print “The concatenation of 5 and 5 = 55.”

SELF-STUDY EXERCISES

EXERCISE 7.1 What will be printed by each of the following segments
of code?

a. String s1 = "silly"; System.out.printin(s1); b. String s2 = s1,
System.out.printin(s2); c. String s3 = new String (s1 + " stuff");

System.out.println(s3);
EXERCISE 7.2 Write a String declaration that satisfies each of the
following descriptions:

Initialize a String variable, strl, to the empty string.
Instantiate a String object, str2, and initialize it to the word stop.
Initialize a String variable, str, to the concatenation of strl and str2.

EXERCISE 7.3 Evaluate the following expressions:

intM=5,N=10;
String sl = , S2 = ;

a.M+N b.M+ sl C.sl+s2

EXERCISE 7.4 Draw a picture, similar to Figure 7.5, showing the ob-
jects and references that are created by the following declarations:

String sl1, s2 = , S3 = ;
String s4 = ;
String s5 = new String( )
String s6 = s5;

String s7 = s3;

7.2.3 Indexing Strings

Programmers often need to take strings apart or put them together or re-
arrange them. Just think of the many word-processing tasks, such as cut
and paste, that involve such operations. To help simplify such
operations, it is useful to know how many characters a string contains
and to number, or index, the characters that make up the string.

The number of characters in a string is called its length. The String
instance method, length(), returns an integer that gives the String’s

length. For example, consider the following String declarations and the
corresponding values of the length() method for each case:

String stringl =""; stringl.length() ==>0
String string2 = ; string2.length() ==>5
String string3 = ; string3.length() ==>5
String string4=string2 +

+ string3; string4.length() ==>11

The position of a particular character in a string is called its string in-
dex. All Strings in Java are zero indexed—that is, the index of the first



SECTION 7.2String Basics 303
character is zero. (Remember, zero indexing is contrasted with unit index-
ing, in which we start counting at 1.) For example, in “Socrates,” the letter S
occurs at index 0, the letter o occurs at index 1, r occurs at index 3, and so
on. Thus, the String “Socrates” contains eight characters indexed from 0 to 7
(Fig. 7.6). Zero indexing is customary in programming languages. We will
see other examples of this when we talk about arrays and vectors.

SA\ASANN[e 8/ el = 28BS tring Indexing. Strings are indexed S;E
starting at 0. The first character in a string is at position 0.

NNl =2 UlelelIN[emBIsd Zero Versus Unit Indexing. Syntax and /o
. - . . . /s
semantic errors will result if you forget that strings are zero indexed. /
In a string of N characters, the first character occurs at index 0 and
the last at index N 1. This is different from the String.length() method,
which gives the number of characters in the string, counting from 1.

Y,

7.2.4 Converting Data to Strings

The String.valueOf() method is a class method that is used to con-vert a
value of some primitive type into a String object. For example, the
expression, String.valueOf(128) converts its int argument to the String
“128.”

There are different versions of valueOf(), each of which has the fol-
lowing type of signature:

|static public String valueOf ( Type ) ; |

where Type stands for any primitive data type, including boolean,
char, int, double, and so on.
The valueOf() method is most useful for initializing Strings. Be-
cause valueOf() is a class method, it can be used as follows to instantiate
new String objects:

‘String number = String.valueOf(128);//Ccreates  "128" |

String truth = String.valueOf(true);// creates “true”
String bee = String.valueOf('B"); /Il Creates ’B” |
String pi = String.valueOf (Math.Pl);

// Creates "3.14159”

We have already seen that Java automatically promotes primitive type

values to String where necessary, so why do we need the valueOf()
methods? For example, we can Initialize a String to “3.14159” as follows:

|String pi =new String(”+Math.Pl);// creates "3.14" |

In this case, because it is part of a concatenation expression, the value
of Math.PI will automatically be promoted to a String value. The point



Readability

304 CHAPTER 7  Strings and String Processing

of the valueOf() method is twofold. First, it may be the method that the
Java compiler relies on to perform string promotions such as this one. Sec-
ond, using it in a program—even when it is not completely necessary—
makes the promotion operation explicit rather than leaving it implicit.
This helps to make the code more readable. (Also, see Exercise 7.9.)

SELF-STUDY EXERCISES

EXERCISE 7.5 Evaluate each of the following expressions:
a. String.valueOf (45) c. String.valueOf ('X’)
b. String.valueOf (128 - 7)

EXERCISE 7.6 Write an expression to satisfy each of the following
descriptions:

Convert the integer value 100 to the string "100”.
Convert the character 'V’ to the string "V”.
Initialize a new String object to X times Y.

7.3 Finding Things Within a String

Programmers often have to find the location of a particular character or
substring in a string. For example, user names and passwords are
sometimes stored in a single string in which the name and password are
separated from each other by a special character, such as a colon
(username:password). In order to get the name or password from such a
string, it is convenient to have methods that will search the string and
report the index of the colon character.

The indexOf() and lastindexOf() methods are instance methods that

can be used to find the index position of a character or a substring
within a String. There are several versions of each:

public int indexOf (int character);

public int indexOf(int character, intstartinglndex);
public int indexOf (String string);

public int indexOf (String string, intstartinglndex);
public int lastindexOf(int character);

public int lastindexOf(int character,int startinglndex);
public int lastindexOf(String string);

public int lastindexOf(String string,int startinglndex);

The indexOf() method searches from left to right within a String for
either a character or a substring. The lastindexOf() method searches

from right to left for a character or substring. To illustrate, suppose we
have declared the following Strings:

tring stringl
String string2
String string3
| String string4

string2 +” "+ string3;




SECTION 7.3Finding Things Within a String 305

Recalling that Strings are indexed starting at 0, searching for o in the
various strings gives the following results:

string1l.indexOf ( ) ==> 1 stringl.lastindexOf( )y ==> 1
string2.indexOf ( ) ==> 4 string2.lastlndexOf('0") ==>
4

string3.indexOf ( ) ==> 1 string3.lastlndexOf( ) ==>
1

string4.indexOf ( ) ==> 4 string4.lastindexOf('0") ==>
7

Because stringl is the empty string, “, it does not contain the let-ter 0.  Sentinel return value
Therefore, indexOf() returns 1, a value that cannot be a valid index for a
String. This convention is followed in indexOf() and lastindexOf().

Because string2 and string3 each contain only one occurrence of the INDEXES

letter o, both indexOf() and lastindexOf() return the same value when 012345678910
used on these Strings. Because string4 contains two occurrences of o, HHlHHH
indexOf() and lastindexOf() return different values in this case. As Figure

7.7 shows, the first o in “Hello, World!” occurs at index 4, the value He LLo Wor Lo

returned by indexOf(). The second o occurs at index 7, which is the
value returned by lastindexOf().

By default, the single-parameter versions of indexOf() and last- . ) . .
IndexOf() start their searches at their respective (left or right) ends of the ~Figure 7.7: The indexing of the
string. The two-parameter versions of these methods allow you to “Hello, World!” string.
specify both the direction and starting point of the search. The second
parameter specifies the starting index. Consider these examples:

string4.indexOf ( ,B) =>7stri
ng4.lastindexOf( ,5) ==>4

If we start searching in both cases at index 5, then indexOf() will miss the
o that occurs at index 4. The first o it finds will be the one at index 7.
Similarly, lastindexOf() will miss the o that occurs at index 7 and will find
the o that occurs at index 4.

The indexOf() and lastindexOf() methods can also be used to
find substrings:

string1.indexOf ( ) ==>
string2. indexOf ( ) ==>
string3. indexOf ( ) ==>
string4. indexOf ( ) ==>

stringl.lastindexOf( ) ==> 1‘
string2.lastindexOf( ) =>1
string3.lastindexOf( ) ==> 1|
string4.lastindexOf( ) => 7

NP e

The substring “or” does not occur in either stringl or string2. It does
occur beginning at location 1 in string3 and beginning at location 7 in
string4. For this collection of examples, it doesn’t matter whether we
search from left to right or right to left.

SELF-STUDY EXERCISES

EXERCISE 7.7 Suppose the String variable s has been initialized to
“mom.” Evaluate each of the following expressions:



Method design

Algorithm design

306 CHAPTER 7  Strings and String Processing
a. s.indexOf("m"); b. s.indexOf("0"); c. s.indexOf("M");

EXERCISE 7.8 Evaluate the expressions given the String declaration
String s1 = "Java, Java, Java";

a. sl.length() g. sl.indexOf(a’, 5)

b. String.valueOf(s1.length()) h. sl.lastindexOf('a’, 5)

c. sl.indexOf(a’) i. sl.indexOf("av", sl.length() - 10)
d. sl.lastindexOf('a’) j-  sl.astindexOf("av",

e. sl.indexOf("av") sl.length() - 4)

f. sl.lastindexOf("av") k. sl.indexOf("a", s1.indexOf("va"))

EXERCISE 7.9 Evaluate the following expression:

String tricky = ;
tricky.indexOf (String.valueOf ( tricky. |ndexOf( )));

7.4 Example: Keyword Search

One of the most widely used Web browser functions is the search utility.
You probably know how it works. You type in a keyword and click on a
button, and it returns with a list of Web pages that contain the keyword.

Suppose you were writing a browser in Java. How would you imple-
ment this function? Of course, we don’t know yet how to read files or
Web pages, and we won’t cover that until Chapter 11. But, for now, we
can write a method that will search a string for all occurrences of a given
keyword. That’s at least part of the task that the browser’s search engine
would have to do.

So we want a method, keywordSearch(), that takes two String pa-
rameters, one for the string that’s being searched, and the other repre-
senting the keyword. Let’s have the method return a String that lists
the number of keyword occurrences, followed by the index of each occur-
rence. For example, if we asked this method to find all occurrences of is in
“This is a test,” it should return the string “2: 2 5” because there are two
occurrences of is, one starting at index 2 and the other at index 5 in the
string.

The algorithm for this method will require a loop, because we want
to know the location of every occurrence of the keyword in the string.
One way to do this would be to use the indexOf() method to search for
the location of substrings in the string. If it finds the keyword at index
N, it should record that location and then continue searching for more

occurrences starting at index N + 1 in the string. It should continue in this
way until there are no more occurrences.

Suppose S is ourstring andK isthe keyword.
Initialize a countervariable and result string.
Set Ptr to the indexOf () the firstoccurrence of Kin S.
While (Ptr != 1)

Increment the counter

Insert Ptrintotheresultstring

Set Ptrtothe nextlocationofthe keyword in S
Insertthe count intothe resultstring
Return the result string as a String




SECTION 7.4Example: Keyword Search 307

As this pseudocode shows, the algorithm uses a while loop with a sentinel
bound. The algorithm terminates when the indexOf() method returns a

1, indicating that there are no more occurrences of the keyword in the
string.

Translating the pseudocode into Java gives us the method shown in
Fig-ure 7.8. Note how string concatenation is used to build the resultStr.
Each time an occurrence is found, its location (ptr) is concatenated to the
right-hand side of the resultStr. When the loop terminates, the number of

occurrences (count) is concatenated to the left-hand side of
the resultStr.

/
Pre: sand keyword are any Strings
Post: keywordSearch() returns a String containing the
number of occurrences of keywordins, followed
by the starting location of each occurrence
/
public String keywordSearch (String s, String keyword) f
StringresultStr =7

int count = O;
int ptr = s.indexOf ( keyword ) ;
while (ptr 1= 1) f
++count ;
resultStr=resultStr + ptr + ;
ptr = s.indexOf (keyword, ptr + 1);// Next occurrence
g
resultStr= count + + resultStr;// Insert the count

returnresultStr;
// Return as a String

g// keywordSearch()

Figure 7.8: The keywordSearch() method.

Testing and Debugging

What test data should we use for the keywordSearch() method? One What test data do we need?

important consideration in this case is to test that the method works for
all possible locations of the keyword within the string. Thus, the method
should be tested on strings that contain keyword occurrences at the
begin-ning, middle, and end of the string. We should also test the
method with a string that doesn’t contain the keyword. Such tests will
help verify that the loop will terminate properly in all cases. Given these
considerations, Table 7.1 shows the tests that were made. As you can
see from these re-sults, the method did produce the expected outcomes.
While these tests do not guarantee its correctness, they provide
considerable evidence that the algorithm works correctly.

VAN =SSR \VI=RRISSI (€] Test Data. In designing test data to
check the correctness of a string searching algorithm, it’s important
to use data that test all possible outcomes.

Implementation



7.5

308 CHAPTER 7  Strings and String Processing
TABLE 7.1 Testing the keywordSearch() method.

Test Performed Expected Result
keywordSearch("this is a test","is") 2:25
keywordSearch("able was i ere i saw elba","a") 4:061824
keywordSearch("this is a test","taste") 0:

From the Java Library:
java.lang.StringBuffer

ONE PROBLEM with the keywordSearch() method is that it is not wWwuw.

{ava.sun..Tothse/l.S.O/docs/am/ very efficient because a String in Java is a read-only object. This means

resultStr=resultStr+ptr+" "

N \

. String . String
value="" value="4"
count=0 count=2

(a) Before assignment

resultStr
(Orphan object)
: String . String
value="" value="4"
count=0 count=2

(b) After assignment

Figure 7.9: Evaluating resultStr
resultStr + ptr + " " creates an
orphan object that must be garbage

collected.

that once it has been instantiated, a String cannot be changed. You
cannot insert new characters or delete existing characters from it.

NV WANN[E]O/NeI = UIN=S trings Are Immutable. Once
instantiated, a Java String cannot be altered in any way.

Given this fact, how is it possible that the resultStr in the keyword-
Search() ends up with the correct value? he answer is that every time

we assign a new value to resultStr, Java has to create a new String
object. Figure 7.9 illustrates the process. Thus, given the statement

‘resuItStrzresuItStr+ptr+ :

Java will evaluate the right-hand side, which creates a new String object
whose value would be the concatenation of the right-hand-side
elements, resultStr + ptr + " " (Fig. 7.9a). It would then assign the new
ob-ject as the new referent of resultStr (Fig. 7.9b). This turns the
previous referent of resultStr into an orphan object—that is, into an
object that no longer has any references to it. Java will eventually
dispose of these orphaned objects, removing them from memory in a
process known as garbage collection. However, creating and disposing
of objects is a task that consumes the computer’s time.

The fact that this assignment statement occurs within a loop means that
several new objects are created and later garbage collected. Because object
creation is a relatively time-consuming and memory-consuming operation,
this algorithm is somewhat wasteful of Java’s resources.

Of course, except for the inefficiency of doing it this way, no real harm
is done by this algorithm used in the keywordSearch() method. Java’s
garbage collector will automatically reclaim the memory used by the or-



SECTION 7.5 From the Java Library: java.lang.StringBuffer

phaned object. However, this algorithm does consume more of Java’s
resources than other algorithms we might use.

309

JAVA LANGUAGE RULE
object that has no reference to it can no longer be used in a program.
Therefore, Java will automatically get rid of it. This is known as
garbage collection.

Automatic Garbage Collection. An

A more efficient way to write the keywordSearch() method would
make use of a StringBuffer to store and construct the resultStr.

Like the String class, the java.lang.StringBuffer class also rep-
resents a string of characters. However, unlike the String class, a
StringBuffer can be modified, and it can grow and shrink in length

as necessary. As Figure 7.10 shows, the StringBuffer class contains
several of the same kind of methods as the String class, for exam-
ple, charAt() and length(). But it also contains methods that allow
characters and other types of data to be inserted into a string, such as
append(), insert(), and setCharAt(). Most string-processing algo-
rithms use StringBuffers instead of Strings as their preferred data
structure.

VANZANEREIE RAVIVIINEREIE)  StringBuffer. A StringBuffer
should be used instead of a String for any task that involves
modifying a string.

The StringBuffer class provides several methods that are useful for
string processing. The constructor method, StringBuffer(String),
makes it easy to convert a String into a StringBuffer. Similarly, once
you are done processing the buffer, the toString() method makes it
easy to convert a StringBuffer back into a String.

The typical way to use a StringBuffer is shown in the following
revised version of the keywordSearch() method:

public String keywordSearch (String s, String keyword) f
/I Create StringBuffer

StringBufferresultStr =new StringBuffer();

int count = O;

int ptr = s.indexOf ( keyword ) ;
while (ptr = 1) f
++count ;

resultStr.append(ptr + ); /I Appendto buffer
ptr = s.indexOf ( keyword , ptr+ 1)

g

resultStr.insert(0, count + );

returnresultStr.toString(); //convert buffer to String
g// keywordSearchy()

We declare resultStr as a StringBuffer instead of a String. Then,
instead of concatenating the ptr and reassigning the resultStr, we
append() the ptr to the resultStr for each occurrence of a keyword.
Similarly, after the loop exits, we insert() the count at the front (index

Choosing the appropriate data
structure

¥
V/a
Object
+toString() : String
StringBuffer
HStringBuffer()

+StringBuffer(in s : Stringg
Happend(in data : <type>
HcharAt(in n : int) : char
Finsert(in n @ int, in data : <type>)
Hlength() : int

HsetCharAt(in n : int, in ch : char)
HtoString() : String

Figure 7.10:
java.lang.StringBuffer
class.



Strings are immutable

310 CHAPTER 7  Strings and String Processing

0) of the resultStr. Finally, we convert resultStr into a String by
using the toString() method before returning the method’s result.

One advantage of the StringBuffer class is that there are several
versions of its insert() and append() methods. These make it pos-
sible to insert any type of data—int, double, Object, and so on—into a
StringBuffer. The method itself takes care of converting the data into
a string for us.

To summarize, String objects in Java are immutable. So when a
String is “modified,” this really means that a new String object is cre-ated
and the old String object must be garbage collected. This is some-what
inefficient, especially if done repeatedly within a loop. To avoid these
inefficiencies, use a StringBuffer instead of a String in such contexts.

7.6 Retrieving Parts of Strings

Programmers often need to retrieve an individual character or a part of a
string from a string, as, for example, in a word processing program when
a part of a string is copied or deleted. In this section we look at methods
that help us with these kinds of tasks.

The charAt(int index) method is a String instance method that can be
used to retrieve the character stored at a certain index. The several

varieties of the substring() method can be used to retrieve a substring
of characters from a String. These methods are defined as follows:

public char charAt(int index)
public String substring(int startlndex)
| public String substring(int startindex, int endindex)

The charAt() method returns the character located at the index supplied
as its parameter. Thus, str.charAt(0) retrieves the first character in
str, while str.charAt(str.length()-1) retrieves the last character.
The substring() methods work in a similar way, except that you
need to specify both the starting and the ending index of the sub-
string you wish to retrieve. The first version of substring(int
startindex) takes a single parameter and returns a String consisting
of all the characters beginning with startindex and continuing up to
the end of the String. For example, if the str is “HelloWorld”, then

str.substring(5) would return “World” and str.substring(3)
would return “loWorld”:

|String str = ;
str.substring(5) ==>
str.substring(3) ==>

The substring(int, int) version requires that you specify both the starting
and ending index of the substring. The second index always



SECTION 7.6 Retrieving Parts of Strings 311

points to the character that is one beyond the last character in the String
you want to retrieve. For example,

J/ INDEX: 0123456789 I
String str = : |
str.substring(5,7) ==>

str.substring(0,5) ==>
str.substring(5, str.length()) ==>

Note here that when we want to retrieve “Wo” from str, we specify its
substring as indexes 5 and 7; the 7 points to the character just beyond
“Wo.” Similarly, substring(0,5), picks out the first five characters
(“Hello”). In the third example, the length() method specifies the sub-

string beginning at index 5 and extending to the end of the string. This is
equivalent to str.substring(5):

| INDEX: 0123456789
String str = :
str.substring(5, str.length()) ==>
str.substring(5) ==>

The fact that the second parameter in substring() refers to the char-

acter one beyond the desired substring may seem a bit confusing at first,

but it is actually a very useful way to designate a substring. For example,

many string-processing problems have to do with retrieving substrings

from a delimited string, which is a string that contains special characters

that separate the string into certain substrings. For example, consider the Delimited strings

string “substring1:substring2,” in which the delimiter is the colon, ;.
The following code retrieves the substring preceding the delimiter:

tring str = ;
int n= str.indexOf ( );

str.substring(0,n) ==>

Thus, by making the second index of substring() refer to the char-
acter one beyond the last character in the desired substring, we can use
indexOf() and substring() together to process delimited strings.

Note that it is not necessary to use a temporary variable n to store the
index of the delimiter, because the two method calls can be nested:

|String str =
| str.substring(0,str.indexOf(':")) ==>

VAl E R BlerelIN[€l IR substring(int pl, int p2). Don’t forget that the ¥
second parameter in the substring() methods refers to the character 4
just past the last character in the substring.

SELF-STUDY EXERCISES



Algorithm design

312 CHAPTER 7  Strings and String Processing
EXERCISE 7.10 Given the String declaration

|Strings= ; |

evaluate each of the following expressions:

a. s.substring(20) d. s.substring(23, 25)

b. s.substring(1, 5) e. s.substring(s.indexOf('x’))
C. s.substring(23)

EXERCISE 7.11 Given the preceding declaration of s, evaluate each of
the following expressions:
a. s.substring(20, s.length())
b. s.substring(s.indexOf(’b’), s.indexOf(’'f))
s.substring(s.indexOf("xy"))
s.substring(s.indexOf(s.charAt(23)))
s.substring(s.length() - 3)

7.7 Example: Processing Names and Passwords

Many computer systems store user names and passwords as delimited
strings, such as

mccarthy : 2ffo900ssi

mith : bgls5xxx
cho : biff4534ddeedw

Obviously, if the system is going to process passwords, it needs some way
to take apart these name-password pairs.

Let’'s write methods to help perform this task. The first method will
be passed a name-password pair and will return the name. The second
method will be passed a hame-password pair and will return the pass-

word. In both cases, the method takes a single String parameter and
returns a String result:

’String getName (String str);
StringgetPassword (String str);

To solve this problem we can make use of two String methods. We use
the indexOf() method to find the location of the delimiter—which is the

colon, “"—in the name-password pair and then we use substring() to

take the substring occurring before or after the delimiter. It may be easier
to see this if we take a particular example:

INDEX : 1 2
INDEX : 012345678901234567890
jones:b34rdffgl2 /(1
| cho:rtf546 /1 (2)

In the first case, the delimiter occurs at index position 5 in the string.
Therefore, to take the name substring, we would use substring(0,5).



SECTION 7.8Processing Each Character in a String 313

To take the password substring, we would use su_bstrin%(G). Of course, in
the general case, we would use variables to indicate the position of the
delimiter, as in the following methods:

public static String getName(String str) f

int posColon = str.indexOf (" :"); /I Find the delimiter
Stringresult= str.substring(0,posColon); // Get name
returnresult;

g

public static String getPassword (String str) f
int posColon = str.indexOf(’:"); /I Find the delimiter
Stringresult= str.substring(posColon + 1); // Get passwd
returnresult;

g

Note in both of these cases we have used local variables, posColon and
result, to store the intermediate results of the computation—that is, the

index of the “:” and the name or password substring.

An alternative way to code these operations would be to use nested
method calls to reduce the code to a single line:

return str.substring (0, str.indexOf( Y)
In this line, the result of str.indexOf(’:’) is passed immediately as the
second argument to str.substring(). This version dispenses with the need
for additional variables. And the result in this case is not unrea-sonably
complicated. But whenever you are faced with a trade-off of this sort—
nesting versus additional variables—you should opt for the style that will
be easier to read and understand.

SN S S S SO =el =5 (€PN ested Method Calls. Nested method calls o
are fine as long as there are not too many levels of nesting. The goal /
should be to produce code that is easy to read and understand.

7.8 Processing Each Character in a String

Many string-processing applications require you to process each
character in a string. For example, to encrypt the string “hello” into
“ijgnnqg”, we have to go through each letter of the string and change each
character to its substitute.
These types of algorithms usually involve a counting loop bounded by
the length of the string. Recall that the length() method determines Counting loop algorithm the
number of characters in a String and that strings are zero indexed.
This means that the first character is at index 0, and the last character is
at index length()-1. For example, to print each character in a string on



Counting bound

Off-by-one error

Method design

Algorithm design

314 CHAPTER 7  Strings and String Processing

a separate line, we would step through the string from its first to its last
character and print each character::

V/Precondition: str is not null
| /1 Postcondition: the letters in str will have been printed
‘public void printLetters(String str) f

for(intk=0; k<str.length(); k++)// For each char
‘ System.out.println(str.charAt(k)); // Print it
g

Note that our loop bound is k < str.length(), since the index of

the last character of any String is length()-1. Note also the use of
str.charAt(k) to retrieve the kth character in str on each iteration of
the loop.

Note the use of pre- and postconditions in the method’s comment
block. The precondition states that str has been properly initialized— that
is, it is not null. The postcondition merely states the expected behavior of
the method.

7.8.1 Off-by-One Error

A frequent error in coding counter-controlled loops is known as the off-
by-one error, which can occur in many different ways. For example, if
we had coded the loop boundary condition as k <= str.length(),
this would cause an off-by-one error, because the last character
in stris at location length()-1. This would lead to a Java
IndexOutOfBoundsException, which would be reported as soon as
the program executed this statement.

The only way to avoid off-by-one errors is to check your loop bounds
whenever you code a loop. Always make sure you have the loop counter’s
initial and final values correct.

savaeI=EsleleliNeniisd  Off-by-One Errors. Loops should be
carefully checked to make sure they don’t commit an off-by-one error.
During program testing, develop data that tests the loop variable’s
initial and final values.

7.8.2 Example: Counting Characters

As another example of an algorithm that processes each character in a
string, consider the problem of computing the frequency of the letters in
a given document. Certain text analysis programs, such as programs that
analyze encrypted data and spam filters, perform this type of function.

The countChar() method will count the number of occurrences of
any particular character in a String (Fig. 7.11). This method takes two
parameters: a String parameter that stores the string being searched and
a char parameter that stores the character being counted.

Begin by initializing the local variable, counter, to 0. As in the pre-
vious example, the for loop here will iterate through each character of
the String—from 0O to length()-1. On each iteration a check is made
to see if the character in the kth position (str.charAt(k)) is the char-
acter being counted. If so, counter is incremented. The method ends



SECTION 7.8 Processing Each Character in a String 315

// Precondition: Neither str norch are null

// Postcondition: countchar() ==the numberofchin str

public int countChar(String str, char ch)f
intcounter =0; /I Initialize acounter
for(int k= 0; k<str.length(); k++)// For each char

if (str.charAt(k) == ch) /I 1f it’sa ch
counter ++; /1l count it

return counter; // Return the result

g

Figure 7.11: A method to count the occurrence of a particular character
in a string.

by returning counter, which, when the method completes, will store an
integer representing the number of ch’s in str.

7.8.3 Example: Reversing a String

Another interesting method that processes each character in a string is
the reverse() method. This is a method that reverses the letters in a
string. For example, the reverse of "java" is "avaj".
The algorithm for the reverse() method should use a simple count- Algorithm design ing
loop to reverse the letters in its String parameter. In this case, how-
ever, we can process the string from right to left, beginning at its last char-

acter and ending with its first character. That way we can just append
each character, left to right, in the result string:

/
Pre:s is any non null string
Post: s is returned in reverse order
/
public String reverse(Strings) f
StringBufferresult =new StringBuffer();
for (int k=s.length() 1; k>=0; k )f
result.append(s.charAt(k));
g//for
returnresult.toString();
g//reverse()

Note that as in the other string-manipulation algorithms—for exam-ple,
keywordSearch()—we should us a StringBuffer to store the method’s
result. Thus we declare the result StringBuffer at the be-ginning of the
method and convert it back into a String at the end of the method.

-,

NN S OleRZ\WIVIIN[CmIIE Changing Each Character in a /}
String. Algorithms that require you to alter a string should use a /
StringBuffer to store the result.




Algorithm design

316 CHAPTER 7 Strings and String Processing

7.8.4 Example: Capitalizing the First Letter

Another string manipulation method is the capitalize() method,

which returns a String whose initial letter is capitalized but whose

other letters are lowercase — for example, “Hello”. We use the static
toUpperCase() and toLowerCase() methods from the Character

class to convert individual letters. We could also have used the methods
of the same name that we wrote in Section 5.8. The algorithm converts

the first letter to upper case and then loops through the remaining letters
converting each to lowercase:

/
Pre: s is anynon null string
Post: s is returned with only its first letter capitalize
/
public Stringcapitalize(String s) f
if (s.length() ==0) /I Special case: empty string
return s;
StringBuffer result = new StringBuffer();
result.append(Character.toUpperCase (s.charAt(0)));
/I Convert the first letter
for (int k= 1; k<s.length(); k++) f /I And the rest
result.append (Character.toLowerCase (s.charAt(k)));
g//for
returnresult.toString();
g/l capitalize()

SELF-STUDY EXERCISES

EXERCISE 7.12 Write a Java program to test the methods described in this

section. Organize the methods themselves into a single class, named
StringProcessor, and design a second class to serve as the user inter-face.
Because these methods are similar to the utility methods of the Math class, it
would be useful to declare them static. The user interface should prompt the
user to input a string and should then print out the result of passing that
string to each of the methods we developed.

EXERCISE 7.13 Add a method to the StringProcessor class that will
remove all blanks from a string. It should take a String parameter and
should return a String result.

7.8.5 Miscellaneous String Methods

In addition to the several String class methods we have discussed—
valueOf(), equals(), indexOf(), lastindexOf(), charAt(), substring()—Table
7.2 shows some of the other useful methods in the String class. Note
that because of what we said about the read-only na-ture of Strings,
methods such as toUpperCase(), toLowerCase(), and trim() do not
change their string. Instead they produce a new



SECTION 7.9Comparing Strings 317

ome useful String methods applied to the literal string "Perfection.”

ure

sWith(String suffix)
rtsWith(String prefix)

Example

"Perfection".endsWith("tion") ) true
"Perfection".startsWith("Per") ) true

rtsWith(String prefix, int offset) "Perfection”.startsWith("fect",3) ) true
perCase() "Perfection".toUpperCase() ) "PERFECTION"
werCase() "Perfection".toLowerCase() ) "perfection”

0 "Perfection”.trim() ) "Perfection"

string. If you want to use one of these methods to convert a string, you must reassign
its result back to the original string:

String s =new String( );
s = s.toUpperCase (); // s now equals ”HELLO WORLD”

7.9 Comparing Strings

Comparing strings is another important task. For example, when a word
processor performs a search and replace operation, it needs to identify
strings in the text that match the target string.

Strings are compared according to their lexicographic order—that is,
the order of their characters. For the letters of the alphabet, lexicographic
or-der just means alphabetical order. Thus, a comes before b and d
comes after c. The string “hello” comes before “jello” because h comes
before j in the alphabet.

For Java and other programming languages, the definition of lexico-graphic
order is extended to cover all the characters that make up the character set. We
know, for example, that in Java’s Unicode character set the uppercase letters
come before the lowercase letters (Table 5.13). So, the letter H comes before
the letter h and the letter Z comes before the letter a.

Lexicographic order can be extended to include strings of characters.
Thus, “Hello” precedes “hello” in lexicographic order because its first let-ter,
H, precedes the first letter, h, in “hello.” Similarly, the string “Zero” comes
before “aardvark,” because Z comes before a. To determine lexico-graphic
order for strings, we must perform a character-by-character com-parison,
starting at the first character and proceeding left to right. As an

example, the following strings are arranged in lexicographic order:

™ 7|7 0" "A” "Andy” "Z” "Zero” "a’ "an” "and” "andy” "candy” "zero”

H precedes h



Algorithm: Loop bound

318 CHAPTER 7  Strings and String Processing
We can define lexicographic order for strings as follows:

WAVZNIFANEONE]SREIN=]  Lexicographic Order. For strings s1 and
s2, sl precedes s2 in lexicographic order if its first character precedes
the first character of s2. If their first characters are equal, then s1
precedes s2 if its second character precedes the second character of s2;
and so on. An empty string is handled as a special case, preceding all
other strings.

Perhaps a more precise way to define lexicographic order is to define a
Java method:

\public boolean precedes(String sl, String s2) f
/1 Pick shorter length
int minlen = Math.min(sl.length(), s2.length());
/l For each char in shorter stringg
for (int k=0; k<minlen; k++) f
if (sl.charAt(k) != s2.charAt(k))// it chars unequal
I return true if s1’s char precedes s2’s

return sl.charAt(k)<s2.charAt(k);

/[l 1f all characters so far are equal
11l then s1 <s2 if it is shorter than s2

returnsl.length()<s2.length();
g// precedes()g

This method does a character-by-character comparison of the two strings,
proceeding left to right, starting at the first character in both strings.

Its for loop uses a counting bound, which starts at k equal to zero

and counts up to the length of the shorter string. This is an impor-

tant point in designing this algorithm. If you don’t stop iterating when

you get past the last character in a string, your program will generate a
StringindexOutOfBounds exception. To prevent this error, we need to

use the shorter length as the loop bound.

Note that the loop will terminate early if it finds that the respective
characters from s1 and s2 are unequal. In that case, sl precedes s2 if s1’s kth
character precedes s2’s. If the loop terminates normally, that means that
all the characters compared were equal. In that case, the shorter string
precedes the longer. For example, if the two strings were “alpha” and
“alphabet,” then the method would return true, because “alpha” is shorter
than “alphabet.”

SELF-STUDY EXERCISES
EXERCISE 7.14 Arrange the following strings in lexicographic order:

Z ero bath bin alpha Alpha Zero Zeroes aAzZ |

EXERCISE 7.15 Modify the precedes() method so that it will also return
true when sl and s2 are equal—for example, when s1 and s2 are both
“hello”.




SECTION 7.9Comparing Strings 319

7.9.1 Object Identity Versus Object Equality

Java provides several methods for comparing Strings:

public boolean equals(ObjectanObject); //overrides Objec
public boolean equalslignoreCase(String anotherString);
public int compareTo(String anotherString);

The first comparison method, equals(), overrides the Object.equals() method.

Two Strings are equal if they have the exact same letters in the exact same
order. Thus, for the following declarations,

String sl =
String s2 = ;

sl.equals(s2) is false, but s1.equals("hello") is true.

You have to be careful when using Java’s equals() method. Accord-
ing to the default definition of equals(), defined in the Object class,
“equals” means “identical.” Two Objects are equal only if their names are
references to the same object.

This is like the old story of the morning star and the evening star,
which were thought to be different objects before it was discovered that
both were just the planet Venus. After the discovery, it was clear that
“the morning star” and “the evening star” and “Venus” were just three
different references to one and the same object (Fig. 7.12).

We can create an analogous situation in Java by using the following

JButton definitions:

JButton bl=newButton ("a");

JButton b2=new Button ("a");
‘ JButton b3=0b2;

Given these three declarations, bl.equals(b2) and bl.equals(b3) would
be false, but b2.equals(b3) would be true because b2 and b3 are just two
names for the same object (Fig. 7.13). So, in this case, “equals” really
means “identical.”

Moreover, in Java, when it is used to compare two objects, the
equality operator (==) is interpreted in the same way as the default
Object.equals() method. So, it really means object identity. Thus, bl ==
b2 would be false, because bl and b2 are different objects, but b2 == b3
would be true because b2 and b3 refer to the same object.

These points are illustrated in the program shown in Figure 7.14. This
program uses methods isEquals() and isldentical() to perform

.equals()

Equality vs. identity

Venus The morning star

Figure 7.12: Venus s the
morning star, so “Venus” and “the
morn-ing star” are two references
to the same object.

@
ey

B2 B3 (REFERENCES)

\/

o
({L_A" ) (LABELED BUTTONS)

s \HA___.—-—

>

((
)

JButToN B1=NEW JBUTTON("A");
JBuTTON B2=NEW JBUTTON("A");
JBuTTON B3=B2;

Figure 7.13: For most objects,
equality means identity. JBut-
tons b2 and b3 are identical (and,
hence, equal), but JButtons bl
and b2 are not identical (and,
hence, unequal).



320 CHAPTER 7  Strings and String Processing

import java.awt. ;

public class TestEqualsf

staticButton bl =new Button ("a”);
staticButton b2 =new Button ("b”);
staticButton b3=b2;

private static void isEqual(Objectol,Object02) f
if (ol.equals(02))

System.out.println(ol.toString() + +02.toString());
else
System.out.println(ol.toString() + +

02.toString());
g//isEqual()

private static void isldentical(Objectol, Object 02) f

if (0l1==02)
System.out.printin(ol.toString() + +
02.toString());
else
System.out.println(ol.toString() + +
02.toString());
g// isldentical()

public staticvoid main(String argv[]) f

isEqual(bl, b2); /I'not equal

isEqual(bl, b3); /I not equal

isEqual(b2, b3); /l'equal

isldentical(bl, b2); /I not identical

isldentical(bl, b3); /I'not identical

isldentical(b2, b3); /I identical
g// main()

g// TestEquals

Figure 7.14: The TestEquals program tests Java’s default equals()
method, which is defined in the Object class.

the comparisons and print the results. This program will produce the
following output:

java.awt.Button[button0,0,0,0x0,invalid,label=a]

does NOTequal java.awt.Button[buttonl,0,0,0x0,invalid,label=b]
java.awt.Button[button0,0,0,0x0,invalid,label=a]

does NOTequal java.awt.Button[buttonl,0,0,0x0,invalid,label=b]
java.awt.Button[buttonl1,0,0,0x0,invalid,label=b]

equals java.awt.Button[button1,0,0,0x0,invalid,label=b]
java.awt.Button[button0,0,0,0x0,invalid,label=a]

is NOTidentical to java.awt.Button[buttonl1,0,0,0x0,invalid,label
java.awt.Button[button0,0,0,0x0,invalid,label=a]

is NOTidentical to java.awt.Button[buttonl1,0,0,0x0,invalid,label
java.awt.Button[buttonl1,0,0,0x0,invalid,label=b]

isidentical to java.awt.Button[buttonl1,0,0,0x0,invalid,label=b]




String  objects,
entity are differ-
nct (nonidentical)
re equal if they
string value. So
s5, and s6 are 1
and s4 are iden-
strings s5 and s6.

SECTION 7.9Comparing Strings

7.9.2 String ldentity Versus String Equality

In comparing Java Strings, we must be careful to distinguish between
object identity and string equality. Thus, consider the following declara-
tions, which create the situation shown in Figure 7.15.

321

"HELLO"S556 sl s4 s2 "HeLLo"

. String . String . String . String
value="hello" value="hello" value="hello" value="Hello"
count=5 count=5 count=5 count=5

s3
String s1=new String ("hello"); —
String s2  =new String ("hello"); _ String
String s3=new String ("Hello"); value="Hello"
String s4=s1; count=5
String s5="hello";
String s6="hello";
String sl =new String( );
String s2 =new String/( );
String s3 =new String/( );
String s4 =s1; /sl and s4 arenowidentical
String s = ;
String s6 = ;

Given these declarations, we would get the following results if we com-pare the
equality of the Strings:

sl.equals(s2) ==>true sl.equalslignoreCase(s3) ==>true
sl.equals(s3) ==>false sl.equals(s5)
sl.equals(s4) ==>true

==>true

sl.equals(s6) ==>true

and the following results if we compare their identity:

sl ==s2
sl ==s4
s ==s6

==>false sl ==s3 ==>false
=>true sl ==sb ==>false
=>true

The only true

identities among these Strings are s1 and s4, and s5 and

s6. In the case of s5 and s6, both are just references to the literal string,
“hello”, as we described in Section 7.2. The program in Figure 7.16
illustrates these points.

SELF-STUDY EXERCISES
EXERCISE 7.16 Given the String declarations,

String sl=
String s4=
String s5=

, 82 =
new String(s2);
new String( ); |

evaluate the following expressions:

Equality vs. identity



322 CHAPTER 7  Strings and String Processing

import java.awt. ;

public class TestStringEquals f

staticStringsl =new String("hello”); // s1 and s2 are equal, not
staticStrings2 =new String("hello”);

staticStrings3 =new String("Hello”); // s1 and s3 are not equal

static String s4 = s1; /sl ands4 are identical
static String s5 ="hello”; /I'slands5 are not identic
static String s6é ="hello”; /' s5 and s6 are identical

private static void testEqual(String strl, String str2)f
if (strl.equals(str2))
System.out.printin(strl+ ” equals’” + str2);
else
System.out.printin(strl+ ” does not equal "+ str2);
g// testEqual()

private static void testldentical(String strl, String str2) f
if (strl ==str2)

System.out.printin(strl+ " is identicalto” + str2);
else
System.out.printin(strl+ " is not identicalto” + str2);

g// testldentical()

public staticvoid main(String argv[]) f

testEqual(sl, s2); /lequal
testEqual(sl, s3); /I'not equal
testEqual(sl, s4); /lequal
testEqual(sl, s5); /lequal
testEqual(s5, s6); /lequal

testldentical(sl, s2); //not identical
testldentical(sl, s3); //not identical
testldentical(sl, s4); // identical
testldentical(sl, s5); //not identical
testldentical(s5, s6); // identical
g// main()
g// TestStringEquals
Program Output
hello equals hello
hello does not equal Hello
hello equals hello
hello equals hello
hello equals hello
hello is not identical to hello
hello is not identical to Hello
helloisidentical to hello
hello is not identical to hello
helloisidentical to hello

Figure 7.16: Program illustrating the difference between string equality
and identity.



SECTION 7.10  From the Java Library: java.util.StringTokenizer 323

a.sl ==s2 d. sl.equals(s3) g.s2 ==s4
b. sl.equals(s2) e.s2==s3 h.sl ==5s5
c.sl ==s3 f. s2.equals(s4) i. s4 ==s5

EXERCISE 7.17 Why are the variables in TestStringEquals de-
clared static?

EXERCISE 7.18 Given the following declarations,

'String sl
String s2

write Java expressions to carry out each of the following operations:

Swap the front and back half of s1 giving a new string.
Swap "world” and "hello” in s2 giving a new string.
Combine parts of s1 and s2 to create a new string "hello abc”.

7.10 From the Java Library:
java.util.StringTokenizer

ONE OF THE most widespread string-processing tasks is that of breaking
up a string into its components, or tokens. For example, when processing
a sentence, you may need to break the sentence into its constituent words,
which are considered the sentence tokens. When processing a name-
password string, such as “boyd:14irXp”, you may need to break it into
a name and a password. Tokens are separated from each other by one or
more characters which is known as delimiters. Thus, for a sentence, white
space, including blank spaces, tabs, and line feeds, serve as the delimiters.
For the password example, the colon character serves as a delimiter.

Java’s java.util.StringTokenizer class is specially designed for
breaking strings into their tokens (Fig. 7.17). When instantiated with
a String parameter, a StringTokenizer breaks the string into to-
kens, using white space as delimiters. For example, if we instantiated a
StringTokenizer as in the code

FtringTokenizersTokenizer ‘
=new StringTokenizer( );

java.sun.com/j2se/1.5.0/docs/api/
I.l.ll.l.ll.l.l.I
|:

Object
«interface»

Enumeration

irhasMoreElements() : boolean
HnextElement() : String

7

it would break the string into the following tokens, which would be stored

StringTokenizer

internally in the StringTokenizer in the order shown:

his g
is

an
English
sentence.

+StringTokenizer(in s : String)
stringTokenizer(in s : String, in d : String)
+countTokens() : int

+hasMoreTokens() : boolean
+nextToken() : String

+nextToken(in delim : String) : String

+hasMoreElements() : boolean
+nextElement() : String

Note that the period is part of the last token (“sentence.”). This is because

punctuation marks are not considered delimiters by default.

Figure 7.17: The

java.util.StringTokenizer
class.



Graphics

+getFont() : Font
+getFontMetrics() : FontMetrics
+setFont(in f : Font)
+setFontMetrics(in f : FontMetrics)

Figure 7.18: Methods to access
the Font and FontMetrics objects
associated with each Graphics
context.

324 CHAPTER 7  Strings and String Processing

If you wanted to include punctuation symbols as delimiters, you could
use the second StringTokenizer() constructor, which takes a second
String parameter (Fig. 7.17). The second parameter specifies a string of

_ those characters that should be used as delimiters. For example, in the
instantiation,

|StringTokenizer sTokenizer
=new StringTokenizer( ,

),

various punctuation symbols (periods, commas, and so on) are included
among the delimiters. Note that escape sequences (\b\t\n) are used to
specify blanks, tabs, and newlines.

The hasMoreTokens() and nextToken() methods can be used to
process a delimited string, one token at a time. The first method returns
true as long as more tokens remain; the second gets the next token in the

list. For example, here’s a code segment that will break a standard URL
string into its constituent parts:

tring url = ;

StringTokenizer sTokenizer =new StringTokenizer(url, )

while (sTokenizer.hasMoreTokens ()) f
System.out.printin(sTokenizer.nextToken());

g

This code segment will produce the following output:

http
java.trincoll.edu
"

index . html

The only delimiters used in this case were the “” and “/” symbols. And

note that nextToken() does not return the empty string between “:
and “/” as a token.

7.11 Handling Text in a Graphics
Context (Optional)

In order to create attractive GUIs, it is often necessary to be able to
select and control the font that is used. Even a simple drawing task, such
as being able to center a message in a panel, requires that we know the
font’s dimensions and be able to manipulate them. In this section, we
learn how to work with Java’s fonts and font control methods.

Each graphics context has an associated Font and FontMetrics ob-
ject, and the Graphics class (Fig. 7.18) provides several methods to ac-
cess them. A FontMetrics is an object that encapsulates important data
about a font, such as its height and width. Java assigns a default font to
each Graphics object. For example, this is the font used by the



SECTION 11 Handling Text in a Graphics Context 325

drawString() method, which we used in our very first Java programs

back in Chapter 1. The particular font used is system dependent, but to
override the default one can simply invoke the setFont() method:

g.setFont(new Font( , Font . ITALIC, 12)7);
In this case, the Font() constructor is used to specify a 12-point, itali-
cized, TimesRoman font. Once the font is set, it will be used in all subse-
guent drawings.

7.11.1 The Font and FontMetrics Classes

The Font class (Fig. 7.19) provides a platform-independent representa-
tion of an individual font. A font is distinguished by its name, size, and
style, and the Font class includes protected instance variables for these
properties, as well as a constructor method that allows these three
characteristics to be specified.

In order to understand how fonts work, it is necessary to distinguish
between a character, which is a symbol that represents a certain letter or
digit, and a glyph, which is a shape used to display the character. When
you display a string, such as “Hello”, Java maps each individual charac-
ter into a corresponding shape, as defined by the particular font that is
selected.

Java distinguishes between physical and logical fonts. A physical
font is an actual font library that contains the data and tables needed to
associate the correct glyph with a given character. Generally speaking, a
given plat-form (host computer plus operating system) will have a
collection of such fonts available on it.

A logical font is one of five font families that are supported by the
Java runtime environment. These include Serif, SansSerif, Monospaced,
Dia-log, and Dialoglnput. Java also supports the following font styles:
PLAIN, BOLD, ITALIC, and BOLD+ITALIC. Whereas the physical fonts
are plat-form dependent, the logical fonts and styles are platform
independent. When used in a program, they are mapped to real fonts
available on the host system. If the host system does not have an exact
match for the speci-fied font, it will supply a substitute. For example, if
you specify a 48-point, italic, Monospaced font,

\ Font myFont = new Font ( , Font . ITALIC, 4s8);

the system may map this to a 24-point, italic Courier font, if that is the
largest fixed-spaced font available.

The Font() constructor is designed to work with any set of arguments.
Thus, if you supply the name of a font that is not available, the system

will supply a default font as a substitute. For example, on my system,
specifying a nonexistent font named Random,

|g.setFont(newFont( , Font.ITALIC, 12) );

| g.drawString ( , 30, 45);

Font

+BOLD : int

+ITALIC : int

+PLAIN : int
name : String
size :int
style : int

+Font(in s : String, in sty : int, in sz : int)

Figure 7.19: The Font class.




//’
Problem statement
Advance
= Leading
Hejght fontSpeC§f Baseline
Descent

Figure 7.20: An illustration of the
various font measurements.

FontMetrics

font :

Font

FontMetrics(in font : Font)
+charWidth(in ch : int) : int
+charWidth(in ch : char) : int
+getAscent() : int
+getDescent() : int +getFont()
. Font +getHeight() : int
+getLeading() : int
+getMaxAdvance() : int
H+getMaxDescent() : int
HstringWidth() : int

Figure 7.21: The FontMetrics

class.

326 CHAPTER 7 Strings and String Processing

produces the same font used as the mapping for a font named Dialog.

SN SEFEESRNV=IRISS (€N Font Portability. The fact that Font() will
produce a font for virtually any set of arguments is important in
ensuring that a Java program will run on any platform. This is another
example of how Java has been designed for portability.

The Component.setFont() method can be used to assign a specific
font to a button or window or other graphics component. All AWT and
JFC components have an associated font, which can be accessed using

the Component.setFont() and Component.getFont() methods. For
example, the following code could be used to override a Button’s font:

Button b = new Button ( );

b.setFont(new Font( , Font . ITALIC, 14));

If 14-point, italic, Times font is not available on the host system, a substi-
tute will be supplied.

7.11.2 Font Metrics

To illustrate how to use the FontMetrics class, let’s write a “Hello, World!”
application that centers its message both horizontally and ver-tically in its
window. The message should be centered regardless of the size of the
application window. Thus, we will have to position the text relative to the
window size, which is something we learned in positioning geometric
shapes. The message should also be centered no matter what font is
used. This will require us to know certain characteristics of the font itself,
such as the height and width of its characters, whether the charac-ters
have a fixed or variable width, and so on. In order to get access to these
properties, we will use the FontMetrics class.

Figure 7.20 illustrates the various properties that are associated with a
font. The baseline of a font refers to the line on which the bottom of

most characters occurs. When drawing a string, the x- and y-coordinates
determine the baseline of the string’s first character. Thus, in

|

g . drawString ( , 10, 40);
the bottom left of the H in “Hello, World!” would be located at (10, 40). All

characters ascend some distance above the baseline. This is known

as the character’s ascent. Some characters, such as y, may extend below
the baseline, into what’s known as the descent. Each font has a maximum
descent. Similarly, some characters, such as accent characters, may extend
above the maximum ascent into a space known as the leading.

The height of a font is defined as the sum (in pixels) of the ascent, de-
scent, and leading values. The height is a property of the font itself rather
than of any individual character. Except for fixed-width fonts, in which the
width of all characters is the same, the characters that make up a font
have varying widths. The width of an individual character is known as its
advance.

The FontMetrics class (Fig. 7.21) provides methods for accessing a




SECTION 11 Handling Text in a Graphics Context 327

font’s properties. These can be useful to control the layout of text on a
GUI. For example, when drawing multiple lines of text, the getHeight()
method is useful for determining how much space should be left between
lines. When drawing character by character, the charWidth() method can
be used to determine how much space must be left between charac-ters.
Alternatively, the stringWidth() method can be used to determine the
number of pixels required to draw the entire string.

7.11.3 Example: Centering a Line of Text

Given this background, let’s take on the task of centering a message in an
application window. In order for this application to work for any font, we

must take care not to base its design on characteristics of the particular Algorithm design: Generality

font that we happen to be using. To underscore this point, let’s design
it to work for a font named Random, which, as we noted earlier, will be
mapped to some font by the system on which the application is run. In
other words, we will let the system pick a font for this application’s
message. An interesting experiment would be to run the application on
different platforms to see what fonts are chosen.

The only method we need for this application is the paint() method.
Let’'s begin by setting the font used by the graphics context to a random

font. To get the characteristics of this font, we create a FontMetrics
object and get the font metrics for the font we just created:

lg.setFont(new Font( , Font.BOLD, 24));
| FontMetrics metrics =g.getFontMetrics();

The next step is to determine the JFrame’s dimensions using the
getSize() method. This method returns an object of type Dimension. The
java.awt.Dimension class (Fig. 7.22) represents the size (width and
height) of a GUI component. A Dimension makes it possible to ma-
nipulate an object’s width and height as a single entity. Note that the
height and width variables are defined as public, which is an excep-tion
from the usual convention of defining instances variables as private or
protected. The justification for this exception is probably to simplify the
syntax of referring to an object’s width and height. For example, the
following syntax can be used to refer to a component’s dimensions:

| Dimension d = new Dimension (1 0 0 , 50);
System.out.println( + d . width +
+d.height);

Note the redundancy built into the Dimension class. For example, in addition
to being able to set a Dimension’s instance variables directly, public access
methods are provided. Also, by defining more than one ver-sion of some
access methods, the class achieves a higher level of flexibility. The same
can be said for providing several different constructors, includ-ing a copy
constructor. Finally, note how it overrides the equals() and

+\

Dimension

+height : int
vidth : int

+Dimension()

+Dimension(in d : Dimension)
+Dimension(in width : int, in height : int)
+equals(in o : Object) : boolean
+getSize() : Dimension

+setSize(in d : Dimension)

+setSize(in width : int, in height : int)
+toString() : String

Figure 7.22: The Dimension
class.



Centering text

CHAPTER SUMMARY

328 CHAPTER 7  Strings and String Processing

toString() methods. These are all examples of good object-oriented
design.

VAN S RsEegRlvi=eISS[€lN] Redundancy. Redundancy is often a
desirable characteristic of object design. It makes the object easier to
use and more widely applicable.

The Dimension object is used to calculate the x- and y-coordinates for
the string. In order to center the string horizontally, we need to know
its width, which is supplied by the metrics object. If the JFrame is
d.width pixels wide, then the following expression subtracts the width

of the string from the width of the JFrame and then divides the leftover
space in half:

/l Calculate coordinates

int x= (d.width metrics.stringWidth(str))/ 2;

Similarly, the following expression adds the height of the string to the
height of the JFrame and divides the leftover space in half:

|int y=(d.height + metrics.getHeight()) / 2;

Taken together, these calculations give the coordinates for the lower left
pixel of the first character in “Hello, World!!” The only remaining task

is to draw the string (Fig. 7.23). Because the paint() method is called
automatically whenever the JFrame is resized, this application, whose
output is shown in Figure 7.24, will re-center its message whenever it is
resized by the user.

WANASIEReIElRVAVIVIIN[EREIEY  Generality. By using a component’s

size and font as the determining factors, you can center text on
virtually any component. These values are available via the
component’s getFont() and getSize() methods.

Technical Terms

ascent garbage collection string
baseline glyph string index
concatenation lexicographic order string literal
copy constructor logical font token

data structure off-by-one error unit indexed
delimited string orphan object zero indexed
delimiter physical font

empty string read only



CenterText ap-
its message cen-
how its window is

CHAPTER 7 Chapter Summary 329

import java.awt. ;
import javax.swing. ;

public class CenterText extends JFrame f
/1 Print hello world! in center of frame
public void paint(Graphics g) f
String str = ;
g.setFont(new Font ( ,Font . PLAIN , 24)); /1 Random font
FontMetrics metrics =g.getFontMetrics(); //
And its metrics

Dimension d = getSize(); /I Get the frame’'s size
/Il Clear the frame

g.setColor(getBackground ());
g.fillRect(0,0,d.width,d.height);
g.setColor(Color.black);

// Calculate coordinates
int x = (d.width metrics.stringWidth(str))/ 2;
inty=(d.height+ metrics.getHeight())/ 2;

g .drawString ( str, X, ¥); /I Draw the string
g/ paint()

public static void main(String args[])f
CenterText ct=newCenterText();
ct.setSize(400,400);
ct.setVisible(true);

g

g// CenterText

Figure 7.23: The CenterText application.

Summary of Important Points

A String literal is a sequence of 0 or more characters enclosed within
double quotation marks. A String object is a sequence of 0 or more
characters, plus a variety of class and instance methods and variables.

A String object is created automatically by Java the first time it en-
counters a literal string, such as “Socrates,” in a program. Subsequent
occurrences of the literal do not cause additional objects to be instan-
tiated. Instead, every occurrence of the literal “Socrates” refers to the
initial object.

[ =—— CenterText=———H B

Hello World!




SOLUTIONS TO SELF-
STUDY EXERCISES

330 CHAPTER 7 Strings and String Processing

A String object is created whenever the new operator is used in
conjunction with a String() constructor—for example, new
String("hello").

The String concatenation operator is the overloaded + symbol; it is
used to combine two Strings into a single String: “hello” + “world” ==>
“helloworld”.

Strings are indexed starting at 0. The indexOf() and lastindex-Of()
methods are used for finding the first or last occurrence of a char-
acter or substring within a String. The valueOf() methods con-vert a
nonstring into a String. The length() method determines the number of
characters in a String. The charAt() method re-turns the single
character at a particular index position. The vari-ous substring()
methods return the substring at particular index positions in a String.

The overloaded equals() method returns true if two Strings con-tain
the same exact sequence of characters. The == operator, when used
on Strings, returns true if two references designate the same String
object.

String objects are immutable. They cannot be modified.

A StringBuffer is a string object that can be modified using meth-ods
such as insert() and append().

A StringTokenizer is an object that can be used to break a String into
a collection of tokens separated by delimiters. The whitespace
characters—tabs, blanks, and newlines—are the default delimiters.
The FontMetrics class is used to obtain the specific dimensions of the
the various Fonts. It is useful when you wish to center text. Fonts are
inherently platform dependent. For maximum portability, it is best to
use default fonts.

SOLUTION 7.1 a. silly b. silly c. silly stuff
SOLUTION 7.2

String strl ="";
String str2 = new String("stop");
String str3 = strl + str2;

SOLUTION 7.3 a. 15 b. "551" c. "5175"
SOLUTION 7.4  See Figure 7.25.
SOLUTION 7.5 a. "45" b. "121" c. "X"
SOLUTION 7.6

String.valueOf(100)

String.valueOf(’V’);

String s = new String(String.valueOf(X * Y));

SOLUTION 7.7 a. 0 b. 1 c.l



swer to Exercise
is null because it
tantiated and has
d a literal value.

CHAPTER 7 Solutions to Self-Study Exercises 331
s2
"HeLLo" J s3s7 "HELLO" sS4 s5s6 s1
. String . String . String null
value="Hello" value="hello" value="Hello"
count=5 count=5 count=5
String s1, s2="Hello", s3="Hello";
String s4="hello";
String s5=new String ("Hello");
String s6=s5;
String s7=s3;
SOLUTION 7.8 b. "16" f. 13 . 7
c. 1 g. 7 k. 3
d. 15 h. 3
a. 16 e. 1 i. 7
SOLUTION 7.9 Evaluate the following expression:
String tricky ="abcdefg01234567"7;
tricky.indexOf (String.valueOf (tricky.indexOf("c”)));
tricky.indexOf (String.valueOf(2));
tricky.indexOf ("27);
Answer : 9
SOLUTION 7.10 a. "uvwxyz" c. "xyz" e. "xyz"
b. "bcde" d. "xy"
SOLUTION 7.11 a. "uvwxyz" c. "xyz" e. "xyz"
b. "bcde" d. "xyz"
SOLUTION 7.12 A class to test the string methods.
public class StringProcessorTestf
public static void main(String[] args)f
KeyboardReader kb = new KeyboardReader () ;
kb . prompt (" Input a String or stop toquit: ");
String str =kb . getkeyboardinput () ;
while (!str.equals(’stop”))f
kb.display("Testing printLetters()nn”);
StringProcessor.printLetters(str);
kb.display("testing countChars()nn”);
kb.display("Total occurences of e =");
kb.display(StringProcessor.countChar(str,’e’) + "nn”);
kb.display("Testingreverse()nn’);
kb.display(StringProcessor.reverse(str)+ 'nn");
kb.display("Testing capitalize()nn”);
kb.display(StringProcessor.capitalize(str) +"nnnn”);
kb . prompt (" Input a String or stop toquit: ”);
str =kb . getkeyboardinput () ;
g// while
g//main()

g// StringProcessorTest class




EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

332 CHAPTER 7 Strings and String Processing
SOLUTION 7.13 Method to remove all blanks from a string:

/I Pre: s is anon null string
/1 Post: s is returned with all its blanks removed
public String removeBlanks (String s) f
StringBufferresult =new StringBuffer();
for (intk= 0; k<s.length(); k++)
if (s.charAt(k) !'= ) /I 1f this is notablan k
result.append (s.charAt(k)); //
append it to result
returnresult.toString();

SOLUTION 7.14 A Alpha Z Zero Zeroes a alpha bath bin z zero

SOLUTION 7.15 To modify precedes so that it also returns true when its two
string arguments are equal, just change the operator in the final return statement
to <=:

if (sl.charAt(k)<= s2.charAt(k) )
return true;

SOLUTION 7.16 a. true d. false g. false
b. true e. false h. false
c. false f. true i. false

SOLUTION 7.17 The variables in TestStringEquals are declared static because
they are used in static methods. Whenever you call a method di-rectly from
main(), it must be static because main() is static. Remember that static elements
are associated with the class, not with its instances. So main() can only use
static elements because they don’t depend on the existence of instances.

SOLUTION 7.18

String s3 = s1.substring(s1.indexOf(’n’)) +
sl.substring(0,s1.indexOf(’n’));

String s4 = s2.substring(6) + " " + s2.substring(0,5);
String s5 = s2.substring(0,6) + s1.substring(0,3);

EXERCISE 7.1  Explain the difference between the following pairs of terms:

Unit indexing and zero indexing.

Data structure and data type.

StringBuffer and String.

String and StringTokenizer.

Declaring a variable and instantiating a String.
A Font and a FontMetrics object.

EXERCISE 7.2 Fillin the blanks.
a. When the first character in a string has index 0, this is known as

b. A sequence of characters enclosed within quotes is known as a



CHAPTER 7Exercises 333

EXERCISE 7.3 Given the String str with the value “to be or not to be that is the
question,” write Java expressions to extract each of the substrings shown below.
For each substring, provide two sets of answers. One that uses the actual index
numbers of the substrings—for example, the first “to” goes from 0 to 2—and a
sec-ond more general solution that will also retrieve the substring from the
following string “it is easy to become what you want to become.” (Hint: In the
second case, use length() and indexOf() along with substring() in your
expressions. If necessary, you may use local variables to store intermediate
results. The answer to (a) is provided as an example.)

a. the first “to” in the string

|str.substring(0, 2)

/I Answer 1
str.substring(

str.indexOf ( ), s tr.indexOf ( ) +2) //Answer 2
b. the last “to” in the string e. the first four characters in the string
c. the first “be” in the string f. the last four characters in the string

d. the last “be” in the string
EXERCISE 7.4 Identify the syntax errors in each of the following, assuming that
s is the literal string “exercise”:
a. s.charAt("hello") d. s.lastindexOf(er)
b. s.indexOf(10) e. s.length
C. s.substring("er")
EXERCISE 7.5 Evaluate each of the following expressions, assuming that s is
the literal string “exercise”:
a. s.charAt(5) d. s.lastindexOf(’e’)
b. s.indexOf("er") e. s.length()
s.substring(5)

EXERCISE 7.6 Write your own equalsignoreCase() method using only other
String methods.

EXERCISE 7.7 Write your own String equality method without using String.
equals(). (Hint: Modify the precedes() method.)

EXERCISE 7.8 Even though Java’s String class has a built-in toLowerCase()
method, write your own implementation of this method. It should take a String
parameter and return a String with all its letters written in lowercase.

EXERCISE 7.9 Write a method that converts its String parameter so that let-ters

are written in blocks five characters long. For example, consider the following
two versions of the same sentence:

Prain : This is howwewould ordinarily write asentence |
Blocked : Thisi showw ewoul dordi naril ywrit easen tence.

EXERCISE 7.10 Design and implement a Java Swing program that lets the user
type a document into a TextArea and then provides the following analysis of the
document: the number of words in the document, the number of characters in the
document, and the percentage of words that have more than six letters.

EXERCISE 7.11 Design and write a Java Swing program that searches for
single-digit numbers in a text and changes them to their corresponding words.
For ex-ample, the string “4 score and 7 years ago” would be converted into “four
score and seven years ago”.



334 CHAPTER 7 Strings and String Processing

EXERCISE 7.12 A palindrome is a string that is spelled the same way backward
and forward. For example, mom, dad, radar, 727 and able was i ere i saw elba
are all examples of palindromes. Write a Java Swing program that lets the user
type in a word or phrase and then determines whether the string is a palindrome.

EXERCISE 7.13 Write a maze program that uses a string to store a representa-tion
of the maze. Write a method that accepts a String parameter and prints a two-
dimensional representation of a maze. For example, the maze shown here, where
O marks the entrance and exit can be generated from the following string:

String: XX XXXXXXXXXXX XXXX XX XXX-XX XX XXX X XXXXXXKXX O -

XX XXXXXXX
X XXX XXX
X XX XX
XXXXXXX

X X 0
XXXXXXXX X

EXERCISE 7.14 Write a method that takes a delimited string to store a name
and address, from which you can print a mailing label. For example, if the string
contains “Sam Penn:14 Bridge St.:Hoboken, NJ 01881,” the method should print
the label shown in the margin.

Sam Penn
14 Bridge St.
Hoboken, NJ 01881

EXERCISE 7.15 Design and implement a Java Swing program that plays Time Bomb
with the user. Here’s how the game works. The computer picks a secret word and
then prints one asterisk for each letter in the word: * * * * *, The user guesses at the
letters in the word. For every correct guess, an asterisk is replaced by
a letter:
e * * *_ For every incorrect guess, the time bomb’s fuse grows shorter. When
the fuse disappears, after say, six incorrect guesses, the bomb explodes. Store
the secret words in a delimited string and invent your own representation for the
time bomb.

EXERCISE 7.16 Challenge: The global replace function is a string-processing
algorithm found in every word processor. Write a method that takes three String
arguments: a document, a target string, and a replacement string. The method
should replace every occurrence of the target string in the document with the re-
placement string. For example, if the document is “To be or not to be, that is the
question,” and the target string is “be,”, and the replacement string is “see,” the
result should be, “To see or not to see, that is the question.”

EXERCISE 7.17 Challenge: Design and implement a Java Swing Program that
plays the following game with the user. Let the user pick a letter between A and
Z. Then let the computer guess, the secret letter. For every guess the player has
to tell the computer whether it’s too high or too low. The computer should be able
to guess the letter within five guesses. Do you see why?



CHAPTER 7 Exercises 335

EXERCISE 7.18 Challenge: A list is a sequential data structure. Design a List

class that uses a comma-delimited String—such as, “a,b,c,d,12,dog”—to imple-
ment a list. Implement the following methods for this class:

void addltem( Object o ); /I Use Object.toString ()
String getltem(int position);

String toString();

void deleteltem(intposition);

void deleteltem(Stringitem);
intgetPosition(String item);

String getHead () ; /I First element
ListgetTail(); /I All but the first element
intlength(); /I Number of items

EXERCISE 7.19 Challenge: Use a delimited string to create a PhoneList class
with an instance method to insert names and phone numbers, and a method to
look up a phone number when a user provides a person’s name. Since your class
will take care of looking things up, you don’t have to worry about keeping the list
in alphabetical order. For example, the following string could be used as such a
directory:

9876::bill g:6540987 1234::mary lancelot:123 842 1100 |

EXERCISE 7.20 Design and implement an application that displays a multi-line
message in various fonts and sizes input by the user. Let the user choose from
among a fixed selection of fonts, sizes, and styles.



336 CHAPTER 7 Strings and String Processing



Chapter 8

Inheritance and
Polymorphism

OBJECTIVES
After studying this chapter, you will

Understand the concepts of inheritance and polymorphism.
Know how Java’s dynamic binding mechanism works.
Be able to design and use abstract methods and classes.
Be able to design and use polymorphic methods.
Gain a better understanding of object-oriented design.

OUTLINE

8.1 Introduction
8.2 Java’s Inheritance Mechanism
8.3 Abstract Classes, Interfaces, and Polymorphism
8.4 Example: A Toggle Button
Special Topic: Historical Cryptography
8.5 Example: The Cipher Class Hierarchy
8.6 Case Study: A Two Player Game Hierarchy
8.7 Principles of Object-Oriented Design
Chapter Summary
Solutions to Self-Study Exercises
Exercises

337



Srvirneal

+ iz&live=TRLE
+ canfove=TRLE

I

‘ertebrate

+ hasBackbone = TRUE

T

Marnrnal

+n

+ =% armEBlooded=TRUE

urses'toung=TRUE

1

Horse

+

hasFourLegs=TRUE

Figure 8.1: A class hierarchy for

horses.

338 CHAPTER 8  Inheritance and Polymorphism
8.1 Introduction

Among the most important concepts in object oriented programming are the
concepts of inheritance and polymorphism. We first introduced the idea of
inheritance in Chapter 0. There we compared inheritance to the natural form
of inheritance, in which horses and cows share certain inher-ited
characteristics, such as being warm-blooded, by virtue of their being
mammals. We also gave the example of a hierarchy of chess pieces and
showed how different kinds of chess pieces, such as Pawn and Bishop, in-
herited certain shared characteristics from their ChessPiece superclass.

We took a more technical look at inheritance in Chapter 3, where we
talked about the toString() method and how it is inherited from the Object
class. We illustrated there how subclasses of Object could override the
inherited toString() method in order to customize it for their purposes. We
also introduced the idea of polymorphism, in which a method call, such
as obj.toString(), can have different behaviors depending on the type of
object, obj, on which it is called.

In Chapter 4, we continued introducing inheritance and polymor-phism,
when we learned about Java’s Abstract Windowing Toolkit (AWT) and Swing
hierarchies, the class hierarchies that are used to create Graph-ical User
Interfaces (GUIs). We also learned how to extend a class to create our own
subclass, and we made limited use of inheritance in the design of the
SimpleGUI class. We were also introduced to the concept of a Java
interface, and we learned how to use the ActionListener interface to enable a
SimpleGUI to handle action events while the GUI is running.

In this chapter we will take a much closer look at these important
object-oriented concepts. We will learn how Java’s dynamic binding
mecha-nism works and how it makes polymorphism possible. Most
importantly, we will see why inheritance and polymorphism are important
elements of object-oriented design, and we will learn how to use these
important tools to design several different programs. In keeping with our
running games example, we will develop a TwoPlayerGame hierarchy
and show how it can simplify the implementation of OneRowNim and
other two-player games.

8.2 Java’s Inheritance Mechanism

As we described in Chapter 0, class inheritance is the mechanism
whereby a class acquires (inherits) the methods and variables of its
super-classes. To remind you of the basic concept, let’s repeat an earlier
example: Just as horses inherit the attributes and behaviors associated
with mam-mals and vertebrates, a Java subclass inherits the attributes
and behaviors of its superclasses.

Figure 8.1 uses a UML diagram to illustrate the relationships among
horses, mammals, vertebrates, and animals. As the root of the hierarchy,
which is always shown at the top, the Animal class contains the most gen-
eral attributes, such as being alive and being able to move. All animals share
these attributes. The class of vertebrates is a somewhat more spe-cialized
type of animal, in that vertebrates have backbones. Similarly, the class of
mammals is a further specialization over the vertebrates in that



SECTION 8.2Java’s Inheritance Mechanism 339

mammals are warm-blooded and nurse their young. Finally, the class of
horses is a further specialization over the class of mammals, in that all
horses have four legs. Some mammals, such as humans and penguins,
do not have four legs. Thus, by virtue of its class’s position in this
hierarchy, we can infer that a horse is a living, moving, four-legged
vertebrate, which is warm blooded and nurses its young.

We have deliberately used an example from the natural world to show
that the concept of inheritance in Java is inspired by its counterpart in the
natural world. But how exactly does the concept of inheritance apply to
Java (and to other object-oriented languages)? And, more importantly,
how do we use the inheritance mechanism in object-oriented design?

8.2.1 Using an Inherited Method

In Java, the public and protected instance methods and instance
variables of a superclass are inherited by all of its subclasses. This
means that objects belonging to the subclasses can use the inherited
variables and methods as their own.

We have already seen some examples of this in earlier chapters. For
ex-ample, recall that by default all Java classes are subclasses of the
Object class, which is the most general class in Java’s class hierarchy.
One public method that is defined in the Object class is the toString()
method. Because every class in the Java hierarchy is a subclass of
Object, every class inherits the toString() method. Therefore, toString()

can be used with any Java object.
To illustrate this, suppose we define a Student class as follows:

Ob ject
public class Student f - : :
protected String name; + toString0) String
public Student(String s) f ﬂ}
name = s;
g
public String getName () f Student
return name; ® name :5tring
9 F Studentl)
9 # Student(s :String)
. . . . . # getNamel) :String
Figure 8.2 shows the relationship between this class and the Object

class. As a subclass of Object, the Student class inherits the toString()

method. Therefore, for a given Student object, we can call its

toString() as follows:

Figure 8.2: The Student class hi-
erarchy.

Student stu =new Student( );
‘ System.out.printin(stu.toString());

How does this work? That is, how does Java know where to find the
toString() method, which, after all, is not defined in the Student class?
The answer to this question is crucial to understanding how Java’'s
inheritance mechanism works.

Note in this example that the variable stu is declared to be of type
Student and is assigned an instance of the Student class. When the
expression stu.toString() is executed, Java will first look in the



340 CHAPTER 8  Inheritance and Polymorphism

Student class for a definition of the toString() method. Not finding
one there, it will then search up the Student class hierarchy (Fig. 8.2)
until it finds a public or protected definition of the toString() method.
In this case, it finds a toString() method in the Object class and it ex-
ecutes that implementation of toString(). As you know from Chap-

ter 3, this would result in the expression stu.toString() returning
something like:

|Student@cde100

The default implementation of toString() returns the name of the ob-
ject’s class and the address (cde100) where the object is stored in mem-
ory. However, this type of result is much too general and not particularly
useful.

8.2.2 Overriding an Inherited Method

Ob ject

+ toString() :String

overridden—that is, to be redefined in subclasses of Object. Overriding
toString() in a subclass provides a customized string representation of
the objects in that subclass. We showed that by redefining toString() in
our OneRowNim class, we customized its actions so that it returned
[+ Student() useful information about the current state of a OneRowNim game.

+ Student(s :String) To override toString() for the Student class, let's add the following
+ getMName() :String method definition to the Student class:
t+ toString() :String

lll In Chapter 3 we pointed out that the toString() method is designed to be

Student
® name String

public String toString() f
return + name + ;

g

Figure 8.3: The revised Student
class hierarchy.

Given this change, the revised Student class hierarchy is shown in Fig-
ure 8.3. Note that both Object and Student contain implementations of

toString(). Now when the expression stu.toString() is invoked,
the following, more informative, output is generated:

| _ |
— Myname is Stuand I ama Student.

In this case, when Java encounters the method call stu.toString(), it

invokes the toString() method that it finds in the Student class (Fig. 8.3).



SECTION 8.2Java’s Inheritance Mechanism 341

These examples illustrate two important object-oriented concepts: in-
heritance and method overriding.

VAN EF RSl =pISSi(elN]  Inheritance. The public and protected
instance methods (and variables) in a class can be used by objects that
belong to the class’s subclasses.

VAN S Z RS I=gpI=Si[elN] Overriding a Method. Overriding an
inherited method is an effective way to customize that method for a
particular subclass.

8.2.3 Static Binding, Dynamic Binding
and Polymorphism

The mechanism that Java uses in these examples is known as dynamic
binding, in which the association between a method call and the cor-
rect method implementation is made at run time. In dynamic binding

a method call is bound to the correct implementation of the method at run
time by the Java Virtual Machine (JVM).

Dynamic binding is contrasted with static binding, the mechanism by
which the Java compiler resolves the association between a method call
and the correct method implementation when the program is compiled.

In order for dynamic binding to work, the JVM needs to maintain some
kind of representation of the Java class hierarchy, including classes defined
by the programmer. When the JVM encounters a method call, it uses in-
formation about the class hierarchy to bind the method call to the correct
implementation of that method.

In Java, all method calls use dynamic binding except methods that are
declared final or private. Final methods cannot be overridden, so
declaring a method as final means that the Java compiler can bind it
to the correct implementation. Similarly, private methods are not inher-
ited and therefore cannot be overridden in a subclass. In effect, private
methods are final methods and the compiler can perform the binding at
compile time.

Java’s dynamic-binding mechanism, which is also called late binding or
run-time binding, leads to what is know as polymorphism. Polymorphism
is a feature of object-oriented languages whereby the same method call
can lead to different behaviors depending on the type of object on which

the method call is made. The term polymorphism means, literally, having
many (poly) shapes (morphs). Here’s a simple example:

Dynamic binding

Polymorphism

IObjectobj; /l Static type: Object |
obj =new Student( ) /I Actual type: Student
System.out.println(obj.toString());// Prints "My name is Stu...”
obj =new OneRowNim (11); /I Actual type:OneRowNim
| System.out.printin(obj.toString());// Prints "nSticks = 11, player = 17

The variable obj is declared to be of type Object. This is its static or
declared type. A variable’s static type never changes. However, a variable



342 CHAPTER 8 Inheritance and Polymorphism

also has an actual or dynamic type. This is the actual type of the object that
has been assigned to the variable. As you know, an Object variable can
be assigned objects from any Object subclass. In the second statement,
obj is assigned a Student object. Thus, at this point in the program,
the actual type of the variable obj is Student. When obj.toString()
is invoked in the third line, Java begins its search for the toString()
method at the Student class, because that is the variable’s actual type.

In the fourth line, we assign a OneRowNim object to obj, thereby chang-
ing its actual type to OneRowNim. Thus, when obj.toString() is in-
voked in the last line, the toString() method is bound to the imple-
mentation found in the OneRowNim class.

Thus, we see that the same expression, obj.toString(), is bound al-
ternatively to two different toString() implementations, based on the
actual type of the object, obj, on which it is invoked. This is polymor-

Polymorphic method phism and we will sometimes say that the toString() method is a poly-
morphic method. A polymorphic method is a method signature that be-
haves differently when it is invoked on different objects. An overridden
method, such as the toString() method, is an example of a polymor-
phic method, because its use can lead to different behaviors depending
upon the object on which it is invoked.

The previous example is admittedly somewhat contrived. In some
object-oriented languages, a code segment such as that above would use
static binding rather than dynamic binding. In other words, the com-
piler would be able to figure out the bindings. So let’s take an example

where static binding, also called early binding, is not possible. Consider
the following method definition:

public void polyMethod (Object obj) f |
| System.out.printin(obj.toString()); //Polymorphic I
g

The method call in this method, obj.toString(), can’t be bound to
the correct implementation of toString() until the method is actually

invoked—that is, at run time. For example, suppose we make the follow-
ing method calls in a program:

Studentstu =new Student( )
polyMethod (stu);

OneRowNim nim = new OneRowNim () ;
polyMethod ( nim ) ;

The first time polyMethod() is called, the obj.toString() is invoked on a
Student object. Java will use its dynamic binding mechanism to
associate this method call with the toString() implementation in Student
and output “My name is Stu and | am a Student.” The sec-ond time
polyMethod() is called, the obj.toString() expression is invoked on a
OneRowNim object. In this case, Java will bind the method call to the
implementation in the OneRowNim class. The output generated in this
case will report how many sticks are left in the game.



SECTION 8.2Java’s Inheritance Mechanism 343

The important point here is that polymorphism occurs when an over-
ridden method is called on a superclass variable, obj. In such a case, the
actual method implementation that is invoked is determined at run time.
The determination depends on the type of object that was assigned to
the variable. Thus, we say that the method call obj.toString() is poly-
morphic because it is bound to different implementations of toString()
depending on the actual type of the object that is bound to obj.

8.2.4 Polymorphism and Object-Oriented Design

Now that we understand how inheritance and polymorphism work

in Java, it will be useful to consider an example that illustrates
how these mechanisms can be useful in designing classes and meth-
ods. We have been using the various System.out.print() and
System.out.printin() methods since Chapter 1. The print()

and println() methods are examples of overloaded methods—that is,
methods that have the same name but different parameter lists. Remem-
ber that a method’s signature involves its name, plus the type, num-

ber, and order of its parameters. Methods that have the same name but
different parameters are said to be overloaded.

Here are the signatures of some of the different print() and
printin() methods:

Iprint(charc); printin(char c);
print(inti); println(inti);
print(doubled); printin(doubled);

|print(f|oatf); printin(float f);

|print(String S); printin(String s);

| print(Object 0); printin(Objecto);

Basically, there is a print() and printin() method for every type of primitive
data, plus methods for printing any type of object. When Java
encounters an expression involving print() or println() it chooses which
particular print() or printin() method to call. To determine the correct
method, Java relies on the differences in the signatures of the various
print() methods. For example, because its argument is an int, the
expression print(5) is associated with the method whose signature is
print(int i) be cause its parameter is an int.

Note that there is only one set of print() and printin() meth-ods for
printing Objects. The reason is that polymorphism is used by the
print(Object 0) and printin(Object 0) methods to print any type of object.
While we do not have access to the source code for these

Overloaded methods



Extensibility

344 CHAPTER 8 Inheritance and Polymorphism

methods, we can make an educated guess that their implementations
utilize the polymorphic toString() method, as follows:

public void print(Objecto) f
System.out.print(o.toString());
9

public void println(Objecto) f
System.out.printin(o.toString());

g

Here again we have a case where an expression, o.toString(), is bound
dynamically to the correct implementation of toString() based on the type
of Object that the variable o is bound to. If we call System.out.print(stu),
where stu is a Student, then the Student.toString() method is invoked.
On the other hand, if we call System.out.print(game), where game is a
OneRowNim, then the OneRowNim.toString() method is invoked.

The beauty of using polymorphism in this way is the flexibility and
extensibility that it allows. The print() and println() methods can print any
type of object, even new types of objects that did not exist when these
library methods were written.

SELF-STUDY EXERCISES
EXERCISE 8.1 To confirm that the print() and println() methods are
implemented along the lines that we suggest here, compile and run the
TestPrint program shown here. Describe how it confirms our claim.

‘ public class TestPrintf

public static void main(String args|[]) f
System .out.println (new Double (56));
System .out.printin(new TestPrint());

EXERCISE 8.2 Override the toString() method in the TestPrint class and
rerun the experiment. Describe how this adds further confirma-tion to our
claim.

8.2.5 Using super to Refer to the Superclass

One question that might occur to you is: Once you override the default
toString() method, is it then impossible to invoke the default method

on a Student object? The default toString() method (and any method
from an object’s superclass) can be invoked using the super keyword. For
example, suppose that within the Student class, you wanted to concate-

nate the result of both the default and the new toString() methods.
The following expression would accomplish that:

super.toString() + toString()



SECTION 8.2Java’s Inheritance Mechanism 345

The super keyword specifies that the first toString() is the one imple-

mented in the superclass. The second toString() refers simply to the

version implemented within the Student class. We will see additional Keyword super
examples of using the super keyword in the following sections.

SELF-STUDY EXERCISES

EXERCISE 8.3 Consider the following class definitions and determine
the output that would be generated by the code segment.

public classAf
public void method () f System.out.println( ); 9
g
public class B extends Af
public void method () f System.out.println( ); 9
g

/ Determine the output from this code segment
Aa=newA();

a . method () ;

a=newB();

a.method () ;

Bb=newB();

b . method () ;

EXERCISE 8.4 For the class B defined in the previous exercise, modify
its method() so that it invokes A’s version of method() before printing out
B.

EXERCISE 8.5 Given the definitions of the classes A and B, which of the
following statements are valid? Explain.

Aa=newB();
a=newA();
Bb=newA();
b=newB();

8.2.6 Inheritance and Constructors

Java’s inheritance mechanism applies to a class’s public and protected in-
stance variables and methods. It does not apply to a class’s constructors.



Ob ject

+ toString() -String

T

|_ﬂ Student
narne “String

- Studentl )

+ Student(s String)

4+ getMame) String

- toStringl) :String

T

CollegeStudent

i+ Lollegestudent] )
+ CollegeStudent(s String)
+ taString() :String

Figure 8.4: The class hierarchy
for CollegeStudent .

Constructor chaining

346 CHAPTER 8 Inheritance and Polymorphism

To illustrate some of the implications of this language feature, let’s define
a subclass of Student called CollegeStudent:

public class CollegeStudentextends Student f
public CollegeStudent() fg
public CollegeStudent(String s)f

super (s);
g
public String toString() f
return + hame +
g

9

Because CollegeStudent is a subclass of Student, it inherits the pub-lic
and protected instance methods and variables from Student. So, a
CollegeStudent has an instance variable for name and it has a public
getName() method. Recall that a protected element, such as the name
variable in the Student class, is accessible only within the class and its
subclasses. Unlike public elements, it is not accessible to other classes.

Note that CollegeStudent overrides the toString() method, giv-ing it a
more customized implementation. The hierarchical relationship between
CollegeStudent and Student is shown in Figure 8.4. A CollegeStudent is
a Student and both are Objects.

Note how we have implemented the CollegeStudent(String s)
constructor. Because the superclass’s constructors are not inherited, we
have to implement this constructor in the subclass if we want to be able
to assign a CollegeStudent’'s name during object construction. The
method call, super(s), is used to invoke the superclass constructor and
pass it s, the student’s name. The superclass constructor will then assign
s to the name variable.

As we have noted, a subclass does not inherit constructors from its
su-perclasses. However, if the subclass constructor does not explicitly
invoke a superclass constructor, Java will automatically invoke the
default su-perclass constructor—in this case, super(). By “default
superclass con-structor” we mean the constructor that has no
parameters. For a subclass that is several layers down in the hierarchy,
this automatic invoking of the super() constructor will be repeated
upwards through the entire class hierarchy. Thus when a CollegeStudent
is constructed, Java will auto-matically call Student() and Object(). Note
that if one of the super-classes does not contain a default constructor,
this will result in a syntax error.

If you think about this, it makes good sense. How else will the in-
herited elements of the object be created? For example, in order for a
CollegeStudent to have a name variable, a Student object, where name
is declared, must be created. The CollegeStudent constructor then
extends the definition of the Student class. Similarly, in order for a
Student object to have the attributes common to all objects, an Object
instance must be created and then extended into a Student.

Thus, unless a constructor explicitly calls a superclass constructor, Java
will automatically invoke the default superclass constructors. It does this




SECTION 8.3  Abstract Classes, Interfaces, and Polymorphism 347

before executing the code in its own constructor. For example, if you had
two classes, A and B, where B is a subclass of A, then whenever you create
an instance of B, Java will first invoke A’s constructor before executing the

code in B’s constructor. Thus, Java’s default behavior during construction
of B is equivalent to the following implementation of B’s constructor:

|pub|ic B() f
A(); // Call the superconstructor
/1 Now continue with this constructor’s code

| g

Calls to the default constructors are made all the way up the class hierar-
chy, and the superclass constructor is always called before the code in
the class’s constructor is executed.

SELF-STUDY EXERCISES

EXERCISE 8.6 Consider the following class definitions and describe
what would be output by the code segment.

public classAf
public A() f System.out.printin( ); 9

public class B extends Af

public B() fSystem.out.println( ); g
g
public class Cextends Bf

public C () fSystem.out.println( ); 9

g

/I Determine the output.
Aa=newA();
Bb=newB();
Cc=newC();

8.3 Abstract Classes, Interfaces,
and Polymorphism

In Java, there are three kinds of polymorphism:
Overriding an inherited method.
Implementing an abstract method.
Implementing a Java interface.

In the previous section we saw examples of the first type of polymor-
phism. All forms of polymorphism are based on Java’s dynamic binding
mechanism. In this section we will develop an example that illustrates
the other two types of polymorphism and discuss some of the design
implications involved in choosing one or the other approach.



348 CHAPTER 8  Inheritance and Polymorphism

8.3.1 Implementing an Abstract Method

An important feature of polymorphism is the ability to invoke a polymor-
phic method that has been defined only abstractly in the superclass. To
illustrate this feature, we will develop a hierarchy of simulated animals
that make characteristic animal sounds, an example that is widely used
to illustrate polymorphism.

As we all know from our childhood, animals have distinctive ways of
Extensibility speaking. A cow goes “moo”; a pig goes “oink”; and so on. Let’s design a
hierarchy of animals that simulates this characteristic by printing the
characteristic sounds that these animals make. We want to design our
FOSTFgLI St ing classes so that”any given a_mlmal will return_ something like “l am a cow
4 cpeak(T String and | go moo, vyhen we_mvoke the toString() _m_ethod. Moreover, we
want to design this collection of classes so that it is extensible—that is,
AN so that we can continue to add new animals to our menagerie without

having to change any of the code in the other classes.
Figure 8.5 provides a summary of the design we will implement. The

Arimal
™ Kind : String

Cat Fig Animal class is an abstract class. That's why its name is italicized in the
¥ zpeakl] T speakl]) UML dia_gram. The reason that this _clas_s is abstract is _b(_a(_:ause its speak()
method is an abstract method, which is a method definition that does not

contain an implementation. That is, the method definition contains just the
method’s signature, not its body. Any class that contains an abstract

Cow method, must itself be declared abstract. Here is the definition
of the Animal class:

+ speakl )

public abstract class Animal f
protected Stringkind; // cow, pig, cat, etc.

Figure 8.5: The Animal class hier-

archy. public Animal() f g

public StringtoString()f
return + kind + +speak () ;

public abstract String speak(); /I Abstract method

g

Note how we declare the abstract method (speak()) and the abstract

class. Because one or more of its methods is not implemented, an abstract
class cannot be instantiated. That is, you cannot say:

IAnimaI animal =new Animal () ; /I Error: Animal is abstract |

Even though it is not necessary, we give the Animal class a constructor. If
we had left this off, Java would have supplied a default constructor that
would be invoked when Animal subclasses are created.
Rules for abstract classes Java has the following rules on using abstract methods and classes.

Any class containing an abstract method must be declared an
abstract class.

An abstract class cannot be instantiated. It must be subclassed.
A subclass of an abstract class may be instantiated only if it im-
plements all of the superclass’s abstract methods. A subclass



SECTION 8.3  Abstract Classes, Interfaces, and Polymorphism 349

that implements only some of the abstract methods must itself be
declared abstract.

A class may be declared abstract even it contains no abstract
methods. It could, for example, contain instance variables that are
common to all its subclasses.

Even though an abstract method is not implemented in the superclass, it
can be called in the superclass. Indeed, note how the toString() method calls
the abstract speak() method. The reason that this works in Java is due to the
dynamic binding mechanism. The polymorphic speak() method will be
defined in the various Animal subclasses. When the Animal.toString()
method is called, Java will decide which actual speak() method to call based
on what subclass of Animal is involved.

Definitions for two such subclasses are shown in Figure 8.6. In each

public class Cat extends Animal f
public Cat () f

kind = ;

g

public String speak () f
return ;

9

g

public class Cowextends Animal f
public Cow () f

kind = ;

g

public String speak () f
return ;

g

Figure 8.6: Two Animal subclasses.

case the subclass extends the Animal class and provides its own con-
structor and its own implementation of the speak() method. Note that in
their respective constructors, we can refer to the kind instance vari-able,
which is inherited from the Animal class. By declaring kind as a protected
variable, it is inherited by all Animal subclasses but hid-den from all other
classes. On the other hand, if kind had been declared public, it would be
inherited by Animal subclasses, but it would also be accessible to every
other class, which would violate the information hiding principle.



Advantage of polymorphism

Extensibility

350 CHAPTER 8 Inheritance and Polymorphism

Given these definitions, we can now demonstrate the power and flex-

ibility of inheritance and polymorphism. Consider the following code
segment:

| Animal animal = new Cow () ;

System.out.println(animal.toString()); // Acow goes moo
animal = new Cat () ;
| System.out.printin(animal.toString()); // Acat goes meow

We first create a Cow object and then invoke its (inherited) toString()
method. It returns, “l am a cow and | go moo.” We then create a Cat
object and invoke its (inherited) toString() method, which returns, “I

am a cat and | go meow.” In other words, Java is able to determine the
appropriate implementation of speak() at run time in each case. The
invocation of the abstract speak() method in the Animal.toString()
method is a second form of polymorphism.

What is the advantage of polymorphism here? The main advantage is
the extensibility that it affords our Animal hierarchy. We can define and
use completely new Animal subclasses without redefining or recompiling
the rest of the classes in the hierarchy. Note that the toString() method
in the Animal class does not need to know what type of Animal sub-
class will be executing its speak() method. The toString() method
will work correctly for any subclass of Animal because every non-abstract
subclass of Animal must implement the speak() method.

To get a better appreciation of the flexibility and extensibility of this
design, it might be helpful to consider an alternative design that does
not use polymorphism. One such alternative would be to define each
Animal subclass with its own speaking method. A Cow would have a
moo() method; a Cat would have a meow() method; and so forth. Given

this design, we could use a switch statement to select the appropriate
method call. For example, consider the following method definition:

public String talk(Animal a)f
if (ainstanceofCow)

return + kind + + a.moo();
elseif (ainstanceof Cat)

return + kind + + a.meow ();
else

return ;

g

In this example, we introduce the instanceof operator, which is a built-in
boolean operator. It returns true if the object on its left-hand side is an
instance of the class on its right-hand side.

The talk() method would produce more or less the same result. If you
call talk(new Cow()), it will return “I am a cow and | go moo.” However,
with this design, it is not possible to extend the Animal hierar-chy without
rewriting and recompiling the talk() method.

Thus, one of the chief advantages of using polymorphism is the great
flexibility and extensibility it affords. We can define new Animal sub-
classes and define their speak() methods. These will all work with the




SECTION 8.3  Abstract Classes, Interfaces, and Polymorphism 351

toString() method in the Animal class, without any need to revise that
method.

Another advantage of using abstract methods is the control that it
gives the designer of the Animal hierarchy. By making it an abstract
class with an abstract speak() method, any non-abstract Animal subclass
must im-plement the speak() method. This lends a great degree of
predictabil-ity to the subclasses in the hierarchy, making it easier to use
them in applications.

SELF-STUDY EXERCISES

EXERCISE 8.7 Following the examples in this section, define an Animal
subclass named Pig, which goes “oink.”

EXERCISE 8.8 Show how you would have to modify the talk() method
defined above to incorporate the Pig class.

8.3.2 Implementing a Java Interface

A third form of polymorphism results through the implementation of Java
interfaces, which are like classes but contain only abstract method def-
initions and constants (final) variables. An interface cannot contain
instance variables. We have already seen interfaces, such as when we
encountered the ActionListener interface in Chapter 4.

The designer of an interface specifies what methods will be imple-
mented by classes that implement the interface. This is similar to what
we did when we implemented the abstract speak() method in the animal
example. The difference between implementing a method from an inter-
face and from an abstract superclass is that a subclass extends an
abstract superclass but it implements an interface.

Java’s interface mechanism gives us another way to design polymor-
phic methods. To see how this works, we will provide an alternative
design for our animal hierarchy. Rather than defining speak() as an

abstract method within the Animal superclass, we will define it as an
abstract method in the Speakable interface (Fig. 8.7).

public interfaceSpeakable f
public String speak();
g
public class Animal f
protected String kind; // cow, pig, cat, etc.
public Animal() f g
public String toString()f
return + kind + +
((Speakable)this).speak();
9
g

Figure 8.7: Defining and using the Speakable interface.

Note the differences between this definition of Animal and the pre-vious
definition. This version no longer contains the abstract speak() method.
Therefore, the class itself is not an abstract class. However, be-cause the
speak() method is not declared in this class, we cannot call the

Java interface



Cast operation

Interface inheritance

352 CHAPTER 8 Inheritance and Polymorphism

speak() method in the toString() method, unless we cast this object
into a Speakable object.

We encountered the cast operation in Chapter 5, where we used it with
primitive types such as (int) and (char). Here, we use it to specify
the actual type of some object. In this toString() example, this ob-
ject is some type of Animal subclass, such as a Cat. The cast operation,
(Speakable), changes the object’s actual type to Speakable, which
syntactically allows its speak() method to be called.

Given these definitions, Animal subclasses will now extend the
Animal class and implement the Speakable interface:

public class Cat extends Animal implements Speakable f
public Cat() fkind = 7 g
public String speak () freturn g
public clas s Cow extends Animal implements Speakable f
public Cow () fkind = ;9
public String speak() freturn ;g

9

To implement a Java interface, one must provide a method implementa-
tion for each of the abstract methods in the interface. In this case there is

only one abstract method, the speak() method.
Note, again, the expression from the Animal.toString() class

|((Speakab|e Jthis).speak();

which casts this object into a Speakable object. The reason that this cast
is required is because an Animal does not necessarily have a speak()
method. A speak() method is not defined in the Animal class. How-

ever, the Cat subclass of Animal does implement a sleep() method as
part of its Speakable interface. Therefore, in order to invoke speak()

on an object from one of the Animal subclasses, the object must actually
be a Speakable and we must perform the cast as shown here.

This illustrates, by the way, that a Cat, by virtue of extending the
Animal class and implementing the Speakable interface, is both an
Animal and a Speakable. In general, a class that implements an in-
terface, has that interface as one of its types. Interface implementation is
itself a form of inheritance. A Java class can be a direct subclass of only
one superclass. But it can implement any number of interfaces.

Given these definitions of the Cow and Cat subclasses, the following
code segment will produce the same results as in the previous section.

’Animal animal =new Cow () ;
System.out.println(animal.toString()); //A cow goes moo
animal =new Cat () ;
System .out.printin(animal.toString()); //A cat goes meow

Although the design is different, both approaches produce the same re-
sult. We will put off, for now, the question of how one decides whether




SECTION 8.4Example: A Toggle Button 353

to use an abstract method or a Java interface. We will get to this question
when we design the TwoPlayerGame class hierarchy later in this chapter.

8.4 Example: A Toggle Button

The ability to extend an existing class is one of the most powerful fea-
tures of object-oriented programming. It allows objects to reuse code
defined in the superclasses without having to redefine or recompile the
code. As we saw in Chapter 4, a programmer-defined JFrame, such as
GreeterGUI, uses the public methods defined for JFrames, Frames,
Windows, Containers, Components, and Objects simply because it is a
subclass of JFrame (Fig. 4.11). By the same token, it can use all of the
public and protected instance variables and constants defined in these
classes by simply referring to them in its own code.

In this section, we present an example of how inheritance can be
used to extend and customize the functionality of a Java library class. As
we saw in Chapter 4, a JButton is a GUI component that can be
associated with a particular action by implementing the ActionListener
interface. For example, we used a JButton in the GreeterGUI to generate
a greeting to the user.

In this section, we will design a more sophisticated button. We will call
it a ToggleButton and define it as a JButton subclass that toggles its
label whenever it is clicked, in addition to carrying out some kind of
associated action.

A light switch behaves similarly to a ToggleButton in this sense.
Whenever you flick a light switch, it changes its label from “on” to “off,”
but it also turns the lights on or off. Although different switches are asso-
ciated with different lights, every light switch toggles its label each time it
is clicked. So let’s design a ToggleButton that behaves like a light switch.

The main idea in our design is that a ToggleButton is a JButton that
has two labels. By default, a JButton has just a single label. Thus,
because of the type of behavior we want to elicit, we need to define
ToggleButton as a subclass of JButton with two String variables that will
serve as its alternate labels (Fig. 8.8). Note that we give it a construc-tor
method that will allow us to provide the initial value of its two label
strings. Another important feature of a ToggleButton is that it should act
as its own ActionListener so that it can toggle its label whenever it is
clicked. Therefore, it must also implement the ActionListener interface.

The complete definition of ToggleButton is given in Figure 8.9. Note
how we have defined its constructor. Recall that the JButton class has a
constructor method with the signature JButton(String), which allows us to
set a JButton’s label during instantiation. We need to do the same thing
with one of ToggleButton’s two labels. That is, when we create a
ToggleButton, we want to initialize its label to one of its two alternative
labels (here, “On” or “Off”).

Because constructor methods are not inherited by the subclass, we want
to invoke the superclass’s constructor in the ToggleButton() construc-tor
using the super keyword. This must be done as the first statement in

Reusing code

Problem decomposition

JButton

rJButton(in str : String)
rsetText(in str : String)

«idterface»
AcTIONLISTENER

ToggleButton

+AcTIONPERFORMED()
Habell : String

Habel2 : String

HToggleButton(in I1 : String, in 12 : String)
HactionPerformed()

Figure 8.8: A ToggleButton isa
JButton with two labels.



Swapping algorithm

Swapping values requires a tempo-
rary variable

354 CHAPTER 8  Inheritance and Polymorphism

the ToggleButton() constructor. By passing |1 to the super construc-tor
we are making the first string that the user gives us the default label for
our ToggleButton. This will be the label that appears on the button when
it is first displayed in a Component.

Notice also in the ToggleButton() constructor that the ToggleButton is
designated as its own ActionListener, so whenever it is clicked, its
actionPerformed() method will be invoked. The actionPerformed() method
exchanges the button’s current label for its other label. Swapping two
values in memory is a standard programming practice used in lots of
different algorithms. In order to do it properly, you must use a third variable
to temporarily store one of the two values you are swapping. The
comments in actionPerformed() provide a step-by-step trace of the values
of the three variables involved.

SANAREIRIeIEIRVANVIVIIN[ERRIZA S wapping Values. It is necessary to use
a temporary variable whenever you are swapping two values, of any
type, in memory. The temporary variable holds the first value while
you overwrite it with the second value.

The first statement in actionPerformed() creates a temporary String
variable named tempS and assigns it the value of labell. Recall that
labell was the button’s initial label. To make this example easier to fol-
low, let’s suppose that initially labell is “off” and that label2 is “on.”
After line 1 is executed, both tempS and labell contain “off’ as their
value. Line 2 then assigns label2’s value to labell. Now both labell

import java.awt. ;
import java.awt.event. ;
import javax.swing. ;

public class ToggleButton extends JButton
implements ActionlListener f
private String labell; //Toggle betweentwo labels
private String label2;

public ToggleButton (String 11, Stringl2) fi/  constructor
super (11); /I Use |1 as the default label
labell = 11;
label2 = 12;
addActionListener(this);
9
public void actionPerformed (ActionEvent e) f
String tempS= labell; //swapthe labels

labell =label2;
label2 = tempS;
setText(labell);

g// actionPerformed()

g// ToggleButton

Figure 8.9: Definition of the ToggleButton class.



SECTION 8.4Example: A Toggle Button 355

and label2 store “on” as their values. In line 3 we assign tempS’s value
to label2. Now label2 stores “off’ and labell stores “on,” and we have
effectively swapped their original values.

The next time we invoke actionPerformed(), labell and label2 will
have their opposite values initially. Swapping them a second time will
assign them their initial values again. We can continue toggling their
values in this way indefinitely. To complete the method, the last state-
ment in actionPerformed() assigns labell’s current value as the new
ToggleButton’s label.

Now that we have seen that a ToggleButton toggles its label be-

tween two values, what about performing an associated action? To do Multiple event handlers

this, we need a design involving multiple event handlers, one to han-
dle the toggling of the button’s label and the other to handle its associ-
ated action (Fig 8.10). In this design, lightSwitch has two listeners

Listens
generateClickEvent()
—» 4— 2: actionPerformed()
N | ‘
lightSwitch : ToggleButton | |: JavaVirtualMachine
Listens actionPerformed()

: ToggleApplet

that respond to its events: the lightSwitch itself, as a result of the
actionPerformed() method in its class, and the ToggleFrame, as a result
of actionPerformed() method in this class.

The implementation of this design is given by ToggleFrame, a pro-
gram that uses a ToggleButton (Fig. 8.11). Like the GUI we designed in
Chapter 4, this program extends the JFrame class and implements the
ActionListener interface. In this example we use a ToggleButton to
simulate a light switch. Note that we assign the program itself as an
ActionListener for the lightSwitch, so that

When lightSwitch is clicked, the program displays the message, “The
light is on,” or “The light is off,” in the program’s title bar (Fig. 8.12). This
is a somewhat trivial action but it illustrates that a ToggleButton both
toggles its own label and carries out some associated action.

The ToggleButton design satisfies several key design principles of
object-oriented programming. First and foremost, it uses inheritance to

Figure 8.10: The ToggleButton
has two ActionListeners. When
the button is clicked, the JVM will
call each listener’s
actionPerformed() method, and
each listener will take its own
independent action.

extend the functionality of the predefined JButton class—the extensibil- Object oriented design principles
ity principle. Secondly, it encapsulates a ToggleButton’s essential be-havior within the ToggleButton class

itself—the modularity principle.



356 CHAPTER 8 Inheritance and Polymorphism

import java.awt. ;

Figure 8.12: When clicked,
ToggleFrame button causes “The
light is on” or “The light is off” to
appear in the window’s title bar.

import java.awt.event. ;
import javax.swing. ;

public class ToggleFrame extends JFrame
implements ActionListener f
private ToggleButton lightSwitch;

public ToggleFrame () f
lightSwitch =new ToggleButton ("off”,"on”);
getContentPane (). add (lightSwitch);
lightSwitch.addActionListener(this);

g/l init()

public void actionPerformed (ActionEvent e) f
setTitle('The light is "+ lightSwitch.getText());

g// actionPerformed()

public static void main(Stringargs][])
f
JFrame f =new ToggleFrame () ;
f.setSize(200,200);
f.setVisible(true);

g
g// ToggleFrame

Figure 8.11: Definition of the ToggleFrame class.

[0 = Applet Viewer: ToggleTest.class = 0 B

IThe Tight is on Ly

Finally, it hides the mechanism by which a ToggleButton manages its
labels—the information-hiding principle.

NS SO RAIEERISS] (€1 Inheritance. Inheritance enables you to
specialize an object’s behavior. A ToggleButton does everything that
a JButton does, plus it can toggle its own label.

SELF-STUDY EXERCISES

EXERCISE 8.9 Write a code segment (not a whole method) to swap two
boolean variables, b1 and b2.

EXERCISE 8.10 Suppose you are designing an GUI that plays a card
game, and you want a single button that can be used both to deal the
cards and to collect the cards. Write a code segment that creates this
type of button, adds it to the JFrame, and designates the JFrame as its
ActionListener.



SECTION 8.5Example: The Cipher Class Hierarchy 357
Special Topic: Historical Cryptography

Cryptography, the study of secret writing, has had a long and interest-ing
history. Modern-day cryptographic techniques employ sophisticated mathematics
to encrypt and decrypt messages. Today’s most secure encryp-tion schemes are
safe from attack by even the most powerful computers. Given our widespread
dependence on computers and the Internet, secure encryption has become an
important application area within computer science. While the cryptographic
techniques used up through World War
are too simple to serve as the basis for modern-day encryption schemes,
they can provide an interesting and accessible introduction to this impor-
tant area of computer science.

One of the earliest and simplest ciphers is the Caesar cipher, used by
Julius Caesar during the Gallic wars. According to this scheme, letters of the

alphabet are shifted by three letters, wrapping around at the end of the
alphabet:

|P lainText: abcdefghijkimnopqgrstuvwxyz
| CaesarShifted: defghijkimnopgrstuvwxyzabc

When encrypting a message, you take each letter of the message and re-
place it with its corresponding letter from the shifted alphabet. To decrypt
a secret message, you perform the operation in reverse—that is, you take
the letter from the shifted alphabet and replace it with the correspond-
ing letter from the plaintext alphabet. Thus, “hello” would be Caesar en-
crypted as “khoor.”

The Caesar cipher is a substitution cipher, because each letter in the
plaintext message is replaced with a substitute letter from the ciphertext

alphabet. A more general form of a substitution cipher uses a keyword to
create a ciphertext alphabet:

PlainText: abcdefghijklimnopgrstuvwxyz
| Ciphertext: xylophneabcdfgijkmqrstuvwz

In this example, the keyword “xylophone,” (with the second o removed) is
used to set up a substitution alphabet. According to this cipher, the word
“hello” would be encrypted as “epddi.” Substitution ciphers of this form
are found frequently in cryptogram puzzles in the newspapers.

Another type of cipher is known as a transposition cipher. In this type
of cipher, the letters in the original message are rearranged in some me-
thodical way. A simple example would be if we reversed the letters in
each word so that “hello” became “olleh.”

8.5 Example: The Cipher Class Hierarchy

Suppose we wish to design a collection of cipher classes, including a

Caesar cipher and a transposition cipher. Because the basic operations

used in all forms of encryption are the same, both the Caesar class and Problem decomposition
the Transpose class will have methods to encrypt() and decrypt()



Cipher

+encrypt(in s : String) : String
+decrypt(in s : String) : String
+encode(in s : String) : String
+decode(in s : String) : String

i

Caesar

rencode(in s : String) : String
rdecode(in s : String) : String

Transpose

t+encode(in s : String) : String
rdecode(in s : String) : String

Figure 8.13: A hierarchy of ci-
pher classes. The Cipher class
implements operations common
to all ciphers. The Caesar and
Transpose classes imple-ment
functions unique to those kinds of
ciphers.

Inheritance

358 CHAPTER 8  Inheritance and Polymorphism

messages, where each message is assumed to be a string of words
sepa-rated by spaces. These methods will take a String of words and
trans-late each word using the encoding method that is appropriate for
that ci-pher. Therefore, in addition to encrypt() and decrypt(), each cipher
class will need polymorphic encode() and decode() methods, which take
a single word and encode or decode it according to the rules of that
particular cipher.

From a design perspective the encrypt() and decrypt() meth-ods will
be the same for every class: They simply break the message into words
and encode or decode each word. However, the encode() and decode()
methods will be different for each different cipher. The Caesar.encode()
method should replace each letter of a word with its substitute, whereas
the Transpose.encode() method should rearrange the letters of the word.
Given these considerations, how should we design this set of classes?

Because all of the various ciphers will have the same methods, it will
be helpful to define a common Cipher superclass (Fig. 8.13). Cipher will
encapsulate those features that the individual cipher classes have in
common—the encrypt(), decrypt(), encode(), and decode() methods.

Some of these methods can be implemented in the Cipher class itself.
For example, the encrypt() method should take a message in a String

parameter, encode each word in the message, and return a String result.
The following method definition will work for any cipher:

public String encrypt(String s) f
StringBuffer result =new StringBuffer(”);

while (words . hasMoreTokens () ) f
/l Encode each word
result.append ( encode (words . nextToken ()) +” 7);
9
returnresult.toString(); /I Return result
g//encrypt()

StringTokenizer words=new StringTokenizer(s);// Tokenize

This method creates a local StringBuffer variable, result, and uses
StringTokenizer to break the original String into its component
words. It uses the encode() method to encode the word, appending
the result into result. The result is converted back into a String and
returned as the encrypted translation of s, the original message.

If we define encrypt() in the superclass, it will be inherited by all of
Cipher’s subclasses. Thus, if we define Caesar and Transpose as

|pub|ic class Caesar extends Cipher f ... g
| public clas s Transpose extends Cipher f... g

instances of these classes will be able to use the encrypt() method.

On the other hand, the polymorphic encode() method cannot be
implemented within Cipher. This is because unlike the encrypt() method,
which is the same for every Cipher subclass, the encode() method will
be different for every subclass. However, by declaring the



SECTION 8.5Example: The Cipher Class Hierarchy 359

encode() method as abstract, we can leave its implementation up to the
Cipher subclasses. Thus, within the Cipher class, we would define
encode() and decode() as follows:

/I Abstract methods
abstract String encode (String word) ;
abstract String decode (String word);

public
public

These declarations within the Cipher class tell the compiler that these
methods will be implemented in Cipher’'s subclasses. By defining it as
abstract, encode() can be used in the Cipher class, as it is within the
encrypt() method.

8.5.1 Class Design: Caesar

Figure 8.14 provides the full definition of the Cipher class. The encode()
and decode() methods are declared abstract. They are in-tended to be
implemented by Cipher’s subclasses.

import java.util. ;
public abstractclass Cipher f
public Stringencrypt(String s) f
StringBuffer result =new StringBuffer(”); /I Use a StringBuffer
StringTokenizer words=new StringTokenizer(s); // Breaks into its words
while (words . hasMoreTokens () ) f /I For each word ins
result.append ( encode (words . nextToken ()) + ) /' Encode it
g
returnresult.toString(); /I Return the result
g/l encrypt()
public Stringdecrypt(String s) f
StringBuffer result =new StringBuffer(”); /I Use a StringBuffer
StringTokenizer words=new StringTokenizer(s); /I Breaks into words
while (words . hasMoreTokens () ) f /I For each word ins
result.append ( decode ( words . nextToken ()) + ) 1 Decode it
9
returnresult.toString(); // Return the decryption
g//decrypt()
public abstract String encode (String word); /I Abstract methods
public abstract String decode (String word);
g// Cipher

Figure 8.14: The abstract Cipher class.

Note again that encrypt() and decrypt(), which are implemented
in Cipher, invoke encode() and decode(), respectively, which are de-
clared in Cipher but implemented in Cipher’s subclasses. Java’s dy-
namic binding mechanism will take care of invoking the appropriate im-
plementation of encode() or decode(), depending on what type of ob-ject
is involved. For example, if caesar and transpose are Caesar and

encode() and decode() are
polymorphic



Method polymorphism

Character conversions

360 CHAPTER 8 Inheritance and Polymorphism

Transpose objects, respectively, then the following calls to encrypt()
will cause their respective encode() methods to be invoked:

V/ Invokes caesar.encode()
caesar.encrypt( );
/l'lnvokes transpose.encode()

transpose.encrypt( ),

When caesar.encrypt() is called, it will in turn invoke caesar.en-
code()—that is, it will call the encode() method implemented in the
Caesar class. When transpose.encrypt() is invoked, it will in turn
invoke transpose.encode(). In this way, each object can perform the
encoding algorithm appropriate for its type of cipher.

8.5.2 Algorithm Design: Shifting Characters

The Caesar class is defined as an extension of Cipher (Fig. 8.15). The
only methods implemented in Caesar are encode() and decode().
The encode() method takes a String parameter and returns a String

result. It takes each character of its parameter (word.charAt(k)) and
performs a Caesar shift on the character. Note how the shift is done:

ch = (char) ("2 + (ch + 3)%26);// Caesar shift |

Recall from Chapter 5 that char data in Java are represented as 16-bit

integers. This enables us to manipulate characters as numbers. Thus, to
shift a character by 3, we simply add 3 to its integer representation.

public class Caesar extends Cipher f
public String encode(String word) f
StringBuffer result=new StringBuffer(); // initialize a string b
for (int k= 0; k<word.length(); k++) f // For each character in

char ch =word . charAt (k) ; /I Get the character
ch = (char) ( + (ch + 3) % 26); /I Perform caesar shift
result.append(ch); /I Append it tonewstring
g
returnresult.toString(); /I Return the result as a s

g// encode()

public String decode (String word) f
StringBuffer result=new StringBuffer(); // initialize a string b

for (int k= 0; k<word.length(); k++) f // For each character in
char ch =word . charAt (k) ; /I  Get the character
ch = (char) ( + (ch +  23)% 26); /IPerform reverse sh
result.append(ch); /I Append it tonewstr
g
returnresult.toString(); /l Return the result as a str
g// decode()
g// Caesar

Figure 8.15: The Caesar class.

For example, suppose that the character (ch) is h, which has an ASCII



SECTION 8.5Example: The Cipher Class Hierarchy 361

code of 104 (see Table 5.13). We want to shift it by 3, giving k, which
has a code of 107. In this case, we could simply add 3 to 104 to get the
de-sired result. However, suppose that ch was the character y, which
has an ASCII code of 121. If we simply add 3 in this case, we get 124, a
code that corresponds to the symbol “—,” which is not our desired result.
Instead, we want the shift in this case to “wrap around” to the beginning
of the alphabet, so that y gets shifted into b. In order to accomplish this
we need to do some modular arithmetic.

Let's suppose the 26 characters a to z were numbered 0 through 25, so
that a corresponds to 0, b to 1, and so on up to z as 25. If we take any
number N and divide it (modulo 26), we would get a number between 0
and 25. Suppose, for example, y were numbered 24. Shifting it by 3 would
give us 27, and 27 % 26 would give us 1, which corresponds to b. So, if

the a to z were numbered 0 through 25, then we can shift any character
within that range by using the following formula:

|(Ch + 3) % 26 // Shift by 3 with wraparound |

To map a character in the range a to z onto the integers 0 to 25, we can
simply subtract a from it:

Finally, we simply map the numbers 0 through 25 back to the characters a
to z to complete the shift operation:

(char) (
(char) ( + 1)
(char) ( + 2)

+
o
~

('(':Har)( + 25) =

Note the use here of the cast operator (char) to covert an integer into a
char.
To summarize, we can shift any character by 3 if we map it into the
range 0 to 25, then add 3 to it mod 26, then map that result back into
the range a to z. Thus, shifting y would go as follows: Modular arithmetic



362 CHAPTER 8 Inheritance and Polymorphism

(char) ( + (ch + 3) % 26) /1

Perform Caesar shift

(char) ( + ( +3) % 26) /1 on 'y’

(char) (97 +(121 97 + 3) % 26) /1

Map 'y’ to 0..25

(char) (97 +(27% 26)) /I Shift by 3,wrapping around
(char) (97 +1) /I Map result back to ’'a’ o'z
(char)(98) /1

Convert from int to char

Note that in decode() a reverse Caesar shift is done by shifting by 23,
which is 26 3. If the original shift is 3, we can reverse that by shifting an
additional 23. Together this gives a shift of 26, which will give us back
our original string.

8.5.3 Class Design: Transpose

The Transpose class (Fig. 8.16) is structured the same as the Caesar
class. It implements both the encode() and decode() methods. The key
element here is the transpose operation, which in this case is a simple
reversal of the letters in the word. Thus, “hello” becomes “olleh”. This is
very easy to do when using the StringBuffer.reverse() method. The
decode() method is even simpler, because all you need to do in this case
is call encode(). Reversing the reverse of a string gives you back the
original string.

public class Transpose extends Cipher f
/l'encode() reverses and returns aword
public String encode (Stringword) f
StringBuffer result =new StringBuffer(word);
returnresult.reverse().toString();
g// encode()

public String decode (Stringword) f
return encode (word); /l Just call encode
g// decode
g// Transpose

Figure 8.16: The Transpose class.

8.5.4 Testing and Debugging

Figure 8.17 provides a simple test program for testing Cipher and its sub-
classes. It creates a Caesar cipher and a Transpose cipher and then en-




SECTION 8.6Case Study: A Two Player Game Hierarchy 363

public class TestEncrypt f
public static void main(String argv[]) f
Caesar caesar=new Caesar ();
String plain = ; /Il Here’s

the message

String secret =caesar.encrypt(plain); /I Encrypt the messag

System.out.printlin(

)

System.out.println( + plain); /I Display the results
System .out.println( + secret);
System.out.println( + caesar.decrypt(secret));// Decrypt

Transpose transpose=new Transpose () ;
secret =transpose.encrypt(plain);

System.out.printin( ),
System .out.println( + plain); /I Display the results
System.out.println( + secret);

System .out.println( + transpose.decrypt(secret));// becrypt
g// main()

g// end TestEncrypt

Figure 8.17: The TestEncrypt class.

crypts and decrypts the same sentence using each cipher. If you run this
program, it will produce the following output:

Caesar Cipher Encryption
PlainText: this is the secret message
Encrypted : wklv | v wkh vhfuhw phvvdjh
Decrypted: this is the secret message

Transpose Cipher Encryption
PlainText: this is the secret message
Encrypted: siht si ehtterces egassem
Decrypted: this is the secret message

SELF-STUDY EXERCISES

EXERCISE 8.11 Modify the Caesar class so that it will allow various
sized shifts to be used. (Hint: Use an instance variable to represent the
shift.)

EXERCISE 8.12 Modify Transpose.encode() so that it uses a rota-tion
instead of a reversal. That is, a word like “hello” should be encoded as
“ohell” with a rotation of one character.

8.6 Case Study: A Two Player Game Hierarchy

In this section we will redesign our OneRowNim game to fit within a hi-
erarchy of classes of two-player games, which are games that involve two
players. Many games that this characteristic: checkers, chess, tic-tac-toe,
guessing games, and so forth. However, there are also many games that
involve just 1 player: blackjack, solitaire, and others. There are also games




Generic superclass

OneRowNim

t+ PLAYER_ONE : int = 1
+ PLAYER_TWO: int=2
+ MaX_PICKUP: int =3
+ MaX_STICKS: int = 11
- nSticks: int

- oneP laysNext: boolean

+ OneRowMNim()

+ OneRowMim(nsticks :int)

# OneRowNim(nsticks :int,
starter: int)

+ takeSticks(n: int): boolean

+ getSticks(): int

# getPlayer(): int

#+ gameOver(): boolean

#+ getwinner(): int

# reportGameState() : String

Figure 8.18: The current
OneRowNim class.

364 CHAPTER 8  Inheritance and Polymorphism

that involve two or more players, such as many card games. Thus, our
redesign of OneRowNim as part of a two-player game hierarchy will not
be our last effort to design a hierarchy of game-playing classes. We will
certainly re-design things as we learn new Java language constructs and
as we try to extend our game library to other kinds of games.

This case study will illustrate how we can apply inheritance and poly-
morphism, as well as other object-oriented design principles. The
justifica-tion for revising OneRowNim at this point is to make it easier to
design and develop other two-player games. As we have seen, one
characteristic of class hierarchies is that more general attributes and
methods are defined in top-level classes. As one proceeds down the
hierarchy, the methods and attributes become more specialized.
Creating a subclass is a matter of specializing a given class.

8.6.1 Design Goals

One of our design goals is to revise the OneRowNim game so that it fits into
a hierarchy of two-player games. One way to do this is to gener-alize the
OneRowNim game by creating a superclass that contains those attributes
and methods that are common to all two-player games. The su-

perclass will define the most general and generic elements of two-player
games. All two-player games, including OneRowNim, will be defined as
subclasses of this top-level superclass and will inherit and possibly over-
ride its public and protected variables and methods. Also, our top-level
class will contain certain abstract methods, whose implementations will
be given in OneRowNim and other subclasses.

A second goal is to design a class hierarchy that makes it possible for
computers to play the game, as well as human users. Thus, for a given
two-player game, it should be possible for two humans to play each
other, or for two computers to play each other, or for a human to play
against a computer. This design goal will require that our design exhibit a
certain amount of flexibility. As we shall see, this is a situation in which
Java interfaces will come in handy.

Another important goal is to design a two-player game hierarchy that
can easily be used with a variety of different user interfaces, including
command-line interfaces and GUIs. To handle this feature, we will de-
velop Java interfaces to serve as interfaces between our two-player
games and various user interfaces.

8.6.2 Designing the TwoPlayerGame Class

To begin revising the design of the OneRowNim game, we first need to
design a top-level class, which we will call the TwoPlayerGame class.
What variables and methods belong in this class? One way to answer
this question is to generalize our current version of OneRowNim by mov-
ing any variables and methods that apply to all two-player games up to
the TwoPlayerGame class. All subclasses of TwoPlayerGame—which
includes the OneRowNim class—would inherit these elements. Figure
8.18 shows the current design of OneRowNim.

What variables and methods should we move up to the TwoPlayer-
Game class? Clearly, the class constants, PLAYER ONE and PLAYER
TWO, apply to all two-player games. These should be moved up. On the

other hand, the MAX PICKUP and MAX STICKS constants apply just to the

OneRowNim game. They should remain in the OneRowNim class.



SECTION 8.6Case Study: A Two Player Game Hierarchy 365

The nSticks instance variable is a variable that only applies to the
OneRowNim game, but not to other two-player games. It should stay in
the OneRowNim class. On the other hand, the onePlaysNext vari-able
applies to all two-player games, so we will move it up to the
TwoPlayerGame class.

Because constructors are not inherited, all of the constructor meth-
ods will remain in the OneRowNim class. The instance methods, Constructors are not inherited
takeSticks() and getSticks(), are particular to OneRowNim, so
they should remain there. However, the other methods, getPlayer(),
gameOver(), getWinner(), and reportGameState(), are methods that
would be useful to all two-player games. Therefore these methods
should be moved up to the superclass. Of course, while these methods
can be defined in the superclass, some of the methods can only be
imple-mented in subclasses. For example, the reportGamesState()
method reports the current state of the game, so it has to be
implemented in OneRowNim. Similarly, the getWinner() method defines
how the win-ner of the game is determined, a definition that can only
occur in the sub-class. Every two-player game needs methods such as
these. Therefore, we will define these methods as abstract methods in
the superclass. The intention is that TwoPlayerGame subclasses will
provide game-specific implementations for these methods.

Given these considerations, we come up with the design shown in
Fig-ure 8.19. The design shown in this figure is much more complex than
designs we have used in earlier chapters. However, the complexity
comes from combining ideas already discussed in previous sections of
this chap-ter, so don’t be put off by it.

To begin with, notice that we have introduced two Java interfaces into
our design in addition to the TwoPlayerGame superclass. As we will
show, these interfaces lead to a more flexible design and one that can
eas-ily be extended to incorporate new two-player games. Let’s take
each element of this design separately.

8.6.3 The TwoPlayerGame Superclass

As we have stated, the purpose of the TwoPlayerGame class is to serve
as the superclass for all two-player games. Therefore, it should define
those variables and methods that are shared by two-player games.

The PLAYER ONE, PLAYER TWO, and onePlaysNext variables and
the getPlayer(), setPlayer(), and changePlayer() methods have been
moved up from the OneRowNim class. Clearly, these variables and
methods apply to all two-player games. Note that we have also added
three new variables: nComputers, computerl, computer2 and their
corresponding methods, getNComputers() and addComputerPlayer().
We will use these elements to give our games the ability to be played by
computer programs. Because we want all of our two-player games to
have this capability, we define these variables and methods in the
superclass rather than in OneRowNim and subclasses of
TwoPlayerGame.



Figure 8.19: TwoPlayerGame is
the superclass for OneRowNim
and other two player games.

366 CHAPTER 8  Inheritance and Polymorphism

TwollayerGame

t+ PLAYER_ONE : int = 1
t+ PLAYER_TWO: int =2
oneP laysMNext: boolean
E nComputers: int
computer1, computer2: IPlayer

<<interface>>
1Game
it QeSS FORp i S S IRG
+ reporiGameState(} :Shing

L

+ getPlayer(): int

#+ setPlayer(n: int)

# changeP layer()

- getNComputers(): int

+ getRules(): String

# addComputerP layer(p:IPlayer)
+ garnelver(}: boolean

i+ getWinner(}: String

PN <Linterface>>
CLUIPIsy ablelGame
F olaylar Userinieriaces |
OneRowNi ;
neRowNim

- MAX_PICKUP: int=3
- MAX_STICKS: int=11
- nSticks: int

# OneRowNim()

#+ OneRowNim(nsticks :int)

+ OneRowNim(nsticks :int starter: int)
# takeSticks(n: int): boolean
#+ getSticks(): int

# getRules() :String

#+ gameOver(): boolean

# getWinner(): String

+ getGamePrompt() :String

#+ reportGameState(): String
- play(ui: Userinterface)

Note that the computerl and computer2 variables are declared to be

of type IPlayer. IPlayer is an interface, which contains a single
method declaration, the makeAMove() method:

ublic interface IPlayerf
public String makeAMove (String prompt);

g

Why do we use an interface here rather than some type of game-playing
object? This is a good design question. Using an interface here makes our
design more flexible and extensible because it frees us from having to know
the names of the classes that implement the makeAMove() method.



SECTION 8.6Case Study: A Two Player Game Hierarchy 367

The variables computerl and computer2 will be assigned objects that
implement IPlayer via the addComputerPlayer() method.

The algorithms used in the various implementations of makeAMove()
are game-dependent—they depend on the particular game being played.
It would be impossible to define a game-playing object that would suf-
fice for all two-player games. Instead, if we want an object that plays
OneRowNim, we would define a OneRowNimPlayer and have it imple-
ment the IPlayer interface. Similarly, if we want an object that plays
checkers, we would define a CheckersPlayer and have it implement the
IPlayer interface. By using an interface here, our TwoPlayerGame
hierarchy can deal with a wide range of differently named objects that
play games, as long as they implement the IPlayer interface. So, using
the IPlayer interface adds flexibility to our game hierarchy and makes it
easier to extend it to new, yet undefined, classes. We will discuss the
details of how to design a game player in one of the following sections.

Turning now to the methods defined in TwoPlayerGame, we have
already seen implementations of getPlayer(), setPlayer(), and
changePlayer() in the OneRowNim class. We will just move those im-
plementations up to the superclass. The getNComputers() method is the
accessor method for the nComputers variable, and its implementa-tion is
routine. The addComputerPlayer() method adds a computer player to the
game. Its implementation is as follows:

public void addComputerPlayer (IPlayer player) f
if (nComputers== 0)
computer2 = player;
elseif (nComputers== 1)
computerl = player;
else
return,; /1 No more than 2 players
++nComputers ;

g

As we noted earlier, the classes that play the various TwoPlayerGames
must implement the IPlayer interface. The parameter for this method is
of type IPlayer. The algorithm we use checks the current value of
nComputers. If it is 0, which means that this is the first IPlayer added to
the game, the player is assigned to computer2. This allows the hu-man
user to be associated with PLAYERONE, if this is a game between a
computer and a human user.

If nComputers equals 1, which means that we are adding a second
IPlayer to the game, we assign that player to computerl. In ei-ther of
these cases, we increment nComputers. Note what happens if
nComputers is neither 1 nor 2. In that case, we simply return without
adding the IPlayer to the game and without incrementing nComputers.
This, in effect, limits the number of IPlayers to two. (A more sophisticated
design would throw an exception to report an error. but we will leave that
for a subsequent chapter.)

The addComputerPlayer() method is used to initialize a game after it
is first created. If this method is not called, the default assumption is

Game-dependent algorithms

The IPlayer interface



Overriding a method

Polymorphism

368 CHAPTER 8 Inheritance and Polymorphism

that nComputers equals zero and that computerl and computer2 are
both null. Here’s an example of how it could be used:

[oneRowNim nim = new OneRowNim (11); /I 11 sticks
| nim . add (new NimPlayer (nim) ) ; /I 2 computer players
| nim . add (new NimPlayerBad (nim)) ;

Note that the NimPlayer() constructor takes a reference to the game
as its argument. Clearly, our design should not assume that the names of
the IPlayer objects would be known to the TwoPlayerGame superclass.
This method allows the objects to be passed in at run time. We will discuss
the details of NimPlayerBad in a subsequent section.

The getRules() method is a new method whose purpose is to return
a string that describes the rules of the particular game. This method is
implemented in the TwoPlayerGame class with the intention that it will

be overridden in the various subclasses. For example, its implementation
in TwoPlayerGame is:

public String getRules() f
return ;

g

and its redefinition in OneRowNim is:

public String getRules()f
return +
+ MAX STICKS +

+

MAX-PICKUP +

g

The idea is that each TwoPlayerGame subclass will take responsibility for

specifying its own set of rules in a form that can be displayed to the user.
You might recognize that defining getRules() in the superclass and

allowing it to be overridden in the subclasses is a form of polymorphism.

It follows the design of the toString() method, which we discussed
earlier. This design will allow us to use code that takes the following form:

fTwoPlayerGame game = new OneRowNim () ;
| System.out.printin(game.getRules());

In this example the call to getRules() is polymorphic. The dynamic
binding mechanism is used to invoke the getRules() method that is
defined in the OneRowNim class.

The remaining methods in TwoPlayerGame are defined abstractly.
The gameOver() and getWinner() methods are both methods that are



SECTION 8.6Case Study: A Two Player Game Hierarchy 369

game dependent. That is, the details of their implementations depend on
the particular TwoPlayerGame subclass in which they are implemented.

This is good example of how abstract methods should be used in de-
signing a class hierarchy. We give abstract definitions in the superclass
and leave the detailed implementations up to the individual subclasses.
This allows the different subclasses to tailor the implementations to their
particular needs, while allowing all subclasses to share a common signa-
ture for these tasks. This allows us to use polymorphism to create
flexible, extensible class hierarchies.

Figure 8.20 shows the complete implementation of the abstract
TwoPlayerGame class. We have already discussed the most important
details of its implementation.

SAANEESESIRAERRISS (€N Abstract Methods. Abstract methods
allow you to give general definitions in the superclass and to leave the
implementation details to the different subclasses.

8.6.4 The CLUIPlayableGame Interface

Let's turn now to the two interfaces shown in Figure 8.19. Taken to-
gether, the purpose of these interfaces is to create a connection between
any two-player game and a command-line user interface (CLUI). The
interfaces provide method signatures for the methods that will imple-
ment the details of the interaction between a TwoPlayerGame and a
Userlnterface. Because the details of this interaction vary from game to
game, it is best to leave the implementation of these methods to the
games themselves.

Note that CLUIPlayableGame extends the IGame interface. The Extending an interface

IGame interface contains two methods that are used to define a stan-
dard form of communication between the CLUI and the game. The
getGamePrompt() method defines the prompt that is used to signal the
user for some kind of move—for example, “How many sticks do you take
(1, 2, or 3)?” And the reportGameState() method defines how that
particular game will report its current state—for example, “There are 11
sticks remaining.” CLUIPlayableGame adds the play() method to these
two methods. As we will see shortly, the play() method will

contain the code that will control the playing of the game.
The source code for these interfaces is very simple:

public interface CLUIPlayableGame extends IGame f
public abstract void play(Userlinterface ui);
g
public interfacelGamef
public String getGamePrompt () ;
public String reportGameState () ;
g//iGame

Notice that the CLUIPlayableGame interface extends the IGame inter-
face. A CLUIPlayableGame is a game that can be played through a
CLUI. The purpose of its play() method is to contain the game depen-
dent control loop that determines how the game is played via some kind




370 CHAPTER 8 Inheritance and Polymorphism

| public abstractclass TwoPlayerGame f
public static final int PLAYERONE= 1;
public static final int PLAYERTWO= 2;

protected boolean onePlaysNext = true;

protected intnComputers= 0; /1 How many computers
/I Computers are IPlayers
protected IPlayer computerl, computer2;

public void setPlayer(int starter) f
if (starter==PLAYER-TWO)
onePlaysNext = false;
else onePlaysNext = true;
g//setPlayer()
public int getPlayer() f
i f (onePlaysNext)
returnPLAYER ONE ;
elsereturnPLAYERTWO;
Q//getPlayer()
public void changePlayer()f
onePlaysNext = ! onePlaysNext ;
g//changePlayer()
public int getNComputers () f
return nComputers,;
g
public String getRules() f
return ;

9
public void addComputerPlayer (IPlayer player)f
i f (nComputers == 0)
computer2 = player;
elseif (nComputers== 1)
computerl = player;
else
return; /1 No more than 2 players
++nComputers ;

public abstract boolean gameOver ();// Abstract Methods
public abstract String getWinner();

g//TwoPlayerGame

Figure 8.20: The TwoPlayerGame class

of user interface (UI). In pseudocode, a typical control loop for a game
would look something like the following:

Initialize the game.

While the game is not over
Report the current state of the game via the Ul.
Prompt the user (orthe computer) to makea move via the Ul|
Get the user’s movevia the Ul.
Make th e move.
Change to the otherplayer.




SECTION 8.6Case Study: A Two Player Game Hierarchy 371

The play loop sets up an interaction between the game and the Ul. The
Userinterface parameter allows the game to connect directly to a par-

ticular Ul. To allow us to play our games through a variety of Uls, we
define UserInterface as the following Java interface:

public interface Userlinterface f
public String getUserlinput();
public void report(String s)
public void prompt(String s);

g

Any object that implements these three methods can serve as a Ul for
one of our TwoPlayerGames. This is another example of the flexibility of
using interfaces in object-oriented design.

To illustrate how we use Userinterface, let's attach it to our
KeyboardReader class, thereby letting a KeyboardReader serve as a
CLUI for TwoPlayerGames. We do this simply by implementing this
interface in the KeyboardReader class, as follows:

\ public class KeyboardReader implements Userlnterface

As it turns out, the three methods listed in Userinterface match three of
the methods in the current version of KeyboardReader. This is no
accident. The design of UserInterface was arrived at by identifying the
minimal number of methods in KeyboardReader that were needed to
interact with a TwoPlayerGame.

RN SIS SO NWVISERISS] (€N Flexibility of Java Interfaces. A Java
interface provides a means of associating useful methods with a
variety of different types of objects, leading to a more flexible
object-oriented design.

The benefit of defining the parameter more generally as a User-
Interface, instead of as a KeyboardReader, is that we will eventu-ally
want to allow our games to be played via other kinds of command-line
interfaces. For example, we might later define an Internet-based CLUI
that could be used to play OneRowNim among users on the Inter-net.
This kind of extensibility—the ability to create new kinds of Uls and use
them with TwoPlayerGames— is another important design feature of
Java interfaces.

NN =SS\ =geISSI[e]l Extensibility and Java Interfaces. Using
interfaces to define useful method signatures increases the
extensibility of a class hierarchy.

As Figure 8.19 shows, OneRowNim implements the CLUIPlayable-
Game interface, which means it must supply implementations of all three
abstract methods: play(), getGamePrompt(), and reportGame-State().

Generality principle



Interfaces vs. abstract methods

Flexibility of interfaces

Inheritance and generality

372 CHAPTER 8  Inheritance and Polymorphism

8.6.5 Object Oriented Design: Interfaces or Abstract
Classes

Why are these methods defined in interfaces? Couldn’t we just as easily
define them in the TwoPlayerGame class and use inheritance to extend
them to the various game subclasses? After all, isn’t the net result the
same, namely, that OneRowNim must implement all three methods.

These are very good design questions, exactly the kinds of questions
one should ask when designing a class hierarchy of any sort. As we
pointed out in the Animal example earlier in the chapter, you can get the
same functionality from a abstract interface and from an abstract super-
class method. When should we put the abstract method in the superclass
and when does it belong in an interface? A very good discussion of these
and related object-oriented design issues is available in Java Design, 2nd
Edition, by Peter Coad and Mark Mayfield (Yourdan Press, 1999). Our dis-
cussion of these issues follows many of the guidelines suggested by Coad
and Mayfield.

We have already seen that using Java interfaces increases the flexibility
and extensibility of a design. Methods defined in an interface exist inde-
pendently of a particular class hierarchy. By their very nature, interfaces
can be attached to any class, which makes them very flexible to use.

Another useful guideline for answering this question is that the super-
class should contain the basic common attributes and methods that define
a certain type of object. It should not necessarily contain methods that
define certain roles that the object plays. For example, the gameOver()
and getWinner() methods are fundamental parts of the definition of
a TwoPlayerGame. One cannot define a game without defining these
methods. By contrast, methods such as play(), getGamePrompt(), and
reportGamesState() are important for playing the game but they do not
contribute in the same way to the game’s definition. Thus these methods
are best put into an interface. So, one important design guideline is:

JAVA EFFECTIVE DESIGN Abstract Methods. Methods defined
abstractly in a superclass should contribute in a fundamental way
toward the basic definition of that type of object, not merely toward
one of its roles or its functionality.

8.6.6 The Revised OneRowNim Class

Figure 8.21 provides a listing of the revised OneRowNim class, one that fits
into the TwoPlayerGame class hierarchy. Our discussion in this section
will focus on just those features of the game that are new or revised.

The gameOver() and getWinner() methods, which are now inher-
ited from the TwoPlayerGame superclass, are virtually the same as in the
previous version. One small change is that getWinner() now returns a
String instead of an int. This makes that method more generally useful
as a way of identifying the winner for all TwoPlayerGames.

Similarly, the getGamePrompt() and reportGameState() meth-
ods merely encapsulate functionality that was present in the earlier ver-
sion of the game. In our earlier version the prompts to the user were
generated directly by the main program. By encapsulating this infor-



SECTION 8.6Case Study: A Two Player Game Hierarchy 373

public class OneRowNim extends TwoPlayerGame
implements CLUIPlayableGame f
public staticfinalint MAXPICKUP= 3;
public staticfinalint MAXSTICKS= 11;
privateint nSticks=MAXSTICKS;

public OneRowNim () fg /l Constructors
public OneRowNim(int sticks) f
nSticks = sticks;
g //OneRowNim()
public OneRowNim(int sticks, int starter)f
nSticks = sticks;
setPlayer(starter);
g// OneRowNim()
public boolean takeSticks(intnum) f
if (num<1l jjnum>MAXPICKUP jj num>nSticks)
return false; /I Error
else /' Valid move
f nSticks=nSticks num ;
returntrue;
gl/lelse
g// takeSticks()
public int getSticks()f
return nSticks;
g// getSticks()
public StringgetRules() f
return "nnThe Rules of One Row Nimnn” +
(1) Anumber of sticks between 7 and ” + MAX STICKS +
"is chosen.nn” +
"(2) Two players alternate making moves.nn” +
"(3) Amove consistsof subtracting between 1 andnnnt”+
MAXPICKUP +” sticks from the current number ofsticks.nn”+
"(4) Aplayer whocannot leave a positivennnt”+
" number of sticks for the other playerloses.nn’;
g// getRules()
public boolean gameOver () f / From TwoPlayerGame /
return (nSticks<=10);
g //gameOver()
public StringgetWinner () f IFrom TwoPlayerGame /
if (gameOver()) //f
return ”+ getPlayer() +” Nice game.”;
return "Thegame is not over yet.”; /l Game is not over
g//getWinner()

Figure 8.21: The revised OneRowNim class, Part I.

mation in an inherited method, we make it more generally useful to all
TwoPlayerGames.

The major change to OneRowNim comes in the play() method, which
controls the playing of the OneRowNim (Fig. 8.22). Because this version
of the game incorporates computer players, the play loop is a bit more
complex than in earlier versions of the game. The basic idea is still the
same: The method loops until the game is over. On each iteration of the



374 CHAPTER 8 Inheritance and Polymorphism

IFrom CLUIPlayableGame /
public String getGamePrompt () f
return "nnYoucan pick up between 1 and ”+
Math . min (MAX RICKUP, n Sticks) +7:7
g// getGamePrompt()
public String reportGameState () f
if (!gameOver())
return ('nnSticks left:”+ getSticks() +
"Who's turn: Player” + getPlayer());
else
return ('nnSticks left: "+ getSticks() +
” Game over ! Winner isPlayer 7+ getWinner () +'nn”);
g /I reportGameState ()
public void play(Userinterfaceui) fi/ From CLUIPlayableGame interface
int sticks =0;
ui.report(getRules());

if (computerl '=null)
ui.report('nnPlayer 1 isa ” + computerl.toString());
if (computer2 '=null)

»

ui.report('nnPlayer 2 isa ” + computer2.toString());
while (! gameOver ()) f

IPlayer computer = null; /I Assume nocomputers

ui.report(reportGameState ());

switch(getPlayer()) f

casePLAYER ONE: /I Player 1’'sturn
computer = computerl ;

break ;

casePLAYER TWO : /I Player 2’sturn
computer = computer2 ;

break ;

g /lcases

if (computer !'=null) f /I 1f computer’s turn
sticks = Integer.parselnt(computer. makeAMove (")) ;

ui.report(computer.toString() +” takes "+
sticks +” sticks.nn");

gelse f /I otherwise , user’s turn
ui.prompt ( getGamePrompt () ) ;
sticks =
Integer.parselnt(ui.getUserlnput()); //Get user's move
9
if (takeSticks(sticks)) /11f a legal move
changePlayer();
g //while
ui.report(reportGameState ()); // The game is nowover

g/ play()
g// OneRowNimclass

Figure 8.22: The revised OneRowNim class, continued from previous page.

loop, one or the other of the two players, PLAYER QNE or PLAYER TWO,
takes a turn making a move—that is, deciding how many sticks to pick up. If
the move is a legal move, then it becomes the other player’s turn.



SECTION 8.6Case Study: A Two Player Game Hierarchy 375

Let’s look now at how the code distinguishes between whether it is

a computer’s turn to move or a human player’s turn. Note that at the

beginning of the while loop, it sets the computer variable to null. It

then assigns computer a value of either computerl or computer2, de-

pending on whose turn it is. But recall that one or both of these vari-

ables may be null, depending on how many computers are playing the

game. If there are no computers playing the game, then both variables

will be null. If only one computer is playing, then computerl will

be null. This is determined during initialization of the game, when the
addComputerPlayer() is called. (See above.)

In the code following the switch statement, if computer is not null,

then we call computer.makeAMove(). As we know, the makeAMove()

method is part of the IPlayer interface. The makeAMove() method

takes a String parameter that is meant to serve as a prompt, and returns
a String that is meant to represent the IPlayer’'s move:

|pub|ic interface IPlayerf
public String makeAMove (String prompt);

g

In OneRowNim the “move” is an integer, representing the number of sticks
the player picks. Therefore, in play() OneRowNim has to convert the
String into an int, which represents the number of sticks the IPlayer

picks up.

On the other hand, if computer is null, this means that it is a human
user’s turn to play. In this case, play() calls ui.getUserlnput(), em-
ploying the user interface to input a value from the keyboard. The user’s
input must also be converted from String to int. Once the value of
sticks is set, either from the user or from the IPlayer, the play()
method calls takeSticks(). If the move is legal, then it changes whose
turn it is, and the loop repeats.

There are a couple of important points to notice about the design of
the play() method. First, the play() method has to know what to do Encapsulation of game-dependent
with the input it receives from the user or the IPlayer. This is game- knowledge
dependent knowledge. The user is inputting the number of sticks to
take in OneRowNim. For a tic-tac-toe game, the “move” might repre-
sent a square on the tic-tac-toe board. This suggests that play() is a
method that should be implemented in OneRowNim, as it is here, because
OneRowNim encapsulates the knowledge of how to play the One Row
Nim game.

A second point is to notice that the method call computer.make-
AMove() is another example of polymorphism at work. The play() Polymorphism
method does not know what type of object the computer is, other than
that it is an IPlayer—that is, an object that implements the IPlayer
interface. As we will show in the next section, the OneRowNim game can
be played by two different IPlayers: one named NimPlayer and an-
other named NimPlayerBad. Each has its own game-playing strategy, as
implemented by their own versions of the makeAMove() method. Java
uses dynamic binding to decide which version of makeAMove() to in-
voke depending on the type of IPlayer whose turn it is. Thus, by defin-ing
different IPlayers with different makeAMove() methods, this use of



ceinterisce??
Player

b rake AMovels :String) :String

L

NimPlayerBad

- game : OneRowNim

= NirnP layerBad(g: OneRowNim)

+ make AMove(prompt :String):
String

+ toString() :String

- randomMove() :int

Figure 8.23: Design of the
NimPlayerBad class.

376 CHAPTER 8 Inheritance and Polymorphism

polymorphism makes it possible to test different game-playing strategies
against each other.

8.6.7 The IPlayer Interface

The last element of our design is the IPlayer interface, which, as we

just saw, consists of the makeAMove() method. To see how we use this
interface, let's design a class to play the game of OneRowNim. We will call
the class NimPlayerBad and give it a very weak playing strategy. For

each move it will pick a random number between 1 and 3, or between 1
and the total number of sticks left, if there are fewer than 3 sticks. (We will
leave the task of defining NimPlayer, a good player, as an exercise.)

As an implementer of the IPlayer interface, NimPlayerBad will
implement the makeAMove() method. This method will contain
NimPlayerBad'’s strategy (algorithm) for playing the game. The result
of this strategy will be the number of sticks that the player will pick up.

What other elements (variables and methods) will a NimPlayerBad
need? Clearly, in order to play OneRowNim, the player must know the
rules and the current state of the game. The best way to achieve this is to
give the Nim player a reference to the OneRowNim game. Then it can call
getSticks() to determine how many sticks are left, and it can use other
public elements of the OneRowNim game. Thus, we will have a variable of
type OneRowNim, and we will assign it a value in a constructor method.

Figure 8.23 shows the design of NimPlayerBad. Note that we have
added an implementation of the toString() method. This will be used
to give a string representation of the NimPlayerBad. Also, note that we
have added a private helper method hamed randomMove(), which will
simply generate an appropriate random number of sticks as the player’s
move.

public class NimPlayerBad implements IPlayer f
private OneRowNim game;
public NimPlayerBad (OneRowNim game) f
this.game =game;
g// NimPlayerBad()
public String makeAMove (String prompt) f
return " +randomMove () ;
g// makeAMove()
private int randomMove () f
int sticksLeft =game.getSticks();
return 1+ (int)(Math.random ()
Math . min (sticksLeft, game. MAX PICKUP));
g//randomMove()
public String toString() f
String className =

return className.substring(5);//cut off the word
g//toString()

‘class

g// NimPlayerBad

this.getClass().toString(); //Gets 'class NimPlayerBadf

Figure 8.24: The NimPlayerBad class.



SECTION 8.6Case Study: A Two Player Game Hierarchy 377

The implementation of NimPlayerBad is shown in Figure 8.24. The
makeAMove() method converts the randomMove() to a String and
returns it, leaving it up to OneRowNim, the calling object, to convert that

move back into an int. Recall the statement in OneRowNim where
makeAMove() is invoked:

sticks = Integer.parselnt(computer. makeAMove (") );

In this context, the computer variable, which is of type IPlayer, is bound
to a NimPlayerBad object. In order for this interaction between the game
and a player to work, the OneRowNim object must know what type of
data is being returned by NimPlayerBad. This is a perfect use for a Java
interface, which specifies the signature of makeAMove() without
committing to any particular implementation of the method. Thus, the
association between OneRowNim and IPlayer provides a flexible and
effective model for this type of interaction.

RN SIS SO NMVISEBISS] (€1 Interface Associations. Java interfaces
provide a flexible way to set up associations between two different
types of objects.

Finally, note the details of the randomMove() and toString() meth-ods.
The only new thing here is the use of the getClass() method in toString().
This is a method that is defined in the Object class and inherited by all
Java objects. It returns a String of the form “class X” where X is the
name of that object’s class. Note here that we are removing the word
“class” from this string before returning the class name. This allows our

IPlayer objects to report what type of players they are, as in
the following statement from OneRowNim:

ui-report( + computerl . toString());
If computerl is a NimPlayerBad, it would report “Player1 is a Nim-
PlayerBad.”




Generality

378 CHAPTER 8 Inheritance and Polymorphism
SELF-STUDY EXERCISES

EXERCISE 8.13 Define a class NimPlayer that plays the optimal strat-
egy for OneRowNim. This strategy was described in Chapter 5.

8.6.8 Playing OneRowNim
Let’'s now write a main() method to play OneRowNim:

public static void main(String args