
 

 

 

 

Block-1 

1.1 Learning Objectives 

1.2 Introduction to Object-Oriented Programming  

1.3 Object Terminology 

1.4 Modular Programming 

1.5 Check Your progress  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.1 Learning Objective 

After going through this unit, the learner will able to  

• Define the Object-Oriented Programming  

• Understand the features of Object-Oriented Programming  

• Learn about namespaces 

• Define the Class and Object 

• Learn about the Object terminology  

• Learn about modular Programming  

1.2 Introduction to Object-Oriented Programming   

Modern software applications are intricate, dynamic and complex.  The number of lines 

of code can exceed the hundreds of thousands or millions.  These applications evolve over 

considerable time.  Some applications take years of programming effort and more years to 

mature.  Creating such applications involves many developers with different levels of 

expertise.  These software projects consist of smaller stand alone and testable sub-projects; sub-

projects that are transferrable, practical, upgradeable and possibly even usable within other 

projects.  The principles of software engineering suggest that each component should be a highly 

cohesive element and that the collection of components should be loosely coupled.  Object-

oriented languages provide the tools for implementing these general principles.   

C++ is an object-oriented programming language specifically designed to provide a simple, 

comprehensive feature set for programming modern applications without any loss in 

performance capabilities of a 'close to the metal' language.  C++ combines the efficiencies of the 

C language with the object-oriented features necessary for the development of large 

applications.   

Mastering Complexity 

Large applications are complex.  We master their complexity by identifying the most important 

features of the problem domain.  In very general terms, we express the features in terms of data 



and activities.  We identify the data objects and the activities on those objects as complementary 

tasks. 

Consider a course enrollment system for a program in a college or university.  Each participant  

• enrolls in several face-to-face courses 

• enrolls in several hybrid course 

• earns a grade in each course 

The following structure diagram shows the set of activities.   

 

If we switch our attention from these activities to the objects involved, we identify a Course and 

a Hybrid Course.  Focusing on a Course, we observe that it has a Course Code.  We look up the 

Code in the Calendar to determine when the Course is being offered.   

We say that a Course has a Code and that a Code uses the Calendar to determine its 

availability.  The diagram below shows these relationships between the objects in the problem 

domain.  The connectors identify the types of relationships between the objects. 

 



In switching our attention from the activities in the structure chart to the objects in the 

relationship diagram we switch from a procedural description of the problem to an object-

oriented description.   

These two distinct approaches to complexity date at least as back as the ancient 

Greeks.  Heraclitus viewed the world in terms of process, while Democritus viewed the world in 

terms of discrete atoms.  

Learning to divide a complex problem into objects and to identify the relationships amongst the 

objects is the subject matter of a course on system analysis and design.  The material covered in 

this text introduces some of the principal concepts central to analysis and design along with the 

C++ syntax for implementing these concepts in code. 

Programming Languages 

Eric Levenez maintains a web page that lists the major programming languages throughout the 

world.  TIOBE Software tracks the most popular ones and long-term trends based on world-wide 

availability of software engineers as calculated from Google, Yahoo!, and MSN search 

engines.  Many of these languages support object orientation.  

Java, C, C++ and Objective-C are currently the four most popular languages.  Each is an 

imperative language; that is, a language that specifies each step necessary to reach a desired 

state.  These languages have much syntax in common: Objective-C is a strict superset of C, C++ 

contains almost all of C as a subset, Java syntax is C-like, but not a superset of C. 

 

The distinguishing features are: 

• C has no object-oriented support.  C leaves us no choice but to design our solutions in 

terms of activity-based logic. 

http://www.levenez.com/lang/


• Objective-C is hybrid.  It augments the C language with object-oriented 

features.  Objective-C lets us build our solutions partly from activities and partly from 

objects.  The main function in any Objective-C program is a C function, which is not 

object-oriented.  Objective-C stresses run-time logic.  

• C++, like Objective-C, is hybrid.  It augments C with object-oriented features.  C++ lets 

us build our solutions partly from activities and partly from objects.  The main function in 

any C++ program is a C function, which is not object-oriented.  C++, as opposed to 

Objective-C, stresses compile-time logic.  

• Java is purely object-oriented.  It excludes all non-object-oriented features.  Java leaves 

us no choice but to design our solutions using an object-oriented logic.  

Features of C++ 

Learning object-oriented programming using C++ has several advantages for a student familiar 

with C.  C++ is 

• nearly a perfect superset of C 

• a multi-paradigm language 

o procedural (can focus on distinct activities) 

o object-oriented (can focus on distinct objects) 

• realistic, efficient, and flexible enough for demanding projects 

o large applications 

o game programming 

o operating systems 

• clean enough for presenting basic concepts 

• comprehensive enough for presenting advanced concepts 

Type Safety 

Type safety in central to C++ 

A type-safe language traps syntax errors at compile-time, diminishing the amount of buggy code 

that escapes to the client.  The compiler uses type rules to check syntax and generates errors or 

warnings if any rule is violated.   

C compilers are more tolerant of type errors than C++ compilers.  For example, a C compiler 

will accept the following code, which may cause a segmentation fault at run-time 



 

The prototype for foo() instructs the compiler to omit checking for argument/parameter type 

mismatches.  The argument in the function call is an int of negative value (-25) and the type 

received in the parameter is the address of a char array.  Since the parameter's value is an invalid 

address, printing from that address causes a segmentation fault at run-time, but no error at 

compile-time.   

We can fix this easily.  If we include the parameter type in the prototype as shown below, the 

compiler will check for an argument/parameter type mismatch and issue an error message like 

that shown on the right:   

 

Bjarne Stroustrup, in creating the C++ language, decided to close this loophole.  He mandated 

that all prototypes list their parameter types, which forces all C++ compilers to check for 

argument/parameter type mismatches at compile-time. 

Namespaces 

In applications written simultaneously by many developers, chances are high that different 

developers will use the same identifiers for different variables in the application.  If so, once they 

assemble their code, naming conflicts will arise.  We avoid such conflicts by developing each 

part of an application within its own namespace and identifying its variables relative to that 

namespace. 



A namespace is a scope for the entities that it encloses.  Scoping rules prevent identifier conflicts 

across different namespaces.  

We define a namespace as follows 

 

The identifier after the namespace keyword is the name of the scope.  The pair of braces encloses 

and defines the scope.  

For example, to define x in two separate namespaces (english and french), we write 

 

To access a variable defined within a namespace, we precede its identifier with the 

namespace's identifier and separate them with a double colon (::).  We call this double colon the 

scope resolution operator.  

For example, to increment the x in namespace english and to decrement the x in namespace 

french, we write 

 

Each prefix uniquely identifies each variable's namespace. 

Namespaces hide entities.  To expose an identifier to the current namespace, we insert the using 

declaration before referring to the identifier.   

For example, to expose one of the x's to the current namespace, we write: 



 

After which, we can simply write: 

 

To expose all of the identifiers within a namespace, we insert the using directive before referring 

to any of them. 

For example, to expose all of the identifiers within namespace english, we write: 

 
 

Afterwards, we can write: 

 

 
Exposing a single identifier or a complete namespace simply adds the identifier(s) to the hosting 

namespace.  

From C to C++ Syntax 

To compare C++ with C syntax, consider a program that displays the following phrase on the 

standard output device 

 

C - procedural code 

The C source code for displaying this phrase is 

 



The two functions - main() and printf() - identify activities.  These identifiers share the global 

namespace. 

 

C++ - procedural code 

The procedural C++ source code for displaying the phrase is 

 

<cstdio> is the C++ version of the C header file <stdio.h>.  This header file declares the 

prototype for printf() within the std namespace.  std stands for standard.  The file extension for 

any C++ source code is .cpp. 

The directive 

 

exposes all of the identifiers declared within the std namespace to the global namespace.  The 

libraries of standard C++ declare most of their identifiers within the std namespace. 

C++ - hybrid code 

The object-oriented C++ source code for displaying our welcome phrase is 



 

 

The object-oriented syntax consists of: 

1. The directive 

 

inserts the <iostream> header file into the source code.  The <iostream> library provides 

access to the standard input and output objects.  

2.  The object 

 

represents the standard output device.  

3. The operator 

 

inserts whatever is on its right side into whatever is on its left side. 

4. The manipulator 

 

represents an end of line character along with a flushing of the output buffer.   

Note the absence of a formatting string.  The cout object handles the output formatting itself.  

That is, the complete statement 

 



inserts into the standard output stream the string "Welcome to Object-Oriented" followed by a 

newline character and a flushing of the output buffer. 

First Input and Output Example 

The following object-oriented program accepts an integer value from standard input and displays 

that value on standard output: 

 

The object-oriented input statement includes: 

• The object 

 

represents the standard input device.  

  •  The extraction operator 

 

extracts the data identified on its right side from the object on its left-hand side.  Note the 

absence of a formatting string.  The cin object handles the input formatting itself.  That is, the 

complete statement  

 



extracts an integer value from the input stream and stores that value in the variable named i The 

type of the variable i defines the rule for converting the text characters in the input stream into 

byte data in memory.  Note the absence of the address of operator on i and the absence of the 

conversion specifier, each of which is present in the C language. 

 

1.3 Object Terminology 

Object-oriented programming is reflects the way in which we manage our day-to-day 

tasks.  Professor Miller of Princeton University demonstrated that most of us can only 

comprehend about seven chunks of information at a time.  As children, we learn to play with 

small sets of chunks at an early age.  As we grow, we learn to break down each problem that we 

face into a set of manageable chunks.   

A chunk in object-oriented programming is called an object.  Object-oriented languages refer to 

the shared structure of a set of similar objects as their class.  This structure includes the structure 

of the data in the similar objects as well as the logic that works on that data.   

This chapter defines an object and a class and introduces the concepts of encapsulation, 

inheritance and polymorphism.  Subsequent chapters elaborate on these concepts in detail.  

Abstraction 

An object-oriented solution to a programming problem consists of components represented as 

objects.  We call the process of designing an object-oriented solution abstraction.  In this 

process, we distinguish the most important feature and hide the less important details within the 

objects themselves.  



 

Each object has a crisp conceptual boundary and acts in ways appropriate to itself.  Compare a 

book with a set of notes.  A book has pages that are bound and can be flipped.  The page order is 

fixed and cannot be changed.  A set of notes consists of loose pages that can be rearranged in any 

order.  We represent the book and the set of notes as objects, but each object has a different 

structure. 

The cout and cin objects introduced in the preceding chapter have different structures.  cout 

represents the standard output device, which may be a monitor or a printer.  The abstraction - the 

standard output device - is simple and distinct.  Internally, the cout object is quite complex.  On 

the other hand, cin represents the standard input device, which may be a keyboard, a tablet or a 

touch screen.  The abstraction - the standard input device - is also simple and distinct.  Internally, 

the cin object is also quite complex. 

Classes 

We describe the structure of similar objects in terms of a class.  Objects of the same class have 

the same structure, but possibly different states.  The variables that describe their states generally 

have different values, but the variable types are identical.  For example, all of the books in the 

Figure above have a title and an author, but each book has a different title and a different author.  



 

We say that each object is an instance of its class.  

UML 

The Unified Modelling Language (UML) is a general-purpose modeling language developed that 

describes systems of objects and relationships between classes.  This language defines standard 

symbols for classes and the relationships between them.  The connectors shown in the 

relationship diagram below are UML connectors.  We use these symbols in this text. 

 

The Class Diagram 

The primary graphic in UML is the class diagram: a rectangular box with three compartments: 

1. the upper compartment identifies the class by its name 

2. the middle compartment identifies the names and types of its attributes 

3. the lower compartment identifies the names, return types and parameter types of its 

operations 

 

 

 



For example, 

 

The naming conventions include: 

• begin each class name with an upper case letter 

• begin each member name with a lower case letter 

• use camel case throughout all names - capitalize the first letter of every word after the 

first word 

Terminology 

UML uses the terms attributes and operations.  Each object-oriented language uses its own 

terms.  Equivalent terms are: 

• attributes (UML) -> fields, data members (C++), properties 

• operations (UML) -> methods (Java), procedures, messages, member functions (C++) 

The C++ language standard uses the terms data members and member functions exclusively.  

Encapsulation 

Encapsulation is the primary concept of object-oriented programming.  It refers to the integration 

of data and logic within a class' implementation and the crisp interface between any client and 

that implementation.  In other words, encapsulation is a technique that supports high cohesion 

within a class and low coupling between the class' implementation and any one of its clients.   

The class definition declares the variables that store each object's data and the prototypes of the 

functions that contain the logic that operates on that data.  Clients access objects through calls to 

these functions without knowlegde or any need to know the data data stored within the objects or 

the logic that manipulates that data.  The function prototypes provide the interface.  



 

Encapsulation shileds the complex details of an object's implementation from its crisp external 

representation.  Consider the following statement from the preceding chapter: 

 

cout refers to the standard output object.  Its class defines how to store any data in memory and 

how to control the processes that work with that data.  The << operator copies the string to the 

output object without exposing any of the implementation details.  As clients, we only see the 

interface that manages the output process.  

A well-encapsulated class hides all of the implementation details within itself.  The client does 

not see the data that the class' object stores within itself or the logic that it uses to manage its 

internal data.  The client only sees a clean and simple interface to the object.   

As long as the classes in a programming solution are well-encapsulated, any programmer can 

upgrade the internal structure of any object developed by another programmer without changing 

any client code.  

Inheritance and Polymorphism 

Two other concepts in object-oriented languages are prominent in our study of relationships 

between classes:   

• Inheritance - one class inherits the structure of another class 

• Polymorphism - a single interface provides multiple implementations 

These are special cases of encapsulation in the sense that they distinquish interface and 

implementation to produce highly cohesive objects that support minimal coupling to their 

clients.   

Inheritance 

Inheritance relates classes that share the same structure.  In the Figure below, the Hybrid Course 

class inherits the entire structure of the Course class.  We say that the hybrid course 'is-a-kind-of' 

https://scs.senecac.on.ca/~oop244/pages/content/inher.html
https://scs.senecac.on.ca/~oop244/pages/content/adhoc.html


course and depict the inheritance relationship using an arrow drawn from the more specialized 

class to the more general class: 

 

Polymorphism 

Polymorphism associates the implementation appropriate to an object based on its type.  In the 

Figure below, the HybridCourse object uses a different mode of delivery than the Course object, 

but the same assessments.  Note that both objects belong to the same hierarchy: both are Course 

objects.   

A mode() query on a Course object reports a different result than a mode() query on a Hybrid 

Course object.  On the other hand, an assessments() query on a Course object reports the same 

result as on the HybridCourse object.  Duplicating identical code is avoided under 

polymorphism.  

            

The Three Muskateers 

Encapsulation, inheritance and polymorphism are the three foundational concepts of any object-

oriented programming language. 

1.4 Modular Programming 

Modular programming implements modular designs and is supported by procedural and object-

oriented languages.  A modular design consists of a set of modules, which were developed and 

tested separately.  The C programming language supports modular design through library 

modules composed of functions.  The stdio module provides input and output support and hides 

its implementation details; typically, the implementation for scanf() and printf() ships in binary 



form with the compiler.  The stdio.h header file provides the interface, which is all that we need 

to complete our source code.   

This chapter describes how to create a module in C++, compile the source code for each module 

separately and link the compiled code into a single executable binary.  The chapter concludes 

with an example of a unit test on a module. 

 

Modules 

A well-designed module is a highly cohesive unit that can be loosely coupled to other 

modules.  It addresses one aspect of a programming solution and hides as much detail as 

practically possible.  A compiler translates the source code for a module independently of the 

source code for other modules into its own unit of binary code.   

Consider the Transaction program illustrated below.  The main module accesses the Transaction 

module.  The Transaction module accesses the iostream module.  The Transaction module 

contains the definitions of the transaction functions used by the program.  The iostream module 

contains the definitions of the cout and cin objects used by the program. 

 

To translating the source code of any module the compiler needs information identifying the 

names used in that modules but defined outside the module.  To enable this, we store C++ source 

code for each module in two separate files: 

• a header file - contains the class definitions and the function prototypes 

• an implementation file - contains the instructions that define the logic within the 

functions 

The file extension .h (or .hpp) identifies the header file.  The file extension .cpp identifies the 

implementation file.   



The names of the header files for the standard C++ libraries do not include a file extension 

(consider for example, the <iostream> header file for the cout and cin objects). 

 

Example 

 

The implementation file for the main module in the Transaction program above includes the 

header files for the itself (main.h) and for the Transaction module (Transaction.h).  The 

implementation file for the Transaction module includes the header file for the iostream 

module.  Each implementation file DOES NOT include any other implementation file. 

 

We compile each implementation (*.cpp) file separately and only once.  We do not compile 

header (*.h) files.  

 

The compiled version of iostream's implementation file is part of the system library. 

Stages of Compilation 

Comprehensive compilation consists of three independent but sequential stages (as shown in the 

figure below): 

1. Preprocessor - interprets all directives and creates a single translation unit for the 

compiler - (#include inserts the contents of the header files), (#define substitutes all 

macros)  

2. Compiler - compiles each translation unit separately and creates an independent binary 

version 

3. Linker - assembles the various binary units along with the system binaries to create one 

complete executable binary 



 

A Modular Example 

Consider a trivial accounting application that accepts journal transaction data from the standard 

input device and displays that data on the standard output device.  The application does not 

perform any intermediate calculation.   

The design consists of two modules: 

• Main - supervises the processing of all transactions 

• Transaction - defines the input and output logic for a single transaction 

Transaction Module 

Let us define a structure for a single transaction  

• Transaction - holds the information for one transaction in memory 

and two global functions  

• enter() - accepts transaction data from the standard input device 

• display() - displays transaction data on the standard output device 

Transaction.h 

The header file for our Transaction module defines our Transaction type and declares the 

prototypes for our two functions:  



 

Note the UML naming convention and the extension on the name of the header file. 

Transaction.cpp 

The implementation file for our Transaction module defines the logic within our two 

functions.  It includes the system header file for access to the cout and cin objects and the header 

file for access to the Transaction type.  

 

Note the .cpp extension on the name of this implementation file  

Main Module 

The main module defines a Transaction object and accepts input and displays data for each of 

three transactions.  



main.h 

The header file for our Main module #defines the number of transactions:  

 

main.cpp 

The implementation file for our Main module defines the main() function.  We #include the 

header file for the definition of the Transaction type: 

 

Command Line Compilation 

Linux 

To compile our application on a Linux platform at the command line, we enter the following 

 

The -o option identifies the name of the executable binary.  The names of the two 

implementation files complete the command. 

To run the executable binary, we enter 

 

Visual Studio 

To compile our application at the command-line on a Windows platform using the Visual Studio 

compiler, we enter the command (To open the Visual Studio command prompt window, we press 

Start > All Programs and search for the prompt in the Visual Studio Tools sub-directory.) 

 

The /Fe option identifies the name of the executable binary.  The names of the two 

implementation files follow this option. 



To run the executable, we enter 

 

IDE Compilation 

Integrated Development Environments (IDEs) are software development applications that 

integrate features for coding, compiling, testing and debugging source code in different 

languages.  The IDE used in this course is Microsoft's Visual Studio. 

 

Build and Execute 

The following steps build and execute a modular application in Visual Studio 2013 or newer: 

• Start Visual Studio 

• Select New Project 

• Select Visual C++ -> Win32 -> Console Application 

• Enter Transaction Example as the Project Name | Select OK 

• Press Next 

• Check Empty Project | Press Finish 

• Select Project -> Add New Item 

• Select Header .h file | Enter Transaction as File Name | Press OK 

• Select Project -> Add New Item 

• Select Implementation .cpp file | Enter Transaction as File Name | Press OK 

• Select Project -> Add New Item 

• Select Header .h file | Enter main as File Name | Press OK 

• Select Project -> Add New Item 

• Select Implementation .cpp file | Enter main as File Name | Press OK 

• Select Build | Build Solution 

• Select Debug | Start without Debugging 

The input prompts and results of execution appear in a Visual Studio command prompt window. 

Tracing 

The following steps trace through execution of your program using the builtin debugger 

• Select the file named main.cpp 



• Move the cursor to the left-most column of the for statement in the main() function and 

left-click | This places a red dot in that column, which identifies a breakpoint 

• Move the cursor to the left-most column of the closing brace for the function and left-

click | This places a red dot in the column, which identifies another breakpoint 

• Select Debug -> Start Debugging | Execution should pause at the first executable 

statement 

• Observe the values under the Locals tab in the Window below the source code 

• Press F10 and answer the three input prompts 

• Select the source code Window 

• Observe the values under the Locals tab in the Window below the source code 

• Press F10 3 times and note the value of i 

• Press F5, note where execution pauses and observe the value of i 

• Press F5 again to exit 

The keystrokes for the various debugging options available in this IDE are listed next to the sub-

menu items under the Debug menu. 

Unit Tests 

Unit testing is an integral part of modular programming.  A unit test is a code snippet that tests a 

single assumption in a work unit of a complete program.  Each work unit is a single logical 

component with a simple interface.  Typical work units are functions and classes.   

We use unit tests to examine the work units in a program and rerun the tests after each 

upgrade.  We store the test suite in a separate module.  

Calculator Example 

Consider a Calculator module that raises an integer to the power of an integer exponent and 

determines the integer exponent to which an integer base has been raised to obtain a given 

result.  The header file for the Calculator module includes the prototypes for these two work 

units: 

 

The suite of unit tests for this module checks if the implementations return the expected 

results.  The header file for the Tester module contains: 



 

The implementation file for the Tester module contains: 

 

A first attempt at implementing the Calculator module might look like: 

 

 



The following test main produces the results shown on the right: 

 

The unit tests show that this implementation does not handle bases that are negative and should 

be upgraded.  

Good Programming Practice 

It is good programming practice to write the suite of unit tests for the work units in a module as 

soon as we have defined the header file and before starting to code the bodies of the work 

units.  As we fill in the implementation details, we can continue testing our module to ensure that 

it produces the results that we expect. 

1.5 Check Your progress  

Q.1 What is Objective Oriented Programming? 

Q.2 What are the features of Objective Oriented Programming? Explain with the help of an   

       example.  

Q.3 Write a Program in C++ for addition, multiplication, subtraction and division of two   

      numbers. 

Q.4 What is Modular Programming? Explain with the help of an example.  
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1.1 Learning Objectives 

 

After going through this unit, the learner will able to: 

• Define the basic syntax 

• Learn about keywords 

• Define the Member Functions  

• Learn about the Input and Output Example 

• Learn about Dynamic memory 

1.2 Basic Syntax 

C++ augments the procedural features of C with object-oriented features.  The notes entitled 

"Programming Computers Using C" describe the more common syntax that these two languages 

share.   

This chapter introduces some basic features used in object-oriented programming, which C++ 

adds to C.  The topics covered including types, declarations, definitions, scope, overloading and 

pass by reference. 

Keywords 

 

A C++ compiler will successfully compile any C program that does not use any of these 

keywords as identifiers provided that that program satisfies C++'s type safety requirements.  We 

call such a C program a clean C program.  

 



Types 

C++ supports the fundamental types of the core language and any compound types that we and 

other programmers define. 

Fundamental Types 

The fundamental types include:   

• Integral Types (store data exactly in equivalent binary form)  

o bool - not in C 

o char 

o int - short, long, long long 

• Floating Point Types (store data to a specified precision - can store very small and very 

large values)  

o float 

o double - long double 

bool 

bool stores a logical value: either true and false.  The ! operator reverses the value: !true is false 

and !false is true.  

! is self-inverting on bool types.  (However, it is not self-inverting on other types.) 

bool to int 

Conversions of boolean values to integer values and vice versa require care.  true promotes to an 

int of value 1, while false promotes to an int of value 0.  Applying the ! operator to an int value 

other than 0 produces a value of 0, while applying the ! operator to an int value of 0 produces a 

value of 1.  That is, the following code snippet displays 1 (not 4) 

 

C++ treats the integer value 0 as false and any other vaue as true. 



Compound Types 

A compound type is a type that is composed of other types.  (The C language uses the term 

derived type.)  To identify compound types that are object-oriented classes we use the keywords 

struct or class 

 

C++ does not require the keyword struct or class in prototypes or object definitions as shown on 

the left.  The C equivalent is shown on the right.  

 

auto 

The auto keyword deduces an object's type from its initializer.  The initializer is necessary in any 

auto definition.   

For example,  

 

auto simplifies our coding by using information that the compiler already knows.  This will 

prove particularly useful when working with the standard libraries.  



Declarations and Definitions 

Declarations 

A declaration associates an entity with a type.  The entity may be a variable, an object or a 

function.  That is, we use a declaration to tell the compiler how to interpret the entity's identifier.   

For example, by writing the function prototype  

 

we declare add() to be a function that receives two ints and returns an int.  We do not specifying 

its meaning.   

For example, by writing  

 

we declare Transaction to be a class.  This is called a forward declaration.  A forward 

decalaration is like a function prototype: it tells the compiler that the entitiy is a valid type, but 

does not tell the compiler the entity's meaning.  

A declaration does not have to specify a meaning, but may specify one.  

Definitions 

 

A definition is a declaration that associates a meaning with an identifier.  A definition may only 

appear once within its code block or translation unit.  This is called the one-definition rule.   

For example, the following two definitions attach meanings to Transaction and to display(): 

 

We cannot redefine Transaction or display() within the same code block or translation unit. 



Definitions are Executable Statements 

Each definition is an executable statement.  We may embed it amongst other executable 

statements.   

For example, we may place a definition within an initializer: 

 

Declarations are not necessarily Definitions 

Forward declarations and function prototypes are declarations that are not definitions.  They 

associate an identifier with a type, but do not attach any meaning to the identifier.  We may 

repeat such declarations several times within the same code block or translation unit.   

Repeated declarations may occur when we include several header files in an implementation 

file.  However, if any header file contains a definition, the translation unit that includes that 

header file must not break the one-definition rule.   

Designing Away Multiple Definitions 

A definition that appears more than once within the same translation unit violates the one-

definition rule and generates a compiler error.  Consider the options shown below.   

Our sample program consists of three modules: main, Transaction and iostream. 

 

The main module's implementation file calls add(), which receives the address of a 

Transaction object: 



 

The Transaction module's header file defines the Transaction type:  

 

If we place the prototype for the add() function in the main module's header file, main.cpp will 

not compile: 

 



The compiler will report Transaction* as undeclared.  Since the compiler analyzes code 

sequentially, it will not know what Transaction when it encounters the prototype for add(),  

Including the Transaction.h in main.h would resolve this error but would break the one-

definition rule:  

 

The main.cpp translation unit will contain TWO definitions of Transaction.   

 

There are two possible solutions to this problem. 

Forward Declaration Solution 

A forward declaration informs the compiler that the identifier Transaction is a valid type, without 

defining the type. 

 

This solution provides the compiler with just enough information to accept the identifer as a 

valid type. 

 

 

 

 



Compact Solution 

The alternative is to move the prototype from main.h to the Transaction.h: 

 

This compact solution localizes all declarations related to the Transaction type within the same 

file.  We call functions that support a class helper functions for that class. 

Proper Order of Header File Inclusion 

To avoid conflicts with system header files, we include header files in the following order:  

• #include < ... > - system header files 

• #include " ... " - other system header files 

• #include " ... " - your own header files 

We insert namespace declarations and directives after all header file inclusions. 

 

Scope 

 

The scope of a declaration is the portion of a program over which the identifier is visible.   

A declaration that is visible to the entire program has global scope.  A declaration in a code 

block is local to its block.  We say that the declaration has block scope.  Its scope begins at its 

declaration and ends at the end of its block.  We say that the identifier is a local variable or 

object.  It is local to the block.  

A declaration with a narrower scope can shadow a declaration with a broader scope, making the 

latter temporarily invisible.  For example, in the following program the second declaration 

shadows the first making the scope of the first declaration of i discontinuous:  



 

Going Out of Scope 

When a declaration goes out of scope the program loses access to the variable or 

object.  Identifying the precise point at which a variable's or object's declaration goes out of 

scope is important in object-oriented programming.  

In the following code snippet, the counter i, declared within the for statement, goes out of scope 

immediately after the closing brace: 

 

We cannot refer to i after the closing brace.  

A variable or object declared within a block goes out of scope immediately before the block's 

closing brace.  

 

The scope of j extends from its definition to just before the end of each iteration.  The scope of i 

extends throughout the iteration.  

 

Function Rules 

 

Function rules are slightly stricter rules in C++ than in C.  These tighter rules enable language 

features such as overloading and pass by reference, which are absent in the C language. 

 



Prototypes 

The declaration of a function prototype consists of the function's return type, its identifier and all 

of its parameter types.  The order of its parameter types matters.  The parameter identifiers are 

optional.   

A declaration with no parameters identifies an empty parameter list.  The keyword void, which 

the C language uses with prototypes that have no parameters is redundant in C++.  We omit the 

keyword in in C++.   

Prototypes Required 

C++ enforces type safety by requiring a declaration of the prototype for a function wherever 

source code calls the function before its definition.  The compiler uses the prototype to check the 

argument types in the call against the parameter types in the prototype.   

For example, the compiler will generate an error for the following program (printf is 

undeclared):  

 

For type safety, we include the prototype: 

 

Overloading 

 

In object-oriented programming, a function can have several meanings.  If a function identifier 

has more than one definition, we say that that function is overloaded.   

C++ distinguishes function definitions by their identifier, their parameter types and the order of 

their parameter types.  Two functions with the same identifier but different parameter types or 

differently ordered parameter types are distinct functions.   

For example, to display data on the standard output device, we can define a display() function 

with different parameter types:  



 

The compiler generates two separate definitions of display(): one for each set of parameters.  The 

linker binds each function call to the appropriate definition based on the argument types in the 

function call. 

Signature 

A function's signature identifies the function uniquely and consists of 

• the identifier 

• the parameter types (without any const modifiers or address of operators) 

• the order of the parameter types 

 

The brackets enclose optional information.  The return type and the parameter identifiers are not 

part of a function's signature.   

The compiler preserves uniqueness by renaming each function using a combination of its 

identifier, its parameter types and the order of its parameter types.  We refer to this renaming as 

mangling.   

Default Parameter Values 

We can assign default values to some or all of a function's parameters.  We must however 

arrange the parameters with the default values as the rightmost parameters.  We specify the 

default values in the first function declaration in a translation unit.   

A declaration with default parameter values takes the following form:  

 

The assignment operator followed by a value identifies the default value for each paramter.   

Specifying default values for function parameters reduces the need for coding multiple function 

definitions where the function logic is identical in every respect except for the values of the 

parameters.   

For example,  



 

Each call to display() must include enough arguments to initialize the parameters that don't have 

default values.  In this example, each call must include at least one argument.  An argument 

corresponding to a parameter that has a default value override the default value.  

Pass By Reference 

Pass by reference is an alternative mechanism to passing by address available in C++.  Pass-by-

reference code is notably more readable than pass-by-address code.   

The declaration of a function parameter that is passed by reference takes the form 

 

The & identifies the parameter as an alias for, rather than a copy of, the corresponding argument 

in the function call.  The identifier is the alias name within the function definition.  Any change 

to the value of a parameter received by reference changes the value of the corresponding 

argument in the function call. 

Comparison Example 

Consider a function that swaps the values stored in two different memory locations.  The 

programs listed below compare pass-by-address and pass-by-reference solutions.  The program 

on the left passes by address using pointers.  The program on the right passes by reference:  



 

Reference syntax is slightly simpler.  To pass an object by reference, we attach the address of 

operator to the parameter type.  This operator instructs the compiler to pass by reference.  The 

corresponding arguments in the function call and the object names within the function definition 

are not prefixed by the dereferencing operator required in passing by address.   

Technically, the compiler converts each reference to a pointer with an unmodifiable address. 

1.3 Member Functions and Privacy 

Encapsulation incorporates within a class the structure of data that its objects hold with the logic 

that operates on that data to create a clean interface between the class and its clients and hide the 

implementation details from them.  In C++, we incorporate logic through member 

functions.  The data members of a class hold information about the structure its objects' state 

while the member functions define operations that query, modify and manage that state.  



This chapter describes the C++ syntax for declaring member functions in the definition of a 

class, defining the member functions in the implementation file and limiting accessibility to the 

data values of an object.  

Member Functions 

Member functions provide communication links between a client and an object.  The client calls 

the object's member functions to access the object's data and possibly to change its data.  

 

We can classify member functions under three mutually exclusive categories:  

• queries - accessor methods - report the state of the object 

• modifiers - mutator methods - change the state of the object 

• special - manager methods - create, assign and destroy an object 

 

Every member function has direct access to the data members of its class as well as its other 

member functions.  Each member function receives and passes information between the client 

and its object through parameters and a return value.   

Consider a Student type with the following definition  



 

Adding a Member Function 

Declaration 

To declare a member function, we insert its prototype into the definition of its class.   

For example, to add display() as a member to our Student type, we write: 

 

 
 

The const qualifier identifies the member function as a query.  A query cannot change the state 

of its object.  That is, this query cannot change the value of no or any character in grade.  

As a member function, display() has direct access to the object's variables (no and grade).  There 

is no need to pass these values as parameters in the function prototype. 

Definition 

We define display() in the implementation file as follows: 

 

The definition consists of four elements: 

• the Student:: prefix on the function name identifies it as a member of our Student type 

• the empty parameter list - this function does not receive any values from the client or pass 

any values through the parameter list to the client 

• the const qualifier identifies this function as a query - this function cannot change any of 

the values of the data members 

• the data members - the function accesses no and grade, which are defined within the 

class but outside the function 



Call a Member Function 

The client calls a member function in the same way that an instance of a struct refers to one of 

its data members.  The call consists of the object's identifier, the . operator and the member 

function's identifier. 

For example, if harry is a Student object, we display its data by calling display() on harry: 

 

The object part of the function call (the part before the member selection operator) identifies the 

data that the function should access.  

Scope of a Member Function 

The scope of a member function is the scope of its class.  That is, a member function can access 

any other member within class scope.  For example, a member function can access another 

member function directly:  

 

Accessing Global Functions 

A member function can also access a function outside its class' scope.  Let us add the following 

global function definition to the above definitions: 

 

This global function shares the same identifier with one of the member functions.  This definition 

does not introduce a conflict, since the client calls each function using different syntax.  

 

To access the global function from within the member function we apply the scope resolution 

operator:  



 

Privacy 

Data privacy is important in obect-oriented programming.  Data members defined using the 

struct keyword are exposed to any client.  To limit accessibility to any member, C++ lets us hide 

member information by classify that member as private.   

In an object-oriented solution, the only members that a client should need to access are the class's 

communication links.  The client should not need direct access to the data that describes an 

object's state.   

Accessibility Labels 

To prohibit external access to any member (data or function), we insert the label private into the 

definition of our class: 
 private: 

private identifies all subsequent members listed in the class definition as inaccessible. 

To allow client access, we insert the label public: 

 public: 

public identifies all subsequent members listed in the class definition as accessible. 

For example, in order to 

• hide the data members of each Student object 

• expose the member function(s) of the Student type 

we insert the accessibility keywords as follows 

 

The keyword struct identifies a class that is public by default.  



class 

The keyword class identifies a class that is private by default.   

We use the keyword class to simplify the definition of a Student type 

 

The class keyword is much more common in object-oriented programming than the struct 

keyword.  (The C language does not support privacy and a derived type in C can only take the 

form of a struct).   

Any attempt to access a member that is private generates a complier error: 

 

The function foo() can only access the data stored in harry indirectly through public member 

function display().  

 

Modifying Private Data 

If the data members of a class are private, clients cannot initialize their values directly.  We need 

a separate member function for this specific task.  

For example, to store data in Student objects, let us introduce a public modifier named set(): 

 

set() receives a student number and the address of a C-style string that contains the grades from a 

client and stores this information in the object's data members: 



 

 

Communications Links 

The set() and display() member functions are the only communication links to any client.  Clients 

can call set() or display() on any Student object, but none can access the data stored within any 

Student object directly. 

For example, the compiler traps the following privacy breach:  

 

Empty State 

Hiding data members from clients gives us control over which data to accept, which to reject and 

which data to expose to clients.  Before storing any values received from a client we can validate 

the incoming information.  If the data is invalid, we reject it and store default values that identify 

the object's state as empty.  

Upgrade set() 

Let us upgrade our set() member function to validate incoming data; that is, to accept incoming 

data only if the student number is positive-valued and the grades are A, B, C, D or F, without 

exception.  If any incoming data fails to meet all of these conditions, let us ignore all of the 

incoming data and store values that identify an empty state: 



 

This validation logic ensures that the data stored in a Student object is either valid data or data 

that identifies an empty state.  

Design Tip 

Select one data member to hold a special value that identifies an empty state.  Then, to determine 

if an object is in an empty state, all we need to do is interrogate that data member.  

Upgrading display() 

To improve this upgrade, we ensure that our display() member function executes gracefully if 

our object happens to be in an empty state:  

 

Completing the Upgrade 

This upgrade still leaves the data in a Student object undefined before the first call to set().  To 

address this deficiency, we will introduce a special member function in the chapter entitled 

Classes.   

 

 



1.4 Input and Output Examples 

The input and output objects introduced in the first chapter include public member 

functions for formatting data passing through the objects.  These objects and the classes that 

define their structure belong to the iostream library module and are defined in its <iostream> 

header file.  The public member functions report the state of each object as well as control 

the formatting.   

This chapter describes the input and output objects in detail along with their member 

functions.  This provides examples of the role that member functions play and sets the stage 

for subsequent coding of member functions for our custom classes.  

Streams 

Data enters an application in one stream and leaves the application in another stream.  A 

stream is a sequence of characters without limitation.  The number of characters in a stream 

can be indeterminate.  An input object stroes data from an input stream in the application's 

memory.  An output object copies data from the application's memory into an output 

stream.  Input and output objects operate in FIFO (First In First Out) order.  The first 

character entering the input object is the first character stored in memory. 

 

The standard input and output objects of the iostream library represent the standard 

peripheral devices, such as the keyboard and display.  

The input object converts a sequence of characters from its attached input stream into values 

of a specified type stored in system memory.  The output object converts values of a 

specified type stored in system memory into a sequence of characters in its associated output 

stream.  These objects use the data type associated with the region of memory that holds each 

data value to make the appropriate conversions from or to the sequence of characters. 

 



The data in a stream, unlike the data stored in a region of memory, is not associated with any 

type.  The notion of type is system memory specific. 

Output Objects 

 

An output object is an instance of the ostream type, which defines the structure of an output 

device.  An ostream object copies data from system memory into an output stream; in copying, it 

converts the data in system memory into a sequence of characters.   

The iostream module defines three standard output objects: 

• cout - transfers a buffered sequence of characters to the standard output device 

• cerr - transfers an unbuffered sequence of characters to the standard error output device 

• clog - transfers a buffered sequence of characters to the standard error output device 

Inserting Data 

The expression for inserting data into an output stream takes the form 

 

where output is the name of the ostream object.  << is the insertion operator.  identifier is the 

name of the variable or object that holds the data. 

For example, 

 

Each expression with an ostream object as its left operand converts the data in its right operand 

into a sequence of characters based on the right operand's type.  

endl inserts a newline character into the stream and flushes the stream's buffer.  

Cascaded Insertion 

We may combine these expressions into a single statement that specifies multiple insertions: 



 

We call such repeated use of the insertion operator cascading.  

Member Functions 

The ostream type supports the following public member functions for formatting conversions: 

• width(int) - sets the field width to the integer received 

• fill(char) - sets the padding character to the character received 

• setf(...) - sets a formatting flag to the flag received 

• unsetf(...) - unsets a formatting flag for the flag received 

• precision(int) - sets the decimal precision to the integer received 

width 

The width(int) member function specifies the minimum width of the next output field: 

 

width(int) applies only to the next field.  Note how the field width for the first display of 

attendance is 10, while the field width for the second display of attendance is just the minimum 

number of characters needed to display the value (2).  



fill 

 

The fill(char) member function defines the padding character.  The output object inserts this 

character into the stream wherever text occupies less space than the specified field width.  The 

default fill character is ' ' (space).  To pad a field with '*''s, we add: 

 

The padding character remains unchanged, until we reset it. 

setf, unsetf 

 
The setf() and unsetf() member functions control formatting and alignment.  Their control flags 

include: 

 

The scope resolution (ios::) on these flags identifies them as part of the ios class.  

setf, unsetf – Formatting 

 

The default format in C++ is general format, which outputs data in the simplest, most succinct 

way possible (1.34, 1.345E10, 1.345E-20).  To output a fixed number of decimal places, we 

select fixed format.  To specify fixed format, we pass the ios::fixed flag to setf(): 



 

Format settings persist until we change them.  To unset fixed format, we pass the ios::fixed flag 

to the unsetf() member function: 

 

To specify scientific format, we pass the ios::scientific flag to the setf() member function: 

 



To turn off scientific format, we pass the ios::scientific flag to the unsetf() member function. 

setf, unsetf – Alignment 

The default alignment is right-justified.  

To specify left-justification, we pass the ios::left flag to the setf() member function: 

 

To turn off left-justification, we pass the ios::left flag to the unsetf() member function: 

 

precision 

The precision() member function sets the precision of subsequent floating-point fields.  The 

default precision is 6 units.  General, fixed, and scientific formats implement precision 

differently.  General format counts the number of significant digits.  Scientific and fixed formats 

count the number of digits following the decimal point.  

For a precision of 2 under general format, we write 



 

The precision setting applies to the output of all subsequent floating-point values until we change 

it.  

Manipulators 

Manipulators are the elegant alternative to member function calls.  Manipulators are operands to 

the insertion operator.  Manipulators that don't take arguments do not include parentheses and are 

defined in <iostream>.  Those that take arguments include parentheses and are defined in 

<iomanip>.  We must include <iomanip> whenever we use manipulators that take arguments. 

The insertion manipulators include:  

 

Manipulators (except for setw(i) which only modifies the format setting for the next object) 

modify the format settings until we change them.  

For example, 



 

Reference Example  

The following program produces the output listed on the right 

 

Notes: 

•  a double or a float rounds to the requested precision  

•  char data displays in either character or decimal format 

to output its numeric code, we cast the value to an int (the value output for 'd' here is its ASCII 

value). 

 

 

 



Input Object 

 

The input object is an instance of the istream type, which defines the structure of an input 

device.  The object extracts data from the input stream and stores it in system memory, 

converting the sequence of characters in the stream into equivalent values in system memory. 

Extraction 

The expression for extracting characters from an input stream takes the form 

 

where inputObject is the name of the input object.  >> is the extraction operator.  identifier is the 

name of the destination variable.  

The iostream library defines one standard input object for buffered input: cin.  

For example, 

 

Each expression with an istream object as its left operand converts the next sequence of 

characters into a value stored in the data type of its right operand.  

The cin object skips leading whitespace with numeric, string and character types (in the same 

way that scanf("%d"...), scanf("%lf"...), scanf("%s"...) and scanf(" %c"...) skip whitespace in C). 



 

Whitespace 

cin treats whitespace in the input stream as a delimiter for numeric and string data types.  For C-

style null-terminated string types, cin adds the null byte after the last non-whitespace character 

stored in memory:  

 

Cascaded Extraction 

 

The extraction operator (>>), like the insertion operator, processes cascaded input: 

 



Note that reading input in this manner is discouraged (see below). 

Overflow 

In the above two examples overflow is possible while filling s, since the extraction operator >> 

does not restrict the number of characters accepted.  If more than 7 characters are in the input 

stream some of the data stored may corrupt other memory as shown on the right:  

 

The corrupted result varies from platform to platform. 

Member Functions 

 

The istream type supports the following member functions: 

• ignore(...) - ignores/discards character(s) from the input buffer 

• get(...) - extracts a character or a string from the input buffer 

• getline(...) - extracts a line of characters from the input buffer 

ignore 

The ignore() member function extracts characters from the input buffer and discards 

them.  ignore() doesn't skip leading whitespace.  Two versions of ignore() are available:  

 



The no-argument version discards a single character.  The two-argument version removes and 

discards up to the specified number of characters or up to the specified delimiting character, 

whichever occurs first and discards the delimiting character.  The default delimiter is end-of-file 

(not end-of-line).  

get  

The get() member function extracts either a single character or a string from the input 

buffer.  Three versions are available:  

 

The above program produces the following results: 

 

 



get() does not skip leading whitespace.  get(,) leaves the delimiting character in the input 

buffer.  If we use get(,) we need to remove the delimiting character, if there is one.  Both string 

versions - get(char*, int) and get(char*, int, char) - append a null byte to the sequence of 

characters stored in memory.  

getline 

getline() behaves like get(), but extracts the delimiter from the input buffer: 

 

The above program produces the following results: 

 

getline(), like get(), does not skip leading whitespace and appends a null byte to the sequence of 

characters stored in system memory.  

Format Control  

Manipulators 
The manipulators for input objects are listed below: 

 



The argument to setw() should be one more than the maximum number of input characters to be 

read.  Note that the setw() manipulator is an alternative to get(char*, int), but setw() skips 

leading whitespace unless we turn off skipping. 

Once a manipulator has modified the format settings of an input object, those settings remain 

modified.  

We may combine manipulators with input variables directly.  For example, 

 

 

State 

The ostream and istream types expose member functions for reporting and changing the state of 

their objects.  These functions include: 

• good() - the next operation might succeed 

• fail() - the next operation will fail 

• eof() - end of data has been encountered 

• bad() - the data may be corrupted 

• clear() - reset the state to good 

We should check the state of the input object every time we extract a sequence of characters 

from the input buffer.  If the object has encountered an invalid character, the object will fail and 

leave the invalid character in the input buffer.  The fail() function will return true.  

Before a failed object can continue extracting data, we must clear it of its failed state.  The 

clear() function resets the object's state to good: 



 

See the following section for a complete example that evaluates the state of the input object. 

Robust Validation 

The state functions help us validate input robustly.  We check the input object's state after each 

extraction of a sequence of characters to ensure that the object converted a value and that the 

converted value is within valid admissible bounds.  We reject invalid input and out-of-bound 

values, resetting any failed state, and requesting fresh input as necessary.  

getPosInt 

To extract a positive int that is not greater than max from the standard input device, we write 

 

 

 



1.5  Dynamic Memory 

Reusability is an important consideration in object-oriented design.  We aim to reuse the 

software that we write in other applications with no or slight modification.  Objects are more 

reusable by different clients if they account for their memory needs internally.  Memory needs 

may depend on the size of a problem and in some cases may not be known even approximately 

until run-time.  By designing objects to allocate memory at run-time, we create more flexible 

programming solutions.  

This chapter introduces the basic C++ syntax for allocating and deallocating memory 

dynamically in preparation for designing classes with variable memory needs.  The chapter 

entitled Classes and Resources covers the details involved in coding classes that allocate memory 

at run-time.  

System Memory 

 

After an operating system loads an executable into RAM, it transfers control to the entry point of 

the executable (the main() function).  The executable includes memory allocated at compile 

time.  Throughout execution, the application itself may request more memory from the operating 

system.  The system attempts to satisfy such requests by reserving more memory in RAM.  After 

the application terminates and returns control to the operating system, the system recovers all of 

the memory that the application used.  

 

Static Memory 

The memory that the operating system allocates for the application at load time is called static 

memory.  Static memory includes the space allocated for program instructions, local variables 

and local objects.  The compiler determines the amount of static memory that each translation 

unit requires.  The linker sets the amount of static memory that the entire application requires.  

 

The application's local variables and objects share static memory amongst themselves.  When a 

variable or object goes out of scope the space becomes available for a newly defined variable or 



object.  The lifetime of each local variable and object extends from its definition to the closing 

brace of the code block within which it is defined:  

 

Note that the variable y may occupy the same physical memory location in RAM as variable 

x.  This system of sharing memory amongst local variables and objects ensures that application 

uses RAM as efficiently as possible.  

Static memory is determined at compile-link time and cannot be changed during execution.  This 

memory is fast, fixed in its amount and allocated at load time.   

Dynamic Memory 

The memory that an application requests from the operating system during execution is called 

dynamic memory.  

Dynamic memory is completely distinct from the static memory that the operating system loads 

for the application.  The operating system reserves dynamic memory at run-time and the 

application itself allocates and deallocates regions within this reserved memory.   

To keep track of the dynamic memory currently allocated by the application, we store the 

address of each region in a pointer variable.  We allocate memory for this pointer in static 

memory and must keep it alive as long as we need access to that region of dynamic memory.  

Consider allocating dynamic memory for an array of n elements.  We store the array's address in 

a pointer, p, in static memory as illustrated below.  We allocate the array itself dynamically and 

store the data in its elements sequentially starting at address p. 



 

Lifetime 

The lifetime of any dynamic variable or object ends when the pointer that holds its address goes 

out of scope.  The application must explicitly deallocate the region of dynamic memory reserved 

for that variable or object before this happens.  If the application fails to deallocate the dynamic 

memory reserved for a variable or object, the memory becomes inaccessible and survives until 

the application reverts control back to the operating system.   

Unlike variables and objects that have been allocated in static memory, those in dynamic 

memory do not automatically go of out scope at the closing brace of the code block within which 

they were defined.  We must manage their deallocation explicitly ourselves. 

Dynamic Allocation 

The keyword new followed by [n] allocates contiguous space in dynamic memory for an array of 

n elements and returns the address of the start of that array.  

A dynamic allocation statement takes the form 

 

where Type is the type of the array's elements. 

For example, to allocate dynamic memory for an array of n Students, we write 

 

 



The nullptr keyword identifies the address pointed to as the null address, an implementation 

constant.  Initialization to nullptr ensures that cpa is not pointing to any valid address.  The size 

of the array is a run-time variable and not an integer constant or constant expression as required 

for static memory allocation.  

Dynamic Deallocation 

The keyword delete followed by [] and the address of the region of dynamic memory deallocates 

the memory that the new[] operator had allocated.  

A dynamic array deallocation takes the form 

 

where pointer holds the address of the start of the dynamically allocated array.   

For example, to deallocate the memory allocated for the array of n Students above, we write 

 

The nullptr assignment ensures that cpa now holds the null address.  This optional assignment 

eliminates the possibility of deleting the original address a second time, which is a serious run-

time error.  Deleting the nullptr address has no effect. 

Omitting the brackets in a deallocation expression deallocates the first element of the array and 

leaves the other elements unreachable.  

Deallocation does not return dynamic memory to the operating system.  The deallocated memory 

remains available for subsequent re-allocations.  The operating system only reclaims dynamic 

memory once the application reverts control back to the system.  

A Complete Example 

Consider a simple program in which the user enters the number of Students, the program 

allocates memory for that number, the user enters data for each student, the program displays the 

data accepted and finally the program terminates: 

 

 



// Dynamic Memory Allocation 

 // dynamic.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 

 class Student { 

     int no; 

     char grade[14]; 

   public: 

     void set(int, const char*); 

     void display() const; 

 }; 

 

 void Student::set(int n, const char* g) { 

     if (n > 0) { 

         no = n; 

         strncpy(grade, g, 13); 

     } else { 

         no = 0; 

         grade[0] = '\0'; 

     } 

 } 

 

 void Student::display() const { 

     if (no != 0) 

         cout << no << '' << grade; 

 } 

 

 int main( ) { 

     int n; 

     Student* cpa = nullptr; 

 

     cout << "Enter the number of students : ";  

     cin >> n; 

     cpa = new Student[n]; 

 

     for (int i = 0; i < n; i++) { 

         int no; 

         char grade[14]; 

         cout << "Student Number: "; 

         cin  >> no; 

         cout << "Student Grades: "; 

         cin  >> grade; 

         cpa[i].set(no, grade); 

     } 

 

     for (int i = 0; i < n; i++) 

         cpa[i].display(); 

         cout << endl; 

 

     delete [] cpa; 

     cpa = nullptr; 

 } 

 

 



Memory Issues 

Important issues arise with dynamic memory allocation and deallocation include:  

• memory leaks 

• insufficient memory 

Memory Leak 

A memory leak occurs if an application loses the address of dynamically allocated memory that 

has not deallocated.  This may occur if 

• a pointer to dynamic memory goes out of scope before the application has deallocated 

that memory  

• a pointer to dynamic memory changes its value before the application has deallocated the 

memory starting at that value  

Memory leaks are difficult to find because they often do not halt execution immediately.  We 

might only become aware of their existence indirectly through progressively slower execution or 

incorrect results.  

Insufficient Memory 

Many platforms have sufficient hardware and operating system software to support large 

allocations of dynamic memory.  On those platforms where memory is severly limited, a realistic 

possibility exists that the operating system might not be able to provide the amount of dynamic 

memory requested.   

If the operating system cannot provide the requested dynamic memory, the application may stop 

executing.  One method of trapping failures to allocate memory is described in the chapter 

entitled The ISO/IEC Standard. 

Single Instances  

We can allocate dynamic memory for single instances of any type.  The allocation and 

deallocation syntax is similar to that for arrays.  

 

 



Allocation 

The keyword new without the brackets allocates dynamic memory for a single variable or 

object.   

A dynamic allocation statement takes the form 

 

For example, to store one instance of a Student in dynamic memory, we write 

 

 

Deallocation 

The keyword delete without the brackets deallocates dynamic memory at the address specified.   

A dynamic deallocation statement takes the form 

 

delete takes address that was returned by new. 

For example, to deallocate the memory for harry that was allocated dynamically above, we write 

 

1.6 Check Your Progress  

Q.1 What is Dynamic Memory? Explain with the help of an example.  

Q.2 Define the following terms. 

I. System memory 

II. Static Memory  

Q.4 What are input and output stream? Explain. 

Q.5 What is overloading  and Pass By Reference? 
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1.1 Learning Objectives  

 

After going through this unit, the learner will able to: 

• Understand the concept of Encapsulation 

• Define and learn about Construction and Destruction 

• Define the current object 

• Learn about classes and resources  

• Define member operator 

• Learn about helper  functions 

• Define Custom I/O Operators 

• Define Custom File Operators 

 

1.2 Introduction to Encapsulation  

 

In programming languages, encapsulation is used to refer to one of two related but distinct 

notions, and sometimes to the combination thereof: 

• A language mechanism for restricting access to some of the object's components. 

• A language construct that facilitates the bundling of data with the methods (or other 

functions) operating on that data. 

Some programming language researchers and academics use the first meaning alone or in 

combination with the second as a distinguishing feature of object-oriented programming, while 

other programming languages which provide lexical closures view encapsulation as a feature of 

the language orthogonal to object orientation. 

The second definition is motivated by the fact that in many OOP languages hiding of 

components is not automatic or can be overridden; thus, information hiding is defined as a 

separate notion by those who prefer the second definition. 

The features of encapsulation are supported using classes in most object-oriented programming 

languages, although other alternatives also exist. 

 

 

 

 



1.3 Construction and Destruction 

  

In object-oriented languages, a class is the type that encapsulates state and logic.  It describes the 

structure of the data that objects hold and the rules under which member functions access and 

change that data.  A well-encapsulated class has all implementation details hidden within itself: 

both its logic and its state structure.  Clients communicate with objects of a well-encasulated 

class only through an interface of public member functions.   

This chapter describes some basic class features and the special member functions that initialize 

and tidy up objects.  It covers the order of memory allocation and deallocation during object 

construction and destruction and overloading of the special function that initializes an object.  

Basic Class Features 

A class describes how to interpret the data in a region of memory and the rules for operating on 

that data.  

Object or Instance 

Each object or instance of a class occupies its own region of memory.   

A definition of an object takes the form 

Type instance; 

 

Type denotes the name of the class.  instance denotes the name of the object or instance of the 

class.   

For example, to create an object or instance of our Student class named harry, we write: 

Student harry; 

 

To create five objects or instances of our Student class, we write: 

Student a, b, c, d, e; 

 

The compiler allocates five regions in static memory, each of which holds the data for one 

object.  Each region contains space for two data members - no and grade.  The compiler stores 

the program instructions contained in the member functions once. 



 

Instance Variables 

We call the data members declared in the class definition the object's instance 

variables.  Instance variables may (amongst others) be of 

• fundamental type (int, double, char, etc.) 

• compound type  

o class type (struct, class) 

o pointer type (to instances of data types - fundamental or compound) 

o reference type (to instances of data types - fundamental or compound) 

Logic 

The logic within the member functions of a class is identical for every instance of the class and 

there is no need to allocate separate memory for the logic associated with each object.  The 

compiler only stores the instance variables separately.  At run-time each call to a member 

function on an object accesses the same code, while accessing different instance variables - those 

of the object on which we have called the member function. 

For example, calling the same display() function on five different Student objects displays five 

different sets of information in the same way: 

 



The memory allocated by the compiler for member function code and object data is illustrated 

below: 

 

Class Privacy 

C++ implements privacy at the class level.  Any member function can access any private 

member of its class, including any data member of any instance of its class, including any 

instance other than that on which we have called the member function.  In other words, there is 

no privacy at the object level.   

For example, we may refer to a private data member of a Student object within a member 

function called on another Student object: 

 

Here, copyIn(const Student& src) copies the values from the private data members of harry into 

the private data members of backup. 

Constructor 

Comprehensive encapsulation requires some mechanism for initializing the data members of an 

object at creation-time.  Without initialization, an object's data members contain undefined 

values until a client calls a modifier on the object and any client can inadvertently 'break' the 



object by calling member functions in the wrong order.  For instance, a client could call a 

member function to read a file before having called the member function to open the file.   

For example, the following code generates the output on the right 

// Calling in the Wrong Order 

 // Wrong_order.cpp 

 

 #include <iostream> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     void set(int, const char*); 

     void display() const; 

 }; 

 

 void Student::set(int n, const char* g) { 

     int i; 

     bool valid = true; // assume valid input, check invalidity 

 

     if (n < 1) 

         valid = false; 

     else 

         for (i = 0; g[i] != '\0' && valid; i++) 

             valid = g[i] >= 'A' && g[i] <= 'F' && g[i] != 'E'; 

 

     if (valid) { 

         // accept client's data 

         no = n; 

         for (i = 0; g[i] != '\0' && i < 13; i++) 

             grade[i] = g[i]; 

         grade[i] = '\0';  // set the last byte to the null byte  

     } 

     else { 

         // ignore client's data, set an empty state 

         no = 0; 

         grade[0] = '\0'; 

     } 

 } 

 

 void Student::display() const { 

     if (no != 0) 

         cout << no << ' ' << grade; 

     else 

         cout << "no data available";  

 } 

 

 int main () { 

     Student harry; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     harry.display(); 

     cout  << endl; 

     harry.set(1234, "ABACA"); 

     harry.display(); 

     cout  << endl; 

 } 

 12052848 

 

 

 

 1234 ABACA   

Initially the student number of harry is undefined and the first call to display() outputs 

incomprehensible results and may even produce a segmentation fault.   

To avoid breaking objects, we initialize their data members to an empty state upon creation and 

insert dedicated logic for objects in an empty state in each public member function.   

Definition 

In C++, the special member function that any object calls at creation-time is called a 

constructor.  This member function executes preliminary logic and we use it to initialize the 

object's instance variables.  

The constructor takes its name from the class itself.  The prototype for a no-argument constructor 

takes the form 

Type(); 

Type is the name of the class.  A constructor declarations does not include a return data type.  

Example 

 

To define a constructor for our Student class, we declare its prototype explicitly in the class 

definition: 

 

We define the constructor in the implementation file: 

 



Default Constructor 

If we do not declare a constructor in the class definition, the compiler inserts a default no-

argument constructor with an empty body:  

 

This default constructor leaves the instance variables uninitialized.  

Understanding Order 

Construction 

The compiler constructs an object in the following order 

1. allocates memory for each instance variable in the order listed in the class definition 

2. executes the logic within the constructor 

Member Function Calls 

The constructor starts executing before any normal member function is called. 

 

 

 

 

 

 

 

 

 

 



Multiple Objects 

If we define multiple objects in a single declaration, the compiler creates them in the order 

specified by the declaration.  

For example, the following code generates the output on the right 

// Constructors 

 // constructors.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     void set(int, const char*); 

     void display() const; 

 }; 

 

 // initializes the data members 

 // 

 Student::Student() { 

     cout << "Entering constructor" << endl;  

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 void Student::set(int n, const char* g) { 

     // see above for complete validation logic  

     no = n; 

     strncpy(grade, g, M); 

 } 

 

 void Student::display() const { 

     if (no != 0) 

         cout << no << ' ' << grade; 

     else 

         cout << "no data available";  

 } 

 

 int main () { 

     Student harry, josee; 

 

     harry.set(1234, "ABACA"); 

     josee.set(1235, "BBCDC"); 

     harry.display(); 

     cout  << endl; 

     josee.display(); 

     cout  << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Entering constructor 

 Entering constructor 

 

 

 1234 ABACA 

 

 1235 BBCDC 

  



The compiler construct harry first and josee afterwards. 

Safe Empty State 

Initializing an object's instance variables in a constructor ensures that the object has a well-

defined state from the instant of its creation.  In the above example, we say that harry and josee 

are in safe empty states until the set() member function changes their states.  If our code calls 

member functions on these objects in any 'unusual' order, the objects do not break and the results 

are still as expected.  

For example, 

// Safe Empty State 

 // safeEmpty.cpp 

 

 #include <iostream> 

 using namespace std; 

 

 int main ( ) { 

     Student harry, josee; 

 

     harry.display(); 

     cout  << endl; 

     josee.display(); 

     cout  << endl; 

     harry.set(1234,"ABACA"); 

     josee.set(1235,"BBCDA"); 

     harry.display(); 

     cout  << endl; 

     josee.display(); 

     cout  << endl; 

 } 

 

 

 

 

 

 

 

 Entering constructor 

 Entering constructor 

 0 

 

 0 

 

 

 

 1234 ABACA 

 

 1235 BBCDC 

  

 

The initial values displayed for each object are their safe empty state values. 

The safe empty state value is identical for all objects of the same class.  

Destructor 

Comprehensive encapsulation also requires some mechanism for tidying up just before the end 

of an object's lifetime.  An object that has written data to a file may need to flush the file's buffer 

before the object going out of scope.  An object that has allocated memory dynamically may 

need to deallocate that memory before going out of scope.  C++ lets us define a special member 

function called the destructor that executes automatically at the point of an object's destruction. 



Definition 

In C++, the special member function that every object calls just before the end of its lifetime is 

called the destructor.  We code this member function with the terminal logic.   

The destructor takes its name from the class itself and prefixes that name with the tilde symbol 

(~).  The prototype for a destructor takes the form 

~Type( ); 

 

Type is the name of the class.  A destructor does not have any parameters, does not return a 

value and does not have a return data type.  

An object's destructor  

• is called automatically 

• cannot be overloaded 

• cannot be called explicitly 

Example 

To define the destructor for our Student class, we declare its prototype in the class definition: 

class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     ~Student(); 

     void set(int, const char*); 

     void display() const; 

 }; 

 

and define the member function in the implementation file: 

Student::~Student() { 

    // insert our terminal code here  

 } 

Default Destructor 

If we don't declare a destructor in the class definition, the compiler defines the destructor with an 

empty body: 

Student::~Student() { 

 } 



Understanding Order 

Member Function Calls 

The object's destructor starts executing only after every normal member function has completed 

its execution. 

 

The object cannot call any member function after having called its destructor. 

Destruction 

The compiler destroys an object in the following order 

1. executes the logic of its destructor 

2. deallocates memory for each instance variable in opposite order to that listed in the class 

definition 

Multiple Objects 

The compiler destroys objects in opposite order to the order of their creation.  

For example, the following code generates the output on the right: 

// Constructors and Destructors 

 // destructors.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     ~Student(); 

     void set(int n, const char* g); 

     void display() const; 

 }; 

 

 Student::Student() { 

     cout << "Entering constructor" << 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



endl;  

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 // executed before object goes out of 

scope  

 // 

 Student::~Student() { 

    cout << "Entering destructor for " << no 

         << endl; 

 } 

 

 void Student::set(int n, const char* g){ 

     // see above for validation logic 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 int main () { 

     Student harry, josee; 

 

     harry.set(1234, "ABACA"); 

     josee.set(1235, "BBCDC"); 

     harry.display(); 

     cout  << endl; 

     josee.display(); 

     cout  << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Entering constructor 

 Entering constructor 

 

 

 1234 ABACA 

 

 1235 BBCDC 

 

 

 Entering destructor for 

1235 

 Entering destructor for 

1234 

The compiler destroys josee first and harry last. 

Construction and Destruction of Arrays 

The order of constructing and destroying the elements of an array of objects follows directly 

from the order described above.   

The compiler creates the elements of an array one at a time from its first element to its last.  Each 

object calls the no-argument constructor at creation-time.  At deallocation, the compiler destroys 

the last element first and proceeds sequentially through the array until it destroys the first 

element last.  

 



For example, the following code generates the output on the right: 

// Constructors, Destructors and Arrays 

 // ctorsDtorsArrays.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     ~Student(); 

     void set(int, const char*); 

     void display() const; 

 }; 

 

 Student::Student() { 

     cout << "Entering constructor" << 

endl;  

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::~Student() { 

     cout << "Entering destructor for " << 

          no << endl; 

 } 

 

 void Student::set(int n, const char* str){ 

     // see above for validation logic 

     // code 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 int main () { 

     Student a[3]; 

 

     a[0].set(1000, "AAAAA"); 

     a[2].set(1002, "CCCCC"); 

     a[1].set(1001, "BBBBB"); 

     for (int i = 0; i < 3; i++) { 

         a[i].display(); 

         cout  << endl; 

     } 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Entering constructor 

 Entering constructor 

 Entering constructor 

 1000 AAAAA 

 

 1002 CCCCC 

 

 1001 BBBBB 

 

 

 Entering destructor for 

1002  

 Entering destructor for 1001 

 Entering destructor for 1000 



The destructor for element a[2] executes before the destructor for a[1], which executes before 

the destructor for a[0].  Note that the order of destruction is based on order of construction and 

not on order of usage 

Overloading Constructors 

Overloading a class' constructor adds communication options for clients.  A client can select the 

most appropriate set of arguments to specify at creation time.   

For example, to let a client initialize a Student object with a student number and a set of grades, 

we define a two-argument constructor with one int parameter and one const char* parameter:  

// Two-Argument Constructor 

 // overload.cpp 

 

 #include <iostream> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int, const char*); 

     ~Student(); 

     void display() const; 

 }; 

 

 Student::Student() { 

     cout << "Entering 0-arg constructor" << 

endl;  

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     cout << "Entering 2-arg constructor" << 

endl;  

     int i; 

     bool valid = true; // assume valid input 

 

     if (n < 1) 

         valid = false; 

     else 

         for (i = 0; g[i] != '\0' && valid; 

i++) 

             valid = g[i] >= 'A' && g[i] <= 

'F' 

              && g[i] != 'E'; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     if (valid) { 

         // accept client's data 

         no = n; 

         for (i = 0; g[i] != '\0' && i < 13; 

i++) 

             grade[i] = g[i]; 

         grade[i] = '\0';  // set last byte to 

null  

     } 

     else { 

         // ignore client's data, set empty 

state  

         no = 0; 

         grade[0] = '\0'; 

     } 

 } 

 

 Student::~Student() { 

     cout << "Entering destructor for " << 

          no << endl; 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 int main () { 

     Student harry(1234,"ABACA"), 

             josee(1235,"BBCDA"); 

 

     harry.display(); 

     cout  << endl; 

     josee.display(); 

     cout  << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Entering 2-arg 

constructor 

 Entering 2-arg 

constructor 

 

 1234 ABACA 

 

 1235 BBCDA  

 Entering destructor for 

1235  

 Entering destructor for 

1234  

This new constructor includes all of our validation logic.  The compiler calls one and only one 

constructor at creation.  In this example, the compiler does not call the no-argument constructor.  

Note that we have replaced the set() member function with the two-argument constructor.  

No-argument constructor is not always implemented 

If the class definition includes the prototype for a constructor with some parameters but does not 

include the prototype for a no-argument constructor, the compiler DOES NOT insert an empty-

body, no-argument constructor.  The compiler only inserts an empty-body, no-argument 

constructor if the class definition does not include a prototype for ANY constructor.  

If we define a constructor with some parameters, we typically also define a no-argument 

constructor.  The creation of arrays of objects requires a no-argument constructor (each element 

of the array calls the no-argument constructor at creation time). 



1.4 The Current Object 

Every member function executes on a specific object; that is, on one particular set of instance 

variables.  That object is the object on which the client has called the member function.  We refer 

to the object as the current object for that member function.  In other words, the current object is 

the region of memory containing the data on which a member function is currently operating.   

This chapter describes the mechanism by which a member function accesses the current object 

and shows how to refer to the current object from within the member function.  

Member Function Access 

A member function accesses non-local information through parameters and returns information 

to its caller through parameters and possibly a return value.  A member function's parameters are 

of two distinct kinds: 

• explicit - communicate with the client code 

• implicit - communicate with the instance variables 

 

Explicit parameters receive information from the client and return information to the client.  We 

define them explicitly in the function header.  Their lifetime is the period during which the 

member function is in control of execution. 

Implicit parameters the member function to the current object.   

 



The syntax of a call to a normal member function reflects this mechanism.  The name of the 

object on which the client calls this function represents the implicit parameters, while the 

arguments that the client passes to the function initialize the explicit parameters.  

Consider the constructors and the calls to the display() member function in the following code 

snippet: 

// ... 

 

 Student::Student(int n, const char* g) { 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 // ... 

 

 int main ( ) { 

     Student harry(1234, "ABACA"), josee(1235, "BBCDA");  

 

     harry.display(); 

     cout << endl; 

     josee.display(); 

     cout << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1234 ABACA 

 

 1235 BBCDA 

  

 

The constructor for harry receives data in its explicit parameters and copies that data through its 

implicit parameters into the instance variables of its current object.  The constructor for josee 

receives data in its explicit parameters and copies that data through its implicit parameters into 

the instance variables of its current object.   

The first call to the display() member function accesses harry through its implicit 

parameters.  The second callaccesses josee through its implicit parameters.   

This 

The complete set of instance variables associated with the current object has its own 

address.  The keyword this returns this address.  That is, this holds the address of the region of 

memory that contains all of the data stored in the current object.  *this refers to the current object 

itself; that is, to the entire set of its instance variables.  

We use this keyword within a member function to refer to the set of instance variables that the 

member function is currently accessing through its implicit parameters.  



 

For example, to upgrade the display() member function to return a copy of the object upon which 

it has been called, we write:  

Student Student::display() const { 

 

     cout << no << ' ' << grade; 

 

     return *this; 

 } 

 int main() { 

     Student harry(1234,"ABACA"), backup; 

 

     backup = harry.display(); 

     cout << endl; 

     backup.display(); 

     cout << endl; 

 } 

 

 

 

 

 

 

 

 

 

 1234 ABACA 

 

 1234 ABACA 

  

The keyword this is only accessible from within a member function and has no meaning outside 

member functions.  

Reference to the Current Object 

We can upgrade our definition of display() by returning an unmodifiable reference to the current 

object rather than a copy of the object.  This would makes a difference if the object was large, 

since copying all of its instance variables would be compute intensive.  Returning a reference 

only involves copying the object's address, which is typically a 4-byte operation:  

 



const Student& Student::display() const {  

 

     cout << no << ' ' << grade; 

 

     return *this; 

 } 

The const qualifier on the return type prohibits client code from placing the call to the member 

function on the left side of an assignment operator and thereby allowing a change to the instance 

variables themselves.  

Assigning to the Current Object 

To copy an object's instance variables into the current object, we dereference the keyword and 

use *this as the left operand in an assignment expression: 

*this =            ; 

 

Example - Extracting Input Data 

Let us introduce a member function to our Student class called read() that  

• extracts data from standard input 

• stores that data in the current object only if the data is valid 

• leaves the current object unchanged if the data is invalid  

To avoid duplicating validation logic, we  

• construct a local Student object passing the input data to the two-argument constructor 

• check the student number to determine if the local object accepted the data 

• assign the local object to the current object if the data is valid 

void Student::read() { 

 

     int no;         // will hold the student number 

     char grade[14]; // will hold the grades 

 

     cout << "Enter student number : "; 

     cin >> no; 

     cin.ignore(); // remove newline character 

     cout << "Enter student grades : "; 

     cin.getline(grade, 14); 

 

     // construct the local object 

     Student temp(no, grade); 

     // if data is valid student number is non-zero 

     if (temp.no != 0) 

         // copy the local object into the current object  



         *this = temp; 

 } 

Since the local object (temp) and the current object are instances of the same class, this member 

function can access each of the local object's instance variables directly. 

1.5 Classes and Resources 

 

We design and code classes independently of their client applications.  In cases where a 

client determines the amount of memory that an object requires, we cannot specify the memory 

requirements at compile-time and must postpone allocation of that memory until run-time.  Only 

once the client starts instantiating the object does that object know how much memory the client 

requires.  To review run-time memory allocation and deallocation see the chapter entitled 

Dynamic Memory.   

Memory that an object allocates at run-time represents a resource of that object's class.  The 

management of this resource requires additional logic that was unnecessary for simpler classes 

that do not access resources.  This additional logic ensures proper handling of the resource and is 

often called deep copying and assignment.   

This chapter describes how to implement deep copying and deep assignment logic.  The member 

functions that manage resources are the constructors, the assignment operator and the destructor.   

Resource Instance Pointers 

A C++ object refers to a resource through a resource instance pointer.  This pointer holds the 

address of the resource.  The address (that is, the resource) lies outside the object's static 

memory.  

 

Case Study 

Let us upgrade our Student class to accomodate a variable number of grades.  The client 

specifies the number at run-time.  The grades are now a resource.  We allocate 

• static memory for the resource instance variable (grade) 

• dynamic memory for the grade string itself 

In this section, we focus on the constructors and the destructor for our Student class.  The client 

does not copy or assign and we postpone the copying and assignment logic to later sections: 

 



 

// Resources - Constructor and Destructor 

 // resources.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 

 class Student { 

     int no; 

     char* grade; 

 public: 

     Student(); 

     Student(int, const char*); 

     ~Student(); 

     void display() const; 

 }; 

 

 Student::Student() { 

     no = 0; 

     grade = nullptr; 

 } 

 

 Student::Student(int n, const char* g) { 

     int i; 

     bool valid = true; // assume valid input, check 

invalidity  

 

     // validate client data 

     if (n < 1) 

         valid = false; 

     else { 

         for (i = 0; g[i] != '\0' && valid; i++) 

             valid = g[i] >= 'A' && g[i] <= 'F' && g[i] != 

'E'; 

 

     if (valid) { 

         // accept client data 

         // allocate dynamic memory 

         no = n; 

         grade = new char[strlen(g) + 1]; 

         strcpy(grade, g); 

     } 

     else { 

         // set to a safe empty state 

         no = 0; 

         grade = nullptr; 

     } 

 } 

 

 Student::~Student() { 

     // deallocate previously allocated memory 

     delete [] grade; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 void Student::display() const { 

     cout << no << ' ' << 

          ((grade != nullptr) ? grade : "");  

 } 

 

 int main ( ) { 

     Student harry(1234, "ABACA"); 

 

     harry.display(); 

     cout << endl; 

 } 

 

 

 

 

 

 

 1234 

ABACA 

  

 

The no-argument constructor places the object in a safe empty state.  The two-argument 

constructor allocates dynamic memory for the resource only if the data received is valid.  The 

conditional expression in the display() query distinguishes the safe empty state.  The destructor 

deallocates any memory that the constructor allocated.  Deallocating memory at the nullptr 

address has no effect.  

Deep Copies and Assignments 

In a typical class design involving resources, we expect each resource associated with one object 

to be independent of the resource associated with another.  That is, if we change the resource 

data in one object, we expect the resource data in the other object to remain unchanged.  In 

copying and assigning objects we ensure this resource independence through deep copies and 

deep assignments.  Deep copies and assignments involve copying the resource data.  Shallow 

copies and assignments, which involve copying the instance variables only, are only approriate 

for class without resources.  

Implementing deep copying and assignment logic requires separate allocation of memory.  The 

resource instance pointer in each object points to a different location in dynamic memory.   

 

 

For each deep copy, we allocate memory for a new resource and copy the contents of the original 

resource into that new memory.  We shallow copy only those instance variables that are NOT 



resource instance variables.  For example, in our Student class, we shallow copy the student 

number, but not the address stored in the grade pointer. 

The two special member functions that manage allocations and deallocations associated with 

deep copies and assignments are: 

• the copy constructor 

• the copy assignment operator 

If we do not declare a copy constructor, the compiler inserts code that implements a shallow 

copy.  If we do not declare an assignment operator, the compiler inserts code that implements a 

shallow assignment. 

 

Copy Constructor 

The copy constructor defines the logic for copying from a source object to a newly created object 

of the same type.  The compiler calls this constructor whenever we 

1. initialize an object at creation 

2. copy an object by value in a function call 

3. return an object by value from a function 

Declaration 

The declaration of a copy constructor takes the form 

Type(const Type&); 

 

where Type is the name of the class 

 

For example, we insert the declaration into the definition of our Student class:  

 
// Student.h 

 

 class Student { 

     int no; 

     char* grade; 

 public: 

     Student(); 

     Student(int, const char*); 

     Student(const Student&); 

     ~Student(); 

     void display() const;  

 }; 

 

 



Definition 

The definition of a copy constructor contains logic that  

1. performs a shallow copy on all of the non-resource instance variables 

2. allocates memory for each new resource 

3. copies data from the source resource(s) to the newly created resource(s) 

For example, the following code performs a deep copy on objects of our Student class: 

// Student.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 #include "Student.h" 

 

 // ... 

 

 Student::Student(const Student& src) { 

 

     // shallow copy 

     no = src.no; 

 

     // allocate dynamic memory for grade string 

     if (src.grade != nullptr) { 

         grade = new char[strlen(src.grade) + 1];  

         // copy data from the original resource 

         // to newly allocated resource 

         strcpy(grade, src.grade); 

     } 

     else 

         grade = nullptr; 

 } 

Since the source data has been validated on original receipt from the client and privacy 

constraints ensure that this data has not been corrupted in the interim, we do not need to validate 

the data in the copy constructor. 

Assignment Operator 

The assignment operator defines the logic for copying data from an existing object to another 

existing object.  The compiler calls this member operator whenever we write expressions of the 

form  

identifier = identifier 

where identifier refers to the name of an object.  



Declaration 

The declaration of an assignment operator takes the form 

Type& operator=(const Type&); 

 

where the left Type is the return type and the right Type is the type of the source operand.   

For example, we insert the declaration into the definition of our Student class:  

// Student.h 

 

 class Student { 

     int no; 

     char* grade; 

 public: 

     Student(); 

     Student(int, const char*); 

     Student(const Student&); 

     Student& operator=(const Student&);  

     ~Student(); 

     void display() const; 

 }; 

 

Definition 

The definition of the assignment operator contains logic that: 

• checks for self-assignment 

• shallow copies the non-resource instance variables to destination variables 

• deallocates any previously allocated resource for the current object 

• allocate a new resource for the current object 

• copies resource data associated with the source object to the newly allocated resource 

memory of the current object 

For example, the following code performs a deep assignment on objects of our Student class: 

// Student.cpp 

 

 // ... 

 

 Student& Student::operator=(const Student& source) { 

 

     // check for self-assignment 

     if (this != &source) { 

         // shallow copy non-resource variable 



         no = source.no; 

         // deallocate previously allocated dynamic memory  

         delete [] grade; 

         // allocate new dynamic memory, if needed 

         if (source.grade != nullptr) { 

             grade = new char[strlen(source.grade) + 1]; 

             // copy the resource data 

             strcpy(grade, source.grade); 

         } 

         else 

             grade = nullptr; 

     } 

     return *this; 

 } 

To trap a self-assignment (a = a), we compare the address of the current object to the address of 

the source object.  If the addresses match, we skip the assignment logic altogether.  If we 

neglected to check for self-assignment, the deallocation statement would deallocate the memory 

holding the resource data and we would lose access to the resource resulting in our logic failing 

at the call to std::strlen().  

Localization 

The code in our definition of the copy constructor is identical to most of the code in our 

definition of the assignment operator.  To avoid duplication we can:  

• localize the common code in a private member function and call that member function 

from the copy constructor and the assignment operator 

• call the assignment operator directly from the copy constructor 

Private Member Function 

In the following example, we localize the common code is in a private member function named 

init() and call this function from our copy constructor and assignment operator call: 

void Student::init(const Student& source) { 

 

     no = source.no; 

     if (source.grade != nullptr) { 

         grade = new char[strlen(source.grade) + 1]; 

         strcpy(grade, source.grade); 

     } 

     else 

         grade = nullptr; 

 } 

 

 Student::Student(const Student& source) { 

     init(source); 

 } 

 



 Student& Student::operator=(const Student& source) { 

     if (this != &source) {  // check for self-assignment 

         // deallocate previously allocated dynamic memory  

         delete [] grade; 

         init(source); 

     } 

     return *this; 

 } 

Direct Call 

In the following example, we initialize the resource instance variable in the copy constructor to 

nullptr and call the assignment operator directly: 

Student::Student(const Student& source) { 

     grade = nullptr; 

     *this = source; // calls assignment operator 

 } 

 

 Student& Student::operator=(const Student& source) { 

     if (this != &source) {  // check for self-assignment 

         no = source.no; 

         // deallocate previously allocated dynamic memory  

         delete [] grade; 

         // allocate new dynamic memory 

         if (source.grade != nullptr) { 

             grade = new char[strlen(source.grade) + 1]; 

             // copy resource data 

             strcpy(grade, source.grade); 

         } 

         else 

             grade = nullptr; 

     } 

     return *this; 

 } 

 

Assigning grade to nullptr in the copy constructor ensures that the assignment operator does not 

deallocate any memory if called by the copy constructor. 

Copies Prohibited 

 

Certain class designs may require that we prohibit any client from copying any instance of a 

class.  To prohibit copying and/or assigning, we declare the copy constructor and/or the 

assignment operator as deleted members of our class: 

 

 

class Student { 

     int no; 

     char* grade; 

 public: 

     Student(); 



     Student(int, const char*); 

     Student(const Student& source) = delete; 

     Student& operator=(const Student& source) = delete;  

     ~Student(); 

     void display() const; 

 }; 

 

Use of the keyword delete in this context has no relation to its use in deallocating dynamic 

memory. 

1.6 Member Operators 

 

In programming languages, an expression consists of an operator and a set of operands.  The 

expression evaluates to a value of its own type.  In C++, all operators are built into the core 

language.  The core language defines the logic for operands of fundamental type and the 

logic for the assigning one object to another of the same type.  To define expressions for 

operand of class type overloading of the operator for the class type.  That is, in order for a 

client to evaluate an expression involving an object of class type, we need to overload the 

operator for an operand of that type.  Overloading an operator simply entails adding a 

function to the class definition to specify the logic of the operation.   

This chapter lists the operators that C++ lets us overload and describes how to define 

member functions that overload operators.  The chapter covers unary and binary operations 

on the current object.  Unary operations involve an operator and one operand, while binary 

operations involve an operator and two operands.  The description includes how to define 

casting operators using single-argument constructors. 

Operations 

C++ identifies an overloaded operation by the keyword operator the operator's symbol and 

the type(s) of the operand(s) in the expression.  The signature of a member function that 

overloads the operator for an operand of class type includes the symbol and the type of its 

right operand, if any.  The left operand is the current object. 

Candidates for Overloading 

C++ lets us overload the following operators (amongst others):  

• binary arithmetic (+ - * / %) 

• assignment (= += -= *= /= %=) 

• unary pre-fix post-fix plus minus (++ -- + -) 



• relational (== < > <= >= !=) 

• logical (&& || !) 

• insertion, extraction (<< >>) 

C++ DOES NOT ALLOW overloading of the following operators (amongst others): 

• the scope resolution operator (::) 

• the member selection operator (.) 

• the member selection through pointer to member operator (.*) 

• the conditional operator (?:) 

C++ DOES NOT let us introduce or define new operators.  

Classifying Operators 

We classify operators group by the number of operands that they take:  

• unary - post-fix increment/decrement, pre-fix increment/decrement, pre-fix plus, pre-fix 

minus 

• binary - assignment, compound assignment, arithmetic, relational, logical 

• ternary - conditional operator 

Members and Helpers 

We overload operators in either of two ways, as: 

• member operators - part of the definition of the class  

• helper operators - outside the definition of the class  

We define operators that change the state of their left operand as member operators and operators 

that do not change the state of their operands as helper operators.  The next chapter covers helper 

operators.  

Overloading a Member Operator 

The header of a function that overloads a member operator consists of: 

• the return data type 

• the keyword operator 

• the operator symbol 

• function parantheses 



• the operand type, if binary  

The return type identifies the type of the evaluated expression. 

For example, to overload the assignment operator for a Student to receive a reference to an 

unmodifiable Student object as the right operand, we insert the following prototype into the class 

definition:  

class Student { 

     // ... 

     Student& operator=(const Student&); 

     // ... 

 }; 

 

 // ... 

 

 Student harry(975, "BCADB"); 

 Student backup; 

 backup = harry;  // calls the overloaded operator  

The keyword-symbol combination (operator =) identifies the member function uniquely.  

Signature 

Every overloaded member operator has its own signature consisting of: 

• the operator keyword 

• the operation symbol 

• the type of its right operand, if any 

• the const status of the operation 

The compiler evaluates expressions consisting of the operator and the operand type by calling the 

member function with the signature that matches the operator symbol, the operand type and the 

const status. 

Promotion or Narrowing of Arguments 

If the compiler cannot find an exact match for an operation's signature, the compiler will attempt 

a rather complicated selection process to find an optimal fit, promoting or narrowing the operand 

value into a related type if necessary.  

Good Design Practice 

Programmers expect an operator to perform its operation in a way similar if not identical to the 

way that the operator performs on any fundamental type as defined by the core language.  + 



implies addition of two values in a binary operation (not subtraction).  In defining an member 

operator we code its logic to be consistent with that of other types. 

Binary Operations 

A binary operation consists of one operator and two operands.  The left operand is the current 

object.  The operator takes one explicit parameter: the right operand.  

The header for a binary member operator takes the form 

Type operator symbol (type identifier) 

 

where Type is the type of the evaluated expression.  operator identifies some operation.  symbol 

specifies the operation.  type is the type of the right operand.  identifier is the right operand's 

name.   

For example, let us overload the += operator for a char as the right operand, in order to add a 

single grade to a Student object: 

// Overloading Operators 

 // operators.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int, const char*); 

     void display() const; 

     Student& operator+=(char g); 

 }; 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic  

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Student& Student::operator+=(char g) { 

     int i = strlen(grade); 

     if (i < M) { 

         // add validation logic here 

         grade[i++] = g; 

         grade[i] = '\0'; 

     } 

     return *this; 

 } 

 

 int main () { 

     Student harry(975,"BCADB"); 

 

     harry.display(); 

     harry += 'B'; 

     harry.display(); 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 975 BCADB 

 

 975 BCADBB  

 

Unary Operations 

A unary operation consists of one operator and one operand.  The left operand is the current 

object.  The operator does not take any explicit parameters (with one exception - see post-fix 

operators below).  

The header for a unary member operator takes the form 

Type operator symbol() 

 

where Type is the type of the evaluated expression.  operator identifies an operation.  symbol 

identifies the kind of operation.  
 

Pre-Fix Operators 

We overload the pre-fix increment/decrement operators to increment/decrement the current 

object and return the updated value.  The header for a pre-fix operator takes the form 

Type& operator++()  or  Type& operator--() 

 

For example, let us overload the pre-fix increment operator for our Student class so that a pre-fix 

expression increases all of the Student's grades by one grade letter, if possible: 

// Pre-Fix Operators 

 // preFixOps.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 

 

 

 

 

 

 

 

 

 

 



 public: 

     Student(); 

     Student(int, const char*); 

     void display() const; 

     Student& operator++(); 

 }; 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic  

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade << endl; 

 } 

 

 Student& Student::operator++() { 

     for (int i = 0; grade[i] != '\0'; i++) 

         if (grade[i] == 'F') grade[i] = 'D'; 

         else if (grade[i] != 'A') grade[i]--; 

     return *this; 

 } 

 

 int main () { 

     Student harry(975,"BCADB"); 

     harry.display(); 

     backup = ++harry; 

     harry.display(); 

 } 
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 975 ABACA  

Post-Fix Operators 

We overload the post-fix operators to increment/decrement the current object after returning its 

value.  The header for a post-fix operator takes the form 

Type operator++(int)  or  Type operator--(int) 

The int type in the header distinguishes the post-fix operators from their pre-fix counterparts. 

 

For example, let us overload the incrementing post-fix operator for our Student class so that a 

post-fix expression increases all of the Student's grades by one grade letter, if possible: 

// Post-Fix Operators 

 // postFixOps.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 

 

 

 

 

 



 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int, const char*); 

     void display() const; 

     Student& operator++(); 

     Student operator++(int); 

 }; 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic  

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade << endl; 

 } 

 

 Student& Student::operator++() { 

     for (int i = 0; grade[i] != '\0'; i++) 

         if (grade[i] == 'F') grade[i] = 'D'; 

         else if (grade[i] != 'A') grade[i]--; 

     return *this; 

 } 

 

 Student Student::operator++(int) { 

     Student s = *this;  // save the original 

     ++(*this);          // call the pre-fix operator 

     return s;           // return the original 

 } 

 

 int main () { 

     Student harry(975,"BCADB"); 

     Student backup; 

     harry.display(); 

     backup = harry++; 

     backup.display(); 

     harry.display(); 

 } 
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 975 ABACA 

  

We avoid duplicating logic by calling the pre-fix operator from the post-fix operator.  

The return values of the pre-fix and post-fix operators differ.  The post-fix operator returns a 

copy of the current object as it was before any changes took effect.  The pre-fix operator returns 

a reference to the current object after the changes have taken effect. 



Type Conversions 

Member operators include type conversion operators, which define implicit conversions to 

different types, including fundamental types.  

For the following code to compile, the compiler must know how to convert a Student object into 

a bool value: 

Student harry; 

 

 if (harry) 

     harry.display(); 

 

To this effect, we define a conversion operator that returns true if the Student object has valid 

data and false if the object is in a safe empty state.   

We add its declaration to the class definition 

const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int, const char*); 

     void display() const; 

     operator bool() const; 

 }; 

and define the conversion operator in the implementation file 

#include "Student.h" 

 

 // ... 

 

 Student::operator bool() const { return no != 0; }  

Design Consideration 

Conversion operators easily lead to ambiguities.  Good design uses them quite sparingly and 

keeps their implementations trivial.  

Single-Argument Constructors 

A single-argument constructor defines the rule for promoting the value of its parameter to its 

class type.  This type of constructor defines not only how to construct an object using only a 



single argument but also how to convert an argument of that type into an object of the class' type. 

. 

The following program demonstrates both uses of a single-argument constructor that has been 

overloaded to receive an int argument: 

// One-Argument Constructor 

 // oneArgCtor.cpp 

 

 #include <iostream> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

 }; 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

     no = n; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 int main () { 

     Student harry(975), nancy; 

 

     harry.display(); 

     cout  << endl; 

     nancy = (Student)428; 

     nancy.display(); 

     cout  << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 975  

 

 

 428  

 

  

The first use converts 975 to the Student object harry.  The second use casts 428 to a Student 

object containing the number 428.  Each resultant object holds an empty grade list.  



Promotion 

For the same result we could omit the cast and let the compiler promote the 428 to a Student 

object in the assignment itself: 

int main () { 

     Student harry(975), nancy; 

 

     harry.display(); 

     cout  << endl; 

     nancy = 428; // promotes an int to a Student  

     nancy.display(); 

     cout  << endl; 

 } 

 

 

 

 975  

 

 

 428  

  

The compiler inserts code that creates a temporary Student object using the single-argument 

constructor.  The constructor receives the value 428 and initializes no to 428 and grade to an 

empty string.  Then, the assignment operator performs a shallow copy from the temporary object 

to nancy.  Finally, the compiler inserts code that destroys the temporary object and removes it 

from memory.  

Explicit 

Limiting the number of single-argument constructors in a class definition avoids potential 

ambiguities in automatic conversions of one data type to another. 

To prohibit the compiler from using a single-argument constructor for any implicit conversion, 

we declare the constructor explicit:  

class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     explicit Student(int); 

     Student(int, const char*); 

     void display() const; 

 }; 

 

The second invocation in the example above (nancy = 428) would generate a compiler error 

under this class definition.  

Temporary Objects 

A temporary object has no name and goes out of scope at the end of same statement as the one 

within which it is created.  For example, 

int main () { 

     Student harry(975), nancy; 

 

 

 

 



     harry.display(); 

     cout  << endl; 

     nancy = Student(428); // temporary Student object  

     nancy.display(); 

     cout  << endl; 

 } 

 975  

 

 

 428  

  

A temporary object provides a compact way of calling the constructor on the object's type. 

 

Localizing Constructor Logic 

We use temporary objects to localize the validation for a class within one constructor.  We use 

the keyword for the current object (*this) in assigning the temporary object to the current object: 

// Localized Validation 

 // localize.cpp 

 

 #include <iostream> 

 using namespace std; 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

 }; 

 

 Student::Student() { 

    // safe empty state 

    no = 0; 

    grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

    *this = Student(n, ""); // assign temporary to current 

 } 

 

 Student::Student(int n, const char* g) { 

     int i; 

     bool valid = true; // assume valid input, check 

invalidity 

 

     // validate client data 

     if (n < 1) 

         valid = false; 

     else 

         for (i = 0; g[i] != '\0' && valid; i++) 

             valid = g[i] >= 'A' && g[i] <= 'F' && g[i] != 

'E'; 

 

     if (valid) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



         // accept client data 

         no = n; 

         for (i = 0; g[i] != '\0' && i < M; i++) 

             grade[i] = g[i]; 

         grade[i] = '\0';  // set the last byte to the null 

byte  

     } 

     else { 

         // set to a safe empty state 

         *this = Student(); // assign temporary to current 

     } 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 int main () { 

     Student harry(1234,"ABACA"), josee(1235), empty; 

 

     harry.display(); 

     cout << endl; 

     josee.display(); 

     cout << endl; 

     empty.display(); 

     cout << endl; 

 } 
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The two-argument constructor creates a temporary object in a safe empty state if the validation 

fails and assigns that temporary object to the current object.   

The single-argument constructor creates a temporary object using the two-argument constructor, 

which validates the data, and then assigns the temporary object to the current object.   

Classes with Resources 

Assigning a temporary object to the current object requires additional code if the object manages 

resources.  To prevent the assignment operator from releasing not-as-yet-acquired resources we 

initialize all resource instance variables to empty values (nullptr).   

For example, if our Student object stores its grades in dynamic memory, then we need to add the 

highlighted code:  

class Student { 

     int no; 

     char* grade; 

 public: 

     // ... 

 }; 

 

 Student::Student() { 

    // safe empty state 

    no = 0; 

    grade = nullptr; 



 } 

 

 Student::Student(int n) { 

    grade = nullptr; 

    *this = Student(n, ""); 

 } 

 

 Student::Student(int n, const char* g) { 

     int i; 

     bool valid = true; // assume valid input, check invalidity  

 

     // validate client data 

     if (n < 1) 

         valid = false; 

     else { 

         for (i = 0; g[i] != '\0' && valid; i++) 

             valid = g[i] >= 'A' && g[i] <= 'F' && g[i] != 'E'; 

 

     if (valid) { 

         // accept client data 

         no = n; 

         grade = new char[std::strlen(g) + 1]; 

         std::strcpy(grade, g); 

     } 

     else { 

         // set to a safe empty state 

         grade = nullptr; 

         *this = Student(); 

     } 

 } 

 

Good Design Tip 

Using temporary objects to avoid repeating logic is good programming practice.  If we update 

the logic later, there is no chance that we will update the logic in one part of the source code and 

neglect to update the same logic in another part of the code.  

  

1.7 Helper Functions 

A well-encapsulated class can accept external support in the form of global functions that contain 

additional logic.  We call these supporting functions helper functions.  They access objects solely 

through their parameters, all of which are explicit.  Since helpers are not members of any class, 

they have no implicit parameters.  In a typical helper function at least one parameter receives an 

object of the class that the function is supporting.  

This chapter describes how to define helper functions, including operators, and how to grant 

select helpers privileged access to the private members of a class.   



Free Helpers 

A free helper function is a function that does not need access to the private members of the class 

that it supports.  Public member functions on the object provide whatever information the helper 

function requires.  Coupling between a free helper function and the supported class is minimal.  

Comparison 

Consider a helper function that compares two objects of the same class.  The helper returns true 

if their data values are identical and false otherwise.  

Example 

Let us add two queries (getNo() and getGrades()) to our class definition and introduce a free 

helper function named areIdentical() to support our Student class.  We insert the prototype for 

our helper function into the header file after the class definition: 

// Student.h 

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

     const Student& operator+=(char); 

     int getNo() const { return no; } 

     const char* getGrades() const { return grade; }  

 }; 

 

 bool areIdentical(const Student&, const Student&);  

 

The implementation file contains the definition of our helper function.  

// Student.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 #include "Student.h" 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

     *this = Student(n, ""); 



 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 const Student& Student::operator+=(char g) { 

     int i = strlen(grade); 

     if (i < M) { 

         // there is room to add g 

         grade[i++] = g; 

         grade[i] = '\0'; 

     } 

     return *this; 

 } 

 

 bool areIdentical(const Student& lhs, const Student& rhs) {  

     return lhs.getNo() == rhs.getNo() && 

            strcmp(lhs.getGrades(), rhs.getGrades()) == 0; 

 } 

 

The following client compares the two objects: 

// Compare Objects 

 // compare.cpp 

 

 #include <iostream> 

 using namespace std; 

 #include "Student.h" 

 

 int main () { 

     Student harry(975,"AAAAA"), josee(975,"AAAAA"); 

 

     if (areIdentical(harry, josee)) 

         cout << "are identical" << endl; 

     else 

         cout << "are different" << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 are identical  

 

  

 

The Cost of Freedom 

Free helper functions require queries for information that is otherwise not accessible through 

existing public member functions.  If we add a data member to the class, we may also need to 

add a query to access its value.  The class definition grows with the addition of each new 

query.  We call this growth class bloat.   



To offset class bloat, we introduce friendship (as described below). 

Helper Operators 

Helper operators are overloaded operators that are global functions.  Candidates for helper 

operators are those that do not change the values of thier operands as shown in the table below. 

 

Effect on Operand(s) Candidate Operands Operator 

Left Operand Changes Member 
0 ++ -- - + ! & *  

1 = += -= *= /= %= 

Neither Operand Changes Helper 2 + - * / % == != >= <= > < << >> 

 

Comparison 

To improve readability, let us replace our areIdentical() function with an overloaded == operator 

that also takes two Student operands.  The header file for the Student class now contains:  

 

// Student.h 

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

     const Student& operator+=(char); 

     int getNo() const { return no; } 

     const char* getGrades() const { return grade; }  

 }; 

 

 bool operator==(const Student&, const Student&);  

 

This helper operator accesses the private data of each operand through queries: 

bool operator==(const Student& lhs, const Student& rhs) {  

    return lhs.getNo() == rhs.getNo() && 

           strcmp(lhs.getGrades(), rhs.getGrades()) == 0; 

 } 

 

Addition 



Let us overload the + operator to add a single grade to a Student object and return a copy.  The 

left left operand is a Student and the right operand is a char.  The header file for the Student class 

now contains:  

// Student.h 

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

     const Student& operator+=(char); 

     int getNo() const { return no; } 

     const char* getGrades() const { return grade; }  

 }; 

 bool operator==(const Student&, const Student&);  

 Student operator+(const Student&, char); 

 

Our implementation avoids accessing private data by initializing a new Student object to the left 

operand and calling the += member operator on that object to add the right operand: 

Student operator+(const Student& s, char grade) { 

     Student copy = s; // makes a copy 

     copy += grade;    // calls the += operator on copy  

     return copy;      // return updated copy 

 } 

 

For symmetry, we overload this operator for identical operand types in reverse order.  The 

complete header file contains: 

// Student.h 

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

     const Student& operator+=(char); 

     int getNo() const { return no; } 

     const char* getGrades() const { return grade; }  

 }; 

 

 bool operator==(const Student&, const Student&);  



 Student operator+(const Student&, char); 

 Student operator+(char, const Student&); 

 

Our implementation calls the original version with the arguments switched: 
 

// Student.cpp 

 

 #include <iostream> 

 #include <iomanip> 

 using namespace std; 

 #include "Student.h" 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

     *this = Student(n, ""); 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 const Student& Student::operator+=(char g) { 

     int i = strlen(grade); 

     if (i < M) { 

         // there is room to add g 

         grade[i++] = g; 

         grade[i] = '\0'; 

     } 

     return *this; 

 } 

 

 bool operator==(const Student& lhs, const Student& rhs) { 

     return lhs.getNo() == rhs.getNo() && 

            strcmp(lhs.getGrades(), rhs.getGrades()) == 0; 

 } 

 

 Student operator+(const Student& student, char grade) { 

     Student copy = student; // makes a copy 

     copy += grade;          // calls the += operator on copy  

     return copy;            // return updated copy 

 } 

 

 Student operator+(char grade, const Student& student) { 

     return student + grade; // calls operator+(const 

                             //    Student&, char) 

 } 



 

The following client code produces the results shown on the right: 

// Helper Operator 

 // helper-operator.cpp 

 

 #include <iostream> 

 using namespace std; 

 #include "Student.h" 

 

 int main () { 

     Student harry(975,"AAAAA"); 

 

     harry.display(); 

     cout << endl; 

     harry = harry + 'B'; 

     harry.display(); 

     cout << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 975 AAAAA 

 

 

 975 AAAAAB  

  

 

Friendship 

Friendship grants access to all private members of a class.  By granting a helper function 

friendship status, a class allows that helper function access to any of its private members: data 

members or member functions.  Friendly helper functions minimize class bloat.   

To grant a helper function friendship status, we declare the function a friend.  A friendship 

declaration takes the form  

friend Type identifier(...); 

 

where Type is the return type of the function and identifier is the function's name.  

 

For example: 

 
// Student.h 

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

     const Student& operator+=(char); 

     friend bool operator==(const Student&, const Student&);  

 }; 

 

 Student operator+(const Student&, char); 

 Student operator+(char, const Student&); 



 

Our implementation looks like: 

// Student.cpp 

 

 #include <iostream> 

 #include <cstring> 

 using namespace std; 

 #include "Student.h" 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

     *this = Student(n, ""); 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic 

     no = n; 

     strcpy(grade, g); 

 } 

 

 void Student::display() const { 

     cout << no << ' ' << grade; 

 } 

 

 const Student& Student::operator+=(char g) { 

     int i = strlen(grade); 

     if (i < M) { 

         // there is room to add g 

         grade[i++] = g; 

         grade[i] = '\0'; 

     } 

     return *this; 

 } 

 

 bool operator==(const Student& lhs, const Student& rhs) {  

     return lhs.no == rhs.no && 

            strcmp(lhs.grade, rhs.grade) == 0; 

 } 

 

 Student operator+(const Student &s, char grade) { 

     Student copy = s; // makes a copy 

     copy += grade;    // calls the += operator on copy  

     return copy;      // return updated copy 

 } 

 

 Student operator+(char grade, const Student &s) { 

     return s + grade; // calls operator+(const 

                             //    Student&, char) 

 } 

 



We have added the keyword friend only to the declaration within the class definition.  We did 

not apply the keyword to our implementation.   

The following client code that uses this implementation produces the results shown on the right: 

// Friends 

 // friends.cpp 

 

 #include <iostream> 

 using namespace std; 

 #include "Student.h" 

 

 int main () { 

     Student harry(975,"AAAAA"), backup = harry; 

 

     harry.display(); 

     cout << endl; 

     harry = harry + 'B'; 

     harry.display(); 

     cout << endl; 

     if (harry == backup) 

         cout << "identical" << endl; 

     else 

         cout << "different" << endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 975 AAAAA 

 

 

 975 AAAAAB  

 

 

 

 

 different 

          

 

The Cost of Friendship 

Friendship is the strongest relationship that a class can have with an outside entity.  Friendship is 

not exclusive.  A friend of one class may be a friend of any other class.  

A class definition that grants friendship to a helper function allos that function to alter the values 

of its private data members.  Granting friendship pierces encapsulation.   

As a rule, we grant friendship judiciously only to helper functions that require both read and 

write access to the private data members.  Where read-only access is all that a helper function 

needs, using queries is probably more advisable.   

Friendly Classes  

A class can grant access to its private members to all of the member functions of another 

class.  A class friendship declaration takes the form 

friend class Identifier; 

 

where Identifier is the name of the class to which the host class grants friendship privileges.  

 



For example, an Administrator class needs access to all of the information held within each 

Student object.  To grant such access, we simply include a class friendship declaration within the 

Student class definition 

// Student.h 

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display() const; 

     const Student& operator+=(char); 

     friend bool areIdentical(const Student&, const Student&);  

     friend class Administrator; 

 }; 

No Reciprocity or Transitivity 

 

Friendship is neither reciprocal nor transitive.  Just because one class is a friend of another class 

does not mean that the latter is a friend of the former.  Just because a class is a friend of another 

class and that other class is a friend of yet another class does not mean that the latter class is a 

friend of either of them.  

Consider three classes: a Student, an Administrator and an Auditor.   

• Let the Auditor be a friend of the Administrator and the Administrator be a friend of the 

Student 

• Just because the Auditor is a friend of any Administrator and the Administrator is a 

friend of any Student, the Administrator is not necessarily a friend of the Auditor and the 

Student is not necessarily a friend of the Administrator (lack of reciprocity) 

• Just because the Auditor is a friend of any Administrator and the Administrator is a 

friend of any Student, the Auditor is not necessarily a friend of any Student (lack of 

transitivity) 

1.8 Custom I/O Operators 

 

Object-oriented languages support a variety of relationships between classes.  These include 

compositions and associations, both of which are looser than friendship.  A composition is a 

relationship in which one class has another class.  An association is a relationship in which one 

class uses another class.  Associations are looser than compositions.   



Relationship diagrams identify associations using open circles and compositions using filled 

circles.  The diagram below shows that Code uses the Calendar (to determine availability), while 

each Course has a Code class.   

 

To associate our own classes with those of the iostream library stream classes we overloading 

the insertion and extraction operators as helper operators that take iostream objects as left 

operands and objects of our class type as right operands.  

This chapter describes how to overload the insertion and extraction operators for objects of our 

own class type.  Thechapter concludes by introducing the standard library's string class, which is 

quite useful in managing character stream input of user-defined length.  

Design Considerations 

The C++ operators for inserting values into an output stream and extracting values from an input 

stream are: 

• << (insert into an output stream) 

• >> (extract from an input stream) 

The iostream library overloads these operators for std::ostream/std::istream objects as left 

operands and fundamental types as right operands.  The library also defines the standard output 

and input objects (cout, cin).   

We adopt scope resolution notation to refer to these entities each of which is defined in the 

standard namespace (std::):  

#include <iostream> 

 

 int main() { 

     int x; 

 

     std::cout << "Enter an integer : "; 

     std::cin >> x; 

     std::cout << "You entered " << x << 

std::endl;  

 } 

 

 

 

 

 

 Enter an integer : 

3  

 

 You entered 3  

 



Objective 

We wish to associate our Student class with the iostream classes, so that any client can use the 

insertion and extraction operators to process objects of our class: 

#include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Student harry; 

 

     std::cin >> harry; 

     std::cout << harry << std::endl; 

 } 

 

 

 

 

 

 Enter number : 1234 

 Enter grades : ABACA 

 1234 ABACA  

Good Design 

In overloading the insertion and extraction operators for our class types, we intend to:  

• provide flexibility in the selection of output objects 

• use scope resolution on classes and objects defined in the std namespace 

• enable cascading as implemented for fundamental types 

Selection of Output Objects 

To enable selection of the output object, we upgrade our display() member function to receive a 

reference to an object of std::ostream type: 

// Student.h 

 

 #include <iostream> // for 

std::ostream  

 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display(std::ostream& os) 

      const; 

 }; 

 // Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 // ... 

 

 void 

Student::display(std::ostream&  

  os) const { 

     os << no << ' ' << grade; 

 } 

 // ... 

 

With this code the client chooses the output object (cout, cerr, clog).  

 

 



Scope Resolution 

Scope resolution on the display() function's parameter exposes the class that we actually use, 

without exposing any other name defined in the std namespace.   

This convention is important in coding header files.  Exposing all of the names in any namspace 

may lead to unnecessary conflicts with new names or conflicts when several header files are 

included in an implementation file.   

The preferred method of coding header files is shown on the right:  

// Student.h 

 

 #include <iostream> 

 using namespace std; // POOR DESIGN 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display(ostream& os) const; 

 }; 

 // Student.h 

 

 #include <iostream>  // GOOD DESIGN 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display(std::ostream& os) 

      const;  

 }; 

 

Cascading 

Cascading support enables concatenation of operations where the leftmost operand serves as the 

left operand for every operation in a compound expression.   

For example, the cascaded expression  

std::cout << x << y << z << std::endl; 

expands to two simpler sub-expressions executed in the following order: 

std::cout << x; 

std::cout << y << z << std::endl; 

The cascaded sub-expression 

std::cout << y << z << std::endl; 

 

expands to two simpler sub-expressions executed in the following order: 

 
std::cout << y; 

std::cout << z << std::endl; 



Finally, the cascaded sub-expression 

std::cout << z << std::endl; 

 

expands into two simpler sub-expressions executed in the following order: 

 
std::cout << z; 

std::cout << std::endl; 

To enable cascading, we return a modifiable reference to the left operand.  

Returning a modifiable reference from a function enables the client to use the return value as the 

left operand for the operator on its right.  The call to an operator that returns a modifiable 

reference takes the following form after returning from the function: 

return value   next operator   next right operand 

The next right operand may be a compound expression with more operators as shown in the 

above example.  

Two Helper Operators 

The prototypes for overloading insertion and extraction operators on our own classes take the 

form   

 std::istream& operator>>(std::istream&, Type&); 

 std::ostream& operator<<(std::ostream&, const Type&); 

where Type is the name of the class.   

The header file for our Student class upgraded for these custom operators is: 



 // Student.h 

 

 #include <iostream> // for std::ostream, std::istream 

 const int M = 13; 

 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     void display(std::ostream& os) const; 

     operator bool() const { return no == 0; } 

 }; 

 

 std::istream& operator>>(std::istream& is, Student& s); 

 std::ostream& operator<<(std::ostream& os, const Student& s);  

The bool conversion operator lets the client know if the object is in a safe empty state.  

The implementation file for our upgraded Student class contains: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

     *this = Student(n, ""); 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     os << no << ' ' << grade; 

 } 

 

 std::ostream& operator<<(std::ostream& os, const Student& st){  

     st.display(os); 

     return os; 

 } 

 

 std::istream& operator>>(std::istream& is, Student& s) { 



     int no; 

     char grade[M+1]; 

 

     // student number 

     std::cout << "Number : "; 

     is >> no; 

 

     // student grades 

     std::cout << "Grades : "; 

     is.ignore();             // swallow newline in the buffer  

     is.getline(grade, M+1);  // read string with whitespace 

 

     Student temp(no, grade); 

     if (!temp) 

         s = temp;  // replace s only if not empty 

     return is; 

 } 

 

The getline() member function receives in its second parameter the size of the C-style string that 

accepts the input data, which including room for the null byte terminator.  

The following client uses our upgraded Student class to produce the results shown on the right: 

// Custom I/O Operators 

 // customIO.cpp 

 

 #include "Student.h" 

 

 int main () { 

     Student harry; 

 

     std::cin >> harry; 

     std::cout << harry << std::endl; 

 } 

 

 

 

 

 

 

 

 Number : 1234 

 Grades : ABACA  

 1234 ABACA  

In this solution we assume that the user does not enter characters that would cause a stream 

failure.  To process failures, we include validation logic that tests the state of the input object and 

requests corrected input as required (see the Robust Validation section in the chapter on Input 

and Output Examples).  

String Class  

The Problem 

The solution in the above example can fail if the user enters more than M grades.  Determining 

the amount of memory needed to hold the grades that the user chooses to input requires a 

dynamic solution.  Since we do not know how much memory to allocate before receiving all of 

the user's input, we cannot predict at compile time the maximum size of memory that any client 

will require.  

 



The Solution 

 

The string class of the standard library provides a solution that allocates the required amount of 

memory at run-time.  A string object can accept as many characters as the user enters.  The 

helper function getline() extracts them from the input stream. 

The prototype for this helper function is  

std::istream& getline(std::istream&, std::string&, char); 

 

The first parameter receives a modifiable reference to the istream object, the second parameter 

receives a modifiable reference to the string object and the third parameter receives the character 

delimiter for terminating the extraction (newline by default).  

The <string> header file contains the class definition with this prototype.  The class definition 

includes two member functions for converting its internal data into a C-style null-terminated 

string: 

• std::string::length() - returns the number of characters in the string 

• std::string::c_str() - returns the address of the C-style null-terminated version of the 

string  

Preliminary Example 

The following client extracts an unknown number of characters from the standard input stream 

and displays the characters on the standard output object.  The extraction involves five steps:  

• define a string object to accept the input 

• extract the input using the getline() helper function 

• query the memory required for a C-style null terminated string 

• allocate dynamic memory for the C-style null-terminated string 

• copy the input data from the string object into the allocated memory 

 

// String class example 

 // string.cpp 

 

 #include <iostream> 

 #include <string> 

 

 int main( ) { 

     char* s; 

     std::string str; 

 

     std::cout << "Enter a string : "; 

     if (std::getline(std::cin, str)) { 



         s = new char [str.length() + 1]; 

         std::strcpy(s, str.c_str()); 

         std::cout << "The string entered is : >" << s << '<' << std::endl;  

         delete [] s; 

     } 

 } 

 

Student Class Example 

To upgrade our Student class to accept any number of characters, we use a local string object in 

our overload of the extraction operator.   

The header file for our Student class contains:  

 

// Student.h 

 

 #include <iostream> 

 

 class Student { 

     int no; 

     char* grade; 

 public: 

     Student(); 

     Student(int, const char*); 

     Student(const Student&); 

     Student& operator=(const Student&);  

     ~Student(); 

     operator bool() const { return no == 0; } 

     void display(std::ostream&) const; 

 }; 

 

 std::istream& operator>>(std::istream& is, Student& s); 

 std::ostream& operator<<(std::ostream& os, const Student& s);  

 

The implementation file contains: 

// Student.cpp 

 

 #include <cstring> 

 #include <string> 

 #include "Student.h" 

 

 Student::Student() { 

    // safe empty state 

    no = 0; 

    grade = nullptr; 

 } 

 

 Student::Student(int n) { 

    grade = nullptr; 

    *this = Student(n, ""); 

 } 

 



 Student::Student(int n, const char* g) { 

     int i; 

     bool valid = true; // assume valid input, check invalidity  

 

     // validate client data 

     if (n < 1) 

         valid = false; 

     else { 

         for (i = 0; g[i] != '\0' && valid; i++) 

             valid = g[i] >= 'A' && g[i] <= 'F' && g[i] != 'E'; 

 

     if (valid) { 

         // accept client data 

         no = n; 

         grade = new char[std::strlen(g) + 1]; 

         std::strcpy(grade, g); 

     } 

     else { 

         // set to a safe empty state 

         grade = nullptr; 

         *this = Student(); 

     } 

 } 

 

 Student::~Student() { 

     delete [] grade; 

 } 

 

 void Student::display(std::ostream& os) const {  

     os << no << ' ' 

        << ((grade != nullptr) ? grade : ""); 

 } 

 

 std::ostream& operator<<(std::ostream& os, const Student& s) {  

     s.display(os); 

     return os; 

 } 

 

 std::istream& operator>>(std::istream& is, Student& s) { 

     bool ok; 

     int number; 

     std::string grade; 

 

     // student number 

     std::cout << "Number : "; 

     is >> number; 

 

     // student grades 

     std::cout << "Grades : "; 

     is.ignore(); 

     if (std::getline(is, grade)) { 

         Student temp(number, grade.c_str()); 

         if (!temp) 

             s = temp; 

     } 

     else { 

         is.clear(); 



         is.ignore(2000, '\n'); 

     } 

     return is; 

 } 

 

The extraction operator only stores the input in the right operand if the getline() function 

successfully reads the grade input. 

// String Class 

 // string.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main ( ) { 

     Student harry; 

 

     std::cin >> harry; 

     std::cout << harry << std::endl;  

 } 

 

 

 

 

 

 

 

 

 

 Number : 1234 

 Grades : AABBCAADFBBCABBA  

 1234 AABBCAADFBBCABBA 

 

1.9  Custom File Operators 

 

File stream classes share much of their structure with the standard input and output classes 

described in the chapter entitled Input and Output Examples.  The iostream library associates its 

file objects with the fundamental types by overloading the extraction and insertion operators for 

those types.  We can overload these operators for objects of our own class type as right operands 

in the way that we did in the preceding chapter for the standard input and output objects as left 

operands.   

This chapter introduces the stream classes that manage communication with file objects.  The 

chapter describes how to create file objects from these classes, how to read and write data of 

fundamental type and how to overload the operators for file objects as left operands and objects 

of our own class type as right operands.   

File Stream Classes 

The iostream library defines three classes for managing communication between file streams 

containing 8-bit characters and system memory:  

• ifstream - processes input from a file stream 

• ofstream - processes output to a file stream 

• fstream - processes input from and output to a file stream 



These classes provide access to a file stream through separate input and output buffers.   

The fstream system header file defines these classes in the std namespace:   

#include <fstream> 

State Methods 

The queries for interrogating a file object include: 

• bool is_open() const - the file stream is open 

• bool good() const - the file stream is ready to process 

• bool fail() const - the file object has failed 

• bool eof() const - the file object has encountered an end of file mark 

• bool bad() const - the file object has encountered a serious error 

If a file object is not in a good() state, we must reset its state.  To reset state we call the modifier: 

• void clear() - resets the file object to a good state 

These member functions operate in the same way as described in the chapter entitled Input and 

Output Examples for the standard input and output objects. 

File Objects 

A file object is an instance of one of the file stream classes.  When used with the insertion or 

extraction operators, a file object processes data in formatted form.  The object uses the host 

platform's encoding sequence (ASCII, EBCDIC, Unicode) in converting from stream bytes to 

data stored in system memory and vice versa.  

File Connection 

We can connect a file object to a file for reading, writing or both.  The object's destructor closes 

the file connection.  

Input Objects 

We create a file object for reading by defining an instance of the ifstream class.  This class 

defines a no-argument constructor and one that receives the address of a C-style null-terminated 

string holding the name of the file.   

For example, 

#include <fstream> 

 



 std::ifstream fin("input.txt"); // connects fin to input.txt for reading  

 

To connect a file to an existing file object, we call the open() member function on the object.   

For example, 

#include <fstream> 

 

 std::ifstream fin;     // defines a file object named fin  

 fin.open("input.txt"); // connects input.txt to fin 

 

Output Objects 

We create a file object for writing by defining an instance of the ofstream class.  This class 

defines a no-argument constructor and one that receives the address of a C-style null-terminated 

string holding the name of the file.   

For example, 

#include <fstream> 

 

 std::ofstream fout("output.txt"); // connects fout to output.txt for 

writing  

 

To connect a file to an existing file object, we call the open() member function on the object.   

For example, 

 

#include <fstream> 

 

 std::ofstream fout;      // create a file object named fout  

 fout.open("output.txt"); // connects output.txt to fout 

 

Confirming the Connection 

The is_open() member function on a file object returns the current state of the connection: 

#include <iostream> 

 #include <fstream> 

 

 std::ofstream fout("output.txt");  // connects output.txt to fout for 

output  

 

 if (!fout.is_open()) { 

     std::cerr << "File is not open" << std::endl; 

 } else { 

     // file is open 

 

 } 

 

 

 



Fundamental Types 

 

We use the same syntax to read from a file and write to a file as we use to read from the 

standard input object and write to a standard output object (see the chapter entitled Input and 

Output Examples for a review).  

The standard library contains overloads of the extraction and insertion operators for each 

fundamental type with objects of the file stream classes as left operands.   

Reading From a File 

A file object reads from a file under format control using the extraction operator in the same way 

as the standard input object (cin) does using the operator.   

For example, consider a file with a single record: 12 34 45 abc  The output from the following 

program is shown on the right: 

// Reading a File 

 // readFile.cpp 

 

 #include <iostream> 

 #include <fstream> 

 

 int main() { 

     int i; 

 

     std::ifstream f("input.txt"); 

     if (f.is_open()) { 

         while (f.good()) { 

             f >> i; 

             if (f.good()) 

                 std::cout << i << ' '; 

             else if (!f.eof()) 

                 std::cout << "\n**Bad input**\n"; 

         } 

     } 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12 34 45 

 

 **Bad input**  

 

  

 

 

 

 

 

 



Writing to a File 

A file object writes to its connection under format control using the insertion operator in the 

same way as the standard output objects (cout, cerr and clog) do using the operator.   

For example, the contents of the file created by the following program are shown on the right 

 

 

// Writing to a File 

 // writeFile.cpp 

 

 #include <iostream> 

 #include <fstream> 

 

 int main() { 

     int i; 

 

     std::ofstream f("output.txt"); 

     if (f.is_open()) { 

         f << "Line 1" << std::endl;   // record 1 

         f << "Line 2" << std::endl;   // record 2 

         f << "Line 3" << std::endl;   // record 3 

     } 

 } 

 

 

 

 

 

 

 

 

 

 

 

 Line 1 

 Line 2 

 Line 3  

  

Custom Types  

Insertion and extraction operators that have been overloaded for standard output and input 

objects respectively as left operands and a custom type as the right operand work without 

modification with file objects as left operands.  This flexibility has to do with inheritance, which 

is described later in the chapter entitled Functions in a Hierarchy.  Neither the header file nor the 

implementation file require any modification.   

Since accepting input from a file does not involve the interaction that we expect across a 

standard input device, we typically overload the extraction operator to work differently with file 

objects.  We overload the operator for an ifstream object as the left operand.  Our overload of the 

ostream operator holds for output to a file stream as well as to the standard output stream.  

For example, we add the prototype for the file extraction helper to the definition of our Student 

class: 

// Student.h 

 

 #include <iostream> // for std::ostream, std::istream 

 #include <fstream>  // for std::ifstream 

 const int M = 13; 



 

 class Student { 

     int no; 

     char grade[M+1]; 

 public: 

     Student(); 

     Student(int); 

     Student(int, const char*); 

     Student& operator+=(char); 

     void display(std::ostream& os) const; 

     operator bool() const { return no == 0; } 

 }; 

 

 std::istream& operator>>(std::istream& is, Student& s); 

 std::ifstream& operator>>(std::ifstream& is, Student& s); 

 std::ostream& operator<<(std::ostream& os, const Student& s);  

 

The implementation file contains the definition of the file extraction operation for our Student 

class: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n) { 

     *this = Student(n, ""); 

 } 

 

 Student::Student(int n, const char* g) { 

     // see Current Object chapter for validation logic 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     os << no << ' ' << grade; 

 } 

 

 Student& Student::operator+=(char g) { 

     int i = strlen(grade); 

     if (i < M) { 

         // add validation logic here 

         grade[i++] = g; 

         grade[i] = '\0'; 

     } 

     return *this; 

 } 

 

 std::ostream& operator<<(std::ostream& os, const Student& st) {  



     st.display(os); 

     return os; 

 } 

 

 std::istream& operator>>(std::istream& is, Student& s) { 

     int no; 

     char grade[M+1]; 

 

     // student number 

     std::cout << "Number : "; 

     is >> no; 

 

     // student grades 

     std::cout << "Grades : "; 

     is.ignore();             // swallow newline in the buffer 

     is.getline(grade, M+1);  // read string with whitespace 

 

     Student temp(no, grade); 

     if (!temp) 

         s = temp;  // replace s only if not empty 

     return is; 

 } 

 

 std::ifstream& operator>>(std::ifstream& is, Student& s) { 

     int no; 

     char grade[M+1]; 

 

     // student number 

     is >> no; 

     is.ignore(); // skip whitespace 

 

     // student grades 

     is.getline(grade, M+1);  // read string with whitespace 

 

     Student temp(no, grade); 

     if (!temp) 

         s = temp;  // replace s only if not empty 

     return is; 

 } 

Compare the overloaded definitions for the extraction operator.  The ifstream definition omits 

user prompts.  

The client file that uses this upgraded Student class creates the file objects, writes to them and 

reads from them: 

// Custom File Operators 

 // customFile.cpp 

 

 #include "Student.h" 

 

 int main ( ) { 

     Student harry(975, "AABD"), josee(976, "BAAA");  

 

     std::ofstream oufile("Student.txt"); 

     oufile << harry << std::endl; 

 

 

 

 

 

 

 

 

 

 



     oufile << josee << std::endl; 

     oufile.close(); 

     std::cout << harry << std::endl; 

     std::cout << josee << std::endl; 

 

     std::ifstream infile("Student.txt"); 

     infile >> harry; 

     infile >> josee; 

     harry += 'B'; 

     josee += 'C'; 

     std::cout << harry << std::endl; 

     std::cout << josee << std::endl; 

 } 

 

 

 975 AABD 

 976 BAAA 

 

 

 

 

 

 

 975 AABDB 

 976 BAAAC   

The records written to the Student.txt file by this program are: 

 975 AABD 

 976 BAAA 

 

Nice To Know  

Open-Mode Flags  

We customize a file object's connection mode through combinations of flags passed as an 

optional second argument to the object's constructor or its open() member function.  

The flags defining the connection mode are: 

• std::ios::in open for reading 

• std::ios::out open for writing 

• std::ios::app open for appending 

• std::ios::trunc open for writing, but truncate if file exists 

• std::ios::ate move to the end of the file once the file is opened 

Practical combinations of these flags include 

• std::ios::in|std::ios::out open for reading and writing (default) 

• std::ios::in|std::ios::out|std::ios::trunc open for reading and overwriting 

• std::ios::in|std::ios::out|std::ios::app open for reading and appending 

• std::ios::out|std::ios::trunc open for overwriting 

The vertical bar (|) is the bit-wise or operator.  

The Defaults 

The default combinations of the no-argument and one-argument constructors are:  

• ifstream - std::ios::in - open for reading 

• ofstream - std::ios::out - open for writing 

• fstream - std::ios::in|std::ios::out - open for reading and writing 



The Logical Negation Operator 

The standard library overloads the logical negation operator (!) as an alternative to the fail() 

query.  This operator reports true if the latest operation has failed or if the stream has 

encountered a serious error.  

We can invoke this operator on any stream object to check the success of the most recent 

activity: 

if (fin.fail()) { 

     std::cerr << "Read error"; 

     fin.clear(); 

 } 

 if (!fin) { 

     std::cerr << "Read error"; 

     fin.clear(); 

 } 

The operator applied directly to a file object returns the state of the connection: 

#include <iostream> 

#include <fstream> 

 

 std::ofstream fout("output.txt");  // connects fout to output.txt for 

writing  

 

 if (!fout) { 

     std::cerr << "File is not open" << std::endl; 

 } else { 

     // file is open 

 

 } 

 

Rewinding a Connection 

istream, fstream 

 

To rewind an input stream we call: 

• istream& seekg(0) - sets the current position in the input stream to 0 

ostream, fstream 

To rewind an output stream we call: 

• ostream& seekp(0) - sets the current position in the output stream to 0 

Premature Closing 

To close a file connection before the file object has gone out of scope, we call the close() 

member function on the object:  

// Concatenate Two Files 

 // concatenate.cpp 

 



 #include <fstream> 

 

 int main() { 

     std::ifstream in("src1.txt");    // open 1st source file 

     std::ofstream out("output.txt"); // open destination file  

 

     while (!in.eof()) 

         out << in.get();        // byte by byte copy 

     in.clear(); 

     in.close();                 // close 1st source file 

     in.open("src2.txt");        // open 2nd source file 

 

     while (!in.eof()) 

         out << in.get();        // byte by byte copy 

     in.clear(); 

 } 

 

Writing to and Reading from the Same File 

An instance of the fstream class can write to a file and read from that same file.   

For example, the following program produces the output shown on the right 

// File Objects - writing and reading 

 // fstream.cpp 

 

 #include <iostream> 

 #include <fstream> 

 

 int main() { 

 

     std::fstream f("file.txt", 

      std::ios::in|std::ios::out|std::ios::trunc); 

     f << "Line 1" << std::endl;   // record 1 

     f << "Line 2" << std::endl;   // record 2 

     f << "Line 3" << std::endl;   // record 3 

     f.seekp(0);                   // rewind output 

     f << "****";                  // overwrite 

 

     char c; 

     f.seekg(0);                   // rewind input 

     f << std::noskipws;           // don't skip whitespace 

     while (f.good()) { 

         f >> c;                   // read 1 char at a time 

         if (f.good()) 

             std::cout << c;       // display the character 

     } 

     f.clear();                    // clear failed (eof) state  

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 **** 1 

 Line 2 

 Line 3   

 

 

 

 

1.10 Check Your Progress 



 

Q.1 What is the difference between Constructor and Destructor? Explain with the help of   

     an example.  

Q.2 What is Default Constructor and Default Destructor? Give an example. 

Q.3 What is Copy Constructor? Give example. 

Q.4 What is Assignment Operator? 

Q.5 What is Binary and Unary Operations? 

Q.6 What are Custom I/O Operators? 

Q.7 What are Custom File Operators? 
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1.1 Learning Objectives 



 

After going through this unit, the learner will able to: 

• Understand the concept of Inheritance  

• Define derived classes 

• Learn about the functions hierarchy  

• Learn and define derived classes and resources  

 

1.2 Introduction to Inheritance  

 

In object-oriented programming, inheritance is when an object or class is based on 

another object (prototypal inheritance) or class (class-based inheritance), using the same 

implementation (inheriting from an object or class) specifying implementation to maintain the 

same behavior (realizing an interface; inheriting behavior). It is a mechanism for code reuse and 

to allow independent extensions of the original software via public classes and interfaces. The 

relationships of objects or classes through inheritance give rise to a hierarchy. Inheritance was 

invented in 1967 for Simula. The term "inheritance" is loosely used for both class-based and 

prototype-based programming, but in narrow use is reserved for class-based programming (one 

class inherits from another), with the corresponding technique in prototype-based programming 

being instead called delegation (one object delegates to another). 

 

1.3 Derived Classes 

 

Inheritance is the second prominent concept that object-oriented languages implement 

and is closely related to encapsulation.  Inheritance refers to the relationship between classes 

where one class inherits the entire structure of another class.  Inheritance is naturally 

hierarchical, a tighter relationship than composition and the most highly coupled after 

friendship.  

This chapter introduces hierarchy, the terminology used to describe inheritance and the syntax 

for defining a class that inherits the structure of another class.  This chapter also covers 

accessibility privileges between classes within a hierarchy.   

 



Hierarchies 

A comprehensive example of inheritance relationships is the Linnean Hierarchy in Biology (a 

small portion is shown below).  This hierarchy relates all biological species in existence to one 

another.  Starting from the bottom of the hierarchy, we identify a human as a homo, which is a 

hominidae, which is a primate, which is a mammal, which is a chordata, which is an 

animal.  Similarily a dog is a canis, which is a canidae, which is a carnivora, which is a mammal, 

which is a chordata, which is an animal. 

 

 

 

Carl Linnaeus earned himself the title of Father of Taxonomy after developing this 

hierarchy.  He grouped the genera of Biology into higher taxa based on shared 

similarities.  Using his taxa with its modern refinements, we say that the genus Homo, which 

includes the species sapiens, belongs to the Family Hominidae, which belongs to the Order 

Primates, which belongs to the Class Mammalia, which belongs to the Phylum Chordata, which 

belongs to the Kingdom Animalia.  For more details see the University Of Michigan Museum Of 

Zoology's Animal Diversity Site. 

Inheritance is a transitive relationship.  A human inherits the structure of a homo, which inherits 

the structure of a hominoid, which inherits the structure of a primate, which inherits the structure 

of a mammal, which inherits the structure of a chordata, which inherits the structure of an 

animal.  

Inheritance is not commutative.  A primate is an animal, but an animal is not necessarily a 

primate: dogs and foxes are not primates.  Primates have highly developed hands and feet, 

shorter snouts and larger brains than dogs and foxes.  

 



Terminology 

The relative position of two classes in a hierarchy identifies their inheritance relationship.  A 

class lower in the hierarchy is a kind of the class that is higher in the hierarchy.  For example, a 

dog is a kind of canis, a fox is a kind of vulpes and a human is a kind of homo.  In our course 

example from the first chapter, a Hybrid Course is a kind of Course.  We depict inheritance by 

an arrow pointed towards the inherited class.  

 

The Hybrid Course class inherits the entire structure of the Course class. 

Base and Derived 

We call the Course class the base class and the Hybrid Course class the derived class.  A derived 

class is lower in the hierarchy, while its base class is higher in the hierarchy.  The derived class 

inherits the entire structure of its base class.  The derived class is the subject of 'is-a-kind-of', 

while the base class is the object.  

We depict an inheritance relationship using an arrow drawn from the derived class to the base 

class: 

 

We depict an instance of a derived class by drawing the instance variables of the derived class in 

the direction of increasing addresses with respect to the instance variables of its base class: 

 



A derived class object contains the instance variables of the base class and those of the derived 

class, while a base class object only contains the instance variables of the base class.   

The terms base class and derived class are C++ specific.  Equivalent terms for these object-

oriented concepts include:  

• base class - super class, parent class 

• derived class - subclass, heir class, child class 

Inherited Structure 

A derived class contains all of the instance variables and all of the normal member functions of 

its base class.  The derived class does not inherit these special functions: constructors, destructors 

and assignment operators.  Normal member functions exclude these special member functions.  

Definition of a Derived Class 

The definition of a derived class takes the form 

class Derived : access Base { 

 

    // ... 

 

}; 

 

where Derived is the name of the derived class and Base is the name of the base class.  access 

identifies the access that member functions of the derived class have to the non-private members 

of the base class.  The default access is private.  The most common access modifier is public.  

Consider a Student ss a kind of Person.  Every Person has a name.  Accordingly, we derive our 

Student class from a Person class.   

The header file for our Student class contains the definitions of the base and derived classes:  

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M  = 13; 

 

 class Person {                   // Base Class - start 

     char person[N+1]; 

   public: 

     void set(const char* n); 

     void displayName(std::ostream&) const; 

 };                              // Base Class - end 

 

 class Student : public Person { // Derived Class - start  

     int no; 



     char grade[M+1]; 

   public: 

     Student(); 

     Student(int, const char*); 

     void display(std::ostream&) const; 

 };                              // Derived Class - end 

The implementation file defines the member functions: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 void Person::set(const char* n) { 

     std::strncpy(person, n, N); 

     person[N] = '\0'; 

 } 

 

 void Person::displayName(std::ostream& os) const {  

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // add validation logic here 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     os << no << ' ' << grade; 

 } 

The following client uses this implementation to produce the results on the right:  

 // Derived Classes 

 // derived.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Student harry(975, "ABBAD"); 

 

     harry.set("Harry");           // inherited 

     harry.displayName(std::cout); // inherited  

     harry.display(std::cout);     // not inherited 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD  

  



The main() function refers to the Student type, without mention of the Person type.  That is, the 

hierarchy itself is invisible to the client.  We can upgrade the hierarchy without having to alter 

the client code in any way.  

Access 

A derived class can have different levels of access to the members of its base class.  C++ 

supports three access modifiers: 

• private - bars all access 

• protected - limits access to derived classes only 

• public - unlimited access 

The member functions of our Student class cannot access the data member of the Person class, 

since that member is private to the base class.  On the other hand, the main() function and the 

member functions of the Student class can access the two member functions of Person, since 

those functions are public.   

Limiting Access to Derived Classes 

The keyword protected limits access to members of the derived classes.   

For example, let us limit access to displayName() to derived classes.  Then, the main() function 

cannot call this member function and we must call it directly from Student::display().  The 

header file limits the access: 

 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     void set(const char* n); 

   protected: 

     void displayName(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 



     Student(int, const char*); 

     void display(std::ostream&) const; 

 }; 

Our implementation of Student::display() calls displayName() directly: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 void Person::set(const char* n) { 

     std::strncpy(person, n, N); // validates length  

     person[N] = '\0'; 

 } 

 

 void Person::displayName(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // insert validation logic here  

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     displayName(os); 

     os << no << ' ' << grade; 

 } 

We refer to displayName() directly without any scope resolution as if this function is a member 

of our Student class.   

The following client produces the output shown on the right:  

// Protected Access 

 // protected.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Student harry(975, "ABBAD"); 

 

     harry.set("Harry"); 

     harry.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD 

  



Avoid Granting Protected Access to Data Members 

Granting data members protected access introduces a security hole.  If a derived class has 

protected access to any data member of its base class, any member function of the derived class 

can circumvent any validation procedure in the base class.  If the base class in the above example 

granted us access to the person data member, we could change its contents from our Student 

class to a string of more than N characters, which would probably break our Student object.  

1.4 Functions in a Hierarchy 

 

Inheritance treats normal member functions and the special member functions that 

manage objects differently.  A derived class inherits the normal member functions of its base 

class.  A derived class' destructor automatically calls the base class' destructor and no additional 

coding is required.  A derived class' default assignment operator automatically calls the base 

class' assignment operator and no additional coding is required.  Constructors in a class hierarchy 

are different because they are involved in the creation of objects: each constructor creates part of 

the final object.  

This chapter examines how member functions shadow one another in a hierarchy, describes the 

order in which the compiler calls constructors and destructors, shows how to define a derived 

class' constructor to access a specific base class constructor and finally, describes how to 

overload a helper operator for a derived class. 

Shadowing 

A member function of a derived class shadows the base class member function with the same 

name.  The compiler binds a call to the member function defined in the derived class, if one 

exists.   

We use scope resolution to access the base class version of a member function that the derived 

class version has shadowed.  A call to a shadowed function takes the form 

Base::identifier(arguments) 

 

where Base identifies the class that defines the shadowed function. 

 

 



Example 

Consider the following hierarchy.  The base and derived classes define separate versions of the 

display() member function.  The Student class version shadows the Person class version for any 

object of Student type: 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     void set(const char* n); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(int, const char*); 

     void display(std::ostream&) const; 

 }; 

 

We access the base class version using scope resolution: 
 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 void Person::set(const char* n) { 

     std::strncpy(person, n, N); 

     person[N] = '\0'; 

 } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // insert validation logic here  

     no = n; 

     std::strcpy(grade, g); 

 } 

 



 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << grade; 

 } 

 

The following client produces the output shown on the right: 

// Shadowing 

 // shadowing.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane; 

     Student harry(975, "ABBAD"); 

 

     harry.set("Harry"); 

     harry.display(std::cout); 

     std::cout << std::endl; 

     jane.set("Jane Doe"); 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD 

 

 Jane Doe  

 

harry.display(std::cout) calls Student::display(), which in turn calls the shadowed 

Person::display().  jane.display() calls Person::display() directly.  The derived version shadows 

the base version on harry, while the base version on jane is unshadowed. 

Design Tip 

By calling Person::display() within Student::display(), we hide the hierarchy from the 

client.  The main() function is hierarchy egnostic. 

Exposing Overloaded Member Functions 

C++ shadows member functions on their name and not their signature.  To expose a member 

function in the base class other than the function with the same signature we insert a using 

declaration into the definition of the derived class.  A using declaration takes the form 

using Base::identifier; 

where Base identifies the base class and identifier is the name of the shadowed function. 

 



Example 

Let us overload the display() member function in the Person class to take no arguments.  We 

insert the using declaration in the definition of the derived class to expose the member function 

for objects of the derived class.  

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     void set(const char* n); 

     void display(std::ostream&) const;  

     void display() const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(int, const char*); 

     void display(std::ostream&) const; 

     using Person::display;  

 }; 

 

We define the overloaded display() function for the base class: 

 
// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 void Person::set(const char* n) { 

     std::strncpy(person, n, N); 

     person[N] = '\0'; 

 } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 void Person::display() const { 

     std::cout << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 



     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // insert validation logic here  

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << grade; 

 } 

 

The following client produces the result shown on the right: 

 
// Overloading and Shadowing 

 // overloading.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane; 

     Student harry(975, "ABBAD"); 

 

     harry.set("Harry"); 

     harry.display(std::cout); 

     std::cout << std::endl; 

     harry.display(); 

     std::cout << std::endl; 

 

     jane.set("Jane Doe"); 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD 

 

 Harry 

 

 

 

 Jane Doe 

  

Constructors 

A derived class does not inherit a base class constructor by default.  That is, if we don't declare a 

constructor in our definition of the derived class, the compiler inserts an empty no-argument 

constructor by default. 

The compiler constructs an instance of the derived class in four steps in two distinct stages: 

1. construct the base class portion of the complete object  

1. allocate memory for the instance variables in the order of their declaration 

2. execute the base class constructor 

2. construct the derived class portion of the object  

1. allocate memory for the instance variables in the order of their declaration 



2. execute the derived class constructor 

 

In our example, let us define a no-argument constructor for the base class.  The header file 

declares the no-argument constructor: 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     void set(const char* n); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(int, const char*); 

     void display(std::ostream&) const; 

 }; 

 

The implementation file defines the base class constructor: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 void Person::set(const char* n) { 



     std::strncpy(person, n, N); 

     person[N] = '\0'; 

 } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(int n, const char* g) { 

     // insert validation logic here  

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << grade; 

 } 

The following client uses this implementation to produce the result shown on the right: 

// Derived Class Constructors 

 // derivedCtors.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane; 

     Student harry(975, "ABBAD"); 

 

     harry.set("Harry"); 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     jane.set("Jane"); 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD 

 

 

 

 Jane 

  

In this example, the compiler constructs the two objects as follows: 

1. by allocating memory for jane  

1. by allocating memory for person 

2. the base class constructor initializes person to an empty string 

2. by allocating memory for harry  



1. by allocating memory for person 

2. the base class constructor initializes person to an empty string 

3. by allocating memory for no and grade 

4. the derived class constructor initializes no and grade to 975 and "ABBAD" 

respectively 

Passing Arguments to a Base Class Constructor 

Each constructor of a derived class, other than the no-argument constructor, receives in its 

parameters all of the initial values passed by the client.  Each constructor forwards any relevant 

values to the base class constructor.  A base class constructor receives value in its parameters 

either from the derived class constructor or directly from the client program in the case of a base 

class object.  The base class constructor uses the values received to complete building the base 

class part of the object.  The derived class constructor uses the values received to complete 

building the derived class part of the object.  

A call to the base class constructor from a derived class constructor that forwards values takes 

the form 

 Derived( parameters ) : Base( arguments ) 

where Derived is the name of the derived class and Base is the name of the base class.  The 

single colon separates the header of the derived-class constructor from the call to the base class 

constructor.  Omitting this call defaults to a call to the no-argument base class constructor.  

Example 

Let us replace the set() member function in the base class with a one-argument constructor and 

upgrade the Student's two-argument constructor to receive the student's name.  The header file 

declares a single-argument base class constructor and a triple-argument derived class 

constructor: 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 



     Person(); 

     Person(const char*); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     void display(std::ostream&) const; 

 }; 

The implementation of the single-argument constructor copies the name to the instance variable: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << grade; 

 } 

The following client uses this implementation to produce the output shown on the right: 

// Derived Class Constructors with Arguments 

 // drvdCtorsArgs.cpp 

 

 



 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane("Jane"); 

     Student harry("Harry", 975, "ABBAD"); 

 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

Inheriting Base Class Constructors 

Consider cases where a derived class constructor forwards values to the base class 

constructor without executing any logic on the instance variables of the derived 

class.  To avoid coding the almost empty derived class constructor, C++ lets us 

inherit the base class constructor directly.   

The declaration for inheriting a base class constructor takes the form: 

using Base::Base; 

 

where Base is the name of the base class.  

 

 

 

 

 

 

 

 

 Harry 

975 

ABBAD 

 

 

 Jane 

  

Example 

Let us derive an Instructor class from the Person base class and inherit all of the constructors of 

the base class.  The header file overrides the no-inheritance default: 

// Student.h 

 

 // compiles with GCC 4.8 or greater or equivalent 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 

     void set(const char* n); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  



     void display(std::ostream&) const; 

 }; 

 

 class Instructor : public Person { 

   public: 

     using Person::Person; 

 }; 

The implementation file remains unchanged.  The following client uses this new class definition 

to produce the output shown on the right: 

// Inherited Constructors 

 // inheritCtors.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Instructor john("John"); 

     Person jane("Jane"); 

     Student harry("Harry", 975, "ABBAD"); 

 

     john.display(std::cout); 

     std::cout << std::endl; 

 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 John 

 

 

 Harry 975 ABBAD 

 

 

 Jane 

  

Destructors 

A derived class does not inherit the destructor of its base class.  Destructors execute in opposite 

order to the order of their object's construction.  That is, the derived class destructor always 

executes before the base class destructor.  

 



Example 

Let us define destructors for our base and derived classes that insert messages to standard 

output.  We declare the destructors in the class definitions: 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 

     ~Person(); 

     void set(const char* n); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     ~Student(); 

     void display(std::ostream&) const; 

 }; 

 

We specify the messages in the destructor definitions: 
 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 void Person::set(const char* n) { 

     std::strncpy(person, n, N); 

     person[N] = '\0'; 

 } 

 

 Person::~Person() { 

     std::cout << "Leaving " << person << std::endl; 

 } 



 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 Student::~Student() { 

     std::cout << "\nLeaving " << no << std::endl; 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << grade; 

 } 

The following client uses this implementation to produce the output shown on the right: 

// Derived Class Destructors 

 // drvdDtors.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane("Jane"); 

     Student harry("Harry", 975, "ABBAD"); 

 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD  

 

 Jane 

 Leaving 975 

 Leaving Harry 

 Leaving Jane 

 

Helper Operators 

A derived class does not support the helper functions of its base class.  Each helper function is 

dedicated to the class that it supports.  The compiler binds a call to a helper function on the basis 

of its parameter type(s).  

 



Example 

Let us upgrade our Student class to include overloads of the insertion and extraction operators 

for both base and derived classes.  The header file contains:  

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 

     void display(std::ostream&) const;  

 }; 

 std::istream& operator>>(std::istream&, Person&);  

 std::ostream& operator<<(std::ostream&, const Person&); 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     void display(std::ostream&) const; 

 }; 

 std::istream& operator>>(std::istream&, Student&);  

 std::ostream& operator<<(std::ostream&, const Student&);  

 

The implementation file defines the helper operators: 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 std::istream& operator>>(std::istream& is, Person& p) { 

     char name[N+1]; 

     std::cout << "Name: "; 

     is.getline(name, N+1); 

     p = Person(name); 

     return is; 

 } 

 



 std::ostream& operator<<(std::ostream& os, const Person& p) { 

     p.display(os); 

     return os; 

 } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     os << no << ' ' << grade; 

 } 

 

 std::istream& operator>>(std::istream& is, Student& s) {  

     int no; 

     char name[N + 1]; 

     char grade[M + 1]; 

     std::cout << "Name: "; 

     is.getline(name, N+1); 

     std::cout << "Number: "; 

     is >> no; 

     is.ignore(); // remove newline 

     std::cout << "Grades: "; 

     is.getline(grade, M+1); 

     s = Student(name, no, grade); 

     return is; 

 } 

 

 std::ostream& operator<<(std::ostream& os, const Student& s) {  

     const Person& p = s; // copies base class address 

     os << p; 

     s.display(os); 

     return os; 

 } 

 

The following client uses this implementation to produce the output shown on the right: 

// Helpers to Derived Classes 

 // drvdHelpers.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane; 

 

 

 

 

 

 

 

 



     Student harry; 

 

     std::cin >> jane; 

     std::cin >> harry; 

     std::cout << jane << std::endl; 

     std::cout << harry << std::endl; 

 } 

 Name: Jane Doe 

 Name: Harry 

 Number: 975 

 Grades: ABBD 

 

 Jane Doe 

 Harry 975 ABBD  

 

1.5 Derived Classes and Resources 

 

An inheritance hierarchy can access its resources at multiple levels.  Managing 

relationships between the special member functions in a hierarchy with resources may require 

intervention.  Our definitions of the copy constructors and copy assignment operators that 

manage resources may require explicit coding of the connections to their appropriate base class 

counterparts.  

This chapter describes how to define the constructors and the copy assignment operator of 

derived classes that access resources and how to call their appropriate counterparts in the base 

classes.   

Constructors and Destructor 

Each constructor of a derived class with a resource calls a constructor of its base class.  By 

default, that constructor is the no-argument constructor.  To override this default, we insert an 

explicit call to the base class constructor.   

The destructor of a derived class with a resource does not require any intervention to call the 

destructor of its base class, since each class in the hierarchy has but one destructor.  The 

compiler inserts the call to the base class destructor.   

Example 

Let us upgrade the definition of our Student class to accommodate a client defined number of 

grades.  We store the grades in dynamic memory and store the address of that memory in a 

resource instance pointer.   

The upgraded definition of our Student class contains a resource instance pointer:  

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 

 class Person { 

     char person[N+1]; 

   public: 



     Person(); 

     Person(const char*); 

     ~Person(); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char* grade; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     ~Student(); 

     void display(std::ostream&) const; 

 }; 

 

Our two-argument constructor forwards the student's name to the single-argument constructor of 

the base class and then allocates memory for the grades.  Our destructor deallocates that 

memory.  

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 Parson::Person() { } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade = nullptr; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     no = n; 

     if (g != nullptr) { 

         grade = new char[std::strlen(g) + 1]; 

         std::strcpy(grade, g); 

     } 

     else 

         grade = nullptr; 

 } 



 

 Student::~Student() { 

     delete [] grade; 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << (grade != nullptr ? grade : ""); 

 } 

 

The conditional selection in Student::display() handles objects in a safe empty state. 

The following client uses this implementation to produce the output shown on the right:  

// Derived Class with a Resource 

 // drvdResrce.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person jane("Jane"); 

     Student harry("Harry", 975, "ABBAD"); 

 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     jane.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD  

 

 

 Jane 

  

 

Copy Constructor 

The copy constructor of a derived class with a resource calls a constructor of the base class.  By 

default, that constructor is the no-argument constructor.  To override this default, we explicitly 

call the base class constructor of our choice.   

The header in the definition of the copy constructor for a derived class takes the form  

 Derived(const Derived& identifier) : Base(identifier) { 

 

      // ... 

 } 

 

The parameter receives an unmodifiable reference to an object of the derived class.  The 

argument in the call to the base class' constructor is the parameter's identifier.  

Copying occurs in two distinct stages and four steps altogether: 

1. copy the base class part of the existing object  



1. allocate memory for the instance variables of the base class in the order of their 

declaration 

2. execute the base class' copy constructor 

2. copy the derived class part of the existing object  

1. allocate memory for the instance variables of the derived class in the order of their 

declaration 

2. execute the derived class' copy constructor 

Example 

Let us declare our own definition of the copy constructor for our Student class, but use the 

default definition for the Person class: 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 

     ~Person(); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char* grade; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     Student(const Student&); 

     ~Student(); 

     void display(std::ostream&) const; 

 }; 

We implement the copying steps as follows: 

1. shallow copy the Person part of the source object  

o allocate static memory for person in the base class part of the newly created object 

o copy into person the string at address src.person 

2. copy the Student part of the source object  



o allocate static memory for no and *grade in the derived part of the newly created 

object 

o shallow copy src.no into no  

o allocate dynamic memory for a copy of src.grade 

o deep copy the string at src.grade into grade 

The default copy constructor for the base class performs a shallow copy.  The copy constructor 

for the derived class calls the base class copy constructor and performs the deep copy itself:  

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 Person::~Person() {} 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade = nullptr; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     no = n; 

     if (g != nullptr) { 

         grade = new char[std::strlen(g) + 1]; 

         std::strcpy(grade, g); 

     } 

     else 

         grade = nullptr; 

 } 

 

 Student::Student(const Student& src) : Person(src) { 

     no = src.no; 

     if (src.grade != nullptr) { 

         grade = new char[std::strlen(src.grade) + 1]; 

         std::strcpy(grade, src.grade); 



     } 

     else 

         grade = nullptr; 

 } 

 

 Student::~Student() { 

     delete [] grade; 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << (grade != nullptr ? grade : ""); 

 } 

 

The Student copy constructor executes its logic after the Person copy constructor has executed its 

logic.   

The following client uses this implementation to produce the output shown on the right:  

// Derived Class with a Resource 

 // drvdResrce.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Student harry("Harry", 975, "ABBAD"), 

             harry_ = harry; // calls copy constructor  

 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     harry_.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD  

 

 

 Harry 975 ABBAD  

  

 

Copy Assignment Operator 

 

Any custom copy assignment operator of a derived class with a resource DOES NOT by default 

call the copy assignment operator of the base class.  Only the default copy assignment operator 

of a derived class calls its base class counterpart.  Accordingly in a custom copy assignment 

operator of a derived class with a resource, we need to call the base class copy assignmnet 

operator explicitly. 

We call the base class copy assignment operator from within the body of the derived class 

assignment operator (unlike the copy constructor).  The call can take one of the following forms:  

• a functional expression 

• an assignment to the base class part of the current object 



The functional expression takes the form 

Base::operator=(identifier); 

The assignment expression takes the form 

(Base&)*this = identifier; 

 

Base is the name of the base class and identifier is the name of the right operand, which is the 

source object for the assignment.  Note that the address of the derived object is the same as the 

address of the base class part of that object.  The compiler distinguishes the call to the base class 

operator and a call to the derived class operator by the type of the left operand.  

Example 

The derived class definition declares a private member function for initializing along with the 

assignment operator: 

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 

     ~Person(); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char* grade; 

     void init(int, const char*); 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     Student(const Student&); 

     ~Student(); 

     Student& operator=(const Student& src); 

     void display(std::ostream&) const; 

 }; 

 

The private init() contains the copying logic shared by the constructors and the assignment 

operator:  

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 



 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 Person::~Person() {} 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade = nullptr; 

 } 

 

 void Student::init(int n, const char* g) {  

     no = n; 

     if (g != nullptr) { 

         grade = new char[std::strlen(g) + 1]; 

         std::strcpy(grade, g); 

     } 

     else 

         grade = nullptr; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     grade = nullptr; 

     init(n, g); 

 } 

 

 Student::Student(const Student& src) : Person(src) { 

     grade = nullptr; 

     init(src.no, src.grade); 

 } 

 

 Student::~Student() { 

     delete [] grade; 

 } 

 

 Student& Student::operator=(const Student& src) { 

     if (this != &src) { 

         // Base class assignment  

         // 1 - functional expression 

         // Person::operator=(src); 

         // 2 - assignment expression 

         (Person&)*this = src; // call base class assignment operator  

         delete [] grade; 

         init(src.no, src.grade); 

     } 

     return *this; 

 } 



 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << (grade != nullptr ? grade : ""); 

 } 

Sharing a private member function is one way of coding the copy constructor and assignment 

operator for the derived class.   

The following client uses this implementation to produce the output shown on the right:  

// Derived Class with a Resource Assignment 

 // drvdAssign.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Student harry("Harry", 975, "ABBAD"), backup; 

 

     harry.display(std::cout); 

     std::cout << std::endl; 

 

     backup = harry; 

 

     backup.display(std::cout); 

     std::cout << std::endl; 

 }  

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD  

 

 

 

 

 Harry 975 ABBAD  

  

Direct Call Copy Constructor 

The alternative to sharing a member function is a direct call from the copy constructor to the 

assignment operator (as in the chapter entitled Classes and Resources).  In a direct call design, 

we do not need to call the base class copy constructor since the assignment operator will copy 

the base class part of the object.  

Student::Student(const Student& src) { // calls no-argument base class 

constructor  

     grade = nullptr; 

     *this = src; 

 } 

 

 Student& Student::operator=(const Student& src) { 

     if (this != &src) { 

         // Base class assignment  

         // 1 - functional expression 

         // Person::operator=(src); 

         // 2 - assignment expression 

         Person& person = *this; // only copies address 

         person = src;           // call base class operator 

         delete [] grade; 

         no = src.no; 

         if (src.grade != nullptr) { 

             grade = new char[std::strlen(src.grade) + 1]; 

             std::strcpy(grade, src.grade); 

         } 



         else 

             grade = nullptr; 

     } 

     return *this; 

 } 

 

1.6 Check Your Progress  

 

Q.1 What are Derived Classes? 

Q.2 What is the difference between Encapsulation and Inheritance? 

Q.3 Define the following terms 

i. Base Class  

ii. Derived Class 

Q.4 Giving an example How to pass Arguments to a Base Class Constructor? 

Q.5 What is Copy Assignment Operator? 
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1.1 Learning Objectives 

 

After going through this unit, the learner will able to: 

• Understand the basic concepts of Polymorphism  

• Learn about the virtual functions 

• Define abstract base classes  

• Learn about function templates  

1.2 Introduction to Polymorphism  

 

Polymorphism is another building block of object oriented programming. The philosophy 

that underlies is “one interface, multiple implementations.” It allows one interface to control 

access to a general class of actions. Polymorphism can be achieved both in compile time and run 

time. 

 

Polymorphism through virtual function 

Virtual function : While declaring a function as virtual, the keyword virtual must precede the 

signature of the function. Every derived class redefines the virtual function for its own need. 

 

Uses of virtual function enable run time polymorphism. We can use base class pointer to point 

any derived class object. When a base class contains a virtual function and base class pointer 

points to a derived class object as well as the derived class has a redefinition of base class virtual 

function, then the determination of which version of that function will be called is made on run 



time. Different versions of the function are executed based on the different type of object that is 

pointed to. 

The following example shows polymorphism through virtual function. 

class Player { 

 public: 

  virtual void showInfo() { 

   cout << "Player class info" << endl; 

 } 

}; 

class Footballer : public Player { 

 public : 

  void showInfo() { 

   cout << "Footballer class info" << endl; 

 } 

}; 

class Cricketer : public Player { 

 public : 

  void showInfo() { 

   cout << "Cricketer class info" << endl; 

 } 

}; 

int main() { 

 Player *pPl,p1; 

 pPl = &p1; 

 Footballer f1; 

 Cricketer c1; 

 pPl->showInfo(); 

 pPl = &f1; 

 pPl->showInfo(); 

 pPl = &c1; 

 pPl->showInfo(); 

 system("pause"); 

 return 0; 

} 

 

In the above example, Player is the base class, Footballer and Cricketer are the derived class 

from Player. Virtual function showInfo is defined in Player class. Then it is redefined in 

Footballer and Cricketer class. Here, pPl is the Player class pointer, p1, f1 and c1 are Player, 

Footballer and Cricketer class object. 

At first, pPl is assigned the address of p1, which is a base class object. If showInfo is now called 

using pPl, showInfo function of base class is executed. Next, pPl points to address derived class 

(Footballer & Cricketer) . If showInfo is called now, the redefined showInfo function of 

Footballer & Cricketer class are executed. The key point is, which version of the showInfo 

function will be executed depends on which object is currently pointed by base class pointer. 



This decision is taken in run time, so it is an example of a run time polymorphism. This type of 

runtime polymorphism using virtual function is achieved by the base class pointer. 

Function overloading 

One way of achieving polymorphism is function overloading. When two or more functions share 

the same name with different parameter list, then this procedure is called function overloading 

and the functions are called overloaded function. 

The following example shows polymorphism using function overloading. 

class Player { 

 string mName; 

 int mAge; 

 string mGameType; 

 public: 

  void setInfo(string str) { 

  mName = str; 

  cout << "Name :" << mName << endl; 

 } 

 void setInfo(string str, int age) { 

  mAge = age; 

  mName = str; 

  cout << "Name :" << mName << " " << "Age :" << mAge << endl; 

 } 

 void setInfo(string str, int age, string game) { 

  mAge = age; 

  mName = str; 

  mGameType = game; 

  cout << "Name :" << mName  << " " << "Age :" << mAge << " " << 

"Game Type:" << mGameType << endl; 

 } 

}; 

int main() { 

 Player p1; 

 p1.setInfo("John Sena"); 

 p1.setInfo("C Ronaldo",25); 

 p1.setInfo("J Kallis",38,"Cricket"); 

 return 0; 

} 

 

In this example, three functions have same name setInfo but different parameter list is defined 

for each. One function takes only one string parameter, another takes one string and one integer 

parameter and the last one takes two string and one integer as parameter. When we call setinfo 

function from Player class object p1, compiler looks at the argument list. It matches the 

argument list with the signature of three different funciton named setinfo, then one of the 

function is called according to the match. For example, when p1.setInfo("John Sena") is used, 

out of the three setinfo fucntion, the one with signature void setInfo(string str) is called and this 



one is executed. When p1.setInfo("C Ronaldo",25)is used, out of the three setinfo function, the 

one with signature void setInfo(string str, int age)is called and this one is executed. 

1.3 Overview of Polymorphism  

 

Polymorphism is the third principal concept that object-oriented languages implement 

(alongside encapsulation and inheritance).  Polymorphism refers to the multiplicity of meanings 

attached to an identifier.  Polymorphic stands for 'of many forms'.  A polymorphic language 

selects an operation from a multitude based on its object's type.   

This chapter reviews the concept of type in detail along with its role in object-oriented 

languages.  This chapter also describes the four categories of polymorphism that object-oriented 

languages support. 

Languages 

Programming languages evolved from untyped origins through monomorphic languages to 

polymorphic ones.  Untyped languages support words of one fixed size.  Assembly languages 

and BCPL are examples.  Monomorphic languages support regions of memory of different sizes 

distinguished by their specific type.  The type of an object, once declared, cannot change 

throughout the object's lifetime.  Polymorphic languages relax this relation between a region of 

memory and the object's type by introducing ambiguity and bringing object descriptions closer to 

our natural language usage.  The type of a polymorphic object may change during its lifetime.  

Monomorphic languages require separate code for each type of object.  For instance, a 

monomorphic language requires the programmer to code a separate sort() function for each data 

type, even though the logic is identical across all types.  A polymorphic language, on the other 

hand, requires the programmer to code the function once and the langauge applies it to any type.  

C++ assumes that an object is monomorphic by default, but lets the programmer explicitly 

identify it as polymorphic.  

Types 

Raw memory stores information in the form of bit strings.  These bit strings may represent 

variables, objects, addresses, instructions, constants, etc.  Without knowing what a bit string 

represents, the compiler does not know how to interpret its value.  By associating a type with a 

region of memory, we inform the compiler how to interpret the bit string in that region of 

memory. 



 

For example, if we associate a region of memory with a Student and define the structure of a 

Student, the compiler knows that the first 4 bytes holds an int stored in equivalent binary form 

and the remaining 14 bytes hold an array of chars.  

Type System 

A type system introduces consistency into a programming language.  It is the first line of defense 

against coding relationships between unrelated entities.  We assume that the entities in the 

expressions that we code do have some relation to one another.  The presence of a type system 

enables the compiler to check whether the relation between entities follows a well-defined set of 

rules.  Each type admits its own set of operations in forming expressions.  The compiler rejects 

all operations outside this set.  Breaking the type system exposes the underlying bits strings and 

introduces uncertainty in how to interpret the contents of a region of memory.  

A strongly typed language enforces type consistency at compile-time and postpones type-

checking to run-time only for polymorphic objects.  C++ is a strongly typed langauge.  It checks 

for type consistency on monomorphic objects at compile-time and on polymorphic objects at 

run-time.  

Categories 

Compilers apply their language's type system to identify possible violations of that system.  Not 

all type differences between entities are necessarily errors.  Those differences that the language 

allows expose its polymorphism.  That is, the polymorphic features of a language represent the 

kinds of differences between types that the language supports. 

Classifications 

The polymorphic features of an object-oriented language are classified into four categories.  

Christopher Strachey (1967) introduced the concept of polymorphism informally into procedural 

programming languages by distinguishing functions that work 

• differently on different argument types  

• uniformly on a range of argument types  

He defined the former as ad-hoc polymorphism and the latter as parametric polymorphism: 



"Ad-Hoc polymorphism is obtained when a function works, or appears to work, on several 

different types (which may not exhibit a common structure) and may behave in unrelated ways 

for each type.  Parametric polymorphism is obtained when a function works uniformly on a 

range of types; these types normally exhibit some common structure." (Strachey, 1967) 

 

Cardelli and Wegner (1985) expanded Strachey's distinction to accommodate the object-oriented 

languages.  They distinguished functions that work on 

• a finite set of different and potentially unrelated types  

o coercion 

o overloading 

• a potentially infinite number of types across some common structure  

o inclusion 

o parametric 

 

Inclusion polymorphism is specific to object-oriented languages. 

Ad-Hoc Polymorphism 

Ad-hoc polymorphism is apparent polymorphism.  Its polymorphic character disappears at 

closer scrutiny. 

Coercion 

Coercion covers convertible changes in argument type to match the type of a corresponding 

function parameter.  It is a semantic operation to avoid a type error.  If the compiler encounters a 

mismatch between the type of an argument and the type of the corresponding parameter, the 

language allows conversion from the type of the argument to the type of the corresponding 

parameter.  The function definition itself only ever executes on one type - that of its parameter.  



C++ implements coercion at compile time.  If a compiler succeeds in matching the type of an 

argument to the type of the corresponding parameter in the function call, the compiler inserts the 

conversion code immediately before the function call.  

 

 

Coercion may 

• narrow the argument type (narrowing) 

• widen the argument type (promotion) 

For example, 

// Ad-Hoc Polymorphism - Coercion 

 // polyCoercion.cpp 

 

 #include <iostream> 

 

 // One function definition: 

 

 void display(int a) const { 

     std::cout << "One argument (" << a << ')';  

 } 

 

 int main( ) { 

 

     display(10); 

     std::cout << std::endl; 

     display(12.6); // narrowing 

     std::cout << std::endl; 

     display('A'); // promotion 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 One argument (10) 

 

 One argument (12) 

 

 One argument (63) 

  

Most programming languages support coercion to some extent.  For instance, C narrows and 

promotes argument types in function calls so that the same function will accept a variety of 

argument types, albeit limited.  

Overloading 

Overloading covers accepted variations in a function's definition to match the argument types to 

corresponding parameter types.  It is a syntactic abbreviation that associates the same function 

identifier with a variety of function definitions by distinguishing its parameter sets.  The same 

function name can be used with a variety of unrelated argument types.  Each set of argument 

types has its own function definition.  The compiler binds the function call to the matching 

function definition.   



Unlike coercion, overloading does not involve any common logic shared by the function 

definitions with the same identifer.  Uniformity is a coincidence rather than the rule.  The 

definitions may contain totally unrelated logic.  Each definition works only on its set of 

types.  The number of overloaded functions is limited by the number of definitions implemented 

in the source code.   

C++ compilers implement overloading at compile time by converting the function definitions 

into functions with different identifiers: the language mangles the original identifier with the 

paramter types to generate an unique name.  The linker uses the mangled name to bind the 

function call to the appropriate function definition.   

For example, 

// Ad-Hoc Polymorphism - Overloading 

 // polymorphismOverloading.cpp 

 

 #include <iostream> 

 

 // Two function definitions: 

 

 void display() const { 

     std::cout << "No arguments"; 

 } 

 

 void display(int a) const { 

     std::cout << "One argument (" << a << ')';  

 } 

 

 int main( ) { 

 

     display(); 

     std::cout << std::endl; 

     display(10); 

     std::cout << std::endl; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 No arguments 

 

 One argument (10) 

  

The C language does not admit overloading and requires a unique name for each function 

definition.  

Universal Polymorphism 

Universal polymorphism is true polymorphism.  Its polymorphic character survives at closer 

scrutiny.   

Universal polymorphism imposes no restriction on the admissible types.  The same function 

(logic) applies to a potentially unlimited range of different types.   

 

 



Inclusion 

Inclusion polymorphism covers selection of a member function definition from a set of 

definitions based on an object's type.  The type is one of the types belonging to an inheritance 

hierarchy.  The term inclusion refers to one type including another type within the hierarchy.  All 

function definitions share the same name throughout the hierarchy.  

In the hierarchy illustrated below, a HybridCourse uses one mode of delivery while a Course 

uses another mode.  That is, a mode() query on a Course object reports a different result from a 

mode() query on a HybridCourse object.   

 

Operations that are identical for all of the types within the hierarchy require only single 

definitions.  The assessments() query on a HybridCOurse object invokes the same logic as one 

on the Course object.  Defining a query for the HybridCourse class would only duplicate 

existing code.  Inclusion polymorphism eliminates duplicate logic across a hierarchy. 

 

Parametric 

Parametric polymorphism covers definitions that share identical logic independently of 

type.  The logic is common to all possible types, without restriction.  The types need not be 

related in any way.  For example, a function that sorts ints uses the same logic as a function that 

sorts doubles.  If we have already written a function to sort ints, what would we do to create a 

function that sorts doubles. C++ implements parametric polymorphism at compile-time using 

template syntax. 

 



1.4 Virtual Functions  

 

An object-oriented language implements inclusion polymorphism through sets of member 

functions on polymorphic objects.  Polymorphic objects can change their type throughout their 

lifetime.  To track these changes we distinguish between static and dynamic types.  An object's 

static type is its reference type and a compile-time constant.  The object's dynamic type is its 

current type and only known at run-time.   

C++ implements polymorphic objects using pointers.  The pointer type identifies the static type 

and the inheritance hierarchy that contains the set of member functions.  The dynamic type is the 

type that we use to allocate memory for the object.   

This chapter describes the way in which C++ implements inclusion polymorphism, which 

includes the binding of a function call to a member function definition depending on an object's 

static or dynamic type.  

Function Bindings 

The compiler uses an object's type to bind a function call to a function definition.  The object's 

type determines which member function in the inheritance hierarchy to call.   

Function binding takes either of two forms: 

• early binding - based on the object's static type 

• dynamic dispatch - based on the object's dynamic type 

Early Binding 

Consider the following definition of our Student class.  

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 

     void display(std::ostream&) const;  

 }; 

 



 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     void display(std::ostream&) const; 

 }; 

 

The implementation file is also the same as in the chapter entitled Functions in a Hierarchy: 
 

// Student.cpp 

 

 #include <cstring> 

 #include "Student.h" 

 

 Person::Person() { 

     person[0] = '\0'; 

 } 

 

 Person::Person(const char* nm) { 

     std::strncpy(person, nm, N); 

     person[N] = '\0'; 

 } 

 

 void Person::display(std::ostream& os) const { 

     os << person << ' '; 

 } 

 

 Student::Student() { 

     no = 0; 

     grade[0] = '\0'; 

 } 

 

 Student::Student(const char* nm, int n, const char* g) : Person(nm) {  

     // insert validation logic here 

     no = n; 

     std::strcpy(grade, g); 

 } 

 

 void Student::display(std::ostream& os) const { 

     Person::display(os); 

     os << no << ' ' << grade; 

 } 

 

The main() function in the client code listed below calls the global show() function twice, first 

for a Student object and second for a Person object.  The compiler binds both calls to the Person 

version of display() irrespective of argument type in the call itself.  That is, the compiler uses the 

parameter type in show() to determine which member function definition to call.  We call this an 

early binding.  The client program produces the output shown on the right: 

 



// Early Binding 

 // earlyBinding.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 void show(const Person& person) { 

     person.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 int main() { 

     Student harry("Harry", 975, "ABBAD"); 

     Person jane("Jane Doe"); 

 

     show(harry); 

     show(jane); 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Harry 

 Jane Doe  

 

This is the most efficient binding of a call to a member function's definition, since it occurs at 

compile-time.  Early binding is the default in C++. 

Note that no shadowing occurs inside the global show() function.  show() has no way of knowing 

which version of display() to select beyond the type of its parameter.  (To demonstrate 

shadowing, add the statements harry.display() and jane.display() to the main() function.)  

Dynamic Dispatch 

To call the member function associated with an object's dynamic type, we must wait until run-

time, when the executable code is aware of the object's dynamic type.  We call this dynamic 

dispatching.   

C++ provides the keyword virtual for overriding the default early binding.  If this keyword is 

present, the compiler inserts code that binds the call to most derived version of the member 

function based on the object's dynamic type.   

For example, the keyword virtual in the following class definition instructs the compiler to 

postpone calling the display() member function definitions until run-time:   

// Student.h 

 

 #include <iostream> 

 const int N = 30; 

 const int M = 13; 

 

 class Person { 

     char person[N+1]; 

   public: 

     Person(); 

     Person(const char*); 



     virtual void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     void display(std::ostream&) const; 

 }; 

 

Although the implementation file and the client program have not changed, the show() function 

now calls the most derived version of display() based on the type of the argument passed to it 

and produces the output shown on the right: 

// Late Binding 

 // lateBinding.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 void show(const Person& person) { 

     person.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 int main() { 

     Student harry("Harry", 975, "ABBAD"); 

     Person jane("Jane Doe"); 

 

     show(harry); 

     show(jane); 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Harry 975 ABBAD 

 Jane Doe  

 

show(harry) passes an unmodifiable reference to a Student, while show(jane) passes an 

unmodifiable reference to a Person.  In each case, the version of display() bound at run time is 

the most derived version for the type referenced by the parameter in show().  

Note that if we passed the argument to the show() function by value instead of reference, the 

show() function would still call the most derived version of display(), except that that version 

would be the Person version in both cases.  

Overriding Dynamic Dispatching 

To override dynamic dispatching with an early binding, we specify the scope explicitly: 

void show(const Person& person) { 

     person.Person::display(std::cout);  

     std::cout << std::endl; 

 } 



Documentation 

We can identify a member function as virtual even if no derived class exists.  Some 

programmers include the qualifier virtual in derived class prototypes as a form of 

documentation.  This improves readability but has no syntactic effect.  

Polymorphic Objects 

A polymorphic object's static type identifies the hierarchy to which the object belongs, regardless 

of its current dynamic type.  We specify the object's static type through  

• a pointer declaration 

• a receive-by-address parameter 

• a receive-by-reference parameter 

For example, the highlighted code specifies the static type pointed to by person: 

// Polymorphic Objects - Static Type  

 

 #include <iostream> 

 #include "Student.h" 

 

 int main() { 

     Person* person = nullptr; 

 

     // ... 

 

 } 

 

We specify the object's dynamic type on the constructor that allocates memory for it.  The region 

of memory that the object occupies depends on that type.   

The highlighted code specifies the dynamic type.  The results produced by this code are listed on 

the right: 

// Polymorphic Objects - Dynamic Type 

 // dyanmicType.cpp 

 

 #include <iostream> 

 #include "Student.h" 

 

 void show(const Person& person) { 

     person.display(std::cout); 

     std::cout << std::endl; 

 } 

 

 int main() { 

     Person* person = nullptr; 

 

     person = new Person("Jane Doe"); 

     show(*person); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Jane Doe 



     delete person; 

 

     person = new Student("Harry", 975, "ABBAD"); 

     show(*person); 

     delete person; 

 } 

 

 

 

 Harry 975 ABBAD 

  

In main(), person initially points to a Person (the static type) with no memory allocated.  At this 

point the object's dynamic type is unknown.  After the first allocation, person points to a Student 

type (dynamic type).  After the second allocation, person points to a Person type (the new 

dynamic type).  The static and dynamic types are related through the hierarchy.   

We only need one show() function to display both dynamic types.   

person points to a polymorphic object throughout its lifetime.  The object may assume any an 

infinite number of types as long as each is derived from a Person type.  show() is a polymorphic 

function with a parameter that receives an unmodifiable reference to an infinite number of types 

derived from a Person type.  

Virtual Destructors 

If a derived class acquires a resource, its own destructor typically releases that resource.  To 

ensure that the object calls the derived class' destructor at the end of its scope, we declare the 

base class destructor virtual.  Since a derived class destructor automatically calls its immediate 

base class' destructor, all destructors in the object's hierarchy will be called in turn.  

Good Design 

Good design codes the destructor in a base class as virtual, even if no class is currently derived 

from that base class.  The presence of a virtual base class destructor ensures that the most 

derived destructor will be called if and when a class is derived from the base class without 

requiring an upgrade to the definition of the base class. 

 

Efficiency and Flexibility 

 

Implementing inclusion polymorphism produces efficient and flexible code.  That is, 

virtual functions reduce code size considerably.  Our show() function works on objects of any 

type within the Person hierarchy.  We only define member functions (display()) for those classes 

requiring distinct processing.   



During the lifecycle of a client application that uses our hierarchy, we may add several classes to 

the hierarchy.  Our original coding, without any alteration, selects the most derived version of the 

member function in each upgrade of the hierarchy.  

  

1.5 Abstract Base Classes 

 

Separating interfaces from implementations promotes low coupling in object-oriented 

designs.  An interface specifies what an object offers to a client, while an implementation 

specifies how it does what it offers.  This distinction is quite useful in designing class 

hierarchies.  An interface to a class hierarchy identifies what the hierarchy offers, while the 

implementation describes how each class delivers what the hierarchy offers.  The interface 

effectively hides the hierarchy from any client.  We can upgrade the hierarchy by adding derived 

classes without having to change the client code.   

C++ supports this distinction through abstract base classes and concrete classes.  An abstract 

base class is a class without an implementation.  It defines an interface.  A concrete class is a 

derived class that implements the interface.  An abstract base class identifies the member 

functions that the class hierarchy exposes to its client but not their definitions.   

This chapter describes the principal components of an abstract base class and shows how to 

define an abstract base class in terms of them.  Abstract base classes are gateways to testing their 

inheritance hierarchies.  This chapter includes an example of a unit test on an abstract base class.   

Pure Virtual Functions 

The principal component of an abstract base class is a pure virtual member function.  Pure refers 

to the lack of implementation details.  We specify its signature but omit its definition.  A client 

only requires this signature to access whatever implementation matches its object's dynamic 

type.  

Declaration 

The declaration of a pure virtual function takes the form 

virtual Type identifier(parameters) = 0; 

 

The assignment to 0 identifies the function as pure.  A pure function must be a virtual member 

function.  



For example, let us specify that the Person hierarchy provides some implementation of a display 

function with the signature display() const.  The pure virtual function that exposes this 

functionality is:  

class iPerson { 

   public: 

     virtual void display(std::ostream&) const = 0;  

 }; 

 

Set of Implementations 

The definitions of the member functions throughout the class hierarchy with the same signature 

as a pure virtual function provide the different implementations available to the client.  

Abstract Base Classes 

An abstract base class is a class that contains or inherits a pure virtual function that has yet to be 

defined.  Any attempt to create an instance of an abstract base class generates a compiler error.  

Definition 

An abstract base class is a set of pure virtual member functions.  The class definition contains 

their declarations.  We call an abstract base class without data members an interface.  

Example 

Let us define an abstract base class named iPerson for our Person hierarchy and expose the 

display() member function to any client that accesses the interface.   

The iPerson.h header file contains the definition of our abstract class:  

// Abstract Base Class for the Person Hierarchy  

 // iPerson.h 

 

 #include <iostream> 

 

 class iPerson { 

   public: 

     virtual void display(std::ostream&) const = 0;  

 }; 

 

We derive our Person class from this interface.  The header file for our Person and Student 

class definitions includes the header file that defines our abstract base class: 

// Student.h 

 

 #include "iPerson.h" 

 const int N = 30; 

 const int M = 13; 

 

 class Person : public iPerson { 

     char person[N+1]; 



   public: 

     Person(); 

     Person(const char*); 

     void display(std::ostream&) const;  

 }; 

 

 class Student : public Person { 

     int no; 

     char grade[M+1]; 

   public: 

     Student(); 

     Student(const char*, int, const char*);  

     void display(std::ostream&) const; 

 }; 

 

Declaring display() a member function of both Person and Student informs the compiler that 

each concrete class will implement a version of this member function or access a previously 

implemented version.  

Unit Tests on an Interface 

It is good programming practice to code unit tests for an interface rather than any 

implementation.  This approach assumes that the interface does not change.  We can then 

perform unit tests on the interface at every upgrade throughout an object's lifecycle.  

Sorter Classes 

Consider an interface that exposes the sort() member function of a hierarchy of Sorter 

classes.  The Sorter module contains all of the implemented algorithms.  The interface and the 

tester module remain unchanged.  With every upgrade to the Sorter module, we can rerun the test 

suite on the interface.  

The header file for our Sorter module contains: 

// iSorter.h 

 

 class iSorter { 

   public: 

     virtual void sort(float*, int) = 0; 

 }; 

 

 class SelectionSorter : public iSorter {  

   public: 

     void sort(float*, int); 

 }; 

 

 class BubbleSorter : public iSorter { 

   public: 

     void sort(float*, int); 

 }; 

 

The header file for the Tester module contains: 



// Tester.h 

 

 class iSorter; 

 

 void test(iSorter*, float*, int, const char*);  

 

The implementation file for the Tester module contains: 

// Tester for Sorter Interface 

 // tester.cpp 

 

 #include <iostream> 

 #include "iSorter.h" 

 

 void test(iSorter* sorter, float* a, int n, const char* msg) {  

     sorter->sort(a, n); 

     bool sorted = true; 

     for (int i = 0; i < n - 1; i++) 

         if (a[i] > a[i+1]) sorted = false; 

     if (sorted) 

         std::cout << msg << " is sorted" << std::endl; 

     else 

         std::cout << msg << " is not sorted" << std::endl; 

 } 

 

The implementation file for the Sorter module defines the sort() member functions for the 

SelectionSorter class and the BubbleSorter class: 

// Sorter.cpp 

 

 #include "iSorter.h" 

 

 void SelectionSorter::sort(float* a, int n) {  

     int i, j, max; 

     float temp; 

 

     for (i = 0; i < n - 1; i++) { 

         max = i; 

         for (j = i + 1; j < n; j++) 

             if (a[max] > a[j]) 

                 max = j; 

         temp = a[max]; 

         a[max] = a[i]; 

         a[i] = temp; 

     } 

 } 

 

 void BubbleSorter::sort(float* a, int n) { 

     int i, j; 

     float temp; 

 

     for (i = n - 1; i > 0; i--) { 

         for (j = 0; j < i; j++) { 

             if (a[j] > a[j+1]) { 

                 temp = a[j]; 



                 a[j] = a[j+1]; 

                 a[j+1] = temp; 

             } 

         } 

     } 

 } 

 

The following program uses this Sorter implementation to produce the output shown on the 

right: 

// Test Main for Sorter Interface 

 // test_main.cpp 

 

 #include <iostream> 

 #include <ctime> 

 #include "Tester.h" 

 #include "iSorter.h" 

 

 void populate(float* a, int n) { 

     srand(time(nullptr)); 

     float f = 1.0f / RAND_MAX; 

     for (int i = 0; i < n; i++) 

         a[i] = rand() * f; 

 } 

 

 int main() { 

     int n; 

     std::cout << "Enter no of elements : "; 

     std::cin >> n; 

     float* array = new float[n]; 

 

     iSorter* sorter = nullptr; 

 

     sorter = new SelectionSorter(); 

     populate(array, n); 

     test(sorter, array, n, 

"SelectionSort"); 

     delete sorter; 

 

     sorter = new BubbleSorter(); 

     populate(array, n); 

     test(sorter, array, n, "BubbleSort");  

     delete sorter; 

 

     delete [] array; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Enter no of elements : 1000  

 

 

 

 

 

 

 

 SelectionSort is sorted 

 

 

 

 

 BubbleSort is sorted 

 

 

 

  

 

 

 

 

 



1.6 Function Templates 

 

Parametric polymorphism perfects the separation of interfaces from implementations.  The 

object's type and the logic executed on that type are completely independent.  Different clients 

can access the same logic using different totally unrelated types.   

C++ implements parametric polymorphism using template syntax.  The compiler generates the 

implementation for each client type at compile-time from the template that we define.   

This chapter describes how to implement parametric polymorphism using templax syntax with 

particular reference to functions and how to define an explicit specialization of a template for a 

particular type.  This chapter also describes the templated keywords available for casting of 

values from one type to another and compares these constrained casts to the older unconstrained 

casts.   

Template Syntax 

The definition of a template resembles that of a global function with the parentheses replaced by 

angle brackets.  A template header takes the form 

template<Type identifier[, ...]> 

 

The keyword template identifies the subsequent code block as a template.  The less-than greater-

than angle bracket pair (< >) encloses the template's parameter definitions.  The ellipsis stands 

for more comma-separated parameters.  

Each parameter declaration consists of a type and an identifier.  Type may be any of  

• typename - to identify a type (fundamental or compound) 

• class - to identify a type (fundamental or compound) 

• int, long, short, char - to identify a non-floating-point fundamental type 

• a template parameter 

identifier is a placeholder for the argument specified by the client.  

For example, 

template <typename T> 

 

 // ... template body 

follows here 

 

     T value; // value 

is of type T   

 template <class T> 

 

 // ... template body 

follows here 

 

     T value; // 

value is of type T   

The compiler replaces T with the argument specified by the client. 



Complete Definition 

 

Consider a function that swaps values in two different memory locations.  The code for two int 

variables may be defined using references: 

void swap(int& a, int& b) { 

     int c; 

     c = a; 

     a = b; 

     b = c; 

 } 

 

The template for all functions that swap values in this way follows from replacing the specific 

type int with the type variable T and inserting the template header: 

// Template for swap 

 // swap.h 

 

 template<typename T> 

 void swap(T& a, T& b) { 

     T c; 

     c = a; 

     a = b; 

     b = c; 

 } 

 

We define templates in header files; in this case, in swap.h.  

 

Call of the Implementation 

The call to a templated function determines the specialization that the compiler will 

generate.  The compiler binds the call to that specialization.   

For example, to call the swap() function for two doubles and two longs, we write the following 

and leave the remaining work to the compiler:  

// Calling a Templated Function 

 // swap.cpp 

 

 #include <iostream> 

 #include "swap.h" // template 

definition  

 

 int main() {  

     double a = 2.3; 

     double b = 4.5; 

     long   d = 78; 

     long   e = 567; 

 

     swap(a, b); // compiler 

generates 

                 // swap(double, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Swapped values are 4.5 and 2.3  



double) 

 

     std::cout << "Swapped values 

are " <<  

          a << " and " << b << 

std::endl;  

 

     swap(d, e); // compiler 

generates 

                 // swap(long, long) 

 

     std::cout << "Swapped values 

are " << 

          d << " and " << e << 

std::endl;  

 } 

 

 

 

 

 

 Swapped values are 567 and 78 

 

  

 

The arguments in each call are unambiguous in their type and the compiler can specialize the 

template appropriately.  If the arguments are ambiguous, the compiler reports an error. 

Explicit Specialization 

A template definition may have exceptions for certain arguments.  We define separate 

specializations for each exception not covered by the template definition.  

Example 

The following template definition return the maximum of two arguments and applies to any 

fundamental type:  

// Maximum Function 

 // maximum.h 

 

 template<typename T> 

 T maximum(T a, T b) { 

     return a > b ? a : b; 

 } 

 

To accomodate the const char* type, we specialize the template explicitly.  An explicit 

specialization has an empty paramter list: 

// Maximum Function 

 // + explicit specialization for const char* 

 // maximum.h 

 

 template<typename T> 

 T maximum(T a, T b) { 

     return a > b ? a : b; 

 } 

 

 template<> // explicit specialization - empty parameter list 

 const char* maximum<const char*>(const char* a, const char* b) { 

     char* largest = a; 



     bool done = false; 

     for (int i = 0; !done && a[i] != '\0' && b[i] != '\0'; i++) {  

         done = a[i] != b[i]; 

         if (b[i] > a[i]) largest = b; 

     } 

     return largest; 

 } 

 

We place explicit specializations after their general template definition.  

The compiler binds the second call to maximum to the explicit specialization for the const 

char* type: 

// Maximum of Two Strings 

 // maximum.cpp 

 

 #include <iostream> 

 #include "maximum.h" 

 

 int main() { 

     double a = 2.3; 

     double b = 4.5; 

     const char d[4] = "abc"; 

     const char e[4] = "def"; 

 

     double c = maximum(a, b); 

 

     std::cout << "Greater of " <<  

          a << ", " << b << 

          " is " << c << std::endl;  

 

     const char* f = maximum(d, e);  

 

     std::cout << "Greater of " << 

          d << ", " << e << 

          " is " << f << std::endl;  

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Greater of 2.3, 4.5 is 4.5  

 

 

 

 

 

 Greater of abc, def is def 

 

 

  

 

Class Template 

The syntax for class templates is similar to that for function templates.   

The following template defines Array classes of specified size in static memory.  The template 

parameters are the element type (T) and the size of the array (N): 

// Template for Array Classes 

 // Array.h 

 

 template <class T, int N> 

 class Array { 

     T a[N]; 

 public: 

     T& operator[](int i) { return a[i]; }  

 }; 



The compiler generates a class definition for element type int and array size 5 using the Array 

template definition.  The output from executing this client program is shown on the right: 

 
// Class Template 

 // Template.cpp 

 

 #include <iostream> 

 #include "Array.h" 

 

 int main() { 

     Array<int, 5> a, b; 

 

     for (int i = 0; i < 5; i++) 

         a[i] = i * i; 

 

     b = a; 

 

     for (int i = 0; i < 5; i++) 

         std::cout << b[i] << ' '; 

     std::cout << std::endl; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0 1 4 9 16 

  

 

Type Casting 

Type safety is an important feature of any strongly typed language.  Bypassing the type system 

introduces ambiguity to the language itself and is best avoided.  Type casting a value from one 

type to another type circumvents the type system's type checking facilities.  We implement casts 

only where absolutely unavoidable and localize them as much as possible.  

C++ supportsconstrained type casting through template syntax using one of the following 

keywords:  

• static_cast<Type>(expression) 

• reinterpret_cast<Type>(expression) 

• const_cast<Type>(expression) 

• dynamic_cast<Type>(expression) 

Type refers to the destination type.  expression refers to the value being cast to the destination 

type. 

Related Types 

The static_cast<Type>(expression) keyword converts the expression from its evaluated type to 

the specified type.  By far, this is the most common form of constrained cast.  

For example, to cast minutes to a float type, we write: 

// Cast to a Related Type 

 // static_cast.cpp 

 



 #include <iostream> 

 

 int main() { 

     double hours; 

     int minutes; 

 

     std::cout << "Enter minutes : "; 

     std::cin >> minutes; 

     hours = static_cast<double>(minutes)/ 60;  // int and float are related  

     std::cout << "In hours, this is " << hours; 

 } 

 

static_cast<Type>(expression) performs limited type checking.  It rejects conversions between 

pointer and non-pointer types.   

For example, the following cast generates a compile-time error: 

#include <iostream> 

 

 int main() { 

     int x = 2; 

     int* p; 

 

     p = static_cast<int*>(x);  // FAILS: unrelated types  

 

     std::cout << p; 

 } 

 

Some static casts are portable across different platforms.  
 

Unrelated Types 

The reinterpret_cast<Type>(expression) keyword converts the expression from its evaluated 

type to an unrelated type.  This cast may produce a value that has the same bit pattern as the 

evaluated expression.   

For example, to cast an int type to a pointer to an int type, we write:  

// Cast to an Unrelated Type 

 // reinterpret_cast.cpp 

 

 #include <iostream> 

 

 int main( ) { 

     int x = 2; 

     int* p; 

 

     p = reinterpret_cast<int*>(x);  // int and int* are unrelated  

 

     std::cout << p; 

 } 

 



reinterpret_cast<Type>(expression) performs minimal type checking.  It rejects conversions 

between related types.  

For example, the following cast generates a compile-time error: 

#include <iostream> 

 

 int main( ) { 

     int x = 2; 

     double y; 

 

     y = reinterpret_cast<double>(x);  // FAILS types are related  

 

     std::cout << y; 

 } 

 

Few reinterpret casts are portable.  Uses include 

• evaluating raw data 

• recovering data where types are unknown 

• quick and messy calculations 

 

Unmodifiable Types 

The const_cast<Type>(expression) keyword removes the const status from an expression. 

A common use case is a function written by another programmer that does not receive a const 

parameter but should receive one.  If we cannot call the function with a const argument, we 

temporarily remove the const status and hope that the function is truly read only.  

// Strip const status from an Expression 

 // const_cast.cpp 

 

 #include <iostream> 

 

 void foo(int* p) { 

     std::cout << *p << std::endl; 

 } 

 

 int main( ) { 

     const int x = 3; 

     const int* a = &x; 

     int* b; 

 

     // foo expects int* and not const int* 

     b = const_cast<int*>(a);  // remove const status  

     foo(b); 

 } 

 

 



const_cast<Type>(expression) performs minimal type checking.  It rejects conversions between 

different types.   

For example, the following code generates a compile-time error: 

#include <iostream> 

 

 int main( ) { 

     const int x = 2; 

     double y; 

 

     y = const_cast<double>(x); // FAILS  

 

     std::cout << y; 

 } 

 

Inherited Types 

The dynamic_cast<Type>(expression) keyword converts the value of an expression from its 

current type to another type within the same class hierarchy.   

For example, to cast a pointer to derived object d to a pointer to its base class part, we write: 

// Cast to a Type within 

the Hierarchy 

 // dynamic_cast.cpp 

 

 #include <iostream> 

 

 class Base { 

   public: 

     void display() const 

{ std::cout << "Base\n"; } 

 }; 

 class Derived : public 

Base { 

   public: 

     void display() const 

{ std::cout << 

"Derived\n"; } 

 }; 

 

 int main( ) { 

     Base* b; 

     Derived* d = new 

Derived; 

 

     b = 

dynamic_cast<Base*>(d);  

// in the same hierarchy  

     b->display(); 

     d->display(); 

     delete d; 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Base 

 

Derived  

  

 
 



dynamic_cast<Type>(expression) performs some type checking.  It rejects conversions from a 

base class pointer to a derived class pointer if the object is monomorphic.   

For example, the following cast generates a compile-time error: 

#include <iostream> 

 

 class Base { 

   public: 

     void display() const { std::cout << "Base\n"; } 

 }; 

 class Derived : public Base { 

   public: 

     void display() const { std::cout << "Derived\n"; }  

 }; 

 

 int main( ) { 

     Base* b = new Base; 

     Derived* d; 

 

     d = dynamic_cast<Derived*>(b);  // FAILS  

     b->display(); 

     d->display(); 

     delete d; 

 } 

 

Note that a static_cast works here and may produce the result shown on the right.  However, the 

Derived part of the object would then be incomplete.  static_cast does not check if the object is 

complete, leaving the responsibility to the programmer. 

#include <iostream> 

 

 class Base { 

   public: 

     void display() const 

{ std::cout << "Base\n"; } 

 }; 

 class Derived : public 

Base { 

   public: 

     void display() const 

{ std::cout << 

"Derived\n"; }  

 }; 

 

 int main( ) { 

     Base* b = new Base; 

     Derived* d; 

 

     d = 

static_cast<Derived*>(b);  

// OK  

     b->display(); 

     d->display(); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Base 

 

Derived  

  



     delete d; 

 } 

Old-Style Casts 

C++ inherited its original casting facilities from C and built directly on them.  The constrained 

syntax described above is more discriminating than the older syntax, which remains in the 

language for legacy reasons.  The availability of these older features allows programmers to 

bypass the type system and directly weaken the compiler's ability to identify type errors.   

For example, even though converting from an int to a pointer to an int is most probably a typing 

mistake, C and hence C++ allow:  

     int x = 2; 

     int* p; 

     p = (int*)(x); // MOST PROBABLY A TYPING ERROR (& missing)!  

 

Such syntax is nearly always an error that we expect the type-checking system to trap.  Errors 

that result from such casts are very difficult to find when embedded within thousands of lines of 

code.  

C++ supports old-style casting in two distinct forms - plain C-style casts and C++-function-style 

casts:  

 (Type) identifier       and      Type (identfier) 

 

These forms are interchangeable for fundamental types, but not pointer types.  For conversions to 

pointer types, only the C-style cast is available.  

C-Style Casts 

To cast a value from one type to another using a C-style cast, we preface the identifier with the 

name of the target type enclosed in parentheses:  

// C-Style Casting 

 // c_cast.cpp 

 

 #include <iostream> 

 

 int main() { 

     double hours; 

     int minutes; 

     std::cout << "Enter minutes : "; 

     std::cin >> minutes; 

     hours = (double) minutes / 60;  // C-Style Cast  

     std::cout << "In hours, this is " << hours; 

 } 

 

 



Function-Style Casts 

 

To cast a value from one type to another using a function-style cast, we enclose in parentheses 

the variable or object whose value we wish to cast to the target type: 

// Function Style Casting 

 // functionStyleCast.cpp 

 

 #include <iostream> 

 

 int main() { 

     double hours; 

     int minutes; 

     std::cout << "Enter minutes : "; 

     std::cin >> minutes; 

     hours = double(minutes) / 60;  // Function-Style Cast  

     std::cout << "In hours, this is " << hours; 

 } 

 

Comparison 

The old-style casts (for example, (int)x) apply without regard to the category of the 

conversion.  This syntax does not convey the programmer's intent.  An old-style cast can mean 

any of the following:  

• static_cast 

• const_cast 

• static_cast + const_cast 

• reinterpret_cast 

• reinterpret_cast + const_cast 

The constrained casts on the other hand by distinguishing the different categories improve the 

degree of type checking.  

It is always safer type-wise to code a static_cast rather than a C-style cast.  

 

1.7 Check Your Progress 

 

Q.1 What is function overloading? Explain with the help of an example. 

Q.2 What is Polymorphism? Explain the types of polymorphism with an example. 

Q.3 Define the following terms 

i. Ad-Hoc Polymorphism 

 ii. Universal Polymorphism  

Q.4 What is virtual function? Explain with the help of an example.  


